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Résumé

De nombreux problèmes intéressants de prise de décision séquentielle peu-
vent être formulés comme des problèmes d’apprentissage par renforcement.
En apprentissage par renforcement, un agent interagit avec un environnement
dynamique, stochastique et qu’il ne connaît que partiellement, dans le but de
trouver une stratégie de prise d’actions, ou politique, qui maximise une cer-
taine mesure de performance à long terme. Les algorithmes de programma-
tion dynamique sont les outils les plus puissants pour résoudre les problèmes
d’apprentissage par renforcement, c’est à dire pour trouver la politique opti-
male. Cependant, pour ces algorithmes, la découverte du comportement déci-
sionnel optimal n’est garantie que si l’environnement (à savoir, la dynamique
de l’état du système et les récompenses) est connu de manière complète et
que les espaces d’état et d’action ne sont pas de trop grandes tailles. Lorsque
l’une de ces conditions se trouve violée (par exemple si l’unique information
disponible sur l’environnement prend la forme d’échantillons de transitions
et de récompenses), des algorithmes d’approximation sont requis, et dès lors,
les méthodes de programmation dynamique se convertissent en méthodes de
programmation dynamique approchée et en algorithmes d’apprentissage par
renforcement.1

La théorie de l’apprentissage statistique est fondamentale pour l’étude
1Le terme apprentissage par renforcement est plus fréquemment utilisé dans la com-

munauté d’IA et d’apprentissage automatique, alors que programmation dynamique ap-
prochée est plus commun en recherche opérationnelle. Ici nous utiliserons ces termes de
manière interchangeable.
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des propriétés statistiques des algorithmes développés en apprentissage au-
tomatique. En particulier, apprentissage statistique décrit l’interaction en-
tre le processus générant les échantillons et l’espace d’hypothèse utilisé par
l’algorithme d’apprentissage, et établit à quelles conditions et dans quelles
mesures les problèmes de régression et de classification peuvent être résolus.
Ces résultats ont aussi montré leur utilité pour dimensionner les problèmes
d’apprentissage automatique (nombre d’échantillons, complexité de l’espace
d’hypothèse) et pour ajuster les paramètres des algorithmes (par exemple le
paramètre de régularisation des méthodes de régularisation).

L’objet principal de ce travail est d’employer les outils de l’apprentissage
statistique afin d’étudier les performances des algorithmes d’apprentissage
par renforcement hors ligne et de programmation dynamique approchée2 pour
aboutir à des bornes en échantillons finis sur la perte en performance (par rap-
port à la politique optimale) de la politique apprise par ces algorithmes. Un
tel objectif demande de combiner efficacement des outils de l’apprentissage
statistique avec les algorithmes de programmation dynamique approchée,
et de montrer comment l’erreur se propage d’itération en itération chez ces
algorithmes itératifs. Nous considérons différents types d’algorithmes de pro-
grammation dynamique approchée : basés soit sur une régression, une clas-
sification ou une méthode de point fixe, et, pour chacun, nous soulignons les
principaux défis que posent leurs analyses en échantillons finis.

2En apprentissage par renforcement hors ligne (à l’inverse des versions en ligne ou incré-
mentales de ces algorithmes), une politique d’échantillonnage est utilisée pour construire
un ensemble d’apprentissage pour l’algorithme d’apprentissage.
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Abstract

Many interesting sequential decision-making tasks can be formulated as rein-
forcement learning (RL) problems. In a RL problem, an agent interacts with
a dynamic, stochastic, and incompletely known environment, with the goal of
finding an action-selection strategy, or policy, to maximize some measure of
its long-term performance. Dynamic programming (DP) algorithms are the
most powerful tools to solve a RL problem, i.e., to find an optimal policy.
However, these algorithms guarantee to find an optimal policy only if the
environment (i.e., the dynamics and the rewards) is completely known and
the size of the state and action spaces are not too large. When one of these
conditions is violated (e.g., the only information about the environment is of
the form of samples of transitions and rewards), approximate algorithms are
needed, and thus, DP methods turn to approximate dynamic programming
(ADP) and RL algorithms.3 In this case, the convergence and performance
guarantees of the standard DP algorithms are no longer valid, and the main
theoretical challenge is to study the performance of ADP and RL algorithms.

Statistical learning theory (SLT) has been fundamental in understanding
the statistical properties of the algorithms developed in machine learning.
In particular, SLT has explained the interaction between the process gener-
ating the samples and the hypothesis space used by the learning algorithm,
and shown when and how-well classification and regression problems can be

3While the term RL is more often used in the AI and machine learning community, ADP
is more common in the field of operations research. Here we use them interchangeably.
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solved. These results also proved to be particularly useful in dimensioning
the machine learning problems (i.e., number of samples, complexity of the
hypothesis space) and tuning the parameters of the algorithms (e.g., the
regularizer in regularized methods).

The main objective of this work is to use the tools from SLT to study the
performance of batch RL and ADP algorithms4 with the objective of deriving
finite-sample bounds on the performance loss (w.r.t. the optimal policy) of
the policy learned by these methods. Such an objective requires to effectively
combine SLT tools with the ADP algorithms, and to show how the error is
propagated through the iterations of these iterative algorithms. We consider
several different types of ADP algorithms: regression-based, classification-
based and fixed-point, and in each case highlight the main challenges in their
finite-sample performance analysis.

4In batch RL (v.s. incremental or online version of these algorithms), a sampling policy
is used to build a training set for the learning algorithm.
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Chapter 1

Introduction

1.1 The Reinforcement Learning Problem

Many interesting sequential decision-making tasks such as moving around in
the physical world (e.g., driving or navigation), playing a game, retrieving
information over the web, medical diagnosis and treatment, maximizing the
throughput of a factory, optimizing the performance of a rescue team, and
many more can be formulated as reinforcement learning (RL) problems. In a
RL problem, an agent interacts with a dynamic, stochastic, and incompletely
known environment, with the goal of finding an action-selection strategy, or
policy, to maximize some measure of its long-term performance. The agent’s
interaction with the environment is often modeled as a Markov decision pro-
cess (MDP) or in case the state of the agent is not always fully observable,
as a partially observable Markov decision process (POMDP). In this work,
we focus on the fully observable case, and thus, use a MDP to model this
interaction.

A (discounted) MDP is a tupleM = 〈X ,A, r, P, γ〉 where the state space
X is a bounded closed subset of Rd, A is the action space,1 the reward
function r : X ×A → R is uniformly bounded by Rmax, the transition kernel

1We assume that the action space is finite, i.e., |A| <∞ in this work.
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P is such that for all x ∈ X and a ∈ A, P (·|x, a) is a distribution over X ,
and γ ∈ (0, 1] is a discount factor. The main objective of the agent is to find
a good or an optimal policy π, which is a mapping from states to actions
π : X → A (deterministic policy) or a mapping from states to a distribution
over actions π : X × A → [0, 1] (stochastic policy). By optimal here we
mean a policy that maximizes the agent’s long-term performance. Finding
a good or an optimal policy requires searching in the policy space and to
be able to compare them. However, a policy is a mapping from states to
actions, which brings up this important question that how can we compare
two policies (mappings) and search in the policy space? The answer to this
question is: this comparison is done using a quantity called value function.
For a policy π, its value function, V π, is a function from the states to real
numbers, V π : X → R, that at each state x is defined as the expected sum of
(discounted) rewards of starting at that state and then following the policy
π, i.e.,

V π(x) = E

[
∞∑

t=0

γtr
(
Xt, π(Xt)

)
|X0 = x

]
. (1.1)

Now using this quantity we can compare two policies and say policy π1 is
better than or equal to policy π2 if and only if its value function at every
state is larger than or equal to the value function of policy π2, i.e., ∀x ∈
X , V π1(x) ≥ V π2(x). Similarly for any policy π, we can define another
quantity, called action-value function, Qπ, which is a mapping from the state-
action pairs to real numbers, Qπ : X ×A → R, and at each state-action pair
(x, a) is defined as the expected sum of (discounted) rewards of starting at
state x, taking action a, and then following the policy π, i.e.,

Qπ(x, a) = E

[
∞∑

t=0

γtr
(
Xt, At

)
|X0 = x, A0 = a, ∀t ≥ 1, At = π(Xt)

]
. (1.2)

It has been shown (see e.g., Bertsekas and Tsitsiklis 1996) that the value
function of a policy π is the unique fixed-point of the Bellman operator T π,
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i.e., ∀x ∈ X , V π(x) = (T πV π)(x), defined as

∀x ∈ X , ∀f : X → R, (T πf)(x) = r
(
x, π(x)

)
+ γ

∑

x′∈X

P
(
x′|x, π(x)

)
f(x′).

(1.3)
From Equations 1.1–1.3, it is easy to see that

∀x ∈ X , a ∈ A, Qπ(x, a) = r(x, a) + γ
∑

x′∈X

P (x′|x, a)V π(x′).

The optimal value function, V ∗, is the value function of a policy that has
the maximum value at every state, i.e., ∀x ∈ X , V ∗(x) = supπ V

π(x).2 Now
a policy π∗ is called optimal if its value is equal to the optimal value function
at every state, i.e., ∀x ∈ X , V π∗(x) = V ∗(x). The main message here is
that while we may have several optimal policies, the optimal value function
is always unique.

Similar to the value function of a policy, it has been shown (see e.g., Bert-
sekas and Tsitsiklis 1996) that the optimal value function V ∗ is the unique
fixed-point of the Bellman optimality operator T , i.e., ∀x ∈ X , V ∗(x) =

(T V ∗)(x), defined as

∀x ∈ X , ∀f : X → R, (T f)(x) = max
a∈A

[
r(x, a) + γ

∑

x′∈X

P (x′|x, a)f(x′)

]
.

(1.4)
Both Bellman and Bellman optimality operators have two the following

important properties that are fundamental to the convergence proofs of most
RL algorithms:

• Monotonicity: If V1 ≤ V2 component-wise then

T πV1 ≤ T πV2 and T V1 ≤ T V2 .

2Similarly we can define the optimal action-value function Q∗ as ∀x ∈ X , a ∈
A, Q∗(x, a) = supπ Q

π(x, a).

15



• Max-Norm Contraction: For every pair of value functions V1 and
V2, we have

||T πV1 − T πV2||∞ ≤ γ||V1 − V2||∞ ,

||T V1 − T V2||∞ ≤ γ||V1 − V2||∞ .

1.2 Dynamic Programming

Most of the solutions to the RL problem are based on one of the two cel-
ebrated dynamic programming (DP) algorithms: value iteration and policy
iteration [Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998, Szepesvári,
2010].

Value Iteration (VI) is an iterative algorithm that starts with an arbitrary
initial value function V0 and at each iteration k of the algorithm generates a
new value function Vk from the current value function Vk−1 as Vk = T Vk−1.
Note that the computational cost at each iteration of VI is O(|X |2|A|) and
its number of iterations depends of our desired level of accuracy. So, we can
consider VI as a polynomial algorithm in the number of states and actions.

It is easy to show that as the number of iterations approaches infinity, k →
∞, the value function generated by the value iteration algorithm converges
to the optimal value function.

Lemma 1 Let Vk be the value function generated at the iteration k of the
value iteration algorithm, then limk→∞ Vk = V ∗.

Proof

||V ∗ − Vk||∞
(a)
= ||T V ∗ − T Vk−1||∞

(b)
≤ γ||V ∗ − Vk−1||∞

(c)
≤ γk||V ∗ − V0||∞ k→∞−→ 0.
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(a) This is from the fact that V ∗ is the unique fixed-point of the Bellman op-
timality operator T and the definition of Vk in the value iteration algorithm.
(b) This is from the max-norm contraction property of the Bellman optimal-
ity operator T .
(c) This is by replacing Vk−1 with T Vk−2 and using the contraction property
of T , and then repeating this process for k − 1 steps.

Policy Iteration (PI) [Howard, 1960] is an iterative algorithm that starts
with an arbitrary initial policy π0 and discovers a deterministic optimal policy
by generating a sequence of monotonically improving policies. Each iteration
k of PI consists of two phases: policy evaluation in which the value function
of the current policy V πk−1 is computed, and policy improvement in which
the new (improved) policy πk is generated as a greedy policy w.r.t. V πk−1 ,
i.e.,

∀x ∈ X , πk(x) = (Gπk−1)(x)

= arg max
a∈A

[
r(x, a) + γ

∑

x′∈X

P (x′|x, a)V πk−1(x′)

]

= arg max
a∈A

Qπk−1(x, a),

where G is the greedy operator that maps a policy to the greedy policy
w.r.t. its value function as defined above. It is easy to show that the greed-
ification process in the policy improvement phase guarantees that the new
policy πk is not worse than the current policy πk−1.

Lemma 2 Let πk−1 and πk be the current and next policies at iteration k of
the policy iteration algorithm. Then, the new policy πk is not worse than the
current policy πk−1, i.e., ∀x ∈ X , V πk−1(x) ≤ V πk(x).
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Proof

V πk−1
(a)
= T πk−1V πk−1

(b)
≤ T V πk−1

(c)
= T πkV πk−1

(d)
≤ lim

n→∞
(T πk)nV πk−1 = V πk .

(a) This is from the fact that V πk−1 is the unique fixed-point of the Bellman
operator T πk−1 .
(b) This is from the fact that the Bellman optimality operator T uses the
max, and thus, is bigger when it is applied to a function V πk−1 than the
Bellman operator T πk−1 .
(c) This is from the definition of πk as the greedy policy w.r.t. πk−1.
(d) This is from the monotonicity property of the Bellman operator T πk .

Lemma 2 indicates that the sequence of policies generated by PI is monotoni-
cally improving. Therefore, when the numbers of states and actions are finite
(i.e., the total number of policies is finite), PI stops after a finite number of
iterations with an optimal policy π∗ (convergence proof of PI).

The computational cost at each iteration of PI is O
(

max{|X |3, |X |2|A|}
)
,

which is the combination of the costs of the policy evaluation3 O(|X |2|A|)
and policy improvement O(|X |3) steps. Although PI is more computationally
expensive than VI at each iteration, it usually takes less iterations to converge
than VI. It has been recently shown that the maximum number of iterations
that PI needs to converge to an optimal policy is polynomial in the number
of states and actions [Ye, 2011, Hansen et al., 2013, Scherrer, 2013a]. This
means that the PI algorithm is in fact strongly polynomial in the number of
states and actions.

3The cost of the policy evaluation phase is the cost of solving a linear system of equa-
tions of size |X |, which is the cost of inverting a square matrix of size |X |. Using the new
improvements in matrix inversion, this phase can be done in O(|X |2.807).
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1.3 Approximate Dynamic Programming

As shown in Section 1.2, DP algorithms are the most powerful tools to solve
a RL problem, i.e., to find an optimal policy. However, these algorithms
guarantee to find an optimal policy only if the environment (i.e., the dynamics
and the rewards) is completely known and the size of the state and action
spaces are not too large. When one of these conditions is violated, e.g.,

• the state space X and/or action space A are large or infinite,

• the model of the system (the transition probability P and reward r

functions) is unknown and the only information about the environment
is of the form of samples of transitions and rewards,

• we do not have enough time and/or sample to compute the quantity
of interest at each iteration k of the DP algorithm (i.e., T Vk−1 for VI
and V πk−1 for PI algorithms),

approximate algorithms are needed, and thus, DP methods turn to approx-
imate dynamic programming (ADP) and RL algorithms. Unfortunately, in
this case, the convergence and performance guarantees of the standard DP
algorithms (Lemmas 1 and 2) are no longer valid, and the main theoretical
challenge is to study the performance of ADP and RL algorithms, which is
the main focus of this work.

Assume that at the k’th iteration of VI, we are not able to compute T Vk−1,
and have its approximation instead. As a result, the next value function Vk
won’t be T Vk−1 as in the standard VI, but will be an approximation of
this quantity, i.e., Vk ≈ T Vk−1. Thus, we can no longer use the max-norm
contraction property of the Bellman optimality operator and write

||V ∗ − Vk||∞ ≤ γ||V ∗ − Vk−1||∞.

As it was shown, this property is at the heart of the proof of the standard
VI, and thus without it, it is not possible to prove the convergence of the
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approximate value iteration (AVI) algorithm to the optimal value function.
Similarly, assume that at the k’th iteration of PI, we are not able to

compute the value of the current policy V πk−1 , and have its approximation
V̂ πk−1 ≈ V πk−1 instead. As a result, the next policy generated by PI, i.e., the
greedy policy w.r.t. V̂ πk−1 , is no longer the greedy policy w.r.t. πk−1, i.e.,

πk(x) = arg max
a∈A

[
r(x, a) + γ

∑

x′∈X

P (x′|x, a)V̂ πk−1(x′)

]
6= (Gπk−1)(x),

and thus, we cannot guarantee that V πk ≥ V πk−1 , and maintain the monoton-
ically improving behavior of the standard PI. As it was shown, this property
is at the heart of the proof of the standard PI, and thus without it, it is not
possible to prove the convergence of the approximate policy iteration (API)
algorithm to an optimal policy.

Now that the ADP algorithms fail to converge to the optimal value func-
tion or an optimal policy, it is quite important to find out how close they
get to an optimal solution given a fixed budget of computation (computation
complexity) or samples (sample complexity).4 In this work, we are mainly
interested in the sample complexity of the ADP algorithms and aim to answer
the following question:

If we are given a fixed number of samples (or samples per iteration) and we
run an ADP algorithm for a number of iterations K > 0, how close would
the quantity returned by the algorithm be to its optimal value?

More precisely, if an ADP algorithm returns the policy πK after K iter-
ations, we would like to have a bound on ||V ∗ − V πK || as a function of the
sample budget and the approximation scheme used by the algorithm.5 Note

4Note that samples are of the form of transitions and rewards, and thus, the number
of samples shows our number of interactions with the system or its simulator.

5In the case of AVI, πK is the greedy policy w.r.t. the value function VK returned by
the algorithm, i.e., ∀x ∈ X , πK(x) = arg maxa∈A

[
r(x, a) + γ

∑
x′∈X P (x′|x, a)VK(x′)

]
.
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that the norm || · || can be any `p-norm, p = 1, . . . ,∞, but `1 and `2 norms
are more desirable, and we try to avoid `∞-norm as it could be very loose.
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Chapter 2

Finite-Sample Analysis of
Least-Squares Policy Iteration
[MGH1, MGH9, MGH12, MGH15, MGH18]

In this paper, we report a performance bound for the widely used least-
squares policy iteration (LSPI) algorithm. We first consider the problem of
policy evaluation in reinforcement learning, i.e., learning the value function
of a fixed policy, using the least-squares temporal-difference (LSTD) learning
method, and report finite-sample analysis for this algorithm. To do so, we
first derive a bound on the performance of the LSTD solution evaluated at
the states generated by the Markov chain and used by the algorithm to learn
an estimate of the value function. This result is general in the sense that
no assumption is made on the existence of a stationary distribution for the
Markov chain. We then derive generalization bounds in the case when the
Markov chain possesses a stationary distribution and is β-mixing. Finally, we
analyze how the error at each policy evaluation step is propagated through
the iterations of a policy iteration method, and derive a performance bound
for the LSPI algorithm.
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2.1 Introduction

Least-squares temporal-difference (LSTD) learning [Bradtke and Barto, 1996,
Boyan, 1999] is a widely used algorithm for prediction in general, and in
the context of reinforcement learning (RL), for learning the value function
V π of a given policy π. LSTD has been successfully applied to a number of
problems especially after the development of the least-squares policy iteration
(LSPI) algorithm [Lagoudakis and Parr, 2003a], which extends LSTD to
control by using it in the policy evaluation step of policy iteration. More
precisely, LSTD computes the fixed point of the operator ΠT , where T is the
Bellman operator and Π is the projection operator in a linear function space
F . Although LSTD and LSPI have been widely used in the RL community,
a finite-sample analysis of LSTD, i.e., performance bounds in terms of the
number of samples, the space F , and the characteristic parameters of the
MDP at hand, is still missing.

Most of the theoretical work analyzing LSTD have been focused on the
model-based case, where explicit models of the reward function and the dy-
namics are available. In particular, Tsitsiklis and Van Roy [1997] showed
that the distance between the LSTD solution and the value function V π is
bounded by the distance between V π and its closest approximation in the
linear space, multiplied by a constant which increases as the discount factor
approaches 1. In this bound, it is assumed that the Markov chain possesses
a stationary distribution ρπ and the distances are measured according to
ρπ. Yu [2010] has extended this analysis and derived an asymptotic conver-
gence analysis for off-policy LSTD(λ), that is when the samples are collected
following a behavior policy different from the policy π under evaluation. Fi-
nally, on-policy empirical LSTD has been analyzed by Bertsekas [2007]. His
analysis reveals a critical dependency on the inverse of the smallest eigen-
value of the LSTD’s A matrix (note that the LSTD solution is obtained by
solving a system of linear equations Ax = b). Nonetheless, Bertsekas [2007]
does not provide a finite-sample analysis of the algorithm. Although these
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analyses already provide some insights on the behavior of LSTD, asymptotic
results do not give a full characterization of the performance of the algorithm
when only a finite number of samples is available (which is the most com-
mon situation in practice). On the other hand, a finite-sample analysis has a
number of important advantages: 1) unlike in Tsitsiklis and Van Roy [1997],
where they assume that model-based LSTD always returns a solution, in
a finite-sample analysis we study the characteristics of the actual empirical
LSTD fixed point, including its existence, 2) a finite-sample bound explicitly
reveals how the prediction error of LSTD is related to the characteristic pa-
rameters of the MDP at hand, such as the discount factor, the dimensionality
of the function space F , and the number of samples, 3) once this dependency
is clear, the bound can be used to determine the order of magnitude of the
number of samples needed to achieve a desired accuracy.

Recently, several works have been focused on deriving a finite-sample
analysis for different RL algorithms. In the following, we review those that
are more strictly related to LSTD and to the results reported in this pa-
per. Antos et al. [2008] analyzed the modified Bellman residual (MBR) min-
imization algorithm for a finite number of samples, bounded function spaces,
and a µ-norm that might be different from the norm induced by ρπ. Al-
though MBR minimization was shown to reduce to LSTD in case of linear
spaces, it is not straightforward to extend the finite-sample bounds derived
by Antos et al. [2008] to unbounded linear spaces considered by LSTD. Farah-
mand et al. [2008] proposed a `2-regularized extension of LSPI and provided
finite-sample analysis for the algorithm when the function space is a repro-
ducing kernel Hilbert space (RKHS). In this work, the authors consider the
optimization formulation of LSTD (instead of the better known fixed-point
formulation) and assume that a generative model of the environment is avail-
able. Moreover, the analysis is for `2-regularized LSTD (LSPI) and also for
the case that the function space F is a RKHS. Ávila Pires and Szepesvári
[2012] also analyzed a regularized version of LSTD reporting performance
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bounds for both the on-policy and off-policy case. In this paper, we first
report a finite-sample analysis of LSTD. To the best of our knowledge, this
is the first complete finite-sample analysis of this widely used algorithm. Our
analysis is for a specific implementation of LSTD that we call pathwise LSTD.
Pathwise LSTD has two specific characteristics: 1) it takes a single trajec-
tory generated by the Markov chain induced by policy π as input, and 2) it
uses the pathwise Bellman operator (precisely defined in Section 2.3), which
is defined to be a contraction w.r.t. the empirical norm. We first derive a
bound on the performance of the pathwise LSTD solution for a setting that
we call Markov design. In this setting, the performance is evaluated at the
points used by the algorithm to learn an estimate of V π. This bound is gen-
eral in the sense that no assumption is made on the existence of a stationary
distribution for the Markov chain. Then, in the case that the Markov chain
admits a stationary distribution ρπ and is β-mixing, we derive generalization
bounds w.r.t. the norm induced by ρπ. Finally, along the lines of Antos et al.
[2008], we show how the LSTD error is propagated through the iterations of
LSPI, and under suitable assumptions, derive a performance bound for the
LSPI algorithm.

Besides providing a full finite-sample analysis of LSPI, the major insights
gained by the analysis in the paper may be summarized as follows. The first
result is about the existence of the LSTD solution and its performance. In
Theorem 3 we show that with a slight modification of the empirical Bellman
operator T̂ (leading to the definition of pathwise LSTD), the operator Π̂T̂
(where Π̂ is an empirical projection operator) always has a fixed point v̂, even
when the sample-based Gram matrix is not invertible and the Markov chain
does not admit a stationary distribution. In this very general setting, it is
still possible to derive a bound for the performance of the LSTD solution, v̂,
evaluated at the states of the trajectory used by the algorithm. Moreover, an
analysis of the bound reveals a critical dependency on the smallest strictly
positive eigenvalue νn of the sample-based Gram matrix. Then, in the case
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in which the Markov chain has a stationary distribution ρπ, it is possible
to relate the value of νn to the smallest eigenvalue of the Gram matrix de-
fined according to ρπ. Furthermore, it is possible to generalize the previous
performance bound over the entire state space under the measure ρπ, when
the samples are drawn from a stationary β-mixing process (Theorem 7). It is
important to note that the asymptotic bound obtained by taking the number
of samples, n, to infinity is equal (up to constants) to the bound in Tsitsik-
lis and Van Roy [1997] for model-based LSTD. Furthermore, a comparison
with the bounds in Antos et al. [2008] shows that we successfully leverage on
the specific setting of LSTD: 1) the space of functions is linear, and 2) the
distribution used to evaluate the performance is the stationary distribution
of the Markov chain induced by the policy, and obtain a better bound both
in terms of 1) estimation error, a rate of order O(1/n) instead of O(1/

√
n)

for the squared error, and 2) approximation error, the minimal distance be-
tween the value function V π and the space F instead of the inherent Bellman
errors of F . The extension in Theorem 8 to the case in which the samples
belong to a trajectory generated by a fast mixing Markov chain shows that
it is possible to achieve the same performance as in the case of stationary
β-mixing processes. Finally, the analysis of LSPI reveals the need for several
critical assumptions on the stationary distributions of the policies that are
greedy w.r.t. to the functions in the linear space F . These assumptions seem
unavoidable when an on-policy method is used at each iteration, and whether
they can be removed or relaxed in other settings is still an open question.
This paper extends and improves over the conference paper by Lazaric et al.
[2010c] in the following respects: 1) we report the full proofs and technical
tools for all the theoretical results, thus making the paper self-contained, 2)
we extend the LSTD results to LSPI showing how the approximation errors
are propagated through iterations.

The rest of the chapter is organized as follows. In Section 2.2, we set
the notation used throughout the paper. In Section 2.3, we introduce path-
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wise LSTD by a minor modification to the standard LSTD formulation in
order to guarantee the existence of at least one solution. In Section 2.4, we
introduce the Markov design setting for regression and report an empirical
bound for LSTD. In Section 2.5, we show how the Markov design bound of
Section 2.4 may be extended when the Markov chain admits a stationary
distribution. In Section 2.6, we analyze how the LSTD error is propagated
through the iterations of LSPI and derive a performance bound for the LSPI
algorithm. Finally in Section 2.7, we draw conclusions and discuss some
possible directions for future work.

2.2 Preliminaries

For a measurable space with domain X , we let S(X ) and B(X ;L) denote the
set of probability measures over X , and the space of bounded measurable
functions with domain X and bound 0 < L <∞, respectively. For a measure
ρ ∈ S(X ) and a measurable function f : X → R, we define the `2(ρ)-norm
of f , ||f ||ρ, and for a set of n points X1, . . . , Xn ∈ X , we define the empirical
norm ||f ||n as

||f ||2ρ =

∫
f(x)2ρ(dx) and ||f ||2n =

1

n

n∑

t=1

f(Xt)
2.

The supremum norm of f , ||f ||∞, is defined as ||f ||∞ = supx∈X |f(x)|.
We consider the standard RL framework [Bertsekas and Tsitsiklis, 1996,

Sutton and Barto, 1998] in which a learning agent interacts with a stochas-
tic environment and this interaction is modeled as a discrete-time discounted
Markov decision process (MDP). A discounted MDP is a tupleM = 〈X ,A, r, P, γ〉
where the state space X is a bounded closed subset of the s-dimensional Eu-
clidean space, A is a finite (|A| < ∞) action space, the reward function
r : X ×A → R is uniformly bounded by Rmax, the transition kernel P is such
that for all x ∈ X and a ∈ A, P (·|x, a) is a distribution over X , and γ ∈ (0, 1)
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is a discount factor. A deterministic policy π : X → A is a mapping from
states to actions. For a given policy π, the MDPM is reduced to a Markov
chain Mπ = 〈X , Rπ, P π, γ〉 with the reward function Rπ(x) = r

(
x, π(x)

)
,

transition kernel P π(·|x) = P
(
· |x, π(x)

)
, and stationary distribution ρπ (if it

admits one). The value function of a policy π, V π, is the unique fixed-point
of the Bellman operator T π : B(X ;Vmax = Rmax

1−γ )→ B(X ;Vmax) defined by

(T πV )(x) = Rπ(x) + γ

∫

X
P π(dy|x)V (y).

We also define the optimal value function V ∗ as the unique fixed-point of the
optimal Bellman operator T ∗ : B(X ;Vmax)→ B(X ;Vmax) defined by

(T ∗V )(x) = max
a∈A

[
r(x, a) + γ

∫

X
P (dy|x, a)V (y)

]
.

In the following sections, to simplify the notation, we remove the dependency
to the policy π and use R, P , V , ρ, and T instead of Rπ, P π, V π, ρπ, and
T π whenever the policy π is fixed and clear from the context.

To approximate the value function V , we use a linear approximation
architecture with parameters α ∈ Rd and basis functions ϕi ∈ B(X ;L), i =

1, . . . , d. We denote by φ : X → Rd, φ(·) =
(
ϕ1(·), . . . , ϕd(·)

)> the feature
vector, and by F the linear function space spanned by the basis functions
ϕi. Thus F =

{
fα | α ∈ Rd and fα(·) = φ(·)>α

}
.

Let (X1, . . . , Xn) be a sample path (trajectory) of size n generated by the
Markov chain Mπ. Let v ∈ Rn and r ∈ Rn be such that vt = V (Xt) and
rt = R(Xt) be the value vector and the reward vector, respectively. Also,
let Φ = [φ(X1)>; . . . ;φ(Xn)>] be the feature matrix defined at the states,
and Fn = {Φα, α ∈ Rd} ⊂ Rn be the corresponding vector space. We
denote by Π̂ : Rn → Fn the orthogonal projection onto Fn, defined as Π̂y =

arg minz∈Fn ||y − z||n, where ||y||2n = 1
n

∑n
t=1 y

2
t . Note that the orthogonal

projection Π̂y for any y ∈ Rn exists and is unique. Moreover, Π̂ is a non-
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Input: Linear space F = span{ϕi, 1 ≤ i ≤ d}, sample trajectory {(xt, rt)}nt=1

of the Markov chain

Build the feature matrix Φ = [φ(x1)>; . . . ;φ(xn)>]
Build the empirical transition matrix P̂ : P̂ij = I {j = i+ 1, j 6= n}
Build matrix A = Φ>(I − γP̂ )Φ
Build vector b = Φ>r
Return the pathwise LSTD solution α̂ = A+b

Figure 2.1: A pseudo-code for the batch pathwise LSTD algorithm.

expansive mapping w.r.t. the `2-norm: since the projection is orthogonal
and using the Cauchy-Schwarz inequality ||Π̂y− Π̂z||2n = 〈y−z, Π̂y− Π̂z〉n ≤
||y − z||n||Π̂y − Π̂z||n, and thus, we obtain ||Π̂y − Π̂z||n ≤ ||y − z||n.

2.3 Pathwise LSTD

Pathwise LSTD (Algorithm 4.3) is a version of LSTD that takes as input
a linear function space F and a single trajectory X1, . . . , Xn generated by
following the policy, and returns the fixed-point of the empirical operator
Π̂T̂ , where T̂ : Rn → Rn is the pathwise Bellman operator defined as

(T̂ y)t =

{
rt + γyt+1 1 ≤ t < n,

rt t = n.

Note that by defining the operator P̂ : Rn → Rn as (P̂ y)t = yt+1 for 1 ≤ t < n

and (P̂ y)n = 0, we have T̂ y = r+γP̂ y. The motivation for using the pathwise
Bellman operator is that it is γ-contraction in `2-norm, i.e., for any y, z ∈ Rn,
we have

||T̂ y − T̂ z||2n = ||γP̂ (y − z)||2n ≤ γ2||y − z||2n .

Since the orthogonal projection Π̂ is non-expansive w.r.t. `2-norm, from Ba-
nach fixed point theorem, there exists a unique fixed-point v̂ of the mapping
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Π̂T̂ , i.e., v̂ = Π̂T̂ v̂. Since v̂ is the unique fixed point of Π̂T̂ , the vector v̂−T̂ v̂
is perpendicular to the space Fn, and thus, Φ>(v̂ − T̂ v̂) = 0. By replacing v̂
with Φα, we obtain Φ>Φα = Φ>(r+γP̂Φα) and then Φ>(I−γP̂ )Φα = Φ>r.
Therefore, by setting A = Φ>(I−γP̂ )Φ and b = Φ>r, we recover a d×d sys-
tem of equations Aα = b similar to the one in the original LSTD algorithm.
Note that since the fixed point v̂ exists, this system always has at least one
solution. We call the solution with minimal norm, α̂ = A+b, where A+ is the
Moore-Penrose pseudo-inverse of A, the pathwise LSTD solution.1

Finally, notice that the algorithm reported in Figure 4.3 may be easily
extended to the incremental version of LSTD by incrementally building the
inverse of the matrix A as the samples are collected.

2.4 Markov Design Bound

In Section 2.3, we defined the pathwise Bellman operator with a slight mod-
ification in the definition of the empirical Bellman operator T̂ , and showed
that the operator Π̂T̂ always has a unique fixed point v̂. In this section,
we derive a bound for the performance of v̂ evaluated at the states of the
trajectory used by the pathwise LSTD algorithm. We first state the main
theorem and we discuss it in a number of remarks. The proofs are postponed
at the end of the section.

Theorem 3 Let X1, . . . , Xn be a trajectory generated by the Markov chain,
and v, v̂ ∈ Rn be the vectors whose components are the value function and
the pathwise LSTD solution at {Xt}nt=1, respectively. Then with probability
at least 1− δ (the probability is w.r.t. the random trajectory), we have

||v− v̂||n ≤
1√

1− γ2
||v−Π̂v||n+

1

1− γ

[
γVmaxL

√
d

νn

(√8 log(2d/δ)

n
+

1

n

)]
,

(2.1)
1Note that whenever the matrix A is invertible A+ = A−1.
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where the random variable νn is the smallest strictly-positive eigenvalue of
the sample-based Gram matrix 1

n
Φ>Φ.

Remark 1 Theorem 3 provides a bound on the prediction error of the
LSTD solution v̂ w.r.t. the true value function v on the trajectoryX1, . . . , Xn

used as a training set for pathwise-LSTD. The bound contains two main
terms. The first term ||v− Π̂v||n is the approximation error and it represents
the smallest possible error in approximating v with functions in F . This error
cannot be avoided. The second term, of order O(

√
d/n), is the estimation

error and it accounts for the error due to the use of a finite number of noisy
samples and it shows what is the influence of the different elements of the
problem (e.g., γ, d, n) on the prediction error and it provides insights about
how to tune some parameters. We first notice that the bound suggests that
the number of samples n should be significantly bigger than the number of
features d in order to achieve a small estimation error. Furthermore, the
bound can be used to estimate the number of samples needed to guarantee a
desired prediction error ε. In fact, apart from the approximation error, which
is unavoidable, we have that n = O(d/((1 − γ)2ε2)) samples are enough to
achieve an ε-accurate approximation of the true value function v. We also
remark that one might be tempted to reduce the dimensionality d, so as to
reduce the sample cost of the algorithm. Nonetheless, this is likely to reduce
the approximation capability of F and thus increase the approximation error.

Remark 2 When the eigenvalues of the sample-based Gram matrix 1
n
Φ>Φ

are all non-zero, Φ>Φ is invertible, and thus, Π̂ = Φ(Φ>Φ)−1Φ>. In this case,
the uniqueness of v̂ implies the uniqueness of α̂ since

v̂ = Φα =⇒ Φ>v̂ = Φ>Φα =⇒ α̂ = (Φ>Φ)−1Φ>v̂.

On the other hand, when the sample-based Gram matrix 1
n
Φ>Φ is not invert-

ible, the system Ax = b may have many solutions. Among all the possible

31



solutions, one may choose the one with minimal norm: α̂ = A+b.

Remark 3 Note that in case there exists a constant ν > 0, such that with
probability 1 − δ′ all the eigenvalues of the sample-based Gram matrix are
lower-bounded by ν, Eq. 2.1 (with νn replaced by ν) holds with probability
at least 1− (δ+ δ′) (see Section 2.5.1 for a case in which such constant ν can
be computed and it is related to the smallest eigenvalue of the model based
Gram matrix).

Remark 4 Theorem 3 provides a bound without any reference to the sta-
tionary distribution of the Markov chain. In fact, the bound of Eq. 2.1 holds
even when the chain does not admit a stationary distribution. For exam-
ple, consider a Markov chain on the real line where the transitions always
move the states to the right, i.e., p(Xt+1 ∈ dy|Xt = x) = 0 for y ≤ x. For
simplicity assume that the value function V is bounded and belongs to F .
This Markov chain is not recurrent, and thus, does not have a stationary
distribution. We also assume that the feature vectors φ(X1), . . . , φ(Xn) are
sufficiently independent, so that all the eigenvalues of 1

n
Φ>Φ are greater than

ν > 0. Then according to Theorem 3, pathwise LSTD is able to estimate the
value function at the samples at a rate O(1/

√
n). This may seem surprising

because at each state Xt the algorithm is only provided with a noisy esti-
mation of the expected value of the next state. However, the estimates are
unbiased conditioned on the current state, and we will see in the proof that
using a concentration inequality for martingale, pathwise LSTD is able to
learn a good estimate of the value function at a state Xt using noisy pieces
of information at other states that may be far away from Xt. In other words,
learning the value function at a given state does not require making an aver-
age over many samples close to that state. This implies that LSTD does not
require the Markov chain to possess a stationary distribution.
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Remark 5 The most critical part of the bound in Eq. 2.1 is the inverse
dependency on the smallest positive eigenvalue νn. A similar dependency
is shown in the LSTD analysis of Bertsekas [2007]. The main difference is
that here we have a more complete finite-sample analysis with an explicit
dependency on the number of samples and the other characteristic parame-
ters of the problem. Furthermore, if the Markov chain admits a stationary
distribution ρ, we are able to relate the existence of the LSTD solution to
the smallest eigenvalue of the Gram matrix defined according to ρ (see Sec-
tion 2.5.1).

In order to prove Theorem 3, we first introduce the regression setting with
Markov design and then state and prove a lemma about this model. Delattre
and Gaïffas [2011] recently analyzed a similar setting in the general case of
martingale incremental errors.

Definition 4 The model of regression with Markov design is a regres-
sion problem where the data (Xt, Yt)1≤t≤n are generated according to the fol-
lowing model: X1, . . . , Xn is a sample path generated by a Markov chain,
Yt = f(Xt) + ξt, where f is the target function, and the noise term ξt is a
random variable which is adapted to the filtration generated by X1, . . . , Xt+1

and is such that

|ξt| ≤ C and E[ξt|X1, . . . , Xt] = 0. (2.2)

The next lemma reports a risk bound for the Markov design setting which
is of independent interest.

Lemma 5 (Regression bound for the Markov design setting) We con-
sider the model of regression with Markov design in Definition 4. Let ŵ ∈ Fn
be the least-squares estimate of the (noisy) values Y = {Yt}nt=1, i.e., ŵ = Π̂Y ,
and w ∈ Fn be the least-squares estimate of the (noiseless) values Z = {Zt =
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Figure 2.2: This figure shows the components used in Lemma 5 and its proof
such as w, ŵ, ξ, and ξ̂, and the fact that 〈ξ̂, ξ〉n = ||ξ̂||2n.

f(Xt)}nt=1, i.e., w = Π̂Z. Then for any δ > 0, with probability at least 1− δ
(the probability is w.r.t. the random sample path X1, . . . , Xn), we have

||ŵ − w||n ≤ CL

√
2d log(2d/δ)

nνn
, (2.3)

where νn is the smallest strictly-positive eigenvalue of the sample-based Gram
matrix 1

n
Φ>Φ.

Proof [Lemma 5] We define ξ ∈ Rn to be the vector with components
ξt = Yt − Zt, and ξ̂ = ŵ − w = Π̂(Y − Z) = Π̂ξ. Since the projection is
orthogonal we have 〈ξ̂, ξ〉n = ||ξ̂||2n (see Figure 2.2). Since ξ̂ ∈ Fn, there exists
at least one α ∈ Rd such that ξ̂ = Φα, so by Cauchy-Schwarz inequality we
have

||ξ̂||2n = 〈ξ̂, ξ〉n =
1

n

d∑

i=1

αi

n∑

t=1

ξtϕi(Xt) ≤
1

n
||α||2

[
d∑

i=1

( n∑

t=1

ξtϕi(Xt)
)2
]1/2

.

(2.4)
Now among the vectors α such that ξ̂ = Φα, we define α̂ to be the one with

minimal `2-norm, i.e., α̂ = Φ+ξ̂. Let K denote the null-space of Φ, which is
also the null-space of 1

n
Φ>Φ. Then α̂ may be decomposed as α̂ = α̂K + α̂K⊥ ,
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where α̂K ∈ K and α̂K⊥ ∈ K⊥, and because the decomposition is orthogonal,
we have ||α̂||22 = ||α̂K ||22 + ||α̂K⊥||22. Since α̂ is of minimal norm among all the
vectors α such that ξ̂ = Φα, its component in K must be zero, thus α̂ ∈ K⊥.

The Gram matrix 1
n
Φ>Φ is positive-semidefinite, thus its eigenvectors

corresponding to zero eigenvalues generate K and the other eigenvectors
generate its orthogonal complement K⊥. Therefore, from the assumption
that the smallest strictly-positive eigenvalue of 1

n
Φ>Φ is νn, we deduce that

since α̂ ∈ K⊥,

||ξ̂||2n =
1

n
α̂>Φ>Φα̂ ≥ νnα̂

>α̂ = νn||α̂||22. (2.5)

By using the result of Eq. 2.5 in Eq. 2.4, we obtain

||ξ̂||n ≤
1

n
√
νn

[
d∑

i=1

( n∑

t=1

ξtϕi(Xt)
)2
]1/2

. (2.6)

Now, from the conditions on the noise in Eq. 2.2, we have that for any
i = 1, . . . , d

E[ξtϕi(Xt)|X1, . . . , Xt] = ϕi(Xt)E[ξt|X1, . . . , Xt] = 0,

and since ξtϕi(Xt) is adapted to the filtration generated by X1, . . . , Xt+1, it
is a martingale difference sequence w.r.t. that filtration. Thus one may apply
Azuma’s inequality to deduce that with probability 1− δ,

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2/δ) ,

where we used that |ξtϕi(Xt)| ≤ CL for any i and t. By a union bound over
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all features, we have that with probability 1− δ, for all 1 ≤ i ≤ d

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2d/δ) . (2.7)

The result follows by combining Eqs. 2.7 and 2.6.

Remark about Lemma 5 Note that this lemma is an extension of the
bound for regression with deterministic design in which the states, {Xt}nt=1,
are fixed and the noise terms, ξt’s, are independent. In deterministic de-
sign, usual concentration results provide high probability bounds similar to
Eq. 2.3 (see e.g., Hsu et al., 2012), but without the dependence on νn. An
open question is whether it is possible to remove νn in the bound for the
Markov design regression setting.

In the Markov design model considered in this lemma, states {Xt}nt=1 are
random variables generated according to the Markov chain and the noise
terms ξt may depend on the next state Xt+1 (but should be centered condi-
tioned on the past states X1, . . . , Xt). This lemma will be used in order to
prove Theorem 3, where we replace the target function f with the value func-
tion V , and the noise term ξt with the temporal difference r(Xt)+γV (Xt+1)−
V (Xt).

Proof [Theorem 3]

Step 1: Using the Pythagorean theorem and the triangle inequality, we have
(see Figure 2.3)

||v−v̂||2n = ||v−Π̂v||2n+||v̂−Π̂v||2n ≤ ||v−Π̂v||2n+
(
||v̂−Π̂T̂ v||n+||Π̂T̂ v−Π̂v||n

)2
.

(2.8)
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T̂ v̂
v

Fn

Π̂v

T̂ v

Π̂T̂ v

v̂ = Π̂T̂ v̂

Figure 2.3: This figure represents the space Rn, the linear vector subspace
Fn and some vectors used in the proof of Theorem 3.

From the γ-contraction of the operator Π̂T̂ and the fact that v̂ is its unique
fixed point, we obtain

||v̂ − Π̂T̂ v||n = ||Π̂T̂ v̂ − Π̂T̂ v||n ≤ γ||v̂ − v||n, (2.9)

Thus from Eq. 2.8 and 2.9, we have

||v − v̂||2n ≤ ||v − Π̂v||2n +
(
γ||v − v̂||n + ||Π̂T̂ v − Π̂v||n

)2
. (2.10)

Step 2: We now provide a high probability bound on ||Π̂T̂ v − Π̂v||n. This
is a consequence of Lemma 5 applied to the vectors Y = T̂ v and Z = v.
Since v is the value function at the points {Xt}nt=1, from the definition of the
pathwise Bellman operator, we have that for 1 ≤ t ≤ n− 1,

ξt = yt − vt = r(Xt) + γV (Xt+1)− V (Xt) = γ
[
V (Xt+1)−

∫
P (dy|Xt)V (y)

]
,

and ξn = yn−vn = −γ
∫
P (dy|Xn)V (y). Thus, Eq. 2.2 holds for 1 ≤ t ≤ n−1.

Here we may choose C = 2γVmax for a bound on ξt, 1 ≤ t ≤ n − 1, and
C = γVmax for a bound on ξn. Azuma’s inequality may be applied only to
the sequence of n−1 terms (the n-th term adds a contribution to the bound),
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thus instead of Eq. 2.7, we obtain

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ γVmaxL

(
2
√

2n log(2d/δ) + 1
)
,

with probability 1− δ, for all 1 ≤ i ≤ d. Combining with Eq. 2.6, we deduce
that with probability 1− δ, we have

||Π̂T̂ v − Π̂v||n ≤ γVmaxL

√
d

νn

(√8 log(2d/δ)

n
+

1

n

)
, (2.11)

where νn is the smallest strictly-positive eigenvalue of 1
n
Φ>Φ. The claim

follows by solving Eq. 2.10 for ||v − v̂||n and replacing ||Π̂T̂ v − Π̂v||n from
Eq. 2.11.

2.5 Generalization Bounds

As we pointed out earlier, Theorem 3 makes no assumption on the existence
of the stationary distribution of the Markov chain. This generality comes at
the cost that the performance is evaluated only at the states visited by the
Markov chain and no generalization on other states is possible. However in
many problems of interest, the Markov chain has a stationary distribution
ρ, and thus, the performance may be generalized to the whole state space
under the measure ρ. Moreover, if ρ exists, it is possible to derive a condition
for the existence of the pathwise LSTD solution depending on the number of
samples and the smallest eigenvalue of the Gram matrix defined according
to ρ ; G ∈ Rd×d , Gij =

∫
ϕi(x)ϕj(x)ρ(dx). In this section, we assume that

the Markov chainMπ is exponentially fast β-mixing with parameters β̄, b, κ,
i.e., its β-mixing coefficients satisfy βi ≤ β̄ exp(−biκ) (see Section 2.8.2 in
the appendix for a more detailed definition of β-mixing processes).
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Before stating the main results of this section, we introduce some nota-
tion. If ρ is the stationary distribution of the Markov chain, we define the
orthogonal projection operator Π : B(X ;Vmax)→ F as

ΠV = arg min
f∈F
||V − f ||ρ .

Furthermore, in the rest of the paper with a little abuse of notation, we
replace the empirical norm ||v||n defined on statesX1, . . . , Xn by ||V ||n, where
V ∈ B(X ;Vmax) is such that V (Xt) = vt. Finally, we should guarantee that
the pathwise LSTD solution V̂ is uniformly bounded on X . For this reason,
we move from F to the truncated space F̃ in which for any function f ∈ F ,
a truncated function f̃ is defined as

f̃(x) =

{
f(x) if |f(x)| ≤ Vmax ,

sgn
(
f(x)

)
Vmax otherwise.

(2.12)

In the next sections, we present conditions on the existence of the pathwise
LSTD solution and derive generalization bounds under different assumptions
on the way the samples X1, . . . , Xn are generated.

2.5.1 Uniqueness of Pathwise LSTD Solution

In this section, we assume that all the eigenvalues of G are strictly positive;
that is, we assume the existence of the model-based solution of LSTD, and
derive a condition to guarantee that the sample-based Gram matrix 1

n
Φ>Φ

is invertible. More specifically, we show that if a large enough number of
samples (depending on the smallest eigenvalue of G) is available, then the
smallest eigenvalue of 1

n
Φ>Φ is strictly positive with high probability.

Lemma 6 Let G be the Gram matrix defined according to the distribution ρ
and ω > 0 be its smallest eigenvalue. Let X1, . . . , Xn be a trajectory of length
n of a stationary β-mixing process with parameters β̄, b, κ and stationary
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distribution ρ. If the number of samples n satisfies the following condition

n >
288L2Λ(n, d, δ)

ω
max

{
Λ(n, d, δ)

b
, 1

}1/κ

, (2.13)

where2 Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ

+ log+
(
max{18(6e)2(d+1), β̄}

)
, then

with probability 1 − δ, the family of features (ϕ1, . . . , ϕd) is linearly inde-
pendent on the states X1, . . . , Xn (i.e., ||fα||n = 0 implies α = 0) and the
smallest eigenvalue νn of the sample-based Gram matrix 1

n
Φ>Φ satisfies

√
νn ≥

√
ν =

√
ω

2
− 6L

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

> 0 . (2.14)

Proof From the definition of the Gram matrix and the fact that ω > 0 is
its smallest eigenvalue, for any function fα ∈ F , we have

||fα||2ρ = ||φ>α||2ρ = α>Gα ≥ ωα>α = ω||α||2. (2.15)

Using the concentration inequality from Corollary 20 in the appendix and
the fact that the basis functions ϕi are bounded by L, thus fα is bounded by
L||α||, we have ||fα||ρ − 2||fα||n ≤ ε with probability 1− δ, where

ε = 12L‖α‖
√

2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

.

Thus we obtain
2||fα||n + ε ≥ √ω||α||. (2.16)

Let α be such that ||fα||n = 0, then if the number of samples n satisfies the
condition of Eq. 2.13, we may deduce from Eq. 2.16 and the definition of ε that
α = 0. This indicates that given Eq. 2.13, with probability 1− δ, the family
of features (ϕ1, . . . , ϕd) is linearly independent on the states X1, . . . , Xn, and

2We define log+ x = max{log x, 0}.
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thus, νn > 0. The inequality in Eq. 2.14 is obtained by choosing α to be the
eigenvector of 1

n
Φ>Φ corresponding to the smallest eigenvalue νn. For this

value of α, we have ||fα||n =
√
νn||α||. By using the definition of ε in Eq. 2.16

and reordering we obtain

2
√
νn||α||+ 12L||α||

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

≥ √ω||α|| ,

and the claim follows.

Remark 1 In order to make the condition on the number of samples and its
dependency on the critical parameters of the problem at hand more explicit,
let us consider the case of a stationary process with b = β = κ = 1. Then
the condition in Eq. 2.13 becomes (up to constant and logarithmic factors)

n ≥ Õ

(
288L2

ω

(
(d+ 1) log

n

δ

)2
)
.

As can be seen, the number of samples needed to have strictly positive eigen-
values in the sample-based Gram matrix has an inverse dependency on the
smallest eigenvalue of G. As a consequence, the more G is ill-conditioned
the more samples are needed for the sample-based Gram matrix 1

n
Φ>Φ to be

invertible.

2.5.2 Generalization Bounds for Stationary β-mixing Pro-

cesses

In this section, we show how Theorem 3 may be generalized to the entire
state space X when the Markov chain Mπ has a stationary distribution
ρ. In particular, we consider the case in which the samples X1, . . . , Xn are
obtained by following a single trajectory in the stationary regime ofMπ, i.e.,
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when we consider that X1 is drawn from ρ.

Theorem 7 Let X1, . . . , Xn be a path generated by a stationary β-mixing
process with parameters β̄, b, κ and stationary distribution ρ. Let ω > 0 be
the smallest eigenvalue of the Gram matrix defined according to ρ and n

satisfy the condition in Eq. 2.13. Let Ṽ be the truncation (using Eq. 2.12) of
the pathwise LSTD solution, then

||Ṽ−V ||ρ ≤
2√

1− γ2

(
2
√

2||V−ΠV ||ρ+ε2

)
+

2

1− γ

[
γVmaxL

√
d

ν

(√8 log (8d/δ)

n
+

1

n

)]
+ε1

(2.17)

with probability 1 − δ, where ν is a lower-bound on the eigenvalues of the
sample-based Gram matrix defined by Eq. 2.14,

ε1 = 24Vmax

√
2Λ1(n, d, δ/4)

n
max

{
Λ1(n, d, δ/4)

b
, 1

}1/κ

,

with Λ1(n, d, δ/4) = 2(d+ 1) log n+ log 4e
δ

+ log+
(
max{18(6e)2(d+1), β̄}

)
, and

ε2 = 12
(
Vmax + L||α∗||

)
√

2Λ2(n, δ/4)

n
max

{
Λ2(n, δ/4)

b
, 1

}1/κ

, (2.18)

with Λ2(n, δ/4) = log 4e
δ

+ log
(

max{6, nβ̄}
)
and α∗ is such that fα∗ = ΠV .

Proof This result is a consequence of applying generalization bounds to
both sides of Eq. 2.1 (Theorem 3). We first bound the left-hand side:

2||V̂ − V ||n ≥ 2||Ṽ − V ||n ≥ ||Ṽ − V ||ρ − ε1

with probability 1 − δ′. The first step follows from the definition of the
truncation operator, while the second step is a straightforward application
of Corollary 19 in the appendix.
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We now bound the term ||V − Π̂V ||n in Eq. 2.1:

||V − Π̂V ||n ≤ ||V − ΠV ||n ≤ 2
√

2||V − ΠV ||ρ + ε2

with probability 1 − δ′. The first step follows from the definition of the
operator Π̂. The second step is an application of the inequality of Corollary 21
in the appendix for the function V − ΠV .

From Theorem 3, the two generalization bounds, and the lower-bound on
ν, each one holding with probability 1 − δ′, the statement of the Theorem
(Eq. 2.17) holds with probability 1− δ by setting δ = 4δ′.

Remark 1 Rewriting the bound in terms of the approximation and esti-
mation error terms (up to constants and logarithmic factors), we obtain

||Ṽ − V ||ρ ≤ Õ

(
1√

1− γ2
||V − ΠV ||ρ +

1

1− γ
1√
n

)
.

While the first term (approximation error) only depends on the target func-
tion V and the function space F , the second term (estimation error) primar-
ily depends on the number of samples. Thus, when n goes to infinity, the
estimation error goes to zero and we obtain the same performance bound
(up to a 4

√
2 constant) as for the model-based case reported by Tsitsiklis

and Van Roy [1997]. The additional multiplicative constant 4
√

2 in front
of the approximation error is the standard cost to have the improved rate
bounds for the squared loss and linear spaces (see e.g., Györfi et al., 2002).
In fact, it is possible to derive a bounds with constant 1 but a worse rate
n−1/4 instead of n−1/2. The bound in Theorem 7 is more accurate whenever
the approximation error is small and few samples are available.
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Remark 2 Antos et al. [2008] reported a sample-based analysis for the
modified Bellman residual (MBR) minimization algorithm. They consider a
general setting in which the function space F is bounded and the performance
of the algorithm is evaluated according to an arbitrary measure µ (possibly
different than the stationary distribution of the Markov chain ρ). Since Antos
et al. [2008] showed that the MBR minimization algorithm is equivalent to
LSTD when F is a linearly parameterized space, it would be interesting to
compare the bound in Theorem 7 to the one in Lemma 11 of Antos et al.
[2008]. In Theorem 7, similar to Antos et al. [2008], samples are drawn
from a stationary β-mixing process, however, F is a linear space and ρ is
the stationary distribution of the Markov chain. It is interesting to note the
impact of these two differences in the final bound. The use of linear spaces has
a direct effect on the estimation error and leads to a better convergence rate
due to the use of improved functional concentration inequalities (Lemma 18
in the appendix). In fact, while in Antos et al. [2008] the estimation error for
the squared error is of order O(1/

√
n), here we achieve a faster convergence

rate of order O(1/n). Moreover, although Antos et al. [2008] showed that
the solution of MBR minimization coincides with the LSTD solution, its
sample-based analysis cannot be directly applied to LSTD. In fact, in Antos
et al. [2008] the function space F is assumed to be bounded, while general
linear spaces cannot be bounded. Whether the analysis of Antos et al. [2008]
may be extended to the truncated solution of LSTD is an open question that
requires further investigation.

2.5.3 Generalization Bounds for Markov Chains

The main assumption in the previous section is that the trajectoryX1, . . . , Xn

is generated by a stationary β-mixing process with stationary distribution ρ.
This is possible if we consider samples of a Markov chain during its stationary
regime, i.e., X1 ∼ ρ. However in practice, ρ is not known, and the first
sample X1 is usually drawn from a given initial distribution and the rest
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of the sequence is obtained by following the Markov chain from X1 on. As
a result, the sequence X1, . . . , Xn is no longer a realization of a stationary
β-mixing process. Nonetheless, under suitable conditions, after ñ < n steps,
the distribution of Xñ approaches the stationary distribution ρ. In fact,
according to the convergence theorem for fast-mixing Markov chains (see
e.g., Proposition 22 in the appendix), for any initial distribution λ ∈ S(X ),
we have ∣∣∣∣

∣∣∣∣
∫

X
λ(dx)P n(·|x)− ρ(·)

∣∣∣∣
∣∣∣∣
TV

≤ β̄ exp(−bnκ).

where || · ||TV is the total variation.3

We now derive a bound for a modification of pathwise LSTD in which
the first ñ samples (that are used to burn the chain) are discarded and the
remaining n− ñ samples are used as training samples for the algorithm.

Theorem 8 Let X1, . . . , Xn be a trajectory generated by a β-mixing Markov
chain with parameters β̄, b, κ and stationary distribution ρ. Let ñ (1 ≤ ñ < n)
be such that n − ñ satisfies the condition of Eq. 2.13, and Xñ+1, . . . , Xn

be the samples actually used by the algorithm. Let ω > 0 be the smallest
eigenvalue of the Gram matrix defined according to ρ and α∗ ∈ Rd be such
that fα∗ = ΠV . Let Ṽ be the truncation of the pathwise LSTD solution (using

Eq. 2.12), then by setting ñ =
(

1
b

log 2eβ̄n
δ

)1/κ

, with probability 1− δ, we have

||Ṽ−V ||ρ ≤
2√

1− γ2

(
2
√

2||V−ΠV ||ρ+ε2

)
+

2

1− γ

[
γVmaxL

√
d

ν

(√8 log (8d/δ)

n− ñ +
1

ñ

)]
+ε1,

(2.19)
where ε1 and ε2 are defined as in Theorem 7 (with n − ñ as the number of
training samples).

The proof of this result is a simple consequence of Lemma 26 in the
appendix applied to Theorem 7.

3We recall that for any two distributions µ1, µ2 ∈ S(X ), the total variation norm is
defined as ||µ1 − µ2||TV = supX⊆X |µ1(X)− µ2(X)|.
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Remark 1 The bound in Eq. 2.19 indicates that in the case of β-mixing
Markov chains, a similar performance to the one for stationary β-mixing
processes is obtained by discarding the first ñ = O(log n) samples.

2.6 Finite-Sample Analysis of LSPI

In the previous sections we studied the performance of pathwise-LSTD for
policy evaluation. Now we move to the analysis of the least-squares policy
iteration (LSPI) algorithm [Lagoudakis and Parr, 2003a] in which at each
iteration k samples are collected by following a single trajectory of the policy
under evaluation, πk, and LSTD is used to compute an approximation of
V πk . In particular, in the next section we report a performance bound by
comparing the value of the policy returned by the algorithm after K iter-
ations, V πK , and the optimal value function, V ∗, w.r.t. an arbitrary target
distribution σ. In order to achieve this bound we introduce assumptions on
the MDP and the linear space F . In Section 2.6.2 we show that in some
cases one of these assumptions does not hold and the performance of LSPI
can be arbitrarily bad.

2.6.1 Generalization Bound for LSPI

In this section, we provide a performance bound for the LSPI algorithm [Lagoudakis
and Parr, 2003a]. We first introduce the greedy policy operator G that maps
value functions to their corresponding greedy policies:

(
G(V )

)
(x) = arg max

a∈A

[
r(x, a) + γ

∫

X
P (dy|x, a)V (y)

]
.

We use G(F) to refer to the set of all the greedy policies w.r.t. the functions in
F . LSPI is a policy iteration algorithm that uses LSTD for policy evaluation
at each iteration. It starts with an arbitrary initial value function V−1 ∈ F̃
and its corresponding greedy policy π0. At the first iteration, it approximates
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V π0 using LSTD and returns a function V0 whose truncated version Ṽ0 is
used to build the policy π1 for the second iteration.4 More precisely, π1 is the
greedy policy w.r.t. Ṽ0, i.e., π1 = G(Ṽ0). So, at each iteration k of LSPI, a
function Vk−1 is computed as an approximation to V πk−1 , and then truncated,
Ṽk−1, and used to build the policy πk = G(Ṽk−1). Note that the MDP model
is needed in order to generate the greedy policy πk. To avoid the need for the
model, we could simply move from LSTD to LSTD-Q. The analysis of LSTD
in the previous sections may be easily extended to action-value function,
and thus, to LSTD-Q.5 For simplicity we use value function in the paper and
report the LSPI bound in terms of the distance to the optimal value function.

It is important to note that in general the measure used to evaluate the
final performance of LSPI, σ ∈ S(X ), might be different than the distribution
used to generate the samples at each iteration. Moreover, the LSTD perfor-
mance bounds of Section 2.5 require the samples to be collected by following
the policy under evaluation. Thus, we make the following assumption.

Assumption 1 (Lower-bounding distribution) There exists a distribution
µ ∈ S(X ) such that for any policy π that is greedy w.r.t. a function in the
truncated space F̃ , µ ≤ Cρπ, where C < ∞ is a constant and ρπ is the
stationary distribution of policy π.

Assumption 2 . (Discounted-average Concentrability of Future-State Dis-
tribution [Antos et al., 2008]) Given the target distribution σ ∈ S(X ) and an

4Unlike in the original formulation of LSPI, here we need to explicitly truncate the
function so as to prevent unbounded functions.

5We point out that moving to LSTD-Q requires the introduction of some exploration
to the current policy. In fact, in the on-policy setting, if the policy under evaluation is
deterministic, it does not provide any information about the value of actions a 6= π(·)
and the policy improvement step would always fail. Thus, we need to consider stochastic
policies where the current policy is perturbed by an ε > 0 randomization which guarantees
that any action has a non-zero probability to be selected in any state.
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arbitrary sequence of policies {πm}m≥1, let

cσ,µ = sup
π1,...,πm

∣∣∣∣∣

∣∣∣∣∣
d(µP π1 . . . P πm)

dσ

∣∣∣∣∣

∣∣∣∣∣.

We define the second-order discounted-average concentrability of future-state
distributions as

Cσ,µ = (1− γ)2
∑

m≥1

mγm−1cσ,µ(m)

and we assume that Cσ,µ <∞.

We also need to guarantee that with high probability a unique LSTD
solution exists at each iteration of the LSPI algorithm, thus, we make the
following assumption.

Assumption 3 (Linear independent features) Let µ ∈ S(X ) be the lower-
bounding distribution from Assumption 1. We assume that the features φ(·)
of the function space F are linearly independent w.r.t. µ. In this case, the
smallest eigenvalue ωµ of the Gram matrix Gµ ∈ Rd×d w.r.t. µ is strictly
positive.

Lemma 9 Under Assumption 3, at each iteration k of LSPI, the smallest
eigenvalue ωk of the Gram matrix Gk defined according to the stationary
distribution ρk = ρπk is strictly positive and ωk ≥ ωµ

C
.

Proof Similar to Lemma 6, for any function fα ∈ F , we have ||α|| ≤ ||fα||µ√
ωµ

.

Using Assumption 1, ||fα||µ ≤
√
C ||fα||ρk , and thus, ||α|| ≤

√
C
ωµ
||fα||ρk .

For the α that is the eigenvector of Gk corresponding to ρk, we have ||α|| =
||fα||ρk√

ωk
. For this value of α, we may write ||fα||ρk√

ωk
≤
√

C
ωµ
||fα||ρk , and thus,

ωk ≥ ωµ
C
, which guarantees that ωk is strictly positive, because ωµ is strictly

positive according to Assumption 3.
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Finally, we make the following assumption on the stationary β-mixing
processes corresponding to the stationary distributions of the policies en-
countered at the iterations of the LSPI algorithm.

Assumption 4 (Slower β-mixing process) We assume that there exists a
stationary β-mixing process with parameters β̄, b, κ, such that for any policy
π that is greedy w.r.t. a function in the truncated space F̃ , it is slower than the
stationary β-mixing process with stationary distribution ρπ (with parameters
β̄π, bπ, κπ). This means that β̄ is larger and b and κ are smaller than their
counterparts β̄π, bπ, and κπ (see Definition 16).

Now we may state the main theorem of this section.

Theorem 10 Let us assume that at each iteration k of the LSPI algorithm,
a path of size n is generated from the stationary β-mixing process with sta-
tionary distribution ρk−1 = ρπk−1. Let n satisfy the condition in Eq. 2.13 for
the slower β-mixing process defined in Assumption 4. Let V−1 ∈ F̃ be an ar-
bitrary initial value function, V0, . . . , VK−1 (Ṽ0, . . . , ṼK−1) be the sequence of
value functions (truncated value functions) generated by LSPI after K iter-
ations, and πK be the greedy policy w.r.t. the truncated value function ṼK−1.
Then under Assumptions 1- 4, with probability 1− δ (w.r.t. the random sam-
ples), we have

||V ∗ − V πK ||σ ≤
4γ

(1− γ)2

{
(1 + γ)

√
CCσ,µ

[
2√

1− γ2

(
2
√

2E0(F) + E2

)

+
2

1− γ
(
γVmaxL

√
d

νµ

(
√

8 log(8dK/δ)

n
+

1

n

))
+ E1

]
+ γ

K−1
2 Rmax

}
,

where

1. E0(F) = supπ∈G(F̃) inff∈F ||f − V π||ρπ ,

2. E1 is ε1 from Theorem 7 written for the slower β-mixing process defined
in Assumption 4,
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3. E2 is ε2 from Theorem 7 written for the slower β-mixing process defined
in Assumption 4 and ||α∗|| replaced by

√
C
ωµ

Rmax

1−γ , and

4. νµ is ν from Eq. 2.14 in which ω is replaced by ωµ defined in Assump-
tion 3, and the second term is written for the slower β-mixing process
defined in Assumption 4.

Remark 1 The previous theorem states a bound on the prediction error
when LSPI is stopped after a fixed number K of iterations. The structure
of the bound resembles the one in Antos et al. [2008]. Unlike policy eval-
uation, the approximation error E0(F) now depends on how well the space
F can approximate the target functions V π obtained in the policy improve-
ment step. While the estimation errors are mostly similar to those in policy
evaluation, an additional term of order γK is introduced. Finally, we notice
that the concentrability terms may significantly amplify the prediction error
(see also next remark). Farahmand et al. [2010] recently performed a refined
analysis of the propagation of the error in approximate policy iteration and
have interesting insights on the concentrability terms.

Remark 2 The most critical issue about Theorem 10 is the validity of As-
sumptions 1–4. The analysis of LSTD explicitly requires that the samples are
collected by following the policy under evaluation, πk, and the performance
is bounded according to its stationary distribution ρk. Since the performance
of LSPI is assessed w.r.t. a target distribution σ, we need each of the poli-
cies encountered through the LSPI process to have a stationary distribution
which does not differ too much from σ. Furthermore, since the policies are
random (at each iteration k the new policy πk is greedy w.r.t. the approx-
imation Ṽk−1 which is random because of the sampled trajectory), we need
to consider the distance of σ and the stationary distribution of any possible
policy generated as greedy w.r.t. a function in the truncated space F̃ , i.e.,
ρπ, π ∈ G(F̃). Thus in Assumption 1 we first assume the existence of a
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distribution µ lower-bounding any possible stationary distribution ρk. The
existence of µ and the value of the constant C depend on the MDP at hand.
In Section 2.6.2, we provide an example in which the constant C is infinite.
In this case, we show that the LSPI performance, when the samples at each
iteration are generated according to the stationary distribution of the pol-
icy under evaluation, can be arbitrarily bad. A natural way to relax this
assumption would be the use of off-policy LSTD in which the samples are
collected by following a behavior policy. Nonetheless, we are not aware of any
finite-sample analysis for such an algorithm. Another critical term appearing
in the bound of LSPI, inherited from Theorem 7, is the maximum of ||α∗k||
over the iterations, where α∗k is such that fα∗k = ΠρkV

πk . Each term ||α∗k|| can
be bounded whenever the features of the space F are linearly independent
according to the stationary distribution ρk. Since α∗k is a random variable,
the features {ϕi}di=1 of the space F should be carefully chosen so as to be
linearly independent w.r.t. the lower-bounding distribution µ.

We now prove a lemma that is used in the proof of Theorem 10.

Lemma 11 Let πk be the greedy policy w.r.t. Ṽk−1, i.e., πk = G(Ṽk−1) and
ρπk be the stationary distribution of the Markov chain induced by πk. We
have

||Ṽk − T πk Ṽk||ρπk ≤ (1 + γ)||Ṽk − V πk ||ρπk .

Proof [Lemma 11] We first show that Ṽk − T πk Ṽk = (I − γP πk)(Ṽk − V πk)

(I − γP πk)(Ṽk − V πk) = Ṽk − V πk − γP πk Ṽk + γP πkV πk = Ṽk − V πk − T πk Ṽk + T πkV πk

= Ṽk − V πk − T πk Ṽk + V πk = Ṽk − T πk Ṽk .

For any distribution σ ∈ S(X ), we may write

||Ṽk − T πk Ṽk||σ = ||(I − γP πk)(Ṽk − V πk)||σ ≤ ||I − γP πk ||σ||Ṽk − V πk ||σ
≤
(
1 + γ||P πk ||σ

)
||Ṽk − V πk ||σ
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If σ is the stationary distribution of πk, i.e., σ = ρπk , then ||P πk ||σ = 1 and
the claim follows. Note that this theorem holds not only for `2-norm, but for
any `p-norm, p ≥ 1.

Proof [Theorem 10] Rewriting Lemma 12 in Antos et al. [2008] for V instead
of Q, we obtain6

||V ∗−V πK ||σ ≤
4γ

(1− γ)2

(√
Cσ,µ max

0≤k<K
||Ṽk−T πk Ṽk||µ+γ

K−1
2 Rmax

)
. (2.20)

From Assumption 1, we know that || · ||µ ≤
√
C|| · ||ρk for any 0 ≤ k < K

and thus we may rewrite Eq. 2.20 as

||V ∗ − V πK ||σ ≤
4γ

(1− γ)2

(√
CCσ,µ max

0≤k<K
||Ṽk − T πk Ṽk||ρk + γ

K−1
2 Rmax

)
.

(2.21)
Using the result of Lemma 11, Eq. 2.21 may be rewritten as

||V ∗− V πK ||σ ≤
4γ

(1− γ)2

(
(1 + γ)

√
CCσ,µ max

0≤k<K
||Ṽk − V πk ||ρk + γ

K−1
2 Rmax

)
.

(2.22)
We can now use the result of Theorem 7 (which holds with probability δ/K)
and replace ||Ṽk − V πk ||ρk with its upper-bound. The next step would be
to apply the maximum over k to this upper-bound (the right hand side of
Eq. 2.17). There are four terms on the r.h.s. of Eq. 2.17 that depend on k
and in following we find a bound for each of them.

1. ||V πk − ΠρkV
πk ||ρk : This term can be upper-bounded by E0(F). This

6The slight difference between Eq. 2.20 and the bound in Lemma 12 of Antos et al.
[2008] is due to a small error in Eq. 26 of Antos et al. [2008]. It can be shown that the
r.h.s. of Eq. 26 in Antos et al. [2008] is not an upper-bound for the r.h.s. of its previous
equation. This can be easily fixed by redefining the coefficients αk while we make sure
that they remain positive and still sum to one. This modification causes two small changes
in the final bound: the constant 2 in front of the parenthesis becomes 4 and the power of
the γ in front of Rmax changes from K/p to (K − 1)/p.
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quantity, E0(F), measures the approximation power of the linear func-
tion space F .

2. ε1: This term only depends on the parameters β̄k, bk, κk of the station-
ary β-mixing process with stationary distribution ρk. Using Assump-
tion 4, this term can be upper-bounded by E1, which is basically ε1

written for the slower β-mixing process from Assumption 4.

3. ε2: This term depends on the following k-related terms.

• The term under the root-square in Eq. 2.18: This term depends
on the parameters β̄k, bk, κk of the stationary β-mixing process
with stationary distribution ρk. Similar to ε1, this term can be
upper-bounded by rewriting it for the slower β-mixing process
from Assumption 4.

• α∗k: The coefficient vector α∗k is such that fα∗k = ΠρkV
πk . This

term can be upper-bounded as follows:

||α∗k||
(a)
≤ ||fα∗ ||µ√

ωµ

(b)
≤
√
C

ωµ
||fα∗ ||ρk =

√
C

ωµ
||ΠρkV

πk ||ρk
(c)
≤
√
C

ωµ
||V πk ||ρk

≤
√
C

ωµ
||V πk ||∞ =

√
C

ωµ
Vmax =

√
C

ωµ

Rmax

1− γ .

(a) Similar to Eq. 2.15, this is true for any function fα ∈ F .
(b) This is an immediate application of Assumption 1.
(c) We use the fact that the orthogonal projection Πρk is non-
expansive for norm || · ||ρk .

4. νρk : This term depends on the following k-related terms.

• ωk: This is the smallest eigenvalue of the Gram matrix Gk defined
according to the distribution ρk. From Lemma 9, this term can
be lower-bounded by ωµ.
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Figure 2.4: (left) The MDP used in the example of Section 2.6.2 and (right)
the value function for policy πa in this MDP.

• The second term on the r.h.s. of Eq. 2.14: This term depends on
the parameters β̄k, bk, κk of the stationary β-mixing process with
stationary distribution ρk. Similar to ε1 and ε2, this term can
be upper-bounded by rewriting it for the slower β-mixing process
from Assumption 4.

By replacing the above lower and upper bounds in Eq. 2.14, we obtain
νµ which is a lower-bound for any νρk .

The claim follows by replacing the bounds for the above four terms in Eq. 2.22.

2.6.2 A Negative Result for LSPI

In the previous section we analyzed the performance of LSPI when at each
iteration the samples are obtained from a trajectory generated by following
the policy under evaluation. In order to bound the performance of LSPI in
Theorem 10, we made a strong assumption on all possible stationary distribu-
tions that can be obtained at the iterations of the algorithm. Assumption 1
states the existence of a lower-bounding distribution µ for the stationary
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distribution ρπ of any policy π ∈ G(F̃). If such a distribution does not
exist (C is infinite), the LSPI performance can no longer be bounded. In
other words, this result states that in some MDPs, even if at each iteration
the target function V πk is perfectly approximated by V̂k under ρk-norm, i.e.,
||V πk − V̂k||ρk = 0, the LSPI performance could be arbitrarily bad. In this
section we show a very simple MDP in which this is actually the case.

Let consider a finite MDP with X = {x1, x2, x3}, A = {a, b}, and the
reward function r and transition model p as illustrated in Figure 2.4. As it
can be noticed only two policies are available in this MDP: πa which takes
action a in state x1 and πb which takes action b in this state. It is easy to
verify that the stationary distribution ρπa assigns probabilities ε

1+ε
, 1

1+ε
, and

0 to x1, x2, and x3, while ρπb has probabilities ε
1+ε

, 0, and 1
1+ε

. Since ρπa and
ρπb assign a probability 0 to two different states, it is not possible to find a
finite constant C such that a distribution µ is lower-bounding both ρπa and
ρπb , thus, C =∞ and according to Theorem 10 LSPI may have an arbitrary
bad performance.

Let initialize LSPI with the suboptimal policy πa. The value function V πa

is shown in Figure 2.4 (note that the specific values depend on the choice
of ε and γ). Let F = {fα(x) = α1x + α2, α ∈ R2} be the space of lines in
dimension 1. Let α∗ be the solution to the following minimization problem
α∗ = arg infα∈R ||V πa − fα||2ρπa (the projection of V πa onto space F). Since
ρπa assigns a probability 0 to state x3, the fα∗ in Figure 2.4 has a zero loss,
i.e., ||V πa − fα∗ ||ρπa = 0. Nonetheless, while the greedy policy w.r.t. V πa

is the optimal policy πb, the policy improvement step w.r.t. fα∗ returns the
policy πa. As a result, although at each iteration the function space F may
accurately approximate the value function of the current policy π w.r.t. its
stationary distribution ρπ, LSPI never improves its performance and returns
πa instead of the optimal policy πb. By properly setting the rewards we could
make the performance of πa arbitrarily worse than πb.
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2.7 Conclusions

In this paper we presented a finite-sample analysis of the least-squares pol-
icy iteration (LSPI) algorithm [Lagoudakis and Parr, 2003a]. This paper
substantially extends the analysis in Lazaric et al. [2010c] by reporting all
the lemmas used to prove the performance bounds of LSTD in the case of
β-mixing and Markov chain processes and by analyzing how the performance
of LSTD is propagated through iterations in LSPI.

More in detail, we first studied a version of LSTD, called pathwise LSTD,
for policy evaluation. We considered a general setting where we do not make
any assumption on the Markov chain. We derived an empirical performance
bound that indicates how close the LSTD solution is to the value function at
the states along a trajectory generated by following the policy and used by
the algorithm. The bound is expressed in terms of the best possible approx-
imation of the value function in the selected linear space (approximation
error), and an estimation error which depends on the number of samples
and the smallest strictly-positive eigenvalue of the sample-based Gram ma-
trix. We then showed that when the Markov chain possesses a stationary
distribution, one may deduce generalization performance bounds using the
stationary distribution of the chain as the generalization measure. In par-
ticular, we considered two cases, where the sample trajectory is generated
by stationary and non-stationary β-mixing Markov chains, and derived the
corresponding bounds. Finally, we considered the whole policy iteration al-
gorithm (LSPI) and showed that under suitable conditions it is possible to
bound the error cumulated through the iterations.

The techniques used for the analysis of LSTD have also been recently em-
ployed for the development of the finite-sample analysis of a number of novel
algorithms such as LSTD with random projections [Ghavamzadeh et al.,
2010], LassoTD or LSTD with `1 regularization [Ghavamzadeh et al., 2011],
Classification-based Policy Iteration with a Critic [Gabillon et al., 2011b],
and temporal-difference learning with Dantzig selector [Geist et al., 2012].
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Technical issues. From a technical point of view there are two main open
issues.

1. Dependency on νn in the bound of Theorem 1. In Section 2.4 we intro-
duced the Markov design setting for regression in which the samples
are obtained by following a Markov chain and the noise is a zero-mean
martingale. By comparing the bound in Lemma 5 with the bounds for
least-squares regression in deterministic design (see e.g., Theorem 11.1
in Györfi et al., 2002), the main difference is the inverse dependency on
the eigenvalue νn of the empirical Gram matrix. It is not clear whether
this dependency is intrinsic in the process generating the samples or
whether it can be removed. Abbasi-Yadkori et al. [2011] recently devel-
oped improved Azuma’s inequalities for self-normalizing process (see
also e.g., de la Peña et al., 2007, de la Peña and Pang, 2009) which
suggest that the bound can be improved by removing the dependency
from νn and, thus, also from the L∞-norm L of the features.

2. The log n dependency in the generalization bounds. Chaining tech-
niques [Talagrand, 2005] can be successfully applied to remove the log n

dependency in Pollard’s inequalities for regression in bounded spaces.
An interesting question is whether similar techniques can be applied
to the refined analysis for squared losses and linear spaces (see e.g.,
Lemma 12) used in our theorems.

Extensions. Some extensions to the current work are possible.

1. LSTD(λ). A popular improvement to LSTD is the use of eligibility
traces, thus obtaining LSTD(λ). The extension of the results presented
in this paper to this setting does not seem to be straightforward since
the regression problem solved in LSTD(λ) does not match the Markov
design setting introduced in Definition 4. Hence, it is an open question
how a finite-sample analysis of LSTD(λ) could be derived.
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2. Off-policy LSTD. Yu and Bertsekas [2010] derived new bounds for pro-
jected linear equations substituting the 1√

1−γ2
term in front of the ap-

proximation error with a much sharper term depending on the spectral
radius of some matrices defined by the problem. An open question is
whether these new bounds can be effectively reused in the finite-sample
analysis derived in this paper, thus obtaining much sharper bounds.

3. Joint analysis of BRM and LSTD. Scherrer [2010] recently proposed a
unified view of Bellman residual minimization (BRM) [Schweitzer and
Seidmann, 1985, Baird, 1995] and temporal difference methods through
the notion of oblique projections. This suggests the possibility that the
finite-sample analysis of LSTD could be extended to BRM through this
unified view over the two methods.

2.8 Appendix

In this appendix we report a series of lemmata which are used throughout
the paper. In particular, we derive concentration of measures inequalities
for linear spaces and squared loss when samples are generated from different
stochastic processes. We start with the traditional setting of independent
and identically distributed samples in Section 2.8.1, then move to samples
generated from mixing processes in Section 2.8.2, and finally consider the
more general case of samples obtained by simulating a fast mixing Markov
chain starting from an arbitrary distribution in Section 2.8.3.

As a general rule, we use proposition to indicate results which are copied
from other sources, while lemma refers to completely or partially new results.

2.8.1 IID Samples

Although in the setting considered in the paper the samples are non-i.i.d., we
first report functional concentration inequalities for i.i.d. samples which will
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be later extended to stationary and non-stationary β-mixing processes. We
first recall the definition of expected and empirical `2-norms for a function
f : X → R

‖f‖2
Xn

1
=

1

n

n∑

t=1

|f(Xt)|2 , ‖f‖2 = E
[
|f(X1)|2

]
.

Lemma 12 Let F be a class of functions f : X → R bounded in absolute
value by B. Let Xn

1 = {X1, . . . , Xn} be a sequence of i.i.d. samples. For any
ε > 0

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]
≤ 3E

[
N2

(√
2

24
ε,F , X2n

1

)]
exp

(
− nε2

288B2

)
,

and

P
[
∃f ∈ F : ‖f‖Xn

1
− 2‖f‖ > ε

]
≤ 3E

[
N2

(√
2

24
ε,F , X2n

1

)]
exp

(
− nε2

288B2

)
,

where N2(ε,F , Xn
1 ) is the (L2, ε)-cover number of the function space F on

the samples Xn
1 (see Györfi et al. 2002).

Proof The first statement is proved in Györfi et al. [2002] and the second
one can be proved similarly.

Proposition 13 Let F be a class of linear functions f : X → R of dimen-
sion d and F̃ be the class of functions obtained by truncating functions f ∈ F
at a threshold B. Then for any sample Xn

1 = {X1, . . . , Xn} and ε > 0

N2

(
ε, F̃ , Xn

1

)
≤ 3

(
3e(2B)2

ε2

)2(d+1)

.
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Proof Using Theorem 9.4. in Györfi et al. [2002] and the fact that the
pseudo-dimension of F̃ is the same as F , we have

N2

(
ε, F̃ , Xn

1

)
≤ 3

(
2e(2B)2

ε2
log

3e(2B)2

ε2

)d+1

≤ 3

(
3e(2B)2

ε2

)2(d+1)

.

We now use Proposition 13 to invert the bound in Lemma 12 for truncated
linear spaces.

Corollary 14 Let F be a class of linear functions f : X → R of dimension
d, F̃ be the class of functions obtained by truncating functions f ∈ F at a
threshold B, and Xn

1 = {X1, . . . , Xn} be a sequence of i.i.d. samples. By
inverting the bound of Lemma 12, for any f̃ ∈ F̃ , we have

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ), ‖f̃‖Xn

1
− 2‖f̃‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n, d, δ)

n
, (2.23)

and Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ

+ log
(
9(12e)2(d+1)

)
.

Proof In order to prove the corollary it is sufficient to verify that the
following inequality holds for the ε defined in Eq. 2.23

3E

[
N2

(√
2

24
ε, F̃ , X2n

1

)]
exp

(
− nε2

288B2

)
≤ δ.

Using Proposition 13, we bound the first term as

E

[
N2

(√
2

24
ε, F̃ , X2n

1

)]
≤ 3

(
C1

ε2

)2(d+1)

,
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with C1 = 3456eB2. Next we notice that Λ(n, d, δ) ≥ 1 and thus ε ≥√
1/(nC2) with C2 = (288B2)−1. Using these bounds in the original inequal-

ity and some algebra we obtain

3E

[
N2

(√
2

24
ε, F̃ , X2n

1

)]
exp

(
− nε2

288B2

)
≤ 9

(
C1

ε2

)2(d+1)

exp
(
−nC2ε

2
)

≤ 9 (nC1C2)2(d+1) exp

(
−C2n

Λ(n, d, δ)

nC2

)

= 9 (nC1C2)2(d+1) n−2(d+1) δ

e

1

9(C1C2)2(d+1)

=
δ

e
≤ δ.

Non-functional versions of Corollary 14 can be simply obtained by remov-
ing the covering number from the statement of Lemma 12.

Corollary 15 Let f : X → R be a function bounded in absolute value by B
and Xn

1 = {X1, . . . , Xn} be a sequence of i.i.d. samples. Then

‖f‖ − 2‖f‖Xn
1
≤ ε(δ), ‖f‖Xn

1
− 2‖f‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2

n
log

3

δ
.

2.8.2 Stationary β-mixing Processes

We first introduce β-mixing stochastic processes and β-mixing coefficients.

Definition 16 Let {Xt}t≥1 be a stochastic process. Let Xj
i = {Xi, Xi+1, . . . , Xj}

and σ(Xj
i ) denote the sigma-algebra generated by Xj

i . The i-th β-mixing co-
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efficient of the stochastic process is defined by

βi = sup
t≥1

E

[
sup

B∈σ(X∞t+i)

|P(B|X t
1)− P(B)|

]
.

The process {Xt}t≥1 is said to be β-mixing if βi → 0 as i → ∞. In
particular, {Xt}t≥1 mixes at an exponential rate with parameters β̄, b, κ if
βi ≤ β̄ exp(−biκ). Finally, {Xt}t≥1 is strictly stationary if Xt ∼ ν for any
t > 0.

Let X1, . . . , Xn be a sequence of samples drawn from a stationary β-
mixing process with coefficients {βi}. We first introduce the blocking tech-
nique of Yu [1994]. Let us divide the sequence of samples into blocks of size
kn. For simplicity we assume n = 2mnkn with 2mn be the number of blocks.7

For any 1 ≤ j ≤ mn we define the set of indexes in an odd and even block
respectively as

Hj = {t : 2(j − 1)kn + 1 ≤ t ≤ (2j − 1)kn}, and

Ej = {t : (2j − 1)kn + 1 ≤ t ≤ (2j)kn}.

Let H = ∪mnj=1Hj and E = ∪mnj=1Ej be the set of all indexes in the odd and
even blocks, respectively. We use X(Hj) = {Xt : t ∈ Hj} and X(H) =

{Xt : t ∈ H}. We now introduce a ghost sample X ′ (the size of the ghost
sample X ′ is equal to the number of samples in each block kn) in each of the
odd blocks such that the joint distribution of X ′(Hj) is the same as X(Hj)

but independent from any other block. In the following, we also use another
ghost sample X ′′ independently generated from the same distribution as X ′.

Proposition 17 [Yu, 1994] Let X1, . . . , Xn be a sequence of samples drawn
from a stationary β-mixing process with coefficients {βi}. Let Q, Q′ be the
distributions of X(H) and X ′(H), respectively. For any measurable function

7The extension to the general case is straightforward.
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h : Xmnkn → R bounded by B

|EQ [h(X(H))]− EQ′ [h(X ′(H))]| ≤ Bmnβkn .

Before moving to the extension of Propsition 12 to β mixing processes,
we report this technical lemma.

Lemma 18 Let F be a class of functions f : X → R bounded in absolute
value by B and X1, . . . , Xn be a sequence of samples drawn from a stationary
β-mixing process with coefficients {βi}. For any ε > 0

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]
≤ 2δ(

√
2ε) + 2mnβkn , (2.24)

P
[
∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε
]
≤ 2δ(

√
2ε) + 2mnβkn , (2.25)

where

δ(ε) = 3E

[
N2

(√
2

24
ε,F , X ′(H) ∪X ′′(H)

)]
exp

(
− mnε

2

288B2

)
.

Proof Similar to Meir [2000], we first introduce F as the class of block
functions f̄ : X kn → R defined as

f̄
(
X(Hj)

)2
=

1

kn

∑

t∈Hj

f(Xt)
2.

It is interesting to notice that block functions have exactly the same norms
as the functions in F . In fact

‖f̄‖2
X(H) =

1

mn

mn∑

j=1

|f̄(X(Hj))|2 =
1

mn

mn∑

j=1

1

kn

∑

t∈Hj

|f(Xt)|2 = ‖f‖X(H),

(2.26)
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and

‖f̄‖2 = E
[
|f̄(X(H1))|2

]
=

1

kn

∑

t∈H1

E
[
|f(Xt)|2

]
= E

[
|f(X1)|2

]
= ‖f‖,

(2.27)
where in Eq. 2.27, we used the fact that the process is stationary. We now
focus on Eq. 2.24

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]

(a)
≤ P

[
∃f ∈ F : ‖f‖ −

(
‖f‖X(H) + ‖f‖X(E)

)
> ε
]

(b)
= P

[
∃f ∈ F :

1

2

(
‖f‖ − 2‖f‖X(H)

)
+

1

2

(
‖f‖ − 2‖f‖X(E)

)
> ε

]

(c)
≤ P

[
∃f ∈ F : ‖f‖ − 2‖f‖X(H) > 2ε

]
+ P

[
∃f ∈ F : ‖f‖ − 2‖f‖X(E) > 2ε

]

(d)
= 2P

[
∃f̄ ∈ F : ‖f̄‖ − 2‖f̄‖X(H) > 2ε

]

(e)
≤ 2

(
P
[
∃f̄ ∈ F : ‖f̄‖ − 2‖f̄‖X′(H) > 2ε

]
+mnβkn

)

(f)
≤ 2δ′(2ε) + 2mnβkn .

(a)We used the inequality
√
a+ b ≥ 1√

2
(
√
a+
√
b) to split the norm ‖f‖Xn

1
≥

1
2

(
‖f‖X(H) + ‖f‖X(E)

)
.

(b) Algebra.
(c) Split the probability.
(d) (1) Since the process is stationary the distribution over the even blocks
is the same as the distribution over the odd blocks. (2) From Eqs. 2.26
and 2.27.
(e) Using Proposition 17 with h equals to the indicator function of the event
inside the bracket, and the fact that the indicator function is bounded by
B = 1 and its expected value is equal to the probability of the event.
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(f) Lemma 12 on space F where

δ′(ε) = 3E

[
N2

(√
2

24
ε,F , {X ′(Hj), X

′′(Hj)}mnj=1

)]
exp

(
− mnε

2

288B2

)
,

where X ′′ is a ghost sample independently generated from the same distri-
bution as X ′. Now we relate the `2-covering number of F to the covering
number of F . Using the definition of f̄ we have

||f̄ − ḡ||2X(H) =
1

mn

mn∑

j=1

(
f̄
(
X(Hj)

)
− ḡ
(
X(Hj)

))2

=
1

mnkn

mn∑

j=1



(∑

t∈Hj

f(Xt)
2
) 1

2 −
( ∑

t′∈Hj

g(Xt′)
2
) 1

2




2

.

Taking the square and using the Cauchy-Schwarz inequality, each element of
the outer summation may be written as

∑

t∈Hj

(
f(Xt)

2 + g(Xt)
2
)
− 2
(∑

t∈Hj

f(Xt)
2
) 1

2
( ∑

t′∈Hj

g(Xt′)
2
) 1

2

≤
∑

t∈Hj

(
f(Xt)

2 + g(Xt)
2 − 2f(Xt)g(Xt)

)
=
∑

t∈Hj

(
f(Xt)− g(Xt)

)2
.

By taking the sum over all the odd blocks we obtain

||f̄ − ḡ||2X(H) ≤ ||f − g||2X(H) ,

which indicates thatN2

(
ε,F , {X ′(Hj), X

′′(Hj)}mnj=1

)
≤ N2

(
ε,F , X ′(H)∪X ′′(H)

)
.

Therefore, we have δ′(2ε) ≤ δ(2ε) ≤ δ(
√

2ε), which concludes the proof.

65



With a similar approach, we can prove Eq. 2.25

P
[
∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε
]

(a)
≤ P

[
∃f ∈ F :

√
2

2

(
‖f‖X(H) + ‖f‖X(E)

)
− 2
√

2‖f‖ > ε

]

(b)
= P

[
∃f ∈ F :

(√
2

2
‖f‖X(H) −

√
2‖f‖

)
+

(√
2

2
‖f‖X(E) −

√
2‖f‖

)
> ε

]

(c)
≤ P

[
∃f ∈ F : ‖f‖X(H) − 2‖f‖ >

√
2ε
]

+ P
[
∃f ∈ F : ‖f‖X(E) − 2‖f‖ >

√
2ε
]

(d)
= 2P

[
∃f̄ ∈ F : ‖f̄‖X(H) − 2‖f̄‖ >

√
2ε
]

(e)
≤ 2

(
P
[
∃f̄ ∈ F : ‖f̄‖X′(H) − 2‖f̄‖ >

√
2ε
]

+mnβkn

)

(f)
≤ 2δ′(

√
2ε) + 2mnβkn ≤ 2δ(

√
2ε) + 2mnβkn .

(a) We used the inequality
√
a+ b ≤ (

√
a+
√
b) to split the norm ‖f‖Xn

1
≤

√
2

2

(
‖f‖X(H) + ‖f‖X(E)

)
.

(b)-(f) use the same arguments as before.

Corollary 19 Let F be a class of linear functions f : X → R of dimension
d, F̃ be the class of functions obtained by truncating functions f ∈ F at a
threshold B, and Xn

1 = {X1, . . . , Xn} be a sequence of samples drawn from
a stationary exponentially fast β-mixing process with coefficients {βi}. By
inverting the bound of Lemma 18, for any f̃ ∈ F̃ we have

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ), ‖f̃‖Xn

1
− 2
√

2‖f̃‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

, (2.28)
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and Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ

+ log+
(
max{18(6e)2(d+1), β̄}

)
.

Proof In order to prove the statement, we need to verify that ε in Eq. 2.28
satisfies

δ′ = 6E
[
N2

(
1

12
ε, F̃ , X ′(H) ∪X ′′(H)

)]
exp

(
− mnε

2

144B2

)
+ 2mnβkn ≤ δ .

Using Proposition 13 the covering number can be bounded by

E
[
N2

(
1

12
ε, F̃ , X ′(H) ∪X ′′(H)

)]
≤ 3

(
1728eB2

ε2

)2(d+1)

.

By recalling the definition of the β-coefficients {βi} and kn ≥ 1 we have

2mnβkn ≤
n

kn
β̄ exp(−bkκn) ≤ nβ̄ exp(−bkκn) .

From the last two inequalities, mn = n/2kn, setting C1 = 1728eB2 and
D = 2(d+ 1) we obtain

δ′ ≤ 18

(
C1

ε2

)D
exp

(
− nε2

144B2

1

2kn

)
+ nβ̄ exp(−bkκn).

By equalizing the arguments of the two exponential we obtain the definition
of kn as

kn =

⌈(
nC2ε

2

b

) 1
κ+1

⌉
,

where C2 = (576B2)−1, which implies

max

{(
nC2ε

2

b

) 1
κ+1

, 1

}
≤ kn ≤ max

{(
2nC2ε

2

b

) 1
κ+1

, 1

}
.
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Thus we have the bound

1

2kn
≥ 1

4
min

{(
b

nC2ε2

) 1
κ+1

, 2

}
≥ 1

4
min

{(
b

nC2ε2

) 1
κ+1

, 1

}
.

Using the above inequalities, we may write δ′ as

δ′ ≤ 18

(
C1

ε2

)D
exp

(
−min

{
b

nC2ε2
, 1

} 1
κ+1

nC2ε
2

)
+nβ̄ exp

(
−bmax

{
nC2ε

2

b
, 1

} κ
κ+1

)
.

The objective now is to make the arguments of the two exponential equal.
For the second argument we have

bmax

{
nC2ε

2

b
, 1

} κ
κ+1

= bmax

{
nC2ε

2

b
, 1

}
min

{
b

nC2ε2
, 1

} 1
κ+1

≥ nC2ε
2 min

{
b

nC2ε2
, 1

} 1
κ+1

.

Thus

δ′ ≤
(

18

(
C1

ε2

)D
+ nβ̄

)
exp

(
−min

{
b

nC2ε2
, 1

} 1
κ+1

nC2ε
2

)
.

Now we plug in ε from Eq. 2.28. Using the fact that Λ ≥ 1, we know that
ε2 ≥ (nC2)−1, and thus

δ′ ≤
(

18 (nC1C2)D + nβ̄
)

exp (−Λ) .

Using the definition of Λ, we obtain

δ′ ≤
(

18 (nC1C2)D + nβ̄
)
n−D max{18(C1C2)D, β̄}−1 δ

e
≤ (1+n1−D)

δ

e
≤ (1+1)

δ

e
≤ δ ,

which concludes the proof.
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In order to understand better the shape of the estimation error, we con-
sider a simple β-mixing process with parameters β̄ = b = κ = 1. Eq. 2.28
reduces to

ε(δ) =

√
288B2Λ(n, d, δ)

n

2

,

with Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ

+ log
(
18(6e)2(d+1)

)
. It is interesting to

notice that the shape of the bound in this case resembles the structure of the
bound in Corollary 14 for i.i.d. samples. Finally, we report the non-functional
version of the previous corollary.

Corollary 20 Let F be a class of linear functions f : X → R of dimension
d such that its features ϕi : X → R are bounded in absolute value by L for
any i = 1, . . . , d and Xn

1 = {X1, . . . , Xn} be a sequence of samples drawn
from a stationary exponentially fast β-mixing process with coefficients {βi}.
For any f ∈ F we have

‖f‖ − 2‖f‖Xn
1
≤ ε(δ), ‖f‖Xn

1
− 2
√

2‖f‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12||α||L
√

2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

,

and Λ(n, d, δ) = 2(d+ 1) log n+ log e
δ

+ log+
(
max{18(6e)2(d+1), β̄}

)
.

Proof Let G =
{
gα = fα

L||α||

}
so that

||gα||∞ =
1

L||α|| ||fα||∞ ≤
1

L||α|| ||α|| sup
i
||ϕi(x)||∞ ≤ 1.

We can thus apply Lemma 18 to the bounded space G with B = 1. By using
a similar inversion as in Corollary 19, we thus obtain that with probability

69



1− δ, for any function gα ∈ G

‖gα‖ − 2‖gα‖Xn
1
≤ ε(δ), ‖gα‖Xn

1
− 2
√

2‖gα‖ ≤ ε(δ),

with

ε(δ) = 12

√
2Λ(n, d, δ)

n
max

{
Λ(n, d, δ)

b
, 1

}1/κ

.

Finally, we notice that ||gα|| = 1
L||α|| ||fα|| and ||gα||Xn

1
= 1

L||α|| ||fα||Xn
1
and the

statement follows.

Corollary 21 Let f : X → R be a linear function, f̃ be its truncation at a
threshold B, and Xn

1 = {X1, . . . , Xn} be a sequence of samples drawn from a
stationary exponentially fast β-mixing process with coefficients {βi}. Then

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ), ‖f̃‖Xn

1
− 2
√

2‖f̃‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n, δ)

n
max

{
Λ(n, δ)

b
, 1

}1/κ

,

Λ(n, δ) = log e
δ

+ log
(
max{6, nβ̄}

)
.

Proof The proof follows the same steps as in Corollary 19. We have the
following sequence of inequalities

δ′ ≤ 6 exp

(
−nC2ε

2

kn

)
+

n

kn
β̄ exp(−bkκn) ≤ (6 + nβ̄) exp(−Λ)

= (6 + nβ̄) max{6, nβ̄}−1 δ

e
≤ (1 + 1)

δ

e
≤ δ ,

where C2 = (576B2)−1.
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2.8.3 Markov Chains

We first review the conditions for the convergence of Markov chains (Theo-
rem 13.3.3. in Meyn and R 1993).

Proposition 22 Let M be an ergodic and aperiodic Markov chain defined
on X with stationary distribution ρ. If P (A|x) is the transition kernel ofM
with A ⊆ X and x ∈ X , then for any initial distribution λ

lim
i→∞

∣∣∣
∣∣∣
∫

X
λ(dx)P i(·|x)− ρ(·)

∣∣∣
∣∣∣
TV

= 0,

where || · ||TV is the total variation norm.

Definition 23 Let M be an ergodic and aperiodic Markov chain with sta-
tionary distribution ρ. M is mixing with an exponential rate with parameters
β̄, b, κ, if its β-mixing coefficients {βi} satisfy βi ≤ β̄ exp(−biκ). Then for
any initial distribution λ

∣∣∣
∣∣∣
∫

X
λ(dx)P i(·|x)− ρ(·)

∣∣∣
∣∣∣
TV
≤ β̄ exp(−biκ).

Lemma 24 LetM be an ergodic and aperiodic Markov chain with a station-
ary distribution ρ. Let X1, . . . , Xn be a sequence of samples drawn from the
stationary distribution of the Markov chain ρ and X ′1, . . . , X ′n be a sequence
of samples such that X ′1 ∼ ρ′ and X ′1<t≤n are generated by simulating M
from X ′1. Let η be an event defined on X n, then

|P [η(X1, . . . , Xn)]− P [η(X ′1, . . . , X
′
n)]| ≤ ‖ρ′ − ρ‖TV

Proof We prove one side of the inequality. Let Q be the conditional joint
distribution of (X1<t≤n|X1 = x) and Q′ be the conditional joint distribution
of (X ′1<t≤n|X ′1 = x). We first notice that Q is exactly the same as Q′. In fact,
the first sequence (X1<t≤n) is generated by drawing X1 from the stationary
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distribution ρ and then following the Markov chain. Similarly, the second
sequence (X ′1<t≤n) is obtained following the Markov chain from X ′1 ∼ ρ′. As a
result, the conditional distributions of the two sequences is exactly the same
and just depend on the Markov chain. As a result, we obtain the following
sequence of inequalities

P
[
η(X1, . . . , Xn)

]
= EX1,...,Xn [I {η(X1, . . . , Xn)}]

= EX1∼ρ [EX2,...,Xn [I {η(X1, X2 . . . , Xn)} |X1]]

= EX1∼ρ
[
EX′2,...,X′n [I {η(X1, X

′
2 . . . , X

′
n)} |X1]

]

(a)

≤ EX1∼ρ′
[
EX′2,...,X′n [I {η(X1, X

′
2 . . . , X

′
n)} |X1]

]
+ ‖ρ′ − ρ‖TV

(b)
= EX′1∼ρ′

[
EX′2,...,X′n [I {η(X ′1, X

′
2 . . . , X

′
n)} |X ′1]

]
+ ‖ρ′ − ρ‖TV

= P
[
η(X ′1, . . . , X

′
n)
]

+ ‖ρ′ − ρ‖TV .

Note that I {·} is the indicator function.
(a) simply follows from

EX∼ρ [f(X)]− EX∼ρ′ [f(X)] =

∫

X
f(x)ρ(dx)−

∫

X
f(x)ρ′(dx)

≤ ||f ||∞
∫

X

(
ρ(dx)− ρ′(dx)

)
≤ ||f ||∞||ρ− ρ′||TV .

(b) From the fact that X1 = X ′1 = x.

Lemma 25 Let F be a class of functions f : X → R bounded in absolute
value by B,M be a an ergodic and aperiodic Markov chain with a stationary
distribution ρ. Let M be mixing with an exponential rate with parameters
β̄, b, κ. Let λ be an initial distribution over X and X1, . . . , Xn be a sequence
of samples such that X1 ∼ λ and X1<t≤n obtained by followingM from X1.
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For any ε > 0,

P
[
∃f ∈ F : ‖f‖ − 2‖f‖Xn

1
> ε
]
≤ ‖λ− ρ‖TV + 2δ(

√
2ε) + 2mnβkn ,

and

P
[
∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε
]
≤ ‖λ− ρ‖TV + 2δ(

√
2ε) + 2mnβkn ,

where

δ(ε) = 3E

[
N2

(√
2

24
ε,F , X(H) ∪X ′(H)

)]
exp

(
− mnε

2

288B2

)
.

Proof The proof is an immediate consequence of Lemma 18 and Lemma 24
by defining η(X1, . . . , Xn) as

η(X1, . . . , Xn) = {∃f ∈ F : ‖f‖ − 2‖f‖Xn
1
> ε},

and
η(X1, . . . , Xn) = {∃f ∈ F : ‖f‖Xn

1
− 2
√

2‖f‖ > ε},

respectively.

Finally, we consider a special case in which out of the n total number of
samples, ñ (1 ≤ ñ < n) are used to “burn” the chain and n− ñ are actually
used as training samples.

Lemma 26 Let F be a class of linear functions f : X → R of dimension
d and F̃ be the class of functions obtained by truncating functions f ∈ F
at a threshold B. Let M be an ergodic and aperiodic Markov chain with a
stationary distribution ρ. Let M be mixing with an exponential rate with
parameters β̄, b, κ. Let µ be the initial distribution and X1, . . . , Xn be a se-
quence of samples such that X1 ∼ µ and X1<t≤n obtained by following M
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from X1. If the first ñ (1 ≤ ñ < n) samples are used to burn the chain and
n− ñ are actually used as training samples, by inverting Lemma 25, for any
f̃ ∈ F̃ , we obtain

‖f̃‖ − 2‖f̃‖Xn
1
≤ ε(δ), ‖f̃‖Xn

1
− 2
√

2‖f̃‖ ≤ ε(δ),

with probability 1− δ, where

ε(δ) = 12B

√
2Λ(n− ñ, d, δ)

(n− ñ)
max

{
Λ(n− ñ, d, δ)

b
, 1

}1/κ

,

and Λ(n, d, δ) = 2(d + 1) log n + log e
δ

+ log+
(
max{18(6e)2(d+1), β̄}

)
, and

ñ =
(

1
b

log 2eβ̄n
δ

)1/κ

.

Proof After ñ steps, the first sample used in the training set (Xñ+1) is drawn
from the distribution λ = µP ñ. Using Proposition 22 and Definition 23 we
have

||λ− ρ||TV ≤ β̄ exp(−bñκ). (2.29)

We first substitute the total variation in Lemma 25 with the bound in
Eq. 2.29, and then verify that ε in Eq. 26 satisfies the following inequality.

δ′ = ‖λ− ρ‖TV + 2δ(
√

2ε) + 2mn−ñβkn−ñ

≤ β̄ exp(−bñκ) + 18

(
C1

ε2

)D
exp

(
−(n− ñ)C2ε

2

kn−ñ

)
+ (n− ñ)β̄ exp(−bkκn−ñ)

≤
( 1

2n
+ 1 + (n− ñ)1−D)δ

e
≤ (

1

2
+ 1 + 1)

δ

e
≤ δ,

where C1 = 1728eB2 and C2 = (288B2)−1. The above inequality can be
verified by following the same steps as in Corollary 19 and by optimizing the
bound for ñ.
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Chapter 3

Analysis of Classification-based
Policy Iteration Algorithms [MGH2,
MGH5, MGH10, MGH11, MGH13, MGH14, MGH17]

We introduce a variant of the classification-based approach to policy iteration
which uses a cost-sensitive loss function weighting each classification mistake
by its actual regret, i.e., the difference between the action-value of the greedy
action and of the action chosen by the classifier. For this algorithm, we pro-
vide a full finite-sample analysis. Our results state a performance bound in
terms of the number of policy improvement steps, the number of rollouts
used in each iteration, the capacity of the considered policy space (classi-
fier), and a capacity measure which indicates how well the policy space can
approximate policies that are greedy w.r.t. any of its members. The analysis
reveals a tradeoff between the estimation and approximation errors in this
classification-based policy iteration setting. Furthermore it confirms the intu-
ition that classification-based policy iteration algorithms could be favorably
compared to value-based approaches when the policies can be approximated
more easily than their corresponding value functions. We also study the con-
sistency of the algorithm when there exists a sequence of policy spaces with
increasing capacity.
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3.1 Introduction

Policy iteration [Howard, 1960] is a method of computing an optimal policy
for any given Markov decision process (MDP). It is an iterative procedure
that discovers a deterministic optimal policy by generating a sequence of
monotonically improving policies. Each iteration k of this algorithm consists
of two phases: policy evaluation in which the action-value function Qπk of
the current policy πk is computed, and policy improvement in which the
new (improved) policy πk+1 is generated as the greedy policy w.r.t. Qπk ,
i.e., πk+1(x) = arg maxa∈AQ

πk(x, a). Unfortunately, in MDPs with large (or
continuous) state and action spaces, the policy evaluation problem cannot be
solved exactly and approximation techniques are required. In approximate
policy iteration (API), a function approximation scheme is usually employed
in the policy evaluation phase. The most common approach is to find a
good approximation of the value function of πk in a real-valued function
space (see e.g., Bradtke and Barto 1996, Lagoudakis and Parr 2003a). The
main drawbacks of this approach are: 1) the action-value function, Qπk , is
not known in advance and its high quality samples are often very expensive
to obtain, if this option is possible at all, 2) it is often difficult to find a
function space rich enough to represent the action-value function accurately,
and thus, careful hand-tuning is needed to achieve satisfactory results, 3) for
the success of policy iteration, it is not necessary to estimate Qπk accurately
at every state-action pair, what is important is to have an approximation of
the action-value function whose greedy policy has a performance similar to
the greedy policy w.r.t. the actual action-value function, and 4) this method
may not be the right choice in domains where good policies are easier to
represent and learn than the corresponding value functions.

To address the above issues, mainly 3 and 4,1 variants of API have been
proposed that replace the usual value function learning step (approximating

1The first drawback is shared by all reinforcement learning algorithms and the second
one is common to all practical applications of machine learning methods.
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the action-value function over the entire state-action space) with a learning
step in a policy space [Lagoudakis and Parr, 2003b, Fern et al., 2004]. The
main idea is to cast the policy improvement step as a classification problem.
The training set is generated using rollout estimates of Qπ over a finite num-
ber of states D = {xi}Ni=1, called the rollout set, and for any action a ∈ A.2
For each x ∈ D, if the estimated value Q̂π(x, a∗) is greater than the esti-
mated value of all other actions with high confidence, the state-action pair
(x, a∗) is added to the training set with a positive label. In this case, (x, a)

for the rest of the actions are labeled negative and added to the training set.
The policy improvement step thus reduces to solving a classification problem
to find a policy in a given hypothesis space that best predicts the greedy
action at every state. Although whether selecting a suitable policy space is
any easier than a value function space is highly debatable, we can argue that
the classification-based API methods can be advantageous in problems where
good policies are easier to represent and learn than their value functions.

The classification-based API algorithms can be viewed as a type of reduc-
tion from reinforcement learning (RL) to classification, i.e., solving a MDP by
generating and solving a series of classification problems. There have been
other proposals for reducing RL to classification. Langford and Zadrozny
[2005] provided a formal reduction from RL to classification, showing that
ε-accurate classification implies near optimal RL. This approach uses an op-
timistic variant of sparse sampling to generate h classification problems, one
for each horizon time step. The main limitation of this work is that it does not
provide a practical method for generating training examples for these classi-
fication problems. Bagnell et al. [2003] introduced an algorithm for learning
non-stationary policies in RL. For a specified horizon h, their approach learns
a sequence of h policies. At each iteration, all policies are fixed except for
one, which is optimized by forming a classification problem via policy roll-

2It is worth stressing that Qπ is estimated just on states in D and not over the entire
state-action space.
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out. Perhaps the closest approach to the classification-based API methods
proposed and analyzed in this paper is the group of algorithms that are in-
troduced and analyzed in Kakade and Langford [2002] and Kakade [2003]
under the name conservative policy iteration (CPI).3 The main algorithmic
difference between CPI and the classification-based API methods studied in
this paper is while the output of the classifier is directly assigned to the next
policy in our algorithms, CPI algorithms perform a more conservative policy
update in which the new policy πk+1 is a mixture distribution of the current
policy πk and the output of the classifier (policies might be stochastic). This
conservative update gives CPI two desirable properties: 1) it guarantees to
improve the policy at each iteration, i.e., the value function of πk+1 is larger
on average than the value function of πk, and 2) it has a stopping condition
based on the quality of the generated policy (it stops whenever it cannot
guarantee that the new policy has a better performance than the previous
one). These properties can potentially make CPI a very appealing API al-
gorithm, mainly because other API methods have no guarantee to generate
monotonically improving policies. This includes both value function based
API algorithms such as LSPI [Lagoudakis and Parr, 2003a] and classification-
based API methods. However, Ghavamzadeh and Lazaric [2012] showed that
CPI’s desirable properties do not come for free. The analysis of Ghavamzadeh
and Lazaric [2012] reveals that in order to achieve the same level of accuracy,
CPI requires more iterations, and thus, more samples than the classification-
based API algorithms proposed in this paper. This indicates that although
CPI’s conservative update allows it to have a monotonically improving be-
havior, it slows down the algorithm and increases its sample complexity.
Furthermore, CPI may converge to suboptimal policies whose performance
is not better than those returned by the algorithms studied in this paper.

Although the classification-based API algorithms have been successfully
3While in Kakade and Langford [2002] the algorithm is presented as a rollout value

function based approach, in the more detailed description and analysis of CPI found
in Kakade [2003], the algorithm is presented as a classification-based API method.
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applied to benchmark problems [Lagoudakis and Parr, 2003b, Fern et al.,
2004] and have been modified to become more computationally efficient [Dim-
itrakakis and Lagoudakis, 2008b], a full theoretical understanding of them
is still lacking. Fern et al. [2006] and Dimitrakakis and Lagoudakis [2008a]
provide a preliminary theoretical analysis of their algorithm. In particular,
they both bound the difference in performance at each iteration between the
learned policy and the true greedy policy. Their analysis is limited to one
step policy update (they do not show how the error in the policy update is
propagated through the iterations of the API algorithm) and either to finite
class of policies (in Fern et al., 2006) or to a specific architecture (a uniform
grid in Dimitrakakis and Lagoudakis, 2008a). Moreover, the bound reported
in Fern et al. [2006] depends inversely on the minimum Q-value gap between
a greedy and a sub-greedy action over the state space. In some classes of
MDPs this gap can be arbitrarily small so that the learned policy can be
arbitrarily worse than the greedy policy. In order to deal with this prob-
lem Dimitrakakis and Lagoudakis [2008a] assume the action-value functions
to be smooth and the probability of states with a small Q-value gap to be
small.

In this paper, we derive a full finite-sample analysis of a classification-
based API algorithm, called direct policy iteration (DPI). It is based on a
cost-sensitive loss function weighting each classification error by its actual
regret, i.e., the difference between the action-value of the greedy action and of
the action chosen by DPI. Using this loss, we are able to derive a performance
bound with no dependency on the minimum Q-value gap and no assumption
on the probability of states with small Q-value gap. Our analysis further
extends those in Fern et al. [2006] and Dimitrakakis and Lagoudakis [2008a]
by considering arbitrary policy spaces, and by showing how the error at
each step is propagated through the iterations of the API algorithm. We
also analyze the consistency of DPI when there exists a sequence of policy
spaces with increasing capacity. We first use a counterexample and show that
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DPI is not consistent in general, and then prove its consistency for the class
of Lipschitz MDPs. We conclude the paper with a discussion on different
theoretical and practical aspects of DPI.

The rest of the paper is organized as follows. In Section 3.2, we define
the basic concepts and set up the notation used in the paper. Section 3.3
introduces the general classification-based approach to policy iteration and
details the DPI algorithm. In Section 3.4, we provide a finite-sample analysis
for the DPI algorithm. The approximation error and the consistency of the
algorithm are discussed in Section 3.5. While all the main results are derived
in case of two actions, i.e., |A| = 2, in Section 3.6 we show how they can be
extended to the general case of multiple actions. In Section 3.7, we conclude
the paper and discuss the obtained results.

3.2 Preliminaries

In this section, we set the notation used throughout the paper. A discounted
Markov decision process (MDP)M is a tuple 〈X ,A, r, p, γ〉, where the state
space X is a bounded closed subset of a Euclidean space Rd, the set of actions
A is finite (|A| < ∞), the reward function r : X × A → R is uniformly
bounded by Rmax, the transition model p(·|x, a) is a distribution over X , and
γ ∈ (0, 1) is a discount factor. Let BV (X ;Vmax) and B(X ×A;Qmax) be the
space of Borel measurable value and action-value functions bounded by Vmax

and Qmax (Vmax = Qmax = Rmax

1−γ ), respectively. We also use Bπ(X ) to denote
the space of deterministic policies π : X → A. The value function of a policy
π, V π, is the unique fixed-point of the Bellman operator T π : BV (X ;Vmax)→
BV (X ;Vmax) defined by

(T πV )(x) = r
(
x, π(x)

)
+ γ

∫

X
p
(
dy|x, π(x)

)
V (y).
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The action-value function Qπ is defined as

Qπ(x, a) = r(x, a) + γ

∫

X
p(dy|x, a)V π(y).

Similarly, the optimal value function, V ∗, is the unique fixed-point of the
optimal Bellman operator T : BV (X ;Vmax)→ BV (X ;Vmax) defined as

(T V )(x) = max
a∈A

[
r(x, a) + γ

∫

X
p(dy|x, a)V (y)

]
,

and the optimal action-value function Q∗ is defined by

Q∗(x, a) = r(x, a) + γ

∫

X
p(dy|x, a)V ∗(y).

We say that a deterministic policy π ∈ Bπ(X ) is greedy w.r.t. an action-
value function Q, if π(x) ∈ arg maxa∈AQ(x, a),∀x ∈ X . Greedy policies are
important because any greedy policy w.r.t. Q∗ is optimal. We define the
greedy policy operator G : Bπ(X )→ Bπ(X ) as4

(Gπ)(x) = arg max
a∈A

Qπ(x, a). (3.1)

In the analysis of this paper, G plays a role similar to the one played by
the optimal Bellman operator, T , in the analysis of the fitted value iteration
algorithm (Munos and Szepesvári 2008, Section 5).

3.3 The DPI Algorithm

In this section, we outline the direct policy iteration (DPI) algorithm. DPI
shares the same structure as the algorithms in Lagoudakis and Parr [2003b]
and Fern et al. [2004]. Although it can benefit from improvements in 1)

4In Eq. 3.1, the tie among the actions maximizing Qπ(x, a) is broken in an arbitrary
but consistent manner.
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Input: policy space Π ⊆ Bπ(X ), state distribution ρ, number of rollout states
N , number of rollouts per state-action pair M
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set Dk = {xi}Ni=1, xi
iid∼ ρ

for all states xi ∈ Dk and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and return R
πk
j (xi, a) = r(xi, a) +∑H−1

t=1 γtr
(
xt, πk(xt)

)
, xt ∼ p

(
· |xt−1, πk(x

t−1)
)
and x1 ∼ p(·|xi, a)

end for
Q̂πk(xi, a) = 1

M

∑M
j=1R

πk
j (xi, a)

end for
πk+1 = arg minπ∈Π L̂πk(ρ̂;π) (classifier)

end for

Figure 3.1: The Direct Policy Iteration (DPI) algorithm.

selecting states for the rollout set D, 2) the criteria used to add a sample to
the training set, and 3) the rollout strategy, as discussed in Lagoudakis and
Parr [2003b] and Dimitrakakis and Lagoudakis [2008b], here we consider its
basic form in order to ease the analysis.

In DPI, at each iteration k, a new policy πk+1 is computed from πk, as the
best approximation of Gπk, by solving a cost-sensitive classification problem.
More formally, DPI is based on the following loss function.

Definition 27 The loss function at iteration k for a policy π is denoted by
`πk(·; π) and is defined as

`πk(x; π) = max
a∈A

Qπk(x, a)−Qπk
(
x, π(x)

)
, ∀x ∈ X .

Given a distribution ρ over X , we define the expected error as the expectation

82



of the loss function `πk(·; π) according to ρ,5

Lπk(ρ; π) =

∫

X
`πk(x; π)ρ(dx) =

∫

X

[
max
a∈A

Qπk(x, a)−Qπk
(
x, π(x)

)]
ρ(dx).

(3.2)

While in Lagoudakis and Parr [2003b] the goal is to minimize the number
of misclassifications, i.e., they use a 0/1 loss function, DPI learns a policy
which aims at minimizing the error Lπk . Similar to other classification-based
RL algorithms [Fern et al., 2004, Langford and Zadrozny, 2005, Li et al.,
2007], DPI does not focus on finding a uniformly accurate approximation of
the actions taken by the greedy policy, but rather on finding actions leading
to a similar performance. This is consistent with the final objective of policy
iteration, which is to obtain a policy with similar performance to an opti-
mal policy, and not necessarily one that takes actions similar to an optimal
policy.6

As illustrated in Figure 4.3, for each state xi ∈ Dk and for each action
a ∈ A, an estimate of the action-value function of the current policy is
computed through M independent rollouts. A H-horizon rollout of a policy
πk for a state-action pair (xi, a) is

Rπk(xi, a) = r(xi, a) +
H−1∑

t=1

γtr
(
xt, πk(x

t)
)
, (3.3)

where xt ∼ p
(
· |xt−1, πk(x

t−1)
)
and x1 ∼ p(·|xi, a). The action-value function

estimation is then obtained by averagingM independent rollouts {Rπk
j (xi, a)}1≤j≤M

as

Q̂πk(xi, a) =
1

M

M∑

j=1

Rπk
j (xi, a). (3.4)

5The expected error Lπk
(ρ;π) can be seen as the L1,ρ-norm of the loss function.

6We refer the readers to Li et al. [2007] for a simple example in which a good approxi-
mation (in terms of the number of mismatch in selecting actions) of the greedy policy has
a very poor performance w.r.t. it.
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Given the outcome of the rollouts, the empirical loss is defined as follows.

Definition 28 For any x ∈ Dk, the empirical loss function at iteration k

for a policy π is

̂̀
πk(x; π) = max

a∈A
Q̂πk(x, a)− Q̂πk

(
x, π(x)

)
,

where Q̂πk(x, a) is a H-horizon rollout estimation of the action-value of πk in
(x, a) as defined by Eqs. 4.15 and 3.4. Similar to Definition 27, the empirical
error is defined as the average over states in Dk of the empirical loss,7

L̂πk(ρ̂; π) =
1

N

n∑

t=1

[
max
a∈A

Q̂πk(xi, a)− Q̂πk
(
xi, π(xi)

)]
,

where ρ̂ is the empirical distribution induced by the samples in Dk.

Finally, DPI makes use of a classifier which returns a policy that mini-
mizes the empirical error L̂πk(ρ̂; π) over the policy space Π.

3.4 Finite-sample Analysis of DPI

In this section, we first provide a finite-sample analysis of the error incurred
at each iteration of DPI in Theorem 31, and then show how this error is
propagated through the iterations of the algorithm in Theorem 33. In the
analysis, we explicitly assume that the action space contains only two actions,
i.e., A = {a1, a2} and |A| = 2. We will discuss this assumption and other
theoretical and practical aspects of DPI in Section 3.6.

3.4.1 Error Bound at Each Iteration

Here we study the error incurred at each iteration k of the DPI algorithm.
Comparing the definition of the expected and empirical errors, we notice that

7Alternatively, the empirical error can be seen as the L1,ρ̂-norm of the empirical loss.
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there are three sources of error in the algorithm of Figure 4.3. The first one
depends on the use of a finite number of samples, i.e., N states in the rollout
set, to approximate the expectation w.r.t. the distribution ρ. The second
one is due to using rollouts with finite horizon H to approximate the action-
value function Qπk of the current policy πk. Finally, the third one depends
on the use of M rollouts to approximate the action-value function of the
current policy for any of the N states in the rollout set Dk and any action
in the action space A. Before stating our main result, i.e., Theorem 31, we
prove bounds for the first and third sources of errors in Lemmas 62 and 63,
and have a discussion on the effect of finite horizon rollouts to approximate
the action-value function. Lemma 62 shows that the difference between the
approximation obtained by averaging over the samples in the rollout set and
the true expectation can be controlled and reduces to zero as the number of
states in the rollout set N grows.

Lemma 29 Let Π be a policy space with finite VC-dimension h = V C(Π) <

∞ and n > 0 be the number of states in the rollout set Dk, drawn i.i.d. from
the state distribution ρ, then

PDk

[
sup
π∈Π

∣∣∣Lπk(ρ̂; π)− Lπk(ρ; π)
∣∣∣ > ε

]
≤ δ ,

with ε = 16Qmax

√
2
n

(
h log en

h
+ log 8

δ

)
.

Proof Let Fk be the space of the loss functions at iteration k induced by
the policies in Π, i.e., Fk = {`πk(·; π)| π ∈ Π}. Note that all the functions
`πk(·; π) ∈ Fk are uniformly bounded by 2Qmax. By Pollard’s inequality [Pol-
lard, 1984], for the bounded space Fk, we have

PDk

[
sup

`πk∈Fk

∣∣∣ 1

N

N∑

i=1

`πk(xi)−
∫
`πk(x)ρ(dx)

∣∣∣ > ε

]
≤ 8E

[
N1

( ε
8
,Fk, XN

1

)]
exp

(
− Nε2

128(2Qmax)2

)
.
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Note that at each iteration k, the policy πk is a random variable because
it is the minimizer of the empirical error L̂πk−1

(ρ̂; π). However, πk depends
only on the previous policies and rollout sets up to Dk−1, and is completely
independent of the samples in Dk, thus Pollard’s inequality applies. We now
show how the covering number of the space Fk can be directly related to
the VC-dimension of Π. First we rewrite the loss function as `πk(x; π) =

I {(Gπk)(x) 6= π(x)}∆πk(x), where

∆πk(x) = max
a∈A

Qπk(x, a)−min
a′∈A

Qπk(x, a′) (3.5)

is the gap between the two actions (i.e., the regret of choosing the wrong
action). Let Π̄ be an ε

2Qmax
-cover of Π using the empirical distance defined by

the number of different actions at the states {xi}1≤i≤N , then F̄k = {¯̀πk(·) =

`πk(·; π̄)|π̄ ∈ Π̄} is an ε-cover of Fk. In fact for any `πk ∈ Fk, there exist a
¯̀
πk ∈ F̄k such that

1

N

N∑

i=1

∣∣`πk(xi)− ¯̀
πk(xi)

∣∣ =
1

N

N∑

i=1

∣∣I {(Gπk)(xi) 6= π(xi)}∆πk(xi)

− I {(Gπk)(xi) 6= π̄(xi)}∆πk(xi)
∣∣

≤ 2Qmax
1

N

N∑

i=1

∣∣I {(Gπk)(xi) 6= π(xi)} − I {(Gπk)(xi) 6= π̄(xi)}
∣∣

= 2Qmax
1

N

N∑

i=1

I {(π(xi) 6= π̄(xi)} ≤ 2Qmax
ε

2Qmax
= ε.

Thus, we can now relate the covering number of Fk to the VC-dimension of
Π

N1

( ε
8
,Fk, XN

1

)
≤ N1

(
ε

16Qmax

,Π, XN
1

)
≤ SΠ(n) ≤

(en
h

)h
,

where SΠ(n) is the growth function of Π and the last inequality follows
from Sauer’s lemma. Since Lπk(ρ̂; π) = 1

N

∑N
i=1 `πk(xi; π) and Lπk(ρ; π) =∫

`πk(x; π)ρ(dx), the final statement is obtained by inverting the Pollard’s
bound.
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The second source of error in the algorithm of Figure 4.3 is due to the use
of finite horizon rollout estimates of the action-value function on the states in
the rollout set. We define the true action-value for a state-action pair (x, a)

with a finite horizon H as

Qπk
H (x, a) = E

[
r(x, a) +

H−1∑

t=1

γtr
(
xt, πk(x

t)
)
]
.

It is easy to see that the H-horizon rollout estimates are stochastic estima-
tions of Qπk

H (x, a) which in turn satisfy

|Qπk(x, a)−Qπk
H (x, a)| =

∣∣∣∣∣E
[
∞∑

t=H

γtr
(
xt, πk(x

t)
)
] ∣∣∣∣∣ ≤ γHQmax. (3.6)

In the proof of the main theorem we also need to bound the difference between
the action values (of the N states in the rollout set Dk and all the actions
in the action space A) estimated with M rollouts and their true values. We
thus report the following lemma to bound this source of error.

Lemma 30 Let Π be a policy space with finite VC-dimension h = V C(Π) <

∞ and x1, . . . , xN be an arbitrary sequence of states. In each state we simu-
late M independent truncated rollouts, then

P

[
sup
π∈Π

∣∣∣ 1
n

n∑

t=1

1

M

M∑

j=1

Rπk
j (xi, π(xi))−

1

n

n∑

t=1

Qπk
H (xi, π(xi))

∣∣∣ > ε

]
≤ δ ,

with ε = 8(1− γH)Qmax

√
2

MN

(
h log eMN

h
+ log 8

δ

)
.

Proof Similar to the proof of Lemma 62, we rely on the Pollard’s inequality
to prove the statement. We first introduce a sequence of random events ωij
such that for any i = 1, . . . , N the event ωij is independently drawn from
a suitable distribution νi. As a result, we may rewrite the rollout random
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variables as Rπk
j

(
xi, π(xi)

)
= Rπk(ωij; π) and the statement of the theorem

as

P

[
sup
π∈Π

∣∣∣ 1

MN

∑

i,j

Rπk(ωij; π)− 1

MN

∑

i,j

Eνi
[
Rπk(ωij; π)

]∣∣∣ > ε

]
≤ δ.

Let Hk be the space of the rollout functions induced by the policies in Π

at iteration k, i.e., Hk = {Rπk(·; π)| π ∈ Π}. Note that all the functions
Rπk(·; π) ∈ Hk are uniformly bounded by (1 − γH)Qmax. By Pollard’s in-
equality [Pollard, 1984], for the bounded space Hk, we have8

P

[
sup
π∈Π

∣∣∣ 1

MN

∑

i,j

Rπk(ωij; π)− 1

MN

∑

i,j

Eνi [Rπk(ωij; π)]
∣∣∣ > ε

]

≤ 8E
[
N1

( ε
8
,Hk, ω

MN
1

)]
exp

(
− MNε2

128(1− γH)2Q2
max

)
.

We now show how the covering number of the space Hk is related to the
VC-dimension of Π. Let Π̄ be an ε

2(1−γH)Qmax
-cover of Π using the empirical

distance defined at the states {xi}1≤i≤N , then H̄k = {R̄πk(·) = Rπk(·; π̄)|π̄ ∈
Π̄} is an ε-cover of Hk. In fact for any Rπk ∈ Hk, there exist a R̄πk ∈ H̄k

such that

1

MN

∑

i,j

∣∣Rπk(ωij)− R̄πk(ωij)
∣∣ =

1

MN

n∑

t=1

M∑

j=1

∣∣Rπk
j

(
xi, π(xi)

)
−Rπk

j

(
xi, π̄(xi)

)∣∣

≤ 2(1− γH)Qmax
1

N

N∑

i=1

I {π(xi) 6= π̄(xi)} ≤ 2(1− γH)Qmax
ε

2(1− γH)Qmax

= ε.

8Note that since here the samples are independent but not identically distributed, we
use a slight variation of the standard Pollard’s inequality. We refer the reader to the proof
of Pollard’s inequality (e.g., Pollard 1984 or Devroye et al. 1996) to see that the standard
proof can be easily extended to this case.
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We can now relate the covering number of Fk to the VC-dimension of Π

N1

( ε
8
,Fk, ωMN

1

)
≤ N1

(
ε

16(1− γH)Qmax

,Π, ωMN
1

)
≤ SΠ(MN) ≤

(
eMN

h

)h
,

where SΠ(n) is the growth function of Π and the last inequality follows from
Sauer’s lemma. The final statement is obtained by inverting the Pollard’s
bound.

We are now ready to prove the main result of this section. We show a
high probability bound on Lπk(ρ; πk+1), the expected error at each iteration
k of the DPI algorithm.

Theorem 31 Let Π be a policy space with finite VC-dimension h = V C(Π) <

∞ and ρ be a distribution over the state space X . Let n be the number of
states in Dk drawn i.i.d. from ρ at each iteration, H be the horizon of the
rollouts, and M be the number of rollouts per state-action pair used in the
estimation of the action-value functions. Let πk+1 = arg minπ∈Π L̂πk(ρ̂; π) be
the policy computed at the k’th iteration of DPI . Then, for any δ > 0, we
have

Lπk(ρ; πk+1) ≤ inf
π∈Π
Lπk(ρ; π) + 2(ε1 + ε2 + γHQmax), (3.7)

with probability 1− δ, where

ε1 = 16Qmax

√
2

n

(
h log

en

h
+ log

32

δ

)
and ε2 = 8(1−γH)Qmax

√
2

Mn

(
h log

eMN

h
+ log

32

δ

)
.

Remark 1 The bound in Eq. 3.7 can be decomposed into an approxima-
tion error infπ∈Π Lπk(ρ; π) and an estimation error consisting of three terms
ε1, ε2, and γHQmax. This is similar to generalization bounds in classification,
where the approximation error is the distance between the target function
(here the greedy policy w.r.t. πk) and the function space Π. The first estima-
tion term, ε1, grows with the capacity of Π, measured by its VC-dimension h,
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and decreases with the number of sampled states n. Thus in order to avoid
overfitting, we should have n � h. The second estimation term, ε2, comes
from the error in the estimation of the action-values due to the finite number
of rollouts M . It is important to note the nice rate of 1/

√
Mn instead of

1/
√
M . This is due to the fact that we do not need a uniformly good estima-

tion of the action-value function at all sampled states, but only an averaged
estimation of those values at the sampled points. An important consequence
of this is that the algorithm works perfectly well if we consider only M = 1

rollout per state-action. Therefore, given a fixed budget (number of rollouts
per iteration) and a fixed rollout horizon H, the best allocation of M and
n would be to choose M = 1 and sample as many states as possible, thus,
reducing the risk of overfitting. The third estimation term, γHQmax, is due
to the fact that we consider a finite horizon H for the rollouts. This term
decreases as the rollout horizon H grows.

Remark 2 In Remark 1, we considered the tradeoff between the number
of states, N , and the number of rollouts at each state-action pair, M , when a
finite budget (number of rollouts per iteration) is given. It is also interesting
to analyze the tradeoff with the rollout horizon, H, when the number of
interactions with the generative model is fixed to a maximum value S =

N ×M × H. The term γH decreases exponentially with a rate depending
on γ, thus, it easy to see that by setting M = 1, a rough optimization of
the bound in Theorem 31 leads to H = O( logS

log 1/γ
) and N = O(S/H). Similar

to the tradeoff between M and N , this suggests that most of the resources
should be allocated so as to have a large number of states, while the rollouts
may have a fairly short horizon. Nonetheless, it is clear from the value of
H that the discount factor is critical, and when it approaches 1 the horizon
increases correspondingly.
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Proof Let a∗(x) = arg maxa∈AQ
πk(x, a) be the greedy action in state x.9

We prove the following series of inequalities:

Lπk(ρ; πk+1)
(a)
≤ Lπk(ρ̂; πk+1) + ε1 w.p. 1− δ′

=
1

n

n∑

t=1

[
Qπk(xi, a

∗)−Qπk
(
xi, πk+1(xi)

)]
+ ε1

(b)
≤ 1

n

n∑

t=1

[
Qπk(xi, a

∗)−Qπk
H

(
xi, πk+1(xi)

)]
+ ε1 + γHQmax w.p. 1− δ′

(c)
≤ 1

n

n∑

t=1

[
Qπk(xi, a

∗)− Q̂πk
(
xi, πk+1(xi)

)]
+ ε1 + ε2 + γHQmax w.p. 1− 2δ′

(d)
≤ 1

n

n∑

t=1

[
Qπk(xi, a

∗)− Q̂πk
(
xi, π

∗(xi)
)]

+ ε1 + ε2 + γHQmax

(e)
≤ 1

n

n∑

t=1

[
Qπk(xi, a

∗)−Qπk
H

(
xi, π

∗(xi)
)]

+ ε1 + 2ε2 + γHQmax w.p. 1− 3δ′

(f)
≤ 1

n

n∑

t=1

[
Qπk(xi, a

∗)−Qπk
(
xi, π

∗(xi)
)]

+ ε1 + 2(ε2 + γHQmax) w.p. 1− 3δ′

= Lπk(ρ̂; π∗) + ε1 + 2(ε2 + γHQmax)

(g)
≤ Lπk(ρ; π∗) + 2(ε1 + ε2 + γHQmax) w.p. 1− 4δ′

= inf
π′∈Π
Lπk(ρ; π′) + 2(ε1 + ε2 + γHQmax).

The statement of the theorem is obtained by δ′ = δ/4.

(a) It is an immediate application of Lemma 62, bounding the difference
between Lπk(ρ; π) and Lπk(ρ̂; π) for any policy π ∈ Π.
(b) We use the inequality in Eq. 3.6.

9To simplify the notation, we remove the dependency of a∗ on states and use a∗ instead
of a∗(x) in the following.
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(c) Here we introduce the estimated action-value function Q̂πk by bounding

sup
π∈Π

[
1

n

n∑

t=1

Q̂πk
(
xi, π(xi)

)
− 1

n

n∑

t=1

Qπk
H

(
xi, π(xi)

)
]
,

the maximum over all the policies in the policy space10 of the difference be-
tween the true action-value function with horizon H and its rollout estimates
averaged over the states in the rollout set Dk = {xi}ni=1. We bound this term
using the result of Lemma 63.

(d) From the definition of πk+1 in the DPI algorithm (see Figure 4.3), we
have

πk+1 = arg min
π∈Π

L̂πk(ρ̂; π) = arg max
π∈Π

1

n

n∑

t=1

Q̂πk
(
xi, π(xi)

)
,

thus, − 1
n

∑n
t=1 Q̂

πk
(
xi, πk+1(xi)

)
can be maximized by replacing πk+1 with

any other policy, particularly with

π∗ = arg inf
π′∈Π

∫

X

(
max
a∈A

Qπk(x, a)−Qπk
(
x, π′(x)

))
ρ(dx).

(e)-(g) The final result follows by using Definition 32 and by applying the
Chernoff-Hoeffding inequality, the inequality of Eq. 3.6, and the regression
generalization bound.

3.4.2 Error Propagation

In this section, we first show how the expected error is propagated through
the iterations of DPI. We then analyze the error between the value function of

10The supremum over all the policies in the policy space Π is due to the fact that πk+1

is a random object, whose randomness comes from all the randomly generated samples at
the k’th iteration (i.e., the states in the rollout set and all the generated rollouts).
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the policy obtained by DPI after K iterations and the optimal value function
in µ-norm, where µ is a distribution used to assess the performance of the
algorithm which might be different from the sampling distribution ρ.

Before stating the main result, we define the inherent greedy error of a
policy space Π.

Definition 32 We define the inherent greedy error of a policy space Π ⊆
Bπ(X ) as

d(Π,GΠ) = sup
π∈Π

inf
π′∈Π
Lπ(ρ; π′).

In other words, the inherent greedy error is the worst expected error that
a error-minimizing policy π′ ∈ Π can incur in approximating the greedy
policy Gπ, π ∈ Π. This measures how well Π is able to approximate policies
that are greedy w.r.t. any policy in Π.

Let P π be the transition kernel for policy π, i.e., P π(dy|x) = p
(
dy|x, π(x)

)
.

It defines two related operators: a right-linear operator, P π·, which maps any
V ∈ BV (X ;Vmax) to (P πV )(x) =

∫
V (y)P π(dy|x), and a left-linear operator,

·P π, that returns (µP π)(dy) =
∫
P π(dy|x)µ(dx) for any distribution µ over

X .
From the definitions of `πk , T π, and T , we have `πk(πk+1) = T V πk −

T πk+1V πk . We deduce the following pointwise inequalities:

V πk − V πk+1 = T πkV πk − T πk+1V πk + T πk+1V πk − T πk+1V πk+1

≤ `πk(πk+1) + γP πk+1(V πk − V πk+1) ,

which gives us V πk−V πk+1 ≤ (I−γP πk+1)−1`πk(πk+1). Since T V πk ≥ T π∗V πk ,
we also have

V ∗ − V πk+1 = T V ∗ − T V πk + T V πk − T πk+1V πk + T πk+1V πk − T πk+1V πk+1

≤ γP ∗(V ∗ − V πk) + `πk(πk+1) + γP πk+1(V πk − V πk+1) ,
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which yields

V ∗ − V πk+1 ≤ γP ∗(V ∗ − V πk) +
[
γP πk+1(I − γP πk+1)−1 + I

]
`πk(πk+1)

= γP ∗(V ∗ − V πk) + (I − γP πk+1)−1`πk(πk+1) .

Finally, by defining the operator Ek = (I − γP πk+1)−1, which is well
defined since P πk+1 is a stochastic kernel and γ < 1, and by induction, we
obtain

V ∗ − V πK ≤ (γP ∗)K(V ∗ − V π0) +
K−1∑

k=0

(γP ∗)K−k−1Ek`πk(πk+1) . (3.8)

Eq. 3.8 shows how the error at each iteration k of DPI, `πk(πk+1), is propa-
gated through the iterations and appears in the final error of the algorithm:
V ∗ − V πK . Since we are interested in bounding the final error in µ-norm,
which might be different than the sampling distribution ρ, we use one of the
following assumptions:

Assumption 5 For any policy π and any non-negative integers s and t,
there exists a constant Cµ,ρ(s, t) < ∞ such that µ(P ∗)s(P π)t ≤ Cµ,ρ(s, t)ρ.
We define Cµ,ρ = (1− γ)2

∑∞
s=0

∑∞
t=0 γ

s+tCµ,ρ(s, t).

Assumption 6 For any x ∈ X and any a ∈ A, there exist a constant
Cρ <∞ such that p(·|x, a) ≤ Cρρ(·).

Note that concentrability coefficients similar to Cµ,ρ and Cρ were previ-
ously used in the Lp-analysis of fitted value iteration [Munos, 2007, Munos
and Szepesvári, 2008] and approximate policy iteration [Antos et al., 2008].11

We now state our main result.

Theorem 33 Let Π be a policy space with finite VC-dimension h and πK

be the policy generated by DPI after K iterations. Let M be the number of
11See also Farahmand et al. [2010] for a more refined analysis.
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rollouts per state-action and n be the number of samples drawn i.i.d. from a
distribution ρ over X at each iteration of DPI. Then, for any δ > 0, we have

||V ∗ − V πK ||1,µ ≤
Cµ,ρ

(1− γ)2

[
d(Π,GΠ) + 2(ε1 + ε2 + γHQmax)

]
+

2γKRmax

1− γ , (Assumption 1)

||V ∗ − V πK ||∞ ≤
Cρ

(1− γ)2

[
d(Π,GΠ) + 2(ε1 + ε2 + γHQmax)

]
+

2γKRmax

1− γ , (Assumption 2)

with probability 1− δ, where

ε1 = 16Qmax

√
2

n

(
h log

en

h
+ log

32K

δ

)
and ε2 = 8(1−γH)Qmax

√
2

Mn

(
h log

eMN

h
+ log

32K

δ

)
.

Proof We have Cµ,ρ ≤ Cρ for any µ. Thus, if the L1-bound holds for any
µ, choosing µ to be a Dirac at each state implies that the L∞-bound holds
as well. Hence, we only need to prove the L1-bound. By taking the absolute
value point-wise in Eq. 3.8 we obtain

|V ∗−V πK | ≤ (γP ∗)K |V ∗−V π0|+
K−1∑

k=0

(γP ∗)K−k−1(I − γP πk+1)−1|`πk(πk+1)| .

From the fact that |V ∗ − V π0| ≤ 2
1−γRmax1, and by integrating both sides

w.r.t. µ, and using Assumption 5 we have

||V ∗−V πK ||1,µ ≤
2γK

1− γRmax+
K−1∑

k=0

∞∑

t=0

γK−k−1γtCµ,ρ(K−k−1, t)Lπk(ρ; πk+1) .

From the definition of Cµ,ρ we obtain

||V ∗ − V πK ||1,µ ≤
2γK

1− γRmax +
Cµ,ρ

(1− γ)2
max

0≤k≤K
Lπk(ρ; πk+1) .

By bounding Lπk(ρ; πk+1) using Theorem 31 with a union bound argument
over the K iterations and the definition of the inherent greedy error the claim
follows.

95



3.5 Approximation Error

In Section 3.4.2, we analyzed how the expected error at each iteration k

of DPI, Lπk(ρ, πk+1), propagates through iterations. The final approxima-
tion error term in Theorem 33 is the inherent greedy error of Definition 32,
d(Π,GΠ), which depends on the MDP and the richness of the policy space
Π. The main question in this section is whether this approximation error can
be made small by increasing the capacity of the policy space Π. The answer
is not obvious because when the space of policies, Π, grows, it can better ap-
proximate any greedy policy w.r.t. a policy in Π, however, the number of such
greedy policies grows as well. We start our analysis of this approximation
error by introducing the notion of universal family of policy spaces.

Definition 34 A sequence of policy spaces {Πn} is a universal family of pol-
icy spaces, if there exists a sequence of real numbers {βn} with limn→∞ βn = 0,
such that for any n > 0, Πn is induced by a partition Pn = {Xi}Sni=1 over the
state space X (i.e., for each Sn-tuple (b1, . . . , bSn) with bi ∈ {0, 1}, there exists
a policy π ∈ Πn such that π(x) = bi for all x ∈ Xi and for all i ∈ {1, . . . , Sn})
such that

max
1≤i≤Sn

max
x,y∈Xi

||x− y|| ≤ βn.

This definition requires that for any n > 0, Πn be the space of policies
induced by a partition Pn, and the diameters of the elements Xi of this
partition shrink to zero as n goes to infinity. The main property of such a
sequence of spaces is that any fixed policy π can be approximated arbitrary
well by policies of Πn when n→∞. Although other definitions of universality
could be used, Definition 34 seems natural and it is satisfied by widely-used
classifiers such as k-nearest neighbor, uniform grid, and histogram.
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In the next section, we first show that the universality of a policy space
(Definition 34) does not guarantee that d(Πn,GΠn) converges to zero in a gen-
eral MDP. In particular, we present a MDP in which d(Πn,GΠn) is constant
(does not depend on n) even when {Πn} is a universal family of classifiers.
We then prove that in Lipschitz MDPs, d(Πn,GΠn) converges to zero for a
universal family of policy spaces.

3.5.1 Counterexample

In this section, we illustrate a simple example in which d(Πn,GΠn) does not
go to zero, even when {Πn} is a universal family of classifiers. We consider a
MDP with state space X = [0, 1], action space A = {0, 1}, and the following
transitions and rewards

xt+1 =





min(xt + 0.5, 1) if a = 1,

xt otherwise,
r(x, a) =





0 if x = 1,

R1 else if a = 1,

R0 otherwise,

where (1− γ2)R1 < R0 < R1 . (3.9)

We consider the policy space Πn of piecewise constant policies obtained
by uniformly partitioning the state space X into n intervals. This family of
policy spaces is universal. The inherent greedy error of Πn, d(Πn,GΠn), can
be decomposed into the sum of the expected errors at each interval

d(Πn,GΠn) = sup
π∈Πn

inf
π′∈Πn

n∑

i=1

L(i)
π (ρ; π′) ,

where L(i)
π (ρ; π′) is the same as Lπ(ρ; π′), only the integral is over the i’th

interval instead of the entire state space X . In the following we show that
for the MDP and the universal class of policies considered here, d(Πn,GΠn)

does not converge to zero as n grows.
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Figure 3.2: The policy used in the counterexample. It is one in odd and zero
in even intervals. Note that the number of intervals, n, is assumed to be odd.

Let n be odd and π ∈ Πn be one in odd and zero in even intervals (see
Figure 3.2). For any x > 0.5, the agent either stays in the same state forever
by taking action 0, or goes out of bound in one step by taking action 1. Thus,
given the assumption of Eq. 3.9, it can be shown that for any x belonging to
the intervals i ≥ n+1

2
(the interval containing 0.5 and above), (Gπ)(x) = 0.

This means that there exists a policy π′ ∈ Πn such that L(i)
π (ρ; π′) = 0 for all

the intervals i ≥ n+1
2
. However, Gπ does not remain constant in the intervals

i ≤ n−1
2
, and changes its value in the middle of the interval. Using Eq. 3.9,

we can show that

inf
π′∈Πn

n∑

i=1

L(i)
π (ρ; π′) = C

(
1 +

1

1− γ
)n− 1

8n
≥ C

16

(
1 +

1

1− γ
)
,

where C = min{(1−γ)(R1−R0), R0− (1−γ2)R1}. This means that for any
odd n, it is always possible to find a policy π ∈ Πn such that infπ′∈Πn Lπ(ρ; π′)

is lower bounded by a constant independent of n, thus limn→∞ d(Πn,GΠn) 6=
0.

3.5.2 Lipschitz MDPs

In this section, we prove that for Lipschitz MDPs, d(Πn,GΠn) goes to zero
when {Πn} is a universal family of classifiers. We start by defining a Lipschitz
MDP.

Definition 35 A MDP is Lipschitz if both its transition probability and re-
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ward functions are Lipschitz, i.e., ∀(B, x, x′, a) ∈ B(X )×X × X ×A

|r(x, a)− r(x′, a)| ≤ Lr||x− x′||,
|p(B|x, a)− p(B|x′, a)| ≤ Lp||x− x′||,

with Lr and Lp being the Lipschitz constants of the transitions and reward,
respectively.

An important property of Lipschitz MDPs is that for any function Q ∈
B(X ×A;Qmax), the function obtained by applying the Bellman operator T π
to Q(·, a), (T πQ)(·, a), is Lipschitz with constant L = (Lr + γQmaxLp), for
any action a ∈ A. As a result, the function Qπ(·, a), which is the unique
fixed point of the Bellman operator T π, is Lipschitz with constant L, for any
policy π ∈ Bπ(X ) and any action a ∈ A.

Theorem 36 Let M be a Lipschitz MDP with |A| = 2 and {Πn} be a uni-
versal family of policy spaces (Definition 34). Then limn→∞ d(Πn,GΠn) = 0.
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Proof

d(Πn,GΠn) = sup
π∈Πn

inf
π′∈Πn

∫

X
`π(x; π′)ρ(dx)

(a)
= sup

π∈Πn

inf
π′∈Πn

∫

X
I {(Gπ)(x) 6= π′(x)}∆π(x)ρ(dx)

(b)
= sup

π∈Πn

inf
π′∈Πn

Sn∑

i=1

∫

Xi
I {(Gπ)(x) 6= π′(x)}∆π(x)ρ(dx)

(c)
= sup

π∈Πn

Sn∑

i=1

min
a∈A

∫

Xi
I {(Gπ)(x) 6= a}∆π(x)ρ(dx)

(d)
≤ sup

π∈Πn

Sn∑

i=1

min
a∈A

∫

Xi
I {(Gπ)(x) 6= a} 2L inf

y:∆π(y)=0
||x− y|| ρ(dx)

(e)
≤ 2L sup

π∈Πn

Sn∑

i=1

min
a∈A

∫

Xi
I {(Gπ)(x) 6= a} βnρ(dx)

(f)
≤ 2Lβn

Sn∑

i=1

∫

Xi
ρ(dx) = 2Lβn.

(a) We rewrite Definition 32, where ∆π is the regret of choosing the wrong
action defined by Eq. 3.5.
(b) Since Πn contains piecewise constants policies induced by the partition
Pn = {Xi}, we split the integral as the sum over the regions.
(c) Since the policies in Πn can take any action in each possible region, the
policy π′ minimizing the loss is the one which takes the best action in each
region.
(d) Since M is Lipschitz, both maxa∈AQ

π(·, a) and mina′∈AQ
π(·, a′) are

Lipschitz, and thus, ∆π(·) is 2L-Lipschitz. Furthermore, ∆π is zero in all the
states in which the policy Gπ changes (see Figure 3.3). Thus, for any state
x the value ∆π(x) can be bounded using the Lipschitz property by taking y
as the closest state to x in which ∆π(y) = 0.
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(e) If Gπ is constant in a region Xi, the integral can be made zero by setting
a to the greedy action (thus making I {(Gπ)(x) 6= a} = 0 for any x ∈ Xi).
Otherwise if Gπ changes in a state y ∈ Xi, then ∆π(y) = 0 and we can replace
||x− y|| by the diameter of the region which is bounded by βn according to
the definition of the universal family of spaces (Definition 34).
(f) We simply take I {(Gπ)(x) 6= a} = 1 in each region.
The claim follows using the definition of the universal family of policy spaces.

a2

Qπ(x, a2)

Qπ(x, a1)

0 0.2 0.4 0.6 0.8 1

∆π(x)

a1

(Gπ)(x)

Figure 3.3: This figure is used as an illustrative example in the proof of
Theorem 36. It shows the action-value function of a Lipschitz MDP for a
policy π, Qπ(·, a1) and Qπ(·, a2) (top), the corresponding greedy policy Gπ
(middle), and the regret of selecting the wrong action, ∆π, (bottom).

Theorem 36 together with the counter-example in Section 3.5.1 show
that the assumption on the policy space is not enough to guarantee a small
approximation error and additional assumptions on the smoothness of the
MDP (e.g., Lipschitz condition) must be satisfied.

3.5.3 Consistency of DPI

A highly desirable property of any learning algorithm is consistency, i.e., as
the number of samples grows to infinity, the error of the algorithm converges
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to zero. It can be seen that as the number of samples N and the rollout
horizon H grow in Theorem 31, ε1 and ε2 become arbitrarily small, and thus,
the expected error at each iteration, Lπk(ρ; πk+1), is bounded by the inherent
greedy error d(Π,GΠ). We can conclude from the results of this section
that DPI is not consistent in general, but it is consistent for the class of
Lipschitz MDPs, when a universal family of policy spaces is used. However,
it is important to note that as we increase the index n also the capacity of
the policy space Π (its VC-dimension h) grows as well, and thus, when the
number of samples N goes to infinity, in order to still have a vanishing the
estimation error (ε1 in Theorem 31), we should guarantee that N grows faster
than V C(Π). We deduce the following result.

Corollary 37 LetM be a Lipschitz MDP with |A| = 2, {Πn} be a universal
family of policy spaces (Definition 34), h(n) = V C(Πn), and limn,N→∞

h(n)
N

=

0. Then DPI is consistent:

lim
n,N,H,K →∞

δ → 0

V πK = V ∗ , w.p. 1.

3.6 Extension to Multiple Actions

The analysis of Sections 3.4 and 3.5 are for the case that the action space
contains only two actions. In Section 3.6.1 we extend the previous theoretical
analysis to the general case of an action space with |A| > 2. While the
theoretical analysis is completely independent from the specific algorithm
used to solve the empirical error minimization problem (see DPI algorithm
of Figure 4.3), in Section 3.6.2 we discuss which algorithms could be employed
to solve this problem in the case of multiple actions.
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3.6.1 Theoretical Analysis

From the theoretical point of view, the extension of the previous results to
multiple actions is straightforward. The definitions of loss and error functions
do not change and we just need to use an alternative complexity measure for
multi-class classification. We rely on the following definitions from Ben-David
et al. [1995].

Definition 38 Let Π ⊆ Bπ(X ) be a set of deterministic policies and Ψ ={
ψ : A → {0, 1, ∗}

}
be a set of mappings from the action space to the set

{0, 1, ∗}. A finite set of N states XN = {xi}Ni=1 ⊆ X is Ψ-shattered by Π if
there exists a vector of mappings ψN =

(
ψ(1), . . . , ψ(N)

)> ∈ ΨN such that for
any vector v ∈ {0, 1}N , there exist a policy π ∈ Π such that ψ(i) ◦ π(xi) =

vi, 1 ≤ i ≤ N . The Ψ-dimension of Π is the maximal cardinality of a subset
of X , Ψ-shattered by Π.

Definition 39 Let Π ⊆ Bπ(X ) be a set of deterministic policies and Ψ ={
ψk,l : A → {0, 1, ∗}, 1 ≤ k 6= l ≤ L

}
be a set of possible mappings such that

ψk,l(a) =





1 if a = k,

0 if a = l,

∗ otherwise,

then the Natarajan dimension of Π, N-dim(Π), is the Ψ-dimension of Π.

By using a policy space with finite Natarajan dimension, we derive the
following corollary to Theorem 31.

Corollary 40 Let Π ⊆ Bπ(X ) be a policy space with finite Natarajan di-
mension h = N-dim(Π) <∞. Let ρ be a distribution over the state space X ,
n be the number of states in Dk drawn i.i.d. from ρ, and M be the number
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of rollouts per state-action pair used by DPI in the estimation of the action-
value functions. Let πk+1 = arg minπ∈Π L̂πk(ρ̂; π) be the policy computed at
the k’th iteration of DPI. Then, for any δ > 0, we have

Lπk(ρ; πk+1) ≤ inf
π∈Π
Lπk(ρ; π) + 2(ε1 + ε2 + γHQmax), (3.10)

with probability 1− δ, where

ε1 = 16Qmax

√
2

n

(
h log

|A|e(n+ 1)2

h
+ log

32

δ

)
and ε2 = (1−γH)Qmax

√
2

MN
log

4|A|
δ

.

Proof In order to prove this corollary we just need a minor change in
Lemma 62, which now becomes a concentration of measures inequality for a
space of multi-class classifiers Π with finite Natarajan dimension. By using
similar steps as in the proof of Lemma 62 and by recalling the Sauer’s lemma
for finite Natarajan dimension spaces [Ben-David et al., 1995], we obtain

P
[
sup
π∈Π

∣∣∣Lπk(ρ̂; π)− Lπk(ρ; π)
∣∣∣ > ε

]
≤ δ ,

with ε = 16Qmax

√
2
n

(
h log |A|e(n+1)2

h
+ log 8

δ

)
. The rest of the proof is ex-

actly the same as in Theorem 31.

Similarly, the consistency analysis in case of Lipschitz MDPs remains
mostly unaffected by the introduction of multiple actions.

Corollary 41 Let {Πn} be a universal family of policy spaces (Definition 34),
andM be a Lipschitz MDP (Definition 35). Then limn→∞ d(Πn,GΠn) = 0.

Proof The critical part in the proof is the definition of the gap function,
which now compares the performance of the greedy action to the performance
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of the action chosen by the policy π′:

∆π,π′(x) = max
a∈A

Qπ(x, a)−Qπ
(
x, π′(x)

)
.

Note that ∆π,π′(·) is no longer a Lipschitz function because it is a function
of x through the policy π′. However, ∆π,π′(x) is Lipschitz in each region
Xi, i = 1 . . . , Sn, because in each region Xi, by the definition of the policy
space, π′ is forced to be constant. Therefore, in a region Xi in which π′(x) =

a, ∀x ∈ Xi, ∆π,π′(x) may be written as

∆π,π′(x) = ∆π,a(x) = max
a′∈A

Qπ(x, a′)−Qπ(x, a).

The proof here is exactly the same as in Theorem 36 up to step (c), and
then we have

d(Πn,GΠn) = sup
π∈Πn

inf
π′∈Πn

∫

X
`π(x; π′)ρ(dx)

= sup
π∈Πn

inf
π′∈Πn

∫

X
I {(Gπ)(x) 6= π′(x)}∆π,π′(x)ρ(dx)

= sup
π∈Πn

inf
π′∈Πn

Sn∑

i=1

∫

Xi
I {(Gπ)(x) 6= π′(x)}∆π,π′(x)ρ(dx)

= sup
π∈Πn

Sn∑

i=1

min
a∈A

∫

Xi
I {(Gπ)(x) 6= a}∆π,a(x)ρ(dx)

≤ sup
π∈Πn

Sn∑

i=1

min
a∈A

∫

Xi
∆π,a(x)ρ(dx). (3.11)

If the greedy action does not change in a region Xi, i.e., ∀x ∈ Xi, (Gπ)(x) =

a′, for an action a′ ∈ A, then the minimizing policy π′ must select action a′

in Xi, and thus, the loss will be zero in Xi. Now let assume that the greedy
action changes at a state y ∈ Xi and the action bi ∈ arg maxa∈AQ

π(y, a). In
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this case, we have

min
a∈A

∫

Xi
∆π,a(x)ρ(dx) ≤

∫

Xi
∆π,bi(x)ρ(dx) ≤

∫

Xi

(
∆π,bi(y) + 2L‖x− y‖

)
ρ(dx),

since the function x 7→ ∆π,bi(x) is 2L-Lipschitz. Now since ∆π,bi(y) = 0, we
deduce from Eq. 3.11 that

d(Πn,GΠn) ≤ sup
π∈Πn

Sn∑

i=1

∫

Xi
2L||x−y||ρ(dx) ≤ sup

π∈Πn

Sn∑

i=1

∫

Xi
2Lβnρ(dx) = 2Lβn

The claim follows using the definition of the universal family of policy spaces.

3.6.2 Algorithmic Approaches

From an algorithmic point of view, the most critical part of the DPI algorithm
(Figure 4.3) is minimizing the empirical error, which in the case of |A| > 2

is in the following form:

min
π∈Π
L̂πk(ρ̂; π) = min

π∈Π

1

N

n∑

t=1

[
max
a∈A

Q̂πk(xi, a)− Q̂πk
(
xi, π(xi)

)]

= min
π∈Π

n∑

t=1

I
{

arg max
a∈A

Q̂πk(xi, a) 6= π(xi)

}[
max
a∈A

Q̂πk(xi, a)− Q̂πk
(
xi, π(xi)

)]
.

Unlike the two-action case, this is a multi-class cost-sensitive (MCCS) clas-
sification problem in which any classification mistake is weighted by a cost
function which depends on the action taken by policy π. It is important to
note that here the main difference with regression is that the goal is not to
have a good approximation of the action-value function over the entire state
and action space. The main objective is to have a good enough estimate of
the action-value function to find the greedy action in each state. A thorough
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discussion on the possible approaches to MCCS classification is out of the
scope of this paper, thus, we mention only a few recent methods that could
be suitable for our problem. The reduction methods proposed by Beygelz-
imer et al. [2005, 2009] reduce the MCCS classification problem to a series
of weighted binary classification problems (which can be in turn reduced to
binary classification as in Zadrozny et al. 2003), whose solutions can be com-
bined to obtain a multi-class classifier. The resulting multi-class classifier
is guaranteed to have a performance which is upper-bounded by the perfor-
mance of each binary classifier used in solving the weighted binary problems.
Another common approach to MCCS classification is to use boosting-based
methods (e.g., Lozano and Abe 2008, Busa-Fekete and Kégl 2010). Finally,
a recent regression-based approach has been proposed by Tu and Lin [2010],
which reduces the MCCS classification to a one-sided regression problem that
can be effectively solved by a variant of SVM.

3.7 Conclusions

In this paper, we presented a variant of the classification-based approach to
approximate policy iteration (API) called direct policy iteration (DPI) and
provided its finite-sample performance bounds. To the best of our knowl-
edge, this is the first complete finite-sample analysis for this class of API
algorithms. The main difference of DPI with the existing classification-based
API algorithms [Lagoudakis and Parr, 2003b, Fern et al., 2004] is in weight-
ing each classification error by its actual regret, i.e., the difference between
the action-values of the greedy action and the action selected by DPI. Our
results extend the only theoretical analysis of a classification-based API algo-
rithm [Fern et al., 2006] by 1) having a performance bound for the full API
algorithm instead of being limited to one step policy update, 2) considering
any policy space instead of finite class of policies, and 3) deriving a bound
which does not depend on the Q-advantage, i.e., the minimum Q-value gap

107



between a greedy and a sub-greedy action over the state space, which can
be arbitrarily small in a large class of MDPs. Note that the final bound
in Fern et al. [2006] depends inversely on the Q-advantage. We also analyzed
the consistency of DPI and showed that although it is not consistent in gen-
eral, it is consistent for the class of Lipschitz MDPs. This is similar to the
consistency results for fitted value iteration in Munos and Szepesvári [2008].

One of the main motivations of this work is to have a better understand-
ing of how the classification-based API methods can be compared with their
widely-used regression-based counterparts. It is interesting to note that the
bound of Eq. 3.7 shares the same structure as the error bounds for the API
algorithm in Antos et al. [2008] and the fitted value iteration in Munos and
Szepesvári [2008]. The error at each iteration can be decomposed into an
approximation error, which depends on the MDP and the richness of the
hypothesis space – the inherent greedy error in Eq. 3.7 and the inherent
Bellman error in Antos et al. [2008] and Munos and Szepesvári [2008], and
an estimation error which mainly depends on the number of samples and roll-
outs. The difference between the approximation error of the two approaches
depends on how well the hypothesis space fits the MDP at hand. This con-
firms the intuition that whenever the policies generated by policy iteration
are easier to represent and learn than their value functions, a classification-
based approach can be preferable to regression-based methods.

The performance of DPI is directly related to 1) the quality of the classi-
fier (the richness of the selected policy space), 2) the accuracy of the gener-
ated training set, which in turn depends on the accuracy of the action-value
function estimates, and finally 3) the sampling distribution used to gener-
ate the rollout set. Possible directions for future work are related to these
three issues. In the following, we mention several directions at which we have
recently made some progress:

• Cost-sensitive Multiclass Classification Problem: As discussed
in Section 3.6.2 the main issue in the implementation of DPI is the
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solution of the multi-class cost-sensitive classification problem at each
iteration. Although some existing algorithms might be applied to this
problem, further investigation is needed to identify which one is better
suited for DPI. In particular, the main challenge is to solve the classi-
fication problem without first solving a regression problem on the cost
function which would eliminate the main advantage of classification-
based approaches (i.e., no approximation of the action-value function
over the whole state-action space). On this front, we have studied
cost-sensitive multiclass classification and derived risk bounds for this
problem [Ávila Pires et al., 2013], which in turn will allow us to derive
bounds for DPI that take into account the classification error. Note
that in this chapter, we did not discuss about the implementation of
the classifier. We assumed that we are capable of finding the policy
that minimizes the empirical error L̂πk(ρ̂, π) in the policy space defined
by the classifier. A commonly used approach to multiclass classifica-
tion is to replace the 0/1 loss with a convex surrogate so as to make
empirical risk minimization computationally tractable. Previous work
has uncovered sufficient and necessary conditions for the consistency
of the resulting procedures. In our work [Ávila Pires et al., 2013], we
strengthen these results by showing how the 0/1 excess loss of a pre-
dictor can be upper bounded as a function of the excess loss of the
predictor measured using the convex surrogate. The bound is devel-
oped for the case of cost-sensitive multiclass classification and a convex
surrogate loss that goes back to the work of Lee et al. [2004].

• Bias-Variance Tradeoff in Rollout Estimates: The rollout es-
timates of the action-value functions are unbiased (if the rollouts are
long enough), but may suffer from high variance (the variance increases
with the length of the rollout). This raises an important question that:
Given a fixed budget of samples, how could we generate accurate action-
value function estimates in DPI? We have addressed this question by
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proposing several different methods with theoretical guarantees, that
use a value function approximator that together with the outcome of
the rollout return an estimate of the action-value function [Gabillon
et al., 2011b, Scherrer et al., 2012, 2013, Farahmand et al., 2013b]. To
be more precise, this value function approximator returns an estimate
of the value function at the state at which we truncate the rollout.
The idea is similar to the actor-critic algorithms that are are among
the earliest studied in RL [Barto et al., 1983, Sutton, 1984]. We will
discuss one of these methods, called classification-based modified pol-
icy iteration (CBMPI), in more details in Chapter 4. We obtained the
best results in the literature in the game of Tetris using this class of
algorithms [Gabillon et al., 2013].

• Rollout Allocation Strategy: In DPI, the rollouts are performed
the same number of times for each state in the rollout set and each
action in A. It is natural to think that it would be more difficult to
detect the greedy action at some states than the others, and thus, uni-
form allocation could be wasteful. Basically, the question is: Given the
rollout set, how shall we allocate a fixed budget of samples (or rollouts)
to these states and the actions in the action space in order to have
an accurate training set for the classifier? This question was studied
by Dimitrakakis and Lagoudakis [2008b] and some preliminary results
were reported. We started a more fundamental approach to this ques-
tion by first formulating it as a spacial class of bandit problems, called
pure exploration [Gabillon et al., 2010]. This class of bandit problems
is directly related to the important problem of adaptive resource alloca-
tion that has application in a number of different fields from marketing
and advertisement to clinical studies and communication networks. We
then developed several algorithms with theoretical guarantees for this
class of bandit problems [Gabillon et al., 2011a, 2012]. Below is a brief
description of our contribution on this topic.
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The accuracy of the training set depends on how successful we are in
detecting the greedy action at the states in the rollout set. Note that
every time we generate a rollout at a state-action pair, we observe a
random sample from a distribution, whose mean is the action-value
function at that state-action pair. So, at each state of the rollout set,
it is natural to think that we have a number of unknown distributions
(equal to the number of possible actions at that state), and the goal
is to sample them in a way to detect the one with the highest mean
as fast as possible. This problem has been studied in the multi-armed
bandit framework under the name best arm identification [Maron and
Moore, 1993, Bubeck et al., 2009], and several efficient algorithms have
been designed for it [Audibert et al., 2010]. In this view, each state in
the rollout set is a bandit; each available action in that state in an arm;
when we pull an arm, we run a rollout and receive a sample from a dis-
tribution whose mean is the action-value function of that state-action
pair; and the goal is to allocate the available budget (defined in terms
of the number of rollouts or pulls) in a way to detect the arm with the
largest mean with high probability. However, what is important for
us is to detect the greedy action at all the states in the rollout set as
accurate as possible, and not just at one. Therefore, we need to extend
the existing bandit algorithms for best arm identification to multiple
bandits. We showed that this extension is not straight forward, mean-
ing that it is not enough to divide the total budget equally over the
bandits, and then run a best arm identification algorithm at each ban-
dit [Gabillon et al., 2010, 2011a]. We then develop the first algorithms
for multi-bandit best arm identification with theoretical guarantees and
show their performance in a number of synthetic problems as well as
in a problem with clinical data [Gabillon et al., 2011a, 2012]. Despite
our results, there are still open problems in this front that are mainly
related to the fact that we consider cost-sensitive classification in DPI,
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which is related to the notion of simple regret in pure exploration ban-
dit setting, but the algorithms that we have developed (similar to all
the pure exploration bandit algorithms) target the probability of error,
and not the simple regret.
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Chapter 4

Analysis of Approximate Modified
Policy Iteration [MGH3, MGH6, MGH8]

Modified policy iteration (MPI) is a dynamic programming (DP) algorithm
that contains the two celebrated policy and value iteration methods. Despite
its generality, MPI has not been thoroughly studied, especially its approx-
imation form which is used when the state and/or action spaces are large
or infinite. In this paper, we propose three implementations of approxi-
mate MPI (AMPI) that are extensions of the well-known approximate DP
algorithms: fitted-value iteration, fitted-Q iteration, and classification-based
policy iteration. We provide error propagation analysis that unify those for
approximate policy and value iteration. We develop the finite-sample analysis
of these algorithms, which highlights the influence of their free parameters.
In the classification-based version of the algorithm (CBMPI), the analysis
shows that MPI’s main parameter controls the balance between the estima-
tion error of the classifier and the overall value function approximation. We
illustrate and evaluate the behavior of these new algorithms in the Moun-
tain Car and Tetris problems. Remarkably, in Tetris, CBMPI outperforms
by a large margin existing DP approaches and compete with the current
state-of-the-art methods while using fewer samples.1

1This chapter is based on these published and submitted papers [Scherrer et al., 2012,
2013, Gabillon et al., 2013]. For more details on the results in the game of Tetris, we refer
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4.1 Introduction

Modified Policy Iteration (MPI) [Puterman and Shin, 1978] is an iterative
algorithm to compute the optimal policy and value function of a Markov
Decision Process (MDP). Starting from an arbitrary value function v0, it
generates a sequence of value-policy pairs

πk+1 = GVk (greedy step) (4.1)

Vk+1 = (T πk+1)mVk (evaluation step) (4.2)

where GVk is a greedy policy w.r.t. (with respect to) Vk, T πk is the Bellman
operator associated to the policy πk, and m ≥ 1 is a parameter. MPI gener-
alizes the well-known dynamic programming algorithms Value Iteration (VI)
and Policy Iteration (PI) for the values m = 1 and m = ∞, respectively.
MPI has less computation per iteration than PI (in a way similar to VI),
while enjoys the faster convergence (in terms of the number of iterations) of
the PI algorithm [Puterman and Shin, 1978]. In problems with large state
and/or action spaces, approximate versions of VI (AVI) and PI (API) have
been the focus of a rich literature (see e.g., Bertsekas and Tsitsiklis 1996,
Szepesvári 2010). Approximate VI (AVI) generates the next value function
as the approximation of the application of the Bellman optimality operator
to the current value [Singh and Yee, 1994, Gordon, 1995, Bertsekas and Tsit-
siklis, 1996, Munos, 2007, Ernst et al., 2005, Antos et al., 2007, Munos and
Szepesvári, 2008]. On the other hand, approximate PI (API) first finds an
approximation of the value of the current policy and then generates the next
policy as greedy w.r.t. this approximation [Bertsekas and Tsitsiklis, 1996,
Munos, 2003, Lagoudakis and Parr, 2003a]. Another related algorithm is
λ-policy iteration [Bertsekas and Ioffe, 1996], which is a rather complicated
variation of MPI. It involves computing a fixed-point at each iteration, and
thus, suffers from some of the drawbacks of the PI algorithms. This algorithm

a reader to Gabillon et al. [2013].
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has been analyzed in its approximate form by Thiery and Scherrer [2010a]
(see also Scherrer 2013b). The aim of this paper is to show that, similarly
to its exact form, approximate MPI (AMPI) may represent an interesting
alternative to AVI and API algorithms.

In this paper, we propose three implementations of AMPI (Section 4.3)
that generalize the AVI implementations of Ernst et al. [2005], Antos et al.
[2007], Munos and Szepesvári [2008] and the classification-based API algo-
rithms of Lagoudakis and Parr [2003b], Fern et al. [2006], Lazaric et al.
[2010a], Gabillon et al. [2011b]. We then provide an error propagation anal-
ysis of AMPI (Section 4.4), which shows how the Lp-norm of its performance
loss can be controlled by the error at each iteration of the algorithm. We
show that the error propagation analysis of AMPI is more involved than
that of AVI and API. This is due to the fact that neither the contraction nor
monotonicity arguments, that the error propagation analysis of these two
algorithms rely on, hold for AMPI. The analysis of this section unifies those
for AVI and API and is applied to the AMPI implementations presented in
Section 4.3. We then detail the analysis of the three algorithms of Section 4.3
by providing their finite sample analysis in Section 4.5. Interestingly, for the
classification-based implementation of MPI (CBMPI), our analysis indicates
that the parameter m allows us to balance the estimation error of the classi-
fier with the overall quality of the value approximation. Finally, we evaluate
the proposed algorithms and compare them with several existing methods in
the Mountain Car and Tetris problems in Section 4.6. The latter is the most
challenging as DP methods uniquely based on approximating the value func-
tion have performed poorly until now. We show that the classification-based
approach (CBMPI) performs well in this game.
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4.2 Background

We consider a discounted MDP 〈X ,A, P, r, γ〉, where X is a state space, A
is a finite action space, P (dx′|x, a), for all (x, a), is a probability kernel on
X , the reward function r : X × A → R is bounded by Rmax, and γ ∈ (0, 1)

is a discount factor. A deterministic policy is defined as a mapping π :

X → A. For a policy π, we may write rπ(x) = r
(
x, π(x)

)
and P π(dx′|x) =

P
(
dx′|x, π(x)

)
. The value of policy π in a state x is defined as the expected

discounted sum of rewards received by starting from state x and following
the policy π, i.e.,

V π(x) = E
[ ∞∑

t=0

γtrπ(xt) | x0 = x, xt+1 ∼ P π(·|xt)
]
.

Similarly, the action-value function of a policy π at a state-action pair (x, a),
Qπ(x, a), is the expected discounted sum of rewards received by starting from
state x, taking action a, and then following the policy π:

Qπ(x, a) = E
[ ∞∑

t=0

γtr(xt, at) | x0 = x, a0 = a, xt+1 ∼ P (·|xt, at), at+1 = π(xt+1)
]
.

Since the rewards are bounded by Rmax, the values and action-values are
bounded by Vmax = Qmax = Rmax/(1 − γ). The Bellman operator T π of
policy π takes a function f on X as input and returns the function T πf
defined as

∀x ∈ X , [T πf ](x) = E
[
rπ(x) + γf(x′) | x′ ∼ P π(·|x)

]
,

or in compact form, T πf = rπ + γP πf . It is known that V π is the unique
fixed-point of T π. Given a function f on X , we say that a policy π is greedy
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w.r.t. f , and write π = Gf , if

∀x ∈ X , [T πf ](x) = max
a

[T af ](x),

or equivalently T πf = maxπ′ [T π′f ]. We denote by V ∗ the optimal value
function. It is also known that V ∗ is the unique fixed-point of the Bellman
optimality operator T : V → maxπ T πV = TG(V )V , and that a policy π∗ that
is greedy w.r.t. V ∗ is optimal and its value satisfies V π∗ = V ∗.

4.3 Approximate MPI Algorithms

In this section, we describe three approximate MPI (AMPI) algorithms.
These algorithms rely on a function space F to approximate value func-
tions, and in the third algorithm, also on a policy space Π to represent
greedy policies. In what follows, we describe the iteration k of these iterative
algorithms.

4.3.1 AMPI-V

The first and simplest AMPI algorithm presented in the paper, called AMPI-
V, is described in Figure 4.1. In AMPI-V, we assume that the values Vk are
represented in a function space F ⊆ RX . In any state x, the action πk+1(x)

that is greedy w.r.t. Vk can be estimated as follows:

πk+1(x) ∈ arg max
a∈A

1

M

M∑

j=1

(
r(j)
a + γVk(x

(j)
a )
)
, (4.3)

where ∀a ∈ A and 1 ≤ j ≤M , r(j)
a and x(j)

a are samples of rewards and next
states when action a is taken in state x. Thus, approximating the greedy
action in a state s requires M |A| samples. The algorithm works as follows.
We samples N states from a distribution µ on X , and build a rollout set
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Dk = {x(i)}Ni=1, x(i) ∼ µ. From each state x(i) ∈ Dk, we generate a rollout
of size m, i.e.,

(
x(i), a

(i)
0 , r

(i)
0 , x

(i)
1 , . . . , a

(i)
m−1, r

(i)
m−1, x

(i)
m

)
, where a(i)

t is the action
suggested by πk+1 in state x(i)

t , computed using Eq. 4.3, and r(i)
t and x(i)

t+1 are
the reward and next state induced by this choice of action. For each x(i), we
then compute a rollout estimate

V̂k+1(x(i)) =
m−1∑

t=0

γtr
(i)
t + γmVk(x

(i)
m ), (4.4)

which is an unbiased estimate of
[
(T πk+1)mVk

]
(x(i)). Finally, Vk+1 is com-

puted as the best fit in F to these estimates, i.e., it is a function V ∈ F that
minimizes the empirical error

L̂Fk (µ̂;V ) =
1

N

N∑

i=1

(
V̂k+1(x(i))− V (x(i))

)2
, (4.5)

with the goal of minimizing the true error

LFk (µ;V ) =
∣∣∣
∣∣∣
[
(T πk+1)mVk

]
− V

∣∣∣
∣∣∣
2

2,µ
=

∫ ([
(T πk+1)mVk

]
(x)− V (x)

)2

µ(dx).

Each iteration of AMPI-V requires N rollouts of size m, and in each rollout,
each of the |A| actions needs M samples to compute Eq. 4.3. This gives a
total ofNm(M |A|+1) transition samples. Note that the fitted value iteration
algorithm [Munos and Szepesvári, 2008] is a special case of AMPI-V when
m = 1.

4.3.2 AMPI-Q

In AMPI-Q, we replace the value function V : X → R with the action-
value function Q : X × A → R. Figure 4.2 contains the pseudocode of this
algorithm. The Bellman operator for a policy π at a state-action pair (x, a)
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Input: Value function space F , state distribution µ
Initialize: Let V0 ∈ F be an arbitrary value function
for k = 0, 1, . . . do

• Perform rollouts:
Construct the rollout set Dk = {x(i)}Ni=1, x

(i) iid∼ µ
for all states x(i) ∈ Dk do

Perform a rollout (using Eq. 4.3 for each action)
V̂k+1(x(i)) =

∑m−1
t=0 γtr

(i)
t + γmVk(x

(i)
m )

end for
• Approximate value function:
Vk+1 ∈ arg min

V ∈F
L̂Fk (µ̂;V ) (regression) (see Eq. 4.5)

end for

Figure 4.1: The pseudo-code of the AMPI-V algorithm.

can then be written as

[T πQ](x, a) = E
[
r(x, a) + γQ(x′, π(x′)) | x′ ∼ P (·|x, a)

]
,

and the greedy operator is defined as

π ∈ GQ ⇐⇒ ∀x π(x) = arg max
a∈A

Q(x, a).

In AMPI-Q, action-value functions Qk are represented in a function space
F ⊆ RX×A, and the greedy action w.r.t. Qk at a state x, i.e., πk+1(x), is
computed as

πk+1(x) ∈ arg max
a∈A

Qk(x, a). (4.6)

The evaluation step is similar to that of AMPI-V, with the difference that now
we work with state-action pairs. We sample N state-action pairs from a dis-
tribution µ on X×A and build a rollout setDk = {(x(i), a(i))}Ni=1, (x(i), a(i)) ∼
µ. For each (x(i), a(i)) ∈ Dk, we generate a rollout of sizem, i.e.,

(
x(i), a(i), r

(i)
0 ,

x
(i)
1 , a

(i)
1 , · · · , x(i)

m , a
(i)
m

)
, where the first action is a(i), a(i)

t for t ≥ 1 is the ac-
tion suggested by πk+1 in state x(i)

t computed using Eq. 4.6, and r(i)
t and x(i)

t+1
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are the reward and next state induced by this choice of action. For each
(x(i), a(i)) ∈ Dk, we then compute the rollout estimate

Q̂k+1(x(i), a(i)) =
m−1∑

t=0

γtr
(i)
t + γmQk(x

(i)
m , a

(i)
m ),

which is an unbiased estimate of
[
(T πk+1)mQk

]
(x(i), a(i)). Finally, Qk+1 is the

best fit to these estimates in F , i.e., it is a function Q ∈ F that minimizes
the empirical error

L̂Fk (µ̂;Q) =
1

N

N∑

i=1

(
Q̂k+1(x(i), a(i))−Q(x(i), a(i))

)2
, (4.7)

with the goal of minimizing the true error

LFk (µ;Q) =
∣∣∣
∣∣∣
[
(T πk+1)mQk

]
−Q
∣∣∣
∣∣∣
2

2,µ
=

∫ ([
(T πk+1)mQk

]
(x, a)−Q(x, a)

)2
µ(dxda).

Each iteration of AMPI-Q requires Nm samples, which is less than that
for AMPI-V. However, it uses a hypothesis space on state-action pairs instead
of states (a larger space than that used by AMPI-V). Note that the fitted-Q
iteration algorithm [Ernst et al., 2005, Antos et al., 2007] is a special case of
AMPI-Q when m = 1.

4.3.3 Classification-Based MPI

The third AMPI algorithm presented in this paper, called classification-
based MPI (CBMPI), uses an explicit representation for the policies πk, in
addition to the one used for the value functions Vk. The idea is similar
to the classification-based PI algorithms [Lagoudakis and Parr, 2003b, Fern
et al., 2006, Lazaric et al., 2010a, Gabillon et al., 2011b] in which we search
for the greedy policy in a policy space Π (defined by a classifier) instead
of computing it from the estimated value or action-value function (like in
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Input: Value function space F , state distribution µ
Initialize: Let Q0 ∈ F be an arbitrary value function
for k = 0, 1, . . . do

• Perform rollouts:
Construct the rollout set Dk = {(x(i), a(i)}Ni=1, (x(i), a(i))

iid∼ µ
for all states (x(i), a(i)) ∈ Dk do

Perform a rollout (using Eq. 4.6 for each action)
Q̂k+1(x(i), a(i)) =

∑m−1
t=0 γtr

(i)
t + γmQk(x

(i)
m , a

(i)
m ),

end for
• Approximate action-value function:
Qk+1 ∈ arg min

Q∈F
L̂Fk (µ̂;Q) (regression) (see Eq. 4.7)

end for

Figure 4.2: The pseudo-code of the AMPI-Q algorithm.

AMPI-V and AMPI-Q).
In order to describe CBMPI, we first rewrite the MPI formulation (Eqs. 4.1
and 4.2) as

Vk = (T πk)mVk−1 (evaluation step) (4.8)

πk+1 = G
[
(T πk)mVk−1

]
(greedy step) (4.9)

Note that in the new formulation both Vk and πk+1 are functions of (T πk)mVk−1.
CBMPI is an approximate version of this new formulation. As described in
Figure 4.3, CBMPI begins with arbitrary initial policy π1 ∈ Π and value
function V0 ∈ F .2 At each iteration k, a new value function Vk is built as
the best approximation of the m-step Bellman operator (T πk)mVk−1 in F
(evaluation step). This is done by solving a regression problem whose tar-
get function is (T πk)mVk−1. To set up the regression problem, we build a
rollout set Dk by sampling N states i.i.d. from a distribution µ.3 For each

2Note that the function space F and policy space Π are automatically defined by the
choice of the regressor and classifier, respectively.

3Here we used the same sampling distribution µ for both regressor and classifier, but
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Input: Value function space F , policy space Π, state distribution µ
Initialize: Let π1 ∈ Π be an arbitrary policy and V0 ∈ F an arbitrary value
function
for k = 1, 2, . . . do

• Perform rollouts:
Construct the rollout set Dk = {x(i)}Ni=1, x

(i) iid∼ µ
for all states x(i) ∈ Dk do

Perform a rollout and return V̂k(x(i)) (using Eq. 4.10)
end for
Construct the rollout set D′k = {x(i)}Ni=1, x

(i) iid∼ µ
for all states x(i) ∈ D′k and actions a ∈ A do
for j = 1 to M do

Perform a rollout and return Rjk(x
(i), a) (using Eq. 4.15)

end for
Q̂k(x

(i), a) = 1
M

∑M
j=1R

j
k(x

(i), a)
end for
• Approximate value function:
Vk ∈ arg min

V ∈F
L̂Fk (µ̂;V ) (regression) (see Eq. 4.11)

• Approximate greedy policy:
πk+1 ∈ arg min

π∈Π
L̂Π
k (µ̂;π) (classification) (see Eq. 4.16)

end for

Figure 4.3: The pseudo-code of the CBMPI algorithm.

state x(i) ∈ Dk, we generate a rollout
(
x(i), a

(i)
0 , r

(i)
0 , x

(i)
1 , . . . , a

(i)
m−1, r

(i)
m−1, x

(i)
m

)

of size m, where a(i)
t = πk(x

(i)
t ), and r

(i)
t and x

(i)
t+1 are the reward and next

state induced by this choice of action. From this rollout, we compute an
unbiased estimate V̂k(x(i)) of

[
(T πk)mVk−1

]
(x(i)) as in Eq. 4.4:

V̂k(x
(i)) =

m−1∑

t=0

γtr
(i)
t + γmVk−1(x(i)

m ), (4.10)

and use it to build a training set
{(
s(i), V̂k(x

(i))
)}N

i=1
. This training set is then

used by the regressor to compute Vk as an estimate of (T πk)mVk−1. Similar

in general different distributions may be used for these two components of the algorithm.
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to the AMPI-V algorithm, the regressor here finds a function V ∈ F that
minimizes the empirical error

L̂Fk (µ̂;V ) =
1

N

N∑

i=1

(
V̂k(x

(i))− V (x(i))
)2
, (4.11)

with the goal of minimizing the true error

LFk (µ;V ) =
∣∣∣
∣∣∣
[
(T πk)mVk−1

]
− V

∣∣∣
∣∣∣
2

2,µ
=

∫ ([
(T πk)mVk−1

]
(x)− V (x)

)2

µ(dx).

The greedy step at iteration k computes the policy πk+1 as the best approx-
imation of G

[
(T πk)mVk−1

]
by solving a cost-sensitive classification problem.

From the definition of a greedy policy, if π = G
[
(T πk)mVk−1

]
, for each x ∈ X ,

we have [
T π(T πk)mVk−1

]
(x) = max

a∈A

[
T a(T πk)mVk−1

]
(x). (4.12)

By defining Qk(x, a) =
[
T a(T πk)mVk−1

]
(x), we may rewrite Eq. 4.12 as

Qk

(
x, π(x)

)
= max

a∈A
Qk(x, a). (4.13)

The cost-sensitive error function used by CBMPI is of the form

LΠ
πk,Vk−1

(µ; π) =

∫ [
max
a∈A

Qk(x, a)−Qk

(
x, π(x)

)]
µ(dx). (4.14)

To simplify the notation we use LΠ
k instead of LΠ

πk,Vk−1
. To set up this cost-

sensitive classification problem, we build a rollout set D′k by sampling N ′

states i.i.d. from a distribution µ. For each state x(i) ∈ D′k and each action
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a ∈ A, we build M independent rollouts of size m+ 1, i.e.,4

(
x(i), a, r

(i,j)
0 , x

(i,j)
1 , a

(i,j)
1 , . . . , a(i,j)

m , r(i,j)
m , x

(i,j)
m+1

)M
j=1
,

where for t ≥ 1, a(i,j)
t = πk(x

(i,j)
t ), and r(i,j)

t and x(i,j)
t+1 are the reward and next

state induced by this choice of action. From these rollouts, we compute an
unbiased estimate of Qk(x

(i), a) as Q̂k(x
(i), a) = 1

M

∑M
j=1R

j
k(x

(i), a) where

Rj
k(x

(i), a) =
m∑

t=0

γtr
(i,j)
t + γm+1Vk−1(x

(i,j)
m+1). (4.15)

Given the outcome of the rollouts, CBMPI uses a cost-sensitive classifier to
return a policy πk+1 that minimizes the following empirical error

L̂Π
k (µ̂; π) =

1

N ′

N ′∑

i=1

[
max
a∈A

Q̂k(x
(i), a)− Q̂k

(
x(i), π(s(i))

)]
, (4.16)

with the goal of minimizing the true error LΠ
k (µ; π) defined by Eq. 4.14.

Each iteration of CBMPI requires Nm+M |A|N ′(m+1) (orM |A|N ′(m+

1) in case we reuse the rollouts, see Footnote 3) transition samples. Note that
when m tends to ∞, we recover the DPI algorithm proposed and analyzed
by Lazaric et al. [2010a].

4.3.4 Possible Approaches to Reuse the Samples

In all the proposed AMPI algorithms, we generate fresh samples for the
rollouts, and even for the starting states, at each iteration. This results in
high sample complexity for these algorithms. In this section, we propose two
possible approaches to circumvent this problem and to keep the number of

4We may implement CBMPI more sample efficient by reusing the rollouts generated
for the greedy step in the evaluation step, but this makes the analysis of the algorithm
more complicated.
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samples independent of the number of iterations.
One approach would be to use a fixed set of starting samples (x(i)) or

(x(i), a(i)) for all iterations, and think of a tree of depth m that contains all
the possible outcomes of m-steps choices of actions (this tree contains |A|m
leaves). This is reminiscent of the work by Kearns et al. [2000]. Using this
tree, all the trajectories with the same actions share the same samples. In
practice, it is not necessarily to build the entire depth m tree, it is only
needed to add a branch when the desired action does not belong to the tree.
Using this approach, the sample complexity of the algorithm no longer de-
pends on the number of iterations. For example, we may only need NM |A|m
transitions for the CBMPI algorithm.

We may also consider the case where we do not have access to a generative
model of the system, and all we have is a set of trajectories of sizem generated
by a behavior policy πb that is assumed to choose all actions a in each state
x with a positive probability (i.e., πb(a|x) > 0, ∀x, ∀a) [Precup et al., 2000,
2001]. In this case, one may still compute an unbiased estimate of the appli-
cation of (T π)m operator to value and action-value functions. For instance,
given a m-step sample trajectory (x, a0, r0, x1, . . . , xm, am) generated by πb,
an unbiased estimate of [(T π)mV ](x) may be computed as (assuming that
the distribution µ has the following factored form p(x, a0|µ) = p(x)πb(a0|x)

at state x)

y =
m−1∑

t=0

αtγ
trt + αmγ

mV (xm), where αt =
t∏

j=1

1aj=π(xj)

πb(aj|xj)

is an importance sampling correction factor that can be computed along the
trajectory. However, this process may significantly increase the variance of
such an estimate, and thus, requires many more samples.
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4.4 Error Propagation

In this section, we derive a general formulation for propagation of error
through the iterations of an AMPI algorithm. The line of analysis for er-
ror propagation is different in VI and PI algorithms. VI analysis is based on
the fact that this algorithm computes the fixed point of the Bellman opti-
mality operator, and this operator is a γ-contraction in max-norm [Bertsekas
and Tsitsiklis, 1996, Munos, 2007]. On the other hand, it can be shown that
the operator by which PI updates the value from one iteration to the next
is not a contraction in max-norm in general. Unfortunately, we can show
that the same property holds for MPI when it does not reduce to VI (i.e., for
m > 1).

Proposition 42 If m > 1, there exists no norm for which the operator that
MPI uses to update the values from one iteration to the next is a contraction.

Proof We consider the MDP used to prove a similar result for λ-policy iter-
ation [Scherrer, 2013b]. It is a deterministic model with two states {x1, x2},
two actions {change, stay}, rewards r(x1) = 0, r(x2) = 1, and transitions
Pch(x2|x1) = Pch(x1|x2) = Pst(x1|x1) = Pst(x2|x2) = 1. Consider two value
functions V = (ε, 0) and V ′ = (0, ε) with ε > 0. Their corresponding greedy
policies are π = (st, ch) and π′ = (ch, st), and the next iterates of V and V ′

can be computed as (T π)mV =

(
γmε

1 + γmε

)
and (T π′)mV ′ =

(
γ−γm
1−γ + γmε

1−γm
1−γ + γmε

)
.

Thus, (T π′)mV ′ − (T π)mV =

(
γ−γm
1−γ
γ−γm
1−γ

)
, while V ′ − V =

(
−ε
ε

)
. Since ε can

be arbitrarily small, the norm of (T π′)mV ′−(T π)mV can be arbitrarily larger
than the norm of V − V ′ as long as m > 1.

We also know that the analysis of PI usually relies on the fact that the se-
quence of the generated values is non-decreasing [Bertsekas and Tsitsiklis,
1996, Munos, 2003]. Unfortunately, it can be easily shown that for m fi-
nite, the value functions generated by MPI may decrease (it suffices to take
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a very high initial value). It can be seen from what we just described and
Proposition 42 that for m 6= 1 and ∞, MPI is neither contracting nor non-
decreasing, and thus, a new proof is needed for the propagation of errors in
this algorithm.

To study error propagation in AMPI, we introduce an abstract algorith-
mic model that accounts for potential errors. AMPI starts with an arbitrary
value V0 and at each iteration k ≥ 1 computes the greedy policy w.r.t. Vk−1

with some error ε′k, called the greedy step error. Thus, we write the new
policy πk as

πk = Ĝε′kVk−1. (4.17)

Eq. 4.17 means that for any policy π′, we have T π′Vk−1 ≤ T πkVk−1 + ε′k.
AMPI then generates the new value function Vk with some error εk, called
the evaluation step error

Vk = (T πk)mVk−1 + εk. (4.18)

Before showing how these two errors are propagated through the iterations
of AMPI, let us first define them in the context of each of the algorithms
presented in Section 4.3 separately.

AMPI-V: The term εk is the error when fitting the value function Vk.
This error can be further decomposed into two parts: the one related to
the approximation power of F and the one due to the finite number of sam-
ples/rollouts. The term ε′k is the error due to using a finite number of samples
M for estimating the greedy actions.

AMPI-Q: In this case ε′k = 0 and εk is the error in fitting the state-action
value function Qk.
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CBMPI: This algorithm iterates as follows:

Vk = (T πk)mVk−1 + εk

πk+1 = Ĝε′k+1
[(T πk)mVk−1] .

Unfortunately, this does not exactly match the model described in Eqs. 4.17
and 4.18. By introducing the auxiliary variable Wk

∆
= (T πk)mVk−1, we have

Vk = Wk + εk, and thus, we may write

πk+1 = Ĝε′k+1
[Wk] . (4.19)

Using Vk−1 = Wk−1 + εk−1, we have

Wk = (T πk)mVk−1 = (T πk)m(Wk−1 + εk−1) = (T πk)mWk−1 + (γP πk)mεk−1.

(4.20)

Now, Eqs. 4.19 and 4.20 exactly match Eqs. 4.17 and 4.18 by replacing Vk
with Wk and εk with (γP πk)mεk−1.

The rest of this section is devoted to show how the errors εk and ε′k
propagate through the iterations of an AMPI algorithm. We only outline the
main arguments that will lead to the performance bound of Theorem 48 and
report most proofs in Appendices 4.8.1 to 4.8.4. Here we follow the line of
analysis developed by Scherrer and Thiéry [2010]. The results are obtained
using the following three quantities:
1) The distance between the optimal value function and the value before
approximation at the kth iteration: dk

∆
= V ∗− (T πk)mVk−1 = V ∗− (Vk − εk).

2) The shift between the value before approximation and the value of the
policy at the kth iteration: sk

∆
= (T πk)mVk−1 − V πk = (Vk − εk)− V πk .

3) The (approximate) Bellman residual at the kth iteration: bk
∆
= Vk −

T πk+1Vk.
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We are interested in finding an upper bound on the loss lk
∆
= V ∗−V πk =

dk + sk. To do so, we will upper bound dk and sk, which requires a bound on
the Bellman residual bk. More precisely, the core of our analysis is to prove
the following point-wise inequalities for our three quantities of interest.

Lemma 43 Let k ≥ 1, xk
∆
= (I − γP πk)εk + ε′k+1 and yk

∆
= −γP π∗εk + ε′k+1.

We have:

bk ≤ (γP πk)mbk−1 + xk,

dk+1 ≤ γP π∗dk + yk +
m−1∑

j=1

(γP πk+1)jbk,

sk = (γP πk)m(I − γP πk)−1bk−1.

Proof See Appendix 4.8.1.

Since the stochastic kernels are non-negative, the bounds in Lemma 43 indi-
cate that the loss lk will be bounded if the errors εk and ε′k are controlled.
In fact, if we define ε as a uniform upper-bound on the pointwise absolute
value of the errors, |εk| and |ε′k|, the first inequality in Lemma 43 implies
that bk ≤ O(ε), and as a result, the second and third inequalities gives us
dk ≤ O(ε) and sk ≤ O(ε). This means that the loss will also satisfy lk ≤ O(ε).

Our bound for the loss lk is the result of careful expansion and combina-
tion of the three inequalities in Lemma 43. Before we state this result, we
introduce some notations that will ease our formulation.

Definition 44 For a positive integer n, we define Pn as the set of discounted
transition kernels that are defined as follows:

1) for any set of n policies {π1, . . . , πn}, (γP π1)(γP π2) . . . (γP πn) ∈ Pn,
2) for any α ∈ (0, 1) and (P1, P2) ∈ Pn × Pn, αP1 + (1− α)P2 ∈ Pn.

Furthermore, we use the somewhat abusive notation Γn for denoting any
element of Pn. For example, if we write a transition kernel P as P = α1Γi +
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α2ΓjΓk = α1Γi + α2Γj+k, it should be read as: “there exist P1 ∈ Pi, P2 ∈ Pj,
P3 ∈ Pk, and P4 ∈ Pk+j such that P = α1P1 + α2P2P3 = α1P1 + α2P4.”

Using the notation in Definition 44, we now derive a point-wise bound on
the loss.

Lemma 45 After k iterations, the losses of AMPI-V and AMPI-Q satisfy

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj|εk−i|+
k−1∑

i=0

∞∑

j=i

Γj|ε′k−i|+ h(k),

while the loss of CBMPI satisfies

lk ≤ 2
k−2∑

i=1

∞∑

j=i+m

Γj|εk−i−1|+
k−1∑

i=0

∞∑

j=i

Γj|ε′k−i|+ h(k),

where h(k)
∆
= 2

∑∞
j=k Γj|d0| or h(k)

∆
= 2

∑∞
j=k Γj|b0|.

Proof See Appendix 4.8.2.

Remark 46 A close look at the existing point-wise error bounds for AVI [Munos,
2007, Lemma 4.1] and API [Munos, 2003, Corollary 10] shows that they do
not consider error in the greedy step (i.e., ε′k = 0) and that they have the
following form:

lim supk→∞lk ≤ 2 lim supk→∞

k−1∑

i=1

∞∑

j=i

Γj|εk−i|.

This indicates that the bound in Lemma 45 not only unifies the analysis of
AVI and API, but it generalizes them to the case of error in the greedy step
and to a finite horizon k. Moreover, our bound suggests that the way the
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errors are propagated in the whole family of algorithms VI/PI/MPI does not
depend on m at the level of the abstraction suggested by Definition 44.5

The next step is to show how the point-wise bound of Lemma 45 can turn
to a bound in weighted Lp-norm, which for any function f : S → R and
any distribution µ on S is defined as ‖f‖p,µ ∆

=
[ ∫
|f(x)|pµ(dx)

]1/p. Munos
[2003, 2007], Munos and Szepesvári [2008], and the recent work of Farahmand
et al. [2010], which provides the most refined bounds for API and AVI, show
how to do this process through quantities, called concentrability coefficients,
that measure how a distribution over states may concentrate through the
dynamics of the MDP. We now state a lemma that generalizes the analysis
of Farahmand et al. [2010] to a larger class of concentrability coefficients.
We will discuss the potential advantage of this new class in Remark 51. We
will also show through the proofs of Theorems 48 and 59, how the result
of Lemma 47 provides us with a flexible tool for turning point-wise bounds
into Lp-norm bounds. Theorem 59 in Appendix 4.8.4 provides an alternative
bound for the loss of AMPI, which in analogy with the results of Farahmand
et al. [2010] shows that the last iterations have the highest impact on the
loss (the influence exponentially decreases towards the initial iterations).

Lemma 47 Let I and (Ji)i∈I be sets of positive integers, {I1, . . . , In} be a
partition of I, and f and (gi)i∈I be functions satisfying

|f | ≤
∑

i∈I

∑

j∈Ji

Γj|gi| =
n∑

l=1

∑

i∈Il

∑

j∈Ji

Γj|gi|.

Then for all p, q and q′ such that 1
q

+ 1
q′

= 1, and for all distributions ρ and
µ, we have

‖f‖p,ρ ≤
n∑

l=1

(
Cq(l)

)1/p
sup
i∈Il
‖gi‖pq′,µ

∑

i∈Il

∑

j∈Ji

γj,

5Note however that the dependence on m will reappear if we make explicit what is
hidden in Γj terms.
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with the following concentrability coefficients

Cq(l) ∆
=

∑
i∈Il

∑
j∈Ji γ

jcq(j)∑
i∈Il

∑
j∈Ji γ

j
,

with the Radon-Nikodym derivative based quantity

cq(j)
∆
= max

π1,··· ,πj

∥∥∥∥
d(ρP π1P π2 · · ·P πj)

dµ

∥∥∥∥
q,µ

. (4.21)

Proof See Appendix 4.8.3.

We now derive a Lp-norm bound for the loss of the AMPI algorithm by
applying Lemma 47 to the point-wise bound of Lemma 45.

Theorem 48 Let ρ and µ be distributions over states. Let p, q, and q′ be
such that 1

q
+ 1

q′
= 1. After k iterations, the loss of AMPI satisfies

‖lk‖p,ρ ≤
2(γ − γk)

(
C1,k,0
q

) 1
p

(1− γ)2
sup

1≤j≤k−1
‖εj‖pq′,µ+

(1− γk)
(
C0,k,0
q

) 1
p

(1− γ)2
sup

1≤j≤k
‖ε′j‖pq′,µ+g(k),

(4.22)

while the loss of CBMPI satisfies

‖lk‖p,ρ ≤
2γm(γ − γk−1)

(
C2,k,m
q

) 1
p

(1− γ)2
sup

1≤j≤k−2
‖εj‖pq′,µ+

(1− γk)
(
C1,k,0
q

) 1
p

(1− γ)2
sup

1≤j≤k
‖ε′j‖pq′,µ+g(k),

(4.23)

where for all q, l, k and d, the concentrability coefficients Cl,k,dq are defined as

Cl,k,dq
∆
=

(1− γ)2

γl − γk
k−1∑

i=l

∞∑

j=i

γjcq(j + d),

with cq(j) given by Eq. 4.21, and g(k) is defined as
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g(k)
∆
=

2γk

1− γ
(
Ck,k+1,0
q

) 1
p

min
(
‖d0‖pq′,µ, ‖b0‖pq′,µ

)
.

Proof See Appendix 4.8.4.

Remark 49 When p tends to infinity, the first bound of Theorem 48 reduces
to

‖lk‖∞ ≤
2(γ − γk)
(1− γ)2

sup
1≤j≤k−1

‖εj‖∞ +
1− γk

(1− γ)2
sup

1≤j≤k
‖ε′j‖∞ +

2γk

1− γ min(‖d0‖∞, ‖b0‖∞).

(4.24)

When k goes to infinity, Eq. 4.24 gives us a generalization of the API (m =

∞) bound of Bertsekas and Tsitsiklis [1996, Proposition 6.2], i.e.,

lim sup
k→∞

‖lk‖∞ ≤
2γ sup1≤j≤k−1 ‖εj‖∞ + sup1≤j≤k ‖ε′j‖∞

(1− γ)2
.

Moreover, since our point-wise analysis generalizes those of API and AVI (as
noted in Remark 46), the Lp-bound of Eq. 4.22 unifies and generalizes those
for API [Munos, 2003] and AVI [Munos, 2007].

Remark 50 The arguments we developed globally follow those originally de-
veloped for λ-policy iteration [Scherrer, 2013b]. With respect to that work,
our proof is significantly simpler thanks to the use of the notation Γn (Defi-
nition 44) and the fact that the AMPI scheme is itself much simpler that λ-
policy iteration. Moreover, the results are deeper since we consider a possible
error in the greedy step and more general concentration coefficients. Canbo-
lat and Rothblum [2012] recently (and independently) developed an analysis
of an approximate form of MPI. While Canbolat and Rothblum [2012] only
consider the error in the greedy step, our work is more general since it takes
into account both this error and the error in the value update. Note that
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it is required to consider both sources of error for the analysis of CBMPI.
Moreover, Canbolat and Rothblum [2012] provide bounds when the errors are
controlled in max-norm, while we consider the more general Lp-norm. At a
more technical level, Theorem 2 in Canbolat and Rothblum [2012] bounds the
norm of the distance V ∗ − Vk while we bound the loss V ∗ − V πk . Finally, if
we derive a bound on the loss (using e.g., Theorem 1 in Canbolat and Roth-
blum 2012), this leads to a bound on the loss that is looser than ours. In
particular, this does not allow to recover the standard bounds for AVI/API,
as we managed to obtain here (c.f., Remark 49).

Remark 51 We can balance the influence of the concentrability coefficients
(the bigger the q, the higher the influence) and the difficulty of controlling
the errors (the bigger the q′, the greater the difficulty in controlling the Lpq′-
norms) by tuning the parameters q and q′, given the condition that 1

q
+ 1

q′
= 1.

This potential leverage is an improvement over the existing bounds and con-
centrability results that only consider specific values of these two parameters:
q = ∞ and q′ = 1 in Munos [2007] and Munos and Szepesvári [2008], and
q = q′ = 2 in Farahmand et al. [2010].

Remark 52 Interestingly, our loss bound for AMPI does not “directly” de-
pend on m (although as we will discuss in the next section, it actually does
depend “indirectly" through εk). For CBMPI, the parameter m controls the
influence of the value function approximator, cancelling it out in the limit
when m tends to infinity (see Eq. 4.23). Assuming a fixed budget of sample
transitions, increasing m reduces the number of rollouts used by the classifier
and thus worsens its quality. In such a situation, m allows making a trade-off
between the estimation errors of the classifier and the overall value function
approximation.

Remark 53 The result that we have just stated means the following: if one
can control the errors εk and ε′k, then the performance loss is also controlled.
The main limitation of this result is that in general, even if we consider
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that there is no sampling noise (N = ∞ for all algorithms and M = ∞ for
AMPI-V), the error εk of the evaluation step may grow arbitrarily and make
the algorithm diverge. The fundamental reason is that the composition of the
approximation and the Bellman operator T π is not necessarily contracting.
A simple well-known pathological example is due to Tsitsiklis and Van Roy
[1997] and involves a two-state uncontrolled MDP and a linear projection on
a 1-dimensional space (that contains the real value function). Increasing the
parameter m of the algorithm makes the operator T π more contracting and
in principle can address this issue. For instance, if we consider that we have
a state space of finite size |X |, and take the uniform distribution µ, it can be
easily seen that for any V and V ′, we have

‖(T π)mV − (T π)mV ′‖2,µ = γm‖(P π)m(V − V ′)‖2,µ

≤ γm‖(P π)m‖2,µ‖V − V ′‖2,µ

≤ γm
√
|X |‖V − V ′‖2,µ.

In other words, T π is contracting w.r.t. the µ-weighted norm as soon as
m > log |X |

2 log 1
γ

. In particular it is sufficient for m to be exponentially smaller
than the state space size to solve this potential divergence problem.

4.5 Finite-Sample Analysis of the Algorithms

In this section, we first show how the error terms εk and ε′k appeared in
Theorem 48 (Eqs. 4.22 and 4.23) are bounded in each of the three proposed
algorithms, and then use the obtained results and derive finite-sample per-
formance bounds for these algorithms. We first bound the evaluation step
error εk. In AMPI-V and CBMPI, the evaluation step at each iteration k is
a regression problem with the target (T πk)mVk−1 and a training set of the
form

{(
x(i), V̂k(x

(i))
)}N

i=1
in which the states x(i) are i.i.d. samples from the

distribution µ and V̂k(x(i))’s are unbiased estimates of the target computed
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using Eq. 4.4. The situation is the same for AMPI-Q, except everything is
in terms of action-value function Qk instead of value function Vk. Therefore,
in the following we only show how to bound εk in AMPI-V and CBMPI, the
extension to AMPI-Q is straightforward.

We may use different function spaces F (linear or non-linear) to approx-
imate (T πk)mVk−1. Here we consider a linear architecture with parameters
α ∈ Rd and bounded (by L) basis functions {ϕj}dj=1, ‖ϕj‖∞ ≤ L. We denote
by φ : X → Rd, φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)> the feature vector, and by F the
linear function space spanned by the features ϕj, i.e., F = {fα(·) = φ(·)>α :

α ∈ Rd}. Now if we define Vk as the truncation (by Vmax) of the solution of
the above linear regression problem, we may bound the evaluation step error
εk using the following lemma.

Lemma 54 (Evaluation step error) Consider the linear regression set-
ting described above, then we have

‖εk‖2,µ ≤ 4 inf
f∈F
‖(T πk)mVk−1 − f‖2,µ + e1(N, δ) + e2(N, δ),

with probability at least 1− δ, where

e1(N, δ) = 32Vmax

√
2

N
log
(27(12e2N)2(d+1)

δ

)
,

e2(N, δ) = 24
(
Vmax + ‖α∗‖2 · sup

x
‖φ(x)‖2

)√ 2

N
log

9

δ
,

and α∗ is such that fα∗ is the best approximation (w.r.t. µ) of the target
function (T πk)mVk−1 in F .

Proof See Appendix 4.8.5.

After we showed how to bound the evaluation step error εk for the pro-
posed algorithms, we now turn our attention to bounding the greedy step
error ε′k, that contrary to the evaluation step error, varies more significantly
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across the algorithms. While the greedy step error equals to zero in AMPI-Q,
it is based on sampling in AMPI-V, and depends on a classifier in CBMPI.
To bound the greedy step error in AMPI-V and CBMPI, we assume that
the action space A contains only two actions, i.e., |A| = 2. The extension
to more than two actions is straightforward along the same line of analysis
as in Section 6 of Lazaric et al. [2010b]. The main difference w.r.t. the two
action case is that the VC-dimension of the policy space is replaced with its
Natarajan dimension. We begin with AMPI-V.

Lemma 55 (Greedy step error of AMPI-V) Let µ be a distribution over
the state space X and N be the number of states in the rollout set Dk drawn
i.i.d. from µ. For each state x ∈ Dk and each action a ∈ A, we sample M
states resulted from taking action a in state s. For any δ > 0, the greedy step
error ε′k in the AMPI-V algorithm is bounded as

||ε′k||1,µ ≤ e′3(N, δ) + 2e′4(N,M, δ),

with probability at least 1−δ, where h is the VC-dimension of the policy space
obtained by Eq. 4.3 from the truncation (by Vmax) of the function space F ,
and

e′3(N, δ) = 16Vmax

√
2

N
(h log

eN

h
+ log

24

δ
) ,

e′4(N,M, δ) = 8Vmax

√
2

MN

(
h log

eMN

h
+ log

24

δ

)
.

Proof See Appendix 4.8.6.

We now show how to bound ε′k in CBMPI. From the definitions of ε′k
(Eq. 4.19) and LΠ

k (µ; π) (Eq. 4.14), it is easy to see that ‖ε′k‖1,µ = LΠ
k−1(µ; πk).
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This is because

ε′k(s) = max
a∈A

[
T a(T πk−1)mVk−2

]
(x)−

[
T πk(T πk−1)mVk−2

]
(x) (see Eq. 4.12)

= max
a∈A

Qk−1(x, a)−Qk−1

(
x, πk(x)

)
. (see Eqs. 4.13 and 4.14)

Lemma 56 (Greedy step error of CBMPI) Let the policy space Π de-
fined by the classifier have finite VC-dimension h = V C(Π) < ∞, and µ

be a distribution over the state space X . Let N be the number of states in
D′k−1 drawn i.i.d. from µ, M be the number of rollouts per state-action pair
used in the estimation of Q̂k−1, and πk = arg minπ∈Π L̂Π

k−1(µ̂, π) be the policy
computed at iteration k − 1 of CBMPI. Then, for any δ > 0, we have

‖ε′k‖1,µ = LΠ
k−1(µ; πk) ≤ inf

π∈Π
LΠ
k−1(µ; π) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
,

with probability at least 1− δ, where

e′1(N ′, δ) = 16Qmax

√
2

N ′
(
h log

eN ′

h
+ log

32

δ

)
,

e′2(N ′,M, δ) = 8Qmax

√
2

MN ′
(
h log

eMN ′

h
+ log

32

δ

)
.

Proof See Appendix 4.8.7.

From Lemma 54, we have a bound on ‖εk‖2,µ for all the three algorithms.
Since ‖εk‖1,µ ≤ ‖εk‖2,µ, we also have a bound on ‖εk‖1,µ for all the algorithms.
On the other hand, from Lemmas 55 and 56, we have a bound on ‖ε′k‖1,µ for
the AMPI-V and CMBPI algorithms. This means that for AMPI-V, AMPI-
Q (ε′k = 0 for this algorithm), and CBMPI, we can control the RHS of
Eqs. 4.22 and 4.23 in L1-norm, which in the context of Theorem 48 means
p = 1, q′ = 1, and q =∞. This leads to the main result of this section, finite
sample performance bounds for the three proposed algorithms.
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Theorem 57 Let

d′ = sup
g∈F ,π′∈Π

inf
π∈Π
LΠ
π′,g(µ; π) and dm = sup

g∈F ,π∈Π
inf
f∈F
‖(T π)mg−f‖2,µ

where F is the function space used by the algorithms and Π is the policy space
used by CBMPI. With the notations of Theorem 48 and Lemmas 54-56, after
k iterations, and with probability 1− δ, the expected losses Eρ[lk] = ‖lk‖1,ρ of
the proposed AMPI algorithms satisfy:6

AMPI-V: ‖lk‖1,ρ ≤
2(γ − γk)C1,k,0

∞
(1− γ)2

(
dm + e1(N,

δ

k
) + e2(N,

δ

k
)

)

+
(1− γk)C0,k,0

∞
(1− γ)2

(
e′3(N,

δ

k
) + e′4(N,M,

δ

k
)

)
+ g(k),

AMPI-Q: ‖lk‖1,ρ ≤
2(γ − γk)C1,k,0

∞
(1− γ)2

(
dm + e1(N,

δ

k
) + e2(N,

δ

k
)

)
+ g(k),

CBMPI: ‖lk‖1,ρ ≤
2γm(γ − γk−1)C2,k,m

∞
(1− γ)2

(
dm + e1(N,

δ

2k
) + e2(N,

δ

2k
)

)

+
(1− γk)C1,k,0

∞
(1− γ)2

(
d′ + e′1(N ′,

δ

2k
) + e′2(N ′,M,

δ

2k
)

)
+ g(k).

Remark 58 The CBMPI bound in Theorem 57 allows us to restate Re-
mark 52. Assume that we have a fixed budget B = Nm + N ′M |A|(m + 1)

that we equally divide over the classifier and regressor. Note that the budget
is measured in terms of the number of calls to the generative model. Then
up to constants and logarithmic factors, the bound has the form

‖lk‖1,µ ≤ O

(
γm
(
dm +

√
m

B

)
+ d′ +

√
M |A|m
B

)
.

6As mentioned above, the bounds of AMPI-V and AMPI-Q may also be written with
(p = 2, q′ = 1, q =∞), and (p = 1, q′ = 2, q = 2).
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This shows a trade-off in tuning the parameter m: a large value of m makes
the influence of the regressor’s error (both approximation and estimation er-
rors) smaller, but at the same time makes the influence of the estimation
error of the classifier bigger, in the final error.

4.6 Experimental Results

For our experiments, we evaluate CBMPI in two different domains: 1) the
mountain car problem and 2) the more challenging game of Tetris. In sev-
eral experiments, we compare the performance of CBMPI with the DPI algo-
rithm [Lazaric et al., 2010a], which is basically CBMPI without value function
approximation7. Hence, comparing DPI and CBMPI allows us to highlight
the role of the value function approximation.

As discussed in Remark 52, the parameterm in CBMPI balances between
the errors in evaluating the value function and the policy. The value function
approximation error tends to zero for large values of m. Although this would
suggest to have large values for m, as mentioned in Remark 58, the size of
the rollout sets D and D′ would correspondingly decreases as N = O(B/m)

and N ′ = O(B/m), thus decreasing the accuracy of both the regressor and
classifier. This leads to a trade-off between long rollouts and the number of
states in the rollout sets. The solution to this trade-off strictly depends on
the capacity of the value function space F . A rich value function space would
lead to solve the trade-off for small values of m. On the other hand, when the
value function space is poor, or, as in the case of DPI, when there is no value
function, m should be selected in a way to guarantee large enough rollout
sets (parameters N and N ′), and at the same time, a sufficient number of
rollouts (parameter M).

7DPI, as it is presented by Lazaric et al. [2010a], uses infinitely long rollouts and is
thus equivalent to CBMPI with m =∞. In practice, implementations of DPI use rollouts
that are truncated after some horizon H, and is then equivalent to CBMPI with m = H
and vk = 0 for all iterations k.
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Figure 4.4: (Left) The Mountain Car (MC) problem in which the car needs
to learn to oscillate back and forth in order to build up enough inertia to
reach the top of the one-dimensional hill. (Right) A screen-shot of the game
of Tetris and the seven pieces (shapes) used in the game.

One of the objectives of our experiments is to show the role of these
parameters in the performance of CBMPI. However, since we almost always
obtained our best results withM = 1, we only focus on the parametersm and
N in our experiments. Moreover, as mentioned in Footnote 3, we implement
a more sample efficient version of CBMPI by reusing the rollouts generated
for the classifier in the regressor. More precisely, at each iteration k, for each
state s(i) ∈ D′k and each action a ∈ A, we generate one rollout of length
m+ 1, i.e.,

(
x(i), a, r

(i)
0 , x

(i)
1 , a

(i)
1 , . . . , a

(i)
m , r

(i)
m , x

(i)
m+1

)
. We then take the rollout

of action πk(x
(i)), select its last m steps, i.e.,

(
x

(i)
1 , a

(i)
1 , . . . , a

(i)
m , r

(i)
m , x

(i)
m+1

)

(note that all the actions here have been taken according to the current
policy πk), use it to estimate the value function V̂k(x

(i)
1 ), and add it to the

training set of the regressor. This process guarantees to have N = N ′.
In each experiment, we run the algorithms with the same budget B per

iteration. The budget B is the number of next state samples generated by
the generative model of the system at each iteration. In DPI and CBMPI,
we generate a rollout of length m+ 1 for each state in D′ and each action in
A, so, B = (m + 1)N |A|. In AMPI-Q, we generate one rollout of length m
for each state-action pair in D, and thus, B = mN .
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4.6.1 Mountain Car

Mountain Car (MC) is the problem of driving a car up to the top of a
one-dimensional hill (see Figure 4.4). The car is not powerful enough to
accelerate directly up the hill, and thus, it must learn to oscillate back and
forth to build up enough inertia. There are three possible actions: forward
(+1), reverse (−1), and stay (0). The reward is −1 for all the states but
the goal state at the top of the hill, where the episode ends with a reward
0. The discount factor is set to γ = 0.99. Each state x consists of the pair
(xs, ẋs) where xs is the position of the car and ẋs is its velocity. We use the
formulation described in Dimitrakakis and Lagoudakis [2008b] with uniform
noise in [−0.2, 0.2] added to the actions.

In this section, we report the empirical evaluation of CBMPI and AMPI-
Q and compare it to DPI and LSPI [Lagoudakis and Parr, 2003a] in the MC
problem. In our experiments, we show that CBMPI, by combining policy and
value function approximation, can improve over AMPI-Q, DPI, and LSPI.

Problem Setting

The value function is approximated using a linear space spanned by a set of
radial basis functions (RBFs) evenly distributed over the state space. More
precisely, we uniformly divide the 2-dimensional state space into a number of
regions and place a Gaussian function at the center of each of them. We set
the standard deviation of the Gaussian functions to the width of a region.

The function space to approximate the action-value function in LSPI is
obtained by replicating the state-features for each action. We run LSPI off-
policy (i.e., samples are collected once and reused through the iterations of
the algorithm). The policy space Π (classifier) is defined by a regularized sup-
port vector classifier (C-SVC) using the LIBSVM implementation by Chang
and Lin [2011]. We use the RBF kernel exp(−|u− v|2) and set the cost pa-
rameter C = 1000. We minimize the classification error instead of directly
solving the cost-sensitive multi-class classification step as in Figure 4.3. In
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fact, the classification error is an upper-bound on the empirical error defined
by Eq. 4.16. Finally, the rollout set is sampled uniformly over the state space.

In our MC experiments, the policies learned by the algorithms are eval-
uated by the number of steps-to-go (average number of steps to reach the
goal with a maximum of 300) averaged over 4, 000 independent trials. More
precisely, we define the possible starting configurations (positions and veloc-
ities) of the car by placing a 20× 20 uniform grid over the state space, and
run the policy 10 times from each possible initial configuration. The perfor-
mance of each algorithm is represented by a learning curve whose value at
each iteration is the average number of steps-to-go of the policies learned by
the algorithm at that iteration in 1000 separate runs of the algorithm.

We tested the performance of DPI, CBMPI, and AMPI-Q on a wide
range of parameters (m,M,N), but only report their performance for the
best choice of M (as mentioned earlier, M = 1 was the best choice in all the
experiments) and different values of m.

Experimental Results

Figure 4.5 shows the learning curves of DPI, CBMPI, AMPI-Q, and LSPI
algorithms with budget B = 4, 000 per iteration and the function space
F composed of a 3 × 3 RBF grid. We notice from the results that this
space is rich enough to provide a good approximation for the value function
components (e.g., in CBMPI, for (T π)mVk−1 defined by Eq. 4.18). Therefore,
LSPI and DPI obtain the best and worst results with about 50 and 160 steps
to reach the goal, respectively. The best DPI results are obtained with the
large value of m = 20. DPI performs better for large values of m because
the reward function is constant everywhere except at the goal, and thus,
a DPI rollout is only informative if it reaches there. We also report the
performance of CBMPI and AMPI-Q for different values of m. The value
function approximation is so accurate that CBMPI and AMPI-Q achieve
performance similar to LSPI for m < 20. However when m is large (m = 20),
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the performance of these algorithms is worse, because in this case, the rollout
set does not have enough elements (N small) to learn the greedy policy and
value function well. Note that as we increase m (up to m = 10), CBMPI and
AMPI-Q converge faster to a good policy.
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Figure 4.5: Performance of the policies learned by (a) DPI and LSPI, (b)
CBMPI, and (c) AMPI-Q algorithms in the Mountain Car (MC) problem,
when we use a 3 × 3 RBF grid to approximate the value function. The
results are averaged over 1, 000 runs. The total budget B is set to 4, 000 per
iteration.
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Although this experiment shows that the use of a critic in CBMPI com-
pensates for the truncation of the rollouts (CBMPI performs better than
DPI), most of this advantage is due to the richness of the function space
F (LSPI and AMPI-Q perform as well as CBMPI – LSPI even converges
faster). Therefore, it seems that it would be more efficient to use LSPI
instead of CBMPI in this case. In the next experiment, we study the perfor-
mance of these algorithms when the function space F is less rich, composed
of a 2 × 2 RBF grid. The results are reported in Figure 4.6. Now, the per-
formance of LSPI and AMPI-Q (for the best value of m = 1) degrades to
75 and 70 steps, respectively. Although F is not rich, it still helps CBMPI
to outperform DPI. We notice the effect of (weaker) F in CBMPI when we
observe that it no longer converges to its best performance (about 50 steps)
for small values of m = 1 and m = 2. Note that CMBPI outperforms all
the other algorithms for m = 10 (and even for m = 6), while still has a
sub-optimal performance for m = 20, mainly due to the fact that the rollout
set would be too small in this case.
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Figure 4.6: Performance of the policies learned by (a) CBMPI and LSPI and
(b) AMPI-Q algorithms in the Mountain Car (MC) problem, when we use a
2× 2 RBF grid to approximate the value function. The results are averaged
over 1, 000 runs. The total budget B is set to 4, 000 per iteration.
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4.6.2 Tetris

Tetris is a popular video game created by Alexey Pajitnov in 1985. The game
is played on a grid originally composed of 20 rows and 10 columns, where
pieces of 7 different shapes fall from the top (see Figure 4.4). The player
has to choose where to place each falling piece by moving it horizontally
and rotating it. When a row is filled, it is removed and all the cells above
it move one line down. The goal is to remove as many rows as possible
before the game is over, i.e., when there is no space available at the top of
the grid for the new piece. Here, we consider the variation of the game in
which the player knows only the current falling piece, and not the next several
coming pieces. This game constitutes an interesting optimization benchmark
in which the goal is to find a controller (policy) that maximizes the average
(over multiple games) number of lines removed in a game (score).8 This
optimization problem is known to be computationally hard. It contains a
huge number of board configurations (about 2200 ' 1.6× 1060), and even in
the case that the sequence of pieces is known in advance, finding the strategy
to maximize the score is an NP hard problem [Demaine et al., 2003].

Approximate dynamic programming (ADP) and reinforcement learning
(RL) algorithms including approximate value iteration [Tsitsiklis and Van Roy,
1996], λ-policy iteration (λ-PI) [Bertsekas and Ioffe, 1996, Scherrer, 2013b],
linear programming [Farias and Roy, 2006], and natural policy gradient [Kakade,
2002, Furmston and Barber, 2012] have a long history in the game of Tetris.
These algorithms formulate Tetris as an MDP in which the state is defined
by the current board configuration plus the falling piece, the actions are the
possible orientations of the piece and the possible locations that it can be
placed on the board,9 and the reward is defined such that maximizing the
expected sum of rewards from each state coincides with maximizing the score

8Note that this number is finite because it was shown that Tetris is a game that ends
with probability one [Burgiel, 1997].

9The total number of actions at a state depends on the shape of the falling piece, with
the maximum of 32 actions in a state, i.e., |A| ≤ 32.
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from that state. Since the state space is large in Tetris, these methods use
value function approximation schemes (often linear approximation) and try
to tune the value function parameters (weights) from game simulations. De-
spite the long history, ADP/RL algorithms, that have been (almost) entirely
based on approximating the value function, have not been successful in find-
ing good policies in Tetris. On the other hand, methods that search directly
in the space of policies by learning the policy parameters using black-box op-
timization, such as the cross entropy (CE) method [Rubinstein and Kroese,
2004], have achieved the best reported results in this game (see e.g., Szita
and LHorincz 2006, Thiery and Scherrer 2009b). This makes us conjecture
that Tetris is a game in which good policies are easier to represent, and thus,
learn than their corresponding value functions. So, in order to obtain a good
performance with ADP in Tetris, we should use those ADP algorithms that
search in a policy space, like CBMPI and DPI, instead of the more traditional
ones that search in a value function space.

In this section, we evaluate the performance of CBMPI in Tetris and
compare it with DPI, λ-PI, and CE. In these experiments, we show that
CBMPI improves over all the previously reported ADP results. Moreover,
it obtains the best results reported in the literature for Tetris in both small
10× 10 and large 10× 20 boards. Although the CBMPI’s results are similar
to those achieved by the CE method in the large board, it uses considerably
fewer (almost 1/10) samples (call to the generative model of the game) than
CE.

Algorithms and Experimental Setup

In this section, we briefly describe the algorithms used in our experiments:
the cross entropy (CE) method, our particular implementation of CBMPI,
and its slight variation DPI. We refer the readers to Scherrer [2013b] for λ-PI.
We begin by defining some terms and notations. A state x in Tetris consists
of two components: the description of the board b and the type of the falling
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piece p. All controllers rely on an evaluation function that gives a value to
each possible action at a given state. Then, the controller chooses the action
with the highest value. In ADP, algorithms aim at tuning the weights such
that the evaluation function approximates well the optimal expected future
score from each state. Since the total number of states is large in Tetris,
the evaluation function f is usually defined as a linear combination of a set
of features φ, i.e., f(·) = φ(·)>θ. We can think of the parameter vector θ
as a policy (controller) whose performance is specified by the corresponding
evaluation function f(·) = φ(·)>θ. The features used in Tetris for a state-
action pair (x, a) may depend on the description of the board b′ resulted
from taking action a in state x, e.g., the maximum height of b′. Computing
such features requires the knowledge of the game’s dynamics, which is known
in Tetris. We consider the following sets of features, plus a constant offset
feature:10

(i) Bertsekas Features: First introduced by Bertsekas and Tsitsiklis
[1996], this set of 22 features has been mainly used in the ADP/RL com-
munity and consists of: the number of holes in the board, the height of
each column, the difference in height between two consecutive columns,
and the maximum height of the board.

(ii) Dellacherie-Thiery (D-T) Features: This set consists of the six fea-
tures of Dellacherie [Fahey, 2003], i.e., the landing height of the falling
piece, the number of eroded piece cells, the row transitions, the column
transitions, the number of holes, and the number of board wells; plus
3 additional features proposed in Thiery and Scherrer [2009b], i.e., the
hole depth, the number of rows with holes, and the pattern diversity
feature. Note that the best policies reported in the literature have been

10For a precise definition of the features, see Thiery and Scherrer [2009a] or the docu-
mentation of their code [Thiery and Scherrer, 2010b]. Note that the constant offset feature
has no incidence when modelling policies while it plays a role to approximate the value
functions.
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learned using this set of features.

(iii) RBF Height Features: These new 5 features are defined as exp(−|c−ih/4|
2

2(h/5)2
),

i = 0, . . . , 4, where c is the average height of the columns and h = 10

or 20 is the total number of rows in the board.

The Cross Entropy (CE) Method: CE [Rubinstein and Kroese, 2004]
is an iterative method whose goal is to optimize a function f parameterized
by a vector θ ∈ Θ by direct search in the parameter space Θ. Figure 4.7
contains the pseudo-code of the CE algorithm used in our experiments [Szita
and LHorincz, 2006, Thiery and Scherrer, 2009b]. At each iteration k, we
sample n parameter vectors {θi}ni=1 from a multivariate Gaussian distribu-
tion with diagonal covariance matrix N (µ, diag(σ2)). At the beginning, the
parameters of this Gaussian have been set to cover a wide region of Θ. For
each parameter θi, we play G games and calculate the average number of
rows removed by this controller (an estimate of the expected score). We
then select bζnc of these parameters with the highest score, θ′1, . . . , θ′bζnc, and
use them to update the mean µ and variance diag(σ2) of the Gaussian dis-
tribution, as shown in Figure 4.7. This updated Gaussian is used to sample
the n parameters at the next iteration. The goal of this update is to sample
more parameters from the promising parts of Θ at the next iteration, and
hopefully converge to a global maximum of f . In our experiments, in the
pseudo-code of Figure 4.7, we set ζ = 0.1 and η = 4, the best parameters
reported in Thiery and Scherrer [2009b]. We also set n = 1, 000 and G = 10

in the small board and n = 100 and G = 1 in the large board.

Our Implementation of CBMPI (DPI): We use the algorithm whose
pseudo-code is shown in Figure 4.3. We sampled states from the trajectories
generated by a good policy for Tetris, namely the DU controller obtained
by Thiery and Scherrer [2009b]. Since this policy is good, the resulted roll-
out set is biased towards boards with small height. We noticed from our
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Input: parameter space Θ, number of parameter vectors n, proportion ζ ≤ 1,
noise η
Initialize: Set the mean and variance parameters µ = (0, 0, . . . , 0) and σ2 =
(100, 100, . . . , 100)
for k = 1, 2, . . . do

Generate a random sample of n parameter vectors {θi}ni=1 ∼ N (µ, diag(σ2))
For each θi, play G games and calculate the average number of rows removed
(score) by the controller
Select bζnc parameters with the highest score θ′1, . . . , θ′bζnc
Update µ and σ: µ(j) = 1

bζnc
∑bζnc

i=1 θ′i(j) and σ2(j) = 1
bζnc

∑bζnc
i=1 [θ′i(j)−

µ(j)]2 + η
end for

Figure 4.7: The pseudo-code of the cross-entropy (CE) method used in our
experiments.

experiments that the performance can be significantly improved if we use
boards with different heights, and thus, we generated a rollout set in which
the board height distribution is more uniform by subsampling the set resulted
from the DU policy. This means that better performance can be achieved
with more uniform sampling distribution, which is consistent with what we
can learn from the CBMPI and DPI performance bounds. We set the initial
value function parameter to α = (0, 0, . . . , 0) and select the initial policy π1

(policy parameter β) randomly. We also set the CMA-ES parameters (clas-
sifier parameters) to ζ = 0.5, η = 0, and n equal to 15 times the number of
features. Finally, we set the discount factor γ = 1.

• Regressor: We use linear function approximation for the value func-
tion, i.e., V̂k(x(i)) = φ(x(i))α, where φ(·) and α are the feature and
weight vectors, and minimize the empirical error L̂Fk (µ̂;V ) using the
standard least-squares method.

• Classifier: The training set of the classifier is of size N with x(i) ∈
D′k as input and

(
maxa Q̂k(x

(i), a)− Q̂k(x
(i), a1), . . . ,maxa Q̂k(x

(i), a)−
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Q̂k(x
(i), a|A|)

)
as output. We use the policies of the form πβ(x) =

arg maxa ψ(x, a)>β, where ψ is the policy feature vector (possibly dif-
ferent from the value function feature vector φ) and β ∈ B is the policy
parameter vector. We compute the next policy πk+1 by minimizing the
empirical error L̂Π

k (µ̂; πβ), defined by (4.16), using the covariance ma-
trix adaptation evolution strategy (CMA-ES) algorithm [Hansen and
Ostermeier, 2001]. In order to evaluate a policy β ∈ B in CMA-ES, we
only need to compute L̂Π

k (µ̂; πβ), and given the training set, this proce-
dure does not require any simulation of the game. This is in contrary
with policy evaluation in CE that requires playing several games.

Experiments

In our Tetris experiments, the policies learned by the algorithms are evalu-
ated by their score (average number of rows removed in a game started with
an empty board) averaged over 200 games in the small 10 × 10 board and
over 20 games in the large 10 × 20 board (since the game takes much more
time to complete in the large board). The performance of each algorithm
is represented by a learning curve whose value at each iteration is the av-
erage score of the policies learned by the algorithm at that iteration in 100

separate runs of the algorithm. In addition to their score, we also evaluate
the algorithms by the number of samples they use. In particular, we show
that CBMPI/DPI use 10 times fewer samples than CE in the large board.
As discussed in Section 4.6.2, this is due the fact that although the clas-
sifier in CBMPI/DPI uses a direct search in the space of policies (for the
greedy policy), it evaluates each candidate policy using the empirical error
of Eq. 4.16, and thus, does not require any simulation of the game (other
than those used to estimate the Q̂k’s in its training set). In fact, the budget
B of CBMPI/DPI is fixed in advance by the number of rollouts NM and
the rollout’s length m as B = (m + 1)NM |A|. In contrary, CE evaluates a
candidate policy by playing several games, a process that can be extremely
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costly (sample-wise), especially for good policies in the large board.
We first run the algorithms on the small board to study the role of their

parameters and to select the best features and parameters, and then use the
selected features and parameters and apply the algorithms to the large board.
Finally, we compare the best policies found in our experiments with the best
controllers reported in the literature (Tables 4.1 and 4.2).

Small (10 × 10) Board

Here we run the algorithms with two different feature sets: Dellacherie-
Thiery (D-T) and Bertsekas, and report their results.

D-T Features: Figure 4.8 shows the learning curves of CE, λ-PI, DPI, and
CBMPI algorithms. Here we use D-T features plus constant offset for the
evaluation function in CE, the value function in λ-PI, and the policy in DPI
and CBMPI. We ran CBMPI with different choices of features for the value
function and “D-T plus the 5 RBF features and constant offset" achieved
the best performance (Figure 4.8(d)). The budget of CBMPI and DPI is
set to B = 8, 000, 000 per iteration. The CE method reaches the score 3000

after 10 iterations using an average budget B = 65, 000, 000. λ-PI with
the best value of λ only manages to score 400. In Figure 4.8(c), we report
the performance of DPI for different values of m. DPI achieves its best
performance for m = 5 and m = 10 by removing 3, 400 lines on average. As
explained in Section 4.6.1, having short rollouts (m = 1) in DPI leads to poor
action-value estimates Q̂, while having too long rollouts (m = 20) decreases
the size of the training set of the classifier N . CBMPI outperforms the other
algorithms, including CE, by reaching the score of 4, 200 for m = 5. This
value of m = 5 corresponds to N = 8000000

(5+1)×32
≈ 42, 000. Note that unlike

DPI, CBMPI achieves good performance with very short rollouts m = 1.
This indicates that CBMPI is able to approximate the value function well,
and as a result, build a more accurate training set for its classifier than
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DPI. Despite this improvement, the good results obtained by DPI in Tetris
indicate that with small rollout horizons like m = 5, one has already fairly
accurate action value estimates in order to detect greedy actions accurately
(at each iteration).

The results of Figure 4.8 show that an ADP algorithm, namely CBMPI,
outperforms the CE method using a similar budget (80 vs. 65 millions after
10 iterations). Note that CBMPI takes less iterations to converge than CE.
More generally Figure 4.8 confirms the superiority of the policy search and
classification-based PI methods to value-function based ADP algorithms (λ-
PI). This suggests that the D-T features are more suitable to represent the
policies than the value functions in Tetris.

Bertsekas Features: Figure 4.9(a)-(c) show the performance of CE, λ-PI,
DPI, and CBMPI algorithms. Here all the approximations in the algorithms
are with the Bertsekas features plus constant offset. CE achieves the score
500 after about 60 iterations and outperforms λ-PI with score 350. It is clear
that the Bertsekas features lead to much weaker results than those obtained
by the D-T features (Figure 4.8) for all the algorithms. We may conclude
then that the D-T features are more suitable than the Bertsekas features to
represent both value functions and policies in Tetris. In DPI and CBMPI,
we managed to obtain results similar to CE, only after multiplying the per
iteration budget B used in the D-T experiments by 10. Indeed, CBMPI and
DPI need more samples to solve the classification and regression problems in
this 22-dimensions weight vector space than with the 9 D-T features. More-
over, in the classifier, the minimization of the empirical error through the
CMA-ES method (see Eq. 4.11) was converging most of the times to a local
minimum. To solve this issue, we run multiple times the minimization prob-
lem with different starting points and small initial covariance matrices for
the Gaussian distribution in order to force local exploration of different parts
of the weight vector areas. However, CBMPI and CE use the same num-
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(a) The cross-entropy (CE) method.
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(b) λ-PI with λ = {0, 0.4, 0.7, 0.9}.
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(c) DPI with budget B = 8, 000, 000 per
iteration and m = {1, 2, 5, 10, 20}.
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(d) CBMPI with budget B = 8, 000, 000
per iteration and m = {1, 2, 5, 10, 20}.

Figure 4.8: Learning curves of CE, λ-PI, DPI, and CBMPI algorithms using
the 9 Dellacherie-Thiery (D-T) features on the small 10 × 10 board. The
results are averaged over 100 runs of the algorithms.

ber of samples, 150, 000, 000, when they converge after 2 and 60 iterations,
respectively (see Figure 4.9). Note that DPI and CBMPI obtain the same
performance, which means that the use of a value function approximation by
CBMPI does not lead to a significant performance improvement over DPI.
At the end, we tried several values of m in this setting among which m = 10

achieved the best performance for both DPI and CBMPI.
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(b) λ-PI with λ = {0, 0.4, 0.7, 0.9}.
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(c) DPI (dash-dotted line) & CBMPI (dash
line) with budget B = 80, 000, 000 per iter-
ation and m = 10.

Figure 4.9: (a)-(c) Learning curves of CE, λ-PI, DPI, and CBMPI algorithms
using the 22 Bertsekas features on the small 10× 10 board.

Large (10 × 20) Board

We now use the best parameters and features in the small board experiments,
run CE, DPI, and CBMPI algorithms in the large board, and report their
results in Figure 4.10 (left). We also report the results of λ-PI in the large
board in Figure 4.10 (right). The per iteration budget of DPI and CBMPI is
set to B = 16, 000, 000. While λ-PI with per iteration budget 620, 000, at its
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best, achieves the score of 2, 500, DPI and CBMPI, with m = 10, reach the
scores of 12, 000, 000 and 16, 000, 000 after 3 and 6 iterations, respectively.
Although CE outperforms CBMPI with the score of 20, 000, 000 after 6 itera-
tions, this is achieved with almost 13 times more samples: after 8 iterations,
CBMPI and CE use 128, 000, 000 and 1, 700, 000, 000 samples, respectively.
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Figure 4.10: Learning curves of CBMPI, DPI and CE (left), and λ-PI (right)
using the 9 features listed in Table 4.2 on the large 10× 20 board. The total
budget B of CBMPI and DPI is set to 16,000,000 per iteration.

Comparison of the Best Policies

So far the reported scores for each algorithm was averaged over the policies
learned in 100 separate runs. Here we select the best policies observed in
our all experiments and compute their scores more accurately by averaging
over 10, 000 games. We then compare these results with the best policies
reported in the literature, i.e., DU and BDU [Thiery and Scherrer, 2009b] in
both small and large boards in Table 4.1. The DT-10 and DT-20 policies,
whose weights and features are given in Table 4.2, are policies learned by
CBMPI with D-T features in the small and large boards, respectively. As
shown in Table 4.1, DT-10 removes 5, 000 lines and outperforms DU, BDU,
and DT-20 in the small board. Note that DT-10 is the only policy among
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these four that has been learned in the small board. In the large board,
DT-20 obtains the score of 51, 000, 000 and not only outperforms the other
three policies, but also achieves the best reported result in the literature
(to the best of our knowledge). We observed in our experiments that the
policies learned by CBMPI have more variance in their performance than
those learned by CE. This is why in the large board, although the policies
learned by CE have better average performance than CBMPI (see Figure 4.10
(left)), the best policy learned by CBMPI outperforms that learned by CE
(see Table 4.1).

Boards \ Policies DU BDU DT-10 DT-20
Small (10× 10) board 3800 4200 5000 4300

Large (10× 20) board 31, 000, 000 36, 000, 000 29, 000, 000 51, 000, 000

Table 4.1: Average (over 10, 000 games) score of DU, BDU, DT-10, and
DT-20 policies.

feature weight feature weight feature weight
landing height -2.18 -2.68 column transitions -3.31 -6.32 hole depth -0.81 -0.43

eroded piece cells 2.42 1.38 holes 0.95 2.03 rows w/ holes -9.65 -9.48
row transitions -2.17 -2.41 board wells -2.22 -2.71 diversity 1.27 0.89

Table 4.2: The weights of the 9 Dellacherie-Thiery features in DT-10 (left)
and DT-20 (right) policies.

4.7 Conclusion

In this paper, we considered a dynamic programming (DP) scheme for Markov
decision processes, known as modified policy iteration (MPI). We proposed
three original approximate MPI (AMPI) algorithms that are extensions of
existing approximate DP (ADP) algorithms: fitted-value iteration, fitted-Q
iteration, and classification-based policy iteration. We reported a general er-
ror propagation analysis for AMPI that unifies those for approximate policy
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and value iteration. We instantiated this analysis for the three algorithms
that we introduced, which led to a finite-sample analysis of their guaranteed
performance. For the last introduced algorithm, CBMPI, our analysis indi-
cated that the main parameter of MPI controls the balance of errors (between
value function approximation and estimation of the greedy policy). The role
of this parameter was illustrated for all algorithms on two benchmark prob-
lems: Mountain Car and Tetris. Remarkably, in the game of Tetris, CBMPI
showed advantages over all previous approaches: it significantly outperforms
previous ADP approaches, and is competitive with black-box optimization
techniques—the current state of the art for this domain—while using fewer
samples. In particular, CBMPI led to what is to our knowledge the currently
best Tetris controller, removing 51, 000, 000 lines on average. Interesting fu-
ture work includes 1) the adaptation and precise analysis of our three al-
gorithms to the computation of non-stationary policies11 and 2) considering
problems with large action spaces, for which the methods we have proposed
here are likely to be limited.

4.8 Appendix

4.8.1 Proof of Lemma 43

Before we start, we recall the following definitions:

bk = Vk − T πk+1Vk,

dk = V ∗ − (T πk)mVk−1 = V ∗ − (Vk − εk),
sk = (T πk)mVk−1 − V πk = (Vk − εk)− V πk .

11We recently showed that considering a variation of AMPI for computing non-stationary
policies allows improving the 1

(1−γ)2 constant [Lesner and Scherrer, 2013].

158



Bounding bk

bk = Vk − T πk+1Vk

= Vk − T πkVk + T πkVk − T πk+1Vk
(a)

≤ Vk − T πkVk + ε′k+1

= Vk − εk − T πkVk + γP πkεk + εk − γP πkεk + ε′k+1

(b)
= Vk − εk − T πk(Vk − εk) + (I − γP πk)εk + ε′k+1. (4.25)

Using the definition of xk, i.e.,

xk
∆
= (I − γP πk)εk + ε′k+1, (4.26)

we may write Eq. 4.25 as

bk ≤ Vk − εk − T πk(Vk − εk) + xk
(c)
= (T πk)mVk−1 − T πk(T πk)mVk−1 + xk

= (T πk)mVk−1 − (T πk)m(T πkVk−1) + xk
(d)
= (γP πk)m(Vk−1 − T πkVk−1) + xk

= (γP πk)mbk−1 + xk. (4.27)

(a) From the definition of ε′k+1, we have ∀π′ T π′Vk ≤ T πk+1Vk + ε′k+1, thus
this inequality holds also for π′ = πk.
(b) This step is due to the fact that for every v and v′, we have T πk(V +V ′) =

T πkV + γP πkV ′.
(c) This is from the definition of εk, i.e., Vk = (T πk)mVk−1 + εk.
(d) This step is due to the fact that for every V and V ′, any m, we have
(T πk)mV − (T πk)mV ′ = (γP πk)m(V − V ′).
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Bounding dk

dk+1 = V ∗ − (T πk+1)mVk

= T π∗V ∗ − T π∗Vk + T π∗Vk − T πk+1Vk + T πk+1Vk − (T πk+1)mVk
(a)

≤ γP π∗(V ∗ − Vk) + ε′k+1 + gk+1

= γP π∗(V ∗ − Vk) + γP π∗εk − γP π∗εk + ε′k+1 + gk+1

(b)
= γP π∗

(
V ∗ − (Vk − εk)

)
+ yk + gk+1

= γP π∗dk + yk + gk+1

(c)
= γP π∗dk + yk +

m−1∑

j=1

(γP πk+1)jbk. (4.28)

(a) This step is from the definition of ε′k+1 (see step (a) in bounding bk) and
by defining gk+1 as follows:

gk+1
∆
= T πk+1Vk − (T πk+1)mVk. (4.29)

(b) This is from the definition of yk, i.e.,

yk
∆
= −γP π∗εk + ε′k+1. (4.30)
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(c) This step comes from rewriting gk+1 as

gk+1 = T πk+1Vk − (T πk+1)mVk

=
m−1∑

j=1

[
(T πk+1)jVk − (T πk+1)j+1Vk

]

=
m−1∑

j=1

[
(T πk+1)jVk − (T πk+1)j(T πk+1Vk)

]

=
m−1∑

j=1

(γP πk+1)j(Vk − T πk+1Vk)

=
m−1∑

j=1

(γP πk+1)jbk. (4.31)

Bounding sk With some slight abuse of notation, we have

V πk = (T πk)∞Vk

and thus:
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sk = (T πk)mVk−1 − Vπk
(a)
= (T πk)mVk−1 − (T πk)∞Vk−1

= (T πk)mVk−1 − (T πk)m(T πk)∞Vk−1

= (γP πk)m
(
Vk−1 − (T πk)∞Vk−1

)

= (γP πk)m
∞∑

j=0

[
(T πk)jVk−1 − (T πk)j+1Vk−1

]

= (γP πk)m
( ∞∑

j=0

[
(T πk)jVk−1 − (T πk)jT πkVk−1

]

= (γP πk)m
( ∞∑

j=0

(γP πk)j
)

(Vk−1 − T πkVk−1)

= (γP πk)m(I − γP πk)−1(Vk−1 − T πkVk−1)

= (γP πk)m(I − γP πk)−1bk. (4.32)

(a) For any V , we have V πk = (T πk)∞V . This step follows by setting
V = Vk−1, i.e., V πk = (T πk)∞Vk−1.

4.8.2 Proof of Lemma 45

We begin by focusing our analysis on AMPI. Here we are interested in bound-
ing the loss lk = V ∗ − V πk = dk + sk.

By induction, from Eqs. 4.27 and 4.28, we obtain

bk ≤
k∑

i=1

Γm(k−i)xi + Γmkb0, (4.33)

dk ≤
k−1∑

j=0

Γk−1−j
(
yj +

m−1∑

l=1

Γlbj

)
+ Γkd0. (4.34)
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in which we have used the notation introduced in Definition 44. In Eq. 4.34,
we also used the fact that from Eq. 4.31, we may write gk+1 =

∑m−1
j=1 Γjbk.

Moreover, we may rewrite Eq. 4.32 as

sk = Γm
∞∑

j=0

Γjbk−1 =
∞∑

j=0

Γm+jbk−1. (4.35)

Bounding lk From Eqs. 4.33 and 4.34, we may write

dk ≤
k−1∑

j=0

Γk−1−j

(
yj +

m−1∑

l=1

Γl
( j∑

i=1

Γm(j−i)xi + Γmjb0

))
+ Γkd0

=
k∑

i=1

Γi−1yk−i +
k−1∑

j=0

m−1∑

l=1

j∑

i=1

Γk−1−j+l+m(j−i)xi + zk, (4.36)

where we used the following definition

zk
∆
=

k−1∑

j=0

m−1∑

l=1

Γk−1+l+j(m−1)b0 + Γkd0 =
mk−1∑

i=k

Γib0 + Γkd0.

The triple sum involved in Eq. 4.36 may be written as

k−1∑

j=0

m−1∑

l=1

j∑

i=1

Γk−1−j+l+m(j−i)xi =
k−1∑

i=1

k−1∑

j=i

m−1∑

l=1

Γk−1+l+j(m−1)−mixi

=
k−1∑

i=1

mk−1∑

j=mi+k−i

Γj−mixi

=
k−1∑

i=1

m(k−i)−1∑

j=k−i

Γjxi

=
k−1∑

i=1

mi−1∑

j=i

Γjxk−i. (4.37)
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Using Eq. 4.37, we may write Eq. 4.36 as

dk ≤
k∑

i=1

Γi−1yk−i +
k−1∑

i=1

mi−1∑

j=i

Γjxk−i + zk. (4.38)

Similarly, from Eqs. 4.35 and 4.33, we have

sk ≤
∞∑

j=0

Γm+j
( k−1∑

i=1

Γm(k−1−i)xi + Γm(k−1)b0

)

=
∞∑

j=0

( k−1∑

i=1

Γm+j+m(k−1−i)xi + Γm+j+m(k−1)b0

)

=
k−1∑

i=1

∞∑

j=0

Γj+m(k−i)xi +
∞∑

j=0

Γj+mkb0 =
k−1∑

i=1

∞∑

j=0

Γj+mixk−i +
∞∑

j=mk

Γjb0

=
k−1∑

i=1

∞∑

j=mi

Γjxk−i + z′k, (4.39)

where we used the following definition

z′k
∆
=

∞∑

j=mk

Γjb0.

Finally, using the bounds in Eqs. 4.38 and 4.39, we obtain the following
bound on the loss

lk ≤ dk + sk

≤
k∑

i=1

Γi−1yk−i +
k−1∑

i=1

(mi−1∑

j=i

Γj +
∞∑

j=mi

Γj
)
xk−i + zk + z′k

=
k∑

i=1

Γi−1yk−i +
k−1∑

i=1

∞∑

j=i

Γjxk−i + ηk, (4.40)
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where we used the following definition

ηk
∆
= zk + z′k =

∞∑

j=k

Γjb0 + Γkd0. (4.41)

Note that we have the following relation between b0 and d0

b0 = V0 − T π1V0

= V0 − V ∗ + T π∗V ∗ − T π∗V0 + T π∗V0 − T π1V0

≤ (I − γP π∗)(−d0) + ε′1, (4.42)

In Eq. 4.42, we used the fact that V ∗ = T π∗V ∗, ε0 = 0, and T π∗V0−T π1V0 ≤
ε′1 (this is because the policy π1 is ε′1-greedy w.r.t. V0). As a result, we may
write |ηk| either as

|ηk| ≤
∞∑

j=k

Γj
[
(I − γP π∗)|d0|+ |ε′1|

]
+ Γk|d0|

≤
∞∑

j=k

Γj
[
(I + Γ1)|d0|+ |ε′1|

]
+ Γk|d0|

= 2
∞∑

j=k

Γj|d0|+
∞∑

j=k

Γj|ε′1|, (4.43)
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or using the fact that from Eq. 4.42, we have d0 ≤ (I − γP π∗)−1(−b0 + ε′1),
as

|ηk| ≤
∞∑

j=k

Γj|b0|+ Γk
∞∑

j=0

(γP π∗)j
(
|b0|+ |ε′1|

)

=
∞∑

j=k

Γj|b0|+ Γk
∞∑

j=0

Γj
(
|b0|+ |ε′1|

)

= 2
∞∑

j=k

Γj|b0|+
∞∑

j=k

Γj|ε′1|. (4.44)

Now, using the definitions of xk and yk in Eqs. 4.26 and 4.30, the bound on
|ηk| in Eq. 4.43 or 4.44, and the fact that ε0 = 0, we obtain

|lk| ≤
k∑

i=1

Γi−1
[
Γ1|εk−i|+ |ε′k−i+1|

]
+

k−1∑

i=1

∞∑

j=i

Γj
[
(I + Γ1)|εk−i|+ |ε′k−i+1|

]
+ |ηk|

=
k−1∑

i=1

(
Γi +

∞∑

j=i

(Γj + Γj+1)
)
|εk−i|+ Γk|ε0| (4.45)

+
k−1∑

i=1

(
Γi−1 +

∞∑

j=i

Γj
)
|ε′k−i+1|+ Γk−1|ε′1|+

∞∑

j=k

Γj|ε′1|+ h(k)

= 2
k−1∑

i=1

∞∑

j=i

Γj|εk−i|+
k−1∑

i=1

∞∑

j=i−1

Γj|ε′k−i+1|+
∞∑

j=k−1

Γj|ε′1|+ h(k)

= 2
k−1∑

i=1

∞∑

j=i

Γj|εk−i|+
k−1∑

i=0

∞∑

j=i

Γj|ε′k−i|+ h(k), (4.46)

where we used the following definition

h(k)
∆
= 2

∞∑

j=k

Γj|d0| or h(k)
∆
= 2

∞∑

j=k

Γj|b0|,

depending on whether one uses Eq. 4.43 or Eq. 4.44.
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We end this proof by adapting the error propagation to CBMPI. As ex-
pressed by Eqs. 4.19 and 4.20 in Section 4.4, an analysis of CBMPI can be
deduced from that we have just done by replacing vk with the auxiliary vari-
able wk = (T πk)mVk−1 and εk with (γP πk)mεk−1 = Γmεk−1. Therefore, using
the fact that ε0 = 0, we can rewrite the bound of Eq. 4.46 for CBMPI as
follows:

lk ≤ 2
k−1∑

i=1

∞∑

j=i

Γj+m|εk−i−1|+
k−1∑

i=0

∞∑

j=i

Γj|ε′k−i|+ h(k)

= 2
k−2∑

i=1

∞∑

j=m+i

Γj|εk−i−1|+
k−1∑

i=0

∞∑

j=i

Γj|ε′k−i|+ h(k). (4.47)

4.8.3 Proof of Lemma 47

For any integer t and vector z, the definition of Γt and Hölder’s inequality
imply that

ρΓt|z| =
∥∥Γt|z|

∥∥
1,ρ
≤ γtcq(t)‖z‖q′,µ = γtcq(t)

(
µ|z|q′

) 1
q′
. (4.48)

We define

K
∆
=

n∑

l=1

ξl

(∑

i∈Il

∑

j∈Ji

γj

)
,

where {ξl}nl=1 is a set of non-negative numbers that we will specify later. We
now have
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‖f‖pp,ρ = ρ|f |p

≤ Kpρ

(∑n
l=1

∑
i∈Il

∑
j∈Ji Γj |gi|

K

)p
= Kpρ



∑n

l=1 ξl
∑

i∈Il
∑

j∈Ji Γj
(
|gi|
ξl

)

K



p

(a)

≤ Kpρ

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji Γj

(
|gi|
ξl

)p

K
= Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji ρΓj

(
|gi|
ξl

)p

K

(b)

≤ Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji γ

jcq(j)

(
µ
(
|gi|
ξl

)pq′) 1
q′

K

= Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji γ

jcq(j)
(‖gi‖pq′,µ

ξl

)p

K

≤ Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

jcq(j)
)(

supi∈Il
‖gi‖pq′,µ
ξl

)p

K

(c)
= Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

j
)
Cq(l)

(
supi∈Il

‖gi‖pq′,µ
ξl

)p

K
,

where (a) results from Jensen’s inequality, (b) from Eq. 4.48, and (c) from
the definition of Cq(l). Now, by setting ξl =

(
Cq(l)

)1/p
supi∈Il ‖gi‖pq′,µ, we

obtain

‖f‖pp,ρ ≤ Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

j
)

K
= Kp,

where the last step follows from the definition of K.

4.8.4 Proof of Theorem 48

Proof We only detail the proof for AMPI (the proof being similar for
CBMPI). We define I = {1, 2, · · · , 2k}, the partition I = {I1, I2, I3} as
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I1 = {1, . . . , k− 1}, I2 = {k, . . . , 2k− 1}, and I3 = {2k}, and for each i ∈ I

gi =





2εk−i if 1 ≤ i ≤ k − 1,

ε′k−(i−k) if k ≤ i ≤ 2k − 1,

2d0 (or 2b0) if i = 2k,

and

Ji =





{i, i+ 1, · · · } if 1 ≤ i ≤ k − 1,

{i− k, i− k + 1, · · · } if k ≤ i ≤ 2k − 1,

{k, k + 1, · · · } if i = 2k.

Note that here we have divided the terms in the point-wise bound of Lemma 45
into three groups: the evaluation error terms {εj}k−1

j=1 , the greedy step error
terms {ε′j}kj=1, and finally the residual term h(k). With the above definitions
and the fact that the loss lk is non-negative, Lemma 45 may be rewritten as

|lk| ≤
3∑

l=1

∑

i∈Il

∑

j∈Ji

Γj|gi|.

The result follows by applying Lemma 47 and noticing that
∑k−1

i=i0

∑∞
j=i γ

j =
γi0−γk
(1−γ)2

.

Here in order to show the flexibility of Lemma 47, we group the terms
differently and derive an alternative Lp-bound for the loss of AMPI and
CBMPI. In analogy with the results of Farahmand et al. [2010], this new
bound shows that the last iterations have the highest influence on the loss
(the influence exponentially decreases towards the initial iterations).

Theorem 59 With the notations of Theorem 48, after k iterations, the loss
of AMPI satisfies

‖lk‖p,ρ ≤ 2

k−1∑

i=1

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖εk−i‖pq′,µ+

k−1∑

i=0

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖ε′k−i‖pq′,µ+g(k).
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while the loss of CBMPI satisfies

‖lk‖p,ρ ≤ 2γm
k−2∑

i=1

γi

1− γ
(
Ci,i+1,m
q

) 1
p ‖εk−i−1‖pq′,µ+

k−1∑

i=0

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖ε′k−i‖pq′,µ+g(k).

Proof Again, we only detail the proof for AMPI (the proof being similar
for CBMPI). We define I, (gi) and (Ji) as in the proof of Theorem 48. We
then make as many groups as terms, i.e., for each n ∈ {1, 2, . . . , 2k − 1}, we
define In = {n}. The result follows by application of Lemma 47.

4.8.5 Proof of Lemma 54

Figure 4.11: The vectors used in the proof.

Let µ̂ be the empirical distribution corresponding to states x(1), . . . , x(n).
Let us define twoN -dimensional vectors z =

([
(T πk)mVk−1

]
(x(1)), . . . ,

[
(T πk)m

Vk−1

]
(x(N))

)>
and y =

(
V̂k(x

(1)), . . . , V̂k(x
(N))

)> and their orthogonal projec-

tions onto the vector space FN as ẑ = Π̂z and ŷ = Π̂y =
(
Ṽk(x

(1)), . . . , Ṽk(x
(N))

)>,
where Ṽk is the result of linear regression and its truncation (by Vmax) is Vk,
i.e., Vk = T(Ṽk) (see Figure 4.11). What we are interested in is to find a
bound on the regression error ‖z − ŷ‖ (the difference between the target
function z and the result of the regression ŷ). We may decompose this error
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as

‖z − ŷ‖2,µ̂ ≤ ‖ẑ − ŷ‖2,µ̂ + ‖z − ẑ‖2,µ̂ = ‖ξ̂‖2,µ̂ + ‖z − ẑ‖2,µ̂, (4.49)

where ξ̂ = ẑ − ŷ is the projected noise (estimation error) ξ̂ = Π̂ξ, with the
noise vector ξ = z − y defined as ξi =

[
(T πk)mVk−1

]
(x(i)) − V̂k(x

(i)). It is
easy to see that noise is zero mean, i.e., E[ξi] = 0 and is bounded by 2Vmax,
i.e., |ξi| ≤ 2Vmax. We may write the estimation error as

‖ẑ − ŷ‖2
2,µ̂ = ‖ξ̂‖2

2,µ̂ = 〈ξ̂, ξ̂〉 = 〈ξ, ξ̂〉,

where the last equality follows from the fact that ξ̂ is the orthogonal projec-
tion of ξ. Since ξ̂ ∈ Fn, let fα ∈ F be any function whose values at {x(i)}Ni=1

equals to {ξi}Ni=1. By application of a variation of Pollard’s inequality (Györfi
et al., 2002), we obtain

〈ξ, ξ̂〉 =
1

N

N∑

i=1

ξifα(s(i)) ≤ 4Vmax‖ξ̂‖2,µ̂

√
2

N
log

(
3(9e2N)d+1

δ′

)
,

with probability at least 1− δ′. Thus, we have

‖ẑ − ŷ‖2,µ̂ = ‖ξ̂‖2,µ̂ ≤ 4Vmax

√
2

N
log

(
3(9e2N)d+1

δ′

)
. (4.50)

From Eqs. 4.49 and 4.50, we have

‖(T πk)mVk−1−Ṽk‖2,µ̂ ≤ ‖(T πk)mVk−1−Π̂(T πk)mVk−1‖2,µ̂+4Vmax

√
2

N
log

(
3(9e2N)d+1

δ′

)
.

(4.51)

Now in order to obtain a random design bound, we first define fα̂∗ ∈ F
as fα̂∗(x(i)) =

[
Π̂(T πk)mVk−1

]
(x(i)), and then define fα∗ = Π(T πk)mVk−1 that

is the best approximation (w.r.t. µ) of the target function (T πk)mVk−1 in F .
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Since fα̂∗ is the minimizer of the empirical loss, any function in F different
than fα̂∗ has a bigger empirical loss, thus we have

‖fα̂∗ − (T πk)mVk−1‖2,µ̂ ≤ ‖fα∗ − (T πk)mVk−1‖2,µ̂

≤ 2‖fα∗ − (T πk)mVk−1‖2,µ

+ 12
(
Vmax + ‖α∗‖2 sup

x
‖φ(x)‖2

)√ 2

N
log

3

δ′

(4.52)

with probability at least 1−δ′, where the second inequality is the application
of a variation of Theorem 11.2 in the book by Györfi et al., (2002) with
‖fα∗ − (T πk)mVk−1‖∞ ≤ Vmax + ‖α∗‖2 supx ‖φ(x)‖2. Similarly, we can write
the left-hand-side of Eq. 4.51 as

2‖(T πk)mVk−1 − Ṽk‖2,µ̂ ≥ 2‖(T πk)mVk−1 − T(Ṽk)‖2,µ̂ (4.53)

≥ ‖(T πk)mVk−1 − T(Ṽk)‖2,µ − 24Vmax

√
2

N
Λ(N, d, δ′)

with probability at least 1− δ′, where Λ(N, d, δ′) = 2(d+ 1) logN + log e
δ′

+

log
(
9(12e)2(d+1)

)
. Putting together Eqs. 4.51, 4.52, and 4.53 and using the

fact that T(Ṽk) = Vk, we obtain

‖ηk‖2,µ = ‖(T πk)mVk−1 − Vk‖2,µ

≤ 2

(
2‖(T πk)mVk−1 − fα∗‖2,µ

+ 12
(
Vmax + ‖α∗‖2 sup

x
‖φ(x)‖2

)√ 2

N
log

3

δ′
+ 4Vmax

√
2

N
log

(
3(9e2N)d+1

δ′

))

+ 24Vmax

√
2

N
Λ(N, d, δ′).

172



The result follows by setting δ = 3δ′ and some simplifications.

4.8.6 Proof of Lemma 55

Proof We prove the following series of inequalities:

||ε′k||1,µ
(a)

≤ ||ε′k||1,µ̂ + e′3(N, δ′) w.p. 1− δ′

(b)
=

1

N

N∑

i=1

[
max
a∈A

(
T aVk−1

)
(x(i))−

(
T πkVk−1

)
(x(i))

]
+ e′3(N, δ′)

(c)

≤ 1

N

N∑

i=1

[
max
a∈A

(
T aVk−1

)
(x(i))−

(
T̂ πkVk−1

)
(x(i))

]
+ e′3(N, δ′) + e′4(N,M, δ′)

w.p. 1− 2δ′

(d)
=

1

N

N∑

i=1

[
max
a∈A

(
T aVk−1

)
(x(i))−max

a′∈A

(
T̂ a′Vk−1

)
(x(i))

]
+ e′3(N, δ′) + e′4(N,M, δ′)

(e)

≤ 1

N

N∑

i=1

{
max
a∈A

[(
T aVk−1

)
(x(i))−

(
T̂ aVk−1

)
(x(i))

]}
+ e′3(N, δ′) + e′4(N,M, δ′)

(f)

≤ e′3(N, δ′) + 2e′4(N,M, δ′) w.p. 1− 3δ′

(a) This step is the result of the following lemma.

Lemma 60 Let Π be the policy space of the policies obtained by Eq. 4.3 from
the truncation (by Vmax) of the function space F , with finite VC-dimension
h = V C(Π) < ∞. Let N > 0 be the number of states in the rollout set Dk,
drawn i.i.d. from the state distribution µ. Then, we have

PDk

[
sup
π∈Π
|||ε′k(π)||1,µ̂ − ||ε′k(π)||1,µ| > e′3(N, δ)

]
≤ δ ,

with e′3(N, δ) = 16Vmax

√
2
N

(h log eN
h

+ log 8
δ
).

Proof The proof is similar to the proof of Lemma 1 in Lazaric et al. [2010a].
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(b) This is from the definition of ||ε′k||1,µ̂.

(c) This step is the result of bounding

sup
π∈Π

[
1

N

N∑

i=1

(
T̂ πVk−1

)
(s(i))− 1

N

N∑

i=1

(
T πVk−1

)
(s(i))

]

by e′4(N,M, δ). The supremum over all the policies in the policy space Π is
due to the fact that πk is a random object whose randomness comes from
all the randomly generated samples at the k’th iteration (i.e., the states in
the rollout set and all the generated rollouts). We bound this term using the
following lemma.

Lemma 61 Let Π be the policy space of the policies obtained by Eq. 4.3 from
the truncation (by Vmax) of the function space F , with finite VC-dimension
h = V C(Π) <∞. Let {x(i)}Ni=1 be N states sampled i.i.d. from the distribu-
tion µ. For each sampled state x(i), we take the action suggested by policy π,
M times, and observe the next states {x(i,j)}Mj=1. Then, we have

P


sup
π∈Π

∣∣∣∣∣∣
1

N

N∑

i=1

1

M

M∑

j=1

[
r
(
x(i), π(x(i)

)
+ γVk−1

(
x(i,j)

)]
− 1

N

N∑

i=1

(
T πVk−1

)
(x(i))

∣∣∣∣∣∣
> e′4(N,M, δ)


 ≤ δ ,

with e′4(N,M, δ) = 8Vmax

√
2

MN

(
h log eMN

h
+ log 8

δ

)
.

Proof The proof is similar to the proof of Lemma 4 in Lazaric et al. [2010b].

(d) This step is from the definition of πk in the AMPI-V algorithm (Eq. 4.3).
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(e) This step is algebra, replacing two maximums with one.

(f) This step is similar to Step (c).

The proof follows by setting δ = 3δ′.

4.8.7 Proof of Lemma 56

The proof of this lemma is similar to the proof of Theorem 1 in Lazaric et al.
[2010a]. Before stating the proof, we report the following two lemmas that
are used in the proof.

Lemma 62 Let Π be a policy space with finite VC-dimension h = V C(Π) <

∞ and N ′ be the number of states in the rollout set D′k−1 drawn i.i.d. from
the state distribution µ. Then we have

PD′k−1

[
sup
π∈Π

∣∣∣LΠ
k−1(µ̂; π)− LΠ

k−1(µ; π)
∣∣∣ > ε

]
≤ δ ,

with ε = 16Qmax

√
2
N ′

(
h log eN ′

h
+ log 8

δ

)
.

Proof This is a restatement of Lemma 1 in Lazaric et al. [2010a].

Lemma 63 Let Π be a policy space with finite VC-dimension h = V C(Π) <

∞ and s(1), . . . , s(N ′) be an arbitrary sequence of states. Assume that at each
state, we simulate M independent rollouts. We have

P


sup
π∈Π

∣∣∣ 1

N ′

N ′∑

i=1

1

M

M∑

j=1

Rjk−1

(
x(i,j), π(x(i,j))

)
− 1

N ′

N ′∑

i=1

Qk−1

(
x(i,j), π(x(i,j))

)∣∣∣ > ε


 ≤ δ ,

with ε = 8Qmax

√
2

MN ′

(
h log eMN ′

h
+ log 8

δ

)
.
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Proof The proof is similar to the one for Lemma 62.

Proof (Lemma 56) Let a∗(·) ∈ arg maxa∈AQk−1(·, a) be a greedy action.
To simplify the notation, we remove the dependency of a∗ on states and
use a∗ instead of a∗(x(i)) in the following. We prove the following series of
inequalities:

LΠ
k−1(µ;πk)

(a)
≤ LΠ

k−1(µ̂;πk) + e′1(N ′, δ) w.p. 1− δ′

=
1

N ′

N ′∑

i=1

[
Qk−1(x(i), a∗)−Qk−1

(
x(i), πk(x

(i))
)]

+ e′1(N ′, δ)

(b)
≤ 1

N ′

N ′∑

i=1

[
Qk−1(x(i), a∗)− Q̂k−1

(
x(i), πk(x

(i))
)]

+ e′1(N ′, δ) + e′2(N ′,M, δ)

w.p. 1− 2δ′

(c)
≤ 1

N ′

N ′∑

i=1

[
Qk−1(x(i), a∗)− Q̂k−1

(
x(i), π̃(x(i))

)]
+ e′1(N ′, δ) + e′2(N ′,M, δ)

(b)

≤ 1

N ′

N ′∑

i=1

[
Qk−1(x(i), a∗)−Qk−1

(
x(i), π̃(x(i))

)]
+ e′1(N ′, δ) + 2e′2(N ′,M, δ)

w.p. 1− 3δ′

= LΠ
k−1(µ̂; π̃) + e′1(N ′, δ) + 2e′2(N ′,M, δ)

(a)

≤ LΠ
k−1(µ; π̃) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
w.p. 1− 4δ′

= inf
π∈Π
LΠ
k−1(µ;π) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
.

The statement of the theorem is obtained by setting δ′ = δ/4.
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(a) This follows from Lemma 62.
(b) Here we introduce the estimated action-value function Q̂k−1 by bounding

sup
π∈Π

[
1

N ′

N ′∑

i=1

Q̂k−1

(
x(i), π(x(i))

)
− 1

N ′

N ′∑

i=1

Qk−1

(
x(i), π(x(i))

)]

using Lemma 63.

(c) From the definition of πk in CBMPI, we have

πk = arg min
π∈Π

L̂Π
k−1(µ̂; π) = arg max

π∈Π

1

N ′

N ′∑

i=1

Q̂k−1

(
x(i), π(x(i))

)
,

thus, −1/N ′
∑N ′

i=1 Q̂k−1

(
x(i), πk(x

(i))
)
can be maximized by replacing πk with

any other policy, particularly with

π̃ = arg min
π∈Π

∫

X

(
max
a∈A

Qk−1(x, a)−Qk−1

(
x, π(x)

))
µ(ds).
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Chapter 5

Analysis of Regularized
Approximate Dynamic
Programming Algorithms [MGH4, MGH9,
MGH12, MGH15, MGH19, MGH20]

Another area that I have worked on is the application of reinforcement leaning
(RL) to problems with high-dimensional state and/or action spaces. Since
this line of work is not directly related to the topic of this thesis, I only
summarize it in this chapter. With the explosive growth and ever increasing
complexity of data, developing theory and algorithms for learning with big
and high-dimensional data has become an important challenge in statistical
machine learning and control. There have been recent advances in handling
high-dimensional data in the field of statistical machine learning, namely
the new developments in compressive sensing and regularization with `1 and
`2 norms. Although many learning techniques with promising performance
have been developed, there still remain significant gaps in the theoretical
foundations. Moreover, most of the research has been focused on supervised
learning problems (regression and classification), and only a few preliminary
results have been reported in RL and control. However, the recent results,
especially those in regression, can help us in developing new theory and
algorithms for RL with high-dimensional state and action spaces. The main
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objective here is to devise and analyze RL algorithms whose sample and
computational complexities do not grow rapidly with the dimension of the
state space. I have tackled this problem from two different angles that will
be briefly discussed in the next two sections.

5.1 Exploiting the Regularities of the Problem

In order to solve RL in high dimensions, we should exploit all the regular-
ities of the problem in hand. Smoothness is the most common regularity.
We have done theoretical and algorithmic work on controlling the smooth-
ness of the value function approximation in RL by adding `2-regularization
to a number of widely-used approximate dynamic programming (ADP) and
RL algorithms. These algorithms include both approximate policy itera-
tion, least-square temporal-difference learning (LSTD) [Bradtke and Barto,
1996] and its control version least-squares policy iteration (LSPI) [Lagoudakis
and Parr, 2003a] and modified Bellman residual minimization (BRM) [Antos
et al., 2008], and approximate value iteration, fitted Q-iteration [Ernst et al.,
2005], methods. Here is a summary of my work on `2-regularized ADP and
RL algorithms:

• Regularized Policy Iteration [Farahmand et al., 2008, 2013a]:
We studied two `2-regularization-based approximate policy iteration
algorithms, namely REG-LSPI and REG-BRM, to solve RL in dis-
counted Markov Decision Processes (MDPs) with large state and finite
action spaces. The core of these algorithms are the `2-regularized ex-
tensions of LSTD and modified BRM, which are used in the algorithms’
policy evaluation steps. Regularization provides a convenient way to
control the complexity of the function space to which the estimated
value function belongs and as a result enables us to work with rich
function spaces. We derived efficient implementations of our methods
when the function space is a reproducing kernel Hilbert space. We
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analyzed the statistical properties of REG-LSPI and provide an upper
bound on the policy evaluation error and the performance loss of the
policy returned by this method. Our bound shows the dependence of
the loss on the number of samples, the capacity of the function space,
and some intrinsic properties of the underlying Markov Decision Pro-
cess. The dependence of the policy evaluation bound on the number of
samples is minimax optimal.

• Regularized Fitted Q-Iteration [Farahmand et al., 2009]: We
considered the `2-regularized fitted Q-iteration algorithm and provided
generalization bounds that account for small sample sizes, and used a
realistic visual-servoing problem to illustrate the benefits of using this
regularization procedure.

Sparsity is another form of regularity that clearly plays a central role in
the emerging theory of learning in high dimensions. We have worked on
using `1-regularization in ADP and RL, which may also serve as a method
for feature selection in value function approximation. We have worked on
adding `1-penalty to the LSTD algorithm and on integrating LSTD with the
Dantzig Selector. Here is a brief description of these two works:

• Finite- Sample Analysis of Lasso-TD [Ghavamzadeh et al.,
2011]: We analyzed the performance of Lasso-TD, a modification of
LSTD in which the projection operator is defined as a Lasso prob-
lem [Hastie et al., 2001]. We first showed that Lasso-TD is guaranteed
to have a unique fixed point and its algorithmic implementation coin-
cides with the recently presented LARS-TD [Kolter and Ng, 2009] and
LC-TD [Johns et al., 2010] methods. We then derived two bounds
on the prediction error of Lasso-TD in the Markov design setting,
i.e., when the performance is evaluated on the same states used by
the method. The first bound makes no assumption, but has a slow rate
with respect to the number of samples. The second bound is under
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an assumption on the empirical Gram matrix, called the compatibility
condition, but has an improved rate and directly relates the prediction
error to the sparsity of the value function in the feature space at hand.

• Temporal-Difference Learning with a Dantzig Selector [Geist
et al., 2012]: Since LSTD is not a simple regression algorithm, but
rather solves a fixed-point problem, its integration with `1-regularization
is not straightforward and might come with some drawbacks (e.g., the
P-matrix assumption for Lasso-TD; see Kolter and Ng 2009, Johns
et al. 2010). In this work, we introduced a novel algorithm obtained
by integrating LSTD with the Dantzig selector. We investigated the
performance of the proposed algorithm and its relationship with the
existing regularized approaches, and showed how it addresses some of
their drawbacks.

5.2 Random Projections

We have also looked into recent directions popularized in compressive sens-
ing [Candès and Wakin, 2008] concerning the preservation of properties, such
as norm or inner-product, of high dimensional objects when projected on
possibly much lower dimensional random subspaces (the so-called Johnson-
Lindenstrauss Lemma; see e.g., Achlioptas 2003). Those techniques (based
on concentration of measure phenomena) turn high dimensionality of certain
problems to a blessing rather than a curse; they have started to appear in the
statistical learning community [Ailon and Chazelle, 2006, Rahimi and Recht,
2008, Zhou et al., 2008], but have not been used much in RL. On this topic,
we studied the popular LSTD algorithm when a space of low dimension is
generated with a random projection from the high-dimensional space, and
derived performance bounds for the resulting algorithm:
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• LSTD with Random Projections [Ghavamzadeh et al., 2010]:
We considered the problem of RL in high-dimensional spaces when the
number of features is bigger than the number of samples. In particular,
we studied the LSTD learning algorithm when a space of low dimen-
sion is generated with a random projection from a high-dimensional
space. We provided a thorough theoretical analysis of the LSTD with
random projections and derived performance bounds for the result-
ing algorithm. We also showed how the error of LSTD with random
projections is propagated through the iterations of a policy iteration
algorithm and provided a performance bound for the resulting LSPI
algorithm.
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