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Abstract

Software systems are now so intrinsically part of our lives that we do not
see them any more. They run our phones, our cars, our leisures, our banks,
our shops, our cities . . . This brings a significant burden on the software
industry. All these systems need to be updated, corrected, and enhanced as
the users and consumers have new needs. As a result, most of the software
engineering activity may be classified as Software Maintenance, “the totality
of activities required to provide cost-effective support to a software system”.

In an ecosystem where processing power for computers, and many other
relevant metrics such as disk capacity or network bandwidth, doubles every
18 months (“Moore’s Law”), technologies evolve at a fast pace. In this
ecosystem, software maintenance suffers from the drawback of having to
address the past (past languages, existing systems, old technologies). It is
often ill-perceived, and treated as a punishment. Because of this, solutions
and tools for software maintenance have long lagged far behind those for
new software development. For example, the antique approach of manually
inserting traces in the source code to understand the execution path is still
a very valid one.

All my research activity focused on helping people to do software main-
tenance in better conditions or more efficiently. An holistic approach of the
problem must consider the software that has to be maintained, the people
doing it, and the organization in which and for which it is done. As such, I
studied different facets of the problem that will be presented in three parts
in this document: Software: The source code is the center piece of the main-
tenance activity. Whatever the task (ex: enhancement or bug correction),
it typically comes down to understand the current source code and find out
what to change and/or add to make it behave as expected. I studied how
to monitor the evolution of the source code, how to prevent it’s decaying
and how to remedy bad situations; People: One of the fundamental asset of
people dealing with maintenance is the knowledge they have, of computer
science (programming techniques), of the application domain, of the software
itself. It is highly significant that from 40% to 60% of software maintenance
time is spent reading the code to understand what it does, how it does it,
how it can be changed; Organization: Organizations may have a strong im-
pact on the way activities such as software maintenance are performed by
their individual members. The support offered within the organization, the
constraints they impose, the cultural environment, all affect how easy or
difficult it can be to do the tasks and therefore how well or badly they can
be done. I studied some software maintenance processes that organizations
use.

ix



x Abstract

In this document, the various research topics I addressed, are organised
in a logical way that does not always respect the chronological order of
events. I wished to highlight, not only the results of the research, through the
publications that attest to them, but also the collaborations that made them
possible, collaboration with students or fellow researchers. For each result
presented here, I tried to summarised as much as possible the discussion of
the previous state of the art and the result itself. First because, more details
can easily be found in the referenced publications, but also because some of
this research is quite old and sometimes fell in the realm of “common sense”.
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Chapter 1

Introduction

1.1 Why Software Maintenance?

Software maintenance is the activity of modifying a software product after
delivery for example to correct faults in it, to add new functionalities, or to
adapt it to new execution conditions [ISO 2006]. It has a very distinctive
place in the Information Technology domain. According to all accounts (e.g.
[Pigoski 1997, Seacord 2003]), this is by far the most practised activity on
software systems, yet it is traditionally ill-considered by practitioners and
neglected by the academy. It is rarely taught in universities and most of
research is devoted to developing new languages, new features and generally
enhance the way we develop software. Yet more than 90% of the work
in industry consists in modifying existing programs developed with past
technologies.

I first came to work on software maintenance on the CSER (Consortium
for Software Engineering Research) project of Prof. Timothy C. Lethbridge
from University of Ottawa, Canada. In this project, we were working with
a telecommunication company, trying to help it solve some of its difficulties
in maintaining a large legacy system. Since then, and during the more than
15 years of research summarized in this document, I considered some of the
many problems it raises.

1.2 Goals of this Document

In this document to obtain the “Habilitation à Diriger des Recherches”1 I
aimed at illustrating two complementary qualities that I consider necessary
to supervise research:

• First, demonstrate successful experience in supervising novice researchers.
This concerns typically PhD student direction, although in my case I
also worked with many Master students.

1“Habilitation to supervise research”

3
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• Second, demonstrate an ability to pursue long term research goals
through succeeding short projects.

To this end, I have written the present document with a view to putting
all my research results in perspective, showing how they contributed to
higher objectives. The resulting order does not entirely follow the chrono-
logical order of the work presented, but it makes the logical connections
clearer. I have also highlighted the contributions I had from students or
colleagues in reaching these results. Throughout the document I switch be-
tween the singular and plural forms (“I” and “we”) to better acknowledge
work and results that were achieve in collaboration with others.

My career did not follow an entirely “traditional” path, which did im-
pact some of my research work. It seems, therefore, appropriate to give a
brief overview of it at this point. After a PhD at the University of Mon-
treal, I first came to work on software maintenance as a research assistant
in the KBRE group of Prof. Timothy C. Lethbridge at the University of
Ottawa (Canada) for three years. I then worked 18 months as an invited
professor at the Federal University of Rio de Janeiro (Brazil) before find-
ing a permanent position at the Catholic University of Brasilia (Brazil). In
this small university, we did not have a PhD program in computer science,
which explains why a good deal of my research was conducted with Master
students. On the more positive side, I had the opportunity to work with
psychologists, economists, or management people which gave to some part
of my research a much less technical point of view. Not all of the research
I did in this position is reported here. Later, I took a position of research
assistant at Ecole des Mines de Nantes (France) in the European research
project AMPLE before coming finally to my current position as assistant
professor at the university of Lille-1 (France). It is only in this last position
that I had the opportunity to co-supervise PhD students in the RMod group
under the direction of Prof. Stéphane Ducasse.

1.3 Organization of this Document

This document is organized along three main axes of software maintenance
as illustrated in Figure 1.1: the software itself; the people that maintain it
and their knowledge; and the organization and its maintenance processes.
This categorization itself came out of our work on organizing the knowledge
domains used in maintenance (see Section 7.2).

Following these three dimensions, this document has three main parts:

Part II—“Software System”: In this part, I consider the software it-
self in the form of source code and explore three aspects of software
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Software
Maintenance

source
code

people organization

Chap.3: Measuring to control
Chap.4: Preventing Software Decay
Chap.5: Recovering from Architectural Drift

Part II—Software System

Chap.6: Knowledge Contained in the Source Code
Chap.7: Knowledge Management for Software
    Maintenance

Part III—People and Knowledge
Chap.8: Knowledge Management Processes
Part IV—Organization and Process

Chap.9: Maintenance Management Processes

Figure 1.1: Three dimensions of software maintenance and where they are
treated in this document

evolution:

• In Chapter 3, I discuss how one can control the evolution by mon-
itoring different aspects of the code. This chapter includes work
done with two PhD students, Cesar Couto (co-supervised with
Prof. Marco T. Valente from Federal University of Minas Gerais,
Brazil) and Karine Mordal-Manet (under the supervision of Prof.
Françoise Balmas, from University of Paris 8, France), and a Mas-
ter student, Cristiane S. Ramos [Anquetil 2011], [Couto 2012],
[Mordal-Manet 2011], [Mordal 2012], [Ramos 2004];

• In Chapter 4, I study how to prevent software systems from losing
their quality. This includes contributions from a post-doctoral
fellow, Simon Allier, and a PhD student, André Hora Calva-
cante (co-supervised with Prof. Stéphane Ducasse) [Allier 2012],
[Hora 2012];

• In Chapter 5, I look at possible actions to remedy architectural
drift, a typical problem for legacy software. This comes out of my
work in the CSER project, with a more recent contribution from
a PhD student, Jannik Laval (co-supervised with Prof. Stéphane
Ducasse) [Anquetil 1997], [Anquetil 1998a], [Anquetil 1998b],
[Anquetil 1999a], [Anquetil 1999b], [Lethbridge 2002], [Anquetil 2003b],
[Laval 2010], [Laval 2012].

Part III—“People and Knowledge”: In this part, considering that soft-
ware development and maintenance are knowledge intensive activities,
we were interested in defining more precisely what knowledge was re-
quired:
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• In Chapter 6, I consider whether this knowledge embedded in
the source code is accessible to automated treatment. Can it
be extracted? This research was done jointly with a postdoc-
toral fellow, Usman M. Bhatti [Anquetil 1998a], [Anquetil 2000a],
[Anquetil 2001], [U.Bhatti 2012]

• In Chapter 7, I look at what knowledge do maintainers require?
This is the sum of various research efforts led in collaboration
with two Master students, Márcio G.B. Dias, Kleiber D. de Sousa,
and also two postgraduates Marcelo F. Ramal and Ricardo de M.
Meneses [Anquetil 2003a], [Anquetil 2006], [Dias 2003a], [Dias 2003b],
[Ramal 2002]

Part IV—“Organization and Process”: In the last part, I consider the
organizations and how their processes can help software maintenance:

• In Chapter 8, I discuss how the knowledge required to main-
tain software can be extracted, stored and redistributed. This
part also resulted from the work of several Master students Ser-
gio C.B. de Souza, Kleiber D. de Sousa, Alexandre H. Torres
[Anquetil 2007], [de Sousa 2004], [de Souza 2005], [Souza 2006]

• In Chapter 9, I come to other processes for the management and
improvement of software maintenance. A part of this research
was conducted within the AMPLE European project with many
collaborations, another part is the result of the effort of a Master
student, Kênia P.B. Webster [Webster 2005]

These three main parts are preceded and followed by:

Part I—“Software Evolution”: In this introductory part, I present the
document (Chapter 1) and the domain of software maintenance (Chap-
ter 2);

Part V—“Perspectives”: In the final part of the document, I summa-
rize the discussion and propose some additional research directions
(Chapter 10).



Chapter 2

Software Maintenance

2.1 Basic Facts on Software Maintenance

Software maintenance is the modification of a software product after delivery
to correct faults, or to improve performance and other attributes [ISO 2006].
It is typically classified in four categories [ISO 2006]:

Adaptive: Modifying the system to cope with changes in the software en-
vironment.

When upgrading the operating system (OS) of a computer, or the
database management system, it may occurs that the software running
in this environment needs to be adapted. This would be an example
of adaptive maintenance.

Perfective: Implementing new or changed user requirements that concern
functional enhancements to the software.

User often wish that a system could do just a little bit more than what
it currently offers. For example, they would prefer that an application
could get its input data automatically from another system instead of
having to enter it manually. This would be an example of perfective
maintenance.

Corrective: Diagnosing and fixing errors.

Probably the best known of software maintenance categories. Correc-
tive maintenance may be decomposed into emergency vs. normal cor-
rective maintenance. Emergency corrective maintenance occurs when
an error needs to be corrected without delay, typically because it im-
pedes an important system to work.

Preventive: Increasing software maintainability or reliability to prevent
problems in the future.

The most famous example of it was at the end of the 90’s when many
organizations had to fight against the Y2K problem1

1Year 2000 problem, when dates represented with only two digits would become “00”,
thus 2000, would be inferior to 1999, represented as “99”.

7
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Figure 2.1: Relative importance of the software maintenance categories

Past studies (reported in [Pigoski 1997]) showed that, contrary to com-
mon belief, corrective maintenance represents only a small part of all mainte-
nance (see Figure 2.1). Most software maintenance (50%) is done to add new
features (perfective maintenance). The next most common kind is adaptive
maintenance (25%) when some other part of the system (e.g. OS, database,
hardware, third party library) changed. Corrective maintenance represents
only a fifth (21%) of all maintenances while preventive maintenance makes
up the smallest part (4%). Because of the small part of corrective main-
tenance, some researchers suggest changing the term of “software main-
tenance” to “software evolution”. In this document, I use the two terms
indifferently.

Studies show that software maintenance is, by far, the predominant ac-
tivity in software engineering (90% of the total cost of a typical software
[Pigoski 1997, Seacord 2003]). It is needed to keep software systems up to
date and useful. Any software system reflects the world within which it
operates. When this world changes, the software needs to change accord-
ingly. Lehman’s first law of software evolution (law of Continuing Change,
[Lehman 1980, Lehman 1998]) is that “a program that is used undergoes
continual change or becomes progressively less useful.” Maintenance is
mandatory, one simply cannot ignore new laws or new functionalities intro-
duced by a concurrent. Programs must also be adapted to new computers
or new operating systems, and users have ever growing expectations of what
a given software system should be able to do for them (Lehman’s law of
Declining Quality: “The quality of systems will appear to be declining un-
less they are rigorously maintained and adapted to operational environment
changes”).

A corollary of Lehman’s law of Continuing Change is that software main-
tenance is a sign of success: considering the costs associated to software
maintenance,it is performed only for software systems which utility is per-
ceived as more valuable than this cost. This is a conclusion that goes against
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the usual perception of the activity, but maintenance actually means that a
system is useful and that its users see a value in its continuing operation.

Maintenance differs from development “from scratch” for a number of
reasons, including:

Event driven: Best practice recommends that development be require-
ment driven: one specifies the requirements and then plans their or-
derly implementation. Maintenance is event driven [Pigoski 1997], ex-
ternal events require the modification of the software, sometimes on
very tight schedule, for example when discovering a critical bug. There
is much less opportunity for planning.

Lack of documentation: Developers may rely on the fact that somebody
(hopefully close by) knows one specific portion of the system, in the
best cases there may even be a clear documentation. Maintainers must
usually work from the source code to the exclusion of any other source
of information.

Obsolete techniques: Developers may organize the system as best suits
the requirements. In the best cases, they may even be able to choose
the programming paradigm and language, the hardware platform, etc.
Maintainers must cope with choices made by others in the past. The
programming language may be old (e.g. COBOL), the system architec-
ture may not fully support the modification they need to implement,
or this architecture may even be so obfuscated by past modifications
that there is no longer any clear architecture.

Differing processes: The process of maintenance is different from initial
development in that it requires new activities up-front which do not
exist in development. For example, maintenance requires to analyze
in depth the system to be modified before any analysis of the task at
hand starts.2 Because of this, the bulk of the effort in a maintenance
project is applied at the beginning of the project (between 40% to
60% of the time is spent analysing the source code to rediscover lost
information about how it works ([Pfleeger 2002, p.475], [Pigoski 1997,
p.35]), whereas, in a development project, most effort is applied to-
wards the end (during the implementation and test3) [Grubb 2003].
In development, the initial activity (requirement elicitation) may be
difficult, but it typically requires less effort than the implementation
because fewer details are involved.

2The analysis of the system is made even more difficult by the usual lack of documen-
tation on the system.

3In many maintenance projects, the test activity is crippled by the lack of previous
test cases, the lack of detailed understanding of how the system should behave, and the
pressure for a rapid delivery of the change.
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System in operation: During maintenance, the system is in operation
which may significantly increase the difficulty of altering the system
while maintaining it operational. Particular conditions may only be
available on the production environment (data from the full database,
expensive hardware requiring a specific computing environment), mak-
ing it difficult, for example, to replicate the conditions of a bug in the
maintenance environment.

These characteristics make maintenance an activity quite different from soft-
ware development.

2.2 Some Problems in Software Maintenance

Due to its characteristics, software maintenance suffers from problems that
may be specific to it or generic to software engineering. I will expose some
of them here that I have studied in my work.

A constant preoccupation of software engineering, that maintenance also
shares, is the need to measure the quality of the programs, to be able to
better plan future costs or understand how well the system is ageing. I will
be discussing this issue in Chapter 3.

Due to the constant evolution of software systems, often in directions
that were not foreseen when the systems were created, their quality slowly
degrades over time, as stated by the Declining Quality law of Lehman (see
preceding section). This phenomenon, called software decay, occurs at dif-
ferent levels of abstraction. In Chapter 4, I consider methods to prevent
software decay.

I also focused on the architectural level, where the phenomenon is known
as architectural drift or architectural erosion (e.g. [Murphy 2001, Rosik 2011]).
In Chapter 5, I discuss my research to recover from architectural drift.

As described in the preceding section, software evolution is known to
suffer from a perpetual lack of documentation. This results in a lack of
knowledge in the maintenance team on many aspects of the system main-
tained: what it does, what is architecture is, why it was implemented that
way, etc. We saw that about 50% of maintenance time is spent analysing
the system to recover information that is needed to apply the needed modi-
fication. This is how the lack of documentation translates into a knowledge
issue during maintenance, that will be discussed in Part III. In Chapter 6, I
consider what knowledge can be found in the source code and how it could
be extracted. This is then expanded in Chapter 7 where I will be looking at
knowledge issues in software maintenance.

Finally, we saw in the preceding section that the process for software
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maintenance is different than for usual software development. This is even
more clear when we consider that one should include knowledge management
activities. This will be the topic of Chapter 8 while Chapter 9 turns to other
more “traditional” processes of software engineering that must be adapted
to software maintenance.



Part II

Software System

13



15

Software maintenance is about modifying the system to correct it or
adapt it to new needs (see Chapter 2). Typically, only the source code of a
system will be available. It is therefore natural that I started my research
looking at this source of information, trying to find ways to help the software
maintainers in their tasks.

I considered several aspects of this task that I will report here: How
to control the software to understand how it is evolving (Chapter 3); How
to prevent some prejudicial situations to arise (Chapter 4); How to correct
some issues, particularly at the architectural level (Chapter 5).

I will also show how this research led me to want to work with more
abstract data than the sole source code. These consideration will lead us to
the next part of the document.



Chapter 3

Measuring to Control

“When you can measure what you are speaking about, and ex-
press it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind”. — Lord
Kelvin

Following the advice of Lord Kelvin, the first step to improve a situation
must be to measure it to provide the information required to make key
decisions and take appropriate actions in given contexts [McGarry 2001]. In
software maintenance, the quality of the system (e.g., its source code, its
architecture) can greatly impact the time it takes to understand it, or to
introduce a new feature.

In this sense, a good part of my research has been dedicated to software
quality metrics and models. I present in this chapter our contributions to
the evaluation of software maintenance quality.

One first needs appropriate metrics that can quantify some property of
interest in a way that is meaningful to practitioners. This is what I explore
in Section 3.1. But many metrics already exist that, once validated, can be
used to define quality models allowing to get a broader understanding of the
software evolution phenomenon. In Section 3.2, I discuss the issue of creating
specific quality models for specific problems (in software maintenance). In
Section 3.2.2 I refine the notion of aggregating the results of different metrics
on many software components into an overall evaluation.

3.1 Initial Experiment: Definition of Relevant Qual-
ity Metrics

The title of this section is misleading. The work presented here should have
been the first step of the many studies (mine and other) that took place in the
domain of architectural design quality. I must confess that my first research
in this domain (presented in Chapter 5), took for granted some unproven
assumptions. It was only after some time and results that were not entirely
satisfactory that I perceived my mistake [Anquetil 1999a, Anquetil 2003b].

17
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The experience, however, was not in vain and, in my following work, I was
more careful to appropriately validate my tools before relying on them.

3.1.1 Software Architecture Quality Metrics

I present here a recent experiment [Anquetil 2011] that should have been the
starting point of the research presented in this chapter and Chapter 5. Years
after first realizing that it was missing, I finally performed it, considering
that it was still lacking, impeding the community from making significant
advances.

The problem. The architecture of a software system is a key aspect that
one has to monitor during software evolution. Due to enhancements and
modifications in directions not initially envisioned, systems suffer from ar-
chitectural drift or architectural erosion. To fight against that, systems may
go through a large restructuring effort. For example, the architecture of
Eclipse (the IDE) was redesigned in version 3.0 to create the Eclipse Rich
Client Platform (RCP, see Figure 3.1).

Figure 3.1: Architecture of the Eclipse platform before RCP (v. 2.1) and
after RCP (v. 3.0). From a presentation at EclipseCon 20042

Considering the importance that software engineers place on a good ar-
chitecture, architecture erosion is a problem that must be monitored. An
obvious candidate for that is to use some sort of quality metric (this is not
the sole solution, see also Chapter 4). Yet there is little agreement on what
is a good software architecture3 and general belief sees it as a subjective
topic.

2http://www.eclipsecon.org/2004/EclipseCon 2004 TechnicalTrackPresentations/
11 Edgar.pdf, last consulted on: 08/08/13

3Nice answers to the question “what is a good software architecture?” may be found
on http://discuss.joelonsoftware.com/default.asp?design.4.398731.10 (e.g., “It’s a bit like
asking What is beautiful?”). Last consulted on 12/10/2012.
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Previous State of the Art. People have relied on various cohesion
and/or coupling metrics to measure the quality of software architecture.
Good modularization counts as one of the few fundamental rules of good
programming. The precept of high cohesion and low coupling was stated by
Stevens et al. [Stevens 1974] in the context of structured development tech-
niques. Since then the ideas have been transposed to OO programming and
continue to hold, be it at the level of classes (e.g., [Briand 1998]) or at the
level of packages. According to this rule, systems must be decomposed into
modules (or packages, subsystems, namespaces, etc.) that have high cohe-
sion and low coupling. The heralded advantages of a modular architecture
include [Bhatia 2006]: Handling complexity; independent design and devel-
opment of parts of a system; testing a system partially; repairing defective
parts without interfacing with other parts; controlling defect propagation;
or, reusing existing parts in different contexts.

Many cohesion or coupling metrics may been found in the literature.
They may apply to packages or classes. For example, a review of differ-
ent cohesion or coupling metrics for packages may be found in [Ebad 2011].
Yet, some started to notice that we have little understanding of “how soft-
ware engineers view and rate cohesion on an empirical basis” [Counsell 2005]
(this was for classes); or that “it has been difficult to measure coupling and
thus understand it empirically” [Hall 2005]. The same holds at the level of
packages [Anquetil 2011].

But the idea that such metrics would be indicators of architectural qual-
ity has also been challenged. Brito de Abreu and Goulão stated that “cou-
pling and cohesion do not seem to be the dominant driving forces when it
comes to modularization” [Abreu 2001]. A statement with which Bhatia
and Singh agreed [Bhatia 2006].

Other researchers considered a more theoretical point of view: “we con-
clude that high coupling is not avoidable—and that this is in fact quite
reasonable” [Taube-Schock 2011]; Some coupling metrics have been found
to be good predictors of fault proneness (e.g. [Binkley 1998, Briand 1997]),
and a model including coupling metrics was shown to be a good predictor
of maintenance effort [Li 1993]. But this does not relate directly to archi-
tectural design quality.

Cinnéide et al. [Cinnéide 2012] proposed a controlled experiment where
they introduce random modification in the code and measure the impact
on the metrics. They were able to show that the metrics do not agree one
with the other. However, they cannot tell which metrics are relevant as they
cannot automatically assess whether the random modification improved or
hurt the architecture.
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Contribution. In collaboration with the group of Prof. Marco T. Valente,
we set out to validate cohesion/coupling metrics as architectural design qual-
ity metrics. The task is made difficult by the nature of the problem:

• Asking the opinion of experts would be costly on a realistic scale be-
cause architecture should be evaluated on large systems. One must
also note that, in industry, young programmers are not asked to de-
sign the architecture of complex systems and similarly, evaluating an
architectural design would require experienced designers, who are even
harder and costlier to find ;

• Comparing to some golden standard raises the issue of subjectivity of
the solution: for one system, there may be several possible, equally
valid, architectures and the validation of any quality metric should
take this into account.

To be of interest, evaluation of architectural design must be done on
large, real, systems because architectural design presumably depends on
many factors, other than cohesion and coupling [Abreu 2001], and the eval-
uation must consider these additional factors to bear any relevance. Eval-
uating a few packages out of context could cause an evaluator to base his
opinion on too few parameters, thus leading to a possibly unrealistic evalu-
ation.

We proposed a metric validation framework based on a practical ap-
proach [Anquetil 2011]. We say that a good architecture is one that is
accepted as such by some expert software engineers (experts in the systems
considered and in software architecture).

We hypothesize that the modular quality of a software system should
improve after an explicit remodularization effort. A similar hypothesis was
informally used by Sarkar et al. in [Sarkar 2007]. One of the validation
of their metrics for measuring the quality of non-Object-Oriented software
modularization was to apply them to “a pre- and post-modularized version
of a large business application”. Considering the time and effort one must
invest in a remodularization, such task cannot be started lightly. As such
we consider that an explicit remodularization will have a planned target
architecture that must be the result of software engineers’ best efforts. Even
if it were not completely successful, it would still be the result of an expert
best effort and as such would still give us a glimpse into what he thinks is a
good architecture.

Considering real remodularization cases introduces “confounding fac-
tors”. For example one must expect that other changes (bug fixes and fea-
ture addition) will also occur between the two versions considered. Bug fixes
are localized and can therefore be ignored at the architectural level. New
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features could be considered to impact the architecture, but those would
happen within the context of the remodularization effort and therefore be
taken into account in the new architecture. For example, when migrating
Eclipse to the RCP, the OSGi framework was introduced in the core runtime
(see Figure 3.1). But this was actually one of the goals of the remodulariza-
tion.

To illustrate the use of this validation framework, I present in Figure
3.2 the results of an experiment with Eclipse and two well known met-
rics [Anquetil 2011]. The versions considered are: a bug fix version, v2.0
→ v2.0.1; some local restructuring in preparation for the RCP migration,
v2.0.1 → v2.1; the RCP migration, v2.1 → v3.0; and the maturation of
the migration, v3.0 → v3.1. The metrics are those of the Bunch tool
[Mancoridis 1999]. It shows that tested cohesion and coupling metrics did
not behave as would be expected from the literature. If coupling diminished
after both restructurings (v2.1, v3.0), cohesion did so too which is contrary
to the traditional understanding of good architecture. The two metrics only
show what would be considered an improvement in architecture quality for
v2.0.1, a bug fix version.

Figure 3.2: Variation of Bunch cohesion/coupling metrics on versions of
Eclipse

Perspectives. This first experiment opened the way for more studies.
First, the architectural design quality test bed must be amplified and strength-
ened to verify the early results. An extended experiment has been submitted
for publication [Anquetil 2013].

With a better testing framework, one will be able to check all existing
architectural design quality metrics and possibly invent and test new ones,
for example based on concepts found in identifiers, or based on authors,
co-modification of files, etc. A step in this direction has been made, very
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recently, by Garcia et al. [Garcia 2013] by proposing a set of height archi-
tectures that they verified and can be used as ground truths to test and
compare architecture recovery techniques.

3.1.2 Metrics as Bug Indicators

In another related case study, with the help of a PhD student co-supervised
by me and Prof. Marco T. Valente, we studied a previous validation of
some metrics that was flawed and for which we proposed a stronger one
[Couto 2012].

The problem. Research on bug prediction indicators wishes to identify
predictors that can be used to forecast the probability of having errors in
the system. Having this, one would pay attention to keep these predictors
below an alarming level.

Software quality metrics are natural candidates as bug predictors. The
idea is that the decreasing quality of the source code, measured with the
appropriate metrics, would reveal a software that is more difficult to main-
tain, which, itself, should lead to a higher probability of introducing errors
when making changes to the system.

I present and discuss here the results of experiments conducted by a PhD
student who I co-supervised with Prof. Marco T. Valente.

Previous State of the Art. Most experiments designed to evaluate bug
prediction only investigate whether there is a linear relationship —typically
Pearson correlation— between the predictor and the number of bugs. Yet,
it is well known that standard regression models can not filter out spurious
relations. Correlation does not imply causality. Numerous examples exist:
there is a correlation between the number of firemen fighting a fire and the
size of the fire but this does not mean that firemen cause an increase in the
size of fire. In this case, it is rather the opposite. Other examples exist
where there is no direct relationship between the two correlated variables
but a third one influences them both.

A statistical test was proposed by Clive Granger to evaluate whether
past changes in a given time series are useful to forecast changes in another
series. The Granger Test was originally proposed to evaluate causality be-
tween time series of economic data (e.g., to show whether changes in oil
prices cause recession) [Granger 1969, Granger 1981]. Although more used
by econometricians, the test has already been applied in bio-informatics (to
identify gene regulatory relationships [Mukhopadhyay 2007]) and recently
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in software maintenance (to detect change couplings that are spread over an
interval of time [Canfora 2010]).

Testing Granger causality between two stationary time series x and y,
involves using a statistical test — usually the F-Test — to check whether
the series x helps to predict y at some stage in the future [Granger 1969].
If this happens (the p-value of the test is < 5%), one concludes that x
Granger-causes y.

Contribution. In this research we looked for more robust evidence toward
causality between software metrics as predictors and the occurrence of bugs.
We relied on a public dataset constructed by D’Ambros et al. to evaluate
bug prediction techniques [D’Ambros 2010, D’Ambros 2012]. This dataset
covers four real world Java systems, with a total of 4,298 classes, each system
with at least 90 bi-weekly (' 3.5 years) versions.

We added a new time series to D’Ambros dataset with the mapping of
5,028 bugs reported for the considered systems to their respective classes.
This is done by mining commit messages in the software history to find bug
fix changes. For this step one can either search for keywords such as “Fixed”
or “Bug” in the commit message [Mockus 2000] or search for references to
bug reports [Śliwerski 2005]. Identifying a bug fix commit allows one to
identify the code changes that fixed the bug and therefore, where the bug
was located in the source code. One defect is one change in the source code
that was performed to fix a bug. One bug may correspond to several defects
when one needed to change the code in various places to fix the bug. A
class is related to a defect if the later occurs within the code of the class
(e.g., in one of its methods) [Kim 2007]. Table 3.1 summarizes the main
properties of the defect time series. It shows the number of bugs we initially
collected in the study (column B), the number of defects that caused such
bugs considering all the classes included in the study (column D), and the
average number of defects per bugs (column D/B). As can be observed in
the table, on average each bug required changes in 2.87 defective classes.
Therefore, in our experiment, bug fixes were not scattered.

In the experiment we considered several classical software quality metrics
such as Number of Lines of Code (LOC), Depth of Inheritance Tree (DIT),
Number Of Attributes (NOA), or Lack Of Cohesion in Methods (LCOM).
We eliminated from the series classes that had less than 30 values (around
30% of the time series size) because they were too short lived to allow
applying the test. For obvious reasons, we also eliminated series that had
only null values (for example a class with no known bug). Other filters were
applied to ensure that the series were not stationary, but I will not detail
them here (see [Couto 2012] for more details).

Finally, we test whether a metric series Granger-causes the defect series
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Table 3.1: Number of bugs (B), defects (D), and defects per bugs (D/B) in
four Java system

System B D D/B

Eclipse JDT Core 2398 7313 3.05
Eclipse PDE UI 1821 5547 3.05
Equinox 545 991 1.82
Lucene 264 564 2.14

Total 5028 14415 2.87

with a possible lag varying between 1 to 4. The test is applied with a
significance level of 95% (α = 0.05).

For 12% of Eclipse JDT Core classes (that main contain defects or not),
we have not been able to detect a single causal relation from any of the
seventeen series of metrics, for Eclipse PDE UI it is 36%, for Equinox 47%,
and for Lucene 30%.

With this method, we have been able to discover in the history of metrics
the Granger-causes for 64% (Equinox) to 93% (Eclipse JDT Core) of the
defects reported for the systems considered in our experiment. Moreover,
for each defective class we have been able to identify the particular metrics
that have Granger-caused the reported defects.

Perspectives. This work was more a proof of concept than a real exper-
iment. More work with a stronger experimental setting are still needed to
fully validate these initial results.

3.2 Quality Models for Software Maintenance

Individual metrics, as the ones considered in the previous section, are impor-
tant to monitor the evolution of a single property, but it is now understood
that alone, they are not enough to characterize software quality. To cope
with this problem, most advanced or industrially validated quality models
aggregate metrics: for example, cyclomatic complexity can be combined with
test coverage to stress the fact that it is more important to cover complex
methods than getters and setters. The combination of various quality met-
rics to deal with multiple points of view, or more abstract quality properties
give rise to the concept of quality models.

We identified two needs in the context of software maintenance. Al-
though there are techniques to help defining quality models, they are diffi-
cult to apply. There is therefore a need to define and validate specific quality
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models adapted to specific situations. As an example, we worked on the par-
ticular case of outsourced maintainers, that wish to price their services for
systems they do not yet know (Section 3.2.1). Another issue considers the
way quality models aggregate results of many metrics over many software
components (Section 3.2.2).

3.2.1 Building a Quality Model from Metrics

The problem. As software maintenance outsourcing is becoming more
common, outsourced maintainers are being faced with new challenges. One
of them is the ability to rapidly evaluate a system to get an idea of the
cost to maintain it. Depending on the type of maintenance contract offered,
this cost may be linked to a number of variables: number of maintenance
requests, urgency of these requests, their intrinsic difficulty, or the ability
of the software system to endure modifications. Rapidly evaluating such
variables without previous knowledge of a system is a difficult task that all
outsourced maintainers must perform. Polo [Polo 2001] has highlighted this
as a problem that was receiving little attention.

We worked on this with a Master student, in collaboration with an out-
sourced maintenance company.

Previous State of the Art. The metrics defined to evaluate the main-
tainability of a software system (e.g. in the international standard on soft-
ware quality, ISO/IEC-9126 [ISO 2001]) were intended to be collected during
maintenance as a mean to monitor the evolution of the system. Such model
is not adapted to the necessity described above.

Misra and Bhavsar [Misra 2003] had “[investigated] the usefulness of a
suite of widely accepted design/code level metrics as indicators of difficulty”.
They analysed 20 metrics over 30 systems “varying widely in size and appli-
cation domains”. Their research used Halstead’s Difficulty metric as a basis
against which to evaluate the value of other metrics that may be computed
early in the development of a software system (design and implementation
phases).

Polo et al. [Polo 2001] had considered a similar problem, trying to help
outsourced maintainers evaluate the fault proneness of a system they do not
know. They limited themselves to two metrics: the size of the systems in
number of lines of code and in number of programs.

Pearse and Oman offered a model for measuring software maintainabil-
ity [Pearse 1995]. After studying several large software systems at Hewlett-
Packard, they came up with a four metric polynomial Maintainability In-
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dex4. It seemed improbable to us that any “magic formula” could measure
such a complex thing as maintainability. Also, the formula was fine-tuned
for the Hewlett-Packard environment and an outsourced maintainer would
have to craft a new one for every potential client. Finally, the formula was
a black box and as such, it did little to help identifying specific reasons for
the poor or good maintainability of the system, a feature which would be
needed to negotiate prices with a client.

In collaboration with a Master student working in a private software com-
pany, we defined a specific model using the Goal–Question–Metric paradigm
(GQM) [Basili 1992]. The GQM methodology helps identify Metrics re-
quired to answer Questions that will tell whether a specific Goal was at-
tained.

Contribution. We used the GQM methodology to define a model to assess
the complexity to maintain a legacy software system [Ramos 2004]. For an
outsourced maintainer, the cost of maintaining a software system may come
from several sources:

• High number of maintenance requests per month. As described in
[Polo 2001], maintenance contracts may involve attending to an un-
specified (or partially specified) number of maintenance requests per
month: the more maintenance requests, the higher the maintenance
cost.

• Urgency of maintenance requests. Urgent maintenance requests may
cost more to tackle because they are not planned.

• Intrinsic difficulty of the maintenance requests. Some maintenance
requests may be simple to address, requiring only one small change in
a well known part of the system, while others may require restructuring
the entire system.

• Difficulty of understanding and/or modifying the system. Depending
on the documentation quality, system modularity, programming lan-
guages used, data model, etc., the same maintenance request can be
easy to implement or on the contrary quite difficult.

In this research, we focused on the last of these issues. An important
requisite of the measurement plan is that the metrics should be rapid to col-
lect, giving preference to automated metrics when possible. We identified

4MI = 171 − 5.44 ∗ ln(V ) − 0.23 ∗ CC − 16.2 ∗ ln(LoC) + 50 ∗ sin(
√

2.46 ∗ LoCmt)
where V is the average Halstead volume metric, CC is the average extended cyclomatic
complexity, LoC is the average number of line of code, and LoCmt is the average number
of lines of comment.
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two goals: (i) Assess the system documentation with respect to its com-
pleteness and consistency; (ii) Assess the source code with respect to the
complexity to understand and modify it.

For each of the goals, we broke it into more specific questions and defined
metrics to answer the questions.

Question 1.1: To what extent is the system documented? (4 metrics)

Question 1.2: Is the documentation coherent with the application domain
and the application objectives? (4 metrics)

Question 1.3: Is the documentation coherent with itself? (9 metrics)

Question 2.1: What is the size of the system? (8 metrics)

Question 2.2: What is the amount of dependencies to data within the
system? (4 metrics)

Question 2.3: What is the complexity of the code? (7 metrics)

Question 2.4: What is the complexity of the user interface? (3 metrics)

Question 2.5: What is the complexity of interface with other systems? (4
metrics)

The model was fine tuned using five real Cobol systems in maintenance
in the company. The value of the metrics for each question were computed
and their results compared to the opinion of two experts in the systems.

Perspectives. This problem is still very relevant today. We were con-
tacted at the beginning of 2013 by an organization wishing to outsource its
software maintenance and needing a quality model to validate the offers of
the potential providers.

There are needs for specialized quality models, one example being a
model to evaluate the difficulty of correcting some bug in specific situations
(such as correcting architectural violations, or violation of good program-
ming rules)

3.2.2 Metrics Aggregation Strategy for a Quality Model

One problem we did not explicitly address in the preceding work is that
of aggregating and weighting metrics to produce quality indexes, provid-
ing a more comprehensive and non-technical quality assessment. We used
a simple arithmetic mean over all measured components and all metrics.



28

This approach is simple and intuitive but may have adverse effects (see be-
low). Other simple approaches such as a weighted average may also lead
to abnormal situations where a developer increasing the quality of a soft-
ware component sees the overall quality degrade. We studied this problems
with a PhD student, in collaboration with a quality provider company and
Prof. Alexander Serebrenik. We compared the Squale quality model to
other methods found in the literature and identified some requirements for
a metric aggregation method [Mordal-Manet 2011, Mordal 2012].

The problem. Assessing the quality of a software project raises two prob-
lems. First, software quality metrics, for example as proposed in the ISO 9126
standard [ISO 2001], are often defined for individual software components
(i.e., methods, classes, etc.) and cannot be easily transposed to higher ab-
straction levels (i.e., packages or entire systems). To evaluate a project, one
needs to aggregate one metric’s results over all the software components as-
sessed. Second, quality characteristics should be computed as a combination
of several metrics. For example Changeability in part I of ISO 9126 is defined
as “the capability of the software product to enable a specified modification
to be implemented” [ISO 2001]. This sub-characteristic may be associated
with several metrics, such as number of lines of code, cyclomatic complex-
ity, number of methods per class, and depth of inheritance tree. Thus,
combining the low-level metric values of all the individual components of a
project can be understood in two ways. First, for a given component, one
needs to compose the results of all the individual quality metrics considered,
e.g., lines of code and cyclomatic complexity. Second, for a given quality
characteristic, be it an individual metric or a composed characteristic as
Changeability, one needs to aggregate the results of all components into one
high level value. Both operations result in information loss to gain a more
abstract understanding: individual metrics values are lost in the composed
results, and the quality evaluation of individual components is lost in the
aggregated result.

Previous State of the Art. The most common techniques used in in-
dustrial settings for aggregation of a software metric results are simple aver-
aging and weighted averaging. These two techniques present problems such
as diluting unwanted values in the generally acceptable results, or failing to
reflect an improvement in quality.

More sophisticated techniques were proposed [Vasa 2009, Serebrenik 2010,
Vasilescu 2011, Goeminne 2011] using econometric inequality indices (e.g.
Gini [Gini 1921], Theil and mean logarithmic deviation (MLD) [Theil 1967],
Atkinson [Atkinson 1970], Hoover [Hoover 1936], or Kolm [Kolm 1976]).
The mathematical definition of these indices is given in Table 3.2. Finally,
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Table 3.2: Mathematical definition of some econometrical inequality indices,
x̄ denotes the mean of x1, . . . , xn and |x| denotes the absolute value of x

Index Definition Index Definition
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∑n
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1
n
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i=1

(
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x̄

)
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1
n
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(
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)
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x̄

(
1
n
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1−α
i

) 1
1−α
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1

2nx̄

∑n
i=1 |xi − x̄| IβKolm

1
β log

[
1
n

∑n
i=1 e

β(x̄−xi)
]

the PhD student involved in this research also worked on an empirically de-
fined, industrial model, Squale [Mordal-Manet 2009]. Squale uses an ad-hoc
approach to compose metrics for a given software component. Typically
this first result is normalized into a [0, 3] interval (0=worst, 3=best). Then,
for aggregation, the composed values are translated into a new space where
low marks have significantly more weight than good ones, the actual aggre-
gation is computed as the average of all transposed marks and the result
is converted back to the original scale by applying the inverse weighting
function.

Contribution. We contributed to this field by identifying requirements
for the aggregation/composition of metrics in practice in industry; and by
evaluating the existing solutions against these requirements.

I will not detailed the eleven requirements we identified, but only propose
some of the more pertinent in an industrial context:

• Highlight problems: A quality model should be more sensitive to prob-
lematic values in order to pinpoint them, and also to provide a stronger
positive feedback when problems are corrected;

• Do not hide progress: Improvement in quality should never result in
a worsening of the evaluation. As a counterexample, it is known that
econometric inequality indices will worsen when going from an “all
equally-bad” situation to a situation where all are equally bad except
one;

• Composition before Aggregation: Composition should be performed at
the level of individual components to retain the intended semantics
of the composition. For example, the comment rate assessment, com-
posed from the number of commented lines and the cyclomatic com-
plexity, would already be less meaningful at the level of a class, after
aggregation of the two metrics, than at the level of individual meth-
ods: a class could have a very complex, poorly commented method
and a very simple, over-documented one, resulting in globally normal
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cyclomatic complexity and number of commented lines. It would much
better to compute comment rate first, and then aggregate the results
at the level of a class;

From these requirements (and others not shown here), we evaluated how
well different aggregation approaches answered them.

An important requirement was that of aggregation being able to high-
light problems. For this, we compared the reactions of different aggregation
techniques in the presence of an increasingly large amount of problems. We
used a controlled experiment where the amount of problems may be quan-
titative or qualitative, and we considered two independent variables:

• quantity of problems in a known quantity of good results;

• quality of the problems (badness degree) in a known quantity of perfect
results.

The dependent variable was the final result of the aggregation technique.

All experiments started with a “perfect” case consisting of marks of 3
(in the [0, 3] interval). We then introduced “problems” (mark < 3) up to
100% of problems in steps of 10%. To ease the interpretation of the results,
we did several experiments limiting the variation of imperfections to [2, 3[ ;
[1, 2[ ; [0.5, 1[ ; [0.1, 0.5[ ; and [0, 0.1[. The perfect and imperfect marks were
randomly chosen from the results of the number of lines of code of Eclipse
2.0 methods normalized to the [0, 3] interval according to the practice at
Air France-KLM where the Squale model is in use. For each experimental
set-up (percentage of imperfect marks, interval of imperfection) we present
the mean result of 10 experiments.

I give here only the result of four aggregation possibilities: arithmetic
mean, Squale approach, IKolm and ITheil. To foster meaningful comparison,
the results of the arithmetic mean are repeated in all other graphs in the form
of a grey triangle in the background. One can see for example that even with
30% of very bad marks (imperfect methods in [0, 0.1[), the aggregated result
for arithmetic mean is still ≥ 2, which does not answer the requirement
of highlight problems. Squale has better properties with regard to this
requirement. IKolm also behaves nicely as long as not too many marks are
bad where, being an inequality index, it starts to improve (because all results
are equally bad). ITheil was chosen as an example of an aggregation method
that does not perform well regarding this requirement. We do not see it as
an issue since this situation is unlikely to occur in real situation.

Perspectives. For this research, we conducted laboratory experiments
with randomly generated datasets (from a pool a real individual marks) to
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Figure 3.3: Results of experiments for four aggregation indexes (see text for
explanation). The topmost left figure displays the common legend.

get a first idea of how the various aggregation solutions would compare. To
be complete, it would be important to experiment further with real data and
systems and the opinion of the maintainers of the system on the assessment
made by the quality model.



Chapter 4

Preventing Software Decay

Measuring the quality of a software system is important to closely monitor
its state and understand how it evolves. We explored this option in the
previous chapter. Yet this is not enough to ensure sustainability of the
evolution process. Another important step is to take actions to slow the
decay process, for example by preventing the introduction of bugs into the
system. In Section 3.1.2 we started to look at this by trying to use quality
metrics as early indicators of software decay and probable bug apparition.
Another possible tool is to use rule checkers [Flanagan 2002, Engler 2000,
Johnson 1978, Roberts 1997] such as FindBugs, PMD, or smalllint. These
are tools that can check good programming practice rules on the source code
to prevent specific constructs that are known to be bad practice.

One of their original goals is to prevent bugs, yet, a high number of
false positives is generated by the rules of these tools, i.e., most warnings
do not indicate real bugs for example Basalaj et al. [Basalaj 2006] studied
the link between quality assurance C++ warnings and faults for snapshots
from 18 different projects and found a correlation for 12 out of 900 rules
(1.3%) other studies confirm these findings [Basalaj 2006, Boogerd 2008,
Boogerd 2009, Couto 2012, Kim 2007, Kremenek 2004]. There are empirical
evidences supporting the intuition that the rules enforced by such tools do
not prevent the introduction of bugs in software. This may occur because
the rules are too generic and do not focus on domain specific problems of
the software under analysis.

One can try to improve their efficiency by finding better rules. We started
to explore two solutions for this, first (Section 4.1) by looking at system
specific rules, second (Section 4.2) by filtering out the warnings raised by
these tools.

4.1 Relevance of System Specific Rules

Rule checking tools could, in theory, help preventing bugs in two ways. First,
they could be used to avoid the introduction of specific errors; second, by
improving the general quality of the code, they could improve its readability
and favour its maintainability, thus lowering the probability of introducing
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errors (as confirmed in [Nagappan 2005, Zheng 2006]). In a research led by
a PhD student and reported here, we focused on the first approach.

The problem. Knowing that an ounce of prevention is worth a pound of
cure, software engineers are applying code checkers on their source code to
improve its quality. One of the original goals of these tools is to prevent
bugs (hence the name FindBugs). Yet if it is usually acknowledged that if
this approach can improve the general quality of the code, its efficiency in
bug prevention is debatable.

Previous State of the Art. To understand how well rule checking tools
can help prevent bug apparition, studies were conducted to see how the
warnings they raise correlate with bug apparition. More specifically, previ-
ous research (e.g. [Boogerd 2008, Boogerd 2009, Couto 2012, Ostrand 2004])
studied whether warnings raised by rule checking tools occurred on the same
classes, methods, or lines of code as bugs. For this, warnings can easily be
ascribed to classes, methods or lines of code depending of the rule consid-
ered. For bugs, we used the technique described in Section 3.1.2

In possession of software entities (classes, methods or lines of code)
marked with bugs and/or warnings, one is interested in the entities that
have both markers. One calls a True Positive a warning collocated with a
defect on an entity; an entity marked only as defective is a False Negative; if
marked only with a warning it is a False Positive; and, with neither markers
it is a True Negative.

The result of such experiment was that most warnings do not indicate
real bugs and contain a high number of false positives.

On the other side, a study by Rengli [Renggli 2010] showed that rules
defined specifically for a software system or for a domain had more impact
(they were more corrected) on the practice than generic one.

Contribution. We hypothesized that the two findings are correlated and
that code checking rules are too generic and are not focusing on domain-
specific problems of the software under analysis. This is can also be related
to studies indicating that the most prevalent type of bug is semantic or
program specific [Kim 2006, Li 2006, Boogerd 2009].

Our contribution therefore was to test the efficiency of such system spe-
cific rules for defect prevention or reduction [Hora 2012]. We performed a
systematic study to investigate the relation between, on one side, generic or
domain specific warnings and, on the other side, observed defects:

1. Can domain specific warnings be used for defect prevention?
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2. Are domain specific warnings more likely to point to defects than
generic warnings?

Of course rules, and especially generic rules, may be created with other
purposes than detecting bugs. This is why we performed two experiments
answering the above research questions for two sets of rules. In the first
experiment we consider all rules, in the second, we focus on “top rules”,
i.e. the ones that better correlate with the presence of bugs. This ap-
proach is also used by [Boogerd 2008, Boogerd 2009, Kim 2007] to assess
the true positives. In fact, any random predictor, marking random entities
with warnings, would, with a sufficient number of attempts, end up with
a number of true positives higher than zero, but would not be very useful.
Therefore, we can assess the significance of a rule by comparing it to a ran-
dom predictor [Boogerd 2009]: the project is viewed as a large repository
of entities, with a certain probability (p= #defective-entities / #entities) of
those entities being defect related. A rule marks n entities with warnings. A
certain number of these warnings (r) are successful defect predictions. This
is compared with a random predictor, which selects n entities randomly from
the repository. We can model the random predictor as a Bernoulli process
(with probability p and n trials). The number of correctly predicted entities
r has a binomial distribution; using the cumulative distribution function
P (TP ≤ X ≤ n) we compute the significance of the rule [Boogerd 2008].
When the random predictor has less than 5% probability1 to give a better
result than the rule, we call this one a top rule. We give some results with
top rules in bold in Table 4.1.

The experiment was performed on Seaside, a real software system for
which we had system specific rules already defined (the same system used
in [Renggli 2010]).

From all methods tested, 77 had at least one top generic warning, from
which 13 with at least one defect (TP > 0). 67 methods had at least one top
domain specific warning, from which 17 with at least one defect. Applying
a Mann-Whitney test we got a p-value= 0.047 (and effect size= 0.14). We
concluded that there was a significant difference between both samples and
we could reject the null hypothesis: it is better to use top domain specific
warnings to point to defects than top generic warnings.

Perspectives. If we could establish the advantage of using system specific
rules for bug prevention, they also suffer from a sever drawback: they must
be defined by an expert of the domain under analysis, for each system. We
are therefore pursuing this research line by trying to propose a method that

1Another threshold could have been used



36

Table 4.1: Rules with TP > 0. Rules in bold performed significantly better
than random (top rules)

Rule #Warning #TP

GRAnsiCollectionsRule 8 1
GRAnsiConditionalsRule 118 18
GRAnsiStreamsRule 11 1
GRAnsiStringsRule 40 10
GRDeprecatedApiProtocolRule 56 3
GRNotPortableCollectionsRule 7 4
RBBadMessageRule 16 1
RBGuardingClauseRule 19 2
RBIfTrueBlocksRule 7 2
RBIfTrueReturnsRule 14 3
RBLawOfDemeterRule 224 18
RBLiteralValuesSpellingRule 232 10
RBMethodCommentsSpellingRule 216 8
RBNotEliminationRule 58 1
RBReturnsIfTrueRule 72 3
RBTempsReadBeforeWrittenRule 16 3
RBToDoRule 38 6
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would help software engineers producing these rules. For this, we are looking
for specific changes applied repetitively in the history of the system.

We also have indication that system specific rules could be used to help
people migrating from a version of an API to a new one. This is a path that
we plan to explore.

4.2 Better Generic Rule Filters

The problem. As we saw in the previous section, on a real sized system,
general rule violations detected by the rule checking tools may be numbered
by the thousands. Unfortunately, a high proportion (up to 91%) of these
violations are false alarms, which in the context of a specific software, do not
get fixed. One says they are un-actionable [Heckman 2011], they generate
no action from the developers. Huge numbers of false alarms (un-actionable
violations) may seriously hamper the finding and correction of true issues
(actionable violations) and dissuade developers from using these tools. This
can be measured by the effort metric [Kremenek 2003]: the average number
of violations to manually inspect to find an actionable one, where the closest
to 1 is the optimum because it means all violations are actionable. With the
assistance of a post-doctoral fellow, we looked for ways to identify actionable
violations [Allier 2012].

Previous State of the Art. The literature provides different violation
ranking algorithms that try to compute the probability of a violation be-
ing truly actionable. Eighteen algorithms were reviewed by Heckman et al.
in [Heckman 2011] and described according to different criteria like infor-
mation used, or algorithm used. But they were never compared between
themselves, so we had no means to decide which one to use. We needed to
formally establish which of the violation ranking algorithms is best and in
what conditions.

Contribution. We established a formal framework for comparing different
violation ranking approaches [Allier 2012]. It uses a benchmark covering
two programming languages (Java and Smalltalk) and three rules checker
(FindBugs2, PMD3, and SmallLint4).

This framework compares violation ranking algorithms on three criteria:
effort metric (i.e. average number of violations to manually inspect to find
an actionable one); whether it is best to work on rules (all violation of a

2http://findbugs.sourceforge.net/
3http://pmd.sourceforge.net/
4http://c2.com/cgi/wiki?SmallLint
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Table 4.2: Results for the effort metric for the first 20%, 50%, and 80%.
Bold values show the best results (closer to 1).

PMD FindBugs SmallLint
Threshold 20% 50% 80% 20% 50% 80% 20% 50% 80%

AWARE 1.01 1.03 1.36 1.13 1.14 1.35 1.01 1.02 1.03
FeedBackRank 1.08 1.04 1.75 1.19 1.22 1.45 1.01 1.02 1.04
RPM 1.9 2.02 2.46 1.17 1.19 1.47 1.01 1.02 1.11
ZRanking 4.05 4.44 4.2 1.27 1.3 1.84 1.71 1.69 1.67
AlertLifeTime 4.06 3.79 3.72 2.05 1.65 1.76 1.04 1.49 1.69
EFindBugs 2.7 3.01 3.22 1.3 1.28 1.58 1.02 1.14 1.35

given rule are considered equal) or individual violations; and whether the
algorithm used is statistical or more ad-hoc (characterization from Heckman
[Heckman 2011]). For each of these three criteria, we established a formal
hypothesis and described how to test the significance of the results.

We then ran our framework on six real systems in Java and Smalltalk;
in different domains (e.g., in Java we have JDOM, to manipulate XML
data, and Runtime, a plugin in the Eclipse platform, for Smalltalk we have
Seaside, a web application framework, and Pharo-Collection, a part of the
kernel on collections); and of different size (at least an order of magnitude
in both languages).

We compared five violation ranking algorithms (Aware, FeedBackRank-
ing, RPM, ZRanking, and AlertLifeTime) described in [Heckman 2011] plus
EFindBugs which is more recent.

I give here only two examples of all the results which can be found in
[Allier 2012]. Table 4.2 gives the results of the effort metric for the first
20%, 50%, and 80% of the filtered violations for the six violation ranking
algorithms studied. One can first see that the best results give an excellent
effort, very close to 1. So for example when filtering violations with the
Aware algorithm, if one takes up to 50% of the filtered violations there are
good chances that almost all violations are actionable (effort ≤ 1.03 for two
rule checking tools, = 1.14 for the third).

Another interesting result was considering the violation in order of prob-
ability to be actionnable (as reported by the individual algorithms tested)
and plotting the percentage of all actionable violations found (i.e. recall)
versus the number of violations considered (Figure 4.1). It shows that, on
violations provided by PMD, three violation ranking algorithms (notably
ZRanking) can be worse than randomly filtering, or that FeedBackRank is
very good at first, filtering all un-actionable violations, but then reaches a
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plateau and starts accepting almost only un-actionable ones.
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Figure 4.1: Fault detection rate of the violation ranking algorithms tested for
the PMD rule checker. Dotted lines represent a random ranking algorithm
(lower dotted line) and a perfect ranking one (upper dotted line)

The behaviour of the violation ranking algorithms was not exactly the
same for the three rule checking tools but we could establish that:

• For the violations provided by two rule checking tools (SmallLint and
PMD), the Aware and FeedBackRank algorithms are significantly bet-
ter than the other filtering methods while the ZRanking and AlertLife-
Time algorithms are significantly worse;

• Overall one should opt for violation algorithms that work on indi-
vidual violations rather that rules, but one may also consider that
the training of the violation ranking algorithms requires more data
and therefore effort (training implies that somebody manually check
whether violations are actionable or not);

• we found no evidence in favour or against statistical versus ad-hoc
algorithms.

Perspectives. In the previous section, we successfully showed that more
specific rules (system specific) could give a higher percentage of violations
pointing to actual bugs. Such violations are by definition actionable, since
they point to real bug, one would want to correct them. In this section we
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looked at methods to filter the violation candidates on other criteria than
just the source code of the system to improve the probability of them being
actionable.

An immediate following step would be to verify that actionable viola-
tions are also better bug predictor. The two notions are not equivalent,
an actionable violation could be corrected for other reason that preventing
an error. May be the alert ranking algorithms select violations fitted for
another purpose than bug prevention. In either case, the result would be
interesting as it would allow people to better understand what can be done
with rule checking tools.

Another perspective would be to explore other possible usages of the
rules. For example we said in the previous section that system specific rules
could be used to help when migrating the API of a library. Another example
would be that identifying a good bug prevention rule would immediately lead
to the search for a good bug fixing rule.



Chapter 5

Recovering from
Architectural Drift

The first two chapters of this part considered methods to control the evolu-
tion of a software system by monitoring its quality (Chapter 3); and how one
could try to slow the software decay process by preventing the introduction
of bugs in systems (Chapter 4). But there is one aspect of a software system
that is difficult to prevent from degrading: its architecture.

The solutions proposed in the preceding chapters may be useful at the
micro level but they cannot solve all the problems at the macro, architec-
tural, level. Systems are initially conceived with a given goal and scope in
mind. As they evolve and new functionalities are added, this goal and scope
will typically drift in unforeseen directions. After some time, it becomes
necessary to straighten things by redefining a new architecture, taking into
account the new scope of the system.

In this chapter, I first present a study of existing methods in software
remodularization (Section 5.1) followed by an experiment in the specific case
of removing cyclic dependencies (Section 5.2).

5.1 Initial Experiments: Clustering Algorithm to
Define Software Architecture

The research described here was performed a long time ago. It’s results may
appear outdated now, however it must be noted that the problem is still
actual and as of today there is still no satisfactory solution.

The problem. The initial assumption in this field of research is that the
software engineers are not satisfied with the current architecture (or lack
of) of the system. For example, we worked with a company where all the
source code was organized as a very large set of files (> 2000) in a single
directory. If the organization is a provider of software solutions to others,
it will have difficulties to identify what source file each client uses. This
can become a real issue, for example when distributing upgrades, because
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clients are wary of putting new programs into production, as new programs
are always a potential source of new errors.

Previous State of the Art. At the time of this research, a technique
often used to help software engineers re-architecture their system was clus-
tering. It was used to gather software components into modules meaningful
to the software engineers. For example, Figure 5.1 shows how an hierarchical
clustering algorithm gathers individual software elements (e.g. functions in
a C program, or classes in a Java one) in a hierarchy of clusters. By cutting
the hierarchy at a given level, one obtains a partition of the system where
clusters are considered as modules.

0

MAX

height

Figure 5.1: A hierarchy of clusters and how to cut it to get a partition of
the software elements

Clustering, however, is a sophisticated research domain in itself. There
are many alternative methods, the choice of which depends on such factors as
size and type of the data, a priori knowledge of the expected result, etc. At
the time of this research, reverse engineering was a younger research domain,
with still unclear goals [Clayton 1998] and methods that were somewhat ad-
hoc. In this context, clustering was often used without a deep understanding
of many of the issues involved.

A previous publication [Wiggerts 1997] had started to address this issue
by presenting a summary of literature on clustering. It listed the possi-
ble decisions one needs to make and gave insights about advantages and
drawbacks associated with various alternatives. However, Wiggerts’ paper
only offered conclusions drawn from the general clustering literature, some
of which did not apply to the domain of software remodularization.

Another limitation of previous approaches is that they considered the
content of the source code as the sole source of reliable information on the
system. This approach defined interrelationships between files, and then
clustered together the files with strong interrelationships [Lakhotia 1997].
Examples of such interrelationships included calls from routine to routine
[Müller 1993, Tzerpo 1997], uses in one file of variables or types defined
in another [Müller 1993], as well as inclusion of a particular file by others
[Mancoridis 1996, Tzerpo 1997].

Some had started to show that an approach solely based on the source
code was impeded by the very low level of information it was based on.
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For example, in [Carmichael 1995], Carmichael reported his difficulties in
extracting correct design information from a “reasonably well designed”,
medium sized (300,000 LOCs) recently-developed system. The experiment
used inclusion between files to deduce subsystems, but it turned out that
each file included many other files, some of these relationships crossing im-
portant architectural boundaries. In another paper, Biggerstaff [Biggerstaff 1994]
advocated a more human-oriented approach that would actually help the
user to relate structures in the program to his “human oriented conceptual
knowledge” (see Chapter 6). But it was not clear yet how this could be put
into practice on a large scale.

Contribution. With the help of a Master student, we methodically ex-
plored the numerous options available when trying to automatically identify
high level abstractions (grouping of software elements) in the source code
[Anquetil 2003b]. We first set up a conceptual framework where we iden-
tified three main points of variation: (i) How to describe the entities to
be clustered; (ii) What similarity metrics to use to quantify the coupling
between these entities, and; (iii) What clustering algorithms to use.

From this study, we could offer practical suggestions on how to per-
form “software clustering”. This research was very well received and earned
two awards: the “Mather Premium”, awarded in 2004 by the journal IEE
Proceedings—Software (now IET Software), and the “Ten Years Later, Most
Influential Paper of WCRE’99” awarded at WCRE’09.

The first point was to define how to describe the entities to be grouped.
We compared different description characteristics, some based on the com-
piled code (e.g. routines called by the functions, or header files included
by other files), other based on less formal description characteristics such as
references to words in identifiers or references to words in comments. At the
time, work based on documentation was scarce as a result of assuming that
documentation was often outdated.

As a sample of our results, Figure 5.2 allows to compare two description
characteristics. The X-axis gives the height of the cut in the hierarchy
of clusters (see also Figure 5.1). For each height, we look at the number
of software elements not clustered (bottom, light grey), belonging to the
largest cluster (top, mid-grey), or belonging to other intermediate clusters
(center, dark-grey). In this example, clustering C files according to the
header files they included (left hand-side) gave better results than according
to the routine that are called from within the files (right hand-side). This
was, and is, significant as there is a strong assumption that routine calls are
an adequate cohesion/coupling indicator in software architecture whereas
here it did not performed very well. This topic as been discussed earlier in
Section 3.1.
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Figure 5.2: Comparison of two entity description characteristics on the size
of the clusters. The system used here is the Mosaic web browser

We called a black hole configuration when the algorithm tends to create
one big cluster that grows regularly during the clustering process and drags,
one after the other, all entities to it. We called gas cloud configuration
when the algorithm create very small clusters and then suddenly clusters all
of them into one big cluster near the top of the hierarchy. The right graphic
in Figure 5.2 exhibits this undesirable condition. The best configuration
is exemplified on the left graphic, where clusters grow evenly during the
process.

A second part of the study considered some of the many similarity met-
rics that may be used to define how close two entities or two groups of
entities (i.e. clusters) are one from each other. Clustering algorithm are
numerical techniques, they use metrics to decide what entities to group to-
gether. We will not enter in details on this issue but were able to propose
some suitable metrics, an important conclusion being that a metric should
not consider the absence of a characteristic as significant. By this we mean
that when clustering animals, the absence of feather is a significant charac-
teristic, whereas in software clustering the fact that some routine does not
call another one is not significant because there is too many other routines
that share this characteristic.

The last part of the study regarded the clustering algorithm used. We
mainly experimented with agglomerative hierarchical clustering (e.g. see
Figure 5.1); there are four such algorithms and we identified the best suited
depending on whether one wanted to promote cohesion of the clusters or a
balance between good cohesion and good coupling.

Yet I believe the main contribution of this research was to identify a
fundamental flaw in the whole research area. It was during this research
that I first perceived the problem of evaluating the results of automatic re-
architecturing. This was already discussed in this document as it led to the
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research reported in Section 3.1. This is a message that went unnoticed and
research continued for more than a decade without significant results.

Perspectives. This research is at the same time old and still very relevant.
The problem of re-architecturing a software system is still an important
one. For example, a recent publication [Garcia 2013] reviews some of the
technique that were developed during the years. An important conclusion
of the paper is that “on the whole, all of the studied techniques performed
poorly”.

Personally, this work, however successful it was, led me to the conclusion
that this research direction, as it was performed, would not succeed. One
part of the problem has been treated in a previous chapter (§3.1), we were
relying on metrics whose quality was un-tested and that, I now believe, were
misleading. Another part is that the goal the community set to itself was
probably not realistic. Designing the architecture of a system depends on
many conflicting forces, most of which are not directly related to the source
code. For example, one can structure a system according to the market
segments it addresses, the hardware it requires, the teams that maintain it,
historical considerations, plans for the future of the system, etc. Informa-
tion on these forces cannot be found in the source code and therefore an
automatic tool does not have all the data needed to come up with a proper
architectural design proposal.

5.2 Approaching a Concrete Case

After the first experiments reported in the preceding section on automated
definition of a new architecture, I gained a much better understanding of
the domain and acquired the conviction that the research direction was
inherently flawed. I chose to go for solutions that would better integrate
the semantics of the domain. This will be reported in Part III—People
and Knowledge. Yet more recently, I came back to the topic of automatic
architecture improvement with new perspectives: First, I am going to the
root of the problem by considering the architectural design quality metrics
and how we could improve them. This was reported in Section 3.1. Second,
with a PhD student, we explored a better defined problem for which quality
metrics were easier to define: the removal of package cyclic dependencies
[Laval 2012]. I will now describe this research.

The problem. When a large system is well structured, its structure sim-
plifies its evolution. A possible good structure is the layered architecture. A
layered architecture is an architecture where entities in a layer may access
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only entities in the layers below it. A layered architecture eases software
evolution because the impact of a change can be limited to layers above, it
also offers good properties of modifiability and portability [Bachmann 2000].
Moreover, using a layered view on a software system is a common approach
to understand it [Ducasse 2009].

At first sight, it might seem easy to create a layered organization from an
existing program: (i) compute dependencies between software entities; and
(ii) put the entities in layers such that no lower layer accesses a layer above
it. However, in practice, cyclic dependencies are common in large software
applications [Falleri 2011]. For example, the largest cycle of ArgoUML con-
tains almost half of the system’s packages, and for JEdit, almost two thirds
of the packages are in the largest cycle [Falleri 2011]. The naive algorithm
above would place all entities in one cycle (e.g. two third of JEdit’s pack-
ages) in the same layer. Hence, cyclic dependencies should be dealt with
before trying to create a layered organization.

Previous State of the Art. Three main approaches existed to extract a
layered structure from package dependencies. To illustrate their results, we
consider an hypothetical example (Figure 5.3, left part). The right part of
the figure proposes a plausible decomposition into layers. This is actually
the one proposed by our solution, so we will come back to it later.
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Figure 5.3: On the left, an example of cycles between entities. On the right,
a plausible decomposition in layers. The dashed arrows are those that we
“removed” to create a proper layer architecture. (Copied from [Laval 2012])

A first solution consisted in leaving all cycles out of the layered structure
(Figure 5.4, left) as in the NDepend tool1 Entities that depend, directly or

1http://www.ndepend.com
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indirectly, on entities in a cycle are also excluded. The problem of this
approach is that, if a cycle involves a core entity (as Kernel in our example),
most of the other entities will end up outside the layered organization.

A second approach treated cycles as features, as in Lattix [Sangal 2005]
(center of Figure 5.4). Each cycle is put in a separate layer. This may lead
to erroneous architecture if a cycle is really a mistake and not a feature.
This is the case of Kernel and UI being in the same layer in our example.
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Figure 5.4: Layered organization obtained by different strategies when ap-
plied to the system described in 5.3: left=cycles out, center=cycle in one
layer, right=MFAS. (Copied from [Laval 2012])

Finally one could try to break cycles using the Minimum Feedback Arc
Set (MFAS) algorithm as in the Structure101 tool (right of Figure 5.4). In
graph theory, a minimum feedback arc set is the smallest set of edges that,
when removed from the graph, leaves an acyclic graph. This approach could
produce good results because it guarantees to make minimal modifications
to the software structure to break cycles. However, it does not take into
account the semantics of the software structure: what the entities mean,
why they have these dependencies. Optimizing a graph is not equivalent to
identifying the layered architecture of an existing software system. In our
example, this solution places UI at the bottom of the layer organization,
and Kernel in a higher layer, which does not fit common understanding in
software engineering.

Contribution. Our approach is based on two intuitions for finding depen-
dencies that, once “removed” (i.e., not considered in building the layered
architecture), will allow generating a layered structure. We consider that
dependencies between entities have weights. For example, when a package
A depends on a package B, it might be because only one class of A inher-
its from one class of B (weight=1) or because there are 10 invocations of
methods in B from methods in A (weight=10).

Our first heuristic states that, in a direct cycle (between two packages),
the lightest dependency might be a design defect or a programming error
and therefore should be removed. Concretely, if the software engineers wish
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to actually put the layered architecture proposed into practice, the lightest
dependency often requires the least amount of work to remove. If the two
dependencies in direct cycles have the same or a similar weight the tool can
only choose randomly the one to remove.

Our second heuristic is based on the occurrence of shared dependencies
in minimal cycles involving three or more packages. A shared dependency is
one that belongs to several cycles. Shared dependencies have a strong impact
on the system structure because removing them may break several cycles at
the same time. A minimal cycle is one with no node appearing more than
once. We must focus on them to make sure the shared dependency really
belongs to different cycles and not simply the same cycle repeated several
times.

These hypotheses might not always hold true, so software engineers with
knowledge on the system are given the opportunity to overrule wrong deci-
sions made by our tool by flagging individual dependencies either as unde-
sired (forces removal) or expected (impedes removal).

We validated our approach with a study of two large open-source software
systems: the Moose [Nierstrasz 2005] and Pharo [Black 2009] projects. We
selected these two projects because they are large, contain realistic package
dependencies, and are open-source and available to other researchers. In
addition, both systems are more than 10 years old. Most importantly, we
selected them because we could get feedback on our results from members of
each project community. Engineers of these two projects manually validated
the results reported by our tool.

Compared to other approaches, ours contained fewer false-positive and
false-negative results producing a layer organization corresponding to the
intended structure of the software. This was possible because the software
engineers knowing the system were able to give feedback to the tool by
flagging as undesired some dependencies that the tool first decided to keep
(mainly in the case of random removal when two dependencies in direct
cycles have similar weights).

We also compared our algorithm with the Minimum Feedback Arc Set
(MFAS) algorithm on the set of 1328 dependencies of Pharo that were man-
ually classified (expected or undesired) by its developers. The results are
that the precision for our approach (dependencies proposed for removal that
were classified undesired) is a bit better with 64% for our tool and 61% for
MFAS. Furthermore our tool allows the developers to fine-tune the results
which MFAS does not. In addition, we also got a better recall (proportion of
undesired dependencies proposed for removal) with 44% for our tool against
41% for MFAS. Hence, our approach performed better than MFAS on this
example.
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Perspectives. A first continuation on this research would be to put more
semantics on the dependencies. For example, on a dependency between
package A and package B, it might not be the same to say that a class in
A inherits from a class in B or that a method in A invokes a method in
B. By taking the individual links into account, we might be able to further
improve the results we already obtained.

Another possible research direction would consist in targeting other spe-
cific architectural goals such as aiming for a layered architecture with a well
defined semantics for each layer: client/server or three-tiers.



Part III

People and Knowledge
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In Part II—“Software System” I discussed how I tried to ease software
evolution considering solely the software system. One of the conclusions of
this part of my research was that some tasks, like evaluating the quality
of an architectural design, depended on information that is of a different
nature. Biggerstaff [Biggerstaff 1994], see below, called this information
“human-oriented concepts” (as opposed to “computer oriented” ones). For
example, one may want to decompose a system according to the various
market segments it attacks (e.g., hotels, hospitals, or schools), or according
to internal divisions in the organization using it (e.g., sales department,
logistics department, etc.).

In this part (Part III—“People and Knowledge”), I report on attempts
to work with more abstract concepts like what the software does and for
who.



Chapter 6

Knowledge Contained in the
Source Code

This chapter presents the results of a transitional research, where I still tried
to extract data from the software itself. The idea was that if a system is
devoted to a given market segment (e.g., hotels), then this might appear
inside the code in the form of comments or in identifiers.

In the next chapter (Chapter 7) I will be considering another evolution
of this reflection where I tried to work with the knowledge of the developers
themselves.

6.1 Initial Experiments: Domain Concepts Found
in Identifiers

My first experiment in this new line of research [Anquetil 1998a] was to
verify that it was viable. For this, I had to demonstrate that the source code
contained information that could be reliably used to get access to concepts
relevant to the higher level of abstraction software maintainers deal with. I
also qualified the kind of information that could be extracted from this new
source of information [Anquetil 2001].

The problem. To work with more abstract information I needed a re-
liable source of this information. Following my previous experiments (see
Section 5.1), I turned to comments and identifiers in the source code. They
intuitively represent a possible source of human-oriented concepts since they
are intended for human readers. For example, showing all the identifiers ap-
pearing in a method gives a better clue as to its goal than giving the source
code but obfuscating the identifiers (see an example in Figure 6.1). However,
I wished to verify whether this could be reliably used to make inferences on
the concepts used.

Previous State of the Art. In a well received article [Biggerstaff 1994],
Biggerstaff had coined the expression “concept assignment problem” as the
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m1(C1 v1) {
C2 v2 = "\\+";
C2 v3 = " ";
C3 v4 = C3.m2(v2);
C4 v5 = v4.m3(v1);
return v5.m4(v3); }

removeDuplicateWhitespace CharSequence inputStr
String patternStr
String replaceStr
Pattern pattern Pattern compile patternStr
Matcher matcher pattern matcher inputStr
matcher replaceAll replaceStr

Figure 6.1: One piece of code obfuscated in two different ways (Java example
found on http://www.tutorialspoint.com/javaexamples/regular whitespace.htm)

action of relating source code to the human-oriented concepts they rep-
resented and manipulated. The human-oriented concepts were defined as
living “in a rich context of knowledge about the world”, and “designed for
succinct, intentionally ambiguous communication”. They were opposed to
the computer oriented concepts, “designed for automated treatment” using
“vocabulary and grammar narrowly restricted”. This was the first explicit
identification that the software itself was not all and that other points of
view were required.

What I planned to do was slightly different, as I wanted to extract the
human-oriented concepts from the source code. There was no clear indica-
tion whether this could be done or even what these concepts were exactly.

For example, in the case of identifiers, opinions were contradictory:
Sneed [Sneed 1996] reported that “programmers often choose to name pro-
cedures after their girlfriends or favourite sportsmen,” or “data attributes of
the same structure may have different names from one program to another”.
On the other hand, other researchers (e.g., [Burd 1996], [Cimitile 1997],
[Newcomb 1995]) had tried to find synonymous structured types based on
their definitions, thereby implicitly assuming that structured type identifiers
were not significant (synonymous records) whereas their field names were.

The closest to my goal was a very preliminary study [Clayton 1998] that
identified all the “knowledge atoms” that would be necessary to understand
a very small program (102 lines of Fortran code). They classified these atoms
in three knowledge types: domain knowledge, language knowledge (FOR-
TRAN), and programming knowledge, to which they added five knowledge
atoms not related to any of three types. Compared to them, I was more
interested in domain knowledge.

Contribution. My first goal was to clarify whether the identifiers and
the comments could be reliably used to extract human oriented concepts.
This implied defining more precisely what reliability meant in this context.
I was basing this work on the assumption that some naming convention was
used in developing software through a process whereby software engineers
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informally followed each others’ lead by creating new names inspired from
the ones already existing in the code.

Ideally, one could have required that a naming convention was reliable
if there was a strict equivalence between the names of the software artefacts
and the human oriented concepts they implement. But that would have
been overly restrictive and I limited myself to checking that two software
artefacts with the same name did implement the same concept.

Another issue was to verify objectively that two human oriented concepts
were the same. I chose to work with structured data types, for which it was
easier to compare the implementation and establish a notion of similarity
between them.

I was working with a proprietary telecommunication legacy system that
was over 15 years old and about 2 MLOCs of Pascal code. The system
contained over 7000 structured type definitions (records in Pascal) of which
2666 were global, non-anonymous, record definitions, and 97 had a non-
unique name.

I first established that the field names were reliable (i.e., two identical
field names have identical types) by comparing the names and the declared
type of the fields (see Table 6.1). A high proportion (94.8%) of synonymous
fields have the same type (same name ⇒ same implemented concept). The
proportion of non synonymous fields with different types (89%) is also good
(opposite implication, different names ⇒ different implemented concepts).
The significance of this result is confirmed by a χ2 test. I thus established
that inside the subset of structured types that have non unique names, the
field naming convention is reliable.

Field types
= 6= total

Field = 73(95%) 4(05%) 77
names 6= 52(11%) 421(89%) 473

Table 6.1: Paired comparison of fields’ names and fields’ types within syn-
onymous structured types

I used this first result to compare structured types themselves, by com-
puting a distance between the names of the structured types identifiers
and comparing this to the distance between the structured types defini-
tions (words found in the names of the fields, this is possible because we
showed that the identifiers are significant). The results were that only 10%
of the 77 pairs have a conceptual similarity inferior to 0.6 (from 0, com-
pletely different, to 1, equals). Only two pairs of structured records were
completely different, they were utility types.
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This experiment was also replicated on Mosaic, one of the very first
web browsers. I tested variables’ names, structured types’ names and fields’
names and got similarly positive results (although, I did find a few peculiar
examples such as: “mo here we are son”, “mo been here before huh dad”,
etc.)

I concluded that, in the legacy software studied, the names of struc-
tured types and their fields could be significantly used to extract semantic
information from identifiers. Given this result I was interested in finding
out whether and how human-oriented concepts could be extracted from the
identifiers [Anquetil 2001].

For this I had to establish a classification of knowledge that suited my
needs. Based on Biggerstaff [Biggerstaff 1994] and Clayton [Clayton 1998],
I proposed three main domains of knowledge: Application domain, Com-
puter science domain and general domain (the rest). Given these domains
of knowledge, I studied how well they were represented in software arte-
facts identifiers and in comments. The study was conducted on the Mosaic
system1.

Then I extracted concepts from the source of information: (i) decom-
pose in words the identifiers and correct misspelled words in comments; (ii)
remove utility words with a standard stop list; (iii) associate words to “con-
cept” (e.g. the words “alloc”, “allocate”, “allocator” and “allocation” are
all associated to the same concept); (iv) classify each concept in a domain.
The first step was challenging, particularly to split identifiers containing
unknown acronyms into the proper set of words. This is a problem that I
also studied in other work [Anquetil 1997, Anquetil 1998b, Anquetil 1999b]
and that is still an active domain of research as of today (e.g. [Feild 2006,
Dit 2011]). The last two step were manual and more straightforward. The
paper [Anquetil 2001] describe the rules used to classify words into knowl-
edge domains.

I found close to 6200 global identifiers containing 2900 words, and 7818
different words in the comments. After applying the stop list and normal-
ization into concepts I ended up with 1020 different concepts (see Table 6.2).
I got 939 concepts common to both documentation sources, the identifier
concepts being almost included in the comment concepts with only 14%
of concepts only found in identifiers. There was a very high proportion of
General concepts (80% for comments, 60% for identifiers) with Computer
science and application domain concepts being at similar levels (10% in
comments and 20% in identifiers). This was not a welcome discovery as it
challenged one’s ability to extract relevant application domain concept from
the identifiers and/or comments.

1One of the very first web browsers
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Knowledge Comments Identifiers
domains # Avg. # Avg.

Application 286/10% 48.6 226/22% 22.7
Comp. science 323/11% 83.3 190/19% 18.2
General 2389/80% 26.6 604/59% 12.5

All 2998/100% 34.8 1020/100% 15.9

Table 6.2: Number of concepts found in comments and identifiers in Mosaic
(left) and average repetition (right). Repetition computed as: For com-
ments, total number words referring to the concept; For identifiers, number
of identifiers referring to the concept.

Perspectives. These un-satisfactory results as well as the extreme dif-
ficulty I had to manually classify concepts in their respective domains of
knowledge convinced me that it would be very difficult if at all possible
to extract automatically concepts from the identifiers and comments in the
source code. This will be discussed in the next chapter.

There is still a need to be able to relate computer oriented concepts
in the source code to human oriented concepts. This is the very essence
of reverse engineering and program comprehension. For example, with the
growing use of Software Product Line Engineering, work is still on progress
on how to generate a software product line from a set of applications from
the same domain. This implies “aligning” the different applications so as to
identifies their commonalities and the variation points.

As already mentioned, decomposing identifiers into a set of words is still
an active domain of research [Feild 2006, Dit 2011].

6.2 Tools and Techniques for Concepts Extraction

Concurrently to this research on where to find the concepts we wanted to
extract from the code and its comments, I also studied how this could be
done. A possible solution was to use Lattice of Concepts, also known as
Formal Concept Analysis.

The problem. To achieve the goal of program comprehension, reverse
engineering must be able to abstract details out of the source code of sys-
tems and present to the user the important concepts this code contains and
deals with. A natural hypothesis is that these important concepts are more
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often encountered that mere details2 such as the font size of a label or the
validation of a street address.

Previous State of the Art. To find these important concepts, several
grouping techniques exist, such as clustering (we saw examples of this in
Section 5.1) of Formal Concept Analysis (FCA). With these techniques,
concepts are groups of entities, that may be described by their properties.
Wille [Wille 1992] defines a concept as having three components: A name,
a list of attributes describing the concept (called the intent) and a list of
entities belonging to the concept (called the extent). A concept can be
indifferently referred to by any of these three components.

Formally, one considers couples (pairs) of entities and attributes. A
concept {E},{I} is a (named) couple with an extent E= <entity-list>

and an intent I=<attribute-list>. In a couple, all objects in E possess all
attributes in I. To be a concept, a couple must also respect the following
requirements:

• there is no entity outside of E that has all the attributes in I;

• there is no attribute outside of I that belongs to all entities in E.

Given the data in Table 6.3 (a context) the couple {F2.c,F3.c},{fopen,free}
is not a concept because printf also belongs to F2.c and F3.c which vi-
olates the second requirement. {F2.c,F3.c},{fopen,printf,free} is a
concept.

Table 6.3: Description of some C files with the routines they refer to

File Description

F1.c {sizeof, malloc, realloc, free}
F2.c {fopen, printf, fprintf, fclose, free}
F3.c {fopen, fscanf, printf, malloc, free}

Note that one can easily define a generalization/specialization relation
between such concepts. Given two concepts C1 = (E1, I1) and C2 = (E2, I2),
we will say that C1 is more general than C2 iff: I1 ⊂ I2 (or E2 ⊂ E1).

Formal Concept Analysis is a technique to extract all concepts from a
given context: a set of objects and their attributes. The concept are ar-
ranged in a Galois lattice structure as shown in Figure 6.2. In the figure,

2Note, however, that this hypothesis was never formally tested. Section 6.1 reports
on my work in this direction. Also, in [Anquetil 2000b] I had some success with another
hypothesis based on opposition rather than repetition.
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the concepts are simplified by taking advantage of “inheritance”, a prop-
erty defines in a super-concept is not repeated in a sub-concept; an entity
belonging in a sub-concept is not repeated in a super-concept.

C1 {}
{malloc}

{}
{free}

C0

{}
{printf,fopen}

C2

{F3.c}
{fscanf}

C4{F1.c}
{sizeof,realloc}

C3 {F2.c}
{fprintf,fclose}

C5

{}
{}

C6

Figure 6.2: Lattice of concepts for the data set in Table 6.3

This structure proved useful for example:3 for browsing purposes [Godin 1993];
to extracts objects from procedural code; to mine aspects [Kellens 2007]; etc.

As we explain in [U.Bhatti 2012], one of the strengths of FCA for pro-
gram comprehension and software reengineering is the wide range of contexts
(entities and their attributes) that can be used. For each different context,
the method provides different insights into reengineering opportunities. Yet
it also presents two significant drawbacks. The first one is the number of
concepts it extracts, it usually outputs much more information (concepts)
than what it was given in input. The ratio can go up to hundreds of times
more information output; thus completely missing the point of abstract-
ing important information. The second difficulty is that previously existing
approaches left the analysis work to the user. Because Galois lattices are
complex abstract constructs, and because they are so big, they often prove
difficult to interpret. Sahraoui et al. [Sahraoui 1999] recognized this prob-
lem and proposed a tool to help analysing the lattices.

In [Anquetil 2000a] I discussed the first issue, while the second was
treated more recently in [U.Bhatti 2012] in a collaboration with two other
researchers (Dr. Marianne Huchard and Dr. Usman Bhatti).

Contribution. Given a context, i.e., a set of objects and their attributes,
there is a finite set of concepts that can be extracted from it. This is the
set extracted by the FCA technique, no other concepts can be found. This
allowed us to see the result of FCA as a search space where any concept
extraction method could look for important concepts. This contributes to
set a common base on which to compare all the methods. For example, a

3(we list some more examples in [U.Bhatti 2012])
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method’s ability of abstraction could be simply measured in the percentage
of concept from the lattice of concepts it generates.

In [Anquetil 2000a] I listed some methods to reduce the number of con-
cepts in the lattice. Using a real legacy software (Mozilla), I compared them
according to the number of concepts extracted and the “design quality” of
the concepts. This research was largely inspired by my previous work for
example as described in Section 5.1.

In [U.Bhatti 2012], we attacked the problem from another direction. We
wanted to propose a solution to help people interpret a lattice of concepts.
We proposed a catalogue of patterns that represent interesting constructs
in concept lattices from the software engineer point of view. These patterns
help the user in two ways. First, they help to reduce the work of under-
standing a complex lattice to interpreting a few node and graph patterns.
Hence, the work is reduced to look for these patterns and understand their
interpretation. Second, because we consider generic sub-graph patterns, a
tool can be built to extract these patterns from a lattice, which will greatly
simplify the analysis.

The patterns are defined as specific topology of nodes and edges, some-
times accompanied by a specific type of node for one or more members of
the pattern. Some of these patterns are illustrated in Figure 6.3 to help
the reader visualize them. The grey upper half of a node shows that the
node introduces attributes that its super-concepts do not have, but all its
entities appear in sub-concepts. This is the case of C0, C1, and C2 in Figure
6.2. Such a node must have more than one direct super-concept (“multiple
inheritance” in OO parlance). In OO parlance, this would be an abstract
class that introduces properties but does not have instances of its own. Such
node must have more than one direct sub-concept. The black lower half of
a node (a concept) shows that the node has entities of its own (that no
sub-concept has), but “inherits” all its attributes from its super-concepts.

Figure 6.3: Some of our patterns in concept lattices, from left to right:
Irreducible Specialization, Horizontal Decomposition, and Module. The black
lower half indicates that the concept has no attributes of its own; the grey
upper half indicates that the concept has no entities of its own (an “abstract
class”).

The illustrated examples are (from left to right): an Irreducible Special-
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ization where the two nodes should not be merged; an Horizontal Decom-
position where cutting along the doted lines would produce three disjoint
sub-lattices; and a Module that represents a sub-lattice.

In [U.Bhatti 2012], we propose some patterns, we explain them and ex-
plain their meaning in some specific cases. We also proposed a prototype to
automatically discover such patterns in a lattice of concepts.

Perspectives. Formal concept Analysis is still a very dynamic field of re-
search. For example, in [U.Bhatti 2012] we identified all possible context
uses for reverse engineering source code: what entities could be used and
what their attributes could be. As far as we know, only half of the possi-
bilities have been explored which leaves plenty of opportunities to find new
interesting applications for this technique.



Chapter 7

What knowledge is Needed
in Maintenance?

7.1 Initial Experiment: Observing the Maintain-
ers at Work

The problem. In a preceding work (reported in Section 6.1), I studied
the concepts that could be encountered when analysing the comments and
identifiers in the source code. This study confirmed that different domains
of knowledge could be found. It was, therefore, important to understand
what domain of knowledge would be the most important to work on. Differ-
ent domains of knowledge had been highlighted in past research: Biggerstaff
[Biggerstaff 1994] insisted on the necessity of application domain knowl-
edge. Van Mayrhauser and Vans [von Mayrhauser 1994], focused on design
decisions (i.e. knowledge about software development applied to the trans-
formation of knowledge on the application domain to produce the source
code). Jørgensen and Sjøberg [Jørgensen 2002] showed that sheer mainte-
nance experience is not enough to reduce the frequency of major unexpected
problems after maintenance, whereas application experience does.

Previous State of the Art. There was very little work on the knowledge
required by software maintainers. I already listed some of it in Section 6.1:
the work of Biggerstaff [Biggerstaff 1994] insisted on the difference between
human and computer oriented concepts. It implicitly assumed that appli-
cation domain concepts were the most needed, but this was based on his
perception rather than actual study.

Clayton [Clayton 1998] identified the “knowledge atoms” that would be
necessary to understand a very small program (102 lines of Fortran code),
but this was a theoretical analysis not based on actual or concrete main-
tenance needs. Also, working on a single small program, allowed them to
easily understand the program and application domain, which is hardly ever
the case with real world applications, where maintenance is performed with
only a partial understanding of both.
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Von Mayrhauser and Vans (e.g. [von Mayrhauser 1994, Mayr 1995]) per-
formed some empirical studies of software engineers performing real main-
tenance tasks. But their goal was to formalize a mental model of how the
software engineers understand programs. They were not directly concerned
with the knowledge the software engineers use, but rather with the “process”
of program comprehension.

Contribution. With the help of two Licence students working in two IT
organizations, we performed a field study with real software maintainers dur-
ing their normal activity [Ramal 2002]. Before starting some maintenance
task, a software engineer would call one of the two field experimenters to
does a session. The field experimenter would then sit behind this software
engineer and record everything he says (micro-tape recorder) or do (pen and
paper).

The session usually ended with the end of the maintenance task. In a
few occasions, the session ended with the end of the working day and was
not completed afterwards (either because the task itself was delayed past
the end of the study or because the field experimenter could not be present
at the end of it).

Each session was then documented as follows (see also Figure 7.1): The
context of the maintenance task is described; the type of maintenance oper-
ation according to the classical decomposition (corrective, adaptive, perfec-
tive or preventive) is specified; the profile (newcomer, intermediate, etc.) of
the software engineer who realized this session is given; finally the various
“steps” of the task are written down with their approximate time marker.
Each step is also numbered sequentially inside its session so that it can easily
be referenced afterwards. Figure 7.1 shows the first steps of a session.

Once a session was transcribed to text, we analysed it to identify and
classify the knowledge atoms it contained. We used the same high level
knowledge domains as in our previous study: Business knowledge, Computer
science knowledge, and General knowledge. But they were divided into
new sub-domains (e.g. programming, programming language, development
environment). I will not detail here these sub-domains, as a more formal
organization of knowledge will be presented in Section 7.2.

Each individual knowledge unit identified was called a knowledge atom.
For example, step 1 in Figure 7.1 is classified as Development Environment
knowledge, step 2 is Application Implementation knowledge, and step 3 is
Development Environment knowledge (to look for the class, one need to
know how to do this in the environment) + Application Implementation
knowledge (to know that there is a method to consult the database, one
must have some knowledge of the application).
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SESSION 1

Context: A query was received to modify the program responsible for
sending e-mails in the “Protocolo” system. Currently, this sys-
tem reads e-mails to be sent in a table called “Emails to send”.
However, this mechanism is extremely resource demanding for the
database (the mechanism is based on the use of triggers). The
new implementation uses “stored procedures” which will return
the data to be sent. The necessary stored procedures have already
been created and the software engineer only needs to modify the
client part.

Perfective Maintenance

Profile: A

Time Steps

1 08:15 The SE opens Visual Basic
2 08:15 The SE opens the project for this system
3 08:16 The SE looks for the class containing a

method to consult the DB
4 08:16 The SE opens this class ...

... and goes to the method
5 08:17 The SE removes the part of this method

that references the old tables
6 08:18 The SE starts to write the new code
7 08:20 The SE consults the DB model ...

... to know the name of the stored proce-
dures s-he will need

Figure 7.1: Description of a software maintenance session (SE=Software
Engineer)
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The classification in knowledge domains is also marked as positive when
the software engineer was using some knowledge, or negative when he was
lacking this knowledge. For example, Figure 7.1 step 7, the software engineer
“consults the DB model” is classified as positive Diagramming knowledge
(he knows how to read the DB model) + “to know the name of the stored
procedures” is classified as negative Application Implementation knowledge
(he ignores this detail of the implementation).

The two field experimenters were professionals working in a bank (orga-
nization 1) and a public administration (organization 2). Six software en-
gineers working in these organizations accepted to participate in the study
on a purely voluntary basis.

To get a better insight on the experimental conditions, we established
each subject’s profile1

A: 4 years experience as a programmer; 1 year experience in the organiza-
tion.

B: 2 years experience as a database administrator (DBA), 8 years experi-
ence as a programmer; 1.5 year experience in the organization.

C: 2 years experience as a programmer; 6 months experience in the organi-
zation, recently contracted.

D: 3 years experience as a programmer; recently contracted.

F: 2 years working experience; 2 years experience in the organization.

G: 2 years working experience; 1.5 year experience in the organization.

We realized 13 sessions, five in organization 1 (with subjects F and G)
and eight in organization 2 (with subjects A, B, C, and D). The sessions
recorded short punctual maintenance operations, the average length being
of a 1 hour and 15 minutes (minimum: 23 min., maximum: 2 hours 27 min.).

Some of the results were that:

• We identified very few negative knowledge items, mostly concentrated
in the Application Implementation domain.

• The positive knowledge most used for each organization are: Program-
ming, Application functionalities, Development Environment, Appli-
cation Implementation for organization 1; and Development Environ-
ment, Application Implementation, Programming, Additional Tools
(email, web browser) for organization 2.

1There was no subject E
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• There was little business knowledge used.

We also studied the relation between the use of a knowledge domains
and the moment in a session when it happens. The hypothesis was that
Business knowledge could be more important at the beginning of a session
when the software engineer tries to understand the system and what he
must do, whereas Programming or Programming Language could be more
important latter in the session when the software engineer is implementing
the solution. From our results, however, it was not possible to conclude that
any type of knowledge would be more useful at any given time in a session.
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Figure 7.2: Number of positive knowledge atoms identified for each main
knowledge domain. Sessions are identified by their subject (left Organization
1, right Organization 2)

AS mentioned above, we were surprised by the small representation of
Business knowledge, be it positively or negatively. The only sub-domain
really appearing was Application Functionalities knowledge in Organization
1, and this was actually due to two particular sessions. Business knowledge
never amounted to more than 33% of the knowledge atoms whereas Com-
puter Science knowledge was below 60% of all knowledge atoms in only one
session. Overall, on 345 positive knowledge atoms, only 12% were from the
Business domain, 74% were from the Computer Science domain, and 13%
from the General domain (see Figure 7.2).

Perspectives. This experiment seriously undermined the idea that Busi-
ness knowledge was the most needed when doing maintenance. Note that
this is not saying that there is no interest in being able to extract such
knowledge from the systems maintained. The software maintainers studied
did need some business knowledge (of course). Yet it shed doubts on a com-
mon assumption, and this showed the need to investigate further this topic.
This is what will be discussed in the next section along slightly different
lines.
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7.2 Formalizing the Knowledge Needed

The problem. Emerging from the research reported in the preceding
chapter and this one, was the idea that software maintenance is a knowledge
intensive activity [Anquetil 2007]. This was actually implied in studies (cited
in [Pfleeger 2002, p.475] or [Pigoski 1997, p.35]) showing that 40% to 60% of
maintenance activity involves trying to understand the system. Maintainers
need knowledge of the system they work on, its application domain, the or-
ganization using it, past and present software engineering practices, different
programming languages (in their different versions), programming skills, etc.
In software maintenance, the need for knowledge is all the more important
because it is no longer acceptable to ask users to re-explain detailed aspects
of the application domain, whereas the documentation created during the
initial development effort may be either lacking, outdated, incomplete, or
lost [Pressman 1994].

Before trying to propose new tools to help software maintainers acquire,
persist, recover, or reuse the needed knowledge, one needs to have a clear
map of what this knowledge is. For this it was natural to turn to ontologies,
i.e. descriptions of entities of a given domain, their properties, relationships,
and constraints [Uschold 1996] Informally in software engineering, an ontol-
ogy would be similar to the data model of a domain (e.g. a class model).

Previous State of the Art. The problem we encountered in this domain
was that considering software maintenance from a knowledge management
point of view is not a common perception and very little can be found on
this. I already cited (Section 7.1) some work that could give initial insights.

Kitchenham [Kitchenham 2002] proposed an ontology to help classify
software maintenance research but it was too restrictive, its goal being to
offer a formal framework to classify research in software engineering so as
to help compare different results.

Deridder [Deridder 2002] proposed an ontology and a tool to populate
this ontology that would help record important concepts, associations, etc.
during the development of a software system. This store of information could
then be used to help maintenance. The ontology defined was a very high
level one. Deridder’s objective seemed to focus on the representation of the
knowledge and possibly automatic reasoning on it rather than considering
what knowledge would be useful.

Another related project by Ruiz et al. [Rúız 2004] was developed in
parallel with ours and we were not aware of it at the time of this research.
It had a strong emphasis on the aspect of software maintenance process, to
the detriment of other domains that we considered.
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For this research, we used existing literature on how to define an ontol-
ogy, for example [Uschold 1996]. There are various methodologies to design
an ontology, all considering basically the following steps: definition of the
ontology purpose, conceptualization, validation, and finally coding. Con-
ceptualization is the longest step and requires the definition of the scope
of the ontology, definition of its concepts, description of each one (through
a glossary, specification of attributes, domain values, and constraints). It
represents the knowledge modelling itself.

Contribution. I supervised a Master student who defined an ontology us-
ing the steps listed above. The purpose was to define an ontology describing
the knowledge relevant to the practice of software maintenance. The concep-
tualization step was based on a study of the literature and the experience of
the authors. We identified motivating scenarios and competency questions
(i.e., requirements in the form of questions that the ontology must answer
[Uschold 1996]. It resulted in a set of all the concepts of the ontology and
their organization in knowledge sub-domains. The validation contemplated
quality of the ontology itself (how clear it is, how complete, concise, etc.),
and how useful the concepts were for maintenance.

The entire ontology is too extensive to be fully presented here, it has 98
inter-related concepts grouped in five domains of knowledge (see also Table
7.1): knowledge about the Software System itself; knowledge about the
Maintainer’s Skills; knowledge about the Maintenance Activity (or process);
knowledge about the Organizational Structure; and knowledge about the
Application Domain (see Figure 7.3). A better description can be found in
[Anquetil 2006] or [Dias 2003a]

Organizational
Structure

Computer
Science
Skills

Modification
Process

Software
System

Application
Domain

deals with

upon regulates

needs

requires

made

Figure 7.3: Knowledge for software maintenance ontology

Some of the main concepts are: for the System domain, the system itself
and a description of all its components (documents or software artifacts);
for the Skills domain, the programming or modelling languages used, the
different CASE tools (e.g. for testing, documenting, etc.) and IDEs, also
directives and techniques; for the Activity domain, the human resources
involved, the process activities, and the possible origin of the modification
request ; for the Organizational Structure domain, the organization and its
human resources; and for the Application Domain domain, the concepts
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manipulated, their properties and the tasks that apply to them.

To validate this ontology, we first asked four experts to study the ontol-
ogy and fill a quality assessment report composed of several questions for
different criteria: consistency (absence of contradictory information), com-
pleteness, conciseness, clarity, generality, and robustness (ability to support
changes). This first evaluation gave good results, on a scale of 0 (bad) to 4
(good), no criterion scored below 3 on average [Anquetil 2003a, Dias 2003b].

Besides the expert assessment, we also validated the completeness, use-
fulness, and conciseness of the ontology by instantiating its concepts in real
situations [Anquetil 2003a, Dias 2003b]. First, we manually instantiated
the concepts from the documentation (coming from the development and
the maintenance of the system) of a real software system. This validation
resulted in the instantiation of 73 concepts out of 98 (Table 7.1, column
“Doc.”).

Table 7.1: Results of three validations of the ontology on the knowledge
used in software maintenance in number of concepts instantiated: from the
documentation of a system (“Doc.”), during five maintenance sessions using
the Think-Aloud protocol (“TA”), and after 17 maintenance sessions filling
a questionnaire about the concepts used (“Quest.”)

Concepts Validations
Domains Defined Doc. TA Quest.

Skill 38 28 15 26
Application domain 4 2 1 2
Modification 30 24 16 23
System 23 16 9 13
Organizational structure 3 3 2 3

Total 98 73 43 67

Second, we followed two maintainers during five short maintenance ses-
sions (26 minutes per session on average) using the think-aloud protocol.2

These sessions were recorded and later analysed to identify the concepts
used. The results are given in Table 7.1, column “TA”). The results are not
so good, but there were few sessions and they were very short ones.

Third, we asked four software engineers to fill in, every day, a question-
naire on the concepts they used. This form consisted of all the concepts
we had instantiated in the first validation (“Doc.”) and the list of their
instances (as we identified them). The maintainers were simply asked to
tick the instances they had used during the day. They could not add new
instances. They filled 17 forms in 11 different days over a period of 10 weeks.

2The maintainers were asked to say everything they did and why they did it
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The results (Table 7.1, column “Quest.”) are good considering that the ref-
erence is the concepts instantiated in the first validation (column “Doc.”).

Perspectives. This part of my research is still very relevant to today state
of the art. Tools are needed to help people communicate their understanding
of an application to each other, either through documentation or direct
communication. There is still no satisfying solutoin on how to extract,
gather, store, and then reuse information about a system, what it does, for
who, or how it is implemented.

For example, one could think about new issue trackers that would help
people fill-in the needed information [Breu 2010, Sillito 2008], or contextual
help in an IDE [Ko 2007]. In this case, our ontology could serve different
purposes:

• Organization and formalization of the knowledge needed when per-
forming maintenance to serve as a common basis for information ex-
change;

• Identification of the scope of the knowledge needed to allow checking
the completeness and coverage of some information source;

• Definition of concepts that may be used as an indexing scheme to
access relevant sources of information;

• Identification of the knowledge needed to ground a search for more
information, to identify the most pressing needs, and to categorize
possible sources of information according to the needs they may fulfil.



Part IV

Organization and Process

75



77

After studying the software systems maintained (Part II—“Software
System”) and the people that are performing maintenance on them (Part
III—“People and Knowledge”), I turn now to the third, and last, part of the
software maintenance ecosystem: the organization within which the people
work and the working processes this organization enforces.

The organization and the process are an important aspect of any soft-
ware engineering work and therefore of software maintenance. For example,
they make up a significant part of the ontology of the knowledge needed in
maintenance (see Chapter 7).



Chapter 8

Knowledge management
processes

This chapter presents three studies on processes for knowledge management
in software maintenance. First, we carried out a preliminary study to un-
derstand how software maintainers do their work (Section 8.1). This study
yielded some results on the knowledge used by the people studied. Second,
we defined a process to extract, store, and recover specific knowledge during
maintenance activities (Section 8.2). And third, we defined an agile main-
tenance process with a study of the minimal documentation required to do
maintenance on the system afterwards (Section 8.3).

8.1 Initial Experiment: Studying the Practice

The research reported in this section is part of the work done jointly with
Prof. Timothy C. Lethbridge and Dr. Janice Singer to provide better tools
to software maintainers. We mainly worked with the group in a telecommu-
nication company that was maintaining a large system which was one of the
key products of the company. The system included a real-time operating
system and interacted with a large number of different hardware devices. It
contained several million lines of code in over 8000 files. It was also divided
into numerous layers and subsystems written in a proprietary high-level lan-
guage. The group studied comprised 13 people actively working on various
aspects of the system. Over 100 people had made changes to the source
code during the life of the system.

The problem. To more effectively help software maintainers performing
their work, one must first understand precisely what they are doing on a
day to day basis, what are their needs, and how current tools fulfill these
needs. In our case, we were called on by a telecommunication company to
help them improve the maintenance activity of a very large system they
were selling.

One human-computer interaction approach to the design of tools is to
study the cognitive processes of programmers as they attempt to understand
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programs [von Mayrhauser 1995, von Mayrhauser 1996]. Such studies were
intended to provide the basis for designing better tools. However they pre-
sented deficiencies that I will now explain.

Previous State of the Art. There were three problems with the previous
approach:

First, most research had been conducted with graduate and advanced
undergraduate students serving as expert programmers. It was not clear
(and is still not) that these subjects accurately represented the population
of industrial programmers. Consequently, the results of studies involving
students could not be generalized to programmers in industry.

Second, to control extraneous variables, researchers had used very small
programs (both in terms of lines of code and logic) relative to industrial
software. We already referred to this problem in Sections 6.1 and 7.1. This
poses a generalization problem as well: it is not clear that approaches to
comprehending small programs scale up to the comprehension of very large
programs.

Third, there is an assumption that understanding the programmer’s
mental model is an efficient route to designing effective tools. However,
it is not at all obvious how to design a tool given a specification of the pro-
grammer’s mental model. It does not tell us what kind of tool to build, or
how to integrate that tool into the workplace or the programmer’s work.

Contribution. The first thing that struck us when starting this research
was that we did not know exactly what it was that the software engineers
did on a day-to-day basis. That is, we knew neither the kinds of activities
they performed, nor the frequency with which these various activities took
place. As far as we could tell, there were many hypotheses about the kinds
of things they did, but no clear cataloguing as such of exactly how they
went about solving problems. Consequently, we decided to begin our study
of work practices by finding out what it is that software engineers did in
their work.

Our approach to this problem was to implement different data collection
techniques and see if the evidence from each converged. We collected five
basic types of work practice data. First, using a web questionnaire, we
simply asked the software engineers what they did. Second, we followed
an individual software engineer for 14 weeks as he went about his work.
This person joined the company short time after the project started and it
was a great opportunity to understand how newcomers integrated into the
organizational culture and got to know the system they were working on. At
that time, estimation of the managers was that it took six months for a new
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Table 8.1: Questionnaire results of work practices (6 subjects)
Activity % of people

Read documentation 66%
Look at source 50%
Write documentation 50%
Write code 50%
Attend meetings 50%
Research/identify alternatives 33%
Ask others questions 33%
Configure hardware 33%
Answer questions 33%
Fix bug 33%
Design 17%
Testing 17%
Review other’s work 17%
Learn 17%
Replicate problem 17%
Library maintenance 17%

employee to become knowledgeable enough to be fully productive. Third, we
individually shadowed eight different software engineers for one hour as they
worked. Fourth, we performed a series of interviews with software engineers.
Finally, we obtained company-wide tool usage statistics.

Results from the first data collection technique (web questionnaire) are
reported in Table 8.1. Six of the 13 software engineers of the group filled
in the questionnaire. These answers were self-reported by the software en-
gineers and could not be much relied upon. Also, these results only show
what software engineers did, but not with what frequency and how long.

Shadowing the newcomer gave some expected and unexpected results.
For example searching, interacting with the hardware and looking at the
source code were the three events most likely to occur in his daily activity.
All this is normal as the software engineer was getting accustomed to the
system at this period of time. On the other hand, he only looked at docu-
mentation on 2 of the 14 days, thus indicating that this was not a primary
source of information for him.

Shadowing eight other software engineers (not newcomers) likewise gave
expected and unexpected results. Looking at the source code, searching
(with the “grep” Unix command, or the editor functionality), and inter-
acting with other developers were the events that occurred on most days,
and issuing a UNIX command or editing source code were the events occur-
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ring most. Again, reading the documentation, although done by 6 of the 8
software engineers studied, occurred rarely overall.

This seemingly lack of interest in documentation prompted us to conduct
another study that will be reported in Section 8.3.

Finally, the results for the fifth data collection technique (company-wide
tool usage statistics) are reported in Figure 8.1. Overall, 79,295 separate
tool calls were logged from the Sun operating system.

The overwhelming finding from the company data is that search (using
primarily the Unix “grep” command or one of its derivatives: fgrep, egrep,
. . . ) is done far more often than any other activity. It must be noted that
compiler calls, which accounted for 41% of all calls are not included here.
This is because the compiler data include all the automatic software builds
done nightly and by the various testing and verification groups. These data
are therefore not representative of the real work practices of the software
engineers studied.

Figure 8.1: Proportion of all tool calls accounted for by each tool type1

Compression and un-compression tools were also used often although we
never actually observed anyone using these tools.

As a result of this study, we observed that almost all the software en-

1At the time of this research the internet was still a relatively new tool, little used and
with little resources.
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gineers studied spent a considerable proportion of their total working time
in the task of trying to understand source code prior to making changes.
This is in agreement with other research that I reported in Chapters 2 or
7 stating that maintenance includes a large part of code understanding and
knowledge acquisition. We called this approach to software maintenance:
Just in Time Comprehension.

Just in Time Comprehension occurred regardless of the task performed,
whether defect fixing or feature addition. In either case the maintainers had
to explore the system to identify where to apply the modifications. A second
factor that seemed to make relatively little difference to the way the task
is performed was the level of expertise of the developer: novice or expert.
Novices were not familiar with the system and had to learn it at both the
conceptual and detailed level; experts knew the system well, but were still
not able to maintain a complete-enough mental model of the details. The
main differences between novices and experts were that novices were less
focused.

Perspectives. One direct result of this study was to show the importance
of knowledge discovering techniques during software maintenance. It pre-
cedes and justifies all the work that was reported in Part III—“People and
Knowledge”.

This study is now 20 years old, one cannot expect that all its results
are still relevant today considering the tremendous changes that we have
witnessed in software engineering (e.g. Model Driven Development, Service
Oriented Architectures, Cloud) or in general (e.g. popularization of the
Internet). There is therefore a renewed need to perform such a study to
understand the new software maintenance environment, and the activities
it imposes on software engineers.

8.2 Collecting Maintainers’ Knowledge

Having organized all the knowledge items that were useful to software main-
tenance (Section 7.2) and knowing the difficulties to extract it automatically
from the source code (Section 6.1) we turned to another path and explored
the possibility of getting the needed information from the maintainers them-
selves. With the help of a Masters student, we defined a process to collect
knowledge from the experience of the software engineers.

The problem. It should be clear to the reader by now that developing
and maintaining software systems is a knowledge intensive task. One needs
knowledge of the application domain of the software, the problem solved by
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the system, the requirements for this problem, the architecture of the system
and how the different parts fit together, how the system interacts with its
environment, etc. More often than not, this knowledge is not documented
and lives only in the head of the software engineers. It is, therefore, volatile
and an organization may need to repeatedly pay professionals to rediscover
knowledge it previously acquired and lost.

Previous State of the Art. To help managing this knowledge, tech-
niques such as the Postmortem Analysis (PMA) were used in software
projects [Pfleeger 2002, Birk 2002]. PMA is a technique by which a team
gathers after the end of a project to identify which aspects of the project
worked well, and which worked badly [St̊alhane 2003]. These positive and
negative aspects of the project are then recorded to help in future projects.
PMA was used, for example, in the Experience Factory [Briand 1994] to
improve a software process.

A study of the literature (see for example [Birk 2002, Rising 1999, St̊alhane 2003])
showed that PMA had been mainly used in software development projects
with a particular view on process improvement. We proposed to use the same
technique for software maintenance projects [de Sousa 2004, Anquetil 2007]
not only to improve the maintenance process, but also to gain more knowl-
edge about the system maintained. One of the great advantages of the
technique is that it may be applied on a small scale with ew resources (e.g.,
a two hour meeting with all the members of a small project team, plus one
hour from the project manager to formalize the results), or a larger scale,
with a complete team in meeting over a period of several days [Collins 1996].

Contribution. To define our PMA model for software maintenance, we
had to consider three aspects: (i) when to insert PMA during the execution
of a typical maintenance process; (ii) what knowledge should we look for in
the PMA; and, (iii) how to best extract this knowledge from the software
engineers.

First, maintenance projects may be of widely varying size, they may be
short in the correction of a very localized error, or very long in the imple-
mentation of a new complex functionality, or correction of a very diluted
problem (e.g. the Y2K bug). For small projects, one may easily conduct a
PMA at the end of the project without risking losing (forgetting) important
lessons. But for larger projects (as proposed by Yourdon [Yourdon 2001]), it
is best to conduct several PMAs during the project so as to capture impor-
tant knowledge before it becomes so integrated in the participants’ mental
models that they cannot clearly remember the details. As a generic process
with which to experiment, we decided to use the ISO 12207 maintenance
process [ISO/IEC 1995] (see also Figure 8.2) and identified moments where
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intermediary PMAs could be inserted:

• One intermediary PMA after the analysis of the modification, which
includes the first two activities (Process implementation and Problem
and modification analysis) and the initial tasks of the third activity
(Modification implementation: requirement analysis).

• Another intermediary PMA after the implementation of the modi-
fication, which includes the rest of the third activity (Modification
implementation).

Process
implementation

Modification
request
analysis

Modification
request

implementation

Maintenance
review

Migration

Software
retirement

Analysis

Design

Implementation

Test

− (1) Pos analysis PMA

− (2) Post implementation PMA

− (3) Final PMA

Figure 8.2: Overview of the ISO 12207 Maintenance process [ISO/IEC 1995]
with the intermediary and final PMAs

A last PMA could then be conducted at the end of the project to re-
view all its aspects and the most recent activities not yet considered in the
intermediary PMAs.

Second, on the knowledge that should be looked for in each PMA, we
obviously used as a basis our ontology (Section 7.2). The knowledge cate-
gories to consider in each PMA are listed in Table 8.2. They were based on
the tasks and activities preceding them.

Finally, we had to define a method that would help the software engineer
remember all they could have learned in the various knowledge domains
considered (process, system, application domain, etc.). For this we decided
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Table 8.2: The three maintenance PMAs and the knowledge categories they
focus on
PMA Knowledge category

(1) Post analysis Details on the modification request
Organizational structure using the software
Options for implementing the modification
Negotiation of time limit to do the modification
Effort estimation for the modification
Documents modified
Requirement elicitation technique used
Tools used
Application domain
Details on the requirements

(2) Post implementation Programming languages & tools used
Programming techniques used
Software components modified
Systems interrelationship
Analysis/design inconsistencies
Re-engineering opportunities detected
Artifacts traceability
Database design
Design patterns used
Testing technique used
Process and support documentation modified

(3) final Negotiations with other technological departments
Modification monitoring
Maintenance process
Application of the PMAs
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to perform the PMAs in two steps: First, we designed a questionnaire as
a means to pre-focus their minds on the bits of information we wanted to
discover. This questionnaire was distributed among the software engineers
that would participate in a PMA session. In a second step, we conducted
a PMA session where the same topics were brought up again to effectively
discover the lessons learned.

We experimented with this process on six real maintenance projects from
the industry. Yet, one must realize that validating a knowledge management
approach in general is a difficult thing as the results only appear on the long
run, and even then, it may be difficult to pinpoint a single event that clearly
shows the benefit of the approach. The experiments were realized in a
public organization, where the software maintenance group includes about
60 software engineers (managers, analysts, programmers, DBA, etc.). The
methodology was tested on a specific group of 15 people, responsible for
the maintenance of seven legacy systems. The maintainers had been briefed
before hand on the goals of the PMAs, particularly that it was not intended
to be a witch-hunt. Actually some experimental PMAs had already been
conducted in the organization previously with the same group (for example,
one of the validations of the ontology reported in Section 7.2).

We applied semi-structured postmortem interviews to four short main-
tenance projects hat involved few maintainers (one or two):

• Project 1: Perfective maintenance, involved 2 maintainers during 6
days for a total of 27 man-hours of work.

• Project 2: Perfective maintenance, involved 1 maintainer during 5 days
for a total of 17 man-hours of work.

• Project 3: Perfective maintenance, involved 2 maintainers during 5
days for a total of 47 man-hours of work.

• Project 4: Perfective maintenance, involved 2 maintainers during 2
days for a total of 10 man-hours of work.

In Table 8.3 we present an overview of the number of concepts that could
be instantiated during the PMAs (This can be compared to the previous
experiment we did, reported in Section 7.2). For example, of the 23 concepts
in the System sub-ontology, 11 were instantiated, which means that at least
one concrete example of these concepts was mentioned during the PMAs as
something that was learned and worth remembering.

From Table 8.3, we can see that the Process sub-ontology is the one
that was the most instantiated, in number of concepts (21) and number of
instances (135). The organization had just undergone (2 or 3 months before)
a major redefinition of its working practices and the issue was still a fresh and
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Table 8.3: Concepts from the ontology instantiated during the four PMAs
Number of Instantiated Number of

sub-ontology concepts concepts instances

System 23 11 80
Process 30 21 135
CS skills 38 05 09
Organization 03 03 22
Application domain 04 04 68

sensitive one. Some concepts from this sub-ontology were not instantiated
due to the characteristics of the projects. For example all four projects were
perfective maintenance, therefore the concept Corrective maintenance could
not be instantiated in these cases.

This is also the case for many CASE2 sub-concepts (there are 16 in the
sub-ontology) which were not used or do not exist in the case considered
(e.g. concept Debugger).

With only four maintenance projects, we were able to instantiate almost
half of the concepts from the System sub-ontology (11 instantiated for a
total of 23) with many instances (80). We saw it as a very positive sign.

Because of the typical conditions of legacy software systems (foremost
the lack of system documentation), many concepts from the System sub-
ontology could not be instantiated. This is the case of many Document
sub-concepts (there are 16 in the sub-ontology).

Knowledge on the Application Domain and the Organizational Structure
was gained during the PMAs. All concepts from these two sub-ontologies
were instantiated and, more importantly, many instances were found, espe-
cially in the case of the Application Domain sub-ontology (68 instances).

Finally, the lesser results for the Computer Science Skills sub-ontology is
seen as natural and with little impact. From the 9 instances found, 4 were to
mention interviews as instance of the concept Requirement elicitation tech-
nique. The other instances, refer to the discovery of the minus operator in a
relational database environment (concept Programming technique); the use
of a new class from the programming language library (concept Program-
ming technique); two instances of new testing approaches (concept Testing
techniques) and the discovery of a functionality of the modification request
management tool ClearQuest (concept Supporting CASE). We felt it was
natural that experienced software engineers discovered new knowledge about
computer science techniques or CASE tools.

2Computer Aided Software Engineering
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Perspectives. Recovering knowledge from software maintenance projects
to help future maintenance is still a very important topic. However, con-
sidering the cost of realizing PMAs and the lack of awareness in industry
about these issues, it is very difficult to implement solutions such as the
ones described here. We did not pursue much further this line of research
([Torres 2006]). At this moment, it seems preferable to look for more auto-
mated solutions (see Chapter 6) even if their results can never be as rich as
the one we got in the experiments described here.

8.3 An Agile Maintenance Process

This research was conducted with the assistance of a Masters student.

The problem. From our previous research, I concluded that it was neces-
sary to store and redistribute knowledge on the software systems maintained,
the business rules automated by these systems, and the organizations that
use them. A natural and well known solution to store knowledge in software
engineering is to use the various documentation artefacts that were proposed
over the years by the different software development approaches.

Yet in another study (Section 8.1) we noticed that this documentation
did not seem to be considered important by developers, who spent very little
time consulting it, preferring to look at the source code. We thus needed to
find out how to document software systems in a way that would better fit
the needs and habits of software developers. Ultimately, we wanted to focus
on documents that they were familiar with, that they would be willing to
consult, and that would not be heavy to maintain so that it can be kept up
to date at a reasonable cost.

Previous State of the Art. Among all the recommended practices in
software engineering, software documentation long had a special place. It is
one of the oldest recommended practices and yet is renowned for its absence
(e.g. [Sousa 1998]). For years, the importance of documentation has been
stressed by educators, processes, quality models, etc. but it is not generally
created or maintained (e.g. [Kajko-Mattsson 2001]). According to Ambler
[Ambler ], software documentation responds to three necessities: (i) con-
tractual, for example when the client requires a given CMMi accreditation
from a software company; (ii) support a software development project by al-
lowing team members to gradually conceive the solution to be implemented;
and (iii) allow a software development team to communicate implementation
details across time to the maintenance team. This view was shaken by the
advent of agile processes proposing an approach to software development
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that greatly reduced the need for documentation as an helper to software
development. Using informal communication (between developers and with
users), code standardization, or collectivization of the code, agile methods
propose to realize the communication necessary to a software development
project on an informal level. However, they do not remove the need for doc-
umentation as a communication tool through time, that allow developers to
communicate important information on a system to future maintainers.

Better defining what document(s) software maintainers need had already
been considered in other studies:

• Tilley [Tilley 1992, Tilley 1993], stressed the importance of a docu-
ment describing the hierarchical architecture of the system;

• Cioch et al. [Cioch 1996] differentiated four stages of experience (from
newcomer to expert) with different needs: newcomers need a short
general view of the system; apprentices need the system architecture;
interns need task-oriented documents such as requirements descrip-
tions, process descriptions, examples, or/and step by step instructions;
finally, experts need low level documentation as well as requirements
descriptions, and design specifications;

• Rajlich [Rajlich 2000] proposed a re-documentation tool that allowed
to gather the following information: notes on the application domain,
dependencies among classes, detailed descriptions of a class’ methods;

• Ambler [Ambler ] recommended documenting the design decisions,
and a general view of the design: requirements, business rules, ar-
chitecture, etc;

• In a workshop organized by Thomas and Tilley at SIGDoc 2001,
they stated that “no one really knows what sort of documentation
is truly useful to software engineers to aid system understanding”
[Thomas 2001];

• Forward and Lethbridge [Forward 2002], in their survey of managers
and developers, found the specification documents to be the most con-
sulted whereas quality and low level documents to be the least con-
sulted.

• Grubb and Takang [Grubb 2003, pp.103-106], identified some informa-
tion needs of maintainers according to their activities although few spe-
cific documents were listed: managers need decision support informa-
tion such as the size of the system and/or the cost of the modification;
analysts need to understand the application domain, the requirements
of the system and have a global view of the system; designers need
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architectural understanding (functional components and how they in-
teract) and detailed design information (algorithms, data structures);
programmers need a detailed understanding of the source code as well
as a higher level view (similar to the architectural view).

• Finally, according to Teles [Teles 2004, p.212], the documents that
should be generated at the end of an Extreme Programming project
are: user stories, tests, data models, class models, business process
descriptions, user manuals, and project minutes.

Contribution. In this research, we wanted to identify a small set of doc-
umentation artefacts, that would be easy to keep up to date or to recreate
if they were missing [de Souza 2005, Souza 2006]. For this, we distributed
a questionnaire to software maintainers asking them to rate the importance
of various documentation artefacts in helping understanding a system main-
tained. The questionnaire was available on paper and on the Internet. The
selection of the subjects was done by convenience on a voluntary and anony-
mous basis.

The main part of the questionnaire asked the subjects to answer the fol-
lowing question for a list of documentation artefacts: “Based on your practi-
cal experience, indicate what importance each documentation artefact has,
in the activity of understanding a software to be maintained”. Four levels
of importance where proposed: 1=“no importance”, 2=“little importance”,
3=“important”, and 4=“very important”. The subjects could also indicate
that they did not know the artefact.

The documentation artefacts were divided by activities of a typical de-
velopment process, discriminating for each activity artefacts specific to the
structured analysis (e.g. context diagram), object-orientation (based on the
Unified Process, e.g. use case diagram), or both (e.g. Entity-Relationship
Model). The complete list of 34 artefacts, as they were presented in the
questionnaire is the following:

Requirement elicitation: For structured analysis: (1) requirements list,
(2) context diagram, (3) requirement description. For OO develop-
ment: (4) vision document, (5) use case diagram. For structured and OO:
(6) conceptual data model, (7) glossary.

Analysis: For structured analysis: (8) functions derived from the require-
ments, (9) hierarchical function diagram, (10) data flow diagram. For
OO development: (11) use cases specifications, (12) class diagram,
(13) activity diagram, (14) sequence diagram, (15) state diagram. For
structured and OO: (16) non functional prototype, (17) logical data
diagram (MER), (18) data dictionary.
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Design: For structured analysis: (19) architectural model, (20) general
transaction diagram, (21) components specification. For OO develop-
ment: (22) collaboration diagram, (23) components diagram, (24) dis-
tribution diagram. For structured and OO: (25) physical data model,
(26) functional prototype.

Coding: For structured and OO: (27) comments in source code, (28) source
code

Test: For structured and OO: (29) unitary test plan, (30) system test plan,
(31) acceptance test plan.

Transition: For structured and OO: (32) data migration plan, (33) transi-
tion plan, (34) user manual.

Seventy-six software maintainers, from various parts of Brazil, answered
the questionnaire. They formed an heterogeneous population with 20 man-
agers (26%), 48 analysts (63%), 5 programmers (7%), and 3 consultants
(4%). Twenty-two of them only knew structured development (29%), 6 only
knew OO development (8%), and 48 knew both (63%). Seventeen had 1-3
years of experience (22%), 19 had 3-5 years (25%), 17 had 5-10 years (22%),
and 23 had more than 10 years (31%). Twenty-six had worked on 1-5 sys-
tems (34%), 15 worked on 6-10 systems (20%), 15 worked on 11-20 systems
(20%), and 20 worked on more than 20 systems (26%).

Tables 8.3 give the result of the survey for structured analysis and object-
orientation development paradigms. They are ranked in decreasing order of
percentage of “very important” answers among all those who expressed an
opinion.

Overall, and merging the two approaches, the most important docu-
mentation artefacts to help understanding a system prior to maintaining
it seem to be source code and comments, then a data model, and infor-
mation about the requirements (requirement list/description, use case dia-
gram/description, acceptance tests). It was a surprise to see that general
views of the system (e.g. architectural model, vision document) ranked low
(structured analysis: 18th, 19th, and 23rd; object-orientation: 18th, 22nd,
24th).

Perspectives. This survey first confirms the importance of the source
code and comments as the primary source of information on the system.
This is something I already discussed in Section 8.1.

It also highlights the importance of a view on the data model. Know-
ing this, one could endeavour to extract a data model from the types and
variables used in a software system. There is work to group individual data
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Table 8.4: Importance of documentation artefacts 76 software maintain-
ers. First column marks artefacts specific to OO development, Structured
Analysis (ST) or common to both.

Structured analysis Not Important? % very
artefact known no little yes very imp.

both Source code 2 0 0 5 69 93%
both Comments 1 0 5 11 59 79%
both Logical data model (MER) 3 0 3 15 55 75%
OO Class diagram 13 0 3 20 40 63%
both Physical data model 4 0 2 26 44 61%
ST Requirement description 4 3 7 18 44 61%
OO Use case diagram 12 0 7 21 36 56%
ST Requirement list 5 6 9 17 39 55%
OO Use case specification 15 1 4 25 31 51%
both Acceptance test plan 6 6 9 20 35 50%
both Data dictionary 4 1 11 25 35 49%
both Conceptual data model 5 4 8 27 32 45%
both User manual 4 6 11 24 31 43%
both System test plan 4 4 11 27 30 42%
both Implantation plan 3 5 10 28 30 41%
both Unitary test plan 7 5 13 25 26 38%
both Data migration plan 7 7 11 26 25 36%
ST Data flow diagram 6 5 12 29 24 34%
OO Sequence diagram 12 0 6 37 21 33%
both Functional prototype 6 7 15 26 22 31%
OO Activity diagram 14 3 8 32 19 31%
ST Component specification 10 4 10 32 20 30%
ST Architectural model 11 5 15 26 19 29%
OO Vision document 20 2 13 25 16 29%
ST Context diagram 7 4 25 23 17 25%
ST Hierarchical function diagram 10 5 15 30 16 24%

both Glossary 4 5 21 29 17 24%
ST Functions derived from requ. 22 4 17 21 12 22%

both Non functional prototype 9 8 13 32 14 21%
ST General transaction diagram 21 5 14 25 11 20%
OO Component diagram 18 5 12 31 10 17%
OO State diagram 17 6 17 28 8 14%
OO Distribution diagram 19 5 18 30 4 7%
OO Collaboration diagram 21 6 17 29 3 5%
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into classes (e.g. [Falleri 2008]), but this should be improved and extended,
for example by looking for relationship between the data.

The importance of requirement description is also made clear. Again this
is an interesting research issue. There has been plenty of work on feature
assignment (mapping source code to the user features it implements, e.g.
see [Poshyvanyk 2007]) but this still requires a lot of manual work.



Chapter 9

Maintenance management
processes

In this chapter, I will consider other processes for software maintenance.
We will consider how to establish and maintain traceability links between
the source code and development documents (Section 9.1), and an identi-
fication and categorization of the main risks encountered during software
maintenance (Section 9.2).

9.1 Managing traceability links

Another approach to help software developers understand how a system
was designed and conceived is to establish traceability links between all the
artefacts of the software development process, down to the source code.

The problem. Traceability [Cleland-Huang 2003, Dömges 1998, Egyed 2002,
Ramesh 1998, Ramesh 2001] — i.e., the possibility to trace software arte-
facts forward and backwards along the software lifecyle — is an important
and practical aspect of software engineering. The main advantages of trace-
ability are: (i) to relate software artefacts and corresponding design deci-
sions, (ii) to give feedback to architects and designers about the current
state of the development, allowing them to reconsider alternative design de-
cisions, and to track and understand errors, and (iii) to ease communication
between stakeholders.

Traceability is often mandated by professional standards, for example,
for engineering fault critical systems, such as medical applications. However,
many existing tools and approaches were limited to requirements manage-
ment (for instance RequisitePro or works in [Egyed 2002, Ramesh 2001]),
they relied on using and integrating various tools [Asuncion 2007, Dömges 1998],
they proposed very limited analysis [Moon 2006], or they were not scalable.
Additionally, industrial approaches and academic prototypes did not ad-
dress end-to-end traceability yet, i.e., spanning the full software engineering
lifecycle. The use of traceability is considered a factor of success for soft-
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ware engineering projects. However, traceability can be impaired by various
factors ranging from social, to economical, to technical [Asuncion 2007].

This research was conducted with various European colleagues in the
context of the AMPLE research project on Software Product Line Engineer-
ing (SPLE) [Pohl 2005], Model Driven development and Aspect Oriented
Development.

A software product line is a software system aimed at producing a set
of software products (applications) by reusing a common set of features, or
core assets, that are shared by these products. In SPLE a substantial effort
is made to reuse the core assets, by systematically planning and controlling
their development and maintenance. Thus, a peculiarity of SPLE is variabil-
ity management [Berg 2005, Mohan 2007, Moon 2006], that is, the ability
to identify the variation points of the family of products and to track each
product variant. In contrast to single system software engineering, SPLE
yields a family of similar systems, all tailored to fit the wishes of a par-
ticular market niche from a constrained set of possible requirements. The
software product line development process consists of two main activities
(see Figure 9.1): Domain engineering and Application engineering. These
activities are performed in parallel, each with a complete development cy-
cle, consisting of, for example, requirements engineering, architecture design
and implementation. The complexity of SPLE poses novel problems (e.g.,,
variability management) and also increases the complexity of traditional
software engineering activities, such as software architecture and traceabil-
ity.

Problem
space

Solution
space

Domain
engineering

Application
engineering

Components
Variability
model

Feature
selection Application

Figure 9.1: Domain and Application Engineering in Software Product Line

Previous State of the Art. We conducted a survey on industrial tools
that support some degree of traceability. The goal of the survey was to inves-
tigate the current features provided by existing tools to assess their strengths
and weaknesses and their suitability to address SPL development and main-
tenance. The tools were evaluated in terms of the following criteria: (i)
management of traceability links, (ii) traceability queries, (iii) traceability
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views, (iv) extensibility, and (v) support for SPL, MD Engineering (MDE)
and AOSD. These criteria are important for this kind of tool as they provide
the basic support to satisfy traceability requirements (which are the creation
of trace information and the ability to query the trace links), easier vari-
ability management, adaptability to projects specific needs [Dömges 1998],
or concerns regarding evolution of these tools and SPL development.

In terms of “link management”, the tools allowed defining them manu-
ally, but also offered the possibility to import them from other existing doc-
uments, such as, MS-Word, Excel, ASCII and RTF files. For the “queries”
criterion, the tools typically allowed to query and filter various types of arte-
facts, mainly the requirements. We also found the ability to use advanced
query mechanisms, such as detecting some inconsistencies in the links or
artefacts definition, establishing an impact analysis report, or detecting of
orphan code. The traceability tools offered different kinds of “views”, such
as, traceability graphical tree and diagram, and traceability matrix. All
of them also allowed navigating over the trace links from one artefact to
another. In terms of “extensibility”, some allowed specifying new types of
reports or even creating new types of links and personalized views. The main
ones provided support to save and export trace links to external databases.
However, as could be expected, these tools did not support SPLE explicitly,
yet.

Two of the leading industrial tools in SPL development, GEARS1 and
pure::variants2, had some extensions to allow integration with other com-
mercial traceability tools. However, they lacked the ability to deal explicitly
with SPL development specificities such as, managing and tracing common-
alities and variabilities for different SPL artefacts, or dealing with change
impact analysis.

To complete our analysis, we reviewed the academic approaches support-
ing traceability for product lines or system families. Only three of them pro-
vide some sort of tool support [Ajila 2004, Jirapanthong 2005, Mohan 2002].
But none of these approaches provides a clear and comprehensive view of
the trace links in an SPLE development.

From this survey we conclude that a thorough analysis of the dimension
in SPL was needed, with specific emphasis on variability and versioning.

Contribution. We defined a set of orthogonal traceability dimensions to
manage traceability in software product lines. The analysis was based on
the traceability needs identified in the literature.

We started by reusing the two traditional traceability dimensions (Re-

1www.biglever.com
2www.pure-systems.com
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Figure 9.2: Examples of the four orthogonal traceability dimensions (grey
arrows) in the two processes of a software product line.

finement and Similarity traceability, see below). We added a dimension to
account for variability traceability as suggested by many. Finally, we also
found a need for tracing the evolution of artefacts (i.e.,, Software Configu-
ration Management).

I now summarize the four traceability dimensions, which are illustrated
in Figure 9.2.

• Refinement traceability relates artefacts from different levels of ab-
straction in the software development process. It goes from an abstract
artefact to more concrete artefacts that realize the abstract one. For
example, a design model refines a software requirement. Such links
may happen in either of the two development stages of software prod-
uct lines: domain engineering or application engineering.

• Similarity traceability links artefacts at the same level of abstraction.
For example, UML components and class diagrams can specify the
SPL architecture at different levels of detail but at the same level of
abstraction (software design). The trace links defined between these
artefacts can be used to understand how different classes, for example,
are related to specific components (or interfaces) of the SPL archi-
tecture. The links are inside either of the two software product line
processes: domain engineering or application engineering.

• Variability traceability relates two artefacts as a direct consequence of
variability management. For example, at the domain engineering level,
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a variability traceability link would relate a variant with the artefact
that “realizes” (or implements) it. Or, an application artefact (appli-
cation engineering level) would be related to its underlying reusable
artefact at the domain engineering level. For example, a use case model
and a feature model can be related to illustrate which functional re-
quirements are responsible to address the SPL common and variable
features. Such traceability links allow understanding how SPL features
are materialized in requirements and find potential related candidates
during a maintenance task.

• Versioning traceability links two successive versions of an artefact.

These ideas were implemented using a model driven approach to inte-
grate with the other tools of the AMPLE project. We modelled our ideas
in ECore (the Eclipse implementation of Model Driven Engineering) and
generated a Java implementation as an Eclipse plugin. Our traceability
metamodel basically defines TraceableArtefacts and TraceLinks between
these artefacts as fundamental elements. The TraceableArtefacts are refer-
ences to actual artefacts that live in some kind of source or target model or
just arbitrary elements created during the development phases of an applica-
tion like, a requirement in a requirements document. TraceableArtefacts and
TraceLinks are typed to denote the semantics of the elements themselves.
Using Eclipse gave us flexibility in adding plugins around this core imple-
mentation. Several plugins were developed independently by the members
of the project: Trace Register, to populate a repository; Trace Query, to
implement complex advanced queries that should be of interest to end-users
(e.g., impact analysis); and Trace View, to visualize the result of a query.

Perspectives. The two research topics considered in this section (trace-
ability and SPL) are important for software maintenance research.

As explained above, traceability is useful to keep trace of requirements,
design decisions, and others and their consequences on the source code. So it
is a knowledge management tool that helps software maintainers understand
how the system was implemented and why it is so. Unfortunately, keeping
strict traceability is very expensive and difficult. Very few systems have
this information available. In software maintenance, there has been some
research on how to recreate some of these links automatically, for example by
relating a class to the textual documents describing it (e.g. [Antoniol 2000,
Antoniol 2002]), or relating a feature (functional requirement) of a system
to the source code that implements it (e.g. [Antoniol 2005, Chen 2000,
Eisenbarth 2001]). These early attempts are far from having exhausted the
subject. One could try, for example, to relate some source code to a UML
model of it, even if they do not match perfectly.
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Software product line engineering (SPLE) received great interest in the
software engineering area, both from practitioners and researchers. For soft-
ware maintenance, SPLE brought interesting questions, such as how to au-
tomatically extract an SPL description from various systems in the same
application domain. This is still an unresolved issue.

9.2 Managing the Risks in Maintenance

Departing a bit from the knowledge management line of research that I
presented up to now, I also worked on the management of maintenance
projects themselves. This research was performed with the help of a Masters
student.

The problem. A risk, in a software project, is an event whose occurrence
is uncertain and that could impact the project (typically negatively, but
one also speaks of positive risks) if it should occur [Jalote 1999, Jalote 2002,
McManus 2004, Schneidewind 2002].

Risk management for software is considered as one of foremost best prac-
tices in software projects [Addison 2002, Brown 1997]. As such, methods for
risk identification (e.g. [Carr 1993, Keil 1998, Machado 2002]), or for risk
management (e.g. [Boehm 1989, Jalote 2002, Houston 2001, Kwak 2004,
McManus 2004, Murphy 1996]) received lot of attention. However, there
had been very little study on risk management for software maintenance
projects [Charette 1997].

Maintenance presents specificities that set it apart from software devel-
opment [Charette 1997, Grubb 2003]. In terms of risk management, this
implied that existing methodologies might not be adequate for maintenance
projects, whereas reports suggested that risk management would contribute
to improve the quality and efficiency of software evolution [CCTA 2000,
Schneidewind 2002].

Previous State of the Art. Keil et al. [Keil 1998] studied various sys-
tems after delivery and established that many problems encountered could
have been avoided if risk management had been applied during the projects.
To increase the chances of success of a software project, one must constantly
monitor possible risk factors, foresee possible solutions, detect as early as
possible the occurrence of a risk, evaluate its severity and actual impact,
and apply the needed correction.

Risk identification consists in enumerating all possible risks for a project
(before they occur) [Jalote 2002]. There are different ways to identify risk
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factors (e.g., brainstorming sessions, fishbone diagrams, etc.) but a popular
one is to use a taxonomy of possible risks from which one identifies those
that may apply to a particular project.

Contribution. To offer a first help in managing risk of software mainte-
nance projects, we defined a taxonomy of risk factors [Webster 2005]. This
was necessary as even Charette et al. who stated that risk factors for soft-
ware maintenance are different [Charette 1997], still used the taxonomy of
risk factors proposed by Carr et al. [Carr 1993] which focused software
development.

We conducted a survey of risk management for software development
and found 382 risk factors in 18 publications (not listed here for the sake of
space). As a comparison, we found only one reference for software mainte-
nance [Schneidewind 2002] listing 19 risk factors.

First, we analysed the list of 382 risk factors for software development
found in the literature. We removed duplicates to get a list of 198 risk
factors. Second, from these, we removed all risk factors that were not ref-
erenced by at least two authors. The idea was eliminate those that were
possibly proposed in a too specific context. Our list of risks was now down
to 56 risk factors for software development. Third, studying the relevant
literature, we established a list of 91 risk factors and problems for software
maintenance and again removed the duplicates. As there were much fewer
risk factors for software maintenance, we did not filter them on the number
of references. This gave us 54 risk factors extracted from maintenance prob-
lems. Fourth, we integrated the two lists of risk factors resulting from steps
2 and 3 to establish a final list of 92 risk factors for maintenance.

To complete the creation of the taxonomy, we organized these 92 risk
factors into categories. We followed the organization scheme proposed by
the SEI taxonomy [Carr 1993] since this is the work that was the most cited.
This taxonomy is organized in three levels (names were adapted to software
maintenance): The Product Engineering class (technical risks) consists of
the activities required to maintain the product; the Maintenance Environ-
ment class (methodological risks) is concerned with the project environment,
where the software is being maintained; the Program Constraints class (or-
ganizational risks) consists of the risks external to the project, factors that
are outside the direct control of the project but can still have major effects
on its success.

Perspectives. This research in itself did not close the topic of manag-
ing risks in software maintenance projects. Even though risk identification
for software maintenance can be improved with our taxonomy, the risks
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encountered may have a different importance in maintenance than develop-
ment (for example a stronger impact) because of the differing conditions in
which maintenance is performed. More work could be done, for example in
studying the “typical” impact and probability of each risk in many projects.
This would help maintenance managers get gradually acquainted with the
taxonomy by initially focusing on the risks that are typically most critical.



Part V

Perspectives
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Chapter 10

Closing considerations

In this document I summarized most of my research in the past years on
software maintenance. I considered three main aspects of the activity: the
software system maintained, the people that maintain it, and the organi-
zation in which this is taking place. I showed how each of these three
dimensions were addressed.

For the software system, I presented solutions to control its evolution
with software metrics, prevent its decay with rules, and rejuvenate (its ar-
chitecture) when evolution had to happen in new directions.

One conclusion of this aspect of my research was that we cannot work
solely at the level of the source code and must deal with more abstract data
that reside in the mind of the software engineers working on the systems.
I discussed propositions to recover the knowledge gained by the software
engineers in their work, and organize it in well defined categories.

Finally I also treated the problem at the level of the organization, con-
sidering the software processes used, and how they could be improved: first
to help managing the knowledge on software maintenance and the systems,
but also more basic process for managing maintenance itself.

I am closing this document with some longer term research directions,
some of which have already been mentioned in the previous chapters.

An important problem that I hardly touched in this document but that I
could perceive while working with professionals is that software maintenance
suffers from a very negative perception in the workplace. It is recognize as an
important activity in volume, but typically considered as less rewarding that
development of new software. One must also admit that academia seems
to have some responsibility: Research focuses on finding new development
methodologies (e.g. aspects, model driven development, software product
lines), new languages, improved tools, but rarely considers the problems
related to maintaining legacy software (e.g. developed in Cobol).

Also, software maintenance is rarely taught in typical courses, which may
contribute to give the impression that it is not an important activity. This is
an important issue because it hampers the search for better solutions. The
solution for this would require better teaching of the activity but primarily
a better understanding of its reality. This in turn means more study of

105



106

the practice of software maintenance to understand the typical problems it
involves. This is something we alluded to in Section 8.1.

As discussed in the previous chapters, tools are needed to help under-
stand software systems at a high level (concept location, feature location),
but software maintainers also need help for other activities.

There are no tools to help doing large refactorings, for example to split a
package in two, moving classes, introducing new abstractions, or reorganiz-
ing classes. Modern IDEs do offer localized refactoring operations (renaming
a class, changing the signature of a method), but these would need to be
chained in the right order to achieve larger refactorings, with risks of for-
getting something, inadvertently doing operations in the wrong order, or
getting lost in the chain of operations to perform.

In a similar line of research, developers need tools to help them break very
long methods (or functions). In industry, cases of methods with thousands
of lines of code can be found and there are very few propositions on how to
refactor these. This problem is more complex than the previous one because,
on top of the necessity to identify and separate different concerns, it requires
a fine understanding of the data and control flows which involves extremely
complex analyses of data flow, especially in the presence of pointers.

Lastly, I started to look at model driven engineering and how mod-
els could help in achieving the old dream of round-trip engineering: from
the source code to an abstract representation that is modified and then
re-implemented into source code.My experiments with the Moose software
analysis platform (based on MDD) show that this idea is flawed with an in-
trinsic incompatibility. The interest of models here would lie in the fact that
they give an abstract view on the system that would allow to concentrate
on the important aspects. Apart the fact that we do not know yet how to
tell what is irrelevant from what is important, the problem is that working
from the source code of a running system is mainly interesting if we can take
advantage of this code and all the details it contains. Therefore one would
like at the same time abstract away the details, but also keep them to be
able to reimplement the system! There is a fundamental difficulty here that
will be difficult, if ever possible, to solve.
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[Falleri 2011] Jean Rémi Falleri, Simon Denier, Jannik Laval, Philipe Vis-
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[Rúız 2004] Francisco Rúız, Aurora Vizcáıno, Mario Piattini and Félix
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