
No d’ordre : 4 2 3 4 8
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Prefae

This report presents a seletion of the results that I have developed sine my reruitment as an

Assoiate Researher (Chargé de Rerherhes - CR) with CNRS (Centre National de la Reherhe

Sienti�que

1

), in Otober, 2008. The researh ativities are arried on in the group CO2 (Con-

trol and Sienti� Computing), team SYNER (Systèmes hybrides, non-linéaires et à retard

2

)

of CRIStAL (Centre de Reherhe en Informatique, Signal et Automatique de Lille

3

- UMR

CNRS 9189). I joined the team SYNER in Otober 2008 as a 2nd lass Assoiate Researher

(CR2). This team is supervised by Prof. Lot� Belkoura. Until Deember 2014, SYNER has been

part of LAGIS (Laboratoire d'Automatique, Génie Informatique et Signal

4

) UMR CNRS 8219.

On January 1st, 2015, LAGIS merged with LIFL (Laboratoire d'Informatique Fondamentale

de Lille

5

- UMR CNRS 8022), reating CRIStAL. In the ontext of the reation of CRIStAL,

SYNER is oordinating its researh ativities with the teams CFHP (Calul Formel et Haute

Performane

6

) and DEFROST (DEFormable ROboti SofTware) in the group CO2 - supervised

by Prof. Jean-Pierre Rihard.

The team SYNER addresses a large panel of problems related to the study of time-delay,

hybrid dynamial systems and nonlinear systems. The ativities of the team an be strutured

aording to two main axes: on one side the members of SYNER develop estimation tools based

on the use of di�erential algebra and operational alulation in the ontext of the INRIA projet

NON-A (Non-Asymptoti estimation for online systems). On the other side, the team proposes

Lyapunov based methods for analysis and ontrol design. My researh ativities are mainly

onerned with this seond axis of SYNER. At the national level, my ativities ontribute to the

working groups on Hybrid Dynamial Systems and Time Delay System of GDR MACS (Groupe

de Reherhe du CNRS en Modélisation, Analyse et Conduite des Systèmes dynamiques

7

), and

the regional researh group GRAISYHM (Groupement de Reherhe en Automatisation Intégrée

1

National Center for Sienti� Researh, a publi researh organization under the responsibility of the Frenh

Ministry of Eduation and Researh.

2

Hybrid, nonlinear and time-delay systems.

3

Center of Researh on Computer Sienes, Signal Proessing and Automati Control.

4

Laboratory of Automati ontrol, Computer Engineering and Signal proessing.

5

A theoreti Computer Siene laboratory.

6

Computer Algebra and High Performane Computing.

7

A national researh group on modelling analysis and ontrol of dynamial systems under the responsibility of

CNRS.
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et Systèmes Homme-Mahine

8

) of Région Hauts-de-Frane. At the international level, they

have ontributed to the HYCON Networks of Exellene (Highly-omplex and networked ontrol

systems - FP6 HYCON and FP 7 HYCON2).

This doument presents several ontributions that have been obtained in ollaboration with

Emmanuel BERNUAU (Ass. Prof. Agro Pariteh), Mihael DEFOORT (Ass. Prof. UVHC,

LAMIH), Mohamed DJEMAI (Prof. UVHC, LAMIH), Thierry FLOQUET (DR CNRS, CRIStAL),

Emilia FRIDMAN (Prof. Univ. Tel-Aviv), Hisaya FUJIOKA (Ass. Prof. Univ. Kyoto), Alexan-

dre KRUSZEWSKI (Ass. Prof. Centrale Lille, CRIStAL), Franoise LAMNABHI-LAGARRIGUE

(DR CNRS, L2S), Silviu-Iulian NICULESCU (DR CNRS, L2S), Wilfrid PERRUQUETTI (Prof.

Centrale Lille, CRIStAL), Mihaly PETRECZKY (CR CNRS, CRIStAL), Jean-Pierre RICHARD

(Prof. Centrale Lille, CRIStAL), Alexandre SEURET (CR, CNRS, LAAS), and young re-

searhers, PhDs and post-dotoral students, supervised at LAGIS and CRIStAL: Christophe

FITER (PhD Centrale Lille, defended in November 2012, now Ass. Prof., Univ. Lille), Has-

san OMRAN (PhD Centrale Lille, defended in Marh 2014, now Ass. Prof., TP Strasbourg),

Srinath GOVINDASWAMY (post-do Centrale Lille, 2012-2013), Romain DELPOUX (ATER

Univ. Lille 1, 2013, now Ass. Prof., INSA Lyon). Other results, not mentioned in this do-

ument, have been obtained in ollaboration with Denis EFIMOV (CR INRIA Non-A), Jamal

DAAFOUZ (Prof. Univ. Lorraine, CRAN), Marieke CLOOSTERMAN (PhD, TU Eindhoven),

Tijs DONKERS (Ass. Prof. TU Eindhoven), Maurie HEEMELS (Prof. TU Eindhoven), Mar

JUNGERS (CR CNRS, CRAN), Ivan MALLOCI (PhD, CRAN), Sorin OLARU (Prof. Centrale

SUPELEC Paris, L2S), Worody LOMBARDI (PhD, L2S), Andrey POLYAKOV (CR INRIA

Non-A), Christophe PRIEUR (DR CNRS, GIPSA - lab), Patrik SZCZEPANSKI (Arelor Mit-

tal), Sophie TARBOURIECH (DR CNRS, LAAS), Nathan van de WOUW (Ass. Prof. TU

Eindhoven). I would like to thank them all for their fruitful ollaboration, dynamism and pa-

tiene.

I am extremely grateful to Bernard BROGLIATO, Daniel LIBERZON and Lua ZACCA-

RIAN for giving me the honour of reviewing this doument, to the members of the ommittee,

Olivier COLOT, Wim MICHIELS and Dimitri PEAUCELLE, for having aepted to partiipate

in the evaluation of my researh ativity, and to Jean-Pierre RICHARD, for his guidane and

support.

I would also like to thank all my olleagues from CRIStAL, INRIA and Centrale Lille who

diretly or indiretly in�uened this work.

Finally, I wish to thank my family for their tremendous support.
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Notations

� R+ denotes the set {λ ∈ R, λ ≥ 0}.

� |c| denotes the absolute value of a salar c ∈ R.

� ‖x‖ represents any norm of the vetor x.

� ‖x‖p , p ∈ N, denotes the p norm of a vetor x.

� For a matrix M , MT
denotes the transpose of M and M⋆

, its onjugate transpose.

� For square symmetri matries M, N , M � N (resp. M ≻ N) means that M − N is a

positive semi-de�nite (resp. de�nite positive) matrix. M � N (resp. M ≺ N) means that

M −N is a negative semi-de�nite (resp. negative de�nite) matrix.

� For a matrix M ∈ Rn×n, we denote the Hermitian of M by He{M} =M +MT .

� ∗ in a symmetri matrix represents elements that may be indued by symmetry.

� ‖M‖p , p ∈ N denotes the indued p-norm of a matrix M .

� σ̄ (M) denotes the maximum singular value of M .

� C0(X,Y ), for two metri spaes X and Y , is the set of ontinuous funtions from X to Y .

� Lnp (a, b), p ∈ N denotes the spae of funtions φ : (a, b) → Rn with norm ‖φ‖Lp =
[∫ b
a ‖φ(s)‖

p ds
] 1

p
.

� Ln2e[0,∞) is the spae of funtions φ : [0,∞) → Rn whih are square integrable on �nite

intervals.

� Given a set S ⊂ Rn, onv{S} denotes its losed onvex hull and Int{S} its interior.

� For a onvex polytope S ⊂ Rn and a salar α > 0, we denote αS := {αx, x ∈ S} and

vert {S} the set of verties of S.

� The n dimensional open ball in Rn entred on x ∈ Rn with radius c > 0 is denoted

B(x, c) := {y ∈ Rn : ‖x− y‖2 < c} .
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General introdution

1





The pratial implementation of ontrol algorithms is always subjet to various types of

onstraints: saturation, limited rate of atuators, digital implementation under quantization

and �nite sampling frequeny, et. This dissertation is onerned with a fundamental problem

in modern ontrol systems: the ourrene of disrete onstraints in ontrol loops. Two main

aspets will be onsidered. On one side, we will disuss the ourrene of disrete-onstraints

in the time domain, related to sampled-data ontrol implementations and fat that in pratie

the ontrol ation is omputed sporadially, at aperiodi sampling instants. In this ontext, the

main hallenges are to determine the maximum sampling interval whih preserves stability and

to shedule the sampling instants so as to ensure desired performanes. This topi is motivated

by the uprising interest in networked and embedded ontrol elements where real-time sheduling

algorithms interat with ontrol tasks and where ommuniation and energeti onstraints have

to be taken into aount. On the other side, we will present results onerning the design of

feedbak laws subjet to disrete onstraints in the sets of possible ontrol values: the ontrol

signal is allowed to take only a �nite number of values. Suh onstraints are typial in systems

with swithes, relays or binary (on-o�) atuators. The main hallenge here is to design the

swithing surfaes while guaranteeing desired safety onstraints in terms of (loal) stability.

Both of these topis bring up open problems in the domain of hybrid dynamial systems. They

involve the study of di�erential equations with disontinuous right-hand side and of systems with

impulsive dynamis.

With respet to the researh ativity arried in the team SYNER, over the last eight years

we have investigated the e�et of aperiodi sampling on several lasses of dynamial systems

interating with sampled-data implementations of both ontinuous and swithing feedbak laws.

We have tried to address the main hallenges in aperiodi sampled-data ontrol using several

di�erent approahes. One of the main purposes of our work is to propose numerial tools for

addressing the onsidered problems. We have dediated some e�ort to express solutions to the

analysis and ontrol design problems in a form that is onvenient to the derivation of omputer-

aided tools. A partiular attention is given to the formulation of analysis and synthesis riteria as

simple onvex optimization problems whih an be easily addressed numerially using powerful

numerial algorithms.

First, the main ontributions in the ontext of sampled-data systems are brie�y presented as

follows:

� New onditions for the stability of linear time invariant (LTI) sampled-data systems with

arbitrary time-varying sampling intervals [Hetel 2011b℄. The main idea is to use a disrete-

time system model and quasi-quadrati Lyapunov funtions previously enountered in the

ontext of polytopi di�erene inlusions in order to provide stability onditions. The

existene of a quasi-quadrati Lyapunov funtion dereasing at sampling instants is shown

to be a neessary and su�ient ondition for stability. Using approximations based on

onvex polytopes leads to su�ient stability riteria. This approah allows a very aurate

numerial implementation of algorithms for evaluating the maximum allowable sampling

interval whih ensures stability.

� A new framework for the analysis of sampled-data systems inspired by the Dissipativity

Theory [Omran 2014b,Omran 2014a,Omran 2016a℄. The idea is to haraterize the e�et

of sampling using "supply" funtions. The method generalizes to the ase of nonlinear a�ne

systems several frequeny domain riteria initially used for LTI systems. The advantage of

this approah is its �exibility: the approah an be easily extended in order to take into

aount more omplex performane and robustness spei�ations.

3



� Optimization tools for sampled-data systems with ontrolled sampling sequenes [Fiter 2012a℄,

[Fiter 2015℄. In the literature, aperiodi sampled-data systems had been studied using

either ontinuous-time or disrete-time models. We have proposed a ontinuous-time ap-

proah based on onvex embeddings that is able to ombine the advantages of the time-

delay system modelling (inter-sampling behaviour, robustness to perturbations) with the

ones of disrete-time models (auray of analysis). This approah has been used for the

design of even-/self-triggered ontrol algorithms. We have provided tools for optimizing

the sampling maps so as to enlarge the minimum inter-event time between two sampling

instants while ensuring desired performane and robustness properties.

In order to transfer our experiene over this domain, we have gathered a olletion of main results

on aperiodi sampled-data systems in an overview of stability analysis approahes whih has been

presented as a tutorial paper at ECC [Fiter 2014a℄. A detailed survey artile [Hetel 2017℄ has

been aepted for publiation in Automatia.

Seond, the doument will present a more reent �eld of our ativity: the design of swithing

surfaes under disrete onstraints. While the study of systems with aperiodi sampling has

now reahed an advaned phase of development, the seond main topi of researh, the design

of swithing surfaes for systems subjet to disrete onstraints, represents an emerging researh

diretion in the team SYNER. The design of swithing ontrollers (relays, sliding mode on-

trollers, variable struture systems, et.) is an old problem in the ontrol theory. However,

very few numerial tools exist for optimizing the design of swithing surfaes while optimizing

the systems performanes (domain of attration, robustness to perturbations and delay, deay

rate, et.). We are urrently investigating a reent researh diretion by addressing this topi

from a hybrid system perspetive. The main idea of our work is to use a simple onvex opti-

mization approah for the design of swithing ontrollers based on Linear Matrix Inequalities

(LMIs). We have addressed this problem for LTI, polytopi approximations of nonlinear sys-

tems, bilinear systems and swithed a�ne systems. This new method has lead to several journal

publiations [Hetel 2015, Hetel 2015a, Delpoux 2015, Hetel 2016℄. For the ase of linear sys-

tems it is shown that the robustness requirements of lassial sliding mode ontrollers an be

inorporated in the new design methodology while optimizing the domain of attration and the

robustness with respet to perturbations [Hetel 2015℄. For swithed a�ne systems we provide

a new point of view in the design of stabilizing state feedbak laws: we show that the design

of swithing ontrollers an be re-stated as a lassial design problem for nonlinear a�ne sys-

tems [Hetel 2015a℄. The method allows to take into aount some lasses of swithed a�ne system

that an be stabilized only loally, on whih the existing methods do not apply. Simple ontrol

design riteria are proposed for swithed a�ne systems that do not satisfy the lassi onstraints

related to the existene of Hurwitz onvex ombinations. The new methodology has potential in

appliation to eletro-magneti systems (ontrol of stepper motors [Delpoux 2015℄) and energy

management problems (DC/DC power onverters [Hetel 2016℄). The analysis of sampled-data

implementations of swithing ontrollers has equally been addressed [Hetel 2013b℄.

After this general introdution, the rest of this dissertation is organized into two major parts

and a onlusion.

Part I deals with disrete onstraints in the time domain. It is mainly onerned with the

stability problem for sampled-data systems with aperiodi sampling. After presenting some gen-

eralities onerning systems with time-varying sampling in Chapter 1, the seond hapter gives

a overview of the literature on the �eld. Chapter 3 presents our main ontributions to this

topi. Our researh e�ort has been dediated to the analysis of various lasses of systems (lin-

ear time invariant, polytopi, bilinear, polynomial, nonlinear a�ne, et.) with both ontinuous

4



and swithing ontrollers. We have tried to address the stability problem from di�erent angles,

through various ompeting methods. In this manusript, a seletion of the most signi�ant re-

sults is given. For linear time invariant systems, we show in Chapter 3.1 how numerially e�ient

onditions an be derived using the exat system disretization and onvex embeddings. Numer-

ial tools for the optimization of (event/self-triggered) sampling maps are proposed, based on the

used of Linear Matrix Inequalities (LMIs). In a more general ontext of bilinear (Chapter 3.2) and

nonlinear a�ne systems (Chapter 3.3), we propose a new stability analysis framework inspired

by Dissipativity Theory. Control design tools are presented for LTI systems with disontinuous

ontrollers using a time-delay approah in Chapter 3.4.

Part II presents new results for systems with inputs onstrained to a �nite set of values.

Chapter 4 deals with the design of swithing ontrollers for linear systems and some approxi-

mations of nonlinear systems as linear polytopi systems. The ase of swithed a�ne systems

is disussed in Chapter 5, while Chapter 6 presents results onerning bilinear systems. The

potential of the approah is illustrated at the end of this part through experimental appliations

onerning the ontrol of stepper motors and DC/DC power onverters.

A onlusion summarizes the main results presented in this doument. Finally, several ongo-

ing researh diretions and open problems are presented.
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Part I

Contributions to aperiodi

sampled-data ontrol

7





The last deade has witnessed an enormous interest in the study of networked and embedded

ontrol systems [Zhang 2001,Hristu-Varsakelis 2005,Hespanha 2007,Chen 2011℄. This interest

is mainly due to the ubiquitous presene of embedded ontrollers in relevant appliation do-

mains and the growing demand in industry on systemati methods to model, analyse and design

systems where sensor and ontrol data are transmitted over a digital ommuniation hannel.

The study of systems with aperiodi sampling emerged as a modelling abstration whih al-

lows to understand the behaviour of Networked Control Systems (NCS) with sampling jitters,

paket drop-outs or �utuations due to the inter-ation between ontrol algorithms and real-time

sheduling protools [Zhang 2001,Antsaklis 2007,Astol� 2008℄. With the emergene of event-

based and self-triggered ontrol tehniques [Heemels 2012℄, the study of aperiodi sampled-data

systems onstitutes nowadays a very popular researh topi in ontrol.

In this part, we fous on questions arising in the ontrol of systems with time-varying sampling

intervals. Important pratial questions suh as the hoie of the minimal sampling bandwidth,

the evaluation of neessary omputational and energeti resoures or the robust ontrol synthesis

are mainly related to stability issues. These issues often lead to the problem of estimating the

Maximum Sampling Interval (MSI) for whih the stability of a losed-loop sampled data system

is ensured.

The study of aperiodi sampled-data systems has been addressed in several areas of researh

in Control Theory. Systems with aperiodi sampling an be seen as partiular time-delay sys-

tems. Sampled-and-hold in ontrol and sensor signals an be modelled using hybrid systems with

impulsive dynamis. Aperiodi sampled-data systems have also been studied in the disrete-time

domain. In partiular, Linear Time Invariant (LTI) sampled-data systems with aperiodi sam-

pling have been analysed using disrete-time Linear Parameter Varying (LPV) models, typially

used in gain sheduling ontrol. The e�et of sampling an be modelled using operators and

the stability problem an be addressed in the framework of Input/Output interonnetions as

typially done in modern Robust Control. While signi�ant advanes on this subjet have been

in the literature, problems related to both the fundamentals of suh systems and the derivation

of onstrutive methods for stability analysis remain open, even for the ase of linear system.

The rest of this part is strutured: Chapter 1 is dediated to generalities onerning aperiodi

sampled-data ontrol. A state of the art on aperiodi sampled-data ontrol will be given in

Chapter 2 followed by our main ontributions in Chapter 3.
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Chapter 1

Generalities

1.1 System on�guration

As follows we will study the properties of sampled-data systems onsisting of a plant, a digital

ontroller, and appropriate interfae elements. A general on�guration of suh a sampled-data

system is illustrated by the blok diagram of Figure 1.1. In this on�guration, y(t) is a ontinuous-
time signal representing the plant output (the plant variables that an be measured). This signal

is represented as a funtion of time t, y : R+ → Rp.
The digital ontroller is usually implemented as an algorithm on an embedded omputer. It

operates with a sampled version of the plant output signal, {yk}k∈N, obtained upon the request of

a sampling trigger signal at disrete sampling instants tk and using an analog-to-digital onverter

(the sampler blok, S, in Figure 1.1). This trigger may represent a simple lok, as in the lassial

periodi sampling paradigm, or a more omplex sheduling protool whih may take into aount

the sensor signal, a memory of its last sampled values, et. The sampling instants are desribed

by a monotone inreasing sequene of positive real numbers σ = {tk}k∈N where

t0 = 0, tk+1 − tk > 0, lim
k→∞

tk = ∞. (1.1)

u(t) = uk

PLANT

y(t)

H

uk

CONTROL

yk = y(tk)

S

TRIGGER

Figure 1.1: Classial sampled-data system on�guration
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Chapter 1. Generalities

The di�erene between two onseutive sampling times hk = tk+1 − tk is alled the kth sampling

interval. Assuming that the e�et of quantizers may be negleted, the sampled version of the

plant output is the sequene {yk}k∈N where yk = y(tk).
In a sampled-data ontrol loop, the digital ontroller produes a sequene of ontrol values

{uk}k∈N using the sampled version of the plant output signal {yk}k∈N. This sequene is onverted
into a ontinuous-time signal u(t), where u : R+ → Rm (orresponding to the plant input) via a

digital-to-analog interfae. We onsider that the digital-to-analog interfae is a zero-order hold

(the hold blok, H, in Figure 1.1). Furthermore, we assume that there is no delay between

the sampling instant tk and the moment the ontrol uk (obtained based on the kth plant output

sample, yk) is e�etively implemented at the plant input. Then the input signal u(t) is a pieewise
onstant signal u(t) = u(tk) = uk,∀t ∈ [tk, tk+1).

Over the hapter, we will onsider that the plant is modelled by a �nite dimensional ordinary

di�erential equation of the form {
ẋ = F (t, x, u) ,
y = H (t, x, u) ,

(1.2)

where x ∈ Rn represents the plant state-variable. Here F : R+×Rn×Rm → Rn with F (t, 0, 0) =
0,∀t ≥ 0, and H : R+ × Rn × Rm → Rp. It is assumed that for eah onstant ontrol and

eah initial ondition (t0, x0) ∈ R+ ×Rn the funtion F desribing the plant model (1.2) is suh

that a unique solution exists for an interval [t0, t0 + ǫ) with ǫ large enough with respet to the

maximum sampling interval. The disrete-time ontroller is onsidered to be desribed by an

ordinary di�erene equation of the form

{
xck+1 = F cd (k, x

c
k, yk) ,

uk = Hc
d (k, x

c
k, yk) ,

(1.3)

where xck ∈ Rnc
is the ontroller state. Here, F cd : N×Rnc ×Rp → Rnc and Hc

d : N×Rnc ×Rp →
Rm. We will use the denomination sampled-data system for the interonnetion between the

ontinuous-time plant (1.2) with the disrete-time ontroller (1.3) via the relations

yk = y(tk), u(t) = uk,∀t ∈ [tk, tk+1), ∀k ∈ N, (1.4)

under a sequene of sampling instants σ = {tk}k∈N satisfying (1.1).

The di�erent onepts and results will be mostly illustrated on Linear Time Invariant (LTI)

models

ẋ = Ax+Bu, (1.5)

under a stati linear state feedbak,

uk = Kxk, k ∈ N, (1.6)

with xk = x(tk). However, when possible, we will present the extensions to more general nonlin-

ear systems.

1.2 Classial design methods

There are various approahes for the design of a sampled-data ontroller (1.3) (see the lassi-

al textbooks [Åström 1996, Chen 1993℄ and the tutorial papers [Monao 2007, Monao 2001,

Ne²i¢ 2001,Laila 2006℄).

Emulation. The simplest approah onsists in designing �rst a ontinuous-time ontroller

12
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using lassial methods [Khalil 2002,Isidori 1995,Krsti 1995,Sastry 1999℄. Next, a disrete-time

ontroller of the form (1.3) is obtained by integrating the ontroller solutions over the interval

[tk, tk+1).This approah is usually alled emulation. Generally, it is di�ult to ompute in a

formal manner the exat disrete-time model and approximations must be used [Monao 2007,

Laila 2006℄. In the LTI ase (1.5) with state feedbak (1.6), the emulation simply means that

the gain K is set suh that the matrix A + BK is Hurwitz and that the plant is driven by the

ontrol u(t) = Kx(tk),∀t ∈ [tk, tk+1), k ∈ N. While the intuition seems to indiate that for

su�iently small sampling intervals the obtained sampled-data ontrol gives an approximation

of the ontinuous-time ontrol problem, no guarantee an be given when the sampling interval

inreases, even for onstant sampling intervals. In order to ompensate the e�et of ontroller

disretisation, re-design methods may be used [Grüne 2008,Ne²i¢ 2005℄.

Disrete-time design. In this framework, a disrete-time model of the plant (1.2) is derived by

integration. The obtained model represents the evolution of the plant state x(tk) = xk at sam-

pling times

9

. Then, a disrete-time ontroller (1.3) is designed using the obtained disrete-time

model. In the simplest LTI ase (1.5), (1.6), the evolution of the state between two onseutive

sampling instants tk and tk+1 is given by

x(t) = Λ(t− tk)x(tk), ∀t ∈ [tk, tk+1], k ∈ N, (1.7)

with a matrix funtion Λ de�ned on R as

Λ(θ) = Ad(θ) +Bd(θ)K = e

Aθ +

∫ θ

0
e

AsdsBK. (1.8)

Evaluating the losed-loop system's evolution at t = tk+1 and using the notation hk = tk+1 − tk
leads to the linear di�erene equation

xk+1 = Λ(hk)xk, ∀k ∈ N (1.9)

representing the losed-loop system at sampling instants. When the sampling interval is onstant,

hk = T, ∀k ∈ N, a large variety of disrete-time ontrol design methodologies is available in the

literature (see [Åström 1996,Chen 1993℄ and the referenes within). It is well known for this ase

that system (1.9) is asymptotially stable if and only if the matrix Λ(T ) is Shur. In other words,

to design a stabilizing ontrol law (1.6), the matrix K must be set suh as all the eigenvalues of

Λ(T ) lay stritly in the unit irle.

For nonlinear systems with onstant sampling intervals, an overview of ontrol design method-

ologies and related issues an be found in [Monao 2007,Monao 2001,Ne²i¢ 2001, Laila 2006℄.

Note that the disrete-time models suh as (1.9) do not take into onsideration the inter-sampling

behaviour of the system. Relations between the performanes of the disrete-time model and

the performanes of the sampled-data loop, an be dedued using the methodology proposed

in [Ne²i¢ 1999℄.

Sampled-data design. In�nite dimensional disrete-time models whih take into aount the

inter-sampling system behaviour using signal lifting [Bamieh 1992,Bamieh 1991,Tadmor 1992,

Toivonen 1992a, Yamamoto 1994℄ have been proposed in the literature for the ase of linear

systems. Spei� design methodologies, that are able to take in onsideration ontinuous-time

9

Note that generally approximations of the system model must be used sine the disretized plant model is

di�ult to ompute formally [Monao 1985,Veliov 1997℄. Even for the ase of LTI systems with onstant sampling

intervals, the numerial omputation of the matrix exponential (or its integral) is subjet to approximations

[Moler 2003℄.
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Chapter 1. Generalities

system performanes, inter-sample ripples and robustness spei�ations, an be found in the

textbook [Chen 1993℄ for the ase of linear time invariant systems with periodi sampling.

1.3 Complex phenomena in aperiodi sampling

While in the last �fty years an intensive researh has been dediated to the analysis and design of

sampled-data systems under periodi sampling, the study of systems with time-varying sampling

intervals is quite underdeveloped ompared to the periodi onterpart. The following examples

illustrate the rih omplexity of phenomena that may our under aperiodi sampling.

Example 1.1 [Zhang 2001a℄ Consider an LTI sampled-data system of the form (1.5),(1.6)

where

A =

[
1 3
2 1

]
, B =

[
1
0.6

]
, K = −

[
1 6

]
. (1.10)

For this example, system's (1.9) transition matrix Λ(T ) is a Shur matrix for any onstant

sampling interval in T ∈ T = {T1, T2}, with T1 = 0.18, and T2 = 0.54. Then, in the ase of

periodi sampling, the sampled-data system is stable for onstant sampling intervals taking values

in T . An illustration of the system's evolution for onstant sampling intervals T1, T2, is given in

Figure 1.2. Clearly, when the sampling interval hk is arbitrarily varying in T , the Shur property
of Λ(T ), ∀ T ∈ T , represents a neessary ondition for stability of the sampled-data system

(1.1),(1.5),(1.6). However, it is not a su�ient one. For example, the sampled-data system

with a sequene of periodially time-varying sampling intervals {hk}k∈N = {T1, T2, T1, T2, . . .}
is unstable, as it an be seen in Figure 1.3. This is due to the fat that the Shur property of

matries is not preserved under matrix produt (i.e. the produt of two Shur matries is not

neessarily Shur). Indeed, the disrete-time system representation over two sampling instants

an be written as

xk+2 = Λ(T2)Λ(T1)xk, ∀k ∈ 2N,

and the transition matrix

Λ(T2)Λ(T1) =

[
0.8069 −3.2721
0.6133 −2.1125

]

over two sampling intervals T1 and T2, is not Shur. This example shows the importane of

taking into onsideration the evolution of the sampling interval hk when analysing the stability of

sampled-data systems sine arbitrary variations of the sampling interval hk may indue instability.

Example 1.2 [Gu 2003a℄ Consider now an LTI system with

A =

[
0 1
−2 0.1

]
, B =

[
0
1

]
K =

[
1 0

]
(1.11)

Assume that the sampling interval hk is restrited to the set T = {T1, T2} with T1 = 2.126 and

T2 = 3.950. The system is unstable for both onstant sampling intervals T1 and T2 sine for these
values system's (1.9) transition matrix Λ(T ), T ∈ T is not a Shur matrix. However, the produt

of transition matries Λ(T1)Λ(T2) has the Shur property. Therefore, the sampled data system

is stable under a periodi evolution of the sampling interval {hk}k∈N = {T1, T2, T1, T2, . . .}. An

example of system evolution with this partiular sampling sequene is provided in Figure 1.4. In

this example the sampling hk an at on the sampled-data system as a seond ontrol parameter
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Figure 1.2: Stability of the system in Example 1.1 with periodi sampling intervals.
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Figure 1.3: Instability of the system in Example 1.1 with a periodi sampling sequene T1 →
T2 → T1 · · · .
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whih ensures the system's stability while the possible onstant sampling on�gurations are not

able to guarantee this property.
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Figure 1.4: Periodi sampling sequene with a stable behaviour.

1.4 Problem set-ups

The ore of Part I is dediated to the robust analysis of sampled-data systems with sampling se-

quenes of the form (1.1) where the sampling interval hk = tk+1−tk takes arbitrary values in some

interval T = [h, h] ⊂ R+. This �rst problem set-up may orrespond, for example, to the sam-

pling triggering mehanism from Figure 1.1 with a lok submitted to jitter [Wittenmark 1995℄, or

with some sheduling protool whih is too omplex to be modelled expliitly [Zhang 2001,Hes-

panha 2007℄. Basially, for the ase of LTI models (1.5) with linear state feedbak (1.6) under

a sampling sequene (1.1) we will address the robust stability of the losed-loop system (1.12)

given below 



ẋ(t) = Ax(t) +BKx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn

(1.12)

as if hk is a time-varying "perturbation" taking values in a bounded set T .
We will also indiate some ideas onerning a reently emerging researh topi where the

sampling interval hk plays the role of a ontrol parameter that may be hanged aording to the

plant state or output. This problem set-up orresponds to the design of a sheduling mehanism.

For the ase of system (1.12), hk is onsidered as an additional input whih, by an appropriate

open/losed-loop hoie, an ensure the system stability. In the following hapter, we will present

an overview of approahes addressing these problems.
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Chapter 2

State of the art on aperiodi

sampled-data systems

This hapter presents basi onepts and reent researh diretions about the stability of sampled-

data systems with aperiodi sampling

10

. We fous mainly on the stability problem for systems

with arbitrary time-varying sampling intervals whih has been addressed in several areas of re-

searh in Control Theory. Systems with aperiodi sampling an be seen as time-delay systems,

hybrid systems, Input/Output interonnetions, disrete-time systems with time-varying param-

eters, et. The goal is to provide a strutural overview of the progress made on the stability

analysis of systems with aperiodi sampling. Without being exhaustive, whih would be neither

possible nor useful, we try to bring together results from diverse ommunities and present them

in a uni�ed manner. For eah of the existing approahes the basi onepts, fundamental results

and relations with the other approahes are disussed in detail. Results onerning extensions

of Lyapunov and frequeny domain methods for systems with aperiodi sampling are realled,

as they allow to derive onstrutive stability onditions. Furthermore, numerial riteria are

presented while indiating the soures of onservatism, the problems that remain open and the

possible diretions of improvement. At last, some emerging researh diretions, suh as the design

of stabilizing sampling sequenes, are brie�y disussed.

2.1 Stability analysis under arbitrary time-varying sampling

In the following, we review some results whih provide a qualitative estimation of the maximum

sampling interval ensuring stability for sampled-data systems with sampling intervals that are

arbitrary varying. More formally, over the setion, we present results that address the following

problem:

� Problem A (Arbitrary sampling problem): Consider the sampled-data system (1.1), (1.2),

(1.3), (1.4) and a bounded subset T ⊂ R+. Determine if the sampled-data system is stable

(in some sense) for any arbitrary time-varying sampling interval hk = tk+1− tk with values

in T .

Often the set T is onsidered of the form T = (0, h] where h is some positive salar. The

largest value of h for whih the stability of the losed loop system is ensured is alled Maximum

Sampling Interval (MSI).

10

The material presented in this hapter is part of a survey paper aepted for publiation in Automatia

[Hetel 2017℄.
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Figure 2.1: Sampling seen as a pieewise-ontinuous time-delay

Several perspetives for addressing Problem A exist. First, we present results that are based

on a time-delay modelling of the sampled-data system (1.1),(1.2),(1.3),(1.4). Next, we show

how the problem an be addressed from the point of view of hybrid systems. We ontinue with

approahes that use the expliit system integration in-between suessive sampling instants, suh

as the ones lassially used in the disrete-time framework. Last, results addressing Problem A

from the robust ontrol theory point of view are presented.

2.1.1 Time-delay approah

To the best of our knowledge, this tehnique was initiated in [Mikheev 1988,Åström 1989℄, and

further developed in [Fridman 1992,Teel 1998b, Louisell 2001℄ and in several other works. For

the ase of an LTI system with sampled-data state feedbak (1.12), we may re-write

u(t) = Kx(tk) = Kx(t− τ(t)),
τ(t) = t− tk, ∀t ∈ [tk, tk+1),

(2.1)

where the delay is pieewise-linear, satisfying τ̇(t) = 1 for t 6= tk, and τ(tk) = 0. This delay

indiates the time that has passed sine the last sampling instant. An illustration of a typial

delay evolution is given in Fig. 2.1. The LTI system with sampled-data (1.12) is then re-modeled

as an LTI system with a time-varying delay

ẋ(t) = Ax(t) +BKx(t− τ(t)), ∀t ≥ 0. (2.2)

This permits to adapt the tools for stability of systems with fast varying delays [Fridman 2003,

Gu 2003b,Rihard 2003,Niulesu 2004℄. This model is equivalent to the original sampled-data

system when onsidering that the sampling indued delay has a known derivative τ̇(t) = 1, for
all t ∈ [tk, tk+1), k ∈ N.

2.1.1.1 Basi results

For system (2.2) it is natural to onsider, as a state variable, the funtional xt(θ) = x(t+θ), ∀θ ∈
[−h̄, 0], and, as state spae, the set C0

([
−h, 0

]
,Rn

)
of ontinuous funtions mapping the interval
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[
−h, 0

]
into Rn [Fridman 2014,Niulesu 2001,Niulesu 1998℄. In the general ase of time-delay

systems, it is di�ult to apply the lassial Lyapunov stability theory, beause the The most

popular generalization of the diret Lyapunov method for time-delay system has been proposed

by Krasovskii [Krasovski�� 1963℄. It uses the existene of funtionals V (t, xt) depending on the

state vetor xt. In the sampled-data ase [Fridman 2004, Fridman 2010, Liu 2012a℄ funtionals

V (t, xt, ẋt) depending both on xt and ẋt (see [Kolmanovskii 1992℄, p.337) are useful.

Denote by W [−h, 0] the Banah spae of absolutely ontinuous funtions φ : [−h, 0] → Rn
with φ̇ ∈ Ln2 (−h, 0) (the spae of square integrable funtions) with the norm

‖φ‖W = max
s∈[−h,0]

‖φ(s)‖+
[∫ 0

−h

∥∥∥φ̇(s)
∥∥∥
2
ds

]1
2

.

Theorem 2.1 (Lyapunov-Krasovskii Theorem) [Kolmanovskii 1992℄ Consider f : R+ ×
C0[−h, 0] → Rn ontinuous in both arguments and loally Lipshitz in the seond argument.

Assume that f(t, 0) = 0 for all t ∈ R+ and that f maps R× (bounded sets in C0[−h, 0]) into

bounded sets of Rn. Suppose that α, v,w : R+ → R+ are ontinuous nondereasing funtions,

α(s), β(s) and γ(s) are positive for s > 0, lims→∞ α(s) = ∞ and α(0) = β(0) = 0. The trivial

solution of

ẋ(t) = f (t, xt)

is Globally Uniformly Asymptotially Stable if there exists a ontinuous funtional V : R ×
W [−h, 0] × Ln2 (−h, 0) → R+, whih is positive-de�nite, i.e.

α(‖φ(0)‖) ≤ V (t, φ, φ̇) ≤ β(‖φ‖W )

for all φ ∈ W [−h, 0], t ∈ R+, and suh that its derivative along the system's solutions is non-

positive

V̇ (t, xt, ẋt) ≤ −γ(‖xt(0)‖). (2.3)

The funtional V satisfying the onditions of Theorem 2.1 is alled a Lyapunov-Krasovskii Fun-

tional (LKF). In the general ase of sampled-data nonlinear systems the underlying delay system

ẋ = f(t, xt) used in Theorem 2.1 from [Kolmanovskii 1992℄ is desribed by a funtion f whih is

pieewise ontinuous with respet to t. However, the proof of the result in [Kolmanovskii 1992℄

an be adapted to over this ase.

2.1.1.2 Construtive stability onditions

Various generalisations of the Lyapunov-Krasovskii theorem have been proposed in the literature.

For the ase of sampled-data systems, in [Fridman 2004℄ the Lyapunov-Krasovskii Theorem was

extended to linear systems with a disontinuous sawtooth delay by use of Barbalat lemma.

Another extension to linear sampled-data systems has been provided in [Fridman 2010℄, where

the LKF is allowed to have disontinuities at sampling times. It leads to an LKF of the form

[Fridman 2010℄:

V (t, x(t), ẋt) = xT (t)Px(t) + (hk − τ(t))
∫ t
t−τ(t) ẋ

T (s)Rẋ(s)ds (2.4)

whih improves the results from [Fridman 2004℄, as the information τ̇ = 1 an be expliitly taken

into aount when evaluating its derivative.
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Theorem 2.2 [Fridman 2010℄ Let there exist P ≻ 0, R ≻ 0, P2 and P3 suh that the LMI

[
Φs P − P T2 + (A+BK)TP3

∗ −P3 − P T3 + hR

]
≺ 0 (2.5)



Φs P − P T2 + (A+BK)TP3 −hP T2 A
∗ −P3 − P T3 −hP T3 A
∗ ∗ −hR


 ≺ 0 (2.6)

with Φs = P T2 (A + BK) + (A + BK)TP2, are feasible. Then system (1.12) is Exponentially

Stable for all sampling sequenes σ = {tk}k∈N with hk = tk+1 − tk ≤ h̄.

The result takes into aount information about the sawtooth shape of the delay, whih is

the spei�ity of the time-delay model (2.2) when representing exatly the sampled-data system

(1.12). It an ensure the stability for time-varying delays τ(t) whih are longer than any onstant

delay that preserves stability, provided that τ̇(t) = 1. See also [Seuret 2009℄ for an alternative

LMI formulation.

2.1.1.3 An extension to nonlinear systems

Conerning nonlinear systems, [Mazen 2013a℄ has extended the ideas in [Fridman 2004℄ for the

ase of ontrol a�ne non-autonomous systems with sampled-data ontrol. Consider the nonlinear

system:

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), (2.7)

with the state x(t) ∈ Rn and the input u(t) ∈ Rm, and with funtions f , g that are loally

Lipshitz with respet to x and pieewise ontinuous in t. Assume that the C1
ontroller u(t) =

K(t, x) is designed in order to make the system (2.7) Globally Uniformly Asymptotially Stable.

Moreover, assume that there exist a C1
positive de�nite and radially unbounded funtion V , and

a ontinuous positive de�nite funtion W suh that:

−
[∂V
∂t

(t, x) +
∂V

∂x
(f(t, x) + g(t, x)K(t, x))

]
≥W (x) (2.8)

for all t ≥ t0 and x ∈ Rn. Also, onsider K(t, 0) = 0 for all t ∈ R. Hene, V is a strit Lyapunov

funtion for

ẋ = f(t, x) + g(t, x)K(t, x)

and one an �x lass K∞ funtions α1 and α2 suh that α1(‖x‖2) ≤ V (t, x) ≤ α2(‖x‖2), for all
t ≥ t0 and x ∈ Rn. De�ne the funtion

ρ(t, x) =
∂K

∂t
(t, x) +

∂K

∂x

(
f(t, x) + g(t, x)K(t, x)

)
. (2.9)

Theorem 2.3 (adapted from [Mazen 2013a℄) Suppose that there exist onstants c1, c2, c3 and

c4 suh that: ∥∥∥∥
∂K

∂x
(t, x)g(t, x)

∥∥∥∥
2

2

≤ c1,

∥∥∥∥
∂V

∂x
(t, x)g(t, x)

∥∥∥∥
2

2

≤ c2,

‖ρ(t, x)‖22 ≤ c3W (x),
∥∥∥∥
∂V

∂x
(t, x)g(t, x)K(t, x)

∥∥∥∥
2

≤ c4(V (t, x) + 1),

20



2.1. Stability analysis under arbitrary time-varying sampling

hold for all t ≥ t0 and x ∈ Rn. Consider the system (2.7) in losed-loop with: u(t) = K(tk, x(tk)),
t ∈ [tk, tk+1), σ = {tk}k∈N as de�ned in (1.1) and hk = tk+1 − tk ∈ [h, h], ∀k ∈ N. Then, the

losed-loop system is Globally Uniformly Asymptotially Stable if h ≤ (4c1 + 8c2c3)
−1/2 .

The stability is proven by means of a Lyapunov funtional of the form

U(t, xt) = V (t, x(t)) +
ǫ

h

∫ 0

−h

∫ t

t+θ
‖Ψ(s, xs)‖22 dsdθ,

where

Ψ(t, xt) =
∂K

∂t
(t, xs(0)) +

∂K

∂x
(t, xt(0)) ẋt(0).

This funtional is reminisent of the form (2.4) used in [Fridman 2004℄ to study LTI systems.

However, di�erently from the LTI ase, it is far more omplex to determine how onservative the

result is.

2.1.1.4 Further reading

The researh on LKFs for sampled-data system is still a wide-open domain. Currently, an im-

portant e�ort is dediated to �nding better LKFs and better over-approximations of the deriva-

tives. Note that the derivation of onstrutive stability onditions may be quite an elaborate

analytial proess and it is not always very intuitive. However, a notable advantage of this

methodology is the fat that for linear systems the approah an be easily extended to on-

trol design [Fridman 2004, Suplin 2007, Liu 2012a℄ and to the ase of systems with parame-

ter unertainties [Fridman 2010, Seuret 2012, Orihuela 2010, Gao 2010, Peng 2011℄, delays [Su-

plin 2009,Mazen 2012, Gao 2008,Mazen 2013b, Seuret 2011, de Wouw 2010℄ and shedulling

protools [Liu 2012b,Liu 2015b,Liu 2015a℄. See also [Fridman 2012,Fridman 2013℄ for the ontrol

of semilinear 1-D heat equations.

Aside from the Lyapunov-Krasovskii method, the stability of sampled-data systems an also

be analysed using the method proposed by Razumikhin [Razumikhin 1956℄. Connetions be-

tween Razumikhin's method and the ISS nonlinear small gain theorem [Sontag 1998℄ have been

established in [Teel 1998a℄. This relation has been used in [Teel 1998b℄ in order to show the

preservation of ISS properties under su�iently fast sampling for nonlinear systems with an

emulated sampled-data ontroller. Razumikhin's method has been used in [Fiter 2012a℄ for the

ase of LTI sampled-data systems. In [Karafyllis 2009b℄, the Razumikhin method is explored for

nonlinear sampled-data system on the basis of vetor Lyapunov-Razumikhin Funtions (LRF).

For more general extensions to the ontrol design problem, see [Karafyllis 2012a℄, onerning

the ase of nonlinear feed-forward systems and [Karafyllis 2012b℄, for nonlinear sampled-data

system with input delays. At last, we would like to mention the Input/Output approah for the

analysis of time-delay systems [Fu 1998,Gu 2003a,Kao 2004℄, whih makes use of lassial robust

ontrol tools [Zhou 1996,Megretski 1997℄. The appliation of the Input/Output approah for the

ase of sampled-data systems has been disussed in [Mirkin 2007,Liu 2010,Mihiels 2009℄. The

approah was further developed by [Fujioka 2009,Omran 2012a,Omran 2014a,Omran 2014b,Om-

ran 2013,Chen 2014℄ without passing through the time-delay system model. It will be presented

in more detail in Setion 2.1.4 and Chapter 3.
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2.1.2 Hybrid system approah

Due to the existene of both ontinuous and disrete dynamis, it is quite natural to model

sampled-data systems as hybrid dynamial systems [Goebel 2009, Goebel 2012, Haddad 2014,

Brogliato 1996,Brogliato 2016℄. The �rst mentions to sampled-data systems as hybrid dynamial

systems date bak to the middle of the '80s [Mousa 1986℄. Later on, in the '90s, the use of hybrid

models has been developed for linear sampled-data systems with uniform and multi-rate sampling

as an interesting approah for the H∞ and H2 ontrol problems [Kabamba 1993, Sun 1993,

Toivonen 1992b℄. The approah has also been developed for nonlinear sampled-data systems

in [Hou 1997,Ye 1998℄. For systems with aperiodi sampling, impulsive models had been used

starting with [Toivonen 1992b,Dullerud 1999,Mihel 1999℄. Reently, more general hybrid models

have been proposed in the ontext of Networked Controlled Systems by [Ne²i¢ 2004b,Ne²i¢ 2009℄.

A solid theoreti foundation has been established for hybrid systems in the framework proposed

by [Goebel 2009, Goebel 2012℄ and it proves to be very useful in the analysis of sampled-data

systems.

In this setion we will present some basi hybrid models enountered in the analysis of

sampled-data systems. The extensions of the Lyapunov stability theory for hybrid systems will

be introdued together with onstrutive numerial and analyti stability analysis riteria.

2.1.2.1 Impulsive models for sampled-data systems

Consider the ase of LTI sampled-data systems with linear state feedbak, as in system (1.12).

Let x̂ denote a pieewise onstant signal representing the most reent state measurement of the

plant available at the ontroller, x̂(t) = x(tk), for all t ∈ [tk, tk+1), k ∈ N. Using the augmented

system state χ(t) = [xT (t), x̂T (t)]T ∈ Rnχ
with nχ = 2n, the dynamis of the LTI sampled-data

system (1.12) an be written under the form

{
χ̇(t) = Fχ(t), t 6= tk, k ∈ N,
χ(tk) = Jχ(t−k ), k ∈ N, (2.10)

with

χ(t−) = lim
θ↑t

χ(θ), F =

[
A BK
0 0

]
, J =

[
I 0
I 0

]
. (2.11)

Similar models an be determined by onsidering an augmented state vetor χ inluding the

most reent ontrol value implemented at the plant û(t) = u(tk), the sampling error e(t) =
x(t) − x̂(t), the atuation error eu(t) = u(t) − û(t), et. Models of the form (2.10),(2.11) �t

into the framework of impulsive dynamial systems [Milman 1960, Haddad 2014, Lakshmikan-

tham , Bainov 1993℄ (sometimes also alled disontinuous dynamial systems or simply jump

systems). More general nonlinear sampled-data systems lead to impulsive systems of the form

[Naghshtabrizi 2008,Ne²i¢ 2004b℄

χ̇(t) = Fk(t, χ(t)), t 6= tk, k ∈ N, (2.12a)

χ(tk) = Jk(tk, χ(t
−
k )), k ∈ N (2.12b)

where the augmented state may also inlude the ontroller state and some of its sampled om-

ponents (state, output, et.). Generally, for an impulsive system, (2.12a) is alled the system's

�ow dynamis while (2.12b) is the jump dynamis.
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2.1.2.2 Lyapunov methods for impulsive systems

The stability of equilibria for the impulsive systems of the form (2.12) an be ensured by

the existene of andidate Lyapunov funtions that depend both on the system state and on

time, and evolve in a disontinuous manner at impulse instants [Bainov 1993, Haddad 2014,

Naghshtabrizi 2008℄.

Theorem 2.4 [Naghshtabrizi 2008℄ Consider system (2.12) and denote τ(t) = t − tk, ∀t ∈
[tk, tk+1). Assume that Fk and Jk are loally Lipshitz funtions from R+ × Rnχ

to Rnχ
suh

that Fk(t, 0) = 0, Jk(t, 0) = 0, for all t ≥ 0. Let there exist positive salars c1, c2, c3, b and a

Lyapunov funtion V : Rnχ × R → R, suh that

c1‖χ‖b ≤ V (χ, τ) ≤ c2‖χ‖b, (2.13)

for all χ ∈ Rnχ , τ ∈ [0, h]. Suppose that for any impulse sequene σ = {tk}k∈N suh that h ≤
tk+1 − tk ≤ h, k ∈ N, the orresponding solution χ(·) to (2.12) satis�es:

dV (χ(t), τ(t))

dt
≤ −c3V (χ(t), τ(t)) , ∀t 6= tk, ∀k ∈ N,

and V (χ(tk), 0) ≤ limt→t−k
V (χ(t), τ(t)) , ∀k ∈ N. Then, the equilibrium point χ = 0 of system

(2.12) is Globally Uniformly Exponentially Stable over the lass of sampling impulse instants,

i.e. there exist c, λ > 0 suh that for any sequene σ = {tk}k∈N that satis�es h ≤ tk+1 − tk ≤ h,
k ∈ N,

‖χ(t)‖ ≤ c‖χ(t0)‖e−λ(t−t0), ∀t ≥ t0.

The previous stability theorem requires in (2.13) the andidate Lyapunov funtion to be

positive at all times. For the ase of system (2.12) with globally Lipshitz Fk, k ∈ N, the
ondition an be relaxed by requiring the Lyapunov funtion to be positive only at impulse

times [Naghshtabrizi 2008℄, i.e. c1‖χ(tk)‖b ≤ V (χ(tk), 0) ≤ c2‖χ(tk)‖b,∀k ∈ N, instead of

(2.13).

In the ase of impulsive systems (2.10), with linear �ow and jump dynamis, andidate

Lyapunov funtions of the form V (χ, τ) = χTP (τ)χ, with P : [0, h̄] → Rnχ×nχ
a di�erentiable

matrix funtion, have been used [Toivonen 1992a, Sun 1993, Briat 2013, Naghshtabrizi 2008℄.

Su�ient stability onditions an be obtained from Theorem 2.4 in terms of existene of a

di�erentiable matrix funtion P : [0, h] → Rnχ×nχ , c1I ≺ P (τ) ≺ c2I, satisfying the parametri

set of LMIs

F TP (θ1) + P (θ1)F + c3P (θ1) +
∂P

∂τ
(θ1) ≺ 0,

∀ θ1 ∈ [0, h], (2.14a)

JTP (0)J − P (θ2) ≺ 0, ∀ θ2 ∈ [h, h], (2.14b)

with positive salars c1, c2, c3. This formulation is reminisent of the Riati equation approah

used for robust sampled-data ontrol in [Toivonen 1992b,Sun 1993℄.

2.1.2.3 Numerially tratable riteria

In pratie, the di�ulty of heking the existene of andidate Lyapunov funtions using LMI

formulations suh as (2.14) omes from the fat that the set of LMIs are parametrized by elements
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in [0, h̄] or [h, h], whih leads to an in�nite number of LMIs. As follows we will disuss the

derivation of a �nite number of LMIs from (2.14).

Conerning the parametri set of LMIs (2.14), a �nite number of LMI onditions an be

derived by onsidering partiular forms for the matrix funtion P (τ). For example, onsider a

matrix P (τ) linear with respet to τ

P (τ) = P1 + (P2 − P1)
τ

h
, (2.15)

for some positive de�nite matries P1, P2, as in [Hu 2003,Allerhand 2011℄. There, suh a Lya-

punov matrix has been used for sampled-data systems with multi-rate sampling and swithed

linear systems. For a andidate Lyapunov funtion V (χ, τ) = χTP (τ)χ, with P (τ) as de�ned
in (2.15), a �nite set of LMIs that are su�ient for stability an be obtained from (2.14) using

simple onvexity arguments:

F TP1 + P1F + c3P1 +
P2 − P1

h
≺ 0, (2.16a)

F TP2 + P2F + c3P2 +
P2 − P1

h
≺ 0, (2.16b)

JTP1J ≺ P2, (2.16)

JTP1J ≺ P1 + (P2 − P1)h/h. (2.16d)

For the partiular ase of LTI sampled-data systems represented by (2.10),(2.11), Lyapunov

funtions of the form V (χ, τ) = χTP (τ)χ are proposed in the literature by summing various

terms suh as:

V1(χ, τ) = xTP0x (2.17)

V2(χ, τ) = (x− x̂)T Q (x− x̂) (h− τ) (2.18)

V3(χ, τ) = (x− x̂)T R (x− x̂) e−λτ (2.19)

V4(χ, τ) = χT
( ∫ 0

−τ
(s+ h)(FeFs)T Ũ(FeFs)ds

)
χ, (2.20)

where Ũ :=

[
U 0
0 0

]
, λ > 0 and P0, R, U are symmetri positive de�nite matries. Using

suh partiular forms of Lyapunov funtions, LMI stability onditions have been derived in the

literature [Hu 2003,Naghshtabrizi 2008,Ne²i¢ 2009,Omran 2012b,Goebel 2012℄. We point in par-

tiular to the term (2.20) used in [Naghshtabrizi 2008℄ whih provided a signi�ant improvement

in what onerns the onservatism redution. This term is inspired by Lyapunov-Krasovskii

funtionals from the input-delay approah, like the one in [Fridman 2004℄. Note that the term

(2.20) an also be written as

∫ t
t−τ (s + h − t)ẋT (s)Uẋ(s)ds. It has been motivated by the term∫ 0

−h
∫ t
t+θ ẋ

T (s)Uẋ(s)dsdθ used in the time-delay approah (see [Fridman 2004℄). Vie versa, the

hybrid system approah has also inspired the use of disontinuous Lyapunov funtionals in the

time-delay approah (see for example the funtional (2.4) whih is disontinuous at sampling

times). Note that the term (hk − τ)
∫ t
t−τ ẋ

T (s)Rẋ(s)ds in the funtional (2.4) an be re-written

as (hk − τ)χT
( ∫ 0

−τ (Fe
Fs)T R̃(FeFs)ds

)
χ, with

R̃ =

[
R 0
0 0

]
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2.1. Stability analysis under arbitrary time-varying sampling

and R ≻ 0. Then, for the impulsive system (2.10), (2.11), the funtional (2.4) an be inter-

preted as a Lyapunov funtion of the form V (χ, τ, hk) = χTP (τ, hk)χ. Hybrid and input-delay

approahes share the same advantages and drawbaks. Both of them are onstrutive, and LMI

onditions are used to onstrut the Lyapunov funtionals/funtions. Similarly to the time delay

approah, the LMI formulations an be adapted to ope with unertainties in the system matri-

es. On the other hand, onservatism is added by the upper bounding introdued when studying

the derivatives of Lyapunov funtionals/funtions.

2.1.2.4 More general hybrid models

A large variety of hybrid dynamial systems, inluding sampled-data and impulsive models,

an be re-formulated in the unifying theoretial framework proposed by Goebel, Sanfelie and

Teel [Goebel 2009,Goebel 2012℄. Several fundamental properties have been investigated in this

framework, providing a solid theory for hybrid dynamial systems. The main advantage of this

generi hybrid formulation [Goebel 2009, Goebel 2012℄ is that the assoiated theoreti proper-

ties an be diretly transferred to sampled-data systems with aperiodi sampling. The general

formulation proposed in [Goebel 2009,Goebel 2012℄ onsiders models of the form

ż = Fz(z), z ∈ C, (2.21a)

z+ = Jz(z), z ∈ D, (2.21b)

with state z ∈ Rnz
. The system state evolves aording to an ordinary di�erential equation

(2.21a) when the state is in some subset C of Rnz
and aording to a �rst order reurrene

equation (2.21b) when the state is in the subset D of Rnz
. z+ denotes the next value of state

given as a funtion of the urrent state z via the map Jz(·). C is alled the �ow set and D is

alled the jump set. Here, we assume that Fz and Jz are ontinuous funtions from C to Rnz

and D to Rnz
, respetively. C and D are assumed to be losed sets in Rnz

.

Note that in the impulsive system formulation of sampled-data systems, the system jumps

are time-triggered. However, the dynami of the triggering mehanism is in some sense hidden.

In the framework proposed by [Carnevale 2007,Dai 2007,Ne²i¢ 2009,Goebel 2009,Goebel 2012℄,

the mehanism triggering the system jumps is modelled expliitly by augmenting the system state

with the lok variable τ(t) = t − tk, ∀t ∈ [tk, tk+1), ∀k ∈ N. Consider the LTI sampled-data

systems (1.12) with the notations x̂(t) = x(tk), τ(t) = t − tk for all t ∈ [tk, tk+1), k ∈ N. The

system an be represented by the following hybrid model





ẋ = Ax+BKx̂
˙̂x = 0
τ̇ = 1



 τ ∈ [0, h],

x+ = x
x̂+ = x
τ+ = 0



 τ ∈ [h, h].

(2.22)

Then, system (1.12) with hk ∈ [h, h] (or equivalently (2.10),(2.11)) an be re-modelled in the

form (2.21) with zT =
[
xT x̂T τ

]
=
[
χT τ

]
,

C =
{
z ∈ Rnz : τ ∈ [0, h]

}
,

D =
{
z ∈ Rnz : τ ∈ [h, h]

}
,
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Fz(z) =



Ax+BKx̂

0
1


 , Jz(z) =



x
x
0


 . (2.23)

Solutions φ of the general hybrid system (2.21) are parametrized by both the ontinuous time t
and the disrete time k: φ(t, k) represents the state of the hybrid system after t time units and k
jumps. Suh solutions are de�ned on a hybrid time domain, whih for the ase of sampled-data

systems is given as the union of the intervals [tk, tk+1]×{k}. A solution φ(·, ·) is a funtion de�ned

on a hybrid time domain suh that φ(·, k) is ontinuous on [tk, tk+1], ontinuously di�erentiable

on (tk, tk+1) for eah k in the domain, and suh that

φ̇(t, k) = Fz (φ(t, k)) ,

if φ(t, k) ∈ C, t ∈ (tk, tk+1), k ∈ N, and

φ(tk+1, k + 1) = Jz (φ(tk+1, k)) ,

if φ(tk+1, k) ∈ D, k ∈ N. For sampled-data systems as (2.22) suh solutions may be roughly

interpreted as a generalization of the state lifting approah proposed in [Yamamoto 1994℄ for

systems with periodi sampling.

A partiularity of the model (2.22) in the ontext of stability analysis is the fat that although

the matrix K is designed suh that x (and onsequently x̂) onverges to zero, the lok variable τ
does not onverge. For eah sampling interval [tk, tk+1), the timer τ visits suessively the points

of the interval [0, h] up to hk = tk+1− tk. The main onsequene is that the hybrid system (2.22)

does not have an asymptotially stable equilibrium point. For suh systems the stability of the

ompat set A = {0}×{0}× [0, h] is usually investigated instead. Studying this property allows

to onlude on the onvergene of x. One of the main results allowing to state the asymptoti

stability of a set for hybrid systems is given below. This results is expressed in terms of the

pre-asymptoti stability of a set A (see [Goebel 2009℄ for a detailed de�nition). The pre�x "-pre"

is used sine the ompleteness of all system solutions

11

is not required. Only omplete solutions

need to onverge to A. The onept of pre-asymptoti stability used in the following theorem is

equivalent to standard asymptoti stability of the set A when all system solutions are omplete,

whih is the ase for sampled-data systems.

Theorem 2.5 [Goebel 2009℄ Consider the hybrid system (2.21) and the ompat set A ⊂ Rnz

suh that Jz (A∩D) ⊂ A. If there exists a andidate Lyapunov funtion

12 V suh that

∂V

∂z
Fz(z) < 0 for all z ∈ C \ A, (2.24a)

V (Jz(z))− V (z) < 0 for all z ∈ D \ A, (2.24b)

then the set A is pre-asymptotially stable.

Various relaxations of the above result are provided in Chapter 3 in [Goebel 2012℄. A onverse

Lyapunov theorem is given below.

11

A solution φ(t, k) is alled omplete if dom φ is unbounded.

12V is ontinuous and non-negative on (C ∪D) \ A ⊂ domV , it is ontinuously di�erentiable on an open set

satisfying C \ A ⊂ domV , and limz→A,z∈domV ∩(C∪D) V (z) = 0. Furthermore, for global pre-asymptoti stability,

the sublevel sets of V (.) are required to be ompat.
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Theorem 2.6 [Goebel 2009℄ For the hybrid system (2.21), if the ompat set A is globally pre-

asymptotially stable, then there exist a C∞
funtion V : Rnz → R+ and α1, α2 ∈ K∞ suh that

α1 (|z|A) ≤ V (z) ≤ α2 (|z|A), ∀z ∈ Rnz , where | · |A denotes the distane from the set A, and

∂V

∂z
Fz(z) ≤ −V (z), ∀z ∈ C, (2.25a)

V (Jz(z)) ≤ V (z)/2, ∀z ∈ D. (2.25b)

Note that with respet to the ase of sampled-data systems suh as (2.22) (or equivalently

(2.10), (2.11)) where solutions are omplete, the previous theorem shows that asymptoti stability

implies the existene of a C∞
Lyapunov funtion of the form V (z) = Ṽ (χ, τ), to be related with

the su�ient onditions for stability in Theorem 2.4.

2.1.2.5 An estimation of the MSI for nonlinear systems

For nonlinear sampled-data systems the stability properties have been studied in the more general

ontext of Networked Control Systems with sheduling protools [Ne²i¢ 2004b,Carnevale 2007℄.

This approah has been partiularized to the sampled-data ase in [Ne²i¢ 2009℄. Consider the

plant: {
ẋ = F (x, u) ,
y = H (x, u) ,

(2.26)

where x is the plant state, u is the ontrol input, y is the measured output. Suppose that

asymptoti stability is guaranteed by the ontinuous-time output feedbak:

{
ẋc = F c (xc, y) ,
u = Hc (xc, y) ,

(2.27)

where xc is the ontroller state. Under an exat sampled-data implementation of the ontroller

and a perfet knowledge of the sampling sequene σ = {tk}k∈N, the sampled-data implementation

of the losed-loop system an be written in the following impulsive system form:





ẋ = F (x, û), t ∈ [tk, tk+1),
y = H(x), t ∈ R+

ẋc = F c(xc, ŷ), t ∈ [tk, tk+1),
u = Hc(xc), t ∈ R+
˙̂y = 0, t ∈ [tk, tk+1),
˙̂u = 0, t ∈ [tk, tk+1),

ŷ(tk) = y(t−k ),
û(tk) = u(t−k ),

(2.28)

where û represents ontrol being implemented at the plant and ŷ the most reent plant output

measurements that are available at the ontroller. In order to express the system in the general

framework of [Goebel 2012℄, onsider the augmented state vetor η(t) ∈ Rnη
and the sampling-

indued error e(t) ∈ Rne
:

η(t) :=

[
x(t)
xc(t)

]
, e(t) =

[
ey(t)
eu(t)

]
:=

[
ŷ(t)− y(t)
û(t)− u(t)

]
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and a lok τ whih evolves with respet to the sampling instants. The dynamis in (2.28) with

hk ∈ [h, h] an be modelled by the following hybrid system:





η̇ = f(η, e)
ė = g(η, e)
τ̇ = 1



 τ ∈ [0, h],

η+ = η
e+ = 0
τ+ = 0



 τ ∈ [h,∞),

(2.29)

with η ∈ Rnη
, e ∈ Rne

, τ ∈ R+. The funtions f and g are obtained by diret alulations from

the sampled-data system (2.28) (see [Ne²i¢ 2009℄):

f(η, e) =

[
F (x,Hc(xc) + eu)
F c(xc,H(x) + ey)

]
,

g(η, e) =

[
−∂H
∂x F (x,H

c(xc) + eu)

−∂Hc

∂xc F
c(xc,H(x) + ey)

]
.

It should be noted that η̇ = f(η, 0) is the losed loop system without the sampled-data imple-

mentation. The following theorem provides a quantitative method to estimate the MSI, using

model (2.29).

Theorem 2.7 [Ne²i¢ 2009℄ Assume that f and g in (2.29) are ontinuous. Suppose there exist

∆̃η, ∆̃e > 0, a loally Lipshitz funtion W : Rne → R+, a loally Lipshitz, positive de�nite,

radially unbounded funtion V : Rnη → R+, a ontinuous funtion Θ : Rnη → R+, real numbers

L > 0, γ > 0, funtions αW , αW ∈ K∞ and a ontinuous, positive de�nite funtion ̺ suh that,

for all e ∈ Rne
:

αW (‖e‖) ≤W (e) ≤ αW (‖e‖),
and for almost all ‖η‖ ≤ ∆̃η and ‖e‖ ≤ ∆̃e:

∂W

∂e
g(η, e) ≤ LW (e) + Θ(η),

∂V

∂η
f(η, e) ≤ −̺(‖η‖) − ̺(W (e)) −Θ2(η) + γ2W 2(e).

Finally, onsider that 0 < h ≤ h < T (γ,L), with

T (γ, L) :=





1
Lrartan(r) γ > L,
1
L γ = L,
1
Lrartanh(r) γ < L,

and r =
√∣∣ γ2

L2 − 1
∣∣. Then, for all sampling intervals less than h the set A = {(η, e, τ) : η =

0, e = 0, τ ∈ [0, h]} is Uniformly Asymptotially Stable for system (2.29).

Theorem 2.7 provides an expliit formulation of the MSI for nonlinear sampled-data systems.

It is appliable for both onstant and variable sampling intervals. Moreover, it has the advantage

of onsidering a general lass of nonlinear systems. Nevertheless, for pratial appliations it is

not obvious to onstrut the funtions V (η), W (e) and Θ(η) whih satisfy the hypotheses of the

theorem.
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2.1.2.6 Further reading

In the impulsive system framework ontrol design onditions have been proposed in [Briat 2013℄.

For observer design onditions we point to the works in [Andrieu 2010,Dinh 2015,Ahmed-Ali 2009,

Nadri 2013, Postoyan 2012, Ferrante 2014℄. Some extensions of the hybrid systems approah

for sampled-data systems with delay an be found in [Fridman 2000, Naghstabrizi 2010℄ and

[Bauer 2012℄.

2.1.3 Disrete-time approah and onvex-embeddings

In this sub-setion we present several approahes whih use the system integration over the

sampling interval and onvex embeddings of the transition matrix between sampling times in

order to derive stability onditions.

2.1.3.1 Theoretial results for LTI systems using the disrete-time approah

Let us onsider the LTI system with sampled linear stati state feedbak (1.12) where hk =
tk+1 − tk takes values in the set T = [h, h]. Reall the notations xk = x(tk),

Λ(θ) = e

Aθ +

∫ θ

0
e

AsdsBK (2.30)

for θ ∈ R. One an verify that the losed-loop system (1.12) satis�es

xk+1 = Λ(hk)xk (2.31)

with hk ∈ T = [h, h]. Model (2.31) belongs to the lass of disrete-time Linear Parameter

Varying (LPV) systems [Rugh 2000,Kamen 1984,Molhanov 1989℄. It aptures the behaviour of

system (1.12) at sampling times, without onsideration of the intersample behavior. However,

in [Fujioka 2009℄, the following proposition has shown that for LTI sampled-data system, the

asymptoti stability in ontinuous-time and in disrete-time are equivalent.

Proposition 2.8 [Fujioka 2009℄ Consider the sampled-data system (1.12) with hk = tk+1−tk ∈
[h, h]. For a given x(t0), the following onditions are equivalent:

1. limt→∞ x(t) = 0

2. limk→∞ x(tk) = 0.

A simple stability riterion whih is su�ient for stability an be obtained using lassial

quadrati Lyapunov funtions, whih are dereasing at eah sample.

Theorem 2.9 [Zhang 2001b℄ The origin of system (2.31) is Globally Uniformly Exponentially

Stable for all sampling sequenes σ = {tk}k∈N with hk = tk+1 − tk ∈ [h, h], k ∈ N, if there exists

P ≻ 0 suh that

ΛT (θ)PΛ(θ)− P ≺ 0, ∀θ ∈ T = [h, h]. (2.32)

The LMI (2.32) ensures that the andidate Lyapunov funtion V (x) = xTPx satis�es the relation

∆V (k) = V (xk+1)− V (xk) < 0, ∀xk 6= 0. (2.33)
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Note that, similarly to onditions (2.14) used for the hybrid system approah, the stability

ondition (2.32) represent a set of LMIs that are parametrized by θ ∈ T = [h, h]. This ondition
is not a omputationally tratable problem by themselves. Approximate solutions, based on

evaluation of the ondition for a �nite set of values of θ have been presented in [Zhang 2001b,

Sala 2005, Skaf 2009℄. A �nite set of su�ient tratable numerial onditions an be obtained

using normed-bounded and/or polytopi onvex embeddings of the transition matrix Λ(θ).

2.1.3.2 Tratable riteria

In what follows, we try to give an idea about the manner to solve parametri LMIs involving

matrix exponentials suh as the one in (2.32). First, we present brie�y the approah proposed

by Fujioka in [Fujioka 2009a℄. Consider a nominal sampling interval T0 ∈ [h, h]. For a salar δ,
the transition matrix Λ(·) satis�es the relation

Λ(T0 + δ) = Λ(T0) + ∆(δ)Ψ(T0) (2.34)

where ∆(δ) :=
∫ δ
0 e

Asds, Ψ(T0) = AΛ(T0) + BK. Using lassial properties of the matrix expo-

nential [Loan 1977℄, the indued Eulidean norm of ∆(δ) an be over-bounded

‖∆(δ)‖2 ≤
∫ δ

0
eµ(A)sds (2.35)

where µ(A) is the maximum eigenvalue of

A+AT

2 . System (2.31) an be expressed as a nominal

disrete-time LTI system with a norm-bounded unertainty

xk+1 = Λ(T0)xk +∆(δk)Ψ(T0)xk (2.36)

where δk = hk − T0, for whih lassial H∞ riteria [Gahinet 1994℄ an be used. A simpli�ed

version of the main result in [Fujioka 2009a℄ is given as follows.

Theorem 2.10 [Fujioka 2009a℄ Let T0 ∈ [h, h] be given. If there exists X ≻ 0 and γ > 0
satisfying

M(T0,X, γ) :=[
Λ(T0) I
Ψ(T0) 0

] [
X 0
0 I

] [
Λ(T0) I
Ψ(T0) 0

]T
−
[
X 0
0 γ2I

]
≺ 0, (2.37)

then (2.32) is satis�ed with P = X−1
for all θ ∈ T (T0, γ) :=

[
h(T0, γ), h(T0, γ)

]
with

h(T0, γ) =





T0 − γ−1, if µ(−A) = 0,
−∞, if µ(−A) ≤ −γ,
T0 −

log(1+γ−1µ(−A))
µ(−A) , otherwise,

(2.38)

h(T0, γ) =





T0 + γ−1, if µ(A) = 0,
∞, if µ(A) ≤ −γ,
T0 +

log(1+γ−1µ(A))
µ(A) , otherwise.

(2.39)

Condition (2.37) is su�ient for the asymptoti stability of system (2.31) under time-varying

sampling intervals hk ∈ [h, h] with h and h given in (2.38) and (2.39), respetively. Other norm-
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2.1. Stability analysis under arbitrary time-varying sampling

bounded approximations of the transition matrix Λ(·) exist in the literature [Balluhi 2005,

Suh 2008, Kao 2013, Fujioka 2011b, Zhang 2011℄. For example, stability onditions have been

provided using the Shur deomposition in [Suh 2008℄ while [Zhang 2011℄ uses the Jordan normal

form. In [Fujioka 2011b℄ the transition matrix Λ(T0 + δ) is deomposed as

Λ(T0 + δ) = Λ(T0) + δL(T0) + ∆2(δ)AL(T0)

with L(T0) = eAT0(A + BK), ∆2(δ) :=
∫ δ
0

∫ ρ
0 e

Asdsdρ, and stability onditions are provided by

omputing the indued Eulidean norm of ∆2(δ). See also [Kao 2013℄ where stability onditions

have been derived using Integral Quadrati Constraints (IQC), by studying the positive realness

of ∆(δ). More general Lyapunov funtions have been used in [Fujioka 2010b℄.

Alternatively to the use of norm bounded approximations, tratable numerial onditions an

also be obtained using polytopi embeddings of the transition matrix Λ(·) in system (2.31). The

set

W[h,h] := {Λ(θ), θ ∈ [h, h]}

is embedded in a larger onvex polytope with a �nite number of verties Λi, i ∈ I := {1, · · · , Nv},

W :=

{ Nv∑

i=1

αiΛi |αi ≥ 0, i ∈ I,
Nv∑

i=1

αi = 1

}
, (2.40)

in suh a way that W[h,h] ⊆ W. Using a polytopi embedding, system (2.31) an be expressed

as a

xk+1 =

Nv∑

i=1

αi(hk)Λixk, (2.41)

where

∑Nv
i=1 αi(hk) = 1, αi(hk) ≥ 0, i ∈ I. This is a lassial disrete-time system with polytopi

unertainty [Daafouz 2001℄. Here

α(hk) =
[
α1(hk) α2(hk) . . . αNv(hk)

]T

represent the baryentri oordinates of Λ(hk) in the polytope W. The properties of the over-

approximating polytopi set W make it possible to derive a �nite number of su�ient stability

onditions from (2.32), by writing simple LMIs over the polytope verties:

P ≻ 0, ΛTi PΛi − P ≺ 0, ∀i ∈ I. (2.42)

One of the advantages of the polytopi embedding is the fat that it allows the use of parameter

dependent Lyapunov funtions [Daafouz 2001,Hetel 2006,Cloosterman 2010℄ Ṽ (x, α) = xTP (α)x,
P (α) =

∑Nv
i=1 αiPi, whih lead to re�ned stability onditions under a reasonable numerial

omplexity:

∃ Pi = P Ti ≻ 0, ΛTi PjΛi − Pi ≺ 0,∀ (i, j) ∈ I × I. (2.43)

The main di�ulty in onstruting the polytope W̄ is the exponential dependene of the

transition matrix Λ(θ) = eAs +
∫ θ
0 e

AsdsBK in the parameter θ over the the interval [h, h].
Several approahes exist for the omputation of a onvex polytope embedding an unertain matrix

exponential. See for example [Olaru 2008, Oishi 2010, Cloosterman 2009, Cloosterman 2010,

Lombardi 2012℄ for tehniques based on the real Jordan form, [Gielen 2010℄ for a onstrution

that uses the Cayley-Hamilton theorem and [Cloosterman 2006℄ for an approah studying interval
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matries. One may remark that the transition matrix Λ(·) an be re-expressed as

Λ(θ) = I +∆(θ) (A+BK) (2.44)

whih involves only one unertain matrix term ∆(θ) =
∫ θ
0 e

Asds. Then the stability problem

an be addressed by onstruting a polytopi approximation of ∆(θ) for θ ∈ [h, h]. To give an

idea about the manner suh a onvex polytope an be onstruted, let us onsider a simple ase

where the matrix A has n real eigenvalues λi 6= 0, i ∈ {1, . . . , n} with multipliity equal to one,

i.e. where it takes the form

A = T−1




λ1 0 0 . . . 0
0 λ2 0 . . . 0
.

.

.

.

.

.

.

.

.

0 . . . . . . 0 λn


T (2.45)

for some invertible matrix T ∈ Rn×n. Then the unertain matrix ∆(θ) takes the form:

∆(θ) = T−1




ρ1(θ) 0 0 . . . 0
0 ρ2(θ) 0 . . . 0
.

.

.

.

.

.

.

.

.

0 . . . . . . 0 ρn(θ)


T (2.46)

where ρi(θ) = 1
λi

(
eλiθ − 1

)
, i = 1, . . . , n. By omputing ρmini and ρmaxi the minimum and

maximum values of ρi(θ) over [h, h], the unertain matrix ∆(θ) is embedded in a onvex polytope

with Nv = 2n verties

∆(θ) ∈ onv {D1,D2, . . . ,DNv}
:= onv

{
T−1diag(ρ1, . . . , ρn)T : ρi ∈ {ρmini , ρmaxi }, i = 1, . . . , n

}
.

Using (2.44), the polytopi set (2.40) an be onstruted with Λi = I +Di(A + BK), i ∈ I. A
similar embedding proedure an be applied in the general ase (when the eigenvalues of A have

multipliity di�erent than one or when they are omplex) - see [Cloosterman 2010℄.

As the numerial omplexity of the obtained LMI onditions depends signi�antly on the num-

ber of verties Nv of the polytopi approximation, one of the hallenges is to provide aurate

onvex polytopes while reduing the number of verties. For the Jordan deomposition proe-

dure, the number of verties Nv inreases exponentially with the order of the system. A method

for reduing the number of verties has been provided in [Olaru 2008, Lombardi 2012, Lom-

bardi 2009℄. However, the method provides a larger polytopi embedding and may result in a

onservative stability ondition. The hallenge is to �nd a onvex embedding that provides a

good trade-o� between inreased auray and redued omputational omplexity. Methods that

are independent of the order of the systems have been proposed by ombining polytopi embed-

dings with norm bounded approximations [Hetel 2006,Hetel 2008,Donkers 2009,Donkers 2011a℄.

We present brie�y an adaptation of the approah based on Taylor series approximation in

[Hetel 2006,Hetel 2008℄, originally used for sampled-data systems with input delay. Note that

the transition matrix Λ(hk) with hk ∈ [h, h] an be rewritten as

Λ(hk) = Λ(h) + ∆(ρk)Ψ(h)
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2.1. Stability analysis under arbitrary time-varying sampling

where ρk = hk −h ∈ [0, h− h], ∆(ρ) =
∫ ρ
0 e

Asds and Ψ(h) = AΛ(h)+BK. Using a Taylor series

approximation of the matrix exponential, ∆(ρ) an be expressed as

∆(ρ) = TM (ρ) +RM (ρ)

where TM (ρ) =
∑M

i=1
Ai−1ρi

i! is the M th
order Taylor series approximation and RM (ρ) is the

reminder. The proedure proposed in [Hetel 2006, Hetel 2008℄ allows to embed TM (ρ) in a

onvex polytope with Nv =M + 1 verties

TM (ρ) ∈ onv {Ui, i = 1, . . . ,M + 1} , ∀ ρ ∈ [0, h − h],

where U0 = 0, Ui+1 = (h−h)iAi−1

i! + Ui, i = 1, . . . ,M . Furthermore, an upper bound on the

indued Eulidean norm of RM (ρ) an be omputed using the method proposed in [Liou 1966℄.

To obtain an embedding with ‖RM (ρ)‖2 < γR for all ρ ∈ [0, h − h] the approximation order M
must be hosen suh that

‖A‖2 (h− h)

M + 2
< 1

and ∥∥AM
∥∥
2
(h− h)M+1

(M + 1)!

M + 2

M + 2− ‖A‖2 (h− h)
≤ γR.

For this approah the number of verties is linear in the order M of the Taylor approximation.

Stability riteria are obtained in a diret manner by ombining LMI methods for polytopi

systems with the ones for systems with norm-bounded unertainty.

Note that for both norm-bounded and polytopi embeddings approahes, the auray of

the approximation may be signi�antly inreased by dividing [h, h] into several subintervals and

applying the embedding proedure loally [Fujioka 2009a,Oishi 2010,Hetel 2013a,Donkers 2011a℄.

For example, in the ase of the norm-bounded embedding used in Theorem 2.10, the idea is to

onsider a grid of r "nominal" sampling intervals {T1 < T2 < · · · < Tr} and to verify the

existene of a symmetri positive de�nite matrix X and of r parameters γi, i = 1, . . . , r, suh
that M(Ti,X, γi) ≺ 0 for all i = 1, . . . , r.When this ondition is satis�ed, system (2.31) is stable

for any time-varying sampling interval hk ∈ ∪ri=1T (Ti, γi) where T (Ti, γi) =
[
h(Ti, γi), h(Ti, γi)

]

are de�ned using (2.38), (2.39). Furthermore, it has been shown in [Fujioka 2009a℄ that using

this approah one an approximate the ondition (2.32) as aurately as desired, in the sense

that if the ondition (2.32) holds for θ ∈ [h, h], then neessarily there exists a matrix X =
P−1

, a su�iently tight grid of parameters Ti, i = 1, . . . , r and positive salars γi, i = 1, . . . , r,
suh that M(Ti,X, γi) ≺ 0 for all i = 1, . . . , r, and [h, h] ⊂ ∪ri=1T (Ti, γi). Suh an asymptoti

exatness property has also been disussed for other embedding approahes [Donkers 2011a,

Oishi 2010, Skaf 2009℄. The main issue is that using onvex embeddings the onservatism with

respet to the quadrati stability ondition (2.32) an be redued to any degree at the ost of

inreased omputational omplexity. However, the analysis of the asymptoti exatness property

does not take into aount all numerial implementation aspets. Most of the methods are

based on the omputation of the matrix exponential for nominal sampling intervals, on the use

of the eigenvalue/eigenvetors of the state matrix A or of its harateristi polynomial, et.

Computing any of these elements introdues approximations [Moler 2003℄ whih might in�uene

the numerial implementation of the embedding. The e�et of these approximations on the

auray of the stability analysis needs to be further analysed.
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2.1.3.3 A disrete-time approah for nonlinear systems

Results on disrete-time approahes for the ontrol of nonlinear systems with time-varying sam-

pling intervals are quite rare. We present as follows an adaptation of the result from [van de

Wouw 2012℄ whih extends earlier stability riteria from [Ne²i¢ 2004a, Ne²i¢ 1999, Ne²i¢ 1999℄.

Consider the nonlinear system

ẋ(t) = F (x(t), u(t)) (2.47)

with F (x, u) globally Lipshitz, i.e. there exists βf > 0 suh that

‖F (xa, ua)− F (xb, ub)‖ ≤ βf (‖xa − xb‖+ ‖ua − ub‖)

for all xa, xb ∈ Rn and ua, ub ∈ Rm. The ontrol takes the form u(t) = uk for all t ∈ [tk, tk+1) and
the sampling interval is bounded hk = tk+1 − tk ∈ T = [h, h], ∀ k ∈ N. The exat disrete-time

model of the system over the sampling interval is given by

xk+1 = F ehk(xk, uk) := xk +

∫ tk+hk

tk

F (x(s), uk) ds (2.48)

where xk = x(tk). Note however that (2.48) is not known in general sine it is rare to obtain an

analyti solution to a nonlinear initial value problem. In pratial problems, approximations are

usually used [Stuart 1998,Ne²i¢ 2004a℄. A simple example is given by the Euler model of (2.47):

xk+1 = xk + hkF (xk, uk) .

Other approximations an be found in standard books [Stuart 1998℄ and tutorials [Monao 2001,

Monao 2007℄. The approah in [van de Wouw 2012℄ onsiders an approximate model

xk+1 = F ah∗ (xk, uk) , (2.49)

obtained for some nominal sampling interval h∗ ∈ [h, h]. Model (2.49) is assumed to be one-step

onsistent [Stuart 1998℄ with the exat disrete-time plant, i.e. there exists ρ̂ ∈ K∞ suh that

‖F ah∗ (x, u)−F eh∗ (x, u) ‖ ≤ h∗ρ̂(h∗) (‖x‖+ ‖u‖) , for all x ∈ Rn, u ∈ Rm It is onsidered that the

approximate model (2.49) has been used to design a ontroller

uk = Kh∗ (xk) (2.50)

parametrized by the nominal sampling interval h∗ and that the losed-loop system (2.49),(2.50)

is asymptotially stable. More formally, it is assumed that there exists a andidate Lyapunov

funtion for the approximate losed-loop system (2.49),(2.50), i.e. a funtion Vh∗(x) and αi >
0, i = 1, 2, 3 suh that the involved onditions holds for some r > 1 : α1 ‖x‖r ≤ Vh∗(x) ≤ α2 ‖x‖r
and

Vh∗ (F
a
h∗ (x,Kh∗(xk)))− Vh∗(x)

h
≤ −α3‖x‖r (2.51)

for all x ∈ Rn. Furthermore, the ontrol law Kh∗(·) is onsidered to be linearly bounded, i.e.

there exists βu > 0 suh that ‖Kh∗(x)‖ ≤ βu‖x‖ for all x ∈ Rn. The following theorem provides

generi results for the robust stability of the exat losed-loop system

xk+1 = F ehk (xk,Kh∗(xk)) , (2.52)

using the fat that the ontrol law uk = Kh∗(xk) is a stabilizer for the approximate model (2.49).
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Theorem 2.11 [van de Wouw 2012℄ Consider system (2.52) with hk ∈ [h, h] for all k ∈ N.
Consider the following notation

βa =
(
2 + βu + (1 + max(1, βu))(e

βfh − 1)
)

+h∗ρ̂(h∗)(1 + βu). (2.53)

Assume that the Lyapunov andidate funtion Vh∗(x) is loally Lipshitz and there exists βv > 0
suh that

sup
ζ∈∂Vh∗(x)

‖z‖ ≤ βv‖x‖r

for all x ∈ Rn, where ∂Vh∗(x) denotes the generalized di�erential of Clarke. If there exists

β ∈ (0, 1) suh that

βvβ
r−1
a

h∗

(
h∗ρ̂(h∗)(1 + βu) + ρh(h

∗,Mh)
)
≤ (1− β)α3 (2.54)

is satis�ed where

ρh(h
∗,Mh) = eβfh

∗
(
(1 + βu)

(
eβfMh − 1

))

with Mh = maxh∈[h,h] |h − h∗|, then there exist c, λ > 0 suh that ‖xk‖ ≤ c‖x0‖e−λkh. In other

words, system (2.52) is Globally Exponentially Stable, Uniformly for all hk ∈ [h, h] and all k ∈ N.

The above theorem is a natural extension of the result in [Ne²i¢ 1999,Ne²i¢ 2004a℄ for sampled-

data systems with onstant sampling intervals. The main ondition (2.54) involves two terms.

The �rst term βvβ
r−1
a ρ̂(h∗)(1+βu) re�ets the e�et of approximatively disretizing the nominal

system using a nominal sampling interval h∗; the seond one,

βvβ
r−1
a
h∗ ρh(h

∗,Mh) re�ets the e�et
of unertainty in the sampling interval.

2.1.3.4 Further reading

Control design methodologies based on onvex embeddingsare given in [Hetel 2006℄, [Hetel 2008℄,

[Cloosterman 2010℄, [Fujioka 2010a℄, [Mustafa 2013℄. See also [Robert 2010℄ for an LPV design of

ontrollers that are adapted in real time to the value of the sampling interval and [Hetel 2011a℄

for the ase of systems with delay sheduled ontrollers. Extensions of the disrete-time approah

for networked ontrol systems with sheduling protools an be found in [Donkers 2009,Li 2010,

Donkers 2011a, Li 2014,Cela 2014℄. For model preditive ontrol of networked ontrol systems

see also [Olaru 2008, Gielen 2009, Lombardi 2012℄. Lie algebrai riteria for the analysis of

systems with time varying sampling have been proposed in [Feliioni 2008℄ using tools from

[Liberzon 1999℄. A mixed ontinuous-disrete approah has also been proposed in [Li 2011℄.

2.1.4 Input/Output stability approah

In this subsetion we present several methods that study sampled-data systems from a robust

ontrol point of view. The main idea of the Input/Output stability approah is to onsider

the sampling error as a perturbation with respet to a nominal ontinuous-time ontrol-loop.

Classial robust ontrol tools are used in order to assess the stability of the sampled-data systems

[Zames 1966,Zhou 1996,Megretski 1997℄. Some of the presented methods are reminisent from

the Input/Output stability approah used for the analysis of time delay systems [Huang 2000,
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Figure 2.2: Equivalent representation of the sampled-data system, from a robust ontrol theory

point of view.

Jun 2001,Niulesu 2001,Gu 2003a,Kao 2004,Fridman 2006,Kao 2007℄, and have been further

developed independently of the time delay approah.

2.1.4.1 Basi idea

Note that the LTI sampled-data system (1.12) an be re-expressed in the form [Mirkin 2007℄

ẋ(t) =
(
A+BK︸ ︷︷ ︸

:=Acl

)
x(t) + BK︸︷︷︸

:=Bcl

(x(tk)− x(t)︸ ︷︷ ︸
:=e(t)

). (2.55)

where Acl orresponds to the state matrix of the nominal ontinuous-time ontrol loop while e(t)
represents the error indued by sampling. An essential fat in this approah is that the sampling

indued error e(t) = x(tk)− x(t) an be equivalently re-expressed as

e(t) = −
∫ t

tk

ẋ(θ)dθ, ∀t ∈ [tk, tk+1). (2.56)

Considering y(t) = ẋ(t) as an auxiliary output for system (2.55), the sampled-data system

(1.12) an be represented equivalently by the feedbak interonnetion of the operator ∆sh :
Ln2e[0,∞) → Ln2e[0,∞), ∆sh : y → e, de�ned by:

e(t) = (∆sh y)(t) = −
∫ t

tk

y(θ)dθ, ∀t ∈ [tk, tk+1), (2.57)

with the system {
ẋ(t) = Aclx(t) +Bcle(t), x(0) = x0 ∈ Rn,
y(t) = Cclx(t) +Dcle(t) = ẋ(t),

(2.58)

where Ccl = Acl = A+ BK and Dcl = Bcl = BK. Note that the nominal system (2.58) is LTI.

It represents the dynamis of the ontinuous-time system with an additive input perturbation

e. The operator ∆sh aptures both the e�ets of sampling and its variations. An alternative

model an also be derived by onsidering the atuation error eu(t) = K(x(tk) − x(t)) (see

[Fujioka 2009℄). The stability of the sampled-data system (1.12) an then be studied by analysing

the interonnetion (2.57),(2.58).
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2.1.4.2 Small gain onditions

To provide onstrutive stability onditions, the Small Gain Theorem [Zames 1966,Zhou 1996,

Huang 2000,Gu 2003a℄ onstitutes a simple and powerful tool in the robust ontrol framework.

Let G : Ln2 [0,∞) → Ln2 [0,∞) be the linear operator desribed by the transfer funtion

Ĝ(s) = s(sI −Acl)
−1Bcl (2.59)

assoiated to system (2.58). The operator G aptures the behaviour of (2.58) for null initial

onditions. Considering the free response of system (2.58), f(t) = Acle
Acltx0, ∀ t ≥ 0, the

interonnetion (2.57),(2.58) an be re-expressed as

{
y = Ge+ f

e = ∆shy
(2.60)

(see Figure 2.2). A diret onsequene of the Small Gain Theorem is the fat that if

‖G‖2,2‖∆sh‖2,2 < 1, (2.61)

then the interonnetion (2.60) is L2 stable, i.e. there exist a positive salar C suh that

∫ t

0

(
‖y(θ)‖2 + ‖e(θ)‖2

)
dθ ≤ C

∫ t

0
‖f(θ)‖2 dθ (2.62)

for any t > 0. Here ‖G‖2,2, ‖∆sh‖2,2 denote the indued L2 norms of G and ∆sh, respetively
13

.

The inequality (2.61) is known as the small gain ondition. Due to the linearity of G, its indued

L2 norm an be readily omputed [Zhou 1996℄ using the H∞ norm of its transfer funtion:

‖G‖2,2 = ‖G‖∞ := sup
ω∈R

σ̄
(
Ĝ(jω)

)
.

Furthermore, for the ase of LTI sampled-data systems, L2 stability of the interonnetion (2.60)

implies asymptoti stability

14

of the sampled-data ontrol loop (1.12):

Theorem 2.12 [Fujioka 2009℄ Suppose that Acl is Hurwitz. System (1.12) is Uniformly

Asymptotially Stable if the feedbak interonnetion (2.60) is L2 stable.

Therefore, providing tratable stability onditions for system (1.12) leads to providing an

estimate for the indued L2 norm of the operator ∆sh. An upper bound of this norm has been

omputed in [Kao 2004℄ using a more general unertain delay operator:

∆d : y(t) → e(t) = (∆dy)(t) := −
∫ t

t−τ(t)
y(θ)dθ, (2.63)

where τ(t) ∈ [0, h]. The operator ∆sh is a partiular ase of ∆d with τ(t) = t− tk, ∀t ≥ 0, k ∈ N.

Lemma 2.13 [Kao 2004℄ The L2-indued norm of the operator ∆d in (2.63) is bounded by h.

13

Given an operator G : Ln
2 [0,∞) → Ln

2 [0,∞), its indued L2 norm is de�ned as ‖G‖2,2 := supu 6=0

‖Gu‖L2
‖u‖L2

.

14

For relations with exponential stability see also [Fridman 2014℄.
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Chapter 2. State of the art on aperiodi sampled-data systems

Using this property, and the fat that the operator ∆d satis�es M∆d = ∆dM for all M ∈ Rn×n,
Mirkin [Mirkin 2007℄ provided the following L2 stability onditions

∃M ∈ Rn×n, M ≻ 0 suh that ‖MĜ(s)M−1‖∞ <
1

h
, (2.64)

whih is a onsequene of the Saled Small Gain Theorem [Skelton 1998℄. Interestingly, it is also

shown that (2.64) is related to the ondition in [Fridman 2004℄. The same LMI an be used

to hek both onditions. Mirkin then showed that the bound on the L2 indued norm an be

enhaned by exploiting the properties of ∆sh.

Lemma 2.14 [Mirkin 2007℄The L2-indued norm of the operator ∆sh is bounded by δ0 = 2
πh,

and thus ∫ +∞

0
‖(∆shy)(θ)‖2dθ ≤

∫ +∞

0
δ20‖y(θ)‖2dθ, (2.65)

for all y ∈ Ln2 [0,∞).

This bound on the indued L2 norm of ∆sh is atually exat and it is attained when there exists

an index k ∈ N suh that tk+1 − tk = h. This leads to the following su�ient L2 stability

ondition, improving (2.64):

∃M ∈ Rn×n, M ≻ 0 suh that ‖MĜ(s)M−1‖∞ <
π

2h
. (2.66)

Note that the upper bound on indued L2 norm of ∆sh an also be related to the Wirtinger's

inequalities [Liu 2010℄ used in the time delay approah. In pratie, ondition (2.66) is readily

veri�able via standard LMI for the estimation of the H∞ norm of LTI systems [Mirkin 2007,

Skelton 1998,Gu 2003a℄



XAcl +AT

clX
2
πhXBK AT

clY

∗ −Y 2
πhK

TBTY
∗ ∗ −Y


 ≺ 0 (2.67)

to be solved for X,Y ≻ 0 (obtained with Y =M2
).

2.1.4.3 Integral Quadrati Constraints

For the ase of LTI sampled-data systems (1.12), the properties of the operator ∆sh in (2.57)

an be further exploited in the framework of Integral Quadrati Constraints (IQC) [Megret-

ski 1997, Ebihara 2015℄. Less onservative stability onditions an be obtained. While very

general de�nitions of IQCs are available in the literature [Megretski 1997℄, we restrit ourselves

here to IQCs de�ned by symmetri matries Π with real elements have been used for stability

analysis. Roughly speaking, the bounded operator ∆sh in (2.57), with input y and output e, is
said to satisfy the IQC de�ned by the symmetri matrix Π if

∫ ∞

0

[
y(θ)
e(θ)

]T
Π

[
y(θ)
e(θ)

]
dθ ≥ 0 (2.68)

for all y ∈ Ln2 [0,∞) and e = ∆shy. We present as follows a simpli�ed version of the lassial

IQC Theorem [Megretski 1997℄ that an be used in order to derive stability onditions for the

interonnetion (2.60).
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2.1. Stability analysis under arbitrary time-varying sampling

Theorem 2.15 [Megretski 1997℄ Consider the interonnetion (2.60) desribing the LTI sampled-

data system (1.12) and the bounded operator ∆sh in (2.57). Suppose that Acl = A+BK is Hurwitz

and assume that there exists a matrix

Π =

[
Π11 Π12

ΠT12 Π22

]
(2.69)

with Π11,Π12,Π22 ∈ Rn×n, Π11 � 0, Π22 � 0, suh that the operator ∆sh satis�es the IQC

de�ned by Π; there exists ǫ > 0 suh that

[
Ĝ(jω)
I

]⋆
Π

[
Ĝ(jω)
I

]
� −ǫI, ∀ ω ∈ R. (2.70)

Then the interonnetion (2.60) is L2 stable.

Using Theorem 2.12, the onditions of Theorem 2.15 also imply uniform asymptoti stability of

the sampled-data system (1.12). Condition (2.70) an be onverted into a frequeny independent

�nite dimensional LMI using the Kalman-Yakubovih-Popov Lemma [Rantzer 1996℄:

[
AT

clP + PAcl PBcl

BT
clP 0

]
+

[
Ccl Dcl

0 I

]T
Π

[
Ccl Dcl

0 I

]
≺ 0 (2.71)

to be solved for P ≻ 0.
As an example, a simple IQC an be obtained diretly from Lemma 2.14. Note that inequality

(2.65) implies that ∆sh satis�es the IQC de�ned by

Π =

[(
2h
π

)2
I 0

0 −I

]
. (2.72)

For this IQC, ondition (2.70) yields to the standard small gain riteria

(
2h

π

)2

Ĝ

⋆
(jω)Ĝ(jω) ≺ I, ∀ ω ∈ R, (2.73)

whih orresponds to a simple ondition on the H∞ norm of G: ‖Ĝ(s)‖∞ < π
2h
.

Fujioka [Fujioka 2009℄ showed that the operator ∆sh also satis�es the following passivity-like

property.

Lemma 2.16 [Fujioka 2009℄ The operator ∆sh de�ned in (2.57) satis�es

∫ +∞

0
yT (θ)(∆shy)(θ)dθ ≤ 0, (2.74)

for all y ∈ Ln2 [0,∞).

It is important to note that if ∆sh satis�es several IQC de�ned by matries Π1,Π2, . . . ,Πr,
then a su�ient ondition for stability that takes into aount all the properties is given by the

existene of positive salars α1, α2, . . . , αr suh that ondition (2.70) holds with Π = α1Π2 +
α2Π2 + . . . , αrΠr. The properties of ∆sh in Lemma 2.14 and Lemma 2.16 an be generalized

[Fujioka 2009℄ using saling matries 0 � Y ∈ Rn×n, 0 ≺ X ∈ Rn×n and grouped into the

following IQC: ∫ ∞

0

[
y(θ)
e(θ)

]T [
δ20X −Y
−Y −X

] [
y(θ)
e(θ)

]
dθ ≥ 0 (2.75)
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Chapter 2. State of the art on aperiodi sampled-data systems

whih holds for all y ∈ Ln2 [0,∞) and e = ∆shy with δ0 = 2h
π . Using the integral property (2.75)

and Theorem 2.12, Fujioka [Fujioka 2009℄ has proposed the following stability ondition.

Theorem 2.17 [Fujioka 2009℄ The system (1.12) is Globally Uniformly Asymptotially Stable

for any sampling sequene with tk+1 − tk ≤ h if there exist 0 ≺ P ∈ Rn×n, 0 ≺ X ∈ Rn×n,
0 � Y ∈ Rn×n satisfying

[
AT

clP + PAcl PBcl

BT
clP 0

]
+

[
Ccl Dcl

0 I

]T [
δ20X −Y
−Y −X

] [
Ccl Dcl

0 I

]
≺ 0. (2.76)

Taking into aount more properties of the operator ∆sh may lead to less onservative results.

Nevertheless, sine the analysis is of a frequeny domain nature, the IQC approah is only

appliable to LTI systems. However, one may note that input delays, several performane spe-

i�ations and lassial nonlinearities (setor bounded, saturations, et.) an be haraterized

by elementary operators and IQCs [Megretski 1997℄. A more omplex system an be desribed

by an interonnetion of an LTI system and a single blok diagonal operator representing the

di�erent perturbing elements. One the IQCs for the di�erent perturbing elements are available,

stability of more omplex systems is then a rather straightforward matter of de�ning a single

aggregate IQC. This point enhanes the appliability of the IQC approah.

2.1.4.4 Further reading

Some of the elements presented in Setion 2.1.3 onerning the use of norm-bounded approxi-

mations of the matrix exponential [Fujioka 2009a℄ an also be interpreted in the Input/Output

approah as the appliation of the Small Gain Theorem to a disrete-time model. Other IQCs

an be found in [Fujioka 2009b,Fujioka 2011a℄. An approah based on IQCs for the disrete-time

model has been proposed reently in [Kao 2013℄. For more general nonlinear networked systems,

approahes onsidering sampling as a perturbations an be found in [Walsh 2001,Ne²i¢ 2004b,

Chen 2014℄. See also the work in [Liberzon 2006℄. The boundedness properties of the sampling

operator ∆sh from Lemma 2.14 from [Mirkin 2007℄ an be related with the Wirtinger's inequal-

ities used in the time delay approah [Liu 2010, Seuret 2013a, Seuret 2014℄. Motivated by the

approah presented in [Fridman 2010℄ in the input delay framework, the sampling e�et has been

reently desribed by a new operator in [Kao 2014℄.

2.2 Sampling as a ontrol parameter

In this setion we brie�y present the main researh diretions and some problems onerning the

ase when the sampling interval hk (or equivalently the sequene of sampling σ = {tk}k∈N) is
onsidered to be a ontrol parameter that an be modi�ed in order to ensure desired properties in

terms of stability and resoure utilization. From the real-time ontrol point of view, this formu-

lation orresponds to designing a sheduling mehanism that triggers the sampler [Velaso 2003℄.

The problem has attrated sporadially the attention of the ontrol system's ommunity sine

the early ages of sampled-data ontrol [Jury 1959, Dorf 1962℄. With the spring of event- and

self-triggered ontrol tehniques [Årzén 1999, Åström 1999, Velaso 2003℄ it has beome a very

popular topi [Heemels 2012℄.

Let us onsider the nonlinear system (1.2) and the ontroller (1.3) with a given sampling

sequene σ = {tk}k∈N. Clearly, the asymptoti stability of system holds when the sampling

sequene σ satis�es hk = tk+1 − tk ∈ (0, h̄] for all k ∈ N, where h̄ represents the MSI for whih

the system is asymptotially stable under arbitrary sampling. A basi problem in designing a
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2.2. Sampling as a ontrol parameter

sampling sequene σ = {tk}k∈N is to ensure the stability of the system while optimizing some

Performane Index assoiated to the frequeny of sampling. Most of the time, sampling sequenes

are ompared in simulation based on the mean sampling interval. Given σ, one possible hoie

of Performane Index to be maximized ould be

J (σ) = lim inf
N→∞

1

N

N−1∑

k=0

(tk+1 − tk). (2.77)

Generally, the goal is to �nd sequenes that ensure stability and have the mean sampling interval

larger then the maximum sampling interval admissible in the periodi and arbitrary varying

ase. Using the Performane Index (2.77), the following basi problem an be mathematially

formalized:

� Problem B (Optimal sampling sequene): Consider the nonlinear system (1.2) and the

ontroller (1.3). Design a sampling sequene σ maximizing the Performane Index J (σ)
in (2.77) while ensuring the stability of the losed-loop system (1.1),(1.2),(1.3),(1.4).

Various alternative formalizations of Problem B an be imagined by onsidering other perfor-

mane indexes or Cost Funtions (e.g. Jc(σ) =
∑∞

k=0 e
−(tk+1−tk)

) to be maximized or minimized

(see for instane [Hsia 1974,Ma 1976℄ for a �nite horizon formulation). A stohasti formulation

of the problem an be found in [Cogill 2007,Molin 2013℄. Additionally, it is possible to formulate a

more omplex problem in whih one needs to �nd simultaneously the sampling sequene and sys-

tem input, as in the minimum attention ontrol formulation [Brokett 1997,Donkers 2011b,Mar-

hand 2013℄.

While the researh in the ase of arbitrary sampling has reahed an advaned phase of de-

velopment, Problem B is largely open. Due to the omplexity of Problem B, simpli�ed versions

are under study. For example, stability of sampled-data systems over periodi sequenes of sam-

pling has been investigated in [Jury 1959, Li 2010, Seuret 2012℄. The optimization of sampling

sequenes over a �nite horizon has been onsidered sine the early works in [Hsia 1974,Ma 1976℄.

For both pratial and theoretial reasons, the design of state-dependent (losed-loop) sampling

sequenes, in whih the sampling is triggered aording to the system state, represents a topi

of interest. Basi ideas appeared in the '60s in the ontext of adaptive sampling [Dorf 1962,de la

Sen 1996℄ and the topi is urrently under study in the framework of event-/self-triggered on-

trol [Heemels 2012℄.

2.2.1 Event-Triggered (ET) Control

The basi idea of event-triggered ontrol shemes [Årzén 1999℄, [Åström 1999℄, [Åström 2002℄,

[Heemels 2012℄ is to ontinuously monitor the system state and to trigger the sampling only when

neessary, aording to the desired performane of the system. A sampling event is generated

when the system's state rosses some frontier in the state-spae. Let us re-onsider the hybrid

model of an LTI sampled-data system





ẋ = Ax+BKx̂
˙̂x = 0
τ̇ = 1





[
x, x̂, τ

]
∈ C,

x+ = x
x̂+ = x
τ+ = 0





[
x, x̂, τ

]
∈ D

(2.78)
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where x̂ represents the sampled version of the state and τ the lok measuring the time sine the

last sampling instant. In the lassial time-triggered sampling ontext (2.22), the sets C and D
impliitly indiating the sampling moments are de�ned only aording to the lok variable τ :
when uniform sampling with period T is onsidered, C is de�ned by τ ∈ [0, T ] and D by τ = T .
In event-triggered ontrol the idea is to de�ne the sampling triggering sets aording to the state

variable x and x̂. For example, it may be of interest to trigger only when the error x− x̂ beomes

too large with respet to the system state, i.e. when ‖x(t) − x(tk)‖ ≥ γ‖x(t)‖ where γ > 0 is a

design parameter (see [Tabuada 2007℄). For this example the sets C and D are:

C = {(x, x̂, τ) ∈ Rn × Rn × R : ‖x− x̂‖ ≤ γ‖x‖} ,
D = {(x, x̂, τ) ∈ Rn × Rn × R : ‖x− x̂‖ ≥ γ‖x‖} .

Various other types of triggering onditions have been proposed in the literature: send-on-

delta (Lesbegue sampling, absolute triggering) [Åström 2002,Otanez 2002, Cervin 2007℄, send-

on-energy [Mi±kowiz 2005℄, send-on-area [Miskowiz 2007℄, Lyapunov sampling [Velaso 2009,

Seuret 2013b,Fiter 2015,Postoyan 2015℄, et.

Note that in event-triggering ontrol, the sampling sequene σ = {tk}k∈N is impliitly de�ned

as:

tk+1 = min {t : t ≥ tk, (x, x̂, τ) ∈ D} . (2.79)

The value h∗ for whih tk+1 − tk ≥ h∗ for all k ∈ N and all initial onditions is alled the

minimum inter-event time. In the general ase the impliit de�nition of the sampling sequene

does not guarantee anything about the "well posedness" of the losed-loop system in terms of

existene of solutions, or onerning the existene of a minimum interval between two on-

seutive events. In partiular ases of event-triggered ontrol Zeno phenomena may our,

i.e. the minimum inter-event time h∗ is zero

15

[Marhand 2013, Donkers 2012, Borgers 2014℄.

This represents an important drawbak sine the system is onverging to a ontinuous-time

ontrol implementation instead of a sampled-data one. To avoid it, various systemati de-

sign methodologies for event-triggered ontrol with stability guarantees and no Zeno behav-

ior have been proposed: see [Tabuada 2007,Wang 2008,Wang 2009, Lunze 2010℄ based on the

Input/Output stability approah, [Donkers 2012, Seuret 2013b, Forni 2014, Postoyan 2015℄ us-

ing hybrid models, [Yue 2013, Peng 2013, Fiter 2015℄ based on the time-delay approah. See

also [Mihiels 2005℄ where the delay has a stabilizing a�et on ontrol. Note that Zeno phe-

nomena an be easily avoided by inluding restritions on the lok variable when de�ning the

jump set D. For example, one may add next to the onstraints on x and x̂, a onstraint that

guarantees that sampling ours only if τ is greater than some minimum desired inter-exeution

time [Forni 2014,Fiter 2015,Postoyan 2015℄. Additionally, the triggering ondition may be veri�ed

on a disrete sequene of time, as in the Periodi Event-Trigger (PET) ontrol [Heemels 2013,Pos-

toyan 2013℄, or in [Eqtami 2010℄, where the event-triggered ontrol problem is formulated diretly

in disrete-time.

2.2.2 Self-Triggered (ST) Control

The term self-triggered ontrol was initially proposed by [Velaso 2003℄ in the ontext of real

time systems. The reent artiles [Wang 2009, Anta 2010℄ have attrated the attention of the

ontrol system ommunity. Note that basi ideas related to self-triggered ontrol appeared in

the '60s (see [Dorf 1962,Hsia 1974,de la Sen 1996℄ and the referenes therein). We point also to

15

the system requires in�nitely fast sampling
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the pioneering work in [Hsu 1987℄ where elements onerning the use of Lyapunov arguments for

the design of self-triggering ontrol laws an be found.

In self-triggering, at eah sampling time it is omputed both the sampled-data ontrol value

(to be sent to the atuators) and the next sampling instant. The main idea is to use the value

of the state at sampling times and knowledge about the system dynamis in order to predit

the next time instant a ontrol update is needed. A self-triggering ontrol sheme is desribed

by a sampling funtion h : Rn → R+ \ {0} whih, at eah sampling time tk, k ∈ N, indiates
the value of the urrent sampling interval aording to the system state. The sampling sequene

σ = {tk}k∈N is formulated expliitly as

tk+1 = tk + h (xk) , (2.80)

where xk = x(tk). Very often, the synthesis of a self-triggered ontrol sheme is based on a pre-

existing event-triggered ontrol mehanism. In this ontext, it is aimed at designing the sampling

funtion by pre-omputing, at eah sampling instant, an estimation of the next time a sampling

event has to be generated. For the example of the LTI system (1.12) with the event-triggered

ontrol ondition ‖x(t)− x(tk)‖ ≥ γ‖x(t)‖, one may want to design the sampling funtion:

h(xk) = max {θ > 0 : ‖(Λ(θ)− I)xk‖ < γ‖Λ(θ)xk‖} (2.81)

where Λ(θ) = eAθ +
∫ θ
0 e

AsdsBK. An important issue is the omplexity of the algorithms used

for the online implementation of the sampling funtion h(x). Even for the simple ase (2.81), the

algorithms may be quite omplex sine they involve solving hyperboli inequalities. In pratie,

simple approximations of suh sampling funtion must be used.

Self-triggered ontrol mehanisms with stability guarantees have been proposed in [Wang 2009,

Wang 2010,Anta 2010,Forni 2010,Benedetto 2013℄ using the Input/Output stability approah and

in [Tiberi 2013℄ using disrete-time Lyapunov funtions. In the following hapter we will presents

results from [Fiter 2012a, Fiter 2015, Fiter 2012b℄ using onvex embeddings and the time-delay

system approah.

However, the potential of the approahes used for the arbitrary sampling problem is far from

being fully exploited. The tools presented in Setion 2.1 may be useful for various aspets in

Problem B: deriving new event-/self-triggering mehanisms, providing less onservative estima-

tions of the minimum inter-event time h∗, et.

2.3 Conlusion

This hapter has presented some of the basi onepts and reent researh diretions in sampled-

data systems: time-delay, hybrid, disrete-time and input-output models; Lyapunov and fre-

queny domain methods for the stability for systems with arbitrary sampling intervals. For

the ase of linear systems, it is shown that several pioneering approahes exist in the litera-

ture. These approahes share the advantage of using LMIs, thus they are numerially tratable.

The maximum sampling interval that guarantees the stability an be estimated aurately using

disrete-time methods. The robustness with respet to perturbation and the behaviour of the

system between sampling times an be taken into aount using time-delay, impulsive approahes

or Input/Output approahes. However, the analyzis problem is still largely open and it is still a

hallenging problem to extend these methods to the nonlinear ase where the main di�ulty is to

provide onstrutive methods for the quantitative estimation of the maximum sampling interval

that preserves stability.
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It is to be emphasized that this overview is far from being exhaustive. The researh topi of

systems with time-varying sampling is still wide open and ontinuously growing. In partiular,

the ontrol of sampling is presently reeiving a lot of attention, as it was shown in Setion 2.2.

It is worth notiing that the subjet lies at the intersetion of four important axes in Control

Theory (time-delay, hybrid, LPV and input-output approahes) and it has a stimulating impat.

As we will see in the following hapter, methods and tools an be transferred from one approah

to another.
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Chapter 3

Main ontributions

In this hapter, we will present our main ontributions to the study of aperiodi sampled-data

systems. Over the last years, our researh e�ort bas been dediated to the analysis of various

lasses of systems (LTI, LPV, bilinear, polynomial, nonlinear a�ne) with both ontinuous and

swithing ontrollers (see Figure 3.1 for an illustration). We have tried to address the main hal-

Figure 3.1: Illustration of main ontributions: we have studied various lasses of sampled-data

systems (linear, bilinear, nonlinear a�ne) as time-delay systems, hybrid systems, input-output

interonnexions or disrete-time (LPV) systems.
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lenges of sampled-data systems from all possible angles. We have used the lassial approahes

(delay, hybrid, disrete-time, input/output interonnexions) for more omplex lasses of systems

than the ones presented in the literature and we have proposed new approahes when needed.

We present �rst the ase of linear systems in order to show how the onservatism in the analysis

an be redued. Furthermore, we show a ontinuous-time approah based on onvex embeddings

that is able to ombine the advantages of both time-delay methods (inter-sampling behaviour,

robustness to perturbations) and disrete-time ones (numerial auray). The approah is ap-

plied to the self-triggering ontrol problem allowing to optimize the design of sampling maps.

Next, we present some ontributions to the ase of bilinear systems, whih represents a simple

lass of nonlinear systems, and an be onsidered as an intermediate between linear and non-

linear systems. Two approahes are being onsidered for bilinear systems: the �rst one relies

on the hybrid dynamial systems framework, while the seond one is based on an extension

of the Input/Output approah using tools inspired from the Dissipativity Theory. After that,

we will onsider a more general lass of a�ne nonlinear systems, with aperiodi sampled-data

ontrol. The main ontribution is to show how the frequeny domain methods existing in the

Input / Output stability approah an be extended in a onstrutive manner to more general

nonlinear systems a�ne in the input. At last, we will disuss the sampled-data implementation

of disontinuous ontrollers, as enountered in relay feedbak ontrol and swithed systems.

3.1 Linear Time Invariant sampled-data system

As we have seen in Chapter 1, the ontrol of sampled-data systems is a hallenging problem, even

for the ase of Linear Time Invariant systems. As follows, some ontributions to these systems

are presented

16

.

3.1.1 Disrete-time analysis based on quasi-quadrati Lyapunov funtions

Let us reall the LTI sampled-data system





ẋ(t) = Ax(t) +BKx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn.

(3.1)

In what follows we onsider that hk takes values in a ompat set T ⊂ R+. Consider the

disrete-time model assoiated to (3.1)

xk+1 = Λ(hk)xk (3.2)

with

Λ(θ) = e

Aθ +

∫ θ

0
e

AsdsBK (3.3)

for θ ∈ R. For hk arbitrarily varying in the ompat set T , system (3.2) is a disrete-time Linear

Parameter Varying (LPV) system [Rugh 2000,Kamen 1984,Molhanov 1989℄, with the transition

matrix Λ(hk) depending on the sampling interval hk. Various methods are available for studying

the stability of disrete-time LPV systems. For polytopi LPV systems, stability riteria have

16

The results presented in this setion have been developed in the ontext of the PhD Thesis of Christophe

FITER as well as in ollaboration with Prof. Jean-Pierre Rihard, Prof. Wilfrid PERRUQUETTI and Ass. Prof.

Alexandre KRUSZEWSKI.
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been proposed by analysing the joint spetral radius [Blondel 2005℄ or by heking the existene of

quasi-quadrati [Molhanov 1989,Hu 2010℄, parameter dependent [Daafouz 2001,Peauelle 2000,

Peauelle 2001℄, path-dependent [Lee 2006℄, non-monotoni [Megretski 1996, Kruszewski 2008,

Ahmadi 2008℄ and omposite quadrati [Hu 2010℄ Lyapunov funtions. Lie algebrai onditions

an be found in [Gurvits 1995℄, [Liberzon 2003a℄. However, system (3.2) is not a polytopi LPV

system but an LPV system where the transition matrix Λ(hk) takes values in a ompat set

W := {Λ(θ), θ ∈ T }. (3.4)

The following theorem from [Hetel 2011b℄ addresses the ase of (3.2) and provides neessary

and su�ient stability onditions.

Theorem 3.1 [Hetel 2011b℄ Consider the ontinuous-time system (3.1) and the disrete-time

model (3.2) with T a ompat subset of (0,∞). The following statements are equivalent:

1) The equilibrium point x = 0 of (3.2) is Globally Uniformly Exponentially Stable.

2) There exist a P ≻ 0 and N > 0 suh that

(
N∏

i=1

Λ(θi)

)T
P

(
N∏

i=1

Λ(θi)

)
− P ≺ 0, (3.5)

for any N -length sequene {θi}Ni=1 with values in T , i.e. the funtion V̄ (x) = xTPx satis�es

V̄ (xk+N ) < V̄ (xk) for all xk 6= 0, k ∈ N.
3) There exists a positive de�nite funtion V : Rn → R+

stritly onvex, homogeneous (of the

seond order), V (x) = xTP[x]x, with P[·] : Rn → Rn×n, P[x] = PT
[x] = P[ax], ∀x 6= 0, a ∈ R, a 6= 0

suh that :

V (x)−max
θ∈T

V (Λ(θ)x) > 0, ∀x 6= 0. (3.6)

Condition 2) in Theorem 3.1 orresponds to the existene of a non-monotoni Lyapunov

funtion V̄ (x) = xTPx, [Megretski 1996, Kruszewski 2008, Ahmadi 2008℄ whih is dereasing

every N samples. If the system is stable, then neessarily there exists a �nite N and a matrix P
suh that (3.5) holds. However, heking the existene of a matrix P satisfying (3.5) for a given

N represents a set of LMIs whih are su�ient only for stability. Note that onsidering the ase

N = 1 redues to the lassial quadrati stability ondition

∃ P ≻ 0, ΛT (θ)PΛ(θ)− P ≺ 0, ∀θ ∈ T = [h, h]. (3.7)

Condition 3) orresponds to the existene of a quasi-quadrati Lyapunov funtion [Hu 2010,

Molhanov 1989℄ V (x) = xTP[x]x. Theorem 3.1 shows the equivalene between quasi-quadrati

Lyapunov funtions and non-monotoni Lyapunov funtions and provides neessary and su�ient

onditions for the exponential stability of system (2.31). Note that the theorem goes beyond the

results in [Megretski 1996, Kruszewski 2008,Molhanov 1989, Hu 2010℄ where only the ase of

polytopi LPV system is treated. In fat the result in Theorem 3.1 applies for any disrete-time

LPV system with transition matries de�ned on ompat sets.

Taking a �nite N and a larger onvex polytope embedding with a �nite number of verties

Λi, i = 1, · · · , Nv ,

W :=

{ Nv∑

i=1

αiΛi |αi ≥ 0, i ∈ I,
Nv∑

i=1

αi = 1

}
, (3.8)
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in suh a way that the set W in (3.4) is embedded in W, W ⊆ W, Condition 2) in Theorem 3.1

leads to a numerially tratable LMI problem.

Given k ∈ N, let Ik, denote the set {1, 2, . . . , k} ⊂ N. For k ∈ N, let us denote by

Sk =
{
ψ : ψ = {µi}k−1

i=0 , µi ∈ INv ,∀i = 0, . . . , k − 1
}

the set of all k � length sequenes with values in INv .

The following theorem provides onstrutive LMI onditions for stability analysis.

Theorem 3.2 [Hetel 2011b℄ Consider system (3.1), the disrete-time model (3.2), the set of

verties Z = {Λi, i = 1, . . . , Nv} of W in (3.8) and the set

Y (Z) =
{
Y : Y = ΠN−1

i=0 Zµi , Zµi ∈ Z, µi ∈ INv

}
. (3.9)

If there exist a positive integer N and a matrix P = P T ≻ 0 that satisfy

P ≻ Y TPY, ∀ Y ∈ Y (Z) , then (3.10)

1) the equilibrium point x = 0 of (3.2) is Globally Uniformly Exponentially stable;

2) there exists a quasi-quadrati Lyapunov funtion with the form

V (x) = max
i∈IM

xTLix, M = Nv
N−1, (3.11)

whih is stritly dereasing along the solutions of (3.2). The matries Li, i ∈ IM , are obtained

using an enumeration of the elements in the set

Ω(N) =




N−1∑

j=1

(
Πjr=1Zµr

)T
P
(
Πjr=1Zµr

)
+ P, ψ = {µr}N−1

r=1 ∈ SN−1



 .

The test involves a �nite number of LMI (NN
v + 1) that are su�ient for stability. The

auray of the stability haraterization from onditions (3.10) mainly depends on two fators:

the length N of the horizon of analysis, and the auray of the polytopi embedding W desribed

in (3.8) (for more details on suh onvex embedding see the survey in Chapter 1). The amount

of onservatism introdued in the approah an be tuned aording to these parameters.

Example 3.3 Consider an LTI system (3.1) desribed by :

A =

[
−0.5 0
0 3.5

]
, B =

[
1
1

]
and K =

[
1.02 −5.62

]
.

Λ(h) is Shur for any sampling interval h ∈ (0, 0.46]. However, swithing among di�erent values

of h in this interval may lead to an unstable behaviour: one an notie that although both Λ(0.25)
and Λ(0.45) are Shur, the transition matrix

Φ = Λ(0.25)Λ(0.25)Λ(0.45)

has the eigenvalues outside the unit irle. This implies that when the sampling period varies

in a periodi pattern 0.25 → 0.25 → 0.45 → 0.25 → 0.25 → 0.45 . . . , the losed-loop system is
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3.1. Linear Time Invariant sampled-data system

unstable. A similar unstable behaviour an be observed for h ∈ {0.1, 0.43} sine the transition

matrix

Φ = (Λ(0.1))6 Λ(0.43)

is not Shur. Consider that the sampling interval arbitrary swithes among two values {0.1, hmax}
with hmax a parameter to estimate.

Using the set of LMI (3.10), it is possible to �nd a quasi-quadrati Lyapunov funtion of the

form (3.11) for N = 7 up to hmax = 0.41 (whih is very lose to the value 0.43 for whih an

unstable sampling path exists). For hmax = 0.41, using the existing LMI solvers, it is impossible

to �nd a ommon quadrati Lyapunov funtion [Fujioka 2009a,Sala 2005℄ or a poly-quadrati one

[Hetel 2007,Cloosterman 2010℄. In fat, the maximum values of hmax that an be obtained from

quadrati and poly-quadrati Lyapunov funtions are hmax = 0.36 and hmax = 0.39, respetively.
It is also interesting to ompare the hmax (omputed using the LMIs (3.10)) with the maximum

upper-bounds obtained in reent papers: hmax = 0.165 [Naghshtabrizi 2008℄, 0.198 [Seuret 2012℄,

0.204 [Fujioka 2009℄, or 0.259 [Fridman 2010℄.

Compared with ontinuous-time approahes suh as the one based on time delay or impulsive

models, disrete-time methods pro�t by involving the integration proedure that impliitly takes

into aount the ontinuous-time evolution of the sampling indued delay / sampling ounter.

Furthermore the auray an also be tuned aording to the desired omputational omplexity.

This is why, faed to numerial benhmarks, they seem to be less onservatives. However,

disrete-time methods also present disadvantages with respet to the ontinuous-time analysis.

The main drawbak is the fat that they do not take into aount the system behaviour in between

sampling times. Besides they beome numerially inaurate when the sampling interval tends

to zero.

Example 3.4 Consider a ontinuous-time system (3.1) desribed by the following matries:

A =

[
1 15

−15 1

]
, B =

[
1
1

]
, K = [5.33 − 9.33] .

The unstable open-loop matrix A has omplex eigenvalues 1 ± 15i. The gain is obtained by

pole assignment, in suh a way that the ideal losed-loop system is stabilized and osillations are

redued : the matrix A + BK has the eigenvalues at −1 ± i. When the sampling interval takes

values in the set T = {0.91, 0.95} it is possible to �nd a ommon quadrati Lyapunov funtion

that is stritly dereasing at the sampling times. Yet, this disrete-time Lyapunov funtion is

inreasing in between the sampling instants (see Figure 3.2). In this ase a disrete-time analysis

would be misleading from a performane point of view (i.e. in terms of the deay rate).

The previous example shows that it is desirable to provide one method whih is able to treat

the analysis problem in ontinuous-time (for inter-sampling issues) and use the advantages of

disrete-time methods (in terms of onservatism redution). Suh a method will be presented in

the following setion.

3.1.2 Continuous-time analysis based on onvex embeddings

In the standard disrete-time analysis, the stability is guaranteed without onsideration of the

intersample behaviour. In pratie it is important to provide an estimate of the system's per-

formane in between sampling instants. Furthermore, one of the drawbaks of the disrete-time

analysis is the fat that the transition matrix Λ(θ) is lose to identity when θ is small. For small
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Figure 3.2: Evolution of the Lyapunov funtion for disrete-time representation in Example 3.4.

The funtion is stritly dereasing at the sampling instants. However, it is inreasing in between

the sampling interval.

values of the lower bound of the sampling interval the existing stability onditions an be di�ult

to handle numerially. To avoid this numerial drawbak, a ontinuous-time approah based on

onvexi�ation arguments has been proposed in [Hetel 2011b,Fiter 2012a℄ for LTI systems. The

approah takes into aount the relation

x(t) = Λ(t− tk)x(tk), ∀ t ∈ [tk, tk+1), k ∈ N, (3.12)

still referring to the de�nition of the transition matrix

Λ(t− tk) = I +

∫ t−tk

0
eAsds(A+BK)

of system (3.1).

Lemma 3.5 (adapted from [Fiter 2012a℄) Consider system (3.1) with T = (0, h]. Given a

positive salar λ, if there exist a matrix P = P T ≻ 0, suh that

[
Λ(θ)
I

]T [
ATP + PA+ 2λP PBK

KTBTP 0

] [
Λ(θ)
I

]
≺ 0,∀θ ∈ [0, h], (3.13)

then the origin of (3.1) is Globally Exponentially Stable for any arbitrary sampling sequene with

tk+1 − tk ∈ (0, h]. Furthermore, the funtion V (x) = xTPx satis�es the relation

V̇ (x(t)) ≤ −2λV (x(t))

along the system's solutions.

50



3.1. Linear Time Invariant sampled-data system

The lemma presents su�ient onditions for exponential deay of a quadrati Lyapunov

funtion along the solutions of the ontinuous-time system (3.1) using the exat expression of

the transition matrix Λ(.). Similarly to the lassial disrete-time approah, ondition (3.27) is

a parametri LMI whih is not a omputationally tratable by itself. However, it an be redued

to a �nite number of LMI onditions using a polytopi embedding of the transition matrix Λ(θ)
for θ ∈ [0, h].

Theorem 3.6 (adapted from [Hetel 2011b℄) Consider system (3.1) with T = (0, h]. Assume that

there exists a onvex polytope

W̃ := conv{Λ̃1, Λ̃2, · · · , Λ̃Nv}. (3.14)

suh that Λ(θ) ∈ W̃, ∀ θ ∈ [0, h]. Given a positive salar λ, if there exist matries P = P T ≻ 0,
G1, G2 solution to

[
ATP + PA+ 2λP +G1 +GT1 PBK −G1Λ̃i +GT2

KTBTP − Λ̃Ti G
T
1 +G2 −G2Λ̃i − Λ̃Ti G

T
2

]
≺ 0, (3.15)

for all i = 1, . . . , Nv then the origin of (3.1) is Globally Exponentially Stable for any arbitrary

sampling sequene with tk+1 − tk ∈ (0, h]. Furthermore, the funtion V (x) = xTPx satis�es the

relation

V̇ (x(t)) ≤ −2λV (x(t))

along the system's solutions.

The previous theorem provides onstrutive onditions for heking the exponential stability

of a sampled-data system with performane guarantees for the system's behaviour in between

sampling times. However, onditions (3.15) are not feasible in the dead-beat ontrol ase, where

for some θ ∈ [0, h], Λ(θ) has eigenvalues at zero. A less onservative approah, ombining onvex

embeddings with tools for time delay systems, has been proposed in [Hetel 2011b,Fiter 2012a℄,

using the Lyapunov-Razumikhin method [Razumikhin 1956℄. The originality of this approah

is the fat that it is not neessary to require the exponential deay V̇ (x(t)) ≤ −λV (x(t))
everywhere along the system's solutions.

Proposition 3.7 (adapted from [Fiter 2012a℄). Consider system (3.1) with T = (0, h]. Given

t ≥ 0 and x0 ∈ Rn, let ϕ(t, x0) denote the solution of the open-loop system

ẋ = Ax+BKx0

at time t, with the initial ondition x(0) = x0, i.e. ϕ(t, x0) = Λ(t)x0. Given salars α > 1 and

0 < λ ≤ ln(α)

2h
, if there exist a quadrati funtion V (x) = xTPx, P = P T ≻ 0, suh that for all

x0 ∈ Rn, for all t ∈ [0, h],
d

dt
V (ϕ(t, x0)) + 2λV (ϕ(t, x0)) ≤ 0 (3.16)

whenever

αV (ϕ(t, x0)) ≥ V (x0) (3.17)

then the origin of (3.1) is is Globally Exponentially Stable for any arbitrary sampling sequene

with tk+1 − tk ∈ (0, h].
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α

Figure 3.3: Illustration of the Lyapunov-Razumikhin approah: the derivative of V (x(t)) has to
be negative only at time instants t ∈ [tk, tk+1) for whih V (x(t)) ≥ 1

αV (x(tk)) . The approah

ensures that V (xk+1) < V (xk). However, V is not required to be monotonously dereasing over

the sampling interval.

Conditions (3.16),(3.17) in Proposition 3.7 ensure that

V̇ (x(t)) ≤ −2λV (x(t)) (3.18)

is required only at times t ∈ [tk, tk+1) for whih

V (x(t)) ≥ 1

α
V (x(tk)) .

This means that (3.18) has to be satis�ed only when the system's solutions are outside a target

level set de�ned aording to the value of V (.) at sampling times (a graphial illustration is given

in Figure 3.3). α an be seen as a design parameter that an be hosen in order to enfore some

performane. The smaller α is, the less restritive the provided stability onditions will be. When

α tends to in�nity, the onditions of Proposition 3.7 redue to the lassial stability ondition

V̇ (x(t)) ≤ −2λV (x(t)) for all t ∈ [tk, tk+1). When α tends to 1 the provided ondition ensure

only stability but not attrativity. If λ is hosen to be null and ondition (3.16) is enfored to be

strit, asymptoti stability is granted. Using Proposition 3.7, the following stability parametri

LMI ondition is obtained.

Lemma 3.8 (adapted from [Fiter 2012a℄) Consider system (3.1) with T = (0, h]. Given positive

salars α > 1, 0 < λ ≤ ln(α)

2h
if there exist a matrix P = P T ≻ 0 and a salar ǫ ≥ 0, suh that

Φ(P, θ) =

[
Λ(θ)
I

]T [
ATP + PA+ (2λ+ ǫα)P PBK

KTBTP −ǫP

] [
Λ(θ)
I

]
≺ 0,∀θ ∈ [0, h], (3.19)
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then the origin of (3.1) is Globally Exponentially Stable for any arbitrary sampling sequene with

tk+1 − tk ∈ (0, h].

The onditions of Lemma 3.8 an be redued to a �nite number of LMI onditions using a

polytopi embedding of the transition matrix Λ(θ) for θ ∈ [0, h], similarly to the ase treated in

Theorem 3.6.

Theorem 3.9 [Hetel 2011b℄ Consider system (3.1) with T = (0, h]. Assume that there exists a

onvex polytope

W̃ := conv{Λ̃1, Λ̃2, · · · , Λ̃Nv}. (3.20)

suh that Λ(θ) ∈ W̃, ∀ θ ∈ [0, h]. If there exist matries P = P T ≻ 0 G1, G2 and ǫ ≥ 0 solution

to [
ATP + PA+ ǫP +G1 +GT1 PBK −G1Λ̃i +GT2
KTBTP − Λ̃Ti G

T
1 +G2 −ǫP −G2Λ̃i − Λ̃Ti G

T
2

]
≺ 0, (3.21)

for all i = 1, . . . , Nv then the origin of (3.1) is Globally Asymptotially Stable for any arbitrary

sampling sequene with tk+1 − tk ∈ (0, h].

Note that onditions (3.21) an be expressed as a lassial optimization problem that an

be solved using a line searh algorithm and LMI solvers. The theorem ensures that, within the

sampling interval, the Lyapunov-Razumikhin funtion V (x) = xTPx is always less than its value

at sampling times. However, it is not monotonously dereasing. It an be shown numerially

that this approah is less onservative than several ontinuous-time approahes in the literature.

In fat, this stability test is omparable to the one provided in disrete-time using a quadrati

Lyapunov funtion. The advantage with respet to the disrete-time approah is the fat that

intersampling behaviour is expliitly taken into aount and that a sampling interval tending to

zero an be onsidered as well. A less onservative approah has been proposed in [Fiter 2012a℄.

Example 3.10 (Example 3.4 revisited) Consider a ontinuous-time system (3.1) desribed by

the following matries:

A =

[
1 15

−15 1

]
, B =

[
1
1

]
, K = [5.33 − 9.33] .

In order to onstrut a polytopi set embedding Λ(θ), we use the method proposed in [Hetel 2007℄

based on a Taylor series expansion. We use a uniform partition of the interval [0, h] into 10

subintervals and apply loally the embedding method (4th order development). Using Theorem

3.6, a quadrati Lyapunov funtion an be found up to h = 0.09 (see Figure 3.4). For this

example the matrix Λ(θ) is singular for θ ≈ 0.092 whih shows that the obtained h is lose to the

theoretial bound for quadrati Lyapunov funtions.

The methods in [Mirkin 2007℄, [Naghshtabrizi 2008℄, [Fujioka 2009℄ and [Fridman 2010℄

show that the system is stable for h = 0.014, h = 0.033, h = 0.07 and h = 0.12, respetively.
Theorem 3.9 proves the asymptoti stability for θ ∈ [0, 0.14]. Note that using the disrete-time

approah (Theorem 3.2), we are able to show the stability for any sequene with tk+1 − tk ∈
[0.001, 0.15]. This means that Theorem 3.9 is almost as e�ient as the disrete-time approah,

with the additional advantage that it takes into aount the intersample behavior and very small

sampling intervals. Comparing now the number of LMI deision variables, [Mirkin 2007℄ and

[Fujioka 2009℄ have 0.5(n2+n)+m2+m = 5 variables, [Naghshtabrizi 2008℄ has 3.5n2+1.5n = 17
while [Fridman 2010℄ has 8n2+n = 34. In Theorem 3.9 there are 0.5(n2+n)+2n2 = 11 variables
involved in Nv + 1 = 51 LMI onstraints.

53



Chapter 3. Main ontributions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1
PSfrag replaements

x
1
(t
)

x
2
(t
)

u
(t
)

h
k

V
(x
(t
))

t

Figure 3.4: Simulation for an arbitrary sequene of sampling intervals with h = 0.09 for the

system in Example 3.10.

3.1.3 Extension to the sampling ontrol problem

As follows we present an extension of the previously presented methodology for the problem of

designing stabilizing sampling sequenes (Problem B in Chapter 2). Consider the following LTI

sampled-data system





ẋ(t) = Ax(t) +BKxk, ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn.

(3.22)

In what follows we onsider that the sampling interval hk is a ontrol parameter that an be

modi�ed. We are interested in the design of feedbak sampling mehanisms

hk = τ(xk), ∀ k ∈ N, (3.23)

where τ : Rn → R+ is a sampling funtion suh that δmin ≤ τ(x) ≤ δmax, for stritly positive

salars δmin < δmax. This ontrol on�guration is usually alled self-triggered ontrol. The main

ontribution is to use tools for the robust stability analysis in order to optimize the design of

sampling maps for the ontrolled sampling problem.

The following proposition provides su�ient stability onditions for the interonnetion be-

tween the sampled-data system (3.22) and the sampling map (3.23).

Proposition 3.11 (adapted from [Fiter 2012a℄). Consider system (3.22) with the sampling map
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(3.23). For t ≥ 0 and x0 ∈ Rn, let ϕ(t, x0) denote the solution of the open-loop system

ẋ = Ax+BKx0

at time t, with the initial ondition x(0) = x0. Given positive salars α > 1, 0 < λ ≤ ln(α)
2δmax

, if

there exist a quadrati funtion V (x) = xTPx, P = P T ≻ 0, suh that for all x0 ∈ Rn,

d

dt
V (ϕ(t, x0)) + 2λV (ϕ(t, x0)) ≤ 0, ∀ t ∈ [0, τ(x0)] (3.24)

whenever

αV (ϕ(t, x0)) ≥ V (x0) (3.25)

then the origin of (3.22),(3.23) is Globally Exponentially Stable.

Furthermore, for any sampling funtion τ̃ : Rn → R+, with τ̃(x) ∈ [δmin, τ(x)], the origin of

(3.22) with hk = τ̃(xk) is Globally Exponentially Stable.

This result is an extension of the Lyapunov-Razumikhin approah from Proposition 3.7 to

the ase of ontrolled sampling. Using this approah, the funtion V (x) = xTPx satis�es

V (xk+1) < V (xk),∀k ∈ N.

The theorem ensures that V (x(t)) ≤ V (xk),∀t ∈ [tk, tk+1). However, V (x(t)) is not restrited
to be monotonously dereasing over the sampling interval.

In order to provide tratable design onditions the following result is neessary.

Proposition 3.12 (adapted from [Fiter 2012a℄) Consider system (3.22) with the sampling map

(3.23). Given positive salars α > 1, 0 < λ ≤ ln(α)
2δmax

if there exist a matrix P = P T ≻ 0, a salar

ǫ ≥ 0, assume that there exist a quadrati funtion V (x) = xTPx, P = P T ≻ 0 and a positive

salar ǫ suh that for all x ∈ Rn, for all θ ∈ [0, τ(x)],

xTΦ(P, θ)x ≤ 0, (3.26)

with

Φ(P, θ) =

[
Λ(θ)
I

]T [
ATP + PA+ (2λ+ ǫα)P PBK

KTBTP −ǫP

] [
Λ(θ)
I

]
, (3.27)

and

Λ(θ) = I +

∫ θ

0
e

sAds(A+BK). (3.28)

Then the origin of (3.22),(3.23) is is Globally Exponentially Stable.

Furthermore, for any sampling funtion τ̃ : Rn → R+, with τ̃(x) ∈ [δmin, τ(x)], the origin of

(3.22) with hk = τ̃(xk) is Globally Exponentially Stable.

This result has several important onsequenes for the design of sampling maps τ(x). First, for
any given matrix P = P T ≻ 0 and presribed maximum sampling interval δmax, the proposition
motivates the design of sampling maps of the form

τ(x) = max
{
ρ ∈ R : ρ ≤ δmax, x

TΦ(P, θ)x < 0,∀θ ∈ [0, ρ]
}

(3.29)

whih, by de�nition, ensure that ondition (3.26) holds. Seond, if there exists P and ǫ solution
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to the set of linear matrix inequalities

Φ(P, θ) ≺ 0, ∀θ ∈ [0, h∗]

for presribed positive salars h∗, α and λ ≤ ln(α)
2δmax

, the ondition

xTΦ(P, θ)x < 0,

is satis�ed for any x 6= 0 and all θ ∈ [0, h∗]. From the de�nition of τ in (3.29), this implies that

the sampling funtion is lower bounded by h∗. The following result is obtained.

Corollary 3.13 Consider system (3.22). Given positive salars h∗, δmax ≥ h∗, α > 1, 0 < λ ≤
ln(α)
2δmax

let there exist a matrix P = P T ≻ 0 and a salar ǫ ≥ 0, suh that

Φ(P, θ) =

[
Λ(θ)
I

]T [
ATP + PA+ (2λ+ ǫα)P PBK

KTBTP −ǫP

] [
Λ(θ)
I

]
≺ 0,∀θ ∈ [0, h∗]. (3.30)

Then

� the ontrol-loop (3.22), (3.23), (3.29) has a minimum inter-event time of at least h∗, i.e.
the sampling instants {tk}k∈N satisfy

tk+1 − tk ≥ h∗, ∀ k ∈ N;

� system (3.22), (3.23), (3.29) is Globally Exponentially Stable;

� given δmin ∈ (0, h∗], for any sampling funtion τ̃ : Rn → R+, with τ̃(x) ∈ [δmin, τ(x)], the
origin of (3.22) with hk = τ̃(x) is Globally Exponentially Stable.

One may remark that the onditions in Corollary 3.13 involve elements that are similar to

the ones used for robust stability analysis. Note that the expression of Φ in (3.30) is the same as

the one in (3.19) from Lemma 3.8. This means that the same optimization tools an be used for

both the estimation of the maximum sampling interval preserving stability under an arbitrary

sampling and for designing a sampling map while optimizing the minimum inter-event time.

Then the design of a stabilizing sampling map τ̃ satisfying the onditions in Corollary 3.13 an

be addressed in two main steps:

� optimize the parameters P and ǫ whih enlarge the minimum inter-event time h∗ based on

LMIs;

� for given parameters P and ǫ, provide a lower approximation τ̃ of the sampling funtion τ
in (3.29).

Several numerial tools based on onvex embeddings have been proposed in [Fiter 2012a℄ for

solving the set of LMIs (3.30) and for designing sampling funtions τ̃ approximating the map τ
in (3.29). The approah has been further extended to deal with perturbations in [Fiter 2014b,

Fiter 2015℄.

Example 3.14 (Example 3.3 revisited) Consider the following system :

ẋ(t) =

[
−0.5 0
0 3.5

]
x(t) +

[
1
1

]
Kx(tk),
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Figure 3.5: State-angle dependent sampling funtion τ for di�erent deay rates λ (from top

to bottom, λ = 0, 0.01, 0.05, 0.30, 0.60) as funtion of the angle θ in the polar oordinates

x = reiθ.

K =
[
−1.02 5.62

]
.

Using the numerial methods in [Fiter 2012a℄, we an obtain a mapping of the state spae

that enlarges the minimum inter-event time for di�erent values λ of the deay rate. For eah

deay rate λ, after �xing δmax, we set the performane parameter α > 1 (see Proposition 3.11)

as small as possible and suh that λ ≤ ln(α)
2δmax

. The state dependent sampling funtions obtained

o�ine and ensuring the stability of the system for di�erent deay rates are presented in Figure

3.5.

For a onstant sampling greater than Tmax = 0.469s the disrete-time dynami matrix is not

Shur, so the system beomes unstable. However, with the proposed tehnique, we an go beyond

the limit Tmax for some regions of the state spae (up to 1s for λ = 0).

Figure 3.6 (resp. Figure 3.7) shows simulation results with λ = 0 (resp. λ = 0.05) and a

random initial state. It �rst shows the sampling intervals (blue/pieewise onstant urve), with

the lower-bound of the o�ine omputed state dependent sampling funtion (red/lower horizontal

line), and the limit Tmax of the periodi ase (green/upper horizontal line), before showing the

LRF evolution. The sampling times are represented by the red dots on eah graph.

In Figure 3.6 (λ = 0), one an see that the number of atuations over the 20s time interval

is 31 instead of 43 with Tmax. For any (tested) initial ondition in the simulation, the average

sampling time onverges to Taverage ≃ 0.726s ≃ 155%Tmax.

For a given deay-rate λ > 0, the maximal onstant sampling ensuring the exponential stability

is given by

T λmax = argmax{T > 0,− ln(|eigmax|)
T

≥ λ} < Tmax

, where eigmax is the eigenvalue of Λ(T ) with greatest modulus. In the simulation of Figure 3.7

(λ = 0.05), we an observe that

T λ=0.05
average over 20s

= 0.486s > Tmax = 0.469s > T λ=0.05
max = 0.457s
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Figure 3.6: Inter-exeution times τ(x(tk)) and LRF V (x) = xTPx for a deay rate λ = 0.
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Figure 3.7: Inter-exeution times τ(x(tk)) and LRF V (x) = xTPx for a deay rate λ = 0.05.

.

This means that it is possible to sample less in average than with the maximal periodi sampling

Tmax while still ensuring asymptoti or exponential stability. Although we an not guarantee that

this will always be the ase, the state-dependent sampling presents some advantages ompared to
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periodi sampling:

- It ensures some onvergene performane (exponential stability for a given deay-rate λ, or
asymptoti stability if λ = 0), whereas onstant sampling with Tmax only ensures marginal sta-

bility and doesn't give any hint about the inter-sampling state behaviour.

- It guarantees robustness regarding possible �utuations of the sampling period, whih is in-

herent to pratial appliations (due to sheduling issues for example). The state-dependent

sampling approah ensures the system's stability for any time-varying sampling period satisfying

0 < δ ≤ τ̃(t, x) ≤ τ(x), for all t ∈ R+ and for all x ∈ Rn.

Example 3.15 Consider the Bath Reator system from [Mazo Jr. 2009℄:

ẋ(t) =




1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10


x(t) +




0 0
5.67 0
1.13 −3.14
1.13 0


u(t),

K =

[
0.1006 −0.2469 −0.0952 −0.2447
1.4099 −0.1966 0.0139 0.0823

]
.

Using the numerial methods in [Fiter 2012a℄, a sampling map has been derived for a deay

rate λ = 0 and δmax = 1s. This state spae mapping (in dimension 4) provides a preise

knowledge of the sampling funtion τ (whih varies from τ∗
sub

= 0.4409 to 0.988. In omparison,

the value of the maximal allowable onstant sampling Tmax is 0.5534s. Using this mapping,

we obtain the simulations shown in Figure 3.8. The number of atuations over the �rst 10s
time interval (see Figure 3.8) is 17, whih an be ompared to the number of updates presented

in [Mazo Jr. 2009℄ (32 in the best presented ase), and the obtained average sampling time is

Taverage = 0.5898 > Tmax. An illustration of the sampling map in polar oordinates is given in

Figure 3.9.
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Figure 3.8: Example 3.15: Inter-exeution times τ(x(tk)) and LRF V (x) = xTPx for a deay

rate λ = 0.

3.2 Sampled-data ontrol of bilinear systems

In this setion, the stability problem is onsidered for sampled-data bilinear systems

17

. Bilinear

systems [Mohler 1974, Elliott 2009℄ represent one of the most simple lass of nonlinear a�ne

systems. They are systems of ordinary di�erential equations of the form

ẋ(t) = A0x(t) +

m∑

i=1

[u(t)]iNix(t) +B0u(t), ∀t ≥ t0, (3.31)

where A0 ∈ Rn×n, B0 ∈ Rn×m and Ni ∈ Rn×n, i = 1, . . . ,m. The state vetor is x(t) ∈ Rn and

the ontrol input is u(t) ∈ Rm. Here we use the notation [u(t)]i to denote the ith elements of

the vetor u(t). More generally, over this setion we will use the notation [χ]i to denote the ith

elements of a vetor χ.

Systems of the form (3.31) are linear with respet to the system state or to the ontrol

variable, but not in both of them jointly. The term A0x is alled the drift, B0u is the additive

ontrol and

∑m
i=1[u]iNix is the multipliative ontrol. Bilinear models appear naturally in a large

variety of appliations [Mohler 1974℄. They an also be used as approximations to more omplex

nonlinear systems [Elliott 2009℄. Various ontrol methodologies have been proposed for bilinear

systems. Construtive approahes for the design of linear [Mohler 1991,Andrieu 2013℄, quadrati

[Gutman 1981℄, division [Mohler 1991℄ or sliding mode ontrollers [Al-Shamali 2007℄ an be found

in the literature. LMI riteria have been proposed for the design of a loally stabilizing linear state

feedbak in [Andrieu 2013,Olalla 2011,Amato 2009,Valmorbida 2013℄. Intuitively, the stability

is preserved under a sampled-data implementation if the sampling frequeny is su�iently high.

17

The results presented in this setion have been developed in the ontext of the PhD Thesis of Hassan OMRAN,

in ollaboration with Prof. Jean-Pierre Rihard and Franoise LAMNABHI-LAGARRIGUE (DR, CNRS).
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Figure 3.9: Illustration of the sampling map in Example 3.15 in polar oordinates.

However, there is a lak of formal tools for the analysis of bilinear sampled-data systems whih

provide a quantitative estimation of the Maximum Sampling Interval (MSI) preserving stability.

As follows, several approahes providing an estimation of the MSI will be presented for the ase

of a linear state feedbak ontroller with an aperiodi sampled-data implementation.

3.2.1 Hybrid system approah

Consider the bilinear system (3.31). We suppose that the following assumptions hold:
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A.1 The ontrol is a pieewise-onstant ontrol law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1),

with a set of sampling instants {tk}k∈N satisfying:

0 < ǫ ≤ tk+1 − tk ≤ h, ∀k ∈ N, (3.32)

where h is a given positive salar.

A.2 The pair A0, B0 is stabilizable, and the linear feedbak gain K ∈ Rm×n
is alulated

so that the system (3.31) with the ontinuous state feedbak u(t) = Kx(t) has a loally

asymptotially stable equilibrium point at x = 0. The atual domain of attration (a

onneted neighbourhood of x = 0) is denoted D0.

A.3 The state variables are subjet to onstraints de�ned by a polytopi set P ⊂ D0:

P = conv{v1, v2, . . . , vp} (3.33)

= {x ∈ Rn : aTj x ≤ 1, j = 1, 2, . . . , r} (3.34)

orresponding to an admissible set in the state-spae.

Under these assumptions, we obtain the losed-loop sampled-data system:

ẋ(t) =
(
A0 +

m∑

i=1

[Kx(tk)]iNi

)
x(t) +B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (3.35)

System (3.35) may also be written as follows

ẋ(t) = Ã[x(t), e(t)]x(t) +Be(t), ∀t ∈ [tk, tk+1) (3.36)

with

e(t) = x(tk)− x(t),

Ã[x, e] := A0 +B0K +
m∑

i=1

[K(x+ e)]iNi, (3.37)

and

B = B0K. (3.38)

The goal is to provide onditions that guarantee the asymptoti onvergene of the system

(3.35) solutions to the origin.

In the framework of [Goebel 2012℄, the hybrid model of the bilinear sampled-data system is

determined by

ẋ = f(x, e) = Ã[x, e]x+Be

ė = g(x, e) = −Ã[x, e]x −Be
τ̇ = 1



 τ ∈ [0, h]

x+ = x
e+ = 0
τ+ = 0



 τ ∈ [ǫ, h]. (3.39)
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Two methods are to be onsidered for analysing the stability of system (3.39). First, we

introdue a method that is based on the appliation of results for general nonlinear sampled-

data systems in [Ne²i¢ 2009℄ (Method 1). Next, to avoid the use of onservative bounds in the

previous method, we look diretly for a Lyapunov funtion by formalizing the onditions as LMIs

(Method 2). In both of these methods, we will be dealing with loal asymptoti stability.

3.2.1.1 Method 1: adaptation of a result on general nonlinear sampled-data systems

Considering the polytope P in (3.33), de�ne the matries

Aj = A0 +B0K +

m∑

i=1

[
Kvj

]
i
Ni, j = 1, . . . , p. (3.40)

The following theorem proposes stability onditions using an adaptation of the results from

Theorem 2.7 for the ase of bilinear systems.

Theorem 3.16 [Omran 2016b℄ Consider the bilinear sampled-data system (3.39), the polytope

P in (3.33), and a funtion

h∗(γ, L) :=





1
Lrartan(r), γ > L
1
L , γ = L
1
Lrartanh(r), γ < L

(3.41)

with

r =

√
∣∣ γ2
L2

− 1
∣∣

(3.42)

where L is given by

L =
1

2
max{−λmin(BT +B), 0} (3.43)

and γ is the solution to the following optimization problem:

γ = min
√
ρ (3.44)

satisfying the onstraints ∃P ∈ Rn×n a symmetri positive de�nite matrix , ∃ρ > 0 and ∃α > 0,
suh that

Mlj =

[
ATl P + PAl +

1
2 (A

T
l Aj +ATj Al) + αI PB

∗ (α − ρ)I

]
≺ 0,

∀l, j ∈ {1, 2, ..., p}. (3.45)

Assume that the sampling intervals are stritly bounded by h∗(γ, L), i.e. h < h∗(γ, L). Then,

for the bilinear sampled-data system (3.39), the set {(x, e, τ) : x = 0, e = 0, τ ∈ [0, h̄]} is Loally

Uniformly Asymptotially Stable.

In this method, the Maximum Sampling Interval is alulated by the expression (3.41), based

on L and γ. L is alulated analytially, whereas γ is found by solving LMI onditions. The

optimization problem is a minimization of γ′ beause for any onstant L, h∗(·, L) is a stritly

dereasing funtion. Note that sine γ does not depend on L, and from the ontinuity of h∗(γ, ·):
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h∗(γ, 0) = lim
L→0

h∗(γ, L) = lim
L→0

artan(
√∣∣ γ2

L2 − 1
∣∣)

√∣∣γ2 − L2
∣∣

=
π

2γ
.

The stability onditions presented in this theorem are based on the generi inequalities from

Theorem 2.7 in [Ne²i¢ 2009℄. Our ontribution is to provide a onstrutive manner to apply this

result to the ase of bilinear systems. We provide expliit forms of H(x, e), W (e), V (x), and
we �nd L, γ that gives the upper bound on Maximum Sampling Interval. We provide as well,

an LMI formulation that allows us to obtain su�ient stability ondition. Note that in order to

obtain LMI based stability onditions the approah has been adapted to the bilinear ase: the

funtion H(·, ·) used here has been modi�ed to depend both on the error e(t) and the state x(t),
while in [Ne²i¢ 2009℄ it is only a funtion of x.

3.2.1.2 Method 2: diret Lyapunov funtion approah

In the previous method, the stability onditions are obtained using upper estimations of the

derivative of a Lyapunov funtion. Suh upper estimations may be found onservative. In order

to avoid them, we provide as follows a seond method whih evaluates diretly the derivative of

a Lyapunov funtion.

Theorem 3.17 [Omran 2016b℄ Consider the bilinear sampled-data system (3.39). Suppose

that Maximum Sampling Interval is bounded by a value h∗, i.e. h ≤ h∗. Assume that there

exist symmetri positive de�nite matries P,Q,X, Y ∈ Rn×n, suh that the following LMIs are

satis�ed

[
ATl P + PAl +X PB −ATl Q

∗ −BTQ−QB − 1
h∗Q+ Y

]
≺ 0,

∀l ∈ {1, 2, ..., p}. (3.46)

[
ATl P + PAl +X PB −ATl Q exp(−1)

∗ [−BTQ−QB − 1
h∗Q] exp(−1) + Y

]
≺ 0,

∀l ∈ {1, 2, ..., p}. (3.47)

Then the set {(x, e, τ) : x = 0, e = 0} of the bilinear sampled-data system (3.39) is Loally

Uniformly Asymptotially Stable.

The theorem is based on the existene of a Lyapunov funtion

U(x, e, τ) = V (x) +W (τ, e) (3.48)

with V (x) = xTPx, and W (τ, e) = exp(−τh∗ )e
TQe. In this method the Maximum Sampling

Interval is found by solving a set of LMIs for the maximum value possible of h∗. The existene
of a solution to the LMI onditions, guarantees the existene of a Lyapunov funtion that will

yield the asymptoti stability. Note that the proposed onditions diretly study the derivative of

the Lyapunov funtion. Numerial examples will show the onservatism redution in omparison

with the approah in Method 1. Note that both the approah of Method 1 and Method 2
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are robust not only to the sampled-data implementation but also to variations of the sampling

intervals.

Example 3.18 As follows we present a numerial omparison of the two proposed methods.

Consider the following bilinear system, desribed by the matries

A0 =



−0.5 1.5 4
4.3 6.0 5.0
3.2 6.8 7.2


 , B0 =



−0.7 −1.3
0 −4.3
0.8 −1.5


 ,

N1 =



−1 0 0
0 0 0
0 0 0


 , N2 =



0 1 0
0 0 0
0 0 0


 .

A ontinuous-time state feedbak ontroller has been omputed [Tarbourieh 2009℄ in order to

loally stabilize the origin of the bilinear system

K =

[
0.0016 0.0035 0.0034
2.2404 3.2676 5.9199

]
.

The ontroller was proven to establish the loal stability for the bilinear system (in the ontinuous-

time ase), inside an ellipsoidal region D0. We onsider a loal polytopi region P ⊂ D0

P = [−1.35,+1.35] × [−0.5,+0.5] × [−0.5,+0.5].

Using Method 1, we found that the system is loally stable if h < h∗ = 2.7 × 10−3
. This was

alulated from (3.41) for L = 29.79, and γ = 563.3. The other variables in the optimization

problem were α = 5.84, and

P =



281.3 210.6 882.2
210.6 622 565.1
882.2 565.1 3688.3


 .

Using Method 2, we found that the sampled-data system is loally stable for a larger MSI, h ≤
h∗ = 12× 10−3

. The LMIs in (3.46) and (3.47) have a solution for this value of MSI with

P =



1.2722 0.5769 3.8769
0.5769 2.4533 1.1283
3.8769 1.1283 16.9212


 Q =



5.6140 8.1180 14.7162
8.1180 12.0092 21.2460
14.7162 21.2460 39.7534


 .

The results illustrate the redution of onservatism in Method 2 with respet to Method 1.

Simulations show that the system is unstable for a larger sampling intervals. However, it is not

lear how to improve the method in order to obtain a larger estimate of the MSI.

3.2.2 Input / Output approah

In the following, we present a di�erent approah for the analysis of sampled-data bilinear system.

The method is based on the extension of the frequeny domain riteria from [Mirkin 2007,

Fujioka 2009℄ to the ase of bilinear systems.
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Let us remark that system (3.35) an be re-expressed as

ẋ(t) =
(
A0 +B0K +

m∑

i=1

[Kx(tk)]iNi

︸ ︷︷ ︸
A(x(tk))

)
x(t) +B0K︸ ︷︷ ︸

B

(x(tk)− x(t)︸ ︷︷ ︸
w(t)

)

whih an be further expressed by the feedbak onnetion of the system

G :=

{
ẋ(t) = A(x(tk))x(t) +Bw(t)

y(t) = C(x(tk))x(t) +Dw(t)
(3.49)

C(x(tk)) = A(x(tk)) = A0 +B0K +

m∑

i=1

[Kx(tk)]iNi, D = B = B0K (3.50)

with the operator ∆sh : y → w de�ned by

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (3.51)

We reall that the operator ∆sh has been studied in the ontext of LTI sampled-data systems

[Fujioka 2009℄, [Mirkin 2007℄ and has two important properties. The �rst one onerns the gain,

and the seond is a passivity-type one (see Setion 2.1.4). It was shown in [Mirkin 2007℄ that the

operator is bounded on Ln2 [0,∞). This property is based on the fat that for any X = XT ≻ 0,
v ∈ Ln2 [0,∞):

∫ t

tk

(∆shv)
T (τ)X(∆shv)(τ)dτ ≤ δ20

∫ t

tk

vT (τ)Xv(τ)dτ, ∀t ∈ [tk, tk+1). (3.52)

with δ0 =
2
πh. The passivity-type property given in [Fujioka 2009℄ is based on the fat that for

any Y = Y T ≻ 0, v ∈ Ln2 [0,∞)

∫ t

tk

vT (τ)Y (∆shv)(τ)dτ ≤ 0, ∀t ∈ [tk, tk+1). (3.53)

In the LTI ontext, the two properties lead to LMI onditions for stability. However, these

onditions are based on frequeny domain riteria, and on the use of Kalman-Yakubovih-Popov

lemma. The appliation of these tehniques is restrited to the LTI ase.

The main idea in [Omran 2013℄ is to re-interpret the properties of the operator ∆sh in terms

of "supply" funtions S
(
y,w

)
suh that

∫ t

tk

S
(
y(θ), w(θ)

)
dθ ≤ 0,∀t ∈ [tk, tk+1). (3.54)

For the ase of bilinear system, the properties (3.52), (3.53) an be used in order to show that

for any XT = X ≻ 0 and Y T = Y ≻ 0, the sampled-data system satis�es the onstraint

∫ t

tk

S (ẋ(s), x(tk)− x(s)) ds ≤ 0, ∀t ∈ [tk, tk+1), (3.55)
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where

S(ẋ(t), x(tk)− x(t)) =

[
ẋ(t)

x(tk)− x(t)

]T [−δ20X Y
Y X

] [
ẋ(t)

x(tk)− x(t)

]
. (3.56)

Inspired by the Dissipativity Theory [Brogliato 2007℄, the relation (3.55) an be useful to prove

an invariane property when there exists quadrati funtion V (x) = xTPx, with P = P T ≻ 0,
suh that

d

dt
V (x(t)) ≤ S(ẋ(t), x(tk)− x(t)),∀ t ∈ [tk, tk+1). (3.57)

When this relation holds, V (x(t)) ≤ (x(tk)) for all ∀ t ∈ [tk, tk+1). For the ase of bilinear

sampled-data systems (3.35) this leads to su�ient stability onditions that an be heked

using LMIs.

Theorem 3.19 [Omran 2014b℄ Consider system (3.35). Assume that there exist symmetri

positive de�nite matries X,Y, P ∈ Rn×n, and matries P2, P3 ∈ Rn×n suh that the following

optimization problem is feasible

γ∗ = min
Ej≥0,Mq<0

γ, ∀j ∈ {1, 2, ..., r}, ∀q ∈ {1, 2, ..., p}, (3.58)

with

Ej =

[
γ aTj
aj P

]
(3.59)

and



ATq P2 + P2Aq P − P T2 +ATq P3 P T2 B

P − P2 + P T3 Aq −P3 − P T3 + δ20X P T3 B − Y
BTP2 BTP3 − Y −X


 ≺ 0 (3.60)

where the verties {Aq}q∈{1,2,··· ,p} are given in (3.40), and {aj}j∈{1,2,...,r} are given in (3.33). The

equilibrium x = 0 of the system (3.35) is then Loally Asymptotially Stable for any arbitrary

sampling sequene with tk+1 − tk ≤ h.
An estimate of a domain of attration is given by the ellipsoid

E(P, c∗) := {x ∈ Rn : xTPx ≤ c∗} ⊂ P (3.61)

with c∗ = 1/γ∗.

For given polytope P and MSI h, the onditions in the previous theorem are LMIs. Note that

the onditions only require the pair (A0, B0) to be stabilizable. Numerial examples illustrating

the method are given below.

Example 3.20 (Example 3.18 revisited) Consider the bilinear sampled-data system de�ned by

A0 =



−0.5 1.5 4
4.3 6.0 5.0
3.2 6.8 7.2


 ; B0 =



−0.7 −1.3
0 −4.3
0.8 −1.5


 ; N1 =



−1 0 0
0 0 0
0 0 0


 ; N2 =



0 1 0
0 0 0
0 0 0


 .

Using lassial methods, the linear state feedbak

K =

[
0.0016 0.0035 0.0034
2.2404 3.2676 5.9199

]
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Figure 3.10: The polytope (blue boxes), and the orresponding region of stability E(P, c∗).

Table 3.1: The estimation of the MSI that guarantees the loal stability of the system in Exam-

ple 3.20.

Theorem 3.16 Theorem 3.17 Theorem 3.19

MSI (ms) 5.6 13.8 51

was proven to establish the loal stability for the ontinuous-time bilinear systems, inside an

ellipsoidal region. Consider the box

P = [−1.35,+1.35] × [−0.5,+0.5] × [−0.5,+0.5].

Our objetive here is to �nd a MSI for whih the loal stability of the aperiodially bilinear

sampled-data system is guaranteed. Using the method introdued in Theorem 3.19, we �nd that

the LMI onditions in (3.60) are feasible for h = 51 ms, with

P = 103



34.27 10.82 92.73
10.82 50.43 28.41
92.73 28.41 394.23


 .

An estimate of the domain of attration E(P, c∗) is given by (3.61) for c∗ = 0.1652 (see Figure

3.10). Considering the initial state x0 = [−0.8 − 0.2 + 0.25]T , two evolutions of the state are

shown in Figure 3.11 and Figure 3.12. In Figure 3.11, a random sequene of sampling periods

with h = 51 ms was used for simulations. The stability is ensured as the initial state is loated

inside E(P, c∗). In Figure 3.12, a uniform sampling is onsidered, with a sampling period of

89 ms. We an notie that the sampled-data system beomes unstable.

Considering the same box P, other methods are used to �nd the MSI that ensures the stability,
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Figure 3.11: State evolution for the bilinear sampled-data system in Example 3.20, with a variable

sampling whih is bounded by h = 51 ms.
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Figure 3.12: State evolution for the bilinear sampled-data system in Example 3.20, with uniform

sampling tk+1 − tk = 89 ms.
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and a omparison is given in Table 3.1. Note that methods based on the disspativity analysis,

and the ontrativity of invariant sets presented in [Omran 2012a℄ and Theorem 3.19, are less

onservatives than the methods based on hybrid systems theory in [Omran 2012b℄. The redution

of onservatism in Theorem 3.19 with respet to the Theorem 4 in [Omran 2012a℄, is due to using

the desriptor method in formalizing the LMI onditions.

Example 3.21 Consider the average values model of a buk-boost onverter with pulse width

modulator that adjust the duty yle of the swithing devie.

˙̄x =
(
DA1 + (1−D)A2

)
x̄+

(
DB1 + (1−D)B2

)
v,

with the state x̄ = [īL v̄c]
T
, where īL is the average indutor urrent, and v̄c the average apaitor

voltage. The average is taken over one swithing period. The system matries are

A1 =

[
−RON+RL

L 0
0 − 1

RC

]
; A2 =

[
−RL

L
1
L

− 1
C − 1

RC

]
;

B1 =

[
1
L 0
0 0

]
; B2 =

[
0 − 1

L
0 0

]
; v =

[
VDC
vD

]
.

RON is the on-resistane of the swithing devie, vD is the diode voltage, and VDC is the soure

voltage. D ∈ [D1,D2] ⊂ [0, 1] is the duty yle, representing the system input. Consider the

following values: VDC = 6V , R = 50Ω, L = 20mH, C = 220µF , RON = 0.08Ω, RL = 0.34Ω,
and vD = 0.67V . The system is subjeted to saturation due to the hard limits on the duty yle.

For a ertain working point x̄0, D0 we have

0 =
(
D0A1 + (1−D0)A2

)
x̄0 +

(
D0B1 + (1−D0)B2

)
v.

Considering x̂ = x̄− x̄0, and the input signal u = D −D0, we an see that

˙̂x = A0x̂+B0u+Nux̂ (3.62)

where

A0 = (D0A1 + (1−D0)A2)

B0 = ((A1 −A2)x̄0 + (B1 −B2)v)

and

N = (A1 −A2).

From the onstraints over the duty yle we see that u must be bounded by −D0 + D1 ≤ u ≤
D2 −D0. Usually, we onsider D0 = (D1 +D2)/2, and then |u| ≤ umax = (D2 −D1)/2. Using
results [Olalla 2011℄ for the stabilization of the ontinuous-time system, we �nd the following

ontroller

K = [−1.7329 0.0738].

We are interested in the state spae region where a linear ontrol u = Kx̂ is not saturated

{x̂ ∈ R2 : |Kx̂| ≤ umax}. Furthermore, it is desired that the error with respet to the equilibrium

point satis�es |īL| < 0.5A and |v̄c| < 3V . This leads to onsidering the polytope

P := {[−0.42,−3], [−0.16, 3], [0.16,−3], [0.42, 3]}.
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Figure 3.13: The domain of attration for the system (3.62) when ontrolled with the stati

feedbak ontroller, in the asynhronously sampled-data ase E(P, c∗) with h = 1.5 ms. The

urves in blak are simulations of the sampled-data system, for di�erent initial states.

In order to study the robustness with respet to asynhronous sampling, we apply Theorem 3.19.

We �nd that the system is stable when implementing digitally the feedbak ontroller K with

variable sampling periods bounded by h = 1 ms. The guaranteed domain of attration E(P, c∗) is
given in (3.61), for c∗ = 37.81 × 103 and

P = 103
[
554.9 −49.62
−49.62 14.01

]
.

The domain of attration is shown in Figure 3.13, together with simulations of the evolutions

of the state of the sampled-data system. Di�erent initial onditions are onsidered, and random

variable sampling periods, bounded by h = 1.5ms are used in the simulations. Note that by

slightly inreasing the sampling interval, the system beomes unstable. For example, with the

initial ondition x0 = [0.24 0.75]T , we obtain an unstable behaviour when hoosing a onstant

sampling tk+1−tk = 2.1ms as shown in the simulation in Figure 3.14. The same initial ondition

is onsidered in one of the simulations in Figure 3.13, and the the system is stable when respeting

the bound h = 1.5ms. The gap between the two values illustrates the onservatism of the proposed

method.

3.3 Sampled-data ontrol of input a�ne nonlinear systems

In the nonlinear ase, an extension [Omran 2013,Omran 2014b,Omran 2016a,Omran 2014a℄ of

the IQC approah is possible using methods inspired by the notion of Exponential Dissipativity
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Figure 3.14: The instability of the sampled-data ontrol of system (3.62) with uniform sampling

of tk+1 − tk = 2.1 ms.

[VijaySekhar 2003℄. The main ideas are presented as follows

18

.

Consider the following nonlinear a�ne system:

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
K
(
x(tk)

)
,∀t ∈ [tk, tk+1), k ∈ N. (3.63)

The funtions f : Rn → Rn with f(0) = 0, and g : Rn → Rn×m are onsidered to be su�iently

smooth and the ontroller K : Rn → Rm is a ontinuously di�erentiable funtion. Considering

fcl(x) = f(x) + g(x)K(x),

w(t) = K
(
x(tk)

)
−K

(
x(t)

)

and an auxiliary output

y =
∂K

∂x
ẋ,

system (3.63) an be represented by





ẋ = fcl (x) + g (x)w

y = ∂K
∂x (fcl (x) + g (x)w)

w = ∆shy.

(3.64)

18

The results presented in this setion have been developed in the ontext of the PhD Thesis of Hassan OMRAN,

in ollaboration with Prof. Jean-Pierre Rihard and Franoise LAMNABHI-LAGARRIGUE (DR CNRS).
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Here we onsider that ∆sh : Lm2e[0,∞) → Lm2e[0,∞), with ∆sh de�ned similarly to (3.51):

∆shy(t) = −
∫ t

tk

y(s)ds, ∀t ∈ [tk, tk+1). (3.65)

Consider the following assumptions

� The nominal ontinuous-time system

ẋ = fcl(x), x(0) = x0 ∈ Rn

has a well de�ned solution on R+ for any x0 ∈ Rn.

� The sequene of sampling instants {tk}k∈N satis�es tk+1 − tk ∈ (0, h] for a given positive

salar h.

� For any initial ondition x0 ∈ Rn, the system

ẋ = f(x) + g(x)K(x0), x(0) = x0,

has a unique solution x(t) de�ned on the interval [0, h].

The following result provides an extension of Theorem 2.17, Theorem 3.19 to the nonlinear

a�ne ase.

Theorem 3.22 [Omran 2016a℄ Consider system (3.63) and the representation (3.64),(3.65).

Assume that

I. There exists a ontinuous funtion S(y,w) whih satis�es the integral property

∫ t

tk

S (y(s), w(s)) ds ≤ 0, ∀ t ∈ [tk, tk+1), k ∈ N.

II. There exists a di�erentiable funtion V : Rn → R+, lass K∞ funtions β1, β2 and α > 0
whih satisfy

β1 (‖x‖) ≤ V (x) ≤ β2 (‖x‖) , ∀ x ∈ Rn,

V̇ (x(t)) + αV (x(t)) ≤ e−α(t−tk)S (y(t), w(t)) , ∀ t ∈ [tk, tk+1)

along the solutions of (3.64).

Then the equilibrium point x = 0 is Globally Asymptotially Stable for any sampling sequene

{tk}k∈N with tk+1 − tk ≤ h.

The theorem provides generi onditions for stability based on the analysis of dissipation like

inequalities to be satis�ed along the system's (3.63) trajetories. These ondition an lead to a

onstrutive stability analysis method that only involves geometri properties of system (3.64).

Corollary 3.23 [Omran 2016a℄ Consider system (3.63) and the representation (3.64),(3.65).

Suppose that there exists symmetri positive de�nite matries X,Y , a positive salar α, lass K∞
funtions β1, β2 and a di�erentiable funtion V : Rn → R+ suh that

β1 (‖x‖) ≤ V (x) ≤ β2 (‖x‖) , ∀ x ∈ Rn,
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∂V

∂x
(fcl(x) + g(x)w) ≤

(
−δ20

∥∥∥∥
∂K

∂x
(fcl(x) + g(x)w)

∥∥∥∥
2

X

+ ‖w‖2X

+2

〈
∂K

∂x
(fcl(x) + g(x)w) , w

〉

Y

)
e−2αlh, l ∈ {0, 1}, (3.66)

for all x ∈ Rn, w ∈ Rm, where δ0 = 2h
π , and the notations 〈y1, y2〉Y := yT1 Y y2, ‖y1‖X :=√

yT1 Xy1 were used for vetors y1, y2 ∈ Rm.
Then the equilibrium point x = 0 is Globally Asymptotially Stable for any sampling sequene

{tk}k∈N with tk+1 − tk ≤ h.

The result is derived based on Theorem 3.22, using a "supply rate" funtion of a form

similar to (3.56). Note that the proposed onditions do not require omputing the system's

solutions. Stability an be investigated by studying geometri properties of system (3.64). For

the ase when the funtions f, g desribing system (3.63) are polynomials, a numerially tratable

su�ient ondition an be obtained using Sum-Of-Squares deomposition.

In what follows, the notation p(χ) ∈ R[χ] with χ ∈ Rn, denotes that p(χ) belongs to the set

of polynomials in the variables {χ1, χ2, · · · , χn} with oe�ients in R.

De�nition 3.24 [Prajna 2004℄ A multivariate polynomial p(x) ∈ R[x] is said to be a sum of

squares (SOS), if there exist some polynomials pi(x) ∈ R[x], i ∈ {1, . . . ,M}, suh that p(x) =∑M
i=1 p

2
i (x).

Corollary 3.25 [Omran 2013℄ Consider the sampled-data system (3.63) in the ase where f(x),
g(x) and K(x) are polynomial funtions and the representation (3.64),(3.65). Denote

F (x,w) := fcl(x) + g(x)w

and

G(x,w) :=
∂K

∂x
F (x,w).

Let D = {x ∈ Rn : µl(x) ≥ 0, l = 1, 2, . . . , s} be a neighbourhood of the origin x = 0 where

µl(x), l = 1, 2, . . . , s, are polynomial funtions. Suppose that there exist a polynomial funtion

V (x) ∈ R[x] of degree 2d, sums of squares σl(ξ) and ςl(ξ) for l ∈ {1, . . . , s} and ξ = (x,w), suh
that the following polynomials are SOS

V̂ (x) = V (x) − ϕ(x), (3.67)

ρ1(ξ) = −
s∑

l=1

σl(ξ)µl(x) −
∂V

∂x
F (x,w) − αV (x),

+
[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTY w
]
, (3.68)

ρ2(ξ) = −
s∑

l=1

ςl(ξ)µl(x) −
∂V

∂x
F (x,w) − αV (x),

+
[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTY w
]
e−αh, (3.69)

with δ0 = 2
πh, 0 ≻ XT = X ∈ Rm×m

, 0 4 Y T = Y ∈ Rm×m
, and ϕ(x) a positive de�nite

polynomial de�ned by

ϕ(x) =

n∑

i=1

d∑

j=1

ǫijx
2j
i , suh that

d∑

j=1

ǫij > γ, ∀i = 1, . . . , n. (3.70)
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Then, the equilibrium x = 0 of the system (3.63) is Loally Uniformly Asymptotially Stable.

Moreover, the sub-level set Lc∗ de�ned by c∗ = maxLc⊂D c with

LV (c) := {x ∈ Rn : V (x) ≤ c}, (3.71)

is an estimate of the domain of attration. Finally, if (3.68) and (3.69) are SOS while µl(x) = 0,
for all l ∈ {1, 2, . . . , s}, then the equilibrium is Globally Uniformly Asymptotially Stable.

A numerial illustration of this result is presented below.

Example 3.26 Consider the following system from [Ne²i¢ 2009℄

ẋ = dx2 − x3 + u,

with a bounded time-varying |d| ≤ 1, and a stabilizing ontrol u = K(x) = −2x. Emulating this

ontroller results in a sampled-data system that an be represented by the operator ∆sh in (3.65),

and a system (3.64) desribed by

{
ẋ = dx2 − x3 − 2x+ w,

y = −2(dx2 − x3 − 2x+ w).

We apply the Corollary 3.25 in order to �nd a storage funtion of the form V (x) = ax2 + bx4,
suh that (3.67), (3.68) and (3.69) are SOS. We hoose ϕ(x) = 10−3x2, α = 0.1 and h = 0.72.
We intend to test the global stability. In this ase, the polynomials (3.68) and (3.69) are

ρ1(ξ) = −(2ax+ 4bx3)(dx2 − x3 − 2x+ w)− α(ax2 + ax4)

+
[
− 4δ20X(dx2 − x3 − 2x+ w)2

− 4Y (dx2 − x3 − 2x+ w)w + Y w2
]
, (3.72)

ρ2(ξ) = −(2ax+ 4bx3)(dx2 − x3 − 2x+ w)− α(ax2 + ax4)

+
[
− 4δ20X(dx2 − x3 − 2x+ w)2

− 4Y (dx2 − x3 − 2x+ w)w + Y w2
]
e−αh, (3.73)

where a, b,X, Y are deision variables. Note that the time-varying terms d and d2 appear in

the polynomial expressions. However, if both (3.72) and (3.73) are ensured to be SOS for all

the values of (d, d2) ∈ {(1, 0), (1, 1), (−1, 0), (−1, 1)}, then they will be SOS for any time-varying

|d| ≤ 1. This is found to be satis�ed using the SOSTOOLS software [Prajna 2004℄, for the

storage funtion V (x) = 0.77402x2 + 0.19911x4, and a supply funtion de�ned by X = 0.47522
and Y = 0.62302 10−3

. By Corollary 3.25, we obtain the global uniform asymptoti stability of

the equilibrium x = 0, of the sampled-data system. This result annot be obtained when trying

a quadrati storage funtion. Inreasing α (the exponential deay rate of the storage funtion),

results in the derement of the maximum value of h for whih the problem is feasible. This an

be seen in Fig 3.15. Previous works onsidered this example in the literature for estimating the

MSI. In [Ne²i¢ 2009℄, a bound of h = 0.368 is found. In [Karafyllis 2009b℄, the proposed upper

bound is h = 0.1428. The onditions proposed in this paper are found feasible for h = 0.72.

Example 3.27 Consider the following system

ẋ = x2 + (x− 1)u,
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Figure 3.15: Trade-o� between α (the exponential deay rate of the storage funtion), and the

estimation of the MSI.

with the ontroller u = K(x) = x+ 2x2, whih stabilizes the equilibrium point x = 0. Note that,

in the ontinuous-time ase, this equilibrium is only loally stable. Our purpose is to �nd the

maximum value of h that guarantees the loal exponential stability of x = 0, when the ontroller

is emulated. We onsider the neighbourhood x ∈ [−0.4,+0.4]. The sampled-data system an be

represented by the operator ∆sh in (3.65), and a system (3.64) desribed by

{
ẋ = −x+ 2x3 + (x− 1)w,

y = (1 + 4x)(−x+ 2x3 + (x− 1)w).

We onsider applying Corollary 3.25 with a quadrati storage funtion V (x) = ax2. We

hoose ϕ(x) = 10−3x2, α = 0.25 and h = 0.6. The onsidered domain D is desribed by

{x ∈ R : µ1(x) ≥ 0} with µ1(x) = (x− 0.4)(0.4 − x). The polynomials (3.68) and (3.68) are in

this ase

ρ1(ξ) = −σ1(ξ)µ1(x)− (2ax)(−x+ 2x3 + (x− 1)w) − α(ax2)

+
[
− δ20X(1 + 4x)2(−x+ 2x3 + (x− 1)w)2

+ 2Y (1 + 4x)(−x+ 2x3 + (x− 1)w)w + Y w2
]
, (3.74)

ρ2(ξ) = −ς1(ξ)µ1(x)− (2ax)(−x+ 2x3 + (x− 1)w) − α(ax2),

+
[
− δ20X(1 + 4x)2(−x+ 2x3 + (x− 1)w)2

+ 2Y (1 + 4x)(−x+ 2x3 + (x− 1)w)w + Y w2
]
e−αh, (3.75)

where a,X, Y are deision variables, and σ1(ξ), ς1(ξ) are deision SOS polynomials. Using the

software SOSTOOLS we �nd that (3.74) and (3.75) are SOS with a = 0.12015, X = 0.25506,
Y = 0.88456 10−2

. The deision SOS polynomials are
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σ1(ξ) = 0.62335w2 − 0.3616xw2 + 1.6714x2w2

− 0.67622x3w + 2.0314x4w + 3.228x6,

ς1(ξ) = 0.52025w2 − 0.31686xw2 + 1.4349x2w2

− 0.54824x3w + 1.60754x4w + 2.8846x6.

Thus all the onditions of Corollary 3.25 are satis�ed, and x = 0 is loally asymptotially

stable. The domain of attration LV (c∗) an be easily seen to be equals to the studied domain

[−0.4,+0.4].

3.4 Swithing ontrollers under sampled-data implementations

As follows, some ontributions to the analysis and design of sampled-data ontrol loops based

on disontinuous feedbak laws are presented

19

. First, we address the ase of swithed a�ne

systems. Next, the sampled-data implementation of relay ontrol laws is onsidered. The goal

is to present for these lasses of systems a ontinuous-time approah to sampled-data swithing

ontrol design that ensures robustness with respet to sampling and to potential implementations

imperfetions (jitters, unertainty et.).

3.4.1 Swithed a�ne systems

Consider matries A1, A2, . . . , AN ∈ Rn×n and vetors b1, b2, . . . , bN ∈ Rn where N ∈ N. The

matries Ai, i = 1, . . . , N, are not neessarily Hurwitz. We are interested in the lass of swithed

a�ne systems desribed by

ẋ(t) = Aκ(xk)x(t) + bκ(xk),∀t ∈ [tk, tk+1), (3.76)

where κ : Rn → IN := {1, 2, . . . , N} represents a swithing ontrol. The goal is to design a

ontrol law κ whih ensures stability (in some sense) of the system (3.76) under a sampled-

data implementation. Note that in the swithed a�ne system ontext, due to sampling, one

an no longer drive the state exponentially towards the equilibrium point, but only towards a

limit yle or to some attrative ompat set ontaining the equilibrium. Furthermore, lassial

swithing ontrol laws κ are often desribed by a disrete-event system with transitions ruled by

a partition of the state spae. Then the sampling usually indues a delay in the disrete-event

system variable. This may imply a mismath in the ontrol: the system state may ross a frontier

in the state spae in between to sampling instants and one system mode may be ative in other

state zones than the one for whih it has been designed. If not appropriately taken into aount,

the sampling may be a soure of poor performane and even may lead to unbounded solutions.

The following theorem provides swithing law design onditions that ensure the pratial

stability of the losed-loop swithed a�ne system.

Theorem 3.28 [Hetel 2013b℄ Consider the unit simplex

∆N =

{
δ = [δ1, δ2, . . . , δN ]

T ∈ RN , δi ≥ 0,

N∑

i=1

δi = 1

}
, (3.77)

19

The results presented in this setion have been developed in ollaboration with Prof. Emilia FRIDMAN and

Thierry FLOQUET (DR CNRS).
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the notations A(δ) =
∑N

i=1 δiAi, b(δ) =
∑N

i=1 δibi, δ ∈ ∆N , system (3.76) with tk+1− tk ∈ (0, h̄]
and a given salar tuning parameter λ > 0. Assume that that there exists δ ∈ ∆N suh that A(δ)
is Hurwitz and b(δ) = 0. Let there exist matries P,R ≻ 0 in Rn×n, a salar β > 0 suh that the

LMIs [
AT (δ)P + PA(δ) + 2λP + h̄ATi RAi h̄ATi Rbi

∗ h̄
(
bTi Rbi − βI

)
]
≺ 0, (3.78)



AT (δ)P + PA(δ) + 2λP 0 −h̄Ψi(δ)

∗ −h̄βI h̄bTi P

∗ ∗ −h̄Re−2λh̄ + h̄2Ψi(δ)


 ≺ 0, (3.79)

∀i ∈ IN , with
Ψi(δ) = (A(δ) −Ai)

T P + P (A(δ) −Ai) , i ∈ IN .
Then for

κ(xk) ∈ arg min
i∈IN

xTk P (Aixk + bi) (3.80)

the system solutions are exponentially attrated to the ellipsoid E
(
P, h̄

β

2λ

)
, i.e.

lim
t→∞

x(t) ∈ E
(
P, h̄

β

2λ

)
,

where by E (P, c) we denote the ellipsoid

E (P, c) :=
{
x ∈ Rn : xTPx < c

}
. (3.81)

The parameter λ from Theorem 3.28 orresponds to the system deay rate. For �xed λ,
onditions (3.78), (3.79) represent LMIs. The optimization of the deay rate may be addressed

by ombining LMI-based methods with a line searh on λ. The result is based on a Lyapunov-

Krasovskii funtional of the form (2.4). Note that the hattering set depends on value of the

maximum sampling interval h̄. Given h̄, the feasibility of (3.78), (3.79) with some P, λ, β guar-

antees that for t → ∞ the trajetories of the resulting system approah to the ball ‖x‖22 < Ch̄,
where

C = β (2eigmin(P ))λ)
−1

with eigmin(P ) the minimum eigenvalue of P.

It is important to highlight the fat that the onditions in Theorem 3.28 enompass the

lassial design onditions from [Bolzern 2004℄. The set of onditions (3.78),(3.79) for h̄→ 0 are

redued to

AT (δ)P + PA(δ) + 2λP ≺ 0, (3.82)

whih is the lassial ondition from [Bolzern 2004℄ ensuring the exponential stability of the

ontinuous-time system. The approah an be easily extended to take into aount unertainties

in the system matries (see [Hetel 2013b℄ for details).

Example 3.29 Consider a swithed a�ne system onsisting of four a�ne subsystems with and

the following matries [Bolzern 2004℄:

A1 =



4.15 −1.06 −6.7
5.74 4.78 −4.68
26.38 −6.38 −8.29


 , A2 =



−3.2 −7.6 −2
0.9 1.2 −1
1 6 5


 ,
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.6

−0.4

−0.2

0

0.2

t

x 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.5

0

0.5

1

x 2

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

−0.1

0

0.1

0.2

x 3

t

Figure 3.16: Evolution of system states under the ontrol law based on Theorem 3.28 with a

�xed sampling interval h = 3.2 · 10−4
.

A3 =



5.75 −16.48 2.41
9.51 −9.49 19.55
16.19 4.64 14.05


 , A4 =



−12.38 18.42 0.54
−11.90 3.24 −16.32
−26.5 −8.64 −16.6


 ,

b1 =




1
−4
1


 , b2 =




4
−2
−1


 , b3 =



−2
1
−1


 , b4 =



−1
2
1


 .

Eah individual subsystem is unstable. For δ1 = 0.15, δ2 = 0.2, δ3 = 0.3 and δ4 = 0.35, the A(δ)
is Hurwitz and b(δ) = 0. Using Theorem 3.28 we �nd that the system is pratially stabilizable

under variable sampling with hk ≤ h ≤ 3.2 · 10−4
. The LMI onditions are found to be feasible

with

P =




0.1 −0.02 0
−0.02 0.15 0.02

0 0.02 0.11


 , R =



0.13 0 0.02
0 0.17 0.03

0.02 0.03 0.16


 , (3.83)

β = 3.16 and λ = 0.022. An illustration of system evolution with an arbitrary initial ondition

is shown in Figure 3.16.

Example 3.30 We illustrate the appliability of this stabilization approah on an example from

power eletronis. Consider the DC-DC onverter from [Hauroigne 2011℄, where the model has

the form

ẋ(t) = Aκx(t) + Bκ
with

A1 =

[
0 1/L

−1/C −1/(RC)

]
, A2 =

[
0 0
0 −1/(RC)

]
, (3.84)

B1 =
[
0 0

]T
, B2 =

[
E/L 0

]T
with E = 6V , R = 50Ω, L = 20mH and C0 = 220µF . For

δ1 = δ2 = 0.5, the matrix A(δ) is Hurwitz and the system may be stabilized to the equilibrium

point

xe = −A(δ)−1B(δ) = [0.24 − 6]T
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Figure 3.17: Trajetory in the error state spae under variations in the resistor value from 35Ω
to 65Ω with a �xed sampling interval Tmax = 2.5 · 10−5s (solid blak line), the attrative sets

obtained for the ontinuous-time ase (dashed line) and for Tmax = 2.5 · 10−5s (solid line).

using a ontinuous-time swithing law. Consider the error e = x− xe dynamis

de

dt
= Aκe(t) +Aκxe + Bκ.

For the numerial tests, the time sale hange t = ǫt with ǫ = 104 is used to ope with large

numerial values in the system matries and to avoid ill onditioned matrix inequalities. The

system of the form (3.76) is obtained with Ai = ǫ−1Ai, bi = ǫ−1 (Aixe + Bi), h̄ = ǫTmax, x = e.
Note that the trajetories are invariant with respet to time saling. Furthermore, the swithing

laws are equivalent, sine

arg min
i∈IN

(x− xe)
TP (ǫAix+ ǫbi) = arg min

i∈IN
(x− xe)

TP (Aix+Bi) .

Conerning the robust swithing law design, the onditions of Theorem 3.28 are feasible for any

(time-varying) sampling intervals with Tmax ≤ 1.5 · 10−3s.

To illustrate the use of our method for unertain systems, hoose Tmax = 2.5 · 10−5s and

assume that the resistor is subjet to unknown time-varying unertainties δR(t) ∈ [−15Ω,+15Ω].
Then eah of the matries Ai is varying in a polytope orresponding to the two verties R± 15Ω.
The robust stabilization onditions in Corollary 2 from [Hetel 2013b℄ are feasible with

P =

[
9.175 0.088
0.088 0.1

]
, Ui =

[
7.75 0.161
0.161 0.048

]
, i = 1, 2,
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β = 2.69 · 10−2, γ = 1.9 · 10−3, whih implies that ‖e(t)‖ < 4.23 as t → ∞. The error

system evolution with the initial ondition x(0) = 0 is shown in Figure 3.17. The �gure presents

the attrative ellipsoids for both the sampled-data ase and for the ontinuous-time swithing

implementation. Due to sampling and to parametri unertainties the system state under a

ontinuous-time ontrol implementation (in blak) does not onverge to the equilibrium point (the

enter of the ellipsoid) but only to a bounded region. Numerial simulations under an uniform

sampling Tmax show that the same attrative ellipsoid is ahieved for bigger Tmax = 1.4 · 10−3
,

to be ompared with Tmax = 2.5 · 10−5
proved in theory under the variable sampling. The latter

may illustrate the onservatism of the method.

In addition to the results presented here, the design of sampled-data swithing ontrollers for

swithed a�ne systems has also been addressed using a hybrid system approah in [Hetel 2015b℄.

3.4.2 Relay ontrol

As follows we present the method from [Hetel 2015℄ whih ensures loal pratial stabilization

of LTI systems with relay ontrol laws. Consider the system

ẋ(t) = Ax(t)−Bγsign(Γxk),∀t ∈ [tk, tk+1), (3.85)

where A ∈ Rn×n, B ∈ Rn×1
, γ > 0 and where Γ ∈ R1×n

is a design parameter representing the

swithing hyperplane. We propose a simple design method based on the existene of a stabilizing

linear state feedbak and we show how it may be used in the sampled-data ase in order to

guarantee (loally) the pratial stabilization to a bounded ellipsoid ontaining the origin. The

main idea of the design proedure is to use the existene of an exponentially stabilizing state

feedbak as a referene ontrol to be emulated (loally) by a relay feedbak.

Proposition 3.31 (adapted from [Hetel 2015℄) Consider system (3.85) with tk+1 − tk ≤ h.
Assume that the pair (A,B) is stabilizable and onsider a gain matrix K suh that Acl = A+BK
is Hurwitz. Given tuning parameter λ, let there exist symmetri positive de�nite matries P,R,
and a positive salar β < 2λ

h
suh that:

[
I γ−1K
∗ P

]
≻ 0, (3.86)

[
ATclP + PAcl + 2λP + hATRA hATRBv

∗ h
(
BTRB − β

)
]
≺ 0, (3.87)



AT

clP + PAcl + 2λP 0 − (PBK)
T
h

∗ −βh (PBv)T h

∗ ∗ −hRe−2λh


 ≺ 0, v ∈ {−γ, γ}. (3.88)

Then for Γ = BTP any solution x(t) of (3.85) with initial ondition x(0) ∈ Ω0 = E (P, 1)
onverges exponentially to Ω∞ = E (P, c) as t→ ∞, with c = (2λ)−1βh.

Example 3.32 Consider a linear time-invariant system with

A =

[
1 −1
1 1

]
, B =

[
1
1

]
. (3.89)
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Figure 3.18: Illustration of evolution in the state spae for a onstant sampling interval T = 10−3
.

Green: u = γ; red: u = −γ; ellipsoid in dashed line: estimation of the domain of attration

Ω0; ellipsoid in solid line: attrative set for t → ∞, Ω∞; blak line: trajetory from the initial

ondition x0 = [−13.5 − 10]T .

The A matrix has unstable eigenvalues 1 ± i. Consider that the ontrol is onstrained to the set

V = {−γ, γ} with γ = 25. The pair (A,B) is fully ontrollable. The state feedbak

K = [0.3125 − 2.8125]

ensures that Acl = A+ BK is Hurwitz. Using λ = 0.23 and the gain K, it is possible to design

a sampled-data relay ontrol. For this set of parameters, with R and β as deision variables, the

onditions of Proposition 3.31 are feasible for h ≤ 1.9 · 10−2. In partiular, for h = 10−3
, the

LMIs are found feasible with β = 15.63 and

P = 10−2

[
0.66 −0.78
−0.78 1.91

]
, (3.90)

whih leads to Ω∞ = E (P, 0.068). A numerial illustration is shown in Figure 3.18.

Example 3.33 As follows we illustrate the pratial implementation of sampled-data ontrollers

on a real art-pendulum system platform from Eole Centrale de Lille. We onsider the following
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linearized model of the inverted pendulum on a art:




ẋ
ẍ

θ̇

θ̈


 =




0 1 0 0

0 0 −mg
M 0

0 0 0 1

0 0 (M+m)g
Ml 0







x
ẋ
θ

θ̇


+




0
a
M
0
−a
Ml


u. (3.91)

Here x represents the art position, θ, the angle, M = 3.9249Kg and m = 0.2047Kg, the art

and pendulum masses, respetively, l = 0.2302m the distane from the pendulum enter of mass

to its pivot, g = 9.81N/Kg, the gravitational aeleration and a = 25.3N/V , the gain of the

linear motor. We onsider that the system input is restrited to V = {−1, 1}. The ontrol law is

implemented on D-Spae ard with a sampling frequeny h = 10−4s. The system an be stabilized

by a ontinuous-time state feedbak with K = [6.4763 5.2313 15.4168 2.7498] for whih

P =




117.66 77.84 171.63 27.93
77.84 57.947 133.258 21.425
171.63 133.258 347.978 54.504
27.93 21.425 54.504 9.18


 (3.92)

is a Lyapunov matrix. Using Proposition 3.31 with λ = 1.45 it is possible to show that

Γ = PB =
[
−280.33 −226.412 −667.228 −118.95

]T

ensures (in theory) loal stabilization in E(P, 1). For the obtained sampled-data implementation,

any system solution with initial onditions in Ω0 = E(P, 1) onverges exponentially to Ω∞ =
E(P, 0.07). The state evolution, illustrating pratial stabilization of both pendulum angle and art

position, is shown in Figure 3.20 (to be ompared with simulations in Figure 3.19). Di�erenes

between experimentations and simulations are due to the use of the linearized model of the inverted

pendulum for ontrol design, to impreisions in the identi�ation of system parameters and to

perturbations due to frition.
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Figure 3.19: Numerial simulation based on the LTI model for the inverted pendulum on a art:

evolution of ard position x (upper sub-plots in meters) and pendulum angle θ (lower sub-plots

in radians) with a sampled-data relay ontrol from the initial ondition x0 = [0.015 0.115 −
0.014 − 0.142].
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Figure 3.20: Experimental result for the inverted pendulum on a art: evolution of ard position

x (upper sub-plots in meters) and pendulum angle θ (lower sub-plots in radians) with a sampled-

data relay ontrol from the initial ondition x0 = [0.015 0.115 − 0.014 − 0.142].
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Conlusion

In this part, several ontributions to the study of aperiodi sampled-data systems have been

presented. First, in the ase of linear systems it is shown how the onservatism in the stability

analysis an be redued using disrete-time methods based on quasi-quadrati Lyapunov fun-

tions. A ontinuous-time approah ombining the advantages of both time-delay methods and

disrete-time ones has been presented and applied to the self-triggering ontrol problem. The

main issue is that the design of sampling maps an be optimized using robust ontrol tools. Next,

we have takled the stability problem for nonlinear sampled-data systems, by studying the ase

of bilinear systems. Construtive stability analyzis onditions have been proposed using a hybrid

system approah and a generalization of the Input/Output stability approah. The latter has

been extended to a more general lass of a�ne nonlinear systems, with aperiodi sampled-data

ontrol. Finally, the sampled-data implementation of some lassed of disontinuous ontrollers

has been studied.

It is to be emphasised that the interest of the presented results goes beyond the simple ape-

riodi sampling problem. In fat, this framework an be seen as an abstration of more omplex

phenomena presented in Networked Control Systems. Many of the presented approahes an

be extended to deal with delay, quantization or sheduling protools [Donkers 2009℄, [Cloost-

erman 2010℄, [Hetel 2011a℄, [Donkers 2011a℄, [Lombardi 2012℄, [Liu 2012b℄, [Liu 2015a℄. Fur-

thermore, the presented approahes an be generalized to more omplex hybrid dynamial sys-

tems [Hetel 2013a℄.
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Part II

Design of swithing ontrollers - an

emerging researh diretion
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The design of swithing ontrollers represents an important problem in Control Theory. Sim-

ple ON/OFF, bang-bang and relay ontrollers are widely used in various tehnial domains.

They represent the key omponents in variable struture systems [Emel'Yanov 1967℄ and sliding

mode ontrol [Edwards 1998℄ and have very interesting robustness properties faed to mathed

perturbations. Swithing ontrollers are inherently hybrid dynamial systems whih may de-

sribe omplex behaviours [Goebel 2009℄, [Liberzon 2003a℄, [Bourdais 2007℄, [Aary 2014℄. It is

well known in the literature that even the simple relay feedbak systems may tend to sliding

modes [Utkin 1992,Wang 2015℄, Zeno solutions [van der Shaft 2000℄ or limit yles [Johans-

son 1999℄.

As follows, we will present an emerging researh diretion onerning some lasses of dynam-

ial systems of the form

ẋ = f(x) + g(x)u (1)

with f : Rn → Rn, g : Rn → Rm Lipshitz ontinuous funtions. Here x ∈ Rn is the systems

state and u ∈ Rm is the input whih is assumed to be onstrained to take values in a �nite set

of vetors

V = {v1, v2, . . . , vN}. (2)

The goal is to design a ontrol law

u = κ(x), κ : Rn → V, (3)

whih ensures the stability of (1). Over this part, the system's solutions will be onsidered in

the sense of Filippov (see [Filippov 1988℄).

This problem formulation enompasses the lassial relay feedbak ontrol design problem

where the input u is onstrained to take values in the set V = {−v, v}, for some positive onstant

v [Flugge-Lotz 1953,Tsypkin 1984,Johansson 1999,Liberzon 2013℄. It is important to highlight,

that although relay feedbak has been studied for a long time, there are still many unsolved

issues. For the moment, very few numerial tools exist for designing swithing surfaes while

optimizing the system performanes or the size of the domain of attration.

For the ase when the set V takes the form V = {0, 1}m, we enounter the ase of ON/OFF
atuators. Their study is motivated by the large number of appliations in the domain of power

eletronis [Erikson 2001, Baha 2014℄. In this ontext, methods based on Pulse-Width Mod-

ulation (PWM) and averaging are often used for implementing lassial ontinuous ontrollers

while ignoring the ON/OFF nature of atuators.

The problem statement an also be related to the study of ontrol loops with quantization

[Brokett 2000,Liberzon 2003b,Liberzon 2005℄. The set of ontrol V an represent ontrol value

for systems that are subjet to both saturation and quantization.

For the partiular ase when the set of vetors V form a simplex in Rm (N = m+ 1, every
subset of m vetors in V are linearly independent and there exists m+ 1 positive salars νi, i ∈
Im+1 suh that

∑m+1
i=1 νivi = 0,

∑m+1
i=1 νi = 1), the design of a ontrol u with values onstrained

to the set V is a simplex -type variable struture ontrol problem (see [Bartolini 2011,Bajda 1985℄

and the referenes with).

As follows, we will present a novel design strategy for the design of swithing ontrollers

de�ned on �nite sets. The aim is to propose a onvex optimization approah for the de�nition of

swithing surfaes. The methodology ombines tools for systems with bounded ontrols and sat-

uration [Tarbourieh 2011℄, [Blanhini 1999℄ with onvex embedding arguments [Liberzon 2003a℄.

The main idea of the design proedure is to use the existene of a ontinuous stabilizer in order

to re-design a swithing ontrol. It is based on simple onvex optimization arguments and does
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not need any omputation of normal forms. For several lasses of systems (LTI, LPV, swithed

a�ne, bilinear), the design of a swithing ontroller an be formulated as a lassial LMI prob-

lem, allowing to optimize the size of the domain of attration and the robustness with respet

to perturbations or parameter variations.

This part is strutured as follows. Fist, some results are presented for the ase of linear

systems (time, invariant, polytopi unertain and LPV) in Chapter 4. Next, in Chapter 5 the

ase of swithed a�ne systems is onsidered. At last, some appliations are presented in Chapter

6.
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Chapter 4

Linear systems

In this hapter, we present some results onerning the design of swithing surfaes for the ase

of linear system

20

. LMI stabilization onditions are given for linear (possibly unertain) systems

and LPV systems.

4.1 Simpli�ed problem formulation

Consider n,m ∈ N, A ∈ Rn×n, B ∈ Rn×m and the system

ẋ = Ax+B (u+ d) , (4.1)

where x ∈ Rn represents the system state, u ∈ Rm the input and d ∈ Rm a mathed perturbation.

We adopt the following assumptions:

� (A.1) The pair (A,B) is stabilizable.

� (A.2) The input u is a stati state feedbak onstrained to take values in a �nite set of

onstant vetors V := {v1, v2, . . . , vN} ⊂ Rm, where N is a positive integer, i.e. u = κ(x)
with κ : Rn → V.

� (A.3) The perturbation d is a measurable funtion taking values in the ube P (dmax) where
dmax ≥ 0 is a known salar and P (c) := {y ∈ Rm : ‖y‖∞ ≤ c} , ∀c ≥ 0.

� (A.4) onv {V} is a nonempty losed subset in Rm ontaining the null vetor in its interior:

0m ∈ Int {onv {V}} .

� (A.5) There exists ρ ∈ [0, 1) suh that P (dmax) ⊂ onv {ρV} .

We are interested in the design of ontrol laws u = κ(x) of the form

u = κ(x) ∈ argmin
v∈V

xTΓv (4.2)

where Γ ∈ Rn×m is a matrix to be determined.

Note that for the ase when the input u is a salar onstraint to the set V = {−v, v}, with
v > 0 a given onstant, we obtain u = κ(x) = v whenever xTΓv ≤ xTΓ(−v), i.e. for xTΓ ≤ 0.

20

The results presented in this hapter have been developed in ollaboration with Prof. Emilia FRIDMAN,

Thierry FLOQUET (DR, CNRS), Ass. Prof. Alexandre KRUSZEWSKI and Romain DELPOUX (ATER at

LAGIS).
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Figure 4.1: Basi idea for a system with V = {v,−v}. Here CV(K) is the set delimited by the

lines Kx = v and Kx = −v. The ellipsoid Ω0 := E(P, γ) is hosen as the largest one ontained

in CV(K). Inside Ω0 the ontinuous stabilizer u = Kx an be replaed by a swithing ontroller

u = −vsign(BTPx).

Similarly, u = κ(x) = −v whenever xTΓ ≥ 0. Then, for V = {−v, v}, with v > 0, the ontrol

law (4.2) is redued to the lassial relay ontrol u = κ(x) ∈ −v sign (ΓTx).

Sine the values of the input are restrited to a �nite set, the losed loop system (4.1),(4.2)

has a disontinuous right-hand side.

The goal is to provide riteria for the synthesis of a relay ontrol law (4.2) that ensures

loal stability of Filippov solutions assoiated to the losed-loop system (4.1),(4.2). We pro-

vide optimization methods for ontrol design while enlarging the domain of attration. Finite

time reahability properties to sliding manifolds and the robustness with respet to mathed

perturbations and time-varying unertainties will be disussed.

4.2 Basi idea

Let us �rst onsider the ase when d = 0. Note that Assumption (A.1) is equivalent with

� (A.6) ∃ P ≻ 0,K ∈ Rm×n, δ > 0, suh that

(A+BK)T P + P (A+BK) ≺ −2δP. (4.3)

Then V (x) = xTPx satis�es

∂V

∂x
(A+BK)x < −2δV (x),∀x 6= 0, (4.4)

i.e. it is a Lyapunov funtion for system (4.1) with the state-feedbak ontrol law Kx.

For γ let

E (P, γ) :=
{
x ∈ Rn : xTPx < γ

}
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4.2. Basi idea

denote the γ level set of the funtion V (x) = xTPx and CV(K) the subset of the state spae for
whih Kx belongs to the onvex hull of βV,

CV(K) := {x ∈ Rn : Kx ∈ onv {V}} .

Sine onv {V} is a non-empty losed subset in Rm ontaining the null vetor in its interior, there

exists a level set desribed by γ > 0 suh that

Ω0 := E (P, γ) ⊂ CV(K). (4.5)

The main idea is to use the existene of the linear state feedbak gain K in order to design a

loally stabilizing feedbak of the form (4.2) (see also Figure 4.1 for a graphial illustration).

Remark that for any x ∈ Ω0 there exist N salars αj (x) ≥ 0, ∀j ∈ IN with

∑N
j=1 αj (x) = 1

suh that

Kx =

N∑

j=1

αj (x) vj . (4.6)

From (4.4), (4.5) and (4.6), we have

N∑

j=1

αj (x)
∂V

∂x
(Ax+Bvj) < −2δV (x), (4.7)

for all x ∈ Ω0 \ {0} . Considering that αj(x) ≥ 0, j ∈ IN , there must be at least one j ∈ IN suh

that

∂V

∂x
(Ax+Bvj) < −2δV (x), ∀x ∈ Ω0 \ {0} . (4.8)

Sine Ω0 represents a sub-level set of V (x), loal stabilization in Ω0 with a ontrol of the form

(4.2) is ensured by hoosing the ontrol κ(x) with the steepest desend of the Lyapunov funtion

κ(x) ∈ argmin
v∈V

xTPBv (4.9)

whih leads to setting Γ = PB in (4.2). Note that if there are several minimizers v in (4.9), they

all ensure the deay of V. We arrive to the following:

Proposition 4.1 [Hetel 2013℄ Consider system (4.1) with d = 0, a ontrol law (4.2) and

Assumptions (A.2),(A.4),(A.6). Then there exit a funtion V (x) = xTPx , with P a symmetri

positive de�nite matrix, and salars δ, γ > 0 suh that for Γ = PB

∂V

∂x
(Ax+Bκ(x)) < −2δV (x), (4.10)

for all κ(x) ∈ argminv∈V xTPBv, x ∈ Ω0 \ {0} where Ω0 = E(P, γ).

Using standard developments, it an be shown that (4.10) is a su�ient ondition for the loal

asymptoti stability of Filippov solutions assoiated to system (4.1) with d = 0 and the ontrol

law (4.2). As follows, it will be shown that the provided ontrol law also ensures robustness to

perturbations and it presents a �nite time reahable sliding dynamis.
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Chapter 4. Linear systems

4.3 Sliding dynamis and robustness to perturbations

The following theorem provides design onditions for the ontrol law (4.2) in the ase of non null

perturbations.

Theorem 4.2 [Hetel 2015℄ Consider a set of o-vetors hi ∈ R1×m, i ∈ Inh
desribing the dual

representation of the polytope onv {V}:

onv {V} = {y ∈ Rm : hiy ≤ 1, i ∈ Inh
} . (4.11)

Consider Assumptions (A.2)-(A.6) and the losed-loop system (4.1),(4.2) with Γ = PB. Then
for any

γ ≤ min
i∈Inh

(1− ρ)2
(
hiKP

−1KThTi
)−1

(4.12)

a) the origin x = 0 of the losed-loop system is loally exponentially stable in Ω0 := E (P, γ);

b) if rank(B) = m ≤ n then, for s = BTPx the surfae s = 0 is �nite time reahable whenever

x(0) ∈ E (P, γ), i.e. exists tf ∈ [0,∞) suh that s(t) = 0 for all t ≥ tf .

Furthermore, if for some P satisfying (4.3), ATP + PA is negative semi-de�nite then

) the origin of the losed-loop system is globally asymptotially stable.

The theorem provides simple design onditions of a robust stabilizing ontroller under the

simple assumptions (A.2)-(A.6). Note that the theorem guarantees that for the ase rank(B) =
m ≤ n the surfae s = BTPx = 0 is a sliding hyperplane that is reahed in a �nite time. The

design proedure an be easily extended to deal with parametri unertainties in the matrix A,

that is when A (µ(t)) ∈ A := onv {A1, A2, . . . , Anv} where µ(t) =
[
µ1(t) µ2(t) . . . µnv(t)

]T
are

the baryentri oordinates of A in A.

Corollary 4.3 [Hetel 2015℄ For c > 0 and x ∈ Rn, let

B(x, c) := {y ∈ Rn : ‖x− y‖2 < c} .

Consider the system

ẋ = A (µ)x+B (u+ d) , (4.13)

where µ(·) is measurable, Assumptions (A.2)-(A.5) and the dual representation of the polytope

onv {V} in (4.11). Given δ > 0, γ > 0, assume that there exists (Q,λ, ǫ) solution to the set of

linear matrix inequalities

Q = QT ≻ 0, λ > 0,

AjQ+QATj − λBBT ≺ −2δQ, ∀j ∈ Inv , (4.14)

[
ǫI I
∗ Qγ

]
≻ 0, (4.15)

[
1 λ

2(1−ρ)hiB
Tγ

∗ Qγ

]
≻ 0, i ∈ Inh

. (4.16)
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Figure 4.2: Phase spae for the losed-loop system in Example 4.4 with ‖d‖∞ ≤ 0.01. Ellipsoid
in dotted-dashed line � Ω0. Solid blak lines � limiting hyperplanes of C(1−ρ)V (K).

Then the origin x = 0 of the losed-loop system (4.13),(4.2) with Γ = Q−1B is loally asymp-

totially stable in the ellipsoid E
(
Q−1, γ

)
ontaining the ball B(0, cB) with cB = 1/

√
ǫ. Fur-

thermore, if rank(B) = m ≤ n, the surfae s = BTQ−1x = 0 is �nite time reahable for any

x(0) ∈ E
(
Q−1, γ

)
.

The existene of a solution (Q,λ, ǫ) to the LMI optimization problem inf ǫ under the on-

straints (4.14)-(4.16), guarantees that any Filippov solution of the losed-loop system (4.1),

(4.2) (with Γ = Q−1B), originating from E
(
Q−1, γ

)
is exponentially onverging to the origin.

By minimizing ǫ, the size of the invariant ellipsoid is maximized. Note that without any loss of

generality we may always onsider γ = 1. If the LMIs (4.14)-(4.16) are satis�ed for (Q0, λ0, ǫ0),
then they are also satis�ed for γ = 1 with (Q0γ0, λ0γ0, ǫ0). Given dmax, the minimum ρ s.t.

P (dmax) ⊂ onv {ρV} an be omputed from the standard optimization problem:

inf ρ s.t. hiy ≤ ρ,∀ y ∈ vert {P (dmax)} , i ∈ Inh
. (4.17)

Example 4.4 Consider a system (4.1) desribed by

A =

[
a −1
1 1

]
, B =

[
1 0
0 1

]
, V =

{[
0
1

]
,

[
−2
−1

]
,

[
2
−1

]}

with a = 1, ‖d‖∞ < dmax = 0.01. The set onv {V} in (4.11) is haraterized by h1 = [−1 1], h2 =
[1 1], h3 = [0 − 1/2].

Addressing the optimization problems (4.17) and inf ǫ under the onstraints (4.14)-(4.16)

with γ = 1, δ = 0.25, leads to a ontrol law (4.2) with Γ = PB and

P =

[
3.25 0
0 3.25

]
,
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whih ensures the loal (robust) stabilization in Ω0 = E(P, 1), ontaining the ball with the radius

cB = 0.55. For this example s = BTPx orresponds to the origin. Then the equilibrium point

is �nite-time reahable. Let us remark that the boundary of the domain of attration is not

far from the unstable equilibrium points of the losed-loop system: −A−1Bv2 = [1.5 − 0.5]T ,
−A−1Bv3 = [−0.5 1.5]T . Furthermore, for x(0) = [0.501 − 0.501]T , simulations with onstant

sampling interval tk+1−tk = 10−5,∀k ∈ N and dmax = 0, illustrate an unstable system behaviour.

Note that ‖x(0)‖2 = 0.708, to be ompared with cB < 0.55 for whih loal stabilization is ensured.

This gives an idea about the auray of the ellipsoidal estimation of the domain of attration.

An illustration is provided in Figure 4.4. A simulation from the initial ondition x(0) = [0.4 0]T

is presented under arbitrary variations of the mathed perturbation and with a sampling interval

of 10−3
.

Let us remark that for the system under study the matrix A is unstable. Therefore it is

impossible to apply the lassial global stabilization ontrol design tehniques based on the existene

of a stable onvex ombination [Deaeto 2010,Bolzern 2004℄.

Assume now that the parameter a is time-varying in [0.97, 1.03]. Let us onsider a ontinuous-
time ontrol design based on Corollary 4.3 for ‖d‖∞ < dmax = 0.01. For γ = 1, solving the LMI

problem (4.14)-(4.16) (for the two vertex of the A matrix) while minimizing ǫ, leads to a ontrol

law of the form (4.2) with Γ = PB and

P =

[
0.33 0
0 0.33

]
,

whih ensures loal stabilization of the ontinuous-time systems in Ω0 = E(P, 1) for any ‖d‖∞ <
dmax = 0.01 and any a(t) ∈ [0, 97, 1.03].

4.4 LPV ase and Parameter Dependent Relay Control

The approah previously presented an be extended to ase of Linear Parameter-Varying (LPV)

systems with the state-spae realization:

ẋ = A(µ)x+B(µ)u, (4.18)

where x ∈ Rn is the state vetor and u ∈ Rm is the ontrol vetor, the matries A ∈ Rn×n, B ∈
Rn×m are polytopi matries with the following form:

A(µ(t)) =
∑nv

i=1 µi(t)Ai, B(µ(t)) =
∑nv

i=1 µi(t)Bi, (4.19)

with A1, . . . , Anv , B1, . . . , Bnv being known onstant matries. In what follows, the vetor

µ(t) =
[
µ1(t) . . . µnv(t)

]T

is a vetor of real and known parameters whih evolves pieewise ontinuously in the unit simplex

∆nv . Suh models are interesting sine they an be useful for absorbing loally the behaviour of

more omplex a�ne nonlinear systems [Rugh 2000℄.

Consider that for eah µ ∈ ∆nv the ontrol u may only take values in a �nite set whih

depends on the parameter µ. We de�ne this set of �nite values Vµ by:

Vµ = {vi(µ), i ∈ IN}, vi : ∆nv → Rm,∀i ∈ IN . (4.20)

96



4.4. LPV ase and Parameter Dependent Relay Control

We onsider that onv{Vµ} is a non empty bounded set ontaining the origin in its interior for

any µ ∈ ∆nv . The objetive is to �nd a Parameter Dependent Relay (PDR) ontrol u = κ(x, µ)
whih loally stabilizes the system (4.18):

κ(x, µ) : Rn ×∆nv → Vµ. (4.21)

Proposition 4.5 (adapted from [Delpoux 2015℄) Consider system (4.18) with the desription

(4.19). Consider D ⊂ Rn a domain ontaining x = 0. Assume that there exists a ontrol

u = K(x, µ), with K : Rn ×∆nv → Rm suh that K(x, µ) ∈ onv{Vµ}, ∀µ ∈ ∆nv , x ∈ D \ {0}.
Let V : D → R, be a ontinuously di�erentiable funtion suh that

0 < V (x), ∀ x ∈ D \ {0}, (4.22)

∂V

∂x
(A(µ)x+B(µ)K(x, µ)) < −W (x),∀µ ∈ ∆nv , x ∈ D \ {0}, (4.23)

where W (x) is a ontinuous positive de�nite funtion on D. Then system (4.18) with the ontrol:

u = κ(x, µ) ∈ arg min
v∈Vµ

∂V

∂x
B(µ)v, (4.24)

is loally asymptotially stable when solutions are understood in the sense of Filippov. Further-

more, for any level set LV (c) = {x ∈ Rn : V (x) ≤ c} suh that LV (c) ⊆ D, the following relation

is satis�ed for any Filippov solution x(t) originating from the initial ondition x0:

x0 ∈ LV (c) ⇒ lim
t→∞

||x(t)|| = 0, (4.25)

i.e. LV (c) is an inner estimation of the domain of attration.

The previous result uses the existene of any stabilizer K(x, µ) (possibly ontinuous) in order

to redesign a swithing ontrol κ(x, µ) whih takes values only in the set Vµ(x, µ). Note that the
swithing ontrol has at least the same guaranteed deay of the Lyapunov funtion as K(x, µ).
The result provides a general theoretial framework for the design of swithing ontrollers. In

the following proposition we will show how this result an be used in a onstrutive manner.

Considering that for all µ ∈ Vµ, onv{Vµ} is non empty and ontains the origin in its interior,

remark that there exists a polytopi region:

Q = onv{q1, q2, . . . , qp} = {z ∈ Rm : hiz ≤ 1, i ∈ INh
}, (4.26)

suh that

Q ⊂ onv{Vµ},∀µ ∈ ∆nv and 0 ∈ Int{Q}. (4.27)

Using the polytope Q one an adjust the design onditions to inlude an LMI based optimization

of the domain of attration.

Proposition 4.6 [Delpoux 2015℄ Consider system (4.18). Assume that there exists Q = QT ≻
0, Yi ∈ Rm×n

, i ∈ IN and a positive salar δ suh that:

He{(Ai +Aj)Q+BiYj +BjYi} ≺ −2δQ, i, j ∈ Inv , (4.28a)

[
1 hiYj
∗ Q

]
≻ 0, i ∈ INh

, j ∈ Inv , (4.28b)

97



Chapter 4. Linear systems

[
eI I
∗ Q

]
≻ 0. (4.28)

Let

u = κ(x, µ) ∈ arg min
v∈Vµ

xTQ−1B(µ)v. (4.29)

Then the equilibrium point x = 0 of the losed-loop system (4.18)-(4.29) is loally asymptot-

ially stable. An estimation of the domain of attration is provided by the ellipsoid E(Q−1, 1)
ontaining the ball

B(0,√ǫ) =
{
y ∈ Rn : ‖y‖2 <

√
ǫ
}

with ǫ = 1
e , i.e.

∀x(0) ∈ E(Q−1, 1), lim
t→∞

||x(t)||2 = 0.

Example 4.7 In order to illustrate the results presented in this setion, we propose to show

simulations through a simple seond order system so that the trajetories of the system an be

plotted in a two dimensional phase portrait. We onsider the system:

ẋ(t) = A0x(t) +B0(x1(t))u(t), (4.30)

with x = [x1 x2]
T
in R2

, u ∈ R2
, A0 ∈ R2×2

and B0 ∈ R2×2
de�ned by

A0 =

[
0 3
1 1

]
, B0(x1(t)) =

[
1 + 0.5 sin(x1(t)) 0

0 1 + 0.5 sin(x1(t))

]
.

For eah x1(t), the ontrol u(t) is onstrained to swith among four di�erent values in the set

{R(x1(t))ρ, ρ ∈ Ψ2(v)} where Ψ2(v) = {u ∈ R2 : ui ∈ {−v, v}, i = 1, 2}, v = 10. The matrix

R(x1(t)) is the rotation matrix de�ned by

R(x1(t)) =

[
cos(x1(t)) sin(x1(t))
− sin(x1(t)) cos(x1(t))

]
. (4.31)

Considering as bounded time-varying parameters sin(x1), cos(x1), the system (4.30) may be

rewritten as an LPV system of the form (4.18) de�ned by:

ẋ(t) = Ax(t) +B(µ(t))u(t) (4.32)

with A = A0 and B(µ(t)) =
∑2

i=1 µi(t)Bi = B0(x1(t)), where

µ1(t) =
1− sin(x1(t))

2
, µ2(t) =

1 + sin(x1(t))

2

and

B1 =

[
0.5 0
0 0.5

]
, B2 =

[
1.5 0
0 1.5

]
.

The ontrol u takes values in the �nite set (4.20) de�ned by

Vµ(t) = {vi(µ(t)), i ∈ 1, . . . , 4} = {R(x1(t))ρ, ρ ∈ Ψ2(v)}. (4.33)

In order apply Proposition 4.6 we need to onstrut a polytopi region Q suh that equation

(4.26) is satis�ed.
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Figure 4.3: Representation of ontrol sets Vµ for the system in the simulation example.

Note that all squares de�ned by conv{Vµ(t)} are entred at 0 and have the same size. Thus

the dis of radius V entred at 0 belong to all conv{Vµ(t)} (see Fig. 4.3). This dis an be

approximated by the polytope Q represented in brown Fig. 4.3 for whih the verties qi are given
by

qi+1 = v



cos
(
2iπ
p

)

sin
(
2iπ
p

)


 , i = 0, . . . , p− 1. (4.34)

Eah fae of the polytope an be haraterized by its normal:

hi+1 =
qi + qi+1

1 + cos
(
2π
p

) , i = 0, . . . , p − 1. (4.35)

For this example, to approximate the insribed dis by a polytope Q we take p = 15. Choosing
a deay rate δ = 4 and applying Proposition 4.6, the LMI solver returns the matries Q and

Yi, i ∈ I2 matries:

Q =

[
43.17 −18.86
−18.86 9.77

]
, Y1 =

[
−59.53 21.82
21.82 −20.88

]
, Y2 =

[
−21.70 7.66
7.66 −8.17

]
. (4.36)

The Q matrix de�nes the parameter dependent relay ontrol (4.29) and thus the swithing

regions. These regions are plotted Fig. 4.4 as funtion of the states x1 and x2. On this �gure,

r1, r2, r3 and r4 are the region for whih the argument of the minimum is given for the ontrol

input

v1 (µ(t)) = R (x1(t)) [v v]T ,
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Figure 4.4: Representation of the swithing regions, (the region r1 in dark blue, r2 in light blue,

r3 in yellow and r4 in red).

v2 (µ(t)) = R (x1(t)) [v −v]T ,

v3 (µ(t)) = R (x1(t)) [−v v]T

and

v4 (µ(t)) = R (x1(t)) [−v −v]T ,
respetively.

To illustrate the theoretial results, we ompare the Continuous State Feedbak (CSF) ontrol

law

K(x, µ) =

nv∑

i=1

µiYiQ
−1x. (4.37)

with the PDR ontrol (4.29). In the ontinuous ase, the ontrol input applied to the system

denoted by ρ in the desription of the system is in R2
but it has elements saturated in the interval

[−v, v]. The phase portrait of the states x1 and x2 for both ases are plotted Fig. 4.5. On theses

�gures, we have plotted in red the ellipsoid E(Q−1, 1), haraterizing the domain of attration of

the system. The brown lines represent the hyperplanes hiYjQ
−1 = 1.

The �rst simulation is exeuted while taking initial onditions outside the attrative ellipsoid.

On the �gure, the initial ondition is denoted by x0,1. One observes that outside the attration

domain, the losed-loop system does not onverge to the origin. The seond simulation is realized

with the initial ondition x0,2, near the domain of attration, but outside. The �gures show that

in this ase, the trajetories are onverging to the origin. Finally, the initial ondition x0,3 is

taken inside the domain of attration. In this ase the trajetories also onverge to the origin.

For this example the attrative ellipsoid ontains the ball ‖x‖2 < ǫ with ǫ = 1.28 and the initial

ondition x0,3 with ‖x0,3‖2 = 4.14. Note that ‖x0,1‖2 = 7.07 and ‖x0,2‖2 = 4.24, this gives an

idea about the onservatism introdued in the estimation of the domain of attration.
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Figure 4.5: Charaterization of the domain of attration and simulation results.

The main advantage of the method is that it allows to optimize the design of nonlinear

swithing surfaes while providing a quantitative guarantees in terms of domain of attration

and performanes. In Chapter 6, we will see how the proposed method an be applied to a

pratial example of a stepper motor.
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Chapter 5

Swithed a�ne systems

Swithed systems represent a very popular area in hybrid dynamial systems. Generi results

on this topi may be found in the book [Liberzon 2003a℄ and the survey papers [Shorten 2007,

Lin 2009,Bourdais 2007℄. Among the di�erent problems enountered in the ontext of swithed

systems, in this hapter, we will fous on the problem of designing swithing ontrollers. This

problem is very hallenging for the ase of swithed a�ne systems where, generally, the di�erent

subsystems do not share a ommon equilibrium point. Di�erent stabilization solutions exist in

the literature based on the existene of stable onvex ombinations [Bolzern 2004,Deaeto 2010℄,

on optimal ontrol methods [Seatzu 2006,Hauroigne 2011℄, or on the use of sliding modes [Sira-

Ramirez 1994℄. A haraterization of the set of attainable equilibrium points using quadrati

Lyapunov funtions and oni swithing laws has been provided in [Bolzern 2004,Deaeto 2010℄.

When dealing with the stabilization problem, the existing artiles treat the global stabilization

ase. However, one may enounter swithed a�ne systems that may be stabilized only loally.

Consider system haraterized by two vetor �elds,

f1(x) = 3x+ 1, f2(x) = 2x− 1.

While global stabilization is not possible, loal stabilization at the origin is possible for initial

onditions in the ball |x| < 1/3, by hoosing f1(x) for x ≤ 0, and f2(x), whenever x ≥ 0. Suh
systems annot be onsidered using the existing methodology.

In what follows, we propose onstrutive methods for the derivation of state dependent swith-

ing laws that ensure loal stabilization of swithed a�ne systems at the origin

21

. The main idea

is to reformulate the stabilization of swithed a�ne systems as a lassial stabilization problem

for nonlinear systems a�ne in the input. The method derives state dependent swithing laws by

embedding, loally, the behaviour of a ontinuous ontroller. The lassial restrition onern-

ing the existene of a Hurwitz onvex ombination may be easily avoided. With respet to the

existing results, the proposed methodology an be interpreted as an approah that uses onvex

ombinations that depend on the system state.

21

The results presented in this hapter have been developed in ollaboration with Ass. Prof. Emmanuel

BERNUAU.
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5.1 System desription

Let a set of ouples (Ai, bi) , i ∈ IN = {1, 2, . . . , N} where Ai ∈ Rn×n, bi ∈ Rn, for positive

integers n,N . Consider the system

ẋ = X(x) = Aκ(x)x+ bκ(x) (5.1)

where κ : Rn → IN represents the swithing law. We assume that there exists

δ∗ ∈ ∆N =

{
δ =

[
δ1, . . . , δN

]T ∈ RN :

N∑

i=1

δi = 1, δi ≥ 0, i ∈ IN
}

suh that

∑
i∈IN δ

∗
i bi = 0. This is a neessary ondition for the existene of an equilibrium at

the origin when solutions are understood in the sense of Filippov (see [Filippov 1988℄). The goal

is to provide methods for the design of a loal stabilizing swithing law κ.

The main idea of the work is to re-formulate the swithed a�ne system (5.1) in a lassial

nonlinear a�ne form

ẋ = f(x) +G(x)u

interonneted with a disontinuous ontrol law u = k(x) that is onstrained to take values in a

�nite set of vetors

V = {v1, v2, . . . , vN} ⊂ RN−1.

We propose suh a system re-formulation in what follows. Furthermore, we show that the

obtained nonlinear a�ne system has nie properties: if there exists a lassial ontinuous feedbak

kc(x) suh that the system

ẋ = f(x) +G(x)kc(x)

is (loally or globally) stable, then there exists also a loal disontinuous stabilizer, k(x), taking
values in V, and in extenso, a swithing law κ for the swithed a�ne system (5.1)

5.2 Main results

In the following proposition, system (5.1) is rewritten in a lassial nonlinear a�ne form inter-

onneted with a disontinuous ontrol law.

Proposition 5.1 [Hetel 2015a℄ Consider system (5.1), δ∗ ∈ ∆N suh that

∑N
j=1 δ

∗
j bj = 0 and

the notations m = N − 1,
M =

[
Im×m 0m×1

]
∈ Rm×N .

For ψi, i ∈ IN , the vertex of ∆N , de�ne the set

V = {vi :=M (ψi − δ∗) , i ∈ IN} .

The swithed a�ne system (5.1) is equivalent to the interonnetion between the nonlinear a�ne

system

ẋ = H(x, u) = f(x) +G(x)u, u ∈ Rm, (5.2)

and the ontrol law

u = k(x), k : Rn → V (5.3)
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with

f(x) = A(δ∗)x =
N∑

j=1

δ∗jAjx,

G(x) =
[
g1(x) g2(x) . . . gm(x)

]
,

gj(x) = (Aj −AN )x+ (bj − bN ), j ∈ Im
and

k(x) = vκ(x). (5.4)

We may remark that designing a swithing law σ leads to �nding a disontinuous ontrol law

k : Rn → V, suh that system (5.2) with the ontrol u = k(x), is loally asymptotially stable.

As follows we show how the existene of a ontinuous ontrol u = kc(x) for system (5.2) an be

used in order to derive a swithing law κ(x) for system (5.1) (or equivalently a disontinuous

ontrol (5.4) for the interonnetion (5.2), (5.3)).

Theorem 5.2 [Hetel 2015a℄ Consider the swithed a�ne system (5.1) and the a�ne model

(5.2). Assume that:

1. there exists δ∗ = [δ∗1 δ
∗
2 . . . , δ∗N ]

T ∈ ∆N with δ∗i > 0, i ∈ IN suh that

∑N
i=1 δ

∗
i bi = 0;

2. system (5.2) is ontinuously loally stabilizable at the origin by u = kc(x), with kc(0) = 0.

Then there exists a C∞
Lyapunov funtion V (x) de�ned on some ball B(0, η), η > 0, V (0) =

0, V (x) > 0,∀x 6= 0, and a measurable swithing law

κ(x) ∈ arg min
i∈IN

〈∇V (x), Aix+ bi〉 (5.5)

suh that system (5.1), (5.5) (or equivalently (5.2), (5.3) with k(x) as in (5.4), (5.5)) is loally

asymptotially stable at the origin.

The proof of Theorem 5.2 is onstrutive in the sense that if the a�ne nonlinear system

(5.2) is stabilized by a ontroller kc and admits a (loal) Lyapunov funtion V , then the original

swithed system (5.1) an be (loally) stabilized by a swithing law of the form (5.5) obtained

based on the same Lyapunov funtion V . With respet to the lassial onvex ombination

approah [Bolzern 2004℄, [Deaeto 2010℄ the method that we propose an be interpreted as an

extension where we look for a loally stable state dependent onvex ombination, with baryentri

oordinates de�ned by

δi(x) = δ∗i + kci (x), i ∈ IN−1,

δN (x) = 1−
N−1∑

i=1

δi(x),

instead of a onstant onvex ombination, with onstant baryentri oordinates δ∗ (as in [Bolz-

ern 2004℄, [Deaeto 2010℄).

Example 5.3 (numerial illustration). Consider a system (5.1) desribed by the following ma-
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Figure 5.1: Illustration of the phase plane for the losed-loop swithed a�ne system in Example

5.3: dotted line - border of the set where kc(x) ∈ onv {V}; dashed line - a level set of V (x);
dash-dotted lines - swithing surfaes 〈∇V (x), (Ai −Aj)x+ bi − bj)〉 = 0, i, j ∈ IN . κ(x) = σ -

value of swithing funtion in di�erent regions of the state spae.

tries:

A1 = A3 =

[
0 2
2 −66

]
, b1 = b2 =

[
−360
0

]
, (5.6)

A2 = A4 =

[
0 2
2 54

]
, b3 = b4 =

[
360
0

]
, (5.7)

For δ∗i = 1/4, i ∈ I4, we have

∑4
i=1 δ

∗
i bi = 0. The obtained system (5.2) is desribed by

A(δ∗) =
[
0 2
2 −6

]
, (5.8)

g1(x) = g2(x) + g3(x),

g2(x) =

[
−720
0

]
, g3(x) =

[
0

−120x2

]
.

The matrix A(δ∗) is not Hurwitz. Let

kc(x) = 1/120
[
0 x1 2x22

]T
.

The obtained losed-loop system, H(x, kc(x)), has the form

ẋ1 = −6x1 + 2x2 (5.9)

ẋ2 = 2x1 − 6x2 − 2x32. (5.10)
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The stability of the losed-loop system an be shown using Krasovskii's method [Slotine 1991℄.

The method onsists in using

V (x) = HT (x, kc(x))H(x, kc(x)) = (−6x1 + 2x2)
2 + (2x1 − 6x2 − 2x32)

2

as a andidates Lyapunov funtion and heking whether the Jaobian matrix

J(x) =
∂H(x, kc(x))

∂x

satis�es the relation

JT (x) + J(x) ≺ 0

in some neighbourhood of the origin. For system (5.9)

JT (x) + J(x) =

[
−12 4
4 −12− 12x2

]
≺ 0 (5.11)

for all x ∈ Rn. Then the losed-loop system ẋ = H(x, kc(x)) is asymptotially stable. Sine the

onditions of Theorem 5.2 are satis�ed, the funtion V (x) an be used for onstruting a swithing

law (5.5) that ensures the loal stabilization of the swithed a�ne system. An illustration of the

phase plane for the losed-loop swithed a�ne system is provided in Figure 5.1.

The main advantage of the proposed method is the fat that the di�ult problem of existene

of a stabilizing swithing law for the swithed a�ne system is redued to the lassial stabilization

problem of a nonlinear a�ne system (5.2), on whih a very large variety of ontrol design methods

are possible.

Example 5.4 (stabilization based on the linearized model). As follows, simple stabilization on-

ditions are given using the loal linearized model of system (5.2). Consider the notation

B =
[
b1 − bN b2 − bN . . . bN−1 − bN

]
. (5.12)

System (5.2) an be re-expressed as

ẋ = A(δ∗)x+Bu+ w(x, u), (5.13)

w(x, u) = D(u)x (5.14)

where w(x, u) is obtained from w(x, u) = (G(x) −B)u and

D(u) =

N−1∑

i=1

(Ai −AN )ui. (5.15)

Assume that the pair (A(δ∗), B) is stabilizable for some δ∗ ∈ ∆N with δ∗i > 0, i ∈ IN . Then there

exists a gain matrix K and funtions V (x) = xTPx, W (x) = xTQx, P,Q ≻ 0, suh that

〈∇V (x), (A(δ∗) +BK)x〉 < −W (x). (5.16)

The derivative of the funtion V along (5.13) satis�es

〈∇V (x), (A(δ∗) +BK)x+ w(x,Kx)〉
< −W (x) + 2xTPw(x,Kx). (5.17)
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Let us remark that for any ρ > 0 there exists r > 0 suh that ‖w(x,Kx)‖2 < ρ‖x‖2 for any

‖x‖2 < r. Then
xTPw(x,Kx) < ρ‖P‖2‖x‖2,

for all ‖x‖2 < r, whih leads to

〈∇V (x), (A(δ∗) +BK)x+ w(x,Kx)〉
< − (eigmin(Q)− 2ρ‖P‖2) ‖x‖2 (5.18)

for all ‖x‖2 < r, that is the state feedbak u = Kx ensures loal stabilization of system (5.13) for

ρ hosen suh that ρ < 1/2eigmin(Q)/‖P‖2, where eigmin(Q) denotes the minimum eigenvalue

of Q. Applying Theorem 5.2, one an onlude that the swithed a�ne system an be loally

stabilized. The obtained swithing law has the form

κ(x) ∈ arg min
i∈IN

xTP (Aix+ bi). (5.19)

However, di�erently from [Bolzern 2004℄, [Deaeto 2010℄, A(δ∗) is not required to be a Hurwitz

matrix. For loal stabilization we only need the pair (A(δ∗), B) to be stabilizable.

The existene of a ontinuous stabilizing feedbak kc for system (5.2) is not very restritive.

In fat, for nonlinear a�ne systems suh as (5.2), when the system an be stabilizable at the

origin (in the sense of Filippov solutions) by means of a loally bounded, measurable feedbak

u = kb(x) suh that limǫ→0 ess sup‖x‖<ǫ ‖kb(x)‖ = 0, there exists also a ontinuous stabilizer

u = kc(x) for the same system (see [Baiotti 2005℄, page 61). Furthermore, the non-existene

of a stabilizing feedbak for system (5.2) an be expressed as a ertain topologial obstrution.

For the neessity of existene of ontinuous stabilizer kc we point to the lassial Brokett test.

For the more general ase of loally bounded, measurable stabilizers k, neessary ondition may

be found in [Ryan 1994℄. Sine for eah subset U ⊂ Rm and eah x ∈ Rn, system (5.2) satis�es

H (x, onv (U)) = onv (H (x,U)) , (5.20)

a neessary ondition for the existene of a loally bounded, measurable feedbak u = k(x) whih
stabilizes the system (in the sense of Filippov) is that for eah ǫ > 0 there exists λ > 0 suh that

∀ y ∈ B (0, λ) , ∃ x ∈ B (0, ǫ) ,∃ u ∈ Rm suh that y = H(x, u),

where B (x, c) denotes the n dimensional open ball in Rn entred on x with radius c > 0. This

may be useful to determine the existene of stabilizing swithing laws for the original swithed

a�ne system. This implies, for example, that swithed a�ne systems for whih A(δ∗) = 0
whenever

∑N
i=1 δ

∗
Nbi = 0 and rank (G(x)) = m < n annot be stabilized by a stati swithing

law κ(x) if solutions are understood in the sense of Filippov.

Example 5.5 stabilization obstrution for swithed a�ne system. Consider a system a�ne
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system with

A1 = −A4 =




0 0 0
0 0 0
0.5 −0.5 0


 , b1 = −b4 =



0.5
0.5
0


 , (5.21)

A2 = −A3 =




0 0 0
0 0 0
0.5 0.5 0


 , b2 = −b3 =



−0.5
0.5
0


 . (5.22)

For any δ∗ ∈ ∆N suh that

∑4
i=1 biδ

∗
i = 0 we have A(δ∗) = 0. The model (5.2) is haraterized

by g1(x) = g2(x) + g3(x), g2(x) =
[
0 1 x1

]T
, g3(x) =

[
1 0 −x2

]T
. This leads to

ẋ1 = u1 + u3 (5.23)

ẋ2 = u1 + u2 (5.24)

ẋ3 = (u1 + u2)x1 − (u1 + u3)x2 (5.25)

where the reader may reognize a lassial non-holonomi integrator (see [Baiotti 2005℄, p. 55)

for whih no point x of the form x = (0 0 ǫ)T , ǫ 6= 0, belongs to the image of H. We onlude

that there is no swithing law κ(x) whih makes the origin of the swithed a�ne system loally

asymptotially stable (in the sense of Filippov solutions).

5.3 Numerial issues

In pratial appliations it is of interest to provide numerial tools for the design of swithing

laws. For the system under study, we may be interested in optimizing the domain of attration,

the speed of onvergene, et. Here we present simple LMI based riteria for the design of a

stabilizing swithing law whih optimizes an ellipsoidal estimation of the domain of attration

for given deay rate.

Consider the set of allowable ontrol values V. The set onv {V} is a onvex polytope. It an

be desribed by a �nite number Nr of vetors ri ∈ Rm, i ∈ INr , suh that

onv {V} =
{
u ∈ RN : rTi u ≤ 1, i ∈ INr

}
. (5.26)

Proposition 5.6 [Hetel 2015a℄ Consider the swithed system (5.1), the equivalent represen-

tation (5.13) with ontrols u restrited to the set V and the polytope (5.26). Assume that

δ∗i > 0, i ∈ IN . Given tuning parameters χ, c > 0 assume that there exists Q ≻ 0, θ > 0 suh that

(A(δ∗) +D(vi))Q+Q (A(δ∗) +D(vi))
T − θBBT ≺ −2χQ, (5.27)

i ∈ IN , [
cI I
I Q

]
≻ 0, (5.28)

and [
1 θ

2r
T
j B

T

θ
2Brj Q

]
≻ 0, j ∈ INr . (5.29)
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Then the swithed system (5.1) with the swithing law

κ(x) ∈ arg min
i∈IN

xTQ−1 (Aix+ bi) (5.30)

is loally asymptotially stable at the origin. Furthermore, the domain of attration inludes the

ball

B(0, 1/√c) =
{
y ∈ Rn : ‖y‖2 < 1/

√
c
}

and there exists a positive salar C suh that ‖x(t)‖22 ≤ Ce−2χt‖x(0)‖22 for any x(0) ∈ B(0, 1/√c).

The feasibility of the LMIs (5.27),(5.28),(5.29) guarantees that any system solution originat-

ing in the ball B(0, 1/√c) onverges to the origin with a deay rate χ. The size of the domain of

attration an be optimized by onsidering the optimization problem

inf c under the onstraints (5.27),(5.28),(5.29), (5.31)

whih is a standard optimization problem. The LMI riteria (5.27),(5.28),(5.29) represent suf-

�ient ondition for loal stabilization in a domain that inludes a presribed ball B(0, 1/√c).
The set of LMIs implies that the loal linearised model at x = 0 is stabilizable. The method is

based on robust ontrol arguments, in the sense that the term w(x, u) in (5.13) is treated as a

perturbation. This aspet may indue some onservatism in the design. Additional onservatism

in the estimation of the domain of attration may also stem from the hoie of quadrati andi-

date Lyapunov funtions. In terms of omputational omplexity, the approah requires solving

N +Nr + 3 LMIs involving 0.5(n2 + n) + 2 variables.

Example 5.7 LMI stabilization. Consider a swithed a�ne system desribed by the matries:

A1 =

[
−3 0
0 12

]
, b1 =

[
0
7

]
, A2 =

[
1 1
−1 1

]
, b2 =

[
0

−14

]
.

For δ∗ =
[
2/3 1/3

]T
,

∑2
i=1 δ

∗
i bi = 0. However, A(δ∗) is not Hurwitz therefore the example

annot be treated using the global stabilization approahes in [Bolzern 2004℄, [Deaeto 2010℄.

Using the formulation (5.13) and solving the optimization problem (5.31) for χ = 0.25 leads to a

swithing law of the form (5.30) with

Q =

[
2.87 −3.62
−3.62 17.45

]
× 10−2

(5.32)

whih guarantees loal stabilization ∀x(0) ∈ B(0, 0.14).
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Chapter 6

Appliations

In this hapter we will present two experimental appliations of the methodology proposed in

Chapters 4 and 5. First, results onerning the ontrol of a Permanent Magnet Synhronous

Motor will be presented, based on the use of LPV models. Next, a methodology of ontrol

design a multi-level power onverter will presented using similar nonlinear models as in Chapter

5.

6.1 Control of a Permanent Magnet Synhronous Motor

As follows we illustrate the proposed swithing ontrol methodology for the ase of a Permanent

Magnet Synhronous Motor (PMSM)

22

. Indeed, PMSM are usually ontrolled by relays and thus

only a �nite set of ontrol values is available. However in most of lassial ontrol design methods

the use of averaging and of PWM ignores the relay nature of the atuator [Bodson 1993℄, [Sira-

Ramírez 2000℄. Here we propose a diret relay ontrol whih may use the advantages of the

swithing atuator. The LPV framework enompasses the PMSM model. The obtained swithing

surfaes depend in a nonlinear manner on the motor speed.

The equations (6.1) give the standard PMSM model in the phase (or winding) variables

[Marino 1995℄: 



L
diα
dt

= vα −Riα +KΩ sin(npθ),

L
diβ
dt

= vβ −Riβ −KΩcos(npθ),

J
dΩ

dt
= K (iβ cos(npθ)− iα sin(npθ))− fvΩ− τ,

(6.1)

where vα and vβ are the voltages applied to the two phases of the PMSM, iα and iβ are the two

phase urrents, L is the indutane of a phase winding, R is the resistane of a phase winding,

K is the bak-EMF onstant (and also the torque onstant), np is the number of pole pairs (or
rotor teeth), J is the moment of inertia of the rotor (inluding the load), fv is the oe�ient

of visous frition and τ represents the load torque. The variable θ is the angular position of

the rotor, Ω = dθ/dt is the angular veloity of the rotor. While for partiular appliations the

variable θ an be inluded in the state vetor, here we onsider only the speed ontrol, justifying

22

The results presented in this setion have been developed in ollaboration with Romain DELPOUX (ATER

at LAGIS) and Ass. Prof. Alexandre KRUSZEWSKI.
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the fat that θ is not in the state vetor. We are interested in the stability of the veloity to a

onstant value. In this ase the position θ is time varying. For this reason θ is not inluded in

the state vetor.

The non-linear state spae representation of the system of equations (6.1) is given by:

ẋαβ(t) = f(xαβ, t) +Bvαβ(t) +D̟(t), (6.2)

where xTαβ =
[
iα iβ Ω

]
, vTαβ =

[
vα vβ

]
and ̟ = τ . The funtion f(xαβ, t) is de�ned by:

f(xαβ, t) =




−R
L
iα(t) +

K

L
Ω(t) sin(npθ(t))

−R
L
iβ(t)−

K

L
Ω(t) cos(npθ(t))

K

J
(iβ(t) cos(npθ(t))− iα(t) sin(npθ(t)))−

fv
J
Ω(t)




,

B =




1
L 0
0 1

L
0 0




and D =



0
0
1
J


 .

Considering that eah motor phase is atuated via ommutation, the ontrol vetor vαβ belongs

to the set Ψ2(V ), where Ψ2(V ) = {u ∈ R2 : ui ∈ {−V, V }, i = 1, 2} and where V represents the

maximal voltage. In the phases frame the signals iα and iβ vary at np times the frequeny of

rotation. This high frequeny problem is alleviated by the use of the diret quadrature (d − q)
transformation, also known as the Park transformation [Park 1929℄. This transformation hanges

the frame of referene from the �xed phase axes to axes moving with the rotor. Equation (6.3)

gives the transformation performed to obtain the rotating frame:

R(θ(t)) =

[
cos(npθ(t)) sin(npθ(t))
− sin(npθ(t)) cos(npθ(t))

]
,

[
id(t)
iq(t)

]
= R(θ(t))

[
iα(t)
iβ(t)

]
and

[
vd(t)
vq(t)

]
= R(θ(t))

[
vα(t)
vβ(t)

]
. (6.3)

The state spae representation is then given by:

ẋdq(t) = Adq(Ω(t))xdq(t) +Bvdq(t) +D̟(t), (6.4)

where xTdq =
[
id iq Ω

]
, vTdq =

[
vd vq

]
, and,

Adq(Ω(t)) =




−R
L npΩ(t) 0

−npΩ(t) −R
L −K

L

0 K
J − fv

J



.

The matries B andD remain unhanged. Consider that Ω(t) ranges between known extremal

values Ω(t) ∈ [Ω,Ω]. In this frame the PMSM an be desribed using an LPV state spae

representation. The state spae representation of the system depends linearly on a vetor of
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Figure 6.1: Finite set of ontrol in the �xed frame and in the rotating frame.

time-varying parameters: Ω(t). The model may be represented as follows:

{
ẋdq(t) = A(α(t))xdq(t) +Bvdq(t) +D̟(t),

A(α(t)) =
∑NA

i=1 αi(t)Ai, ∀i, αi(t) ≥ 0,
∑

i αi(t) = 1,
(6.5)

where NA = 2, with A1 = Adq(Ω), A2 = Adq(Ω). The ontrols vdq(t) are de�ned for all θ ∈ [0, 2π]
by:

vdq(t) = κ(xdq(t), θ(t)), κ : Rn × [0, 2π] → Rm. (6.6)

Note that the ontrol vdq(t) is a PDR ontrol whih takes values in a �nite set of vetors de-

pending on θ: {u ∈ R2 : ∃v ∈ Ψ2(V ), u = R(θ(t))v}. The input vetor in the di�erent frames is

represented in Fig. 6.1. For a given V , the objetive is to determine the swithing surfaes in

the state spae, whih ensure the losed loop stability of the system (6.5) with the ontrol law

(6.6).

The method proposed in Proposition 4.6 has been applied to a stepper motor benhmark at

Éole Centrale de Lille (see Fig. 6.2). The parameters of the motor with oils in series have

been identi�ed using the o�ine proedure desribed in [Delpoux 2014℄, leading to L = 9mH,

R = 3.01Ω, K = 0.27N.m.A−1
and J = 3.18.10−4kg.m2

. The number of pole pairs is np = 50.
The input voltages va and vb of eah oil are delivered by two D/A outputs of the dSpae ard

and ampli�ed by two linear power ampli�ers (this means that the ontrols are diretly applied

to the oils without a PWM implementation). The urrents ia and ib are measured using Hall

e�et sensors with a preision of 1% of the nominal urrent In = 3A. The power supply provides

a maximum voltage vmax = 20V and imax = 3A. The sampling period for this experiment is

onstant and equals to 10−4s for the ontrol.

We designed a ontrol law where we onsider that only four ontrol inputs are available. The

ontrol design is onsidered with the assumption that there is no external torque (i.e. τ = 0). An
integral ation is implemented with ζ the ouput of the integrator (ζ(0) = 0)) to ensure traking
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Figure 6.2: PMSM test-benh loated at Centrale Lille.

performane with respet to a referene Ωref . The integral ation given by:

ζ̇ = Ω− Ωref = Cx− Ωref , C = [0 0 1], (6.7)

where ζ is the output of the integrator (ζ(0) = 0). The ombination of the state spae represen-

tation (6.4) and the integral ation without torque an be re-written as:

[
ẋdq
ζ̇

]

︸ ︷︷ ︸
ż

=

[
Adq(Ω) 0
C 0

]

︸ ︷︷ ︸
A(Ω)

[
xdq
ζ

]

︸ ︷︷ ︸
z

+

[
B
0

]

︸︷︷︸
B

u−
[
0
I

]

︸︷︷︸
I

Ωref (6.8)

where u is onstrained to swith among four di�erent values in the set {R(θ)ρ, ρ ∈ Ψ2(V )}. The
matrix R(θ) is de�ned by equation (6.3). Two di�erent ontrol strategies are proposed to show

the experimental behavior of the PDR ontrol applied to PMSM. Firstly, we are interested in the

motor stabilization starting from non-zero initial onditions, next a veloity traking strategy is

proposed.

The stabilization is realized on the PMSM starting from di�erent initial onditions to the

origin. Here the PDR ontrol is proposed based on Proposition 4.6 applied to model (6.8) with

Ωref = 0. It leads to a ontrol law of the form

vαβ = arg min
ρ∈Ψ2(V )

zTQ−1R(−θ)ρ

where

Q =




29.6 −4.8 9.4 −0.012
−4.8 26.6 −15.9 0.038
9.4 −16.0 208.4 −2.8

−0.012 0.038 −2.8 0.069


 .

To ompare the experimental behavior of the PDR ontrol with the lassial Continuous State
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Figure 6.3: Comparison between the CSF and PDR ontrol of the motor veloity stabilization.

Feedbak (CSF) ontrol,

vαβ = R(−θ)Y (Ω)Q−1z,

(obtained from (4.37)) starting from non null initial veloity, we have plotted in Fig. 6.3 the

veloity evolution for three di�erent ases (Open Loop, CSF and PDR). This ontrol law is

applied to the system by using linear ampli�ers, without any PWM module. Knowing that

the PMSM is a stable system, it is important to show that the stabilization performane are

better than the open loop performane. For this reason, the blue urve represents the open-

loop stabilization. The red line represents the CSF while the green one represents the PDR.

The �gure shows that the losed loop performanes are better than the open loop performanes

(better settling-times and transient responses). The losed loop strategies show similar settling

time given that the PDR uses only 4 inputs ontrol values.

We ompare the behaviour of the CSF and PDR for the traking of a slowly varying veloity,

although the proposed theoretial developments do not over this ase. The veloity pro�le is

hosen aording to industrial test trajetories [Hamida 2013℄. The robustness of the proposed

approah is also tested by applying an external torque to the motor produed by a Eletromag-

neti Partile Brake. Figure 6.4 exhibits the omparison between the CSF and the PDR when

no external torque is applied to the motor.

Without additional torque the veloity traking is aurate in both ases: it shows that

at steady state the desired trajetory is traked with a preision around 1rad.s−1
for the PDR

ontrol. It must be noted that hattering phenomena appear in the PDR ase leading to a sightly

higher traking error. However, in this ase only four ontrol inputs are used for the ontrol.

Figure 6.5 shows the experimental result of the veloity traking similarly to the previous

�gure. At time t = 7s an unknown external torque is applied to the motor using an Eletromag-

neti Partile Brake. On this �gure, the plot of the traking errors shows that in the presene of

external torque, the PDR is more robust to disturbanes than the CSF. Indeed the perturbation

is rejeted only by the PDR ontrol. This results is more learly illustrated on Figure 6.6, where a

fous on both trajetories traking is represented. We an see that the PDR ontrol (represented

in red) provides a better veloity traking performane. Moreover, for the CSF ase, when the

115



Chapter 6. Appliations

0 2 4 6 8 10

0

10

20

30

 

 

0 2 4 6 8 10
−6

−4

−2

0

2

 

 

PSfrag replaements

Time (in s)

Time (in s)

C

S

F

(

τ
=

0)

PDR ( )

T

r

a



k

i

n

g

e

r

r

o

r

Traking error

ωr
ω

ωr − ω

Continuous ontrols

Relay ontrols

0 2 4 6 8 10

0

10

20

30

 

 

0 2 4 6 8 10
−6

−4

−2

0

2

 

 

PSfrag replaements

Time (in s)

Time (in s)

CSF ( )

P

D

R

(

τ
=

0)

Traking error

T

r

a



k

i

n

g

e

r

r

o

r

ωr
ω

ωr − ω

Continuous ontrols

Relay ontrols

Figure 6.4: CSF and PDR experimental results without pertubations.

load torque is applied, the power ampli�ers are in saturation.

6.2 Control of a multi-level power onverter

Multi-level multiell power onverters (also alled �ying apaitors), appeared at the beginning

of the 1990s [Meynard 1991℄. They are based on the assoiation in series of the elementary

ells of ommutation with passive storage elements ontrolled by swithes (transistors, diodes).

During this last deade, these systems beome more and more attrative to industrial applia-

tions, espeially in high-power appliations [Meynard 2002℄. Indeed, the harmoni ontents of

the output signal are improved ompared to the lassial two levels onverter tehnology us-

ing the same swithing frequeny [Rodriguez 2009℄. Furthermore, this struture enables the

redution of the losses due to ommutations of power semiondutors while allowing low ost
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Figure 6.5: CSF and PDR experimental results with pertubations.

omponents [Bethoux 2002℄. For multi-level power onverters, the lassial methodology lies

on the use of average models [El Magri 2010, Bhagwat 1983℄, and ontinuous ontrol design

tehniques [Gateau 2002, Sira-Ramirez 1994, Olalla 2011, Amato 2009℄ implemented via Pulse-

Width-Modulation (PWM). Diret ontrol tehniques, addressing expliitly the design of binary

signals, have been proposed in [Bethoux 2002℄, where a study of limit yles was proposed,

in [Hauroigne 2011℄, where optimal ontrol tehniques were given, and in [Gorp 2011℄ where

sliding mode ontrollers are used.

As follows, we present an appliation of the proposed swithing ontrol methodology to the

ase of a multi-level power onverter (also alled �ying apaitor)

23

.

Figure 6.7 depits the topology of a onverter with p independent ommutation ells asso-

iated to an indutive load. It onsists of (p − 1) �oating apaitors. The urrent �ows from

23

The results presented in this setion have been developed in ollaboration with Prof. Mohamed Djemai and

Ass. Prof. Mihael DEFOORT.
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the soure E toward the output I through the di�erent apaitors aording to the swithes

on�guration. The dynamis of the onverter, with a load onsisting in a resistane R and an

indutane L, an be expressed by the following equations:

dVci
dt

=
I

Ci
(ui+1 − ui), i ∈ Ip−1, (6.9)

dI

dt
= −R

L
I +

E

L
up +

1

L

p−1∑

i=1

Vci(ui − ui+1), (6.10)

where I is the load urrent, Ci, i ∈ Ip−1 represent the value of apaitors, Vci , i ∈ Ip−1 is the

voltage of the i−th apaitor and E is the voltage of the soure. Eah ommutation ell is

ontrolled by the binary variable ui whih is onstrained to take values in the set {0, 1}. Signal
ui = 1 means that the upper swith of the i−th ell is �on� and the lower swith is �o�� whereas

ui = 0 means that the upper swith is �o�� and the lower swith is �on�. Model (6.9),(6.10) has

L

R
E

Vcp−1 VcjCp−1 Cj C1

Vc1
i

cell 1 with
control input s1

cell p with
control input sp

Figure 6.7: Flying apaitor onverter assoiated to an indutive load.
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as p state variables (the urrent I and the p− 1 apaitor voltages Vci , i ∈ Ip−1) and p ontrol

variables ui, i ∈ Ip. Note that due to the presene of produts between state variables I, Vci
and inputs ui, model (6.9),(6.10) is a nonlinear ordinary di�erential equation with a bilinear

struture. Consider the generi bilinear model

ẋ = f(x, u) = A0x+

m∑

i=1

(Aix+ bi)ui (6.11)

where x ∈ Rn, A0, Ai ∈ Rn×n, bi ∈ Rn, i ∈ Im = {1, 2, . . . ,m} and where the system input

u = [u1, u2, . . . , um]
T ⊂ Rm is onstrained to take values in the disrete set V = {0, 1}m . The

multi-level power onverter an be represented in the form (6.11) by onsidering a state vetor

x = [Vc1 Vc2 . . . Vcp−1 I]
T . As an example for a onverter with p = 3 ells, the orresponding

matries are as follows

A0 =



0 0 0
0 0 0
0 0 −R/L


 , A1 =




0 0 −1/C1

0 0 0
1/L 0 0


 , b1 =



0
0
0


 ,

A2 =




0 0 1/C1

0 0 −1/C2

−1/L 1/L 0


 , b2 =



0
0
0


 ,

A3 =



0 0 0
0 0 1/C2

0 −1/L 0


 , b3 =




0
0

E/L


 ,

where x =
[
Vc1 Vc2 I

]T
. To de�ne ontrol objetives, it is important to highlight that, due

to the industrial prodution standards, it is neessary to ensure a balaned distribution of the

apaitor voltages [Gateau 2002℄. Inreasing power of stati onverters is generally obtained by

inreasing the voltage due to e�ieny requirements. Multi-level onverters enable to split the

voltage onstraints and to distribute them on several swithes of smaller ratings in series. The

equilibrium state of the p ells onverter is reahed when the voltage applied aross the bloking

swith of any ell (i.e. the di�erenes of apaitor voltages Vci − Vci−1) takes the same value

given by E/p. Under these onditions, the referene voltage of the i−th apaitor i ∈ Ip−1 is

given by V ∗
ci = iEp . The ontrol objetive is to de�ne the binary swithing funtions ui ∈ {0, 1},

i ∈ Ip suh that the multiellular onverter ensures:

1. the stabilization of I to a desired urrent of the form I∗(ρ) = E
Rρ, where ρ ∈ (0, 1),

2. the balaned distribution of the apaitor voltages aross eah ell, i.e. ∀i ∈ Ip, Vci is

stabilized toward V ∗
ci ,

3. the robustness with respet to potential unertainties in the load parameters R and L.

Thus the ontrol of the multi-level power onverter leads to the problem of designing a binary

ontrol law for a bilinear model.

For the generi model (6.11), this leads to designing a state feedbak binary ontrol

u = κ(x), κ : Rn → V. (6.12)

The problem of interest is the (loal) stabilization of the Filippov solution of (6.11) via the
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ontrol law (6.12) to a point in the set of equilibria:

X = {x∗ ∈ Rn : ∃ s∗ ∈ onv {V} s.t. f(x∗, s∗) = 0} (6.13)

parametrized by inputs in onv {V} .

6.2.1 LMI design for a generi bilinear model

As follows, we propose an LMI ontrol design solution for a generi bilinear model with binary

ontrol law. For s ∈ Rm, x∗ ∈ X , onsider the following notations:

Ã(s) = A0 +

m∑

i=1

Aisi, (6.14)

B̃(x∗) =
[
b̃1(x

∗) b̃2(x∗) . . . b̃m(x∗)
]
, b̃i(x

∗) = Aix
∗ + bi, i ∈ Im, (6.15)

and the sets of vetors

H+ =
{
h ∈ Rm : hi = 0, i 6= j, hj = 1/s∗j , j ∈ Im

}
(6.16)

H− =
{
h ∈ Rm : hi = 0, i 6= j, hj = 1/(1 − s∗j), j ∈ Im

}
. (6.17)

Proposition 6.1 [Hetel 2016℄ Consider system (6.11), x∗ ∈ X and s∗ ∈ onv {V} suh that

f(x∗, s∗) = 0. Given δ > 0, let there exists (X,ψ, ǫ), X ≻ 0, ψ > 0, ǫ > 0, solution to the set of

LMIs [
ǫI I
∗ X

]
≻ 0, (6.18)

Ã(σ)X +XÃT (σ)− ψB̃(x∗)B̃T (x∗) ≺ −δX, σ ∈ V, (6.19)

[
1 ψ

2 h
T B̃T (x∗)

∗ X

]
≻ 0, h ∈ H+ ∪H−. (6.20)

Consider the swithing law κ(x) =
[
κ1(x), κ2(x), . . . , κm(x)

]

κi(x) ∈





{1} , (x− x∗)TΓ (Aix
∗ + bi) < 0,

{0, 1} , (x− x∗)TΓ (Aix
∗ + bi) = 0,

{0} , (x− x∗)TΓ (Aix
∗ + bi) > 0,

(6.21)

for i = 1, . . . ,m, where Γ = X−1
. Then system (6.11) with the swithing law (6.21) is loally

exponentially stable at the equilibrium point x = x∗. Furthermore, an estimation of the domain

of attration is given by the ellipsoid

E
(
x∗,X−1, 1

)
=
{
x ∈ Rn : (x− x∗)TX−1(x− x∗) < 1

}

ontaining the ball B(x∗, C) with C = 1/
√
ǫ.

The stabilization of the bilinear system (6.11) is expressed as an LMI optimization problem.

The existene of solutions to the set of LMI onditions (6.18)-(6.20) an be veri�ed using onvex

optimization software in Matlab. Minimizing ǫ suh that a solution exists to the set of LMI

onditions allows to design swithing laws (6.21) while maximizing the size of the domain of

attration. The parameter δ, used in the set of LMIs, orresponds to the desired system deay
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Figure 6.8: Experimental setup at LAMIH, Valeniennes: a 4-level 3-phase �ying apaitor is

adapted for illustrating the theoretial results. The experiments are performed using the �rst 3

ells of Leg 1.

rate inside the ellipsoidal estimation E(x∗,X−1, 1) of the domain of attration. The pratial

implementation of the obtained ontrol law is quite simple sine one only needs to ompute

the signs of (x − x∗)TΓ (Aix
∗ + bi) , i = 1, . . . ,m. The main intuition behind the ontrol law

(6.21) is that the ontrol signals are hosen suh that the gradient of the Lyapunov funtion

V (x− x∗) = (x− x∗)TX−1(x− x∗) is minimized.

6.2.2 Experimental results

Experiments have been arried out to illustrate the proposed binary ontroller, applied to a 3

ells multi-level power onverter assoiated to an indutive load (an illustration is provided in

Figure 6.8). The objetive is to ontrol eah ommutation ell suh that the load urrent and the

�oating apaitor voltages are stabilized toward di�erent equilibrium values. The LMI ontrol

design problems have been solved numerially using Sedumi as a numerial solver in Matlab.

Hereafter, it will be shown that the proposed binary ontroller guarantees the stabilization of

the losed-loop system even in the presene of parametri unertainties.

To test the developed ontrol strategy , a prototype of the topology in Figure 6.7 is built based

on disrete insulated-gate bipolar transistors (IGBTs) SKM100GB12V. The relevant nominal

benh parameters are p = 3, C1 = C2 = 720.10−6F . The load is omposed of an indutane and

a resistane with nominal values R0 = 200Ω, L0 = 1H. The ontrol algorithm is implemented

on a �oating point DSP (TMS 320 F 240). An interfae ard allows to protet, by insulation,

the DSP of the power eletronis. The Dspae ard DS1103 drives the peripheral devies (i.e.

digital to analog devies, analog to digital devies, et.). In order to obtain the best resolution,

the minimum sampling period for the Dspae has been hosen, i.e. Tsamp = 7.10−5s. The

measurement part is omposed of voltage sensors to measure the voltage aross the �oating

apaitors and a urrent transdutor to measure the load urrent. A low pass �lter with time

onstant τ = 5× 10−4s and unitary gain has been added. The soure voltage E is set to 30V .

121



Chapter 6. Appliations

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

% uncertainty on dR

si
ze

 o
r 

er
ro

r 
ba

ll

(a)

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

% uncertainty

si
ze

 o
r 

er
ro

r 
ba

ll

(b)

Figure 6.9: (a)-(b) Radius C of the stability domain as a funtion of the perentage of unertainty

for I∗ = 0.1A (a) when unertainty a�ets the resistor R; (b) when both the resistor R and the

indutane L are subjet to unertainty.

Applying the methodology based on onvex optimization and LMIs, one an design the

ontrol laws that ensure loal exponential stabilization of the system for several operating points

of the form [V ∗
c1 V

∗
c2 I

∗]. For example, let us onsider the equilibrium point whih onsists of the

desired load urrent I∗ = 0.1A and the desired �oating apaitor voltages V ∗
ci =

E
3 i, i ∈ {1, 2}.

It orresponds to the equilibrium point of (6.9)-(6.10) for an �averaged� input s∗i = ρ ≈ 0.66.
We used an extension of Proposition 6.1 for systems with unertain parameters (Proposition 2

from [Hetel 2016℄). The set of LMI stabilization onditions are satis�ed with a deay rate δ = 0.01
and an unertainty of 10% on the nominal values of the load (R ∈ [180, 220], L ∈ [0.9, 1.1]). A

stabilizing swithing law (6.21) is obtained with

Γ = X−1 =



0.5778 0.0156 0
0.0156 0.5778 0

0 0 822.0203


 . (6.22)

Note that by onstrution, swithing laws of the form (6.21) satisfy the transition onstraints

lassially enountered in multi-level power onverters. On the intersetion of swithing hyper-

planes, the usual adjaeny an be ensured by using the automaton desribed in [Gorp 2011℄.

Applying Proposition 6.1 for the nominal values of the load, with X �xed as in (6.22) and a deay

rate δ = 10−6
, the obtained ontrol law an be shown to ensure loal stabilization in the ball

B(x∗, C) with C = 150.7. Proposition 2 from [Hetel 2016℄ an also be used with the obtained X
to ompute the value of C for various values of unertainties and illustrate the relation between

the estimation of the domain of attration and the robustness of the obtained ontrol law to

parametri unertainties (see Figure 6.9). Furthermore, it is used to shown loal stabilization for

a set of equilibrium points orresponding to a uniform grid of 11 referene urrents I∗ in the set

[0.05, 0.15].

Hereafter, the experimental results obtained with a swithing law (6.21) with Γ de�ned in

(6.22) are presented. The ontrol signals are hosen aording to the theoretial developments

in Setion III, with swithing surfaes (haraterized by Γ) designed to ensure the steepest

deent of the Lyapunov funtion V (x− x∗) = (x− x∗)TX−1(x− x∗). Figures 6.10 (a),(b) show,
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6.2. Control of a multi-level power onverter
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Figure 6.10: Experimental results using the proposed binary ontrol without perturbation. (a) -

Load urrent I (b) - Internal voltages Vc1 and Vc2 .
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Figure 6.11: Experimental results using the proposed binary ontrol with perturbations in the

load. (a) - Load urrent I (b) - Internal voltages Vc1 and Vc2 .

respetively, the load urrent I, the internal voltages (Vc1 , Vc2), and the ontrol signals (s1, s2, s3)
using the obtained ontroller when no parameter unertainty is onsidered. The ontrol law

ensures the stabilization for several equilibrium points orresponding to a referene urrent I∗ in
the interval [0.05, 0.15]. However, no overshoot onstraints are inluded in the design proedure,

whih explains the peak at approximatively 2 seonds. The hattering phenomena in the steady

state is mainly due to the sampled-data implementation of the binary ontrol law.

In order to show the robustness of the proposed ontroller, the value of the load resistane

has been tested for various on�gurations of the load. Figures 6.11 (a),(b) illustrate the system

evolution with R = 0.6 ·R0 = 120Ω (40% of unertainty) and an indutane L = 0.8 ·L0 = 0.8H
(20% of unertainty). Note that the proposed binary ontroller manages to aomplish the

ontrol objetive with good performane inspite of parametri variation with amplitude larger

than the ones that have been shown in theory. In fat, for this on�guration of perturbation

on the load it an be shown theoretially the asymptoti stability for a tight grid of I∗ in the

interval [0.07, 0.11]. In pratie, it is used for referene urrents I∗ in [0.05, 0.15]. This shows

123



Chapter 6. Appliations

that the proposed ontrol design method has potential. However, it also shows that there is still

plae for improvement in what onerns the theoreti estimation of the rage of unertainty for

whih the losed-loop system is stable.
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Conlusion

In this part we have presented several ontributions to the design of swithing ontrollers for

systems where the ontrol signal is onstrained to a �nite number of values. Control design

riteria have been presented for linear systems with relays, polytopi systems, bilinear systems

with binary ontrol and swithed a�ne systems. The main idea of the proposed methodology

is to use the existene of a ontinuous stabilizer in order to derive swithing hyperplanes for

the onstrained ontrol using onvex optimization arguments. The approah is illustrated by

experimental appliation to the ontrol of multi-level power onverters and stepper motors. This

researh line is still an emerging researh diretion and it leaves many open problem both from

a theoretial and appliative point of view. Some of the perspetives will be mentioned after the

onluding remarks of this manusript.
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Conlusion
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General onlusions

127





This doument has presented a seletion of the researh ativities developed by Laurentiu

HETEL and his ollaborators sine his reruitment as an Assoiate Researher at CNRS. Two

main topis have been addressed in relation with the ourrene of disrete onstraints in the

implementation of ontrol laws. The �rst part of the manusript has presented several on-

tributions onerning the analysis and design of sampled-data systems with aperiodi sampling

intervals. The ore of this part was dediated to the analysis of systems with arbitrarily varying

sampling intervals. We have tried to be broad in outlook and address this problem from many

di�erent quarters (time-delay, disrete-time, hybrid, input/output approahes). Furthermore, we

have investigated the e�et of sampling for various lasses of systems (linear, bilinear, nonlinear

a�ne, swithed, et.). Some ontribution to the design of state dependent sampling maps have

equally been presented.

The seond part of the manusript was onerned with the design of swithing ontrollers for

systems where the ontrol signal is only allowed to take a �nite number of values in a disrete set.

The main ontributions are related to a new framework for the design of swithing ontrollers

based on the use of simple onvex optimization arguments. This methodology provides new

solutions for the design of sliding mode ontrollers and for the stabilization of swithed a�ne

systems. Furthermore, it has interesting appliations for the ontrol of some eletroni and

eletro-mehanial devies. Several extensions are urrently under study.

It is worth notiing that the subjets addressed here lie at the intersetion of four important

axes in Control Theory (time-delay, hybrid, LPV systems, input-output interonnetions) and

we hope this will have a stimulating impat in the ontrol ommunity. Methods and tools are

being transferred from one researh topi to another and the perspetives of ross-fertilisation

and generalization are numerous. Several open problems that ould be takled in the future are

disussed hereafter.
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Perspetives
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In what follows, I will indiate some of the researh diretions that we have disovered over

the last few years. In order to provide a simple view, I would say that the ore of my future

researh ativities is entred on the use of the hybrid system framework for the study of sampled-

data systems as abstrations of networked and embedded ontrol systems. The main objetives

of my future researh ativities an be roughly strutured as follows:

Objetive A. Fundamental study of Hybrid Systems. I intend to investigate the inter-

ation between disrete algorithms and di�erential equations (as models of physial proesses)

through a fundamental study of dynami and strutural properties of hybrid dynamial sys-

tems. In partiular, I will study the dynamis of swithed systems and of impulsive di�erential

equations.

In what onerns the study of swithed systems, in my opinion, the main hallenge now

is to provide a solid theoretial framework for the design of swithing surfaes in the ase of

swithed systems with non-ommon equilibria. The study of suh swithed systems is relevant

in many appliative domains. They are urrently enountered in eletronis, in energy manage-

ment appliations, for desribing embedded power onverters. Suh systems are interesting sine

in pratie they an be stabilized by fast swithing to non-standard equilibrium points orre-

sponding to onvex ombinations of the subsystems equilibria. However, the stabilization to suh

equilibrium points is not trivial. It requires a partiular treatment, involving the study of spei�

solutions for disontinuous systems (suh as Filippov solutions) and sliding dynamis, whih is

hallenging from a theoretial point of view. For the moment, there is a serious lak of tratable

theoretial tools for designing ontrol algorithms in suh ases. It is therefore interesting both

from a theoretial point of view and for pratial appliations to generalize the existing theory

on hybrid systems to over this ase. I will try to address this topi by ombining tools from the

study of nonlinear systems with (saturation) onstraints with onepts previously used for the

study of sliding dynamis in variable struture ontrol.

For the ase of impulsive systems, the researh ativities are strongly onneted with the

ones onerning the study of sampled-data systems. The two researh lines mutually enrih eah

other. As we have seen in Part I, a large number of results have been provided on the analysis of

sampled-data systems by re-formulating the systems dynamis in a time-delay or input-output

interonnetion framework. Our objetive is to investigate the extension of these approahes to

more general lasses of hybrid systems with impulsive e�ets. The study of impulsive systems

from the point of view of input-output interonnetions would be an original perspetive, with a

partiularly interesting potential in the development of numerial tools for analysis and design .

Objetive B. Hybrid methodologies for Networked / Embedded Systems. Hybrid

systems are not only used for the modelling of sampled-data systems. They an provide a natural

theoretial framework for the analysis and design of networked and embedded systems. While

an important e�ort is being made in the domain of Computer Sienes to enhane the design

of embedded hardware, ommuniation networks, real-time sheduling algorithms, et., it is a

hallenging Control Theory problem to understand the interation between the implementation

of ontrol algorithms (as odes in distributed miroproessors) and the physial proesses. The

hallenge in Networked / Embedded Systems is to extend ontrol theory so as to embrae the

dynamis of software and networks. The aim is to provide methodologial tools for the analysis

and design of systems with embedded / distributed ontrol implementations using the hybrid

system formalism. The main idea is to provide reliability guarantees in terms of Lyapunov sta-

bility. This approah makes an interesting alternative to lassial methods for whih it beomes

impossible to test the software under all possible onditions when the interation with real phys-

ial proesses is onsidered. Some generalizations of the approahes presented for systems with

aperiodi sampling to more general networked systems are simple. Many others are not obvious,
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at least not at this time.

Short term perspetives

As follows, I will desribe some short term perspetives that are in line with the topis presented

in the manusript.

Continuous-disrete observers

While a large literature has addressed the stability analysis problem of systems with aperiodi

sampling, less results are onerned with the design of observers. A promising researh dire-

tion would be the extension of the existing methodologies for the design of ontinuous-disrete

observers [Nadri 2003,Astorga 2002,Karafyllis 2009a,Nadri 2013℄. In the ase of LTI systems

ẋ(t) = Ax(t) +Buk, ∀t ∈ [tk, tk+1), hk := tk+1 − tk ∈ [h, h̄], k ∈ N (1)

y(t) = Cx(t), (2)

one ould investigate the design of observers of the form

η̇(t) = Aη(t) +Bu(tk), t ∈ [tk, tk+1) (3)

η(tk) = η(t−k ) + L
(
y(t−k )− Cη(t−k )

)
, t = tk, k ∈ N. (4)

The main objetive is to derive onstrutive observer design riteria, non only in the linear ase,

but also in a more general nonlinear setting. The extensions of the impulsive system approah

to this design problem is a hallenging researh diretion.

New hybrid representations of sampled-data systems

Several approahes are available for the analysis and design of sampled-data systems and it

is of interest to ompare them and understand their signi�ane. Some relations between the

di�erent approahes have been indiated in Chapter 2. For example, it has been shown that

the stability riterion obtained using the time delay approah in [Fridman 2004℄ an be also

dedued via the small gain theorem [Mirkin 2007℄. However, it is more di�ult to obtain suh

equivalene relations between the reent approahes in the literature. It would also be of interest

to understand what is the signi�ane of the existing work on time delay systems from the

point of view of the hybrid formalism [Goebel 2012℄. In partiular, the approah presented

in [Fridman 2010℄ seems to suggests a quite di�erent hybrid representation of sampled-data

systems with respet to the existing literature.

Consider the ase of LTI sampled-data systems

ẋ(t) = Ax(t) +BKx(tk), ∀t ∈ [tk, tk+1), hk := tk+1 − tk ∈ [h, h̄], (5)

The approah in [Fridman 2010℄ uses Lyapunov-Krasovskii funtionals of the form

V (t, x(t), ẋt) = xT (t)Px(t) + θ(t)

∫ t

t−τ(t)
ẋT (s)Rẋ(s)ds. (6)
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with τ(t) = t− tk and θ(t) = hk − τ(t). Note that the term

θ

∫ t

t−τ
ẋT (s)Rẋ(s)ds

in this funtional an be re-written as

θχT
( ∫ 0

−τ
(FeFs)T R̃(FeFs)ds

)
χ,

with

R̃ =

[
R 0
0 0

]
,

χ(t) = [xT (t), x̂T (t)]T and

F =

[
A BK
0 0

]
,

that is the funtional (6) an be interpreted as a funtion of the form V (χ, τ, θ) = χTP (τ, θ)χ
whih depends non only on the inreasing timer τ but also on a dereasing timer θ. In the hybrid

framework proposed by [Goebel 2009℄, this funtion suggest a state representation of the form





ẋ = Ax+BKx̂
˙̂x = 0
τ̇ = 1

θ̇ = −1





θ ∈ [0, h],

x+ = x
x̂+ = x
τ+ = 0

θ+ ∈ (0, h]





(s = 0)
∧(

τ ∈ [h, h]
)
.

(7)

While in (6) the use of the dereasing ounter θ seems to be a tehnial artefat, it leads to a more

profound re�etion onerning the representation of sampled-data systems as hybrid systems.

The use of suh models for deriving stability analysis and ontrol design onditions deserves to

be further investigated. Furthermore, it is also neessary to provide more insight on the strutural

properties of sampled-data systems. Basi problems, related to the realization [Petrezky 2006℄

of an aperiodially sampled input-output map by a hybrid model and the haraterization of

minimal representations must also be addressed in the future.

Analyzis of hybrid models based on a 2D system representation

As we have seen in Chapter 2, in the general formulation proposed by Goebel, Teel and Sanfelie

[Goebel 2009,Goebel 2012℄ the system solutions an be expressed in the form

żk(t) = Fz (zk(t))), zk(t) ∈ C,∀t ∈ (tk, tk+1), k ∈ N (8a)

zk+1(tk+1) = Jz (zk(tk+1))), zk(tk+1) ∈ D, k ∈ N. (8b)

Suh systems are impliitly 2D systems [Owens 1999℄. Solutions z of the general hybrid system

(8) are parametrized by both the ontinuous time t and the disrete time k: zk(t) represents the
state of the hybrid system after t time units and k jumps.

For 2D systems, it seems natural to adopt a stability analysis based on vetor Laypunov
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funtions [Bellman 1962,Emelianova 2014℄

V (zk(t), zk+1(tk+1)) =

(
V1 (zk(t))

V2 (zk+1(tk+1))

)

where V1, V2 are positive de�nite funtions, and a divergene operator

divV =
dV1
dt

+ V2 (zk+1(tk+1))− V2 (zk(tk+1)) .

Suh an approah might lead to new stability onditions for hybrid systems, and in partiular

for sampled-data systems. Some preliminary results in this diretion have been obtained in

[Ríos 2015℄.

Lur'e Lyapunov funtions for relay ontrol systems

This subjet is related to the stabilization of swithed systems with non-ommon equilibria.

Before onsidering the general ase, it is useful to takle the appliation of new design tools by

onsidering a simpli�ed ase of LTI systems with relays. The main idea of the methodology

proposed in Part II is to use the existene of a ontinuous stabilizer in order to derive swithing

laws based on onvex optimization arguments. However, the result only ensures loal stabilization

and the provided domain of attration strongly depends on the hoie of the ontinuous stabilizers

and, impliitly, on the hoie of the Lyapunov funtion. For the ase of LTI systems

ẋ = Ax+Bu, u ∈ V = {−v, v} (9)

up to now, we have only used quadrati Lyapunov funtions and, as ontinuous stabilisers, linear

stati state feedbak ontrollers u = Kx. Numerial simulations show that there is still room for

improvement. It is important to note that the literature on the design of ontinuous stabilizers

for LTI systems with input onstraints is quite rih [Blanhini 1999,Tarbourieh 2011,Hu 2006,

Zaarian 2011, Zaarian 2002℄ and advaned numerial methods for enlarging the domain of

attration are available using more omplex Lyapunov funtions. To advane beyond the use of

ellipsoidal estimations of the domain of attration, one diretion to be exploited is the use of

Lur'e Lyapunov funtions of the form

V (x) = xTPx+ 2Ω

∫ Kx

0
φ(s)ds (10)

where P ≻ 0,Ω < 0 and

φ(s) =





v − s, s > v
0, s ∈ [−v, v]

−v − s, s < −v.
(11)

Similar Lyapunov funtions have been used for enlarging the domain of attration of systems with

saturation and they have a hight potential for the ase of swithing ontrollers. The approah

would lead to nonlinear swithing surfaes, i.e. a swithing funtion of the form

u ∈ −vsign
(
xTPB − φ2(Kx)ΩKB

)
(12)

whih generalizes the swithing law u ∈ −vsign
(
xTPB

)
presented in Part II. The hallenge is

to provide design LMI design onditions based on the existene of the Lur'e Lyapunov funtion.
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Mid term diretions

In what follows I will present some researh diretion that I intend to mathematially formalise

in the future.

A new disrete-time approah for nonlinear sampled-data systems

In the ontrol of lassial sampled-data systems, the disrete-time framework is known to have

several advantages with respet to the ontinuous-time approahes whih are usually indiret :

they are based on emulation of ontinuous ontrollers whih have been design independently of the

sampled-data implementation. The disrete framework allows a diret design, taking into aount

the value of the sampling interval for the ontrol synthesis. Although the disrete-time approah

has been shown to lead to e�ient numerial onditions for the ase of LTI systems with aperiodi

sampling, very few results address the nonlinear ase. In this ontext it would be of interest to

generalise the lassial geometri approahes proposed by [Monao 2007,Monao 2001℄ to the

ase of systems with aperiodi sampling. Furthermore, it would be useful to re-state the design

onditions in the hybrid framework, in order to ensure also desired inter-sampling performanes.

Dynami sampled-data ontroller under unertain sampled-data implementa-

tions

While the ase of stati ontrollers with aperiodi sampling has been extensively studied, few

results exist onerning the ase of dynami ontrollers. To the best of our knowledge, up to

now it is assumed that the disrete-time emulation of ontinuous dynami ontrollers is perfet

and that the sampling interval is known. In pratie the ontroller disretization introdues

approximations and the sampling interval is rarely available in real time. It is a very hallenging

theoretial problem to provide design onditions while taking into aount these unertainties in

the ontrol implementation.

A more general dissipativity framework

In the Input/Output stability approah, up to now the existing riteria are based on stati

IQCs. The use of dynami IQCs might be a real soure of improvement [Megretski 1997℄. The

generalization of suh dynami IQCs in the dissipativity framework is of interest, not only for

the ase of sampled-data systems, but also in a more general ontext, for the study of other

robustness properties of nonlinear systems. In fat, before the emergene of powerful numerial

tools for the analysis of dynamial system (LMIs, SOS optimization), a large variety of studies

have been developed in the frequeny domain. It would be useful to "translate" this literature in

the time domain and enhane its appliability using optimization algorithms. The interpretation

of this approah from the point of view of hybrid systems needs to be further investigated.

The best sampling pattern

The researh in the ase of systems with arbitrary sampling has reahed a mature phase of

development. However, the problem of designing stabilizing sequenes of sampling is still largely

open. In this ontext, the potential of the approahes used for the arbitrary sampling problem

is far from being fully exploited. Nevertheless, a better mathematial formalization of what is

required from "the best" sampling sequene is needed.

137



We would like to point out that that the interest of this study goes beyond the simple

aperiodi sampling problem. The problemati has to be onsidered in a more general ontext of

networked systems where we also have to deal to deal with (ommuniation) delay, quantization

or sheduling protools. For large networks it is expensive, if not impossible, to ontrol all systems

individually, and mainstream entralized ontrollers are infeasible. Deentralized ontrollers must

be onsidered, while taking into aount the fat that overall dynamis are largely determined

by the interations of individual omponents. Instead of tuning ontroller gains, we ould fous

on optimizing the topology of the network, i.e. we determine whih systems need to interat in

order to optimize a global objetive in an e�ient way. The resulting hallenge is to dynamially

optimize the ommuniation sequenes of eah link in the network so to ensure some desired

fast/robust synhronizing ontrol, while taking into aount the osts in terms of omputational

load and/or energy onsumption.

Construtive methods for swithing law design

With respet to the stabilization problem of swithed systems, it has been shown in Part II

that the stabilization of swithed a�ne systems an be related to the existene of a ontinuous

stabilizer for a lassial nonlinear a�ne (bilinear) model. This is a lassial problem on whih a

large variety of results are available in the literature. While in this manusript we have presented

simple results based on the loal linearisation of the underlying nonlinear model and the use of

small gain arguments, the possibilities of extension are numerous. For example, in pratial

appliations, we may onsider "pathy" swithing laws, using the existene of gain sheduled

ontrollers assoiated to di�erent equilibria.

Swithed systems with spetral onstraints

The experimental appliation to the ontrol of DC/DC power onverters has shown that it would

be useful to design swithing laws where the swithing signal has to satis�es additional frequeny

domain onstraints: for eletro-magneti ompatibility reasons, the spetrum of the swithing

signal should be limited to a well de�ned spetrum range. Taking into aount suh spetral

onstrained when de�ning state-dependent swithing ontrollers leads to a hallenging theoretial

problem.

Swithing law design based on a geometri study

For a theoretial analysis of swithed a�ne systems, the study of strutural properties based on

geometri tools [Isidori 1995℄ may be a promising researh diretion. For example, the use of the

underlying bilinear model may lead to new neessary onditions for stabilization. The results

presented for the ase of swithed a�ne systems should be extended to more general nonlinear

swithed systems where the system modes do not share the same equilibrium. It is also neessary

to extend the onvex embedding approah [Hetel 2015a℄ to ope with disontinuous stabilizers,

for systems that fail the lassial Brokett's ondition or that annot be stabilized by state

feedbak when solutions are onsidered in the sense of Filippov [Ryan 1994℄, [Clarke 1997℄. This

topi must be investigated in relation with the developments onsidering systems with aperiodi

sampling and the joint synthesis of sampling patterns and stabilizing ontrollers.
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Long term diretions

There is no doubt that ontrol theory is now a mature �eld of researh. Furthermore, in pratial

appliations embedded ontrol devies are now widely spread. However, ontrol theory is still an

invisible tehnology and many of the aademi advanes in the last 20 years seem to be ignored

outside a group of speialists. In fat, in many appliations, the development of ontrol laws

(beyond the manual tuning of PIDs) requires at least a master level, if not a PhD. In my opinion,

it is of high interest not only to provide new theoretial tools but also to take are about their

appliability.

In the ontext of sampled-data systems, a large amount of results have been published, using

various di�erent approahes. However, the developments are sparse, in the sense that eah of the

existing approahes overs only some of the aspets in sampled-data ontrol. Furthermore, the

last textbooks onerning sampled-data systems have been published in the '90s and do not seem

to over important real-time implementation onstraints that a ontrol engineer needs to handle

nowadays. Without a vulgarization e�ort from the researhers in the ontrol ommunity, the wide

spread of use of networked and embedded ontrol elements will develop on negligible theoreti

foundations. My long term objetive is to ontribute to the establishment of a unifying theory of

sampled-data ontrol systems, whih gathers the most signi�ant results proposed in the di�erent

researh ommunities and presents simple and theoretially solid tools for ontrol engineers. I

have the onvition that hybrid system will o�er the appropriate fundamental framework for this

unifying theory. However, making the fundamental results aessible is far from being obvious.

At a long term I would also like to dediate more attention to the experimental researh.

Although up to now my researh ativities are mainly onerned with fundamental researh, the

sienti� problems that I study are motivated by appliations that are ubiquitous in industry and

that respond to soietal hallenges. For example, the researh on the stabilization of swithed

systems is relevant for the embedded ontrol of power onverters whih are omnipresent in

energy management appliations. Furthermore, networked/embedded ontrollers are of interest

in eletri power networks where hanges in the struture of the grid have to be taken into aount

in real time, in partiular to support the introdution of renewable energy soures (wind farms

and solar plants) while onsidering various onstraints in terms of pries, demands and apaities.

Sine for the moment the researh is situated at a fundamental level, it is not su�iently mature

for an industrial validation. However, I feel that it is time to return bak to the starting point

and to onfront the developed onepts with their empirial soures. Some preliminary steps in

this diretion are planned via a joint PhD supervision with prof. Bogdan Marinesu (starting

with November 2016) in the ontext of a RTE-Centrale Nantes Chair, and through the H2020

projet UCOCOS - whih involves industrial partners (EOS innovation, CITC, TNO) interested

in networked systems. I strongly believe that suh an experiene with pratial appliations will

be fruitful at long term. An original theoretial framework may emerge if we understand what

are the limitations of urrent theories and we formalize mathematially what really works at the

empirial level.
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