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An extension of the classical coupled phase theory is proposed to account for hydrodynamic
interactions between neighboring rigid particles, which are essential to describe properly the sound
propagation in concentrated suspensions. Rigorous ensemble-averaged equations are derived for
each phase and simplified in the case of acoustical wave propagation. Then, closure is achieved by
introducing a self-consistent scheme originally developed by Buyevich and Shchelchkova #Prog.
Aerosp. Sci. 18, 121–151 !1978"$ for incompressible flows, to model the transfer terms between the
two phases. This provides an alternative to the effective medium self-consistent theory developed by
Spelt et al. #J. Fluid Mech. 430, 51–86 !2001"$ in which the suspension is considered as a whole.
Here, a significantly simpler formulation is obtained in the long wavelength regime. Predictions of
this self-consistent theory are compared with the classical coupled phase theory and with
experimental data measuring the attenuation in concentrated suspensions of silica in water. Our
calculation is shown to give a good description of the attenuation variation with volume fraction.
This theory is also extended to the case of polydisperse suspensions. Finally, the link between the
self-consistent theory and the different orders of the multiple scattering theory is clarified. © 2007
Acoustical Society of America. #DOI: 10.1121/1.2723648$

PACS number!s": 43.35.Bf #AJS$ Pages: 3386–3397

I. INTRODUCTION

The propagation of sound waves through dilute suspen-
sions of different natures has been the subject of many stud-
ies since the pioneering article of Sewell1 in 1910 who con-
sidered immovable rigid particles suspended in a gas.
Several phenomena can be involved in the attenuation and
dispersion of sound, depending on the particles nature and
the wave frequency. In hydrosols, the acoustic damping is
mainly induced by the visco-inertial terms !Lamb2".

To study the influence of particles on the sound propa-
gation in suspensions, two methods have been principally
developed. First, the scattering theory, also called ECAH
theory based on the work of Epstein and Carhart3 and Al-
legra and Hawley.4 In this model, a spherical particle is con-
sidered and the waves propagating inside and outside the
particle are decomposed into three modes: compressional,
shear, and thermal ones. Potentials are expressed in terms of
Bessel functions series satisfying the boundary conditions at
the particle surface. Second, there is the coupled phase
theory5,6 based on the two-phase hydrodynamic equations.
The primary advantage of the scattering theory is to be valid
over the whole frequency range, although some difficulties

arise with the series truncation due to the nonuniform con-
vergence of the Bessel series.7 The coupled phase theory
gives a good framework to incorporate phenomena that
would be difficult to include in the scattering theory such as
mass transfers or chemical reactions. Moreover, it also leads
to an explicit dispersion equation that is simpler to interpret
physically and calculate, which can be useful when dealing
with the inverse problem.

These theories agree well with experimental data in di-
lute suspensions, but they both neglect some parts, of the
“multiple scattering” whose importance increases with con-
centration. The coupled phase theory inherently integrates
“multiple scattering” but only at first order !cf. Sec. II C".
Thus, it neglects interactions that occur when the viscous
or/and thermal boundary layer of neighboring particles over-
lap one another. The ECAH theory was originally consider-
ing a simple superposition of each particle contribution and
was therefore not considering “multiple scattering.”

To incorporate the “reverberant multiple scattering” !in
the sense of geometrical redirection of energy", the multiple
scattering theory8–13 has been introduced into the ECAH
theory.14

To account for “dissipative multiple scattering,” that is
to say overlapping of thermal waves in the case of emul-
sions, Hemar et al.15 have introduced a so-called “core-shell
model:” the particle is surrounded by a cell of pure fluid,a"Electronic mail: baudoin@lmm.jussieu.fr
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where the presence of the particle is rather unlikely, which is
itself embedded in an effective medium. Such models show a
good agreement with experiments, but they require the intro-
duction of several unknown parameters. The first one is the
radius of the pure medium cell b. Many investigators choose
b=a /!d

1/3 !where a is the particle radius and !d is the volume
fraction occupied by the particles", although this value is not
appropriate for randomly distributed spheres. It would be
more adequate for systems in which the distance between
particles is almost uniform !cf. Refs. 16 and 17". Then, the
effective properties of the medium must also be introduced.
In the work by Hemar et al. and in the article by Hipp
et al.,18 the volume averaged parameters are introduced, but
one could also choose a different set of effective parameters.
The primary advantage of the present study is that the effec-
tive properties are introduced in a consistent way. One can
note that the multiple scattering theory and the “core-shell
model” have been merged in the article by McClements and
Hermann.19 The results of this model have then been com-
pared in detail with the classical coupled phase theory by
Evans and Attenborough.6

Finally, and to the authors’ knowledge, the only articles
dealing with the overlapping of visco-inertial potentials are
the articles by Dukhin and Goetz20 and by Spelt et al.17 The
first one is the so-called cell model,21,22 which is based on
empirical grounds. Although it provides a relatively good
estimation of viscous interactions between neighboring par-
ticles, there is no rigorous justification of this procedure.
Moreover, it does not integrate the intrinsic !bulk" losses in
the formulation. The second one, as the present work, uses
the self-consistent approximation, but the suspension is con-
sidered as a whole. Its advantage is to give a theory that is
valid whatever the frequency of the incident wave and the
nature of the particle. The present work is limited to the long
wavelength regime !LWR" but provides a simpler expression
to describe the attenuation and dispersion in suspensions of
rigid particles. This work also differs in the expression of the
closure relations that are not limited to plane waves. These
considerations will be developed in Sec. II D 4.

In this paper, we will first derive the ensemble averaged
conservation equations and simplify them in the case of
acoustical wave propagation. Then we will introduce the
self-consistent scheme originally developed by Buyevich23,24

for an incompressible flow and we will discuss the link be-
tween the closure assumptions introduced here in the effec-
tive medium theory !EMT", and the one introduced in the
multiple scattering theory !MST". Once the semi-analytical
dispersion equation is established, the results are compared
to the experimental data of Hipp et al.25 Finally, the equa-
tions will be extended to the case of polydisperse solutions.

II. THEORY

In the coupled phase theory, averaged conservation
equations are written down separately for each phase. These
equations are coupled by the transfer terms between the two
phases. In the case of rigid particles in a liquid matrix, the
thermal transfer and intrinsic absorption can be neglected as
they are both proportional to "c−1, where "c is the specific

heat ratio of the continuous phase that is almost equal to one
in liquids. Thus, only the mass and momentum conservation
equations are required. In this section, we will consider a
monodisperse suspension of spherical rigid particles isotro-
pically distributed.

A. Ensemble-averaged equations

The ensemble-averaged equations are calculated from
the local constitutive equations of the continuous and dis-
persed phases by using a configurational average.24

If the interfaces between the two phases have no mass,
one can introduce the generalized functions for density and
momentum based on the “fine-grained” definition in each
phase under the form

# #!

#!v!
$ = %

k=c,d
$k# #k!

#k!vk!
$ ,

where c ,d denote respectively the continuous and dispersed
phase, #k! and vk! are the “fine grained” density and velocity,
and $k is the phase function defined by

$k!x,t" = &1 if x is in phase k at time t ,

0 otherwise,
!1"

with of course $c=1−$d.
If interface forces due to the surface tension are ne-

glected and no external force field is considered, the gener-
alized mass and momentum conservation equations can be
written under the form

!#!

!t
+ div!#!v!" = 0, !2"

!

!t
!#!v!" + div!#!v! ! v!" = div!!!" , !3"

where !! is the generalized stress tensor:

!! = %
k=c,d

$k!k!,

%k! being the stress tensor in the kth phase.
To obtain separate averaged equations for each phase,

Eqs. !2" and !3" are multiplied by the phase function and
then averaged via the configurational average:

'G!!x,t"( =) G!!x,t*x1, . . . ,xN"p!t,x1, . . . ,xN"dx1 ¯ dxN;

where p!t ,x1 , ¯ ,xN"dx1 ¯ dxN is the probability of finding
the first particle center in the vicinity of x1 at t, while at the
same time the second particle is in the vicinity of x2 and so
forth. Considering indistinguishable particles, this expression
can be rewritten as the probability p!t ,CN"dCN of finding the
N particles in the vicinity of CN= !x1 , . . . ,xN", regardless of
their order.

The left hand side of Eqs. !2" and !3" are of the form
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!G!

!t
+ div!G!v!" .

Providing that the fluctuations G"=G!− #G!$ of the local
field G! relative to the mean field #G!$ are neglected and as
long as no phase change occurs, the previously described
average yields26

%!k& !G!

!t
+ div!G!v!"'( =

!

!t
!"kGk" + div!"kGkvk" ,

!4"

with "k= #!k$ the mean volume fraction occupied by phase k,
and Gk the phasic average of the variable G!:

Gk = #!kG!$/"k. !5"

The next fundamental step is to express #!cdiv!!!"$ and
#!ddiv!!!"$ in terms of quantities that we will be able to
calculate for a test particle in order to achieve closure. Our
derivation is based on the theory developed by Buyevich,24,27

here modified to account for the compressibility of the con-
tinuous phase as required for sound propagation. From !c
=1−!d, we easily obtain

#!cdiv!!!"$ = div#!!$ − #!ddiv!!!"$
!6"

with #!!$ = #!c!!$ + #!d!!$ .

In the continuous phase, the “fine-grained” stress tensor
expression is the one of a Newtonian fluid, and thus

#!c!!$ = − "cpcI + 2#c#!cD!$ + $c#!cdiv!v!"$I , !7"

where pc is the phasic average of the local pressure, D! is the
strain rate tensor, I is the unit tensor, and #c and %c=$c
+2#c /3 are respectively the shear and bulk viscosities of the
continuous phase.

Owing to the rigidity of the particles, the strain rates D!
and the volume variation div!v!" vanish inside the particle,
and thus we obtain

#!cD!$ = #D!$ − #!dD!$ = #D!$ ) D , !8"

#!cdiv!v!"$ = div#v!$ − #!ddiv!v!"$ = div#v!$ = div!v" ,

!9"

with v="cvc+"dvd and D=1/2!"v+"tv".
From Eqs. !7"–!9", we get

#!!$ = − "cpcI + 2#cD + $cdiv!v"I + #!d!!$ . !10"

Finally, by taking into acount !4", !6", and !10" in Eqs.
!2" and !3", the following system of mass and momentum
conservation stands:

!

!t
!"c&c" + div!"c&cvc" = 0, !11"

!

!t
!"d&d" + div!"d&dvd" = 0, !12"

!

!t
!"c&cvc" + div!"c&cvc ! vc" = div!!" − F , !13"

!

!t
!"d&dvd" + div!"d&dvd ! vd" = F , !14"

with the expressions of the effective stress tensor != #!!$
given by Eq. !10" and the effective force F given by

F = #!ddiv!!!"$ . !15"

B. The test particle problem

Thus, only the quantities #!d!!$ and #!ddiv!!!"$ re-
main to be expressed in terms of the averaged fields to
achieve closure. To address this issue, the link between these
expressions and the so-called test particle problem must be
established. Let us introduce some notations that will be use-
ful in this problem.

First, the conditional averages with one or two !or more"
particles positions being known are defined by

#G!$x!!x,t" =* G!!x,t+CN"p!t,CN−1+x!" dCN−1,

#G!$x!,x"!x,t" =* G!p!t,CN−2+x!,x"" dCN−2.

Then, we can introduce the unconditional probability
density p!t ,x!" of finding one of the N sphere centers in x! at
t, and p!t ,x! ;x"" the same probability but conditioned by the
presence of another sphere center in x":

p!t,x!" = ,
j=1

N * ¯* p!t,CN"xj=x!-
i#j

dxi,

p!t,x!;x"" = ,
j#k

* ¯* p!t,CN"xj=x!,xk=x" -
i#j,k

dxi.

We can note that p!t ,x!" is nothing but the mean concentra-
tion number of particles by volume, which will be noted
n!t ,x!" in the rest of this paper.

From the above definitions, Buyevich and
Shchelchkova24 establish the link between quantities aver-
aged over the dispersed phase and integrals over a test par-
ticle surface or volume:

#!dG!$!x,t" = *
+x−x!+'a

n!t,x!"#G!$x!!x,t" dx!. !16"

With this equation and providing that the macroscopic
scale L !that is to say, the wavelength $ in acoustics" is much
larger than the radius a of the particle, they obtain the fol-
lowing formula:

"d!t,x" = #!d$!t,x" . 4/3(a3n!t,x" , !17"

F = #!ddiv!!!"$ .
3"d

4(a3 / #!!$x · n dS , !18"

where n is the normal vector. Equation !18" clearly shows
that F is nothing but the force applied on a test sphere by a
fictitious medium, whose properties significantly differ from
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the pure ambient fluid, as they include the influence of the
other distributed spheres.

Finally, with a complex reasoning that we will not re-
produce here, they prove that if no external torque acts on
the particle, and the inertial terms due to the particle rotation
can be neglected !assumptions well satisfied for acoustical
waves", #!d!!$ can be expressed by the following surface
integral over the test sphere surface:

#!d!!$ %
3"d

4#a3&!s"

a ! !n · #!!$x" dS , !19"

where the superscript !s" means that only the symmetric part
of the tensor appearing in the integrand is considered.

C. The self-consistent closure scheme

The link between constitutive equations and the test par-
ticle problem is now established via !18" and !19". To com-
pute these expressions, one should first determine the bound-
ary conditions and secondly derive a set of equations for the
conditionally averaged fields. The first issue can be solved by
the following considerations:

• As no phase changes occur, the conditionally averaged ve-
locity is equal to the velocity of the test sphere on the
particle surface !r=a".

• Far from the test particle !when r→$", the perturbation of
the fields induced by the presence of the heterogeneity
vanishes so that the conditionally averaged fields asymp-
totically coincide with the unconditionally averaged fields:

#G!$x! → #G!$ when r → $ . !20"

To address the second issue, the same equations can be de-
rived for the conditionally averaged field as for the averaged
field, but, this time, constitutive equations are expressed in
terms of the averaged field with two particle positions being
known:

Fx! = '
x"
'

(x−x!(%a
n!t,x!,x""#div!!!"$x!,x" dx! dx",

#!d!!$x! = '
x"
'

(x−x!(%a
n!t,x!,x""#!!!"$x!,x" dx! dx".

Of course, one could also calculate the averaged equations
with the position of two particles being known and so on. In
such a way, one would obtain an infinite hierarchy of mutu-
ally dependent equations conditioned by the position of an
increasing number of particles. So the problem arises of an
efficient truncation or closure of this hierarchy. A truncation
at the first level would result in the calculation of the consti-
tutive equations when the particles are embedded in the pure
ambient fluid. Here, mutual interactions of two or more
spheres are completely left out. This approximation is usu-
ally used in dilute mixtures and corresponds to the classical
version of the coupled phase theory. However, even at this
level, a part of the multiple scattering is included because the
particles are excited by the mean field !cf. Fig. 1".

At the next level, binary interactions of pairs of spheres
are accounted for, while ternary, quadruple, and higher order

loops are neglected. To achieve closure at this level, one
should calculate the constitutive equations when two par-
ticles positions are known, which is not an easy matter.

Of course, one could theoretically truncate this hierarchy
at any order to integrate higher order loops, but the complex-
ity of the calculation would greatly increase with the order.
Anyway, this procedure would result in a polynomial expan-
sion with respect to the particle concentration "d and will
thus be limited to relatively dilute mixtures. Moreover, noth-
ing ensures that mutual interaction between n particles are
dominant over interactions between n+1 particles when the
concentration increases.

To overcome these limitations, Buyevich proposed a
self-consistent scheme.16,24 The starting point of this proce-
dure is that, anyway, the resolution of the previous mutually
dependent equations would result in an infinite polynomial
series for the effective mixture properties. Instead of truncat-
ing the hierarchy at a certain level, the particles are supposed
to be embedded in this final effective medium. Thanks to this
procedure and by introducing a plausible form for integrals
!18" and !19", the effective properties will be computed with
an iterative scheme. All orders of interaction will thus be
included in this formulation. Moreover, the correlations of
particles in position can also be incorporated according to the
choice of the expression of the conditional volume fraction.

D. Application to the propagation of an acoustic
wave

1. Linearized equations

We will now adapt the previous system to the propaga-
tion of an acoustic wave. In this case, Eqs. !11"–!15" can be
linearized. If we denote the equilibrium state with a subscript
“o”, the following equations stand:

FIG. 1. Different orders of multiple scattering.

J. Acoust. Soc. Am., Vol. 121, No. 6, June 2007 Baudoin et al.: Sound propagation in concentrated suspensions 3389



mass conservation:

!21"

!22"

!d = 1 − !c; !23"

momentum conservation:

!24"

!do"do
!vd

!t
= F . !25"

In these expressions, all terms linked to the compressibility
of the continuous phase have been outlined.

2. The long wavelength regime „LWR…
To perform the explicit calculation of constitutive equa-

tions, we will consider the LWR. In this case, we can intro-
duce a mesoscopic scale l around the test particle where the
compressibility of the continuous phase can be neglected and
such as, when r→ l, the perturbation induced by the test
particle vanishes !cf. Fig. 2":

a + #v $ l $ % ,

where % is the acoustic wavelength and #v=#2&c /'"c is the
thickness of the viscous boundary layer. This inequality is
always satisfied in the cases treated in this paper. At dis-
tances smaller than l !cf. Fig. 2", all !outlined" compressible
terms can be neglected and, after Fourier transform, we ob-
tain

div!vc" = div!vd" = 0, !26"

− !co"co!i'"vc = − "!!cpc" + &c(v + div$)d!!% − F ,

!27"

− !do"do!i'"vd = F . !28"

The same equations can be derived for the conditionally av-
eraged field, but, this time, the conditional volume fraction at
equilibrium !do,x! replaces the unconditional one:

div!!co,x!vc,x!" = div!!do,x!vd,x!" = 0, !29"

− !co,x!"co!i'"vc,x! = − "!!c,x!pc,x!" + &c(vx!

+ div$)d!!%x! − Fx!, !30"

− !do,x!"do!i'"vd,x! = Fx!. !31"

3. Correlations of particles in position

The difference between !do,x! and !do stems from the
correlations of particles in position, that is to say, the pertur-
bation of the particle repartition induced by the presence of a
test sphere in x!. The simplest approximation consists in ne-
glecting this difference:

!do,x! = !do, !32"

and thus ignoring the non-overlapping property of the
spheres. For the sake of simplicity, we will adopt this hy-
pothesis and we will precisely discuss its validity in Sec. III.
Of course, more elaborate expressions16 can be derived to
describe properly the repartition of particles within groups of
several spheres !cf. the Kirkwood and Percus-Yevick models
as reviewed in the book by Croxton28" and therefore include
the correlations of position.

4. The self-consistent condition

Even if the equations have been simplified in the incom-
pressible region, we still have to deal with the entire hierar-
chy of equations, and we therefore need to close the system.
For that purpose, we will use the condition expressed in the
Sec. II C: the particles will be supposed to be embedded in
the final effective medium !made of the whole series expan-
sion". Let us apply this condition to our case.

First, Eqs. !29"–!31" can be rewritten in a convective
reference frame related to the velocity of the test particle
center, that is to say vd&r=0:

div!Vc,x!" = div!Vd,x!" = 0, !33"

− !co"co!i'"Vc,x! = − "!!c,x!pc,x!" + &c(Vx!

+ div$)d!!%x! − Fx! − !co"co " * ,

!34"

− !do"do!i'"Vd,x! = Fx! − !do"do " * , !35"

with

FIG. 2. The mesoscopic scale.
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!Vd,x!,Vc,x!" = !vd,x!,vc,x!" − vd#r=0,

! = − i" r · vd#r=0. $36%

The terms proportional to !! appearing in these equations
are due to the change of reference frame. The boundary con-
ditions can also be rewritten:

Vc,x! → 0 when r → a , $37%

Vc,x! → Vc and pc,x! → pc when r → # . $38%

Then, integrands $18% and $19% can be calculated for a par-
ticle embedded in a pure incompressible fluid, with boundary
conditions $37% and $38% &cf. Fig. 3$a%'. The first integrand
$18% corresponds to the classical calculation of the force ap-
plied on a moving sphere embedded in an unsteady nonuni-
form velocity field, sometimes called the Basset-Boussinesq-
Oseen force.29 The calculation of the second integrand $19%
is less usual and can be found in some papers by
Buyevich:29,23

F = m1$Vc − Vd% + m2$Vc + m3 ! ! , $39%

div(%d!!) = − !$&dpc% + m0$Vc, $40%

where m0, m1, m2, and m3 depend on the properties of the
pure ambient fluid $'c, (co% and on frequency ". In these
expressions, m1$Vc−Vd% corresponds to the sum of the
Stokes drag, the Basset hereditary, and the total inertial
forces; m2$Vc is the Oseen correction due to the nonunifor-
mity of the ambient fluid velocity; and m3!! comes from
the change of reference frame.

In the effective medium, the same relations stand:

F = m1
*$Vc − Vd% + m2

*$Vc + m3
* ! ! , $41%

div(%d!!) = − !$&dpc% + m0
*$Vc, $42%

but m0
*, m1

*, m2
*, and m3

* depend on the effective properties of
the surrounding fluid $'eff, (eff1, (eff2%, where (eff1 and (eff2
are some effective volume fractions, respectively linked to
the inertial phenomena and the change of frame of reference,
and 'eff is the effective viscosity of the suspension.

Here arises the problem of determining these effective
properties and this is the fundamental point in which our
theory differs from the so-called “core shell model.” These
effective densities and viscosity will be calculated in a con-
sistent way instead of being empirically introduced.

The expressions of F and div(%d!!) come from the cal-
culation of integrands $18% and $19% in the final effective
medium with boundary conditions $37% and $38% as illus-

trated by Fig. 3$b%. At the next level of the hierarchy, the
particles are also embedded in the final effective medium and
the boundary conditions become &cf. Fig. 3$c%'

Vc,x!,x" → 0 when r → a , $43%

Vc,x!,x" → Vc,x! and pc,x!,x" → pc,x! when r → # .

$44%

This is exactly the same problem, but the boundary condi-
tions are expressed in terms of the conditionally averaged
fields instead of the averaged fields. So Fx! and div(%d!!)
will be related to Vc,x! ,Vd,x!, and !! with exactly the same
coefficients m0

*, m1
*, m2

*, and m3
*:

Fx! = m1
*$Vc,x! − Vd,x!% + m2

*$Vc,x! + m3
* ! ! , $45%

div(%d!!)x! = − !$&d,x!pc,x!% + m0
*$Vc,x!. $46%

It is the equality of these coefficients at every order of the
hierarchy that expresses the self-consistent condition. With
this condition, there is no need to truncate the hierarchy at a
finite order because the system is already closed as we will
see.

To determine the expressions of the effective parameters
in a consistent way, previous equations must be combined
properly to obtain a final system of equations in the effective
medium similar to the equations that would stand in the pure
medium, that is to say,

div$Vc,x!% = 0, $47%

− (eff1$i"%Vc,x! = − !pc,x! + 'eff$Vc,x! − (eff2 ! ! . $48%

If we replace relations $45% and $46% in Eqs. $33%–$35%, we
obtain together with Eq. $48% a set of 11 equations. On the
other hand, we have 11 unknown parameters: the six com-
ponents of velocities Vd,x! and Vc,x!, the three effective pa-
rameters (eff1, (eff2, and 'eff, the volume fraction &d,x!, and
the pressure pc,x!. Therefore, the effective properties can be
expressed in terms of the coefficients mk

* $for more details,
cf. the original derivation by Buyevich23%:

(eff1 = &co(co +
&do(dom1

*

m1
* − i"&do(do

, $49%

'eff = &co'c + m0
*

+
&do(doi"m2

* + &do'c$m1
* − i"m2

*(eff1/'eff%
m1

* − i"&do(do
, $50%

(eff2 = &co(co + &do(do
m1

* − m3
*i"

m1
* − i"&do(do

. $51%

Now Eqs. $47% and $48% can be solved29,23 with boundary
conditions $37% and $38% to calculate integrands $18% and
$19%. We will obtain the same expressions as in the case of
the pure fluid, but the effective properties $'eff, (eff1, (eff2%
will stand instead of the pure fluid properties $'c ,(co%:

FIG. 3. Calculation of closure terms at different levels of the hierarchy.
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m0
* =

5!do"eff exp !#"
2!1 + #"

, !52"

m1
* =

9!do

2a2 !1 + # + #2/3""eff, !53"

m2
* =

9!do

2#2 !exp !#" − !1 + # + #2/3"""eff, !54"

m3
* = !do$eff2, !55"

with

#2 = − !i%"$eff1a2/"eff. !56"

Thus, coefficients mk
* are expressed in terms of the ef-

fective properties and the system is closed. There only re-
mains to solve numerically the self-consistent system formed
by Eqs. !49"–!55" in the complex plane. This can be achieved
by a simple iterative procedure, but some more elaborate
schemes such as the so-called “Globally Convergent New-
ton’s Method” can also be used.

We can notice that in the steady regime, we simply ob-
tain

$eff1 = $eff2 = !co$co + !do$do # $, "eff = "c/!1 − 5/2!do" .

This simple case illustrates the strength of the self-consistent
scheme. A truncation of the hierarchy at the first order would
have given the well-known Einstein formula:

"eff = "c!1 + 5/2!do" + O!!do
2 " .

It can be simply obtained from the expression !50" of "eff by
replacing the coefficients mk

* by their expression in the pure
fluid mk and by taking the asymptotic limit when %=0.

A truncation at order n would have given a formula of
the form

"eff = 1 + 5/2!do + $
i=2

n

Ki!do
i + O!!do

n+1" .

Thus all these formulas are limited to !do&1. With the self-
consistent theory, we directly obtain the whole series expres-
sion.

To conclude this part we would like to point out some
differences with other models. First, we can note that the
above steady effective properties are commonly used in the
“core shell” model. Thus, the evolution of these parameters
with frequency is neglected, contrary to the present study.
Then, one of the differences with the model proposed by
Spelt et al.17 is that, in our theory, the relation between the
closure terms and the averaged fields !expressed by coeffi-
cients mk

*" is deduced from the pure fluid expressions. In the
article by Spelt et al., the authors say that each closure rela-
tion can be expressed in terms of any of the averaged fields
as these field are also related to each other through algebraic
equations that depend on the frequency and the effective
wave number. This is a correct argument but only for plane

waves because more complicated relations stand between av-
eraged fields when dealing with spherical or more compli-
cated wavefronts.

E. Dispersion equation for a plane acoustic wave

Now, we will derive the dispersion equation for a plane
wave such as G=Go+ G̃ei!k*x−%t", where G̃ is the amplitude of
the wave, Go is the equilibrium state, and k* is the complex
effective wave number. In this case, from Eqs. !21"–!25" and
the expression of closure relations !41" and !42" we get the
final system:
mass conservation:

− i%!$co!̃c + !co$̃c" + ik*!co$coṽc = 0, !57"

i%!̃c + ik*!doṽd = 0; !58"

momentum conservation:

i%!co$coṽc − ik*p̃c = k*
2!'c + 2"c"!!coṽc + !doṽd" + k*

2m0
*ṽc

+ %m1
*!ṽc − ṽd" − k*

2m2
*ṽc − i%m3

*ṽd& ,

!59"

− i!do$do%ṽd = m1
*!ṽc − ṽd" − k*

2m2
*ṽc − i%m3

*ṽd; !60"

state equation:

p̃c = cco
2 $̃c, !61"

where cco is the sound velocity at rest in the continuous
phase and parameters mk

* can be numerically calculated from
expressions !49"–!55" as mentioned earlier. This system is
therefore a linear system of five equations, with five un-
knowns, !̃c, $̃c, ṽc, ṽd, and p̃c, and is consequently well
posed. If we introduce the following parameters,

Mk
* =

mk
*

!do$do
, dr =

!do$do

!co$co
, and r =

$co

$do
,

we get from !60"

ṽd = %hv − k*
2hc&ṽc !62"

with

hv =
M1

*

M1
* + i%!M3

* − 1"
and hc =

M2
*

M1
* + i%!M3

* − 1"
.

Finally, by combining the conservation equations, we obtain
the following bicubic equation, which can easily be solved to
calculate the effective wave number:

Ak*
4 + Bk*

2 + C = 0, !63"

A = drhc' !'c + 2"c"
$doi%

+
rcco

2

!co%2( , !64"

B = − dr'hc +
M0

* + !'c + 2"c"!!co + !dohv"
i%

(
−

cco
2

!co%2 %1 + drrhv& , !65"
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C = 1 + drhv. !66"

This calculation can be simplified because hv /k*
2hc!1. This

can be proved either by calculating it numerically or by no-
ticing that this ratio is of the form of an effective acoustic
Reynolds number, which is therefore large compared to
unity. Thus, all terms proportional to hc in the preceding
equations can be neglected and we finally obtain

# k*

"
cco$2

= I!""V!"" ,

I!"" = %1 −
#codri"

cco
2 !1 + drrhv"

$%M0
* +

!%c + 2&c"!#co + #dohv"
#do'do

&&−1

,

V!"" = %1 + dr
!#co − r"hv − #cor

1 + drrhv
& .

In this expression I!w" corresponds to the intrinsic
!bulk" losses in the medium and V!"" to the visco-inertial
interactions between the two phases.

III. COMPARISON WITH EXPERIMENTS AND OTHER
THEORIES

In this section, we will first compare the effective me-
dium theory !EMT" with the multiple scattering theory
!MST" from a theoretical point of view. Then, we will com-
pare the predictions of our theory with the experimental data
of Hipp et al.25 and also with the “classical coupled phase
theory” in which the calculation of the closure terms is based
on the pure ambient fluid parameters instead of the effective
ones.

A. Theoretical comparison with the multiple
scattering theory

The hierarchy appearing in the EMT is similar to the
hierarchy that also appears in the MST 'see Ref. 11, Eq.
!2.13"(. However, in the EMT the hierarchy is a succession
of mutually dependent equations governing the conditionally
averaged fields, whereas in the MST the hierarchy concerns
the exciting field. This is one of the fundamental points in
which these two theories differ.

Before delving into this crucial problem, let us clarify
the terminology used here. The exciting field !Gj!

E" acting on
the jth particle is the sum of the original field that would
exist in the absence of particles !G!0", and the wave scattered
by every particle !Gk!

S" except the jth:

Gj!
E!x,t)x1, . . . ,xN" = G!0!x,t" + *

k!j
Gk!

S!x,t)x1, . . . ,xN" .

!67"

Note that this deterministic formulation is exact and that only
the last scattering event of the particle j is omitted. Thus Gk!

S

may involve previous scattering by the jth particle. Other-
wise, resonant scattering between a cluster of particles, i.e.,
loops, would be neglected.

In the linear regime, the wave scattered by the jth par-
ticle can be related to the exciting field acting on it by the
introduction of a linear operator Tj so that

Gj!
E!x,t)x1, . . . ,xN" = G!0!x,t"

+ *
k!j

TkGk!
E!x,t)x1, . . . ,xN" . !68"

The introduction of this operator is a crucial step in the MST
and it means that this theory is limited to the linear regime
whereas the EMT is not. We can also note that the operator
Tj is computed by using the properties of the pure ambient
fluid.

The following relation stands between the total field
!G!", the exciting field acting on the jth particle !Gj!

E", and
the wave scattered by the same particle !Gj!

S":

G!!x,t)x1, . . . ,xN" = Gj!
E!x,t)x1, . . . ,xN"

+ Gj!
S!x,t)x1, . . . ,xN" . !69"

Now we can clarify the previous assertion. In the EMT,
a test particle is considered in x!, and the value of the aver-
aged exciting field acting on it is known far from the particle
as the influence of the test particle vanishes:

+Gx!
! E,x! → +G!, when r → ( as +Gx!

! S,x! → 0,

!70"

where Gx!
! E and Gx!

! S are respectively the exciting field acting
on the particle located in x! and the wave scattered by this
particle. This relation corresponds to the boundary condition
!20". The fundamental problem here is thus to determine the
expression of the effective medium surrounding the particle
to perform integrands !18" and !19".

In the multiple scattering theory, we suppose that all
particles are embedded in the pure ambient fluid !by intro-
ducing the operator T" and the problem, in this case, is to
determine the form of the exciting field. These two ap-
proaches can be summarized by Fig. 4. We will now show
that, at the lowest level, these two theories are equivalent.
For that purpose, let us recall the assumptions implicitly
made by Foldy8 !and listed by Waterman and Truell11", when
he identifies the average of the exciting field with the aver-
age of the total field to achieve closure. The starting point of
his derivation is Eq. !68".

!1" Its first assumption is that the exciting field acting on the
jth particle is the total field that would exist if this par-
ticle was not there:

FIG. 4. Comparison between the self-consistent theory and the multiple
scattering theory.
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Gj!
E!x,t"x1, . . . ,xN# = G!!x,t"x1, . . . ,x j−1,x j+1, . . . xN# ,

Here, Foldy neglects all mutual interactions of the particles
!loops# as the jth particle cannot influence the other particles
that produce the exciting field.

!2# Then he assumes that the probability density conditioned
by the position of one particle p!t ,x1 , . . . ,
x j−1 ,x j+1 , . . . ,xN "xj# is equal to the unconditional prob-
ability: p!t ,x1 , . . . ,x j−1 ,x j+1 , . . . ,xN#. This assumption
leads to the statistical independence so that the correla-
tions of particles in position are neglected and thus the
particles can overlap one another.

!3# His third hypothesis is not restrictive; he assumes that
the contributions of a single particle on the mean field
can be neglected. This will be valid whenever the num-
ber N of particles appearing in the statistical average
process is large enough, as the contribution of a single
particle is of the order 1 /N.

Of course the first and second hypotheses are linked: to ac-
count properly for interactions of two or more particles, one
should determine the correlations in position. But they are
also undoubtedly distinct. One could, for example, estimate
the interactions of pairs with an inaccurate distribution of the
particles, for example by supposing that they can overlap one
another. This would lead to an expression that would not be
valid for too concentrated solutions but that would neverthe-
less incorporate pair interactions.

Assumptions 1–3 lead to the simple relation:

$Gj!
E!x,t#% j = $G!!x,t#% . !71#

So, the average of the exciting field acting on the jth particle
is equal to the mean field, and the particle is embedded in the
pure ambient fluid. This situation is therefore equivalent to
the first level of the EMT hierarchy. However, even at this
level, there is still a fundamental difference between these
two theories. In the coupled phase theory, averaged equations
are derived with respect to the volume fraction occupied by
each phase. In the derivation of Foldy, however, the particles
are supposed to be pointlike. Thus the decrease of the vol-
ume fraction occupied by the continuous phase due to the
increase of the number of particles is not accounted for. The
difference between these two theories can be neglected when
the number of particles is large but the corresponding vol-
ume fraction is small. However, this difference becomes im-
portant when the particles occupy a large volume fraction: in
the coupled phase theory when !do→1, only the intrinsic
absorption in the dispersed phase remains whereas in the
theory of Foldy the effects are maximum.

To account for interactions of pairs of particles, Lax in-
troduced the so-called “quasi-crystalline approximation”10

according to which the averaged exciting field acting on the
jth particle when the position of two particles is known !j ,k#
is approximately equal to the averaged exciting field acting
on the jth particle when only the position of the latter is
known

$Gj!
E!x,t#% jk & $Gj!

E% j . !72#

This approximation comes within the scope of a more gen-
eral frame in which the averaged exciting field with n posi-
tions of particles being known is supposed to be approxi-
mately equal to the averaged exciting field with n−1 known
positions.

To conclude this part, we can underline the fact that such
a procedure will always result in a polynomial development
with respect to the particle concentration and will thus be
limited to relatively dilute mixtures whereas the EMT is not.

B. Comparison with the classical coupled phase
theory and experimental data

Figure 5 compares the results obtained with our theory
with the experimental data of Hipp et al.14 and also with the
“classical coupled phase theory.” In this figure, we can see
how much the predictions are improved by the introduction
of the effective parameters instead of the pure fluid values,
for low frequencies, when the interactions between the par-
ticles are strong because of the overlapping of boundary lay-
ers. However, when the frequency increases, some differ-
ences between the predictions and the experiments appear.
They may be explained by the following considerations.

When the correlations of particles in position are consid-
ered, the more we approach the test particle, the more un-
likely is the presence of another particle because they cannot
overlap one another. So, it means that the conditional volume
fraction !do,x!→0 when r→a. On the opposite, far from the
test particle, the modification of the particle distribution in-
duced by the presence of the test sphere vanishes so that
!do,x!→!do when r→". The transition between these two
regimes appears approximately when r&2a, which is the
characteristic length that can be introduced because of the
non-overlapping property of the particles. On the other hand,
we can notice that the boundary layer thickness #v is in-
versely proportional to the square root of the frequency, so
that when the frequency increases, this thickness decreases.

In our model, the correlations of particles in position are
not considered and thus the effective properties do not de-
pend on the distance from the particle surface. As long as
#v$a, approximating the effective medium surrounding the
particle by homogeneous parameters based on the approxi-
mation !do,x!!r#=!do is accurate. But when #v&a, the varia-
tions of the conditional volume fraction with the distance r
from the particle center cannot be neglected anymore. When
#v%a, the parameters of the effective medium in the bound-
ary layer are even very close to the pure fluid values as
almost no particles are present in this region. Consequently,
the approximation that consists in taking the pure fluid pa-
rameters !&co ,'c# to calculate the closure terms should give
better results in this frequency range. To verify the validity of
this hypothesis, we have plotted the attenuation curves for
larger particles !cf. Fig. 6#. In this case the characteristic
frequency coresponding to #v=a is equal to fc=11 MHz,
whereas for Fig. 5 it was equal to 101 MHz.

On the above curves, we can observe the transition be-
tween the two asymptotic limits, around the characteristic
frequency fc, therefore corroborating our hypothesis. Our
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analysis shows how important the correlations in position are
in the calculation of the effective parameters in acoustics.
Thus, their integration in the calculation of coefficients mk

*

should give the smooth transition between these two limiting
cases.

To conclude this section, we also plotted the curves with
and without the intrinsic !bulk" losses, which are often ne-
glected in the coupled phase models !cf. Fig. 7". These ef-
fects prove to be important for volume fraction up to 6% and
must therefore be included correctly in formulation.

IV. EXTENSION TO THE POLYDISPERSE CASE

In this section, we will extend previous equations to
polydisperse suspensions by using the same procedure as the
one introduced by Gubaidullin and Nigmatulin30 in their
treatment of polydisperse aerosols. When a polydisperse sus-
pension is considered, the probability p!t ,x" of finding any
particle in x at t is replaced by the probability p!t ,x ,a" of
finding a particle of radius a in x at t. In this case, the prop-
erties of the dispersed phase also depend on the particule
radius. So instead of introducing directly the phasic average
over the whole dispersed phase #!dG!$ /"d, we will split it
into two steps:

• first, an average over all particles with the same radius
Gp!a"= #!aG!$ /"p!a", where

!a!x,t" = %1 if x is in a particle of size a at time t ,

0 otherwise,

and "p!a"= #!a!x , t"$ is the volume fraction occupied by
particles of radius a,

• and second, an average #$a over all the particles sizes:

Gd =
1
"d

#Gp!a"$a =
1
"d
&

amin

amax

"p!a"Gp!a" da .

We can now derive the equations in the polydisperse case.
The equations of the continuous phase will remain the same,
but the momentum conservation equation of the dispersed
phase will be derived for each particle size so that the set of
Eqs. !57"–!61" becomes
mass conservation:

− i#!$co"̃c + "co$̃c" + ik*"co$coṽc = 0,

i#"̃c + ik*"do#ṽp$a = 0;

momentum conservation:

FIG. 5. Attenuation as a function of
the volume fraction at various fre-
quencies for silica particles of 56-nm
radius in water. The solid lines corre-
spond to our theory !—", the broken
line to the classical coupled phase
theory !- · -", and the symbols to the
experimental data.
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i!"co#coṽc − ik*p̃c

= k*
2!$c + 2%c"!"coṽc + "do#ṽp$a" + k*

2#m0
*$aṽc

+ #m1
*!ṽc − ṽp"$a − k*

2#m2
*$aṽc − i!#m3

*ṽp$a,

− i"do#do!ṽp = m1
*!ṽc − ṽp" − k*

2m2
*ṽc − i!m3

*ṽp;

state equation:

p̃c = cco
2 #̃c.

In these equations, the coefficients mk
* depend on the particle

size and must therefore be calculated for each radius a.
Then we can express the velocity of the dispersed phase

ṽp in terms of the velocity of the continuous ṽc phase, which
is independent of the particle radius:

ṽp = %hv!a" − k*
2hc!a"&ṽc.

In this way, we can extract the continuous phase properties
from the average #$a. If we now combine the conservation
equations, we finally obtain the same dispersion equation as
in the monodisperse case but with respectively #hv$a, #hc$a,
and #M0

*$a instead of hv, hc, and M0
*. Thus, only the average

of these three parameters must be calculated to extend the
validity of our dispersion relation to the polydisperse case.

V. CONCLUSION

The coupled phase theory has been improved to consider
polydisperse suspensions and viscous interactions with the
use of an effective medium, self-consistent theory. Our deri-
vation is based on Buyevich’s incompressible hydrodynamic
model extended here to acoustical waves propagation. This
theory turns out in practice to be very effective, as it amounts
finally to a dispersion relation, which can be used directly for
measurements or simulations. When compared with experi-
ments, this model provides an accurate description of the
attenuation at low frequencies, for concentrated suspensions
for which interactions between particles are strong. In par-
ticular, the self-consistent approach has the ability to take
properly into account interactions at all orders, such as the
overlapping of viscous boundaries layers and the loops in the
sense of the multiple scattering theory !MST" of waves. The
link between the MST and the effective medium theory
!EMT" has also been clarified.

Finally, our derivation could be extended to higher fre-
quencies !or equivalently larger particles" and higher volume
fractions by taking into account the correlations of particles
in position, which would affect the effective properties of the
medium. Its validity could even be enlarged to the high fre-
quency regime by including the compressibility of the liquid
when calculating the closure terms.31,32

ACKNOWLEDGMENTS

The authors would like to thank A. K. Hipp, G. Storti,
and M. Morbidelli !Department of Chemical Engineering,
ETH Zürich" for kindly providing us with the results of their
experiments.

1C. J. T. Sewell, “On the extinction of sound in a viscous atmosphere by
small obstacles of cylindrical and spherical form,” Philos. Trans. R. Soc.
London 210, 239–270 !1910".

2H. Lamb, Hydrodynamics !Dover, New York, 1945".
3P. S. Epstein and R. R. Carhart, “The absorption of sound in suspensions
and emulsions. I. Waterfog in air,” J. Acoust. Soc. Am. 25!3", 553–565

FIG. 7. Attenuation as a function of the frequency at different volume
fractions for silica particles of 56-nm radius in water. The solid lines corre-
spond to the complete theory !—", the broken line to the theory without
intrinsic losses !- · -", the symbols to the experimental data, and the thin
straight line to the intrinsic losses in water.

FIG. 6. Attenuation as a function of the volume fraction at various frequen-
cies for silica particles of 164.5-nm radius in water. The solid lines corre-
spond to our theory !—", the broken line to the classical coupled phase
theory !- · -", and the symbols to the experimental data.

3396 J. Acoust. Soc. Am., Vol. 121, No. 6, June 2007 Baudoin et al.: Sound propagation in concentrated suspensions



!l953".
4J. R. Allegra and S. A. Hawley, “Attenuation of sound in suspensions and
emulsions: Theory and experiments,” J. Acoust. Soc. Am. 51, 1545–1564
!1972".

5A. H. Harker and J. A. G. Temple, “Velocity and attenuation of ultrasound
in suspensions of particles in fluids,” J. Phys. D 21, 1576–l588 !1988".

6J. M. Evans and K. Attenborough, “Coupled phase theory for sound
propagation in emulsions,” J. Acoust. Soc. Am. 102!1", 278–282, !1997".

7O. G. Harlen, M. J. Holmes, M. J. W. Povey, Y. Qiu, and B. D. Sleeman,
“A low frequency potential scattering description of acoustic propagation
in dispersions,” SIAM J. Appl. Math. 61!6", 1906–1931 !2001".

8L. L. Foldy, “The multiple scattering of waves. I. General theory of iso-
tropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–
119 !1945".

9M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310
!l951".

10M. Lax, “Multiple scattering of waves. II. The effective field in dense
systems,” Phys. Rev. 85, 621–629 !1952".

11P. C. Waterman and R. Truell, “Multiple scattering of waves,” J. Math.
Phys. 2, 512–537 !1961".

12V. Twersky, “On scattering of waves by random distributions. I. Free-
space scatterer formalism,” J. Math. Phys. 3, 700–715 !1962".

13P. Lloyd and M. V. Berry, “Wave propagation through an assembly of
spheres. IV. Relations between different multiple scattering theories,”
Proc. Phys. Soc. London 91, 678–688 !1967".

14A. K. Hipp, G. Storti, and M. Morbidelli, “On multiple-particle effects in
the acoustic characterization of colloidal dispersions,” J. Phys. D 32, 568–
576 !1999".

15Y. Hemar N. Herrmann, P. Lemaréchal, R. Hocquart, and F. Lequeux,
“Effective medium model for ultrasonic attenution due to the thermo-
elastic effect in concentrated emulsions,” J. Phys. II 7, 637–647 !1997".

16Yu. A. Buyevich, “Heat and mass transfer in disperse media. II. Constitu-
tive equations,” Int. J. Heat Mass Transfer 35!10", 2453–2463 !1992".

17P. D. M. Spelt, M. A. Norato, A. S. Sangani, M. S. Greenwood, and L. L.
Tavlarides, “Attenuation of sound in concentrated suspensions: theory and
experiments,” J. Fluid Mech. 430, 51–86. !2001".

18A. K. Hipp, G. Storti, and M. Morbidelli, “Acoustic characterization of

concentrated suspensions and emulsions. 1. model analysis,” Langmuir 18,
391–404 !2002".

19D. J. McClements, Y. Hemar, and N. Herrmann, “Incorporation of thermal
overlap effects into multiple scattering theory,” J. Acoust. Soc. Am. 2,
915–918 !1999".

20A. S. Dukhin and P. J. Goetz, “Acoustic spectroscopy for concentrated
polydisperse colloids with high density contrast,” Langmuir 12, 4987–
4997 !1996".

21J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics !Marti-
nus Nijhoff, Dordrecht, 1973".

22T. A. Strout, “Attenuation of sound in high-concentration suspensions:
development and application of an oscillatory cell model,” Ph.D. thesis,
The University of Maine, 1991.

23Yu. A. Buyevich, “Interphase interaction in fine suspension flow,” Chem.
Eng. Sci. 50!4", 641–650 !1995".

24Yu. A. Buyevich and I. N. Shchelchkova, “Flow of dense suspensions,”
Prog. Aerosp. Sci. 18, 121–151 !1978".

25A. K. Hipp, G. Storti, and M. Morbidelli, “Acoustic characterization of
concentrated suspensions and emulsions. 2. experimental validation,”
Langmuir, 18, 391–404 !2002".

26D. A. Drew “Mathematical modelling of two-phase flow,” Annu. Rev.
Fluid Mech. 15, 261–292 !1983".

27Yu. A. Buyevich and T. G. Theofanous, “Ensemble averaging in the me-
chanics of suspensions,” FED !Am. Soc. Mech. Eng." 243, 41–60 !1997".

28C. A. Croxton, Liquid State Physics. A Statistical Mechanical Introduction
!Cambridge U. P. Cambridge, 1974".

29Yu. A. Buyevich and V. G. Markov, “Rheology of concentrated mixtures
of fluids with small particles,” J. Appl. Math. Mech. 36!3", 452–464
!1972".

30D. A. Gubaidullin and R. I. Nigmatulin, “On the theory of acoustic waves
in polydispersed gaz-vapor-droplet suspensions,” Int. J. Multiphase Flow
26, 207–228 !2000".

31S. Temkin, “Viscous attenuation of sound in dilute suspensions of rigid
particles,” J. Acoust. Soc. Am. 100!2", 825–831 !1996".

32S. Temkin and C.-M. Leung, “On the velocity of a rigid sphere in a sound
wave,” J. Sound Vib. 49!1", 75–92 !1976".

J. Acoust. Soc. Am., Vol. 121, No. 6, June 2007 Baudoin et al.: Sound propagation in concentrated suspensions 3397



On the influence of spatial correlations on sound propagation in
concentrated solutions of rigid particles

Michael Baudoina!

Université Pierre et Marie Curie-Paris 6, Institut Jean Le Rond D’Alembert (IJLRDA), UMR CNRS 7190
and Institut des NanoSciences de Paris (INSP), UMR CNRS 7588, 4 place Jussieu, 75252 Paris
Cedex 05, France

Jean-Louis Thomas
INSP, CNRS, and Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Paris 75005, France

François Coulouvrat
IJLRDA, CNRS, and Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Paris 75005, France

!Received 29 May 2007; revised 26 March 2008; accepted 31 March 2008"

In a previous paper #J. Acoust. Soc. Am. 121, 3386–3387 !2007"$, a self-consistent effective
medium theory has been used to account for hydrodynamic interactions between neighboring rigid
particles, which considerably affect the sound propagation in concentrated solutions. However,
spatial correlations were completely left out in this model. They correspond to the fact that the
presence of one particle at a given position locally affects the location of the other ones. In the
present work, the importance of such correlations is demonstrated within a certain frequency range
and particle concentration. For that purpose, spatial correlations are integrated in our two-phase
formulation by using a closure scheme similar to the one introduced by Spelt et al. #‘‘Attenuation
of sound in concentrated suspensions theory and experiments,” J. Fluid Mech. 430, 51–86 !2001"$.
Then, the effect is shown through a careful comparison of the results obtained with this model, the
ones obtained with different self-consistent approximations and the experiments performed by Hipp
et al. #“Acoustical characterization of concentrated suspensions and emulsions. 2. Experimental
validation,” Langmuir, 18, 391–404 !2002"$. With the present formulation, an excellent agreement
is reached for all frequencies !within the limit of the long wavelength regime" and for concentrations
up to 30% without any adjustable parameter.
© 2008 Acoustical Society of America. #DOI: 10.1121/1.2912445$

PACS number!s": 43.35.Bf #AJS$ Pages: 4127–4139

I. INTRODUCTION

A precise prediction of the attenuation and dispersion of
acoustical waves induced by the presence of particles in sus-
pensions of different natures would be of great interest for
acoustic spectroscopy.1,2 Although the propagation in dilute
suspensions is now well described !see Ref. 3 for bubbles,
the ECAH theory,4,5 and the coupled phase theory6 for emul-
sions and the models of Gubaidullin and Nigmatulin,7

Gumerov et al.,8 and Duraiswami and Prosperetti9 for aero-
sols", there remain some difficulties in concentrated suspen-
sions as the interactions between neighboring particles must
be taken into account. For that purpose, different methods
have been used: first, numerical methods which are generally
based on the so called “multipole expansion” !see Refs. 10
and 11 for the Helmholtz equation, and Refs. 12–15 for the
Stokes and Brinkman equations". Although this numerical
treatment of the problem is required for the study of particu-
lar configurations !when the particles are not homogeneously
distributed", it does not take advantage of the average homo-
geneous distribution of the particles for randomly distributed
spheres. That is why, a statistical treatment of the equations

is interesting in this case. First, a hierarchy of mutually de-
pendent averaged equations can be derived !see Ref. 16 for
the multiple scattering theory developed for the Helmholtz
equation and Ref. 17 for the two-phase Navier–Stokes equa-
tions". Then arises the problem of the efficient closure of this
hierarchy. In many papers, this hierarchy is truncated at a
certain order !generally at first or second order18–20". At first
order, mutual interactions between neighboring particles are
completely left out. At second order, only mutual interactions
between two particles are taken into account. This truncation
of the hierarchy cannot be used for concentrated suspensions
because in this case, mutual interactions between N particles
cannot be neglected compared to mutual interactions be-
tween N+1 particles. In order to avoid this truncation, self-
consistent effective medium theories have been widely used
in many branches of physics !see Ref. 21 for acoustical
waves in bubbly liquids, Ref. 22 for elastic waves in com-
posites, and Refs. 23–25 for two-phase flow, etc.". These
methods consist of calculating the constitutive equations by
considering a test particle surrounded by an effective me-
dium whose properties are determined in a consistent way.
To take into account spatial correlations !that is to say the
modification of the particles location due to the presence of
the test sphere", different approximations have been intro-
duced !see Refs. 25–27 for a comparison of the differenta"Electronic mail: baudoin@lmm.jussieu.fr.
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ones!. Some take into account the continuous variation of the
conditional volume fraction with the distance from the test
particle and others approximate this variation by a step func-
tion and therefore reduce to “core shell models.” A core-shell
approximation "originally introduced by Dodd et al.28! has
been successfully used by Spelt et al.29 to compute the
propagation of acoustical waves in suspensions of different
natures. In their work, the suspension is considered as a
whole and the plane acoustical wave impinging a test particle
is decomposed according to the ECAH theory4,5 into com-
pressional, thermal, and viscous modes. Therefore, this
model can be used for a large range of frequencies and dif-
ferent kinds of suspensions.

In the following, the same closure scheme "self-
consistent approximation with core-shell approximation! is
introduced to compute the exchange terms in our two-phase
formulation. However, simpler equations are obtained by
considering only the scattering mechanisms and pole orders
necessary for the study of rigid particle in the long wave-
length regime "LWR!. Moreover, vectorial expressions of the
closure terms "force and stresslet! are obtained and the ac-
celeration of the particles is taken into account. These ex-
pressions can therefore be used for other purposes than plane
acoustical waves. We must note that for a plane acoustical
wave propagating in suspensions of rigid particles in the
LWR, the two models should correspond.

The present model is used to study the influence of spa-
tial correlations on the sound propagation in solutions of
rigid particles. In the first section, we recall the linearized
two-phase equations obtained in a previous paper30 to de-
scribe the sound propagation in solutions of rigid particles.
Then, we derive the equations for the conditionally averaged
fields which should be solved to take into account spatial
correlations and, in particular, the continuous variation of the
conditional volume fraction with the distance from the test
particle. To perform the explicit calculation of the dispersion
equation, a simplification of this problem is used: the condi-
tional volume fraction is approximated by a step function. In
this way, a “core-shell” model is obtained but with a “core
radius” related to the particle volume fraction and radius by
a complex function calculated from Percus–Yevick "PY!
theory for hard spheres.31,32 The results are finally compared
to the experiments of Hipp et al.33 performed in solutions of
silica particles for different frequencies, particle sizes, and
concentration and an excellent agreement is reached.

II. COUPLED PHASE THEORY

A. Linearized ensemble averaged equations and the
hierarchy of balance equations

In a precedent paper,30 ensemble averaged equations
have been derived to describe the propagation of acoustical
waves in homogeneous solutions of monodisperse rigid par-
ticles. They were obtained from local-instant balance equa-
tions in each phase by the introduction of the phasic func-
tion:

!k"x,t! = #1 if x is in phase k at time t

0 otherwise,
$

which allows to broaden the validity of local balance equa-
tions to every position and time, and by the use of a statisti-
cal average "noted % & hereafter! such as

%G!"x,t!& =' G!"x,t(CN!p"t,CN!dCN,

where p"t ,CN!dCN is the probability of finding the N par-
ticles in the vicinity of CN= "x1 , . . . ,xN!, regardless of their
order and G!=)k!kGk! is a local function generalized to ev-
ery position and time by the use of the phasic function.

Once linearized, the balance equations stand under the
following form.
Mass conservation,

"co* !#c

!t
+ #co div"vc!+ + #co

!"c

!t
= 0, "1!

"do* !#d

!t
+ #do div"vd!+ + #do

!"d

!t
= 0, "2!

#d = 1 − #c. "3!

Momentum conservation,

#co"co
!vc

!t
= − ""#cpc! + $c%v + "&c + $c! " div"v!

+ div S − F , "4!

#do"do
!vd

!t
= F . "5!

Equations of state,

"c = pc/cco
2 , "6!

"d = pc/cdo
2 . "7!

In these equations, the subscripts o, c, and d denote, respec-
tively, the equilibrium state, and the continuous and the dis-
persed phases, #k= %!k& is the volume fraction of phase k
while "k= %!k"!& is its mean density and vk
= %!k"!v!& / %!k"!& its mean velocity. Finally, pc, $c, and 'c

=&c+2$c /3 are, respectively, the pressure, the shear, and the
bulk viscosities of the continuous phase, cko the sound speed
in phase k, v=#covc+#dovd the average velocity of the sus-
pension, F= %!d div"!!!& the interphase force, and S
= %!d!!& the average of the local generalized stress tensor
!!=)k=c,d!k(k!. We can note that in Eq. "2! "mass conserva-
tion for the dispersed phase!, the compressibility of the par-
ticles has been taken into account in order to give a correct
prediction of both attenuation and dispersion for concen-
trated suspensions of silica nanoparticle. Even if these par-
ticles are 35 times less compressible than water "ratio 2, 2 for
density, 4 for the sound speed, and therefore 35 for the com-
pressibility )=1 /"c2!, their departure from a perfectly rigid
behavior might have an influence on the effective sound
speed in concentrated suspensions. However, this modifica-
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tion does not affect the attenuation curves and they will only
induce a global shift of the effective sound speed as we are
far from the particle resonances in the frequency range con-
sidered here.

To achieve closure, the interphase force F and the stress-
let S must be expressed in terms of the averaged fields. The
first step is to establish the link between these expressions
and the so-called test particle problem. This particular issue
was addressed by Buyevich and Shchelchkova:24

F = !!d div"!!#$ %
3"d

4#a3 & !!!$x . ndS , "8#

S = !!d!!$ %
3"d

4#a3&"s#

a ! "n . !!!$x#dS , "9#

where a is the radius of the particle, n the normal vector, and
! $x the statistical average conditioned by the knowledge of
the position of one particle in x:

!G!$x"x!,t# =' G!"x!,t(CN#p"t,CN−1(x#dCN−1.

With these expressions, the interphase force and stresslet are
related to the conditionally averaged fields. One could there-
fore decide to derive the balance equations for the condition-
ally averaged fields. The same equations would be obtained,
but now the conditional force Fx and stresslet Sx would de-
pend on the averaged fields with the positions of two par-
ticles being known and so on. In this way, an infinite hierar-
chy of interdependent equations, similar to the cluster
expansion which appears in statistical physics, would be dis-
closed. It was rigorously established by Hinch17 in 1977.

Now arises the problem of the efficient closure of this
hierarchy. The first idea consists of truncating this hierarchy
at a certain order. At first order, the constitutive Eqs. "8# and
"9# are calculated for a sphere embedded in the pure continu-
ous phase. In this case, interactions between particles are
completely left out. This is the approximation classically
used in two-phase models.6,34 At second order, the condi-
tional force Fx and stresslet Sx are calculated for a cluster of
two spheres lying in the pure continuous phase. In this case,
binary interactions of pairs of sphere are taken into account
while ternary or higher order interactions are completely left
out. One could of course calculate these expressions for
higher order clusters but this method is limited. First, be-
cause the calculation of the constitutive equations becomes
more and more difficult when the size of the cluster in-
creases. Second, because interactions between N+1 particles
are no more negligible compared to interactions between N
particles in very concentrated solutions, and thus the whole
hierarchy must be considered.

It is the merit of the pioneering work of Lundgren23 and
Buyevich et al.24,35 to have proposed an alternative self-
consistent effective medium theory that takes into account
interactions at all order within a certain approximation.
These self-consistent schemes have then been extended to
even more concentrated medium, when spatial correlations
must be considered. For this purpose, different approxima-
tions have been introduced and they are compared in a paper

by Sangani and Yao.26,27 In our precedent paper,30 a self-
consistent effective medium theory had been used to take
into account the influence of hydrodynamic interactions be-
tween particles on the propagation of acoustical waves in
suspensions of rigid particles. However, spatial correlations
were not considered and the theory will now be modified to
include these effects.

B. The long wavelength regime

Before delving into this crucial problem, the balance
equations will be simplified in the neighborhood of a test
particle, lying at position x to calculate the surface integrals
"8# and "9#. For that purpose, a mesoscopic scale l such that
a$ l$% can be introduced whenever the wavelength % is
much larger than the radius a of the particle, that is to say in
the LWR. Within a cell of characteristic length l around the
test particle, all terms linked to the compressibility of the
continuous phase can be neglected and thus Eqs. "1#–"7# re-
duce to the following form after Fourier transform:

div"vc# = div"vd# = 0, "10#

− "co&co"i'#vc = − !""cpc# + (c)v + div S − F , "11#

− "do&do"i'#vd = F . "12#

If we rewrite them in the convective frame of reference re-
lated to the velocity of the test particle, we simply obtain

div"Vc# = div"Vd# = 0, "13#

− "co&co"i'#Vc = − !""cpc# + (c)V + div S − F

− "co&co ! * , "14#

− "do&do"i'#Vd = F − "do&do ! * , "15#

where Vk= (vk−vd(r=0 is the average velocity of phase k in
the new frame of reference, *=−i'r. (vd(r=0 is a function
introduced to take into account the acceleration of the test
particle, r=x!−x is the distance from the test particle, and '
the frequency of the propagating wave.

Similar balance equations can also be derived for the
conditionally averaged fields but this time, the conditional
volume fraction "ko,x of phase k stands instead of the uncon-
ditional one:

div""co,xVc,x# = div""do,xVd,x# = 0, "16#

− "co,x&co"i'#Vc,x = − !""c,xpc,x# + (c)Vx + div Sx − Fx

− "co,x&co ! * , "17#

− "do,x&do"i'#Vd,x = Fx − "do,x&do ! * , "18#

where Vk,x= (vk,x−vd(r=0.
On the test sphere "r=a#, the conditional velocity of the

continuous phase is null and far from it "r→+#, the influence
of the test particle vanishes. We therefore obtain the follow-
ing boundary conditions:

Vc,x = 0 in r = a , "19#
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!Vc,x,Vd,x,pc,x" → !Vc,Vd,pc" when r → ! . #20$

III. SPATIAL CORRELATIONS

A. The conditional volume fraction

For pointlike particle, there would be no difference be-
tween the conditional volume fraction "do,x and the uncon-
ditional one "do. However, the nonoverlapping property of
hard spheres modifies the distribution of particles in the
neighborhood of the test particle. We will now see how the
conditional volume fraction can be estimated for hard
spheres.

First, the so-called distribution function p#t ,x %x!$
#which is nothing but the probability of finding one of the
sphere center in x! when another particle is lying in x$ can be
calculated with models inherited from statistical physics such
as the PY #Refs. 31 and 32 or hypernetted chain36,37 #HNC$
models. Numerical methods #for example, Monte Carlo
simulations$ could also be used but PY theory provides ac-
curate and easily computable estimate of this function.

Then the conditional volume fraction "do,x#x!$ can be
deduced from the distribution function p#t ,x %x!$ with the
following formula38 for hard spheres:

"do,x#x!$ = &
%x"−x!%#a

p#t,x"%x$dx". #21$

For isotropically distributed spheres, the distribution function
depends only on the distance r!= %x"−x% and thus this for-
mula reduces to

"do,x#r$ = &
max#2a,r−a$

r+a

p#t,r!$
$r!

r
'2rr! − r!2 − r2 + a2(dr!,

#22$

with r= %x!−x%. Figure 1 illustrates the evolution of the dis-
tribution function and the conditional volume fraction with
the distance r from the test particle center, calculated from
PY theory for hard spheres. We can note that the nonover-
lapping condition does not mean that some parts of the par-
ticles cannot lie in the region a#r#2a but just that the
centers of the particles are excluded from it. That is why the
volume fraction progressively increases in this region con-
trarily to the distribution function which is null.

B. The self-consistent effective medium closure
scheme

We will now apply the self-consistent condition #called
method A in papers from Chang et al.25,39 and Yao and
Sangani26,27$ in order to close the infinite hierarchy previ-
ously described. We can note that contrarily to the scheme
proposed by Buyevich38,40 #called method B in the papers of
Chang et al.$, closure will be obtained for the conditionaly
averaged field and not for the perturbation #as defined by
Buyevich in his paper$.

To achieve closure, the force F and the stresslet S must
necessarily be expressed in terms of the average fields and
their space and time derivatives of appropriate tensor dimen-
sionality.

F = f)Vc,Vd,!pc,!%,&Vc,&Vd, . . . * , #23$

div#S$ = s)Vc,Vd,!pc,!%,&Vc,&Vd, . . . * . #24$

Since the two-phase equations considered here are linear, f
and s must be linear functions of their arguments. Moreover,
these functions must depend on the frequency ' to take into
account the time derivatives in the Fourier space. For a mov-
ing sphere embedded in a pure ambient fluid, the expressions
of f and s are well known:41,42

F = "do'n1#Vc − Vd$ + n2&Vc + n3 ! (( , #25$

div#S$ = !#"dpc$ + "dono&Vc, #26$

where no, n1, n2, and n3 are the coefficients that depend on
the pure fluid properties #)c*co$ and on the frequency '. In
these expressions, n1#Vc−Vd$ corresponds to the sum of the
Stokes drag, the Basset hereditary, and the total inertial
forces, n2&Vc is the Faxen correction due to the nonunifor-
mity of the ambient fluid velocity, and n3!( is due to the
acceleration of the test particle.

If we now take into account the influence of the other
distributed spheres, the particle is no more embedded in the
pure fluid but in an effective medium whose properties are
unknown at this stage of the derivation. In this case, the force
F and the stresslet S will be related to the averaged fields in
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FIG. 1. Evolution of the distribution function and the conditional volume
fraction with the distance r /a from the test particle center for volume frac-
tion "do of, respectively, 1%, 10%, 20%, and 30%. These curves are calcu-
lated with PY theory.
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the same way but with new coefficients ñk which depend on
the effective properties of the surrounding fluid
!!eff ,"eff1 ,"eff2":

F = #do#n1̃!Vc − Vd" + n2̃$Vc + n3̃ ! %$ , !27"

div!S" = !!#dpc" + #don0̃$Vc, !28"

where "eff1 and "eff2 are some effective densities, respec-
tively, linked to the inertial phenomena and the change of
frame of reference, and !eff is the effective viscosity of the
solution. We must underline how important is the hypothesis
of homogeneity of the suspension at this stage of the deriva-
tion because an inhomogeneous distribution of the particles
might induce extra forces related to the gradient of the vol-
ume fraction.

The self-consistent condition consists of keeping the
same coefficients ñk to express Fx and Sx in terms of the
conditionally averaged fields:

Fx = #do,x#n1̃!Vc,x − Vd,x" + n2̃$Vc,x + n3̃ ! %$ , !29"

div!Sx" = !!#d,xpc,x" + #do,xn0̃$Vc,x. !30"

Of course, the conditional volume fraction replaces the
unconditional one because the distribution of the particles is
modified by the presence of the test sphere.

Now, the effective properties of the surrounding fluid
must be determined in a consistent way. For that purpose,
Eqs. !13"–!15" #with the expressions of F and S given by
Eqs. !27" and !28"$ must be properly combined to obtain a
final set of equations in the effective medium similar to the
equations which would stand in a pure fluid:

div!Vc" = 0, !31"

− "eff1!i&"Vc = − !pc + !eff$Vc − "eff2 ! % . !32"

As mentioned earlier by the authors,30 Eqs. !31", !32", and
!13"–!15" form a closed system and thus the effective prop-
erties can be expressed in terms of the properties of the con-
tinuous and dispersed phases, and the coefficients ñk !see
Ref. 41 for more details about this calculation":

"eff1 = #co"co +
#do"don1̃

n1̃ − i&"do

, !33"

!eff = #co!c + #don0̃

+
#do"doi&n2̃ + #do!c!n1̃ − i&n2̃"eff1/!eff"

n1̃ − i&"do

, !34"

"eff2 = #co"co + #do"do
n1̃ − n3̃i&

n1̃ − i&"do

. !35"

Our expression of !eff slightly differs from the expres-
sion obtained by Buyevich because of a different choice in
the definition of ñ0, which is more appropriate for our study.

The final step consists of calculating integrals !8" and !9"
to express the coefficients ñk in terms of the effective prop-

erties of the surrounding fluid. For that purpose, Eqs.
!16"–!18" with Fx and Sx given by Eqs. !29" and !30" have to
be solved.

The solution of Eqs. !31" and !32" for the averaged fields
!equivalent to the so-called Brinkman equations" is well
known: it was independently solved by Howells43 for porous
media and Buyevich and Markov35 for the calculation of the
force applied on a moving sphere embedded in an unsteady
nonuniform velocity field. However, the resolution of the
equations for the conditionally averaged fields would be a
challenging task because the variation of the conditional vol-
ume fraction with the distance r introduces new terms in the
equation.

C. Approximation of the conditional volume fraction
by a step function

To simplify this calculation, the evolution of the volume
fraction obtained with PY theory in Sec. III A will be ap-
proximated by a step function:

#co,x = 'p + #co'e, !36"

#do,x = #do'e, !37"

where

'p = %1 if a ( r ( Rc

0 if r ) Rc
&, 'e = %0 if a ( r ( Rc

1 if r ) Rc,
&

and Rc is given by the following formula:

'
r=a

2a

#do,x!r"dr + '
r=2a

*

!#do,x!r" − #do"dr

= '
Rc(r(2a

#dodr . !38"

With this definition of Rc, the volume occupied by the par-
ticles is conserved and also the asymptotic behavior when
r→*. In this way, a “core-shell” model is obtained !see Fig.
2". The particle is surrounded by a layer of pure fluid which
is itself embedded in a homogeneous effective medium. The
condition !38" introduced here to calculate the evolution of
the “core radius” Rc with the volume fraction !as illustrated
by Fig. 3" is equivalent to the one introduced by Spelt et al.29

The only difference is that these authors expressed Rc in
terms of the number density, but it does not affect its estima-
tion.

We can now split the conditionally averaged fields into
their value in the pure fluid layer and their value in the ho-
mogeneous effective medium:

#co,xVc,x = 'pVc,x
p + 'e#coVc,x

e ,

#do,xVd,x = 'e#doVd,x
e ,

pc,x
e = 'ppc,x

p + 'epc,x
e ,

and thus deduce the balance equations in both parts. In the
pure fluid layer !a(r(R",

div!Vc,x
p " = 0, !39"
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− !co!i""Vc,x
p = − !pc,x

p + #c$Vc,x
p − !co ! % . !40"

In the homogeneous effective medium !r&R",

div!Vc,x
e " = 0, !41"

− !eff1!i""Vc,x
e = − !pc,x

e + #eff$Vc,x
e − !eff2 ! % . !42"

The problem is therefore reduced to the study of a par-
ticle embedded in a pure fluid shell !with a viscosity #c and
a density !co", which is itself surrounded by a homogeneous
effective medium !with effective properties #eff, !eff1, and
!eff2".

Now, the boundary conditions must be expressed for the
different fields. On the particle surface !r=a", the condition-
ally averaged velocity of the continuous phase is equal to
zero that is to say

'co,xVc,x = Vc,x
p = 0.

Then, the mass conservation equation for the mean velocity
#div!Vx"=0$ imposes the following condition at the core-
shell surface !r=Rc":

Vc,x
p = 'coVc,x

e + 'doVd,x
e , !43"

where Vd,x
e can be expressed in terms of Vc,x

e and !%
through Eq. !18".

The momentum conservation gives the following condi-
tion in r=Rc:

!x
p . n = !x

e . n , !44"

where n is the normal vector to the surface of the core and
!x

p and !x
e are, respectively, the strain tensors in the pure

layer and in the homogeneous effective medium:

!x
p = − pc,x

p + 2#cDc,x
p with Dc,x

p = 1/2!!Vc,x
p + !tVc,x

p " ,

!x
e = − pc,x

e + 2#effDc,x
e with Dc,x

e = 1/2!!Vc,x
e + !tVc,x

e " .

Finally, far from the test particle !r→(", the perturbation
induced by its presence vanishes so that

%Vc,x
e ,pc,x

e & → %Vc,pc& . !45"

With Eqs. !31", !32", and !39"–!45", we have derived all the
equations and boundary conditions necessary to compute in-
tegrals !8" and !9", which reduce to

F =
3'd

4)a3 ' !x
p . ndS , !46"

S =
3'd

4)a3'!s"

a ! !n . !x
p"dS . !47"

D. Calculation of the closure terms

To solve these equations, the velocity and pressure fields
must be expressed in terms of spherical functions according
to the method developed by Buyevich and Markov.42 The
details of this calculation can be found in Appendixes A and
B. In this section, we only give the final expressions of the
coefficient nk̃ which result from the identification of the ex-
pression of F and S calculated in the Appendix and formulas
!27" and !28".

1. Expression of ñ0

ñ0 = 3
#c*c

*eff
()Ṡ2!+" + ) 4

+
+

+

2
*S2!+"*VC1

+ )Q̇2!+"

+ ) 4
+

+
+

2
*Q2!+"*VC2

− )10
+

+ +*VC3
− +VC4+ ,

where

S2!X" =
!X2 − 3X + 3"eX − !X2 + 3X + 3"e−X

2X4 ,
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Q2!X" =
!X2 + 3X + 3"e−X

X4 ,

and

! = "effa, # = "ca ,

$ = "effRc, % = "cRc,

"c
2 = − !i&"'co/(c, "eff

2 = − !i&"'eff 1/(eff,

) = "c(c/"eff(eff.

Finally, VC= #VC1
VC2

VC3
VC4

VC5
VC6

$t is a column vector
whose expression is given by

VC = M2
−1VA2, !48"

where the expressions of M2 and VA2 are given in Appendix
C.

2. Expression of ñ1, ñ2, and ñ3

ñ1 = − (c"c
2#S1!#"VE1

+ Q1!#"VE2
− VE3

− VE4
$ , !49"

ñ2 =
(c"c

2

"eff
2 #S1!#"!3VD1

+ VE1
" + Q1!#"!3VD2

+ VE2
"

− !3VD3
+ VE3

" − !3VD4
+ VE4

"$ , !50"

ñ3 = 'co + (c"c
2#S1!#"VF1

+ Q1!#"VF2
− VF3

− VF4
$ , !51"

where

S1!X" =
!X − 1"eX + !X + 1"e−X

2X3 ,

Q1!X" =
!X + 1"e−X

X3 ,

and VD, VE, and VF are some column vectors whose expres-
sions are given by

VD = M1
−1VA1, !52"

VE = M1
−1VM1, !53"

VF = M1
−1VP1, !54"

where the expression of M1, VA1, VM1, and VP1 are given in
Appendix C.

With these expressions, the coefficients nk̃ are related to
the effective parameters (eff, 'eff1, and 'eff2, which are them-
selves related to the coefficients nk̃ through Eqs. !33"–!35".
Thus, the system is closed and the coefficients nk̃ can be
calculated either with a simple iterative procedure or with
more elaborate numerical schemes such as the “globally con-
vergent Newton’s method.”

IV. RESULTS AND COMPARISON WITH EXPERIMENTS

A. Final dispersion equation

Then, the expression of the force !27" and the stresslet
!28" can be substituted in the linearized system !1"–!7", and
the dispersion equation can be derived for a plane wave by
considering fields of the form: G=Go+ Ḡei!k*x−&t", where Ḡ
is the amplitude of the wave, Go the equilibrium state, and k*
the complex effective wave number. As calculated in a pre-
vious paper,30 the effective wave number k* is the solution of
the following quadratic equation:

Ak*
4 + Bk*

2 + C = 0,

A = drhc% !*c + 2(c"
'doi&

+
rcco

2

+co&2& ,

!55"

B = − dr%hc +
N0

* + !*c + 2(c"!+co + +dohv"/+do'do

i&
&

−
cco

2

+co&2

#1 + drrhv$
#1 + +do,d/+co,c$

,

C = 1 + drhv,

where

hv =
N1

*

N1
* + i&!N3

* − 1"
, hc =

N2
*

N1
* + i&!N3

* − 1"

and

Nk
* =

nk
*

'do

, dr =
+do'do

+co'co
, r =

'co

'do
.

We can note that the coefficient +do'do was missing in the
expression of B in our previous paper !just in the manuscript,
the good expression had been considered for the computa-
tion". We can also note that a new coefficient #1
++do,d /+co,c$ !with ,k the compressibility of phase k" ap-
pears, as we have taken into account the compressibility of
the dispersed phase in Eq. !2".

B. Comparison of the different theories with
experiments

Now, the results of this corrected effective medium
theory !that take into account spatial correlations" can be
compared to previous results30 obtained with the same theory
but without spatial correlations !that is to say when a homo-
geneous effective medium is considered around the test par-
ticle" and also with the classical coupled phase theory !when
the test particle is supposed to be surrounded by the pure
continuous phase". For that purpose, we will consider the
experiments performed by Hipp et al.33 who measured the
attenuation of acoustical waves in solutions of silica particle
in water for different concentrations, frequencies, and par-
ticle sizes. Before analyzing these curves, let us recall some
elements which will be useful to understand the influence of
spatial correlations. When an acoustical wave propagates
through a solution of rigid particles, the particles do not
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move with the same velocity as the surrounding fluid be-
cause of the difference of density between them and the sur-
rounding fluid. As a consequence, a dipolar wave is scattered
and a part of the energy of the impinging wave is therefore
redirected, inducing a loss of spatial coherence. Some energy
is also dissipated because of the viscosity of the surrounding
fluid which slows down the movement of the particle and
therefore converts energy from the compressional propaga-
tion mode to a viscous lossy mode. The combination be-
tween these two scattering mechanisms is referred to as the
“viscoinertial” phenomena. The characteristic length for the
decrease of the viscous lossy wave is the size of the bound-
ary layer !v which is related to the frequency " according to
the following formula:

!v =!2#c

"$c
.

In concentrated suspensions, viscous interactions between
neighboring particles may appear according to their concen-

tration and the frequency of the propagating wave. As long
as !v%Rc−a, the properties of the fluid in the boundary
layer are very close to the properties of the surrounding pure
fluid "because &do,x#0 in this area$ and thus the force and
the stresselet can be estimated by considering a particle em-
bedded in the pure liquid "as it is done in the classical
coupled phase theory$. However, when !v'Rc−a, the varia-
tion of the effective properties due to the spatial correlations
only concerns a thin part of the boundary layer and thus the
approximation of the surrounding fluid by a homogeneous
effective medium for the calculation of the closure terms "as
it was done in a previous paper30$ should give good results.
As Rc−a#a, the transition between these two limiting case
should happen when !v#a. For the two suspensions consid-
ered here, the corresponding characteristic frequencies are,
respectively, of fc=101 MHz for Fig. 4 and fc=11 MHz for
Fig. 5. Finally, as !v is inversely proportional to the fre-
quency, the condition !v%a correspond to high frequencies
f ' fc and the condition !v'a to low frequencies f % fc.
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FIG. 4. Attenuation as a function of the volume fraction at various frequencies for silica particles of 56 nm radius in water. The solid lines "-$ correspond to
the new effective theory, the broken lines "–$ to the effective theory without spatial correlationss, the dotted line "..$ to the classical coupled phase theory, and
the symbols to the experimental data.
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Effectively, we can see on the different figures that for
frequencies f ! fc, the experimental data are close to the re-
sults obtained with the homogeneous effective medium30

!dash dotted lines", whereas for frequencies f " fc, the results
are closer to the curves obtained with the classical coupled
phase theory !dotted line". As a consequence, none of these
theories can properly describe the sound propagation in con-
centrated suspensions for a wide range of frequencies and
particle sizes. For high frequencies and particle concentra-
tion, the homogeneous effective theory even gives unphysi-
cal effective parameters; that is why we have not plotted the
corresponding curves !see Fig. 5 at 100 MHz". With the in-
troduction of spatial correlations, we obtain a model !solid
lines" which gives good results for both limiting cases. As
expected, the results are less accurate for the transition !f
# fc" because the progressive evolution of the conditional
volume fraction has been approximated by a step function.
We can note at this point that equivalent results should be
obtained with the model of Spelt et al.29 based on the
ECAH4,5 decomposition. Of course, for low volume fraction

!#do$5% ", all these theories give the same results because
in this case, the effective properties of the surrounding fluid
are close to the properties of the pure fluid. Concerning the
remaining discrepancies between our theory and the experi-
ments, different phenomena might explain them such as the
polydispersity of the solution or collisions between neighbor-
ing particles. Another possible effect might be the increase of
the importance of thermal effects in concentrated suspension.
It is well known that in dilute suspensions of silica particles
in water, viscoinertial effects are more important than ther-
mal ones44,45 because the first ones are proportional to !1
−r"=O!1" in these suspensions and thermal effects to !%
−1"!1 !where % is the specific heat ratio". However, viscous
interactions make the attenuation induced by viscoinertial
effects decrease. In the same way, there will also be some
thermal interactions due to the overlapping of viscous
boundary layer, which will make the attenuation induced by
this scattering mechanism decrease. However, as the viscous
boundary layer &v is usually larger than the thermal boundary
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FIG. 5. Attenuation as a function of the volume fraction at various frequencies for silica particles of 164.5 nm radius in water. The solid lines !-" correspond
to the new effective theory, the broken lines !–" to the effective theory without spatial correlationss, the dotted line !.." to the classical coupled phase theory,
and the symbols to the experimental data.
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layer !t for aqueous solutions !see, for example, Hipp et
al.46", viscoinertial interactions will be more important than
thermal interactions and therefore thermal attenuation might
become more significant in concentrated suspensions. It
would be interesting to investigate this question in a future
work.

To conclude this discussion, we can notice that unlike
interactions of compressional waves, viscous coupling tends
to diminish the attenuation induced by the suspension when
the concentration increases, which is quite unusual.

V. CONCLUSION

An effective medium coupled phase theory has been de-
rived to properly describe the sound propagation in concen-
trated suspensions of rigid particles. An excellent agreement
is obtained between this theory and the experimental data of
Hipp et al. who measured the attenuation induced by the
presence of silica particles in water for different particle
sizes, concentration up to 30%, and frequencies between 2
and 100 MHz. Moreover, the influence of spatial correlations
on the propagation in solutions of rigid particles has been
clearly identified. This theory could be improved by consid-
ering the exact evolution of the conditional volume fraction
with the distance from the test particle center instead of the
core-shell aproximation. It could be also extended to poly-
disperse suspensions but it would require the knowledge of
the distribution function in polydisperse suspensions which
is not an easy matter.47 Finally, we can underline that the
expressions obtained here for the force and the stresslet
could also be used for hydrodynamic studies of concentrated
suspensions of particles, as long as the characteristic macro-
scopic length of the flow is much larger than the size of the
particles, and as long as the flow does not modify the distri-
bution of the particles.
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APPENDIX A: RESOLUTION OF THE SYSTEM

First, we can subtract Eqs. !31" and !32" for the aver-
aged fields from Eqs. !41" and !42" for the conditionally
averaged fields in the region r"Rc to obtain equations for
the perturbation due to the presence of the test sphere:

div!Vc
e*" = 0, !A1"

− #eff 1!i$"Vc
e* = − !pc

e* + %eff&Vc
e*, !A2"

where

Vc
e* = Vc,x

e − Vc,

pc
e* = pc,x

e − pc.

Then, the boundary conditions can easily be rewritten in
terms of the perturbation fields:

Vc,x
p = 0 in r = a !A3"

Vc,x
p − 'coVc

e* − 'doVd
e* = 'coVc + 'doVd in r = Rc,

!A4"

!x
p . n − !e* . n = !c . n in r = Rc, !A5"

#Vc
e*,pc

e*$ → 0 when r → ( . !A6"

Equations !31", !32", !39", !40", !A1", and !A2" can all be
written under the form

div!U" = 0, !A7"

!& − )2"U = !R , !A8"

where

#U = Vc,R = 1/%eff!pc + #eff 2*",)

= )eff$ for the first set of equations,

#U = Vc,x
p ,R = 1/%c!pc,x

p + #co*",) = )c$ for the second,

#U = Vc
e*,R = 1/%eff!pc

e*",) = )eff$ for the third one.

Then the velocity and pressure fields can be expressed in
terms of spherical functions:

U!r" = %
k=0

( &Fk!r"sk!+,,"
r
r

+ Gk!r"r ! sk!+,," + Hk!r"r

- !sk!+,,"' , !A9"

R!r" = %
k=0

(

Lk!r"sk!+,," , !A10"

where r, +, and , are the spherical coordinates. Fksk denotes
the summation

Fksk = Fk
0!r"Pk!cos!+""

+ %
k!=1

k

(Fk+
k!!r"Pk

k!!cos!+""cos!k!,") !A11"

( + Fk−
k!!r"Pk

k!!cos!+""sin!k!,") , !A12"

and Pk and Pk
k! are, respectively, the principal and associated

Legendre functions. Of course, Gksk and Hksk denote similar
summations.
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As the inertial terms due to the rotation of the particle
are neglected Hk=0 and because of the symmetry of the
problem !which is invariant by any rotation of ! angle", only
the principal Legendre functions are required:

Fksk = Fk
0!r"Pk!cos!""" , !A13"

Gksk = Gk
0!r"Pk!cos!""" . !A14"

Then, by replacing the preceding expressions of U and R
in the conservation Eqs. !A7" and !A8", Buyevich and
Markov42 obtain the following expressions for Fk

0 and Gk
0:

Fk
0 = AkSk!#" + BkQk!#" − kMk# #

$
$k−1

+ !k + 1"Nk# #

$
$−k−2

,

!A15"

Gk
0 =

2
k!k + 1"

Ak#Sk!#" +
#

2
Ṡk!#"$

+
2

k!k + 1"
Bk#Qk!#" +

#

2
Q̇k!#"$ − Mk# #

$
$k−1

− Nk# #

$
$−k−2

, !A16"

where the coefficients Ak, Bk, Mk, and Nk are some constants
which must be determined from the boundary conditions for
each order k; Ṡk and Q̇k are the derivatives of Sk and Qk with
respect to #; and the expressions of Sk and Qk are given by
the following expressions:

Sk = 2k#k−1 dk

d!#2"k

sinh #

#
, !A17"

Qk = !− 2"k#k−1 dk

d!#2"k

exp!− #"
#

, !A18"

with #%$r.
We can now introduce the following notations: the con-

stants &Ak ,Bk ,Mk ,Nk' are, respectively, equal to the follow-
ing:

• &ak ,bk ,mk ,nk' for the first set of equations !for the average
fields in the original frame of reference",

• &ak
p ,bk

p ,mk
p ,nk

p' for the second set of equations !for the con-
ditionally averaged field in the pure fluid shell", and

• &ak
e ,bk

e ,mk
e ,nk

e' for the third set of equations !for the pertur-
bation in the effective homogeneous medium".

We can easily deduce from the boundary conditions that:
!a" bk and nk are null because the averaged fields are bounded
when r→0, and !b" ak

e and mk
e are null because the perturba-

tion vanishes when r→%.
Now, there only remains to express the relations be-

tween the remaining coefficients, deduced from the boundary
conditions !A3"–!A6". At first order !k=1", we obtain

M1V1 = a1VA1 + m1VM1 − !i&"(vd(r=0VP1 !A19"

and at second order !k=2"

M2V2 = a2VA2 + m2VM2, !A20"

where the expression of the column vectors VA1, VM1, VA2,
and VM2 and the matrices M1 and M2 are given in Appendix
C and the expressions of V1 and V2 are given by

V1 = )
a1

p

b1
p

m1
p

n1
p/a3

b1
e

n1
e/Rc

3

*, V2 = )
a2

p

b2
p

am2
p

n2
p/a4

b2
e

n2
e/Rc

4

* .

APPENDIX B: CALCULATION OF THE FORCE AND
THE STRESSLET

The next step consists of expressing the force F and the
stresslet S in terms of the coefficients ak

p, bk
p, mk

p, and nk
p. It is

important to note that only the coefficients of first order !k
=1" are required for the calculation of the force and the
coefficients of second order !k=2" for the calculation of the
stresslet because the contribution of the other terms vanishes
when the integration over the surface of the sphere is per-
formed. The following expressions are obtained:

F = 'do(c$c
2+S1!)"a1

p + Q1!)"b1
p − m1

p −
n1

p

a3,ez

+ 'do*co ! + ,

S =
'do(c$c

5
!3ez ! ez − I" , +#Ṡ2!)" + # 4

)

+
)

2
$S2!)"$a2

p + #Q̇2!)" + # 4
)

+
)

2
$Q2!)"$b2

p

− #10
)

+ )$am2
p − )

n2
p

a4, .

The final step consists of expressing the coefficients a1,
m1, a2, and m2 in terms of the averaged fields in r=0:

a1ez = 3/$eff
2 (-Vc(r=0,

m1ez = 1/$eff
2 (-Vc(r=0 − (Vc(r=0,

a2!3ez ! ez − I" = 30/$eff
2 (!s-Vc(r=0,

m2!3ez ! ez − I" = − (!sVc(r=0 + 1/$eff
2 (!s-Vc(r=0.

Finally, with the relation -2Vc=$eff
2 -Vc -which can be easily

deduced from Eqs. !31" and !32". and by comparing the
above expressions with Eqs. !27" and !28", we obtain the
expression of the coefficients ñk.

J. Acoust. Soc. Am., Vol. 123, No. 6, June 2008 Baudoin et al.: Influence of spatial correlations 4137



APPENDIX C: EXPRESSION OF THE MATRICES M1, M2 AND THE VECTORS VA1, VM1, VP1, VA2,VM2

M1 = !
S1"!# Q1"!# − 1 2 0 0

S1"!# + !/2Ṡ1"!# Q1"!# + !/2Q̇1"!# − 1 − 1 0 0

S1""# Q1""# − 1 2"a/Rc#3 − #AQ1"$# − 2#B

S1""# + ""/2#Ṡ1""# Q1""# + ""/2#Q̇1""# − 1 − "a/Rc#3 − #A"Q1"$# + $/2Q̇1"$## #B

2%Ṡ1""# 2%Q̇1""# − %" − %"a/Rc#3"" + 12/"# − 2Q̇1"$# $ + 12/$

%""/2S̈1""# + Ṡ1""## %""/2Q̈1""# + Q̇1""## 0 6%a3/"Rc
3

− "$/2Q̈1"$# + Q̇1"$## − 6/$
$ ,

M2=!
S2"!# Q2"!# − 2 3 0 0

1/3"S2"!# + !/2Ṡ2"!## 1/3"Q2"!# + "!/2#Q̇2"!## − 1 − 1 0 0

S2""# Q2""# − 2Rc/a 3"a/Rc#4 − #AQ2"$# − 3#B

1/3"S2""# + ""/2#Ṡ2""## 1/3"Q2""# + ""/2#Q̇2""## − Rc/a − "a/Rc#4 − #A/3"Q2"$# + "$/2#Q̇2"$## #B

2%Ṡ2""# 2%Q̇2""# − %Rc/a"" + 4/"# − %a4/Rc
4"" + 24/"# − 2Q̇2"$# "$ + 24/$#

%""4/" + "/2#S2""# − Ṡ2""## %""4/" + "/2#Q2""# − Q̇2""## − 6%Rc/a" 24%a4/"Rc
4

Q̇2"$# − "4/$ + $/2#Q2"$# − 24/$

$ ,

VA1 = !
0

0

#AS1"$#

#A"S1"$# + $/2Ṡ1"$##

2Ṡ1"$#

Ṡ1"$# + $/2S̈1"$#

$, VM1 = !
0

0

− #B

− #B

− $

0

$, VP1 = !
0

0

#C

#C

"&eff2 − &co#Rc/'eff(eff

0

$ ,

VA2 = !
0

0

#AS2"$#

#A/3"S2"$# + $/2Ṡ2"$##

2Ṡ2"$#

"4/$ + $/2#S2"$# − Ṡ2"$#

$, VM2 = !
0

0

− 2#BRc

− 2#BRc

− "4/$ + $/2#Rc

−
6
$

Rc

$ ,

with

#A = #co + #do"c1 + c2#, #B = #co + #doc1, #C

= #do
n3̃ − &do

n1̃ − i)&do

,

c1 =
n1̃

n1̃ − i)&do

, c2 =
n2̃(eff

2

n1̃ − i)&do

.
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Droplet displacements and oscillations induced by ultrasonic surface acoustic waves:
A quantitative study
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We present an experimental study of a droplet interacting with an ultrasonic surface acoustic wave. Depend-
ing on the amplitude of the wave, the drop can either experience an internal flow with its contact line pinned,
or !at higher amplitude" move along the direction of the wave also with internal flow. Both situations come
with oscillations of the drop free surface. The physical origins of the internal mixing flow as well as the drop
displacement and surface waves are still not well understood. In order to give insights of the underlying
physics involved in these phenomena, we carried out an experimental and numerical study. The results suggest
that the surface deformation of the drop can be related to a combination between acoustic streaming effect and
radiation pressure inside the drop.
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I. INTRODUCTION

A. General Issues

For discrete microfluidics in lab-on-chip devices, it is of-
ten necessary to handle small amount of liquids in the form
of droplets. These elementary operations are the linear dis-
placement, the splitting or the merging of droplets, or the
production of a constant flow inside a drop. At the scale of a
microliter drop or smaller, the main parameters governing
the shape and flow dynamics, are the dynamic viscosity "
and the surface tension #. Nonlinear effects originating from
inertia are mostly negligible, so that the momentum conser-
vation equation for the fluid reduces to the time-dependent
Stokes equation. Consequently, it is hard to induce !chaotic"
mixing and continuous resuspension of particles in a drop as
the equation of flow motion is time reversible. Furthermore,
during these operations, the drop is often in contact with
ambient atmosphere and evaporation can significantly occur
at the typical time scales of the operations. It is known that
when the liquid contains colloidal particles or macromol-
ecules, evaporation leads to a outwards flow in the drop,
which in turn leads to a particle clustering in the vicinity of
the contact line #1,2$. The “coffee rings” originate from this
phenomenon, which in practical situation can strongly limit
bioparticles detection in lab-on-chip devices !see, e.g., #3$"
by forming deposits on DNA microarrays #4$.

Another difficulty is to displace such small droplets.
As their typical size is smaller than the capillary length lc
=%# /$g, of the order of 1 to 2 mm for most liquids !$ being
the liquid density", the volume forces are generally overcome
by the retention force, FR, acting at the contact line of the
substrate. This force scales with the contact-line perimeter
#5$,

FR = %R#!cos!&r" − cos!&a"" !1"

Its strength is related to the contact angle hysteresis &a−&r,
where &a and &r are respectively the advancing and receding

contact angles. Real surfaces combining micro- or nanoscale
roughness and chemical heterogeneities, can have significant
hysteresis #6$. Furthermore, the aforementioned accumula-
tion of particles near the contact line increases this hysteresis
even more. The coffee-ring effect can be hindered by Ma-
rangoni forces if one uses a very volatile solvent #7$, but
with casual liquids and substrates used in biology, volume
forces are too weak to resuspend continuously the particles
or to move the drop in a controlled fashion.

One of the challenging issues is to provoke the continuous
unpinning of the contact line of the drop to both prevent
particle accumulation and to obliterate hysteresis. Various
authors evidenced a similar unpinning effect with low-
frequency mechanical vibrations #8–13$, but it is required
that the amplitude of vibrations be of the order of a millime-
ter to obtain the desired effect. Such vibrations can be un-
supported by many fragile surrounding devices. Further-
more, as the pinning forces are often due to micron-sized
roughness, it is intuitively more efficient to induce an unpin-
ning flow from waves of shorter wavelength such as those
produced by ultrasonic transducers, ' ranging from 1 to 300
microns.

B. Qualitative description of the phenomena

Recently, it has been found that the use of ultrasonic sur-
face acoustic-so-called “Rayleigh” waves !SAW" transducers
on piezoelectric substrates enables to both agitate inner fluid
and to displace a droplet along the direction of the wave
propagation #14–16$. SAW frequency generally ranges from
5 to 150 MHz, and depending on the operating frequency the
dynamics of the droplet can show a host of different behav-
iors. At low frequencies—about 20 MHz, a “creeping and
jumping” motion of the drop generally occurs, especially for
low-viscosity liquids #17$ #see Fig. 1!a"$. Due to a nonlinear
coupling between the Rayleigh acoustic wave and the flow,
the liquid inside is highly stirred in a rotating flow motion
#see Fig. 1!b"$, while the interface shows capillary waves.
Although several experimental studies demonstrated the re-
liability of this technique, little is known about the detailed*philippe.brunet@univ-lille1.fr
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mechanisms that create both the internal flow and the droplet
deformations. It is generally admitted that the SAW is radi-
ated inside the droplet at a refraction angle !r, analogous to
Snellius-Descartes law in optics,

sin!!r" =
cl

cs
!2"

where cl and cs denote respectively the speed of sound in the
liquid and the solid, and in turn generates acoustic streaming.
The angle !r is around 25° for water and usual piezoelectric
substrates. Regarding droplet dynamics by SAW, a fluid-
dynamics analysis has been recently attempted #15$, but re-
sults are mostly related to atomization occurring at high
acoustic power. At high frequencies, around 100 MHz, a no-
ticeable contribution on the understanding of drop deforma-
tion and displacement, is available in #18$ !however at this
frequency, no oscillations have been observed". It shows that
the flow originates from a carrying force focused in a narrow
region inside the drop, starting at the drop edge hit by the
wave and directed toward the refraction angle.

In the general case, this force is partly due to nonlinear
acoustic streaming #19,20$. The fluid trajectories are de-
scribed qualitatively by the particle tracking snapshot such as
that of Fig. 1!b". In the present frequency range, around 20
MHz, the liquid-air interface is also affected by SAW in
three different ways.

First, the droplet’s left-right symmetry is broken #see Fig.
1!c"$ and the asymmetry is more pronounced for larger

acoustic power. The asymmetry is responsible for the drop
displacement as it makes the front and rear contact angles
becoming, respectively, larger than "a and smaller than "r
#6$. However, the relative contributions of acoustic streaming
and radiation pressure on this asymmetry with respect to the
frequency regime remain unclear.

Second, the periodic creeping-jumping motion #see Fig.
1!a"$ has a well-defined frequency of the order of 50 to 200
Hz for usual droplet size, and comes with a continuous un-
pinning of the contact line. During the deformation cycle, the
droplet is strongly stretched and flattened.

Finally, besides the global deformation, the droplet
surface exhibits small deformations !“trembling”" at a fre-
quency of about of a few thousands Hertz. However, this is
hardly visible on the pictures presented here.

In any case, the periodic deformations of the interface
cannot be attributed to a steady flow. Instead, the acoustic
radiation pressure which affects the shape of the liquid-vapor
interface can be invoked for a possible origin of such defor-
mations. Therefore, the periodic motion could be associated
with dynamical eigenmodes of the droplet, where capillarity
tends to restore a minimal surface energy.

The deep understanding of the involved phenomena is
necessary in order to set up a droplet handling lab on chip
with minimal acoustic power toward an optimization of the
system. Especially interesting is the use of several combined
transducers and short-time pulses in order to reduce heat
!continuous appliance of SAW would cause much heat pro-
duction" and to protect fragile bioparticles. The current avail-
able literature being insufficient for quantitative predictions,
the present study aims to carry out quantitative measure-
ments of the displacement and deformation of the drop. We
present here such a quantitative study by varying parameters
such as the droplet volume, the liquid viscosity and the am-
plitude of the acoustic wave. These results constitute a first
step toward the understanding of the detailed coupled acous-
tic and hydrodynamic mechanisms.

II. EXPERIMENTAL SETUP

The setup is depicted in Fig. 2. We used a substrate with
piezoelectric properties !lithium niobate, LiNbO3", in order
to generate powerful SAW. The transducer is an interdigi-
tated transducer !IDT" which generates transverse-acoustic
waves propagating along the surface. The interconnected fin-
gers of the IDT are made of Titane covered by Gold, and
designed by a lithographic technique detailed elsewhere #14$.
We applied the periodic sinusoidal voltage with a high-
frequency generator !IFR 2023A", amplified with a home-
made amplifier. A SAW is generated providing that the volt-
age frequency is compatible with the space between each
track of the IDT. Considering that the space between fingers
a /2 is 43.75 #m, giving a wavelength $=2a=175 #m, and
that the sound velocity in LiNbO3 is 3485 m.s−1 for trans-
verse waves, the value of the frequency f0 has to be around
19.5 MHz. In practice, we found the best actuation to drop-
lets of any size for f0=20.375 MHz and we kept this value
for all experiments. The properties of the SAW ensure that
the amplitude is not attenuated in its direction of propaga-
tion, and that it is localized near the surface.

(b)

(a)

(c)

FIG. 1. !a" Successive snapshots of a water drop displaced by
SAW, showing a periodic creeping and jumping flow. The arrow
shows the direction of the displacement. !b" Particle tracking inside
a steady drop subjected to SAW waves, obtained by time averaging.
!c" Asymmetric shape of a drop moving under the action of SAW
!W/G mixture 2", without oscillations. For the three images, the
SAW propagates from left to right.
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In order to reduce the friction forces, and to study the
simpler situation of partial wetting, we treated the surface
with hydrophobic coating !monolayer of octadecyltrichloro-
silane "OTS#$. The contact angles are: !a=105° and !r
=95°. This weak hysteresis helps to conduct experiments
without the additional complexity of pearling at the trailing
edge of a moving drop !22$ that would have occurred other-
wise. The droplet dynamics is acquired with a high-speed
camera "Photron SA3# with a zoom lens completed by ex-
tension rings. This allows a maximal magnification of about
8 "m /pixel. The acquisition rate ranged from 2000 to 5000
im/s. To avoid evaporation, special care is devoted to use
cold source of light "Schott KL2500# and to acquire pictures
no later than a few seconds after the droplet has been put on
the substrate.

The liquids used are deionized water and water/glycerol
mixtures "W/G#, which physical properties at 20 °C are
given in Table I. Glycerol percent weight was varied from 50
to 70, increasing the viscosity by a factor of up to 11,
whereas the surface tension stayed close to that of water.

The measurement of the normal displacement at the sur-
face of the substrate gives the amplitude of the SAW. We
used a technique of laser heterodyne interferometer of type
Mach-Zender "SH130, B.M. Industries#. In brief, the inter-
ferometer measures the Doppler shift between a reference
beam and a secondary beam modulated at fM =70 MHz by
an acousto-optic Bragg cell. The secondary beam is reflected
onto the surface and hence, is modulated a second time by
Doppler effect. The acoustic displacement d is then deduced
from these measurements by extracting the relative ampli-

tude between the peaks at fM and fM # f0 in the power spec-
trum. The displacement d ranges from 0.3 to 2 nm for the
usual experimental conditions.

III. RESULTS

For each experiment, the dynamics of the drop was ex-
tracted using the public domain image processing software
ImageJ !23$. From a sequence of about 2000 images, we
built spatiotemporal diagrams that allowed us to measure
both the speed and the frequency of oscillations: we ex-
tracted the gray levels along a horizontal line cutting the base
of the droplet, and we pilled the lines on top of each others
"time axis is horizontal after a rotation of $ /2#. A typical
motion of drop is pictured in Fig. 3 after binary treatment.
The total time is about 250 ms. This diagram is then skel-
etonized to get the position versus time. The velocity U is the
slope and the frequency f is extracted from a Fourier trans-
form. It is noticeable that the drop does not start to move or
oscillate immediately: it waits about 200 ms before it starts.
During this relatively long transient, the oscillations progres-
sively increase, as does the velocity.

A. Droplet displacement

We first present the velocity measurements, obtained by
varying the acoustic amplitude d at constant volume !Fig.
4"a#$ and by varying the droplet volume V at constant dis-
placement d !Fig. 4"b#$ for water. As stated earlier, the drop
displacement results from a balance between driving
forces—due to both the streaming and radiation pressure
which induce a left/right asymmetry—and dissipation occur-
ring near the contact line.

1. Influence of acoustic displacement

As expected, the larger d is, the faster the droplet moves.
Also it turns out that d has to be larger than a certain thresh-
old around 0.5 nm in order for the droplet to move. Below
this threshold, the droplet stays at the same location but an
internal flow motion is observed: this situation is illustrated
in Fig. 1"b#. The influence of d is strongly nonlinear: after a
sharp increase just above threshold, U saturates at a volume-
dependent value.

2. Influence of volume

Whatever the amplitude of the acoustic wave d, the influ-
ence of volume shows a maximal velocity at V about 5 "l

DropLithium Niobate Substrate Fingers

w

2a

2a

FIG. 2. "Color online# Scheme of the SAW interdigitated trans-
ducer that actuates with a droplet deposited on the substrate. The
wave propagates from left to right. Below: the details of the net-
work of fingers that compose the IDT.

TABLE I. Physical properties of liquids.

Liquid
Kin. viscos. %

"mm2 /s#
Surf. tension &

"N/m#
Density '
"g /cm3#

Water 1.00 0.072 1.00
W/G. mix 1 5.60 0.067 1.126
W/G. mix 2 11.50 0.066 1.161

FIG. 3. Typical spatiotemporal diagram for a moving, creeping
and jumping droplet like in Fig. 1"a#.
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!see Fig. 4"b#$. A tentative explanation of this behavior is
developed in the Discussion part.

3. Influence of viscosity

To have a more complete understanding of the coupled
acoustic and hydrodynamic effects, we used liquids of vari-
ous viscosity "see Table I#. Figure 5 shows velocity versus
volume, for three liquids "water and W/G mixtures 1 and 2#.
The increase of viscosity leads to a decrease of the velocity
as expected for moving droplets. Indeed it is known that
viscosity is involved in the dissipation near the contact line
!6$ and, hence, an equal driving force displaces viscous
drops at lower speed. It is natural to consider the dimension-
less velocity, the capillary number

Ca =
!U

"
"3#

which is plotted in the insert of Fig. 5.
It turns out that the data for capillary numbers do not

collapse well together, although the order of magnitude is
around 1#10−3 for most measurements. This can be inter-
preted in the following way: the driving force is due "at least
partially# to the acoustic streaming which involves bulk dis-
sipation !20$. Hence, streaming effects are promoted by liq-
uid viscosity. The increase of viscosity increases the contact-
line dissipation !6$, but it should also increase the driving
force. Therefore, it is consistent that the values of Ca be
slightly larger for more viscous liquids.

B. Creeping-jumping oscillatory motion

1. Influence of viscosity

First, it is noticeable that oscillations are more and more
damped as the viscosity is increased by adding glycerol in
the mixture. For instance with mixture 1, oscillations have
very small amplitude and are barely measurable, whereas for
mixture 2 oscillations completely vanished. Hence, the re-
sults of oscillations reported thereafter are for water as this is
the only situation where they clearly appear like in Fig. 1"a#.

2. Frequency

In Fig. 6, f is plotted versus volume for different acoustic
displacement d. The results clearly show a sharp decrease of
f with V, in the range V=0.5 to 5 !l. A power-law fit leads
to an exponent close to one half: f %V−1/2. This is reminis-
cent to what is predicted by the theory of Rayleigh-Lamb
!21$, for inertial-capillary modes of vibrations in a drop.
Rayleigh’s seminal calculation is valid for a spherical droplet
and for small deformations,

fn = &n"n − 1#"n + 2#$
3%&V

'1/2
"4#

in which fn denotes the resonance frequency of the nth mode
of oscillation.
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FIG. 4. "a# Drop velocity versus acoustic displacement d for
three different volumes "water#. "b# Drop velocity versus volume
for three values of d.
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The case n=1 corresponds to pure translation and n=2
corresponds to the lowest mode in which the drop is elon-
gated with an elliptical shape. The morphology of the oscil-
lations suggests a mode n=2 !see Fig. 1"a#$. To the best of
our knowledge, the case of sessile drops has not been treated
fully analytically. The pinning force acting at the contact line
strongly constrains the structure of the capillary wave, mak-
ing its computation more complex. However, Noblin et al.
!11$ showed that for moderate hysteresis and under strong
enough vibrations, the contact line is constantly unpinned
and the constraint due to retention force at the contact line
!Eq. "1#$ is released !8,9,11–13$. This is indeed what is ob-
served in sequences such as Fig. 1"a#. Hence, we compared
out results to what is predicted by Eq. "4#, also plotted in Fig.
6. It turns out that Rayleigh-Lamb’s theory slightly overesti-
mates the results although the order of magnitude is correctly
predicted. This can be interpreted by the fact that SAW tend
to induce large amplitude droplet oscillations which are out
of the frame of Rayleigh’s theory. Intuitively, large amplitude
oscillations are of larger period than weak amplitude ones,
and this is confirmed by the results of Fig. 6: larger d gen-
erates free-surface oscillations of larger amplitude and of
smaller frequencies.

3. Amplitude

In Fig. 7, the relative amplitude of oscillations—i.e., the
amplitude divided by the mean base radius of the drop—is
plotted versus volume, for different acoustic displacements
d. This amplitude is extracted from spatiotemporal diagrams
such as that in Fig. 3 and corresponds to the maximal lateral
deformation of the base of the drop. It turns out that the
amplitude is maximal for a d-dependent value of volume.
These results suggest that oscillations result from a balance
between the wave-induced pressure reaching the interface
and capillarity, as developed in Sec. IV.

IV. DISCUSSION—NUMERICAL RESULTS

The measurements presented here show several evidences
that the dynamics of the drop is due to an interplay between

acoustic streaming and radiation pressure. For water droplets
at the tested frequency, the SAW induces both a left-right
symmetry breakup leading to motion and the creeping-
jumping oscillations "the high-frequency ’trembling’ oscilla-
tions, mentioned earlier, will be treated in a further study#. It
is still unclear what the respective weight of streaming and
radiation pressure are on the drop left/right asymmetry.
Schindler et al. !18$ showed that at high frequencies, acous-
tic streaming can lead to a conservative force potential in the
drop toward the direction of propagation, headed to the top
and inducing a deformation like in Fig. 1"c#. However, the
streaming flow cannot explain the creeping-jumping oscilla-
tions in which the free surface of the drop is pushed upwards.

The acoustic streaming inside the droplet comes from dis-
sipation due to liquid shear "!# and bulk "!b# viscosities.
The internal streaming flow is more intense for larger vis-
cosities and frequency !20$. On the contrary, the radiation
pressure is directly proportional to the energy which reaches
the free surface !20$. Consequently, the larger the viscous
dissipation is, the smaller this energy is. The relative impor-
tance of both effects is strongly dependent on the structure of
the acoustic wave diffracted in the drop and on how much
the wave is attenuated.

It is relevant to compare the typical drop size with the
length of attenuation of the acoustic wave which, in a fluid,
is given by !20$

L =
2"cl

3

"2#f0#2% 1
4
3

! + !b& . "5#

This length is plotted versus f0 in Fig. 8, with respect to the
drop size. The length L is equal or lower than the size of
droplets for a frequency of about 125 MHz or above "see Fig.
8# and defines a range of frequency where radiation pressure
is negligible. This is far beyond the values of f0 used here
and, therefore, both streaming and radiation pressure are ef-
fective in our study.
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FIG. 6. "Color online# Frequency of the creeping-jumping oscil-
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0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V (µl)

A
/R

d=0.56 nm
d=0.75 nm
d=1.17 nm
d=1.86 nm

FIG. 7. "Color online# Amplitude of the creeping-jumping oscil-
lations of water droplets versus volume, for various acoustic dis-
placements. The curves are guidelines for the eyes.

DROPLET DISPLACEMENTS AND OSCILLATIONS… PHYSICAL REVIEW E 81, 036315 "2010#

036315-5



To confirm this trend, at least qualitatively, we carried
out numerical simulations with a finite-elements software
!COMSOL Multiphysics 3.4". The model uses a drop of half-
spherical fixed shape !contact angle=90°, radius=2 mm"
subjected to a SAW. The General Form Modes of COMSOL
Multiphysics with two domains has been used, one for the
piezoelectric substrate and one for the water droplet. In the
water droplet, the linear equation of acoustic in a thermovis-
cous fluid has been considered. The boundary conditions
used at the drop/ambient air interface are stress-free condi-
tions. As we are interested in the linear radiation of the SAW
propagating at the substrate surface into the water, the con-
tinuity of the normal stresses and displacements has been
assumed between the piezoelectric substrate and the liquid
#24$. This last point is justified by the fact that in our expe-
riences the amplitude of SAW is always small in comparison
to the acoustic wavelength.

Figure 9 shows the pressure distribution !a" in a water
drop for f0=20 MHz and in liquids where the attenuation is
!b" 25 times larger and !c" 100 times larger, for the same f0.
When weakly attenuated, as in water for a frequency of 20
MHz #Fig. 9!a"$, the wave structure is generally chaotic due
to multiple reflections as the drop acts such as a chaotic
cavity. If the radius is slightly modified, the wave structure is
completely different except for the coherent part in the direct
wave. To extract this coherent part we computed the wave
structure for 15 droplets of radius ranging from 2 to 2.35
mm, and we averaged the contribution of each case. This
calculation procedure, where stationary wave pattern are de-
termined in nondeformable drops of increasing size, is justi-
fied by the fact that the time required for the wave to propa-
gate across the 2 mm drop is about 2 !s, which is much
lower than the observed characteristic deformation time of
the drop.

The resulting data exhibit the coherent part of the wave,
as shown in Fig. 10. In this case, the wave reaches the free
surface whereas in the two other cases #Figs. 9!b" and 9!c"$ it
is strongly attenuated and hardly reaches the free surface. It
is clear that radiation pressure will only operate in the first
case. The third case is streaming dominated and should not
show global free-surface oscillations. The action of radiation

pressure is reminiscent to another study #25$, although for
much smaller frequencies and a different setup, where the
free surface of a liquid layer is deformed by acoustic vibra-
tions of a plate.

The coherent part of the wave is highly left-right asym-
metric and the associated radiation pressure therefore con-
tributes to the asymmetry of the droplet. On the contrary the
chaotic part of the wave induces a radiation pressure homo-
geneously distributed on the surface of the wave. Therefore,
only the direct coherent wave contributes to the displacement
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FIG. 8. !Color online" The different regimes of the relative in-
fluence of radiation pressure versus frequency. The plain curve
stands for the attenuation length L in pure water !cl=1476 m /s and
!b=2.8"10−3 Pa.s" given by Eq. !5".

(b)

(a)

(c)

FIG. 9. !Color online" Numerical simulations of a SAW inside
an nondeformable half-spherical drop, f0=20.375 MHz and d
=2 nm. Color levels stand for pressure !in gray-scale print version,
darker gray stands for higher pressure in absolute value". !a" Weak
attenuation in the case of water. !b" Intermediate attenuation, 25
times larger than !a". !c" Strong attenuation, 100 times larger than
!a".
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of the droplet whereas the chaotic part should be the driving
effect of the free-surface oscillations. The computations
showed that the chaotic part vanishes for smaller f0 than the
coherent direct part. Indeed, for the existence of multiple
reflections it is required that the length L be several times
larger than the drop size. Therefore, we defined two other
regimes: a ’multiple reflections’ domain at lower f0, and an
intermediate regime where only the coherent part of the di-
rect wave contributes to the radiation pressure.

The use of liquids more viscous than water have similar
effects on the relative contribution of radiation pressure as
the prescription of a higher frequency: it decreases L. In the
cases displayed in Figs. 9!b" and 9!c", the corresponding fre-
quencies would be 100 and 200 MHz, respectively. The use
of W/G mixtures increases both ! and !b. The ratio between
!b and ! is 2.8 for water, and it should be quite close to this
value for W/G mixtures of low viscosity like ours. It is sen-
sible to interpret the absence of oscillations for W/G droplets
by a decrease of the length L: as the wave is more strongly
attenuated when arriving at the droplet free surface, the ra-
diation pressure is weaker than for water drops. In Fig. 8, the
curve of L vs f0 for W/G mixtures would be just translated
downwards.

To observe the creeping-jumping oscillations, the radia-
tion pressure has to be strong enough to cause the unpinning
of the droplet contact line !otherwise, as the drop volume is
constant, the height of the drop cannot vary significantly".
Our measurements and computations suggest that the chaotic
part of the wave is required to obtain such pressure: this
condition is fulfilled only for frequencies included in the
lowest range domain and for low-viscous liquids. This is to
be related to the results of Fig. 6 for the selection of the
frequency: once the radiation pressure pushes the top of the
drop and shrinks its base surface, the contribution of this

pressure decreases as the height of the drop increases. There-
fore, the drop retracts under the action of capillary forces,
leading to a frequency comparable to that of the first eigen-
mode of the drop driven by an inertial-capillary balance. The
maxima of amplitude found for a d-dependent intermediate
volume !Fig. 7" is consistent with this interpretation: surface
tension hinders large oscillations for small drops, as capillary
pressure, scaling with interface curvature, is bigger; whereas
large drops are subjected to lesser radiation pressure because
the acoustic wave is more damped before reaching the inter-
face.

Finally, these calculations suggest a possible explanation
for the maximal drop velocity for water, obtained for inter-
mediate drop volume !see Fig. 4". If the drop is too small,
only a part of the SAW is transferred to the droplet whereas
a significant part of the acoustic energy goes on propagating
in the solid after the drop #26$. On the contrary, drops of
larger size collect most of the acoustic energy for their dis-
placement and deformation. Bigger drops collect about the
same amount of energy as intermediate drops, but they will
be slowed down simply because they have more inertia. The
drop optimal size is dictated by the attenuation length in the
solid, in the X direction. This attenuation length is no more
linked to the thermoviscous absorption in the liquid, but to
the imaginary part ki of the Rayleigh wave wave number,
which is of leaky type when propagating in a substrate in
contact with a liquid. For a lithium niobate substrate loaded
by water ki%2.310-5" f0 Np /m #24,27$, more than two or-
ders of magnitude higher than the attenuation coefficient at
f0=20 MHz. This corresponds to the fact that the Rayleigh
wave efficiently looses its energy by radiating in the liquid.
The extraction of the amplitude at the solid-liquid interface
gives an attenuation length of about 2.13 mm, corresponding
to a drop volume of about 5 !l. This may explain the
maxima of velocity observed in Fig. 4.

V. CONCLUSION

We have presented here a quantitative study of droplet
dynamics, when actuated by a SAW. Most of previous stud-
ies of SAW ignored the effect of radiation pressure as they
were carried out at higher frequencies. In our range of fre-
quency and liquid viscosity, a combination between stream-
ing and radiation pressure effects was observed and their
respective contributions on the observed dynamics were
studied. The free-surface oscillations are mostly due to radia-
tion pressure, whereas internal flow is due to streaming. This
is evidenced by both experiments at different viscosity, and
computations. Contributions of both phenomena are of inter-
est, for an optimal microfluidics mixing efficiency. Future
studies will focus on the influence of frequency in order to
determine the relative weight of both mechanisms in the
drop’s asymmetry.

FIG. 10. !Color online" Pressure due to the coherent direct wave
in the situation of Fig. 9!a", with chaotic multiple reflections. Ob-
tained by averaging over several runs, see text for details. Color
levels stand for pressure !in gray-scale print version, darker gray
stands for higher pressure in absolute value".
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a  b  s  t  r  a  c  t

Microfluidic  techniques  are  employed  to investigate  air–liquid  flows  in the lung. A  network  of microchan-
nels  with  five  generations  is  made  and  used  as a simplified  model  of  a  section  of the  pulmonary  airway
tree.  Liquid  plugs  are  injected  into  the network  and  pushed  by  a  flow  of  air;  they  divide  at  every bifurca-
tion  until  they  reach  the  exits  of the  network.  A resistance,  associated  with  the  presence  of one plug in  a
given generation,  is  defined  to  establish  a linear  relation  between  the  driving  pressure  and  the  total  flow
rate in  the  network.  Based  on this  resistance,  good  predictions  are  obtained  for  the  flow of  two  successive
plugs  in  different  generations.  The  total  flow  rate  of  a two-plug  flow  is  found  to  depend  not  only  on  the
driving  pressure  and  lengths  of  the  plugs,  but  also  the  initial  distance  between  them.  Furthermore,  long
range  interactions  between  daughters  of a  dividing  plug  are  observed  and  discussed,  particularly  when
the plugs  are  flowing  through  the  bifurcations.  These  interactions  lead  to  different  flow  patterns  for  dif-
ferent forcing  conditions:  the  flow  develops  symmetrically  when  subjected  to  constant  pressure  or  high
flow  rate  forcing,  while  a low  flow  rate  driving  yields  an  asymmetric  flow.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The lung is a dynamic organ where mechanical stresses play
an important biological role. These stresses may arise in particular
from the presence and transport of liquids within the airway tree.
While liquid is always present on the inner surfaces of the pul-
monary paths, it can form discrete plugs that occlude the airway in
pathological situations [1].  Indeed, many respiratory pathologies,
such as asthma, pneumonia, or respiratory distress syndrome, may
involve the blockage of the airways by liquid plugs which impede
the flow of air. Moreover, flows associated with the movement or
rupture of liquid plugs can cause damage to endothelial cells which
line the lung surface [2,3].

In addition to these pathologies where occlusion by the pul-
monary fluids can occur, the instillation of liquid plugs into the
pulmonary airway is common in medical treatments such as par-
tial liquid ventilation and drug delivery [4].  It is of vital importance,
for instance, in the case of Surfactant Replacement Therapy, where
surfactant is injected as a liquid bolus into the lungs of premature
neonates [5].  In these cases of drug delivery, the only available con-
trol over the plug distribution is at the entrance of the network, at
the level of the patient’s trachea. Once the bolus is injected, lit-
tle is known about the ultimate distribution of liquid within the
pulmonary tree, although some studies have attempted to predict
surfactant dispersion by numerical or experimental models [6,7].

∗ Corresponding author. Tel.: +33 169335261; fax: +33 169335292.
E-mail address: baroud@ladhyx.polytechnique.fr (C.N. Baroud).

Variations in the paths taken by daughters of the initial surfactant
plug may  account for the inconsistent responses observed in such
therapies [5].

One of the difficulties that arise is due to the interactions
between the immiscible interfaces and the complex geometry of
the lung. Indeed, the presence of surface tension introduces a
nonlinear relationship between pressure drop and flow rate in a
particular branch, through the addition of Laplace pressure terms
[8,9]. While these nonlinearities already appear in flow through
straight channels [10], they are amplified when plugs pass a bifur-
cation since the interfaces must strongly deform in this case [9].
This can lead to the existence of local blockage if the pressure is
below a threshold value, or to plug rupture if the plug length is too
small.

Microfluidics has already been proposed as a way to model
branching geometry of the lung, at least in the generations where
gravity and inertial effects are negligible [11]. These regions of the
lung are characterized by length scales below the capillary length
and small Reynolds numbers. The capillary length LC, i.e. the scale
below which the effects of gravity become small compared with
surface tension effects, is generally around 2 mm for most liquids.
The Reynolds number compares the effects of fluid inertia with vis-
cous effects through the relation Re = !lUD/", where !l is the liquid
density, U is a characteristic velocity, D is the airway diameter, and
" is the fluid viscosity. The two  criteria D < LC and Re < 1 are met
in the lung for a large range of generations, starting from about
generation 9 to the respiratory bronchioles, around generation 20
[12]. The ability to fabricate complex microfluidic geometries using
photo-lithography techniques therefore opens a wide range of pos-

1350-4533/$ – see front matter ©  2010 IPEM. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.medengphy.2010.10.001
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sibilities for addressing questions of liquid distribution that are
relevant for pulmonary flows, in the presence of different additional
physical phenomena.

Below, we study the motion of liquid plugs in a connected tree
of microchannels. We  begin with a description of the experimental
setup in Section 2. In Section 3, we derive an empirical relation
for the resistance to flow due to a single plug in the network and
show that this relation generalizes well for the case of a train of two
plugs. Further, different behavior is observed for pressure vs. flow
rate driving as the plug flows further into the network, since the
resistance to flow is modified by the passage through successive
bifurcations.

2. Experimental setup

Our experiments are conducted in a network consisting of
branching microchannels that have rectangular cross-sections,
as shown in Fig. 1. Soft lithography techniques are employed
to make the channels of polydimethylsiloxane (PDMS) [13]. A
thin flat layer of PDMS is spin-coated on a glass microscope
slide and the channels are bonded on this PDMS layer in order
to guarantee identical boundary condition at all four channel
walls.

The network inlet consists of a Y-junction connected to the
first generation for creating and injecting liquid plugs into the
network. One inlet of the Y-junction is connected to a syringe
filled with perfluorodecalin (PFD) and the syringe can be pushed
by a pump. PFD is a fluorocarbon whose viscosity and surface
tension are ! = 5 × 10−3 Pa s and " = 20 × 10−3 N/m, respectively. It
presents good wetting properties on PDMS and does not swell
the channels. Through the second inlet of the Y-junction, the air
goes into the network and a constant driving is applied between
the first and the last generations. Either constant pressure or
constant flow rate can be applied. When pushing at constant pres-
sure, the inlet of the air is connected to a computer-controlled
pressure source (FLUIGENT, MFCS-8C). To apply a constant flow
rate, a syringe is filled with water and connected to the air inlet
through a flexible tube. Only a small volume of air near the net-
work entrance is left in the tube in order to reduce the effects

Fig. 1. Microscope image of the microfluidic network with five generations. Gen-
erations are numbered with Arabic numerals. The two  early plugs (A and B) in
generation 2 are the daughters of the first plug. A second plug (C) is moving in
the  first generation.

Table 1
Experimental conditions.

Number of plug(s) Driving Condition

1 Pressure: Pdr = 150, 250, 400 Pa
1 Flow rate: Qdr = 2, 5, 20 !L/min
2 Pressure: Pdr = 500 Pa

of air compressibility. A syringe pump ensures a constant flow
rate of the water which then pushes the air into the network.
Driving conditions for the experiments in this paper are given in
Table 1.

The height of all the branches in the network is 50 ± 2 !m and
the width of the branch in the first generation is 720 !m.  Chan-
nel widths of successive generations wi decrease at a constant rate
wi+1 = #wi, where # = 0.83 is a constant parameter and the sub-
script denotes the generation number. This value of # preserves the
ratio of mean diameters observed in the pulmonary airway [12]. It
gives a width 342 !m for the last generation. The channel lengths
also decrease linearly with the generation number, with a ratio 0.6.
This value was chosen to preserve the ratio of plug length to branch
length at each generation, thus reducing the number of variables
in the problem, if the plugs divide symmetrically at the bifurca-
tions. PFD plugs (bright regions) surrounded by air (gray regions)
are indicated in Fig. 1. The plugs are injected into the first genera-
tion and pushed through the network, dividing into two daughters
at every bifurcation. At the exits of the last generation, sixteen holes
(black in Fig. 1) are punched to fix the exit condition at atmospheric
pressure.

Experiments are recorded with a high speed camera (Photron
Fastcam, 1024 PCI) through a stereomicroscope at 0.7× magnifi-
cation. The resolution of the camera is 1024 × 1024 pixels, which
yields 1 pixel for 24.8 !m.  For the single plug experiments, images
are taken at different rates (varying from 30 to 125 images per sec-
ond) according to the driving conditions, thus ensuring that the
plug positions can be traced with a good resolution. For two succes-
sive plugs under constant pressure driving, 125 images per second
are recorded. From the image sequences thus obtained, the posi-
tions xr of the rear interface of the plug are manually recorded
while the plug is traveling in the network. Based on these measure-
ments, the plug velocity is calculated as U = [xr(t) − xr(t − dt)]/dt,
where dt is the time step between successive images. The fluid
deposition on the walls is neglected in the calculation since
it does not affect the flow significantly in our experimental
conditions.

3. Movement in the straight sections

In this section, we focus on the velocity of a plug pushed at a
constant pressure as it travels in the straight channels between two
successive bifurcations. We first study the case of a single plug and
its daughters in the network, then build a relation reproducing the
results and show that it can be applied to the case of two  successive
plugs and their daughters.

3.1. A single plug in the network

A single plug is injected into the network and then pushed at
a constant pressure Pdr. It divides into two  at every bifurcation
and velocities of all its daughters, measured in each branch, are
recorded according to their position in the network (generation
numbers i). The daughter plugs are constantly subjected to the
same pressure difference and should therefore all move at the same
speed which, in addition, should be constant during their passage
in their respective branches. Variations from branch to branch and
within a branch, to be attributed to imperfections in the micro-
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Fig. 2. Average plug velocity as a function of the generation number i (driving pres-
sure 250 Pa). Symbols correspond to values recorded in each branch and the solid
line to their average. The prediction from a previous study [9] is shown as a dashed
line.

fabrication, are observed however. As the channels get narrower,
the flow becomes more sensitive to wall conditions, which brings
bigger separations between data points in later generations. For
each generation number i, values corresponding to the 2i−1 indi-
vidual time-averages of the plug velocities are plotted in Fig. 2. The
solid line drawn through these points thus gives the average value
obtained over the 2i−1 branches.

At this stage, it is interesting to compare these observations to
the theoretical prediction that could be made from the study of
plug motion in straight channels in microfluidics conditions [9].
The formula in Eq. (11) of Ref. [9] is used to compute the veloc-
ity in all the generations by assuming that plugs divide equally at
each bifurcation while taking into account the narrowing of the
channels wi = w1!i−1, hence Li = L1/(2!)i−1. The result is given as
a dashed line in Fig. 2, from which it is immediately seen that the
plugs experience a resistance larger than predicted as they progress
in the network. Since the formula is well validated in the case of long
plugs, we attribute the discrepancy to the exponential shortening
of the plugs with the generation number: for the experiment corre-
sponding to the data in Fig. 2, the plug length in the last generation
is L5 = 300 !m while the channel width is w5 = 342 !m. Plugs are
therefore comparatively short and the resistance is underestimated
in the last generations.

The limitations of the theory led us to develop an empirical rela-
tion that we now describe. As for an electrical network, we  define
a resistance RiLi associated with the presence of a daughter plug of
length Li in generation i, where the role of the voltage is played by
the driving pressure Pdr and the role of the current intensity by the
volumetric flow rate in each branch of that generation Qi. We can
therefore write Pdr = RiLiQt = RiLiQiNi, where Ni = 2i−1 is the number
of branches in that generation and Qt = QiNi is the total flow rate
in the network. We  assume further that each plug divides into two
daughters of essentially equal lengths at every bifurcation, which
is consistent with experimental observations, Li = L1/(2!)i−1. Flow
rate Qi is calculated as Qi = Uihwi, Ui being the plug velocity in that
generation. The values of Ri can be computed from the measure-
ments since the driving pressure, the initial length of the plug and
the flow rate based on velocity measurements are known. They are
found to decrease with the generation number, as shown in Fig. 3.
This leads to an increase in the total flow rate Qt as the plug reaches
later generations (symbol ! in Fig. 4).
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Fig. 3. Dependence of the resistance on the generation number.

3.2. Two  successive plugs

The relation just defined now allows us to analyze the dynam-
ics when two plugs are injected successively. Like for two  resistors
mounted in series, the relation between the driving pressure and
the volumetric flow rate can be written as Pdr = R[1]

i L[1]
i Q [1]

t +
R[2]

j L[2]
j Q [2]

t = (R[1]
i L[1]

i + R[2]
j L[2]

j )Qt , where the superscripts ‘[1]’ and
‘[2]’ denote the first and the second plugs and the subscripts ‘i’ and ‘j’
indicate the position of the plugs in the network by the correspond-
ing generation numbers. Using the values of Ri determined above
and the initial lengths of two plugs, RiLi can be computed. Flow rates
for a two-plug train for the driving pressure Pdr = 500 Pa are com-
pared to the experimental findings in Fig. 4. Satisfactory agreement
is obtained, indicating that the linear description of the flow in the
network gives a good approximation in the current conditions.

Notice that although the lengths of the plugs and the driving
pressure are kept the same, the total flow rate displays a clear
dependence on the distance between the two  plugs, as shown
in Fig. 4. When the plugs get further apart, a higher flow rate is

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generation number

T
ot

al
 fl

ow
 r

at
e 

(µ
L/

s)

Two Plugs
Pdr = 500Pa

Single Plug 
Pdr = 250Pa

Fig. 4. Evolution of the total flow rate in a single plug experiment (!) (driving pres-
sure Pdr = 250 Pa) and two-plug experiments (Pdr = 500 Pa) when they always flow in
the  same generation ("), in two successive generations (△) and with a separation
of one generation (▽). Open symbols denote experimental data and closed ones are
values derived from the linear law.



852 Y. Song et al. / Medical Engineering & Physics 33 (2011) 849– 856

observed. This can be understood by noting that the resistance due
to the downstream plug decreases with generation number and
thus the sum (R[1]

i L[1]
i + R[2]

j L[2]
j ) also decreases.

4. Passage through a bifurcation and long range
interactions

The passage of a plug in a bifurcation leads to highly nonlinear
effects because of the strong modification of the shape of the inter-
face. We  begin by considering the details of the passage of a plug
through a bifurcation before turning to how the behavior of one
plug influences the passage of plugs elsewhere in the network.

4.1. One plug in one bifurcation

Consider a plug that just arrives at a bifurcation, as sketched in
Fig. 5(a). The curvature of the front interface decreases before the
rear one is affected by the bifurcation, which introduces a capil-
lary pressure difference across the plug. This is a three-dimensional
problem and the biggest curvature of the interface exists in the
direction perpendicular to the plane of the network. However, we
assume that the capillary pressure difference is mainly driven by
curvature differences in the plane of the network. The pressure dif-
ference Pcap between the rear and front interfaces can be expressed
as Pcap = Pr − Pa = !/rr − !/ra, where Pr, Pa denote the capillary pres-
sures at the receding and advancing interfaces and rr, ra are the
signed radii of curvature of the interfaces in the plane of the net-
work. Before the plug touches the opposite wall, we  have ra > rr and
ra increases as the plug advances. So Pcap acquires increasing pos-
itive values. There exists a threshold pressure necessary to push
a plug through a bifurcation, which is estimated as the maximum
value of Pcap: Pthr = Pcap,max = !/rr − !/ra,max where ra,max is the max-
imum possible value of ra, reached just before the front interface
touches the corner of the opposite wall. Beyond this point, Pcap
becomes negative (ra < rr) and pulls the daughter plug (Fig. 5(b)).
When the plug has fully passed the bifurcation, Pcap cancels (ra ≈ rr).

The threshold pressure Pthr can be computed from the network
geometry:

Pthr = 2! cos "
wi

− !(cos " − sin ˛)
wi+1

(1)

where " is the contact angle of PFD on PDMS (around 23◦) and the
bifurcation half-angle, ˛, is half the angle between the two  branches
of the same generation. Here  ̨ = 60◦ yields the threshold pressure
Pthr = 51, 61, 74 and 89 Pa for the first to the fourth bifurcations,
respectively. Although the values of Pthr depend on the value of the
contact angle ", a difference of 23◦ in the contact angle only changes
the threshold by 2 Pa.

rr

Pr Pa

Pdr

(a)
Pr Pa

Pdr

(b)

ra

rr
ra

Fig. 5. Passage through a bifurcation. (a) A plug arrives at the bifurcation. The radius
of  curvature ra is bigger than rr and increasing while the plug is advancing. (b) After
the  front interface touches the next generation, ra becomes smaller than rr (notice
that here 2  ̨ = 90◦ for convenience).
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Fig. 6. Experimental measurements of plug velocity during the passage through a
bifurcation. The position of the plug is defined as that of its rear interface.

When the plug is pushed at a constant pressure, the pressure
difference across the plug can be expressed as #P = Pdr − Pcap. The
variation in Pcap will lead to variations of #P  and also of the velocity
of the plugs as they advance. In order to push a plug through a bifur-
cation, #P  has to remain positive during the passage. This implies
that the driving pressure has to be larger than the threshold pres-
sure. Meanwhile, the velocity variations during the passage should
account for the appearance of Pcap, which modifies the value of the
effective driving pressure as #P.

Measurements of the velocity of a particular plug are shown
in Fig. 6 when it is pushed at Pdr = 250 Pa and passes the second
bifurcation in the network. The plug initially slows down after it
enters the bifurcation (position A), after which its velocity rises
quickly as the front interface reaches the opposite wall (position
C), since Pcap < 0 and #P  increases. Accordingly the passage of a
plug through a bifurcation is always associated with a large spike
in the velocity.

When the plug is forced at a constant flow rate, if the passage
can be treated as a quasi-static process, we  may  write that #P  = Pcap
[14]. Variations in Pcap will therefore induce variations in the pres-
sure upstream of the plug position such that #P will increase until
the plug touches the opposite wall, where it rapidly switches to a
negative value which pulls the plug into the daughter channels. The
largest value reached by #P  is #P  = Pthr.

4.2. Plug interactions

The connectivity of the branching tree implies that local pres-
sure variations will lead to long range effects across different
regions of the network. The fundamental unit to understand these
interactions is shown in Fig. 7, where two  daughters (I and II) of the
same plug arrive at two bifurcations nearly simultaneously.

Assume that plug I touches the opposite wall slightly earlier
than plug II. Then, its velocity as well as the flow rate in that branch
increase according to the above analysis. In case of constant pressure
forcing, the driving condition for plug II is not modified; this plug
also slows down and then speeds up as it crosses the bifurcation,
independently of plug I. This is no longer the case if the plugs are
pushed at constant flow rate Q. When plug I passes the bifurcation
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Q QI

QII

P

I

II

Fig. 7. The fundamental unit of long range interactions between two  plugs.

shown in Fig. 7, the flow rate QI increases, forcing QII to decrease in
order to conserve the value of Q = QI + QII. In fact, QII may  become
zero or even negative, which means that plug II may  stop or even
move backwards, depending on the value of Q.

5. Results

The flow behavior is studied by tracking the positions and veloc-
ities of daughter plugs along the paths shown in Fig. 8. In these
experiments, a single plug is injected into the network and forced
to divide into two at every bifurcation.

5.1. Constant pressure driving

A time sequence showing the successive divisions is shown
in Fig. 9, when the plug is pushed at a constant driving pressure
Pdr = 250 Pa. Only half of the network is shown for clarity. As seen
in these images, the plug positions may  vary slightly across the dif-

Fig. 8. Paths along which the plug positions and velocities are measured. The dashed
box indicates the zone that is displayed in Figs. 9 and 11.

ferent generations but they mostly advance in synchrony through
the bifurcations and across generations. These results are typical
of many different experiments. A more quantitative measure of
this synchronous flux is given by measuring the plug velocities as
functions of time along the four paths, as shown in Fig. 10.  As the
daughter plugs advance in the network, their number increases and
their velocities vary according to the analysis in Section 3.

The spikes that appear in the velocity time series are the signa-
tures of passages through the bifurcations, as explained above. By
tracking the moment at which the spikes occur along each of the dif-
ferent paths, we see that the plugs reach the bifurcations and divide
at roughly the same time. This is in spite of imperfections in the
network which lead to slight asymmetry in the divisions and thus
yield plugs of variable sizes. Moreover, a careful examination of the
time series reveals small differences in the passage times through
the second bifurcation. However, this difference is not amplified in
later generations and the plugs all continue in a steady fashion. The
flow remains globally symmetric during its evolution.

5.2. Constant flow rate driving

When the experiments are repeated by pushing the plug at a
constant flow rate, the behavior may  be strongly modified. In the
experiment shown in Fig. 11,  the driving flow rate is Qdr = 2 !L/min
and two daughters are observed as they advance simultaneously
in generation 2 (image (b)) but this synchrony is broken when
they reach the bifurcation. At this stage, only one of the daughters
divides and its daughters continue to flow in generation 3 (image
(c)). However, the upstream plug catches up with its sister which
gets blocked at the next bifurcation due to the higher threshold
pressure.

The velocities of the plugs are displayed in Fig. 12 along the same
paths as above. Due to flow rate conservation in the network, the
plugs adjust their velocities while advancing and the acceleration
in one path leads to a deceleration in the others. Here, an uneven
division, which introduces daughters of different lengths, leads to
significant velocity variations since a shorter daughter is easier to
push forward than a longer one. Velocity differences are visible, for
instance, in the case of the two  daughters of the initial plug as they
flow in generation 2: while the one in paths (3, 4) speeds up, the
one in paths (1, 2) must slow down.

After one daughter passes a bifurcation and divides, a flow rate
increase in the corresponding branches results in a slowing down
of other daughters which become stuck at the bifurcations. Once
the early plug that has divided reaches the next bifurcation, the
threshold pressures at two  successive bifurcations have to be com-
pared and the plug with the lowest threshold will advance first.
In this network, the threshold increases with generation number,
which implies that the late plugs can catch up with the early ones.
The most downstream plug must therefore wait at the bifurcation
for all other plugs to reach the same bifurcation level before it
can continue its journey. This is shown in the velocity evolution
in Fig. 12,  by the segments with zero velocities before the passage
of a bifurcation.

At constant flow rate forcing Qdr = 2 !L/min, the air–liquid
flow therefore remains symmetric but evolves through discrete
steps. Plugs are never more than one generation apart due to the
increasing threshold pressure, but they spend long periods of time
stationary at bifurcations, waiting for plugs in the other branches
to catch up.

5.3. Flow patterns in the network

Results of experiments repeated at different driving condi-
tions are summarized in this section. As shown earlier, the flow
is synchronous at Pdr = 250 Pa, but turns out to be asynchronous at
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Fig. 9. Image sequence for the half network, obtained from the experiment of constant pressure driving.
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Fig. 10. Velocity variations along four paths under a constant pressure driving
Pdr = 250 Pa. The vertical line indicates the time when the plug passes a bifurcation.

Qdr = 2 !L/min. However, the flow pattern depends on not only the
type of the driving condition but also the value of driving force.

The behavior described above can be summarized by measuring
the time !ti separating the first and last plug divisions at a particu-
lar depth in the network. We  normalize this time difference by the
mean time taken to travel through the following generation (Ti+1)
and write the normalized time !ti. A value of !ti < 1 indicates that
the plugs advance nearly simultaneously through the generation
i + 1, while a value of !ti > 1 implies that some plugs only divide
once the early ones have already reached the next bifurcation. The
results for different experiments are shown in Fig. 13,  where each
data point corresponds to an average over several experimental
realizations.

Two distinct behaviors are observed. The division times for
constant flow rate driving are above 1 at the second and third
bifurcations for Q = 2 !L/min and at the third bifurcation for
Q = 5 !L/min. This confirms that plugs pass one by one, waiting for
each other to reach the next bifurcation. The transition to !ti > 1
occurs when the pressure necessary to ensure the constant flow
rate decreases below the local threshold, as described in Ref. [14].
Note that the values of !ti increase with generation number here
because the number of sister plugs increases and since they must
pass separately. In contrast, constant pressure driving yields values
of !ti that are significantly below 1, indicating that plug divisions
are nearly synchronous. This is the case for all of the data recorded
here except for the lowest pressure value, at which !ti∼1.3. This
can be attributed to imperfections in the microfabrication. Indeed,
depth variations of the channel, due to the uncertainty in the photo-
lithography process, can lead to pressure differences between the
front and the rear of a plug. When combined with low values of the

Fig. 11. Image sequence for the half network, obtained from the experiment of constant flow rate driving.
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Fig. 12. Velocity evolutions along four paths under the constant flow rate
Qdr = 2 !L/min. The vertical line indicates the time when the plug passes a bifur-
cation.

driving pressure compared with the threshold to pass a bifurcation,
these can result in small values of !P, which imply that some plugs
advance very slowly through particular bifurcations.

For large driving flow rate (e.g. Q = 20 !L/min) and pressures
(Pdr > 150 Pa), the plug movement is synchronous in both meth-
ods, as seen by the small values of !ti. This can also be observed by
plotting the positions of the plugs as a function of time, as shown
in Fig. 14.  In this figure, the position of the rear interface along four
representative paths is plotted and all four divide simultaneously
both for constant flow rate and constant pressure. However, the
distance curves display different evolutions, which allows us to dis-
tinguish the driving conditions. While the plugs slightly accelerate
as a function of generation number in the case of pressure forcing,
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they clearly decelerate in the case of flow rate driving, since the
number of daughters increases and the flow is distributed over a
larger area.

This information can be summarized by measuring the time (Ti)
spent traveling in the straight sections in each generation. This is
shown in Fig. 15,  where each data point is the average over all the
plugs in a given generation, averaged over several experimental
realizations. Ti is normalized by the total time for an experiment,
i.e. the time from the initial plug entering the first bifurcation to
the last daughter passing the last bifurcation. For pressure driving,
we observe that the time spent in the straight channel decreases as
the plugs advance. Since the plug velocity decreases more slowly
than the channel length, it takes a shorter time to pass the branch
in the later generations. In the case when the plug is pushed at a
high flow rate, the travel time remains constant with generation
number because the decrease in plug velocity evolves in the same
way as the channel length. This result is true by construction and
holds for any value of ".

2 3 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generation numbe r

N
or

m
al

iz
ed

 T
i

P
dr
 =250 Pa

Q
dr
 =20 µL/min

Fig. 15. Comparison of traveling time in each generation for pressure and high flow
rate  forcing. Both yield symmetric flow patterns.
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6. Summary and discussion

In investigating the flow of liquid plugs in a branching network,
an empirical relation expressing the pressure–flow rate evolution
is derived from the motion of a single plug and found to account for
the resistance of the network to the flow of liquid. Given the initial
condition of the experiments, e.g. driving pressure and plug lengths,
this relation quantitatively predicts the flow rates in the presence
of a train of two plugs. This empirical relation indeed provides a
better prediction of the flow of a train of plugs than the physical
model presented in Ref. [9].

When two successive plugs are separated by a large distance
in the network, the resistance associated with the downstream
plug is small compared to the resistance of the upstream liq-
uid. This implies that the flow rate in the network is essentially
fixed by the upstream plug and the downstream plug perceives
a constant flow rate forcing, even if the actual driving condi-
tion is through pressure. This may  modify the flow distribution
in the branching tree through inter-generation effects, which
are expected to feed back on the flow everywhere in the net-
work.

Furthermore, the passage through a bifurcation induces strong
variations in the capillary pressure jumps across the air–liquid
interfaces, which has a major impact on the flow through the
branching channels. When considering a single bifurcation, this
leads to large variations in the velocity at which the plug advances.
It also leads to the existence of a threshold value of the driving pres-
sure necessary to push the plug. A similar threshold is expected to
exist in the case of the circular tubes forming the pulmonary airway
tree, although its value will strongly depend on the details of the
geometry at the bifurcation. Nevertheless, the presence of thresh-
old pressures will have a similar effect on the global organization of
flow in the lung as observed in our experiments. Finally, although
the threshold values may  be small compared with the driving pres-
sure, a sufficiently deep airway tree will always lead to regions in
which the local pressure becomes comparable with the value of the
threshold.

The influence of the driving condition on the plug propagation in
the network has also been explored. The nonlinear pressure–flow
rate relation at a bifurcation induces strong long range interactions
between plugs in different parts of the network. This is particularly
visible in the case of driving the fluids with a low flow rate, in which
case some plugs can stop at bifurcations and wait for long periods
of time while others continue to advance. Nevertheless, symmetric
filling of the network is observed in both conditions. Finally, syn-

chronized filling can be achieved at high pressure and high flow rate
driving although different flow evolutions are observed at two  con-
ditions. A better understanding of the filling of a branching tree and
of the long range interactions in it should lead to improved models
of liquid dispersion in the lung, which is an important problem in
view of its application to pathology and drug delivery.
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Experiments are carried out to assess, for the first time, the validity of a generalized Burgers’ equa-
tion, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331–1342 (1973)] to compute the nonlin-
ear propagation of finite amplitude acoustical waves in suspensions of “rigid” particles. Silica
nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water–ethanol mixture and pre-
cisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1
MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steep-
ening. The signal is then measured after propagation in a cylinder containing either a reference solu-
tion or suspensions of nanoparticles. In this way, a “nonlinear attenuation” is obtained and compared
to the numerical solution of a generalized Burgers’ equation adapted to the case of hydrosols. An
excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in
the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in
the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due
to the value of the specific heat ratio of water–ethanol mixture which significantly differs from unity.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3533723]

PACS number(s): 43.25.Jh, 43.20.Fn, 43.35.Bf [ROC] Pages: 1209–1220

I. INTRODUCTION

The propagation of finite amplitude acoustic waves in
suspensions of “rigid” particles has been first studied theoret-
ically by Davidson in 1973.1,2 Contrary to the case of high
amplitude hydrodynamic shock waves,3 simplified equations
can be obtained through a rigorous asymptotic matching.1,4

This is due to the small amplitude of acoustical shock waves
compared to hydrodynamic shock waves. Davidson5,6 has
derived several generalized Burgers’ equations, with one
term due to the nonlinear propagation in the continuous
phase, and additional relaxation terms due to momentum,
heat, and mass transfers between particles and the surround-
ing medium. We recall that the usual Burgers’ equation with
thermo-viscous absorption has been first introduced in
acoustics by Mendousse,7 for the propagation of finite ampli-
tude acoustic waves in a viscous perfect gas. The notion of
generalized Burgers’ equation adapted to any kind of linear
dispersion relation is proposed by Blackstock.8

A generalized Burgers’ equation for two-phase media
can be obtained by averaging and simplifying Navier–Stokes

equations, providing that (1) the size a of the particles is
much smaller than the acoustical wavelength k, (2) the sus-
pension is dilute, and (3) the response of the particles is lin-
ear. Otherwise, nonlinear terms are themselves modified by
the presence of nonlinear scatterers. Bubbly media are exten-
sively studied examples.9,10

If theoretical aspects4–6 (equations, dispersion relation,
shock structure, etc.) of the propagation of finite amplitude
acoustic waves in suspensions have been widely studied,
there is still no experimental evidence of the validity of such
equations. This gap can be explained by the difficulty of per-
forming such experiments. The propagation of finite ampli-
tude acoustic waves in aerosols requires first the formation
of a stable and precisely controlled aerosol, and then the gen-
eration of acoustic shock waves in air. Both requirements are
hardly compatible in simple in-laboratory experiments. In
the case of hydrosol, the shock thickness associated with ul-
trasonic underwater acoustic shock waves is generally about
10 lm and, therefore, requires the synthesis of suspensions
with particles of size within the nano range to meet the
above requirements. Recent and tremendous progresses in
nanosciences now make this relatively easy to control. We
chose to study silica nanoparticles, since particles of con-
trolled and relatively monodisperse size can be simply syn-
thesized. Moreover, the resulting suspension is stable and
the particles spatial distribution is statistically homogeneous
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(due to the Brownian motion). Finally, the particles are
spherical, which considerably simplifies the theoretical mod-
eling of momentum and heat transfers.

In Sec. II, we describe all aspects of the experimental
setup, from the synthesis of the suspensions to the generation
and measurement of acoustical shock waves. In Sec. III, we
introduce a model based on a generalized Burgers’ equation
adapted to the present case of a hydrosol with thermal trans-
fers. An adapted computation scheme is also discussed.
Finally, in Sec. IV, we compare the experimental absorption
measurements to the outputs of the numerical simulations
for two different suspensions.

II. EXPERIMENTAL SECTION

A. Nanoparticles synthesis

Two colloidal suspensions A and B of silica nanopar-
ticles diluted in ethanol with different particle sizes have
been synthesized following Stöber process.11 This is an
ammonia-catalyzed condensation reaction of tetraethylortho-
silicate (TEOS) [Si(OR)4 with R¼C2H5] in ethanol (ROH).
A first hydrolysis reaction produces the monomer
[(OR)3Si(OH)]:

SiðORÞ4 þ H2O 7!OH% ðORÞ3SiðOHÞ þ ROH:

Then this monomer condenses to form silica particles:

ðORÞ3SiðOHÞ þ H2O 7! SiO2 # þ3ROH:

This synthesis is obtained at room temperature by mixing
two solutions, a first solution (solution I) of TEOS diluted in
ethanol and a second one (solution II) of water, ethanol, and
ammonia according to quantities given in Table I. Although
this synthesis is widely used, the exact mechanism of growth
of the particles is still a controversial issue.12–15 The par-
ticles growth is statistically isotropic, resulting in relatively
spherical particles (except for the smallest particles). The
size of the particles is controlled by the pH of the solution
and, therefore, the concentration of ammonia. The produced
particles are relatively monodisperse, depending, however, if
the pH is constant throughout the addition of solution I in
solution II. Two additional reference solutions C and D have
been prepared by adding the same quantities of water, etha-
nol, and ammonia as in suspensions A and B, respectively,
but without TEOS, hence without particles. Table I sums up
the content of the different solutions. The solutions used in
our experiments are Carlo Erba ammonia solution 30 wt. %
(qam¼ 892 kg m%3, Mam¼ 17 g mol%1), Normapur absolute
ethanol solution (qeth¼ 789 kg m%3, Mam¼ 46 g mol%1),

and Prolabo TEOS solution (qTEOS¼ 934 kg m%3, MTEOS

¼ 208 g mol%1), where q is the density and M is the
molar mass.

Finally, as the presence of bubbles can strongly influ-
ence the propagation of acoustical waves, the solutions have
been carefully degassed in a vacuum chamber.

B. Composition and physical properties of the
suspensions

Surface electrical charges prevent the particles from
aggregation,16 and the particles spatial distribution has been
considered as statistically homogeneous due to Brownian
motion. Indeed, the characteristic length Lsed of sedimenta-
tion on a time scale Dt is equal for a dilute suspension to
Lsed ¼ 2a2

9lco
ðqdo % qcoÞgDt, where a is the size of the par-

ticles, lco, the viscosity of the liquid, qco and qdo the den-
sities of the continuous and dispersed phase, and g the
standard gravity. At the same time, due to Brownian motion,
particles will explore a zone whose characteristic size is
Lbr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbT

6plcoa Dt
q

, where kb is the Boltzmann constant and T
is the temperature. In this case, the suspensions were mixed
with a magnetic stirrer while degassing. Then the experiment
was carried out within the day, which means that the charac-
teristic time Dt is <86 400 s. If we report Dt in the above for-
mula, we obtain Lsed&Lbr& 2 mm. Thus, sedimentation is
weak and counteracted by Brownian motion which shuffles
the suspension.

During the synthesis, some TEOS and water molecules
are consumed and some ethanol molecules and silica nano-
particles are formed. We can compute the mass content of
the final solutions, if we suppose that all TEOS molecules
have reacted (see Table II). Indeed, Bogush et al.12 have
studied the kinetics of Stöber process. They have shown that
all TEOS molecules are consumed during the chemical reac-
tion and that soluble silica (that is, silica that is not con-
densed into particles) represents at most 0.6% of the silica
introduced in the reaction. The percentages given in paren-
thesis in Table II correspond to the mass fraction of each
component of the liquid phase.

The composition of the reference solutions C and D
slightly differs from the one of liquid phase in the corresponding

TABLE II. Mass composition of the solutions after chemical reaction.

C2H5OH(g) H2O(g) NH3(g) SiO2(g)

Suspension A (%) 157.3 (86.4) 23.9 (13.2) 0.8 (0.4) 8.1

Suspension B (%) 157.3 (86.3) 24.4 (13.4) 0.3 (0.3) 8.1

Solution C (%) 132.6 (81.8) 28.8 (17.7) 2.7 (0.5) 0

Solution D (%) 132.6 (81.7) 29.2 (18) 1.6 (0.3) 0

TABLE I. Composition of solutions I and II.

Solution I Solution II

Suspension A 30 ml TEOSþ 30 ml C2H5OH 138 ml C2H5OHþ 27 ml H2Oþ 3 ml NH4OH

Suspension B 30 ml TEOSþ 30 ml C2H2OH 138 ml C2H5OHþ 28.2 ml H2Oþ 1.8 ml NH4OH

Solution C 30 ml C2H5OH idem susp. A

Solution D 30 ml C2H5OH idem susp. B
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suspensions, as we did not consider the chemical reactions
(which consume water and produce ethanol) when preparing
them. The properties of the liquid phase used for the compari-
son of our simulations with experiments are summed up in
Table III.

The sound speeds cco for each solution have been deter-
mined by measuring the flight time in the different solutions.
The nonlinear parameter in a water–ethanol mixture (with
concentrations of ethanol ranging from 0 to 100%) has been
measured by Jacob et al.17 and Emery et al.,18 respectively,
at 27 !C and 20 !C. We can note that the shear viscosity of a
water–ethanol mixture is much higher than that of pure water
or ethanol solution, even for a small amount of water.19 The
excess density of the mixing is also strongly dependent on
the proportion of water and ethanol. This is due to the forma-
tion of hydrogen bonds20 between water and alcohol mole-
cules. Finally, it is interesting to note that unlike most
liquids; the specific heat ratio cc of ethanol (and conse-
quently ethanol–water mixture) is significantly higher than
1, that is, there is a difference between the isochoric and iso-
baric heat capacities. If (cc" 1)¼ 6$ 10"3 for water, it is,
however, approximately equal to 0.15 for our suspensions,
that is, 25 times higher. This will play a fundamental role in
our suspensions as the temperature variations associated
with the acoustic wave,which are proportional to (cc" 1),
cannot be neglected, contrary to most hydrosols.

The only relevant physical properties of the particles for
our model are their size, density, heat capacity, and the volume
fraction that they occupy. The size distribution of the particles
has been determined from images obtained by transmission
electron microscopy (TEM). TEM sample was obtained by the
deposition of a drop of our suspensions on a carbon coated
grid. The relatively monodisperse size of the particles has
been fitted to a log normal law (cf. Fig. 1) of the form

UðaÞ ¼ expð"1=2 ðlnðaÞ " mÞ=s½ (2Þ
ar

ffiffiffiffiffiffi
2p
p ;

where U(a) is the volume occupied by the particles of size
between a and aþ da, relative to the total volume occupied
by the particles. Here m and s are two constants calculated
by a best fit process. The average radius of the suspension
is related to these parameters according to the law:

amoy ¼ expðmþ s2=2Þ:

For suspension A the average radius is 69 nm and for
suspension B, it is 33 nm.

The density of silicon dioxide strongly depends on its
molecular structure and porosity. Several authors (see Lab-
rosse and Burneau21 for a review) have estimated the density
of “dry” particles, from measurement of the particles size
and the mass of the suspension after evaporation of the liquid
phase. The reported values lie in the range from 1980 to
2100 kg m"3. However, silica nanoparticles are porous with
a fractal structure, as demonstrated experimentally by Lab-
rosse and Burneau21 and Szekeres et al.22 Thus, the final

TABLE III. Physical properties of the liquid phase (at 18 !C).

Suspensions A and B Solutions C and D Water

Sound speeda cco(ms"1) 1276 1294 1476

Nonlinear parameter bnl (Ref. 17) 6.15 6.2 3.4

Shear viscosity ls
cð$10"3 kg m"1 s"1Þ38,39 1.7 1.9 1.1

Bulk viscosity lb
cð$10"3 kg m"1 s"1Þ39,40,b 1.4 1.6 2.9

Density qco($ 10"3 kg m"3)38,41 828 844 998

Isobaric heat capacity Cp
cðJ kg"1 K"1Þ42 2778 2992 —

Isochoric heat capacity Cv
cðJ kg"1 K"1Þ43 2415 2624 —

Specific heat ratio cc 1.15 1.14 1.006

Thermal conductivity vc (W m"1 K"1)44,45 0.2 0.2 —

aMeasured by the authors.
bThe evolution of the bulk viscosity with temperature is assumed to follow the same law as the shear viscosity.

FIG. 1. Particles size distribution measured via electron microscopy
(circles) and fitted with a log-normal distribution (solid line).
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mass of “dried” particles depends on how well the particles
have been dried. Indeed, the liquid in the largest pores can
evaporate even at room temperature. In intermediate pores,
the liquid is trapped and can only evaporate if the tempera-
ture is increased above the fusion point of water. Finally,
there is also some structural water which remains even when
the temperature is increased up to 100 !C. Thus, it is not sur-
prising that discrepancies are reported on the density of
“dry” particles, depending on the methods of preparation
and measurement. However, in acoustical problems, the den-
sity of interest is the density of “wet” nanoparticles. From
our knowledge, the only reported value of this wet density
comes from acoustical measurement. Hipp et al.23 have
measured the linear attenuation of acoustic waves induced
by suspension of silica nanoparticles for a large range of fre-
quencies, particle numbers, and concentrations. Their results
show a very good agreement between theory and experi-
ments (in the dilute case) for a density of 2200 kg m"3.
Since the attenuation is relatively sensitive to this parameter,
a wrong value of silica density would have resulted in large
discrepancies in their comparison between theory and
experiments. This work, therefore, provides an excellent
characterization of this parameter. We, therefore, used this
value of silica density in our computations.

Finally, the volume fraction occupied by the particles
has been computed from the density of the particles and
the total mass of silica present in the suspension. Table IV
sums up the properties of the dispersed phase. From these
data, we can compute the mass fraction m¼ adoqdo=aco

qco¼ 4.5$ 10"2.

C. Shock wave generation

A sketch of the acoustical experimental setup is repre-
sented in Fig. 2. A high amplitude acoustical wave (Pa¼ 0.41
MPa) is emitted at a frequency of x=2p¼ 1 MHz in a water

tank by an array of 256 piezoelectric transducers controlled
by a programmable electronics of 128 channels. The transmit-
ted code on each channel is computed with the inverse filter
method24 in order to synthesize within a control plane and the
requested spatial wave pattern, a plane wavefront with Gaus-
sian amplitude. A cylindrical cell with lateral poly(methyl
methacrylate) (PMMA) walls containing either the suspension
or a reference solution (without particles) is set 35 cm away
from the array, while the shock formation distance in water is
equal to qxc3

x=ðxbxPaÞ ¼ 37 cm, where qw, cw, and bw are,
respectively, the density, sound speed, and nonlinear parame-
ter of water. The shell is 5.87 cm long and has a radius of 3
cm. Solutions are isolated from water by two lateral mylar
membranes, which are approximately acoustically transparent
but slightly filter the signal, as detailed later.

Through the inverse filter technique, the wavefront
shape has been optimized in order to minimize any effects,
but the scattering by the particles. A wavefront as plane and
broad as possible was synthesized to minimize diffraction,
but smaller than 3 cm, in order to minimize the scattering of
the acoustical wave by the PMMA walls of the cell. The
decrease of the amplitude of the Gaussian beam edge was
sufficiently smooth to minimize the interferences between
edges and direct waves from the array. Even though the
inverse filter is linear and, hence, performed first at low
amplitudes, it is very stable to strong nonlinear effects (see
Marchiano et al.25,26). The quality of the synthesis is
assessed by Figs. 3 and 4, which show the spatial and tempo-
ral shape of the signal measured on a rectangular grid at the
entrance of the cylinder. All the measurements are made by
moving a membrane hydrophone with a three axis linear
stages. The spatial step is fixed to 2 mm on both transverse
directions. A strongly steepened signal with a broad har-
monic content is visible in Figs. 3(a)–3(c). Figure 3(d) shows
the amplitude distribution in the transverse plane after band-
pass filtering of the fundamental mode at 1 MHz. Contour
plots at "3, "6, and "12dB have been superimposed to
emphasize the smooth decrease of the limited aperture of
wavefront along this transverse plane. To assess the planarity
of the wavefront, the pressure measured on two perpendicu-
lar lines crossing at the center of the beam is shown in Figs.
4(a) and 4(b), respectively. The half peak-to-peak maximum
amplitude is presented in Figs. 4(c) and 4(d). The smooth
decrease on the edge is clearly visible in both directions.
These measurements are affected by a relative uncertainty
due to the impulse response of the hydrophone. The hydro-
phone bandwidth is constructor calibrated for frequencies
spanning from 1 to 30 MHz. This calibration is performed for
the amplitude only and emphasizes the membrane resonance
around 30 MHz due to its finite thickness. However, the rela-
tive phase between the harmonics is also affected by this

TABLE IV. Properties of the particles.

Density23

qdo (kg m"3)

Volumea

fraction ado

Heat capacity46

Cd (J kg"1 K"1)

Therm. conduct.38

vd (W m"1 K"1)

2200 1.65% 727 1.05

aMeasured by the authors.

FIG. 2. (Color online) Sketch of the experimental setup.
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resonance and is responsible for severe distortion of the sig-
nal. To mitigate these effects and obtain the signal presented
in Fig. 3, a home-made calibration of amplitude and phase up
to 60 MHz was performed. This calibration consists in remov-
ing the bell shape variation of phase and amplitude around the
resonance frequency. It is important to note, however, that
these calibrations are subject to a relative uncertainty. Hence,
as will be explained below, the acoustic spectroscopy uses a
reference solution to get relative measurements independent
of the impulse response of the hydrophone.

Finally, the acoustic wave is measured of 15 mm behind
the cylinder. Despite our careful design of the experiment,
some small side effects are observed. The first one is the dif-
fraction of the acoustic beam by the lateral walls of the cy-
lindrical cell. This effect is visible in Fig. 5, where we see
the interference rings on the spatial scan [Fig. 5(b)], and the
effects on the temporal signal [Fig. 5(a)].

As the distance covered by the edge wave is higher than
the one covered by the direct wave, the expected delay given

by the geometry is s ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ ð5:8þ 1:5Þ2

q
& ð5:8þ 1:5Þ'

(10&2=1200 ) 5( 10&6, that is, about five periods of the sig-
nal (for a measurement on the central axis of the cylinder). We
effectively see in Fig. 5(a) (black line), the disturbance
appearing about five periods after the beginning of the signal.
To minimize this effect, we selected nine spatial locations
within the measurement plane, separated from one another by
a step of 2 mm and located at the nearest of the propagation
axis. Since the scattered wave varies with the measurement
point, contrarily to the plane wave, the averaging on these
nine locations reduces this adverse effect [see the gray line in
Fig. 5(a)]. The second effect (the radiation of acoustic wave
by the PMMA) will, on the contrary, affect the beginning of
the signal as the sound speed in PMMA ()2700 ms&1) is
higher than the one in our solution ()1200 ms&1).

FIG. 3. (Color online) (a) Temporal wave-
form of the signal measured at the entrance of
the cylinder, (b) Zoom on one period, (c) Sig-
nal Fourier transform, and (d) Spatial exten-
sion of acoustic beam: cross section of the first
harmonic. Colorbar: amplitude in MPa.

FIG. 4. (Color online) (a) Temporal
waveform of the signal measured at the
entrance of the cylinder along Ox, (b)
temporal waveform of the signal meas-
ured at the entrance of the cylinder along
Oy, (c) amplitude along Ox, and (d) am-
plitude along Oy. The origin is located
at the center of the incident wavefront.
Colorbar: amplitude in MPa.
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Nevertheless both phenomena will mainly affect the first har-
monics, as higher harmonics result from nonlinear interaction
between first harmonics so that their beam widths are nar-
rower and thus significantly smaller than the cell width (see
Fig. 6). Another solution would have been to build a larger
cell that would have required a larger volume of solution to
fill it. Taking into account the small final impact after spatial
averaging, and affecting only the low frequency part of the
extra-attenuation measurements, this possibility was
disregarded.

III. THEORY

A. Extended Burgers’ equation

A generalized Burgers’ equation can be used to describe
the propagation of finite amplitude acoustical waves in sus-
pensions as demonstrated first by Davidson.1,2 This equation,
obtained by perturbation methods, takes into account the
nonlinear effects due to the high amplitude of the impinging
wave, scattering effects due to the presence of particles, and
classical thermo-viscous dissipation within the continuous
phase. They rely on the assumption that the smallest scale
associated with the acoustic wave (here the shock thickness)
is much larger than the particles. With this hypothesis, the
equations can be statistically averaged over the particle con-
figurations, and the medium can be considered as an effec-
tive medium. The “geometrical” diffraction of the wave by

the particles can also be neglected. This hypothesis is well
verified in our experiments, as the sizes of our particles are
smaller than 70 nm and the shock thickness is about 10 lm
in our case. The validity of these equations is also limited to
dilute suspensions, as interactions23,27,28 between particles
are neglected. Davidson has obtained equations for the non-
linear propagation of acoustical waves in aerosols. His
results have been generalized by Baudoin4 for any dilute sus-
pension of spherical rigid particles, that is, for aerosols and
also for hydrosols. These two cases differ in terms of the
dominant scattering mechanism. In hydrosols, the scattering
of the incident wave is usually due to the steady and
unsteady momentum transfers induced at small scales by the
difference of velocity between the particles and the sur-
rounding medium. The force exerted by the fluid on the par-
ticles at these small scales (and, therefore, small associated
Reynolds number) can be obtained by considering a moving
sphere embedded in a uniform and unsteady velocity field.
Uniform field approximation is justified by the small size of
the particles relative to the acoustical wavelength. The result
is the sum of the Stokes, Basset, Added mass, and Archimed
forces.29 The first term is the classic Stokes drag exerted on
a sphere embedded in a steady viscous flow. The Basset he-
reditary force is an unsteady viscous term due to the time
required by the viscous diffusion layer to adapt to new
boundary conditions. The Added mass term is linked to the
inertia of the liquid, which must be displaced when a sphere

FIG. 5. (Color online) (a) Temporal waveform
of the signal measured at the exit of the cylinder
before (black line) and after (gray line) averag-
ing. (b) Amplitude (in MPa) of the first har-
monic over the beam cross section. Rings are
due to the interferences between the direct wave
and the signal diffracted at the edge of the
cylinder.

FIG. 6. (Color online) Spatial extension of
acoustic beam. Cross section at the entrance of
the cylinder: (a) the tenth harmonic and (b) the
twentieth harmonic. Cross section at the exit of
the cylinder: (c) the tenth harmonic and (d) the
twentieth harmonic. Colorbar: amplitude in kPa.
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is accelerated or decelerated. Finally the Archimed force is
an unsteady inertial force that comes from the difference of
density between the particles and the surrounding medium.
An additional term is due to the difference of compressibility
between the liquid and the particles, which affects the phase
velocity but not the attenuation. Thermal exchanges can usu-
ally be neglected in hydrosols, as the elevation of tempera-
ture associated with the acoustical wave in fluids is
proportional to cc! 1, which is very small for most liquids.
However, these effects cannot be neglected in the present
case, because water–ethanol mixture has a specific heat ratio
equal to 1.15. Therefore additional scattering effects arise
from steady and unsteady heat transfers between particles
and the ambient fluid. The steady term corresponds to the
usual Fourier diffusion law for heat transfers between two
medium at different temperatures. The unsteady term is the
equivalent of the Basset contribution for heat transfers. In
the following equations, the temperature inside the particle
is assumed to be homogeneous.30 Indeed, the thermal con-
ductivity of amorphous silica is about five times higher than
that of the conductivity of water–ethanol mixture. Hence the
diffusion times inside the particles sd¼ a2qdo=Cd=vd are
equal to 8 and 2 ns for particles of 69 and 33 nm, respec-
tively, that is, much smaller times than the ones associated
with the main harmonics studied here (1! 40 MHz), which
carry most of the acoustical energy.

If we take into account all relevant effects for hydrosols,
we obtain the following set of equations: 4
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In the above equations the subscripts “c,” “d,” and “o”
denote, respectively, the continuous fluid phase, the dis-
persed phase (particles), and the equilibrium state. vc is the
mean velocity of the continuous phase, Dv is the velocity dif-
ference between the two phases, Tc is the mean temperature
of the continuous phase, DT is the temperature difference
between the two phases, sc is the entropy of the continuous
phase, s¼ t! x=cco is the retarded time, bnl is the coefficient
of nonlinearity, F¼ ado=aco is the ratio of volume fractions

occupied by both phases, r¼ qco=qdo is the ratio of densities,
m¼ adoqdo=acoqco is the mass fraction, C ¼ Cd=Cp

c is the ra-
tio of isobaric heat capacities of both phases,
H ¼ ls

c=2qcoc2
coð4=3þ lb

c=l
s
c þ ðcc ! 1Þ=PrÞ is the charac-

teristic time for classical thermo-viscous dissipation, and
Pr ¼ ls

cCp
c=vc is the fluid Prandtl number. Finally

sv ¼ 2a2qdo=9ls
c and hv ¼ a2qco=l

s
c are the characteristic

times for the steady and unsteady momentum exchanges,
and sT¼ a2 qdoCd=3vc and hT ¼ a2qcoCp

c=vc are the charac-
teristic times for the steady and unsteady heat transfers.

The first equation is the generalized Burgers’ equation,
with usual Burgers’ equation7,31 on the left-hand side. The
three terms correspond, respectively, to the propagation of
the acoustic wave, nonlinear effects, and thermo-viscous
absorption. The first term on the right-hand side (rhs) corre-
sponds to steady and unsteady momentum exchanges
between the two phases. The contribution of this term is pro-
portional to the mass fraction m, that is, the product of the
densities ratio and the volume fraction ratio: the more the
particles and the higher the density ratio, the higher will be
the scattering of the impinging wave. The second term on
the rhs. is a contribution due to the incompressibility of the
rigid particles, which therefore modifies the sound speed of
the effective medium. The third term on the rhs corresponds
to steady and unsteady heat transfers between the particles
and the surrounding medium. These exchanges are propor-
tional to mC, which characterizes the thermal inertia of the
particles versus temperature changes. It is also proportional
to (cc! 1) which gives the amplitude of temperature varia-
tions associated with the acoustical wave.

Two additional equations [Eqs. (2) and (3)] are required
to determine, respectively, the velocity and temperature dif-
ferences between the fluid and solid phases. In the first Eq.
(2), we can see that, if the particles have the same density as
the surrounding liquid (r¼ 1), the velocity difference
between the phases vanishes and the particles, therefore, will
move with the same velocity as the surrounding liquid. That
is why particles of the same density as the liquid are used for
particle image velocimetry (PIV) in hydrodynamic studies.
In this case, there is no scattering of the impinging wave.
This factor (1! r) comes from the Archimed force. The first
term of the rhs is the Stokes contribution, the second the
Added mass, and the last one the Basset history term. As
underlined before, we see that the Stokes term is a steady
contribution proportional to the velocity difference Dv
between the two phases, whereas Added mass and Basset are
unsteady terms therefore related to the time derivative of the
velocity. The Basset term depends on the “history” of the
particle displacement through the time integral. Equation (3)
shares the same structure as Eq. (2), but without the
Archimed and Added mass terms. Compared to the equa-
tions obtained by Davidson2,6 for aerosols, Eqs. (1)–(3) take
into account unsteady momentum and heat transfers. These
effects play a fundamental role in hydrosols, whereas they
can be neglected in most practical situations in aerosols. The
ratio between unsteady and steady characteristic times of
momentum and heat transfers is indeed, respectively, equal
to 9/2r and 3rC. In hydrosols, the density and specific heat
of the dispersed and continuous phases are close. As a result,
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unsteady and steady scattering phenomena occur at the same
frequencies. In the case of aerosols, however, unsteady trans-
fers occur at much higher frequency due to the huge differ-
ence of density between both phases. Therefore, unsteady
transfers play a minor role, even when considering the prop-
agation of acoustical shock waves.

B. Analysis based on characteristic parameters

In this section, we will try to compare the different
terms and understand which one is significant in the present
case. If we try to compare momentum transfers to heat trans-
fers, we see that both are proportional to the mass fraction
m, but that the heat transfers are also proportional to
C(cc! 1). This factor is approximately equal to 4" 10!2 in
our suspensions. Only based on this first comparison, we
might think that thermal effects can be neglected compared
to visco-inertial ones. However, the characteristic frequen-
cies of both phenomena also differ. Table V sums up the
characteristic frequencies for suspensions A and B.

These characteristic frequencies must be compared to the
frequency spectrum (#1 to 40 MHz) associated with the shock
wave. We can see that characteristic frequencies associated
with thermal transfers are much smaller than their momentum
counterparts (a factor 10 for steady transfers and 20 for
unsteady transfers) and, therefore, better match with the fre-
quency spectrum associated with the acoustic wave. Despite
the smallness of the factor C(cc! 1), thermal effects will there-
fore play a significant role on the evolution of the acoustic
wave. This can be seen in Fig. 7 which compares the linear
attenuation and dispersion induced by visco-inertial and thermal
effects (due to the presence of the particles), with the classic
thermo-viscous dissipation in the corresponding liquid. These
curves are computed with the following dispersion relation
k* in terms of the frequency x=2p, obtained from Eqs.(1)–(3)
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The first term on the rhs of Eq. (4) is due to the presence of
incompressible particles, the second one correspond to

classical thermo-viscous dissipation, the third one to momen-
tum transfers between both phases, and the last one to thermal
transfers. The complex times s$v and s$T are linked, respec-
tively, to momentum and thermal transfers. We can note that
this dispersion relation is equivalent to the one calculated in
the linear case by Gumerov et al.30 in the small volume frac-
tion limit, without phase changes and when the temperature
inside the particles is supposed to be homogeneous.

The presence of particles induces viscous damping of
the acoustic wave because of the difference of velocity
between the particles and the fluid, and the small size of the
particles. As the particles are small, the associated Reynolds
number is also small, and viscous effects play a major role in
the dynamics of the particles. Therefore, the differential
movement between both phases is damped by viscous
effects, so that part of the energy carried out by the acousti-
cal wave is dissipated. In the same way, some energy is dis-
sipated through heat diffusion because of the difference of
temperature between the phases. If we look at the phase ve-
locity of the effective medium, it can be estimated as
ceff ¼ 1ffiffiffiffiffiffiffiffiffiffi

veffqeff
p , where qeff is the effective density and veff is

the effective compressibility. If the particles have the same
temperature and velocity as the liquid, the effective phase
velocity will, nevertheless, globally shift because of the
increase of the effective density (particles are denser than
the surrounding liquid) and the decrease of the compressibil-
ity (particles are much less compressible than the surround-
ing liquid). Figure 7 shows that the increase of the effective
density is dominant, as the effective phase velocity globally
decreases when we take into account the presence of the par-
ticles. On the other hand, the evolution of the effective phase
velocity with frequency is due to the velocity and tempera-
ture differences between both phases. Of course the classical
thermo-viscous dissipation does not affect the phase veloc-
ity, but only induces attenuation.

C. Transmission and reflection coefficients

The extremities of the cylinder containing the suspen-
sion or the reference solution are mylar membranes. Their
thickness (measured with a micrometer directly on the ex-
perimental setup) is 13 lm. As a consequence, these mem-
branes are transparent for the lowest harmonics of the
acoustic shock wave but slightly filter the highest harmonics.
The transmission coefficient can be simply calculated for the
first and second membrane from the acoustic impedance of
each material and the thickness of the membrane. We get:

T ¼ 2

1þ Z1

Z3

h i
cosðk2hÞ ! i Z1

Z2
þ Z2

Z3

h i
sinðk2hÞ

; (5)

TABLE V. Characteristic frequencies.

Characteristic frequencies (MHz) Suspension A (69 nm) Suspension B (33 nm)

Steady momentum transfers 1/ (2psv) 122 513

Unsteady momentum transfers 1=(2phv) 72 312

Steady heat transfers 1=(2psT) 11 43

Unsteady heat transfers 1=(2phT) 4 16
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where T is the transmission coefficient; Z1, Z2, and Z3 are,
respectively, the acoustic impedance of the liquid before the
membrane, the membrane, and the liquid after the mem-
brane, k2 is the wave number in the mylar membrane, and h
the thickness of the membrane. For our calculations, we took
the following properties of mylar membrane (Ref. 32):
qmyl¼ 1180 kgm"3 and cmyl¼ 2540 ms"1. With this for-
mula, we can see that if the membrane is sufficiently thin
(that is, k2h « 1), the transmission coefficient is equal to
T¼ 2Z3=(Z3þZ1), so that the membrane plays no role. In
our case k2h$ 0.04 at 1 MHz and equal to 4 at 100 MHz.
Therefore, the membrane will mainly affect the highest har-
monics. The transmission coefficient modulus for the first
and second membrane is represented in Fig. 8.

D. Computation scheme

Equations (1)–(3) are solved by using a split step numer-
ical scheme. Advancing plane-by-plane from position x to
position xþDx, nonlinear and scattering effects are consid-
ered separately through two successive sub-steps. Nonlinear
effects are treated with the so called Burgers–Hayes
method33,34 that provides an analytical solution for shock
waves in the inviscid case for the potential (the primitive of
the pressure). The attenuation and dispersion, due to the
presence of the particles and to classic thermo-viscous dissi-
pation, are taken into account by applying the appropriate
dispersion relation [Eq. (4)] in the frequency domain. Note
that the numerical algorithm alternating weak shock theory
reformulated for the potential flow in the time domain, and
linear dispersion/dissipation handled in the frequency do-
main is a generalization of Pestorius algorithm.35 It has also
been validated for thermoviscosity and molecular relaxation
applications to sonic boom.36 Polydispersion can simply be
taken into account by replacing hV and hT by their values
averaged over the particles size distribution37

hhjia ¼
ðamax

amin

/ðaÞhjðaÞda with j ¼ v or T (6)

We first process the signal measured experimentally at the
entrance of the cylinder. This process consists in the cali-
bration and the spatial averaging described in Sec. II C.
Then, it is propagated numerically along the same path as
the one followed experimentally, that is, linear transmis-
sion through the first membrane, 5.87 cm of nonlinear
propagation in the reference solution or the suspension,
linear transmission through the second membrane, and
finally 1.5 cm of nonlinear propagation in water up to the
hydrophone position. It is important to note, that our meas-
ured entrance signal is given within the uncertainty of our
membrane hydrophone calibration for frequencies higher
than 20 MHz. This is the reason why the cell location was
chosen at the point of shock formation. Here the ampli-
tudes of harmonics above 20 MHz are "40 dB less than
the fundamental Fig. (3). Most of them will indeed result
from nonlinear interaction within the cell (which is
enhanced by the larger coefficient of nonlinearity in the
water–ethanol mixture). Hence calibration errors above
20 MHz will be negligible when comparing theory and

FIG. 7. Comparison of visco-inertial, thermal, and overall effects due to the
presence of the particles with the classical thermo-viscous dissipation in the
corresponding liquid. (a) Comparison of attenuation in suspension A (69
nm). (b) Comparison of attenuation in suspension B (33 nm). (c) Compari-
son of phase velocity in suspension A (69 nm). (d) Comparison of phase ve-
locity in suspension B (33 nm).
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experiments for relative quantities between solutions with
or without particles.

IV. RESULTS AND ANALYSIS

A. Comparison of temporal signals and their Fourier
transforms

In this section, we compare computed and measured sig-
nals and their Fourier transforms after propagation in the
two suspensions and the corresponding reference solutions
(see Figs. 9 and 10). Simulations have been performed with
the literature parameters given in Sec. II without any adjust-
ment. A good agreement is obtained between the simulations
and the experiments. The direct comparison of measured
temporal signals (or their Fourier transforms) with computed
ones, however, leads to small discrepancies, which come
from side effects such as (1) the uncertainty on the calibra-
tion of the membrane hydrophone (for frequencies above 20
MHz) and (2) the diffraction by the walls of the cell.

B. Comparison of “nonlinear” attenuation

The best way to eliminate these side effects is to calculate
the ratio between the signals propagated in the suspension and
in the reference solution. With this method, a “nonlinear”
attenuation is obtained for each harmonic by computing the
amplitude of this ratio. It differs from its linear counterpart, as
the evolution of the amplitude of the harmonics results from a
complex competition between nonlinear effects which transfer
energy from the fundamental to the harmonics, and scattering
by particles, which tends to dissipate energy. These nonlinear
coefficients therefore strongly depend on the distance of propa-
gation through the suspension. We did not compare computed
and measured dispersion, as the phase velocity evolution with
frequency is very small (about 0.1%) and is within the experi-
mental uncertainties.

Figures 11(a) and 11(b) show the nonlinear attenuation
in suspensions A and B, respectively, obtained experimen-
tally and numerically by solving the generalized Burgers’
equation. Computations have been performed for different
sizes of particles to give an overview of the influence of this
parameter. An excellent agreement is obtained for suspen-
sion A for the radius measured from TEM images (69 nm).

FIG. 8. (a) First interface water/
membrane/suspension, dotted lines:
transmission coefficient through the
water/membrane/suspension interfa-
ces. (b) Second interface suspension/
membrane/water. Solid lines are the
same, with the suspension replaced
by the reference solution.

FIG. 9. Comparison of the signals obtained experimentally and numerically
after propagation in suspension A (69 nm) and in the reference solution
(without particles). (a) Temporal signal: zoom on the acoustical shock at the
center of the time waveform. (b) Fourier transforms of the experimental sig-
nals. (c) Fourier transforms of the computed signals. Simulations have been
performed with an average size of the particles equal to 69 nm.

FIG. 10. Same as Fig. (9) for suspension B (33 nm). Simulations have been
performed with an average size of the particles equal to 36 nm, which gives
the best agreement (see Sec. IV B).
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For suspension B (radius measured from TEM images of 33
nm), the best agreement with computations is obtained with
a particle size of 36 nm, that is, 3 nm (or 10%) difference.
The higher discrepancy between experiments and theory for
suspension B could be explained by different factors. First,
the nonlinear attenuation is much smaller for this suspen-
sion; therefore, the measurement noise may more deeply
affect the corresponding results. Second, since the structure
of silica nanoparticles is fractal according to Szekeres et
al.,22 the density might slightly vary with the size of the par-
ticles. Finally, the smaller the particles, the higher is the
uncertainty on the TEM determination of the particles size.
We can notice a small discrepancy for the first harmonics
(the attenuation is higher in the experiments). This differ-
ence comes from side effects (described earlier in Sec. II)
diffraction of a part of the signal at the edge of the cylinder
leads to interferences between the direct and edge waves.
Finally, we can notice that the variation of the “nonlinear”
attenuation with the size of the particles is rather strong.
Therefore its measurement is shown to be a good way to
acoustically discriminate this parameter, with a precision in
our experiments of the order of 3 nm.

C. Comparative influence of different effects

To conclude, we can compare the influence of the differ-
ent effects induced by the presence of the particles (see
Fig. 12). In the absence of particles, the “nonlinear” attenua-
tion of the harmonics is of course negative because the ampli-
tude of the harmonics is increased through the nonlinear
transfer of energy from the fundamental to the higher harmon-
ics. First, we can see that taking into account the polydisper-
sion does not significantly affect the results. The calculation of
the dispersion relation with the average radius gives, indeed, a
correct estimate of the attenuation. This situation differs from
the propagation in fogs,37 where polydispersion plays a crucial
role. Figures 12(a) and 12(b) show the strong influence of
thermal effects in our suspensions. Although thermal effects
are smaller than visco-inertial ones, neglecting them would
lead to a huge underestimation of the attenuation in the sus-
pension. Again this is due, in particular, to the relatively high
value of the parameter cc! 1. Hence, the present experiments
allow us to assess the validity of generalized Burgers equa-
tions (1)–(3) proposed in the theoretical part of this work.
They include simultaneously classical thermoviscosity within
the ambient solution, and visco-inertial and themal transfers
between the fluid and the nanoparticles.

FIG. 12. Numerical comparison of the influence of the various different
effects on nonlinear attenuation measured in decibels. (a) Suspension A:
simulations are performed for an average size of the particles of 69 nm. (b)
Suspension B: simulations are performed for an average size of the particles
of 33 nm.

FIG. 11. Comparison of computed and measured “nonlinear” attenuations,
that is, the modulus [measured in decibels (dB)] of the ratio between the sig-
nal propagated in the suspension and in the reference solution. (a) Suspen-
sion A (69 nm) and (b) Suspension B (33 nm).
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V. CONCLUSION

The evolution of an acoustical shock wave propagating in
a suspension of silica nanoparticles has been studied experi-
mentally and compared successfully with a generalized Bur-
gers’ equation. This agreement is achieved without any
adjustable parameter. Nanoparticles are shown to strongly influ-
ence the amplitude and shock structure of the acoustical shock
wave. Both visco-inertial effects due to the difference of veloc-
ity between the particles and the surrounding liquid, and heat
exchanges due to temperature differences, are shown to play a
significant role on the acoustical behavior. Finally, we can note
that the use of broadband signals such as acoustical shock
waves is promising for acoustical spectroscopy. While further
investigations would be required to quantify the uncertainty on
the particles size estimation, this method might allow to deter-
mine the size of the particles with a single signal. This would
be interesting to characterize quickly evolving media. Potential
applications would be, for example, the in situ measurement of
particles growth rate during chemical reactions.
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This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound,
based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207–228
(2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets
within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited
to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken
into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensa-
tion), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water con-
tent and droplet size distribution) are collected, along with values of the thermodynamical
coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for
low audible and infrasound frequencies, absorption within clouds is several orders of magnitude
larger than classical absorption. The importance of phase changes and vapor diffusion is outlined.
Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick
clouds, attenuation can lead to a very large decay of the boom at the ground level.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3619789]

PACS number(s): 43.28.Bj, 43.28.Dm, 43.20.Hq, 43.28.Mw [ROC] Pages: 1142–1153

I. INTRODUCTION

Water droplets in suspensions considerably modify
sound propagation. This was first studied by Sewell,1 who
considered only momentum transfers between ambient air
and fixed particles. Lamb2 modified this model by allowing
particle motion. Isakovich3 outlines the importance of heat
transfer. Epstein and Carhart4 introduce a new formalism to
take into account particles elasticity. This work, limited to
the low frequency range, is extended by Allegra and Haw-
ley5 to emulsions and aqueous suspensions without fre-
quency limitation. This approach, now referred as the ECAH
theory, is most suitable for solid particles or emulsions as it
cannot take into account phase changes at the particle sur-
face. Viglin6 and Oswatitsch7 investigate the effects of evap-
oration and condensation, assuming in a simplified analysis
the two phases have the same speed and temperature. This
approach is extended by Marble,8 Marble and Wooden,9

Cole and Dobbins,10 and Ivandaev and Nigmatulin11 to the
case of different speeds and temperatures for the two phases.
In particular, a peak of the attenuation per wavelength asso-
ciated with phase change effects is predicted. Marble and
Wooden9 and Cole and Dobbins10 consider a liquid particle
surrounded by a mixture of its vapor and an inert gas. The
evaporation rate is assumed to be dominated by the diffusion
of vapor within the gas. On the contrary, Ivandaev and
Nigmatulin11 investigate the case of a liquid droplet in sus-

pension within its vapor only. The evaporation rate is deter-
mined by the Hertz–Knudsen–Langmuir formula12–14

involving the so-called evaporation coefficient. In all these
models, transfers of mass, momentum and energy are mod-
eled by stationary terms. Unsteady effects are included by
Gumerov et al.15 for the case of a liquid in suspension within
its vapor only. That model is finally extended by Gubaidullin
and Nigmatullin16 to include polydispersed droplets within a
gaseous mixture of vapor and inert gas. Duraiswami and
Prosperetti17 show that, when the effects of phase changes
on the acoustic wave propagation are maximum, the Knud-
sen number is necessarily of order one. They therefore pro-
pose some corrections to the transfers terms to be taken into
account when the droplet size is comparable to the gas mean
free path. They also include the presence of an inert gas.
However, the model used in the present study is the one of
Gubaidullin and Nigmatullin,16 as it is, to our knowledge,
the only one to include simultaneously polydispersion,
unsteady effects, mass (evaporation/condensation), momen-
tum and energy surface transfers. It will be shown that the
polydispersion plays a major role in the propagation of
acoustic waves in clouds, while the Knudsen number
remains in practice small enough to neglect the corrections
proposed by Duraiswami and Prosperetti.17

From the experimental point of view, Knudsen18 is likely
the first to have made qualitative observations. Dobbins and
Temkin19,20 measure attenuation and dispersion in a mixture
of oleic acid within nitrogen. However, the frequencies are
too large for evaporation and condensation effects to be
observed, so that their results are very similar to those of
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aerosols with solid particles. The influence of phase changes
has been measured only in the experiment of Cole and Dob-
bins in 1971,21 performed within a Wilson chamber filled
with a water cloud. Droplet concentration is controlled by
spark-induced condensation nuclei. The water mass ratio is
about 10!2, about 10 times larger than in atmospheric clouds.
Concentration and droplet size are controlled optically by
Mie diffusion of a light source. Radii range from 1.8 to 10
lm. Sound attenuation is measured through the time decay of
a stationary wave at a fixed frequency (80 Hz), and attenua-
tion is plotted versus a dimensionless frequency proportional
to the mass ratio. Experimental uncertainty, a 15% error mar-
gin very sensitive to optical measurements, is smaller than
the mismatch with theory, with experimental attenuation
about 35% smaller than in theory. Nevertheless, these experi-
ments remain to our knowledge the only ones measuring
quantitatively the influence of phase changes on sound
absorption within an aerosol made of water droplets in air.

Since these experiments have been realized, the model16

has been established with clear theoretical foundations. It is
able to handle all effects likely to influence sound propaga-
tion in an aerosol of water droplets in air. These effects are,
namely, (i) the viscoinertial effects associated to the motion
of the droplets relative to the ambient fluid oscillations, (ii)
the thermal transfers due to the temperature difference
between the gas and the droplets, and (iii) the evaporation/
condensation of water, also due to the local disturbance of
the thermodynamic equilibrium of the aerosol by the sound
field. Phase changes are also affected by (iv) vapor diffusion
within dry air, that may limit them by preventing the vapor
molecules produced at the droplet surface to diffuse within
the air. Hence, the first objective of this paper is to examine
the adequacy of Gubaidullin and Nigmatulin’s model to pre-
dict attenuation of sound and infrasound. We will see in par-
ticular that the model is limited to relatively low altitudes
(typically less than 4000 m) and low frequency (less than
100 Hz). Then by collecting physical and thermodynamical
data for clouds, we will quantify the magnitude of the
absorption effect for various types of clouds. Cloud absorp-
tion will be compared to classical absorption (due to bulk
thermoviscosity and molecular relaxation of nitrogen and
oxygen). Finally, a realistic case of application concerning
sonic boom propagation will exemplify in a quantitative way
the importance of atmospheric clouds.

II. PHYSICAL DATA FOR CLOUDS

In the model, the required physical data about clouds
are the mean radius a0 of the water droplets, the statistical
distribution N(a) of droplets size a, the liquid water concen-
tration wL, the height h of the cloud basis above the ground,
and the cloud thickness d. For a given type of cloud, only
mean “typical” values are considered. Variability between
clouds of the same type is not examined.

Atmospheric clouds are considered as suspensions of
almost perfectly spherical liquid water droplets. Only clouds
with a small ice content are adequately modeled. Clouds at a
temperature higher than 0 "C contain only liquid water. In
order to freeze at temperatures higher than ! 40 "C, liquid

water needs nuclei in order to initiate the solidification reac-
tion. Water freezes spontaneously only at temperatures
below ! 40 "C. In the atmosphere, the number of nuclei is
generally insufficient, and a large part of the water remains
in the liquid phase. This is the supercooling (or undercool-
ing) phenomenon. Data22 (p. 39) indicate that, between 0 "C
and ! 10 "C, the liquid water content remains dominant
(more than 50%) over the ice content. Hence, the present
model is applicable to temperatures higher than approxi-
mately ! 10 "C. For ICAO standard atmosphere,23 this corre-
sponds to altitudes lower than about 3850 m above sea level.

Given this constraint, seven types of clouds observed at
altitudes lower than 4000 m have been selected: stratus
(fog - ST), altostratus (AS), stratocumulus (SC), early stage
cumulus (CE), growing stage cumulus (CG), final stage cu-
mulus (CF) and cumulonimbus (CN). Typical values22 are
collected in Table I. Liquid water concentration is measured
as wL in grams of water per cubic meter. These data are only
mean, representative values. As many meteorological phe-
nomena, extreme values can be observed from time to time,
such as water contents up to 14 g/m3 for some thunder
clouds for instance. The distribution function, where N(a)da
is the number of particles per unit volume whose radius lies
between a and aþ da, is given by22 (pp. 26–27):

N að Þ ¼ Aa2 exp !Kað Þ; (1)

where A and K are related to the mean radius, the water con-
tent and the liquid water specific mass qlo by:

a0 ¼

ðþ1

0

aN að Þda
ðþ1

0

N að Þda

and K ¼ 3

a0
and A¼ 10!3wLK6

160pqlo
: (2)

III. THE THEORETICAL MODEL

A. Qualitative description of absorption mechanisms

In an atmospheric cloud, droplets (with radius on the
order of 10 to 30 lm —see Table I) are in suspension within
a gas composed of a mixture of water vapor and air, which
itself is a mixture of mostly molecular nitrogen N2, molecu-
lar oxygen O2 and argon Ar. At thermodynamic equilibrium,
the partial vapor pressure pv is equal to the saturation pres-
sure pvs(T) given by the Clausius-Clapeyron relation. A
sound wave disturbs that equilibrium. In case of an expan-
sion, temperature drops, vapor pressure gets larger than its
equilibrium value and, in order to restore equilibrium, some

TABLE I. Physical data for atmospheric clouds.

Type h (km) d (m) wL (g/m3) a0 (lm)

Fog 0 500 0.05 to 0.5 10

Altostratus 2.0 to 4.5 2000 0.2 to 0.5 20

Stratocumulus 0.6 to 2.0 800 0.1 to 0.5 20

Cumulus

Early stage 0.5 to 2.0 500 0.2 to 0.5 10

Growing stage 0.5 to 2.0 1500 0.5 to 1.0 20

Final stage 0.5 to 2.0 2500 0.5 to 3.0 30

Cumulonimbus 0.5 to 2.0 5000 0.5 to 3.0 30
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vapor has to condense. That phase change requires some
energy under the form of latent heat, that is pumped from the
acoustical wave. A spectacular illustration of this effect is
seen on some photographs of condensation clouds taking the
form of a Mach cone around aircraft flying supersonically at
low altitudes. Similarly, a compression wave induces a partial
vaporization of the water droplets. However phase changes
are not instantaneous. For high frequencies, the cloud cannot
adapt to the fast temperature changes and it appears as
“frozen” in its initial thermodynamic state. On the contrary,
for low frequencies, the cloud always remains at thermody-
namic equilibrium, and no sound absorption is induced.
Hence, sound absorption due to phase changes is most effi-
cient in some intermediate frequency range. We will see the
critical frequency is around 0.1 Hz, a value controlled simul-
taneously by vapor diffusion, and by water mass concentra-
tion. Indeed phase changes occur at the surface of the
droplets. A strong evaporation may induce a surface accumu-
lation of vapor molecules that also need time to diffuse within
the ambient air to restore an equal spatial repartition. The sec-
ond effect that may affect sound propagation is momentum
transfers between the droplets and the gas. Indeed, a particle
relative motion within a fluid induces a viscous drag that dis-
sipates part of the energy producing that motion. Acoustic
motion being unsteady, it also induces an inertial Archimedes
force on the droplet that contributes to the velocity mismatch
between the air and the liquid, and hence to the viscous drag.
Finally, droplets and air have different thermal properties and
do not adapt in phase to the acoustical temperature. Hence a
temperature mismatch occurs, that leads to a dissipative heat
flux. Because phase changes are controlled by temperature,
mass and heat transfers at the surface of water droplets are
strongly coupled to one another.

B. Outline of the model

The two-phase model of Gubaidulin and Nigmatulin16 is
obtained by spatial averaging of Navier-Stokes equations
over a characteristic volume containing a large number of
particles, but nevertheless small enough compared to the
acoustic wavelength. Similar equations can be obtained by
performing temporal24 or statistical25 average. Mass, mo-
mentum and energy conservation equations are obtained for
each phase (liquid and gas), with an additional equation
required to describe the mass conservation of vapor. The
necessary following conditions are to be fulfilled. (1) The av-
erage of products of fluctuation (the so-called pseudoturbu-
lence) is neglected. (2) Gravity is neglected and there is no
heat source. (3) The liquid droplets are supposed to be rigid.
(4) The momentum exchanged during phase change is
neglected. (5) The suspension is dilute.

@ agqg

! "

@t
þr: agqgvg

! "
¼ #J; (3)

@ agqt

# $

@t
þr: agqvvg

# $
¼ #J; (4)

qlo
@ alð Þ
@t
þ qlor: alvlð Þ ¼ J; (5)

agqg
dgtg

dt
¼ #F#rpg þr & R; (6)

alqlo
dltl

dt
¼ F; (7)

agqgCp
go

dgTg

dt
¼ Qg þ vgor2T þ R : D; (8)

alqloClo
dlTl

dt
¼ Ql; (9)

Qg þ Ql ¼ #Jlo: (10)

Equations (3)–(5) formulate, respectively, the mass conser-
vation of the gaseous, vapor, and liquid phases, Eqs. (6) and
(7) the momentum conservation of the gaseous and liquid
phases, and Eqs. (8) and (9) the conservation of energy of
the gaseous and liquid phase. Equation (10) is the energy
balance at the surface of the droplets. The subscripts k¼ a,
g, l, t designate, respectively, the dry air (inert gas), the gas-
eous (vaporþ dry air) phase, the liquid phase and the vapor.
The subscript “o” is used for constant parameters, ak is the
volume fraction occupied by phase k, with the relation
agþ al¼ 1. Notations qk, Tk, vk, pk are, respectively, for the
average density, temperature, velocity and pressure of phase
k, while dk=dk ¼ @=@tþ vk:r is the convective derivative
associated to the motion of phase “k.” Then v¼ agvg

þalvl; T ¼ agTgþ alTl and D¼ 1=2 rvþrvTð Þ are, respec-
tively, the average velocity, temperature and deformation
rate tensor of the suspension. The viscous stress tensor of the
suspension is R¼ 2lgoDþðfg0# 2lgo=3Þðr & vÞI; and lgo,
fgo, Cp

go, and vgo represent the dynamic shear and bulk vis-
cosity of the gaseous phase, its heat capacity at constant
pressure, and its heat conductivity. Clo and lo are the heat
capacity of the liquid phase and the latent heat of evapora-
tion. Finally, J, F, Qg, and Ql denote the mass flux induced
by phase change, the average force applied on the particles,
the heat flux from the gaseous phase toward the interface
and the heat flux from the liquid phase toward the interface.
Note that only vapor diffusion linked to surface effects of
evaporation and condensation is taken into account, while
the one due to pressure and temperature bulk gradients
induced by the acoustical wave is neglected. Since the sus-
pension is polydisperse, the velocity and temperature field of
the liquid phase can be seen as some averages (over the
different particle sizes) of the velocity and temperature of
droplets of a given size a: vp(a,x,t) and Tp(a,x,t). Thus,
we have v1¼ vp a;x; tð Þ

% &
a

and Tl¼ Tp a;x; tð Þ
% &

a
;where fh ia

¼ 1=aloð Þ
Ðþ1

0 4=3pa3ð Þf að ÞN að Þda is the average over the
different particle radii of function f(a).

To describe the propagation of a plane sound wave of
angular frequency x, these equations are written in a 1D ge-
ometry, expressed in the Fourier space and linearized around
thermodynamic equilibrium (defined by the variables ago, alo,
qgo, qvo, vgo¼ vlo¼ 0, Tgo¼ Tlo¼To and pgo, which are the
equilibrium counterparts of previously defined variables).

Each gaseous species satisfies the ideal gas law
pk¼ qkRkTg with k¼ t,a and Rk is the ideal constant of gas k.
The total pressure is the sum of the partial ones (Dalton’s
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law) pg¼ ptþ pa. Gas total mass is the sum of its compo-
nents qg¼ qtþ qa. The saturation vapor pressure pvs satisfies
the Clausius-Clapeyron relation, with TR the temperature at
the droplet surfaces:

TR dpvs=dTRð Þ ¼ qtlo: (11)

Closure is achieved by providing adequate expressions for
the mass, momentum and heat transfers (respectively, J, F,
Ql, and Qg) between gas and liquid. Since the droplets are
small and their motion relatively slow, the Reynolds number
associated with the droplet motion is small, so that the force
applied on a single droplet can be computed from linear
Stokes equations. For an unsteady motion, this force is the
sum of the Stokes, Basset, Added mass and Archimedes
forces.26 The first term is the classic Stokes drag applied on
a sphere embedded in a steady viscous flow. The Basset he-
reditary force is an unsteady viscous term due to the time
required by the viscous diffusion layer to adapt to new
boundary conditions. The added mass term is linked to the
inertia of the liquid, which must be displaced when a sphere
is accelerated or decelerated. The Archimedes force is an
unsteady inertial force which comes from the difference of
density between the particles and the surrounding medium.
The following expression is obtained in the Fourier space:

F ¼ aloqlo
vg % vp

s&v
%

vg

s&A

! "

a

(12)

where s&t is a complex time associated to the sum of Stokes,
Basset, and Added mass terms, and s&A is a complex time
associated to Archimedes force (defined below).

Heat flux expressions in the gas and liquid phases are
obtained by solving the unsteady heat equation inside and
outside the droplet with a surface temperature TR:

Qg ¼ %aloqloroCp
go

Tg % TR

s&Rg

* +

a

; (13)

Ql ¼ %aloqloClo
Tl % TR

s&Tl

* +

a

; (14)

with s&Rg
and s&Tl

the complex characteristic times associated
with heat conduction in the gas and liquid, respectively, and
ro the ratio of densities ro¼ qgo/qlo.

Expression of the mass flux is obtained by equating the
flux of evaporation given by Hertz–Knudsen–Langmuir for-
mula Jb, to the flux of diffusion of vapor through the air
J¼ Jb¼ Jd with:

Jb ¼ aloqlo
ro

pgo

pt % pR

sb

! "

a

; (15)

JD ¼ aloqlo
ro

pgo

pR % pvs

s&D

! "

a

; (16)

with pR the vapor pressure reached after evaporation and
before diffusion in the inert gas, sb the real time associated

with phase change and s&D the complex time associated with
diffusion through the air.

The times appearing above are defined by the following
formula. Times marked with a superscript “*” are complex
times. The notation s is used for steady transfers, and the
notation h for unsteady transfers.

Times associated with

• Momentum transfers

sv ¼
2

9

qlo

qgo

a2

!go
ht ¼ a2=!go

s&t ¼ st= 1% 1

9
ixht þ

1% iffiffiffi
2
p

ffiffiffiffiffiffiffiffi
xht

p$ %
s&A ¼ %i= xroð Þ

9
>>>=

>>>;
:

(17)

In s&t , the three terms correspond, respectively, to Stokes,
Added mass and Basset force (with st associated with steady
Stokes drag), and s&A is associated with Archimedes force.

• Heat transfers in the gaseous phase

sT ¼
1

3

qlo

qgo

a2

jgo
hTg ¼ a2=jgo zg ¼ e%ip=4

ffiffiffiffiffiffiffiffiffiffi
xhTg

p

gg ¼
1

1þ zg
s&Tg
¼ 1

3
hTggg s&Rg

¼ alo

ago
s&Tg

9
>>=

>>;
; (18)

with sT the time associated with steady heat transfers with-
out phase change

• Heat transfers in the liquid phase

hTl ¼ a2=jlo zl ¼ e%ip=4
ffiffiffiffiffiffiffiffiffi
xhTl

p

gl ¼
5 3zl 3þ z2

l

& '
th zlð Þ

( )

z2
l th zlð Þ % zlð Þ

s&Tl
¼ 1

15 hTlgl

**

9
=

;: (19)

• Vapor diffusion in air

sD ¼
1

3

qlo

qgo

a2

D
hD ¼ a2=D zD ¼ e%ip=4

ffiffiffiffiffiffiffiffiffi
xhD

p

gD ¼
1

1þ zD
s&D ¼

1

3

Rv

Rg
1% ktoð ÞhD

9
>>=

>>;
; (20)

with sD the time associated with steady vapor diffusion
• Evaporation/condensation

sb ¼
1

3

ffiffiffiffiffiffi
2p
cv

s
cgctoa

bc2
go

: (21)

The two parameters m ¼ aloqlo=agoqgo and kvo ¼ qto=
qgo are the most important ones that influence the magnitude
of the attenuation induced by the suspension. The attenuation
induced by viscoinertial and thermal effects is directly linked
to the quantity of droplets present in the suspension and thus
to the mass fraction m, while the phase change effects are
directly related to the quantity of vapor kvo. In the above
expressions, !go ¼ lgo=qgo is the gas kinematic viscosity,
jlo ¼ vlo=qloClo and jgo ¼ vgo=qgoCp

go are the thermal diffu-
sivity of the liquid and gaseous phases, respectively, D the
binary diffusion coefficient of vapor in air, ck the heat
capacity ratio of phase k, cvo and cgo the sound speeds in
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vapor and in the gaseous phase, respectively, and b is the
evaporation parameter. We can note that sv; sT , and sD on one
hand, and hv; hT , and hD on the other hand, share similar writ-
ten forms. This comes out from the fact that each time arises
from the solution of an unsteady diffusion equation (Stokes,
heat or diffusion equation). The only difference is that Stokes
equation being a vectorial equation, a factor 2/9 instead of 1/3
appears in the expression of sv. Complex times s! are also
similar, but an additional term (the added mass) appears in the
expression of s!v . To each time, we can associate a characteris-
tic frequency. We note fv ¼ 1= 2psvð Þ the frequency of steady
momentum transfers, and fpc ¼ m= 2psDð Þ the frequency asso-
ciated with phase changes. Expression of s!D involves the
coefficient (1 - kvo), which shows that, in the mass diffusion
processes, only gradient concentrations are taken into account.
Thermodiffusion, e.g., mass diffusion induced by temperature
gradients (Soret effect), is neglected as it is known to be of a
smaller order of magnitude. Finally, the expression for the dis-
persion relation is detailed in the Appendix.

For atmospheric application, the model has to be com-
plemented by data for the dependence of various coefficients
with pressure and temperature down to % 10 &C. Most of
them are in Ref. 22 The saturation pressure pvs(T) follows
Magnus formula (p. 854) in the temperature range [% 50&;
þ 50 &C]. Two different expressions for specific heat of liq-
uid water Clo are given (p. 93), either in the range [% 4.2&;
þ 35 &C], or in the range [% 37.0&; % 4.2 &C]. For density of
liquid water qlo, two formula can be found pp. 87, in the
range either [0&; 100 &C] or [% 33&; 0 &C]. Expression for
vapor diffusion coefficient D is found pp.503. Evaporation
latent heat lo satisfies Kirchhoff formula (pp. 116). Heat con-
ductivity of vapor vvo, of dry air vao and of the gaseous mix-
ture vgo can all be found p. 508. Ref. 27 provides thermal
conductivity of liquid water vlo, and the specific heat at con-
stant pressure Cp

vo and ratio of specific heat cv of vapor. Data
are extrapolated by a second order polynomial to negative
temperatures. Sound speed is deduced by the formula for
perfect gases cko ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ckRkT
p

: Molar mass is 18 g/mol for
vapor and 28.966 g/mol for dry air. Classical formulae to
obtain cg, Rg, and Cp

g as an ideal mixture of dry air and vapor
are used. Given the very low vapor concentration, gas vis-
cosity is identified as that of dry air, following the well-
known Sutherland formula.

C. Critical discussion on the model assumptions

The model is limited by a number of various approxima-
tions that need a closer examination. The low frequency
approximation allows to view the cloud as a homogeneous
medium at the acoustic wavelength scale k( a0. It also ena-
bles us to consider the gas locally incompressible at the
droplet scale a, so that we can use the classical expression
Eq. (12) for the momentum transfer. We are presently inter-
ested in the infrasonic and low audible frequency range,
lower than 100 Hz (this upper limit value is fixed by another
model limitation), which gives a ratio a/k< 10%5, indeed
very small.

In the dilute approximation, interactions between drop-
lets are neglected when estimating the transfers terms.

It yields expressions linear with particle concentration alo.
Estimating the volume fraction occupied by the liquid water
gives alo ¼ wL=qlo ¼ 3) 10%6 * 1. Interactions associated
with high concentration of rigid scatterers generally begin to
be significant for volume fractions of order 1%, four orders
of magnitude larger than the present one. Note the present
model (without heat and mass transfers) has been extended
to concentrated suspensions of rigid particles28,29 and com-
pared favorably to experiments for suspensions of nanopar-
ticles in water in the ultrasonic frequency range.

For the continuum approximation, Ref. 17 examines
wave propagation in fogs in the intermediate regime of
Knudsen number Kn of order 1, that maximizes the mass
exchanges through evaporation and condensation. This tran-
sitional regime between the continuum limit (presently con-
sidered) and the free molecular limit Kn ( 1ð Þ is treated by
introducing finite Knudsen corrections to the exchange terms
(like Stokes viscous drag or heat flux). However, given val-
ues of Table I, we can estimate the Knudsen number for
atmospheric clouds to be Kn¼lgo/qgocgoa¼ 0.0042 at the
ground level (qgo¼ 1.2 kg/m3, lgo¼ 1.7) 10%5 Pa s and
cgo¼ 340 m/s) for the smallest droplets, and Kn¼ 0.0062 at
4000 m altitude. Hence, the approximation of small Knudsen
number is very realistic for atmospheric clouds.

According to the linear approximation, transfer terms
are modeled by linear expressions in terms of velocity, pres-
sure or temperature mismatches, which implies a slow flow
motion, or a small Reynolds number (Stokes flow). For an
acoustical wave of amplitude P0, the Reynolds number can
be estimated to be Re ¼ P0a=lgocgo: For a sonic boom at the
ground level with typical Concorde amplitude of 50 Pa (100
Pa with pressure doubling due to ground reflection), this
gives a value Re¼ 0.26, smaller than unity. However, this
estimation of the Reynolds number is quite conservative, as
it assumes the velocity mismatch between the droplets and
the ambient gas is of the same order as the gas velocity itself.
This was for instance the erroneous assumption of Sewell’s
model1 considering fixed particles. In reality, droplets are
convected by the gas, only a small part of the wave field is
absorbed, and the velocity mismatch is only a small fraction
of the gas velocity. So, for most acoustical applications,
including sonic boom, the small Reynolds number assump-
tion is well satisfied. However, for very intense sound field
like blast nearfields, amplitudes can reach several thousand
Pascals, and that assumption should be examined more care-
fully. Concerning thermal effects, the conclusion is similar,
as both air and water Prandtl numbers are of order one.

The last approximation considers liquid droplets as rigid
bodies, and air as a perfect gas. The assumption of liquid
water as almost incompressible for an aerial acoustic wave is
perfectly satisfied because of the very large impedance con-
trast between air and liquid water (the ratio is about
2.8) 10%4). On the contrary, the second approximation is
much more constraining. Indeed, at audible frequencies,
absorption of acoustic wave is dominated by real gas effects,
namely, the vibrational relaxation of diatomic molecules of
nitrogen N2 and oxygen O2 that make about 99% of the mass
of the air.30 Relaxation frequencies of nitrogen in air satu-
rated with water vapor (100% relative humidity) are typically
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of one or several hundreds of Hz, depending on tempera-
ture.31 The quantitative comparison between cloud and classi-
cal sound absorption will show that sound absorption in
clouds is dominant by several orders of magnitude over the
classical one for infrasonic and low audible frequencies, up to
typically 100 Hz. However for higher frequencies, the two
sources of absorption turn out of the same order of magni-
tude. Hence real gas effects cannot be neglected anymore in
the frequency range 100 Hz to 1 kHz. In order to be applica-
ble in this frequency range, the model should be modified to
include real gas effects for dry air. For frequencies higher
than 1 kHz, oxygen relaxation and classical thermoviscous
effects are dominant, and the effect of water droplets gets
negligible. At still higher frequencies there may be droplet
resonances also.

IV. SOUND AND INFRASOUND ABSORPTION

A. Mechanisms of sound absorption

The main unknown in the data used in the model is the
value of the evaporation coefficient b. This parameter (which
appears in Hertz–Knudsen–Langmuir formula) represents
the proportion of vapor molecules which condense when
impacting the interface. Note that various improvement of
the Hertz–Knusden–Langmuir formula exist (see Schrage14

and Barrett and Clement12) and rely on different assumptions
about the Maxwellian distribution of vapor molecules close
to the interface. Concerning the experimental determination
of the parameter b, large differences are reported in the liter-
ature, from b¼ 0.01 to b¼ 1 (for a review see Eames et
al.13). Such discrepancies are likely due to differences in the
various experimental processes, especially in the measure-
ment of the surface temperature TR. Recent results13 for pure
water evaporating into a space containing only water vapor,
indicate that the true evaporation coefficient is likely to be
unity, and is anyway larger than 0.5. However, under real
conditions for atmospheric clouds with a gaseous mixture
and chemical impurities at the droplet surface, this value
may be significantly lower. The question then arises whether
this uncertain value significantly influences sound absorption
in clouds, as evaporation/condensation is known to be domi-
nant at low frequencies. Hence sound absorption has been
computed (Fig. 1) in the frequency range [0.01 Hz" 10

kHz]. The lower value is chosen well above the acoustic cut-
off frequency (typically 3.3 mHz) resulting from gravity. Re-
alistic conditions for clouds have been selected regarding
their variability according to Table I. These conditions are
a0¼ 10 lm for a monodisperse suspension, wL¼ 1 g/m3 for
an altitude of 2000 m (T0¼ 2 #C, pgo¼ 794 hPa). Four values
of the evaporation coefficient have been retained: 1 (theoreti-
cal maximum and likely value in ideal conditions), 0.1, 0.01
(lowest value reported in the literature) and 0 (no evapora-
tion effect). Clearly the figure shows that, as soon as evapo-
ration/condensation is taken into account, it is the dominant
effect for (infrasonic) frequencies lower than 10 Hz. Viscous
and other thermal effects are dominant only for higher (audi-
ble) frequencies. Moreover, the sound attenuation rate is
almost the same for b¼ 0.1 and b¼ 1. In this range, the phe-
nomenon is limited not by the rate of evaporation of mole-
cules at the droplet surface, but by the bulk diffusion of
vapor molecules within the gas mixture. Even in the case
b¼ 0.01, precise values of the absorption coefficient are
modified, but their magnitude order keeps the same (between
0.1 and 1 dB/km in the frequency range 0.02 to 10 Hz).
Hence, all present conclusions about the importance of
sound absorption and evaporation/condensation effects will
remain valid, whatever the precise value of the evaporation
parameter. Since most recent results suggest b is close to
one, and given the weak variations of sound absorption for
values of b above 0.1, subsequently we chose b¼ 1.

The relative importance of the various absorption mech-
anisms is now discussed. In the same conditions as for Fig.
1, the absorption coefficient (Fig. 2) and phase velocity (Fig.
3) are displayed versus frequency. The relative importance
of the various mechanisms involved is compared, by taking
into account only viscous effects, thermal and viscous effects
without phase changes, or all effects altogether. Note it is
impossible to isolate phase change effects, as they are inti-
mately coupled to thermal ones. Once again, one observes
that evaporation and condensation mechanisms (controlled
by diffusion) are dominant at low frequencies, with disper-
sion effects most sensitive below the characteristic fre-
quency of phase change fpc $ 0:1 Hz. Thermal and viscous
effects are important only above 10 Hz, slightly below the
characteristic frequency of steady viscous effects fv which is
here about 121 Hz at the ground level. We will see later that

FIG. 1. Influence of the evaporation coefficient parameter on absorption by
clouds ða0 ¼ 10 lm;wL ¼ 1 g=m3; T0 ¼ 2 #C; pgo ¼ 794 hPaÞ. FIG. 2. Influence of various effects on absorption by clouds.
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fpc and fv are related to one another by fpc ! mfv where
m ! 10"3wL=ðagoqgoÞ is the mass fraction, typically of order
10"3 for clouds. Unsteady effects (like Basset history force)
play a significant role only at higher frequencies (around
1000 Hz). However, in this high frequency range, real gas
effects are anyway dominant. Hence, in any case, unsteady
effects are unlikely to play a significant role for absorption
of sound in clouds. However, it is an important mechanism
to take into account in other cases of suspensions, like solid
nanoparticles in water for instance.32 Viscous and thermal
effects have similar behavior with frequency because the
Prandtl number of air is close to one, and they are compara-
ble in amplitude.

Thermal and viscous effects introduce very small dis-
persion, contrarily to phase changes that strongly diminish
(by up to 6%) the sound speed at frequencies lower than 1
Hz. Indeed, the effective sound speed is ceff ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neffqeff

p

where qeff is the effective density and veff the effective com-
pressibility. For frequencies f & fpc, phase changes are fro-
zen, because they are slow compared to acoustic variations.
Then, only thermal and viscous exchanges modify the effec-
tive density and compressibility of the medium by the intro-
duction of high density and weakly compressible particles.
However, these effects are small since they are proportional
to the quantity m of liquid present in the suspension, which
is small for an atmospheric cloud (see the zoom on Fig. 3).
For frequencies f ' fpc, the medium behaves like an effec-
tive medium with instantaneous phase changes. In this case,
Landau and Lifshitz33 have shown that the presence of liquid
droplets can result into a large effective sound speed
decrease. Such variations occur even for a vanishingly small
quantity of liquid. This decrease is a consequence of a modi-
fication of the thermodynamic behavior of the gazeous phase
in the presence of its condensed counterpart. While this
effect remains smaller than the one induced by the presence
of vapor bubbles in a liquid, it can result into a 10% drop of
the sound speed for a suspension of liquid droplets sur-
rounded by its vapor at atmospheric pressure and tempera-
ture of 100 (C. The results of Landau, valid for a liquid
surrounded by its vapor, have been extended recently34 in
the presence of a neutral gas. The decrease of the sound
speed observed in Fig. 3 is consistent with these theoretical
predictions.

Two different characteristic times may influence phase
change effects: The characteristic time sb for the process of
evaporation and condensation at the droplet surface, and the
characteristic time sD for vapor diffusion within air. The first
one is very small, on the order of 10"8 s, corresponding to
frequencies of several MHz. This explains why the present
results are quite insensitive to the value of the evaporation
coefficient b. In the considered frequency range, phase
changes are almost instantaneous. The characteristic time for
thermal effects is sT ¼ qloCp

ga2=3vg: Its ratio to the charac-
teristic time for steady viscous effect sv is equal to 3Pr/2. As
the Prandtl number of air Pr is of order one, both are of the
same orders of magnitude. The ratio sD/sv is equal to 3Sc/2
where Sc¼ lg/qg0 D is the Schmidt number, also of order
one for air and vapor. As demonstrated theoretically9,10 and
experimentally21 in a liquid/gas mixture, there are two
coupled thermal modes. The first one (fast mode) is pure
thermal diffusion. If energy is brought to the medium
through a compression, the ambient gas heats, following the
state equation. That heating is transmitted through liquid
particles by thermal diffusion, hence its dynamic is governed
by sT. The slow mode induces phase changes. After gas com-
pression and heating, the vapor pressure pv differs from satu-
ration pressure pvs which has increased through heating.
Vapor pressure has to be increased to recover equilibrium,
which implies that part of the liquid will vaporize (which is
almost instantaneous) and then diffuse. This now induces a
decrease of the ambient gas and liquid temperatures to pump
the necessary latent heat. For this mode, the source of the
dynamic relaxation process is the liquid. If the liquid mass
concentration is small, that process will be much slower
because it is necessarily proportional to the small quantity
of liquid present in the suspension (contrarily to the first
mechanism which is a transfer of heat from the gas, that
is overwhelming relative to the liquid). In this case the
characteristic time is sD/m. For clouds, m is typically of
order 10"3, hence the characteristic frequency of phase
change fpc ¼ m= 2psDð Þ ¼ 3Sc=2ð Þmfv ! mfv is about 0.1
Hz. Around this frequency, attenuation per wavelength
reaches a maximum value, and the frequency behavior of the
coefficient of absorption changes, from a quadratic growth
below fpc to a plateau value above.

B. Influence of cloud physical parameters

The absorption coefficient in clouds, being governed by
phase change effects at low frequencies, and viscous drag at
higher ones, tends to increase with the total mass of water for
a given droplet radius (here a¼ 10 lm): the increase in the
number of sound absorbers increases sound absorption. This
is observed on Fig. 4 in the frequency range 0.1 Hz to 10
kHz, where the water content wL takes three realistic values
ranging from 0.5 to 3.0 g/m3. However, while the characteris-
tic frequencies of thermal and momentum exchanges are not
affected by the water content, the frequency of phase change
fpc is directly proportional to the liquid content. Thus, when
the water content is decreasing, the characteristic frequency
is also decreasing. Clouds with low water content hence have
a plateau value of lower amplitude but of wider frequency

FIG. 3. Influence of various effects on sound speed in clouds.
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extent, so that in the very low frequency range (around 0.01
Hz) the inverse phenomenon is observed: clouds with low
water content tend to absorb more infrasound.

The average radius of clouds droplet largely depends on
the development stage of the cloud. It can evolve from 5 lm
for early stage ones to 40lm for rainy clouds. For a given
water mass content (here wL¼ 1 g/m3), and when increasing
the droplet radius a0, the total surface of droplets decreases.
Since transfers responsible for absorption effects are surface
processes, so does the absorption coefficient, see Fig. 5.
However, since all characteristic frequencies fpc and fv are
inversely proportional to the square of the droplet radius, the
peak of absorption per wavelength is shifted to low frequen-
cies when the droplet radius increases. This results in an
inversion of the dependence of the wave attenuation with ra-
dius for the lowest frequencies.

Polydispersion plays a significant role as illustrated by
Fig. 6 where the monodispersed case (with constant radius
a¼ 10 lm) is replaced by a droplet distribution Eq. (1) with the
same mean radius a0¼ 10 lm. There are significant changes
when comparing the monodispersed and polydispersed cases.
Taking into account only a mean radius tends to overestimate
the absorption, because the influence of large droplets is under-
estimated and the total surface of droplets is overestimated.
Hence a better equivalent mean radius can be defined:16

a31 ¼

ð
a3N að Þda
ð

aN að Þda

2

664

3

775

1=2

; (22)

based on a mean surface defined as the mean volume divided
by the mean radius. A much better fit between the polydis-
perse case and the monodisperse case is then obtained. The
same conclusion can be drawn when observing the phase ve-
locity dispersion curves (not shown).

Finally, the influence of altitude is examined on Fig. 7,
varying it from 150 to 4000 m, with atmospheric conditions
corresponding to ICAO standard atmosphere. When increas-
ing the altitude, the temperature decreases from 14 $C to
%11 $C and the pressure from 1013 to 616 hPa. The magni-
tude of the attenuation induced by phase changes depends on
the concentration of vapor kv, while its characteristic fre-
quency depends on the value of the mass fraction m and the
diffusion coefficient D (if the droplet radius remains con-
stant). When the altitude is increased, the diffusion coeffi-
cient and mass concentration vary about 9% and 33%,
respectively, while the vapor concentration is decreased by a
factor 5. As a consequence, while the characteristic fre-
quency of phase change fpc is slightly increased, the domi-
nant effect at low frequencies is a diminution of the
attenuation induced by phase change (related to the diminu-
tion of vapor concentration). At higher frequencies (above
10 Hz), the dominant absorption mechanisms are momentum
and heat transfers whose magnitude depends on the mass
fraction m. Thus, the increase of the mass ratio with altitude
results in an increase of the attenuation above 10 Hz. We can
also note that the characteristic frequency of momentum
exchange is little affected by the altitude. Anyway, the

FIG. 4. Influence of water content on absorption by clouds.

FIG. 5. Influence of droplet radius on absorption by clouds.

FIG. 6. Influence of polydispersion on absorption by clouds.

FIG. 7. Influence of altitude on absorption by clouds.
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sensitivity of the absorption coefficient to altitude/tempera-
ture remains much smaller than sensitivity to other physical
parameters.

C. Comparison with standard absorption

Figure 8 compares for various types of clouds the
absorption coefficient, computed at the cloud’s average alti-
tude according to Table I. Maximum values of water content
have been chosen. The resulting absorption is compared to
the standard31 absorption in humid air without clouds, com-
puted at an altitude of 2000 m and a relative humidity of
100%, just prior to condensation. Even though altitudes are
not constant, the comparison remains nevertheless signifi-
cant as either standard or cloud absorption are not deeply
modified by altitude (as shown by Fig. 7) in the considered
range. Clearly visible on Fig. 8 is the fact that the coefficient
of absorption is quite variable with the type of clouds. In the
frequency range 1 to 100 Hz, the clouds with the highest
water content (such as cumulonimbus or cumulus at interme-
diate or final stage) tend to be more efficient sound absorb-
ers. At lower frequencies (around 0.1 Hz), influence of
droplet radius is more sensitive, and sound absorption in
fogs becomes comparable. At very small frequencies (0.01
Hz), variability with clouds is not very large. In magnitude
orders, the coefficient of absorption varies from around
4! 10"5 dB/km at the lowest frequency (0.01 Hz), to around
2! 10"3 at 100 Hz, e.g., a change of almost two decades in
magnitude for four decades in frequency. However, the most
important result is that, when compared to standard absorp-
tion, absorption within clouds is much larger up to 100 Hz. It
is about ten times more important at 100 Hz, hundred times
more at 10 Hz and several decades for lower frequencies.
When comparing with standard absorption at lower humid-
ities (20% relative humidity) the conclusion is similar
although the discrepancy is slightly smaller because standard
absorption is larger for dry air. Note the standard absorption
gets dominant over the one due to clouds only above 1000
Hz, while the two are comparable in the frequency range
100 to 1000 Hz. This points out one of the main limitation of
the cloud model, that is based on a perfect gas assumption
for air. Molecular relaxation of diatomic molecules of nitro-
gen and oxygen is not taken into account, while it is the

dominant source of bulk sound absorption up to the MHz
range in air without liquid water. Below 100 Hz, the present
model is sufficient because droplet absorption is by far domi-
nant. Above 1000 Hz, standard absorption is dominant and
droplet influence is negligible. In the intermediate range
100–1000 Hz, both are comparable and the model would
need to include real gas effects.

V. APPLICATION TO SONIC BOOM

Locally, sound absorption within clouds is much larger
than standard absorption for frequencies below 100 Hz.
Nevertheless, one could argue that, anyway, clouds have
only a finite thickness and occupy only a small volume of
the atmosphere where sound and infrasound propagate. So
the question still remains whether absorption by clouds is
really important. Of course, the answer may depend on the
type of source, its altitude, frequency range and location rel-
ative to clouds and receiver. We here investigate one particu-
lar case. A sonic boom is a wideband signal, with main
frequency spectrum in the 1 to 10 Hz range but with signifi-
cant content up to typically 100 Hz. Its source, a supersonic
aircraft, is located at high altitudes, well above the cloud, but
induces some annoyance at the ground level. It is likely to
encounter all types of meteorological situations, with or
without clouds. Some flight tests performed in the former
Soviet Union on Tu144 indicate a significant effect, with
reports35 on the perception of a loud sonic boom completely
modified in presence of thick clouds. To quantify this effect
more precisely, we consider a sonic boom emanating from
an aircraft flying in steady flight at Mach 1.6 and 15 km alti-
tude. The source signal is the Whitham function36 associated
to a parabolic fuselage 45 m in length, with a volume of
141.3 m3 and a maximum diameter of 1.4 m. This source has
already been used as a reference source for investigating the
influence of meteorological variability on sonic boom.37 It
produces at the ground level and in the standard atmosphere
without any absorption an ideal N-wave of amplitude 56 Pa
and duration 150 ms. This is typical for the sonic boom of a
small supersonic aircraft like a business jet or military fighter
(without any low boom design). More realistic sources in
terms of aerodynamics lead to identical conclusions about
the effect of clouds on sonic boom.

Numerical simulations are performed for ICAO standard
atmosphere,23 with the typical relative humidity profile
given by the ISO standard.31 Within the thickness of the
selected cloud, that humidity profile has been replaced by a
100% relative humidity. Among values of Table I, the mini-
mal value of height h and the maximal value of the water
content wL are chosen. However, for cumulonimbus, the top
of the cloud has been limited to 4000 m, since the model is
limited to lower altitudes because of the predominant ice
content above. Note the resulting meteorological data may
not be fully consistent from a meteorological point of view,
as formation of a given type of cloud may be associated to
some specific meteorological conditions. However, the point
here is to evaluate the importance of clouds on sonic boom
absorption, not to provide a fully realistic study of sensitivity
of sonic booms to cloudy meteorology.FIG. 8. Comparison of cloud and standard sound absorption.
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Numerical simulation is based on a process already
described and validated in Ref. 37. Sonic boom is computed
through a ray tracing approach. Only the ray emitted perpen-
dicular to the Mach cone at a 0! azimuthal angle in the vertical
plane of the aircraft trajectory is considered. Along a given
ray, the pressure field satisfies Burgers’ equation, augmented
with ray-tube area variations for geometrical effects, and linear
dispersion and absorption. Standard absorption31 is considered
outside the cloud, and the present model inside the cloudy
layer. The cloud is assumed to be a horizontal layer of infinite
extent, so that diffraction effects at the edges of the cloudy
layer are not considered. The numerical procedure involves a
split-step approach. Geometrical effects are taken into account
analytically by introducing a linear transformation of the
model equation. Nonlinear effects are solved through a quasia-
nalytical shock fitting method38 based on Poisson solution of
the inviscid Burgers’ equation. Linear dispersion and absorp-
tion are solved numerically in the frequency domain. A sec-
ond-order Strang split-step is chosen to improve convergence.
The problem is voluntarily overdiscretized from a numerical
point of view, in order to guarantee numerical convergence.
Time pressure waveforms are discretized with 215 points, cor-
responding to a time step of 7ls, more than 100 times smaller
than the actual rise time. The number of spatial steps along the
ray is 200, while convergence is generally obtained for values
around 30 (thanks to the second-order split-step).

Figure 9 displays the ground pressure waveform when
no absorption is considered, for the standard absorption only
(no cloud), and for five different clouds. Pressure signal is
zoomed on the head shock, to better view the shock structure
resulting from the various absorption and dispersion effects.
Table II summarizes the main characteristic of the ground
pressure field for seven different clouds: (1) peak overpres-
sure (in Pa), (2) rise time (in ms) of the head shock (time
necessary for the pressure waveform to go from 10% to 90%
of the peak overpressure), and (3) Sound Exposure Level
(SEL) with two different frequency A- and C-weightings.
ASEL metric is considered (along with Perceived Level) as
the best metric for measuring the human response to sonic
boom heard outdoor in laboratory conditions.39 C-weighting
is frequently recommended for estimating the human
response to loud impulsive noises.40 In general, standard
absorption and clouds tend to preserve the general “N-like”
shape of the boom, but reduce the peak overpressure and
make shocks smoother. Compared to standard atmosphere,

clouds tend to amplify this effect. The effect is moderate for
thin cloud (fog or altostratus) but is very significant for thick
clouds (cumulus at final stage or cumulonimbus). In the last
case, the peak overpressure is more than halved compared to
the standard case. Indeed, sound absorption in clouds is
much more efficient than standard absorption at frequencies
corresponding to the peak of the boom spectrum (1 to 10
Hz). While standard absorption barely affects this part of the
boom spectrum, cloud absorption does. The effect is small
for thin clouds because propagation path is too short (500 m
vertically for fog), but large for thick clouds (4000 m for cu-
mulonimbus). The nonzero value (7 ls) of the rise time in
the nonabsorbing case is due to the finite time discretization,
with the head shock spread over two grid points only. Rise
time in the standard case (no cloud) is on the order of 0.8
ms. Clouds systematically increase that rise time. That
increase is almost insignificant for fog, but once again very
large for thick clouds. When examining overall sound expo-
sure levels, one again observes a decrease compared to the
standard case, in any metric. That effect is almost insignifi-
cant for thin clouds (on the order of 0.5 dB for fog), but is
extremely large for thick clouds (more than 10 dB for cumu-
lonimbus and A-weighting, 8.5 dB for C-weighting).

VI. CONCLUSION

This study examines and quantifies the influence of
atmospheric clouds on propagation of sound and infrasound.
Two main limitations of an existing model16 have been out-
lined. First, it is limited to temperatures higher than about
" 10 !C. For colder conditions, the ice content would be too
large and a four phase model (air, vapor, liquid water, and
ice) would be necessary. Second, the assumption of perfect
gases neglects relaxation effects associated to the diatomic
nature of nitrogen and oxygen molecules. This effect gets
predominant compared to droplet effects within clouds for
frequencies over 1000 Hz, and the present model is applica-
ble only for frequencies lower than 100 Hz. In this frequency
range, absorption by clouds turns out to be one or several
magnitude orders larger than standard absorption. The model
shows that phase change effects are predominant at low fre-
quencies (below 1 Hz), while steady thermal and viscous
drag is the leading effect above 10 Hz. Unsteady effects are
negligible in the considered frequency range. Even though
the value of the evaporation parameter is pretty uncertain,FIG. 9. Sonic boom attenuation by clouds: head shocks.

TABLE II. Sonic boom absorption by atmospheric clouds.

Type Pmax (Pa) tm (ms) SEL (dBA) SEL (dBC)

No absorption 56.08 0.007 94.48 105.90

No cloud 50.63 0.869 90.58 104.98

Stratocumulus 48.03 0.762 90.50 104.56

Fog 47.78 1.073 90.21 104.42

Altostratus 43.89 1.116 88.82 103.61

Cumulus

Early stage 47.61 1.159 89.63 104.36

Growing stage 41.50 1.341 88.52 103.15

Final stage 28.92 4.024 83.41 98.88

Cumulonimbus 24.31 7.029 80.40 96.48
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the overall absorption is anyway almost insensitive to this
parameter. This is explained by the fact that phase changes
are limited by the diffusion of vapor in air. Sound absorption
in clouds is mostly sensitive to the radius of water droplets
and the total water content. For frequencies above 0.01 Hz,
clouds with small droplets and high water content absorb
more because they maximize the total surface of droplets.
Sound absorption in clouds is much less sensitive to altitude.
Dispersion in droplet radii is important to take into account.
It can be estimated with a good accuracy by considering an
adequate mean radius. Application to sonic boom shows that
clouds decrease the peak overpressure, increase the rise time
of the head shock and decrease the noise level. That effect is
small for short propagation paths within clouds (a few hun-
dred meters) but can be very large for thick clouds (several
kilometers). Further work would require to improve the
model: include real gas effects, and take into account the
presence of ice for high altitude clouds. Other applications
could consider other types of low frequency or infrasonic

sources. Use of database where cloud data is consistent with
other meteorological parameters could also be contemplated.
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APPENDIX: DISPERSION RELATION

From expressions of Sec. III B, the dispersion relation is
obtained for a plane harmonic wave of complex wave num-
ber k(x) under the form k ¼ x=cgo

! " ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V xð ÞD xð Þ

p
with cgo

the sound speed in the gaseous phase (airþ vapor), V(x) the
contribution of momentum transfers and D(x) the one of
thermal transfers and phase change. Expressions of V(x) and
D(x) are given below as a function of parameters and char-
acteristic times introduced in Sec. III B. Both terms V(x)
and D(x) are of the form 1þm…, as effects induced by the
presence of droplets are directly proportional to the mass
concentration m (dilute approximation):

V xð Þ ¼ 1þ m
ago % ro
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Note that we found a few differences with expressions from
Ref. 16 First, we find a coefficient1/15 instead of 1/3 in the
expression of s&Tl

Second, in the expression of sb, we haveffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=cvo

p
instead of

ffiffiffiffiffiffi
2p
p

=cvo Finally we have lo
!l instead of

lo, in the expression of Z.
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Low power actuation of sessile droplets is of primary interest for portable or hybrid lab-on-a-chip
and harmless manipulation of biofluids. In this paper, we show that the acoustic power required to
move or deform droplets via surface acoustic waves can be substantially reduced through the
forcing of the drops inertio-capillary modes of vibrations. Indeed, harmonic, superharmonic, and
subharmonic (parametric) excitation of these modes are observed when the high frequency acoustic
signal (19.5 MHz) is modulated around Rayleigh-Lamb inertio-capillary frequencies. This resonant
behavior results in larger oscillations and quicker motion of the drops than in the non-modulated
case. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701725]

One of the challenges in droplet microfluidics is to over-
come surface capillary forces and contact line retention
forces, which prevent the motion and deformation of the
drop.1 Different techniques such as electrowetting,2 optical
toolbox3 based on thermocapillary forces induced by a
focused laser, or ultrasonic surface acoustic waves (SAW)
have been developed to perform simple operations on drop-
lets. In particular, SAW are efficient to achieve actuation,
atomization, jetting, oscillations, or mixing of small quanti-
ties of liquid, either lying on a solid substrate or entrapped in
confined geometries.4 However, due to nonlinear coupling
between thermal and acoustical mode, SAW can induce
quick temperature increase in fluid samples.5,6 This can be
detrimental for the manipulation of biofluids (albumin coag-
ulates in a few seconds when excited by SAW), or for hybrid
SPR (surface plasmon resonance)/SAW lab-on-a chip7 (sub-
strate heating causes a shift in SPR reflectivity). To enhance
the droplet response, particular attention has been devoted to
the design of the actuators8 and to the chemical treatment of
the surface9 to reduce hysteresis and modify the contact
angle. However, less effort has been dedicated to the optimi-
zation of the acoustic signal in relation to the natural fre-
quencies of the drop. Rayleigh in 1879 (Ref. 10) and Lamb
in 1932 (Ref. 11) have identified oscillation modes resulting
from a competition between inertia and surface tension.
While these have been first described for levitating drops,
they can also be adapted to sessile drops. In this case, the
droplet vibration is affected by the wettability of the sur-
face12 and the pinning of the contact line.13

These low-frequency oscillations (typically from 10 to
200 Hz for millimeter-sized drops) are observed when a drop
lying on a solid substrate is subjected to sinusoidal SAW of
much higher frequency (about 20 MHz).14,15 The free sur-
face deformation results from nonlinear acoustic forces
(acoustic radiation pressure and acoustic streaming bulk
force), while the detailed mechanism of excitation of these
modes has not been elucidated yet. The acoustic radiation
pressure induces a stress at the surface of the drop, while

acoustic streaming induces internal flow, which can also con-
tribute to the droplet deformation. The respective magnitudes
of these two force fields depend on the properties of the
acoustic field inside the drop and thus on the frequency of
excitation, the size of the drop, and the acoustic attenuation
length.15,16

In this paper, we show that modulations of the acoustic
signal around Rayleigh-Lamb characteristic frequency and
twice this frequency result, respectively, in harmonic and
parametric response. This latter was predicted theoretically
by Papoular and Parayre for levitating drops,17 but not
observed experimentally. This resonant behavior leads to
higher amplitude drop oscillations compared to the non-
modulated case at same input acoustic power. We also show
that these oscillations promote droplets mobility.

SAW are generated at the surface of a 1.05 mm thick
piezoelectric substrate (X-cut niobate lithium LiNbO3) by a
transducer consisting of interdigitated fingers, Fig. 1. These
fingers are designed with the following process: (1) A tita-
nium (Ti) layer of 20 nm and a gold (Au) layer of 200 nm are
successively sputtered on a LiNbO3 substrate, (2) the sub-
strate is coated with AZnlof2020 resist, which is patterned
by conventional photolithography technique, (3) the Au/Ti
layers are successively wet-etched by potassium iodide (KI)
and hydrofluoric acid (HF 50%), and (4) AZnlof2020 is
removed by acetone. The width of the fingers and their dis-
tance are both equal to 43.75 lm, leading to a characteristic
frequency of 19.5 MHz, which is used as the carrier

FIG. 1. (a) Sketch of the experimental setup. (b) Drop undergoing large de-
formation along the acoustic wave refraction angle /r .
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frequency fc. A periodic sinusoidal voltage is applied at this
frequency with a high frequency generator (IFR 2023A) and
amplified with a home made amplifier. This carrier signal is
modulated by a square wave switching between 1 and 0, at
frequency fm ! fc. The amplitude d of the SAW is measured
with a Mach-Zender laser interferometer (BMI-SH130). The
surface of the substrate is treated with hydrophobic coating
(monolayer of OTS) leading to advancing and receding con-
tact angles of ha ¼ 108# and hr ¼ 99#, respectively, meas-
ured with a Kruss DSA100 goniometer. A 7.5 ll droplet of
water is then placed on the substrate (a sensitivity analysis of
the droplet response according to its volume has been con-
ducted in Ref. 15). The droplet dynamics is observed via a
high speed camera (Photron SA3) and recorded at 2000
frames per second. To avoid pollution of the surface by
impurities and to obtain reproducible results, all the experi-
ments have been carried out in our laboratory class 1000
clean room.

At rest, the drop remains essentially hemispherical,
since its radius (R $ 1.5 mm) does not exceed the capillary
length (lc $ 2:5 mm for water at room temperature) and thus
surface tension overcomes gravity. The acoustic energy
transmitted to the fluid induces zonal drop oscillations, of
degree l¼ 2 (in spherical-harmonics basis), and a tilt of the
drop to the right, as shown in Fig. 2. This left-right asymme-
try is due to the asymmetry of the acoustic field, which is
radiated in the drop according to a refraction angle /r % 25#

given by Snell-Descartes law, see Fig. 1. When the drop is
sufficiently tilted for the rear and front contact angles to
exceed their hysteretic value, one additionally observes drop
motion. The vertical amplitude Dh and frequency fr of oscil-
lation depend on both fm and d, see Fig. 3. According to these
parameters, either a harmonic response at frequency fr ¼ fm,
a subharmonic response at fr ¼ 1=2 fm, or a superharmonic
response at fr ¼ 2 fm is observed (see also accompanying
movies in the supplemental material18).

Harmonic region: Shift of resonance. In the blue area of
Fig. 3, a peak of response is obtained when fm reaches the
inertio-capillary characteristic frequency fo, which can be
estimated from Rayleigh formula: fo ¼ ð8c=3pqVÞ1=2 % 89
Hz for the dipolar (l¼ 2) oscillation of a 7:5 ll droplet, with
c the surface tension and V the droplet volume. At intermedi-
ate power (d¼ 1.10 nm and d¼ 1.38 nm), the peak is asym-
metric, with a skewness directed to low frequencies and the
resonance frequency decreases with the amplitude of oscilla-

tion. This response is typical of an anharmonic oscillator
with softening spring (b < 0)

€x þ 2k _x þ x2
oxþ ax2 þ bx3 ¼ FcosðXtÞ; (1)

where x is the dynamic variable (here the deformation of the
drop), t the time, k the damping coefficient, xo ¼ 2pfo the
angular eigen frequency, a and b two nonlinearity coeffi-
cients, F the amplitude of excitation, and X the excitation
frequency. Such nonlinear behavior has already been
reported by Perez et al.19 for levitating drops larger than the
capillary length and more recently by Miyamoto et al.20 for
sessile droplets smaller than the capillary length, with pinned
contact line. These authors determine the coefficient appear-
ing in Eq. (1) from experiments and compare the frequency
response of the drop to theoretical predictions. In our system,
the oscillation damping is due to dissipation in the viscous
boundary layer and in the neighborhood of the contact line.21

The nonlinear response of droplets appears when they
undergo finite-amplitude deformations,22,23 leading to a shift
of the resonance frequency to lower frequencies as the am-
plitude of oscillation increases. For sessile drop, additional
nonlinearity results from the up-down asymmetry of bounda-
ries and the presence of a contact line.

Superharmonic region: Combination of modes. In the
green region of Fig. 3, low fm and large Dh, the drop
response is a combination of harmonic and superharmonic
modes. Indeed, the drop is pushed by the acoustic wave
when the signal is on. Then, the drop keeps bouncing in the
period with no forcing (signal is off) and oscillates a whole
cycle before the next push. After a transient phase, this syn-
chronization of forced and natural bouncing results in large
drop oscillations.

Subharmonic region: Parametric resonance. In the red
region of Fig. 3, the droplet responds at fm=2. This subhar-
monic response appears only above a threshold: d ) 1.42 nm,
with a frequency window broadening progressively with the
amplitude of oscillation Dh. This is typical of a so-called
Arnold Tongue. Furthermore, the amplitude of the subhar-
monic response at fixed fm is independent of the amplitude of

FIG. 2. Dipolar (degree l¼ 2) zonal oscillations of a drop of 7.5 ll sub-
jected to a SAW of carrier frequency fc¼ 19.5 MHz, modulation frequency
fm¼ 52.5 Hz, and amplitude d¼ 1.38 nm. The time elapsed between two
successive snapshots is 2 ms. Dh and Dw are, respectively, the longitudinal
and lateral amplitude of oscillation.

FIG. 3. Amplitude of vertical oscillations of the drop Dh divided by the ini-
tial height of the droplet ho as a function of the modulation frequency fm for
different amplitudes d of the surface acoustic wave. In the green, blue, and
red region, the droplet response is, respectively, superharmonic, harmonic,
and subharmonic (compared to the frequency of modulation).
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excitation d. All of these properties are characteristic of
parametric resonance. Parametric instability of an oscillator
is enabled when its characteristic frequency xo is modulated
in time near 2xo.24 It can be modeled with a Mathieu
equation

€x þ 2k _x þ x2
o½1þ Acos ð2xo þ !Þt%x ¼ 0: (2)

with !' xo. Such Mathieu equation can be obtained when
an anharmonic oscillator described by Eq. (1) is excited near
2xo, X ¼ 2xo þ !.25 Indeed, from the asymptotic expansion
of the variable x in Eq. (1) x ¼ x1 þ x2, with x1 the solution
of the harmonic oscillator and x2 ' x1, we obtain at second
order

x2
:: þ 2k x2

: þx2
o 1( 2aF

3w4
o

cosð2xo þ !Þtþ :::
! "

¼ 0: (3)

The parametric excitation of zonal oscillation modes was
predicted theoretically by Papoular and Parayre17 for levitat-
ing drops, but not observed experimentally. Indeed, paramet-
ric resonance appears for anharmonic oscillators above an
amplitude threshold Ft ¼ 6kx3

o=jaj, which decreases with
the nonlinearity coefficient a. This latter is related to the
asymmetry of the oscillator stiffness for prolate and oblate
deformation (x < 0 or x > 0), which is increased by the pres-
ence of the substrate. Thus, the observation of the parametric
response in the present experiments could be explained by a
larger nonlinearity of the system and larger excitations than
in the system of Papoular and Parayre.

The parametric mode appears after a transient phase, as
shown in the spatio-temporal diagram on Fig. 4. At first, the
droplet oscillates at the same frequency as the excitation
fm¼ 100 Hz between t¼ 0 and 0.15 s. Between t¼ 0.15 and
t¼ 0.32 s, the parametric instability grows. Finally, the drop-
let reaches a stationary regime of oscillation at half the fre-
quency of modulation fr ¼ 1=2 fm. Between initial harmonic
and later parametric response, the amplitude of droplet lat-
eral oscillations Dw is increased by a factor of 4.8. This large
increase of Dw comes along with an increase of the droplet

velocity by a factor of 4, see the rupture of slope at t¼ 0.35 s
in Fig. 4.

In all the previously described experiments, there is
indeed a correlation between the droplets velocity V and
their amplitude of oscillation Dh=ho, see Fig. 5. Indeed, the
drop velocity divided by the applied acoustic power collapse
into a single curve, which increases with the amplitude of os-
cillation up to Dh=ho ¼ 1, and then reaches a plateau. From
this figure, we can conclude that (1) the droplet velocity is
basically proportional to the surface acoustic wave power
and (2) that droplets oscillations promote their mobility.

Indeed, the velocity of a drop is determined by the equi-
librium between the driving forces and the retention forces.
The motion is due to the contact angle difference between
the front and rear interfaces and thus to the asymmetry of the
drop, see e.g., Ref. 21. An increase of the acoustic wave am-
plitude d naturally leads to larger droplet deformations and,
therefore, larger asymmetry and velocities of the drop. The
signal modulation does not affect the acoustic power. Never-
theless, it can affect both the driving and retention forces
into different ways. First, it is important to mention that
while some authors, see e.g., Ref. 26, have observed a
decrease of the hysteresis of the contact line due to its con-
tinuous depinning, such variations are not observed in the
present study and cannot explain the increase of drop veloc-
ity. Second, as seen previously, the droplet static shape is
not much affected by gravity, since the droplet radius is
smaller than the capillary length. However, when the drop is
highly stretched with a left/right asymmetry component (see
e.g., Fig. 1(b)), gravity plays a significant role during the
retraction phase. The drop is not simply pulled back by
capillary forces but also the upper part of the liquid drop
falls vertically by gravity (see accompanying movie
“superharmonic” in supplemental material18): this strength-
ens even further the left/right asymmetry and should contrib-
ute to the drop motion. Finally, the acoustic energy
transferred to the drop and the retention force depend,
respectively, on the contact surface with the substrate and
the perimeter of the contact line. Thus, a stretching of the
drop contributes to a reduction of the retention force but also
a reduction of the amount of energy transferred to the drop.
This might explain the existence of the plateau region in
Fig. 5. To conclude, we can compare the velocities obtained

FIG. 4. Evolution of a 7.5 ll droplet excited by an acoustic wave of ampli-
tude d¼ 1.55 nm and modulation frequency fm¼ 100 Hz. The top picture
shows the initial shape of the drop. The spatio-temporal diagram below is
obtained by taking the base line of the drop (dashed blue line on top picture)
and showing its evolution as a function of time. The average slope of the
front or rear curve delimiting the drop gives the velocity of the drop.

FIG. 5. Velocity of the drop divided by the square of the surface acoustic
wave amplitude d2 (corresponding to the acoustic power radiated into the
drop up to a prefactor) as a function of the longitudinal amplitude of oscilla-
tion Dh=ho. Each marker corresponds to a specific amplitude d.
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with and without signal modulation at same acoustic power
(see Fig. 6 and accompanying movies in the supplemental
material18). The drop velocity can be increased by a factor
100 thanks to the modulation.

In this paper, we have shown that inertio-capillary
modes of oscillations can be excited either directly or para-
metrically by modulating the acoustic signal around once or
twice the Rayleigh-Lamb characteristic frequency. This
modulation introduces an original way to decrease the acous-
tic power required to stir inside, to stretch, or to move a ses-
sile droplet with SAWs. Compared to the non-modulated
case, the minimum acoustic power required to move a drop-
let at a non-zero speed, and a speed of 5 mm s!1 are reduced
by a factor of 2 and 3, respectively, while the minimum
power required to stretch the droplet vertically by a factor
Dh=ho of 0.2 and 1 are reduced by a factor 5 and 3, respec-
tively. This is especially important for the harmless manipu-
lations of biofluids, which could be damaged by the
temperature increase due to the dissipation of acoustic

energy. It is also of primary interest for portable lab-on-a-
chip, which requires low power consumption.
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When you reach with your straw for the final drops of a milkshake,
the liquid forms a train of plugs that flow slowly initially because of
the highviscosity. They then suddenly rupture and are replacedwith
a rapid airflow with the characteristic slurping sound. Trains of
liquid plugs also areobserved in complexgeometries, suchas porous
media duringpetroleumextraction, inmicrofluidic two-phaseflows,
or in flows in the pulmonary airway tree under pathological con-
ditions. The dynamics of rupture events in these geometries play the
dominant role in the spatial distribution of the flow and in de-
termining how much of the medium remains occluded. Here we
show that the flow of a train of plugs in a straight channel is always
unstable to breaking through a cascade of ruptures. Collective
effects considerably modify the rupture dynamics of plug trains:
Interactions among nearest neighbors take place through the
wetting films and slow down the cascade, whereas global inter-
actions, through the total resistance to flow of the train, accelerate
the dynamics after each plug rupture. In a branching tree of
microchannels, similar cascades occur along paths that connect the
input to a particular output. This divides the initial tree into several
independent subnetworks,which then evolve independently of one
another. The spatiotemporal distribution of the cascades is random,
owing to strong sensitivity to the plug divisions at the bifurcations.

microfluidics | respiratory flow

The motion of liquid plugs through a connected network of
channels may involve many degrees of freedom evolving via

a similarly large number of interactions: each immiscible interface
introduces a degree of freedom into the problem owing to its
ability to deform and to move, whereas each connecting branch
between different areas introduces an interaction path that allows
the flow in one region to influence the behavior in other areas of
the network. The resulting flow pattern determines, among other
things, how water or oil is extracted from porous media (1–3), the
imbibition of paper (4, 5), and the stability of flow in a microfluidic
device (6, 7).
Liquid–gas two-phase flows also occur in the pulmonary airway

tree, which is constantly coated with a thin liquid film. When the
thickness of this film increases beyond some limit, plugs of liquid
may form (8, 9) and therefore occlude the flow of air to the distal
branches. Evidence of such behavior has been observed in pa-
thologies ranging from asthma (10, 11) to cystic fibrosis (12).
Furthermore, liquid plugsmay be used asmeans to deliver medical
treatment into the lung, e.g., in surfactant replacement therapy
(13), and these plugs were observed to go through complex divi-
sions, breaking and reforming before reaching their intended
target (14).
The structure of the lung as a branching binary tree has moti-

vated many studies on the motion of gas–liquid flows into bi-
furcating channels (15–20), with numerical work also taking into
account the elasticity of the pulmonary walls, (e.g refs. 21 and 22).
However, nearly all the model experiments and simulations have
considered the simplest situations, either studying the motion of a
single liquid plug or gas finger or concentrating on the flow
through a single bifurcation, or both. This reduces the number of

independent degrees of freedom and, by the same token, the range
of behaviors those models can explore.
These studies therefore cannot account for complex interactions

that involve many levels in the tree, which are observed in the real
lung. Indeed, experiments on animal lungs have shown that mul-
tilevel interactions are primordial during the reinflation of a col-
lapsed lung. Alencar et al. (23, 24) reported that reopening takes
place through an avalanche of events in which distinct regions are
reopened in nearly singular bursts. However, ex vivo observations
of the spatial behavior during reinflation are prohibitively complex,
therefore limiting the comparison between the experiments and the
theoretical models to measurements at the root of the tree (25).
Here we study the flow and rupture of liquid plugs that initially

occludemicrofluidic channels, as they are submitted to an imposed
pressure head. Our experiments are conducted in microfluidic
systems consisting of a straight channel or a branching network of
channels, formed in a polydimethylsiloxane (PDMS) substrate
using conventional soft lithography techniques. We show that the
dynamics of a train of plugs differ from those of a single occlusion
because the plugs interact via both short- and long-range mecha-
nisms. The physics underlying plug interactions are first deduced
from the reopening of a single straight channel, by comparing
experimental measurements with the results of a one-dimensional
analytical model. Experiments in a branching tree are then per-
formed, showing the existence of cascades of ruptures that occur
along well-defined paths through purely hydrodynamic effects.

Collective Behavior of Plugs in a Straight Channel
Single-Plug Behavior. When a single plug of length L0 is pushed at
constant pressure in a channel of width w and height h, it rapidly
reaches a velocity V0 that depends on its initial resistance to flow.
In its wake, it leaves a liquid film that remains at rest on the
channel wall. This implies a shortening of the plug, which ruptures
when its length LðtÞ reaches zero. The airway then is opened in the
sense that the flow of air becomes limited only by the viscous re-
sistance of the gas. An example of such behavior is shown in Fig. 1,
which displays snapshots of the experiment, taken at constant time
intervals (see also Movie S1). The positions of the rear and front
interfaces in each frame are located and interpolated to form two
curves whose horizontal distance gives the length LðtÞ of the plug.
The velocity V ðtÞ is given by the slope of the curve for the rear
interface. In this experiment, the velocity of the plug varies from 3
cm/s when the pressure head is applied to 28 cm/s when the plug
ruptures. This acceleration generates an increase of the thickness
of the liquid film left behind the plug and a subsequent rapid de-
crease of its length, leading to rupture after 24 ms.
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The dynamics of this plug can be understood by introducing an
Ohm-like law for the pressure vs. velocity (18, 26),ΔP=RV , where
ΔP is the pressure head. The velocity V of the rear interface is a
measure of the flow rate, and R is the resistance due to the pres-
ence of the liquid in the channel. This resistance is the sum of
capillary contributions Rf and Rr of the front (“f”’) and rear (“r”)
interfaces, and a bulk viscous resistance Rv. Resistances Rf and Rr

are a result of the deformation of the two interfaces from their rest
shape in response to the large velocity gradients in the corners of
the moving liquid bridge, and they depend nonlinearly on V . At
low capillary number Ca= μV=σ, where μ is the viscosity of the
liquid and σ its surface tension, one gets Rf;r =Ff;rðh;wÞCa−1=3.
The explicit expressions of Ff and Fr are obtained, respectively,
from the Hoffman–Tanner law (27, 28) and the Bretherton law
(29) adapted to rectangular channels (30). In turn, the bulk re-
sistance of a long-enough plug can be estimated by modeling the
flow inside it as a Poiseuille flow in a rectangular channel:
Rv ≈ 12μL=h2 for large aspect ratiow=h (31). The relation between
pressure head and speed has been validated experimentally by
Ody et al. (18).
The model describing the plug dynamics is closed with an

equation for LðtÞ that accounts for the liquid left in the stationary
films on the sidewalls. Bretherton’s law (29) provides a way to
estimate this thickness for flow at small Ca in circular tubes. We
rely for this on the empirical law proposed byAussillous andQuéré
(32) for circular tubes, as extended to channels of rectangular
cross-section and larger Ca by de Lózar et al. (33), which we in-
troduce in the mass balance equation for the liquid phase: Let
S=wh be the area of the channel cross-section and Sr and Sf the
areas of the lumens open to air behind the plug and ahead of it,
respectively. During a time interval dt, the advancing plug absorbs
a volume ðS− SfÞVdt at its front interface, where V is the velocity.
The volume left behind is ðS− SrÞVdt and the variation of the
plug’s volume is SdL, so the balance reads Sd

dt L= ½Sr − Sf $V .
Whereas Sr is a function of V as recalled above, Sf reflects the

thickness of the film present ahead of the plug at the considered
time. In particular, Sf ≡ S when the plug is moving along a dry
channel. Details on the model, its derivation, and its numerical
simulation are given in SI Text.
The dynamics of a single plug therefore may be understood with

the model ingredients described above: When the pressure ΔP is
applied, the plug startsmoving at a velocity fixed by its initial length
and physical parameters. The length then progressively decreases
because of liquid deposition, thus lowering the viscous resistance
Rv so that the plug accelerates. The interfacial resistance scales as
V−1=3 and therefore also decreases, contributing further to the
velocity increase. Finally, when the length of the plug approaches
zero, it ruptures. A similar behavior has been observed by Fujioka

et al. (34) through direct numerical simulations of the flow field
inside a moving plug.

Multiple-Plug Behavior. The evolution of a set ofN = 5 plugs, forced
at constant pressure head 2 kPa, is depicted in the spatiotemporal
graph of Fig. 2A (see also Movie S2). The plugs are initially dis-
tributed as shown in the top image and start advancing when the
pressure head is applied at t= 0. Plugs are numbered from right to
left, beginning with the most advanced one. The distance dk be-
tween the rear interface of plug k and the rear interface of plug k+ 1
remains nearly constant because the air compressibility is negligible
at these pressures. As a consequence, all plugs move at the same
velocityV ðtÞ and the behavior of the plug trainmay be characterized
by a single capillary number, which is plotted in Fig. 2A, Right. We
observe that Ca stays constant up until t ’ 180 ms, then increases
up to the time when plug 1 ruptures at t ’ 400 ms, then more ir-
regularly until t ’ 630 ms (rupture of plug 2), and finally diverges
around t ’ 800 ms, when plugs 3–5 break nearly simultaneously.
Examination of this cascade leads us to identify two plug in-

teraction mechanisms: Long range effects arise from the super-
positions of resistances within the plug train, whereas short range
interactions take place between nearest neighbors via the wetting
film. Indeed, plug k gains some fluid left behind by plug k− 1 and
leaves some fluid, which is taken up by plug k+ 1. Because the film
thickness depends on the instantaneous capillary number (see SI
Text for discussion), the balance between the liquid intake and
deposition generates plug length variations when the two layers
have different thicknesses. When the train of plugs is forced at a
constant velocity—for example, by using a syringe pump—the
thickness of the liquid films between the plugs remains constant, so
the plugs (except plug 1) always lose asmuch liquid as they gain and
thus keep their initial length. When the plugs are pushed at con-
stant pressure, as in Fig. 2, their velocity changes, leading to
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Fig. 1. Spatiotemporal evolution of a single plug of initial length
L0 = 740 μm pushed at constant pressure head 2 kPa. The montage is pro-
duced by stacking snapshots of the channel taken every 4 ms on top of one
another. The liquid appears bright and the air dark. The dashed lines show
the positions of the front and rear interfaces as functions of time.
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cent plugs is dk ’ 2 mm. The whole train is pushed at constant pressure head
2.0 kPa. (A) Image corresponding to the experiment. (Upper) Initial plug
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plug train as a function of time. (B) Spatiotemporal diagram obtained nu-
merically from the model for the same conditions as in A.
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variations in the film thickness. These variations couple back with
the resistance to flow and velocities in two ways, as discussed below.
First, the resistance Rf associated with the displacement of the

front interface decreases as the thickness of the precursor film
increases. This has been demonstrated experimentally (26) and
justified theoretically (35) for a single plug in a prewetted channel.
In our experiment, the thickness of the film left behind a plug may
display large changes, as seen in Fig. 1, which generates resistance
variations for the following plug. In a train of plugs, the capillary
number of a plug affects the next one with a delay equal to the time
required to cover the distance that separates them. So when plug k
arrives at the position initially occupied by plug k− 1, it encounters
a thicker film that decreases the resistance of its front interface
and leads to an increase in velocity. This sudden acceleration is
observed at t ’ 180 ms, as marked by the dotted horizontal line in
Fig. 2A. The second way in which neighboring plugs interact is via
the mass balance. Like the lubrication effect, this takes place with
a delay because the plugs are traveling at finite speed. Liquid
exchange tends to lengthen the cascade duration because the fluid
taken up by a plug increases its length. The two short-range effects
therefore are antagonistic.
Using an analogy with electrical circuits, the train of plugs

submitted to a constant pressure head ΔP may be viewed as a se-
ries of resistors and the total resistance as the sum of the individual
resistances. Therefore, rupture of plug k leads to long-range effects
because it corresponds to a sudden drop to zero of the corre-
sponding resistance. Consequently, the speed of the remaining
plugs suddenly increases, further hastening the deposition of the
wetting film and inducing new ruptures. This catastrophic speed-
ing-up is at the origin of the cascade observed in our experiments.
It is easier to observe when the initial distribution of plugs is ir-
regular and their size polydisperse. An example is shown in Fig. S1,
in which a train of 10 plugs is pushed at constant pressure head (see
also Movie S3). The evolution of the train is dominated mainly by
short-range interactions until t= 300 ms (dotted line), when three
plugs break nearly simultaneously. The velocity of the remaining
plugs then displays a large increase, and the subsequent ruptures
take place within shorter and shorter time intervals, with all the
remaining plugs broken between t ’ 320 ms and t ’ 370 ms. The

rapid variation of the velocity points to the finite-time singularity
nature of the cascade.

Model and Simulations. Because at a given time all plugs move at
the same speed, interactions between plugs may be treated by
generalizing the equation for a single plug to a series of plugs:
ΔP=

PN
k=1RkV , where Rk is the resistance ascribed to plug k.

The lubricating role of the wetting film thickness is taken into
account by expressing the front interface resistance Rf

k as a func-
tion of the cross-sectional area Sðx; tÞ of the lumen open to air
ahead of plug k. This area is given by Sðxk +Lk; tÞ, which is de-
termined by the history of the previous plugs k− 1, k− 2, . . . The
surface in front of plug 1 is just Sðx> x1 +L1Þ=wh. The fluid
distribution in the channel then may be computed as a function of
time, once the conservation of liquid is expressed. For each plug,
we get d

dt Lk = − ½1− SðxkÞ=Sðxk +LkÞ$V . The area SðxkÞ of the
lumen behind plug k then serves as an input in the computation
for plug k+ 1. Plug rupture takes place when Lk = 0 and is
accounted for by setting Rk = 0. The positions of the plugs may be
obtained by integrating the velocity V, as discussed in SI Text.
The results of themodel are shown in the bottompanels of Fig. 2

(monodisperse) and in Fig. S1 (polydisperse). In both cases, the
motion of the plugs and the order of plug ruptures are reproduced
correctly. Quantitative predictions from themodel were compared
with results from experiments with trains made of one to seven
plugs. Two quantities were measured: (i) the time tc required for
complete reopening of the airway (all plugs have ruptured), called
“cascade duration,” and (ii) the penetration lengthLc, which is the
distance between the initial position of plug 1 and its positionwhen
it breaks, also indicating the necessary channel length for a cascade
to be observed. Results are presented in Fig. 3, in which each
square marks a single run. (The simulation derivation is supported
by Figs. S2–S6 and the physical parameters are listed in Tables S1
and S2.)
The solid line corresponds to the predictions obtained with the

full model, which takes into account all the processes described
above. In contrast, the dash/dotted lines in Fig. 3 A and B show the
predictions when short-range effects are neglected, i.e., when the
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resistances of all plugs are just summed as if each of them were
alone in the channel:ΔP=NRsV , withN the total number of plugs
andRs the resistance of an isolated plug.When the interactions are
neglected, the cascade duration and the penetration length are
grossly underestimated and the discrepancy increases with the
number of plugs, stressing the role of liquid exchange between
plugs. This shows that the interactions play a dominant role in the
dynamics of the train, increasing the quantities of interest by
a large factor. The experiments were repeated to measure the
cascade duration and penetration length as functions of the im-
posed pressure head; the results are shown in Fig. 3 C and D. The
model agrees quantitatively with the experiments at low pressures,
but discrepancies appear above 2.5 kPa. This departure is attrib-
uted to the fact that the theoretical expressions used for interface
resistances are valid only at low capillary numbers. Although in-
dividual resistances are not sufficiently well estimated during the
fastest part of the cascade, themodel still may serve as a good basis
for predicting the cascade duration and penetration lengths in
straight rectangular channels.

Cascade of Plug Ruptures in a Bifurcating Network
When considering an initially occluded tree structure, such as the
pulmonary airway, the processes described above must be adapted
to account for geometric effects: the division of plugs at bifurca-
tions and the interactions across different regions in the network
(19). This has been studied in a series of reopening experiments
performed by replacing the straight channel with a six-generation
tree network, as shown in Fig. 4. The widths of the channels in
successive generations are chosen according to the diameter ratio
in Weibel’s symmetric model of the human lung (36), i.e., wi+1=
wi = 2−1=3, where wi is the width of channels in generation i and
w1 = 720 μm. The height of channels is 45 μm everywhere.
The same protocol as for the straight channels is used. The ex-

periment begins by alternately injecting liquid and air into the root
channel to form seven successive plugs that are distributed into the
tree. Indeed, each plug splits into two daughters when it reaches
a bifurcation in the branching tree, thus distributing the liquid into
all regions of the network (19, 20). Although the sequence of
pressures during the plug formation is computer controlled and kept
unchanged for all runs, slight perturbations affect the plug divisions
at each run. The initial distributions therefore differ slightly from
one experiment to the next despite the network symmetry.

A typical experiment is shown in Fig. 4 (see also Movie S4).
Once the initial plug distribution is installed (Fig. 4A), after waiting
sufficient time to make sure the system is at rest, a high pressure
head (3.5–5.5 kPa) is applied at the root, whereas the exits of the
network are maintained at atmospheric pressure. The flow rate in
each path is determined by the pressure difference, which is
equilibrated by the sum of the resistances through each branch of
the path. The small differences in initial distribution of plugs lead
to variations in flow rates among paths, which then are amplified as
the liquid plugs make their way in the network. Ultimately, one
path reopens through a cascade of plug ruptures (Fig. 4B).
This first cascade is followed by several others, each opening

a different path, as shown in Fig. 4C, in which the numbers in-
dicate the order in which cascades occur. The spatial distribution
of the cascades is irregular; they may take place either in adjacent
paths (e.g., 3 and 4) or in well-separated paths (e.g., 4 and 5).
Each cascade divides the network into independent subnetworks
that evolve separately from the rest.
The pressure driving each subnetwork may be inferred by con-

sidering the airflow in the reopened path. Because the pressures
Pin at the root andPout at the exit are fixed, the flow of air that takes
place in the reopened path determines the intermediate values of
the pressure along the path. A typical situation is shown in Fig. 5,
in which the last five generations of the network are displayed
before and just after reopening of path A. The whole subnetwork
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Fig. 4. Initial distribution of plugs and spatial distribution of successive airway reopenings obtained by pushing an initial set of liquid plugs by ΔP = 3:5 kPa in
a six-generation network. A given path is “open” when all the plugs obstructing the airflow from the entrance to the exit have ruptured. (A) Initial plug
distribution in the network. (B) The path taken by the first cascade. (C ) Spatio temporal distribution of successive cascades. Paths are numbered according to
the order in which they reopen.

Before After

Pin
A

A

Pout

Pout

P1

P2
P

Pout

Pout

3

N1

A

AN2

N3

Fig. 5. Snapshots taken before and after the reopening of path A, corre-
sponding to thefirst cascade in thenetwork.Pin and Pout are the pressures at the
entrance and exit of the tree. P1, P2, and P3 indicate the intermediate pressures
at the first, second, and third nodes after reopening, with P1 > P2 > P3.

862 | www.pnas.org/cgi/doi/10.1073/pnas.1211706110 Baudoin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/sm04.avi
www.pnas.org/cgi/doi/10.1073/pnas.1211706110


initially is driven at the common pressure Pin. However, once the
cascade takes place along pathA, the tree gets separated into three
subnetworks, N1, N2, N3, driven at three intermediate values of
the pressure, P1, P2, and P3. The smaller the subnetwork, the
lower the pressure head driving it. On the other hand, the smaller
the subnetwork, the fewer plugs it contains, and hence the lower
the resistance to flow. It therefore is not possible to predict the
path that will be followed by the next cascade.
The readjustment of the driving pressure after each cascade

leads to a delay of successive cascades in time. This is shown in Fig.
6A, which displays a histogram of individual plug ruptures plotted
as a function of time. Ruptures are clustered in groups that cor-
respond to each cascade, which we label using the same numbering
scheme as in Fig. 4. The initial cascades develop when a large part
of the network is still occluded and therefore involve many si-
multaneous plug ruptures. In contrast, later cascades involve fewer
plugs and affect shorter paths of the tree. The time separating
successive cascades, initially short, gradually increases in all
experiments.
The spatial distribution of reopenings is characterized by in-

troducing a quantity ξðNÞ that measures the cumulated number of
branches, between the root and generation 4, that are reopened by
cascades 1 to N (Fig. 6B). The first cascade always corresponds to
ξð1Þ= 4, because all four generations are initially occluded.
However, the evolution of ξ between successive cascades depends
on the size of the reopened subnetwork and thus on the spatial
distribution of successive reopenings. The minimum and maxi-
mum possible evolutions of ξðNÞ, shown in Fig. 6B, may be cal-
culated by simulating different reopening scenarios in the network.
Alternatively, the evolution of ξðNÞ for a random distribution of
reopenings is calculated numerically by performing aMonte Carlo
simulation of the successive paths and taking the mean value of
ξðNÞ for a large number of realizations.
Measurements of ξ were performed for three different driving

pressures, 4.0, 4.5, and 5.0 kPa, by repeating each experiment eight
times. The average value of ξðNÞ for the eight realizations is in-
distinguishable from the random prediction, as shown by the black
symbols in Fig. 6B. The results for a particular experiment, how-
ever, may fall anywhere between the minimum and maximum
values, as shown by the light-gray symbols. The value of ξ is sta-
tistically random over a set of runs.

This large difference between particular runs is a result of the
complexity of fluid redistribution when a plug divides at a bi-
furcation. Indeed, the exact timing of the cascade with respect to
the plug passage through a bifurcation may lead to two different
outcomes: If the plug passes a bifurcation before the cascade takes
place, it separates into two daughter plugs, one in each of the
daughter branches, only one of which will rupture during the
cascade (Fig. S2). Conversely, if the plug bursts before the division,
the occluded subnetwork does not acquire an extra plug. There-
fore, the resistance in the occluded subnetwork, and the time
necessary to reopen it, may display large fluctuations between in-
dividual runs. Indeed, the timing of the cascades and the distri-
bution of the liquid were found to display extreme sensitivity to the
initial conditions, making the prediction of the cascade path im-
possible. On average, Fig. 6 shows that the behavior is in-
distinguishable from a random distribution.

Discussion
The geometry of the bifurcating tree introduces several mod-
ifications to the physical picture developed for the cascades in
straight channels. First, the plug divisions at the successive bifur-
cations add a strong random component to the dynamics in the
network, as described above. This greatly limits the ability to
predict the cascade timing or path. Second, the model proposed
for the straight channels is insufficient to describe the cascades in
the network because the plugs in a given path of the network do not
flow at the same velocity in all generations. Instead, the velocity of
the plugs decreases with the generation number, because the cross-
section increases. This means that plugs closer to the root have
higher capillary numbers than those close to the exits, so the value
of the resistance Rk of each plug depends on the generation
number in which the plug is flowing.
The network’s geometry also implies that the distance between

plugs may vary in time, through two mechanisms: (i) Plugs that are
in different generations get closer together as they advance into
the network because those closer to the root of the network are
traveling faster. (ii) The distances separating them may change if
an air bubble, which separates two plugs, divides asymmetrically
at a bifurcation. These mechanisms imply that the short-range
interactions also become more complex in the network.
These modifications in plug distances and velocities imply that

reopening the microfluidic network is more efficient when the
plugs have not yet penetrated deep into the tree, particularly be-
cause the stabilizing short-range interactions play a smaller role in
this case. Therefore, the strategy for reopening such a network
should be to work at high driving pressures. When extrapolating
this statement to the lung reopening, however, one should consider
biological factors such as the effects of the shear stresses and
pressure fluctuations on the epithelial cells, both during the mo-
tion of the plugs (37) and at the location of rupture (38). The
magnitude of these efforts in vivo cannot be obtained from the
current model.
Indeed, the relevance of our study to pulmonary airway re-

opening is limited in that we consider a highly idealized system. In
contrast, the actual lung involves many supplementary mecha-
nisms, such as surfactant (15, 39) or elastic interconnected airways
(21, 40), in addition to being made up of rough tubes bifurcating
asymmetrically. All these effects will complicate the behavior
compared with what is observed here. For instance, surfactants will
introduce several effects. They may retard the plug bursting
compared with clean interfaces, as in the case of soap bubbles, but
they also may enhance the liquid deposition on the walls (39), in
addition to inducing deformations in the leading films that may
increase the shear stress on the wall (37).
A more complete model must also include a description of

airway deformation, which is particularly important because
breathing takes place through the dilation of the diaphragm and
rib cage, which induces a negative pressure that draws the air
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Fig. 6. (A) Histogram of the number of plug ruptures as a function of time for
the same experiment as in Fig. 4. The dotted line numbering corresponds to
the cascades identified on the image. (B) Total number ξ of opened branches
(in which air can flow freely) measured after each cascade. The black symbols
show the variations of ξ obtained experimentally for the driving pressures
shown in the legend by averaging results over eight experiments for each
pressure. The gray symbols correspond to individual experiments. The curves
connect maximum (dash/dotted green) and minimum (dashed red) values of ξ
observed and the average predicted value for supposedly random openings.
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into the lung. Because a plug’s length and resistance are coupled
with the cross-section of the tube containing it, an increase in
tube diameter will reduce the resistance to flow, leading to faster
cascades.
Nevertheless, our simple model has allowed us to identify some

basic mechanisms that will remain important in real pulmonary
flows. Indeed, the lung will still display the collective behavior that
we have observed for a train of plugs, namely through local and
global interactions, and the choice of a particular path in the
network for each cascade. Only the quantitative details will be
modified as more ingredients are added to the airway model but
not the qualitative behavior.

Materials and Methods
Microfluidics and Observations. The microfluidic devices are prepared using
dry-film soft lithography techniques (41). The channels are etched in PDMS
and bonded on a PDMS-covered glass slide. Perfluorodecalin is used as the
working fluid because of its good wetting properties (contact angle 23∘ with
PDMS) and its compatibility with PDMS (42). The pressure at the network
inlet and driving the liquid is imposed using a Fluigent MFCS-8C controller,

which is programmed to achieve specific pressure sequences. The observations
are performed through a stereomicroscope using a fast camera (Photron
Fastcam 1024) filming at 1,000 frames per second. The image sequences then
are analyzed using MatLab and ImageJ.

Experimental Protocol. A train of liquid plugs is created inside the channels
by alternately pushing liquid and air slowly through a Y-junction (18). The
Y-junction then leads to the experimental region, which consists of either
a straight channel (rectangular cross-section of width w =700 μm and
height h= 55 μm) or a branching network. Once the plugs are created and
placed, the pressure is set to zero for a few seconds to achieve a stationary
initial condition, after which a constant pressure head ΔP is applied at the
channel entrance of the channel. More details are given in SI Materials
and Methods.
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SI Materials and Methods
The experiments were performed in microchannels made using
standard soft lithography techniques. First, a mold was etched by
depositing a dry-film photoresist on a glass slide and exposing it to
a UV lamp through a photomask. The film then was developed in
an aqueous solution of potassium to yield the negative of the
channel design. This then constituted a mold over which poly-
dimethylsiloxane was poured and allowed to polymerize. This
microchannel was then cut out and bonded on another glass slide
by passing the two surfaces in an oxygen plasma.
We used perfluorodecalin (PFD) to form the liquid plugs because

of itsgoodwettingproperties(contactangle∼238)andinertness.PFD
is a fluorocarbon oil with viscosity μ= 5:1× 10−3 Pa·s and surface
tension γ= 19:3× 10−3 N/m. The plugs were separated by air bub-
bles. The fluids were controlled using either a water column, whose
height determined the pressure head, or a programmable pressure
controller (Fluigent MFCS-8C, generously lent by Fluigent S.A.),
which provided precise and programmable pressure control.
The microchannel geometry presented a narrow Y-shaped

junction (width = 200 μm) upstream of the test section (Fig. 5).
This narrow region provided the ability to form liquid plugs re-
liably. The channel width then increased downstream of this
junction, thus reducing the plug length equivalently. This geometry
therefore provided better control of plug formation and length
than using channels with constant width.
Experiments were recorded with a high-speed camera (Photron

Fastcam 1024 PCI) through a stereomicroscope at 0.7× magnifi-
cation. The resolution of the camera was 1,024 × 1,024 pixels,
which yielded 1 pixel for 24:8 μm. The camera allowed image
sequences to be captured at frame rates up to 1,000 images per
second at full resolution. Image analysis was then performed using
ImageJ software.

SI Model of Plug Motion and Rupture
In this section, we develop an analytical model to describe the
motion of the gas–liquid train as the plugs change in size and
eventually rupture in a straight channel. In this model, we ig-
nore the effects of gravity and inertia by recalling that the Bond
and Weber numbers are small. Moreover, because the experi-
ments take place at small to moderate Reynolds and capillary
numbers (Table S2), we limit ourselves to a minimal one-di-
mensional model that treats the plugs as discrete resistors. The
aim, therefore, is not to describe the hydrodynamic behavior of
our system in detail but to capture the essential mechanisms
that lead to the cascade of ruptures.
As in the main text, we suppose that the total resistance to flow

can be written as the sum of the resistances for individual plugs,
which in turn can be separated into three contributions (1). The
first one, Rv, is due to viscous dissipation in the bulk of the liquid;
the other two correspond to capillary resistance at the front and
rear interfaces, Rf and Rr, respectively. We also note that the
fluid velocity V is nearly conserved at all locations in the channel.
We therefore write the balance between driving pressure and
resistance to flow as:

ΔP =
X

k

RkV =
X

k

h
Rv
k +Rf

k +Rr
k

i
V : [S1]

The theoretical description aims at estimating the different
resistance terms and their coupling with the plug velocities. An
event-driven model of the coupling yields the evolution in time of
the velocities and resistances, as discussed in the main text.

Problem Formulation. We consider a train of N liquid plugs pushed
at a constant pressure head ΔP in a straight rectangular micro-
channel of height h and width w. The variables, defined in Fig. S3,
are the positions xkðtÞ of the plugs’ rear interfaces (numbered from
right to left, beginning with the most advanced one); their lengths
LkðtÞ; the radii erkðtÞ and efkðtÞ of their rear and front menisci; and
the cross-sectional area Sðx; tÞ of the lumens open to air at position
x between the plugs. This description of the meniscus shape in-
troduces two effects in the one-dimensional model developed
here. First, the radii ef and er determine the location at which fluid
is exchanged with the films on the walls. Second, the front–rear
asymmetry between the two curvatures leads to an additional re-
sistance to flow, as described below.
The plugs leave a liquid film on the walls, whose thickness is

variable: we define the cross-sectional area open to air behind
plug k as SrkðtÞ= Sðxk − erk; tÞ, whereas one has Sfk = Sðxk +Lk +
efk; tÞ in front of the plug. The amount of liquid deposited on the
wall behind each plug depends on its velocity Vk (2–4), defined
as the speed of its rear interface, VkðtÞ= dxkðtÞ=dt. On the other
hand, the plug velocities are related to the flow rate QðtÞ through
VkðtÞ= QðtÞ=SrkðtÞ.
The velocity of each plug may be different from its neighbors in

principle, because they each can leave a film of different thickness.
Nevertheless, experimental observations show that the plug ve-
locities remain within less than 10% of one another for all
experiments, as shown, for example, in Fig. S4 or observed in
Figs. 2 and 3 in the main text. In the present model, the problem
therefore is simplified by assuming that the plugs all travel at the
same velocity V(t), which comes to equating the thickness of the
rear films. Therefore, we can simplify the notation by writing
SrkðVkÞ= SrðV Þ.
Based on the parameters above, the dimensionless equations

are obtained by introducing a characteristic length ℓ=
ffiffiffiffiffiffi
wh
p

,
a characteristic pressure ΔP= 2σ=ℓ, and the viscocapillary
timescale τ= μℓ=σ. Using these definitions, the dimensionless
speed of the plug train is just the capillary number Ca= μV=σ. In
the following text, variables with tildes indicate dimensionless
quantities.
Evolution of plug lengths.Theequationgiving thevariationof theplug
length as a function of time is obtained by expressing a balance
between thefluid collected from the previous plug and thefluid left
behind. Let S0 =wh= ℓ2, then, during a time interval δt the length
of the plug changes by δL, the volume of the plug changes by S0δL,
the fluid collected ahead is ðS0 − SfkÞVδt, and the fluid left behind is
ðS0 − SrðV ÞÞVδt; hence,

S0δL =
"
S0 − Sfk

#
Vδt− ðS0 − SrðV ÞÞVδt: [S2]

After simplification, rewriting Eq. S2 in dimensionless form
yields

d~Lk

d~t
=
$

~SrðCaÞ− ~Skf
"

~X ;~t
#%

Ca: [S3]

A relation between ~S
r
and the capillary number Ca can be ob-

tained by combining the scaling law proposed by Aussillous and
Quéré (5) for the thickness of the liquid layer left behind a moving
plug in a cylindrical channel and the empirical extension of this
formula obtained by de Lózar et al. (6) for rectangular channels.
By noting that 1− ~Sr is nothing but what they call the wet fraction,
we obtain

Baudoin et al. www.pnas.org/cgi/content/short/1211706110 1 of 7

www.pnas.org/cgi/content/short/1211706110


~Sr = 1−
A + B dC  a

2=3

1 + C dC  a
2=3 ; [S4]

where A, B, and C are constants and

cCa =
h
1+ 0:12ðα− 1Þ+ 0:018ðα− 1Þ2

i
Ca

is an effective capillary number correcting for the departure of the
aspect ratio α=w=h away from the square case α= 1. The best fit
with the experimental data displayed in figure 3 in ref. 6 for α= 12
provides A= 0:021, B= 3:4, and C= 5:2 in the range of capillary
numbers of interest.
The section of air in front of each plug ~Sk

f is obtained by
keeping track of the amount of liquid left on the wall by the
preceding plug.
Pressure balance and plug velocities. A second set of equations is
obtained by equilibrating the driving pressure head with the
pressure drops from viscous dissipation in the bulk of the liquid
plugs Δ~Pv and at the successive liquid–air interfaces Δ~Pi:

Δ~P = Δ~Pv + Δ~Pi: [S5]

The viscous pressure drop is obtained by recalling the pres-
sure-flow rate relation for a single fluid flowing in a rectangular
channel (7):

ΔPv =
12μ
wh3

QL; [S6]

where Q is the flow rate and L is the length of the plug. It is
common to extend this formula to account for the viscous pressure
drop in a train of plugs, when they are sufficiently long and suffi-
ciently far apart, by summing the individual contributions (see,
e.g., ref 1):

ΔPv =
X

k

12μ
wh3

QLk: [S7]

Recalling that Q= SrV , in dimensionless form Eq. S7 reads:

Δ~Pv = 6  Ca  ~Srα
X

k

~Lk: [S8]

The interface pressure differences are the result of deforma-
tions of the interfaces away from their static shapes. Indeed, for
plugs at rest, curvatures at the front and the rear compensate
their effects, leading to a uniform pressure within each plug.
When the plugs move, interfaces depart from their static shapes,
which leads to pressure drop corrections at both the front and
rear interfaces, Δ~Pi

f and Δ~Pi
r, respectively:

Δ~Pi = Δ~Pi
f + Δ~Pi

r: [S9]

Quantity Δ~Pi
r can be estimated from the study of an air finger

flowing in a channel, viewed as the tip of the following air bubble. The
formula obtained by Bretherton (2), valid at low capillary numbers
for a cylindrical tube, has been extended by Wong et al. (3) for
a square channel, andmore recently to the rectangular case byHazel
and Heil (4). By means of numerical simulations, these authors have
shown that ΔPrðα;CaÞ= f ðαÞΔPrðα= 1;CaÞ, tabulating f ðαÞ for
α∈ ½1; 2$. It turns out that in this range, their data are well fitted by
the expression αf ðαÞ= 1+ 0:52ðα− 1Þ, that is, f ðαÞ= 0:52+ 0:48=α.
This expression is not surprising because the pressure difference

should scale as the shear with, in a first approximation, additive
contributions from the two directions, cross-stream in 1/h and
spanwise in 1=w= 1=αh. Accordingly, we are confident that the
extrapolation to our conditions α= 12:7 is reliable.
On the other hand, Hazel and Heil have corrected the result of

Wong et al. (3) for the finiteness of Ca. Their data for the dy-
namical contribution to ΔP in a square channel are in the form
DCa2=3, where D is a constant. Our fitting of their data in figure 8
of ref. 4, over the range Ca∈ ½10−3; 0:3$, yields D = 4.1. Turning
to dimensionless quantities, we finally obtain

Δ~Pi
r = Dα1=2f ðαÞCa2=3

[and Dα1=2f ðαÞ= 8:1 for α= 12:7]. Thus, for a set of N plugs
moving at the same velocity, we obtain:

Δ~Pi
r = NDα1=2 f ðαÞCa2=3: [S10]

Finally, as to the front interfaces, following Ody et al. (8) and
assuming that the apparent dynamic contact angle θa of the front
meniscus [as defined by Chebbi (9)] is the same in the two
principal directions, the pressure jump at the front interface of
a single plug can be computed from

ΔPf
i = σ

!
2
w
+
2
h

"
ð1− cos θaÞ: [S11]

The apparent contact angles of each plug are not necessarily
identical because the macroscopic films covering the channel wall
ahead of themmay be different. The dimensionless expression for
the train of plugs then reads

Δ~Pi
f =

X

k

h+w
ℓ
ð1− cos  θakÞ: [S12]

The first plug moves on a dry substrate, with an apparent
dynamic contact angle obtained from the Hoffman-Tanner law
(10, 11):

θa1 = ECa1=3; [S13]

in which the constant E has been determined for PFD plugs
moving in rectangular microchannels by Ody et al. (8) as E= 4:9.
The following plugs move on a substrate that is prewetted by
a macroscopic film. According to Chebbi (9), the apparent dy-
namic contact angle at the front of a plug advancing in a cylin-
drical tube of radius R over a fluid film of thickness e∞ far away
from the meniscus is given by

tan  θa = ð3CaÞ1=3F
#
ð3CaÞ−2=3~e  cosθa

$
; [S14]

where

FðyÞ =
X3

j= 0
bn½log10   y$

n; [S15]

where ~e= e∞=R and the bn are tabulated in ref. 9; values rounded
to two significant figures are given here for the reader’s conve-
nience: b0 = 1:4, b1 = − 0:59, b2 = − 3:2× 10−2, and b3 = 3:1× 10−3.
To adapt this formula to our case, we estimate the relative fluid
thickness ~e as ð1− ~S

f
kÞ

1=2. Furthermore, because apparently no
extension of this formula to the rectangular geometry exists, we
introduce an empirical correction coefficient K so that in di-
mensionless form, we obtain
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tan  θak = Kð3CaÞ1=3F
!
ð3CaÞ−2=3

!
1− ~Sk

f"~X ;~t
#1=2
$
cos  θak

$
: [S16]

The coefficient K, the only quantity not directly extracted from
the literature, has been fixed to adjust time scales in the simu-
lations to those of the laboratory experiments. We find K ’ 1:3.
Plug dynamics. The equations derived above allow us to solve the
coupled problem of the plug lengths and liquid deposition, re-
sistance to flow, and plug velocity. By inverting this system, one
obtains the capillary number at each time and thus computes the
positions of the plugs. The model therefore provides a closed set
of equations used to predict the dynamics of a train of plugs
pushed at constant pressure head.

Application. The formulation above now can be expanded to be
solved numerically. Eqs. S8 and S10 allow us to write

Rv =
2μ
ℓ

"

6 ~Sr α
X

k

~Lk

#

; [S17]

Rr =
2μ
ℓ
NDα1=2f ðαÞCa−1=3: [S18]

At low capillary number, expanding Eqs. S12 and S16 at lowest
order yields

Δ~Pi
f =

h+w
2ℓ

X

k

θa2k ; [S19]

θak = Kð3CaÞ1=3F
!
ð3CaÞ−2=3

!
1− ~Sk

f"~X ;~t
#1=2
$$
; [S20]

which leads to

Rf =
μ
ℓ

"
h+w
ℓ

#
Ca−1=3

"
12+ 32=3 K2

XN

k= 2

F2
!
ð3CaÞ−2=3

!
1− ~Sk

f"~X ;~t
#1=2
$$#

:

[S21]

Fig. S5 displays the predicted variation of the front interface
resistance of a single plug moving in a prewetted channel as
a function of the capillary number for different relative thick-
nesses of the macroscopic film ahead of the plug ~e. It shows that
Eq. S20, which is the lowest-order approximation to Eq. S16,
gives sufficiently accurate results in the range of capillary num-
bers of interest. Accordingly we may rely on Eq. S21, which both
provides a better insight into the physics of the problem and is

simpler to implement. The important phenomenon to be seen in
Fig. S5 is the systematic decrease of the front interface resistance
with ~e for all values of the capillary number, which we call the
“lubrication effect.”
Finally, Fig. S6 shows the variation of the total interfacial

resistance Ri =Rf
i +Rr

i of the first plug (dashed curve) and the
following plugs (full lines) as a function of the capillary number
Ca and the relative thickness of the liquid film ~e. A monotonic
decrease of the interfacial resistance is observed when the cap-
illary number increases for all values of ~e between 10−1 and 10−5,
as well as for the dry substrate (~e= 0).

Physical Origin of the Cascade. Initially, a train of plugs is created by
alternately pushing some air and some liquid in aY-junction with
low input pressure. The initial state therefore is a set of N plugs
separated by air bubbles coated by a thin layer of liquid, with dry
substrate ahead of the first plug. When a large pressure head ΔP
is applied at the beginning of an experiment, all the liquid plugs
leave a larger amount of liquid on the walls than what they may
recover from the liquid film ahead of them. The amount of liquid
left indeed increases with the capillary number, according to
Eq. S4. This leads to a decrease in the plugs’ length, Eq. S3, and
thus of the viscous resistance, Eq. S17. Because ΔP=RV and
the pressure head is constant, this resistance decrease induces
an increase in the plug velocity. In turn, this velocity increase
is exacerbated by the decrease in the interface resistance
Ri =Rf

i +Rr
i (Fig. S6). Another phenomenon contributing to the

reduction of the front interface resistance is the lubrication ef-
fect generated by the interplug liquid film. As its thickness in-
creases with the plug velocity, a further reduction in the front
interface resistance results (Fig. S5).
Finally, each plug rupture provokes a brutal decrease in the in-

terfacial resistance due to the reduction in the number of interfaces,
which locally thickens the prewetting film. This leads to a large
acceleration of the plugs and thus to more and more plug ruptures.

Computation. The system of equations has been solved using an
event-driven code: Between two plug ruptures, the system is
solved by a finite difference method. Each time a rupture takes
place, the interfacial resistance is updated. Owing to the large
increase in the plug velocities, mesh refinement was performed to
determine the time step between two computations and to
maintain accuracy.

Input Parameters. Table S1 summarizes the parameters used in our
simulations. Using the value of the capillary number shown in Fig.
S4 for the capillary number, which corresponds to a maximum
velocity of V ’ 4× 10−2 m/s, we obtain the estimates quoted in
Table S2 for the dimensionless parameters of the problem.

1. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10
(16):2032–2045.

2. Bretherton FP (1971) The motion of long bubbles in tubes. J Fluid Mech 10(2):166–188.
3. Wong H, Radke CJ, Morris S (1995) The motion of long bubbles in polygonal

capillaries. Part. 2. Drag, fluid pressure and fluid flow. J Fluid Mech 292:95–110.
4. Hazel AL, Heil M (2002) The steady propagation of a semi-infinite bubble into a tube

of elliptical or rectangular cross-section. J Fluid Mech 470:91–114.
5. Aussillous P, Quéré D (2000) Quick deposition of a fluid on the wall of a tube. Phys

Fluids 12(10):2367–2371.
6. de Lózar A, Hazel AL, Juel A (2007) Scaling properties of coating flows in rectangular

channels. Phys Rev Lett 99(23):234501.

7. White FM (1991) Viscous Fluid Flow (McGraw-Hill, New York), 2nd Ed.
8. Ody CP, Baroud CN, de Langre E (2007) Transport of wetting liquid plugs in bifurcating

microfluidic channels. J Colloid Interface Sci 308(1):231–238.
9. Chebbi R (2003) Deformation of advancing gas-liquid interfaces in capillary tubes.

J Colloid Interface Sci 265(1):166–173.
10. Hoffman RL (1975) Study of advancing interface. A. Interface shape in liquid-gas

systems. J Colloid Interface Sci 50(2):228–241.
11. Tanner LH (1979) Spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12(9):

1473.

Baudoin et al. www.pnas.org/cgi/content/short/1211706110 3 of 7

www.pnas.org/cgi/content/short/1211706110


T
im

e 
(s

)

0

0.1

0.2

0.3

0.4

Position (mm)
0 5 10 15 20

0 5 10 15 20 250

0.1

0.2

0.3

0.4

Position (mm)

T
im

e 
(s

)

a. Experiments

Air

Liquid

b. Simulations

Fig. S1. Dynamics of a set of polydisperse plugs pushed at constant pressure head 4.8 kPa. (A and B) Plug positions as functions of time, experimental and
simulated, respectively. The variation in the capillary number with time is given to the right of A, where the gray dashed line indicates the time when several
plugs break almost simultaneously.
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Fig. S2. Influence of bifurcations on the fluid redistribution in the network. (A and B) Two sequences show the evolution of plugs inside the last five gen-
erations of the network driven at a pressure head of 3.5 kPa with slightly different timing. In A, the liquid plug in the first generation divides before the
cascade takes place; thus, only one of the daughter plugs is broken while the adjacent path is reinforced by the other daughter. In B, the plug ruptures before
the bifurcation and the adjacent path remains weakened. The time separating the two images is 14 ms.
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Vk =dxk=dt) leave a film behind them thicker than the film they encounter in front. The cross-sectional area open to air behind plug k (Srk) therefore may be
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Fig. S4. Evolution of the capillary number μVk=σ associated with the rear interface of 10 plugs pushed at a constant pressure head 4.8 kPa. Each dashed line
corresponds to the capillary number of a given plug k, and the plain line corresponds to the capillary averaged over all the plugs. This figure corresponds to Fig.
3 in the main text.

Fig. S5. Evolution of the front interface resistance of a plug moving in a prewetted channel as a function of the capillary number Ca for different values of the
relative thickness of the macroscopic film preceding the plug ~e. The squares correspond to solutions of the exact (Eq. S16) and the lines to its lowest-order
expansion (Eq. S20).
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Fig. S6. Interfacial resistance Ri =Rf
i +Rr

i of a single plug as a function of the capillary number Ca, moving on a substrate either dry (dashed line) or prewetted
by a macroscopic film for different relative thicknesses ~e (solid lines).

Table S1. Value of parameters used in our simulations

Parameter Symbol Value Unit

Channel width w 700 μm
Channel height h 55 μm
Surface tension σ 19:3× 10−3 N/m
Viscosity μ 5:1× 10−3 kg/m·s2

Density ρ 2× 103 kg/m3

Table S2. Value of dimensionless parameters in the problem

Number Formula Maximum value

Re ρV ℓ=μ 10
Ca μV=σ 10−2

We ρV2ℓ=σ 10−1

Bo ρgh2=σ 0.2

Movie S1. Evolution of a single plug of initial length L0 = 740 μm pushed at constant pressure head 2 kPa. Time is slowed by a factor of 250. This movie
illustrates Fig. 1 in the main text.

Movie S1

Movie S2. Dynamics of a set of equally spaced monodisperse plugs. The initial length of the plugs is Lk;0 = 780 μm, and the distance separating two adjacent
plugs is dk ’ 2 mm. The whole train is pushed at constant pressure head 2.0 kPa. Time is slowed by a factor of 10. This movie illustrates Fig. 2 in the main text.

Movie S2
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Movie S3. Dynamics of a set of polydisperse plugs pushed at constant pressure head 4.8 kPa. Time is slowed by a factor of 10. This movie illustrates Fig. 3 in
the main text.

Movie S3

Movie S4. Dynamics of an initial set of liquid plugs pushed at a constant pressure head ΔP = 3:5 kPa in a six-generation bifurcating network. Time is slowed by
a factor of 10. This movie illustrates Fig. 5 in the main text.

Movie S4
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Cyclones and attractive streaming generated by acoustical vortices
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Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate
particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical
flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical
beam. In confined geometry, the phase singularity enables generating “attractive streaming” with the flow directed
toward the transducer. This opens perspectives for contactless vortical flow control.

DOI: 10.1103/PhysRevE.90.013008 PACS number(s): 47.15.G−, 43.25.Nm, 43.25.+y, 47.61.Ne

I. INTRODUCTION

Acoustic streaming, that is, vortical flow generated by
sound, plays a fundamental role in a variety of industrial
and medical applications such as sonochemical reactors [1],
megasonic cleaning processes [2], ultrasonic processing [3],
acoustophoresis [4], and therapeutic ultrasound [5,6]. More
recently, acoustic streaming has been the subject of a burst
of interest with the development of microfluidic applica-
tions [7,8]. For instance, it is at the core of the physics
involved in droplet actuation with surface acoustic waves [9]
for laboratory-on-a-chip facilities, providing a versatile tool
for droplet displacement [10–12], atomization [13], jetting
[14,15], or vibration [12,16,17]. Moreover, vorticity associated
with acoustic streaming is the main phenomenon envisioned
to ensure efficient mixing of liquids [18,19].

Different forms of streaming are generally distinguished
according to the underlying physical mechanism [20,21].
Boundary-layer-driven streaming [22] arises when an acoustic
wave impinges a fluid-solid interface due to viscous stresses
inside the viscous boundary layer. This form of streaming
can be divided into inner streaming, also called Schlichting
streaming [23], occurring inside the viscous boundary layer,
and counter-rotating outer streaming, outside it [24]. The
former is not exclusive to acoustics since it does not require
compressibility of the fluid, but only the relative vibration
of a fluid and a solid. The latter, first enlightened by Lord
Rayleigh, can be seen either as the fluid entrainment outside
the boundary layer induced by Schlichting streaming or as a
consequence of the tangential velocity continuity requirement
for an acoustic wave at a fluid-solid boundary. Finally, bulk
streaming, or so-called Eckart streaming [25], is due to the
thermoviscous dissipation of acoustic waves and the resulting
pseudomomentum transfer to the fluid [26,27]. Since the early
work of Rayleigh [24], many studies have been dedicated to
acoustic streaming and investigation of the influence of various
phenomena on the resulting flow such as unsteady excitation
[28–30], nonlinear acoustic-wave propagation [31,32], and
high hydrodynamic Reynolds numbers [33,34]. However, in
all these studies, only plane or focalized acoustical waves [35]
are considered.

*michael.baudoin@univ-lille1.fr

In this paper, we report on bulk acoustic streaming gener-
ated by specific solutions of the Helmholtz equation called
acoustical vortices. New acoustic streaming configurations
are obtained with cyclone-like flows, whose topology mainly
depends on the one of the acoustical vortex. Flow streamlines
are not only poloidal, as in classic bulk streaming [25], but also
toroidal, due to the orbital momentum transfer. This special
feature provides an acoustical control of the axial vorticity,
while in all forms of acoustic streaming reported up to now,
the topology of the induced hydrodynamical vortices is mainly
determined by the boundary conditions. Finally, in confined
geometries, the azimuthal vorticity can also be tailored by
adjusting the properties of the acoustic beam. In this way,
attractor and repeller hydrodynamic vortices, corresponding,
respectively, to flow directed toward and away from the sound
source, can be obtained.

II. THEORETICAL ANALYSIS

Acoustical vortices (or Bessel beams) are helical waves
possessing a pseudo-orbital angular momentum and a phase
singularity on their axis (for orders !1). The pitch of the helix
l is called the order or topological charge [36]. These waves are
separated variable general solutions of the Helmholtz equation
in cylindrical coordinates and are therefore not exclusive
to acoustics (see, e.g., [37] for their optical counterparts).
Separated variable solutions mean that their axial and radial
behavior are independent; i.e., the diffraction is canceled for
infinite aperture and remains weak in other cases [38]. This
enables their controlled synthesis even in confined geometries.
Acoustical vortices can be generated by firing an array of
piezoelectric transducers with a circular phase shift [39] or
using inverse filtering techniques [40–42]. As few as four
transducers are enough to develop a first-order vortex [39]. Re-
cently, it has been observed that their orbital momentum can be
transferred to dissipative media, which results in a measurable
torque for solids [43,44] or azimuthal rotation for fluids [45].

In the following, we derive the equations of the flow
generated by an attenuated collimated Bessel beam of finite
radial extension r1 [Fig. 1(a)], traveling along the z axis of an
unbounded cylindrical tube of radius r0. This model constitutes
an extension of Eckart’s perturbation theory [25] initially
limited to plane waves. In the case of Bessel beams [39], the
density variation ρ1 induced by the acoustical wave takes the
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(a) (b)

FIG. 1. (Color online) (a) Acoustical vortex with topological
charge l = 3, tan(α) = 1.21, and Kr1 = 10 (z axis was enlarged 10
times). Surfaces correspond to the phase lθ + kzz = π/2, while col-
ors indicate the magnitude of the radial function B. (b) Corresponding
radial function B(Kr) for l = 1 to 3.

form

ρ1(r,θ,z,t) = ρ̂1B(s) sin(lθ + kzz − ωt), (1)

B(s) = A(s)Jl(s). (2)

In these equations, ρ̂1, l, θ , kz, ω, t , and Jl denote, respectively,
the amplitude of the acoustical wave, the topological charge
of the Bessel beam, the angular coordinate, the projection of
the wave vector on the z axis, the wave angular frequency, the
time, and the cylindrical Bessel function of order l. The spatial
window function, A(s), is used to limit the infinite lateral
extension of the Bessel function. The phase of such a vortex is
given by φ = lθ + kzz − ωt , yielding to helicoidal equiphase
surfaces as shown in Fig. 1(a). We introduce the shorthand
notation s = Kr and, by analogy s1 = Kr1, s0 = Kr0, with K
the transversal component of the wave vector. It is defined by
the dispersion relation of a Bessel beam: K2 + k2

z = ω2/c2,
with c the sound speed. We also introduce the variable α,
measuring the helicoidal nature of the flow and defined by
tan(α) = kz/K . The radial dependence in Eq. (1) is based
on Bessel functions, which are plotted in Fig. 1(b). Provided
that l ! 1, these functions cancel at s = 0, where destructive
interference between the wavelets from opposite sides of the
vortex occurs. Consequently, the core of the vortex is not
solely a phase singularity, but also a shadow area.

Following Eckart [25], acoustic streaming can be calculated
by decomposing the flow into a first-order compressible and
irrotational flow (corresponding to the propagating acoustical
wave) and a second-order incompressible vortical flow (de-
scribing the bulk acoustic streaming). The insertion of this de-
composition into Navier-Stokes compressible equations yields
Eckart’s diffusion equation for the second-order vorticity field
Ω⃗2 = ∇⃗ × u⃗2, with u⃗2 the second-order velocity field. This
diffusion is forced by a nonlinear combination of first-order

terms and simplifies at steady state into

(Ω⃗2 = − b

ρ2
0

∇⃗ρ1 × ∇⃗ ∂ρ1

∂t
, (3)

with b = 4/3 + µ′/µ, µ′ the bulk viscosity, µ the shear
viscosity, ρ0 the density of the fluid at rest, and ρ1 the
first-order density variation. Since the streaming flow is
incompressible, we can introduce the vector potential *⃗2 such
that u⃗2 = ∇⃗ × *⃗2, with the Coulomb gauge fixing condition:
∇⃗ × *⃗2 = 0⃗. The resolution of Eq. (3) thus amounts to the res-
olution of the inhomogeneous biharmonic equation: (2*⃗2 =
− b

ρ2
0
∇⃗ρ1 × ∇⃗ ∂ρ1

∂t
. Originally, this equation was integrated by

Eckart for truncated plane waves. In the present work, we
solve it in the case of Bessel beams, whose expression is given
by Eqs. (1) and (2). Owing to the linear nature of this partial
differential equation, we consider only solutions verifying the
symmetries imposed by the forcing term and the boundary
conditions: the no-slip condition on the walls, an infinite
cylinder in the z direction, and no net flow along the channel.
In this case, the problem reduces to a set of two linear ordinary
differential equations, which were integrated with standard
methods. The complete procedure is detailed in Appendix A.

Results are given by Eqs. (4) to (11):

uz
2 = 2

Ω⋆
θ

K

[(
1 − s2

s2
0

)
f (s0) + 1

2

(
s2

s0
2
Λl

z(s0) − Λl
z(s)

)]
,

(4)

uθ
2 =

Ω⋆
z

K

(
s

s0
2
Λl

θ (s0) − 1
s
Λl

θ (s)
)

, (5)

with f (s) = −1
2
Λl

z(s) + 2
s2

∫ s

0
x1Λ

l
z(x1)dx1, (6)

Λl
θ (s) =

∫ s

0
x2

∫ x2

0

B2(x1)
x1

dx1dx2, (7)

Λl
z(s) =

∫ s

0

1
x2

∫ x2

0
x1B

2(x1)dx1dx2, (8)

Ω⋆
θ = 1

2
ωb tan (α)

ρ0c2
E1, (9)

Ω⋆
z = 1

2
ωbl

ρ0c2
E1, (10)

E1 = c2 (ρ̂1)2

ρ0
. (11)

In these expressions, we see that the ratio between the axial
and the azimuthal velocities uz

2/u
θ
2 is proportional to the

ratio Ω⋆
θ /Ω

⋆
z = tan(α)/l, indicating that as α decays or l

increases (increasing the gradients along the r and θ directions,
respectively), the azimuthal velocity tends to dominate over its
axial counterpart. Both speeds are proportional to the acoustic
energy rather than the amplitude, emphasizing the fundamental
nonlinear nature of acoustic streaming. Furthermore, both
terms are linearly proportional to ω such that its product
with the elastic potential energy, (11), refers to the power
flux carried by the wave.
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FIG. 2. (Color online) Top: Nondimensional velocities for l = 1,
tan(α) = 1.21, and Kr1 = 1.84 for progressively increased cavity
geometrical proportions r0/r1 = [1 (A), 1.44 (B), 1.89 (C), 2.33 (D),
2.78 (E)]. Axial velocity is represented by solid lines, and the
azimuthal component by dashed ones. Bottom: Flow streamlines.
Colors are indicative of the speed magnitude along uz

2: extrema are
represented by the most intense colors, red for positive and blue for
negative.

Equations (4) to (11) were integrated numerically to
compute the velocity field. A square spatial window function
for A(s) (whose expression is given in Appendix (B1)) is
chosen to simplify the algebra. In the following, we investigate
the case l = 1, tan(α) = 1.21, and Kr1 = 1.84 to get an
overview of the flow pattern when the geometric ratio r0/r1
is tuned. The resulting velocity profiles and the associated
streamlines are presented in Fig. 2. They show a combination
of axial and azimuthal vortical structures whose topology
depends on the ratio r0/r1.

III. REPELLER AND ATTRACTOR VORTICES

It is commonly accepted that Eckart’s streaming is the result
of pseudomomentum transfer from the sound wave to the fluid
[26]. Consequently, the acoustic beam (r < r1) should push the
fluid away from the transducer. This is what actually occurs
in weakly confined geometry, that is, for the highest ratios

r0/r1 (see Fig. 2, C to E). In these cases, confinement and
mass conservation impose a backflow at the periphery of the
acoustic beam, resulting in azimuthal vorticity similar to that
observed by Eckart. But Bessel beams also carry an angular
momentum, which is transmitted to the fluid and results in
axial vorticity [45]. Since for l > 0 the wave is rotating in the
positive direction (when time increases, equiphase is obtained
for growing θ ), the azimuthal velocity is also positive.

However, this analysis does not hold when applied to very
confined geometries such as A and B in Fig. 2, where the
beam covers almost all the cylindrical channel. Under these
conditions, radial variations of the beam intensity must be
considered. Indeed, in Fig. 1 we clearly see that the Bessel
beam offers a shadow area in the neighborhood of its axis,
where the wave amplitude cancels. This holds for all non-
zero-order vortices. The backflow generally appears where the
wave forcing is weaker. Hence, the fluid recirculation can occur
either near the walls or at the core of the beam, which becomes
the only option as the free space at the periphery of the vortex
shrinks to 0, as in case A. Let us call these vortices attractor
vortices since they tend to drive fluid particles towards the
sound source, and their opposite repeller vortices, since they
push fluid particles away from the source. Although streaming
pushing the fluid away from a transducer is common, (i) it is
not usually associated with axial vorticity, and (ii) the vorticity
topology depends on the boundary conditions. Furthermore,
Bessel beams enable for the first time the synthesis of attractive
vortices, offering original prospects for flow control and
particle sorting in confined geometries.

Intrigued by this reverse-flow motion, we performed a
systematic investigation of the conditions of its appearance.
Looking at the expression of the velocity, we note that the
sign of uz

2(r = 0) is independent of tan(α), such that the set of
parameters reduces to the topological charge l, the typical
dimension Kr1, and the geometrical ratio r0/r1. All these
parameters are gathered in Fig. 3 to give an overview of
the streaming induced by Bessel beams in confined space.
Looking at the flow map for l = 1, we first note that there
is a bounded set of parameters leading to attractor vortices.
Indeed, these vortices are squeezed by two restrictions: the
beam must be confined enough (ratio r0/r1 close to 1) as
previously explained, and the value of Kr1 has to be small.
Looking back at Fig. 1(b), we note that as Kr1 increases, the
Bessel function amplitude decreases at the periphery, which
facilitates the flow recirculation close to the channel walls.
This trend is reinforced by the apparition of new nodes of the
Bessel function for higher values of Kr1 and the quadratic
dependence of the streaming flow. In addition, as the beam
gets wider, the envelope of the beam weakens for increasing
r , and hence, the recirculation preferentially flows towards the
periphery.

Introducing the topological order l as a free parameter,
we note the progressive broadening of the attractor domain.
Referring to Fig. 1(b), it appears that Bessel functions of
higher order roughly translate towards increased Kr1 or,
reciprocally, need a higher Kr1 to reach the analog extremum.
This explains the Kr1 part of the broadening, whereas the
r0/r1 is due to the progressive flattening of Bessel functions,
which, nonetheless, rapidly saturates. Using the asymptotic
forms of Bessel development, we compute this limit in
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FIG. 3. (Color online) Contour plot of uz
2(r = 0) = 0 at various

topological charges l, typical dimension Kr1, and geometrical ratio
r0/r1. The parameter plane is partitioned into two areas: one close
to the origin, corresponding to attractor vortices, with negative
axial velocities at r = 0, and the other corresponding to repeller
vortices. The dashed line at r0/r1 ∼ 2.218 indicates an asymptotic
limit obtained for large l values.

Appendix B. The extreme value is given solving the equation
ln(x) = 1 − 1/x2,with x = r0/r1. The existence of this upper
bound highlights the essential condition of the confined nature
of the channel.

To compute these last results, we use a window function,
A(s), with a sharp cutoff to ease the comparison with Eckart
results. If we relax this condition, no change is expected in the
case of weakly confined beams, Kr1 ≫ 1. For such a beam,
the flow will recirculate preferentially at the periphery due to
the radial decrease in the Bessel function. The strictly confined
case r0/r1 = 1 is possible since Bessel beams are the modes of
cylindrical wave guides for discrete values of the radial wave
number K = s/r , i.e., no window A(s) is required. Hence
flow reversal at the vortex core should be observable. The in-
termediate situation of a strongly confined beam, 1 < r0/r1 =
1 < 2, is more challenging to carry out experimentally due
to diffraction spreading. However, this problem is mitigated
since truncated Bessel beams are weakly diffracting [38].

IV. CONCLUSION

In this paper, we derive the streaming flow induced
by Bessel beams (acoustical vortices). The resulting flow
topology is reminiscent of cyclones with both axial and
azimuthal vorticity. The axial component is solely controlled
by the acoustic field. Regarding the azimuthal vorticity, two
categories of flow pattern should be distinguished: repeller and
attractor vortices. The first category exhibits a positive velocity
at the center of the beam and appears when the beam radius is
small compared to the fluid cavity, whereas the latter needs a
very confined geometry and develops a negative velocity in its

core. To the best of our knowledge, streaming-based attractor
beams have never been described before and are due to the spe-
cific radial dependence of the sound-wave intensity in Bessel
beams. This work opens prospects for vorticity control, which
is an essential feature in many fluidic systems [46–49]. More-
over, the combination of attractive streaming and radiation
pressure [50–52] induced by acoustical vortices could provide
an efficient method for particle sorting. Indeed, large particles
are known to be more sensitive to radiation pressure, and small
particles to streaming [53]. Large particles would therefore be
pushed away from the sound source by the radiation pressure,
while small particles would be attracted by the flow toward it.
Compared to existing techniques relying on radiation pressure
generated by standing waves [54,55], the advantage would be
that a resonant cavity is not mandatory for sorting particles
with acoustical vortices since progressive waves can be used.
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APPENDIX A: RESOLUTION OF THE ECKART
EQUATION FOR ACOUSTICAL VORTICES

Eckart acoustic streaming [25] is adequately described by a
set of nonlinear partial differential equations. Although exact
analytical solutions have not been found in the general case,
the problem can be solved with a perturbation analysis, as long
as the acoustic wave propagation is weakly nonlinear (weak
acoustical Mach number) and the flow remains laminar (weak
Reynolds number). Following Eckart, the flow generated by
a transducer can be decomposed into a first-order compress-
ible and irrotational flow (corresponding to the propagating
acoustic wave) and a second-order incompressible vortical
flow (corresponding to the acoustic streaming) [56]:

ρ = ρ0 + ρ1 + ρ2 + · · · , (A1)

u⃗ = u⃗1 + u⃗2 + · · · , (A2)

with ρ2 ≪ ρ1 ≪ ρ0 and ∥u⃗2∥ ≪ ∥u⃗1∥. Basically the order
of magnitude of the ratio between first-order and second-
order fields is given by the acoustical Mach number. In this
development, we have considered a homogeneous fluid at rest
in the absence of an acoustic field. Thus the density ρ0 is
constant in space and time, and the velocity u⃗0 = 0⃗.

By replacing this decomposition into Navier-Stokes com-
pressible equations, Eckart showed that the first-order field
is the solution of D’Alembert (wave) equation. Acoustical
vortices are solutions of this equation in cylindrical coordinates
[57] and their expression calculated by Hefner and Marston
[39] takes the following form for weakly attenuated waves:

ρ1(r,θ,z,t) = ρ̂1A(Kr)Jl(Kr) sin(lθ + kzz − ωt). (A3)

In this equation, φ = lθ + kzz − ωt is the phase of the
acoustical vortex, l the topological charge of the vortex, θ
the angular coordinate, kz the projection of the wave vector
on the z axis, z the height, ω the wave frequency, and t the
time. Finally, ρ̂1 is the amplitude of the first-order density
fluctuation, which is related to its pressure counterpart P̂1
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according to ρ̂1 = P̂1/c
2, and K the transversal component

of the wave vector. It is defined by the dispersion relation
of an acoustical vortex, K2 + k2

z = ω2/c2, with c the sound
speed.

Eckart obtained, in his paper, a diffusion equation for
the second-order vorticity field Ω⃗2 = ∇⃗ × u⃗2, which can be
used to compute the acoustic streaming. In the following,
we consider steady streaming generated by a monochromatic
acoustic wave with constant amplitude and therefore the Eckart
equation reduces to

$Ω⃗2 = − b

ρ2
0

∇⃗ρ1 × ∇⃗ ∂ρ1

∂t
, (A4)

b = 4/3 + µ′/µ, (A5)

with µ the shear viscosity and µ′ the bulk viscosity. From
now on, we use the shorthand notation s = Kr , s1 = Kr1,
and s0 = Kr0. In addition, we introduce B to gather the radial
dependence of the beam,

B(s) = A(s)Jl(s), (A6)

where the function A(s) is introduced to limit the infinite
lateral extension of the Bessel function. The derivation of ρ1 in
Eq. (A3) in cylindrical coordinates and the replacement of the
result in Eq. (A4) give an inhomogeneous Poisson equation
with the first-order field playing the role of the streaming
source term:

1
K2

$Ω⃗2(r,θ,z) = Ω⋆
θ

dB2(s)
ds

e⃗θ −
Ω⋆

z

s

dB2(s)
ds

e⃗z, (A7)

Ω⋆
θ = 1

2
kzωb

Kρ0c2
E1, (A8)

Ω⋆
z = 1

2
ωbl

ρ0c2
E1, (A9)

E1 = c2 ρ̂2
1

ρ0
. (A10)

The beam is assumed to be of infinite extent along z and
invariant by rotation θ around this axis, therefore Ω⃗2 has only
a radial dependence. Also, the conservative nature of vorticity
allows us to drop off the e⃗r component. The resulting solution
candidate for Ω⃗2 is

Ω⃗2 = Ωθ
2 (s)e⃗θ + Ωz

2(s)e⃗z. (A11)

Plugging it into Eq. (A7) gives two linear ordinary differential
equations:

s2 d2

ds2
Ωθ

2 + s
d

ds
Ωθ

2 − Ωθ
2 = s2Ω⋆

θ

dB2(s)
ds

, (A12)

s
d2

ds2
Ωz

2 + d

ds
Ωz

2 = −Ω⋆
z

dB2(s)
ds

. (A13)

Using standard methods, the homogeneous (H) and particular
(P) solutions are determined:

Ωθ
2

∣∣
H

= Mθ
1 s + N θ

1

s
, (A14)

Ωθ
2

∣∣
P

= 1
s
Ω⋆

θ

∫ s

0
x1B

2(x1)dx1. (A15)

The equation along z is treated by introducing g = d
ds

Ωz
2 :

g|H =
M1

z

s
, (A16)

g|P = −Ω⋆
z

B2(s)
s

, (A17)

Ωz
2 = Nz

1 + M1
z ln(s) − Ω⋆

z

∫ s

0

B2(x1)
x1

dx1. (A18)

Removing the terms diverging at s = 0, we have

Ω⃗2 =
[
Mθ

1 s + 1
s
Ω⋆

θ

∫ s

0
x1B

2(x1)dx1

]
e⃗θ (A19)

+
[
Nz

1 − Ω⋆
z

∫ s

0

B2(x1)
x1

dx1

]
e⃗z. (A20)

Since the second-order flow (streaming) is incompressible, we
can introduce the vector potential (⃗2 verifying u⃗2 = ∇⃗ × (⃗2

with the gauge ∇⃗ × (⃗2 = 0⃗ to compute the velocity field from
the vorticity field:

$(⃗2 = −Ω⃗2. (A21)

For symmetry reasons, the flow is assumed to be invariant
by rotation θ around z and translation along the propagation
axis z, and due to the conservative nature of u⃗2, the radial
component is dropped off. Consequently, the velocity field is
of the form u⃗2 = uθ

2(s)e⃗θ + uz
2(s)e⃗z. Computing the curl of

(⃗ in order to get u⃗2, we note that (⃗2 = (θ (s)e⃗θ + (z(s)e⃗z.
Equation (A21) is very similar to (A4), except for the source
term:

s2 ( ′′
θ + s( ′

θ − (θ

= − 1
K2

(
Mθ

1 s3 + sΩ⋆
θ

∫ s

0
x1B

2(x1)dx1

)
,

s( ′′
z + ( ′

z = s

K2

(
−Nz

1 + Ω⋆
z

∫ s

0

B2(x1)
x1

dx1

)
.

Using the same procedure as for Ω⃗2 we get the general solution:

(θ = M2
θ s − 1

K2

(
Mθ

1

8
s3 + Ω⋆

θ Iθ (s)
s

)
, (A22)

(z = N2
z + 1

K2

(
−Nz

1
s2

4
+ Ω⋆

z Iz(s)
)

, (A23)

Iθ =
∫ s

0
x3

∫ x3

0

1
x2

∫ x2

0
x1B

2(x1)dx1dx2dx3, (A24)

Iz =
∫ s

0

1
x3

∫ x3

0
x2

∫ x2

0

B2(x1)
x1

dx1dx2dx3. (A25)

The resulting velocity field can now be simply obtained by
taking the curl of (⃗2:

uθ
2 = 1

K

(
1
2
Nz

1 s − 1
s
Ω⋆

z Λ
l
θ (s)

)
, (A26)

uz
2 = 2M2

θ K − 1
K

(
Mθ

1

2
s2 + Ω⋆

θ Λ
l
z(s)

)
, (A27)
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Λl
θ (s) =

∫ s

0
x2

∫ x2

0

B2(x1)
x1

dx1dx2, (A28)

Λl
z(s) =

∫ s

0

1
x2

∫ x2

0
x1B

2(x1)dx1dx2. (A29)

This velocity field must satisfy the adherence boundary
condition at the wall of the channel s = s0:

uθ
2(s0) = 0, (A30)

uz
2(s0) = 0. (A31)

In addition, the steady and incompressible nature of the
flow must not violate mass conservation, such that a closure
condition is enforced:

∫ 2π

0

∫ r0

0
ρ0u

z
2(r)rdrdθ = 0,

(A32)
⇔

∫ s0

0
x1uz(x1)dx1 = 0.

The determinant of the system is equal to s4
0

8K
, such that it

always admits a unique solution. Solving this linear system of
equations, we get

Nz
1 =

2Ω⋆
z

s0
2

Λl
θ (s0), (A33)

M1
θ = 4Ω⋆

θ

s0
2

(
f (s0) − 1

2
Λl

z(s0)
)

, (A34)

M2
θ = Ω⋆

θ

K2
f (s0), (A35)

f (s) = −1
2
Λl

z(s) + 2
s2

∫ s

0
x1Λ

l
z(x1)dx1. (A36)

Including these boundary conditions in the expressions of the
velocity field, we finally obtain

uθ
2 =

Ω⋆
z

K

(
s

s0
2
Λl

θ (s0) − 1
s
Λl

θ (s)
)

,

u(2)
z = 2

Ω⋆
θ

K

( (
1 − s2

s0
2

)
f (s0) + 1

2

(
s2

s0
2
Λl

z(s0) − Λl
z(s)

))
.

APPENDIX B: ASYMPTOTIC DEVELOPMENT
WHEN K r0 ≪ 2

√
l + 1

In this section, we compute an asymptotic development
of our final expression when Kr0 ≪ 2

√
l + 1. We show that

Eckart’s result obtained for the plane wave can be recovered as
an asymptotic limit of our more general expression. Recover-
ing, the Eckart result dictates the choice of the function A(s):

A(s) =
{

1 if s < s1,
0 if s ! s1.

(B1)

1. Asymptotic development

For all s < s0 = Kr0, we have

Jl(s) ∼ 1
l!

( s

2

)l

, (B2)

'l
z(s) ∼

{
s2 l+2

(2 l+2)2 22 l l!2 if s < s1,

s1
2 l+2 1+(2l+2)ln(s/s1)

(2 l+2)2 22 l l!2 if s ! s1,
(B3)

f ∼

⎧
⎪⎪⎨

⎪⎪⎩

s2 l+2

(2 l+2)2 (2 l+4) 22 l l!2

(
2 − 2l+4

2

)
if s < s1,

Cl

[
(s1/s)2

(
l (1 − (s/s1)2) + 1

l+2

)

+((l + 1)ln(s/s1) − (1/2))

]

if s ! s1,

(B4)

with Cl = s1
2 l+2

(2 l + 2)2 22 l l!2 . (B5)

2. Recovering Eckart’s streaming with l = 0 and K r0 ≪ 1

The case of the plane wave can be recovered from our
expression by considering a topological charge equal to 0 and
a radius r0 ≪ 1/K:

'l
z(s) ∼

{
s2/4 if s < s1,(
s2

1

/
4
)
(1 + 2ln(s/s1)) if s ! s1;

(B6)

f ∼
{

0 if s < s1,(
s2

1

/
8
)
[(s1/s)2 + 2ln(s/s1) − 1] if s ! s1.

(B7)

In the original paper [25], Eckart introduces the notation x =
s/s0 and y = s1/s0:

uz
2 ∼ 2

Ω⋆
θ

K

{
s2

1/4[(1/2)(1 − (x/y)2) − (1 − y2/2)(1 − x2) − ln(y)] if s < s1,

−s2
1/4[(1 − y2/2)(1 − x2) + ln(x)] if s ! s1.

(B8)

Equation (B9) is exactly the expression of the acoustic streaming obtained by Eckart [25] for plane waves.

3. Asymptotic limit for large values of l and K r0 ≪ 2
√

l + 1

'l
z(s) ∼

{
s2 l+2

(2 l)2 22 l l!2 if s < s1,

s1
2 l+2 ln(s/s1)

(2 l) 22 l l!2 if s ! s1;
(B9)

f ∼

⎧
⎪⎨

⎪⎩

− s2 l+2

2(2 l)2 22 l l!2 if s < s1,

Cl

[
(s1/s)2(1 − (s/s1)2)

+ ln(s/s1)

]
if s ! s1;

(B10)
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Cl = s1
2 l+2

4l 22 l l!2 ; (B11)

uz
2(s = 0) = 2

Ω⋆
θ

K
f (s0). (B12)

Using the Eckart [25] notation y = s1/s0:

uz
2(s = 0) = 2

Ω⋆
θ Cl

K
(y2 − 1 − ln(y)). (B13)

We highlight here that in Eq. (B13) Cl is decreasing extremely rapidly, such that increasing l dramatically decreases the magnitude
of uz

2(0).
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Cell detachment and label-free cell sorting using
modulated surface acoustic waves (SAWs) in
droplet-based microfluidics

Adrien Bussonnière,a Yannick Miron,b Michaël Baudoin,*a Olivier Bou Matar,a

Michel Grandbois,b Paul Charette*cd and Alan Renaudin*cd

We present a droplet-based surface acoustic wave (SAW) system designed to viably detach biological cells

from a surface and sort cell types based on differences in adhesion strength (adhesion contrast) without

the need to label cells with molecular markers. The system uses modulated SAW to generate pulsatile flows

in the droplets and efficiently detach the cells, thereby minimizing the SAW excitation power and exposure

time. As a proof of principle, the system shows efficient sorting of HEK 293 from A7r5 cells based on

adhesion contrast. Results are obtained in minutes with sorting purity and efficiency reaching 97% and

95%, respectively.

1. Introduction
Cell sorting is critical for many biological and biomedical
applications such as cell biology, biomedical engineering,
diagnostics and therapeutics. Indeed, numerous biological
analyses are based on the separation of different cell types
harvested from a raw heterogeneous sample such as whole
blood. Fluorescence-activated cell sorting (FACS)1 and
magnetic-activated cell sorting (MACS)2 are well-established
methods for cell and particle sorting and are known for their
high throughput and specificity. Both methods, however,
require pre-processing to tag cells with markers, an impor-
tant time and cost expense for some applications.

In contrast, by making use of the differences in the intrinsic
physical properties of cells (size, density, adhesion strength,
stiffness, electrical and optical polarizability), label-free sorting
methods do not require molecular tagging. Compared to FACS
and MACS, however, the specificity of label-free methods is
often limited owing to insufficient contrast in physical proper-
ties, thereby restricting their widespread use. As with tagging-

based systems, label-free cell-sorting methods have been
implemented in microfluidic devices3 using techniques such
as deterministic lateral displacement,4 hydrodynamic filtra-
tion,5 dielectrophoresis (DEP),6,7 optical lattices,8,9 stiffness
separation,10,11 acoustophoresis12,13 and adhesion-based
sorting.14–16 In some cases, such as sorting based on adhesion
to the substrate, performance was improved by surface
nanostructuring15 and bio-functionalization16 which enhance
adhesion contrast between cell types.

In addition to sorting, the dynamics of cell detachment
from solid surfaces is of interest in and of itself, either to
harvest cells or to study the mechanisms of cell adhesion to
surfaces. Cell dissociation and detachment from a solid sub-
strate are normally achieved by cleaving bonding proteins
with trypsin.17 This process is quite aggressive as cells can be
damaged if left exposed to trypsin for too long and a post-
treatment rinsing step is required. In contrast, cell detach-
ment based on microfluidic effects alone requires no external
agents or rising. Cell detachment under constant fluid shear
stresses has been demonstrated using spinning discs,18 flow
chambers19 and, more recently, using surface acoustic wave
(SAW)-actuated flow.20,21

The miniaturization of cell-manipulation methods has led
to their integration into lab-on-chip (LOC) platforms, where
cell detachment and sorting have been widely investigated in
flow-based microchannel formats.19,22,23 Comparatively few
studies,24–27 however, have explored cell separation or detach-
ment in droplet-based microfluidics as in digital micro-
fluidics (DMF).28 Indeed, the physics of microfluidics in
droplets is completely distinct from flow-through closed-
channel systems. Microfluidics properties such as bulk and
surface modes of vibration, which are unique to droplet-
based systems, can be exploited to great effect. In general,
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unlike continuous flow systems which are often optimized
for high-volume cell sorting, droplet-based systems are best
suited for studies of cell properties in small populations of
cells, such as cell adhesion modulation mechanisms which
are highly complex and of wide-ranging interest.29,30

Droplet actuation in DMF is generally accomplished with
surface acoustic waves (SAWs),31–33 electrowetting on dielec-
trics (EWOD)34 or dielectrophoresis (DEP).35 SAW-based DMF
has been used in a range of biological applications36–38 to
implement functions as diverse as mixing,39 droplet displace-
ment,40,41 and atomization42 as well as for particle and cell
manipulation.43 Although EWOD has been used successfully
to manipulate cells,25 large or strongly-adhering cells are
difficult to detach and/or transport with the relatively
weak electrowetting forces exerted by EWOD. In the case of
DEP, the oscillatory forces applied to the cell are subject to
changes in the physical composition of the membrane,44

which may or may not be desirable depending on the nature
of the experiment. The strong electrical fields involved in
DEP also have the potential to alter cell membrane
characteristics.45

Recently,46 we presented preliminary results on the use of
SAW-based fluid actuation in droplets to detach biological
cells from a surface. We showed that under continuous SAW
excitation, fully confluent cell layers could be detached
en masse at sufficiently high SAW power, whereas isolated
cells were very resistant to detachment, even at power levels
above the threshold for cell viability.47 In a previous publica-
tion, we showed that the acoustic power required to move or
deform droplets with SAW can be significantly reduced by
using modulated rather than continuous excitation.48 Based
on this work, we demonstrate here that modulated SAW can
be used to viably detach cells from a surface and sort cells
based on adhesion contrast, without the need for labeling.
The experimental results presented show that two distinct
cell types can be separated with a final purity of up to 97%
and an efficiency greater than 95%. Results are achieved with
characteristic processing times on the order of one minute
without adversely affecting cell viability or requiring the cell
layer to be fully confluent.

2. Methods and materials
2.1. Apparatus set-up and experimental procedure

Experiments were run on cells adhered to the surface of a
LiNbO3 substrate and immersed in 20 μl droplets of
phosphate-buffered saline (PBS) solution.

Rayleigh-type SAWs were generated at the surface of the
LiNbO3 substrate by applying a 17.1 MHz sinusoidal radio
frequency (RF) excitation to interdigitated transducer (IDT)
thin-film metal electrodes. The excitation frequency was
selected to maximize the energy transmission from the
substrate surface to the liquid. The IDTs were designed as
“electrode width controlled single-phase unidirectional trans-
ducers” (EWC-SPUDT),49 a configuration that ensures that
the acoustic energy is directed solely in the forward direction.
The excitation signal was supplied by an RF generator
(Agilent, model N9310a) and amplified to 30 dBm using an
RF amplifier (Empower, model BBM0D3FEL).

Once transmitted to the fluid, the acoustic waves induce
interface stresses and internal flow, resulting in deformations
of the droplet-free surface due to two types of nonlinear
effects: acoustic radiation pressure and acoustic streaming.40

As explained below, cyclic droplet deformations were induced
by switching the SAW excitation on and off with an appropri-
ate period and duty cycle, resulting in large shear stresses in
the fluid causing cells to detach.

An 8 × 8 mm2 “cell-attachment zone” was defined by
markers patterned onto the LiNbO3 substrates. The devices
were mounted under a phase contrast microscope
(Motic, model AE 30/31) with a 10× objective to focus on the
cell layer (2 mm diameter field of view). A high-speed 10 bit
CMOS camera (PCO, model pco.1200hs) was used to capture
the video of cell detachment. The set-up is depicted in Fig. 1.

Image sequences recorded by the camera were processed
using ImageJ (NIH, rsbweb.nih.gov/ij) and cell populations
were counted using the ImageJ cell counting tool. The two
cell types used in the experiments could be easily distin-
guished in the images based on differences in their morpho-
logical characteristics. Following each experiment, short-term
cell viability assays were performed by trypan blue exclusion.

Fig. 1 Schematic diagram of the set-up showing the cell layer (red dashed line) immersed in a 20 μl PBS droplet atop a LiNbO3 piezoelectric
substrate. The diagram also shows the interdigitated transducers (IDTs), RF amplifier and signal generator used for Rayleigh type SAW generation.
Cell visualization is achieved using a phase contrast microscope, 10× objective, and a CMOS camera.
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2.2 SAW device fabrication

The SAW devices were fabricated from 1 mm thickness X-cut
Z-propagating LiNbO3 wafers (Newlight Photonics). This
particular cut was chosen for its efficient electromechanical
coupling along both Y and Z perpendicular propagation
directions (Kz = 4.9%, Ky = 3.1%), allowing for two-
dimensional droplet actuation if required. Indeed, the K2

values along the two directions are greater than those of a
typical 128° Y–X cut LiNbO3 crystal (Kx = 5.5%, Ky = 1.2%).

The metal IDT electrodes and cell-attachment zone
markers were fabricated by photoresist (Shipley S18-13,
Microchem) spin-coating on the LiNbO3 wafers, patterning
by standard photolithography processes, metal deposition
(Ti/Au, 20/200 nm), and lift-off.

2.3. Cell culture and surface preparation

Two cell lines were used in the experiments: adherent vascu-
lar smooth muscle cells (A7r5) and human embryonic kidney
(HEK 293) cells. These particular cell lines were selected
because they have been shown to exhibit surface adhesion
strengths comparable to that of cancerous50 and other
normal51 cell types. Cell adhesion strength, however, is
highly dependent on surface preparation specifics. We chose
to adhere cells directly to a bare lithium niobate (LiNbO3)
substrate, the piezoelectric material most commonly used to
generate surface acoustic waves, in order to provide a recog-
nizable point of reference. The adhesion of cells to bare
LiNbO3 has been studied by other groups.52 As shown below,
the fluid shear stresses required to detach cells from a bare
LiNbO3 surface are in the same range as that reported by
others for surface preparations commonly used for cell
studies. If required, LiNbO3 can be readily functionalized for
specific surface preparations.53,54 Cells were adhered to the
device surfaces either by growing the cells directly on the
LiNbO3 substrates in the case of single cell line reference
experiments or by incubating the LiNbO3 substrates in a solu-
tion of pre-grown resuspended cells in the case of single and
dual cell line experiments.

A7r5 and HEK 293 cells were grown separately by seeding
in 60 mm petri dishes and cultured in growth medium
(DMEM supplemented with 10% heat-inactivated fetal bovine
serum, 2 mM L-glutamine, 50 IU mL−1 penicillin, 50 μg mL−1

streptomycin, Wisent) under an atmosphere of 5% CO2 at
37 °C for 24 h. For experiments requiring cells to be grown
directly onto LiNbO3 surfaces, the LiNbO3 substrates were
placed at the bottom of the petri dish for the duration of the
incubation time.

For cells not grown directly onto the LiNbO3 substrates,
single cell line resuspended cell solutions were prepared by
rinsing the cell cultures in PBS, incubating for 5 min in
500 μl of trypsin–EDTA solution at 37 °C, and resuspending
in 2 ml of growth medium to stop the trypsin digestion. After
5 min of centrifugation, cells were resuspended in
HEPES-buffered salt solution (HBSS) (20 mM HEPES at
pH 7.4, 120 mM NaCl, 5.3 mM KCl, 0.8 mM MgSO4,

1.8 mM CaCl2, and 11.1 mM dextrose). Dual cell line
resuspended solutions were prepared by combining HEK 293
and A7r5 resuspended solutions in experimentally deter-
mined proportions as required for roughly equal numbers of
both cell types to adhere to the surface (Fig. 2). LiNbO3

substrates were placed in a petri dish immersed in
resuspended cell solutions for incubation times ranging from
15 to 90 min to study various adhesion states.

Following cell adhesion by either of the two methods
above, the LiNbO3 substrates were rinsed with PBS, cells
outside the attachment zone were dried and mechanically
removed, leaving a uniformly distributed 8 × 8 mm2 adherent
cell layer covered by a thin PBS film. A 20 μl droplet of PBS
was added atop the attachment zone using a calibrated
micropipette prior to experiments. Note that due to adherent
cell secretions, the cell-attachment zone was highly hydrophilic
and the droplets spread across the square-shaped area with a
high contact angle and a flat profile.

3. Results and discussion
3.1. Droplet dynamics and cell–fluid interaction

As stated earlier, the purpose of this work was to investigate
the potential of modulated SAW fluid actuation to selectively
detach and sort cells in a droplet. Fig. 3a shows a schematic
diagram of the PBS fluid droplet atop the 8 × 8 mm2 droplet
positioning zone on the LiNbO3 substrate, in relation to the
SAW electrodes (EWC-SPUDT). Cyclic deformations of
the droplets between a relaxed state and a deformed state
(side-view camera images shown in Fig. 3b, top and bottom,
respectively) were induced by switching the SAW signal on
(excitation) and off (relaxation) with an appropriate period
and duty cycle. During excitation, internal flow and surface
deformation are induced by nonlinear acoustic forces. During
relaxation, the potential energy stored as capillary surface
energy produces a restoring flow in the opposite direction.
Optimal values for the period (200 ms), duty cycle (25%), and
power (30 dBm) were based on the droplet intrinsic relaxa-
tion time, measured experimentally.

The 50 ms SAW excitation bursts displaced the distal
liquid–solid contact line (droplet edge furthest from the SAW

Fig. 2 Photograph of vascular smooth muscle cells (A7r5) and human
embryonic kidney (HEK 293) cells adhered to the surface of a LiNbO3

substrate after incubation in a resuspended cell solution at 37 °C. The
arrows indicate typical specimens of HEK 293 and A7r5 cells which
exhibit significantly different morphological features.
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electrodes) at a rate of a few microns per cycle while the prox-
imal contact line (droplet edge closest to the SAW electrodes)
remained pinned due to the high contact angle hysteresis. As
a result, the droplets spread in the direction of SAW propaga-
tion at a velocity of ~0.01 mm s−1. As shown in Fig. 4, this
expansion elicited three distinct fluidic regimes in the drop-
lets. Since the field of view of the camera (vertical column in
Fig. 4) was fixed relative to the spreading droplet, the three
fluidic regimes swept sequentially across the field of view
and thus could be separated in time in the image sequences.

At the start of the experiments, the expansion was suffi-
ciently small so that the droplets essentially oscillated between
the two shape extrema shown schematically in Fig. 4b
and in the photographs in Fig. 3b. During SAW excitation
(Fig. 4b, top), most of the fluid was displaced in a “bulk”
zone at the distal end of the droplet whilst leaving behind a
thin film “tail”, as previously observed by Rezk et al. and
Collins et al.55,56 During relaxation, the droplet returned to
its relaxed symmetric shape due to surface tension effects
(Fig. 4b, bottom).

After a sufficient number of cycles, the distal contact line
displacement became significant enough (~0.5 mm) that a
150 ms relaxation interval between SAW excitation bursts was
no longer sufficient to return the droplets to a relaxed
symmetric shape. As a result, three distinct fluid dynamics
regimes (Fig. 4c) could be distinguished in the droplets. As
before, the extrema were (1) the bulk (shaded blue area), in
which shear stresses result from a combination of large
scale vortices induced by Eckart streaming57 and small-scale
vortices due to Rayleigh and Schlichting streaming58,59 near
the viscous boundary layer, and (2) the thin film tail (shaded
orange area), in which Schlichting and Rayleigh streaming
generated by a standing wave (as evidenced by periodic
patterns in Fig. 3c) is dominant.55 In between the two, a

transient zone appeared (gray shaded area), swept by a strong
oscillating “wavefront” resulting from the fluid transitions to
and from the extrema.

As shown in the experimental results below, the rate of
cell detachment from the surface was consistently highest in
the transient zone. Eventually, as the droplets spread suffi-
ciently, cells in the field of view of the camera were confined
to the thin film tail (Fig. 4d, shaded orange area).

3.2. Magnitude of the shear stresses and unsteady forces in
the transient zone

Shear stresses in the fluid acting on the cells were estimated
from the image sequences in the transient zone. Assuming
no-slip boundary conditions (null velocity at the liquid–solid
interface), the vertical shear stress, τ, in the fluid can be
linearly approximated (Fig. 3d) by:

W P P 
w
w

�
v
y

V
h

∼ wavefront (1)

where y is the distance perpendicular to the surface, v is the
fluid velocity in the direction parallel to the surface at height
y, and μ is the dynamic viscosity of the medium (10−3 m2 s−1

for PBS at 20 °C). In this formula, Vwavefront and h denote the
surface velocity and the height of the thin film, respectively,

Fig. 4 Schematic diagrams of the different droplet fluid dynamics
regimes under modulated SAW actuation (ON: 50 ms, OFF: 150 ms).
The vertical bar shows the location of the circular area (2 mm
diameter) imaged by the microscope; (a) relaxed shape of the droplet
mainly determined by its wetting properties on the cell-covered
LiNbO3 substrate; (b) initial shape extrema pair in each excitation/
relaxation cycle. (c) After a sufficient number of cycles, a 150 ms
relaxation interval between SAW excitation bursts is no longer suffi-
cient to return the droplets to a relaxed symmetric shape of (b). As a
result, three distinct fluid dynamics zones can be distinguished: bulk
(blue), transient (gray), and thin-film “tail” (orange); (d) eventually, as
the droplet spreads sufficiently, the field of view of the camera is
confined to the thin-film tail.

Fig. 3 (a) Schematic diagram of the fluid droplet in its relaxed position
spread across the 8 × 8 mm2 droplet positioning zone atop the LiNbO3

substrate, in relation to the SAW electrodes (EWC-SPUDT); (b) side-view
camera images showing the two shape extrema of the droplet during
one SAW excitation modulation cycle (ON: 50 ms, OFF: 150 ms).
(c) Zoom on the tail section of the drop showing a standing wave
pattern. (d) The flow profile of the tail section and characteristic
lengths.

Lab on a Chip Paper

Pu
bl

is
he

d 
on

 0
2 

Ju
ly

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

v 
Li

lle
 1

 o
n 

12
/0

8/
20

14
 1

6:
21

:3
1.

 
View Article Online

http://dx.doi.org/10.1039/c4lc00625a


3560 | Lab Chip, 2014, 14, 3556–3563 This journal is © The Royal Society of Chemistry 2014

estimated from a side-view image sequence (h ~ 100 μm).
Under SAW excitation, the “forward” wavefront velocity was
about 100 mm s−1, resulting in an estimated vertical shear
stress of 1 Pa. When SAW excitation was turned off, the
“backward” wavefront velocity was much lower (~10 mm s−1),
resulting in an estimated shear stress of 0.1 Pa. For compari-
son, values of shear stresses reported in the literature to
detach cells from treated and untreated surfaces with flow-
based systems typically lie between 0.01 and 10 Pa.16,19,21,60

In addition to viscous stresses, the pulsatile flow also
induces so-called unsteady forces (added mass). The relative
magnitudes of viscous and unsteady forces can be quantified

by the dimensionless Womersley number Wo  ZU
P
h2

. In our

experiments, Wo was typically ~0.5, meaning that unsteady
forces likely also played an important role in cell
detachment.

3.3. Cell detachment with a single cell line (HEK 293)

We first investigated the dynamics of cell detachment using
our proposed method in experiments with a single cell line
(HEK 293). The experiments sought to compare detachment
behaviors with substrates prepared using the two protocols
described earlier: (1) cells adhered directly to the LiNbO3

substrates after 24 h incubation and (2) LiNbO3 substrates
incubated in a solution of resuspended cells (an incubation
period of 60 min in this case). In the experiments, ~300 cells
were typically adhered initially to the surface in the field of
view of the camera.

Because the dynamics of cell detachment from a surface
will vary greatly depending on particular conditions, experi-
mental results should be compared in terms of normalized
parameters. At a constant rate of detachment, the number of
adhered cells will decrease by the same fraction over a time
interval of fixed length at any point during the detachment
process. As a result, the number of cells adhered to the
surface as a function of time, N(t), will follow a decaying
exponential profile, N(t) = N0e

−σt, where N0 is the initial num-
ber of attached cells and σ is a detachment rate parameter.
Cell detachment dynamics is characterized here in terms of
their normalized rate of detachment from the surface, R(t):

R t
N t

N t
t

( )
( )

( )
 � �

1 d
d

(2)

The calculation of R(t) is therefore equivalent to
estimating the instantaneous value of the detachment rate
parameter, σ, at time t.

Fig. 5 shows the measurements of the fraction of adhered
cells over time and the calculated normalized detachment
rates under cyclic SAW actuation for experiments with
HEK 293 cells prepared with the two adhesion protocols
(top: direct to LiNbO3; bottom: incubation in resuspended
cells). The three fluid dynamics regimes (bulk, transient
and tail) are highlighted by different background colors.

Transitions between successive regimes were determined by
observing the image sequence where the top of the wavefront
in the transient zone could be clearly seen. The uncertainty
on estimations of the transition times was on the order of
±5 s. The purpose of these experiments was to explore the
relative differences in detachment kinetics between the three
fluidic regimes and to extract order of magnitude informa-
tion if possible about the dynamics. Indeed, a much broader
range of experimental conditions would be required to form
any kind of quantitative conclusion specific to these particu-
lar cell lines.

The results in Fig. 5 clearly show that the cell detachment
rate is highest in the transient zone. The two graphs show
similar maximum rates of detachment, indicating that both
cell adhesion methods can yield similar adhesion strengths
to the surface (assuming that detachment rate is an indica-
tion of adhesion strength). The inverse of the maximum nor-
malized detachment rate, 1/max(R(t)), can be considered as

Fig. 5 Normalized detachment rate and percentage of adhered cells
over time under cyclic SAW actuation. Top: result from a typical
experiment with HEK 293 cells adhered directly to a LiNbO3 substrate
after 24 h incubation; bottom: result from a typical experiment with
HEK 293 cells adhered to the substrate after incubation in a solution of
resuspended cells for 60 min.
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the “characteristic time” of the system under maximum
efficiency, that is to say, the time taken for the number of
adhered cells to fall to (1/e)N0 at the maximum rate of
detachment. As shown in Fig. 5, this value is ~35 s in both
cases. The effect of the duration of the transient regime is
also interesting to consider. In Fig. 5 (top), the transient
regime is longer (~63 s) resulting in a higher detachment
efficacy (>10% residual adhered cells), whereas in
Fig. 5 (bottom), due to faster spreading of the droplet, the
transient regime is shorter (~46 s) resulting in a lower detach-
ment efficacy (~25% residual adhered cells). In both cases,
the majority of cells are detached in minutes, which com-
pares very favorably with the results from other methods.21,22

3.4. Cell detachment with dual cell lines (sorting)

We next investigated the selective detachment (sorting) of cell
types based on adhesion contrast. LiNbO3 substrates were
prepared by incubation in a dual cell solution of resuspended
cell lines (A7r5 and HEK293) in a range of incubation periods:
15, 25 and 60 min. Cell sorting performance was character-
ized by 2 parameters, “purity” and “efficiency”, calculated
once the system had reached equilibrium, i.e. when the num-
ber of adhered cells no longer changes (~2 min typically):

Purity HEK
HEK A r

detached

detached detached

 
�

�
%

% %
293

293 7 5
(3)

Efficiency = % HEK 293detached. (4)

Fig. 6a shows calculations of cell sorting purity for the
three different incubation times. Interestingly, results indi-
cate that purity increases with incubation time. We speculate
that this behavior arises because (1) cells require a certain
time to achieve complete adhesion and thereby maximizing
adhesion contrast between cell types, and (2) it is possible
that excretion of the extracellular matrix proteins by A7r5
cells negatively modulates HEK 293 adhesion. Indeed, adhe-
sion modulation by competing species has been observed by
other groups, such as the improvement of cancer cell (MCF7)
adhesion in the presence of human breast epithelial cells
(MCF10A).15 In all cases, sorting efficiency was greater than
90% (Fig. 6b).

Once detached, cells remained resuspended in the drop-
lets. Short-term viability assays were performed after experi-
ments both with SAW excitation and without SAW as a
negative control. Results indicated that SAW excitation only
slightly affected the viability (apoptosis rate below 5%).

4. Conclusions
In this paper, we propose a method to selectively and viably
detach cells from a solid substrate in fluid droplets using
modulated surface acoustic waves (SAWs). Experiments were

designed to study the effects of different fluid dynamics
regimes by using a fixed imaging field of view with respect to
droplet expansion under SAW actuation. Results show that
the cell detachment rate is highest in the middle regime,
termed “transient regime”, where viscous shear stresses are
estimated to be of the order of 1 Pa.

Under the chosen SAW modulation protocol, HEK 293 and
A7R5 cells adhered to bare LiNbO3 surfaces were successfully
sorted based on adhesion contrast. Results show that cells
were detached in the order of minutes and the contrast in
adhesion strength varies with incubation time. This method
could be generalized to other cell lines exhibiting either
intrinsic or controlled (via surface bio-functionalization)
adhesion contrasts. Importantly, cell adhesion strength is
highly dependent on surface preparation specifics and
adhesion modulation between competing species. Therefore,
SAW excitation parameters required to viably detach and sort
cell types under different experimental conditions can be
expected to vary according to the characteristics of cell lines,

Fig. 6 Cell sorting purity (a) and efficiency (b) for LiNbO3 substrates
prepared by incubation in dual cell line resuspended solutions (A7r5
and HEK 293) for a range of incubation periods: 15, 25 and 60 min.
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surface preparation, and adhesion modulation between com-
peting cell species. Similarly, sorting purity and efficiency are
expected to be highly dependent on particular experimental
conditions.

Interestingly, modulated SAW could be combined with
EWOD to detach strongly adhered cells and enhance EWOD
cell manipulation and sorting performance. Further investi-
gations with a view to optimizing unsteady forces would also
be of interest, for example, with bi-lateral SAW excitation.
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Capillary tube wetting induced by particles:
towards armoured bubbles tailoring†

Farzam Zoueshtiagh,‡* Michael Baudoin‡* and David Guerrin

In this paper, we report on the strongly modified dynamics of a liquid finger pushed inside a capillary tube,

when partially wettable particles are lying on the walls. Particles promote the appearance of new regimes

and enable the tailored synthesis of bubbles encapsulated in a monolayer of particles (so-called “armoured

bubbles”). This remarkable behavior arises due to the collection of particles at the air–liquid interface, which

modify the global energy balance and stabilize the interface. Armoured-bubbles are of primary interest in

industrial processes since they display increased stability, interfacial rigidity and can even sustain non-

spherical shapes. This work opens perspective for a low cost bubbles-on-demand technology enabling

the synthesis of armoured bubbles with specific sizes, shapes and composition.

1 Introduction
Particle covered interfaces between immiscible uids are of
primary interest in a wide variety of industrial, medical and
technological applications: stabilization of bubbly liquids,
foams and emulsions,1–4 otation-based extraction and sepa-
ration processes,5 drug encapsulation,6 food processing7 or even
surface nanostructuring.8 Particles drastically alter the behavior
of interfaces andmake them display solid-like behavior9 such as
interfacial elasticity, buckling instability10 or cracks forma-
tion.11 When droplets or bubbles are encapsulated in such
hybrid interfaces, the “armour” surrounding them strongly
modies their interaction with their environment: Droplets
encapsulated inside a layer of partially wettable particles (so-
called “liquid marbles”) do not wet substrates,12 thereby sup-
pressing dissipation at the contact line, and also become more
stable toward coalescence with other drops.13 Their bubble
counterpart, the “armoured bubbles”, have the singular prop-
erty of sustaining stable non-spherical shape due to the
jamming of particles covering their surface.14 They also exhibit
increased stability toward dissolution since they naturally
evolve into faceted polyhedral shapes that make the Laplace
overpressure vanish.15 While it has been shown that micro-
uidic and chemical techniques16–20 allow the production of
spherical droplets with colloidal armour, the tailored produc-
tion of armoured bubbles with non-spherical shapes, controlled
size and composition remains a challenge.

In this paper, we study the dynamics of liquid ngers pushed
inside particle-covered capillary tubes. The propagation of
liquid ngers in capillary tubes has been largely studied since
the early work of Bretherton,21 Hoffman22 and Tanner.23

However, particles have not been considered as a way of
modifying the meniscus dynamics and promoting the emer-
gence of new regimes. Bretherton had shown that air blown
inside a liquid-lled capillary tube results in the formation of an
air nger through the deposition of a liquid lm on the walls
behind the meniscus. Here we show that the presence of
particles on the walls can lead to the mirror situation wherein
liquid pushed inside a capillary tube lled with air results in the
deposition of a liquid lm ahead of the meniscus. This liquid
lm is covered and stabilized by a single monolayer of closed
packed particles. Their jamming prevents the development of
Rayleigh-Plateau instability and allows the formation of an
encapsulated gas nger with large aspect ratio. This gas nger
eventually collapses into an armoured bubble (see Fig. 1) due to
an increase of the resistance of the bubbly nger to motion.
This system therefore enables the synthesis of armoured
bubbles, whose shape and size is prescribed by the geometry of
the capillary tube.

Since the appearance of this new regime depends on the
global surface energy balance, we investigate here the inuence
of the wetting properties of the walls and the particles on the
evolution of the meniscus. A model is developed and provides a
criterion for the formation of armoured bubbles.

2 Materials and methods
2.1 Experimental setup

A liquid nger is either pushed at constant ow rate
Q ¼ 3 ml min"1 with a syringe pump, or at constant pressure
head DP ¼ 0.2 kPa with a syphon system inside a glass

International Laboratory LEMAC/LICS, IEMN, UMR CNRS 8520, Université Lille 1,
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capillary tube of mean radius Rw ¼ 501 mm covered with
Rilsan (Polyamide 11) particles of mean radius Rp ¼ 15 mm "
1 mm (see Fig. 2). These particles were scattered in the tube
prior to experiments by gently blowing them with an air jet.
The dynamics of the moving meniscus is recorded with a
CCD camera mounted on a microscope. To avoid diffraction
of light by the cylindrical walls, the tube is trapped between
two microscope slides and surrounded with an index-
matching liquid.

Different wetting congurations were considered (i) by using
liquids with different surface tensions (DI water, water/ethanol
mixtures, peruorodecalin) and (ii) by chemically treating the
tubes walls to modify their surface energy.

2.2 Capillary tube treatment

Tubes inner walls were treated either with piranha solution
(sulfuric acid + hydrogen peroxide), or with Self Assembled
Monolayers (SAMs) (silanization process) of different organic
molecules: peruorodecyltrichlorosilane§ (PFTS) or hexam-
ethyldisilazane{ (HDMS). Piranha solution cleans the organic
residues off the glass and leads to perfectly wettable glass
walls. SAMs are molecular layers which modify the surface
energy of the treated solid in a proportion which depends on
the organic molecule adsorbed on the surface.24,25 SAMs are
classically used in labs on chips and droplet microuidics to
turn high energy surfaces such as glass or crystals into
hydrophobic surfaces.26–28

Capillary tube cleaning. Glass capillaries were freshly
cleaned and oxidized to provide a dense array of reactive
silanol groups (^SiOH), which are anchoring sites for the
organosilane molecules. Capillaries were rst degreased by
sonication in dichloromethane, then isopropanol for 5 min.
Glass substrates were perfectly dried under nitrogen ow, then
in an air oven at 120 #C for 30 min. Then, the samples were

dipped into a freshly prepared piranha solution (H2SO4, H2O2

2 : 1 v/v) at 100 #C for 15 min. They were rinsed thoroughly
with deionized water, then were dried under nitrogen stream.
To remove water inside capillaries, they were dried in an air
oven at 120 #C for 1 h. This cleaning procedure was used to
obtain perfectly wettable glass walls but also to prepare the
tubes for their silanization. The drying procedure in the last
step is very important for silanization since water excess is
problematic as it causes hydrolysis and polymerization of
organosilane molecules in solution.

Silanizationk. Glass capillaries were coated with SAMs using
two organosilanes bearing either methyl (HDMS) or per-
uorated (PFTS) functions. By a well-known mechanism (see
Fig. 3), these molecules spontaneously react with the silanol
^SiOH groups on the glass surface providing a hydrophobic
molecular lm. The silanization reactions were carried out in a
glovebox under nitrogen atmosphere since HMDS and PFTS are
water sensitive. The cleaned glass capillaries were immersed for
2 h in a 10$3 M solution of organosilane in a mixture of n-
hexane and dichloromethane (70 : 30 v/v). Capillaries were
cleaned thoroughly in dichloromethane (2 times) by sonication,
then blown with dry nitrogen.

Wetting properties of the walls and particles. The wetting
properties of the walls and particles for each surface treatment
and liquid were characterized respectively by the static contact
angles qw and qp for negative spreading parameters Sw and Sp.
The spreading parameter gauges the ability of a liquid to wet a
solid surface. When the spreading coefficient is positive, the
liquid wets the surface completely. When it is negative, the
liquid wets partially the solid surface and thus the gas interface
meets the solid–liquid interface with an angle called the contact
angle. The wetting properties of the walls for the different
liquids used in our experiments (DI water, water/ethanol
mixtures, peruorodecalin) were measured by applying the

Fig. 1 Cylindrical armoured bubble covered with a monolayer of 15 mm polyamide particle surrounded by water inside a capillary tube of
diameter 1 mm.

Fig. 2 Experimental setup.

Fig. 3 Silanization process.

§ 1H,1H,2H, 2H-Peruorodecyltrichlorosilane CF3(CF2)7(CH2)2SiCl3.

{ Hexamethyldisilazane (CH3)3SiNHSi(CH3)3.

k HMDS and PFTS were obtained from Gelest. Dichloromethane (99.9%, amylene
stabilized) was obtained from Scharlau. n-Hexane (99%, ACS grade) and
isopropanol (99.7%) were purchased from Carlo Erba. Sulfuric acid (98%) and
hydrogen peroxide (30% in water) were purchased from Sigma Aldrich. All
chemicals were used as received without further purication. Deionized water
(18 MU cm) was used to rinse substrates.
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same chemical treatment to a glass wafer as the one applied to
the capillary tube and thenmeasuring the static contact angle of
a sessile droplet deposited on the substrate. The wetting prop-
erties of the particles were characterized by the same method
aer having coated the glass wafer with a thin lm of Rilsan
obtained by melting down the particles. These wetting proper-
ties are summarized in Table 1.**

3 Experimental results
3.1 Liquid nger pushed at constant ow rate

Experiments have been performed for all wetting congurations
described in Table 1. In this section, the liquid is pushed at
constant ow rate Q ¼ 3 ml min"1. We identied four main
regimes with respect to the walls and particles wetting proper-
ties (see phase diagram in Fig. 4).

Regime 1. Perfectly wettable particles (Sp > 0). Here, particles
are weakly affected by themotion of the meniscus for both cases
of perfectly (Sw > 0) and partially (Sw < 0) wettable walls. For
perfectly wettable walls (Sw > 0), a liquid lm is present ahead of
the meniscus due to local evaporation and condensation in
front of the meniscus. In such a situation, the passage of the
meniscus across the particles has no or negligible effect since
the particles are already immersed in the liquid lm prior to the
meniscus arrival (Fig. 5A and Movie S1†). For partially wettable
walls however (Sw < 0), there is no macroscopic liquid lm
ahead of themeniscus. As a consequence, particles are attracted
by the liquid as soon as they are touched by the interface
and then simply released behind the meniscus (Fig. 5B and
Movie S2†).

Regime 2. Perfectly wettable walls (Sw > 0) and partially
wettable particles (Sp < 0, qp ˛ [0,p/2]). This regime leads to
the formation of armoured bubbles. At the beginning, parti-
cles are collected at the surface of the meniscus until it
becomes entirely covered with a monolayer of packed parti-
cles (see Fig. 6B, Movie S3†). Then, the interface keeps
growing, through the development of a particle-covered
liquid lm ahead of the meniscus. This results in the

formation of a long gas nger covered with particles (Fig. 6C,
Movie S4†). This gas nger eventually collapses (see Fig. 6D,
Movie S5†) and forms a long cylindrical armoured bubble (see
e.g. Fig. 1).

Regime 3. Walls with high wettability (Sw < 0, qw < p/2) and
partially wettable particles (Sp < 0) with qp ˛ [0, qc].†† Particles
are rst collected at the surface of the meniscus until it
becomes entirely covered with a monolayer of packed particles
(see Fig. 7B), similarly to Regime 2. Then, new particles
contribute to the growth of the particle-covered interface
through a reduction of the apparent contact angle with the
surface down to a limiting value, ql. Once this limiting value is
reached, new particles which come into contact with the
meniscus are immersed inside the liquid nger (see Fig. 7C
and Movie S3†).

Table 1 Values of the static contact angle (when the spreading parameter S is negative) with the walls qw and particles qp for the different liquids
used in the experiments and different walls chemical treatments. When the liquid fully wets the walls or the particles, the spreading parameter is
positive

Glass
Glass treated
with HDMS Glass treated with PFTS Particles

DI water Sw > 0 qw ¼ 62 # 1 qw ¼ 106 # 8 qp ¼ 71 # 3
Water-Eth. 6% Sw > 0 qw ¼ 62 # 1 qw ¼ 88 # 3 qp ¼ 71 # 5
Water-Eth. 27% Sw > 0 qw ¼ 51 # 3 qw ¼ 80 # 1 qp ¼ 48 # 1
Peruorodecalin Sw > 0 qw ¼ 10 # 4 qw ¼ 34 # 3 Sp > 0
Ethanol Sw > 0 Sw > 0 qw ¼ 42 # 4 Sp > 0

Fig. 4 Phase diagram summarizing the four regimes observed
depending on the spreading parameters Sp and Sw of the walls and
particles or the contact angles qp and qw when the spreading param-
eter is negative. The line separating regimes 2 and 3 has been
computed according to eqn (5). Since the values of the spreading
parameters is not known when it is positive for the material used in our
experiments, only data with Sp < 0 and Sw < 0 are represented in this
graph.

** The exact value of the spreading parameter when the liquid wets the surface
completely (S > 0) is difficult to determine since it requires the knowledge of
the solid–gas and solid–liquid surface energies. When it is negative however, it
is linked to the contact angle q and the surface tension gGL according to the
formula: S ¼ gGL(cos q " 1). †† qc is the critical contact angle dened by eqn (5).
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Regime 4. Walls with low wettability (Sw < 0, qw > p/2) and
partially wettable particles (Sp < 0). In this case, the particles
accumulate along the contact line and obstruct its motion.
Since the ow rate is imposed, the meniscus eventually
bypasses the particles. This gives rise to the formation of air
pockets trapped between the tube's wall and the liquid inside
the capillary, and whose surface is covered with particles (see
Fig. 8 and Movie S7†).

3.2 Liquid nger pushed at constant pressure

Further experiments were conducted in regime 2 to determine
the evolution of the encapsulated bubbly nger resistance to
motion and gain physical insight of the reason for its collapse
into and armoured bubble. In these experiments a long liquid
plug is pushed at constant pressure head DP ¼ 0.2 kPa inside a
perfectly wettable capillary tube covered with Rilsan particles
(see Fig. 9A and B and Movies S8 and S9†). In the absence of
particles, experiments in the literature29 indicate that a plug
pushed at constant pressure experiences a gradual increase of
its velocity due to a progressive decrease of its resistance to
motion. Instead, in the present experiment, a gradual decrease
in the plug's velocity is observed along with a stick-slip motion
of the plug when the length of the encapsulated nger becomes
sufficiently large (see Fig. 9C).

4 Discussion and theoretical
modeling
In this section, the different regimes observed experimentally
are discussed and simple energetic considerations are devel-
oped to provide basic understanding of the observed tenden-
cies.‡‡ In all the experiments described above, the Reynolds
number Re ¼ rlURw/ml, Capillary number Ca ¼ mlU/gGL and
Bond number Bo ¼ rlgRw

2/gGL remain small:

Re ( 10"2, Bo ( 10"1 and Ca ( 10"6

Fig. 5 Regime 1: Schematic and snapshots of experiments showing
the evolution of a liquid finger pushed at constant flow rate inside a
capillary tube covered with perfectly wettable particles (white dots in
the pictures). (A) Perfectly wettable walls (B). Partially wettable walls.

Fig. 6 Regime 2: Liquid finger pushed at constant flow rate inside a
perfectly wettable capillary tube covered with partially wettable
particles. (A) Schematic of the evolution of the air–liquid interface. (B)
Particles are collected until they cover the whole meniscus. (C) A liquid
layer covered with a monolayer of particles grows ahead of the
meniscus leading to the formation of an encapsulated gas finger. (D)
The pinch-off of the gas finger results in the formation of an armoured
bubble (Fig. 1). Particles appear in dark in picture D since the lighting
conditions were different.

‡‡ As a rst approximation, particles are supposed to be perfectly spherical in the
following calculations while this is not the case experimentally. Higher order
effects could therefore appear in this case such as particle–particle interaction
due to the asymmetry of the particles. Nevertheless, they would not
fundamentally modify the liquid lm deposition mechanism proposed here.
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with rl, ml and gGL, the density, viscosity and surface tension of
the considered liquid respectively, U ¼ Q/(pRw

2), the charac-
teristic velocity of the liquid nger and g the gravitational
acceleration.§§ This means that, away from the contact line
(where the triple line introduces a ow singularity), surface
tension effects are dominant over those of inertia, gravitation
and viscosity. The shape of the meniscus is therefore only
determined by the minimization of surface energy. Further-
more, since the capillary number is extremely small, the
dynamic contact angle differs only slightly from the static
contact angle{{ and thus, the evolution of the meniscus can be
considered as quasi-static (that is to say a succession of equi-
librium states).

When the rst particles come into contact with the
meniscus, the system spontaneously selects the conguration
which minimizes the total interfacial energy E. The latter is the
sum of the gas–liquid (GL), gas–wall (GW), liquid–wall (LW),
gas–particle (GP) and liquid-particle (LP) energy:

E ¼ gGLAGL + gGWAGW + gLWALW + gGPAGP + gLPALP

Fig. 7 Regime 3: Liquid finger pushed at constant flow rate inside
capillary tubes with highly wettable walls covered with partially
wettable particles whose contact angle qp is under the critical value qc
defined by eqn (5). (A) Schematic illustrating the evolution of the
meniscus. (B) Snapshots of the capillary tube showing the collection of
the particles encountered by the meniscus and the reduction of the
contact angle. (C) Evolution of the meniscus once the contact angle
has reached a limiting value ql.

Fig. 8 Regime 4: Liquid finger pushed at constant flow rate inside a
capillary tube with low wettability covered with partially wettable
particles. (A) Schematic illustrating the evolution of the meniscus. (B)
Snapshots showing the formation of an air pocket. The dashed white
line indicates the position of the meniscus. (C). Final state after the
passage of the meniscus.

Fig. 9 Evolution of a liquid plug pushed at constant pressure in a
wetting tube covered with partially wettable particles. (A) Initial
configuration: the front meniscus is covered with a monolayer of
particles. (B) Spatiotemporal diagram displaying the grey values along
the center line of the channel as a function of time. Velocities and
lengths of the encapsulated gas finger are respectively obtained from
the slopes of the boundaries of the grey part of the graph and the
distance between them. The grey dashed line delimit the left part of
the bubble. (C) Spatiotemporal diagram showing the evolution of the
right part of the encapsulated gas finger when its length is equal to 1.6
cm. The velocity of the gas-finger is given by the boundary between
the grey part (particles) and the dark one (liquid). The steps indicate
stick-slip motion.

§§ In regime 2, the characteristic velocity of the liquid lm is of the same order of
magnitude as the velocity U. Indeed, the liquid lm velocity is equal to the sum of
the meniscus velocity and the expansion velocity of the liquid lm. The latter
depends on the concentration of particles on the walls prior to the experiment.
In the experiments performed here, the characteristic velocity of the liquid lm
is typically 15% higher than the velocity of the meniscus and thus does not
modify the estimation of the capillary number provided in this section.

{{ Hoffman–Tanner law22,23 predicts a dynamic contact angle #3" for a perfectly
wetting liquid moving at a capillary number Ca #10$6.
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where g and A are the tension and area of the corresponding
interface, respectively. The global constraint of minimum
energy leads to 3 local constraints: (i) the liquid–gas interface
satises Young–Laplace's equation and adopts a spherical
shape, and the triple lines (ii) on the wall and (iii) at the particle
surface satisfy Young–Dupré's equation:

cosqw ¼
gGW " gLW

gGL

; cosqp ¼
gGP " gLP

gGL

(1)

with qw and qp, the wall and particle static contact angles,
respectively. As a result of condition (iii), perfectly wettable
particles (Sp > 0) are immersed in the liquid (regime 1) whereas
partially wettable particles (Sp < 0) are trapped at the interface
(regime 2, 3 and 4). For wettable walls (qw < p/2, regimes 2
and 3), the same condition applies for the successive particles
until the meniscus is entirely covered with a monolayer of
particles. For walls with low wettability (qw > p/2) however
(regime 4), particles captured at the contact line prevent the
liquid from coming into contact with new particles due to
jamming (see Fig. 8A) and so, the lowest energy state cannot be
reached. Particles accumulate along the contact line and
obstruct its motion. As the ow rate is imposed, the liquid
nger is pushed forward and the contact line eventually
bypasses the pile of particles resulting in the formation of air
pockets on the tube's wall (see Fig. 8C).

We will now discuss regimes 3 once the meniscus is
entirely covered with a monolayer of particles. When new
particles come into contact with the meniscus, three different
situations can occur: (i) particles are immersed in the liquid
phase, (ii) they are integrated into an extended meniscus, or
(iii) they stay in the gas phase. Since in regimes 2 and 3
the particles are partially wettable, interfacial energy is
always lower in conguration (ii) as compared to (iii). Thus,
situation (iii) cannot occur in the absence of additional
constraints.

Now the following calculations are aimed at forecasting
the system selection between congurations (i) and (ii) by
determining the least energetic conguration according to
values of contact angles qw and qp. To calculate the energy
difference dE between congurations (i) and (ii), one can

determine the energy required for the transition between
these two states.

This transition can be decomposed into two steps (see
Fig. 10): (1) the surface of the meniscus increases to leave
enough space to integrate a new particle (variation of energy
dE+) and (2) the particle migrates at the air–liquid interface
(variation of energy dE"):

dE ¼ dE+ + dE" (2)

In conguration (ii), the absorption of a new particle by the
meniscus requires the expansion of its surface by dS ¼ pRp

2/f,
where f is the specic surface area as dened by Torquato30 (f
z 0.8 for spheres in a 2D conguration). Indeed due to their
shape, the particles occupy only a fraction of the air–liquid
interface. For partially wettable walls, this expansion leads to a
decrease of the contact angle by dq*w ¼ [cos3(qw)/(2(sin(q*w)(2 "
sin(q*w)) " 1))][R2

p/(R2
wf)], which in turn yields an increase in

interfacial energy by:

dEþ ¼ pgGLRp
2

f

"

1" cosðqwÞ
cos
!
q*w
"
#

where q*w is the apparent contact angle sustained by the pres-
ence of particles at the interface (see Appendix A for details of
this calculation). On the other hand, the integration of a new
particle to the interface leads to a decrease of interfacial energy
by:

dE" ¼ "gGLpRp
2[1 " cos(qp)]

2

since a partially wettable particle lies in its less energetic
conguration when it is trapped at an air–liquid interface with a
contact angle qp. Thus, conguration (ii) is energetically favor-
able if:

dE ¼ pgGLRp
2

"
1

f

 
1" cosðqwÞ

cos
!
q*w
"
!
"
!
1" cos

!
qp
""2
#
\0: (3)

This function is always negative at the beginning when q*w ¼
qw and results in a decrease in the apparent contact angle q*w
until it reaches a limit value ql corresponding to dE ¼ 0:

cosðqlÞ ¼ F
!
qp;qw

"
¼ cosðqwÞ

1" f
!
1" cos

!
qp
""2 : (4)

Then, new incoming particles are immersed into the liquid
phase (regime 3). However, if F(qp,qw) $ 1, that is to say:

qp $ qc ¼ a cos

"

1"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" cosðqwÞ

f

s #

(5)

Eqn (4) has no solution and thus the contact angle decreases
down to 0. At this stage, the interface can only expand ahead of
the meniscus with the development of a liquid lm which
recovers the wall (regime 2). Calculations (see Appendix B)
indeed show that this liquid expansion is energeticallyFig. 10 Transition between configuration (i) and (ii).
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favorable when criterion (5) is veried or when the walls
are perfectly wetting (Sw > 0) and the particles partially wetting
(Sp < 0). This minimization of the surface energy thus explains
the growth of the particle-covered interface through the
deposition of a lm ahead of the meniscus observed in
regime 2.

This liquid lm is stabilized by particles jamming in the
monolayer, which prevents the development of Rayleigh-
Plateau instability. The air nger pinch-off is only enabled by
the large pressure head increase resulting from the increase in
the resistance of the encapsulated nger to motion. Indeed,
the motion of liquid plugs and ngers in micro-channels can
be described through an Ohm-like law, DP ¼ Qrb, where DP is
the pressure drop along the channel and rb is the liquid plug's
or nger's resistance to motion.29 In Section 3.2, experiments
performed at constant pressure indicate a drastic reduction of
the velocity of the encapsulated bubbly nger when its size
increases through the collection of particles lying on the walls.
This reduction of the velocity indicate an increase in the
resistance rb. At constant ow rate, this resistance increase will
lead to a large increase in the driving pressure head, which
eventually provokes the pinch-off of the gas nger. The
prediction of the nal size of the armored bubble would
require the knowledge of (i) the pressure required for the
pinch-off of the bubble and (ii) the evolution of the pressure
head resulting from the increase of the bubble resistance to
motion. This increase of resistance might have different
origins such as the friction of particles with the walls or the
viscous dissipation in the liquid lm separating the
bubble from the tube. Further experiments would be required
to determine the comparative contributions of these
phenomena.

5 Conclusion and perspectives
In this paper, we study the strongly modied dynamics of a
liquid nger pushed inside a capillary tube when particles are
lying on the walls. Different regimes are observed according to
the wetting conguration. One of these regimes leads to the
controlled formation of armoured bubbles covered with a
monolayer of particles, whose shape and lateral size is
prescribed by the geometry of the capillary tube. This system
enables a serial production of such armoured bubbles. Indeed,
once an armoured bubbles is formed another starts growing in
the remaining part of the tube, and so on until all the particles
lying on the walls have been collected. These encapsulated
bubbles can then be extracted from the capillary tube by
pushing them with a higher ow rate. Once out of the tube,
they keep their cylindrical shape since the jamming of particles
prevents the reduction of the bubble surface (see Fig. 11). This
works opens perspectives for low cost automatic production of
armoured bubbles with specic geometries. The production of
a large number of identical armoured bubbles would never-
theless require a parallelization and an optimization of the
present experimental setup to obtain bubbles with predictable
lengths.

The present method might, in principle, be extended to the
production of encapsulated bubbles in a colloidal crystal31,32 or
ordered two dimensional arrays33 if neutral particles are replaced
by strongly interacting ones. For macroscopic particles, these
interactions can result from the balance of gravity and surface
tension, the so-called “Cheerios” effect.34,35 At smaller scales
(micrometer to nanometer range), gravity is negligible and so
interaction can be induced by electrical charges,31,36 irregular
shape,37 roughness,38 or inhomogeneous wetting properties of
the particles.33 They could also be triggered by interface curvature
as demonstrated recently by Würger.39

These singular bubbles are interesting for their static prop-
erties (stability, original shape); but their strongly nonlinear
dynamics also opens new perspective for the design of original
acoustical materials such as contrast agents.

Appendix A: decrease of the apparent
contact angle induced by the presence
of particles on the walls
This appendix is giving the details of calculations for the vari-
ations of energy, dE ¼ dE+ + dE" expressed in eqn (3). Here, we
will only consider particles with small radius Rp compared to
the radius of curvature of the meniscus Rc and thus neglect the
interface curvature at the scale of a particle. This hypothesis is
well veried in our experiments since Rp/Rc < 2 # 10"2. We will
also suppose that the evolution is quasi-static, as justied in the
main text.

Fig. 11 Stable cylindrical armoured bubble extracted from the tube. It
is obtained by pushing the long armored bubble formed in the capillary
tube with a higher flow rate into a larger cell. In these preliminary
experiments, the buoyancy force resulted in the division of the long
armored bubble into smaller bubbles.
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Increase of energy due to the decrease of the contact angle

In absence of particles, the contact angle at the liquid–air–wall
triple line is given at rest by Young–Dupré's equation:

cosqw ¼
gGW " gLW

gGL

(6)

where gGW, gLW and gGL are the gas–wall, liquid–wall and gas–
liquid tensions respectively. This equation can be simply
deduced from a minimization of the interfacial energy. The
integration of an additional particle to the air–liquid interface
requires an increase of the meniscus surface dAGL through a
reduction of the contact angle dq*w. This surface increase, dAGL,
yields to an increase of interfacial energy dE+ ¼ dEw/dq*wdq*w
where Ew ¼ gGLAGL + gGWAGW + gLWALW is the sum of the gas–
liquid, gas–wall and liquid–wall interfacial energy in absence of
particles and q*w is the wall apparent contact angle at a certain
point of the evolution. We must therefore determine the
expressions of dq*w and Ew(q*w) to estimate dE+.

Computation of dq*
w. Due to their shape and arrangement,

the particles cover only a fraction, f, of the air–liquid interface,
called the specic surface area. The air–liquid surface increase
dAGL required for the integration of a single particle is therefore:

dAGL ¼ pRp
2/f. (7)

Suppose that the wall apparent contact angle at a certain
point of the evolution is equal to q*w (with q*w ¼ qw just prior to
meniscus surface increase, i.e. when the rst additional particle
reaches the meniscus which has its surface fully covered by
particles). The surface of the meniscus AGL can be expressed as a
function of q*w according to (see Fig. 12):

AGL ¼ 2pRch ¼ 2pRc # (1 " sin(q*w))Rc (8)

¼
2pRw

2
!
1"sinq*w

"

cos2 q*w
(9)

with Rc ¼ Rw/cos(q*w) the radius of curvature of the meniscus, Rw

the tube radius and h the height of the meniscus. From this
formula, we can compute the decrease of contact angle dq*w
resulting from the increase of interface dAGL:

AGL þ dAGL ¼
2pRw

2
!
1" sin

!
q*w þ dq*w

""

cos2
!
q*w þ dq*w

" (10)

Since dAGL % AGL and dq*w % q*w, the rst order taylor series
expansion gives:

dAGL ¼
#
sinq*w

!
2"sinq*w

"
" 1
$ 2pRw

2

cos3qw
dq*w (11)

Finally the combination of eqn (7) and (11) gives:

dq*w ¼
cos3 q*w

2
#
2sinq*w " sin2 q*w "1

$ Rp
2

Rw
2f

(12)

Computation of Ew(q*
w) and its derivative. To compute, the

relation between the interfacial energy Ew and the contact angle
q*w, we will consider a cylindrical capillary tube of length L and
radius Rw partially lled with a volume V of liquid and a volume
pRw

2L " V of gas (see Fig. 12). The interfacial energy Ew is given
by:

Ew ¼ gGLAGL + gGWAGW + gLWALW

with the interfacial areas ALW and AGW given by:

ALW ¼ 2pRw

"
V

pRw
2
þ Rw

3 cos3 q*w

!
1" sinq*w

"2!
sinq*w þ 2

"
#

(13)

AGW ¼ 2pRwL " ALW (14)
Expression of dE+. Combination of eqn (7), (12), (13) and (14)

gives:

dEþ ¼ dEw

dq*w
dq*w ¼

dðgGWAGW þ gLWALWÞ
dq*w

dq*w þ gGLdAGL

¼

"
2pRw

2ðgGW " gLWÞ
2 sinq*w þ

!
sin2 q*w þ 1

"
#

#

"
cos3 q*w

2
#
2sinq*w "

!
sin2q*w þ 1

"$ Rp
2

Rw
2f

#

þ gGLpRp
2

f
(15)

Since gGW " gLW ¼ gGL cos qw and [1 " 2 sin2 q*w + sin4 q*w] ¼
cos4 q*w, eqn (15) can be simplied into:

dEþ ¼ gGLpRp
2

f

"

1" cosqw

cosq*w

#

(16)

In regimes 2 and 3, walls are respectively perfectly and highly
wettable (0 # q*w # qw < p/2) and, as expected, dE+ is positive.

Decrease of energy due to the integration of a particle at the
meniscus

When a particle comes into contact with an air–liquid interface,
the system adopts the minimal energy conguration, in absence
of additional constraint. A partially wettable particle will
therefore be trapped at the air–liquid interface with an angle
given by Young Dupré's equation around the particle:

cosqp ¼
gGP " gLP

gGL

(17)

Fig. 12 Schematic of the meniscus.

9410 | Soft Matter, 2014, 10, 9403–9412 This journal is © The Royal Society of Chemistry 2014

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
1 

Se
pt

em
be

r 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

v 
Li

lle
 1

 o
n 

05
/0

2/
20

15
 1

3:
44

:3
0.

 
View Article Online

http://dx.doi.org/10.1039/c4sm01648c


Therefore, the migration of a particle from the liquid phase to
the interface corresponds to a decrease of the interfacial energy
dE!. This variation can be computed by subtracting the inter-
facial energy before and aer the migration of the particle (see
Fig. 13):

dE! ¼ [gGPA
a
GP + gLPA

a
LP] ! [gGLA

b
GL + gLPA

b
LP] (18)

From Fig. 13, we easily obtain.

dE! ¼ gGP[2pRp
2(1 ! cos(qp))] + gLP[2pRp

2(1 + cos qp)]

! gGL[pRp
2 sin2 qp] ! gLP[4pRp

2] (19)

Combining eqn (17) and (19), we obtain:

dE! ¼ !gGLpRp
2[1 ! cos qp]

2 (20)

This expression is effectively always negative whatever the
value of the contact angle qp.

Expression of dE

The difference of interfacial energy between congurations (i)
and (ii) is now simply obtained by replacing expressions (16)
and (20) into eqn (2):

dE ¼ dEþ þ dE! ¼ gGLpRp
2

"
1

f

 

1! cosqw

cosq*w

!

!
!
1! cosqp

"2
#

(21)

This function is always negative at the beginning when q*w ¼
qw. The minimization of interfacial energy therefore induces the
integration of new particles to the interface through a decrease
of the apparent contact angle q*w until it reaches a limit value ql
corresponding to dE ¼ 0:

cosðqlÞ¼ F
!
qp; qw

"
¼ cosðqwÞ

1! f
!
1! cos

!
qp
""2 : (22)

From then, next particles met by the meniscus enter the
liquid phase (regime 3). However, since eqn (4) has a solution
only if F(qp, qw) # 1, that is to say:

qp # qc ¼ a cos

"

1!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! cosðqwÞ

f

s #

; (23)

the contact angle will decrease down to 0 when qp $ qc
(regime 2). Then, the interface can only expand ahead of the
meniscus through the development of a liquid lm which
recovers the walls.

Appendix B: expansion of the interface
through the deposition of a liquid film
ahead of the meniscus (regime 2)
In this section, we will determine whether the expansion
of the air–liquid interface ahead of the meniscus for the
integration of new particles is energetically favorable. We
therefore have to compare “conguration (a)” where the
particle is immersed in the liquid phase and “conguration
(b)” where it is incorporated into an extended air–liquid
interface. The difference of interfacial energy between
these two congurations dE0 ¼ Eb ! Ea can be simply calcu-
lated through careful comparison of these two states (see
Fig. 14):

dE0 ¼
"
2pRp

2
!
1! cos qp

"
gGP þ pRp

2

$
1

f
! sin2

!
qp
"
gGL

%

þ 2pRp
2
!
1þ cos qp

"
þ pRp

2

f
gLW

#
!
"
4pRp

2gLP

þ pRp
2

f
gGW

#

¼
&
2
!
1! cos qp

"
ðgGP ! gLPÞ þ sin2 qpgGL

'

! pRp
2

f
½gGW ! ðgLW þ gGLÞ' (24)

Fig. 13 Migration of a particle to the meniscus.

Fig. 14 Expansion of the meniscus.
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By combining eqn (6), (17) and (24), one obtains:

dE0 ¼ gGLpRp
2

!
" 1

f
Sw "

"
1" cos qp

#2
$

(25)

¼ gGLpRp
2

!
1

f
ð1" cosqwÞ"

"
1" cosqp

#2
$

(26)

Note that this expression could have been obtained directly
from previous calculation since it is a particular case of eqn (21)
when q*w ¼ 0:

dE0 ¼ dE(q*w ¼ 0).

Careful examination of eqn (25) and (26) shows that dE0 is
always negative when the walls are perfectly wettable (Sw > 0) or
when the walls are partially wettable (Sw < 0) and qp $ qc, with
the expression of qc given in eqn (5). Thus in these two cases
(corresponding to regime 2) the air–liquid interface covered
with particles will expand through the deposition of a liquid
lm ahead of the meniscus.
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From radio-electronics signal analysis to biological sample actuation, surface acoustic waves (SAWs)
are involved in a multitude of modern devices. However, only the most simple standing or progressive
waves such as plane and focused waves have been explored so far. In this paper, we expand the SAW
toolbox with a wave family named "swirling surface acoustic waves" which are the 2D anisotropic
analogue of bulk acoustic vortices. Similarly to their 3D counterpart, they appear as concentric structures
of bright rings with a phase singularity in their center resulting in a central dark spot. After the rigorous
mathematical definition of these waves, we synthesize them experimentally through the inverse filtering
technique revisited for surface waves. For this purpose, we design a setup combining arrays of
interdigitated transducers and a multichannel electronic that enables one to synthesize any prescribed
wave field compatible with the anisotropy of the substrate in a region called the “acoustic scene.” This work
opens prospects for the design of integrated acoustic vortex generators for on-chip selective acoustic
tweezing.

DOI: 10.1103/PhysRevApplied.4.034004

I. INTRODUCTION

Surface acoustic waves (SAWs) have become the
cornerstone of microelectromechanical systems. SAWs
not only are useful in delay lines and convolution filters
[1] but can also monitor temperature variations, strain [2],
magnetic fields [3,4], and even chemical or biological
composition [5,6]. More recently, the growing field of
microfluidics has expressed tremendous interest towards
SAWs [7,8], due to their versatility for droplet actuation
[9–12], atomization [13,14], jetting [15,16] or mixing [17],
but also bubbles, particles, and cell manipulation and
sorting [18–21]. Nevertheless, it is remarkable that all
these functions rely on the most simple standing or
progressive waves such as plane or focused waves.
At the end of the twentieth century, Durnin, Miceli, and

Eberly [22] unveiled an exotic family of waves that do not
diffract and can self-reconstruct. These waves propagate
spinning around a phase singularity where destructive
interferences lead to the total cancellation of the beam
amplitude (Fig. 1). This concept was subsequently
extended beyond optics [22–24] to acoustics [25,26] and
even electronic wave functions [27–29]. In all cases, it is
shown that vortical waves convey some pseudoangular
momentum that exerts a measurable torque on lossy media.

The dark core of these waves also plays a key role in
trapping objects for optical or acoustic tweezers [30–32].
In the present study, we expand the SAW toolbox with a
two-dimensional version of acoustic vortices, called for
convenience swirling surface acoustic waves.
In two dimensions, swirling SAWs would appear as a

dark spot circled by concentric bright rings of intense
vibrations. It is tantamount to cloaking the focus of surface
acoustic waves, allowing vigorous actuation of the direct
neighborhood of fragile sensors. Furthermore, SAWs easily
radiate from a piezoelectric solid to an adjacent liquid,
simply by diving the transducer in the fluid. Swirling
SAWs could therefore serve as integrated acoustic tweezers
[19,20]. This would solve one of the major shortcomings of
advanced pointwise acoustic tweezers [32–34], which are
complex mechanical assemblies of numerous individual
transducers, whereas the present swirling SAW generators
are obtained by metal sputtering and photolithography on a
single piezoelectric substrate. The radiation of swirling
SAWs in adjacent liquid might also be used to monitor
cyclonelike flows [35] in cavities by using a nonlinear
effect called acoustic streaming. For these reasons, the
present paper constitutes a first step towards more
advanced acoustofluidic functionalities; the second step—
transmission and propagation of swirling SAWs in the
liquid phase—also holds several challenges and opportu-
nities. For instance, it was previously observed in 3D optics
that isotropic Bessel beams propagating in anisotropic
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media progressively lose coherence and disintegrate
[36–39]. The converse phenomenon (disintegration of an
anisotropic Bessel beam propagating in isotropic media)
would offer a practical way to confine the acoustic vortex
action to a bounded region of space. This subject will be
covered in a dedicated report [40], while this one focuses
on the definition and synthesis of swirling SAWs.
Since acoustic vortices have been known for a long time,

the transition from 3D to 2D waves may appear as an
insignificant step and one may wonder why it was not
undertaken earlier. It is certainly the case if the wave
propagates on a 2D isotropic medium such as perfectly
sputtered piezoelectric thin films (AlN or ZnO). However,
the best piezoelectric coupling coefficients are obtained
when using 2D anisotropic bulk piezoelectric crystals
such as LiNbO3, which also happens to be the simplest
and cheapest method to generate surface acoustic waves.
Twenty years of intense research effort on anisotropic SAW
focusing attest to the importance of these practical con-
siderations [41–44]. Hence, in the following, we treat the
more general case of an anisotropic medium. This involves
two difficulties: First, although SAW synthesis is well
mastered for single transducers radiating in specific direc-
tions of piezoelectric materials, the design of interdigitated
transducer arrays (IDTAs) surrounding a control area is still

challenging. Indeed, anisotropy considerably complicates
the SAW propagation, leading to a direction-dependent
wave velocity, coupling coefficient, and beam-stirring
angle (noncollinear wave and energy vectors). Thanks to
recent mathematical developments [45–48], SAW far-field
propagation is better handled nowadays. Nevertheless,
these methods require an accurate depiction of the target
field in order to design the generator. The second difficulty
is then to define exactly what a swirling SAW is, especially
in an anisotropic medium. Since these waves are the fragile
result of destructive interference, extreme care must be
taken in computing their propagation.
In the present study, we use an adaptive field synthesis

method in order to tackle the first issue. For this purpose, a
sample of piezoelectric material is covered with a circular
array of 32 independent transducers actuated by a pro-
grammable electronic. Then, its vibrations are monitored
by a Michelson interferometer. The exact input is computed
by an advanced calibration procedure called inverse filter-
ing [26,32,49].
Getting rid of the issue of emitter design, we efficiently

focus on the definition of swirling surface acoustic waves.
Our theoretical work is essentially guided by Laude, Jerez-
Hanckes, and Ballandras [48], who unveil and synthesize a
zero-order anisotropic Bessel function. In a different
context (multipole expansion of electromagnetic waves
for numerical computation), Piller and Martin propose a
comprehensive extension of Bessel functions to anisotropic
media [50]. Our theoretical investigation, described in the
first part of the paper, uses the concepts of slowness surface
and angular spectrum to fill the gap between Piller and
Martin’s mathematical expression and surface acoustic
waves. The next part of the paper describes our exper-
imental setup, from the transducer design to the SAW
measurements. The third part explains how we compute
the IDTA signals in order to synthesize swirling SAWs.
It provides the key steps of the inverse filtering method
adapted to the propagation of surface acoustic waves.
Finally, a fourth section exhibits some experimental swirl-
ing surface acoustic waves.

II. DEFINITION OF AN ANISOTROPIC
BESSEL FUNCTION

A classical solution to the wave equation in isotropic
medium is known as the Bessel beam:

Wle−iωt ¼ JlðkrrÞeilθþikzz−iωt ¼ W0
l e

ikzz−iωt: ð1Þ

In this equation, r, θ, z, t, l, Wl, Jl, kr, kz, ω, and W0
l

stand, respectively, for the axisymmetric coordinates, the
time, the topological order, the complex wave-field value,
the lth-order Bessel function, the radial and axial parts
of wave vector, the angular frequency, and the isotropic
swirling surface acoustic wave complex value.

(a)

(b) (c)

FIG. 1. A particular example of isotropic dark beams: the
Bessel beams [Eq. (1) in Sec. II] with l ¼ 1, kz ¼ 1, and kr ¼ 1.
(a) Beam cross section with a complex phase and amplitude.
(b) Isophase surfaces at lθ − kzz ¼ 0 and lθ − kzz ¼ π in red and
blue, respectively. (c) Isosurface of ReðWlÞ ¼ −0.3 and þ0.3 in
blue and white, respectively.
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The slowness surface and angular spectrum [51] con-
stitute the basic blocks for building anisotropic wave fields.
The main idea of these tools is to reduce the problem to a
superposition of plane waves. For each single direction and
frequency, we solve the 1D propagation equation, which
reduces the partial differential equation to a set of ordinary
differential equations, whose integration is straightforward.
Hence, we first briefly review these concepts and then
use them to derive a general 3D anisotropic Bessel beam.
We eventually introduce the anisotropic swirling wave as a
special case of an anisotropic vortex.
In the following, we work at a given frequency and omit

the term e−iωt for clarity. In isotropic materials such as
water, the wave speed of sound or light is independent of
the direction of propagation. Consequently, the magnitude
of the wave vector k ¼ 2π=λ is also a constant, and its locus
versus the direction of propagation is a sphere called the
slowness surface. Conversely, in the case of an anisotropic
material, the wave speed depends on the direction, and so
does the wave vector. In the reciprocal space of a 3D
medium, we call Φ the azimuth and κz the altitude in
cylindrical coordinates, so the wave vector reads kðϕ; κzÞ.
The locus of this wave vector, still called the slowness
surface, then results in nonspherical shapes depending on
the anisotropy of the material [52]. Bessel beams propagate
along a specific axis z. Consequently, discussions on the
surface slowness often refer to krðϕ; κzÞ, the projection of k
on the plane normal to the propagation axis. The axial and
radial components of the wave vector kz and kr, respec-
tively, are linked by the directionwise dispersion relation:

kzðϕ; κzÞ2 þ krðϕ; κzÞ2 ¼
ω2

cðϕ; κzÞ2
: ð2Þ

In Eq. (2), we write the coordinates in the reciprocal space
κi to distinguish them from ki, which refer to the dispersion
relation of the wave and are given physical quantities.
For instance, κz can take any value, whereas kz is defined
only in a closed interval (kz ∈ ½−ω=c;þω=c& for an
isotropic medium).
The angular spectrum is a multidimensional generaliza-

tion of the Fourier transform. Since Fourier’s pioneering
work, it is known that any field can be resolved into a sum
of sinusoidal functions. The angular spectrum is a recursive
application of the Fourier transform over all the dimensions
of the medium:

fðx; y; zÞ ¼
Z
þ∞

−∞

Z
þ∞

−∞

Z
þ∞

−∞
Fðκx; κy; κzÞeiκxxdκxeiκyy

× dκyeiκzzdκz: ð3Þ

We can rearrange the terms in the exponential in order
to get exp½iðκxxþ κyyþ κzzÞ& such that Eq. (3) can be
interpreted as a sum of plane waves. This means that any
physical field in the medium at a given frequency can be

seen as a combination of plane waves and therefore must
satisfy the dispersion relation or, equivalently, lie on the
slowness surface. In this regard, the slowness surface
provides a frame for the wave landscape, and choosing
the angular spectrum Fðκx; κy; κzÞ amounts to applying the
color (complex phase and amplitude) on this frame.
If we express the previous angular spectrum not in

Cartesian coordinates but in cylindrical ones, we get

fðr; θ; zÞ ¼
Z
þ∞

−∞

Z
þπ

−π

Z
þ∞

0
Fðκr;ϕ; κzÞeiκrr cosðϕ−θÞκrdκr

× dϕeiκzzdκz: ð4Þ

In this expression, the variables κr, ϕ, and κz refer to the
spectral domain, whereas r, θ, and z belong to the spatial
one. In order to satisfy the dispersion relation, we know that
F must vanish anywhere except on the slowness surface, so
Fðκr;ϕ; κzÞ ¼ hðϕ; κzÞδ½κr − krðϕ; κzÞ&, with kr the mag-
nitude of the wave vector in the ðx; yÞ plane and h an
arbitrary function of ϕ and κz. This reduces the set of waves
that can be created in the medium:

fðr; θ; zÞ ¼
Z
þ∞

−∞

Z
þπ

−π
hðϕ; κzÞeikrðϕ;κzÞr cosðϕ−θÞ

× krðϕ; κzÞdϕeiκzzdκz: ð5Þ

At a given κz, the integral in Eq. (5) is the product of two
terms: The first one eikrðϕ;κzÞr cosðϕ−θÞ can be reduced to a
sum of plane waves thanks to Jacobi-Anger expansion,
while the second one hkr provides the color of each of these
plane waves.
We construct anisotropic Bessel functions by splitting

the wave angular spectrum in a κz-independent part and
extracting its coefficients. Since ϕ is the azimuth, it is a
periodic function and we can expand hkr in Fourier series:
hkr ¼

Pþ∞−∞ alðκzÞeilϕ. We then get

fðr; θ; zÞ ¼
Z
þ∞

−∞

Xþ∞

l¼−∞
alðκzÞeiκzz

×
Z
þπ

−π
eilϕþikrðϕ;κzÞr cosðϕ−θÞdϕdκz: ð6Þ

As mentioned earlier, the integral can be interpreted as a
sum over all the κz of some elementary functions. In these
functions, κz appears as a parameter instead of a variable.
In order to highlight what in this expansion may be

reminiscent of a Bessel, we need to write the integral
expression of the Bessel function:

JlðxÞ ¼
1

2π

Z
þπ

−π
eilη−ix sinðηÞdη: ð7Þ

A trivial change of variable η ¼ ϕ − θ − π=2 yields
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JlðxÞ ¼
1

2πil

Z
þπ

−π
eilðϕ−θÞþix cosðϕ−θÞdϕ: ð8Þ

We combine Eqs. (1) and (8) to get the isotropic swirling
SAW:

W0
l ðr; θÞ ¼

1

2πil

Z
þπ

−π
eilϕþikrr cosðϕ−θÞdϕ: ð9Þ

By analogy with the isotropic equation, we define an
anisotropic swirling wave with a given κz ¼ kz as

W0
l ðr; θÞ ¼

1

2πil

Z
þπ

−π
eilϕþikrðϕ;kzÞr cosðϕ−θÞdϕ: ð10Þ

SAWs appear as a specialization of Eq. (10) to waves that
propagate only along the substrate surface, leading to
kz ¼ 0. Interestingly, the beam in Eq. (10) shares a
common mathematical expression with the electromagnetic
multipole used by Piller and Martin [50] for solving
anisotropic scattering problems, which augurs that such
an anisotropic Bessel beam might be extremely widespread
in nature.
Incidentally, any wave in an anisotropic medium can be

written as a combination of anisotropic Bessel beams
Wl ¼W0

l e
iκzz:

fðr; θ; zÞ ¼
Z
þ∞

−∞

Xþ∞

l¼−∞
alðκzÞ2πilW0

l ðr; θ; κzÞeiκzzdκz:

ð11Þ

In the rest of the paper, we use inverse filtering to
generate anisotropic swirling SAWW0

l on the surface of an
anisotropic piezoelectric crystal.

III. EXPERIMENTAL SETUP

The experimental setup is designed to be as versatile as
possible, in order to allow generating a wide variety of
waves on an area called the acoustic scene. Starting from an
X-cut lithium niobate crystal, 32 unidirectional interdigi-
tated transducers (SPUDT IDTs) are deposited on its
periphery (see Fig. 2). In order to widen the range of
possible acoustic fields, every spot on the scene should be
illuminated by all the transducers. This spatial coverage
should be as uniform as possible on the acoustic scene. It is
achieved by using IDTs with narrow apertures and dispos-
ing them remotely from the acoustic scene to promote
diffraction. Furthermore, since any wave can be described
as a combination of plane waves, it is essential to generate
waves from a wide span of directions. Hence, the quality of
the wave-field synthesis critically depends on the span of
plane waves provided by the source array in terms of the
incident angle, which is the angular spectrum coverage.
The best way to achieve such optimal coverage is therefore

to gather many sources from all directions and dispose
them radially around a target spot which will be the
acoustic scene. These notions of optimal coverage are
detailed further in the next section and in the Appendix.
In order to measure the wave field on the acoustic scene,

we place the sample under the motorized arm of a polarized
Michelson interferometer (Fig. 3). The poor reflection
coefficient of lithium niobate is significantly increased
by the deposition of a thin layer of gold on the acoustic
scene (approximately 200 nm).

FIG. 2. Interdigitated transducer array used for generating the
surface acoustic waves. The central black disk (25-mm diameter)
is a gold layer acting as a mirror for interferometric measurements
and materializes the maximum extent of the acoustic scene.
Vector format image (available online) is used to visualize the
fine structure of the electrodes.

Sample

Piezo linear
motor

Photodiode

Polarized
beam splitter

Photodiode Arm-length
stabilizer PID

λ/4 λ/4λ/2

λ/2

λ = 632.8 nm He-Ne laser

FIG. 3. Polarized Michelson interferometer used for scanning
the displacement field associated with surface acoustic waves.
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During the design of the IDTs, special care is given to
the anisotropy of the lithium niobate substrate. Indeed,
IDTs are high-quality spatiotemporal resonant elements
with a spatial period equal to the wavelength. Any
deviation from the narrow resonant bandwidth results
in a very significant loss of efficiency [1]. We plot in
Fig. 4(a) the slowness contour of lithium niobate mea-
sured on the gold layer at the working frequency of
12 MHz and compare it to theoretical predictions [53].
The two directions with the lowest SAW magnitude are
missing in the experimental data set. The vertical wave
motion at the center of substrate is recorded experimen-
tally for each transducer and plotted in Fig. 4(b). The
butterfly pattern unambiguously reflects the substrate
anisotropy. It is the combination of piezoelectric coupling
and beam-stirring effects and can be computed using the
Green functions introduced thereafter.
The knowledge of the dispersion relation provides the

wave field radiated by a single point source [42,48]:

Gðr; θÞ≃ Aaðϕ̄Þ
expf−iωrhðϕ̄Þ − i π4 sgn½h

00ðϕ̄Þ$g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrjh00ðϕ̄Þj

p ð12Þ

with aðϕÞ the coupling coefficient between the field to
measure and the electrical potential (obtained when solving
the SAW equations [53,54]), ϕ̄ðϕÞ the beam-stirring angle,
hðϕÞ ¼ cosðϕ − θÞkðϕÞ=ωðϕÞ, and h00 ¼ d2h½ϕ̄ðϕÞ$=dϕ2

related to the focusing factor. The beam-stirring angle is
the solution of h0ðϕ̄Þ ¼ 0.
Thanks to the superposition principle, we can use the

Green function in Eq. (12) to compute the acoustic field
radiated by our emitter arrays. The predictions are com-
pared to experiments in Fig. 5. Anisotropy strongly affects
the SAW propagation, as we can observe beam widening
[(a),(b)], focusing [(c),(d)], and stirring [(e),(f)] depending
on the beam direction. Despite a general good agreement
between numerical and experimental results, this 2D Green
function approach also exhibits some intrinsic limitations.

For instance, the lobes on the SAW beam in Fig. 5(b)—
confirmed by Fig. 4(b)—are not predicted theoretically.
Given the important assumptions of 2D half-space, we
believe the suspicious SAW is actually a leaky SAW, and it

(a) (b) FIG. 4. (a) Theoretical slowness
contour (rad/mm, blue solid line)
under a very thin gold layer [53]
versus the experimentally measured
one (red circles). (b) Normalized
SAW vertical displacement magni-
tude at the center of the substrate
(theoretical, blue solid line; experi-
mental, red dashed line). The max
displacement magnitude is 1.8 nm.
Inset: Crystallographic axes.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Influence of anisotropy on the propagation of SAWs
generated by single electrodes. (a), (c), (e) Theoretical predictions;
(b), (d), (f) experimental measurements. (a), (b) Beam widening;
(c), (d) beam focusing; (e), (f) beam stirring. Color represents the
beam relative intensity over the substrate and is not indicative of
the ratio of intensity between two different transducers.
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generates a bulk acoustic wave which bounces between the
two faces of the substrate. All these issues of the aniso-
tropic piezoelectric coupling coefficient, beam stirring,
and power lobes are significantly alleviated by inverse
filtering.
A wide-band high-power multichannel field-

programmable gate array (FPGA) (Lecoeur Electronics)
powers the 32 emitters with tailored numerical input. The
input is specific to each desired wave field and designed
through the inverse filtering method.

IV. INVERSE FILTERING THEORY

Inverse filtering [49] is a very general technique for
analyzing or synthesizing complex signals that propagate
through arbitrary linear medium. This method is especially
suited for prototyping, because, given a set of independent
programmable sources, it finds the optimal input signal to
get a target wave field. When used for this purpose, it is
similar to computer-generated holography in optics [55].
The method proceeds in four distinct stages (see Fig. 6):

(i) calibration of the transducers, (ii),(iii) computation of
the optimal input, and (iv) actuation of the sound sources
according to the optimal input.
In the current system, we use a set of 32 emitters and

an arbitrary number of control points evenly distributed
on the acoustic scene. Their density is governed by the
Shanon principle: The distance between two points should
not exceed λ=2. In our acquisition, we use a step of
λ=10 ¼ 30 μm. Moving the arm of the interferometer,
we are able to reach individually each of these measure-
ment points. If we call ei the temporal input of emitter i and
sj the temporal output of control point j located on fxj; yjg,
we have for any linear medium

sj ¼
X

i

hij " ei; ð13Þ

where " refers to the convolution product and hij is the time
response at control point j to an impulse input at emitter ei.
In the spectral domain, Hij ¼ F ðhijÞ is the Fourier trans-
form of the transfer function at control point j of emitter i
and includes the propagation of the wave in the medium.
Using the matrix formalism, things get even simpler:

jSi ¼ HjEi: ð14Þ

In case the transfer matrix is square and well conditioned, it
can be inverted to determine the optimal input jEi from a
desired output jSi. However, the number of independent
sources and control points is not necessarily the same, soH
is generally not square and often ill conditioned. In the
Appendix, we explain the reasons for this ill conditioning
from the perspective of the angular spectrum and provide
guidelines to minimize it. Although inverse filtering was
previously shown to be among the most accurate ones for
generating acoustic vortices in 3D isotropic media [26], it
was never used for 2D anisotropic media. In previous
configurations, the target field is a surface and has a smaller
dimensionality (2D) than the propagative medium (3D),
whereas the current setup enforces a target field of the
same dimensionality as the propagative medium (both
2D). Hence, in the current experiment, the knowledge of
the target field explicitly sets an angular spectrum for the
propagation medium. However, the wave field in the
same medium must fulfill the dispersion relation. Hence,
the impulse response matrix is zero everywhere outside the
slowness surface. In practice, however, small amplitude
noise will always fill these nonpropagative regions. If the
target field contains any point outside the slowness surface,
the inversion operator would be mistaken as it would rely
on the measurement noise to achieve an optimal signal
synthesis. Hence, it is essential to define the target field
along the slowness curve and resample the impulse

FIG. 6. Inverse filter-
ing flowchart. Inverse
filtering happens in four
steps. (i) Recording of
the spatial impulse re-
sponse(Hmatrix) forall
transducers. (ii) Trans-
formation of the H ma-
trix from a spatial to
spectral domain, where
the response is sharper.
(iii) Computation of the
optimal input jEi for a
desired output jSi by
pseudoinversion of the
matrix H. (iv) Genera-
tion of the signal from
optimal input jEi.
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response matrix in the same subset of the reciprocal space.
We call this method spectral inverse filtering.
As soon as the value of jEi has been computed, the time-

dependent input is obtained by inverse Fourier transform
and sent to the FPGA amplifier to generate the wave field.

V. EXPERIMENTAL RESULTS

Bessel beams draw large interest for three main reasons:
They do not diffract [22], they carry a pseudo-orbital
momentum [23,56,57], and they exhibit a dark core (for
nonzero order) [32,33]. In addition to these reasons, the
zero-order Bessel beam is the optimal beam focusing for a
given aperture [42]. In the following section, we start by
synthesizing a focused surface acoustic wave W0

0 and then
some simple first-order swirling SAW W0

1. We seize this
opportunity to show the phase singularity and the asso-
ciated dark spot. The size of the dark spot can easily be
tuned, simply by changing the topological charge l,
which is done in the third example with seventh-order
swirling SAWs.
The zero-order focused W0

0 Bessel wave phase and
amplitude are traced in Fig. 7. It appears that theoretical
fields and experimental ones are quite similar. In practice,
we have to limit the voltage amplitude of our instrument
to about 10% in order to get a linear response of the
interferometer (the upper bond is about 40 nm). For high
actuation power, we estimate the displacement amplitude
based on the second bright ring. When setting the voltage
to about 50%, we achieve a displacement amplitude of
nearly 180 nm.

Figure 8 represents the first-order dark beam W0
1 phase

and amplitude. A dark core of zero amplitude with a
diameter of 50 μm is clearly visible at the center of the
vortex and matches with a phase singularity. This area is
contrasted by very bright concentric rings. Despite some
blur in the experimental measurements, a good matching
between theoretical and experimental vortices is achieved
on both the shape and phase.

FIG. 8. Experimental and theoretically predicted first-orderW0
1

Bessel wave phase and amplitude. The maximum experimental
displacement is 36 nm.

FIG. 7. Experimental and theoretically predicted zero-order
focused W0

0 Bessel wave phase and amplitude. The maximum
experimental displacement is 40 nm.

FIG. 9. Experimental and theoretical predictions of the combi-
nation of two seventh-order vorticesW0

!7 of opposite charge. The
maximum experimental displacement is 25 nm.
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Swirling SAWs might be useful as integrated transducers
for acoustic tweezers or micropumps. Tuning the
topological order is essential to these applications for
two reasons: It enlarges the first bright ring of the vortex
[Olver formula [58] in Eq. (15)], and it increases the
pseudoangular momentum of the wave [56]. The second
effect itself generates acoustic streaming with an azimuthal
flow velocity proportional to the topological charge
[35,57]:

j0l;1 ¼ lð1þ 0.809 × l−2=3Þ þOðl−7=3Þ: ð15Þ

In this last example, we suggest a way to increase the
ring radius while maintaining zero azimuthal streaming and
keep working at the resonance frequency of the electrodes.
When two isotropic vortices of opposite charge are com-
bined, they result in a circular stationary wave pattern. In
the present case, we sum two seventh-order contrarotating
acoustic vortices W0

7 þW0
−7. The resulting field, shown in

Fig. 9, exhibits a dark core with a diameter of about 500 μm
circled by a crown made of 14 extrema of amplitude.

VI. CONCLUSION

In this report, we propose an anisotropic SAW version of
acoustic vortices, labeled swirling surface acoustic waves.
This implies solving two difficulties: First, the generator
has to be designed to accommodate anisotropic propaga-
tion, and second, we need to define accurately what are
swirling SAWs. The first problem is alleviated using a
programmable array of transducers controlled by a two-
dimensional spectral inverse filter, while the solution of
the second problem confirms earlier theoretical predictions.
We synthesize swirling SAWs of different topological
charges and large magnitude of displacement. This suc-
cessful generation provides a pathway for integrated
acoustic vortex generators on anisotropic substrates.
Furthermore, since these beams are expected to radiate
in any adjacent fluid, photolithography fabricated swirling
SAW transducers constitute a step towards a credible
alternative to the current complicated acoustic tweezer
devices made of mechanical assemblies of individual
transducers. Beyond the specificities of acoustics, Bessel
functions are very widespread in nature, and anisotropic
Bessels may offer analytical solutions for a broad class of
linear anisotropic problems.
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APPENDIX: OPTIMAL CONDITIONING
OF INVERSE FILTERING

Inverse filtering is a very versatile method to synthesize
an optimal target field from a given number of transducers.
As stated in Sec. IV, the method is not exempt from poor
conditioning, which would result in large errors in the
synthesized field, but some guidelines can significantly
improve the quality of the field synthesis. The poor
conditioning of inverse filtering has two roots: (i) spectral
outliers and (ii) redundant sources.

1. Spectral outliers

At a given frequency, the wave field must fulfill the
dispersion relation, which is to have its angular spectrum
lying on its slowness surface. When the acoustic scene is a
surface (in 2D) or a volume (in 3D), this condition exactly
happens. However, experimentally, there is always some
noise introduced in the impulse response matrix, making it
full rank (any spatial frequency can be created provided
there is enough input power). Consequently, a first regu-
larization is to remove the spectral outliers by sampling the
target field not on a spatial manifold but on a spectral one
and along the slowness surface.
Nevertheless, if the acoustic scene is a line (in 2D) or a

surface (in 3D) as in previous implementations [26,49], the
spectral condition is relaxed. Indeed, the angular spectrum
of the target field is only partially known due to the
projection of the field along the line or the surface. In 3D,
for instance, if the synthesis happens on an fx; yg plane, the
system knows the values of kx and ky but ignores the ones
of kz, which can then be freely chosen as long as the
dispersion relation is fulfilled. In an isotropic medium, this

results in kz ¼ %
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − kx2 − ky2

q
. Note that, in any

case, ω2=c2 > kx2 þ ky2, which is the diffraction limit.
Hence, spectral outliers in this synthesis appear beyond the
λ=2 boundary.
A third example of spectral outliers is provided by

piezoelectric generation on monocrystals. These substrates
often exhibit a direction where the piezoelectric coupling
coefficient sharply drops to zero. When this happens, no
acoustic waves can be generated from this orientation, and
the associated angular spectrum coverage is barely zero.
Once again, sampling the signal in the spectral space and
excluding the zero-coupling directions avoids these outliers
and allows an accurate synthesis.

2. Redundant sources

In practice, many transducers are used to ensure an
efficient spectral coverage. Above this threshold, adding
even more actuators may result in poorer synthesis quality
[49]. Indeed, from the inverse filtering perspective, sound
sources act like a family of vectors to combine in order to
build a target field. When two sources are redundant, the
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inversion operator can take any linear combination of them,
and this indetermination is solved by comparing the
measurement noise associated with each source. A smart
way is therefore to regularize the reduced impulse response
matrix obtained after removing the spectral outliers. The
regularization can be achieved by a singular value decom-
position. If two transducers are redundant, they split in a
singular value very close to zero and another one much
more regular. By knowing the signal-to-noise ratio, it is
then possible to discriminate which singular values origi-
nate from noise and which do not [49].
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