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Ma plus grande reconnaissance va à ma famille – Claudia, Matei et Ioan – pour les
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1 Introduction

La synthèse des travaux de recherche qui suit est basée sur une sélection d’articles
groupés en quatre thèmes de recherche:

1. Mécanique de la rupture fragile (3 articles)

2. Bipotentiels (2 articles)

3. Calcul des variations, élasticité, quasiconvexité (2 articles)

4. Géométrie sub-riemannienne et structures de dilatation (5 articles)

Des douze articles présentés ici,à cet instant 4 sont publiés, 1 accepté pour publica-
tion et 7 sont soumis à publication. Parmi les articles soumis à publication se trouve
un qui a été cité plusieurs fois.

J’ai choisi ces articles à partir d’une liste de 32 articles: 11 publiés, 8 soumis à
publication, 14 e-prints arXiv non publiés. Cette distribution inhabituelle vient de
mon choix de mettre mon travail sur les arXiv, la plus grande collection des article
en ligne, qui représente un futur probable pour la communication des recherches en
mathématiques. 3 des articles publies, et tous les articles soumis à publications sont
des e-prints arXiv. Parmi les 23 e-prints il y a 4 qui sont cités plusieurs fois.

Toutefois, à partir de 2006 j’ai décide de retourner à la façon habituelle de publier,
motivé principalement par des raisons pratiques. L’année dernière, j’ai soumis 9 articles
pour publication (de ces 9 j’ai soumis 8 aux arXiv, donc il s’agit des articles nouveaux);
3 ont été acceptés pour publication et pour les 6 autres j’attends le résultat final.
J’envisage dans le futur proche de soumettre les autres articles qui se trouvent dans les
arXiv, sous la forme présente ou sous une forme nouvelle, en accord avec mes points
de vue actuels.

Chaque des quatre thèmes de recherche commence par un article publié et continue
par des article nouveaux.

La liste des articles publiés qui ne seront pas présentés ici est la suivante:

[19] M. Buliga, Topological Substratum of the Derivative, Stud. Cerc. Mat.
(Mathematical Reports), 45, 6, 453-465, (1993)

[9] P. Ballard, M. Buliga, A. Constantinescu, Reconstruction d’un champ de con-
traintes résiduelles à partir des contraintes mesurées sur des surfaces successives.
Existence et unicité. C. R. Acad. Sci., Paris, Sér. II 319, No.10, 1117-1122
(1994)

[20] M. Buliga, On Special Relativistic Approach to Large Deformations in Con-
tinuous Media, Rev. Roum. de Math. Pures et Appl., t. XLI, 1-2, 5-15, (1996)
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[22] M. Buliga, Geometric evolution problem and action-measures, in: Proceed-
ings of PAMM Conference PC 122, Constanta 1998, Tech. Univ. Budapest,
(1998)

[23] M. Buliga, Brittle crack propagation based on an optimal energy balance,
Rev. Roum. des Math. Pures et Appl., 45, no. 2, 201–209 (2001)

[97] G. de Saxcé, M Buliga, C. Vallée, C. Lerintiu, Construction of a bipotential
for a multivalued constitutive law, PAMM, 6 , 1 (December 2006), Special Issue:
GAMM Annual Meeting 2006 - Berlin

[28] M. Buliga, Vrănceanu’ nonholonomic spaces from the viewpoint of distance
geometry, (in romanian, original title: Spaţiile neolonome ale lui Vrănceanu din
punctul de vedere al geometriei distanţei), to appear in Revista Fundaţiei Acad.
Prof. Gh. Vrănceanu, (2007)
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2 Curriculum vitae

2.1 État civil

Nom patronymique: Buliga

Prenoms: Marius, Luchian.

Date et lieu de naissance: 22 novembre 1967, Bucarest, Roumanie.

Nationalité: Roumaine.

Situation de famille: marié, deux enfants.

Adresse personnelle: Str. Antiaeriana 115, bl. A1, sc. 11, ap. 139, sector 5,
Bucarest, Roumanie

Numéro de téléphone: +40 (0) 21 420 11 08.

2.2 Fonction

Chargé de Recherche, Département de Mécanique de Milieux Continus, Institut
de Mathématiques de l’Académie Roumaine, Bucarest (Roumanie)

Établissement actuel: Institut de Mathématiques de l’Académie Roumaine,

Adresse PO-BOX 1-764, 014700, Bucarest, Roumanie

mél: Marius.Buliga@imar.ro

Page web: (vivement conseillé pour une image détaillé de mes travaux)

http://www.imar.ro/~mbuliga/

2.3 Diplômes, qualifications, titres étrangers

1997 – Thèse de Doctorat en Mathématiques de l’Institut de Mathématiques,
Académie Roumaine, intitulée: ”Formulations variationnelles en mécanique de la
fissuration fragile”, Directeur de thèse Eugen Sóos.

1995 – Diplôme de master (DEA) (mécanique non linéaire) de l’ École Polytech-
nique, Paris, dissertation intitulée: ”Modélisation de la décohésion d’interface
fibres-matrice dans les matériaux composites”.

1994 – Diplôme d’auditeur, majeure Science de l’Ingénieur, École Polytechnique,
Paris. Titre de la dissertation: ”Reconstruction d’un champ de contraintes
résiduelles à partir des contraintes mesurées sur des surfaces successives”.
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1992 – Diplôme de mathématicien , Faculté de Mathématiques, Université de Bu-
carest. Titre de la dissertation: ”Le contenu topologique de la différentiabilité”.

2.4 Vie professionnelle

2000 – Chargé de Recherche, Département de Mécanique de Milieux Continus,
Institut de Mathématiques de l’Académie Roumaine, Bucarest (Roumanie)

2001 – 2006 Chercheur invité, post-doctorant, Chaire d’Analyse Géométrique,
Institut de Mathématiques B, École Polytechnique Fédérale de Lausanne (Suisse).

1998 – Chercheur, Institut de Mathématiques, Département de Mécanique des
Milieux Continus, Académie Roumaine

1997-2000 – Professeur Associé, Faculté de Mathématiques, Université Hyperion,
Bucarest

1995 – Assistant de Recherche, Institut de Mathématiques, Département de
Mécanique des Milieux Continus, Académie Roumaine

1993 – Assistant de Recherche, Faculté de Mathématiques, Université de Bu-
carest, et l’Institut de Génie Civil

1992-1993 – Professeur d’Informatique, Lycée Petru Poni , Bucarest (Sept. 1992
- Feb. 1993)

Chercheur invité

2000 Département de Mathématiques, École Polytechnique Fédérale de Lausanne,
pour 3 mois

2004 Institut des Hautes Études Scientifiques, Nov. 2004

2005 Laboratoire de Mécanique de Lille - UMR CNRS 8107, pour un mois

2.5 Activités de recherche

3 contrats de recherche sur fonds nationaux et internationaux
Grandes orientations: Mes recherches sont consacrées à la Mécanique des Solides

dans ses aspects théoriques et numériques, et à l’Analyse Géométrique des espaces
métriques. Les thèmes abordés concernent:
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La Mécanique de la rupture fragile: une formulation rigoureuse de la rupture
fragile basée sur la fonctionnelle de Mumford-Shah et sur des techniques d’analyse
géométrique.

Des fissures avec des formes complexes peuvent apparâıtre et se propager sans
prescription sur leur géométries. J’ai montré que une théorie basée seulement sur la
fonctionnelle Mumford-Shah conduit à des résultats non raisonnables du point de vue
mécanique.

En conséquence j’ai proposé des critères de propagation fragile des fissures qui
généralisent les critères bien connues de Griffith et Irwin. Le travail est illustré par des
résultats numériques.

Élasticité non linéaire, Convexité et Calcul de Variations: des études sur les
propriétés de quasiconvexité d’un potentiel élastique non linéaire.

Par un résultat classique de Morrey, les propriétés de continuité de certaines fonc-
tionnelles sur des espaces de Sobolev sont en relation avec la quasiconvexité de la
fonction potentiel w. Le cas des espaces de Sobolev des fonctions u : Ω ⊂ Rn → Rn

est très intéressant pour la mécanique des milieux continus.
En élasticité le potentiel w n’est pas en général défini sur un espace vectoriel de

matrices n × n (l’algèbre de Lie gl(n, R)) mais sur l’ensemble des matrices n × n avec
déterminant positif (le groupe de Lie GL(n, R)). Parfois la fonction w est définie sur
un sous-groupe, comme c’est le cas de l’élasticité incompressible, ou il faut considérer le
groupe des matrices de déterminant 1, i.e. le groupe SL(n, R). Pour n pair , un autre
groupe qui attire l’attention est Sp(n, R), le groupe des matrices symplectiques. Il est
donc intéressant de trouver des conditions nécessaires et/ou suffisantes pour l’inférieure
semi-continuité de la fonctionnelle et de notions (qui restent à trouver) de convexité
du w : G → R, avec G un groupe de matrices.

Très peu est connu sur la continuité des intégrales associées aux potentiels diff-
quasiconvex. Il est cependant facile à prouver que la diff-quasiconvexité, introduite par
Giaquinta, Modica, Soucek est une condition nécessaire.

J’ai introduit la notion de quasiconvexité multiplicative qui est mieux adaptée au
cas de grandes déformations, quand il est important de prendre en compte le fait que
les déformations sont invertibles.

J’ai également étudié l’importance de la convexité de Schur pour le comportement
des matériaux élastiques isotropes, notamment les élastomères nematiques.

Bipotentiels: Les lois constitutives des materiaux standard sont en général mul-
tivaluées et également associées. Le graphe d’une telle loi constitutive est inclus
dans le graphe de la sous-differentiale d’un super-potentiel φ (qui est aussi inférieur
semi-continu). La loi constitutive prend alors la forme d’une inclusion différentielle,
y ∈ ∂φ(x).

Cependant, certaines des lois constitutives sont non-associées. Elles ne peuvent pas
être traités dans le cadre des matériaux standard. Pour contourner ce problème, une
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réponse possible, proposée d’abord par Gery de Saxcé, consiste en construisant une
fonction b (le bipotential) avec deux variables, bi-convexe, qui satisfait une inégalité
généralisant celle de Fenchel. Physiquement, le bipotential représente la dissipation.

En collaboration avec G. de Saxcé et C. Vallée, nous sommes en train de donner
une base rigureuse du point de vue mathématique à la théorie du bipotentiel. Nous
utilisons pour cela des outils de l’analyse convexe et de géométrie symplectique.

Géométrie sub-riemannienne: La géométrie sub-riemannienne, ou de Carnot-
Carathéodory, ou encore géométrie non-holonome, est un sujet de recherche en con-
tact avec plusieurs domaines, notamment: l’analyse des opérateurs hypoelliptiques,
théorie du contrôle, l’analyse dans les espaces métriques mesurés. Parmi les principaux
contributeurs à ce sujet on compte Hörmander, Gromov, Cheeger , Folland, Stein,
Margulis, Mostow.

La géométrie intrinsèque des liaisons non holonomes n’est pas riemannienne, ce qui
engendre le besoin d’adapter les outils d’analyse non linéaire. Cela est possible grâce
à des résultats nouveaux d’analyse géométrique dans espaces métriques plus générales
que les espaces riemanniens.

Mon interet pour le sujet de recherche de la géométrie sub-riemannienne a com-
mencé pendant le temps passé au département de mathématiques de l’EPFL. J’ai pro-
posé et étudié la notion de structure de dilatations, les proprietés de courbure d’une
varieté sub-riemannienne et quelques applications dans la mécanique hamiltonienne.

Il semble maintenant que les structures de dilatation sont intéressantes par elles-
mêmes, avec un champ d’applications possibles contenant strictement la géométrie
sub-riemannienne, mais aussi les espaces ultramétriques ou les groupes contractibles.

Autres: un problème de reconstruction de contraintes résiduelles dans un solide
élastique, mesurées par diffraction des rayons X, après un enlèvement de matière qui in-
duit la redistribution des contraintes, et donc le tenseur mesuré est différent du tenseur
original.

Un étude de la méthode de Rougée pour la description des propriétés locales d’un
milieu continu, appliquée pour un milieu continu en relativité restreinte.

2.6 Activités pédagogiques

6 enseignements de cours et/ou travaux dirigés
2 fascicules de cours polycopiés rédigés
1 support de cours en forme électronique (page web)
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Description de charges

1993-1994- cours de Théorie de la Relativité , 4eme semestre, cours, 28 h/semestre, pen-
dant deux ans, suite à l’initiative de Prof. L. Beju qui a proposé d’expérimenter
l’enseignement de ce cours en deuxième année d’études, Faculté de Mathématiques,
Université de Bucarest.

1993-1994- travaux dirigés de l’Introduction à l’Informatique 1ersemestre, t.d. 56 h/semestre,
l’Institut de Génie Civil, Bucarest

1995-1999- cours et t.d. de Mécanique des Milieux Continus pour mathématiciens, 7eme

semestre, cours 28 h/semestre, t.d. 140 h/semestre (2h de t.d./semaine pour 5
groupes), à la Faculté de Mathématiques, Université de Bucarest.

1997-1999- cours et t.d. de Géométrie linéaire, deux premiers semestrs, cours 84 h/an, t.d.
168 h/an, à la Faculté de Mathématiques, Université Hyperion, Bucarest

1997-1999- cours et t.d. de Géométrie Différentielle, les 2 semestres suivants, cours 84 h/an,
t.d. 168 h/an, à la Faculté de Mathématiques, Université Hyperion, Bucarest.

2001-2006 t.d. Analyse I et II, t.d. 108 h/an, pour le cours de T. Ratiu à l’EPFL

2001-2006 Collabore occasionnellement à l’enseignement du cours d’ Analyse I et II à l’EPFL.

Créations d’enseignement

1998- Cours avancé ”Problèmes à discontinuité libre”, Institut de Mathématiques de
l’Académie Roumaine

1999- Cours avancé ”Méthodes énergétiques en mécanique de la fissure fragile”, Institut
de Mathématiques de l’Académie Roumaine

2001-2002- avec T. Ratiu, séminaire de travail ”Sub-Riemannian geometry and Lie groups”,
EPFL

2003- un des organisateurs du Séminaire Borel 2003, dans le cadre du 3ème Cycle Ro-
mand de Mathématiques, intitulé ”Tangent spaces of metric spaces”, Université
de Berne (Suisse), ( 2 exposés en 12 semaines)

Cours polycopiés et support de cours

- Rédaction de notes du cours ”Théorie de la Relativité restreinte” (1993).

- Rédaction de notes du cours et t.d. de ”Géométrie linéaire” (1998).

- Rédaction de notes du cours et t.d. de ”Géométrie Différentielle” (1998).

- support informatique pour les t.d. de Analyse I, II, EPFL (2003-2006)
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2.7 Travaux. Articles. Réalisations

Publications dans des revues avec comité de lecture

1. M. Buliga, Topological Substratum of the Derivative, Stud. Cerc. Mat. (Mathe-
matical Reports), 45, 6, 453-465, (1993)

2. P. Ballard, M. Buliga, A. Constantinescu, Reconstruction d’un champ de con-
traintes résiduelles à partir des contraintes mesurées sur des surfaces successives.
Existence et unicité. C. R. Acad. Sci., Paris, Sér. II 319, No.10, 1117-1122
(1994)

3. M. Buliga, On Special Relativistic Approach to Large Deformations in Continu-
ous Media, Rev. Roum. de Math. Pures et Appl., t. XLI, 1-2, 5-15, (1996)

9 cit. - 4. M. Buliga, Energy Minimizing Brittle Crack Propagation, J. of Elasticity, 52, 3,
201-238, (1999)

3 cit. - 5. M. Buliga, Brittle crack propagation based on an optimal energy balance, Rev.
Roum. des Math. Pures et Appl., 45, no. 2, 201–209 (2001)

1 cit. - 6. M. Buliga, Lower semi-continuity of integrals with G-quasiconvex potential, Z.
Angew. Math. Phys.,bf 53, 6, 949-961, (2002)

7. M. Buliga, G. de Saxcé, C. Vallée, Existence and construction of bipotentials for
graphs of multivalued laws, J. of Convex Analysis, 15, 1, (2008)

8. M. Buliga, Dilatation structures I. Fundamentals, J. Gen. Lie Theory Appl., Vol
1 (2007), No. 2, 65-95

Publications acceptées dans une revue à comité de lecture

9. M. Buliga, Equilibrium and absolute minimal solutions of brittle fracture models
based on energy-minimization methods, Int. Journal of Fracture, (2007)

10. M. Buliga, Vrănceanu’ nonholonomic spaces from the viewpoint of distance ge-
ometry, (en roumain, titre original: Spaţiile neolonome ale lui Vrănceanu din
punctul de vedere al geometriei distanţei), Revista Fundaţiei Acad. Prof. Gh.
Vrănceanu, (2007)

Communication à des congrès et colloques avec actes publiés

11. G. de Saxcé, M Buliga, C. Vallée, C. Lerintiu, Construction of a bipotential for
a multivalued constitutive law, Proc. Appl. Math. Mech., vol. 6 , no. 1 (2006),
153-154
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12. M. Buliga, Geometric evolution problems and action-measures, PAMM Appl.
Math. Bull., vol. LXXXVI (1998), T. U. Budapest, 53-58

Articles soumises au publication

13. M. Buliga, G. de Saxcé, C. Vallée, Construction of bipotentials and a minimax
theorem of Fan, (submitted), http://arxiv.org/abs/math.FA/0610136, (2006)

14. M. Buliga, Contractible groups and linear dilatation structures, (submitted)
http://xxx.arxiv.org/abs/0705.1440, (2007)

15. M. Buliga, Linear dilatation structures and inverse semigroups, (submitted)
http://xxx.arxiv.org/abs/0705.4009, (2007)

16. M. Buliga, Microfractured media with a scale and Mumford-Shah energies, (sub-
mitted)
http://xxx.arxiv.org/abs/0704.3791, (2007)

17. M. Buliga, Four applications of majorization to convexity in the calculus of vari-
ations, (submitted) (2007)

18. M. Buliga, Dilatation structures in sub-riemannian geometry, (submitted)
http://arxiv.org/abs/0708.4298, (2007)

19. M. Buliga, Self-similar dilatation structures and automata, (submitted), (2007),

20. M. Buliga, Dilatation structures with the Radon-Nikodym property, (submitted)
http://arxiv.org/abs/0706.3644, (2007)

Publications électroniques

2 cit. - 21. M. Buliga, Majorisation with applications to the calculus of variations,
http://arxiv.org/abs/math.FA/0105044, (2001), see also the updated version ”Four
applications of majorization to convexity in the calculus of variations”

1 cit. - 22. M. Buliga, Sub-Riemannian geometry and Lie groups. Part I,
http://arxiv.org/abs/math.MG/0210189, (2002)

1 cit. - 23. M. Buliga, Symplectic, Hofer and sub-Riemannian geometry,
http://arxiv.org/abs/math.SG/0201107, (2002)

24. M. Buliga, Volume preserving bi-Lipschitz homeomorphisms on the Heisenberg
group, http://arxiv.org/abs/math.SG/0205039, (2002)

25. M. Buliga, Tangent bundles to sub-Riemannian groups,
http://arxiv.org/abs/math.MG/0307342, (2003)
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26. M. Buliga, Curvature of sub-Riemannian spaces,
http://arxiv.org/abs/math.MG/0311482, (2003)

27. M. Buliga, Sub-Riemannian geometry and Lie groups. Part II. Curvature of
metric spaces, coadjoint orbits and associated representations,
http://arxiv.org/abs/math.MG/0407099, (2004)

28. M. Buliga, Energy concentration and brittle crack propagation,
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3. Modélisation de la décohesion d’interface fibres-matrice dans les matériaux com-
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2.8 Communications à des congrès et colloques
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Iasi 1997
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1999- Applied Analysis and Mechanics Seminars, Hilary Term 1999, Mathematical In-
stitute, Oxford, ”Quasiconvexity versus group invariance”, invited by J.M. Ball
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de Géométrie et Singularités, ”Flots hamiltoniens d’isométries” invited by B.
Kolev.
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2005- Laboratoire de Mécanique de Lille, ”Un test pour les critères énérgetiques de
rupture”, invited by G. De Saxcé.

2006- GAMM 2006, Berlin, Germany, G. De Saxcé, M. Buliga, C. Vallée, C. Lerinţiu,
Construction of a bipotential for a multivalued constitutive law

2006- 8-ème Colloque Franco-Roumain de Mathématiques Appliquées, Chambéry, ”Con-
vexité de Schur et élastomères nématiques”
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(Suisse).
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3 Résumé des activités

Mes recherches sont consacrées à la Mécanique des Solides dans ses aspects théoriques
et numériques, et à l’Analyse Géométrique des espaces métriques. J’ai donc une double
spécialisation, comme mécanicien et mathématicien, qui s’explique par mon parcours
et par l’organisation des études universitaires en Roumanie pendant les années ’80 et
’90.

a. Études en Roumanie (1987-1994)

En Roumanie j’ai suivi des études de la section de Mécanique des Solides de la
Faculté de Mathématiques, Université de Bucarest. Après 2 années d’ études générales
de mathématique, les membres de la section de Mécanique ont suivi pendant 3 ans des
cours approfondis en e.d.p, calcul de variations, analyse fonctionnelle, mais aussi des
cours d’élasticité, plasticité, rhéologie, fluides, ... La période totale des études était de
5 ans (comparée à 4 ans pour les autres sections de la Faculté de Mathématique) et les
étudiants de cette section étaient préparés pour faire ensuite de la recherche.

J’ai suivi ce double enseignement, mathématique et mécanique, par passion de la
mathématique mais aussi parce que j’ai été toujours fasciné par la physique. J’ai eu
la chance de faire partie d’un petit groupe des étudiants sélectionnés par le professeur
Eugen Sóos depuis le commencement des études. En plus de cet enseignement non
standard, nous avons bénéficié des cours supplémentaires, donnés par les meilleurs
rechercheurs roumains, ex-membres de l’Institut de Mathématiques de l’Académie
Roumaine, détruit par les autorités communistes. Pour nous, la distinction entre la
mécanique et les mathématiques est artificielle.

Après la révolution roumaine, toutes les institutions ont subi des grandes transfor-
mations. La deuxième partie de mes études en Roumanie est faite dans des conditions
meilleures (l’Institut a été refait), mais dans une atmosphère de transition et de confu-
sion du point de vue de l’organisation. Suite à 5 années d’études j’ai reçu une diplôme
de mathématicien. En présent, pour les mêmes études l’Université de Bucarest offre
une diplôme de master. Je sais maintenant qu’à cette époque, les connaissances des
étudiants roumains sur le système d’enseignement dans l’Union Européenne étaient
très minces. D’ailleurs, il me semble que la situation était symétrique de l’autre côté
du rideau de fer.

Après la fin des études universitaires, j’ai travaillé une première période comme
professeur d’informatique dans un lycée de Bucarest. Peu après j’ai eu la chance
d’enseigner le cours de relativité restreinte à la Faculté de Mathématique, suite à la
proposition du professeur Iulian Beju.

Mes domaines de recherche du début étaient les milieux continus en relativité re-
streinte et la topologie générale.

À la fin ce cette période, tous les membres du groupe selectioné par Sóos ont continué
les études ailleurs, notamment en France et les États Unis.
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b. Période parisienne (1994-1995)

Mon arrivée à l’École Polytechnique, comme élève auditeur (et après comme étudiant
en D.E.A. de Mécanique non linéaire) m’a permis d’élargir mes horizons, en particulier
à cause de l’accès à une grande bibliothèque de spécialité.

En collaboration avec Patrick Ballard et Andrei Constantinescu, nous avons résolu
un problème inverse d’élasticité (détermination des contraintes résiduelles par mesure
de contraintes sur de surfaces successives).

Pendant le stage de D.E.A. fait au LPMTM, Université Paris 13, j’ai eu l’occasion
de m’initier au domaine naissant des formulations énergétiques en la mécanique de la
rupture fragile. Le sujet de stage était de contribuer à la formulation d’un modèle
de rupture fragile qui utilise la fonctionnelle Mumford-Shah. J’ai vite prouvé que un
modèle basé exclusivement sur cette fonctionnelle (et sur une simple discrétisation
temporelle) ne donne pas de bons résultats dans le cas d’apparition d’une fissure.
J’ai proposé donc un modèle modifié, en utilisant des idées des problèmes inverses
d’élasticité (que j’avais appris auparavant, pendant les études a l’École Polytechnique
), notamment la fonction de Dirichlet-Neumann.

c. Deuxième période roumaine (1995-1999)

Pour des raisons personnelles, je retourne en Roumanie. Je m’inscrit en thèse, sur
le sujet ”Formulations variationnelles en mécanique de la rupture fragile”, Directeur de
thèse: Eugen Sóos. Décidé d’apprendre plus sur le sujet de la fonctionnelle Mumford-
Shah, je contacte par mél. le principal spécialiste, Luigi Ambrosio (ENS Pisa), qui
a la gentillesse de m’envoyer ses articles et avec qui je noue pour une période une
collaboration. À ma déception je ne trouve pas la même ouverture auprès de l’équipe
française qui poursuit le même but: un modèle rigoureux de rupture fragile basé sur la
fonctionnelle Mumford-Shah. Néanmoins, au but d’un an et demi, j’arrive à formuler
un tel modèle, en tenant compte aussi des faiblesses que j’ai découvert auparavant.
Trois publications et cinq publications électroniques sont ensuite dédiées à ce sujet,
dont le premier est mentionné dans la monographie de référence de L. Ambrosio, N.
Fusco, L. Pallara. J’ai obtenu un contrat de recherche de la part du Ministère de
la Recherche et des Technologies Roumain sur le sujet des critères énergétiques en
mécanique de la rupture fragile. Plus tard je commence à étudier avec E. Sóos et M.
Craciun le critère de fissuration de Sih.

Après la thèse de doctorat ( en mathématiques!), je deviens intéressé par l’élasticité
non linéaire. Le raison est simple: trouver une extension du modèle de fissuration
fragile pour des matériaux élastiques non linéaires. Je découvre vite que l’élasticité est
un domaine intéressant en soi et j’essaye de trouver des conditions nécessaires et/ou
suffisantes pour la semi-continuité inférieure de la fonctionnelle énergie élastique et des
notions de convexité du potentiel élastique défini sur un groupe de matrices, au lieu
d’un espace vectoriel. En deux articles j’ai introduit la bonne notion de quasiconvexité
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dans le sens variationnel, associée à un groupe d’homéomorphismes bi-Lipschitziens.
Suite à une invitation de la part de J.M. Ball j’ai eu l’occasion de présenter la notion

de quasiconvexité multiplicative dans un exposé à l’Oxford Mathematical Institute.
Au même temps je fais une série de visites à l’ENS (Pise) et SISSA (Trieste), ou
j’ai l’occasion d’échanger des idées avec L. Ambrosio et A. Braides, sur le sujet de
formulations énergétiques de la rupture fragile.

Par l’intermédiaire de E. Sóos je commence une collaboration avec C. Vallée (Poitiers)
qui continue jusqu’à présent.

c. Période suisse (2000-2006)
Suite à une visite de T. Ratiu en Roumanie, j’ai l’occasion de discuter avec lui de

l’analyse sur de groupes de difféomorphismes, domaine dans lequel Ratiu a démontré
des résultats fondamentaux. Il est intéressé par les utilisations que j’ai donné en
mécanique de la rupture et l’élasticité et il m’invite pour 3 mois dans sa chaire à
l’EPFL. Après cette visite il m’offre la possibilité de passer quelques années à l’EPFL.
D’une position d’invité, je suis devenu ensuite premier assistant.

À l’EPFL j’ai découvert les relations entre la convexité de Schur et les notions de
convexité en élasticité, suite à une cöıncidence : j’ai eu l’occasion d’apprendre plus, en
même temps, sur la convexité de Schur (de la part de Ratiu) et sur sur la convexité de
rang un, de la part de Dacorogna.

Ensuite, pendant 4 ans, je travaille sur le sujet de la géométrie sub-riemannienne,
qui reste parmi mes principales thèmes de recherche. J’ai collaboré dans ce sujet avec
l’équipe de M. Reimann (Berne), avec S. Vodop’yanov (Novosibirsk) et j’ai fait une
visite à l’IHES pour discuter ce sujet.

J’ai organise avec Tudor Ratiu le séminaire de travail ”Sub-Riemannian geometry
and Lie groups”, en 2001-2002, à l’EPFL. J’ai été parmi les organisateurs du séminaire
Borel 2003, ”Tangent spaces of metric spaces”, ou j’ai présenté des constructions de
fibrés tangents d’un group sub-riemannien.

La période de travail à l’EPFL signifie pour moi la liberté totale de recherche, sans
soucis matériels. J’en ai profité pleinement.

Depuis 2004 j’ai recommence à étudier des sujets de mécanique de la rupture et
d’élasticité, suite à la collaboration avec C. Vallée. La façon de modéliser l’évolution
quasistatique d’une fissure a attiré l’attention de A. Mielke (WIAS), et j’ai eu l’occasion
de collaborer avec lui à l’EPFL et en Allemagne. Enfin, une collaboration a été établie
avec G. Oleaga (Madrid) sur le sujet de la mécanique de la rupture.

Plus tard j’ai rencontré G. De Saxcé (Lille-1), avec lequel nous avons travaillé sur
une méthode de construction des bipotentiels.

d. Le présent (2006-2007)
Je suis retourné en Roumanie à partir de juillet 2006 et j’ai repris mon poste de

chargé de recherche à l’Institut de Mathématiques de l’Académie Roumaine. Dès mon
arrivée, je commencé une période de travail intense, en essayant de mettre sur le papier
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toute une suite d’idées plus ou moins développées pendant le stage en Suisse.
Depuis mon rencontre avec G. De Saxcé, le sujet des bipotentiels est parmi mes

préoccupations. Trois articles ont été écrits en collaboration avec G. De Saxcé et C.
Vallée. Deux sont publiés et le troisième attends le verdict final.

Deux autre articles soumis à publication portent sur la fissuration fragile. J’ai
la satisfaction de voir que mes premiers essais en la matière semblent pointer dans
une bonne direction. Dans le premier de ces deux articles, je propose une analyse
rigoureuse des modèles de fissuration fragile basés sur la fonctionnelle Mumford-Shah.
L’analyse porte sur des diffèrent façons de définir l’évolution quasistatique d’un corps
élastique fissuré et sur les implications physiques des hypothèses mathématiques assez
techniques. Dans le deuxième article je traite sur une méthode d’homogeneization
non standard de la fonctionnelle Mumford-Shah, qui semble prédire correctement la
concentration d’endommagement dans un milieu élastique périodique microfissuré. Les
deux articles sont soumis à publication.

Enfin, j’ai commencé à jeter les bases de la géométrie sub-riemannienne à partir
de la notion de structure de dilatation. Cette notion était deja esquissée dans des
preprints arXiv de la période suisse. Maintenant je commence un étude poussé dans
cette direction, et je produis 6 articles (un publié et 5 soumises à publication) sur le
sujet. Je considère ce sujet de travail comme le plus important dans ma carrière jusqu’à
cette date.

L’étendue de la notion de structure de dilatation est plus générale que la géométrie
sub-riemannienne. J’ai établi aussi des connections avec l’analyse dans les corps ul-
tramétriques et avec la théorie des automates. Dans le dernier an j’ai présenté ce
travail lors de cinq exposés, en Espagne (dans le cadre d’une conférence satellite de
l’ICM2006), en Suisse, en Allemagne et deux fois en Roumanie.
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4 Mécanique de la rupture fragile et la fonction-

nelle Mumford-Shah

4.1 Description du sujet

Une grande partie de la difficulté des problèmes de fissuration fragile consiste en la
nature géométrique de la fissure. Les premiers contributions en ce domaine concernent
surtout le comportement d’un materiau fragile. Parmi les références fondamentales se
trouvent: Eshelby [54], Griffith [68], Irwin [60], Gurtin [72] [73], Rice [94].

Dans presque toutes les études, la géométrie de la fissures est a priori fixée. Parmi
les peu nombreuses exceptions, on trouve les articles de Stumpf, Le [110], ou Ohtsuka
[89] [90] [91] [92].

La géométrie de la fissure peut être prescrite de manière forte, comme dans le cas des
fissures rectangulaires ou elliptiques, qui préservent leur forme le long de l’évolution.
Une prescription faible de la géométrie de la fissure apparâıt, par exemple, dans le
cas d’une fissure unidimensionnelle qui évolue dans une configuration de référence bi-
dimensionnelle, à la condition que la fissure soit à tout instant une courbe simple. Dans
ce cas, l’évolution de la fissure est réduite au mouvement d’un point. Dans tous ces
cas, la nature géométrique de la principale inconnue du problème – la fissure – n’est
pas prise en compte.

Une nouvelle direction de recherche dans ce domaine commence avec l’article de
Mumford et Shah [88], sur un problème de traitement d’image. Ce problème de seg-
mentation de l’image, c.a.d. trouver l’ensemble des contours d’une image et construire
une version plus simple de l’image en tenant compte de l’ensemble des contours, est
similaire du point de vue mathématique au problème d’évolution quasistatique des
fissures fragiles.

Dans l’article [88] Mumford et Shah proposent l’approche variationnel suivant pour
le problème de segmentation d’image: soit g : Ω ⊂ R

2 → [0, 1] l’image initiale, comprise
comme une distribution des niveaux de gris (1 c’est blanc et 0 c’est noir) sur le support
Ω de l’image. Soit g : Ω ⊂ R

2 → R l’image cherchée et K ⊂ Ω l’ensemble des contours.
K est (contenu dans) l’ensemble des points ou la fonction u n’est pas continue, c.a.d.
u ∈ C1(Ω \ K, R). On cherche une paire (u, K) qui minimise la fonctionnelle

I(u, K) =

∫

Ω

α | ∇u |2 dx +

∫

Ω

β | u − g |2 dx + γH1(K) . (4.1.1)

Le paramètre α contrôle la régularité de la fonction u, le paramètre β contrôle la
distance L2 entre l’image u et l’image initiale g et le paramètre γ contrôle la longueur
(mesure de Hausdorff 1D) de l’ensemble K des contours. Les auteurs remarquent que
pour β = 0 la fonctionnelle I peut être utilisée pour un traitement énergétique du
problème de fissuration fragile.
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4.2 Contributions

Mes contributions dans ce sujet,

[21] M. Buliga, Energy Minimizing Brittle Crack Propagation, J. of Elasticity,
52, 3, 201-238, (1999)

[22] M. Buliga, Geometric evolution problems and action-measures, PAMM Appl.
Math. Bull., vol. LXXXVI (1998), T. U. Budapest, 53-58

[23] M. Buliga, Brittle crack propagation based on an optimal energy balance,
Rev. Roum. des Math. Pures et Appl., 45, no. 2, 201–209 (2001)

[29] M. Buliga, Equilibrium and absolute minimal solutions of brittle fracture
models based on energy-minimization methods, (submitted), 2007

[33] M. Buliga, Microfractured media with a scale and Mumford-Shah energies,
(submitted), http://xxx.arxiv.org/abs/0704.3791, (2007)

[41] M. Buliga, Energy concentration and brittle crack propagation,
http://arxiv.org/abs/math.AP/0510225, (2005)

[43] M. Buliga, Perturbed area functionals and brittle damage mechanics,
http://arxiv.org/abs/math.AP/0511240, (2005)

[44] M. Buliga, Energy minimizing brittle crack propagation II,
http://arxiv.org/abs/math.AP/0511301, (2005)

sont liées à la propagation des fissures fragiles dans un milieu élastique.
Ma dissertation de D.E.A., ”Modélisation de la décohésion d’interface fibre-matrice

dans les matériaux composites”, a été faite après un stage à LPMTM, Université Paris
13, 1995. À la fin du D.E.A., j’ai décidé de retourner en Roumaine, ou plus tard
j’ai soutenu un doctorat en mathématiques (1997), à l’Institut de Mathématiques de
l’Academie Roumaine, avec le titre ”Thermo-mécanique de la rupture. Formulations
variationnelles en mécanique de la rupture fragile”.

4.3 Résumés des articles

4.3.1 Energy minimizing brittle crack propagation

Cet article porte sur la modélisation de la fissuration quasistatique d’un solide élastique
fragile. Les hypothèses du travail sont les suivantes : le corps élastique linéaire,
avec ou sans fissures initiales, évolue d’une manière quasistatique suite à l’action des
déplacements imposés sur la frontière. Au cours de son évolution, des fissures de
géométrie arbitraire peuvent apparâıtre et/ou se propager.
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Dans ce qui suit, je présente un modèle d’apparition d’une fissure fragile suite au
déplacement imposé sur la frontière d’un corps élastique.

L’état d’un corps fragile avec la configuration de référence Ω est décrit par une paire
déplacement-fissure. (u, K) est une telle paire si:

(1) K est une fissure dans le corps, vue comme une surface quelconque,

(2) u est un déplacement du corps fissuré avec la fissure K ⊂ Ω, compatible avec le
déplacement imposé sur la frontière u0, c.a.d. u ∈ C1(Ω \ K) et u = u0 sur ∂Ω.

L’énergie totale du corps dans l’état (u, K) a la forme d’une fonctionnelle Mumford-
Shah:

E(u, K; u0) =

∫

Ω

w(∇u) dx + F (u0, K) .

Le premier terme de la fonctionnelle E représente l’énergie élastique du corps soumis au
déplacement u. Le terme suivant représente l’énergie utilisée pour produire la fissure
K dans le corps, avec le déplacement imposé u0 comme paramètre. Dans ce modèle
l’apparition de la fissure est vue comme un problème d’équilibre.

Quand le déplacement u0 est imposé sur la frontière (extérieure) ∂Ω, l’état (v, S)
du corps fragile minimise l’énergie totale E(·, ·; u0). La fissure qui apparâıt est S.
Remarquez que S peut être aussi l’ensemble vide; dans ce cas le modèle nous dit que
le corps soumis au déplacement u0 ne se fissure pas.

L’apparition des fissures fragiles et la segmentation de l’image sont deux problèmes
à discontinuité libre. Les inconnus, la fissure ou la collection des contours, sont des sur-
faces (lignes) de discontinuité pour le déplacement ou pour l’image finale; leur position
ou géométrie sont complètement libres.

Nous allons utiliser un approche énergétique du problème de l’évolution de la
fissuration fragile, quasistatique. Nous allons discrétiser le temps et transformer le
problème en une suite des problèmes de minimisation d’énergie. Francfort et Marigo
[59] procèdent de la même manière dans le cas de l’endommagement fragile brutal.
Pour bien formuler ce passage du discret au continu (par rapport au temps), nous al-
lons utiliser le cadre des mouvements minimisants généralisés, introduit par De Giorgi
[64]. Pour cela nous introduisons dans la Section 2 la notion de mouvement minimisant
de l’énergie, comme un cas particulier d’un mouvement minimisant généralisé.

Dans la Section 3, après les préliminaires concernant la statique d’un corps fragile,
nous présentons une variante du critère de Griffith pour la propagation d’une fissure
fragile en Sous-section 3.3, comme un critère de sélection parmi les possibles évolutions
de la fissure. A la fin de cette section nous formulons le problème d’évolution quasis-
tatique d’une fissure fragile sous la forme (14).

Dans Subsection 4.1 est donnée une formulation de ce problème, en termes de mou-
vements minimisants d’énergie, en utilisant une fonctionnelle Mumford-Shah (Définition
4.1). Dans ce modèle, il y a une seule constante de materiau reliée à la fissuration: la
constante G de Griffith. Quelques propriétés du modèle sont explorés dans la Sous-
section 4.2, dans les cas antiplan et unidimensionnel. Nous prouvons que dans ce modèle
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l’apparition des fissures peut se produire. Dans la relation (23) se trouve l’expression
du σc, la tension critique qui conduit à la rupture, d’après le modèle, dans le cas d’un
expérience de traction unidimensionnelle. On déduit d’ici que σc et G ne peuvent pas
être tous les deux des constantes de materiau dans ce modèle.

Dans la Section 5 est contenue la formulation faible du modèle introduit dans la
Définition 4.1, discrétisé par rapport au temps. La Sous-section 5.1 traite des fonc-
tions spéciales à variation ou déformation bornée. L’existence des solutions du modèle
discrétisé (Définition 5.1, Théorème 5.3) est une conséquence des résultats dus aux De
Giorgi et Ambrosio [65], Ambrosio [1] [2], Ambrosio, Coscia et Dal Maso [4]. Le cas an-
tiplan est discuté en Sous-section 5.3. Nous comparons les solutions faibles (Définition
5.1) et fortes (Définition 4.1) dans la Sous-section 5.4.

Dans la Section 6 nous comparons notre modèle avec le modèle de Ambrosio et
Braides [3], qui est aussi basé sur des mouvements minimisants généralisés. Dans cet
modèle sont introduites des forces de viscosité et la propagation des fissures pendant
un déplacement imposé constant en temps est permise; par contre, l’apparition des
fissures ne peut pas se produire d’une manière physiquement acceptable.

Dans la Section 7 nous prouvons un résultat partiel d’existence des solutions du
modèle en variable temporelle continue, sous l’hypothèse d’une borne supérieure uni-
forme (par rapport au temps) de la puissance communiquée par le reste de l’univers
au corps fissuré.

La Section 8 est dédiée à l’approche numérique du modèle. Nous utilisons des
résultats de convergence variationnelle de Ambrosio-Tortorelli [5] et la méthode numérique
de Richardson-Mitter [95].

4.3.2 Equilibrium and absolute minimal solutions of brittle fracture mod-
els based on energy-minimization methods

Nous pouvons distinguer quatre directions de recherche liées aux modèles de fissur-
ation fragile, vus comme des problèmes à discontinuité libre, et basés sur la min-
imisation d’une fonctionnelle énergie de Mumford-Shah. Ces directions sont : (i)
l’étude qualitative du modèle, à supposer que les solutions du modèle existent, (ii)
la comparaison avec l’expérience et les autres modèles classiques, (iii) la formulation
faible du modèle, l’étude de la régularité des solutions faibles, (iv) la recherche des
résultats d’approximation qui peuvent mener aux algorithmes numériques. Pour un
chercheur intéressé à la mécanique, les directions (i), (ii) et (iv) sont plus intéressant
que (iii). Pour le chercheur orienté plus vers la mathématique les points d’intérêt sont
complémentaires.

Dans cet article, nous sommes intéressés par les deux premières directions men-
tionnées auparavant. Nous formulons un modèle général de fissuration fragile quasista-
tique, puis nous définissons des états d’équilibre et des états minimaux absolus et nous
explorons leurs propriétés fondamentales. Dans le cas de la rupture fragile 3D nous
prouvons une relation entre une généralisation de l’intégrale de Rice et la concentration
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d’énergie élastique, toutes les deux vues dans le sens de la théorie de la mesure.

4.3.3 Microfractured media with a scale and Mumford-Shah energies

Nous voulons comprendre la concentration d’endommagement observée dans les mi-
lieux élastiques micro-fissurés. En raison du comportement différent par rapport au
changement d’échelle de l’aire et du volume (ou de longueur et de l’aire en 2D) la
méthode traditionnelle d’homogénéisation qui emploie des tableaux périodiques des
cellules semble échouér, une fois appliqué à la fonctionnelle Mumford-Shah et aux do-
maines périodiquement micro-fissurés.

Dans cet article nous nous écartons de l’homogénéisation traditionnelle. Le prin-
cipal résultat concerne l’utilisation des énergies de Mumford-Shah et mène à une ex-
plication de la concentration observée de l’endommagement dans les corps élastiques
micro-fissurés.

Le premier résultat d’homogénéisation, au sujet de la fonctionnelle Mumford-Shah
semble être dû à Braides, Defranceschi, Vitali [18]. L’article de Focardi , Gelli [58] (voir
aussi les références là-dedans) fait partie d’une autre piste de recherche qui pourrait
être pertinente pour cet article: homogénéisation des domaines perforés.

Le résultat principal de cet article concerne l’utilisation de l’énergie Mumford-Shah
pour donner une explication de la concentration d’endommagement observée dans les
corps élastiques micro-fissurés.

Au lieu d’effectuer une homogénéisation de l’énergie du corps micro-fissuré et d’étudier
alors les minima de l’énergie homogénéisée, nous procédons d’une manière différente.
Nous étudions une suite des problèmes sur des corps élastiques contenant une distri-
bution périodique des fissures, avec la configuration de référence Ωε, indicée par un
paramètre d’échelle ε. Pour chaque ε la configuration Ωε est composée d’un nombre
M(ε) ≈ ε−3 des cellules fissurées de dimension ε. Pour chaque ε on a un problème de
minimisation d’une fonctionnelle Mumford-Shah pour lequel on peut prouver l’existence
d’une solution. Notons avec N(ε) le nombre de cellules endommagées de la configu-
ration Ωε. Nous prouvons une estimation de la grandeur de N(ε) qui montre que
N(ε) ≈ ε−2. Cela veut dire que l’endommagement a tendance à se concentrer en
bandes de petit volume, ce qui est conforme aux resultats expérimentaux.
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5 Bipotentiels

5.1 Description du sujet

Les outils de base de la mécanique de milieux continus sont les équation de compatibilité
cinématique et d’équilibre. De l’information additionnelle doit être fournie par les lois
constitutives traduisant le comportement matériel. Sous sa forme la plus simple, une
loi de comportement est donnée par un graphe rassemblant des couples des variables
duales; souvent ce graphe résulte de l’essai expérimental.

Pour beaucoup de situations physiquement pertinentes, les lois de comportement
sont multivoques et également associées. Le graphe d’une telle loi constitutive est in-
clu dans le graphe du sous-differentiel d’un surpotentiel φ (qui est aussi semi-continu
inférieurement ). La loi de comportement prend la forme d’une inclusion différentielle,
y ∈ ∂φ(x). Tout surpotentiel φ a une fonction polaire φ∗ qui satisfait une relation
fondamentale, l’inégalité de Fenchel, ∀x, y φ(x) + φ∗(y) ≥ 〈x, y〉. La loi de comporte-
ment peut être également écrite comme x ∈ ∂φ∗(y). Dans la littérature, ce genre
de matériaux s’appellent souvent des matériaux standard ou des matériaux standard
généralisés [74].

Du point de vue des applications, il est important de savoir si un surpotentiel existe
pour un graphe donné, et de le construire. La réponse à ce problème est fournie par un
théorème célèbre dû à Rockafellar [96] qui assure qu’un graphe admet un surpotentiel
si et seulement si le graphe est cycliquement monotone maximal.

Cependant, certaines lois de comportement sont non-associées. Elles ne peuvent
pas être traités dans le cadre des matériaux standard. Pour contourner ce problème,
une réponse possible, proposée d’abord dans [98], consiste à construire une fonction b à
deux variables, bi-convexe, qui satisfait une inégalité généralisant celle de Fenchel, c.a.d.
∀x, y b(x, y) ≥ 〈x, y〉. G. de Saxcé appelle une telle fonction bipotentiel. Physiquement,
le bipotentiel représente la dissipation. Dans le cas des lois de comportement associées,
le bipotentiel est séparé : b(x, y) = φ(x) + φ∗(y).

Quant aux lois de comportement non associées qui peuvent être exprimées avec
l’aide des bipotentiels, elles ont la forme d’une relation implicite entre les variables
duales, y ∈ ∂b(·, y)(x). En mécanique, nous dirons que ces lois sont des lois de nor-
malité implicites ou faibles. Les applications des bipotentiels à la mécanique des solides
sont diverses: la loi du frottement du Coulomb [99], le modèle non-associé de Drücker-
Prager [100] et le modèle Cam-Clay [101] en mécanique des sols, la plasticité cyclique
([99], [13]) et la viscoplasticité [77] des métaux avec une loi cinématique non linéaire
d’écrouissage, la loi d’endommagement de Lemaitre [12], les lois coaxiales ([53], [113]).
De tels matériaux s’appellent des matériaux standard implicites. Un synthèse concer-
nant ces lois exprimées en termes de bipotentiels peut être trouvé dans [53] et [113].

L’utilisation des bipotentiels dans les applications est particulièrement attrayante
dans des simulations numériques par la méthode des éléments finis, mais l’intérêt n’est
pas limité à ces aspects. Par exemple, les théorèmes de borne de l’analyse limite ([103],
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[16]) et de la théorie de l’adaptation plastique ([105], [53], [17], [14]) peuvent être
reformulés dans le cadre plus large des lois faibles de normalité. D’un point de vue
numérique appliqué, la méthode du bipotentiel suggère de nouveaux algorithmes, rapi-
des mais robustes, comme les estimateurs variationnels d’erreurs évaluant la précision
du maillage en éléments finis ([75], [76], [102], [104], [15], [78], [79]). Les applications
à la mécanique de contact [55], à la dynamique des matériaux granulaires (([56], [57],
[62][106]), à la plasticité cyclique des métaux [102] et à la plasticité de sols ([11], [78])
illustrent la pertinence de cette approche.

5.2 Contributions

Mes contributions à ce sujet sont due à une collaboration avec G. de Saxcé (qui a
introduit les bipotentiels) et C. Vallée:

[97] G. de Saxcé, M Buliga, C. Vallée, C. Lerintiu, Construction of a bipotential
for a multivalued constitutive law, PAMM, 6 , 1 (December 2006), Special Issue:
GAMM Annual Meeting 2006 - Berlin

[25] M. Buliga, G. de Saxcé, C. Vallée, Existence and construction of bipotentials
for graphs of multivalued laws, J. of Convex Analysis, 15, 1, (2008)

[26] M. Buliga, G. de Saxcé, C. Vallée, Construction of bipotentials and a minimax
theorem of Fan, (submitted),
http://arxiv.org/abs/math.FA/0610136, (2006)

5.3 Résumés des articles

5.3.1 Existence and construction of bipotentials for graphs of multivalued
laws

Dans tous les articles déjà mentionnés au sujet des applications mécaniques, des bipo-
tentiels ont été construits pour certaines lois de comportement multivoques. Néanmoins,
afin de comprendre mieux l’approche du bipotentiel, on doit résoudre les problèmes
suivants :

1) (existence) quels sont les conditions à satisfaire par une loi multivoque telle qu’elle
peut être exprimée avec l’aide d’un bipotentiel ?

2) y a-t-il un procédé pour construire une classe des bipotentiels pour une loi multi-
voque ? On s’attend à ce que génériquement la loi ne détermine pas uniquement
le bipotentiel.

Nous donnons un premier traitement mathématique de ces problèmes et nous prou-
vons des résultats d’existence (théorème 3.2) et de construction (théorème 6.7) des
bipotentiels pour une classe des lois multivoques.

34



Une des idées principales est de construire le bipotentiel comme une enveloppe
inférieure. Cela pourrait être considéré comme paradoxal parce que, généralement, il
est fortement improbable qu’une enveloppe inférieure, même de fonctions convexes, soit
convexe. Néanmoins, nous avons été convaincus de la pertinence de cette approche par
des exemples inspiré de la mécanique et nous avons souhaité en comprendre la raison.
Cela nous a menés à introduire l’outil principal des recouvrements lagrangiens convexes
(définition 4.1) satisfaisant une condition implicite de convexité.

La méthode que nous donnons dans cet article s’applique seulement aux BB-graphes
(Définition 3.1) admettant au moins un recouvrement lagrangien convexe par des
graphes cycliquement monotones maximaux. C’est une classe intéressante de graphes
des lois multivoques pour les raisons suivants:

(a) elle contient la classe des graphes des sous-differentiels des surpotentiels convexes
et semicontinus inférieurement ,

(b) toute loi non associée provenant des applications mécaniques mentionnées aupara-
vant est un BB-graphe, qui admet un recouvrement lagrangien convexe, pertinent
du point de vue physique, par des graphes cycliquement monotones.

Concernant le point (b), il est important de savoir que les résultats de cet article ne
s’appliquent pas à quelques BB-graphes d’intérêt mécanique, comme le bipotentiel as-
socié au contact avec frottement de Coulomb [98]. C’est parce que nous n’employons
dans cet article que des recouvrements lagrangiens convexes avec des graphes cyclique-
ment monotones maximaux (voir également la Remarque 5.1).

5.3.2 Construction of bipotentials and a minimax theorem of Fan

Du point de vue mathématique, une loi constitutive non associée est un opérateur à
valeurs multiples T : X → 2Y qui n’est pas censé être monotone. Ici X, Y sont des
espaces localement convexes duaux, avec le produit de dualité 〈·, ·〉 : X × Y → R.

Afin de comprendre mieux l’approche du bipotentiel, dans l’article [25] nous avons
résolu deux problèmes principaux : (a) quand le graphe d’un opérateur multivoque
donné, en général non monotone, peut être exprimé comme l’ensemble de points cri-
tiques d’un bipotential, et (b) une méthode de construction d’un bipotentiel associé
(dans le sens du point (a)) à l’ opérateur donné. Notre outil principal était la notion du
recouvrement lagrangien convexe du graphe de l’opérateur, et une notion de convexité
implicite de ce recouvrement.

Dans cet article nous prouvons un autre théorème de reconstruction pour un bipo-
tential à partir d’une couverture lagrangienne convexe, cette fois en utilisant une notion
de convexité reliée à un théorème de minimax de Fan.
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6 Calcul des variations, quasiconvexité, élasticité

6.1 Description du sujet

Par un résultat classique de Morrey, les propriétés de continuité des fonctionnelles du
type

u 7→ I(u) =

∫

Ω

w(Du(x)) dx

sur des espaces de Sobolev sont en relation avec la quasiconvexité de la fonction po-
tentiel w. Le cas des espaces de Sobolev des fonctions u : Ω ⊂ Rn → Rn est très
intéressant pour la mécanique des milieux continus.

En élasticité le potentiel w n’est pas en général défini sur un espace vectoriel de
matrices n × n (l’algèbre de Lie gl(n, R)) mais sur l’ensemble des matrices n × n avec
déterminant positif (le groupe de Lie GL(n, R)). Parfois la fonction w est définie sur
un sous-groupe, comme dans le cas de l’élasticité incompressible où il faut considérer
le groupe des matrices de déterminant 1, i.e. le groupe SL(n, R). Pour n pair, un
autre groupe qui attire l’attention est Sp(n, R), le groupe des matrices symplectiques.
Il est donc intéressant de trouver des conditions nécessaires et/ou suffisantes pour la
semi-continuité ’inférieure de la fonctionnelle et de notions (qui restent à trouver) de
convexité du w : G → R, où G est un groupe de matrices.

Ce problème est ouvert depuis quelque temps. Deux définitions de la quasi-convexité
sont pertinentes: la première se trouve dans l’article de Ball [7], et la deuxième, nommée
”Diff-quasiconvexity”, est introduite dans Giaquinta, Modica, Soucek in [63], page 174,
définition 3. Ces deux définitions sont en vérité équivalentes.

Très peu de choses sont connues sur la continuité des intégrales associées aux po-
tentiels diff-quasiconvexes. Il est cependant facile à prouver que la diff-quasiconvexité
est une condition nécessaire (voire [63] proposition 2, page 174).

6.2 Contributions

La liste des contributions à ce sujet est la suivante:

[24] M. Buliga, Lower semi-continuity of integrals with G-quasiconvex potential,
Z. Angew. Math. Phys., bf 53, 6, 949-961, (2002)

[32]M. Buliga, Four applications of majorization to convexity in the calculus of
variations, (submitted) (2007), updated version of the paper ”Majorisation with
applications to the calculus of variations”
http://arxiv.org/abs/math.FA/0105044

[42] M. Buliga, Quasiconvexity versus group invariance,
http://arxiv.org/abs/math.AP/0511235, (2005)
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[45] M. Buliga, The variational complex of a diffeomorphisms group,
http://arxiv.org/abs/math.AP/0511302, (2005)

6.3 Résumés des articles

6.3.1 Lower semi-continuity of integrals with G-quasiconvex potential

Dans cet article [24] je propose une notion pertinente de quasiconvexité dans le sens
variationnel, associée à un groupe d’homéomorphismes bi-Lipschitziens. Soit G un
groupe de matrices inversibles. Conformément au théorème de Rademacher tout fonc-
tion de Lipschitz de R

n à R
n est dérivable p.p.t. Le groupe [G] associé à G est alors le

groupe des homéomorphismes bi-Lipschitziens φ : R
n → R

n tels que Dφ(x) ∈ G p.p.t.
par rapport à x ∈ R

n.
La question est de savoir dans quelles conditions une fonction w : G → R donne une

fonctionnelle qui est semicontinue inférieurement sur [G] par rapport à la convergence
uniforme (soit la convergence *-faible dans un espace de Sobolev).

Le résultat principal de l’article est un théorème qui répond à cette question. La
preuve nécessite en quelques points des techniques d’intégration géométrique intro-
duites par Gromov et étudiées par Dacorogna.

La version plus longue, math.FA/0105097, discute aussi des notions pertinentes
pour la convexité de rang un. Le problème des G-lagrangiens nuls n’avait pas été posé
auparavant. Un G-lagrangien nul est un potentiel w tel que l’intégrale associée est
continue. Dans le cas G = GL(n, R), on retrouve les lagrangiens nuls classiques, qui
sont identifiables à des formes différentielles (dans un espace de jets; cela conduit à un
bi-complexe variationnel).

6.3.2 Four applications of majorization to convexity in the calculus of vari-
ations

Il y a une ressemblance forte entre les deux théorèmes suivants. Le premier théorème
est Horn [80] (1954), Thompson [111] (1971), le théorème 1.) :

Theorem 6.1 Soit X, Y soit deux matrices définies positives quelconques n×n et soit
x1 ≥ x2 ≥ ... ≥ xn et y1 ≥ y2 ≥ ... ≥ yn les ensembles respectifs de valeurs propres.
Alors il existe une matrice unitaire U telle que XU et Y ont le même spectre si et
seulement si :

k
∏

i=1

xi ≥
k

∏

i=1

yi , k = 1, ..., n − 1

n
∏

i=1

xi =
n

∏

i=1

yi
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Le deuxième théorème est (Dacorogna-Marcellini-Tanteri [51] (2000), théorème 20,
voir également Dacorogna, Marcellini [50]):

Theorem 6.2 Soit 0 ≤ λ1(A) ≤ ... ≤ λn(A) les valeurs singulières d’une matrice
A ∈ R

n×n et

E(a) =

{

A ∈ R
n×n : λi(A) = ai , i = 1, ..., n , det A =

n
∏

i=1

ai

}

Alors

Pco E = Rco E(a) =

{

A ∈ R
n×n :

n
∏

i=ν

λi(A) ≤

n
∏

i=ν

ai , ν = 2, ..., n ,

det A =

n
∏

i=1

ai

}

où PCo, Rco sont les notations pour les enveloppes polyconvexe, convexe de rang un
respectivement.

Dans ces deux théorèmes est décrit un ensemble {y : y ≺≺ x} où ≺≺ est une
relation de préordre définie avec l’aide de certaines inégalités entre les produits qui
apparaissent dans les formulations des deux théorèmes précédentes.

La bonne relation de préordre à considérer est reliée à la relation classique de ma-
joration. La majoration est une notion familière en analyse stochastique, en algèbre
linéaire et en théorie des groupes de Lie. Dans cet article, une première tentative est
faite pour appliquer la majoration à l’élasticité et au calcul des variations. Nous obtien-
drons des preuves plus simples de résultats connus mais aussi de nouveaux résultats.

Il est significatif de noter que la majeure partie des résultats concernant la majora-
tion employée dans cet article précèdent l’ouvrage fondamental de Morrey (1952) [87]
sur la quasiconvexité. Cependant, il semble que il n’y avait pas jusqu’à maintenant
beaucoup d’interaction entre ces champs de recherche.

Dans la section 3 on donne synthèse des propriétés de la relation de majoration.
Dans la section 4, on énumère des propriétés des valeurs singulières et des valeurs
propres des matrices reliées à la majoration.

L’article continu avec quatre applications.
La première application est dans le domaine de l’élasticité non-linéaire. Le théorème

5.6 donne des conditions simples, nécessaires et suffisantes, pour qu’une énergie objec-
tive et isotrope soit convexe de rang un sur l’ensemble de matrices avec déterminant
positif. Le sujet a une longue histoire, commençant par 1954 Baker, Ericksen (1954)
[8].

Comme deuxième application, nous employons le majoration afin de fournir une
preuve très courte d’un théorème de Thompson et Freede [112], Ball [7], ou Le Dret
[82] (dans cet article théorème 6.2).
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Ensuite, nous prouvons (théorème 6.3) un résultat de semi-continuité inférieure

pour des fonctionnelles de la forme

∫

Ω

w(Dφ(x)) dx, avec w(F ) = h(ln VF ). Ici F =

RF UF = VF RF est la décomposition polaire de F ∈ gl(n, R) et ln VF est la contrainte
logarithmique de Hencky.

Nous clôturons l’article par une preuve du théorème de Dacorogna-Marcellini-
Tanteri basée seulement sur des résultats classiques de majoration. Ceci explique la
ressemblance entre les théorèmes 6.1 et 6.2. Des résultats proches peuvent être trouvés
dans [108] où Silhavy exprime les inégalités de Baker-Ericksen en utilisant aussi la
multiplication au lieu de la division.
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7 Géométrie sub-riemannienne et structures de di-

latations

7.1 Description du sujet

Mon intérêt pour le sujet de recherche de la géométrie sub-riemannienne a com-
mencé pendant le temps passé au département de mathématiques de l’EPFL. J’ai eu
l’occasion de collaborer avec une partie des collègues de l’Institut de Mathématiques
de l’Université de Berne, aussi bien qu’avec certains invités à EPFL.

La géométrie sub-riemannienne, ou de Carnot-Carathéodory, ou encore géométrie
non-holonome, est un sujet de recherche en contact avec plusieurs domaines, notam-
ment : l’analyse des opérateurs hypoelliptiques, la théorie du contrôle, l’analyse dans les
espaces métriques mesurés. Parmi les principaux contributeurs à ce sujet on compte
Hörmander [81], Gromov [70] [69] [71], Cheeger [48], Folland, Stein [61], Margulis,
Mostow [83] [84].

L’intérêt pour ces espaces vient de plusieurs propriétés intéressantes du point de vue
métrique : ce sont des fractales (la dimension de Hausdorff par rapport à la distance
de Carnot-Carathéodory est strictement plus grande que la dimension topologique, cf.
Mitchell [85]); l’espace métrique tangent en un point d’une variété sub-riemannienne
régulière est un groupe de Carnot; l’espace asymptotique (dans le sens de la distance
de Gromov-Hausdorff [70]) d’un groupe fini généré avec une croissance polynômiale
est également un groupe de Carnot, par un théorème célèbre de Gromov [69]; enfin,
sur de tels espaces nous avons assez de structure pour développer un calcul différentiel
ressemblant à celui proposé par Cheeger [48] et pour prouver des théorèmes comme la
version de Pansu du théorème de Rademacher [93], en menant à une preuve ingénieuse
d’un résultat de rigidité appartenant à Margulis.

Une variété sub-riemannienne est un triple (M, D, g), ou M est une variété connexe
de dimension n, D est un sous-fibré de TM , nommé distribution horizontale, et g

est un produit scalaire euclidien défini seulement sur D. De plus D est totalement
non-integrable, c.a.d. que pour toute paire de points x, y ∈ M , il existe une courbe
c : [0, 1] → M telle que c(0) = x, c(1) = y, et c est une courbe qui est presque partout
tangente à la distribution D. On peut alors définir la distance Carnot-Carathéodory
d(x, y) comme l’infimum des longueurs des courbes c avec les propriétés énumérées.

La notion de structure de dilatation vient de mes efforts pour comprendre les
résultats de base de la géométrie sub-riemannienne, particulièrement la dernière section
de l’article de Belläıche [10] et le point de vue intrinsèque de Gromov [71].

Dans ces articles, comme dans d’autres sur la géométrie sub-riemannienne, même
si les résultats fondamentaux admettent une formulation intrinsèque (en termes de
la distance Carnot-Carathéodory), leur preuves emploient les outils de la géométrie
différentielle.

À mon avis ces outils ne sont pas intrinsèques à la géométrie sub-riemannienne. Par
conséquent j’ai essayé de trouver un cadre dans lequel la géométrie sub-riemannienne
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serait un modèle, si nous employons la même façon de parler que dans le cas de la
géométrie hyperbolique (avec son ensemble d’axiomes) et du disque de Poincaré comme
modèle de la géométrie hyperbolique.

Les résultats de cet effort sont les notions de structure de dilatation et de paire
des structures de dilatation, l’une regardant l’autre vers le bas. À la première notion
sont consacrés les articles [27], [30] (le deuxième article traitant le sujet d’une version
”linéaire” d’une structure de dilatation, en correspondance avec les groupes de Carnot
ou avec les groupes contractibles, plus généraux).

Aujourd’hui, il semble que les structures de dilatation sont intéressantes par elles-
mêmes, avec un champ d’applications possibles contenant strictement la géométrie
sub-riemannienne, mais aussi les espaces ultramétriques ou les groupes contractibles.
Une structure de dilatation code la similitude approximative d’un espace métrique
et induit des opérations non associatives, mais approximativement associatives, sur
l’espace métrique, aussi bien que sur un fibré tangent (dans le sens métrique) avec des
opérations de groupe dans chaque fibre (l’espace tangent à un point).

Structures de dilatation: un exemple très connu Pour se faire une idée sur les
structures de dilatations, je vais presenter l’exemple le plus trivial.

Soit (V, ‖ · ‖) un espace vectoriel de dimension finie, normé et réel. Par définition
la dilatation basée en x, de coefficient ε > 0, est la fonction

δx
ε : V → V , δx

ε y = x + ε(−x + y) .

Pour x fixé, les dilatations basées en x forment un groupe à un paramètre qui contracte
tout voisinage borné de x en un point, uniformément par rapport à x dans un ensemble
compact.

La distance d étant induite par la norme, l’espace métrique (V, d) est complet et
localement compact. Pour tout x ∈ V et tout ε > 0 la distance d se comporte bien par
rapport aux dilatations δx

ε dans le sens: pour tout u, v ∈ V nous avons

1

ε
d(δx

ε u, δx
ε v) = d(u, v) . (7.1.1)

À partir des dilatations, nous pouvons reconstruire la structure algébrique de l’espace
vectoriel V. Par exemple définissons pour x, u, v ∈ V et ε > 0:

Σx
ε(u, v) = δx

ε−1δ
δx
ε
u

ε (v) .

Un calcul simple montre que Σx
ε(u, v) = u + ε(−u + x) + (−x + v), donc nous pouvons

récupérer l’opération d’addition en V par la limite:

lim
ε→0

Σx
ε (u, v) = u + (−x + v) . (7.1.2)

C’est une translation de l’opération d’addition telle que l’élément neutre est x. Ainsi,
pour x = 0, nous récupérons l’opération habituelle d’addition.
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Essayons de prendre les dilatations en tant que données de base pour l’exemple
ci-dessus. À savoir, au lieu de donner à l’espace V une structure d’espace vectoriel
normé, nous donnons seulement la distance d et les dilatations δx

ε pour tout x ∈ X et
ε > 0. Nous devrions ajouter quelques relations qui prescrivent:

- le comportement de la distance par rapport aux dilatations, par exemple une
certaine forme de la relation (7.1.1),

- l’interaction entre les dilatations, par exemple l’existence de la limite du côté
gauche de la relation (7.1.2).

Nous dénotons une telle collection des données par (V, d, δ) et nous appelons cela une
structure de dilatation.

7.2 Contributions

J’ai organise avec Tudor Ratiu le séminaire de travail ”Sub-Riemannian geometry and
Lie groups”, en 2001-2002. Dans ce séminaire j’ai présenté une suite de 12 lectures.
J’ai été parmi les organisateurs du séminaire Borel 2003, ”Tangent spaces of metric
spaces”, où j’ai présenté 2 lectures. Depuis, j’ai donné plusieurs communications à
des conférences sur les structures de dilatations, voir la notice de travaux. Les articles
suivants sont dédiés à ce sujet:

[27] M. Buliga, Dilatation structures I. Fundamentals, J. Gen. Lie Theory Appl.
Vol 1 (2007), No 2, 65-95

[28] M. Buliga, Vrănceanu’ nonholonomic spaces from the viewpoint of distance
geometry, (in romanian, original title: Spaţiile neolonome ale lui Vrănceanu din
punctul de vedere al geometriei distanţei), to appear in Revista Fundaţiei Acad.
Prof. Gh. Vrănceanu, (2007)

[30] M. Buliga, Contractible groups and linear dilatation structures, (submitted)
http://xxx.arxiv.org/abs/0705.1440, (2007)

[31] M. Buliga, Linear dilatation structures and inverse semigroups, (submitted)
http://xxx.arxiv.org/abs/0705.4009, (2007)

[34] M. Buliga, Dilatation structures in sub-riemannian geometry, (submitted)
http://arxiv.org/abs/0708.4298, (2007)

[47] M. Buliga, Dilatation structures with the Radon-Nikodym property, (sub-
mitted)
http://arxiv.org/abs/0706.3644, (2007)

[46] M. Buliga, Dilatation structures II. Linearity, self-similarity and the Cantor
set, (2006), http://xxx.arxiv.org/abs/math.MG/0612509
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[35] M. Buliga, Volume preserving bi-Lipschitz homeomorphisms on the Heisen-
berg group, http://arxiv.org/abs/math.SG/0205039, (2002)

[36] M. Buliga, Symplectic, Hofer and sub-Riemannian geometry,
http://arxiv.org/abs/math.SG/0201107, (2002)

[37] M. Buliga, Sub-Riemannian geometry and Lie groups. Part I,
http://arxiv.org/abs/math.MG/0210189, (2002)

[38] M. Buliga, Tangent bundles to sub-Riemannian groups,
http://arxiv.org/abs/math.MG/0307342, (2003)

[39] M. Buliga, Curvature of sub-Riemannian spaces,
http://arxiv.org/abs/math.MG/0311482, (2003)

[40] M. Buliga, Sub-Riemannian geometry and Lie groups. Part II. Curvature of
metric spaces, coadjoint orbits and associated representations,
http://arxiv.org/abs/math.MG/0407099, (2004)

7.3 Résumés des articles

7.3.1 Dilatation structures I. Fundamentals

Une structure de dilatation est un concept entre une structure différentielle et un
groupe. Dans cet article, nous étudions les propriétés fondamentales des structures
de dilatation dans les espaces métriques. C’est une partie d’une série des articles
qui prouvent qu’une telle structure induit une analyse ”non commutative”, dans le
sens du calcul différentiel, sur une grande classe d’espaces métriques, certains d’entre
eux fractaux. Nous décrivons également un calcul formel et universel avec des arbres
planaires décorés binaires, qui est à la base de toute structure de dilatation.

À tout espace métrique (X, d) doté d’une structure de dilatation est associé un
fibré tangent. L’espace tangent (au sens métrique) en un point est un groupe conique.
Les groupes coniques généralisent les groupes de Carnot, qui sont des groupes nilpo-
tents avec une graduation positive. Chaque structure de dilatation mène à un calcul
différentiel non commutatif sur l’espace métrique (X, d).

Plusieurs articles importants sont consacrés à l’étude des structures sur un espace
métrique qui induisent une analyse raisonnable, comme par exemple Cheeger [48] ou
Margulis-Mostow [83] [84].

Les constructions proposées en cet article sont apparues suites aux essais de com-
prendre certains problèmes de l’analyse dans les varietes sub-riemanniennes. Des
parties de cet article peuvent être vues comme une formulation rigoureuse des con-
sidérations qui se trouvent dans la dernière section de Belläıche [10].

Une structure de dilatation est simplement un fibré de semigroupes de (quasi) con-
tractions sur l’espace métrique (X, d), satisfaisant un certain nombre d’axiomes. La
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structure de fibré tangent, associée à une structure donnée de dilatations sur l’espace
métrique (X, d), est obtenue par un passage à la limite, à partir d’une structure
algébrique qui vit sur l’espace métrique.

Avec l’aide de la structure de dilatation nous construisons un fibré (au-dessus de
l’espace métrique) des opérations: à chaque x ∈ X et paramètre ε, pour la simplicité
ici ε ∈ (0, +∞), il y a une opération non-associative definie par:

Σx
ε : U(x) × U(x) → U(x)

où U(x) est un voisinage de x. La non-associativité de cette opération est contrôlée
par le paramètre ε. Quand ε tend vers 0, l’opération Σx

ε converge vers une opération
de groupe sur l’espace tangent de (X, d) en x.

Soit δx
ε la dilatation basée en x ∈ X, de paramètre ε. Le fibré d’opérations satisfait

un genre d’associativité faible, même si pour tout y ∈ X l’opération Σy
ε est non-

associative. L’associativité faible est décrite par la relation:

Σx
ε(u, Σδx

ε

ε (v, w)) = Σx
ε (Σx

ε(u, v), w)

pour tout x ∈ X et tout u, v, w ∈ X suffisamment près de x.
Nous décrivons brièvement plus loin le contenu de l’article. Dans la section 2 nous

donnons des premiers exemples des structures de dilatation. Les notions et résultats
de base de la géométrie métrique et des groupes dotés de dilatations sont mentionnés
dans la section 3.

Dans la section 4 nous présentons un formalisme basé sur les arbres binaires planaires
décorés. Ce formalisme sera employé pour prouver les résultats principaux du article.
Nous montrons que, d’un point de vue algébrique, les structures de dilatation (avec
plus de précision le formalisme de la section 4) induisent un paquet de déformations
à un paramètre des opérations binaires, qui ne sont pas associatives, mais faiblement
associatives. C’est une structure qui ressemble au fibré tangent à un groupe de Lie.

Les sections 5, 6 et 7 sont consacrées aux structures de dilatation et comprennent les
résultats principaux de l’article. Après que nous ayons présenté et expliqué les axiomes
des structures de dilatation, nous décrivons dans la section 5 plusieurs des propriétés
métriques principales d’une telle structure.

Une partie des résultats principaux de cet article peut être synthétisée en deux
théorèmes:

Theorem 7.1 Soit (X, d, δ) une structure de dilatation. Alors l’espace métrique (X, d)
admet un espace métrique tangente à tout x ∈ X. Plus précisément, nous avons la
limite suivante:

lim
ε→0

1

ε
sup {| d(u, v) − dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .
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Theorem 7.2 Soit (X, d, δ) une structure forte de dilatation. Alors pour tout x ∈ X

le triple (U(x), Σx, δx, dx) est un un groupe local, plus précisément:

(a) Σx est une opération locale de groupe sur U(x), avec x comme élément neutre et
invx comme fonction élément inverse,

(b) la distance dx est invariante à gauche par rapport à l’opération de groupe du point
(a),

(c) pour tout ε ∈ (0, 1), la dilatation δx
ε est un automorphisme de l’opération de

groupe du point (a),

(b) pour tout u, v ∈ X tels que d(x, u) ≤ 1 et d(x, v) ≤ 1, pour tout µ ∈ (0, A) nous
avons:

dx(u, v) =
1

µ
dx(δx

µu, δx
µv) .

Le groupe conique (U(x), Σx, δx) peut être considéré comme l’espace tangent à
(X, d, δ) en x.

7.3.2 Contractible groups and linear dilatation structures

Un espace métrique (X, d) qui admet une structure forte de dilatation possède un
espace métrique tangent en tout point x ∈ X, et chacun de ces espaces métriques
tangents possède la structure algébrique d’un groupe conique normé. Les groupes
coniques sont des exemples particuliers de groupes contractibles. La structure des
groupes contractible est connue de manière assez détaillée, dû à Siebert [107], Wang
[115], Glöckner et Willis [67], Glöckner [66].

Par un résultat classique de Siebert [107] proposition 5.4, nous pouvons caractériser
la structure algébrique des espaces métriques tangents qui sont associés aux structures
de dilatation d’une certain type: ce sont des groupes de Carnot, c. à d. des groupes de
Lie simplement connexes dont l’algèbre de Lie admet un graduation entière positive.

Les groupes de Carnot apparaissent dans beaucoup de situations, en particulier
en relation avec la géométrie sub-riemannienne cf. Belläıche [10], des groupes avec
croissance polynômiale cf. Gromov [69], ou de la rigidité de Margulis cf. Pansu [93].
Une partie du mon programme de recherche se propose de prouver que les structures
de dilatation sont des objets naturels sur ces sujets mathématiques. À cet égard le
corollaire 4.7 représente une généralisation de certains résultats difficiles en géométrie
sub-riemannienne, concernant la structure du l’espace métrique tangent en un point
d’une variété sub-riemannienne régulière.

La linéarité est également une propriété qui peut être expliquée avec l’aide des struc-
tures de dilatation. Dans la deuxième section de l’article, nous expliquons pourquoi
la linéarité peut être formulée en termes de dilatations. Il y a en fait deux sortes de
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linéarités : la linéarité d’une structure de dilatation et celle d’une fonction entre deux
structures de dilatation.

Notre résultat principal est une caractérisation des groupes contractibles en ter-
mes de structures de dilatation. À chaque groupe conique normé (ou groupe con-
tractible normé), nous pouvons naturellement associer une structure linéaire de di-
latation. Réciproquement, toute structure de dilatation linéaire et forte vient d’une
structure de dilatation d’un groupe contractible normé.

7.3.3 Linear dilatation structures and inverse semigroups

Dans cet article, nous nous demandons s’il y a un rapport entre les structures de
dilatation et les semigroupes inverses.

Dans un espace vectoriel normé, les transformations affines admettent une descrip-
tion en termes de dilatations: A : V → V est affine si et seulement si pour tout
ε ∈ (0, 1), x, y ∈ V nous avons

A δx
ε y = δAx

ε Ay . (7.3.3)

Toute dilatation associée à l’espace vectoriel V est une transformation affine, par
conséquent pour tout x, y ∈ V et ε, µ > 0 nous avons

δy
µ δx

ε = δδ
y

µx
ε δy

µ . (7.3.4)

Parfois, les compositions de dilatations sont des dilatations. C’est le sujet du prochain
théorème, qui est équivalent au théorème de Menelaos en géométrie euclidienne.

Theorem 7.3 Pour tous x, y ∈ V et ε, µ > 0 tels que εµ 6= 1, il existe un et un seul
w ∈ V tel que

δy
µ δx

ε = δw
εµ .

Pour la preuve voir Artin [6]. Une conséquence directe de ce théorème est le résultat
suivant.

Corollary 7.4 Le semigroupe inverse généré par les dilatations de l’espace vectoriel
V est fait de toutes les dilatations et toutes les translations de V.

Dans cet article nous prouvons que pour les structures de dilatation linéaires (qui
satisfont une forme générale de la relation (7.3.4)) il existe une généralisation du corol-
laire 7.4. Le résultat est nouveau pour des groupes de Carnot et la preuve semble être
nouvelle, même pour les espaces vectoriels.
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Definition 7.5 Une structure de dilatation (X, d, δ) a la propriété de Menelaos si pour
tous x, y ∈ X suffisamment proches et pour tout ε, µ ∈ Γ tels que ν(ε), ν(µ) ∈ (0, 1)
nous avons

δx
ε δy

µ = δw
εµ ,

où w ∈ X est le point fixe de la contraction δx
ε δy

µ.

Theorem 7.6 Une structure linéaire de dilatation a la propriété de Menelaos.

7.3.4 Dilatation structures with the Radon-Nikodym property

Dans cet article, j’explique ce qu’est une paire de structures de dilatation, l’une regar-
dant l’autre vers le bas. Une telle paire de structures de dilatation va nous mener à
une définition intrinsèque d’une distribution comme un champ de filtres topologiques.

Pour toute structure de dilatation, il y a une notion associée de différentiabilité qui
généralise le différentiabilité de Pansu [93]. Ceci permet l’introduction de la propriété
de Radon-Nikodym pour les structures de dilatation, qui est la généralisation de la
propriété de Radon-Nikodym pour les espaces de Banach.

Après une section consacrée aux espaces métriques et aux dérivés métriques, on
prouve que pour une structure de dilatation avec la propriété de Radon-Nikodym la
longueur des courbes absolument continues s’exprime comme une intégrale de la norme
de la tangente à la courbe, comme en géométrie riemannienne.

Plus loin on montre que la propriété de Radon-Nikodym se transfère du haut
vers le bas, c. à d. à partir d’une structure de dilatation ”en haut” qui regarde
vers une autre structure de dilatation ”en bas”. À mon avis, ce résultat explique
intrinsèquement le fait que les courbes absolument continues dans des variétés sub-
riemanniennes régulières sont dérivable presque partout, comme prouvé par Margulis,
Mostow [83], Pansu [93] (pour des groupes de Carnot) ou Vodopyanov [114].

7.3.5 Dilatation structures in sub-riemannian geometry

Plusieurs articles sont consacrés à l’établissement des fondements de la géométrie sub-
riemannienne, comme Mitchell [85], Belläıche [10], un grand article de Gromov [71]
demandant un point de vue intrinsèque pour la géométrie sub-riemannienne, Mar-
gulis, Mostow [83] [84], consacrés au théorème de Rademacher pour les variétés sub-
riemanniennes et à la construction intrinsèque d’un fibré tangent, et Vodopyanov [114]
(entre d’autres articles).

Il y a une raison pour l’existence de tant d’articles sur le même sujet : les propriétés
géométriques fondamentales des espaces sub-riemanniennes sont très difficiles à prou-
ver. Probablement, le plus difficile est de fournir une construction rigoureuse du fibré
tangent d’un tel espace à partir des propriétés de la distance Carnot-Carathéodory et
ensuite de généraliser d’un façon ou d’une autre le calcul différentiel proposé par Pansu.

Basé sur la notion de structure de dilatation [27], j’ai essayé de donner un traitement
intrinsèque  la géométrie sub-riemannienne dans l’article [47].
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Dans cet article, je prouve que les espaces sub-riemanniens réguliers admettent
des structures de dilatation (théorèmes 6.3, 6.4). À partir de l’existence des repères
normaux prouvé par Belläıche, nous déduisons le reste de propriétés des espaces sub-
riemanniens en employant le formalisme des structures de dilatation.
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[77] M. Hjiaj, G. Bodovillé, G. de Saxcé, Matériaux viscoplastiques et loi de normalité
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[78] M. Hjiaj, J. Fortin, G. de Saxcé, A Complete Stress Update Algorithm For the
non-Associated Drucker-Prager Model Including Treatment of the Apex, Int. J. of
Engineering Science, 41, 10. p. 1109-1143 (2003).
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Abstract. We propose a minimizing movement model for quasi-static brittle crack evolution. Cracks
(fissures) appear and/or grow without any prescription of their shape or location when time-dependent
displacements are imposed on the exterior boundary of the body. We use an energetic approach based
on Mumford–Shah type functionals. By the discretization of the time variable we obtain a sequence
of free discontinuity problems.

We find exact solutions and estimations which lead us to the conclusion that in this model crack
appearance is allowed but the constant of GriffithG and the critical stress which causes the fracture
in an uni-dimensional traction experiment cannot be both constants of material.

A weak formulation of the model is given in the frame of special functions with bounded de-
formation. We prove the existence of weak constrained incremental solutions of the model. A partial
existence result for the minimizing movement model is obtained under the assumption of uniformly
bounded (in time) power communicated to the body by the rest of the universe.

The model is of applicative interest. A numerical approach and examples, using an Ambrosio–
Tortorelli variational approximation of the energy functional, are given in the last section.

Mathematics Subject Classifications (1991):73M25, 58E30, 49M10.

Key words: brittle fracture propagation, free discontinuity problems, minimizing movements, vari-
ational approximation, functions with bounded deformations.

1. Introduction

This paper concerns the study of quasi-static brittle crack evolution. We work under
the following assumptions: a linear elastic body, with or without initial cracks
inside, evolves in a quasi-static manner under an imposed path of boundary dis-
placements. During its evolution cracks with unprescribed geometry may appear
and/or grow.

The difficulty of brittle crack propagation problems consists in the nature of the
main unknown: the crack itself, at various moments in time. The research in this
field concerns mainly the constitutive behavior of a brittle material, like the basic
paper of Griffith [27]. Amongst the basic references we can quote: Eshelby [24],
Irwin [30], Gurtin [28], [29], Rice [38].

In almost all the studies the geometry of the crack is prescribed. There are few
exceptions, as the papers of Ohtsuka [34–37] or Stumpf and Le [39]. The geometry
of the crack can be prescribed in a strong form, like in the case of a plane rectangu-
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Figure 1. Example of image segmentation with the Mumford–Shah functional. The left figure
is a black-and-white copy of a Van Gogh’s painting; in the right figure we see the set of edges.

lar or elliptic crack which is supposed to remain plane rectangular or elliptic during
its growth. We find a weak prescription upon the evolution of the crack in the case
of a body with two-dimensional configuration, when the crack is supposed to have
only an edge, which is a point. Therefore, in this case, the evolution of the crack
is conveniently reduced to the movement of a point. Under these assumptions the
geometrical nature of the main unknown is obscured.

A new direction of research in brittle fracture mechanics begins with the article
of Mumford and Shah [33] regarding the problem of image segmentation. This
problem, which consists in finding the set of edges of an image and constructing a
smoothed (away from the edges) version of that image, turns out to be intimately
related to the problem of brittle crack evolution.

In the article mentioned above Mumford and Shah propose the following vari-
ational approach to the problem of image segmentation: letg:� ⊂ R2→ [0,1] be
the original picture, given as a distribution of grey levels (1 is white and 0 is black).
Let u:�→ R be the output picture and letK be the set of edges of the objects in
the picture.K is (contained in) the set whereu has jumps, i.e.u ∈ C1(� \K,R).
The pair formed by the smoothed pictureu and the set of edgesK minimizes then
the functional

I (u,K) =
∫
�

α|∇u|2 dx +
∫
�

β|u− g|2 dx + γH1(K). (1)

The parameterα controls the smoothness away from the edges of the new picture
u, β controls theL2 distance between the smoothed picture and the original one
andγ controls the total length of the edges given by this variational method. The
authors remark that forβ = 0 the functionalI might be useful for an energetic
treatment of fracture mechanics. In the followings is presented a model of brittle
crack appearance in the case of imposed boundary displacements.

The state of a brittle body with reference configuration� is described by a pair
displacement-crack.(u,K) is such a pair if:
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(1) K is a crack in the body, seen as a surface,
(2) u is a displacement of the body with the crackK ⊂ �, compatible with the

imposed boundary displacementu0, i.e.u ∈ C1(� \K) andu = u0 on ∂�.

The total energy of the body in the state(u,K) is a Mumford–Shah functional
of the form

E(u,K;u0) =
∫
�

w(∇u)dx + F(u0,K).

The first term of the functionalE represents the elastic energy of the body with the
displacementu. The second term represents the energy consumed to produce the
crackK in the body, with the boundary displacementu0 as parameter.

In this model the brittle crack appearance is seen as an equilibrium problem.
When the displacementu0 is imposed on the (exterior) boundary∂� the state
(v, S) of the brittle body is a minimizer of the total energyE(·, ·, ;u0). The crack
predicted by the model isS. Notice thatS may be the empty-set; in this case the
model predicts that no crack appears whenu0 is imposed.

Brittle crack appearance and image segmentation are free discontinuity prob-
lems. The unknowns, the crack or the collection of edges, are discontinuity surfaces
for the displacement field or for the smoothed image; their location is entirely
unprescribed.

We shall use an energetic approach to quasi-static brittle crack evolution. There-
fore, we proceed to a time discretization which transforms the problem of crack
evolution into a sequence of energy minimization problems. Francfort and Marigo
[26] proceed in the same way in the case of brittle brutal damage evolution. How-
ever, it is only a belief that when the time step goes to zero, the discretized evolution
converges to an almost continuous (in time) evolution. We have found in the frame
of generalized minimizing movements, introduced by De Giorgi [20], stronger
mathematical reasons to support this belief. That is why we introduce in Section 2
the notion of energy minimizing movement as a particular case of a generalized
minimizing movement.

In Section 3, after the preliminaries concerning the statics of a brittle body, the
Griffith criterion of brittle crack propagation is presented in Subsection 3.3, as a
selection criterion amongst all possible crack evolutions. At the end of this section
we formulate the problem of quasi-static brittle crack evolution in the form (14).

In Subsection 4.1 we give an energy minimizing movement formulation to this
problem using a Mumford–Shah energy functional (Definition 4.1). In this model
we have only one material constant connected to fracture, namely the constant of
Griffith G. Some features of the model are explored in Subsection 4.2 in the anti-
plane and uni-dimensional cases. We prove that crack appearance is allowed (we
refer to [18] for more information, especially concerning fiber-matrix debonding
in composites). The relation (23) contains the expression ofσc, the critical stress
which lead to fracture in an uni-dimensional traction experiment. We infer from
this relation thatσc andG cannot be both constants of material in this model.
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Section 5 concerns the weak formulation of the incremental (that is discretized
in time) model of crack evolution introduced in Definition 4.1. Subsection 5.1 deals
with special functions with bounded variation or deformation. The existence of
weak constrained incremental solutions of the model (Definition 5.1, Theorem 5.3)
is a consequence of more general results due to De Giorgi and Ambrosio [21],
Ambrosio [1–2], Bellettini, Coscia and Dal Maso, [15], Ambrosio, Coscia and
Dal Maso [6]. The anti-plane case is discussed in Subsection 5.3. We compare the
notions of weak (according to Definition 5.1) and strong (Definition 4.1) solution
in Subsection 5.4.

In Section 6 a comparison is made with the model of Ambrosio and Braides [4],
also based on generalized minimizing movements. In this model viscosity forces
are introduced and crack propagation under imposed constant boundary displace-
ment is allowed; on the contrary, crack appearance can not occur in a physically
acceptable way.

In Section 7 we prove a partial existence result of the energy minimizing move-
ment described in the model, under the assumption of uniformly bounded power
communicated by the rest of the universe to the body during its evolution.

Section 8 is devoted to the numerical approach to the model. We use here func-
tional convergence results of Ambrosio and Tortorelli [11–12] and the numerical
method of Richardson and Mitter [32].

This paper continues a part of the work [17].

2. General Energy Minimizing Movements

An energy minimizing movement is a particular case of a generalized minimizing
movement. The latter notion has been introduced by De Giorgi in [20], inspired
by the paper [13] of Almgren, Taylor and Wang. The definition of a generalized
minimizing movement (according to Ambrosio [3]) is presented below

DEFINITION 2.1. LetS be a topological space and

F : (1,+∞)×N × S × S → R ∪ {+∞}

be a function. For anyu0 ∈ S, a functionu: [0,+∞) → S is a generalized
minimizing movement associated toF with initial datumu0, and we writeu ∈
GMM(F, u0), if there exists a diverging sequence(si)i∈N , si > 1, and there are
functionsui:N → S such that:

(i) ui(0) = u0;
(ii) for any k ∈ N and anyi, ui(k + 1) minimizes the functional

v 7→ F(si, k, v, ui(k))

overS;
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(iii) for any t > 0, ui([si t])→ u(t) in S asi →+∞.

As the name tells, the notion of a generalized minimizing movement extends
the notion of minimizing movement. WithS, F andu0 ∈ S as in Definition 2.1,
u: [0,+∞) → S is a minimizing movement associated toF with initial datum
u0, and we writeu ∈ MM(F, u0), if there are functionsus(k), for anys > 1 and
k ∈ N , such that:

(i) us(0) = u0;
(ii) for any k ∈ N and anys ∈ (0,+∞), us(k + 1) minimizes the functional

v 7→ F(s, k, v, us(k))

overS;
(iii) for any t > 0, us([st])→ u(t) in S ass →+∞.

The canonical example of (generalized) minimizing movement is given by the
choice:S = Rn, f :Rn→ R Lipschitz continuous andC2 and

F(s, k, u, v) = f (u)+ s
2
|u− v|2.

In this case, for anyu0 ∈ Rn there is only one minimizing movement, namely the
unique solution of the Cauchy problem

u′(t) = −∇f (u(t)), u(0) = u0.

Notice that the minimizing movement associated toF and u0 might not be
unique, mainly because the functionalv 7→ F(s, k, us(k), v) may have more than
one minimizer. The nonuniqueness of a generalized minimizing movement is of
higher order, because there might be different generalized minimizing movements
depending on the choice of the diverging sequencesi. For examples and techniques
of investigation of the setsMM(F, u0) andGMM(F, u0) we refer to Ambrosio
[3].

An energy minimizing movement is a generalized minimizing movement asso-
ciated to a particular functionF . It is designed to be a ‘weak stable’ solution of an
evolution problem of the following type

A(u(t), α(t), t) = 0, ∀t > 0

d

dt
α(t) 6 L (α(t), u(t)), ∀t > 0

u(0) = u0, α(0) = α0.

(2)

There are two unknowns in this problem:u andα. The evolution of the unknown
u is quasi-static. Suppose that we don’t have a proper law of evolution ofα, or that
the law of evolution that we have gives too many solutions. We may assume that we
have the expression of the total energyf (u, α) of the system in the state(u, α) and
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a set of constraints, not in a differential form, upon the evolution ofα. We make
then a time discretization with time stepδ and recursively find(uδk+1, α

δ
k+1) from

(uδk, α
δ
k), by a minimization process of the total energyf under some constraints.

A weak stable solution of the previous problem is a limit of sequences(uδk, α
δ
k)k

when the time stepδ converges to 0.
In the next definitionS may be seen as the space of all pairsx = (u, α),

endowed with a topology.

DEFINITION 2.2. LetS be a topological space and

F : (1,+∞)×N × S × S → R ∪ {+∞},
F (s, k, x, y) = f (s, x, y) + ψ(k/s, y)

be a function, withf :N × S × S → R andψ : [0,∞) × S → {0,+∞}. For
any x0 ∈ S, an energy minimizing movement associated to the energyf with
the constraintsψ and initial datumx0 is any generalized minimizing movement
x: [0,+∞)→ S, x ∈ GMM(F, x0).

Let us denote byS(λ) the following set

S(λ) = {y ∈ S:ψ(λ, y) = 0}.
From Definition 2.2 we notice thatx: [0,+∞) → S is an energy minimizing

evolution associated tof , with the constraintsψ and initial datumx0 if there exists
a diverging sequence(si)i∈N , si > 1, and there are functionsxi:N → S such that:

(i) xi(0) = x0;
(ii) for any k ∈ N and anyi ∈ N , xi(k + 1) minimizes the functionalf over the

setS(k/si) (in particularxi(k + 1) belongs toS(k/si));
(iii) for any t > 0, xi([si t])→ x(t) in S asi →+∞.

3. Notations and Preliminaries

3.1. NOTATIONS AND CONSTITUTIVE ASSUMPTIONS

The open bounded set� ⊂ R3 represents the reference configuration of an elastic
body andu:� → R3 is the displacement field of the body. We shall always sup-
pose, without mentioning further, that the open set� and its closure have the same
topological boundary.

The expression of the elastic (or free) energy of the body is∫
�

w(∇u)dx.

The first Piola-Kirchhoff stress tensorS is

S(u) = dw

d∇ (∇u)

207215.tex; 28/05/1999; 7:36; p.6



ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 207

and the equilibrium equation of the body in the absence of volumic forces is

divS(u) = 0 in �.

In this paper we suppose that the body is linear elastic and homogeneous, i.e. the
functionw(∇u) has the form

w(∇u) = 1
2C∇u:∇u,

with the elasticity 4-tensorC having the symmetries

Cijkl = Cjikl = Cklij .
Under these assumptions the stress tensorS becomes the Cauchy stress tensor

σ = σ (u) = C∇u = Cε(u),
whereε(u) is the symmetric part of∇u, i.e.

ε(u) = 1
2(∇u+ (∇u)T ).

We suppose moreover thatw satisfies the growth conditions

∀ F ∈ R9, F = FT , c|F|2 6 w(F) 6 C|F|2,
wherec andC belong to(0,+∞).

In the cases of plane or anti-plane displacements the domain� ⊂ R2 represents
a section in the cylindrical reference configuration of the body�×R and the body
is supposed to be isotropic.

If u:� → R2 is a plane displacement then the displacement relative to the
three-dimensional configuration of the body has the following expression

(x1, x2, x3) ∈ �× R 7→ (u1(x1, x2), u2(x1, x2),0) ∈ R3.

The anti-plane displacement is a functionu:� → R. The three-dimensional
displacement has the following form

(x1, x2, x3) ∈ �× R 7→ (0,0, u(x1, x2)) ∈ R3.

In this case the elastic energy takes the form∫
�

µ|∇u|2 dx,

whereµ is one of the two Lamé’s constants.
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3.2. STATICS OF A FRACTURED ELASTIC BODY

For any measurable setB ⊂ Rn, |B| = Ln(B) denotes the Lebesgue measure of
B andH k(B) thek-dimensional Hausdorff measure ofB.

By a crack set in the body� we mean (according to Ball [14]) a topologically
closed countably rectifiable set, generically denoted byK. We shall always suppose
thatK is a subset of�.

Given the functionf , a pointx ∈ � ⊂ Rn and an unit vector (or direction)
n ∈ Rn, the approximate limit off in x associated to the directionn is denoted by
f̃ (x,n) and it is defined by the following expression

lim
ρ→0+

∫
Bρ(x)∩{y: (y−x)·n>0} |f (y)− f̃ (x,n)|dy
|Bρ(x) ∩ {y : (y − x) · n > 0}| = 0. (3)

Given a field of unit vectorsx ∈ K 7→ n(x) normal toK, the lateral limitsf + and
f − of any functionf :� \K → Rn aref +:K → R andf −:K → R, defined by

f +(x) = f̃ (x,n(x)), f −(x) = f̃ (x,−n(x)).

This means thatf + andf − satisfy the equalities

∀x ∈ K, lim
ρ→0+

∫
Bρ(x)∩{y: (y−x)·n>0} |f (y)− f +(x)|dy
|Bρ(x) ∩ {y : (y − x) · n > 0}| = 0,

∀x ∈ K, lim
ρ→0+

∫
Bρ(x)∩{y: (y−x)·n60} |f (y)− f −(x)|dy
|Bρ(x) ∩ {y : (y − x) · n 6 0}| = 0.

Note that for anyx ∈ K the triplet(f +(x), f −(x),n(x)) is unique up to a change
of sign ofn and a permutation off +, f −, i.e.

(f +(x), f −(x),n(x)) ∼ (f −(x), f +(x),−n(x)).

We denote by[f ] = f + − f − the jump off overK. Notice that the tensor field
overK defined by[f ] ⊗ n is uniquely determined byf andK. If f takes values
in Rn then the same is true for the symmetric part of the tensor field defined above,
namely

{[f ] � n}ij = 1
2([f ]inj + [f ]jni).

The jump off over the crack setK can be described by the following measure

j(f,K) = [f ] � n dHn−1
K , j(f,K)(B) =

∫
B∩K
[f ] � n dHn−1. (4)

Consider a crack setK ⊂ � formed by a finite collection of smooth surfaces.
By a displacement compatible withK we mean a functionu:� \K → Rk (where
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k might be 1, 2 or 3) which isC1 and has continuous lateral limits onK. In this
section we shall consider the spaceW 1,2(� \K) as the set of weak displacements
compatible with the crack setK.

Let n be the dimension of the reference configuration�. For anyu0 ∈ H 1/2

(∂�,Rn) and for any crack setK, such thatHn−1(∂�\K) > 0, a solution (if any)
of the following problem

div σ (u) = 0, in � \K
σ+(u)n = σ−(u)n = 0, on K

u = u0, on ∂� \K
(5)

will be denoted byu = u(u0,K). The solution is unique up to rigid displacements
of � \ K equal to 0 on∂�. If K and∂� are such that a Korn inequality holds on
the spaceW 1,2(� \K), then the problem (5) has a solution. For this paper the fact
thatu(u0,K) is unique up to a class of rigid displacements is irrelevant, therefore
u(u0,K) will be called ‘the solution’ of the problem (5).

We use the same notation –u = u(u0,K) – in the anti-plane case, whenn = 2,
k = 1 and the problem (5) becomes

µdiv∇u = 0, in � \K,
(∇u)+n = (∇u)−n = 0, on K,

u = u0, on ∂� \K.
(6)

The solutionu(u0,K) of the problem (5) minimizes the functional

E(v) =
∫
�

w(∇v)dx

over the following set of weak displacements compatible with the crack setK and
the boundary displacementu0

{v ∈ W 1,2(� \K,Rn) : v = u0 on ∂� \K}.

By standard arguments the functional

v ∈ W 1,2(�,Rn) 7→
∫
�

σ (u(u0,K)) : ∇v dx

depends only on the trace ofv on ∂�, hence it gives raise to the linear continuous
function

T(K):H 1/2(∂�,Rn)→ H−(1/2)(∂�,Rn),
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〈T(K)u0, v〉 =
∫
�

σ (u(u0,K)) : ∇v′ dx for any v′ = v on ∂�. (7)

In the latter definition〈·, ·〉 is the duality product of the pair of spacesH 1/2(∂�,Rn)

andH−(1/2)(∂�,Rn).
The functionT(K) is called the Dirichlet-to-Neumann map of the elastic body

� with the crack setK. Under the assumptions concerning the symmetries of the
elasticity tensorC, the functionT(K) is self-adjoint, that is for anyu, v we have

〈T(K)u, v〉 = 〈T(K)v,u〉. (8)

In the same way the Dirichlet-to Neumann map associated to the problem (6) is
defined.

Finally, we remark that the elastic energy of the body can be expressed using
the Dirichlet-to-Neumann map. Indeed, we have∫

�

w(∇u(u0,K))dx = 1
2〈T(K)u0,u0〉. (9)

3.3. THE GRIFFITH CRITERION OF BRITTLE CRACK PROPAGATION

Let us consider in the elastic body� an initial crack setK0 which evolves and
becomes at the momentt the crack setKt . We assume that the crack set always
increases in time, i.e.,

∀0< t < t ′, Kt ⊂ Kt ′ . (10)

We suppose that the evolution of the body is quasi-static. At the momentt the
state of the body is characterized by the displacement-crack pair(u(t),Kt ), where
u(t) is the displacement of the body, compatible with the crack setKt . Let us
denote byu0(t) the trace ofu(t) on∂�. We have then the equalityu(t) = u(u0(t),
Kt). We make the assumption that the functiont 7→ u0(t) is sufficiently regular in
time.

The power given to the body by the rest of the universe at the momentt has the
following expression

P(t) =
∫
∂�

S(u(t))n · u̇0(t)dx = 〈T(Kt)u0(t), u̇0(t)〉.

Let us consider a given curvet 7→ (u(t),Kt), such that for anyt we haveu(t) =
u(u0(t),Kt). For a givent we introduce the following curve of displacements

∀τ > 0, ũ(τ ) = u(u0(t + τ),Kt ).
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ũ(τ ) represents the displacement of the body at the momentt + τ in the presence
of the crackKt . An easy calculation leads us to the equality

d

dτ

∫
�

w(∇ũ(τ ))dx|τ=0 = P(t). (11)

ThereforeP(t) represents the power consumed at the momentt by the body in or-
der to modify its displacement, constrained to follow the path of imposed boundary
displacementst 7→ u0(t), without any modification of the actual crack setKt .

The Griffith criterion of brittle crack propagation asserts that during the propaga-
tion of the crackKt the following inequality is true at any momentt

d

dt

{∫
�

w(∇u(t))dx +GHn−1(Kt )

}
6 P(t). (12)

HereG is the constant of Griffith, supposed to be a material constant.
The relation (12) can be written in a different form using the mapT(Kt ). Let us

assume that the crack evolution is smooth in the sense that the functiont 7→ T(Kt )
is differentiable, i.e., the Dirichlet-to-Neumann map varies smoothly in time. The
Griffith criterion takes the following form

1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
+ 1

2〈T(Kt )u̇0(t),u0(t)〉

+1
2〈T(Kt )u0(t), u̇0(t)〉 +G d

dt
{Hn−1(Kt)}

6 〈T(Kt)u0(t), u̇0(t)〉.
The functionT(Kt ) is self-adjoint, therefore we obtain the following expression of
the Griffith criterion

1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
+G d

dt
{Hn−1(Kt)} 6 0. (13)

Notice that we have the following equality

P(t)− d

dt

∫
�

w(∇u(t))dx = −1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
.

The left-hand member of the previous equality is usually called the energy release
rate due only to the crack propagation.

u0(t) plays the role of a time-dependent parameter, since in the last inequality
u̇0(t) does not appear. As we have seen, this is a consequence of relations (8), (9)
and (12).
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The problem of quasi-static brittle propagation of an initial crack in an elastic
body under a time-dependent imposed displacementu0(t) is of the type (2). If we
put apart the constraint (10), we have the following formulation

u(t)− u(u0(t),Kt ) = 0, ∀t > 0,

1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
+G d

dt
{Hn−1(Kt)} 6 0, ∀t > 0,

u(0) = u0, K0 = K.

(14)

4. The Model

In the left term of the Griffith criterion (12) there appears the time-derivative of an
energetic functional. Let us consider the setM of all admissible displacement-crack
pairs(u,K) with the following properties

(1) K ⊂ � is a crack set;
(2) u ∈ C1(� \K,Rn);
(3) for Hn−1-almost anyx ∈ K there exist the normaln(x) atK in x andu+(x),

u−(x).

Notice that the fieldn of normals induces an orientation in the neighborhood ofK.
The item (3) in the definition ofM can be replaced by imposing the existence of
tracesu+ andu− of u onK with respect to this orientation.

The Mumford–Shah energy functional overM has the following expression

I :M → R ∪ {+∞}, I (u,K) =
∫
�

w(∇u)dx +GHn−1(K). (15)

4.1. INTRODUCTION OF THE MODEL

According to Definition 2.2 and the constraint (10) we give an energy minimizing
movement formulation to the problem (14) using the functional defined in (15).

DEFINITION 4.1. Let us define the functions

J :M ×M → R,

J ((u,K), (v, L)) =
∫
�

w(∇v)dx +GHn−1(L \K),

9: [0,∞)×M → {0,+∞},

9(λ, (v,K)) =
{

0, if v = u0(λ) on ∂� \K
+∞, otherwise.
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We consider the initial data(u0,K) ∈ M such thatu0 = u(u0(0),K). For any
s > 1 we define the sequences

k ∈ N 7→ us(k), Ls(k), Ks(k),

(us(k), Ls(k)) ∈ M and(us(k),Ks(k)) ∈ M, recursively:

(i) (us, Ks)(0) = (u0,K), Ls(0) = K,
(ii) for any k ∈ N (us, Ls)(k + 1) ∈ M minimizes the functional

(v, L) ∈ M 7→ J ((us, Ks)(k), (v, L))+9((k + 1)/s, (v, L))

overM. In order to verify the constraint (10),Ks(k + 1) is defined by the
formula:

Ks(k + 1) = Ks(k) ∪ Ls(k + 1).

(u, L): [0,+∞) → M is an energy minimizing movement associated toJ
with the constraints (10),9 and initial data(u0,K), and we write(u, L) ∈
GMM(u0,K,9), if there is a diverging sequence(si) such that for anyt > 0
we have{

usi ([si t])→ u(t) in L2(�,Rn),

j (usi , Lsi )([si t])→ j (u, L)(t) weakly as Radon measures
(16)

asi →∞ and

Hn−1(L(t)) 6 lim inf
i→∞ H(Lsi ([si t])). (17)

In the previous definition 1/s is the step of the discretization of the time vari-
able. The approximate displacement of the body at the momentk/s is us(k). The
active crackat the same moment isLs(k) and thetotal crack is Ks(k). The state
of the brittle body is(us(k), Ls(k)) while Ks(k) takes account of the history of
fissuration. Any sequencek 7→ (us, Ls,Ks)(k) constructed using the rules (i) and
(ii) from the Definition 4.1 is called an incremental solution. We use the same
name for a sequence of displacement-crack pairsk 7→ (us, Ls)(k). Notice that in
rule (ii) the triplet (us, Ls,Ks)(k) appears in the expression of the functionalj

only throughKs(k).
The time step goes to 0 asi converges to∞ and the incremental solution(usi ,

Lsi )([sit]) converges to(u, L)(t), for any t > 0.L(t) is called theactive crackat
the momentt and

K(t) = ∪s∈[0,t ]L(s)
is called thedamaged regionof the body at the same moment. Notice that the
damaged regionK(t)might not be a crack set, because it isa priori a noncountable
union of surfaces.

207215.tex; 28/05/1999; 7:36; p.13



214 MARIUS BULIGA

The convergence of the incremental solution to the energy minimizing move-
ment deserves a discussion. The measure j(u, L) associated to a displacement-
crack pair contains information about the placement and the opening of the crack
L under the displacementu. The weak convergence of j(usi ,Lsi )([si t]) to j(u, L)(t)
as Radon measures means that for anyφ ∈ C0(�,M

n×n) we have

lim
i→∞

∫
Lsi ([si t ])

([usi ([si t])] � n):φ dHn−1

=
∫
L(t)

([u(t)] � n):φ dHn−1.

Therefore (16) asserts that the incremental displacement converges to the displace-
ment at the momentt and (in a weak sense) the placement and the opening of
the incremental crack set converges to the placement and the opening of the active
crack set at the same moment. Generally j(u, L) is not null on the part ofL where
the jump ofu is not null, therefore this measure gives information only about the
opened crack. The role of the condition (17) is to control the area of the crackL(t),
in order to eliminate the parts of the active crack which are not opened.

4.2. FEATURES OF THE MODEL

We investigate further the behavior of the model proposed in Definition 4.1 in the
particular case of anti-plane displacements. There are some obvious adjustments
to be made.� is now a bounded domain inR2 and the displacement is a scalar
functionu. The functionalJ will take the form

J ((u,K), (v, L)) =
∫
�

µ|∇v|2 dx +GH1(L \K). (18)

For a displacement-crack pair(u, L) we introduce the notation

j(u, L) = [u]dH1
|L .

Let us consider a particular type of imposed displacement on∂�. We split the
boundary of the body into three parts

∂� = 01
u ∪ 02

u ∪ 0f ,
0iu ∩ 0f = ∅, 01

u ∩ 02
u = ∅, H1(01

u) ·H1(02
u) ·H1(0f ) > 0.

At any momentt > 0, 0f is force free, i.e. the displacement is not prescribed on
this part of the boundary. On01

u and02
u the imposed displacement is defined by

u0(t)(x) =
{

0 on 01
u

tδ on 02
u

,
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Figure 2. The geometry of the body and imposed displacement.

whereδ is a positive constant with dimension of speed. This displacement is ho-
mogeneous in the time variable

∀t > 0, u0(t) = tu0(1).

We suppose that at the momentt = 0 there are no cracks in the body. This
assumption takes the formK = ∅. At t = 0 we haveu0(0) = 0, hence the initial
data are(u0 = 0,K = ∅).

Let us consider a time discretization given by the parameter 1/s and the incre-
mental solutionk ∈ N 7→ (us , Ls)(k) introduced in Definition 4.1 for the initial
data and the imposed boundary conditions described above. In order to shorten the
notations we shall omit for the moment the superscripts.

The incremental solution(u, L):N → M is recursively defined by the follow-
ing two rules:

(i) u(0) = 0 andK(0) = ∅;
(ii) for any k ∈ N we seek to determine the crack setL(k+1) and the displacement

u(k + 1) such that(u(k + 1), L(k + 1)) ∈ M, u(k + 1) = (k + 1)/su0(1) on
(01

u ∪02
u) \L(k+ 1) and(u(k+ 1), L(k+ 1)) is a minimizer of the functional

(v, L) 7→ J ((u(k),K(k)), (v, L)),

where(v, L) ∈ M, v = (k + 1)/su0(1) on (01
u ∪ 02

u) \ L. The setK(k + 1) is
given by the formula

K(k + 1) = K(k) ∪ L(k + 1).

Let u∅ denote the displacement of the body�, without cracks, under the pre-
scribed displacement on the boundaryu0(1). With the use of a notation made
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earlier,u∅ is defined byu∅ = u(u0(1),∅). For anyk ∈ N we have(k/su∅,∅) ∈ M
andk/su∅ = k/su0(1) on01

u ∪ 02
u. Therefore, with the notation

Jk = J ((u(k),K(k)), (u(k + 1), L(k + 1)))

for anyk ∈ N we have

Jk 6 J ((u(k),K(k)), ((k + 1)/su∅,∅)).
The last inequality may be written as

Jk 6
(
k

s

)2 ∫
�

µ|∇u∅|2 dx, (19)

Jk =
∫
�

µ|∇u(k + 1)|2 dx +GH1(L(k + 1) \K(k)). (20)

We can always find a curve in� which is a length minimizer in the family of all
curves in� separating01

u from 02
u. Let us denote such a curve byS (which exists

but it might not be unique). The curveS splits the domain�

� = �1 ∪�2, 01
u ⊂ �1, 02

u ⊂ �2,

�1 ∩�2 = ∅, �1 ∩�2 = S.
We define the following displacement

uS(x) =
{

0 x ∈ �1

δ x ∈ �2.

It is easy to see that for anyk ∈ N the pair(k/suS, S) belongs toM andk/suS =
k/su0(1) on (01

u ∪ 02
u) \ S. We have therefore the inequality

Jk 6 GH1(S \K(k)), (21)

with Jk given by (20). From (21) we derive the following conclusion:for large time
k/s the crack setK(k) is not void.Indeed, suppose that the functionk ∈ N 7→
(k/su∅,∅) is an incremental solution constructed by the rules (i) and (ii) above.
Then for anyk ∈ N the inequality (21) becomes an equality and the inequality
(21) takes the form(

k

s

)2 ∫
�

µ|∇u∅|2 dx 6 GH1(S), (22)

which lead to a contradiction. Therefore this model can predict crack appearance.
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We get more information about the behavior of the model if we use it in the case
of an uni-axial traction experiment. The body with modulus of elasticityE has the
configuration� = (0, L) ⊂ R and any crack set is a finite collection of points
in the interval�, so the body is either undamaged or totally broken. The imposed
displacement at the timet is

u0(t) = tu0(1),

whereu0(1) = 0 atx = 0 andu0(1) = D atx = L. The functionJ ((u,K), (v, L))
takes the expression

J ((u,K), (v, L)) =
∫ L

0

1
2E(v

′(x))2 dx +G#(L \K),

where #(M) is the number of elements of the setM.
At the time k/s we have only two kinds of displacement-crack pairs which

compete. These are:

(1) (k/su∅,∅), whereu∅(x) = xD/L;
(2) (k/suS, S), whereS = {x1, . . . , xN } is a crack set anduS is a piecewise

constant function on[0, L] \ S such thatuS(0) = 0 anduS(1) = D.

For any displacement-crack pair(u,K) we have

J ((u,K), (k/suS, S)) =

 (k/s)2
∫ L

0

1
2E(u

′
∅)

2 dx if S = ∅,
G#(S \K) if S 6= ∅,

therefore among all pairs(k/suS, S) it is sufficient to consider only the pairs with
#(S) = 1 orS = ∅.

For small timek/s the body remains uncracked and for large timek/s a crack
appears in the body. Precisely, for smallk/s we have

(u(k),K(k)) = (k/su∅,∅)

and for largek/s we have

(u(k),K(k)) = (k/suS, S),

with #(S) = 1. An inequality similar to (22) leads us to an equation for the critical
time tc when the crack appears

t2c

∫ 1

0

1
2E(u

′
∅)

2 dx = G.
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We obtain the following expression of the uni-axial stressσc = tcEu′∅, existing in
the uncracked body when the model predicts its fracture:

σc =
(

2EG

L

)1/2

. (23)

We see that the stressσc and the quantityG cannot be both constants of material in
this model.

5. Existence of weak incremental solutions

5.1. THE SPACES SBV AND SBD

This section is dedicated to a brief voyage through the spacesSBV andSBD.
We use the notationµ � λ if the measureµ is absolutely continuous with

respect to the measureλ. For any measureµ we denote by|µ|(B) the variation of
µ over the Borel setB ⊂ �, defined by the relation

|µ|(B) = sup

{ ∞∑
i=1

|µ(Ai)| : ∪∞i=1 Ai ⊂ B,Ai ∩ Aj = ∅ ∀i 6= j
}
.

The measureµ has finite total variation (over�) if |µ|(�) < +∞.
BV(�,Rn) is the space of functionsu ∈ L1(�,Rn) with the distributional

derivativeDu representable as a vector measure with finite total variation. We refer
to the book of Evans and Gariepy [25] for the main properties of such functions.
The approximate limit ofu at the pointx ∈ � is thatũ(x) defined by the equality

lim
ρ→0+

∫
Bρ(x)
|u(y)− ũ(x)|dy
|Bρ(x)| = 0.

The Lebesgue set ofu is the set of points whereu has an approximate limit. The
complementary set is aLn negligible set denoted bySu. De Giorgi proved in [23]
that for anyu ∈ BV(�,Rn) the setSu is countably rectifiable. Moreover, forHn−1

almost everyx ∈ Su there is a triplet(u+(x), u−(x),n(x)) such that

(1) n(x) is a unit vector normal toSu atx;
(2) (u+(x),u−(x)) are the approximate limits ofu in x associated with the direc-

tion n(x) (for the definition see (3)).

This triplet is uniquely determined up to a change of sign ofn and an interchange
of u+, u−. The jump ofu acrossSu is [u] = u+ − u−; notice that the tensor field
[u] ⊗ n overSu is independent of the choice of the field of normalsn.

For anyu ∈ BV(�,Rn) the measureDu admits the decomposition into abso-
lute continuous and singular parts with respect to the Lebesgue measure dx:Du =
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Dau+Dsu. Calderon and Zygmund [19] theorem gives the following decompos-
ition of the measureDu into three mutually singular parts

Du = ∇u(x)dx + [u] ⊗ n dHn−1
|Su
+ C(u).

∇u is the approximate gradient ofu defined for almost everyx ∈ � by the equality

lim
ρ→0+

∫
Bρ(x)
|u(y)− u(x)−∇u(x) · (y − x)|dy

|Bρ(x)‖y − x| = 0.

The jump part ofDu is

Dju = [u] ⊗ n dHn−1
|Su
.

C(u) is called the Cantor part ofDu; for any Borel setB ⊂ � the quantityC(u)(B)
is defined byC(u)(B) = Dsu(B \ Su). We have therefore

Dau = ∇u dx, Dsu = [u] ⊗ n dH|K + C(u).
The spaceSBV(�,Rn) of special functions with bounded variation was intro-

duced by De Giorgi and Ambrosio in the study of a class of free discontinuity prob-
lems ([21], [1], [2]). A general reference toSBV and free-discontinuity problems
is Ambrosio, Fusco and Pallara [10]. This space is defined as follows:

SBV(�,Rn) = {u ∈ BV(�,Rn):|Dsu|(� \ Su) = 0}.
For anyu ∈ BV(�,Rn), u is a special function with bounded variation if and only
if the Cantor part ofDu is null.

For several versions of the compactness theorem inSBV we refer to the afore-
mentioned papers of De Giorgi and Ambrosio. We shall use this theorem in the
following form:

THEOREM 5.1.Let(uh)h be a sequence inSBV(�,Rk) andC be a constant such
that for anyh∫

�

|∇uh|2 dx +H(Suh)+ ‖uh‖L∞ 6 C.

Then there existu ∈ SBV(�,Rk) and a subsequence, still denoted by(uh)h, such
that 

uh→ u in L2(�,Rk),

∇uh→ ∇u weakly in L2(�,Mn×k),

Djuh→ Dju weakly as Radon measures,
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and

Hn−1(Su) 6 lim inf
h→∞ Hn−1(Suh).

A description of the space of special functions with bounded deformationSBD(�),
can be found in Ambrosio, Coscia and Dal Maso [6]. Any functionu ∈ L1(�,Rn)

belongs toBD(�) if Eu, the symmetric part of the distributional derivative ofu, is
representable as a vector measure with finite total variation.

For anyu ∈ BD(�) the measureEu decomposes with respect to the Lebesgue
measure into absolute continuous and singular parts

Eu = Eau+ Esu.
We denote by|Eu| the variation of the measureEu. Kohn introduced in [31] the
set2u

2u =
{
x ∈ �: lim sup

ρ→0+

|Eu|(Bρ(x))
ρn−1

> 0

}

and proved that it is countably rectifiable. LetJu be the subset of� of all points
x ∈ � such that there is a unit vectorν(x) with the property thatu has different
approximate limitsu+(x) = ũ(x, ν(x)), u−(x) = ũ(x, −ν(x)) defined by the
relation (3). It is straightforward thatJu ⊂ Su. However,Su may not be countably
rectifiable. In [6] it is proved that2u coincides withJu up to aHn−1 negligible
set, thereforeJu is countably rectifiable. The triplet(u+(x), u−(x), n(x)) exists for
Hn−1 almost everyx ∈ Ju, wheren(x) is the normal unit vector to2u at x; as
previously the tensor field overJu defined by[u] ⊗ n is uniquely determined. We
denote by[u] � n its symmetric part.

The difference betweenSu andJu is subtle. Let us quote only the fact that for a
functionu ∈ SBV(�,Rn) these sets coincide up to aH -negligible set.

The following decomposition theorem is due to Ambrosio, Coscia and Dal
Maso [6] and asserts that

Eu = ε(u)(x)dx + [u] � n dHn−1
|Ju
+ Ec(u).

Hereε(u) is the approximate symmetric gradient, defined for almost everyx ∈ �
by

lim
ρ→0+

1

ρn

∫
Bρ(x)

(u(y)− u(x)− ε(u)(x)(y − x)) · (y − x)
|y − x|2 dy = 0.

The jump part ofEu is

Eju = [u] � n dHn−1
|Ju

.
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Ecu is the Cantor part ofEu, that is the part ofEsu not concentrated onJu.
Therefore we have

Eau = ε(u)dx, Esu = Eju+ Ecu.
The definition ofSBD(�) is the following:

SBD(�,Rn) = {u ∈ BD(�):|Esu|(� \ Ju) = 0}.
We have the inclusion

SBV(�,Rn) ⊂ SBD(�).

For the compactness theorem inSBD we refer to Bellettini, Coscia and Dal
Maso [15]. We shall use this theorem in the following form:

THEOREM 5.2. Let us consider the function

F ∈ Mn×n
sym 7→ w(F) = (1/2)CF :F,

with C a positive definite symmetric 4-order tensor. Let(uh)h be a sequence in
SBD(�) andC a constant such that for anyh∫

�

w(ε(uh))dx +Hn−1(Juh )+ ‖uh‖L∞ 6 C.

Then there existu ∈ SBV(�,Rk) and a subsequence, still denoted by(uh)h, such
that 

uh→ u in L2(�,Rk),

ε(uh)→ ε(u) weakly in L2(�,Mn×n
sym ),

Ejuh→ Eju weakly as Radon measures,

and

Hn−1(Ju) 6 lim inf
h→∞ Hn−1(Juh).

5.2. EXISTENCE OF WEAK CONSTRAINED INCREMENTAL SOLUTIONS

In order to give a weak formulation of the model described in Definition 4.1 let us
weaken first the spaceM of displacement-crack pairs. We introduce the new set of
weak displacement-crack pairsM

M = {(u,K):K is σ -rectifiable,u ∈ SBD(�) and

|Esu|(� \K) = 0}. (24)
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Given(u,K) ∈M, the setK is countably rectifiable but it is not necessarily closed;
we have also weaker conditions on the regularity of the displacementu. A direct
consequence of (29) is that any (strong) displacement-crack pair(u,K) such that
u ∈ L∞(�,Rn) belongs to the setM.

Let us define the functionalJ, the weak version of the functionalJ introduced
at Definition 4.1:J: M ×M→ R,

J((u,K), (v, L)) =
∫
�

w(ε(v))dx +GHn−1(L \K). (25)

Before the introduction of the weak form of the function9 from the same defin-
ition, let us explain what we mean byu = u0 on the boundary of�. We consider,
for technical reasons, that there is an open bounded set3 with piecewise Lipschitz
boundary such that� ⊂ 3. The imposed boundary displacement isu0 ∈ SBD(3)
such thatJu0∩� = ∅. Then, for anyu ∈ SBD(λ), u = u0 on∂�means thatu = u0

in3 \�. We denote the set of all such functionsu by SBD(�,u0). The reason for
this choice of defining boundary conditions is that the spaceSBD(�,u0) is closed
in SBD(3) in theL2 convergence. Note thatSBD(�,u0) can be identified with a
subspace ofSBD(�) by the inclusion mapu 7→ u|�.

Let us consider a curve of imposed displacementsλ 7→ u0(λ) such that
‖u0(λ)‖L∞(3) < +∞. We impose a supplementary condition for a displacement
field u to be admissible at the timeλ, namely

‖u‖L∞(3) 6 ‖u0(λ)‖L∞(3). (26)

The space of allu ∈ SBD(�,u0(λ)) such that the constraint (26) holds will be
denoted bySBD∞(�,u0(λ)).

The function9̃, introduced instead of9, is defined as follows

9̃: [0,+∞)×M→ {0,+∞},

9̃(λ, (u,K)) =


0 if u ∈ SBD∞(�,u0(λ)) and

Hn−1(K \ Ju) = 0,

+∞ otherwise.

DEFINITION 5.1 (weak version of Definition 4.1). Let us consider the spaceM
endowed with the topology given by the convergence

(uh,Kh)→ (u,K) if uhL2→ u. (27)

Let us consider also the functionJ, the curve of imposed displacementst 7→ u0(t)

with the associated functioñ9 and the initial data(u0,K) ∈ M such thatu0 =
u(u0(0),K).

For anys > 1 we recursively define(us,Ks):N →M as:

(i) (us, Ks)(0) = (u0,K);
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(ii) for any k ∈ N (us, Jus )(k + 1) ∈M minimizes the functional

(v, L) ∈M 7→ J((us, Ks)(k), (v, L))+ 9̃((k + 1)/s, (v, L))

over M. In order to verify the constraint (10),Ks(k + 1) is defined by the
formula

Ks(k + 1) = Ks(k) ∪ Jus (k+1). (28)

An energy minimizing movement associated toJ with the constraints (10),̃9
and initial data(u0,K) is any (u, Ju): [0,+∞) → M having the property:
there is a diverging sequence(si) such that for anyt > 0 usi ([si t]) → u(t) ∈
SBD∞(�, u0(t)) in L2(�,Rn) as i → ∞. The active crack at the timet is
Ju(t) and the damaged region at the same instant is

K(t) = ∪s∈[0,t ]Ju(s).

Let us remark that the disappearance of the setLs(k + 1) from the definition of
the incremental solution (28) is only apparent, because if(us,Ls)(k+1)minimizes
the functional

(v, L) ∈M 7→ J((us, Ks)(k), (v, L))+ 9̃((k + 1)/s, (v, L))

then9̃((k + 1)/s, (us, Ls)(k + 1)) = 0, hence

Hn−1(K \ Ju) = 0.

From Theorem 5.2 we notice that functionals likeJ areL2 sequential lower
semi-continuous and coercive on closed setsV ⊂ SBD(�) of functions equally
bounded inL∞ norm. If we consider in particular the functional

v ∈ V 7→ J((us, Ks)(k), (v, Jv))

the following theorem is true by a trivial induction:

THEOREM 5.3 (existence of weak incremental constrained solutions).Let�,3 ⊂
Rn be bounded open sets with piecewise smooth boundary such that� ⊂ 3. Let

u0:N → SBD(3) ∩ L∞(3)

be a given sequence of imposed displacements such thatJu0(λ) ∩ � = ∅ and
let (u0,K) be a given admissible displacement-crack pair in� such thatu0 =
u(u0(0),K) on ∂�.

Then there exists a sequence(u,K):N →M such that:

(i) u(0) = u0 andK(0) = K;
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(ii) for anyk ∈ N there is(u(k+1), Ju(k+1)) ∈M, such thatu(k+1) = u0(k+1)
on∂� and(u(k + 1), Ju(k+1)) is a minimizer of the functional

(v, L) ∈M, v = u0(k + 1) on ∂� 7→ J((u(k),K(k)), v, L)).

The setK(k + 1) is given by the formula

K(k + 1) = K(k) ∪ Ju(k+1).

5.3. THE ANTI-PLANE CASE

In the anti-plane case we have to replaceSBD(�) by SBV(�,R). Let us consider
a larger domain� ⊂ 3 ⊂ R2, a boundary conditionu0 ∈ SBV(3,R) ∩ L∞(3)
andu ∈ SBV(3,R) such thatu = u0 in 3 \�. We don’t need the constraint (26)
because in this case we have a maximum principle. Indeed, with the notations

I (u) =
∫
�

µ|∇u|2 dx +GH1(Su),

u(x) =
{

u(x) if |u(x)| 6 ‖u0‖L∞(3),
‖u0‖L∞(3) otherwise,

we have the inequalityI (u) 6 I (u) and we notice thatu = u0 on3 \�.
The set ofSBV displacements compatible with the boundary displacementu0

is denoted bySBV(�,u0).
The set of weak displacement-crack pairs will be

N = {(u,K):K is σ -rectifiable,u ∈ SBV(�) and

|Dsu|(� \K) = 0}.
For a given path of imposed boundary displacementsλ 7→ u0(λ) ∈ SBV(3,R) ∩
L∞(3,R) we define

8̃: [0,+∞)×N → {0,+∞},

8̃(λ, (u,K)) =


0 if u ∈ SBV(�,u0(λ)) and

Hn−1(K \ Su) = 0,

+∞ otherwise.

With this setting we obtain the notion of a weak incremental solution in the case
of anti-plane displacements as in Definition 5.1. All we have to do is to replace
the spaceM by N , the function9̃ by 8̃ and Ju by Su. The existence of weak
incremental solutions is a consequence of Theorem 5.1.
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The partial regularity results of De Giorgi, Carriero and Leaci [22] tell us that
weak incremental solutions give raise to strong incremental solutions. The exist-
ence of incremental solutions is therefore true in the anti-plane case. ForHn−1-
smoothness ofSu, whereu is a minimizer of the Mumford–Shah functional, we
refer to Ambrosio and Pallara [7], Ambrosio, Fusco and Pallara [8], [9].

5.4. JUSTIFICATION OF THE WEAK FORMULATION

Let us compare the Definitions 4.1 and 5.1, where strong, respectively weak (con-
strained) energy minimizing movements were introduced.

We consider the Sobolev space associated to the crack setK (see [5])

W
1,2
K =

{
u ∈ SBV(�,Rn):

∫
�

|∇u|2 dx +
∫
K

[u]2 dHn−1 < +∞,

|Dsu| � Hn−1
|K

}
.

The following equality has been proved in [22]

W 1,2(� \K,Rn) ∩ L∞(�,Rn) = W 1,2
K (�,Rn) ∩ L∞(�,Rn). (29)

Therefore ifu = u(u0,K) andu ∈ L∞(�,Rn) thenu is a special function with
bounded variation. Also, if(u,K) ∈ M is a displacement-crack pair andu is
essentially bounded, thenu ∈ SBV(�,Rn) andSu ⊂ K. These inclusions may
lead to the introduction of the following space of weak displacement-crack pairs

M′ = {(u,K):K is σ -rectifiable,u ∈ SBV(�,Rn) and

|Dsu|(� \K) = 0}.
However the bulk part of the functionalJ (in weak formJ) controls only the sym-
metric part of the gradient of the displacement. This is the reason of considering
the larger spaceM defined at (24). In conclusion, the pair(u, L) is replaced by the
pair(u, Ju) (or, in the anti-plane case, by(u,Su)). The weak version of the measure
j(u, L) is thenEju (orDju in the anti-plane case).

The following proposition is a direct consequence of Theorem 5.2.

PROPOSITION 5.1.Letuh be a sequence inSBD(�)which converges inL2(�,Rn)

to u ∈ SBD(�) such that∫
�

w(ε(uh))dx +Hn−1(Juh )+ ‖uh‖L∞ 6 C (30)

for some constantC independent ofh. Then there exists a subsequence, still de-
noted byuh, such that{

ε(uh)→ ε(u) weakly inL2(�,Mn×n
sym ),

Ejuh→ Eju as Radon measures
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and

Hn−1(Ju) 6 lim inf
h→∞ Hn−1(Juh).

From this proposition we infer the following corollary

COROLLARY 5.1. Let us consider(u, Ju): [0,+∞)→M an energy minimizing
movement,(si) a diverging sequence and(us(k), Jus (k)) an incremental solution as
in Definition5.1, such that

usi ([si t])→ u(t) (31)

in L2(�,Rn) as i →∞, for anyt > 0. We have then{
Ejusi ([sit])→ Eju(t) as Radon measures

Hn−1(Ju(t)) 6 lim inf i→∞Hn−1(Jusi ([si t ])).
(32)

Therefore the relations (31), (32) are the weak version of (16). Moreover, we
notice that (32) is a consequence of (31). However, this is a priori true only in the
case of weakconstrainedenergy minimizing movements.

6. Introduction of Small Viscosity

In the paper [4] Ambrosio and Braides introduce a generalized minimizing move-
ment based model for the propagation of a crack in the presence of viscous forces
in the body. They give as initial datum att = 0 the anti-plane displacement
u0 ∈ SBV(�,R) ∩ L∞(�,R). For a givens they recursively define a sequence
(usk)k in SBV(�,R) and an increasing sequence of closed rectifiable sets(Ks

k )k as
follows: us0 = u0,Ks

0 = ∅ andusk+1 = w,Ks
k+1 = Sw∪Ks

k , wherew is a minimizer
of the functional

v 7→
∫
�

|∇v|2 dx +H1(Sv \Ks
k)+ s

∫
�

|v − usk|2 dx (33)

over the set of allv such that

v ∈ SBV(�,R), ‖v‖∞ 6 ‖u0‖∞.
The generalized minimizing movements obtained as limits of such incremental
solutions, whens diverges, correspond to the following situation: a body evolves
from the initial stateu0, with the initial crackSu0, under a constant imposed bound-
ary displacement. The equation of evolution for the displacement is

div∇u(t)+ u̇(t) = 0.
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The authors obtain an existence result for the generalized minimizing movement
introduced by them. After the introduction of the piecewise constant function

us(t) = us[st ],
they find the following uniform estimate

‖us(t ′)− us(t)‖L2 6 M
√
t ′ − t + 1

s
if t ′ > t. (34)

Therefore there exists a diverging sequence(si)i such thatusi converges tou uni-
formly in L∞([0, T ], L2(�,R)), for all T > 0 and

u ∈ C0,1/2([0,+∞);L2(�,R)). (35)

This result is obtained under the assumption of constant imposed boundary
displacement, equal to the trace on the boundary of the initial datumu0.

It is natural to introduce the Lamé constantµ and the viscosityλ in the expres-
sion of the functional (33) and modify it as follows

v 7→
∫
�

µ|∇v|2 dx +Hn−1(Sv \Ks
k)+ λs

∫
�

|v − usk|2 dx.

We obtain the more physical case of an anti-plane displacement satisfying at any
momentt the equation

divµ∇u(t)+ λu̇(t) = 0.

The estimate (34) becomes

‖us(t ′)− us(t)‖L2 6 M
√
t ′ − t + 1

λs
if t ′ > t.

We expect to obtain our model, in the case of anti-plane displacements, when the
viscosityλ converges to 0. It is easy to see that ifλ converges to 0 then the uniform
estimate from above is lost.

We notice that the crack appearance can not occur in this model in a physically
acceptable way.

Indeed suppose that for anyt > t ′ > 0 we have

Su(t ′) ⊂ Su(t).

This hypothesis means that the damaged region

K(t) = ∪s∈[0,t ]Su(s)
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is the active crackSu(t). We suppose moreover that the energy

E(t) =
∫
�

|∇u(t)|2 dx +H1(K(t))

is a decreasing function.
From the above suppositions, the compactness theorem inSBV and (35) we

infer that:

(a) the functiont 7→ E(t) is decreasing lower semicontinuous,
(b) the functiont 7→ H1(K(t)) is increasing lower semicontinuous,
(c) the elastic energy

t 7→
∫
�

|∇u(t)|2 dx

is a decreasing function (from (a) and (b)) and it is lower semicontinuous.

A straightforward consequence of items (a), (b), (c) is that for anyt the lateral
limits of the functions 7→ H1(K(s)) at the momentt are both equal to the value
H1(K(t)), that is the length of the crack grows continuously with time.

We mention however that we don’t know if for any minimizing movementu(t)

the energyE(t) decreases with time. Again from the compactness theorem inSBV
all we can prove is that for anyt < t ′ we have the inequalities

lim inf
i→∞ E(usi (t)) > lim inf

i→∞ E(usi (t ′)),

E(u(t)) 6 lim inf
i→∞ E(usi (t)), E(u(t ′)) 6 lim inf

i→∞ E(usi (t ′)),

where

E(u) =
∫
�

|∇u|2 dx +H1(Su).

7. A Partial Existence Result

The main open theoretical problem is the general existence of an energy minimiz-
ing movement according to our definitions. Below is described a partial existence
result based on a sound physical assumption (36). Nevertheless, we do not know if
(36) can be proved from the basic assumptions of the model.

THEOREM 7.1. Let us consider for any givens an incremental solutionk 7→
(us(k),Ks(k)) ∈ M, according to Definition4.1, such thatus(k) are equally
bounded inL∞. Let us suppose that the power communicated by the rest of the
universe to the body is uniformly bounded at any timet . The incremental form of
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this assumption consists in the existence of a constantP such that for anyk ands
we have

〈Tsk 1
2(u0((k + 1)/s)+ u0(k/s)),1u0(k, s)〉 6 P/s, (36)

whereTsk = T(Ks(k)) and1u0(k, s) = u0((k + 1)/s) − u0(k/s). Then for any
t > 0 there exist diverging sequences(si)i and(ki)i such thatki/si converges tot ,{

usi (ki)→ u(t) in L2(�,Rn),

j (usi , Lsi )(ki)→ j (u, L)(t) weakly as Radon measures
(37)

asi →∞ and

Hn−1(L(t)) 6 lim inf
i→∞ H(Lsi (ki)). (38)

Proof.For anyk ∈ N we introduce the displacement

vs(k + 1) = u(u0((k + 1)/s),Ks(k)).

From the minimality assumption on the incremental solution we have for any
k ∈ N the inequality

J ((us(k),Ks(k)), (vs(k + 1),Ks(k))) > J (k, s),

J (k, s) = J ((us(k),Ks(k)), (us(k + 1),Ks(k + 1))).

Also, becauseus(k) is uniformly (with respect tok and s) essentially bounded,
from the relation (29) and the minimality of the incremental solution we have
Hn−1(Ls(k) \ Jus (k)) = 0 for anys, k. The latter inequality means that∫

�

w(∇vs(k + 1))dx >
∫
�

w(∇us(k + 1))dx

+GHn−1(Ks(k + 1) \Ks(k)).

The crack growth conditionKs(k) ⊂ Ks(k + 1) implies that the latter relation can
be written as(∫

�

w(∇vs(k + 1))dx −
∫
�

w(∇us(k))dx

)
+
∫
�

w(∇us(k))dx +GHn−1(Ks(k))

>
∫
�

w(∇us(k + 1))dx +GHn−1(Ks(k + 1)).
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This is the incremental form of the Griffith criterion of crack propagation (12).
Indeed, we have∫

�

w(∇vs(k + 1))dx = 1
2〈T(Ks(k))u0((k + 1)/s),u0((k + 1)/s)〉,

∫
�

w(∇us(k))dx = 1
2〈T(Ks(k))u0(k/s),u0(k/s)〉,

therefore∫
�

w(∇vs(k + 1))dx −
∫
�

w(∇us(k))dx

= 〈T(Ks(k))1
2(u0((k + 1)/s)+ u0(k/s)),

u0((k + 1)/s)− u0(k/s)〉.
vs(k+ 1) represents the displacement of the body with the boundary displacement
u0(k/s+1/s) in the presence of the crackKs(k). us(k) represents the displacement
of the body with the boundary displacementu0(k/s) in the presence of the same
crackKs(k). According to (11), the quantity(∫

�

w(∇vs(k + 1))dx −
∫
�

w(∇us(k))dx

)/(
1

s

)
is the discretized expression of the power communicated by the rest of the universe
to the body at the timek/s, when a time discretization with step 1/s is considered.

We deduce from the inequality (39) that

P/s +
∫
�

w(∇us(k))dx +GHn−1(Ks(k))

>
∫
�

w(∇us(k + 1))dx +GHn−1(Ks(k + 1)).

We have therefore

Pk/s >
∫
�

w(∇us(k + 1))dx +GHn−1(Ks(k + 1)).

FromLs(k + 1) ⊂ Ks(k + 1) we infer that

Pk/s >
∫
�

w(∇us(k + 1))dx +GHn−1(Ls(k + 1)).

The latter inequality and the equally boundedness ofus(k) allow us to apply the
compactness Theorem forSBD 5.2. We deduce that for anyt > 0 there exist
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diverging sequences(si)i and(ki)i such thatki/si converges tot and(usi , Lsi )(ki)
converges to an element ofM (u, L)(t) in the sense of the relations (37), (38).

8. Numerical Approach to the Model

The models presented in this paper are of applicative interest. In order to use them
we have to know how to minimize a Mumford–Shah functional. This can be done
by approximating, in the sense of variational convergence, the original functional
by a volume integral. There are several ways to approximate the Mumford–Shah
functional by volume integrals (for a general reference we quote Braides [16]).
One idea is to replace the displacement-crack pair(u,K) with the pair (u, f ),
wheref is a smoothed version of the characteristic function of the crack setK,
taking values in the interval[0,1]. The original functional may be replaced by an
Ambrosio–Tortorelli approximation, introduced in [11], [12].

Let us consider, for giveng:�→ R andc > 0, functionals of the form

Ic(u, f ) =
∫
�

{
αφ(f )|∇u|2+ β(u− g)2+

+γ
[
cψ(f )|∇f |2+ f

2

4c

]}
dx. (39)

We suppose that the functionsφ, ψ have the following properties:

(a) ψ(x) > 0 for anyx ∈ (0,1];
(b)

∫ 1
0 2xψ1/2(x)dx = 1;

(c) φ(0) = 1,φ(1) = 0 andφ(x) ∈ (0,1) for anyx ∈ (0,1).
Under these assumptions it is known that whenc converges to 0 thenIc converges
in the variational sense (or0-convergence) to the Mumford–Shah functional

I (u) = α
∫
�

|∇u|2 dx + β
∫
�

|u− g|2 dx + γH1(Su). (40)

This result, due to Ambrosio and Tortorelli, tells us that for anyu ∈ SBV(�,R)
the followings are true:

(i) for any sequence(uh, fh, ch) such thatuh → u andfh → 0 in L2, ch → 0,
we have

lim inf
h→∞

Ich(uh, fh) > I (u);

(ii) there is a sequence(uh, fh, ch) such thatuh→ u andfh → 0 inL2, ch → 0,
and

lim sup
h→∞

Ich(uh, fh) 6 I (u).
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A consequence of this result is that if:

(i) (uh, fh) is a minimizer of the functionalIch andch→ 0; and
(ii) there is a functionu ∈ SBV(�,R) such thatuh→ u andfh→ 0 inL2,

thenu is a minimizer of the Mumford–Shah functionalI .
The numerical approach to the problem of minimizing the Mumford–Shah func-

tional consists in the replacement of this functional with an approximate functional
Ic. After a numerical minimization ofIc over a conveniently chosen set we obtain
a minimizing pair(uc, f c). The functionf c represents an approximation of the
characteristic function of the setSu, whereu is a minimizer ofI .

We shall use this idea for the model presented here, in the anti-plane case.
Instead of a sequence of incremental solutions(uh,Kh) we shall consider a se-
quence of pairs(uch, f

c
h ). The crack-growth conditionKh ⊂ Kh+1 will be replaced

by: f ch (x) 6 f ch+1(x) for any x ∈ �. Notice thatf ch is an approximation of the
characteristic function of the damaged region.

We shall not be concerned further with the regularity of the functions that we
are dealing with. We setM to be the space of all pairs of smooth enough functions
u:� ⊂ R2 → R, f :� → [0,1]. The numberc and functionsφ, ψ are given, as
well as a sequence of imposed boundary displacementsun0:0u ⊂ ∂�→ R. As for
the material constants, we setγ = G/µ, which has the dimension of a length.

DEFINITION 8.1. Let us define the functions

Jc:M ×M → R,

F(g) =
∫
�

{
8(g)|∇v|2+ γ

[
cψ(g)|∇g|2+ g

2

4c

]}
dx,

Jc((u, f ), (v, g)) =
{
F(g) if g > f,
+∞ otherwise,

9:N ×M → {0,+∞},

9(n, (v, g)) =
{

0 if (1− g)(v − un0) = 0 on 0u,

+∞ otherwise.

We consider the initial data(u0, f0) such thatu0 = u(u0
0,K) andf0 satisfies

sup{|f (x)− χK(x)|: x ∈ �} 6 c,
whereχK is the characteristic function of the setK.

We recursively define the sequence(uch, f
c
h ) as follows:

(i) (uc0, f
c
0 ) = (u0, f0);

207215.tex; 28/05/1999; 7:36; p.32



ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 233

(ii) for any k ∈ N the pair(uck+1, f
c
k+1) minimizes overM the functional

(v, g) 7→ Jc((u
c
k, f

c
k ), (v, g))+ 9(k + 1, (v, g)).

For the approximate model described in Definition 8.1 we shall use the gradient
descent method described in Richardson and Mitter [32]. The domain� is discret-
ized in pixels and the various partial derivatives of functionsuc andf c are replaced
by finite differences. With the notation

J kc (u, f ) = Jc((uck, f ck ), (u, f ))
the gradient descent of the functionalJ kc has the form

u̇ = −Cu∂uJ kc (u, f ),
ḟ = −Cf ∂f J kc (u, f )

with variable controlsCu andCf . In order to respect the constraint9, after each
step of the descent a projection off on the convex set

{g:�→ [0,1]: g(x) > f ck (x) ∀x ∈ �}
is performed. The boundary condition for the displacementu is satisfied in the
usual way by setting the value ofu on the pixels of∂� equal to the value ofuk+1

0 .
The simplest choice for the functionsφ andψ is

φ(x) = (1− x)2, ψ(x) = 1.

Richardson and Mitter remark in [32] that the parameterβ (see (1)), which is
equal to 0 in Definitions 4.1 and 8.1, has a strong influence on the speed of the
gradient descent method they propose: smallβ causes low speed of the gradient
descent. In our problemβ is null and this causes a very slow rate of convergence.
There is an empirical reason for which the Mumford–Shah functional behaves
badly whenβ is zero, in the problem of crack evolution: unlike the case of image
segmentation, where the information is scattered all over�, in the problem of
crack evolution the displacement that causes the growth of the crack is a datum
concentrated on the boundary of�. The viscous force induced byβ should serve
to transport this information inside�.

For numerical reasons we shall mix our model with an Ambrosio and Braides
model with small, but not zero, viscosity. We replace the functionalJc by

J ∗c ((u, f ), (v, g)) = Jc((u, f ), (v, g))+ βs
∫
�

|v − u|2 dx.

The sequence of imposed boundary displacements(un0) is the discretized in time
version of a path of displacementsu0(t). For a fixed step of discretization 1/s we
have

un0 = u0(n/s).
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(c)(a) (b)

Figure 3. (a) The initial geometry of the body; (b) and (c) the aspect of the evolving cracks.

(c)(a) (b)

Figure 4. (a) The initial displacement of the body; (b) and (c) represent the displacement of
the body fractured as in (b) and (c) previous pictures.

In order to eliminate the effects of the viscosity we replace also the sequence(un0)

with the following one, for a given naturalP

∀n ∈ N, k ∈ {0,1, . . . P − 1}UnP+k
0 = un0.

Therefore at any timen/s, the boundary displacement becomesu0(n/s) and after
that it remains constant in the interval[n/s, (n+P)/s], in order to let the influence
of the viscosity to become negligible.

In Figure 1 we see how the Richardson and Mitter method works for the image
segmentation problem. Recall that the Mumford–Shah functional (1) is used. The
parametersα, β andγ have been left to our choice, in order to get a good result.

The results of the numerical method for a cylinder with a rectangular cross-
section of 0.1 m× 0.1 m are shown in the next four figures. We remove from this
cross-section small rectangles (Figures 3 and 4) or parts of ellipsis (Figures 5 and
6) and study what happened with the body obtained in this way during an imposed
path of boundary displacements. The material (carbon steel) has the constantγ =
G/µ = 0.0000025 m and it has a pure elastic behavior. The boundary conditions
are described further. The rectangular section is a square[0,0.1] × [0,0.1]. The
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(c)(a) (b)

Figure 5. (a) The initial geometry; (b) final aspect of the cracks; (c) final displacement.

(c)(a) (b)

Figure 6. (a) The initial geometry of the body; (b) final aspect of the cracks (c) final
displacement.

displacementun0 is imposed on the faces[0,0.1] × {0}, whereun0 is constant and
equal to 0, and[0,0.1] × {0.1}, where the displacementun0 is constant and grows
slowly with n, from the value 0 m to the value 0.0041 m. The other two faces are
force free.

The approximate characteristic function of the crack, i.e., the functionf :�→
[0,1] is represented with the following convention: there are 256 grey levels,
numbered from 0 (black) to 255 (white); the number 0 (no crack there) corresponds
to the level 255 and the number 1 (certainly a crack there) corresponds to the
level 0. We have a linear correspondence between the numbers from(0,1) and
the intermediary grey level. In this way we obtain a kind of picture of the shape of
the crack in the cross-section of the body. Therefore a pixel is black either if there
was no material there from the start, or if it belongs to the actual crack. Irrelevant
black pixels appear on the boundary of the picture, maybe as an effect of error
accumulation during the minimization process.

The displacement functionu is represented in the complete square cross-section,
but is irrelevant in the portions removed from the section. The representation was
made with the following convention: the 255 level (white) correspond to the max-
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(b)(a)

Figure 7. Examples of local minima.

imum value ofu and the 0 level (black) correspond to the minimum value ofu;
all the intermediary values ofu are represented as grey levels, with a linear law of
correspondence.

9. Final Remarks

This energetic approach to quasi-static brittle fracture propagation has the quality
that it does not contain any prescription of the shape or location of the cracks. We
have seen that the model provides a way of working with cracks which suddenly
appear in the body. We have partially investigated this feature of the model and we
have concluded that the model is not compatible with a critical stress based model
of damage of an elastic body.

In this paper we did not study the bifurcation of an existing crack. A crack
bifurcates when its shape suffers a change of topology. The most common example
is a crack in a two-dimensional configuration, initially with only one edge in the
body, which develops in time new branches. During this phenomenon the number
of edges of the crack increases.

The numerical results presented in the last section have the following feature:
during the evolution of the crack new concentrations of the elastic energy density
do not appearin the interior of the body. It may seem that we have an example of
crack bifurcation in Figures 3(b) and (c), but the two branches from the top of the
Figure 3(b) do not grow simultaneously. We have noticed that a first crack grows to
the left until its edge reaches the boundary of the rectangle and, after that, a second
crack grows to the right.

There is no method to find the global minimum of a functional like the
Ambrosio–Tortorelli approximation. We have experimented with our programs for
a large variety of data. We have obtained from time to time solutions which were
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obviously local but not global minima. We have found that some of these local
minima loose old edges (Figure 7(a)), eventually developing instead new ones
(Figure 7(b)).

Our numerical results indicate that there is a sort of conservation law of ‘edges’
(i.e. maxima or singularities of the elastic energy density) of the solutions of the
model, asserting that during the evolution of the crack the number of these ‘edges’
can only decrease. If such a conservation law is true, it may be a consequence of
the fact that in the Mumford–Shah functional there is no term which controls the
creation of a new ‘edge’.
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Equilibrium and absolute minimal states of Mumford-Shah

functionals and brittle fracture propagation

Marius Buliga∗

Abstract

By a combination of geometrical and configurational analysis we study the
properties of absolute minimal and equilibrium states of general Mumford-Shah
functionals, with applications to models of quasistatic brittle fracture propagation.
The main results concern the mathematical relations between physical quantities
as energy release rate and energy concentration for 3D cracks with complex shapes,
seen as outer measures living on the crack edge.

Keywords: 3D brittle fracture; energy methods; Mumford-Shah functional

1 Introduction

A new direction of research in brittle fracture mechanics begins with the article of
Mumford & Shah [12] regarding the problem of image segmentation. This problem,
which consists in finding the set of edges of a picture and constructing a smoothed
version of that picture, it turns to be intimately related to the problem of brittle crack
evolution. In the before mentioned article Mumford and Shah propose the following
variational approach to the problem of image segmentation: let g : Ω ⊂ R

2 → [0, 1] be
the original picture, given as a distribution of grey levels (1 is white and 0 is black), let
u : Ω → R be the smoothed picture and K be the set of edges. K represents the set
where u has jumps, i.e. u ∈ C1(Ω \K,R). The pair formed by the smoothed picture u
and the set of edges K minimizes then the functional:

I(u,K) =

∫

Ω
α | ∇u |2 dx +

∫

Ω
β | u− g |2 dx + γH1(K) .

The parameter α controls the smoothness of the new picture u, β controls the L2

distance between the smoothed picture and the original one and γ controls the total
length of the edges given by this variational method. The authors remark that for β = 0
the functional I might be useful for an energetic treatment of fracture mechanics.

An energetic approach to fracture mechanics is naturally suited to explain brittle
crack appearance under imposed boundary displacements. The idea is presented in the
followings.
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The state of a brittle body is described by a pair displacement-crack. (u,K) is such
a pair if K is a crack — seen as a surface — which appears in the body and u is a
displacement of the broken body under the imposed boundary displacement, i.e. u is
continuous in the exterior of the surface K and u equals the imposed displacement u0

on the exterior boundary of the body.
Let us suppose that the total energy of the body is a Mumford-Shah functional of

the form:

E(u,K) =

∫

Ω
w(∇u) dx + F (u0,K) .

The first term of the functional E represents the elastic energy of the body with the
displacement u. The second term represents the energy consumed to produce the crack
K in the body, with the boundary displacement u0 as parameter. Then the crack that
appears is supposed to be the second term of the pair (u,K) which minimizes the total
energy E.

After the rapid establishment of mathematical foundations, starting with De Giorgi,
Ambrosio [8], Ambrosio [1], [2], the development of such models continues with Franc-
fort, Marigo [9], [10], Mielke [11], Dal Maso, Francfort, Toader, [7], Buliga [4], [5],
[6].

In this paper we introduce and study equilibrium and absolute minimal states of
Mumford-Shah functionals, in relation with a general model of quasistatic brittle crack
propagation.

On the space of the states of a brittle body, which are admissible with respect to
an imposed Dirichlet condition, we introduce a partial order relation. Namely the state
(u,K) is ”smaller than” (v, L) if L ⊂ K and E(u,K) ≤ E(v, L). Equilibrium states for
the Mumford-Shah energy E are then minimal elements of this partial order relation.
Absolute minimal states are just minimizers of the energy E.

Both equilibrium states and absolute minimal ones are good candidates for solutions
of models for quasistatic brittle crack propagation. Usually such models, based on
Mumford-Shah energies, take into consideration only absolute minimal states. However,
it seems to me that equilibrium states are better, because it is physically sound to define
a state of equilibrium (u,K) of a brittle body as one with the property that its total
energy E(u,K) cannot be lowered by increasing the crack further.

For this reason we study here properties of equilibrium and absolutely minimal
states of general Mumford-Shah energies. This study culminates with an inequality
between the energy release rate and elastic energy concentration, both defined as outer
measures living on the edge of the crack. This result generalizes for tri-dimensional
cracks with complex geometries what is known about brittle cracks with simple geom-
etry in two dimensions. In the two dimensional case, for cracks with simple geometry,
classical use of complex analysis lead us to an equality between the energy release rate
and elastic energy concentration at the tip of the crack. We prove that for absolute
minimal states (corresponding to cracks with complex geometry) such an equality still
holds, but for general equilibrium states we only have an inequality. Roughly stated,
such a difference in properties of equilibrium and absolute minimal states comes from
the mathematical fact that the class of first variations around an equilibrium state is
only a semigroups.
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This research might be relevant for 3D brittle fracture criteria applied for cracks
with complex geometries. Indeed, it is very difficult even to formulate 3D fracture
criteria, because in three dimensions a crack of arbitrary shape does not have a finite
number of ”crack tips” (as in 2D classical theory), but an ”edge” which is a collection
of piecewise smooth curves in the 3D space.

Aknowledgements. The author received partial support from the Romanian Min-
istry of Education and Research, through the grant CEEX06-11-12/2006.

2 Notations

Partial derivatives of a function f with respect to coordinate xj are denoted by f,j. We
use the convention of summation over the repeating indices. The open ball with center
x ∈ R

n and radius r > 0 is denoted by B(x, r).
We assume that the body under study has an open, bounded, with locally Lipschitz

boundary, reference configuration Ω ⊂ R
n, with n = 1, 2 or 3. In the paper we shall use

Hausdorff measures Hk in R
n. For example, if n = 3 then Hn is the volume measure,

Hn−1 is the area measure, Hn−2 is the length measure. If n = 2 then Hn is the area
measure, Hn−1 is the length measure, Hn−2 is the counting measure.

Definition 2.1 A smooth diffeomorphism with compact support in Ω is a function
φ : Ω → Ω with the following properties:

i) φ is bijective;

ii) φ and φ−1 are C∞ functions;

iii) φ equals the identity map of Ω near the boundary ∂Ω:

supp (idΩ − φ) ⊂⊂ Ω .

The set of all diffeomorphisms with compact support in Ω is denoted by D or D(Ω).

The set D(Ω) it is obviously non void because it contains at least the identity map
idΩ. Remark also that it is a group with respect to function composition.

For any C∞ vector field η on Ω there is an unique associated one parameter flow,
which is a function φ : I ×Ω → Ω, where I ⊂ R is an open interval around 0 ∈ R, with
the properties:

f1) ∀t ∈ I the function φ(t, ·) = φt(·) satisfies i) and ii) from definition 2.1,

f2) ∀t, t′ ∈ I, if t− t′ ∈ I then we have φt′ ◦ φ−1
t = φt−t′ ,

f3) ∀ t ∈ I we have η = φ̇t ◦ φ−1
t , where φ̇t means the derivative of t 7→ φt.
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The vector field η = 0 generates the constant flow φt = idΩ. If η has compact
support in Ω then the associated flow t 7→ φt is a curve in D.

A crack set K is a piecewise Lipschitz surface with a boundary. This means that
exists bi-Lipschitz functions (fα)α∈1...M , each of them defined over a relatively open
subset Dα of R

n−1
+ =

{

y ∈ R
n−1 : yn−1 ≥ 0

}

, with ranges in R
n, such that:

K = ∪M
α=1fα(Dα) ,

if α 6= β then fα(Dα \ ∂R
n−1
+ ) ∩ fβ(Dβ \ ∂R

n−1
+ ) = ∅ .

The edge of the crack K is defined by

dK = ∪M
α=1fα(Dα ∩ ∂R

n−1
+ ) .

We shall denote further by Br(dK) the tubular neighborhood of radius r of dK, given
by the formula:

Br(dK) = ∪x∈dKB(x, r) .

We denote by [f ] = f+−f− the jump of the function f over the surface K with respect
to the field of normals n.

3 Mumford-Shah type energies

Definition 3.1 We describe the state of a brittle body by a pair (v, S). The crack is
seen as a piecewise Lipschitz surface S in the topological closure Ω of the reference
configuration Ω of the body and v represents the displacement of the body from the
reference configuration. The displacement v has to be compatible with the crack , i.e.
v has the regularity C1 outside the surface S.

The space of states of the brittle body with reference configuration Ω is denoted by
Stat(Ω).

The main hypothesis in models of brittle crack propagation based on Mumford-Shah
type energies is the following.

Brittle fracture hypothesis. The total energy of the body subject to the boundary
displacement u0 depends only on the state of the body (v, S) and it has the expression:

E(v, S) =

∫

Ω
w(∇v) dx + F (S;u0) . (3.0.1)

The first term of this functional is the elastic energy associated to the displacement v;
the second term represents the energy needed to produce the crack S, with the boundary
displacement u0 as parameter.

We suppose that the elastic energy potential w is a smooth, non negative function.
The most simple form of the function F is the Griffith type energy:

F (S;u0) = Const. · Area (S) ,

that is the energy consumed to create the crack S is proportional, through a material
constant, to the area of S.
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One may consider expressions of the surface energy F , different from (3.0.1), for
example:

F (v, S) =

∫

S

φ(v+,v−,n) ds ,

where n is a field of normals over S , v+, v− are the lateral limits of v on S with
respect to directions n, respective −n and φ has the property:

φ(v+,v−,n) = φ(v−,v+,−n) .

The function φ, depending on the displacement of the ”lips” of the crack, is a potential
for surface forces acting on the crack. The expression (3.0.1) does not lead to such
forces.

In general we shall suppose that the function F has the properties:

h1) is sub-additive: for any two crack sets A, B we have

F (A ∪B;u0) ≤ F (A;u0) + F (B;u0) ,

h2) for any x ∈ Ω and r > 0, let us denote by δx
r the dilatation of center x and

coefficient r:
δx
r (y) = x+ r(y − x) .

Then, there is a constant C ≥ 1 such that for any A ⊂ Ω with F (A;u0) < +∞
we have:

F (δx
r (A) ∩ Ω;u0) ≤ Crn−1F (A;u0) .

The particular case F (A;u0) = GHn−1(A) satisfies these two assumptions. In gen-
eral these assumptions are satisfied for functions F (·;u0) which are measures absolutely
continuous with respect to the area measure Hn−1.

A weaker property than h2), is the property h3) below. We don’t explain here why
h3) is weaker than h2), but remark that h3) is satisfied by the same class of examples
given for h2).

For any A ⊂ Ω, let us denote by B(A, r) the tubular neighborhood of A:

B(A, r) = ∪x∈AB(x, r) .

We shall suppose that F satisfies:

h3) for any A ⊂ Ω such that F (A;u0) < +∞, we have

lim sup
r→0

F (∂B(A, r) ∩ Ω;u0)

r
< +∞ .
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4 The space of admissible states of a brittle body

Definition 4.1 The class of admissible states of a brittle body with respect to the crack
F and with respect to the imposed displacement u0 is defined as the collection of all
states (v, S) such that

(a) u = u0 on ∂Ω \ S,

(b) F ⊂ Su.

This class of admissible states is denoted by Adm(F,u0).

An admissible displacement u is a function which has to be equal to the imposed
displacement on the boundary of Ω (condition (a)). Any such function u is reasonably
smooth in the set Ω \ Su and the function u is allowed to have jumps along the set
S. Physically the set represents the collection of all cracks in the body under the
displacement u. The condition (b) tells us that the collection of all cracks associated
to an admissible displacement u contains F , at least.

For some states (u, S), the crack set S may have parts lying on the boundary of Ω,
that is S ∩ ∂Ω is a surface with positive area. In such cases we think about S ∩ ∂Ω as
a region where the body has been detached from the machine which imposed upon the
body the displacement u0.

In a weak sense the whole space of states of a brittle body may be identified with
the space of special functions with bounded deformation SBD(Ω), see [3]. Indeed, to
every displacement field u which is a special function with bounded deformation we
associate the state of the brittle body described by (u,Su), where generally for any set
A we denote by A the topological closure of A. (Note that, technically, the crack set
Su may not be a collection of surfaces with Lipschitz regularity.)

On the space of states of a brittle body we introduce a partial order relation. The
definition is connected to definition 4.1 and the brittle fracture hypothesis.

Definition 4.2 Let (u, S), (v, L) ∈ Stat(Ω) be two states of a brittle body with refer-
ence configuration Ω. If

(a) S ⊂ L,

(b) u = v on ∂Ω \ L,

(c) E(v, L) ≤ E(u, S),

then we write (v, L) ≤ (u, S). This is a partial order relation.

There are many pairs (u, S), (v, L) ∈ Stat(Ω) such that (v, L) ≤ (u, S) and (u, S) ≤
(v, L), but u 6= v. Nevertheless such pairs have the same total energy E, the same
crack set S = L, and u = v on ∂Ω \ L.

For a given boundary displacement u0 and for given initial crack set K, on the set
of admissible states Adm(u0,K) we have the same partial order relation.
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Definition 4.3 An element (u, S) ∈ Adm(u0,K) is minimal with respect to the partial
order relation ≤ if for any (v, L) ∈ Adm(u0,K) the relation (v, L) ≤ (u, S) implies
(eu, S) ≤ (v, L).

The set of equilibrium states with respect to given crack K and imposed boundary
displacement u0 is denoted by Eq(u0,K) ant it consists of all minimal elements of
Adm(u0,K) with respect to the partial order relation ≤.

An element (u, S) ∈ Adm(u0,K) with the property that for any (v, L) ∈ Adm(u0,K)
we have E(u, S) ≤ E(v, L), is called an absolute minimal state. The set of absolute
minimal states is denoted by Absmin(u0,K).

The physical interpretation of equilibrium states is the following. An equilibrium
state (u, S) ∈ Eq(u0,K) is one such that any other state (v, L) ∈ Adm(u0,K), which is
comparable to (u, S) with respect to the relation ≤, has the property (u, S) ≤ (v, L). In
other words, equilibrium states are those with the property: the total energy E cannot
be made smaller by prolongating the crack set S or by modifying the displacement u
compatible with the crack set S and imposed boundary displacement u0.

Absolute minimal states are just equilibrium states with minimal energy.

Remark 4.4 There might exist several minimal elements of of Adm(u0,K), such that
any two of them are not comparable with respect to the partial order relation ≤.

For given expressions of the functions w and F , we formulate the following

Equilibrium hypothesis (EH). For any piecewise C1 imposed boundary displace-
ment u0 and any crack K the set of equilibrium states Eq(u0,K) is not empty.

Without supplementary hypothesis on the total energy E, the EH does not imply
that the set of absolute minimal states Absmin(u0,K) is non empty. Therefore the
following hypothesis is stronger than EH.

Strong equilibrium hypothesis (SEH). For any piecewise C1 imposed boundary
displacement u0 and any crack K the set of equilibrium states Absmin(u0,K) is not
empty.

5 Models of quasistatic evolution of brittle cracks

We shall describe here two models of quasistatic brittle crack propagation, according
to Francfort, Marigo [9], [10], Mielke [11], section 7.6, or Buliga [6], [5]. At a first
sight the models seem to be identical, but subtle differences exist. Further, instead
of referring to a particular different model, we shall write about a general model of
brittle crack propagation based on energy functionals, as if there is only one, general
model, with different variants, according to the choice among axioms listed further.
Whenever necessary, the exposition will contain variants of statements or assumptions
which specializes the general model to one of the actual models in use.

As an input of the model we have an initial crack set K ⊂ Ω and a curve of imposed
displacements t ∈ [0, T ] 7→ u0(t) on the boundary of Ω, the initial configuration of the
body.
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We like to think about the configuration Ω as being an open, bounded subset of R
n,

n = 1, 2, 3, with sufficiently regular boundary (that is: piecewise Lipschitz boundary).
The initial crack set K has the status of an initial condition. Thus, we suppose that

∂ (Rn \ Ω) = ∂Ω. For the same configuration Ω we may consider any crack set K ⊂ Ω
as an initial crack. The crack set K may be empty.

Remark 5.1 Models suitable for the evolution of brittle cracks under applied forces
would be of great interest. Present formulations of the models of brittle crack propaga-
tion allows only the introduction of conservative force fields, as it is done in [11] or [10].
The reason is that models based on energy minimization cannot deal with arbitrary force
fields. In the case of a conservative force field it is enough to introduce the potential of
the force field inside the expression of the total energy of the fractured body. Thus, in
this particular case we do not have to change substantially the formulation of the model
presented here, but only to slightly modify the expression of the energy functional.

In order to simplify the model presented here, we suppose that no conservative force
fields are imposed on Ω or parts of ∂Ω. In the models described in [11] or [10] such
forces may be imposed.

Definition 5.2 A solution of the model is a curve of states of the brittle body t ∈
[0, T ] 7→ (u(t), St) such that:

(A1) (initial condition) K ⊂ S0,

(A2) (boundary condition) for any t ∈ [0, T ] we have u(t) = u0(t) on ∂Ω \ St,

(A3) (quasistatic evolution) for any t ∈ [0, T ] we have (u(t), St) ∈ Eq(u0(t), St),

(A4) (irreversible fracture process) for any t ≤ t′ we have St ⊂ St′ ,

(A5) (selection principle) for any t ≤ t′ and for any state (v, St) ∈ Adm(u0(t
′), St) we

have E(v, St) ≥ E(u(t′), St′).

From definition 4.3 we see that (A2) is just a part of (A3). The axiom (A2) is
present in the previous definition only for expository reasons.

The selection principle (A5) enforces the irreversible fracture process axiom (A4).
Indeed, we may have severe non-uniqueness of solutions of the model. The axiom (A5)
selects among all solutions satisfying (A1), ..., (A4), the ones which are energetically
economical. The crack set St does not grow too fast, according to (A5). For imposed
displacement u0(t

′), the body with crack set St′ is softer than the same body with the
crack set St, for any t ≤ t′.

As presented in definition 5.2, the model has been proposed in Buliga [6].
In the models described in [11], [9], [10] we don’t need the selection principle (A5)

and the axiom (A3) takes the stronger form:

(A3’) (quasistatic evolution) for any t ∈ [0, T ] we have (u(t), St) ∈ Absmin(u0(t), St).
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6 The existence problem

The existence of equilibrium, or absolutely minimal states clearly depends on the el-
lipticity properties of the elastic energy potential w (as shown for example in [2], [3]
or [9]). This is related to the existence of minimizers of the elastic energy functional,
as shown by relation (7.0.1) further on. Some form of ellipticity of the function w is
sufficient, but it is not clear if such conditions are also necessary. Much effort, especially
of a mathematical nature, has been spent on this problem.

In this paper we are not concerned with the existence problem, however. Our
purpose is to find general properties of solutions of brittle fracture propagation models
based on Mumford-Shah functionals. These properties do not depend on particular
forms of the elastic energy potential w, but on the hypothesis made in the general model.
As any other model, the one studied in this paper is better fitted to some physical
situations than others. If some property of solutions of this model are incompatible
with a particular physical case, then we must deduce that the model is not fitted for this
particular case (meaning that at least one of the hypothesis of the model is not suitable
to this physical case). We are thus able to provide a complementary information to the
one provided by the existence problem. See further the Conclusions section for more
on the subject.

7 Absolute minimal states versus equilibrium states

The differences between the models come from the difference between equilibrium states
and absolute minimal states.

Absolute minimal states are equilibrium states, but not any equilibrium state is an
absolute minimal state.

Let us denote by (u, S) an equilibrium state of the body, with respect to the imposed
displacement u0 and initial crack set K.

Consider first the class of all admissible pairs (v, S′) such that S = S. We have, as
an application of definition 4.3, then:
∫

Ω
w(∇u) dx ≤

∫

Ω
w(∇v) dx ∀ v, v = u0 on ∂Ω \K , v ∈ C1(Ω \K) . (7.0.1)

Thus any equilibrium state minimizes the elastic energy functional (in the class of
admissible pairs with the same associated crack set). A sufficient condition for the
existence of such minimizers is the polyconvexity of the elastic energy potential w.

The elastic energy potential function w : Mn×n(R) → R associates to any strain
F ∈ Mn×n(R) (here n = 2 or 3) the real value w(F) ∈ R. If this function is smooth
enough then we can define the (Cauchy) stress tensor as coming from the elastic energy
potential:

σ(u) =
∂w(F)

∂F
(∇u) .

The variational inequality (7.0.1) implies that in the sense of distributions we have:

div σ(u) = 0
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and that on the crack set S we have

σ(u)+n = σ(u)−n = 0 ,

where the signs + and − denotes the lateral limits of σ(u) with respect to the field of
normals n.

7.1 Configurational relations for absolute minimal states

We can also make smooth variations of the pair (u, S). Here appears the first difference
between absolute minimal and equilibrium states. We suppose further that S \K 6= ∅,
in fact we suppose that S \K is a surface with positive area.

If (v, L) ∈ Adm(u0,K) is an admissible state and φ ∈ D is a diffeomorphism of Ω
with compact support, such that K ⊂ φ(K), then (v ◦ φ−1, φ(S)) is admissible too.

If (u, S) is an absolute minimal state then, as an application of definition 4.3, we
have:

E(u, S) ≤ E(u ◦ φ−1, φ(S)) ∀φ ∈ D , K ⊂ φ(K) . (7.1.2)

We may use (7.1.2) in order to derive a first variation equality.
We shall restrict further to the group D(K) of diffeomorphisms φ ∈ D such that

supp (φ− id)∩K = ∅. Vector fields η which generate one-parameter flows in D(K) are
those with the property supp η ∩K = ∅. Further we shall work only with such vector
fields.

We shall admit further that for any smooth vector field η there exist the derivatives
at t = 0 of the functions:

t 7→
∫

Ω
w(∇(u ◦ φ−1

t )) dx , t 7→ F (φt(K);u0) ,

where φt is the one parameter flow generated by the vector field η. The relation (7.1.2)
implies then:

d

dt |t=0
F (φt(S);u0) = − d

dt |t=0

∫

Ω
w(∇(u ◦ φ−1

t )) dx . (7.1.3)

Let us compute the right hand side of (7.1.3). We have

− d

dt |t=0

∫

Ω
w(∇(u ◦ φ−1

t )) dx =

∫

Ω
{−w(∇u) div η + σ(u)ij(∇u)ik(∇η)kj} dx .

For any vector field η, let us define, for any x ∈ S, λ(x) = η(x) · n(x), ηT (x) =
η(x) − λ)(x)n(x), where n is a fixed field of normals over S.

With these notations, and recalling that the divergence of the stress field equals 0,
we have:

− d

dt |t=0

∫

Ω
w(∇(u ◦ φ−1

t )) dx =

∫

S

[w(∇u)]λ d Hn−1 +

+ lim
r→0

∫

∂Br(dS)
{[w(∇u)]λ − [σ(u)ij(∇u)ik]ηknj} d Hn−1 . (7.1.4)

10



Definition 7.1 We introduce three kind of variations in terms of a vector field η which
generates an one parameter flow φt ∈ D(K):

(a) (crack neutral variations) for η = 0 on S; in this case we have φt(S) = S for
any t,

(b) (crack normal variations) for η = λn on S \K, with λ : S → R a scalar, smooth
function, such that λ(x) = 0 for any x ∈ K ∪ dS,

(c) (crack tangential variations) for η · n = 0 on S.

For the case (a) of crack neutral variations the relation (7.1.4) gives no new information,
when compared with (7.0.1).

In the case (b) of crack normal variations, the relation (7.1.4) implies

d

dt |t=0
F (φt(K);u0) =

∫

S

[w(∇u)]λ d Hn−1 .

In the particular case F (S;u0) = Hn−1(S) we obtain:

∫

S

{[w(∇u)] +H}λ dHn−1 = 0 ,

where H = −divsn = − div n + ni,jninj is the mean curvature of the surface S.
Therefore we have

[w(∇u)(x)] +H(x) = 0 (7.1.5)

for any x ∈ S \K.
In the case (c) of crack tangential variations, the relation (7.1.4) implies

d

dt |t=0
F (φt(S);u0) =

= lim
r→0

∫

∂Br(dS)
{[w(∇u)]λ − [σ(u)ij(∇u)ik]ηknj} dHn−1 . (7.1.6)

This last relation admits an well known interpretation, briefly explained in the next
subsection.

7.2 Absolute minimal states for n = 2

Let us consider the case n = 2 and the function

F (S;u0) = G H1(S) ,

where H1 is the one-dimensional Hausdorff measure, i.e. the length measure. Let us
suppose, for simplicity, that the initial crack set K is empty and the crack set S of
the absolute minimal state (u, S) has only one edge, i.e. dS = {x0}. Let us choose
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a vector field η with compact support in Ω such that η is tangent to S. The equality
(7.1.6) becomes then

G η(x0) · τ(x0) = lim
r→0

∫

∂Br(x0)
{[w(∇u)]η · n − [σ(u)ij(∇u)ik]ηknj} dHn−1 ,

where τ(x) is the unitary tangent in x ∈ K at K. If we suppose moreover that the
crack S is straight near x0, and the material coordinates are chosen such that near x0

we have η(x) = τ(x) = (1, 0), then the equality (7.1.6) takes the form:

G = lim
r→0

∫

∂Br(x0)
{[w(∇u)]n1 − [σ(u)ij(∇u)i1]nj} dHn−1 . (7.2.7)

We recognize in the right term of (7.2.7) the integral J of Rice; therefore at the edge of
the crack the integral J has to be equal to the constant G, interpreted as the constant
of Griffith.

The equality (7.2.7) tells us that at the edge of a crack set belonging to an absolute
minimal state the Griffith criterion is fulfilled with equality.

7.3 Configurational inequalities

For equilibrium states which are not absolute minimal states we obtain just an inequal-
ity, instead of the equality from relation (7.1.6). Also, for such equilibrium states there
is no relation like (7.1.5) between the mean curvature of the crack set and the jump of
elastic energy potential. We explain this further.

The reason lies in the fact that if (u, S) ∈ Eq(u0,K) is an equilibrium state with
S \ K having positive area, and φ ∈ D(K) is a diffeomorphism preserving the initial
crack set K, then we don’t generally have the relation (7.1.2).

Indeed, in order to be able to compare (u, S) with (u ◦ φ−1, φ(S)), we have to
impose S ⊂ φ(S). Only for these diffeomorphisms φ ∈ D(K) the relation (7.1.2) is true.
The class of these diffeomorphisms is not a group, like D(K), but only a semigroup.
Technically, this is the reason for having only an inequality replacing (7.1.6), and for
the disappearance of relation (7.1.5).

There is a necessary condition on the edge dS of the crack set S, in order to have a
trivial vector field η which generates a one parameter flow φt ∈ D(K) with S ⊂ φt(S)
for any t ∈ [0, T ] (with T > 0 sufficiently small). This condition is dS \K 6= ∅.

Thus, for (u, S) ∈ Eq(u0,K) with S \ K with positive area, and dS \ K 6= ∅, we
have

E(u, S) ≤ E(u ◦ φ−1
t , φt(S)) ∀t ∈ [0, T ] , (7.3.8)

for any one parameter flow φt ∈ D(K) with S ⊂ φt(S) for any t ∈ [0, T ].
In relation (7.3.8) crack normal variations (case (b) of definition 7.1) are prohibited.

But these type of variations led us to the relation (7.1.5). We deduce that for an
equilibrium state (u, S) ∈ Eq(u0,K) , such that S\K has positive area, and dS\K 6= ∅,
the relation (7.1.5) does not necessarily hold.
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The crack tangential variations (case (c) of definition 7.1) are allowed in relation
(7.3.8) only for t ≥ 0. That is why we get only a first variation inequality:

d

dt |t=0
F (φt(S);u0) ≥

≥ lim
r→0

∫

∂Br(dK)
{[w(∇u)]λ − [σ(u)ij(∇u)ik]ηknj} dHn−1 , (7.3.9)

for any vector field η which generates one parameter flow φt ∈ D(K) with S ⊂ φt(S)
for any t ∈ [0, T ].

The physical interpretation of relation (7.3.9) is the following: the crack set S of
an equilibrium state satisfies the Griffith criterion of fracture, but, in distinction with
the case of an absolute minimal state, there is an inequality instead of the previous
equality. We are aware of at least one example where this inequality is strict. This case
concerns a crack set in 3D formed by a pair of intersecting, transversal planar cracks.
Such a crack set has an edge (in form of a cross), but also a ”tip” (at the intersection of
the edges of the planar cracks. The physical implications of the inequality (7.3.9) are
that such a 3D crack may propagate in different ways, either along a crack tangential
variation, or along a more topologically complex shape, by loosing its ”tip”. An article
in preparation is dedicated to this subject.

We may interpret the Griffith criterion of fracture, in the form given by relation
(7.3.9), as a first order stability condition for the crack S associated to the state of a
brittle body. Surprisingly then, absolute minimal states are first order neutral (stable
and unstable), even if globally stable (as global minima of the total energy). There
might exist equilibrium states for which we have strict inequality in relation (7.3.9).
Such states are surely not absolute minimal, but they seem to be first order stable, if
our interpretation of (7.3.9) is physically sound.

7.4 Concentration of energy from comparison with admissible states

We can obtain energy concentration estimates from comparison of the energy of the
equilibrium state (u, S) ∈ Eq(u0,K) with other particular admissible pairs.

Let x0 ∈ Ω be a fixed point and r > 0 such that B(x0, r) ⊂ Ω. We construct the
following admissible pair (vr, Sr):

vr(x) =

{

u(x) if x ∈ Ω \B(x0, r)
0 if x ∈ Ω ∩B(x0, r) ,

Sr = S ∪ ∂B(x0, r) .

We have then the inequality E(u, S) ≤ E(vr, Sr), for any r > 0 sufficiently small. We
use the properties h1), h2) of F to deduce that for any x0 ∈ Ω and r > 0 we have :

∫

B(x0,r)
w(∇u) dx ≤ CΩn(x;u0) r

n−1 , (7.4.10)

where Ωn(x0;u0) is a number defined by

Ωn(x0;u0) = F (∂B(x0, 1);u0) .
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In the case of Griffith type surface energy F (S;u0) = GHn−1(S) we have

Ωn(x0;u0) = Gωn ,

with ωn the area of the boundary of the unit ball in n dimensions, that is ω1 = 2,
ω2 = 2π, ω3 = 4π2.

This inequality lead us to the following energy concentration property for u:

lim sup
r→0

∫

B(x0,r)w(∇u) dx

rn−1
≤ CΩn(x0;u0) . (7.4.11)

The term from the left hand side of the relation (7.4.11) is the concentration factor
of the elastic energy around the point x0.

The relation (7.4.11) shows that the distribution of elastic energy of the body in
the state (u, S) is what we expect it to be, from the physical viewpoint. Indeed, let
us go back to the case n = 2. It is well known that in the case of linear elasticity in
two dimensions, if (v, S) is a pair displacement-crack such that div σ(v) = 0 outside
S and σ(v)+n = σ(v)−n = 0 on S then v behaves like

√
r near the edge of the

crack, hence the elastic energy behaves like r−1. We recover then the relation (7.4.11)
for n = 2.

The relation (7.4.11) does imply that elastic energy concentration has an upper
bound, but it does not imply that the energy concentration is positive at the tip of
the crack. In the case n = 2, for example, and for general form of the elastic energy
density, the relation (7.4.11) tells us that if there is a concentration of energy (that
is if the density of elastic energy goes to infinity around the point x in the reference
configuration) then the elastic energy density behaves like r−1. But it might happen
that the elastic energy density is nowhere infinite. In this case we simply have

lim sup
r→0

∫

B(x0,r)w(∇u) dx

rn−1
= 0

which is not in contradiction with (7.4.11).
From the hypothesis h3) upon the surface energy F we get a slightly different

estimate. We need first a definition.

Definition 7.2 For the equilibrium state (u, S) ∈ Eq(u0,K) and for any open set
A ⊂ Ω we define:

CE(u, S)(A) = lim sup
r→0

∫

B((dS∩A,r)∩Ω w(∇u) dx

r
,

CF (S;u0)(A) = lim sup
r→0

F (∂B(dS ∩A, r);u0)

r
.

The functions CE(u, S)(·), CF (S;u0)(·) are sub-additive functions which by well-
known techniques induce outer measures over the σ-algebra of borelian sets in Ω.

The function CE(u, S)(·) is called the elastic energy concentration measure associ-
ated to the equilibrium state (u, S). Likewise, the function CF (S;u0)(·) is called the
surface energy concentration measure associated to (u, S).

14



Theorem 7.3 Let (u, S) ∈ Eq(u0,K) be an equilibrium state. Then for any open set
A ⊂ Ω we have

CE(u, S)(A) ≤ CF (S;u0)(A) .

Proof. We consider, for any closed subset A of Ω the following admissible state
(ur,A, Sr,A) given by:

ur,A(x) =

{

u(x) if x ∈ Ω \B(dS ∩A, r)
0 if x ∈ Ω ∩B(dS ∩A, r) ,

Sr,A = S ∪ ∂B(dS ∩A, r) .

The state (u, S) is an equilibrium state and (ur,A, Sr,A) is a comparable state, therefore
we obtain:

∫

B(dS∩A,r)∩Ω
w(∇u) dx ≤ F (∂B(dS ∩A, r);u0) .

We get eventually:

lim sup
r→0

∫

B(dS∩A,r)∩Ω w(∇u) dx

r
≤ lim sup

r→0

F (∂B(dS ∩A, r);u0)

r
. �

Theorem 7.3 shows that an equilibrium state satisfies a kind of Irwin type criterion.
Indeed, Irwin criterion is formulated in terms of stress intensity factors. Closer inspec-
tion reveals that really it is formulated in terms of elastic energy concentration factor,
and that for special geometries of the crack set, and for linear elastic materials, we are
able to compute the energy concentration factor as a combination of stress intensity
factors.

8 Energy release rate and energy concentration

From relations (7.1.3), (7.1.6), we deduce that a good generalization of the J integral
of Rice (which is classically a number) might a functional :

η , supp η ⊂⊂ Ω 7→ − d

dt |t=0

∫

Ω
w(∇(u.φ−1

t )) dx ,

where φt is the flow generated by η.

Definition 8.1 For any equilibrium state (u, S) ∈ Eq(u0,K) and for any vector field
η which generates a one parameter flow φt ∈ D(K), such that (there is a T > 0 with)
S ⊂ φt(S) for all t ∈ [0, T ], we define the energy release rate along the vector field η by:

ER(u, S)(η) = − d

dt |t=0

∫

Ω
w(∇(u ◦ φ−1

t )) dx (8.0.1)
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Denote by V(K,S) the family of all vector fields η generating a one parameter flow
φt ∈ D(K), such that there is a T > 0 with S ⊂ φt(S) for all t ∈ [0, T ]. Formally
this set plays the role of the tangent space at the identity for the (infinite dimensional)
semigroup of all φ ∈ D(K) such that S ⊂ φ(S).

Remark that ER(u, S)(η) is a linear expression in the variable η. Indeed, we have

ER(u, S)(η) =

∫

Ω
{σ(∇u)ijui,kηk,j − w(∇u) div η} dx .

Nevertheless, the set V(K,S) is not a vector space (mainly because the class of all
φ ∈ D(K) such that S ⊂ φ(S) is only a semigroup, and not a group). Therefore, the
energy release rate is not a linear functional in a classical sense.

Definition 8.2 With the notations from definition 8.1, the total variation of the energy
release rate in a open set D ⊂ Ω is defined by:

| ER | (u, S)(D) = sup ER(u, S)(η) , (8.0.2)

over all vector fields η ∈ V(K,S), with support in D, supp η ⊂ D, such that for all
x ∈ Ω we have ‖η(x)‖ ≤ 1.

The function | ER | (u, S)(·) is positive and sub-additive, therefore induces an outer
measures over the σ-algebra of borelian sets in Ω.

We call this function the energy release rate associated to (u, S) ∈ Eq(u0,K).

The number | ER(u, S) | (D) measures the maximal elastic energy release rate that
can be obtained by propagating the crack set S inside the the set D, with sub-unitary
speed, by preserving it’s shape topologically.

In the case n = 2, as explained in subsection 7.2, let x0 be the crack tip of the crack
set S, and J the Rice integral. Then for an open set D ⊂ Ω we have:

- | ER(u, S) | (D) = J if the crack tip belongs to D, that is x0 ∈ D,

- | ER(u, S) | (D) = 0 if the crack tip does not belong to D.

For short, if we denote by δx0 the Dirac measure centered at the crack tip x0, we can
write:

| ER(u, S) |= J δx0 .

It is therefore the appropriate generalization of the Rice integral in three dimensions.
Suppose that for any crack set L and boundary displacement u0 the surface energy

has the expression:
F (S;u0) = GHn−1(S) .

Then CF (S,u0)(Ω) is just G times the perimeter (length if n = 3) of the edge of the
crack S which is not contained in K (technically, it is the Hausdorff measure Hn−2 of
dS \K).

There is a mathematical formula which expresses the perimeter of the edge of an
arbitrary crack set L as an ”area release rate”. Indeed, it is well known that the
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variation of the area of the crack set φt(L), along a one parameter flow generated by
the vector field η ∈ V(K,L), has the expression:

d

dt |t=0
Hn−1(φt(S)) =

∫

S

divtanη dHn−1(x) ,

where the operator divtan is the tangential divergence with respect to the surface S. If
we denote by n the field of normals to the crack set S, then the expression of divtan

operator is:
divtanη = ηi,i − ηi,jninj .

Further, the perimeter of dS \ K, the edge of the crack set S outside K, admits the
following description, similar in principle to the expression of the elastic energy release
rate given in definition 8.2:

Hn−2(dS \K) = sup

{
∫

S

divtanη dHn−1(x) : η ∈ V(K,S), ∀x ∈ X ‖η(x)‖ ≤ 1

}

.

By putting together this expression of the perimeter, with relation (7.1.6), we obtain
therefore the following proposition.

Proposition 8.3 If for any crack set L we have F (L;u0) = GHn−1(L) then for any
absolute minimal state (u, S) ∈ Absmin(u0,K) such that S \K 6= ∅ we have

| ER(u, S) | (Ω) = CF (u, S)(Ω) .

At this point let us remark that for a general equilibrium state in three dimensions
(u, S) ∈ Eq(u0,K) there is no obvious connection between the energy release rate
| ER(u, S) |, as in definition 8.2, ant the elastic energy concentration CE(u, S), as in
definition 7.2.

The following theorem gives a relation between these two quantities.

Theorem 8.4 Let (u, S) ∈ Eq(u0,K) be an equilibrium state of the brittle body with
reference configuration Ω, and D ⊂ Ω an arbitrary open set. Then we have the following
inequality:

| ER(u, S) | (D) ≤ CE(u, S)(D) . (8.0.3)

Remark 8.5 For an arbitrary crack set L, we can’t a priori deduce from the EH the
existence of a displacement u′ with (u′, L) ∈ Adm(u0,K) and such that for any other
state (v, L) ∈ Adm(u0,K) we have

∫

Ω
w(∇u′) dx ≤

∫

Ω
w(∇v) dx .

From the mechanical point of view such an assumption is natural. There are mathemat-
ical results which supports this hypothesis, but as far as I know, not with the regularity
needed in this paper. Fortunately, we shall not need to make such an assumption in
order to prove theorem 8.4.
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Proof. (First part) Let us consider an arbitrary vector field η ∈ V(K,S), with com-
pact support in D, such that for any x ∈ Ω we have ‖η(x)‖ ≤ 1.

In order to prove the theorem it is enough to show that

ER(u, S)(η) ≤ CE(u, S)(D) . (8.0.4)

Indeed, suppose (8.0.4) is true for any vector field η ∈ V(K,S), with compact support
in D, such that for any x ∈ Ω we have ‖η(x)‖ ≤ 1. Then, by taking the supremum with
respect to all such vector fields η and using definition 8.2, we get the desired relation
(8.0.3).

The inequality (8.0.4) is a consequence of proposition 8.6 and relation (8.0.9), which
are of independent interest. We shall resume the proof of theorem 8.4, by giving the
proof of the inequality (8.0.4), after we prove the before mentioned results. �

Let φt be the one parameter flow generated by the vector field η. We can always
find a curvilinear coordinate system (α1, ..., αn−1, γ) in the open set D such that:

- on the part of the edge dS ∩ supp η of the crack set S we have γ = 0 ,

- the surface γ = t (constant) is the boundary of an open set Bt such that

φt(S) \ S ⊂ Bt ⊂ supp η ⊂ D ,

- there exists T > 0 such that for all t ∈ [0, T ] we have

Bt ⊂ B(dS ∩D, t) ∩D , (8.0.5)

where B(dS ∩D, t) is the tubular neighbourhood of dS ∩D, of radius t.
Consider also the one parameter flow ψt, t ≥ 0, which is equal to identity outside

the open set D and, in curvilinear coordinates just introduced, it has the expression

ψt(x(αi, γ)) = x(αi, t+ γ) .

Notice that ψt(Ω) = Ω \ Bt. We shall use these notations for proving that the elastic
energy concentration is a kind of energy release rate, after the following result.

Proposition 8.6 With the notations made before, we have:

lim
t→0

1

t

(

∫

Ω\Bt

w(∇u) dx−
∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx

)

= 0 . (8.0.6)
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Proof. Recalling that ψt(Ω) = Ω \ Bt, we use the change of variables x = ψt(y) to
prove that (8.0.6) is equivalent with

lim
t→0

1

t

(
∫

Ω

(

w(∇u(y)(∇ψt)
−1(y)) − w((∇u)(ψt(y))

)

det∇ψt(y) dy

)

= 0 .

The previous relation is just

d

dt |t=0

∫

Ω

(

w(∇u(y)(∇ψt)
−1(y)) − w((∇u)(ψt(y))

)

det∇ψt(y) dy = 0 . (8.0.7)

We shall prove this from (u, S) ∈ Eq(u0,K) and from an approximation argument.
Notations from subsection 7.1 will be in use.

Denote by ω the vector field which generates the one parameter flow ψt. Let us
compute, using integration by parts:

d

dt |t=0

∫

Ω

(

w(∇u(y)(∇ψt)
−1(y)) − w((∇u)(ψt(y)))

)

det∇ψt(y) dy =

=

∫

Ω
(σijui,jkωk + σijui,kωk,j) dy . (8.0.8)

For any γ > 0, sufficiently small, choose a smooth scalar function fγ : Ω → [0, 1],
such that:

(a) fγ(x) = 0 for all x ∈ Bγ , fγ(x) = 1 for all x ∈ Ω \B2γ ,

(b) as γ goes to 0 we have:

lim
γ→0

∫

Ω
fγ (σijui,jkωk + σijui,kωk,j) dy =

∫

Ω
(σijui,jkωk + σijui,kωk,j) dy ,

lim
γ→0

∫

Ω
f

γ
,jσijui,kωk dy = 0 .

For all sufficiently small γ > 0 it is true that:
∫

Ω

(

σijui,jkω
γ
k + σijui,kω

γ
k,j

)

dy =

=

∫

Ω

(

fγ (σijui,jkωk + σijui,kωk,j) + f
γ
,jσijui,kωk

)

dy .

Thus, from (a), (b) above we get the equality:

lim
γ→0

∫

Ω

(

σijui,jkω
γ
k + σijui,kω

γ
k,j

)

dy =

∫

Ω
(σijui,jkωk + σijui,kωk,j) dy .

Recall that (u, S) is an equilibrium state, therefore the stress field σ = σ(∇u) has
divergence equal to 0. Integration by parts shows that for any sufficiently small γ > 0
we have:

∫

Ω

(

σijui,jkω
γ
k + σijui,kω

γ
k,j

)

dy =

∫

Ω
−σij,j

(

ui,kω
γ
k

)

dy = 0 .
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We obtained therefore the relation:
∫

Ω
(σijui,jkωk + σijui,kωk,j) dy = 0 .

This is equivalent to relation (8.0.7), by computation (8.0.8). �

A straightforward consequence of (8.0.6) is that the elastic energy concentration is
related to a kind of configurational energy release rate. Namely, we see that

lim sup
t→0

1

t

∫

Bt

w(∇u) dx =

= lim sup
t→0

1

t

(

∫

Ω
w(∇u) dx−

∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx

)

. (8.0.9)

We turn back to the proof of theorem 8.0.3. Recall that what it is left to prove is
relation (8.0.4).

Proof of (8.0.4). By construction, for all sufficiently small t > 0 we have:

1

t

∫

B(dS,t)∩D

w(∇u) dx ≥ 1

t

∫

Bt

w(∇u) dx .

because Bt ⊂ B(dS, t) ∩D. We write the right hand side member of this inequality as
a sum of three terms:

1

t

∫

Bt

w(∇u) dx =

=
1

t

(
∫

Ω
w(∇u) dx−

∫

Ω
w(∇(u ◦ φ−1

t )) dx

)

+

+
1

t

(

∫

Ω
w(∇(u ◦ φ−1

t )) dx−
∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx

)

+

+
1

t

(

∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx−

∫

Ω\Bt

w(∇(u)) dx

)

.

As t goes to 0, the first term converges to EC(u, S)(η) and the third term converges
to 0 by proposition 8.6. We want to show that

lim
t→0

1

t

(

∫

Ω
w(∇(u ◦ φ−1

t )) dx−
∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx

)

= 0 . (8.0.10)

The proof of this limit is identical with the proof of proposition 8.6. Indeed, in that
proof we worked with the one parameter flow ψt generated by the vector field ω. This
one parameter flow is a semigroup (with respect to composition of functions), but after
inspection of the proof it can be seen that we only used the following: for any x ∈ Ω\S

lim
t→0

ψt(x) = x and
d

dt |t=0
ψt(x) = ω(x) .
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Therefore we can modify the proof of proposition 8.6 by considering, instead of ψt, the
diffeomorphisms λt defined by:

λt = ψt ◦ φ−1
t .

The rest of the proof goes exactly as before, thus leading us to relation (8.0.10).
Eventually, we have:

CE(u, S)(D) = lim sup
t→0

1

t

∫

B(dS,t)∩D

w(∇u) dx ≥

≥ lim sup
t→0

1

t

∫

B(dS,t)∩D

w(∇u) dx = ES(u, S)(η) +

+ lim
t→0

1

t

(

∫

Ω
w(∇(u ◦ φ−1

t )) dx−
∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx

)

+

+ lim
t→0

1

t

(

∫

Ω\Bt

w(∇(u ◦ ψ−1
t )) dx−

∫

Ω\Bt

w(∇(u)) dx

)

= ES(u, S)(η)

and (8.0.4) is therefore proven. �

9 A constraint on some minimal solutions

Let us consider now a solution of the model of brittle crack propagation described in
section 5. More precisely, for given boundary conditions u0(t) and initial crack set K,
we shall call a solution (u(t), St) ∈ Eq(u0(t), St) of the model described by axioms
(A1),..., (A5), by the name ”equilibrium solution”. Likewise, a solution (u(t), St) ∈
Absmin(u0(t), St) of the model described by axioms (A1),(A2),(A3’),(A4), will be
called a ”minimal solution”.

We shall deal with a minimal solution (u(t), St) ∈ Absmin(u0(t), St) for which the
crack set St propagates smoothly, without topological changes. Namely we shall suppose
that there exists a vector field η with compact support in Ω, such that for all t ∈ [0, T ]
we have St = φt(K), where φt is the one parameter flow generated by η.

Because the problem is quasistatic, time enters only as a parameter, therefore we
may suppose moreover that for all x ∈ Ω we have η(x) ≤ 1.

At each moment t ∈ [0, T ] we shall have η ◦ φt ∈ V(K,St).

Theorem 9.1 Suppose that for any crack set L and boundary displacement u0 the
surface energy has the expression:

F (S;u0) = GHn−1(S) .

Let (u(t), St) ∈ Absmin(u0(t), St) be a minimal solution, with S0 = K, such that exists
a vector field η with ‖η(x)‖ ≤ 1 for all x ∈ Ω and for all t ∈ [0, T ] we have St = φt(K),
where φt is the one parameter flow generated by η.
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Then for any t ∈ [0, T ] and any open set D ⊂ Ω we have the equalities:

| ER(u(t), φt(S)) | (D) = EC(u(t), φt(S))(D) =

= CF (φt(S);u0(t))(D) = GHn−2(dS \K) . (9.0.1)

Proof. Theorems 8.4 and 7.3 tell us that for any open setD ⊂ Ω, and for any t ∈ [0, T ]
we have

| ER(u(t), φt(S)) | (D) ≤ EC(u(t), φt(S))(D) ≤ CF (φt(S);u0(t))(D) .

Proposition 8.3 tells that

CF (φt(S);u0(t))(Ω) = | ER(u(t), φt(S)) | (Ω) .

We deduce that for any open set D ⊂ Ω, and for any t ∈ [0, T ] the string of equalities
(9.0.1) is true. �

This result is natural in two dimensional linear elasticity. Nevertheless, in the
case of three dimensional elasticity, the constraints on the elastic energy concentration
provided by theorem 9.1 might be too hard to satisfy.

Indeed, from (9.0.1) we deduce that in particular the elastic energy concentration
has to be absolutely continuous with respect to the perimeter measure of the edge of
the crack.

10 Conclusions

We have proposed a general model of brittle crack propagation based on Mumford-Shah
functionals. We have defined equilibrium and absolute minimal solutions of the model.

By a combination of analytical and configurational analysis, we defined measures
of energy release rate and energy concentrations for equilibrium and absolute minimal
solutions and we have shown that there is a difference between such solutions, as shown
mainly by theorems 7.3, 8.4 and 9.1.
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Abstract

We want to understand he concentration of damage in microfractured elastic
media. Due to the different scallings of the volume and area (or area and length in
two dimensions) the traditional method of homogenization using periodic arrays of
cells seems to fail when applied to the Mumford-Shah functional and to periodically
fractured domains.

In the present paper we are departing from traditional homogenization. The
main result implies the use of Mumford-Shah energies and leads to an explanation
of the observed concentration of damage in microfractured elastic bodies.

1 Introduction

A new direction of research in brittle fracture mechanics begins with the article of
Mumford & Shah [15] regarding the problem of image segmentation. This problem,
which consists in finding the set of edges of a picture and constructing a smoothed
version of that picture, it turns to be intimately related to the problem of brittle crack
evolution. In the before mentioned article Mumford and Shah propose the following
variational approach to the problem of image segmentation: let g : Ω ⊂ R

2 → [0, 1] be
the original picture, given as a distribution of grey levels (1 is white and 0 is black), let
u : Ω → R be the smoothed picture and K be the set of edges. K represents the set
where u has jumps, i.e. u ∈ C1(Ω \K,R). The pair formed by the smoothed picture u

and the set of edges K minimizes then the functional:

I(u,K) =

∫

Ω
α | ∇u |2 dx +

∫

Ω
β | u − g |2 dx + γH1(K) .

The parameter α controls the smoothness of the new picture u, β controls the L2

distance between the smoothed picture and the original one and γ controls the total
length of the edges given by this variational method. The authors remark that for β = 0
the functional I might be useful for an energetic treatment of fracture mechanics.
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An energetic approach to fracture mechanics is naturally suited to explain brittle
crack appearance under imposed boundary displacements. The idea is presented in the
followings.

The state of a brittle body is described by a pair displacement-crack. (u,K) is such
a pair if K is a crack — seen as a surface — which appears in the body and u is a
displacement of the broken body under the imposed boundary displacement, i.e. u is
continuous in the exterior of the surface K and u equals the imposed displacement u0

on the exterior boundary of the body.
Let us suppose that the total energy of the body is a Mumford-Shah functional of

the form:

E(u,K) =

∫

Ω
w(∇u) dx + F (u0,K) .

The first term of the functional E represents the elastic energy of the body with the
displacement u. The second term represents the energy consumed to produce the crack
K in the body, with the boundary displacement u0 as parameter. Then the crack that
appears is supposed to be the second term of the pair (u,K) which minimizes the total
energy E.

Models for brittle damage, based on functionals of the Mumford-Shah type have
have been proposed by Francfort-Marigo [11], Buliga [6], among others. Such models
have been studied intensively from the mathematical point of view, espacially by the
Italian school of geometric measure theory, to name a few: De Giorgi, Ambrosio, Dal
Maso, Buttazzo.

The first homogenization result, concerning the Mumford-Shah functional, seems
to be Braides, Defranceschi, Vitali [5]. In this paper it is done the homogenization of
a Mumford-Shah functional of the form:

∫

Ω
f

(x

ε
,∇u

)

d +

∫

Su

g
(x

ε
, (u+ − u− ⊗ νu

)

dHn−1 .

The paper Focardi, Gelli [14] (and the references therein) are part of another line of
research which might be relevant for this paper: homogenization of perforated domains.

In the present paper we are departing from traditional homogenization. The line of
research concerning perforated domains is close to our problem, but for various reasons
the results from perforated domains don’t apply here.

We want to understand he concentration of damage in microfractured elastic media.
Due to the different scallings of the volume and area (or area and length in two dimen-
sions) the traditional method of homogenization using periodic arrays of cells seems
to fail when applied to the Mumford-Shah functional and to periodically fractured
domains.

The main result, theorem 4.2, implies the use of Mumford-Shah energies and leads
to an explanation of the observed concentration of damage in microfractured elastic
bodies.

Instead of performing a homogenization of the total energy of the microfractured
body and then study the minimizers of the homogenized energy, we proceed along a
different path. We study sequences of problems on fractured elastic bodies, indexed by
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a scale parameter ε. Each such problem has (at least approximative) solutions. We
find estimates of the area of the damaged region in terms of the scale ε.

2 Notations

Let Ω be a bounded, open subset of R
2, with locally Lipschitz boundary. We denote

by Y = [0, 1]2 the unit closed square in R
2.

For a given ε > 0 let Zε ⊂ R
2 be the lattice of points in R

2 with coordinates of the
form (εm, εn), for all m,n ∈ Z.

We denote by Z(ε,Ω) ⊂ Zε the set of all z ∈ Zε such that

z + εY ⊂ Ω .

To any z ∈ Z(ε,Ω) we associate the cell

Dz = z + εY ⊂ Ω .

The set Z(ε,Ω) is finite for any ε > 0. We denote the cardinal of this set by N(ε)
and we notice that as ε goes to 0 we have

lim
ε→0

N(ε)ε2

A(Ω)
= 1 ,

where A(Ω) denotes the area of Ω. Thus for small ε the number of cells N(ε) is
approximately equal to A(Ω)/ε2.

3 The model

We take Ω to be the configuration set of a microfractured linear elastic body. We
explain further what we mean by this.

The elastic properties of the body are described by an elastic potential

w : M2×2
sym(R) → R .

We suppose that the function w is quadratic and strictly positive definite.
For a given displacement u : Ω → R

2, the elastic energy of the body is given by
∫

Ω
w(e(u)) dx ,

where e(u) is the deformation of the displacement u, that is the symmetric part of the
gradient of u: for any x ∈ Ω

e(u)(x) =
1

2

(

∇u(x) + (∇u)T (x)
)

.

For a fixed ε > 0 we suppose that the body contains a distribution of micro-fractures
at the scale ε, seen as a union of (Lipschitz) curves

Fε =
⋃

z∈Z(ε,Ω)

(z + εFz) ,

3



where for each z ∈ Z(ε,Ω) the (Lipschitz) curve Fz lies inside the unit cell Y :

Fz ⊂ (0, 1)2 .

We explain further what we mean by an imposed boundary displacement u0, and
what we mean by u = u0 on the boundary of Ω.

We consider, for simplicity, that u0 : ∂Ω → R
n is a continuous and therefore

bounded function. Then, for any u ∈ SBD(Ω), u = u0 if the approximate limit of u
equals u0 in any point of ∂Ω where the first exists, i.e.: for all x ∈ ∂Ω, if there exists
v(x) such that

lim
ρ→O+

∫

Bρ(x)∩Ω | u(y) − v(x) | dy

| Bρ(x) ∩ Ω | = 0

then v(x) = u0(x).

Definition 3.1 The class of admissible displacements with respect to the distribution
of cracks Fε and with respect to the imposed displacement u0 is defined as the collection
of all u ∈ SBD(Ω) such that

(a) u = u0 on ∂Ω,

(b) Fε ⊂ Su.

This class of admissible displacements is denoted by Adm(Fε,u0).

This definition deserves an explanation. An admissible displacement u is a function
which has to be equal to the imposed displacement on the boundary of Ω (condition
(a)). Any such function u is a special function with bounded deformation, that is a
reasonably smooth function on the set Ω\Su and the function u is allowed to have jumps
along the set Su. For the technical details see the Appendix. We have to think about Su

as being a collection of curves, with finite length. Physically the set Su represents the
collection of all cracks in the body under the displacement u. The condition (b) tells
us that the collection of all cracks associated to an admissible displacement u contains
Fε, at least.

Definition 3.2 With the notations from definition 3.1, the total energy of an admis-
sible displacement u ∈ Adm(Fε,u0) is given by

Eε(u) =

∫

Ω
w(e(u)) dx + GH1(Su \ Fε) .

The energy of an admissible displacement is of Mumford-Shah type. It contains
two terms.

The first term measures the elastic energy of the body under the displacement u.
Notice that in the expression of the elastic energy we have integrated over the whole
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domain Ω. This is simply because the collection of cracks associated to u (that is the
set Su) has Lebesque measure 0, therefore we have

∫

Ω
w(e(u)) dx =

∫

Ω\Su

w(e(u)) dx .

In physical terms, the right hand side expression would make more sense than the left
hand side, but from the mathematical point of view they are the same. This is not
meaning that the elastic energy neglects the fractures. Indeed, further we shall infimize
the energy Eε over the whole set of admissible displacements. According to condition
(b) of definition 3.1, this set is defined with respect to the collection of cracks Fε,
therefore the infimum of the energy Eε depends on the set of cracks Fε.

The second term of the Mumford-Shah energy measures the surface energy caused
by the apparition of new cracks. The collection of new cracks is the set Su \ Fε. The
constant G has the dimension of energy per unit area, and it is physically related to
the Griffith constant.

In [4] has been proven that functionals like Eε are L1 inferior semi-continuous
and coercive, hence on closed subspaces V of SBD(Ω) the functional Eε has a mini-
mizer. Such a closed subspace of SBD(Ω) is the space of all admissible displacements
Adm(Fε,u0). Therefore we have:

Theorem 3.3 On the space Adm(Fε,u0) we consider the topology given by the con-
vergence: uh → u if

{

uh L2 → u ,

Hn−1(Suh
∆Su) → 0 .

Then there exists a minimizer of the functional Eε over the set Adm(Fε,u0).

In the following section we shall use approximate minimizers.

Definition 3.4 For a given δ > 0, a function u ∈ Adm(Fε,u0) is a δ-approximate
minimizer if

Eε(u) ≤ δ + inf {Eε(v) : v ∈ Adm(Fε,u0)} .

For fixed δ > 0, we model an approximate displacement of a microfractured body
as a sequence of displacements uε, with ε converging to 0, such that for each ε > 0 the
displacement uε ∈ Adm(Fε,u0) is a δ-approximate minimizer of the Mumford-Shah
energy Eε, over the set Adm(Fε,u0).

Notice that in the model, at this stage, there is no relation between the crack sets
Fε, Fε′ , for two different scales ε, ε′.

4 An estimate related to damage concentration

For fixed ε, δ > 0, given Fε and imposed boundary displacement u0, let u ∈ Adm(Fε,u0)
be a δ-approximate minimizer of the Mumford-Shah energy Eε.
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In this section we want to estimate the number of ε-cells z + εY , z ∈ Z(ε,Ω), where
the initial cracks z + εFz propagated.

Let l > 0 be a given length.

Definition 4.1 For any cell Dz = z + εY , z ∈ Z(ε,Ω), and any δ-approximate mini-
mizer u we define the emergent crack in the cell Dz by

Su(z) = (z + εY ) ∩ (Su \ (z + εFz)) .

A cell Dz is called active if the length of the emergent crack is greater than εl, that is:

H1(Su(z)) ≥ εl .

We denote by M(ε, l) the number of active cells. (In this notation we don’t mention
the dependence of M(ε, l) on the δ-approximate minimizer u.)

Theorem 4.2 Suppose that for fixed δ > 0, the crack sets Fε are chosen so that there
exists an approximate displacement of a microfractured body uε, with ε converging to
0, with the property that the sequence

inf {Eε(v) : v ∈ Adm(Fε,u0)}

is bounded.
Then the number of active cells M(ε, l) is of order 1/ε and the area of the damaged

region of the body

Damaged(ε,Ω) =
⋃

Dz active

Dz

is of order ε.

Proof. Let M > 0 such that for all ε > 0 we have

inf {Eε(v) : v ∈ Adm(Fε,u0)} ≤ M .

According to definition 3.4, for any ε > 0 we have

Eε(uε) =

∫

Ω
w(e(uε)) dx + GH1 (Suε \ Fε) ≤

≤ δ + inf {Eε(v) : v ∈ Adm(Fε,u0)} ≤ δ + M .

From definition 4.1 we get the following estimate:

H1 (Suε \ Fε) =
∑

z∈Z(ε,Ω)

H1 (Su(z))) ≥ M(ε, l) l ε .

We have therefore

G M(ε, l) l ε ≤ GH1 (Suε \ Fε) ≤ Eε(uε) ≤ M + δ .
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All in all we have obtained the estimate:

M(ε, l) ≤ 1

ε

M + δ

Gl
.

The area of the damaged region of the body is

Area(Damaged(ε,Ω)) =
∑

Dz active

Area(Dz) = ε2M(ε, l) ≤ ε
M + δ

Gl
.

The proof is done. �

5 Conclusions

The theorem implies that the area of the damaged region is much smaller than the total
area of the body, as ε goes to zero. In this model the use of Mumford-Shah energies
leads to an explanation of the observed concentration of damage in microfractured
elastic bodies.

Notice that we need more precise estimates in order to prove that the damaged
region (at the scale ε) converges, as ε goes to zero, to a curve with finite length. All we
know at this moment is that the area of the damaged region goes to zero as the scale
parameter ε.

In experiments it has been observed that the damaged region is approximately
straight. It is possible that Mumford-Shah energies might explain this, since geometries
of the active crack set, that is Su \Fε, close to a straight line would be preferred by the
energy Eε. See [7] for examples that in some situations the leading term of a Mumford-
Shah energy is the one accounting for the length of the crack, and not the elastic energy
part.

Finally, in theorem 4.2 we obtained an estimate of the number of cells where cracks
of length at least ε l appear. It would be interested to study the interplay between ε

and l in this estimate.

6 Appendix.Functions with bounded variation or defor-

mation

This section is dedicated to a brief voyage trough the spaces SBV and SBD.
The space SBV(Ω, Rn) of special functions with bounded variation was introduced

by De Giorgi and Ambrosio in the study of a class of free discontinuity problems ([9], [1],
[2]). For any function u ∈ L1(Ω, Rn) let us denote by Du the distributional derivative
of u seen as a vector measure. The variation of Du is a scalar measure defined like
this: for any Borel measurable subset B of Ω the variation of Du over B is

| Du | (B) = sup

{

∞
∑

i=1

| Du(Ai) | : ∪∞
i=1 Ai ⊂ B , Ai ∩ Aj = ∅ ∀i 6= j

}

.
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A function u has bounded variation if the total variation of Du is finite. We send the
reader to the book of Evans & Gariepy [13] for basic properties of such functions.

The space SBV(Ω, Rn) is defined as follows:

SBV(Ω, Rn) =
{

u ∈ L1(Ω, Rn) : | Du | (Ω) < +∞ , | Dsu | (Ω \ Su) = 0
}

.

The Lebesgue set of u is the set of points where u has approximate limit. The com-
plementary set is a Ln negligible set denoted by Su. If u is a special function with
bounded variation then Su is also σ (i.e. countably) rectifiable.

From the Calderon & Zygmund [8] decomposition theorem we obtain the following
expression of Du, the distributional derivative of u ∈ SBV(Ω, Rn), seen as a measure:

Du = ∇u(x) dx + [u] ⊗ n dHn−1
|K

.

We shall use further the notation µ ≪ λ if the measure µ is absolutely continuous
with respect to the measure λ.

Let us define the following Sobolev space associated to the crack set K (see [3]):

W
1,2
K =

{

u ∈ SBV(Ω, Rn) :

∫

Ω
| ∇u |2 dx +

∫

K

[u]2 dHn−1 < +∞ , | Dsu |≪ Hn−1
|K

}

.

It has been proved in [10] the following equality:

W 1,2(Ω \ K, Rn) ∩ L∞(Ω, Rn) = W
1,2
K (Ω, Rn) ∩ L∞(Ω, Rn) . (6.0.1)

A similar description can be made for the space of special functions with bounded
deformation SBD(Ω) can be found in [4]. For any function u ∈ L1(Ω, Rn) we denote by
Eu the symmetric part of the distributional derivative of u, seen as a vector measure.
We denote also by Ju the subset of Ω where u has different approximate limits with
respect to a point-dependent direction. The difference between Su and Ju is subtle.
Let us quote only the fact that for a function u ∈ SBV(Ω, Rn) the difference of these
sets is Hn−1-negligible.

The definition of SBD(Ω) is the following:

SBD(Ω, Rn) =
{

u ∈ L1(Ω, Rn) : | Eu | (Ω) < +∞ , | Esu | (Ω \ Ju) = 0
}

.

If u is a special function with bounded deformation then Ju is countably rectifiable.
We have a decomposition theorem for SBD functions, similar to Calderon & Zygmund
result applied for SBV functions. The decomposition theorem is due to Belletini,
Coscia & Dal Maso [4] and asserts that

Eu = ǫ(u)(x) dx + [u] ⊙ n dHn−1
|Ju

.

Here ⊙ means the symmetric part of tensor product and ǫ(u) is the approximate sym-
metric gradient, hence the approximate limit of the symmetric part of the gradient of
u.

We sum up the main facts about functions with bounded variation or deformation,
in the following three theorems.
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Theorem 6.1 Let u ∈ L1(Ω, Rm). Then

- (De Giorgi) If u ∈ BV(Ω, Rm) then Su is countably rectifiable, Hn−1(Su \Ju) =
0 and in Hn−1-almost every point x ∈ Su exists the approximate limits of u in
the directions ν(x) and −ν(x) where ν(x) is the normal to Su in x.

- (Kohn, Ambrosio, Coscia, Dal Maso) Let m = n and u ∈ BD(Ω). Let Θu be the
Kohn set :

Θu =

{

x ∈ Ω : lim sup
ρ→0+

| Eu | (Bρ(x))

ρn−1
> 0

}

Then Θu is countably rectifiable , Ju ⊆ Θu and Hn−1(Θu \ Ju) = 0 .

Theorem 6.2 Let u ∈ L1(Ω, Rm). Then

- (Calderon, Zygmund) If u ∈ BV(Ω, Rm) then u is approximately differentiable
Ln-a.e. in Ω. The approximate differential map x 7→ ∇u(x) is integrable. Du
splits into three mutually singular measures on Ω

Du = ∇u dx + [u] ⊗ νHn−1
|Su

+ Cu

where [u] is the jump of u in respect with the normal direction on Su ν. Cu is the
Cantor part of Du defined by Cu(A) = Dsu(A \ Su) where Dsu is the singular
part of Du in respect to Ln.

- (Belletini, Coscia, Dal Maso) Let m = n and u ∈ BD(Ω). Then u has symmetric
approximate differential ǫ(u) Ln-a.e. in Ω and Eu splits into three mutually
singular measures on Ω

Eu = ǫ(u) dx + [u] ⊙ νHn−1
|Ju

+ Ecu

Moreover u is approximately differentiable Ln-a.e. in Ω.

Theorem 6.3 The following are true:

- W 1,1(Ω, Rm) ⊂ BV(Ω, Rm). The inclusion is continuous in respect with the
Banach space topologies. If

u ∈ SBV(Ω, Rm)

then
u ∈ W 1,1(Ω \ Su, Rm)

Moreover if u ∈ W 1,1(Ω \K, Rm) ∩ L∞(Ω, Rm) , where K is a closed , countably
rectifiable set with Hn−1(K) < +∞, then u ∈ SBV(Ω, Rm) and Hn−1(K \Su) =
0.

- Let LE1(Ω) be the Banach space of L1(Ω, Rn) functions with L1 symmetric dif-
ferential. If u ∈ SBD(Ω) then u ∈ LE1(Ω \ Ju). Let K be a closed , count-
ably rectifiable set with Hn−1(K) < +∞. If u ∈ LE1(Ω \ K) ∩ L∞(Ω, Rn) then
u ∈ SBD(Ω) and Hn−1(K \ Ju) = 0.

9
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Abstract

Based on an extension of Fenchel inequality, bipotentials are non smooth me-
chanics tools, used to model various non associative multivalued constitutive laws
of dissipative materials (friction contact, soils, cyclic plasticity of metals, damage).

Let X , Y be dual locally convex spaces, with duality product 〈·, ·〉 : X×Y → R.
Given the graph M ⊂ X × Y of a multivalued law T : X → 2Y , we state a simple
necessary and sufficient condition for the existence of a bipotential b for which M
is the set of (x, y) such that b(x, y) = 〈x, y〉.

If this condition is fulfilled, we use convex lagrangian covers in order to construct
such a bipotential, generalizing a theorem due to Rockafellar, which states that a
multivalued constitutive law admits a superpotential if and only if its graph is
cyclically monotone.

1 Introduction

The basic tools of the mechanics of continua are the kinematical compatibility and
equilibrium local equations but they are not sufficient to describe the deformation and
motion of the continuous media. Additional information must be given through the
constitutive laws traducing the material behaviour. In its simplest form, a constitutive
law is given by a graph collecting couples of dual variables resulting from experimental
testing.

For many physically relevant situations, the constitutive laws are multivalued, but
also associated. The graph of the constitutive law is included in the graph of the
subdifferential of a convex (and lower semi continuous) superpotential φ. The con-
stitutive law takes the form of a differential inclusion, y ∈ ∂φ(x). Any superpoten-
tial φ has a polar function φ∗ satisfying a fundamental relation, Fenchel’s inequality,
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‡Laboratoire de Mécanique des Solides, UMR 6610, UFR SFA-SP2MI, bd M. et P. Curie, téléport
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∀x, y, φ(x)+φ∗(y) ≥ 〈x, y〉. The constitutive law may be also written as x ∈ ∂φ∗(y). In
the literature, this kind of materials are often called standard materials or generalized
standard materials [12].

From the viewpoint of applications it is important to know whether there exists a
superpotential for a given non smooth graph and how to construct it. The answer to
this question is provided by a famous theorem due to Rockafellar [20] that ensures a
graph admits a superpotential if and only if it is maximal cyclically monotone.

However, some of the constitutive laws are non-associated. They cannot be cast
in the mould of the standard materials. To skirt this pitfall, a possible response,
proposed first in [21], consists in constructing a function b of two variables, bi-convex
and satisfying an inequality generalizing Fenchel’s one, ∀x, y, b(x, y) ≥ 〈x, y〉. We
call it a bipotential. Physically, it represents the dissipation. In the case of associated
constitutive laws the bipotential has the expression b(x, y) = φ(x) + φ∗(y).

As for the non associated constitutive laws which can be expressed with the help
of bipotentials, they have the form of an implicit relation between dual variables,
y ∈ ∂b(·, y)(x). In Mechanics they are called implicit, or weak, normality rules. The
applications of bipotentials to Solid Mechanics are various: Coulomb’s friction law [22] ,
non-associated Drücker-Prager [23] and Cam-Clay models [24] in Soil Mechanics, cyclic
Plasticity ([22],[3]) and Viscoplasticity [16] of metals with non linear kinematical hard-
ening rule, Lemaitre’s damage law [2], the coaxial laws ([8],[30]). Such kind of materials
are called implicit standard materials. A synthetic review of these laws expressed in
terms of bipotentials can be found in [8] and [30].

The use of bipotentials in applications is particularly attractive in numerical sim-
ulations when using the finite element method, but the interest is not limited to this
aspects. For instance, the bound theorems of the limit analysis ([26], [6]) and the plas-
tic shakedown theory ([28], [8], [7], [4]) can be reformulated in a broader framework,
precisely by means of weak normality rules. From an applied numerical viewpoint, the
bipotential method suggests new algorithms, fast but robust, as well as variational error
estimators assessing the accurateness of the finite element mesh ([14], [15], [25], [27],
[5], [17], [18]). Applications to the contact Mechanics [9], the Dynamics of granular
materials ([10], [11], [13][29]), the cyclic Plasticity of metals [25] and the Plasticity of
soils ([1], [17]) illustrate the relevancy of this approach.

In all the papers already mentioned about the mechanical applications, bipotentials
for certain multivalued constitutive laws were constructed. Nevertheless, in order to
better understand the bipotential approach, one has to solve the following problems:

1) (existence) what are the conditions to be satisfied by a multivalued law such that
it can be expressed with the help of a bipotential?

2) is there a procedure to construct a class of bipotentials for a multivalued law?
We expect that generically the law does not uniquely determine the bipotential.

We give a first mathematical treatment of these problems and we prove results of
existence (theorem 3.2) and construction (theorem 6.7) of bipotentials for a class of
graphs of multivaluate laws.

One of the key ideas is constructing the bipotential as an inferior envelope. That
could be considered as paradoxal because, in general, it is strongly unprobable that an
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inferior envelope, even of convex functions, would be convex. Nevertheless, we were
convinced of the relevancy of this approach by examples inspired from mechanics and
we wished to understand the reason. That led us to introduce the main tool of convex
lagrangian covers (Definition 4.1) satisfying an implicit convexity condition.

The recipe that we give in this paper applies only to BB-graphs (Definition 3.1)
admitting at least one convex lagrangian cover by maximal cyclically monotone graphs.
This is an interesting class of graph of multivalued laws for the following two reasons:

(a) it contains the class of graphs of subdifferentials of convex lsc superpotentials,

(b) any of the graphs of non associated laws from the mentioned mechanical appli-
cations of bipotentials is a BB-graph and it admits a physically relevant convex
lagrangian cover by cyclically monotone graphs.

Relating to point (b), it is important to know that the results from this paper don’t
apply to some BB-graphs of mechanical interest, such as the graph of the bipotential
associated to contact with friction [21]. This is because we use in this paper only convex
lagrangian covers with maximal cyclically monotone graphs, see also Remark 5.1.

This paper is only a first step into the subject of constructions of bipotentials. Our
aim is to explain a general method of construction in a reasonably simple situation,
interesting in itself, leaving aside for the moment certain difficulties appearing in the
general method. Another article, in preparation, is dedicated to the extension of the
method presented here to a more general class of BB-graphs, by relaxing the notion of
convex lagrangian cover. In this way we shall be able to construct bipotentials even for
some of the BB-graphs described in Remark 5.1.

Aknowledgements. The first author acknowledges partial support from the Ro-
manian Ministry of Education and Research, through the grant CEEX06-11-12/2006.
Part of this work has been done in 2005, when the first author has been invited at
the Laboratoire de Mécanique de Lille, UMR CNRS 8107, Université des Sciences et
Technologies de Lille.

The authors thanks E. Ernst for pointing out an error in a first version of the paper,
and for some examples related to Remarks 5.1 and 5.2. We thank also the anonymous
referee for comments and suggestions leading hopefully to a better paper.

2 Notations and Definitions

X and Y are topological, locally convex, real vector spaces of dual variables x ∈ X

and y ∈ Y , with the duality product 〈·, ·〉 : X × Y → R. We shall suppose that X,Y
have topologies compatible with the duality product, that is: any continuous linear
functional on X (resp. Y ) has the form x 7→ 〈x, y〉, for some y ∈ Y (resp. y 7→ 〈x, y〉,
for some x ∈ X).

For any convex and closed set A ⊂ X, its indicator function, χA, is defined by

χA(x) =

{

0 if x ∈ A

+∞ otherwise
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The indicator function is convex and lower semi continuous. If the set A contains only
one element A = {a} then we shall use the notation χa for the indicator function of A.

We use the notation: R̄ = R ∪ {+∞}.
Given a function φ : X → R̄, the polar φ∗ : Y → R̄ is defined by:

φ∗(y) = sup {〈y, x〉 − φ(x) | x ∈ X} .

The polar is always convex and lower semi continuous.
We denote by Γ(X) the class of convex and lower semicontinuous functions φ : X →

R̄. The class of convex and lower semicontinuous functions φ : X → R is denoted by
Γ0(X).

The subgradient of a function φ : X → R̄ in a point x ∈ X is the (possibly empty)
set:

∂φ(x) = {u ∈ Y | ∀z ∈ X 〈z − x, u〉 ≤ φ(z) − φ(x)} .

In a similar way is defined the subgradient of a function ψ : Y → R̄ in a point y ∈ Y ,
as the set:

∂ψ(y) = {v ∈ X | ∀w ∈ Y 〈v,w − y〉 ≤ ψ(w) − ψ(y)} .

With these notations we have the Fenchel inequality: let φ : X → R̄ be a convex
lower semicontinuous function. Then:

(i) for any x ∈ X, y ∈ Y we have φ(x) + φ∗(y) ≥ 〈x, y〉;

(ii) for any (x, y) ∈ X × Y we have the equivalences:

y ∈ ∂φ(x) ⇐⇒ x ∈ ∂φ∗(y) ⇐⇒ φ(x) + φ∗(y) = 〈x, y〉 .

Definition 2.1 We model the graph of a constitutive law by a set M ⊂ X × Y .
Equivalently, the law is given by the multivalued application

X ∋ x 7→ m(x) = {y ∈ Y | (x, y) ∈M} .

The dual law is the multivalued application

Y ∋ y 7→ m∗(y) = {x ∈ X | (x, y) ∈M} .

The domain of the law is the set dom(M) = {x ∈ X | m(x) 6= ∅}. The image of the
law is the set im(M) = {y ∈ Y | m∗(y) 6= ∅}.

For example, if φ : X → R is a convex lower semi continuous function, the associated
law is the multivalued application ∂φ, the subdifferential of φ, [19] Def. 10.1, that is
the set of subgradients.The dual law is ∂φ∗ (the subdifferential of the Legendre-Fenchel
dual of φ) and the graph of the law is the set

M(φ) = {(x, y) ∈ X × Y | φ(x) + φ∗(y) = 〈x, y〉} . (2.0.1)

For any convex lower semi continuous function φ the graph M(φ) is maximal cyclically
monotone ([20] Theorem 24.8. or [19] Proposition 12.2). Conversely, if M is closed and
maximal cyclically monotone then there is a convex, lower semicontinuous φ such that
M = M(φ).
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Definition 2.2 A bipotential is a function b : X × Y → R̄, with the properties:

(a) b is convex and lower semicontinuos in each argument;

(b) for any x ∈ X, y ∈ Y we have b(x, y) ≥ 〈x, y〉;

(c) for any (x, y) ∈ X × Y we have the equivalences:

y ∈ ∂b(·, y)(x) ⇐⇒ x ∈ ∂b(x, ·)(y) ⇐⇒ b(x, y) = 〈x, y〉 . (2.0.2)

The graph of b is

M(b) = {(x, y) ∈ X × Y | b(x, y) = 〈x, y〉} . (2.0.3)

Examples. (1.) (Separable bipotential) To any convex lower semicontinuous func-
tion φ we can associate the separable bipotential

b(x, y) = φ(x) + φ∗(y).

The bipotential b and the potential φ define the same law: M(b) = M(φ).
(2.) (Cauchy bipotential) Let X = Y be a Hilbert space and let the duality product

be equal to the scalar product. Then we define the Cauchy bipotential by the formula

b(x, y) = ‖x‖ ‖y‖.

Let us check the Definition (2.2) The point (a) is obviously satisfied. The point (b) is
true by the Cauchy-Schwarz-Bunyakovsky inequality. We have equality in the Cauchy-
Schwarz-Bunyakovsky inequality b(x, y) = 〈x, y〉 if and only if there is λ > 0 such that
y = λx or one of x and y vanishes. This is exactly the statement from the point (c),
for the function b under study.

Remark 2.3 The Cauchy bipotential is an ingredient in the construction of many bipo-
tentials of mechanical interest, because the (graph of the) law associated to b is the set
of pairs of collinear and with same orientation vectors. It can not be expressed by a
separable potential because M(b) is not a cyclically monotone graph. We shall apply
the results of this paper to the Cauchy bipotential, in order to show that we are able to
recover the expression of this bipotential from the graph of its associated law.

3 Existence of a bipotential

Given a non empty set M ⊂ X × Y , Theorem 3.2 provides a necessary and sufficient
condition on M for the existence of a bipotential b with M = M(b). In order to shorten
the notation we shall give a name to this condition:

Definition 3.1 The non empty set M ⊂ X×Y is a BB-graph (bi-convex, bi-closed)
if for all x ∈ dom(M) and for all y ∈ im(M) the sets m(x) and m∗(y) are convex
and closed.
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The existence problem is easily settled by the following result.

Theorem 3.2 Given a non empty set M ⊂ X × Y , there is a bipotential b such that
M = M(b) if and only if M is a BB-graph.

Proof. Let b be a bipotential such that M(b) is not void. We first want to prove that
for any x ∈ X and y ∈ Y the sets m(x) and m∗(y) are convex and closed.

Indeed, if m(x) or m(y) are empty or they contain only one element then there is
nothing to prove. Let us suppose, for example, that m(x) has more than one element.
From the convexity and lower semi continuity hypothesis on b from Definition 2.2, it
follows that m(x) is closed and convex. Indeed, remark that m(x) is a sub-level set for
a convex and lower semi continuous mapping:

m(x) = {y ∈ Y : b(x, y) − 〈x, y〉 ≤ 0} ,

thus a closed and convex set.
Let us consider now a non empty set M ⊂ X × Y such that for any x ∈ X and

y ∈ Y the sets m(x) and m∗(y) are convex and closed. We define then the function
b∞ : X × Y → R by:

b∞(x, y) =

{

〈x, y〉 if (x, y) ∈M
+∞ otherwise

We have to prove that b∞ is a bipotential and that M = M(b∞). This last claim is
trivial, so let us check the points from the Definition 2.2. For the point (a) notice that
for any fixed x ∈ X the function b∞(x, ·) is the sum of a linear continuous function
with the indicator function of m(x). By hypothesis the set m(x) is closed and convex,
therefore its indicator function is convex and lower semicontinuous. It follows that the
function b∞(x, ·) is convex and lower semi continuous. In the same way we prove that
for any fixed y ∈ Y the function b∞(·, y) is convex and lower semi continuous. The
points (b) and (c) are trivial by the Definition of the function b∞. �

Remark 3.3 The uniqueness of b is not true. For example, in the case of the Cauchy
bipotential we have two different bipotentials b and b∞ with the same graph. Therefore
the graph of the law alone is not sufficient to uniquely define the bipotential.

4 Construction of a bipotential

Theorem 3.2 does not give a satisfying bipotential for a given multivalued constitutive
law, because the bipotential b∞ is definitely not interesting for applications.

The most important conclusion of preceding section is contained in the Remark
3.3: in the hypothesis of Theorem 3.2, the graph of the law is not sufficient to uniquely
construct an associated bipotential. This is in contrast with the case of a maximal
cyclically monotone graph M , when by Rockafellar theorem ([20] Theorem 24.8.) we

6



have a method to reconstruct unambigously the associated separable bipotential (see
point (a) below).

In our opinion this is the main reason why the bipotentials are not more often used
in applications. Without a recipe for constructing the bipotential associated with (the
experimental data contained in) the graph of a non associated mechanical law, there is
little chance that one may guess a correct expression for this bipotential.

We are looking for a method of construction of a bipotential with the following
properties:

(a) if the graph M ⊂ X × Y is maximal cyclically monotone then the constructed
bipotential is separable (see Example (1.)),

(b) the method applied to the graph associated to the Cauchy bipotential allows to
reconstruct the named bipotential (as mentioned in Remark 2.3, this bipotential
appears in many applications),

(c) the method should use only hypothesis related to the graph M ⊂ X × Y .

Relating to point (c), we noticed that in all applications we were able to reconstruct
the bipotentials by knowing a little more than the graph M ⊂ X × Y , namely a
decomposition:

M =
⋃

λ∈Λ

Mλ .

We have to mention that in all applications this decomposition stems out from physical
considerations.

Thus we were led to the introduction of convex lagrangian covers.

Definition 4.1 Let M ⊂ X × Y be a non empty set. A convex lagrangian cover
of M is a function λ ∈ Λ 7→ φλ from Λ with values in the set Γ(X), with the properties:

(a) The set Λ is a non empty compact topological space,

(b) Let f : Λ ×X × Y → R̄ be the function defined by

f(λ, x, y) = φλ(x) + φ∗λ(y).

Then for any x ∈ X and for any y ∈ Y the functions f(·, x, ·) : Λ × Y → R̄ and
f(·, ·, y) : Λ×X → R̄ are lower semi continuous on the product spaces Λ×Y and
respectively Λ ×X endowed with the standard topology,

(c) We have

M =
⋃

λ∈Λ

M(φλ) .
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5 On the existence and uniqueness of convex lagrangian

covers

Not any BB-graph admits a convex lagrangian cover. There are at least two sources
of examples of such BB-graphs, described further. For more considerations along this
line see the last section of the paper.

Remark 5.1 Let M be a BB-graph with the property: for any φ, convex, lower semi-
continuous function defined on X, we have M(φ) \M 6= ∅. Then M does not admit
any convex lagrangian cover.

As an example take any convex, lower semicontinuous φ : X → R̄ and consider
M ⊂ M(φ), BB-graph, such that M 6= M(φ). Then M has the property described
previously, therefore it does not admit any convex lagrangian cover.

Remark 5.2 If M is a BB-graph and A is any linear, continuous transformation of
X × Y into itself, such that A(X × {0}) ⊂ X × {0} and A({0} × Y ) ⊂ {0} × Y , then
A(M) is also a BB-graph. However, it may happen that M admits convex lagrangian
covers, but not A(M).

Indeed, we consider X = Y = R with natural duality and a C2 function φ : X → R

with derivative φ′ strictly increasing. Let us define M = M(φ) and A(x, y) = (x,−y).
The set A(M) has a simple description as the graph of −φ′. As φ′ is stricly increasing,
for any two different x1, x2 ∈ R and yi = −φ′(xi) (i = 1, 2), we have

〈x1 − x2, y1 − y2〉 = (x1 − x2)(y1 − y2) < 0 .

This implies that A(M) has the property described in Remark 5.1. For if there is a
convex, lower semicontinuous ψ : X → R̄ such that M(ψ) ⊂ A(M) then for any two
different x1, x2 ∈ R and yi ∈ R, i = 1, 2, such that (xi, yi) ∈M(ψ) we would have

〈x1 − x2, y1 − y2〉 = (x1 − x2)(y1 − y2) ≥ 0 ,

which leads to contradiction.

The bipotential b∞ from the proof of Theorem 3.2 does not come from a convex
lagrangian cover. There exist BB-graphs admitting only one convex lagrangian cover
(up to reparametrization), as well as BB-graphs which have infinitely many lagrangian
covers.

In conclusion, we think it is a hard and challenging mathematical problem to de-
scribe all convex lagrangian covers of a BB-graph.

6 Implicit convexity and the main result

The main result of this paper is Theorem 6.7, which gives a recipe for constructing a
bipotential not from the graph M of a multivalued law, but from a convex lagrangian
cover. Therefore the results in this section apply only to BB-graphs admitting at least
one convex lagrangian cover.

In the next section we shall apply this recipe for two convex lagrangian covers of
M(b), with b equal to the Cauchy bipotential.
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Remark 6.1 We give here a justification for the name ”convex lagrangian cover”.
Suppose that for any λ ∈ Λ the function φλ is smooth. Then it is well known that the
graph (of the subdifferential of φλ) M(φλ) is a lagrangian manifold in the symplectic
manifold X × Y with the canonical symplectic form

ω
(

(x, y), (x′, y′)
)

= 〈x, y′〉 − 〈y, x′〉

Therefore the set M is covered by the family of lagrangian manifolds M(φλ), λ ∈ Λ.

With the help of a convex lagrangian cover we shall define a function b. We intend to
prove that (under a certain condition explained further) the function b is a bipotential
and that M = M(b).

Definition 6.2 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M . To the
cover we associate the function b : X × Y → R ∪ {+∞} by the formula

b(x, y) = inf {φλ(x) + φ∗λ(y) : λ ∈ Λ} = inf
λ∈Λ

f(λ, x, y) .

We have to check if the function b has the properties (a), (b), (c) from the Definition
2.2 of a bipotential.

Proposition 6.3 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M and b
given by Definition 6.2. Then:

(a) for all (x, y) ∈M we have b(x, y) = 〈x, y〉.

(b) for all (x, y) ∈ X × Y we have b(x, y) ≥ 〈x, y〉 .

Proof. For all λ ∈ Λ and (x, y) ∈ X × Y we have the inequality:

φλ(x) + φ∗λ(y) ≥ 〈x, y〉 .

As a consequence of this inequality and Definition 6.2 of the function b we obtain the
point (b).

For proving the point (a) it is enough to show that if (x, y) ∈M then b(x, y) ≤ 〈x, y〉.
But this is true. Indeed, if (x, y) ∈ M then there is a λ ∈ Λ such that (x, y) ∈ M(φλ)
and thus

φλ(x) + φ∗λ(y) = 〈x, y〉 .

From the Definition 6.2 it follows that for any λ ∈ Λ we have

b(x, y) ≤ φλ(x) + φ∗λ(y)

therefore b(x, y) ≤ 〈x, y〉, which finishes the proof . �
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Proposition 6.4 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M and b
given by Definition 6.2.

(a) Suppose that x ∈ X is given and that y ∈ Y has the minimum property

b(x, y) − 〈x, y〉 ≤ b(x, z) − 〈x, z〉

for any z ∈ Y . Then b(x, y) = 〈x, y〉.

(b) If b(x, y) = 〈x, y〉 then (x, y) ∈M .

Proof. (a) We start from the Definition of b. We have

b(x, y) = inf {φλ(x) + φ∗λ(z) : λ ∈ Λ} .

We use the compactness of Λ (point (a) from Definition 4.1) to obtain a net (λn)n in Λ,
which converges to λ̄ ∈ Λ, such that b(x, y) is the limit of the net

(

φλn
(x) + φ∗λn

(y)
)

n
.

From the lower semicontinuity of the cover (point (b) from Definition 4.1) we infer
that

b(x, y) = φλ(x) + φ∗
λ
(y) .

Remark that the value of the limit λ̄ of the net (λn)n depends on (x, y).
The hypothesis from point (a) and the definition of the function b implies that for

any z ∈ Y and any λ ∈ Λ we have

φλ(x) + φ∗
λ
(y) − 〈x, y〉 ≤ φλ(x) + φ∗λ(z) − 〈x, z〉.

In particular, for λ = λ we get that for all z ∈ Y

φ∗
λ
(y) − φ∗

λ
(z) ≤ 〈x, y − z〉.

This means that x ∈ ∂φ∗
λ
(y), which implies that

b(x, y) = φλ(x) + φ∗
λ
(y) = 〈x, y〉.

For the point (b), suppose that b(x, y) = 〈x, y〉. As we remarked before, there is
λ ∈ Λ such that

b(x, y) = φλ(x) + φ∗
λ
(y) .

Putting all together we see that

φλ(x) + φ∗
λ
(y) = 〈x, y〉 ,

therefore (x, y) ∈M(φλ) ⊂M . �

We shall give now a sufficient hypothesis for the separate convexity of b. This is
the last ingredient that we need in order to prove that b is a bipotential.

We shall use the following notion of implicit convexity.
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Definition 6.5 Let Λ be an arbitrary non empty set and V a real vector space. The
function f : Λ×V → R̄ is implicitly convex if for any two elements (λ1, z1), (λ2, z2) ∈
Λ×V and for any two numbers α, β ∈ [0, 1] with α+β = 1 there exists λ ∈ Λ such that

f(λ, αz1 + βz2) ≤ αf(λ1, z1) + βf(λ2, z2) .

Let us state the last hypothesis from our construction, as a definition.

Definition 6.6 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M and
f : Λ × X × Y → R the associated function introduced in Definition 4.1, that is the
function defined by

f(λ, z, y) = φλ(z) + φ∗λ(y) .

The cover is bi-implicitly convex (or a BIC-cover) if for any y ∈ Y and x ∈ X the
functions f(·, ·, y) and f(·, x, ·) are implicitly convex in the sense of Definition 6.5.

In the case ofM = M(φ), with φ convex and lower semi continuous (this corresponds
to separable bipotentials), the set Λ has only one element Λ = {λ} and we have only
one potential φ. The associated bipotential from Definition 6.2 is obviously

b(x, y) = φ(x) + φ∗(y) .

This is a BIC-cover in a trivial way: the implicit convexity conditions are equivalent
with the convexity of φ, φ∗ respectively.

Therefore, in the case of separable bipotentials the BIC-cover condition is trivially
true.

Our recipe concerning the construction of a bipotential is based on the following
result.

Theorem 6.7 Let λ 7→ φλ be a BIC-cover of the BB-graph M and b : X × Y → R

defined by
b(x, y) = inf {φλ(x) + φ∗λ(y) | λ ∈ Λ} . (6.0.1)

Then b is a bipotential and M = M(b).

Proof. (Step 1.) We prove first that for any x ∈ X and for any y ∈ Y , the functions
b(x, ·) and b(·, y) are convex.

For fixed y ∈ Y , for any x1, x2 ∈ X and for any ε > 0, there are λ1, λ2 ∈ Λ such
that (i = 1, 2)

b(xi, y) + ε ≥ f(λi, xi, y) .

For the pairs (λ1, x1), (λ2, x2) we use the implicit convexity of f(·, ·, y) to find that there
is λ ∈ Λ such that

f(λ, αx1 + βx2, y) ≤ αf(λ1, x1, y) + βf(λ2, x2, y) .
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All in all we have:
b(αx1 + βx2) ≤ f(λ, αx1 + βx2, y) ≤

≤ αf(λ1, x1, y) + βf(λ2, x2, y) ≤ αb(x1, y) + βb(x2, y) + ε .

As ε > 0 is an arbitrary chosen positive number, the convexity of the function b(·, y)
is proven. The proof for the convexity of b(x, ·) is similar.

(Step 2.) We shall prove now that for any x ∈ X and for any y ∈ Y , the functions
b(·, x) and b(·, y) are lower semicontinuous. Consider a net (xn)n ∈ X which converges
to x. We use the same reasoning as in the proof of Proposition 6.4 (a) to deduce that
for each n ∈ N there exists a λn ∈ Λ such that

b(xn, y) = φλn
(xn) + φλn

(y) = f(λn, xn, y).

Λ is compact, therefore up to the choice of a subnet, there exists a λ ∈ Λ such that
(λn)n converges to λ. We use now the lower semicontinuity of f(·, ·, y) in order to get
that

b(x, y) ≤ f(λ, x, y) ≤ lim inf
n→∞

f(λn, xn, y),

therefore the lower semicontinuity of b(x, ·) is proven. For the function b(·, y) the proof
is similar.

(Step 3.) M = M(b). Indeed, this is true, by Propositions 6.3 (a) and 6.4 (b).
(Step 4.) By Proposition 6.3 (b) we have that for any (x, y) ∈ X×Y the inequality

b(x, y) ≥ 〈x, y〉 is true. Therefore the conditions (a), (b), from the Definition 2.2 of a
bipotential, are verified.

(Step 5.) The only thing left to prove is the string of equivalences from Definition
2.2 (c). Using the knowledge that b is separately convex and lower semicontinuous, we
remark that in fact we only have to prove two implications.

The first is: for any x ∈ X suppose that y ∈ Y has the minimum property

b(x, y) − 〈x, y〉 ≤ b(x, z) − 〈x, z〉

for any z ∈ Y . Then b(x, y) = 〈x, y〉.
The second implication is similar, only that we start with an arbitrary y ∈ Y and

with x ∈ X satisfying the minimum property

b(x, y) − 〈x, y〉 ≤ b(z, y) − 〈z, y〉

for any z ∈ X. Then b(x, y) = 〈x, y〉.
The first implication is just Proposition 6.4 (a). The second implication has a

similar proof. �

The next proposition makes easier to check if a convex lagrangian cover satisfies
the BIC condition.

Proposition 6.8 Let λ 7→ φλ be a BIC-cover of the BB-graph M . Consider any
α, β ∈ [0, 1], α + β = 1, any y ∈ im(M), any λ1, λ2 ∈ Λ and any x1 ∈ ∂φ∗λ1

(y),
x2 ∈ ∂φ∗λ2

(y). According to the BIC condition there exists λ ∈ Λ such that

f(λ, αx1 + βx2, y) ≤ αf(λ1, x1, y) + βf(λ2, x2, y) . (6.0.2)
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Then λ has the property:

αx1 + βx2 ∈ ∂φ∗λ(y) .

Proof. Inequality (6.0.2) expresses as:

φλ(αx1 + βx2) + φ∗λ(y) ≤ αφλ1
(x1) + βφλ2

(x2) + αφ∗λ1
(y) + βφ∗λ2

(y) . (6.0.3)

We have also (i = 1, 2)
φλi

(xi) + φ∗λi
(y) = 〈xi, y〉 .

We use this in the inequality (6.0.3) to get

φλ(αx1 + βx2) + φ∗λ(y) ≤ 〈αx1 + βx2, y〉 ,

which shows that αx1 + βx2 ∈ ∂φ∗λ(y). Therefore the λ ∈ Λ given by the implicit
convexity inequality satisfies the conclusion of the proposition. �

Remark 6.9 Enforcing the satisfaction of the implicit convexity inequality for all val-
ues of λ which satisfy the conclusion of Proposition 6.8 would be too strong. This remark
is supported by the second example in section 7, involving a family of non differentiable
potentials for which there is no uniqueness for λ.

7 Reconstruction of the Cauchy bipotential

In this section we shall reconstruct the Cauchy bipotential from two different convex
lagrangian covers. As explained in Remark 2.3, it is important for applications that we
are able to reconstruct the expression of the Cauchy bipotential from the graph of its
associated law.

We shall take X = Y = R
n and the duality product is the usual scalar product

in R. The Cauchy bipotential is b(x, y) = ‖x‖‖y‖. By Cauchy-Schwarz-Bunyakovsky
inequality the set M = M(b) is

M = {(x, y) ∈ R
n × R

n : ∃λ > 0 , x = λy} ∪ ({0} × R
n) × (Rn × {0}) .

Let us consider the topological compact set Λ = [0,∞] (with usual topology) and
the function λ ∈ Λ 7→ φλ defined as:

- if λ ∈ [0,∞) then φλ(x) =
λ

2
‖x‖2,

- if λ = ∞ then

φ∞(x) = χ0(x) =

{

0 if x = 0
+∞ otherwise

13



A straightforward computation shows that the associated function f has the expression:

f(λ, x, y) =







λ
2‖x‖2 + 1

2λ
‖y‖2 if λ ∈ (0,∞)

χ0(y) if λ = 0
χ0(x) if λ = ∞

(7.0.1)

It is easy to check that we have here a convex lagrangian cover of the set M . We
shall prove now that we have a BIC-cover, according to Definition 6.6.

The cases λ = 0 and λ = ∞ will be treated separately.
Consider y ∈ im(M) = R

n, x1, x2 ∈ X, α, β ∈ [0, 1], α+β = 1, and λ1, λ2 ∈ (0,∞).
We have to find λ ∈ Λ such that

f(λ, αx1 + βx2, y) ≤ αf(λ1, x1, y) + βf(λ2, x2, y) . (7.0.2)

We use Proposition 6.8, for i = 1, 2 and xi ∈ ∂φ∗λi
in order to find the value of λ.

Computation shows that there is only one such λ ∈ Λ, given by

1

λ
=

α

λ1
+

β

λ2
. (7.0.3)

As this value depends only on λ1, λ2, we shall try to see if this λ is good for any choice
of x1, x2.

This is indeed the case: with λ given by (7.0.3) the relation (7.0.2) (multiplied by
2) becomes:

λ‖αx1 + βx2‖2 ≤ αλ1‖x1‖2 + βλ2‖x2‖2 . (7.0.4)

Remark that (7.0.3) can be written as:

αλ

λ1
+
βλ

λ2
= 1 .

Write then the fact that the square of the norm is convex, for the convex combination

of λ1x1, λ2x2, with the coefficients
αλ

λ1
,
βλ

λ2
. We get, after easy simplifications, the

inequality (7.0.4).
If λ1 = 0, λ2 ∈ (0,∞) then y has to be equal to 0 and x1 is arbitrary, x2 = 0 and

λ = 0. The inequality (7.0.2) is then trivial.
All other exceptional cases lead to trivial inequalities.
Remark that for any λ ∈ Λ and any x, y ∈ R

n we have

f(λ, x, y) = f(
1

λ
, y, x)

with the conventions 1/0 = ∞, 1/∞ = 0. This symmetry and previous proof imply
that we have a BIC-cover.

We compute now the function b from Definition 6.2. We know from Theorem 6.7
that b is a bipotential for the set M .

We have:
b(x, y) = inf {f(λ, x, y) : λ ∈ [0,∞]} .

14



From the relation (7.0.1) we see that actually

b(x, y) = inf

{

λ

2
‖x‖2 +

1

2λ
‖y‖2 : λ ∈ (0,∞)

}

.

By the arithmetic-geometric mean inequality we obtain that b(x, y) = ‖x‖‖y‖, that is
the Cauchy bipotential.

Here is a second example, supporting the Remark 6.9. We shall reconstruct the
Cauchy bipotential starting from a family of non differentiable convex potentials.

Let λ ≥ 0 be non negative and the closed ball of center 0 and radius λ be defined
by

B(λ) = {y ∈ Y : ‖y‖ ≤ λ} .

Defining B(+∞) as the whole space Y , one can suppose that λ belongs to the compact
set Λ = [0,+∞].

For λ ∈ [0,+∞) we define the set:

Mλ = {(0, y) ∈ X × Y : ‖y‖ < λ}∪{(x, y) ∈ X × Y : ‖y‖ = λ and ∃η ≥ 0 x = ηy} .

One can recognize Mλ as the graph of the yielding law of a plastic material with a
yielding threshold equal to λ. For λ = +∞ we set M+∞ = {0} × Y .

It can be easily verified that the family (Mλ)λ∈Λ of maximal cyclically monotone
graphs provides us a convex lagrangian cover of the set:

M = {(x, y) ∈ X × Y : ∃α, β ≥ 0 αx = βy} .

The corresponding convex lagrangian cover is given by:

- for λ ∈ [0,+∞), φλ(x) = λ‖x‖, φ∗λ(y) = χB(λ)(y),

- φ+∞(x) = χ0(x), φ
∗
+∞(y) = 0.

The associated function f has the expression:

f(λ, x, y) =







λ‖x‖ + χB(λ)(y) if λ ∈ (0,∞)

χ0(y) if λ = 0
χ0(x) if λ = +∞

(7.0.5)

All hypothesis excepting the BIC-cover condition are obviously satisfied. We check
this condition further. Let λ1 < λ2, both in [0,+∞). We want first to determine the
values of λ fulfilling the conclusion of Proposition 6.8. Let us recall that:

- if ‖y‖ < λ then ∂φ∗λ(y) = {0},

- if ‖y‖ = λ then x ∈ ∂φ∗λ(y) is equivalent to: ∃η ≥ 0 such that x = ηy,

- if ‖y‖ > λ then ∂φ∗λ(y) = ∅.

Then the following events have to be considered:

(1) if ‖y‖ < λ1 < λ2 then x1 ∈ ∂φλ1
(y) and x2 ∈ ∂φλ2

(y) imply x1 = x2 = 0,
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(2) if ‖y‖ = λ1 < λ2 then x1 ∈ ∂φλ1
(y) and x2 ∈ ∂φλ2

(y) imply: ∃η ≥ 0 such that
x1 = ηy and x2 = 0. Thus

αx1 + βx2 = αηx1 ∈ ∂φ∗λ(y)

occurs for any λ ≥ ‖y‖ when x1 = 0 and λ = ‖y‖ otherwise.

(3) If λ1 < ‖y‖ then there is no x1 such that x1 ∈ ∂φ∗λ1
(y). Likewise, if λ2 < ‖y‖

then there is no x2 such that x2 ∈ ∂φ∗λ2
(y).

Consider y ∈ im(M) = R
n, x1, x2 ∈ X, α, β ∈ [0, 1], α+β = 1, and λ1, λ2 ∈ [0,∞).

For the verification of the implicit convexity inequality (7.0.2), we need only to consider
the case ‖y‖ ≤ min {λ1, λ2} and we shall choose λ = min {λ1, λ2} ≥ ‖y‖. The relation
(7.0.2) becomes

min {λ1, λ2} ‖αx1 + βx2‖ ≤ αλ1‖x1‖ + βλ2‖x2‖ ,

which is true by the convexity of the norm. All the other cases turn out to be trivial.
The other half of the BIC-cover condition has a similar proof (remark though that

the associated function f is not symmetric, as in the previous case).
By virtue of Theorem 6.7, the function given by Definition 6.2, namely

b(x, y) = inf {φλ(x) + φ∗λ(y) : λ ∈ [0,+∞]} ,

is a bipotential. Computation shows that b is the Cauchy bipotential. Indeed:

b(x, y) = inf
{

λ‖x‖ + χB(λ)(y) : λ ∈ [0,∞)
}

=

= inf {λ‖x‖ : λ ≥ ‖y‖} = ‖y‖‖x‖ .

8 Conclusion and perspectives

Given (the graph of) a multivalued constitutive law M , there is a bipotential b such that
M = M(b) if and only if M is a BB-graph (Definition 3.1 and Theorem 3.2). If the BB-
graph M admits a convex lagrangian cover (Definition 4.1) which is bi-implicitly convex
(Definition 6.6) then we are able to construct an associated bipotential (Theorem 6.7).

Remarks 5.1 and 5.2 show that not any BB-graph admits a convex lagrangian cover.
We would like to elaborate on the obstructions to the existence of such covers. We start
with the example from the Remark 5.2, due to E. Ernst.

From a mechanical point of view, multivalued laws M with the property that for
any two different pairs (x1, y1), (x2, y2) ∈M we have

〈x1 − x2, y1 − y2〉 < 0

are not very interesting. Indeed, suppose that the evolution of a mechanical system is
described by a sequence of states (xn, yn) ∈ M . Then, as the system passes from one
state to another, the work done is always negative. Much more interesting seem to be
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multivalued laws with the property that for any (x, y) ∈M there is at least a different
pair (x′, y′) ∈M such that

〈x− x′, y − y′〉 ≥ 0 .

The BB-graphs admitting a convex lagrangian cover have this property.
There is another aspect, concerning the linear transformation A from the Remark

5.2. In the example given the transformation A(x, y) = (x,−y) is not symplectic, but
still it transforms lagrangian sets into lagrangian sets. In general, if the dimension
of X is strictly greater than one then we can find linear endomorphisms of X × Y

transforming lagrangian subsets of X × Y into sets which are not lagrangian, thus
destroying lagrangian covers. Moreover, we can find linear symplectic transformations
which transforms a convex lagrangian cover into a lagrangian cover which is no longer
convex. For example, take X = Y = R, A(x, y) = (x, y − x) and the BB-graph M =
R × {0}. Then det(A) = 1, therefore A is symplectic, and A(M) = {(x,−x) : x ∈ R}.
The set A(M) is a BB-graph and a lagrangian set, but it does not admit a convex
lagrangian cover. The reason for this phenomenon is that convexity is not a symplectic
invariant. Nevertheless, there are famous theorems in Hamiltonian Dynamics which
have a convexity assumption in the hypothesis, like the theorem of Rabinowitz stating
that the Reeb vector field on the boundary of a convex domain which is bounded has
at least a closed orbit (equivalently, a convex and coercive hamiltonian on R

2n admits
a closed orbit on every level set). We can easily destroy the convexity assumption of
this theorem but not the conclusion, by applying a nonlinear symplectomorphism.

For the notion of convex lagrangian cover we had the following source of inspiration.
If M is a symplectic manifold and with convexity assumptions left aside, lagrangian
covers as described in this paper resemble to (real) symplectic polarizations, which are
a basic tool in some problems of symplectic geometry.

Much more interesting are cases relating with Remark 5.1. We may consider BB-
graphs M not admitting convex lagrangian covers, but with the property that there is
a family of convex, lower semicontinuous functions φλ, λ ∈ Λ such that

M ⊂
⋃

λ∈Λ

M(φλ)

with strict inclusion. This is the case, for example, of the bipotential which appears in
[21], related to contact with friction. In a future paper we shall extend this method of
convex lagrangian cover to lagrangian covers by graphs which are cyclically monotone
but not necessarily maximal cyclically monotone.
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E., Périaux J., Stein E., John Wiley & Sons, p. 918-923 (1996).
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Abstract

The bipotential theory is based on an extension of Fenchel’s inequality, with
several powerful applications related to non associated constitutive laws in Mechan-
ics: frictional contact [12], non-associated Drucker-Prager model [1], or Lemaitre
plastic ductile damage law [2], to cite a few.

This is a second paper on the mathematics of the bipotentials, following [4].
We prove here another reconstruction theorem for a bipotential from a convex
lagrangian cover, this time using a convexity notion related to a minimax theorem
of Fan.

Key words: bipotentials, minimax theorems
MSC-class: 49J53; 49J52; 26B25

1 Introduction

In Mechanics, the theory of standard materials is a well-known application of Convex
Analysis. However, the so-called non-associated constitutive laws cannot be cast in the
mould of the standard materials.

From the mathematical viewpoint, a non associated constitutive law is a multivalued
operator T : X → 2Y which is not supposed to be monotone. Here X, Y are dual locally
convex spaces, with duality product 〈·, ·〉 : X × Y → R.

A possible way to study non-associated constitutive laws by using Convex Analysis,
proposed first in [12], consists in constructing a ”bipotential” function b of two variables,
which physically represents the dissipation.

A bipotential function b is bi-convex, satisfies an inequality generalizing Fenchel’s
one, ∀x ∈ X, y ∈ Y, b(x, y) ≥ 〈x, y〉, and a relation involving partial subdifferentials of b
with respect to variables x, y. In the case of associated constitutive laws the bipotential
has the expression b(x, y) = φ(x) + φ∗(y).
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The graph of a bipotential b is simply the set M(b) ⊂ X × Y of those pairs (x, y)
such that b(x, y) = 〈x, y〉. A multivalued operator T : X → 2Y is expressed with the
help of the bipotential b if the graph of T (in the usual sense) equals M(b).

The non associated constitutive laws which can be expressed with the help of bipo-
tentials are called in Mechanics implicit, or weak, normality rules. They have the form
of an implicit relation between dual variables, y ∈ ∂b(·, y)(x).

Among the applications of bipotentials to Solid Mechanics we cite: Coulomb’s fric-
tion law [9] , non-associated Drücker-Prager [11] and Cam-Clay models [10] in Soil
Mechanics, cyclic Plasticity ([9],[3]) and Viscoplasticity [6] of metals with non linear
kinematical hardening rule, Lemaitre’s damage law [2], the coaxial laws ([5],[13]). A
review of these laws expressed in terms of bipotentials can be found in [5] and [13].

In order to better understand the bipotential approach, in the paper [4] we solved
two key problems: (a) when the graph of a given multivalued operator can be expressed
as the set of critical points of a bipotentials, and (b) a method of construction of
a bipotential associated (in the sense of point (a)) to a multivalued, typically non
monotone, operator.

Our main tool was the notion of convex lagrangian cover of the graph of the mul-
tivalued operator, and a related notion of implicit convexity of this cover.

In this paper we prove another reconstruction theorem for a bipotential from a con-
vex lagrangian cover, this time using a convexity notion related to a minimax theorem
of Fan.

2 Notations and definitions

X and Y are topological, locally convex, real vector spaces of dual variables x ∈ X and
y ∈ Y , with the duality product 〈·, ·〉 : X × Y → R. The topologies of the spaces X,Y
are compatible with the duality product, that is: any continuous linear functional on X
(resp. Y ) has the form x 7→ 〈x, y〉, for some y ∈ Y (resp. y 7→ 〈x, y〉, for some x ∈ X).

We use the notation: R̄ = R ∪ {+∞}.
Given a function φ : X → R̄, the domain domφ is the set of points with value

other than +∞. The polar of φ, or Fenchel conjugate, φ∗ : Y → R̄ is defined by:
φ∗(y) = sup {〈y, x〉 − φ(x) | x ∈ X}.

We denote by Γ(X) the class of convex and lower semicontinuous functions φ : X →
R̄. The class of convex and lower semicontinuous functions φ : X → R is denoted by
Γ0(X).

The subdifferential of a function φ : X → R̄ in a point x ∈ domφ is the (possibly
empty) set:

∂φ(x) = {u ∈ Y | ∀z ∈ X 〈z − x, u〉 ≤ φ(z) − φ(x)} .

In a similar way is defined the subdifferential of a function ψ : Y → R̄ in a point
y ∈ domψ, as the set:

∂ψ(y) = {v ∈ X | ∀w ∈ Y 〈v,w − y〉 ≤ ψ(w) − ψ(y)} .

With these notations we have the Fenchel inequality: let φ : X → R̄ be a convex
lower semicontinuous function. Then:
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(i) for any x ∈ X, y ∈ Y we have φ(x) + φ∗(y) ≥ 〈x, y〉;

(ii) for any (x, y) ∈ X × Y we have the equivalences:

y ∈ ∂φ(x) ⇐⇒ x ∈ ∂φ∗(y) ⇐⇒ φ(x) + φ∗(y) = 〈x, y〉 .

Definition 2.1 To a graph M ⊂ X × Y we associate the multivalued operators:

X ∋ x 7→ m(x) = {y ∈ Y | (x, y) ∈M} ,

Y ∋ y 7→ m∗(y) = {x ∈ X | (x, y) ∈M} .

The domain of the graph M is by definition dom(M) = {x ∈ X | m(x) 6= ∅}. The image
of the graph M is the set im(M) = {y ∈ Y | m∗(y) 6= ∅}.

3 Bipotentials

The notions and results in this section were introduced or proved in [4].

Definition 3.1 A bipotential is a function b : X × Y → R̄ with the properties:

(a) b is convex and lower semicontinuos in each argument;

(b) for any x ∈ X, y ∈ Y we have b(x, y) ≥ 〈x, y〉;

(c) for any (x, y) ∈ X × Y we have the equivalences:

y ∈ ∂b(·, y)(x) ⇐⇒ x ∈ ∂b(x, ·)(y) ⇐⇒ b(x, y) = 〈x, y〉 . (3.0.1)

The graph of b is

M(b) = {(x, y) ∈ X × Y | b(x, y) = 〈x, y〉} . (3.0.2)

Examples. (1.) (Separable bipotential) If φ : X → R is a convex, lower semicon-
tinuous potential, consider the multivalued operator ∂φ (the subdifferential of φ). The
graph of this operator is the set

M(φ) = {(x, y) ∈ X × Y | φ(x) + φ∗(y) = 〈x, y〉} . (3.0.3)

M(φ) is maximally cyclically monotone [8] Theorem 24.8. Conversely, if M is closed
and maximally cyclically monotone then there is a convex, lower semicontinuous φ such
that M = M(φ).

To the function φ we associate the separable bipotential

b(x, y) = φ(x) + φ∗(y).
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Indeed, the Fenchel inequality can be reformulated by saying that the function b, previ-
ously defined, is a bipotential. More precisely, the point (b) (resp. (c)) in the definition
of a bipotential corresponds to (i) (resp. (ii)) from Fenchel inequality.

The bipotential b and the function φ have the same graph: M(b) = M(φ).
(2.) (Cauchy bipotential) Let X = Y be a Hilbert space and let the duality product

be equal to the scalar product. Then we define the Cauchy bipotential by the formula

b(x, y) = ‖x‖ ‖y‖.
Let us check the Definition (3.1) The point (a) is obviously satisfied. The point (b) is
true by the Cauchy-Schwarz-Bunyakovsky inequality. We have equality in the Cauchy-
Schwarz-Bunyakovsky inequality b(x, y) = 〈x, y〉 if and only if there is λ > 0 such that
y = λx or one of x and y vanishes. This is exactly the statement from the point (c),
for the function b under study.

The graph M(b) is the set of pairs of collinear and with same orientation vectors.
It can not be expressed by a separable bipotential because M(b) is not a cyclically
monotone graph.

Definition 3.2 The non empty set M ⊂ X×Y is a BB-graph (bi-convex, bi-closed) if
for all x ∈ dom(M) and for all y ∈ im(M) the sets m(x) and m∗(y) are convex and
closed.

The following theorem gives a necessary and sufficient condition for the existence
of a bipotential associated to a constitutive law M .

Theorem 3.3 Given a non empty set M ⊂ X × Y , there is a bipotential b such that
M = M(b) if and only if M is a BB-graph.

Given the BB-graph graph M , the uniqueness of bipotential b such that M = M(b)
is not true. For example, in the case of the Cauchy bipotential b, the proof of theorem
3.3 (theorem ... [4]) provides a bipotential, denoted by b∞, such that M(b) = M(b∞)
but b 6= b∞. This is in contrast with the case of a maximal cyclically monotone graph
M , when by Rockafellar theorem ([8] Theorem 24.8.) we have a method to reconstruct
unambigously the associated separable bipotential.

We noticed that in mechanical applications, we were able to reconstruct the phys-
ically relevant bipotentials b starting from M(b), by knowing a little more than the
graph M(b). This supplementary information is encoded in the following notion.

Definition 3.4 Let M ⊂ X × Y be a non empty set. A convex lagrangian cover of M
is a function λ ∈ Λ 7→ φλ from Λ with values in the set Γ(X), with the properties:

(a) The set Λ is a non empty compact topological space,

(b) Let f : Λ ×X × Y → R̄ be the function defined by

f(λ, x, y) = φλ(x) + φ∗λ(y).

Then for any x ∈ X and for any y ∈ Y the functions f(·, x, ·) : Λ × Y → R̄ and
f(·, ·, y) : Λ×X → R̄ are lower semi continuous on the product spaces Λ×Y and
respectively Λ ×X endowed with the standard topology,
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(c) We have

M =
⋃

λ∈Λ

M(φλ) .

Not any BB-graph admits a convex lagrangian cover. There exist BB-graphs admit-
ting only one convex lagrangian cover (up to reparametrization), as well as BB-graphs
which have infinitely many lagrangian covers. The problem of describing the set of all
convex lagrangian covers of a BB-graph seems to be difficult. We shall not discuss this
problem here, but see the sections 5 and 8 in [4].

The results in this paper apply only to BB-graphs admitting at least one convex
lagrangian cover.

To a a convex lagrangian cover we associate a function which will turn out to be a
bipotential, under some supplementary hypothesis.

Definition 3.5 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M . To the
cover we associate the function b : X × Y → R ∪ {+∞} by the formula

b(x, y) = inf {φλ(x) + φ∗λ(y) : λ ∈ Λ} = inf
λ∈Λ

f(λ, x, y) .

In [4] we imposed an implicit convexity inequality in order to get a function b which
is a bipotential. We need two definitions.

Definition 3.6 Let Λ be an arbitrary non empty set and V a real vector space. The
function f : Λ × V → R̄ is implicitly convex if for any two elements (λ1, z1), (λ2, z2) ∈
Λ×V and for any two numbers α, β ∈ [0, 1] with α+β = 1 there exists λ ∈ Λ such that

f(λ, αz1 + βz2) ≤ αf(λ1, z1) + βf(λ2, z2) .

Definition 3.7 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M and
f : Λ × X × Y → R the associated function introduced in Definition 3.4, that is the
function defined by

f(λ, z, y) = φλ(z) + φ∗λ(y) .

The cover is bi-implicitly convex (or a BIC-cover) if for any y ∈ Y and x ∈ X the
functions f(·, ·, y) and f(·, x, ·) are implicitly convex in the sense of Definition 3.6.

In the case ofM = M(φ), with φ convex and lower semi continuous (this corresponds
to separable bipotentials), the set Λ has only one element Λ = {λ} and we have only
one potential φ. The associated bipotential from Definition 3.5 is obviously

b(x, y) = φ(x) + φ∗(y) .

This is a BIC-cover in a trivial way: the implicit convexity conditions are equivalent
with the convexity of φ, φ∗ respectively.

With this convexity condition we obtained in [4] the following result.
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Theorem 3.8 Let λ 7→ φλ be a BIC-cover of the BB-graph M and b : X × Y → R

defined by
b(x, y) = inf {φλ(x) + φ∗λ(y) | λ ∈ Λ} . (3.0.4)

Then b is a bipotential and M = M(b).

4 Main result

For simplicity, in this section we shall work only with lower semi continuous convex
functions φ with the property that φ and its Fenchel dual φ∗ take values in R.

We reproduce here the following definition of convexity (in a generalized sense),
given by K. Fan [7] p. 42.

Definition 4.1 Let X, Y be two arbitrary non empty sets. The function f : X×Y → R

is convex on X in the sense of Fan if for any two elements x1, x2 ∈ X and for any two
numbers α, β ∈ [0, 1] with α+ β = 1 there exists a x ∈ X such that for all y ∈ Y :

f(x, y) ≤ αf(x1, y) + βf(x2, y).

With the help of the previous definition we introduce a new convexity condition for
a convex lagrangian cover.

Definition 4.2 Let λ 7→ φλ be a convex lagrangian cover of the BB-graph M . Consider
the functions:

g : X × Λ ×X → R , h : Y × Λ × Y ,

given by g(x, λ, z) = φλ(x) − φλ(z), respectively h(y, λ, u) = φ∗λ(y) − φ∗λ(u).
The cover is Fan bi-implicitly convex if for any x ∈ X, y ∈ Y , the functions g(x, ·, ·),

h(y, ·, ·) are convex in the sense of Fan on Λ ×X, Λ × Y respectively.

Recall the following minimax theorem of Fan [7], Theorem 2. In the formulation
of the theorem words ”convex” and ”concave” have the meaning given in definition
4.1 (more precisely f is concave if −f is convex in the sense of the before mentioned
definition).

Theorem 4.3 (Fan) Let X be a compact Hausdorff space and Y an arbitrary set. Let
f be a real valued function on X × Y such that, for every y ∈ Y , f(·, y) is lower
semicontinuous on X. If f is convex on X and concave on Y , then the expressions
min
x∈X

sup
y∈Y

f(x, y) and sup
y∈Y

min
x∈X

f(x, y) have meaning, and

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y) .
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The difficulty of theorem 3.8 boils down to the fact the class of convex functions is
not closed with respect to the inf operator. Nevertheless, by using Fan theorem 4.3 we
get the following general result.

Theorem 4.4 Let Λ be a compact Hausdorff space and λ 7→ φλ ∈ Γ0(X) be a convex
lagrangian cover of the BB-graph M such that:

(a) for any x ∈ X and for any y ∈ Y the functions Λ ∋ λ 7→ φλ(x) ∈ R and
Λ ∋ λ 7→ φ∗λ(y) ∈ R are continuous,

(b) the cover is Fan bi-implicitely convex in the sense of definition 4.2.

Then the function b : X × Y → R defined by

b(x, y) = inf {φλ(x) + φ∗λ(y) | λ ∈ Λ}

is a bipotential and M = M(b).

Proof. For some of the details of the proof we refer to the proof of theorem 3.8 in
[4] (in that paper theorem 4.12). There are five steps in that proof. In order to prove
our theorem we have only to modify the first two steps: we want to show that for any
x ∈ dom(M) and any y ∈ im(M) the functions b(·, y) and b(x, ·) are convex and lower
semi continuous.

For (x, y) ∈ X × Y let us define the function xy : Λ ×X → R by

xy(λ, z) = 〈z, y〉 + φλ(x) − φλ(z) .

We check now that xy verifies the hypothesis of theorem 4.3. Indeed, the hypothesis
(a) implies that for any z ∈ X the function xy(·, z) is continuous. Notice that

xy(λ, z) = 〈z, y〉 + g(x, λ, z) .

It follows from hypothesis (b) that the function xy is convex on Λ in the sense of Fan.
In order to prove the concavity of xy on X, it suffices to show that for any z1, z2 ∈ X,

for any α, β ∈ [0, 1] such that α+ β = 1, we have the inequality

xy(λ, αz1 + βz2) ≤ αxy(λ, z1) + βxy(λ, z2)

for any λ ∈ Λ. This inequality is equivalent with

〈αz1 + βz2, y〉 − φλ(αz1 + βz2) ≤ α (〈z1, y〉 − φλ(z1) + β (〈z2, y〉 − φλ(z2)

for any λ ∈ Λ. But this is implied by the convexity of φλ for any λ ∈ Λ.
In conclusion the function xy satisfies the hypothesis of theorem 4.3. We deduce

that
min
λ∈Λ

sup
z∈X

xy(λ, z) = sup
z∈X

min
λ∈Λ

xy(λ, z) .

Let us compute the two sides of this equality.
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For the left hand side (LHS) we have:

LHS = minλ∈Λ sup
z∈X

{〈z, y〉 + φλ(x) − φλ(z)} =

= min
λ∈Λ

{

φλ(x) + sup
z∈X

{〈z, y〉 − φλ(z)}
}

=

= min
λ∈Λ

{φλ(x) + φ∗λ(y)} = b(x, y) .

For the right hand side (RHS) we have:

RHS = sup
z∈X

min
λ∈Λ

{〈z, y〉 + φλ(x) − φλ(z)} =

= sup
z∈X

{

〈z, y〉 − max
λ∈Λ

{φλ(z) − φλ(x)}
}

.

Let x : X → R be the function

x(z) = max
λ∈Λ

{φλ(z) − φλ(x)} .

Then the right hand side RHS is in fact:

RHS = x∗(y) .

Therefore we proved the equality:

b(x, y) = x∗(y) .

This shows that the function b is convex and lower semicontinuous in the second argu-
ment.

In order to prove that b is convex and lower semicontinuous in the first argument,
replace φλ by φ∗λ in the previous reasoning. �
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finis, 3, 3, p. 411-456 (1994).
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LOWER SEMI-CONTINUITY OF INTEGRALS WITH

G-QUASICONVEX POTENTIAL

MARIUS BULIGA

Abstract. This paper introduces the proper notion of variational quasicon-

vexity associated to a group of diffeomorphisms. We prove a lower semicon-
tinuity theorem connected to this notion. In the second part of the paper we
apply this result to a class of functions, introduced in [5]. Such functions are
GL(n, R)+ quasiconvex, hence they induce lower semicontinuous integrals.

MSC 2000: 49J45

1. Introduction

Lower semi-continuity of variational integrals

u 7→ I(u) =

∫

Ω

w(Du(x)) dx

defined over Sobolev spaces is connected to the convexity of the potential w. In
the scalar case, that is for functions u with domain or range in R, the functional I
is weakly W 1,p lower semi-continuous (weakly * W 1,∞) if and only if w is convex,
provided it is continuous and satisfies some growth conditions. The notion which
replaces convexity in the vector case is quasi-convexity (introduced by Morrey [14]).

We shall concentrate on the case u : Ω ⊂ Rn → Rn which is interesting for
continuum media mechanics. Standard notation will be used, like:

gl(n,R) the linear space (Lie algebra) of n× n real matrices
GL(n,R) the group of invertible n× n real matrices
GL(n,R)+ the group of matrices with positive determinant
sl(n,R) the algebra of traceless n× n real matrices
SL(n,R) the group of real matrices with determinant one
CO(n) the group of conformal matrices
id the identity map
1 the identity matrix
◦ function composition

In this frame Morrey’s quasiconvexity has the following definition.

Definition 1.1. Let Ω ⊂ Rn be an open bounded set such that | ∂Ω |= 0 and
w : gl(n,R) → R be a measurable function. The map w is quasiconvex if for any
H ∈ gl(n,R) and any Lipschitz η : Ω → Rn, such that η(x) = 0 on ∂Ω, we have

∫

Ω

w(H) ≤
∫

Ω

w(H +Dη(x))(1)

Translation and rescaling arguments show that the choice of Ω is irrelevant in
the above definition.

Any quasiconvex function w is rank one convex. There are several ways to define
rank one convexity but this is due to the regularity assumptions upon w. The most

Key words and phrases. quasi-convexity, diffeomorphisms groups.
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natural, physically meaningful and historically justified, is to suppose that w is
C2 and link rank one convexity with the ellipticity (cf. Hadamard [10]) of the
Euler-Lagrange equation associated to w. There are well-known ways to show that
one can get rid of any regularity assumption upon w, replacing it by some growth
conditions. Rank one convexity becomes then just what the denomination means,
that is convexity along any rank one direction.

Proposition 1.1. Suppose that w : gl(n,R) → R is C2 and quasiconvex. Then for
any pair a, b ∈ Rn the ellipticity inequality

∂2w

∂Hij∂Hkl

(H)aibjakbl ≥ 0(2)

holds true.

Proof. Take any η ∈ C2(Ω, Rn) such that η(x) = 0 on ∂Ω and H ∈ gl(n,R). If w
is quasiconvex then the function

t 7→ f(t) =

∫

Ω

w(H + tDη(x))

has a minimum in t = 0. Therefore f ′(0) = 0 and f ′′(0) ≥ 0. Straightforward
computation shows that f ′(0) = 0 anyway and f ′′(0) ≥ 0 reads:

∂2w

∂Hij∂Hkl

(H)

∫

Ω

ηi,j(x)ηk,l(x) ≥ 0

With the notation

∆(η) =

∫

Ω

Dη(x) ⊗Dη(x)

remark that ∆(x) ∈ V = gl(n,R) ⊗ gl(n,R), because V is a vectorspace and
Dη(x) ⊗Dη(x) ∈ V for any x ∈ Ω. It follows that there is P ∈ gl(n,R) such that:

∆(η)ijkl = PijPkl

Integration by parts shows that ∆(η) has more symmetry, namely:

∆(η)ijkl = ∆(η)ilkj

which turns to be equivalent to rank P ≤ 1. Therefore there are a, b ∈ Rn such
that P = a⊗ b.

All it has been left to prove is that for any a, b ∈ Rn there is a λ 6= 0 and a
vector field η ∈ C2(Ω, Rn) such that η(x) = 0 on ∂Ω and ∆(η) = λa ⊗ b. For this
suppose that Ω is the unit ball in Rn, take u : [0,∞] → R a C∞ map, such that
u(1) = 0 and define:

η(x) = u(| x |2) sin(b · x)a
It is a matter of computation to see that η is well chosen to prove the thesis.

In elasticity the elastic potential function w is not defined on the Lie algebra
gl(n,R) but on the Lie group GL(n,R) or a subgroup of it. It would be therefore
interesting to find the connections between lower semicontinuity of the functional
and the (well chosen notion of) quasiconvexity in this non-linear context. This is a
problem which floats in the air for a long time. Let us recall two different definitions
of quasiconvexity which are relevant.

Definition 1.2. Let w : GL(n,R)+ → R. Then:

(a) (Ball [2]) w is quasiconvex if for any F ∈ GL(n,R)+ and any η ∈ C∞
c

(Ω, Rn)
such that F +Dη(x) ∈ GL(n,R)+ for almost any x ∈ Ω we have

∫

Ω

w(F +Dη(x)) ≥ | Ω | w(F )
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(b) (Giaquinta, Modica & Soucek [9], page 174, definition 3) w is Diff-quasiconvex
if for any diffeomorphism φ : Ω → φ(Ω) such that φ(x) = Fx on ∂Ω, for some
F ∈ GL(n,R)+ we have:

∫

Ω

w(Dφ(x)) ≥
∫

Ω

w(F )

These two definitions are equivalent.
It turns out that very little is known about the lower semicontinuity properties

of integrals given by Diff-quasiconvex potentials. It is straightforward that Diff-
quasiconvexity is a necessary condition for weakly * W 1,∞ (or uniform convergence
of Lipschitz mappings) (see [9] proposition 2, same page). All that is known reduces
to the properties of polyconvex maps. A polyconvex map w : GL(n,R)+ → R is
described by a convex function g : D ⊂ RM → R (the domain of definition D is
convex as well) and M rank one affine functions ν1, ..., νM : GL(n,R)+ → R such
that for any F ∈ GL(n,R)+

w(F ) = g(ν1(F ), ..., νM (F ))

The rank one affine functions are known(cf. Edelen [7], Ericksen [8], Ball, Curie,
Olver [4]): ν is rank one affine if and only if ν(F ) can be expressed as a linear
combination of subdeterminants of F (uniformly with respect to F ). Any rank
one convex function is also called a null Lagrangian, because it generates a trivial
Euler-Lagrange equation.

Polyconvex function give lower semicontinuous functionals, as a consequence of
Jensen’s inequality and continuity of (integrals of) null lagrangians. This is a very
interesting path to follow (cf. Ball [3]) and it leads to many applications. But it
leaves unsolved the problem: are the integrals given by Diff-quasiconvex potentials
lower semicontinuous?

In the case of incompressible elasticity one has to work with the group of ma-
trices with determinant one, i.e. SL(n,R). The ”linear” way of thinking has been
compensated by wonders of analytical ingenuity. One purpose of this paper is to
show how a slight modification of thinking, from linear to nonlinear, may give in-
teresting results in the case w : G → R where G is a Lie subgroup of GL(n,R).
Note that when n is even a group which deserves attention is Sp(n,R), the group
of symplectic matrices.

From now on linear transformations of Rn and their matrices are identified. G
is a Lie subgroup of GL(n,R).

Definition 1.3. For any Ω ⊂ Rn open, bounded, with smooth boundary, we intro-
duce the set [G]∞(Ω) of all bi-Lipschitz mappings u from Ω to Rn such that for
almost any x ∈ Ω we have Du(x) ∈ G.

The set Q ⊂ Rn is the unit cube (0, 1)n.
The departure point of the paper is the following natural definition.

Definition 1.4. The continuous function w : G → R is G-quasiconvex if for any
F ∈ G and u ∈ [G]∞(Q) we have:

∫

Q

w(F ) dx ≤
∫

Q

w(FDu(x)) dx(3)

We describe now the structure of the paper. After the formulation of the lower
semicontinuity theorem 2.1, in section 3 is shown that quasiconvexity in the sense
of definition 1.2 is the same as GL(r, n)+ quasiconvexity. Theorem 2.1 is proved
in section 4; in the next section is described the rank one convexity (or ellipticity)



4 MARIUS BULIGA

notion associated to G quasiconvexity. The cases GL(n,R) and SL(n,R) are ex-
amined in detail. It turns out that classification of all universal conservation laws
in incompressible elasticity is based on some unproved assumptions. In section 6
is described a class of GL(n,R)+ quasiconvex functions introduced in Buliga [5].
Theorem 2.1 is used to prove that any such function induces a lower semicontinuous
integral.

2. G-quasiconvexity and the lower semicontinuity result

We denote by [G]∞
c

the class of all Lipschitz mapping from Rn to Rn such that
u− id has compact support and for almost any x ∈ Rn we have Du(x) ∈ G. The
main result of the paper is:

Theorem 2.1. Let G be a Lie subgroup of GL(n,R), Ω an open, bounded set with
| ∂Ω |= 0 and w : G→ R locally Lipschitz.

a) Suppose that for any sequence uh ∈ [G]∞
c

weakly * W 1,∞ convergent to id we
have:

∫

Ω

w(F ) dx ≤ lim inf
h→∞

∫

Ω

w(FDuh(x)) dx(4)

Then for any bi-Lipschitz u ∈ [G]∞
c

and for any sequence uh weakly * W 1,∞

convergent to u we have:
∫

Ω

w(Du(x)) dx ≤ lim inf
h→∞

∫

Ω

w(Duh(x)) dx(5)

Moreover, if (5) holds for any bi-Lipschitz u ∈ [G]∞
c

and for any sequence uh

weakly * W 1,∞ convergent to u then w is G-quasiconvex.
b) Suppose that G contains the group CO(Rn) of conformal matrices. Then (5)

holds for any bi-Lipschitz u ∈ [G]∞
c

and for any sequence uh weakly * W 1,∞

convergent to u if and only if w is G-quasiconvex.

The fact that weakly * lower semicontinuity implies G quasiconvexity (end of
point (a)) is easy to prove by rescaling arguments (cf. proposition 2, Giaquinta,
Modica and Soucek op. cit.).

The method of proving the point (a) of the theorem is well known (see Meyers
[13]). Even if there is nothing new there from the pure analytical viewpoint, I think
that the proof deserves attention.

3. G-quasiconvexity

This section contains preliminary properties of G-quasiconvex continuous func-
tions.

Proposition 3.1. a) In the definition of G-quasiconvexity the cube Q can be
replaced by any open bounded set Ω such that | ∂Ω |= 0.

b) The function w is G-quasiconvex if and only if for any F ∈ G and u ∈
[G]∞

c
(Q) we have:

∫

Q

w(F ) dx ≤
∫

Q

w(Du(x)F ) dx(6)

The converse is true.
c) For any U ∈ GLn such that UGU−1 ⊂ G and for any W : G → R G-

quasiconvex, the mapping WU : G → R, WU (F ) = W (UFU−1) is G-quasi-
convex.
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Remark 3.1. The point b) shows that the non-commutativity of the multiplication
operation does not affect the definition ofG-quasiconvexity. The point c) is a simple
consequence of the fact that G is a group.

Proof. The point a) has a straightforward proof by translation and rescaling argu-
ments.

For b) let us consider F ∈ G and an arbitrary open bounded Ω ⊂ Rn with smooth
boundary. The application which maps φ ∈ [G]∞

c
(Ω) to F−1φF ∈ [G]∞

c
(F−1(Ω)) is

well defined and bijective. By a), if the function w is G-quasiconvex then we have
∫

F−1(Ω)

w(FD(F−1φF )(x)) dx ≥| F−1(Ω) | w(F )

The change of variables x = F−1y resumes the proof of b).
With U like in the hypothesis of c), the application which maps φ ∈ [G]∞

c
(Ω)

to UφU−1 ∈ [G]∞
c

(U−1(Ω)) is well defined and bijective. The proof resumes as for
the point b).

The following proposition shows that quasi-convexity in the sense of definition
1.2 is a particular case of G-quasiconvexity.

Proposition 3.2. Let us consider F ∈ GL(n,R)+. Then w is GL(n,R)+-quasiconvex
in F if and only if it is quasi-convex in F in the sense of Ball.

Proof. Let E ⊂ Rn be an open bounded set and φ ∈ [GL(n,R)+]∞
c

(E). The vector
field η = F (φ − id) verifies the condition that almost everywhere F + Dη(x) is
invertible. Therefore, if w is quasi-convex in F , we derive from the inequality:

∫

E

w(FDφ(y)) dy ≥ | E |W (F ) .

We implicitly used the chain of equalities

F +Dη(y) = F + FDφ(y) − F = FDφ(y) .

We have proved that quasi-convexity implies GL(n,R)+-quasiconvexity.
In order to prove the inverse implication let us consider η such that almost ev-

erywhere F +Dη(x) is invertible. We have therefore φ = F−1ψ ∈ [GL(n,R)+](E)
and FDφ = F +Dη. We use now the hypothesis that w is GL(n,R)+-quasiconvex
in F and we find that w is also quasi-convex.

4. Proof of Theorem 2.1

The proof is divided into three steps. In the first step we shall prove the following:
(Step 1.)Let w : GL(n,R) → R be locally Lipschitz. Suppose that for any

Lipschitz bounded sequence uh ∈ [GL(n,R)]∞
c

uniformly convergent to id on Ω and
for any F ∈ GL(n,R) we have:

∫

Ω

w(F ) dx ≤ lim inf
h→∞

∫

Ω

w(FDuh(x)) dx(7)

Then for any bi-Lipschitz u : Rn → Rn and for any sequence uh ∈ [GL(n,R)]∞
c

uniformly convergent to id on Ω we have:
∫

Ω

w(Du(x)) dx ≤ lim inf
h→∞

∫

Ω

w(D(uh ◦ u)(x)) dx(8)

Remark 4.1. This is just the point a) of the main theorem for the whole group of
linear invertible transformations.
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Proof. For ε > 0 sufficiently small consider the set:

Uε =

{

B = B(x, r) ⊂ Ω : ∃ A ∈ GL(n,R) ,

∫

B

| Du(x) −A |< ε | B |
}

From the Vitali covering theorem and from the fact that u is bi-Lipschitz we deduce
that there is a sequence Bj = B(xj , rj) ∈ Uε such that:

- | Ω \ ⋃

j
Bj |= 0

- for any j u is approximatively differentiable in xj and Du(xj) ∈ GL(n,R)
- we have

∫

Bj

| Du(x) −Du(xj) | < ε | Bj |

Choose N such that

| Ω \
N
⋃

j=1

Bj | < ε

We have therefore:
∫

Ω

w(D(uh ◦ u)(x)) ≥
N

∑

j=1

∫

Bj

w(D(uh ◦ u)(x)) − Cε

N
∑

j=1

∫

Bj

w(D(uh ◦ u)(x)) = J1 + J2 + J3

where the quantities Ji are given below, with their estimates.

J1 =

N
∑

j=1

∫

Bj

[w(Duh(u(x))Du(x)) − w(Duh(u(x))Du(xj))]

| J1 |≤
N

∑

j=1

∫

Bj

| w(Duh(u(x))Du(x)) − w(Duh(u(x))Du(xj)) | < Cε

J2 =
N

∑

j=1

∫

Bj

[w(Duh(u(x))Du(xj)) − w(Duh(uj(x))Du(xj))]

where ūj(x) = u(xj) +Du(xj)(x − xj). We have the estimate:

| J2 |≤ Cε

Indeed, by changes of variables we can write:

I ′
j

=

∫

Bj

w(Duh(u(x))Du(xj)) =

∫

u(Bj)

w(Duh(y)Du(xj) | detDu−1(y) |

Ij” =

∫

Bj

w(Duh(ūj(x))Du(xj)) =

∫

ūj(Bj)

w(Duh(y)Du(xj) | det(Du(xj))
−1 |

The difference | I ′
j
− Ij” | is majorised like this

| I ′
j
−Ij” | ≤

∫

u(Bj)∩ūj(Bj)

C || detDu−1(y) | − | det(Du(xj))
−1 || + C | u(Bj)∆ūj(Bj) |

The function | det · | is rank one convex and satisfies the growth condition | detF |
≤ c(1+ | F |n) for any F ∈ GL(n,R). Therefore this function satisfies also the
inequality:

|| detF | − | detP || ≤ C | F − P |
(

1+ | F |n−1 + | P |n−1
)

Use now this inequality, the properties of the chosen Vitali covering and the uniform
bound on Lipschitz norm of u, uh, to get the claimed estimate.
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J3 =
N

∑

j=1

∫

Bj

w(Duh(uj(x))Du(xj))

By the change of variable y = uj(x) and the hypothesis we have

lim inf
h→∞

J3 ≥ lim inf
h→∞

N
∑

j=1

∫

Bj

w(Du(xj))

Put all the estimates together and pass to the limit with N → ∞ and then ε →
0.

(Step 2.) If we replace in Step 1. the group GL(n,R) by a Lie subgroup G the
conclusion is still true.

Proof. Indeed, remark that in the proof of the previous step it is used only the fact
that GL(n,R) is a group of invertible maps.

Step 3. The point b) of the Theorem 2.1 is true.

Remark 4.2. In the classical setting of quasiconvexity, this step is proven by an
argument involving Lipschitz extensions with controlled Lipschitz norm. In our
case the corresponding Lipschitz extension assertion would be: let u ∈ [G]∞

c
with

Lipschitz norm ‖u− id‖ = ε. For δ > 0 sufficiently big there exists v ∈ [G](B(0, 1+
δ)) such that v = u on B(0, 1) and ‖v − id‖ controlled from above by ε. This is
not known to be true, even for G = GL(n,R). That is why we shall use a different
approach.

Proof. Because G is a group, it is sufficient to make the proof for F = 1.
Let uh ∈ [G]∞

c
be a sequence weakly * convergent to id on Ω and D ⊂⊂ Ω. For

ε > 0 sufficiently small and C > 1 we have

DCε =
⋃

x∈D

B(x,Cε) ⊂ Ω

It is not restrictive to suppose that

lim
h→∞

∫

Ω

w(Duh) dx

exists and it is finite. For any ε > 0 there is Nε such that for any h > Nε

uh(D) ⊂ Dε.
Take a minimal Lipschitz extension

uh : DCε \ C → Rn , uh(x) =

{

uh(x) , x ∈ ∂D

x , x ∈ ∂DCε

The Lipschitz norm of this extension, denoted by kh, is smaller than some constant
independent on h.

Now, for any h define:

ψh =
1

2kh

uh|DCε
\D

According to Dacorogna-Marcellini Theorem 7.28, Chapter 7.4. [6], there is a so-
lution σh of the problem

{

Dσh ∈ O(n) a. e. in DCε \D
σh = ψh on ∂(Dε \D

Let

vh(x) =

{

uh(x) x ∈ D

khσh(x) x ∈ Ω \D
Note that Dvh ∈ CO(n).
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The following estimate is then true:

|
∫

D

w(Duh) dx −
∫

Ω

w(Dvh) dx | = |
∫

DCε\D

w(Dvh) dx | ≤

≤
∫

DCε\D

| w(Dvh) | dx ≤ C | Dε \D |

w is G-quasiconvex, therefore:
∫

Dε

w(Dvh) dx ≥ | Dε | w(1)

We put all together and we get the inequality:

lim
h→∞

∫

D

w(Duh) dx ≥ | Dε | w(1) − C | Dε \D |

The proof finishes after we pass ε to 0.

5. Rank one convexity

The rank-one convexity notion associated to G quasi-convexity is described in
the next proposition, for w ∈ C2(G,R). Before this, let us introduce a differential
operator naturally connected to the group structure of G. Denote by G the Lie
algebra of G. For any pair (F,H) ∈ G× G, the derivative of w : G→ R in F with
respect to H is

Dw(F )H =
d

dt |t=0

w(F exp(tH))

We shall also use the notation (for F ∈ G and H,P ∈ G):

D2w(F )(H,P ) = D(Dw(·)H)(F )P

Proposition 5.1. A necessary condition for w ∈ C2(G,R) to be G quasi-convex
is

∫

Ω

D2w(F )(Dη(x), Dη(x)) = 0

for any F ∈ G and η ∈ C2(Ω, Rn), Dη(x) ∈ G a.e. in Ω, supp η ∈ Ω.

Proof. Given such an η, consider the solution of the o.d.e. problem:

φ̇t = η ◦ φt , φ0 = id|Ω

This is an one-parameter group in the diffeomorphism class [G]∞(Ω). Define then:

f(t) =

∫

Ω

w(FDφt(x))

The G quasiconvexity of w implies that f has a minimum in t = 0. That means
f ′(0) = 0 and f ′′(0) ≥ 0. The first condition is trivially satisfied and the second is,
by straightforward computation, just the conclusion of the proposition.

We shall call G rank one convex a function which satisfies the conclusion of the
proposition 5.1.

Consider the vector space

V (G) = {(H,H) ∈ G × G : H ∈ G}
and the set

RO(G) = {(a, b) ∈ Rn ×Rn : a⊗ b ∈ G}
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Proposition 5.2. Suppose that w : G → R is a C2 function. If for any a, b ∈
RO(G)

D2w(F )(a ⊗ b, a⊗ b) ≥ 0(9)

then w is G rank one convex.

Proof. We shall use the notations from the proof of the preceding proposition. We
see that

∫

Ω

(Dη(x), Dη(x)) ∈ V (G)

Therefore there is an X ∈ G such that

(X,X) =

∫

Ω

(Dη(x), Dη(x))

Using integration by parts we find that for any indices i, j, k, l ∈ 1, ..., n we have:

XijXkl = XilXkj

which implies that X has rank one. Hence there are a, b ∈ Rn such that X = a⊗ b.
Use the definition of G rank one convexity to prove that (9) implies the G rank one
convexity.

In the case G = GL(n,R) we find that GL(n,R) rank one convexity is equivalent
to classical rank one convexity. To see this, take arbitrary F ∈ GL(Rn), a, b ∈ Rn,
s > 0 and u ∈ C∞

c
(Ω, R). Define

ηs(x) = u(x) sin [s(b · x)] a

Because GL(n,R) is an open set in the vectorspace of n × n real matrices, the
GL(n,R) rank one condition reads:

s2
d2 w

dFijdFkl

(F )(Fa)ibj(Fa)kbl

∫

Ω

u2 +B ≥ 0

with B independent on s. We deduce that

d2 w

dFijdFkl

(F )(Fa)ibj(Fa)kbl ≥ 0

for any choice of F , a, b. This is the same as:

d2 w

dFijdFkl

(F )aibj(akbl ≥ 0

for any F , a, b.
For the group SL(n,R) of matrices with determinant one we obtain a similar

condition by imposing the constraint div ηs = 0. This can be done if a · b = 0
and Du(x) · a = 0. For simplicity suppose that w is defined in a neighbourhood of
SL(n,R). Then w is SL(n,R) rank one convex implies

d2 w

dFijdFkl

(F )(Fa)ibj(Fa)kbl ≥ 0(10)

for any F ∈ SL(n,R), a, b ∈ Rn, a · b = 0.
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5.1. Rank one affine functions. A map w is G rank one affine if w and −w
are G rank one convex. For the case G = GL(n) we see that the rank one affines
are known. This is very useful in several instances. The reason is that the Euler-
Lagrange equation associated to the potential w does not change if one adds a rank
affine function to w. At the action functional level

Iw(φ) =

∫

Ω

w(Dφ(x))

the addition of a GL(n,R) rank one function means the addition of a closed form
which cancels with the integral. This coincidence led to the development of formal
calculus of variations in the frame of the jet bundle formalism, which permits to
classify all universal conservation laws in elasticity. For this classification see Olver
[15].

The case G = SL(n,R) is equally important, because it is about incompressible
elasticity. Or, in this case nothing is known, because it is not proven that the
SL(n,R) rank one affine functions correspond to closed forms. For this reason
Olver’s classification [15] of universal conservation laws is not proven to be complete.

We arrived to the following
Open problem: Describe all G rank one affine functions.
In particular situations the problem has been solved. For example if G =

GL(n,R) then any rank one affine function is a classical null lagrangian. In the
case SL(2, R) we have the following theorem:

Theorem 5.1. Any SL(2, R) rank one affine function is affine.

Proof. We have to prove that if w : SL(2, R) → R is rank one affine then w(F ) =
aijFij + b. It is sufficient to prove the thesis for any F in an open dense set in
SL(2, R). We shall use the following maps:

(X,Y, Z) ∈ R∗ ×R ×R 7→ F =

(

X Y

Z 1+Y Z

X

)

(X ′, Y ′, Z ′) ∈ R∗ ×R×R 7→ F =

(

1+Y
′
Z

′

X′ Y ′

Z ′ X ′

)

Take arbitrary a = (a1, a2) and perpendicular b = (−a2, a2). If w is SL2 rank one
affine then the mapping

t 7→ f(t; a⊗ b, F ) = w(F (1 + ta⊗ b))

is linear for any F ∈ SL(2, R). We have used here the relation and the equality
expa⊗ b = 1 + a⊗ b, for any orthogonal a, b. Rank one convexity of w means that
the second derivative of f(t; a⊗ b, F ) with respect to t vanishes for any choice of F
and a.

We express F in terms of the coordinates F = F (X,Y, Z) and F = F (X ′, Y ′, Z ′).
After some elementary computation we obtain the following minimal system of
equations for the function w(X,Y, Z) = w(F (X,Y, Z)):























wXXX
2 = 2wY Z(1 + Y Z)

wZZX = −wY ZY

wXY X = −wY ZZ

wY Y = 0
wZZ = 0

(11)

From equations (11.4) and (11.5) we find that w has the form

w(X,Y, Z) = A(X)Y Z +B(X)Y + C(X)Z +D(X)

From (11.2) we obtain the equation

XC′(X) +XYA′(X) = −A(X)Y
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From here we derive that C(X) = c and A(X) = k/X . We update the form of w,
use (11.3) to get B(X) = b and (11.1) to get D(X) = (k/X) + eX + f . We collect
all the information and we obtain that w has the expression:

w(X,Y, Z) = k
1 + Y Z

X
+ bY + cZ + eX + f

which proves the theorem.

Therefore, in the case G = SL(2, R) we have proved that there are no rank
one affine functions other than the classical ones. The proof is not adapted to
generalizations. The case G = SL(3, R) is open.

Other groups are equally significant, like the group Sp(n,R) of symplectomor-
phisms. I don’t know of any attempt to solve this problem.

5.2. Rank one convexity and quasiconvexity. The GL(n,R) rank one convex-
ity is not equivalent to GL(n,R) quasiconvexity in any dimension.

Proposition 5.3. The function w : GL(n,R) → R defined by

w(F ) = − log | detF |
is GL(n,R) rank one convex but not GL(n,R) quasiconvex.

Proof. The map is polyconvex hence it is rank one convex. It is not quasi-convex
though. To see this fix ε ∈ (0, 1), A ∈ GL(n,R) and Ω = B(0, 1). There is a
Lipschitz solution to the problem

{

Dv(x) ∈ O(n) a.e. in Ω
v(x) = εx x ∈ ∂Ω

We have then, for u(x) = v(x)/ε ∈ [GL(n,R)]∞(Ω):
∫

Ω

w(ADu(x)) =

∫

Ω

− log | detA | +

∫

Ω

n log ε <

∫

Ω

w(A)

Next proposition justifies this result.

Proposition 5.4. For any w : G→ R define ıw : G→ R by:

ıw(F ) =| detF | w(F−1)

Then w is G rank one convex if and only if ıw is. Also, if w is G quasi-convex then
for any u ∈ [G]∞(Ω) we have:

∫

Ω

w(FDu(x)) ≥
∫

Ω

w(F )

Proof. Take u like in the hypothesis. Then for any (continuous) w we have
∫

Ω

w(Du−1(x)) =

∫

Ω

ıw(Du(x))

by straightforward computation. Use now the proof of proposition 5.1 to deduce
the first part of the conclusion. For the second part use the definition 1.4 and the
proposition 3.

Let us apply this proposition to w(F ) = − log | detF |. Remark that when
detF goes to zero the function goes to +∞. Now, ıw(F ) = | detF | log | detF |
and this function can be continuously prolongated to matrices with determinant
zero by setting ıw(F ) = 0 if detF = 0. It is easy to see that the prolongation of ıw
ceases to be rank one convex.
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6. Application: a class of quasiconvex functions

The goal of this section is to give a class of quasi-convex isotropic functions
which seem to be complementary to the polyconvex isotropic ones. We quote the
following result of Thompson and Freede [16], Ball [2] (for a proof coherent with
this paper see Le Dret [11]).

Theorem 6.1. Let g : [0,∞)n → R be convex, symmetric and nondecreasing in
each variable. Define the function w by

w : gl(n,R) → R , w(F ) = g(σ(F )).

Then w is convex.

We shall use the Theorem 6.2. Buliga [5]. We need a notation first. Let x =

(x1, ..., xn) ∈ Rn be a vector. Then the vector x↓ = (x↓1, ..., x
↓
n
) ∈ Rn is obtained by

rearanging in decreasing order the components of x. Remark that for any symmetric
function h : Rn → R there exists and it is unique the function p : Rn → R defined
by the relation:

p(

k
∑

i=1

x
↓
i
) = h(xk)

Theorem 6.2. Let g : (0,∞)n → R be a continuous symmetric function and h :
Rn → R, h(x1, ..., xn) = g(expx1, ..., expxn). Suppose that

(a) h is convex,
(b) The function p associated to h is nonincreasing in each argument.

Let Ω ⊂ Rn be bounded, with piecewise smooth boundary and φ : Ω → R be any
Lipschitz function such that Dφ(x) ∈ GL(n,R)+ a.e. and φ(x) = x on ∂Ω. Define
the function

w : GL(n,R)+ → R , w(F ) = g(σ(F ))

Then for any F ∈ GL(n,R)+ we have:
∫

Ω

w(FDφ(x)) ≥ | Ω | w(F )(12)

A consequence of theorem 6.2 and Theorem 2.1 (a) is:

Proposition 6.1. In the hypothesis of Theorem 6.2, let φh : Ω → Rn be a sequence
of Lipschitz bounded functions such that

(a) for any h Dφh(x) ∈ GL(n,R)+ a.e. in Ω.
(b) the sequence φh converges uniformly to u : Ω → Ω, bi-Lipschitz function.

Then

lim inf
h→∞

∫

Ω

w(Dφh(x)) ≥
∫

Ω

w(Du(x))(13)

Proof. It is clear that theorem 6.2 implies the hypothesis of point (a), theorem
2.1. Indeed, the conclusion of theorem 6.2 can be written like this: for any u ∈
[GL(n,R)+](Ω) such that

D̄u(Ω) =
1

| Ω |

∫

Ω

Du(x) dx ∈ GL(n,R)+

we have the inequality
∫

Ω

w(Du(x)) dx ≥
∫

Ω

w(D̄u(Ω)) dx
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Take a sequence of mapping (uh) ⊂ [GL(n,R)+](Ω) uniformly convergent to F ∈
GL(n,R)+. The previous inequality and the continuity of w imply:

∫

Ω

w(F ) dx ≤
∫

Ω

w(Duh(x)) dx

Apply now theorem 2.1 (a) and obtain the thesis.

The class of functions w described in theorem 6.2 and the class of polyconvex
functions seem to be different. However, by picking h linear, we obtain a polyconvex
function, like

w(F ) = − log | detF |
We have seen in proposition 5.3 that this function is not GL(n,R) quasiconvex but
proposition 6.1 tells that w is GL(n,R)+ quasiconvex.

We close with an example of another function which we can prove that it is
GL(n,R)+ quasiconvex. We use the notation F = RFUF for the polar decomposi-
tion of F ∈ GL(n,R)+, with UF symmetric and positive definite. The example is
the function:

w : GL(n,R)+ → R , w(F ) = detF log (trace UF )

With the notation introduced in proposition 5.4, let’s look to the the function
ŵ = ıw. It has the expression:

ŵ : GL(n,R)+ → R , ŵ(F ) = log
(

trace U−1
F

)

It is a matter of straightforward computation to check that ŵ verifies the hypothesis
of theorem 6.2. It is therefore GL(n,R)+ quasiconvex. By proposition 5.4 w is
GL(n,R)+ quasiconvex, too, hence lower semicontinuous in the sense of theorem
2.1 (a).
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Bucureşti, Romania

Marius.Buliga@imar.ro

Abstract

The resemblance between the Horn-Thompson theorem and a recent the-

orem by Dacorogna-Marcellini-Tanteri indicates that Schur convexity and

the majorization relation are relevant for applications in the calculus of vari-

ations and its related notions of convexity, such as rank-one convexity or

quasiconvexity.

We give in theorem 6.6 simple necessary and sufficient conditions for an

isotropic objective function to be rank one convex on the set of matrices with

positive determinant.

Majorization is used in order to give a very short proof of a theorem of

Thompson and Freede [19], Ball [3], or Le Dret [13], concerning the convexity

of a class of isotropic functions which appear in nonlinear elasticity.

Next we prove (theorem 7.3) a lower semicontinuity result for functionals

with the form

Z

Ω

w(Dφ(x)) dx, with w(F ) = h(ln VF ). Here F = RF UF =

VF RF is the usual polar decomposition of F ∈ gl(n, R), and ln VF is Hencky’s

logarithmic strain.

We close this paper with a compact proof of Dacorogna-Marcellini-Tanteri

theorem, based only on classical results about majorization. The mentioned

resemblance of this theorem with the Horn-Thompson theorem is thus ex-

plained.

Keywords: convexity, majorization, Schur-convexity, quasiconvexity, Hencky’s
logarithmic strain

MSC classes: 74B20, 35Q72
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1 Introduction

There is a strong resemblance between the following two theorems. The first the-
orem is (Horn, [11](1954), Thompson [18](1971), theorem 1.):

Theorem 1.1 Let X, Y be any two positive definite n × n matrices and let x1 ≥
x2 ≥ ... ≥ xn and y1 ≥ y2 ≥ ... ≥ yn denote the respective sets of eigenvalues.
Then there is an unitary matrix U such that XU and Y have the same spectrum
if and only if:

k
∏

i=1

xi ≥
k
∏

i=1

yi , k = 1, ..., n − 1

n
∏

i=1

xi =
n
∏

i=1

yi

The second theorem is Dacorogna-Marcellini-Tanteri [8](2000), Theorem 20,
see also Dacorogna, Marcellini [7]. Rank one convexity and polyconvexity are fun-
damental notions in the calculus of variations, briefly explained in section 5.

Theorem 1.2 Let 0 ≤ σ1(A) ≤ ... ≤ σn(A) denote the singular values of a matrix
A ∈ R

n×n. For any string of given numbers 0 ≤ a1 ≤ ... ≤ an we define the set of
n × n matrices:

E(a) =

{

A ∈ R
n×n : σi(A) = ai , i = 1, ..., n , detA =

n
∏

i=1

ai

}

The following then holds

Pco E = Rco E(a) =

{

A ∈ R
n×n :

n
∏

i=ν

σi(A) ≤
n
∏

i=ν

ai , ν = 2, ..., n ,

det A =

n
∏

i=1

ai

}

where PCo, Rco stand for polyconvex, rank one convex envelope.

Both theorems can be understood as describing the set {y : y ≺≺ x} where
≺≺ is a preorder relation defined with the help of inequalities between products
appearing in the formulations of the theorems.

It turns out that a common framework of these apparently unrelated results
is the notion of majorization. This notion is familiar to mathematical fields like
stochastic analysis, linear algebra, Lie groups theory. In this paper a first attempt
is made to apply results connected to majorization to elasticity and the calculus
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of variations. We shall obtain simpler proofs of known results and new results as
well.

It is significant to notice that most of the majorization results used in this
paper are earlier or contemporary with the fundamental paper of Morrey (1952)
[15] on quasiconvexity. However, it seems that there was not much interaction
between these fields until now.

The content of the paper is described further. After the setting of notations
in section 2, section 3 gives a brief passage trough basic properties of the majoriza-
tion relation. Section 4 lists some properties of singular values and eigenvalues of
matrices connected to majorization. In section 5 rank one convexity, quasiconvex-
ity and polyconvexity are introduced as fundamental notions in the calculus of
variations.

The paper continues with four applications of the classical results mentioned
in sections 2–5.

The first application is in the field of nonlinear hyperelastic materials. Theo-
rem 6.6 gives simple necessary and sufficient conditions for an isotropic objective
function to be rank one convex on the set of matrices with positive determinant.
The subject has a long history: the oldest citation used in this paper is Baker,
Ericksen (1954) [1].

As a second application, we use majorization in order to give a very short
proof of a theorem of Thompson and Freede [19], Ball [3], or Le Dret [13] (in this
paper theorem 7.2).

We prove next (theorem 7.3) a lower semicontinuity result for functionals

with the form

∫

Ω

w(Dφ(x)) dx, with w(F ) = h(ln VF ). Here F = RF UF = VF RF

is the usual polar decomposition of F ∈ gl(n, R) and lnVF is Hencky’s logarithmic
strain.

We close the paper with a proof of Dacorogna-Marcellini-Tanteri theorem,
based only on classical results about majorization. This explains the resemblance
between theorems 1.1 and 1.2. Related results can be found in [16] where Silhavy
expresses Baker-Ericksen inequalities using multiplication instead of division, too.

Acknowledgements. I have learned about Horn-Thompson theorem with
its amazing implications in Lie group convexity results from discussions with Tudor
Ratiu. I want to thank Bernard Dacorogna for keeping me connected with parts
of his research. Thanks are due to the anonymous referee for various suggestions
leading to an improvement of the paper.

2 Notations

- A,B, ... real or complex matrices

- x,y,u,v, ... real or complex vectors

- gl(n, K) space of all n × n real (K = R) or complex (K = C) matrices
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- GL(n, K) space of all n × n invertible real or complex matrices

- GL(n, R)+ the group of all n×n invertible real matrices with strictly positive
determinant

- Sym(n, R) the space of all n × n invertible, real, symmetric matrices

- SO(n) the group of all n × n real orthogonal matrices with positive deter-
minant

- λ(A) the vector of eigenvalues of A

- σ(A) the vector of singular values of A

- A∗ the conjugate transpose of A

- AT the transpose of A

- diag(A) the diagonal of A, seen as a vector

- Diag(v) the diagonal matrix constructed from the vector v

- Sn the group of permutation of coordinates in R
n

- Conv(A) the convex hull of the set A

- ◦ function composition

- f,i partial derivative of the function f with respect to the coordinate xi

- f,ij the second-order partial derivative of the function f with respect to the
coordinates xi, xj

For any matrix A ∈ gl(n, C), the matrix A∗A is Hermitian. The eigenvalues
of the square root of A∗A are, by definition, the singular values of A. If the matrix
A is Hermitian or real symmetric and positive definite then we denote by lnA the
logarithm of A.

Matrices are identified with linear transformations.
For a vector x ∈ R

n we denote by x↓, x↑, the vectors obtained by rearranging
the coordinates of x in decreasing, respectively increasing orders.

Let f : A ⊂ R → R be an arbitrary function and n a strictly positive integer.
We shall use the notation f : An → R

n for the function

x = (x1, ..., xn) ∈ An 7→ f(x) = (f(x1), ..., f(xn)) ∈ R
n

For example the logarithm function f : (0, +∞) → R, f(x) = lnx, has associ-
ated the function denoted by the same symbol ln : (0, +∞)n → R

n the function
ln(x1, ..., xn) = (lnx1, ..., ln xn).
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For any symmetric, positive definite, real matrix A let us denote by lnA

the logarithm of A. Then , with the notations made before, we have λ(ln A) =
ln (λ(A)).

Finally, B(x, r) denotes the ball in R
n, of radius r > 0 and center x ∈ R

n. If
Ω is an open, bounded set in R

n then | Ω | denotes its Lebesgue measure.

3 Basics about majorization

We have used Bhatia [4], Chapter 2, and Marshall and Olkin [14], Chapters 1-3.
The results are given in the logical order.

Definition 3.1 The following majorization notions are partial order relations in
R

n. Let x, y ∈ R
n be arbitrary vectors. Then:

- x ≤ y if xi ≤ yi for any i ∈ {1, ..., n}.

- x ≺w y if

k
∑

j=1

xj
↓ ≤

k
∑

j=1

yj
↓ for any k ∈ {1, ..., n}. We say that x is weakly

majorized by y.

- x ≺ y if x ≺w y and

n
∑

j=1

xj
↓ =

n
∑

j=1

yj
↓. We say that x is majorised by y.

The notion of majorization, the last in definition 3.1, is the most interest-
ing. See Marshall and Olkin [14], Chapter 1, for the various places when one can
encounter it.

Theorem 3.2 (Hardy, Littlewood, Polya) The following statements are equiva-
lent:

(i) x ≺ y

(ii) x is in the convex hull of Sny, where Sny is the set of all permutations of y,

(iii) for any convex function φ from R to R we have
n
∑

i=1

φ(xi) ≤
n
∑

i=1

φ(yi).

In the following definition we collect various notions useful in the following
(notably monotonicity notions related to order relations).

Definition 3.3 Consider a map Φ defined from an Sn invariant set in R
n, with

range in R
m. We say that Φ is:

- symmetric if for any P ∈ Sn there is P ′ ∈ Sm such that Φ ◦ P = P ′ ◦ Φ,
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- increasing if x ≤ y =⇒ Φ(x) ≤ Φ(y),

- convex if for all t ∈ [0, 1] Φ(tx + (1 − t)y) ≤ tΦ(x) + (1 − t)Φ(y),

- isotone if x ≺ y =⇒ Φ(x) ≺w Φ(y),

- strongly isotone if x ≺w y =⇒ Φ(x) ≺w Φ(y),

- strictly isotone if x ≺ y =⇒ Φ(x) ≺ Φ(y).

Any isotone Φ with range in R is called Schur-convex. Note that convexity in the
sense of this definition matches with the classical notion for functions Φ with range
in R.

In particular a function f : A ⊂ R
n → R symmetric if for any permutation

matrix P ∈ Sn we have P (A) ⊂ A and f ◦ P = f .
The next theorem shows that symmetric convex maps are isotone.

Theorem 3.4 Let Φ : R
n → R

m be convex. If Φ is symmetric then it is isotone.
If in addition Φ is monotone increasing then Φ is strictly isotone.

In particular any Lp norm on R
n is Schur-convex. Not all isotone functions are

convex, though. Important examples are the elementary symmetric polynomials,
which are not convex but they are Schur-concave.

One can give three characterizations of isotone (or Schur convex) functions
f : R

n → R. Before that we need some notations.
Let us begin by noticing that the permutation group Sn acts on GL(n, R)+

as follows: for any P ∈ Sn and any F ∈ GL(n, R)+ the matrix P.F ∈ GL(n, R)+

has components (P.F )ij = FP (i)P (j) .
Let

D = {x ∈ R
n : x1 ≥ x2 ≥ ... ≥ xn} ,

D” = {x ∈ R
n : x1 ≥ x2 − x1 ≥ ... ≥ xn − xn−1} .

Let h: R
n → R be a symmetric function. Then there is a unique function

p : D” → R such that for all x ∈ R
n we have

p

(

(
k
∑

i=1

y
↓
i
)k=1,...,n

)

= h(y) .

Indeed, for given h the function p is defined by

p(y1, ..., yn) = h(y1, y2 − y1, ..., yn − yn−1)quad.

The Schur convexity of h is connected to the monotonicity of p. From the
definitions we see that h is Schur convex if and only if p is increasing in the first
n − 1 arguments. This leads to the following theorem.
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Theorem 3.5 Let A ⊂ R
n be symmetric and let f : A → R. Then f is Schur

convex if and only if f is symmetric and

x1 7→ f(x1, s − x1, x3, ..., xn)

is increasing in x1 ≥ s/2, for any fixed s, x2, ...., xn.
If in addition A = In where I is an open interval of R and f is continuously

differentiable on A, then f is Schur convex if and only if one of the following
assertions is true:

(a) (Schur) f is symmetric and for any i and for all x ∈ D ∩ In the function

t 7→ f,i(x1, ..., xi + t, ..., xn)

is decreasing.

(b) (Schur) f is symmetric and for all i 6= j

(xi − xj)(f,i(x) − f,j(x)) ≥ 0 .

For weak majorization and strongly isotone functions we have the following
theorem:

Theorem 3.6 Let I be an open interval in R and let f : In → R.

(a) (Ostrowski)Let f be continuously differentiable. Then f is strongly isotone if
and only if f is symmetric and for all x ∈ D∩ In we have Df(x) ∈ D∩R

n

+,
that is:

f,1(x) ≥ f,2(x) ≥ ... ≥ f,n(x) ≥ 0 .

(b) Without differentiability assumptions, f is strongly isotone if and only if f

is increasing and Schur convex.

4 Order relations for matrices

The results from this section have deep connections with Lie group theory. We
shall give here only a minimal presentation, for matrix groups.

The main references are again Bhatia [4], Chapter 2, and Marshall and Olkin
[14], Chapter 3; also Thompson [18]. The paper Kostant [12] gives an image of
what is really happening from the Lie group point of view.

Definition 4.1 We denote by P(n) the cone of Hermitian, positive definite ma-
trices. In the class of Hermitian matrices we define the preorder relation A ≥ B

by A − B ∈ P(n).
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The order relation ≤ between Hermitian matrices reflects into the order re-
lation between the eigenvalues as it is shown in the next theorem, belonging to
Weyl (theorem F1, chapter 16, Marshall and Olkin [14]).

Theorem 4.2 (Weyl) If A, B are Hermitian matrices such that A ≤ B then

λ↓(A) ≤ λ↓(B) .

In [18] Thompson introduces the following preorder relation on GL(n, R)+:

X ≺ Y if lnσ(X) ≺ ln σ(y) .

With the use of this relation, the Horn-Thompson theorem 1.1, mentioned in
the introduction of the paper, can be reformulated as:

Theorem 4.3 (Horn,Thompson, theorem 1.1 reformulated) Let X, Y be any two
positive definite n × n matrices and let x1 ≥ x2 ≥ ... ≥ xn and y1 ≥ y2 ≥ ... ≥ yn

denote the respective sets of eigenvalues. Then there is an unitary matrix U such
that XU and Y have the same spectrum if and only if Y ≺ X.

Another interesting majorization occurs between the absolute value of eigen-
values and singular values respectively.

Theorem 4.4 (Weyl) For any matrix F ∈ GL(n, C) we have the inequality:

ln | λ(F ) | ≺ ln σ(F ) .

We end this section with two results of Fan (see [14] Theorem G.1, page 241
and G.1.d page 243).

Theorem 4.5 (a) (Fan 1949) Let G, H be two Hermitian matrices. Then

λ(G + H) ≺ (λ↓
1(G) + λ

↓
1(H), ..., λ↓

n
(G) + λ↓

n
(H)) .

(b) (Fan 1951) if A and B are n × n matrices then

σ(A + B) ≺w σ(A) + σ(B) .
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5 Notions of convexity in the calculus of varia-

tions

Morrey [15] introduced the notion of quasiconvexity in relation with the direct
method in the calculus of variations for functionals in integral form defined over
Sobolev spaces.

Let m, n > 0 be given natural numbers, p ∈ [1,∞] and Ω ⊂ R
m an open,

bounded set with piecewise smooth boundary. Let us consider the set W̄ 1,p(Ω, Rm)
of all functions φ defined almost everywhere (with respect to the Lebesgue mea-
sure) on Ω, with values in R

n, which are L1 integrable and with derivative in
the sense of distribution being Lp integrable. The Sobolev space W 1,p(Ω, Rm) is
defined as the collection of equivalence classes of functions in W̄ 1,p(Ω, Rm) with
respect to equality almost everywhere in Ω.

By a well known theorem of Lebesgue, for any element φ ∈ W 1,p(Ω, Rm) the
limit

φ̄(x) = lim
r→0+

1

| B(x, r) |

∫

B(x,r)

φ(y)

exists almost everywhere in Ω. Therefore any element φ ∈ W 1,p(Ω, Rm) has associ-
ated in a canonical way an element φ̄ ∈ W̄ 1,p(Ω, Rm). As it is customarily done, we
identify φ with φ̄, which transforms W 1,p(Ω, Rm) into a subspace of W̄ 1,p(Ω, Rm).
This identification has several nice properties, the most noticeable being that the
space W 1,∞(Ω, Rm) identifies with the space of Lipschitz functions from Ω to R

m

and the weak ∗ convergence in W 1,∞(Ω, Rm) becomes the uniform convergence.
A function φ : Ω → R

m is Lipschitz if there is a positive constant C such that for
any x, y ∈ Ω we have

‖φ(x) − φ(y)‖ ≤ C ‖x − y‖ .

Morrey’s quasiconvexity is a necessary and sufficient condition for the lower
semicontinuity of the functional

I : W 1,∞(Ω, Rm) → R , I(φ) =

∫

Ω

w(Dφ(x)) .

Definition 5.1 Let w : R
n×m → R be a measurable function and Ω = (0, 1)n.

The function w is quasiconvex if for any F ∈ R
n×m and for any Lipschitz function

u : Ω → R
m, such that u(x) = 0 on ∂Ω, we have the inequality:

∫

Ω

w(F + Du(x)) ≥
∫

Ω

w(F ) .

By a translation and rescaling argument, in this definition Ω can be replaced
by any open bounded subset of R

n. If the function w is continuous, then in the
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particular cases n = 1 or m = 1 quasiconvexity is equivalent with convexity of
w (Tonelli [20]). In general quasiconvexity is a somewhat mysterious notion, very
difficult to establish. That is why Morrey proposed the notion of polyconvexity,
later used by Ball in several fundamental results in nonlinear elasticity. Polyconvex
functions are quasiconvex. Further we explain what polyconvex functions are.

For any natural number n > 0 a multi-index α is a string α = (i1, ..., ik),
1 ≤ i1 < ... < ik ≤ n. The length of α is | α |= k.

For given natural numbers m, n > 0, k ≤ min {m, n} and for any multi-
indices α = (i1, ..., ik) and β = (j1, ..., jk) of length k, we denote by Mαβ the
function which associates to any matrix F ∈ R

n×m the minor

Mαβ(F ) = det
(

Fip,jq

)

p,q=1,...,k
.

Moreover, we denote by M(F ) the ordered collection of all minors of the matrix
F , in a given lexicographic order.

Definition 5.2 A continuous function w : R
n×m → R is polyconvex if it can be

written as w(F ) = g(M(F )), with g convex function.

A necessary condition for quasiconvexity is rank one convexity. For matrices
A, B, we denote by [[A, B]] the line segment

[[A, B]] = {(1 − t)A + tB : t ∈ [0, 1]} .

Definition 5.3 The function w : R
n×m → R is rank one convex if for any A, B ∈

R
n×m such that rank (A −B) = 1 the function t ∈ [0, 1] 7→ w((1 − t)A + tB) ∈ R

is convex.

If the function w is C2 then rank one convexity can be expressed as an ellip-
ticity condition, see further (1).

Let us denote by Rco, Qco, Pco, Conv the classes of rank one convex, qua-
siconvex, polyconvex and convex functions respectively. We have then:

Conv ⊂ Pco ⊂ Qco ⊂ Rco .

Definition 5.4 To each notion of convexity corresponds a notion of convex hull:

- the rank one convex hull of a non empty set A ⊂ R
n×m is

Rco(A) =

{

H ∈ R
n×m : w(H) ≤ inf

F∈A

w , ∀w ∈ Rco

}

,

- the quasiconvex hull of a non empty set A ⊂ R
n×m is

Qco(A) =

{

H ∈ R
n×m : w(H) ≤ inf

F∈A

w , ∀w ∈ Qco

}

,

10



- the polyconvex hull of a non empty set A ⊂ R
n×m is

Pco(A) =

{

H ∈ R
n×m : w(H) ≤ inf

F∈A

w , ∀w ∈ Pco

}

,

- the convex hull of a non empty set A ⊂ R
n×m is

Conv(A) =

{

H ∈ R
n×m : w(H) ≤ inf

F∈A

w , ∀w ∈ Conv

}

.

We have the inclusions:

Rco(A) ⊂ Qco(A) ⊂ Pco(A) ⊂ Conv(A) .

The particular case m = n is important in applications to the elasticity
theory. In this case functions φ ∈ W 1,p(Ω, Rn) represent displacements of the
body with reference configuration Ω ⊂ R

n and w : gl(n, R) → R is the potential
of the elastic energy of the body.

From the point of view of mechanics we should consider only displacements
φ which are inversible functions in some (weak or strong) sense. We shall not
enter into details here, but we shall consider only the particular case of W 1,∞

displacements, seen as Lipschitz functions, as explained previously. In applications
we should only look at displacements φ which are bi-Lipschitz functions, that is
functions φ : Ω ⊂ R

n → R
n such that there are constants C, C′ > 0 with the

property that for any x, y ∈ Ω

C′ ‖x − y‖ ≤ ‖φ(x) − φ(y)‖ ≤ C ‖x − y‖ .

According to Rademacher theorem any Lipschitz function is derivable almost ev-
erywhere. We concentrate on bi-Lipschitz displacements φ : Ω ⊂ R

n → R
n such

that almost everywhere Dφ(x) ∈ GL(n, R)+. In this case the elastic potential w

becomes a function w : GL(n, R)+ → R. (Notice that such displacements φ are
only locally inversible; global inversibility conditions lead to very difficult problems
in the calculus of variations.)

In [5] we introduced the following notion of quasiconvexity.

Definition 5.5 Let w : GL(n, R)+ → R be a function and Ω = (0, 1)n. w is
multiplicative quasiconvex if for any F ∈ GL(n, R)+ and for any Lipschitz function
u : Ω → R, such that for almost any x ∈ Ω detDu(x) > 0 and u(x) = x on ∂Ω,
we have the inequality:

∫

Ω

w(FDu(x)) ≥
∫

Ω

w(F )

The notion of multiplicative quasiconvexity appears as Diff-quasiconvexity
in Giaquinta, Modica, Soucek [10], page 174, definition 3. It can be found for
the first time in Ball [3], in a disguised form. It is in fact the natural notion to
be considered in connection with continuous media mechanics. Any polyconvex
function is multiplicative quasiconvex.
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6 Objective isotropic elastic potentials

In elasticity displacements are considered with respect to a reference frame. That
is why the elastic potential w : GL(n, R)+ → R should be frame-indifferent (or
objective), which is expressed as: for all F ∈ GL(n, R)+ and all Q ∈ SO(n) we
have w(QF ) = w(F ). The potential corresponds to an isotropic elastic material if
for all F ∈ GL(n, R)+ and all Q ∈ SO(n) we have w(FQ) = w(F ).

If w is objective and isotropic then there is a symmetric function g : R
n

+ → R

such that w(F ) = g(σ(F )). If w is C2 so is g, see Ball [2].
The definition 5.3 of rank one convexity for functions w : GL(n, R)+ → R

has to be slightly modified.

Definition 6.1 The function w : GL(n, R)+ → R is rank one convex if for any
A, B ∈ GL(n, R)+ such that rank (A−B) = 1 and such that [[A, B]] ⊂ GL(n, R)+

the function t ∈ [0, 1] 7→ w((1 − t)A + tB) ∈ R is convex.

If w is C2, then it is rank one convex if and only if it satisfies the ellipticity
condition:

n
∑

i,j,k,l=1

∂2w

∂Fij∂Fkl

(F )aibjakbl ≥ 0 (1)

for any F ∈ GL(n, R)+, a, b ∈ R
n.

There is a certain interest in giving necessary and sufficient conditions for
an objective isotropic w to be rank one convex, especially in the cases n = 2 and
n = 3. These conditions have been expressed in copositivity terms in Simpson
and Spector [17] for n = 3, Silhavy [16] and Dacorogna [6] for arbitrary n (for an
account on the history of results related to this problem see the [16] or [6]).

In this section we shall obtain simpler necessary and sufficient conditions for
rank one convexity of isotropic functions. For this we need some preparations.

We shall introduce two auxiliary functions, h and l:

h : R
n → R , h(x) = g(exp x) (2)

l : R
n

+ → R , l(x) = g(
√

x) (3)

The function h will be called ”the diagonal of w”.

Definition 6.2 For any C2, symmetric function f : A ⊂ R
n → R, with A open,

symmetric set, we define the function Sch(f) : A → Sym(n, R) by:

(a) for (i, j) any pair of indices, with i, j ∈ {1, ..., n}, i 6= j and any x ∈ A such
that xi 6= xj we put

Schij(f)(x) =
f,i(x) − f,j(x)

xi − xj

12



(b) for (i, j) any pair of indices, with i, j ∈ {1, ..., n}, i 6= j and any x ∈ A such
that xi = xj we put

Schij(f)(x) = f,ij(x) − f,jj(x)

(c) if i = j then we put Schii(f)(x) = 0 for any x ∈ A.

By theorem 3.5 (b) the function f is Schur convex if and only if for any i, j ∈
{1, ..., n} and any x ∈ A we have Schij(f)(x) ≥ 0. Remark also that the matrix
function Sch(f) is by definition continuous, namely the expression of Sch(f) from
(b) in previous definition is obtained from extension by continuity of the definition
of Sch(f) from the point (a).

In order to properly formulate the next result of Ball (here theorem 6.5) we
need one more definition.

Definition 6.3 Let g : (0, +∞)n → R be any C2, symmetric function. For any
pair of indices (i, j) with i, j ∈ {1, ..., n}, such that i 6= j, and for any x ∈ (0, +∞)n

with xi 6= xj we define:

Gij(x) =
xig,i(x) − xjg,j(x)

x2
i
− x2

j

Hij(x) =
xjg,i(x) − xig,j(x)

x2
i
− x2

j

For i = j and any x ∈ (0, +∞)n we shall put Hii(x) = Gii(x) = 0.

Lemma 6.4 Let g : (0, +∞)n → R be a C2, symmetric function, and h, l the
associated functions defined by relations (2), (3). Then for any pair of indices
(i, j) with i, j ∈ {1, ..., n}, such that i 6= j, and for any x ∈ R

n with xi 6= xj we
have:

Gij(exp x)
exp(2xi) − exp(2xj)

xi − xj

= Schij(h)(x)

For any y ∈ (0, +∞)n with yi 6= yj we have:

Hij(y) = 2yiyj Schij(l)(x
2)

A direct consequence is that for any pair of indices (i, j) the functions Gij

and Hij from definition 6.3 can be extended by continuity to all x ∈ (0, +∞)n.

Proof. By direct computation. �

The following is theorem 6.4 Ball [2], slightly reformulated.

13



Theorem 6.5 For x with all components different, the ellipticity condition (1)
for the objective isotropic function w can be expressed in terms of the associated
function g as

n
∑

i,j=1

gijaiajbibj +
∑

i6=j

Gija
2
i
b2
j

+
∑

i6=j

Hijaiajbibj ≥ 0

From lemma 6.4, by continuity arguments it follows that one can write the
ellipticity condition for all x ∈ R

n

+ as:

n
∑

i,j=1

Hijaiajbibj +

n
∑

i,j=1

Gija
2
i
b2
j

≥ 0 (4)

where H is the matrix H = H + D2g.
The main result of this section is written further.

Theorem 6.6 Necessary and sufficient conditions for w ∈ C2 to be rank one
convex are:

(a) h is Schur convex and

(b) for any x ∈ R
n we have

Hijxixj + Gij | xi || xj | ≥ 0 (5)

Remark 6.7 The condition (a) is equivalent with the Baker-Ericksen [1] set of
inequalities

xig,i(xi, xj) − xjg,j(xi, xj)

x2
i
− x2

j

≥ 0

for all i 6= j and x such that xi 6= xj . Indeed, by theorem 3.5 (b), the function h

is Schur convex if and only if

(h,i(xi, xj) − h,j(xi, xj)) (xi − xj) ≥ 0

for all i 6= j and xi 6= xj . By lemma 6.4 this is equivalent with Gij ≥ 0. In
[16] Silhavy expresses Baker-Ericksen inequalities using multiplication instead of
division, too.
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Proof. We prove first the sufficiency. The hypothesis is that for all i, j Gij ≥ 0
and for all x ∈ R

n the relation (5) holds. We claim that for any a, b ∈ R
n the

inequality
Gijaiajbibj ≤ Gija

2
i
b2
j

is true. The ellipticity condition follows then from (5) by the choice xi = aibi, for
each i = 1, ..., n. Indeed, we have the chain of inequalities

0 ≤ Hijaibiajbj + Gij | aibi || ajbj | ≤ Hijaibiajbj + Gija
2
i
b2
j

In order to prove the claim note that Gij ≥ 0 implies

−Gij(ajbi − aibj)
2 ≤ 0

A straightforward computation which uses the relations Gij = Gji gives

0 ≥ −Gij(ajbi − aibj)
2 = 2Gij(ajbi − aibj)aibj

The sufficiency part is therefore proven.
For the necessity part choose first in the ellipticity condition ai = δiI , bi = δiJ .

For I 6= J we obtain GIJ ≥ 0, which implies the Schur convexity of h, as it is
explained in remark (6.7). (For I = J we obtain g,II ≥ 0, which is interesting but
with no use in this proof.)

Next, suppose that x, a ∈ (R∗)n and choose bi = xi/ai for each i = 1, ..., n.
The ellipticity condition gives:

∑

i,j

Hijxixj +
n
∑

i,j=1

Gij

(

ai

aj

)2

x2
j

≥ 0

Take a2
i

=| xi | and get (5), but only for x ∈ (R \ {0})n. The expression from
the left of (5) makes sense for any x. Evoking continuity with respect to x, the
theorem is proved. �

The conditions given in theorem 6.6 have some advantages compared with the
ones available in the literature. The relation between rank one convexity and Schur
convexity, which is rather obvious, can be used to obtain lower semicontinuity
results. As for the condition (b), it concentrates in one inequality (containing
absolute values) a family of 2n inequalities expressing copositivity. Moreover, for
n = 2 or n = 3, it can be used to obtain explicit conditions, as in theorem 5,
Dacorogna [6].

At the end of this section we would like to discuss about nematic elastomers.
For a mathematical treatment of these materials see for example DeSimone, Dolz-
mann [9]. Such a material is incompressible, isotropic and homogeneous. The elas-
tic potential has the expression:

w(F ) =
σ1

↓(F )

a1
+

σ2
↓(F )

a2
+

σ1
↓(F )

a3
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with a1 > a2 ≥ a3 > 0. For the set of minimizers of the (quasiconvexification of
the) associated energy functional the microstructure phenomenon appears.

A quick computation give directly the associated function p (see the notation
introduced before theorem 3.5 in section 3). It has the expression:

p(y1, y2, y3) =
ey1

a1
+

ey2−y1

a2
+

ey3−y2

a3

The function p is defined over D” and it is not increasing in y1, y2, therefore
h is not Schur convex. By theorem 6.6 the function w is not rank one convex, as
expected. We think that the fact that h is not Schur convex explains the apparition
of microstructure, which is seen in [9] as an ”SO(3) symmetry breaking”. Such a
symmetry breaking appears also in linear algebra: the Schur-Horn theorem states
that the set

{

(A11, A22, A33) : A = QDiag(a)QT , Q ∈ SO(3)
}

is a convex polygon. This theorem is the linear version of the Horn-Thompson
theorem. It is conceivable then that a function h which is not Schur convex favorises
deformations with singular values vector located on the edges of a (well chosen)
convex polygon, leading thus to ”symmetry breaking”.

This makes me ask if there is any isotropic function w, with Schur convex
associated function h, for which the microstructure phenomenon appears.

7 Majorization and Calculus of Variations

In this section we shall use majorization techniques in order to obtain simpler
proofs of known results and to prove a new lower semicontinuity result which
might have applications in Elasticity.

We start with a short proof of a classical theorem:

Theorem 7.1 Let h : R
n → R be a symmetric, convex function. Then w :

Sym(n, R) → R, w(F ) = h(λ(F )) is convex.

Proof. We use the inequality of Fan (1949): for any A, B ∈ Sym(n, R) we have

λ(A + B) ≺ (λ1
↓(A) + λ1

↓(B), ..., λn
↓(A) + λn

↓(B))

By hypothesis h is convex and symmetric, therefore it is Schur convex. From Fan
majorization relation we get: for any α, β ∈ [0, 1], α + β = 1

w(αA + βB) = h(λ(αA + βB)) ≤ h(λ↓(αA) + λ↓(βB))

The chain of inequalities continues by using first the convexity and then the sym-
metry of h:

h(λ↓(αA) + λ↓(βB)) = h(αλ↓(A) + βλ↓(B)) ≤ αh(λ(A)) + βh(λ(B)) �
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We quote next the following theorem of Thompson and Freede [19], Ball [3]
(for a proof coherent with this paper see Le Dret [13]). We shall give a very easy
proof of this theorem using weak majorization.

Theorem 7.2 Let g : [0,∞)n → R be convex, symmetric and nondecreasing in
each variable. Define the function w by

w : gl(n, R) → R , w(F ) = g(σ(F ))

Then w is convex.

Proof. This time we use the second inequality of Fan (1951): for any A, B ∈
gl(n, R) we have

σ(A + B) ≺w σ(A) + σ(B)

If g is symmetric, convex and nondecreasing in each variable then it is monotone
with respect to weak majorization. The proof resumes exactly as before. �

The main result of this section is:

Theorem 7.3 Let g : (0,∞)n → R be a continuous symmetric function and h :
R

n → R, h = g ◦ exp. Suppose that h is convex. Define w : gl(n, R) → R by

w(F ) =

{

g(σ(F )) if det F > 0
+∞ otherwise

Let F ∈ GL(n, R)+ and Ω ⊂ R
n be bounded, with piecewise smooth boundary.

Let (φh)h ⊂ W 1,1(Ω, Rn) be any sequence of functions such that:

(a) for any h we have φh − id ∈ W
1,1
0 (Ω, Rn) and

∫

Ω

w(FDφh(x)) dx < +∞

(b) Let Dφh = RφhUφh = V φhRφh be the polar decomposition of Dφh. We
shall suppose that ln V φh converges weakly in L1(Ω, Mn×n

sym
) to 0.

Then we have:

lim inf
h→∞

∫

Ω

w(FDφh(x)) ≥ | Ω | w(F ) (6)

For the lower semicontinuity properties of multiplicative quasiconvex func-
tions see Buliga [5], theorem 2.1. It is proved there that if the potential w satisfies
the inequality (6), but with respect to the usual W 1,∞ weak ∗ convergence, then it
induces a lower semicontinuous functional. In theorem 7.3 we use a different con-
vergence. It would be interesting to see if a lower semicontinuity theorem similar
with theorem 2.1 [5] holds for this convergence.
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It is to be remarked that lnV φ is the Hencky’s logarithmic strain, a good
measure of deformation which has been considered several times in the elasticity
literature.

In order to prepare the proof of Theorem 7.3, two lemmata are given.

Lemma 7.4 Let h : R
n → R be continuous, Schur convex and g = h ◦ ln. Define

w : GL(n, R)+ → R , w(F ) = g(σ(F ))

w̃ : GL(n, C) → R , w̃(F ) = g(| λ(F ) |)
Then for any F

w(F ) ≥ w̃(F )

Proof. This is a straightforward consequence of the Weyl inequality (theorem
4.4)

ln | λ(F ) | ≺ ln σ(F )

and of the Schur convexity of h. �

Lemma 7.5 With the notations from the lemma 7.4, for any two symmetric ma-
trices A, B, we have

w̃(exp A exp B) ≥ w̃(exp(A + B))

Proof. We have to check the conditions from Thompson [18], lemma 6, which
gives sufficient conditions on the function w̃ in order to satisfy the inequality we
are trying to prove. These conditions are:

(1) for any X and any symmetric positive definite Y w̃(XY ) = w̃(Y X). This is
obvious from the definition of w̃.

(2) for any X and any m = 1, 2, ...

w̃ ([XX∗]
m

) ≥ w̃
(

X2m
)

This follows from the definition of w̃ and lemma 7.4. �

We give now the proof of the theorem 7.3.
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Proof. It is not restrictive to suppose that | Ω |= 1. To any F ∈ GL(n, R)+ we
associate its polar decomposition F = RF UF = VF RF . For any function φ such
that Dφ(x) ∈ GL(n, R)+ we shall use the (similar) notation

Dφ(x) = Rφ(x)Uφ(x) = V φ(x)Rφ(x)

With the notations from the theorem, we have from the isotropy of w, hypothesis
(a) and theorem 3.4 that h is Schur convex. From lemma 7.4 and lemma 7.5 we
obtain the chain of inequalities, for any h:

∫

Ω

w(FDφh(x)) =

∫

Ω

w(UF V φh(x)) ≥
∫

Ω

w̃(UF V φh(x)) ≥

≥
∫

Ω

w̃ (exp (ln UF + lnV φh(x))) (7)

The proof continues using the definition of w and the Jensen inequality for convex
h:

∫

Ω

w̃ (exp (lnUF + lnV φ(x))) =

∫

Ω

h(ln | λ (exp (lnUF + lnV φ(x))) |)

=

∫

Ω

h(λ (ln UF + lnV φ(x))) ≥

≥ h

(
∫

Ω

λ (ln UF + lnV φ(x)) dx

)

(8)

The proof ends by using the weak L1 convergence hypothesis (b), when we
pass to the limit h → ∞. �

The family of functions satisfying the hypothesis of theorem 7.3 is very big.
As an example of a function satisfying the hypothesis of theorem 7.3 take the

polar decomposition F = RF UF and define the function: w(F ) = ln trace UF .
Indeed, using the notations of theorem 7.3, by straightforward computation we
find the associated function g : (0, +∞)n → R as

g(y1, ..., yn) = ln

(

n
∑

i=1

yi

)

hence the function h(x) = g(exp x) has the expression:

h(x1, ..., xn) = ln

(

n
∑

i=1

exp(xi)

)

It is easy to check that h is convex and nondecreasing in each argument.
Let us consider only the Schur convexity and componentwise convexity hy-

pothesis related to w.
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Proposition 7.6 Let h : R
n → R be Schur convex and the function x ∈ R 7→

h(ln(x), ..., ln(x)) be convex, continuous. Let φ : Ω → R be such that almost every-
where we have Dφ(x) ∈ GL(n, R)+,

∫

Ω

Dφ(x) = In

and the map x 7→ w(Dφ(x)) is integrable. Then

∫

Ω

w(Dφ(x)) ≥ | Ω | w(In)

Proof. Because h is Schur convex and for almost any x ∈ Ω

1

n
ln detDφ(x)(1, ...1) ≺ ln σ(Dφ(x))

we have the inequality

w(Dφ(x)) ≥ w
(

(detDφ(x))1/nIn

)

Use the convexity hypothesis to obtain the desired inequality. �

8 Rank one convex hulls and majorization

In this section it is explained how majorization appears in the representation of
some rank one convex hulls.

We give further a proof of theorem 1.2 using majorization. In this proof we
use the fact that majorization relation

x ≺≺ y if lnx ≺ ln y

is defined using polyconvex maps. The isotropy of the set E(a) from theorem 1.2
implies that the description of its rank one convex hull reduces to the description
of the set of matrices B ≺ Diag(a), where ≺ is Thompson’s order relation. These
facts explain the resemblance between theorems 1.1 and 1.2.

Let a ∈ (0,∞)n. Denote by E(a) the set of matrices F with positive deter-
minant such that σ(F ) = Pa for some P ∈ Sn. We have to prove the equality of
sets

Pco E(a) = Rco E(a) = K(a)

where
K(a) =

{

B ∈ GL(n, R)+ : B ≺ Diag (a)
}
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The set K(a) is polyconvex, being an intersection of preimages of (−∞, 0] by
polyconvex functions. Therefore

Rco E(a) ⊂ Pco E(a) ⊂ K(a)

It is left to prove that K(a) ⊂ Rco E(a). For this remark that E(a) can be written
as:

E(a) = {R (P.Diag(a))Q : R, Q ∈ SO(n) , P ∈ Sn}
Consider the convex cone of functions (Rco denotes the class of rank one convex
functions)

Rco(a) = {φ ∈ Rco : ∀A ∈ E(a) φ(A) = 0}
This cone is closed with respect to sup operation. Moreover, it has the same
symmetries as E(a). Indeed for any R, Q ∈ SO(n), any P ∈ Sn and any φ :
GL(n, R)+ define (R, Q, P ).φ to be the function

F ∈ GL(n, R)+ 7→ (R, Q, P ).φ(F ) = φ(R(P.F )Q)

If φ ∈ Rco(a) then (R, Q, P ).φ ∈ Rco(a).
For any φ ∈ Rco(a), let φ̄ be the objective isotropic function

φ̄(F ) = sup {(R, Q, P ).φ(F ) : R, Q ∈ SO(n) , P ∈ Sn}

If φ ∈ Rco(a) then φ̄ ∈ Rco(a), by the previous remark about symmetries of
Rco(a).

Objective isotropic rank one convex functions have Schur convex diagonal,
as a consequence of theorem 6.6 (a) (if the rank one convex w is not C2 use a
convolution argument). Therefore F ∈ K(a) and φ ∈ Rco(a) imply

φ(F ) ≤ φ̄(F ) ≤ φ̄(Diag(a)) = 0

This proves the inclusion K(a) ⊂ Rco(a).

References

[1] M. Baker, J.L. Ericksen, Inequalities restricting the form of the stress defor-
mation relations for isotropic elastic solids and Reiner-Rivlin fluids, J. Wash.
Acad. Sci., 44, (1954), 33–45

[2] J.M. Ball, Differentiability properties of symmetric and isotropic functions,
Duke Math. J., 51, (1984), 699–728

[3] J.M. Ball, Constitutive inequalities and existence theorems in nonlinear elas-
tostatics, in: Nonlinear analysis and mechanics: Heriot-Watt Symposium, vol.
1, R.J. Knops (ed.), Res. Notes in Math., 17, Pitman, (1977), 187–241

21



[4] R. Bhatia, Matrix Analysis, Graduate texts in mathematics, 169, Springer,
(1997)

[5] M. Buliga, Lower semicontinuity of integrals with G-quasiconvex potential,
Z. Angew. Math. Phys.,53, 6 (2002),949-961

[6] B. Dacorogna, Necessary and sufficient conditions for strong ellipticity of
isotropic functions in any dimension, Discrete Contin. Dyn. Syst., Ser. B,1,
no. 2, 257-263 (2001)

[7] B. Dacorogna, P Marcellini, Implicit partial differential equations, Progress in
nonlinear differential equations and their applications, 37, Boston Birkhauser
(1999)

[8] B. Dacorogna, P. Marcellini, C. Tanteri, Implicit type equations with con-
straints, C. R. Acad. Sci., Paris, Sr. I, Math., 330, No.4, 271-274 (2000)

[9] A. DeSimone, G. Dolzmann, Macroscopic response of nematic elastomers
via relaxation of a class of SO(3)-Invariant energies, Arch. Ration. Mech.
Anal.,161, No.3, 181-204 (2002)

[10] M. Giaquinta, G. Modica, J. Soucek, Cartesian Currents in the Calculus of
Variations, Modern Surveys in Mathematics, vol. 37-38, Springer, (1998)

[11] A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc.
Amer. Math. Soc., 5, (1954), 4–7

[12] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition,
Ann. scient. Éc. Norm. Sup. , 4e série, t. 6, (1973), 413 – 455

[13] H. Le Dret, Sur les fonctions de matrices convexes et isotropes, C.R. Acad.
Sci. Paris, t. 310, Série I, (1990), 617–620

[14] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applica-
tions, Mathematics in science and engineering, 143, Academic Press, (1979)

[15] C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple inte-
grals. Pacific J. Math.,2, (1952). 25–53

[16] M. Silhavy, On isotropic rank one convex functions, Proc. Royal Soc. Edin-
burgh,129A, (1999), 1081–1105

[17] H.C. Simpson, S.J. Spector, On copositive matrices and strong ellipticity for
isotropic materials, Arch. Rat. Mech. Anal., 84, (1983), 115–120

[18] C.J. Thompson, Inequalities and preorders on matrix spaces, Indiana Univ.
Math. J., 21, 5, (1971), 469 –480

22



[19] R.C. Thompson, L.J. Freede, Eigenvalues of sums of Hermitian matrices III,
J. Research Nat. Bur. Standards B, 75 B, (1971), 115–120

[20] [4] L. Tonelli, La semicontinuita nel calcolo delle variazioni, Rend. Circ. Mat.
Palermo, 44 (1920), 167–49

23



Journal of Generalized Lie Theory and Applications Vol. 1 (2007), No. 2, 65–95

Dilatation structures I. Fundamentals

Marius BULIGA

”Simion Stoilow” Institute of Mathematics of the Romanian Academy,
P.O. BOX 1-764, RO 014700 Bucureşti, Romania
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Abstract

A dilatation structure is a concept in between a group and a differential structure. In
this article we study fundamental properties of dilatation structures on metric spaces. This
is a part of a series of papers which show that such a structure allows to do non-commutative
analysis, in the sense of differential calculus, on a large class of metric spaces, some of them
fractals. We also describe a formal, universal calculus with binary decorated planar trees,
which underlies any dilatation structure.
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66 Marius Buliga

1 Introduction

The purpose of this paper is to introduce dilatation structures on metric spaces. A dilatation
structure is a concept in between a group and a differential structure. Any metric space (X, d)
endowed with a dilatation structure has an associated tangent bundle. The tangent space at
a point is a conical group, that is the tangent space has a group structure together with a
one-parameter group of automorphisms. Conical groups generalize Carnot groups, i.e nilpo-
tent groups endowed with a graduation. Each dilatation structure leads to a non-commutative
differential calculus on the metric space (X, d).

There are several important papers dedicated to the study of extra structures on a metric
space which allows to do a reasonable analysis in such spaces, like Cheeger [6] or Margulis-
Mostow [10, 11].

The constructions proposed in this paper first appeared in connection to problems in analysis
on sub-riemannian manifolds. Parts of this article can be seen as a rigorous formulation of the
considerations in the last section of Belläıche [1].

A dilatation structure is simply a bundle of semigroups of (quasi-)contractions on the metric
space (X, d), satisfying a number of axioms. The tangent bundle structure associated with
a given dilatation structure on the metric space (X, d) is obtained by a passage to the limit
procedure, starting from an algebraic structure which lives on the metric space.

With the help of the dilatation structure we construct a bundle (over the metric space) of
(local) operations: to each x ∈ X and parameter ε, for simplicity here ε ∈ (0,+∞), there is a
natural non-associative operation

Σx
ε : U(x)× U(x) → U(x)

where U(x) is a neighbourhood of x. The non-associativity of this operation is controlled by the
parameter ε. As ε goes to 0 the operation Σx

ε converges to a group operation on the tangent
space of (X, d) at x.

Denote by δx
ε the dilatation based at x ∈ X, of parameter ε. The bundle of operations satisfies

a kind of weak associativity, even if for any fixed y ∈ X the operation Σy
ε is non-associative.

The weak associativity property, named also shifted associativity, is

Σx
ε (u,Σδx

ε
ε (v, w)) = Σx

ε (Σx
ε (u, v), w)

for any x ∈ X and any u, v, w ∈ X sufficiently close to X. We shall describe also other objects
(like a function satisfying a shifted inverse property) and algebraic identities related to the
dilatation structure and the induced bundle of operations.

We briefly describe further the contents of the paper. In section 2 we give motivational
examples of dilatation structures. Basic notions and results of metric geometry and groups
endowed with dilatations are mentioned in section 3.

In section 4 we introduce a formalism based on decorated planar binary trees. This formalism
will be used to prove the main results of the paper. We show that, from an algebraic point of
view, dilatation structures (more precisely the formalism in section 4) induce a bundle of one
parameter deformations of binary operations, which are not associative, but shifted associative.
This is a structure which bears resemblance with the tangent bundle of a Lie group, but it is
more general.

Section 5, 6 and 7 are devoted to dilatation structures. These sections contain the main
results of the paper. After we introduce and explain the axioms of dilatation structures, we
describe several key metric properties of such a structure, in section 5. In section 6 we prove
that a dilatation structure induces a valid notion of tangent bundle. In section 7 we explain how
a dilatation structure leads to a differential calculus.
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Section 8 is made of two parts. In the first part we show that dilatation structures induce
differential structures, in a generalized sense. In the second part we turn to conical groups and
we prove the curious result that, even if in a conical group left translations are smooth but right
translations are generically non differentiable, the group operation is smooth if we well choose
a dilatation structure.

2 Motivation

We start with a trivial example of a dilatation structure, then we briefly explain the occurence
of such a structure in more unusual situations.

There is a lot of structure hiding in the dilatations of Rn. For this space, the dilatation based
at x, of coefficient ε > 0, is the function

δx
ε : Rn → Rn δx

ε y = x+ ε(−x+ y)

For fixed x the dilatations based at x form a one parameter group which contracts any bounded
neighbourhood of x to a point, uniformly with respect to x.

Dilatations behave well with respect to the euclidean distance d, in the following sense: for
any x, u, v ∈ Rn and any ε > 0 we have

1
ε
d(δx

εu, δ
x
ε v) = d(u, v)

This shows that from the metric point of view the space (Rn, d) is a metric cone, that is (Rn, d)
looks the same at all scales.

Moreover, let f : Rn → Rn be a function and x ∈ Rn. The function f is differentiable in x if
there is a linear transformation A (that is a group morphism which commutes with dilatations
based at the neutral element 0) such that the limit

lim
ε→0

δ
f(x)
ε−1 fδ

x
ε (v) = f(x) +A(−x+ v) (2.1)

is uniform with respect to v in bounded neighbourhood of x. Really, let us calculate

δ
f(x)
ε−1 fδ

x
ε (v) = f(x) +

1
ε
(−f(x) + f(x+ ε(−x+ v)))

This shows that we get the usual definition of differentiability.
The relation (2.1) can be put in another form, using the euclidean distance:

lim
ε→0

1
ε
d(δf(x)

ε T (x)(v), f(δx
ε v)) = 0

uniformly with respect to v in bounded neighbourhood of x. Here

T (x)(v) = x+A(−x+ v)

In conclusion, dilatations are the fundamental object for doing differential calculus on Rn.
Even the algebraic structure of Rn is encoded in dilatations. Really, we can recover the

operation of addition from dilatations. It goes like this: for x, u, v ∈ Rn and ε > 0 define

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v, Σx

ε (u, v) = δx
ε−1δ

δx
ε u

ε (v), invx
ε (u) = δ

δx
ε u

ε−1x

For fixed x, u, ε the functions ∆x
ε (u, ·),Σx

ε (u, ·) are inverse one to another, but we don’t insist on
this for the moment (see Proposition 3).
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What is the meaning of these functions? Let us calculate

∆x
ε (u, v) = δx

εu+
1
ε

(− (δx
εu) + δx

ε v)

= (x+ ε(−x+ u)) +
1
ε

(ε(−u+ x)− x+ x+ ε(−x+ v))

= x+ ε(−x+ u) +
1
ε
ε(−u+ v)

= x+ ε(−x+ u) + (−u+ v)

Σx
ε (u, v) = x+

1
ε

(−x+ δx
εu+ ε (− (δx

εu) + v))

= x+
1
ε

(ε(−x+ u) + ε (ε(−u+ x)− x+ v))

= u+ ε(−u+ x) + (−x+ v)

In the same way we get

invx
ε (u) = x+ ε(−x+ u) + (−u+ x)

As ε→ 0 we have the following limits:

lim
ε→0

∆x
ε (u, v) = ∆x(u, v) = x+ (−u+ v)

lim
ε→0

Σx
ε (u, v) = Σx(u, v) = u+ (−x+ v)

lim
ε→0

invx
ε (u) = invx(u) = x− u+ x

uniform with respect to x, u, v in bounded sets. The function Σx(·, ·) is a group operation,
namely the addition operation translated such that the neutral element is x. Thus, for x = 0,
we recover the group operation. The function invx(·) is the inverse function, and ∆x(·, ·) is the
difference function.

Notice that for fixed x, ε the function Σx
ε (·, ·) is not a group operation, first of all because it

is not associative. Nevertheless, this function satisfies a shifted associativity property, namely
(see Proposition 5)

Σx
ε (Σx

ε (u, v), w) = Σx
ε (u,Σδx

ε u
ε (v, w))

Also, the inverse function invx
ε is not involutive, but shifted involutive (Proposition 4),

invδx
ε u

ε (invx
εu) = u

These and other properties of dilatations allow to recover the structure of the tangent bundle
of Rn, which is trivial in this case.

Let us go to more elaborate examples. We may look to a riemannian manifold M , which is
locally a deformation of Rn. We can use charts for transporting (locally) the dilatation structure
from Rn to the manifold. All the previously described metric and algebraic properties will hold
in this situation, in a weaker form. For example the riemannian distance is no longer scalling
invariant, but we still have

lim
ε→0

1
ε
d(δx

εu, δ
x
ε v) = dx(u, v)

uniform limit with respect tu x, u, v in (small) bounded sets. Here dx is an euclidean distance
which can be identified with the distance in the tangent space of M at x, induced by the metric
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tensor at x. In the same way we can construct the algebraic structure of the tangent space at x,
using the functions Σx

ε ,∆
x
ε . We will have a differentiability notion coming from the dilatations

transported by the chart.
If we change charts or the riemannian metric then the dilatation structure will change too,

but not very much, essentially because the change of charts is smooth, therefore we are still able
to say what are tangent spaces and to describe their algebraic structure.

Let us go further with more complex examples. Consider the Heisenberg group H(n). As a
set H(n) = R2n × R. We shall use the following notation: an element of H(n) will be denoted
by x̃ = (x, x̄), with x ∈ R2n, x̄ ∈ R. The group operation is

x̃ỹ = (x+ y, x̄+ ȳ + 2ω(x, y))

where ω is the canonic symplectic 2-form on R2n.
The group H(n) is nilpotent, in fact a 2 graded Carnot group. This means that H(n) is

nilpotent and that it admits a one-parameter group of isomorphisms

δε(x, x̄) = (εx, ε2x̄)

These are dilatations, more precisely we can construct dilatations based at x̃ by the formula

δx̃
ε ũ = x̃δε

(
x̃−1ũ

)
We may also put a scalling invariant distance on H(n), for example as follows:

d(x̃, ỹ) = g(x̃−1ỹ), g(ũ) = max
{
‖u‖,

√
| ū |

}
We can repeat step by step the constructions explained before in this situation. There are some
differences though.

First of all, from the metric point of view, (H(n), d) is a fractal space, in the sense that the
Hausdorff dimension of this space is equal to 2n+2, therefore strictly greater than the topological
dimension, which is 2n+1. Second, the differential of a function defined by the dilatations is not
the usual differential, but an essentially different one, called Pansu derivative (see [13]). This
is part of a very active area of research in geometric analysis (among fundamental references
one may cite [13, 6, 10, 11, 7]). A spectacular application of Pansu derivative was to prove
a Rademacher theorem which in turn implies deep results about Mostow rigidity. The theory
applies to general Carnot groups.

The Heisenberg group is not commutative. It is in fact the model for the tangent space of a
contact metric manifold, as the euclidean Rn is the model of the tangent space of a riemannian
manifold. We enter here in the realm of sub-riemannian geometry (see for example [1, 9]). In a
future paper we shall deal with dilatation structures for sub-riemannian manifolds. An important
problem in sub-riemannian geometry is to have good tangent bundle structures, which in turn
allow us to prove basic theorems, like Poincaré inequality, Rademacher or Stepanov theorems.

We may even go further and find dilatation structures related with rectifiable sets, or with
some self-similar sets. This is not the purpose of this paper though. In the sequel we shall define
and study fundamental properties of dilatation structures.

3 Basic notions

We denote by f ⊂ X ×Z a relation and we write f(x) = y if (x, y) ∈ f . Therefore we may have
f(x) = y and f(x) = y′ with y 6= y′, if (x, y) ∈ f and (x, y′) ∈ f .
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The domain of f is the set of x ∈ X such that there is z ∈ Z with f(x) = z. We denote the
domain by dom f . The image of f is the set of z ∈ Z such that there is x ∈ X with f(x) = z.
We denote the image by im f .

By convention, when we state that a relationR(f(x), f(y), ...) is true, it means thatR(x′, y′, ...)
is true for any choice of x′, y′, ..., such that (x, x′), (y, y′), ... ∈ f .

In a metric space (X, d), the ball centered at x ∈ X and radius r > 0 is denoted by B(x, r). If
we need to emphasize the dependence on the distance d then we shall use the notation Bd(x, r).
In the same way, B̄(x, r) and B̄d(x, r) denote the closed ball centered at x, with radius r.

We shall use the following convenient notation: by O(ε) we mean a positive function such
that limε→0O(ε) = 0.

3.1 Gromov-Hausdorff distance

There are several definitions of distances between metric spaces. For this subject see [5] (Section
7.4), [8] (Chapter 3) and [7].

We explain now a well-known alternative definition of the Gromov-Hausdorff distance, up to
a multiplicative factor.

Definition 1. Let (Xi, di, xi), i = 1, 2, be a pair of locally compact pointed metric spaces and
µ > 0. We shall say that µ is admissible if there is a relation ρ ⊂ X1 ×X2 such that

1. dom ρ is µ-dense in X1,
2. im ρ is µ-dense in X2,
3. (x1, x2) ∈ ρ,
4. for all x, y ∈ dom ρ we have

| d2(ρ(x), ρ(y))− d1(x, y) | ≤ µ (3.1)

The Gromov-Hausdorff distance between (X1, x1, d1) and (X2, x2, d2) is the infimum of admis-
sible numbers µ.

Denote by [X, dX , x] the isometry class of (X, dX , x), that is the class of spaces (Y, dY , y)
such that it exists an isometry f : X → Y with the property f(x) = y. Note that if (X, dX , x)
is isometric with (Y, dY , y) then they have the same diameter.

The Gromov-Hausdorff distance is in fact almost a distance between isometry classes of
pointed metric spaces. Indeed, if two pointed metric spaces are isometric then the Gromov-
Hausdorff distance equals 0. The converse is also true in the class of compact (pointed) metric
spaces [8] (Proposition 3.6).

Moreover, if two of the isometry classes [X, dX , x], [Y, dY , y], [Z, dZ , z] have (representants
with) diameter at most equal to 3, then the triangle inequality is true. We shall use this distance
and the induced convergence for isometry classes of the form [X, dX , x], with diam X ≤ 5/2.

3.2 Metric profiles. Metric tangent space

We shall denote by CMS the set of isometry classes of pointed compact metric spaces. The
distance on this set is the Gromov distance between (isometry classes of) pointed metric spaces
and the topology is induced by this distance.

To any locally compact metric space we can associate a metric profile [3, 4].

Definition 2. The metric profile associated to the locally metric space (M,d) is the assignment
(for small enough ε > 0)

(ε > 0, x ∈M) 7→ Pm(ε, x) =
[
B̄(x, 1),

1
ε
d, x

]
∈ CMS
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We can define a notion of metric profile regardless to any distance.

Definition 3. A metric profile is a curve P : [0, a] → CMS such that

(a) it is continuous at 0,
(b) for any b ∈ [0, a] and ε ∈ (0, 1] we have

dGH(P(εb),Pm
db

(ε, xb)) = O(ε)

The function O(ε) may change with b. We used the notations

P(b) = [B̄(x, 1), db, xb] and Pm
db

(ε, x) =
[
B̄(x, 1),

1
ε
db, xb

]
The metric profile is nice if

dGH

(
P(εb),Pm

db
(ε, x)

)
= O(bε)

Imagine that 1/b represents the magnification on the scale of a microscope. We use the
microscope to study a specimen. For each b > 0 the information that we get is the table of
distances of the pointed metric space (B̄(x, 1), db, xb).

How can we know, just from the information given by the microscope, that the string of
”images” that we have corresponds to a real specimen? The answer is that a reasonable check
is the relation from point (b) of the definition of metric profiles 3.

Really, this point says that starting from any magnification 1/b, if we further select the ball
B̄(x, ε) in the snapshot (B̄(x, 1), db, xb), then the metric space (B̄(x, 1), 1

εdb, xb) looks approx-
imately the same as the snapshot (B̄(x, 1), dbε, xb). That is: further magnification by ε of the
snapshot (taken with magnification) b is roughly the same as the snapshot bε. This is of course
true in a neighbourhood of the base point xb.

The point (a) from the Definition 3has no other justification than Proposition 1 in next
subsection.

We rewrite definition 1 with more details, in order to clearly understand what is a metric
profile. For any b ∈ (0, a] and for any µ > 0 there is ε(µ, b) ∈ (0, 1) such that for any ε ∈
(0, ε(µ, b)) there exists a relation ρ = ρε,b ⊂ B̄db

(xb, ε)× B̄dbε
(xbε, 1) such that

1. dom ρε,b is µ-dense in B̄db
(xb, ε),

2. im ρε,b is µ-dense in B̄dbε
(xbε, 1),

3. (xb, xbε) ∈ ρε,b,
4. for all x, y ∈ dom ρε,b we have∣∣∣∣1εdb(x, y)− dbε (ρε,b(x), ρε,b(y))

∣∣∣∣ ≤ µ (3.2)

In the microscope interpretation, if (x, u) ∈ ρε,b means that x and u represent the same ”real”
point in the specimen.

Therefore a metric profile gives two types of information:

• a distance estimate like (3.2) from point 4,
• an ”approximate shape” estimate, like in the points 1–3, where we see that two sets,

namely the balls B̄db
(xb, ε) and B̄dbε

(xbε, 1), are approximately isometric.

The simplest metric profile is one with (B̄(xb, 1), db, xb) = (X, db, x). In this case we see that
ρε,b is approximately an ε dilatation with base point x.

This observation leads us to a particular class of (pointed) metric spaces, namely the metric
cones.
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Definition 4. A metric cone (X, d, x) is a locally compact metric space (X, d), with a marked
point x ∈ X such that for any a, b ∈ (0, 1] we have

Pm(a, x) = Pm(b, x)

Metric cones have dilatations. By this we mean the following

Definition 5. Let (X, d, x) be a metric cone. For any ε ∈ (0, 1] a dilatation is a function
δx
ε : B̄(x, 1) → B̄(x, ε) such that

• δx
ε (x) = x,

• for any u, v ∈ X we have

d (δx
ε (u), δx

ε (v)) = ε d(u, v)

The existence of dilatations for metric cones comes from the definition 4. Indeed, dilatations
are just isometries from (B̄(x, 1), d, x) to (B̄, 1

ad, x).
Metric cones are good candidates for being tangent spaces in the metric sense.

Definition 6. A (locally compact) metric space (M,d) admits a (metric) tangent space in
x ∈ M if the associated metric profile ε 7→ Pm(ε, x) (as in definition 2) admits a prolongation
by continuity in ε = 0, i.e if the following limit exists:

[TxM,dx, x] = lim
ε→0

Pm(ε, x) (3.3)

The connection between metric cones, tangent spaces and metric profiles in the abstract sense
is made by the following proposition.

Proposition 1. The associated metric profile ε 7→ Pm(ε, x) of a metric space (M,d) for a fixed
x ∈M is a metric profile in the sense of the definition 3 if and only if the space (M,d) admits
a tangent space in x. In such a case the tangent space is a metric cone.

Proof. A tangent space [V, dv, v] exists if and only if we have the limit from the relation (3.3).
In this case there exists a prolongation by continuity to ε = 0 of the metric profile Pm(·, x). The
prolongation is a metric profile in the sense of definition 3. Indeed, we have still to check the
property (b). But this is trivial, because for any ε, b > 0, sufficiently small, we have

Pm(εb, x) = Pm
db

(ε, x)

where db = (1/b)d and Pm
db

(ε, x) = [B̄(x, 1), 1
εdb, x].

Finally, let us prove that the tangent space is a metric cone. For any a ∈ (0, 1] we have[
B̄(x, 1),

1
a
dx, x

]
= lim

ε→0
Pm(aε, x)

Therefore[
B̄(x, 1),

1
a
dx, x

]
= [TxM,dx, x]
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3.3 Groups with dilatations. Virtual tangent space

In section 6 we shall see that metric tangent spaces sometimes have a group structure which is
compatible with dilatations. This structure, of a group with dilatations, is interesting by itself.
The notion has been introduced in [2]; we describe it further.

We start with the following setting: G is a topological group endowed with an uniformity such
that the operation is uniformly continuous. The description that follows is slightly non canonical,
but is nevertheless motivated by the case of a Lie group endowed with a Carnot-Caratheodory
distance induced by a left invariant distribution.

We introduce first the double of G, as the group G(2) = G×G with operation

(x, u)(y, v) = (xy, y−1uyv)

The operation on the group G, seen as the function

op : G(2) → G , op(x, y) = xy

is a group morphism. Also the inclusions:

i′ : G→ G(2), i′(x) = (x, e)

i” : G→ G(2), i”(x) = (x, x−1)

are group morphisms.

Definition 7. 1. G is a uniform group if we have two uniformity structures, on G and G2,
such that op, i′, i” are uniformly continuous.

2. A local action of a uniform group G on a uniform pointed space (X,x0) is a function
φ ∈W ∈ V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G×X (with product uniformity)
to X,

(b) for any φ, ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D ˆφψ−1(x) and φ̂(ψ̂−1(x))
make sense and ˆφψ−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined in a neighbourhood
of (e, e) ⊂ G×G which satisfies the uniform group axioms locally.

Note that a local group acts locally at left (and also by conjugation) on itself.
This definition deserves an explanation. An uniform group, according to the Definition 7,

is a group G such that left translations are uniformly continuous functions and the left action
of G on itself is uniformly continuous too. In order to precisely formulate this we need two
uniformities: one on G and another on G×G.

These uniformities should be compatible, which is achieved by saying that i′, i” are uniformly
continuous. The uniformity of the group operation is achieved by saying that the op morphism
is uniformly continuous.

Definition 8. A group with dilatations (G, δ) is a local uniform group G with a local action of
Γ (denoted by δ), on G such that

H0. the limit limε→0 δεx = e exists and is uniform with respect to x in a compact neighbourhood
of the identity e.

H1. the limit

β(x, y) = lim
ε→0

δ−1
ε ((δεx)(δεy))

is well defined in a compact neighbourhood of e and the limit is uniform.
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H2. the following relation holds:

lim
ε→0

δ−1
ε

(
(δεx)−1

)
= x−1

where the limit from the left hand side exists in a neighbourhood of e and is uniform with
respect to x.

These axioms are the prototype of a dilatation structure.
The ”infinitesimal version” of an uniform group is a conical local uniform group.

Definition 9. A conical group N is a local group with a local action of (0,+∞) by morphisms
δε such that limε→0 δεx = e for any x in a neighbourhood of the neutral element e.

Here comes a proposition which explains why a conical group is the infinitesimal version of a
group with dilatations.

Proposition 2. Under the hypotheses H0, H1, H2 (G, β, δ) is a conical group, with operation
β and dilatations δ.

Proof. All the uniformity assumptions allow us to change at will the order of taking limits. We
shall not insist on this further and we shall concentrate on the algebraic aspects.

We have to prove the associativity, existence of neutral element, existence of inverse and the
property of being conical.

For the associativity β(x, β(y, z)) = β(β(x, y), z) we calculate

β(x, β(y, z)) = lim
ε→0,η→0

δ−1
ε

{
(δεx)δε/η ((δηy)(δηz))

}
We take ε = η and get

β(x, β(y, z)) = lim
ε→0

{(δεx)(δεy)(δεz)}

In the same way

β(β(x, y), z) = lim
ε→0,η→0

δ−1
ε

{
(δε/ηx) ((δηx)(δηy)) (δεz)

}
and again taking ε = η we obtain

β(β(x, y), z) = lim
ε→0

{(δεx)(δεy)(δεz)} = β(x, β(y, z))

The neutral element is e, from H0 (first part) it follows that β(x, e) = β(e, x) = x. The inverse
of x is x−1, by a similar argument:

β(x, x−1) = lim
ε→0,η→0

δ−1
ε

{
(δεx)

(
δε/η(δηx)

−1
)}

and taking ε = η we obtain

β(x, x−1) = lim
ε→0

δ−1
ε

(
(δεx)(δεx)−1

)
= lim

ε→0
δ−1
ε (e) = e

Finally, β has the property

β(δηx, δηy) = δηβ(x, y)

which comes from the definition of β and commutativity of multiplication in (0,+∞). This
proves that (G, β, δ) is conical.
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In a sense (G, β, δ) is the tangent space of the group with dilatations (G, δ) at e. We can
act with the conical group (G, β, δ) on (G, δ). Indeed, let us denote by [f, g] = f ◦ g ◦ f−1 ◦ g−1

the commutator of two transformations. For the group G we shall denote by LG
x y = xy the

left translation and by LN
x y = β(x, y). The preceding proposition tells us that (G, β, δ) acts

locally by left translations on G. We shall call the left translations with respect to the group
operation β ”infinitesimal”. These infinitesimal translations admit an interesting commutator
representation

lim
λ→0

[
LG

(δλx)−1 , δ
−1
λ

]
= LN

x (3.4)

Definition 10. The group V TeG formed by all transformations LN
x is called the virtual tangent

space at e to G.

As local groups, V TeG and (G, β, δ) are isomorphic. We can easily define dilatations on
V TeG, by conjugation with dilatations δε. Really, we see that

LN
δεx(y) = β(δεx, y) = δεL

N
x (δε)

−1

The virtual tangent space V TxG at x ∈ G to G is obtained by translating the group operation
and the dilatations from e to x. This means: define a new operation on G by

y
x· z = yx−1z

The group G with this operation is isomorphic to G with old operation and the left translation
LG

x y = xy is the isomorphism. The neutral element is x. Introduce also the dilatations based
at x by

δx
ε y = xδε(x−1y)

Then Gx = (G,
x·) with the group of dilatations δx

ε satisfy the Axioms H0, H1, H2. Define then
the virtual tangent space V TxG to be: V TxG = V TxG

x.

4 Binary decorated trees and dilatations

We want to explore what happens when we make compositions of dilatations (which depends
also on ε > 0 ). The ε variable apart, any dilatation δx

ε (y) is a function of two arguments: x and
y, invertible with respect to the second argument. The functions we can obtain when composing
dilatations are difficult to write, that is why we shall use a tree notation.

4.1 The formalism

Let X be a non empty set and T (X) be a class of binary planar trees with leaves in X and all
nodes decorated with two colors {◦, •}. The empty tree, that is the tree with no nodes or leaves,
belongs to T (X). For any x ∈ X we accept that there is a tree in T (X) with no nodes and with
x as the only leaf. That is X ⊂ T (X).

For any color a ∈ {◦, •}, let ā be the opposite color. The colors ◦ and • are codes for the
symbols ε and ε−1.

The relation ”≈” is an equivalence relation on T (X), taken as a primitive notion for the
axioms which will follow.
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The equivalence class of of a tree P ∈ T (X) is denoted by

P

. In various diagrams that

will follow we shall use the notation Γ

P

for saying that Γ is the equivalence class of P. For any

P,R ∈ T (X), ”P ≈ R” or ”

P

=

R

” means the same thing.

Axiom T0. For any x, u, v ∈ X the trees

◦
SS��

x u

•
Q

Q
�

�
◦
SS��

x u

◦
SS��

x v

•
ll,,

◦
SS��

x u

x

•
b

bb
"

""
x ◦

ll,,
◦
SS��

x u

v

belong to T (X).
The equivalence class of ◦

SS��
x u

is denoted by δx
εu, that is we have

δx
εu

◦
SS��

x u

Axiom T1. Consider any trees P,R,S,Q,Z ∈ T (X), any x ∈ X, and any colors a,b such
that the trees from the right hand sides of relations below belong to T (X). Then the trees from
the left hand sides of relations below belong to T (X) and we have

S

a
b

b
"

"
P •

Q
Q

�
�
Z ◦

ZZ��
Z b

ee%%
R Q

≈ S

a
ZZ��

P b
ee%%

R Q

, S

a
b

b
"

"
P ◦

Q
Q

�
�
Z •

ZZ��
Z b

ee%%
R Q

≈ S

a
ZZ��

P b
ee%%

R Q
(4.1)

Here, in all diagrams, the symbol S

a

means that the node colored with a is grafted at an arbitrary

leaf of the tree S.
The second axiom expresses the fact that the dilatation (of any coefficient ε) δx

ε has x as
fixed point, that is δx

εx = x.
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Axiom T2. For any x ∈ X the tree •
SS��

x x

belongs to T (X). Moreover, consider any tree

P ∈ T (X) and any x ∈ X. Then the trees from the left hand sides of relations below belong to
T (X) and we have

P

◦
SS��

x x

≈ P, P

•
SS��

x x

≈ P

(4.2)

that is the equivalence class of x is the same as the equivalence class of ◦
SS��

x x

and the equivalence

class of •
SS��

x x

. As in Axiom T1, the symbol S

P

means that the root of the tree P is grafted at an

arbitrary leaf of the tree S.

Definition 11. We define the difference, sum and inverse trees as follows:

(a) the difference tree ∆x
ε = ∆x

ε (u, v) is given by the relation

∆x
ε

•
Q

Q
�

�
◦
SS��

x u

◦
SS��

x v

(b) the sum tree Σx
ε = Σx

ε (u, v) is given by the relation

Σx
ε

•
b

bb
"

""
x ◦

ll,,
◦
SS��

x u

v

(c) the inverse tree invx
ε = invx

ε (u) is given by the relation

invx
ε

•
ll,,

◦
SS��

x u

x
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The next axiom states that T0, T1, T2 are sufficient for determining the class T (X) and the
equivalence relation ≈.

Axiom T3. The class T (X) is the smallest class of trees obtained by grafting of trees listed
in Axiom T0, and satisfying Axioms T1, T2. Moreover, two trees from T (X) are equivalent if
and only if they can be proved equivalent after a finite string of applications of Axioms T1, T2.

4.2 First consequences

We shall use the axioms in order to obtain results that we shall use later, for dilatation structures.

Proposition 3. For any x, u, y and v we have

(a) ∆x
ε (u,Σx

ε (u, y)) = y,
(b) Σx

ε (u,∆x
ε (u, v)) = v.

Proof. We prove (a) by computations using the definition 11 of the sum and difference trees,
and Axiom T1 several times.

•
H

HH
���

◦
SS��

x u

◦
Q

Q
�

�
x •

b
bb

"
""
x ◦

ll,,
◦
SS��

x u

y

=

•
H

HH
�

��
◦
SS��

x u

◦
ll,,

◦
SS��

x u

y

= y

For (b) we proceed in the same way:

•
aaa

!!!
x ◦

aaa
!!!

◦
SS��

x u

•
Q

Q
�

�
◦
SS��

x u

◦
SS��

x v

=

•
ll,,

x ◦
SS��

x v

= v

Proposition 4. We have the relations

∆x
ε (u, v) = Σ

◦
SS��

x u
ε (invx

ε (u), v) (4.3)

invx
ε (u) = ∆x

ε (u, x) (4.4)
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inv

◦
SS��

x u
ε ((invx

ε (u)) = u (4.5)

Proof. Graphically, the relation (4.3) is

•
Q

Q
�

�
◦
SS��

x u

◦
SS��

x v

=

•
XXXXX

�����
◦
SS��

x u

◦
aaa

!!!
◦
H

HH
�

��
◦
SS��

x u

•
ll,,

◦
SS��

x u

x

v

This is true by Axiom T1.
The relation (4.4) is

•
Q

Q
�

�
◦
SS��

x u

◦
SS��

x x

=

•
ll,,

◦
SS��

x u

x

This is true by Axiom T2.
We prove the relation (4.5) by a string of equalities, starting from the left hand side to the

right:

•
aaaa

!!!!
◦
HHH

���
◦
SS��

x u

•
ll,,

◦
SS��

x u

x

◦
SS��

x u

=

•
ll,,

x ◦
SS��

x u

= u

Here we have used the Axiom T1 several times.

The relation (4.5) in last proposition shows that the ”inverse function” invx
ε is not involutive,

but shifted involutive.
The next proposition shows that the function Σx

ε (·, ·) satisfies a shifted associativity property.
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Proposition 5. We have the following relations:

∆x
ε (u,Σx

ε (Σx
ε (u, v), w)) = Σ

◦
SS��

x u
ε (v, w) (4.6)

Σx
ε

u,Σ
◦
SS��

x u
ε (v, w)

 = Σx
ε (Σx

ε (u, v), w) (4.7)

Proof. Graphically, the relation (4.6) is

•
aaa

!!!
◦
SS��

x u

◦
aaa

!!!
x •

PPPP
����

x ◦
PPPP

����
◦
Q

Q
�

�
x •

b
bb

"
""
x ◦

ll,,
◦
SS��

x u

v

w

=

•
PPPP

����
◦
SS��

x u

◦
ZZ��

◦
ll,,

◦
SS��

x u

v

w

This is true by Axiom T1.
The relation (4.7) is is equivalent to (4.6), by Proposition 3. We can also give a direct proof

by graphically representing the relation

•
aaaa

!!!!
x ◦

PPPP
����

◦
SS��

x u

•
PPPP

����
◦
SS��

x u

◦
ZZ��

◦
ll,,

◦
SS��

x u

v

w

=

•
PPPP

����
x ◦

PPPP
����

◦
Q

Q
�

�
x •

b
bb

"
""
x ◦

ll,,
◦
SS��

x u

v

w
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This is true by the Axiom T1.

5 Dilatation structures

The space (X, d) is a complete, locally compact metric space. This means that as a metric space
(X, d) is complete and that small balls are compact.

5.1 Axioms of dilatation structures

The axioms of a dilatation structure (X, d, δ) are listed further. The first axiom is merely a
preparation for the next axioms. That is why we counted it as Axiom 0.

A0. Depending on the parameter ε ∈ (0,+∞), dilatations are objects having the following
description.

For any ε ∈ (0, 1] the dilatations are functions

δx
ε : U(x) → Vε(x)

All such dilatations are homeomorphisms (invertible, continuous, with continuous inverse).

We suppose that there is 1 < A such that for any x ∈ X we have

B̄d(x,A) ⊂ U(x)

We suppose that for all ε ∈ (0, 1), we have

Bd(x, ε) ⊂ δx
εBd(x,A) ⊂ Vε(x) ⊂ U(x)

For ε ∈ (1,+∞) the associated dilatation

δx
ε : Wε(x) → Bd(x,B) ,

is an injective, continuous, with continuous inverse on the image. We shall suppose that
Wε(x) is open,

Vε−1(x) ⊂Wε(x)

and that for all ε ∈ [0, 1] and u ∈ U(x) we have

δx
ε−1 δ

x
εu = u

We remark that we have the following string of inclusions, for any ε ∈ (0, 1] and any x ∈ X:

Bd(x, ε) ⊂ δx
εBd(x,A) ⊂ Vε(x) ⊂Wε−1(x) ⊂ δx

εBd(x,B)

A further technical condition on the sets Vε(x) and Wε(x) will be given just before the Axiom
A4. (This condition will be counted as part of Axiom A0.)

A1. We have δx
εx = x for any point x. We also have δx

1 = id for any x ∈ X.

Let us define the topological space

domδ = {(ε, x, y) ∈ (0,∞)×X ×X: if ε ∈ (0, 1] then y ∈ U(x), else y ∈Wε(x)}
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with the topology inherited from the product topology on Γ × X × X. Consider also
Cl(domδ), the closure of domδ in [0,∞)×X ×X with product topology. The function

δ : domδ → X

defined by δ(ε, x, y) = δx
ε y is continuous. Moreover, it can be continuously extended to

Cl(domδ) and we have

lim
ε→0

δx
ε y = x

A2. For any x,∈ K, ε, µ ∈ Γ1 and u ∈ B̄d(x,A) we have

δx
ε δ

x
µu = δx

εµu

A3. For any x there is a function (u, v) 7→ dx(u, v), defined for any u, v in the closed ball (in
distance d) B̄(x,A), such that

lim
ε→0

sup
{∣∣∣∣1εd(δx

εu, δ
x
ε v)− dx(u, v)

∣∣∣∣ : u, v ∈ B̄d(x,A)
}

= 0

uniformly with respect to x in compact set.

Remark 12. The ”distance” dx can be degenerated. That means: there might be v, w ∈
B̄d(x,A) such that dx(v, w) = 0 but v 6= w. We shall use further the name ”distance” for dx,
essentially by commodity, but keep in mind the possible degeneracy of dx.

For the following axiom to make sense we impose a technical condition on the co-domains
Vε(x): for any compact set K ⊂ X there are R = R(K) > 0 and ε0 = ε(K) ∈ (0, 1) such that
for all u, v ∈ B̄d(x,R) and all ε ∈ Γ, ν(ε) ∈ (0, ε0), we have

δx
ε v ∈Wε−1(δx

εu)

With this assumption the following notation makes sense:

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v (5.1)

The next axiom can now be stated:

A4. We have the limit

lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Note that with the tree notation we may identify (5.1) with the difference tree from Definition
11 (a).

Definition 13. A triple (X, d, δ) which satisfies A0, A1, A2, A3, but dx is degenerate for some
x ∈ X, is called degenerate dilatation structure.

If the triple (X, d, δ) satisfies A0, A1, A2, A3 and dx is non-degenerate for any x ∈ X, then
we call it a weak dilatation structure.

If a weak dilatation structure satisfies A4 then we call it dilatation structure.

Note that it could be assumed, without great modification of the axioms, that
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(a) we may replace (0,∞) by Γ, a topological separated commutative group endowed with a
continuous group morphism ν : Γ → (0,+∞) with inf ν(Γ) = 0. Here (0,+∞) is taken
as a group with multiplication. The neutral element of Γ is denoted by 1. We use the
multiplicative notation for the operation in Γ.

The morphism ν defines an invariant topological filter on Γ (equivalently, an end). Really,
this is the filter generated by the open sets ν−1(0, a), a > 0. From now on we shall name
this topological filter (end) by ”0” and we shall write ε ∈ Γ → 0 for ν(ε) ∈ (0,+∞) → 0.

The set Γ1 = ν−1(0, 1] is a semigroup. We note Γ̄1 = Γ1 ∪ {0} On the set Γ̄ = Γ ∪ {0} we
extend the operation on Γ by adding the rules 00 = 0 and ε0 = 0 for any ε ∈ Γ. This is in
agreement with the invariance of the end 0 with respect to translations in Γ.

In the Axioms A0, A1 we therefore may replace [0, 1] by Γ̄1, and so forth.
(b) we may leave some flexibility in Axiom A1 for the choice of base point of the dilatation,

in the sense that

lim
ν(ε)→0

1
ν(ε)

d(x, δx
εx) = 0

uniformly with respect to x ∈ K compact set,
(c) we may relax the semigroup condition in the Axiom A2, in the sense: for any compact set

K ⊂ X, for any x,∈ K, ε, µ with ν(ε), ν(µ) ∈ (0, 1) and u, v ∈ B̄d(x,A) we have

1
ν(εµ)

| d(δx
ε δ

x
µu, δ

x
ε δ

x
µv)− d(δx

εµu, δ
x
εµv) | ≤ O(εµ)

(d) in the Axioms A3 and A4 we may replace ”ε→ 0” by ”ν(ε) → 0” and ”1/ε” by ”1/ν(ε)”.

We shall write the proofs of further results such that these work even if we modify the axioms
in the sense explained above. We shall nevertheless use ε and not ν(ε), in order to avoid a too
heavy notation.

The axioms, as given in this section, are said to be in strong form. With the modifications
explained at points (a), (b), (c), (d) above, the axioms are said to be in weak form.

Further, axioms are taken in weak form with the notational conventions explained above,
unless it is explicitely stated that some axiom has to be taken in strong form.

5.2 Dilatation structures, tangent cones and metric profiles

We shall explain now what the axioms mean. The first Axiom A1 is stating that the distance
between δx

εx and x is negligible with respect to ε. If δx
εx = x then this axiom is trivially satisfied.

The second Axiom A2. states that in an approximate sense the transformations δx
ε form an

action of Γ on X. As previously, if we suppose that

δx
ε δ

x
µ = δx

εµ

then this axiom is trivially satisfied.
Remark now that the binary tree formalism described in section 4 underlies and simplifies

the calculus with dilatation structures. More precisely, we shall use the results in section 4 in
the proof of theorems in the next section.

The notation with binary trees for composition of dilatations is not directly adapted for
taking limits as ε → 0. An extension of the formalism can be made in this direction, but this
would add length to this paper, which is devoted to first properties of dilatation structures. We
reserve the full description of the formalism for a future paper.
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In Axiom A3 we take limits. In this subsection we shall look at dilatation structures from
the metric point of view, by using Gromov-Hausdorff distance and metric profiles.

We state the interpretation of the Axiom A3 as a theorem. But before a definition: we denote
by (δ, ε) the distance on

B̄dx(x, 1) = {y ∈ X: dx(x, y) ≤ 1}

given by

(δ, ε)(u, v) =
1
ε
d(δx

εu, δ
x
ε v)

Theorem 6. Let (X, d, δ) be a dilatation structure. The following are consequences of the
Axioms A0 - A3 only:

(a) for all u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have

dx(u, v) =
1
µ
dx(δx

µu, δ
x
µv)

We shall say that dx has the cone property with respect to dilatations.

(b) The curve ε > 0 7→ Px(ε) = [B̄dx(x, 1), (δ, ε), x] is a metric profile.

Proof. (a) For ε, µ ∈ (0, 1) we have∣∣∣∣ 1
εµ
d(δx

ε δ
x
µu, δ

x
ε δ

x
µv)− dx(u, v)

∣∣∣∣ ≤ ∣∣∣∣ 1
εµ
d(δx

εµu, δ
x
ε δ

x
µu)−

1
εµ
d(δx

εµv, δ
x
ε δ

x
µv)

∣∣∣∣
+

∣∣∣∣ 1
εµ
d(δx

εµu, δ
x
εµv)− dx(u, v)

∣∣∣∣
Use now the Axioms A2 and A3 and pass to the limit with ε→ 0. This gives the desired equality.

(b)We have to prove that Px is a metric profile. For this we have to compare two pointed
metric spaces:

(
B̄dx(x, 1), (δx, εµ), x

)
and

(
B̄ 1

µ
(δx,ε)(x, 1),

1
µ

(δx, ε), x
)

Let u ∈ X such that

1
µ

(δx, ε)(x, u) ≤ 1

This means that

1
ε
d(δx

εx, δ
x
εu) ≤ µ

Further use the Axioms A1, A2 and the cone property proved before:

1
ε
dx(δx

εx, δ
x
εu) ≤ (O(ε) + 1)µ

therefore,

dx(x, u) ≤ (O(ε) + 1)µ
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It follows that for any u ∈ B̄ 1
µ

(δx,ε)(x, 1) we can choose w(u) ∈ B̄dx(x, 1) such that

1
µ
dx(u, δx

µw(u)) = O(ε)

We want to prove that∣∣∣∣ 1µ(δx, ε)(u1, u2)− (δx, εµ)(w(u1), w(u2))
∣∣∣∣ ≤ O(εµ) +

1
µ
O(ε) +O(ε)

This goes as follows:

| 1
µ

(δx, ε)(u1, u2)− (δx, εµ)(w(u1), w(u2))| =
∣∣∣∣ 1
εµ
d(δx

εu1, δ
x
εu2)−

1
εµ
d(δx

εµw(u1), δx
εµw(u2))

∣∣∣∣
≤ O(εµ) +

∣∣∣∣ 1
εµ
d(δx

εu1, δ
x
εu2)−

1
εµ
d(δx

ε δ
x
µw(u1), δx

ε δ
x
µw(u2))

∣∣∣∣
≤ O(εµ) +

1
µ
O(ε) +

1
µ
| dx(u1, u2)− dx(δx

µw(u1), δx
µw(u2)) |

In order to obtain the last estimate we used twice the Axiom A3. We proceed as follows:

O(εµ) +
1
µ
O(ε) +

1
µ
| dx(u1, u2)− dx(δx

µw(u1), δx
µw(u2)) | ≤

≤ O(εµ) +
1
µ
O(ε) +

1
µ
dx(u1, δ

x
µw(u1)) +

1
µ
dx(u1, δ

x
µw(u2))

≤ O(εµ) +
1
µ
O(ε) +O(ε)

This shows that the property (b) of a metric profile is satisfied. The property (a) is proved in
the Theorem 7.

The following theorem is related to Mitchell [12] Theorem 1, concerning sub-riemannian
geometry.

Theorem 7. In the hypothesis of theorem 6, we have the following limit:

lim
ε→0

1
ε

sup {| d(u, v)− dx(u, v) |: d(x, u) ≤ ε, d(x, v) ≤ ε} = 0

Therefore if dx is a true (i.e. nondegenerate) distance, then (X, d) admits a metric tangent space
in x.

Moreover, the metric profile [B̄dx(x, 1), (δ, ε), x] is almost nice, in the following sense. Let
c ∈ (0, 1). Then we have the inclusion

δx
µ−1

(
B̄ 1

µ
(δx,ε)(x, c)

)
⊂ B̄dx(x, 1)

Moreover, the following Gromov-Hausdorff distance is of order O(ε) for µ fixed (that is the
modulus of convergence O(ε) does not depend on µ):

µ dGH

(
[B̄dx(x, 1), (δx, ε), x], [δx

µ−1

(
B̄ 1

µ
(δx,ε)(x, c)

)
, (δx, εµ), x]

)
= O(ε)

For another Gromov-Hausdorff distance we have the estimate

dGH

(
[B̄ 1

µ
(δx,ε)(x, c),

1
µ

(δx, ε), x] , [δx
µ−1

(
B̄ 1

µ
(δx,ε)(x, c)

)
, (δx, εµ), x]

)
= O(εµ)

when ε ∈ (0, ε(c)).
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Proof. We start from the Axioms A0, A3 and we use the cone property. By A0, for ε ∈ (0, 1)
and u, v ∈ B̄d(x, ε) there exist U, V ∈ B̄d(x,A) such that

u = δx
εU, v = δx

εV.

By the cone property we have

1
ε
| d(u, v)− dx(u, v) |=

∣∣∣∣1εd(δx
εU, δ

x
εV )− dx(U, V )

∣∣∣∣
By A2 we have∣∣∣∣1εd(δx

εU, δ
x
εV )− dx(U, V )

∣∣∣∣ ≤ O(ε)

This proves the first part of the theorem.
For the second part of the theorem take any u ∈ B̄ 1

µ
(δx,ε)(x, c). Then we have

dx(x, u) ≤ cµ+O(ε)

Then there exists ε(c) > 0 such that for any ε ∈ (0, ε(c)) and u in the mentioned ball we have

dx(x, u) ≤ µ

In this case we can take directly w(u) = δx
µ−1u and simplify the string of inequalities from the

proof of Theorem 6, point (b), to get eventually the three points from the second part of the
theorem.

6 Tangent bundle of a dilatation structure

In this section we shall use the calculus with binary decorated trees introduced in section 4, for
a space endowed with a dilatation structure.

6.1 Main results

Theorem 8. Let (X, d, δ) be a dilatation structure. Then the ”infinitesimal translations”

Lx
u(v) = lim

ε→0
∆x

ε (u, v)

are dx isometries.

Proof. The first part of the conclusion of Theorem 7 can be written as follows:

sup
{

1
ε
| d(u, v)− dx(u, v) | : d(x, u) ≤ 3

2
ε, d(x, v) ≤ 3

2
ε

}
→ 0 (6.1)

as ε→ 0.
For ε > 0 sufficiently small the points x, δx

εu, δ
x
ε v, δ

x
εw are close one to another. Precisely, we

have

d(δε
xu, δ

ε
xv) = ε(dx(u, v) +O(ε))

Therefore, if we choose u, v, w such that dx(u, v) < 1 and dx(u,w) < 1, then there is η > 0 such
that for all ε ∈ (0, η) we have

d(δε
xu, δ

ε
xv) ≤

3
2
ε, d(δε

xu, δ
ε
xv) ≤

3
2
ε
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We apply the estimate (6.1) for the basepoint δx
εu to get

1
ε
| d(δx

ε v, δ
x
εw)− dδx

ε u(δx
ε v, δ

x
εw) |→ 0

when ε→ 0. This can be written, using the cone property of the distance dδx
ε u, like∣∣∣∣1εd(δx

ε v, δ
x
εw)− dδx

ε u
(
δ
δx
ε u

ε−1δ
x
ε v, δ

δx
ε u

ε−1δ
x
εw

)∣∣∣∣ → 0 (6.2)

as ε→ 0. By the Axioms A1, A3, the function

(x, u, v) 7→ dx(u, v)

is an uniform limit of continuous functions, therefore uniformly continuous on compact sets. We
can pass to the limit in the left hand side of the estimate (6.2), using this uniform continuity
and Axioms A3, A4, to get the result.

Let us define, in agreement with definition 11 (b)

Σx
ε (u, v) = δx

ε−1δ
δx
ε u

ε v

Corollary 9. If for any x the distance dx is non degenerate then there exists C > 0 such that
for any x and u with d(x, u) ≤ C there exists a dx isometry Σx(u, ·) obtained as the limit

lim
ε→0

Σx
ε (u, v) = Σx(u, v)

uniformly with respect to x, u, v in compact set.

Proof. From Theorem 8 we know that ∆x(u, ·) is a dx isometry. If dx is non degenerate then
∆x(u, ·) is invertible. Let Σx(u, ·) be the inverse.

From Proposition 3 we know that Σx
ε (u, ·) is the inverse of ∆x

ε (u, ·). Therefore

dx(Σx
ε (u,w),Σx(u,w)) = dx(∆x(u,Σx

ε (u,w)), w)
= dx(∆x(u,Σx

ε (u,w)),∆x
ε (u,Σx

ε (u,w))

From the uniformity of convergence in Theorem 8 and the uniformity assumptions in axioms of
dilatation structures, the conclusion follows.

The next theorem is the generalization of Proposition 2. It is the main result of this paper.

Theorem 10. Let (X, d, δ) be a dilatation structure which satisfies the strong form of the Axiom
A2. Then for any x ∈ X (U(x),Σx, δx) is a conical group. Moreover, left translations of this
group are dx isometries.

Proof. We start by proving that (U(x),Σx) is a local uniform group. The uniformities are
induced by the distance d.

We shall use the general relations written in terms of binary decorated trees. According to
relation (4.4) in Proposition 4, we can pass to the limit with ε→ 0 and define

invx(u) = lim
ε→0

∆x
ε (u, x) = ∆x(u, x)

From relation (4.5) we get (after passing to the limit with ε→ 0)

invx(invx(u)) = u
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We shall see that invx(u) is the inverse of u. Relation (4.3) gives

∆x(u, v) = Σx(invx(u), v) (6.3)

therefore relations (a), (b) from Proposition 3 give

Σx(invx(u),Σx(u, v)) = v (6.4)
Σx(u,Σx(u, v)) = v (6.5)

Relation (4.7) from Proposition 5 gives

Σx(u,Σx(v, w)) = Σx(Σx(u, v), w) (6.6)

which shows that Σx is an associative operation. From (6.5), (6.4) we obtain that for any u, v

Σx(Σx(invx(u), u), v) = v (6.7)
Σx(Σx(u, invx(u)), v) = v (6.8)

Remark that for any x, v and ε ∈ (0, 1) we have Σx(x, v) = v. indeed, this means that

•
b

bb
"

""
x ◦

ll,,
◦
SS��

x x

v

=

•
ll,,

x ◦
SS��

x v

= v

Therefore x is a neutral element at left for the operation Σx. From the definition of invx, relation
(6.3) and the fact that invx is equal to its inverse, we get that x is an inverse at right too: for
any x, v we have

Σx(v, x) = v

Replace now v by x in relations (6.7), (6.8) and prove that indeed invx(u) is the inverse of u.
We still have to prove that (U(x),Σx) admits δx as dilatations.In this reasoning we need the

Axiom A2 in strong form.
Namely we have to prove that for any µ ∈ (0, 1) we have

δx
µΣx(u, v) = Σx(δx

µu, δ
x
µv)

For this is sufficient to notice that

∆x
ε

(
δx
µu, δ

x
µv

)
= δ

δx
εµu

µ ∆x
εµ(u, v)

and pass to the limit as ε → 0. Notice that here we used the fact that dilatations δx
ε and δx

µ

exactly commute (Axiom A2 in strong form).
Finally, left translations Lx

u are dx isometries. Really, this is a straightforward consequence
of Theorem 8 and corollary 9.

The conical group (U(x),Σx, δx) can be regarded as the tangent space of (X, δ, d) at x and
denoted further by TxX.
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6.2 Algebraic interpretation

In order to better understand the algebraic structure of the sum, difference, inverse operations
induced by a dilatation structure, we collect previous results regarding the properties of these
operations, into one place.

Theorem 11. Let (X, d, δ) be a weak dilatation structure. Then, for any x ∈ X, ε ∈ Γ, ν(ε) < 1,
we have

(a) For any u ∈ U(x), Σx
ε (x, u) = u.

(b) For any u ∈ U(x) the functions Σx
ε (u, ·) and ∆x

ε (u, ·) are inverse one to another.
(c) The inverse function is shifted involutive: for any u ∈ U(x),

invδx
ε u

ε invx
ε (u) = u

(d) The sum operation is shifted associative: for any u, v, w sufficiently close to x we have

Σx
ε

(
u,Σδx

ε u
ε (v, w)

)
= Σx

ε (Σx(u, v), w)

(e) The difference, inverse and sum operations are related by

∆x
ε (u, v) = Σδx

ε u
ε (invx

ε (u), v)

for any u, v sufficiently close to x.
(f) For any u, v sufficiently close to x and µ ∈ Γ, ν(µ) < 1, we have

∆x
ε

(
δx
µu, δ

x
µv

)
= δ

δx
εµu

µ ∆x
εµ(u, v)

7 Dilatation structures and differentiability

7.1 Equivalent dilatation structures

Definition 14. Two dilatation structures (X, δ, d) and (X, δ, d) are equivalent if

(a) the identity map id : (X, d) → (X, d) is bilipschitz and
(b) for any x ∈ X there are functions P x, Qx (defined for u ∈ X sufficiently close to x) such

that

lim
ε→0

1
ε
d

(
δx
εu, δ

x
εQ

x(u)
)

= 0 (7.1)

lim
ε→0

1
ε
d

(
δ
x
εu, δ

x
εP

x(u)
)

= 0 (7.2)

uniformly with respect to x, u in compact sets.

Proposition 12. Two dilatation structures (X, δ, d) and (X, δ, d) are equivalent if and only if

(a) the identity map id : (X, d) → (X, d) is bilipschitz and
(b) for any x ∈ X there are functions P x, Qx (defined for u ∈ X sufficiently close to x) such

that

lim
ε→0

(
δ
x
ε

)−1
δx
ε (u) = Qx(u) (7.3)

lim
ε→0

(δx
ε )−1 δ

x
ε (u) = P x(u) (7.4)

uniformly with respect to x, u in compact sets.
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Proof. We make the notations

Qx
ε (u) =

(
δ
x
ε

)−1
δx
ε (u), P x

ε (u) = (δx
ε )−1 δ

x
ε (u)

The relation (7.1) is equivalent to

Oε) + d
x (Qx

ε (u), Qx(u)) → 0, Oε) + dx (P x
ε (u), P x(u)) → 0

as ε → 0, uniformly with respect to x, u in compact sets. The conclusion follows after passing
ε→ 0.

The next theorem shows a link between the tangent bundles of equivalent dilatation struc-
tures.

Theorem 13. Let (X, δ, d) and (X, δ, d) be equivalent dilatation structures. Suppose that for
any x ∈ X the distance dx is non degenerate. Then for any x ∈ X and any u, v ∈ X sufficiently
close to x we have:

Σx(u, v) = Qx (Σx (P x(u), P x(v))) (7.5)

The two tangent bundles are therefore isomorphic in a natural sense.

Proof. We notice first that the hypothesis is symmetric: if dx is non degenerate then dx is non
degenerate too. Really, this is straightforward from definition 14 (a) and Axiom A3 for the two
dilatation structures.

For the proof of relation (7.5) is enough to remark that for ε > 0 but sufficiently small we
have

Σx
ε (u, v) = Qx

ε

(
Σx

ε

(
P x

ε (v), P δ
x
εu

ε (v)
))

(7.6)

Really, with tree notation, let

◦
SS��

x y

= δ
x
εy,

◦
SS��

x y

= δx
ε y

The relation (7.6), written from right to left, is

•
HHH

���
x ◦

aaa
!!!

x •
PPPP

����
x ◦

XXXXX
�����

◦
cc##

x •
ll,,

x ◦
SS��

x u

•
H

HH
�

��
◦
SS��

x u

◦
ll,,

◦
SS��

x u

v

=

•
b

bb
"

""
x ◦

ll,,
◦
SS��

x u

v

But this is true by cancellations of dilatations and definitions of the operators P x
ε and Qx

ε .
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7.2 Differentiable functions

Dilatation structures allow to define differentiable functions. The idea is to keep only one relation
from definition 14, namely (7.1). We also renounce to uniform convergence with respect to x
and u, and we replace this with uniform convergence in u and with a conical group morphism
condition for the derivative.

First we need the natural definition below.

Definition 15. Let (N, δ) and (M, δ̄) be two conical groups. A function f : N →M is a conical
group morphism if f is a group morphism and for any ε > 0 and u ∈ N we have f(δεu) = δ̄εf(u).

The definition of derivative with respect to dilatations structures follows.

Definition 16. Let (X, δ, d) and (Y, δ, d) be two dilatation structures and f : X → Y be
a continuous function. The function f is differentiable in x if there exists a conical group
morphism Qx : TxX → Tf(x)Y , defined on a neighbourhood of x with values in a neighbourhood
of f(x) such that

lim
ε→0

sup
{

1
ε
d

(
f (δx

εu) , δ
f(x)
ε Qx(u)

)
: d(x, u) ≤ ε

}
= 0 (7.7)

The morphism Qx is called the derivative of f at x and will be sometimes denoted by Df(x).
The function f is uniformly differentiable if it is differentiable everywhere and the limit in

(7.7) is uniform in x in compact sets.

This definition deserves a short discussion. Let (X, δ, d) and (Y, δ, d) be two dilatation struc-
tures and f : X → Y a function differentiable in x. The derivative of f in x is a conical group
morphism Df(x) : TxX → Tf(x)Y , which means that Df(x) is defined on a open set around x
with values in a open set around f(x), having the following properties:

(a) for any u, v sufficiently close to x

Df(x) (Σx(u, v)) = Σf(x) (Df(x)(u), Df(x)(v))

(b) for any u sufficiently close to x and any ε ∈ (0, 1]

Df(x) (δx
εu) = δ̄f(x)

ε (Df(x)(u))

(c) the function Df(x) is continuous, as uniform limit of continuous functions. Indeed, the
relation (7.7) is equivalent to the existence of the uniform limit (with respect to u in
compact sets)

Df(x)(u) = lim
ε→0

δ̄
f(x)
ε−1 (f (δx

εu))

From (7.7) alone and axioms of dilatation structures we can prove properties (b) and (c).
We can reformulate therefore the definition of the derivative by asking that Df(x) exists as an
uniform limit (as in point (c) above) and that Df(x) has the property (a) above. From these
considerations the chain rule for derivatives is straightforward.

A trivial way to obtain a differentiable function (everywhere) is to modify the dilatation
structure on the target space.

Definition 17. Let (X, δ, d) be a dilatation structure and f : (X, d) → (Y, d) be a bilipschitz
and surjective function. We define then the transport of (X, δ, d) by f , named (Y, f ∗ δ, d), by

(f ∗ δ)f(x)
ε f(u) = f (δx

εu)
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The relation of differentiability with equivalent dilatation structures is given by the following
simple

Proposition 14. Let (X, δ, d) and (X, δ, d) be two dilatation structures and f : (X, d) → (X, d)
be a bilipschitz and surjective function. The dilatation structures (X, δ, d) and (X, f ∗ δ, d) are
equivalent if and only if f and f−1 are uniformly differentiable.

Proof. Straightforward from definitions 14 and 17.

8 Differential structure, conical groups and dilatation struc-
tures

In this section we collect some facts which relate differential structures with dilatation structures.
We resume then the paper with a justification of the unusual way of defining uniform groups
(definition 7) by the fact that the op function (the group operation) is differentiable with respect
to dilatation structures which are natural for a group with dilatations.

8.1 Differential structures and dilatation structures

A differential structure on a manifold is an equivalence class of compatible atlases. We show
here that an atlas induces an equivalence class of dilatation structures and that two compatible
atlases induce the same equivalence class of dilatation structures.

Let M be a C1 n-dimensional real manifold and A an atlas of this manifold. For each chart
φ : W ⊂M → Rn we shall define a dilatation structure on W .

Suppose that φ(W ) ⊂ Rn is convex (if not then take an open subset of W with this property).
For x, u ∈W and ε ∈ (0, 1] define the dilatation

δx
εu = φ−1 (φ(x) + ε(φ(u)− φ(x)))

Otherwise said, the dilatations in W are transported from Rn. Equally, we transport on W the
euclidean distance of Rn. We obviously get a dilatation structure on W .

If we have two charts φi : Wi ⊂ M → Rn, i = 1, 2, belonging to the same atlas A, then
we have two equivalent dilatation structures on W1 ∩W2. Indeed, the atlas A is C1 therefore
the distances (induced from the charts) are (locally) in bilipschitz equivalence. Denote by δ
the dilatation obtained from the chart φ2. A short computation shows that (we use here the
transition map φ21 = φ2(φ1)−1)

Qx
ε (u) = (φ2)−1

(
φ2(x) +

1
ε

(φ21 (φ1(x) + ε(f(u)− f(x)))− φ2(x))
)

therefore, as ε→ 0, we have

lim
ε→0

Qx
ε (u) = Qx(u) = (φ2)−1 (φ2(x) +Dφ21(f(x))(f(u)− f(x)))

A similar computation shows that P x also exists. The uniform convergence requirements come
from the fact that we use a C1 atlas.

A similar reasoning shows that in fact two compatible atlases induce the same equivalence
class of dilatation structures.
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8.2 Conical groups and dilatation structures

In a group with dilatations (G, δ) we define dilatations based in any point x ∈ G by

δx
εu = xδε(x−1u) (8.1)

Definition 18. A normed group with dilatations (G, δ, ‖·‖) is a group with dilatations (G, δ) en-
dowed with a continuous norm function ‖·‖ : G→ R which satisfies (locally, in a neighbourhood
of the neutral element e) the following properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,
(b) for any x, y we have ‖xy‖ ≤ ‖x‖+ ‖y‖,
(c) for any x we have ‖x−1‖ = ‖x‖,
(d) the limit limε→0

1
ν(ε)‖δεx‖ = ‖x‖N exists, is uniform with respect to x in compact set,

(e) if ‖x‖N = 0, then x = e.

It is easy to see that if (G, δ, ‖ · ‖) is a normed group with dilatations then (G, β, δ, ‖ · ‖N ) is a
normed conical group. The norm ‖ · ‖N satisfies the stronger form of property (d) of Definition
18: for any ε > 0, ‖δεx‖N = ε‖x‖N .

Normed groups with dilatations can be encountered in sub-Riemannian geometry. Normed
conical groups generalize the notion of Carnot groups.

In a normed group with dilatations we have a natural left invariant distance given by

d(x, y) = ‖x−1y‖ (8.2)

Theorem 15. Let (G, δ, ‖ ·‖) be a locally compact normed group with dilatations. Then (G, δ, d)
is a dilatation structure, where δ are the dilatations defined by (8.1) and the distance d is induced
by the norm as in (8.2).

Proof. The Axiom A0 is straightforward from definition 7, definition 8, Axiom H0, and because
the dilatation structure is left invariant, in the sense that the transport by left translations in
G, according to Definition 17, preserves the dilatations δ. We also trivially have Axioms A1 and
A2 satisfied.

For the Axiom A3 remark that

d(δx
εu, δ

x
ε v) = d(xδε(x−1u), xδε(x−1u)) = d(δε(x−1u), δε(x−1v))

Denote U = x−1u, V = x−1v and for ε > 0 let

βε(u, v) = δ−1
ε ((δεu)(δεv))

We have then:
1
ε
d(δx

εu, δ
x
ε v) =

1
ε
‖δεβε

(
δ−1
ε

(
(δεV )−1

)
, U

)
‖

Define the function

dx(u, v) = ‖β(V −1, U)‖N

From Definition 8 Axioms H1, H2, and from definition 18 (d), we obtain that Axiom A3 is
satisfied.

For the Axiom A4 we have to calculate

∆x(u, v) = δ
δx
ε u

ε−1δ
x
ε v

= (δx
εu) (δε)

−1
(
(δx

εu)
−1 (δx

ε v)
)

= (xδεU)βε

(
δ−1
ε

(
(δεV )−1

)
, U

)
→ xβ

(
V −1, U

)
as ε→ 0. Therefore the Axiom A4 is satisfied.
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We remarked in the proof of the previous theorem that the transport by left translations in
G, according to Definition 17, preserves the dilatation structure on G. This implies, according to
Proposition 14, that left translations are differentiable. On the contrary, a short computation and
examples from sub-Riemannian geometry indicate that right translations are not differentiable.

Nevertheless, the operation op is differentiable, if we endow the group G(2) = G ×G with a
good dilatation structure. This will justify the non standard way to define local uniform groups
in Definition 7.

Start from the fact that if G is a local uniform group then G(2) is a local uniform group
too. If G is also normed, with dilatations, then we can easily define a similar structure on G(2).
Really, the norm on G(2) can be taken as

‖(x, y)‖(2) = max {‖x‖, ‖y‖}

and dilatations

δ(2)
ε (x, y) = (δεx, δεy)

We leave to the reader to check that G(2) endowed with this norm and these dilatations is indeed
a normed group with dilatations.

Theorem 16. Let (G, δ, ‖ · ‖) be a locally compact normed group with dilatations and let
(G(2), δ(2), ‖ · ‖(2)) be the associated normed group with dilatation. Then the operation (op func-
tion) is differentiable.

Proof. We start from the formula (easy to check in G(2))

(x, y)−1 = (x−1, xy−1x−1)

Then we have

δ(x,y)
ε (u, v) =

(
xδε(x−1u),

(
δε(x−1u)

)−1
yδε(x−1u)δε

(
u−1xy−1x−1uv

))
Let us define

Q(x,y)(u, v) = op(x, y)β((x, y)−1(u, v))

Then we have

1
ε
d

(
op

(
δ(x,y)(u, v)

)
, δop(x,y)Q(x,y)(u, v)

)
=

1
ε
d

(
δεβε((x, y)−1(u, v)), δεβ((x, y)−1(u, v))

)
The right hand side of this equality converges then to 0 as ε→ 0. More precisely, we have

sup
{

1
ε
d

(
op

(
δ(x,y)(u, v)

)
, δop(x,y)Q(x,y)(u, v)

)
: (2)((x, y), (u, v)) ≤ ε

}
=

= sup
{
de

(
βε((x, y)−1(u, v)), β((x, y)−1(u, v))

)
: d(2)((x, y), (u, v)) ≤ ε

}
+O(ε)

In particular, we have Q(e,e)(u, v) = β(u, v), which shows that the operation β is the differ-
ential of the operation op calculated in the neutral element of G(2).
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[12] J. Mitchell. On Carnot-Carathéodory metrics. J. Diff. Geom. 21 (1985), 35–45.
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Abstract

A dilatation structure on a metric space, is a notion in between a
group and a differential structure. The basic objects of a dilatation
structure are dilatations (or contractions). The axioms of a dilatation
structure set the rules of interaction between different dilatations.

There are two notions of linearity associated to dilatation structures:
the linearity of a function between two dilatation structures and the
linearity of the dilatation structure itself.

Our main result here is a characterization of contractible groups in
terms of dilatation structures. To a normed conical group (normed con-
tractible group) we can naturally associate a linear dilatation structure.
Conversely, any linear and strong dilatation structure comes from the
dilatation structure of a normed contractible group.
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1 Introduction

Dilatation structures on metric spaces, introduced in [3], describe the approx-

imate self-similarity properties of a metric space. A dilatation structure is a

notion related, but more general, to groups and differential structures.

The basic objects of a dilatation structure are dilatations (or contractions).

The axioms of a dilatation structure set the rules of interaction between dif-

ferent dilatations.

A metric space (X, d) which admits a strong dilatation structure (defini-

tion 3.2) has a metric tangent space at any point x ∈ X (theorem 4.2), and

any such metric tangent space has an algebraic structure of a conical group

(theorem 4.3). Conical groups are particular examples of contraction groups.

The structure of contraction groups is known in some detail, due to Siebert

[9], Wang [10], Glöckner and Willis [6], Glöckner [5] and references therein.

By a classical result of Siebert [9] proposition 5.4, we can characterize

the algebraic structure of the metric tangent spaces associated to dilatation

structures of a certain kind: they are Carnot groups, that is simply connected

Lie groups whose Lie algebra admits a positive graduation (corollary 4.7).
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Carnot groups appear in many situations, in particular in relation with

sub-riemannian geometry cf. Belläıche [1], groups with polynomial growth cf.

Gromov [7], or Margulis type rigidity results cf. Pansu [8]. It is part of the au-

thor program of research to show that dilatation structures are natural objects

in all these mathematical subjects. In this respect the corollary 4.7 represents

a generalization of difficult results in sub-riemannian geometry concerning the

structure of the metric tangent space at a point of a regular subriemannian

manifold.

Linearity is also a property which can be explained with the help of a

dilatation structure. In the second section of the paper we explain why linearity

can be casted in terms of dilatations. There are in fact two kinds of linearity:

the linearity of a function between two dilatation structures (definition 5.1)

and the linearity of the dilatation structure itself (definition 5.7).

Our main result here is a characterization of contraction groups in terms of

dilatation structures. To a normed conical group (normed contraction group)

we can naturally associate a linear dilatation structure (proposition 5.8). Con-

versely, by theorem 5.11 any linear and strong dilatation structure comes from

the dilatation structure of a normed contraction group.

2 Linear structure in terms of dilatations

Linearity is a basic property related to vector spaces. For example, if V is

a real, finite dimensional vector space then a transformation A : V → V is

linear if it is a morphism of groups A : (V,+) → (V,+) and homogeneous

with respect to positive scalars. Furthermore, in a normed vector space we

can speak about linear continuous transformations.

A transformation is affine if it is a composition of a translation with a

linear transformation. In this paper we shall use the umbrella name ”linear”

for affine transformations too.

We try here to explain that linearity property can be entirely phrased in

terms of dilatations of the vector space V.

For the vector space V, the dilatation based at x ∈ V, of coefficient ε > 0,

is the function

δ
x
ε : V → V , δ

x
ε y = x+ ε(−x+ y) .

For fixed x the dilatations based at x form a one parameter group which

contracts any bounded neighbourhood of x to a point, uniformly with respect

to x.

The algebraic structure of V is encoded in dilatations. Indeed, using dilata-

tions we can recover the operation of addition and multiplication by scalars.
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For x, u, v ∈ V and ε > 0 we define the following compositions of dilata-

tions:

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v , Σx

ε (u, v) = δ
x
ε−1δ

δx
ε u

ε (v) , inv
x
ε (u) = δ

δx
ε u

ε−1x .

(2.0.1)

The meaning of this functions becomes clear if we compute:

∆x
ε (u, v) = x+ ε(−x+ u) + (−u+ v) ,

Σx
ε (u, v) = u+ ε(−u+ x) + (−x+ v) ,

inv
x
ε (u) == x+ ε(−x+ u) + (−u+ x) .

As ε→ 0 we have the limits:

lim
ε→0

∆x
ε (u, v) = ∆x(u, v) = x+ (−u + v) ,

lim
ε→0

Σx
ε (u, v) = Σx(u, v) = u+ (−x+ v) ,

lim
ε→0

inv
x
ε (u) = inv

x(u) = x− u+ x ,

uniform with respect to x, u, v in bounded sets. The function Σx(·, ·) is a group

operation, namely the addition operation translated such that the neutral el-

ement is x. Thus, for x = 0, we recover the usual addition operation. The

function inv
x(·) is the inverse function with respect to addition, and ∆x(·, ·)

is the difference function.

Notice that for fixed x, ε the function Σx
ε (·, ·) is not a group operation, first

of all because it is not associative. Nevertheless, this function satisfies a shifted

associativity property, namely (see theorem 4.1)

Σx
ε (Σ

x
ε (u, v), w) = Σx

ε(u,Σ
δx
ε u

ε (v, w)) .

Also, the inverse function invx
ε is not involutive, but shifted involutive (theorem

4.1):

inv
δx
ε u

ε (invx
εu) = u .

Affine continuous transformations A : V → V admit the following descrip-

tion in terms of dilatations. (We could dispense of continuity hypothesis in this

situation, but we want to illustrate a general point of view, described further

in the paper).

Proposition 2.1 A continuous transformation A : V → V is affine if and
only if for any ε ∈ (0, 1), x, y ∈ V we have

Aδ
x
ε y = δ

Ax
ε Ay . (2.0.2)

The proof is a straightforward consequence of representation formulæ (2.0.1)

for the addition, difference and inverse operations in terms of dilatations.
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3 Dilatation structures

We present here a brief introduction into the subject of dilatation structures.

For more details see Buliga [3]. The results with proofs are new.

3.1 Notations

Let Γ be a topological separated commutative group endowed with a continu-

ous group morphism

ν : Γ → (0,+∞)

with inf ν(Γ) = 0. Here (0,+∞) is taken as a group with multiplication. The

neutral element of Γ is denoted by 1. We use the multiplicative notation for

the operation in Γ.

The morphism ν defines an invariant topological filter on Γ (equivalently,

an end). Indeed, this is the filter generated by the open sets ν−1(0, a), a > 0.

From now on we shall name this topological filter (end) by ”0” and we shall

write ε ∈ Γ → 0 for ν(ε) ∈ (0,+∞) → 0.

The set Γ1 = ν
−1(0, 1] is a semigroup. We note Γ̄1 = Γ1 ∪ {0} On the set

Γ̄ = Γ ∪ {0} we extend the operation on Γ by adding the rules 00 = 0 and

ε0 = 0 for any ε ∈ Γ. This is in agreement with the invariance of the end 0

with respect to translations in Γ.

The space (X, d) is a complete, locally compact metric space. For any r > 0

and any x ∈ X we denote by B(x, r) the open ball of center x and radius r in

the metric space X.

On the metric space (X, d) we work with the topology (and uniformity)

induced by the distance. For any x ∈ X we denote by V(x) the topological

filter of open neighbourhoods of x.

3.2 Axioms of dilatation structures

The axioms of a dilatation structure (X, d, δ) are listed further. The first

axiom is merely a preparation for the next axioms. That is why we counted it

as axiom 0.

A0. The dilatations

δ
x
ε : U(x) → Vε(x)

are defined for any ε ∈ Γ, ν(ε) ≤ 1. The sets U(x), Vε(x) are open

neighbourhoods of x. All dilatations are homeomorphisms (invertible,

continuous, with continuous inverse).
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We suppose that there is a number 1 < A such that for any x ∈ X we

have

B̄d(x,A) ⊂ U(x) .

We suppose that for all ε ∈ Γ, ν(ε) ∈ (0, 1), we have

Bd(x, ν(ε)) ⊂ δ
x
εBd(x,A) ⊂ Vε(x) ⊂ U(x) .

There is a number B ∈ (1, A] such that for any ε ∈ Γ with ν(ε) ∈ (1,+∞)

the associated dilatation

δ
x
ε : Wε(x) → Bd(x,B) ,

is injective, invertible on the image. We shall suppose thatWε(x) ∈ V(x),

that Vε−1(x) ⊂Wε(x) and that for all ε ∈ Γ1 and u ∈ U(x) we have

δ
x
ε−1 δ

x
εu = u .

We have therefore the following string of inclusions, for any ε ∈ Γ, ν(ε) ≤ 1,

and any x ∈ X:

Bd(x, ν(ε)) ⊂ δ
x
εBd(x,A) ⊂ Vε(x) ⊂ Wε−1(x) ⊂ δ

x
εBd(x,B) .

A further technical condition on the sets Vε(x) and Wε(x) will be given just

before the axiom A4. (This condition will be counted as part of axiom A0.)

A1. We have δx
εx = x for any point x. We also have δx

1 = id for any x ∈ X.

Let us define the topological space

dom δ = {(ε, x, y) ∈ Γ ×X ×X : if ν(ε) ≤ 1 then y ∈ U(x) ,

else y ∈Wε(x)}
with the topology inherited from the product topology on Γ × X × X.

Consider also Cl(dom δ), the closure of dom δ in Γ̄×X×X with product

topology. The function δ : dom δ → X defined by δ(ε, x, y) = δ
x
ε y is

continuous. Moreover, it can be continuously extended to Cl(dom δ)

and we have

lim
ε→0

δ
x
ε y = x .

A2. For any x,∈ K, ε, µ ∈ Γ1 and u ∈ B̄d(x,A) we have:

δ
x
ε δ

x
µu = δ

x
εµu .
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A3. For any x there is a function (u, v) 7→ d
x(u, v), defined for any u, v in the

closed ball (in distance d) B̄(x,A), such that

lim
ε→0

sup

{

| 1

ε

d(δx
εu, δ

x
ε v) − d

x(u, v) | : u, v ∈ B̄d(x,A)

}

= 0

uniformly with respect to x in compact set.

Remark 3.1 The ”distance” dx can be degenerated: there might exist v, w ∈
U(x) such that dx(v, w) = 0.

For the following axiom to make sense we impose a technical condition on

the co-domains Vε(x): for any compact set K ⊂ X there are R = R(K) > 0

and ε0 = ε(K) ∈ (0, 1) such that for all u, v ∈ B̄d(x,R) and all ε ∈ Γ,

ν(ε) ∈ (0, ε0), we have

δ
x
ε v ∈Wε−1(δx

εu) .

With this assumption the following notation makes sense:

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v.

The next axiom can now be stated:

A4. We have the limit

lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Definition 3.2 A triple (X, d, δ) which satisfies A0, A1, A2, A3, but dx is
degenerate for some x ∈ X, is called degenerate dilatation structure.

If the triple (X, d, δ) satisfies A0, A1, A2, A3 and dx is non-degenerate for
any x ∈ X, then we call it a dilatation structure.

If a dilatation structure satisfies A4 then we call it strong dilatation struc-
ture.

3.3 Groups with dilatations. Conical groups

Metric tangent spaces sometimes have a group structure which is compatible

with dilatations. This structure, of a group with dilatations, is interesting by

itself. The notion has been introduced in [2]; we describe it further.

The following description of local uniform groups is slightly non canon-

ical, but is motivated by the case of a Lie group endowed with a Carnot-

Caratheodory distance induced by a left invariant distribution (see for example

[2]).

7



We begin with some notations. Let G be a group. We introduce first the

double of G, as the group G(2) = G×G with operation

(x, u)(y, v) = (xy, y−1
uyv) .

The operation on the group G, seen as the function op : G(2) → G, op(x, y) =

xy is a group morphism. Also the inclusions:

i
′ : G→ G

(2)
, i

′(x) = (x, e)

i” : G→ G
(2)

, i”(x) = (x, x−1)

are group morphisms.

Definition 3.3 1. G is an uniform group if we have two uniformity struc-
tures, on G and G×G, such that op, i′, i” are uniformly continuous.

2. A local action of a uniform group G on a uniform pointed space (X, x0)

is a function φ ∈W ∈ V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that:

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G × X (with
product uniformity) to X,

(b) for any φ, ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D

ˆ
φψ

−1(x) and φ̂(ψ̂−1(x)) make sense and ˆ
φψ

−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined
in a neighbourhood of (e, e) ⊂ G × G which satisfies the uniform group
axioms locally.

An uniform group, according to the definition (3.3), is a group G such that

left translations are uniformly continuous functions and the left action of G on

itself is uniformly continuous too.

Definition 3.4 A group with dilatations (G, δ) is a local uniform group G with
a local action of Γ (denoted by δ), on G such that

H0. the limit lim
ε→0

δεx = e exists and is uniform with respect to x in a compact

neighbourhood of the identity e.

H1. the limit
β(x, y) = lim

ε→0
δ
−1
ε ((δεx)(δεy))

is well defined in a compact neighbourhood of e and the limit is uniform.
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H2. the following relation holds

lim
ε→0

δ
−1
ε

(

(δεx)
−1

)

= x
−1

where the limit from the left hand side exists in a neighbourhood of e and
is uniform with respect to x.

These axioms are in fact a particular version of the axioms for a dilatation

structure.

Definition 3.5 A (local) conical group N is a (local) group with a (local) ac-
tion of Γ by morphisms δε such that lim

ε→0
δεx = e for any x in a neighbourhood

of the neutral element e.

A conical group is the infinitesimal version of a group with dilatations ([3]

proposition 2).

Proposition 3.6 Under the hypotheses H0, H1, H2 (G, β, δ) is a conical group,
with operation β and dilatations δ.

Any group with dilatations has an associated dilatation structure on it. In

a group with dilatations (G, δ) we define dilatations based in any point x ∈ G

by

δ
x
εu = xδε(x

−1
u). (3.3.1)

Definition 3.7 A normed group with dilatations (G, δ, ‖ · ‖) is a group with
dilatations (G, δ) endowed with a continuous norm function ‖·‖ : G→ R which
satisfies (locally, in a neighbourhood of the neutral element e) the properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,

(b) for any x, y we have ‖xy‖ ≤ ‖x‖ + ‖y‖,

(c) for any x we have ‖x−1‖ = ‖x‖,

(d) the limit lim
ε→0

1

ν(ε)
‖δεx‖ = ‖x‖N exists, is uniform with respect to x in

compact set,

(e) if ‖x‖N = 0 then x = e.
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It is easy to see that if (G, δ, ‖ · ‖) is a normed group with dilatations then

(G, β, δ, ‖·‖N) is a normed conical group. The norm ‖·‖N satisfies the stronger

form of property (d) definition 3.7: for any ε > 0

‖δεx‖N = ε‖x‖N
.

In a normed group with dilatations we have a natural left invariant distance

given by

d(x, y) = ‖x−1
y‖ . (3.3.2)

The following result is theorem 15 [3].

Theorem 3.8 Let (G, δ, ‖ · ‖) be a locally compact normed group with dilata-
tions. Then (G, δ, d) is a dilatation structure, where δ are the dilatations de-
fined by (3.3.1) and the distance d is induced by the norm as in (3.3.2).

3.4 Carnot groups

Normed conical groups generalize the notion of Carnot groups. A simply

connected Lie group whose Lie algebra admits a positive graduation is also

called a Carnot group. It is in particular nilpotent. Such objects appear in

sub-riemannian geometry as models of tangent spaces, cf. [1], [7], [8].

Definition 3.9 A Carnot (or stratified nilpotent) group is a pair (N, V1) con-
sisting of a real connected simply connected group N with a distinguished sub-
space V1 of the Lie algebra Lie(N), such that the following direct sum decom-
position occurs:

n =

m
∑

i=1

Vi , Vi+1 = [V1, Vi]

The number m is the step of the group. The number Q =

m
∑

i=1

i dimVi is

called the homogeneous dimension of the group.

Because the group is nilpotent and simply connected, the exponential map-

ping is a diffeomorphism. We shall identify the group with the algebra, if is

not locally otherwise stated.

The structure that we obtain is a set N endowed with a Lie bracket and

a group multiplication operation, related by the Baker-Campbell-Hausdorff

formula. Remark that the group operation is polynomial.
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Any Carnot group admits a one-parameter family of dilatations. For any

ε > 0, the associated dilatation is:

x =

m
∑

i=1

xi 7→ δεx =

m
∑

i=1

ε
i
xi

Any such dilatation is a group morphism and a Lie algebra morphism.

In fact the class of Carnot groups is characterised by the existence of di-

latations (see Folland-Stein [4], section 1).

Proposition 3.10 Suppose that the Lie algebra g admits an one parameter
group ε ∈ (0,+∞) 7→ δε of simultaneously diagonalisable Lie algebra isomor-
phisms. Then g is the algebra of a Carnot group.

We shall construct a norm on a Carnot group N . First pick an euclidean

norm ‖ · ‖ on V1. We shall endow the group N with a structure of a sub-

Riemannian manifold now. For this take the distribution obtained from left

translates of the space V1. The metric on that distribution is obtained by left

translation of the inner product restricted to V1.

Because V1 generates (the algebra) N then any element x ∈ N can be

written as a product of elements from V1. An useful lemma is the following

(slight reformulation of Lemma 1.40, Folland, Stein [4]).

Lemma 3.11 Let N be a Carnot group and X1, ..., Xp an orthonormal basis
for V1. Then there is a a natural number M and a function g : {1, ...,M} →
{1, ..., p} such that any element x ∈ N can be written as:

x =

M
∏

i=1

exp(tiXg(i)) (3.4.3)

Moreover, if x is sufficiently close (in Euclidean norm) to 0 then each ti can
be chosen such that | ti |≤ C‖x‖1/m

As a consequence we get:

Corollary 3.12 The Carnot-Carathéodory distance

d(x, y) = inf

{
∫ 1

0

‖c−1
ċ‖ dt : c(0) = x, c(1) = y,

c
−1(t)ċ(t) ∈ V1 for a.e. t ∈ [0, 1]

}

is finite for any two x, y ∈ N . The distance is obviously left invariant, thus it
induces a norm on N .
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3.5 Contractible groups

Conical groups are particular examples of (local) contraction groups.

Definition 3.13 A contraction group is a pair (G,α), where G is a topological
group with neutral element denoted by e, and α ∈ Aut(G) is an automorphism
of G such that:

- α is continuous, with continuous inverse,

- for any x ∈ G we have the limit lim
n→∞

α
n(x) = e.

We shall be interested in locally compact contraction groups (G,α), such

that α is compactly contractive, that is: for each compact set K ⊂ G and

open set U ⊂ G, with e ∈ U , there is N(K,U) ∈ N such that for any x ∈ K

and n ∈ N, n ≥ N(K,U), we have αn(x) ∈ U . If G is locally compact then a

necessary and sufficient condition for (G,α) to be compactly contractive is: α

is an uniform contraction, that is each identity neighbourhood of G contains

an α-invariant neighbourhood.

A conical group is an example of a locally compact, compactly contractive,

contraction group. Indeed, it suffices to associate to a conical group (G, δ) the

contraction group (G, δε), for a fixed ε ∈ Γ with ν(ε) < 1.

Conversely, to any contraction group (G,α), which is locally compact and

compactly contractive, associate the conical group (G, δ), with Γ =

{

1

2n
: n ∈ N

}

and for any n ∈ N and x ∈ G

δ 1

2n
x = α

n(x) .

Finally, a local conical group has only locally the structure of a contraction

group. The structure of contraction groups is known in some detail, due to

Siebert [9], Wang [10], Glöckner and Willis [6], Glöckner [5] and references

therein.

For this paper the following results are of interest. We begin with the

definition of a contracting automorphism group [9], definition 5.1.

Definition 3.14 Let G be a locally compact group. An automorphism group
on G is a family T = (τt)t>0 in Aut(G), such that τt τs = τts for all t, s > 0.

The contraction group of T is defined by

C(T ) =

{

x ∈ G : lim
t→0

τt(x) = e

}

.

The automorphism group T is contractive if C(T ) = G.
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It is obvious that a contractive automorphism group T induces on G a

structure of conical group. Conversely, any conical group with Γ = (0,+∞)

has an associated contractive automorphism group (the group of dilatations

based at the neutral element).

Further is proposition 5.4 [9].

Proposition 3.15 For a locally compact group G the following assertions are
equivalent:

(i) G admits a contractive automorphism group;

(ii) G is a simply connected Lie group whose Lie algebra admits a positive
graduation.

4 Properties of dilatation structures

4.1 First properties

The sum, difference, inverse operations induced by a dilatation structure give

to the space X almost the structure of an affine space. We collect some results

from [3] section 4.2 , regarding the properties of these operations.

Theorem 4.1 Let (X, d, δ) be a dilatation structure. Then, for any x ∈ X,
ε ∈ Γ, ν(ε) < 1, we have:

(a) for any u ∈ U(x), Σx
ε (x, u) = u .

(b) for any u ∈ U(x) the functions Σx
ε (u, ·) and ∆x

ε (u, ·) are inverse one to
another.

(c) the inverse function is shifted involutive: for any u ∈ U(x),

inv
δx
ε u

ε inv
x
ε (u) = u .

(d) the sum operation is shifted associative: for any u, v, w sufficiently close
to x we have

Σx
ε

(

u,Σδx
ε u

ε (v, w)
)

= Σx
ε (Σ

x(u, v), w) .

(e) the difference, inverse and sum operations are related by

∆x
ε (u, v) = Σδx

ε u
ε (invx

ε (u), v) ,

for any u, v sufficiently close to x.

13



(f) for any u, v sufficiently close to x and µ ∈ Γ, ν(µ) < 1, we have:

∆x
ε

(

δ
x
µu, δ

x
µv

)

= δ

δx
ǫµu

µ ∆x
εµ(u, v) .

4.2 Tangent bundle

A reformulation of parts of theorems 6,7 [3] is the following.

Theorem 4.2 A dilatation structure (X, d, δ) has the following properties.

(a) For all x ∈ X, u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all
µ ∈ (0, A) we have:

d
x(u, v) =

1

µ

d
x(δx

µu, δ
x
µv) .

We shall say that dx has the cone property with respect to dilatations.

(b) The metric space (X, d) admits a metric tangent space at x, for any point
x ∈ X. More precisely we have the following limit:

lim
ε→0

1

ε

sup {| d(u, v)− d
x(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

For the next theorem (composite of results in theorems 8, 10 [3]) we need

the previously introduced notion of a normed conical (local) group.

Theorem 4.3 Let (X, d, δ) be a strong dilatation structure. Then for any
x ∈ X the triple (U(x),Σx

, δ
x) is a normed local conical group, with the norm

induced by the distance dx.

The conical group (U(x),Σx
, δ

x) can be regarded as the tangent space of

(X, d, δ) at x. Further will be denoted by: TxX = (U(x),Σx
, δ

x).

Definition 4.4 Let (X, δ, d) be a dilatation structure and x ∈ X a point. In
a neighbourhood U(x) of x, for any µ ∈ (0, 1) we defined the distances:

(δx
, µ)(u, v) =

1

µ

d(δx
µu, δ

x
µv).

Proposition 4.5 Let (X, δ, d) be a (strong) dilatation structure. For any
u, v ∈ U(x) let us define

δ̂
u
ε v = Σx

µ(u, δ
δx
µu

ε ∆x
µ(u, v)) = δ

x
µ−1δ

δx
µu

ε δ
x
µv.

Then (U(x), δ̂, (δx
, µ)) is a (strong) dilatation structure.
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Proof. We have to check the axioms. The first part of axiom A0 is an easy

consequence of theorem 4.2 for (X, δ, d). The second part of A0, A1 and A2

are true based on simple computations.

The first interesting fact is related to axiom A3. Let us compute, for

v, w ∈ U(x),
1

ε

(δx
, µ)(δ̂u

ε v, δ̂
u
εw) =

1

εµ

d(δx
µδ̂

u
ε v, δ

x
µδ̂

u
εw) =

=
1

εµ

d(δ
δx
µu

ε δ
x
µv, δ

δx
µu

ε δ
x
µw) =

1

εµ

d(δ
δx
µu

εµ ∆x
µ(u, v), δ

δx
µu

εµ ∆x
µ(u, w)) =

= (δδx
µu
, εµ)(∆x

µ(u, v),∆x
µ(u, w)).

The axiom A3 is then a consequence of axiom A3 for (X, δ, d) and we have

lim
ε→0

1

ε

(δx
, µ)(δ̂u

ε v, δ̂
u
εw) = d

δx
µu(∆x

µ(u, v),∆x
µ(u, w)).

The axiom A4 is also a straightforward consequence of A4 for (X, δ, d) and is

left to the reader. �

The proof of the following proposition is an easy computation, of the same

type as in the lines above, therefore we shall not write it here.

Proposition 4.6 With the same notations as in proposition 4.5, the trans-
formation Σx

µ(u, ·) is an isometry from (δδx
µu
, µ) to (δx

, µ). Moreover, we have
Σx

µ(u, δx
µu) = u.

These two propositions show that on a dilatation structure we almost have

translations (the operators Σx
ε (u, ·)), which are almost isometries (that is, not

with respect to the distance d, but with respect to distances of type (δx
, µ)).

It is almost as if we were working with a normed conical group, only that we

have to use families of distances and to make small shifts in the tangent space

(as in the last formula in the proof of proposition 4.5).

4.3 Topological considerations

In this subsection we compare various topologies and uniformities related to a

dilatation structure.

The axiom A3 implies that for any x ∈ X the function d
x is continuous,

therefore open sets with respect to dx are open with respect to d.

If (X, d) is separable and dx is non degenerate then (U(x), dx) is also sepa-

rable and the topologies of d and dx are the same. Therefore (U(x), dx) is also

locally compact (and a set is compact with respect to d
x if and only if it is

compact with respect to d).

15



If (X, d) is separable and dx is non degenerate then the uniformities induced

by d and dx are the same. Indeed, let {un : n ∈ N} be a dense set in U(x), with

x0 = x. We can embed (U(x), (δx
, ε)) isometrically in the separable Banach

space l∞, for any ε ∈ (0, 1), by the function

φε(u) =

(

1

ε

d(δx
εu, δ

x
εxn) − 1

ε

d(δx
εx, δ

x
εxn)

)

n

.

A reformulation of point (a) in theorem 4.2 is that on compact sets φε uniformly

converges to the isometric embedding of (U(x), dx)

φ(u) = (dx(u, xn) − d
x(x, xn))n .

Remark that the uniformity induced by (δ, ε) is the same as the uniformity

induced by d, and that it is the same induced from the uniformity on l
∞ by

the embedding φε. We proved that the uniformities induced by d and d
x are

the same.

From previous considerations we deduce the following characterisation of

tangent spaces asociated to a dilatation structure.

Corollary 4.7 Let (X, d, δ) be a strong dilatation structure with group Γ =

(0,+∞). Then for any x ∈ X the local group (U(x),Σx) is locally a simply
connected Lie group whose Lie algebra admits a positive graduation (a Carnot
group).

Proof. Use the facts: (U(x),Σx) is a locally compact group (from previous

topological considerations) which admits δx as a contractive automorphism

group (from theorem 4.3). Apply then Siebert proposition 3.15. �

5 Linearity and dilatation structures

Definition 5.1 Let (X, d, δ) be a dilatation structure. A transformation A :

X → X is linear if it is Lipschitz and it commutes with dilatations in the
following sense: for any x ∈ X, u ∈ U(x) and ε ∈ Γ, ν(ε) < 1, if A(u) ∈
U(A(x)) then

Aδ
x
ε = δ

A(x)
A(u) .

The group of linear transformations, denoted by GL(X, d, δ) is formed by all
invertible and bi-lipschitz linear transformations of X.

GL(X, d, δ) is indeed a (local) group. In order to see this we start from the

remark that if A is Lipschitz then there exists C > 0 such that for all x ∈ X

16



and u ∈ B(x, C) we have A(u) ∈ U(A(x)). The inverse of A ∈ GL(X, d, δ)

is then linear. Same considerations apply for the composition of two linear,

bi-lipschitz and invertible transformations.

In the particular case of the first subsection of this paper, namely X finite

dimensional real, normed vector space, d the distance given by the norm,

Γ = (0,+∞) and dilatations δx
εu = x + ε(u − x), a linear transformations in

the sense of definition 5.1 is an affine transformation of the vector space X.

Proposition 5.2 Let (X, d, δ) be a dilatation structure and A : X → X a
linear transformation. Then:

(a) for all x ∈ X, u, v ∈ U(x) sufficiently close to x, we have:

AΣx
ε (u, v) = ΣA(x)

ε (A(u), A(v)) .

(b) for all x ∈ X, u ∈ U(x) sufficiently close to x, we have:

A inv
x(u) = inv

A(x)
A(u) .

Proof. Straightforward, just use the commutation with dilatations. �

5.1 Differentiability of linear transformations

In this subsection we briefly recall the notion of differentiability associated to

dilatation structures (section 7.2 [3]). Then we apply it for linear transforma-

tions.

First we need the natural definition below.

Definition 5.3 Let (N, δ) and (M, δ̄) be two conical groups. A function f :

N → M is a conical group morphism if f is a group morphism and for any
ε > 0 and u ∈ N we have f(δεu) = δ̄εf(u).

The definition of derivative with respect to dilatations structures follows.

Definition 5.4 Let (X, δ, d) and (Y, δ, d) be two strong dilatation structures
and f : X → Y be a continuous function. The function f is differentiable in
x if there exists a conical group morphism Q

x : TxX → Tf(x)Y , defined on a
neighbourhood of x with values in a neighbourhood of f(x) such that

lim
ε→0

sup

{

1

ε

d

(

f (δx
εu) , δ

f(x)

ε Q
x(u)

)

: d(x, u) ≤ ε

}

= 0, (5.1.1)
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The morphism Q
x is called the derivative of f at x and will be sometimes

denoted by Df(x).
The function f is uniformly differentiable if it is differentiable everywhere

and the limit in (5.1.1) is uniform in x in compact sets.

The following proposition has then a straightforward proof.

Proposition 5.5 Let (X, d, δ) be a strong dilatation structure and A : X → X

a linear transformation. Then A is uniformly differentiable and the derivative
equals A.

5.2 Linearity of strong dilatation structures

Remark that for general dilatation structures the ”translations” Σx
ε(u, ·) are

not linear. Nevertheless, they commute with dilatation in a known way, accord-

ing to point (f) theorem 4.1. This is important, because the transformations

Σx
ε(u, ·) really behave as translations, as explained in subsection 4.1.

The reason for which translations are not linear is that dilatations are

generally not linear. Before giving the next definition we need to establish a

simple estimate. Let K ⊂ X be compact, non empty set. Then there is a

constant C(K) > 0, depending on the set K such that for any ε, µ ∈ Γ with

ν(ε), ν(µ) ∈ (0, 1] and any x, y, z ∈ K with d(x, y), d(x, z), d(y, z) ≤ C(K) we

have

δ
y
µz ∈ Vε(x) , δ

x
ε z ∈ Vµ(δx

ε y) .

Indeed, this is coming from the uniform (with respect to K) estimates:

d(δx
ε y, δ

x
ε z) ≤ εd

x(y, z) + εO(ε) ,

d(x, δy
µz) ≤ d(x, y) + d(y, δy

µz) ≤ d(x, y) + µd
y(y, z) + µO(µ) .

Definition 5.6 A property P(x1, x2, x3, ...) holds for x1, x2, x3, ... sufficiently
closed if for any compact, non empty set K ⊂ X, there is a positive constant
C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈ K with
d(xi, xj) ≤ C(K).

For example, we may say that the expressions

δ
x
ε δ

y
µz , δ

δx
ε y

µ δ
x
ε z

are well defined for any x, y, z ∈ X sufficiently closed and for any ε, µ ∈ Γ with

ν(ε), ν(µ) ∈ (0, 1].
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Definition 5.7 A dilatation structure (X, d, δ) is linear if for any ε, µ ∈ Γ

such that ν(ε), ν(µ) ∈ (0, 1], and for any x, y, z ∈ X sufficiently closed we have

δ
x
ε δ

y
µz = δ

δx
ε y

µ δ
x
ε z .

Linear dilatation structures are very particular dilatation structures. The

next proposition gives a family of examples of linear dilatation structures.

Proposition 5.8 The dilatation structure associated to a normed conical group
is linear.

Proof. Indeed, for the dilatation structure associated to a normed conical

group we have, with the notations from definition 5.7:

δ
δx
ε y

µ δ
x
ε z =

(

xδε(x
−1
y)

)

δµ

(

δε(y
−1
x) x−1

x δε(x
−1
z)

)

=

=
(

xδε(x
−1
y)

)

δµ

(

δε(y
−1
x) δε(x

−1
z)

)

=
(

xδε(x
−1
y)

)

δµ

(

δε(y
−1
z)

)

=

= x

(

δε(x
−1
y) δε δµ(y−1

z)
)

= x δε

(

x
−1
y δµ(y−1

z)
)

= δ
x
ε δ

y
µz .

Therefore the dilatation structure is linear. �

In the proposition below we give a relation, true for linear dilatation struc-

tures, with an interesting interpretation. Let us think in affine terms: for

closed points x, u, v, we think about let us denote w = Σx
ε (u, v). We may

think that the ”vector” (x, w) is (approximatively, due to the parameter ε) the

sum of the vectors (x, u) and (x, v), based at x. Denote also w′ = ∆u
ε (x, v);

then the ”vector” (u, w′) is (approximatively) equal to the differrence between

the vectors (u, v) and (u, x), based at u. In a classical affine space we would

have w = w
′. The same is true for a linear dilatation structure.

Proposition 5.9 For a linear dilatation structure (X, δ, d), for any x, u, v ∈
X sufficiently closed and for any ε ∈ Γ, ν(ε) ≤ 1, we have:

Σx
ε (u, v) = ∆u

ε (x, v) .

Proof. We have the following string of equalities, by using twice the linearity

of the dilatation structure:

Σx
ε (u, v) = δ

x
ε−1δ

δx
ε u

ε v = δ
u
ε δ

x
ε−1v =

= δ
δu
ε x

ε−1δ
u
ε v = ∆u

ε (x, v) .
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The proof is done. �

The following expression:

Lin(x, y, z; ε, µ) = d

(

δ
x
ε δ

y
µz , δ

δx
ε y

µ δ
x
ε z

)

(5.2.2)

is a measure of lack of linearity, for a general dilatation structure. The next

theorem shows that, infinitesimally, any dilatation structure is linear.

Theorem 5.10 Let (X, d, δ) be a strong dilatation structure. Then for any
x, y, z ∈ X sufficiently close we have

lim
ε→0

1

ε
2
Lin(x, δx

ε y, δ
x
ε z; ε, ε) = 0 . (5.2.3)

Proof. From the hypothesis of the theorem we have:

1

ε
2
Lin(x, δx

ε y, δ
x
ε z; ε, ε) =

1

ε
2
d

(

δ
x
ε δ

δx
ε y

ε z , δ

δx

ε2
y

ε δ
x
ε z

)

=

=
1

ε
2
d

(

δ
x
ε2 Σx

ε (y, z) , δ
x
ε2 δ

x
ε−2 δ

δx

ε2
y

ε δ
x
ε z

)

=

=
1

ε
2
d (δx

ε2 Σx
ε (y, z) , δ

x
ε2 Σx

ε2(y , ∆x
ε (δ

x
ε y, z))) =

= O(ε2) + d
x (Σx

ε (y, z) , Σx
ε2(y , ∆x

ε (δ
x
ε y, z))) .

The dilatation structure satisfies A4, therefore as ε goes to 0 we obtain:

lim
ε→0

1

ε
2
Lin(x, δx

ε y, δ
x
εz; ε, ε) = d

x (Σx(y, z) , Σx(y , ∆x(x, z))) =

= d
x (Σx(y, z) , Σx(y, z)) = 0 . �

The linearity of translations Σx
ε is related to the linearity of the dilatation

structure, as described in the theorem below, point (a). As a consequence, we

prove at point (b) that a linear and strong dilatation structure comes from a

conical group.

Theorem 5.11 Let (X, d, δ) be a dilatation structure.

(a) If the dilatation structure is linear then all transformations ∆x
ε (u, ·) are

linear for any u ∈ X.

(b) If the dilatation structure is strong (satisfies A4) then it is linear if and
only if the dilatations come from the dilatation structure of a conical
group, precisely for any x ∈ X there is an open neighbourhood D ⊂ X

of x such that (D, dx
, δ) is the same dilatation structure as the dilatation

structure of the tangent space of (X, d, δ) at x.
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Proof. (a) If dilatations are linear, then let ε, µ ∈ Γ, ν(ε), ν(µ) ≤ 1, and

x, y, u, v ∈ X such that the following computations make sense. We have:

∆x
ε (u, δ

y
µv) = δ

δx
ε u

ε−1δ
x
ε δ

y
µv .

Let Aε = δ
δx
ε u

ε−1 . We compute:

δ
∆x

ε (u,y)
µ ∆x

ε (u, v) = δ
Aεδx

ε y
µ Aεδ

x
ε v .

We use twice the linearity of dilatations:

δ
∆x

ε (u,y)
µ ∆x

ε (u, v) = Aεδ
δx
ε y

µ δ
x
ε v = δ

δx
ε u

ε−1δ
x
ε δ

y
µv .

We proved that:

∆x
ε(u, δ

y
µv) = δ

∆x
ε (u,y)

µ ∆x
ε (u, v) ,

which is the conclusion of the part (a).

(b) Suppose that the dilatation structure is strong. If dilatations are linear,

then by point (a) the transformations ∆x
ε (u, ·)δ are linear for any u ∈ X. Then,

with notations made before, for y = u we get

∆x
ε (u, δ

u
µv) = δ

δx
ε u

µ ∆x
ε (u, v) ,

which implies

δ
u
µv = Σx

ε (u, δ
x
µ∆x

ε (u, v)) .

We pass to the limit with ε → 0 and we obtain:

δ
u
µv = Σx(u, δx

µ∆x(u, v)) .

We recognize at the right hand side the dilatations associated to the conical

group TxX.

By proposition 5.8 the opposite implication is straightforward, because the

dilatation structure of any conical group is linear. �
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Abstract

A dilatation structure encodes the approximate self-similarity of a metric
space. A metric space (X, d) which admits a strong dilatation structure (defini-
tion 2.2) has a metric tangent space at any point x ∈ X (theorem 4.1), and any
such metric tangent space has an algebraic structure of a conical group (theo-
rem 4.2). Particular examples of conical groups are Carnot groups: these are
simply connected Lie groups whose Lie algebra admits a positive graduation.

The dilatation structures associated to conical (or Carnot) groups are linear,
in the sense of definition 5.3. Thus conical groups are the right generalization
of normed vector spaces, from the point of view of dilatation structures.

We prove that for dilatation structures linearity is equivalent to a statement
about the inverse semigroup generated by the family of dilatations forming a
dilatation structure on a metric space.

The result is new for Carnot groups and the proof seems to be new even for
the particular case of normed vector spaces.

Keywords: inverse semigroups, Carnot groups, dilatation structures

MSC classes: 20M18; 22E20; 20F65

1 Inverse semigroups and Menelaos theorem

Definition 1.1 A semigroup S is an inverse semigroup if for any x ∈ S there is an
unique element x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.

An important example of an inverse semigroup is I(X), the class of all bijective
maps φ : domφ → imφ, with domφ, imφ ⊂ X. The semigroup operation is the
composition of functions in the largest domain where this makes sense.

By the Vagner-Preston representation theorem [6] every inverse semigroup is
isomorphic to a subsemigroup of I(X), for some set X.
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1.1 A toy example

Let (V, ‖ · ‖) be a finite dimensional, normed, real vector space. By definition the
dilatation based at x, of coefficient ε > 0, is the function

δx
ε : V → V , δx

ε y = x+ ε(−x+ y) .

For fixed x the dilatations based at x form a one parameter group which contracts
any bounded neighbourhood of x to a point, uniformly with respect to x.

With the distance d induced by the norm, the metric space (V, d) is complete
and locally compact. For any x ∈ V and any ε > 0 the distance d behaves well with
respect to the dilatation δx

ε in the sense: for any u, v ∈ V we have

1

ε
d(δx

εu, δ
x
ε v) = d(u, v) . (1.1.1)

Dilatations encode much more than the metric structure of the space (V, d).
Indeed, we can reconstruct the algebraic structure of the vector space V from di-
latations. For example let us define for any x, u, v ∈ V and ε > 0:

Σx
ε (u, v) = δx

ε−1δ
δx
ε u

ε (v) .

A simple computation shows that Σx
ε(u, v) = u + ε(−u + x) + (−x + v), therefore

we can recover the addition operation in V by using the formula:

lim
ε→0

Σx
ε(u, v) = u+ (−x+ v) . (1.1.2)

This is the addition operation translated such that the neutral element is x. Thus,
for x = 0, we recover the usual addition operation.

Affine continuous transformations A : V → V admit the following description in
terms of dilatations. A continuous transformation A : V → V is affine if and only if
for any ε ∈ (0, 1), x, y ∈ V we have

Aδx
ε y = δAx

ε Ay . (1.1.3)

Any dilatation is an affine transformation, hence for any x, y ∈ V and ε, µ > 0 we
have

δy
µ δ

x
ε = δ

δ
y
µx

ε δy
µ . (1.1.4)

Moreover, some compositions of dilatations are dilatations. This is precisely stated
in the next theorem, which is equivalent with the Menelaos theorem in euclidean
geometry.

Theorem 1.2 For any x, y ∈ V and ε, µ > 0 such that εµ 6= 1 there exists an
unique w ∈ V such that

δy
µ δ

x
ε = δw

εµ .

2



For the proof see Artin [1]. A straightforward consequence of this theorem is the
following result.

Corollary 1.3 The inverse subsemigroup of I(V) generated by dilatations of the
space V is made of all dilatations and all translations in V.

Proof. Indeed, by theorem 1.2 a composition of two dilatations with coefficients
ε, µ with εµ 6= 1 is a dilatation. By direct computation, if εµ = 1 then we obtain
translations. This is in fact compatible with (1.1.2), but is a stronger statement,
due to the fact that dilatations are affine in the sense of relation (1.1.4).

Moreover any translation can be expressed as a composition of two dilatations
with coefficients ε, µ such that εµ = 1. Finally, any composition between a transla-
tion and a dilatation is again a dilatation. �

1.2 Focus on dilatations

Suppose that we take the dilatations as basic data for the toy example above.
Namely, instead of giving to the space V a structure of real, normed vector space,
we give only the distance d and the dilatations δx

ε for all x ∈ X and ε > 0. We
should add some relations which prescribe:

- the behaviour of the distance with respect to dilatations, for example some
form of relation (1.1.1),

- the interaction between dilatations, for example the existence of the limit from
the left hand side of relation (1.1.2).

We denote such a collection of data by (V, d, δ) and call it a dilatation structure (see
further definition 2.2).

In this paper we ask if there is any relationship between dilatations and inverse
semigroups, generalizing relation (1.1.4) and corollary 1.3.

Dilatation structures are far more general than our toy example. A dilatation
structure on a metric space, introduced in [3], is a notion in between a group and a
differential structure, expressing the approximate self-similarity of the metric space
where it lives.

A metric space (X, d) which admits a strong dilatation structure (definition 2.2)
has a metric tangent space at any point x ∈ X (theorem 4.1), and any such metric
tangent space has an algebraic structure of a conical group (theorem 4.2). Conical
groups are particular examples of contractible groups. An important class of of
conical groups is formed by Carnot groups: these are simply connected Lie groups
whose Lie algebra admits a positive graduation. Carnot groups appear in many
situations, in particular in relation with sub-riemannian geometry cf. Belläıche [2],
groups with polynomial growth cf. Gromov [5], or Margulis type rigidity results cf.
Pansu [7].
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The dilatation structures associated to conical (or Carnot) groups are linear, in
the sense of relation (1.1.4), see also definition 5.3. We actually proved in [4] (here
theorem 5.4) that a linear dilatation structure always comes from some associated
conical group. Thus conical groups are the right generalization of normed vector
spaces, from the point of view of dilatation structures.

2 Dilatation structures

We present here an introduction into the subject of dilatation structures, following
Buliga [3].

2.1 Notations

Let Γ be a topological separated commutative group endowed with a continuous
group morphism

ν : Γ → (0,+∞)

with inf ν(Γ) = 0. Here (0,+∞) is taken as a group with multiplication. The neutral
element of Γ is denoted by 1. We use the multiplicative notation for the operation
in Γ.

The morphism ν defines an invariant topological filter on Γ (equivalently, an end).
Indeed, this is the filter generated by the open sets ν−1(0, a), a > 0. From now on
we shall name this topological filter (end) by ”0” and we shall write ε ∈ Γ → 0 for
ν(ε) ∈ (0,+∞) → 0.

The set Γ1 = ν−1(0, 1] is a semigroup. We note Γ̄1 = Γ1 ∪ {0} On the set
Γ̄ = Γ ∪ {0} we extend the operation on Γ by adding the rules 00 = 0 and ε0 = 0
for any ε ∈ Γ. This is in agreement with the invariance of the end 0 with respect to
translations in Γ.

The space (X, d) is a complete, locally compact metric space. For any r > 0 and
any x ∈ X we denote by B(x, r) the open ball of center x and radius r in the metric
space X.

On the metric space (X, d) we work with the topology (and uniformity) induced
by the distance. For any x ∈ X we denote by V(x) the topological filter of open
neighbourhoods of x.

2.2 Axioms of dilatation structures

The first axiom is a preparation for the next axioms. That is why we counted it as
axiom 0.

A0. The dilatations
δx
ε : U(x) → Vε(x)

are defined for any ε ∈ Γ, ν(ε) ≤ 1. The sets U(x), Vε(x) are open neighbour-
hoods of x. All dilatations are homeomorphisms (invertible, continuous, with
continuous inverse).
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We suppose that there is a number 1 < A such that for any x ∈ X we have

B̄d(x,A) ⊂ U(x) .

We suppose that for all ε ∈ Γ, ν(ε) ∈ (0, 1), we have

Bd(x, ν(ε)) ⊂ δx
εBd(x,A) ⊂ Vε(x) ⊂ U(x) .

There is a number B ∈ (1, A] such that for any ε ∈ Γ with ν(ε) ∈ (1,+∞) the
associated dilatation

δx
ε : Wε(x) → Bd(x,B) ,

is injective, invertible on the image. We shall suppose that Wε(x) ∈ V(x), that
Vε−1(x) ⊂Wε(x) and that for all ε ∈ Γ1 and u ∈ U(x) we have

δx
ε−1 δ

x
εu = u .

We have therefore the following string of inclusions, for any ε ∈ Γ, ν(ε) ≤ 1, and
any x ∈ X:

Bd(x, ν(ε)) ⊂ δx
εBd(x,A) ⊂ Vε(x) ⊂Wε−1(x) ⊂ δx

εBd(x,B) .

A further technical condition on the sets Vε(x) and Wε(x) will be given just
before the axiom A4. (This condition will be counted as part of axiom A0.)

A1. We have δx
εx = x for any point x. We also have δx

1 = id for any x ∈ X.

Let us define the topological space

domδ = {(ε, x, y) ∈ Γ ×X ×X : if ν(ε) ≤ 1 then y ∈ U(x) ,

else y ∈Wε(x)}
with the topology inherited from the product topology on Γ×X×X. Consider
also Cl(domδ), the closure of domδ in Γ̄×X×X with product topology. The
function δ : domδ → X defined by δ(ε, x, y) = δx

ε y is continuous. Moreover, it
can be continuously extended to Cl(domδ) and we have

lim
ε→0

δx
ε y = x .

A2. For any x,∈ K, ε, µ ∈ Γ1 and u ∈ B̄d(x,A) we have:

δx
ε δ

x
µu = δx

εµu .

A3. For any x there is a function (u, v) 7→ dx(u, v), defined for any u, v in the
closed ball (in distance d) B̄(x,A), such that

lim
ε→0

sup

{

| 1

ε
d(δx

εu, δ
x
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}

= 0

uniformly with respect to x in compact set.
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Remark 2.1 The ”distance” dx can be degenerated: there might exist v,w ∈ U(x)
such that dx(v,w) = 0.

For the following axiom to make sense we impose a technical condition on the
co-domains Vε(x): for any compact set K ⊂ X there are R = R(K) > 0 and
ε0 = ε(K) ∈ (0, 1) such that for all u, v ∈ B̄d(x,R) and all ε ∈ Γ, ν(ε) ∈ (0, ε0), we
have

δx
ε v ∈Wε−1(δx

εu) .

With this assumption the following notation makes sense:

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v.

The next axiom can now be stated:

A4. We have the limit
lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Definition 2.2 A triple (X, d, δ) which satisfies A0, A1, A2, A3, but dx is degen-
erate for some x ∈ X, is called degenerate dilatation structure.

If the triple (X, d, δ) satisfies A0, A1, A2, A3 and dx is non-degenerate for any
x ∈ X, then we call it a dilatation structure.

If a dilatation structure satisfies A4 then we call it strong dilatation structure.

3 Normed conical groups

We shall need further the notion of normed conical group. Motivated by the case of a
Lie group endowed with a Carnot-Carathéodory distance induced by a left invariant
distribution, we shall use the following definition of a local uniform group.

Let G be a group. We introduce first the double of G, as the group G(2) = G×G
with operation

(x, u)(y, v) = (xy, y−1uyv) .

The operation on the group G, seen as the function op : G(2) → G, op(x, y) = xy is
a group morphism. Also the inclusions:

i′ : G→ G(2) , i′(x) = (x, e)

i” : G→ G(2) , i”(x) = (x, x−1)

are group morphisms.

Definition 3.1 1. G is an uniform group if we have two uniformity structures,
on G and G×G, such that op, i′, i” are uniformly continuous.
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2. A local action of a uniform group G on a uniform pointed space (X,x0) is a
function φ ∈W ∈ V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that:

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G×X (with product
uniformity) to X,

(b) for any φ,ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D ˆφψ−1(x)

and φ̂(ψ̂−1(x)) make sense and ˆφψ−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined in a
neighbourhood of (e, e) ⊂ G × G which satisfies the uniform group axioms
locally.

Definition 3.2 A normed (local) conical group (G, δ, ‖ · ‖) is (local) group endowed
with: (I) a (local) action of Γ by morphisms δε such that lim

ε→0
δεx = e for any x in a

neighbourhood of the neutral element e; (II) a continuous norm function ‖·‖ : G→ R

which satisfies (locally, in a neighbourhood of the neutral element e) the properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,

(b) for any x, y we have ‖xy‖ ≤ ‖x‖ + ‖y‖,

(c) for any x we have ‖x−1‖ = ‖x‖,

(d) for any ε ∈ Γ, ν(ε) ≤ 1 and any x we have ‖δεx‖ = ν(ε) ‖x‖.

Particular cases of normed conical groups are:

- Carnot groups, that is simply connected real Lie groups whose Lie algebra
admits a positive graduation,

- nilpotent p-adic groups admitting a contractive automorphism.

A very particular case of a normed conical group is described in the toy example:
to any real, finite dimensional, normed vector space V we may associate the normed
conical group (V,+, δ, ‖ · ‖), with dilatations δ previously described.

In a normed conical group (G, δ) we define dilatations based in any point x ∈ G

by
δx
εu = xδε(x

−1u). (3.0.1)

There is also a natural left invariant distance given by

d(x, y) = ‖x−1y‖ . (3.0.2)

The following result is theorem 15 [3].

Theorem 3.3 Let (G, δ, ‖ · ‖) be a locally compact normed group with dilatations.
Then (G, δ, d) is a strong dilatation structure, where δ are the dilatations defined by
(3.0.1) and the distance d is induced by the norm as in (3.0.2).
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4 Properties of dilatation structures

The following two theorems describe the most important metric and algebraic prop-
erties of a dilatation structure. As presented here these are condensed statements,
available in full length as theorems 7, 8, 10 in [3].

Theorem 4.1 Let (X, d, δ) be a dilatation structure. Then the metric space (X, d)
admits a metric tangent space at x, for any point x ∈ X. More precisely we have
the following limit:

lim
ε→0

1

ε
sup {| d(u, v) − dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

Theorem 4.2 Let (X, d, δ) be a strong dilatation structure. Then for any x ∈ X

the triple (U(x),Σx, δx, dx) is a normed local conical group. This means:

(a) Σx is a local group operation on U(x), with x as neutral element and invx as
the inverse element function;

(b) the distance dx is left invariant with respect to the group operation from point
(a);

(c) For any ε ∈ Γ, ν(ε) ≤ 1, the dilatation δx
ε is an automorphism with respect to

the group operation from point (a);

(d) the distance dx has the cone property with respect to dilatations: foar any
u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have:

dx(u, v) =
1

µ
dx(δx

µu, δ
x
µv) .

The conical group (U(x),Σx, δx) can be regarded as the tangent space of (X, d, δ)
at x.

By using proposition 5.4 [8] and from some topological considerations we de-
duce the following characterisation of tangent spaces asociated to some dilatation
structures. The following is corollary 4.7 [4].

Corollary 4.3 Let (X, d, δ) be a dilatation structure with group Γ = (0,+∞) and
the morphism ν equal to identity. Then for any x ∈ X the local group (U(x),Σx) is
locally a simply connected Lie group whose Lie algebra admits a positive graduation
(a Carnot group).
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5 Linearity and dilatation structures

In this section we describe the notion of linearity for dilatation structures, as in
Buliga [4].

Definition 5.1 Let (X, d, δ) be a dilatation structure. A transformation A : X → X

is linear if it is Lipschitz and it commutes with dilatations in the following sense:
for any x ∈ X, u ∈ U(x) and ε ∈ Γ, ν(ε) < 1, if A(u) ∈ U(A(x)) then

Aδx
ε = δA(x)A(u) .

In the particular case of X finite dimensional real, normed vector space, d the
distance given by the norm, Γ = (0,+∞) and dilatations δx

εu = x + ε(u − x), a
linear transformations in the sense of definition 5.1 is an affine transformation of the
vector space X. More generally, linear transformations in the sense of definition 5.1
have the expected properties related to linearity, as explained in section 5 [4].

Convention 5.2 Further we shall say that a property P(x1, x2, x3, ...) holds for
x1, x2, x3, ... sufficiently closed if for any compact, non empty set K ⊂ X, there is a
positive constant C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈
K with d(xi, xj) ≤ C(K).

For example, the expressions

δx
ε δ

y
µz , δδx

ε y
µ δx

ε z

are well defined for any x, y, z ∈ X sufficiently closed and for any ε, µ ∈ Γ with
ν(ε), ν(µ) ∈ (0, 1]. Indeed, let K ⊂ X be compact, non empty set. Then there
is a constant C(K) > 0, depending on the set K such that for any ε, µ ∈ Γ with
ν(ε), ν(µ) ∈ (0, 1] and any x, y, z ∈ K with d(x, y), d(x, z), d(y, z) ≤ C(K) we have

δy
µz ∈ Vε(x) , δx

ε z ∈ Vµ(δx
ε y) .

Indeed, this is coming from the uniform (with respect to K) estimates:

d(δx
ε y, δ

x
ε z) ≤ εdx(y, z) + εO(ε) ,

d(x, δy
µz) ≤ d(x, y) + d(y, δy

µz) ≤ d(x, y) + µdy(y, z) + µO(µ) .

These estimates allow us to give the following definition.

Definition 5.3 A dilatation structure (X, d, δ) is linear if for any ε, µ ∈ Γ such
that ν(ε), ν(µ) ∈ (0, 1], and for any x, y, z ∈ X sufficiently closed we have

δx
ε δ

y
µz = δδx

ε y
µ δx

ε z .
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Linear dilatation structures are very particular dilatation structures. The next
theorem is theorem 5.7 [4]. It is shown that a linear and strong dilatation structure
comes from a normed conical group.

Theorem 5.4 Let (X, d, δ) be a linear dilatation structure. Then the following two
statements are equivalent:

(a) For any x ∈ X there is an open neighbourhood D ⊂ X of x such that (D, dx, δ)
is the same dilatation structure as the dilatation structure of the tangent space
of (X, d, δ) at x;

(b) The dilatation structure is strong (that is satisfies A4).

6 Dilatation structures and inverse semigroups

Here we prove that for dilatation structures linearity is equivalent to a generalization
of the statement from corollary 1.3. The result is new for Carnot groups and the
proof seems to be new even for vector spaces.

Definition 6.1 A dilatation structure (X, d, δ) has the Menelaos property if for any
two sufficiently closed x, y ∈ X and for any ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1) we have

δx
ε δ

y
µ = δw

εµ ,

where w ∈ X is the fixed point of the contraction δx
ε δ

y
µ (thus depending on x, y and

ε, µ).

Theorem 6.2 A linear dilatation structure has the Menelaos property.

Proof. Let x, y ∈ X be sufficiently closed and ε, µ ∈ Γ with ν(ε), ν(µ) ∈ (0, 1).
We shall define two sequences xn, yn ∈ X, n ∈ N.

We begin with x0 = x, y0 = y. Let us define by induction

xn+1 = δδ
xn
ε yn

µ xn , yn+1 = δxn
ε yn . (6.0.1)

In order to check if the definition is correct we have to prove that for any n ∈ N,
if xn, yn are sufficiently closed then xn+1, yn+1 are sufficiently closed too.

Indeed, due to the linearity of the dilatation structure, we can write the first
part of (6.0.1) as:

xn+1 = δxn
ε δyn

µ xn .

Then we can estimate the distance between xn+1, yn+1 like this:

d(xn+1, yn+1) = d(δxn
ε δyn

µ xn, δ
xn
ε yn) = ν(ε) d(δyn

µ xn, yn) = ν(εµ)d(xn, yn) .
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From ν(εµ) < 1 it follows that d(xn+1, yn+1) < d(xn, yn), therefore xn+1, yn+1 are
sufficiently closed. We also find out that

lim
n→∞

d(xn, yn) = 0 . (6.0.2)

Further we use twice the linearity of the dilatation structure:

δxn
ε δyn

µ = δδ
xn
ε yn

µ δxn
ε = δ

δ
δ
xn
ε yn

µ xn
ε δδ

xn
ε yn

µ .

By definition (6.0.1) we arrive at the conclusion that for any n ∈ N

δxn
ε δyn

µ = δx
ε δ

y
µ . (6.0.3)

From relation (6.0.3) we deduce that the first part of (6.0.1) can be written as:

xn+1 = δxn
ε δyn

µ xn = δx
ε δ

y
µxn .

The transformation δx
ε δ

y
µ is a contraction of coefficient ν(εµ) < 1, therefore we easily

get:
lim

n→∞
xn = w , (6.0.4)

where w is the unique fixed point of the contraction δx
ε δ

y
µ.

We put toghether (6.0.2) and (6.0.4) and we get the limit:

lim
n→∞

yn = w , (6.0.5)

Using relations (6.0.4), (6.0.5), we may pass to the limit with n → ∞ in relation
(6.0.3):

δx
ε δ

y
µ = lim

n→∞
δxn
ε δyn

µ = δw
ε δ

w
µ = δw

εµ .

The proof is done. �

Corollary 6.3 Let (X, d, δ) be a strong linear dilatation structure, with group Γ =
(0,+∞) and the morphism ν equal to identity. Any element of the inverse subsemi-
group of I(X) generated by dilatations is locally a dilatation δx

ε or a left translation
Σx(y, ·).

Proof. Let (X, d, δ) be a strong linear dilatation structure. From the linearity and
theorem 6.2 we deduce that we have to care only about the results of compositions
of two dilatations δx

ε , δy
µ, with εµ = 1.

The dilatation structure is strong, therefore by theorem 5.4 the dilatation struc-
ture is locally coming from a conical group. In a conical group we can make the
following computation (here δε = δe

ε with e the neutral element of the conical group):

δx
ε δ

y

ε−1z = xδε
(

x−1yδε−1

(

y−1z
))

= xδε
(

x−1y
)

y−1z .

Therefore the composition of dilatations δx
ε δ

y
µ, with εµ = 1, is a left translation.

Another easy computation shows that composition of left translations with di-
latations are dilatations. The proof end by remarking that all the statements are
local. �
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[2] A. Belläıche, The tangent space in sub-Riemannian geometry, in: Sub-
Riemannian Geometry, A. Belläıche, J.-J. Risler eds., Progress in Mathematics,
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Introduction

The notion of a dilatation structure stemmed out from my efforts to understand
basic results in sub-Riemannian geometry, especially the last section of the paper
by Belläıche [2] and the intrinsic point of view of Gromov [5].

In these papers, as in other articles devoted to sub-Riemannian geometry, fun-
damental results admiting an intrinsic formulation were proved using differential
geometry tools, which are in my opinion not intrinsic to sub-Riemannian geometry.

Therefore I tried to find a self-contained frame in which sub-Riemannian geom-
etry would be a model, if we use the same manner of speaking as in the case of
hyperbolic geometry (with its self-contained collection of axioms) and the Poincaré
disk as a model of hyperbolic geometry.

An outcome of this effort are the notions of a dilatation structure and a pair of
dilatation structures, one looking down to another. To the first notion are dedicated
the papers [3], [4] (the second paper treating about a ”linear” version of a generalized
dilatation structure, corresponding to Carnot groups or more general contractible
groups).

As it seems now, dilatation structures are a valuable notion by itself, with possi-
ble field of application strictly containing sub-Riemannian geometry, but also ultra-
metric spaces or contractible groups. A dilatation structure encodes the approximate
self-similarity of a metric space and it induces non associative but approximately
associative operations on the metric space, as well as a tangent bundle (in the metric
sense) with group operations in each fiber (tangent space to a point).

In this paper I explain what is a pair of dilatation structures, one looking down to
another, see definition 3.5. Such a pair of dilatation structures leads to the intrinsic
definition of a distribution as a field of topological filters, definition 3.6.

To any pair of dilatation structures there is an associated notion of differentiabil-
ity which generalizes the Pansu differentiability [8]. This allows the introduction of

1
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the Radon-Nikodym property for dilatation structures, which is the straightforward
generalization of the Radon-Nikodym property for Banach spaces.

After an introducting section about length metric spaces and metric derivatives,
is proved in theorem 3.4 that for a dilatation structure with the Radon-Nikodym
property the length of absolutely continuous curves expresses as an integral of the
norms of the tangents to the curve, as in Riemannian geometry.

Further it is shown that Radon-Nikodym property transfers from any ”upper”
dilatation structure looking down to a ”lower” dilatation structure, theorem 3.7.
Im my opinion this result explains intrinsically the fact that absolutely continuous
curves in regular sub-Riemannian manifolds are derivable almost everywhere, as
proved by Margulis, Mostow [7], Pansu [8] (for Carnot groups) or Vodopyanov [10].

The subject of application of these results for regular sub-Riemannian manifold
will be left for a future paper, due to the unavoidable accumulation of technical
estimates which are needed.
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my period of work at the Department of Mathematics of the EPFL. During this time
I had the opportunity to collaborate with some of the people from the Institute of
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1 Notations

Let Γ be a topological separated commutative group endowed with a continuous
group morphism

ν : Γ → (0,+∞)

with inf ν(Γ) = 0. Here (0,+∞) is taken as a group with multiplication. The neutral
element of Γ is denoted by 1. We use the multiplicative notation for the operation
in Γ.

The morphism ν defines an invariant topological filter on Γ (equivalently, an end).
Indeed, this is the filter generated by the open sets ν−1(0, a), a > 0. From now on
we shall name this topological filter (end) by ”0” and we shall write ε ∈ Γ → 0 for
ν(ε) ∈ (0,+∞) → 0.

The set Γ1 = ν−1(0, 1] is a semigroup. We note Γ̄1 = Γ1 ∪ {0} On the set
Γ̄ = Γ ∪ {0} we extend the operation on Γ by adding the rules 00 = 0 and ε0 = 0
for any ε ∈ Γ. This is in agreement with the invariance of the end 0 with respect to
translations in Γ.

The space (X, d) is a complete, locally compact metric space. For any r > 0 and
any x ∈ X we denote by B(x, r) the open ball of center x and radius r in the metric
space X.

By O(ε) we mean a positive function f : Γ → [0,+∞) such that lim
ε→0

f(ν(ε)) = 0.

2 Length and metric derivatives

For a detailed intrduction into the subject see for example [1], chapter 1.

Definition 2.1 The (upper) dilatation of a map f : X → Y between metric spaces,
in a point u ∈ Y is

Lip(f)(u) = lim sup
ε→0

sup

{

dY (f(v), f(w))

dX(v,w)
: v 6= w , v,w ∈ B(u, ε)

}

In the particular case of a derivable function f : R → R
n the upper dilatation is

Lip(f)(t) = | ḟ(t) |. For any Lipschitz function f : X → Y and for any x ∈ X we
have the obvious relation:

Lip(f)(x) ≤ Lip(f) .

A curve is a continuous function f : [a, b] → X. The image of a curve is
called path. Length measures paths. Therefore length does not depends on the
reparametrisation of the path and it is additive with respect to concatenation of
paths.

In a metric space (X, d) one can measure the length of curves in several ways.

Definition 2.2 The length of a curve with L1 dilatation f : [a, b] → X is

L(f) =

∫ b

a

Lip(f)(t) dt

3



A different way to define a length of a curve is to consider its variation.

Definition 2.3 The curve f has bounded variation if the quantity

V ar(f) = sup

{

n
∑

i=0

d(f(ti), f(ti+1)) : a = t0 < t1 < ... < tn < tn+1 = b

}

(called variation of f) is finite.

There is a third, more basic way to introduce the length of a curve in a metric
space.

Definition 2.4 The length of the path A = f([a, b]) is the one-dimensional Haus-
dorff measure of the path. The definition is the following:

l(A) = lim
δ→0

inf

{

∑

i∈I

diam Ei : diam Ei < δ , A ⊂
⋃

i∈I

Ei

}

The definitions are not equivalent. The variation V ar(f) of a curve f and the
length of a path L(f) do not agree in general. Consider for example: f : [−1, 1] → R2,
f(t) = (t, sign(t)). We have V ar(f) = 4 and L(f([−1, 1]) = 2. Another example:
the Cantor staircase function is continuous, but not Lipschitz. It has variation equal
to 1 and length of the graph equal to 2.

Nevertheless, for Lipschitz functions, the first two definitions agree. For injective
Lipschitz functions (i.e. for simple Lipschitz curves) the last two definitions agree.

Theorem 2.5 For each Lipschitz curve f : [a, b] → X, we have L(f) = V ar(f).

Theorem 2.6 Suppose that f : [a, b] → X is a Lipschitz function and A =
f([a, b]). Then H1(A) ≤ V ar(f).

If f is moreover injective then H1(A) = V ar(f).

An important tool used in the proof of the previous theorem is the geometri-
cally obvious, but not straightforward to prove in this generality, Reparametrisation
Theorem.

Theorem 2.7 Any path A ⊂ X with a Lipschitz parametrisation admits a reparametri-
sation f : [a, b] → A such that Lip(f)(t) = 1 for almost any t ∈ [a, b].

4



We shall denote by ld the length functional, defined only on Lipschitz curves,
induced by the distance d. The length induces a new distance dl, say on any Lipschitz
connected component of the space (X, d). The distance dl is given by:

dl(x, y) = inf {ld(f([a, b])) : f : [a, b] → X Lipschitz ,

f(a) = x , f(b) = y}
We have therefore two operators d 7→ ld and l 7→ dl. This leads to the introduc-

tion of length metric spaces.

Definition 2.8 A length metric space is a metric space (X, d) such that d = dl.

From theorem 2.5 we deduce that Lipschitz curves in complete length metric
spaces are absolutely continuous. Indeed, here is the definition of an absolutely
continuous curve (definition 1.1.1, chapter 1, [1]).

Definition 2.9 Let (X, d) be a complete metric space. A curve c : (a, b) → X is
absolutely continuous if there exists m ∈ L1((a, b)) such that for any a < s ≤ t < b

we have

d(c(s), c(t)) ≤
∫ t

s

m(r) dr.

Such a function m is called an upper gradient of the curve c.

According to theorem 2.5, for a Lipschitz curve c : [a, b] → X in a complete
lenght metric space such a function m ∈ L1((a, b)) is the upper dilatation Lip(c).
More can be said about the expression of the upper dilatation. We need first to
introduce the notion of metric derivative of a Lipschitz curve.

Definition 2.10 A curve c : (a, b) → X is metrically derivable in t ∈ (a, b) if the
limit

md(c)(t) = lim
s→t

d(c(s), c(t))

| s − t |
exists and it is finite. In this case md(c)(t) is called the metric derivative of c in t.

For the proof of the following theorem see [1], theorem 1.1.2, chapter 1.

Theorem 2.11 Let (X, d) be a complete metric space and c : (a, b) → X be an
absolutely continuous curve. Then c is metrically derivable for L1-a.e. t ∈ (a, b).
Moreover the function md(c) belongs to L1((a, b)) and it is minimal in the following
sense: md(c)(t) ≤ m(t) for L1-a.e. t ∈ (a, b), for each upper gradient m of the curve
c.
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3 The Radon-Nikodym property

Definition 3.1 A dilatation structure (X, d, δ) has the Radon-Nikodym property if
any Lipschitz curve c : [a, b] → (X, d) is derivable almost everywhere.

Example 3.1 For (X, d) = (V, d), a real, finite dimensional, normed vector space,
with distance d induced by the norm, the (usual) dilatations δx

ε are given by:

δx
ε y = x + ε(y − x)

Dilatations are defined everywhere. The group Γ is (0,+∞) and the function ν is
the identity.

There are few things to check (see the appendix): axioms 0,1,2 are obviously
true. For axiom A3, remark that for any ε > 0, x, u, v ∈ X we have:

1

ε
d(δx

ε u, δx
ε v) = d(u, v) ,

therefore for any x ∈ X we have dx = d.
Finally, let us check the axiom A4. For any ε > 0 and x, u, v ∈ X we have

δ
δx
ε u

ε−1δ
x
ε v = x + ε(u − x) +

1

ε
(x + ε(v − x) − x − ε(u − x)) =

= x + ε(u − x) + v − u

therefore this quantity converges to

x + v − u = x + (v − x) − (u − x)

as ε → 0. The axiom A4 is verified.
This dilatation structure has the Radon-Nikodym property. �

Example 3.2 Because dilatation structures are defined by local requirements, we
can easily define dilatation structures on riemannian manifolds, using particular
atlases of the manifold and the riemannian distance (infimum of length of curves
joining two points). Note that any finite dimensional manifold can be endowed with
a riemannian metric. This class of examples covers all dilatation structures used in
differential geometry. The axiom A4 gives an operation of addition of vectors in the
tangent space (compare with Belläıche [2] last section). �

Example 3.3 Take X = R
2 with the euclidean distance d. For any z ∈ C of the

form z = 1 + iθ we define dilatations

δεx = εzx .

It is easy to check that (R2, d, δ) is a dilatation structure, with dilatations

δx
ε y = x + δε(y − x) .
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Two such dilatation structures (constructed with the help of complex numbers
1 + iθ and 1 + iθ′) are equivalent if and only if θ = θ′.

There are two other interesting properties of these dilatation structures. The
first is that if θ 6= 0 then there are no non trivial Lipschitz curves in X which are
differentiable almost everywhere. It means that such dilatation structure does not
have the Radon-Nikodym property.

The second property is that any holomorphic and Lipschitz function from X to X

(holomorphic in the usual sense on X = R
2 = C) is differentiable almost everywhere,

but there are Lipschitz functions from X to X which are not differentiable almost
everywhere (suffices to take a C∞ function from R

2 to R
2 which is not holomorphic).

�

The Radon-Nikodym property can be stated in two equivalent ways.

Proposition 3.2 Let (X, d, δ) be a dilatation structure. Then the following are
equivalent:

(a) (X, d, δ) has the Radon-Nikodym property;

(b) any Lipschitz curve c′ : [a′, b′] → (X, d) admits a reparametrization c : [a, b] →
(X, d) such that for almost every t ∈ [a, b] there is ċ(t) ∈ U(c(t)) such that

1

ε
d(c(t + ε), δc(t)

ε ċ(t)) → 0

1

ε
d(c(t − ε), δc(t)

ε invc(t)(ċ(t))) → 0 ;

(c) any Lipschitz curve c′ : [a′, b′] → (X, d) admits a reparametrization c : [a, b] →
(X, d) such that for almost every t ∈ [a, b] there is a conical group morphism

ċ(t) : R → Tc(t)X

such that for any a ∈ R we have

1

ε
d(c(t + εa), δc(t)

ε ċ(t)(a)) → 0.

Proof. It is straightforward that a conical group morphism f : R → (N, δ) is
defined by its value f(1) ∈ N . Indeed, for any a > 0 we have f(a) = δaf(1) and for
any a < 0 we have f(a) = δaf(1)−1. From the morphism property we also deduce
that

δv =
{

δav : a > 0, v = f(1) or v = f(1)−1
}

is a one parameter group and that for all α, β > 0 we have

δα+βu = δαuδβu �
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Definition 3.3 In a conical group N we shall denote by D(N) the set of all u ∈ N

with the property that ε ∈ ((0,∞),+) 7→ δεu ∈ N is a morphism of semigroups .
D(N) is always non empty, because it contains the neutral element of N . D(N)

is also a cone, with dilatations δε, and a closed set.

We shall always identify a conical group morphism f : R → N with its value
f(1) ∈ D(N).

3.1 Length formula from Radon-Nikodym property

Theorem 3.4 Let (X, d, δ) be a dilatation structure with the Radon-Nikodym prop-
erty, over a complete length metric space (X, d). Then for any Lipschitz curve
c : [a, b] → X the length of γ = c([a, b]) is

L(γ) =

∫ b

a

dc(t)(c(t), ċ(t)) dt.

Proof. The upper dilatation of c in t is

Lip(c)(t) = lim sup
ε→0

sup

{

d(c(v), c(w))

| v − w | : v 6= w , | v − t |, | w − t |< ε

}

.

From theorem 2.11 we deduce that for almost every t ∈ (a, b) we have

Lip(c)(t) = lim
s→t

d(c(s), c(t))

| s − t | .

If the dilatation structure has the Radon-Nikodym property then for almost
every t ∈ [a, b] there is ċ(t) ∈ D(Tc(t)X) such that

1

ε
d(c(t + ε), δc(t)

ε ċ(t)) → 0.

Therefore for almost every t ∈ [a, b] we have

Lip(c)(t) = lim
ε→0

1

ε
d(c(t + ε), c(t)) = dc(t)(c(t), ċ(t)).

The formula for length follows from here. �

3.2 A dilatation structure looking down to another

Consider two dilatation structures A = (X, dA, δ) and B = (X, dB , δ̄). We explain
here in which sense A looks down at B.

Definition 3.5 Given dilatation structures A = (X, dA, δ) and B = (X, dB , δ̄), we
write that A ≥ B if the following conditions are fulfilled:

8



(a) the identity id : (X, dA) → (X, dB) is 1-Lipschitz,

(b) the identity id : (X, dA) → (X, dB) is derivable everywhere and for any point
x ∈ X the derivative D id(x) is a projector,

(c) for any x ∈ X, any continuous curve ε ∈ [0, 1) 7→ z(ε) ∈ X, such that
dx

A(z(0), x) ≤ 3/2, if

lim
ε→0

(

dx
A(x, z(ε)) − 1

ε
dx

B(x, δx
ε z(ε))

)

= 0

then lim
ε→0

dx
A(Qx

εz(ε), z(ε)) = 0, where Qx
ε = δ̄x

ε−1δ
x
ε .

We explain in more detail the meaning of this definition. Condition (a) says that
for any x, y ∈ X we have dB(x, y) ≤ dA(x, y). Condition (b) can be understood by
using definition 4.10: for any x ∈ X there exists a function D id(x) defined on a
neighbourhood of x with values in a neighbourhood of f(x) such that

lim
ε→0

sup

{

1

ε
d

(

δx
ε u, δ

x

εD id(x)(u)
)

: d(x, u) ≤ ε

}

= 0. (3.2.1)

From here we deduce that for any x and u such that dB(x, u) is sufficiently small

lim
ε→0

δ
x

ε−1δx
ε (u) = D id(x)(u)

and the limit is uniform with respect to u.
The second part of the condition (b) states that

D id(x)D id(x) = D id(x).

In order to understand the condition (c) we need to introduce the following topo-
logical version of a distribution.

Definition 3.6 We denote by TopD(x) the topological filter induced by the relatively
open neighbourhoods of x in the closed ball {z ∈ X : dx

A(x, z) ≤ 2}, given by

F (x, ε, λ) =

{

z ∈ X : dx
A(x, z) ≤ 2 , dx

A(x, z) − 1

ε
dx

B(x, δx
ε z) ≤ λ

}

.

This filter is called the topological distribution associated with the pair of dilatation
structures A = (X, dA, δ) and B = (X, dB , δ̄), such that A ≥ B.

With this notation we may rewrite the condition (c) definition 3.5 like this: let
z(ε) be a continuous curve such that (in the sense of topological filters)

lim
ε→0

z(ε) ∈ TopD(x) .

Then lim
ε→0

dx
A(Qx

εz(ε), z(ε)) = 0, where Qx
ε = δ̄x

ε−1δ
x
ε . This means that the ”size

of the vertical part” of z(ε), which is dx
A(Qx

εz(ε), z(ε)), becomes arbitrarily small as
ε → 0.
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3.3 Transfer of Radon-Nikodym property

Suppose that (X, dA) and (X, dB) are complete, locally compact, length metric
spaces and that we have two dilatation structures A = (X, dA, δ) and B = (X, dB , δ̄),
such that A ≥ B.

A sufficient condition to have (a) in definition 3.5 is the following (true in the
case of sub-Riemannian manifolds):

(a’) for any Lipschitz curve c, if lA(c) < +∞ then lB(c) = lA(c). Here lA and lB de-
note the length functional associated to distance dA, distance dB respectively.

We prove here the following result concerning the transfer of Radon-Nikodym
property.

Theorem 3.7 Let (X, dA) and (X, dB) be complete, locally compact, length met-
ric spaces. Suppose that we have two dilatation structures A = (X, dA, δ) and
B = (X, dB , δ̄), such that A ≥ B. Under the assumptions (a’) and (b), (c), (d)
from definition 3.5, if the dilatation structure B = (X, dB , δ̄) has the Radon-Nikodym
property, then the dilatation structure A = (X, dA, δ) has the Radon-Nikodym prop-
erty.

Proof. Let c : [0, 1] → (X, dA) be a Lipschitz curve. Because of hypothesis (a) it
follows that c : [0, 1] → (X, dB) is also Lipschitz. Moreover, we can reparametrize
the curve c with the dA lenght and so we can suppose that c is dA 1-Lipschitz.
Therefore we can suppose that c is dB 1-Lipschitz.

The dilatation structure B = (X, dB , δ̄) has the Radon-Nikodym property. Then
for almost any t ∈ [0, 1] there is ċ(t) such that

1

ε
dB(c(t + ε), δ̄x

ε ċ(t)) → 0 as ε → 0 (3.3.2)

1

ε
dB(c(t − ε), δ̄x

ε ċ(t)−1) → 0 as ε → 0 (3.3.3)

Further we shall give only the half of the proof, namely we shall use only relation
(3.3.2). To get a complete proof, one has to repeat the reasoning starting from
(3.3.3).

Because c is dA 1- Lipschitz, it follows that

d
c(t)
A (δ

c(t)
ε−1c(t + ε), ċ(t)) ≤ 2

for any ε < ε(t) ∈ (0,+∞). From the local compactness with respect to d
c(t)
A we

find that for any t ∈ [0, 1] there is a sequence (εh)h ⊂ (0,+∞), converging to 0 as
h → ∞, and u(t) ∈ X such that:

lim
h→∞

δ
c(t)

ε−1

h

c(t + εh) = u(t)
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Use equation (3.3.2) to get that

lim
h→∞

δ̄
c(t)

ε−1

h

c(t + εh) = ċ(t)

Re-write this latter equation as:

lim
h→∞

δ̄
c(t)

ε−1

h

δc(t)
εh

δ
c(t)

ε−1

h

c(t + εh) = ċ(t)

and use the first part of hypothesis (b) to get

D id(c(t))u(t) = ċ(t)

But according to the second part of the hypothesis (b) the operator D id(c(t))
is a projector, hence

D id(c(t))ċ(t) = ċ(t)

Because of the fact that the derivative commutes with dilatations we get the impor-
tant fact that for any ε > 0

δc(t)
ε ċ(t) = δ̄c(t)

ε ċ(t) (3.3.4)

We wish to prove

1

ε
dA(δc(t)

ε δ̄
c(t)
ε−1c(t + ε), c(t + ε)) → 0 as ε → 0 (3.3.5)

Suppose that (3.3.5) is true. Then we would have

d
c(t)
A (δ̄

c(t)
ε−1c(t + ε), δ

c(t)
ε−1c(t + ε)) → 0 as ε → 0

But relations (3.3.2) and (3.3.4) imply that

d
c(t)
A (δ̄

c(t)
ε−1c(t + ε), ċ(t)) → 0 as ε → 0

therefore we would finally get

d
c(t)
A (δ

c(t)
ε−1c(t + ε), ċ(t)) → 0 as ε → 0

which is what we want to prove: that the curve c is derivable in t with respect to
the dilatation structure A.

Let us prove the relation (3.3.5). According to hypothesis (a’) we have:

0 ≤ 1

ε
dA(c(t+ε), c(t))−1

ε
dB(c(t+ε), c(t)) ≤ 1

ε

∫ t+ε

t

| ċ(τ) |B dτ − 1

ε
dB(c(t+ε), c(t))

where the quantity

| ċ(s) |B = lim
ε→0

dB((c(s + ε), c(s))

ε
= d

c(s)
B (c(s), ċ(s))
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exists for almost every s ∈ [0, 1], according to theorem 2.11.
We obtain therefore the relation:

1

ε
dA(c(t + ε), c(t)) − 1

ε
dB(c(t + ε), c(t)) → 0 as ε → 0 (3.3.6)

Here is the moment to use the last hypothesis (d). Indeed, the relation (3.3.6)
implies that

d
c(t)
A (c(t), δ

c(t)
ε−1c(t + ε)) − 1

ε
d

c(t)
B (c(t + ε), c(t)) → 0 as ε → 0 (3.3.7)

Denote by z(t, ε) = δ
c(t)
ε−1c(t + ε). The relation (3.3.7) becomes:

d
c(t)
A (c(t), z(t, ε)) − 1

ε
d

c(t)
B (c(t), δx

ε z(t, ε)) → 0 as ε → 0 (3.3.8)

We also have

d
c(t)
A (c(t), z(t, ε)) =

1

ε
d

c(t)
A (c(t), c(t + ε)) ≤ 2

for ε sufficiently small, because we supposed that c was reparametrized with the
length. Therefore, with the notations from definition 3.6 and the paragraph following
it, we have

lim
ε→0

z(t, ε) ∈ TopD(c(t))

From the hypothesis (d) we deduce that

lim
ε→0

d
c(t)
A (z(t, ε), Qc(t)

ε z(t, ε)) = 0

Let us see what this means:

lim
ε→0

d
c(t)
A (δ̄c(t)

ε c(t + ε), δc(t)
ε c(t + ε)) = 0

This relation is equivalent with (3.3.5), so the proof is done. �

4 Appendix: Dilatation structures

For the sake of completeness we list in this appendix the definition and properties
of a dilatation structure, according to [3], [4].

4.1 The axioms of a dilatation structure

The axioms of a dilatation structure (X, d, δ) are listed further. The first axiom is
merely a preparation for the next axioms. That is why we counted it as axiom 0.
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A0. The dilatations
δx
ε : U(x) → Vε(x)

are defined for any ε ∈ Γ, ν(ε) ≤ 1. The sets U(x), Vε(x) are open neighbour-
hoods of x. All dilatations are homeomorphisms (invertible, continuous, with
continuous inverse).

We suppose that there is a number 1 < A such that for any x ∈ X we have

B̄d(x,A) ⊂ U(x) .

We suppose that for all ε ∈ Γ, ν(ε) ∈ (0, 1), we have

Bd(x, ν(ε)) ⊂ δx
ε Bd(x,A) ⊂ Vε(x) ⊂ U(x) .

There is a number B ∈ (1, A) such that for any ν(ε) ∈ (1,+∞) the associated
dilatation

δx
ε : Wε(x) → Bd(x,B) ,

is injective, invertible on the image. We shall suppose that Wε(x) is a open
neighbourhood of x,

Vε−1(x) ⊂ Wε(x)

and that for all ε ∈ Γ1 and u ∈ U(x) we have

δx
ε−1 δx

ε u = u .

We have therefore the following string of inclusions, for any ε ∈ Γ, ν(ε) ≤ 1, and
any x ∈ X:

Bd(x, ν(ε)) ⊂ δx
ε Bd(x,A) ⊂ Vε(x) ⊂ Wε−1(x) ⊂ δx

ε Bd(x,B) .

A further technical condition on the sets Vε(x) and Wε(x) will be given just
before the axiom A4. (This condition will be counted as part of axiom A0.)

A1. We have δx
ε x = x for any point x. We also have δx

1 = id for any x ∈ X.

Let us define the topological space

dom δ = {(ε, x, y) ∈ Γ × X × X : if ν(ε) ≤ 1 then y ∈ U(x) ,

else y ∈ Wε(x)}
with the topology inherited from the product topology on Γ×X×X. Consider
also Cl(dom δ), the closure of dom δ in Γ̄×X ×X with product topology. The
function δ : dom δ → X defined by δ(ε, x, y) = δx

ε y is continuous. Moreover, it
can be continuously extended to Cl(dom δ) and we have

lim
ε→0

δx
ε y = x .
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A2. For any x,∈ K, ε, µ ∈ Γ1 and u ∈ B̄d(x,A) we have:

δx
ε δx

µu = δx
εµu .

A3. For any x there is a function (u, v) 7→ dx(u, v), defined for any u, v in the
closed ball (in distance d) B̄(x,A), such that

lim
ε→0

sup

{

| 1

ε
d(δx

ε u, δx
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}

= 0

uniformly with respect to x in compact set.

Remark 4.1 The ”distance” dx can be degenerated: there might exist v,w ∈ U(x)
such that dx(v,w) = 0.

For the following axiom to make sense we impose a technical condition on the
co-domains Vε(x): for any compact set K ⊂ X there are R = R(K) > 0 and
ε0 = ε(K) ∈ (0, 1) such that for all u, v ∈ B̄d(x,R) and all ε ∈ Γ, ν(ε) ∈ (0, ε0), we
have

δx
ε v ∈ Wε−1(δx

ε u) .

With this assumption the following notation makes sense:

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v.

The next axiom can now be stated:

A4. We have the limit
lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Definition 4.2 A triple (X, d, δ) which satisfies A0, A1, A2, A3, but dx is degen-
erate for some x ∈ X, is called degenerate dilatation structure.

If the triple (X, d, δ) satisfies A0, A1, A2, A3, A4 and dx is non-degenerate for
any x ∈ X, then we call it a dilatation structure.

4.2 Tangent bundle of a dilatation structure

The following two theorems describe the most important metric and algebraic prop-
erties of a dilatation structure. As presented here these are condensed statements,
available in full length as theorems 7, 8, 10 in [3].

Theorem 4.3 Let (X, d, δ) be a dilatation structure. Then the metric space (X, d)
admits a metric tangent space at x, for any point x ∈ X. More precisely we have
the following limit:

lim
ε→0

1

ε
sup {| d(u, v) − dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

14



Theorem 4.4 Let (X, d, δ) be a dilatation structure. Then for any x ∈ X the triple
(U(x),Σx, δx, dx) is a normed local conical group. This means:

(a) Σx is a local group operation on U(x), with x as neutral element and invx as
the inverse element function;

(b) the distance dx is left invariant with respect to the group operation from point
(a);

(c) For any ε ∈ Γ, ν(ε) ≤ 1, the dilatation δx
ε is an automorphism with respect to

the group operation from point (a);

(d) the distance dx has the cone property with respect to dilatations: foar any
u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have:

dx(u, v) =
1

µ
dx(δx

µu, δx
µv) .

The conical group (U(x),Σx, δx) can be regarded as the tangent space of (X, d, δ)
at x. Further will be denoted by: TxX = (U(x),Σx, δx).

By using proposition 5.4 [9] and from some topological considerations we de-
duce the following characterisation of tangent spaces asociated to some dilatation
structures. The following is corollary 4.7 [4].

Corollary 4.5 Let (X, d, δ) be a dilatation structure with group Γ = (0,+∞) and
the morphism ν equal to identity. Then for any x ∈ X the local group (U(x),Σx) is
locally a simply connected Lie group whose Lie algebra admits a positive graduation
(a Carnot group).

4.3 Equivalent dilatation structures

Definition 4.6 Two dilatation structures (X, δ, d) and (X, δ, d) are equivalent if

(a) the identity map id : (X, d) → (X, d) is bilipschitz and

(b) for any x ∈ X there are functions P x, Qx (defined for u ∈ X sufficiently close
to x) such that

lim
ε→0

1

ε
d

(

δx
ε u, δ

x

εQx(u)
)

= 0, (4.3.1)

lim
ε→0

1

ε
d

(

δ
x

εu, δx
ε P x(u)

)

= 0, (4.3.2)

uniformly with respect to x, u in compact sets.

Proposition 4.7 Two dilatation structures (X, δ, d) and (X, δ, d) are equivalent if
and only if
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(a) the identity map id : (X, d) → (X, d) is bilipschitz and

(b) for any x ∈ X there are functions P x, Qx (defined for u ∈ X sufficiently close
to x) such that

lim
ε→0

(

δ
x

ε

)−1
δx
ε (u) = Qx(u), (4.3.3)

lim
ε→0

(δx
ε )−1 δ

x

ε (u) = P x(u), (4.3.4)

uniformly with respect to x, u in compact sets.

The next theorem shows a link between the tangent bundles of equivalent dilata-
tion structures.

Theorem 4.8 Let (X, δ, d) and (X, δ, d) be equivalent dilatation structures. Suppose
that for any x ∈ X the distance dx is non degenerate. Then for any x ∈ X and any
u, v ∈ X sufficiently close to x we have:

Σ
x
(u, v) = Qx (Σx (P x(u), P x(v))) . (4.3.5)

The two tangent bundles are therefore isomorphic in a natural sense.

4.4 Differentiable functions

Dilatation structures allow to define differentiable functions. The idea is to keep
only one relation from definition 4.6, namely (4.3.1). We also renounce to uniform
convergence with respect to x and u, and we replace this with uniform convergence
in the ”u” variable, with a conical group morphism condition for the derivative.

Definition 4.9 Let (N, δ) and (M, δ̄) be two conical groups. A continuous function
f : N → M is a conical group morphism if f is a group morphism and for any ε > 0
and u ∈ N we have f(δεu) = δ̄εf(u).

Definition 4.10 Let (X, δ, d) and (Y, δ, d) be two dilatation structures and f : X →
Y be a continuous function. The function f is differentiable in x if there exists a
conical group morphism Qx : TxX → Tf(x)Y , defined on a neighbourhood of x with
values in a neighbourhood of f(x) such that

lim
ε→0

sup

{

1

ε
d

(

f (δx
ε u) , δ

f(x)
ε Qx(u)

)

: d(x, u) ≤ ε

}

= 0, (4.4.6)

The morphism Qx is called the derivative of f at x and will be sometimes denoted
by Df(x).

The function f is uniformly differentiable if it is differentiable everywhere and
the limit in (4.4.6) is uniform in x in compact sets.
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A trivial way to obtain a differentiable function (everywhere) is to modify the
dilatation structure on the target space.

Definition 4.11 Let (X, δ, d) be a dilatation structure and f : (X, d) → (Y, d) be
a bilipschitz and surjective function. We define then the transport of (X, δ, d) by f ,
named (Y, f ∗ δ, d), by:

(f ∗ δ)f(x)
ε f(u) = f (δx

ε u) .

The relation of differentiability with equivalent dilatation structures is given by
the following simple proposition.

Proposition 4.12 Let (X, δ, d) and (X, δ, d) be two dilatation structures and f :
(X, d) → (X, d) be a bilipschitz and surjective function. The dilatation structures
(X, δ, d) and (X, f ∗ δ, d) are equivalent if and only if f and f−1 are uniformly
differentiable.

We shall prove now the chain rule for derivatives, after we elaborate a bit over
the definition 4.10.

Let (X, δ, d) and (Y, δ, d) be two dilatation structures and f : X → Y a function
differentiable in x. The derivative of f in x is a conical group morphism Df(x) :
TxX → Tf(x)Y , which means that Df(x) is defined on a open set around x with
values in a open set around f(x), having the properties:

(a) for any u, v sufficiently close to x

Df(x) (Σx(u, v)) = Σf(x) (Df(x)(u),Df(x)(v)) ,

(b) for any u sufficiently close to x and any ε ∈ (0, 1]

Df(x) (δx
ε u) = δ̄f(x)

ε (Df(x)(u)) ,

(c) the function Df(x) is continuous, as uniform limit of continuous functions.
Indeed, the relation (4.4.6) is equivalent to the existence of the uniform limit
(with respect to u in compact sets)

Df(x)(u) = lim
ε→0

δ̄
f(x)
ε−1 (f (δx

ε u)) .

From (4.4.6) alone and axioms of dilatation structures we can prove properties
(b) and (c). We can reformulate therefore the definition of the derivative by asking
that Df(x) exists as an uniform limit (as in point (c) above) and that Df(x) has
the property (a) above.

From these considerations the chain rule for derivatives is straightforward.
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Proposition 4.13 Let (X, δ, d), (Y, δ, d) and (Z, δ̂, d̂) be three dilatation structures
and f : X → Y a continuous function differentiable in x, g : Y → Z a continuous
function differentiable in f(x). Then gf : X → Z is differentiable in x and

Dgf(x) = Dg(f(x))Df(x).

Proof. Use property (b) for proving that Dg(f(x))Df(x) satisfies (4.4.6) for the
function gf and x. Both Dg(f(x)) and Df(x) are conical group morphisms, there-
fore Dg(f(x))Df(x) is a conical group morphism too. We deduce that Dg(f(x))Df(x)
is the derivative of gf in x. �
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Riemannian Geometry, A. Belläıche, J.-J. Risler eds., Progress in Mathematics,
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Abstract

Based on the notion of dilatation structure [2], we give an intrinsic treatment
to sub-riemannian geometry, started in the paper [4]. Here we prove that regular
sub-riemannian manifolds admit dilatation structures. From the existence of
normal frames proved by Belläıche we deduce the rest of the properties of regular
sub-riemannian manifolds by using the formalism of dilatation structures.
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1 Introduction

Sub-riemannian geometry is the modern incarnation of non-holonomic spaces, dis-
covered in 1926 by the romanian mathematician Gheorghe Vrănceanu [21], [22].
The sub-riemannian geometry is the study of non-holonomic spaces endowed with
a Carnot-Carathéodory distance. Such spaces appear in applications to thermody-
namics, to the mechanics of non-holonomic systems, in the study of hypo-elliptic
operators cf. Hörmander [14], in harmonic analysis on homogeneous cones cf. Fol-
land, Stein [10], and as boundaries of CR-manifolds.

The interest in these spaces comes from several intriguing features which they
have: from the metric point of view they are fractals (the Hausdorff dimension with
respect to the Carnot-Carathéodory distance is strictly bigger than the topological
dimension, cf. Mitchell [17]); the metric tangent space to a point of a regular sub-
riemannian manifold is a Carnot group (a simply connected nilpotent Lie group with
a positive graduation), also known classicaly as a homogeneous cone; the asymptotic
space (in the sense of Gromov-Hausdorff distance) of a finitely generated group with
polynomial growth is also a Carnot group, by a famous theorem of Gromov [11]
wich leads to an inverse to the Tits alternative; finally, on such spaces we have
enough structure to develop a differential calculus resembling to the one proposed
by Cheeger [9] and to prove theorems like Pansu’ version of Rademacher theorem
[18], leading to an ingenious proof of a Margulis rigidity result.

There are several fundamental papers dedicated to the establisment of the sub-
riemannian geometry, among them Mitchell [17], Belläıche [1], a substantial paper of
Gromov asking for an intrinsic point of view for sub-riemannian geometry [13], Mar-
gulis, Mostow [15], [16], dedicated to Rademacher theorem for sub-riemannian mani-
folds and to the construction of a tangent bundle of such manifolds, and Vodopyanov
[19] (among other papers), concerning the same subject.

There is a reason for the existence of so many papers, written by important
mathematicians, on the same subject: the fundamental geometric properties of sub-
riemannian manifolds are very difficult to prove. Maybe the most difficult problem is
to provide a rigorous construction of the tangent bundle of such a manifold, starting
from the properties of the Carnot-Carathéodory distance, and somehow allowing to
generalize Pansu’ differential calculus.

In several articles devoted to sub-riemannian geometry, these fundamental re-
sults were proved using differential geometry tools, which are not intrinsic to sub-
riemannian geometry, therefore leading to very long proofs, sometimes with unclear
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parts, corrected or clarified in other papers dedicated to the same subject.
The fertile ideas of Gromov, Belläıche and other founders of the field of analysis

in sub-riemannian spaces are now developed into a hot research area. For the study
of sub-riemannian geometry under weaker than usual regularity hypothesis see for
example the string of papers by Vodopyanov, among them [19], [20]. In these papers
Vodopyanov constructs a tangent bundle structure for a sub-riemannian manifold,
under weak regularity hypothesis, by using notions as horizontal convergence.

Based on the notion of dilatation structure [2], I tried to give a an intrinsic
treatment to sub-riemannian geometry in the paper [4], after a series of articles [5],
[6], [7] dedicated to the sub-riemannian geometry of Lie groups endowed with left
invariant distributions.

In this article we show that normal frames are the central objects in the establish-
ment of fundamental properties in sub-riemannian geometry, in the following precise
sense. We prove that for regular sub-riemannian manifolds, the existence of normal
frames (definition 3.7) implies that induced dilatation structures exist (theorems
6.3, 6.4). The existence of normal frames has been proved by Belläıche [1], starting
with theorem 4.15 and ending in the first half of section 7.3 (page 62). From these
facts all classical results concerning the structure of the tangent space to a point of a
regular sub-riemannian manifold can be deduced as straightforward consequences of
the structure theorems 4.2, 4.3, 4.4, 4.5 from the formalism of dilatation structures.

In conclusion, our purpose is twofold: (a) we try to show that basic results in
sub-riemannian geometry are particular cases of the abstract theory of dilatation
structures, and (b) we try to minimize the contribution of classical differential cal-
culus in the proof of these basic results, by showing that in fact the differential
calculus on the sub-riemannian manifold is needed only for proving that normal
frames exist and after this stage an intrinsic way of reasoning is possible.

If we take the point of view of Gromov, that the only intrinsic object on a
sub-riemannian manifold is the Carnot-Carathéodory distance, the underlying dif-
ferential structure of the manifold is clearly not intrinsic. Nevertheless in all proofs
that I know this differential structure is heavily used. Here we try to prove that
in fact it is sufficient to take as intrinsic objects of sub-riemannian geometry the
Carnot-Carathéodory distance and dilatation structures compatible with it.

The closest results along these lines are maybe the ones of Vodopyanov. There
is a clear correspondence between his way of defining the tangent bundle of a sub-
riemannian manifold and the way of dilatation structures. In both cases the tangent
space to a point is defined only locally, as a neighbourhood of the point, in the
manifold, endowed with a local group operation. Vodopyanov proves the existence
of the (locally defined) operation under very weak regularity assumptions on the
sub-riemannian manifold. The main tool of his proofs is nevertheless the differential
structure of the underlying manifold. In distinction, we prove in [2], in an abstract
setting, that the very existence of a dilatation structure induces a locally defined
operation. Here we show that the differential structure of the underlying manifold is
important only in order to prove that dilatation structures can indeed be constructed
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from normal frames.

2 Metric profiles

Notations. The space CMS is the collection of isometry classes of pointed com-
pact metric spaces. The notation used for elements of CMS is of the type [X, d, x],
representing the equivalence class of the pointed compact metric space (X, d, x) with
respect to (pointed) isometry. The open ball of radius r > 0 and center x ∈ (X, d)
is denoted by B(x, r) or Bd(x, r) if we want to emphasize the dependence on the
distance d. The notation for a closed ball is obtained by adding an overline to the
notation for the open ball. The distance on CMS is the Gromov-Hausdorff distance
dGH between (isometry classes of) pointed metric spaces and the topology is induced
by this distance. For the Gromov-Hausdorff distance see Gromov [12]. We denote
by O(ε) a positive function such that lim

ε→0
O(ε) = 0.

To any locally compact metric space there is an associated metric profile (Buliga
[6], [7]).

Definition 2.1 The metric profile associated to the locally compact metric space
(M,d) is the assignment (for small enough ε > 0)

(ε > 0, x ∈ M) 7→ P
m(ε, x) = [B̄(x, 1),

1

ε
d, x] ∈ CMS

We may define a notion of metric profile which is more general than the previous
one.

Definition 2.2 A metric profile is a curve P : [0, a] → CMS such that

(a) it is continuous at 0,

(b) for any µ ∈ [0, a] and ε ∈ (0, 1] we have

dGH(P(εµ), Pm
dµ

(ε, xµ)) = O(µ)

The function O(µ) may change with ε. We used the notations

P(µ) = [B̄(x, 1), dµ, xµ] and P
m
dµ

(ε, x) =

[

B̄(x, 1),
1

ε
dµ, xµ

]

We shall unfold further the definition 2.2 in order to clearly understand what is a
metric profile. For any µ ∈ (0, a] and for any b > 0 there is ε(µ, b) ∈ (0, 1) such that
for any ε ∈ (0, ε(µ, b)) there exists a relation ρ = ρε,µ ⊂ B̄dµ

(xµ, ε) × B̄dµε
(xµε, 1)

such that:
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1. dom ρε,µ is b-dense in B̄dµ
(xµ, ε),

2. im ρε,µ is b-dense in B̄dµε
(xµε, 1),

3. (xµ, xµε) ∈ ρε,µ,

4. for all x, y ∈ dom ρε,µ we have | 1

ε
dµ(x, y) − dµε(x

′, y′) | ≤ b, for any x′, y′

such that (x, x′), (y, y′) ∈ ρε,µ.

Therefore a metric profile gives two types of information:

- a distance estimate like the one from point 4 above,

- an ”approximate shape” estimate, like in the points 1–3, where we see that two
sets, namely the balls B̄dµ

(xµ, ε) and B̄dµε
(xµε, 1), are approximately isometric.

The metric profile ε 7→ P
m(ε, x) of a metric space (M,d) for a fixed x ∈ M is a

metric profile in the sense of the definition 2.2 if and only if the space (M,d) admits
a tangent space in x. Here is the general definition of a tangent space in the metric
sense.

Definition 2.3 A (locally compact) metric space (M,d) admits a (metric) tangent
space in x ∈ M if the associated metric profile ε 7→ P

m(ε, x) (as in definition 2.1)
admits a prolongation by continuity in ε = 0, i.e if the following limit exists:

[TxM,dx, x] = lim
ε→0

P
m(ε, x) (2.0.1)

Metric tangent spaces are metric cones.

Definition 2.4 A metric cone (X, d, x) is a locally compact metric space (X, d),
with a marked point x ∈ X such that for any a, b ∈ (0, 1] we have

P
m(a, x) = P

m(b, x)

Metric cones have the simplest metric profile, which is one with the property:
(B̄(xb, 1), db, xb) = (X, db, x). In particular metric cones have dilatations.

Definition 2.5 Let (X, d, x) be a metric cone. For any ε ∈ (0, 1] a dilatation is a
function δx

ε : B̄(x, 1) → B̄(x, ε) such that

(a) δx
ε (x) = x,

(b) for any u, v ∈ X we have

d (δx
ε (u), δx

ε (v)) = ε d(u, v)

The existence of dilatations for metric cones comes from the definition 2.4. In-
deed, dilatations are just isometries from (B̄(x, 1), d, x) to (B̄, 1

a
d, x).
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3 Sub-riemannian manifolds

Let M be a connected n dimensional real manifold. A distribution is a smooth
subbundle D of M . To any point x ∈ M there is associated the vector space
Dx ⊂ TxM . The dimension of the distribution D at point x ∈ M is denoted by

m(x) = dim Dx

The distribution is smooth, therefore the function x ∈ M 7→ m(x) is locally constant.
We suppose further that the dimension of the distribution is globally constant and
we denote it by m (thus m = m(x) for any x ∈ M). Clearly m ≤ n; we are interested
in the case m < n.

A horizontal curve c : [a, b] → M is a curve which is almost everywhere derivable
and for almost any t ∈ [a, b] we have ċ(t) ∈ Dc(t). The class of horizontal curves will
be denoted by Hor(M,D).

Further we shall use the following notion of non-integrability of the distribution
D.

Definition 3.1 The distribution D is completely non-integrable if M is locally con-
nected by horizontal curves curves c ∈ Hor(M,D).

A sufficient condition for the distribution D to be completely non-integrable is
given by Chow condition (C) [8].

Theorem 3.2 (Chow) Let D be a distribution of dimension m in the manifold M .
Suppose there is a positive integer number k (called the rank of the distribution D)
such that for any x ∈ X there is a topological open ball U(x) ⊂ M with x ∈ U(x)
such that there are smooth vector fields X1, ...,Xm in U(x) with the property:

(C) the vector fields X1, ...,Xm span Dx and these vector fields together with
their iterated brackets of order at most k span the tangent space TyM at every point
y ∈ U(x).

Then the distribution D is completely non-integrable in the sense of definition
3.1.

Definition 3.3 A sub-riemannian (SR) manifold is a triple (M,D, g), where M is
a connected manifold, D is a completely non-integrable distribution on M , and g is
a metric (Euclidean inner-product) on the distribution (or horizontal bundle) D.

3.1 The Carnot-Carathéodory distance

Given a distribution D which satisfies the hypothesis of Chow theorem 3.2, let us
consider a point x ∈ M , its neighbourhood U(x), and the vector fields X1, ...,Xm

satisfying the condition (C).
One can define on U(x) a filtration of bundles as follows. Define first the class

of horizontal vector fields on U :

X 1(U(x),D) = {X ∈ X∞(U) : ∀y ∈ U(x) , X(y) ∈ Dy}
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Next, define inductively for all positive integers j:

X j+1(U(x),D) = X j(U(x),D) + [X 1(U(x),D),X j(U(x),D)]

Here [·, ·] denotes the bracket of vector fields. We obtain therefore a filtration
X j(U(x),D) ⊂ X j+1(U(x),D). Evaluate now this filtration at y ∈ U(x):

V j(y, U(x),D) =
{

X(y) : X ∈ X j(U(x),D)
}

According to Chow theorem there is a positive integer k such that for all y ∈ U(x)
we have

Dy = V 1(y, U(x),D) ⊂ V 2(y, U(x),D) ⊂ ... ⊂ V k(y, U(x),D) = TyM

Consequently, to the sub-riemannian manifold is associated the string of numbers:

ν1(y) = dimV 1(y, U(x),D) < ν2(y) = dim V 2(y, U(x),D) < ... < n = dim M

Generally k, νj(y) may vary from a point to another.
The number k is called the step of the distribution at y.

Definition 3.4 The distribution D is regular if νj(y) are constant on the manifold
M . The sub-riemannian manifold M,D, g) is regular if D is regular and for any
x ∈ M there is a topological ball U(x) ⊂ M with x ∈ U(M) and an orthonormal
(with respect to the metric g) family of smooth vector fields {X1, ...,Xm} in U(x)
which satisfy the condition (C).

The lenght of a horizontal curve is

l(c) =

∫ b

a

(

gc(t)(ċ(t), ċ(t))
)

1

2 dt

The length depends on the metric g.

Definition 3.5 The Carnot-Carathéodory distance (or CC distance) associated to
the sub-riemannian manifold is the distance induced by the length l of horizontal
curves:

d(x, y) = inf {l(c) : c ∈ Hor(M,D) , c(a) = x , c(b) = y}

The Chow theorem ensures the existence of a horizontal path linking any two
sufficiently closed points, therefore the CC distance is locally finite. The distance
depends only on the distribution D and metric g, and not on the choice of vector
fields X1, ...,Xm satisfying the condition (C). The space (M,d) is locally compact
and complete, and the topology induced by the distance d is the same as the topology
of the manifold M . (These important details may be recovered from reading carefully
the constructive proofs of Chow theorem given by Belläıche [1] or Gromov [13].)
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3.2 Normal frames

In the following we stay in a small open neighbourhood of an arbitrary, but fixed
point x0 ∈ M . All results are local in nature (that is they hold for some small
open neighbourhood of an arbitrary, but fixed point of the manifold M). That is
why we shall no longer mention the dependence of various objects on x0, on the
neighbourhood U(x0), or the distribution D.

We shall work further only with regular sub-riemannian manifolds, if not oth-
erwise stated. The topological dimension of M is denoted by n, the step of the
regular sub-riemannian manifold (M,D, g) is denoted by k, the dimension of the
distribution is m, and there are numbers νj , j = 1, ..., k such that for any x ∈ M we
have dim V j(x) = νj. The Carnot-Carathéodory distance is denoted by d.

Definition 3.6 An adapted frame {X1, ...,Xn} is a collection of smooth vector fields
which is obtained by the construction described below.

We start with a collection X1, ...,Xm of vector fields which satisfy the condition
(C). In particular for any point x the vectors X1(x), ...,Xm(x) form a basis for Dx.
We further associate to any word a1....aq with letters in the alphabet 1, ...,m the
multi-bracket [Xa1

, [...,Xaq ]...].
One can add, in the lexicographic order, n−m elements to the set {X1, ...,Xm}

until we get a collection {X1, ...,Xn} such that: for any j = 1, ..., k and for any point
x the set

{

X1(x), ...,Xνj
(x)
}

is a basis for V j(x).

Let {X1, ...,Xn} be an adapted frame. For any j = 1, ..., n the degree deg Xj of
the vector field Xj is defined as the only positive integer p such that for any point
x we have

Xj(x) ∈ V p
x \ V p−1(x)

Further we define normal frames. The name has been used by Vodopyanov [19],
but for a slightly different object. The existence of normal frames in the sense of the
following definition is the hardest technical problem in the classical establishment
of sub-riemannian geometry.

Definition 3.7 An adapted frame {X1, ...,Xn} is a normal frame if the following
two conditions are satisfied:

(a) we have the limit

lim
ε→0+

1

ε
d

(

exp

(

n
∑

1

εdeg XiaiXi

)

(y), y

)

∈ (0,+∞)

uniformly with respect to y in compact sets and a = (a1, ..., an) ∈ W , with
W ⊂ R

n compact neighbourhood of 0 ∈ R
n,
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(b) for any compact set K ⊂ M with diameter (with respect to the distance d)
sufficiently small, and for any i = 1, ..., n there are functions

Pi(·, ·, ·) : UK × UK × K → R

with UK ⊂ R
n a sufficiently small compact neighbourhood of 0 ∈ R

n such that
for any x ∈ K and any a, b ∈ UK we have

exp

(

n
∑

1

aiXi

)

(x) = exp

(

n
∑

1

Pi(a, b, y)Xi

)

◦ exp

(

n
∑

1

biXi

)

(x)

and such that the following limit exists

lim
ε→0+

ε−deg XiPi(ε
deg Xjaj , ε

deg Xkbk, x) ∈ R

and it is uniform with respect to x ∈ K and a, b ∈ UK .

The existence of normal frames is proven in Belläıche [1], starting with theorem
4.15 and ending in the first half of section 7.3 (page 62).

In order to understand normal frames let us look to the case of a Lie group
G endowed with a left invariant distribution. The distribution is completely non-
integrable if it is generated by the left translation of a vector subspace D of the
algebra g = TeG which bracket generates the whole algebra g. Take {X1, ...,Xm}
a collection of m = dim D left invariant independent vector fields and define with
their help an adapted frame, as explained in definition 3.6. Then the adapted frame
{X1, ...,Xn} is in fact normal.

4 Dilatation structures

In this section we review the definition and main properties of a dilatation structure,
according to [2], [3].

4.1 The axioms of a dilatation structure

Further are listed the axioms of a dilatation structure (X, d, δ), starting with axiom
0, which is a preparation for the axioms which follow.

We restrict the generality from [2] to the case which is related to sub-riemannian
geometry, that is we shall consider only dilatations δx

ε with ε ∈ (0,+∞).

A0. The dilatations
δx
ε : U(x) → Vε(x)

are defined for any ε ∈ (0, 1]. The sets U(x), Vε(x) are open neighbourhoods
of x. All dilatations are homeomorphisms (invertible, continuous, with con-
tinuous inverse).

9



We suppose that there is a number 1 < A such that for any x ∈ X we have

B̄d(x,A) ⊂ U(x) .

We suppose that for all ε ∈ (0, 1), we have

Bd(x, ε) ⊂ δx
ε Bd(x,A) ⊂ Vε(x) ⊂ U(x) .

There is a number B ∈ (1, A) such that for any ε ∈ (1,+∞) the associated
dilatation

δx
ε : Wε(x) → Bd(x,B) ,

is injective, invertible on the image. We shall suppose that Wε(x) is a open
neighbourhood of x,

Vε−1(x) ⊂ Wε(x)

and that for all ε ∈ (0, 1) and u ∈ U(x) we have

δx
ε−1 δx

ε u = u .

We have therefore the following string of inclusions, for any ε ∈ (0, 1), and any
x ∈ X:

Bd(x, ε) ⊂ δx
ε Bd(x,A) ⊂ Vε(x) ⊂ Wε−1(x) ⊂ δx

ε Bd(x,B) .

A further technical condition on the sets Vε(x) and Wε(x) will be given just
before the axiom A4. (This condition will be counted as part of axiom A0.)

A1. We have δx
ε x = x for any point x. We also have δx

1 = id for any x ∈ X.

Let us define the topological space

dom δ = {(ε, x, y) ∈ (0,+∞) × X × X : if ε ≤ 1 then y ∈ U(x) ,

else y ∈ Wε(x)}
with the topology inherited from the product topology on (0,+∞) × X × X.
Consider also Cl(dom δ), the closure of dom δ in [0,+∞)×X×X with product
topology. The function δ : dom δ → X defined by δ(ε, x, y) = δx

ε y is continuous.
Moreover, it can be continuously extended to Cl(dom δ) and we have

lim
ε→0

δx
ε y = x .

A2. For any x,∈ K, ε, µ ∈ (0, 1) and u ∈ B̄d(x,A) we have:

δx
ε δx

µu = δx
εµu .

10



A3. For any x there is a function (u, v) 7→ dx(u, v), defined for any u, v in the
closed ball (in distance d) B̄(x,A), such that

lim
ε→0

sup

{

| 1

ε
d(δx

ε u, δx
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}

= 0

uniformly with respect to x in compact set.

Remark that dx may be a degenerated distance: there might exist v,w ∈ U(x)
such that dx(v,w) = 0.

For the following axiom to make sense we impose a technical condition on the
co-domains Vε(x): for any compact set K ⊂ X there are R = R(K) > 0 and
ε0 = ε(K) ∈ (0, 1) such that for all u, v ∈ B̄d(x,R) and all ε ∈ (0, ε0), we have

δx
ε v ∈ Wε−1(δx

ε u) .

With this assumption the following notation makes sense:

∆x
ε (u, v) = δ

δx
ε u

ε−1δ
x
ε v.

The next axiom can now be stated:

A4. We have the limit
lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

Definition 4.1 A triple (X, d, δ) which satisfies A0, A1, A2, A3, but dx is degen-
erate for some x ∈ X, is called degenerate dilatation structure.

If the triple (X, d, δ) satisfies A0, A1, A2, A3, A4 and dx is non-degenerate for
any x ∈ X, then we call it a dilatation structure.

4.2 Metric profile of a dilatation structure

Here we describe the metric profile associated to a dilatation structure. This will
be relevant further for understanding the geometry of the metric tangent spaces of
regular sub-riemannian manifolds.

The following result is a reformulation of theorem 6 [2].

Theorem 4.2 Let (X, d, δ) be a dilatation structure, x ∈ X a point in X, µ > 0 suf-
ficiently small, and let (δ, µ, x) be the distance on B̄dx(x, 1) = {y ∈ X: dx(x, y) ≤ 1}
given by

(δ, µ, x)(u, v) =
1

µ
d(δx

µu, δx
µv)

11



Then the curve µ > 0 7→ P
x(µ) = [B̄dx(x, 1), (δ, µ, x), x] admits an extension by

continuity to a metric profile, by setting P
x(0) = [B̄dx(x, 1), dx, x]. More precisely

we have the following estimate:

dGH

(

[B̄dx(x, 1), (δ, εµ, x), x],

[

B̄ 1

ε
(δx,µ,x)(x, 1),

1

ε
(δx, µ, x), x

])

=

= O(εµ) +
1

ε
O(µ) + O(µ)

uniformly with respect to x in compact set.

4.3 Tangent bundle of a dilatation structure

The following two theorems describe the most important metric and algebraic prop-
erties of a dilatation structure. As presented here these are condensed statements,
available in full length as theorems 7, 8, 10 in [2].

Theorem 4.3 Let (X, d, δ) be a dilatation structure. Then the metric space (X, d)
admits a metric tangent space at x, for any point x ∈ X. More precisely we have
the following limit:

lim
ε→0

1

ε
sup {| d(u, v) − dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

Theorem 4.4 Let (X, d, δ) be a dilatation structure. Then for any x ∈ X the triple
(U(x),Σx, δx, dx) is a normed local conical group. This means:

(a) Σx is a local group operation on U(x), with x as neutral element and invx as
the inverse element function;

(b) the distance dx is left invariant with respect to the group operation from point
(a);

(c) For any ε ∈ Γ, ν(ε) ≤ 1, the dilatation δx
ε is an automorphism with respect to

the group operation from point (a);

(d) the distance dx has the cone property with respect to dilatations: foar any
u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have:

dx(u, v) =
1

µ
dx(δx

µu, δx
µv) .

The conical group (U(x),Σx, δx) can be regarded as the tangent space of (X, d, δ)
at x. Further will be denoted by: TxX = (U(x),Σx, δx).

The following is corollary 4.7 [3].

Theorem 4.5 Let (X, d, δ) be a dilatation structure. Then for any x ∈ X the local
group (U(x),Σx) is locally a simply connected Lie group whose Lie algebra admits a
positive graduation (a Carnot group).
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5 Examples of dilatation structures

In this section we give some examples of dilatation structures, which share some
common features. There are other examples, typically coming from iterated func-
tions systems, which will be presented in another paper.

The first example is known to everybody: take (X, d) = (Rn, dE), with usual
(euclidean) dilatations δx

ε , with:

dE(x, y) = ‖x − y‖ , δx
ε y = x + ε(y − x) .

Dilatations are defined everywhere. There are few things to check: axioms 0,1,2 are
obviously true. For axiom A3, remark that for any ε > 0, x, u, v ∈ X we have:

1

ε
dE(δx

ε u, δx
ε v) = dE(u, v) ,

therefore for any x ∈ X we have dx = dE .
Finally, let us check the axiom A4. For any ε > 0 and x, u, v ∈ X we have

δ
δx
ε u

ε−1δ
x
ε v = x + ε(u − x) +

1

ε
(x + ε(v − x) − x − ε(u − x)) =

= x + ε(u − x) + v − u

therefore this quantity converges to

x + v − u = x + (v − x) − (u − x)

as ε → 0. The axiom A4 is verified.
We continue further with less obvious examples.

5.1 Riemannian manifolds

Take now φ : R
n → R

n a bi-Lipschitz diffeomorphism. Then we can define the
dilatation structure: X = R

n,

dφ(x, y) = ‖φ(x) − φ(y)‖ , δx
ε y = x + ε(y − x) ,

or the equivalent dilatation structure: X = R
n,

dφ(x, y) = ‖x − y‖ , δx
ε y = φ−1 (φ(x) + ε(φ(y) − φ(x))) .

In this example (look at its first version) the distance dφ is not equal to dx. Indeed,
a direct calculation shows that

dx(u, v) = ‖Dφ(x)(v − u)‖ .

The axiom A4 gives the same result as previously.
Because dilatation structures are defined by local requirements, we can eas-

ily define dilatation structures on riemannian manifolds, using particular atlases of
the manifold and the riemannian distance (infimum of length of curves joining two
points). This class of examples covers all dilatation structures used in differential
geometry. The axiom A4 gives an operation of addition of vectors in the tangent
space (compare with Belläıche [1] last section).
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5.2 Snowflakes

The next example is a snowflake variation of the euclidean case: X = R
n and for

any a ∈ (0, 1] take

da(x, y) = ‖x − y‖α , δx
ε y = x + ε

1

a (y − x) .

We leave to the reader to verify the axioms.
More general, if (X, d, δ) is a dilatation structure then (X, da, δ(a)) is also a

dilatation structure, for any a ∈ (0, 1], where

da(x, y) = (d(x, y))a , δ(a)xε = δx

ε
1
a

.

5.3 Nonstandard dilatations in the euclidean space

Take X = R
2 with the euclidean distance. For any z ∈ C of the form z = 1 + iθ we

define dilatations
δεx = εzx .

It is easy to check that (X, δ,+, d) is a conical group, equivalenty that the dilatations

δx
ε y = x + δε(y − x) .

form a dilatation structure with the euclidean distance.
Two such dilatation structures (constructed with the help of complex numbers

1 + iθ and 1 + iθ′) are equivalent if and only if θ = θ′.
There are two other surprising properties of these dilatation structures. The

first is that if θ 6= 0 then there are no non trivial Lipschitz curves in X which are
differentiable almost everywhere. The second property is that any holomorphic and
Lipschitz function from X to X (holomorphic in the usual sense on X = R

2 = C)
is differentiable almost everywhere, but there are Lipschitz functions from X to X

which are not differentiable almost everywhere (suffices to take a C∞ function from
R

2 to R
2 which is not holomorphic).

6 Sub-riemannian dilatation structures

To any normal frame of a regular sub-riemannian manifold we associate a dilatation
structure. (Technically this is a dilatation structure defined only locally, as in the
case of riemannian manifolds.)

Definition 6.1 To any normal frame {X1, ...,Xn} of a regular sub-riemannian
manifold (M,D, g) we associate the dilatation structure (M,d, δ) defined by: d is
the Carnot-Carathéodory distance, and for any point x ∈ M and any ε ∈ (0,+∞)
(sufficiently small if necessary), the dilatation δx

ε is given by:

δx
ε

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp

(

n
∑

i=1

aiε
degXiXi

)

(x)
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We shall prove that (M,d, δ) is indeed a dilatation structure. This allows us to get
the main results concerning the infinitesimal geometry of a regular sub-riemannian
manifold, as particular cases of theorems 4.2, 4.3, 4.4 and 4.5.

We only have to prove axioms A3 and A4 of dilatation structures. We do this
in the next two theorems. Before this let us decribe what we mean by ”sufficiently
closed”.

Convention 6.2 Further we shall say that a property P(x1, x2, x3, ...) holds for
x1, x2, x3, ... sufficiently closed if for any compact, non empty set K ⊂ X, there is a
positive constant C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈
K with d(xi, xj) ≤ C(K).

In the following we prove a result similar to Gromov local approximation theorem
[13], p. 135, or to Belläıche theorem 7.32 [1]. Note however that here we take as a
hypothesis the existence of a normal frame.

Theorem 6.3 Consider X1, ...,Xn a normal frame and the associated dilatations
provided by definition 6.1. Then axiom A3 of dilatation structures is satisfied, that
is the limit

lim
ε→0

1

ε
d (δx

ε u, δx
ε v) = dx(u, v)

exists and it uniform with respect to x,u,v sufficiently closed.

Proof. Let x, u, v ∈ M be sufficiently closed. We write

u = exp

(

n
∑

1

uiXi

)

(x) , v = exp

(

n
∑

1

viXi

)

(x)

we compute, using definition 6.1:

1

ε
d (δx

ε u, δx
ε v) =

1

ε
d

(

δx
ε exp

(

n
∑

1

uiXi

)

(x), δx
ε exp

(

n
∑

1

viXi

)

(x)

)

=

=
1

ε
d

(

exp

(

n
∑

1

εdeg XiuiXi

)

(x), exp

(

n
∑

1

εdeg XiviXi

)

(x)

)

= Aε

Let us denote by uε = exp

(

n
∑

1

εdeg XiuiXi

)

(x). Use the first part of the property

(b), definition 3.7 of a normal system, to write further:

Aε =
1

ε
d

(

uε, exp

(

n
∑

1

Pi(ε
deg Xjvj, ε

deg Xkuk, x)Xi

)

(uε)

)

=

=
1

ε
d

(

uε, exp

(

n
∑

1

εdeg Xi

(

ε−deg Xi Pi(ε
deg Xjvj , ε

deg Xkuk, x)
)

Xi

)

(uε)

)

15



We make a final notation: for any i = 1, ..., n

aε
i = ε−deg Xi Pi(ε

deg Xjvj , ε
deg Xkuk, x)

thus we have:

1

ε
d (δx

ε u, δx
ε v) =

1

ε
d

(

uε, exp

(

n
∑

1

εdeg Xiaε
iXi

)

(uε)

)

By the second part of property (b), definition 3.7, the vector aε ∈ R
n converges to

a finite value a0 ∈ R
n, as ε → 0, uniformly with respect to x, u, v in compact set. In

the same time uε converges to x, as ε → 0. The proof ends by using property (a),
definition 3.7. �

Theorem 6.4 Consider X1, ...,Xn a normal frame and the associated dilatations
provided by definition 6.1. Then axiom A4 of dilatation structures is satisfied: as ε

tends to 0 the quantity
∆x

ε (u, v) = δ
δx
ε u

ε−1 ◦ δx
ε (v)

converges, uniformly with respect to x, u, v sufficiently closed.

Proof. We shall use the notations from definition 3.6, 3.7, 6.1.
Let x, u, v ∈ M be sufficiently closed. We write

u = exp

(

n
∑

1

uiXi

)

(x) , v = exp

(

n
∑

1

viXi

)

(x)

We compute now ∆x
ε(u, v):

∆x
ε (u, v) = δ

exp(
Pn

1
εdeg XiuiXi)(x)

ε−1 exp

(

n
∑

1

εdeg XiviXi

)

(x)

Let us denote by uε = δx
ε u. Thus we have

∆x
ε (u, v) = δuε

ε−1 exp

(

n
∑

1

εdeg XiviXi

)

(x)

We use the first part of the property (b), definition 3.7, in order to write

exp

(

n
∑

1

εdeg XiviXi

)

(x) = exp

(

n
∑

1

Pi(ε
deg Xjvj , ε

deg Xkuk, x)Xi

)

(uε)

We finish the computation:

∆x
ε (u, v) = exp

(

n
∑

1

ε− deg Xi Pi(ε
deg Xjvj , ε

deg Xkuk, x)Xi

)

(uε)

As ε goes to 0 the point uε converges to x uniformly with respect to x, u sufficiently
closed (as a corollary of the previous theorem, for example). The proof therefore
ends by invoking the second part of the property (b), definition 3.7. �
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