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Résumé

Le but de ce travail théorique est de présenter une vue détaillée de la spectroscopie des
nanotubes de nitrure de bore et du graphène. Ces deux matériaux ont récemment attiré
considerablement l’attention dans le domaine des nanosciences et leur caractérisation par
spectroscopie est d’une grande importance.

Nous présentons les différentes techniques de spectroscopie qui sont frequemment utilisées
pour les nanotubes de BN. Nous résumons les données expérimentales et fournissons des calculs
détaillés issus de la spectroscopie Raman, de la spectroscopie par absorption optique, de la
luminescence et de la spectroscopie par perte d’energie (EELS). Le couplage de toutes ces
méthodes permet la caractérisation de la structure électronique et des propriétés vibrationelles
des nanotubes de BN. Les spectres optiques sont dominés par un exciton de forte énergie de
liaison dont le calcul nécessite l’utilisation des techniques du problème à N-corps. Il en résulte
que le gap optique des nanotubes de BN d’un diamètre supérieur à 7 Å est indépendant du
diamètre et de la chiralité (contrairement aux nanotubes de carbone).

En ce qui concerne le graphène et le graphite nous présentons des calculs de la structure de
bandes électroniques et des relations de dispersion des phonons. Il est démontré dans les deux
cas que l’inclusion des effet de correlation electron-electron (au niveau de l’approximation GW)
implique des modifications importantes par rapport aux calculs classiques DFT. On constate
que la vitesse de Fermi du graphène (pente du croisement linéaire des bandes π au point de
Dirac) est renormalisé d’environ 17%. La pente de la bande du phonon optique la plus haute
autour du point de haute symmetrie K est augmentée d’un facteur deux. Ces résultats sont
importants pour la description des récentes mesures ARPES et pour la compréhension de la
dispersion des pics dans les spectres Raman en fonction de l’energie du laser.
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Abstract

The aim of this work is to give theoretical insight into the spectroscopy of Boron Nitride
nanotubes and of graphene. These two materials have recently received considerable atten-
tion in the field of nanoscience. Their characterization by spectroscopy is therefore of great
importance.

We review the different spectroscopic techniques that are currently used for BN-nanotubes.
We summarize the available experimental data and provide detailed calculations on Raman
spectroscopy, optical absorption spectroscopy, luminescence spectroscopy, and electron-energy
loss spectroscopy. The combination of all those methods allows for a fairly complete char-
acterization of the electronic structure and of the vibrational properties of BN tubes. The
optical spectra are dominated by a strongly bound exciton whose calculation requires the use
of many-body perturbation theory. The resulting optical gap of BN-tubes with diameter larger
than 7 Å is independent of tube diameter and chirality (in contrast to the case of carbon
nanotubes).

For graphene and graphite, we present calculations of the electronic band-structure and of
phonon dispersion relations. It turns out that in both cases, the proper inclusion of electron-
electron correlation (on the level of the GW-approximation) leads to important modifications
with respect to standard DFT calculations. The Fermi velocity in graphene (slope of the
linear crossing of the π-bands at the Dirac point) is renormalized by 17%. The slope of the
highest-optical phonon branch around the high-symmetry point K is increased by a factor of
two. These findings are important to describe recent ARPES measurements and to understand
the dispersion of the dominant Raman peaks as a function of the laser light energy.
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Preface

This manuscript describes my scientific work on the theoretical spectroscopy of nanostruc-
tures. The work was performed during my time as a Postdoc in San Sebastián (march 2002 -
september 2004) and my time as a CNRS researcher at the IEMN (since october 2004).

My postdoc position was financed through the European network COMELCAN (“Coupled
mechanical and electronic properties of carbon nanotubes bases systems”). Since this was
mainly a network of experimental teams, I worked a lot in collaboration with experimentalists.
In particular, I worked on the prediction and interpretation of measured spectra of Boron Nitride
nanotubes. The 1st chapter, “Optical and vibrational properties of boron nitride nanotubes”,
is a slightly modified reprint of a book chapter that I have written together with A. Rubio for
the book B-C-N Nanotubes and Related Nanostructures, edited by Y.K. Yap, which will appear
in Springer (2009). Besides a general overview about the spectroscopy of BN tubes, it is in
particular a summary of my own work on the theoretical aspects of the different spectroscopical
methods. I have included a reprint of my two key publications in this field ([19] and [21]).

In Lille, I started a project on graphene. This was motivated by the experimental produc-
tion of single graphene-layers1 and by my earlier experience on the electronic and vibrational
spectra of hexagonal systems. Graphene has a very simple structure (just two atoms in the
periodic unit cell), but due to the linear crossing of two bands at the Fermi surface, it displays
very interesting physical properties. Even seemingly simple properties such as the electronic
band dispersion and the phonon dispersion continue to present surprises in experiment and
theory. The interpretation of Raman spectra of single and double-layer graphene flakes lead
us to conclude that there was a deviation from previously measured and calculated dispersion
relations for the highest optical branch around the high symmetry point K. This deviation
and its explanation is the subject of the second chapter entitled “Excitations in Graphene and
Graphite”.

So far, I have been using ab-initio methods for the calculation of electronic properties of
materials. Even with the tremendous increase in computer power during the last years, ab-initio
methods are reaching their limit if one tries to describe “large” nanostructures, i.e., structures
with many atoms in the unit-cell. One of my current activities that extends into the future
lies in the development of a computational code that combines tight-binding methods with
many-body perturbation theory. This tool should enable the routine calculation of systems
with several hundres of atoms and yet include electron-electron and electron-hole interaction
whenever those are important. This activity is briefly described in the outlook.

In general, references are printed as foot notes. References in square brackets refer to my
own publication list (Appendix A).

1K.S. Novoselov et al., Science 306, 666 (2004)
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Chapter 1

Optical and Vibrational Properties of
Boron Nitride Nanotubes

1.1 Introduction

Boron nitride (BN) is isoelectronic to carbon and displays, among others, a graphite-like
hexagonal phase (h-BN). The elastic constants are very similar (although smaller), but the
polar nature of the BN bond leads to significant changes in the electronic structure of h-BN
as compared to graphite. While graphite is a semimetal (zero bandgap in the single sheet),
h-BN has a large bandgap (above 6 eV). Furthermore, its high thermal stability and relative
chemical inertness distinguishes it from its carbon counterpart.

Briefly after the discovery of carbon nanotubes and based on the similarities among graphite
and other sp2-like bonded materials, the existence of Boron-Nitride nanotubes1 2 was predicted.
Synthesis of these nanotubes was achieved shortly afterwards3. In contrast to C-nanotubes
which can be either semiconducting or metallic, depending on the chirality of the tube, BN-
nanotubes are always semiconducting with a large band gap that is nearly independent of the
tube diameter, chirality and whether the nanotube is single-walled, multi-walled, or packed
in bundles1 2. A structural difference between BN and C tubes is that for tubes with small
diameter, the BN system buckles with the B atoms moving inward and the N atoms outward 2.
This results in a dipolar double cylinder shell structure. The uniform electronic properties and
the dipolar barrier suggest that BN nanotubes may have significant advantages for applications
in electronic and mechanical devices. Furthermore, the bottom of the conduction band is a
nearly free electron like-state (NFE). This state remains the bottom of the conduction band
even in the multiwall case and, in the case of n-type doping, will play an important role for
potential applications in field emission devices and molecular transport.

Several spectroscopic methods are commonly used for the identification and characteriza-
tion of BN nanotube samples. High-resolution transmission electron (HRTEM) allows for a
quick view at the scene with almost atomic resolution. Scanning tunneling microscopy and
spectroscopy (STM/STS) allow to get atomic resolution and to map the electronic structure

1A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081(R) (1994).
2X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett 28, 335 (1994).
3N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269,

966 (1995).
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to the underlying nanotube geometry. In optical spectroscopy, using laser light, the spatial
resolution is lost. However, alternative information about the band structure and the vibra-
tional properties of the constituents can be gained. Optical absorption spectroscopy probes
the electronic band structure by direct excitation of an electron from the valence to the con-
duction band. Since BN tubes have a wide bandgap, either multiphoton processes or UV
light are necessary for this process to occur in BN nanotubes. The detailed knowledge of
the optical properties of BN tubes is indispensable for their characterization and may help to
guide their use as nanoelectronic devices: e.g, BN nanotubes have been used to build a field
effect transistor4 and the observed high yield of ultraviolet luminescence5 of bulk hexagonal
BN suggest the use of BN nanotubes as ultraviolet light sources. Therefore, it is important
to know about possible excitonic states whose dominant influence has been shown for the
opto-electronic properties of carbon nanotubes.

At lower energy, infrared (IR) absorption probes the direct excitation of phonons. Raman
spectroscopy probes the excitation of phonons by measuring the frequency shift in elastically
scattered laser light. In contrast to carbon nanotubes, in BN tubes the Raman scattering
is non-resonant due to the large bandgap of the tubes. The resulting spectra are, therefore,
weaker in intensity and must be carefully separated from a possible overlap by resonant Raman
scattering from contaminants. On the other hand, the efficiency of IR-absorption is enhanced
by the polarity of the material and gives rise to a much more pronounced IR spectrum than
in the case of carbon tubes where the IR spectra have very little structure and can hardly
be distinguished from the IR spectrum of graphite For the interpretation of such spectra, an
accurate knowledge of the phonon frequencies as a function of tube diameter and chirality
together with the corresponding photoabsorption cross-section is indispensable. Therefore, we
present in detail the calculations of phonons in BN nanotubes and their symmetry analysis. For
zigzag and chiral nanotubes, the set of infrared-active modes is a subset of the Raman-active
modes. In particular, the radial breathing mode is not only Raman but also infrared active.
However, for armchair tubes, the sets of infrared- and Raman-active modes are disjoint.

This chapter is organized as follows. First we provide a detailed description of the absorp-
tion spectra of bulk hexagonal BN and the tubes, making a connection between the two and
highlighting the relevance of many-body correlations (quasiparticle and excitonic corrections).
Then we will address some important issues related to the high yield luminescence in BN sam-
ples and how it can be externally controlled and modified by the presence of intrinsic defects
in the samples. Furthermore we will discuss the excitation of plasmons in electron-energy loss
spectroscopy. The second part of the chapter will be devoted to the phonons and the infrared
and Raman spectroscopy of BN tubes.

1.2 Optical absorption spectra of BN nanotubes

Due to the large band gap of hBN (> 6 eV), optical absorption only starts in the ultraviolet
regime. Thus, optical absorption spectra of BN tubes are difficult to measure and may not
be the method of choice for the characterization of tubes. However, their understanding on

4M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache,
Appl. Phys. Lett. 82, 4131 (2003).

5K. Watanabe, T. Taniguchi and H. Kanda, Nature Materials 3, 404 (2004).
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a theoretical level is of utmost importance as a first step towards the understanding of lumi-
nescence in BN tubes. Furthermore, we will see that the absorption spectra are conceptually
interesting because they are dominated by a strongly bound exciton.

1.2.1 Absorption spectra in the independent-particle picture

The absorption cross section of an isolated nanotube is given by the imaginary part of its
polarizability (per unit length). To first order, absorption of a photon of energy ~ω is commonly
explained through the vertical excitation of an electron from a state |nv, k > with energy Ev

in the valence-band to a conduction-band state |nc, k > of energy Ec:

Im[α(ω)] ∝
∫

dk
∑

nvnc

|〈nv, k|D|nc, k〉|2 δ(Ec − Ev − ~ω). (1.1)

The matrix element of the dipole operatorD “selects” only certain “allowed” transitions. Since
the photon carries vanishing momentum, both valence and conduction band states must have
the same wave vector k. Eq. (1.1) corresponds to the so-called random-phase approximation
(RPA). It is also called the “one-electron” or “independent-particle” picture of absorption.
The latter name stems from the assumption that the Coulomb potential in which the active
electron is moving and which is caused by the charge density of all other electrons is static
and independent of the state of the active electron. While this assumption is reasonable for
many materials, we will see below that it has serious deficiencies for hBN and BN nanotubes.
Nevertheless, it is instructive to start the exploration of the absorption spectra of BN nanotubes
in the independent-particle picture.

The electronic structure of BN nanotubes can be constructed from the electronic structure
of the single sheet via the zone-folding procedure. Therefore, we present in Fig. 1.1 the band-
structure of an hBN sheet and of a (6,6) armchair BN-nanotube. The band-structure of the
sheet is characterized by the large direct gap at the K-point.6 According to the zone-folding
procedure, the band-structure of the tube can be obtained by cutting the band-dispersion of
the sheet along certain parallel lines in the reciprocal space (vertical black lines in the grey-
shaded area of Fig. 1.1 c). The distance of the lines is determined by the quantization of the
wave-vector component K⊥ along the tube circumference. The different lines correspond to
different angular momenta (quantum number m) along the axis of the tube. Comparing the
band-structure of the sheet to that of the tube, we see that the highest valence band and the
lowest conduction band of the tube can be directly obtained from the π and π∗ bands of the
sheet along the line M → K and beyond (see red line in panel c). The wave-functions of
the π and π∗ bands are predominantly composed of atomic pz orbitals (i.e., p orbitals with an
orientation perpendicular to the plane). We show in Fig. 1.2 the corresponding wave-functions
for the sheet at the point K. The π-band wavefunction is predominantly located at the
nitrogen atoms and the π∗-band wavefunction is mostly located at the boron atoms. This is
due to the higher electronegativity of nitrogen. It is the strong difference in electronegativity
between B and N that leads to the large band-gap. (In a graphene sheet, where both atoms

6Much can be written about the exact value of the gap. For the dispersion in Fig. 1.1, we have used density-
functional theory (DFT) and the local-density approximation (LDA) for the exchange-correlation functional.
This yields a gap of 4.5 eV. The exact value of the band-gap is discussed further in the text.
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Figure 1.1: Band-structure (calculated with DFT-LDA) for the single sheet of hBN (a) and
for the (6,6) BN nanotube (b); c) demonstrates how the band-structure of the tube can be
obtained by cutting the band-structure of the sheet along certain lines (zone-folding): The
left panel shows a piece of a hBN sheet that is roled up along the vector K⊥, thus forming
an armchair tube. The right panel shows the corresponding reciprocal space with quantized
values of the momentum in circumferential direction.

in the unit-cell are equivalent, The π and π∗ bands are degenerate at K, leading to the linear
crossing of the two bands.)

In order to understand how an absorption spectrum is constructed via Eq. (1.1), we look
in the following at the RPA-spectrum of a single sheet of hBN and of the (6,6) nanotube.
Fig. 1.3 shows the RPA-absorption spectrum of the sheet. In the low energy regime (< 10
eV) and for for light-polarization parallel to the sheet (panel a), the dipole-matrix element in
Eq. (1.1) only selects transition from the π to the π∗ band (green arrows in Fig. 1.1). The
onset of the spectrum is at 4.5 eV which corresponds to the direct gap of the sheet at K.
The peak at 5.7 eV stems from the M -point where the π and π∗ bands display saddle-points
and the joint density of states has a maximum. If the light is polarized perpendicularly to the
sheet (Fig. 1.3 b), the π-π∗ transitions are dipole-forbidden. Optical absorption is due to σ-π∗

and π-σ∗ transitions and the onset of the RPA-spectrum is only at about 10 eV. Fig. 1.3 also
demonstrates the effect of depolarization. The dashed line shows the spectrum calculated with
Eq. (1.1). The external field polarizes the charge distribution of the sheet, creating a layer of
dipoles. This dipole layer, in turn, leads to an induced electric field that is directed opposite
to the external field. The absorption spectrum must therefore be calculated self-consistently.
(Mathematically, this corresponds to taking into account off-diagonal elements of the dielectric
tensor in reciprocal space). The resulting spectrum (solid line in Fig. 1.3) is strongly reduced
in oscillator strength in the energy range below 15 eV. For the parallel polarization (Fig. 1.3
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a) b)

Figure 1.2: Wave-functions in the single BN-sheet of a) the π (N-based) and b) the π∗

(B-based) band at K. Green/blue spheres denote Boron/Nitrogen atoms
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Figure 1.3: RPA-absorption spectrum of a single BN sheet with (solid lines) and without
(dashed lines) depolarization effects: a) light-polarization parallel to the plane, b) polarization
perpendicular to the plane, c) averaged spectrum.

a), the depolarization effects have only a minor influence. The direction-averaged spectra
(Fig. 1.3 c) is dominated by the contribution from the parallel polarization.

In Fig. 1.4 a) we present the RPA spectra of bulk hBN, of the single-sheet of hBN and
of different BN nanotubes with diameters ranging from 2.8 Å for the purely hypothetical
BN(2,2) tube to 9.7 Å for the BN(7,7) tube which is at the lower border of the range of
experimentally produced tubes. The light polarization is set parallel to the planes or tube-
axis, respectively, because, as discussed above, depolarization effects strongly suppress the
absorption in the perpendicular direction. For the bulk and for the single-sheet the spectra are
almost indistinguishable. This is due to the relatively weak interaction between neighboring
sheets in the bulk phase.

Since the bands of the tubes can be constructed from the sheet via the zone-folding
procedure, the RPA spectra of the tubes display transitions at the same energies as in the
sheet. With increasing diameter, the shape of the tube spectra converges rapidly towards the
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Figure 1.4: RPA-absorption spectra of (a) bulk hexagonal BN, (b) a single sheet of hexoganl
BN, (c) six different BN tubes with increasing diameter d. Solid lines are calculated with a
Lorentzian broadening of 0.025 eV, dashed lines with a broadening of 0.1 eV.

sheet spectrum, in particular if plotted with a Lorentzian broadening of 0.1 eV (corresponding
roughly to usual experimental broadening). A calculation with a fine broadening of 0.025 eV
(and a correspondingly fine sampling with 200 k-points in the first Brillouin zone), reveals
additional fine-structure below 5.5 eV. This structure is due to the van-Hove singularities in
the one-dimensional density of states. For tubes with larger radii, the density of the fine-
structure peaks increases and the RPA spectrum approaches that of the 2D sheet. The onset
of absorption is constantly at 4.7±0.1 eV for all tubes except for the (2,2) and the (6,0) tube
(and other small diameter zigzag tubes) where the gap is lowered due to curvature effects1.
A very detailed discussion of the RPA absorption spectra can be found in Ref. 7. We would
like to emphasize however, that for BN materials, the RPA-absorption spectra are of purely
academic interest. We will discuss below that correlation effects strongly modify the shape of
the spectra (i.e., the position and strength of the main peak-structure and the onset of the
continuum).

7G. Y. Guo and J. C. Lin, Phys. Rev. B 71, 165402 (2005).
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1.2.2 Influence of correlation effects on the absorption spectra

What is the practical meaning of “correlation effects” in the context of optical absorption?
A photon is absorbed by exciting an electron from the valence band to the conduction band.
For a quantitative prediction of the spectrum, we thus need to know the exact size of the
band-gap. Furthermore, we have to take into account that the excited electron may interact
with the hole that is left behind in the valence band. These studies are done using many-body
perturbation theory with a self-energy formalism in which electron-correlations are treated on
the level of the GW approximation while the electron-hole attraction is dealt with by means
of a static Bethe-Salpeter equation.

The band gap problem

The band-gap is defined as the energy difference between the lowest unoccupied molecular
orbital (LUMO) and the highest occupied molecular orbital (HOMO). The energy of the HOMO
is the energy that it would take to extract an electron from that orbital. Experimentally, the
HOMO energy can be directly measured by photoemission spectroscopy. The energy of the
LUMO is the energy that one gains (or looses) by adding an electron to the neutral cluster.
Experimentally, the LUMO energy can be measured by inverse photo-emission (an electron-
beam of a specific energy is directed at a surface and the energy of the emitted photons is
measured). For strongly insulating materials both photo-emission and inverse photo-emission
are very difficult to perform (the accuracy in direct photoemission, reaching meV resolution,
is at present much larger than for inverse photoemission). Hence, for bulk hBN (and equally
for the single-sheet and for the tubes), no direct experimental data for the band-gap exists
and we have to rely on theoretical predictions.

The situation for theorists is similarly difficult. We discuss here briefly the performance
of the two most frequently used methods for band-structure calculations: the Hartree-Fock
approximation (HFA) and density functional theory (DFT). Let’s assume that in both approxi-
mations, the HOMO energy is described properly. The problem lies then in the LUMO energy.
If an additional electron is attached to the material, it interacts with the other electrons
through the dielectrically screened electron-electron repulsion which leads to a polarization of
the environment. This is a correlation effect and lowers the energy of the LUMO with respect
to an imaginary system where correlation effects are absent. In the HFA, correlation effects
are not included (the electron density is the static charge density of the neutral ground-state).
Therefore, in general, the HFA severely overestimates the band-gap. DFT in the local-density
approximation (LDA) or in the generalized-gradient approximation (GGA) tends to overesti-
mate the screening of additional electrons. This results, in general, in an underestimation of
the band-gap. In this way, we obtain for the single sheet of hBN a gap of 4.5 eV in LDA,
4.6 eV in GGA and 14 eV within the HFA! The real band-gap must lie within these limiting
values. Using more sophisticated exchange-correlation functionals in DFT, one can get closer
to the exact band-gap. With the B3LYP hybrid functional8, we obtain 6.4 eV. Baumeier et
al.9 report a value of 6.3 eV, using a self-interaction corrected DFT approach. A reliable
calculation of the gap can only be achieved taking electron-electron correlation explicitly into

8A.D. Becke, J. Chem. Phys. 98, 5648 (1993).
9B. Baumeier, P. Krüger, and J. Pollmann, Phys. Rev. B 76, 085407 (2007).
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account. This is achieved in the so-called GW-approximation which will be briefly discussed
below. In the GW approximation, the band-gap of the single hBN sheet is 8.1 eV [21].

The only exact way to calculate the band-gap of a material consists in the use of the
methods of many-body perturbation theory. Starting from either HFA or DFT wave-functions
and energies, the first step is the calculation of the inverse dielectric function ǫ−1 on the level
of the random-phase approximation. The dielectric function describes how the bare Coulomb-
potential Vc between two electrons is screened by the other charges in the material. Within
the GW-approximation10 11 12 the quasi-particle energies (single-particle excitation energies),
Enk, are calculated by solving the quasi-particle equation.

[

−∇2

2
+ Vext + VHartree + Σ(Enk)

]

ψnk = Enkψnk. (1.2)

Atomic units are used all through this chapter unless otherwise stated. The self-energy Σ =
iGW is non-local and energy-dependent. It is approximated as the product of the one-particle
Green’s function G and the dynamically screened Coulomb interaction W = ǫ−1Vc. The
resulting energy levels are “true” electron-removal and electron-addition energies, i.e., they
include the effect of dynamic screening upon removing an electron from the valence band or
adding one to the conduction band, respectively.
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Figure 1.5: Band-structure of bulk hBN: LDA (dotted line), GW-approximation (circles and
dashed lines)

In Fig. 1.5, we show the effect of the GW-approximation on the band-structure of bulk
hBN13 14. Note that with respect to the band-structure of the single-sheet (see Fig. 1.1), in
bulk hBN, the π and π∗ bands are split into two bands each. (This is a consequence of the
AA’-stacking of the layers in the bulk.) The minimum direct gap of 4.47 eV in LDA is shifted
to 6.26 eV in the GW approximation. The large shift points to a strong electron-electron
interaction which can be associated with the layered structure of hBN: electrons are mostly

10M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).
11W.G. Aulbur, L. Jönsson, and J. W. Wilkins, Quasiparticle calculations in solids in Solid State Physics,

edited by H. Ehrenreich and F. Spaepen (Academic, New York, 2000), Vol. 54, p. 1.
12G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
13X. Blase, A. Rubio, S.G. Louie and M. L. Cohen, Phys. Rev. B 51, 6868 (1995).
14B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).
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confined to 2-dimensional sheets, hopping between the layers is weak. For the single-sheet,
the gap opening is even stronger: from 4.5 eV in LDA to 8.1 in the GW-approximation! This
huge GW-shift is due to (i) the fact that electrons are strictly confined to a two-dimensional
sheet and (ii) due to the much weaker screening in the isolated sheet as compared to the bulk
crystal.

Excitonic effects

In addition to electron-electron (e-e) interaction, the electron-hole (e-h) interaction can play
an important role for the quantitative description of absorption spectra. The excited electron
in the conduction band and the hole left behind in the valence band interact through an
attractive Coulomb potential. As in the case of e-e interaction, the attractive e-h potential
is screened through the inverse dielectric function. In many large band-gap materials, the e-h
attraction leads to the formation of bound excitons, i.e. discrete states in the band-gap. On
a qualitative level, bound excitons can be compared with bound states of the hydrogen atom.
In analogy to the hydrogen atom, the Hamiltonian of the exciton can be written as

Hexc(r) =
p2

2µ∗
− e2

ǫr
, (1.3)

where r is the electron-hole distance and µ∗ is the reduced effective mass which is the average
of the electron and hole effective masses: µ∗ = (m∗

em
∗
h)/(m

∗
e + m∗

h). As in the case of
hydrogen, the eigenvalues form a Rydberg series of bound states with energies

Eexc
n = Ec −

1

2n2

µ∗e4

2ǫ2~2
, (1.4)

where Ec is the minimum of the conduction band. The “Bohr radius” of the lowest bound
exciton is

aexc
0 =

~
2ǫ

µ∗e2
. (1.5)

For typical semiconductors, the dielectric constant is of the order of 10 and the reduced effective
mass is smaller than half the free electron mass. This leads to typical excitonic binding energies
of several tens of meV and to Bohr radii that are large compared to the inter-atomic distance
in the lattice. In the excitonic state, the electron is on the average quite far from the hole
from where it was excited. This justifies the use of the average dielectric constant in Eq. (1.3).
If the dielectric constant is small (ǫ → 1), i.e., if dielectric screening is weak, the excitonic
radius shrinks to the order of the lattice constant and the binding energy can attain several
hundred meV. In this case, however, the use of the simple excitonic Hamiltonian (Eq. (1.3))
is no longer justified.

A precise calculation of the exciton energies has to take into account the band structure
of the material (going beyond the simple effective mass approach of Eq. (1.3)). Furthermore,
the non-locality of the screening has to be taken into account. This is achieved by the Bethe-
Salpeter equation15 12 16:

(Eck − Evk)A
S
vck + Σk′v′c′ 〈vck|Keh|v′c′k′〉AS

v′c′k′ = ΩSAS
vck. (1.6)

15G. Strinati, Phys. Rev. B 29, 5718 (1984).
16M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998).
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Here, the excitons are expressed in the basis of electron-hole pairs (i.e., vertical excitations
at a given k-point from a state in the valence band with quasi-particle energy Evk to a
conduction-band state with energy Eck. The AS

vck are the expansion coefficients of the excitons
in the electron-hole basis and the ΩS are the eigenenergies (corresponding to the possible
excitation energies of the system). If the interaction kernel Keh is absent, Eq. (1.6) simply
yields ΩS = (Eck−Evk), i.e., the excitations of the system correspond to independent electron-
hole pairs. The interaction kernel Keh “mixes” different electron transitions from valence band
states v, v′ to conduction band states c, c′ leading to modified transition energies Ωs. It is
defined by

〈

vck|Keh|v′c′k′
〉

= −
∫

dr

∫

dr′φ∗
ck(r)φc′k′(r)

∫

dr1ǫ
−1(r, r1)

1

|r
1
− r′|φvk(r

′)φ∗
v′k′(r′)

+

∫

dr

∫

dr′φ∗
ck(r)φvk(r)

2

|r − r′|φc′k′(r′)φ∗
v′k′(r′). (1.7)

The first term on the RHS of Eq. (1.7) represents the screened Coulomb interaction between
electrons and holes. The first second is the (unscreened) exchange interaction. The overall
effect of the interaction kernel on the optical absorption spectrum is a redistribution of oscillator
strength as well as the appearance of bound excitons within the band-gap.

1.2.3 Absorption spectrum of bulk hBN

Before we discuss the influence of e-e and e-h interaction onto the spectra of the tubes, we
turn our attention to the absorption spectrum of bulk hBN for two reasons: (i) bulk hBN is
the precursor material for the fabrication of BN nanotubes and spectroscopic methods should
thus be able to distinguish tubes and bulk; (ii) for bulk hBN, sufficient experimental data
exists to judge the validity of the combined approach of GW for the e-e interaction and the
Bethe-Salpeter Equation for the e-h correlation (in the following abbreviated by GW+BS).

Results for the energy-dependent dielectric function of hBN (light polarization parallel to
the layers) are shown in Fig. 1.6 a) and compared with the experimental data from electron-
energy loss spectroscopy (EELS)17 in panel b). The dash-dotted line shows the RPA absorption
spectrum which is in agreement with earlier RPA calculations18 7 [15]. The broad peak with a
maximum at 5.6 eV is entirely due to the continuum of inter-band transitions between the π
and π∗ bands (see Fig. 1.5). The calculated GW+BS absorption spectrum displays a double
peak structure with the main peak at 5.7 eV and a second peak at 6.4 eV. The shape of
the spectrum is entirely different from the RPA spectrum: the first peak is due to a strongly
bound exciton 14, and the second peak contains contributions from higher excitons and from
the onset of the continuum of inter-band transitions (see below). The similarity between
the RPA and GW+BS spectra stems exclusively from the strong broadening employed in the
calculation. The main peaks in the two spectra are at about the same position because of
an almost-cancellation between the bandgap widening due to the GW-approximation and the
red-shift of oscillator strength due to excitonic effects. Comparison with Fig. 1.6 b) shows
that the shape of the GW+BS spectrum is in much better agreement with experiment than

17C. Tarrio and S.E. Schnatterly, Phys. Rev. B 40, 7852 (1989).
18Y. N. Xu and W. Y. Ching, Phys. Rev. B 44, 7787 (1991)
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Figure 1.6: a) Real (ǫ1) and imaginary (ǫ2) parts of the dielectric function of hBN calculated
in the GW+BSE approach and in RPA. b) Experimental data from EELS 17, where ǫ1 and
ǫ2 are calculated from the loss function via a Kramers-Kronig transform. The calculations
include a Lorentzian broadening of 0.2 eV (full-width at half-maximum) in order to mimick
the estimated experimental broadening. The light-polarization is parallel to the BN layers.

the RPA spectrum. This underlines the importance of excitonic effects in hBN. The influence
of excitonic effects becomes even more pronounced when we compare the real part of ǫ. Only
the GW+BS calculation can reproduce qualitatively the shape of the experimental ǫ1.

The excitonic nature of the absorption spectrum becomes clear if plotted with a very small
broadening as in Fig. 1.7. The dominant first peak at 5.7 eV in the theoretical absorption
spectrum is clearly a discrete bound exciton. Its huge binding energy of 0.7 eV was explained
by Arnaud et al.14 as due to the fact that the excitonic wave-function is mostly confined within
one layer. In the pure 2D limit, the binding energy of a hydrogenic system is increased by a
factor of four compared to the 3D case19. Even if the exciton confinement to one layer in bulk
hBN is not perfect, it leads to a considerable enhancement of the exciton binding energy with
respect to non-layered materials. In the inset c) of Fig. 1.7, we show an image of the excitonic
wave-function [33]. Since only the relative position between electron and hole can be shown,
we choose the position of the hole at a small distance above one of the nitrogen atoms. (The
hole is localized there with a high likelihood, because the HOMO stems from a superposition
of nitrogen pz orbitals, as shown in Fig. 1.2). The wave-function plot thus represents the
probability density to find the excited electron if the hole is at a given position. Clearly, the
probability is enhanced around the boron atoms (the LUMO being a superposition of boron
pz orbitals). Furthermore, the probability density is confined to within a few atomic distances.
According to the hydrogenic exciton model (Eqs. (1.4) and (1.5)), the strong confinement of
the exciton is linked to a strong binding energy.

Not all excited states that are obtained with the Bethe-Salpeter equation are optically
active. We indicate in Fig. 1.7 that about 90 meV below the dominant excitonic peak, there
is a “dark” bound exciton. This exciton cannot be directly excited through absorption of a
photon, but it may play a role in luminescence. Both the dark and the bright exciton are

19M. Shinada and S. Sugano, J. Phys. Soc. Jpn. 21, 1936 (1966); T. G. Pedersen, Phys. Rev. B 67,
073401 (2003).
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Figure 1.7: Optical absorption spectrum of hBN with a broadening of 0.001 eV (black solid line)
and with an estimated experimental broadening of 0.1 eV calculated with Yambo (black dashed
line) and with VASP (red solid line). Inset: Two dimensional projections of the probability
density |Ψλ(rh, re)|2 of the degenerate exciton states with a) λ = 3 and b) λ = 4. The hole
is located 0.4 a.u. above the nitrogen atom in the center (black circle). Summing the two
densities (panel c) restores the three-fold rotation symmetry.

doubly degenerate states. The electron densities of each of the two states that contribute to
the bright exciton are not rotationally symmetric Fig. 1.7 a) and b), but adding the densities
of the two states, we recover the expected three-fold rotation symmetry Fig. 1.7 c). If the
symmetry of the perfect crystal is broken, the degeneracy of the excitons is lifted and the dark
exciton acquires some oscillator strength [33].

Fig. 1.7 shows calculations with two different GW+BS codes. Small differences in the
absolute position of the spectra (of the order of 0.1 eV) stem probably from the different pseu-
dopotentials which plays a role for the GW-correction to the band gap. The code Yambo20 that
was used for the black curve in Fig. 1.7 uses norm-conserving pseudopotentials, while VASP

21

(red curve in Fig. 1.7) uses the projector-augmented-wave (PAW) method22. Both spectra
have in common that they are about 0.3 eV too low in comparison with the various experi-
mental data17 23. One reason for this (small) mismatch may be that the GW-approximation
is only the first-order correction to the band gap. Higher-order corrections may enlarge the
theoretical band-gap even further and thus blue-shift the spectrum. Another explanation is
the effect of phonon-renormalization on the absorption spectrum. Theoretical calculations are
usually performed at zero temperature. Only recently, the first ab-initio calculations of exci-

20A. Marini et al., the Yambo project, http://www.yambo-code.org/.
21G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996); M. Shishkin and G. Kresse, Phys. Rev.

B 74, 035101 (2006).
22P.E Blöchl, Phys. Rev. B 50, 17953 (1994).
23J. S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, and E. Rosencher, Phys.

Rev. Lett. 94, 037405 (2005).
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tonic effects including the exciton-phonon coupling were achieved24. This allowed to calculate
absorption spectra at finite temperature. For bulk hBN at room temperature the dominant
excitonic peak has been shown to be at 5.98 eV, in excellent agreement with the experimental
data17 23.

1.2.4 Absorption spectrum of BN-tubes

After the discovery of carbon nanotubes in 1991, for several years, the optical spectra were
only discussed in the independent-particle picture. In 1997, the presence of excitons in carbon
tubes was predicted by Ando25. Since GW+BS calculations are quite expensive and since
the unit-cell of nanotubes comprises more than 20 atoms, it was only in 2004 that the first
ab-initio excitonic spectra of carbon tubes were published 26 27 28. The excitonic nature of the
spectra was confirmed in numerous experiments, e.g., Refs.29 30.

Since BNNTs have a much larger band-gap than semiconducting CNTs, it can be expected
that excitonic effects are even more pronounced than in CNTs. This has been indeed confirmed
by GW+BS calculations [21] 31. Due to the lower dimensionality (and due to lower screening
of the e-e interaction), both in the single-sheet and in isolated BN nanotubes, the GW-band
gap correction (with respect to the DFT-LDA band structure) is strongly enhanced compared
to bulk hBN: 3.6 eV for the single sheet [21] and 3.25 eV for the (8,0) tube31 as compared to
1.8 eV for bulk hBN.

Fig. 1.8 shows the absorption spectrum of the BN (8,0) tube with and without e-h inter-
action (in both cases, GW-corrections to the band-gap are included). Without e-h interaction,
the continuum of band-to-band transitions would start above 8 eV. A strong excitonic binding
energy of 2.3 eV leads, however, to a first absorption peak at 5.72 eV. As in the case of
bulk hBN, the first absorption peak comprises most of the oscillator strength of the entire
absorption spectrum.

The wave-function of the 5.72 eV exciton is displayed in Fig. 1.9 (a)-(c) and compared to
the wave-function of the lowest bright exciton in an (8,0) carbon nanotube (panels (d)-(f)).
The hole is located above a chosen N (C) atom on one side of the tube. While the exciton
in the carbon tube is delocalized around the whole tube circumference, the exciton in the BN
tube is localized on the side where the hole is located. Also along the tube axis, the exciton
in the BN tube is much more localized then the one in the carbon tube. This is in line with
the much higher excitonic binding energy in BN tubes than in C tubes.

Fig. 2 of Ref. [21] (which is reprinted in the following), presents the excitonic absorption
spectra for the same series of BN nanotubes as in Fig. 1.4. We compare with the spectra of
the single sheet and of bulk hBN. With increasing diameter, the shape of the tube spectra
converges rapidly towards the sheet spectrum which in turn is not very different from the

24A. Marini, Phys. Rev. Lett. 101, 106405 (2008).
25T. Ando, J. Phys. Soc. Jpn. 66, 1066 (1997).
26C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004).
27C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Appl. Phys. A 78, 1129 (2004).
28E. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004).
29F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science 308, 838 (2005).
30Y.-Z. Ma, S.L. Dexheimer, L. Valkunas, S.M. Bachilo, and G.R. Fleming, Phys. Rev. Lett. 94, 157402

(2005); Y.-Z. Ma, L. Valkunas, S.M. Bachilo, and G.R. Fleming, J. Phys. Chem. B 109, 15671 (2005).
31C.-H. Park, C.D. Spataru, S.G. Louie, Phys. Rev. Lett. 96, 126105 (2006).
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Figure 1.8: Absorption spectra of the (8,0) SWBNNTs. The imaginary part of the polarizability
per unit of tube length, α2(ω), is given in unit of nm2. The spectra are broadened with a
Gaussian of 0.0125 eV. Figure reprinted from Ref. 31

spectrum of the bulk. The rapid convergence as a function of tube diameter towards the
sheet spectrum can be understood from Fig. 1.9. Since the exciton is not delocalized around
the circumference but localized within a few nearest neighbors’ distance, it “sees” a locally
flat environment and behaves thus as an exciton in the flat sheet. We note that there is a
chirality dependence of the optical spectra but it is only visible for the smallest diameter tubes.
The spectra of the armchair tubes converge much faster to the 2D case than the ones of the
zig-zag tubes.

Many-body effects in carbon nanotubes have been found to be quite different26 28: binding
energies and quasiparticle shifts are much smaller, and the extension of the excitonic wave-
function (several nm) is larger than the typical tube circumference. Thus, excitonic binding
energies strongly vary with the diameter. Excitons in carbon nanotubes are one-dimensional
objects, i.e. squeezed in the circumferential direction.

The strongly localized nature of the exciton in BN structures restricts the appearance of
one-dimensional confinement effects to small diameter tubes, i.e, tubes for which the extension
of the excitonic wavefunction is comparable to the nanotube circumference. As the experi-
mental tubes have diameters around 1.4 nm, the 1D-nature of the tubes cannot be observed
and only the 2D nature of the local exciton environment (tube surface) controls the optical
activity.

We remark that dimensionality effects in the electronic properties of BN nanostructures
would be more visible in other spectroscopic measurements such as photoemission spec-
troscopy, where we mainly map the quasiparticle spectra, and this (as the exciton binding
itself) is sensitive to the change in screening going from the tube to the sheet to bulk hexago-
nal BN. In particular the quasi-particle band-gap will vary strongly with dimensionality (opening
as dimensionality reduces). In the following, we present a reprint of our work on the excitonic
effects of BN nanotubes [21].
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We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly
bound excitons. Our first-principles calculations indicate that the binding energy for the first and dominant
excitonic peak depends sensitively on the dimensionality of the system, varying from 0.7 eV in bulk
hexagonal BN via 2.1 eV in the single sheet of BN to more than 3 eV in the hypothetical �2; 2� tube. The
strongly localized nature of this exciton dictates the fast convergence of its binding energy with increasing
tube diameter towards the sheet value. The absolute position of the first excitonic peak is almost
independent of the tube radius and system dimensionality. This provides an explanation for the observed
‘‘optical gap’’ constancy for different tubes and bulk hexagonal BN.

DOI: 10.1103/PhysRevLett.96.126104 PACS numbers: 81.07.De, 61.46.ÿw, 71.35.ÿy

In complete analogy to carbon nanotubes, boron nitride
(BN) nanotubes [1,2] can be thought of as cylinders that
are obtained when a single sheet of hexagonal BN (hBN) is
rolled onto itself. Since hexagonal BN is a large band-gap
insulator [3], the band gap of BN tubes is similarly large,
independent of their radius and chirality. The detailed
knowledge of the optical properties of BN tubes is indis-
pensable for their characterization and may help to guide
their use as nanoelectronic devices. Example BN nano-
tubes have been used to build a field effect transistor [4].
Furthermore, experiments on ultraviolet luminescence [5]
of bulk hexagonal BN suggest to explore the use of BN
nanotubes as ultraviolet light sources. In this context, it is
crucial to know about possible excitonic states whose
importance has been recently shown for the optical spectra
of carbon nanotubes [6,7]. For the wide band-gap BN
tubes, we expect even stronger excitonic effects.

Very recently, two experimental studies of the optical
properties of BN nanotubes have appeared in this journal
which strongly contradict each other. Both studies compare
their spectra to the one of bulk BN which has its first
absorption peak at 6.1 eV and an onset of absorption at
about 5.8 eV. Lauret et al. [8] have measured two addi-
tional peaks in the optical absorption spectra of BN tubes at
4.45 and 5.5 eV. The lower of these two peaks was inter-
preted as a due to a bound exciton. Arenal et al. [9], on the
contrary, have measured the electron-energy loss spectra
(EELS) of isolated BN tubes and obtained a constant
‘‘optical gap’’ of 5.8 eV for bulk BN and different single
and multiwall tubes. For a proper interpretation of the
spectra, one has to take into account that already the
absorption peak of bulk hexagonal BN at 6.1 eV is due to
a strongly bound Frenkel exciton [10,11]. The question to

be asked is therefore: how does the binding energy of this
exciton change as we compare the quasi-two-dimensional
BN sheet and the quasi-1D BN nanotubes with the 3D bulk
BN? Furthermore: up to which diameter do tubes exhibit
one-dimensional excitonic effects? We show in this Letter
that the excitonic binding energy increases strongly with
lower dimensionality. At the same time, however, the
quasiparticle gap strongly increases such that the absolute
position of the first (excitonic) absorption peak remains
almost constant in agreement with Ref. [9].

So far, the optical properties of BN nanotubes have only
been calculated [12,13] on the level of the random-phase
approximation (RPA), i.e., in the picture of independent-
particle excitations. Here, we use the methods of many-
body perturbation theory to include electron-electron and
electron-hole effects [14]. Our calculations of the optical
absorption spectra proceed in three steps. We first calculate
the wave functions of the valence band states and a large
number of conduction band states using density functional
theory (DFT) in the local-density approximation (LDA)
[15–17]. In the second step, we use the GW approximation
[14,18] to calculate the quasiparticle energies (‘‘true’’
single-particle excitation energies). In the third step, ef-
fects of electron-hole attraction (excitonic effects) are in-
cluded by solving the Bethe-Salpeter (BS) equation [14].

Calculation details: we use a trigonal array of tubes with
minimum interwall distance of 20 a.u. in order to minimize
intertube interaction and to simulate as closely as possible
the properties of isolated tubes. The tubes are geometry
optimized (forces on the atoms less than 5� 10ÿ5

a:u:). In
the GW calculation [19] we perform a ‘‘semiself consis-
tent’’ (GW0) calculation by updating the quasiparticle en-
ergies in G (but not in W) until the resulting quasiparticle

PRL 96, 126104 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
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energies are converged [20]. For the optical absorption
spectra of (n; n) armchair tubes and (n; 0) zigzag tubes
with polarization along the tube axis, transitions between
the highest 2n valence bands (the � bands) and the lowest
2n conduction bands (the �� bands) are taken into account
(the other transitions being dipole forbidden).

In Fig. 1, we investigate the influence of the supercell
geometry on the excitonic binding energy and on the
quasiparticle gap of the single sheet of hexagonal BN.
The spectrum is dominated by the lowest bound exciton
which collects most of the oscillator strength in the energy
range between 0 and 8 eV [see Fig. 2(b)]. The excitonic
binding energy is measured as the distance between this
peak and the onset of the continuum which is given by the
direct quasiparticle gap between the � and �� bands. With
increasing intersheet distance, approaching the limit of a
quasi-2D isolated sheet, the excitonic binding energy in-
creases and converges towards the value of 2.1 eV [as
compared to the binding energy of 0.7 eV that is found
for the 3D bulk hexagonal BN [11] ]. This increase of the
binding energy is due to two effects: (i) separating the
layers, screening is reduced and becomes more anisotropic.
In particular, for the perpendicular direction, it gets close to
1. The weaker screening leads thereby to an increase of the
excitonic binding energy. (ii) An increased electron-hole
overlap in the reduced dimensionality leads also to a
stronger binding energy [in the purely 2D limit, the binding
energy for a hydrogenic system is increased by a factor of 4
compared to the 3D case [21] ]. At the same time, reduced
dimensionality and reduced screening lead to an increased
electron-electron correlation and thereby to an increase of
the quasiparticle gap [22]. Figure 1 demonstrates that the
increase of the quasiparticle gap almost exactly cancels the
increase of the binding energy. The position of the first

absorption peak remains almost constant. What changes is
the onset of the continuum. For the BN sheet, however, the
absorption at the onset of the continuum is almost zero
(also the higher excitonic peaks carry very low oscillator
strength). The excitonic spectrum can therefore be calcu-

lated to a good approximation already with an intersheet
distance of 20 a.u. We made a similar series of calculations
for the hypothetical BN�2; 2� tube which has a diameter of
2.8 Å and is close to being a 1D system. Again, as we
increase the intertube distance, the increase of the quasi-
particle gap almost cancels the increase of the excitonic
binding energy. While the latter converges towards a value
higher than 3 eV, the absolute position of the first absorp-
tion peak remains constant to within 0.2 eV. In the follow-
ing, we present therefore calculations for different tubes in
a supercell geometry with 20 Å interwall distance. We
remark that dimensionality effects would be more visible
in other spectroscopic measurements such as photoemis-
sion spectroscopy, where we mainly map the quasiparticle
spectra, and this (as the exciton binding itself ) is sensitive
to the change in screening going from the tube to the sheet
to bulk hexagonal BN. In particular, the quasiparticle band

gap will vary strongly with dimensionality (opening as
dimensionality reduces).

In Fig. 2 we present the spectra of bulk hexagonal BN, of
the single sheet of hexagonal BN, and of different BN
nanotubes with diameters ranging from 2.8 Å (for the
purely hypothetical BN�2; 2� tube) to 9.7 Å (for the
BN�7; 7� tube) which is at the lower border of the range
of experimentally produced tubes. The light polarization is
set parallel to the planes or tube axis, respectively. On the
left-hand side, we show the RPA spectra which are almost
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FIG. 1 (color online). Single sheet of hexagonal BN: depen-
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indistinguishable for the bulk and for the single sheet. The
selection rules only allow transitions between the � and ��

bands (band 4 and 5 in the sheet). The band structure of the
tubes can be constructed via the zone-folding procedure,
i.e., by cutting the 2D band structure of the sheet along
certain discrete lines that correspond to quantized wave
vector along the circumferential direction. The RPA spec-
tra of the tubes display therefore transitions at the same
energies as in the sheet. [For a comparison of tube and
sheet band-structures, see Refs. [1,3,13].] With increasing
diameter, the shape of the tube spectra converges rapidly
towards the sheet spectrum, in particular, if plotted with a
Lorentzian broadening of 0.1 eV (corresponding roughly to
usual experimental values). A calculation with a fine
broadening of 0.025 eV (and a correspondingly fine sam-
pling with 200 k points in the first Brillouin zone) reveals
additional fine structure below 5.5 eV. This structure is due
to the van Hove singularities in the one-dimensional den-
sity of states. For tubes with larger radii, the density of the
fine-structure peaks increases and the RPA spectrum ap-
proaches that of the 2D sheet. The onset of absorption is
constantly at 4:7� 0:1 eV for all tubes except for the �2; 2�
and the �6; 0� tube (and other small diameter zigzag tubes)
where the gap is lowered due to curvature effects [1].

While the RPA spectra are due to a continuum of inter-
band transitions, the BS�GW optical spectra on the right-
hand side of Fig. 2 are dominated by discrete excitonic
peaks where the first peak comprises most of the oscillator
strength. For bulk hexagonal BN, we have shown [11] that
the broadened excitonic spectrum properly reproduces the
experimental spectral shape [23]. The sheet spectrum con-
tains three bound excitonic peaks of rapidly decreasing
intensity and absorption at the onset of the continuum is
reduced to almost zero. As explained above, the stronger
binding energy of the first bound exciton is almost com-
pensated by an increase of the quasiparticle gap due to the
reduced dimensionality. The same holds for the tube spec-
tra: except for the three smallest tubes, the position of the
first and dominant excitonic peak remains constant. With
increasing tube diameter, the spectrum rapidly converges
towards the three-peak spectrum of the flat sheet. Also, the
onset of the continuum converges towards the value in the
sheet (note that we compare here the values for a supercell
geometry with intersheet or intertube distance of 20 a.u.).
The rapid convergence of the excitonic peaks is an indica-
tion for a strong confinement of the exciton wave function.
Plotting the wave function, we have verified that this
Frenkel type exciton is confined to within a few interatomic
distances for either tubes, sheet or bulk hexagonal BN [see
also the plot for an exciton in bulk hexagonal BN in
Ref. [10]]. With increasing tube diameter, the excitons
only ‘‘see’’ a locally flat environment which explains the
rapid convergence towards the sheet spectrum. The
strongly localized nature of the exciton in BN structures
makes the appearance of one-dimensional confinement
effects very restricted to small diameter tubes, i.e., tubes
for which the extension of the excitonic wave function is

comparable to the nanotube circumference. As the experi-
mental tubes have diameters around 1.4 nm, the 1D nature
of the tubes cannot be observed and only the 2D nature of
the local exciton environment (tube surface) controls the
optical activity. Many-body effects in carbon nanotubes
have been found to be quite different [6,7]: binding ener-
gies and quasiparticle shifts are much smaller, and the
extension of the excitonic wave function (several nm) is
larger than the typical tube circumference. Thus, excitonic
binding energies strongly vary with the diameter. Contrary
to the case of BN tubes, where we quickly reach the two-
dimensional limit of the flat sheet, excitons in carbon
nanotubes remain one-dimensional objects, i.e., squeezed
in the circumferential direction.

For the �6; 6� tube, we display in Fig. 2(c) also the
spectrum for light polarization perpendicular to the tube
axis. The spectrum exhibits a major excitonic peak that lies
slightly below the second excitonic peak obtained for light
polarized along the tube axis. Note that the sheet is com-
pletely transparent up to 9 eV for light polarized perpen-
dicular to the plane.

We compare our results now to two recent contradictory
measurements of the optical properties of BN nanotubes
[8,9]: in the EELS experiment of Arenal et al. [9], the
electron beam passes the tube in the tangential direction. A
quantitative explanation of the spectral shape would re-
quire the calculation of the imaginary part of the polar-
izability �m;k, where m is the index for the multipole
expansion in circumferential direction and k is the wave
vector of the Fourier expansion along the tube axis [24].
However, the dipolar contribution (m � 0) in the limit k !
0, calculated in this Letter, is the dominant part in the
expansion of �. The constancy of the first excitonic peak
in Fig. 2 explains why the ‘‘optical gap’’ observed in Fig. 2
of Ref. [9] is always 5.8 eV, independently if they measure
multiwall tubes, or single-wall tubes of different diameters.
The shoulder on the right-hand side of the main peak in
Fig. 2c of Ref. [9] is the effect of the 2nd excitonic peak.
Figure 2 demonstrates that the second (and less intense)
excitonic peak starts to form a shoulder of the first peak as
we plot the spectra with a stronger broadening. Our calcu-
lations also reproduce the finding of Ref. [9] that the
dominant peak is higher in energy for the tubes [their
Figs. 2(a)–(c)] than for bulk BN [their Fig. 2(d)] [25].

We note that there is a chirality dependence of the
optical spectra but it is only visible for the smallest diame-
ter tubes. The spectra of the armchair tubes converge much
faster to the 2D case than the ones of the zigzag tubes.
However, as experimental tube diameters [9] are much
larger than the 5.1 Å of the �6; 0� zigzag tube that is
presented in this Letter, we expect the chiral dependence
to be marginal. [Results similar to the �6; 0� tube are
presented in Ref. [26] for the �8; 0� tube]. Our calculations
show that the explanation of Ref. [8] for the two peaks at
4.45 and 5.5 eV in their absorption spectra of a sample
containing BN tubes does not hold: the peaks are neither
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due to additional van Hove singularities (since the spectra
are entirely dominated by discrete excitonic peaks) nor can
they be explained by an increased excitonic binding energy
(which is canceled by an increased quasiparticle gap).

So far, we have concentrated on singlet active excitons.
For bulk hexagonal BN [11], we have shown previously
that there is a dark singlet exciton and two triplet excitons
below the first optically active exciton. For the single sheet
(and light polarization parallel to the plane), we find that
the lowest optically active exciton is doubly degenerate.
There is no dark singlet exciton below, but a doubly
degenerate triplet exciton at 0.1 eV lower energy. For the
�6; 6� tube (and light polarization parallel to the tube axis),
we find that the degeneracy of the singlet exciton is lifted,
leading to a dark singlet exciton slightly (0.01 eV) below
the optically active singlet exciton. The degeneracy of the
triplet exciton is lifted as well: the two triplet excitons are
0.1 eVand 0.08 eV lower in energy than the optically active
singlet exciton. Similar results hold for the �5; 5� and the
�7; 7� tubes. A recent study for C tubes [27] has shown that
the room temperature luminescence is enhanced once the
complete series of active and dark excitons is taken into
account. This would hold also in the present case. Further-
more, due to the minor differences in the optical spectra of
tubes and bulk BN we expect the BN tubes to exhibit a
strong ultraviolet lasing behavior as already observed for
bulk BN [5]. The fact that this luminescence response
would be rather insensitive to tube diameter and chirality
makes the BN tubes ideal candidates for optical devices in
the UV regime as the carbon nanotubes are in the infrared
regime [28]. The photoluminescence quantum yield of BN
tubes should surpass the efficiency of carbon [5].
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1.3 Luminescence spectroscopy

Recently, the observed high luminescence yield in bulk hBN crystals5 32 has raised the interest
in BN compounds as potential candidates for UV light-emitting materials. The main lumines-
cence peak (for very pure hBN crystals) was measured at 215 nm (5.77 eV) 5. It is ascribed
to the radiative decay of the lowest lying exciton. In the electronic structure community, this
exciton is called a “bound exciton” because it corresponds to an electron that is “bound”
to a hole in the valence band. Thus the energy of this state lies below the range of “free”
conduction band electrons (see the discussion on optical absorption above). In contrast, the
luminescence spectroscopy community tends to call this exciton a “free exciton” because it
is independent of structural defects of the material. For the remainder of this section, we we
will use the notation of the luminescence spectroscopy.

In comparison to the main absorption peak which is located between 6 and 6.1 eV17 23, the
luminescence peak experiences a strong Stokes shift towards lower energy. We note, however,
that recent photo luminescence excitation (PLE) spectra (i.e., measuring the luminescence
intensity as a function of the exciting laser energy) locate the absorption peak corresponding
to the “free” exciton rather at 5.81 eV33. This yields only a very small Stokes shift of the
luminescence peak (5.77 eV).

Figure 1.10: Cathodoluminescence spectrom of hBN crystallite at T=100K. (a) TEM image
of the hBN crystallite and (b) polychromatic CL image. Figure reprinted from Ref. 34.

At low temperature (< 100K), additional luminescence peaks at 220 nm (5.64 eV) and 227
nm (5.46 eV) have been observed5 34 (see Fig. 1.10). Jaffrennou et al. found that luminescence
at the latter two wave-lengths occurs at the grain boundaries and around dislocations. They
ascribed the two peaks to excitons that are bound to structural defects and thus have a higher
binding energy than the free exciton (and thus a lower position in the luminescence spectrum).
At very low temperature (8 K), Museur and Kanaev33 found an additional “bound” exciton
line at 5.56 eV and a line at 5.3 eV that they ascribed to a transition between filled acceptor

32Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).
33L. Museur and A. Kanaev, J. Appl. Phys. 103, 103520 (2008).
34P. Jaffrennou, J. Barjon, J.-S. Lauret, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, J. Appl. Phys.

102, 116102 (2007).
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and donor states.
Luminescence peaks in hBN have also been observed in the energy region of 4 eV35 36

37 33 (see Fig. 1.10). They have a much lower intensity than the high energy peaks and are
explained by the presence of deep level impurities, probably due to Carbon or Oxygen atoms.
Indeed, when hBN crystals were grown under ultra-clean conditions, the 4 eV energy band
disappeared from the luminescence spectra.38 The main peak displays several phonon replica
on the low energy side. The proof that those peaks are really due to electron-phonon coupling
was given by Han et al.37 who showed that the splitting between the peaks, i.e., the vibrational
frequency, changes as a function of the Boron isotope. The nature of the deep level impurity
is not clear. However, calculations indicate the stability of Oxygen in substitution for Nitrogen
atoms37. Vacancies and other impurities as C, could give rise to deep levels as well. The
assignment of all the defect related peaks observed in luminescence requires more detailed
theoretical work. However, it seems that all luminescence features observed below the main
absorption peak are defect-mediated excitations, i.e., excitons bound to structural defects or
transitions from/to acceptor/donor levels.

Luminescence on multi-walled BNNT samples was observed by several groups. Wu et al.39

performed photoluminescence (PL) on multi-wall BN tubes. They only detected the deep-level
impurity peaks around 4 eV. The zero-phonon line at 4.02 eV was falsely ascribed to the direct
band gap. Other groups also detected the excitonic bands in the luminescence of multi-walled
BNNTs40 41 42 37. Bound excitonic peaks were observed at 5.49 and 5.34 eV 42, i.e., at
somewhat lower energy than in bulk hBN (5.77 eV). This difference was tentatively explained
in Refs.41 42: trapping of excitons on crystalline defects appears to be a major phenomenon.
In the tubes, dislocations and stacking faults along the walls may lead to a stronger trapping
of excitons than in hBN and to an absence of the “free-exciton line” at 5.77 eV. The stronger
trapping leads to slight red-shift of the bound excitonic lines with respect to the corresponding
lines in the PL spectra of bulk hBN.

From this discussion it is a logical next step trying to build lasing or opto-electronic devices
with BN nanotubes. In this respect, it is interesting to know if the optical properties can be
tuned in a controlled way. It has been shown theoretically43 [27] that the band gap of BNNTs
can be reduced by applying an electric field perpendicular to the tube axis. This decrease of
the gap is due to the Stark-effect, i.e., the charge densities of the top of the valence band

35C.A. Taylor II, S. W. Brown, V. Subramaniam, S. Kidner, S.C. Rand, and R. Clark, Appl. Phys. Lett.
65, 1251 (1994).

36M.G. Silly, P. Jaffrennou, J. Barjon, J.-S. Lauret, F. Ducastelle, A. Loiseau, E. Obraztsova, B. Attal-
Tretout, and E. Rosencher, Phys. Rev. B 75, 085205 (2007).

37W.-Q. Han, H.-G. Yu, C. Zhi, J. Wang, Z. Liu, T. Sekiguchi, and Y. Bando, Nano Lett. 8, 491 (2008).
38T. Taniguchi and K. Watanabe, J. Cryst. Growth 303, 525 (2007).
39J. Wu, W.-Q. Han, W. Walukiewicz, J.W. Ager III, W. Shan, E.E. Haller, A. Zettl, Nano Letters 4, (4)

647 (2004).
40P. Jaffrennou, F. Donatini, J. Barjon, J.-S. Lauret, A. Maguer, B. Attal-Tretout, F. Ducastelle, and A.

Loiseau, Chem. Phys. Lett. 442, 372 (2007).
41P. Jaffrennou, J. Barjon, J.-S. Lauret, A. Maguer, D. Goldberg, B. Attal-Trétout, F. Ducastelle, and A.

Loiseau, phys. stat. sol. (b) 244, 4147 (2007).
42P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.-S. Lauret, C. Y. Zhi, C. Tang, Y. Bando,

D. Goldberg, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, Phys. Rev. B 77, 235422 (2008).
43K.H. Koo, M.S.C. Mazzoni, and S.G. Louie, Phys. Rev. B 69, 201401(R) (2004); C.-W. Chen, M.-H.

Lee, and S.J. Clark, Nanotechnology 15, 1837 (2004).
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and bottom of the conduction band become spatially separated on opposite sides of the tube.
Even though the gap is reduced considerably, the effect of an electric field on the optical
absorption spectrum was found to be less pronounced [27] (for light polarization parallel to
the tube axis which gives the dominant contribution to the averaged light-scattering cross
Section). This situation may, however, change for luminescence spectra. Peaks around 4 eV
in the luminescence spectra are related to defect levels (possible candidates discussed above are
vacancies, oxygen or carbon substitutions). As an example, we have calculated the influence
of the electric field on the acceptor level that is due to the replacement of a nitrogen atom by
a carbon atom. (The calculations have been performed in a large supercell.) In Fig. 1.11 we
show the density of states of the pure (9,9) BNNT, calculated within DFT-LDA. Adding the
carbon impurity in panel b) introduces an impurity level at about 0.5 eV above the valence
band edge. Depending on the orientation of the carbon impurity with respect to the direction
of the electric field, this impurity level can move up or down with respect to the valence
and conduction band edges (Fig.. 1.11 c and d). Photoluminescence may involve transitions
from the conduction band to the impurity level and from the impurity level to the valence
band. Defect mediated luminescence spectra may thus be more sensitive to the influence of
an electric field than the spectra of pure BNNTs [27].
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Figure 1.11: Density of states of a) a pure (9,9) BN nanotube, b) a tube with a Carbon
impurity atom, c) with a C atom and a perpendicular E-field of 0.2 V/Å, d) with a C atom on
the opposite side and an E-field of 0.2 V/Å. The light-polarization is parallel to the tube axis.

1.4 Plasmons and electron-energy loss spectroscopy

The loss function is calculated as the imaginary part of the inverse dielectric function, i.e.,
Im{−1/ǫ(ω, q)}. The loss function of bulk hBN with wave-vector q parallel to the layers has
been measured with electron-energy loss spectroscopy (EELS) by Tarrio and Schnatterly 17.
The spectrum for q → 0 displays two peaks, the so-called “π plasmon” at 8.7 eV and the
“π+σ plasmon” at 26.5 eV (this curve is also reproduced in Fig. 1.12 e). The names indicate
that the latter plasmon represents the collective excitation mode of all the valence electrons
in hBN while the first one is a collective oscillation of the π electrons alone. The loss function
of bulk hBN is quite well reproduced if ǫ(ω, q) is calculated on the level of the random-phase
approximation (RPA) [15].
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The measured loss-function of bundled multi-wall BNNTs in the limit q → 0 displays the
same two plasmonic peaks as bulk hBN, however red-shifted by 0.6 eV44. The similarity of
the two spectra is expected, since the inner-radius of the multi-wall tubes was quite large (3.1
nm). The origin of the 0.6 eV shift, was tentatively assigned 44 to the curvature of the inner
tubes. Indeed, calculations for small diameter BN tubes have demonstrated a downshift of the
“π” plasmon [15]. Fuentes et al. also presented data on the q dispersion of the π plasmon
which is similar to the dispersion in bulk hBN.

Figure 1.12: Experimental deconvoluted EELS for: (a) a triple-wall nanotube, electrons passing
inside the tube and at grazing incidence, (b) a double-wall nanotube, electrons passing inside
the tube and at grazing incidence, (c) a single-wall tube, (d) ǫ‖, extracted from the bulk loss
spectrum in (e). Figure reprinted from Ref.45.

The experiments of Fuentes et al. were performed on “bulk-like” samples of tubes. This
allowed for a momentum (q) resolution of the loss spectra. The opposite limit was reached
in spatially resolved EELS measurements on isolated BN tubes45. For isolated tubes, the
“dielectric constant” ǫ (which is a bulk quantity) looses its meaning. Indeed, when a fast
electron beam passes (near or through) a nanotube, the EELS spectrum is proportional to a
weighted sum of multipolar polarizabilities αm(q) with weights decreasing rapidly as a function
of the azimuthal momentum m46. To a good approximation, the EELS spectra of isolated
BN nanotubes are proportional to Im(α0(q → 0)), i.e., to the optical polarizability. In the
“continuum dielectric theory”47,

α0(ω) ∝ Im

{

− 1

ǫ⊥(ω, q → 0)
+ ǫ‖(ω, q → 0)

}

, (1.8)

where ǫ⊥ and ǫ(‖)) are, respectively, the components of the dielectric tensor perpendicular and
parallel to the layers. Since ǫ⊥ is strongly reduced through depolarization effects, the main
contribution to the spatially resolved EELS of isolated BN tubes is thus given by Im{ǫ‖(ω, q →

44G. G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R. J. Kalenczuk, M. Knupfer,
and J. Fink, Phys. Rev. B 67, 035429 (2003).

45R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, and C. Colliex, Phys. Rev. Lett. 95, 127601
(2005).

46D.Taverna, M. Kociak, V. Charbois, and L. Henrard, Phys. Rev. B 66, 235419 (2002).
47L. Henrard and P. Lambin, J. Phys. B 29, 5127 (1996).
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0)}. Therefore one can access the direct optical gap in EELS experiments, in contrast to bulk
materials where one needs to perform a Kramers-Kronig analysis of the experimental data to
extract the dielectric constant.

Indeed, the EELS data (see Fig. 1.12) displays a lot of similarity with the measured ǫ‖(ω)
from optical absorption. Most importantly, the “optical gap” was shown to remain almost
constant as a function of tube diameter and as a function of the number of tube walls 45.
Furthermore, it was measured to be almost the same as in bulk hBN. This behavior can be
understood from the calculations of ǫ‖(ω) (Fig. 2 of Ref. [21]). While the quasi-particle band-
gap of the tubes is strongly increased with respect to bulk hBN, the optical gap displays only
minor changes. This is because the increased binding energy of the dominant excitonic peaks
almost cancels the increase in the quasi-particle gap as one passes from bulk BN via the 2D
single sheet to the 1D tubes.

1.5 Phonons and vibrational spectroscopy

Raman and infrared (IR) spectroscopy in which phonons are excited by inelastic scattering
of light or light absorption, respectively, are convenient tools to investigate the composition
of macroscopic samples of nanotubes. Carbon nanotubes have been investigated extensively
through vibrational spectroscopy. Early Raman48 and infrared49 investigations were performed
on samples of multi-wall carbon nanotubes (MWNT’s) and showed signatures close to those of
graphite. However, after the production of single-wall nanotubes (SWNT’s) in large quantities,
resonant Raman spectroscopy turned into a very precise, highly diameter selective identification
tool 50. Especially the low frequency Raman modes such as the radial breathing mode (RBM)
strongly depend on the tube diameter and facilitate thus the characterization of tubes. The
high frequency modes are only weakly diameter dependent, but their intensity in the resonant
Raman spectra strongly depends on the diameter through the electronic excitation energy51.
IR spectroscopy on single-wall carbon nanotubes52 shows only small differences when compared
to IR data of graphite.

For BN nanotubes, the situation is quite different: The Raman intensities in the visible
light frequencies are weaker than for C nanotubes, since the Raman scattering (for lasers in
the visible light regime) is non-resonant due to the wide band gap. On the other hand, BN
nanotubes are a polar material and show a much higher IR absorbance than C-nanotubes 53. It
is expected, that the combination of Raman and IR spectroscopy will develop into a standard
characterization tool for BN-tubes such as it is already in the case of C-tubes. At this stage

48P. C. Eklund, J. M. Holden, R. A. Jishi, Carbon 33, 959 (1995).
49J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D. N. Weldon, M. Delamesiere, S. Draper, and

H. Zandbergen, Chem. Phys. Lett. 221, 53 (1994).
50A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy,

M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997).
51R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 57, 4145 (1998).

52U. Kuhlmann, H. Jontoljak, N. Pfänder, P. Bernier, C. Journet, and C. Thomsen, Chem. Phys. Lett.
294, 237 (1998).

53E. Borowiak-Palen, T. Pichler, G. G. Fuentes, B. Bendjemil, X. Liu, A. Graff, G. Behr, R. J. Kalenczuk,
M. Knupfer, and J. Fink, Chem. Comm. 82 (2003).
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it is very important to have a detailed knowledge of phonon frequencies in BN-nanotubes and
to understand the dependence on diameter and chirality, in order to guide future experiments.
We will give in the following a short description on how phonons are calculated. The phonons
of bulk hBN and BN nanotubes are presented and Raman and IR active modes are analyzed.
We present the calculation of non-resonant Raman intensities and give an overview on the
experimental results as compared to the theoretical predictions.

1.5.1 Phonon calculations

The phonons are obtained from the change in total energy as the atoms are displaced from
their equilibrium position. Mathematically, the phonon frequencies ω as a function of the
phonon wave-vector q are obtained as the solution of the secular equation

det

∣

∣

∣

∣

1√
MsMt

Cαβ
st (q) − ω2(q)

∣

∣

∣

∣

= 0. (1.9)

Ms and Mt denote the atomic masses of atoms s and t and the dynamical matrix is defined
as

Cαβ
st (q) =

∂2E

∂u∗αs (q)∂uβ
t (q)

, (1.10)

where uα
s denotes the displacement of atom s in direction α. The second derivative of the

energy in Eq. (1.10) corresponds to the change of the force acting on atom t in direction β
with respect to a displacement of atom s in direction α:

Cαβ
st (q) =

∂

∂u∗αs (q)
F β

t (q). (1.11)

Note the q dependence of the dynamical matrix and the displacements. In an explicit calcu-
lation of the dynamical matrix by displacing each of the atoms of the unit cell into all three
directions, a periodic supercell has to be used which is commensurate with the phonon wave
length 2π/q. Fourier transform of the q-dependent dynamical matrix leads to the real space
force constant matrix Cαβ

st (R) where R denotes a vector connecting different unit cells.
A phonon calculation starts thus with a determination of the dynamical matrix in real space

or reciprocal space. For hBN and BN tubes, three different approaches have been used: i.)
In the force constant approach54, a reduced set of Cαβ

st (R) was fitted in order to reproduce
the experimental phonon dispersion relation55. ii.) The force constants were obtained from
total-energy calculations using a semi-empirical tight-binding approach56. iii.) Force constants
were obtained from ab-initio total energy calculations [12,14]. We will first discuss the equilib-
rium geometry of nanotubes following from ab-initio calculations and afterwards the resulting
phonon dispersion and the Raman and IR active modes.

54V. N. Popov, Phys. Rev. B 67, 085408 (2003).
55E. Rokuta, Y. Hasegawa, K. Suzuki, Y. Gamou, C. Oshima, and A. Nagashima, Phys. Rev. Lett. 79,

4609 (1997).
56D. Sánchez-Portal and E. Hernández, Phys. Rev. B 66, 235415 (2002).
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1.5.2 Equilibrium geometry

In the isolated sheet of hBN, ab-initio calculations on the level of DFT-LDA yield a BN-bond
length of 1.44 Å which is close to the literature value of 1.45 Å for bulk h-BN. In the tubes,
the boron-nitrogen bonds display a buckling 2 [12] with the Nitrogen atoms moving slightly
outwards and the Boron atoms moving slightly inwards (see inset of Figure 1.13). This leads
to the formation of a negative outer N-cylinder and a positive inner B-cylinder. Figure 1.13
shows that the buckling distance between these two cylinders is to a very good approximation
inversely proportional to the tube diameter (except for the tubes with very small diameters
where the decrease is faster). The threefold coordinated (and slightly positively charged)
Boron atoms have the tendency to keep the planar sp2 bonding geometry with bond angles
of 120◦ while the (slightly negatively charged) Nitrogen atoms are more susceptible to an
admixture of sp3 hybridization leading to smaller bond angles 2. With this hypothesis, a very
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Figure 1.13: Buckling distance in BN single wall nanotubes as a function of tube diameter.

simple explanation of the 1/r dependence can be given. The inset of Fig. 1.13 shows a two-
dimensional projection of the buckled geometry for a (n, 0) zigzag tube. The nitrogen atoms
are located at the corners of the polygon with distance rN from the center. The boron atoms
are accordingly placed at the midpoints of the sides of the polygon. The angle θ is inversely
proportional to n and thereby to the tube radius r. Therefore, also the buckling distance is
inversely proportional to the radius: rN − rB = r − r cos θ ≈ r − r(1 − 1

2
θ2) ∝ 1/r. For

smaller tube diameters (D < 7Å) the strain energy due to the curvature of the tube (see
Ref.2) becomes so large that the boron atoms no longer keep their planar bonding geometry
but also acquire an admixture of sp3 hybridization.

1.5.3 Phonon dispersion relations

Bulk hBN

Detailed information on the phonons in BN tubes is up to date only available from theoretical
calculations. In order to check the predictive power of these, we compare first the results of
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Figure 1.14: (a) Phonon dispersion relations of h-BN along the main symmetry directions. The
open (red) circles display modes polarized in the hexagonal plane whereas the solid (blue) circles
correspond to modes polarized along the c-axis. The solid curves represent the calculated
phonon dispersion and infrared59 and Raman60 61 data are displayed at the Γ point by open
(magenta) and solid (green) diamonds. (b) Calculated phonon dispersions of a monolayer of
h-BN deposited on 3 layers of Ni (solid lines) compared to the EELS data from Ref.55 (red
open circles). Note that in the experiment only vibrational modes involving boron or nitrogen
atoms were detected while in the calculations also the vibrational modes of the Ni substrate
are included.

ab-initio calculations of the phonon dispersion relation of bulk hBN57 58 [24] with available
experimental data59 60 61 [24].

Hexagonal BN has a crystal structure with 4 atoms in the unit cell and space group
P63/mmc. Hence, the phonon dispersion relations show 12 different branches that can be di-
vided into the 2E1u+2A2u+2E2g+2B1g irreducible representations at the center of the Brillouin
zone (Γ-point). The branches are usually classified in the following terms: longitudinal optical
(LO) and transverse optical (TO) denote the high frequency in plane optical modes with vi-
bration amplitude parallel/perpendicular to the phonon wave-vector, respectively. Analogous
terms are used for the in-plane acoustic (LA and TA) modes. ZA/ZO denote the out-of-plane
acoustic/optical modes. At the (Γ-point), the E1u (LO/TO) and A2u(ZO) modes are infrared
active, the E2g(TO/LO) are Raman active. The B1g (ZA and ZO) modes cannot be observed,
neither with Raman nor with infrared spectroscopy.

Fig. 1.14 shows the phonon dispersion, measured by inelastic x-ray scattering [24] along
with the Raman and IR data at Γ and compared with ab-initio calculations. The agreement is
very good and confirms the validity of ab-initio calculations for the phonons in hBN systems.

57G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).
58W.J. Yu, W.M. Lau, S.P. Chan, Z.F. Liu, and Q.Q. Zheng, Phys. Rev. B 67, 014108 (2003).
59R. Geick, C.H. Perry, G. Rupprecht, Phys. Rev. 146, 543 (1966).
60R.J. Nemanich, S.A. Solin, R.M. Martin, Phys. Rev. B 23, 6348 (1981).
61S. Reich, A.C. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson, Phys. Rev. B 71, 205201 (2005).
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BN is a polar material. In the optical modes, the positive ions vibrate in opposition to the
negative ions which leads to a local time-dependent dipole moment. The resulting crystal field
gives rise to a splitting between the LO E1u and the TO E1u modes (Lyddanne-Sachs-Teller
relation). In contrast, the E2g modes are doubly degenerate at Γ and the LO E2g mode displays
a strong overbending close to Γ.

The gap between the ZA and ZO modes at the K point, predicted by the theoretical
models, is well reproduced by the IXS data. Contrary to this, in the EELS (electron-energy
loss spectroscopy) measurements of Rokuta et al.55 on a monolayer of h-BN deposited on a
Ni(111) substrate, an almost-degeneracy of ZA and ZO was found at K. This is caused by
the influence of the interlayer-interaction with the substrate. The influence of the binding
to the Ni substrate has been demonstrated by ab-initio calculations of the phonon dispersion
of a BN-sheet on a Nickel surface. The calculated dispersion [24] and the EELS data are in
excellent agreement, as displayed in Fig. 1.14(b). The differences between the EELS and IXS
dispersions can therefore be attributed to the binding between the hBN monolayer and the Ni
substrate.

We remark that although modes related to interlayer vibrations should be very much
sensitive to errors in the correlation functional (as the typical variations in the correlation
energy that has to be resolved are up to 2 orders of magnitude smaller for interlayer phonons
than for structural characterization), a description of exchange-correlation effects beyond the
LDA do not modify the phonon dispersion relations shown in Fig. 1.14 62, indicating the
robustness and accuracy of the present DFT-based approach to describe the ion-dynamics in
polar-nanostructures.

Single sheet of hBN

The calculated phonon dispersion of the single hexagonal BN-sheet is presented in Fig. 1.15
together with the one of a single graphene sheet. In general, the phonons of the BN-sheet
are softer than the phonons of the graphene sheet: the purely covalent bonds of graphene are
stronger than the (mostly covalent, but partially ionic) bonds of BN. Furthermore, the degen-
eracy at K of the out-of-plane acoustic and optical (ZA and ZO) modes and the degeneracy
of the longitudinal acoustic and optical (LA and LO) modes in graphene is lifted in BN due
to the different masses of B and N. Fig. 1.16 presents sketches of the optical phonons of the
BN-sheet at Γ.

The phonon dispersion relation of the sheet follows very closely the ab initio calculated
dispersion relation of bulk hexagonal BN when one subtracts the phonon branches that are
influenced by the inter-plane interaction. This is analogous to the comparison of phonon
dispersion relations of the graphene sheet63 and of bulk graphite [17] and is due to the fact
that the inter-layer interaction is much weaker than the interaction between atoms within one
layer. The effect of LO-TO splitting is absent in a 2-dimensional single sheet. However, the
LO mode displays an overbending close to Γ that is more pronounced than the overbending in
the corresponding bulk LO mode. The phonon-dispersion of the sheet will be used below in
order to derive the phonon-dispersion and the diameter-dependence of phonons of the tubes
via the zone-folding procedure.

62A. Marini, P. Garćıa-Gonzalez and A. Rubio, Phys. Rev. Lett. 96, 136404 (2006).
63O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
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Figure 1.15: Calculated phonon dispersion relation of the single hexagonal BN sheet (solid
lines) in comparison with graphene (dotted lines).

Tubes

In Fig. 1.17 we compare the ab initio phonon dispersion relation of a (6,6) BN nanotube with
the corresponding zone-folding dispersion relation. The zone-folding method works equally
good as in the case of carbon nanotubes 63. Here and there, the major difference lies in the
low frequency part of the spectrum and is due to the coupling of in-plane and out-of-plane
modes of the sheet upon rolling into a tube. This leads to a stiffening of the low-frequency
tube modes with respect to the zone-folding model. In general, the zone-folding method does
not only reproduce quite well the dispersion relation, but also yields a good estimate of the
total phonon density of states (right panel of Fig. 1.17).

1.5.4 Symmetry Analysis

In Raman and IR spectroscopy, only phonons at (or close to) the Γ-point of the 1-dim Bril-
louin zone can be excited (as long as we restrict our discussion to first order processes).
Furthermore, in Raman spectroscopy, only modes that transform under symmetry operations
as a quadratic form are active, in IR spectroscopy only modes that transform as a vector64

For (infinitely extended) systems with translational symmetry, the “point group in the space
group” determines through the selection rules which modes are active and which are not. In
quasi-one-dimensional systems with translational symmetry, it is accordingly the “point group
in the rod group” that has to be evaluated65 Fig. 1.18 summarizes the findings for BN-tubes:
It can be easily seen that the unit-cell of a (n, 0) zigzag-tube possesses an n-fold rotation axis
(with rotation angle φ = 2π/n). In addition, n (indeed, even 2n) vertical reflection-symmetry
planes (containing the tube axis) can be found. Thus the unit cell of a zigzag tube transforms
under the Cnv symmetry group. In the infinitely extended tube, the operations of the Cnv

point group are valid as well, but - in addition - a rotation by φ/2 with subsequent translation
by T/2 also maps the system onto itself. This leads to the conclusion that for the infinitely

64The selection rules for Raman and IR spectroscopy are discussed in many textbooks. E.g., a nice intro-
duction can be found in: D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy: an Introduction to

Vibrational and Electronic Spectroscopy (Dover, New York, 1989).
65O. E. Alon, Phys. Rev. B 63, 201403 (2001).
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a)

b) c)

Figure 1.16: Sketch of the optical phonon modes at Γ in the hexagonal BN-sheet: a) out-
of-plane mode, b) transverse optical (TO) mode, c) longitudinal optical (LO) mode. For the
assignment of “transverse” and “longitudinal”, the phonon wave-vector points in horizontal
direction with q → 0.

extended system, the C2nv symmetry group is the relevant one for symmetry analysis of Ra-
man and IR active modes. Analogously, for (n,n) armchair tubes, the symmetry group of the
unit-cell is Cnh and the symmetry group of the infinitely extended tube is C2nh. Finally, for
chiral (n,m) tubes, the unit-cell has the low point-group symmetry Cd, where d is the greatest
common divisor of n and m. However, the infinitely extended tube is described by the CN

symmetry group, where N is the number of hexagons (= two times the number of atoms) per
unit cell which is, in general, much larger than d.

The number of active modes is found by determining how often each irreducible represen-
tation appears in the (reducible) representation of the symmetry group (C2nv, C2nh, or CN ,
respectively) which is given by the 12n vibrational degrees of freedom of the unit cell. For
zigzag tubes this leads to 14 Raman active modes65 (3 with A1 symmetry, 5 with E1 symme-
try, and 6 with E2 symmetry, where the E1 and the A1 modes with vanishing frequency have
already been subtracted). Out of these modes, 8 modes (3A1 and 5E1) are also IR active. In
the case of chiral tubes, there are 15 Raman active modes (4A, 5E1, and 6E2) out of which 9
modes (4A and 5E1) are also IR active. The small difference in the number of active modes
between zigzag and chiral tubes stems from the fact that the additional vertical reflection
symmetry of the zigzag tube causes a distinction between Raman+IR active A1 modes and
non-active A2 modes. The sets of Raman and IR active modes for BN armchair tubes are
disjoint: 9 modes are Raman active (3 with Ag symmetry, 2 with E1g symmetry and 4 with
E2g symmetry) and 4 modes are IR active (1 with Au symmetry and 3 with E1u symmetry)66.

66The fact that for zigzag and chiral tubes, the IR active modes are a a subset of the Raman active modes
is different in BN-tubes and C-tubes and is due to the reduced symmetry (= less strict selection rules) for
BN-tubes. In carbon tubes, only the set of IR active modes of chiral tubes partially overlaps with the set of
Raman active modes65. For zigzag and armchair C-tubes, the sets of Raman and IR active modes are disjoint.
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Figure 1.17: Calculated phonon dispersion relation and density of states (DOS) in the (6, 6)
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Figure 1.18: Comparison of the point-group symmetry of the unit cell with the space-group
symmetry of zigzag BN-tubes.

In the next section, it will be explained how these modes can be constructed from the modes
at or close to the Γ-point in the BN-sheet.

1.5.5 Zone-folding method

Here, we review the zone-folding method which has been frequently used for the calculation
of electronic band structure and phonons in C-nanotubes67 and demonstrate how the different
Raman and Infrared active modes can be deduced from it in the case of BN-nanotubes. Thus,
the symmetry analysis of the previous section can be understood in a pictorial way. Fig. 1.19
a) demonstrates the scenario for (n, 0) zigzag nanotubes. The sheet is rolled up such that the

tube-axis is parallel to the translation vector ~T whose lengths corresponds to the lengths of the
1-dimensional unit-cell of the tube. The component K⊥ of the phonon wave vector ~K which
points into the circumferential direction of the tube is quantized. For zigzag nanotubes, this

67R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial
College Press, London, 1998).
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Figure 1.19: Sketch of the zone-folding method a) for (n, 0) zigzag nanotubes, b) for (n, n)
armchair nanotubes, and c) for (4n, n) chiral nanotubes. Left side: A hexagonal BN-sheet

is rolled in perpendicular direction to the primitive translation vector ~T . The component K⊥

of the phonon wavevector in circumferential direction is quantized. Right side: For zigzag
nanotubes, the quantization of the circumferential momentum corresponds to 2n steps along
the line Γ → K → M → K → Γ in the 2-dim Brillouin zone of the sheet. In armchair
nanotubes 2n discrete steps are taken along the line Γ → M → Γ, while in chiral tubes the
discretization proceeds along a line connecting more distant Γ-points. The points at and close
to Γ give rise to the Raman and IR active A, E1, and E2 modes.

means that in reciprocal space, K⊥ can assume 2n discrete values (µ = 0, . . . , 2n− 1) along
the line Γ → K → M → K → Γ. The parallel component K‖ is unrestricted. However, the
Raman and IR active modes are modes at the Γ-point of the 1-dim Brillouin zone of the tube
and correspond thus to K‖ = 0. Since the points at µ and 2n−µ are equivalent in reciprocal
space, all modes of the tube are doubly degenerate, except for the mode that corresponds to
µ = 0 (the Γ-point of the sheet) and the mode that corresponds to µ = n (the M -point of
the sheet). If one applies the strict selection rules according to the C2nv symmetry group,
the modes of the sheet at Γ map onto tube modes with A symmetry, the modes at M map
onto modes of B symmetry and the modes at µ = 1, . . . , n− 1 map onto modes of symmetry
E1, . . . , En−1. Since there are six different phonon branches in the sheet, there are six different
phonon modes in the tube for each of the above symmetries. Each of the six phonon branches
leads to n + 1 different phonon modes in the tube, (n− 1) E modes, one A mode, and one
B mode. Since the E modes are doubly degenerate, this sums up to 12n phonon modes
corresponding to the 4n atoms in the unit cell of a zigzag tube.

Figs. 1.16 and 1.20 demonstrate the mapping of the three optical modes of the sheet at Γ
onto the corresponding Amodes of the tube. The out-of-plane optical (ZO) modes of the sheet
lead to radial (R) “buckling” modes of the tube where all Boron atoms move inwards/outwards
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at the same time and all Nitrogen atoms move outwards/inwards, giving rise to an oscillation
of the buckling amplitude in the tube. The transverse optical (TO) mode of the sheet maps
onto a longitudinal (L) mode of the tube and, accordingly, the longitudinal optical (LO) mode
of the sheet maps onto a transverse or tangential (T) mode of the tube. In the A modes,
all atoms along the circumference move in phase (corresponding to K⊥ = 0). In the modes
of Ei symmetry, there are 2i nodes along the circumference (i nodal planes containing the
symmetry axis of the tube). The B modes contain 2n nodes along the circumference which
means that a rotation by φ/2 (with the proper translation along the tube axis) maps the mode
onto its negative. In other words, for the B modes, neighboring “columns” of atoms oscillate
with a phase difference of π.

a)

b) c)

Figure 1.20: Sketch of high frequency A modes in a BN-zigzag tube: a) radial buckling (R)
mode, b) bond-stretching or longitudinal (L) mode, c) bond-bending or tangential (T) mode.

The points in the Brillouin zone of the sheet that give rise to the Raman and IR active A,
E1, and E2 modes are denoted in Fig. 1.19. They are the points at and close to Γ. With larger
tube diameter (increasing n), the points giving rise to the E1 and E2 modes converge towards
the Γ-point of the BN-sheet. Therefore, as a first check on the frequencies of active modes
of large diameter tubes, it is sufficient to look at the frequencies at the Γ-point of the sheet.
The frequencies of modes that correspond to the acoustic branches of the sheet converge
accordingly to zero for large diameters. Note that not all of the A, E1, and E2 modes may
be Raman active, because one still has to distinguish between the different “sub-symmetries”.
E.g. the TO mode of the sheet at Γ (see Fig. 1.16 b) folds into a tube mode of A1 symmetry
(see Fig. 1.20 b) and is thus Raman active, whereas the LO mode of the sheet at Γ (see
Fig. 1.16 c) folds into a mode of A2 symmetry (see Fig. 1.20 c) which changes sign under
reflection at a plane that contains the symmetry axis of the tube.

The zone-folding for armchair tubes works in an analogous way to the zone-folding for
zigzag tubes (see Fig. 1.19 b). The only difference is that the active modes of the tube
correspond to a discrete set of modes along the line Γ → M → Γ in the reciprocal space of
the sheet.
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Finally, Fig. 1.19 c) illustrates the zone-folding for a general chiral nanotube. In the

example, we have chosen a (4n,n) tube with a relatively short primitive translation vector ~T .
As in the case of armchair and zigzag tubes, the quantization of the circumferential phonon
wave vector corresponds in the reciprocal space of the sheet to a discrete set of modes along
a line Γ →M → Γ. However, the line does not connect nearest or next-nearest Γ-points but
connects Γ-points further apart (with the distance depending on the chirality of the tube).

1.5.6 Diameter-dependence of Raman and IR active modes

In this section we present the results of ab-initio calculations of selected zigzag, chiral and
armchair tubes [12] and compare with the results obtained by zone-folding the ab initio dis-
persion relation of the single sheet. Figure 1.21 displays the frequencies of the Raman and IR
active modes of the three types of tubes as a function of the tube diameter D. The ab initio

values are plotted as symbols, while the zone-folding values are connected by lines in order to
guide the eye and extrapolate to larger tube diameters. Three frequency regimes are easily
distinguishable:
1.) The low frequency modes whose frequencies approach zero for D → ∞ are the modes
that are derived from the acoustic branches of the sheet.
2.) The three modes that approach ω ≈ 818cm−1 for D → ∞ are radial (R) modes (see
Fig. 1.20 a) which are related to the optical out-of-plane (ZO) modes (Fig. 1.16 a) in the
dispersion relation of the sheet (Fig. 1.15).
3.) The high frequency regime above 1200cm−1 consists of longitudinal (L) and transverse
(T) modes (Fig. 1.20 b,c) which are zone-folded TO and LO modes of the sheet (Fig. 1.16
b,c)
We discuss at first the three different frequency regimes separately in the case of the zigzag
tubes (left panel of Fig. 1.21). Afterwards, we extend the discussion to the chiral and armchair
tubes.

Fig. 1.22 is a double-logarithmic plot of the low frequency modes in the zigzag nanotubes.
For the RBM (marked by asterisks), we have also included the values of chiral and armchair
tubes. From phonon calculations in C-nanotubes, it is well known that the RBM is inversely
proportional to the tube diameter68: ωRBM ∝ 1/D. The same holds for BN-nanotubes.
In fact, not only the RBM, but most of the low frequency modes display the same 1/D
scaling. This can be easily understood from the phonon dispersion of the sheet (Fig. 1.15)
in combination with the zone-folding procedure in Fig. 1.19: The LA and TA branches of the
sheet have a linear slope at the Γ-point. The distance between the Γ-point and the points
that map onto the E1 and E2 modes in Fig. 1.19 are proportional to 1/N (with N being
the number of hexagons in the tube unit cell) and hence proportional to 1/D. Hence, all the
low frequency modes in the tubes that are folded from the LA and TA branches of the sheet
exhibit the 1/D scaling. Only the frequency of the lowest E2 mode in Fig. 1.22 displays a
1/D2 proportionality63. This is because it is folded from the ZA mode of the sheet which
does not increase linearly but quadratically around the Γ-point 67. For small diameter, the
phonon modes deviate from the functional form A/D or A/D2, because the linear/quadratic
behavior in the acoustic branches of the sheet ceases to be valid further away from the Γ

68R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77-82
(1993).
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Figure 1.21: Frequencies of Raman and IR active modes in BN-nanotubes as a function of
tube diameter: comparison of ab-initio values (symbols) with zone-folding method (lines). The
shape of the symbols denotes the symmetry of the modes (see legend). Black filling marks
modes which are Raman active only. White filling stands for IR active only. Grey filling stands
for modes which are both Raman and IR active. R, L, T marks the radial, longitudinal, and
tangential high frequency modes (as in Fig. 1.20)

point. Only the RBM follows the functional behavior A/D down to very low radius. While the
RBM cannot be obtained from zone-folding of an infinite sheet, it is related to the in-plane
stretching mode of a sheet of finite width [12] and the functional A/D behavior can be proven
analytically68.

The power law fit of the RBM scaling in Fig. 1.22 yields a scaling constant A = 2060± 2
cm−1Å and may be used for the diameter determination in Raman characterization of BN-
tubes. As is the general trend of phonons in BN as compared to carbon, this value is consid-
erably lower than the corresponding ab initio value AC = 2288 cm−1Å for the RBM in carbon
nanotubes69 63. Since the other low frequencies modes with the 1/D scaling may be used as
well for the radius determination, we list in table 1.1 the corresponding scaling constants.

We discuss now the radial phonon modes in the intermediate frequency regime around 800
cm−1 (see, e.g., panel a) of Fig. 1.21). According to the zone-folding picture, the A mode
should be diameter independent and have the constant frequency of ≈ 818 cm−1. Indeed,
the ab initio values lie almost exactly on this line. The E1 branch is the nearest neighbor
in frequency of the A mode and the E2 branch is the next nearest neighbor, because in the
zone-folding picture (Fig. 1.19), the E1 and E2 modes derive from the points close to the
Γ-point of the sheet. Since in the dispersion relation of the BN-sheet (Fig. 1.15), the ZO
branch approaches the Γ-point from below, the radial E1 and E2 modes both have lower
frequencies than the corresponding A mode. At small diameters, the ab initio values lie below

69J. Kürti, G. Kresse, and H. Kuzmany, Phys. Rev. B 58, R8869 (1998).
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The dashed lines are least square fits to the form A/D2 for the lowest E2 mode and to the
form A/D for all other modes. The fit has been performed on the diameter interval between
6 Å and 14 Å.

the zone-folding curves due to bond weakening introduced by curvature effects.
The L and T modes of the high-frequency branch converge towards the asymptotic value

ω = 1380 cm−1 forD → ∞. In the zone-folding picture, the E1 and E2 L modes approach this
value from below since in the dispersion relation of the sheet (Fig. 1.15), the corresponding TO
branch from which these modes are derived approach the Γ point from below. The LO branch,
in contrast, displays a strong over-bending which leads to the non-monotonic diameter scaling
of the E1 (T) and E2 (T) modes in Fig. 1.21. The ab initio values follow the general trend
of the zone-folding curves. However, all high-frequency T and L modes, even the A modes
which should be diameter independent, experience a strong down-shift for small diameter.
This general trend is also observed for the C nanotubes63 and can be attributed to curvature
effects. The E1 (T) mode displays the non-monotonic behavior which is predicted by zone-
folding, but due to the curvature induced softening at small radius, it reaches the maximum at
a larger diameter than the zone-folding curve. The E2 (T) mode displays a similar behavior.
It reaches its maximum at a larger diameter than the E1 (T) mode and ultimately converges
towards the asymptotic value of 1380 cm−1.

The scaling of the phonon frequencies with the tube diameter is very similar for zigzag,
chiral and armchair tubes as can be seen from comparing the three panels of Fig. 1.21. In
the case of the chiral tubes, the zone-folding lines of the low frequency L modes and - to
a lesser extent - the ones of the low frequency T modes display a zigzag pattern. We have
calculated all chiral nanotubes in the diameter range between 3 and 20 Å and connected the
discrete points by lines in order to guide the eye. For large diameter, the frequencies of the
low frequency modes follow the same scaling as given in Table 1.1 for the zigzag tubes. This
is because the slope of the acoustic branches of the sheet at Γ is independent of the direction
in the Brillouin zone (corresponding to an isotropic sound velocity in all directions). Only at
smaller diameter, corresponding to larger distance from the Γ-point in the dispersion relation
of the sheet where the LA and TA modes deviate from the linear behavior, the frequency
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mode symmetry A/cm−1Å
E1 (L) 1296
A (RBM) 2060
E2 (L) 2560
E1 (T) 2808
E2 (T) 4232

Table 1.1: First principle determination of scaling constants for the A/D dependence of the
low frequency modes as a function of the tube diameter D.

clearly depends on the chiral angle. The slopes of the zigzag and of the armchair curves are
the limiting cases. E. g., the zone folding curve of the E2 (T) mode reaches a value of 1000
cm−1 at D = 3Å for the zigzag tubes and a value of 1100 cm−1 for the armchair tubes.

In Fig. 1.21, only Raman or IR active modes are shown. This leads to a different number
of displayed values in the three different panels. The fact that for zigzag and chiral tubes, the
IR active modes are a subset of the Raman active modes while for armchair tubes the two sets
are disjoint, should help in the experimental identification of the ratio of different chiralities
in a macroscopic tube sample. In particular, the RBM can be detected both by Raman and
IR spectroscopy in zigzag and chiral tubes, while in the case of armchair tubes, it should only
appear in the Raman spectrum. Of course, an exact theoretical calculation of the chirality
dependence of IR and Raman intensities is desirable for this purpose.

1.5.7 Raman intensities

So far, we have discussed only the position of the peaks in the Raman spectra. The positions
are given by the frequencies ων of the Raman active modes ν with null wave vector. Raman
scattering in BNNTs takes place in the non-resonant regime, because the optical-gap of BNNTs
exceeds the photon energies of lasers in the visible and near UV-range. The intensities for
non-resonant Raman scattering, Iν , can be written within the Placzek approximation70.

Iν ∝ |ei · Aν · es|2
1

ων

(nν + 1) . (1.12)

Here ei (es) is the polarization of the incident (scattered) light and nν = [exp(~ων/kBT )−1]−1

with T being the temperature. The Raman tensor Aν is

Aν
ij =

∑

γ

Bkγ
ij

wν
kγ

√

Mγ

, (1.13)

where wν
kγ is the kth Cartesian component of atom γ of the νth orthonormal vibrational

eigenvector and Mγ is the atomic mass.

Bkγ
ij =

∂3E
∂Ei∂Ej∂ukγ

=
∂αij

∂ukγ

, (1.14)

70Light Scattering in Solids II, edited by M. Cardona and G. Güntherodth (Springer-Verlag, Berlin, 1982).
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where E is the total energy of the unit cell, E is a uniform electric field and ukγ are atomic
displacements. This is equivalent to the change of the electronic polarizability of a unit cell,
αij = Ωχij (where Ω is the unit cell volume and χij the electric susceptibility), upon the

displacement ukγ. The derivative tensor Bkγ
ij can either be calculated approximately from a

bond-polarizability model54 [19] or can be calculated ab-initio with an extension of density-
functional perturbation theory71
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Figure 1.23: Calculated Raman intensities for a) three different zigzag BNNTs and b) the
(10,10) armchair BNNT. The spectra are plotted with a full-width at half-maximum (FWHM)
of 10 cm−1.

We show in Fig. 1.23 the ab-initio Raman spectra [19] for the (9,0), (13,0), and (16,0)
zigzag BN nanotubes and for the (10,10) armchair tube. The latter two have diameters (12.8
Å and 13.8 Å) in the range of experimentally produced BN tubes. The dominant peak (besides
the low frequency E2(R) which is close to zero and thus hardly measurable) is the A1 peak
at about 1370 cm−1. Note that for zigzag tubes this mode corresponds to a transverse (T)
vibration of the atoms while for armchair tubes it corresponds to a longitudinal (L) vibration.
Depending on the chirality of the tube, the dominant peak can have a side peak on the lower
frequency side. With increasing diameter, this side-peak rapidly merges into the main-peak but
remains visible as a shoulder. About 120 cm−1 above the main peak, The E1(T) mode gives a
small contribution to the spectrum. For chiral tubes, its intensity is reduced and becomes zero
for armchair tubes. If Raman spectra of isolated single-walled BN tubes ever become available
(due to the non-resonant character of the spectra, the intensity is very low), the intensity of
this peak with respect to the intensity of the main peak can be taken as a measure of the tube
chirality. The A1 mode at 810 cm−1 is the radial buckling mode. Its intensity decreases with
increasing diameter. Therefore it is not clear if it is detectable. In the low frequency regime,
the radial breathing mode plays the dominant role and is a good measure for the radius of the
tube (just as in the case of carbon nanotubes).

For the calculation of Raman intensities of large diameter BN nanotubes, we implemented
a bond-polarizability model. The model includes local field effects which is important for the
Raman scattering with light polarized perpendicularly to the tube axis. The details of this
model can be found in Ref. [19] which is reprinted in the following.

71M. Lazzeri and F. Mauri, Phys. Rev. Lett. 90, 036401 (2003).
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We presentab initio calculations of the nonresonant Raman spectra of zigzag and armchair BN nanotubes.
In comparison, we implement a generalized bond-polarizability model where the parameters are extracted from
first-principles calculations of the polarizability tensor of a BN sheet. For light polarization along the tube axis,
the agreement between model andab initio spectra is almost perfect. For perpendicular polarization, depolar-
ization effects have to be included in the model in order to reproduce theab initio Raman intensities.
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Besides its success in the characterization of a large range
of materials,1 Raman spectroscopy has also developed into
an invaluable tool for the characterization of nanotubes.
Since the first characterization ofsdisorderedd carbon nano-
tubesCNTd samples,2 the technique has been refined, includ-
ing, e.g., polarized Raman studies of aligned nanotubes3 and
isolated tubes.4 On the theoretical side, nonresonant Raman
intensities of CNTs have been calculated within the bond-
polarizability model.5,6 The empirical parameters of this
model are adapted to fit experimental Raman intensities of
fullerenes and hydrocarbons. However, the transferability of
the parameters and the quantitative performance in nano-
tubes, in particular distinguishing between metallic and
semiconducting tubes, is still not clear.

In this Rapid Communication, we report on the Raman
spectra of boron nitride nanotubessBNNTsd.7,8 Recently,
synthesis of BNNTs in gram quantities has been reported.9

Their characterization through Raman and infrared spectros-
copy is expected to play an important role. However, due to
difficulties with the sample purification no experimental data
on contamination-free samples has been reported.Ab initio10

and empirical11,12 phonon calculations have determined the
position of the peaks in the spectra. However, due to missing
bond-polarizability parameters for BN, the Raman intensities
have been so far addressed using the model bond-
polarizability parameters of carbon.12 Only the intensities of
high-frequency modes were presented, as it was argued that
the intensity of low-frequency modes are very sensitive to
the bond-polarizability values.12 Here, we derive the polariz-
ability parameters for BNsp2 bonds from a single hexagonal
BN sheet by calculating the polarizability tensor and its
variation under deformation. We compare the resulting spec-
tra for BNNTs with full ab initio calculations. We derive
conclusions about the general applicability of the bond-
polarizability model for semiconducting CNTs.

In nonresonant first-order Raman spectra, peaks appear at
the frequenciesvn of the optical phononsn with null
wave vectors. The intensitiesIn are given in the Placzek
approximation1 as

In ~ uei · An · esu
2 1

vn

snn + 1d. s1d

Hereeisesd is the polarization of the incidentsscatteredd light
andnn=fexps"vn /kBTd−1g−1 with T being the temperature.
The Raman tensorAn is

Ai j
n =o

kg

Bi j
kg wkg

n

ÎMg

, s2d

wherewkg
n is thekth Cartesian component of atomg of the

nth orthonormal vibrational eigenvector andMg is the atomic
mass.

Bi j
kg =

]
3
E

]Ei ] Ej ] ukg

=
]ai j

]ukg

, s3d

whereE is the total energy of the unit cell,E is a uniform
electric field andukg are atomic displacements. This is
equivalent to the change of the electronic polarizability of a
unit cell, ai j =Vxi j swhereV is the unit cell volume andxi j
the electric susceptibilityd, upon the displacementukg. The
phonon frequencies and eigenvectors10 are determined by
density functional perturbation theory13 as implemented in
the codeABINIT .14 For the determination of the derivative
tensorBi j

kg we proceed in two ways:sid we calculate it from
first principles using the approach of Ref. 15 andsii d we
develop a generalized bond-polarizability model.

The basic assumption of the bond-polarizability
model1,16,17 is that the total polarizability can be modeled in
terms of single bond contributions. Each bond is assigned a
longitudinal polarizability,al, and a polarization perpendicu-
lar to the bond,ap. Thus, the polarizability contributionai j

b

of a particular bondb is

ai j
b =

1

3
s2ap+ alddi j + sal − apdSR̂iR̂j −

1

3
di jD , s4d

whereR̂ is a unit vector along the bond. The second assump-
tion is that the bond polarizabilities only depend on the bond
lengthR. This allows the calculation of the derivative with
respect to atomic displacement,]ai j

b /]ukg, in terms of four
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parametersalsRd, apsRd, al8sRd, and ap8sRd ssee, e.g., Ref.
17d. The use of only one perpendicular parameterap implic-
itly assumes cylindrical symmetry of the bonds. That can be
justified in a sp3 bonding environment. However, in the
highly anisotropic environment in a sheet ofsp2 bonded car-
bon or BN and the corresponding nanotubes this assumption
seems hardly justified. In our model we therefore define a
generalized polarizability with an in-planesapid and out-of-
plane valuesapod of ap.

With the larger set of parameters, the polarizability tensor
takes on the more general form

ai j
b = alR̂iR̂j + apiŜiŜj + apoT̂iT̂j , s5d

whereŜ is a unit vector pointing perpendicular to the bond in

plane, andT̂ pointing perpendicular to the bond out of plane.
fIn the case ofapi=apo, Eq. s5d simplifies to Eq.s4d due to

the relationŜiŜj+T̂iT̂j=di j −R̂iR̂j.g For the derivative tensor
sof a single bondd, we obtain

]ai j
b

]ukg

= al8R̂iR̂jR̂k+ alfs]kR̂idR̂j + R̂is]kR̂jdg

+ api8 ŜiŜjR̂k+ apifs]kŜidŜj + Ŝis]kŜjdg

+ apo8 T̂iT̂jR̂k+ apofs]kT̂idT̂j + T̂is]kT̂jdg. s6d

The total derivative tensorBi j
kg is then just the sum over all

]ai j
b /]ukg of all bonds of the system. The orientation of the

plane at the position of a particular atom is thereby defined
by the three nearest-neighbor atoms.

In order to determine the six parameters of our model, we
performab initio calculations of the polarizability tensorai j
of a unit cell of a single BN sheet18,19 fsee Fig. 1sadg. The
geometry of the system leads to the relationsaxx=ayy
=s3/2dsal+apid andazz=3apo swith thez axis perpendicular
to the sheetd. Displacing atom 2 in they direction yields the
relation ]axx/]u2y=s3/4dsal8+api8 d+s3/2dsal+apid /R. Fi-
nally, by changing the geometry of the unit cell such that one
bond is elongated while the other two bond lengths and all
the bond angles are kept constantfsee Fig. 1sbdg, we extract
the derivatives of the bond polarizabilities:al8=axx8 ,
api8 =ayy8 , and apo8 =azz8 . The resulting parameters are dis-
played in Table I and compared to the parameters we calcu-
lated for cubic BN and diamond. The longitudinal bond po-
larizability al is considerably larger thanap which can be
intuitively explained as a consequence of the “enhanced mo-
bility” of the electrons along the bond. For the sheet, the
perpendicular polarizabilities clearly display different values
in the in-plane and out-of-plane directions. Without the
added flexibility of different parameters, the bond-

polarizability model would lead to inconsistencies in the de-
scription ofai j and its derivatives. In the sheet,al is about
twice as large as in cubic BNsc-BNd due to the additional
contribution of thep electrons to the longitudinal polariz-
ability. Comparison ofc-BN with the isoelectronic diamond
shows a slightly higher polarizability of the C–C bond.

As a first application of the generalized bond-
polarizability model, we present in Fig. 2 the polarizabilityg
sper unit lengthd of different BNNTs.20 For the polarizability
along the tube axissz-directiond, the modelfEq. s5dg agrees
almost perfectly with ourab initio calculations. The polariz-
ability is proportional to the number of bonds in the unit cell,
which is proportional to the tube radius. For the perpendicu-
lar direction, the model calculations overestimate theab
initio values considerably. This discrepancy demonstrates the
importance ofdepolarization effectsin the perpendicular di-
rection: due to the inhomogeneity of the charge distribution
in this direction, an external field induces local fields that
counteract the external field and thereby reduce the overall
polarizability. The size of this effect can be estimated from a
simple model. Imagine a dielectric hollow cylinder of radius
R smeasured at the midpoint between the inner and outer
wallsd and thicknessd. The dielectric constant in the tangen-
tial direction, ei=sd+4pbid /d, is different from the dielec-
tric constant in radial direction,e'=d/ sd−4pb'd. Here,bi

andb' are the polarizabilities per unit area of the BN sheet,
which are extracted from the bulk calculation.19 The polariz-
ability g per unit length of the cylinder due to an external
homogeneous electric field perpendicular to the tube axis is21

FIG. 1. Unit cellsmarked by dashed lined of a BN sheet for the
calculation of the bond-polarizability parameters:sad equilibrium
geometry,sbd geometry with one bond elongated.

TABLE I. Parameters of the bond polarizability model extracted
from ab initio calculationsssee textd.

R
sÅd alsÅ

3d apsÅ
3d al8sÅ

2d ap8sÅ
2d

BN sheet 1.44 3.31
api :0.28

1.03
api8 :6.60

apo:0.44 apo8 :0.77

c-BN 1.56 1.58 0.42 4.22 0.90

Diamond 1.53 1.69 0.71 7.43 0.37

FIG. 2. Perpendicularsg'd and longitudinalsgid polarizabilities
per unit length of different BN nanotubes:ab initio and our gener-
alized bond-polarizability model. The influence of depolarization
can be seen forg'.
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gsRd = −
1

2
SR+ d

2
D2 seie' − 1ds1 −U2nd

sÎeie' − 1d2U2n − sÎeie' + 1d2
, s7d

with U=sR−d/2d / sR+d/2d and n=Îei /e'. In the limit
R/d→`, the polarizability in Eq.s7d displays a linear de-
pendence on the radius:gsRd→g0sRd−d, where g0sRd
=psbi+b'dR. This corresponds to the polarizability without
depolarization effects and coincides with the undamped
model curve forg' sdotted line in Fig. 2d.

The depolarization effects are introduced into our model
by multiplying the undamped model curve for the perpen-
dicular polarizability with the “damping” factorGsRd
=gsRd /g0sRd. This factor depends on the cylinder thickness
d. The valued=3 Å, which corresponds approximately to
the full width of the charge density of a BN sheet, leads to an
almost perfect agreement between model andab initio
calculations.22

To compute Raman intensities we make the further as-
sumption

Bi j
kg =

]sGi jai jd

]ukg

. Gi j
]ai j

]ukg

, s8d

where]ai j /]ukg is constructed according to Eq.s6d. We as-
sume here that to first order the atomic displacement does
not change the depolarization. Fori= j =3, i.e., for incoming
and scattered light polarized along the tube axis,Gi j =1, oth-
erwiseGi j =GsRd.
In Fig. 3 we present theab initio and model Raman spec-

tra for thes9,0d, s13,0d, ands16,0d zigzag BN nanotubes and
a s10,10d armchair tube. The latter two have diameterss12.8
and 13.8 Åd in the range of experimentally produced BN
tubes.8,9The spectra are averaged over the polarization of the
incoming light and scattered light. We first discuss the spec-

tra of the zigzag tubes. The peaks below 700 cm−1 are due to
low-frequency phonon modes that are derived from the
acoustic modes of the sheet and whose frequencies scale in-
versely proportional to the tube diameterfexcept for the
E2sRd mode, which scales with the inverse square of the
diameterg.10 TheE2sRd mode gets quite intense with increas-
ing tube diameter, but its frequency is so low that it will be
hard to distinguish it from the strong Raleigh-scattering peak
in experiments. TheE1sLd peak has almost vanishing inten-
sity in the ab initio spectrum and is overestimated in the
model. The radial breathing modesRBMd yields a clear peak
that should be easily detectable in Raman measurements of
BNNTs, just as in the case of CNTs. Bothab initio and
model calculations yield a similar intensity for this peak. The
high-frequency modes above 700 cm−1 are derived from the
optical modes of the sheet and change weakly with diameter.
TheA1sRd mode at 810 cm−1 gives a small contribution that
might be detectable. The intensity decreases, however, with
increasing diameter. The model only yields a vanishingly
small intensity for this peak. At 1370 cm−1 a clear signal is
given by theA1sTd mode, which has very similar intensity
both in model andab initio calculations. The small side peak
at slightly lower frequency is due to theE2sLd mode. The
E1sTd peak at 1480 cm−1 is gaining intensity with increasing
tube radius. The overall Raman spectrum for as10,10d arm-
chair tube exhibits similar trends.
In Fig. 4 we show for thes16,0d tube the dependence of

the intensities on the light polarizations. If bothei and e f
point along the tube axisfFig. 4sadg, only theA1 modes are
visible and described well by the modelsexcept the 810-
cm−1 moded. This coincides with the finding that for the po-
larizability along the tube axis, depolarization does not play
a role.24TheEmodes are only visible if at least one ofei and
e f has a component perpendicular to the tube axisfFigs. 4sbd
and 4scdg. The bond-polarizability model reproduces these
peaks, but tends to overestimate theE modes. The inclusion
of depolarization effects is absolutely mandatory. Without
depolarization, the model overestimates the Raman intensi-
ties for perpendicular polarization by about a factor of 15.
The remaining discrepancies are mainly due to the assump-
tion in Eq. s8d.

FIG. 3. Raman spectrum for different BN tubes: Comparison of
ab initio calculations spositive axisd with the bond-polarization
model sinverted axisd. The symmetry assignment follows Ref. 23.
The lettersR, T, L denote the character of the corresponding pho-
non oscillation: radial, transverse, or longitudinalssee Ref. 10d.

FIG. 4. Raman spectrum of a BNs16,0d tube for different light
polarizationsei→e f. The tube is oriented alongs001d.
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In conclusion, we implemented the bond-polarizability
model for BN nanotubes with parameters taken fromab ini-
tio calculations and under inclusion of depolarization effects.
Going beyond previous models for graphitic systems, our
calculations yield different parameters for the in-plane and
out-of-plane perpendicular polarizabilities. Good agreement
between model andab initio calculations of the nonresonant
Raman spectra of BN nanotubes is obtained for light polar-
ization along the tube axis. For perpendicular polarization,
the inclusion of depolarization effects leads to a reasonable
agreement between model andab initio spectra. The model is
implemented for single-wall BN tubes but can be extended to
multiwall tubes if the strength of the depolarization effects is

modeled accordingly. A similar bond-polarizability model
can also be developed for the nonresonant Raman spectra of
semiconducting carbon NTs. However, due to the metallic
behavior, a bond-polarizability model is not applicable to the
graphene sheet. Consequently, the modeling of the polariz-
ability of semiconducting tubes is very sensitive to the band
structure,25 in particular to the bandgap that depends on the
radius and chirality of the tubes.

This work was supported by EU Network of Excellence
NANOQUANTA, Grant No. NMP4-CT-2004-500198 and
Spanish-MCyT. Calculations were performed at IDRIS
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1.5.8 Experimental results on Raman and IR spectroscopy

Experimental Raman spectra

The essential test on the performance of Raman spectroscopy for the characterization of
BN nanotubes is the comparison of the spectra of nanotube samples with the spectra of
crystalline hBN. At high frequency, bulk hBN displays a single Raman line due to the E2g

LO/TO mode. (This mode does not display an LO-TO splitting, contrary to the IR active E1u

mode which has almost the same frequency). Originally, its frequency was measured at 1370
cm−1 59. However, later Nemanich et al.60 showed that this mode depends sensitively on the
domain size in polycrystalline samples: the finite domain size leads to an uncertainty for the
phonon wave-vector q. This leads to a a superposition of the bulk E2g mode with q averaged
over a region in the first Brillouin zone around Γ. Since the E2g LO-mode displays a strong
overbending, the resulting Raman peak not only broadened but also shifted towards higher
frequency60. Nemanich et al. extrapolated the value of the infinite crystal as 1366 cm−1.
Recently, the E2g LO/TO mode was measured at 1364 cm−161. The domain-size dependence
of the Raman spectra needs to be taken into account when one analyzes the Raman spectra
of nanotube raw-products that may contain both nanotubes and microcrystallites of hBN at
the same time.
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Figure 1.24: Raman spectra excited at 229 nm on (a) a BNNTs, (b) a particle of hBN in the
raw product of BNNTs, (c) highly crystalline powder h-BN. The inset shows and enlargement
and demonstrates the upshift of the dominant peak in the tubes as compared to bulk hBN.
Figure reprinted from Ref. [22].

Before we discuss the measured Raman spectra of multi- and single-walled BN nanotubes,
we would like to point out a further important detail in the theoretical calculations of fre-
quencies of the E2g mode in bulk h-BN and of the E2g mode in the sheet: The value for the
bulk is 3.8 cm−1 lower than the value for the sheet [22]. This lower frequency is related to
an increase of the calculated in-plane lattice constant which is 4.718 a.u. for bulk h-BN and
4.714 a.u. for the single sheet. The difference stems from the - small but non-negligible -
interaction of neighboring sheets in bulk h-BN. The interaction leads to a small elongation of
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the B-N bond-length and consequently a softening of the phonons.
The Raman spectra of multi-wall tubes (with 2-8 walls and an average outer diameter

of 8 nm) were measured by Wu et al.39 They measured the bulk E2g peak at 1366 cm−1

(corresponding to the limit of infinite size crystallites) and found an upshift of 2.1 cm−1 with
respect to this value for the BNNT sample. (Note that IR spectra on multi-walled tubes have
also displayed an upshift of the E1u mode with respect to the bulk value53 (see below)). Wu et
al. took the tube diameter as a measure for the “crystal size” and used the theory of Nemanich
et al.60 to explain the upshift of the Raman peak. It is not clear if this argument is admissible,
since the phonon calculations for (single-wall) nanotubes show unanimously a softening of
the dominant Raman peak with respect to the phonon value of the infinite sheet54 56 [12].
An alternative explanation may be given by the increased inter-layer distance and the non-
commensurate stacking in multi-wall tubes. Both effects reduce the inter-layer interaction and
may explain why the E2g mode in multi-walled tubes displays a similar upshift as the isolated
sheet.
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Figure 1.25: Calculated frequencies of the Raman active optical A1 mode for different (n,0)
zigzag BN nanotubes (symbols). The solid line is a fit (see text) that describes the convergence
of the mode frequency with increasing tube diameter towards the value for the isolated sheet.

For single-walled nanotubes (with an average diameter of 2 nm), an upshift of 5 cm−1

with respect to the bulk E2g frequency has been measured [22] (see Fig. 1.24. To understand
this upshift, we compare with ab-initio calculations of the phonon frequencies of nanotubes
and bulk h-BN. Fig. 1.25 shows the convergence of the A1 mode in zigzag nanotubes towards
the E2g mode of the single sheet. A fit of the calculated tube frequencies as a function of the

diameter d yields ω(d) = ωsheet
E2g

− 1268.3/d2.29 cm−1 (with d given in Å)54. This functional
form is also displayed in Fig. 1.25. For the tubes with average diameter of 2 nm, the A1 mode
frequency is just 1.3 cm−1 below the value for the sheet and thus 2.5 cm−1 above the value of
the bulk. While ab-initio calculations using DFT cannot reproduce properly the Van-der-Waals
part of the interactions between the layers, they nevertheless give a qualitative indication of
the origin of the Raman peak shift in single- and multi-wall tube samples (as already proven
for the case of interlayer modes in hexagonal BN including exchange-correlation effects on the
level of GW which includes the description of Van-der Waals interactions62).
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IR spectra

IR spectroscopy on bulk hBN59 yielded the TO E1u mode at 1367 cm−1 and the LO E1u mode
at 1610 cm−1. The latter one is shifted due to the coupling with the electric-field of the laser.
Furthermore, the ZO A2u mode (which also couples to the electric-field) was measured at 783
cm−1.

Relatively little is known on the IR spectra of BN tubes. IR measurements of single-
wall BN tubes have so far be impeded by the presence of boric-acid in the sample which
dominated the IR absorption spectrum [22]. Experimental IR data is available, however, for
samples of multiwalled BN tubes (2-10 walls, diameter: 30± 10 Å)53: Absorption peaks were
measured at 800 cm−1 and at 1372 cm−1 with a shoulder at 1540 cm−1. At the same time,
for polycrystalline h-BN, they measured peaks at 811 cm−1 and at 1377 cm−1 with a shoulder
at 1514 cm−1. The interpretation of both results is not straight-forward, because in finite-size
samples of polar materials, the induced electric field depends not only on the direction of
light propagation but also on the boundary conditions at the surface of the sample72, i.e.,
the sample geometry. Furthermore, the dielectric properties of the surrounding medium (KBr
pellets) can play a role. Both effects strongly influence the position of the A2u mode and the
LO E1u mode. The upshift of the TO E1u mode in the polycrystalline sample with respect
to the bulk sample is due to the finite size of the crystal domains60. The upshift by 5 cm−1

of the TO E1u mode in the multi-wall tubes with respect to the bulk stems probably from
the increased inter-wall distance in multi-wall tubes as compared to the bulk phase53. This
upshift corresponds to a similar upshift (of 2.1 cm−1) in the Raman spectra of BN multi-wall
nanotubes39 (see above).

1.6 Summary and conclusions

In this chapter we have reviewed the spectroscopic properties of BN nanotubes covering the
basic principles of electronic and vibrational excitations from the theoretical view-point. Com-
paring the electronic properties of BN and C nanotubes, the most striking difference between
the two classes of tubes is the constancy of the quasi-particle gap for BN tubes. The band-gap
constancy may be of importance for technological applications because samples containing
many different sizes could be grown with predictable electronic properties. Applications as
field-emission devices have been envisioned and a first prototype field-effect transistor has
been constructed4.

The optical spectra of BN nanotubes - as well as the spectrum of bulk hBN and of a
single sheet of BN - are dominated by a strongly bound exciton that collects most of the
oscillator strength in the spectrum. The binding energy of this exciton increases strongly as
the dimensionality is reduced from the 3-D bulk over the 2-D sheet to the 1-D tubes. At the
same time, however, the quasi-particle gap increases and the resulting spectra thus display an
almost constant “optical gap”. Due to the similarity in the spectra of the tubes and bulk BN
we expect the tubes to exhibit strong ultraviolet lasing behavior as already observed for bulk
BN5. The fact that this luminescence response would be rather insensitive to tube diameter
and chirality makes the BN tubes ideal candidates for optical devices in the UV regime while

72E. Balan, A.M. Saitta, F. Mauri, and G. Calas, American Mineralogist 86, 1321 (2001).
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carbon nanotubes are in the infrared regime. The photoluminescence quantum yield of BN
tubes should surpass the efficiency of carbon. Furthermore we have shown how defects control
the luminescence and the impact of an external electric field perpendicular to the tube axis:
While the gap decreases as a function of the electric field strength, the optical spectra of BN
nanotubes are quite robust to the application of external fields. On the contrary, an external
field affects the defect energy levels due to impurities. These defects gives rise to strong
luminescence withing the gap, in particular in the visible region as well as modification of the
shape of the main absorption peak. Therefore an external electric field can be used as tool to
discriminate the photoemission due to exciton recombination in pure systems with respect to
the one due to defects. BN nanotubes may thus be very good candidates for tunable nanoscale
optoelectronic devices in the UV regime and below.

The flexibility of composite nanotubes during bending in a wide range of practical conditions
shows substantial promise for structural, fiber applications ( the “ultimate” lightweight-high-
strength flexible and quite inert fiber) and nanotube-reinforced materials. This is due to the
remarkable flexibility of the hexagonal network, which resists bond breaking and bond switching
up to very high strain values. The lattice dynamics of BN tubes is similar to that of carbon
nanotubes. The most important difference is the polarity of the system which leads to softer
bonds and lower phonon frequencies. Furthermore, the lower symmetry of BN tubes gives
rise to a higher number of Raman- and IR-active modes than in C tubes. As in the case of
carbon nanotubes, the lattice dynamics of BN nanotubes can be explained to a large extent
by the zonefolding method. The strong overbending of the LO-branch of the single sheet is
responsible for the strongly non-monotonic diameter scaling of the transverse high-frequency
modes in the tubes. Combined study of BN tubes by Raman and IR spectroscopy can serve
to distinguish armchair tubes, where IR and Raman-active modes are disjoint, from chiral and
zigzag tubes, where the IR-active modes are a subset of the Raman active modes. In particular,
the radial breathing mode is both Raman and IR active for chiral and zigzag tubes but only
Raman active for armchair nanotubes.

Improvements in the synthesis of BN nanotubes and their unique electronic properties
(luminescence, inertness, piezoelectricity, field emission, robustness, etc) make them ideal
candidates to confront - together with carbon nanotubes - the future of real active components
in nanoelectronic devices.
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Chapter 2

Excitations in Graphene and Graphite

2.1 Introduction

Since graphene, i.e., a single layer of graphite, is the 2-dimensional building block for 3-
dimensional graphite and for 1-D nanotubes, it has for a long time attracted the interest of
theorists. Recently, it has been demonstrated that single layers of graphene can indeed be
produced and can be used to build ambipolar transistors with a high charge carrier mobility1.
Furthermore, the linear dispersion around the K-point of the first Brillouin zone has interesting
consequences for magneto-transport experiments such as a half-integer quantum-Hall effect.2

2.2 The phonon dispersion of graphite

While the phonon dispersion relations of most materials are very well known and routinely cal-
culated by means of density-functional perturbation theory3, the phonon dispersion of graphite
has been under debate until very recently. Even though ab-initio calculations had been per-
formed 4 5, the experimentalists of the graphite and nanotube communities continued to
use semi-empirical models fitted to selected experimental data on the phonon dispersions.
Fig. 2.1 demonstrates that the existing 4th-nearest-neighbor force-constant (4NNFC) fits6 7

and valence-force field fits8 9 strongly deviated from each other and from ab-initio calculations.

In Ref. [17] we have reviewed the experimental data that existed in 2004 and compared
with both ab-initio and semi-empirical phonon dispersion relations. Fig. 2.2 demonstrates that

1K.S. Novoselov et al., Science 306 666 (2004).
2K.S. Novoselov et al., Nature 438, 197 (2005); Y. Zhang et al., Nature 438, 201 (2005).
3S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
4G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett. 32, 729 (1995).
5P. Pavone, R. Bauer, K. Karch, O. Schütt, S. Vent, W. Windl, D. Strauch, S. Baroni, and S. de Gironcoli,

Physica B 219 & 220, 439 (1996).
6R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993).
7A. Grüneis, R. Saito, T. Kimura, L. C. Cancado, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G.

Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65, 155405 (2002).
8T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Phys. Rev. B 42, 11469 (1990).
9S. Siebentritt, R. Pues, K-H. Rieder, and A. M. Shikin, Phys. Rev. B 55, 7927 (1997).
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Figure 2.1: Semi-empirical fits of the phonon dispersion of graphene: a) 4NNFC fit6, 4NNFC
fit7, VFF fit8 (solid line) and9 (dashed line). Comparison with ab-initio calculation [17] (grey
lines).

ab-initio calculations (here we show a curve obtained within DFT-GGA) describe quite well
the core of the experimental data with one notable exception that will be discussed below.
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Figure 2.2: Comparison of ab-initio calculations (solid lines) with experimental data (symbols)
[17].

Since the semi-empirical approaches for the phonons were widely used by the nanotube
community, we have performed in Ref. [17] a fitting of the models to the ab-initio calcula-
tions. The valence-force field model of Aizawa et al.8 parameterizes the inter-atomic forces
quite intuitively in terms of spring constants for bond-stretching, bond-bending and bond-
torsion. However, the restriction to only 5 parameters poses limitations to the quantitative
validity of the model. The 4NNFC model of Dresselhaus et al.6 contains 12 free parame-
ters. They restricted the model to diagonal force constants, i.e., displacement of an atom
parallel/perpendicular to the line that connects the atom to its nth neighbor causes only a
parallel/perpendicular force on the neighbor. Fig 2.3 c) demonstrates that the diagonal approx-
imation breaks down for the second-nearest neighbor interaction: The angular spring-constant
γ1 which tries to preserve the 120 degree bonding angle at atom 1 gives rise to a horizontal
and vertical force component acting on atom 2 as atom 0 is displaced in the direction towards
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atom 2. In Fig 2.3 we show our 4NNFC fit with (a) and without (b) inclusion of the off-
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Figure 2.3: 4NNFC fit (black solid lines) to the ab-initio phonon dispersion of graphene (grey
lines), a) including off-diagonal force constants, b) excluding off-diagonal force constants. c.)
Demonstration of the off-diagonal force-constants for the second-nearest neighbor interaction
in graphene.

diagonal force constants for the second-nearest neighbor interaction. The off-diagonal term
considerably improves the fit and leads to and almost perfect agreement with the ab-initio
calculations for the acoustic modes. We also obtain a general good agreement for the optical
modes. Two discrepancies remain, however, and can only be solved through the inclusion of
long-range force constants: The overbending of the LO mode at Γ and the strong dip of the
highest optical branch around K.

2.3 Double resonant Raman scattering of single- and

few-layer graphene

Raman spectroscopy has been a frequently used tool for the characterization of graphite and
of carbon nanotubes. The typical spectrum of graphite displays three prominent peaks. The
peak around 1582 cm−1, commonly called the G line, is due to 1st order inelastic scattering of
a photon, exciting a Raman active E2g phonon (in-plane optical mode), at the Γ point. The
position of the G line is independent of the laser energy. In contrast, the D line around 1350
cm−1 shifts to higher frequencies with increasing incident laser excitation energies. Further-
more, its relative signal strength (compared to the G line) depends strongly on the amount of
disorder in the graphitic material. The associated overtone 2D around 2700 cm−1 is present
even in the absence of a D signal.

The different experimental findings related to the dispersive D and 2D bands were explained
by Thomsen and Reich within the framework of double resonant Raman scattering.10 We recall
the mechanism in Fig. 2.4: In the ordinary (single-resonant) Raman mechanism, a photon is
absorbed through vertical excitation of an electron. The electron falls vertically back to
the ground state through the emission/absorption of a phonon with zero wave-vector and
emission of a photon with lower/higher energy than the initial photon. The energy shift thus
corresponds directly to the energy of the zone-center phonon which has E2g symmetry in the

10S. Reich and C. Thomsen, Phil. Trans. R. Soc. Lond. A 362, 2271 (2004).
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case of graphene and graphite. Due to the linear crossing of the π bands around the high
symmetry point K, this process is possible in the whole infrared and visible range of light.
Since both excitation and de-excitation of the electron are vertical, it is always the zone-center
phonon that is excited. Consequently, the Raman peak position does not depend on the
incoming laser light frequency and is always located at 1582 cm−1.

An example for a double-resonant process is depicted in Fig. 2.4 b): an electron is excited
vertically from A to B by the incoming photon. It is then scattered elastically through the
influence of a defect to another point (C) in the band structure of graphite. The transition
between B and C is “horizontal” because no energy is lost during the elastic collision. Since the
intensity of the corresponding Raman peak depends on the presence of defects (or disorder),
it has been named the D line. The electron can recombine with the hole at A through a non-
vertical transition, i.e., by emitting a phonon with the corresponding wave-vector difference
q. If B and C are located on the cones around two inequivalent high symmetry points K and
K’, the excited phonon is on the highest optical branch (HOB) along the high-symmetry line
K → M and has a frequency around 1350 cm−1. A change of the incoming photon frequency
changes the phonon momentum from q to q′ and thus its frequency (see Fig. 2.4 c). The
D-line thus disperses as a function of the incoming laser energy. It can be easily verified from
Fig. 2.4 that the dispersion is proportional to the slope of the HOB around K and inversely
proportional to the slope of the electronic bands around K. The 2D line is caused by the

Figure 2.4: Scheme of the resonant Raman model: a) Single-resonant Raman scattering due
to vertical electron excitation and de-excitation near the linear crossing of the π bands at
K; b) double-resonant Raman scattering involving non-vertical electronic transitions; c) high-
frequency phonon mode dispersion of graphene. The circles mark the phonons that are excited
in the single and double-resonant processes.
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emission (or absorption) of two phonons with finite momentum q. In the picture of Fig. 2.4
b) this means that the defect mediated horizontal transition between B and C is replaced
by an (almost horizontal) transition involving the emission of a phonon. The mechanism is
independent of the presence of defects which explain why the 2D line is visible also in very
pure graphite/graphene. The 2D line is located around 2700 cm−1.

In the original paper on the double-resonant Raman effect11 good quantitative agreement
with the experimentally measured D-line dispersion of about 50 cm−1/eV was claimed. How-
ever, we found during our work on the Raman spectra of single and multi-layer graphene [23]
that the double-resonant Raman model underestimates the experimental D-line dispersion by
about a factor of 2 if one uses standard ab-initio calculations of the electronic band structure
and phonon dispersion. This discrepancy could be due to
(i) an overestimation of the Fermi velocity, i.e., the slope of the electronic π bands around K
by a factor of 2,
(ii) an underestimation of the slope of the highest optical phonon branch around K by factor
of 2, or
(iii) a failure of the double-resonant Raman model (e.g., the neglect of electron-electron and
electron-hole correlation).
In section 2.6, we will show that option (i) can be ruled out since evaluation of the quasi-
particle band-structure on the level of the GW-approximation renders renders an even higher
value for the Fermi velocity than standard DFT-LDA calculations. We checked for the impor-
tance of electron-hole interaction by calculating the optical absorption spectrum of graphite
with the Bethe-Salpeter equation. We found a slight red-shift of the spectrum (which almost
cancels the blue-shift of the spectrum due to electron-electron correlation), but very weak
mixing between different electron-hole pairs. Thus option (iii) could be ruled out as well. In
section 2.4, we will show that it is indeed a failure of standard DFT calculations for phonons
in graphite that lead to the observed discrepancy between measured and calculated D-line
dispersion.

In collaboration with the group of K. Ensslin at ETH Zürich, we have investigated the
differences in the Raman spectra of graphite, single-layer graphene, and multi-layer graphene
[23,25,28]. The most prominent difference between the spectra of the single and the double-
layer is the width of the 2D line which splits into different sub-peaks for the double-layer. For
the interpretation of the splitting12, we used the double-resonant Raman model, taking into
account the splitting of the electronic π-bands as one goes from the single layer to the double
layer of graphene. (See Fig. 5 of Ref. [23] which is reprinted on the following pages.). The
use of ab-initio electronic bands and phonon dispersion enabled us to quantitatively explain
the splitting of the 2D line, but the amount of the splitting was underestimated by a factor of
2. As in the case of the D-line dispersion, we know now that this factor of 2 can be explained,
if the phonon dispersion of the highest optical branch around K is calculated including the
effects of electron-electron correlation (see section 2.4).

11C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).
12The interpretation was motivated by A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F.

Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
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ABSTRACT

We present Raman spectroscopy measurements on single- and few-layer graphene flakes. By using a scanning confocal approach, we collect
spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene
can be distinguished from double- and few-layer by the width of the D′ line: the single peak for single-layer graphene splits into different
peaks for the double-layer. These findings are explained using the double-resonant Raman model based on ab initio calculations of the
electronic structure and of the phonon dispersion. We investigate the D line intensity and find no defects within the flake. A finite D line
response originating from the edges can be attributed either to defects or to the breakdown of translational symmetry.

The interest in graphite has been revived in the last two
decades with the advent of fullerenes1 and carbon nanotubes.2

However, only recently, single- and few-layer graphene could
be transferred to a substrate.3 Transport measurements
revealed a highly tunable two-dimensional electron-hole gas
with a linear energy dispersion around the Fermi energy
embedded in a solid-state environment.4,5Going to few-layer
graphene, however, disturbs this unique system in such a
way that the usual parabolic energy dispersion is recovered.
The large structural anisotropy makes few-layer graphene
therefore a promising candidate to study the rich physics at
the crossover from bulk to purely two-dimensional systems.
Turning on the weak interlayer coupling while stacking a
second layer onto a graphene sheet leads to a branching of
the electronic bands and the phonon dispersion at the K point.
Double-resonant Raman scattering.6 which depends on
electronic and vibrational properties, turns out to be an
ingenious tool to probe the lifting of that specific degeneracy.
We report on Raman mapping of single- and few-layer

graphene flakes resting on a silicon oxide substrate. Lateral
resolution of 400 nm allows one to address neighboring
sections with various layers of graphene down to a single
graphene sheet, previously determined with the scanning
force microscope (SFM). We find that the integrated G line
signal is directly correlated with the thickness of the graphitic
flake and is shifted upward in frequency for double- and

single-layer graphene compared to that of bulk graphite. The
mapping of the peak width of the D′ line shows a strong
contrast between single- and few-layer graphene. Such a
pronounced sensitivity to the transition to the very last layer
offers an optical and nondestructive method to unambigu-
ously detect single-layer graphene. In addition, we locally
resolve the structural quality of the flake by investigating
the D band, which is related to elastic backscattering. The
map of the integrated D line signal of a graphitic flake with
double- and single-layer sections shows that the inner part
of the flake is quasi-defect-free, whereas edges and steps
serve as scatterers. Finally, we calculate the splitting of the
D′ line as a function of the number of graphene layers by
following the recent work of Ferrari et al.,7 who explained
the splitting within the double-resonant Raman model.6 The
comparison between experimental data and theory confirms
the qualitative validity of the double-resonant Raman model
but demonstrates quantitative differences between theoryand
experiment. In particular, the model, when based on first-
principles calculations, predicts a much smaller splitting of
the peaks.

The graphite films were prepared by mechanical exfolia-
tion of highly oriented pyrolytic graphite (HOPG) and
subsequent transfer to a highly doped Si wafer with a 300
nm SiO2 (atomic oxidation process) cap layer.3,8 The
combination of optical microscopy using phase contrast and
SFM makes it possible to locate flakes with various thick-
nesses down to a monolayer with lateral extensions in the
micrometer range. The Raman spectra were acquired using
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a laser excitation of 532 nm (2.33 eV) delivered through a
single-mode optical fiber, whose spot size is limited by
diffraction. Using a long working distance focusing lens with
a numerical aperture NA) 0.80, we obtained a spot size of
about 400 nm. With a very low incident power of 4-7 µW,
heating effects can be neglected.
The Raman spectrum of graphite has four prominent peaks

(Figure 3: for a recent review, see ref 9). The peak around
1582 cm-1, commonly called the G line, is caused by the
Raman active E2g phonon (in-plane optical mode), close to
theΓ point. TheD line around 1350 cm-1exhibits two remark-
able features: its position shifts to higher frequencies with
increasing incident laser excitation energies10 and its relative
signal strength (compared to the G line) depends strongly
on the amount of disorder in the graphitic material.10,11The
associated overtone D′ around 2700 cm-1 is pronounced even
in the absence of a D signal. Finally, the overtone of the G
line, the G′ line, is located at 3248 cm-1, which is more
than twice the energy of the G line. The different experi-
mental findings related to the dispersive D, D′ bands could
be explained by Thomsen and Reich within the framework of
double resonant Raman scattering,6 which was extended to
other phonon branches by Saito et al.12 The electronic and
vibrational properties of graphite are dominated by the sp2

nature of the strong intraplane covalent bonds. Raman spectra
for multiple graphene layers can be compared qualitatively
and quantitatively while investigating flakes with sections
of various thicknesses. In Figure 1a, the SFM micrograph
of a graphite flake with different layers is presented: the
bare SiO2 (indicated by “0”) is surrounded by single-layer

sections with steps of up to two, four, and six layers. The
different step heights are clearly depicted in Figure 1b, where
a cross section of Figure 1a (see white dashed arrow) is
shown. By scanning the flake and collecting for each spot
the complete Raman spectrum, we can subsequently filter
specific spectral data for a spatially resolved data point and
construct false-color 2D plots. In Figure 1c, the intensity of
the G peak is integrated from 1537 to 1622 cm-1. We find
a remarkable correlation with the SFM graph: brighter
regions correspond to thicker sections. The cross section in
Figure 1d shows a steplike behavior, perfectly correlated with
the topographical changes shown in Figure 1b. In Figure 1e,
we plot the fwhm (full width at half-maximum) of the D′
line. It shows the narrowing at the transition to a single-
layer (see, e.g., Figure 3) and gives an evident contrast be-
tween single- and few-layer graphene sections. The two
discrete levels in the fwhm of the D′ line shown in Figure
1f related to a single layer (∼30 cm-1) and two and more
layers (∼60 cm-1) suggest that the width of the D′ line can
be used as a detector for single-layer graphene.Raman spectro-
scopy can therefore be used to count the layers of a thin
graphite stack and to discriminate between single and double
layers. Combined with the double-resonant Raman scattering
mechanism, an optical setup using light in the visible range
turns out to be an alternative to scanning force microscopy,
which requires stacking folds as height references.

Transport measurements show that the quality of the finite
graphitic flakes on the silicon oxide matrix obtained with
the technique explained above is remarkable: electronic
mobilities up to 15 000 cm2 (Vs)-1 were estimated from
transport experiments.4,5We point out also that the Raman
spectroscopy reveals quasi-defect-free graphitic sheets via
the absence of a D band signal. First experiments have related
the intensity of the D band to the structural coherence of
the graphite material. In fact, it is inversely proportional to
the crystallite grain size.11 The appearance of the D band
can, however, be related to the occurrence of defects and
disorder in general, as shown in experiments with boron-
doped and electrochemically oxidized HOPG.13With micro-
Raman mapping, we are able to localize the spatial origin
of the defects, which can have important consequences for
the electronic properties.14 From cross-correlating the SFM
micrograph in Figure 2a with the Raman map of the
integrated D line (1300-1383 cm-1) intensity in Figure 2c,
we infer directly that the edges of the flake and also the
borderline between sections of different heights contribute
to the D band signal, whereas the inner parts of the flakes
do not. This is somewhat surprising because, for thinner
flakes, the influence of a nearby substrate on the structural
quality should be increasingly important. In the cross-section
in Figure 2d, we see clearly that the D line intensity is
maximal at the section boundaries, which can be assigned
to translational symmetry breaking or to defects. However,
we want to emphasize that the D line is still 1 order of
magnitude smaller than the G line. In Figure 2e, spatially
averaged D mode spectra from the two steps shown in Figure
2d are presented. The frequency fits well into the linear
dispersion relation of peak shift and excitation energy found

Figure 1. (a,b) SFMmicrograph and cross-sectional plot (indicated
with the white dashed arrow; lateral average over 400 nm) of a
few-layer graphene flake with central sections down to a single
layer. Raman maps (dashed square corresponding to the SFM image
in (a)) showing (c) the integrated intensity of the G line and (e)
the fwhm of the D′ line. The related cross sections (d,f) are aligned
(vertical dashed lines) with the height trace.
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in earlier experiments.10 In addition, we find that the peak
is narrower and downshifted at the edge of the single layer,
while it is somewhat broader and displays a shoulder at the
crossover from the double to the single layer.
In parts a and b of Figure 3, we compare the Raman

spectra of the double- and single-layer graphene shown in
Figure 2b and labeled with A and B. The Raman signal is
significantly altered when peeling off the penultimate layer:
the G peak decreases strongly in intensity and shifts toward
higher wave numbers. In connection with Figure 1b, we
already stated that the integrated G line signal is monotonic-
ally increasing with increasing flake thickness. To compare
data of different flakes and measurement runs, we turn our

attention to the ratio of the integrated intensities of the G
and D′ line, plotted in Figure 4a. Most of the changes can
be attributed to the decrease of the G line because the spectral
weight of the D′ band changes only slightly. The intensity
ratio increases almost linearly from one to four layers. In
Figure 4b, the dependence of the G peak position on the
layer number is investigated. Spectral data of various sections
on different flakes were averaged. The frequency shifts
toward higher wave numbers at the crossover to the double-
and especially to the single-layer graphene. However, in the
case of single-layer graphene, it is accompanied by an
important statistical spread of the collected data. In Figure
4c, representative G peak spectra for single-, double-layer
graphene, and HOPG are presented. It is important to note
that, in contrast to the G line, the corresponding overtone
band, the G′ line, does not change its spectral position as a
function of the number of layers.
The most prominent difference in the spectra of single-

layer, few-layer, and bulk graphite lies in the D′ line: the
integrated intensity of the D′ line stays almost constant, even
though it narrows to a single peak at a lower wave number
at the crossover to a single layer (Figure 3). The width of
the D′ peak or, at high resolution, its splitting into different
subpeaks (Figure 5) is explained in the following in the
framework of the double-resonant Raman model.6,7 The
model explains the D′ line in the following way (see Figure
6a): an electron is vertically excited from point A in theπ

band to point B in theπ* band by absorbing a photon. The
excited electron is inelastically scattered to point C by
emission of a phonon with wave vectorq. Because the energy
of this phonon (≈ 150 meV) is small compared with the
photon energy of 2.33 eV, we have drawn the line horizon-
tally for simplicity. Inelastic backscattering to the vicinity
of point A by emission of another phonon with wave vector
≈ q and electron-hole recombination leads to emission of
a photon with an energy about 300 meV less than the energy
of the incident photon. In principle, two other double-
resonant Raman processes, involving the phononsq′ andq′′,
are possible as well. However, it was argued in ref 7 that
their weight is very low.15

In Figure 6, we compare the electronic band structure of
the single layer with the ones of the double layer and of
bulk graphite. All three dispersion relations were calculated

Figure 2. (a) SFM micrograph of a graphitic flake consisting of
one double- and two single-layer sections (white dashed line along
the boundaries), highlighted in the Raman map (b) showing the
fwhm of the D′ line. (c) Raman mapping of the integrated intensity
of the D line: A strong signal is detected along the edge of the
flake and at the steps from double- to single-layer sections. (d)
Raman cross section (white dashed arrow in (c)): staircase behavior
of the integrated intensity of the G peak (solid line) and pronounced
peaks at the steps for the integrated intensity of the D line (dashed
line). (e) Spatially averaged D peak for the crossover from double
to single layer (disk, dashed line) and from single layer to the SiO2

substrate (square, solid line).

Figure 3. Raman spectra of (a) single- and (b) double-layer
graphene (collected at spots A and B, see Figure 2b).

Figure 4. (a) Plot of the ratio of the integrated intensities of the
G and D′ peak vs number of stacked layers (average value and
standard deviation). (b) G line frequency vs number of stacked
layers (average value and standard deviation). (c) G peak for HOPG
(upper peak), double- (middle peak), and single-layer (lower peak)
graphene. The vertical dashed line indicates the reference value
for bulk graphite.
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from first principles, using density-functional theory in the
local density approximation.16 In the double layer, theπ and
π* bands split into two bands each. This gives rise to four
different possible excitations. We have calculated the cor-
responding oscillator strengths19 and found that, for the
excitation energy of 2.33 eV, transitions 1-3 and 2-4 have
negligible weight, while transitions 1-4 and 2-3 (displayed
in Figure 6b) have almost equal weight. For each of the two
dominant vertical transitions, there are two possible hori-
zontal transitions. The corresponding electron-phonon cou-
pling matrix elements for the phononsq0 to q3 are almost
equal.20 In theory, we therefore expect a splitting of the D′

band into four peaks of almost equal height. Our experi-
mental data (Figure 5) shows indeed that the D′ line for the
double layer can be decomposed into four peaks. However,
the outer two peaks (corresponding to the phononsq0 and
q3) have very low weight in the experimental data. We
calculated from first principles21 the phonon frequenciesν1
and ν2, corresponding to the wave vectorsq1 andq2. The
frequencies of the highest optical branch are given in Table
1. Because of the weak interlayer coupling, the degeneracy
of this branch is lifted. However, the frequency difference
remains weak (<1 cm-1) and does not significantly contrib-
ute to the experimentally observed splitting of about 19 cm-1

of the D′ line (see Figure 5). Table 1 furthermore gives the
value for 2(ν2 - ν1). We note that the value obtained from

our first-principles calculation is only half as large as the
experimentally observed splitting of about 19 cm-1. This
discrepancy is related to the fact that the double-resonant
Raman model based on ab initio calculations also predicts a
value for the dispersion of the D′ line with incident laser
energy that amounts only to about half of the experimentally
observed value of 99 cm-1/eV.25We conclude therefore that
the double-resonant Raman model can qualitatively explain
the fourfold splitting of the D′ line in the double layer, but
the amount of the splitting and the relative heights of the
peaks are not properly described within this model.26

In bulk graphite, theπ andπ* bands split into a continuum
of bands, i.e., they disperse in the directionkz perpendicular

Figure 5. D′ peaks for an increasing number of graphene layers
along with HOPG as a bulk reference. The dashed lines show the
Lorentzian peaks used to fit the data, the solid lines are the fitted
results. The single peak position for the single-layer graphene is at
2678.8( 1.0 cm-1. The peak position of the two innermost peaks
for double-layer graphene are 2683.0( 1.5 and 2701.8( 1.0 cm-1.
On the left, the value for the splitting from double-layer graphene
up to HOPG is presented. All peaks are normalized in amplitude
and vertically offset.

Figure 6. Electronic band structure along the high-symmetry lines
Γ-K and K-M: (a) single-layer graphene, (b) double-layer graph-
ene, and (c) bulk graphite. For bulk graphite, we display the band
structure in the direction parallel to the graphene planes for different
values of the transverse wave vectorkz. Vertical arrows denote
vertical transitions by 2.33 eV from a valence (π) band to a conduc-
tance (π*) band. Horizontal arrows denote transitions between two
states of almost equal energy by coupling to a phonon of wave
vectorqi (the corresponding phonon frequencies are displayed in
Table 1). Dashed horizontal lines denote transitions with consider-
ably less weight than the solid horizontal lines (see text).

Table 1. Frequencies of the Optical Phonons Involved in the
Double-Resonant Raman Modela

ν1/cm-1 ν2/cm-1 2(ν2 - ν1)/cm-1

bulk 1393.2/1393.6 1402.9/1403.1 19.4/19.0

double layer 1395.6/1395.6 1400.0/1400.6 8.8/10.0

single layer 1398.1

a The corresponding phonon wave vectorsq1 andq2 are determined from
the ab initio electronic band structures of Figure 6. The splitting of the
frequencies in the double-layer and bulk is due to the (weak) interlayer
interaction.
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to the layer. In Figure 6c, we display the bands for three dif-
ferent values ofkz. In the joint density of states, the vertical
transitions forkz) 0 have the dominant weight and are thus
considered in our calculations. Because the splitting between
the bands is much more pronounced than for the double layer,
the value for 2(ν2- ν1) is about a factor of 2 higher than for
the double layer. This is in agreement with the experimental
data, see Figure 5, where the splitting increases likewise by
about a factor of 2 between the double layer and bulk graph-
ite. As in the case of the double layer, there are quantitative
differences between theory and experiment for graphite as
well: First-principles calculations of the oscillator strengths
and of the electron-phonon coupling matrix elements predict
an almost equal height of the peaks, whereas the experiment
shows that the lower-frequency peak has a strongly reduced
weight. The peaks corresponding to the horizontal transitions
q0 andq3 are both missing in the experimental spectrum.
Even though some quantitative differences remain, the

double-resonant Raman model explains well the observed
differences in the D′ line as we go from the single-layer via
few-layer systems to the bulk limit. The quantitative differ-
ences may be an indicator that some essential effects are
not properly included in the model. e.g., the role of excitonic
effects during the electron-hole pair excitation in the double-
resonance process remains to be understood. The importance
of these effects has been recently demonstrated for electronic
excitations in carbon nanotubes (both semiconducting and
metallic).27,28A similar importance may be therefore expected
for processes that involve electronic excitations in graphite.29

In conclusion, Raman mapping is a powerful tool to
investigate single- and few-layer graphene flakes. It turns
out that the width of the D′ line is highly sensitive to the
crossover from single- to double-layer graphene, which is
explained by a peak splitting following the double-resonant
Raman model together with ab initio electronic band structure
calculations. A remaining question is the decrease of the G
line intensity with decreasing layer number compared to the
almost constant spectral weight of the D′ line and the
accompanied upshift of its frequency for double- and single-
layer graphene. The structural quality of the flakes is studied
by analyzing the D line intensity: no defects are detected in
the inner part of the flake. The D line signal from the
boundaries of the individual sections of the flake suggest
that they act as an elastic scatterer.
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2.4 Effects of electron-electron correlation on the

electron-phonon coupling in graphite

In general, for both metals and insulators, density-functional perturbation theory3 using LDA
(local-density approximation) or GGA (generalized-gradient approximation) gives phonon dis-
persions in close agreement with experimental results. For graphene and graphite, we have
seen in section 2.2 that DFT-GGA or DFT-LDA calculation are in excellent agreement with
experimental data. Only the highest optical phonon branch (HOB) around the high-symmetry
point K seems to display a pronounced deviation from the most recent measurement using
inelastic X-ray scattering13. But what is special about this particular branch around K? Why
does standard DFT work for all branches all over the Brillouin zone but fails at this particular
point? Since the HOB around K is responsible for the D and 2D lines in the Raman spectra,
the understanding of this failure is particularly important. As we mentioned in section 2.3:
If the frequently used double-resonant Raman model10 is to explain quantitatively the disper-
sion of the D line and the splitting of the 2D line for double and multi-layer graphene, the
slope of the HOB around K should be factor 2 higher than obtained in standard DFT-LDA or
DFT-GGA calculations.

The problem was solved in collaboration with M. Lazzeri, and F. Mauri (IMPMC, Université
Pierre et Marie Curie, Paris) [34]. Starting point of the work was the observation that the
HOB displays a Kohn anomaly at K, i.e., a kink in the phonon dispersion.14 Furthermore, it
had been shown14 that the linear slope of the HOB around K is proportional to the square of
the electron-phonon coupling matrix element (EPC) between the HOB and the π bands. We
have evaluated in Ref. [34] the EPC in the GW-approximation, i.e., taking into account the
electron-electron correlation. We found a strong renormalization of the EPC, which almost
doubles the slope of the HOB around K (with respect to standard DFT calculations). This
explains the missing factor 2 in the ab-initio description of the D line dispersion and the 2D
line splitting and yields a phonon dispersion in good agreement with recent inelastic X-ray
scattering measurements15.

The failure of GGA and LDA to describe the HOB around K seems to be related to the fact
that these functionals are not self-interaction (SI) free: Since vxc, the correlation and exchange
energy functional, depends on the total electron density, a particular electron interacts not only
with all the other electrons but also with itself. This self-interaction is often negligible. But it
can become important for localized states which tend to be artificially delocalized by functionals
without SI correction.16. Why does self-interaction affect in particular the HOB at K? The
answer lies in the particular displacement pattern (see Fig. 3 of Ref. [34] which is reprinted
on the following pages). In the equilibrium geometry, the π electrons are delocalized and
equally shared by all bonds (which all have the same length and have a character intermediate
between single and double). The HOB at K leaves all bond angles unchanged at 120 degrees
but leads to alternating shorter and longer bonds. The shorter bonds acquire slightly more
double bond character and the longer bonds become more single-bond like (panel c of Fig. 3).
A self-interaction free functional renders the localization of electrons in the “double” bonds

13J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, Phys. Rev. Lett. 92, 075501 (2004).
14Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004).
15A. Grüneis et al., to be published.
16See, e.g., S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
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energetically more favorable than the LDA or GGA functional. Consequently, the total energy
of the lattice with displaced atoms is lowered in SI free calculation with respect to LDA or
GGA calculations. Consequently, the HOB frequency at K is considerably lower if one uses a
self-interaction free approach.

Some indication that the above explanation for the failure of the LDA and GGA function-
als is correct is given by our phonon calculations with the hybrid B3LYP functional. While
B3LYP is not completely self-interaction free either, it contains at least a partial contribution
of non-local (and self-interaction free) Fock-exchange. Indeed, the B3LYP leads to a con-
siderably lower HOB frequency at K while giving results in good agreement with LDA and
GGA everywhere else. By “tuning” the percentage of admixture of Fock-exchange to the
exchange-correlation functional, it is possible to obtain the same HOB frequency as within the
GW approximation. In the limit of the pure Hartree-Fock approximation, the HOB becomes
imaginary. This means that within Hartree-Fock, the most stable configuration of graphene
would be the distorted configuration of Fig. 3 c).
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We compute the electron-phonon coupling sEPCd of selected phonon modes in graphene and graphite using
various ab initio methods. The inclusion of nonlocal exchange-correlation effects within the GW approach
strongly renormalizes the square EPC of the A18 K mode by almost 80% with respect to density-functional
theory in the LDA and GGA approximations. Within GW, the phonon slope of the A18 K mode is almost two
times larger than in GGA and LDA, in agreement with phonon dispersions from inelastic x-ray scattering and
Raman spectroscopy. The hybrid B3LYP functional overestimates the EPC at K by about 30%. Within the
Hartree-Fock approximation, the graphene structure displays an instability under a distortion following the A18
phonon at K.
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The electron-phonon coupling sEPCd is one of the funda-
mental quantities in condensed matter. It determines phonon
dispersions and Kohn anomalies, phonon-mediated super-
conductivity, electrical resistivity, Jahn-Teller distortions, etc.
Nowadays, density-functional theory sDFTd within local and
semilocal approximations is considered the “standard model”
to compute ab initio the electron-phonon interaction and
phonon dispersions.1 Thus, a failure of DFT would have ma-
jor consequences in a broad context. In GGA and LDA
approximations,2 the electron exchange-correlation energy is
a local functional of the charge density, and the long-range
character of the electron-electron interaction is neglected.
These effects are taken into account by Green’s-function ap-
proaches based on the screened electron-electron interaction
W such as the GW method.3 GW is considered the most
precise ab initio approach to determine electronic bands, but
so far it has never been used to compute EPCs nor phonon
dispersions. The semiempirical B3LYP functional2 partially
includes long-range Hartree-Fock sHFd exchange. B3LYP
has been used to compute phonon frequencies but, so far, not
the EPC.
The EPC is a key quantity for graphene, graphite, and

carbon nanotubes. It determines the Raman spectrum, which
is the most common characterization technique for graphene
and nanotubes4,5 and the high-bias electron transport in
nanotubes.6 Graphene and graphite are quite unique systems
in which the actual value of the EPC for some phonons can
be obtained almost directly from measurements. In particu-
lar, the square of the EPC of the highest optical-phonon
branch sHOBd at the symmetry K point is proportional to the
HOB slope near K.7 The HOB K slope can be measured by
inelastic x-ray scattering sIXSd8,9 or by the dispersion of the
D and 2D lines as a function of the excitation energy in a
Raman experiment.5,10–13 A careful look at the most recent
data suggests that the experimental phonon slopes sand thus
the EPCd are underestimated by DFT.5 The ability of DFT
sLDA and GGAd in describing the EPC of graphene was also
questioned by a recent theoretical work.14

Here, we show that: sid the GW approach, which provides
the most accurate ab initio treatment of electron correlation,
can be used to compute the electron-phonon interaction and
the phonon dispersion; siid in graphite and graphene, DFT
sLDA and GGAd underestimates, by a factor of 2, the slope
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of the phonon dispersion of the highest optical branch at the
zone boundary and the square of its EPC by almost 80%; siiid
GW reproduces the experimental phonon dispersion near K,
the value of the EPC, and the electronic band dispersion; sivd
the B3LYP hybrid functional2 gives phonons close to GW

but overestimates the EPC at K by about 30%; and svd within
HF the graphite structure is unstable.
In Fig. 1, we show the phonon dispersion of graphite

computed with DFTGGA.
15 In spite of the general good agree-

ment with IXS data, the situation is not clear for the HOB
near K. In fact, despite the scattering among experimental
data, the theoretical HOB is always higher in energy with
respect to measurements, and the theoretical phonon slope
sfor the HOB near Kd is underestimating the measured one.
It is also remarkable that while the DFT K frequency is

,1300 cm−1, the highest measured is much lower at
,1200 cm−1.

The dispersion of the HOB near K can also be obtained
by Raman measurements of the graphene and graphite D line
s,1350 cm−1d.12 The D-line frequency vD depends on the
energy of the exciting laser eL. According to the double-
resonance model,12,13 eL activates a phonon of the HOB with
momentum q=K+2Dq along the K-M line5 and energy
"vD. Dq is determined by eK−Dq,pp−eK−Dq,p=eL−"vD /2
where ek,p/pp is the energy of the p /pp electronic state with
momentum k. Thus, by measuring vD vs eL and considering
the electronic p bands dispersion from DFT, one can obtain
the phonon dispersion vD vs q.12 The phonon dispersion thus
obtained is very similar to the one from IXS data and its
slope is clearly underestimated by DFT sFig. 2, upper paneld.
The same conclusion is reached by comparing the D-line
dispersion vD vs eL sdirectly obtained from measurementsd
with calculations sFig. 2, lower paneld. Note that the disper-
sions of the Raman 2D line5 is consistent with that of the D
line and thus in disagreement with DFT sLDA and GGAd as
well.

The steep slope of the HOB near K is due to the presence
of a Kohn anomaly for this phonon.7 In particular, in Ref. 7,
it was shown that the HOB slope is entirely determined by
the contribution of the phonon self-energy between p bands
sPqd to the dynamical matrix Dq. vq=ÎDq /m is the phonon
pulsation, where m is the mass. For a given phonon with
momentum q,

Dq = Bq + Pq, Pq =
4

Nk
o
k

uDsk+qdpp,kpu2

ek,p − ek+q,pp

, s1d

where the sum is performed on Nk wave vectors all over the
Brillouin zone; Dsk+qdi,kj= kk+q , iuDVquk , jl is the EPC; DVq

is the derivative of the Kohn-Sham potential with respect to
the phonon mode; and uk , il is the Bloch eigenstate with
momentum k, band index i, and energy ek,i. psppd identifies
the occupied semptyd p band. In Fig. 1 we show a fictitious

phonon dispersion vq
˜ obtained by subtracting Pq from the

dynamical matrix svq
˜=ÎBq /md for each phonon. The HOB

is the branch which is mostly affected and, for the HOB, vq
˜

becomes almost flat near K. Thus, DFT sLDA or GGAd fails
in describing the HOB slope near K, the slope which is de-
termined by Pq. Pq is given by the square of EPC divided by
p-band energies. Thus, the DFT failure can be attributed to a
poor description of the EPC or of the p-band dispersion.

In graphene and graphite, it is known that standard DFT
provides an underestimation of the p- and pp-band slopes of
,10–20%.16,17 A very precise description of the bands, in
better agreement with measurements, is obtained using
GW.16,17 We thus computed the p bands with DFT sboth
LDA and GGAd18 and GW sRef. 19d and compared with HF
sRef. 20d and B3LYP.20 Details are in Ref. 21. The different
methods provide band dispersions whose overall behavior
can be described by a scaling of the p energies.16 The dif-
ferent scaling factors can be obtained by comparing Deg, the
energy difference between the pp and p bands at the sym-
metry point M sLd for graphene sgraphited. Deg is larger in

K
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GW than in DFT sTable Id. Thus, inclusion of the GW cor-
rection to the electronic bands alone results in a larger de-
nominator in Eq. s1d, providing a smaller phonon slope and a
worse agreement with experiments. The underestimation of
the K phonon slope in DFT is thus due to the EPC.
The EPC can be computed with linear response as, e.g., in

Ref. 7 but, at present, the use of this technique within GW is
not feasible. Alternatively, the EPC associated with a phonon
mode can be determined by the variation of the electronic
band energies by displacing the atoms according to the con-
sidered mode. In graphene, at K, there are doubly degenerate
p electronic states at the Fermi level. The HOB corresponds
to the E2g phonon at G and to the A18 at K. As an example,
we consider the EPC associated with the G-E2g phonon and
we displace the atoms according to its phonon pattern ssee
Fig. 3d. Following symmetry arguments,22 one can show that,
in an arbitrary base of the two-dimensional space of the p
bands at K, the Hamiltonian is the 232 matrix

H = 2ÎkD
G

2 lFS a b

bp − a
Dd +Osd2d , s2d

where each atom is displaced by d, uau2+ ubu2=1, and kDG
2lF

=oi,j
p,pp

uDKi,Kju
2 /4, where the sum is performed on the two

degenerate p bands. Diagonalizing Eq. s2d, we see that an
atomic displacement following the G-E2g phonon induces the
splitting DEG=eK,pp−eK,p and

kD
G

2 lF = lim
d→0

1

16
SDEG

d
D2. s3d

In analogous way, we define kDK
2 lF=oi,j

p,pp

uDs2Kdi,Kju
2 /4 for

the A18 phonon at K. Let us consider a Î33Î3 graphene
supercell. Such a cell can be used to displace the atoms fol-
lowing the K-A18 phonon sFig. 3d since the K point is re-
folded in G. Let us call DEK the splitting of the eK,p bands
induced by this displacement ssince K is refolded in G, here
eK,p denotes the energies of the G band of the supercell
corresponding to the p band at K in the unit celld. Consid-
ering the atomic distortion of Fig. 3 and displacing each
atom by d, one can show that

kDK
2 lF = lim

d→0

1

8
SDEK

d
D2. s4d

In practice, by calculating band energies in the distorted
structures of Fig. 3 and using Eqs. s3d and s4d, one obtains
the EPCs of the G-E2g and K-A18 phonons between p states.
Similar equations can be used for graphite.23 Results are in
Table I together with the computed phonon frequencies. The
EPCs from DFTGGA are in agreement with those from linear
response.7 We also remark that, within the present “frozen-
phonon” approach, the Coulomb vertex corrections are im-
plicitly included within GW.

To study the effect of the different computational methods
on the phonon slope swhich is determined by Pqd we recall
that Pq is the ratio of the square EPC and band energies fEq.
s1dg. Thus, we have to compare aq= kDq

2lF /Deg. As an ex-
ample, assuming that the change in Pq from DFT to GW is
constant for q near K,

Pq
GW

Pq
DFT .

aK
GW

aK
DFT = rGW s5d

and rGW provides the change in the K phonon slope going
from DFT to GW. To understand the results, we recall that in
standard DFT the exchange-correlation depends only on the
local electron density. In contrast, the exchange interaction in
HF and GW is nonlocal. Furthermore, in GW, correlation
effects are nonlocal since they are described through a dy-
namically screened Coulomb interaction. The hybrid func-
tional B3LYP gives results intermediate between DFT and
HF.

Both aG and aK are heavily overestimated by HF, the
K-EPC being so huge that graphene is no more stable sthe
KA18 phonon frequency is not reald. Indeed, the HF equilib-
rium geometry is a Î33Î3 reconstruction with alternating
double and single bonds of 1.40 and 1.43 Å lengths as in
Fig. 3 swith a gain of 0.9 meV/atomd. These results not only
demonstrate the major effect of the long-range character of
the exchange for the K-EPC sRef. 14d but also the impor-
tance of the proper inclusion of the screening sincluded in
GW but neglected in HFd. Notice also that aK

GW of graphite is
smaller with respect to graphene by ,10%. This is explained
by the larger screening of the exchange in graphite sdue to
the presence of adjacent layersd than in graphene. On the
contrary, within GGA and LDA, the graphite phonon fre-
quencies and EPCs are very similar to those of graphene

TABLE I. EPC of the G-E2g and K-A18 phonons computed with
various approximations. Deg seVd, kDq

2lF seV2 /Å2d, and aq

seV /Å2d are defined in the text. vG svKd is the phonon frequency of
the E2g A18 mode scm−1d. The GW vK for graphite sin parenthesisd
is not computed directly ssee the textd. i=Î−1 is the imaginary unit.

Graphene

Deg kD
G

2 lF aG vG kDK
2 lF aK vK

DFTLDA 4.03 44.4 11.0 1568 89.9 22.3 1275

DFTGGA 4.08 45.4 11.1 1583 92.0 22.5 1303

GW 4.89 62.8 12.8 – 193 39.5 –

B3LYP 6.14 82.3 13.4 1588 256 41.7 1172

HF 12.1 321 26.6 1705 6020 498 9603 i

Graphite

Deg kD
G

2 lF aG vG kDK
2 lF aK vK

DFTLDA 4.06 43.6 10.7 1568 88.9 21.8 1299

DFTGGA 4.07 44.9 11.0 1581 91.5 22.5 1319

GW 4.57 58.6 12.8 – 164.2 35.9 s1192d

c)b) K-A’
1

a) Γ-E
2g

FIG. 3. sad and sbd Patterns of the G-E2g and K-A18 phonons of
graphene. Dotted and dashed lines are the Wigner-Seitz cells of the
unit cell and of the Î33Î3 supercell. scd HF equilibrium structure.
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since these functionals do not take into account the electron-
electron interaction screening.
Concerning the phonon slope, a

G

GW is only 15% larger
than a

G

DFT. Indeed, DFT reproduces with this precision the
phonon frequency and dispersion of the HOB at G. On the
contrary, aK

GW is 60% larger than aK
DFT for graphite. This

large increase with respect to DFT could explain the dis-
agreement between DFT and the measured A18 phonon dis-
persion near K. To test this, we need to determine the GW

phonon dispersion that, using Eq. s5d, becomes vq
GW

.ÎsBq
GW+rGWPq

DFTd /m, where rGW=1.6. Moreover, we can

assume Bq
GW.BK

GW since the Bq component of the dynamical
matrix fEq. s1dg is not expected to have an important depen-
dence on q sFig. 1d. The value of BK

GW is obtained as a fit to
the measurements of Fig. 2.24 The resulting K A18 phonon
frequency is 1192 cm−1, which is our best estimation and is
almost 100 cm−1 smaller than in DFT. The phonon disper-
sion thus obtained and the corresponding D-line dispersion
are both in better agreement with measurements sFig. 2d.

The partial inclusion of long-range exchange within the
semiempirical B3LYP functional leads to a strong increase in
the EPC at K as compared to the LDA and GGA functionals.
However, comparing to the GW value, the EPC is overesti-

mated by 30% and the corresponding frequency for the K-A18

mode at 1172 cm−1 falls well below the degenerate K mode,
which is around 1200 cm−1 in the experiment8,9 sFig. 1d and
at 1228 cm−1 in our phonon calculation with B3LYP. We
have checked that tuning the percentage of HF exchange in
the hybrid functional allows to match the EPC value of the
GW approach sin which case, the K-A18 mode remains the
highest moded. This may be a good way to calculate the full
phonon dispersion of graphite/graphene within DFT, yet with
an accuracy close to the one of the GW approach.

Concluding, GW is a general approach to compute accu-
rate EPC where DFT functionals fail. Such a failure in
graphite/graphene is due to the interplay between the two-
dimensional Dirac-type band structure and the long-range
character of the Coulomb interaction.14 However, GW can be
also used in cases sin which the EPC is badly described by
DFTd where the electron exchange and correlation are more
short ranged.25
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and No. 081827d. C.A. and L.W. acknowledge French ANR
Project No. PJC05_6741. We thank D. M. Basko, A. Rubio,
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2.5 Non-adiabatic effects for the phonons of

excited graphite

Recently, the “breakdown of the Born-Oppenheimer approximation” for the description of
phonons in charged graphene has received considerable attention in the graphene community17.
The consequence of this non-adiabatic effect on the phonon frequencies is a pronounced upshift
of the Raman G line that was measured for both positive and negative charging.18 The non-
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Figure 2.5: Sketch of the effect of non-adiabaticity on the electronic occupation of the π and
π∗ bands in charged graphene (see text). Figure reprinted from Ref.18

adiabatic stiffening of the E2g2 phonon frequency in charged graphene is explained in Fig. 2.5.
Panel A shows the electronic band-structure and band-filling in the equilibrium geometry. The
conical intersection of the π and π∗ bands (“Dirac point”) is located at the high symmetry
point K (corner of the hexagonal 1st Brillouin zone). Since the system is negatively charged,
the π∗ band is filled up to the (shifted) Fermi level ǫF . During phononic displacement of the
atoms (represented in panel D), the linear crossing of the π and π∗ bands remains preserved,
but the crossing point (“Dirac point”) is shifted away from K. In the adiabatic case the
electronic occupation follows the displaced cone. The states remain filled up to ǫF and the
Fermi surface follows the Dirac-point displacement. In the non-adiabatic case (panel C), the
cone is moving so quickly that the electrons do not “have time” to readjust. The electron
momentum is conserved and a state with momentum k is occupied if the state with the same
k is occupied in the unperturbed case. As a consequence, the Fermi surface is the same as in
the unperturbed case and does not follow the Dirac-cone displacement. Due to the movement

17M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 (2006)
18S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, and F. Mauri, Nature Mat.

6, 198 (2007).
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of the cone, some electrons are shifted upwards in energy. This raises the total energy of the
system with respect to the adiabatic case and leads thus to the observed stiffening of the G
line. The argument works analogously for positively charged graphene where the Fermi level
is shifted downwards into the π band.

Motivated by this simple picture, we have checked that non-adiabaticity can be approx-
imately taken into account in DFT calculations by “freezing” the electronic occupation to
the one of the unperturbed geometry. (The default is that, upon phononic displacement, the
occupation is readjusted self-consistently.) Numerical calculations for charged graphene give
results very close to the results obtained by the more precise time-dependent perturbation
theory.19

In collaboration with the groups of H. Petek (Pittsburgh,USA) and of M. Kitajima (Tsukuba,
Japan), we have studied in Ref. [31] the coherent excitation of phonons in graphite by
femtosecond-laser pulses, in particular the femtosecond dynamics of the 47.5 THz coherent
E2g optical phonon. Upon <10 fs laser excitation, the phonon frequency upshifts proportion-
ally to the photo-excitation density and relaxes within 0.5 ps to a stationary value through
electron-phonon coupling. Our constrained DFT calculations have revealed that neutral ex-
citations cause non-adiabatic effects on the frequency of the E2g mode. Neutral excitation
through laser pulses can thus have a similarly strong impact on the frequency as charging.
Furthermore, the frequency upshift reflects the energy distribution of excited electrons. Thus,
measuring the phonon frequency as a function of time allows to draw conclusions on the
relaxation pathway of hot carriers by electron-electron and electron-phonon interaction.

19A.M. Saitta, L. Wirtz, M. Lazzeri, A. Rubio, and F. Mauri, unpublished.
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We report the ultrafast dynamics of the 47.4 THz coherent phonons of graphite interacting with a photoin-
duced nonequilibrium electron-hole plasma. Unlike conventional materials, upon photoexcitation the phonon
frequency of graphite upshifts, and within a few picoseconds relaxes to the stationary value. Our first-principles
density functional calculations demonstrate that the phonon stiffening stems from the light-induced decoupling
of the nonadiabatic electron-phonon interaction by creating a nonequilibrium electron-hole plasma. Time-
resolved vibrational spectroscopy provides a window on the ultrafast nonquilibrium electron dynamics.
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Graphite possesses highly anisotropic crystal structure,
with strong covalent bonding of atoms within and weak van
der Waals bonding between the hexagonal symmetry
graphene sheets. The layered lattice structure translates to a
quasi-two-dimensional s2Dd electronic structure, in which
the electronic bands disperse linearly near the Fermi level
sEFd and form pointlike Fermi surfaces. The discovery of
massless relativistic behavior of quasiparticles at EF of
graphene and graphite has aroused great interest in the nature
of carrier transport in these materials.1–3 Because of the lin-
ear dispersion of the electronic bands in graphene, the qua-
siparticle mass associated with the charge carrier interaction
with the periodic crystalline lattice nearly vanishes, leading
to extremely high electron mobilities and unusual half-
integer quantum Hall effect.1,2 Since graphite has a quasi-2D
band structure very similar to that of graphene, these elec-
tronic properties may be expressed also in graphite.
The electron-phonon se-pd interaction contributes to the

carrier mass near EF and limits the high-field transport
through the carrier scattering. The strong e-p interaction in
graphite is a distinctive characteristic of ineffective screening
of the Coulomb interaction in semimetals.4,5 It is expressed
in the phonon frequency shift by carrier doping6 and the
strong electronic renormalization of the phonon bands sKohn
anomaliesd.7 Time-resolved measurements on the optically
generated nonthermal electron-hole se-hd plasma in graphite
provide evidence for the carrier thermalization within 0.5 ps
both through electron-electron se-ed scattering and optical
phonon emission.8 The nonthermal carriers decay nonuni-
formly in phase space because of the anisotropic band struc-
ture of graphite.5,9 Quasiparticle correlations in nonthermal
plasmas can also be probed from the perspective of the co-

herent optical phonons. In the present work, through the
time-dependent complex self-energy sfrequency and life-
timed of the 47 THz E2g2 phonon of graphite, we study the
transient changes in the e-p coupling induced by the optical
perturbation of the nonadiabatic Kohn anomaly.
To probe the ultrafast response of the coherent phonons,

we perform transient anisotropic reflectivity measurements
on a natural single crystal and highly oriented pyrolytic
graphite sHOPGd samples. Because the phonon properties
were identical, we report the results for HOPG only, whose
better surface optical quality gave superior signal-to-noise
ratio. The light source for the pump-probe reflectivity mea-
surements is a Ti:sapphire femtosecond laser oscillator with
,10 fs pulse duration. The fundamental output is frequency
doubled in a b-barium borate crystal to obtain 395 nm exci-
tation light. The 3.14 eV photons excite vertical transitions
from the valence spd to the conduction sp*d bands near the
K point. Pump power is varied between 5 and 50 mW spulse
fluence of 0.1–1 mJ /cmd, while probe power is kept at
2 mW. Details of the pump-probe measurements are de-
scribed elsewhere.10,11 The anisotropic reflectivity change
sDReo=DRs−DRpd eliminates the mostly isotropic electronic
response to isolate the much weaker anisotropic contribution,
which is dominated by the coherent phonon response.10

Figure 1sad shows the anisotropic reflectivity change of
graphite, DReo /R, normalized to the reflectivity without
pump pulse. After a fast and intense electronic response at
t=0, the reflectivity is modulated at two disparate periods
of 21 and 770 fs. The slower coherent oscillation was
previously assigned to the Raman active interlayer shear
phonon sE2g1 moded.

12 The faster oscillation of 47.4 THz or
1580 cm−1 is the in-plane E2g2 carbon stretching mode6

corresponding to the G peak in the Raman spectra of gra-
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phitic materials. After decay of the electronic response, the
reflectivity signal can be fitted approximately to a sum
of damped oscillations: fstd=A1 exps−G1tdsins2pv1t+d1d
+A2 exps−G2tdsins2pv2t+d2d. The amplitudes of both
phonons, A1 and A2, exhibit a cos 2u dependence on the
pump polarization angle u with respect to the optical plane,
as shown in the inset of Fig. 1sbd, confirming their genera-
tion through the Raman mechanism.12 Hereafter, we focus on
the previously unobserved dynamics of the fast E2g2 phonon.

We measure the laser fluence dependence of the ampli-
tude A2, dephasing rate G2, and frequency v2 of the E2g2
phonon that are extracted from the fit of DReo /R to the
damped oscillator model. The amplitude increases linearly
with the fluence as expected for a p-p* transition with a
single photon. As shown in Fig. 2, the dephasing rate de-
creases as the laser fluence is increased, which is contrary to
the coherent phonon response observed for other
materials.13–15 The frequency upshift at higher fluence in Fig.
2 is equally exceptional. Laser heating can be excluded as
the origin because the E2g2 frequency downshifts with
temperature.16 In fact, the frequency upshift under intense
optical excitation has not been observed experimentally or

predicted theoretically for graphite or any other solid.
To further characterize the unexpected frequency upshift,

in Fig. 3, we analyze the transient reflectivity response with
a time-windowed Fourier transform sFTd. This analysis re-
veals that the phonon frequency blueshift occurs promptly
sfor delays of ,100 fs its dynamics are obscured by the
strong electronic responsed and recovers to its near-
equilibrium value after several picoseconds. With increasing
laser fluence, the initial blueshift increases, while the
asymptotic value converges on the 47.4 THz Raman fre-
quency. The experimental phonon frequency for t.100 fs
follows a biexponential recovery, vstd−vst=`d=Dv1 exps
−t /t1d+Dv2 exps−t /t2d, with time constants of t1=210 fs
and t2=2.1 ps, independent of excitation density. The time
scales for the recovery are in reasonable agreement with the
analysis of transient terahertz spectroscopy, which gave 0.4
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and 4 ps, respectively, for the carrier thermalization and
carrier-lattice equilibration.8 The time evolution of the E2g2
frequency implicates the interaction of coherent phonons
with the photoexcited nonequilibrium carriers, as will be dis-
cussed below.
It is only recently that the observed anomalous dispersion

of the high-energy phonon branches of graphite17 could be
explained theoretically by a momentum dependent e-p inter-
action sa Kohn anomalyd, which leads to the renormalization
ssofteningd of the phonon frequency.7 The standard use of the
adiabatic approximation in the previous study, however, pre-
dicted that perturbing the electronic system by electron dop-
ing would result in a downshift of phonons at the G point.
Recent experiments and theoretical calculations have shown
this approach to be inappropriate as the “nonadiabatic” elec-
tronic effects, where electrons near EF cannot respond in-
stantaneously to the lattice distortion, become important for
low dimensional materials such as graphene and
nanotubes.18–20

We perform density-functional theory sDFTd calculations
for a single sheet of photoexcited graphite with a computa-
tional method that accounts for the nonadiabatic effects. We
use DFT in the local-density approximation as implemented
in the code ABINIT.21 Core electrons are described by
Trouiller–Martins pseudopotentials and the wave functions
are expanded in plane waves with energy cutoff at
35 hartree. Phonons are calculated with density-functional
perturbation theory.22 In order to ensure convergence of the
E2g2 phonon mode to within 0.01 THz, we use a large 61
361 two-dimensional k-point sampling.23 Nonadiabatic ef-
fects are accounted for by keeping the electronic population
fixed when computing the dynamical matrix. We neglect the
effects of lattice relaxation on the phonon frequency since
we checked that the effect of neutral excitation on the bond-
length is very weak s,0.001 Åd for the appropriate excita-
tion densities. Our approach is similar to the time-dependent
perturbation scheme18–20 for the inclusion of nonadiabaticity
in the combined treatment of phonons and electrons in
graphite. Furthermore, it enables us to calculate the effect of
an arbitrary electron occupation far from equilibrium such as
created by the vertical excitation of e-h pairs with 3.1 eV
photons. Our calculations demonstrate that nonadiabatic ef-
fects are important not only for charged graphite18–20 but also
for graphite with neutral electronic excitation.
Because the photoexcited electron distribution is time de-

pendent and, in principle, not known exactly, we employ
three different limiting electronic distributions in our phonon
calculation. “As-excited” distribution sAEDd, corresponding
to the vertical excitation of e-h pairs with 3.1 eV photons
within an energy window of 60.2 eV, simulates the distri-
bution right after excitation with a laser pulse having a finite
spectral width. The laser fluence determines the amount of
charge transferred from p to p* bands. Nonthermal distribu-
tion sNTDd, in which electrons are completely depopulated
in an small energy window from top of the valence band to
the bottom of conduction band, mimics the situation after the
ultrafast s,100 fsd relaxation of the e-h pairs toward EF by
e-e sRef. 9d and e-p sRef. 24d scatterings. The width of the
energy window is determined by the excited charge density.
Such a distribution has been predicted in a recent micro-

scopic calculation taking into account e-p scattering.24 Be-
cause of a hot phonon distribution and a phase-space bottle-
neck near the K points, a Fermi–Dirac distribution with a
high electronic temperature is achieved at much later time
f0.5 ps sRefs. 8 and 24dg. Hot thermal distribution sTDd
simulates this situation after thermalization of the electronic
system. To compare with the effect of static doping reported
previously,18–20 we also present calculations with an ionized
distribution sIDd, in which electrons are removed from the
top of the p band.
Figure 4 shows that all the three excited state distribu-

tions, as well as the statically doped one, lead to a stiffening
of the E2g2 phonon. For a fixed density of the excited charge,
the closer the e-h pairs are to the EF, the more pronounced is
their nonadiabatic interaction with the lattice, and therefore,
the stronger is their effect on the phonon stiffening. We note
that the stiffening is not accompanied by lattice deformation
for the three excited distributions, contrary to the case of ID,
for which the lattice both stiffens and contracts. The lattice
stiffening for ID can be attributed to the depopulation of p
orbitals around the K and H points, which sid suppresses the
nonadiabaticity in the e-p coupling and siid removes elec-
trons with strong antibonding admixture.19,18 Because effect
siid should also lead to a lattice contraction, the C-C bond
stiffening under the three excited distributions is attributed to
effect sid. This implies that transfer of cold electrons and
holes from near the EF to a hot population causes the stiff-
ening along with the inability of the electronic system to
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follow the ions adiabatically. In contrast to the static doping
studies,19,18 our observations on a neutral but nonequilibrium
system address a phonon frequency shift solely of the elec-
tronic origin.
The strong dependence of the phonon stiffening on the

e-h distribution in Fig. 4 justifies the interpretation of the
experimental ultrafast phonon frequency changes in terms of
the temporal evolution of the photoexcited e-h plasma. Cre-
ation of a highly nonthermal electronic population near the K

point sarrow A in Fig. 4d weakens the nonadiabatic e-p cou-
pling at t=0. Within a few tens of femtoseconds, the very
efficient e-e sRef. 8d and e-p sRef. 24d scattering first bring
the nascent e-h distribution toward the K point sarrow Bd, but
still in a nonthermal distribution. The electronic thermaliza-
tion sarrow Cd is realized in about 0.2 ps. This hot-thermal
distribution equilibrates with the lattice through optical pho-
non emission sarrow Dd on 2 ps time scale.
In summary, we have explored the influence of the non-

equilibrium e-h plasma on the femtosecond dynamics of the
in-plane E2g2 coherent phonon of graphite. The time-
dependent phonon frequency probes sensitively the time evo-
lution of the transient electronic occupation distributions.
The unusual electronic stiffening of the phonon can be attrib-

uted to the excitation-induced reduction of the e-p coupling
due to quasi-2D electronic structure. The reduced real sfre-
quencyd and imaginary sdecay rated parts of the complex
self-energy of the e-p interaction increase the frequency and
reduce the dephasing rate of the E2g2 mode. Our results offer
a paradigm of e-p coupling, where nonequilibrium electrons
impart exceptional properties to the lattice. Similar interac-
tions are likely to govern the e-p coupling in related gra-
phitic materials, such as carbon nanotubes and graphene,
which are of topical interest for high-performance, nanom-
eter scale carbon-based electronic devices.

ACKNOWLEDGMENTS

The authors thank O.V. Misochko for supplying single
crystal graphite. Calculations were performed at IDRIS
sproject 071827d, Barcelona Supercomputing Center and
UPV/EHU sSGIker Arinad. This work is supported by Kak-
enhi 18340093, the EU Network of Excellence Nanoquanta
sNMP4-CT-2004-500198d, Spanish MEC sFIS2007-65702-
C02-01d, French ANR sPJC05–46741d, SANES project
sNMP4-CT-2006-017310d, NSF CHE-0650756, and Iker-
basque.

*ishioka.kunie@nims.go.jp
†Present address: Institute of Applied Physics, University of
Tsukuba.
1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature sLondond 438, 197 s2005d.

2A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 s2007d.
3T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Science 313, 951 s2006d.

4D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 s1984d.
5C. D. Spataru, M. A. Cazalilla, A. Rubio, L. X. Benedict, P. M.
Echenique, and S. G. Louie, Phys. Rev. Lett. 87, 246405 s2001d.

6M. S. Dresselhaus and G. Dresselhaus, in Light Scattering in

Solids III, Topics in Applied Physics Vol. 51, edited by M. Car-
dona and G. Güntherodt sSpringer, Berlin, 1982d, Chap. 2.

7S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson,
Phys. Rev. Lett. 93, 185503 s2004d.

8T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M.
Wolf, Phys. Rev. Lett. 95, 187403 s2005d.

9G. Moos, C. Gahl, R. Fasel, M. Wolf, and T. Hertel, Phys. Rev.
Lett. 87, 267402 s2001d.

10M. Hase, M. Kitajima, A. M. Constantinescu, and H. Petek, Na-
ture sLondond 426, 51 s2003d.

11K. Ishioka, M. Hase, M. Kitajima, and H. Petek, Appl. Phys. Lett.
89, 231916 s2006d.

12T. Mishina, K. Nitta, and Y. Masumoto, Phys. Rev. B 62, 2908
s2000d.

13M. Hase, M. Kitajima, S. I. Nakashima, and K. Mizoguchi, Phys.
Rev. Lett. 88, 067401 s2002d.

14E. D. Murray, D. M. Fritz, J. K. Wahlstrand, S. Fahy, and D. A.
Reis, Phys. Rev. B 72, 060301sRd s2005d.

15E. S. Zijlstra, L. L. Tatarinova, and M. E. Garcia, Phys. Rev. B
74, 220301sRd s2006d.

16P. H. Tan, Y. M. Deng, and Q. Zhao, Phys. Rev. B 58, 5435
s1998d.

17J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón,
Phys. Rev. Lett. 92, 075501 s2004d.

18S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K.
Geim, A. Ferrari, and F. Mauri, Nat. Mater. 6, 198 s2007d.

19M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407 s2006d.
20S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri,

Phys. Rev. B 75, 035427 s2007d.
21X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M.

Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet et al.,
Comput. Mater. Sci. 25, 478 s2002d.

22S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev.
Mod. Phys. 73, 515 s2001d.

23We obtain an absolute value of 47.7 THz for the E2g2 mode,
which is within 1% of the experimental frequency. Note that in
the following, we calculate a shift in the phonon frequency,
which is described much more accurately than the absolute
value of the frequency.

24S. Butscher, F. Milde, M. Hirtschulz, E. Malic, and A. Knorr,
Appl. Phys. Lett. 91, 203103 s2007d.

ISHIOKA et al. PHYSICAL REVIEW B 77, 121402sRd s2008d

RAPID COMMUNICATIONS

121402-4

71



2.6 The quasi-particle band structure of graphite

The full three-dimensional dispersion of the π-bands of graphite was measured through angle-
resolved photoemission spectroscopy (ARPES) by the group of T. Pichler (University of Vi-
enna). In collaboration with them, we performed first-principles calculations of the band-
structure [30]. The band structure by density-functional theory strongly underestimates the
slope of the π-bands and the trigonal warping effect. Fig. 2.6 demonstrates the increase of
the π band slope around the high-symmetry point by about 17%, yielding good agreement
with the ARPES measurements.

Figure 2.6: ARPES measurement of a two-dimensional cut of the π-band structure of graphite
around the high symmetry point H. The maximum of the ARPES intensities is indicated by
the black dotted line. Red: LDA band-structure. Violett: GW-quasiparticle band structure.
The inset shows the existence of a pseudo-gap at H. Figure reprinted from Ref. [30].

We have fitted the quasi-particle band-structure with a tight-binding Hamiltonian [37].
This fit will be very useful for the description of transport properties of a wide range of carbon
materials where the effect of electron correlation cannot be neglected.
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Chapter 3

Outlook

Excitonic spectra of large and complex nanostructures

While for nanotubes, ab-initio calculations including GW-corrections to the band gap and ex-
citonic effects are feasible, for nanowires of realistic size, the high number of atoms in the unit
cell renders the ab-initio approach unfeasible. We are therefore developing a code for the calcu-
lation of excitonic effects using the Bethe-Salpeter equation in a tight-binding approximation.
As input for the calculations, we first determine the occupied and unoccupied electronic states
in the tight-binding approximation. Within this approximation, one can easily construct the
matrix elements that enter the Bethe-Salpeter equation, i.e., the two-particle equation which
describes the interaction of electrons and holes via a screened Coulomb potential. Due to the
large unit-cell size of realistic nanowires (up to several hundred atoms), a large linear eigen-
value problem arises which can be solved quite efficiently with a parallelized Haydock-method,
as it is already implemented, e.g. in the optical-properties code Yambo

1. A key ingredient for
the construction of the matrix elements is the proper screening of the electron-hole interac-
tion. A calculation of the full static dielectric function may not be accurate enough in the
tight-binding framework. We therefore propose the use of a model dielectric function that
takes into account the image potentials of the electron and of the hole.2

The development of the project has started in the framework of a young researchers’ project
of the French National Research Agency in collaboration with S. Botti, Ecole Polytechnique.
The code will serve for the calculation of the spectra of different nanowires (e.g., Si, Ge,
GaAs, GaN) and nanocrystals. It will be interesting to investigate, how the “squeezing” of
the excitons as a function of the nanowire radius influences the binding energy as we go from
the quasi 3D bulk like environment in a large diameter wire to the quasi 1D limit of very thin
wires and to the quasi 0D limit of nanocrystals. Furthermore, we will study the influence of
defects such as vacancies, impurity atoms and surface adsorbates (functionalized wires and
nanocrystals).

1A. Marini et al., the Yambo project, http://www.yambo-code.org/.
2A similar route was chosen recently for the calculation of the binding energy of impurity levels in nanowires:

M. Diarra, Y.-M. Niquet, C. Delerue, and G. Allan, Phys. Rev. B 75, 045301 (2007).
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De-excitation of hot carriers in nanostructures

Another topic of fundamental and practical interest is the study of the relaxation of excited
(hot) electrons in the conduction band and its radiative versus non-radiative recombination
with the holes in the valence band. While these processes are relatively well understood in bulk
materials, they can be drastically altered in nanostructures due to the quantum confinement
of electrons and holes. A proper description involves the calculation of excitonic states in case
of strong electron-hole interaction and of electron-phonon (or, more precisely, exciton-phonon
interaction) for the non-radiative relaxation. This subject is the topic of the PhD thesis of
Adrien Allard that started in october of this year.

As a first practical application, we will look at lead selenide (PbSe) nanocrystals. Bulk
PbSe has a very small gap (280 meV at 300K). Due to quantum confinement effects, this
gap can be tuned as a function of the nanocrystal radius. Having evaluated the phonons and
the electron-phonon couping in bulk PbSe [39], we will calculate the electron-phonon coupling
and the relaxation of hot carriers in the nanocrystals. This is the topic of the PhD thesis of
Ondrej Kilian.

Quantum Heterodots

Heterodot is short for nanoscale semiconductor heterojunctions in quantum dots. The in-
ternal interface in a heteronanocrystals is characterized by a discontinuity of the electronic
structure and an electrical dipole that can lead to complex optical excitations, in particular,
excitonic states where the electron is separated from its hole. The project aims at modeling
the structural, electronic and optical properties of herodots, working in parallel to experimental
investigations, in order to optimize herodot nanomaterials for applications. The objective is to
determine the parameters controlling the band alignment, to simulate the optical properties,
and to predict the exciton dynamics. Simulations will combine ab initio calculations (band
structure, band offsets, excitons) and semiempirical approaches (valence force field methods
for strain effects, tight binding methods for optical properties). This work takes place in the
framework of a European Network and I am involved through the co-supervision of a PhD
thesis.

Graphene/Graphite

Last but not least, there remains a lot of work on the theory of graphene and graphite.
Current and future activities include the interpretation of most recent inelastic X-ray mea-
surements3 which confirm the enhanced electron-phonon coupling that we have calculated
in Ref. [34]. A question of high technological relevance is the electron-phonon coupling in
charged graphene where the charging may be due to charge fluctuations within a flake [29]
or due to backgating. We are currently investigating with the GW-approximation and with
DFT using hybrid-functionals, how the electron-phonon coupling changes as a function of the
charging. This may explain the observed shift of the Raman 2D line as a function of doping.

3A. Grüneis, J. Serrano, T. Pichler et al
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[5] K. Tökesi, L. Wirtz, C. Lemell, and J. Burgdörfer, Charge-state evolution of highly

charged ions transmitted through microcapillaries, Phys. Rev. A 61, 020901(R) (2000).

[6] L. Wirtz, G. Hayderer, C. Lemell, J. Burgdörfer, L. Hägg, C. O. Reinhold, P. Varga, HP.
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[26] A. Grüneis, T. Pichler, H. Shiozawa, C. Attaccalite, L. Wirtz, S.L. Molodtsov, R. Follath,
R. Weber, and A. Rubio, Low energy quasiparticle dispersion of graphite by angle-

resolved photoemission spectroscopy, phys. stat. sol. (b) 244, 4129 (2007).

[27] C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio, Absorption of BN nanotubes under

the influence of a perpendicular electric field, phys. stat. sol. (b) 244, 4288 (2007).

[28] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz,
Raman mapping of a single-layer to double-layer graphene transition, Eur. Phys. J.
Special Topics 148, 171 (2007).

[29] C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and L. Wirtz, Raman

imaging of doping domains in graphene on SiO2, Appl. Phys. Lett. 91, 241907 (2007).
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