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Introduction

The context
The broad context of my research is the theory of triangulated categories.

Triangulated categories were introduced in the early 60’s by Jean-Louis
Verdier in his thesis in order to axiomatise derived categories, and also (minus
the octahedral axiom) by Dieter Puppe in his axiomatisation of stable homotopy
theory. Since then, triangulated categories have spread to numerous corners of
mathematics, becoming a standard tool for topologists, geometers, representa-
tion theorists, and even some analysts, operator algebraists, and mathematical
physicists. In a sense they can still be seen as offering a ‘light’ axiomatisation of
stable homotopy theory, with the latter having nowadays gained a much broader
meaning.

The success of triangulated categories has several roots. First of all, they
offer an algebraic language which is simultaneously simple and sufficiently rich
for formulating many important results and conjectures. But triangulated cat-
egories are not only a language: their abstract theory has turned out to be
powerful enough for proving many of those results. Indeed, many ideas and
techniques from different mathematical communities have been abstracted and
subsumed into the theory of triangulated categories, making it possible to apply
them elsewhere, often with striking results.

Triangulated categories are not perfect: because of certain serious defects
(lack of limits and colimits, non-functoriality of cones, lack of constructions of
new triangulated categories out of old ones, etc.) over the decades many math-
ematicians have called into question Verdier’s axioms and proposed all sort
of alternatives. Most notably, various kinds of ‘enhancements’ of triangulated
categories are now competing on the market, such as A∞-categories, dg cate-
gories, stable model categories,∞-categories, and stable derivators. While these
theories make a good job of repairing the technical deficiencies of triangulated
categories, they pay the price of being harder to work with and less flexible with
respect to the examples covered. In my opinion, triangulated categories are to
be seen as complementary to, rather then competing with, such enhancements:
while the added power of the latter is certainly useful and should be exploited,
it would be foolish to forgo the simplicity and universality of triangulated cat-
egories, or to denigrate their undeniable successes.

The contents
In this memoir I present most of the research I have conducted since my PhD
thesis, without giving any proofs but hopefully with reasonably contained state-
ments. For all proofs and for more details I will refer to the published papers
[2, 3, 5, 6, 7, 9, 11, 12, 13, 14] and the preprint [15] (see the list of my pub-
lications in Section 5). I have excluded from this overview the results of [4],
[8] and [10] because they have nothing to do with triangulated categories, and
those of [1] because they don’t fit the main narrative.
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The work surveyed here is divided, like Gaul, into three parts, each sum-
marised by a slogan:

• triangulated categories are a convenient place for practicing homological
algebra (Section 1).

• tensor triangulated categories are tools for formulating and proving clas-
sification results by geometric means (Section 2).

• tensor exact functors are tools for formulating, proving and comparing
duality statements (Section 3).

We now briefly describe the contents of each part.

1. Triangulated categories and homological algebra
The first use of triangulated categories is to organise and facilitate homological
computations. This is what they were designed for: the efficient handling of the
long exact sequences arising in algebra, geometry and topology.

After recalling some basic definitions and techniques of the theory (§1.1), we
explain how to use triangulated categories systematically for treating universal
coefficient theorems, or UCT’s (§1.2). In joint work with Greg Stevenson and
Jan Šťovíček [15], we offer a new insight on this classical subject. UCT’s are
fundamental computational tools in the form of short exact sequences displaying
the Hom spaces of a triangulated category as extensions of groups computed in
some abelian category, via a suitable homological invariant. We build a theory
for constructing such invariants systematically, mainly by making explicit a pro-
found connection with Gorenstein algebra. We are able this way to unify and
simplify the proofs of several UCT’s used in the realm of Gennadi Kasparov’s
KK-theory of C*-algebras (§1.4). The same methods also yield a new proof
and conceptual understanding of the Brown-Adams representability theorem in
topology, in Amnon Neeman’s general form [Nee97]: it is an example of a UCT,
arising from the fact that any triangulated category with countably many mor-
phisms behaves like a one-dimensional Gorenstein ring, in a precise sense (§1.3).
Our proof also leads to a new variant of Brown-Adams representability which
can be applied to triangulated categories having only countable coproducts and
thus can be applied to the examples arising in KK-theory.

In §1.5 I present the results of [6], in which I make precise a new connec-
tion between representation theory, in the form of the theory of Mackey functors
[Bou97], and the equivariant KK-theory of C*-algebras equipped with the action
of a finite group. This connection is analogous to known results in equivariant
stable homotopy, e.g. the fact that equivariant stable homotopy groups are nat-
urally organised in Mackey functors. This observation allows me to construct
some new spectral sequences for computing with equivariant KK-theory groups.

After joining forces with Heath Emerson and Ralf Meyer, I continue to ap-
ply triangular techniques to the study of equivariant KK-theory, now for general
compact Lie groups (§1.6). Our goal is to obtain K-theoretic formulas for com-
puting the traces of endomorphisms in the equivariant Kasparov category. When
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specialised to commutative C*-algebras, these formulas yield equivariant gener-
alisations to G-manifolds of the classical Lefschetz-Hopf fixed-point formula for
endo-maps on smooth compact manifolds. Our results are quite general and can
also be applied to smooth correspondences, in the sense of Emerson and Meyer
[EM10a] (building on ideas of Alain Connes and George Skandalis).

2. Tensor triangulated categories and classifications
One of the most basic invariants of a triangulated category T is its lattice of thick
subcategories. On the one hand, it contains information about all the possible
homological or exact images of T , because thick subcategories are precisely the
kernels of homological and exact functors. On the other hand, a classification
of the thick subcategories yields a rough classification of the objects of T : if
two objects generate the same thick subcategory, this means that each can be
obtained from the other by using a few natural operations. This is typically
the best kind of classification that one can hope for in most examples, because
the problem of classifying objects up to, say, isomorphism very quickly becomes
intractable. If T admits infinite coproducts, one may also try to classify its
localising subcategories, although this is usually a harder problem and is less
well understood. (See §2.2.)

The first classification of thick subcategories appeared in stable homotopy
theory, in the remarkable work of Devinatz, Hopkins and Smith on the Ravenel
conjectures [DHS88] [HS98]. Their ideas were exported to commutative alge-
bra by Hopkins and Neeman [Nee92], and globalised to schemes by Thomason
[Tho97]. In representation theory, Benson, Carlson and Rickard [BCR97] proved
a similar classification theorem for the stable module category of a finite group.

These first examples of classifications from the 90’s have been subsumed into
a general abstract theorem — at least for what concerns their statement, if not
(yet) their proofs — by Paul Balmer [Bal05]. For each of these triangulated
categories T , the key to the classification is the presence of a compatible sym-
metric tensor product on it (§2.1) which can be used to define a space Spc T ,
the spectrum of T . This abstract space contains precisely the same information
as the lattice of thick tensor-ideal subcategories of T ; hence in order to obtain
a classification theorem it only remains to find, for each given example, a rele-
vant and manageable description of the spectrum (see §2.2). To this goal, the
abstract theory at the level of tensor triangulated categories – Balmer’s tensor
triangular geometry [Bal10b] – can be of much help, by reducing the problem
to easier ones or to already known computations. One such powerful tool is a
natural continuous map ρ : Spc T → SpecR, which is always available and com-
pares the triangular spectrum with the good old Zariski spectrum of the central
ring R = EndT (1) (see §2.3). This map is often surjective and one can study
the fibers of ρ over each prime p of R individually, after localising everything
at p. Sometimes ρ is also injective, and thus yields a nice computation of Spc T .
If this fails, one can also consider graded versions of ρ.

This second part contains my work in this subject, taken from the series
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of articles [2, 3, 7, 9, 14]. Using (generalised versions of) Balmer’s compari-
son map ρ, Greg Stevenson and I proved classifications theorems for thick and
localising subcategories in derived categories of graded commutative rings, gen-
eralising the above-mentioned work of Hopkins, Neeman and Thomason (§2.6.1).
By applying ideas of Benson, Iyengar and Krause [BIK08] [BIK11], Don Stanley
and I also obtained similar theorems for derived categories of regular noethe-
rian commutative dg rings and ring spectra, thus generalising some results of
Benson-Iyengar-Krause and Shamir (see §2.7). I also proved the first classifica-
tion in the domain of Kasparov’s KK-theory (§2.4.2) and, together with Gonçalo
Tabuada, produced the first (very partial) results in the theory of noncommuta-
tive motives (§2.8). Along the way we also make contributions to abstract tensor
triangular geometry, for instance by reducing the computation of the spectrum
to the existence of a well-behaved support function on an ambient compactly
generated category (§2.4), or by constructing a more flexible version of Balmer’s
graded comparison maps ρ (§2.5).

3. Tensor exact functors and duality
Triangulated categories have always been connected with duality. Indeed, de-
rived and triangulated categories were first thought up by Grothendieck and
Verdier mainly in order to formulate a relative version of Serre duality in al-
gebraic geometry, what is now called Grothendieck duality (see [Har66] for the
classical presentation and [Nee10] for a modern survey). Verdier went on to
prove similar results in the topological setting, obtaining the generalisation of
Poincaré duality which is now known as Verdier duality.

More and more aspects of the theory have been subsequently abstracted to
the pure triangular realm, most notably by Neeman [Nee96] who added to the
mix the powerful topological techniques of Brown representability and Bous-
field localisation. More recently, Fausk, Hu and May [FHM03] noticed the
formal similarities between Grothendieck-Verdier duality and the Wirthmüller
isomorphism in equivariant stable homotopy.

In this third part we present our contribution to this subject, taken from [13]
and [12], both written jointly with Paul Balmer and Beren Sanders. Our own
work can be seen as a continuation of Neeman’s and Fausk-Hu-May’s, in that
we continue the process of triangular formalisation and simplification of proofs.
Moreover, we further clarify the relation between Grothendieck duality and the
Wirthmüller isomorphism, and explain how to unify in this framework various
sorts of other duality phenomena in algebra and topology.

Concretely, we consider a coproduct-preserving tensor exact functor f∗ : D→
C between ‘big’ tensor triangulated categories (see §3.1), as often arise in practice
by pulling back representations, sheaves, spectra, etc., along some ‘underlying’
map f of groups, spaces, schemes, etc. (As we exclusively work at the level of
tensor triangulated categories, though, no role is played by such an f and in
fact it may well not exist.) As in algebraic geometry, we often think of D as the
base category over which C is defined, but in some examples it may rather be
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the other way round.
In this generality, we study the conditions for the existence of right or left

adjoints of f∗, and adjoints of these adjoints, etc.:

C

···

OO

��

OO

f∗ f∗
��

OO

��
···

D

(0.1)

As it turns out, the more adjoints exist, the stronger these functors must be
related by various canonical formulas. Surprisingly, we also discover that there
are only three possible distinct stages of adjunction:

Theorem (Trichotomy of adjoints). If f∗ is a coproduct-preserving tensor ex-
act functor between rigidly-compactly generated tensor triangulated categories
(see Hypothesis 3.1.1 below for details), then exactly one of the following three
possibilities must hold:

(1) There are two adjunctions as follows and no more: f∗ a f∗ a f (1).

(2) There are four adjunctions as follows and no more:

f(1)af∗af∗af (1)af(−1) .

(3) There is an infinite tower of adjunctions in both directions:

· · · f (−1) a f(1) a f∗ a f∗ a f (1) a f(−1) · · · f (n) a f(−n) a f (n+1) · · ·

All three stages often occur in examples. This theorem is an immediate
consequence of the results of §3.1-§3.3, which also characterise in much detail
what happens at each stage.

A central rôle in our theory will be played by a certain relative dualizing
object ωf (Definition 3.1.3), which also serves to unify the dualizing complexes in
Grothendieck duality and the canonical twist in the Wirthmüller isomorphism.

We then proceed in §3.4 to develop a general theory of dualizing objects and
show how to pull back or push forward subcategories with duality along the
‘push forward’ right adjoint f∗. This extends work of Calmès and Hornbostel
[CH09]. In §3.5 we show how a generalisation of Serre functors appears naturally
in this context. We include in §3.6 some concrete examples of dualities from
various domains of mathematics that fall under the mantle of our theory; more
can be found in [13].

We then conclude with the results of [12], where – under more relaxed hy-
potheses allowing us to also include examples from KK-theory – we look at the
“ambidextrous” situation, namely the situation when f∗ has isomorphic left and
right adjoints (corresponding to the case ωf ∼= 1). We show that, in many ex-
amples in which the functor f∗ arises as a restriction functor to a finite-index
subgroup, a strong monoidal version of monadicity holds, which lets us see these
functors as analogs of finite étale coverings in algebraic geometry.
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Examples
Because of the innate transdisciplinary nature of triangulated categories, ex-
amples from disparate realms of mathematics are to be found throughout this
memoir. The following summary should facilitate a topic-by-topic consultation.

Algebra: derived categories of (graded) commutative rings §2.6, §2.6.1, §3.6;
derived categories of dg rings §2.7.6; stable module categories §3.6.1; local
algebra and Matlis duality §3.6.8.

Geometry: derived categories of schemes §2.6, §2.6.4; Grothendieck duality
§3.6.4; Serre duality §3.6.7; equivariant sheaves §3.7.5.

Topology: the homotopy category of spectra §1.3.1; derived categories of ring
spectra §2.7, §3.6.2; homotopy categories of G-spectra §3.6.3, §3.7.3;
generalised Matlis duality §3.6.8.

KK-theory: Kasparov categories of C*-algebras §1.3.3; universal coefficient
theorems §1.4; Mackey functors in equivariant Kasparov categories §1.5;
trace computations in equivariant Kasparov categories §1.6; classifications
of subcategories §2.4.2.

The ordinary Kasparov category §1.4.1, §2.4.2; filtrated KK-theory §1.4.3;
equivariant KK-theory §1.4.5, §1.5, §1.6, §3.7.4.

Motives: noncommutative motives §2.8.
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1 Triangulated categories and homological alge-
bra

We present here the results of [15] (joint with Greg Stevenson and Jan Stovicek),
[6], and [11] (joint with Heath Emerson and Ralf Meyer).

1.1 Preliminaries on triangulated categories
We collect in this section the basic facts about triangulated categories that will
be used throughout. We refer to [Nee01] for most of the unproved statements
to be found here.

A triangulated category (in the sense of Verdier [Ver96]) is an additive cate-
gory T equipped with an auto-equivalence Σ: T ∼→ T , called suspension (trans-
lation, shift, . . . ), and a distinguished collection of diagrams of the form

X
f //Y

g //Z
h //ΣX

called the triangulation of T . The triangulation must satisfy a short list of
reasonable existence and closure axioms, which we do not repeat here, which
guarantee that the elements of the triangulation (called exact or distinguished
triangles, or just triangles) can be used to perform some basic homological alge-
bra reasoning. Note that the usual categorical tools of homological algebra are
quite useless in a triangulated category; for instance, the only monomorphisms
and epimorphisms in a triangulated category are the split ones! In fact, the
only limits and colimits one can expect to exist in a triangulated category are
products and coproducts.

It follows easily from the axioms that, in a distinguished triangle as above,
we have gf = 0, and f behaves as a weak kernel for g and g as a weak cokernel
for f ; here “weak” means that only the existence part, not the uniqueness part,
of the universal property of a (co)kernel holds. If f = 0 then g is a split mono,
and if g = 0 then f is a split epi.

The object Z in a triangle containing f , as above, is uniquely determined up
to a non-unique isomorphism and is called the cone of f , written Cone(f). A
basic result says that f is an isomorphism if and only if Z = 0. This often allows
to translate properties and constructions involving morphisms into ones only
involving objects, which can be a great simplification. An important example
of this is localisation; see §1.1.2.

1.1.1. Homological and exact functors. A crucial and motivating conse-
quence of the axioms is that if we take any distinguished triangle and use the
suspension functor Σ to unroll it into a doubly infinite sequence

. . .
−Σ−1g//Σ−1Z

−Σ−1h//X
f //Y

g //Z
h //ΣX

−Σf //ΣY
−Σg // . . .

and apply to this sequence the Hom functors T (U,−) or T (−, U) for any object
U ∈ T , then we obtain long exact sequences of abelian groups. Most (doubly

10



infinite) exact sequences appearing in Nature arise this way, and triangulated
categories make it easy to handle these sequences when they are still uncoiled,
so to speak, tightly packed within triangles.

More generally, an additive functor T → A (or T op → A) into some abelian
category is said to be homological (or cohomological) if it sends every (unrolled)
distinguished triangle to a long exact sequence in A.

Thus the (co)representable functors T (U,−) and T (−, U) are homological
functors that send products, respectively coproducts, to products of abelian
groups. One of the most useful features of triangulated categories is that, pro-
vided they admit sufficiently many coproducts and are nicely generated in some
sense, the converse is true: every cohomological functor (and, a little less fre-
quently, every homological functor) sending products (coproducts) to products
is representable by an object of the category; see §1.1.3.

Note that the (additive) Yoneda functor T → Mod T is homological, be-
cause exactness in the functor category Mod T is detected objectwise. More
generally, if C is an (essentially small) full subcategory of T , we will consider
the homological functor

hC : T → Mod C

obtained by sending X ∈ T to the restriction of T (−, X) to C. Although
typically not fully faithful anymore, such restricted Yoneda functors hC are very
useful tools for approximating triangulated categories by abelian categories; see
§1.2 and §1.5.1.

A functor F : T → S between two triangulated categories is exact (or trian-
gulated) if it preserves the suspension up to a natural isomorphism ΣF ∼= FΣ
(which may or may not be considered part of the data together with F , ac-
cording to one’s needs) and if it sends distinguished triangles to distinguished
triangles. Clearly, if we compose an exact functor with a homological one we
again get a homological functor. Quite conveniently, one can show that a functor
which is left or right adjoint to an exact one is automatically exact.

1.1.2. Thick and localising subcategories and localisation. If F is an
exact or homological functor on a triangulated category T , the closure properties
of its (full) kernel on objects

Ker(F ) := {X ∈ T | FX ∼= 0}

are those of a thick subcategory : it is a full, replete (i.e. closed under isomorphic
objects) additive subcategory of T stable under Σ and taking cones of maps
(i.e. it is a triangulated subcategory), and moreover it stable under taking direct
summands: if X ⊕ Y ∈ Ker(F ) then X,Y ∈ Ker(F ).

Conversely, every thick subcategory S ⊆ T is KerF for some exact functor
F (at least, if we ignore set-theoretical issues – which can usually be done safely
e.g. by passing to a higher universe). Indeed, the class of maps WS := {f ∈
Mod T | Cone(f) ∈ S} turns out to satisfy a calculus of left and right fractions
and to be compatible with the triangulation of T ; this compatibility ensures that
the localised category T [W−1

S ], obtained from T by formally inverting the maps
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of WS , can be endowed with a unique suspension and a unique triangulation
making the canonical functor

qS : T −→ T [W−1
S ]

exact; then S = Ker(qS).
Note that W−1

S consists precisely of the maps which are inverted by qS , and
that S andWS determine each other, as S = {X | ∃f ∈ WS s.t. X ∼= Cone(f)}.
This triangulation-compatible localisation is called a Verdier quotient, and the
category T [W−1

S ] is usually denoted by T /S.
If the triangulated categories T and U admit coproducts and F : T → U is

the exact functor preserves them, then Ker(F ) is closed under the formation of
coproducts. Conversely, if a thick subcategory is closed under coproducts — in
which case it is said to be a localising subcategory of T — then it gives rise to
a coproduct-preserving Verdier quotient qS : T → T /S.

1.1.3. Generators and Brown representability. A triangulated category
T is (classically) generated by a subset G of objects if the smallest thick sub-
category of T containing G is the whole of T .

If T admits arbitrary small coproducts, one says instead that T is (weakly)
generated by G if T is the smallest localising subcategory containing G. We write
Loc(S) for the localising subcategory generated by S ⊆ T . An object C ∈ T
is compact if T (C,−) preserves all coproducts, and T is compactly generated
if it admits a small set G of compact generators. Equivalently, T is compactly
generated if it admits small coproducts and a small set G of compact objects
such that, for any X ∈ T , T (C,X) = 0 for all C ∈ G implies X = 0.

By Neeman’s basic Brown representability theorem [Nee96], if T is compactly
generated, then every cohomological functor H : T op → Mod Z which sends
the coproducts of T to products of abelian groups is representable, i.e., H ∼=
T (−, X) for some X ∈ T . Similarly, socalled Brown representability for the
dual also holds (see [Nee01]), saying that every product-preserving homological
functor H : T → Mod Z is of the form H ∼= T (X,−) for some X.

These results can be easily translated into the existence of adjoint functors.
Say F : T → S is an exact functor between triangulated categories with T
compactly generated. Then F admits a right adjoint (resp. a left adjoint) if
and only if F preserves coproducts (resp. products). Note that the latter makes
sense, because arbitrary products automatically exist in a compactly generated
category.

Let ℵ be a regular cardinal, and say a set is ℵ-small if its cardinality is
strictly less then ℵ. It sometimes happens that a triangulated category T only
has arbitrary ℵ-small coproducts; see e.g. §1.3.3 for many examples with ℵ = ℵ1.
In this case we say that T is compactlyℵ generated if it admits a set of gener-
ators of cardinality less than ℵ and consisting of compactℵ objects, i.e., objects
C such that T (C,−) preserves coproducts and moreover T (C,X) is ℵ-small for
all X ∈ T . In a compactlyℵ generated category, Brown representability and
the existence of right adjoints still holds, provided the cohomological functors
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in question take ℵ-small values (see [MN06]). On the other hand, Brown rep-
resentability for the dual, the existence of left adjoints, or even the existence of
infinite products, may fail in a compactlyℵ generated category (see [2]).

1.2 Universal coefficient theorems
Very roughly speaking, a universal coefficient theorem is a statement express-
ing a triangulated category T as the extension of an abelian category A by a
nilpotent ideal of “phantom” maps. Concretely, this amounts to a natural short
exact sequence computing the Hom groups of the triangulated category as the
extension of one Hom group and one Ext group computed in A via a suitable
homological functor T → A. Virtually all “universal coefficient theorems” en-
countered in Nature arise this way, although this may not be obvious at first
sight.

Let us give some more details.

1.2.1. The UCT in the triangular setting. Let T be a triangulated cat-
egory and let C ⊂ T be a small full subcategory. We consider the abelian
category Mod C of right C-modules (i.e. additive functors Cop → Mod Z) and
the “restricted Yoneda” homological functor

hC : T −→ Mod C X 7→ T (−, X)|C

(see §1.1.1). For any two objects X,Y of T , we can consider the subgroup
ker(hC)(X,Y ) := {f ∈ X → Y | hC(f) = 0} of T (X,Y ) of C-phantom maps
between them. To every such C-phantom f we can associate an element ξ(f) of
Ext1

C(hCΣX,hCY ) by completing f to a distinguished triangle X → Y → Z →
ΣX and applying hC to obtain an exact sequence 0→ hCY → hCZ → hCΣX →
0 in Mod C; one sees easily that its Ext class ξ(f) does not depend on the choice
of the distinguished triangle. We thus obtain a canonical diagram

0 // ker(hC)(X,Y )

ξ ��

// T (X,Y )
hC // HomC(hCX,hCY )

Ext1
C(hCΣX,hCY )

where the first row is is exact.
We say that the universal coefficient theorem (=: UCT ) for X and Y with

respect to C holds if the map hC is surjective and the map ξ is invertible. The
resulting short exact sequence

0 //Ext1
A(hCΣX,hCY ) //T (X,Y ) //HomC(hCX,hCY ) //0

is the associated UCT exact sequence.
Typically then, a “universal coefficient theorem” is a result stating that,

under some hypotheses, some particular instance of the UCT holds, in the above
sense. In order to obtain a very general form of the UCT, one essentially only
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needs to assume that X belongs to the localising subcategory generated by C
and that the C-module hCX has projective dimension at most one. This is quite
well-known (see e.g. [Chr98] [MN10]), although for some of our applications we
will need the following refinement to a cardinality-relative statement.

1.2.2 Terminology. Fix an infinite regular cardinal ℵ. A set is ℵ-small if it has
cardinality strictly less then ℵ. An ℵ-small coproduct is one indexed by an
ℵ-small set. In the abelian category Mod C, we say an object X is ℵ-generated,
respectively ℵ-presentable, if there is an exact sequence C → X → 0, resp. D →
C → X → 0, where C,D are ℵ-small coproducts of representable C-modules.
We write Locℵ(S) for the ℵ-localising subcategory generated by S ⊂ T , i.e., the
smallest triangulated subcategory containing S and closed under the formation
of (all available) ℵ-small coproducts in T . In the following, we may choose ℵ to
be ‘the cardinal of a proper class’, in which case the above terminology reduces
to the usual ‘absolute’ one.

1.2.3 Theorem ([15, Thm. 9.4]). Let T be an idempotent complete triangulated
category admitting arbitrary ℵ-small coproducts, and let C be a full subcategory
of T which we assume consists of compact objects (so that hC commutes with
coproducts) and is suspension closed (i.e. ΣC = C). Suppose moreover that
hC(X) is ℵ-generated for every object X of Locℵ(C) ⊆ T . Then the UCT holds
with respect to C for all X ∈ Locℵ(C) such that pdimC hC(X) 6 1 and for
arbitrary Y ∈ T .

The above UCT is ‘local’, in that it considers one object X at a time. We
can easily derive from it a ‘global’ version:

1.2.4 Corollary ([15, Thm. 9.5]). Let T and C be as in Theorem 1.2.3 with the
further assumption that hCX is ℵ-generated and pdimC hCX 6 1 for all X ∈ T .
Then the essential image of hC is the following hereditary exact category:

E := {M ∈ Mod C | pdimCM 6 1 and M is ℵ-presentable} .

Moreover, the functor hC : Locℵ(C) → E is full, essentially surjective, and re-
flects isomorphisms. In particular, it induces a bijection on isomorphism classes
of objects.

In order to apply the abstract UCT of Theorem 1.2.3 in a given triangulated
subcategory T , one must be able to effectively identify those subcategories C ⊂
T for which there are enough interesting X ∈ Loc(C) with pdimC hCX 6 1.

Classically, one considers a compact object G ∈ T whose graded endomor-
phism ring R = End∗T (G) is hereditary; taking C := {ΣnG | n ∈ Z} to be the
suspension closure of G, we see that Mod C is just the category of graded right
R-modules, which by hypothesis has global dimension one. The UCT follows.

In some more ‘exotic’ situations, however, one encounters small categories
C such that Mod C is not hereditary (indeed, it may have infinite global dimen-
sion), but the UCT still holds. As it turns out, in all these examples this is
because of the combination of two reasons:
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(A) every object M of Mod C has either projective dimension 1 or ∞, and

(B) the homological functor hC can only take values in objects of finite pro-
jective dimension.

Thus we have to understand which subcategories C are nice enough for (A) and
(B) to occur. To understand (A), it suffices to consult the theory of Gorenstein
categories (see §1.2.5), while part (B) is more subtle and leads us to the notion
of a Gorenstein closed subcategory (see §1.2.8). By combining them, we will
obtain a new powerful form of the UCT, namely Theorem 1.2.11.

1.2.5. Gorenstein categories. Classically, a Gorenstein ring is a commuta-
tive noetherian ring having finite injective dimension as a module over itself (at
least locally). This condition imposes some strong symmetries on the homo-
logical algebra over that ring, the first of them being that the maximal finite
projective dimension and the maximal finite injective dimension of its modules
coincide, and are equal to the injective dimension of the ring. Hence regular
(noetherian and commutative) rings are Gorenstein as they have finite global
dimension, but the singular case is even more interesting, because then one has
a dichotomy: the projective or injective dimension of modules can be infinite,
but whenever it is finite it must be uniformly bounded by the same number –
the Gorenstein dimension of the ring.

For our purposes, we need a simultaneous non-commutative, non-noetherian
and several-objects generalisation of this notion. Luckily, such a theory already
exists for arbitrary Grothendieck categories; it was introduced and studied by
Enochs, Estrada and García-Rozas [EEGR08]. We apply it to the Grothendieck
category Mod C of right C-modules over a small category C.

According to this definition, we say the small category C (or the abelian
category Mod C) is Gorenstein if:

• for all M ∈ Mod C, the projective dimension of M is finite if and only if
its injective dimension is finite: pdimCM <∞ ⇔ idimCM <∞; and

• the finitary injective and finitary projective dimensions of Mod C are finite:

sup{pdimCM |M ∈ Mod C,pdimCM <∞} <∞ ,

sup{pdimCM |M ∈ Mod C, idimCM <∞} <∞ .

If this holds the infinitary injective and projective dimensions automatically
coincide. This number n ∈ N is called the Gorenstein dimension of C, and we
say that C is n-Gorenstein.

For instance, ifR is a ring which happens to be both left and right noetherian,
then R = C is Gorenstein in our sense iff it has finite injective dimension over
itself both as a left and a right module (see [15, Ex. 2.2]), i.e., iff R is an Iwanaga-
Gorenstein ring in the sense of [EJ00]; this is a well-studied standard notion of
Gorensteinness for noncommutative rings.

In [15] we prove a few new criteria for recognising Gorenstein categories,
thereby unifying some previous results. Here we only present two of them.
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Although, in view of point (A) in §1.2.1, we are really only interested in 1-
Gorenstein categories, our criteria work equally well in all dimensions.

1.2.6 Theorem ([15, Thm. 4.6]). Let C be a small k-category for some com-
mutative ring k. Assume the following:

(1) C is bounded, that is, for any fixed object C ∈ C there are only finitely
many objects of C mapping nontrivially into or out of C.

(2) The Hom k-modules C(C,D) are all finitely generated projective.

(3) Each unit map k→ EndC(C), C ∈ C, admits a k-linear retraction.

(4) C admits a Serre functor relative to k, that is, a self-equivalence S : C ∼→ C
equipped with a natural isomorphism

C(C,D) ∼= C(D,SC)?

where (−)? = Homk(−, k) denotes the k-linear dual.

If R is any n-Gorenstein k-algebra (for instance n = 1 and R = k = Z), then
the R-category R⊗k C (extend scalars Hom-wise) is n-Gorenstein as well.

The following known examples, which look quite dissimilar at first sight, can
all be obtained as easy applications of the above theorem (see [15, §4]):

• If G is a finite group and R an is n-Gorenstein ring, the group algebra RG
is n-Gorenstein.

• If R is an n-Gorenstein ring, then the abelian category Ch(R) of chain
complexes of right R-modules is n-Gorenstein; and similarly for left mod-
ules, and for categories of π-periodic complexes of any period π ∈ N.

• Let k be a commutative n-Gorenstein ring, and let T be a k-linear trian-
gulated category with a Serre functor. Then any small bounded full sub-
category C ⊂ T closed under the Serre functor and such that EndC(C) ∼= k
for all C ∈ C, is n-Gorenstein.

The other criterion we mention here is specific to triangulated categories:

1.2.7 Theorem ([15, Thm. 6.1]). Let C be a triangulated category which admits
a skeleton with at most ℵn morphisms. Then C is an m-Gorenstein category for
some m ≤ n+ 1.

The most famous example of such a triangulated category C, with n = 0,
is the Spanier-Whitehead category, i.e. the stable homotopy category of finite
pointed CW-complexes — in other words, the homotopy category of finite spec-
tra — which is well-known to admit a countable skeleton. See e.g. [Mar83].
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1.2.8. Gorenstein closed subcategories of triangulated categories. We
now consider point (B) of §1.2.1: if C is a small 1-Gorenstein category occurring
as a full subcategory of a triangulated category T , what conditions ensure that
the restricted Yoneda functor hC : T → Mod C takes values in modules of finite
(hence necessarily 6 1) projective dimension?

The next theorem provides several necessary and sufficient conditions for
this to happen which, as it turns out, work uniformly for categories of any
Gorenstein dimension n. In order to formulate our result we need to recall one
more definition: an object M ∈ Mod C is Gorenstein projective if it admits a
complete projective resolution, that is, if there exists an exact complex P • =
(P i, di)i∈Z of projectives withM = Ker(d0) and such that the complex C(P •, Q)
is exact for every projective module Q.

We denote by add C the additive closure of C in T , i.e., the smallest full
subcategory of T containing C and closed under the formation in T of direct
sums and retracts.

1.2.9 Theorem ([15, Thm. 8.6 and Prop. 8.2]). Consider a small suspension-
closed full subcategory C of a triangulated category T , and assume that Mod C
is Gorenstein (§1.2.5) and locally coherent (e.g. locally noetherian). Then the
following four conditions are equivalent:

(1) The C-module hCX has finite projective dimension for every object X ∈ T .
(2) For every finitely presented Gorenstein projective C-moduleM , there exists

a distinguished triangle X → Y → Z → ΣX in add C such that M ∼=
Im(hCX → hCY ).

(3) There exists a set S of finitely presented Gorenstein projective C-modules
such that:

• Every M ∈ S occurs as a syzygy of a triangle in add C, as in (2).
• The modules of S, together with the finitely presented projectives,
generate all finitely presented Gorenstein projectives by taking exten-
sions and retracts.

(4) If X → Y is a morphism in add C such that the image of hCX → hCY is
Gorenstein projective, then the cone of X → Y is also in add C.

Definition. If the equivalent conditions of the theorem are satisfied, we say
that C is Gorenstein closed in T .

Thus C is Gorenstein closed in T if its additive closure contains ‘sufficiently
many’ distinguished triangles.

Here is a suggestive way to understand our theorem (see [15, §2] for details).
As C is Gorenstein, the subcategory GProj C ⊂ Mod C of Gorenstein projective
modules is a Frobenius exact category and therefore its stable category GProj C
(the quotient of GProj C by the ideal of all maps factoring through a projective)
is a triangulated category with arbitrary small coproducts. If C is also locally
coherent, the image in GProj C of the finitely presented Gorenstein projectives

17



are precisely its compact objects, (GProj C)c. In many situations, the triangu-
lated category (GProj C)c is called the singularity category of C and is thought
of as measuring how far C is from being regular. What our theorem says is
that hC takes values in modules of finite projective dimension precisely when,
among the (necessarily finitely presented and Gorenstein projective) syzygies
of the distinguished triangles contained in add C, we find a set of generating
objects for the singularity category of C.

1.2.10. The Gorenstein UCT. It is now immediate to combine the abstract
UCT of Theorem 1.2.3 with our answers to the points (A) and (B) as given in the
previous two sections. The result is a new criterion for recognising more concrete
universal coefficient theorems, which we may call “the Gorenstein UCT”:

1.2.11 Theorem ([15, Thm. 9.16]). Let T be an idempotent complete triangu-
lated category with ℵ-small coproducts, for some infinite regular cardinal ℵ. Let
C be a Gorenstein closed (§1.2.8) and suspension closed full subcategory of com-
pact objects of T such that Mod C is locally coherent and 1-Gorenstein (§1.2.5).
Then the UCT with respect to C holds for all pairs of objects X,Y ∈ T provided
that X ∈ Locℵ(C).

Moreover, the following dichotomy holds for any ℵ-presented C-module M :

• either pdimCM 6 1 and M ∼= hCX for some X ∈ Locℵ(C) ⊆ T ,
• or pdimCM =∞ and M is not of the form hCX for any object X ∈ T .

Note that, in the absolute case (with ℵ the ‘cardinality of a proper class’),
the condition on C-modules to be ℵ-presented is void.

In the next two sections we present some applications of this result.

1.3 Applications: Brown-Adams representability
In §1.2.5 we have given some evidence that it often possible to recognise 1-
Gorenstein categories. In order to apply Theorem 1.2.11 though, we must also
be able to recognise Gorenstein closed subcategories of a given triangulated
category T , i.e., we must somehow recognise them in concrete examples; it is
not clear whether the abstract characterisation of Theorem 1.2.9 can be used
for this purpose. Indeed, this seems to be a much harder problem, but there are
at least two cases where it actually becomes trivial.

The first case is the regular one: if G ∈ T is a compact object with a hered-
itary graded endomorphism ring — i.e. such that Mod C has global dimension
6 1 for C = {ΣiG | i ∈ Z} — then the only Gorenstein projective C-modules
are the projective ones, hence C is obviously Gorenstein closed, and we obtain
a UCT, the most classical instance of all being obtained with T = D(R) the
derived category of a hereditary ring (or dg-algebra) and G = R. Of course,
we didn’t need all this Gorenstein business to prove it, so this first case is not
so interesting — although it does show that that the classical UCT’s used in
algebra, topology and KK-theory are also covered by Theorem 1.2.11 (see [15,
Examples 9.11 and 9.12] for details).
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As we explain next, the second obvious case occurs at the opposite end of
the spectrum, where we take C to consist of all compact objects.

1.3.1. A new proof of Neeman’s Brown-Adams representability. Let
C = T c be the subcategory of all compact objects in T . As it is a triangulated
category in its own right, Theorem 1.2.7 tells us that C is Gorenstein provided
it is not too big; in particular, it is 1-Gorenstein if it admits a skeleton with
countably many maps. Moreover, it being triangulated immediately implies that
it is Gorenstein closed (see Theorem 1.2.9), and also locally coherent (because
triangulated categories have weak kernels). Therefore we can now specialise
Theorem 1.2.11, or rather its global version as in Corollary 1.2.4, to the following
representability result which was first proved by Neeman [Nee97].

1.3.2 Theorem ([15, Thm. 9.17]). Let T be a triangulated category admitting
arbitrary small coproducts and such that its category of compact objects, T c,
admits a skeleton with only countably many morphisms. Then all cohomological
functors on T c are represented by objects in T , and all natural transformations
between them can be lifted to morphisms in T . That is, every natural trans-
formation H → H ′ between cohomological functors H,H ′ : (T c)op → Mod Z
is isomorphic to one of the form T (−, X)|T c → T (−, X ′)|T c induced by some
morphism f : X → X ′ of T .

The example where T is the homotopy category of spectra, whose compact
objects — finite spectra — are well-known to admit a countable skeleton, re-
covers the original representability theorem of Brown and Adams [Ada71].

An advantage of our approach, which starts out by identifying T c as a small
1-Gorenstein category, is that it gives a neat conceptual explanation for some
phenomena surrounding this theorem, such as the following dichotomy for a
functor F : (T c)op → Mod Z: either F is homological and representable, in
which case it has projective and injective dimension at most one over T c, or
it is neither representable nor homological and it has infinite projective and
injective dimension. (Cf. [CS98, Prop. 1.4] for this result in the example of
spectra, or more generally, for a “monogenic Brown category”.)

1.3.3. The countable case and Kasparov’s KK-theory. Another advan-
tage of our approach is that it is more flexible. For instance, our cardinal-
reckoning lets us easily find a version of the Brown-Adams representability the-
orem which holds in categories where only countable coproducts are available.
Recall the definitions of ℵ1-generated and Locℵ1(−) from Terminology 1.2.2.

1.3.4 Theorem ([15, Thm. 9.18]). Let T be a triangulated category admitting
arbitrary countable coproducts and such that T c is essentially small and T =
Locℵ1

(T c). Then all ℵ1-generated cohomological functors on T c and all natural
transformations between them are representable in T .

This can be applied, for instance, to the triangulated categories that arise
in connection with Kasparov’s KK-theory of C*-algebras. We refer to them
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collectively as Kasparov categories and point the reader to [MN06] and especially
[Mey08] for introductions.

These triangulated categories have the following features in common. The
objects are (non-necessarily unital) separable complex C*-algebras, possibly
equipped with some extra structure, and their Hom groups are given by some
variant of Kasparov’s bivariant topological K-groups KK0(−,−). The suspen-
sion functor is given by the function algebra ΣA = C0(R, A) and satisfies Bott
periodicity : Σ2 ∼= id. Because of this, all homological functors on Kasparov
categories naturally take values in Z/2-graded rather than Z-graded objects.
The distinguished triangles all arise (up to isomorphism) from a noncommuta-
tive generalisation of the Puppe sequences of topological spaces or, equivalently,
from a suitably nicely behaved class of C*-algebra extensions.

Because of the separability hypothesis on the C*-algebras, Kasparov cat-
egories only admit countable (= ℵ1-small) coproducts, rather than arbitrary
small ones. Moreover, they are typically not compactlyℵ1

generated, nor nicely
generated in any manner. This can be easily remedied by choosing a suitable
countable (or finite) generating subset G ⊂ T of compactℵ1

objects and by con-
sidering instead the triangulated subcategory B := Locℵ1(G). Such compactlyℵ1

generated triangulated categories B are usually called bootstrap categories by
operator algebraists.

Let us give some examples:

• The first example is the original Kasparov category KK of separable C*-
algebras [Kas80]. By choosing C = {C} we obtain the original bootstrap
category B ⊆ KK studied by Rosenberg and Schochet as the domain of
application of their eponymous UCT [RS87]. Note that B contains all
C*-algebras which are KK-equivalent to a commutative one.

• Given a suitable topological space T , there is a Kasparov category KK(T )
of bundles of C*-algebras over T . With the goal of extending the classifica-
tion program to non-simple C*-algebras, Meyer and Nest [MN09] [MN12]
have studied the case when T is a finite poset with the associated Alexan-
drov topology, and have introduced a bootstrap category B ⊆ KK(T )
whose algebras are those bundles whose fibres belong to the Rosenberg-
Schochet bootstrap class.

• If G is a second countable locally compact group [Kas88], there is a Kas-
parov category KKG of G-C*-algebras, which are C*-algebras equipped
with a continuous G-action. (Le Gall has also defined a Kasparov category
for groupoids, which generalises simultaneously that for G-C*-algebras
and for bundles; see [LG99] [MN06].) For G a finite group, the bootstrap
category B ⊆ KKG defined by G = {C(G/H) | H 6 G} has been studied
by Köhler [Köh11] and myself [6]. A larger equivariant Bootstrap category
B ⊂ KKG has been considered by myself, Emerson and Meyer [11].

As these B lack arbitrary coproducts, the usual version of Brown-Adams
representability, Theorem 1.3.2, cannot be used here — indeed, its conclusion
would be wrong. The correct result is obtained by applying Theorem 1.3.4:
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1.3.5 Theorem ([15, Thm. 10.25]). Let B = Locℵ1(G) be any of the bootstrap
triangulated categories of C*-algebras as above, where the full suspension-closed
subcategory of generators Σ0,1G has at most countably many objects and maps.
Then every natural transformation α : H → H ′ between two cohomological func-
tors H,H ′ : (Bc)op → Mod Z is represented by a map X → X ′ of B, provided
H(ΣiC) and H ′(ΣiC) are countable for all C ∈ G and i ∈ Z/2Z.

1.4 UCT’s for the KK-theory of C*-algebras
Our Gorenstein universal coefficient theorem (§1.2.10) generalises the classical
UCT’s of algebra, topology, and KK-theory so as to include the Brown-Adams
representability theorem (§1.3.1). Our original motivation, however, was to
unify and explain the ‘exotic’ UCT’s discovered for certain variants of KK-
theory of C*-algebras by Ralf Meyer and collaborators. We now briefly present
these examples and show how they fit in our theory, referring to §1.3.3 for basic
facts about the Kasparov categories and bootstrap categories involved.

1.4.1. The universal multi-coefficient theorem. Let T = KK be the Kas-
parov category of separable C*-algebras. The Rosenberg-Schochet UCT for
C*-algebras [RS87] computes the KK-theory of any separable C*-algebras A,B
with A in the bootstrap category B = Loc(C) by a short exact sequence

0 //Ext1
Z(K∗−1A,K∗B) //KK(A,B) //HomZ(K∗A,K∗B) //0 .

It can be obtained immediately from Theorem 1.2.3 by setting C = {C,ΣC},
so that Mod C is the category of Z/2-graded abelian groups and hC = K∗ is
topological K-theory.

In order to study finer structures on the KK-theory groups, Dadarlat and
Loring [DL96] have proved a “multi-coefficient” UCT short exact sequence (again
for A ∈ B and B arbitrary)

0 //Ext1
Λ(K∗−1A,K∗B) //KK(A,B) //HomΛ(K∗A,K∗B) //0 .

where the invariant K∗(−) =
⊕∞

n=0K∗(−; Z/n) collects all K-theory groups
with cyclic or integer coefficients, and is considered as a (left) module over the
category of “generalised Bockstein operations”. The group Ext1

Λ is also known
as pure ext, Pext. One sees by direct inspection that Λop is isomorphic to the
full subcategory C := {Cone(n · idC),Σ Cone(n · idC) | n ≥ 0} of KK and that
K∗ identifies with hC .

1.4.2 Theorem ([15, Thm .10.1]). The above category C is 1-Gorenstein and
is Gorenstein closed in the ambient triangulated category KK.

Therefore we can obtain a new proof of the Dadarlat-Loring universal multi-
coefficient theorem by combining the latter theorem with our Gorenstein UCT,
Theorem 1.2.11 (with ℵ = ℵ1).
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1.4.3. Filtrated KK-theory. Consider the Kasparov category KK(Tn) of
bundles of C*-algebras over a certain finite topological space Tn, designed so
that such bundles amount to C*-algebras equipped with a chosen filtration by
n − 1 ideals (thus e.g. KK(T1) = KK and the objects of KK(T2) are the C*-
algebra extensions 0→ J → A→ A/J → 0).

Meyer and Nest [MN12] have proved for such filtered C*-algebras A,B ∈
KK(Tn), with A in a suitable bootstrap class B, a UCT

0 //Ext1
NT∗(FK∗−1A,FK∗B) //KK(Tn)(A,B) //HomNT∗(FK∗A,FK∗B) //0

where the invariant A 7→ FK∗(A), filtrated K-theory, assembles the ordinary
K-theory groups of all subquotients of the given filtration of A, and is consid-
ered as a (left Z/2-graded) module over its graded category NT ∗ of natural
transformations. As it turns out, FK∗ is the restricted Yoneda functor hC for a
certain full subcategory C := {ΣiR[a,b] | i ∈ {0, 1}, 1 6 a 6 b 6 n} ⊂ KK(Tn),
also introduced by Meyer and Nest.

1.4.4 Theorem ([15, Thm. 10.9]). Let C ⊂ KK(Tn) be the full subcategory rep-
resenting filtrated K-theory, as above. Then C is 1-Gorenstein and is Gorenstein
closed in KK(Tn).

By combining this with the Gorenstein UCT, as before, we obtain a new
proof of Meyer and Nest’s UCT for filtered C*-algebras.

1.4.5. Equivariant KK-theory. Let Cp be a cyclic group of prime order p.
Köhler [Köh11] proved a remarkable UCT for KKCp , the Cp-equivariant Kas-
parov category, using as invariant (what amounts to) the restricted Yoneda
functor hC for the six-objets full subcategory C = Σ0,1{C, C(Cp),Cone(u)},
where u : C→ C(Cp) is the unit map of the function algebra C(Cp).

Although we were not able to give a new and simpler proof of Köhler UCT
(as we did for the previous examples), the next theorem implies that it too falls
nicely within our framework:

1.4.6 Theorem ([15, Thm. 10.16]). Köhler’s category C is 1-Gorenstein.

Indeed, C is 1-Gorenstein by the theorem and, by Köhler’s UCT and the
characterisation of Theorem 1.2.9, it must also be Gorenstein closed in KKG.

1.5 Equivariant KK-theory and Mackey functors
In this subsection we present the results of [6], where we apply the theory of
Mackey functors, whose origins are in representation theory, to the study of
equivariant topological KK-theory of finite groups. The general framework for
this application is relative homological algebra in triangulated categories, which
we explain first.
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1.5.1. General relative homological algebra. Universal coefficient theo-
rems as in §1.2 are actually quite rare, and most of the time one has to make
do with spectral sequences. The theory that neatly handles the general situa-
tion is relative homological algebra in triangulated categories, an adaptation to
triangulated categories of the classical (relative) homological algebra in abelian
categories, and which is mostly due to Christensen [Chr98], Beligiannis [Bel00]
and Meyer-Nest [MN10] [Mey08], although its roots go back to work of Adams
in stable homotopy [Ada74] (see also Brinkmann [Bri68] for an early axiomati-
sation).

Rather then present the general theory, we briefly describe those definitions
and results that will be used in the later sections. Assume we are given a
triangulated category T equipped with, at least, all countable coproducts; it
follows in particular that T is idempotent complete. Fix also a full subcategory
C ⊂ T c of compact objects and consider, as in §1.2, the C-restricted Yoneda
homological functor

hC : T −→ Mod C X 7→ T (−, X)|C =: hCX

as well as its kernel on morphisms

I := ker(hC) = {f ∈ Mor T | hC(f) = 0} .

By construction, the latter is a stable homological ideal, that is, a categorical
ideal (consisting of subgroups I(X,Y ) ⊆ T (X,Y ) and closed under arbitrary
compositions on both sides) which moreover is closed under suspensions, desus-
pension, coproducts and some other operations involving triangles, translating
the fact that it is the kernel of a homological functor. Such an ideal I of
“phantom maps” is precisely the data necessary to define a notion of relative
homological algebra in T , where the collection of all distinguished triangles

X // // Y // // Z
f // ΣX

with f ∈ I takes on a rôle similar to that of the admissible short exact sequences
in an exact category. We thus have associated notions of I-monomorphisms
(�), I-epimorphisms (�), I-projective objects — those X ∈ T such that
T (X, f) = 0 for all f ∈ I — and so on.

Because I is not any abstract stable homological ideal but is actually defined
by C, we are guaranteed the existence of enough I-projective objects: they are
simply given by Add C, the closure of C in T under retracts and coproducts.
We can then use I-projective resolutions to define the I-relative left derived
functors LInF of any homological functor F : T → A, as well as the relative
right derived functors Rn

IG of any cohomological functor G : T op → A. As
[Mey08] explains in detail, provided that F preserves coproducts and G sends
coproducts to products, these derived functors assemble into exact triples and
yield two spectral sequences of the form

E2
p,q = LIpF (ΣqX)

n=p+q
=⇒ F (ΣnX) Ep,q2 = Rp

IG(Σ−qX)
n=p+q
=⇒ G(ΣnX)
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for every X ∈ Loc(C).
By choosing G := T (−, Y ) for any Y ∈ T , we obtain from the second

spectral sequence a very general universal coefficient theorem spectral sequence
computing T (X,Y ), where the input Ep,q2 identifies with certain I-relative Ext
functors (see [6, Thm. 5.15] for details). In case pdimC hCX 6 1, this spectral
sequence collapses and specialises to the UCT short exact sequence already
encountered in §1.2.1.

If T happens to be equipped with a biexact tensor product ⊗ : T × T → T ,
i.e. is a tensor triangulated category in the sense of Section 2, then we can choose
F := hC(−⊗Y ) for any Y ∈ T and obtain this way a Künneth spectral sequence
computing the value of restricted Yoneda at a tensor product, hC(X,Y ). In this
case the input E2

p,q is given by certain Tor functors.

1.5.2. Mackey and Green functors. (See [Bou97] [Lew81].) Fix a finite
group G. Denote by B the Burnside category ; this is the additive category
whose objects are all finite G-sets and where a morphism X → Y is a formal
linear combination of isomorphism classes of spansX ← S → Y ofG-equivariant
maps. The composition of B is induced by the pullback of G-sets. A Mackey
functor (for G and with coefficients in Z) is an additive functor Bop → Mod Z.
We denote by MackZ(G) := ModB, or simply by Mack, the abelian category of
Mackey functors. Alternatively, one may choose any reasonable abelian category
of values instead of Mod Z. A typical choice is Mod k for any commutative ring k;
in the next subsection we will use Z/2-graded abelian groups.

The cartesian product of G-sets induces a bilinear symmetric monoidal struc-
ture on B, which by taking suitable Kan extensions (“Day convolution”) can
be extended to an additive closed symmetric monoidal structure on Mack.
This is usually called the box product of Mackey functors. The tensor unit
1 = B(−, G/G) is known as the Burnside ring functor; its value on X = G/H is
the Grothendieck group K0(H- set) of finite H-sets with sum given by disjoint
union. We denote it by Bur (a more canonical, but for us rather inconvenient,
notation is A). Concretely, a Mackey functor M is entirely determined by its
values on the orbits G/H and by the restriction, transfer and conjugation maps

rHL := M(G/L← G/L→ G/H) tHL := M(G/H ← G/L→ G/L)

cg,H := M(G/gH ← G/H → G/H)

for all L ⊆ H ⊆ G and g ∈ G.
A (commutative) Green functor is by definition a (commutative) monoid

R = (R,m, u) in the tensor category Mack, i.e., it is an object R equipped with
maps m : R ⊗ R → R and u : Bur → R making the evident associativity, unit
and commutativity diagrams commute in Mack. Concretely, a Green functor
is the same as a Mackey functor R taking values in rings and such that its
restriction and conjugation maps are ring morphisms and its transfers satisfy
the Frobenius formulas tHL (x) · y = tHL (x · rHL (y)).

Similarly, a (left) Mackey module, or simply module, over a Green functor
R is a Mackey functor M equipped with an action map R ⊗M → M which
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makes an associativity and unit diagrams commute; as before, a more concrete
description can also be given. Mackey modules over R and action-preserving
maps assemble into an abelian category R-Mack.

By a result of Bouc (see [Bou97, §3.2]), the category R-Mack is itself the
abelian module category ModBR over a certain essentially small additive cat-
egory BR, which we call the Burnside-Bouc category of R. As with B, the
objects of BR are finite G-sets; its Hom groups are BR(X,Y ) = R(X × Y ) and
composition can be described by an explicit formula in terms of R.
1.5.3 Examples. We need only consider two examples of commutative Green
functors, which are also probably the most classical and well-known of all.

• If R = Bur is the Burnside ring, as above, then clearly Bur-Mack = Mack,
because being the tensor unit Bur acts canonically and uniquely on all
Mackey functors. Indeed, we have the equality BBur = B.

• The representation Green functor, Rep, is given by its value on G/H,
namely the integral complex representation ring RC(H) of H (or equiv-
alently, the ring of complex characters on H), together with its usual
restriction, transfer (induction) and conjugation maps.

1.5.4. Mackey modules from topological K-theory. We now explain how
the representation Green functor Rep and its module category Rep-Mack are
present at the very heart of equivariant KK-theory, similarly to the way the
Burnside Green functor and its modules (i.e., Mackey functors) are central as-
pects of equivariant stable homotopy. Here below, Mackey functors will take
values in Z/2-graded abelian groups.

Fix a finite group G as before.
As in §1.3.3, consider the G-equivariant Kasparov category KKG. Recall

that G-equivariant topological K-theory is a functor KG
∗ defined on G-C*-

algebras and corepresented in the equivariant Kasparov category KKG by the
tensor unit C: KKG(ΣnC,−) = KG

n (see [Phi87]). More generally we have
KH
n (ResGH A) = KKG(ΣnC(G/H), A), i.e., the equivariant K-theory of actions

restricted to a subgroup H is corepresented by the finite dimensional G-algebras
C(G/H) of complex functions on the orbit G/H.

Definition. For any G-C*-algebra A, we can define a Mackey functor kG∗ (A)
by setting kG∗ (A)(G/H) := KH

∗ (ResGH A), by choosing the evident restriction
and conjugation maps, and by taking the transfer maps to be those introduced
by Phillips in [Phi87, §5.1].

1.5.5 Theorem ([6, Prop. 4.5, Lem. 4.7, Thm. 4.9]). The above definition ex-
tends naturally to a functor

kG∗ : KKG → Rep-Mack A 7→ kG∗ (A) = kG0 (A)⊕ kG1 (A)

from the Kasparov category of separable G-C*-algebras to the category of Mackey
modules over Rep, the complex representation Green functor for G with values
in Z/2-graded abelian groups (§1.5.2). Moreover, the restriction of kG∗ : KKG →
Rep-Mack to the full subcategory {C(G/H) : H 6 G} of KKG is fully faithful.
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Consider now the following full subcategories of KKG

PermG := {C(X) | X ∈ G-Set} permG := {C(X) | X ∈ G- set}

consisting of the ‘permutation algebras’ associated with all, respectively all fi-
nite, G-sets (here C(X) denotes the C*-algebra of complex functions on X with
the left G-action induced by the one on X).

1.5.6 Theorem ([6, Thm. 4.11]). For every finite group G, the functor of The-
orem 1.5.5 restricts to an equivalence (in fact, an isomorphism)

kG∗ = kG0 : permG ∼−→ BRep

of linear tensor categories between permG and the subcategory of representable
Rep-modules, i.e., with the Burnside-Bouc category BRep associated with G and
the representation Green functor Rep (see §1.5.2).

In particular, it now follows immediately from the properties of BRep:

1.5.7 Corollary ([6, Cor. 4.12]). There is a canonical equivalence between the
category of additive functors (permG)op → Mod Z (or equivalently, of coproduct-
preserving additive functors (PermG)op → Mod Z), and the category of (un-
graded) Mackey modules over the representation Green functor Rep. If we equip
the functor category with the Day convolution tensor product, we have a sym-
metric monoidal equivalence.

All our results of this subsection are close KK-theoretic analogues of well-
known results in stable homotopy theory. In particular, finite G-sets can be
mapped as suspension spectra into the G-equivariant stable homotopy category
SH(G), where they form a full subcategory {Σ∞+ X | X ∈ G- set} isomorphic
to the Burnside category B for G. It follows that the equivariant homotopy
groups naturally take values in Mackey functors (i.e., Bur-modules), just like
topological K-theory takes values in Rep-modules as we explained above.

1.5.8. UCT and Künneth spectral sequences for KKG. We now want
to approximate the triangulated equivariant Kasparov category KKG by the
abelian categoryRep-Mack of Z/2-graded modules over the representation Green
functor. We accomplish this by applying the relative homological algebra of
§1.5.1 with the following choice of generating compact objects:

C := {C(G/H),ΣC(G/H) | H 6 G}

By construction, the best results will only hold for G-C*-algebras in the boot-
strap category Loc(C) = Locℵ1(C) = Locℵ1(PermG). We denote this subcate-
gory by CellG and call its objects G-cell algebras. Note that CellG, being gener-
ated by the ‘canonical orbits’ C(G/H), is a better analogue of the equivariant
stable homotopy category SH(G) than KKG — which, as far as is known, has
no good generation properties. Moreover, it can be shown that CellG contains
many G-C*-algebras of interest, e.g. all commutative ones.
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By combining Theorem 1.5.5 with the classical Brauer and Artin induction
theorems for the representation theory of finite groups, we can easily reduce the
number of generators. Recall that a finite group is elementary if it is a product
of a p-group for some prime number p and a cyclic group of order prime to p.

1.5.9 Theorem ([6, Prop. 2.11]). For every finite group, we have

CellG = Locℵ1({C(G/E) | E is an elementary subgroup of G})
CellGQ = Locℵ1

({C(G/C) | C is a cyclic subgroup of G})

where CellGQ denotes the coproduct-compatible rationalisation ([2, Thm. 2.33]).

As explained in §1.5.1, we obtain from this setup spectral sequences associ-
ated to all reasonable (co)homological functors on KKG. Below we only mention
a UCT and a Künneth spectral sequence, the latter associated to the minimal
tensor product A ⊗ B of G-C*-algebras (G acts diagonally). Thanks to the
results of §1.5.4, it is not difficult to identify the relative derived functors on
the second pages with ExtnRep and TorRepn respectively, that is, the (Z/2-graded)
Ext and Tor functors computed in the tensor-abelian category Rep-Mack.

1.5.10 Theorem ([6, Thm. 5.16]). Let G be a finite group. For all A,B ∈ KKG

such that A is a G-cell algebra, and depending functorially on them, there ex-
ists a conditionally convergent, cohomologically indexed right half-plane spectral
sequence of the form

Ep,q2 = ExtpRep(k
G
∗ A, k

G
∗ B)−q

n=p+q
=⇒ KKG

n (A,B) .

This spectral sequence converges strongly if A is such that KKG(A, f) = 0 for
every morphism f which can be written, for each n > 1, as a composition of n
maps each of which vanishes under kG∗ . If A is such that the Rep-module kG∗ A
has a projective resolution of finite length m > 1, then the spectral sequence is
confined in the region 0 6 p 6 m+1 and thus collapses at the page E∗,∗m+1 = E∗,∗∞ .

1.5.11 Theorem ([6, Thm. 5.17]). Let G be a finite group. For all A,B ∈ KKG

with A a G-cell algebra, and depending functorially in them, there is a strongly
convergent, homologically indexed right half-plane spectral sequence of the form

E2
p,q = TorRepp (kG∗ A, k

G
∗ B)q

n=p+q
=⇒ KG

n (A⊗B) .

If moreover A is such that kG∗ A has a projective resolution of finite length m > 1,
then the spectral sequence is confined in the region 0 6 p 6 m and thus collapses
at the page Em+1

∗,∗ = E∞∗,∗.

An easy corollary of Theorem 1.5.9 and the latter Künneth spectral sequence
is the following vanishing result:

1.5.12 Theorem ([6]). Let A and B be two G-C*-algebras for a finite group G,
and assume that either A or B is a G-cell algebra. If KE

∗ (ResGE A) = 0 for all
elementary subgroups E of G, then KG

∗ (A ⊗ B) = 0. In a similar fashion, if
KC
∗ (ResGC A)⊗Q = 0 for all cyclic subgroups C of G, then KG

∗ (A⊗B)⊗Q = 0.
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One could proceed to derive more elaborate applications of our spectral se-
quences, but some serious efforts would first have to be made to obtain nontrivial
computations of Ext and Tor groups for specific Rep-modules.

1.6 Trace computations in equivariant Kasparov categories
We now present the results of [11].

Let X be a compact orientable smooth manifold and let f : X → X be
a smooth self-map with simple isolated fixed points. The classical Lefschetz-
Hopf formula equates the sum of the indices of all fixed points of f with its
cohomological trace: ∑

x

indf (x) =
∑
n

(−1)n trHn(f ; Q) .

The formula identifies a local and geometric computation with a global and
homological one.

Let G be a compact group. Our main result is a G-equivariant generalisation
of the fixed-point formula for endo-maps f : X → X on a compact smooth G-
manifold X, and even to correspondences.

Note that, by the Chern isomorphism, the right-hand side can also be ex-
pressed as the super-trace trK∗(f)⊗Q := trK0(f)⊗Q−trK1(f)⊗Q of the map
induced by f on rationalised K-theory K∗(X)⊗Q. The homological side of our
generalised formula will involve equivariant topological K-theory. According to
the nature of the group G, we will provide different computations; see, §1.6.7,
§1.6.12 and §1.6.15. The geometric side will be computed in a certain category
of smooth correspondences; see §1.6.2.

The proofs make use of the G-equivariant stable Kasparov category KKG,
already encountered in §1.3.3. The point is that KKG is a tensor triangulated
category, meaning that it comes equipped with a symmetric monoidal structure

−⊗− : KKG ×KKG −→ KKG

which preserves exact triangles in each variable (see §2.1.1 for details). As
already mentioned when discussing the Künneth Theorem 1.5.11, A⊗B is ob-
tained by endowing the minimal tensor product of C*-algebras with the diagonal
G-action. The tensor unit is C equipped with the trivial G-action.

The map f induces in the category KKG an endomorphism of the G-C*-
algebra C(X). The geometric hypotheses on X ensure that C(X) is a rigid
object for the tensor structure of KKG so that f has a well-defined trace tr(f),
which is an element of EndKKG(C) ∼= RC(G), the complex representation ring
of G. The equivariant Lefschetz-Hopf formula is then an equation in RC(G)
between different computations of this element tr(f).

1.6.1. Dualisable objects and the monoidal trace. We begin by recalling
the definition of a monoidal trace, introduced by Dold and Puppe [DP80] in
order to unify several notions of trace in algebra and topology.
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Let (M,⊗,1) be a symmetric monoidal category with symmetry isomor-
phisms γ = γX,Y : X ⊗ Y ∼→ Y ⊗X (see [ML98, §VII.7]). An object X ofM is
dualisable (or strongly dualisable, rigid) if it admits a tensor dual, i.e., if we can
find inM an object X∨ and maps η : 1 → X∨ ⊗X and ε : X ⊗X∨ → 1 such
that (omitting the coherent associativity and unit isomorphisms) we have

(ε⊗ idX)(idX ⊗η) = idX and (idX∨ ⊗ε)(η ⊗ idX∨) = idX∨ .

This is equivalent to the functor X ⊗− : M→M having a right adjoint given
by X∨ ⊗ −, with η and ε providing the unit and counit of this adjunction. In
particular, if such a triple (X∨, η, ε) exists for X then it is uniquely determined
up to a canonical isomorphism.

If f : X → X is any endomorphism of a dualisable object X with dual X∨,
the (monoidal) trace of f is the endomorphism tr(f) of 1 defined as the com-
posite

X∨ ⊗X
∼
γ
**

1
η // X∨ ⊗X

id⊗f 44

∼
γ **

X ⊗X∨ ε // 1 .

X ⊗X∨ f⊗id

44

IfM is additive, EndM(X) is a ring for every X, and the above definition yields
a family of trace maps tr : End(X)→ End(1) with nice properties, e.g. cyclicity
tr(fg) = tr(gf), and which specialises for vector spaces to the usual trace of
matrices. See [PS14] for a nice modern exposition of the resulting theory and
its relation to fixed points.

An important advantage of this definition is that it is invariant under tensor
functors. Indeed, if F : M → N is a symmetric monoidal functor, i.e. if it
comes equipped with natural isomorphisms FX⊗FY ∼→ F (X⊗Y ) and 1

∼→ F1
compatible with the associativity, unit and symmetry isomorphisms of the tensor
categories M and N , then the image FX of a dualisable object X is itself
dualisable with dual FX∨, and the induced ring morphism F : EndM(1) →
EndN (1) preserves traces: F tr(f : X → X) = tr(Ff : FX → FX).

This means that we can try to simplify the computation of traces by ex-
changing the ambient tensor category for a simpler one. And as long as we
ensure that the morphism EndM(1) → EndN (1) is injective, we have not lost
any information.

We follow this basic strategy below, by localising the tensor triangulated
category KKG in a suitable fashion.

1.6.2. The geometric computation. Extending work of Connes and Skan-
dalis [CS84], my collaborators Emerson and Meyer [EM10a] [EM10b] have de-
veloped a theory of smooth correspondences which computes equivariant KK-
theory of commutative C*-algebras in a very topological, rather then analytic,
way. For every compact group G, they construct a ‘geometric’ Kasparov cate-
gory K̂KG whose objects are non-necessarily compact (Hausdorff) G-manifolds,
possibly with boundary.
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A morphism ϕ : X → Y in K̂KG is the data of a smooth correspondence
X

b← (M, ξ)
f→ Y , which consists of: a G-space M ; a G-map b : M → X

(inducing the usual contravariant functoriality of X 7→ C0(X)); a G-equivariant
K-theory class ξ ∈ RK∗G,X(M) with X-compact support via b; and a KG-
oriented normally nonsingular G-map f : M → Y (inducing the “wrong-way”
functoriality). Correspondences are up to a certain equivalence relation, and
their composition is defined by an intersection product after deformation to a
transverse position. We refer to [11, §2.1-2] [EM10b, Def. 2.3] for more details.

The category K̂KG is additive (but not triangulated) and is also a sym-
metric monoidal category with respect to the cartesian product X × Y . The
usual complex function algebra X 7→ C(X) extends to a functor K̂KG → KKG

which is fully faithful when restricted to compact G-manifolds. Moreover, it is
symmetric monoidal: C0(X × Y ) ∼= C0(X)⊗ C0(Y ).

Correspondences can be used to explicitly compute tensor duals, in a similar
way to Atiyah duality in equivariant stable homotopy:

1.6.3 Theorem ([EM10b] [11, Thm. 2.7]). Let X be a compact smooth G-man-
ifold, possibly with boundary. Then X is dualisable in K̂KG with dual NX̊, the
normal bundle for an embedding X̊ → E of its interior X̊ = Xr∂X into a linear
G-representation. The unit and counit can be given by explicit correspondences.
In particular, the G-C*-algebra C(X) = C0(X) is dualisable in KKG.

The following theorem gives the geometric side of our equivariant Lefschetz-
Hopf formulas. For simplicity, we assume that the manifold X is closed (i.e.
without boundary). Again, we refer to the cited works for details and for more
general statements.

1.6.4 Theorem ([11, Thm. 2.18]). Let X be a smooth compact G-manifold. Let
ϕ ∈ KKG(C(X), C(X)) be represented by a smooth correspondence as above:
ϕ = [X

b← (M, ξ)
f→ Y ]. Assume that b and f intersect smoothly with KG-

oriented excess intersection bundle η := Coker(Df −Db) ∈ K∗G(Q) (the latter
measures the failure of b and f to intersect transversally; if they do, η = 0).

Then the monoidal trace of ϕ is represented by the correspondence

[pt← (Q, ξ|Q ⊗ e(η))→ pt] ∈ K̂K(pt,pt)G

where the (by hypothesis, smooth) manifold Q is the intersection space Q :=
{m ∈ M | b(m) = f(m)}, equipped with a canonical KG-orientation, and e(η)
is the Euler class of η.

As an element of KKG(C,C) = RC(G), the monoidal trace tr(ϕ) is given by
the index of the Dirac operator on Q with coefficients in ξ|Q ⊗ e(η).

For G = 1 trivial and for the correspondence X f← X
id→ X given by a self-

map with isolated non-singular fixed points on an oriented X, then this reduces
to the number

∑
x∈Q indf (x) ∈ Z as expected.

Note however that the above computation as smooth correspondence is also
of interest in more general situations, e.g. for maps without fixed points.
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1.6.5. Localisation and general computation. Note that in any additive
(not necessarily symmetric) monoidal category M the ring R := EndM(1) is
automatically commutative. Moreover, it acts on the whole category via the
tensor product: for all r ∈ R and f ∈M(X,Y ), simply define r · f ∈M(X,Y )
to be the composite

X ∼= 1⊗X
r⊗f //1⊗ Y ∼= Y .

This turns eachM(X,Y ) into an R-module and makes the composition ofM R-
bilinear, so thatM is canonically an R-linear category (i.e. a category enriched
over R-modules [Kel05]). In particular, if S ⊆ R is a multiplicative system
we can localise each Hom R-module of M to obtain a localised S−1R-linear
category, S−1M. Note that the canonical functor M → S−1M restricts on 1
to the localisation map of rings R = EndM(1)→ EndS−1M(1) = S−1R.

IfM is a tensor triangulated category, then S−1M is also the Verdier quo-
tient by the thick tensor ideal of M generated by {Cone(s) | s ∈ S}, so it is
again a tensor triangulated category and the localisation functor is tensor exact;
see §2.1.4.

We can apply this to M = KKG and R = RC(G) as follows. By choosing
the multiplicative system S of all non-zero divisors of RC(G) we obtain the total
ring of fractions, which splits as a finite product of fields

S−1RC(G) ∼=
∏
pi

Fi

where the product runs over the minimal prime ideals pi of the Zariski spectrum
SpecRC(G) and Fi := Frac(RC(G)/pi) denotes the residue field at pi. Thus the
localised category S−1KKG correspondingly splits into a product. In particular,
by localising equivariant K-theory KG

n = KKG(ΣnC,−), we obtain for all A ∈
KKG a natural splitting

S−1KG
∗ (A) ∼=

⊕
pi

KG
∗,i(A)

where each KG
∗,i(A) is a Z/2-graded Fi-vector space. We thus obtain:

1.6.6 Theorem ([11, Thm. 3.4]). Let A ∈ KKG belong to the thick subcategory
generated by C, and let ϕ ∈ KKG(A,A) be any endomorphism. Then A is a
dualisable object, and the trace tr(ϕ) is uniquely determined by trS−1KG

∗ (f) ∈
S−1RC(G), whose components are given by the finitely many matrix super-traces
trKG

0,i(ϕ)− trKG
1,i(ϕ) over the vector spaces Fi.

The above hypothesis on A ensures that it is a dualisable object and that
traces are well-defined, but we still need to connect this with compact manifolds.
We begin with the simplest case.

1.6.7. The computation for Hodgkin Lie groups. Assume now that G
is a compact connected Lie group with torsionfree fundamental group, i.e., a
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Hodgkin Lie group. For instance, G could be a torus, or any of a vast choice of
classical Lie groups. For such a group, the representation ring RC(G) has a par-
ticularly pleasant structure, in particular it is a domain and thus the localisation
S−1RC(G) in Theorem 1.6.6 is just its field of fractions.

We have:

1.6.8 Theorem ([11, Thm. 3.5]). Let G be a Hodgkin Lie group. Then an object
A ∈ KKG belongs to the thick subcategory generated by C if and only if A is
dualisable and ResG1 A ∈ KK belongs to the Rosenberg-Schochet bootstrap class.

Every commutative C*-algebra belongs to the non-equivariant bootstrap
class, and we know from Theorem 1.6.3 that compact smooth G-manifolds yield
dualisable algebras C(X). Hence we may apply Theorem 1.6.6 to A = C(X),
and by combining this homological computation of the monoidal trace with
the geometric one of Theorem 1.6.4, we immediately obtain a nice equivariant
Lefschetz-Hopf formula for Hodgkin Lie groups:

1.6.9 Theorem ([11, Thm. 1.1]). Let G be a Hodgkin Lie group and denote by
F := Frac(RC(G)) the field of fractions of its complex representation ring. Let X
be a closed G-manifold, and X b← (M, ξ)

f→ X be a smooth correspondence on X
with ξ ∈ KdimM−dimX

G ; it represents a Kasparov class ϕ ∈ KKG(C(X), C(X)).
Assume that b and f intersect smoothly with KG-oriented excess intersection
bundle η, and equip the incidence space Q = {m ∈ M | b(m) = f(m)} with its
induced KG-orientation. Then the RC(G)-valued index of the Dirac operator on
Q twisted by the bundle ξ|Q ⊗ e(η) is equal to the super-trace of the F -linear
map on K∗G(X)⊗ F induced by ϕ.

If G is any connected Lie group, there exists a finite covering Ĝ→ G where
Ĝ is a Hodgkin Lie group. Hence, by exploiting the resulting restriction functor
KKG → KKĜ and the associated injective morphism RC(G)→ RC(Ĝ), we can
proceed to derive a more general trace formula for any connected Lie group.

1.6.10. An equivariant bootstrap class. We should note that Theorem 1.6.8
fails badly for group which are not connected. If we want to obtain Lefschetz-
Hopf formulas for more general compact group G (e.g. finite groups) and inter-
esting objects A ∈ KKG (e.g. A = C(X) for compact smooth G-manifolds X)
we are led to consider the following equivariant version of the classical bootstrap
class.

Definition. For any compact group G, define the G-equivariant bootstrap cat-
egory BG to be the localizingℵ1

subcategory of KKG (see §1.1.3) generated by
all elementary G-C*-algebras, i.e., those of the form A = IndGH(B) = C(G,B)H

where B is a matrix algebra Mn(C) (n > 1) equipped with some action of some
closed subgroup H 6 G.

Thus BG contains all algebras that can be obtained by starting with those G-
C*-algebras which are induced from actions of closed subgroups on matrix alge-
bras and by taking mapping cones (extensions) and direct sums. There is a more
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intrinsic characterisation: BG contains precisely those G-C*-algebras which are
KKG-equivalent to some G-action on a Type I C*-algebra ([11, Thm. 3.10]).

Theorem 1.6.8 holds because, if G is Hodgkin, it can be shown that BG =
Locℵ1

(C). In general, since BG is by construction a compactlyℵ1
generated

category, we have that an object A ∈ BG is dualisable if and only if it is
compactℵ1 , if and only if it belongs to the thick subcategory generated by the
elementary G-C*-algebras ([11, Prop. 3.13]).

Let us denote the latter category by BGc = BG∩(KKG)c. In particular, since
commutative algebras are Type I, we deduce from the above discussion:

1.6.11 Corollary. If X is a compact smooth G-manifold, the G-C*-algebra
C(X) belongs to BGc .

Note that, contrary to the non-equivariant case, in general not all algebras
in BG are equivalent to a commutative one (this fails already for the circle group
G = U(1)). Ultimately, this is the reason why K̂KG is not triangulated.

1.6.12. The computation for general compact Lie groups. Thanks to
Corollary 1.6.11, in order to deduce a Lefschetz-Hopf formula for compact
smooth G-manifold with G a non-connected group, it now suffices to provide
a homological computation of the monoidal trace which holds for the G-C*-
algebras belonging to BGc .

The crucial result in the context of non-connected group is the following
reduction of generators for topologically cyclic groups, i.e. groups admitting an
element g which generates a dense subgroup. A compact Lie group is topo-
logically cyclic iff it is isomorphic to a product of a finite cyclic group and a
torus.

1.6.13 Theorem ([11, Thm. 3.17]). Let G be a topologically cyclic compact Lie
group, as above. Then:

• The equivariant bootstrap class BG is already generated by the finitely many
G-C*-algebras C(G/H) for all open subgroups H 6 G.

• An object A ∈ BG is dualisable iff it is compactℵ1
iff it belongs to the thick

subcategory generated by C(G/H) for open subgroups H 6 G.

The relevance of such groups is due to the classical results of Segal [Seg68],
according to which, for any compact Lie group G, the minimal primes pi of
RC(G) are in a canonical bijection with the (conjugacy classes of) the Cartan
subgoups of G, i.e. the topologically cyclic subgroups which have finite index in
their normalizer. Segal’s theory allows us to deduce from Theorem 1.6.13 the
following general, improved version of the homological computation of Theo-
rem 1.6.6. It is crucial here that we use the equivariant K-theory for restricted
actions, otherwise the result would be wrong (already with G = Z/2).

1.6.14 Theorem ([11, Thm. 3.23]). Let G be any compact Lie group, let A ∈ BGc
be a dualisable object in the equivariant bootstrap class (e.g. A = C(X) for a
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compact smooth G-manifold X), and let ϕ ∈ KKG(A,A) be any endomorphism
of A (e.g. one induced by a self-map f : X → X, or a smooth correspondence).
For any Cartan subgroup H 6 G, let pH denote the corresponding minimal
prime ideal of SpecRC(G) and let FH := Frac(RC(G)/pH) be its residue field.

Then the monoidal trace tr(ϕ) is uniquely determined by the super-traces

tr
(
KH

0 (ϕ)⊗RC(G) FH
)
− tr

(
KH

1 (ϕ)⊗RC(G) FH
)

of the endomorphisms induced by ϕ on the finite dimensional Z/2-graded FH-
vector spaces KH

∗ (A) ⊗RC(G) ⊗FH , with H running through the finitely many
conjugacy classes of Cartan subgroups of G.

By combining this theorem with the geometric computation of the trace,
we obtain a generalisation of Theorem 1.6.9 for arbitrary compact Lie groups,
including finite groups.

1.6.15. The computation as a Hattori-Stallings trace. We also provide
another way to compute the trace, by means of the Hattori-Stallings trace for
modules of finite projective dimension; see e.g. [Bas76].

In general, we can use this approach by working in any tensor triangulated
category T = (T ,⊗,1) for which the following assumption holds:

Hypothesis (Additivity of traces). Let A → B → C → ΣA a distinguished
triangle in T , assume that A and B are dualisable objects, and assume also that
the left square in the following diagram is commutative:

A

f

��

// B

g

��

// C

h
��

// ΣA

Σf

��
A // B // C // ΣA

Then C is dualisable and there exists a map h : C → C making the diagram
commute and such that tr(f)− tr(g) + tr(h) = 0.

Now let R :=
⊕

n∈Z EndT (1) be the graded endomorphism ring of 1 as
before. Assuming only the most basic compatibility between the suspension Σ
and the tensor ⊗, it is a graded commutative ring (see §2.1.1). For every object
A, the graded Hom group M(A) := T∗(1, A) is canonically a graded R-module,
and every map f ∈ T (ΣnA,A) induces a degree-n endomorphism M(f) :=
T∗(1, f) of M(A). Our next theorem will say that, under some hypotheses, the
monoidal trace of f equals the Hattori-Stallings trace of M(f), so in particular
it only depends on the module map M(f).

In order to state the theorem, we first need to define a graded version of the
usual Hattori-Stallings trace for modules over a ring. Let α : M → M be an
endomorphism of a finitely generated R-module M . Assume first that M is a
free R-module, i.e., it is a finite sum M =

⊕k
i=0R(ni) of copies of the shifted
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modules R(n) defined by R(n)m = R(n + m), and that α is homogeneous of
degree d. Then the Hattori-Stallings (super-) trace of α is defined to be

trHS(α) :=

k∑
i=0

(−1)ni tr(αii) ∈ Rd

where the αij denote the components R(nj) → R(ni) of α and tr(αii) is
the degree-d element of R such that right multiplication by it gives the map
αii : R(ni)→ R(ni). IfM is a finitely generated projective module, thenM⊕N
is (isomorphic to) a free module as above for some module N , and we can define
trHS(α) := trHS(α ⊕ 0) via this isomorphism. More generally, if M admits a
finite resolution

0 //P`
d` //P`−1

d`−1 // · · · d1 //P0
d0 //M //0

by finitely generated projectives, in which we have arranged the differentials
di to have odd degree, choose liftings αi : Pi → Pi of α to an endomorphism
of the resolution and set trHS(α) :=

∑`
i=0 trHS(αi). One can check that this

definition is independent of all the choices we have made.
The proof of the next theorem uses the phantom tower for A, i.e. a relative

homological algebra resolution of A in T (a construction which is also used to
derive the spectral sequences of §1.5.1), combined with the the hypothesis on
the additivity of traces.

To understand the extent of the theorem, note that if the graded commuta-
tive ring R is coherent (e.g. noetherian) and has finite global dimension, then
an object A ∈ Loc(1) is dualisable iff M(A) is finitely generated.

1.6.16 Theorem ([11, Thm. 4.2]). Let f ∈ T (A,A) be any endomorphism of
an object A ∈ T , and assume that A ∈ Loc(1). If the graded R-module M(A)
admits a finite resolutions by finitely generated projectives, then A is dualisable
in T and

tr f = trHSM(f)

i.e. the monoidal trace of f is equal to the Hattori-Stallings trace of the map it
induces on the graded module M(A) = T∗(1, A).

This result can be applied to equivariant Kasparov theory as follows. First
notice that our bootstrap category BG satisfies the additivity of traces. This
is a consequence of Theorem 1.6.14; it can also be proved, more directly, by
embedding BG in the derived category of a highly structured ring spectrum,
as was done in [DEKM11]. As usual, since the graded endomorphism ring is
RC(G)[β, β−1] with β : C

∼→ Σ2C, we can equally work with Z/2-graded modules
over the ungraded ring RC(G) (this doesn’t change the above sign choices).

Now if G is a Hodgkin Lie group, its representation ring is a regular noethe-
rian ring and BGc = Thick(C), hence we may use the Hattori-Stallings trace to
compute traces of endomorphisms on any dualisable algebra in theG-equivariant
bootstrap class.
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2 Tensor triangulated categories and classifica-
tions

We present here results taken from [2], [3], [7, 9] (joint with Greg Stevenson)
and [14] (joint with Donald Stanley). We prove classifications theorems for thick
and localising subcategories in derived categories of graded commutative rings,
generalising the work of Hopkins, Neeman and Thomason (§2.6.1), and similar
theorems for derived categories of regular noetherian commutative dg rings or
ring spectra, generalising work of Benson-Iyengar-Krause and Shamir (see §2.7).
We also prove the first classification in the domain of Kasparov’s KK-theory
(§2.4.2), and produce the first (very partial) results in the realm of noncom-
mutative motives (§2.8). Along the way we also make some contributions to
abstract tensor triangular geometry, presented in §2.4 and §2.5.

2.1 Preliminaries on tensor triangulated categories
A tensor triangulated category is commonly understood to be a triangulated
category T which is equipped with a compatible symmetric1 monoidal structure.
The precise meaning of “compatible” is open to some debate.

Most of the naturally occurring examples of tensor triangulated categories
— morally, all of them — arise from some kind of model category or enhance-
ment which is itself equipped with a compatible symmetric monoidal structure.
What “compatible” means at the level of models is usually clear, and it entails
many known and useful compatibility properties at the homotopy level. Ideally
one would like to capture these properties axiomatically, once and for all, in
order to obtain model-independent statements. But this is a subtle enterprise,
suffering from some of the same defects that plague the axioms of a triangulated
category themselves. Notably, poor functoriality, and different choices for the
possible strength levels for the axioms. The most courageous such axiomati-
sation has been attempted by May [May01] in order to prove the additivity of
traces (see §1.6.15), but his axioms are rather unwieldy. His work has been
streamlined by Keller and Neeman [KN02], but the most elegant approach so
far is probably that of monoidal derivators. A monoidal derivator is simply
a pseudo-monoid in the Cartesian 2-category of derivators, just as a monoidal
category is a pseudo-monoid in the Cartesian 2-category of categories. From
such a small seed, one can obtain May’s axioms and the additivity of traces
[GPS14]. Another fashionable solution, although perhaps closer in spirit to the
use of a monoidal model category, is to follow Lurie [Lur16] and work at the
level of an underlying symmetric monoidal stable ∞-category.

Instead of fixing the ‘perfect’ setting, we take the minimalist road and add
along the way those axioms that are needed. This allows us to choose the
correct generality for each result, and also, more importantly, to cover the less
well-behaved tensor triangulated categories arising from KK-theory, for which

1Non-symmetrical tensor structures on triangulated categories are also of great interest,
but will not concern us here.
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models or enhancements have mostly not been worked out yet (although the
work of Mahanta [Mah15b] [Mah15a] in this direction looks quite promising).

2.1.1. The axioms of a tensor triangulated category. The most basic
compatibility between the triangulation and the tensor structure is to require
the tensor functor − ⊗ − : T × T → T to be exact in each variable; this is all
we will always assume with the words tensor triangulated category, because it
suffices for defining the spectrum of T as a topological space and for inferring
most of its properties (see §2.2).

If we want to consider some ‘geometry’ (e.g. sheaves of rings and modules)
on the spectrum, it is a good idea to ask for some compatibility between ⊗ and
the suspension Σ ensuring that the graded endomorphism ring of the unit

End∗T (1) =
⊕
n∈Z

T (1,Σn1)

is graded commutative: fg = (−1)|f ||g|gf . To this goal, the simple axioms
of [SA04] suffice, requiring the isomorphisms r : X ⊗ ΣY

∼→ Σ(X ⊗ Y ) and
` : ΣX ⊗ Y ∼→ Σ(X ⊗ Y ) (which are part of the biexactness of −⊗−) to make
the two triangles below commute

1⊗ ΣX

r

��

λ // ΣX

Σ(1⊗X)

Σλ

:: ΣX ΣX ⊗ 1

`

��

ρoo

Σ(X ⊗ 1)

Σρ

dd ΣX ⊗ ΣY

r

��

` //

−1

Σ(X ⊗ ΣY )

Σr

��
Σ(ΣX ⊗ Y )

Σ` // Σ2(X ⊗ Y )

and the square anti-commute (so far, this also makes sense if the monoidal
structure is not symmetric). Omitting parentheses, the anti-commutativity of
the square can be expressed as the commutativity of

ΣnX ⊗ ΣmY

γ

��

∼ // Σn+m(X ⊗ Y )

(−1)n+m

��
ΣmY ⊗ ΣnY

∼ // Σn+m(X ⊗ Y )

(2.1)

for all n,m ∈ Z, where γ is the symmetry and the horizontal arrows are iterations
of r and `. If the tensor structure is closed, i.e. if it admits an internal Hom
functor

hom(−,−) : T op × T −→ T

defined by the existence of natural isomorphisms

T (X ⊗ Y,Z) ∼= T (X, hom(Y,Z))

then we may also want it to be exact and to interact nicely with the suspension.
On the whole, the following properties are commonly required to hold.
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2.1.2 Definition ([HPS97, App.A.2]). A triangulated structure and a closed
tensor structure on a category T are compatible if the following are satisfied:

• The tensor product preserves suspensions: there are natural isomorphisms
r : X ⊗ ΣY

∼→ Σ(X ⊗ Y ) and ` : ΣX ⊗ Y ∼→ Σ(X ⊗ Y ), determining each
other via r = (Σγ)`γ−1, and making the above triangles commute as well
as the following pentagon (α being the coherent associator):

Σ(X ⊗ Y )⊗ Z
`

++
(ΣX ⊗ Y )⊗ Z

α
""

`⊗ id 33

Σ((X ⊗ Y )⊗ Z)

Σα{{
ΣX ⊗ (Y ⊗ Z)

` // Σ(X ⊗ (Y ⊗ Z))

(the latter may be used e.g. to justify omitting parentheses in (2.1)).

• The tensor product −⊗− is exact in each variable (via ` and r).

• The internal Hom, hom(−,−), is exact in the second variable and is anti-
exact in the first one (i.e. each functor hom(−, X) sends an exact triangle
to a triangle which is exact after changing the sign of one arrow).

• The graded commutativity rule (2.1) for ⊗ and Σ holds.

A consequence of the above conditions is that the rigid (= dualisable §1.6.1)
objects of T form a tensor triangulated thick subcategory T d, which moreover
is rigid : the internal Hom is given by hom(X,Y ) = X∨ ⊗ Y for a tensor exact
equivalence (−)∨ : T op ∼→ T .

If T is a big category admitting infinite coproducts we certainly want to con-
sider its compact objects, which always form a thick subcategory T c. However
it does not follow in general from the above axioms that compact and rigid ob-
jects coincide; for one thing, 1 may fail to be compact. If 1 ∈ T c then T d ⊆ T c
follows easily, but one still has to assume the other inclusion in order to have
equality. The equality T d = T c is a common feature in the examples and is
very desirable for the abstract theory, which leads to the following notion. It
will be crucial for most results of Section 3.

2.1.3 Definition. A rigidly-compactly generated tensor triangulated category
(or sometimes, simply, compactly generated tensor category) is a compactly gen-
erated (§1.1.3) triangulated category T equipped with a compatible closed ten-
sor structure as in Definition 2.1.2 and such that its subcategories of rigid and
compact objects coincide; hence, in particular, T c is a rigid tensor triangulated
category, as above.

2.1.4. Central graded rings and localisation. The most compact way to
understand the axioms in Definition 2.1.2 is that the suspension Σ should be
given by Σ(1)⊗−, that the symmetry γ on Σ(1)⊗Σ(1) is equal to −1, and that
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the opposite category T op should be equipped with the opposite triangulation
(which involves a sign change); the rest then follows by the coherence theorem
of symmetric tensor categories and by requiring all functors to be exact (see
[Del08, §2.1]).

More generally, instead of grading the endomorphism ring of 1, or other Hom
sets, by Σ ∼= Σ(1)⊗−, we can instead use any tensor-invertible object G:

T G,∗(X,Y ) :=
⊕
n∈Z

T (X,G⊗n ⊗ Y ) .

The composition of T extends in a ‘G-graded’ (or rather Z-graded with respect
to G) way, simply by setting

gf = g ◦ f : X
f // G⊗n ⊗ Y

id⊗g // Gm ⊗ (G⊗n ⊗ Z) ∼= Gm+n ⊗ Z

for all f : X → G⊗n ⊗ Y and g : Y → G⊗m ⊗ Z. In particular, we obtain a
‘G-graded’ ring

RG,∗T := EndG,∗T (1)

which is called by Balmer [Bal10a] the graded central ring (with respect to G)
of the tensor triangulated category T . One can show that this ring is graded
commutative in the slightly generalised sense that rs = εn+msr where n and m
are the G-degrees of r and s and ε := γG,G : G ⊗ G ∼→ G ⊗ G is the symmetry
at G. The graded central ring acts canonically on all graded Hom groups by

r · f : X ∼= 1⊗X
r⊗f // G⊗n ⊗ 1⊗G⊗m ⊗ Y ∼= G⊗n+mY

(r : 1 → G⊗n ⊗ 1, f : X → G⊗m ⊗ Y ). Graded composition is bilinear for this
action, up to the above ε-sign rule, and its action on itself coincides with the
multiplication, i.e. with composition. For G = 1 we recover the usual action of
the (plain) endomorphism ring End(1) on the Hom groups.

The latter is the (plain) central ring of T , and the above observations gener-
alise the well-known fact that the endomorphism ring of any (additive) monoidal
category is commutative and the category is automatically enriched in modules
over it.

An important application of the above remarks is that one can alway localise
T at a (homogeneous) multiplicative subset S ⊆ RG,∗T of the central ring, by
localising each Hom-module, and the resulting category S−1T is again tensor
triangulated; indeed, it is the Verdier quotient T → T /S by the tensor-ideal
subcategory generated by the mapping cones of all s ∈ S.

We will show in §2.5 how to generalise this to multi-gradings, not by trying
to fit multiple grading objects Gi into a ring (which in general seems a pretty
hopeless task), but rather by categorifying the notion of a graded ring and by
generalising basic commutative algebra to such objects.
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2.2 Classification problems and the spectrum
Let T be a tensor triangulated category. A thick tensor ideal of T is a thick
subcategory S which is an ideal with respect to the tensor product: ifX ∈ J and
Y ∈ T is any object then X ⊗ Y ∈ J . If F : T → S is an exact tensor functor,
then its full kernel is a thick tensor ideal. Conversely, the Verdier quotient T /J
by any thick tensor ideal inherits a structure of tensor triangulated category
which makes the quotient functor tensor exact. Just like the collection of all
thick subcategories, the thick tensor ideals of T are partially ordered by inclusion
and form a lattice where the meet is given by intersection and the join by the
smallest thick tensor ideal containing the union.

An easy but fundamental observation is that if 1 generates T as a thick
subcategory, then every thick subcategory of T is automatically a tensor ideal,
hence the two lattices coincide.

As we will see in a moment, the lattice of thick tensor ideals has the remark-
able property of arising from a topological space, i.e. it is a coherent frame.
Hence it is amenable to be studied by geometric means, and because of this it
can be computed explicitly in many important examples. On the other hand,
the lattice of all thick subcategories usually isn’t so nice, and there is no known
general strategy for studying it. Indeed, only a few examples have been com-
pletely computed where the thick subcategories do not coincide with all tensor
ideals for some tensor product (e.g. Db(coh P1

k) or Db(R) for some hereditary
Artin algebras; see [Kra12]).

2.2.1. The spectrum of a tensor triangulated category. Let T be a tensor
triangulated category, which we assume to be essentially small. The crucial tool
for getting a hold on the thick tensor ideals of T is a topological space defined
by Balmer, the spectrum of T , denoted Spc T . We now recall its definition and
its first properties ([Bal05]).

As a set, the spectrum consists of all thick tensor ideals which are prime
with respect to the tensor product, in the usual sense:

Spc T := {P ( T | P thick tensor ideal s.t. X ⊗ Y ∈ P ⇒ X ∈ P or Y ∈ P} .

For every object X ∈ T there is a distinguished subset of Spc T , called the
support of X:

Supp(X) := {P ∈ Spc T | X 6∈ P} (X ∈ Obj T ) .

The complements U(X) := Spc T r SuppX (X ∈ T ) form the basis for a
topology on Spc T , the Zariski topology. This topological space is spectral in
the sense of Hochster [Hoc69]. This means the it has the following properties:

• it is quasi-compact,

• it admits a basis of quasi-compact opens (e.g. the above U(X)), and

• every irreducible closed subset is the closure of a unique point (its generic
point).
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Spectral spaces are precisely those spaces that arise as the Zariski spectrum of
some commutative ring, and have very nice and distinctive properties.

The assignment X 7→ Supp(X) is compatible with all the operations of the
tensor triangulated category T , in the following way:

(SD1) Supp 0 = ∅ and Supp 1 = Spc T .
(SD2) Supp(X ⊕ Y ) = SuppX ∪ SuppY .
(SD3) Supp ΣX = SuppX.
(SD4) SuppY ⊆ SuppX ∪ SuppZ for every exact triangle X → Y → Z → ΣX.
(SD5) Supp(X ⊗ Y ) = SuppX ∩ SuppY .

More generally, a support data on T is a pair (T, σ) consisting of a (spectral)
topological space T and a function σ assigning to each object of T a closed subset
σ(X) ⊆ T satisfying the analogues of (SD1)-(SD5). Thus the pair (Spc T , supp)
is a support data. As it turns out, given any other support data (T, σ) on T ,
there exists a unique continuous map

f : T −→ Spc T

such that σ(X) = f−1 Supp(X) for all objects X ∈ T . This universal property
shows that (Spc T ,Supp) is the ‘finest’ of all possible support data on T , and
characterises it uniquely up to a unique support-compatible homeomorphism.

For every tensor exact functor F : T → S we obtain an induced map

SpcF : SpcS → Spc T P 7→ F−1P

which is continuous and spectral, which means that the preimage under SpcF
of a quasi-compact open subset is again quasi-compact open. This defines a
contravariant functor Spc from tensor triangulated categories and tensor exact
functors to spectral spaces and spectral maps.

2.2.2. The abstract classification of thick tensor ideals. The main in-
terest of the universal support data (Spc T ,Supp) is that it classifies the thick
tensor ideals of T . More precisely, a thick tensor ideal J ⊆ T is said to be
radical if X⊗n ∈ J for some n already implies X ∈ J . A subset S ⊂ Spc T
is said to be Thomason if S is a union of closed subsets, all of which have
quasi-compact open complements.

Balmer [Bal05] proved that, for any essentially small tensor triangulated cat-
egory T , we have the following canonical inclusion-preserving bijection between
Thomason subsets and radical ideals:{

Thomason subsets
S ⊆ Spc T

}
∼
//

oo

{
radical thick tensor
ideals J ⊆ Spc T

}

S 7→ {X ∈ T | SuppX ⊆ S}⋃
X∈J

SuppX ← [ J
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In particular, every radical thick tensor ideal is uniquely determined by the
support of its objects.

The converse statement of the above classification result is also true ([Bal05,
BKS07]). Say a support data (T, σ) on T is classifying if T is a spectral space
and if the analogues for σ of the above two maps also yield mutually inverse
bijections. Then one can show that there must be a support-preserving home-
omorphism T ∼= Spc T . Thus the universal support data is also characterised
as being the unique classifying support data. This can be used to compute the
spectrum from already available classification theorems.

The following simplifications often occur in examples:

• If T is a rigid tensor triangulated category (i.e. every object admits a
tensor dual), then each thick tensor ideal is automatic radical. For instance
T is rigid if it is generated by its tensor unit 1 as a thick subcategory.

• As we have already mentioned, if T is generated by 1 then every thick
subcategory is automatically a (radical) thick tensor ideal, so in this par-
ticular case the spectrum classifies all thick subcategories.

• If the spectrum is a noetherian space (every open is quasi-compact), then
a Thomason subset S is the same as a union of closed subsets, i.e., a
specialisation closed subset: P ∈ S ⇒ {P} ⊆ S.

We should also note that, like every spectral space, Spc T has a Hochster
dual, which is the space with the same underlying set as Spc T and with the
topology where the opens are the Thomason subsets. Hence some authors prefer
to express the above classification in terms of the dual. The choice is mainly
a matter of taste, although ours is compatible with many examples where sup-
ports occur naturally as closed subsets rather than open ones. For instance, if
Dperf(X) is the tensor triangulated category of perfect complexes over a quasi-
compact and quasi-separated scheme X (see §2.6), then Thomason’s classifica-
tion of thick tensor ideals yields a homeomorphism Spc(Dperf(X)) ∼= X.

2.3 Comparison maps from triangular to Zariski spectra
Let T be an essentially small tensor triangulated category. In order to describe
the spectrum Spc T , one can try to compare it with other topological spaces.
By the universal property, any available support data (T, σ) on T yields a con-
tinuous comparison map T → Spc T . As shown by Balmer [Bal10a], it is also
possible in full generality to construct continuous maps out of Spc T whose
target spaces are ordinary Zariski spectra of (graded) commutative rings.

More precisely, let G ∈ T be an invertible object of T , and recall the graded
central ring RG,∗T =

⊕
n∈Z T (1, G⊗n) of §2.1.4. Write Spech(RG,∗T ) for its Zariski

spectrum of all homogeneous prime ideals. Then

ρ := ρG,∗T : Spc T −→ SpechRG,∗T P 7→ {r ∈ RG,∗T | Cone(r) 6∈ P}

is a well-defined continuous and spectral map. Moreover, it is natural with
respect to tensor exact functors F : T → S, in the evident way, and behaves
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well with respect to central localisation. The latter means that if S is any
homogeneous multiplicative system in RG,∗T and S−1T is the tensor triangulated
category localised at S, as in §2.1.4, then the resulting commutative square

SpcS−1T //

ρ

��

Spc T

ρ

��
Spech S−1RG,∗T

// SpechRG,∗T

has horizontal inclusions and is a pullback of spaces. By localising at primes
ideals of the ring, this allows us to simplify arguments by reducing them to the
situation of categories with local (graded) endomorphism ring. This strategy
will be used to prove the results of §2.7.

By choosing G = Σ(1), the above specialises to a comparison map

ρ : Spc T −→ Spech End∗T (1)

for the ordinary graded endomorphism ring of 1, and all of the above can be
done also for the ordinary (ungraded) endomorphism ring, yielding a map

ρ : Spc T −→ Spec EndT (1) .

All these variants have their uses in some examples.
We note that, while the maps T → Spc T obtained from support data tend

to be injective, the comparison maps ρ are more often surjective for quite general
reasons, e.g. whenever the graded ring is noetherian or even just coherent. Their
injectivity holds less frequently and is harder to prove.

We will see in §2.5.8 how the definition of Balmer’s comparison maps can be
extended to allow more general target spaces.

2.4 Supports for big categories
Balmer’s axioms for a support data are very well-adapted for ‘small’ triangulated
categories, but it is less clear what a support theory should be for a ‘big’ one.
The currently available formal approaches require at least a compactly generated
category T (§1.1.3). Benson, Iyengar and Krause [BIK08] [BIK11] [BIK12], by
assuming only that a graded noetherian ring R acts on T compatibly with the
suspension, have developed a very successful theory where supports are subsets
of SpechR. For most of their applications, however, they require R to be (a
subring of) the graded endomorphism ring of a rigidly-compactly generated
tensor triangulated category (Def. 2.1.3), acting canonically as in §2.1.4. In this
setup some basic examples cannot be covered, such as the derived category of
a non-affine noetherian scheme. Also, the noetherian hypothesis on the ring is
essential to their theory.

Balmer and Favi [BF11] begin instead with a rigidly-compactly generated
tensor triangulated category T , so that the compact objects form a rigid tensor
subcategory T c, and construct a support for all objects of T with values in the
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spectrum Spc(T c). Their theory has been successfully furthered by Stevenson,
who also generalised it to include actions T × S → S of a tensor triangulated
category T on another triangulated category S; see [Ste13]. Assuming that
Spc T c is a noetherian space (i.e., every open set is quasi-compact), Balmer
and Favi show that their support, as a map σ : Obj(T )→ 2Spc T c , satisfies the
following properties (cf. the axioms (SD1)-(SD5) of a support data §2.2.1):

(S1) σ(0) = ∅ and σ(1) = T .

(S2) σ(
∐
iXi) =

⋃
i σ(Xi) for every family {Xi}i of objects.

(S3) σ(ΣX) = σ(X).

(S4) σ(Y ) ⊆ σ(X) ∪ σ(Z) if there is an exact triangle X → Y → Z → ΣX.

(S5) σ(X ⊗ Y ) ⊆ σ(X) ∩ σ(Y ) for all X,Y , with equality if X ∈ T c.

Moreover, on compact objects σ agrees with the universal support Supp.
Our next theorem provides a rough converse of this: provided it also detects

objects, any mapping σ satisfying the above conditions must coincide with the
universal support data on compact objects. In fact we don’t need any noethe-
rian hypothesis, as long as the space is spectral. Moreover, the category T can
be allowed to merely be compactlyℵ generated for some regular infinite cardi-
nal ℵ (see §1.1.3). Like Balmer and Favi, we assume that T c is a rigid tensor
triangulated subcategory, which amounts to requiring that 1 ∈ T c and that
every compact object has a tensor dual.

2.4.1 Theorem ([2, Thm. 3.1]). Let T be a compactlyℵ generated tensor tri-
angulated category, in the above sense. Let σ : Obj(T ) → 2T be a function
assigning to every object of T a subset of T , where T is some spectral topologi-
cal space in the sense of Hochster (§2.2.1). Assume that the pair (T, σ) satisfies
the properties (S1)-(S5) above and also:

(S6) It detects objects: σ(X) = ∅ implies X ∼= 0.

(S7) A subset U ⊆ T is quasi-compact and open if and only if it has the form
U = T r σ(C) for some compact object C ∈ T c.

Then the restriction of (T, σ) to T c is a classifying support datum; in particular,
the canonical map T → Spc(T c) is a homeomorphism (see §2.2.2).

This theorem can sometimes be used to compute the spectrum Spc(T c), for
instance for the stable module category of a finite group (see [BCR97] — this
was the original example that inspired our abstract result) or the bootstrap
category in KK-theory (see §2.4.2 below). More recently, it has been applied to
triangulated categories of representations of certain classical Lie superalgebras
(see [BKN14]). Typically, the hardest properties to prove are (a subset of)
the “half tensor product formula” (S5), the detection of objects (S6) or the
realisation by compact objects (S7), whereas the other ones are immediate.
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2.4.2. Un easy example: the Bootstrap category of C*-algebras. Let
B ⊆ KK denote the Rosenberg-Schochet bootstrap category of separable C*-
algebra, as in §1.3.3. Its subcategory of compact objects Bc consists of all
C*-algebras in the bootstrap class having finitely generated K-theory groups.

The classification problems for B and Bc have very easy solutions, espe-
cially when compared with the extremely complex situation of the topological
analogue, i.e. the stable homotopy category.

Let Fp be the prime field of characteristic p, including F0 := Q. For all A ∈ B
and p ∈ Spec Z, set K∗(A; Fp) := K∗(A ⊗ κ(p)), where κ(p) ∈ B is any object
with K∗(κ(p)) ∼= Fp. These are the classical topological K-theories with mod p
and rational coefficients for C*-algebras.

The next result takes care of the classification of thick subcategories of com-
pact objects, and can be obtained from Theorem 2.4.1:

2.4.3 Theorem ([2, Thm. 1.2]). There is a homeomorphism between Spc(Bootc)
and Spec(Z) identifying the universal support datum of a compact object A ∈ B
with the set {p ∈ Spec Z | K∗(A; Fp) 6= 0}.

The localising subcategories are also easy to describe in terms of Spec Z, as
follows. The proof is an adaptation of ideas of Neeman [Nee92].

2.4.4 Theorem ([3, Thm. 1.1]). There is an inclusion-preserving bijection be-
tween localizing subcategories of the Bootstrap category Boot and arbitrary sub-
sets of Spec Z. It sends a localising subcategory L ⊆ B to the subset

{p ∈ Spec Z | ∃A ∈ L s. t. K∗(A; Fp) 6= 0}

and a subset S ⊆ Spec Z to the subcategory

{A ∈ B | ∀p 6∈ S,K∗(A; Fp) = 0} .

Very recently, this classification theorem has been extended by Nadareishvili
[Nad16] to the Meyer-Nest bootstrap category B ⊆ KK(Tn) of filtered C*-
algebras (see §1.3.3), by combining our results above with more combinatorial
methods; notice also that KK(Tn) does not have a tensor.

2.5 Graded 2-rings and generalised comparison maps
As we have seen in §2.3, Balmer’s comparison map ρ : Spc T → Spec EndT (1)
and its graded versions are often surjective for simple-minded reasons. In the
cases where they are injective, this is usually much harder to prove. Moreover,
the graded versions have more chances of being injective then the ungraded one.
In [9] we take the latter observation seriously and construct more general com-
parison maps, by allowing more sophisticated gradings, in the hope of obtaining
embeddings of the triangular spectrum Spc T into some more ameanable space.
We will give here the abstract results, followed in §2.6 by two applications.

In order to handle the extra gradings, we use the following categorification
(and generalisation) of the usual notion of graded commutative rings.
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2.5.1. Commutative 2-groups and 2-rings. Following [BL04], we define a
(symmetric) 2-group to be an (essentially) small symmetric monoidal category
G = (G,⊗,1) in which every morphism is invertible and every object is tensor
invertible. We write g∨ for a tensor inverse of g ∈ ObjG, which is also its tensor
dual as in §1.6.1.

Definition ([7]). A graded commutative 2-ring is a Z-linear symmetric monoidal
category R in which every object is tensor invertible. In particular, its maximal
subgroupoid is a 2-group G = G(R) having the same objects as R.

We considerR as being a fancy version of a graded commutative ring, graded
by the objects of G. (One could allow the grading 2-group to vary, but we stick
here with the canonical choice for each R.)

Here are our basic examples:

• A commutative ring R can be seen as a Z-linear category with a single
object ∗ and End(∗) = R. It is a tensor category by ∗ ⊗ ∗ = ∗ = 1 and
r ⊗ s = rs, and a commutative 2-ring with trivial grading (2-)group.

• More generally, let R be graded commutative ring; we can allow it to be
graded by any abelian group G, and its commutativity sr = (−1)ε(|s|,|r|)rs
to be ruled by any symmetric bilinear map ε : G×G→ Z/2 (more general
formulations are also possible). Then the companion category CR of R is a
graded commutative 2-ring, as follows: its objects are the elements g ∈ G,
its Hom groups are CR(g, h) = Rh−g, and its composition is the product
of homogeneous elements of R. The tensor product is strictly symmetric,
given by g ⊗ h = g + h on objects and by r ⊗ s = (−1)ε(g,g

′−h′)rs on
maps r : g → h and s : g′ → h′. The companion category CR has the same
representation theory as R (see [7, §2]); it will reappear in §2.6.1.

• Let A be any additive symmetric monoidal category and L any family
of invertible objects ` ∈ A. Denote by L the maximal subgroupoid of A
whose objects are the tensor-multiplicative closure of L, and let R(L) be
the full subcategory of A on the same objects. Then R(L) is a graded
commutative 2-ring, graded by the 2-group L.

• For a concrete example of the previous construction, we can take A =
D(X) to be the derived category of a scheme, and L a family of line
bundles on X. This example will be used in §2.6.4.

If r, r′ ∈ R are two maps in a graded commutative 2-ring R with 2-group G,
we say r is a translate of r′ if r can be obtained from r′ by twisting (i.e. tensoring)
with objects (of G) and composing or precomposing with invertible maps (i.e.
maps of G), repeatedly and in any order. This defines an equivalence relation,
translation, on the maps of R. The important observation is that any two maps
r, s commute up to translation: there always exist translates r′ of r and s′ of s
such that rs = s′r′. This pseudo-commutativity allows us to generalise many
results and constructions from graded rings to graded commutative 2-rings.
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2.5.2. The spectrum of a graded commutative 2-ring. Let R be any
commutative graded commutative 2-ring, as in Definition 2.5.1. A homogeneous
ideal in R is a categorical ideal I ⊆ R of maps (closed under sums of parallel
maps and under composition on both sides with arbitrary maps) which moreover
is closed under all twists, i.e., under tensoring with objects g⊗− (or equivalently,
with any maps). We say I is prime if it is proper and if r ◦ s ∈ I implies r ∈ I
or s ∈ I.

The spectrum of R, written SpecR, is the set of all prime homogeneous
ideals of R equipped with the evident Zariski topology.

2.5.3 Theorem ([7]). The spectrum defines a contravariant functor R 7→
SpecR from the category of graded commutative 2-rings and additive tensor
functors to the category of spectral spaces and spectral maps, in the sense of
Hochster (see §2.2.1). Moreover, it interacts in the expected way with quotients
R/I by homogeneous ideals and localisations Rp at homogeneous primes.

The quotient mentioned in the theorem is the additive categorical quotient
R/I equipped with the induced tensor product. Similarly, localisation Rp at
a prime ideal is, by definition, simply the categorical localisation inverting all
the maps in Rr p, equipped with the induced tensor product. More generally,
one can localise R at any homogeneous multiplicative system S, i.e. a set of
maps containing all isomorphisms and stable under translation (see §2.5.1). The
resulting localisation R → S−1R satisfies a calculus of left and right fractions.

2.5.4. Central 2-rings in triangulated categories. We now apply the above
theory to triangulated categories.

Let R be a graded commutative 2-ring. By an algebra over R (or R-algebra)
we mean an additive symmetric monoidal category A equipped with an additive
symmetric monoidal functor F : R → A. (Note that the objects of A are not
required to be invertible.)

If S be a homogeneous multiplicative system in R and F : R → A is an
R-algebra, write SA for the smallest class of maps in A containing FS and all
isomorphisms of A and which is closed under composition and twisting with
objects of A.

2.5.5 Theorem ([9, Thm. 2.47]). The set SA is a homogeneous multiplicative
set satisfying in A both a left and a right calculus of fractions.

Definition. Let T be tensor triangulated category. A central 2-ring of T is
any graded commutative 2-ring R occurring as a full tensor subcategory of T .
The inclusion functor R → T turns T into an R-algebra in the above sense.

Together with Theorem 2.5.5, our next result shows that Balmer’s tech-
nique of central localisation of tensor triangulated categories (§2.1.4) generalises
smoothly to any central 2-ring.

2.5.6 Theorem ([9, Thm. 3.6]). Let R be any central 2-ring of a tensor trian-
gulated category T , as above, and let S be a homogeneous multiplicative system
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in R. Then localisation induces a canonical isomorphism

T
q //

loc
��

T /JS

S−1
T T

∼=

;;

between T localized at S as an R-algebra (see Theorem 2.5.5) and the Verdier
quotient of T by the thick tensor ideal

JS := 〈cone(s) | s ∈ S〉⊗ = {x ∈ T | ∃s ∈ S such that s⊗ idx = 0}

generated by the cones of maps in S.
Moreover, the central 2-ring of these categories on the objects of R is canon-

ically isomorphic to the localized graded commutative 2-ring S−1R.

It follows in particular that the localisation S−1
T T inherits from T a canonical

tensor triangulated structure. Or we can view this the other way round: the
tensor triangular quotient T /JS has a computationally easier model S−1

T T .
In order to compare the geometry of the tensor triangulated category with

that of its central rings, we need to understand the local case. This is the content
of the next theorem. A tensor triangulated category (just like a commutative
ring, or a graded commutative 2-ring . . . ) is said to be local if its spectrum has
a unique closed point (see [Bal10a]).

2.5.7 Theorem ([9, Thm. 3.3]). If T is a local tensor triangulated category,
then every central 2-ring R of T is local as a graded commutative 2-ring, i.e. it
has a unique maximal homogeneous ideal. Moreover, this maximal ideal consists
precisely of the non-invertible arrows of R.

2.5.8. Generalised comparison maps. As was the case for central localisa-
tion, we can also generalise Balmer’s comparison map ρ : Spc T → SpecR to
arbitrary graded commutative 2-rings. This provides us with a vast new choice
of maps with which one can try to compute the triangular spectrum.

2.5.9 Theorem ([9, Thm. 3.10]). For every central 2-ring R of T there is a
continuous spectral map ρRT : Spc T → SpecR which sends the prime thick ⊗-
ideal P ⊂ T to the prime ideal

ρRT (P) := {r ∈ MorR | cone(r) 6∈ P} .

Moreover, the map ρRT is natural in the following sense. If F : T → T ′ is a
tensor-exact functor and R′ is a central 2-ring of T ′ such that FR ⊆ R′, then
the square of spectral continuous maps

Spc T ′

ρR
′
T ′
��

SpcF // Spc T

ρRT
��

SpecR′
SpecF // SpecR
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is commutative.

With our comparison maps, we also have at our disposal a general abstract
criterion for injectivity (first observed by Stevenson for the original map ρ):

2.5.10 Proposition ([9, Prop. 3.11]). Suppose the collection of subsets

B = {Supp(Cone(r)) | r ∈ MorR}

gives a basis of closed subsets for the topology of Spc T . Then the map ρRT is a
homeomorphism onto its image; in particular, it is injective.

Although it is quite abstract, this criterion can actually be used in some
situations, for instance in the two examples discussed in §2.6.

2.6 Applications to derived categories
We now apply the previous abstract nonsense to derived categories of (graded)
rings and schemes.

Recall that the derived category of an abelian category is by definition the lo-
calisation of the category Ch(A) of complexes X = (Xn, dnX : Xn → Xn+1)n∈Z

in A obtained by formally inverting the quasi-isomorphisms, i.e., chain maps
X → Y which induce an isomorphism HnX

∼→ HnY on all cohomology ob-
jects. The derived category D(A) is a triangulated category where the sus-
pension functor ΣX is given by degree shift and a sign change on differentials:
(ΣX)n = Xn+1 and dnΣX = −dn+1

X . The distinguished triangles all arise (up
to quasi-isomorphism) from short exact sequences of complexes. One often
considers variations where some conditions are imposed on the complexes, e.g.
boundedness, nice cohomology objects, etc.

If X is a quasi-compact and quasi-separated scheme, we consider its derived
category D(X) := Dqc(X) of (unbounded) complexes with quasi-coherent co-
homology sheaves. It is compactly generated, and its compact objects are the
perfect complexes, D(X)c = Dperf(X), i.e. those complexes which are locally
quasi-isomorphic to a bounded complex of vector bundles. The left derived ten-
sor product −⊗L

OX − turns D(X) and D(X)c into tensor triangulated categories
with unit OX .

In the affine case X = Spec(R), this amounts to the derived category D(R)
of all complexes of R-modules over a commutative ring R, which is compactly
generated by the tensor unit R. A complex of modules is perfect iff it is quasi-
isomorphic to a bounded complex of finitely generated projectives.

We consider also the case of a graded commutative ring R. Here we can
allow R to be graded by a general abelian group G and its commutativity rule
rs = (−1)ε(|r|,|s|)sr to use any signing bilinear form ε : G × G → Z/2. Then
D(R) is the derived category of complexes of (left, say) graded R-modules and
degree-preserving R-linear maps. Again, D(R) is a compactly generated tensor
triangulated category, but now it is generated by the family R(g) (g ∈ G) of all
inner shifts R(g) of the tensor unit R (see [7]). In particular, Dperf(R) is not
anymore generated by its tensor unit.

49



As usual, we will consider the Balmer spectrum only for the tensor triangu-
lated subcategories of compact objects.

2.6.1. Graded commutative rings. The following result amounts to a graded
generalisation of the Hopkins-Neeman-Thomason classification of the thick sub-
categories of perfect complexes over a commutative ring [Tho97]. A global ver-
sion, for quite general ‘super-schemes’, can also be derived, although we haven’t
written up the details.

2.6.2 Theorem ([9, Thm. 4.7]). Let R be any graded commutative ring, in the
above flexible sense. Then there is a (unique) homeomorphism

Spc Dperf(R) ∼= SpechR

which identifies the support in the sense of Balmer with the usual homological
support given by SuppR(X) = {p ∈ SpechR | H∗(X)p 6= 0}.

Our proof is similar in spirit to that of Thomason in that it reduces the prob-
lem to the case of a noetherian graded commutative ring, which was treated
separately in [7]. The main difference is that we deduce the general case by
working almost exclusively at the tensor triangular level, rather then by more
ring- and module-theoretic arguments. The tool that allows us to perform this
more formal (hence, hopefully, also more reusable) reduction step is our gener-
alised comparison map ρRT of §2.5.8 for graded commutative 2-rings, thanks to
its flexibility and naturality. Another ingredient is the companion category CR
of R, as in §2.5.1, and the fact that it can be easily identified, as a graded 2-ring,
with the full subcategory R := {R(g) | g ∈ G} of D(R). Thus the identification
in the theorem is actually a chain of homeomorphisms

Spc Dperf(R)
∼→ SpecR ∼= Spec CR ∼= SpechR

where the leftmost map is our comparison map ρR
Dperf (R)

.
In [7], the noetherian case is proved by extending to the graded setting some

well-known arguments involving the classification of indecomposable injective
modules over noetherian commutative rings, which is used to define the small
support ssupp for the objects of D(R), and by applying to it our recognition
criterion of Theorem 2.4.1. The result is a (slightly more abstract) variant
of Neeman’s origin proof [Nee92] for the ungraded case. As in loc. cit., the
argument simultaneously classifies the localising subcategories of the ambient
compactly generated category D(R). We present our graded statement below.

The small support of any X ∈ D(R) is given by

ssupp(X) = {p ∈ SpechR | k(p)⊗L
R X 6= 0}

where k(p) is the graded residue field of R at p.
Note that a localising subcategory in D(R) which is a tensor ideal is the

same as one which is stable under internal degree shift by any g ∈ G.
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2.6.3 Theorem ([7, Thm. 5.7]). There are mutually inverse and inclusion pre-
serving bijections

{
subsets of SpechR

} τ //
oo
σ

{
localizing ⊗ -ideals of D(R)

}
,

and {
specialization closed
subsets of SpechR

}
τ //
oo
σ

{
localizing ⊗ -ideals of D(R)
generated by objects of D(R)c

}
where for a subset W of SpechR and a localizing ⊗-ideal L we set

τ(W ) = {X ∈ D(R) | ssuppX ⊆W}

and
σ(L) = {p ∈ SpechR | k(p)⊗L

R L 6= 0}.

The second bijection is equivalent to a classification for perfect complexes
which, in its turn, amounts to the identification of Spc D(R)c and SpechR be-
cause of the general abstract classification of §2.2.2.

The classification results of the latter theorem can be applied to derived
categories of “weighted projective schemes” (certain algebraic stacks), which
notably involve gradings by more general abelian groups than Z (see [7, §6]).

2.6.4. Schemes with an ample family of line bundles. For another, rather
straightforward application of our generalised comparison map, we may consider
as in §2.6 above a scheme X and its derived category D(X). If L = {Lλ}λ∈Λ

is a collection of line bundles on X, we can consider as in §2.5.1 the full tensor
subcategory R(L) of D(X) generated by L. It is a graded commutative 2-ring
and therefore has a nice spectrum SpecR(L).

2.6.5 Theorem ([9, Thm. 4.11]). Let X be a quasi-compact and quasi-separated
scheme equipped with an ample family of line bundles L = {Lλ}λ∈Λ. Then the
comparison map

ρ : Spc Dperf(X)→ SpecR(L)

is a homeomorphism onto its image. In particular, there is an injective mor-
phism ρ

L
X : X → SpecR(L) and X has the subspace topology relative to this

injection.

The injectivity of the comparison map follows from the criterion in Proposi-
tion 2.5.10 and the definition of an ample family. The second statement follows
by Balmer’s reconstruction’s theorem X ∼= Spc Dperf(X).

As it turns out, the above theorem recovers, with a new proof, the embed-
dings due to Brenner and Schröer [BS03] of divisorial schemes into generalised
projective spaces. An advantage of our definition is that it is clearly functorial
in the pair (X,L) and does away with some finiteness hypothesis.
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2.7 Classifications in the affine regular case
Concerning Balmer’s original graded comparison map §2.3, we have the follow-
ing general result stating that it is a homeomorphism, provided that the tensor
unit generates the category and has a regular and noetherian graded endomor-
phism ring. We also have a version classifying the localising subcategories in a
compactly generated category.

2.7.1 Theorem ([14, Thm. 1.1]). Let K be an essentially small tensor trian-
gulated category and denote by R its graded endomorphism ring R := End∗K(1).
Assume that K and R satisfy the next two conditions:

(1) K is classically generated by 1, i.e., as a thick subcategory: Thick(1) = K.
(2) R is a graded noetherian ring concentrated in even degrees and, for every

homogeneous prime ideal p of R, the maximal ideal of the local ring Rp is
generated by a finite regular sequence of homogeneous non-zero-divisors.

Then the graded comparison map ρ : SpcK ∼→ SpechR is a homeomorphism.

The noetherianity of R already guarantees that ρ is surjective. The key to
proving injectivity is to first use general tensor triangular geometry to reduce
the statement to the localised category Kp. Then one shows that the fiber of ρ
over any p ∈ SpecR consists of a single point, by using the residue field object

K(p) := Cone(f1)⊗ · · · ⊗ Cone(fn)

defined by the regular sequence f1, . . . , fn provided by hypothesis (2). It has the
property that its cohomology (homotopy) R-module K∗p(1,K(p)) is just k(p),
the graded residue field. We deduce that the thick subcategory generated by
K(p) is minimal, and the result follows.

2.7.2 Remark. We can also slightly change hypothesis (2) of the theorem, by
replacing the evenness hypothesis with a more abstract one, relating to the
properties of algebraic triangulated categories [Sch10]. The variant (2)’ says: R
is noetherian, and for every p ∈ SpechR the ideal pRp ⊆ Rp is generated by a
finite regular sequence f1, . . . , fn such that each fi acts as zero on Cone(fi).

As usual this yields a classification of the thick tensor ideals as follows, in
terms of the usual big Zariski support SuppR. Since K is generated by its tensor
unit, every thick subcategory is automatically a tensor ideal. Therefore:

2.7.3 Corollary ([14, Cor. 1.2]). If K and R are as in the theorem, then there
exists a canonical inclusion-preserving bijection

{
thick subcategories C of K

} ∼ // {specialization closed subsets V of SpecR
}

oo

mapping a thick subcategory C to V =
⋃
X∈C SuppRH

∗X and a specialization
closed subset V to C = {X ∈ K | SuppRH

∗X ⊆ V }.
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Assume now that, as in many natural examples, K is the subcategory T c of
compact objects in a compactly generated tensor triangulated category T . Here
we simply mean that T is compactly generated, and equipped with an exact and
coproduct preserving tensor product, such that T c is a tensor subcategory. The
next classification uses the support suppR of objects X ∈ T defined by

suppRX := {p ∈ SpechR | K(p)⊗X 6= 0} .

With our hypotheses, this coincides with the support defined by Benson, Iyen-
gar and Krause [BIK08], and we employ several of their results in proving the
following theorem:

2.7.4 Theorem ([14, Thm. 1.3]). Let T be a compactly generated tensor tri-
angulated category such that its subcategory of compact objects K := T c and its
graded central ring R satisfy the conditions (1) and (2) in Theorem 2.7.1. Then
we have the following canonical inclusion-preserving bijection:

{
localizing subcategories L ⊆ T

} ∼ // {subsets S ⊆ SpechR
}
.oo

The correspondence sends a localizing subcategory L to S =
⋃
X∈L suppRX,

and an arbitrary subset S to L = {X ∈ T | suppRX ⊆ S}. Moreover, the bijec-
tion restricts, on the left, to localizing subcategories L = Loc(L ∩ K) which are
generated by compact objects and, on the right, to specialization closed subsets
S =

⋃
p∈S {p}.

Recall that a localising subcategory if smashing if its inclusion functor has
a coproduct preserving right adjoint. The following statement is ofter referred
to as the (generalised) telescope conjecture:

2.7.5 Corollary ([14, Cor. 1.4]). In the same situation as in Theorem 2.7.4,
every smashing subcategory of T is generated by a set of compact objects of T .

For T := D(A) the derived category of a (highly structured) commutative
ring spectrum A (see §3.6.2), the tensor unit A generates, hence we can apply
all the above results as soon as the homotopy algebra R = π∗A satisfies the
regularity hypothesis (2). This example was first treated by Shamir [Sha12],
using some more model-theoretic arguments.

2.7.6. Application to commutative dg-algebras. Let A be a commutative
differential graded (= dg) algebra and D(A) its derived category of dg modules.
Then D(A) is a compactly generated tensor triangulated category with respect
to the standard tensor product ⊗ = ⊗L

A. It is generated by its tensor unit A so
it satisfies hypothesis (1) in Theorem 2.7.1. The graded central ring R = H∗A
is the cohomology algebra of A. Hence if the latter also satisfies hypothesis (2)
all previous results apply to D(A). Since every f ∈ H∗A acts as zero on its
cone, we can apply our results in the variant of Remark 2.7.2. We obtain:
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2.7.7 Theorem. Let A be a commutative dg algebra such that its graded co-
homology ring R = H∗A is noetherian and such that for every homogeneous
prime p the maximal ideal pRp ⊂ Rp is generated by a finite regular sequence.
Then all the conclusions of Theorems 2.7.1 and 2.7.4 and of Corollaries 2.7.3
and 2.7.5 hold for T = D(A) and K = D(A)c: namely, the spectrum of H∗A
classifies the thick tensor ideals of perfect dg modules as well as the localising
subcategories of D(A), and the telescope conjecture holds in D(A).

The advantage of not having the evenness hypothesis is that this theorem
can also be applied, for instance, to a graded polynomial algebra with any choice
of grading for the variables, seen a strictly commutative formal dg algebra.

2.8 Another example: noncommutative motives
We now briefly present the results of [5]. This only represents a modest first
attempt towards a description of the triangular spectrum of non-commutative
motives, but it serves to illustrate the order of difficulty of such an enterprise.

Fix a base commutative ring k, and let Motak and Mot`k denote the trian-
gulated categories of noncommutative motives, in their additive and localising
versions (see [Tab08]). There are functors

Uak : dgcatk → Motak U `k : dgcatk → Mot`k

from the category of small dg categories over k which are, in a precise sense, the
universal additive and localising invariant, respectively. In particular, Hochschild
homology HH, topological cyclic homology THH, and nonconnective algebraic
K-theory IK (as functors into spectra) are all localising invariants, hence fac-
tor uniquely through Mot`k and (since localising invariants are additive) also
through Motak. Quillen K-theory K is only additive and factors through Motak.

Both Motak and Mot`k are tensor triangulated categories with arbitrary co-
products [CT12]. Motak is known to be compactly generated, with a set of
compact generators given by the motives Uak (A) of homotopically finite dg cate-
gories A, while this is not known for Mot`k. In the following we will consider the
monogenic cores Coreak ⊂ Motak and Core`k ⊂ Mot`k, defined to be the thick sub-
categories generated by the tensor unit 1 = Uak (k) and 1 = U `k(k), respectively.
Their rationalisations are denoted by Coreak;Q and Core`k;Q.

After these drastic simplifications, we obtain:

2.8.1 Theorem ([5, Thm. 1.1]). Assume that the base ring k is finite or that
it is the algebraic closure of a finite field. Then, if we denote by n the number
of prime ideals in k, we have an equivalence Coreak;Q

∼= Dperf(Qn) of tensor
triangulated categories. Hence Spc(Coreak;Q) has precisely n distinct points. The
same result holds for Core`k;Q if we further assume that the base ring k is regular.

Without rationalising the monogenic cores, we can exploit some classical
(non-trivial!) computations of the above-mentioned invariants to obtain a little
extra information. Balmer’s ungraded comparison map ρ is also used here.
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We denote by HP periodic cyclic homology, which, although not a localising
invariant, can be factors through Mot`k if we consider it as taking values in the
derived category of 2-periodic complexes.

2.8.2 Theorem ([5, Thm. 1.2]). Assume that k is a finite field Fq or an alge-
braic closure Fq (where q = pr with p a prime number and r a positive integer).
Then:

(i) We have a continuous surjective map ρ : Spc(Coreak)� Spec(Z).

(ii) The fiber ρ−1({0}) at the prime ideal {0} ⊂ Z has a single point given by

{M ∈ Coreak |K∗(M)Q = 0} ,

where K∗(M) stands for the homotopy groups of the spectrum K(M).

(iii) The fiber ρ−1(pZ) at the prime ideal pZ ⊂ Z has a single point. Moreover,
this point admits the following three different descriptions:

(a) {M ∈ Coreak |HH(M) = 0}
(b) {M ∈ Coreak |HP (M) = 0}
(c) {M ∈ Coreak | K∗(M)(p) = 0} ,

where K∗(M)(p) is the localization of K∗(M) at the prime pZ.

Moreover, the same results hold for Core`k, with K replaced by IK.

Now contrast the above results with the following one, which says that things
get more complicated as soon as we add polynomial algebras to the monogenic
core. Let ECoreak ⊂ Motak (‘extended core’) be the tensor triangulated subcate-
gory generated by the tensor unit together with the motive Uak (k[t]).

2.8.3 Theorem ([5, Thm. 1.4, Prop. ]). Let k be a field and char(k) = 0. Then:

(i) We have a continuous surjective map ρ : Spc(ECoreak)� Spec(Z).

(ii) The two subcategories

{M ∈ ECoreak |HH(M) = 0} and {M ∈ ECoreak |HP (M) = 0}

define two distinct points in Spc(ECoreak), both in the same fiber ρ−1({0}).

It seems to us that any significant progress in the tensor triangular geometry
of noncommutative motives beyond these first observations will need the input
of some radically new idea.
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3 Tensor exact functors and duality

In this last section we describe the results of [13, 12], joint work with Paul
Balmer and Beren Sanders, where we systematically study the properties of
nice tensor exact functors f∗ : D → C and connect them with various duality
theories throughout mathematics.

3.1 Preliminaries on tensor exact functors
Here are the precise hypotheses we will need for most of our results:

3.1.1 Hypothesis. We assume that the tensor triangulated categories C and D

are rigidly-compactly generated as in Definition 2.1.3: they are compactly gener-
ated, they admit a compatible closed monoidal structure, and the subcategories
of compact and rigid objects coincide. Of the given functor f∗ : D → C we as-
sume that it preserves distinguished triangles, tensor products (it is a symmetric
monoidal functor) and also arbitrary coproducts.

Remark. Unfortunately, we cannot weaken the above hypothesis to include the
ℵ1-relative version of Brown representability, hence we cannot include the ex-
amples of Kasparov categories of C*-algebras that we had encountered so far,
which only admit countable coproducts. This is because our proofs use Brown
representability for the dual, which cannot hold in such categories.

In particular, our hypothesis implies that the subcategory of compact objects
Cc (and similarly for Dc) is a rigid tensor triangulated category, which comes
equipped with the following canonical tensor exact duality functor

∆ := hom(−,1) : (Cc)op ∼→ Cc .

This is the starting point of all our dualities. One of the main goals of our
duality theory presented below in §3.4 is to identify bigger subcategories C0 ⊂ C

admitting such a duality functor ∆κ := hom(−, κ), typically twisted by some
more general dualizing object κ.

As we explained in the Introduction, we are going to study the existence of
adjoint functors to f∗, adjoints to those adjoints, etc., and will show that only
three possible distinct configurations of adjoints are possible. To begin with,
since we assume f∗ to preserve coproducts Neeman’s Brown representability
(§1.1.3) already implies the existence of a right adjoint f∗ for it. Since f∗ is
a tensor functor, it preserves rigid and hence compact objects, and therefore,
by another well-known trick, the right adjoint f∗ preserves coproducts; hence
by Brown representability it admits itself a right adjoint, f (1). This already
establishes the basic first stage of adjunction:

3.1.2 Theorem ([13, Cor. 2.14, Prop. 2.15]). Under Hypothesis 3.1.1, the func-
tor f∗ : D → C admits a right adjoint f∗ : C → D, which itself admits a right
adjoint f (1) : D→ C: Moreover, the three functors

f∗ a f∗ a f (1)
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are related by the following canonical isomorphisms:

x⊗ f∗(y) ∼= f∗(f
∗(x)⊗ y) (3.1)

homD(x, f∗y) ∼= f∗ homC(f∗x, y) (3.2)
homD(f∗x, y) ∼= f∗ homC(x, f (1)y) (3.3)
f (1)homD(x, y) ∼= homC(f∗x, f (1)y) .

Here and in the following, homC and homD denote the internal hom functors
on C and D respectively. The isomorphism (3.1) is usually called the (right)
projection formula. The isomorphisms (3.2) and (3.3) are simply internal ver-
sions of the two adjunctions, from which the adjunctions can be recovered by
applying homD(1D,−).

The following terminology refers to the dualizing complexes of algebraic
geometry; see [Lip09] and [Nee96, Nee10].

3.1.3 Definition ([13]). The object f (1)(1D) of C will be called the relative
dualizing object (for f∗ : D→ C) and will be denoted by ωf .

Note that by definition ωf is uniquely determined by the existence of a
natural bijection

HomD(f∗(−),1) ∼= HomC(−, ωf )

or equivalently, using the internal adjunction, by the existence of a natural
isomorphism in D

homD(f∗(−),1) ∼= f∗ homC(−, ωf ) .

Writing ∆ = hom(−,1) and ∆ωf = hom(−, ωf ) for the usual duality functor on
D and for the ωf -twisted duality on C, this becomes the equation

∆ ◦ f∗ ∼= f∗ ◦∆ωf

telling us that ωf is precisely the object needed to make the direct image f∗ a
duality preserving functor.

3.2 Grothendieck-Neeman duality
We now come to the second possible stage of adjunction. This is the content of
the following mammuth theorem. When the three equivalent conditions (1)-(3)
of the theorem hold true, we say that f∗ satisfies Grothendieck-Neeman duality.

3.2.1 Theorem ([13, Thm. 3.3]). Let f∗ : D → C be as in Hypothesis 3.1.1
and consider the automatic adjoints f∗ a f∗ a f (1) of Thm. 3.1.2. Then the
following conditions are equivalent:

(1) Grothendieck duality: There is a natural isomorphism

ωf ⊗ f∗(−) ∼= f (1)(−)

identifying the mysterious new functor f (1) with the twist of the given pull-
back functor f∗ by the relative dualising object ωf .
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(2) Neeman’s criterion: The functor f∗ preserves compact objects, or equiva-
lently its right adjoint f (1) preserves coproducts, or equivalently by Brown
Representability f (1) admits a right adjoint f(−1).

(3) The original functor f∗ : D → C preserves products, or equivalently by
Brown Representability for the dual, f∗ admits a left adjoint f(1).

Moreover, when these conditions hold, the five functors

C

f(1)

��

OO

f∗ f∗
��

OO

f (1) f(−1)

��
D

are related by the following additional canonical natural isomorphisms:

f(−1)
∼= f∗ homC(ωf ,−)

f (1)(x⊗ y) ∼= f (1)(x)⊗ f∗(y)

homD(x, f(−1)y) ∼= f∗ homC(f (1)x, y)

homD(x, f(−1)y) ∼= f(−1) homC(f∗x, y)

f∗(−) ∼= homC(ωf , f
(1)(−)) (3.4)

f(1)(−) ∼= f∗(ωf ⊗−) (ur-Wirthmüller)

x⊗ f(1)(y) ∼= f(1)(f
∗(x)⊗ y) (left projection formula)

f∗homD(x, y) ∼= homC(f∗x, f∗y)

homD(f(1)x, y) ∼= f∗ homC(x, f∗y).

There is a logic to all these formulas, and they are organised in ‘conjugate’
families as indicated in our display (see [13, Rem. 2.21]).

We have highlighted the left projection formula for the left adjoint f(1) of f∗,
analogous to the already encountered projection formula for the right adjoint f∗,
as well as the ur-Wirthmüller formula, which gives rise to the Wirthmüller
isomorphism relating the left and the right adjoints via a canonical twist. It
is remarkable that the same canonical object, namely ωf , giving rise to the
Wirthmüller isomorphims, is the same object appearing in the Grothendieck-
Neeman duality formula. This had not been observed before.

A Wirthmüller isomorphism is usually understood to be a twist by a tensor
invertible object (hence our “ur-” qualifier), so it is only natural to ask when ωf
becomes invertible. The answer is, precisely when the third and last stage of
adjunction occurs!
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3.3 The Wirthmüller isomorphism
There is an isomorphism

1C
∼= homC(ωf , ωf )

for the relative dualising object ωf , which can be derived for instance by insert-
ing y = 1 in relation (3.4) of the Grothendieck-Neeman Duality Theorem 3.2.1.
This easily implies that ωf is tensor invertible precisely when it is a rigid, i.e.
compact object. In fact, there is a surprising number of equivalent characteri-
sations of the invertibility of ωf , and they are the content of the next theorem.
One of them is the existence of a further adjoint at the right end, or of a further
adjoint at the left end, but each of these already implies the existence of the
complete doubly infinite tower of adjoints. Hence the third phase of adjunction
is also the last possible one.

If the six equivalent conditions in the theorem are true, we say that the
Wirthmüller isomorphism holds for f∗.

3.3.1 Theorem ([13, Thm. 1.6]). Suppose that we have the five adjoint func-
tors f(1) a f∗ a f∗ a f (1) a f(−1) of Grothendieck-Neeman duality (see Theo-
rem3.2.1). Then the following six conditions are equivalent:

(1) The left-most functor f(1) admits itself a left adjoint, or equivalently by
Brown Representability it preserves arbitrary products.

(2) The right-most functor f(−1) admits itself a right adjoint, or equivalently
by Brown Representability it preserves arbitrary coproducts, or equivalently
its left adjoint f (1) preserves compact objects.

(3) The relative dualizing object ωf is a compact object of C.

(4) The relative dualizing object ωf is ⊗-invertible in C.

(5) There exists a (strong) Wirthmüller isomorphism between f∗ and f(1); that
is, there exists a ⊗-invertible object ω ∈ C such that f(1)

∼= f∗(ω ⊗−), or
equivalently such that f∗ ∼= f(1)(ω

−1 ⊗−).

(6) There exists an infinite tower of adjoints on both sides:

C

···

OO

f (−n) f(n)

��
···

OO

f (−1) f(1)

��

OO
f∗ f∗

��

OO

f (1) f(−1)

��

OO

f (2) ···

OO

f (n) f(−n)

��
···

D

which necessarily preserve all coproducts, products and compact objects.

Moreover, when these conditions hold, the tower of adjoints appearing in (6) is
necessarily given for all n ∈ Z by the formulas

f (n) = ω⊗nf ⊗ f∗ and f(n) = f∗(ω
⊗n
f ⊗−) . (3.5)

Finally, (1)-(6) hold true as soon as the functor f∗ : C→ D satisfies, in addition
to Grothendieck-Neeman duality, any one of the following three properties:
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(a) The functor f∗ is faithful (i.e. f∗ is surjective up to direct summands).

(b) The functor f∗ detects compact objects: any x ∈ C is compact if f∗(x) is.

(c) Any x ∈ C is compact if f∗(x⊗ y) is compact for every compact y ∈ C.

These conditions are ordered in increasing generality, because (a)⇒(b)⇒(c).

Note that the two equations (3.5) describing the infinitely many adjoints
necessarily follow from the Grothendieck-Neeman duality formula f (1) ∼= ωf⊗f∗,
the ur-Wirthmüller formula f(1)

∼= f∗(ωf ⊗ −), and the uniqueness of adjoints.
They also justify our notations.

The “Trichotomy of Adjoints” theorem stated in the Introduction should now
be obvious.

As we will see in the examples, in algebraic geometry the sufficient condition
(c) is related to the regularity of schemes.

3.4 Grothendieck duality on subcategories
As we have seen, the canonical dualizing object ωf is characterised by the fact
that it lifts the canonical duality homD(−,1) to C along the push-forward func-
tor f∗ : C → D. We now study more general dualizing objects κ, the subcate-
gories C0 ⊂ C that they dualize, and their functorial behaviour.

3.4.1. Dualizing objects. We will always assume that the subcategory C0 ⊂ C

is a Cc-submodule, i.e. a thick triangulated subcategory of the big category C

such that c ⊗ x ∈ C0 for all x ∈ C0 and all compact objects c ∈ Cc. (This is
justified by the examples.)

Definition. An object κ ∈ C0 is called a dualizing object for C0 if the κ-twisted
duality ∆κ := homC(−, κ) defines an anti-equivalence on C0:

∆κ := homC(−, κ) : (C0)op ∼−→C0.

If the latter holds for an object κ 6∈ C not belonging to C0, we say that it is an
external dualizing object for C0. (If 1 ∈ C0 then necessarily κ ∼= ∆κ(1) ∈ C0.)

This definition is inspired by dualizing complexes in algebraic geometry.
A primordial example is, of course, the dualizing object κ = 1 for the sub-

category of rigid-compact objects Cc. In general, an object κ ∈ Cc is dualizing
for C0 := Cc if and only if it is tensor invertible.

Under a choice of mild hypotheses, dualizing objects can be shown to be
unique up to tensoring with some invertible object.

For any object κ ∈ C, we deduce from the tensor-Hom adjunction a canonical
double dual comparison map

$κ : x −→ ∆κ∆κ(x)

and it is not hard to see that κ ∈ C0 is an (internal) dualizing object for C0 if
and only if ∆κ(x) ∈ C0 and $κ : x

∼→ ∆2
κ(x) for all x ∈ C0.
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3.4.2. Pulling back dualizing objects. We now generalise our previous ob-
servations about ωf and duality, and make precise what it means for the functor
f∗ to preserve duality.

3.4.3 Theorem. Assume the functor f∗ : D → C satisfies our basic Hypoth-
esis 3.1.1 and let κ ∈ D. Recall the two adjunctions f∗ a f∗ a f (1) of Theo-
rem 3.1.2, as well as their internal realizations (3.2) and (3.3). The latter yields
a canonical natural isomorphism

ζ : ∆κ ◦ f∗
∼→ f∗ ◦∆f(1)(κ). (3.6)

This isomorphism is compatible with the canonical maps $ of ∆κ and ∆κ′ for
κ′ = f (1)(κ). This means that the following diagram commutes, for all x ∈ C :

f∗(x)

$f∗(x)

��

f∗($x) // f∗∆κ′∆κ′(x)

∼= ζ∆
κ′ (x)

��
∆κ∆κf∗(x)

∼=
∆κ(ζ)

// ∆κf∗∆κ′(x).

In other words, f∗ : C→ D is a duality-preserving functor in the sense of [CH09].

The latter compatibility was systematically studied by Calmès and Horn-
bostel [CH09] and has to be taken into account, for instance, when applying
derived categories to the theory of quadratic forms over schemes2; see [Bal04].

3.4.4. The compact pullback of a subcategory. If κ ∈ D is a dualizing
object for some subcategory D0 ⊂ D of the base category, in view of Theorem
3.4.3 we may wish to somehow pull the subcategory D0 back along f∗ in order
to obtain a subcategory of C which is dualized by f (1)(κ).

We now explain the correct way to do it.

Definition. If D0 is a Dc-submodule of D, define its compact pullback along f∗
as the following full subcategory of C:

f#(D0) := {x ∈ C | f∗(c⊗ x) ∈ D0 for all c ∈ Cc} .

One sees immediately that f#(D0) is a Cc-submodule of C.

We note that the compact pullback of compact objects is a good measure for
the three stages of adjunction: the functor f∗ satisfies Grothendieck-Neeman
duality (stage two) if and only if Cc ⊆ f#(Dc); and the weakest sufficient
condition (c) in Theorem 3.3.1 guaranteeing that f∗ satisfies the Wirthmüller
isomorphism (stage three) is equivalent to having equality: Cc = f#(Dc).

Our next result is the following general Grothendieck duality theorem. In-
deed, as we will see, it specialises the Grothendieck duality in its form of an
anti-equivalence Db(cohX)op ∼→ Db(cohX) on the category of bounded com-
plexes of coherent modules over a (nice) scheme.

2Incidentally, my first mathematical work [1] – not included here – was done in this context.
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3.4.5 Theorem ([13, Thm. 5.25]). Let f∗ : D → C be as in our basic Hypoth-
esis 3.1.1 and let κ ∈ D. Recall the functors f∗ a f∗ a f (1), and suppose that
f∗ satisfies Grothendieck-Neeman duality (the second stage of adjunction, The-
orem 3.2.1) and that D0 ⊂ D is a Dc-submodule which admits κ ∈ D0 as a
dualizing object. Then

κ′ := f (1)(κ) ∼= ωf ⊗ f∗(κ)

is a dualizing object for the above-defined compact pullback f#(D0) ⊂ C. In
particular,

f∗ : f#(D0)−→D0

is a duality-preserving exact functor between categories with duality, where f#(D0)
is equipped with the duality ∆κ′ and D0 with ∆κ.

3.4.6. Categories over a base. We also have a more general version of our
Grothendieck duality theorem, in which we work relative to a base category B.
Instead of assuming that f∗ : D→ C satisfies Grothendieck-Neeman duality, we
now require that C and D satisfy it relative to the base B.

More precisely, assume that we have a commutative triangle

C

B

p∗
99

q∗ %%
D

f∗

OO

of functors, all satifying the basic Hypothesis 3.1.1 so that we have adjunctions
f∗ a f∗ a f (1), as well as p∗ a p∗ a p(1) and q∗ a q∗ a q(1). We say f∗ is a
morphism of B-categories.

3.4.7 Theorem. Let f∗ : D → C be a morphism of B-categories as above.
Assume that the structure functors p∗ and q∗ both satisfy Grothendieck-Neeman
duality (stage two of adjunction). Let B0 ⊂ B be a Bc-subcategory with dualizing
object κ ∈ B0. Let C0 := p#B0 and D0 := q#B0 be its compact pullbacks in C

and D respectively (see §3.4.4), which admit the dualizing objects

γ := ωp ⊗ p∗(κ) ∈ C0 and δ := ωq ⊗ q∗(κ) ∈ D0

respectively, by Theorem 3.4.5. Then we have the equality f#(D0) = C0, and f∗
restricts to a well-defined exact functor f∗ : C0 → D0 which is duality-preserving
with respect to ∆γ and ∆δ.

3.4.8. Pushing forward dualizing objects. Instead of starting with a sub-
category with duality D0 ⊆ D and pulling it back to C along the functor
f∗ : C → D, as we have done so far, we may instead already have a subcat-
egory with duality C0 ⊆ C, in which case the question is how to push it forward
towards D.

An answer is given by the next theorem:
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3.4.9 Theorem ([13, Thm. 7.1]). Let f∗ : D → C be a functor satisfying our
basic Hypothesis 3.1.1 and hence the first stage of adjunction f∗ a f∗ a f (1).
Let C0 be a subcategory of C admitting a dualizing object κ′ ∈ C, which could be
internal, κ′ ∈ C, or also external, κ′ 6∈ C0. Assume moreover that κ′ admits a
Matlis lift κ, that is, an object κ ∈ D such that f (1)(κ) ∼= κ′. Then the Matlis lift
κ is a (possibly external) dualizing object for the subcategory D0 := Thick(f∗C0),
the thick subcategory generated by the image of C0 under push-forward.

The name ‘Matlis lift’ is taken from the related work of Dwyer, Greenlees
and Iyengar [DGI06], cf. the examples in §3.6.8.

3.5 Relative Serre duality
Grothendieck duality generalises Serre duality to the relative situation, i.e. to
morphisms of schemes. However, there is another useful way to generalise Serre
duality, by using the notion of a Serre functor on a triangulated category. We
now explain how our framework offers a natural generalisation of Serre functors
which can be applied to morphisms. This only requires that we don’t insist on
working over a base field, as is traditionally done with Serre functors.

In general, if we are given any adjunction f∗ : D � C : f∗ between closed
tensor categories with f∗ a (strong) tensor functor, the category C inherits an
enrichment over D ([Kel05]): the Hom-objects of this enrichment are given by

C(x, y) := f∗ homC(x, y) ∈ D

and the unit and composition morphisms 1D → C(x, y) and C(y, z)⊗DC(x, y)→
C(x, z) in D are obtained by adjunction, in the evident way.

We have the following relative Serre duality theorem:

3.5.1 Theorem ([13, Thm. 6.12]). Let f∗ : D → C be a functor as in Hypoth-
esis 3.1.1 and let C denote the resulting D-enriched category as above. Then
there is a canonical natural isomorphism in D

σx,y : ∆C(x, y)
∼→ C(y, x⊗ ωf ) (3.7)

for all x ∈ Cc and y ∈ C, where ∆ := homD(−,1) is the standard duality. In
particular, if f∗ satisfies the Wirthmüller isomorphism (Theorem 3.3.1), the
pair (S := (−)⊗ωf , σ) defines a Serre functor on Cc relative to Dc, by which we
mean that S is an equivalence S : Cc

∼→ Cc and that σ is a natural isomorphism
∆C(x, y) ∼= C(y,Sx) in the tensor-category Dc for all x, y ∈ Cc.

Serre duality, in a more traditional sense, is then the special case where the
base is (the derived category of) a field:

3.5.2 Corollary ([13, Cor. 6.12]). Let f∗ : D→ C satisfy the Wirthmüller iso-
morphism (Theorem 3.3.1), and assume moreover that D = D(k) is the derived
category of a field k. Then Cc is k-linear and endowed with a Serre functor

S = (−)⊗ ωf : Cc
∼−→ Cc σ : C(x, y)?

∼−→ C(y,Sx)
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in the original sense of Bondal and Kapranov [BK89] (see also[BO01]), where
(−)? = Homk(−,k) denotes the k-linear dual.

We note that if a Serre functor (S, σ) exists, even in the general sense of
Theorem 3.5.1, then it is uniquely determined up to a canonical isomorphism,
by an application of the Yoneda lemma.

3.6 Examples and applications
We illustrate the preceding theory with some examples taken from represen-
tation theory, algebraic geometry, and commutative algebra. We should note
that, in some cases, our point of view allows us to clarify things and uncover
some new features. Even when the results are known, as is mostly the case, our
abstract proofs are sometimes simpler then those found in the literature.

Other examples mentioned in [13] include motivic homotopy theory, co-
homology rings of classifying spaces, highly structured cochain algebras, and
Brown-Comenetz duality for the stable homotopy category. A point worth men-
tioning about the latter is that it can be shown, using K-theoretic obstructions,
that the functor f∗ in question is not, in that case, induced by any underlying
functor at the level of models. Hence it provides an example of an f∗ which
exists purely at the triangular level, without any ‘underlying map f ’.

3.6.1. Representation theory. Let G be a finite group and let k be a field.
Then D := Stab(kG), the stable category of kG-modules modulo projectives, is
rigidly-compactly generated. More generally, G could be a finite group scheme
over k (see e.g. [HPS97, Theorem 9.6.3]). (Note however that the derived cat-
egory D(kG), though compactly generated, is not rigidly-compactly generated
because its unit object 1 = k is not compact).

Let H be a finite subgroup (a closed subgroup scheme) of G and consider its
stable category Stab(kH). As explained in [Jan87, Chapter 8], the restriction
functor

f∗ : D = Stab(kG) −→ Stab(kH) = C

provides an example of Theorem 3.3.1, i.e. satisfies the Wirthmüller isomor-
phism. Indeed, if δG denotes the unimodular character of the finite group scheme
G then the relative dualizing object ωf is δG|H · δ

−1
H . A finite group scheme is

said to be unimodular if its unimodular character is trivial, ωf ∼= 1, which is
equivalent to the group algebra being a symmetric algebra; this is the case for
instance for (discrete) finite groups.

3.6.2. (“Brave New”) commutative algebra. Let A be a commutative ring
or, more generally, a “Brave New” commutative ring, that is, a highly struc-
tured commutative ring spectrum. To be more precise, we can for instance
understand A to be a commutative S-algebra in the sense of [EKMM97]. Then
its derived category D(A), i.e. the homotopy category of A-modules (coincid-
ing with the derived category of chain complexes of A-modules in the case of
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a plain ring), is a rigidly-compactly generated category generated by its tensor
unit A (see e.g. [HPS97, Example 1.2.3(f)] and [SS03, Example 2.3(ii)]). For
example, every commutative dg ring has an associated commutative S-algebra
(its Eilenberg-MacLane spectrum) whose derived category is equivalent, as a
tensor triangulated category, to the derived category of dg modules (see [Shi07]
and [SS03, Theorem 5.1.6]).

Consider now a morphism φ : B → A of commutative S-algebras, or com-
mutative dg rings. Then φ induces a functor

f∗ := A⊗B − : D = D(B) −→ D(A) = C

satisfying our basic Hypotheses. (We do not write φ∗ to preserve the correct
variance; think “f = Specφ”, which is literally true in the case of a plain commu-
tative ring.) The right adjoint f∗ is obtained simply by considering A-modules
as B-modules through φ and the next right adjoint f (1) is given by the formula
f (1) = HomB(A,−). (All functors considered here are derived, of course.) Since
D(A)c is the thick subcategory generated by A, we see by Neeman’s criterion
(point (2) in Theorem 3.2.1) that f∗ satisfies Grothendieck-Neeman duality if
and only if f∗(A) is compact.

For usual rings, this simply means that A admits a finite resolution by finitely
generated B-modules. Assume this is the case, and assume further that B =
k is a field, so that A is a finite-dimensional commutative k-algebra. Then
ωf is the A-module HomB(A,B) = Homk(A,k) =: A? ∈ D(A), the k-linear
dual of A, and ωf is invertible iff it is a perfect complex, iff A? ∼= A as A-
modules. For a standard example where this is not true, we can take the k-
algebra A = k[t, s]/(s2, t2, st). Hence the latter is the example of an f∗ satisfying
Grothendick-Neeman duality but not the Wirthmüller isomorphism.

3.6.3. Equivariant stable homotopy. Let G be a compact Lie group. Then
D := SH(G), the homotopy category of “genuine” G-spectra indexed on a com-
plete G-universe (see [HPS97, §9.4]), is rigidly-compactly generated. The sus-
pension G-spectra Σ∞+ G/H, with H running through all closed subgroups of G,
is a set of rigid-compact generators which includes the tensor unit 1 = Σ∞+ G/G.

Let H be a closed subgroup of G and let

f∗ : D = SH(G) −→ SH(H) = C

denote the associated restriction functor. Then f∗ satisfies Wirthmüller duality,
as in Theorem 3.3.1. This example gives the phenomenon its name. The relative
dualizing object ωf can be computed to be the H-sphere SL, where L denotes
the tangent H-representation of the smooth G-manifold G/H at the identity
coset eH (see [LMSM86, Chapter III]). The (ur-)Wirthmüller formula takes
the form G+ ∧H X ∼= FH(G+, X ∧ SL) and provides the original Wirthmüller
isomorphism between induction and coinduction, up to a twist by SL. If H has
finite index in G (e.g. if G is a finite group) then L = 0 and ωf ∼= 1.

Fausk, Hu and May [FHM03] already provide an axiomatisation of the
Wirthmüller isomorphism, which however requires a God-given object C and
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isomorphism f∗(1) ∼= f(1)(C), from which they derive a formula f∗ ∼= f(1)(C⊗−).
Contrary to our setting, this leaves open the question of the canonicity of such
an isomorphism. We prove that, in the context of their axiomatisation, one nec-
essarily must have C ∼= ω−1

f as soon as C is compact, which seems to generally
be the case (see [13, Rem. 4.3, Prop. 4.4] for details).

3.6.4. Algebraic geometry. Let X be a quasi-compact and quasi-separated
scheme. Let C := D(X) = DQcoh(X) be the derived category of complexes
of OX -modules having quasi-coherent homology (see [Lip09]). It is rigidly-
compactly generated, and its compact objects are precisely the perfect com-
plexes: D(X)c = Dperf(X) (see [BvdB03]). The tensor functor is given by the
derived tensor product ⊗ = ⊗L

OX . If moreover X is separated, there is an
equivalence DQcoh(X) ∼= D(QcohX) with the derived category of complexes
of quasi-coherent OX -modules (see [BN93]). If X = Spec(A) is affine, then
D(QcohX) ∼= D(A -Mod) with compact objects D(A -Mod)c ∼= Kb(A -proj),
the homotopy category of bounded complexes of finitely generated projectives,
and we recover the (non-Brave New case of) §3.6.2.

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes
as above, and consider the (derived) inverse image functor

f∗ : D = D(Y ) −→ D(X) = C .

It is easy to see that f∗ satisfies our basic Hypothesis 3.1.1; its right adjoint
is the derived push-forward f∗ = Rf∗, whose right adjoint f (1) is the twisted
inverse image functor, usually written f× or f ! (see [Lip09]).

Then the functor f∗ satisfies Grothendieck-Neeman duality precisely when
the f∗ preserves compact objects, i.e. perfect complexes. By definition, this
means that the morphism f is quasi-perfect [LN07, Def. 1.1]. Thus in this con-
text, Theorem 3.2.1 recovers the original results of Neeman that have inspired
us. Even when specialized to algebraic geometry, our theorem is somewhat
stronger, because it includes the extra information about the left adjoint f(1)

of f∗, whose existence is equivalent to the quasi-perfection of f and which is
necessarily given by the ur-Wirthmüller formula f(1)

∼= ωf ⊗ f∗. (This left ad-
joint was only observed in a few case; we now know it exists in full generality.)
Among other things, it is shown in [LN07] that f is quasi-perfect iff it is proper
and of finite tor-dimension. Hence, if f : X → Y is finite (e.g. in the affine case),
then it is quasi-perfect iff f∗(1C) = Rf∗(OX) is a perfect complex.

Under some reasonable hypotheses, the stage of the Wirthmüller isomor-
phism is closely related to the scheme being Gorenstein. To see this, let us first
see how the abstract notion of compact pullback (§3.4.4) specialises in algebraic
geometry in the following nice way.

3.6.5 Theorem ([13, Thm. 5.21]). Let f : X → Y be a morphism of noetherian
schemes and consider the functor f∗ : D = D(Y )−→D(X) = C as above.

(1) Suppose that f : X → Y is proper. Then f∗ : C → D maps Db(cohX)
into Db(cohY ). Moreover, for every object x ∈ Db(cohX) and every
perfect c ∈ D(X)c we have f∗(c⊗ x) ∈ Db(cohY ).
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(2) Suppose that f : X → Y is projective. Then the following converse to (1)
holds: If x ∈ D(X) is such that f∗(c ⊗ x) ∈ Db(cohY ) for every perfect
c ∈ D(X)c then x ∈ Db(cohX).

Thus in our notation we have for a projective morphism f : X → Y that

f#
(

Db(cohY )
)

= Db(cohX).

By all rights, this equality should hold for all proper morphisms, but we
don’t have a general proof yet.

In any case, for projective varieties X at least we obtain in particular the
following purely tensor-triangular description of bounded complexes of coherent
sheaves. SinceX is regular iff the inclusion Dperf(X) ⊆ Db(cohX) is an equality,
this also yields a tensor-triangular characterisation of regularity.

3.6.6 Corollary. Consider a projective morphism f : X → S of noetherian
schemes, with regular base S (for instance S = Spec(k) for a field k). Then

Db(cohX) =
{
x ∈ D(X)

∣∣ f∗(c⊗ x) ∈ Dperf(S) for all c ∈ Dperf(X)
}
.

3.6.7. Grothendieck and Serre duality for algebraic varieties. Accord-
ingly, and for simplicity, we now restrict attention to a projective variety X
over a field k with structure map p : X → k and induced pullback functor
p∗ : B = D(k) → D(X) = C. By the abstract theory, the inclusion Cc =
Dperf(X) ⊆ Db(cohX) = p#(Bc) tells us that p∗ must satisfy Grothendieck-
Neeman duality. By another abstract characterisation ([13, Thm. 5.23]), we
know that the subcategory Db(cohX) consists of ωp-reflexive objects in D(X),
that is, those x ∈ D(X) whose canonical map $ωp : x → ∆2

ωp(x) is invertible.
Hence by the Grothendieck duality Theorem 3.4.5, the object ωp is dualizing
for the subcategory Db(cohX), i.e. it is a dualizing complex for X (see [Nee10]).
This is one of the central results of classical Grothendieck duality.

If X is Gorenstein (e.g. regular, or a complete intersection), then by [Har66,
p. 299] the structure sheaf OX is also a dualizing complex for X. But then, by
the uniqueness of dualizing complexes up to twist, there exists a tensor invertible
` ∈ D(X) and an isomorphism ωp ∼= OX ⊗ ` = `, so in the Gorenstein case ωp is
invertible and therefore p∗ satisfies the Wirthmüller isomorphism, Thm. 3.3.1.
Indeed, it can be shown in general that Gorenstein varieties are characterized
by having an invertible dualizing complex (see [AIL10, §8.3]).

If we assume further that X is regular, we can even determine ωp up to
isomorphism. Indeed, it is a basic classical result that Cc = Db(cohX) admits
a Serre functor − ⊗ ΣnωX , where ωX = ΛnΩX/k is the canonical sheaf on X
(see e.g. [Rou10, Lemma 4.18]; here we assume X is of pure dimension n, for
simplicity). By Corollary 3.5.2, the functor −⊗ωp is also a Serre functor on Cc.
Therefore, by the uniqueness of Serre functors, we must have ωp ∼= ΣnωX .

Finally, suppose now that f : X → Y is a k-morphism of projective varieties.
By Grothendieck duality over the base B = D(k) (Theorem 3.4.7), we have a
well-defined functor f∗ : Db(cohX)→ Db(cohY ) compatible with the dualities
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∆ωp = hom(−, ωp) and ∆ωq = hom(−, ωq) as determined above (where we
denote by q : Y → Spec(k) the structure map of Y ). This conclusion is another
major aspect of classical Grothendieck duality.

3.6.8. Pontryagin and Matlis duality in local algebra. Consider again
the example of commutative algebra §3.6.2, only from the distinct local point of
view: let R → k be the quotient morphism of a commutative noetherian local
ring R to its residue field k, and let

f∗ : D = D(R) −→ D(k) = C

be the induced tensor triangular functor satisfying our Hypothesis 3.1.1. Then
E(k), the injective hull of the R-module k, is a Matlis lift of k: f (1)(E(k)) =
RHomR(k,E(k)) ∼= k in D(k) in the sense of the push-forward Theorem 3.4.9.
Hence, by the same theorem, the functor ∆E(k) = RHomR(−, E(k)) induces a
duality on the thick subcategory of D(R) generated by f∗(k). This contains the
complexes whose homology is bounded and consists of finite length modules.
As E(k) is injective, we may restrict this duality to the category of finite length
modules. This is the classical Matlis duality in local commutative algebra.

Note that the dualizing object E(k) above is typically external, it often lies
outside the subcategory it dualizes: E(k) 6∈ Thick(f∗k). This already happens in
the archetypical example of (discrete p-local) Pontryagin duality, where R→ k
is the quotient map Z(p) → Z/p and E(k) is the Prüfer group Z[ 1

p ]/Z ∼= Q/Z(p),
which has infinite length.

Nothing forbids us now, in this argument, to replace the morphism R → k
of ordinary rings with a more general morphism of ring spectra (§3.6.2):

3.6.9 Corollary ([13, Cor. 7.6]). Let R→ k be any morphism of commutative
S-algebras, and let I be any Matlis lift of k, i.e., an object I ∈ D(R) admitting
an isomorphism

D(k)(x, k) ∼= D(R)(f∗x, I)

natural in x ∈ D(k). Then I is a (possibly external) dualizing object for the
thick subcategory of D(R) generated by f∗(k).

Using models, Dwyer, Greenlees and Iyengar [DGI11] can find many exam-
ples of such Matlis lifts along morphisms of S-algebras, and develop for them a
rather sophisticated theory.

Finally, let us use local rings to illustrate another phenomenon.
In the trichotomy of adjoints for a coproduct-preserving tensor-triangulated

functor f∗ : D → C (see the Introduction), the third stage (what we call the
Wirthmüller isomorphism) is reached precisely when the relative dualising ob-
ject ωf is invertible (cf. Theorem 3.3.1). However, this is conditional on having
first reached stage two (Grothendieck-Neeman duality). It can actually happen
that ωf is already invertible at the first stage, although Grothendieck-Neeman
duality does not hold. For a commonly occurring example, consider the derived
extension-of-scalars functor f∗ : D(R)→ D(k), where R is a local commutative
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Gorenstein ring with residue field k. In this case ωf ∼= Σdk is invertible (d being
the Krull dimension of R), but f∗ satisfies Grothendieck-Neeman duality only
if R is a regular ring (see [13, Ex. 3.25]).

3.7 Restriction to finite-index subgroups
In many domains of equivariant mathematics, one can assign to every (suffi-
ciently nice) group G a tensor triangulated category C(G), and to every sub-
group H 6 G a tensor exact restriction functor ResGH : C(G)→ C(H).

It was first observed by Balmer, in the context of linear representation theory,
that restriction functors to a finite index subgroup are formally equivalent to
extension of scalars functors for finite étale extensions. This allowed him to
successfully import descent techniques into representation theory [Bal15].

As it turns out, this phenomenon is rather formal and has little to do with
linear representation theory, and in fact holds in various examples from topology,
analysis and geometry. This is the observation made in [13] that we present in
this final section.

What we mean by étale extension of scalars is the following: for each of our
examples, there exists a monoid (a.k.a. algebra) object AGH in C(G) such that
the category of AGH -modules within the triangulated category C (so in particular
we don’t use any underlying models here) is canonically equivalent to C(H):

C(H) ∼= AGH -ModC

Moreover, the equivalence identifies the restriction functor ResGH with the ex-
tension of scalars functor FA = AGH ⊗ − : C → AGH -Mod, and the monoid is
compact and separable (its multiplication admits a bilinear section), hence we
say “finite étale”.

This result is closely related to the restriction-coinduction adjunction being
monadic (see §3.7.1), a question which is rather orthogonal to those explored in
the preceding sections. Our assumptions will also be much weaker that those
we had in Hypothesis 3.1.1, and as a consequence we will be able to include
examples from KK-theory.

Let us note that, although we will not make it explicit, on can show that
from the data of the tensor triangulated category C(G) and the monoid AGH it is
possible to recover not only the category C(H) but also its tensor triangulated
structure. It is therefore all the more impressive that, in all examples, the sep-
arable monoid AGH is extremely simple, basically just a domain-specific variant
of the finite dimensional function algebra kG/H equipped with the pointwise
multiplication and its evident bilinear section.

3.7.1. Monadicity and monoids. Recall that a monad A = (A, µ, η) on a
category C consists of an endofunctor A : C → C together with two natural
transformations η : idC → A and µ : A ◦ A → A satisfying the associativity and
unit axioms with respect to composition:

µ ◦ (Aµ) = (Aµ) ◦ µ µ ◦ (Aη) = idC = µ ◦ (ηA) .
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A (left) A-module is a pair (x, ρ) consisting of an object x ∈ C and a map
ρ : Ax → x satisfying the evident analogue associativity and unit axiom. To-
gether with the action-preserving maps of C as morphisms, A-modules form a
category A -ModC, which comes equipped with a faithful functor UA : A -ModC →
C forgetting the action and its left adjoint FA : C→ A -ModC sending an object
x to the free module (Ax, µx : A2x → Ax). This is called the Eilenberg-Moore
adjunction for A.

If F : C � D : U is any pair of adjoint functors between two categories,
with unit η : idC → UF and counit ε : FU → idD, then A := (UF, µ := UεF, η)
defines a monad on C, and one says that this monad is realised by the adjunction
F a U . Every monad is realised by some adjunction, for instance by the as-
sociated Eilenberg-Moore adjunction. The latter is characterised as being final
among all adjunctions realising the given monad, in the sense that for any F a U
realising A as above there exists a unique comparison functor E : D→ A -ModC

such that EF = FA and UAE = U :

C

F

�� FA
##

D

U

??

∃!E
// A -ModC

UA

cc

Concretely, E(x) = (Ux,Uεx) on objects and U(f) on morphisms. One can
start with the adjunction F a U and construct the above diagram for the
associated monad A = UF ; if it so happens that the comparison functor E is
an equivalence, one says that the adjunction (or the functor U) is monadic.

If C = (C,⊗,1) is a tensor category and A = (A,m, u) is any ring object
(monoid) in it, then tensoring with A defines a monad on C in the evident
way. In this case we write FA : C � A -ModC : UA for the Eilenberg-Moore
adjunction, where an object is given by a pair (x, ρ : A ⊗ x → x) where the
action map ρ satisfies the usual unit and associativity axioms with respect to
multiplication m and unit u.

Consider now an adjunction F : C � D : U of additive tensor categories
C and D, and assume that F is a (strong) tensor functor. By adjunction, U
inherits a lax monoidal structure λ : Ux ⊗ Uy → U(x ⊗ y), ι : 1D → U1C. In
particular we get a natural morphism

π : (Ux)⊗ y
id⊗η // (Ux)⊗ (UFy)

λ // U(x⊗ Fy)

for every y ∈ D. Similarly, the lax monoidal functor U sends monoids to
monoids, hence in particular it sends 1 ∈ D to a monoid A := U1 in D.

We thus have two a priori different monads on C, namely UF and A ⊗ −,
as well as natural map A⊗ (−)→ UF comparing them (use π with x = 1).

The next easy result is a ‘separable monoidal’ alternative to the Beck monadic-
ity theorem for recognising monadic adjunctions:
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3.7.2 Theorem ([12, Thm. 2.9]). Let F : C � D : U be an adjunction of
idempotent-complete additive tensor categories, where F is a tensor functor.
Assume moreover that:

(a) The monad is separable, i.e. the counit ε : FU → IdD of the adjunction
admits a natural section.

(b) The projection formula holds, i.e. the natural map U(x)⊗y ∼→ U(x⊗F (y))
defined above is invertible.

Then the adjunction is monadic and the associated monad is isomorphic to
the one induced by the commutative ring object A = U1 in C. Thus there
is a (unique) equivalence E : D

∼→ A -ModC identifying the given adjunction
F a U with the free-forgetful adjunction FA a UA. Explicitly, the quasi-inverse
E−1 : A -ModC

∼→ D of E sends a module (x, ρ : A⊗x→ x) to the image of the
idempotent map e2 = e := (Fρ)(σFx), where σ is a section of ε as in (a).

We are now going to apply this theorem to three examples of restriction
functors F = ResGH : C = C(G) → C(H) = D admitting a “co-induction” right
adjoint U = CoIndGH . In all of them, the natural splitting of ε : FU → IdD

passes to the object U(1) (which a priori is not automatic) and turns it into a
separable ring object. One way to unify this fact is to observe that in all cases,
the right adjoint U is also left adjoint to restriction, and the section in hypoth-
esis (a) is actually given by the unit idD → FU for this extra adjunction; i.e.,
U a F a U is a Frobenius adjunction as in [Str04]. Such “ambidextrous” adjunc-
tions, as well as the projection formula, are closely related to the Wirthmüller
isomorphism and the projection formulas appearing in the previous sections.
But our understanding of tensor-triangulated functors arising from restriction
to subgroups is still not mature enough to say how exactly this all fits in a more
general theory.

3.7.3. Equivariant stable homotopy. Recall the equivariant stable homo-
topy categories SH(G) of “genuine” G-equivariant spectra, already encountered
in §3.6.3.

Theorem ([12, Thm1.1]). Let G be a compact Lie group and let H 6 G be
a closed subgroup of finite index. Then the suspension G-spectrum AGH :=
Σ∞G/H+ is a commutative separable ring object in the equivariant stable homo-
topy category SH(G). Moreover, there is an equivalence of categories SH(H) ∼=
AGH -ModSH(G) between SH(H) and the category of left AGH-modules in SH(G)
under which the restriction functor SH(G)→ SH(H) becomes isomorphic to the
extension-of-scalars functor SH(G)→ AGH -ModSH(G).

3.7.4. Equivariant KK-theory. Recall the equivariant Kasparov categories
of KKG of separable G-C*-algebras, already encountered in §1.5 and §1.6.

Theorem ([12, Thm. 1.2]). Let G be a second countable locally compact Haus-
dorff group and let H 6 G be a closed subgroup of finite index. Then the finite-
dimensional algebra AGH := C(G/H) is a commutative separable ring object in
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the equivariant Kasparov category KK(G) of G-C*-algebras. Moreover, there
is an equivalence of categories KK(H) ∼= AGH -ModKK(G) between KK(H) and
the category of left AGH-modules in KK(G) under which the restriction func-
tor KK(G) → KK(H) becomes isomorphic to the extension-of-scalars functor
KK(G)→ AGH -ModKK(G).

3.7.5. Equivariant derived categories. Consider a ringed space S = (S,OS)
equipped with the action of a discrete group G. The G-equivariant derived
category of S, here denoted D(G;S), is the derived category of the abelian
category of equivariant sheaves, an equivariant sheaf on S consisting of a sheafM
of OS-modules equipped with a family ϕg : M

∼→ g∗M (g ∈ G) of isomorphisms
satisfying certain coherence condition. The derived tensor product ⊗L

OS turns
D(G;S) into a tensor triangulated category, and for each subgroup H 6 G one
can easily define a tensor exact restriction functor ResGH and a right adjoint
CoIndGH . If S is a (noetherian) scheme, one can also restrict attention to quasi-
coherent OS-modules, as usual.

3.7.6 Theorem ([12, Thm. 1.3]). Let G be a discrete group acting on a ringed
space S (for instance, a scheme) and let H 6 G be a subgroup of finite in-
dex. Then the free OS-module AGH := OS(G/H) on G/H is a commutative
separable ring object in the derived category D(G;S) of G-equivariant sheaves
of OS-modules. Moreover, there is an equivalence of categories D(H;S) ∼=
AGH -ModD(G;S) between D(H;S) and the category of left AGH-modules in D(G;S)
under which the restriction functor D(G;S) → D(H;S) becomes isomorphic to
the extension-of-scalars functor D(G;S)→ AGH -ModD(G;S).

We should note that monadicity certainly does not come for free in these fam-
ilies of examples. For instance, one can show that if G is a compact connected
Lie group and H 6 G is a non-trivial discrete subgroup, then the right adjoint
of the restriction functor ResGH is not faithful, hence a fortiori not monadic (see
[12, Thm. 1.5]).

In general, we morally expect of any such “equivariant context” that the
restriction-coinduction adjunction C(G)� C(H) is monadic if G/H is discrete,
and that this is implemented by a separable ring object if G/H is moreover com-
pact. But we don’t have yet a general complete understanding of this pattern,
not least because of the various technical hypotheses currently needed to even
be able to construct the various examples of equivariant triangulated categories
and the functors between them.
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4 Prospectives

I will very briefly mention some of the work in progress, and suggest possible
future directions, that would directly continue the works presented here.

Universal coefficient theorems. The techniques of §1.2 should be further
exploited in order to produce more examples of UCT’s, beyond those described
in §1.3-1.4. Ralf Meyer has suggested extending Manuel Köhler’s UCT in equiv-
ariant KK-theory to the case of a product of two cyclic groups of prime order.
Another, perhaps more straightforward, application would be to extend Ralf
Meyer and Ryszard Nest’s UCT for filtrated KK-theory to cover all cases where
the base space is finite with Hasse diagram an ADE Dynkin quiver.

Mackey functors in KK-theory. It would be worthwhile to generalise to
compact (Lie) groups the connection of §1.5 between Mackey functors and equiv-
ariant KK-theory, similarly to what is known to hold in equivariant stable ho-
motopy. An extension to locally compact, or even just infinite discrete, groups
would be more subtle, e.g. it is not clear a priori what such Mackey functors
should be, and stable homotopy wouldn’t be a guide here. But it would also
be much more interesting, as it would probably connect with the Baum-Connes
conjecture (e.g. it could be used for comparing variants for different families of
compact subgroups).

Classifications in derived categories. The theorems of §2.7, together with
similar results of Akhil Mathew for E∞-spectra defined over the rationals, sug-
gest that the classification of thick and localising subcategories of the derived
category D(A) via the Zariski spectrum of the (graded) central ring End∗T (1) =
H∗A could perhaps generalise from (graded) noetherian commutative rings to
‘algebraic enough’ commutative dg rings (or ring spectra) with noetherian coho-
mology. In any case, and also in view of the known examples where SpechH∗A
does not account for all thick or localising subcategories, it would be interest-
ing to find the precise point where the ‘formal’ approach to either classification
problem breaks down, and to better understand the reasons for it.

Classifications in Kasparov categories. In the realm of KK-theory, by
combining the results of §2.7 with ideas recently used by Paul Balmer and Beren
Sanders in equivariant stable homotopy, I believe I can extend the classifications
in §2.4.2 for the Rosenberg-Schochet bootstrap category to the category CellG ⊆
KKG of G-cell algebras (see §1.5.8) for small cyclic groups G. This should be
written down. I also have a fairly good idea on how to reduce the case of a
general finite group G to that of cyclic group, so the complete picture for the
equivariant KK-theory of finite groups (at least for cell algebras — which is
probably all one can hope for anyway) seems to be within reach.
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Equivariant triangulated categories. At several occasions throughout this
memoir we have encountered triangulated categories arising in families {T (G)}G
indexed by groups G: stable module categories and derived categories of group
algebras, equivariant stable homotopy categories, equivariant Kasparov cate-
gories, . . . The categories in each family are connected by induction, restriction,
conjugation and possibly inflation, fixed point and cross product functors, and
it seems to me that this kind of rich and extremely useful structure cries out for
a conceptual explanation and for an effective organisation, of the kind provided
by derivators for categories of diagrams. The work of §1.5 and especially §3.7
should be viewed as fitting within this wider and more ambitious program.

A partial answer to this problem, aiming to provide an effective handling of
categorified versions of Mackey and Green functors for finite groups, is current
work in progress with Paul Balmer. Another part of the problem, namely to
establish the proper universal rôle of equivariant stable homotopy theory among
such equivariant families of categories, is currently being investigated jointly
with Paul Balmer and Beren Sanders.
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