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Preface

This report presents a selection of the results that I have developed since my recruitment as an
Associate Researcher (Chargé de Rercherches - CR) with CNRS (Centre National de la Recherche
Scientifique'), in October, 2008. The research activities are carried on in the group CO2 (Con-
trol and Scientific Computing), team SYNER (Systémes hybrides, non-linéaires et & retard?)
of CRIStAL (Centre de Recherche en Informatique, Signal et Automatique de Lille* - UMR
CNRS 9189). I joined the team SYNER in October 2008 as a 2nd class Associate Researcher
(CR2). This team is supervised by Prof. Lotfi Belkoura. Until December 2014, SYNER has been
part of LAGIS (Laboratoire d’Automatique, Génie Informatique et Signal*) UMR CNRS 8219.
On January 1st, 2015, LAGIS merged with LIFL (Laboratoire d’Informatique Fondamentale
de Lille® - UMR CNRS 8022), creating CRIStAL. In the context of the creation of CRIStAL,
SYNER is coordinating its research activities with the teams CFHP (Calcul Formel et Haute
Performance®) and DEFROST (DEFormable RObotic SofTware) in the group CO2 - supervised
by Prof. Jean-Pierre Richard.

The team SYNER addresses a large panel of problems related to the study of time-delay,
hybrid dynamical systems and nonlinear systems. The activities of the team can be structured
according to two main axes: on one side the members of SYNER develop estimation tools based
on the use of differential algebra and operational calculation in the context of the INRIA project
NON-A (Non-Asymptotic estimation for online systems). On the other side, the team proposes
Lyapunov based methods for analysis and control design. My research activities are mainly
concerned with this second axis of SYNER. At the national level, my activities contribute to the
working groups on Hybrid Dynamical Systems and Time Delay System of GDR MACS (Groupe
de Recherche du CNRS en Modélisation, Analyse et Conduite des Systémes dynamiques’), and
the regional research group GRAISYHM (Groupement de Recherche en Automatisation Intégrée

!National Center for Scientific Research, a public research organization under the responsibility of the French
Ministry of Education and Research.

2Hybrid, nonlinear and time-delay systems.

3Center of Research on Computer Sciences, Signal Processing and Automatic Control.

“Laboratory of Automatic control, Computer Engineering and Signal processing.

®A theoretic Computer Science laboratory.

SComputer Algebra and High Performance Computing.

A national research group on modelling analysis and control of dynamical systems under the responsibility of
CNRS.
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et Systémes Homme-Machine®) of Région Hauts-de-France. At the international level, they
have contributed to the HYCON Networks of Excellence (Highly-complex and networked control
systems - FP6 HYCON and FP 7 HYCON2).

This document presents several contributions that have been obtained in collaboration with
Emmanuel BERNUAU (Ass. Prof. Agro Paritech), Michacl DEFOORT (Ass. Prof. UVHC,

LAMTIH), Mohamed DJEMATI (Prof. UVHC, LAMIH), Thierry FLOQUET (DR CNRS, CRIStAL),

Emilia FRIDMAN (Prof. Univ. Tel-Aviv), Hisaya FUJTOKA (Ass. Prof. Univ. Kyoto), Alexan-

dre KRUSZEWSKI (Ass. Prof. Centrale Lille, CRIStAL), Francoise LAMNABHI-LAGARRIGUE

(DR CNRS, L2S), Silviu-Tulian NICULESCU (DR CNRS, L2S), Wilfrid PERRUQUETTI (Prof.
Centrale Lille, CRIStAL), Mihaly PETRECZKY (CR CNRS, CRIStAL), Jean-Pierre RICHARD
(Prof. Centrale Lille, CRIStAL), Alexandre SEURET (CR, CNRS, LAAS), and young re-
searchers, PhDs and post-doctoral students, supervised at LAGIS and CRIStAL: Christophe
FITER (PhD Centrale Lille, defended in November 2012, now Ass. Prof., Univ. Lille), Has-
san OMRAN (PhD Centrale Lille, defended in March 2014, now Ass. Prof., TP Strasbourg),
Srinath GOVINDASWAMY (post-doc Centrale Lille, 2012-2013), Romain DELPOUX (ATER
Univ. Lille 1, 2013, now Ass. Prof., INSA Lyon). Other results, not mentioned in this doc-
ument, have been obtained in collaboration with Denis EFIMOV (CR INRIA Non-A), Jamal
DAAFOUZ (Prof. Univ. Lorraine, CRAN), Marieke CLOOSTERMAN (PhD, TU Eindhoven),
Tijs DONKERS (Ass. Prof. TU Eindhoven), Maurice HEEMELS (Prof. TU Eindhoven), Marc
JUNGERS (CR CNRS, CRAN), Ivan MALLOCI (PhD, CRAN), Sorin OLARU (Prof. Centrale
SUPELEC Paris, L2S), Worody LOMBARDI (PhD, L2S), Andrey POLYAKOV (CR INRIA
Non-A), Christophe PRIEUR (DR CNRS, GIPSA - lab), Patrick SZCZEPANSKI (Arcelor Mit-
tal), Sophie TARBOURIECH (DR CNRS, LAAS), Nathan van de WOUW (Ass. Prof. TU
Eindhoven). I would like to thank them all for their fruitful collaboration, dynamism and pa-
tience.

I am extremely grateful to Bernard BROGLIATO, Daniel LIBERZON and Luca ZACCA-
RIAN for giving me the honour of reviewing this document, to the members of the committee,
Olivier COLOT, Wim MICHIELS and Dimitri PEAUCELLE, for having accepted to participate
in the evaluation of my research activity, and to Jean-Pierre RICHARD, for his guidance and
support.

I would also like to thank all my colleagues from CRIStAL, INRIA and Centrale Lille who
directly or indirectly influenced this work.

Finally, I wish to thank my family for their tremendous support.

8Regional group on automatic control and human-machine systems.
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Notations

R denotes the set {\ € R, A\ > 0}.

|c| denotes the absolute value of a scalar ¢ € R.

||z|| represents any norm of the vector x.

|zll,, p €N, denotes the p norm of a vector z.

For a matrix M, M denotes the transpose of M and M*, its conjugate transpose.

For square symmetric matrices M, N, M > N (resp. M > N) means that M — N is a
positive semi-definite (resp. definite positive) matrix. M =< N (resp. M < N) means that

M — N is a negative semi-definite (resp. negative definite) matrix.

For a matrix M € R™ ", we denote the Hermitian of M by He{M} = M + MT.

% in a symmetric matrix represents elements that may be induced by symmetry.

[M]|,, p € N denotes the induced p-norm of a matrix M.

& (M) denotes the maximum singular value of M.

CO(X,Y), for two metric spaces X and Y, is the set of continuous functions from X to Y.

Ly (a,b), p € N denotes the space of functions ¢ : (a,b) — R" with norm |¢| ., =

1

INEOIRAR

L5.]0,00) is the space of functions ¢ : [0,00) — R™ which are square integrable on finite

intervals.
Given a set S C R", conv{S} denotes its closed convex hull and Int{S} its interior.

For a convex polytope & C R™ and a scalar a > 0, we denote aS := {ax, x € §} and
vert {S} the set of vertices of S.

The n dimensional open ball in R™ centred on x € R™ with radius ¢ > 0 is denoted
B(z,c) ={y e R": ||z —y|, < c}.
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The practical implementation of control algorithms is always subject to various types of
constraints: saturation, limited rate of actuators, digital implementation under quantization
and finite sampling frequency, etc. This dissertation is concerned with a fundamental problem
in modern control systems: the occurrence of discrete constraints in control loops. Two main
aspects will be considered. On one side, we will discuss the occurrence of discrete-constraints
in the time domain, related to sampled-data control implementations and fact that in practice
the control action is computed sporadically, at aperiodic sampling instants. In this context, the
main challenges are to determine the maximum sampling interval which preserves stability and
to schedule the sampling instants so as to ensure desired performances. This topic is motivated
by the uprising interest in networked and embedded control elements where real-time scheduling
algorithms interact with control tasks and where communication and energetic constraints have
to be taken into account. On the other side, we will present results concerning the design of
feedback laws subject to discrete constraints in the sets of possible control values: the control
signal is allowed to take only a finite number of values. Such constraints are typical in systems
with switches, relays or binary (on-off) actuators. The main challenge here is to design the
switching surfaces while guaranteeing desired safety constraints in terms of (local) stability.
Both of these topics bring up open problems in the domain of hybrid dynamical systems. They
involve the study of differential equations with discontinuous right-hand side and of systems with
impulsive dynamics.

With respect to the research activity carried in the team SYNER, over the last eight years
we have investigated the effect of aperiodic sampling on several classes of dynamical systems
interacting with sampled-data implementations of both continuous and switching feedback laws.
We have tried to address the main challenges in aperiodic sampled-data control using several
different approaches. One of the main purposes of our work is to propose numerical tools for
addressing the considered problems. We have dedicated some effort to express solutions to the
analysis and control design problems in a form that is convenient to the derivation of computer-
aided tools. A particular attention is given to the formulation of analysis and synthesis criteria as
simple convex optimization problems which can be easily addressed numerically using powerful
numerical algorithms.

First, the main contributions in the context of sampled-data systems are briefly presented as
follows:

e New conditions for the stability of linear time invariant (LTI) sampled-data systems with
arbitrary time-varying sampling intervals [Hetel 2011b]. The main idea is to use a discrete-
time system model and quasi-quadratic Lyapunov functions previously encountered in the
context of polytopic difference inclusions in order to provide stability conditions. The
existence of a quasi-quadratic Lyapunov function decreasing at sampling instants is shown
to be a necessary and sufficient condition for stability. Using approximations based on
convex polytopes leads to sufficient stability criteria. This approach allows a very accurate
numerical implementation of algorithms for evaluating the maximum allowable sampling
interval which ensures stability.

e A new framework for the analysis of sampled-data systems inspired by the Dissipativity
Theory [Omran 2014b, Omran 2014a, Omran 2016a]. The idea is to characterize the effect
of sampling using "supply" functions. The method generalizes to the case of nonlinear affine
systems several frequency domain criteria initially used for LTI systems. The advantage of
this approach is its flexibility: the approach can be easily extended in order to take into
account more complex performance and robustness specifications.

doc.univ-lille1.fr
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e Optimization tools for sampled-data systems with controlled sampling sequences [Fiter 2012a],
[Fiter 2015]. In the literature, aperiodic sampled-data systems had been studied using
either continuous-time or discrete-time models. We have proposed a continuous-time ap-
proach based on convex embeddings that is able to combine the advantages of the time-
delay system modelling (inter-sampling behaviour, robustness to perturbations) with the
ones of discrete-time models (accuracy of analysis). This approach has been used for the
design of even-/self-triggered control algorithms. We have provided tools for optimizing
the sampling maps so as to enlarge the minimum inter-event time between two sampling
instants while ensuring desired performance and robustness properties.

In order to transfer our experience over this domain, we have gathered a collection of main results
on aperiodic sampled-data systems in an overview of stability analysis approaches which has been
presented as a tutorial paper at ECC [Fiter 2014a]. A detailed survey article [Hetel 2017] has
been accepted for publication in Automatica.

Second, the document will present a more recent field of our activity: the design of switching
surfaces under discrete constraints. While the study of systems with aperiodic sampling has
now reached an advanced phase of development, the second main topic of research, the design
of switching surfaces for systems subject to discrete constraints, represents an emerging research
direction in the team SYNER. The design of switching controllers (relays, sliding mode con-
trollers, variable structure systems, etc.) is an old problem in the control theory. However,
very few numerical tools exist for optimizing the design of switching surfaces while optimizing
the systems performances (domain of attraction, robustness to perturbations and delay, decay
rate, etc.). We are currently investigating a recent research direction by addressing this topic
from a hybrid system perspective. The main idea of our work is to use a simple convex opti-
mization approach for the design of switching controllers based on Linear Matrix Inequalities
(LMIs). We have addressed this problem for LTI, polytopic approximations of nonlinear sys-
tems, bilinear systems and switched affine systems. This new method has lead to several journal
publications [Hetel 2015c, Hetel 2015a, Delpoux 2015, Hetel 2016]. For the case of linear sys-
tems it is shown that the robustness requirements of classical sliding mode controllers can be
incorporated in the new design methodology while optimizing the domain of attraction and the
robustness with respect to perturbations [Hetel 2015¢c]. For switched affine systems we provide
a new point of view in the design of stabilizing state feedback laws: we show that the design
of switching controllers can be re-stated as a classical design problem for nonlinear affine sys-
tems [Hetel 2015a]. The method allows to take into account some classes of switched affine system
that can be stabilized only locally, on which the existing methods do not apply. Simple control
design criteria are proposed for switched affine systems that do not satisfy the classic constraints
related to the existence of Hurwitz convex combinations. The new methodology has potential in
application to electro-magnetic systems (control of stepper motors [Delpoux 2015]) and energy
management problems (DC/DC power converters [Hetel 2016]). The analysis of sampled-data
implementations of switching controllers has equally been addressed [Hetel 2013b].

After this general introduction, the rest of this dissertation is organized into two major parts
and a conclusion.

Part T deals with discrete constraints in the time domain. It is mainly concerned with the
stability problem for sampled-data systems with aperiodic sampling. After presenting some gen-
eralities concerning systems with time-varying sampling in Chapter 1, the second chapter gives
a overview of the literature on the field. Chapter 3 presents our main contributions to this
topic. Our research effort has been dedicated to the analysis of various classes of systems (lin-
ear time invariant, polytopic, bilinear, polynomial, nonlinear affine, etc.) with both continuous

4
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and switching controllers. We have tried to address the stability problem from different angles,
through various competing methods. In this manuscript, a selection of the most significant re-
sults is given. For linear time invariant systems, we show in Chapter 3.1 how numerically efficient
conditions can be derived using the exact system discretization and convex embeddings. Numer-
ical tools for the optimization of (event/self-triggered) sampling maps are proposed, based on the
used of Linear Matrix Inequalities (LMIs). In a more general context of bilinear (Chapter 3.2) and
nonlinear affine systems (Chapter 3.3), we propose a new stability analysis framework inspired
by Dissipativity Theory. Control design tools are presented for LTI systems with discontinuous
controllers using a time-delay approach in Chapter 3.4.

Part IT presents new results for systems with inputs constrained to a finite set of values.
Chapter 4 deals with the design of switching controllers for linear systems and some approxi-
mations of nonlinear systems as linear polytopic systems. The case of switched affine systems
is discussed in Chapter 5, while Chapter 6 presents results concerning bilinear systems. The
potential of the approach is illustrated at the end of this part through experimental applications
concerning the control of stepper motors and DC/DC power converters.

A conclusion summarizes the main results presented in this document. Finally, several ongo-
ing research directions and open problems are presented.

doc.univ-lille1.fr



HDR de Laurentiu Hetel, Lille 1, 2017

© 2017 Tous droits réservés. doc.univ-lille1.fr



HDR de Laurentiu Hetel, Lille 1, 2017

Part 1

Contributions to aperiodic
sampled-data control
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The last decade has witnessed an enormous interest in the study of networked and embedded
control systems [Zhang 2001c, Hristu- Varsakelis 2005, Hespanha 2007, Chen 2011]. This interest
is mainly due to the ubiquitous presence of embedded controllers in relevant application do-
mains and the growing demand in industry on systematic methods to model, analyse and design
systems where sensor and control data are transmitted over a digital communication channel.
The study of systems with aperiodic sampling emerged as a modelling abstraction which al-
lows to understand the behaviour of Networked Control Systems (NCS) with sampling jitters,
packet drop-outs or fluctuations due to the inter-action between control algorithms and real-time
scheduling protocols [Zhang 2001c, Antsaklis 2007, Astolfi 2008]. With the emergence of event-
based and self-triggered control techniques [Heemels 2012], the study of aperiodic sampled-data
systems constitutes nowadays a very popular research topic in control.

In this part, we focus on questions arising in the control of systems with time-varying sampling
intervals. Important practical questions such as the choice of the minimal sampling bandwidth,
the evaluation of necessary computational and energetic resources or the robust control synthesis
are mainly related to stability issues. These issues often lead to the problem of estimating the
Maximum Sampling Interval (MSI) for which the stability of a closed-loop sampled data system
is ensured.

The study of aperiodic sampled-data systems has been addressed in several areas of research
in Control Theory. Systems with aperiodic sampling can be seen as particular time-delay sys-
tems. Sampled-and-hold in control and sensor signals can be modelled using hybrid systems with
impulsive dynamics. Aperiodic sampled-data systems have also been studied in the discrete-time
domain. In particular, Linear Time Invariant (LTI) sampled-data systems with aperiodic sam-
pling have been analysed using discrete-time Linear Parameter Varying (LPV) models, typically
used in gain scheduling control. The effect of sampling can be modelled using operators and
the stability problem can be addressed in the framework of Input/Output interconnections as
typically done in modern Robust Control. While significant advances on this subject have been
in the literature, problems related to both the fundamentals of such systems and the derivation
of constructive methods for stability analysis remain open, even for the case of linear system.

The rest of this part is structured: Chapter 1 is dedicated to generalities concerning aperiodic
sampled-data control. A state of the art on aperiodic sampled-data control will be given in
Chapter 2 followed by our main contributions in Chapter 3.

doc.univ-lille1.fr
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Chapter 1

(Generalities

1.1 System configuration

As follows we will study the properties of sampled-data systems consisting of a plant, a digital
controller, and appropriate interface elements. A general configuration of such a sampled-data
system is illustrated by the block diagram of Figure 1.1. In this configuration, y(t) is a continuous-
time signal representing the plant output (the plant variables that can be measured). This signal
is represented as a function of time ¢, y : Ry — RP.

The digital controller is usually implemented as an algorithm on an embedded computer. It
operates with a sampled version of the plant output signal, {yx }xen, obtained upon the request of
a sampling trigger signal at discrete sampling instants t; and using an analog-to-digital converter
(the sampler block, S, in Figure 1.1). This trigger may represent a simple clock, as in the classical
periodic sampling paradigm, or a more complex scheduling protocol which may take into account
the sensor signal, a memory of its last sampled values, etc. The sampling instants are described
by a monotone increasing sequence of positive real numbers o = {t; }ren Where

to =0, tpy1 —tx > 0, lim ¢ = oo. (1.1)
k—o0
u(t) = ug y(t)
> PLANT
up, Ye = y(tx)
H j¢--------1 CONTROL  [¢-------------1 S I
x
TRIGGER

Figure 1.1: Classical sampled-data system configuration

11
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Chapter 1. Generalities

The difference between two consecutive sampling times hy = 1 — t is called the kM sampling
interval. Assuming that the effect of quantizers may be neglected, the sampled version of the
plant output is the sequence {yx}ren where yr = y(tx).

In a sampled-data control loop, the digital controller produces a sequence of control values
{ux }ren using the sampled version of the plant output signal {yx }xen. This sequence is converted
into a continuous-time signal u(t), where u : Ry — R™ (corresponding to the plant input) via a
digital-to-analog interface. We consider that the digital-to-analog interface is a zero-order hold
(the hold block, H, in Figure 1.1). Furthermore, we assume that there is no delay between
the sampling instant ¢; and the moment the control u; (obtained based on the k" plant output
sample, yy) is effectively implemented at the plant input. Then the input signal u(t) is a piecewise
constant signal u(t) = u(ty) = ug, vt € [tg, trt1)-

Over the chapter, we will consider that the plant is modelled by a finite dimensional ordinary
differential equation of the form

{ z = F(tz,u), (12)

y = H(t’x7u)7

where 2 € R” represents the plant state-variable. Here F': Ry x R® x R™ — R™ with F(¢,0,0) =
0,vt > 0, and H : Ry x R® x R™ — RP. It is assumed that for each constant control and
each initial condition (fg, zg) € R4y x R™ the function F describing the plant model (1.2) is such
that a unique solution exists for an interval [tg,to + €) with € large enough with respect to the
maximum sampling interval. The discrete-time controller is considered to be described by an
ordinary difference equation of the form

{xi—i-l = ch(k7miayk)v (13)
Uk = Hg(kvxivyk‘)7

where xj, € R" is the controller state. Here, Fif : N x R x R? — R and Hj : N x R" x RP —
R™. We will use the denomination sampled-data system for the interconnection between the
continuous-time plant (1.2) with the discrete-time controller (1.3) via the relations

yr = Y(tr), u(t) = up,Vt € [tg, tgt1), Yk €N, (1.4)

under a sequence of sampling instants o = {t }ren satisfying (1.1).
The different concepts and results will be mostly illustrated on Linear Time Invariant (LTT)

models
& = Az + Bu, (1.5)

under a static linear state feedback,
up = Kxp, k€N, (1.6)

with z; = z(t;). However, when possible, we will present the extensions to more general nonlin-
ear systems.

1.2 Classical design methods

There are various approaches for the design of a sampled-data controller (1.3) (see the classi-
cal textbooks [Astrom 1996, Chen 1993] and the tutorial papers [Monaco 2007, Monaco 2001,
Nesi¢ 2001, Laila 2006]).

Emulation. The simplest approach consists in designing first a continuous-time controller

12
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using classical methods [Khalil 2002,Isidori 1995, Krstic 1995, Sastry 1999]. Next, a discrete-time
controller of the form (1.3) is obtained by integrating the controller solutions over the interval
[tk, tro1). This approach is usually called emulation. Generally, it is difficult to compute in a
formal manner the exact discrete-time model and approximations must be used [Monaco 2007,
Laila 2006]. In the LTT case (1.5) with state feedback (1.6), the emulation simply means that
the gain K is set such that the matrix A + BK is Hurwitz and that the plant is driven by the
control u(t) = Kx(tx),Vt € [tg,tr+1), k € N. While the intuition seems to indicate that for
sufficiently small sampling intervals the obtained sampled-data control gives an approximation
of the continuous-time control problem, no guarantee can be given when the sampling interval
increases, even for constant sampling intervals. In order to compensate the effect of controller
discretisation, re-design methods may be used [Griine 2008, Nesi¢ 2005].

Discrete-time design. In this framework, a discrete-time model of the plant (1.2) is derived by
integration. The obtained model represents the evolution of the plant state x(t;) = xp at sam-
pling times®. Then, a discrete-time controller (1.3) is designed using the obtained discrete-time
model. In the simplest LTI case (1.5), (1.6), the evolution of the state between two consecutive
sampling instants t;, and t;y; is given by

.Z’(ﬁ) = A(t — tk)x(tk), Vit € [tk,tqu}, keN, (17)

with a matrix function A defined on R as

0

A(B) = Aq(0) + By(9)K = e + / e*dsBK. (1.8)
0

Evaluating the closed-loop system’s evolution at ¢ = t;; and using the notation hy = tx4+1 — tx

leads to the linear difference equation

Tht1 = A(hk)xk, Vk e N (19)

representing the closed-loop system at sampling instants. When the sampling interval is constant,
hy =T, Vk € N, a large variety of discrete-time control design methodologies is available in the
literature (see [Astrém 1996, Chen 1993] and the references within). It is well known for this case
that system (1.9) is asymptotically stable if and only if the matrix A(T") is Schur. In other words,
to design a stabilizing control law (1.6), the matrix K must be set such as all the eigenvalues of
A(T) lay strictly in the unit circle.

For nonlinear systems with constant sampling intervals, an overview of control design method-
ologies and related issues can be found in [Monaco 2007, Monaco 2001, Negi¢ 2001, Laila 2006].
Note that the discrete-time models such as (1.9) do not take into consideration the inter-sampling
behaviour of the system. Relations between the performances of the discrete-time model and
the performances of the sampled-data loop, can be deduced using the methodology proposed
in [Nesi¢ 1999].

Sampled-data design. Infinite dimensional discrete-time models which take into account the
inter-sampling system behaviour using signal lifting [Bamieh 1992, Bamieh 1991, Tadmor 1992,
Toivonen 1992a, Yamamoto 1994] have been proposed in the literature for the case of linear
systems. Specific design methodologies, that are able to take in consideration continuous-time

“Note that generally approximations of the system model must be used since the discretized plant model is
difficult to compute formally [Monaco 1985, Veliov 1997]. Even for the case of LTI systems with constant sampling
intervals, the numerical computation of the matrix exponential (or its integral) is subject to approximations
[Moler 2003].

13
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system performances, inter-sample ripples and robustness specifications, can be found in the
textbook [Chen 1993] for the case of linear time invariant systems with periodic sampling.

1.3 Complex phenomena in aperiodic sampling

While in the last fifty years an intensive research has been dedicated to the analysis and design of
sampled-data systems under periodic sampling, the study of systems with time-varying sampling
intervals is quite underdeveloped compared to the periodic conterpart. The following examples
illustrate the rich complexity of phenomena that may occur under aperiodic sampling.

Example 1.1 [Zhang 2001a] Consider an LTI sampled-data system of the form (1.5),(1.6)
where L3 .

A_[Q J, B_[O_G], K=-1 6]. (1.10)
For this example, system’s (1.9) transition matriz A(T) is a Schur matriz for any constant
sampling interval in T € T = {T1,Ts}, with Ty = 0.18, and Ty = 0.54. Then, in the case of
periodic sampling, the sampled-data system is stable for constant sampling intervals taking values
in T. An illustration of the system’s evolution for constant sampling intervals Ty, Ty, is given in
Figure 1.2. Clearly, when the sampling interval hy is arbitrarily varying in T, the Schur property
of AN(T), Y T € T, represents a necessary condition for stability of the sampled-data system
(1.1),(1.5),(1.6). Howewer, it is not a sufficient one. For ezample, the sampled-data system
with a sequence of periodically time-varying sampling intervals {hgtren = {T1, T2, T1,T5,. ..}
1s unstable, as it can be seen in Figure 1.3. This is due to the fact that the Schur property of
matrices is not preserved under matriz product (i.e. the product of two Schur matrices is not
necessarily Schur). Indeed, the discrete-time system representation over two sampling instants
can be written as

T2 = AMTo)A(Th)zy, VE € 2N,

and the transition matriz

0.8069 —3.2721

AT)AMTY) = 16133 —2.1195

over two sampling intervals Ty and Ts, is not Schur. This example shows the importance of
taking into consideration the evolution of the sampling interval hy, when analysing the stability of
sampled-data systems since arbitrary variations of the sampling interval hy, may induce instability.

Example 1.2 [Gu 2003a] Consider now an LTI system with

A= [_02 Oﬂ, B= m K=1[1 0 (1.11)

Assume that the sampling interval hy is restricted to the set T = {T1,To} with T} = 2.126 and
T5 = 3.950. The system is unstable for both constant sampling intervals Th and T5 since for these
values system’s (1.9) transition matriz A(T), T € T is not a Schur matriz. However, the product
of transition matrices A(T1)A(T3) has the Schur property. Therefore, the sampled data system
is stable under a periodic evolution of the sampling interval {hy}ren = {T1,T2,T1,T5,...}. An
example of system evolution with this particular sampling sequence is provided in Figure 1.4. In
this example the sampling hy, can act on the sampled-data system as a second control parameter

14
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which ensures the system’s stability while the possible constant sampling configurations are not
able to guarantee this property.

Figure 1.4: Periodic sampling sequence with a stable behaviour.

1.4 Problem set-ups

The core of Part 1 is dedicated to the robust analysis of sampled-data systems with sampling se-
quences of the form (1.1) where the sampling interval hy = t5.11—t; takes arbitrary values in some
interval 7 = [h,h] C R,. This first problem set-up may correspond, for example, to the sam-
pling triggering mechanism from Figure 1.1 with a clock submitted to jitter [Wittenmark 1995], or
with some scheduling protocol which is too complex to be modelled explicitly [Zhang 2001c, Hes-
panha 2007]. Basically, for the case of LTI models (1.5) with linear state feedback (1.6) under
a sampling sequence (1.1) we will address the robust stability of the closed-loop system (1.12)
given below

I(t) = Aﬂ?(t) + BK.Z’(tk), Vit € [tk,tk+1), Vk € N,

tkr1 = tr+hg, VEEN, (1.12)

to = 0, z(tg) =x9 € R”

as if hy is a time-varying "perturbation" taking values in a bounded set 7.

We will also indicate some ideas concerning a recently emerging research topic where the
sampling interval h plays the role of a control parameter that may be changed according to the
plant state or output. This problem set-up corresponds to the design of a scheduling mechanism.
For the case of system (1.12), hy is considered as an additional input which, by an appropriate
open/closed-loop choice, can ensure the system stability. In the following chapter, we will present
an overview of approaches addressing these problems.
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Chapter 2

State of the art on aperiodic
sampled-data systems

This chapter presents basic concepts and recent research directions about the stability of sampled-
data systems with aperiodic sampling!?. We focus mainly on the stability problem for systems
with arbitrary time-varying sampling intervals which has been addressed in several areas of re-
search in Control Theory. Systems with aperiodic sampling can be seen as time-delay systems,
hybrid systems, Input/Output interconnections, discrete-time systems with time-varying param-
eters, etc. The goal is to provide a structural overview of the progress made on the stability
analysis of systems with aperiodic sampling. Without being exhaustive, which would be neither
possible nor useful, we try to bring together results from diverse communities and present them
in a unified manner. For each of the existing approaches the basic concepts, fundamental results
and relations with the other approaches are discussed in detail. Results concerning extensions
of Lyapunov and frequency domain methods for systems with aperiodic sampling are recalled,
as they allow to derive constructive stability conditions. Furthermore, numerical criteria are
presented while indicating the sources of conservatism, the problems that remain open and the
possible directions of improvement. At last, some emerging research directions, such as the design
of stabilizing sampling sequences, are briefly discussed.

2.1 Stability analysis under arbitrary time-varying sampling

In the following, we review some results which provide a qualitative estimation of the maximum
sampling interval ensuring stability for sampled-data systems with sampling intervals that are
arbitrary varying. More formally, over the section, we present results that address the following
problem:

e Problem A (Arbitrary sampling problem): Consider the sampled-data system (1.1), (1.2),
(1.3), (1.4) and a bounded subset 7 C Ry. Determine if the sampled-data system is stable
(in some sense) for any arbitrary time-varying sampling interval hy, = t11 — t; with values

inT.

Often the set T is considered of the form 7 = (0, h] where h is some positive scalar. The
largest value of h for which the stability of the closed loop system is ensured is called Maximum
Sampling Interval (MSI).

'0The material presented in this chapter is part of a survey paper accepted for publication in Automatica
[Hetel 2017].
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Figure 2.1: Sampling seen as a piecewise-continuous time-delay
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Several perspectives for addressing Problem A exist. First, we present results that are based
on a time-delay modelling of the sampled-data system (1.1),(1.2),(1.3),(1.4). Next, we show
how the problem can be addressed from the point of view of hybrid systems. We continue with
approaches that use the explicit system integration in-between successive sampling instants, such
as the ones classically used in the discrete-time framework. Last, results addressing Problem A
from the robust control theory point of view are presented.

2.1.1 Time-delay approach

To the best of our knowledge, this technique was initiated in [Mikheev 1988, Astrom 1989], and
further developed in [Fridman 1992, Teel 1998b, Louisell 2001] and in several other works. For
the case of an LTT system with sampled-data state feedback (1.12), we may re-write

u(t) = Ka(ty) = Ka(t — 7(t)),

2.1
T(t) =t —t, VtE€ [thtrs1), (21)

where the delay is piecewise-linear, satisfying 7(t) = 1 for ¢ # ¢, and 7(¢x) = 0. This delay
indicates the time that has passed since the last sampling instant. An illustration of a typical
delay evolution is given in Fig. 2.1. The LTI system with sampled-data (1.12) is then re-modeled
as an LTI system with a time-varying delay

i(t) = Az(t) + BKx(t — 7(t)), Vt > 0. (2.2)

This permits to adapt the tools for stability of systems with fast varying delays [Fridman 2003,
Gu 2003b, Richard 2003, Niculescu 2004]. This model is equivalent to the original sampled-data
system when considering that the sampling induced delay has a known derivative 7(¢t) = 1, for
all t € [tk,tk+1), k e N.

2.1.1.1 Basic results

For system (2.2) it is natural to consider, as a state variable, the functional z;(6) = x(t+0), V6 €
[~h, 0], and, as state space, the set C° ([—h, O] ,R") of continuous functions mapping the interval
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[—h,0] into R™ [Fridman 2014, Niculescu 2001, Niculescu 1998]. In the general case of time-delay
systems, it is difficult to apply the classical Lyapunov stability theory, because the The most
popular generalization of the direct Lyapunov method for time-delay system has been proposed
by Krasovskii [Krasovskil 1963]. It uses the existence of functionals V (¢,z;) depending on the
state vector x;. In the sampled-data case [Fridman 2004, Fridman 2010, Liu 2012a] functionals
V(t,z,4¢) depending both on x; and #; (see [Kolmanovskii 1992], p.337) are useful.

Denote by W[—h,0] the Banach space of absolutely continuous functions ¢ : [~h,0] — R
with ¢ € £2(—h,0) (the space of square integrable functions) with the norm

Iollw = max [lo(s l+[/ [é¢s H }

Theorem 2.1 (Lyapunov-Krasovskii Theorem) [Kolmanovskii 1992] Consider f : Ry x
C°[—h,0] — R" continuous in both arguments and locally Lipschitz in the second argument.
Assume that f(t,0) = 0 for all t € Ry and that f maps Rx (bounded sets in C°[—h,0]) into
bounded sets of R™. Suppose that a,v,w : Ry — Ry are continuous nondecreasing functions,
a(s), B(s) and v(s) are positive for s > 0, lim,_,oc a(s) = 00 and a(0) = 5(0) = 0. The trivial
solution of

is Globally Uniformly Asymptotically Stable if there exists a continuous functional V : R X
W[—h,0] x LE(—h,0) — Ry, which is positive-definite, i.e.

al(lp(0)])) < V(t,6,6) < B(llg]lw)

for all € W[—h,0],t € Ry, and such that its derivative along the system’s solutions is non-
positive ]
Vit zp,d0) < =y(2(0)])- (2.3)

The functional V satisfying the conditions of Theorem 2.1 is called a Lyapunov-Krasovskii Func-
tional (LKF). In the general case of sampled-data nonlinear systems the underlying delay system
& = f(t,x¢) used in Theorem 2.1 from [Kolmanovskii 1992] is described by a function f which is
piecewise continuous with respect to t. However, the proof of the result in [Kolmanovskii 1992]
can be adapted to cover this case.

2.1.1.2 Constructive stability conditions

Various generalisations of the Lyapunov-Krasovskii theorem have been proposed in the literature.
For the case of sampled-data systems, in [Fridman 2004] the Lyapunov-Krasovskii Theorem was
extended to linear systems with a discontinuous sawtooth delay by use of Barbalat lemma.
Another extension to linear sampled-data systems has been provided in [Fridman 2010], where
the LKF is allowed to have discontinuities at sampling times. It leads to an LKF of the form
[Fridman 2010]:

V(t,x(t), ) = 2T (t)Px(t) + (hy — 7(t ft & (s)Ri(s)ds (2.4)

which improves the results from [Fridman 2004], as the information 7 = 1 can be explicitly taken
into account when evaluating its derivative.

19

doc.univ-lille1.fr



HDR de Laurentiu Hetel, Lille 1, 2017

Chapter 2. State of the art on aperiodic sampled-data systems

Theorem 2.2 [Fridman 2010] Let there exist P = 0, R >~ 0, Py and P3 such that the LMI

&, P-P!+(A+BK)'P;s

« —p-Pr+7r |0 (2:5)
ds P- P+ (A+BK)'Py —hPfA
* —Py—Pf —hPfA|l <0 (2.6)
* * —hR

with ®; = PL(A + BK) + (A + BK)T Py, are feasible. Then system (1.12) 1s Ezponentially
Stable for all sampling sequences o = {ty}ren with hy = tpy1 — tg < h.

The result takes into account information about the sawtooth shape of the delay, which is
the specificity of the time-delay model (2.2) when representing exactly the sampled-data system
(1.12). Tt can ensure the stability for time-varying delays 7(¢) which are longer than any constant
delay that preserves stability, provided that 7(¢) = 1. See also [Seuret 2009] for an alternative
LMI formulation.

2.1.1.3 An extension to nonlinear systems

Concerning nonlinear systems, [Mazenc 2013a| has extended the ideas in [Fridman 2004] for the
case of control affine non-autonomous systems with sampled-data control. Consider the nonlinear
system:

&(t) = f(t,2(t) + g(t, x(t))u(t), (2.7)

with the state x(t) € R™ and the input u(t) € R™, and with functions f, g that are locally
Lipschitz with respect to z and piecewise continuous in t. Assume that the C! controller u(t) =
K(t,x) is designed in order to make the system (2.7) Globally Uniformly Asymptotically Stable.
Moreover, assume that there exist a C! positive definite and radially unbounded function V', and
a continuous positive definite function W such that:

ov ov
56 2) + 2o (@) + gL ) K (1 2)] = Ww) (2.8)
ot ox
for all ¢ > ¢y and x € R™. Also, consider K (¢,0) = 0 for all ¢ € R. Hence, V is a strict Lyapunov
function for

= f(t,x) + g(t,x)K(t,x)

and one can fix class Ko functions a; and ag such that a;(||z]2) < V(¢ z) < as(]|z]]2), for all
t > tg and = € R™. Define the function

plt,x) = %—Ij(t,m) + %—Ix{(f(t,x) +g(t,2)K(t,7)). (2.9)

Theorem 2.3 (adapted from [Mazenc 2013a]) Suppose that there exist constants c1, ¢z, c¢3 and

¢4 such that:
2

< e,
2

2
< Cc2,

ov
%(ta :r)g(t7 LU) )

| taatr.o)

lo(t,x)|l3 < esW (),

H@%wmmmme < eVt ) + 1),

ox 9
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2.1. Stability analysis under arbitrary time-varying sampling

hold for allt > to and x € R". Consider the system (2.7) in closed-loop with: u(t) = K (tx, z(tx)),
t € [tk,tkr1), 0 = {tk}ren as defined in (1.1) and hy = tgyq1 — tx € [h,h], Yk € N. Then, the

closed-loop system is Globally Uniformly Asymptotically Stable if h < (4c; + 80203)_1/2 .

The stability is proven by means of a Lyapunov functional of the form

0 t
Ult, ;) :V(t,az(t))—i—i/_/ W (s, x,)||2 dsde,
hJ-rJeto

where

Wt ) = G (12, (0)) + S (1,2(0) 4(0),

This functional is reminiscent of the form (2.4) used in [Fridman 2004] to study LTT systems.
However, differently from the LTI case, it is far more complex to determine how conservative the
result is.

2.1.1.4 Further reading

The research on LKFs for sampled-data system is still a wide-open domain. Currently, an im-
portant effort is dedicated to finding better LKFs and better over-approximations of the deriva-
tives. Note that the derivation of constructive stability conditions may be quite an elaborate
analytical process and it is not always very intuitive. However, a notable advantage of this
methodology is the fact that for linear systems the approach can be easily extended to con-
trol design [Fridman 2004, Suplin 2007, Liu 2012a] and to the case of systems with parame-
ter uncertainties [Fridman 2010, Seuret 2012, Orihuela 2010, Gao 2010, Peng 2011], delays [Su-
plin 2009, Mazenc 2012, Gao 2008, Mazenc 2013b, Seuret 2011, de Wouw 2010] and schedulling
protocols [Liu 2012b,Liu 2015b,Liu 2015a]. See also [Fridman 2012, Fridman 2013] for the control
of semilinear 1-D heat equations.

Aside from the Lyapunov-Krasovskii method, the stability of sampled-data systems can also
be analysed using the method proposed by Razumikhin [Razumikhin 1956]. Connections be-
tween Razumikhin’s method and the ISS nonlinear small gain theorem [Sontag 1998] have been
established in [Teel 1998a. This relation has been used in [Teel 1998b] in order to show the
preservation of ISS properties under sufficiently fast sampling for nonlinear systems with an
emulated sampled-data controller. Razumikhin’s method has been used in [Fiter 2012a] for the
case of LTT sampled-data systems. In [Karafyllis 2009b], the Razumikhin method is explored for
nonlinear sampled-data system on the basis of vector Lyapunov-Razumikhin Functions (LRF).
For more general extensions to the control design problem, see [Karafyllis 2012a], concerning
the case of nonlinear feed-forward systems and [Karafyllis 2012b], for nonlinear sampled-data
system with input delays. At last, we would like to mention the Input/Output approach for the
analysis of time-delay systems [Fu 1998, Gu 2003a,Kao 2004], which makes use of classical robust
control tools [Zhou 1996, Megretski 1997]. The application of the Input/Output approach for the
case of sampled-data systems has been discussed in [Mirkin 2007, Liu 2010, Michiels 2009]. The
approach was further developed by [Fujioka 2009¢,Omran 2012a,0mran 2014a,Omran 2014b,Om-
ran 2013, Chen 2014] without passing through the time-delay system model. It will be presented
in more detail in Section 2.1.4 and Chapter 3.
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2.1.2 Hybrid system approach

Due to the existence of both continuous and discrete dynamics, it is quite natural to model
sampled-data systems as hybrid dynamical systems [Goebel 2009, Goebel 2012, Haddad 2014,
Brogliato 1996, Brogliato 2016]. The first mentions to sampled-data systems as hybrid dynamical
systems date back to the middle of the ’80s [Mousa 1986]. Later on, in the '90s, the use of hybrid
models has been developed for linear sampled-data systems with uniform and multi-rate sampling
as an interesting approach for the H. and Hs control problems [Kabamba 1993, Sun 1993,
Toivonen 1992b]. The approach has also been developed for nonlinear sampled-data systems
in [Hou 1997, Ye 1998]. For systems with aperiodic sampling, impulsive models had been used
starting with [Toivonen 1992b,Dullerud 1999, Michel 1999]. Recently, more general hybrid models
have been proposed in the context of Networked Controlled Systems by [Nesi¢ 2004b, Nesi¢ 2009].
A solid theoretic foundation has been established for hybrid systems in the framework proposed
by [Goebel 2009, Goebel 2012] and it proves to be very useful in the analysis of sampled-data
systems.

In this section we will present some basic hybrid models encountered in the analysis of
sampled-data systems. The extensions of the Lyapunov stability theory for hybrid systems will
be introduced together with constructive numerical and analytic stability analysis criteria.

2.1.2.1 Impulsive models for sampled-data systems

Consider the case of LTI sampled-data systems with linear state feedback, as in system (1.12).
Let & denote a piecewise constant signal representing the most recent state measurement of the
plant available at the controller, Z(t) = x(t), for all t € [tg,tx+1),k € N. Using the augmented
system state x(t) = [27(¢), 27 (¢)]7 € R™ with n, = 2n, the dynamics of the LTI sampled-data
system (1.12) can be written under the form

X(t) = Fx(t), t#ty, keN,
{ x(te) = JIx(t;), k ekN, (2.10)

with

X() =l x(6), F = [g‘ B(ﬂ, J= H 8} (2.11)

Similar models can be determined by considering an augmented state vector y including the
most recent control value implemented at the plant @(t) = wu(tg), the sampling error e(t) =
x(t) — &(t), the actuation error e,(t) = u(t) — @(t), etc. Models of the form (2.10),(2.11) fit
into the framework of impulsive dynamical systems [Milman 1960, Haddad 2014, Lakshmikan-
tham , Bainov 1993] (sometimes also called discontinuous dynamical systems or simply jump
systems). More general nonlinear sampled-data systems lead to impulsive systems of the form
[Naghshtabrizi 2008, Nesi¢ 2004b]

X(t) = Fi(t,x(t)), t#tp, kEN, (2.12a)
X(tk) = etk x(t)), keEN (2.12b)

where the augmented state may also include the controller state and some of its sampled com-
ponents (state, output, etc.). Generally, for an impulsive system, (2.12a) is called the system’s
flow dynamics while (2.12b) is the jump dynamics.
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2.1.2.2 Lyapunov methods for impulsive systems

The stability of equilibria for the impulsive systems of the form (2.12) can be ensured by
the existence of candidate Lyapunov functions that depend both on the system state and on

time, and evolve in a discontinuous manner at impulse instants [Bainov 1993, Haddad 2014,
Naghshtabrizi 2008].

Theorem 2.4 [Naghshtabrizi 2008] Consider system (2.12) and denote 7(t) = t — t, Vt €
[tk tikr1). Assume that Fy and Jy are locally Lipschitz functions from Ry x R™ to R™ such
that Fi(t,0) = 0, Ji(¢,0) = 0, for all t > 0. Let there exist positive scalars ¢1, ca, c3, b and a
Lyapunov function V : R™ x R — R, such that

allxll” < Vx,m) < eallxl’, (2.13)

for all x € R™, 1 € [0, h]. Suppose that for any impulse sequence o = {tx}ren such that h <
trr1 — ty < h, k € N the corresponding solution x(-) to (2.12) satisfies:

dv (x(t),7(t))
dt

and V (x(tx),0) < hmt%t; V (x(¥),7(t)), Vk€N. Then, the equilibrium point x = 0 of system
(2.12) is Globally Uniformly Ezponentially Stable over the class of sampling impulse instants,
i.e. there exist c, A > 0 such that for any sequence o = {t}ren that satisfies h < tyy1 —tp < h,

keN,

< —esV (x(t),7(t)), V£t VEEN,

IX@)II < ellx(to)]le =), v > to.

The previous stability theorem requires in (2.13) the candidate Lyapunov function to be
positive at all times. For the case of system (2.12) with globally Lipschitz Fj,k € N, the
condition can be relaxed by requiring the Lyapunov function to be positive only at impulse
times [Naghshtabrizi 2008], i.e. ci|x(tx)]|® < V (x(tx),0) < e2|lx(tx)||®,Vk € N, instead of
(2.13).

In the case of impulsive systems (2.10), with linear flow and jump dynamics, candidate
Lyapunov functions of the form V(x,7) = xT P(7)x, with P : [0,h] — R™*"x g differentiable
matrix function, have been used [Toivonen 1992a, Sun 1993, Briat 2013, Naghshtabrizi 2008].
Sufficient stability conditions can be obtained from Theorem 2.4 in terms of existence of a
differentiable matrix function P : [0,h] — R™>*™ ;I < P(7) < col, satisfying the parametric
set of LMIs

oP
FTP(9,) + P(61)F + c3P(61) + 8_7'(01) <0,

Y 6y € [0, h], (2.14a)
JEP(0)J — P(6y) <0, Y 6, € |h,hl, (2.14b)

with positive scalars ¢, ¢ca, c3. This formulation is reminiscent of the Riccati equation approach
used for robust sampled-data control in [Toivonen 1992b, Sun 1993].

2.1.2.3 Numerically tractable criteria

In practice, the difficulty of checking the existence of candidate Lyapunov functions using LMI
formulations such as (2.14) comes from the fact that the set of LMIs are parametrized by elements
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n [0,h] or [h,h], which leads to an infinite number of LMIs. As follows we will discuss the
derivation of a finite number of LMIs from (2.14).

Concerning the parametric set of LMIs (2.14), a finite number of LMI conditions can be
derived by considering particular forms for the matrix function P(7). For example, consider a
matrix P(7) linear with respect to

P(t) =P+ (P~ P) % (2.15)

for some positive definite matrices Pi, Py, as in [Hu 2003, Allerhand 2011]. There, such a Lya-
punov matrix has been used for sampled-data systems with multi-rate sampling and switched
linear systems. For a candidate Lyapunov function V(x,7) = x7 P(7)x, with P(7) as defined
n (2.15), a finite set of LMIs that are sufficient for stability can be obtained from (2.14) using
simple convexity arguments:

Py, — P,

FTP + PiF + c3P + % <0, (2.16a)
P, P

FTPy+ PyF + 3Py + Lo, (2.16b)

JEPJ < Py, (2.16¢)

JI'PJ < Py + (P2 — P1) h/h. (2.16d)

For the particular case of LTI sampled-data systems represented by (2.10),(2.11), Lyapunov
functions of the form V(x,7) = x? P(7)x are proposed in the literature by summing various
terms such as:

Vilx,7) = 2" P (2.17)
Va(x,7) = (=2 Qz—a)(h—7) (2.18)
Vs(x,7) = (x—2)" Rz —i)e ™ (2.19)
0 ~
Viter) = XF( [ s+ BESTOF s )x, (2.20)
~ U 0 . . . . .
where U := 0 ol A > 0 and Py, R, U are symmetric positive definite matrices. Using

such particular forms of Lyapunov functions, LMI stability conditions have been derived in the
literature [Hu 2003, Naghshtabrizi 2008, Nesi¢ 2009, Omran 2012b, Goebel 2012]. We point in par-
ticular to the term (2.20) used in [Naghshtabrizi 2008] which provided a significant improvement
in what concerns the conservatism reduction. This term is inspired by Lyapunov-Krasovskii
functionals from the input-delay approach, like the one in [Fridman 2004|. Note that the term
(2.20) can also be written as ftt (s +h —t)iT(s)Ui(s)ds. It has been motivated by the term

f ft+9 & %(s)dsdf used in the time-delay approach (see [Fridman 2004]). Vice versa, the
hybrld system approach has also inspired the use of discontinuous Lyapunov functionals in the
time-delay approach (see for example the functlonal (2.4) which is discontinuous at sampling

times). Note that the term (hy — ft L 1(s)ds in the functional (2.4) can be re-written
as (hy — T)XT<ffT(FeFS)TR(FeFS)ds)X, with

=~ R O

]
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and R > 0. Then, for the impulsive system (2.10), (2.11), the functional (2.4) can be inter-
preted as a Lyapunov function of the form V(x, 7, hy) = x* P(7, hy)x. Hybrid and input-delay
approaches share the same advantages and drawbacks. Both of them are constructive, and LMI
conditions are used to construct the Lyapunov functionals/functions. Similarly to the time delay
approach, the LMI formulations can be adapted to cope with uncertainties in the system matri-
ces. On the other hand, conservatism is added by the upper bounding introduced when studying
the derivatives of Lyapunov functionals/functions.

2.1.2.4 More general hybrid models

A large variety of hybrid dynamical systems, including sampled-data and impulsive models,
can be re-formulated in the unifying theoretical framework proposed by Goebel, Sanfelice and
Teel [Goebel 2009, Goebel 2012]. Several fundamental properties have been investigated in this
framework, providing a solid theory for hybrid dynamical systems. The main advantage of this
generic hybrid formulation [Goebel 2009, Goebel 2012] is that the associated theoretic proper-
ties can be directly transferred to sampled-data systems with aperiodic sampling. The general
formulation proposed in [Goebel 2009, Goebel 2012] considers models of the form

2=F,z), ze€C, (2.21a)
zt=J.(2), z€D, (2.21b)

with state z € R™#. The system state evolves according to an ordinary differential equation
(2.21a) when the state is in some subset C' of R™* and according to a first order recurrence
equation (2.21b) when the state is in the subset D of R™=. 2T denotes the next value of state
given as a function of the current state z via the map J,(-). C is called the flow set and D is
called the jump set. Here, we assume that F, and J, are continuous functions from C to R™=
and D to R™=, respectively. C' and D are assumed to be closed sets in R™=.

Note that in the impulsive system formulation of sampled-data systems, the system jumps
are time-triggered. However, the dynamic of the triggering mechanism is in some sense hidden.
In the framework proposed by [Carnevale 2007, Dacic 2007, Negi¢ 2009, Goebel 2009, Goebel 2012],
the mechanism triggering the system jumps is modelled explicitly by augmenting the system state
with the clock variable 7(¢) = t — ty, Vt € [tg,tr+1), Vk € N. Consider the LTI sampled-data
systems (1.12) with the notations #(t) = x(tx), 7(t) = t — tx for all ¢ € [tg,tx+1), k € N. The
system can be represented by the following hybrid model

t = Az + BKz
& = 0 T €[0,h)],
Fo= 1
L, (2.22)
it o=z 7 € [h,h].
™ =0
Then, system (1. 12) with hk G h, h) (or equivalently (2.10),(2.11)) can be re-modelled in the
form (2.21) with 27 = [z } X 7],
C={zeR™:7€[0,h]},
D={zeR™:7€hh]},
25
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Ax + BKZ T
F,(z) = 0 , J(2) = |x| . (2.23)
1 0

Solutions ¢ of the general hybrid system (2.21) are parametrized by both the continuous time ¢
and the discrete time k: ¢(t, k) represents the state of the hybrid system after ¢ time units and &
jumps. Such solutions are defined on a hybrid time domain, which for the case of sampled-data
systems is given as the union of the intervals [tg, tx+1] X {k}. A solution ¢(-, -) is a function defined
on a hybrid time domain such that ¢(-, k) is continuous on [tk, tx41], continuously differentiable
on (tg,tr11) for each k in the domain, and such that

¢(t’ k) =F. ((b(t’ k)) )
if ¢(t, k) € C, t € (tg,trsr1), k €N, and

¢(tk+17 k + 1) = JZ (¢(tk+1a k)) )

it ¢(tp+1,k) € D, k € N. For sampled-data systems as (2.22) such solutions may be roughly
interpreted as a generalization of the state lifting approach proposed in [Yamamoto 1994] for
systems with periodic sampling.

A particularity of the model (2.22) in the context of stability analysis is the fact that although
the matrix K is designed such that = (and consequently &) converges to zero, the clock variable T
does not converge. For each sampling interval [tx, tx11), the timer 7 visits successively the points
of the interval [0, h] up to hg = tx,1 —tr. The main consequence is that the hybrid system (2.22)
does not have an asymptotically stable equilibrium point. For such systems the stability of the
compact set A = {0} x {0} x [0, h] is usually investigated instead. Studying this property allows
to conclude on the convergence of x. One of the main results allowing to state the asymptotic
stability of a set for hybrid systems is given below. This results is expressed in terms of the
pre-asymptotic stability of a set A (see [Goebel 2009] for a detailed definition). The prefix "-pre"
is used since the completeness of all system solutions'! is not required. Only complete solutions
need to converge to A. The concept of pre-asymptotic stability used in the following theorem is
equivalent to standard asymptotic stability of the set A when all system solutions are complete,
which is the case for sampled-data systems.

Theorem 2.5 [Goebel 2009] Consider the hybrid system (2.21) and the compact set A C R"=
such that J, (AN D) C A. If there exists a candidate Lyapunov function'? V such that

%Fz(z) <0 forall z€ C\ A, (2.24a)
V(J.(2)) = V(2) <0 forall z€ D\ A, (2.24Db)

then the set A is pre-asymptotically stable.

Various relaxations of the above result are provided in Chapter 3 in [Goebel 2012|. A converse
Lyapunov theorem is given below.

1A solution ¢(t, k) is called complete if dom ¢ is unbounded.

12y is continuous and non-negative on (C'U D) \ A C domV, it is continuously differentiable on an open set
satisfying C'\ A C domV, and lim._, 4 -cdomvn(cup) V (z) = 0. Furthermore, for global pre-asymptotic stability,
the sublevel sets of V(.) are required to be compact.
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Theorem 2.6 [Goebel 2009] For the hybrid system (2.21), if the compact set A is globally pre-
asymptotically stable, then there exist a C*° function V : R™ — R4 and a1, as € Ko such that
a1 (|z]a) < V(2) < az(|z]a), Vz € R", where | - | 4 denotes the distance from the set A, and

%—ZFZ(Z) < =V (2), Vz € C, (2.25a)
V (J.(2)) < V(2)/2, Yz € D. (2.25b)

Note that with respect to the case of sampled-data systems such as (2.22) (or equivalently
(2.10), (2.11)) where solutions are complete, the previous theorem shows that asymptotic stability

implies the existence of a C* Lyapunov function of the form V(z) = V(x, 1), to be related with
the sufficient conditions for stability in Theorem 2.4.

2.1.2.5 An estimation of the MSI for nonlinear systems

For nonlinear sampled-data systems the stability properties have been studied in the more general
context of Networked Control Systems with scheduling protocols [Nesi¢ 2004b, Carnevale 2007].
This approach has been particularized to the sampled-data case in [Negi¢ 2009]. Consider the

plant: .
{ s - e, (2:26)

where x is the plant state, w is the control input, y is the measured output. Suppose that
asymptotic stability is guaranteed by the continuous-time output feedback:

¢ = F°(z%y),
{u — HY (), (2.27)

where x¢ is the controller state. Under an exact sampled-data implementation of the controller
and a perfect knowledge of the sampling sequence o = {tx }ren, the sampled-data implementation
of the closed-loop system can be written in the following impulsive system form:

T = F(z,4), t € [tk thrl),
y = H(x), teRy
i = F249), t € [thyter1),
u = He(z), teRy (2.28)
0 = 0, te [tk,tk+1), ’
i =0, t € [thtes1),
aty) u(ty,),

where @ represents control being implemented at the plant and ¢ the most recent plant output
measurements that are available at the controller. In order to express the system in the general
framework of [Goebel 2012], consider the augmented state vector 7(t) € R™ and the sampling-
induced error e(t) € R™:
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and a clock 7 which evolves with respect to the sampling instants. The dynamics in (2.28) with
hy € [h, h] can be modelled by the following hybrid system:

n = f(ne) B
¢ = gne) T € [0,h],
=1

2.29
o= (2.29)
et =0 7 € [h,0),
Tt =0

with n € R™ e € R", 7 € Ry. The functions f and g are obtained by direct calculations from
the sampled-data system (2.28) (see [Nesi¢ 2009]):

_ [ Fla, HO(2%) 4 e)
f(77>€) - |:Fc(xc’H LE) + ey)] )

_ [~ F (, HO(2%) + )
g(n.€) = [_ I fe(ze, H () + eyJ

It should be noted that 1 = f(n,0) is the closed loop system without the sampled-data imple-
mentation. The following theorem provides a quantitative method to estimate the MSI, using
model (2.29).

Theorem 2.7 [Nesié¢ 2009] Assume that f and g in (2.29) are continuous. Suppose there exist
An: A, > 0, a locally Lipschitz function W : R — R, a locally Lipschitz, positive definite,
radially unbounded function V : R™ — R a continuous function © : R™ — R, real numbers
L>0,v>0, functions ay, aw € K and a continuous, positive definite function o such that,
for all e € R":

ayy ([lell) < W(e) <aw([lel]),

and for almost all ||n|| < A, and |e|]| < A,:

ow

@9(77, e) < LW(e) + O(n),

Z—Zﬂn,e) < —ollnl) — (W (e)) — ©%(n) + ~*W(e).

Finally, consider that 0 < h < h < T (v, L), with

Aarctan(r) v > L,
T(vL)=4q 1 v=1,
L%arctanh(r) v <L,

and r = 4/ |Z—Z — 1|. Then, for all sampling intervals less than h the set A = {(n,e,7) : n =
0,e = 0,7 €[0,h]} is Uniformly Asymptotically Stable for system (2.29).

Theorem 2.7 provides an explicit formulation of the MSI for nonlinear sampled-data systems.
It is applicable for both constant and variable sampling intervals. Moreover, it has the advantage
of considering a general class of nonlinear systems. Nevertheless, for practical applications it is
not obvious to construct the functions V(n), W(e) and ©(n) which satisfy the hypotheses of the
theorem.
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2.1.2.6 Further reading

In the impulsive system framework control design conditions have been proposed in [Briat 2013].
For observer design conditions we point to the works in [Andrieu 2010,Dinh 2015, Ahmed-Ali 2009,
Nadri 2013, Postoyan 2012, Ferrante 2014]. Some extensions of the hybrid systems approach
for sampled-data systems with delay can be found in [Fridman 2000, Naghstabrizi 2010] and
[Bauer 2012].

2.1.3 Discrete-time approach and convex-embeddings

In this sub-section we present several approaches which use the system integration over the
sampling interval and convex embeddings of the transition matrix between sampling times in
order to derive stability conditions.

2.1.3.1 Theoretical results for LTI systems using the discrete-time approach

Let us consider the LTI system with sampled linear static state feedback (1.12) where hy =
tpr1 — ti takes values in the set T = [h, h|. Recall the notations x; = x(ty),

0
A() = et + / e*dsBK (2.30)
0

for 8 € R. One can verify that the closed-loop system (1.12) satisfies
Tp+1 = A(hy)zy (2.31)

with hy € T = [h,h]. Model (2.31) belongs to the class of discrete-time Linear Parameter
Varying (LPV) systems [Rugh 2000, Kamen 1984, Molchanov 1989]. It captures the behaviour of
system (1.12) at sampling times, without consideration of the intersample behavior. However,
in [Fujioka 2009c¢]|, the following proposition has shown that for LTI sampled-data system, the
asymptotic stability in continuous-time and in discrete-time are equivalent.

Proposition 2.8 [Fujioka 2009c] Consider the sampled-data system (1.12) with hy, = ty11—tx €
[, h]. For a given x(ty), the following conditions are equivalent:

2. limkﬁoox(tk) =0.

A simple stability criterion which is sufficient for stability can be obtained using classical
quadratic Lyapunov functions, which are decreasing at each sample.

Theorem 2.9 [Zhang 2001b] The origin of system (2.31) is Globally Uniformly Exponentially
Stable for all sampling sequences o = {ty}ren with hy = tg41 — tg € [h, ), k € N, if there exists
P > 0 such that

AT(O)PA(O) — P <0, YO € T = [h, 7). (2.32)

The LMI (2.32) ensures that the candidate Lyapunov function V (z) = 27 Pz satisfies the relation
AV (k) = V(zpr1) — V(zg) < 0, Yag # 0. (2.33)
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Note that, similarly to conditions (2.14) used for the hybrid system approach, the stability
condition (2.32) represent a set of LMIs that are parametrized by 6 € T = [h, h]. This condition
is not a computationally tractable problem by themselves. Approximate solutions, based on
evaluation of the condition for a finite set of values of 6 have been presented in [Zhang 2001b,
Sala 2005, Skaf 2009]. A finite set of sufficient tractable numerical conditions can be obtained
using normed-bounded and/or polytopic convex embeddings of the transition matrix A(#).

2.1.3.2 Tractable criteria

In what follows, we try to give an idea about the manner to solve parametric LMIs involving
matrix exponentials such as the one in (2.32). First, we present briefly the approach proposed
by Fujioka in [Fujioka 2009a]. Consider a nominal sampling interval Ty € [h, h]. For a scalar 4,
the transition matrix A(-) satisfies the relation

A(Tp + 8) = A(Tp) + A(8)T(Tp) (2.34)

where A(0) := [ 0 esds, W(Ty) = AN(Tp) + BK. Using classical properties of the matrix expo-
nential [Loan 1977], the 1nduced Euclidean norm of A(d) can be over-bounded

d
1A@), < [ erhas (2.35)
0

where 1(A) is the maximum eigenvalue of A+2—AT. System (2.31) can be expressed as a nominal
discrete-time LTI system with a norm-bounded uncertainty

Trr1 = MTo)zy + A(0k) ¥ (To)z (2.36)

where 0, = hy — Tp, for which classical Hy, criteria [Gahinet 1994] can be used. A simplified
version of the main result in [Fujioka 2009a] is given as follows.

Theorem 2.10 [Fujioka 2009a] Let Ty € [h,h] be given. If there exists X = 0 and v > 0
satisfying

M(Tp, X, 7) =
AR AR TR s e

then (2.32) is satisfied with P = X" for all 6 € T (Tp,7) = [h(Tb,7), h(To,7)] with

TO - 771, Zf :u(_A) = 07

WTp, ) =4 —00, if p(=4A) < —, 2.38
W(To, ) puA) < | (2.38)
Ty — A otherwise,

TO + ’7717 Zf /'L(A) = 07

ATy, ~) = 4 00 if p(A) < =, (2.39)
10g(1+7’1u(A)) .
To + A otherwise.

Condition (2.37) is sufficient for the asymptotic stability of system (2.31) under time-varying
sampling intervals hy, € [h, h] with h and h given in (2.38) and (2.39), respectively. Other norm-
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bounded approximations of the transition matrix A(-) exist in the literature [Balluchi 2005,
Suh 2008, Kao 2013, Fujioka 2011b, Zhang 2011]. For example, stability conditions have been
provided using the Schur decomposition in [Suh 2008] while [Zhang 2011] uses the Jordan normal
form. In [Fujioka 2011b] the transition matrix A(Tj + 0) is decomposed as

ATy +0) = A(Ty) + 0L(Ty) + As(8)AL(Th)

with L(Tp) = e (A + BK), Ay(6) := f05 Iy e%dsdp, and stability conditions are provided by
computing the induced Euclidean norm of Ag(d). See also [Kao 2013] where stability conditions
have been derived using Integral Quadratic Constraints (IQC), by studying the positive realness
of A(8). More general Lyapunov functions have been used in [Fujioka 2010b].

Alternatively to the use of norm bounded approximations, tractable numerical conditions can
also be obtained using polytopic embeddings of the transition matrix A(-) in system (2.31). The
set

Wi, m = {A0), 0 € [h, ]}

is embedded in a larger convex polytope with a finite number of vertices A;, ¢ € Z := {1,--- , N,},

Nu NU
W:—{ZaiAHaiZO,iGI,Zai—l}, (2.40)
i=1 i=1

in such a way that W[h 7 C W. Using a polytopic embedding, system (2.31) can be expressed
as a

Ny
Trr = 3 ai(h) A, (2.41)
i=1

where Zi\]:"l a;(hg) =1, a;(hg) > 0,7 € Z. This is a classical discrete-time system with polytopic
uncertainty [Daafouz 2001]. Here

Oz(hk) = [Oq(hk) Oéz(hk) Osz(hk)]T

represent the barycentric coordinates of A(hy) in the polytope W. The properties of the over-
approximating polytopic set YW make it possible to derive a finite number of sufficient stability
conditions from (2.32), by writing simple LMIs over the polytope vertices:

P>0, ATPA;,— P <0, VieT. (2.42)

One of the advantages of the polytopic embedding is the fact that it allows the use of parameter
dependent Lyapunov functions [Daafouz 2001, Hetel 2006, Cloosterman 2010] V (z, o) = 2T P(a)z,
Pla) = Zf\i’l a;P;, which lead to refined stability conditions under a reasonable numerical
complexity:

3P =P -0, ATPA;—P <0,V (i,j) €I x T. (2.43)

The main difficulty in constructing the polytope W is the exponential dependence of the
transition matrix A(f) = e?® + foe eA*dsBK in the parameter 6 over the the interval [h, h].
Several approaches exist for the computation of a convex polytope embedding an uncertain matrix
exponential. See for example [Olaru 2008, Oishi 2010, Cloosterman 2009, Cloosterman 2010,
Lombardi 2012] for techniques based on the real Jordan form, [Gielen 2010] for a construction
that uses the Cayley-Hamilton theorem and [Cloosterman 2006] for an approach studying interval
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matrices. One may remark that the transition matrix A(:) can be re-expressed as
AO) =1+ A(0)(A+ BK) (2.44)

which involves only one uncertain matrix term A(6) = fog eA%ds. Then the stability problem
can be addressed by constructing a polytopic approximation of A(6) for 6 € [h, E]. To give an
idea about the manner such a convex polytope can be constructed, let us consider a simple case
where the matrix A has n real eigenvalues \; # 0,3 € {1,...,n} with multiplicity equal to one,
i.e. where it takes the form

A0 0 ... 0

0 0 0
A=T""] . _ T (2.45)

0 ... ... 0 X\

for some invertible matrix 7' € R™*". Then the uncertain matrix A(f) takes the form:

m@® 0 0 ... 0
AB) =T ? p2(®) ,(_) ? T (2.46)

where p;(0) = /\% (e)‘ig —1),i = 1,...,n. By computing p/" and p["** the minimum and
maximum values of p;(#) over [h, k], the uncertain matrix A(#) is embedded in a convex polytope

with NV, = 2™ vertices

A(f) € conv{Dy,Ds,...,Dn,}
= conv {T " 'diag(p1,...,pn)T : pi € {p["™, p"**},i=1,...,n}.

Using (2.44), the polytopic set (2.40) can be constructed with A; = I + D;(A+ BK),i € Z. A
similar embedding procedure can be applied in the general case (when the eigenvalues of A have
multiplicity different than one or when they are complex) - see [Cloosterman 2010)].

As the numerical complexity of the obtained LMI conditions depends significantly on the num-
ber of vertices IV,, of the polytopic approximation, one of the challenges is to provide accurate
convex polytopes while reducing the number of vertices. For the Jordan decomposition proce-
dure, the number of vertices N, increases exponentially with the order of the system. A method
for reducing the number of vertices has been provided in [Olaru 2008, Lombardi 2012, Lom-
bardi 2009]. However, the method provides a larger polytopic embedding and may result in a
conservative stability condition. The challenge is to find a convex embedding that provides a
good trade-off between increased accuracy and reduced computational complexity. Methods that
are independent of the order of the systems have been proposed by combining polytopic embed-
dings with norm bounded approximations [Hetel 2006, Hetel 2008, Donkers 2009, Donkers 2011a).
We present briefly an adaptation of the approach based on Taylor series approximation in
[Hetel 2006, Hetel 2008], originally used for sampled-data systems with input delay. Note that
the transition matrix A(hg) with hy € [h, h] can be rewritten as

A(hi) = A(R) + Apr) ¥ (h)
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where p, = hy —h € [0,h—h], A(p) = [ e%ds and W(h) = AA(h) + BK. Using a Taylor series
approximation of the matrix exponential, A(p) can be expressed as

A(p) = Tum(p) + Ru(p)

where Tis(p) = Zf\il Ai;!lpi is the M order Taylor series approximation and Rps(p) is the
reminder. The procedure proposed in [Hetel 2006, Hetel 2008] allows to embed Tys(p) in a
convex polytope with N, = M + 1 vertices

Tv(p) € conv{Usi=1,..., M +1}, ¥V pe€[0,h—h],
_ _ (h=nyiA! L
where Uy = 0, Ujp1 = ~—57— +U;, i = 1,..., M. Furthermore, an upper bound on the
induced Euclidean norm of Rjs(p) can be computed using the method proposed in [Liou 1966].
To obtain an embedding with ||Ras(p)|l, < g for all p € [0,h — h] the approximation order M
must be chosen such that

1Al (b — B)

1
Mi2
and _
R R S
M+ M+2—|Al,(h-h) ="

For this approach the number of vertices is linear in the order M of the Taylor approximation.
Stability criteria are obtained in a direct manner by combining LMI methods for polytopic
systems with the ones for systems with norm-bounded uncertainty.

Note that for both norm-bounded and polytopic embeddings approaches, the accuracy of
the approximation may be significantly increased by dividing [h, h] into several subintervals and
applying the embedding procedure locally [Fujioka 2009a,Oishi 2010,Hetel 2013a, Donkers 2011al].
For example, in the case of the norm-bounded embedding used in Theorem 2.10, the idea is to
consider a grid of 7 "nominal" sampling intervals {77 < Ty < --- < T,} and to verify the
existence of a symmetric positive definite matrix X and of r parameters ~;,4 = 1,...,r, such
that M(T;, X,~;) < O0for all i =1,...,r. When this condition is satisfied, system (2.31) is stable
for any time-varying sampling interval hy € Ul_, T (T3,v;) where T (1;,7v;) = [Q(Ti,%),E(Ti,%)]
are defined using (2.38), (2.39). Furthermore, it has been shown in [Fujioka 2009a] that using
this approach one can approximate the condition (2.32) as accurately as desired, in the sense
that if the condition (2.32) holds for § € [h,h], then necessarily there exists a matrix X =
P~1, a sufficiently tight grid of parameters Tj,% = 1,...,r and positive scalars v;,i = 1,...,7,
such that M(T;, X,v;) < 0 for all i = 1,...,7, and [h,h] C Ul_;T(T},7:). Such an asymptotic
eractness property has also been discussed for other embedding approaches [Donkers 2011a,
Oishi 2010, Skaf 2009]. The main issue is that using convex embeddings the conservatism with
respect to the quadratic stability condition (2.32) can be reduced to any degree at the cost of
increased computational complexity. However, the analysis of the asymptotic exactness property
does not take into account all numerical implementation aspects. Most of the methods are
based on the computation of the matrix exponential for nominal sampling intervals, on the use
of the eigenvalue/eigenvectors of the state matrix A or of its characteristic polynomial, etc.
Computing any of these elements introduces approximations [Moler 2003] which might influence
the numerical implementation of the embedding. The effect of these approximations on the
accuracy of the stability analysis needs to be further analysed.
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2.1.3.3 A discrete-time approach for nonlinear systems

Results on discrete-time approaches for the control of nonlinear systems with time-varying sam-
pling intervals are quite rare. We present as follows an adaptation of the result from [van de
Wouw 2012] which extends earlier stability criteria from [Nesi¢ 2004a, Nesi¢ 1999, Nesi¢ 1999].
Consider the nonlinear system

z(t) = F(x(t),u(t)) (2.47)

with F'(x,u) globally Lipschitz, i.e. there exists By > 0 such that

1F(za, ta) = F(zp,up) || < By ([0 =zl + [lua — usl)

for all x4, z, € R"™ and ugq, up € R™. The control takes the form u(t) = uy for all ¢ € [tg,tgs1) and

the sampling interval is bounded hy = tx11 —tx € T = [h, h], V k € N. The exact discrete-time
model of the system over the sampling interval is given by

tpthi
st = Fiy (o) =it [ Fla(s)w) ds (2.48)

tk

where x, = z(tx). Note however that (2.48) is not known in general since it is rare to obtain an
analytic solution to a nonlinear initial value problem. In practical problems, approximations are
usually used [Stuart 1998, Nesi¢ 2004a]. A simple example is given by the Euler model of (2.47):

Tkt+1 = T + hpF (xk,uk) .

Other approximations can be found in standard books [Stuart 1998] and tutorials [Monaco 2001,
Monaco 2007]. The approach in [van de Wouw 2012] considers an approximate model

Th+1 = F;:* (xk,uk) 5 (2.49)

obtained for some nominal sampling interval h* € [h, h]. Model (2.49) is assumed to be one-step
consistent [Stuart 1998] with the exact discrete-time plant, i.e. there exists p € K such that
|FR (x,u) — Ff. (z,u) || < h*p(R*) (Jz]] + [Ju]]), for all z € R™, u € R™ It is considered that the
approximate model (2.49) has been used to design a controller

u, = Kp+ (k) (2.50)

parametrized by the nominal sampling interval A* and that the closed-loop system (2.49),(2.50)
is asymptotically stable. More formally, it is assumed that there exists a candidate Lyapunov
function for the approximate closed-loop system (2.49),(2.50), i.e. a function Vj«(x) and a; >
0,i = 1,2, 3 such that the involved conditions holds for some r > 1: a1 ||z||" < Vi« (z) < ag ||z||"

and
Vh* (F;:’* (CL‘,Kh* (a?k))) — Vh* (.’L’)

h
for all x € R™. Furthermore, the control law Kjp«(-) is considered to be linearly bounded, i.e.
there exists 3, > 0 such that ||Kp«(z)|| < Bullz|| for all z € R™. The following theorem provides
generic results for the robust stability of the exact closed-loop system

< —agllel (251)

Tr1 = Fy, (vr, K (1)) 5 (2.52)

using the fact that the control law uy, = Kj,«(x) is a stabilizer for the approximate model (2.49).
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Theorem 2.11 [van de Wouw 2012] Consider system (2.52) with hy, € [h,h] for all k € N.
Consider the following notation

= (24 fu+ (1 4+ max(1, 5u)) (77— 1))
RS+ Bu). 259

Assume that the Lyapunov candidate function Vi« (x) is locally Lipschitz and there exists 5, > 0
such that

sup 2] < Byll]”
CENV,+ ()

for all x € R™, where OV« (x) denotes the generalized differential of Clarke. If there exists
B € (0,1) such that

BBy
h*

(WA(H) A+ B) + prlh* My)) < (1= B)as (2.54)

1s satisfied where
pn(h*, Mp) = e/J’fh*<(1 + 8y (eﬁth _ 1))

with My = max, ., 7 |h — h*|, then there exist ¢, A > 0 such that ||zg| < cl|lzolle™ 2. In other

words, system (2.52) is Globally Exponentially Stable, Uniformly for all hy, € [h,h] and all k € N.

The above theorem is a natural extension of the result in [Nesi¢ 1999, Nesi¢ 2004a] for sampled-
data systems with constant sampling intervals. The main condition (2.54) involves two terms.
The first term 3,851 p(h*)(1+ B,) reflects the effect of approximatively discretizing the nominal

r—1
system using a nominal sampling interval h*; the second one, 8 “ﬁ‘i pn(h*, Mp,) reflects the effect
of uncertainty in the sampling interval.

2.1.3.4 Further reading

Control design methodologies based on convex embeddingsare given in [Hetel 2006], [Hetel 2008],
[Cloosterman 2010], [Fujioka 2010a], [Mustafa 2013]. See also [Robert 2010] for an LPV design of
controllers that are adapted in real time to the value of the sampling interval and [Hetel 2011a]
for the case of systems with delay scheduled controllers. Extensions of the discrete-time approach
for networked control systems with scheduling protocols can be found in [Donkers 2009, Li 2010,
Donkers 2011a,Li 2014, Cela 2014]. For model predictive control of networked control systems
see also [Olaru 2008, Gielen 2009, Lombardi 2012]. Lie algebraic criteria for the analysis of
systems with time varying sampling have been proposed in [Felicioni 2008] using tools from
[Liberzon 1999]. A mixed continuous-discrete approach has also been proposed in [Li 2011].

2.1.4 Input/Output stability approach

In this subsection we present several methods that study sampled-data systems from a robust
control point of view. The main idea of the Input/Output stability approach is to consider
the sampling error as a perturbation with respect to a nominal continuous-time control-loop.
Classical robust control tools are used in order to assess the stability of the sampled-data systems
[Zames 1966, Zhou 1996, Megretski 1997]. Some of the presented methods are reminiscent from
the Input/Output stability approach used for the analysis of time delay systems [Huang 2000,
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Ash

Figure 2.2: Equivalent representation of the sampled-data system, from a robust control theory
point of view.

Jun 2001, Niculescu 2001, Gu 2003a,Kao 2004, Fridman 2006, Kao 2007], and have been further
developed independently of the time delay approach.

2.1.4.1 Basic idea

Note that the LTI sampled-data system (1.12) can be re-expressed in the form [Mirkin 2007]

i(t) = (A+ BK)xz(t) + BK (z(t) — z(t)). (2.55)
=Ac ?{5’: k::e(t)

where A corresponds to the state matrix of the nominal continuous-time control loop while e(t)
represents the error induced by sampling. An essential fact in this approach is that the sampling
induced error e(t) = z(t;) — x(t) can be equivalently re-expressed as

e(t) = — / t:i:(@)d@, Yt € [t tost). (2.56)

123
Considering y(t) = #(t) as an auxiliary output for system (2.55), the sampled-data system

(1.12) can be represented equivalently by the feedback interconnection of the operator Agp :
5.[0,00) = L£5,]0,00), Agp, : y — e, defined by:

e(t) = (Asny)(t) = /ty(e)de, Vt € [t tis), (2.57)

tk
with the system

{j;(t) = Aqa(t) + Bae(t), z(0) = zo € R, (2.58)

y(t) = Coqx(t) + Deye(t) = z(t),

where Cyy = Ay = A+ BK and D, = B, = BK. Note that the nominal system (2.58) is LTI.
It represents the dynamics of the continuous-time system with an additive input perturbation
e. The operator Ay, captures both the effects of sampling and its variations. An alternative
model can also be derived by considering the actuation error e,(t) = K(x(tx) — z(t)) (see
[Fujioka 2009¢]). The stability of the sampled-data system (1.12) can then be studied by analysing
the interconnection (2.57),(2.58).
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2.1.4.2 Small gain conditions

To provide constructive stability conditions, the Small Gain Theorem |[Zames 1966, Zhou 1996,
Huang 2000, Gu 2003a] constitutes a simple and powerful tool in the robust control framework.
Let G : L5]0,00) — L5]0,00) be the linear operator described by the transfer function

G(s) = s(sI — Ay) ' By (2.59)

associated to system (2.58). The operator G captures the behaviour of (2.58) for null initial
conditions. Considering the free response of system (2.58), f(t) = Agedetzy, ¥ t > 0, the
interconnection (2.57),(2.58) can be re-expressed as

=G
Y et (2.60)
€= Ashy
(see Figure 2.2). A direct consequence of the Small Gain Theorem is the fact that if
[Gll22|Asnll22 < 1, (2.61)

then the interconnection (2.60) is Lo stable, i.e. there exist a positive scalar C' such that

| (@1 + ey ) do < ¢ [ 5612 a0 (2.62)
0 0

for any t > 0. Here ||G||2,2, ||Asn||2,2 denote the induced £3 norms of G and Agy, respectively 12,
The inequality (2.61) is known as the small gain condition. Due to the linearity of G, its induced
Lo norm can be readily computed [Zhou 1996] using the H, norm of its transfer function:

1Gllaz2 = |G loc = sup & (G(j))
weR

Furthermore, for the case of LTI sampled-data systems, L5 stability of the interconnection (2.60)
implies asymptotic stability '* of the sampled-data control loop (1.12):

Theorem 2.12 [Fujioka 2009c] Suppose that A, is Hurwitz. System (1.12) is Uniformly
Asymptotically Stable if the feedback interconnection (2.60) is Lo stable.

Therefore, providing tractable stability conditions for system (1.12) leads to providing an
estimate for the induced £ norm of the operator Agy. An upper bound of this norm has been
computed in [Kao 2004] using a more general uncertain delay operator:

t
Bay(®) > elt) = Ba)lt) =~ [ y(®)as, (2.63)

t—7(t)

where 7(t) € [0, h]. The operator Ay, is a particular case of Ay with 7(¢) =t —t;, Vt > 0,k € N.

Lemma 2.13 [Kao 2004] The La-induced norm of the operator Ay in (2.63) is bounded by h.

. o . Gu
13Given an operator G : £3[0,00) — L£3[0,00), its induced L norm is defined as ||G||z2,2 := SUD,,0 %
2

For relations with exponential stability see also [Fridman 2014].
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Using this property, and the fact that the operator Ay satisfies MAy = AgM for all M € R™*™,
Mirkin [Mirkin 2007] provided the following L, stability conditions
- 1

IM € R™"™ M =0 such that ||MG(s)M ||« < = (2.64)
which is a consequence of the Scaled Small Gain Theorem [Skelton 1998|. Interestingly, it is also
shown that (2.64) is related to the condition in [Fridman 2004|. The same LMI can be used
to check both conditions. Mirkin then showed that the bound on the £5 induced norm can be
enhanced by exploiting the properties of Agy.

Lemma 2.14 [Mirkin 2007]The La-induced norm of the operator Agp is bounded by 6y = %E,
and thus

—+o0 400
/0 |(Aury) (6) 26 < / 5214(6) |26, (2.65)
for all y € L]0, 00).

This bound on the induced L2 norm of Ay, is actually exact and it is attained when there exists
an index k € N such that tx11 — tx = h. This leads to the following sufficient Lo stability
condition, improving (2.64):

IM e R™" M =0 such that | MG(s)M | < % (2.66)

Note that the upper bound on induced L2 norm of A, can also be related to the Wirtinger’s
inequalities [Liu 2010] used in the time delay approach. In practice, condition (2.66) is readily
verifiable via standard LMI for the estimation of the Ho norm of LTI systems [Mirkin 2007,
Skelton 1998, Gu 2003a]

XAaq+AlX 2hXBK ATy
* -Y 2ZpKTBTY | <0 (2.67)
k * -Y

to be solved for X, Y = 0 (obtained with Y = M?).

2.1.4.3 Integral Quadratic Constraints

For the case of LTI sampled-data systems (1.12), the properties of the operator Agy, in (2.57)
can be further exploited in the framework of Integral Quadratic Constraints (IQC) [Megret-
ski 1997, Ebihara 2015]. Less conservative stability conditions can be obtained. While very
general definitions of IQCs are available in the literature [Megretski 1997], we restrict ourselves
here to IQCs defined by symmetric matrices II with real elements have been used for stability
analysis. Roughly speaking, the bounded operator Ay, in (2.57), with input y and output e, is
said to satisfy the IQC defined by the symmetric matrix IT if

T
> y(@} {yw)]
I dg >0 2.68
) nlie) e (269
for all y € £5[0,00) and e = Agpy. We present as follows a simplified version of the classical

IQC Theorem [Megretski 1997] that can be used in order to derive stability conditions for the
interconnection (2.60).

38

doc.univ-lille1.fr



© 2017 Tous droits réservés.

HDR de Laurentiu Hetel, Lille 1, 2017

2.1. Stability analysis under arbitrary time-varying sampling

Theorem 2.15 [Megretski 1997] Consider the interconnection (2.60) describing the LTI sampled-
data system (1.12) and the bounded operator Agp, in (2.57). Suppose that Ay = A+BK is Hurwitz
and assume that there exists a matriz

m— [ﬁi gg] (2.69)

with Tli1, 119, TIsg € R™ ™ TIy; = 0, IIay =< 0, such that the operator Agp satisfies the 1QC
defined by I1; there exists € > 0 such that

o (e

Then the interconnection (2.60) is Lo stable.
Using Theorem 2.12, the conditions of Theorem 2.15 also imply uniform asymptotic stability of

the sampled-data system (1.12). Condition (2.70) can be converted into a frequency independent
finite dimensional LMI using the Kalman-Yakubovich-Popov Lemma [Rantzer 1996]:

T
AZlP‘f‘ PAcl PBcl + C(cl Dcl I C1cl Dcl
BLP 0 0o I 0 I

} <0 (2.71)

to be solved for P > 0.
As an example, a simple IQC can be obtained directly from Lemma 2.14. Note that inequality
(2.65) implies that Ay, satisfies the IQC defined by

—\ 2
2h
= (7) roq (2.72)
0 -1
For this IQC, condition (2.70) yields to the standard small gain criteria

M\ k.

— | G (jw)G(jw) < I, Vw€eR, (2.73)

7r

which corresponds to a simple condition on the Hy, norm of G: ||G(5)]ee < 7
Fujioka [Fujioka 2009¢c| showed that the operator Agy, also satisfies the following passivity-like

property.
Lemma 2.16 [Fujioka 2009c] The operator Ay, defined in (2.57) satisfies

/ T O)(Auny)(0)80 < 0, (2.74)
0

for all y € L3[0,00).

It is important to note that if Ay, satisfies several IQC defined by matrices 11,15, ..., II,,
then a sufficient condition for stability that takes into account all the properties is given by the
existence of positive scalars aq,as,...,a, such that condition (2.70) holds with IT = oy 4+
aslls 4+ ..., a,Il.. The properties of Ay, in Lemma 2.14 and Lemma 2.16 can be generalized
[Fujioka 2009c| using scaling matrices 0 < Y € R™" 0 < X € R™ " and grouped into the

following TQC:
/O"O [Zgzgr [@/{ :)ﬂ {ZEZH 9 =0 (2.75)
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which holds for all y € £5[0,00) and e = Ag,y with dg = % Using the integral property (2.75)
and Theorem 2.12, Fujioka [Fujioka 2009c] has proposed the following stability condition.

Theorem 2.17 [Fujioka 2009¢c] The system (1.12) is Globally Uniformly Asymptotically Stable

for any sampling sequence with tgy1 — tx, < h if there exist 0 < P € R™" 0 < X € R™™",
0 XY € R™" satisfying

T
ALP+ PAy PBCz] +[ch Dcz} {53){ fY} {Ocl Dcz} <. (2.76)

BIp 0 0 I -y -X||0 I

Taking into account more properties of the operator Ay, may lead to less conservative results.
Nevertheless, since the analysis is of a frequency domain nature, the IQC approach is only
applicable to LTI systems. However, one may note that input delays, several performance spec-
ifications and classical nonlinearities (sector bounded, saturations, etc.) can be characterized
by elementary operators and IQCs [Megretski 1997]. A more complex system can be described
by an interconnection of an LTI system and a single block diagonal operator representing the
different perturbing elements. Once the IQCs for the different perturbing elements are available,
stability of more complex systems is then a rather straightforward matter of defining a single
aggregate IQC. This point enhances the applicability of the IQC approach.

2.1.4.4 Further reading

Some of the elements presented in Section 2.1.3 concerning the use of norm-bounded approxi-
mations of the matrix exponential [Fujioka 2009a] can also be interpreted in the Input/Output
approach as the application of the Small Gain Theorem to a discrete-time model. Other IQCs
can be found in [Fujioka 2009b, Fujioka 2011a]. An approach based on IQCs for the discrete-time
model has been proposed recently in [Kao 2013]. For more general nonlinear networked systems,
approaches considering sampling as a perturbations can be found in [Walsh 2001, Negi¢ 2004b,
Chen 2014]. See also the work in [Liberzon 2006]. The boundedness properties of the sampling
operator Ay, from Lemma 2.14 from [Mirkin 2007] can be related with the Wirtinger’s inequal-
ities used in the time delay approach [Liu 2010, Seuret 2013a, Seuret 2014]. Motivated by the
approach presented in [Fridman 2010] in the input delay framework, the sampling effect has been
recently described by a new operator in [Kao 2014].

2.2 Sampling as a control parameter

In this section we briefly present the main research directions and some problems concerning the
case when the sampling interval hy (or equivalently the sequence of sampling o = {tx }ren) is
considered to be a control parameter that can be modified in order to ensure desired properties in
terms of stability and resource utilization. From the real-time control point of view, this formu-
lation corresponds to designing a scheduling mechanism that triggers the sampler [Velasco 2003].
The problem has attracted sporadically the attention of the control system’s community since
the early ages of sampled-data control [Jury 1959, Dorf 1962]. With the spring of event- and
self-triggered control techniques [Arzén 1999, Astrom 1999, Velasco 2003] it has become a very
popular topic [Heemels 2012].

Let us consider the nonlinear system (1.2) and the controller (1.3) with a given sampling
sequence 0 = {tp}ren. Clearly, the asymptotic stability of system holds when the sampling
sequence o satisfies hy, = tx 1 — tp € (0,h] for all k € N, where h represents the MSI for which
the system is asymptotically stable under arbitrary sampling. A basic problem in designing a
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sampling sequence o = {t; }ren is to ensure the stability of the system while optimizing some
Performance Index associated to the frequency of sampling. Most of the time, sampling sequences
are compared in simulation based on the mean sampling interval. Given o, one possible choice
of Performance Index to be maximized could be

N-1

J(o) = liminf% S (e — t): (2.77)

N—oo
k=0

Generally, the goal is to find sequences that ensure stability and have the mean sampling interval
larger then the maximum sampling interval admissible in the periodic and arbitrary varying
case. Using the Performance Index (2.77), the following basic problem can be mathematically
formalized:

e Problem B (Optimal sampling sequence): Consider the nonlinear system (1.2) and the
controller (1.3). Design a sampling sequence ¢ maximizing the Performance Index J(o)
in (2.77) while ensuring the stability of the closed-loop system (1.1),(1.2),(1.3),(1.4).

Various alternative formalizations of Problem B can be imagined by considering other perfor-
mance indexes or Cost Functions (e.g. J.(0) = > 5o~ (#+17%)) to be maximized or minimized
(see for instance [Hsia 1974, Ma 1976] for a finite horizon formulation). A stochastic formulation
of the problem can be found in [Cogill 2007, Molin 2013]. Additionally, it is possible to formulate a
more complex problem in which one needs to find simultaneously the sampling sequence and sys-
tem input, as in the minimum attention control formulation [Brockett 1997, Donkers 2011b, Marc-
hand 2013].

While the research in the case of arbitrary sampling has reached an advanced phase of de-
velopment, Problem B is largely open. Due to the complexity of Problem B, simplified versions
are under study. For example, stability of sampled-data systems over periodic sequences of sam-
pling has been investigated in [Jury 1959, Li 2010, Seuret 2012]. The optimization of sampling
sequences over a finite horizon has been considered since the early works in [Hsia 1974, Ma 1976].
For both practical and theoretical reasons, the design of state-dependent (closed-loop) sampling
sequences, in which the sampling is triggered according to the system state, represents a topic
of interest. Basic ideas appeared in the ’60s in the context of adaptive sampling [Dorf 1962,de la
Sen 1996] and the topic is currently under study in the framework of event-/self-triggered con-
trol [Heemels 2012].

2.2.1 Event-Triggered (ET) Control

The basic idea of event-triggered control schemes [Arzén 1999], [Astrom 1999], [Astrom 2002,
[Heemels 2012] is to continuously monitor the system state and to trigger the sampling only when
necessary, according to the desired performance of the system. A sampling event is generated
when the system’s state crosses some frontier in the state-space. Let us re-consider the hybrid
model of an LTI sampled-data system

z = Az + BKzZ
i =0 [, &, 7] €C,
T =1
o= (2.78)
R [ac, z, T] eD
™ =0
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where & represents the sampled version of the state and 7 the clock measuring the time since the
last sampling instant. In the classical time-triggered sampling context (2.22), the sets C' and D
implicitly indicating the sampling moments are defined only according to the clock variable 7:
when uniform sampling with period T is considered, C' is defined by 7 € [0,T] and D by 7 =T.
In event-triggered control the idea is to define the sampling triggering sets according to the state
variable z and z. For example, it may be of interest to trigger only when the error x — Z becomes
too large with respect to the system state, i.e. when ||x(t) — z(tg)|| > v||z(¢)|| where v > 0 is a
design parameter (see [Tabuada 2007]). For this example the sets C and D are:

C = {(x,&,7) eR" XR" X R: |lz — 2| <~}
D = {(z,27) e R" xR" xR : [z — 2| = ~z[]}.

Various other types of triggering conditions have been proposed in the literature: send-on-
delta (Lesbegue sampling, absolute triggering) [Astrém 2002, Otanez 2002, Cervin 2007], send-
on-energy [Miskowicz 2005], send-on-area [Miskowicz 2007], Lyapunov sampling [Velasco 2009,
Seuret 2013b, Fiter 2015, Postoyan 2015], etc.
Note that in event-triggering control, the sampling sequence o = {tx }ren is implicitly defined
as:
the1 =min{t: t >y, (x,2,7) € D}. (2.79)

The value h* for which txy1 — tx > h* for all £ € N and all initial conditions is called the
minimum inter-event time. In the general case the implicit definition of the sampling sequence
does not guarantee anything about the "well posedness" of the closed-loop system in terms of
existence of solutions, or concerning the existence of a minimum interval between two con-
secutive events. In particular cases of event-triggered control Zeno phenomena may occur,
i.e. the minimum inter-event time h* is zero'® [Marchand 2013, Donkers 2012, Borgers 2014].
This represents an important drawback since the system is converging to a continuous-time
control implementation instead of a sampled-data one. To avoid it, various systematic de-
sign methodologies for event-triggered control with stability guarantees and no Zeno behav-
ior have been proposed: see [Tabuada 2007, Wang 2008, Wang 2009, Lunze 2010] based on the
Input/Output stability approach, [Donkers 2012, Seuret 2013b, Forni 2014, Postoyan 2015] us-
ing hybrid models, [Yue 2013, Peng 2013, Fiter 2015] based on the time-delay approach. See
also [Michiels 2005] where the delay has a stabilizing affect on control. Note that Zeno phe-
nomena can be easily avoided by including restrictions on the clock variable when defining the
jump set D. For example, one may add next to the constraints on x and &, a constraint that
guarantees that sampling occurs only if 7 is greater than some minimum desired inter-execution
time [Forni 2014, Fiter 2015, Postoyan 2015]. Additionally, the triggering condition may be verified
on a discrete sequence of time, as in the Periodic Event-Trigger (PET) control [Heemels 2013,Pos-
toyan 2013], or in [Eqtami 2010], where the event-triggered control problem is formulated directly
in discrete-time.

2.2.2 Self-Triggered (ST) Control

The term self-triggered control was initially proposed by [Velasco 2003] in the context of real
time systems. The recent articles [Wang 2009, Anta 2010] have attracted the attention of the
control system community. Note that basic ideas related to self-triggered control appeared in
the '60s (see [Dorf 1962, Hsia 1974, de la Sen 1996] and the references therein). We point also to

5the system requires infinitely fast sampling
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the pioneering work in [Hsu 1987] where elements concerning the use of Lyapunov arguments for
the design of self-triggering control laws can be found.

In self-triggering, at each sampling time it is computed both the sampled-data control value
(to be sent to the actuators) and the next sampling instant. The main idea is to use the value
of the state at sampling times and knowledge about the system dynamics in order to predict
the next time instant a control update is needed. A self-triggering control scheme is described
by a sampling function h : R” — RT \ {0} which, at each sampling time #,k € N, indicates
the value of the current sampling interval according to the system state. The sampling sequence
o = {tx }ren is formulated explicitly as

thp1 =ty + h(2), (2.80)

where x; = x(t;). Very often, the synthesis of a self-triggered control scheme is based on a pre-
existing event-triggered control mechanism. In this context, it is aimed at designing the sampling
function by pre-computing, at each sampling instant, an estimation of the next time a sampling
event has to be generated. For the example of the LTI system (1.12) with the event-triggered
control condition ||z(t) — xz(tx)|| > ||z(¢)||, one may want to design the sampling function:

h(xy) = max {0 > 0 : [[(A(0) — Dxy|| <[ AO)xl} (2.81)

where A(f) = e4? + foe e*ds BK. An important issue is the complexity of the algorithms used
for the online implementation of the sampling function h(x). Even for the simple case (2.81), the
algorithms may be quite complex since they involve solving hyperbolic inequalities. In practice,
simple approximations of such sampling function must be used.

Self-triggered control mechanisms with stability guarantees have been proposed in [Wang 2009,
Wang 2010, Anta 2010,Forni 2010,Benedetto 2013] using the Input/Output stability approach and
in [Tiberi 2013] using discrete-time Lyapunov functions. In the following chapter we will presents
results from [Fiter 2012a, Fiter 2015, Fiter 2012b] using convexr embeddings and the time-delay
system approach.

However, the potential of the approaches used for the arbitrary sampling problem is far from
being fully exploited. The tools presented in Section 2.1 may be useful for various aspects in
Problem B: deriving new event-/self-triggering mechanisms, providing less conservative estima-
tions of the minimum inter-event time h*, etc.

2.3 Conclusion

This chapter has presented some of the basic concepts and recent research directions in sampled-
data systems: time-delay, hybrid, discrete-time and input-output models; Lyapunov and fre-
quency domain methods for the stability for systems with arbitrary sampling intervals. For
the case of linear systems, it is shown that several pioneering approaches exist in the litera-
ture. These approaches share the advantage of using LMIs, thus they are numerically tractable.
The maximum sampling interval that guarantees the stability can be estimated accurately using
discrete-time methods. The robustness with respect to perturbation and the behaviour of the
system between sampling times can be taken into account using time-delay, impulsive approaches
or Input/Output approaches. However, the analyzis problem is still largely open and it is still a
challenging problem to extend these methods to the nonlinear case where the main difficulty is to
provide constructive methods for the quantitative estimation of the maximum sampling interval
that preserves stability.
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It is to be emphasized that this overview is far from being exhaustive. The research topic of
systems with time-varying sampling is still wide open and continuously growing. In particular,
the control of sampling is presently receiving a lot of attention, as it was shown in Section 2.2.
It is worth noticing that the subject lies at the intersection of four important axes in Control
Theory (time-delay, hybrid, LPV and input-output approaches) and it has a stimulating impact.
As we will see in the following chapter, methods and tools can be transferred from one approach

to another.
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Main contributions

In this chapter, we will present our main contributions to the study of aperiodic sampled-data
systems. Over the last years, our research effort bas been dedicated to the analysis of various
classes of systems (LTI, LPV, bilinear, polynomial, nonlinear affine) with both continuous and
switching controllers (see Figure 3.1 for an illustration). We have tried to address the main chal-
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Figure 3.1: Illustration of main contributions:
systems (linear, bilinear, nonlinear affine) as time-delay systems, hybrid systems, input-output
interconnexions or discrete-time (LPV) systems.
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we have studied various classes of sampled-data
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lenges of sampled-data systems from all possible angles. We have used the classical approaches
(delay, hybrid, discrete-time, input/output interconnexions) for more complex classes of systems
than the ones presented in the literature and we have proposed new approaches when needed.
We present first the case of linear systems in order to show how the conservatism in the analysis
can be reduced. Furthermore, we show a continuous-time approach based on convex embeddings
that is able to combine the advantages of both time-delay methods (inter-sampling behaviour,
robustness to perturbations) and discrete-time ones (numerical accuracy). The approach is ap-
plied to the self-triggering control problem allowing to optimize the design of sampling maps.
Next, we present some contributions to the case of bilinear systems, which represents a simple
class of nonlinear systems, and can be considered as an intermediate between linear and non-
linear systems. Two approaches are being considered for bilinear systems: the first one relies
on the hybrid dynamical systems framework, while the second one is based on an extension
of the Input/Output approach using tools inspired from the Dissipativity Theory. After that,
we will consider a more general class of affine nonlinear systems, with aperiodic sampled-data
control. The main contribution is to show how the frequency domain methods existing in the
Input / Output stability approach can be extended in a constructive manner to more general
nonlinear systems affine in the input. At last, we will discuss the sampled-data implementation
of discontinuous controllers, as encountered in relay feedback control and switched systems.

3.1 Linear Time Invariant sampled-data system

As we have seen in Chapter 1, the control of sampled-data systems is a challenging problem, even
for the case of Linear Time Invariant systems. As follows, some contributions to these systems
are presented!S.

3.1.1 Discrete-time analysis based on quasi-quadratic Lyapunov functions

Let us recall the LTI sampled-data system

z(t) = Az(t)+ BKxz(tg), Vt € [tk,tgr1), Vk € N,
tkr1 = tp+hg, VEkEN, (3.1)
to = 0, £L‘(t0) =x9 € R".

In what follows we consider that hj takes values in a compact set 7 C R,. Consider the
discrete-time model associated to (3.1)

Th+1 = A(hk)l‘k (32)

with )
AD) = ™ + / AdsBEK (3.3)

0

for # € R. For hy, arbitrarily varying in the compact set T, system (3.2) is a discrete-time Linear
Parameter Varying (LPV) system [Rugh 2000, Kamen 1984, Molchanov 1989], with the transition
matrix A(hg) depending on the sampling interval hg. Various methods are available for studying
the stability of discrete-time LPV systems. For polytopic LPV systems, stability criteria have

16The results presented in this section have been developed in the context of the PhD Thesis of Christophe
FITER as well as in collaboration with Prof. Jean-Pierre Richard, Prof. Wilfrid PERRUQUETTI and Ass. Prof.
Alexandre KRUSZEWSKI.
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been proposed by analysing the joint spectral radius [Blondel 2005] or by checking the existence of
quasi-quadratic [Molchanov 1989, Hu 2010], parameter dependent [Daafouz 2001, Peaucelle 2000,
Peaucelle 2001], path-dependent [Lee 2006|, non-monotonic [Megretski 1996, Kruszewski 2008,
Ahmadi 2008] and composite quadratic [Hu 2010] Lyapunov functions. Lie algebraic conditions
can be found in [Gurvits 1995], [Liberzon 2003a]. However, system (3.2) is not a polytopic LPV
system but an LPV system where the transition matrix A(h;) takes values in a compact set

W= {A(0), 0 € T} (3.4)

The following theorem from [Hetel 2011b| addresses the case of (3.2) and provides necessary
and sufficient stability conditions.

Theorem 3.1 [Hetel 2011b] Consider the continuous-time system (3.1) and the discrete-time
model (3.2) with T a compact subset of (0,00). The following statements are equivalent:

1) The equilibrium point x =0 of (3.2) is Globally Uniformly Exponentially Stable.

2) There exist a P = 0 and N > 0 such that

N T N
(L) r (L)

for any N-length sequence {0;}., with values in T, i.e. the function V(z) = zT Pz satisfies
V(zgan) < V() for all zj # 0,k € N.

3) There erists a positive definite function V : R™ — R strictly convex, homogeneous (of the
second order), V(z) = .I’T'Pml‘, with Ppy : R" — R™™, Pry = 73[2] = Plaa), Vx #0,a € R,a #0
such that :

V(z) — renez%gcv (A(@)x) >0, Yz #0. (3.6)

Condition 2) in Theorem 3.1 corresponds to the existence of a non-monotonic Lyapunov
function V(z) = 27 Pz, [Megretski 1996, Kruszewski 2008, Ahmadi 2008| which is decreasing
every N samples. If the system is stable, then necessarily there exists a finite N and a matrix P
such that (3.5) holds. However, checking the existence of a matrix P satisfying (3.5) for a given
N represents a set of LMIs which are sufficient only for stability. Note that considering the case
N =1 reduces to the classical quadratic stability condition

3P0, ATO)PA®)— P <0, V9 € T = [, ). (3.7)

Condition 3) corresponds to the existence of a quasi-quadratic Lyapunov function [Hu 2010,
Molchanov 1989] V(z) = xT’P[x]x. Theorem 3.1 shows the equivalence between quasi-quadratic
Lyapunov functions and non-monotonic Lyapunov functions and provides necessary and sufficient
conditions for the exponential stability of system (2.31). Note that the theorem goes beyond the
results in [Megretski 1996, Kruszewski 2008, Molchanov 1989, Hu 2010] where only the case of
polytopic LPV system is treated. In fact the result in Theorem 3.1 applies for any discrete-time
LPV system with transition matrices defined on compact sets.

Taking a finite N and a larger convex polytope embedding with a finite number of vertices
Aiyi=1,--,N,,

N'U N’U
Wi {Sailaz0 i€ Y =1}, 5:5)
=1

i=1
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in such a way that the set W in (3.4) is embedded in W, W C W, Condition 2) in Theorem 3.1
leads to a numerically tractable LMI problem.
Given k € N, let Zj, denote the set {1,2,...,k} C N. For k € N, let us denote by

Skz{zp:w:{m}f;g, meINu,Vi:O,...,k—l}

the set of all £ — length sequences with values in Zy, .
The following theorem provides constructive LMI conditions for stability analysis.

Theorem 3.2 [Hetel 2011b] Consider system (3.1), the discrete-time model (3.2), the set of
vertices Z = {A\;, i=1,...,N,} of W in (3.8) and the set

v(@) ={v:vy =12, Z, €2 pieln}. (3.9)
If there exist a positive integer N and a matric P = PT = 0 that satisfy
P~YTPY, VY €Y(2), then (3.10)

1) the equilibrium point x =0 of (3.2) is Globally Uniformly Exponentially stable;
2) there exists a quasi-quadratic Lyapunov function with the form

V(z) = max 2’ Lyz, M = N,V 71, (3.11)
i€y

which is strictly decreasing along the solutions of (3.2). The matrices L;, i € Ty, are obtained
using an enumeration of the elements in the set

Q(N) = (HﬁleHT>TP (Hizlzlw) +P Y= {ur}ivzil € Sy-1
j=1

The test involves a finite number of LMI (NN + 1) that are sufficient for stability. The
accuracy of the stability characterization from conditions (3.10) mainly depends on two factors:
the length IV of the horizon of analysis, and the accuracy of the polytopic embedding W described
in (3.8) (for more details on such convex embedding see the survey in Chapter 1). The amount
of conservatism introduced in the approach can be tuned according to these parameters.

Example 3.3 Consider an LTI system (3.1) described by :

—-05 0 1
A_[ 0 3'5],3_ M and K = [1.02 —5.62] .

A(h) is Schur for any sampling interval h € (0,0.46]. However, switching among different values
of h in this interval may lead to an unstable behaviour: one can notice that although both A(0.25)
and A(0.45) are Schur, the transition matriz

® = A(0.25)A(0.25)A(0.45)

has the eigenvalues outside the unit circle. This tmplies that when the sampling period varies
i a periodic pattern 0.25 — 0.25 — 0.45 — 0.25 — 0.25 — 0.45..., the closed-loop system is
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unstable. A similar unstable behaviour can be observed for h € {0.1,0.43} since the transition
matrix

® = (A(0.1))% A(0.43)

is not Schur. Consider that the sampling interval arbitrary switches among two values {0.1, hpaq}
with hyma: o parameter to estimate.

Using the set of LMI (3.10), it is possible to find a quasi-quadratic Lyapunov function of the
form (3.11) for N = 7 up to hye, = 0.41 (which is very close to the value 0.43 for which an
unstable sampling path exists). For hpyq, = 0.41, using the existing LMI solvers, it is impossible
to find a common quadratic Lyapunov function [Fujioka 2009a,Sala 2005] or a poly-quadratic one
[Hetel 2007, Cloosterman 2010]. In fact, the mazimum values of hpqy that can be obtained from
quadratic and poly-quadratic Lyapunov functions are hyq, = 0.36 and hpq, = 0.39, respectively.

It is also interesting to compare the hyqay (computed using the LMIs (3.10) ) with the mazimum
upper-bounds obtained in recent papers: hpqa, = 0.165 [Naghshtabrizi 2008], 0.198 [Seuret 2012],
0.204 [Fugioka 2009¢c], or 0.259 [Fridman 2010)].

Compared with continuous-time approaches such as the one based on time delay or impulsive
models, discrete-time methods profit by involving the integration procedure that implicitly takes
into account the continuous-time evolution of the sampling induced delay / sampling counter.
Furthermore the accuracy can also be tuned according to the desired computational complexity.
This is why, faced to numerical benchmarks, they seem to be less conservatives. However,
discrete-time methods also present disadvantages with respect to the continuous-time analysis.
The main drawback is the fact that they do not take into account the system behaviour in between
sampling times. Besides they become numerically inaccurate when the sampling interval tends
to zero.

Example 3.4 Consider a continuous-time system (3.1) described by the following matrices:

1 15 1
A_{_IS ) ] B_{l}, K =1[5.33 —9.33].

The unstable open-loop matriz A has complex eigenvalues 1 + 15i. The gain is obtained by
pole assignment, in such a way that the ideal closed-loop system is stabilized and oscillations are
reduced : the matrix A+ BK has the eigenvalues at —1 + i. When the sampling interval takes
values in the set T = {0.91, 0.95} it is possible to find a common quadratic Lyapunov function
that is strictly decreasing at the sampling times. Yet, this discrete-time Lyapunov function is
increasing in between the sampling instants (see Figure 3.2). In this case a discrete-time analysis
would be misleading from a performance point of view (i.e. in terms of the decay rate).

The previous example shows that it is desirable to provide one method which is able to treat
the analysis problem in continuous-time (for inter-sampling issues) and use the advantages of
discrete-time methods (in terms of conservatism reduction). Such a method will be presented in
the following section.

3.1.2 Continuous-time analysis based on convex embeddings

In the standard discrete-time analysis, the stability is guaranteed without consideration of the
intersample behaviour. In practice it is important to provide an estimate of the system’s per-
formance in between sampling instants. Furthermore, one of the drawbacks of the discrete-time
analysis is the fact that the transition matrix A(#) is close to identity when 6 is small. For small
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Figure 3.2: Evolution of the Lyapunov function for discrete-time representation in Example 3.4.
The function is strictly decreasing at the sampling instants. However, it is increasing in between
the sampling interval.

values of the lower bound of the sampling interval the existing stability conditions can be difficult
to handle numerically. To avoid this numerical drawback, a continuous-time approach based on
convexification arguments has been proposed in [Hetel 2011b, Fiter 2012a] for LTI systems. The
approach takes into account the relation

:E(t) = A(t — tk)x(tk), Vite [tk,tk+1), k eN, (3.12)

still referring to the definition of the transition matrix
t—t
At —tr) =T+ / e¥ds(A+ BK)
0

of system (3.1).

Lemma 3.5 (adapted from [Fiter 2012a]) Consider system (3.1) with T = (0,h]. Given a
positive scalar \, if there exist a matric P = PT = 0, such that

{A(Q)} g {ATP + PA+2)\P PBK] [A(G)

7 KTBTp 0 7 } =< 0,V0 € [0, h), (3.13)

then the origin of (3.1) is Globally Exponentially Stable for any arbitrary sampling sequence with
thy1 — tr € (0,h]. Furthermore, the function V(x) = x* Px satisfies the relation

V (x(1)) < =22V (z(t))
along the system’s solutions.
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The lemma presents sufficient conditions for exponential decay of a quadratic Lyapunov
function along the solutions of the continuous-time system (3.1) using the exact expression of
the transition matrix A(.). Similarly to the classical discrete-time approach, condition (3.27) is
a parametric LMI which is not a computationally tractable by itself. However, it can be reduced
to a finite number of LMI conditions using a polytopic embedding of the transition matrix A(6)
for 6 € [0, ).

Theorem 3.6 (adapted from [Hetel 2011b]) Consider system (3.1) with T = (0, h]. Assume that
there exists a convex polytope

W = conv{Ai, Ay, -, Apn,}. (3.14)

such that A(0) € W, Ve [0, h]. Given a positive scalar \, if there exist matrices P = PT = 0,
G1, Gy solution to

ATP+PA+2\P+G1+G] PBK —GiA +GY ~0 (3.15)
KTBTP — ATGT + G, —GoN; — ATGY ’ '
foralli=1,...,N, then the origin 0f_(3.1) 1s Globally Exponentially Stable for any arbitrary
sampling sequence with ty 1 — tp € (0,h]. Furthermore, the function V(z) = 1 Px satisfies the
relation

V (x(1)) < =2V (z(t))

along the system’s solutions.

The previous theorem provides constructive conditions for checking the exponential stability
of a sampled-data system with performance guarantees for the system’s behaviour in between
sampling times. However, conditions (3.15) are not feasible in the dead-beat control case, where
for some 6 € [0, k], A(6) has eigenvalues at zero. A less conservative approach, combining convex
embeddings with tools for time delay systems, has been proposed in [Hetel 2011b, Fiter 2012a],
using the Lyapunov-Razumikhin method [Razumikhin 1956]. The originality of this approach

is the fact that it is not necessary to require the exponential decay V (z(t)) < —AV (x(¢))
everywhere along the system’s solutions.

Proposition 3.7 (adapted from [Fiter 2012a]). Consider system (3.1) with T = (0,h]. Given
t >0 and xg € R", let o(t,x0) denote the solution of the open-loop system

i = Ax + BKx

at time t, with the initial condition x(0) = g, i.e. v(t,x0) = A(t)zo. Given scalars o > 1 and

0< A< 1112;), if there exist a quadratic function V(z) = 2T Px, P = PT = 0, such that for all

zg € R", for all t € [0, h],

DV (plt,0)) + 20V ((t, 20)) < 0 (3.16)

whenever
aV (p(t, o)) = V(zo) (3.17)

then the origin of @1) 18 18 Globally Exponentially Stable for any arbitrary sampling sequence
with tx11 — tr € (0, h].
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V(1)

V(a(t2))
V(a(ts)

Figure 3.3: Illustration of the Lyapunov-Razumikhin approach: the derivative of V' (x(¢)) has to
be negative only at time instants ¢ € [t,t11) for which V (z(t)) > 2V (2(t)). The approach
ensures that V(zpi1) < V(zy). However, V is not required to be monotonously decreasing over
the sampling interval.

Conditions (3.16),(3.17) in Proposition 3.7 ensure that
V (z(t)) < =2V (x(1)) (3.18)

is required only at times t € [t, tx+1) for which
1
V(@) 2~V (a(t).

This means that (3.18) has to be satisfied only when the system’s solutions are outside a target
level set defined according to the value of V(.) at sampling times (a graphical illustration is given
in Figure 3.3). « can be seen as a design parameter that can be chosen in order to enforce some
performance. The smaller « is, the less restrictive the provided stability conditions will be. When
« tends to infinity, the conditions of Proposition 3.7 reduce to the classical stability condition
V (z(t)) < —2AV (x(t)) for all t € [ty,try1). When a tends to 1 the provided condition ensure
only stability but not attractivity. If A is chosen to be null and condition (3.16) is enforced to be
strict, asymptotic stability is granted. Using Proposition 3.7, the following stability parametric
LMI condition is obtained.

Lemma 3.8 (adapted from [Fiter 2012a]) Consider system (3.1) with T = (0, h]. Given positive

scalars a > 1, 0 < A < % if there exist a matriz P = PT = 0 and a scalar € > 0, such that

w= [ [ R

} =<0,V € [0, h), (3.19)
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then the origin_of (3.1) is Globally Ezponentially Stable for any arbitrary sampling sequence with
te1 — i € (0, A].

The conditions of Lemma 3.8 can be reduced to a finite number of LMI conditions using a
polytopic embedding of the transition matrix A(6) for 6 € [0, h], similarly to the case treated in
Theorem 3.6.

Theorem 3.9 [Hetel 2011b] Consider system (3.1) with T = (0,h]. Assume that there exists a
convex polytope

W = conv{Ai, Ay, -, Apn,}. (3.20)

such that A(§) € W, ¥ 0 € [0,R). If there exist matrices P = PT = 0 Gy, Gy and € > 0 solution
to ~
ATP+ PA+eP+G1+GT  PBK —GiA; +G¥

A A A 21
KTBTP —ATGT + Gy  —eP —Gyh; — ATGE <0, (3.21)

foralli=1,..., N, then the origin of_(3.1) is Globally Asymptotically Stable for any arbitrary
sampling sequence with t11 — tx € (0, h).

Note that conditions (3.21) can be expressed as a classical optimization problem that can
be solved using a line search algorithm and LMI solvers. The theorem ensures that, within the
sampling interval, the Lyapunov-Razumikhin function V(x) = 27 Pz is always less than its value
at sampling times. However, it is not monotonously decreasing. It can be shown numerically
that this approach is less conservative than several continuous-time approaches in the literature.
In fact, this stability test is comparable to the one provided in discrete-time using a quadratic
Lyapunov function. The advantage with respect to the discrete-time approach is the fact that
intersampling behaviour is explicitly taken into account and that a sampling interval tending to
zero can be considered as well. A less conservative approach has been proposed in [Fiter 2012a).

Example 3.10 (Ezample 3.4 revisited) Consider a continuous-time system (3.1) described by
the following matrices:

1 15 1
A= { 15 1 ], B = { 1}, K =15.33 —9.33].
In order to construct a polytopic set embedding A(6), we use the method proposed in [Hetel 2007]
based on a Taylor series expansion. We use a uniform partition of the interval [0,h] into 10
subintervals and apply locally the embedding method (4th order development). Using Theorem
3.6, a quadratic Lyapunov function can be found up to h = 0.09 (see Figure 3.4). For this
example the matriz A(0) is singular for 6 ~ 0.092 which shows that the obtained h is close to the
theoretical bound for quadratic Lyapunov functions.

The methods in [Mirkin 2007], [Naghshtabrizi 2008], [Fujioka 2009c] and [Fridman 2010]
show that the system is stable for h = 0.014, h = 0.033, h = 0.07 and h = 0.12, respectively.
Theorem 3.9 proves the asymptotic stability for 6 € [0,0.14]. Note that using the discrete-time
approach (Theorem 3.2), we are able to show the stability for any sequence with txy1 — t €
[0.001,0.15]. This means that Theorem 8.9 is almost as efficient as the discrete-time approach,
with the additional advantage that it takes into account the intersample behavior and very small
sampling intervals. Comparing now the number of LMI decision variables, [Mirkin 2007] and
[Fujioka 2009c] have 0.5(n*+n)+m?+m = 5 variables, [Naghshtabrizi 2008] has 3.5n>+1.5n = 17
while [Fridman 2010] has 8n*+n = 34. In Theorem 3.9 there are 0.5(n*+n)+2n? = 11 variables
involved in N, +1 = 51 LMI constraints.
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Figure 3.4: Simulation for an arbitrary sequence of sampling intervals with A = 0.09 for the
system in Example 3.10.

3.1.3 Extension to the sampling control problem

As follows we present an extension of the previously presented methodology for the problem of
designing stabilizing sampling sequences (Problem B in Chapter 2). Consider the following LTI
sampled-data system

#(t) = Az(t)+ BKxy, VYt € [tg,trr1), VE €N,
tkr1 = tp+hg, VEEN, (3.22)
to = 0, .’B(to) =x9 € R™.
In what follows we consider that the sampling interval hj is a control parameter that can be
modified. We are interested in the design of feedback sampling mechanisms

hi = T(SEk), VEkeN, (323)

where 7 : R" — R, is a sampling function such that §,;, < 7(2) < dmaq, for strictly positive
scalars dpin < Omaz. This control configuration is usually called self-triggered control. The main
contribution is to use tools for the robust stability analysis in order to optimize the design of
sampling maps for the controlled sampling problem.

The following proposition provides sufficient stability conditions for the interconnection be-
tween the sampled-data system (3.22) and the sampling map (3.23).

Proposition 3.11 (adapted from [Fiter 2012a]). Consider system (3.22) with the sampling map

o4

© 2017 Tous droits réservés.

doc.univ-lille1.fr



© 2017 Tous droits réservés.

HDR de Laurentiu Hetel, Lille 1, 2017

3.1. Linear Time Invariant sampled-data system

(3.23). Fort >0 and xg € R", let o(t,x0) denote the solution of the open-loop system

i = Az + BKxy

at time t, with the initial condition x(0) = xg. Given positive scalars o > 1, 0 < A < %, if

there exist a quadratic function V(x) = 2T Px, P = PT = 0, such that for all zo € R™,
d

EV(@(t,xo)) + 22V (p(t,x0)) <0, ¥V ¢ € [0,7(x0)] (3.24)

whenever

aV (p(t,z0)) > V(z0) (3.25)

then the origin of (3.22),(3.23) is Globally Exponentially Stable.
Furthermore, for any sampling function 7 : R™ — R, with 7(x) € [min, 7(2)], the origin of
(3.22) with hy, = 7(x) is Globally Exponentially Stable.

This result is an extension of the Lyapunov-Razumikhin approach from Proposition 3.7 to
the case of controlled sampling. Using this approach, the function V(z) = 2’ Pz satisfies

V(:Ek_H) < V(mk),sz € N.

The theorem ensures that V (z(t)) < V(zg),Vt € [t tg+1). However, V (z(t)) is not restricted
to be monotonously decreasing over the sampling interval.
In order to provide tractable design conditions the following result is necessary.

Proposition 3.12 (adapted from [Fiter 2012a]) Consider system (3.22) with the sampling map

(3.23). Given positive scalars « > 1, 0 < X\ < % if there exist a matriz P = PT > 0, a scalar

€ > 0, assume that there exist a quadratic function V(x) = TPz, P = PT = 0 and a positive
scalar € such that for all x € R™, for all 0 € [0, 7(x)],

zT®(P,0)x <0, (3.26)
with T
(P.0) = [Ag@)} {A P+%E§?+ea)zﬂ P_ifj{] {Ag&)} ’ (3.27)
and )
AB) =1+ / e*Ads(A + BK). (3.28)
0

Then the origin of (3.22),(3.23) is is Globally Exponentially Stable.
Furthermore, for any sampling function 7 : R™ — R, with 7(x) € [Omin, 7(x)], the origin of
(3.22) with hy, = 7(x) is Globally Exponentially Stable.

This result has several important consequences for the design of sampling maps 7(z). First, for
any given matrix P = P” > 0 and prescribed maximum sampling interval 6,,q., the proposition
motivates the design of sampling maps of the form

7(z) =max {p € R: p < dpnae, " ®(P,0)z < 0,Y0 € [0,p]} (3.29)
which, by definition, ensure that condition (3.26) holds. Second, if there exists P and e solution
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to the set of linear matrix inequalities

®(P,6) <0, V8 € [0,h"]

for prescribed positive scalars h*, a and A < 5 5. the condition

is satisfied for any x # 0 and all 8 € [0, ~*]. From the definition of 7 in (3.29), this implies that
the sampling function is lower bounded by h*. The following result is obtained.

Corollary 3.13 Consider system (3.22). Given positive scalars h*, dmar > h*, > 1,0 <A <
% let there exist a matriz P = PT = 0 and a scalar ¢ > 0, such that

} < 0,v0 € [0,h"]. (3.30)

A@)]" TATP + PA+ (2\ +ea)P PBK] [A(0)
I KTBTp —eP I

O(P,0) = {

Then

e the control-loop (3.22), (3.23), (3.29) has a minimum inter-event time of at least h*, i.e.
the sampling instants {tx}ren satisfy

thp1 —tp > B, VEEN;

o system (3.22), (3.23), (3.29) is Globally Exponentially Stable;

e given Spin € (0,h*], for any sampling function 7 : R™ — Ry, with 7(x) € [dmin, T(x)], the
origin of (3.22) with hy = 7(x) is Globally Exponentially Stable.

One may remark that the conditions in Corollary 3.13 involve elements that are similar to
the ones used for robust stability analysis. Note that the expression of ® in (3.30) is the same as
the one in (3.19) from Lemma 3.8. This means that the same optimization tools can be used for
both the estimation of the maximum sampling interval preserving stability under an arbitrary
sampling and for designing a sampling map while optimizing the minimum inter-event time.
Then the design of a stabilizing sampling map 7 satisfying the conditions in Corollary 3.13 can
be addressed in two main steps:

e optimize the parameters P and € which enlarge the minimum inter-event time hA* based on
LMIs;

e for given parameters P and €, provide a lower approximation 7 of the sampling function 7
in (3.29).

Several numerical tools based on convex embeddings have been proposed in [Fiter 2012a] for
solving the set of LMIs (3.30) and for designing sampling functions 7 approximating the map 7
in (3.29). The approach has been further extended to deal with perturbations in [Fiter 2014b,
Fiter 2015].

Example 3.14 (Ezample 3.3 revisited) Consider the following system :

i(t) = [_8‘5 3?5] x(t) + m Kax(ty,),
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Tmax ()

0 (rad)

Figure 3.5: State-angle dependent sampling function 7 for different decay rates A (from top
to bottom, A = 0, 0.01, 0.05, 0.30, 0.60) as function of the angle 6 in the polar coordinates

z=re?.

K =[-1.02 5.62].

Using the numerical methods in [Fiter 2012a], we can obtain a mapping of the state space
that enlarges the minimum inter-event time for different values A of the decay rate. For each

decay rate A, after fixing dpmay, we set the performance parameter o > 1 (see Proposition 3.11)
In(a)

as small as possible and such that A\ < T — The state dependent sampling functions obtained
offtine and ensuring the stability of the system for different decay rates are presented in Figure
3.5.

For a constant sampling greater than Tyq, = 0.469s the discrete-time dynamic matriz is not
Schur, so the system becomes unstable. However, with the proposed technique, we can go beyond
the limit Tpnqe for some regions of the state space (up to 1s for A=0).

Figure 3.6 (resp. Figure 3.7) shows simulation results with A = 0 (resp. X = 0.05) and a
random initial state. It first shows the sampling intervals (blue/piecewise constant curve), with
the lower-bound of the offline computed state dependent sampling function (red/lower horizontal
line), and the limit Tyay of the periodic case (green/upper horizontal line), before showing the
LRF evolution. The sampling times are represented by the red dots on each graph.

In Figure 3.6 (A = 0), one can see that the number of actuations over the 20s time interval
is 31 instead of 43 with Tynar. For any (tested) initial condition in the simulation, the average
sampling time converges to Toperage ~ 0.7265 =~ 155% T4z -

For a given decay-rate A > 0, the mazimal constant sampling ensuring the exponential stability
1s given by

T 0w = argmaz{T > 0, —

In(leig,,
lelnacl) 5 5y < 1,0,

, where €igmqy 15 the eigenvalue of A(T) with greatest modulus. In the simulation of Figure 3.7
(A =0.05), we can observe that

T oo gver 205 = 04865 > Trnap = 0.469s > Tpat® = 0.457s
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Figure 3.7: Inter-execution times 7(x(t;)) and LRF V(z) = 27 Pz for a decay rate A = 0.05.

This means that it is possible to sample less in average than with the mazimal periodic sampling
Trnaz while still ensuring asymptotic or exponential stability. Although we can not guarantee that
this will always be the case, the state-dependent sampling presents some advantages compared to
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periodic sampling:

- It ensures some convergence performance (exponential stability for a given decay-rate X, or
asymptotic stability if A = 0), whereas constant sampling with Ty., only ensures marginal sta-
bility and doesn’t give any hint about the inter-sampling state behaviour.

- It guarantees robustness regarding possible fluctuations of the sampling period, which is in-
herent to practical applications (due to scheduling issues for example). The state-dependent
sampling approach ensures the system’s stability for any time-varying sampling period satisfying
0<6<7(t,x) <7(x), for allt € Ry and for all x € R™.

Example 3.15 Consider the Batch Reactor system from [Mazo Jr. 2009]:

138 —020 671 —5.67 0 0
. 058 —420 0 067 567 0
M =1106 427 —665 580 | DT {113 _314] 20D
004 427 134 —2.10 113 0

0.1006 —0.2469 —0.0952 —0.2447

K= 1.4099 —0.1966 0.0139  0.0823 |-

Using the numerical methods in [Fiter 2012a], a sampling map has been derived for a decay
rate A = 0 and Omae = 1s. This state space mapping (in dimension 4) provides a precise
knowledge of the sampling function T (which varies from 717, = 0.4409 to 0.988. In comparison,
the value of the maximal allowable constant sampling Tz s 0.5534s.  Using this mapping,
we obtain the simulations shown in Figure 3.8. The number of actuations over the first 10s
time interval (see Figure 3.8) is 17, which can be compared to the number of updates presented
in [Mazo Jr. 2009] (32 in the best presented case), and the obtained average sampling time is
Taverage = 0.5898 > T4z. An illustration of the sampling map in polar coordinates is given in
Figure 3.9.
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Figure 3.8: Example 3.15: Inter-execution times 7(x(t;)) and LRF V(z) = 2T Px for a decay
rate A = 0.

3.2 Sampled-data control of bilinear systems

In this section, the stability problem is considered for sampled-data bilinear systems!”. Bilinear
systems [Mohler 1974, Elliott 2009] represent one of the most simple class of nonlinear affine
systems. They are systems of ordinary differential equations of the form

#(t) = Aow(t)+ 3 [u(®)]:Nia(t) + Boult), Vi = to, (3.31)
i=1

where Ay € R"*"™ By € R™™ and N; € R™" ¢ =1,...,m. The state vector is z(¢) € R and
the control input is u(t) € R™. Here we use the notation [u(t)]; to denote the i'® elements of
the vector u(t). More generally, over this section we will use the notation []; to denote the 4
elements of a vector x.

Systems of the form (3.31) are linear with respect to the system state or to the control
variable, but not in both of them jointly. The term Agx is called the drift, Bou is the additive
control and Y " [u]; N;x is the multiplicative control. Bilinear models appear naturally in a large
variety of applications [Mohler 1974]. They can also be used as approximations to more complex
nonlinear systems [Elliott 2009]. Various control methodologies have been proposed for bilinear
systems. Constructive approaches for the design of linear [Mohler 1991, Andrieu 2013], quadratic
[Gutman 1981], division [Mohler 1991] or sliding mode controllers [Al-Shamali 2007] can be found
in the literature. LMI criteria have been proposed for the design of a locally stabilizing linear state
feedback in [Andrieu 2013, Olalla 2011, Amato 2009, Valmorbida 2013|. Intuitively, the stability
is preserved under a sampled-data implementation if the sampling frequency is sufficiently high.

" The results presented in this section have been developed in the context of the PhD Thesis of Hassan OMRAN,
in collaboration with Prof. Jean-Pierre Richard and Francoise LAMNABHI-LAGARRIGUE (DR, CNRS).
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Figure 3.9: Illustration of the sampling map in Example 3.15 in polar coordinates.

However, there is a lack of formal tools for the analysis of bilinear sampled-data systems which
provide a quantitative estimation of the Maximum Sampling Interval (MSI) preserving stability.
As follows, several approaches providing an estimation of the MSI will be presented for the case
of a linear state feedback controller with an aperiodic sampled-data implementation.

3.2.1 Hybrid system approach

Consider the bilinear system (3.31). We suppose that the following assumptions hold:
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A.1 The control is a piecewise-constant control law
u(t) = Ka(ty), VteE [tk tkr1),
with a set of sampling instants {t; }ren satisfying:
0<e<typ —tr <h, Vk € N, (3.32)
where h is a given positive scalar.

A.2 The pair Ay, By is stabilizable, and the linear feedback gain K € R™*" is calculated
so that the system (3.31) with the continuous state feedback u(t) = Kz(t) has a locally
asymptotically stable equilibrium point at x = 0. The actual domain of attraction (a
connected neighbourhood of 2 = 0) is denoted Dy.

A.3 The state variables are subject to constraints defined by a polytopic set P C Dy:

P = conv{vi,va,...,vp} (3.33)
= {zeR":az<1,j=12,...,r} (3.34)

corresponding to an admissible set in the state-space.
Under these assumptions, we obtain the closed-loop sampled-data system:
(t) = (Ao + Y _[Kx(t)iNi)x(t) + BoKa(ty), Vt€ [tr,ter1), VkeN. (3.35)
i=1

System (3.35) may also be written as follows

i(t) = Alz(t), e(t)]|z(t) + Be(t), Vt € [tr,trr1) (3.36)
with
e(t) = (ty) — (1),
Alz,e] := Ay + BoK + i[K(m + )i Ny, (3.37)
and :
B = ByK. (3.38)

The goal is to provide conditions that guarantee the asymptotic convergence of the system
(3.35) solutions to the origin.

In the framework of [Goebel 2012], the hybrid model of the bilinear sampled-data system is
determined by

i = f(z,e)= Alx el + Be

¢ = g(x,e) = —Alz,elz — Be 7 € [0, h]

=1

zt =z

et =0 T € [e, h). (3.39)
™ =0
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Two methods are to be considered for analysing the stability of system (3.39). First, we
introduce a method that is based on the application of results for general nonlinear sampled-
data systems in [Nesi¢ 2009] (Method 1). Next, to avoid the use of conservative bounds in the
previous method, we look directly for a Lyapunov function by formalizing the conditions as LMIs
(Method 2). In both of these methods, we will be dealing with local asymptotic stability.

3.2.1.1 Method 1: adaptation of a result on general nonlinear sampled-data systems
Considering the polytope P in (3.33), define the matrices
m
Aj=Ag+ BoK + > {va} Ny, j=1,...,p. (3.40)
7
i=1

The following theorem proposes stability conditions using an adaptation of the results from
Theorem 2.7 for the case of bilinear systems.

Theorem 3.16 [Omran 2016b] Consider the bilinear sampled-data system (3.39), the polytope
P in (3.33), and a function

L%arctan(r), v>L
1
T’

h*(y,L) == vy=1L (3.41)
A arctanh(r), v <L
with
2

r= yﬁ_u (3.42)

where L s given by

1

L= max{—Anin (BT 4+ B),0} (3.43)

and v is the solution to the following optimization problem:

v = min/p (3.44)
satisfying the constraints 3P € R™ " a symmetric positive definite matriz , 3p > 0 and Ja > 0,
such that
ATP + PA + (AT Aj + ATA)) + ol PB
* (a —p)I
vi,j e {1,2,...,p}. (3.45)

My =

Assume that the sampling intervals are strictly bounded by h*(v,L), i.e. h < h* (v, L). Then,
for the bilinear sampled-data system (3.39), the set {(x,e,7) : x =0,e = 0,7 € [0, h]} is Locally
Uniformly Asymptotically Stable.

In this method, the Maximum Sampling Interval is calculated by the expression (3.41), based
on L and . L is calculated analytically, whereas « is found by solving LMI conditions. The
optimization problem is a minimization of 7' because for any constant L, h*(-, L) is a strictly
decreasing function. Note that since v does not depend on L, and from the continuity of h* (v, -):
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arctan ( 21 )
h*(7,0) = lim h*(v, L) = lim =1 _ .
L—0 L—0 |72 o L2| 2y

The stability conditions presented in this theorem are based on the generic inequalities from
Theorem 2.7 in [Negi¢ 2009]. Our contribution is to provide a constructive manner to apply this
result to the case of bilinear systems. We provide explicit forms of H(x,e), W(e), V(x), and
we find L, v that gives the upper bound on Maximum Sampling Interval. We provide as well,
an LMI formulation that allows us to obtain sufficient stability condition. Note that in order to
obtain LMI based stability conditions the approach has been adapted to the bilinear case: the
function H(-,-) used here has been modified to depend both on the error e(t) and the state z(t),
while in [Nesi¢ 2009] it is only a function of .

3.2.1.2 Method 2: direct Lyapunov function approach

In the previous method, the stability conditions are obtained using upper estimations of the
derivative of a Lyapunov function. Such upper estimations may be found conservative. In order
to avoid them, we provide as follows a second method which evaluates directly the derivative of
a Lyapunov function.

Theorem 3.17 [Omran 2016b] Consider the bilinear sampled-data system (3.39). Suppose
that Maximum Sampling Interval is bounded by a value h*, i.e. h < h*. Assume that there
exist symmetric positive definite matrices P,Q,X,Y € R™ " such that the following LMIs are
satisfied

ATP+PA+ X PB - ATQ
{ * BTQQB}}*Q+Y}*O’
Vi€ {1,2,..,p}. (3.46)
ATP+PA+ X PB — AT'Qexp(—1)
{ * [-BTQ — QB — = Qlexp(~1) + Y] <0
Vie {1,2,..p}). (3.47)

Then the set {(x,e,7) : x = 0,e = 0} of the bilinear sampled-data system (3.39) is Locally
Uniformly Asymptotically Stable.

The theorem is based on the existence of a Lyapunov function

U(z,e,7) =V(z) + W(r,e) (3.48)
with V(z) = 2" Pz, and W(r,e) = exp(3F)e’ Qe. In this method the Maximum Sampling
Interval is found by solving a set of LMIs for the maximum value possible of h*. The existence
of a solution to the LMI conditions, guarantees the existence of a Lyapunov function that will
yield the asymptotic stability. Note that the proposed conditions directly study the derivative of
the Lyapunov function. Numerical examples will show the conservatism reduction in comparison
with the approach in Method 1. Note that both the approach of Method 1 and Method 2

64

doc.univ-lille1.fr



© 2017 Tous droits réservés.

HDR de Laurentiu Hetel, Lille 1, 2017

3.2.  Sampled-data control of bilinear systems

are robust not only to the sampled-data implementation but also to variations of the sampling
intervals.

Example 3.18 As follows we present a mumerical comparison of the two proposed methods.
Consider the following bilinear system, described by the matrices

05 15 4 0.7 —1.3
A= | 43 6.0 5.0/, B():[ 0 —43|,
3.2 68 7.2 08 —1.5

-1 0 0 010

Ni=|0 00|, No=100 0

0 0 0 000

A continuous-time state feedback controller has been computed [Tarbouriech 2009] in order to
locally stabilize the origin of the bilinear system

_10.0016 0.0035 0.0034

K= 2.2404 3.2676 5.9199|°

The controller was proven to establish the local stability for the bilinear system (in the continuous-
time case), inside an ellipsoidal region Dy. We consider a local polytopic region P C Dy

P = [~1.35,41.35] x [—0.5,40.5] x [—0.5,+0.5].

Using Method 1, we found that the system is locally stable if h < h* = 2.7 x 1073, This was
calculated from (3.41) for L = 29.79, and v = 563.3. The other variables in the optimization
problem were o = 5.84, and
281.3 210.6 882.2
P =1210.6 622 565.1
882.2 565.1 3688.3

Using Method 2, we found that the sampled-data system is locally stable for a larger MSI, h <
h* =12 x 1073, The LMIs in (3.46) and (3.47) have a solution for this value of MSI with

1.2722 0.5769 3.8769 5.6140 8.1180 14.7162
P = 105769 2.4533 1.1283 @ = | 81180 12.0092 21.2460
3.8769 1.1283 16.9212 14.7162 21.2460 39.7534

The results illustrate the reduction of conservatism in Method 2 with respect to Method 1.
Simulations show that the system is unstable for a larger sampling intervals. Howewver, it is not
clear how to improve the method in order to obtain a larger estimate of the MSI.

3.2.2 Input / Output approach

In the following, we present a different approach for the analysis of sampled-data bilinear system.
The method is based on the extension of the frequency domain criteria from [Mirkin 2007,
Fujioka 2009c] to the case of bilinear systems.
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Let us remark that system (3.35) can be re-expressed as

#(t) = (Ao + BoK + Y _[Ka(t)liNi )(t) +&J’I_€(x(tk) — (1))

= B w(t)
Aalti)

which can be further expressed by the feedback connection of the system

(3.49)

Cla(ty) = Alx(ty)) = Ao+ BoK + Y [Ka(t)liN;, ~ D=B=ByK  (3.50)

with the operator Ay, : y — w defined by

w(t) = (A y)(t) = —/ty(T)dT, Vt € [tr, tri1)- (3.51)

173

We recall that the operator Ay, has been studied in the context of LTI sampled-data systems
[Fujioka 2009c¢|, [Mirkin 2007] and has two important properties. The first one concerns the gain,
and the second is a passivity-type one (see Section 2.1.4). It was shown in [Mirkin 2007] that the
operator is bounded on £3[0,00). This property is based on the fact that for any X = X7 =~ 0,
v € L5[0,00):

/ (Agp0) T (1) X (Agp)(T)dr < (5(2)/ ol (1) Xv(r)dr, Vt € [tr, thi1)- (3.52)

tr tg

with §g = %E. The passivity-type property given in [Fujioka 2009¢| is based on the fact that for
any Y =Y =0, v € L£3[0,00)

t
/ VTP (Aapo)(F)dr <0, ¥t € [t trsr)- (3.53)
tx

In the LTI context, the two properties lead to LMI conditions for stability. However, these
conditions are based on frequency domain criteria, and on the use of Kalman-Yakubovich-Popov
lemma. The application of these techniques is restricted to the LTI case.

The main idea in [Omran 2013] is to re-interpret the properties of the operator Ay, in terms
of "supply" functions S(y, w) such that

/tS(y(O),w(G))dH <0,V € [ty trsn). (3.54)

tk

For the case of bilinear system, the properties (3.52), (3.53) can be used in order to show that
for any X7 = X = 0and YT =Y > 0, the sampled-data system satisfies the constraint

S (#(s), z(ty) — x(s)) ds <0, Vt € [tg, tri1), (3.55)

tk
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where

T
: B @(t) —BX Y @ (t)
Inspired by the Dissipativity Theory [Brogliato 2007], the relation (3.55) can be useful to prove
an invariance property when there exists quadratic function V(z) = 27 Pz, with P = PT =~ 0,

such that J
g @) < S@E@) w(te) = 2(1),V t € [th, trr). (3.57)

When this relation holds, V (z(t)) < (x(tx)) for all V ¢ € [tg,txr1). For the case of bilinear
sampled-data systems (3.35) this leads to sufficient stability conditions that can be checked
using LMIs.

Theorem 3.19 [Omran 2014b] Consider system (3.35). Assume that there exist symmetric
positive definite matrices X, Y, P € R™ "™ and matrices Py, P3 € R™"™ such that the following
optimization problem is feasible

V= min Vie{l,2,...,r}, VYqe{l,2,..p}, (3.58)
with .
|7 Y
EJ |:CLJ' P:| (3'59)
and

P-P+PlA, —Ps—PI+8X PIB-Y| <0 (3.60)
BTp, BTp; —Y -X

where the vertices {Ag}qeqi2,... py are given in (3.40), and {a;};cq1 2, are given in (3.33). The
equilibrium x© = 0 of the system (3.35) is then Locally Asymptotically Stable for any arbitrary
sampling sequence with tx1q — tp < h.

An estimate of a domain of attraction is given by the ellipsoid

EP,c):={zcR": 2TPx <} CP (3.61)
with ¢* = 1/~*.

For given polytope P and MSI A, the conditions in the previous theorem are LMIs. Note that
the conditions only require the pair (Ag, By) to be stabilizable. Numerical examples illustrating
the method are given below.

Example 3.20 (Ezample 3.18 revisited) Consider the bilinear sampled-data system defined by

-05 1.5 4 —0.7 -1.3 10 0 010
Ag= |43 60 50|; By=| 0 —43|; Ny =|0 0 0|; No=1{0 0 0
3.2 6.8 7.2 08 —15 0 00 000

Using classical methods, the linear state feedback

_10.0016 0.0035 0.0034

K= 2.2404 3.2676 5.9199
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Figure 3.10: The polytope (blue boxes), and the corresponding region of stability £(P, c¢*).

Table 3.1: The estimation of the MSI that guarantees the local stability of the system in Exam-
ple 3.20.

| | Theorem 3.16 | Theorem 3.17 | Theorem 3.19 ‘
| MSI (ms) | 5.6 | 13.8 | 51 |

was proven to establish the local stability for the continuous-time bilinear systems, inside an
ellipsoidal region. Consider the box

P = [~1.35,41.35] x [—0.5,40.5] x [~0.5,+0.5].

Our objective here is to find a MSI for which the local stability of the aperiodically bilinear
sampled-data system is guaranteed. Using the method introduced in Theorem 3.19, we find that
the LMI conditions in (3.60) are feasible for h = 51 ms, with

34.27 10.82 92.73
P=10°%[10.82 50.43 28.41
92.73 28.41 394.23

An estimate of the domain of attraction E(P,c*) is given by (3.61) for ¢* = 0.1652 (see Figure
3.10). Considering the initial state xg = [~0.8 — 0.2 + 0.25]7, two evolutions of the state are
shown in Figure 3.11 and Figure 3.12. In Figure 3.11, a random sequence of sampling periods
with h = 51 ms was used for simulations. The stability is ensured as the initial state is located
inside E(P,c*). In Figure 3.12, a uniform sampling is considered, with a sampling period of
89 ms. We can notice that the sampled-data system becomes unstable.

Considering the same box P, other methods are used to find the MSI that ensures the stability,
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0.6

0.4r

0.2

x(t)

_0.6V

_08 1 1 1 1 1 J
0 0.5 1 15 2 25 3

Figure 3.11: State evolution for the bilinear sampled-data system in Example 3.20, with a variable
sampling which is bounded by h = 51 ms.

0.6

X, (0
x,(0 |
x40

0.4

x(t)

_02 m

-0.6 b

_0‘8 L L L
0 0.5 1 15 2

time (sec)

Figure 3.12: State evolution for the bilinear sampled-data system in Example 3.20, with uniform
sampling tx41 — t = 89 ms.
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and a comparison is given in Table 3.1. Note that methods based on the disspativity analysis,
and the contractivity of invariant sets presented in [Omran 2012a] and Theorem 3.19, are less
conservatives than the methods based on hybrid systems theory in [Omran 2012b]. The reduction
of conservatism in Theorem 3.19 with respect to the Theorem 4 in [Omran 2012a], is due to using
the descriptor method in formalizing the LMI conditions.

Example 3.21 Consider the average values model of a buck-boost converter with pulse width
modulator that adjust the duty cycle of the switching device.

= (DAl + (1 — D)AQ)LZ’ + (DB1 + (1 — D)BQ)U,
with the state T = [if, U}]T, where i1, is the average inductor current, and v, the average capacitor
voltage. The average is taken over one switching period. The system matrices are

n [I%NL% 0 A [RLL %
1= 1 | A2 = T 1|5
0 ~RC ~C “®C
1 1
19 (-t %
Bl:{é 0};82: 0 OL};UZ v]f]'

Ron is the on-resistance of the switching device, vp is the diode voltage, and Vpc is the source
voltage. D € [D1, D3] C [0,1] is the duty cycle, representing the system input. Consider the
following values: Vpo =6V, R=50Q, L =20mH, C =220 uF, Rony = 0.08Q2, Ry, = 0.34(),
and vp = 0.67V. The system is subjected to saturation due to the hard limits on the duty cycle.
For a certain working point To, Dy we have

0= (DoA1 + (1 — Dg)As)To + (DoB1 + (1 — Do) Bz)v.

Considering & = T — Zg, and the input signal w = D — Dy, we can see that

i = Aok + Bou+ Nud (3.62)
where
Ay = (D()Al + (1 — Do)Ag)
By = ((A1 — A2)To + (B — Ba)v)
and

N = (A1 — Ay).

From the constraints over the duty cycle we see that u must be bounded by —Dy + D1 < u <
Dy — Dy. Usually, we consider Dy = (D1 + D2)/2, and then |u| < Uy = (D2 — D1)/2. Using
results [Olalla 2011] for the stabilization of the continuous-time system, we find the following
controller

K =[-1.7329 0.0738).

We are interested in the state space region where a linear control w = K& is not saturated
{# € R? : |K2| < Umag }- Furthermore, it is desired that the error with respect to the equilibrium
point satisfies |ir| < 0.5A and |0.| < 3V. This leads to considering the polytope

P := {[~0.42, —3],[~0.16, 3], [0.16, —3], [0.42, 3]}
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K& = 4umaq -

3t \ Eex | P]

K1 = —Umax

-0.5 0 0.5

Figure 3.13: The domain of attraction for the system (3.62) when controlled with the static
feedback controller, in the asynchronously sampled-data case £(P,c*) with h = 1.5 ms. The
curves in black are simulations of the sampled-data system, for different initial states.

In order to study the robustness with respect to asynchronous sampling, we apply Theorem 3.19.
We find that the system 1is stable when implementing digitally the feedback controller K with
variable sampling periods bounded by h = 1 ms. The guaranteed domain of attraction E(P,c*) is
given in (3.61), for ¢* = 37.81 x 103 and
554.9 —49.62
— 103
P=10 {—49.62 14.01 ]

The domain of attraction is shown in Figure 3.13, together with simulations of the evolutions
of the state of the sampled-data system. Different initial conditions are considered, and random
variable sampling periods, bounded by h = 1.5ms are used in the simulations. Note that by
slightly increasing the sampling interval, the system becomes unstable. For erxample, with the
initial condition zoy = [0.24 0.75]7, we obtain an unstable behaviour when choosing a constant
sampling ti+1—tr = 2.1 ms as shown in the simulation in Figure 3.14. The same initial condition
is considered in one of the simulations in Figure 3.13, and the the system is stable when respecting
the bound h = 1.5ms. The gap between the two values illustrates the conservatism of the proposed
method.

3.3 Sampled-data control of input affine nonlinear systems

In the nonlinear case, an extension [Omran 2013, Omran 2014b, Omran 2016a, Omran 2014a] of
the IQC approach is possible using methods inspired by the notion of Exponential Dissipativity
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Figure 3.14: The instability of the sampled-data control of syst
of tg41 — t = 2.1 ms.

[VijaySekhar 2003]. The main ideas are presented as follows'®
Consider the following nonlinear affine system:

i(t) = f(z(t)) + g(z(t)) K (2(tr)),Vt € [tr,

0.08 0.1

em (3.62) with uniform sampling

tk+1), k € N. (363)

The functions f : R™ — R™ with f(0) =0, and g : R" — R™™ are considered to be sufficiently
smooth and the controller K : R® — R is a continuously differentiable function. Considering

fa(z) = f(z) + g(z)K (),
w(t) = K (e(t)) - K (a(t))
and an auxiliary output
0K
y= %IE,
system (3.63) can be represented by
& = fal(r)+g(@)w
y = ZE(falz)+g(x)w)
w = Ashy'

'8The results presented in this section have been developed in the context

(3.64)

of the PhD Thesis of Hassan OMRAN,

in collaboration with Prof. Jean-Pierre Richard and Francoise LAMNABHI-LAGARRIGUE (DR CNRS).
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Here we consider that Ay, : £3%[0,00) — LT[0, 00), with Agp, defined similarly to (3.51):
2e 2e

Ay(t) = - / y(s)ds, Vit € [th trs). (3.65)

tk

Consider the following assumptions
e The nominal continuous-time system
&= fa(z), z(0) =xp € R"
has a well defined solution on R4 for any xzg € R™.

e The sequence of sampling instants {t;}ren satisfies ¢x41 — t € (O,E] for a given positive
scalar h.

e For any initial condition zg € R", the system
&= f(x)+ g(z)K(z0),z(0) = xo,
has a unique solution x(t) defined on the interval [0, h].

The following result provides an extension of Theorem 2.17, Theorem 3.19 to the nonlinear
affine case.

Theorem 3.22 [Omran 2016a] Consider system (3.63) and the representation (3.64),(3.65).
Assume that
L There exists a continuous function S(y,w) which satisfies the integral property
t

S(y(s)vw(s)) ds < 0, Vite [tkvtk-i-].)? ke N.
ty

II. There exists a differentiable function V : R™ — Ry, class Ko functions By, 82 and a > 0
which satisfy
Br(lzl) < V() < B2 (lzll), ¥V z € R,

V(@(t) +aV (2(t) < e RS (y(t), w(t)), V¢ € [t trsr)

along the solutions of (3.64).
Then the equilibrium point x = 0 is Globally Asymptotically Stable for any sampling sequence
{tktren with typq —t, < h.

The theorem provides generic conditions for stability based on the analysis of dissipation like
inequalities to be satisfied along the system’s (3.63) trajectories. These condition can lead to a
constructive stability analysis method that only involves geometric properties of system (3.64).

Corollary 3.23 [Omran 2016a] Consider system (3.63) and the representation (3.64),(3.65).
Suppose that there exists symmetric positive definite matrices X,Y , a positive scalar «, class Koo
functions B1, B2 and a differentiable function V : R™ — R4 such that

Bu(llzl) < V(x) < B2 (=), ¥V z € R,
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2

ov
+ ik
X

Gy Ual@) + gla)w) < (63 o ful@) + glau)

+2 <%—Ix{ (fa(z) + g(z)w) ,w> > e~ 2h e 0,1}, (3.66)

Y
for all x € R", w € R™, where oy = %, and the notations (y1,vy2)y = Y1 Yy, |y1llx =
\/yE Xy were used for vectors y1,y2 € R™.

Then the equilibrium point x = 0 1s Globally Asymptotically Stable for any sampling sequence
{tk}ren with tyy1 —tp < h.

The result is derived based on Theorem 3.22, using a "supply rate" function of a form
similar to (3.56). Note that the proposed conditions do not require computing the system’s
solutions. Stability can be investigated by studying geometric properties of system (3.64). For
the case when the functions f, g describing system (3.63) are polynomials, a numerically tractable
sufficient condition can be obtained using Sum-Of-Squares decomposition.

In what follows, the notation p(x) € R[x] with x € R™, denotes that p(x) belongs to the set
of polynomials in the variables {x1, X2, -, xn} With coefficients in R.

Definition 3.24 [Prajna 2004] A multivariate polynomial p(x) € Rx] is said to be a sum of
squares (SOS), if there exist some polynomials p;(x) € R[z], i € {1,..., M}, such that p(x) =
Sy ph(a).

Corollary 3.25 [Omran 2013] Consider the sampled-data system (3.63) in the case where f(z),
g(x) and K(x) are polynomial functions and the representation (3.64),(3.65). Denote

Bz, w) := fa(r) + g(x)w

and 9K

G(z,w) := %F(x,w)
Let D = {z € R" : wy(z) > 0,1 = 1,2,...,s} be a neighbourhood of the origin x = 0 where
w(x), 1 =1,2,...,s, are polynomial functions. Suppose that there exist a polynomial function

Viz) 76 Riz] of degree 2d, sums of squares 0;(§) and g (§) forl € {1,...,s} and & = (z,w), such
that the following polynomials are SOS

V(z) =V(z) - p(a), (3.67)
- oV
p1(&) ==Y ou(&m(x) - %F(i& w) — aV(x),
=1
+[- 62GT (z,w) X G(z, w) + 2GT (z,w)Y w + wTYw} ) (3.68)

pa(6) = =3 a(Om(e) — S F (e, w) — aV(a),
=1

+ [ = 88GT (2, w) X G(z,w) + 2G7 (z, w)Yw + w" Yw] e~ (3.69)

with dg = %E, 0-X'=XcR™™ 0 Yl =Y € R™™, and p(x) a positive definite
polynomial defined by

n d d
o(x) = ZZeijx?j, such that Zeij >, Vi=1,...,n. (3.70)

i=1 j=1 j=1
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Then, the equilibrium x = 0 of the system (3.63) is Locally Uniformly Asymptotically Stable.
Moreover, the sub-level set Lo~ defined by ¢* = max, cp ¢ with

Ly(c):={x eR":V(x) <c}, (3.71)

is an estimate of the domain of attraction. Finally, if (3.68) and (3.69) are SOS while p;(z) =0,
foralll € {1,2,...,s}, then the equilibrium is Globally Uniformly Asymptotically Stable.

A numerical illustration of this result is presented below.

Example 3.26 Consider the following system from [Nesi¢ 2009]
i=de? — 2% +u,

with a bounded time-varying |d| < 1, and a stabilizing control u = K(x) = —2x. Emulating this
controller results in a sampled-data system that can be represented by the operator Agp in (3.65),
and a system (3.64) described by

i =dz? — 2® — 2z + w,
y=—2(dx? — 23 — 2z + w).

We apply the Corollary 3.25 in order to find a storage function of the form V(x) = 6@2 + bat,
such that (3.67), (3.68) and (3.69) are SOS. We choose p(x) = 107322, a = 0.1 and h = 0.72.
We intend to test the global stability. In this case, the polynomials (3.68) and (3.69) are

p1(€) = —(2az + 4bx3)(dz? — 2% — 22 + w) — a(az? + az?)

+ [ - 405X (d2® — 2® — 22 + w)?

—4Y (da* — 2% — 22 + w)w + Yw?], (3.72)
pa(€) = —(2ax 4 4bx®)(dz? — 2° — 2z + w) — a(az? + az?)

+ [ - 465X (d2® — 2° — 22 + w)?

—4Y (da® — 2® — 22 + w)w + YwQ]efaE, (3.73)

where a,b, X,Y are decision variables. Note that the time-varying terms d and d* appear in
the polynomial expressions. However, if both (3.72) and (3.73) are ensured to be SOS for all
the values of (d,d?) € {(1,0),(1,1),(=1,0),(=1,1)}, then they will be SOS for any time-varying
|[d| < 1. This is found to be satisfied using the SOSTOOLS software [Prajna 2004], for the
storage function V(x) = 0.77402z% + 0.199112*, and a supply function defined by X = 0.47522
and Y = 0.623021073. By Corollary 3.25, we obtain the global uniform asymptotic stability of
the equilibrium x = 0, of the sampled-data system. This result cannot be obtained when trying
a quadratic storage function. Increasing o (the exponential decay rate of the storage function),
results in the decrement of the mazimum value of h for which the problem is feasible. This can
be seen in Fig 3.15. Previous works considered this example in the literature for estimating the
MSI. In [Nesi¢ 2009], a bound of h = 0.368 is found. In [Karafyllis 2009b], the proposed upper
bound is h = 0.1428. The conditions proposed in this paper are found feasible for h = 0.72.

Example 3.27 Consider the following system

=22+ (z - 1u,

0]
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0.72
0.7
0.68
sé 0.66 -

0.64r

0.62r

Figure 3.15: Trade-off between « (the exponential decay rate of the storage function), and the
estimation of the MSI.

with the controller u = K (x) = x + 222, which stabilizes the equilibrium point x = 0. Note that,
in the continuous-time case, this equilibrium is only locally stable. Our purpose is to find the
mazimum value of h that quarantees the local exponential stability of x = 0, when the controller
is emulated. We consider the neighbourhood x € [—0.4,40.4]. The sampled-data system can be
represented by the operator Agp in (3.65), and a system (3.64) described by

i=—x+22%+ (z — 1w,
y=(1+4z)(—z + 22° + (z — Dw).

We consider applying Corollary 3.25 with a quadratic storage function V(z) = ax®. We

choose p(x) = 107322, a = 0.25 and h = 0.6. The considered domain D is described by
{z € R: pi(z) > 0} with u1(z) = (x — 0.4)(0.4 — ). The polynomials (3.68) and (3.68) are in
this case

p1(€) = —o1(Op(z) — (2az)(~a + 22° + (z — w) — a(az?)
+ [ - (X1 +42) (2 +22° + (z — 1)w)?
+2Y (1 +4z)(—x + 22° + (z — Dw)w + Yw?], (3.74)
p2() = =1 (O (@) — (2az)(—z + 22° + (¢ — Dw) — afaz?),
+ [ - (X1 +42) (2 +22° + (z — 1)w)?
+2Y (1 + 4z)(—z + 2% + (2 — Dw)w + Yw?]e ", (3.75)
where a, X,Y are decision variables, and o1(§),<1(€) are decision SOS polynomials. Using the

software SOSTOOLS we find that (3.74) and (3.75) are SOS with a = 0.12015, X = 0.25506,
Y = 0.88456 1072, The decision SOS polynomials are
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o1(€) = 0.62335w? — 0.3616 zw? + 1.6714 2%w?
—0.67622 23w + 2.0314 ztw 4 3.228 25,

c1(€) = 0.52025 w? — 0.31686 zw? + 1.4349 22 w?
—0.54824 23w + 1.60754 't w + 2.8846 5.

Thus all the conditions of Corollary 3.25 are satisfied, and x = 0 is locally asymptotically
stable. The domain of attraction Ly (c*) can be easily seen to be equals to the studied domain
[—0.4,+0.4].

3.4 Switching controllers under sampled-data implementations

As follows, some contributions to the analysis and design of sampled-data control loops based
on discontinuous feedback laws are presented'®. First, we address the case of switched affine
systems. Next, the sampled-data implementation of relay control laws is considered. The goal
is to present for these classes of systems a continuous-time approach to sampled-data switching
control design that ensures robustness with respect to sampling and to potential implementations
imperfections (jitters, uncertainty etc.).

3.4.1 Switched affine systems

Consider matrices Aq, As, ..., Ay € R™ ™ and vectors by,by,...,by € R™ where N € N. The
matrices A;,i = 1,..., N, are not necessarily Hurwitz. We are interested in the class of switched
affine systems described by

z(t) = Aﬁ(mk)x(t) + bﬂ(zk),vt € [tk thr1), (3.76)

where k : R® — Zn := {1,2,..., N} represents a switching control. The goal is to design a
control law s which ensures stability (in some sense) of the system (3.76) under a sampled-
data implementation. Note that in the switched affine system context, due to sampling, one
can no longer drive the state exponentially towards the equilibrium point, but only towards a
limit cycle or to some attractive compact set containing the equilibrium. Furthermore, classical
switching control laws xk are often described by a discrete-event system with transitions ruled by
a partition of the state space. Then the sampling usually induces a delay in the discrete-event
system variable. This may imply a mismatch in the control: the system state may cross a frontier
in the state space in between to sampling instants and one system mode may be active in other
state zones than the one for which it has been designed. If not appropriately taken into account,
the sampling may be a source of poor performance and even may lead to unbounded solutions.

The following theorem provides switching law design conditions that ensure the practical
stability of the closed-loop switched affine system.

Theorem 3.28 [Hetel 2013b] Consider the unit simplex

N
Ay = {5— [61,82,...,68]" €RY, 6;>0, > 6 = 1}, (3.77)

i=1

19The results presented in this section have been developed in collaboration with Prof. Emilia FRIDMAN and
Thierry FLOQUET (DR CNRS).
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the notations A(§) = Zf\;l 0;A;, b(6) = Zl]\il 8ibi, & € A, system (3.76) with ty 1 —t5, € (0,h]
and a given scalar tuning parameter A > 0. Assume that that there exists § € Ay such that A(5)
is Hurwitz and b(d) = 0. Let there exist matrices P, R > 0 in R™*™ a scalar § > 0 such that the

LMIs
AT(5)P + PA(S) + 2AP + hATRA; hAT Rb;
. R (b7 Rbs — 81) <0, (3.78)
AT(6)P + PA(6) +2 P 0 —hW;(6)
s —hBI hbl P <0, (3.79)
* * —hRe2 M 4 R2W,(5)
Vi € Iy, with
W,;(0) = (A(6) — A))T P+ P (A(0) — 4)), i € Iy.
Then for
k(xy) € arg mIin ol P (Ajxy + b;) (3.80)
1€ELN

the system solutions are exponentially attracted to the ellipsoid € <P,7L%>, i.€.

t—o0 2\

lim 2() € € (P, h5> ,

where by € (P, c) we denote the ellipsoid

E(Pyc):={zeR": ' Px < c}. (3.81)

The parameter A from Theorem 3.28 corresponds to the system decay rate. For fixed A,
conditions (3.78), (3.79) represent LMIs. The optimization of the decay rate may be addressed
by combining LMI-based methods with a line search on A. The result is based on a Lyapunov-
Krasovskii functional of the form (2.4). Note that the chattering set depends on value of the
maximum sampling interval h. Given h, the feasibility of (3.78), (3.79) with some P, ), 3 guar-
antees that for ¢ — oo the trajectories of the resulting system approach to the ball ||z||3 < Ch,
where

C = B (2€igmin(P))N) ™

with eigmin (P) the minimum eigenvalue of P.
It is important to highlight the fact that the conditions in Theorem 3.28 encompass the
classical design conditions from [Bolzern 2004]. The set of conditions (3.78),(3.79) for h — 0 are

reduced to
AT (8)P + PA(S) +2\P < 0, (3.82)

which is the classical condition from [Bolzern 2004| ensuring the exponential stability of the
continuous-time system. The approach can be easily extended to take into account uncertainties
in the system matrices (see [Hetel 2013b] for details).

Example 3.29 Consider a switched affine system consisting of four affine subsystems with and
the following matrices [Bolzern 2004]:

415 —1.06 —6.7 —32 -76 -2
574 478 —468|, A, =109 12 -—1|,

26.38 —6.38 —8.29 1 6 5

A =
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5 0.6 0.7 0.8

0.5 0.6 0.7 0.8

Figure 3.16: Evolution of system states under the control law based on Theorem 3.28 with a
fixed sampling interval h = 3.2 - 1074,

5.75 —16.48 2.41 —12.38 18.42 0.54
9.51 —9.49 19.55(, Ay = [—-11.90 324 -16.32{,
16.19 4.64 14.05 —-26.5 —8.64 —16.6

o] e B[]

Each individual subsystem is unstable. For 61 = 0.15,05 = 0.2,93 = 0.3 and o4 = 0.35, the A(J)
is Hurwitz and b(6) = 0. Using Theorem 3.28 we find that the system is practically stabilizable
under variable sampling with hy, < h < 3.2-107%. The LMI conditions are found to be feasible
with

Az =

01 —-0.02 0
P={-0.02 0.15 0.02
0 0.02 0.11

, R=1| 0 017 0.03

0.02 0.03 0.16

(3.83)

013 0 0.02]

B = 3.16 and X\ = 0.022. An illustration of system evolution with an arbitrary initial condition
is shown in Figure 3.16.

Example 3.30 We illustrate the applicability of this stabilization approach on an example from
power electronics. Consider the DC-DC' converter from [Hauroigne 2011], where the model has
the form

2(t) = Awa(t) + By
with
0 1/L

A=y —1/<Rc>]’ A [8 —1/?RC>}’

(3.84)
Bi=1[0 0", By=[E/L 0]" with E =6V, R =50Q, L =20mH and Cy = 220uF. For
01 = 09 = 0.5, the matriz A(S) is Hurwitz and the system may be stabilized to the equilibrium
point

z.=—A0)'B(5) =[0.24 —6]"
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-4

Figure 3.17: Trajectory in the error state space under variations in the resistor value from 352
to 65Q with a fixed sampling interval T,,q, = 2.5 - 1075 (solid black line), the attractive sets
obtained for the continuous-time case (dashed line) and for T,,q, = 2.5 - 1075 (solid line).

using a continuous-time switching law. Consider the error e = x — x, dynamics

de = Age(t) + Agxe + By

dt

For the numerical tests, the time scale change t = et with e = 10* is used to cope with large
numerical values in the system matrices and to avoid ill conditioned matrix inequalities. The
system of the form (3.76) is obtained with A; = € ' A;, by = e L (Aiwe + Bi), h = € Trpaz, © = €.
Note that the trajectories are invariant with respect to time scaling. Furthermore, the switching
laws are equivalent, since

arg min (z — x)? P (eAjx + eb;) = arg min (z — x.) P (A;z + B;) .

€N 1€IN
Concerning the robust switching law design, the conditions of Theorem 3.28 are feasible for any
(time-varying) sampling intervals with Tpee < 1.5 -1073s.
To illustrate the use of our method for uncertain systems, choose Tpar = 2.5 - 107°s and
assume that the resistor is subject to unknown time-varying uncertainties 0R(t) € [—15Q, +15Q)].

Then each of the matrices A; is varying in a polytope corresponding to the two vertices R+ 15€).
The robust stabilization conditions in Corollary 2 from [Hetel 2013b] are feasible with

9.175 0.088 775 0.161
P= {0.088 0.1 } Ui = [0.161 0.048] =12
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B = 269 1072,y = 1.9 - 1073, which implies that |le(t)| < 4.23 as t — oo. The error
system evolution with the initial condition x(0) = 0 is shown in Figure 3.17. The figure presents
the attractive ellipsoids for both the sampled-data case and for the continuous-time switching
implementation. Due to sampling and to parametric uncertainties the system state under a
continuous-time control implementation (in black) does not converge to the equilibrium point (the
center of the ellipsoid) but only to a bounded region. Numerical simulations under an uniform
sampling Trnae show that the same attractive ellipsoid is achieved for bigger Tpas = 1.4 - 1073,
to be compared with Ty,q. = 2.5 - 107° proved in theory under the variable sampling. The latter
may illustrate the conservatism of the method.

In addition to the results presented here, the design of sampled-data switching controllers for
switched affine systems has also been addressed using a hybrid system approach in [Hetel 2015b].

3.4.2 Relay control

As follows we present the method from [Hetel 2015¢| which ensures local practical stabilization
of LTI systems with relay control laws. Consider the system

#(t) = Aw(t) — Brysign(Tax), Vit € [tr terr), (3.85)

where A € R™", B € R™! ~ > 0 and where I' € R'*" is a design parameter representing the
switching hyperplane. We propose a simple design method based on the existence of a stabilizing
linear state feedback and we show how it may be used in the sampled-data case in order to
guarantee (locally) the practical stabilization to a bounded ellipsoid containing the origin. The
main idea of the design procedure is to use the existence of an exponentially stabilizing state
feedback as a reference control to be emulated (locally) by a relay feedback.

Proposition 3.31 (adapted from [Hetel 2015¢]) Consider system (3.85) with ty,1 — tp < h.
Assume that the pair (A, B) is stabilizable and consider a gain matriz K such that Aq = A+ BK
1s Hurwitz. Given tuning parameter A, let there exist symmetric positive definite matrices P, R,
and a positive scalar 5 < 2% such that:

I v 'K
[* P ] =0, (3.86)
AP+ PAy +2\P+hATRA  hATRBv
© — 0, (3.87)
* h (BTRB - p)
ATP4+PA,+2\P 0 —(PBK)'h
* —Bh  (PBY)'h | <0,v€{—y,7}. (3.88)

* * _ER6—2)\h

Then for T = BTP any solution x(t) of (3.85) with initial condition x(0) € Qo = £ (P, 1)
converges exponentially to Qo = & (P, ¢) as t — oo, with ¢ = (2)\)~18h.

Example 3.32 Consider a linear time-invariant system with

A= E _11] , B= m . (3.89)
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Figure 3.18: Illustration of evolution in the state space for a constant sampling interval 7' = 1073,
Green: u = ; red: u = —; ellipsoid in dashed line: estimation of the domain of attraction
Qqo; ellipsoid in solid line: attractive set for ¢ — 0o, {2o; black line: trajectory from the initial
condition g = [~13.5 — 10]%.

The A matriz has unstable eigenvalues 1 +i. Consider that the control is constrained to the set
V = {—~,~v} with v = 25. The pair (A, B) is fully controllable. The state feedback

K =[0.3125 —2.8125]

ensures that Ay = A+ BK is Hurwitz. Using X = 0.23 and the gain K, it is possible to design
a sampled-data relay control. For this set of parameters, with R and 3 as decision variables, the
conditions of Proposition 8.31 are feasible for h < 1.9 - 1072, In particular, for h = 1073, the
LMIs are found feasible with 8 = 15.63 and

(3.90)

P10 [ 0.66 —0.78]

—-0.78 191

which leads to Qo = € (P,0.068). A numerical illustration is shown in Figure 3.18.

Example 3.33 As follows we illustrate the practical implementation of sampled-data controllers
on a real cart-pendulum system platform from Ecole Centrale de Lille. We consider the following
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linearized model of the inverted pendulum on a cart:

& 01 0 07[= 0
il oo = ool 2
il loo o 1||le|T] 0 |™ (3.91)
.. M by —
f 0 0 Wimg o || ¢ i

Here x represents the cart position, 0, the angle, M = 3.9249K g and m = 0.2047Kg, the cart
and pendulum masses, respectively, | = 0.2302m the distance from the pendulum center of mass
to its pivot, g = 9.81N/Kg, the gravitational acceleration and a = 25.3N/V, the gain of the
linear motor. We consider that the system input is restricted to V = {—1,1}. The control law is
implemented on D-Space card with a sampling frequency h = 10~*s. The system can be stabilized
by a continuous-time state feedback with K = [6.4763 5.2313 15.4168 2.7498] for which

117.66 77.84 171.63 27.93
p_ T77.84 57947 133.258 21.425 (3.92)
171.63 133.258 347.978 54.504

2793 21425 54.504  9.18

1s a Lyapunov matriz. Using Proposition 3.31 with A = 1.45 it is possible to show that

I'= PB=[-280.33 —226.412 —667.228 —118.95]"
ensures (in theory) local stabilization in E(P,1). For the obtained sampled-data implementation,
any system solution with initial conditions in Qo = E(P,1) converges exponentially to Qoo =
E(P,0.07). The state evolution, illustrating practical stabilization of both pendulum angle and cart
position, is shown in Figure 3.20 (to be compared with simulations in Figure 3.19). Differences
between experimentations and simulations are due to the use of the linearized model of the inverted
pendulum for control design, to imprecisions in the identification of system parameters and to
perturbations due to friction.
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Figure 3.19: Numerical simulation based on the LTI model for the inverted pendulum on a cart:
evolution of card position z (upper sub-plots in meters) and pendulum angle 6 (lower sub-plots
in radians) with a sampled-data relay control from the initial condition zy = [0.015 0.115 —
0.014 —0.142].

t(s)

Figure 3.20: Experimental result for the inverted pendulum on a cart: evolution of card position
2 (upper sub-plots in meters) and pendulum angle 8 (lower sub-plots in radians) with a sampled-
data relay control from the initial condition z¢ = [0.015 0.115 — 0.014 — 0.142].

84

doc.univ-lille1.fr



© 2017 Tous droits réservés.

HDR de Laurentiu Hetel, Lille 1, 2017

Conclusion

In this part, several contributions to the study of aperiodic sampled-data systems have been
presented. First, in the case of linear systems it is shown how the conservatism in the stability
analysis can be reduced using discrete-time methods based on quasi-quadratic Lyapunov func-
tions. A continuous-time approach combining the advantages of both time-delay methods and
discrete-time ones has been presented and applied to the self-triggering control problem. The
main issue is that the design of sampling maps can be optimized using robust control tools. Next,
we have tackled the stability problem for nonlinear sampled-data systems, by studying the case
of bilinear systems. Constructive stability analyzis conditions have been proposed using a hybrid
system approach and a generalization of the Input/Output stability approach. The latter has
been extended to a more general class of affine nonlinear systems, with aperiodic sampled-data
control. Finally, the sampled-data implementation of some classed of discontinuous controllers
has been studied.

It is to be emphasised that the interest of the presented results goes beyond the simple ape-
riodic sampling problem. In fact, this framework can be seen as an abstraction of more complex
phenomena presented in Networked Control Systems. Many of the presented approaches can
be extended to deal with delay, quantization or scheduling protocols [Donkers 2009], [Cloost-
erman 2010], [Hetel 2011a], [Donkers 2011a|, [Lombardi 2012], [Liu 2012b], [Liu 2015a]. Fur-
thermore, the presented approaches can be generalized to more complex hybrid dynamical sys-
tems [Hetel 2013a).
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Part 11

Design of switching controllers - an
emerging research direction
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The design of switching controllers represents an important problem in Control Theory. Sim-
ple ON/OFF, bang-bang and relay controllers are widely used in various technical domains.
They represent the key components in variable structure systems [Emel’Yanov 1967] and sliding
mode control [Edwards 1998] and have very interesting robustness properties faced to matched
perturbations. Switching controllers are inherently hybrid dynamical systems which may de-
scribe complex behaviours [Goebel 2009], [Liberzon 2003a|, [Bourdais 2007], [Acary 2014]. It is
well known in the literature that even the simple relay feedback systems may tend to sliding
modes [Utkin 1992, Wang 2015|, Zeno solutions [van der Schaft 2000] or limit cycles [Johans-
son 1999].

As follows, we will present an emerging research direction concerning some classes of dynam-
ical systems of the form

&= f(x) +g(@)u (1)

with f : R — R", g : R®™ — R™ Lipschitz continuous functions. Here z € R™ is the systems
state and u € R™ is the input which is assumed to be constrained to take values in a finite set
of vectors

V = {vy,ve,..., 08} (2)

The goal is to design a control law
u=k(z), k: R" =V, (3)

which ensures the stability of (1). Over this part, the system’s solutions will be considered in
the sense of Filippov (see [Filippov 1988]).

This problem formulation encompasses the classical relay feedback control design problem
where the input v is constrained to take values in the set V = {—wv, v}, for some positive constant
v [Flugge-Lotz 1953, Tsypkin 1984, Johansson 1999, Liberzon 2013]. It is important to highlight,
that although relay feedback has been studied for a long time, there are still many unsolved
issues. For the moment, very few numerical tools exist for designing switching surfaces while
optimizing the system performances or the size of the domain of attraction.

For the case when the set V takes the form ¥V = {0,1}™, we encounter the case of ON/OFF
actuators. Their study is motivated by the large number of applications in the domain of power
electronics [Erickson 2001, Bacha 2014]. In this context, methods based on Pulse-Width Mod-
ulation (PWM) and averaging are often used for implementing classical continuous controllers
while ignoring the ON/OFF nature of actuators.

The problem statement can also be related to the study of control loops with quantization
[Brockett 2000, Liberzon 2003b, Liberzon 2005]. The set of control V can represent control value
for systems that are subject to both saturation and quantization.

For the particular case when the set of vectors V form a simplex in R™ (N = m + 1, every
subset of m vectors in V are linearly independent and there exists m + 1 positive scalars v;,i €
Zna1 such that Zf:;l vv; = 0, Z:’Sl v; = 1), the design of a control u with values constrained
to the set V is a simplez-type variable structure control problem (see [Bartolini 2011,Bajda 1985]
and the references with).

As follows, we will present a novel design strategy for the design of switching controllers
defined on finite sets. The aim is to propose a convex optimization approach for the definition of
switching surfaces. The methodology combines tools for systems with bounded controls and sat-
uration [Tarbouriech 2011], [Blanchini 1999] with convex embedding arguments [Liberzon 2003a).
The main idea of the design procedure is to use the existence of a continuous stabilizer in order
to re-design a switching control. It is based on simple convex optimization arguments and does
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not need any computation of normal forms. For several classes of systems (LTI, LPV, switched
affine, bilinear), the design of a switching controller can be formulated as a classical LMI prob-
lem, allowing to optimize the size of the domain of attraction and the robustness with respect
to perturbations or parameter variations.

This part is structured as follows. Fist, some results are presented for the case of linear
systems (time, invariant, polytopic uncertain and LPV) in Chapter 4. Next, in Chapter 5 the
case of switched affine systems is considered. At last, some applications are presented in Chapter
6.
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Chapter 4

Linear systems

In this chapter, we present some results concerning the design of switching surfaces for the case
of linear system?’. LMI stabilization conditions are given for linear (possibly uncertain) systems
and LPV systems.

4.1 Simplified problem formulation
Consider n,m € N, A € R™*" B € R™™ and the system
t=Azx+ B(u+d), (4.1)

where x € R" represents the system state, u € R™ the input and d € R” a matched perturbation.
We adopt the following assumptions:

e (A.1) The pair (A, B) is stabilizable.

e (A.2) The input u is a static state feedback constrained to take values in a finite set of
constant vectors V := {v1,vs,..., oy} C R™ where N is a positive integer, i.e. u = k()
with x : R® — V.

e (A.3) The perturbation d is a measurable function taking values in the cube P (dyq,) where
maz > 0 1s a known scalar and P (¢) :== {y € R™ : ||y|loc < ¢}, Ve > 0.

e (A.4) conv{V} is a nonempty closed subset in R containing the null vector in its interior:
O, € Int {conv {V}}.

e (A.5) There exists p € [0,1) such that P (dyqez) C conv{pV}.

We are interested in the design of control laws u = k(z) of the form

u = k(z) € argminz’ Tv (4.2)
veEV
where I' € R"™™ is a matrix to be determined.
Note that for the case when the input u is a scalar constraint to the set V = {—v, v}, with
v > 0 a given constant, we obtain u = k(x) = v whenever 'T'v < zTT(~v), i.e. for 21T < 0.

20The results presented in this chapter have been developed in collaboration with Prof. Emilia FRIDMAN,
Thierry FLOQUET (DR, CNRS), Ass. Prof. Alexandre KRUSZEWSKI and Romain DELPOUX (ATER at
LAGIS).
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15 ! | | | | |
2 -

Figure 4.1: Basic idea for a system with V = {v, —v}. Here Cy(K) is the set delimited by the
lines Kz = v and Kz = —v. The ellipsoid Qg := £(P,+) is chosen as the largest one contained

in Cy(K). Inside g the continuous stabilizer v = Kz can be replaced by a switching controller
u = —vsign(BT Px).

Similarly, u = x(z) = —v whenever /T > 0. Then, for V = {—v,v}, with v > 0, the control
law (4.2) is reduced to the classical relay control u = x(z) € —v sign (I'"x).

Since the values of the input are restricted to a finite set, the closed loop system (4.1),(4.2)
has a discontinuous right-hand side.

The goal is to provide criteria for the synthesis of a relay control law (4.2) that ensures
local stability of Filippov solutions associated to the closed-loop system (4.1),(4.2). We pro-
vide optimization methods for control design while enlarging the domain of attraction. Finite
time reachability properties to sliding manifolds and the robustness with respect to matched
perturbations and time-varying uncertainties will be discussed.

4.2 Basic idea

Let us first consider the case when d = 0. Note that Assumption (A.l) is equivalent with

e (A6) I P>0,K € R™"™ § >0, such that

(A+BK)' P+ P(A+ BK) < —25P. (4.3)
Then V(z) = 27 Pz satisfies
ov
. (A+ BK)x < =26V (x),Vx # 0, (4.4)

i.e. it is a Lyapunov function for system (4.1) with the state-feedback control law Kx.

For ~ let
E(Py):={zeR": T Px < v}
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denote the vy level set of the function V(x) = 27 Px and Cy(K) the subset of the state space for
which Kz belongs to the convex hull of gV,

Cy(K):={z e R": Kz € conv{V}}.

Since conv {V} is a non-empty closed subset in R™ containing the null vector in its interior, there
exists a level set described by v > 0 such that

Qo =& (P,y) C Cy(K). (4.5)

The main idea is to use the existence of the linear state feedback gain K in order to design a
locally stabilizing feedback of the form (4.2) (see also Figure 4.1 for a graphical illustration).

Remark that for any x € € there exist N scalars a; (z) > 0, Vj € Zy with Zjvzl aj(z)=1
such that

N
Kz = Zaj (x)v;. (4.6)
j=1
From (4.4), (4.5) and (4.6), we have
al oV
; aj(x) D (Az + Bvj;) < =20V (x), (4.7)

for all z € Qg \ {0} . Considering that a;(x) > 0,5 € Zy, there must be at least one j € Zy such

that
g—‘; (Az + Buj;) < =20V (x), Yz € Qo \ {0}. (4.8)

Since Qo represents a sub-level set of V(z), local stabilization in 0y with a control of the form
(4.2) is ensured by choosing the control k(z) with the steepest descend of the Lyapunov function

k(x) € argminz? PBv (4.9)
vey

which leads to setting I' = PB in (4.2). Note that if there are several minimizers v in (4.9), they
all ensure the decay of V. We arrive to the following:

Proposition 4.1 [Hetel 2013¢] Consider system (4.1) with d = 0, a control law (4.2) and
Assumptions (A.2),(A.4),(A.6). Then there exit a function V(z) = 2T Pz , with P a symmetric
positive definite matriz, and scalars 6,y > 0 such that for ' = PB

ov

o (Az+ Br(x)) < —20V (), (4.10)

for all k(z) € argminyey 27 PBv,z € Qo \ {0} where Qg = E(P, ).

Using standard developments, it can be shown that (4.10) is a sufficient condition for the local
asymptotic stability of Filippov solutions associated to system (4.1) with d = 0 and the control
law (4.2). As follows, it will be shown that the provided control law also ensures robustness to
perturbations and it presents a finite time reachable sliding dynamics.
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4.3 Sliding dynamics and robustness to perturbations

The following theorem provides design conditions for the control law (4.2) in the case of non null
perturbations.

Theorem 4.2 [Hetel 2015¢] Consider a set of co-vectors h; € R1™ i € T, describing the dual
representation of the polytope conv{V}:

conv{V}={yeR™: hy<liel,}. (4.11)
Consider Assumptions (A.2)-(A.6) and the closed-loop system (4.1),(4.2) withT' = PB. Then
for any
7 < min (1 - p)’ (h K P KTRT) ™! (4.12)
1€ np

a) the origin x = 0 of the closed-loop system is locally exponentially stable in Qo := & (P,7);

b) if rank(B) = m < n then, for s = BT Px the surface s = 0 is finite time reachable whenever
x(0) € £(P,7), i.e. exists ty € [0,00) such that s(t) =0 for all t > t.

Furthermore, if for some P satisfying (4.3), ATP + PA is negative semi-definite then

¢) the origin of the closed-loop system is globally asymptotically stable.

The theorem provides simple design conditions of a robust stabilizing controller under the
simple assumptions (A.2)-(A.6). Note that the theorem guarantees that for the case rank(B) =
m < n the surface s = BT Pz = 0 is a sliding hyperplane that is reached in a finite time. The
design procedure can be easily extended to deal with parametric uncertainties in the matrix A,

that is when A (u(t)) € A := conv {4y, As,..., Ay, } where p(t) = [p1(t) pa(t) ...unv(t)}T are
the barycentric coordinates of A in A.

Corollary 4.3 [Hetel 2015¢] For ¢ > 0 and x € R™, let
B(z,c) :={y e R": |z —yll, <c}.

Consider the system
t=A(p)x+B(u+d)), (4.13)

where wu(-) is measurable, Assumptions (A.2)-(A.5) and the dual representation of the polytope
conv{V} in (4.11). Given 6 > 0,7 > 0, assume that there exists (Q, A, €) solution to the set of
linear matriz inequalities

Q=QT =0, A>0,

A;Q+ QAT — ABBT < -26Q, VjeT,, (4.14)
el T
=0, 4.15
o] (415)
1 =2 —~nBTy
2(1-p) ™ ;
L Oy >0, i €Ly, (4.16)
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Figure 4.2: Phase space for the closed-loop system in Example 4.4 with ||d|l < 0.01. Ellipsoid
in dotted-dashed line — 2. Solid black lines — limiting hyperplanes of C;_,)(K).

Then the origin x = 0 of the closed-loop system (4.13),(4.2) with T = Q~'B is locally asymp-
totically stable in the ellipsoid € (Q™',7) containing the ball B(0,cp) with cg = 1/\/e. Fur-
thermore, if rank(B) = m < n, the surface s = BTQ 'z = 0 is finite time reachable for any

z(0) € £(Q71,7).

The existence of a solution (@, A, €) to the LMI optimization problem inf € under the con-
straints (4.14)-(4.16), guarantees that any Filippov solution of the closed-loop system (4.1),
(4.2) (with T' = Q~!B), originating from & (Q‘l,’y) is exponentially converging to the origin.
By minimizing €, the size of the invariant ellipsoid is maximized. Note that without any loss of
generality we may always consider v = 1. If the LMIs (4.14)-(4.16) are satisfied for (Qo, Ao, €9),
then they are also satisfied for v = 1 with (Qo7v0, AoY0,€0). Given dpqz, the minimum p s.t.
P (dmaz) C conv {pV} can be computed from the standard optimization problem:

inf p s.t. hiy < p,Vy € vert {P (dmaz)}, i € Ip,. (4.17)

Example 4.4 Consider a system (4.1) described by

w3 oo b 9o {0 L )

with a =1, ||d||cc < dmaz = 0.01. The set conv{V} in (4.11) is characterized by hy = [—1 1], hy =
[1 1], ha=[0 —1/2].

Addressing the optimization problems (4.17) and inf € under the constraints (4.14)-(4.16)
with v = 1,8 = 0.25, leads to a control law (4.2) with T = PB and

3.25 0
P= [ 0 3.25}’
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which ensures the local (robust) stabilization in Qo = E(P, 1), containing the ball with the radius
cg = 0.55. For this example s = BT Px corresponds to the origin. Then the equilibrium point
1s finite-time reachable. Let us remark that the boundary of the domain of attraction is not
far from the unstable equilibrium points of the closed-loop system: —A~1Bvy = [1.5 — 0.5]7,
—A"'Buvg = [-0.5 1.5]7. Furthermore, for x(0) = [0.501 — 0.501]7, simulations with constant
sampling interval 41—t = 107°,Vk € N and dppaz = 0, illustrate an unstable system behaviour.
Note that ||z(0)||2 = 0.708, to be compared with cg < 0.55 for which local stabilization is ensured.
This gives an idea about the accuracy of the ellipsoidal estimation of the domain of attraction.
An illustration is provided in Figure 4.4. A simulation from the initial condition x(0) = [0.4 0]7
18 presented under arbitrary variations of the matched perturbation and with a sampling interval
of 1073.

Let us remark that for the system under study the matriz A is unstable. Therefore it is
1mpossible to apply the classical global stabilization control design techniques based on the existence
of a stable conver combination [Deaecto 2010, Bolzern 200/].

Assume now that the parameter a is time-varying in [0.97,1.03]. Let us consider a continuous-
time control design based on Corollary 4.3 for ||d||sc < dmax = 0.01. For v =1, solving the LMI
problem (4.14)-(4.16) (for the two vertex of the A matriz) while minimizing €, leads to a control
law of the form (4.2) with T' = PB and

033 0
P= [ 0 0.33}’

which ensures local stabilization of the continuous-time systems in Qo = E(P,1) for any ||d||« <
ez = 0.01 and any a(t) € [0,97,1.03].

4.4 LPYV case and Parameter Dependent Relay Control

The approach previously presented can be extended to case of Linear Parameter-Varying (LPV)
systems with the state-space realization:

&= A(p)r + B(p)u, (4.18)

where x € R™ is the state vector and u € R™ is the control vector, the matrices A € R"*™ B €

R™ ™ are polytopic matrices with the following form:
Ap(t)) = 32020 wi()Ai, B(u(t) = 3202 i) Bi, (4.19)
with Ay,...,An,, B1,..., By, being known constant matrices. In what follows, the vector
T
p(t) = [pat) o g, (1)

is a vector of real and known parameters which evolves piecewise continuously in the unit simplex
A,,,. Such models are interesting since they can be useful for absorbing locally the behaviour of
more complex affine nonlinear systems [Rugh 2000].

Consider that for each p € A,, the control u may only take values in a finite set which
depends on the parameter u. We define this set of finite values V), by:

Vi =Avi(p),i € In},vi : Ap, = R™, Vi € Iy. (4.20)
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We consider that conv{)),} is a non empty bounded set containing the origin in its interior for
any pu € Ay, . The objective is to find a Parameter Dependent Relay (PDR) control u = x(x, 11)
which locally stabilizes the system (4.18):

K(x,p) : R" X Ay, = V. (4.21)

Proposition 4.5 (adapted from [Delpous 2015]) Consider system (4.18) with the description
(4.19). Consider D C R™ a domain containing x = 0. Assume that there exists a control
u= K(x,p), with K : R" x A,,, — R™ such that K(x,u) € conv{V,}, Vu € A,,,x € D\ {0}.
Let V : D — R, be a continuously differentiable function such that

0<V(x), VaeD\{0}, (4.22)
ov
OV (Al + B K (e, ) < W (@), ¥ € Ay, 2 € D\ {0}, (4.23)
where W (x) is a continuous positive definite function on D. Then system (4.18) with the control:
u = k(z, ) € arg min 8—VB(/L)U, (4.24)
veV, O

is locally asymptotically stable when solutions are understood in the sense of Filippov. Further-
more, for any level set Ly (c) = {z € R" : V(z) < ¢} such that Ly (c) C D, the following relation
is satisfied for any Filippov solution xz(t) originating from the initial condition xq:

zo € Ly(c) = lim [|z(t)]| =0, (4.25)
t—o0
i.e. Ly(c) is an inner estimation of the domain of attraction.

The previous result uses the existence of any stabilizer K (z, 1) (possibly continuous) in order
to redesign a switching control x(x, u) which takes values only in the set V,,(z, 1). Note that the
switching control has at least the same guaranteed decay of the Lyapunov function as K (x, y).
The result provides a general theoretical framework for the design of switching controllers. In
the following proposition we will show how this result can be used in a constructive manner.

Considering that for all 41 € V,, conv{V, } is non empty and contains the origin in its interior,
remark that there exists a polytopic region:

Q=conv{q1,q2,...,qp} = {2 € R" : hjz < 1,i € Ipn, }, (4.26)

such that
Q C conv{V,},Vu € A,, and 0 € Int{Q}. (4.27)

Using the polytope Q one can adjust the design conditions to include an LMI based optimization
of the domain of attraction.

Proposition 4.6 [Delpouz 2015] Consider system (4.18). Assume that there exists Q = QT =
0,Y; e R™*" ¢ € In and a positive scalar 0 such that:

He{(A; + Aj)Q + B;Y; + BjY;} < =20Q, 1,5 € 1Ly,, (4.28a)
1 hY; . .

[* ’QJ] = 0,i €In,,j € Ly, (4.28Db)
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el 1
[* Q} = 0. (4.28¢)
Let
u=k(z,p) € arg m%}n 2TQ 1 B(p)v. (4.29)
veEVy,

Then the equilibrium point x = 0 of the closed-loop system (4.18)-(4.29) is locally asymptot-
ically stable. An estimation of the domain of attraction is provided by the ellipsoid £(Q~1,1)
containing the ball

B(0,Ve) = {y e R" : [|y[l, < v/e}

with e =1, i.e.
e

v2(0) € £(Q71,1), Jim [|z(t)[]> = 0.

Example 4.7 In order to illustrate the results presented in this section, we propose to show
simulations through a simple second order system so that the trajectories of the system can be
plotted in o two dimensional phase portrait. We consider the system:

z(t) = Apz(t) + Bo(z1(t))u(t), (4.30)
with v = (17 x3]7 in R?, u € R?, Ay € R?*? and By € R**? defined by

0 3 1+ 0.5sin(z1(t)) 0
Ag = L J ,Bo(a:1 (1)) = [ 0 1+0.5Sm(xl(t))} .

For each x1(t), the control u(t) is constrained to switch among four different values in the set
{R(z1(t))p,p € Va(v)} where Wa(v) = {u € R? : u; € {—v,v},i = 1,2}, v = 10. The matriz
R(x1(t)) is the rotation matriz defined by

R(e1(t)) = [ cos (1

t
—sin(z1(

) sin(z (1))
1) cos(zi (1)) } ' (4.31)

Considering as bounded time-varying parameters sin(z1), cos(x1), the system (4.30) may be
rewritten as an LPV system of the form (4.18) defined by:

#(t) = Az(t) + B(u(t))u(t) (4.32)
with A = Ag and B(p(t)) = Y2_, pi(t) B; = Bo(z1(t)), where

i (t) = 1-— Sir;(xl(t))’

05 0 15 0
Bl_{o 0.5]’ BQ_{O 1.5]'

The control u takes values in the finite set (4.20) defined by

_ 1+ sin(z1(t))

pa(t) 5

Vaoy = (viul0)).i € 1,4} = {R(@1 (1)), p € Wa(v)}. (433)

In order apply Proposition 4.6 we need to construct a polytopic region Q such that equation
(4.26) is satisfied.
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V2

vi(p) = R(z1)w o] A

qnN va(p) = R(zy)[v —v]”

\R(l’l) n

v3(p) = R(z1)[—v —o]T

Figure 4.3: Representation of control sets V), for the system in the simulation example.

Note that all squares defined by conv{V, )} are centred at 0 and have the same size. Thus
the disc of radius V' centred at O belong to all conv{V,u} (see Fig. 4.3). This disc can be
approzimated by the polytope Q represented in brown Fig. 4.3 for which the vertices q; are given

by
2
cos (7)
Giv1 =V ,i=0,...,p—1. (4.34)
sin (21—“)
P
Each face of the polytope can be characterized by its normal:
gi + gi+1

27 ’
1+ cos (7)

hi+1: iZO,...,p—l. (435)

For this example, to approximate the inscribed disc by a polytope Q we take p = 15. Choosing
a decay rate § = 4 and applying Proposition 4.6, the LMI solver returns the matrices QQ and
Y;, i € Io matrices:

43.17 —18.86 —59.53 21.82 —21.70  7.66
:|71:|: :|72:|: :| (4.36)

@= [—18.86 9.77 21.82 —20.88 7.66  —8.17

The Q matriz defines the parameter dependent relay control (4.29) and thus the switching
regions. These regions are plotted Fig. 4.4 as function of the states x1 and xo. On this figure,
r1,79,73 and T4 are the region for which the argument of the minimum is given for the control
mnput

v (1) = Rz () [v o],
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Figure 4.4: Representation of the switching regions, (the region r1 in dark blue, 79 in light blue,
rs in yellow and r4 in red).

and

respectively.

To illustrate the theoretical results, we compare the Continuous State Feedback (CSF) control
law

Km) =3 m¥iQ ', (437)
=1

with the PDR control (4.29). In the continuous case, the control input applied to the system
denoted by p in the description of the system is in R? but it has elements saturated in the interval
[—v,v]. The phase portrait of the states x1 and xo for both cases are plotted Fig. 4.5. On theses
figures, we have plotted in red the ellipsoid £(Q~1,1), characterizing the domain of attraction of
the system. The brown lines represent the hyperplanes hinQ_l =1.

The first simulation is executed while taking initial conditions outside the attractive ellipsoid.
On the figure, the initial condition is denoted by xo1. One observes that outside the attraction
domain, the closed-loop system does not converge to the origin. The second simulation is realized
with the initial condition xg o, near the domain of attraction, but outside. The figures show that
in this case, the trajectories are converging to the origin. Finally, the initial condition xo3 is
taken inside the domain of attraction. In this case the trajectories also converge to the origin.
For this example the attractive ellipsoid contains the ball ||x|2 < € with € = 1.28 and the initial
condition xo3 with ||xo 3|2 = 4.14. Note that ||zg1||2 = 7.07 and ||xoz2|l2 = 4.24, this gives an
idea about the conservatism introduced in the estimation of the domain of attraction.
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10
_— B(0,/€)
&QL)
hLY;Q7 =1

Simu 1

Simu 2

Figure 4.5: Characterization of the domain of attraction and simulation results.

The main advantage of the method is that it allows to optimize the design of nonlinear
switching surfaces while providing a quantitative guarantees in terms of domain of attraction
and performances. In Chapter 6, we will see how the proposed method can be applied to a
practical example of a stepper motor.
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Switched affine systems

Switched systems represent a very popular area in hybrid dynamical systems. Generic results
on this topic may be found in the book [Liberzon 2003a] and the survey papers [Shorten 2007,
Lin 2009, Bourdais 2007]. Among the different problems encountered in the context of switched
systems, in this chapter, we will focus on the problem of designing switching controllers. This
problem is very challenging for the case of switched affine systems where, generally, the different
subsystems do not share a common equilibrium point. Different stabilization solutions exist in
the literature based on the existence of stable convex combinations [Bolzern 2004, Deaecto 2010],
on optimal control methods [Seatzu 2006, Hauroigne 2011], or on the use of sliding modes [Sira-
Ramirez 1994]. A characterization of the set of attainable equilibrium points using quadratic
Lyapunov functions and conic switching laws has been provided in [Bolzern 2004, Deaecto 2010].

When dealing with the stabilization problem, the existing articles treat the global stabilization
case. However, one may encounter switched affine systems that may be stabilized only locally.
Consider system characterized by two vector fields,

filz) =3z +1, fa(x) = 2z — 1.

While global stabilization is not possible, local stabilization at the origin is possible for initial
conditions in the ball |z| < 1/3, by choosing fi(z) for z < 0, and fo(z), whenever z > 0. Such
systems cannot be considered using the existing methodology.

In what follows, we propose constructive methods for the derivation of state dependent switch-
ing laws that ensure local stabilization of switched affine systems at the origin?’. The main idea
is to reformulate the stabilization of switched affine systems as a classical stabilization problem
for nonlinear systems affine in the input. The method derives state dependent switching laws by
embedding, locally, the behaviour of a continuous controller. The classical restriction concern-
ing the existence of a Hurwitz convex combination may be easily avoided. With respect to the
existing results, the proposed methodology can be interpreted as an approach that uses convex
combinations that depend on the system state.

21The results presented in this chapter have been developed in collaboration with Ass. Prof. Emmanuel
BERNUAU.
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5.1 System description

Let a set of couples (A;,b;),i € Iy = {1,2,...,N} where 4; € R"™" b, € R", for positive
integers n, N. Consider the system

t=X(z)= A,i(x)m + bn’(ac) (5.1)

where K : R” — Zn represents the switching law. We assume that there exists

N
§* €Ay = {5_ (61,08  €RY: S 5 =1, 5i20,z’€IN}
i=1

such that » ;.7 07b; = 0. This is a necessary condition for the existence of an equilibrium at
the origin when solutions are understood in the sense of Filippov (see [Filippov 1988]). The goal
is to provide methods for the design of a local stabilizing switching law &.

The main idea of the work is to re-formulate the switched affine system (5.1) in a classical
nonlinear affine form

&= f(z)+ G(z)u

interconnected with a discontinuous control law w = k(z) that is constrained to take values in a

finite set of vectors
V= {vy,vg,...,on} C RN L

We propose such a system re-formulation in what follows. Furthermore, we show that the
obtained nonlinear affine system has nice properties: if there exists a classical continuous feedback
k¢(z) such that the system

&= f(z) + G(z)k(z)

is (locally or globally) stable, then there exists also a local discontinuous stabilizer, k(x), taking
values in V, and in extenso, a switching law  for the switched affine system (5.1)

5.2 Main results

In the following proposition, system (5.1) is rewritten in a classical nonlinear affine form inter-
connected with a discontinuous control law.

Proposition 5.1 [Hetel 2015a] Consider system (5.1), §* € An such that Z;Vﬂ 65bj = 0 and
the notations m = N — 1,
M = [Lnxm Omxi] € R™N.

For ;,i € Iy, the vertex of Ay, define the set
V:{Ui Z:M(wi—é*), iEIN}.

The switched affine system (5.1) is equivalent to the interconnection between the nonlinear affine

system
&= H(z,u) = f(z) + G(x)u, ueR™, (5.2)

and the control law

u=k(z), k:R" =V (5.3)
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with N
f(x) = A(6)x = Z 5T Az,
G(z) = [gl(a:) g2(z) ... gm(a:)] ,
gj(z) = (4; — An)z + (bj —bn),j € I,
and

k(a:) = ’U,{(x). (5.4)

We may remark that designing a switching law o leads to finding a discontinuous control law
k:R™ — V, such that system (5.2) with the control u = k(z), is locally asymptotically stable.
As follows we show how the existence of a continuous control u = k¢(x) for system (5.2) can be
used in order to derive a switching law k(z) for system (5.1) (or equivalently a discontinuous
control (5.4) for the interconnection (5.2), (5.3)).

Theorem 5.2 [Hetel 2015a] Consider the switched affine system (5.1) and the affine model
(5.2). Assume that:

1. there exists §* = [07 &5 ..., 05T € Ay with 67 > 0,i € Iy such that Zf\il 07b; = 0;

7

2. system (5.2) is continuously locally stabilizable at the origin by u = k°(x), with k(0) = 0.

Then there exists a C*° Lyapunov function V(x) defined on some ball B(0,n), n > 0, V(0) =
0,V (z) > 0,Vz # 0, and a measurable switching law

k(z) € arg min(VV (x), A;x + b;) (5.5)
i€IN
such that system (5.1), (5.5) (or equivalently (5.2), (5.3) with k(z) as in (5.4), (5.5)) is locally
asymptotically stable at the origin.

The proof of Theorem 5.2 is constructive in the sense that if the affine nonlinear system
(5.2) is stabilized by a controller k¢ and admits a (local) Lyapunov function V, then the original
switched system (5.1) can be (locally) stabilized by a switching law of the form (5.5) obtained
based on the same Lyapunov function V. With respect to the classical convex combination
approach [Bolzern 2004], [Deaecto 2010] the method that we propose can be interpreted as an
extension where we look for a locally stable state dependent convex combination, with barycentric
coordinates defined by

(5@(.73) = 5: + ]{ZZC(JJ),’L €In_1,

instead of a constant convex combination, with constant barycentric coordinates ¢* (as in [Bolz-
ern 2004], [Deaecto 2010]).

Example 5.3 (numerical illustration). Consider a system (5.1) described by the following ma-
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(w1 -

Figure 5.1: Hlustration of the phase plane for the closed-loop switched affine system in Example
5.3: dotted line - border of the set where k°(x) € conv {V}; dashed line - a level set of V(z);
dash-dotted lines - switching surfaces (VV(z),(A; — Aj)x +b; —b;)) =0, i,j € In. k(x) =0 -
value of switching function in different regions of the state space.

trices:
0 2 360
A1A3_[2 —66]’b1_b2_[ 0 }, (5.6)
0 2 360
Ay = Ay [2 54},53—174—{0]’ (5.7)

For 6F = 1/4, i € Ty, we have 3.i_, 87b; = 0. The obtained system (5.2) is described by
. o 2
A=y 2 5.9
91(x) = ga2(x) + g3(x),
—720 0
The matriz A(6*) is not Hurwitz. Let
Ko(x) =1/120[0 a1 223]"
The obtained closed-loop system, H(x,k°(x)), has the form

T, = —6x1 + 229 (59)
By = 2wy — 6z — 215 (5.10)

106

© 2017 Tous droits réservés. doc.univ-lille1.fr



© 2017 Tous droits réservés.

HDR de Laurentiu Hetel, Lille 1, 2017

5.2. Main results

The stability of the closed-loop system can be shown using Krasouskii’s method [Slotine 1991].
The method consists in using

V(z) = HY (2, k°(x))H (2, k¢ (z)) = (=621 4 222)? + (221 — 629 — 223)2
as a candidates Lyapunov function and checking whether the Jacobian matrixz

PR

satisfies the relation

JT(x) + J(x) <0

in some neighbourhood of the origin. For system (5.9)

—12 4

TH@) + @) = | " 92

<0 (5.11)

for all x € R™. Then the closed-loop system & = H(x,k(x)) is asymptotically stable. Since the
conditions of Theorem 5.2 are satisfied, the function V(x) can be used for constructing a switching
law (5.5) that ensures the local stabilization of the switched affine system. An illustration of the
phase plane for the closed-loop switched affine system is provided in Figure 5.1.

The main advantage of the proposed method is the fact that the difficult problem of existence
of a stabilizing switching law for the switched affine system is reduced to the classical stabilization
problem of a nonlinear affine system (5.2), on which a very large variety of control design methods
are possible.

Example 5.4 (stabilization based on the linearized model). As follows, simple stabilization con-
ditions are given using the local linearized model of system (5.2). Consider the notation

B=1[by—by by—by ... by_1—bn]. (5.12)
System (5.2) can be re-expressed as

z = A(6")r + Bu+w(z,u), (5.13)
w(z,u) = D(u)zx (5.14)
where w(x,u) is obtained from w(z,u) = (G(z) — B)u and

N-1

D(u) =Y (Ai - Ay)u;. (5.15)

i=1

Assume that the pair (A(6*), B) is stabilizable for some 6* € Ay with 67 > 0,i € Iy. Then there
exists a gain matriz K and functions V(z) = 27 Pz, W(z) = 27 Qz, P,Q = 0, such that

(VV(x), (A(0") + BK)z) < =W (x). (5.16)
The derivative of the function V' along (5.13) satisfies

(VV(x),(A(0*) + BK) z + w(z, Kz))
< —W(z) + 227 Pw(z, Kx). (5.17)
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Let us remark that for any p > 0 there exists r > 0 such that ||w(x, Kx)|2 < pllz|2 for any
|z|l2 < 7. Then
! Pu(z, Kx) < p|| P22z,

for all ||x||2 < r, which leads to

(VV(x), (A(6*) + BK) z + w(xz, Kx))
< = (€igmin(Q) = 2p[1Pll2) |zl (5.18)

for all ||z||2 < 7, that is the state feedback w = Kx ensures local stabilization of system (5.13) for
p chosen such that p < 1/2€ig,,:, (Q)/||Pll2, where e€ig,,;:,(Q) denotes the minimum eigenvalue
of Q. Applying Theorem 5.2, one can conclude that the switched affine system can be locally
stabilized. The obtained switching law has the form

k(x) € arg min z7 P(A;z + b;). (5.19)
€N
However, differently from [Bolzern 2004], [Deaecto 2010], A(6*) is not required to be a Hurwitz
matriz. For local stabilization we only need the pair (A(6*), B) to be stabilizable.

The existence of a continuous stabilizing feedback k¢ for system (5.2) is not very restrictive.
In fact, for nonlinear affine systems such as (5.2), when the system can be stabilizable at the
origin (in the sense of Filippov solutions) by means of a locally bounded, measurable feedback
u = kb(x) such that limo €SS SUP| | <e |kb(2)|| = 0, there exists also a continuous stabilizer
u = k(x) for the same system (see [Bacciotti 2005], page 61). Furthermore, the non-existence
of a stabilizing feedback for system (5.2) can be expressed as a certain topological obstruction.
For the necessity of existence of continuous stabilizer k¢ we point to the classical Brockett test.
For the more general case of locally bounded, measurable stabilizers k, necessary condition may
be found in [Ryan 1994]. Since for each subset &/ C R™ and each x € R™, system (5.2) satisfies

H (x,conv (U)) = conv (H (z,U)), (5.20)

a necessary condition for the existence of a locally bounded, measurable feedback v = k(z) which
stabilizes the system (in the sense of Filippov) is that for each € > 0 there exists A > 0 such that

VyeB(0,\), 3ze€B(0,¢),3 uecR™ such that y = H(x,u),

where B (z,c) denotes the n dimensional open ball in R™ centred on = with radius ¢ > 0. This
may be useful to determine the existence of stabilizing switching laws for the original switched
affine system. This implies, for example, that switched affine systems for which A(§*) = 0
whenever Zfil 0xbi = 0 and rank (G(x)) = m < n cannot be stabilized by a static switching
law x(z) if solutions are understood in the sense of Filippov.

Example 5.5 stabilization obstruction for switched affine system. Consider a system affine
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system with

0 0 0.5

Al=—A=|0 0 0|, b =-bs=|05], (5.21)
05 —05 0 0
0 0 0 —0.5

Ay=—As=10 0 0|, bo=—b3=]05]. (5.22)
05 0.5 0 0

For any §* € Ay such that Z?:l b0 = 0 we have A(6*) = 0. The model (5.2) is characterized
by g1(x) = ga(x) + g3(x), g2(x) = [0 1 ml]T ,g3(x) = [1 0 —xQ]T. This leads to

1 = uitus (5.23)
Ty = up+ug (5.24)
g3 = (u1+ug)rr — (u1 + ug)ws (5.25)

where the reader may recognize a classical non-holonomic integrator (see [Bacciotti 2005], p. 55)
for which no point x of the form x = (0 0 €)', € # 0, belongs to the image of H. We conclude
that there is no switching law k(x) which makes the origin of the switched affine system locally
asymptotically stable (in the sense of Filippov solutions).

5.3 Numerical issues

In practical applications it is of interest to provide numerical tools for the design of switching
laws. For the system under study, we may be interested in optimizing the domain of attraction,
the speed of convergence, etc. Here we present simple LMI based criteria for the design of a
stabilizing switching law which optimizes an ellipsoidal estimation of the domain of attraction
for given decay rate.

Consider the set of allowable control values V. The set conv {V} is a convex polytope. It can
be described by a finite number N, of vectors r; € R™,i € Iy, such that

conv{(V}={ueRY :vfu<1ieIy}. (5.26)

Proposition 5.6 [Hetel 2015a] Consider the switched system (5.1), the equivalent represen-
tation (5.13) with controls u restricted to the set V and the polytope (5.26). Assume that
0 > 0,¢ € In. Given tuning parameters x,c > 0 assume that there exists Q > 0,0 > 0 such that

(A(6*) + D(v:)) Q + Q (A(*) + D(v;))" —0BBT < —2xQ, (5.27)
1 € In,
[CII é] >0, (5.28)
and Vg
[gBTj 0 } » J €IN,. (5.29)
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Then the switched system (5.1) with the switching law

k(x) € arg min 27 Q7 (A;x + by) (5.30)
€N

18 locally asymptotically stable at the origin. Furthermore, the domain of attraction includes the
ball

B(0,1/ve) = {y e R": |lyll2 < 1/V/c}

and there exists a positive scalar C such that ||x(t)||3 < Ce=2Xt||x(0)||3 for any z(0) € B(0,1//c).

The feasibility of the LMIs (5.27),(5.28),(5.29) guarantees that any system solution originat-
ing in the ball B(0,1/1/c) converges to the origin with a decay rate x. The size of the domain of
attraction can be optimized by considering the optimization problem

inf ¢ under the constraints (5.27),(5.28),(5.29), (5.31)

which is a standard optimization problem. The LMI criteria (5.27),(5.28),(5.29) represent suf-
ficient condition for local stabilization in a domain that includes a prescribed ball B(0,1//c).
The set of LMIs implies that the local linearised model at z = 0 is stabilizable. The method is
based on robust control arguments, in the sense that the term w(z,u) in (5.13) is treated as a
perturbation. This aspect may induce some conservatism in the design. Additional conservatism
in the estimation of the domain of attraction may also stem from the choice of quadratic candi-
date Lyapunov functions. In terms of computational complexity, the approach requires solving

N + N, + 3 LMIs involving 0.5(n? + n) + 2 variables.

Example 5.7 LMI stabilization. Consider a switched affine system described by the matrices:

-3 0 0 11 0
Sl AR R R R R A

For &* = [2/3 1/3]T, Z?Zl 07b; = 0. However, A(0*) is not Hurwitz therefore the ezample
cannot be treated using the global stabilization approaches in [Bolzern 2004], [Deaecto 2010].
Using the formulation (5.13) and solving the optimization problem (5.31) for x = 0.25 leads to a

switching law of the form (5.30) with

C[287 —362] .
©= [—3.62 17.45} <10 (5.32)

which guarantees local stabilization Yz (0) € B(0,0.14).
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Applications

In this chapter we will present two experimental applications of the methodology proposed in
Chapters 4 and 5. First, results concerning the control of a Permanent Magnet Synchronous
Motor will be presented, based on the use of LPV models. Next, a methodology of control
design a multi-level power converter will presented using similar nonlinear models as in Chapter
5.

6.1 Control of a Permanent Magnet Synchronous Motor

As follows we illustrate the proposed switching control methodology for the case of a Permanent
Magnet Synchronous Motor (PMSM)?2. Indeed, PMSM are usually controlled by relays and thus
only a finite set of control values is available. However in most of classical control design methods
the use of averaging and of PWM ignores the relay nature of the actuator [Bodson 1993, [Sira-
Ramirez 2000]. Here we propose a direct relay control which may use the advantages of the
switching actuator. The LPV framework encompasses the PMSM model. The obtained switching
surfaces depend in a nonlinear manner on the motor speed.

The equations (6.1) give the standard PMSM model in the phase (or winding) variables
[Marino 1995]:

LCZ—: = vq — Riy + KQsin(ny),
dis ,
o = U Rig — KQcos(nyb), (6.1)
dQ2 . .

JE = K (igcos(nyf) —iqsin(nyd)) — fufd — 7,

where v, and vg are the voltages applied to the two phases of the PMSM, i, and ig are the two
phase currents, L is the inductance of a phase winding, R is the resistance of a phase winding,
K is the back-EMF constant (and also the torque constant), n, is the number of pole pairs (or
rotor teeth), J is the moment of inertia of the rotor (including the load), f, is the coefficient
of viscous friction and 7 represents the load torque. The variable 6 is the angular position of
the rotor, Q = df/dt is the angular velocity of the rotor. While for particular applications the
variable 8 can be included in the state vector, here we consider only the speed control, justifying

?2The results presented in this section have been developed in collaboration with Romain DELPOUX (ATER
at LAGIS) and Ass. Prof. Alexandre KRUSZEWSKI.
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the fact that 6 is not in the state vector. We are interested in the stability of the velocity to a
constant value. In this case the position € is time varying. For this reason 6 is not included in
the state vector.

The non-linear state space representation of the system of equations (6.1) is given by:
x'ag(t) = f(xag,t) + Bva,@(t) + Dw(t), (6.2)

where azgﬁ = [ia ig Q], vgﬁ = [va v[g] and @ = 7. The function f(zgs,t) is defined by:

R, K :
—Fia(t) + T t) sin(ny0 (1))

=

f(xap,t) = -7 5(t) — %Q(t) cos(npf(t)) )

(75(1) cos(my (1)) — (1) sn(my(1))) — L202()|

~| =

O =

B = and D =

o O

o
<o O

Considering that each motor phase is actuated via commutation, the control vector v,g belongs
to the set Wo(V), where Uo(V) = {u € R? : w; € {~V,V},i = 1,2} and where V represents the
maximal voltage. In the phases frame the signals i, and ig vary at n, times the frequency of
rotation. This high frequency problem is alleviated by the use of the direct quadrature (d — q)
transformation, also known as the Park transformation [Park 1929]. This transformation changes
the frame of reference from the fixed phase axes to axes moving with the rotor. Equation (6.3)
gives the transformation performed to obtain the rotating frame:

cos(npd(t)) sin(npe(t))}
—sin(nyf(t)) cos(ny0(t)) |’

0T ooy [ =0 ] wa [ 50 ] —moen [ 0]

The state space representation is then given by:

Rio(0) = |

:j?dq(t) = Adq(Q(t))l‘dq(t) + Bvdq(t) + Dw(t), (64)

where mgq = [id 1q Q], in; = [vd vq} , and,

Ag(Qt)) = |—n,0(t) -8 K

0

=

The matrices B and D remain unchanged. Consider that Q(¢) ranges between known extremal
values Q(t) € [©,9Q]. In this frame the PMSM can be described using an LPV state space
representation. The state space representation of the system depends linearly on a vector of
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Yq
[V V}T A Vo
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v v
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Y
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Figure 6.1: Finite set of control in the fixed frame and in the rotating frame.

time-varying parameters: €2(t). The model may be represented as follows:

{ Tag(t) = A( () waq (t )+Bvdq(t)+DW(t),
All) = X ai®)Ai, Vi, ait) 2 0,50, ai(t) = 1,

where Ny = 2, with 4y = Ay, (), A2 = A4,(Q). The controls vy, (t) are defined for all § € [0, 2]
by:

(6.5)

Vaq(t) = K(xqq(t),0(t)), £ : R" x [0,27] — R™. (6.6)

Note that the control vg4,(t) is a PDR control which takes values in a finite set of vectors de-
pending on 0: {u € R? : Jv € Wy(V),u = R(A(t))v}. The input vector in the different frames is
represented in Fig. 6.1. For a given V, the objective is to determine the switching surfaces in
the state space, which ensure the closed loop stability of the system (6.5) with the control law
(6.6).

The method proposed in Proposition 4.6 has been applied to a stepper motor benchmark at
Ecole Centrale de Lille (see Fig. 6.2). The parameters of the motor with coils in series have
been identified using the offline procedure described in [Delpoux 2014], leading to L = 9mH,
R =3.01Q, K = 0.27TN.m.A~! and J = 3.18.10"*kg.m2. The number of pole pairs is n, = 50.
The input voltages v, and v, of each coil are delivered by two D/A outputs of the dSpace card
and amplified by two linear power amplifiers (this means that the controls are directly applied
to the coils without a PWM implementation). The currents i, and i, are measured using Hall
effect sensors with a precision of 1% of the nominal current I,, = 3A. The power supply provides
a maximum voltage vVpmg, = 20V and iy, = 3A. The sampling period for this experiment is
constant and equals to 10™%s for the control.

We designed a control law where we consider that only four control inputs are available. The
control design is considered with the assumption that there is no external torque (i.e. 7 =0). An
integral action is implemented with ¢ the ouput of the integrator ((0) = 0)) to ensure tracking
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Figure 6.2: PMSM test-bench located at Centrale Lille.

performance with respect to a reference €2,.¢. The integral action given by:
(=Q—Qus=Cr—Qe;,C=[0 0 1], (6.7)

where ( is the output of the integrator ({(0) = 0). The combination of the state space represen-
tation (6.4) and the integral action without torque can be re-written as:

[xgq] _ {Adégﬂ) 8} |:-qu:| + {ﬂ u— m Qs (6.8)
Y TEm Y F Y

where u is constrained to switch among four different values in the set {R(0)p,p € ¥o(V)}. The
matrix R(0) is defined by equation (6.3). Two different control strategies are proposed to show
the experimental behavior of the PDR control applied to PMSM. Firstly, we are interested in the
motor stabilization starting from non-zero initial conditions, next a velocity tracking strategy is
proposed.

The stabilization is realized on the PMSM starting from different initial conditions to the
origin. Here the PDR control is proposed based on Proposition 4.6 applied to model (6.8) with
Qyep = 0. It leads to a control law of the form

: T H-1
Vap = ar min =z Q R 0 P
p & pEWL(V) (=9)

where
29.6 —4.8 94 —-0.012

0= —4.8 26.6 —15.9 0.038
N 9.4 —-16.0 2084 2.8
—-0.012 0.038 —-2.8 0.069

To compare the experimental behavior of the PDR control with the classical Continuous State
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- PDR
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Time (in s)
Figure 6.3: Comparison between the CSF and PDR control of the motor velocity stabilization.

Feedback (CSF) control,
vag = R(=0)Y (2)Q "2,

(obtained from (4.37)) starting from non null initial velocity, we have plotted in Fig. 6.3 the
velocity evolution for three different cases (Open Loop, CSF and PDR). This control law is
applied to the system by using linear amplifiers, without any PWM module. Knowing that
the PMSM is a stable system, it is important to show that the stabilization performance are
better than the open loop performance. For this reason, the blue curve represents the open-
loop stabilization. The red line represents the CSF while the green one represents the PDR.
The figure shows that the closed loop performances are better than the open loop performances
(better settling-times and transient responses). The closed loop strategies show similar settling
time given that the PDR uses only 4 inputs control values.

We compare the behaviour of the CSF and PDR for the tracking of a slowly varying velocity,
although the proposed theoretical developments do not cover this case. The velocity profile is
chosen according to industrial test trajectories [Hamida 2013]. The robustness of the proposed
approach is also tested by applying an external torque to the motor produced by a Electromag-
netic Particle Brake. Figure 6.4 exhibits the comparison between the CSF and the PDR when
no external torque is applied to the motor.

Without additional torque the velocity tracking is accurate in both cases: it shows that
at steady state the desired trajectory is tracked with a precision around 1rad.s~' for the PDR
control. It must be noted that chattering phenomena appear in the PDR case leading to a sightly
higher tracking error. However, in this case only four control inputs are used for the control.

Figure 6.5 shows the experimental result of the velocity tracking similarly to the previous
figure. At time ¢t = 7s an unknown external torque is applied to the motor using an Electromag-
netic Particle Brake. On this figure, the plot of the tracking errors shows that in the presence of
external torque, the PDR is more robust to disturbances than the CSF. Indeed the perturbation
is rejected only by the PDR control. This results is more clearly illustrated on Figure 6.6, where a
focus on both trajectories tracking is represented. We can see that the PDR control (represented
in red) provides a better velocity tracking performance. Moreover, for the CSF case, when the
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Figure 6.4: CSF and PDR experimental results without pertubations.

load torque is applied, the power amplifiers are in saturation.

6.2 Control of a multi-level power converter

Multi-level multicell power converters (also called flying capacitors), appeared at the beginning
of the 1990s [Meynard 1991]. They are based on the association in series of the elementary
cells of commutation with passive storage elements controlled by switches (transistors, diodes).
During this last decade, these systems become more and more attractive to industrial applica-
tions, especially in high-power applications [Meynard 2002]. Indeed, the harmonic contents of
the output signal are improved compared to the classical two levels converter technology us-
ing the same switching frequency [Rodriguez 2009]. Furthermore, this structure enables the
reduction of the losses due to commutations of power semiconductors while allowing low cost
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Figure 6.5: CSF and PDR experimental results with pertubations.

components [Bethoux 2002]. For multi-level power converters, the classical methodology lies
on the use of average models [El Magri 2010, Bhagwat 1983], and continuous control design
techniques [Gateau 2002, Sira-Ramirez 1994, Olalla 2011, Amato 2009] implemented via Pulse-
Width-Modulation (PWM). Direct control techniques, addressing explicitly the design of binary
signals, have been proposed in [Bethoux 2002], where a study of limit cycles was proposed,
in [Hauroigne 2011], where optimal control techniques were given, and in [Gorp 2011] where
sliding mode controllers are used.

As follows, we present an application of the proposed switching control methodology to the
case of a multi-level power converter (also called flying capacitor)?3.

Figure 6.7 depicts the topology of a converter with p independent commutation cells asso-
ciated to an inductive load. It consists of (p — 1) floating capacitors. The current flows from

Z3The results presented in this section have been developed in collaboration with Prof. Mohamed Djemai and
Ass. Prof. Michael DEFOORT.
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Figure 6.6: Velocity zoom during the perturbation.

the source F toward the output I through the different capacitors according to the switches
configuration. The dynamics of the converter, with a load consisting in a resistance R and an
inductance L, can be expressed by the following equations:

v, I .
7 - 5(Ui+1 — ;)i € Iy, (6.9)
(2
dI R E 15
i=1

where I is the load current, C;,% € Z,_1 represent the value of capacitors, V,,,i € Z,_; is the
voltage of the i—th capacitor and E is the voltage of the source. Each commutation cell is
controlled by the binary variable w; which is constrained to take values in the set {0,1}. Signal
u; = 1 means that the upper switch of the :—th cell is “on” and the lower switch is “off” whereas
u; = 0 means that the upper switch is “off” and the lower switch is “on”. Model (6.9),(6.10) has

cell p with cell 1 with
control input s, control input s
' L . : ;
: VC -1 V. V,
WE |==C1 Y |==CG " =G
| % W B A
S

Figure 6.7: Flying capacitor converter associated to an inductive load.
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as p state variables (the current I and the p — 1 capacitor voltages V,, i € Z,_1) and p control
variables u;,¢ € Z,. Note that due to the presence of products between state variables I, V,,
and inputs u;, model (6.9),(6.10) is a nonlinear ordinary differential equation with a bilinear
structure. Consider the generic bilinear model

= f(z,u) = on—i—Z(Aim—i—bi)ui

i=1

(6.11)

where z € R", Ap, A; € R™*™ b € R", i € T, = {1,2,...,m} and where the system input
w = [u1,us, ..., un]" C R™ is constrained to take values in the discrete set V = {0,1}"™. The
multi-level power converter can be represented in the form (6.11) by considering a state vector
v= Vo Voy oo Ve 1 ]7. As an example for a converter with p = 3 cells, the corresponding
matrices are as follows

00 0 0 0 —1/Cy 0
Ag=100 0 |,A4=|0 0 0 |,b=]|0,
0 0 —R/L 1)L 0 0 0
0o 0 1/ 0
Ay=1 0 0 =1/Cy|,bo= 0],
~1/L 1/L 0 0
0 0 0 0
As=10 0 1/Cy|,bs=1]| 0 |,
0 —1/L 0 E/L

where z = [Vcl Ve, I]T. To define control objectives, it is important to highlight that, due
to the industrial production standards, it is necessary to ensure a balanced distribution of the
capacitor voltages [Gateau 2002]. Increasing power of static converters is generally obtained by
increasing the voltage due to efficiency requirements. Multi-level converters enable to split the
voltage constraints and to distribute them on several switches of smaller ratings in series. The
equilibrium state of the p cells converter is reached when the voltage applied across the blocking
switch of any cell (i.e. the differences of capacitor voltages V;, — V., ,) takes the same value
given by E/p. Under these conditions, the reference voltage of the i—th capacitor ¢ € Z,,_ is
given by V! = i%. The control objective is to define the binary switching functions u; € {0, 1},
i € I, such that the multicellular converter ensures:

1. the stabilization of I to a desired current of the form I*(p) = %p, where p € (0,1),

2. the balanced distribution of the capacitor voltages across each cell, i.e. Vi € 7, V., is
stabilized toward V.,

3. the robustness with respect to potential uncertainties in the load parameters R and L.

Thus the control of the multi-level power converter leads to the problem of designing a binary

control law for a bilinear model.
For the generic model (6.11), this leads to designing a state feedback binary control
u=k(z), k:R" = V. (6.12)

The problem of interest is the (local) stabilization of the Filippov solution of (6.11) via the
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control law (6.12) to a point in the set of equilibria:
X ={2z" €R":3s" € conv{V} s.t. f(z¥,s") =0} (6.13)
parametrized by inputs in conv {V}.

6.2.1 LMI design for a generic bilinear model

As follows, we propose an LMI control design solution for a generic bilinear model with binary
control law. For s € R™, z* € X, consider the following notations:

A(s) = Ao+ ) _ Aisi, (6.14)
=1
B(a*) = [Bl(x*) bo(2) . ..Bm(x*)} , bi(at) = A + bi,i € Ty, (6.15)
and the sets of vectors
Hy={heR™:hj=0,i#j, hj=1/s}, j € In} (6.16)
Ho={heR™:h;=0,i#j, hj=1/(1-5}), j €Ln}. (6.17)

Proposition 6.1 [Hetel 2016] Consider system (6.11), * € X and s* € conv{V} such that
flz*,s*) =0. Given § > 0, let there exists (X,1,¢€), X =0, ¥ >0, € > 0, solution to the set of
LMIs

el 1
[* X} >0, (6.18)
A(0)X + XA (0) — ¢ B(z*)BT (z*) < —6X,0 €V, (6.19)
1 LhTBT (")
L X =0, he Hy UH_. (6.20)
Consider the switching law k(z) = [k1(z), K2(2),..., Km(z)]

{1}, (z—2)TT (A* +b;) <0,
ki(z) € ¢ {0,1}, (x —2*)TT (A;2* +b;) =0, (6.21)
{0}, (x—a%)TT (Aiz* +b;) >0,

fori=1,...,m, where I = X~'. Then system (6.11) with the switching law (6.21) is locally
exponentially stable at the equilibrium point x = x*. Furthermore, an estimation of the domain
of attraction is given by the ellipsoid

E@, X N1 ={zeR": (z-2") X Yz —2") <1}
containing the ball B(x*,C) with C = 1//e.

The stabilization of the bilinear system (6.11) is expressed as an LMI optimization problem.
The existence of solutions to the set of LMI conditions (6.18)-(6.20) can be verified using convex
optimization software in Matlab. Minimizing e such that a solution exists to the set of LMI
conditions allows to design switching laws (6.21) while maximizing the size of the domain of
attraction. The parameter §, used in the set of LMIs, corresponds to the desired system decay
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6.2. Control of a multi-level power converter

Figure 6.8: Experimental setup at LAMIH, Valenciennes: a 4-level 3-phase flying capacitor is
adapted for illustrating the theoretical results. The experiments are performed using the first 3
cells of Leg 1.

rate inside the ellipsoidal estimation £(x*, X! 1) of the domain of attraction. The practical
implementation of the obtained control law is quite simple since one only needs to compute
the signs of (z — 2*)TT (A;z* +b;),4 = 1,...,m. The main intuition behind the control law
(6.21) is that the control signals are chosen such that the gradient of the Lyapunov function
V(z —2*) = (z — 2*)T X}z — 2*) is minimized.

6.2.2 Experimental results

Experiments have been carried out to illustrate the proposed binary controller, applied to a 3
cells multi-level power converter associated to an inductive load (an illustration is provided in
Figure 6.8). The objective is to control each commutation cell such that the load current and the
floating capacitor voltages are stabilized toward different equilibrium values. The LMI control
design problems have been solved numerically using Sedumi as a numerical solver in Matlab.
Hereafter, it will be shown that the proposed binary controller guarantees the stabilization of
the closed-loop system even in the presence of parametric uncertainties.

To test the developed control strategy , a prototype of the topology in Figure 6.7 is built based
on discrete insulated-gate bipolar transistors (IGBTs) SKM100GB12V. The relevant nominal
bench parameters are p = 3, C; = Co = 720.1075F. The load is composed of an inductance and
a resistance with nominal values Ry = 2002, Ly = 1H. The control algorithm is implemented
on a floating point DSP (TMS 320 F 240). An interface card allows to protect, by insulation,
the DSP of the power electronics. The Dspace card DS1103 drives the peripheral devices (i.e.
digital to analog devices, analog to digital devices, etc.). In order to obtain the best resolution,
the minimum sampling period for the Dspace has been chosen, ie. Tiomp = 7.107%s. The
measurement part is composed of voltage sensors to measure the voltage across the floating
capacitors and a current transductor to measure the load current. A low pass filter with time
constant 7 = 5 x 10~%s and unitary gain has been added. The source voltage E is set to 30V.
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size or error ball
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Figure 6.9: (a)-(b) Radius C of the stability domain as a function of the percentage of uncertainty
for I* = 0.1A4 (a) when uncertainty affects the resistor R; (b) when both the resistor R and the
inductance L are subject to uncertainty.

Applying the methodology based on convex optimization and LMIs, one can design the
control laws that ensure local exponential stabilization of the system for several operating points
of the form [V* V2 I*]. For example, let us consider the equilibrium point which consists of the
desired load current I* = 0.1A and the desired floating capacitor voltages V = %i, i€ {1,2}.
It corresponds to the equilibrium point of (6.9)-(6.10) for an “averaged” input s; = p =~ 0.66.
We used an extension of Proposition 6.1 for systems with uncertain parameters (Proposition 2
from [Hetel 2016]). The set of LMI stabilization conditions are satisfied with a decay rate 6 = 0.01
and an uncertainty of 10% on the nominal values of the load (R € [180,220], L € [0.9,1.1]). A

stabilizing switching law (6.21) is obtained with

0.5778 0.0156 0
I'=X"'= {00156 05778 0o . (6.22)
0 0  822.0203

Note that by construction, switching laws of the form (6.21) satisfy the transition constraints
classically encountered in multi-level power converters. On the intersection of switching hyper-
planes, the usual adjacency can be ensured by using the automaton described in [Gorp 2011].
Applying Proposition 6.1 for the nominal values of the load, with X fixed as in (6.22) and a decay
rate 6 = 107%, the obtained control law can be shown to ensure local stabilization in the ball
B(z*,C) with C = 150.7. Proposition 2 from [Hetel 2016] can also be used with the obtained X
to compute the value of C' for various values of uncertainties and illustrate the relation between
the estimation of the domain of attraction and the robustness of the obtained control law to
parametric uncertainties (see Figure 6.9). Furthermore, it is used to shown local stabilization for
a set of equilibrium points corresponding to a uniform grid of 11 reference currents I* in the set
[0.05,0.15].

Hereafter, the experimental results obtained with a switching law (6.21) with T" defined in

(6.22) are presented. The control signals are chosen according to the theoretical developments

in Section III, with switching surfaces (characterized by I') designed to ensure the steepest
decent of the Lyapunov function V(z — 2*) = (z — 2*)T X ~!(x — 2*). Figures 6.10 (a),(b) show,
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Figure 6.10: Experimental results using the proposed binary control without perturbation. (a) -
Load current I (b) - Internal voltages V., and V,.
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Figure 6.11: Experimental results using the proposed binary control with perturbations in the
load. (a) - Load current I (b) - Internal voltages V., and V,.

respectively, the load current I, the internal voltages (V¢,, V,), and the control signals (s1, s2, $3)
using the obtained controller when no parameter uncertainty is considered. The control law
ensures the stabilization for several equilibrium points corresponding to a reference current I* in
the interval [0.05,0.15]. However, no overshoot constraints are included in the design procedure,
which explains the peak at approximatively 2 seconds. The chattering phenomena in the steady
state is mainly due to the sampled-data implementation of the binary control law.

In order to show the robustness of the proposed controller, the value of the load resistance
has been tested for various configurations of the load. Figures 6.11 (a),(b) illustrate the system
evolution with R = 0.6 - Ry = 12082 (40% of uncertainty) and an inductance L = 0.8- Ly = 0.8H
(20% of uncertainty). Note that the proposed binary controller manages to accomplish the
control objective with good performance inspite of parametric variation with amplitude larger
than the ones that have been shown in theory. In fact, for this configuration of perturbation
on the load it can be shown theoretically the asymptotic stability for a tight grid of I* in the
interval [0.07,0.11]. In practice, it is used for reference currents I* in [0.05,0.15]. This shows
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that the proposed control design method has potential. However, it also shows that there is still
place for improvement in what concerns the theoretic estimation of the rage of uncertainty for

which the closed-loop system is stable.
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Conclusion

In this part we have presented several contributions to the design of switching controllers for
systems where the control signal is constrained to a finite number of values. Control design
criteria have been presented for linear systems with relays, polytopic systems, bilinear systems
with binary control and switched affine systems. The main idea of the proposed methodology
is to use the existence of a continuous stabilizer in order to derive switching hyperplanes for
the constrained control using convex optimization arguments. The approach is illustrated by
experimental application to the control of multi-level power converters and stepper motors. This
research line is still an emerging research direction and it leaves many open problem both from
a theoretical and applicative point of view. Some of the perspectives will be mentioned after the
concluding remarks of this manuscript.
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This document has presented a selection of the research activities developed by Laurentiu
HETEL and his collaborators since his recruitment as an Associate Researcher at CNRS. Two
main topics have been addressed in relation with the occurrence of discrete constraints in the
implementation of control laws. The first part of the manuscript has presented several con-
tributions concerning the analysis and design of sampled-data systems with aperiodic sampling
intervals. The core of this part was dedicated to the analysis of systems with arbitrarily varying
sampling intervals. We have tried to be broad in outlook and address this problem from many
different quarters (time-delay, discrete-time, hybrid, input/output approaches). Furthermore, we
have investigated the effect of sampling for various classes of systems (linear, bilinear, nonlinear
affine, switched, etc.). Some contribution to the design of state dependent sampling maps have
equally been presented.

The second part of the manuscript was concerned with the design of switching controllers for
systems where the control signal is only allowed to take a finite number of values in a discrete set.
The main contributions are related to a new framework for the design of switching controllers
based on the use of simple convex optimization arguments. This methodology provides new
solutions for the design of sliding mode controllers and for the stabilization of switched affine
systems. Furthermore, it has interesting applications for the control of some electronic and
electro-mechanical devices. Several extensions are currently under study.

It is worth noticing that the subjects addressed here lie at the intersection of four important
axes in Control Theory (time-delay, hybrid, LPV systems, input-output interconnections) and
we hope this will have a stimulating impact in the control community. Methods and tools are
being transferred from one research topic to another and the perspectives of cross-fertilisation
and generalization are numerous. Several open problems that could be tackled in the future are
discussed hereafter.
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In what follows, I will indicate some of the research directions that we have discovered over
the last few years. In order to provide a simple view, I would say that the core of my future
research activities is centred on the use of the hybrid system framework for the study of sampled-
data systems as abstractions of networked and embedded control systems. The main objectives
of my future research activities can be roughly structured as follows:

Objective A. Fundamental study of Hybrid Systems. I intend to investigate the inter-
action between discrete algorithms and differential equations (as models of physical processes)
through a fundamental study of dynamic and structural properties of hybrid dynamical sys-
tems. In particular, I will study the dynamics of switched systems and of impulsive differential
equations.

In what concerns the study of switched systems, in my opinion, the main challenge now
is to provide a solid theoretical framework for the design of switching surfaces in the case of
switched systems with non-common equilibria. The study of such switched systems is relevant
in many applicative domains. They are currently encountered in electronics, in energy manage-
ment applications, for describing embedded power converters. Such systems are interesting since
in practice they can be stabilized by fast switching to non-standard equilibrium points corre-
sponding to convex combinations of the subsystems equilibria. However, the stabilization to such
equilibrium points is not trivial. It requires a particular treatment, involving the study of specific
solutions for discontinuous systems (such as Filippov solutions) and sliding dynamics, which is
challenging from a theoretical point of view. For the moment, there is a serious lack of tractable
theoretical tools for designing control algorithms in such cases. It is therefore interesting both
from a theoretical point of view and for practical applications to generalize the existing theory
on hybrid systems to cover this case. I will try to address this topic by combining tools from the
study of nonlinear systems with (saturation) constraints with concepts previously used for the
study of sliding dynamics in variable structure control.

For the case of impulsive systems, the research activities are strongly connected with the
ones concerning the study of sampled-data systems. The two research lines mutually enrich each
other. As we have seen in Part I, a large number of results have been provided on the analysis of
sampled-data systems by re-formulating the systems dynamics in a time-delay or input-output
interconnection framework. Our objective is to investigate the extension of these approaches to
more general classes of hybrid systems with impulsive effects. The study of impulsive systems
from the point of view of input-output interconnections would be an original perspective, with a
particularly interesting potential in the development of numerical tools for analysis and design .

Objective B. Hybrid methodologies for Networked / Embedded Systems. Hybrid
systems are not only used for the modelling of sampled-data systems. They can provide a natural
theoretical framework for the analysis and design of networked and embedded systems. While
an important effort is being made in the domain of Computer Sciences to enhance the design
of embedded hardware, communication networks, real-time scheduling algorithms, etc., it is a
challenging Control Theory problem to understand the interaction between the implementation
of control algorithms (as codes in distributed microprocessors) and the physical processes. The
challenge in Networked / Embedded Systems is to extend control theory so as to embrace the
dynamics of software and networks. The aim is to provide methodological tools for the analysis
and design of systems with embedded / distributed control implementations using the hybrid
system formalism. The main idea is to provide reliability guarantees in terms of Lyapunov sta-
bility. This approach makes an interesting alternative to classical methods for which it becomes
impossible to test the software under all possible conditions when the interaction with real phys-
ical processes is considered. Some generalizations of the approaches presented for systems with
aperiodic sampling to more general networked systems are simple. Many others are not obvious,
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at least not at this time.

Short term perspectives

As follows, I will describe some short term perspectives that are in line with the topics presented
in the manuscript.

Continuous-discrete observers

While a large literature has addressed the stability analysis problem of systems with aperiodic
sampling, less results are concerned with the design of observers. A promising research direc-
tion would be the extension of the existing methodologies for the design of continuous-discrete
observers [Nadri 2003, Astorga 2002, Karafyllis 2009a, Nadri 2013]. In the case of LTI systems

x(t) = Ax(t)+ Bug, Vt € [tk,tk+1), hyg = tgr1 —ti € [ﬁ, f_L], keN (1)
y(t) = Cu(t), (2)
one could investigate the design of observers of the form
An(t) + Bu(t), t € [tk trs1) (3)
nte) + L(y(te) = Cnty) )t = th, k€N, (4)

s .
> =
S— N—
(I

The main objective is to derive constructive observer design criteria, non only in the linear case,
but also in a more general nonlinear setting. The extensions of the impulsive system approach
to this design problem is a challenging research direction.

New hybrid representations of sampled-data systems

Several approaches are available for the analysis and design of sampled-data systems and it
is of interest to compare them and understand their significance. Some relations between the
different approaches have been indicated in Chapter 2. For example, it has been shown that
the stability criterion obtained using the time delay approach in [Fridman 2004] can be also
deduced via the small gain theorem [Mirkin 2007]. However, it is more difficult to obtain such
equivalence relations between the recent approaches in the literature. It would also be of interest
to understand what is the significance of the existing work on time delay systems from the
point of view of the hybrid formalism [Goebel 2012]. In particular, the approach presented
in [Fridman 2010] seems to suggests a quite different hybrid representation of sampled-data
systems with respect to the existing literature.

Consider the case of LTI sampled-data systems

.T(t) = Ax(t) + BKx(tk)7 Vit € [tk,tk+1), hyg :=tgp41 — g € [ﬁ, h], (5)

The approach in [Fridman 2010] uses Lyapunov-Krasovskii functionals of the form
¢

V(t,z(t),d) =z (t)Px(t) + 6(¢t) /t o i1 (s)Ri(s)ds. (6)
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with 7(¢) =t — tx and 6(t) = hy, — 7(¢). Note that the term

0 t iT(s)Ri(s)ds

t—T1
in this functional can be re-written as
0
GXT(/ (Fer)TR(FeFS)ds>X,
-7
with

- [R 0
=l o)

A BK
=l

that is the functional (6) can be interpreted as a function of the form V(x,7,0) = xT P(t,0)x
which depends non only on the increasing timer 7 but also on a decreasing timer 6. In the hybrid
framework proposed by [Goebel 2009], this function suggest a state representation of the form

:%: = Ax+ BKz

oY 0c0,h],

b :
L (s=O)A(r € [1.T])

6+ € (0,h]

While in (6) the use of the decreasing counter 0 seems to be a technical artefact, it leads to a more
profound reflection concerning the representation of sampled-data systems as hybrid systems.
The use of such models for deriving stability analysis and control design conditions deserves to
be further investigated. Furthermore, it is also necessary to provide more insight on the structural
properties of sampled-data systems. Basic problems, related to the realization [Petreczky 2006]
of an aperiodically sampled input-output map by a hybrid model and the characterization of
minimal representations must also be addressed in the future.

Analyzis of hybrid models based on a 2D system representation

As we have seen in Chapter 2, in the general formulation proposed by Goebel, Teel and Sanfelice
[Goebel 2009, Goebel 2012] the system solutions can be expressed in the form

a(t) = Fx (2(1)),  zk(t) € OVt € (tg, ths1), b €N (8a)
Zk+1(tk+1) =J, (zk(tk+1)>)a Zk(thrl) € D,keN. (Sb)
Such systems are implicitly 2D systems [Owens 1999]. Solutions z of the general hybrid system
(8) are parametrized by both the continuous time ¢ and the discrete time k: zx(t) represents the

state of the hybrid system after ¢ time units and k& jumps.
For 2D systems, it seems natural to adopt a stability analysis based on vector Laypunov
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functions [Bellman 1962, Emelianova 2014]
V Vi (z(t
(2(t), k41 (thg1)) = (V2 1 (2k(t)) )

(k41 (trt1))

where V7, Vo are positive definite functions, and a divergence operator

. dvi
divV = TR Va (ze41(tev1)) — Va (2r(the1)) -
Such an approach might lead to new stability conditions for hybrid systems, and in particular
for sampled-data systems. Some preliminary results in this direction have been obtained in
[Rios 2015].

Lur’e Lyapunov functions for relay control systems

This subject is related to the stabilization of switched systems with non-common equilibria.
Before considering the general case, it is useful to tackle the application of new design tools by
considering a simplified case of LTI systems with relays. The main idea of the methodology
proposed in Part II is to use the existence of a continuous stabilizer in order to derive switching
laws based on convex optimization arguments. However, the result only ensures local stabilization
and the provided domain of attraction strongly depends on the choice of the continuous stabilizers
and, implicitly, on the choice of the Lyapunov function. For the case of LTI systems

&= Ax + Bu, u eV = {—v,v} (9)

up to now, we have only used quadratic Lyapunov functions and, as continuous stabilisers, linear
static state feedback controllers © = Kx. Numerical simulations show that there is still room for
improvement. It is important to note that the literature on the design of continuous stabilizers
for LTT systems with input constraints is quite rich [Blanchini 1999, Tarbouriech 2011, Hu 2006,
Zaccarian 2011, Zaccarian 2002] and advanced numerical methods for enlarging the domain of
attraction are available using more complex Lyapunov functions. To advance beyond the use of
ellipsoidal estimations of the domain of attraction, one direction to be exploited is the use of
Lur’e Lyapunov functions of the form

Kz
V(z) = 2T Pz +2Q o(s)ds (10)
0

where P > 0, < 0 and
v—8, §>U
o(s) = 0, s € [—v,] (11)
—v—38, s§<—v.
Similar Lyapunov functions have been used for enlarging the domain of attraction of systems with
saturation and they have a hight potential for the case of switching controllers. The approach
would lead to nonlinear switching surfaces, i.e. a switching function of the form

u € —vsign (27 PB — ¢*(Kz)QKDB) (12)

which generalizes the switching law v € —vsign (:CTPB) presented in Part II. The challenge is
to provide design LMI design conditions based on the existence of the Lur’e Lyapunov function.
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Mid term directions

In what follows I will present some research direction that I intend to mathematically formalise
in the future.

A new discrete-time approach for nonlinear sampled-data systems

In the control of classical sampled-data systems, the discrete-time framework is known to have
several advantages with respect to the continuous-time approaches which are usually indirect:
they are based on emulation of continuous controllers which have been design independently of the
sampled-data implementation. The discrete framework allows a direct design, taking into account
the value of the sampling interval for the control synthesis. Although the discrete-time approach
has been shown to lead to efficient numerical conditions for the case of LTI systems with aperiodic
sampling, very few results address the nonlinear case. In this context it would be of interest to
generalise the classical geometric approaches proposed by [Monaco 2007, Monaco 2001] to the
case of systems with aperiodic sampling. Furthermore, it would be useful to re-state the design
conditions in the hybrid framework, in order to ensure also desired inter-sampling performances.

Dynamic sampled-data controller under uncertain sampled-data implementa-
tions

While the case of static controllers with aperiodic sampling has been extensively studied, few
results exist concerning the case of dynamic controllers. To the best of our knowledge, up to
now it is assumed that the discrete-time emulation of continuous dynamic controllers is perfect
and that the sampling interval is known. In practice the controller discretization introduces
approximations and the sampling interval is rarely available in real time. It is a very challenging
theoretical problem to provide design conditions while taking into account these uncertainties in
the control implementation.

A more general dissipativity framework

In the Input/Output stability approach, up to now the existing criteria are based on static
IQCs. The use of dynamic IQCs might be a real source of improvement [Megretski 1997]. The
generalization of such dynamic IQCs in the dissipativity framework is of interest, not only for
the case of sampled-data systems, but also in a more general context, for the study of other
robustness properties of nonlinear systems. In fact, before the emergence of powerful numerical
tools for the analysis of dynamical system (LMIs, SOS optimization), a large variety of studies
have been developed in the frequency domain. It would be useful to "translate" this literature in
the time domain and enhance its applicability using optimization algorithms. The interpretation
of this approach from the point of view of hybrid systems needs to be further investigated.

The best sampling pattern

The research in the case of systems with arbitrary sampling has reached a mature phase of
development. However, the problem of designing stabilizing sequences of sampling is still largely
open. In this context, the potential of the approaches used for the arbitrary sampling problem
is far from being fully exploited. Nevertheless, a better mathematical formalization of what is
required from "the best" sampling sequence is needed.
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We would like to point out that that the interest of this study goes beyond the simple
aperiodic sampling problem. The problematic has to be considered in a more general context of
networked systems where we also have to deal to deal with (communication) delay, quantization
or scheduling protocols. For large networks it is expensive, if not impossible, to control all systems
individually, and mainstream centralized controllers are infeasible. Decentralized controllers must
be considered, while taking into account the fact that overall dynamics are largely determined
by the interactions of individual components. Instead of tuning controller gains, we could focus
on optimizing the topology of the network, i.e. we determine which systems need to interact in
order to optimize a global objective in an efficient way. The resulting challenge is to dynamically
optimize the communication sequences of each link in the network so to ensure some desired
fast/robust synchronizing control, while taking into account the costs in terms of computational
load and/or energy consumption.

Constructive methods for switching law design

With respect to the stabilization problem of switched systems, it has been shown in Part II
that the stabilization of switched affine systems can be related to the existence of a continuous
stabilizer for a classical nonlinear affine (bilinear) model. This is a classical problem on which a
large variety of results are available in the literature. While in this manuscript we have presented
simple results based on the local linearisation of the underlying nonlinear model and the use of
small gain arguments, the possibilities of extension are numerous. For example, in practical
applications, we may consider "patchy" switching laws, using the existence of gain scheduled
controllers associated to different equilibria.

Switched systems with spectral constraints

The experimental application to the control of DC/DC power converters has shown that it would
be useful to design switching laws where the switching signal has to satisfies additional frequency
domain constraints: for electro-magnetic compatibility reasons, the spectrum of the switching
signal should be limited to a well defined spectrum range. Taking into account such spectral
constrained when defining state-dependent switching controllers leads to a challenging theoretical
problem.

Switching law design based on a geometric study

For a theoretical analysis of switched affine systems, the study of structural properties based on
geometric tools [Isidori 1995] may be a promising research direction. For example, the use of the
underlying bilinear model may lead to new necessary conditions for stabilization. The results
presented for the case of switched affine systems should be extended to more general nonlinear
switched systems where the system modes do not share the same equilibrium. It is also necessary
to extend the convex embedding approach [Hetel 2015a] to cope with discontinuous stabilizers,
for systems that fail the classical Brockett’s condition or that cannot be stabilized by state
feedback when solutions are considered in the sense of Filippov [Ryan 1994], [Clarke 1997]. This
topic must be investigated in relation with the developments considering systems with aperiodic
sampling and the joint synthesis of sampling patterns and stabilizing controllers.
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Long term directions

There is no doubt that control theory is now a mature field of research. Furthermore, in practical
applications embedded control devices are now widely spread. However, control theory is still an
invisible technology and many of the academic advances in the last 20 years seem to be ignored
outside a group of specialists. In fact, in many applications, the development of control laws
(beyond the manual tuning of PIDs) requires at least a master level, if not a PhD. In my opinion,
it is of high interest not only to provide new theoretical tools but also to take care about their
applicability.

In the context of sampled-data systems, a large amount of results have been published, using
various different approaches. However, the developments are sparse, in the sense that each of the
existing approaches covers only some of the aspects in sampled-data control. Furthermore, the
last textbooks concerning sampled-data systems have been published in the ’90s and do not seem
to cover important real-time implementation constraints that a control engineer needs to handle
nowadays. Without a vulgarization effort from the researchers in the control community, the wide
spread of use of networked and embedded control elements will develop on negligible theoretic
foundations. My long term objective is to contribute to the establishment of a unifying theory of
sampled-data control systems, which gathers the most significant results proposed in the different
research communities and presents simple and theoretically solid tools for control engineers. I
have the conviction that hybrid system will offer the appropriate fundamental framework for this
unifying theory. However, making the fundamental results accessible is far from being obvious.

At a long term I would also like to dedicate more attention to the experimental research.
Although up to now my research activities are mainly concerned with fundamental research, the
scientific problems that I study are motivated by applications that are ubiquitous in industry and
that respond to societal challenges. For example, the research on the stabilization of switched
systems is relevant for the embedded control of power converters which are omnipresent in
energy management applications. Furthermore, networked/embedded controllers are of interest
in electric power networks where changes in the structure of the grid have to be taken into account
in real time, in particular to support the introduction of renewable energy sources (wind farms
and solar plants) while considering various constraints in terms of prices, demands and capacities.
Since for the moment the research is situated at a fundamental level, it is not sufficiently mature
for an industrial validation. However, I feel that it is time to return back to the starting point
and to confront the developed concepts with their empirical sources. Some preliminary steps in
this direction are planned via a joint PhD supervision with prof. Bogdan Marinescu (starting
with November 2016) in the context of a RTE-Centrale Nantes Chair, and through the H2020
project UCOCOS - which involves industrial partners (EOS innovation, CITC, TNO) interested
in networked systems. I strongly believe that such an experience with practical applications will
be fruitful at long term. An original theoretical framework may emerge if we understand what
are the limitations of current theories and we formalize mathematically what really works at the
empirical level.
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