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École Doctorale SPI (072)





Prefa
e

This report presents a sele
tion of the results that I have developed sin
e my re
ruitment as an

Asso
iate Resear
her (Chargé de Rer
her
hes - CR) with CNRS (Centre National de la Re
her
he

S
ienti�que

1

), in O
tober, 2008. The resear
h a
tivities are 
arried on in the group CO2 (Con-

trol and S
ienti�
 Computing), team SYNER (Systèmes hybrides, non-linéaires et à retard

2

)

of CRIStAL (Centre de Re
her
he en Informatique, Signal et Automatique de Lille

3

- UMR

CNRS 9189). I joined the team SYNER in O
tober 2008 as a 2nd 
lass Asso
iate Resear
her

(CR2). This team is supervised by Prof. Lot� Belkoura. Until De
ember 2014, SYNER has been

part of LAGIS (Laboratoire d'Automatique, Génie Informatique et Signal

4

) UMR CNRS 8219.

On January 1st, 2015, LAGIS merged with LIFL (Laboratoire d'Informatique Fondamentale

de Lille

5

- UMR CNRS 8022), 
reating CRIStAL. In the 
ontext of the 
reation of CRIStAL,

SYNER is 
oordinating its resear
h a
tivities with the teams CFHP (Cal
ul Formel et Haute

Performan
e

6

) and DEFROST (DEFormable ROboti
 SofTware) in the group CO2 - supervised

by Prof. Jean-Pierre Ri
hard.

The team SYNER addresses a large panel of problems related to the study of time-delay,

hybrid dynami
al systems and nonlinear systems. The a
tivities of the team 
an be stru
tured

a

ording to two main axes: on one side the members of SYNER develop estimation tools based

on the use of di�erential algebra and operational 
al
ulation in the 
ontext of the INRIA proje
t

NON-A (Non-Asymptoti
 estimation for online systems). On the other side, the team proposes

Lyapunov based methods for analysis and 
ontrol design. My resear
h a
tivities are mainly


on
erned with this se
ond axis of SYNER. At the national level, my a
tivities 
ontribute to the

working groups on Hybrid Dynami
al Systems and Time Delay System of GDR MACS (Groupe

de Re
her
he du CNRS en Modélisation, Analyse et Conduite des Systèmes dynamiques

7

), and

the regional resear
h group GRAISYHM (Groupement de Re
her
he en Automatisation Intégrée

1

National Center for S
ienti�
 Resear
h, a publi
 resear
h organization under the responsibility of the Fren
h

Ministry of Edu
ation and Resear
h.

2

Hybrid, nonlinear and time-delay systems.

3

Center of Resear
h on Computer S
ien
es, Signal Pro
essing and Automati
 Control.

4

Laboratory of Automati
 
ontrol, Computer Engineering and Signal pro
essing.

5

A theoreti
 Computer S
ien
e laboratory.

6

Computer Algebra and High Performan
e Computing.

7

A national resear
h group on modelling analysis and 
ontrol of dynami
al systems under the responsibility of

CNRS.
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et Systèmes Homme-Ma
hine

8

) of Région Hauts-de-Fran
e. At the international level, they

have 
ontributed to the HYCON Networks of Ex
ellen
e (Highly-
omplex and networked 
ontrol

systems - FP6 HYCON and FP 7 HYCON2).

This do
ument presents several 
ontributions that have been obtained in 
ollaboration with

Emmanuel BERNUAU (Ass. Prof. Agro Parite
h), Mi
hael DEFOORT (Ass. Prof. UVHC,

LAMIH), Mohamed DJEMAI (Prof. UVHC, LAMIH), Thierry FLOQUET (DR CNRS, CRIStAL),

Emilia FRIDMAN (Prof. Univ. Tel-Aviv), Hisaya FUJIOKA (Ass. Prof. Univ. Kyoto), Alexan-

dre KRUSZEWSKI (Ass. Prof. Centrale Lille, CRIStAL), Fran
oise LAMNABHI-LAGARRIGUE

(DR CNRS, L2S), Silviu-Iulian NICULESCU (DR CNRS, L2S), Wilfrid PERRUQUETTI (Prof.

Centrale Lille, CRIStAL), Mihaly PETRECZKY (CR CNRS, CRIStAL), Jean-Pierre RICHARD

(Prof. Centrale Lille, CRIStAL), Alexandre SEURET (CR, CNRS, LAAS), and young re-

sear
hers, PhDs and post-do
toral students, supervised at LAGIS and CRIStAL: Christophe

FITER (PhD Centrale Lille, defended in November 2012, now Ass. Prof., Univ. Lille), Has-

san OMRAN (PhD Centrale Lille, defended in Mar
h 2014, now Ass. Prof., TP Strasbourg),

Srinath GOVINDASWAMY (post-do
 Centrale Lille, 2012-2013), Romain DELPOUX (ATER

Univ. Lille 1, 2013, now Ass. Prof., INSA Lyon). Other results, not mentioned in this do
-

ument, have been obtained in 
ollaboration with Denis EFIMOV (CR INRIA Non-A), Jamal

DAAFOUZ (Prof. Univ. Lorraine, CRAN), Marieke CLOOSTERMAN (PhD, TU Eindhoven),

Tijs DONKERS (Ass. Prof. TU Eindhoven), Mauri
e HEEMELS (Prof. TU Eindhoven), Mar


JUNGERS (CR CNRS, CRAN), Ivan MALLOCI (PhD, CRAN), Sorin OLARU (Prof. Centrale

SUPELEC Paris, L2S), Worody LOMBARDI (PhD, L2S), Andrey POLYAKOV (CR INRIA

Non-A), Christophe PRIEUR (DR CNRS, GIPSA - lab), Patri
k SZCZEPANSKI (Ar
elor Mit-

tal), Sophie TARBOURIECH (DR CNRS, LAAS), Nathan van de WOUW (Ass. Prof. TU

Eindhoven). I would like to thank them all for their fruitful 
ollaboration, dynamism and pa-

tien
e.

I am extremely grateful to Bernard BROGLIATO, Daniel LIBERZON and Lu
a ZACCA-

RIAN for giving me the honour of reviewing this do
ument, to the members of the 
ommittee,

Olivier COLOT, Wim MICHIELS and Dimitri PEAUCELLE, for having a

epted to parti
ipate

in the evaluation of my resear
h a
tivity, and to Jean-Pierre RICHARD, for his guidan
e and

support.

I would also like to thank all my 
olleagues from CRIStAL, INRIA and Centrale Lille who

dire
tly or indire
tly in�uen
ed this work.

Finally, I wish to thank my family for their tremendous support.
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Regional group on automati
 
ontrol and human-ma
hine systems.
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Notations

� R+ denotes the set {λ ∈ R, λ ≥ 0}.

� |c| denotes the absolute value of a s
alar c ∈ R.

� ‖x‖ represents any norm of the ve
tor x.

� ‖x‖p , p ∈ N, denotes the p norm of a ve
tor x.

� For a matrix M , MT
denotes the transpose of M and M⋆

, its 
onjugate transpose.

� For square symmetri
 matri
es M, N , M � N (resp. M ≻ N) means that M − N is a

positive semi-de�nite (resp. de�nite positive) matrix. M � N (resp. M ≺ N) means that

M −N is a negative semi-de�nite (resp. negative de�nite) matrix.

� For a matrix M ∈ Rn×n, we denote the Hermitian of M by He{M} =M +MT .

� ∗ in a symmetri
 matrix represents elements that may be indu
ed by symmetry.

� ‖M‖p , p ∈ N denotes the indu
ed p-norm of a matrix M .

� σ̄ (M) denotes the maximum singular value of M .

� C0(X,Y ), for two metri
 spa
es X and Y , is the set of 
ontinuous fun
tions from X to Y .

� Lnp (a, b), p ∈ N denotes the spa
e of fun
tions φ : (a, b) → Rn with norm ‖φ‖Lp =
[∫ b
a ‖φ(s)‖

p ds
] 1

p
.

� Ln2e[0,∞) is the spa
e of fun
tions φ : [0,∞) → Rn whi
h are square integrable on �nite

intervals.

� Given a set S ⊂ Rn, 
onv{S} denotes its 
losed 
onvex hull and Int{S} its interior.

� For a 
onvex polytope S ⊂ Rn and a s
alar α > 0, we denote αS := {αx, x ∈ S} and

vert {S} the set of verti
es of S.

� The n dimensional open ball in Rn 
entred on x ∈ Rn with radius c > 0 is denoted

B(x, c) := {y ∈ Rn : ‖x− y‖2 < c} .
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The pra
ti
al implementation of 
ontrol algorithms is always subje
t to various types of


onstraints: saturation, limited rate of a
tuators, digital implementation under quantization

and �nite sampling frequen
y, et
. This dissertation is 
on
erned with a fundamental problem

in modern 
ontrol systems: the o

urren
e of dis
rete 
onstraints in 
ontrol loops. Two main

aspe
ts will be 
onsidered. On one side, we will dis
uss the o

urren
e of dis
rete-
onstraints

in the time domain, related to sampled-data 
ontrol implementations and fa
t that in pra
ti
e

the 
ontrol a
tion is 
omputed sporadi
ally, at aperiodi
 sampling instants. In this 
ontext, the

main 
hallenges are to determine the maximum sampling interval whi
h preserves stability and

to s
hedule the sampling instants so as to ensure desired performan
es. This topi
 is motivated

by the uprising interest in networked and embedded 
ontrol elements where real-time s
heduling

algorithms intera
t with 
ontrol tasks and where 
ommuni
ation and energeti
 
onstraints have

to be taken into a

ount. On the other side, we will present results 
on
erning the design of

feedba
k laws subje
t to dis
rete 
onstraints in the sets of possible 
ontrol values: the 
ontrol

signal is allowed to take only a �nite number of values. Su
h 
onstraints are typi
al in systems

with swit
hes, relays or binary (on-o�) a
tuators. The main 
hallenge here is to design the

swit
hing surfa
es while guaranteeing desired safety 
onstraints in terms of (lo
al) stability.

Both of these topi
s bring up open problems in the domain of hybrid dynami
al systems. They

involve the study of di�erential equations with dis
ontinuous right-hand side and of systems with

impulsive dynami
s.

With respe
t to the resear
h a
tivity 
arried in the team SYNER, over the last eight years

we have investigated the e�e
t of aperiodi
 sampling on several 
lasses of dynami
al systems

intera
ting with sampled-data implementations of both 
ontinuous and swit
hing feedba
k laws.

We have tried to address the main 
hallenges in aperiodi
 sampled-data 
ontrol using several

di�erent approa
hes. One of the main purposes of our work is to propose numeri
al tools for

addressing the 
onsidered problems. We have dedi
ated some e�ort to express solutions to the

analysis and 
ontrol design problems in a form that is 
onvenient to the derivation of 
omputer-

aided tools. A parti
ular attention is given to the formulation of analysis and synthesis 
riteria as

simple 
onvex optimization problems whi
h 
an be easily addressed numeri
ally using powerful

numeri
al algorithms.

First, the main 
ontributions in the 
ontext of sampled-data systems are brie�y presented as

follows:

� New 
onditions for the stability of linear time invariant (LTI) sampled-data systems with

arbitrary time-varying sampling intervals [Hetel 2011b℄. The main idea is to use a dis
rete-

time system model and quasi-quadrati
 Lyapunov fun
tions previously en
ountered in the


ontext of polytopi
 di�eren
e in
lusions in order to provide stability 
onditions. The

existen
e of a quasi-quadrati
 Lyapunov fun
tion de
reasing at sampling instants is shown

to be a ne
essary and su�
ient 
ondition for stability. Using approximations based on


onvex polytopes leads to su�
ient stability 
riteria. This approa
h allows a very a

urate

numeri
al implementation of algorithms for evaluating the maximum allowable sampling

interval whi
h ensures stability.

� A new framework for the analysis of sampled-data systems inspired by the Dissipativity

Theory [Omran 2014b,Omran 2014a,Omran 2016a℄. The idea is to 
hara
terize the e�e
t

of sampling using "supply" fun
tions. The method generalizes to the 
ase of nonlinear a�ne

systems several frequen
y domain 
riteria initially used for LTI systems. The advantage of

this approa
h is its �exibility: the approa
h 
an be easily extended in order to take into

a

ount more 
omplex performan
e and robustness spe
i�
ations.

3



� Optimization tools for sampled-data systems with 
ontrolled sampling sequen
es [Fiter 2012a℄,

[Fiter 2015℄. In the literature, aperiodi
 sampled-data systems had been studied using

either 
ontinuous-time or dis
rete-time models. We have proposed a 
ontinuous-time ap-

proa
h based on 
onvex embeddings that is able to 
ombine the advantages of the time-

delay system modelling (inter-sampling behaviour, robustness to perturbations) with the

ones of dis
rete-time models (a

ura
y of analysis). This approa
h has been used for the

design of even-/self-triggered 
ontrol algorithms. We have provided tools for optimizing

the sampling maps so as to enlarge the minimum inter-event time between two sampling

instants while ensuring desired performan
e and robustness properties.

In order to transfer our experien
e over this domain, we have gathered a 
olle
tion of main results

on aperiodi
 sampled-data systems in an overview of stability analysis approa
hes whi
h has been

presented as a tutorial paper at ECC [Fiter 2014a℄. A detailed survey arti
le [Hetel 2017℄ has

been a

epted for publi
ation in Automati
a.

Se
ond, the do
ument will present a more re
ent �eld of our a
tivity: the design of swit
hing

surfa
es under dis
rete 
onstraints. While the study of systems with aperiodi
 sampling has

now rea
hed an advan
ed phase of development, the se
ond main topi
 of resear
h, the design

of swit
hing surfa
es for systems subje
t to dis
rete 
onstraints, represents an emerging resear
h

dire
tion in the team SYNER. The design of swit
hing 
ontrollers (relays, sliding mode 
on-

trollers, variable stru
ture systems, et
.) is an old problem in the 
ontrol theory. However,

very few numeri
al tools exist for optimizing the design of swit
hing surfa
es while optimizing

the systems performan
es (domain of attra
tion, robustness to perturbations and delay, de
ay

rate, et
.). We are 
urrently investigating a re
ent resear
h dire
tion by addressing this topi


from a hybrid system perspe
tive. The main idea of our work is to use a simple 
onvex opti-

mization approa
h for the design of swit
hing 
ontrollers based on Linear Matrix Inequalities

(LMIs). We have addressed this problem for LTI, polytopi
 approximations of nonlinear sys-

tems, bilinear systems and swit
hed a�ne systems. This new method has lead to several journal

publi
ations [Hetel 2015
, Hetel 2015a, Delpoux 2015, Hetel 2016℄. For the 
ase of linear sys-

tems it is shown that the robustness requirements of 
lassi
al sliding mode 
ontrollers 
an be

in
orporated in the new design methodology while optimizing the domain of attra
tion and the

robustness with respe
t to perturbations [Hetel 2015
℄. For swit
hed a�ne systems we provide

a new point of view in the design of stabilizing state feedba
k laws: we show that the design

of swit
hing 
ontrollers 
an be re-stated as a 
lassi
al design problem for nonlinear a�ne sys-

tems [Hetel 2015a℄. The method allows to take into a

ount some 
lasses of swit
hed a�ne system

that 
an be stabilized only lo
ally, on whi
h the existing methods do not apply. Simple 
ontrol

design 
riteria are proposed for swit
hed a�ne systems that do not satisfy the 
lassi
 
onstraints

related to the existen
e of Hurwitz 
onvex 
ombinations. The new methodology has potential in

appli
ation to ele
tro-magneti
 systems (
ontrol of stepper motors [Delpoux 2015℄) and energy

management problems (DC/DC power 
onverters [Hetel 2016℄). The analysis of sampled-data

implementations of swit
hing 
ontrollers has equally been addressed [Hetel 2013b℄.

After this general introdu
tion, the rest of this dissertation is organized into two major parts

and a 
on
lusion.

Part I deals with dis
rete 
onstraints in the time domain. It is mainly 
on
erned with the

stability problem for sampled-data systems with aperiodi
 sampling. After presenting some gen-

eralities 
on
erning systems with time-varying sampling in Chapter 1, the se
ond 
hapter gives

a overview of the literature on the �eld. Chapter 3 presents our main 
ontributions to this

topi
. Our resear
h e�ort has been dedi
ated to the analysis of various 
lasses of systems (lin-

ear time invariant, polytopi
, bilinear, polynomial, nonlinear a�ne, et
.) with both 
ontinuous

4



and swit
hing 
ontrollers. We have tried to address the stability problem from di�erent angles,

through various 
ompeting methods. In this manus
ript, a sele
tion of the most signi�
ant re-

sults is given. For linear time invariant systems, we show in Chapter 3.1 how numeri
ally e�
ient


onditions 
an be derived using the exa
t system dis
retization and 
onvex embeddings. Numer-

i
al tools for the optimization of (event/self-triggered) sampling maps are proposed, based on the

used of Linear Matrix Inequalities (LMIs). In a more general 
ontext of bilinear (Chapter 3.2) and

nonlinear a�ne systems (Chapter 3.3), we propose a new stability analysis framework inspired

by Dissipativity Theory. Control design tools are presented for LTI systems with dis
ontinuous


ontrollers using a time-delay approa
h in Chapter 3.4.

Part II presents new results for systems with inputs 
onstrained to a �nite set of values.

Chapter 4 deals with the design of swit
hing 
ontrollers for linear systems and some approxi-

mations of nonlinear systems as linear polytopi
 systems. The 
ase of swit
hed a�ne systems

is dis
ussed in Chapter 5, while Chapter 6 presents results 
on
erning bilinear systems. The

potential of the approa
h is illustrated at the end of this part through experimental appli
ations


on
erning the 
ontrol of stepper motors and DC/DC power 
onverters.

A 
on
lusion summarizes the main results presented in this do
ument. Finally, several ongo-

ing resear
h dire
tions and open problems are presented.

5
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Part I

Contributions to aperiodi


sampled-data 
ontrol

7





The last de
ade has witnessed an enormous interest in the study of networked and embedded


ontrol systems [Zhang 2001
,Hristu-Varsakelis 2005,Hespanha 2007,Chen 2011℄. This interest

is mainly due to the ubiquitous presen
e of embedded 
ontrollers in relevant appli
ation do-

mains and the growing demand in industry on systemati
 methods to model, analyse and design

systems where sensor and 
ontrol data are transmitted over a digital 
ommuni
ation 
hannel.

The study of systems with aperiodi
 sampling emerged as a modelling abstra
tion whi
h al-

lows to understand the behaviour of Networked Control Systems (NCS) with sampling jitters,

pa
ket drop-outs or �u
tuations due to the inter-a
tion between 
ontrol algorithms and real-time

s
heduling proto
ols [Zhang 2001
,Antsaklis 2007,Astol� 2008℄. With the emergen
e of event-

based and self-triggered 
ontrol te
hniques [Heemels 2012℄, the study of aperiodi
 sampled-data

systems 
onstitutes nowadays a very popular resear
h topi
 in 
ontrol.

In this part, we fo
us on questions arising in the 
ontrol of systems with time-varying sampling

intervals. Important pra
ti
al questions su
h as the 
hoi
e of the minimal sampling bandwidth,

the evaluation of ne
essary 
omputational and energeti
 resour
es or the robust 
ontrol synthesis

are mainly related to stability issues. These issues often lead to the problem of estimating the

Maximum Sampling Interval (MSI) for whi
h the stability of a 
losed-loop sampled data system

is ensured.

The study of aperiodi
 sampled-data systems has been addressed in several areas of resear
h

in Control Theory. Systems with aperiodi
 sampling 
an be seen as parti
ular time-delay sys-

tems. Sampled-and-hold in 
ontrol and sensor signals 
an be modelled using hybrid systems with

impulsive dynami
s. Aperiodi
 sampled-data systems have also been studied in the dis
rete-time

domain. In parti
ular, Linear Time Invariant (LTI) sampled-data systems with aperiodi
 sam-

pling have been analysed using dis
rete-time Linear Parameter Varying (LPV) models, typi
ally

used in gain s
heduling 
ontrol. The e�e
t of sampling 
an be modelled using operators and

the stability problem 
an be addressed in the framework of Input/Output inter
onne
tions as

typi
ally done in modern Robust Control. While signi�
ant advan
es on this subje
t have been

in the literature, problems related to both the fundamentals of su
h systems and the derivation

of 
onstru
tive methods for stability analysis remain open, even for the 
ase of linear system.

The rest of this part is stru
tured: Chapter 1 is dedi
ated to generalities 
on
erning aperiodi


sampled-data 
ontrol. A state of the art on aperiodi
 sampled-data 
ontrol will be given in

Chapter 2 followed by our main 
ontributions in Chapter 3.
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Chapter 1

Generalities

1.1 System 
on�guration

As follows we will study the properties of sampled-data systems 
onsisting of a plant, a digital


ontroller, and appropriate interfa
e elements. A general 
on�guration of su
h a sampled-data

system is illustrated by the blo
k diagram of Figure 1.1. In this 
on�guration, y(t) is a 
ontinuous-
time signal representing the plant output (the plant variables that 
an be measured). This signal

is represented as a fun
tion of time t, y : R+ → Rp.
The digital 
ontroller is usually implemented as an algorithm on an embedded 
omputer. It

operates with a sampled version of the plant output signal, {yk}k∈N, obtained upon the request of

a sampling trigger signal at dis
rete sampling instants tk and using an analog-to-digital 
onverter

(the sampler blo
k, S, in Figure 1.1). This trigger may represent a simple 
lo
k, as in the 
lassi
al

periodi
 sampling paradigm, or a more 
omplex s
heduling proto
ol whi
h may take into a

ount

the sensor signal, a memory of its last sampled values, et
. The sampling instants are des
ribed

by a monotone in
reasing sequen
e of positive real numbers σ = {tk}k∈N where

t0 = 0, tk+1 − tk > 0, lim
k→∞

tk = ∞. (1.1)

u(t) = uk

PLANT

y(t)

H

uk

CONTROL

yk = y(tk)

S

TRIGGER

Figure 1.1: Classi
al sampled-data system 
on�guration
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Chapter 1. Generalities

The di�eren
e between two 
onse
utive sampling times hk = tk+1 − tk is 
alled the kth sampling

interval. Assuming that the e�e
t of quantizers may be negle
ted, the sampled version of the

plant output is the sequen
e {yk}k∈N where yk = y(tk).
In a sampled-data 
ontrol loop, the digital 
ontroller produ
es a sequen
e of 
ontrol values

{uk}k∈N using the sampled version of the plant output signal {yk}k∈N. This sequen
e is 
onverted
into a 
ontinuous-time signal u(t), where u : R+ → Rm (
orresponding to the plant input) via a

digital-to-analog interfa
e. We 
onsider that the digital-to-analog interfa
e is a zero-order hold

(the hold blo
k, H, in Figure 1.1). Furthermore, we assume that there is no delay between

the sampling instant tk and the moment the 
ontrol uk (obtained based on the kth plant output

sample, yk) is e�e
tively implemented at the plant input. Then the input signal u(t) is a pie
ewise

onstant signal u(t) = u(tk) = uk,∀t ∈ [tk, tk+1).

Over the 
hapter, we will 
onsider that the plant is modelled by a �nite dimensional ordinary

di�erential equation of the form {
ẋ = F (t, x, u) ,
y = H (t, x, u) ,

(1.2)

where x ∈ Rn represents the plant state-variable. Here F : R+×Rn×Rm → Rn with F (t, 0, 0) =
0,∀t ≥ 0, and H : R+ × Rn × Rm → Rp. It is assumed that for ea
h 
onstant 
ontrol and

ea
h initial 
ondition (t0, x0) ∈ R+ ×Rn the fun
tion F des
ribing the plant model (1.2) is su
h

that a unique solution exists for an interval [t0, t0 + ǫ) with ǫ large enough with respe
t to the

maximum sampling interval. The dis
rete-time 
ontroller is 
onsidered to be des
ribed by an

ordinary di�eren
e equation of the form

{
xck+1 = F cd (k, x

c
k, yk) ,

uk = Hc
d (k, x

c
k, yk) ,

(1.3)

where xck ∈ Rnc
is the 
ontroller state. Here, F cd : N×Rnc ×Rp → Rnc and Hc

d : N×Rnc ×Rp →
Rm. We will use the denomination sampled-data system for the inter
onne
tion between the


ontinuous-time plant (1.2) with the dis
rete-time 
ontroller (1.3) via the relations

yk = y(tk), u(t) = uk,∀t ∈ [tk, tk+1), ∀k ∈ N, (1.4)

under a sequen
e of sampling instants σ = {tk}k∈N satisfying (1.1).

The di�erent 
on
epts and results will be mostly illustrated on Linear Time Invariant (LTI)

models

ẋ = Ax+Bu, (1.5)

under a stati
 linear state feedba
k,

uk = Kxk, k ∈ N, (1.6)

with xk = x(tk). However, when possible, we will present the extensions to more general nonlin-

ear systems.

1.2 Classi
al design methods

There are various approa
hes for the design of a sampled-data 
ontroller (1.3) (see the 
lassi-


al textbooks [Åström 1996, Chen 1993℄ and the tutorial papers [Mona
o 2007, Mona
o 2001,

Ne²i¢ 2001,Laila 2006℄).

Emulation. The simplest approa
h 
onsists in designing �rst a 
ontinuous-time 
ontroller

12
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al design methods

using 
lassi
al methods [Khalil 2002,Isidori 1995,Krsti
 1995,Sastry 1999℄. Next, a dis
rete-time


ontroller of the form (1.3) is obtained by integrating the 
ontroller solutions over the interval

[tk, tk+1).This approa
h is usually 
alled emulation. Generally, it is di�
ult to 
ompute in a

formal manner the exa
t dis
rete-time model and approximations must be used [Mona
o 2007,

Laila 2006℄. In the LTI 
ase (1.5) with state feedba
k (1.6), the emulation simply means that

the gain K is set su
h that the matrix A + BK is Hurwitz and that the plant is driven by the


ontrol u(t) = Kx(tk),∀t ∈ [tk, tk+1), k ∈ N. While the intuition seems to indi
ate that for

su�
iently small sampling intervals the obtained sampled-data 
ontrol gives an approximation

of the 
ontinuous-time 
ontrol problem, no guarantee 
an be given when the sampling interval

in
reases, even for 
onstant sampling intervals. In order to 
ompensate the e�e
t of 
ontroller

dis
retisation, re-design methods may be used [Grüne 2008,Ne²i¢ 2005℄.

Dis
rete-time design. In this framework, a dis
rete-time model of the plant (1.2) is derived by

integration. The obtained model represents the evolution of the plant state x(tk) = xk at sam-

pling times

9

. Then, a dis
rete-time 
ontroller (1.3) is designed using the obtained dis
rete-time

model. In the simplest LTI 
ase (1.5), (1.6), the evolution of the state between two 
onse
utive

sampling instants tk and tk+1 is given by

x(t) = Λ(t− tk)x(tk), ∀t ∈ [tk, tk+1], k ∈ N, (1.7)

with a matrix fun
tion Λ de�ned on R as

Λ(θ) = Ad(θ) +Bd(θ)K = e

Aθ +

∫ θ

0
e

AsdsBK. (1.8)

Evaluating the 
losed-loop system's evolution at t = tk+1 and using the notation hk = tk+1 − tk
leads to the linear di�eren
e equation

xk+1 = Λ(hk)xk, ∀k ∈ N (1.9)

representing the 
losed-loop system at sampling instants. When the sampling interval is 
onstant,

hk = T, ∀k ∈ N, a large variety of dis
rete-time 
ontrol design methodologies is available in the

literature (see [Åström 1996,Chen 1993℄ and the referen
es within). It is well known for this 
ase

that system (1.9) is asymptoti
ally stable if and only if the matrix Λ(T ) is S
hur. In other words,

to design a stabilizing 
ontrol law (1.6), the matrix K must be set su
h as all the eigenvalues of

Λ(T ) lay stri
tly in the unit 
ir
le.

For nonlinear systems with 
onstant sampling intervals, an overview of 
ontrol design method-

ologies and related issues 
an be found in [Mona
o 2007,Mona
o 2001,Ne²i¢ 2001, Laila 2006℄.

Note that the dis
rete-time models su
h as (1.9) do not take into 
onsideration the inter-sampling

behaviour of the system. Relations between the performan
es of the dis
rete-time model and

the performan
es of the sampled-data loop, 
an be dedu
ed using the methodology proposed

in [Ne²i¢ 1999℄.

Sampled-data design. In�nite dimensional dis
rete-time models whi
h take into a

ount the

inter-sampling system behaviour using signal lifting [Bamieh 1992,Bamieh 1991,Tadmor 1992,

Toivonen 1992a, Yamamoto 1994℄ have been proposed in the literature for the 
ase of linear

systems. Spe
i�
 design methodologies, that are able to take in 
onsideration 
ontinuous-time

9

Note that generally approximations of the system model must be used sin
e the dis
retized plant model is

di�
ult to 
ompute formally [Mona
o 1985,Veliov 1997℄. Even for the 
ase of LTI systems with 
onstant sampling

intervals, the numeri
al 
omputation of the matrix exponential (or its integral) is subje
t to approximations

[Moler 2003℄.
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system performan
es, inter-sample ripples and robustness spe
i�
ations, 
an be found in the

textbook [Chen 1993℄ for the 
ase of linear time invariant systems with periodi
 sampling.

1.3 Complex phenomena in aperiodi
 sampling

While in the last �fty years an intensive resear
h has been dedi
ated to the analysis and design of

sampled-data systems under periodi
 sampling, the study of systems with time-varying sampling

intervals is quite underdeveloped 
ompared to the periodi
 
onterpart. The following examples

illustrate the ri
h 
omplexity of phenomena that may o

ur under aperiodi
 sampling.

Example 1.1 [Zhang 2001a℄ Consider an LTI sampled-data system of the form (1.5),(1.6)

where

A =

[
1 3
2 1

]
, B =

[
1
0.6

]
, K = −

[
1 6

]
. (1.10)

For this example, system's (1.9) transition matrix Λ(T ) is a S
hur matrix for any 
onstant

sampling interval in T ∈ T = {T1, T2}, with T1 = 0.18, and T2 = 0.54. Then, in the 
ase of

periodi
 sampling, the sampled-data system is stable for 
onstant sampling intervals taking values

in T . An illustration of the system's evolution for 
onstant sampling intervals T1, T2, is given in

Figure 1.2. Clearly, when the sampling interval hk is arbitrarily varying in T , the S
hur property
of Λ(T ), ∀ T ∈ T , represents a ne
essary 
ondition for stability of the sampled-data system

(1.1),(1.5),(1.6). However, it is not a su�
ient one. For example, the sampled-data system

with a sequen
e of periodi
ally time-varying sampling intervals {hk}k∈N = {T1, T2, T1, T2, . . .}
is unstable, as it 
an be seen in Figure 1.3. This is due to the fa
t that the S
hur property of

matri
es is not preserved under matrix produ
t (i.e. the produ
t of two S
hur matri
es is not

ne
essarily S
hur). Indeed, the dis
rete-time system representation over two sampling instants


an be written as

xk+2 = Λ(T2)Λ(T1)xk, ∀k ∈ 2N,

and the transition matrix

Λ(T2)Λ(T1) =

[
0.8069 −3.2721
0.6133 −2.1125

]

over two sampling intervals T1 and T2, is not S
hur. This example shows the importan
e of

taking into 
onsideration the evolution of the sampling interval hk when analysing the stability of

sampled-data systems sin
e arbitrary variations of the sampling interval hk may indu
e instability.

Example 1.2 [Gu 2003a℄ Consider now an LTI system with

A =

[
0 1
−2 0.1

]
, B =

[
0
1

]
K =

[
1 0

]
(1.11)

Assume that the sampling interval hk is restri
ted to the set T = {T1, T2} with T1 = 2.126 and

T2 = 3.950. The system is unstable for both 
onstant sampling intervals T1 and T2 sin
e for these
values system's (1.9) transition matrix Λ(T ), T ∈ T is not a S
hur matrix. However, the produ
t

of transition matri
es Λ(T1)Λ(T2) has the S
hur property. Therefore, the sampled data system

is stable under a periodi
 evolution of the sampling interval {hk}k∈N = {T1, T2, T1, T2, . . .}. An

example of system evolution with this parti
ular sampling sequen
e is provided in Figure 1.4. In

this example the sampling hk 
an a
t on the sampled-data system as a se
ond 
ontrol parameter
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Figure 1.2: Stability of the system in Example 1.1 with periodi
 sampling intervals.
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Figure 1.3: Instability of the system in Example 1.1 with a periodi
 sampling sequen
e T1 →
T2 → T1 · · · .
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Chapter 1. Generalities

whi
h ensures the system's stability while the possible 
onstant sampling 
on�gurations are not

able to guarantee this property.
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Figure 1.4: Periodi
 sampling sequen
e with a stable behaviour.

1.4 Problem set-ups

The 
ore of Part I is dedi
ated to the robust analysis of sampled-data systems with sampling se-

quen
es of the form (1.1) where the sampling interval hk = tk+1−tk takes arbitrary values in some

interval T = [h, h] ⊂ R+. This �rst problem set-up may 
orrespond, for example, to the sam-

pling triggering me
hanism from Figure 1.1 with a 
lo
k submitted to jitter [Wittenmark 1995℄, or

with some s
heduling proto
ol whi
h is too 
omplex to be modelled expli
itly [Zhang 2001
,Hes-

panha 2007℄. Basi
ally, for the 
ase of LTI models (1.5) with linear state feedba
k (1.6) under

a sampling sequen
e (1.1) we will address the robust stability of the 
losed-loop system (1.12)

given below 



ẋ(t) = Ax(t) +BKx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn

(1.12)

as if hk is a time-varying "perturbation" taking values in a bounded set T .
We will also indi
ate some ideas 
on
erning a re
ently emerging resear
h topi
 where the

sampling interval hk plays the role of a 
ontrol parameter that may be 
hanged a

ording to the

plant state or output. This problem set-up 
orresponds to the design of a s
heduling me
hanism.

For the 
ase of system (1.12), hk is 
onsidered as an additional input whi
h, by an appropriate

open/
losed-loop 
hoi
e, 
an ensure the system stability. In the following 
hapter, we will present

an overview of approa
hes addressing these problems.
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Chapter 2

State of the art on aperiodi


sampled-data systems

This 
hapter presents basi
 
on
epts and re
ent resear
h dire
tions about the stability of sampled-

data systems with aperiodi
 sampling

10

. We fo
us mainly on the stability problem for systems

with arbitrary time-varying sampling intervals whi
h has been addressed in several areas of re-

sear
h in Control Theory. Systems with aperiodi
 sampling 
an be seen as time-delay systems,

hybrid systems, Input/Output inter
onne
tions, dis
rete-time systems with time-varying param-

eters, et
. The goal is to provide a stru
tural overview of the progress made on the stability

analysis of systems with aperiodi
 sampling. Without being exhaustive, whi
h would be neither

possible nor useful, we try to bring together results from diverse 
ommunities and present them

in a uni�ed manner. For ea
h of the existing approa
hes the basi
 
on
epts, fundamental results

and relations with the other approa
hes are dis
ussed in detail. Results 
on
erning extensions

of Lyapunov and frequen
y domain methods for systems with aperiodi
 sampling are re
alled,

as they allow to derive 
onstru
tive stability 
onditions. Furthermore, numeri
al 
riteria are

presented while indi
ating the sour
es of 
onservatism, the problems that remain open and the

possible dire
tions of improvement. At last, some emerging resear
h dire
tions, su
h as the design

of stabilizing sampling sequen
es, are brie�y dis
ussed.

2.1 Stability analysis under arbitrary time-varying sampling

In the following, we review some results whi
h provide a qualitative estimation of the maximum

sampling interval ensuring stability for sampled-data systems with sampling intervals that are

arbitrary varying. More formally, over the se
tion, we present results that address the following

problem:

� Problem A (Arbitrary sampling problem): Consider the sampled-data system (1.1), (1.2),

(1.3), (1.4) and a bounded subset T ⊂ R+. Determine if the sampled-data system is stable

(in some sense) for any arbitrary time-varying sampling interval hk = tk+1− tk with values

in T .

Often the set T is 
onsidered of the form T = (0, h] where h is some positive s
alar. The

largest value of h for whi
h the stability of the 
losed loop system is ensured is 
alled Maximum

Sampling Interval (MSI).

10

The material presented in this 
hapter is part of a survey paper a

epted for publi
ation in Automati
a

[Hetel 2017℄.
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Figure 2.1: Sampling seen as a pie
ewise-
ontinuous time-delay

Several perspe
tives for addressing Problem A exist. First, we present results that are based

on a time-delay modelling of the sampled-data system (1.1),(1.2),(1.3),(1.4). Next, we show

how the problem 
an be addressed from the point of view of hybrid systems. We 
ontinue with

approa
hes that use the expli
it system integration in-between su

essive sampling instants, su
h

as the ones 
lassi
ally used in the dis
rete-time framework. Last, results addressing Problem A

from the robust 
ontrol theory point of view are presented.

2.1.1 Time-delay approa
h

To the best of our knowledge, this te
hnique was initiated in [Mikheev 1988,Åström 1989℄, and

further developed in [Fridman 1992,Teel 1998b, Louisell 2001℄ and in several other works. For

the 
ase of an LTI system with sampled-data state feedba
k (1.12), we may re-write

u(t) = Kx(tk) = Kx(t− τ(t)),
τ(t) = t− tk, ∀t ∈ [tk, tk+1),

(2.1)

where the delay is pie
ewise-linear, satisfying τ̇(t) = 1 for t 6= tk, and τ(tk) = 0. This delay

indi
ates the time that has passed sin
e the last sampling instant. An illustration of a typi
al

delay evolution is given in Fig. 2.1. The LTI system with sampled-data (1.12) is then re-modeled

as an LTI system with a time-varying delay

ẋ(t) = Ax(t) +BKx(t− τ(t)), ∀t ≥ 0. (2.2)

This permits to adapt the tools for stability of systems with fast varying delays [Fridman 2003,

Gu 2003b,Ri
hard 2003,Ni
ules
u 2004℄. This model is equivalent to the original sampled-data

system when 
onsidering that the sampling indu
ed delay has a known derivative τ̇(t) = 1, for
all t ∈ [tk, tk+1), k ∈ N.

2.1.1.1 Basi
 results

For system (2.2) it is natural to 
onsider, as a state variable, the fun
tional xt(θ) = x(t+θ), ∀θ ∈
[−h̄, 0], and, as state spa
e, the set C0

([
−h, 0

]
,Rn

)
of 
ontinuous fun
tions mapping the interval
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[
−h, 0

]
into Rn [Fridman 2014,Ni
ules
u 2001,Ni
ules
u 1998℄. In the general 
ase of time-delay

systems, it is di�
ult to apply the 
lassi
al Lyapunov stability theory, be
ause the The most

popular generalization of the dire
t Lyapunov method for time-delay system has been proposed

by Krasovskii [Krasovski�� 1963℄. It uses the existen
e of fun
tionals V (t, xt) depending on the

state ve
tor xt. In the sampled-data 
ase [Fridman 2004, Fridman 2010, Liu 2012a℄ fun
tionals

V (t, xt, ẋt) depending both on xt and ẋt (see [Kolmanovskii 1992℄, p.337) are useful.

Denote by W [−h, 0] the Bana
h spa
e of absolutely 
ontinuous fun
tions φ : [−h, 0] → Rn
with φ̇ ∈ Ln2 (−h, 0) (the spa
e of square integrable fun
tions) with the norm

‖φ‖W = max
s∈[−h,0]

‖φ(s)‖+
[∫ 0

−h

∥∥∥φ̇(s)
∥∥∥
2
ds

]1
2

.

Theorem 2.1 (Lyapunov-Krasovskii Theorem) [Kolmanovskii 1992℄ Consider f : R+ ×
C0[−h, 0] → Rn 
ontinuous in both arguments and lo
ally Lips
hitz in the se
ond argument.

Assume that f(t, 0) = 0 for all t ∈ R+ and that f maps R× (bounded sets in C0[−h, 0]) into

bounded sets of Rn. Suppose that α, v,w : R+ → R+ are 
ontinuous nonde
reasing fun
tions,

α(s), β(s) and γ(s) are positive for s > 0, lims→∞ α(s) = ∞ and α(0) = β(0) = 0. The trivial

solution of

ẋ(t) = f (t, xt)

is Globally Uniformly Asymptoti
ally Stable if there exists a 
ontinuous fun
tional V : R ×
W [−h, 0] × Ln2 (−h, 0) → R+, whi
h is positive-de�nite, i.e.

α(‖φ(0)‖) ≤ V (t, φ, φ̇) ≤ β(‖φ‖W )

for all φ ∈ W [−h, 0], t ∈ R+, and su
h that its derivative along the system's solutions is non-

positive

V̇ (t, xt, ẋt) ≤ −γ(‖xt(0)‖). (2.3)

The fun
tional V satisfying the 
onditions of Theorem 2.1 is 
alled a Lyapunov-Krasovskii Fun
-

tional (LKF). In the general 
ase of sampled-data nonlinear systems the underlying delay system

ẋ = f(t, xt) used in Theorem 2.1 from [Kolmanovskii 1992℄ is des
ribed by a fun
tion f whi
h is

pie
ewise 
ontinuous with respe
t to t. However, the proof of the result in [Kolmanovskii 1992℄


an be adapted to 
over this 
ase.

2.1.1.2 Constru
tive stability 
onditions

Various generalisations of the Lyapunov-Krasovskii theorem have been proposed in the literature.

For the 
ase of sampled-data systems, in [Fridman 2004℄ the Lyapunov-Krasovskii Theorem was

extended to linear systems with a dis
ontinuous sawtooth delay by use of Barbalat lemma.

Another extension to linear sampled-data systems has been provided in [Fridman 2010℄, where

the LKF is allowed to have dis
ontinuities at sampling times. It leads to an LKF of the form

[Fridman 2010℄:

V (t, x(t), ẋt) = xT (t)Px(t) + (hk − τ(t))
∫ t
t−τ(t) ẋ

T (s)Rẋ(s)ds (2.4)

whi
h improves the results from [Fridman 2004℄, as the information τ̇ = 1 
an be expli
itly taken

into a

ount when evaluating its derivative.
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Theorem 2.2 [Fridman 2010℄ Let there exist P ≻ 0, R ≻ 0, P2 and P3 su
h that the LMI

[
Φs P − P T2 + (A+BK)TP3

∗ −P3 − P T3 + hR

]
≺ 0 (2.5)



Φs P − P T2 + (A+BK)TP3 −hP T2 A
∗ −P3 − P T3 −hP T3 A
∗ ∗ −hR


 ≺ 0 (2.6)

with Φs = P T2 (A + BK) + (A + BK)TP2, are feasible. Then system (1.12) is Exponentially

Stable for all sampling sequen
es σ = {tk}k∈N with hk = tk+1 − tk ≤ h̄.

The result takes into a

ount information about the sawtooth shape of the delay, whi
h is

the spe
i�
ity of the time-delay model (2.2) when representing exa
tly the sampled-data system

(1.12). It 
an ensure the stability for time-varying delays τ(t) whi
h are longer than any 
onstant

delay that preserves stability, provided that τ̇(t) = 1. See also [Seuret 2009℄ for an alternative

LMI formulation.

2.1.1.3 An extension to nonlinear systems

Con
erning nonlinear systems, [Mazen
 2013a℄ has extended the ideas in [Fridman 2004℄ for the


ase of 
ontrol a�ne non-autonomous systems with sampled-data 
ontrol. Consider the nonlinear

system:

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), (2.7)

with the state x(t) ∈ Rn and the input u(t) ∈ Rm, and with fun
tions f , g that are lo
ally

Lips
hitz with respe
t to x and pie
ewise 
ontinuous in t. Assume that the C1

ontroller u(t) =

K(t, x) is designed in order to make the system (2.7) Globally Uniformly Asymptoti
ally Stable.

Moreover, assume that there exist a C1
positive de�nite and radially unbounded fun
tion V , and

a 
ontinuous positive de�nite fun
tion W su
h that:

−
[∂V
∂t

(t, x) +
∂V

∂x
(f(t, x) + g(t, x)K(t, x))

]
≥W (x) (2.8)

for all t ≥ t0 and x ∈ Rn. Also, 
onsider K(t, 0) = 0 for all t ∈ R. Hen
e, V is a stri
t Lyapunov

fun
tion for

ẋ = f(t, x) + g(t, x)K(t, x)

and one 
an �x 
lass K∞ fun
tions α1 and α2 su
h that α1(‖x‖2) ≤ V (t, x) ≤ α2(‖x‖2), for all
t ≥ t0 and x ∈ Rn. De�ne the fun
tion

ρ(t, x) =
∂K

∂t
(t, x) +

∂K

∂x

(
f(t, x) + g(t, x)K(t, x)

)
. (2.9)

Theorem 2.3 (adapted from [Mazen
 2013a℄) Suppose that there exist 
onstants c1, c2, c3 and

c4 su
h that: ∥∥∥∥
∂K

∂x
(t, x)g(t, x)

∥∥∥∥
2

2

≤ c1,

∥∥∥∥
∂V

∂x
(t, x)g(t, x)

∥∥∥∥
2

2

≤ c2,

‖ρ(t, x)‖22 ≤ c3W (x),
∥∥∥∥
∂V

∂x
(t, x)g(t, x)K(t, x)

∥∥∥∥
2

≤ c4(V (t, x) + 1),
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hold for all t ≥ t0 and x ∈ Rn. Consider the system (2.7) in 
losed-loop with: u(t) = K(tk, x(tk)),
t ∈ [tk, tk+1), σ = {tk}k∈N as de�ned in (1.1) and hk = tk+1 − tk ∈ [h, h], ∀k ∈ N. Then, the


losed-loop system is Globally Uniformly Asymptoti
ally Stable if h ≤ (4c1 + 8c2c3)
−1/2 .

The stability is proven by means of a Lyapunov fun
tional of the form

U(t, xt) = V (t, x(t)) +
ǫ

h

∫ 0

−h

∫ t

t+θ
‖Ψ(s, xs)‖22 dsdθ,

where

Ψ(t, xt) =
∂K

∂t
(t, xs(0)) +

∂K

∂x
(t, xt(0)) ẋt(0).

This fun
tional is reminis
ent of the form (2.4) used in [Fridman 2004℄ to study LTI systems.

However, di�erently from the LTI 
ase, it is far more 
omplex to determine how 
onservative the

result is.

2.1.1.4 Further reading

The resear
h on LKFs for sampled-data system is still a wide-open domain. Currently, an im-

portant e�ort is dedi
ated to �nding better LKFs and better over-approximations of the deriva-

tives. Note that the derivation of 
onstru
tive stability 
onditions may be quite an elaborate

analyti
al pro
ess and it is not always very intuitive. However, a notable advantage of this

methodology is the fa
t that for linear systems the approa
h 
an be easily extended to 
on-

trol design [Fridman 2004, Suplin 2007, Liu 2012a℄ and to the 
ase of systems with parame-

ter un
ertainties [Fridman 2010, Seuret 2012, Orihuela 2010, Gao 2010, Peng 2011℄, delays [Su-

plin 2009,Mazen
 2012, Gao 2008,Mazen
 2013b, Seuret 2011, de Wouw 2010℄ and s
hedulling

proto
ols [Liu 2012b,Liu 2015b,Liu 2015a℄. See also [Fridman 2012,Fridman 2013℄ for the 
ontrol

of semilinear 1-D heat equations.

Aside from the Lyapunov-Krasovskii method, the stability of sampled-data systems 
an also

be analysed using the method proposed by Razumikhin [Razumikhin 1956℄. Conne
tions be-

tween Razumikhin's method and the ISS nonlinear small gain theorem [Sontag 1998℄ have been

established in [Teel 1998a℄. This relation has been used in [Teel 1998b℄ in order to show the

preservation of ISS properties under su�
iently fast sampling for nonlinear systems with an

emulated sampled-data 
ontroller. Razumikhin's method has been used in [Fiter 2012a℄ for the


ase of LTI sampled-data systems. In [Karafyllis 2009b℄, the Razumikhin method is explored for

nonlinear sampled-data system on the basis of ve
tor Lyapunov-Razumikhin Fun
tions (LRF).

For more general extensions to the 
ontrol design problem, see [Karafyllis 2012a℄, 
on
erning

the 
ase of nonlinear feed-forward systems and [Karafyllis 2012b℄, for nonlinear sampled-data

system with input delays. At last, we would like to mention the Input/Output approa
h for the

analysis of time-delay systems [Fu 1998,Gu 2003a,Kao 2004℄, whi
h makes use of 
lassi
al robust


ontrol tools [Zhou 1996,Megretski 1997℄. The appli
ation of the Input/Output approa
h for the


ase of sampled-data systems has been dis
ussed in [Mirkin 2007,Liu 2010,Mi
hiels 2009℄. The

approa
h was further developed by [Fujioka 2009
,Omran 2012a,Omran 2014a,Omran 2014b,Om-

ran 2013,Chen 2014℄ without passing through the time-delay system model. It will be presented

in more detail in Se
tion 2.1.4 and Chapter 3.

21



Chapter 2. State of the art on aperiodi
 sampled-data systems

2.1.2 Hybrid system approa
h

Due to the existen
e of both 
ontinuous and dis
rete dynami
s, it is quite natural to model

sampled-data systems as hybrid dynami
al systems [Goebel 2009, Goebel 2012, Haddad 2014,

Brogliato 1996,Brogliato 2016℄. The �rst mentions to sampled-data systems as hybrid dynami
al

systems date ba
k to the middle of the '80s [Mousa 1986℄. Later on, in the '90s, the use of hybrid

models has been developed for linear sampled-data systems with uniform and multi-rate sampling

as an interesting approa
h for the H∞ and H2 
ontrol problems [Kabamba 1993, Sun 1993,

Toivonen 1992b℄. The approa
h has also been developed for nonlinear sampled-data systems

in [Hou 1997,Ye 1998℄. For systems with aperiodi
 sampling, impulsive models had been used

starting with [Toivonen 1992b,Dullerud 1999,Mi
hel 1999℄. Re
ently, more general hybrid models

have been proposed in the 
ontext of Networked Controlled Systems by [Ne²i¢ 2004b,Ne²i¢ 2009℄.

A solid theoreti
 foundation has been established for hybrid systems in the framework proposed

by [Goebel 2009, Goebel 2012℄ and it proves to be very useful in the analysis of sampled-data

systems.

In this se
tion we will present some basi
 hybrid models en
ountered in the analysis of

sampled-data systems. The extensions of the Lyapunov stability theory for hybrid systems will

be introdu
ed together with 
onstru
tive numeri
al and analyti
 stability analysis 
riteria.

2.1.2.1 Impulsive models for sampled-data systems

Consider the 
ase of LTI sampled-data systems with linear state feedba
k, as in system (1.12).

Let x̂ denote a pie
ewise 
onstant signal representing the most re
ent state measurement of the

plant available at the 
ontroller, x̂(t) = x(tk), for all t ∈ [tk, tk+1), k ∈ N. Using the augmented

system state χ(t) = [xT (t), x̂T (t)]T ∈ Rnχ
with nχ = 2n, the dynami
s of the LTI sampled-data

system (1.12) 
an be written under the form

{
χ̇(t) = Fχ(t), t 6= tk, k ∈ N,
χ(tk) = Jχ(t−k ), k ∈ N, (2.10)

with

χ(t−) = lim
θ↑t

χ(θ), F =

[
A BK
0 0

]
, J =

[
I 0
I 0

]
. (2.11)

Similar models 
an be determined by 
onsidering an augmented state ve
tor χ in
luding the

most re
ent 
ontrol value implemented at the plant û(t) = u(tk), the sampling error e(t) =
x(t) − x̂(t), the a
tuation error eu(t) = u(t) − û(t), et
. Models of the form (2.10),(2.11) �t

into the framework of impulsive dynami
al systems [Milman 1960, Haddad 2014, Lakshmikan-

tham , Bainov 1993℄ (sometimes also 
alled dis
ontinuous dynami
al systems or simply jump

systems). More general nonlinear sampled-data systems lead to impulsive systems of the form

[Naghshtabrizi 2008,Ne²i¢ 2004b℄

χ̇(t) = Fk(t, χ(t)), t 6= tk, k ∈ N, (2.12a)

χ(tk) = Jk(tk, χ(t
−
k )), k ∈ N (2.12b)

where the augmented state may also in
lude the 
ontroller state and some of its sampled 
om-

ponents (state, output, et
.). Generally, for an impulsive system, (2.12a) is 
alled the system's

�ow dynami
s while (2.12b) is the jump dynami
s.
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2.1.2.2 Lyapunov methods for impulsive systems

The stability of equilibria for the impulsive systems of the form (2.12) 
an be ensured by

the existen
e of 
andidate Lyapunov fun
tions that depend both on the system state and on

time, and evolve in a dis
ontinuous manner at impulse instants [Bainov 1993, Haddad 2014,

Naghshtabrizi 2008℄.

Theorem 2.4 [Naghshtabrizi 2008℄ Consider system (2.12) and denote τ(t) = t − tk, ∀t ∈
[tk, tk+1). Assume that Fk and Jk are lo
ally Lips
hitz fun
tions from R+ × Rnχ

to Rnχ
su
h

that Fk(t, 0) = 0, Jk(t, 0) = 0, for all t ≥ 0. Let there exist positive s
alars c1, c2, c3, b and a

Lyapunov fun
tion V : Rnχ × R → R, su
h that

c1‖χ‖b ≤ V (χ, τ) ≤ c2‖χ‖b, (2.13)

for all χ ∈ Rnχ , τ ∈ [0, h]. Suppose that for any impulse sequen
e σ = {tk}k∈N su
h that h ≤
tk+1 − tk ≤ h, k ∈ N, the 
orresponding solution χ(·) to (2.12) satis�es:

dV (χ(t), τ(t))

dt
≤ −c3V (χ(t), τ(t)) , ∀t 6= tk, ∀k ∈ N,

and V (χ(tk), 0) ≤ limt→t−k
V (χ(t), τ(t)) , ∀k ∈ N. Then, the equilibrium point χ = 0 of system

(2.12) is Globally Uniformly Exponentially Stable over the 
lass of sampling impulse instants,

i.e. there exist c, λ > 0 su
h that for any sequen
e σ = {tk}k∈N that satis�es h ≤ tk+1 − tk ≤ h,
k ∈ N,

‖χ(t)‖ ≤ c‖χ(t0)‖e−λ(t−t0), ∀t ≥ t0.

The previous stability theorem requires in (2.13) the 
andidate Lyapunov fun
tion to be

positive at all times. For the 
ase of system (2.12) with globally Lips
hitz Fk, k ∈ N, the

ondition 
an be relaxed by requiring the Lyapunov fun
tion to be positive only at impulse

times [Naghshtabrizi 2008℄, i.e. c1‖χ(tk)‖b ≤ V (χ(tk), 0) ≤ c2‖χ(tk)‖b,∀k ∈ N, instead of

(2.13).

In the 
ase of impulsive systems (2.10), with linear �ow and jump dynami
s, 
andidate

Lyapunov fun
tions of the form V (χ, τ) = χTP (τ)χ, with P : [0, h̄] → Rnχ×nχ
a di�erentiable

matrix fun
tion, have been used [Toivonen 1992a, Sun 1993, Briat 2013, Naghshtabrizi 2008℄.

Su�
ient stability 
onditions 
an be obtained from Theorem 2.4 in terms of existen
e of a

di�erentiable matrix fun
tion P : [0, h] → Rnχ×nχ , c1I ≺ P (τ) ≺ c2I, satisfying the parametri


set of LMIs

F TP (θ1) + P (θ1)F + c3P (θ1) +
∂P

∂τ
(θ1) ≺ 0,

∀ θ1 ∈ [0, h], (2.14a)

JTP (0)J − P (θ2) ≺ 0, ∀ θ2 ∈ [h, h], (2.14b)

with positive s
alars c1, c2, c3. This formulation is reminis
ent of the Ri

ati equation approa
h

used for robust sampled-data 
ontrol in [Toivonen 1992b,Sun 1993℄.

2.1.2.3 Numeri
ally tra
table 
riteria

In pra
ti
e, the di�
ulty of 
he
king the existen
e of 
andidate Lyapunov fun
tions using LMI

formulations su
h as (2.14) 
omes from the fa
t that the set of LMIs are parametrized by elements
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in [0, h̄] or [h, h], whi
h leads to an in�nite number of LMIs. As follows we will dis
uss the

derivation of a �nite number of LMIs from (2.14).

Con
erning the parametri
 set of LMIs (2.14), a �nite number of LMI 
onditions 
an be

derived by 
onsidering parti
ular forms for the matrix fun
tion P (τ). For example, 
onsider a

matrix P (τ) linear with respe
t to τ

P (τ) = P1 + (P2 − P1)
τ

h
, (2.15)

for some positive de�nite matri
es P1, P2, as in [Hu 2003,Allerhand 2011℄. There, su
h a Lya-

punov matrix has been used for sampled-data systems with multi-rate sampling and swit
hed

linear systems. For a 
andidate Lyapunov fun
tion V (χ, τ) = χTP (τ)χ, with P (τ) as de�ned
in (2.15), a �nite set of LMIs that are su�
ient for stability 
an be obtained from (2.14) using

simple 
onvexity arguments:

F TP1 + P1F + c3P1 +
P2 − P1

h
≺ 0, (2.16a)

F TP2 + P2F + c3P2 +
P2 − P1

h
≺ 0, (2.16b)

JTP1J ≺ P2, (2.16
)

JTP1J ≺ P1 + (P2 − P1)h/h. (2.16d)

For the parti
ular 
ase of LTI sampled-data systems represented by (2.10),(2.11), Lyapunov

fun
tions of the form V (χ, τ) = χTP (τ)χ are proposed in the literature by summing various

terms su
h as:

V1(χ, τ) = xTP0x (2.17)

V2(χ, τ) = (x− x̂)T Q (x− x̂) (h− τ) (2.18)

V3(χ, τ) = (x− x̂)T R (x− x̂) e−λτ (2.19)

V4(χ, τ) = χT
( ∫ 0

−τ
(s+ h)(FeFs)T Ũ(FeFs)ds

)
χ, (2.20)

where Ũ :=

[
U 0
0 0

]
, λ > 0 and P0, R, U are symmetri
 positive de�nite matri
es. Using

su
h parti
ular forms of Lyapunov fun
tions, LMI stability 
onditions have been derived in the

literature [Hu 2003,Naghshtabrizi 2008,Ne²i¢ 2009,Omran 2012b,Goebel 2012℄. We point in par-

ti
ular to the term (2.20) used in [Naghshtabrizi 2008℄ whi
h provided a signi�
ant improvement

in what 
on
erns the 
onservatism redu
tion. This term is inspired by Lyapunov-Krasovskii

fun
tionals from the input-delay approa
h, like the one in [Fridman 2004℄. Note that the term

(2.20) 
an also be written as

∫ t
t−τ (s + h − t)ẋT (s)Uẋ(s)ds. It has been motivated by the term∫ 0

−h
∫ t
t+θ ẋ

T (s)Uẋ(s)dsdθ used in the time-delay approa
h (see [Fridman 2004℄). Vi
e versa, the

hybrid system approa
h has also inspired the use of dis
ontinuous Lyapunov fun
tionals in the

time-delay approa
h (see for example the fun
tional (2.4) whi
h is dis
ontinuous at sampling

times). Note that the term (hk − τ)
∫ t
t−τ ẋ

T (s)Rẋ(s)ds in the fun
tional (2.4) 
an be re-written

as (hk − τ)χT
( ∫ 0

−τ (Fe
Fs)T R̃(FeFs)ds

)
χ, with

R̃ =

[
R 0
0 0

]
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and R ≻ 0. Then, for the impulsive system (2.10), (2.11), the fun
tional (2.4) 
an be inter-

preted as a Lyapunov fun
tion of the form V (χ, τ, hk) = χTP (τ, hk)χ. Hybrid and input-delay

approa
hes share the same advantages and drawba
ks. Both of them are 
onstru
tive, and LMI


onditions are used to 
onstru
t the Lyapunov fun
tionals/fun
tions. Similarly to the time delay

approa
h, the LMI formulations 
an be adapted to 
ope with un
ertainties in the system matri-


es. On the other hand, 
onservatism is added by the upper bounding introdu
ed when studying

the derivatives of Lyapunov fun
tionals/fun
tions.

2.1.2.4 More general hybrid models

A large variety of hybrid dynami
al systems, in
luding sampled-data and impulsive models,


an be re-formulated in the unifying theoreti
al framework proposed by Goebel, Sanfeli
e and

Teel [Goebel 2009,Goebel 2012℄. Several fundamental properties have been investigated in this

framework, providing a solid theory for hybrid dynami
al systems. The main advantage of this

generi
 hybrid formulation [Goebel 2009, Goebel 2012℄ is that the asso
iated theoreti
 proper-

ties 
an be dire
tly transferred to sampled-data systems with aperiodi
 sampling. The general

formulation proposed in [Goebel 2009,Goebel 2012℄ 
onsiders models of the form

ż = Fz(z), z ∈ C, (2.21a)

z+ = Jz(z), z ∈ D, (2.21b)

with state z ∈ Rnz
. The system state evolves a

ording to an ordinary di�erential equation

(2.21a) when the state is in some subset C of Rnz
and a

ording to a �rst order re
urren
e

equation (2.21b) when the state is in the subset D of Rnz
. z+ denotes the next value of state

given as a fun
tion of the 
urrent state z via the map Jz(·). C is 
alled the �ow set and D is


alled the jump set. Here, we assume that Fz and Jz are 
ontinuous fun
tions from C to Rnz

and D to Rnz
, respe
tively. C and D are assumed to be 
losed sets in Rnz

.

Note that in the impulsive system formulation of sampled-data systems, the system jumps

are time-triggered. However, the dynami
 of the triggering me
hanism is in some sense hidden.

In the framework proposed by [Carnevale 2007,Da
i
 2007,Ne²i¢ 2009,Goebel 2009,Goebel 2012℄,

the me
hanism triggering the system jumps is modelled expli
itly by augmenting the system state

with the 
lo
k variable τ(t) = t − tk, ∀t ∈ [tk, tk+1), ∀k ∈ N. Consider the LTI sampled-data

systems (1.12) with the notations x̂(t) = x(tk), τ(t) = t − tk for all t ∈ [tk, tk+1), k ∈ N. The

system 
an be represented by the following hybrid model





ẋ = Ax+BKx̂
˙̂x = 0
τ̇ = 1



 τ ∈ [0, h],

x+ = x
x̂+ = x
τ+ = 0



 τ ∈ [h, h].

(2.22)

Then, system (1.12) with hk ∈ [h, h] (or equivalently (2.10),(2.11)) 
an be re-modelled in the

form (2.21) with zT =
[
xT x̂T τ

]
=
[
χT τ

]
,

C =
{
z ∈ Rnz : τ ∈ [0, h]

}
,

D =
{
z ∈ Rnz : τ ∈ [h, h]

}
,
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Fz(z) =



Ax+BKx̂

0
1


 , Jz(z) =



x
x
0


 . (2.23)

Solutions φ of the general hybrid system (2.21) are parametrized by both the 
ontinuous time t
and the dis
rete time k: φ(t, k) represents the state of the hybrid system after t time units and k
jumps. Su
h solutions are de�ned on a hybrid time domain, whi
h for the 
ase of sampled-data

systems is given as the union of the intervals [tk, tk+1]×{k}. A solution φ(·, ·) is a fun
tion de�ned

on a hybrid time domain su
h that φ(·, k) is 
ontinuous on [tk, tk+1], 
ontinuously di�erentiable

on (tk, tk+1) for ea
h k in the domain, and su
h that

φ̇(t, k) = Fz (φ(t, k)) ,

if φ(t, k) ∈ C, t ∈ (tk, tk+1), k ∈ N, and

φ(tk+1, k + 1) = Jz (φ(tk+1, k)) ,

if φ(tk+1, k) ∈ D, k ∈ N. For sampled-data systems as (2.22) su
h solutions may be roughly

interpreted as a generalization of the state lifting approa
h proposed in [Yamamoto 1994℄ for

systems with periodi
 sampling.

A parti
ularity of the model (2.22) in the 
ontext of stability analysis is the fa
t that although

the matrix K is designed su
h that x (and 
onsequently x̂) 
onverges to zero, the 
lo
k variable τ
does not 
onverge. For ea
h sampling interval [tk, tk+1), the timer τ visits su

essively the points

of the interval [0, h] up to hk = tk+1− tk. The main 
onsequen
e is that the hybrid system (2.22)

does not have an asymptoti
ally stable equilibrium point. For su
h systems the stability of the


ompa
t set A = {0}×{0}× [0, h] is usually investigated instead. Studying this property allows

to 
on
lude on the 
onvergen
e of x. One of the main results allowing to state the asymptoti


stability of a set for hybrid systems is given below. This results is expressed in terms of the

pre-asymptoti
 stability of a set A (see [Goebel 2009℄ for a detailed de�nition). The pre�x "-pre"

is used sin
e the 
ompleteness of all system solutions

11

is not required. Only 
omplete solutions

need to 
onverge to A. The 
on
ept of pre-asymptoti
 stability used in the following theorem is

equivalent to standard asymptoti
 stability of the set A when all system solutions are 
omplete,

whi
h is the 
ase for sampled-data systems.

Theorem 2.5 [Goebel 2009℄ Consider the hybrid system (2.21) and the 
ompa
t set A ⊂ Rnz

su
h that Jz (A∩D) ⊂ A. If there exists a 
andidate Lyapunov fun
tion

12 V su
h that

∂V

∂z
Fz(z) < 0 for all z ∈ C \ A, (2.24a)

V (Jz(z))− V (z) < 0 for all z ∈ D \ A, (2.24b)

then the set A is pre-asymptoti
ally stable.

Various relaxations of the above result are provided in Chapter 3 in [Goebel 2012℄. A 
onverse

Lyapunov theorem is given below.

11

A solution φ(t, k) is 
alled 
omplete if dom φ is unbounded.

12V is 
ontinuous and non-negative on (C ∪D) \ A ⊂ domV , it is 
ontinuously di�erentiable on an open set

satisfying C \ A ⊂ domV , and limz→A,z∈domV ∩(C∪D) V (z) = 0. Furthermore, for global pre-asymptoti
 stability,

the sublevel sets of V (.) are required to be 
ompa
t.
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Theorem 2.6 [Goebel 2009℄ For the hybrid system (2.21), if the 
ompa
t set A is globally pre-

asymptoti
ally stable, then there exist a C∞
fun
tion V : Rnz → R+ and α1, α2 ∈ K∞ su
h that

α1 (|z|A) ≤ V (z) ≤ α2 (|z|A), ∀z ∈ Rnz , where | · |A denotes the distan
e from the set A, and

∂V

∂z
Fz(z) ≤ −V (z), ∀z ∈ C, (2.25a)

V (Jz(z)) ≤ V (z)/2, ∀z ∈ D. (2.25b)

Note that with respe
t to the 
ase of sampled-data systems su
h as (2.22) (or equivalently

(2.10), (2.11)) where solutions are 
omplete, the previous theorem shows that asymptoti
 stability

implies the existen
e of a C∞
Lyapunov fun
tion of the form V (z) = Ṽ (χ, τ), to be related with

the su�
ient 
onditions for stability in Theorem 2.4.

2.1.2.5 An estimation of the MSI for nonlinear systems

For nonlinear sampled-data systems the stability properties have been studied in the more general


ontext of Networked Control Systems with s
heduling proto
ols [Ne²i¢ 2004b,Carnevale 2007℄.

This approa
h has been parti
ularized to the sampled-data 
ase in [Ne²i¢ 2009℄. Consider the

plant: {
ẋ = F (x, u) ,
y = H (x, u) ,

(2.26)

where x is the plant state, u is the 
ontrol input, y is the measured output. Suppose that

asymptoti
 stability is guaranteed by the 
ontinuous-time output feedba
k:

{
ẋc = F c (xc, y) ,
u = Hc (xc, y) ,

(2.27)

where xc is the 
ontroller state. Under an exa
t sampled-data implementation of the 
ontroller

and a perfe
t knowledge of the sampling sequen
e σ = {tk}k∈N, the sampled-data implementation

of the 
losed-loop system 
an be written in the following impulsive system form:





ẋ = F (x, û), t ∈ [tk, tk+1),
y = H(x), t ∈ R+

ẋc = F c(xc, ŷ), t ∈ [tk, tk+1),
u = Hc(xc), t ∈ R+
˙̂y = 0, t ∈ [tk, tk+1),
˙̂u = 0, t ∈ [tk, tk+1),

ŷ(tk) = y(t−k ),
û(tk) = u(t−k ),

(2.28)

where û represents 
ontrol being implemented at the plant and ŷ the most re
ent plant output

measurements that are available at the 
ontroller. In order to express the system in the general

framework of [Goebel 2012℄, 
onsider the augmented state ve
tor η(t) ∈ Rnη
and the sampling-

indu
ed error e(t) ∈ Rne
:

η(t) :=

[
x(t)
xc(t)

]
, e(t) =

[
ey(t)
eu(t)

]
:=

[
ŷ(t)− y(t)
û(t)− u(t)

]
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and a 
lo
k τ whi
h evolves with respe
t to the sampling instants. The dynami
s in (2.28) with

hk ∈ [h, h] 
an be modelled by the following hybrid system:





η̇ = f(η, e)
ė = g(η, e)
τ̇ = 1



 τ ∈ [0, h],

η+ = η
e+ = 0
τ+ = 0



 τ ∈ [h,∞),

(2.29)

with η ∈ Rnη
, e ∈ Rne

, τ ∈ R+. The fun
tions f and g are obtained by dire
t 
al
ulations from

the sampled-data system (2.28) (see [Ne²i¢ 2009℄):

f(η, e) =

[
F (x,Hc(xc) + eu)
F c(xc,H(x) + ey)

]
,

g(η, e) =

[
−∂H
∂x F (x,H

c(xc) + eu)

−∂Hc

∂xc F
c(xc,H(x) + ey)

]
.

It should be noted that η̇ = f(η, 0) is the 
losed loop system without the sampled-data imple-

mentation. The following theorem provides a quantitative method to estimate the MSI, using

model (2.29).

Theorem 2.7 [Ne²i¢ 2009℄ Assume that f and g in (2.29) are 
ontinuous. Suppose there exist

∆̃η, ∆̃e > 0, a lo
ally Lips
hitz fun
tion W : Rne → R+, a lo
ally Lips
hitz, positive de�nite,

radially unbounded fun
tion V : Rnη → R+, a 
ontinuous fun
tion Θ : Rnη → R+, real numbers

L > 0, γ > 0, fun
tions αW , αW ∈ K∞ and a 
ontinuous, positive de�nite fun
tion ̺ su
h that,

for all e ∈ Rne
:

αW (‖e‖) ≤W (e) ≤ αW (‖e‖),
and for almost all ‖η‖ ≤ ∆̃η and ‖e‖ ≤ ∆̃e:

∂W

∂e
g(η, e) ≤ LW (e) + Θ(η),

∂V

∂η
f(η, e) ≤ −̺(‖η‖) − ̺(W (e)) −Θ2(η) + γ2W 2(e).

Finally, 
onsider that 0 < h ≤ h < T (γ,L), with

T (γ, L) :=





1
Lrar
tan(r) γ > L,
1
L γ = L,
1
Lrar
tanh(r) γ < L,

and r =
√∣∣ γ2

L2 − 1
∣∣. Then, for all sampling intervals less than h the set A = {(η, e, τ) : η =

0, e = 0, τ ∈ [0, h]} is Uniformly Asymptoti
ally Stable for system (2.29).

Theorem 2.7 provides an expli
it formulation of the MSI for nonlinear sampled-data systems.

It is appli
able for both 
onstant and variable sampling intervals. Moreover, it has the advantage

of 
onsidering a general 
lass of nonlinear systems. Nevertheless, for pra
ti
al appli
ations it is

not obvious to 
onstru
t the fun
tions V (η), W (e) and Θ(η) whi
h satisfy the hypotheses of the

theorem.
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2.1.2.6 Further reading

In the impulsive system framework 
ontrol design 
onditions have been proposed in [Briat 2013℄.

For observer design 
onditions we point to the works in [Andrieu 2010,Dinh 2015,Ahmed-Ali 2009,

Nadri 2013, Postoyan 2012, Ferrante 2014℄. Some extensions of the hybrid systems approa
h

for sampled-data systems with delay 
an be found in [Fridman 2000, Naghstabrizi 2010℄ and

[Bauer 2012℄.

2.1.3 Dis
rete-time approa
h and 
onvex-embeddings

In this sub-se
tion we present several approa
hes whi
h use the system integration over the

sampling interval and 
onvex embeddings of the transition matrix between sampling times in

order to derive stability 
onditions.

2.1.3.1 Theoreti
al results for LTI systems using the dis
rete-time approa
h

Let us 
onsider the LTI system with sampled linear stati
 state feedba
k (1.12) where hk =
tk+1 − tk takes values in the set T = [h, h]. Re
all the notations xk = x(tk),

Λ(θ) = e

Aθ +

∫ θ

0
e

AsdsBK (2.30)

for θ ∈ R. One 
an verify that the 
losed-loop system (1.12) satis�es

xk+1 = Λ(hk)xk (2.31)

with hk ∈ T = [h, h]. Model (2.31) belongs to the 
lass of dis
rete-time Linear Parameter

Varying (LPV) systems [Rugh 2000,Kamen 1984,Mol
hanov 1989℄. It 
aptures the behaviour of

system (1.12) at sampling times, without 
onsideration of the intersample behavior. However,

in [Fujioka 2009
℄, the following proposition has shown that for LTI sampled-data system, the

asymptoti
 stability in 
ontinuous-time and in dis
rete-time are equivalent.

Proposition 2.8 [Fujioka 2009
℄ Consider the sampled-data system (1.12) with hk = tk+1−tk ∈
[h, h]. For a given x(t0), the following 
onditions are equivalent:

1. limt→∞ x(t) = 0

2. limk→∞ x(tk) = 0.

A simple stability 
riterion whi
h is su�
ient for stability 
an be obtained using 
lassi
al

quadrati
 Lyapunov fun
tions, whi
h are de
reasing at ea
h sample.

Theorem 2.9 [Zhang 2001b℄ The origin of system (2.31) is Globally Uniformly Exponentially

Stable for all sampling sequen
es σ = {tk}k∈N with hk = tk+1 − tk ∈ [h, h], k ∈ N, if there exists

P ≻ 0 su
h that

ΛT (θ)PΛ(θ)− P ≺ 0, ∀θ ∈ T = [h, h]. (2.32)

The LMI (2.32) ensures that the 
andidate Lyapunov fun
tion V (x) = xTPx satis�es the relation

∆V (k) = V (xk+1)− V (xk) < 0, ∀xk 6= 0. (2.33)

29



Chapter 2. State of the art on aperiodi
 sampled-data systems

Note that, similarly to 
onditions (2.14) used for the hybrid system approa
h, the stability


ondition (2.32) represent a set of LMIs that are parametrized by θ ∈ T = [h, h]. This 
ondition
is not a 
omputationally tra
table problem by themselves. Approximate solutions, based on

evaluation of the 
ondition for a �nite set of values of θ have been presented in [Zhang 2001b,

Sala 2005, Skaf 2009℄. A �nite set of su�
ient tra
table numeri
al 
onditions 
an be obtained

using normed-bounded and/or polytopi
 
onvex embeddings of the transition matrix Λ(θ).

2.1.3.2 Tra
table 
riteria

In what follows, we try to give an idea about the manner to solve parametri
 LMIs involving

matrix exponentials su
h as the one in (2.32). First, we present brie�y the approa
h proposed

by Fujioka in [Fujioka 2009a℄. Consider a nominal sampling interval T0 ∈ [h, h]. For a s
alar δ,
the transition matrix Λ(·) satis�es the relation

Λ(T0 + δ) = Λ(T0) + ∆(δ)Ψ(T0) (2.34)

where ∆(δ) :=
∫ δ
0 e

Asds, Ψ(T0) = AΛ(T0) + BK. Using 
lassi
al properties of the matrix expo-

nential [Loan 1977℄, the indu
ed Eu
lidean norm of ∆(δ) 
an be over-bounded

‖∆(δ)‖2 ≤
∫ δ

0
eµ(A)sds (2.35)

where µ(A) is the maximum eigenvalue of

A+AT

2 . System (2.31) 
an be expressed as a nominal

dis
rete-time LTI system with a norm-bounded un
ertainty

xk+1 = Λ(T0)xk +∆(δk)Ψ(T0)xk (2.36)

where δk = hk − T0, for whi
h 
lassi
al H∞ 
riteria [Gahinet 1994℄ 
an be used. A simpli�ed

version of the main result in [Fujioka 2009a℄ is given as follows.

Theorem 2.10 [Fujioka 2009a℄ Let T0 ∈ [h, h] be given. If there exists X ≻ 0 and γ > 0
satisfying

M(T0,X, γ) :=[
Λ(T0) I
Ψ(T0) 0

] [
X 0
0 I

] [
Λ(T0) I
Ψ(T0) 0

]T
−
[
X 0
0 γ2I

]
≺ 0, (2.37)

then (2.32) is satis�ed with P = X−1
for all θ ∈ T (T0, γ) :=

[
h(T0, γ), h(T0, γ)

]
with

h(T0, γ) =





T0 − γ−1, if µ(−A) = 0,
−∞, if µ(−A) ≤ −γ,
T0 −

log(1+γ−1µ(−A))
µ(−A) , otherwise,

(2.38)

h(T0, γ) =





T0 + γ−1, if µ(A) = 0,
∞, if µ(A) ≤ −γ,
T0 +

log(1+γ−1µ(A))
µ(A) , otherwise.

(2.39)

Condition (2.37) is su�
ient for the asymptoti
 stability of system (2.31) under time-varying

sampling intervals hk ∈ [h, h] with h and h given in (2.38) and (2.39), respe
tively. Other norm-
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bounded approximations of the transition matrix Λ(·) exist in the literature [Ballu
hi 2005,

Suh 2008, Kao 2013, Fujioka 2011b, Zhang 2011℄. For example, stability 
onditions have been

provided using the S
hur de
omposition in [Suh 2008℄ while [Zhang 2011℄ uses the Jordan normal

form. In [Fujioka 2011b℄ the transition matrix Λ(T0 + δ) is de
omposed as

Λ(T0 + δ) = Λ(T0) + δL(T0) + ∆2(δ)AL(T0)

with L(T0) = eAT0(A + BK), ∆2(δ) :=
∫ δ
0

∫ ρ
0 e

Asdsdρ, and stability 
onditions are provided by


omputing the indu
ed Eu
lidean norm of ∆2(δ). See also [Kao 2013℄ where stability 
onditions

have been derived using Integral Quadrati
 Constraints (IQC), by studying the positive realness

of ∆(δ). More general Lyapunov fun
tions have been used in [Fujioka 2010b℄.

Alternatively to the use of norm bounded approximations, tra
table numeri
al 
onditions 
an

also be obtained using polytopi
 embeddings of the transition matrix Λ(·) in system (2.31). The

set

W[h,h] := {Λ(θ), θ ∈ [h, h]}

is embedded in a larger 
onvex polytope with a �nite number of verti
es Λi, i ∈ I := {1, · · · , Nv},

W :=

{ Nv∑

i=1

αiΛi |αi ≥ 0, i ∈ I,
Nv∑

i=1

αi = 1

}
, (2.40)

in su
h a way that W[h,h] ⊆ W. Using a polytopi
 embedding, system (2.31) 
an be expressed

as a

xk+1 =

Nv∑

i=1

αi(hk)Λixk, (2.41)

where

∑Nv
i=1 αi(hk) = 1, αi(hk) ≥ 0, i ∈ I. This is a 
lassi
al dis
rete-time system with polytopi


un
ertainty [Daafouz 2001℄. Here

α(hk) =
[
α1(hk) α2(hk) . . . αNv(hk)

]T

represent the bary
entri
 
oordinates of Λ(hk) in the polytope W. The properties of the over-

approximating polytopi
 set W make it possible to derive a �nite number of su�
ient stability


onditions from (2.32), by writing simple LMIs over the polytope verti
es:

P ≻ 0, ΛTi PΛi − P ≺ 0, ∀i ∈ I. (2.42)

One of the advantages of the polytopi
 embedding is the fa
t that it allows the use of parameter

dependent Lyapunov fun
tions [Daafouz 2001,Hetel 2006,Cloosterman 2010℄ Ṽ (x, α) = xTP (α)x,
P (α) =

∑Nv
i=1 αiPi, whi
h lead to re�ned stability 
onditions under a reasonable numeri
al


omplexity:

∃ Pi = P Ti ≻ 0, ΛTi PjΛi − Pi ≺ 0,∀ (i, j) ∈ I × I. (2.43)

The main di�
ulty in 
onstru
ting the polytope W̄ is the exponential dependen
e of the

transition matrix Λ(θ) = eAs +
∫ θ
0 e

AsdsBK in the parameter θ over the the interval [h, h].
Several approa
hes exist for the 
omputation of a 
onvex polytope embedding an un
ertain matrix

exponential. See for example [Olaru 2008, Oishi 2010, Cloosterman 2009, Cloosterman 2010,

Lombardi 2012℄ for te
hniques based on the real Jordan form, [Gielen 2010℄ for a 
onstru
tion

that uses the Cayley-Hamilton theorem and [Cloosterman 2006℄ for an approa
h studying interval

31



Chapter 2. State of the art on aperiodi
 sampled-data systems

matri
es. One may remark that the transition matrix Λ(·) 
an be re-expressed as

Λ(θ) = I +∆(θ) (A+BK) (2.44)

whi
h involves only one un
ertain matrix term ∆(θ) =
∫ θ
0 e

Asds. Then the stability problem


an be addressed by 
onstru
ting a polytopi
 approximation of ∆(θ) for θ ∈ [h, h]. To give an

idea about the manner su
h a 
onvex polytope 
an be 
onstru
ted, let us 
onsider a simple 
ase

where the matrix A has n real eigenvalues λi 6= 0, i ∈ {1, . . . , n} with multipli
ity equal to one,

i.e. where it takes the form

A = T−1




λ1 0 0 . . . 0
0 λ2 0 . . . 0
.

.

.

.

.

.

.

.

.

0 . . . . . . 0 λn


T (2.45)

for some invertible matrix T ∈ Rn×n. Then the un
ertain matrix ∆(θ) takes the form:

∆(θ) = T−1




ρ1(θ) 0 0 . . . 0
0 ρ2(θ) 0 . . . 0
.

.

.

.

.

.

.

.

.

0 . . . . . . 0 ρn(θ)


T (2.46)

where ρi(θ) = 1
λi

(
eλiθ − 1

)
, i = 1, . . . , n. By 
omputing ρmini and ρmaxi the minimum and

maximum values of ρi(θ) over [h, h], the un
ertain matrix ∆(θ) is embedded in a 
onvex polytope

with Nv = 2n verti
es

∆(θ) ∈ 
onv {D1,D2, . . . ,DNv}
:= 
onv

{
T−1diag(ρ1, . . . , ρn)T : ρi ∈ {ρmini , ρmaxi }, i = 1, . . . , n

}
.

Using (2.44), the polytopi
 set (2.40) 
an be 
onstru
ted with Λi = I +Di(A + BK), i ∈ I. A
similar embedding pro
edure 
an be applied in the general 
ase (when the eigenvalues of A have

multipli
ity di�erent than one or when they are 
omplex) - see [Cloosterman 2010℄.

As the numeri
al 
omplexity of the obtained LMI 
onditions depends signi�
antly on the num-

ber of verti
es Nv of the polytopi
 approximation, one of the 
hallenges is to provide a

urate


onvex polytopes while redu
ing the number of verti
es. For the Jordan de
omposition pro
e-

dure, the number of verti
es Nv in
reases exponentially with the order of the system. A method

for redu
ing the number of verti
es has been provided in [Olaru 2008, Lombardi 2012, Lom-

bardi 2009℄. However, the method provides a larger polytopi
 embedding and may result in a


onservative stability 
ondition. The 
hallenge is to �nd a 
onvex embedding that provides a

good trade-o� between in
reased a

ura
y and redu
ed 
omputational 
omplexity. Methods that

are independent of the order of the systems have been proposed by 
ombining polytopi
 embed-

dings with norm bounded approximations [Hetel 2006,Hetel 2008,Donkers 2009,Donkers 2011a℄.

We present brie�y an adaptation of the approa
h based on Taylor series approximation in

[Hetel 2006,Hetel 2008℄, originally used for sampled-data systems with input delay. Note that

the transition matrix Λ(hk) with hk ∈ [h, h] 
an be rewritten as

Λ(hk) = Λ(h) + ∆(ρk)Ψ(h)
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where ρk = hk −h ∈ [0, h− h], ∆(ρ) =
∫ ρ
0 e

Asds and Ψ(h) = AΛ(h)+BK. Using a Taylor series

approximation of the matrix exponential, ∆(ρ) 
an be expressed as

∆(ρ) = TM (ρ) +RM (ρ)

where TM (ρ) =
∑M

i=1
Ai−1ρi

i! is the M th
order Taylor series approximation and RM (ρ) is the

reminder. The pro
edure proposed in [Hetel 2006, Hetel 2008℄ allows to embed TM (ρ) in a


onvex polytope with Nv =M + 1 verti
es

TM (ρ) ∈ 
onv {Ui, i = 1, . . . ,M + 1} , ∀ ρ ∈ [0, h − h],

where U0 = 0, Ui+1 = (h−h)iAi−1

i! + Ui, i = 1, . . . ,M . Furthermore, an upper bound on the

indu
ed Eu
lidean norm of RM (ρ) 
an be 
omputed using the method proposed in [Liou 1966℄.

To obtain an embedding with ‖RM (ρ)‖2 < γR for all ρ ∈ [0, h − h] the approximation order M
must be 
hosen su
h that

‖A‖2 (h− h)

M + 2
< 1

and ∥∥AM
∥∥
2
(h− h)M+1

(M + 1)!

M + 2

M + 2− ‖A‖2 (h− h)
≤ γR.

For this approa
h the number of verti
es is linear in the order M of the Taylor approximation.

Stability 
riteria are obtained in a dire
t manner by 
ombining LMI methods for polytopi


systems with the ones for systems with norm-bounded un
ertainty.

Note that for both norm-bounded and polytopi
 embeddings approa
hes, the a

ura
y of

the approximation may be signi�
antly in
reased by dividing [h, h] into several subintervals and

applying the embedding pro
edure lo
ally [Fujioka 2009a,Oishi 2010,Hetel 2013a,Donkers 2011a℄.

For example, in the 
ase of the norm-bounded embedding used in Theorem 2.10, the idea is to


onsider a grid of r "nominal" sampling intervals {T1 < T2 < · · · < Tr} and to verify the

existen
e of a symmetri
 positive de�nite matrix X and of r parameters γi, i = 1, . . . , r, su
h
that M(Ti,X, γi) ≺ 0 for all i = 1, . . . , r.When this 
ondition is satis�ed, system (2.31) is stable

for any time-varying sampling interval hk ∈ ∪ri=1T (Ti, γi) where T (Ti, γi) =
[
h(Ti, γi), h(Ti, γi)

]

are de�ned using (2.38), (2.39). Furthermore, it has been shown in [Fujioka 2009a℄ that using

this approa
h one 
an approximate the 
ondition (2.32) as a

urately as desired, in the sense

that if the 
ondition (2.32) holds for θ ∈ [h, h], then ne
essarily there exists a matrix X =
P−1

, a su�
iently tight grid of parameters Ti, i = 1, . . . , r and positive s
alars γi, i = 1, . . . , r,
su
h that M(Ti,X, γi) ≺ 0 for all i = 1, . . . , r, and [h, h] ⊂ ∪ri=1T (Ti, γi). Su
h an asymptoti


exa
tness property has also been dis
ussed for other embedding approa
hes [Donkers 2011a,

Oishi 2010, Skaf 2009℄. The main issue is that using 
onvex embeddings the 
onservatism with

respe
t to the quadrati
 stability 
ondition (2.32) 
an be redu
ed to any degree at the 
ost of

in
reased 
omputational 
omplexity. However, the analysis of the asymptoti
 exa
tness property

does not take into a

ount all numeri
al implementation aspe
ts. Most of the methods are

based on the 
omputation of the matrix exponential for nominal sampling intervals, on the use

of the eigenvalue/eigenve
tors of the state matrix A or of its 
hara
teristi
 polynomial, et
.

Computing any of these elements introdu
es approximations [Moler 2003℄ whi
h might in�uen
e

the numeri
al implementation of the embedding. The e�e
t of these approximations on the

a

ura
y of the stability analysis needs to be further analysed.
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2.1.3.3 A dis
rete-time approa
h for nonlinear systems

Results on dis
rete-time approa
hes for the 
ontrol of nonlinear systems with time-varying sam-

pling intervals are quite rare. We present as follows an adaptation of the result from [van de

Wouw 2012℄ whi
h extends earlier stability 
riteria from [Ne²i¢ 2004a, Ne²i¢ 1999, Ne²i¢ 1999℄.

Consider the nonlinear system

ẋ(t) = F (x(t), u(t)) (2.47)

with F (x, u) globally Lips
hitz, i.e. there exists βf > 0 su
h that

‖F (xa, ua)− F (xb, ub)‖ ≤ βf (‖xa − xb‖+ ‖ua − ub‖)

for all xa, xb ∈ Rn and ua, ub ∈ Rm. The 
ontrol takes the form u(t) = uk for all t ∈ [tk, tk+1) and
the sampling interval is bounded hk = tk+1 − tk ∈ T = [h, h], ∀ k ∈ N. The exa
t dis
rete-time

model of the system over the sampling interval is given by

xk+1 = F ehk(xk, uk) := xk +

∫ tk+hk

tk

F (x(s), uk) ds (2.48)

where xk = x(tk). Note however that (2.48) is not known in general sin
e it is rare to obtain an

analyti
 solution to a nonlinear initial value problem. In pra
ti
al problems, approximations are

usually used [Stuart 1998,Ne²i¢ 2004a℄. A simple example is given by the Euler model of (2.47):

xk+1 = xk + hkF (xk, uk) .

Other approximations 
an be found in standard books [Stuart 1998℄ and tutorials [Mona
o 2001,

Mona
o 2007℄. The approa
h in [van de Wouw 2012℄ 
onsiders an approximate model

xk+1 = F ah∗ (xk, uk) , (2.49)

obtained for some nominal sampling interval h∗ ∈ [h, h]. Model (2.49) is assumed to be one-step


onsistent [Stuart 1998℄ with the exa
t dis
rete-time plant, i.e. there exists ρ̂ ∈ K∞ su
h that

‖F ah∗ (x, u)−F eh∗ (x, u) ‖ ≤ h∗ρ̂(h∗) (‖x‖+ ‖u‖) , for all x ∈ Rn, u ∈ Rm It is 
onsidered that the

approximate model (2.49) has been used to design a 
ontroller

uk = Kh∗ (xk) (2.50)

parametrized by the nominal sampling interval h∗ and that the 
losed-loop system (2.49),(2.50)

is asymptoti
ally stable. More formally, it is assumed that there exists a 
andidate Lyapunov

fun
tion for the approximate 
losed-loop system (2.49),(2.50), i.e. a fun
tion Vh∗(x) and αi >
0, i = 1, 2, 3 su
h that the involved 
onditions holds for some r > 1 : α1 ‖x‖r ≤ Vh∗(x) ≤ α2 ‖x‖r
and

Vh∗ (F
a
h∗ (x,Kh∗(xk)))− Vh∗(x)

h
≤ −α3‖x‖r (2.51)

for all x ∈ Rn. Furthermore, the 
ontrol law Kh∗(·) is 
onsidered to be linearly bounded, i.e.

there exists βu > 0 su
h that ‖Kh∗(x)‖ ≤ βu‖x‖ for all x ∈ Rn. The following theorem provides

generi
 results for the robust stability of the exa
t 
losed-loop system

xk+1 = F ehk (xk,Kh∗(xk)) , (2.52)

using the fa
t that the 
ontrol law uk = Kh∗(xk) is a stabilizer for the approximate model (2.49).
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Theorem 2.11 [van de Wouw 2012℄ Consider system (2.52) with hk ∈ [h, h] for all k ∈ N.
Consider the following notation

βa =
(
2 + βu + (1 + max(1, βu))(e

βfh − 1)
)

+h∗ρ̂(h∗)(1 + βu). (2.53)

Assume that the Lyapunov 
andidate fun
tion Vh∗(x) is lo
ally Lips
hitz and there exists βv > 0
su
h that

sup
ζ∈∂Vh∗(x)

‖z‖ ≤ βv‖x‖r

for all x ∈ Rn, where ∂Vh∗(x) denotes the generalized di�erential of Clarke. If there exists

β ∈ (0, 1) su
h that

βvβ
r−1
a

h∗

(
h∗ρ̂(h∗)(1 + βu) + ρh(h

∗,Mh)
)
≤ (1− β)α3 (2.54)

is satis�ed where

ρh(h
∗,Mh) = eβfh

∗
(
(1 + βu)

(
eβfMh − 1

))

with Mh = maxh∈[h,h] |h − h∗|, then there exist c, λ > 0 su
h that ‖xk‖ ≤ c‖x0‖e−λkh. In other

words, system (2.52) is Globally Exponentially Stable, Uniformly for all hk ∈ [h, h] and all k ∈ N.

The above theorem is a natural extension of the result in [Ne²i¢ 1999,Ne²i¢ 2004a℄ for sampled-

data systems with 
onstant sampling intervals. The main 
ondition (2.54) involves two terms.

The �rst term βvβ
r−1
a ρ̂(h∗)(1+βu) re�e
ts the e�e
t of approximatively dis
retizing the nominal

system using a nominal sampling interval h∗; the se
ond one,

βvβ
r−1
a
h∗ ρh(h

∗,Mh) re�e
ts the e�e
t
of un
ertainty in the sampling interval.

2.1.3.4 Further reading

Control design methodologies based on 
onvex embeddingsare given in [Hetel 2006℄, [Hetel 2008℄,

[Cloosterman 2010℄, [Fujioka 2010a℄, [Mustafa 2013℄. See also [Robert 2010℄ for an LPV design of


ontrollers that are adapted in real time to the value of the sampling interval and [Hetel 2011a℄

for the 
ase of systems with delay s
heduled 
ontrollers. Extensions of the dis
rete-time approa
h

for networked 
ontrol systems with s
heduling proto
ols 
an be found in [Donkers 2009,Li 2010,

Donkers 2011a, Li 2014,Cela 2014℄. For model predi
tive 
ontrol of networked 
ontrol systems

see also [Olaru 2008, Gielen 2009, Lombardi 2012℄. Lie algebrai
 
riteria for the analysis of

systems with time varying sampling have been proposed in [Feli
ioni 2008℄ using tools from

[Liberzon 1999℄. A mixed 
ontinuous-dis
rete approa
h has also been proposed in [Li 2011℄.

2.1.4 Input/Output stability approa
h

In this subse
tion we present several methods that study sampled-data systems from a robust


ontrol point of view. The main idea of the Input/Output stability approa
h is to 
onsider

the sampling error as a perturbation with respe
t to a nominal 
ontinuous-time 
ontrol-loop.

Classi
al robust 
ontrol tools are used in order to assess the stability of the sampled-data systems

[Zames 1966,Zhou 1996,Megretski 1997℄. Some of the presented methods are reminis
ent from

the Input/Output stability approa
h used for the analysis of time delay systems [Huang 2000,
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Figure 2.2: Equivalent representation of the sampled-data system, from a robust 
ontrol theory

point of view.

Jun 2001,Ni
ules
u 2001,Gu 2003a,Kao 2004,Fridman 2006,Kao 2007℄, and have been further

developed independently of the time delay approa
h.

2.1.4.1 Basi
 idea

Note that the LTI sampled-data system (1.12) 
an be re-expressed in the form [Mirkin 2007℄

ẋ(t) =
(
A+BK︸ ︷︷ ︸

:=Acl

)
x(t) + BK︸︷︷︸

:=Bcl

(x(tk)− x(t)︸ ︷︷ ︸
:=e(t)

). (2.55)

where Acl 
orresponds to the state matrix of the nominal 
ontinuous-time 
ontrol loop while e(t)
represents the error indu
ed by sampling. An essential fa
t in this approa
h is that the sampling

indu
ed error e(t) = x(tk)− x(t) 
an be equivalently re-expressed as

e(t) = −
∫ t

tk

ẋ(θ)dθ, ∀t ∈ [tk, tk+1). (2.56)

Considering y(t) = ẋ(t) as an auxiliary output for system (2.55), the sampled-data system

(1.12) 
an be represented equivalently by the feedba
k inter
onne
tion of the operator ∆sh :
Ln2e[0,∞) → Ln2e[0,∞), ∆sh : y → e, de�ned by:

e(t) = (∆sh y)(t) = −
∫ t

tk

y(θ)dθ, ∀t ∈ [tk, tk+1), (2.57)

with the system {
ẋ(t) = Aclx(t) +Bcle(t), x(0) = x0 ∈ Rn,
y(t) = Cclx(t) +Dcle(t) = ẋ(t),

(2.58)

where Ccl = Acl = A+ BK and Dcl = Bcl = BK. Note that the nominal system (2.58) is LTI.

It represents the dynami
s of the 
ontinuous-time system with an additive input perturbation

e. The operator ∆sh 
aptures both the e�e
ts of sampling and its variations. An alternative

model 
an also be derived by 
onsidering the a
tuation error eu(t) = K(x(tk) − x(t)) (see

[Fujioka 2009
℄). The stability of the sampled-data system (1.12) 
an then be studied by analysing

the inter
onne
tion (2.57),(2.58).
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2.1.4.2 Small gain 
onditions

To provide 
onstru
tive stability 
onditions, the Small Gain Theorem [Zames 1966,Zhou 1996,

Huang 2000,Gu 2003a℄ 
onstitutes a simple and powerful tool in the robust 
ontrol framework.

Let G : Ln2 [0,∞) → Ln2 [0,∞) be the linear operator des
ribed by the transfer fun
tion

Ĝ(s) = s(sI −Acl)
−1Bcl (2.59)

asso
iated to system (2.58). The operator G 
aptures the behaviour of (2.58) for null initial


onditions. Considering the free response of system (2.58), f(t) = Acle
Acltx0, ∀ t ≥ 0, the

inter
onne
tion (2.57),(2.58) 
an be re-expressed as

{
y = Ge+ f

e = ∆shy
(2.60)

(see Figure 2.2). A dire
t 
onsequen
e of the Small Gain Theorem is the fa
t that if

‖G‖2,2‖∆sh‖2,2 < 1, (2.61)

then the inter
onne
tion (2.60) is L2 stable, i.e. there exist a positive s
alar C su
h that

∫ t

0

(
‖y(θ)‖2 + ‖e(θ)‖2

)
dθ ≤ C

∫ t

0
‖f(θ)‖2 dθ (2.62)

for any t > 0. Here ‖G‖2,2, ‖∆sh‖2,2 denote the indu
ed L2 norms of G and ∆sh, respe
tively
13

.

The inequality (2.61) is known as the small gain 
ondition. Due to the linearity of G, its indu
ed

L2 norm 
an be readily 
omputed [Zhou 1996℄ using the H∞ norm of its transfer fun
tion:

‖G‖2,2 = ‖G‖∞ := sup
ω∈R

σ̄
(
Ĝ(jω)

)
.

Furthermore, for the 
ase of LTI sampled-data systems, L2 stability of the inter
onne
tion (2.60)

implies asymptoti
 stability

14

of the sampled-data 
ontrol loop (1.12):

Theorem 2.12 [Fujioka 2009
℄ Suppose that Acl is Hurwitz. System (1.12) is Uniformly

Asymptoti
ally Stable if the feedba
k inter
onne
tion (2.60) is L2 stable.

Therefore, providing tra
table stability 
onditions for system (1.12) leads to providing an

estimate for the indu
ed L2 norm of the operator ∆sh. An upper bound of this norm has been


omputed in [Kao 2004℄ using a more general un
ertain delay operator:

∆d : y(t) → e(t) = (∆dy)(t) := −
∫ t

t−τ(t)
y(θ)dθ, (2.63)

where τ(t) ∈ [0, h]. The operator ∆sh is a parti
ular 
ase of ∆d with τ(t) = t− tk, ∀t ≥ 0, k ∈ N.

Lemma 2.13 [Kao 2004℄ The L2-indu
ed norm of the operator ∆d in (2.63) is bounded by h.

13

Given an operator G : Ln
2 [0,∞) → Ln

2 [0,∞), its indu
ed L2 norm is de�ned as ‖G‖2,2 := supu 6=0

‖Gu‖L2
‖u‖L2

.

14

For relations with exponential stability see also [Fridman 2014℄.
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Using this property, and the fa
t that the operator ∆d satis�es M∆d = ∆dM for all M ∈ Rn×n,
Mirkin [Mirkin 2007℄ provided the following L2 stability 
onditions

∃M ∈ Rn×n, M ≻ 0 su
h that ‖MĜ(s)M−1‖∞ <
1

h
, (2.64)

whi
h is a 
onsequen
e of the S
aled Small Gain Theorem [Skelton 1998℄. Interestingly, it is also

shown that (2.64) is related to the 
ondition in [Fridman 2004℄. The same LMI 
an be used

to 
he
k both 
onditions. Mirkin then showed that the bound on the L2 indu
ed norm 
an be

enhan
ed by exploiting the properties of ∆sh.

Lemma 2.14 [Mirkin 2007℄The L2-indu
ed norm of the operator ∆sh is bounded by δ0 = 2
πh,

and thus ∫ +∞

0
‖(∆shy)(θ)‖2dθ ≤

∫ +∞

0
δ20‖y(θ)‖2dθ, (2.65)

for all y ∈ Ln2 [0,∞).

This bound on the indu
ed L2 norm of ∆sh is a
tually exa
t and it is attained when there exists

an index k ∈ N su
h that tk+1 − tk = h. This leads to the following su�
ient L2 stability


ondition, improving (2.64):

∃M ∈ Rn×n, M ≻ 0 su
h that ‖MĜ(s)M−1‖∞ <
π

2h
. (2.66)

Note that the upper bound on indu
ed L2 norm of ∆sh 
an also be related to the Wirtinger's

inequalities [Liu 2010℄ used in the time delay approa
h. In pra
ti
e, 
ondition (2.66) is readily

veri�able via standard LMI for the estimation of the H∞ norm of LTI systems [Mirkin 2007,

Skelton 1998,Gu 2003a℄



XAcl +AT

clX
2
πhXBK AT

clY

∗ −Y 2
πhK

TBTY
∗ ∗ −Y


 ≺ 0 (2.67)

to be solved for X,Y ≻ 0 (obtained with Y =M2
).

2.1.4.3 Integral Quadrati
 Constraints

For the 
ase of LTI sampled-data systems (1.12), the properties of the operator ∆sh in (2.57)


an be further exploited in the framework of Integral Quadrati
 Constraints (IQC) [Megret-

ski 1997, Ebihara 2015℄. Less 
onservative stability 
onditions 
an be obtained. While very

general de�nitions of IQCs are available in the literature [Megretski 1997℄, we restri
t ourselves

here to IQCs de�ned by symmetri
 matri
es Π with real elements have been used for stability

analysis. Roughly speaking, the bounded operator ∆sh in (2.57), with input y and output e, is
said to satisfy the IQC de�ned by the symmetri
 matrix Π if

∫ ∞

0

[
y(θ)
e(θ)

]T
Π

[
y(θ)
e(θ)

]
dθ ≥ 0 (2.68)

for all y ∈ Ln2 [0,∞) and e = ∆shy. We present as follows a simpli�ed version of the 
lassi
al

IQC Theorem [Megretski 1997℄ that 
an be used in order to derive stability 
onditions for the

inter
onne
tion (2.60).
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Theorem 2.15 [Megretski 1997℄ Consider the inter
onne
tion (2.60) des
ribing the LTI sampled-

data system (1.12) and the bounded operator ∆sh in (2.57). Suppose that Acl = A+BK is Hurwitz

and assume that there exists a matrix

Π =

[
Π11 Π12

ΠT12 Π22

]
(2.69)

with Π11,Π12,Π22 ∈ Rn×n, Π11 � 0, Π22 � 0, su
h that the operator ∆sh satis�es the IQC

de�ned by Π; there exists ǫ > 0 su
h that

[
Ĝ(jω)
I

]⋆
Π

[
Ĝ(jω)
I

]
� −ǫI, ∀ ω ∈ R. (2.70)

Then the inter
onne
tion (2.60) is L2 stable.

Using Theorem 2.12, the 
onditions of Theorem 2.15 also imply uniform asymptoti
 stability of

the sampled-data system (1.12). Condition (2.70) 
an be 
onverted into a frequen
y independent

�nite dimensional LMI using the Kalman-Yakubovi
h-Popov Lemma [Rantzer 1996℄:

[
AT

clP + PAcl PBcl

BT
clP 0

]
+

[
Ccl Dcl

0 I

]T
Π

[
Ccl Dcl

0 I

]
≺ 0 (2.71)

to be solved for P ≻ 0.
As an example, a simple IQC 
an be obtained dire
tly from Lemma 2.14. Note that inequality

(2.65) implies that ∆sh satis�es the IQC de�ned by

Π =

[(
2h
π

)2
I 0

0 −I

]
. (2.72)

For this IQC, 
ondition (2.70) yields to the standard small gain 
riteria

(
2h

π

)2

Ĝ

⋆
(jω)Ĝ(jω) ≺ I, ∀ ω ∈ R, (2.73)

whi
h 
orresponds to a simple 
ondition on the H∞ norm of G: ‖Ĝ(s)‖∞ < π
2h
.

Fujioka [Fujioka 2009
℄ showed that the operator ∆sh also satis�es the following passivity-like

property.

Lemma 2.16 [Fujioka 2009
℄ The operator ∆sh de�ned in (2.57) satis�es

∫ +∞

0
yT (θ)(∆shy)(θ)dθ ≤ 0, (2.74)

for all y ∈ Ln2 [0,∞).

It is important to note that if ∆sh satis�es several IQC de�ned by matri
es Π1,Π2, . . . ,Πr,
then a su�
ient 
ondition for stability that takes into a

ount all the properties is given by the

existen
e of positive s
alars α1, α2, . . . , αr su
h that 
ondition (2.70) holds with Π = α1Π2 +
α2Π2 + . . . , αrΠr. The properties of ∆sh in Lemma 2.14 and Lemma 2.16 
an be generalized

[Fujioka 2009
℄ using s
aling matri
es 0 � Y ∈ Rn×n, 0 ≺ X ∈ Rn×n and grouped into the

following IQC: ∫ ∞

0

[
y(θ)
e(θ)

]T [
δ20X −Y
−Y −X

] [
y(θ)
e(θ)

]
dθ ≥ 0 (2.75)
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whi
h holds for all y ∈ Ln2 [0,∞) and e = ∆shy with δ0 = 2h
π . Using the integral property (2.75)

and Theorem 2.12, Fujioka [Fujioka 2009
℄ has proposed the following stability 
ondition.

Theorem 2.17 [Fujioka 2009
℄ The system (1.12) is Globally Uniformly Asymptoti
ally Stable

for any sampling sequen
e with tk+1 − tk ≤ h if there exist 0 ≺ P ∈ Rn×n, 0 ≺ X ∈ Rn×n,
0 � Y ∈ Rn×n satisfying

[
AT

clP + PAcl PBcl

BT
clP 0

]
+

[
Ccl Dcl

0 I

]T [
δ20X −Y
−Y −X

] [
Ccl Dcl

0 I

]
≺ 0. (2.76)

Taking into a

ount more properties of the operator ∆sh may lead to less 
onservative results.

Nevertheless, sin
e the analysis is of a frequen
y domain nature, the IQC approa
h is only

appli
able to LTI systems. However, one may note that input delays, several performan
e spe
-

i�
ations and 
lassi
al nonlinearities (se
tor bounded, saturations, et
.) 
an be 
hara
terized

by elementary operators and IQCs [Megretski 1997℄. A more 
omplex system 
an be des
ribed

by an inter
onne
tion of an LTI system and a single blo
k diagonal operator representing the

di�erent perturbing elements. On
e the IQCs for the di�erent perturbing elements are available,

stability of more 
omplex systems is then a rather straightforward matter of de�ning a single

aggregate IQC. This point enhan
es the appli
ability of the IQC approa
h.

2.1.4.4 Further reading

Some of the elements presented in Se
tion 2.1.3 
on
erning the use of norm-bounded approxi-

mations of the matrix exponential [Fujioka 2009a℄ 
an also be interpreted in the Input/Output

approa
h as the appli
ation of the Small Gain Theorem to a dis
rete-time model. Other IQCs


an be found in [Fujioka 2009b,Fujioka 2011a℄. An approa
h based on IQCs for the dis
rete-time

model has been proposed re
ently in [Kao 2013℄. For more general nonlinear networked systems,

approa
hes 
onsidering sampling as a perturbations 
an be found in [Walsh 2001,Ne²i¢ 2004b,

Chen 2014℄. See also the work in [Liberzon 2006℄. The boundedness properties of the sampling

operator ∆sh from Lemma 2.14 from [Mirkin 2007℄ 
an be related with the Wirtinger's inequal-

ities used in the time delay approa
h [Liu 2010, Seuret 2013a, Seuret 2014℄. Motivated by the

approa
h presented in [Fridman 2010℄ in the input delay framework, the sampling e�e
t has been

re
ently des
ribed by a new operator in [Kao 2014℄.

2.2 Sampling as a 
ontrol parameter

In this se
tion we brie�y present the main resear
h dire
tions and some problems 
on
erning the


ase when the sampling interval hk (or equivalently the sequen
e of sampling σ = {tk}k∈N) is

onsidered to be a 
ontrol parameter that 
an be modi�ed in order to ensure desired properties in

terms of stability and resour
e utilization. From the real-time 
ontrol point of view, this formu-

lation 
orresponds to designing a s
heduling me
hanism that triggers the sampler [Velas
o 2003℄.

The problem has attra
ted sporadi
ally the attention of the 
ontrol system's 
ommunity sin
e

the early ages of sampled-data 
ontrol [Jury 1959, Dorf 1962℄. With the spring of event- and

self-triggered 
ontrol te
hniques [Årzén 1999, Åström 1999, Velas
o 2003℄ it has be
ome a very

popular topi
 [Heemels 2012℄.

Let us 
onsider the nonlinear system (1.2) and the 
ontroller (1.3) with a given sampling

sequen
e σ = {tk}k∈N. Clearly, the asymptoti
 stability of system holds when the sampling

sequen
e σ satis�es hk = tk+1 − tk ∈ (0, h̄] for all k ∈ N, where h̄ represents the MSI for whi
h

the system is asymptoti
ally stable under arbitrary sampling. A basi
 problem in designing a
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sampling sequen
e σ = {tk}k∈N is to ensure the stability of the system while optimizing some

Performan
e Index asso
iated to the frequen
y of sampling. Most of the time, sampling sequen
es

are 
ompared in simulation based on the mean sampling interval. Given σ, one possible 
hoi
e

of Performan
e Index to be maximized 
ould be

J (σ) = lim inf
N→∞

1

N

N−1∑

k=0

(tk+1 − tk). (2.77)

Generally, the goal is to �nd sequen
es that ensure stability and have the mean sampling interval

larger then the maximum sampling interval admissible in the periodi
 and arbitrary varying


ase. Using the Performan
e Index (2.77), the following basi
 problem 
an be mathemati
ally

formalized:

� Problem B (Optimal sampling sequen
e): Consider the nonlinear system (1.2) and the


ontroller (1.3). Design a sampling sequen
e σ maximizing the Performan
e Index J (σ)
in (2.77) while ensuring the stability of the 
losed-loop system (1.1),(1.2),(1.3),(1.4).

Various alternative formalizations of Problem B 
an be imagined by 
onsidering other perfor-

man
e indexes or Cost Fun
tions (e.g. Jc(σ) =
∑∞

k=0 e
−(tk+1−tk)

) to be maximized or minimized

(see for instan
e [Hsia 1974,Ma 1976℄ for a �nite horizon formulation). A sto
hasti
 formulation

of the problem 
an be found in [Cogill 2007,Molin 2013℄. Additionally, it is possible to formulate a

more 
omplex problem in whi
h one needs to �nd simultaneously the sampling sequen
e and sys-

tem input, as in the minimum attention 
ontrol formulation [Bro
kett 1997,Donkers 2011b,Mar
-

hand 2013℄.

While the resear
h in the 
ase of arbitrary sampling has rea
hed an advan
ed phase of de-

velopment, Problem B is largely open. Due to the 
omplexity of Problem B, simpli�ed versions

are under study. For example, stability of sampled-data systems over periodi
 sequen
es of sam-

pling has been investigated in [Jury 1959, Li 2010, Seuret 2012℄. The optimization of sampling

sequen
es over a �nite horizon has been 
onsidered sin
e the early works in [Hsia 1974,Ma 1976℄.

For both pra
ti
al and theoreti
al reasons, the design of state-dependent (
losed-loop) sampling

sequen
es, in whi
h the sampling is triggered a

ording to the system state, represents a topi


of interest. Basi
 ideas appeared in the '60s in the 
ontext of adaptive sampling [Dorf 1962,de la

Sen 1996℄ and the topi
 is 
urrently under study in the framework of event-/self-triggered 
on-

trol [Heemels 2012℄.

2.2.1 Event-Triggered (ET) Control

The basi
 idea of event-triggered 
ontrol s
hemes [Årzén 1999℄, [Åström 1999℄, [Åström 2002℄,

[Heemels 2012℄ is to 
ontinuously monitor the system state and to trigger the sampling only when

ne
essary, a

ording to the desired performan
e of the system. A sampling event is generated

when the system's state 
rosses some frontier in the state-spa
e. Let us re-
onsider the hybrid

model of an LTI sampled-data system





ẋ = Ax+BKx̂
˙̂x = 0
τ̇ = 1





[
x, x̂, τ

]
∈ C,

x+ = x
x̂+ = x
τ+ = 0





[
x, x̂, τ

]
∈ D

(2.78)
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where x̂ represents the sampled version of the state and τ the 
lo
k measuring the time sin
e the

last sampling instant. In the 
lassi
al time-triggered sampling 
ontext (2.22), the sets C and D
impli
itly indi
ating the sampling moments are de�ned only a

ording to the 
lo
k variable τ :
when uniform sampling with period T is 
onsidered, C is de�ned by τ ∈ [0, T ] and D by τ = T .
In event-triggered 
ontrol the idea is to de�ne the sampling triggering sets a

ording to the state

variable x and x̂. For example, it may be of interest to trigger only when the error x− x̂ be
omes

too large with respe
t to the system state, i.e. when ‖x(t) − x(tk)‖ ≥ γ‖x(t)‖ where γ > 0 is a

design parameter (see [Tabuada 2007℄). For this example the sets C and D are:

C = {(x, x̂, τ) ∈ Rn × Rn × R : ‖x− x̂‖ ≤ γ‖x‖} ,
D = {(x, x̂, τ) ∈ Rn × Rn × R : ‖x− x̂‖ ≥ γ‖x‖} .

Various other types of triggering 
onditions have been proposed in the literature: send-on-

delta (Lesbegue sampling, absolute triggering) [Åström 2002,Otanez 2002, Cervin 2007℄, send-

on-energy [Mi±kowi
z 2005℄, send-on-area [Miskowi
z 2007℄, Lyapunov sampling [Velas
o 2009,

Seuret 2013b,Fiter 2015,Postoyan 2015℄, et
.

Note that in event-triggering 
ontrol, the sampling sequen
e σ = {tk}k∈N is impli
itly de�ned

as:

tk+1 = min {t : t ≥ tk, (x, x̂, τ) ∈ D} . (2.79)

The value h∗ for whi
h tk+1 − tk ≥ h∗ for all k ∈ N and all initial 
onditions is 
alled the

minimum inter-event time. In the general 
ase the impli
it de�nition of the sampling sequen
e

does not guarantee anything about the "well posedness" of the 
losed-loop system in terms of

existen
e of solutions, or 
on
erning the existen
e of a minimum interval between two 
on-

se
utive events. In parti
ular 
ases of event-triggered 
ontrol Zeno phenomena may o

ur,

i.e. the minimum inter-event time h∗ is zero

15

[Mar
hand 2013, Donkers 2012, Borgers 2014℄.

This represents an important drawba
k sin
e the system is 
onverging to a 
ontinuous-time


ontrol implementation instead of a sampled-data one. To avoid it, various systemati
 de-

sign methodologies for event-triggered 
ontrol with stability guarantees and no Zeno behav-

ior have been proposed: see [Tabuada 2007,Wang 2008,Wang 2009, Lunze 2010℄ based on the

Input/Output stability approa
h, [Donkers 2012, Seuret 2013b, Forni 2014, Postoyan 2015℄ us-

ing hybrid models, [Yue 2013, Peng 2013, Fiter 2015℄ based on the time-delay approa
h. See

also [Mi
hiels 2005℄ where the delay has a stabilizing a�e
t on 
ontrol. Note that Zeno phe-

nomena 
an be easily avoided by in
luding restri
tions on the 
lo
k variable when de�ning the

jump set D. For example, one may add next to the 
onstraints on x and x̂, a 
onstraint that

guarantees that sampling o

urs only if τ is greater than some minimum desired inter-exe
ution

time [Forni 2014,Fiter 2015,Postoyan 2015℄. Additionally, the triggering 
ondition may be veri�ed

on a dis
rete sequen
e of time, as in the Periodi
 Event-Trigger (PET) 
ontrol [Heemels 2013,Pos-

toyan 2013℄, or in [Eqtami 2010℄, where the event-triggered 
ontrol problem is formulated dire
tly

in dis
rete-time.

2.2.2 Self-Triggered (ST) Control

The term self-triggered 
ontrol was initially proposed by [Velas
o 2003℄ in the 
ontext of real

time systems. The re
ent arti
les [Wang 2009, Anta 2010℄ have attra
ted the attention of the


ontrol system 
ommunity. Note that basi
 ideas related to self-triggered 
ontrol appeared in

the '60s (see [Dorf 1962,Hsia 1974,de la Sen 1996℄ and the referen
es therein). We point also to

15

the system requires in�nitely fast sampling
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the pioneering work in [Hsu 1987℄ where elements 
on
erning the use of Lyapunov arguments for

the design of self-triggering 
ontrol laws 
an be found.

In self-triggering, at ea
h sampling time it is 
omputed both the sampled-data 
ontrol value

(to be sent to the a
tuators) and the next sampling instant. The main idea is to use the value

of the state at sampling times and knowledge about the system dynami
s in order to predi
t

the next time instant a 
ontrol update is needed. A self-triggering 
ontrol s
heme is des
ribed

by a sampling fun
tion h : Rn → R+ \ {0} whi
h, at ea
h sampling time tk, k ∈ N, indi
ates
the value of the 
urrent sampling interval a

ording to the system state. The sampling sequen
e

σ = {tk}k∈N is formulated expli
itly as

tk+1 = tk + h (xk) , (2.80)

where xk = x(tk). Very often, the synthesis of a self-triggered 
ontrol s
heme is based on a pre-

existing event-triggered 
ontrol me
hanism. In this 
ontext, it is aimed at designing the sampling

fun
tion by pre-
omputing, at ea
h sampling instant, an estimation of the next time a sampling

event has to be generated. For the example of the LTI system (1.12) with the event-triggered


ontrol 
ondition ‖x(t)− x(tk)‖ ≥ γ‖x(t)‖, one may want to design the sampling fun
tion:

h(xk) = max {θ > 0 : ‖(Λ(θ)− I)xk‖ < γ‖Λ(θ)xk‖} (2.81)

where Λ(θ) = eAθ +
∫ θ
0 e

AsdsBK. An important issue is the 
omplexity of the algorithms used

for the online implementation of the sampling fun
tion h(x). Even for the simple 
ase (2.81), the

algorithms may be quite 
omplex sin
e they involve solving hyperboli
 inequalities. In pra
ti
e,

simple approximations of su
h sampling fun
tion must be used.

Self-triggered 
ontrol me
hanisms with stability guarantees have been proposed in [Wang 2009,

Wang 2010,Anta 2010,Forni 2010,Benedetto 2013℄ using the Input/Output stability approa
h and

in [Tiberi 2013℄ using dis
rete-time Lyapunov fun
tions. In the following 
hapter we will presents

results from [Fiter 2012a, Fiter 2015, Fiter 2012b℄ using 
onvex embeddings and the time-delay

system approa
h.

However, the potential of the approa
hes used for the arbitrary sampling problem is far from

being fully exploited. The tools presented in Se
tion 2.1 may be useful for various aspe
ts in

Problem B: deriving new event-/self-triggering me
hanisms, providing less 
onservative estima-

tions of the minimum inter-event time h∗, et
.

2.3 Con
lusion

This 
hapter has presented some of the basi
 
on
epts and re
ent resear
h dire
tions in sampled-

data systems: time-delay, hybrid, dis
rete-time and input-output models; Lyapunov and fre-

quen
y domain methods for the stability for systems with arbitrary sampling intervals. For

the 
ase of linear systems, it is shown that several pioneering approa
hes exist in the litera-

ture. These approa
hes share the advantage of using LMIs, thus they are numeri
ally tra
table.

The maximum sampling interval that guarantees the stability 
an be estimated a

urately using

dis
rete-time methods. The robustness with respe
t to perturbation and the behaviour of the

system between sampling times 
an be taken into a

ount using time-delay, impulsive approa
hes

or Input/Output approa
hes. However, the analyzis problem is still largely open and it is still a


hallenging problem to extend these methods to the nonlinear 
ase where the main di�
ulty is to

provide 
onstru
tive methods for the quantitative estimation of the maximum sampling interval

that preserves stability.
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It is to be emphasized that this overview is far from being exhaustive. The resear
h topi
 of

systems with time-varying sampling is still wide open and 
ontinuously growing. In parti
ular,

the 
ontrol of sampling is presently re
eiving a lot of attention, as it was shown in Se
tion 2.2.

It is worth noti
ing that the subje
t lies at the interse
tion of four important axes in Control

Theory (time-delay, hybrid, LPV and input-output approa
hes) and it has a stimulating impa
t.

As we will see in the following 
hapter, methods and tools 
an be transferred from one approa
h

to another.
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Chapter 3

Main 
ontributions

In this 
hapter, we will present our main 
ontributions to the study of aperiodi
 sampled-data

systems. Over the last years, our resear
h e�ort bas been dedi
ated to the analysis of various


lasses of systems (LTI, LPV, bilinear, polynomial, nonlinear a�ne) with both 
ontinuous and

swit
hing 
ontrollers (see Figure 3.1 for an illustration). We have tried to address the main 
hal-

Figure 3.1: Illustration of main 
ontributions: we have studied various 
lasses of sampled-data

systems (linear, bilinear, nonlinear a�ne) as time-delay systems, hybrid systems, input-output

inter
onnexions or dis
rete-time (LPV) systems.
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lenges of sampled-data systems from all possible angles. We have used the 
lassi
al approa
hes

(delay, hybrid, dis
rete-time, input/output inter
onnexions) for more 
omplex 
lasses of systems

than the ones presented in the literature and we have proposed new approa
hes when needed.

We present �rst the 
ase of linear systems in order to show how the 
onservatism in the analysis


an be redu
ed. Furthermore, we show a 
ontinuous-time approa
h based on 
onvex embeddings

that is able to 
ombine the advantages of both time-delay methods (inter-sampling behaviour,

robustness to perturbations) and dis
rete-time ones (numeri
al a

ura
y). The approa
h is ap-

plied to the self-triggering 
ontrol problem allowing to optimize the design of sampling maps.

Next, we present some 
ontributions to the 
ase of bilinear systems, whi
h represents a simple


lass of nonlinear systems, and 
an be 
onsidered as an intermediate between linear and non-

linear systems. Two approa
hes are being 
onsidered for bilinear systems: the �rst one relies

on the hybrid dynami
al systems framework, while the se
ond one is based on an extension

of the Input/Output approa
h using tools inspired from the Dissipativity Theory. After that,

we will 
onsider a more general 
lass of a�ne nonlinear systems, with aperiodi
 sampled-data


ontrol. The main 
ontribution is to show how the frequen
y domain methods existing in the

Input / Output stability approa
h 
an be extended in a 
onstru
tive manner to more general

nonlinear systems a�ne in the input. At last, we will dis
uss the sampled-data implementation

of dis
ontinuous 
ontrollers, as en
ountered in relay feedba
k 
ontrol and swit
hed systems.

3.1 Linear Time Invariant sampled-data system

As we have seen in Chapter 1, the 
ontrol of sampled-data systems is a 
hallenging problem, even

for the 
ase of Linear Time Invariant systems. As follows, some 
ontributions to these systems

are presented

16

.

3.1.1 Dis
rete-time analysis based on quasi-quadrati
 Lyapunov fun
tions

Let us re
all the LTI sampled-data system





ẋ(t) = Ax(t) +BKx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn.

(3.1)

In what follows we 
onsider that hk takes values in a 
ompa
t set T ⊂ R+. Consider the

dis
rete-time model asso
iated to (3.1)

xk+1 = Λ(hk)xk (3.2)

with

Λ(θ) = e

Aθ +

∫ θ

0
e

AsdsBK (3.3)

for θ ∈ R. For hk arbitrarily varying in the 
ompa
t set T , system (3.2) is a dis
rete-time Linear

Parameter Varying (LPV) system [Rugh 2000,Kamen 1984,Mol
hanov 1989℄, with the transition

matrix Λ(hk) depending on the sampling interval hk. Various methods are available for studying

the stability of dis
rete-time LPV systems. For polytopi
 LPV systems, stability 
riteria have

16

The results presented in this se
tion have been developed in the 
ontext of the PhD Thesis of Christophe

FITER as well as in 
ollaboration with Prof. Jean-Pierre Ri
hard, Prof. Wilfrid PERRUQUETTI and Ass. Prof.

Alexandre KRUSZEWSKI.
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been proposed by analysing the joint spe
tral radius [Blondel 2005℄ or by 
he
king the existen
e of

quasi-quadrati
 [Mol
hanov 1989,Hu 2010℄, parameter dependent [Daafouz 2001,Peau
elle 2000,

Peau
elle 2001℄, path-dependent [Lee 2006℄, non-monotoni
 [Megretski 1996, Kruszewski 2008,

Ahmadi 2008℄ and 
omposite quadrati
 [Hu 2010℄ Lyapunov fun
tions. Lie algebrai
 
onditions


an be found in [Gurvits 1995℄, [Liberzon 2003a℄. However, system (3.2) is not a polytopi
 LPV

system but an LPV system where the transition matrix Λ(hk) takes values in a 
ompa
t set

W := {Λ(θ), θ ∈ T }. (3.4)

The following theorem from [Hetel 2011b℄ addresses the 
ase of (3.2) and provides ne
essary

and su�
ient stability 
onditions.

Theorem 3.1 [Hetel 2011b℄ Consider the 
ontinuous-time system (3.1) and the dis
rete-time

model (3.2) with T a 
ompa
t subset of (0,∞). The following statements are equivalent:

1) The equilibrium point x = 0 of (3.2) is Globally Uniformly Exponentially Stable.

2) There exist a P ≻ 0 and N > 0 su
h that

(
N∏

i=1

Λ(θi)

)T
P

(
N∏

i=1

Λ(θi)

)
− P ≺ 0, (3.5)

for any N -length sequen
e {θi}Ni=1 with values in T , i.e. the fun
tion V̄ (x) = xTPx satis�es

V̄ (xk+N ) < V̄ (xk) for all xk 6= 0, k ∈ N.
3) There exists a positive de�nite fun
tion V : Rn → R+

stri
tly 
onvex, homogeneous (of the

se
ond order), V (x) = xTP[x]x, with P[·] : Rn → Rn×n, P[x] = PT
[x] = P[ax], ∀x 6= 0, a ∈ R, a 6= 0

su
h that :

V (x)−max
θ∈T

V (Λ(θ)x) > 0, ∀x 6= 0. (3.6)

Condition 2) in Theorem 3.1 
orresponds to the existen
e of a non-monotoni
 Lyapunov

fun
tion V̄ (x) = xTPx, [Megretski 1996, Kruszewski 2008, Ahmadi 2008℄ whi
h is de
reasing

every N samples. If the system is stable, then ne
essarily there exists a �nite N and a matrix P
su
h that (3.5) holds. However, 
he
king the existen
e of a matrix P satisfying (3.5) for a given

N represents a set of LMIs whi
h are su�
ient only for stability. Note that 
onsidering the 
ase

N = 1 redu
es to the 
lassi
al quadrati
 stability 
ondition

∃ P ≻ 0, ΛT (θ)PΛ(θ)− P ≺ 0, ∀θ ∈ T = [h, h]. (3.7)

Condition 3) 
orresponds to the existen
e of a quasi-quadrati
 Lyapunov fun
tion [Hu 2010,

Mol
hanov 1989℄ V (x) = xTP[x]x. Theorem 3.1 shows the equivalen
e between quasi-quadrati


Lyapunov fun
tions and non-monotoni
 Lyapunov fun
tions and provides ne
essary and su�
ient


onditions for the exponential stability of system (2.31). Note that the theorem goes beyond the

results in [Megretski 1996, Kruszewski 2008,Mol
hanov 1989, Hu 2010℄ where only the 
ase of

polytopi
 LPV system is treated. In fa
t the result in Theorem 3.1 applies for any dis
rete-time

LPV system with transition matri
es de�ned on 
ompa
t sets.

Taking a �nite N and a larger 
onvex polytope embedding with a �nite number of verti
es

Λi, i = 1, · · · , Nv ,

W :=

{ Nv∑

i=1

αiΛi |αi ≥ 0, i ∈ I,
Nv∑

i=1

αi = 1

}
, (3.8)
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in su
h a way that the set W in (3.4) is embedded in W, W ⊆ W, Condition 2) in Theorem 3.1

leads to a numeri
ally tra
table LMI problem.

Given k ∈ N, let Ik, denote the set {1, 2, . . . , k} ⊂ N. For k ∈ N, let us denote by

Sk =
{
ψ : ψ = {µi}k−1

i=0 , µi ∈ INv ,∀i = 0, . . . , k − 1
}

the set of all k � length sequen
es with values in INv .

The following theorem provides 
onstru
tive LMI 
onditions for stability analysis.

Theorem 3.2 [Hetel 2011b℄ Consider system (3.1), the dis
rete-time model (3.2), the set of

verti
es Z = {Λi, i = 1, . . . , Nv} of W in (3.8) and the set

Y (Z) =
{
Y : Y = ΠN−1

i=0 Zµi , Zµi ∈ Z, µi ∈ INv

}
. (3.9)

If there exist a positive integer N and a matrix P = P T ≻ 0 that satisfy

P ≻ Y TPY, ∀ Y ∈ Y (Z) , then (3.10)

1) the equilibrium point x = 0 of (3.2) is Globally Uniformly Exponentially stable;

2) there exists a quasi-quadrati
 Lyapunov fun
tion with the form

V (x) = max
i∈IM

xTLix, M = Nv
N−1, (3.11)

whi
h is stri
tly de
reasing along the solutions of (3.2). The matri
es Li, i ∈ IM , are obtained

using an enumeration of the elements in the set

Ω(N) =




N−1∑

j=1

(
Πjr=1Zµr

)T
P
(
Πjr=1Zµr

)
+ P, ψ = {µr}N−1

r=1 ∈ SN−1



 .

The test involves a �nite number of LMI (NN
v + 1) that are su�
ient for stability. The

a

ura
y of the stability 
hara
terization from 
onditions (3.10) mainly depends on two fa
tors:

the length N of the horizon of analysis, and the a

ura
y of the polytopi
 embedding W des
ribed

in (3.8) (for more details on su
h 
onvex embedding see the survey in Chapter 1). The amount

of 
onservatism introdu
ed in the approa
h 
an be tuned a

ording to these parameters.

Example 3.3 Consider an LTI system (3.1) des
ribed by :

A =

[
−0.5 0
0 3.5

]
, B =

[
1
1

]
and K =

[
1.02 −5.62

]
.

Λ(h) is S
hur for any sampling interval h ∈ (0, 0.46]. However, swit
hing among di�erent values

of h in this interval may lead to an unstable behaviour: one 
an noti
e that although both Λ(0.25)
and Λ(0.45) are S
hur, the transition matrix

Φ = Λ(0.25)Λ(0.25)Λ(0.45)

has the eigenvalues outside the unit 
ir
le. This implies that when the sampling period varies

in a periodi
 pattern 0.25 → 0.25 → 0.45 → 0.25 → 0.25 → 0.45 . . . , the 
losed-loop system is
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unstable. A similar unstable behaviour 
an be observed for h ∈ {0.1, 0.43} sin
e the transition

matrix

Φ = (Λ(0.1))6 Λ(0.43)

is not S
hur. Consider that the sampling interval arbitrary swit
hes among two values {0.1, hmax}
with hmax a parameter to estimate.

Using the set of LMI (3.10), it is possible to �nd a quasi-quadrati
 Lyapunov fun
tion of the

form (3.11) for N = 7 up to hmax = 0.41 (whi
h is very 
lose to the value 0.43 for whi
h an

unstable sampling path exists). For hmax = 0.41, using the existing LMI solvers, it is impossible

to �nd a 
ommon quadrati
 Lyapunov fun
tion [Fujioka 2009a,Sala 2005℄ or a poly-quadrati
 one

[Hetel 2007,Cloosterman 2010℄. In fa
t, the maximum values of hmax that 
an be obtained from

quadrati
 and poly-quadrati
 Lyapunov fun
tions are hmax = 0.36 and hmax = 0.39, respe
tively.
It is also interesting to 
ompare the hmax (
omputed using the LMIs (3.10)) with the maximum

upper-bounds obtained in re
ent papers: hmax = 0.165 [Naghshtabrizi 2008℄, 0.198 [Seuret 2012℄,

0.204 [Fujioka 2009
℄, or 0.259 [Fridman 2010℄.

Compared with 
ontinuous-time approa
hes su
h as the one based on time delay or impulsive

models, dis
rete-time methods pro�t by involving the integration pro
edure that impli
itly takes

into a

ount the 
ontinuous-time evolution of the sampling indu
ed delay / sampling 
ounter.

Furthermore the a

ura
y 
an also be tuned a

ording to the desired 
omputational 
omplexity.

This is why, fa
ed to numeri
al ben
hmarks, they seem to be less 
onservatives. However,

dis
rete-time methods also present disadvantages with respe
t to the 
ontinuous-time analysis.

The main drawba
k is the fa
t that they do not take into a

ount the system behaviour in between

sampling times. Besides they be
ome numeri
ally ina

urate when the sampling interval tends

to zero.

Example 3.4 Consider a 
ontinuous-time system (3.1) des
ribed by the following matri
es:

A =

[
1 15

−15 1

]
, B =

[
1
1

]
, K = [5.33 − 9.33] .

The unstable open-loop matrix A has 
omplex eigenvalues 1 ± 15i. The gain is obtained by

pole assignment, in su
h a way that the ideal 
losed-loop system is stabilized and os
illations are

redu
ed : the matrix A + BK has the eigenvalues at −1 ± i. When the sampling interval takes

values in the set T = {0.91, 0.95} it is possible to �nd a 
ommon quadrati
 Lyapunov fun
tion

that is stri
tly de
reasing at the sampling times. Yet, this dis
rete-time Lyapunov fun
tion is

in
reasing in between the sampling instants (see Figure 3.2). In this 
ase a dis
rete-time analysis

would be misleading from a performan
e point of view (i.e. in terms of the de
ay rate).

The previous example shows that it is desirable to provide one method whi
h is able to treat

the analysis problem in 
ontinuous-time (for inter-sampling issues) and use the advantages of

dis
rete-time methods (in terms of 
onservatism redu
tion). Su
h a method will be presented in

the following se
tion.

3.1.2 Continuous-time analysis based on 
onvex embeddings

In the standard dis
rete-time analysis, the stability is guaranteed without 
onsideration of the

intersample behaviour. In pra
ti
e it is important to provide an estimate of the system's per-

forman
e in between sampling instants. Furthermore, one of the drawba
ks of the dis
rete-time

analysis is the fa
t that the transition matrix Λ(θ) is 
lose to identity when θ is small. For small

49



Chapter 3. Main 
ontributions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Lyapunov function

time

continuous−time
discrete−time

Figure 3.2: Evolution of the Lyapunov fun
tion for dis
rete-time representation in Example 3.4.

The fun
tion is stri
tly de
reasing at the sampling instants. However, it is in
reasing in between

the sampling interval.

values of the lower bound of the sampling interval the existing stability 
onditions 
an be di�
ult

to handle numeri
ally. To avoid this numeri
al drawba
k, a 
ontinuous-time approa
h based on


onvexi�
ation arguments has been proposed in [Hetel 2011b,Fiter 2012a℄ for LTI systems. The

approa
h takes into a

ount the relation

x(t) = Λ(t− tk)x(tk), ∀ t ∈ [tk, tk+1), k ∈ N, (3.12)

still referring to the de�nition of the transition matrix

Λ(t− tk) = I +

∫ t−tk

0
eAsds(A+BK)

of system (3.1).

Lemma 3.5 (adapted from [Fiter 2012a℄) Consider system (3.1) with T = (0, h]. Given a

positive s
alar λ, if there exist a matrix P = P T ≻ 0, su
h that

[
Λ(θ)
I

]T [
ATP + PA+ 2λP PBK

KTBTP 0

] [
Λ(θ)
I

]
≺ 0,∀θ ∈ [0, h], (3.13)

then the origin of (3.1) is Globally Exponentially Stable for any arbitrary sampling sequen
e with

tk+1 − tk ∈ (0, h]. Furthermore, the fun
tion V (x) = xTPx satis�es the relation

V̇ (x(t)) ≤ −2λV (x(t))

along the system's solutions.
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The lemma presents su�
ient 
onditions for exponential de
ay of a quadrati
 Lyapunov

fun
tion along the solutions of the 
ontinuous-time system (3.1) using the exa
t expression of

the transition matrix Λ(.). Similarly to the 
lassi
al dis
rete-time approa
h, 
ondition (3.27) is

a parametri
 LMI whi
h is not a 
omputationally tra
table by itself. However, it 
an be redu
ed

to a �nite number of LMI 
onditions using a polytopi
 embedding of the transition matrix Λ(θ)
for θ ∈ [0, h].

Theorem 3.6 (adapted from [Hetel 2011b℄) Consider system (3.1) with T = (0, h]. Assume that

there exists a 
onvex polytope

W̃ := conv{Λ̃1, Λ̃2, · · · , Λ̃Nv}. (3.14)

su
h that Λ(θ) ∈ W̃, ∀ θ ∈ [0, h]. Given a positive s
alar λ, if there exist matri
es P = P T ≻ 0,
G1, G2 solution to

[
ATP + PA+ 2λP +G1 +GT1 PBK −G1Λ̃i +GT2

KTBTP − Λ̃Ti G
T
1 +G2 −G2Λ̃i − Λ̃Ti G

T
2

]
≺ 0, (3.15)

for all i = 1, . . . , Nv then the origin of (3.1) is Globally Exponentially Stable for any arbitrary

sampling sequen
e with tk+1 − tk ∈ (0, h]. Furthermore, the fun
tion V (x) = xTPx satis�es the

relation

V̇ (x(t)) ≤ −2λV (x(t))

along the system's solutions.

The previous theorem provides 
onstru
tive 
onditions for 
he
king the exponential stability

of a sampled-data system with performan
e guarantees for the system's behaviour in between

sampling times. However, 
onditions (3.15) are not feasible in the dead-beat 
ontrol 
ase, where

for some θ ∈ [0, h], Λ(θ) has eigenvalues at zero. A less 
onservative approa
h, 
ombining 
onvex

embeddings with tools for time delay systems, has been proposed in [Hetel 2011b,Fiter 2012a℄,

using the Lyapunov-Razumikhin method [Razumikhin 1956℄. The originality of this approa
h

is the fa
t that it is not ne
essary to require the exponential de
ay V̇ (x(t)) ≤ −λV (x(t))
everywhere along the system's solutions.

Proposition 3.7 (adapted from [Fiter 2012a℄). Consider system (3.1) with T = (0, h]. Given

t ≥ 0 and x0 ∈ Rn, let ϕ(t, x0) denote the solution of the open-loop system

ẋ = Ax+BKx0

at time t, with the initial 
ondition x(0) = x0, i.e. ϕ(t, x0) = Λ(t)x0. Given s
alars α > 1 and

0 < λ ≤ ln(α)

2h
, if there exist a quadrati
 fun
tion V (x) = xTPx, P = P T ≻ 0, su
h that for all

x0 ∈ Rn, for all t ∈ [0, h],
d

dt
V (ϕ(t, x0)) + 2λV (ϕ(t, x0)) ≤ 0 (3.16)

whenever

αV (ϕ(t, x0)) ≥ V (x0) (3.17)

then the origin of (3.1) is is Globally Exponentially Stable for any arbitrary sampling sequen
e

with tk+1 − tk ∈ (0, h].
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t
t0 t1 t2 t3

V (x(t2))

V (x(t2))
α

Figure 3.3: Illustration of the Lyapunov-Razumikhin approa
h: the derivative of V (x(t)) has to
be negative only at time instants t ∈ [tk, tk+1) for whi
h V (x(t)) ≥ 1

αV (x(tk)) . The approa
h

ensures that V (xk+1) < V (xk). However, V is not required to be monotonously de
reasing over

the sampling interval.

Conditions (3.16),(3.17) in Proposition 3.7 ensure that

V̇ (x(t)) ≤ −2λV (x(t)) (3.18)

is required only at times t ∈ [tk, tk+1) for whi
h

V (x(t)) ≥ 1

α
V (x(tk)) .

This means that (3.18) has to be satis�ed only when the system's solutions are outside a target

level set de�ned a

ording to the value of V (.) at sampling times (a graphi
al illustration is given

in Figure 3.3). α 
an be seen as a design parameter that 
an be 
hosen in order to enfor
e some

performan
e. The smaller α is, the less restri
tive the provided stability 
onditions will be. When

α tends to in�nity, the 
onditions of Proposition 3.7 redu
e to the 
lassi
al stability 
ondition

V̇ (x(t)) ≤ −2λV (x(t)) for all t ∈ [tk, tk+1). When α tends to 1 the provided 
ondition ensure

only stability but not attra
tivity. If λ is 
hosen to be null and 
ondition (3.16) is enfor
ed to be

stri
t, asymptoti
 stability is granted. Using Proposition 3.7, the following stability parametri


LMI 
ondition is obtained.

Lemma 3.8 (adapted from [Fiter 2012a℄) Consider system (3.1) with T = (0, h]. Given positive

s
alars α > 1, 0 < λ ≤ ln(α)

2h
if there exist a matrix P = P T ≻ 0 and a s
alar ǫ ≥ 0, su
h that

Φ(P, θ) =

[
Λ(θ)
I

]T [
ATP + PA+ (2λ+ ǫα)P PBK

KTBTP −ǫP

] [
Λ(θ)
I

]
≺ 0,∀θ ∈ [0, h], (3.19)
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then the origin of (3.1) is Globally Exponentially Stable for any arbitrary sampling sequen
e with

tk+1 − tk ∈ (0, h].

The 
onditions of Lemma 3.8 
an be redu
ed to a �nite number of LMI 
onditions using a

polytopi
 embedding of the transition matrix Λ(θ) for θ ∈ [0, h], similarly to the 
ase treated in

Theorem 3.6.

Theorem 3.9 [Hetel 2011b℄ Consider system (3.1) with T = (0, h]. Assume that there exists a


onvex polytope

W̃ := conv{Λ̃1, Λ̃2, · · · , Λ̃Nv}. (3.20)

su
h that Λ(θ) ∈ W̃, ∀ θ ∈ [0, h]. If there exist matri
es P = P T ≻ 0 G1, G2 and ǫ ≥ 0 solution

to [
ATP + PA+ ǫP +G1 +GT1 PBK −G1Λ̃i +GT2
KTBTP − Λ̃Ti G

T
1 +G2 −ǫP −G2Λ̃i − Λ̃Ti G

T
2

]
≺ 0, (3.21)

for all i = 1, . . . , Nv then the origin of (3.1) is Globally Asymptoti
ally Stable for any arbitrary

sampling sequen
e with tk+1 − tk ∈ (0, h].

Note that 
onditions (3.21) 
an be expressed as a 
lassi
al optimization problem that 
an

be solved using a line sear
h algorithm and LMI solvers. The theorem ensures that, within the

sampling interval, the Lyapunov-Razumikhin fun
tion V (x) = xTPx is always less than its value

at sampling times. However, it is not monotonously de
reasing. It 
an be shown numeri
ally

that this approa
h is less 
onservative than several 
ontinuous-time approa
hes in the literature.

In fa
t, this stability test is 
omparable to the one provided in dis
rete-time using a quadrati


Lyapunov fun
tion. The advantage with respe
t to the dis
rete-time approa
h is the fa
t that

intersampling behaviour is expli
itly taken into a

ount and that a sampling interval tending to

zero 
an be 
onsidered as well. A less 
onservative approa
h has been proposed in [Fiter 2012a℄.

Example 3.10 (Example 3.4 revisited) Consider a 
ontinuous-time system (3.1) des
ribed by

the following matri
es:

A =

[
1 15

−15 1

]
, B =

[
1
1

]
, K = [5.33 − 9.33] .

In order to 
onstru
t a polytopi
 set embedding Λ(θ), we use the method proposed in [Hetel 2007℄

based on a Taylor series expansion. We use a uniform partition of the interval [0, h] into 10

subintervals and apply lo
ally the embedding method (4th order development). Using Theorem

3.6, a quadrati
 Lyapunov fun
tion 
an be found up to h = 0.09 (see Figure 3.4). For this

example the matrix Λ(θ) is singular for θ ≈ 0.092 whi
h shows that the obtained h is 
lose to the

theoreti
al bound for quadrati
 Lyapunov fun
tions.

The methods in [Mirkin 2007℄, [Naghshtabrizi 2008℄, [Fujioka 2009
℄ and [Fridman 2010℄

show that the system is stable for h = 0.014, h = 0.033, h = 0.07 and h = 0.12, respe
tively.
Theorem 3.9 proves the asymptoti
 stability for θ ∈ [0, 0.14]. Note that using the dis
rete-time

approa
h (Theorem 3.2), we are able to show the stability for any sequen
e with tk+1 − tk ∈
[0.001, 0.15]. This means that Theorem 3.9 is almost as e�
ient as the dis
rete-time approa
h,

with the additional advantage that it takes into a

ount the intersample behavior and very small

sampling intervals. Comparing now the number of LMI de
ision variables, [Mirkin 2007℄ and

[Fujioka 2009
℄ have 0.5(n2+n)+m2+m = 5 variables, [Naghshtabrizi 2008℄ has 3.5n2+1.5n = 17
while [Fridman 2010℄ has 8n2+n = 34. In Theorem 3.9 there are 0.5(n2+n)+2n2 = 11 variables
involved in Nv + 1 = 51 LMI 
onstraints.
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Figure 3.4: Simulation for an arbitrary sequen
e of sampling intervals with h = 0.09 for the

system in Example 3.10.

3.1.3 Extension to the sampling 
ontrol problem

As follows we present an extension of the previously presented methodology for the problem of

designing stabilizing sampling sequen
es (Problem B in Chapter 2). Consider the following LTI

sampled-data system





ẋ(t) = Ax(t) +BKxk, ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn.

(3.22)

In what follows we 
onsider that the sampling interval hk is a 
ontrol parameter that 
an be

modi�ed. We are interested in the design of feedba
k sampling me
hanisms

hk = τ(xk), ∀ k ∈ N, (3.23)

where τ : Rn → R+ is a sampling fun
tion su
h that δmin ≤ τ(x) ≤ δmax, for stri
tly positive

s
alars δmin < δmax. This 
ontrol 
on�guration is usually 
alled self-triggered 
ontrol. The main


ontribution is to use tools for the robust stability analysis in order to optimize the design of

sampling maps for the 
ontrolled sampling problem.

The following proposition provides su�
ient stability 
onditions for the inter
onne
tion be-

tween the sampled-data system (3.22) and the sampling map (3.23).

Proposition 3.11 (adapted from [Fiter 2012a℄). Consider system (3.22) with the sampling map
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(3.23). For t ≥ 0 and x0 ∈ Rn, let ϕ(t, x0) denote the solution of the open-loop system

ẋ = Ax+BKx0

at time t, with the initial 
ondition x(0) = x0. Given positive s
alars α > 1, 0 < λ ≤ ln(α)
2δmax

, if

there exist a quadrati
 fun
tion V (x) = xTPx, P = P T ≻ 0, su
h that for all x0 ∈ Rn,

d

dt
V (ϕ(t, x0)) + 2λV (ϕ(t, x0)) ≤ 0, ∀ t ∈ [0, τ(x0)] (3.24)

whenever

αV (ϕ(t, x0)) ≥ V (x0) (3.25)

then the origin of (3.22),(3.23) is Globally Exponentially Stable.

Furthermore, for any sampling fun
tion τ̃ : Rn → R+, with τ̃(x) ∈ [δmin, τ(x)], the origin of

(3.22) with hk = τ̃(xk) is Globally Exponentially Stable.

This result is an extension of the Lyapunov-Razumikhin approa
h from Proposition 3.7 to

the 
ase of 
ontrolled sampling. Using this approa
h, the fun
tion V (x) = xTPx satis�es

V (xk+1) < V (xk),∀k ∈ N.

The theorem ensures that V (x(t)) ≤ V (xk),∀t ∈ [tk, tk+1). However, V (x(t)) is not restri
ted
to be monotonously de
reasing over the sampling interval.

In order to provide tra
table design 
onditions the following result is ne
essary.

Proposition 3.12 (adapted from [Fiter 2012a℄) Consider system (3.22) with the sampling map

(3.23). Given positive s
alars α > 1, 0 < λ ≤ ln(α)
2δmax

if there exist a matrix P = P T ≻ 0, a s
alar

ǫ ≥ 0, assume that there exist a quadrati
 fun
tion V (x) = xTPx, P = P T ≻ 0 and a positive

s
alar ǫ su
h that for all x ∈ Rn, for all θ ∈ [0, τ(x)],

xTΦ(P, θ)x ≤ 0, (3.26)

with

Φ(P, θ) =

[
Λ(θ)
I

]T [
ATP + PA+ (2λ+ ǫα)P PBK

KTBTP −ǫP

] [
Λ(θ)
I

]
, (3.27)

and

Λ(θ) = I +

∫ θ

0
e

sAds(A+BK). (3.28)

Then the origin of (3.22),(3.23) is is Globally Exponentially Stable.

Furthermore, for any sampling fun
tion τ̃ : Rn → R+, with τ̃(x) ∈ [δmin, τ(x)], the origin of

(3.22) with hk = τ̃(xk) is Globally Exponentially Stable.

This result has several important 
onsequen
es for the design of sampling maps τ(x). First, for
any given matrix P = P T ≻ 0 and pres
ribed maximum sampling interval δmax, the proposition
motivates the design of sampling maps of the form

τ(x) = max
{
ρ ∈ R : ρ ≤ δmax, x

TΦ(P, θ)x < 0,∀θ ∈ [0, ρ]
}

(3.29)

whi
h, by de�nition, ensure that 
ondition (3.26) holds. Se
ond, if there exists P and ǫ solution
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to the set of linear matrix inequalities

Φ(P, θ) ≺ 0, ∀θ ∈ [0, h∗]

for pres
ribed positive s
alars h∗, α and λ ≤ ln(α)
2δmax

, the 
ondition

xTΦ(P, θ)x < 0,

is satis�ed for any x 6= 0 and all θ ∈ [0, h∗]. From the de�nition of τ in (3.29), this implies that

the sampling fun
tion is lower bounded by h∗. The following result is obtained.

Corollary 3.13 Consider system (3.22). Given positive s
alars h∗, δmax ≥ h∗, α > 1, 0 < λ ≤
ln(α)
2δmax

let there exist a matrix P = P T ≻ 0 and a s
alar ǫ ≥ 0, su
h that

Φ(P, θ) =

[
Λ(θ)
I

]T [
ATP + PA+ (2λ+ ǫα)P PBK

KTBTP −ǫP

] [
Λ(θ)
I

]
≺ 0,∀θ ∈ [0, h∗]. (3.30)

Then

� the 
ontrol-loop (3.22), (3.23), (3.29) has a minimum inter-event time of at least h∗, i.e.
the sampling instants {tk}k∈N satisfy

tk+1 − tk ≥ h∗, ∀ k ∈ N;

� system (3.22), (3.23), (3.29) is Globally Exponentially Stable;

� given δmin ∈ (0, h∗], for any sampling fun
tion τ̃ : Rn → R+, with τ̃(x) ∈ [δmin, τ(x)], the
origin of (3.22) with hk = τ̃(x) is Globally Exponentially Stable.

One may remark that the 
onditions in Corollary 3.13 involve elements that are similar to

the ones used for robust stability analysis. Note that the expression of Φ in (3.30) is the same as

the one in (3.19) from Lemma 3.8. This means that the same optimization tools 
an be used for

both the estimation of the maximum sampling interval preserving stability under an arbitrary

sampling and for designing a sampling map while optimizing the minimum inter-event time.

Then the design of a stabilizing sampling map τ̃ satisfying the 
onditions in Corollary 3.13 
an

be addressed in two main steps:

� optimize the parameters P and ǫ whi
h enlarge the minimum inter-event time h∗ based on

LMIs;

� for given parameters P and ǫ, provide a lower approximation τ̃ of the sampling fun
tion τ
in (3.29).

Several numeri
al tools based on 
onvex embeddings have been proposed in [Fiter 2012a℄ for

solving the set of LMIs (3.30) and for designing sampling fun
tions τ̃ approximating the map τ
in (3.29). The approa
h has been further extended to deal with perturbations in [Fiter 2014b,

Fiter 2015℄.

Example 3.14 (Example 3.3 revisited) Consider the following system :

ẋ(t) =

[
−0.5 0
0 3.5

]
x(t) +

[
1
1

]
Kx(tk),
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Figure 3.5: State-angle dependent sampling fun
tion τ for di�erent de
ay rates λ (from top

to bottom, λ = 0, 0.01, 0.05, 0.30, 0.60) as fun
tion of the angle θ in the polar 
oordinates

x = reiθ.

K =
[
−1.02 5.62

]
.

Using the numeri
al methods in [Fiter 2012a℄, we 
an obtain a mapping of the state spa
e

that enlarges the minimum inter-event time for di�erent values λ of the de
ay rate. For ea
h

de
ay rate λ, after �xing δmax, we set the performan
e parameter α > 1 (see Proposition 3.11)

as small as possible and su
h that λ ≤ ln(α)
2δmax

. The state dependent sampling fun
tions obtained

o�ine and ensuring the stability of the system for di�erent de
ay rates are presented in Figure

3.5.

For a 
onstant sampling greater than Tmax = 0.469s the dis
rete-time dynami
 matrix is not

S
hur, so the system be
omes unstable. However, with the proposed te
hnique, we 
an go beyond

the limit Tmax for some regions of the state spa
e (up to 1s for λ = 0).

Figure 3.6 (resp. Figure 3.7) shows simulation results with λ = 0 (resp. λ = 0.05) and a

random initial state. It �rst shows the sampling intervals (blue/pie
ewise 
onstant 
urve), with

the lower-bound of the o�ine 
omputed state dependent sampling fun
tion (red/lower horizontal

line), and the limit Tmax of the periodi
 
ase (green/upper horizontal line), before showing the

LRF evolution. The sampling times are represented by the red dots on ea
h graph.

In Figure 3.6 (λ = 0), one 
an see that the number of a
tuations over the 20s time interval

is 31 instead of 43 with Tmax. For any (tested) initial 
ondition in the simulation, the average

sampling time 
onverges to Taverage ≃ 0.726s ≃ 155%Tmax.

For a given de
ay-rate λ > 0, the maximal 
onstant sampling ensuring the exponential stability

is given by

T λmax = argmax{T > 0,− ln(|eigmax|)
T

≥ λ} < Tmax

, where eigmax is the eigenvalue of Λ(T ) with greatest modulus. In the simulation of Figure 3.7

(λ = 0.05), we 
an observe that

T λ=0.05
average over 20s

= 0.486s > Tmax = 0.469s > T λ=0.05
max = 0.457s
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Figure 3.6: Inter-exe
ution times τ(x(tk)) and LRF V (x) = xTPx for a de
ay rate λ = 0.
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Figure 3.7: Inter-exe
ution times τ(x(tk)) and LRF V (x) = xTPx for a de
ay rate λ = 0.05.

.

This means that it is possible to sample less in average than with the maximal periodi
 sampling

Tmax while still ensuring asymptoti
 or exponential stability. Although we 
an not guarantee that

this will always be the 
ase, the state-dependent sampling presents some advantages 
ompared to
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periodi
 sampling:

- It ensures some 
onvergen
e performan
e (exponential stability for a given de
ay-rate λ, or
asymptoti
 stability if λ = 0), whereas 
onstant sampling with Tmax only ensures marginal sta-

bility and doesn't give any hint about the inter-sampling state behaviour.

- It guarantees robustness regarding possible �u
tuations of the sampling period, whi
h is in-

herent to pra
ti
al appli
ations (due to s
heduling issues for example). The state-dependent

sampling approa
h ensures the system's stability for any time-varying sampling period satisfying

0 < δ ≤ τ̃(t, x) ≤ τ(x), for all t ∈ R+ and for all x ∈ Rn.

Example 3.15 Consider the Bat
h Rea
tor system from [Mazo Jr. 2009℄:

ẋ(t) =




1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10


x(t) +




0 0
5.67 0
1.13 −3.14
1.13 0


u(t),

K =

[
0.1006 −0.2469 −0.0952 −0.2447
1.4099 −0.1966 0.0139 0.0823

]
.

Using the numeri
al methods in [Fiter 2012a℄, a sampling map has been derived for a de
ay

rate λ = 0 and δmax = 1s. This state spa
e mapping (in dimension 4) provides a pre
ise

knowledge of the sampling fun
tion τ (whi
h varies from τ∗
sub

= 0.4409 to 0.988. In 
omparison,

the value of the maximal allowable 
onstant sampling Tmax is 0.5534s. Using this mapping,

we obtain the simulations shown in Figure 3.8. The number of a
tuations over the �rst 10s
time interval (see Figure 3.8) is 17, whi
h 
an be 
ompared to the number of updates presented

in [Mazo Jr. 2009℄ (32 in the best presented 
ase), and the obtained average sampling time is

Taverage = 0.5898 > Tmax. An illustration of the sampling map in polar 
oordinates is given in

Figure 3.9.
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Figure 3.8: Example 3.15: Inter-exe
ution times τ(x(tk)) and LRF V (x) = xTPx for a de
ay

rate λ = 0.

3.2 Sampled-data 
ontrol of bilinear systems

In this se
tion, the stability problem is 
onsidered for sampled-data bilinear systems

17

. Bilinear

systems [Mohler 1974, Elliott 2009℄ represent one of the most simple 
lass of nonlinear a�ne

systems. They are systems of ordinary di�erential equations of the form

ẋ(t) = A0x(t) +

m∑

i=1

[u(t)]iNix(t) +B0u(t), ∀t ≥ t0, (3.31)

where A0 ∈ Rn×n, B0 ∈ Rn×m and Ni ∈ Rn×n, i = 1, . . . ,m. The state ve
tor is x(t) ∈ Rn and

the 
ontrol input is u(t) ∈ Rm. Here we use the notation [u(t)]i to denote the ith elements of

the ve
tor u(t). More generally, over this se
tion we will use the notation [χ]i to denote the ith

elements of a ve
tor χ.

Systems of the form (3.31) are linear with respe
t to the system state or to the 
ontrol

variable, but not in both of them jointly. The term A0x is 
alled the drift, B0u is the additive


ontrol and

∑m
i=1[u]iNix is the multipli
ative 
ontrol. Bilinear models appear naturally in a large

variety of appli
ations [Mohler 1974℄. They 
an also be used as approximations to more 
omplex

nonlinear systems [Elliott 2009℄. Various 
ontrol methodologies have been proposed for bilinear

systems. Constru
tive approa
hes for the design of linear [Mohler 1991,Andrieu 2013℄, quadrati


[Gutman 1981℄, division [Mohler 1991℄ or sliding mode 
ontrollers [Al-Shamali 2007℄ 
an be found

in the literature. LMI 
riteria have been proposed for the design of a lo
ally stabilizing linear state

feedba
k in [Andrieu 2013,Olalla 2011,Amato 2009,Valmorbida 2013℄. Intuitively, the stability

is preserved under a sampled-data implementation if the sampling frequen
y is su�
iently high.

17

The results presented in this se
tion have been developed in the 
ontext of the PhD Thesis of Hassan OMRAN,

in 
ollaboration with Prof. Jean-Pierre Ri
hard and Fran
oise LAMNABHI-LAGARRIGUE (DR, CNRS).
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Figure 3.9: Illustration of the sampling map in Example 3.15 in polar 
oordinates.

However, there is a la
k of formal tools for the analysis of bilinear sampled-data systems whi
h

provide a quantitative estimation of the Maximum Sampling Interval (MSI) preserving stability.

As follows, several approa
hes providing an estimation of the MSI will be presented for the 
ase

of a linear state feedba
k 
ontroller with an aperiodi
 sampled-data implementation.

3.2.1 Hybrid system approa
h

Consider the bilinear system (3.31). We suppose that the following assumptions hold:
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A.1 The 
ontrol is a pie
ewise-
onstant 
ontrol law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1),

with a set of sampling instants {tk}k∈N satisfying:

0 < ǫ ≤ tk+1 − tk ≤ h, ∀k ∈ N, (3.32)

where h is a given positive s
alar.

A.2 The pair A0, B0 is stabilizable, and the linear feedba
k gain K ∈ Rm×n
is 
al
ulated

so that the system (3.31) with the 
ontinuous state feedba
k u(t) = Kx(t) has a lo
ally

asymptoti
ally stable equilibrium point at x = 0. The a
tual domain of attra
tion (a


onne
ted neighbourhood of x = 0) is denoted D0.

A.3 The state variables are subje
t to 
onstraints de�ned by a polytopi
 set P ⊂ D0:

P = conv{v1, v2, . . . , vp} (3.33)

= {x ∈ Rn : aTj x ≤ 1, j = 1, 2, . . . , r} (3.34)


orresponding to an admissible set in the state-spa
e.

Under these assumptions, we obtain the 
losed-loop sampled-data system:

ẋ(t) =
(
A0 +

m∑

i=1

[Kx(tk)]iNi

)
x(t) +B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (3.35)

System (3.35) may also be written as follows

ẋ(t) = Ã[x(t), e(t)]x(t) +Be(t), ∀t ∈ [tk, tk+1) (3.36)

with

e(t) = x(tk)− x(t),

Ã[x, e] := A0 +B0K +
m∑

i=1

[K(x+ e)]iNi, (3.37)

and

B = B0K. (3.38)

The goal is to provide 
onditions that guarantee the asymptoti
 
onvergen
e of the system

(3.35) solutions to the origin.

In the framework of [Goebel 2012℄, the hybrid model of the bilinear sampled-data system is

determined by

ẋ = f(x, e) = Ã[x, e]x+Be

ė = g(x, e) = −Ã[x, e]x −Be
τ̇ = 1



 τ ∈ [0, h]

x+ = x
e+ = 0
τ+ = 0



 τ ∈ [ǫ, h]. (3.39)
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Two methods are to be 
onsidered for analysing the stability of system (3.39). First, we

introdu
e a method that is based on the appli
ation of results for general nonlinear sampled-

data systems in [Ne²i¢ 2009℄ (Method 1). Next, to avoid the use of 
onservative bounds in the

previous method, we look dire
tly for a Lyapunov fun
tion by formalizing the 
onditions as LMIs

(Method 2). In both of these methods, we will be dealing with lo
al asymptoti
 stability.

3.2.1.1 Method 1: adaptation of a result on general nonlinear sampled-data systems

Considering the polytope P in (3.33), de�ne the matri
es

Aj = A0 +B0K +

m∑

i=1

[
Kvj

]
i
Ni, j = 1, . . . , p. (3.40)

The following theorem proposes stability 
onditions using an adaptation of the results from

Theorem 2.7 for the 
ase of bilinear systems.

Theorem 3.16 [Omran 2016b℄ Consider the bilinear sampled-data system (3.39), the polytope

P in (3.33), and a fun
tion

h∗(γ, L) :=





1
Lrar
tan(r), γ > L
1
L , γ = L
1
Lrar
tanh(r), γ < L

(3.41)

with

r =

√
∣∣ γ2
L2

− 1
∣∣

(3.42)

where L is given by

L =
1

2
max{−λmin(BT +B), 0} (3.43)

and γ is the solution to the following optimization problem:

γ = min
√
ρ (3.44)

satisfying the 
onstraints ∃P ∈ Rn×n a symmetri
 positive de�nite matrix , ∃ρ > 0 and ∃α > 0,
su
h that

Mlj =

[
ATl P + PAl +

1
2 (A

T
l Aj +ATj Al) + αI PB

∗ (α − ρ)I

]
≺ 0,

∀l, j ∈ {1, 2, ..., p}. (3.45)

Assume that the sampling intervals are stri
tly bounded by h∗(γ, L), i.e. h < h∗(γ, L). Then,

for the bilinear sampled-data system (3.39), the set {(x, e, τ) : x = 0, e = 0, τ ∈ [0, h̄]} is Lo
ally

Uniformly Asymptoti
ally Stable.

In this method, the Maximum Sampling Interval is 
al
ulated by the expression (3.41), based

on L and γ. L is 
al
ulated analyti
ally, whereas γ is found by solving LMI 
onditions. The

optimization problem is a minimization of γ′ be
ause for any 
onstant L, h∗(·, L) is a stri
tly

de
reasing fun
tion. Note that sin
e γ does not depend on L, and from the 
ontinuity of h∗(γ, ·):
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h∗(γ, 0) = lim
L→0

h∗(γ, L) = lim
L→0

ar
tan(
√∣∣ γ2

L2 − 1
∣∣)

√∣∣γ2 − L2
∣∣

=
π

2γ
.

The stability 
onditions presented in this theorem are based on the generi
 inequalities from

Theorem 2.7 in [Ne²i¢ 2009℄. Our 
ontribution is to provide a 
onstru
tive manner to apply this

result to the 
ase of bilinear systems. We provide expli
it forms of H(x, e), W (e), V (x), and
we �nd L, γ that gives the upper bound on Maximum Sampling Interval. We provide as well,

an LMI formulation that allows us to obtain su�
ient stability 
ondition. Note that in order to

obtain LMI based stability 
onditions the approa
h has been adapted to the bilinear 
ase: the

fun
tion H(·, ·) used here has been modi�ed to depend both on the error e(t) and the state x(t),
while in [Ne²i¢ 2009℄ it is only a fun
tion of x.

3.2.1.2 Method 2: dire
t Lyapunov fun
tion approa
h

In the previous method, the stability 
onditions are obtained using upper estimations of the

derivative of a Lyapunov fun
tion. Su
h upper estimations may be found 
onservative. In order

to avoid them, we provide as follows a se
ond method whi
h evaluates dire
tly the derivative of

a Lyapunov fun
tion.

Theorem 3.17 [Omran 2016b℄ Consider the bilinear sampled-data system (3.39). Suppose

that Maximum Sampling Interval is bounded by a value h∗, i.e. h ≤ h∗. Assume that there

exist symmetri
 positive de�nite matri
es P,Q,X, Y ∈ Rn×n, su
h that the following LMIs are

satis�ed

[
ATl P + PAl +X PB −ATl Q

∗ −BTQ−QB − 1
h∗Q+ Y

]
≺ 0,

∀l ∈ {1, 2, ..., p}. (3.46)

[
ATl P + PAl +X PB −ATl Q exp(−1)

∗ [−BTQ−QB − 1
h∗Q] exp(−1) + Y

]
≺ 0,

∀l ∈ {1, 2, ..., p}. (3.47)

Then the set {(x, e, τ) : x = 0, e = 0} of the bilinear sampled-data system (3.39) is Lo
ally

Uniformly Asymptoti
ally Stable.

The theorem is based on the existen
e of a Lyapunov fun
tion

U(x, e, τ) = V (x) +W (τ, e) (3.48)

with V (x) = xTPx, and W (τ, e) = exp(−τh∗ )e
TQe. In this method the Maximum Sampling

Interval is found by solving a set of LMIs for the maximum value possible of h∗. The existen
e
of a solution to the LMI 
onditions, guarantees the existen
e of a Lyapunov fun
tion that will

yield the asymptoti
 stability. Note that the proposed 
onditions dire
tly study the derivative of

the Lyapunov fun
tion. Numeri
al examples will show the 
onservatism redu
tion in 
omparison

with the approa
h in Method 1. Note that both the approa
h of Method 1 and Method 2
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are robust not only to the sampled-data implementation but also to variations of the sampling

intervals.

Example 3.18 As follows we present a numeri
al 
omparison of the two proposed methods.

Consider the following bilinear system, des
ribed by the matri
es

A0 =



−0.5 1.5 4
4.3 6.0 5.0
3.2 6.8 7.2


 , B0 =



−0.7 −1.3
0 −4.3
0.8 −1.5


 ,

N1 =



−1 0 0
0 0 0
0 0 0


 , N2 =



0 1 0
0 0 0
0 0 0


 .

A 
ontinuous-time state feedba
k 
ontroller has been 
omputed [Tarbourie
h 2009℄ in order to

lo
ally stabilize the origin of the bilinear system

K =

[
0.0016 0.0035 0.0034
2.2404 3.2676 5.9199

]
.

The 
ontroller was proven to establish the lo
al stability for the bilinear system (in the 
ontinuous-

time 
ase), inside an ellipsoidal region D0. We 
onsider a lo
al polytopi
 region P ⊂ D0

P = [−1.35,+1.35] × [−0.5,+0.5] × [−0.5,+0.5].

Using Method 1, we found that the system is lo
ally stable if h < h∗ = 2.7 × 10−3
. This was


al
ulated from (3.41) for L = 29.79, and γ = 563.3. The other variables in the optimization

problem were α = 5.84, and

P =



281.3 210.6 882.2
210.6 622 565.1
882.2 565.1 3688.3


 .

Using Method 2, we found that the sampled-data system is lo
ally stable for a larger MSI, h ≤
h∗ = 12× 10−3

. The LMIs in (3.46) and (3.47) have a solution for this value of MSI with

P =



1.2722 0.5769 3.8769
0.5769 2.4533 1.1283
3.8769 1.1283 16.9212


 Q =



5.6140 8.1180 14.7162
8.1180 12.0092 21.2460
14.7162 21.2460 39.7534


 .

The results illustrate the redu
tion of 
onservatism in Method 2 with respe
t to Method 1.

Simulations show that the system is unstable for a larger sampling intervals. However, it is not


lear how to improve the method in order to obtain a larger estimate of the MSI.

3.2.2 Input / Output approa
h

In the following, we present a di�erent approa
h for the analysis of sampled-data bilinear system.

The method is based on the extension of the frequen
y domain 
riteria from [Mirkin 2007,

Fujioka 2009
℄ to the 
ase of bilinear systems.
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Let us remark that system (3.35) 
an be re-expressed as

ẋ(t) =
(
A0 +B0K +

m∑

i=1

[Kx(tk)]iNi

︸ ︷︷ ︸
A(x(tk))

)
x(t) +B0K︸ ︷︷ ︸

B

(x(tk)− x(t)︸ ︷︷ ︸
w(t)

)

whi
h 
an be further expressed by the feedba
k 
onne
tion of the system

G :=

{
ẋ(t) = A(x(tk))x(t) +Bw(t)

y(t) = C(x(tk))x(t) +Dw(t)
(3.49)

C(x(tk)) = A(x(tk)) = A0 +B0K +

m∑

i=1

[Kx(tk)]iNi, D = B = B0K (3.50)

with the operator ∆sh : y → w de�ned by

w(t) = (∆sh y)(t) = −
∫ t

tk

y(τ)dτ, ∀t ∈ [tk, tk+1). (3.51)

We re
all that the operator ∆sh has been studied in the 
ontext of LTI sampled-data systems

[Fujioka 2009
℄, [Mirkin 2007℄ and has two important properties. The �rst one 
on
erns the gain,

and the se
ond is a passivity-type one (see Se
tion 2.1.4). It was shown in [Mirkin 2007℄ that the

operator is bounded on Ln2 [0,∞). This property is based on the fa
t that for any X = XT ≻ 0,
v ∈ Ln2 [0,∞):

∫ t

tk

(∆shv)
T (τ)X(∆shv)(τ)dτ ≤ δ20

∫ t

tk

vT (τ)Xv(τ)dτ, ∀t ∈ [tk, tk+1). (3.52)

with δ0 =
2
πh. The passivity-type property given in [Fujioka 2009
℄ is based on the fa
t that for

any Y = Y T ≻ 0, v ∈ Ln2 [0,∞)

∫ t

tk

vT (τ)Y (∆shv)(τ)dτ ≤ 0, ∀t ∈ [tk, tk+1). (3.53)

In the LTI 
ontext, the two properties lead to LMI 
onditions for stability. However, these


onditions are based on frequen
y domain 
riteria, and on the use of Kalman-Yakubovi
h-Popov

lemma. The appli
ation of these te
hniques is restri
ted to the LTI 
ase.

The main idea in [Omran 2013℄ is to re-interpret the properties of the operator ∆sh in terms

of "supply" fun
tions S
(
y,w

)
su
h that

∫ t

tk

S
(
y(θ), w(θ)

)
dθ ≤ 0,∀t ∈ [tk, tk+1). (3.54)

For the 
ase of bilinear system, the properties (3.52), (3.53) 
an be used in order to show that

for any XT = X ≻ 0 and Y T = Y ≻ 0, the sampled-data system satis�es the 
onstraint

∫ t

tk

S (ẋ(s), x(tk)− x(s)) ds ≤ 0, ∀t ∈ [tk, tk+1), (3.55)

66



3.2. Sampled-data 
ontrol of bilinear systems

where

S(ẋ(t), x(tk)− x(t)) =

[
ẋ(t)

x(tk)− x(t)

]T [−δ20X Y
Y X

] [
ẋ(t)

x(tk)− x(t)

]
. (3.56)

Inspired by the Dissipativity Theory [Brogliato 2007℄, the relation (3.55) 
an be useful to prove

an invarian
e property when there exists quadrati
 fun
tion V (x) = xTPx, with P = P T ≻ 0,
su
h that

d

dt
V (x(t)) ≤ S(ẋ(t), x(tk)− x(t)),∀ t ∈ [tk, tk+1). (3.57)

When this relation holds, V (x(t)) ≤ (x(tk)) for all ∀ t ∈ [tk, tk+1). For the 
ase of bilinear

sampled-data systems (3.35) this leads to su�
ient stability 
onditions that 
an be 
he
ked

using LMIs.

Theorem 3.19 [Omran 2014b℄ Consider system (3.35). Assume that there exist symmetri


positive de�nite matri
es X,Y, P ∈ Rn×n, and matri
es P2, P3 ∈ Rn×n su
h that the following

optimization problem is feasible

γ∗ = min
Ej≥0,Mq<0

γ, ∀j ∈ {1, 2, ..., r}, ∀q ∈ {1, 2, ..., p}, (3.58)

with

Ej =

[
γ aTj
aj P

]
(3.59)

and



ATq P2 + P2Aq P − P T2 +ATq P3 P T2 B

P − P2 + P T3 Aq −P3 − P T3 + δ20X P T3 B − Y
BTP2 BTP3 − Y −X


 ≺ 0 (3.60)

where the verti
es {Aq}q∈{1,2,··· ,p} are given in (3.40), and {aj}j∈{1,2,...,r} are given in (3.33). The

equilibrium x = 0 of the system (3.35) is then Lo
ally Asymptoti
ally Stable for any arbitrary

sampling sequen
e with tk+1 − tk ≤ h.
An estimate of a domain of attra
tion is given by the ellipsoid

E(P, c∗) := {x ∈ Rn : xTPx ≤ c∗} ⊂ P (3.61)

with c∗ = 1/γ∗.

For given polytope P and MSI h, the 
onditions in the previous theorem are LMIs. Note that

the 
onditions only require the pair (A0, B0) to be stabilizable. Numeri
al examples illustrating

the method are given below.

Example 3.20 (Example 3.18 revisited) Consider the bilinear sampled-data system de�ned by

A0 =



−0.5 1.5 4
4.3 6.0 5.0
3.2 6.8 7.2


 ; B0 =



−0.7 −1.3
0 −4.3
0.8 −1.5


 ; N1 =



−1 0 0
0 0 0
0 0 0


 ; N2 =



0 1 0
0 0 0
0 0 0


 .

Using 
lassi
al methods, the linear state feedba
k

K =

[
0.0016 0.0035 0.0034
2.2404 3.2676 5.9199

]
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Figure 3.10: The polytope (blue boxes), and the 
orresponding region of stability E(P, c∗).

Table 3.1: The estimation of the MSI that guarantees the lo
al stability of the system in Exam-

ple 3.20.

Theorem 3.16 Theorem 3.17 Theorem 3.19

MSI (ms) 5.6 13.8 51

was proven to establish the lo
al stability for the 
ontinuous-time bilinear systems, inside an

ellipsoidal region. Consider the box

P = [−1.35,+1.35] × [−0.5,+0.5] × [−0.5,+0.5].

Our obje
tive here is to �nd a MSI for whi
h the lo
al stability of the aperiodi
ally bilinear

sampled-data system is guaranteed. Using the method introdu
ed in Theorem 3.19, we �nd that

the LMI 
onditions in (3.60) are feasible for h = 51 ms, with

P = 103



34.27 10.82 92.73
10.82 50.43 28.41
92.73 28.41 394.23


 .

An estimate of the domain of attra
tion E(P, c∗) is given by (3.61) for c∗ = 0.1652 (see Figure

3.10). Considering the initial state x0 = [−0.8 − 0.2 + 0.25]T , two evolutions of the state are

shown in Figure 3.11 and Figure 3.12. In Figure 3.11, a random sequen
e of sampling periods

with h = 51 ms was used for simulations. The stability is ensured as the initial state is lo
ated

inside E(P, c∗). In Figure 3.12, a uniform sampling is 
onsidered, with a sampling period of

89 ms. We 
an noti
e that the sampled-data system be
omes unstable.

Considering the same box P, other methods are used to �nd the MSI that ensures the stability,
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Figure 3.11: State evolution for the bilinear sampled-data system in Example 3.20, with a variable

sampling whi
h is bounded by h = 51 ms.
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Figure 3.12: State evolution for the bilinear sampled-data system in Example 3.20, with uniform

sampling tk+1 − tk = 89 ms.

69



Chapter 3. Main 
ontributions

and a 
omparison is given in Table 3.1. Note that methods based on the disspativity analysis,

and the 
ontra
tivity of invariant sets presented in [Omran 2012a℄ and Theorem 3.19, are less


onservatives than the methods based on hybrid systems theory in [Omran 2012b℄. The redu
tion

of 
onservatism in Theorem 3.19 with respe
t to the Theorem 4 in [Omran 2012a℄, is due to using

the des
riptor method in formalizing the LMI 
onditions.

Example 3.21 Consider the average values model of a bu
k-boost 
onverter with pulse width

modulator that adjust the duty 
y
le of the swit
hing devi
e.

˙̄x =
(
DA1 + (1−D)A2

)
x̄+

(
DB1 + (1−D)B2

)
v,

with the state x̄ = [īL v̄c]
T
, where īL is the average indu
tor 
urrent, and v̄c the average 
apa
itor

voltage. The average is taken over one swit
hing period. The system matri
es are

A1 =

[
−RON+RL

L 0
0 − 1

RC

]
; A2 =

[
−RL

L
1
L

− 1
C − 1

RC

]
;

B1 =

[
1
L 0
0 0

]
; B2 =

[
0 − 1

L
0 0

]
; v =

[
VDC
vD

]
.

RON is the on-resistan
e of the swit
hing devi
e, vD is the diode voltage, and VDC is the sour
e

voltage. D ∈ [D1,D2] ⊂ [0, 1] is the duty 
y
le, representing the system input. Consider the

following values: VDC = 6V , R = 50Ω, L = 20mH, C = 220µF , RON = 0.08Ω, RL = 0.34Ω,
and vD = 0.67V . The system is subje
ted to saturation due to the hard limits on the duty 
y
le.

For a 
ertain working point x̄0, D0 we have

0 =
(
D0A1 + (1−D0)A2

)
x̄0 +

(
D0B1 + (1−D0)B2

)
v.

Considering x̂ = x̄− x̄0, and the input signal u = D −D0, we 
an see that

˙̂x = A0x̂+B0u+Nux̂ (3.62)

where

A0 = (D0A1 + (1−D0)A2)

B0 = ((A1 −A2)x̄0 + (B1 −B2)v)

and

N = (A1 −A2).

From the 
onstraints over the duty 
y
le we see that u must be bounded by −D0 + D1 ≤ u ≤
D2 −D0. Usually, we 
onsider D0 = (D1 +D2)/2, and then |u| ≤ umax = (D2 −D1)/2. Using
results [Olalla 2011℄ for the stabilization of the 
ontinuous-time system, we �nd the following


ontroller

K = [−1.7329 0.0738].

We are interested in the state spa
e region where a linear 
ontrol u = Kx̂ is not saturated

{x̂ ∈ R2 : |Kx̂| ≤ umax}. Furthermore, it is desired that the error with respe
t to the equilibrium

point satis�es |īL| < 0.5A and |v̄c| < 3V . This leads to 
onsidering the polytope

P := {[−0.42,−3], [−0.16, 3], [0.16,−3], [0.42, 3]}.

70



3.3. Sampled-data 
ontrol of input a�ne nonlinear systems

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

îL
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Figure 3.13: The domain of attra
tion for the system (3.62) when 
ontrolled with the stati


feedba
k 
ontroller, in the asyn
hronously sampled-data 
ase E(P, c∗) with h = 1.5 ms. The


urves in bla
k are simulations of the sampled-data system, for di�erent initial states.

In order to study the robustness with respe
t to asyn
hronous sampling, we apply Theorem 3.19.

We �nd that the system is stable when implementing digitally the feedba
k 
ontroller K with

variable sampling periods bounded by h = 1 ms. The guaranteed domain of attra
tion E(P, c∗) is
given in (3.61), for c∗ = 37.81 × 103 and

P = 103
[
554.9 −49.62
−49.62 14.01

]
.

The domain of attra
tion is shown in Figure 3.13, together with simulations of the evolutions

of the state of the sampled-data system. Di�erent initial 
onditions are 
onsidered, and random

variable sampling periods, bounded by h = 1.5ms are used in the simulations. Note that by

slightly in
reasing the sampling interval, the system be
omes unstable. For example, with the

initial 
ondition x0 = [0.24 0.75]T , we obtain an unstable behaviour when 
hoosing a 
onstant

sampling tk+1−tk = 2.1ms as shown in the simulation in Figure 3.14. The same initial 
ondition

is 
onsidered in one of the simulations in Figure 3.13, and the the system is stable when respe
ting

the bound h = 1.5ms. The gap between the two values illustrates the 
onservatism of the proposed

method.

3.3 Sampled-data 
ontrol of input a�ne nonlinear systems

In the nonlinear 
ase, an extension [Omran 2013,Omran 2014b,Omran 2016a,Omran 2014a℄ of

the IQC approa
h is possible using methods inspired by the notion of Exponential Dissipativity
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Figure 3.14: The instability of the sampled-data 
ontrol of system (3.62) with uniform sampling

of tk+1 − tk = 2.1 ms.

[VijaySekhar 2003℄. The main ideas are presented as follows

18

.

Consider the following nonlinear a�ne system:

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
K
(
x(tk)

)
,∀t ∈ [tk, tk+1), k ∈ N. (3.63)

The fun
tions f : Rn → Rn with f(0) = 0, and g : Rn → Rn×m are 
onsidered to be su�
iently

smooth and the 
ontroller K : Rn → Rm is a 
ontinuously di�erentiable fun
tion. Considering

fcl(x) = f(x) + g(x)K(x),

w(t) = K
(
x(tk)

)
−K

(
x(t)

)

and an auxiliary output

y =
∂K

∂x
ẋ,

system (3.63) 
an be represented by





ẋ = fcl (x) + g (x)w

y = ∂K
∂x (fcl (x) + g (x)w)

w = ∆shy.

(3.64)

18

The results presented in this se
tion have been developed in the 
ontext of the PhD Thesis of Hassan OMRAN,

in 
ollaboration with Prof. Jean-Pierre Ri
hard and Fran
oise LAMNABHI-LAGARRIGUE (DR CNRS).
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Here we 
onsider that ∆sh : Lm2e[0,∞) → Lm2e[0,∞), with ∆sh de�ned similarly to (3.51):

∆shy(t) = −
∫ t

tk

y(s)ds, ∀t ∈ [tk, tk+1). (3.65)

Consider the following assumptions

� The nominal 
ontinuous-time system

ẋ = fcl(x), x(0) = x0 ∈ Rn

has a well de�ned solution on R+ for any x0 ∈ Rn.

� The sequen
e of sampling instants {tk}k∈N satis�es tk+1 − tk ∈ (0, h] for a given positive

s
alar h.

� For any initial 
ondition x0 ∈ Rn, the system

ẋ = f(x) + g(x)K(x0), x(0) = x0,

has a unique solution x(t) de�ned on the interval [0, h].

The following result provides an extension of Theorem 2.17, Theorem 3.19 to the nonlinear

a�ne 
ase.

Theorem 3.22 [Omran 2016a℄ Consider system (3.63) and the representation (3.64),(3.65).

Assume that

I. There exists a 
ontinuous fun
tion S(y,w) whi
h satis�es the integral property

∫ t

tk

S (y(s), w(s)) ds ≤ 0, ∀ t ∈ [tk, tk+1), k ∈ N.

II. There exists a di�erentiable fun
tion V : Rn → R+, 
lass K∞ fun
tions β1, β2 and α > 0
whi
h satisfy

β1 (‖x‖) ≤ V (x) ≤ β2 (‖x‖) , ∀ x ∈ Rn,

V̇ (x(t)) + αV (x(t)) ≤ e−α(t−tk)S (y(t), w(t)) , ∀ t ∈ [tk, tk+1)

along the solutions of (3.64).

Then the equilibrium point x = 0 is Globally Asymptoti
ally Stable for any sampling sequen
e

{tk}k∈N with tk+1 − tk ≤ h.

The theorem provides generi
 
onditions for stability based on the analysis of dissipation like

inequalities to be satis�ed along the system's (3.63) traje
tories. These 
ondition 
an lead to a


onstru
tive stability analysis method that only involves geometri
 properties of system (3.64).

Corollary 3.23 [Omran 2016a℄ Consider system (3.63) and the representation (3.64),(3.65).

Suppose that there exists symmetri
 positive de�nite matri
es X,Y , a positive s
alar α, 
lass K∞
fun
tions β1, β2 and a di�erentiable fun
tion V : Rn → R+ su
h that

β1 (‖x‖) ≤ V (x) ≤ β2 (‖x‖) , ∀ x ∈ Rn,

73



Chapter 3. Main 
ontributions

∂V

∂x
(fcl(x) + g(x)w) ≤

(
−δ20

∥∥∥∥
∂K

∂x
(fcl(x) + g(x)w)

∥∥∥∥
2

X

+ ‖w‖2X

+2

〈
∂K

∂x
(fcl(x) + g(x)w) , w

〉

Y

)
e−2αlh, l ∈ {0, 1}, (3.66)

for all x ∈ Rn, w ∈ Rm, where δ0 = 2h
π , and the notations 〈y1, y2〉Y := yT1 Y y2, ‖y1‖X :=√

yT1 Xy1 were used for ve
tors y1, y2 ∈ Rm.
Then the equilibrium point x = 0 is Globally Asymptoti
ally Stable for any sampling sequen
e

{tk}k∈N with tk+1 − tk ≤ h.

The result is derived based on Theorem 3.22, using a "supply rate" fun
tion of a form

similar to (3.56). Note that the proposed 
onditions do not require 
omputing the system's

solutions. Stability 
an be investigated by studying geometri
 properties of system (3.64). For

the 
ase when the fun
tions f, g des
ribing system (3.63) are polynomials, a numeri
ally tra
table

su�
ient 
ondition 
an be obtained using Sum-Of-Squares de
omposition.

In what follows, the notation p(χ) ∈ R[χ] with χ ∈ Rn, denotes that p(χ) belongs to the set

of polynomials in the variables {χ1, χ2, · · · , χn} with 
oe�
ients in R.

De�nition 3.24 [Prajna 2004℄ A multivariate polynomial p(x) ∈ R[x] is said to be a sum of

squares (SOS), if there exist some polynomials pi(x) ∈ R[x], i ∈ {1, . . . ,M}, su
h that p(x) =∑M
i=1 p

2
i (x).

Corollary 3.25 [Omran 2013℄ Consider the sampled-data system (3.63) in the 
ase where f(x),
g(x) and K(x) are polynomial fun
tions and the representation (3.64),(3.65). Denote

F (x,w) := fcl(x) + g(x)w

and

G(x,w) :=
∂K

∂x
F (x,w).

Let D = {x ∈ Rn : µl(x) ≥ 0, l = 1, 2, . . . , s} be a neighbourhood of the origin x = 0 where

µl(x), l = 1, 2, . . . , s, are polynomial fun
tions. Suppose that there exist a polynomial fun
tion

V (x) ∈ R[x] of degree 2d, sums of squares σl(ξ) and ςl(ξ) for l ∈ {1, . . . , s} and ξ = (x,w), su
h
that the following polynomials are SOS

V̂ (x) = V (x) − ϕ(x), (3.67)

ρ1(ξ) = −
s∑

l=1

σl(ξ)µl(x) −
∂V

∂x
F (x,w) − αV (x),

+
[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTY w
]
, (3.68)

ρ2(ξ) = −
s∑

l=1

ςl(ξ)µl(x) −
∂V

∂x
F (x,w) − αV (x),

+
[
− δ20G

T (x,w)XG(x,w) + 2GT (x,w)Y w + wTY w
]
e−αh, (3.69)

with δ0 = 2
πh, 0 ≻ XT = X ∈ Rm×m

, 0 4 Y T = Y ∈ Rm×m
, and ϕ(x) a positive de�nite

polynomial de�ned by

ϕ(x) =

n∑

i=1

d∑

j=1

ǫijx
2j
i , su
h that

d∑

j=1

ǫij > γ, ∀i = 1, . . . , n. (3.70)
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Then, the equilibrium x = 0 of the system (3.63) is Lo
ally Uniformly Asymptoti
ally Stable.

Moreover, the sub-level set Lc∗ de�ned by c∗ = maxLc⊂D c with

LV (c) := {x ∈ Rn : V (x) ≤ c}, (3.71)

is an estimate of the domain of attra
tion. Finally, if (3.68) and (3.69) are SOS while µl(x) = 0,
for all l ∈ {1, 2, . . . , s}, then the equilibrium is Globally Uniformly Asymptoti
ally Stable.

A numeri
al illustration of this result is presented below.

Example 3.26 Consider the following system from [Ne²i¢ 2009℄

ẋ = dx2 − x3 + u,

with a bounded time-varying |d| ≤ 1, and a stabilizing 
ontrol u = K(x) = −2x. Emulating this


ontroller results in a sampled-data system that 
an be represented by the operator ∆sh in (3.65),

and a system (3.64) des
ribed by

{
ẋ = dx2 − x3 − 2x+ w,

y = −2(dx2 − x3 − 2x+ w).

We apply the Corollary 3.25 in order to �nd a storage fun
tion of the form V (x) = ax2 + bx4,
su
h that (3.67), (3.68) and (3.69) are SOS. We 
hoose ϕ(x) = 10−3x2, α = 0.1 and h = 0.72.
We intend to test the global stability. In this 
ase, the polynomials (3.68) and (3.69) are

ρ1(ξ) = −(2ax+ 4bx3)(dx2 − x3 − 2x+ w)− α(ax2 + ax4)

+
[
− 4δ20X(dx2 − x3 − 2x+ w)2

− 4Y (dx2 − x3 − 2x+ w)w + Y w2
]
, (3.72)

ρ2(ξ) = −(2ax+ 4bx3)(dx2 − x3 − 2x+ w)− α(ax2 + ax4)

+
[
− 4δ20X(dx2 − x3 − 2x+ w)2

− 4Y (dx2 − x3 − 2x+ w)w + Y w2
]
e−αh, (3.73)

where a, b,X, Y are de
ision variables. Note that the time-varying terms d and d2 appear in

the polynomial expressions. However, if both (3.72) and (3.73) are ensured to be SOS for all

the values of (d, d2) ∈ {(1, 0), (1, 1), (−1, 0), (−1, 1)}, then they will be SOS for any time-varying

|d| ≤ 1. This is found to be satis�ed using the SOSTOOLS software [Prajna 2004℄, for the

storage fun
tion V (x) = 0.77402x2 + 0.19911x4, and a supply fun
tion de�ned by X = 0.47522
and Y = 0.62302 10−3

. By Corollary 3.25, we obtain the global uniform asymptoti
 stability of

the equilibrium x = 0, of the sampled-data system. This result 
annot be obtained when trying

a quadrati
 storage fun
tion. In
reasing α (the exponential de
ay rate of the storage fun
tion),

results in the de
rement of the maximum value of h for whi
h the problem is feasible. This 
an

be seen in Fig 3.15. Previous works 
onsidered this example in the literature for estimating the

MSI. In [Ne²i¢ 2009℄, a bound of h = 0.368 is found. In [Karafyllis 2009b℄, the proposed upper

bound is h = 0.1428. The 
onditions proposed in this paper are found feasible for h = 0.72.

Example 3.27 Consider the following system

ẋ = x2 + (x− 1)u,
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Figure 3.15: Trade-o� between α (the exponential de
ay rate of the storage fun
tion), and the

estimation of the MSI.

with the 
ontroller u = K(x) = x+ 2x2, whi
h stabilizes the equilibrium point x = 0. Note that,

in the 
ontinuous-time 
ase, this equilibrium is only lo
ally stable. Our purpose is to �nd the

maximum value of h that guarantees the lo
al exponential stability of x = 0, when the 
ontroller

is emulated. We 
onsider the neighbourhood x ∈ [−0.4,+0.4]. The sampled-data system 
an be

represented by the operator ∆sh in (3.65), and a system (3.64) des
ribed by

{
ẋ = −x+ 2x3 + (x− 1)w,

y = (1 + 4x)(−x+ 2x3 + (x− 1)w).

We 
onsider applying Corollary 3.25 with a quadrati
 storage fun
tion V (x) = ax2. We


hoose ϕ(x) = 10−3x2, α = 0.25 and h = 0.6. The 
onsidered domain D is des
ribed by

{x ∈ R : µ1(x) ≥ 0} with µ1(x) = (x− 0.4)(0.4 − x). The polynomials (3.68) and (3.68) are in

this 
ase

ρ1(ξ) = −σ1(ξ)µ1(x)− (2ax)(−x+ 2x3 + (x− 1)w) − α(ax2)

+
[
− δ20X(1 + 4x)2(−x+ 2x3 + (x− 1)w)2

+ 2Y (1 + 4x)(−x+ 2x3 + (x− 1)w)w + Y w2
]
, (3.74)

ρ2(ξ) = −ς1(ξ)µ1(x)− (2ax)(−x+ 2x3 + (x− 1)w) − α(ax2),

+
[
− δ20X(1 + 4x)2(−x+ 2x3 + (x− 1)w)2

+ 2Y (1 + 4x)(−x+ 2x3 + (x− 1)w)w + Y w2
]
e−αh, (3.75)

where a,X, Y are de
ision variables, and σ1(ξ), ς1(ξ) are de
ision SOS polynomials. Using the

software SOSTOOLS we �nd that (3.74) and (3.75) are SOS with a = 0.12015, X = 0.25506,
Y = 0.88456 10−2

. The de
ision SOS polynomials are
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σ1(ξ) = 0.62335w2 − 0.3616xw2 + 1.6714x2w2

− 0.67622x3w + 2.0314x4w + 3.228x6,

ς1(ξ) = 0.52025w2 − 0.31686xw2 + 1.4349x2w2

− 0.54824x3w + 1.60754x4w + 2.8846x6.

Thus all the 
onditions of Corollary 3.25 are satis�ed, and x = 0 is lo
ally asymptoti
ally

stable. The domain of attra
tion LV (c∗) 
an be easily seen to be equals to the studied domain

[−0.4,+0.4].

3.4 Swit
hing 
ontrollers under sampled-data implementations

As follows, some 
ontributions to the analysis and design of sampled-data 
ontrol loops based

on dis
ontinuous feedba
k laws are presented

19

. First, we address the 
ase of swit
hed a�ne

systems. Next, the sampled-data implementation of relay 
ontrol laws is 
onsidered. The goal

is to present for these 
lasses of systems a 
ontinuous-time approa
h to sampled-data swit
hing


ontrol design that ensures robustness with respe
t to sampling and to potential implementations

imperfe
tions (jitters, un
ertainty et
.).

3.4.1 Swit
hed a�ne systems

Consider matri
es A1, A2, . . . , AN ∈ Rn×n and ve
tors b1, b2, . . . , bN ∈ Rn where N ∈ N. The

matri
es Ai, i = 1, . . . , N, are not ne
essarily Hurwitz. We are interested in the 
lass of swit
hed

a�ne systems des
ribed by

ẋ(t) = Aκ(xk)x(t) + bκ(xk),∀t ∈ [tk, tk+1), (3.76)

where κ : Rn → IN := {1, 2, . . . , N} represents a swit
hing 
ontrol. The goal is to design a


ontrol law κ whi
h ensures stability (in some sense) of the system (3.76) under a sampled-

data implementation. Note that in the swit
hed a�ne system 
ontext, due to sampling, one


an no longer drive the state exponentially towards the equilibrium point, but only towards a

limit 
y
le or to some attra
tive 
ompa
t set 
ontaining the equilibrium. Furthermore, 
lassi
al

swit
hing 
ontrol laws κ are often des
ribed by a dis
rete-event system with transitions ruled by

a partition of the state spa
e. Then the sampling usually indu
es a delay in the dis
rete-event

system variable. This may imply a mismat
h in the 
ontrol: the system state may 
ross a frontier

in the state spa
e in between to sampling instants and one system mode may be a
tive in other

state zones than the one for whi
h it has been designed. If not appropriately taken into a

ount,

the sampling may be a sour
e of poor performan
e and even may lead to unbounded solutions.

The following theorem provides swit
hing law design 
onditions that ensure the pra
ti
al

stability of the 
losed-loop swit
hed a�ne system.

Theorem 3.28 [Hetel 2013b℄ Consider the unit simplex

∆N =

{
δ = [δ1, δ2, . . . , δN ]

T ∈ RN , δi ≥ 0,

N∑

i=1

δi = 1

}
, (3.77)

19

The results presented in this se
tion have been developed in 
ollaboration with Prof. Emilia FRIDMAN and

Thierry FLOQUET (DR CNRS).
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the notations A(δ) =
∑N

i=1 δiAi, b(δ) =
∑N

i=1 δibi, δ ∈ ∆N , system (3.76) with tk+1− tk ∈ (0, h̄]
and a given s
alar tuning parameter λ > 0. Assume that that there exists δ ∈ ∆N su
h that A(δ)
is Hurwitz and b(δ) = 0. Let there exist matri
es P,R ≻ 0 in Rn×n, a s
alar β > 0 su
h that the

LMIs [
AT (δ)P + PA(δ) + 2λP + h̄ATi RAi h̄ATi Rbi

∗ h̄
(
bTi Rbi − βI

)
]
≺ 0, (3.78)



AT (δ)P + PA(δ) + 2λP 0 −h̄Ψi(δ)

∗ −h̄βI h̄bTi P

∗ ∗ −h̄Re−2λh̄ + h̄2Ψi(δ)


 ≺ 0, (3.79)

∀i ∈ IN , with
Ψi(δ) = (A(δ) −Ai)

T P + P (A(δ) −Ai) , i ∈ IN .
Then for

κ(xk) ∈ arg min
i∈IN

xTk P (Aixk + bi) (3.80)

the system solutions are exponentially attra
ted to the ellipsoid E
(
P, h̄

β

2λ

)
, i.e.

lim
t→∞

x(t) ∈ E
(
P, h̄

β

2λ

)
,

where by E (P, c) we denote the ellipsoid

E (P, c) :=
{
x ∈ Rn : xTPx < c

}
. (3.81)

The parameter λ from Theorem 3.28 
orresponds to the system de
ay rate. For �xed λ,

onditions (3.78), (3.79) represent LMIs. The optimization of the de
ay rate may be addressed

by 
ombining LMI-based methods with a line sear
h on λ. The result is based on a Lyapunov-

Krasovskii fun
tional of the form (2.4). Note that the 
hattering set depends on value of the

maximum sampling interval h̄. Given h̄, the feasibility of (3.78), (3.79) with some P, λ, β guar-

antees that for t → ∞ the traje
tories of the resulting system approa
h to the ball ‖x‖22 < Ch̄,
where

C = β (2eigmin(P ))λ)
−1

with eigmin(P ) the minimum eigenvalue of P.

It is important to highlight the fa
t that the 
onditions in Theorem 3.28 en
ompass the


lassi
al design 
onditions from [Bolzern 2004℄. The set of 
onditions (3.78),(3.79) for h̄→ 0 are

redu
ed to

AT (δ)P + PA(δ) + 2λP ≺ 0, (3.82)

whi
h is the 
lassi
al 
ondition from [Bolzern 2004℄ ensuring the exponential stability of the


ontinuous-time system. The approa
h 
an be easily extended to take into a

ount un
ertainties

in the system matri
es (see [Hetel 2013b℄ for details).

Example 3.29 Consider a swit
hed a�ne system 
onsisting of four a�ne subsystems with and

the following matri
es [Bolzern 2004℄:

A1 =



4.15 −1.06 −6.7
5.74 4.78 −4.68
26.38 −6.38 −8.29


 , A2 =



−3.2 −7.6 −2
0.9 1.2 −1
1 6 5


 ,
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Figure 3.16: Evolution of system states under the 
ontrol law based on Theorem 3.28 with a

�xed sampling interval h = 3.2 · 10−4
.

A3 =



5.75 −16.48 2.41
9.51 −9.49 19.55
16.19 4.64 14.05


 , A4 =



−12.38 18.42 0.54
−11.90 3.24 −16.32
−26.5 −8.64 −16.6


 ,

b1 =




1
−4
1


 , b2 =




4
−2
−1


 , b3 =



−2
1
−1


 , b4 =



−1
2
1


 .

Ea
h individual subsystem is unstable. For δ1 = 0.15, δ2 = 0.2, δ3 = 0.3 and δ4 = 0.35, the A(δ)
is Hurwitz and b(δ) = 0. Using Theorem 3.28 we �nd that the system is pra
ti
ally stabilizable

under variable sampling with hk ≤ h ≤ 3.2 · 10−4
. The LMI 
onditions are found to be feasible

with

P =




0.1 −0.02 0
−0.02 0.15 0.02

0 0.02 0.11


 , R =



0.13 0 0.02
0 0.17 0.03

0.02 0.03 0.16


 , (3.83)

β = 3.16 and λ = 0.022. An illustration of system evolution with an arbitrary initial 
ondition

is shown in Figure 3.16.

Example 3.30 We illustrate the appli
ability of this stabilization approa
h on an example from

power ele
troni
s. Consider the DC-DC 
onverter from [Hauroigne 2011℄, where the model has

the form

ẋ(t) = Aκx(t) + Bκ
with

A1 =

[
0 1/L

−1/C −1/(RC)

]
, A2 =

[
0 0
0 −1/(RC)

]
, (3.84)

B1 =
[
0 0

]T
, B2 =

[
E/L 0

]T
with E = 6V , R = 50Ω, L = 20mH and C0 = 220µF . For

δ1 = δ2 = 0.5, the matrix A(δ) is Hurwitz and the system may be stabilized to the equilibrium

point

xe = −A(δ)−1B(δ) = [0.24 − 6]T
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Figure 3.17: Traje
tory in the error state spa
e under variations in the resistor value from 35Ω
to 65Ω with a �xed sampling interval Tmax = 2.5 · 10−5s (solid bla
k line), the attra
tive sets

obtained for the 
ontinuous-time 
ase (dashed line) and for Tmax = 2.5 · 10−5s (solid line).

using a 
ontinuous-time swit
hing law. Consider the error e = x− xe dynami
s

de

dt
= Aκe(t) +Aκxe + Bκ.

For the numeri
al tests, the time s
ale 
hange t = ǫt with ǫ = 104 is used to 
ope with large

numeri
al values in the system matri
es and to avoid ill 
onditioned matrix inequalities. The

system of the form (3.76) is obtained with Ai = ǫ−1Ai, bi = ǫ−1 (Aixe + Bi), h̄ = ǫTmax, x = e.
Note that the traje
tories are invariant with respe
t to time s
aling. Furthermore, the swit
hing

laws are equivalent, sin
e

arg min
i∈IN

(x− xe)
TP (ǫAix+ ǫbi) = arg min

i∈IN
(x− xe)

TP (Aix+Bi) .

Con
erning the robust swit
hing law design, the 
onditions of Theorem 3.28 are feasible for any

(time-varying) sampling intervals with Tmax ≤ 1.5 · 10−3s.

To illustrate the use of our method for un
ertain systems, 
hoose Tmax = 2.5 · 10−5s and

assume that the resistor is subje
t to unknown time-varying un
ertainties δR(t) ∈ [−15Ω,+15Ω].
Then ea
h of the matri
es Ai is varying in a polytope 
orresponding to the two verti
es R± 15Ω.
The robust stabilization 
onditions in Corollary 2 from [Hetel 2013b℄ are feasible with

P =

[
9.175 0.088
0.088 0.1

]
, Ui =

[
7.75 0.161
0.161 0.048

]
, i = 1, 2,
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β = 2.69 · 10−2, γ = 1.9 · 10−3, whi
h implies that ‖e(t)‖ < 4.23 as t → ∞. The error

system evolution with the initial 
ondition x(0) = 0 is shown in Figure 3.17. The �gure presents

the attra
tive ellipsoids for both the sampled-data 
ase and for the 
ontinuous-time swit
hing

implementation. Due to sampling and to parametri
 un
ertainties the system state under a


ontinuous-time 
ontrol implementation (in bla
k) does not 
onverge to the equilibrium point (the


enter of the ellipsoid) but only to a bounded region. Numeri
al simulations under an uniform

sampling Tmax show that the same attra
tive ellipsoid is a
hieved for bigger Tmax = 1.4 · 10−3
,

to be 
ompared with Tmax = 2.5 · 10−5
proved in theory under the variable sampling. The latter

may illustrate the 
onservatism of the method.

In addition to the results presented here, the design of sampled-data swit
hing 
ontrollers for

swit
hed a�ne systems has also been addressed using a hybrid system approa
h in [Hetel 2015b℄.

3.4.2 Relay 
ontrol

As follows we present the method from [Hetel 2015
℄ whi
h ensures lo
al pra
ti
al stabilization

of LTI systems with relay 
ontrol laws. Consider the system

ẋ(t) = Ax(t)−Bγsign(Γxk),∀t ∈ [tk, tk+1), (3.85)

where A ∈ Rn×n, B ∈ Rn×1
, γ > 0 and where Γ ∈ R1×n

is a design parameter representing the

swit
hing hyperplane. We propose a simple design method based on the existen
e of a stabilizing

linear state feedba
k and we show how it may be used in the sampled-data 
ase in order to

guarantee (lo
ally) the pra
ti
al stabilization to a bounded ellipsoid 
ontaining the origin. The

main idea of the design pro
edure is to use the existen
e of an exponentially stabilizing state

feedba
k as a referen
e 
ontrol to be emulated (lo
ally) by a relay feedba
k.

Proposition 3.31 (adapted from [Hetel 2015
℄) Consider system (3.85) with tk+1 − tk ≤ h.
Assume that the pair (A,B) is stabilizable and 
onsider a gain matrix K su
h that Acl = A+BK
is Hurwitz. Given tuning parameter λ, let there exist symmetri
 positive de�nite matri
es P,R,
and a positive s
alar β < 2λ

h
su
h that:

[
I γ−1K
∗ P

]
≻ 0, (3.86)

[
ATclP + PAcl + 2λP + hATRA hATRBv

∗ h
(
BTRB − β

)
]
≺ 0, (3.87)



AT

clP + PAcl + 2λP 0 − (PBK)
T
h

∗ −βh (PBv)T h

∗ ∗ −hRe−2λh


 ≺ 0, v ∈ {−γ, γ}. (3.88)

Then for Γ = BTP any solution x(t) of (3.85) with initial 
ondition x(0) ∈ Ω0 = E (P, 1)

onverges exponentially to Ω∞ = E (P, c) as t→ ∞, with c = (2λ)−1βh.

Example 3.32 Consider a linear time-invariant system with

A =

[
1 −1
1 1

]
, B =

[
1
1

]
. (3.89)
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Figure 3.18: Illustration of evolution in the state spa
e for a 
onstant sampling interval T = 10−3
.

Green: u = γ; red: u = −γ; ellipsoid in dashed line: estimation of the domain of attra
tion

Ω0; ellipsoid in solid line: attra
tive set for t → ∞, Ω∞; bla
k line: traje
tory from the initial


ondition x0 = [−13.5 − 10]T .

The A matrix has unstable eigenvalues 1 ± i. Consider that the 
ontrol is 
onstrained to the set

V = {−γ, γ} with γ = 25. The pair (A,B) is fully 
ontrollable. The state feedba
k

K = [0.3125 − 2.8125]

ensures that Acl = A+ BK is Hurwitz. Using λ = 0.23 and the gain K, it is possible to design

a sampled-data relay 
ontrol. For this set of parameters, with R and β as de
ision variables, the


onditions of Proposition 3.31 are feasible for h ≤ 1.9 · 10−2. In parti
ular, for h = 10−3
, the

LMIs are found feasible with β = 15.63 and

P = 10−2

[
0.66 −0.78
−0.78 1.91

]
, (3.90)

whi
h leads to Ω∞ = E (P, 0.068). A numeri
al illustration is shown in Figure 3.18.

Example 3.33 As follows we illustrate the pra
ti
al implementation of sampled-data 
ontrollers

on a real 
art-pendulum system platform from E
ole Centrale de Lille. We 
onsider the following
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linearized model of the inverted pendulum on a 
art:




ẋ
ẍ

θ̇

θ̈


 =




0 1 0 0

0 0 −mg
M 0

0 0 0 1

0 0 (M+m)g
Ml 0







x
ẋ
θ

θ̇


+




0
a
M
0
−a
Ml


u. (3.91)

Here x represents the 
art position, θ, the angle, M = 3.9249Kg and m = 0.2047Kg, the 
art

and pendulum masses, respe
tively, l = 0.2302m the distan
e from the pendulum 
enter of mass

to its pivot, g = 9.81N/Kg, the gravitational a

eleration and a = 25.3N/V , the gain of the

linear motor. We 
onsider that the system input is restri
ted to V = {−1, 1}. The 
ontrol law is

implemented on D-Spa
e 
ard with a sampling frequen
y h = 10−4s. The system 
an be stabilized

by a 
ontinuous-time state feedba
k with K = [6.4763 5.2313 15.4168 2.7498] for whi
h

P =




117.66 77.84 171.63 27.93
77.84 57.947 133.258 21.425
171.63 133.258 347.978 54.504
27.93 21.425 54.504 9.18


 (3.92)

is a Lyapunov matrix. Using Proposition 3.31 with λ = 1.45 it is possible to show that

Γ = PB =
[
−280.33 −226.412 −667.228 −118.95

]T

ensures (in theory) lo
al stabilization in E(P, 1). For the obtained sampled-data implementation,

any system solution with initial 
onditions in Ω0 = E(P, 1) 
onverges exponentially to Ω∞ =
E(P, 0.07). The state evolution, illustrating pra
ti
al stabilization of both pendulum angle and 
art

position, is shown in Figure 3.20 (to be 
ompared with simulations in Figure 3.19). Di�eren
es

between experimentations and simulations are due to the use of the linearized model of the inverted

pendulum for 
ontrol design, to impre
isions in the identi�
ation of system parameters and to

perturbations due to fri
tion.
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Figure 3.19: Numeri
al simulation based on the LTI model for the inverted pendulum on a 
art:

evolution of 
ard position x (upper sub-plots in meters) and pendulum angle θ (lower sub-plots

in radians) with a sampled-data relay 
ontrol from the initial 
ondition x0 = [0.015 0.115 −
0.014 − 0.142].
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Figure 3.20: Experimental result for the inverted pendulum on a 
art: evolution of 
ard position

x (upper sub-plots in meters) and pendulum angle θ (lower sub-plots in radians) with a sampled-

data relay 
ontrol from the initial 
ondition x0 = [0.015 0.115 − 0.014 − 0.142].
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Con
lusion

In this part, several 
ontributions to the study of aperiodi
 sampled-data systems have been

presented. First, in the 
ase of linear systems it is shown how the 
onservatism in the stability

analysis 
an be redu
ed using dis
rete-time methods based on quasi-quadrati
 Lyapunov fun
-

tions. A 
ontinuous-time approa
h 
ombining the advantages of both time-delay methods and

dis
rete-time ones has been presented and applied to the self-triggering 
ontrol problem. The

main issue is that the design of sampling maps 
an be optimized using robust 
ontrol tools. Next,

we have ta
kled the stability problem for nonlinear sampled-data systems, by studying the 
ase

of bilinear systems. Constru
tive stability analyzis 
onditions have been proposed using a hybrid

system approa
h and a generalization of the Input/Output stability approa
h. The latter has

been extended to a more general 
lass of a�ne nonlinear systems, with aperiodi
 sampled-data


ontrol. Finally, the sampled-data implementation of some 
lassed of dis
ontinuous 
ontrollers

has been studied.

It is to be emphasised that the interest of the presented results goes beyond the simple ape-

riodi
 sampling problem. In fa
t, this framework 
an be seen as an abstra
tion of more 
omplex

phenomena presented in Networked Control Systems. Many of the presented approa
hes 
an

be extended to deal with delay, quantization or s
heduling proto
ols [Donkers 2009℄, [Cloost-

erman 2010℄, [Hetel 2011a℄, [Donkers 2011a℄, [Lombardi 2012℄, [Liu 2012b℄, [Liu 2015a℄. Fur-

thermore, the presented approa
hes 
an be generalized to more 
omplex hybrid dynami
al sys-

tems [Hetel 2013a℄.
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Part II

Design of swit
hing 
ontrollers - an

emerging resear
h dire
tion
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The design of swit
hing 
ontrollers represents an important problem in Control Theory. Sim-

ple ON/OFF, bang-bang and relay 
ontrollers are widely used in various te
hni
al domains.

They represent the key 
omponents in variable stru
ture systems [Emel'Yanov 1967℄ and sliding

mode 
ontrol [Edwards 1998℄ and have very interesting robustness properties fa
ed to mat
hed

perturbations. Swit
hing 
ontrollers are inherently hybrid dynami
al systems whi
h may de-

s
ribe 
omplex behaviours [Goebel 2009℄, [Liberzon 2003a℄, [Bourdais 2007℄, [A
ary 2014℄. It is

well known in the literature that even the simple relay feedba
k systems may tend to sliding

modes [Utkin 1992,Wang 2015℄, Zeno solutions [van der S
haft 2000℄ or limit 
y
les [Johans-

son 1999℄.

As follows, we will present an emerging resear
h dire
tion 
on
erning some 
lasses of dynam-

i
al systems of the form

ẋ = f(x) + g(x)u (1)

with f : Rn → Rn, g : Rn → Rm Lips
hitz 
ontinuous fun
tions. Here x ∈ Rn is the systems

state and u ∈ Rm is the input whi
h is assumed to be 
onstrained to take values in a �nite set

of ve
tors

V = {v1, v2, . . . , vN}. (2)

The goal is to design a 
ontrol law

u = κ(x), κ : Rn → V, (3)

whi
h ensures the stability of (1). Over this part, the system's solutions will be 
onsidered in

the sense of Filippov (see [Filippov 1988℄).

This problem formulation en
ompasses the 
lassi
al relay feedba
k 
ontrol design problem

where the input u is 
onstrained to take values in the set V = {−v, v}, for some positive 
onstant

v [Flugge-Lotz 1953,Tsypkin 1984,Johansson 1999,Liberzon 2013℄. It is important to highlight,

that although relay feedba
k has been studied for a long time, there are still many unsolved

issues. For the moment, very few numeri
al tools exist for designing swit
hing surfa
es while

optimizing the system performan
es or the size of the domain of attra
tion.

For the 
ase when the set V takes the form V = {0, 1}m, we en
ounter the 
ase of ON/OFF
a
tuators. Their study is motivated by the large number of appli
ations in the domain of power

ele
troni
s [Eri
kson 2001, Ba
ha 2014℄. In this 
ontext, methods based on Pulse-Width Mod-

ulation (PWM) and averaging are often used for implementing 
lassi
al 
ontinuous 
ontrollers

while ignoring the ON/OFF nature of a
tuators.

The problem statement 
an also be related to the study of 
ontrol loops with quantization

[Bro
kett 2000,Liberzon 2003b,Liberzon 2005℄. The set of 
ontrol V 
an represent 
ontrol value

for systems that are subje
t to both saturation and quantization.

For the parti
ular 
ase when the set of ve
tors V form a simplex in Rm (N = m+ 1, every
subset of m ve
tors in V are linearly independent and there exists m+ 1 positive s
alars νi, i ∈
Im+1 su
h that

∑m+1
i=1 νivi = 0,

∑m+1
i=1 νi = 1), the design of a 
ontrol u with values 
onstrained

to the set V is a simplex -type variable stru
ture 
ontrol problem (see [Bartolini 2011,Bajda 1985℄

and the referen
es with).

As follows, we will present a novel design strategy for the design of swit
hing 
ontrollers

de�ned on �nite sets. The aim is to propose a 
onvex optimization approa
h for the de�nition of

swit
hing surfa
es. The methodology 
ombines tools for systems with bounded 
ontrols and sat-

uration [Tarbourie
h 2011℄, [Blan
hini 1999℄ with 
onvex embedding arguments [Liberzon 2003a℄.

The main idea of the design pro
edure is to use the existen
e of a 
ontinuous stabilizer in order

to re-design a swit
hing 
ontrol. It is based on simple 
onvex optimization arguments and does
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not need any 
omputation of normal forms. For several 
lasses of systems (LTI, LPV, swit
hed

a�ne, bilinear), the design of a swit
hing 
ontroller 
an be formulated as a 
lassi
al LMI prob-

lem, allowing to optimize the size of the domain of attra
tion and the robustness with respe
t

to perturbations or parameter variations.

This part is stru
tured as follows. Fist, some results are presented for the 
ase of linear

systems (time, invariant, polytopi
 un
ertain and LPV) in Chapter 4. Next, in Chapter 5 the


ase of swit
hed a�ne systems is 
onsidered. At last, some appli
ations are presented in Chapter

6.
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Chapter 4

Linear systems

In this 
hapter, we present some results 
on
erning the design of swit
hing surfa
es for the 
ase

of linear system

20

. LMI stabilization 
onditions are given for linear (possibly un
ertain) systems

and LPV systems.

4.1 Simpli�ed problem formulation

Consider n,m ∈ N, A ∈ Rn×n, B ∈ Rn×m and the system

ẋ = Ax+B (u+ d) , (4.1)

where x ∈ Rn represents the system state, u ∈ Rm the input and d ∈ Rm a mat
hed perturbation.

We adopt the following assumptions:

� (A.1) The pair (A,B) is stabilizable.

� (A.2) The input u is a stati
 state feedba
k 
onstrained to take values in a �nite set of


onstant ve
tors V := {v1, v2, . . . , vN} ⊂ Rm, where N is a positive integer, i.e. u = κ(x)
with κ : Rn → V.

� (A.3) The perturbation d is a measurable fun
tion taking values in the 
ube P (dmax) where
dmax ≥ 0 is a known s
alar and P (c) := {y ∈ Rm : ‖y‖∞ ≤ c} , ∀c ≥ 0.

� (A.4) 
onv {V} is a nonempty 
losed subset in Rm 
ontaining the null ve
tor in its interior:

0m ∈ Int {
onv {V}} .

� (A.5) There exists ρ ∈ [0, 1) su
h that P (dmax) ⊂ 
onv {ρV} .

We are interested in the design of 
ontrol laws u = κ(x) of the form

u = κ(x) ∈ argmin
v∈V

xTΓv (4.2)

where Γ ∈ Rn×m is a matrix to be determined.

Note that for the 
ase when the input u is a s
alar 
onstraint to the set V = {−v, v}, with
v > 0 a given 
onstant, we obtain u = κ(x) = v whenever xTΓv ≤ xTΓ(−v), i.e. for xTΓ ≤ 0.

20

The results presented in this 
hapter have been developed in 
ollaboration with Prof. Emilia FRIDMAN,

Thierry FLOQUET (DR, CNRS), Ass. Prof. Alexandre KRUSZEWSKI and Romain DELPOUX (ATER at

LAGIS).
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Figure 4.1: Basi
 idea for a system with V = {v,−v}. Here CV(K) is the set delimited by the

lines Kx = v and Kx = −v. The ellipsoid Ω0 := E(P, γ) is 
hosen as the largest one 
ontained

in CV(K). Inside Ω0 the 
ontinuous stabilizer u = Kx 
an be repla
ed by a swit
hing 
ontroller

u = −vsign(BTPx).

Similarly, u = κ(x) = −v whenever xTΓ ≥ 0. Then, for V = {−v, v}, with v > 0, the 
ontrol

law (4.2) is redu
ed to the 
lassi
al relay 
ontrol u = κ(x) ∈ −v sign (ΓTx).

Sin
e the values of the input are restri
ted to a �nite set, the 
losed loop system (4.1),(4.2)

has a dis
ontinuous right-hand side.

The goal is to provide 
riteria for the synthesis of a relay 
ontrol law (4.2) that ensures

lo
al stability of Filippov solutions asso
iated to the 
losed-loop system (4.1),(4.2). We pro-

vide optimization methods for 
ontrol design while enlarging the domain of attra
tion. Finite

time rea
hability properties to sliding manifolds and the robustness with respe
t to mat
hed

perturbations and time-varying un
ertainties will be dis
ussed.

4.2 Basi
 idea

Let us �rst 
onsider the 
ase when d = 0. Note that Assumption (A.1) is equivalent with

� (A.6) ∃ P ≻ 0,K ∈ Rm×n, δ > 0, su
h that

(A+BK)T P + P (A+BK) ≺ −2δP. (4.3)

Then V (x) = xTPx satis�es

∂V

∂x
(A+BK)x < −2δV (x),∀x 6= 0, (4.4)

i.e. it is a Lyapunov fun
tion for system (4.1) with the state-feedba
k 
ontrol law Kx.

For γ let

E (P, γ) :=
{
x ∈ Rn : xTPx < γ

}
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denote the γ level set of the fun
tion V (x) = xTPx and CV(K) the subset of the state spa
e for
whi
h Kx belongs to the 
onvex hull of βV,

CV(K) := {x ∈ Rn : Kx ∈ 
onv {V}} .

Sin
e 
onv {V} is a non-empty 
losed subset in Rm 
ontaining the null ve
tor in its interior, there

exists a level set des
ribed by γ > 0 su
h that

Ω0 := E (P, γ) ⊂ CV(K). (4.5)

The main idea is to use the existen
e of the linear state feedba
k gain K in order to design a

lo
ally stabilizing feedba
k of the form (4.2) (see also Figure 4.1 for a graphi
al illustration).

Remark that for any x ∈ Ω0 there exist N s
alars αj (x) ≥ 0, ∀j ∈ IN with

∑N
j=1 αj (x) = 1

su
h that

Kx =

N∑

j=1

αj (x) vj . (4.6)

From (4.4), (4.5) and (4.6), we have

N∑

j=1

αj (x)
∂V

∂x
(Ax+Bvj) < −2δV (x), (4.7)

for all x ∈ Ω0 \ {0} . Considering that αj(x) ≥ 0, j ∈ IN , there must be at least one j ∈ IN su
h

that

∂V

∂x
(Ax+Bvj) < −2δV (x), ∀x ∈ Ω0 \ {0} . (4.8)

Sin
e Ω0 represents a sub-level set of V (x), lo
al stabilization in Ω0 with a 
ontrol of the form

(4.2) is ensured by 
hoosing the 
ontrol κ(x) with the steepest des
end of the Lyapunov fun
tion

κ(x) ∈ argmin
v∈V

xTPBv (4.9)

whi
h leads to setting Γ = PB in (4.2). Note that if there are several minimizers v in (4.9), they

all ensure the de
ay of V. We arrive to the following:

Proposition 4.1 [Hetel 2013
℄ Consider system (4.1) with d = 0, a 
ontrol law (4.2) and

Assumptions (A.2),(A.4),(A.6). Then there exit a fun
tion V (x) = xTPx , with P a symmetri


positive de�nite matrix, and s
alars δ, γ > 0 su
h that for Γ = PB

∂V

∂x
(Ax+Bκ(x)) < −2δV (x), (4.10)

for all κ(x) ∈ argminv∈V xTPBv, x ∈ Ω0 \ {0} where Ω0 = E(P, γ).

Using standard developments, it 
an be shown that (4.10) is a su�
ient 
ondition for the lo
al

asymptoti
 stability of Filippov solutions asso
iated to system (4.1) with d = 0 and the 
ontrol

law (4.2). As follows, it will be shown that the provided 
ontrol law also ensures robustness to

perturbations and it presents a �nite time rea
hable sliding dynami
s.
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4.3 Sliding dynami
s and robustness to perturbations

The following theorem provides design 
onditions for the 
ontrol law (4.2) in the 
ase of non null

perturbations.

Theorem 4.2 [Hetel 2015
℄ Consider a set of 
o-ve
tors hi ∈ R1×m, i ∈ Inh
des
ribing the dual

representation of the polytope 
onv {V}:


onv {V} = {y ∈ Rm : hiy ≤ 1, i ∈ Inh
} . (4.11)

Consider Assumptions (A.2)-(A.6) and the 
losed-loop system (4.1),(4.2) with Γ = PB. Then
for any

γ ≤ min
i∈Inh

(1− ρ)2
(
hiKP

−1KThTi
)−1

(4.12)

a) the origin x = 0 of the 
losed-loop system is lo
ally exponentially stable in Ω0 := E (P, γ);

b) if rank(B) = m ≤ n then, for s = BTPx the surfa
e s = 0 is �nite time rea
hable whenever

x(0) ∈ E (P, γ), i.e. exists tf ∈ [0,∞) su
h that s(t) = 0 for all t ≥ tf .

Furthermore, if for some P satisfying (4.3), ATP + PA is negative semi-de�nite then


) the origin of the 
losed-loop system is globally asymptoti
ally stable.

The theorem provides simple design 
onditions of a robust stabilizing 
ontroller under the

simple assumptions (A.2)-(A.6). Note that the theorem guarantees that for the 
ase rank(B) =
m ≤ n the surfa
e s = BTPx = 0 is a sliding hyperplane that is rea
hed in a �nite time. The

design pro
edure 
an be easily extended to deal with parametri
 un
ertainties in the matrix A,

that is when A (µ(t)) ∈ A := 
onv {A1, A2, . . . , Anv} where µ(t) =
[
µ1(t) µ2(t) . . . µnv(t)

]T
are

the bary
entri
 
oordinates of A in A.

Corollary 4.3 [Hetel 2015
℄ For c > 0 and x ∈ Rn, let

B(x, c) := {y ∈ Rn : ‖x− y‖2 < c} .

Consider the system

ẋ = A (µ)x+B (u+ d) , (4.13)

where µ(·) is measurable, Assumptions (A.2)-(A.5) and the dual representation of the polytope


onv {V} in (4.11). Given δ > 0, γ > 0, assume that there exists (Q,λ, ǫ) solution to the set of

linear matrix inequalities

Q = QT ≻ 0, λ > 0,

AjQ+QATj − λBBT ≺ −2δQ, ∀j ∈ Inv , (4.14)

[
ǫI I
∗ Qγ

]
≻ 0, (4.15)

[
1 λ

2(1−ρ)hiB
Tγ

∗ Qγ

]
≻ 0, i ∈ Inh

. (4.16)
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Figure 4.2: Phase spa
e for the 
losed-loop system in Example 4.4 with ‖d‖∞ ≤ 0.01. Ellipsoid
in dotted-dashed line � Ω0. Solid bla
k lines � limiting hyperplanes of C(1−ρ)V (K).

Then the origin x = 0 of the 
losed-loop system (4.13),(4.2) with Γ = Q−1B is lo
ally asymp-

toti
ally stable in the ellipsoid E
(
Q−1, γ

)

ontaining the ball B(0, cB) with cB = 1/

√
ǫ. Fur-

thermore, if rank(B) = m ≤ n, the surfa
e s = BTQ−1x = 0 is �nite time rea
hable for any

x(0) ∈ E
(
Q−1, γ

)
.

The existen
e of a solution (Q,λ, ǫ) to the LMI optimization problem inf ǫ under the 
on-

straints (4.14)-(4.16), guarantees that any Filippov solution of the 
losed-loop system (4.1),

(4.2) (with Γ = Q−1B), originating from E
(
Q−1, γ

)
is exponentially 
onverging to the origin.

By minimizing ǫ, the size of the invariant ellipsoid is maximized. Note that without any loss of

generality we may always 
onsider γ = 1. If the LMIs (4.14)-(4.16) are satis�ed for (Q0, λ0, ǫ0),
then they are also satis�ed for γ = 1 with (Q0γ0, λ0γ0, ǫ0). Given dmax, the minimum ρ s.t.

P (dmax) ⊂ 
onv {ρV} 
an be 
omputed from the standard optimization problem:

inf ρ s.t. hiy ≤ ρ,∀ y ∈ vert {P (dmax)} , i ∈ Inh
. (4.17)

Example 4.4 Consider a system (4.1) des
ribed by

A =

[
a −1
1 1

]
, B =

[
1 0
0 1

]
, V =

{[
0
1

]
,

[
−2
−1

]
,

[
2
−1

]}

with a = 1, ‖d‖∞ < dmax = 0.01. The set 
onv {V} in (4.11) is 
hara
terized by h1 = [−1 1], h2 =
[1 1], h3 = [0 − 1/2].

Addressing the optimization problems (4.17) and inf ǫ under the 
onstraints (4.14)-(4.16)

with γ = 1, δ = 0.25, leads to a 
ontrol law (4.2) with Γ = PB and

P =

[
3.25 0
0 3.25

]
,
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whi
h ensures the lo
al (robust) stabilization in Ω0 = E(P, 1), 
ontaining the ball with the radius

cB = 0.55. For this example s = BTPx 
orresponds to the origin. Then the equilibrium point

is �nite-time rea
hable. Let us remark that the boundary of the domain of attra
tion is not

far from the unstable equilibrium points of the 
losed-loop system: −A−1Bv2 = [1.5 − 0.5]T ,
−A−1Bv3 = [−0.5 1.5]T . Furthermore, for x(0) = [0.501 − 0.501]T , simulations with 
onstant

sampling interval tk+1−tk = 10−5,∀k ∈ N and dmax = 0, illustrate an unstable system behaviour.

Note that ‖x(0)‖2 = 0.708, to be 
ompared with cB < 0.55 for whi
h lo
al stabilization is ensured.

This gives an idea about the a

ura
y of the ellipsoidal estimation of the domain of attra
tion.

An illustration is provided in Figure 4.4. A simulation from the initial 
ondition x(0) = [0.4 0]T

is presented under arbitrary variations of the mat
hed perturbation and with a sampling interval

of 10−3
.

Let us remark that for the system under study the matrix A is unstable. Therefore it is

impossible to apply the 
lassi
al global stabilization 
ontrol design te
hniques based on the existen
e

of a stable 
onvex 
ombination [Deae
to 2010,Bolzern 2004℄.

Assume now that the parameter a is time-varying in [0.97, 1.03]. Let us 
onsider a 
ontinuous-
time 
ontrol design based on Corollary 4.3 for ‖d‖∞ < dmax = 0.01. For γ = 1, solving the LMI

problem (4.14)-(4.16) (for the two vertex of the A matrix) while minimizing ǫ, leads to a 
ontrol

law of the form (4.2) with Γ = PB and

P =

[
0.33 0
0 0.33

]
,

whi
h ensures lo
al stabilization of the 
ontinuous-time systems in Ω0 = E(P, 1) for any ‖d‖∞ <
dmax = 0.01 and any a(t) ∈ [0, 97, 1.03].

4.4 LPV 
ase and Parameter Dependent Relay Control

The approa
h previously presented 
an be extended to 
ase of Linear Parameter-Varying (LPV)

systems with the state-spa
e realization:

ẋ = A(µ)x+B(µ)u, (4.18)

where x ∈ Rn is the state ve
tor and u ∈ Rm is the 
ontrol ve
tor, the matri
es A ∈ Rn×n, B ∈
Rn×m are polytopi
 matri
es with the following form:

A(µ(t)) =
∑nv

i=1 µi(t)Ai, B(µ(t)) =
∑nv

i=1 µi(t)Bi, (4.19)

with A1, . . . , Anv , B1, . . . , Bnv being known 
onstant matri
es. In what follows, the ve
tor

µ(t) =
[
µ1(t) . . . µnv(t)

]T

is a ve
tor of real and known parameters whi
h evolves pie
ewise 
ontinuously in the unit simplex

∆nv . Su
h models are interesting sin
e they 
an be useful for absorbing lo
ally the behaviour of

more 
omplex a�ne nonlinear systems [Rugh 2000℄.

Consider that for ea
h µ ∈ ∆nv the 
ontrol u may only take values in a �nite set whi
h

depends on the parameter µ. We de�ne this set of �nite values Vµ by:

Vµ = {vi(µ), i ∈ IN}, vi : ∆nv → Rm,∀i ∈ IN . (4.20)
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We 
onsider that 
onv{Vµ} is a non empty bounded set 
ontaining the origin in its interior for

any µ ∈ ∆nv . The obje
tive is to �nd a Parameter Dependent Relay (PDR) 
ontrol u = κ(x, µ)
whi
h lo
ally stabilizes the system (4.18):

κ(x, µ) : Rn ×∆nv → Vµ. (4.21)

Proposition 4.5 (adapted from [Delpoux 2015℄) Consider system (4.18) with the des
ription

(4.19). Consider D ⊂ Rn a domain 
ontaining x = 0. Assume that there exists a 
ontrol

u = K(x, µ), with K : Rn ×∆nv → Rm su
h that K(x, µ) ∈ 
onv{Vµ}, ∀µ ∈ ∆nv , x ∈ D \ {0}.
Let V : D → R, be a 
ontinuously di�erentiable fun
tion su
h that

0 < V (x), ∀ x ∈ D \ {0}, (4.22)

∂V

∂x
(A(µ)x+B(µ)K(x, µ)) < −W (x),∀µ ∈ ∆nv , x ∈ D \ {0}, (4.23)

where W (x) is a 
ontinuous positive de�nite fun
tion on D. Then system (4.18) with the 
ontrol:

u = κ(x, µ) ∈ arg min
v∈Vµ

∂V

∂x
B(µ)v, (4.24)

is lo
ally asymptoti
ally stable when solutions are understood in the sense of Filippov. Further-

more, for any level set LV (c) = {x ∈ Rn : V (x) ≤ c} su
h that LV (c) ⊆ D, the following relation

is satis�ed for any Filippov solution x(t) originating from the initial 
ondition x0:

x0 ∈ LV (c) ⇒ lim
t→∞

||x(t)|| = 0, (4.25)

i.e. LV (c) is an inner estimation of the domain of attra
tion.

The previous result uses the existen
e of any stabilizer K(x, µ) (possibly 
ontinuous) in order

to redesign a swit
hing 
ontrol κ(x, µ) whi
h takes values only in the set Vµ(x, µ). Note that the
swit
hing 
ontrol has at least the same guaranteed de
ay of the Lyapunov fun
tion as K(x, µ).
The result provides a general theoreti
al framework for the design of swit
hing 
ontrollers. In

the following proposition we will show how this result 
an be used in a 
onstru
tive manner.

Considering that for all µ ∈ Vµ, 
onv{Vµ} is non empty and 
ontains the origin in its interior,

remark that there exists a polytopi
 region:

Q = 
onv{q1, q2, . . . , qp} = {z ∈ Rm : hiz ≤ 1, i ∈ INh
}, (4.26)

su
h that

Q ⊂ 
onv{Vµ},∀µ ∈ ∆nv and 0 ∈ Int{Q}. (4.27)

Using the polytope Q one 
an adjust the design 
onditions to in
lude an LMI based optimization

of the domain of attra
tion.

Proposition 4.6 [Delpoux 2015℄ Consider system (4.18). Assume that there exists Q = QT ≻
0, Yi ∈ Rm×n

, i ∈ IN and a positive s
alar δ su
h that:

He{(Ai +Aj)Q+BiYj +BjYi} ≺ −2δQ, i, j ∈ Inv , (4.28a)

[
1 hiYj
∗ Q

]
≻ 0, i ∈ INh

, j ∈ Inv , (4.28b)
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[
eI I
∗ Q

]
≻ 0. (4.28
)

Let

u = κ(x, µ) ∈ arg min
v∈Vµ

xTQ−1B(µ)v. (4.29)

Then the equilibrium point x = 0 of the 
losed-loop system (4.18)-(4.29) is lo
ally asymptot-

i
ally stable. An estimation of the domain of attra
tion is provided by the ellipsoid E(Q−1, 1)

ontaining the ball

B(0,√ǫ) =
{
y ∈ Rn : ‖y‖2 <

√
ǫ
}

with ǫ = 1
e , i.e.

∀x(0) ∈ E(Q−1, 1), lim
t→∞

||x(t)||2 = 0.

Example 4.7 In order to illustrate the results presented in this se
tion, we propose to show

simulations through a simple se
ond order system so that the traje
tories of the system 
an be

plotted in a two dimensional phase portrait. We 
onsider the system:

ẋ(t) = A0x(t) +B0(x1(t))u(t), (4.30)

with x = [x1 x2]
T
in R2

, u ∈ R2
, A0 ∈ R2×2

and B0 ∈ R2×2
de�ned by

A0 =

[
0 3
1 1

]
, B0(x1(t)) =

[
1 + 0.5 sin(x1(t)) 0

0 1 + 0.5 sin(x1(t))

]
.

For ea
h x1(t), the 
ontrol u(t) is 
onstrained to swit
h among four di�erent values in the set

{R(x1(t))ρ, ρ ∈ Ψ2(v)} where Ψ2(v) = {u ∈ R2 : ui ∈ {−v, v}, i = 1, 2}, v = 10. The matrix

R(x1(t)) is the rotation matrix de�ned by

R(x1(t)) =

[
cos(x1(t)) sin(x1(t))
− sin(x1(t)) cos(x1(t))

]
. (4.31)

Considering as bounded time-varying parameters sin(x1), cos(x1), the system (4.30) may be

rewritten as an LPV system of the form (4.18) de�ned by:

ẋ(t) = Ax(t) +B(µ(t))u(t) (4.32)

with A = A0 and B(µ(t)) =
∑2

i=1 µi(t)Bi = B0(x1(t)), where

µ1(t) =
1− sin(x1(t))

2
, µ2(t) =

1 + sin(x1(t))

2

and

B1 =

[
0.5 0
0 0.5

]
, B2 =

[
1.5 0
0 1.5

]
.

The 
ontrol u takes values in the �nite set (4.20) de�ned by

Vµ(t) = {vi(µ(t)), i ∈ 1, . . . , 4} = {R(x1(t))ρ, ρ ∈ Ψ2(v)}. (4.33)

In order apply Proposition 4.6 we need to 
onstru
t a polytopi
 region Q su
h that equation

(4.26) is satis�ed.

98



4.4. LPV 
ase and Parameter Dependent Relay Control

PSfrag repla
ements

v2(µ) = R(x1)[v − v]T

v3(µ) = R(x1)[−v − v]T

v4(µ) = R(x1)[−v v]T

v1(µ) = R(x1)[v v]
T

v1

v2

q1

q2

qi

qN

R(x1)

hi
0

Figure 4.3: Representation of 
ontrol sets Vµ for the system in the simulation example.

Note that all squares de�ned by conv{Vµ(t)} are 
entred at 0 and have the same size. Thus

the dis
 of radius V 
entred at 0 belong to all conv{Vµ(t)} (see Fig. 4.3). This dis
 
an be

approximated by the polytope Q represented in brown Fig. 4.3 for whi
h the verti
es qi are given
by

qi+1 = v



cos
(
2iπ
p

)

sin
(
2iπ
p

)


 , i = 0, . . . , p− 1. (4.34)

Ea
h fa
e of the polytope 
an be 
hara
terized by its normal:

hi+1 =
qi + qi+1

1 + cos
(
2π
p

) , i = 0, . . . , p − 1. (4.35)

For this example, to approximate the ins
ribed dis
 by a polytope Q we take p = 15. Choosing
a de
ay rate δ = 4 and applying Proposition 4.6, the LMI solver returns the matri
es Q and

Yi, i ∈ I2 matri
es:

Q =

[
43.17 −18.86
−18.86 9.77

]
, Y1 =

[
−59.53 21.82
21.82 −20.88

]
, Y2 =

[
−21.70 7.66
7.66 −8.17

]
. (4.36)

The Q matrix de�nes the parameter dependent relay 
ontrol (4.29) and thus the swit
hing

regions. These regions are plotted Fig. 4.4 as fun
tion of the states x1 and x2. On this �gure,

r1, r2, r3 and r4 are the region for whi
h the argument of the minimum is given for the 
ontrol

input

v1 (µ(t)) = R (x1(t)) [v v]T ,
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Figure 4.4: Representation of the swit
hing regions, (the region r1 in dark blue, r2 in light blue,

r3 in yellow and r4 in red).

v2 (µ(t)) = R (x1(t)) [v −v]T ,

v3 (µ(t)) = R (x1(t)) [−v v]T

and

v4 (µ(t)) = R (x1(t)) [−v −v]T ,
respe
tively.

To illustrate the theoreti
al results, we 
ompare the Continuous State Feedba
k (CSF) 
ontrol

law

K(x, µ) =

nv∑

i=1

µiYiQ
−1x. (4.37)

with the PDR 
ontrol (4.29). In the 
ontinuous 
ase, the 
ontrol input applied to the system

denoted by ρ in the des
ription of the system is in R2
but it has elements saturated in the interval

[−v, v]. The phase portrait of the states x1 and x2 for both 
ases are plotted Fig. 4.5. On theses

�gures, we have plotted in red the ellipsoid E(Q−1, 1), 
hara
terizing the domain of attra
tion of

the system. The brown lines represent the hyperplanes hiYjQ
−1 = 1.

The �rst simulation is exe
uted while taking initial 
onditions outside the attra
tive ellipsoid.

On the �gure, the initial 
ondition is denoted by x0,1. One observes that outside the attra
tion

domain, the 
losed-loop system does not 
onverge to the origin. The se
ond simulation is realized

with the initial 
ondition x0,2, near the domain of attra
tion, but outside. The �gures show that

in this 
ase, the traje
tories are 
onverging to the origin. Finally, the initial 
ondition x0,3 is

taken inside the domain of attra
tion. In this 
ase the traje
tories also 
onverge to the origin.

For this example the attra
tive ellipsoid 
ontains the ball ‖x‖2 < ǫ with ǫ = 1.28 and the initial


ondition x0,3 with ‖x0,3‖2 = 4.14. Note that ‖x0,1‖2 = 7.07 and ‖x0,2‖2 = 4.24, this gives an

idea about the 
onservatism introdu
ed in the estimation of the domain of attra
tion.
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Figure 4.5: Chara
terization of the domain of attra
tion and simulation results.

The main advantage of the method is that it allows to optimize the design of nonlinear

swit
hing surfa
es while providing a quantitative guarantees in terms of domain of attra
tion

and performan
es. In Chapter 6, we will see how the proposed method 
an be applied to a

pra
ti
al example of a stepper motor.
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Chapter 5

Swit
hed a�ne systems

Swit
hed systems represent a very popular area in hybrid dynami
al systems. Generi
 results

on this topi
 may be found in the book [Liberzon 2003a℄ and the survey papers [Shorten 2007,

Lin 2009,Bourdais 2007℄. Among the di�erent problems en
ountered in the 
ontext of swit
hed

systems, in this 
hapter, we will fo
us on the problem of designing swit
hing 
ontrollers. This

problem is very 
hallenging for the 
ase of swit
hed a�ne systems where, generally, the di�erent

subsystems do not share a 
ommon equilibrium point. Di�erent stabilization solutions exist in

the literature based on the existen
e of stable 
onvex 
ombinations [Bolzern 2004,Deae
to 2010℄,

on optimal 
ontrol methods [Seatzu 2006,Hauroigne 2011℄, or on the use of sliding modes [Sira-

Ramirez 1994℄. A 
hara
terization of the set of attainable equilibrium points using quadrati


Lyapunov fun
tions and 
oni
 swit
hing laws has been provided in [Bolzern 2004,Deae
to 2010℄.

When dealing with the stabilization problem, the existing arti
les treat the global stabilization


ase. However, one may en
ounter swit
hed a�ne systems that may be stabilized only lo
ally.

Consider system 
hara
terized by two ve
tor �elds,

f1(x) = 3x+ 1, f2(x) = 2x− 1.

While global stabilization is not possible, lo
al stabilization at the origin is possible for initial


onditions in the ball |x| < 1/3, by 
hoosing f1(x) for x ≤ 0, and f2(x), whenever x ≥ 0. Su
h
systems 
annot be 
onsidered using the existing methodology.

In what follows, we propose 
onstru
tive methods for the derivation of state dependent swit
h-

ing laws that ensure lo
al stabilization of swit
hed a�ne systems at the origin

21

. The main idea

is to reformulate the stabilization of swit
hed a�ne systems as a 
lassi
al stabilization problem

for nonlinear systems a�ne in the input. The method derives state dependent swit
hing laws by

embedding, lo
ally, the behaviour of a 
ontinuous 
ontroller. The 
lassi
al restri
tion 
on
ern-

ing the existen
e of a Hurwitz 
onvex 
ombination may be easily avoided. With respe
t to the

existing results, the proposed methodology 
an be interpreted as an approa
h that uses 
onvex


ombinations that depend on the system state.

21

The results presented in this 
hapter have been developed in 
ollaboration with Ass. Prof. Emmanuel

BERNUAU.
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Chapter 5. Swit
hed a�ne systems

5.1 System des
ription

Let a set of 
ouples (Ai, bi) , i ∈ IN = {1, 2, . . . , N} where Ai ∈ Rn×n, bi ∈ Rn, for positive

integers n,N . Consider the system

ẋ = X(x) = Aκ(x)x+ bκ(x) (5.1)

where κ : Rn → IN represents the swit
hing law. We assume that there exists

δ∗ ∈ ∆N =

{
δ =

[
δ1, . . . , δN

]T ∈ RN :

N∑

i=1

δi = 1, δi ≥ 0, i ∈ IN
}

su
h that

∑
i∈IN δ

∗
i bi = 0. This is a ne
essary 
ondition for the existen
e of an equilibrium at

the origin when solutions are understood in the sense of Filippov (see [Filippov 1988℄). The goal

is to provide methods for the design of a lo
al stabilizing swit
hing law κ.

The main idea of the work is to re-formulate the swit
hed a�ne system (5.1) in a 
lassi
al

nonlinear a�ne form

ẋ = f(x) +G(x)u

inter
onne
ted with a dis
ontinuous 
ontrol law u = k(x) that is 
onstrained to take values in a

�nite set of ve
tors

V = {v1, v2, . . . , vN} ⊂ RN−1.

We propose su
h a system re-formulation in what follows. Furthermore, we show that the

obtained nonlinear a�ne system has ni
e properties: if there exists a 
lassi
al 
ontinuous feedba
k

kc(x) su
h that the system

ẋ = f(x) +G(x)kc(x)

is (lo
ally or globally) stable, then there exists also a lo
al dis
ontinuous stabilizer, k(x), taking
values in V, and in extenso, a swit
hing law κ for the swit
hed a�ne system (5.1)

5.2 Main results

In the following proposition, system (5.1) is rewritten in a 
lassi
al nonlinear a�ne form inter-


onne
ted with a dis
ontinuous 
ontrol law.

Proposition 5.1 [Hetel 2015a℄ Consider system (5.1), δ∗ ∈ ∆N su
h that

∑N
j=1 δ

∗
j bj = 0 and

the notations m = N − 1,
M =

[
Im×m 0m×1

]
∈ Rm×N .

For ψi, i ∈ IN , the vertex of ∆N , de�ne the set

V = {vi :=M (ψi − δ∗) , i ∈ IN} .

The swit
hed a�ne system (5.1) is equivalent to the inter
onne
tion between the nonlinear a�ne

system

ẋ = H(x, u) = f(x) +G(x)u, u ∈ Rm, (5.2)

and the 
ontrol law

u = k(x), k : Rn → V (5.3)
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with

f(x) = A(δ∗)x =
N∑

j=1

δ∗jAjx,

G(x) =
[
g1(x) g2(x) . . . gm(x)

]
,

gj(x) = (Aj −AN )x+ (bj − bN ), j ∈ Im
and

k(x) = vκ(x). (5.4)

We may remark that designing a swit
hing law σ leads to �nding a dis
ontinuous 
ontrol law

k : Rn → V, su
h that system (5.2) with the 
ontrol u = k(x), is lo
ally asymptoti
ally stable.

As follows we show how the existen
e of a 
ontinuous 
ontrol u = kc(x) for system (5.2) 
an be

used in order to derive a swit
hing law κ(x) for system (5.1) (or equivalently a dis
ontinuous


ontrol (5.4) for the inter
onne
tion (5.2), (5.3)).

Theorem 5.2 [Hetel 2015a℄ Consider the swit
hed a�ne system (5.1) and the a�ne model

(5.2). Assume that:

1. there exists δ∗ = [δ∗1 δ
∗
2 . . . , δ∗N ]

T ∈ ∆N with δ∗i > 0, i ∈ IN su
h that

∑N
i=1 δ

∗
i bi = 0;

2. system (5.2) is 
ontinuously lo
ally stabilizable at the origin by u = kc(x), with kc(0) = 0.

Then there exists a C∞
Lyapunov fun
tion V (x) de�ned on some ball B(0, η), η > 0, V (0) =

0, V (x) > 0,∀x 6= 0, and a measurable swit
hing law

κ(x) ∈ arg min
i∈IN

〈∇V (x), Aix+ bi〉 (5.5)

su
h that system (5.1), (5.5) (or equivalently (5.2), (5.3) with k(x) as in (5.4), (5.5)) is lo
ally

asymptoti
ally stable at the origin.

The proof of Theorem 5.2 is 
onstru
tive in the sense that if the a�ne nonlinear system

(5.2) is stabilized by a 
ontroller kc and admits a (lo
al) Lyapunov fun
tion V , then the original

swit
hed system (5.1) 
an be (lo
ally) stabilized by a swit
hing law of the form (5.5) obtained

based on the same Lyapunov fun
tion V . With respe
t to the 
lassi
al 
onvex 
ombination

approa
h [Bolzern 2004℄, [Deae
to 2010℄ the method that we propose 
an be interpreted as an

extension where we look for a lo
ally stable state dependent 
onvex 
ombination, with bary
entri



oordinates de�ned by

δi(x) = δ∗i + kci (x), i ∈ IN−1,

δN (x) = 1−
N−1∑

i=1

δi(x),

instead of a 
onstant 
onvex 
ombination, with 
onstant bary
entri
 
oordinates δ∗ (as in [Bolz-

ern 2004℄, [Deae
to 2010℄).

Example 5.3 (numeri
al illustration). Consider a system (5.1) des
ribed by the following ma-
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Figure 5.1: Illustration of the phase plane for the 
losed-loop swit
hed a�ne system in Example

5.3: dotted line - border of the set where kc(x) ∈ 
onv {V}; dashed line - a level set of V (x);
dash-dotted lines - swit
hing surfa
es 〈∇V (x), (Ai −Aj)x+ bi − bj)〉 = 0, i, j ∈ IN . κ(x) = σ -

value of swit
hing fun
tion in di�erent regions of the state spa
e.

tri
es:

A1 = A3 =

[
0 2
2 −66

]
, b1 = b2 =

[
−360
0

]
, (5.6)

A2 = A4 =

[
0 2
2 54

]
, b3 = b4 =

[
360
0

]
, (5.7)

For δ∗i = 1/4, i ∈ I4, we have

∑4
i=1 δ

∗
i bi = 0. The obtained system (5.2) is des
ribed by

A(δ∗) =
[
0 2
2 −6

]
, (5.8)

g1(x) = g2(x) + g3(x),

g2(x) =

[
−720
0

]
, g3(x) =

[
0

−120x2

]
.

The matrix A(δ∗) is not Hurwitz. Let

kc(x) = 1/120
[
0 x1 2x22

]T
.

The obtained 
losed-loop system, H(x, kc(x)), has the form

ẋ1 = −6x1 + 2x2 (5.9)

ẋ2 = 2x1 − 6x2 − 2x32. (5.10)
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The stability of the 
losed-loop system 
an be shown using Krasovskii's method [Slotine 1991℄.

The method 
onsists in using

V (x) = HT (x, kc(x))H(x, kc(x)) = (−6x1 + 2x2)
2 + (2x1 − 6x2 − 2x32)

2

as a 
andidates Lyapunov fun
tion and 
he
king whether the Ja
obian matrix

J(x) =
∂H(x, kc(x))

∂x

satis�es the relation

JT (x) + J(x) ≺ 0

in some neighbourhood of the origin. For system (5.9)

JT (x) + J(x) =

[
−12 4
4 −12− 12x2

]
≺ 0 (5.11)

for all x ∈ Rn. Then the 
losed-loop system ẋ = H(x, kc(x)) is asymptoti
ally stable. Sin
e the


onditions of Theorem 5.2 are satis�ed, the fun
tion V (x) 
an be used for 
onstru
ting a swit
hing

law (5.5) that ensures the lo
al stabilization of the swit
hed a�ne system. An illustration of the

phase plane for the 
losed-loop swit
hed a�ne system is provided in Figure 5.1.

The main advantage of the proposed method is the fa
t that the di�
ult problem of existen
e

of a stabilizing swit
hing law for the swit
hed a�ne system is redu
ed to the 
lassi
al stabilization

problem of a nonlinear a�ne system (5.2), on whi
h a very large variety of 
ontrol design methods

are possible.

Example 5.4 (stabilization based on the linearized model). As follows, simple stabilization 
on-

ditions are given using the lo
al linearized model of system (5.2). Consider the notation

B =
[
b1 − bN b2 − bN . . . bN−1 − bN

]
. (5.12)

System (5.2) 
an be re-expressed as

ẋ = A(δ∗)x+Bu+ w(x, u), (5.13)

w(x, u) = D(u)x (5.14)

where w(x, u) is obtained from w(x, u) = (G(x) −B)u and

D(u) =

N−1∑

i=1

(Ai −AN )ui. (5.15)

Assume that the pair (A(δ∗), B) is stabilizable for some δ∗ ∈ ∆N with δ∗i > 0, i ∈ IN . Then there

exists a gain matrix K and fun
tions V (x) = xTPx, W (x) = xTQx, P,Q ≻ 0, su
h that

〈∇V (x), (A(δ∗) +BK)x〉 < −W (x). (5.16)

The derivative of the fun
tion V along (5.13) satis�es

〈∇V (x), (A(δ∗) +BK)x+ w(x,Kx)〉
< −W (x) + 2xTPw(x,Kx). (5.17)
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Let us remark that for any ρ > 0 there exists r > 0 su
h that ‖w(x,Kx)‖2 < ρ‖x‖2 for any

‖x‖2 < r. Then
xTPw(x,Kx) < ρ‖P‖2‖x‖2,

for all ‖x‖2 < r, whi
h leads to

〈∇V (x), (A(δ∗) +BK)x+ w(x,Kx)〉
< − (eigmin(Q)− 2ρ‖P‖2) ‖x‖2 (5.18)

for all ‖x‖2 < r, that is the state feedba
k u = Kx ensures lo
al stabilization of system (5.13) for

ρ 
hosen su
h that ρ < 1/2eigmin(Q)/‖P‖2, where eigmin(Q) denotes the minimum eigenvalue

of Q. Applying Theorem 5.2, one 
an 
on
lude that the swit
hed a�ne system 
an be lo
ally

stabilized. The obtained swit
hing law has the form

κ(x) ∈ arg min
i∈IN

xTP (Aix+ bi). (5.19)

However, di�erently from [Bolzern 2004℄, [Deae
to 2010℄, A(δ∗) is not required to be a Hurwitz

matrix. For lo
al stabilization we only need the pair (A(δ∗), B) to be stabilizable.

The existen
e of a 
ontinuous stabilizing feedba
k kc for system (5.2) is not very restri
tive.

In fa
t, for nonlinear a�ne systems su
h as (5.2), when the system 
an be stabilizable at the

origin (in the sense of Filippov solutions) by means of a lo
ally bounded, measurable feedba
k

u = kb(x) su
h that limǫ→0 ess sup‖x‖<ǫ ‖kb(x)‖ = 0, there exists also a 
ontinuous stabilizer

u = kc(x) for the same system (see [Ba

iotti 2005℄, page 61). Furthermore, the non-existen
e

of a stabilizing feedba
k for system (5.2) 
an be expressed as a 
ertain topologi
al obstru
tion.

For the ne
essity of existen
e of 
ontinuous stabilizer kc we point to the 
lassi
al Bro
kett test.

For the more general 
ase of lo
ally bounded, measurable stabilizers k, ne
essary 
ondition may

be found in [Ryan 1994℄. Sin
e for ea
h subset U ⊂ Rm and ea
h x ∈ Rn, system (5.2) satis�es

H (x, 
onv (U)) = 
onv (H (x,U)) , (5.20)

a ne
essary 
ondition for the existen
e of a lo
ally bounded, measurable feedba
k u = k(x) whi
h
stabilizes the system (in the sense of Filippov) is that for ea
h ǫ > 0 there exists λ > 0 su
h that

∀ y ∈ B (0, λ) , ∃ x ∈ B (0, ǫ) ,∃ u ∈ Rm su
h that y = H(x, u),

where B (x, c) denotes the n dimensional open ball in Rn 
entred on x with radius c > 0. This

may be useful to determine the existen
e of stabilizing swit
hing laws for the original swit
hed

a�ne system. This implies, for example, that swit
hed a�ne systems for whi
h A(δ∗) = 0
whenever

∑N
i=1 δ

∗
Nbi = 0 and rank (G(x)) = m < n 
annot be stabilized by a stati
 swit
hing

law κ(x) if solutions are understood in the sense of Filippov.

Example 5.5 stabilization obstru
tion for swit
hed a�ne system. Consider a system a�ne
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system with

A1 = −A4 =




0 0 0
0 0 0
0.5 −0.5 0


 , b1 = −b4 =



0.5
0.5
0


 , (5.21)

A2 = −A3 =




0 0 0
0 0 0
0.5 0.5 0


 , b2 = −b3 =



−0.5
0.5
0


 . (5.22)

For any δ∗ ∈ ∆N su
h that

∑4
i=1 biδ

∗
i = 0 we have A(δ∗) = 0. The model (5.2) is 
hara
terized

by g1(x) = g2(x) + g3(x), g2(x) =
[
0 1 x1

]T
, g3(x) =

[
1 0 −x2

]T
. This leads to

ẋ1 = u1 + u3 (5.23)

ẋ2 = u1 + u2 (5.24)

ẋ3 = (u1 + u2)x1 − (u1 + u3)x2 (5.25)

where the reader may re
ognize a 
lassi
al non-holonomi
 integrator (see [Ba

iotti 2005℄, p. 55)

for whi
h no point x of the form x = (0 0 ǫ)T , ǫ 6= 0, belongs to the image of H. We 
on
lude

that there is no swit
hing law κ(x) whi
h makes the origin of the swit
hed a�ne system lo
ally

asymptoti
ally stable (in the sense of Filippov solutions).

5.3 Numeri
al issues

In pra
ti
al appli
ations it is of interest to provide numeri
al tools for the design of swit
hing

laws. For the system under study, we may be interested in optimizing the domain of attra
tion,

the speed of 
onvergen
e, et
. Here we present simple LMI based 
riteria for the design of a

stabilizing swit
hing law whi
h optimizes an ellipsoidal estimation of the domain of attra
tion

for given de
ay rate.

Consider the set of allowable 
ontrol values V. The set 
onv {V} is a 
onvex polytope. It 
an

be des
ribed by a �nite number Nr of ve
tors ri ∈ Rm, i ∈ INr , su
h that


onv {V} =
{
u ∈ RN : rTi u ≤ 1, i ∈ INr

}
. (5.26)

Proposition 5.6 [Hetel 2015a℄ Consider the swit
hed system (5.1), the equivalent represen-

tation (5.13) with 
ontrols u restri
ted to the set V and the polytope (5.26). Assume that

δ∗i > 0, i ∈ IN . Given tuning parameters χ, c > 0 assume that there exists Q ≻ 0, θ > 0 su
h that

(A(δ∗) +D(vi))Q+Q (A(δ∗) +D(vi))
T − θBBT ≺ −2χQ, (5.27)

i ∈ IN , [
cI I
I Q

]
≻ 0, (5.28)

and [
1 θ

2r
T
j B

T

θ
2Brj Q

]
≻ 0, j ∈ INr . (5.29)
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Then the swit
hed system (5.1) with the swit
hing law

κ(x) ∈ arg min
i∈IN

xTQ−1 (Aix+ bi) (5.30)

is lo
ally asymptoti
ally stable at the origin. Furthermore, the domain of attra
tion in
ludes the

ball

B(0, 1/√c) =
{
y ∈ Rn : ‖y‖2 < 1/

√
c
}

and there exists a positive s
alar C su
h that ‖x(t)‖22 ≤ Ce−2χt‖x(0)‖22 for any x(0) ∈ B(0, 1/√c).

The feasibility of the LMIs (5.27),(5.28),(5.29) guarantees that any system solution originat-

ing in the ball B(0, 1/√c) 
onverges to the origin with a de
ay rate χ. The size of the domain of

attra
tion 
an be optimized by 
onsidering the optimization problem

inf c under the 
onstraints (5.27),(5.28),(5.29), (5.31)

whi
h is a standard optimization problem. The LMI 
riteria (5.27),(5.28),(5.29) represent suf-

�
ient 
ondition for lo
al stabilization in a domain that in
ludes a pres
ribed ball B(0, 1/√c).
The set of LMIs implies that the lo
al linearised model at x = 0 is stabilizable. The method is

based on robust 
ontrol arguments, in the sense that the term w(x, u) in (5.13) is treated as a

perturbation. This aspe
t may indu
e some 
onservatism in the design. Additional 
onservatism

in the estimation of the domain of attra
tion may also stem from the 
hoi
e of quadrati
 
andi-

date Lyapunov fun
tions. In terms of 
omputational 
omplexity, the approa
h requires solving

N +Nr + 3 LMIs involving 0.5(n2 + n) + 2 variables.

Example 5.7 LMI stabilization. Consider a swit
hed a�ne system des
ribed by the matri
es:

A1 =

[
−3 0
0 12

]
, b1 =

[
0
7

]
, A2 =

[
1 1
−1 1

]
, b2 =

[
0

−14

]
.

For δ∗ =
[
2/3 1/3

]T
,

∑2
i=1 δ

∗
i bi = 0. However, A(δ∗) is not Hurwitz therefore the example


annot be treated using the global stabilization approa
hes in [Bolzern 2004℄, [Deae
to 2010℄.

Using the formulation (5.13) and solving the optimization problem (5.31) for χ = 0.25 leads to a

swit
hing law of the form (5.30) with

Q =

[
2.87 −3.62
−3.62 17.45

]
× 10−2

(5.32)

whi
h guarantees lo
al stabilization ∀x(0) ∈ B(0, 0.14).
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Chapter 6

Appli
ations

In this 
hapter we will present two experimental appli
ations of the methodology proposed in

Chapters 4 and 5. First, results 
on
erning the 
ontrol of a Permanent Magnet Syn
hronous

Motor will be presented, based on the use of LPV models. Next, a methodology of 
ontrol

design a multi-level power 
onverter will presented using similar nonlinear models as in Chapter

5.

6.1 Control of a Permanent Magnet Syn
hronous Motor

As follows we illustrate the proposed swit
hing 
ontrol methodology for the 
ase of a Permanent

Magnet Syn
hronous Motor (PMSM)

22

. Indeed, PMSM are usually 
ontrolled by relays and thus

only a �nite set of 
ontrol values is available. However in most of 
lassi
al 
ontrol design methods

the use of averaging and of PWM ignores the relay nature of the a
tuator [Bodson 1993℄, [Sira-

Ramírez 2000℄. Here we propose a dire
t relay 
ontrol whi
h may use the advantages of the

swit
hing a
tuator. The LPV framework en
ompasses the PMSM model. The obtained swit
hing

surfa
es depend in a nonlinear manner on the motor speed.

The equations (6.1) give the standard PMSM model in the phase (or winding) variables

[Marino 1995℄: 



L
diα
dt

= vα −Riα +KΩ sin(npθ),

L
diβ
dt

= vβ −Riβ −KΩcos(npθ),

J
dΩ

dt
= K (iβ cos(npθ)− iα sin(npθ))− fvΩ− τ,

(6.1)

where vα and vβ are the voltages applied to the two phases of the PMSM, iα and iβ are the two

phase 
urrents, L is the indu
tan
e of a phase winding, R is the resistan
e of a phase winding,

K is the ba
k-EMF 
onstant (and also the torque 
onstant), np is the number of pole pairs (or
rotor teeth), J is the moment of inertia of the rotor (in
luding the load), fv is the 
oe�
ient

of vis
ous fri
tion and τ represents the load torque. The variable θ is the angular position of

the rotor, Ω = dθ/dt is the angular velo
ity of the rotor. While for parti
ular appli
ations the

variable θ 
an be in
luded in the state ve
tor, here we 
onsider only the speed 
ontrol, justifying

22

The results presented in this se
tion have been developed in 
ollaboration with Romain DELPOUX (ATER

at LAGIS) and Ass. Prof. Alexandre KRUSZEWSKI.
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the fa
t that θ is not in the state ve
tor. We are interested in the stability of the velo
ity to a


onstant value. In this 
ase the position θ is time varying. For this reason θ is not in
luded in

the state ve
tor.

The non-linear state spa
e representation of the system of equations (6.1) is given by:

ẋαβ(t) = f(xαβ, t) +Bvαβ(t) +D̟(t), (6.2)

where xTαβ =
[
iα iβ Ω

]
, vTαβ =

[
vα vβ

]
and ̟ = τ . The fun
tion f(xαβ, t) is de�ned by:

f(xαβ, t) =




−R
L
iα(t) +

K

L
Ω(t) sin(npθ(t))

−R
L
iβ(t)−

K

L
Ω(t) cos(npθ(t))

K

J
(iβ(t) cos(npθ(t))− iα(t) sin(npθ(t)))−

fv
J
Ω(t)




,

B =




1
L 0
0 1

L
0 0




and D =



0
0
1
J


 .

Considering that ea
h motor phase is a
tuated via 
ommutation, the 
ontrol ve
tor vαβ belongs

to the set Ψ2(V ), where Ψ2(V ) = {u ∈ R2 : ui ∈ {−V, V }, i = 1, 2} and where V represents the

maximal voltage. In the phases frame the signals iα and iβ vary at np times the frequen
y of

rotation. This high frequen
y problem is alleviated by the use of the dire
t quadrature (d − q)
transformation, also known as the Park transformation [Park 1929℄. This transformation 
hanges

the frame of referen
e from the �xed phase axes to axes moving with the rotor. Equation (6.3)

gives the transformation performed to obtain the rotating frame:

R(θ(t)) =

[
cos(npθ(t)) sin(npθ(t))
− sin(npθ(t)) cos(npθ(t))

]
,

[
id(t)
iq(t)

]
= R(θ(t))

[
iα(t)
iβ(t)

]
and

[
vd(t)
vq(t)

]
= R(θ(t))

[
vα(t)
vβ(t)

]
. (6.3)

The state spa
e representation is then given by:

ẋdq(t) = Adq(Ω(t))xdq(t) +Bvdq(t) +D̟(t), (6.4)

where xTdq =
[
id iq Ω

]
, vTdq =

[
vd vq

]
, and,

Adq(Ω(t)) =




−R
L npΩ(t) 0

−npΩ(t) −R
L −K

L

0 K
J − fv

J



.

The matri
es B andD remain un
hanged. Consider that Ω(t) ranges between known extremal

values Ω(t) ∈ [Ω,Ω]. In this frame the PMSM 
an be des
ribed using an LPV state spa
e

representation. The state spa
e representation of the system depends linearly on a ve
tor of
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Figure 6.1: Finite set of 
ontrol in the �xed frame and in the rotating frame.

time-varying parameters: Ω(t). The model may be represented as follows:

{
ẋdq(t) = A(α(t))xdq(t) +Bvdq(t) +D̟(t),

A(α(t)) =
∑NA

i=1 αi(t)Ai, ∀i, αi(t) ≥ 0,
∑

i αi(t) = 1,
(6.5)

where NA = 2, with A1 = Adq(Ω), A2 = Adq(Ω). The 
ontrols vdq(t) are de�ned for all θ ∈ [0, 2π]
by:

vdq(t) = κ(xdq(t), θ(t)), κ : Rn × [0, 2π] → Rm. (6.6)

Note that the 
ontrol vdq(t) is a PDR 
ontrol whi
h takes values in a �nite set of ve
tors de-

pending on θ: {u ∈ R2 : ∃v ∈ Ψ2(V ), u = R(θ(t))v}. The input ve
tor in the di�erent frames is

represented in Fig. 6.1. For a given V , the obje
tive is to determine the swit
hing surfa
es in

the state spa
e, whi
h ensure the 
losed loop stability of the system (6.5) with the 
ontrol law

(6.6).

The method proposed in Proposition 4.6 has been applied to a stepper motor ben
hmark at

É
ole Centrale de Lille (see Fig. 6.2). The parameters of the motor with 
oils in series have

been identi�ed using the o�ine pro
edure des
ribed in [Delpoux 2014℄, leading to L = 9mH,

R = 3.01Ω, K = 0.27N.m.A−1
and J = 3.18.10−4kg.m2

. The number of pole pairs is np = 50.
The input voltages va and vb of ea
h 
oil are delivered by two D/A outputs of the dSpa
e 
ard

and ampli�ed by two linear power ampli�ers (this means that the 
ontrols are dire
tly applied

to the 
oils without a PWM implementation). The 
urrents ia and ib are measured using Hall

e�e
t sensors with a pre
ision of 1% of the nominal 
urrent In = 3A. The power supply provides

a maximum voltage vmax = 20V and imax = 3A. The sampling period for this experiment is


onstant and equals to 10−4s for the 
ontrol.

We designed a 
ontrol law where we 
onsider that only four 
ontrol inputs are available. The


ontrol design is 
onsidered with the assumption that there is no external torque (i.e. τ = 0). An
integral a
tion is implemented with ζ the ouput of the integrator (ζ(0) = 0)) to ensure tra
king
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Figure 6.2: PMSM test-ben
h lo
ated at Centrale Lille.

performan
e with respe
t to a referen
e Ωref . The integral a
tion given by:

ζ̇ = Ω− Ωref = Cx− Ωref , C = [0 0 1], (6.7)

where ζ is the output of the integrator (ζ(0) = 0). The 
ombination of the state spa
e represen-

tation (6.4) and the integral a
tion without torque 
an be re-written as:

[
ẋdq
ζ̇

]

︸ ︷︷ ︸
ż

=

[
Adq(Ω) 0
C 0

]

︸ ︷︷ ︸
A(Ω)

[
xdq
ζ

]

︸ ︷︷ ︸
z

+

[
B
0

]

︸︷︷︸
B

u−
[
0
I

]

︸︷︷︸
I

Ωref (6.8)

where u is 
onstrained to swit
h among four di�erent values in the set {R(θ)ρ, ρ ∈ Ψ2(V )}. The
matrix R(θ) is de�ned by equation (6.3). Two di�erent 
ontrol strategies are proposed to show

the experimental behavior of the PDR 
ontrol applied to PMSM. Firstly, we are interested in the

motor stabilization starting from non-zero initial 
onditions, next a velo
ity tra
king strategy is

proposed.

The stabilization is realized on the PMSM starting from di�erent initial 
onditions to the

origin. Here the PDR 
ontrol is proposed based on Proposition 4.6 applied to model (6.8) with

Ωref = 0. It leads to a 
ontrol law of the form

vαβ = arg min
ρ∈Ψ2(V )

zTQ−1R(−θ)ρ

where

Q =




29.6 −4.8 9.4 −0.012
−4.8 26.6 −15.9 0.038
9.4 −16.0 208.4 −2.8

−0.012 0.038 −2.8 0.069


 .

To 
ompare the experimental behavior of the PDR 
ontrol with the 
lassi
al Continuous State
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Figure 6.3: Comparison between the CSF and PDR 
ontrol of the motor velo
ity stabilization.

Feedba
k (CSF) 
ontrol,

vαβ = R(−θ)Y (Ω)Q−1z,

(obtained from (4.37)) starting from non null initial velo
ity, we have plotted in Fig. 6.3 the

velo
ity evolution for three di�erent 
ases (Open Loop, CSF and PDR). This 
ontrol law is

applied to the system by using linear ampli�ers, without any PWM module. Knowing that

the PMSM is a stable system, it is important to show that the stabilization performan
e are

better than the open loop performan
e. For this reason, the blue 
urve represents the open-

loop stabilization. The red line represents the CSF while the green one represents the PDR.

The �gure shows that the 
losed loop performan
es are better than the open loop performan
es

(better settling-times and transient responses). The 
losed loop strategies show similar settling

time given that the PDR uses only 4 inputs 
ontrol values.

We 
ompare the behaviour of the CSF and PDR for the tra
king of a slowly varying velo
ity,

although the proposed theoreti
al developments do not 
over this 
ase. The velo
ity pro�le is


hosen a

ording to industrial test traje
tories [Hamida 2013℄. The robustness of the proposed

approa
h is also tested by applying an external torque to the motor produ
ed by a Ele
tromag-

neti
 Parti
le Brake. Figure 6.4 exhibits the 
omparison between the CSF and the PDR when

no external torque is applied to the motor.

Without additional torque the velo
ity tra
king is a

urate in both 
ases: it shows that

at steady state the desired traje
tory is tra
ked with a pre
ision around 1rad.s−1
for the PDR


ontrol. It must be noted that 
hattering phenomena appear in the PDR 
ase leading to a sightly

higher tra
king error. However, in this 
ase only four 
ontrol inputs are used for the 
ontrol.

Figure 6.5 shows the experimental result of the velo
ity tra
king similarly to the previous

�gure. At time t = 7s an unknown external torque is applied to the motor using an Ele
tromag-

neti
 Parti
le Brake. On this �gure, the plot of the tra
king errors shows that in the presen
e of

external torque, the PDR is more robust to disturban
es than the CSF. Indeed the perturbation

is reje
ted only by the PDR 
ontrol. This results is more 
learly illustrated on Figure 6.6, where a

fo
us on both traje
tories tra
king is represented. We 
an see that the PDR 
ontrol (represented

in red) provides a better velo
ity tra
king performan
e. Moreover, for the CSF 
ase, when the
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Figure 6.4: CSF and PDR experimental results without pertubations.

load torque is applied, the power ampli�ers are in saturation.

6.2 Control of a multi-level power 
onverter

Multi-level multi
ell power 
onverters (also 
alled �ying 
apa
itors), appeared at the beginning

of the 1990s [Meynard 1991℄. They are based on the asso
iation in series of the elementary


ells of 
ommutation with passive storage elements 
ontrolled by swit
hes (transistors, diodes).

During this last de
ade, these systems be
ome more and more attra
tive to industrial appli
a-

tions, espe
ially in high-power appli
ations [Meynard 2002℄. Indeed, the harmoni
 
ontents of

the output signal are improved 
ompared to the 
lassi
al two levels 
onverter te
hnology us-

ing the same swit
hing frequen
y [Rodriguez 2009℄. Furthermore, this stru
ture enables the

redu
tion of the losses due to 
ommutations of power semi
ondu
tors while allowing low 
ost
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omponents [Bethoux 2002℄. For multi-level power 
onverters, the 
lassi
al methodology lies

on the use of average models [El Magri 2010, Bhagwat 1983℄, and 
ontinuous 
ontrol design

te
hniques [Gateau 2002, Sira-Ramirez 1994, Olalla 2011, Amato 2009℄ implemented via Pulse-

Width-Modulation (PWM). Dire
t 
ontrol te
hniques, addressing expli
itly the design of binary

signals, have been proposed in [Bethoux 2002℄, where a study of limit 
y
les was proposed,

in [Hauroigne 2011℄, where optimal 
ontrol te
hniques were given, and in [Gorp 2011℄ where

sliding mode 
ontrollers are used.

As follows, we present an appli
ation of the proposed swit
hing 
ontrol methodology to the


ase of a multi-level power 
onverter (also 
alled �ying 
apa
itor)

23

.

Figure 6.7 depi
ts the topology of a 
onverter with p independent 
ommutation 
ells asso-


iated to an indu
tive load. It 
onsists of (p − 1) �oating 
apa
itors. The 
urrent �ows from

23

The results presented in this se
tion have been developed in 
ollaboration with Prof. Mohamed Djemai and

Ass. Prof. Mi
hael DEFOORT.
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ity zoom during the perturbation.

the sour
e E toward the output I through the di�erent 
apa
itors a

ording to the swit
hes


on�guration. The dynami
s of the 
onverter, with a load 
onsisting in a resistan
e R and an

indu
tan
e L, 
an be expressed by the following equations:

dVci
dt

=
I

Ci
(ui+1 − ui), i ∈ Ip−1, (6.9)

dI

dt
= −R

L
I +

E

L
up +

1

L

p−1∑

i=1

Vci(ui − ui+1), (6.10)

where I is the load 
urrent, Ci, i ∈ Ip−1 represent the value of 
apa
itors, Vci , i ∈ Ip−1 is the

voltage of the i−th 
apa
itor and E is the voltage of the sour
e. Ea
h 
ommutation 
ell is


ontrolled by the binary variable ui whi
h is 
onstrained to take values in the set {0, 1}. Signal
ui = 1 means that the upper swit
h of the i−th 
ell is �on� and the lower swit
h is �o�� whereas

ui = 0 means that the upper swit
h is �o�� and the lower swit
h is �on�. Model (6.9),(6.10) has

L

R
E

Vcp−1 VcjCp−1 Cj C1

Vc1
i

cell 1 with
control input s1

cell p with
control input sp

Figure 6.7: Flying 
apa
itor 
onverter asso
iated to an indu
tive load.
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as p state variables (the 
urrent I and the p− 1 
apa
itor voltages Vci , i ∈ Ip−1) and p 
ontrol

variables ui, i ∈ Ip. Note that due to the presen
e of produ
ts between state variables I, Vci
and inputs ui, model (6.9),(6.10) is a nonlinear ordinary di�erential equation with a bilinear

stru
ture. Consider the generi
 bilinear model

ẋ = f(x, u) = A0x+

m∑

i=1

(Aix+ bi)ui (6.11)

where x ∈ Rn, A0, Ai ∈ Rn×n, bi ∈ Rn, i ∈ Im = {1, 2, . . . ,m} and where the system input

u = [u1, u2, . . . , um]
T ⊂ Rm is 
onstrained to take values in the dis
rete set V = {0, 1}m . The

multi-level power 
onverter 
an be represented in the form (6.11) by 
onsidering a state ve
tor

x = [Vc1 Vc2 . . . Vcp−1 I]
T . As an example for a 
onverter with p = 3 
ells, the 
orresponding

matri
es are as follows

A0 =



0 0 0
0 0 0
0 0 −R/L


 , A1 =




0 0 −1/C1

0 0 0
1/L 0 0


 , b1 =



0
0
0


 ,

A2 =




0 0 1/C1

0 0 −1/C2

−1/L 1/L 0


 , b2 =



0
0
0


 ,

A3 =



0 0 0
0 0 1/C2

0 −1/L 0


 , b3 =




0
0

E/L


 ,

where x =
[
Vc1 Vc2 I

]T
. To de�ne 
ontrol obje
tives, it is important to highlight that, due

to the industrial produ
tion standards, it is ne
essary to ensure a balan
ed distribution of the


apa
itor voltages [Gateau 2002℄. In
reasing power of stati
 
onverters is generally obtained by

in
reasing the voltage due to e�
ien
y requirements. Multi-level 
onverters enable to split the

voltage 
onstraints and to distribute them on several swit
hes of smaller ratings in series. The

equilibrium state of the p 
ells 
onverter is rea
hed when the voltage applied a
ross the blo
king

swit
h of any 
ell (i.e. the di�eren
es of 
apa
itor voltages Vci − Vci−1) takes the same value

given by E/p. Under these 
onditions, the referen
e voltage of the i−th 
apa
itor i ∈ Ip−1 is

given by V ∗
ci = iEp . The 
ontrol obje
tive is to de�ne the binary swit
hing fun
tions ui ∈ {0, 1},

i ∈ Ip su
h that the multi
ellular 
onverter ensures:

1. the stabilization of I to a desired 
urrent of the form I∗(ρ) = E
Rρ, where ρ ∈ (0, 1),

2. the balan
ed distribution of the 
apa
itor voltages a
ross ea
h 
ell, i.e. ∀i ∈ Ip, Vci is

stabilized toward V ∗
ci ,

3. the robustness with respe
t to potential un
ertainties in the load parameters R and L.

Thus the 
ontrol of the multi-level power 
onverter leads to the problem of designing a binary


ontrol law for a bilinear model.

For the generi
 model (6.11), this leads to designing a state feedba
k binary 
ontrol

u = κ(x), κ : Rn → V. (6.12)

The problem of interest is the (lo
al) stabilization of the Filippov solution of (6.11) via the
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ontrol law (6.12) to a point in the set of equilibria:

X = {x∗ ∈ Rn : ∃ s∗ ∈ 
onv {V} s.t. f(x∗, s∗) = 0} (6.13)

parametrized by inputs in 
onv {V} .

6.2.1 LMI design for a generi
 bilinear model

As follows, we propose an LMI 
ontrol design solution for a generi
 bilinear model with binary


ontrol law. For s ∈ Rm, x∗ ∈ X , 
onsider the following notations:

Ã(s) = A0 +

m∑

i=1

Aisi, (6.14)

B̃(x∗) =
[
b̃1(x

∗) b̃2(x∗) . . . b̃m(x∗)
]
, b̃i(x

∗) = Aix
∗ + bi, i ∈ Im, (6.15)

and the sets of ve
tors

H+ =
{
h ∈ Rm : hi = 0, i 6= j, hj = 1/s∗j , j ∈ Im

}
(6.16)

H− =
{
h ∈ Rm : hi = 0, i 6= j, hj = 1/(1 − s∗j), j ∈ Im

}
. (6.17)

Proposition 6.1 [Hetel 2016℄ Consider system (6.11), x∗ ∈ X and s∗ ∈ 
onv {V} su
h that

f(x∗, s∗) = 0. Given δ > 0, let there exists (X,ψ, ǫ), X ≻ 0, ψ > 0, ǫ > 0, solution to the set of

LMIs [
ǫI I
∗ X

]
≻ 0, (6.18)

Ã(σ)X +XÃT (σ)− ψB̃(x∗)B̃T (x∗) ≺ −δX, σ ∈ V, (6.19)

[
1 ψ

2 h
T B̃T (x∗)

∗ X

]
≻ 0, h ∈ H+ ∪H−. (6.20)

Consider the swit
hing law κ(x) =
[
κ1(x), κ2(x), . . . , κm(x)

]

κi(x) ∈





{1} , (x− x∗)TΓ (Aix
∗ + bi) < 0,

{0, 1} , (x− x∗)TΓ (Aix
∗ + bi) = 0,

{0} , (x− x∗)TΓ (Aix
∗ + bi) > 0,

(6.21)

for i = 1, . . . ,m, where Γ = X−1
. Then system (6.11) with the swit
hing law (6.21) is lo
ally

exponentially stable at the equilibrium point x = x∗. Furthermore, an estimation of the domain

of attra
tion is given by the ellipsoid

E
(
x∗,X−1, 1

)
=
{
x ∈ Rn : (x− x∗)TX−1(x− x∗) < 1

}


ontaining the ball B(x∗, C) with C = 1/
√
ǫ.

The stabilization of the bilinear system (6.11) is expressed as an LMI optimization problem.

The existen
e of solutions to the set of LMI 
onditions (6.18)-(6.20) 
an be veri�ed using 
onvex

optimization software in Matlab. Minimizing ǫ su
h that a solution exists to the set of LMI


onditions allows to design swit
hing laws (6.21) while maximizing the size of the domain of

attra
tion. The parameter δ, used in the set of LMIs, 
orresponds to the desired system de
ay
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Figure 6.8: Experimental setup at LAMIH, Valen
iennes: a 4-level 3-phase �ying 
apa
itor is

adapted for illustrating the theoreti
al results. The experiments are performed using the �rst 3


ells of Leg 1.

rate inside the ellipsoidal estimation E(x∗,X−1, 1) of the domain of attra
tion. The pra
ti
al

implementation of the obtained 
ontrol law is quite simple sin
e one only needs to 
ompute

the signs of (x − x∗)TΓ (Aix
∗ + bi) , i = 1, . . . ,m. The main intuition behind the 
ontrol law

(6.21) is that the 
ontrol signals are 
hosen su
h that the gradient of the Lyapunov fun
tion

V (x− x∗) = (x− x∗)TX−1(x− x∗) is minimized.

6.2.2 Experimental results

Experiments have been 
arried out to illustrate the proposed binary 
ontroller, applied to a 3


ells multi-level power 
onverter asso
iated to an indu
tive load (an illustration is provided in

Figure 6.8). The obje
tive is to 
ontrol ea
h 
ommutation 
ell su
h that the load 
urrent and the

�oating 
apa
itor voltages are stabilized toward di�erent equilibrium values. The LMI 
ontrol

design problems have been solved numeri
ally using Sedumi as a numeri
al solver in Matlab.

Hereafter, it will be shown that the proposed binary 
ontroller guarantees the stabilization of

the 
losed-loop system even in the presen
e of parametri
 un
ertainties.

To test the developed 
ontrol strategy , a prototype of the topology in Figure 6.7 is built based

on dis
rete insulated-gate bipolar transistors (IGBTs) SKM100GB12V. The relevant nominal

ben
h parameters are p = 3, C1 = C2 = 720.10−6F . The load is 
omposed of an indu
tan
e and

a resistan
e with nominal values R0 = 200Ω, L0 = 1H. The 
ontrol algorithm is implemented

on a �oating point DSP (TMS 320 F 240). An interfa
e 
ard allows to prote
t, by insulation,

the DSP of the power ele
troni
s. The Dspa
e 
ard DS1103 drives the peripheral devi
es (i.e.

digital to analog devi
es, analog to digital devi
es, et
.). In order to obtain the best resolution,

the minimum sampling period for the Dspa
e has been 
hosen, i.e. Tsamp = 7.10−5s. The

measurement part is 
omposed of voltage sensors to measure the voltage a
ross the �oating


apa
itors and a 
urrent transdu
tor to measure the load 
urrent. A low pass �lter with time


onstant τ = 5× 10−4s and unitary gain has been added. The sour
e voltage E is set to 30V .
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Figure 6.9: (a)-(b) Radius C of the stability domain as a fun
tion of the per
entage of un
ertainty

for I∗ = 0.1A (a) when un
ertainty a�e
ts the resistor R; (b) when both the resistor R and the

indu
tan
e L are subje
t to un
ertainty.

Applying the methodology based on 
onvex optimization and LMIs, one 
an design the


ontrol laws that ensure lo
al exponential stabilization of the system for several operating points

of the form [V ∗
c1 V

∗
c2 I

∗]. For example, let us 
onsider the equilibrium point whi
h 
onsists of the

desired load 
urrent I∗ = 0.1A and the desired �oating 
apa
itor voltages V ∗
ci =

E
3 i, i ∈ {1, 2}.

It 
orresponds to the equilibrium point of (6.9)-(6.10) for an �averaged� input s∗i = ρ ≈ 0.66.
We used an extension of Proposition 6.1 for systems with un
ertain parameters (Proposition 2

from [Hetel 2016℄). The set of LMI stabilization 
onditions are satis�ed with a de
ay rate δ = 0.01
and an un
ertainty of 10% on the nominal values of the load (R ∈ [180, 220], L ∈ [0.9, 1.1]). A

stabilizing swit
hing law (6.21) is obtained with

Γ = X−1 =



0.5778 0.0156 0
0.0156 0.5778 0

0 0 822.0203


 . (6.22)

Note that by 
onstru
tion, swit
hing laws of the form (6.21) satisfy the transition 
onstraints


lassi
ally en
ountered in multi-level power 
onverters. On the interse
tion of swit
hing hyper-

planes, the usual adja
en
y 
an be ensured by using the automaton des
ribed in [Gorp 2011℄.

Applying Proposition 6.1 for the nominal values of the load, with X �xed as in (6.22) and a de
ay

rate δ = 10−6
, the obtained 
ontrol law 
an be shown to ensure lo
al stabilization in the ball

B(x∗, C) with C = 150.7. Proposition 2 from [Hetel 2016℄ 
an also be used with the obtained X
to 
ompute the value of C for various values of un
ertainties and illustrate the relation between

the estimation of the domain of attra
tion and the robustness of the obtained 
ontrol law to

parametri
 un
ertainties (see Figure 6.9). Furthermore, it is used to shown lo
al stabilization for

a set of equilibrium points 
orresponding to a uniform grid of 11 referen
e 
urrents I∗ in the set

[0.05, 0.15].

Hereafter, the experimental results obtained with a swit
hing law (6.21) with Γ de�ned in

(6.22) are presented. The 
ontrol signals are 
hosen a

ording to the theoreti
al developments

in Se
tion III, with swit
hing surfa
es (
hara
terized by Γ) designed to ensure the steepest

de
ent of the Lyapunov fun
tion V (x− x∗) = (x− x∗)TX−1(x− x∗). Figures 6.10 (a),(b) show,
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onverter

0 5 10 15 20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

C
ur

re
nt

 (
A

)

 

 

I

I*

(a)

0 5 10 15 20
−5

0

5

10

15

20

25

Time (s)

V
ol

ta
ge

 (
V

)

 

 

V
c

1

V
c

2

V
c

1

*

V
c

2

*

(b)

Figure 6.10: Experimental results using the proposed binary 
ontrol without perturbation. (a) -

Load 
urrent I (b) - Internal voltages Vc1 and Vc2 .
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Figure 6.11: Experimental results using the proposed binary 
ontrol with perturbations in the

load. (a) - Load 
urrent I (b) - Internal voltages Vc1 and Vc2 .

respe
tively, the load 
urrent I, the internal voltages (Vc1 , Vc2), and the 
ontrol signals (s1, s2, s3)
using the obtained 
ontroller when no parameter un
ertainty is 
onsidered. The 
ontrol law

ensures the stabilization for several equilibrium points 
orresponding to a referen
e 
urrent I∗ in
the interval [0.05, 0.15]. However, no overshoot 
onstraints are in
luded in the design pro
edure,

whi
h explains the peak at approximatively 2 se
onds. The 
hattering phenomena in the steady

state is mainly due to the sampled-data implementation of the binary 
ontrol law.

In order to show the robustness of the proposed 
ontroller, the value of the load resistan
e

has been tested for various 
on�gurations of the load. Figures 6.11 (a),(b) illustrate the system

evolution with R = 0.6 ·R0 = 120Ω (40% of un
ertainty) and an indu
tan
e L = 0.8 ·L0 = 0.8H
(20% of un
ertainty). Note that the proposed binary 
ontroller manages to a

omplish the


ontrol obje
tive with good performan
e inspite of parametri
 variation with amplitude larger

than the ones that have been shown in theory. In fa
t, for this 
on�guration of perturbation

on the load it 
an be shown theoreti
ally the asymptoti
 stability for a tight grid of I∗ in the

interval [0.07, 0.11]. In pra
ti
e, it is used for referen
e 
urrents I∗ in [0.05, 0.15]. This shows
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that the proposed 
ontrol design method has potential. However, it also shows that there is still

pla
e for improvement in what 
on
erns the theoreti
 estimation of the rage of un
ertainty for

whi
h the 
losed-loop system is stable.
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Con
lusion

In this part we have presented several 
ontributions to the design of swit
hing 
ontrollers for

systems where the 
ontrol signal is 
onstrained to a �nite number of values. Control design


riteria have been presented for linear systems with relays, polytopi
 systems, bilinear systems

with binary 
ontrol and swit
hed a�ne systems. The main idea of the proposed methodology

is to use the existen
e of a 
ontinuous stabilizer in order to derive swit
hing hyperplanes for

the 
onstrained 
ontrol using 
onvex optimization arguments. The approa
h is illustrated by

experimental appli
ation to the 
ontrol of multi-level power 
onverters and stepper motors. This

resear
h line is still an emerging resear
h dire
tion and it leaves many open problem both from

a theoreti
al and appli
ative point of view. Some of the perspe
tives will be mentioned after the


on
luding remarks of this manus
ript.
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General 
on
lusions
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This do
ument has presented a sele
tion of the resear
h a
tivities developed by Laurentiu

HETEL and his 
ollaborators sin
e his re
ruitment as an Asso
iate Resear
her at CNRS. Two

main topi
s have been addressed in relation with the o

urren
e of dis
rete 
onstraints in the

implementation of 
ontrol laws. The �rst part of the manus
ript has presented several 
on-

tributions 
on
erning the analysis and design of sampled-data systems with aperiodi
 sampling

intervals. The 
ore of this part was dedi
ated to the analysis of systems with arbitrarily varying

sampling intervals. We have tried to be broad in outlook and address this problem from many

di�erent quarters (time-delay, dis
rete-time, hybrid, input/output approa
hes). Furthermore, we

have investigated the e�e
t of sampling for various 
lasses of systems (linear, bilinear, nonlinear

a�ne, swit
hed, et
.). Some 
ontribution to the design of state dependent sampling maps have

equally been presented.

The se
ond part of the manus
ript was 
on
erned with the design of swit
hing 
ontrollers for

systems where the 
ontrol signal is only allowed to take a �nite number of values in a dis
rete set.

The main 
ontributions are related to a new framework for the design of swit
hing 
ontrollers

based on the use of simple 
onvex optimization arguments. This methodology provides new

solutions for the design of sliding mode 
ontrollers and for the stabilization of swit
hed a�ne

systems. Furthermore, it has interesting appli
ations for the 
ontrol of some ele
troni
 and

ele
tro-me
hani
al devi
es. Several extensions are 
urrently under study.

It is worth noti
ing that the subje
ts addressed here lie at the interse
tion of four important

axes in Control Theory (time-delay, hybrid, LPV systems, input-output inter
onne
tions) and

we hope this will have a stimulating impa
t in the 
ontrol 
ommunity. Methods and tools are

being transferred from one resear
h topi
 to another and the perspe
tives of 
ross-fertilisation

and generalization are numerous. Several open problems that 
ould be ta
kled in the future are

dis
ussed hereafter.
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In what follows, I will indi
ate some of the resear
h dire
tions that we have dis
overed over

the last few years. In order to provide a simple view, I would say that the 
ore of my future

resear
h a
tivities is 
entred on the use of the hybrid system framework for the study of sampled-

data systems as abstra
tions of networked and embedded 
ontrol systems. The main obje
tives

of my future resear
h a
tivities 
an be roughly stru
tured as follows:

Obje
tive A. Fundamental study of Hybrid Systems. I intend to investigate the inter-

a
tion between dis
rete algorithms and di�erential equations (as models of physi
al pro
esses)

through a fundamental study of dynami
 and stru
tural properties of hybrid dynami
al sys-

tems. In parti
ular, I will study the dynami
s of swit
hed systems and of impulsive di�erential

equations.

In what 
on
erns the study of swit
hed systems, in my opinion, the main 
hallenge now

is to provide a solid theoreti
al framework for the design of swit
hing surfa
es in the 
ase of

swit
hed systems with non-
ommon equilibria. The study of su
h swit
hed systems is relevant

in many appli
ative domains. They are 
urrently en
ountered in ele
troni
s, in energy manage-

ment appli
ations, for des
ribing embedded power 
onverters. Su
h systems are interesting sin
e

in pra
ti
e they 
an be stabilized by fast swit
hing to non-standard equilibrium points 
orre-

sponding to 
onvex 
ombinations of the subsystems equilibria. However, the stabilization to su
h

equilibrium points is not trivial. It requires a parti
ular treatment, involving the study of spe
i�


solutions for dis
ontinuous systems (su
h as Filippov solutions) and sliding dynami
s, whi
h is


hallenging from a theoreti
al point of view. For the moment, there is a serious la
k of tra
table

theoreti
al tools for designing 
ontrol algorithms in su
h 
ases. It is therefore interesting both

from a theoreti
al point of view and for pra
ti
al appli
ations to generalize the existing theory

on hybrid systems to 
over this 
ase. I will try to address this topi
 by 
ombining tools from the

study of nonlinear systems with (saturation) 
onstraints with 
on
epts previously used for the

study of sliding dynami
s in variable stru
ture 
ontrol.

For the 
ase of impulsive systems, the resear
h a
tivities are strongly 
onne
ted with the

ones 
on
erning the study of sampled-data systems. The two resear
h lines mutually enri
h ea
h

other. As we have seen in Part I, a large number of results have been provided on the analysis of

sampled-data systems by re-formulating the systems dynami
s in a time-delay or input-output

inter
onne
tion framework. Our obje
tive is to investigate the extension of these approa
hes to

more general 
lasses of hybrid systems with impulsive e�e
ts. The study of impulsive systems

from the point of view of input-output inter
onne
tions would be an original perspe
tive, with a

parti
ularly interesting potential in the development of numeri
al tools for analysis and design .

Obje
tive B. Hybrid methodologies for Networked / Embedded Systems. Hybrid

systems are not only used for the modelling of sampled-data systems. They 
an provide a natural

theoreti
al framework for the analysis and design of networked and embedded systems. While

an important e�ort is being made in the domain of Computer S
ien
es to enhan
e the design

of embedded hardware, 
ommuni
ation networks, real-time s
heduling algorithms, et
., it is a


hallenging Control Theory problem to understand the intera
tion between the implementation

of 
ontrol algorithms (as 
odes in distributed mi
ropro
essors) and the physi
al pro
esses. The


hallenge in Networked / Embedded Systems is to extend 
ontrol theory so as to embra
e the

dynami
s of software and networks. The aim is to provide methodologi
al tools for the analysis

and design of systems with embedded / distributed 
ontrol implementations using the hybrid

system formalism. The main idea is to provide reliability guarantees in terms of Lyapunov sta-

bility. This approa
h makes an interesting alternative to 
lassi
al methods for whi
h it be
omes

impossible to test the software under all possible 
onditions when the intera
tion with real phys-

i
al pro
esses is 
onsidered. Some generalizations of the approa
hes presented for systems with

aperiodi
 sampling to more general networked systems are simple. Many others are not obvious,
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at least not at this time.

Short term perspe
tives

As follows, I will des
ribe some short term perspe
tives that are in line with the topi
s presented

in the manus
ript.

Continuous-dis
rete observers

While a large literature has addressed the stability analysis problem of systems with aperiodi


sampling, less results are 
on
erned with the design of observers. A promising resear
h dire
-

tion would be the extension of the existing methodologies for the design of 
ontinuous-dis
rete

observers [Nadri 2003,Astorga 2002,Karafyllis 2009a,Nadri 2013℄. In the 
ase of LTI systems

ẋ(t) = Ax(t) +Buk, ∀t ∈ [tk, tk+1), hk := tk+1 − tk ∈ [h, h̄], k ∈ N (1)

y(t) = Cx(t), (2)

one 
ould investigate the design of observers of the form

η̇(t) = Aη(t) +Bu(tk), t ∈ [tk, tk+1) (3)

η(tk) = η(t−k ) + L
(
y(t−k )− Cη(t−k )

)
, t = tk, k ∈ N. (4)

The main obje
tive is to derive 
onstru
tive observer design 
riteria, non only in the linear 
ase,

but also in a more general nonlinear setting. The extensions of the impulsive system approa
h

to this design problem is a 
hallenging resear
h dire
tion.

New hybrid representations of sampled-data systems

Several approa
hes are available for the analysis and design of sampled-data systems and it

is of interest to 
ompare them and understand their signi�
an
e. Some relations between the

di�erent approa
hes have been indi
ated in Chapter 2. For example, it has been shown that

the stability 
riterion obtained using the time delay approa
h in [Fridman 2004℄ 
an be also

dedu
ed via the small gain theorem [Mirkin 2007℄. However, it is more di�
ult to obtain su
h

equivalen
e relations between the re
ent approa
hes in the literature. It would also be of interest

to understand what is the signi�
an
e of the existing work on time delay systems from the

point of view of the hybrid formalism [Goebel 2012℄. In parti
ular, the approa
h presented

in [Fridman 2010℄ seems to suggests a quite di�erent hybrid representation of sampled-data

systems with respe
t to the existing literature.

Consider the 
ase of LTI sampled-data systems

ẋ(t) = Ax(t) +BKx(tk), ∀t ∈ [tk, tk+1), hk := tk+1 − tk ∈ [h, h̄], (5)

The approa
h in [Fridman 2010℄ uses Lyapunov-Krasovskii fun
tionals of the form

V (t, x(t), ẋt) = xT (t)Px(t) + θ(t)

∫ t

t−τ(t)
ẋT (s)Rẋ(s)ds. (6)
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with τ(t) = t− tk and θ(t) = hk − τ(t). Note that the term

θ

∫ t

t−τ
ẋT (s)Rẋ(s)ds

in this fun
tional 
an be re-written as

θχT
( ∫ 0

−τ
(FeFs)T R̃(FeFs)ds

)
χ,

with

R̃ =

[
R 0
0 0

]
,

χ(t) = [xT (t), x̂T (t)]T and

F =

[
A BK
0 0

]
,

that is the fun
tional (6) 
an be interpreted as a fun
tion of the form V (χ, τ, θ) = χTP (τ, θ)χ
whi
h depends non only on the in
reasing timer τ but also on a de
reasing timer θ. In the hybrid

framework proposed by [Goebel 2009℄, this fun
tion suggest a state representation of the form





ẋ = Ax+BKx̂
˙̂x = 0
τ̇ = 1

θ̇ = −1





θ ∈ [0, h],

x+ = x
x̂+ = x
τ+ = 0

θ+ ∈ (0, h]





(s = 0)
∧(

τ ∈ [h, h]
)
.

(7)

While in (6) the use of the de
reasing 
ounter θ seems to be a te
hni
al artefa
t, it leads to a more

profound re�e
tion 
on
erning the representation of sampled-data systems as hybrid systems.

The use of su
h models for deriving stability analysis and 
ontrol design 
onditions deserves to

be further investigated. Furthermore, it is also ne
essary to provide more insight on the stru
tural

properties of sampled-data systems. Basi
 problems, related to the realization [Petre
zky 2006℄

of an aperiodi
ally sampled input-output map by a hybrid model and the 
hara
terization of

minimal representations must also be addressed in the future.

Analyzis of hybrid models based on a 2D system representation

As we have seen in Chapter 2, in the general formulation proposed by Goebel, Teel and Sanfeli
e

[Goebel 2009,Goebel 2012℄ the system solutions 
an be expressed in the form

żk(t) = Fz (zk(t))), zk(t) ∈ C,∀t ∈ (tk, tk+1), k ∈ N (8a)

zk+1(tk+1) = Jz (zk(tk+1))), zk(tk+1) ∈ D, k ∈ N. (8b)

Su
h systems are impli
itly 2D systems [Owens 1999℄. Solutions z of the general hybrid system

(8) are parametrized by both the 
ontinuous time t and the dis
rete time k: zk(t) represents the
state of the hybrid system after t time units and k jumps.

For 2D systems, it seems natural to adopt a stability analysis based on ve
tor Laypunov
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fun
tions [Bellman 1962,Emelianova 2014℄

V (zk(t), zk+1(tk+1)) =

(
V1 (zk(t))

V2 (zk+1(tk+1))

)

where V1, V2 are positive de�nite fun
tions, and a divergen
e operator

divV =
dV1
dt

+ V2 (zk+1(tk+1))− V2 (zk(tk+1)) .

Su
h an approa
h might lead to new stability 
onditions for hybrid systems, and in parti
ular

for sampled-data systems. Some preliminary results in this dire
tion have been obtained in

[Ríos 2015℄.

Lur'e Lyapunov fun
tions for relay 
ontrol systems

This subje
t is related to the stabilization of swit
hed systems with non-
ommon equilibria.

Before 
onsidering the general 
ase, it is useful to ta
kle the appli
ation of new design tools by


onsidering a simpli�ed 
ase of LTI systems with relays. The main idea of the methodology

proposed in Part II is to use the existen
e of a 
ontinuous stabilizer in order to derive swit
hing

laws based on 
onvex optimization arguments. However, the result only ensures lo
al stabilization

and the provided domain of attra
tion strongly depends on the 
hoi
e of the 
ontinuous stabilizers

and, impli
itly, on the 
hoi
e of the Lyapunov fun
tion. For the 
ase of LTI systems

ẋ = Ax+Bu, u ∈ V = {−v, v} (9)

up to now, we have only used quadrati
 Lyapunov fun
tions and, as 
ontinuous stabilisers, linear

stati
 state feedba
k 
ontrollers u = Kx. Numeri
al simulations show that there is still room for

improvement. It is important to note that the literature on the design of 
ontinuous stabilizers

for LTI systems with input 
onstraints is quite ri
h [Blan
hini 1999,Tarbourie
h 2011,Hu 2006,

Za

arian 2011, Za

arian 2002℄ and advan
ed numeri
al methods for enlarging the domain of

attra
tion are available using more 
omplex Lyapunov fun
tions. To advan
e beyond the use of

ellipsoidal estimations of the domain of attra
tion, one dire
tion to be exploited is the use of

Lur'e Lyapunov fun
tions of the form

V (x) = xTPx+ 2Ω

∫ Kx

0
φ(s)ds (10)

where P ≻ 0,Ω < 0 and

φ(s) =





v − s, s > v
0, s ∈ [−v, v]

−v − s, s < −v.
(11)

Similar Lyapunov fun
tions have been used for enlarging the domain of attra
tion of systems with

saturation and they have a hight potential for the 
ase of swit
hing 
ontrollers. The approa
h

would lead to nonlinear swit
hing surfa
es, i.e. a swit
hing fun
tion of the form

u ∈ −vsign
(
xTPB − φ2(Kx)ΩKB

)
(12)

whi
h generalizes the swit
hing law u ∈ −vsign
(
xTPB

)
presented in Part II. The 
hallenge is

to provide design LMI design 
onditions based on the existen
e of the Lur'e Lyapunov fun
tion.

136



Mid term dire
tions

In what follows I will present some resear
h dire
tion that I intend to mathemati
ally formalise

in the future.

A new dis
rete-time approa
h for nonlinear sampled-data systems

In the 
ontrol of 
lassi
al sampled-data systems, the dis
rete-time framework is known to have

several advantages with respe
t to the 
ontinuous-time approa
hes whi
h are usually indire
t :

they are based on emulation of 
ontinuous 
ontrollers whi
h have been design independently of the

sampled-data implementation. The dis
rete framework allows a dire
t design, taking into a

ount

the value of the sampling interval for the 
ontrol synthesis. Although the dis
rete-time approa
h

has been shown to lead to e�
ient numeri
al 
onditions for the 
ase of LTI systems with aperiodi


sampling, very few results address the nonlinear 
ase. In this 
ontext it would be of interest to

generalise the 
lassi
al geometri
 approa
hes proposed by [Mona
o 2007,Mona
o 2001℄ to the


ase of systems with aperiodi
 sampling. Furthermore, it would be useful to re-state the design


onditions in the hybrid framework, in order to ensure also desired inter-sampling performan
es.

Dynami
 sampled-data 
ontroller under un
ertain sampled-data implementa-

tions

While the 
ase of stati
 
ontrollers with aperiodi
 sampling has been extensively studied, few

results exist 
on
erning the 
ase of dynami
 
ontrollers. To the best of our knowledge, up to

now it is assumed that the dis
rete-time emulation of 
ontinuous dynami
 
ontrollers is perfe
t

and that the sampling interval is known. In pra
ti
e the 
ontroller dis
retization introdu
es

approximations and the sampling interval is rarely available in real time. It is a very 
hallenging

theoreti
al problem to provide design 
onditions while taking into a

ount these un
ertainties in

the 
ontrol implementation.

A more general dissipativity framework

In the Input/Output stability approa
h, up to now the existing 
riteria are based on stati


IQCs. The use of dynami
 IQCs might be a real sour
e of improvement [Megretski 1997℄. The

generalization of su
h dynami
 IQCs in the dissipativity framework is of interest, not only for

the 
ase of sampled-data systems, but also in a more general 
ontext, for the study of other

robustness properties of nonlinear systems. In fa
t, before the emergen
e of powerful numeri
al

tools for the analysis of dynami
al system (LMIs, SOS optimization), a large variety of studies

have been developed in the frequen
y domain. It would be useful to "translate" this literature in

the time domain and enhan
e its appli
ability using optimization algorithms. The interpretation

of this approa
h from the point of view of hybrid systems needs to be further investigated.

The best sampling pattern

The resear
h in the 
ase of systems with arbitrary sampling has rea
hed a mature phase of

development. However, the problem of designing stabilizing sequen
es of sampling is still largely

open. In this 
ontext, the potential of the approa
hes used for the arbitrary sampling problem

is far from being fully exploited. Nevertheless, a better mathemati
al formalization of what is

required from "the best" sampling sequen
e is needed.
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We would like to point out that that the interest of this study goes beyond the simple

aperiodi
 sampling problem. The problemati
 has to be 
onsidered in a more general 
ontext of

networked systems where we also have to deal to deal with (
ommuni
ation) delay, quantization

or s
heduling proto
ols. For large networks it is expensive, if not impossible, to 
ontrol all systems

individually, and mainstream 
entralized 
ontrollers are infeasible. De
entralized 
ontrollers must

be 
onsidered, while taking into a

ount the fa
t that overall dynami
s are largely determined

by the intera
tions of individual 
omponents. Instead of tuning 
ontroller gains, we 
ould fo
us

on optimizing the topology of the network, i.e. we determine whi
h systems need to intera
t in

order to optimize a global obje
tive in an e�
ient way. The resulting 
hallenge is to dynami
ally

optimize the 
ommuni
ation sequen
es of ea
h link in the network so to ensure some desired

fast/robust syn
hronizing 
ontrol, while taking into a

ount the 
osts in terms of 
omputational

load and/or energy 
onsumption.

Constru
tive methods for swit
hing law design

With respe
t to the stabilization problem of swit
hed systems, it has been shown in Part II

that the stabilization of swit
hed a�ne systems 
an be related to the existen
e of a 
ontinuous

stabilizer for a 
lassi
al nonlinear a�ne (bilinear) model. This is a 
lassi
al problem on whi
h a

large variety of results are available in the literature. While in this manus
ript we have presented

simple results based on the lo
al linearisation of the underlying nonlinear model and the use of

small gain arguments, the possibilities of extension are numerous. For example, in pra
ti
al

appli
ations, we may 
onsider "pat
hy" swit
hing laws, using the existen
e of gain s
heduled


ontrollers asso
iated to di�erent equilibria.

Swit
hed systems with spe
tral 
onstraints

The experimental appli
ation to the 
ontrol of DC/DC power 
onverters has shown that it would

be useful to design swit
hing laws where the swit
hing signal has to satis�es additional frequen
y

domain 
onstraints: for ele
tro-magneti
 
ompatibility reasons, the spe
trum of the swit
hing

signal should be limited to a well de�ned spe
trum range. Taking into a

ount su
h spe
tral


onstrained when de�ning state-dependent swit
hing 
ontrollers leads to a 
hallenging theoreti
al

problem.

Swit
hing law design based on a geometri
 study

For a theoreti
al analysis of swit
hed a�ne systems, the study of stru
tural properties based on

geometri
 tools [Isidori 1995℄ may be a promising resear
h dire
tion. For example, the use of the

underlying bilinear model may lead to new ne
essary 
onditions for stabilization. The results

presented for the 
ase of swit
hed a�ne systems should be extended to more general nonlinear

swit
hed systems where the system modes do not share the same equilibrium. It is also ne
essary

to extend the 
onvex embedding approa
h [Hetel 2015a℄ to 
ope with dis
ontinuous stabilizers,

for systems that fail the 
lassi
al Bro
kett's 
ondition or that 
annot be stabilized by state

feedba
k when solutions are 
onsidered in the sense of Filippov [Ryan 1994℄, [Clarke 1997℄. This

topi
 must be investigated in relation with the developments 
onsidering systems with aperiodi


sampling and the joint synthesis of sampling patterns and stabilizing 
ontrollers.
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Long term dire
tions

There is no doubt that 
ontrol theory is now a mature �eld of resear
h. Furthermore, in pra
ti
al

appli
ations embedded 
ontrol devi
es are now widely spread. However, 
ontrol theory is still an

invisible te
hnology and many of the a
ademi
 advan
es in the last 20 years seem to be ignored

outside a group of spe
ialists. In fa
t, in many appli
ations, the development of 
ontrol laws

(beyond the manual tuning of PIDs) requires at least a master level, if not a PhD. In my opinion,

it is of high interest not only to provide new theoreti
al tools but also to take 
are about their

appli
ability.

In the 
ontext of sampled-data systems, a large amount of results have been published, using

various di�erent approa
hes. However, the developments are sparse, in the sense that ea
h of the

existing approa
hes 
overs only some of the aspe
ts in sampled-data 
ontrol. Furthermore, the

last textbooks 
on
erning sampled-data systems have been published in the '90s and do not seem

to 
over important real-time implementation 
onstraints that a 
ontrol engineer needs to handle

nowadays. Without a vulgarization e�ort from the resear
hers in the 
ontrol 
ommunity, the wide

spread of use of networked and embedded 
ontrol elements will develop on negligible theoreti


foundations. My long term obje
tive is to 
ontribute to the establishment of a unifying theory of

sampled-data 
ontrol systems, whi
h gathers the most signi�
ant results proposed in the di�erent

resear
h 
ommunities and presents simple and theoreti
ally solid tools for 
ontrol engineers. I

have the 
onvi
tion that hybrid system will o�er the appropriate fundamental framework for this

unifying theory. However, making the fundamental results a

essible is far from being obvious.

At a long term I would also like to dedi
ate more attention to the experimental resear
h.

Although up to now my resear
h a
tivities are mainly 
on
erned with fundamental resear
h, the

s
ienti�
 problems that I study are motivated by appli
ations that are ubiquitous in industry and

that respond to so
ietal 
hallenges. For example, the resear
h on the stabilization of swit
hed

systems is relevant for the embedded 
ontrol of power 
onverters whi
h are omnipresent in

energy management appli
ations. Furthermore, networked/embedded 
ontrollers are of interest

in ele
tri
 power networks where 
hanges in the stru
ture of the grid have to be taken into a

ount

in real time, in parti
ular to support the introdu
tion of renewable energy sour
es (wind farms

and solar plants) while 
onsidering various 
onstraints in terms of pri
es, demands and 
apa
ities.

Sin
e for the moment the resear
h is situated at a fundamental level, it is not su�
iently mature

for an industrial validation. However, I feel that it is time to return ba
k to the starting point

and to 
onfront the developed 
on
epts with their empiri
al sour
es. Some preliminary steps in

this dire
tion are planned via a joint PhD supervision with prof. Bogdan Marines
u (starting

with November 2016) in the 
ontext of a RTE-Centrale Nantes Chair, and through the H2020

proje
t UCOCOS - whi
h involves industrial partners (EOS innovation, CITC, TNO) interested

in networked systems. I strongly believe that su
h an experien
e with pra
ti
al appli
ations will

be fruitful at long term. An original theoreti
al framework may emerge if we understand what

are the limitations of 
urrent theories and we formalize mathemati
ally what really works at the

empiri
al level.

139



140



Bibliography

[A
ary 2014℄ V A
ary, H. de Jong and Brogliato B. Numeri
al simulation of pie
ewise-linear

models of gene regulatory networks using 
omplementarity systems. Physi
a D, vol. 269,

pages 103�119, 2014.

[Ahmadi 2008℄ A.A. Ahmadi and P. Parrilo. Non-monotoni
 Lyapunov fun
tions for stability of

dis
rete time nonlinear and swit
hed systems. In 47th IEEE Conferen
e on De
ision and

Control, pages 614�621, Can
un, Mexi
o, 2008.

[Ahmed-Ali 2009℄ T. Ahmed-Ali, R. Postoyan and F. Lamnabhi-Lagarrigue. Continuous - dis-


rete adaptive observers for state a�ne systems. Automati
a, vol. 45, no. 12, pages

2986�2990, 2009.

[Al-Shamali 2007℄ S.A. Al-Shamali, O.D. Crisalle and H.A. Lat
hman. Sliding mode 
ontrol for

A 
lass of bilinear systems. In De
ision and Control, 2007 46th IEEE Conferen
e on,

pages 1981�1985, De
 2007.

[Allerhand 2011℄ L.I. Allerhand and U. Shaked. Robust stability and stabilization of linear

swit
hed systems with dwell time. IEEE Transa
tions on Automati
 Control, vol. 56,

no. 2, pages 381�386, 2011.

[Amato 2009℄ F. Amato, C. Cosentino, A.S. Fiorillo and A. Merola. Stabilization of Bilinear

Systems Via Linear State-Feedba
k Control. IEEE Transa
tions on Cir
uits and Systems

II: Express Briefs, vol. 56, no. 1, pages 76�80, jan 2009.

[Andrieu 2010℄ V. Andrieu and M. Nadri. Observer design for Lips
hitz systems with dis
rete-

time measurements. In 49th IEEE Conferen
e on De
ision and Control, pages 6522�6527,

Atlanta, Georgia, USA, 2010.

[Andrieu 2013℄ V. Andrieu and S. Tarbourie
h. Global asymptoti
 stabilization for a 
lass of

bilinear systems by hybrid output feedba
k. Automati
 Control, IEEE Transa
tions on,

vol. 58, no. 6, pages 1602�1608, 2013.

[Anta 2010℄ A. Anta and P. Tabuada. To sample or not to sample: self-triggered 
ontrol for

nonlinear systems. IEEE Transa
tions on Automati
 Control, vol. 55, no. 9, pages 2030�

2042, 2010.

[Antsaklis 2007℄ P. Antsaklis and J. Baillieul. Spe
ial issue on te
hnology of networked 
ontrol

systems. Pro
eedings of the IEEE, vol. 95, no. 1, pages 5�8, 2007.

[Årzén 1999℄ K.E. Årzén. A simple event-based PID 
ontroller. In 14th IFAC World Congress,

volume 18, pages 423�428, Beijing, China, 1999.

141



Bibliography

[Astol� 2008℄ A. Astol�, D. Nesi
 and A.R. Teel. Trends in nonlinear 
ontrol. In 47th IEEE

Conferen
e on De
ision and Control, pages 1870�1882, Can
un, Mexi
o, 2008.

[Astorga 2002℄ C-M Astorga, N Othman, Sami Othman, Hassan Hammouri and T-F M
Kenna.

Nonlinear 
ontinuous�dis
rete observers: appli
ation to emulsion polymerization rea
tors.

Control Engineering Pra
ti
e, vol. 10, no. 1, pages 3�13, 2002.

[Åström 1989℄ K.J. Åström and B. Wittenmark. Adaptive 
ontrol. Addison-Wesley series in

ele
troni
 engineering (Control engineering), 1989.

[Åström 1996℄ K.J. Åström and B. Wittenmark. Computer 
ontrolled systems: theory and

design. Prenti
e Hall, 1996.

[Åström 1999℄ K.-J. Åström and B. Bernhardsson. Comparison of periodi
 and event based

sampling for �rst-order sto
hasti
 systems. In 14th IFAC World 
ongress, volume 11,

pages 301�306, Cape Town, South Afri
a, 1999.

[Åström 2002℄ K.-J. Åström and B. Bernhardsson. Comparison of Riemann and Lebesgue sam-

pling for �rst order sto
hasti
 systems. In 41st IEEE Conferen
e on De
ision and Control,

volume 2, pages 2011�2016, Las Vegas, Nevada, USA, 2002.

[Ba

iotti 2005℄ A. Ba

iotti and L. Rosier. Liapunov fun
tions and stability in 
ontrol theory.

Springer, 2005.

[Ba
ha 2014℄ S. Ba
ha, I. Munteanu and A.I. Brat
u. Power ele
troni
 
onverters modeling and


ontrol, volume 5. Springer, 2014.

[Bainov 1993℄ D. Bainov and P. Simeonov. Impulsive di�erential equations: periodi
 solutions

and appli
ations, volume 66. CRC Press, 1993.

[Bajda 1985℄ S. V. Bajda and D. B. Izosimov. Ve
tor method of design of sliding motion and

simplex algorithms. Automation and Remote Control, vol. 46, pages 830�837, 1985.

[Ballu
hi 2005℄ A. Ballu
hi, P. Murrieri and A. Sangiovanni-Vin
entelli. Controller synthesis on

non-uniform and un
ertain dis
rete�time domains. In Hybrid Systems: Computation and

Control, pages 118�133. Springer, 2005.

[Bamieh 1991℄ B. Bamieh, J. Pearson, B.A. Fran
is and A. Tannenbaum. A lifting te
hnique

for linear periodi
 systems with appli
ations to sampled-data 
ontrol. Systems & Control

Letters, vol. 17, no. 2, pages 79�88, 1991.

[Bamieh 1992℄ B. Bamieh and J. Pearson. A general framework for linear periodi
 systems with

appli
ations to H∞ sampled-data 
ontrol. IEEE Transa
tions on Automati
 Control,

vol. 37, no. 4, pages 418�435, 1992.

[Bartolini 2011℄ G. Bartolini, E. Punta and T. Zolezzi. Simplex sliding mode 
ontrol of multi-

input systems with 
hattering redu
tion and mono-dire
tional a
tuators. Automati
a,

vol. 47, pages 2433�2437, 2011.

[Bauer 2012℄ N.W. Bauer, P.J.H. Maas and W.P.M.H. Heemels. Stability Analysis of Networked

Control Systems: A Sum of Squares Approa
h. Automati
a, vol. 48, pages 1514�1524,

2012.

142



[Bellman 1962℄ R. Bellman. Ve
tor Lyanpunov fun
tions. Journal of the So
iety for Industrial

and Applied Mathemati
s, Series A: Control, vol. 1, no. 1, pages 32�34, 1962.

[Benedetto 2013℄ M.D. Di Benedetto, S. Di Gennaro and A. D'Inno
enzo. Digital self-triggered

robust 
ontrol of nonlinear systems. International Journal of Control, vol. 86, no. 9, pages

1664�1672, 2013.

[Bethoux 2002℄ O. Bethoux and J.-P. Barbot. Multi-
ell 
hopper dire
t 
ontrol law preserving

optimal limit 
y
les. In Pro
eedings of the 2002 International Conferen
e on Control

Appli
ations, 2002., volume 2, pages 1258�1263. IEEE, 2002.

[Bhagwat 1983℄ P. M. Bhagwat and V.R. Stefanovi
. Generalized stru
ture of a multilevel PWM

inverter. IEEE Transa
tions on Industry Appli
ations, no. 6, pages 1057�1069, 1983.

[Blan
hini 1999℄ F. Blan
hini. Set invarian
e in 
ontrol. Automati
a, vol. 35, no. 11, pages

1747�1767, 1999.

[Blondel 2005℄ V. Blondel and Y. Nesterov. Computationally e�
ient approximations of the

joint spe
tral radius. SIAM Journal on Matrix Analysis and Appli
ations, vol. 27, no. 1,

pages 256�272, 2005.

[Bodson 1993℄ M. Bodson, J.-N. Chiasson, R.-T. Novotnak and R.-B. Rekowski. High perfor-

man
e nonlinear feedba
k 
ontrol of a permanent magnet stepper motor. IEEE Transa
-

tions on Control Systems Te
hnology, vol. 1, no. 1, pages 5�14, 1993.

[Bolzern 2004℄ P. Bolzern and W. Spinelli. Quadrati
 stabilization of a swit
hed a�ne system

about a nonequilibrium point. In Pro
eeding of the 2004 Ameri
an Control Conferen
e,

Boston, Massa
husetts, USA, 2004.

[Borgers 2014℄ D.P. Borgers and W.P.M.H. Heemels. Event-Separation Properties of Event-

Triggered Control Systems. IEEE Transa
tions on Automati
 Control, vol. 59, pages

2644�2656, 2014.

[Bourdais 2007℄ R. Bourdais, L. Hetel, J. Daafouz and W. Perruquetti. Stabilité et stabilisation

d'une 
lasse de systèmes dynamiques hybrides. Journal Europeen Systemes Automatisés,

vol. 41, no. 7�8, pages 819�853, 2007.

[Briat 2013℄ C. Briat. Convex 
onditions for robust stability analysis and stabilization of linear

aperiodi
 impulsive and sampled-data systems under dwell-time 
onstraints. Automati
a,

vol. 49, no. 11, pages 3449�3457, 2013.

[Bro
kett 1997℄ R.W. Bro
kett. Minimum attention 
ontrol. In 36th IEEE Conferen
e on De
i-

sion and Control, 1997, volume 3, pages 2628�2632, San Diego, California, USA, 1997.

[Bro
kett 2000℄ R. Bro
kett and D. Liberzon. Quantized feedba
k stabilization of linear systems.

IEEE Transa
tions on Automati
 Control, vol. 45, no. 7, pages 1279�1289, 2000.

[Brogliato 1996℄ B. Brogliato. Nonsmooth impa
t me
hani
s: models, dynami
s and 
ontrol.

Springer London, 1996.

[Brogliato 2007℄ B. Brogliato, R. Lozano, Be. Mas
hke and O. Egeland. Dissipative systems

analysis and 
ontrol. Communi
ations and Control Engineering. Springer, 2007.

143



Bibliography

[Brogliato 2016℄ Bernard Brogliato. Impulsive Dynami
s and Measure Di�erential Equations. In

Nonsmooth Me
hani
s, pages 1�49. Springer International Publishing, 2016.

[Carnevale 2007℄ D. Carnevale, A.R. Teel and D. Ne²i¢. A Lyapunov Proof of an Improved

Maximum Allowable Transfer Interval for Networked Control Systems. IEEE Transa
tions

on Automati
 Control, vol. 52, no. 5, pages 892�897, 2007.

[Cela 2014℄ A. Cela, M. Ben Gaid, X.G. Li and S.I. Ni
ules
u. Optimization of the Hyper-

Sampling Sequen
e for DCESs. In Optimal Design of Distributed Control and Embedded

Systems, Communi
ations and Control Engineering, pages 207�221. Springer, 2014.

[Cervin 2007℄ A. Cervin and K.-J. Aström. On limit 
y
les in event-based 
ontrol systems. In 46th

IEEE Conferen
e on De
ision and Control, pages 3190�3195, New Orleans, Louisiana,

USA, 2007.

[Chen 1993℄ T. Chen and B. Fran
is. Optimal sampled-data 
ontrol systems. Springer, 1993.

[Chen 2011℄ J. Chen, K.-H. Johansson, S. Olariu, I.-C. Pas
halidis and I. Stojmenovi
. Guest

editorial spe
ial issue on wireless sensor and a
tuator networks. IEEE Transa
tions on

Automati
 Control, vol. 56, no. 10, pages 2244�2246, 2011.

[Chen 2014℄ Z. Chen and H. Fujioka. Performan
e Analysis of Nonlinear Sampled-Data Emulated

Controllers. Automati
 Control, IEEE Transa
tions on, vol. 59, no. 10, pages 2778�2783,

2014.

[Clarke 1997℄ F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin. Asymptoti
 
ontrol-

lability implies feedba
k stabilization. IEEE Transa
tions on Automati
 Control, vol. 42,

no. 10, pages 1394�1407, 1997.

[Cloosterman 2006℄ M. Cloosterman, N. van de Wouw, M. Heemels and H. Nijmeijer. Robust

stability of networked 
ontrol systems with time-varying network-indu
ed delays. In 45th

IEEE Conferen
e on De
ision and Control, pages 4980�4985, San Diego, California, USA,

2006.

[Cloosterman 2009℄ M. Cloosterman, N. van de Wouw, W.P.M.H. Heemels and H. Nijmeijer.

Stability of networked 
ontrol systems with un
ertain time-varying delays. IEEE Trans-

a
tions on Automati
 Control, vol. 54, no. 7, pages 1575�1580, 2009.

[Cloosterman 2010℄ M.B.G. Cloosterman, L. Hetel, N. van de Wouw, W.P.M.H. Heemels,

J. Daafouz and H. Nijmeijer. Controller synthesis for networked 
ontrol systems. Au-

tomati
a, vol. 46, no. 10, pages 1584�1594, 2010.

[Cogill 2007℄ R. Cogill, S. Lall and J. Hespanha. A 
onstant fa
tor approximation algorithm for

event-based sampling. In Ameri
an Control Conferen
e, pages 305�311, New York City,

USA, 2007.

[Daafouz 2001℄ J. Daafouz and J. Bernussou. Parameter dependent Lyapunov fun
tions for dis-


rete time systems with time varying parametri
 un
ertainties. Systems & 
ontrol letters,

vol. 43, no. 5, pages 355�359, 2001.

[Da
i
 2007℄ D.-B. Da
i
 and D. Ne²i¢. Quadrati
 stabilization of linear networked 
ontrol sys-

tems via simultaneous proto
ol and 
ontroller design. Automati
a, vol. 43, no. 7, pages

1145�1155, 2007.

144



[de la Sen 1996℄ M. de la Sen. Non-periodi
 and adaptive sampling. A tutorial review. Informat-

i
a, vol. 7, no. 2, 1996.

[de Wouw 2010℄ N. Van de Wouw, P. Naghshtabrizi, M. Cloosterman and J. Hespanha. Tra
k-

ing 
ontrol for sampled-data systems with un
ertain time-varying sampling intervals and

delays. International Journal of Robust and Nonlinear Control, vol. 20, no. 4, pages

1680�1685, 2010.

[Deae
to 2010℄ G.S. Deae
to, J.C. Geromel, F.S. Gar
ia and J.A. Pomilio. Swit
hed a�ne sys-

tems 
ontrol design with appli
ation to DC-DC 
onverters. Control Theory Appli
ations,

IET, vol. 4, no. 7, pages 1201 �1210, july 2010.

[Delpoux 2014℄ R. Delpoux, M. Bodson and T. Floquet. Parameter estimation of permanent

magnet stepper motors without me
hani
al sensors. Control Engineering Pra
ti
e, vol. 26,

2014.

[Delpoux 2015℄ R. Delpoux, L. Hetel and A. Kruszewski. Parameter-Dependent Relay Control:

Appli
ation to PMSM. IEEE Transa
tions on Control Systems Te
hnology, vol. 23, no. 4,

pages 1628�1637, 2015.

[Dinh 2015℄ T.N. Dinh, V. Andrieu, M. Nadri and U. Serres. Continuous-dis
rete time observer

design for Lips
hitz systems with sampled measurements. IEEE Transa
tions on Auto-

mati
 Control, vol. 60, no. 3, pages 787�792, 2015.

[Donkers 2009℄ M.C.F. Donkers, L. Hetel, W.P.M.H. Heemels, N. van de Wouw and M. Stein-

bu
h. Stability analysis of Networked Control Systems using a swit
hed linear systems

approa
h. In 12th International Conferen
e on Hybrid Systems: Computation and Con-

trol, pages 150�164, San Fran
is
o, California, USA, 2009.

[Donkers 2011a℄ M.C.F. Donkers, W.P.M.H. Heemels, N. Van De Wouw and L. Hetel. Stability

analysis of networked 
ontrol systems using a swit
hed linear systems approa
h. IEEE

Transa
tions on Automati
 Control, vol. 56, no. 9, pages 2101�2115, 2011.

[Donkers 2011b℄ M.C.F. Donkers, P. Tabuada and W.P.M.H. Heemels. On the minimum atten-

tion 
ontrol problem for linear systems: A linear programming approa
h. In 50th IEEE

Conferen
e on De
ision and Control and European Control Conferen
e, pages 4717�4722,

Orlando, Florida, USA, 2011.

[Donkers 2012℄ M.C.F. Donkers and W.P.M.H. Heemels. Output-based event-triggered 
ontrol

with guaranteed-gain and improved and de
entralized event-triggering. IEEE Transa
tions

on Automati
 Control, vol. 57, no. 6, pages 1362�1376, 2012.

[Dorf 1962℄ R.C. Dorf, M.C. Farren and C. Phillips. Adaptive sampling frequen
y for sampled-

data 
ontrol systems. IRE Transa
tions on Automati
 Control, vol. 7, no. 1, pages 38�47,

1962.

[Dullerud 1999℄ G. E. Dullerud and S. Lall. Asyn
hronous hybrid systems with jumps - analysis

and synthesis methods. Systems & Control Letters, vol. 37, no. 2, pages 61�69, 1999.

[Ebihara 2015℄ Yoshio Ebihara, Dimitri Peau
elle and Denis Arzelier. S-variable Approa
h to

LMI-based Robust Control, 2015.

145



Bibliography

[Edwards 1998℄ C. Edwards and S. Spurgeon. Sliding mode 
ontrol: theory and appli
ations.

Taylor and Fran
is, 1998.

[El Magri 2010℄ A. El Magri, F. Giri, A. Abouloifa and F.Z. Chaoui. Robust 
ontrol of syn-


hronous motor through AC/DC/AC 
onverters. Control Engineering Pra
ti
e, vol. 18,

no. 5, pages 540�553, 2010.

[Elliott 2009℄ D. Elliott. Bilinear 
ontrol systems. Springer, 2009.

[Emelianova 2014℄ Julia Emelianova, Pavel Pakshin, Krzysztof Galkowski and Eri
 Rogers. Ve
-

tor Lyapunov Fun
tion Based Stability of a Class of Appli
ations Relevant 2 D Nonlinear

Systems. In World Congress, volume 19, pages 8247�8252, 2014.

[Emel'Yanov 1967℄ S.V. Emel'Yanov. Variable stru
ture 
ontrol systems. Nauka, Mos
ou, 1967.

[Eqtami 2010℄ A. Eqtami, D. V. Dimarogonas and K.J. Kyriakopoulos. Event-triggered 
ontrol

for dis
rete-time systems. In Ameri
an Control Conferen
e, pages 4719�4724, Baltimore,

Maryland, USA, 2010.

[Eri
kson 2001℄ R. W. Eri
kson and D. Maksimovi
. Fundamentals of power ele
troni
s.

Springer, 2001.

[Feli
ioni 2008℄ F. Feli
ioni and S. Jun
o. A Lie algebrai
 approa
h to design of stable feedba
k


ontrol systems with varying sampling rate. In 17th IFAC World Congress, Seoul, Korea,

2008.

[Ferrante 2014℄ F. Ferrante, F. Gouaisbaut, R. Sanfeli
e and S. Tarbourie
h. An Observer with

Measurement-triggered Jumps for Linear Systems with Known Input. In IFAC World

Congress, Cape Town, South Afri
a, 2014.

[Filippov 1988℄ A.F. Filippov. Di�erential equations with dis
ontinuous right-hand sides. Kluwer

A
ademi
 Publishers, 1988.

[Fiter 2012a℄ C. Fiter, L. Hetel, W. Perruquetti and J.P. Ri
hard. A state dependent sampling

for linear state feedba
k. Automati
a, vol. 48, no. 8, pages 1860�1867, 2012.

[Fiter 2012b℄ C. Fiter, L. Hetel, W. Perruquetti and J.P. Ri
hard. State-dependent sampling for

perturbed time-delay systems. In 51st IEEE Conferen
e on De
ision and Control, Maui,

Hawaii, USA, 2012.

[Fiter 2014a℄ C. Fiter, H. Omran, L. Hetel and J.P. Ri
hard. Tutorial on arbitrary and state-

dependent sampling. In European Control Conferen
e (ECC), 2014, pages 1440�1445.

IEEE, 2014.

[Fiter 2014b℄ Christophe Fiter, Laurentiu Hetel, Wilfrid Perruquetti and Jean-Pierre Ri
hard.

State-Dependent Sampling for Online Control. In A. Seuret, H. Ozbay, C. Bonnet and

H. Mounier, editeurs, Low-Complexity Controllers for Time-Delay Systems, volume 2 of

Advan
es in Delays and Dynami
s, pages 3�16. Springer International Publishing, 2014.

[Fiter 2015℄ C. Fiter, L. Hetel, W. Perruquetti and J.P. Ri
hard. A robust stability framework

for LTI systems with time-varying sampling. Automati
a, vol. 54, no. 0, pages 56 � 64,

2015.

146



[Flugge-Lotz 1953℄ I. Flugge-Lotz. Dis
ontinuous automati
 
ontrol. Prin
eton University Press,

1953.

[Forni 2010℄ F. Forni, S. Galeani, D. Ne²i¢ and L. Za

arian. Lazy sensors for the s
heduling of

measurement samples transmission in linear 
losed loops over networks. In 49th IEEE

Conferen
e on De
ision and Control (CDC), pages 6469�6474, 2010.

[Forni 2014℄ F. Forni, S. Galeani, D. Ne²i¢ and L. Za

arian. Event-triggered transmission for

linear 
ontrol over 
ommuni
ation 
hannels. Automati
a, vol. 50, no. 2, pages 490�498,

2014.

[Fridman 1992℄ E. Fridman. Use of models with after e�e
t in the problem of the design of

optimal digital 
ontrol systems. Automation and remote 
ontrol, vol. 53, no. 10, pages

1523�1528, 1992.

[Fridman 2000℄ E. Fridman and U. Shaked. Sampled-data H∞ state-feedba
k 
ontrol of systems

with state delays. International Journal of Control, vol. 73, no. 12, pages 1115�1128, 2000.

[Fridman 2003℄ E. Fridman and U. Shaked. Delay-dependent stability and H∞ 
ontrol: 
onstant

and time-varying delays. International Journal of Control, vol. 76, no. 1, pages 48�60,

2003.

[Fridman 2004℄ E. Fridman, A. Seuret and J.P Ri
hard. Robust sampled-data stabilization of

linear systems: An input delay approa
h. Automati
a, vol. 40, no. 8, pages 1441�1446,

2004.

[Fridman 2006℄ E. Fridman and U. Shaked. Input�output approa
h to stability and L2-gain anal-

ysis of systems with time-varying delays. Systems & Control Letters, vol. 55, no. 12, pages

1041�1053, 2006.

[Fridman 2010℄ E. Fridman. A re�ned input delay approa
h to sampled-data 
ontrol. Automati
a,

vol. 46, no. 2, pages 421�427, 2010.

[Fridman 2012℄ E. Fridman and A. Blighovsky. Sampled-Data Control of a Class of Semilinear

Paraboli
 Systems. Automati
a, vol. 48, pages 826�836, 2012.

[Fridman 2013℄ E. Fridman and N. Bar Am. Sampled-Data Distributed H∞ Control of Transport

Rea
tion Systems. SIAM Journal on Control and Optimization, vol. 51, no. 2, pages 1500�

1527, 2013.

[Fridman 2014℄ E. Fridman. Introdu
tion to time-delay systems. Springer, 2014.

[Fu 1998℄ M. Fu, H. Li and S.I. Ni
ules
u. Robust stability and stabilization of time-delay systems

via integral quadrati
 
onstraint approa
h. In Stability and Control of Time-delay Sys-

tems, volume 228 of Le
ture Notes in Control and Information S
ien
es, pages 101�116.

Springer, 1998.

[Fujioka 2009a℄ H. Fujioka. A dis
rete-time approa
h to stability analysis of systems with aperi-

odi
 sample-and-hold devi
es. IEEE Transa
tions on Automati
 Control, vol. 54, no. 10,

pages 2440�2445, 2009.

[Fujioka 2009b℄ H. Fujioka. Some open issues in 
ontinuous-time IQC approa
h to a 
lass of

networked 
ontrol systems. In ICCAS-SICE, pages 2183�2186, Fukuoka, Japan, 2009.

147



Bibliography

[Fujioka 2009
℄ H. Fujioka. Stability analysis of systems with aperiodi
 sample-and-hold devi
es.

Automati
a, vol. 45, no. 3, pages 771�775, 2009.

[Fujioka 2010a℄ H. Fujioka and T. Nakai. Stabilising systems with aperiodi
 sample-and-hold

devi
es: state feedba
k 
ase. IET 
ontrol theory & appli
ations, vol. 4, no. 2, pages

265�272, 2010.

[Fujioka 2010b℄ H. Fujioka, T. Nakai and L. Hetel. A swit
hed Lyapunov fun
tion approa
h to

stability analysis of non-uniformly sampled-data systems. In Ameri
an Control Confer-

en
e, pages 1803�1804, Baltimore, Maryland, USA, 2010.

[Fujioka 2011a℄ H. Fujioka. Stability Veri�
ation of Non-Uniformly Sampled-Data Systems with

A New IQC in Continuous-Time Domain. In 11th International Conferen
e on Control,

Automation and Systems, Gyeonggi-do, Korea, 2011.

[Fujioka 2011b℄ H. Fujioka and Y. Oishi. A swit
hed Lyapunov fun
tion approa
h to stability

analysis of non-uniformly sampled-data systems with robust LMI te
hniques. In 8th Asian

Control Conferen
e, pages 1487�1491, Kaohsiung, Taiwan, 2011.

[Gahinet 1994℄ P. Gahinet and P. Apkarian. A linear matrix inequality approa
h to H∞ 
ontrol.

International journal of robust and nonlinear 
ontrol, vol. 4, no. 4, pages 421�448, 1994.

[Gao 2008℄ H. Gao, T. Chen and J. Lam. A new delay system approa
h to network-based 
ontrol.

Automati
a, vol. 44, no. 1, pages 39�52, 2008.

[Gao 2010℄ H. Gao, W. Sun and P. Shi. Robust Sampled-Data Control for Vehi
le A
tive Suspen-

sion Systems. IEEE Transa
tions on Control Systems Te
hnology, vol. 18, no. 1, pages

238�245, 2010.

[Gateau 2002℄ G. Gateau, M. Fadel, P. Maussion, R. Bensaid and T.A. Meynard. Multi
ell


onverters: a
tive 
ontrol and observation of �ying-
apa
itor voltages. IEEE Transa
tions

on Industrial Ele
troni
s, vol. 49, no. 5, pages 998�1008, 2002.

[Gielen 2009℄ R. Gielen, S. Olaru and M. Lazar. On polytopi
 approximations of systems with

time-varying input delays. Le
ture Notes in Control and Information S
ien
es (Nonlinear

Model Predi
tive Control: Towards new Challenging Appli
ations), vol. 384, pages 225�

233, 2009.

[Gielen 2010℄ R. Gielen, S. Olaru, M. Lazar, W. Heemels, N. Van de Wouw and S.I. Ni
ules
u.

On polytopi
 in
lusions as a modeling framework for systems with time-varying delays.

Automati
a, vol. 46, no. 3, pages 615�619, 2010.

[Goebel 2009℄ R. Goebel, R.-G. Sanfeli
e and A.R. Teel. Hybrid dynami
al systems. IEEE

Control Systems Magazine, vol. 29, no. 2, pages 28�93, 2009.

[Goebel 2012℄ R. Goebel, R.G. Sanfeli
e and A.R. Teel. Hybrid dynami
al systems: modeling,

stability, and robustness. Prin
eton University Press, 2012.

[Gorp 2011℄ J. Van Gorp, M. Defoort and M. Djemai. Binary signals design to 
ontrol a power


onverter. In 50th IEEE Conferen
e on De
ision and Control and European Control

Conferen
e (CDC-ECC), 2011, pages 6794�6799. IEEE, 2011.

148



[Grüne 2008℄ L. Grüne, K. Worthmann and D. Ne²i¢. Continuous-time 
ontroller redesign for

digital implementation: A traje
tory based approa
h. Automati
a, vol. 44, no. 1, pages

225 � 232, 2008.

[Gu 2003a℄ K. Gu, V. Kharitonov and J. Chen. Stability of time-delay systems. Boston:

Birkhauser, 2003.

[Gu 2003b℄ K. Gu and S.I. Ni
ules
u. Survey on Re
ent Results in the Stability and Control of

Time-Delay Systems. Journal of Dynami
 Systems, Measurement, and Control, vol. 125,

no. 2, pages 158�165, 2003.

[Gurvits 1995℄ L. Gurvits. Stability of dis
rete linear in
lusion. Linear algebra and its appli
a-

tions, vol. 231, pages 47�85, 1995.

[Gutman 1981℄ P.-O. Gutman. Stabilizing 
ontrollers for bilinear systems. IEEE Transa
tions

on Automati
 Control, vol. 26, no. 4, pages 917 � 922, 1981.

[Haddad 2014℄ W.M. Haddad, V. Chellaboina and S.G. Nersesov. Impulsive and hybrid dynam-

i
al systems: stability, dissipativity, and 
ontrol. Prin
eton University Press, 2014.

[Hamida 2013℄ M.-A. Hamida, J. De Leon, A. Glumineau and R. Boisliveau. An Adaptive In-

ter
onne
ted Observer for Sensorless Control of PM Syn
hronous Motors With Online

Parameter Identi�
ation. IEEE Transa
tions on Industrial Ele
troni
s, vol. 60, no. 2,

pages 739�748, 2013.

[Hauroigne 2011℄ P. Hauroigne, P. Riedinger and C. Iung. Swit
hed A�ne Systems Using

Sampled-Data Controllers: Robust and Guaranteed Stabilization. IEEE Transa
tions on

Automati
 Control, vol. 56, no. 12, pages 2929 �2935, 2011.

[Heemels 2012℄ W.P.M.H. Heemels, K.-H Johansson and P. Tabuada. An introdu
tion to event-

triggered and self-triggered 
ontrol. In 51st IEEE Conferen
e on De
ision and Control,

pages 3270�3285, Maui, Hawaii, USA, 2012.

[Heemels 2013℄ W.P.M.H. Heemels, M.C.F. Donkers and A.R. Teel. Periodi
 event-triggered


ontrol for linear systems. IEEE Transa
tions on Automati
 Control, vol. 58, no. 4, pages

847�861, 2013.

[Hespanha 2007℄ J.P. Hespanha, P. Naghshtabrizi and Y. Xu. A survey of re
ent results in

networked 
ontrol systems. IEEE Spe
ial Issue on Te
hnology of Networked Control

Systems, vol. 95, no. 1, pages 138�162, 2007.

[Hetel 2006℄ L. Hetel, J. Daafouz and C. Iung. Stabilization of Arbitrary Swit
hed Linear Systems

With Unknown Time-Varying Delays. IEEE Transa
tions on Automati
 Control, vol. 51,

no. 10, pages 1668�1674, 2006.

[Hetel 2007℄ L. Hetel, J. Daafouz and C. Iung. LMI 
ontrol design for a 
lass of exponential

un
ertain systems with appli
ation to network 
ontrolled swit
hed systems. In Ameri
an

Control Conferen
e, pages 1401�1406, New York City, New York, USA, 2007.

[Hetel 2008℄ L. Hetel, J. Daafouz and C. Iung. Analysis and 
ontrol of LTI and swit
hed systems

in digital loops via an event-based modelling. International Journal of Control, vol. 81,

no. 7, pages 1125�1138, 2008.

149



Bibliography

[Hetel 2011a℄ L. Hetel, J. Daafouz, J.P. Ri
hard and M. Jungers. Delay-dependent sampled-data


ontrol based on delay estimates. Systems & Control Letters, vol. 60, no. 2, pages 146�150,

2011.

[Hetel 2011b℄ L. Hetel, A. Kruszewski, W. Perruquetti and J.P Ri
hard. Dis
rete and inter-

sample analysis of systems with aperiodi
 sampling. IEEE Transa
tions on Automati


Control, vol. 56, no. 7, pages 1696�1701, 2011.

[Hetel 2013a℄ L. Hetel, J. Daafouz, S. Tarbourie
h and C. Prieur. Stabilization of linear impulsive

systems through a nearly-periodi
 reset. Nonlinear Analysis: Hybrid Systems, vol. 7, no. 1,

pages 4�15, 2013.

[Hetel 2013b℄ L. Hetel and E. Fridman. Robust Sampled - Data Control of Swit
hed A�ne

Systems. IEEE Transa
tions on Automati
 Control, vol. 58, no. 11, pages 2922�2928,

2013.

[Hetel 2013
℄ Laurentiu Hetel, Emilia Fridman and Thierry Floquet. Sampled-data 
ontrol of LTI

systems with relay: a 
onvex optimization approa
h. 9th IFAC Symposium on Nonlinear

Control Systems, 2013.

[Hetel 2015a℄ L. Hetel and E. Bernuau. Lo
al Stabilization of Swit
hed A�ne Systems. IEEE

Transa
tions on Automati
 Control, vol. 60, no. 4, pages 1158�1163, 2015.

[Hetel 2015b℄ L. Hetel and E. Fridman. Sampled-Data Control of Swit
hed A�ne Systems. In

Hybrid Dynami
al Systems, pages 241�259. Springer International Publishing, 2015.

[Hetel 2015
℄ L. Hetel, E. Fridman and T. Floquet. Variable Stru
ture Control With Generalized

Relays: A Simple Convex Optimization Approa
h. IEEE Transa
tions on Automati


Control, vol. 60, no. 2, pages 497�502, 2015.

[Hetel 2016℄ L. Hetel, M. Defoort and M. Djemai. Binary Control Design for a Class of Bilinear

Systems: Appli
ation to a Multilevel Power Converter. IEEE Transa
tions on Control

Systems Te
hnology, 2016.

[Hetel 2017℄ L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.P. Ri
hard and S.I. Ni
ules
u.

Re
ent developments on the stability of systems with aperiodi
 sampling: an overview.

Automati
a, a

epted, 2017.

[Hou 1997℄ L. Hou, A.N. Mi
hel and H. Ye. Some qualitative properties of sampled-data 
ontrol

systems. IEEE Transa
tions on Automati
 Control, vol. 42, no. 12, pages 1721�1725,

1997.

[Hristu-Varsakelis 2005℄ D. Hristu-Varsakelis and W. Levine (Editors). Handbook of networked

and embedded 
ontrol systems. Boston: Birkhauser, 2005.

[Hsia 1974℄ T.C. Hsia. Analyti
 design of adaptive sampling 
ontrol law in sampled-data systems.

IEEE Transa
tions on Automati
 Control, vol. 19, no. 1, pages 39�42, 1974.

[Hsu 1987℄ P. Hsu and S. Sastry. The e�e
t of dis
retized feedba
k in a 
losed loop system. In

26th IEEE Conferen
e on De
ision and Control, volume 26, pages 1518�1523, Los Angeles,

California, USA, 1987.

150



[Hu 2003℄ L.S. Hu, J. Lam, Y.Y. Cao and H.-H. Shao. A linear matrix inequality (LMI) approa
h

to robust H2 sampled-data 
ontrol for linear un
ertain systems. IEEE Transa
tions on

Systems, Man, and Cyberneti
s, Part B: Cyberneti
s, vol. 33, no. 1, pages 149�155, 2003.

[Hu 2006℄ Tingshu Hu, Andrew R Teel and Lu
a Za

arian. Stability and performan
e for sat-

urated systems via quadrati
 and nonquadrati
 Lyapunov fun
tions. IEEE Transa
tions

on Automati
 Control, vol. 51, no. 11, pages 1770�1786, 2006.

[Hu 2010℄ T. Hu and F. Blan
hini. Non-
onservative matrix inequality 
onditions for stabil-

ity/stabilizability of linear di�erential in
lusions. Automati
a, vol. 46, no. 1, pages 190�

196, 2010.

[Huang 2000℄ Y.-P. Huang and K. Zhou. Robust stability of un
ertain time-delay systems. IEEE

Transa
tions on Automati
 Control, vol. 45, no. 11, pages 2169�2173, 2000.

[Isidori 1995℄ A. Isidori. Nonlinear 
ontrol systems, volume 1. Springer, 1995.

[Johansson 1999℄ K.H. Johansson, A. Rantzer and K.J. Astrom. Fast swit
hes in relay feedba
k

systems. Automati
a, vol. 35, no. 4, pages 539 � 552, 1999.

[Jun 2001℄ M. Jun and M.G. Safonov. IQC robustness analysis for time-delay systems. Interna-

tional Journal of Robust and Nonlinear Control, vol. 11, no. 15, pages 1455�1468, 2001.

[Jury 1959℄ E.I. Jury and F.J. Mullin. The analysis of sampled-data 
ontrol systems with a

periodi
ally time-varying sampling rate. IRE Transa
tions on Automati
 Control, no. 1,

pages 15�21, 1959.

[Kabamba 1993℄ P.T. Kabamba and S. Hara. Worst-
ase analysis and design of sampled-data


ontrol systems. IEEE Transa
tions on Automati
 Control, vol. 38, no. 9, pages 1337�

1358, 1993.

[Kamen 1984℄ E. Kamen and P. Khargonekar. On the 
ontrol of linear systems whose 
oe�
ients

are fun
tions of parameters. IEEE Transa
tions on Automati
 Control, vol. 29, no. 1,

pages 25�33, 1984.

[Kao 2004℄ C.-Y. Kao and B. Lin
oln. Simple stability 
riteria for systems with time-varying

delays. Automati
a, vol. 40, no. 8, pages 1429�1434, 2004.

[Kao 2007℄ C.-Y. Kao and A. Rantzer. Stability analysis of systems with un
ertain time-varying

delays. Automati
a, vol. 43, no. 6, pages 959�970, 2007.

[Kao 2013℄ C.-Y. Kao and H. Fujioka. On stability of systems with aperiodi
 sampling devi
es.

IEEE Transa
tions on Automati
 Control, vol. 58, no. 8, pages 2085�2090, 2013.

[Kao 2014℄ C.-Y. Kao and D.-R. Wu. On robust stability of aperiodi
 sampled-data systems - An

integral quadrati
 
onstraint approa
h. In Ameri
an Control Conferen
e, pages 4871�4876,

Portland, Oregon, USA, 2014.

[Karafyllis 2009a℄ I. Karafyllis and C. Kravaris. From 
ontinuous-time design to sampled-data

design of observers. IEEE Transa
tions on Automati
 Control, vol. 54, no. 9, pages

2169�2174, 2009.

151



Bibliography

[Karafyllis 2009b℄ I. Karafyllis and C. Kravaris. Global stability results for systems under

sampled-data 
ontrol. International Journal of Robust and Nonlinear Control, vol. 19,

pages 1105�1128, 2009.

[Karafyllis 2012a℄ I. Karafyllis and M. Krsti
. Global stabilization of feedforward systems under

perturbations in sampling s
hedule. SIAM Journal on Control and Optimization, vol. 50,

no. 3, pages 1389�1412, 2012.

[Karafyllis 2012b℄ I. Karafyllis and M. Krsti
. Nonlinear stabilization under sampled and delayed

measurements, and with inputs subje
t to delay and zero-order hold. IEEE Transa
tions

on Automati
 Control, vol. 57, no. 5, pages 1141�1154, 2012.

[Khalil 2002℄ H. Khalil. Nonlinear systems. Prenti
e Hall, 2002.

[Kolmanovskii 1992℄ V. Kolmanovskii and A. Myshkis. Applied theory of fun
tional di�erential

equations. Springer, 1992.

[Krasovski�� 1963℄ N. N. Krasovski��. Stability of motion: appli
ations of Lyapunov's se
ond

method to di�erential systems and equations with delay. Stanford university press, 1963.

[Krsti
 1995℄ M. Krsti
, I. Kanellakopoulos and P.V. Kokotovi
. Nonlinear and adaptive 
ontrol

design. Wiley, 1995.

[Kruszewski 2008℄ A. Kruszewski, R. Wang and T.M. Guerra. Nonquadrati
 Stabilization Con-

ditions for a Class of Un
ertain Nonlinear Dis
rete Time TS Fuzzy Models: A New

Approa
h. IEEE Transa
tions on Automati
 Control, vol. 53, no. 2, pages 606�611, 2008.

[Laila 2006℄ D. Laila, D. Ne²i¢ and A. Astol�. Sampled-data Control of Nonlinear Systems. In

Advan
ed Topi
s in Control Systems Theory, volume 328 of Le
ture Notes in Control and

Information S
ien
e, pages 91�137. Springer London, 2006.

[Lakshmikantham ℄ V. Lakshmikantham and Ba��. Theory of impulsive di�erential equations.

[Lee 2006℄ J.-W. Lee. On Uniform Stabilization of Dis
rete-Time Linear Parameter-Varying

Control Systems. IEEE Transa
tions on Automati
 Control, vol. 51, no. 10, pages 1714�

1721, 2006.

[Li 2010℄ X.-G. Li, A. Cela, S. Ni
ules
u and A. Reama. Some problems in the stability of

networked-
ontrol systems with periodi
 s
heduling. International Journal of Control,

vol. 83, no. 5, pages 996�1008, 2010.

[Li 2011℄ X.G. Li, H.G. Zhang, A. Cela and S.I. Ni
ules
u. On the stability analysis of sampled-

data 
ontrol systems: A 
ombined 
ontinuous-time and dis
rete-time method. In 1st In-

ternational Conferen
e on Communi
ations, Computing and Control Appli
ations, pages

1�6, Hammamet, Tunisia, 2011.

[Li 2014℄ X.G. Li, A. Cela, S.-I. Ni
ules
u and Shi-Guang W. Optimization for networked 
ontrol

systems under the hyper-sampling period. In 13th European Control Conferen
e, pages

2868�2873, Strasbourg, Fran
e, 2014.

[Liberzon 1999℄ D. Liberzon, J.P. Hespanha and A.-S. Morse. Stability of swit
hed systems : a

lie-algebrai
 
ondition. Systems & Control Letters, vol. 37, no. 3, pages 117�122, 1999.

152



[Liberzon 2003a℄ D. Liberzon. Swith
ing in systems and 
ontrol. Systems and Control : Foun-

dation and Appli
ations. Birkhauser, 2003.

[Liberzon 2003b℄ Daniel Liberzon. Hybrid feedba
k stabilization of systems with quantized signals.

Automati
a, vol. 39, no. 9, pages 1543�1554, 2003.

[Liberzon 2005℄ D. Liberzon and J. Hespanha. Stabilization of nonlinear systems with limited

information feedba
k. IEEE Transa
tions on Automati
 Control, vol. 50, no. 6, pages

910�915, 2005.

[Liberzon 2006℄ D. Liberzon. Quantization, time delays, and nonlinear stabilization. IEEE Trans-

a
tions on Automati
 Control, vol. 51, no. 7, pages 1190�1195, 2006.

[Liberzon 2013℄ D. Liberzon and S. Trenn. The bang-bang funnel 
ontroller for un
ertain non-

linear systems with arbitrary relative degree. IEEE Transa
tions on Automati
 Control,

vol. 58, no. 12, pages 3126�3141, 2013.

[Lin 2009℄ H. Lin and P.J. Antsaklis. Stability and stabilizability of swit
hed linear systems: a

survey of re
ent results. IEEE Transa
tions on Automati
 
ontrol, vol. 54, no. 2, pages

308�322, 2009.

[Liou 1966℄ M.L. Liou. A novel method of evaluating transient response. Pro
eedings of the

IEEE, vol. 54, no. 1, pages 20�23, 1966.

[Liu 2010℄ K. Liu, V. Suplin and E. Fridman. Stability of linear systems with general sawtooth

delay. IMA Journal of Mathemati
al Control and Information, vol. 27, no. 4, pages

419�436, 2010.

[Liu 2012a℄ K. Liu and E. Fridman. Wirtinger's inequality and Lyapunov-based sampled-data

stabilization. Automati
a, vol. 48, no. 1, pages 102�108, 2012.

[Liu 2012b℄ K. Liu, E. Fridman and L. Hetel. Stability and -gain analysis of Networked Con-

trol Systems under Round-Robin s
heduling: A time-delay approa
h. Systems & Control

Letters, vol. 61, no. 5, pages 666 � 675, 2012.

[Liu 2015a℄ K. Liu, E. Fridman and L. Hetel. Networked 
ontrol systems in the presen
e of

s
heduling proto
ols and 
ommuni
ation delays. SIAM Journal of Control and Optimiza-

tion, 2015.

[Liu 2015b℄ K. Liu, E. Fridman and K. Johansson. Networked Control with Sto
hasti
 S
heduling.

IEEE Transa
tions on Automati
 Control, vol. in press, 2015.

[Loan 1977℄ C.-V Loan. The sensitivity of the matrix exponential. SIAM Journal on Numeri
al

Analysis, vol. 14, no. 6, pages 971�981, 1977.

[Lombardi 2009℄ W. Lombardi, S. Olaru and S.I. Ni
ules
u. Robust invarian
e for a 
lass of

time-delay systems with repeated eigenvalues. In 8th IFAC Workshop on Time Delay

Systems, volume 8, pages 66�71, Sinaia, Romania, 2009.

[Lombardi 2012℄ W. Lombardi, S. Olaru, S.I. Ni
ules
u and L. Hetel. A predi
tive 
ontrol s
heme

for systems with variable time-delay. International Journal of Control, vol. 85, no. 7, pages

915�932, 2012.

153



Bibliography

[Louisell 2001℄ J. Louisell. Delay di�erential systems with time-varying delay: New dire
tions

for stability theory. Kybernetika, vol. 37, no. 3, pages 239�251, 2001.

[Lunze 2010℄ J. Lunze and D. Lehmann. A state-feedba
k approa
h to event-based 
ontrol. Au-

tomati
a, vol. 46, no. 1, pages 211�215, 2010.

[Ma 1976℄ R.K.T. Ma and R.A. S
hlueter. Optimal 
ontrol system design: The 
ontrol and

sampling problem. In 1976 IEEE Conferen
e on De
ision and Control in
luding the 15th

Symposium on Adaptive Pro
esses, pages 228�233, Clearwater, Florida, USA, 1976.

[Mar
hand 2013℄ N. Mar
hand, S. Durand and J.F.G. Castellanos. A General Formula for Event-

Based Stabilization of Nonlinear Systems. IEEE Transa
tions on Automati
 Control,

vol. 58, no. 5, pages 1332�1337, 2013.

[Marino 1995℄ R. Marino, S. Peresada and P. Tomei. Nonlinear adaptive 
ontrol of permanent

magnet step motors. Automati
a, vol. 31, no. 11, pages 1595�1604, November 1995.

[Mazen
 2012℄ F. Mazen
 and D. Normand-Cyrot. Stabilization of linear input delayed dynami
s

under sampling. In 51st IEEE Conferen
e on De
ision and Control, pages 7523�7528,

Maui, Hawaii, USA, 2012.

[Mazen
 2013a℄ F. Mazen
, M. Maliso� and T.N. Dinh. Robustness of nonlinear systems with

respe
t to delay and sampling of the 
ontrols. Automati
a, vol. 49, no. 6, pages 1925�1931,

2013.

[Mazen
 2013b℄ F. Mazen
 and D. Normand-Cyrot. Redu
tion model approa
h for linear systems

with sampled delayed inputs. IEEE Transa
tions on Automati
 Control, vol. 58, no. 5,

pages 1263�1268, 2013.

[Mazo Jr. 2009℄ M. Mazo Jr., A. Anta and P. Tabuada. On self-triggered 
ontrol for linear sys-

tems: guarantees and 
omplexity. In European Control Conferen
e, Budapest, Hungary,

2009.

[Megretski 1996℄ A. Megretski. Integral quadrati
 
onstraints derived from the set-theoreti
 anal-

ysis of di�eren
e in
lusions. In 35th IEEE Conferen
e on De
ision and Control, volume 3,

pages 2389�2394, Kobe, Japan, 1996.

[Megretski 1997℄ A. Megretski and A. Rantzer. System analysis via integral quadrati
 
onstraints.

IEEE Transa
tions on Automati
 Control, vol. 42, no. 6, pages 819�830, 1997.

[Meynard 1991℄ T. Meynard and H. Fo
h. Fren
h Patent No. 91 09582 du 25 juillet 1991. Depot

International PCT (Europe, Japon, USA, Canada), no. 92, page 00652, 1991.

[Meynard 2002℄ T. A. Meynard, H. Fo
h, P. Thomas, J. Courault, R. Jakob and M. Nahrstaedt.

Multi
ell 
onverters: basi
 
on
epts and industry appli
ations. IEEE Trans. on Industrial

Ele
troni
s, vol. 49, no. 5, pages 955�964, 2002.

[Mi
hel 1999℄ A.N. Mi
hel and B. Hu. Towards a stability theory of general hybrid dynami
al

systems. Automati
a, vol. 35, no. 3, pages 371�384, 1999.

[Mi
hiels 2005℄ Wim Mi
hiels, Vin
ent Van Ass
he and S-I Ni
ules
u. Stabilization of time-

delay systems with a 
ontrolled time-varying delay and appli
ations. IEEE Transa
tions

on Automati
 Control, vol. 50, no. 4, pages 493�504, 2005.

154



[Mi
hiels 2009℄ Wim Mi
hiels, Emilia Fridman and Silviu-Iulian Ni
ules
u. Robustness assess-

ment via stability radii in delay parameters. International Journal of Robust and Nonlinear

Control, vol. 19, no. 13, pages 1405�1426, 2009.

[Mikheev 1988℄ Y. Mikheev, V. Sobolev and E. Fridman. Asymptoti
 analysis of digital 
ontrol

systems. Automation and Remote Control, vol. 49, no. 9, pages 1175�1180, 1988.

[Milman 1960℄ V.D. Milman and A.D. Myshkis. On the stability of motion in the presen
e of

impulses. Siberian Mathemati
al Journal, vol. 1, no. 2, pages 233�237, 1960.

[Mirkin 2007℄ L. Mirkin. Some remarks on the use of time-varying delay to model sample-and-

hold 
ir
uits. IEEE Transa
tions on Automati
 Control, vol. 52, no. 6, pages 1109�1112,

2007.

[Mi±kowi
z 2005℄ M. Mi±kowi
z. Sampling of signals in energy domain. In 10th IEEE Conferen
e

on Emerging Te
hnologies and Fa
tory Automation, volume 1, Catania, Italy, 2005.

[Miskowi
z 2007℄ M. Miskowi
z. Asymptoti
 e�e
tiveness of the event-based sampling a

ording

to the integral 
riterion. Sensors, vol. 7, no. 1, pages 16�37, 2007.

[Mohler 1974℄ R.R. Mohler. Bilinear 
ontrol pro
esses: With appli
ations to engineering, e
ology

and medi
ine. Mathemati
s in S
ien
e & Engineering. A
ademi
 Press In
, 1974. 224

pages.

[Mohler 1991℄ R.R. Mohler. Bilinear systems: Appli
ations to bilinear 
ontrol. Prenti
e Hall,

1991. 213 pages.

[Mol
hanov 1989℄ A.P. Mol
hanov and Y.S. Pyatnitskiy. Criteria of asymptoti
 stability of di�er-

ential and di�eren
e in
lusions en
ountered in 
ontrol theory. Systems & Control Letters,

vol. 13, no. 1, pages 59�64, 1989.

[Moler 2003℄ C. Moler and C. Van Loan. Nineteen dubious ways to 
ompute the exponential of

a matrix, twenty-�ve years later. SIAM review, vol. 45, no. 1, pages 3�49, 2003.

[Molin 2013℄ A. Molin and S. Hir
he. On the optimality of 
ertainty equivalen
e for event-

triggered 
ontrol systems. IEEE Transa
tions on Automati
 Control, vol. 58, no. 2, pages

470�474, 2013.

[Mona
o 1985℄ S. Mona
o and D. Normand-Cyrot. On the sampling of a linear analyti
 
ontrol

system. In 24th IEEE Conferen
e on De
ision and Control, volume 24, pages 1457�1462,

Lauderdale, Florida, USA, 1985.

[Mona
o 2001℄ S. Mona
o and D. Normand-Cyrot. Issues on nonlinear digital 
ontrol. European

Journal of Control, vol. 7, no. 2, pages 160�177, 2001.

[Mona
o 2007℄ S. Mona
o and D. Normand-Cyrot. Advan
ed Tools for Nonlinear Sampled-Data

Systems Analysis and Control. European Journal of Control, vol. 13, no. 2-3, pages

221�241, 2007.

[Mousa 1986℄ M. Mousa, R. Miller and A.N. Mi
hel. Stability analysis of hybrid 
omposite dy-

nami
al systems: Des
riptions involving operators and di�eren
e equations. IEEE Trans-

a
tions on Automati
 Control, vol. 31, no. 7, pages 603�615, 1986.

155



Bibliography

[Mustafa 2013℄ G. Mustafa and T. Chen. Stabilisation of non-uniformly sampled systems via

dynami
 output-feedba
k 
ontrol. IET Control Theory & Appli
ations, vol. 7, no. 2, pages

228�233, 2013.

[Nadri 2003℄ Madiha Nadri and Houbekeur Hammouri. Design of a 
ontinuous-dis
rete observer

for state a�ne systems. Applied Mathemati
s Letters, vol. 16, no. 6, pages 967�974, 2003.

[Nadri 2013℄ M. Nadri, H. Hammouri and R. M. Grajales. Observer design for uniformly ob-

servable systems with sampled measurements. IEEE Transa
tions on Automati
 Control,

vol. 58, no. 3, pages 757�762, 2013.

[Naghshtabrizi 2008℄ P. Naghshtabrizi, J.P. Hespanha and A.-R. Teel. Exponential stability of

impulsive systems with appli
ation to un
ertain sampled-data systems. Systems & Control

Letters, vol. 57, no. 5, pages 378�385, 2008.

[Naghstabrizi 2010℄ P. Naghstabrizi, J. Hespanha and A. Teel. Stability of delay impulsive sys-

tems with appli
ation to networked 
ontrol systems. Transa
tions of the Institute of Mea-

surement and Control, vol. 32, no. 5, pages 511�528, 2010.

[Ne²i¢ 1999℄ D. Ne²i¢, A.R. Teel and P.V. Kokotovi¢. Su�
ient 
onditions for stabilization of

sampled-data nonlinear systems via dis
rete-time approximations. Systems & Control

Letters, vol. 38, no. 4, pages 259�270, 1999.

[Ne²i¢ 2005℄ D. Ne²i¢ and L. Grüne. Lyapunov-based 
ontinuous-time nonlinear 
ontroller re-

design for sampled-data implementation. Automati
a, vol. 41, no. 7, pages 1143�1156,

2005.

[Ne²i¢ 1999℄ D. Ne²i¢, A.R. Teel and E.D. Sontag. Formulas relating KL stability estimates of

dis
rete-time and sampled-data nonlinear systems. Systems & Control Letters, vol. 38,

no. 1, pages 49�60, 1999.

[Ne²i¢ 2001℄ D. Ne²i¢ and A.R. Teel. Sampled-data 
ontrol of nonlinear systems: An overview of

re
ent results. In Perspe
tives in robust 
ontrol, volume 268 of Le
ture Notes in Control

and Information S
ien
es, pages 221�239. Springer London, 2001.

[Ne²i¢ 2004a℄ D. Ne²i¢ and A. Teel. A framework for stabilization of nonlinear sampled-data sys-

tems based on their approximate dis
rete-time models. IEEE Transa
tions on Automati


Control, vol. 49, no. 7, pages 1103�1122, 2004.

[Ne²i¢ 2004b℄ D. Ne²i¢ and A.R. Teel. Input-output stability properties of networked 
ontrol

systems. IEEE Transa
tions on Automati
 Control, vol. 49, no. 10, pages 1650�1667,

2004.

[Ne²i¢ 2009℄ D. Ne²i¢, A.R. Teel and D. Carnevale. Expli
it Computation of the Sampling Period

in Emulation of Controllers for Nonlinear Sampled-Data Systems. IEEE Transa
tions on

Automati
 Control, vol. 54, no. 3, pages 619�624, 2009.

[Ni
ules
u 1998℄ S.I. Ni
ules
u, E.I. Verriest, L. Dugard and J.M. Dion. Stability and robust

stability of time-delay systems: A guided tour. In Stability and 
ontrol of time-delay

systems, pages 1�71. Springer, 1998.

[Ni
ules
u 2001℄ S.I Ni
ules
u. Delay e�e
ts on stability - a robust 
ontrol approa
h, volume

269 of Le
ture Notes in Control and Information S
ien
es. Springer, 2001.

156



[Ni
ules
u 2004℄ S.I. Ni
ules
u and K. Gu. Advan
es in time-delay systems, volume 38. Springer,

2004.

[Oishi 2010℄ Y. Oishi and H. Fujioka. Stability and stabilization of aperiodi
 sampled-data 
ontrol

systems using robust linear matrix inequalities. Automati
a, vol. 46, no. 8, pages 1327�

1333, 2010.

[Olalla 2011℄ C. Olalla, I. Queinne
, R. Leyva and A. El Aroudi. Robust optimal 
ontrol of

bilinear d
�d
 
onverters. Control Engineering Pra
ti
e, vol. 19, pages 688�699, 2011.

[Olaru 2008℄ S. Olaru and S. Ni
ules
u. Predi
tive 
ontrol for linear systems with delayed input

subje
t to 
onstraints. In 17th IFAC World Congress, Seoul, Korea, 2008.

[Omran 2012a℄ H. Omran, L. Hetel and J.P. Ri
hard. Lo
al stability of bilinear systems with

asyn
hronous sampling. In 4th IFAC Conferen
e on Analysis and Design, Eindhoven,

The Netherlands, 2012.

[Omran 2012b℄ H. Omran, L. Hetel, J.P. Ri
hard and F. Lamnabhi-Lagarrigue. Stability of

bilinear sampled-data systems with an emulation of stati
 state feedba
k. In 51st IEEE

Conferen
e on De
ision and Control, pages 7541�7546, Maui, Hawaii, 2012.

[Omran 2013℄ H. Omran, L. Hetel, J.P. Ri
hard and F. Lamnabhi-Lagarrigue. On the stability

of input-a�ne nonlinear systems with sampled-data 
ontrol. In 13th European Control

Conferen
e, pages 2585�2590, Zuri
h, Switzerland, 2013.

[Omran 2014a℄ H. Omran, L. Hetel, J. P. Ri
hard and F. Lamnabhi-Lagarrigue. Stabilité des

systèmes non linéaires sous é
hantillonnage apériodique. Journal Européen des Systèmes

Automatisés, vol. 47, no. 4�8, pages 467�482, 2014.

[Omran 2014b℄ H. Omran, L. Hetel, J.P. Ri
hard and F. Lamnabhi-Lagarrigue. Stability Analysis

of Bilinear Systems Under Aperiodi
 Sampled-Data Control. Automati
a, vol. 50, no. 4,

pages 1288�1295, 2014.

[Omran 2016a℄ H. Omran, L. Hetel, M. Petre
zky, J.P. Ri
hard and F. Lamnabhi-Lagarrigue.

Stability analysis of some 
lasses of input-a�ne nonlinear systems with aperiodi
 sampled-

data 
ontrol. Automati
a, vol. 70, pages 266 � 274, 2016.

[Omran 2016b℄ H. Omran, L. Hetel, J.P. Ri
hard and F. Lamnabhi-Lagarrigue. Analysis of

Bilinear Systems with Sampled-Data State Feedba
k. In A. Seuret, L. Hetel, J. Daafouz and

H.K. Johansson, editeurs, Delays and Networked Control Systems, Advan
es in Delays

and Dynami
s, pages 79�96. Springer International Publishing, 2016.

[Orihuela 2010℄ L. Orihuela, P. Millán, C. Vivas and F.R. Rubio. Delay-dependent robust stability

analysis for systems with interval delays. In Ameri
an Control Conferen
e, pages 4993�

4998, Baltimore, Maryland, USA, 2010.

[Otanez 2002℄ P.-G. Otanez, J.-R. Moyne and D.-M. Tilbury. Using deadbands to redu
e 
ommu-

ni
ation in networked 
ontrol systems. In Ameri
an Control Conferen
e, pages 3015�3020,

An
horage, Alaska, USA, 2002.

[Owens 1999℄ David H Owens and Eri
 Rogers. Stability analysis for a 
lass of 2D 
ontinuous�

dis
rete linear systems with dynami
 boundary 
onditions. Systems & 
ontrol letters,

vol. 37, no. 1, pages 55�60, 1999.

157



Bibliography

[Park 1929℄ R.-H. Park. Two-rea
tion theory of syn
hronous ma
hines generalized method of

analysis-part I. Transa
tions of the Ameri
an Institute of Ele
tri
al Engineers, vol. 48,

no. 3, pages 716�727, 1929.

[Peau
elle 2000℄ D Peau
elle, D Arzelier, O Ba
helier and J Bernussou. A new robust D-stability


ondition for real 
onvex polytopi
 un
ertainty. Systems & 
ontrol letters, vol. 40, no. 1,

pages 21�30, 2000.

[Peau
elle 2001℄ Dimitri Peau
elle and Denis Arzelier. Robust performan
e analysis with LMI-

based methods for real parametri
 un
ertainty via parameter-dependent Lyapunov fun
-

tions. IEEE Transa
tions on Automati
 Control, vol. 46, no. 4, pages 624�630, 2001.

[Peng 2011℄ C. Peng, Q.L. Han, D. Yue and E. Tian. Sampled-data robust H∞ 
ontrol for T�S

fuzzy systems with time delay and un
ertainties. Fuzzy Sets and Systems, vol. 179, no. 1,

pages 20�33, 2011.

[Peng 2013℄ C. Peng and Q.L. Han. A Novel Event-Triggered Transmission S
heme and L2

Control Co-Design for Sampled-Data Control Systems. IEEE Transa
tions on Automati


Control, vol. 58, no. 10, pages 2620�2626, 2013.

[Petre
zky 2006℄ Mihaly Petre
zky. Realization theory of hybrid systems. 2006.

[Postoyan 2012℄ R. Postoyan and D. Ne²i¢. A framework for the observer design for networked


ontrol systems. IEEE Transa
tions on Automati
 Control, vol. 57, no. 5, pages 1309�

1314, 2012.

[Postoyan 2013℄ R. Postoyan, A. Anta, W.P.M.H. Heemels, P. Tabuada and D. Nesi
. Periodi


event-triggered 
ontrol for nonlinear systems. In 52nd IEEE Conferen
e on De
ision and

Control, pages 7397�7402, Floren
e, Italy, 2013.

[Postoyan 2015℄ R. Postoyan, P. Tabuada, D. Nesi
 and A. Anta. A framework for the event-

triggered stabilization of nonlinear systems. IEEE Transa
tions on Automati
 Control,

vol. 60, no. 4, pages 982�996, 2015.

[Prajna 2004℄ S. Prajna, A. Papa
hristodoulou and P.-A. Parrilo. SOSTOOLS: sum of squares

optimization toolbox for MATLAB�user's guide. Control and Dynami
al Systems, Cali-

fornia Institute of Te
hnology, Pasadena, California, USA, 2004.

[Rantzer 1996℄ A. Rantzer. On the Kalman-Yakubovi
h-Popov lemma. Systems & Control Let-

ters, vol. 28, no. 1, pages 7�10, 1996.

[Razumikhin 1956℄ B.S. Razumikhin. On the stability of systems with a delay. Prikl. Mat. Mekh,

vol. 20, no. 4, pages 500�512, 1956.

[Ri
hard 2003℄ J.P Ri
hard. Time delay systems: an overview of some re
ent advan
es and open

problems. Automati
a, vol. 39, no. 10, pages 1667�1694, 2003.

[Ríos 2015℄ Hé
tor Ríos, Laurentiu Hetel and Denis E�mov. Ve
tor Lyapunov Fun
tion based

Stability for a Class of Impulsive Systems. In 54th IEEE Conferen
e on De
ision and

Control (CDC), 2015, 2015.

[Robert 2010℄ D. Robert, O. Sename and D. Simon. An H∞ LPV Design for Sampling Vary-

ing Controllers: Experimentation With a T-Inverted Pendulum. IEEE Transa
tions on

Control Systems Te
hnology, vol. 18, no. 3, pages 741�749, 2010.

158



[Rodriguez 2009℄ J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M.

Prats and M. A. Perez. Multilevel 
onverters: An enabling te
hnology for high-power

appli
ations. Pro
eedings of the IEEE, vol. 97, no. 11, pages 1786�1817, 2009.

[Rugh 2000℄ W.-J. Rugh and J.-S. Shamma. Resear
h on gain s
heduling. Automati
a, vol. 36,

no. 10, pages 1401�1425, 2000.

[Ryan 1994℄ E.P. Ryan. On Bro
kett's 
ondition for smooth stabilizability and its ne
essity in

a 
ontext of nonsmooth feedba
k. SIAM Journal on Control and Optimization, vol. 32,

no. 6, pages 1597�1604, 1994.

[Sala 2005℄ A. Sala. Computer 
ontrol under time-varying sampling period: An LMI gridding

approa
h. Automati
a, vol. 41, no. 12, pages 2077�2082, 2005.

[Sastry 1999℄ S. Sastry. Nonlinear systems: analysis, stability, and 
ontrol, volume 10. Springer

New York, 1999.

[Seatzu 2006℄ C. Seatzu, D. Corona, A. Giua and A. Bemporad. Optimal 
ontrol of 
ontinuous-

time swit
hed a�ne systems. IEEE Transa
tions on Automati
 Control, vol. 51, no. 5,

pages 726�741, 2006.

[Seuret 2009℄ A. Seuret. Stability analysis for sampled-data systems with a time-varying period.

In 48th IEEE Conferen
e on De
ision and Control, pages 8130�8135, Shanghai, China,

2009.

[Seuret 2011℄ A. Seuret. Stability analysis of networked 
ontrol systems with asyn
hronous sam-

pling and input delay. In Ameri
an Control Conferen
e, pages 533�538, San Fran
is
o,

California, USA, 2011.

[Seuret 2012℄ A. Seuret. A novel stability analysis of linear systems under asyn
hronous sam-

plings. Automati
a, vol. 48, no. 1, pages 177�182, 2012.

[Seuret 2013a℄ A. Seuret and F. Gouaisbaut. Wirtinger-based integral inequality: appli
ation to

time-delay systems. Automati
a, vol. 49, no. 9, pages 2860�2866, 2013.

[Seuret 2013b℄ A. Seuret, C. Prieur and N. Mar
hand. Stability of non-linear systems by means

of event-triggered sampling algorithms. IMA Journal of Mathemati
al Control and Infor-

mation, 2013.

[Seuret 2014℄ A. Seuret and F. Gouaisbaut. Complete Quadrati
 Lyapunov fun
tionals using

Bessel-Legendre inequality. In 13th European Control Conferen
e, Strasbourg, Fran
e,

2014.

[Shorten 2007℄ R. Shorten, F. Wirth, O. Mason, K. Wul� and C. King. Stability 
riteria for

swit
hed and hybrid systems. Invited paper for SIAM Review, vol. 49, no. 4, pages 545�

592, 2007.

[Sira-Ramirez 1994℄ H. Sira-Ramirez and M. Rios-Bolivar. Sliding mode 
ontrol of DC-to-DC

power 
onverters via extended linearization. IEEE Transa
tions on Cir
uits and Systems

I: Fundamental Theory and Appli
ations� vol. 41, no. 10, pages 652 �661, o
t 1994.

[Sira-Ramírez 2000℄ H. Sira-Ramírez. A Passivity plus Flatness Controller for Permanent Mag-

net Stepper Motor. vol. 2, no. 1, pages 1�9, 2000.

159



Bibliography

[Skaf 2009℄ J. Skaf and S. Boyd. Analysis and synthesis of state-feedba
k 
ontrollers with timing

jitter. IEEE Transa
tions on Automati
 Control, vol. 54, no. 3, pages 652�657, 2009.

[Skelton 1998℄ R.E. Skelton, T. Iwasaki and K. Grigoriadis. A Uni�ed Algebrai
 Approa
h to

Linear Control Design. Taylor & Fran
is Ltd, London, UK, 1998.

[Slotine 1991℄ J.J.E. Slotine and W. Li. Applied nonlinear 
ontrol, volume 199. Prenti
e hall

New Jersey, 1991.

[Sontag 1998℄ E.D. Sontag. Mathemati
al 
ontrol theory: deterministi
 �nite dimensional sys-

tems, volume 6. Springer, 1998.

[Stuart 1998℄ A. Stuart and A. Humphries. Dynami
al systems and numeri
al analysis, volume 2.

Cambridge University Press, 1998.

[Suh 2008℄ Y.S. Suh. Stability and stabilization of nonuniform sampling systems. Automati
a,

vol. 44, no. 12, pages 3222�3226, 2008.

[Sun 1993℄ W. Sun, K. M. Nagpal and P.P. Khargonekar. H∞ 
ontrol and �ltering for sampled-

data systems. IEEE Transa
tions on Automati
 Control, vol. 38, no. 8, pages 1162�1175,

1993.

[Suplin 2007℄ V. Suplin, E. Fridman and U. Shaked. Sampled-data H∞ 
ontrol and �ltering:

Nonuniform un
ertain sampling. Automati
a, vol. 43, no. 6, pages 1072�1083, 2007.

[Suplin 2009℄ V. Suplin, E. Fridman and U. Shaked. H∞ Sampled-data Control of Systems with

Time-delays. International Journal of Control, vol. 82, no. 2, pages 298�309, 2009.

[Tabuada 2007℄ P. Tabuada. Event-triggered real-time s
heduling of stabilizing 
ontrol tasks.

IEEE Transa
tions on Automati
 Control, vol. 52, no. 9, pages 1680�1685, 2007.

[Tadmor 1992℄ G. Tadmor. H∞ optimal sampled-data 
ontrol in 
ontinuous time systems. In-

ternational Journal of Control, vol. 56, no. 1, pages 99�141, 1992.

[Tarbourie
h 2009℄ S. Tarbourie
h, T.R. Calliero I. Queinne
 and P. L. D. Peres. Control design

for bilinear systems with a guaranteed region of stability: an LMI-based approa
h. In 17th

Mediterrenian Conferen
e on Control & Automation, Makedonia Pala
e, Thessaloniki,

Gree
e, 2009. IEEE.

[Tarbourie
h 2011℄ Sophie Tarbourie
h, Germain Gar
ia, João Manoel Gomes da Silva Jr and

Isabelle Queinne
. Stability and stabilization of linear systems with saturating a
tuators.

Springer S
ien
e & Business Media, 2011.

[Teel 1998a℄ A.R. Teel. Conne
tions between Razumikhin-type theorems and the ISS nonlinear

small gain theorem. IEEE Transa
tions on Automati
 Control, vol. 43, no. 7, pages

960�964, 1998.

[Teel 1998b℄ A.R. Teel, D. Ne²i¢ and P.V. Kokotovi¢. A note on input-to-state stability of

sampled-data nonlinear systems. In 37th IEEE Conferen
e on De
ision and Control,

volume 3, pages 2473�2478, Tampa, Florida, 1998.

[Tiberi 2013℄ U. Tiberi and K.H. Johansson. A simple self-triggered sampler for perturbed non-

linear systems. Nonlinear Analysis: Hybrid Systems, vol. 10, pages 126�140, 2013.

160



[Toivonen 1992a℄ H. T. Toivonen. Sampled-data 
ontrol of 
ontinuous-time systems with an H∞
optimality 
riterion. Automati
a, vol. 28, no. 1, pages 45�54, 1992.

[Toivonen 1992b℄ H. T. Toivonen. Sampled-data H∞ optimal 
ontrol of time-varying systems.

Automati
a, vol. 28, no. 4, pages 823�826, 1992.

[Tsypkin 1984℄ Y. Z. Tsypkin. Relay 
ontrol systems. Mos
ow: Nauka, 1984.

[Utkin 1992℄ V. Utkin. Sliding modes in 
ontrol optimization. Springer-Verlag, Berlin, 1992.

[Valmorbida 2013℄ G. Valmorbida, S. Tarbourie
h and G. Gar
ia. Design of polynomial 
on-

trol laws for polynomial systems subje
t to a
tuator saturation. IEEE Transa
tions on

Automati
 Control, vol. 58, no. 7, pages 1758�1770, 2013.

[van de Wouw 2012℄ N. van de Wouw, D. Ne²i¢ and W.P.M.H. Heemels. A dis
rete-time frame-

work for stability analysis of nonlinear networked 
ontrol systems. Automati
a, vol. 48,

no. 6, pages 1144�1153, 2012.

[van der S
haft 2000℄ A. van der S
haft and H. S
huma
her. An introdu
tion to hybrid dynam-

i
al systems. Springer, Berlin, 2000.

[Velas
o 2003℄ M. Velas
o, J. Fuertes and P. Marti. The self triggered task model for real-time


ontrol systems. In Work-in-Progress Session of the 24th IEEE Real-Time Systems Sym-

posium (RTSS03), volume 384, Can
un, Mexi
o, 2003.

[Velas
o 2009℄ M. Velas
o, P. Marti and E. Bini. On Lyapunov sampling for event-driven 
on-

trollers. In 48th IEEE Conferen
e on De
ision and Control, pages 6238�6243, Shanghai,

China, 2009.

[Veliov 1997℄ V. Veliov. On the time-dis
retization of 
ontrol systems. SIAM Journal on Control

and Optimization, vol. 35, no. 5, pages 1470�1486, 1997.

[VijaySekhar 2003℄ C. VijaySekhar and W.-M. Haddad. Exponentially Dissipative Nonlinear

Dynami
al Systems A Nonlinear Extension of Stri
t Positive Realness. Mathemati
al

Problems in Engineering, vol. 1, pages 25�45, 2003.

[Walsh 2001℄ G.C. Walsh, O. Beldiman and L.G. Bushnell. Asymptoti
 behavior of nonlinear

networked 
ontrol systems. IEEE Transa
tions on Automati
 Control, vol. 46, no. 7, pages

1093�1097, 2001.

[Wang 2008℄ X. Wang and M.-D. Lemmon. Event design in event-triggered feedba
k 
ontrol

systems. In 47th IEEE Conferen
e on De
ision and Control, pages 2105�2110, Can
un,

Mexi
o, 2008.

[Wang 2009℄ X. Wang and M.-D. Lemmon. Self-triggered feedba
k 
ontrol systems with �nite-

gain L2 stability. IEEE Transa
tions on Automati
 Control, vol. 54, no. 3, pages 452�467,

2009.

[Wang 2010℄ X. Wang and M.-D. Lemmon. Self-triggering under state-independent disturban
es.

IEEE Transa
tions on Automati
 Control, vol. 55, no. 6, pages 1494�1500, 2010.

161



Bibliography

[Wang 2015℄ B. Wang, B. Brogliato, V. A
ary, A. Boubakir and F. Plestan. Experimental 
om-

parisons between impli
it and expli
it implementations of dis
rete-time sliding mode 
on-

trollers: towards input and output 
hattering suppression. IEEE Transa
tions on Control

Systems Te
hnology, vol. 23, no. 5, pages 2071�2075, 2015.

[Wittenmark 1995℄ B. Wittenmark, J. Nilsson and M. Torngren. Timing problems in real-time


ontrol systems. In Ameri
an Control Conferen
e, pages 2000�2004, Seattle, Washington,

USA, 1995.

[Yamamoto 1994℄ Y. Yamamoto. A fun
tion spa
e approa
h to sampled data 
ontrol systems

and tra
king problems. IEEE Transa
tions on Automati
 Control, vol. 39, no. 4, pages

703�713, 1994.

[Ye 1998℄ H. Ye, A.N. Mi
hel and L. Hou. Stability theory for hybrid dynami
al systems. IEEE

Transa
tions on Automati
 Control, vol. 43, no. 4, pages 461�474, 1998.

[Yue 2013℄ D. Yue, E. Tian and Q.L. Han. A Delay System Method for Designing Event-Triggered

Controllers of Networked Control Systems. IEEE Transa
tions on Automati
 Control,

vol. 58, no. 2, pages 475�481, 2013.

[Za

arian 2002℄ L. Za

arian and A. Teel. A 
ommon framework for anti-windup, bumpless

transfer and reliable designs. Automati
a, vol. 38, no. 10, pages 1735�1744, 2002.

[Za

arian 2011℄ L. Za

arian and A. Teel. Modern anti-windup synthesis: 
ontrol augmentation

for a
tuator saturation, 2011.

[Zames 1966℄ G. Zames. On the input-output stability of time-varying nonlinear feedba
k systems

part one: Conditions derived using 
on
epts of loop gain, 
oni
ity, and positivity. IEEE

Transa
tions on Automati
 Control, vol. 11, no. 2, pages 228�238, 1966.

[Zhang 2001a℄ W. Zhang. Stability analysis of networked 
ontrol systems. PhD thesis, Depart-

ment of Ele
tri
al Engineering and Computer S
ien
e, CASE Western Reserve University,

USA, 2001.

[Zhang 2001b℄ W. Zhang and M.S. Brani
ky. Stability of networked 
ontrol systems with time-

varying transmission period. In 39th Annual Allerton Conferen
e On Communi
ation

Control And Computing, volume 39, pages 1205�1214, Monti
ello, Illinois, USA, 2001.

[Zhang 2001
℄ W. Zhang, M.S. Brani
ky and S.M. Phillips. Stability of networked 
ontrol sys-

tems. IEEE Control Systems Magazine, vol. 21, no. 1, pages 84�99, 2001.

[Zhang 2011℄ W.A. Zhang and L. Yu. BIBO stability and stabilization of networked 
ontrol

systems with short time-varying delays. International Journal of Robust and Nonlinear

Control, vol. 21, no. 3, pages 295�308, 2011.

[Zhou 1996℄ K. Zhou, J. C. Doyle and K. Glover. Robust and optimal 
ontrol, volume 40.

Prenti
e Hall Upper Saddle River, NJ, 1996.

162


	source: HDR de Laurentiu Hetel, Lille 1, 2017
	lien: doc.univ-lille1.fr
	d: © 2017 Tous droits réservés.


