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English summary

Let k be an algebraically closed field, let ∆ be a two-dimensional lattice poly-
gon and let f ∈ k[x±1, y±1] be a bivariate Laurent polynomial that is sup-
ported on ∆ and that is sufficiently generic. Let C be the algebraic curve over
k that is defined by f . In this manuscript we study connections between the
birational geometry of C and the combinatorics of ∆. The starting point of
this research topic is a theorem from 1893 due to Baker (improved in 1977
by Khovanskii) which states that the geometric genus of C equals the num-
ber of lattice points in the interior of ∆. Some other entries to the geometry-
combinatorics dictionary were added by Koelman in 1991 and by Kawaguchi
in 2012. The presented thesis gathers a number of recent research papers that
are devoted to extending this dictionary further, by providing combinatorial
interpretations for the gonality, the Clifford index, the Clifford dimension,
and the scrollar invariants associated to a gonality pencil. Under certain re-
strictions on ∆ we also give combinatorial interpretations for the canonical
graded Betti table and for the first scrollar Betti numbers. The last part of the
manuscript deals with a notion called “intrinsicness": given the many com-
binatorial features of ∆ that can be told from the abstract geometry of C, we
study to which extent it is possible to recover all of ∆.

Résumé en français

Soit k un corps algébriquement clos, soit ∆ un polygone entier deux-dimen-
sionnel et soit f ∈ k[x±1, y±1] un polynôme de Laurent bivarié qui est sup-
porté sur ∆ et qui est suffisamment générique. Soit C la courbe algébrique
sur k définie par f . Dans ce manuscrit, nous étudions les connexions entre
la géométrie birationnelle de C et la combinatoire de ∆. Le point de départ
de ce sujet de recherche est un théorème de 1893 dû à Baker (amélioré en
1977 par Khovanskii) qui dit que le genre géométrique de C est égal au nom-
bre de points entiers à l’intérieur de ∆. Quelques autres entrées au diction-
naire géométrie-combinatoire ont été ajoutées par Koelman en 1991 et par
Kawaguchi en 2012. La thèse présentée rassemble un nombre de travaux
de recherche récents qui sont dédiés à étendre davantage ce dictionnaire,
en fournissant des interprétations combinatoires pour la gonalité, l’indice de
Clifford, la dimension de Clifford, et les invariants scrollaires associés à un
pinceau qui réalise la gonalité. Sous certaines restrictions sur ∆, nous four-
nissons également des interprétations pour le tableau de Betti canonique et
pour les premiers nombres de Betti scrollaires. La dernière partie du manuscrit
traite d’une notion que l’on appelle “intrinsèqualité” : étant donné les nom-
breuses caractéristiques combinatoires de ∆ qui peuvent être prédites en con-
sidérant la géométrie abstraite de C, nous étudions dans quelle mesure il est
possible de récupérer ∆ complètement.
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EXTENDED PREFACE TO:

Smooth curves in toric surfaces
(Les courbes lisses dans les surfaces toriques)

by Wouter CASTRYCK

Let k be an algebraically closed field and let

f =
∑

(i,j)∈Z2

cijx
iyj ∈ k[x±1, y±1]

be an irreducible bivariate Laurent polynomial, defining a curveUf inside the two-dimen-
sional torus T2 := (k∗)2 = A2 \ coordinate axes. This manuscript is devoted to con-
nections between the birational geometry of Uf and the combinatorics of the Newton
polygon

∆(f) = conv{ (i, j) ∈ Z2 | cij 6= 0 } ⊆ R2

(assumed to be two-dimensional) of f . The earliest such connection is surprisingly old,
dating back to 1893, when Baker observed [Bak93] that the geometric genus of Uf is
bounded by the number of lattice points (= Z2-valued points) in the interior of ∆(f). In
the 1970s, after toric geometry had made its appearance, a more satisfactory proof was
given by Khovanskii [Kho77], who moreover showed that Baker’s bound is generically
met. Recently developed tools such as tropical geometry and Berkovich theory concep-
tualized this remarkable result further, although these topics will not be addressed here.

A well-known generically satisfied condition which is sufficient for meeting Baker’s
bound [CDV06, Prop. 1] is that f is nondegenerate with respect to its Newton polygon,
meaning that for all faces τ ⊆ ∆(f) of any dimension (i.e. vertices, edges and ∆(f) itself),
the system of equations

fτ = x
∂fτ
∂x

= y
∂fτ
∂y

= 0 with fτ =
∑

(i,j)∈τ∩Z2

cijx
iyj

has no solutions in T2. For ∆ a lattice polygon (= the convex hull in R2 of finitely many
points in Z2) we say that f is ∆-nondegenerate if it is nondegenerate with respect to its
Newton polygon and ∆(f) = ∆. In general, the condition of nondegeneracy is not strictly
needed for meeting Baker’s bound, which leads to the following slight and seemingly
bland relaxation:

Definition 1. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be irreducible.
We say that f is weakly ∆-nondegenerate if

• ∆(f) ⊆ ∆ and for each edge τ ⊆ ∆ one has ∆(f) 6⊆ ∆ \ τ ,

• the genus of Uf equals the number of lattice points in the interior of ∆.
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Weak nondegeneracy is the assumption underlying most of the results presented in this
manuscript. Besides being (slightly) weaker than nondegeneracy and thereby leading to
stronger statements, the notion allows for more combinatorial freedom, in the sense that
a weakly ∆-nondegenerate Laurent polynomial might also be weakly ∆′-nondegenerate
for some other (potentially easier) lattice polygon ∆′, which has important proof-technical
advantages. This freedom does not apply to ∆(1), the convex hull of the lattice points in
the interior of ∆, which is fixed and in fact turns out to play a more important role than
∆ itself.

Well-known examples. Familiar examples include the Weierstrass polynomials f = y2 −
h(x), where char k 6= 2 and h(x) ∈ k[x] is squarefree of degree 2g + 1 for some integer
g ≥ 1: these are weakly ∆2g+1,2-nondegenerate. Other examples are the dehomogeniza-

(0, 0) (2g + 1, 0)

(0, 2)

∆2g+1,2

(0, 0) (d, 0)

(0, d)

dΣ
g interior lattice points

(d−1)(d−2)
2 interior lattice points

tions f ∈ k[x, y] with respect to z of the homogeneous degree d ≥ 1 forms F ∈ k[x, y, z]
that define a smooth curve in P2: such polynomials are weakly dΣ-nondegenerate. In
both cases the reader sees that Baker’s bound confirms the well-known formula for the
genus.

Remark. More generally for a, b ∈ Z≥1 we use ∆a,b to denote conv{(0, 0), (a, 0), (0, b)}. If
gcd(a, b) = 1 then the corresponding curves are said to be Ca,b; this notion was intro-
duced by Miura in the context of coding theory [Miu93].

More examples. Other recurring examples are weakly dΥ-nondegenerate Laurent poly-
nomials and weakly �a,b-nondegenerate Laurent polynomials, where d, a, b ≥ 1, which

(−d,−d)

(d, 0)

(0, d)

dΥ

(0, 0) (a, 0)

(a, b)(0, b)

�a,b

(−d,−d)

define curves of genus 3
2d

2 − 3
2d+ 1 and (a− 1)(b− 1), respectively.

For an irreducible (not necessarily smooth or complete) algebraic curve C/k and a
two-dimensional lattice polygon ∆, we say that C is weakly ∆-nondegenerate if it is
birationally equivalent to Uf for some weakly ∆-nondegenerate Laurent polynomial f ∈
k[x±1, y±1] — similarly we say that C is ∆-nondegenerate if f can moreover be taken
∆-nondegenerate.

The presented work groups together a number of research papers that are devoted to
connections between the birational geometry of such a weakly ∆-nondegenerate curve
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C and the combinatorics of ∆. Their joint goal is to extend the geometry-combinatorics
dictionary that started with Baker’s formula for the genus, although we stress that sev-
eral entries remain to be added and/or enhanced by future researchers. For reasons of
coauthorship and efficiency I have left the papers in their original shape, even though
when put together the treatment is not entirely uniform: some statements assume non-
degeneracy rather than weak nondegeneracy, while others are presented subject to the
condition that the base field k is of characteristic 0. One source for this non-uniformity is
that the material has matured over time, with some insights postdating the publication
of the earliest papers. Another cause is that several important references assume that
char k = 0 or even k = C, and unfortunately I was not able to sift each of these to the
bottom to verify the need for this (possibly often unneeded) assumption.

In view of these considerations, the goal of this preface is not only to give an overview
of the results obtained, but also to update the exposition: in the text below, all main re-
sults are stated under the weak nondegeneracy assumption, which is always sufficient,
and certain characteristic zero statements have been reformulated in arbitrary character-
istic, along with some lines of explanation why this is allowed.

Remark on terminology. Unfortunately the non-uniformity also affects the terminology of
being weakly ∆-nondegenerate, for which a.o. in Chapters 5 and 11 the phrasing ∆-toric is
used.

Contents. Concretely, the following papers are included in this HDR thesis:

• Chapter 1: On nondegeneracy of curves, Algebra & Number Theory 3(3), pp. 255-281
(2009), written jointly with John Voight

• Chapter 2: Moving out the edges of a lattice polygon, Discrete and Computational
Geometry 47(3), pp. 496-518 (2012)

• Chapter 3: The lattice size of a lattice polygon, Journal of Combinatorial Theory, Series
A 136, pp. 64-95 (2015), written jointly with Filip Cools

• Chapter 4: A minimal set of generators for the canonical ideal of a non-degenerate curve,
Journal of the Australian Mathematical Society 98(3), pp. 311-323 (2015), written
jointly with Filip Cools

• Chapter 5: Linear pencils encoded in the Newton polygon, to appear in International
Mathematics Research Notices (2017), written jointly with Filip Cools

• Chapter 6: Computing graded Betti tables of toric surfaces, preprint, written jointly
with Filip Cools, Jeroen Demeyer and Alexander Lemmens

• Chapter 7: A lower bound for the gonality conjecture, preprint

• Chapter 8: On graded Betti tables of curves in toric surfaces, preprint, written jointly
with Filip Cools, Jeroen Demeyer and Alexander Lemmens

• Chapter 9: A combinatorial interpretation for Schreyer’s tetragonal invariants, Docu-
menta Mathematica 20, pp. 903-918 (2015), written jointly with Filip Cools

• Chapter 10: Intrinsicness of the Newton polygon for smooth curves on P1×P1, to appear
in Revista Matemática Complutense, written jointly with Filip Cools

• Chapter 11: Curves in characteristic 2 with non-trivial 2-torsion, Advances in Math-
ematics of Communications 8(4), pp. 479-495 (2014), written jointly with Marco
Streng and Damiano Testa
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I have also made these chapters, as well as the current preface, available in electronic
form on http://math.univ-lille1.fr/~castryck/HDR/.

Acknowledgements. My Ph.D. thesis was on the development of a Kedlaya-style algorithm
for computing Hasse-Weil zeta functions of nondegenerate curves over finite fields of
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our algorithm applies, a problem which I attacked together with John Voight. Later the
research diverged in the direction of linear systems on smooth curves in toric surfaces,
sparked by connections with tropical geometry [Bak08; CC12] and by recent work of
Kawaguchi [Kaw16]; here, most of the results were obtained in collaboration with Filip
Cools. I would like to thank John and Filip, and also my other coauthors Jeroen Demeyer,
Alexander Lemmens, Marco Streng and Damiano Testa for the fruitful collaboration. My
hope is that our work turns out useful for future algebraic geometers in verifying hy-
potheses and proving existence results, and as such contributes to Fulton’s qualification
of toric geometry as a remarkably fertile testing ground for general theories [Ful93, Pref.].
Finally I would like to express my gratitude to my garant Raf Cluckers, for his stimulat-
ing and genuinely positive attitude, to Pierre Dèbes, Anne Moreau, Sam Payne, Josef
Schicho and Frank-Olaf Schreyer for willing to be part of the jury, and to my parents,
sister, brother in law, niece, and other family and friends, for their continuous support
and for the moments of much-welcomed relaxation.

1. Weakly nondegenerate curves as smooth curves in toric surfaces
(Chapters 4 and 5)

To every two-dimensional lattice polygon ∆ one can associate a projectively embedded
toric surface X∆ over k, obtained by taking the Zariski closure of the image of

ϕ∆ : T2 ↪→ P#(∆∩Z2)−1 : (x, y) 7→ (xiyj)(i,j)∈∆∩Z2 .

If f ∈ k[x±1, y±1] is weakly ∆-nondegenerate then ϕ∆(Uf ) closes along with ϕ∆(T2) to
the smooth hyperplane section

∑

(i,j)∈∆∩Z2

cijXi,j = 0

of X∆, where Xi,j denotes the projective coordinate corresponding to the lattice point
(i, j). Thus, weakly ∆-nondegenerate Laurent polynomials f allow for an explicit smooth
complete model of Uf , which we denote by Cf .

Remark. Informally one can think of a weakly ∆-nondegenerate Laurent polynomial f
as defining a smooth curve in T2, the singularities of whose planar completion are ‘no
worse’ than what ∆ prescribes and that therefore can be resolved using toric geometry.

When viewed as a divisor on X∆ the curve Cf is Cartier and very ample. From the
theory of toric varieties [CLS11; Ful93] it follows that Cf is linearly equivalent to a torus-
invariant divisorD, to which one can naturally associate a polygon PD ⊆ R2. It turns out
that this polygon is precisely ∆, modulo translation over an element of Z2 that depends

http://math.univ-lille1.fr/~castryck/HDR/
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on the specific choice of D; this issue will be ignored from now on. Conversely consider
a smooth complete Cartier curve C on a toric surface X ⊇ T2, where to avoid certain
pathologies we assume that C is non-rational. Consider a torus-invariant divisor D ∼ C
and let PD ⊆ R2 be the associated polygon. Then this is automatically a two-dimensional
lattice polygon andC∩T2 is defined by a weakly PD-nondegenerate Laurent polynomial
f ∈ k[x±1, y±1].

In this sense weak nondegeneracy is a geometrically more pleasing notion than non-
degeneracy, which on top of smoothness requires that the curve intersects toric infinity
X \T2 transversally. For instance while dΣ-nondegenerate Laurent polynomials merely

nondegenerate
but not nondegenerate

weakly nondegenerate
but not nondegenerate

correspond to smooth degree d curves in P2, dΣ-nondegeneracy moreover forces the
curve not to pass through the coordinate points and to be non-tangent to the coordi-
nate axes. On the other hand every weakly dΣ-nondegenerate curve (i.e. when consid-
ered modulo birational equivalence) is also dΣ-nondegenerate because using an auto-
morphism of P2 one can enforce appropriate intersection behaviour with the coordinate
axes. This trick does not always work: there exist two-dimensional lattice polygons ∆
along with weakly ∆-nondegenerate curves that are genuinely non-∆-nondegenerate.
An example is given in Chapter 5.

Remark on the non-Cartier case. Let C be a smooth complete non-rational curve on a toric
surface X ⊇ T2 which is not necessarily Cartier. Let D be a linearly equivalent torus-
invariant divisor. Then PD need not be a lattice polygon, which complicates matters
slightly. Nevertheless C is weakly nondegenerate, as one can show that C∩T2 is defined
by a weakly conv(PD ∩ Z2)-nondegenerate Laurent polynomial.

Khovanskii’s proof of Baker’s formula for the genus g(Uf ) essentially amounts to an
application of the adjunction formula to the inclusion Cf ⊆ X∆, in combination with
a well-known combinatorial interpretation for the Riemann-Roch space associated to a
torus-invariant divisor D (the statement involves the polygon PD). In fact this yields
much finer information than merely g(Uf ) = g(Cf ) = #(∆(1) ∩ Z2): it entails an explicit
canonical divisor K∆ on Cf that satisfies

H0(Cf ,K∆) = 〈xiyj〉(i,j)∈∆(1)∩Z2 ,

where x, y are viewed as functions on Cf through ϕ∆. This leads to the following classi-
fication based on dim ∆(1):

(i) Cf is rational if and only if ∆(1) = ∅.
(ii) Cf is elliptic if and only if dim ∆(1) = 0.
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(iii) Cf is hyperelliptic if and only if dim ∆(1) = 1.

(iv) If dim ∆(1) = 2 then the canonical embedding ‘factors’ through ϕ∆(1) and therefore
the canonical image Ccan

f is contained in the toric surface

X∆(1) ⊆ P#(∆(1)∩Z2)−1.

Even though these four claims are easy consequences of Khovanskii’s proof method, as
far as we know, prior to our articles the only explicit mention of the last two statements
can be found in Koelman’s (otherwise unpublished) Ph.D. thesis see [Koe91, Lem. 3.1.3
and Lem. 3.2.9] and are therefore not well-known. We hope that our work helps to pub-
licize these interesting facts.

Chapters 4 and 5 contain a number of new accompanying facts, one of which is the
following geometric interpretation in case (iv) of ∆max, the maximal polygon with respect
to inclusion whose interior polygon equals ∆(1) — from a combinatorial perspective the
existence of such a maximum was observed by Koelman [Koe91, §2.2] and rediscovered
by Haase and Schicho [HS09] (see also the next section).

Lemma 2. If in case (iv) one considers a torus-invariant divisor on X∆(1) that is linearly equiv-
alent to Ccan

f , then its associated polygon equals ∆max.

Another contribution is an explicit minimal set of generators for the ideal I(Ccan
f ) of Ccan

f ,
again in case (iv). These are obtained by starting from a minimal set of generators for the
ideal of X∆(1) , consisting of

(
g − 1

2

)
− 2 vol(∆(1)) quadrics and

{
0 if ∆(1) 6∼= Υ

1 if ∆(1) ∼= Υ
cubics

(here ∼= denotes unimodular equivalence). Extending this to a minimal set of generators
for the canonical ideal of Cf can be done following a so-called rolling factors recipe. This
amounts to adding





1 quartic if ∆(1) ∼= Σ,
g − 3 cubics if ∆(2) = ∅ but ∆(1) 6∼= Σ,
#(∆(2) ∩ Z2) quadrics if ∆(2) 6= ∅

(where ∆(2) abbreviates ∆(1)(1)). For instance in the last case the quadrics are

Qw =
∑

(i,j)∈∆∩Z2

cijXuijXvij ∈ k[Xi,j | (i, j) ∈ ∆(1) ∩ Z2 ]

where w runs through ∆(2) ∩ Z2 and uij , vij are chosen such that (i, j)− w = (uij − w) +
(vij − w). For more details we refer to Chapter 4. We have implemented the resulting
algorithm in Magma [BCP97], allowing for a quick computation of a minimal set of gen-
erators for the canonical ideal of any concretely given weakly nondegenerate curve of
genus up to about 100. For general curves within this range this is currently an infeasible
task.

2. The combinatorics of lattice polygons (Chapters 2, 3 and 5)

Even though there is always some toric geometric motivation in the background, sev-
eral parts of the presented chapters are purely combinatorial. Mostly these parts are
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concerned with the question of how the operation ∆ 7→ ∆(1) affects certain combinatorial
invariants, i.e. quantities that do not change when applying a unimodular transformation.

One example of such a combinatorial invariant is the number of lattice points on the
boundary, in which case the question amounts to relating #(∂∆∩Z2) to #(∂∆(1)∩Z2). An
answer was obtained through a beautiful application of Poonen and Rodrigues-Villegas’
12 theorem, by Haase and Schicho [HS09], from whom we have copied the superscript
notation (1). We omit a detailed statement. Indirectly their work also treats the number of
lattice points in the interior #(∆◦∩Z2) = #(∆(1)∩Z2), which in view of Baker’s theorem
is called the genus. An important property of the genus is given by the following result:

Lemma 3. Up to unimodular equivalence the number of lattice polygons having a given genus
g ≥ 1 is finite.

See e.g. [LZ91]. An alternative proof can be found in Chapter 2.
For our needs, besides the genus the most important combinatorial invariant is the

lattice width, which is defined as follows. For each primitive vector v = (a, b) ∈ Z2

define the width w(∆, v) to be the smallest integer d for which there exists an m ∈ Z such
that

m ≤ aj − bi ≤ m+ d for all (i, j) ∈ ∆, (1)

as illustrated below. This definition assumes that ∆ is a non-empty lattice polygon; one

...

∆

v

m
m+ 1

m+ d

lets w(∅, v) = −1. The lattice width lw(∆) is then defined as minv w(∆, v). Alternatively,
if ∆ 6= ∅ then lw(∆) is the minimal height d ∈ Z≥0 of a horizontal strip R× [0, d] in which
∆ can be mapped using a unimodular transformation. The question of relating lw(∆) to
lw(∆(1)) has the following surprisingly simple answer: if ∆ is two-dimensional then

lw(∆) =

{
lw(∆(1)) + 3 if ∆ ∼= dΣ for some d ≥ 2,
lw(∆(1)) + 2 if not.

(2)

Note that this allows one to compute lw(∆) recursively; we have implemented this in
Magma.

Remark. This implies that lw(∆) = lw(∆max) whenever ∆(1) is two-dimensional, except
possibly if ∆max ∼= dΣ for some d ≥ 4.

A proof of the recursive formula (2) can be found in the paper [CC12], which is not
considered part of this thesis because independently a more complete result, discussing
the concrete primitive vectors v for which lw(∆) = w(∆, v), was obtained by Lubbes
and Schicho [LS11, Thm. 13]. Note that such vectors always arise in pairs ±v. One can
prove [DMN12] that the number of pairs realizing the lattice width is at most 4 as soon
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as ∆ is two-dimensional. These and some accompanying properties are reported upon in
more detail in Chapter 5, which also includes a number of new facts and introduces the
following refined quantity.

Definition 4. The multi-set of width invariants of a lattice polygon ∆ with non-empty interior
associated to a primitive v ∈ Z2 is defined as

E(∆, v) =
{
−1 + #{ (i, j) ∈ ∆(1) ∩ Z2 | aj − bi = m+ ` }

∣∣∣ ` = 1, . . . , d− 1
}
,

where m, d ∈ Z are the values from (1). (Its cardinality is w(∆, v)− 1, counting multiplicities.)

Using a unimodular transformation if needed one can always assume that v = (1, 0)
and ∆ ⊆ R × [0, w(∆, v)]. In this setting the width invariants are given by the multi-set
{Ej}j=1,...,w(∆,v)−1, with Ej the number of lattice points minus one that are contained in
∆(1) at height j.

Example. Consider dΣ for some d ≥ 3. Then lw(dΣ) = d and there are three pairs of
primitive vectors realizing the lattice width, namely ±(1, 0),±(0, 1),±(1,−1). For each
of these vectors v the multi-set E(dΣ, v) of width invariants equals {−1, 0, 1, 2, . . . , d −
4, d − 3}. On the other hand one verifies that w(dΣ, (1, 1)) = 2d and E(dΣ, (1, 1)) =

w(dΣ, (1, 0)) = d w(dΣ, (1, 1)) = 2d

{−14, 04, 14, 24, . . . , b(d − 4)/2c4, b(d − 2)/2cε}, where the superscripts denote the multi-
plicities and ε = 1 or 3, depending on whether d is odd or even, respectively.

Note that the width invariants are elements of Z≥−1. In Chapter 5 it is shown that if v
realizes the lattice width and ∆ 6∼= dΣ for any d ≥ 3, then the width invariants associated
to v are all non-negative.

Chapter 3 introduces the following generalization of the lattice width:

Definition 5. The lattice size lsX(∆) of a non-empty lattice polygon ∆ with respect to a given
set X ⊆ R2 having positive Jordan measure is defined as the minimal d ∈ Z≥0 such that ∆ can
be mapped inside dX by means of a unimodular transformation.

For X = R× [0, 1] one recovers the lattice width. The chapter focuses entirely on X = Σ
and X = � := �1,1. In order to state our main results relating lsX(∆) to lsX(∆(1)) it is
convenient to define lsΣ(∅) = −2 and ls�(∅) = −1.

Theorem 6. Let ∆ be a two-dimensional lattice polygon. Then lsΣ(∆) = lsΣ(∆(1)) + 3, except
in the following situations:

• ∆ ∼= conv{(0, 0), (a, 0), (b, 1), (0, 1)} where a = b = 1 or 2 ≤ a ≥ b ≥ 0, in which case
ls�(∆(1)) = −2 while

lsΣ(∆) =

{
a+ 1 if a = b
a if a > b.
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• ∆ ∼= 2Σ in which case lsΣ(∆(1)) = −2 while lsΣ(∆) = 2.

• ∆ ∼= ∆4,2 in which case lsΣ(∆(1)) = 0 while lsΣ(∆) = 4.

• ∆ ∼= �a,b for a, b ≥ 2, in which case lsΣ(∆(1)) = a+ b− 4 while lsΣ(∆) = a+ b.

• There exist parallel edges τ ⊆ ∆ and τ ′ ⊆ ∆(1) whose supporting lines are at integral
distance 1 of each other, such that

#(τ ∩ Z2)−#(τ ′ ∩ Z2) ≥ 4,

in which case lsΣ(∆(1)) = #(τ ′ ∩ Z2) and lsΣ(∆) = #(τ ∩ Z2).

As in the case of the lattice width, this result can be converted into a recursive algorithm
for computing lsΣ(∆) in practice, which we have again implemented in Magma. From the

unimodular
transformation

ϕ

∆

(Illustration of lsΣ(∆).)
ϕ(∆)

dΣ

proof of the foregoing theorem one sees that Schicho’s algorithm for simplifying rational
surface parametrizations [Sch03a] works optimally.

Theorem 7. Let ∆ be a two-dimensional lattice polygon. Then ls�(∆) = ls�(∆(1)) + 2, except
in the following situations:

• ∆ ∼= conv{(0, 0), (a, 0), (b, 1), (0, 1)} where 2 ≤ a ≥ b ≥ 0, in which case ls�(∆(1)) =
−1 while ls�(∆) = a.

• ∆ ∼= 2Σ in which case ls�(∆(1)) = −1 while ls�(∆) = 2.

• ∆ ∼= 3Σ, ∆3,2, conv{(0, 0), (3, 0), (2, 1)(0, 2)} or conv{(0, 0), (3, 0), (1, 2), (0, 2)} in which
case ls�(∆(1)) = 0 while ls�(∆) = 3.

• ∆ ∼= ∆4,2 in which case ls�(∆(1)) = 0 while ls�(∆) = 4.

• There exist parallel edges τ ⊆ ∆ and τ ′ ⊆ ∆(1) whose supporting lines are at integral
distance 1 of each other, such that

#(τ ∩ Z2)−#(τ ′ ∩ Z2) ≥ 3,

in which case ls�(∆(1)) = #(τ ′ ∩ Z2) and ls�(∆) = #(τ ∩ Z2).

Again the resulting recursive method has been implemented in Magma. The proof of
the foregoing theorem has a remarkable byproduct: it turns out that the unimodular
transformation mapping ∆ inside ls�(∆) · � can be chosen such that it also maps inside
R× [0, lw(∆)]. As a consequence:

Corollary 8. For each non-empty lattice polygon ∆ the set
{

(a, b) ∈ Z2
≥0

∣∣ a ≤ b and ∃∆′ ∼= ∆ with ∆′ ⊆ [0, a]× [0, b]
}

has a minimum with respect to the product order on Z≥0 × Z≥0, namely (lw(∆), ls�(∆)).
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We conclude by stressing that the map ∆ 7→ ∆(1) is not surjective. In fact for a two-
dimensional lattice polygon Γ to be of the form ∆(1) for some larger lattice polygon ∆
is a rather restrictive property. The following criterion was proved by Haase and Schi-
cho [HS09]. Each edge τ ⊆ Γ lies on the boundary of a unique half-plane aτX + bτY ≤ cτ
containing Γ, where aτ , bτ , cτ ∈ Z are chosen to satisfy gcd(aτ , bτ ) = 1. Consider the
polygon

Γ(−1) =
⋂

τ

(half-plane aτX + bτY ≤ cτ + 1) ,

said to be obtained from Γ by moving out the edges. Then Γ = ∆(1) for some lattice
polygon ∆ if and only if Γ(−1) is a lattice polygon. If this is the case then one can simply
let ∆ = Γ(−1), and this is the maximal possible choice with respect to inclusion. In other
words if ∆ is a lattice polygon having a two-dimensional interior then ∆max = ∆(1)(−1).

For any lattice polygon ∆, a repeated application of ∆ 7→ ∆(1) eventually leads to
a lattice polygon whose interior is at most one-dimensional. Such polygons have been
classified explicitly by Koelman [Koe91, §4]. Conversely, starting from these basic cases
one can algorithmically produce all lattice polygons up to a given genus by repeatedly
applying ∆ 7→ ∆(−1), verifying Haase and Schicho’s criterion and making local tweaks
(clipping off vertices). The details can be found in Chapter 2, which comes along with
a Magma implementation by means of which we have produced a list containing ex-
actly one representative within each unimodular equivalence class of lattice polygons of
genus 1 ≤ g ≤ 30. This list is useful for testing hypotheses and detecting patterns; we
have mainly applied this to the study of syzygies of toric surfaces (and of smooth curves
therein) in Chapters 6 and 8. But there are also some purely combinatorial consequences
which seem interesting in their own right. For instance prior to our work the concrete
number of equivalence classes of lattice polygons of genus g ≥ 1 was unknown for g
as small as 3, even though asymptotically for g → ∞ it was shown to be O(exp(g1/3))
by Bárány [BT04]. Another consequence (albeit slightly indirect; see Chapter 2 for the
details) is:

Lemma 9. The minimal genus of a lattice 15-gon is 45.

This fills in the smallest open entry of a list whose study began with Arkinstall [Ark80].
Recently our data set was used to give tight bounds on the generalized Helly numbers of
Z2; see [Ave+15].

3. The number of moduli (Chapter 1)

The generic Laurent polynomial that is supported on a given two-dimensional lattice
polygon ∆ ⊆ R2 is ∆-nondegenerate, and weakly ∆-nondegenerate in particular. As a
consequence, if the man in the street would be asked to scribble down a random curve,
the outcome is likely to be weakly nondegenerate, and most curves that can be found in
the wild are indeed of this kind, including all hyperelliptic curves and smooth curves in
P2 as we have seen above, but also all trigonal curves, Ca,b curves, and several more well-
studied families. For a moment this might tempt one to conclude that the generic curve,
in the proper moduli-theoretic sense, is weakly non-degenerate. But a second thought
quickly reveals that this is far from true. Some obstructions are:

• The moduli spaceMg of curves of genus g is not unirational for g ≥ 22 [Far09].

• The gonality of a weakly ∆-nondegenerate genus g curve is bounded by lw(∆),
which is O(

√
g) by [FTM74], while the general curve has gonality b(g + 3)/2c by

Brill-Noether theory. This was recently elaborated in detail by Smith [Smi15] who
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proved that weakly nondegenerate curves cannot be Brill-Noether general from
g ≥ 7 onwards.

• The canonical ideal of a weakly nondegenerate curve contains (many) quadratic
binomials, i.e. quadrics of rank 3 or 4.

The latter obstruction seems best-suited for proving that a certain concretely given curve
C/k is not weakly nondegenerate.

In Chapter 1 we try to obtain a more precise understanding of which curves are
weakly nondegenerate. For curves of genus at most four, we prove:

Theorem 10. Every curve C/k of genus g ≤ 4 is weakly ∆-nondegenerate for exactly one choice
of ∆ among the lattice polygons listed below.

Σ ∆3,2 ∆5,2 ∆7,2

4Σ ∆9,2 ∆6,3 �3,3.

(The polygons referred to in the statement of Theorem 10.)

The theorem remains true upon replacement of ‘weakly ∆-nondegenerate’ by ‘∆-nonde-
generate’. Also, slightly modified versions hold over fields that are not necessarily alge-
braically closed. For instance over finite fields the theorem is true except when C is of
genus 4 and canonically embeds into an elliptic quadric in P3; see also [CV10].

The main result of Chapter 1 is a determination of the number of moduli of the family
of weakly nondegenerate curves, through a parameter count that builds on Haase and
Schicho’s aforementioned work [HS09] and a combinatorial description of the automor-
phism group of X∆ due to Bruns and Gubeladze [BG09]. For a two-dimensional lattice
polygon ∆, we denote by M∆ the Zariski closure of the locus inside Mg of all weakly
∆-nondegenerate curves; these spaces had already been introduced and studied by Koel-
man [Koe91, §2]. For each g ≥ 1 let

Mwnd
g =

⋃

∆ for which
](∆(1)∩Z2)=g

M∆,

which in view of Lemma 3 is a finite union because unimodularly equivalent lattice poly-
gons give rise to the same curves. We show:

Theorem 11. One has




dimMwnd
1 = 1,

dimMwnd
2 = 3,

dimMwnd
3 = 6,

dimMwnd
7 = 16,

dimMwnd
g = 2g + 1 if g ≥ 4 and g 6= 7.

In particular from genus five on the generic curve is not weakly nondegenerate (let alone
nondegenerate). For g ≥ 4 a top-dimensional subvariety ofMwnd

g is given by the trigonal
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locusMtri
g , except when g = 7, where the trigonal curves are beaten by the trinodal plane

sextics. Recently Brodsky, Joswig, Morrison and Sturmfels used a similar approach to
obtain the same moduli count for tropical plane curves [Bro+15].

4. Gonality, Clifford index, and related invariants (Chapters 3 and 5)

This section adds a number of entries to the geometry-combinatorics dictionary for weak-
ly nondegenerate curves, related to linear systems. The main reference for the results
presented below is Chapter 5. The most important new entry is the gonality, which is
defined as the minimal possible degree of a non-constant rational map to P1:

Theorem 12. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a weakly ∆-
nondegenerate Laurent polynomial. Then the gonality ofUf equals lw(∆(1))+2, unless ∆(1) ∼= Υ
in which case it is lw(∆(1)) + 1.

This theorem arises as a consequence of a stronger result. Let f be a weakly ∆-nondegene-
rate Laurent polynomial and let v = (a, b) ∈ Z2 be a primitive vector. We define the com-
binatorial pencil gv on Cf associated to v as the trace of the linear system on X∆ swept
out by T2 → T1 : (x, y) 7→ xayb. Notice that gv = g−v is of degree w(∆, v), in other words
it concerns a g1

w(∆,v).

Remark. In almost all cases gv equals the basepoint free pencil associated to the map
Uf → T1 : (x, y) 7→ xayb. However when ∆(f) ( ∆, in certain cases this needs to be
extended by basepoints.

Our strengthening of Theorem 12 reads as follows:

Theorem 13. Let ∆ be a two-dimensional lattice polygon such that ∆(1) is not unimodularly
equivalent to any of the following:

∅, (d− 3)Σ (for some d ≥ 3), Υ, 2Υ, Γ5
1, Γ5

2, Γ5
3.

If char k > 0 then we also exclude Γ12. Let f ∈ k[x±1, y±1] be a weakly ∆-nondegenerate Laurent
polynomial. Then every linear pencil on Cf which realizes the gonality is combinatorial.

(0,−1)

(1, 0)

(0, 1)

(−1, 0) Γ5
1

(0,−1) (1,−1)

(0, 1)

(−1, 0) Γ5
2

(1,−1)

(0, 1)

(−1,−1)

Γ5
3

(Polygons excluded in the statement of Theorem 13, corresponding to curves of genus 5.)

One byproduct of the above theorem is that besides the gonality itself, one also knows the
number of gonality pencils by merely looking at the Newton polygon, except possibly
when ∆(1) ∼= Υ in which case Uf is always tetragonal but the number of gonality pencils
depends on the concrete choice of f (it is either 1 or 2), and except possibly when char k >
0 and ∆(1) ∼= Γ12 where the situation is not fully understood. If ∆(1) = ∅ then there is a
unique gonality pencil. In the other exceptional cases ∆(1) ∼= (d− 3)Σ, 2Υ,Γ5

i the number
of gonality pencils can be shown to be infinite.

Our main proof ingredient is a result due to Serrano [Ser87] which given a curve C
inside some surface X , provides sufficient conditions under which a morphism C → P1
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(−1, 0)

(−1, 1)

(0, 3)

(3,−1)
(2,−1)

(1, 2)

Γ12

(Polygon excluded by Theorem 13 in positive characteristic, corresponding to curves of genus 12.)

can be extended to a morphism X → P1. We stress that this approach, and as a matter
of fact the entire statement of Theorem 13, is due to Kawaguchi [Kaw16], modulo two
relaxations:

• Kawaguchi made the technical assumption that Uf is not birationally equivalent to
a smooth plane curve of degree d ≥ 5. We got rid of this condition, essentially by
invoking the formula (2) at the proof step where this assumption was used.

• Both Kawaguchi and we proved these statements subject to char k = 0. However
one can obtain the same results in positive characteristic by using [Ser87, Rmk. 3.12]
and the fact that every morphism Cf → P1 decomposes into a purely inseparable
part and a separable part

Cf → CFrob
f → P1,

along with the observation that Frobenius preserves weak nondegeneracy. This
approach does not work when ∆(1) ∼= Γ12, in which case the extra condition men-
tioned in [Ser87, Rmk. 3.12] is violated. Therefore Γ12 pops up as a new exception,
although this may well be just a proof artefact (unlike the other exclusions, which
are really needed). More details will be included in the forthcoming version of [CT].

In addition, our database of polygons having small genus allowed us to skip a large and
combinatorially tedious part of Kawaguchi’s proof.

Using the same techniques we can deduce an analogous result for near-gonal pencils,
by which we mean base-point free linear pencils of degree γ + 1, where γ is the gonality
of Uf :

Theorem 14. Let ∆ be a two-dimensional lattice polygon such that

lsΣ(∆(1)) ≥ lw(∆(1)) + 2

and such that ∆(1) 6∼= 2Υ, 3Υ,Γ7,Γ8. If char k > 0 then we also exclude Γ10. Let f ∈ k[x±1, y±1]
be a weakly ∆-nondegenerate Laurent polynomial. Then every near-gonal pencil on Cf is combi-
natorial.

Again the exclusion of Γ10 might be a proof artefact; as explained in Chapter 5 the other
exclusions are necessary. Also, one can verify that the list of excluded polygons is a strict
extension of its counterpart from Theorem 13.

In principle it should be possible to obtain similar statements for basepoint free g1
γ+n’s

with n = 2, 3, . . ., but we expect the proof to become increasingly case-distinctive and the
number of excluded polygons to grow. Nevertheless for small n it might be worth the try,
in order to gain some feeling on how dimW 1

γ+n can grow with n, a question which has
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(0,−1)

(2, 0)

(0, 1) (1, 1)

(−1,−1)

Γ7

(0,−1)

(3, 0)

(0, 1) (1, 1)

(−1,−1)

Γ8

(Polygons excluded in the statement of Theorem 14, corresponding to curves of genus 7 and 8.)

(−2, 0)

(0, 2)

(2,−1)
(1,−1)

(1, 1)

Γ10

(Polygon excluded by Theorem 14 in positive characteristic, corresponding to curves of genus 10.)

sparked much interest in view of connections with Green’s canonical syzygy conjecture,
through Aprodu’s linear growth condition [Apr05].

Another entry to the dictionary is given by the scrollar invariants associated to a com-
binatorial pencil (e.g. any gonality pencil in the case of a polygon that is non-exceptional
for Theorem 13). The scrollar invariants associated to a linear pencil g1

d on a non-hyper-
elliptic genus g curve C/k are defined as follows. View the g1

d as a 1-dimensional family
of effective divisors D on the canonical model Ccan

f ⊆ Pg−1 and let S ⊆ Pg−1 be the ruled
variety obtained by taking the union of all linear spans 〈D〉. A theorem by Eisenbud and
Harris [EH87, Thm. 2] states that S is a rational normal scroll. The scrollar invariants
associated to g1

d are defined as the multi-set of invariants (= the degrees of the spanning
rational normal curves) of this scroll. If our g1

d is complete and basepoint free then the
〈D〉’s are planes of dimension d− 2, and S is of dimension d− 1. In this case the scrollar
invariants 0 ≤ e0 ≤ e1 ≤ . . . ≤ ed−1 satisfy ed−1 ≤ (2g − 2)/d.

Theorem 15. Let ∆ be a lattice polygon such that ∆(1) is two-dimensional. Let v ∈ Z2 be a
primitive vector and let f ∈ k[x±1, y±1] be a weakly ∆-nondegenerate Laurent polynomial. Then
the multi-set of scrollar invariants of Cf with respect to gv equals the multi-set of non-negative
width invariants of ∆ with respect to v.

The proof can be found in Chapter 5 and has the following corollary:

Corollary 16. The rank of the complete linear system spanned by gv equals the number of negative
width invariants (counting multiplicities) plus one. In particular gv is complete if and only if all
width invariants are non-negative.

Example. Consider dΣ for some d ≥ 4 along with the primitive vector v = (1, 0). Recall
from Section 2 that E(dΣ, v) = {−1, 0, 1, 2, . . . , d− 3}. By Theorem 15 the scrollar invari-
ants associated to g(1,0) are {0, 1, 2, . . . , d − 3}. By Corollary 16 our g(1,0) is a subsystem
of a g2

d, hence it is not complete. But this just confirms a well-known fact, because Cf is a
smooth projective degree d curve in P2 and g(1,0) is cut out by the pencil of lines through
a fixed point outside the curve. By varying the point one obtains the g2

d.

Example (Maroni invariants). Consider a lattice polygon ∆ with lw(∆) = 3 and ∆ 6∼= 3Σ.
Then up to unimodular equivalence ∆(1) is of the form below, for certain integers 1 ≤
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(a, 0)

(b, 1)(0, 1)

(0, 0)

∆(1)

a ≥ b ≥ 0. Notice that weakly ∆-nondegenerate Laurent polynomials f ∈ k[x±1, y±1]
give rise to trigonal curves Cf of genus g = #(∆(1) ∩ Z2) = a+ b+ 2. Then g(1,0) is a go-
nality pencil and the corresponding scrollar invariants are seen to be {a, b}; if a = 1 then
there may exist other combinatorial gonality pencils but the associated scrollar invariants
are the same. The numbers a and b are classical invariants called the Maroni invariants1

of Cf . Every trigonal curve arises as a weakly ∆-nondegenerate curve with ∆ a lattice
polygon of the above form. A fun fact is that the well-known bound a ≤ (2g−2)/3 which
is usually proven through the Riemann-Roch theorem, can also be obtained in a purely
combinatorial way, using Haase and Schicho’s criterion for ∆(1) to be an interior polygon.

Another observation is that Theorem 13 can be combined with results of Coppens
and Martens [CM91] to obtain combinatorial interpretations for the Clifford index and
the Clifford dimension, which are defined for curves of genus g ≥ 4 only: the Clifford
index is

min{ d− 2r |Cf carries a divisor D with |D| = grd and h0(Cf , D), h0(Cf ,K∆ −D) ≥ 2 }

which is a non-negative integer due to Clifford’s theorem. The Clifford dimension is the
smallest r for which the minimum is realized; this concept was introduced in [Eis+89].
Coppens and Martens assume char k = 0; we inherit this condition since it is not clear to
us how to circumvent it.

Theorem 17. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a weakly
∆-nondegenerate Laurent polynomial. Assume that #(∆(1) ∩ Z2) ≥ 4 and char k = 0. Then:

• The Clifford index of Uf equals lw(∆(1)), unless ∆(1) ∼= (d− 3)Σ for some d ≥ 5, ∆(1) ∼=
Υ, or ∆(1) ∼= 2Υ, in which cases it is lw(∆(1))− 1.

• The Clifford dimension of Uf equals 2 if ∆(1) ∼= (d − 3)Σ for some d ≥ 5, it equals 3 if
∆(1) ∼= 2Υ, and it is 1 in all other cases.

The possibility of combining Theorem 13 with [CM91] was already mentioned by Kawa-
guchi [Kaw16]. However we recall Kawaguchi’s assumption that Uf is not birationally
equivalent to a smooth plane curve of degree d ≥ 5, or in other words that the Clifford
dimension is different from 2. So by getting rid of this condition we end up with a more
complete and pleasing statement. The main ingredient taken from [CM91] is that there
always exist infinitely many gonality pencils as soon as the Clifford dimension is at least
2. Because the number of combinatorial pencils is necessarily finite, through Theorem 13
this reduces one’s task to analyzing the exceptions ∆(1) ∼= ∅, (d − 3)Σ,Υ, 2Υ,Γ5

1,Γ
5
2,Γ

5
3.

For smooth plane curves Coppens and Martens’ result is classical and holds in any char-
acteristic [Har86], allowing one to obtain the following corollary:

Corollary 18. Let ∆ be a lattice polygon with non-empty interior. Let f ∈ k[x±1, y±1] be weakly
∆-nondegenerate and assume that Uf is birationally equivalent to a smooth projective curve in
P2, say of degree d ≥ 3. Then ∆(1) ∼= (d− 3)Σ.

1The existing literature is ambiguous at this point: sometimes one talks about a single Maroni invariant,
in which case one means either b or a− b.
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Therefore, in the case of smooth plane curves, one can view ∆(1) in some sense as a ge-
ometric invariant. We refer to this property as intrinsicness of the interior polygon and
will state a few more results of this kind in Section 8.

Remark. Stated more geometrically, this means that if a toric surface X contains a smooth
projective curve C that is abstractly isomorphic to a smooth plane projective curve, then
there exists a toric blow-down π : X → P2 such that π|C : C → P2 is an embedding.

A consequence of Theorems 12 and 17 is that the gonality and (if char k = 0) the Clif-
ford index and dimension of Uf depend on ∆ only, rather than on the specific choice
of our weakly ∆-nondegenerate Laurent polynomial f ∈ k[x±1, y±1]. This is an a priori
non-trivial fact that can be rephrased as constancy among the smooth curves in linear
systems of curves on toric surfaces. The existing literature contains other results of this
type, which are usually stated in characteristic zero only. For instance recent work of
Lelli-Chiesa proves constancy of the gonality and the Clifford index for curves in cer-
tain linear systems on other types of rational surfaces [LC13]. An important theorem by
Green and Lazarsfeld states that constancy of the Clifford index holds in linear systems
on K3 surfaces [GL87], although here constancy of the gonality is not necessarily true.
In the next section we will state a constancy result for the entire canonical graded Betti
table (which subject to Green’s canonical syzygy conjecture is a vast generalization of the
Clifford index).

We end this section with a brief discussion (more details to be found in Chapter 3)
of two other invariants that we have put to a combinatorial analysis, albeit with less
conclusive results:

• The minimal degree s2(Uf ) of a possibly singular curve in P2 that is birationally
equivalent to Uf ; equivalently this asks for the minimal degree of a simple linear
system of rank 2.

• The minimum s1,1(Uf ) of
{

(a, b) ∈ Z2
≥0

∣∣ a ≤ b and ∃ C ⊆ P1 ×P1 of bidegree (a, b) with C ' Uf
}

(3)

where ' denotes birational equivalence. The minimum is taken with respect to the
lexicographic order on Z≥0 × Z≥0 (but see the ‘open question’ at the end of this
section).

Unfortunately we can only provide upper bounds, and leave it as an unsolved problem
whether these statements are sharp. In particular we do not know whether the quantities
s2(Uf ) and s1,1(Uf ) are independent of the concrete choice of f ∈ k[x±1, y±1].

Theorem 19. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a weakly
∆-nondegenerate Laurent polynomial. Then s2(Uf ) ≤ lsΣ(∆(1)) + 3. If ∆(1) ∼= dΥ for some
d ≥ 1 then the sharper bound s2(Uf ) ≤ lsΣ(∆(1)) + 2 applies.

Theorem 20. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a weakly ∆-
nondegenerate Laurent polynomial. Then s1,1(Uf ) ≤ (lw(∆(1)) + 2, ls�(∆(1)) + 2). If ∆(1) ∼= Υ
then the sharper bound s1,1(Uf ) ≤ (3, 4) applies.

Remark that by Theorem 12 the first components of the upper bounds stated in Theo-
rem 20 are equal to the gonality. Therefore this part of the statement is optimal and one
sees that the bounds necessarily hold with respect to the product order on Z≥0 × Z≥0.
In particular, if it is indeed true that Theorem 20 is always sharp, then the set (3) always
admits a minimum with respect to the product order. Please compare this to Corollary 8,
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which can be viewed as a combinatorial analogue of this statement.

Open question. As an even wilder shot in the dark, we wonder whether it is true for every
algebraic curve C/k (i.e. not necessarily weakly nondegenerate) that the set of bidegrees
(a, b) with a ≤ b of curves in P1 ×P1 that are birationally equivalent to C admits a mini-
mum with respect to the product order on Z≥0 × Z≥0.

5. Canonical graded Betti numbers (Chapters 6, 7 and 8)

Let ∆ be a lattice polygon with two-dimensional interior and let f ∈ k[x±1, y±1] be a
weakly ∆-nondegenerate Laurent polynomial. Recall from Section 1 that Cf ⊆ X∆ is
non-hyperelliptic and that its canonical model satisfies

Ccan
f ⊆ X∆(1) ⊆ Pg−1 = ProjS∆(1) (4)

where S∆(1) = k[Xi,j | (i, j) ∈ ∆(1) ∩ Z2 ] and g = #(∆(1) ∩ Z2) denotes the genus of Cf .
In this section we report on a combinatorial analysis of the Betti numbers βij appearing
in a minimal free resolution of the homogeneous coordinate ring of Ccan

f as a graded
S∆(1)-module:

· · · →
⊕

q≥2

S∆(1)(−q)β2,q →
⊕

q≥1

S∆(1)(−q)β1,q →
⊕

q≥0

S∆(1)(−q)β0,q → S∆(1)�I(Ccan
f )→ 0.

These numbers are usually gathered in what is called the canonical graded Betti table
of Cf , by writing βp,p+q in the pth column and the qth row. Alternatively, and often
more conveniently, this entry equals the dimension of the Koszul cohomology space
Kp,q(Cf ,K∆). The canonical graded Betti table is known to be of the form

0 1 2 3 . . . g − 4 g − 3 g − 2

0 1 0 0 0 . . . 0 0 0
1 0 a1 a2 a3 . . . ag−4 ag−3 0
2 0 ag−3 ag−4 ag−5 . . . a2 a1 0
3 0 0 0 0 . . . 0 0 1,

(5)

where omitted entries are understood to be zero. If one assumes Green’s canonical
syzygy conjecture [Gre84], the settlement of which is arguably the most important un-
solved problem concerning linear series on algebraic curves, then the canonical graded
Betti table is a vast generalization of the Clifford index. Indeed, Green’s conjecture pre-
dicts that the latter is equal to min{ ` | ag−` 6= 0 } − 2.

Remark. Assume that char k = 0. If X∆(1) carries an anticanonical pencil, or equivalently
if the polygon P−K associated to an anticanonical torus-invariant divisor −K on X∆(1)

contains at least two lattice points, then one can invoke a result of Lelli-Chiesa [LC13] to
settle Green’s conjecture for all weakly ∆-nondegenerate curves. This includes the cases
whereX∆(1) is Gorenstein and weak Fano, which are discussed further down. The details
of these claims are explained in Chapter 8.

Remark. It is known that Green’s conjecture may fail over fields of very small positive
characteristic [Sch03b], but we do not know of any weakly nondegenerate counterexam-
ples.
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Having a combinatorial description of the Clifford index at hand (at least if char k = 0,
see Theorem 17), it is a natural step to look for a similar description of the entire canonical
Betti table. At this moment this seems to be an infeasible task, both from a combinatorial
and a geometric perspective. In view of (4) we hope for an explicit relationship with the
graded Betti table of X∆(1) , which is of the form

0 1 2 3 . . . g − 4 g − 3

0 1 0 0 0 . . . 0 0
1 0 b1 b2 b3 . . . bg−4 cg−3

2 0 cg−3 cg−4 cg−5 . . . c2 c1.

(6)

Concretely, we distill the following three research questions, each of which we leave
unanswered in their general form, although we can offer several partial results:

(i) What would such an explicit relationship look like?

The inclusion (4) gives rise to an exact sequence

0 −→ b` −→ a` −→ c`
µ`,f−→ cg−1−` −→ ag−1−` −→ bg−1−` −→ 0 (7)

for each value of ` = 1, 2, . . . , g − 2. Here we abusingly write the dimensions of the
Koszul cohomology spaces, rather than the spaces themselves, and it is understood
that ag−2 = bg−2 = cg−2 = 0. The map µ`,f is a morphism between two cohomol-
ogy spaces associated to X∆(1) that is induced by multiplication by f ; we refer to
Chapter 8 for the precise construction. This shows that a` = b` + c` − dim imµ`,f ,
and the question reduces to a determination of the last term. Our main theorem is
that µ`,f = 0 in the cases where X∆(1) is Gorenstein and weak Fano.

Theorem 21. Let ∆ be a lattice polygon with two-dimensional interior. Let f ∈ k[x±1, y±1]
be a weakly ∆-nondegenerate Laurent polynomial and let g = #(∆(1) ∩ Z2). Denote
by a1, a2, . . . , ag−3 the canonical graded Betti numbers of Cf as in (5), and similarly let
b1, c1, b2, c2, . . . , bg−3, cg−3 be the graded Betti numbers of X∆(1) as in (6). If X∆(1) is
Gorenstein and weak Fano then for all ` = 1, 2, . . . , g − 3 we have a` = b` + c`.

Being Gorenstein and weak Fano has an easy combinatorial interpretation: it means
that the convex hull of the primitive inward pointing normal vectors to the edges
is a reflexive polygon (= a lattice polygon of genus one). An example is depicted
below. This is a rather strong condition, but we note that Theorem 21 applies to

∆(1)

and take
convex hull

attach to origin

(Illustration of the Gorenstein weak Fano property from the combinatorial viewpoint.)

most of our introductory examples, including the cases where ∆ ∼= dΣ for some
d ≥ 4, where ∆ ∼= dΥ for some d ≥ 2, where ∆ ∼= �a,b for some a, b ≥ 3, and so
on. Moreover, experimentally we observe that µ`,f = 0 much more frequently than
under the Gorenstein weak Fano assumption. Of course, an obvious reason could
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be that c` = 0 or cg−1−` = 0: by Theorem 24 below we perfectly understand when
this happens. But often µ`,f = 0 for reasons we do not know.

Example. In this example we let k be (the algebraic closure of) the finite field F10007;
this is mainly for computational efficiency, we expect the same analysis to apply
over C. The toric surface X∆(1) over k corresponding to the interior polygon ∆(1)

shown below is Gorenstein but not weak Fano. One computationally verifies that

(−1, 0)

(−1, 1)

(0, 3)

(3,−1)
(2,−1)

(1, 3)

Γ14

the corresponding graded Betti table is

0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 59 363 1100 2013 2310 1525 343 24 0 0 0
2 0 0 0 0 0 7 112 574 561 265 66 7,

while the canonical graded Betti table of Cf for an aimlessly chosen2 Laurent poly-
nomial f ∈ F10007[x±1, y±1] that is weakly ∆max-nondegenerate when considered
over k was found to be

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 66 429 1365 2574 2884 1637 350 24 0 0 0 0
2 0 0 0 0 24 350 1637 2884 2574 1365 429 66 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1.

(The computation started from our explicit minimal set of generators for the canon-
ical ideal; see Section 2.) Thus for ` = 6 the exact sequence (7) reads

0 −→ 1525 −→ 1637 −→ 112
µ6,f−→ 7 −→ 350 −→ 343 −→ 0,

implying that µ6,f = 0, and similarly one sees that µ7,f = 0. We do not understand
why, as this is not explained by Theorem 21. In all other cases µ`,f = 0 because
either c` = 0 or cg−1−` = 0.

2We equipped the lattice points on the boundary of ∆max with the prime coefficients
2, 3, 5, 7, 11, 13, 17, 19, starting at the left-most vertex and proceeding counterclockwise. The coefficients
corresponding to the interior lattice points were chosen 0 in view of Lemma 23 below.
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Example. The same computer experiment, when applied to the polygon Γ12 from
Section 4, respectively resulted in the graded Betti tables

0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 45 231 550 693 399 69 0 0 0 0
2 0 0 0 0 69 399 693 550 231 45 0
3 0 0 0 0 0 0 0 0 0 0 1

and
0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0
1 0 39 186 414 504 295 69 0 0 0
2 0 0 0 0 1 105 189 136 45 6.

Here one sees that the exact sequence (7) for ` = 5 reads:

0 −→ 295 −→ 399 −→ 105
µ5,f−→ 1 −→ 69 −→ 69 −→ 0.

So µ5,f is not trivial in this case, but rather surjective onto its one-dimensional
codomain. In fact, ∆(1) is the only interior polygon for which we have observed
deviating behavior with respect to the formula a` = b` + c`, although we expect
more exceptions to pop up beyond the range of polygons that we have computed
(if not then Green’s conjecture would be violated, as explained at the end of this
section).

(ii) Is it true at all that the canonical graded Betti table of Cf only depends on the
graded Betti table of X∆(1) , rather than on the specific choice of f?

In other words, do we have constancy in the sense discussed in Section 4? It is clear
from Theorem 21 that the answer is yes if X∆(1) is Gorenstein and weak Fano:

Corollary 22. Let ∆ be a lattice polygon with two-dimensional interior and let f ∈
k[x±1, y±1] be a weakly ∆-nondegenerate Laurent polynomial. If X∆(1) is Gorenstein and
weak Fano then the canonical graded Betti numbers of Cf do not depend on the specific
choice of f .

For example, this implies that the canonical graded Betti table of a smooth plane
projective degree d ≥ 4 curve depends on d only. For general lattice polygons ∆ we
can show that only the coefficients that are supported on the boundary potentially
matter:

Lemma 23. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a
weakly ∆-nondegenerate Laurent polynomial. Then the canonical graded Betti table of Cf
at most depends on the coefficients of f that are supported on ∂∆ ∩ Z2.

See again Chapter 8 for a proof. As a modest new application of this, we obtain
constancy of the canonical graded Betti table for triangles whose only lattice points
on the boundary are its vertices. Indeed, using the action of T2 the three corre-
sponding coefficients can always be set to 1.

Remark. If the answer to (ii) is no, then question (i) still makes sense by restricting
to sufficiently generic weakly ∆-nondegenerate Laurent polynomials f ∈ k[x±1, y±1].
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(iii) What does the graded Betti table of X∆(1) look like?

In order to have a combinatorial description of the canonical graded Betti table of
Cf it does not suffice to merely relate it to the graded Betti numbers of X∆(1) : we
also need to describe these numbers in a combinatorial way. This is a difficult ques-
tion in its own right, with several partial results available in the existing literature,
most notably in the Ph.D. thesis [Her06] of Hering (who in fact studied syzygies
of toric varieties of arbitrary dimension). Much of our recent research time was
devoted to complementing the existing statements, but the overall picture remains
far from complete. Because of the independent interest we studied graded Betti
numbers of arbitrary projectively embedded toric surfaces, i.e. not necessarily of the
formX∆(1) . An overview of our findings can be found in the chart on the next page.
For an accompanying discussion and proofs we refer to Chapter 6, but let us high-
light two statements that can be viewed as analogues of Green’s canonical syzygy
conjecture. At the lower-left end of the graded Betti table we have:

Theorem 24 (Hering, Schenck, Lemmens). Let ∆ be a lattice polygon such that ∆(1) 6=
∅. The number of leading zeroes on row q = 2 of the graded Betti table of the toric surface
X∆ over k, counting from column index p = 1, is given by #(∂∆ ∩ Z2)− 3.

(If ∆(1) = ∅ then the entire row q = 2 is trivial.) In characteristic zero the above the-
orem was proven by Hering [Her06], following an observation of Schenck [Sch04]
and building on work of Gallego–Purnaprajna [GP01]. Recently Lemmens [Lem]
gave a proof that works in arbitrary characteristic; he also provided an explicit for-
mula for the first non-zero entry. At the upper-right end of the graded Betti table
we conjecture:

Conjecture 25. Let ∆ be a two-dimensional lattice polygon such that ∆ 6∼= Σ,Υ. The
number of concluding zeroes on row q = 1 of the graded Betti table of the toric surface X∆

over k, counting backwards from column index p = #(∆∩Z2)−3, is given by lw(∆)−1,
except if

∆ ∼= dΣ for some d ≥ 2 or ∆ ∼= Υd for some d ≥ 2 or ∆ ∼= 2Υ (8)

in which case it is given by lw(∆)− 2.

(−1,−1)

(d, 0)

(0, d)

Υd

(If ∆ ∼= Σ,Υ then the entire row q = 1 is trivial.) We have the following evidence in
favour of this conjecture:

Theorem 26. Let ∆ be a two-dimensional lattice polygon such that ∆ 6∼= Σ,Υ. The number
of concluding zeroes on row q = 1 of the graded Betti table of the toric surface X∆ over k is
at most the quantity predicted by Conjecture 25. Moreover:

• If char k = 0 and #(∆ ∩ Z2) ≤ 32 then equality holds.
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• If char k = 0, ∆ = Γ(1) for a larger lattice polygon Γ, and Green’s canonical syzygy
conjecture holds for some weakly Γ-nondegenerate curve (e.g. if X∆ carries an anti-
canonical pencil [LC13]), then equality holds.
In particular, if char k = 0 and X∆ is Gorenstein and weak Fano then equality holds.

• If equality holds for a certain instance of ∆ not among (8), then it also holds for every
lattice polygon containing ∆ and having the same lattice width.
Using [CL] and (a) it follows that if char k = 0 and lw(∆) ≤ 6 then equality holds.

For proofs we refer to Chapter 6, although let us note that the first claim was ob-
tained using an explicit determination of the relevant entries in the graded Betti
table of X∆, for all two-dimesional lattice polygons ∆ containing at most 32 lattice
points, using our database from Chapter 2. For reasons of efficiency the computa-
tion was carried out in finite characteristic, leading to the stated result through a
semi-continuity argument.

Remark. The underlying algorithm can be used to gather all sorts of related data.
It explicitly computes the Koszul cohomology of X∆, using duality, the action of
T2 and some of the features stated in the chart on the previous page to reduce the
time and memory requirements. It was implemented in SageMath and for instance
allowed us to explicitly determine the graded Betti numbers of the Veronese surface
X6Σ = ν6(P2) in characteristic 40 009; we expect this to match with characteristic
zero. Up to ν5(P2) these data were recently gathered by Greco and Martino [GM16].

We end this section with two applications. Recall that Green’s conjecture helped us in
settling special instances of Conjecture 25. But there is also an implication in the opposite
direction: the instances of Conjecture 25 that were established through explicit computa-
tion in turn imply new cases of Green’s conjecture.

Theorem 27. Let char k = 0, let X/k be a toric surface, and let C ⊆ X be a non-hyperelliptic
smooth projective curve of genus 4 ≤ g ≤ 32. Then Green’s canonical syzygy conjecture is true
for C.

Omitting exceptional cases, the proof uses that

ag−lw(∆(1))−1 = bg−lw(∆(1))−1

as soon as
cg−lw(∆(1))−1 = 0, (9)

which is immediate from the exact sequence (4). From Theorem 24 we know that (9) holds
if and only if #(∂∆(1)∩Z2) ≥ lw(∆(1))+2. Using our database of lattice polygons we com-
putationally verified that this last inequality is true whenever #(∆(1) ∩ Z2) ≤ 32, except
if ∆(1) ∼= Υ. The result then follows from Theorem 26, which says that bg−lw(∆(1))−1 = 0,
and our combinatorial interpretation for the Clifford index stated in Theorem 17, which
says that Green’s conjecture amounts to ag−lw(∆(1))−1 = 0. We refer to Chapter 8 for ad-
ditional details.

Remark. In higher genus there exist more counterexamples to #(∂∆(1)∩Z2) ≥ lw(∆(1)) +
2, with ∆ = conv{(4, 0), (10, 4), (0, 10)} being the smallest instance that we have found,
corresponding to g = 36. Here #(∂∆(1)∩Z2) = 9 and lw(∆(1)) = 8, and as a consequence
c27 6= 0. In this case Green’s canonical syzygy conjecture amounts to a27 = 0, but unlike
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the foregoing cases it is insufficient to verify that b27 = 0. In fact, if the sum formula
a27 = b27 + c27 from Theorem 21 would be true here (which we do not think it is), then
this would show that a27 6= 0 and hence that weakly ∆-nondegenerate curves are coun-
terexamples to Green’s conjecture!

A second application is concerned with the gonality conjecture due to Green and
Lazarsfeld [GL86], which was recently proven by Ein and Lazarsfeld [EL15].

Theorem 28 (Gonality conjecture, proven by Ein–Lazarsfeld). Let char k = 0 and let C/k
be a smooth projective curve of gonality γ ≥ 2. Let L be a globally generated divisor on C of
sufficiently large degree, and assume that C ⊆ Prk|L| is embedded using the linear system |L|.
Then the number of non-zero entries on row q = 1 of the graded Betti table of the homogeneous
coordinate ring of C equals h0(C,L)− γ − 1.

Concretely Ein and Lazarsfeld showed that degL ≥ g3 is sufficient, a bound which was
recently improved to degL ≥ 4g − 3 by Rathmann [Rat]. It is expected that this is not
yet optimal, although Green and Lazarsfeld already noted that one needs at least degL ≥
2g + γ − 1. In a first draft of [FK] Farkas and Kemeny speculated that the latter bound
might always be sufficient. However we show:

Theorem 29. For each γ ≥ 3 there exists a curve C/k of genus g = γ(γ−1)/2 along with a very
ample divisor L of degree 2g + γ − 1 such that the number of non-zero entries on row q = 1 of
the graded Betti table of the homogeneous coordinate ring of the correspondingly embedded curve
is at least h0(C,L)− γ.

The curve C we construct is weakly Υγ−1-nondegenerate, and its exceptional behaviour
is tightly connected with the fact that Υγ−1 is exceptional for Conjecture 25. We refer to
Chapter 7 for the details.

6. First scrollar Betti numbers (Chapters 9 and 10)

As in the previous section we consider a lattice polygon ∆ with two-dimensional inte-
rior along with a weakly ∆-nondegenerate Laurent polynomial f ∈ k[x±1, y±1]. Write
g = #(∆(1) ∩ Z2) and let γ ≥ 3 denote the lattice width lw(∆). Assume that the latter
equals the gonality of Cf , or in other words that there exists at least one combinatorial
gonality pencil gv.

Remark. In view of the material from Chapter 5 this means that we exclude ∆ ∼= 2Υ
and ∆ ∼= dΣ for any d ≥ 4. However, in the last case one can circumvent this by not-
ing that a weakly dΣ-nondegenerate curve is also weakly conv{(1, 0), (d, 0), (0, d), (0, 1)}-
nondegenerate: simply replace f by f(x + x0, y + y0) for some (x0, y0) ∈ Uf . This does
not affect the interior polygon, in terms of which all results below are stated.

For convenience we assume that v = (1, 0) and that ∆ ⊆ R × [0, γ]; in particular gv =
|fiber of (x, y) 7→ x|. This can always be achieved by means of a unimodular transforma-
tion. It is not hard to see that the rational normal scroll S ⊆ Pg−1 swept out by gv equals
the (γ − 1)-dimensional toric variety associated to the polytope that one obtains from
∆(1) by ‘forgetting’ that horizontal lines are coplanar, which amounts to omitting certain
defining equations; we refer to Chapter 5 for more details. In fact this observation is the
central ingredient in the proof of Theorem 15, which in our case states that the scrollar
invariants are given by the width invariants

Ej := i(+)(j)− i(−)(j)
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∆(1)

∆j = γ
j = γ − 1

j = 0
j = 1
j = 2

...

for j = 1, . . . , γ − 1, where

i(−)(j) = min{i ∈ Z | (i, j) ∈ ∆(1)} and i(+)(j) = max{i ∈ Z | (i, j) ∈ ∆(1)}.

For our current purposes an important conclusion is that the series of inclusions (4) ex-
tends to Ccan

f ⊆ X∆(1) ⊆ S ⊆ Pg−1.
Recall that in Chapter 4 we provided a recipe for obtaining a minimal set of generators

of the canonical ideal of Cf . In this section we report on a similar method for determin-
ing a minimal set of defining equations for our canonical curve relative to the scroll S. This
concept was introduced and made precise by Schreyer [Sch86]. Informally spoken, the
goal is to realizeCcan

f as the scheme-theoretic intersection of as few divisors on S as possi-
ble. Modulo linear equivalence these divisors can be expressed as linear combinations of
the hyperplane section class H and the ruling class R, which generate the Picard group.
The coefficient of H matches with our intuitive notion of degree and therefore has little
added value. But the coefficient of R can give interesting new discrete information.

Example. In the trigonal case Ccan
f is a divisor itself. It concerns a ‘cubic’, as it is contained

in the class 3H − (g − 4)R.

Subtlety. If one of the rational normal curves spanning S is of degree 0 (i.e. is a point)
then the Picard group may not be freely generated by H and R [Fer01]. To give a rather
degenerated example, consider ∆(1) = Σ: here the scroll is just P2 where R = H , and we
recover that Ccan

f ∈ 3H+R = 4R is a plane quartic. To avoid non-unique expansions and
various other theoretical issues one should actually work with the strict transforms of
Ccan
f and X∆(1) under the natural birational morphism j : S′ → S induced by increasing

the degrees of the spanning rational normal curves by some fixed positive amount, but
we will ignore this technicality here.

From γ ≥ 4 on it turns out that our curve is minimally cut out by (γ2 − 3γ)/2 ‘quadrics’,
i.e. divisors whose classes are of the form

2H − b1R, 2H − b2R, 2H − b3R, . . . , 2H − b(γ2−3γ)/2R

for integers bi that sum up to (γ − 3)(g − γ − 1) and which turn out to be independent
of the chosen divisors, up to order. See [BH15; Sch86] for more details. We have called
these numbers the first scrollar Betti numbers with respect to gv because they appear in
the first step of a minimal free resolution of OCf

as an OS-module.3

3However these numbers do not appear as dimensions of cohomology spaces: therefore this terminology
is up for improvement.
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We first concentrate on the case γ = 4, which is particularly interesting. Assume that
gv has scrollar invariants 0 ≤ a ≤ b ≤ c, so that S ⊆ Pg−1 is the toric threefold associated
to the polytope ∆a,b,c depicted below. Note that we can view it as a completion of affine

(b, 1, 0)(0, 1, 0)

(0, 0, 0)

(0, 0, 1) (a, 0, 1)

(c, 0, 0)
∆a,b,c

space A3 rather than just the torus T3. Inside S our curve Ccan
f arises as a complete

intersection of two divisors Y,Z whose respective classes are 2H − b1R and 2H − b2R
with b1 + b2 = g − 5, where we can assume that b1 ≥ b2. It can be shown that b2 ≥ −1,
where equality occurs if and only if Cf is isomorphic to a smooth plane quintic [Sch86,
§6], i.e. if and only if ∆(1) ∼= 2Σ.

In terms of defining equations this means that Y ∩ A3 is defined by a polynomial
fY ∈ k[x, y, z] which is supported on the horizontally shrunk version of 2∆a,b,c shown
below (and that this is no longer true if we shrink it further). The analogous claim applies

(0, 0, 0)

(2b− b1, 2, 0)

(2c− b1, 0, 2)

(2a− b1, 0, 0)

(0, 2, 0)

(0, 0, 2)

to the polynomial fZ ∈ k[x, y, z] associated to Z. Since Z corresponds to the bigger
polytope it moves in a family: one is free to replace fZ by fZ + gfY for some g ∈ k[x] of
degree at most b1− b2. On the other hand if b1 > b2 then Y is immovable. In fact Schreyer
proved that the invariants b1, b2 are independent of the chosen g1

4 and that the same is
true for the surface Y as soon as b1 > b2. The main result of Chapter 9 is:

Theorem 30. Let ∆ be a two-dimensional lattice polygon, let f ∈ k[x±1, y±1] be weakly ∆-
nondegenerate, and assume that Cf is tetragonal. Then the first scrollar Betti numbers {b1, b2} of
Cf are given by {

#(∂∆(1) ∩ Z2)− 4 , #(∆(2) ∩ Z2)− 1
}
.

Moreover if #(∂∆(1) ∩ Z2)− 4 > #(∆(2) ∩ Z2)− 1 then the surface Y is given by X∆(1) .

The last equality is almost always satisfied, with all counterexamples to be found in
Chapter 9.

Example. Let f ∈ k[x±1, y±1] be a weakly ∆4,7-nondegenerate Laurent polynomial. This is
a C4,7 curve, which by Baker’s bound is of genus 9, and by Theorem 13 carries a unique
g1

4 . According to Theorem 15 the corresponding scrollar invariants are 0, 2, 4 and the

(0, 2, 0)

(0, 0, 1)

(4, 0, 0)(0, 0, 0)
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above theorem says that b1 = 4 and b2 = 0. The surface Y , whose corresponding poly-
tope is depicted above, is the toric surface X

∆
(1)
4,7

, which on A3 is cut out by fY = y2 − z.

Next in Chapter 10 we work towards a combinatorial interpretation for the first scrol-
lar Betti numbers of a weakly nondegenerate curve of gonality γ ≥ 5. For this we assume
that ∆ and v satisfy two technical conditions P1(v) and P2(v), which are explained in
more detail below. Essentially these conditions impose on ∆(1) a certain combinatorial
compatibility between its ‘left-hand side’ and its ‘right-hand side’, i.e. between the num-
bers i(−)(j) and the numbers i(+)(j).

In a first phase we look for divisors that cut out our toric surface X∆(1) . Recall that S
was obtained from X∆(1) by forgetting that horizontal lines are coplanar, so the idea is to
rivet these lines gradually back together. Concretely for each pair j1, j2 ∈ {1, 2, . . . , γ−1}
such that j2 − j1 ≥ 2 we define a toric (γ − 2)-fold Dj1,j2 ⊆ S which reminds the scroll of
the fact that the pair of lines at heights j1, j2 and the pair of lines at heights j1 + r, j2 − r
have the same ‘mean’:

j1

j1 + r
mean

j2 − r

j2

Here r ∈ {1, 2, . . . , (j2 − j1)/2} should be chosen carefully, which is where the condition
P1(v) shows up. Concretely, for each r we define

ε
(−)
j1,j2,r

=

{
0 if i(−)(j1 + r) + i(−)(j2 − r) ≤ i(−)(j1) + i(−)(j2)

1 if i(−)(j1 + r) + i(−)(j2 − r) > i(−)(j1) + i(−)(j2)

= max{0, (i(−)(j1 + r) + i(−)(j2 − r))− (i(−)(j1) + i(−)(j2))}

and

ε
(+)
j1,j2,r

=

{
0 if i(+)(j1 + r) + i(+)(j2 − r) ≥ i(+)(j1) + i(+)(j2)

1 if i(+)(j1 + r) + i(+)(j2 − r) < i(+)(j1) + i(+)(j2)

= max{0, (i(+)(j1) + i(+)(j2))− (i(+)(j1 + r) + i(+)(j2 − r))}.

Condition P1(v) imposes that

• either we can find an r for which ε(−)
j1,j2,r

= ε
(+)
j1,j2,r

= 0, in which case we let r be the
smallest such choice and we define εj1,j2 = 0,

• or there is no r for which ε(−)
j1,j2,r

= 0 but there is an r for which ε(+)
j1,j2,r

= 0, in which
case we let r be the smallest such choice and we define εj1,j2 = 1,

• or, similarly, there is no r for which ε(+)
j1,j2,r

= 0 but there is an r for which ε(−)
j1,j2,r

= 0,
in which case we let r be the smallest such choice and we define εj1,j2 = 1.

This should be true all (γ − 2)(γ − 3)/2 pairs j1, j2. We refer to Chapter 10 for further
details on the construction of Dj1,j2 , for some clarifying examples, and eventually for a
proof of the following statement:
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Theorem 31. Inheriting the notation from above and assuming that condition P1(v) is satisfied,
one has that the (γ − 2)(γ − 3)/2 divisors Dj1,j2 ⊆ S together cut out X∆(1) . Moreover

Dj1,j2 ∈ 2H −Bj1,j2R for all j1, j2, where Bj1,j2 = Ej1 + Ej2 − εj1,j2 ,

and the Bj1,j2 ’s sum up to (γ − 4)g − (γ2 − 3γ) + #(∂∆(1) ∩ Z2).

The next step is to add divisors that slice this further down to Ccan
f . Recall from

Section 2 that the canonical ideal of Cf ⊆ Pg−1 is spanned by the ideal of X∆(1) and the
quadrics

Qw =
∑

(i,j)∈∆∩Z2

cijXuijXvij , w ∈ ∆(2) ∩ Z2,

where uij , vij should be chosen such that (i, j) − w = (uij − w) + (vij − w). Typically
the choice of uij and vij is not unique. Condition P2(v) amounts to the existence for each
horizontal line L of horizontal lines M1 andM2 such that it is possible to choose uij ∈M1

and vij ∈M2 for allw ∈ L. If this is indeed possible then we obtain our requested divisors
by grouping together allQw’s that correspond to lattice points on the same horizontal line
L. More precisely we define for each j = 2, 3, . . . , γ − 2 a divisor

Dj := S ∩ {Qw |w ∈ ∆(2) ∩ Z2 lies at height j }.

We refer to Chapter 10 for explanation why this indeed results in a subscheme of codi-
mension one (in contrast with what happens if one does not choose the uij ’s and vij ’s in
a consistent way), and for a proof of the following statement:

Theorem 32. Inheriting the notation from above and assuming that condition P2(v) is satisfied,
one has that the γ − 3 divisors Dj ⊆ S together with X∆(1) ⊆ S cut out Ccan

f . Moreover

Dj ∈ 2H −BjR for all j, where Bj = −1 + #{ i ∈ Z | (i, j) ∈ ∆(2) ∩ Z2 },

and the Bj ’s sum up to #(∆(2) ∩ Z2)− (γ − 3).

Notice that the multi-set of Bj ’s equals the multi-set of width invariants E(∆(1), v). Fi-
nally, by combining both results and noticing that

(γ − 2)(γ − 3)/2 + (γ − 3) = (γ2 − 3γ)/2,

we arrive at our desired interpretation of the first scrollar Betti numbers:

Corollary 33. Inheriting the notation from above and assuming that conditions P1(v) and P2(v)
are satisfied, one has that the first scrollar Betti numbers of Cf with respect to gv are given by

{Bj}j∈{2,...,γ−2} ∪ {Bj1,j2}j1,j2∈{1,...,γ−1}
j2−j1≥2

.

These scrollar Betti numbers indeed add up to (γ − 3)(g − γ − 1), as announced.

Remark. The conditionsP1(v) andP2(v) are milder than one might fear at a first glance. In
fact we believe that they are void for γ = 5 and γ = 6, although we could not prove this.
The smallest pair ∆, v violating P2(v) that we managed to find corresponds to curves of
genus 46 and gonality 10; see Chapter 10.
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7. Arithmetic features (Chapter 11)

Consider a field k that is not necessarily algebraically closed. Let ∆ be a two-dimensional
lattice polygon and let f ∈ k[x±1, y±1] be a Laurent polynomial that is weakly ∆-non-
degenerate when considered over kalg.cl.. ThenCf ⊆ X∆ is a smooth projective curve that
is defined over k. In this section we wish to illustrate that besides geometric information,
our polygon ∆ potentially also contains some arithmetic data, even though we do not
expect the existence of a large one-to-one arithmetic-combinatorics dictionary as in the
geometric case.

A first arithmetic feature is that if an edge τ ⊆ ∆ has integral length one then the
corresponding torus-invariant divisor Dτ ⊆ X∆ contains a k-rational point of Cf . The
reason is that the intersection locus of Cf with Dτ is locally given by a linear equation
with coefficients in k. Thus if there are many such edges then this yields meaningful
lower bounds on #Cf (k). This was used by Kresch, Wetherell and Zieve to prove the
following fact:

Theorem 34 (Kresch, Wetherell, Zieve [KWZ02]). For every integer g ≥ 0 and every prime
power q define Nq(g) := maxC #C(Fq), where C ranges over all smooth projective curves of
genus g over Fq. Then limg→∞Nq(g) =∞. More precisely lim infg→∞Nq(g)/g1/3 > 0.

This statement is no longer the best available: in 2004 the same authors, in cooperation
with Elkies, Howe and Poonen [Elk+04], managed to replace the denominator g1/3 by g,
which is optimal in view of the Hasse-Weil bound. Unfortunately this relies on other tech-
niques, but nevertheless Theorem 34 remains a beautiful application of smooth curves in
toric surfaces.

Remark. More generally the presence of an edge τ ⊆ ∆ of integeral length r ensures the
existence of a k-rational divisor of degree r. Using a classification due to Fisher [Fis08],
we used this in Chapter 1 to prove that a genus one curve C/k is k-birationally equiva-
lent to a weakly nondegenerate curve if and only if it has a k-rational divisor of degree at
most 3.

A second arithmetic feature is that the k-rational gonality of Cf , by which we mean
the minimal degree of a k-rational map Cf → P1, equals its geometric gonality, except
possibly if ∆ ∼= 2Υ or if ∆ ∼= dΣ for some d ≥ 2. This is a trivial consequence of Theo-
rem 13, because combinatorial pencils are clearly k-rational. In particular Cf is hyperel-
liptic if and only if it is geometrically hyperelliptic.

Remark. By letting k = C((t)), through specialization of divisors this gives (very) prudent
support in the case of planar graphs in favour of a conjecture by Baker [Bak08, Conj. 3.14],
saying that the gonality of a graph equals the gonality of its metrization.

If ∆ ∼= 2Υ then the k-rational gonality equals the geometric gonality (namely 3) except
if Cf canonically embeds into an elliptic quadric in P3 in which case it equals 4; the
occurrence of this event may depend on the specific choice of f . If ∆ ∼= dΣ for some
d ≥ 2 then the k-rational gonality equals the geometric gonality (namely d − 1) except if
#Cf (k) = ∅ in which case it equals d; again this may depend on the specific choice of f .

Chapter 11 is devoted to yet another arithmetic phenomenon, which has a geomet-
ric intake. One can verify that the canonical divisor K∆ on Cf that one obtains from
adjunction theory (see Section 1) equals

∑

τ

(−〈ντ , pτ 〉 − 1)(Dτ ∩ Cf ), (10)
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where:

• the sum runs through all edges τ ⊆ ∆,

• Dτ denotes the torus-invariant divisor on X∆ associated to τ ,

• ντ ∈ Z2 is the primitive inward pointing normal vector to τ ,

• pτ is any point on τ ∩ Z2.

Here 〈·, ·〉 denotes the standard inner product on R2. It is the divisor of the differential

dx

xy ∂f∂y
,

unless ∂f/∂y = 0, which happens if x is not a separating variable, in which case4 one
should exchange the role of x and y. Similarly one verifies that the set

{
xiyj

dx

xy ∂f∂g

}

(i,j)∈∆(1)∩Z2

(11)

is a basis of holomorphic differentials. We refer to [CDV06] for more details.
One observes that if all 〈ντ , pτ 〉’s are odd then all coefficients in (10) are even, so that

we obtain a theta characteristic Θgeom by halving them. Note that Θgeom is k-rational. If
not all inner products are odd then it might be possible to achieve this by translating ∆
over some (i, j) ∈ Z2, amounting to multiplying f by the monomial xiyj . If this is indeed
possible then ∆ is called canonically even. If it is moreover possible to do this in such a
way that (0, 0) becomes contained in ∆, then ∆ is called effectively canonically even be-
cause the resulting theta characteristic is effective. (Note that then (0, 0) is automatically
contained in ∆(1), otherwise one of the inner products would be zero, hence even.)

Remark. If translation over a vector v ∈ Z2 makes all 〈ντ , pτ 〉’s odd, then so does translat-
ing over v + w for any w ∈ (2Z)2.

Examples. All triangles ∆a,b where gcd(a, b, 2) = 1 are canonically even. If moreover
a, b ≥ 2 then they are effectively canonically even. This covers all smooth plane curves
of odd degree and all Ca,b curves. Also all triangles ∆2,2g+2 where g ≥ 3 is odd are
effectively canonically even; this corresponds to hyperelliptic curves of odd genus. The
polygon Ω depicted below is an example of a lattice polygon which is canonically even
but not effectively canonically even.

(1, 0)

(3, 1)

(0, 3)

Ω

Now assume char k = 2. Then Cf automatically carries another k-rational theta char-
acteristic Θarith, which was introduced by Mumford [Mum71]. It is simply defined as

4This event is extremely unlikely but it can happen. Example: f = y2 + x2 + x + 1 in characteristic 2.
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Θarith := (div dx)/2, where we note that dx indeed has even orders of vanishing because
only even terms remain when differentiating a Laurent series in characteristic two.5 A
theorem by Stöhr and Voloch [SV87] says that h0(Cf ,Θarith) = g− r, where g is the genus
of Cf and r is the rank of the Cartier operator acting on the space of holomorphic differ-
entials. It is well-known that r = g if and only if Cf is an ordinary curve. This implies:

Lemma 35. Let ∆ be a two-dimensional effectively canonically even lattice polygon and let k be
a field of characteristic 2. Let f ∈ k[x±1, y±1] be a weakly ∆-nondegenerate Laurent polynomial.
If Cf is ordinary then Jac(Cf ) carries a non-trivial k-rational 2-torsion point.

Indeed, if Cf is ordinary then h0(Cf ,Θarith) = 0 and therefore Θarith is not linearly equiv-
alent to an effective divisor, in particular not to Θgeom. Then the divisor Θarith − Θgeom
maps to a non-trivial k-rational 2-torsion point on the Jacobian.

Alternatively, we obtain Lemma 35 as a corollary to the following stronger result,
which is proven in Chapter 11 by explicit computation, using the basis (11).

Theorem 36. Let ∆ be a two-dimensional canonically even lattice polygon and let k be a field of
characteristic 2. Let

f =
∑

(i,j)∈∆∩Z2

cijx
iyj ∈ k[x±1, y±1]

be a weakly ∆-nondegenerate Laurent polynomial. Let P be the set of vectors (i, j) ∈ ∆∩Z2 such
that translating over (−i,−j) makes all 〈ντ , pτ 〉’s odd. Let ρ = #P .

• If ci,j 6= 0 for at least one (i, j) ∈ P then Θarith and Θgeom are not linearly equivalent, and
therefore Jac(Cf ) carries a non-trivial k-rational 2-torsion point.

• If ci,j = 0 for all (i, j) ∈ P then the rank of the Cartier operator is at most g − ρ.

In particular if ∆ is effectively canonically even, then ρ > 0 and

Cf ordinary ⇒ ci,j 6= 0 for some (i, j) ∈ P ⇒ Jac(Cf )(k)[2] 6= 0.

As a consequence, in characteristic two, a sufficiently generic Laurent polynomial that
is supported on an effectively canonically even lattice polygon defines a curve with a
non-trivial k-rational two-torsion point on its Jacobian. This observation was first made
by Cais, Ellenberg and Zureick-Brown in the case of smooth plane curves of odd de-
gree [CEZB13]. In the case of ∆a,b with gcd(a, b) = 1 this explains why Denef and Ver-
cauteren [DV06] had to tolerate a factor 2 in #Jac(C)(k) when trying to generate crypto-
graphically secure Ca,b curves C over finite fields of characteristic two.

We actually conjecture that under the assumptions of the theorem the rank of the
Cartier operator is at least g−ρ, where equality holds if and only if ci,j = 0 for all (i, j) ∈ P .
Chapter 11 contains proofs of this conjecture for ∆ ∼= ∆2g+2,2 with g odd (hyperelliptic
curves of odd genus), for ∆ ∼= dΣ with d odd (smooth plane curves of odd degree), and
also for ∆ ∼= Ω. In the latter case ρ = 0, so this converts into the following fact:

Lemma 37. Let k be a field of characteristic 2 and let f ∈ k[x±1, y±1] be weakly Ω-nondegenerate.
Then Cf is ordinary.

8. Intrinsicness (Chapters 5, 9 and 10)

In this section we reinstall the assumption that k is an algebraically closed field. Let ∆ be
a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a weakly ∆-nondegenerate

5If x is not a separating variable then dx = 0, in which case we again exchange the role of x and y.
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Laurent polynomial. Given the long list of geometric invariants that can be told from the
combinatorics of ∆, one can wonder to what extent it is possible to recover the polygon
itself from the abstract birational geometry of Uf (or of Cf ). The best one can hope for
is to find back ∆ up to unimodular equivalence, because unimodular transformations
correspond to automorphisms of T2. Another relaxation is that (usually) one can only
expect to recover ∆(1), rather than all of ∆. For example, recall from the first remark
in Section 6 that every weakly dΣ-nondegenerate Laurent polynomial is also weakly ∆-
nondegenerate, where ∆ is obtained from dΣ by clipping off the point (0, 0). More gen-
erally, pruning a vertex off a two-dimensional lattice polygon ∆ without affecting its in-
terior boils down to forcing the curve through a certain non-singular point of X∆, which
is usually not an intrinsic property. One is naturally led to the following definition.

Definition 38. Let ∆ be a two-dimensional lattice polygon and letC/k be a weakly ∆-nondegenerate
curve. We say that ∆(1) is intrinsic to C if for all two-dimensional lattice polygons ∆′ for which
C is weakly ∆′-nondegenerate it holds that ∆(1) ∼= ∆′(1). We say that ∆(1) is intrinsic if it is
intrinsic to every weakly ∆-nondegenerate curve.

A few first cases in which ∆(1) is intrinsic are:

• ∆(1) = ∅, which occurs if and only if Cf is rational,

• dim ∆(1) = 0, which holds if and only if Cf is elliptic,

• dim ∆(1) = 1, which holds if and only if Cf is hyperelliptic of genus #(∆(1) ∩ Z2),

• ∆(1) ∼= (d − 3)Σ for some d ≥ 3, which by Corollary 18 occurs if and only if Cf is
birationally equivalent to a smooth projective plane curve of degree d.

From Theorem 17 we see that if char k = 0 then also ∆(1) ∼= 2Υ is intrinsic, because this
occurs if and only if Cf is of Clifford index 3. Most likely this result is also true in positive
characteristic.

As with many statements in this manuscript, the case where ∆(1) ∼= Υ turns out
to be an exception. Indeed, recall from Theorem 10 that every genus 4 curve is either
weakly �3,3-nondegenerate or weakly ∆6,3-nondegenerate. The respective interiors of
these polygons are �1,1 and ∆2,1, while Υ is equivalent to neither of both. Since both
cases occur, this turns all three interior genus 4 polygons �1,1,∆2,1,Υ into exceptions.

More counterexamples. Our polygon Υ belongs to a larger family of counterexamples. Let
g ≥ 4 satisfy g ≡ 0 mod 4, and consider the lattice polygons Γg and Γ′g depicted below,
which are non-equivalent. We note that Γ4

∼= Υ. If char k > g/2 + 1 then the polynomi-

(1, 1) (g/4, 1)

(g/2 + 1, 2)

(2, 3) (g/4 + 1, 3)

Γg∆g (1, 2)

(g/2, 1)

(g/2, 3)(g/4 + 1, 3)

(g/4 + 1, 1)

Γ′g ∆′g

als f = 1 − x2y4 − x g
2

+2y2 and f ′ = (y4 − 1)x
g
2

+1 + 4y2 are weakly ∆g-nondegenerate
and weakly ∆′g-nondegenerate, respectively. Here ∆g and ∆′g are as depicted above and

satisfy ∆
(1)
g = Γg and ∆

′(1)
g = Γ′g. Since the rational maps

Uf → Uf ′ : (x, y) 7→
(
x,

1− xy2

x
g
4

+1y

)
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Uf ′ → Uf : (x, y) 7→
(
x,

2y

x
g
4

+1(1 + y2)

)

are inverses of each other, we conclude that Cf and Cf ′ are isomorphic. Therefore Γg is
not intrinsic to Cf , and neither is Γ′g.

In spite of these exceptions we believe that ‘most’ interior lattice polygons are intrinsic,
but making this statement precise (let along proving this) seems to be a hard task. Using
Theorem 15 and Theorem 30 we can settle some additional cases, though:

• #(∆(1) ∩ Z2) ≥ 5 and ∆(2) = ∅, which holds if and only if Cf is trigonal of genus
g ≥ 5, or isomorphic to a smooth plane quintic,

• lw(∆(1)) = 2 and #(∂∆(1) ∩ Z2) ≥ #(∆(2) ∩ Z2) + 5, which holds if and only if Cf
is tetragonal and b1 ≥ b2 + 2.

In both cases, the bare line of accompanying text does not suffice to conclude intrinsic-
ness: more details and refined statements can be found in Chapter 9. Let us remark that
in both situations X∆(1) can be easily recovered from the canonical model Ccan

f ⊆ Pg−1.
Indeed, in the former case it arises as the intersection of all quadrics containing Ccan

f .
In the latter case it is the unique surface containing Ccan

f that is linearly equivalent to
2H − b1R, when viewed as a divisor inside the scroll spanned by a g1

4 . Our most subtle
intrinsicness result, which strongly relies on Corollary 33, is:

Theorem 39. Let a, b ≥ 1 be integers that are not both equal to 1. Then the interior polygon �a,b

is intrinsic. More precisely let ∆ be a two-dimensional lattice polygon, let f ∈ k[x±1, y±1] be a
weakly ∆-nondegenerate Laurent polynomial, and assume that Uf is birationally equivalent to a
smooth projective curve in P1 ×P1 of bidegree (a+ 2, b+ 2). Then ∆(1) ∼= �a,b.

A proof can be found in Chapter 10.

Remark. One can also target weaker intrinsicness questions, by only distinguishing be-
tween polygons that belong to some given family:

• A weakly ∆a,b-nondegenerate curve cannot be weakly ∆a′,b′-nondegenerate for dis-
tinct pairs of coprime positive integers {a, b} and {a′, b′}. This is immediate from
our combinatorial interpretations for the genus

#(∆
(1)
a,b ∩ Z2) = (a− 1)(b− 1)/2

and the gonality
lw(∆

(1)
a,b) + 2 = lw(∆a,b) = min{a, b}.

In other words a Ca,b curve cannot be Ca′,b′ .

• A similar reasoning involving the scrollar invariants shows that if a smooth non-
hyperelliptic curve C/k of genus g ≥ 2 can be embedded in the nth Hirzebruch
surface Hn for some n ≥ 0, then this value of n is unique and can therefore be
considered an invariant of C. We refer to Chapter 5 for an elaboration of the details.
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ON NONDEGENERACY OF CURVES

WOUTER CASTRYCK AND JOHN VOIGHT

Abstract. We study the conditions under which an algebraic curve can be
modelled by a Laurent polynomial that is nondegenerate with respect to its
Newton polytope. We prove that every curve of genus g ≤ 4 over an alge-
braically closed field is nondegenerate in the above sense. More generally, let
Mnd

g be the locus of nondegenerate curves inside the moduli space of curves

of genus g ≥ 2. Then we show that dimMnd
g = min(2g+1, 3g− 3), except for

g = 7 where dimMnd
7 = 16; thus, a generic curve of genus g is nondegenerate

if and only if g ≤ 4.
Subject classification: 14M25, 14H10

Let k be a perfect field with algebraic closure k. Let f ∈ k[x±1, y±1] be an
irreducible Laurent polynomial, and write f =

∑
(i,j)∈Z2 cijx

iyj. We denote by

supp(f) = {(i, j) ∈ Z2 : cij 6= 0} the support of f , and we associate to f its Newton
polytope ∆ = ∆(f), the convex hull of supp(f) in R2. We assume throughout that
∆ is 2-dimensional. For a face τ ⊂ ∆, let f |τ =

∑
(i,j)∈τ cijx

iyj . We say that f is

nondegenerate if, for every face τ ⊂ ∆ (of any dimension), the system of equations

(1) f |τ = x
∂f |τ
∂x

= y
∂f |τ
∂y

= 0

has no solutions in k
∗2
.

From the perspective of toric varieties, the condition of nondegeneracy can be
rephrased as follows. The Laurent polynomial f defines a curve U(f) in the torus
T2
k = Spec k[x±1, y±1], and T2

k embeds canonically in the projective toric surface
X(∆)k associated to ∆ over k. Let V (f) be the Zariski closure of the curve U(f)
inside X(∆)k. Then f is nondegenerate if and only if for every face τ ⊂ ∆, we have
that V (f)∩Tτ is smooth of codimension 1 in Tτ , where Tτ is the toric component
of X(∆)k associated to τ . (See Proposition 1.2 for alternative characterizations.)

Nondegenerate polynomials have become popular objects in explicit algebraic
geometry, owing to their connection with toric geometry [4]: a wealth of geometric
information about V (f) is contained in the combinatorics of the Newton poly-
tope ∆(f). The notion was initially employed by Kouchnirenko [24], who studied
nondegenerate polynomials in the context of singularity theory. Nondenegerate
polynomials emerge naturally in the theory of sparse resultants [15] and admit a
linear effective Nullstellensatz [8, Section 2.3]. They make an appearance in the
study of real algebraic curves in maximal position [28] and in the problem of enu-
merating curves through a set of prescribed points [29]. In the case where k is a
finite field, they arise in the construction of curves with many points [6, 25], in the
p-adic cohomology theory of Adolphson and Sperber [2], and in explicit methods for
computing zeta functions of varieties over k [8]. Despite their utility and seeming
ubiquity, the intrinsic property of nondegeneracy has not seen detailed study, with
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the exception of the Ph.D. thesis of Koelman [22] from 1991, otherwise unpublished
(see Section 12 below).

We are therefore led to the central problem of this article: Which curves are
nondegenerate? To the extent that toric varieties are generalizations of projective
space, this question asks us to generalize the characterization of nonsingular plane
curves amongst all curves. An immediate provocation for this question was to
understand the locus of curves to which the point counting algorithm of Castryck–
Denef–Vercauteren [8] actually applies. Our results are collected in two parts.

In the first part, comprising Sections 3–7, we investigate the nondegeneracy of
some interesting classes of curves (hyperelliptic, Cab, and low genus curves). Our
conclusions can be summarized as follows.

Theorem. Let V be a curve of genus g over a perfect field k. Suppose that one of
the following conditions holds:

(i) g = 0;
(ii) g = 1 and V (k) 6= ∅;
(iii) g = 2, 3, and either 17 ≤ #k <∞, or #k =∞ and V (k) 6= ∅;
(iv) g = 4 and k = k.

Then V is nondegenerate.

Remark. The condition #k ≥ 17 in (iii) ensures that k is large enough to allow
nontangency to the toric boundary of X(∆)k, but is most likely superfluous; see
Remark 7.2.

In the second part, consisting of Sections 8–12, we restrict to algebraically closed
fields k = k and consider the locusMnd

g of nondegenerate curves inside the coarse
moduli space of all curves of genus g ≥ 2. We prove the following theorem.

Theorem. We have dimMnd
g = min(2g + 1, 3g − 3), except for g = 7 where

dimMnd
7 = 16. In particular, a generic curve of genus g is nondegenerate if and

only if g ≤ 4.

Our methods combine ideas of Bruns–Gubeladze [7] and Haase–Schicho [17] and
are purely combinatorial—only the universal property of the coarse moduli space
is used.

Conventions and notations. Throughout, ∆ ⊂ R2 will denote a polytope with
dim∆ = 2. The coordinate functions on the ambient space R2 will be denoted by
X and Y . A facet or edge of a polytope is a face of dimension 1. A lattice polytope
is a polytope with vertices in Z2. Two lattice polytopes ∆ and ∆′ are equivalent if
there is an affine map

ϕ : R2 → R2

v 7→ Av + b

such that ϕ(∆) = ∆′ with A ∈ GL2(Z) and b ∈ Z2. Two Laurent polynomials f
and f ′ are equivalent if f ′ can be obtained from f by applying such a map to the
exponent vectors. Note that equivalence preserves nondegeneracy. For a polytope
∆ ⊂ R2, we let int(∆) denote the interior of ∆. We denote the standard 2-simplex
in R2 by Σ = conv({(0, 0), (1, 0), (0, 1)}).
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1. Nondegenerate Laurent polynomials

In this section, we review the geometry of nondegenerate Laurent polynomials.
We retain the notation used in the introduction: in particular, k is a perfect field,
f =

∑
cijx

iyj ∈ k[x±1, y±1] is an irreducible Laurent polynomial, and ∆ is its
Newton polytope. Our main implicit reference on toric varieties is Fulton [14].

Let k[∆] denote the graded semigroup algebra over k generated in degree d by
the monomials that are supported in d∆, i.e.

k[∆] =

∞⊕

d=0

〈xiyjtd | (i, j) ∈ (d∆ ∩ Z2)〉k.

Then X = X(∆)k = Projk[∆] is the projective toric surface associated to ∆ over
k. This surface naturally decomposes into toric components as

X =
⊔

τ⊂∆

Tτ ,

where τ ranges over the faces of ∆ and Tτ
∼= Tdim τ

k . The surface X is nonsingular
except possibly at the zero-dimensional toric components associated to the vertices
of ∆. The Laurent polynomial f defines a curve in T2

k
∼= T∆ ⊂ X , and we denote

by V = V (f) its closure in X . Alternatively, if we denote A = ∆ ∩ Z2, then X can

be canonically embedded in P#A−1
k = Projk[tij ](i,j)∈A, and V is the hyperplane

section
∑

cijtij = 0 of X .

We abbreviate ∂x = x
∂

∂x
and ∂y = y

∂

∂y
.

Definition 1.1. The Laurent polynomial f is nondegenerate if for each face τ ⊂ ∆,
the system

f |τ = ∂xf |τ = ∂yf |τ = 0

has no solution in k
∗2
.

We will sometimes write that f is ∆-nondegenerate to emphasize that ∆(f) = ∆.

Proposition 1.2. The following statements are equivalent.

(i) f is nondegenerate.
(ii) For each face τ ⊂ ∆, the ideal of k[x±1, y±1] generated by

f |τ , ∂xf |τ , ∂yf |τ
is the unit ideal.

(iii) For each face τ ⊂ ∆, the intersection V ∩ Tτ is smooth of codimension 1
in the torus orbit Tτ associated to τ .

(iv) The sequence of elements f, ∂xf, ∂yf (in degree one) forms a regular se-
quence in k[∆].

(v) The quotient of k[∆] by the ideal generated by f, ∂xf, ∂yf is finite of k-
dimension equal to 2 vol(∆).

Remark 1.3. Condition (iii) can also be read as: V is smooth and intersects X \T2
k

transversally and outside the zero-dimensional toric components associated to the
vertices of ∆.

Proof. See Batyrev [3, Section 4] for a proof of these equivalences and further
discussion. �
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Remark 1.4. Some authors refer to nondegenerate as ∆-regular, though we will not
employ this term. The use of nondegenerate to indicate a projective variety which
is not contained in a smaller projective space is unrelated to our present usage.

Example 1.5. Let f(x, y) ∈ k[x, y] be a bivariate polynomial of degree d ∈ Z≥1 with
Newton polytope ∆ = dΣ = conv({(0, 0), (d, 0), (0, d)}). The toric variety X(∆)k

is the d-uple Veronese embedding of P2
k in Pd(d+3)/2

k , and V (f) is the projective
curve in P2

k defined by the homogenization F (x, y, z) of f . We see that f(x, y) is
∆-nondegenerate if and only if V (f) is nonsingular, does not contain the coordinate
points (0, 0, 1), (0, 1, 0) and (1, 0, 0), and is not tangent to any coordinate axis.

Example 1.6. The following picture illustrates nondegeneracy in case of a quadri-
lateral Newton polytope.

∆(f)

τ1

τ2

τ3

τ4

R2

V (f)

Tτ1

Tτ3

Tτ4

Tτ2X(∆)k

Proposition 1.7. If f ∈ k[x±1, y±1] is nondegenerate, then there exists a k-
rational canonical divisor K∆ on V = V (f) such that {xiyj : (i, j) ∈ int(∆) ∩ Z2}
is a k-basis for the Riemann-Roch space L(K∆) ⊂ k(V ). In particular, the genus
of V is equal to #(int(∆) ∩ Z2).

Proof. See Khovanskĭı [21] or Castryck–Denef–Vercauteren [8, Section 2.2]. �

Remark 1.8. In general, if f is irreducible (but not necessarily nondegenerate), one
has that the geometric genus of V (f) is bounded by #(int(∆) ∩ Z2): this is also
known as Baker’s inequality [6, Theorem 4.2].

We conclude this section with the following intrinsic definition of nondegeneracy.

Definition 1.9. A curve V over k is ∆-nondegenerate if V is birational over k
to a curve U ⊂ T2

k defined by a nondegenerate Laurent polynomial f with Newton
polytope ∆. The curve V is nondegenerate if it is ∆-nondegenerate for some ∆.
The curve V is geometrically nondegenerate if V ×k k is nondegenerate over k.

2. Moduli of nondegenerate curves

We now construct the moduli space of nondegenerate curves of given genus g ≥ 2.
Since in this article we will be concerned with dimension estimates only, we restrict
to the case k = k.

We denote byMg the coarse moduli space of curves of genus g ≥ 2 over k, with
the property that for any flat family V →M of curves of genus g, there is a (unique)
morphism M →Mg which maps each closed point f ∈M to the isomorphism class
of the fiber Vf . (See e.g. Mumford [31, Theorem 5.11].)
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Let ∆ ⊂ R2 be a lattice polytope with g interior lattice points. We will construct
a flat family V(∆) → M∆ which parametrizes all ∆-nondegenerate curves over
k. The key ingredient is provided by the following result of Gel’fand–Kapranov–
Zelevinsky. Let A = ∆ ∩ Z2 and define the polynomial ring R∆ = k[cij ](i,j)∈A.

Proposition 2.1 (Gel’fand–Kapranov–Zelevinsky [15]). There exists a polynomial
EA ∈ R∆ with the property that for any Laurent polynomial f ∈ k[x±1, y±1] with
supp(f) ⊂ ∆, we have that f is ∆-nondegenerate if and only if EA(f) 6= 0.

Proof. The proof of Gel’fand–Kapranov–Zelevinsky [15, Chapter 10] is over C; how-
ever, the construction yields a polynomial over Z which is easily seen to characterize
nondegeneracy for an arbitrary field. �

The polynomial EA is known as the principal A-determinant and is given by
the A-resultant resA(F, ∂1F, ∂2F ). It is homogeneous in the variables cij of degree
6 vol(∆), and its irreducible factors are the face discriminants Dτ for faces τ ⊂ ∆.

Example 2.2. Consider the universal plane conic

F = c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2,

associated to the Newton polytope 2Σ as in Example 1.5.
Then

EA = c00c02c20(c
2
11 − 4c02c20)(c

2
10 − 4c00c20)(c

2
01 − 4c00c02)D∆

where
D∆ = 4c00c20c02 − c00c

2
11 − c210c02 − c201c20 + c10c01c11.

The nonvanishing of the factor c00c02c20 (corresponding to the discriminants of the
zero-dimensional faces) ensures that the curve does not contain a coordinate point,
and in particular does not have Newton polytope smaller than 2Σ; the nonvanishing
of the quadratic factors (corresponding to the one-dimensional faces) ensures that
the curve intersects the coordinate lines in two distinct points; and the nonvanishing
of D∆ ensures that the curve is smooth.

Let M∆ be the complement in P#A−1
k = ProjR∆ of the algebraic set defined

by EA. By the above, M∆ parameterizes nondegenerate polynomials having ∆ as
Newton polytope. One can show that

(2) dimM∆ = #A− 1,

which is a non-trivial statement if k is of finite characteristic (and false in general
for an arbitrary number of variables), see [8, Section 2]. Let V(∆) be the closed
subvariety of

X(∆)k ×M∆ ⊂ Projk[tij ]× Projk[cij ]

defined by the universal hyperplane section
∑

(i,j)∈A

cijtij = 0.

Then the universal family of ∆-nondegenerate curves is realized by the projection
map ϕ : V(∆)→M∆. The fiber V(∆)f above a nondegenerate Laurent polynomial
f ∈ M∆ is precisely the corresponding curve V (f), realized as the corresponding
hyperplane section of X(∆)k ⊂ Projk[tij ]. Note that ϕ is indeed flat [19, Theorem
III.9.9], since the Hilbert polynomial of V(∆)f is independent of f : its degree is
equal to degX(∆)k and its genus is g by Proposition 1.7.
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Thus by the universal property of Mg, there is a morphism h∆ : M∆ → Mg,
the image of which consists precisely of all isomorphism classes containing a ∆-
nondegenerate curve. Let M∆ denote the Zariski closure of the image of h∆.
Finally, let

Mnd
g =

⋃

g(∆)=g

M∆,

where the union is taken over all polytopes ∆ with g interior lattice points, of which
there are finitely many up to equivalence (see Hensley [20]).

The aim of Sections 8–12 is to estimate dimMnd
g . This is done by first refining

the obvious upper bounds dimM∆ ≤ dimM∆ = #(∆ ∩ Z2) − 1, taking into ac-
count the action of the automorphism group Aut(X(∆)k), and then estimating the
outcome in terms of g.

Remark 2.3. It follows from the fact that Mg is of general type for g ≥ 23 (see
e.g. [18]) that dimMnd

g < dimMg = 3g − 3 for g ≥ 23, since each component of

Mnd
g is unirational. Below, we obtain much sharper results which do not rely on

this deep statement.

3. Triangular nondegeneracy

In Sections 4–6, we study the nondegeneracy of certain well-known classes, such
as elliptic, hyperelliptic and Cab curves. In many cases, classical constructions
provide models for these curves that are supported on a triangular Newton polytope;
the elementary observations in this section will allow us to prove that these models
are nondegenerate when #k is not too small.

Lemma 3.1. Let f(x, y) ∈ k[x, y] define a smooth affine curve of genus g and
suppose that #k > 2(g+max(degx f, degy f)−1)+min(degx f, degy f). Then there
exist x0, y0 ∈ k such that the translated curve f(x − x0, y − y0) does not contain
(0, 0) and is also nontangent to both the x- and the y-axis.

Proof. Suppose degy f ≤ degx f . Applying the Riemann-Hurwitz theorem to the
projection map (x, y) 7→ x, one verifies that there are at most 2(g+degy f−1) points
with a vertical tangent. Therefore, we can find an x0 ∈ k such that f(x− x0, y) is
nontangent to the y-axis. Subsequently, there are at most 2(g+degx f−1)+degy f
values of y0 ∈ k for which f(x−x0, y− y0) is tangent to the x-axis and/or contains
(0, 0). �

Lemma 3.2. Let a ≤ b ∈ Z≥2 be such that gcd(a, b) ∈ {1, a}, and let ∆ be the
triangular lattice polytope conv({(0, 0), (b, 0), (0, a)}). Let f(x, y) ∈ k[x, y] be an
irreducible polynomial such that:

• f is supported on ∆, and
• the genus of V (f) equals g = #(int(∆) ∩ Z2).

Then if #k > 2(g + b− 1) + a, we have that V (f) is ∆-nondegenerate.

Proof. First suppose that gcd(a, b) = 1. The coefficients of xb and ya must be
nonzero, because else #(int(∆(f)) ∩ Z2) < g, which contradicts Baker’s inequality.
For the same reason, f must define a smooth affine curve: if (x0, y0) is a singular
point (over k), then #(int(∆(f(x− x0, y − y0)) ∩ Z2)) < g. The result now follows
from Lemma 3.1. Note that the nonvanishing of the face discriminant Dτ , where τ
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is the edge connecting (b, 0) and (0, a), follows automatically from the fact that τ
has no interior lattice points.

Next, suppose that gcd(a, b) = a. Then we may assume that the coefficients of
xb and ya are nonzero. Indeed, if a < b then the coefficient of ya must be nonzero.
Let g(t) ∈ k[t] be the coefficient of xb in f(x, y + txb/a). It is of degree a and
therefore has a non-root t0 ∈ k. Then substituting y ← y + t0x

b/a ensures that
the coefficient of xb is nonzero as well. If a = b then the coefficient of ya might be
zero, but f must contain at least one non-zero term of total degree a, and a similar
argument proves the claim.

Then as above, we have that f defines a smooth affine curve. So by applying
Lemma 3.1, we may assume that the face discriminants decomposing E∆∩Z2 are
nonvanishing at f , with the possible exception ofDτ , where τ is the edge connecting
(b, 0) and (0, a). However, under the equivalence

R2 → R2 : (X,Y ) 7→ (b−X − b

a
Y, Y ),

τ is interchanged with the edge connecting (0, 0) and (0, a). By applying Lemma 3.1
again, we obtain full nondegeneracy. �

4. Nondegeneracy of curves of genus at most one

Curves of genus 0. Let V be a curve of genus 0 over k. The anticanonical divisor
embeds V →֒ P2

k as a smooth conic. If #k =∞, then by Lemma 3.2 and Proposition
1.2, we see that V is nondegenerate. If #k < ∞ then V (k) 6= ∅ by Wedderburn,
hence V ∼= P1

k can be embedded as a nondegenerate line in P2. Therefore, any curve
V of genus 0 is ∆-nondegenerate, where ∆ is one of the following:

1

1

2

2

Curves of genus 1. Let V be a curve of genus 1 over k. First suppose that
V (k) 6= ∅. Then V is an elliptic curve and hence can be defined by a nonsingular
Weierstrass equation

(3) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ k. The corresponding Newton polytope ∆ is

2

3

where one of the dashed lines appears as a facet if a6 = 0. By Lemma 3.2, we have
that V is nondegenerate if #k ≥ 9. With some extra work we can get rid of this
condition.

For A = ∆ ∩ Z2, the principal A-determinant has 7 or 9 face discriminants
Dτ as irreducible factors. The nonvanishing of D∆ corresponds to the fact that
our curve is smooth in T2

k. In case τ is a vertex or a facet containing no interior
lattice points, the nonvanishing of Dτ is automatic. Thus it suffices to consider
the discriminants Dτ for τ a facet supported on the X-axis (denoted τX) or the
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Y -axis (denoted τY ). First, suppose that char k 6= 2. After completing the square,
we have a1 = a3 = 0 and the nonvanishing of DτX follows from the fact that the
polynomial p(x) = x3 + a2x

2 + a4x+ a6 is squarefree. The nonvanishing of DτY (if
τY exists) is clear. Now suppose char k = 2. Let δ be the number of distinct roots
(over k) of p(x) = x3 + a2x

2 + a4x + a6. If δ = 3 then DτX is non-vanishing. For
the nonvanishing of DτY , it then suffices to substitute x ← x + 1 if necessary, so
that a3 is nonzero (note that not both a1 and a3 can be zero). If δ < 3 then p(x)
has a root x0 of multiplicity at least 2. Since k is perfect, this root is k-rational
and after substituting x 7→ x+ x0 we have p(x) = x3 + a2x

2. In particular, DτX (if
τX exists) and DτY do not vanish.

In conclusion, we have shown that every genus 1 curve V over a field k is non-
degenerate, given that V (k) 6= ∅. This condition is automatically satisfied if k is
a finite field (by Hasse–Weil) or if k is algebraically closed. In particular, every
genus 1 curve is geometrically nondegenerate. More generally, we define the index
of a curve V over a field k to be the least degree of an effective non-zero k-rational
divisor on V (equivalently, the least extension degree of a field L ⊃ k for which
V (L) 6= ∅). We then have the following criterion.

Lemma 4.1. A curve V of genus 1 is nondegenerate if and only if V has index at
most 3.

Proof. First, assume that V is nondegenerate. There are exactly 16 equivalence
classes of polytopes with only 1 interior lattice point; see [34, Figure 2] or the
appendix at the end of this article. So we may assume that V is ∆-nondegenerate
with ∆ in this list. Now for every facet τ ⊂ ∆, the toric component Tτ of X(∆)k
cuts out an effective k-rational divisor of degree ℓ(τ) on V , where ℓ(τ) + 1 is the
number of lattice points on τ . The result then follows, since one easily verifies that
every polytope in the list contains a facet τ with ℓ(τ) ≤ 3.

Conversely, suppose that V has index ı ≤ 3. If ı = 1, we have shown above that
V is nondegenerate. If ı = 2 (resp. ı = 3), using Riemann-Roch one can construct a
plane model f ∈ k[x, y] with ∆(f) ⊂ conv({(0, 0), (4, 0), (0, 2)}) (resp. ∆(f) ⊂ 3Σ);
see e.g. Fisher [13, Section 3] for details. Then since V (k) = ∅ and hence #k =∞,
an application of Lemma 3.2 concludes the proof. �

Remark 4.2. There exist genus 1 curves of arbitrarily large index over every number
field; see Clark [9]. Hence there exist infinitely many genus 1 curves which are not
nondegenerate.

5. Nondegeneracy of hyperelliptic curves and Cab curves

Hyperelliptic curves. A curve V over k of genus g ≥ 2 is hyperelliptic if there
exists a nonconstant morphism V → P1

k of degree 2. The morphism is automatically
separable [19, Proposition IV.2.5] and the curve can be defined by a Weierstrass
equation

(4) y2 + q(x)y = p(x).

Here p(x), q(x) ∈ k[x] satisfy 2 deg q(x) ≤ deg p(x) and deg p(x) ∈ {2g + 1, 2g + 2},
as long as k 6= F2: see Enge [12, Theorem 7]. (This condition will fail for any
hyperelliptic curve C over k = F2 for which the degree 2 morphism π : C → P1

splits completely over k, meaning that above each point 0, 1,∞ ∈ P1(k) there are
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two distinct k-rational points of C.) For the rest of this subsection, we suppose
k 6= F2, and we leave the small modifications in this case to the reader.

The universal such curve has Newton polytope as follows:

2

2g + 1
or 2g + 2

By Lemma 3.2, if #k ≥ 6g + 5 then V is nondegenerate. In particular, if #k ≥ 17
then every curve of genus 2 is nondegenerate.

If char k 6= 2, we can drop the condition on #k by completing the square, as
in the elliptic curve case. This observation immediately weakens the condition to
#k ≥ 2⌊log2(6g+5)⌋ + 1. As a consequence, #k ≥ 17 is also sufficient for every
hyperelliptic curve of genus 3 or 4 to be nondegenerate.

Conversely, any curve defined by a nondegenerate polynomial as in (4) is hyper-
elliptic. We conclude that dimM∆ = dimHg = 2g − 1 [19, Example IV.5.5.5].

One can decide if a nondegenerate polynomial f defines a hyperelliptic curve
according to the following criterion, which also appears in Koelman [22, Lemma
3.2.9] with a more complicated proof.

Lemma 5.1. Let f ∈ k[x±, y±] be nondegenerate and suppose # int(∆(f)∩Z2) ≥ 2.
Then V (f) is hyperelliptic if and only if the interior lattice points of ∆(f) are
collinear.

Proof. We may assume that ∆ = ∆(f) has g ≥ 3 interior lattice points, since all
curves of genus 2 are hyperelliptic and any two points are collinear.

Let L ⊂ k(V ) be the subfield generated by all quotients of functions in L(K),
where K is a canonical divisor on V . Then L does not depend on the choice of
K, and L is isomorphic to the rational function field k(P1

k) if and only if V is
hyperelliptic.

We now show that L ∼= k(P1
k) if and only if the interior lattice points of ∆ are

collinear. We may assume that (0, 0) is in the interior of ∆. Then from Proposition
1.7, we see that L contains all monomials of the form xiyj for (i, j) ∈ int(∆) ∩
Z2. In particular, if the interior lattice points of ∆ are not collinear then after
a transformation we may assume further that (0, 1), (1, 0) ∈ int(∆), whence L ⊃
k(x, y) = k(V ); and if they are collinear, then clearly L ∼= k(P1

k). The result then
follows. �

For this reason, we call a lattice polytope hyperelliptic if its interior lattice points
are collinear.

A curve V over k of genus g ≥ 2 is called geometrically hyperelliptic if Vk = V ×kk
is hyperelliptic. Every hyperelliptic curve is geometrically hyperelliptic, but not
conversely: if V → C ⊂ Pg−1

k is the canonical morphism, then V is hyperelliptic if
and only if C ∼= P1

k. This latter condition is satisfied if and only if C(k) 6= ∅, which
is guaranteed when k is finite, when V (k) 6= ∅, and when g is even.

Lemma 5.2. Let V be a geometrically hyperelliptic curve which is nonhyperelliptic.
Then V is not nondegenerate.

Proof. Suppose that V is geometrically hyperelliptic and ∆-nondegenerate for some
lattice polytope ∆. Then applying Lemma 5.1 to Vk, we see that the interior lattice

Chapter 1. On nondegeneracy of curves 9
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points of ∆ are collinear. But then again by Lemma 5.1 (now applied to V itself),
V must be hyperelliptic. �

Cab curves. Let a, b ∈ Z≥2 be coprime. A Cab curve is a curve having a place
with Weierstrass semigroup aZ≥0+bZ≥0 (see Miura [30]). Any Cab curve is defined
by a Weierstrass equation

(5) f(x, y) =
∑

i,j∈N
ai+bj≤ab

cijx
iyj = 0.

with c0a, cb0 6= 0. By Lemma 3.2, if #k ≥ 2(g + a + b − 2) then we may assume
that this polynomial is nondegenerate with respect to its Newton polytope ∆ab:

a

b

Conversely, every curve given by a ∆ab-nondegenerate polynomial is Cab, and the
unique place dominating the point at projective infinity has Weierstrass semigroup
aZ≥2 + bZ≥2 (see Matsumoto [27]). Note that if k is algebraically closed, the class
of hyperelliptic curves of genus g coincides with the class of C2,2g+1 curves.

The moduli space of all Cab curves (for varying a and b) of fixed genus g is then a
finite union of moduli spacesM∆ab

. One can show that its dimension equals 2g−1
by an analysis of the Weierstrass semigroup, which has been done in Rim–Vitulli
[35, Corollary 6.3]. This dimension equals dimHg = dimM∆2,2g+1 and in fact this
is the dominating part: in Example 8.7 we will show that dimM∆ab

< 2g − 1 if
a, b ≥ 3 and g ≥ 6.

6. Nondegeneracy of curves of genus three and four

Curves of genus 3. A genus 3 curve V over k is either geometrically hyperelliptic
or it canonically embeds in P2

k as a plane quartic.
If V is geometrically hyperelliptic, then V may not be hyperelliptic and hence

(by Lemma 5.2) not nondegenerate. For example, over Q there exist degree 2 covers
of the imaginary circle having genus 3. However, if k is finite or V (k) 6= 0 then
every geometrically hyperelliptic curve is hyperelliptic. If moreover #k ≥ 17 we
can conclude that V is nondegenerate. See Section 5 for more details.

If V is embedded as a plane quartic, then assuming #k ≥ 17, we can apply
Lemma 3.2 and see that V is defined by a 4Σ-nondegenerate Laurent polynomial.

Curves of genus 4. Let V be a curve of genus 4 over k. If V is a geometrically
hyperelliptic curve then it is hyperelliptic, since the genus is even; thus if #k ≥ 17
then V is nondegenerate (see Section 5). Assume therefore that V is nonhyperellip-
tic. Then it canonically embeds as a curve of degree 6 in P3

k which is the complete
intersection of a unique quadric surface Q and a (non-unique) cubic surface C [19,
Example IV.5.2.2].

First, we note that if V is ∆-nondegenerate for some nonhyperelliptic lattice
polytope ∆ ⊂ R2, then Q or C must have combinatorial origins as follows. Let
∆(1) = conv(int(∆)∩Z2). Up to equivalence, there are three possible arrangements
for these interior lattice points:
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(a) (b) (c)

By Proposition 1.7, one verifies that V canonically maps to X(1) = X(∆(1))k ⊂ P3
k.

In (a), X(1) is nothing else but the Segre product P1
k × P1

k defined by the equation

xz = yw in P3
k, and by uniqueness it must equal Q. For (b), X(1) is the singular

quadric cone yz = w2, which again must equal Q. For (c), X(1) is the singular
cubic xyz = w3, which must be an instance of C. Note that a curve V can be
∆-nondegenerate with ∆(1) as in (a) or (b), but not both: whether Q is smooth or
not is intrinsic, since Q is unique. The third type (c) is special, and we leave it as
an exercise to show that the locus of curves of genus 4 which canonically lie on such
a singular cubic surface is a codimension ≥ 2 subspace ofM4 (use the dimension
bounds from Section 8).

With these observations in mind, we work towards conditions under which our
given nonhyperelliptic genus 4 curve V is nondegenerate. Suppose first that the
quadric Q has a (necessarily k-rational) singular point T ; then V is called conical.

This corresponds to the case where Vk = V ×k k has a unique g13 , and represents
a codimension 1 subscheme of M4 [19, Exercise IV.5.3]. If Q(k) = {T } then V
cannot be nondegenerate with respect to any polytope with ∆(1) as in (a) or (b),
since then Q is not isomorphic to either of the corresponding canonical quadric
surfaces X(1). If Q(k) ) {T }, which is guaranteed if k is finite or if V (k) 6= ∅, then
after a choice of coordinates we can identify Q with the weighted projective space
P(1, 2, 1). Our degree 6 curve V then has an equation of the form

f(x, y, z) = y3 + a2(x, z)y
2 + a4(x, z)y + a6(x, z)

with deg ai = i; the equation is monic in y because T 6∈ V . By Lemma 3.2, if
#k ≥ 23 then we may assume that f(x, y, 1) is nondegenerate with respect to its
Newton polytope ∆ as follows:

3

6

Remark 6.1. This argument shows that every conical genus 4 curve is potentially
nondegenerate, i.e., becomes nondegenerate after a finite extension of k. In fact, we
need only take a degree 2 extension which splits the quadric Q: after a k-rational
linear change of variable, Q is the cone over a conic C over k, so we may take
any field over which C acquires a rational point. This argument works even when
chark = 2.

Next, suppose that Q is smooth; then V is called hyperboloidal. This corresponds
to the case where Vk has two g13 ’s, and represents a dense subscheme of M4 [19,
Exercise IV.5.3]. If Q 6∼= P1

k×P1
k (e.g. this will be the case whenever the discriminant

of Q is nonsquare), then again V cannot be nondegenerate with respect to ∆ with
∆(1) as in (a) or (b). Therefore suppose that k is algebraically closed. Then
Q ∼= P1

k × P1
k and V can be projected to a plane quintic with 2 nodes [19, Exercise

IV.5.4].
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Consider the line connecting these nodes. Generically, it will intersect the nodes
with multiplicity 2, i.e. it will intersect all branches transversally. By Bezout, the
line will then intersect the curve transversally in one other point. This observation
fits within the following general phenomenon. Let d ∈ Z≥4, and consider the
polytope ∆ = dΣ with up to three of its angles pruned as follows:

(6)

d

d-2

2

dd-22

Let f ∈ k[x, y] be a nondegenerate polynomial with Newton polytope ∆. If we
prune no angle of dΣ, then X(∆)k ∼= P2

k (it is the image of the d-uple embedding)
and V (f) is a smooth plane curve of degree d. Pruning an angle has the effect
of blowing up X(∆)k at a coordinate point; the image of V (f) under the natural
projection X(∆)k → P2

k has a node at that point. If we prune m = 2 (resp. m = 3)
angles, then we likewise obtain the blow-up of P2

k at m points and the image of V (f)
in P2

k has m nodes. Since f is nondegenerate, the line connecting any two of these
nodes intersects the curve transversally elsewhere, and due to the shape of ∆ the
intersection multiplicity at the nodes will be 2. Conversely, every projective plane
curve having at most 3 nodes such that the line connecting any two nodes intersects
the curve transversally (also at the nodes themselves), is nondegenerate. Indeed,
after an appropriate projective transformation, it will have a Newton polytope as
in (6).

Exceptionally, the line connecting the two nodes of our quintic may be tangent
to one of the branches at a node. Using a similar reasoning, we conclude that V is
∆-nondegenerate, with ∆ equal to polytope (h.2) from Section 7 below.

3

3

(h.1)
3

3

(h.2)

genus 4 hyperboloidal

Remark 6.2. Again, this argument can be used to show that any hyperboloidal curve
of genus 4 is potentially nondegenerate. Standard results in the theory of quadratic
forms over fields k with chark 6= 2 imply that Q splits, so that Q ∼= P1

k × P1
k, if

and only if Q(k) 6= ∅ and the discriminant of Q is a square in k: if Q(k) 6= ∅ then
Q splits a hyperbolic plane; by scaling, the orthogonal complement is of the form
x2 − dy2, so if d ∈ k×2 then Q splits, and conversely. It follows that any quadric
over k splits over an at most quadratic extension. To proceed, we then project
V to a plane quintic, which requires #k to be sufficiently large: one could make
this explicit, one could use the Bertini theorem over finite fields due to Poonen [33]
and analyze explicitly the finitely many exceptions. Assuming that V has been so
projected (extending k further, if necessary), the rest of the argument holds.

Now, however, we can make a further change of variables to bring all genus 4
hyperboloidal curves under a single polytope. Indeed, if f(x, y) has a Newton poly-
tope of type (h.1) or (h.2), then applying a change of variables to x3y3f(x−1, y−1)
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of the form (x, y) 7→ (x+a, y+b) for a, b ∈ k yields a square 3×3 Newton polytope.
So replacing the two polytopes of class (h) by the single polytope in the summary
below.

Remark 6.3. As in Remark 4.2, an argument based on the index shows that there
exist genus 4 curves which are not nondegenerate. A result by Clark [10] states
that for every g ≥ 2, there exists a number field k and a genus g curve V over k,
such that the index of V is equal to 2g − 2, the degree of the canonical divisor.
In particular, there exists a genus 4 curve V of index 6. Such a curve cannot be
nondegenerate. Indeed, for each of the above arrangements (a)–(c), X(1) contains
the line z = w = 0, which cuts out an effective divisor on V of degree 3 in cases (a)
and (b) and degree 2 in case (c).

7. Nondegeneracy of low genus curves: summary

We now summarize the results of the preceding sections. If k is an algebraically
closed field, then every curve V of genus at most 4 over k can be modeled by a
nondegenerate polynomial having one of the following as Newton polytope:

1

1

(a) genus 0

2

3

(b) genus 1

2

6

(c) genus 2

2

8

(d) genus 3 hyperelliptic

4

4

(e) genus 3 planar

2

10

(f) genus 4 hyperelliptic

3

6

(g) genus 4 conical

3

3

(h) genus 4 hyperboloidal

Moreover, each of these classes are disjoint. For the polytopes (c)–(h), we have
dimM∆ = 3, 5, 6, 7, 8, 9, respectively. All hyperelliptic curves and Cab curves are
nondegenerate.

For an arbitrary perfect field k, if V is not hyperboloidal and has genus at most
4, then V is nondegenerate whenever k is a sufficiently large finite field, or when
k is infinite and V (k) 6= ∅; for the former, the condition #k ≥ 23 is sufficient but
most likely superfluous (see Remark 7.2).

Remark 7.1. We can situate the nonhyperelliptic Cab curves that lie in this classi-
fication. In genus 3, we have C3,4 curves, which have a smooth model in P2

k, since
∆3,4 is nonhyperelliptic. In genus 4, we have C3,5 curves, which are conical: this
can be seen by analyzing the interior lattice points of ∆3,5, as in Section 6.

Remark 7.2. In case #k < ∞, we proved (without further condition on #k) that
if V is not hyperboloidal then it can be modeled by a polynomial f ∈ k[x, y] with
Newton polytope contained in one of the polytopes (a)–(g). The condition on #k
then came along with an application of Lemma 3.2 to deduce nondegeneracy. In
the g = 1 case, we got rid of this condition by using non-linear transformations
(completing the square) and allowing smaller polytopes. Similar techniques can be
used to improve (and probably even remove) the bounds on #k in genera 2 ≤ g ≤ 4.
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For example, using naive brute force computation we have verified that in genus 2,
all curves are nondegenerate whenever #k = 2, 4, 8.

8. An upper bound for dimMnd
g

From now on, we assume k = k. In this section, we prepare for a proof of
Theorem 11.1, which gives an upper bound for dimMnd

g in terms of g.

For a lattice polytope ∆ ⊂ Z2 with g ≥ 2 interior lattice points, we sharpen the
obvious upper bound dimM∆ ≤ dimM∆ = #(∆∩Z2)−1 (see (2)) by incorporating
the action of the automorphism group ofX(∆)k, which has been explicitly described
by Bruns and Gubeladze [7, Section 5]. In Sections 9–11 we then work towards a
bound in terms of g, following ideas of Haase and Schicho [17].

The automorphisms of X(∆)k = Projk[∆] →֒ P#(∆∩Z2)−1 correspond to the
graded k-algebra automorphisms of k[∆], and admit a combinatorial description as
follows.

Definition 8.1. A nonzero vector v ∈ Z2 is a column vector of ∆ if there exists a
facet τ ⊂ ∆ (the base facet) such that

v + ((∆ \ τ) ∩ Z2) ⊂ ∆.

We denote by c(∆) the number of column vectors of ∆.

Example 8.2. Any multiple of the standard 2-simplex Σ has 6 column vectors. The
octagonal polytope below shows that a polytope may have no column vectors.

Figure 8.2: Column vectors of some lattice polytopes

The dimension of the automorphism group Aut(X(∆)k) is then determined as
follows.

Proposition 8.3 (Bruns–Gubeladze [7, Theorem 5.3.2]). We have

dimAut(X(∆)k) = c(∆) + 2.

Proof sketch. One begins with the 2-dimensional subgroup of Aut(X(∆)k) induced
by the inclusion Aut(T2) →֒ Aut(X(∆)k). On the k[∆]-side, this corresponds to
the graded automorphisms induced by (x, y) 7→ (λx, µy) for λ, µ ∈ k∗2.

Next, column vectors of ∆ correspond to automorphisms of X(∆)k in the fol-
lowing way. If v is a column vector, modulo equivalence we may assume that
v = (0,−1), that the base facet is supported on the X-axis, and that ∆ is contained
in the positive quadrant R2

≥0. Let f(x, y) ∈ k[x, y] be supported on ∆. Since the

vector v = (0,−1) is a column vector, the polynomial f(x, y + λ) will again be

14 Chapter 1. On nondegeneracy of curves



ON NONDEGENERACY OF CURVES

supported on ∆, for any λ ∈ k. Hence v induces a family of graded automorphisms
k[∆]→ k[∆], corresponding to a one-dimensional subgroup of Aut(X(∆)k).

It then remains to show that these subgroups are algebraically independent from
each other and from Aut(T2), and that together they generate Aut(X(∆)k) (after
including the finitely many automorphisms coming from Z-affine transformations
mapping ∆ to itself). �

Using the fact that a curve of genus g ≥ 2 has finitely many automorphisms we
obtain the following corollary. We leave the details as an exercise.

Corollary 8.4. We have dimM∆ ≤ m(∆) := #(∆ ∩ Z2)− c(∆) − 3.

Remark 8.5. In order to have equality, it is sufficient that ∆ is a so-called maximal
polytope (see Section 10 for the definition). This is the main result of Koelman’s
thesis [22, Theorem 2.5.12].

Example 8.6. Let ∆ = conv({(0, 0), (2g + 2, 0), (0, 2)}) as in section 5, so that
dimM∆ = 2g − 1. One verifies that c(∆) = g + 4, so the upper bound in Corol-
lary 8.4 reads m(∆) = (3g + 6) − (g + 4)− 3 = 2g − 1; so in this case, the bound
is sharp. It is easy to verify that the bound is also sharp if ∆ = dΣ, d ∈ Z≥4;
then dimM∆ reads (d + 1)(d + 2)/2 − 9 = g + 3d − 9 ≤ 2g. The latter are ex-
amples of maximal polytopes. Opposed to this, let (dΣ)0 be obtained from dΣ by
pruning off (0, 0). This reduces the number of lattice points by 1 and the number
of column vectors by 2. Hence our bound increases, although dΣ and (dΣ)0 give
rise to the same moduli space. Indeed, pruning off (0, 0) only forces our curves in
X(dΣ)k ∼= P2 to pass through (0, 0, 1).

Example 8.7. We now use Corollary 8.4 to show that the dimension of the moduli
space of nonhyperelliptic Cab curves of genus g (where a and b may vary) has
dimension strictly smaller than 2g − 1 = dimHg whenever g ≥ 6. Consider ∆ab =
Conv{(0, a), (b, 0), (0, 0)} with a, b ∈ Z≥3 coprime. Then we have

g = (a− 1)(b− 1)/2, #(∆ ∩ Z2) = g + a+ b+ 1,

and the set of column vectors is given by

{(n,−1) : n = 0, . . . , ⌊b/a⌋} ∪ {(−1,m) : m = 0, . . . , ⌊a/b⌋}.
Suppose without loss of generality that a < b. Then a is bounded by

√
2g + 1.

Corollary 8.4 yields

dimM∆ ≤ m(∆) = g + a+ b+ 1−
(⌊

b

a

⌋
+ 2

)
− 3 < a+

2g − 1

a
+ g − 2.

As a (real) function of a, this upper bound has a unique minimum at a =
√
2g − 1.

Therefore, to deduce that it is strictly smaller than 2g − 1 for all a ∈ [3,
√
2g + 1],

it suffices to verify so for the boundary values a = 3 and a =
√
2g + 1, which is

indeed the case if g ≥ 6.

9. A bound in terms of the genus

Throughout the rest of this article, we will employ the following notation. Let
∆(1) be the convex hull of the interior lattice points of ∆. Let r (resp. r(1)) denote
the number of lattice points on the boundary of ∆ (resp. ∆(1)), and let g(1) denote
the number of interior lattice points in ∆(1), so that g = g(1) + r(1).

We now prove the following preliminary bound.
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Proposition 9.1. If ∆ has at least g ≥ 2 interior lattice points, then dimM∆ ≤
2g + 3.

Proof. We may assume that ∆ is nonhyperelliptic, because otherwise dimM∆ ≤
2g − 1 by Lemma 5.1. We may also assume that ∆(1) is not a multiple of Σ, since
otherwise ∆-nondegenerate curves are canonically embedded in X(∆(1))k ∼= P2

k

using Proposition 1.7; then from Example 8.6 it follows that dimM∆ ≤ 2g.
An upper bound for dimM∆ in terms of g then follows from a lemma by Haase

and Schicho [17, Lemma 12], who proved that r ≤ r(1) +9, in which equality holds
if and only if ∆ = dΣ for some d ∈ Z≥4 (a case which we have excluded). Hence

(7) #(∆ ∩ Z2) = g + r ≤ g + r(1) + 8 = 2g + 8− g(1),

and thus

(8) dimM∆ ≤ m(∆) = #(∆ ∩ Z2)− c(∆)− 3 ≤ 2g + 5− c(∆)− g(1) ≤ 2g + 5.

This bound improves to 2g + 3 if g(1) ≥ 2, so we remain with two cases: g(1) = 0
and g(1) = 1.

Suppose first that g(1) = 0. Then by Lemma 9.2 below, any ∆-nondegenerate
curve is either a smooth plane quintic (excluded), or a trigonal curve. Since the
moduli space of trigonal curves has dimension 2g + 1 (a classical result, see also
Section 12 below), the bound holds.

Next, suppose that g(1) = 1. Then, up to equivalence, there are only 16 possi-
bilities for ∆(1), which are listed in [34, Figure 2] or in the appendix below. Hence,
there are only finitely many possibilities for ∆, and for each of these polytopes we
find that #(∆ ∩ Z2)− c(∆)− 3 ≤ 2g + 2. �

In fact, for all but the 5 polytopes in Figure 9 (up to equivalence), we find that
the stronger bound #(∆ ∩ Z2)− c(∆)− 3 ≤ 2g + 1 holds.

(a) (b) (c) (d) (e)

Figure 9: Polytopes with g(1) = 1 and #(∆ ∩ Z2)− c(∆)− 3 = 2g + 2

Lemma 9.2. Let f ∈ k[x±1, y±1] be nondegenerate and suppose that the interior
lattice points of ∆(f) are not collinear. Let ∆(1) be the convex hull of these interior
lattice points.

(a) If ∆(1) has no interior lattice points, then V (f) is either trigonal or iso-
morphic to a smooth plane quintic.

(b) If V (f) is trigonal or isomorphic to a smooth plane quintic, and ∆(1) has
at least 4 lattice points on the boundary, then ∆(1) has no interior lattice
points.
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Proof. Koelman gives a proof of this in his Ph.D. thesis [22, Lemma 3.2.13], based
on Petri’s theorem. A more combinatorial argument uses the fact that lattice
polytopes of genus 0 are equivalent with either 2Σ, or with a polytope that is
caught between two horizontal lines of distance 1. This was proved independently
by Arkinstall, Khovanskii, Koelman, and Schicho (see the generalized statement by
Batyrev-Nill [5, Theorem 2.5]).

In the first case, ∆-nondegenerate curves are canonically embedded in X(2Σ)k ∼=
P2
k, hence they are isomorphic to smooth plane quintics.
In the second case, it follows that ∆ is caught between two horizontal lines of

distance 3. This may actually fail if ∆(1) = Σ, which corresponds to smooth plane
quartics. But in both situations, ∆-nondegenerate curves are trigonal.

For (b), using the canonical divisor K∆ from Proposition 1.7, one sees that the

canonical embedding of V (f) in Pg−1
k is contained in X(∆(1))k. According to a

theorem of Koelman [23], the condition of having at least 4 lattice points on the
boundary ensures that X(∆(1)) is generated by quadrics. Now since V (f) is trigonal
or isomorphic to a smooth plane quintic, by Petri’s theorem the intersection of all
quadrics containing V (f) is a surface of sectional genus 0. Hence this surface must
be X(∆(1))k and ∆(1) must have genus 0. �

Remark 9.3. The condition that ∆(1) should have at least 4 lattice points on the
boundary is necessary in Lemma 9.2. For example, let k be algebraically closed
and let ∆ = conv{(2, 0), (0, 2), (−2,−2)}. Then ∆ is a lattice polytope of genus 4,
hence all ∆-nondegenerate curves are trigonal. However, ∆(1) contains (0, 0) in its
interior. Note that X(∆(1))k ⊂ P3

k is the cubic xyz = w3.

10. Refining the upper bound: Maximal polytopes

We further refine the bound in Proposition 9.1 by adapting the proof of the
Haase–Schicho bound r ≤ r(1) + 9 in order to obtain an estimate for r − c(∆)
instead of just r. We first do this for maximal polytopes, and treat nonmaximal
polytopes in the next section.

Definition 10.1. A lattice polytope ∆ ⊂ Zn is maximal if ∆ is not properly con-
tained in another lattice polytope with the same interior lattice points, i.e., for all
lattice polytopes ∆′ ) ∆, we have

int(∆′) ∩ Zn 6= int(∆) ∩ Zn.

We define the relaxed polytope ∆(−1) of a lattice polytope ∆ ⊂ Z2 as follows.
Assume that 0 ∈ ∆. To each facet τ ⊂ ∆ given by an inequality of the form
a1X + a2Y ≤ b with ai ∈ Z coprime, we define the relaxed inequality a1X + a2Y ≤
b+1 and let ∆(−1) be the intersection of these relaxed inequalities. If p is a vertex
of ∆ given by the intersection of two such facets, we define the relaxed vertex p(−1)

to be the intersection of the boundaries of the corresponding relaxed inequalities.

Lemma 10.2 (Haase–Schicho [17, Lemmas 9–10], Koelman [22, Section 2.2]). Let
∆ ⊂ Z2 be a 2-dimensional lattice polytope. Then ∆(−1) is a lattice polytope if and
only if ∆ = ∆′(1) for some lattice polytope ∆′. Furthermore, if ∆ is nonhyperelliptic,
then ∆ is maximal if and only if ∆ = (∆(1))(−1).

The proof of the Haase–Schicho bound r ≤ r(1) +9 utilizes a theorem of Poonen
and Rodriguez-Villegas [34], which we now introduce.
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A legal move is a pair (v, w) with v, w ∈ Z2 such that conv({0, v, w}) is a 2-
dimensional triangle whose only nonzero lattice points lie on e(v, w), the edge be-
tween v and w. The length of a legal move (v, w) is

ℓ(v, w) = det

(
v
w

)
,

which is of absolute value r− 1, where r = #(e(v, w) ∩Z2) is the number of lattice
points on the edge between v and w. Note that the length can be negative.

A legal loop P is a sequence of vectors v1, v2, . . . , vn ∈ Z2 such that for all
i = 1, . . . , n and indices taken modulo n, we have:

• (vi, vi+1) is a legal move, and
• vi−1, vi, vi+1 are not contained in a line.

The length ℓ(P) of a legal loop P is the sum of the lengths of its legal moves.
The winding number of a legal loop is its winding number around 0 in the

sense of algebraic topology. The dual loop P∨ is given by w1, . . . , wn, where wi =
ℓ(vi, vi+1)

−1 · (vi+1 − vi) for i = 1, . . . , n. One can check that this is again a legal
loop with the same winding number as P and that P∨∨ = P after a 180◦ rotation.

Theorem 10.3 (Poonen–Rodriguez-Villegas [34, Section 9.1]). Let P be a legal
loop with winding number w. Then ℓ(P) + ℓ(P∨) = 12w.

Now let ∆ ⊂ Z2 be a maximal polytope with 2-dimensional interior ∆(1). We
associate to ∆ a legal loop P(∆) as follows. By Lemma 10.2, ∆ is obtained from
∆(1) by relaxing the edges. Let p1, . . . , pn be the vertices of ∆(1), enumerated

counterclockwise; then P(∆) is given by the sequence qi = p
(−1)
i − pi where p

(−1)
i

is the relaxed vertex of pi.

Example 10.4. The following picture, inspired by Haase–Schicho [17, Figure 20], is
illustrative: it shows a polytope ∆ with 2-dimensional interior ∆(1), the associated
legal loop P(∆), and its dual P(∆)∨. In this example, ℓ(P(∆)) = ℓ(P(∆)∨) = 6.

Figure 10.4: The legal loop P(∆) associated to a lattice polytope ∆

A crucial observation is that the bold-marked lattice points of P(∆) are column
vectors of ∆. This holds in general and lies at the core of our following refinement
of the Haase–Schicho bound.

Lemma 10.5. If ∆ is maximal and nonhyperelliptic, then:

(a) r − r(1) = ℓ(P(∆)) ≤ 9.
(b) r − r(1) − c(∆) ≤ min (ℓ(P(∆)), ℓ(P(∆)∨)) ≤ 6.

Proof. We abbreviate P = P(∆).
Inequality (a) is by Haase–Schicho [17, Lemma 11] and works as follows. The

length of the legal move (qi, qi+1) measures the difference between the number of
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lattice points on the facet of ∆ connecting p
(−1)
i and p

(−1)
i+1 , and the number of lattice

points on the edge of ∆(1) connecting pi and pi+1. Therefore r − r(1) = ℓ(P). The
dual loop P∨ walks (in a consistent and counterclockwise-oriented way) through
the direction vectors of the edges of ∆(1), therefore each move has positive length
and we have ℓ(P(∆)∨) ≥ 3. Since P∨ has winding number 1, the statement follows
from Theorem 10.3. (One can further show that equality holds if and only if ∆ is
a multiple of the standard 2-simplex Σ.)

To prove inequality (b), we first claim: there is a bijection between lattice points
v which lie properly on a counterclockwise-oriented (positive length) legal move

qiqi+1 of P , and column vectors of ∆ with base facet p
(−1)
i p

(−1)
i+1 . Indeed, after an

appropriate transformation, we may assume as in Proposition 8.3 that v = (0,−1),
that p

(−1)
i and p

(−1)
i+1 lie on the X-axis, and that ∆ is contained in the positive

quadrant R2
≥0; after these normalizations, the claim is straightforward.

Now, since the dual loop P∨ consists of counterclockwise-oriented legal moves
only, it has at most ℓ(P∨) vertices. Since P = P∨∨ (after 180◦ rotation), P has
at most ℓ(P∨) vertices. By the claim, we have ℓ(P) ≤ ℓ(P∨) + c, and the result
follows by combining this with part (a) and Theorem 10.3. �
Corollary 10.6. If ∆ is maximal, then dimM∆ ≤ 2g + 3− g(1). In particular, if
g(1) ≥ 2 then dimM∆ ≤ 2g + 1.

Proof. By Lemma 10.5, we have m(∆) = g + r − 3 − c(∆) ≤ g + r(1) + 3 ≤
2g + 3− g(1). �
Remark 10.7. Note that Lemma 10.5(a) immediately extends to nonmaximal poly-
topes (r − r(1) can only decrease), so the Haase–Schicho bound holds for arbitrary
nonhyperelliptic polytopes. This we cannot conclude for part (b): if r decreases,
c(∆) may decrease more quickly so that the bound no longer holds. An example of
such behaviour can be found in Figure 9(c).

11. Refining the upper bound: general polytopes

We are now ready to prove the main result of Sections 8–11.

Theorem 11.1. If g ≥ 2, then dimMnd
g ≤ 2g + 1 except for g = 7 where we have

dimMnd
7 ≤ 16.

Proof. It suffices to show that the claimed bounds hold for all polytopes ∆ with g
interior lattice points. By the proof of Proposition 9.1, we may assume that ∆(1)

is two-dimensional, that it is not a multiple of Σ, and that it has g(1) ≥ 1 interior
lattice points.

Let us first assume that g(1) ≥ 2. We will show that dimM∆ ≤ 2g + 1. From
Corollary 10.6, we know that this is true if ∆ is maximal. Therefore, suppose that

∆ is nonmaximal; then it is obtained from a maximal polytope ∆̃ by taking away
points on the boundary (keeping the interior lattice points intact). If two or more
boundary points are taken away, then as in (8) we have

m(∆) ≤ #(∆ ∩ Z2)− 3 ≤ #(∆̃ ∩ Z2)− 2− 3 ≤ 2g + 5− g(1) − 2 ≤ 2g + 1.

So we may assume that ∆ = conv(∆̃ ∩ Z2 \ {p}) for a vertex p ∈ ∆̃. Similarly, we

may assume that c(∆) < c(∆̃), for else

m(∆) = #(∆ ∩ Z2)− c(∆)− 3 ≤ #(∆̃ ∩ Z2)− c(∆̃)− 3 = m(∆̃) ≤ 2g + 1.
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Let v be a column vector of ∆̃ that is no longer a column vector of ∆ = conv(∆̃∩Z2\
{p}). Then p must lie on the base facet τ of v. After an appropriate transformation,
we may assume that p = (0, 0), that v = (0,−1), that τ lies along the X-axis, and

that ∆̃ lies in the positive quadrant, as follows.

p

v

Figure 11.2: An almost maximal polytope.

Note that (1, 1) ∈ int(∆̃) since otherwise v would still be a column vector of ∆.

But then the other facet of ∆̃ which contains p must be supported on the Y -axis,
for else (1, 1) would no longer be in int(∆). One can now verify that if f(x, y) is
∆-nondegenerate, then for all but finitely many λ ∈ k, the polynomial f(x, y + λ)

will have Newton polytope ∆̃ and all but finitely of those will be ∆̃-nondegenerate.
Therefore, we haveM∆ ⊂M∆̃, and the dimension estimate follows.

Now suppose that g(1) = 1. From the finite computation in the proof of Propo-
sition 9.1, we know that the bound dimM∆ ≤ 2g + 1 holds if ∆ is not among
the polytopes listed in Figure 9. Now in this list, the polytopes (b)–(e) are not
maximal, and for these polytopes the same trick as in the g(1) ≥ 2 case applies.
However, polytope (a) is maximal and contains 7 interior lattice points: therefore,
we can only prove dimMnd

7 ≤ 16. �

Let ∆ be a nonmaximal nonhyperelliptic lattice polytope, and let ∆̃ = (∆(1))(−1)

be the smallest maximal polytope containing ∆. Let f ∈ k[x±, y±] be a ∆-

nondegenerate Laurent polynomial. Since ∆ ⊂ ∆̃, we can consider the (degree

1) locus Ṽ of f = 0 in X(∆̃)k = Proj k[∆̃]. Then one can wonder whether the
observation we made in the proof of Theorem 11.1 holds in general: is there always

a σ ∈ Aut(X(∆̃)k) such that σ(Ṽ ) ∩ T2
k is defined by a ∆̃-nondegenerate polyno-

mial? The answer is no, because it is easy to construct examples where the only

automorphisms of X(∆̃)k are those induced by Aut(T2
k). Then σ(Ṽ )∩T2

k is always

defined by f(λx, µy) (for some λ, µ ∈ k∗), which does not have ∆̃ as its Newton

polytope and hence cannot be ∆̃-nondegenerate.

However, f is very close to being ∆̃-nondegenerate, and this line of thinking leads

to the following observation. Let p be a vertex of ∆̃ that is not a vertex of ∆, and

let q1, q2 be the closest lattice points to p on the respective facets of ∆̃ containing p.
The triangle spanned by p, q1, q2 cannot contain any other lattice points, because

otherwise removing p would affect the interior of ∆̃. Thus the volume of this

triangle is equal to 1/2 by Pick’s theorem, and the affine chart of X(∆̃)k attached

to the cone at p is isomorphic to A2
k. In particular, X(∆̃)k is nonsingular in the

zero-dimensional torus Tp corresponding to p. Then f fails to be ∆̃-nondegenerate
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only because Ṽ passes through Tp (i.e. passes through (0, 0) ∈ A2
k), elsewhere it

fulfils the conditions of nondegeneracy: Ṽ is smooth, intersects the 1-dimensional

tori associated to the facets of ∆̃ transversally, and does not contain the singular

points of X(∆̃)k. Now following the methods of Section 2, one could construct the
bigger moduli space of curves satisfying this weaker nondegeneracy condition. Its

dimension would still be bounded by #(∆̃ ∩Z2)− c(∆̃)− 3, which by Lemma 10.5

is at most 2g + 3− g(1) because ∆̃ is maximal. Therefore dimM∆ ≤ 2g + 3− g(1)

for nonmaximal ∆, and this yields an alternative proof of Theorem 11.1. Related
observations have been made by Koelman [22, Section 2.6].

12. Trigonal curves, trinodal sextics, and sharpness of our bounds

For g ≥ 2, we implicitly proved in Section 5 that dimMnd
g ≥ 2g − 1. But

already in genera 3 and 4, by the results in Section 6 we have dimMnd
3 = 6 and

dimMnd
4 = 9, so this lower bound is an underestimation. For higher genera, we

prove in this last section that the bounds given in Theorem 11.1 are sharp, mainly
by investigating spaces of trigonal curves. Our main result is the following.

Theorem 12.1. If g ≥ 4, then dimMnd
g = 2g + 1 except for g 6= 7 where

dimMnd
7 = 16.

Proof. It suffices to find for every genus g ≥ 5 a lattice polytope ∆ with g interior
lattice points, for which dimM∆ = 2g + 1 if g 6= 7, and dimM∆ = 16 if g = 7. If
g = 2h is even, let ∆ be the rectangle

(9) conv ({(0, 0), (0, 3), (h+ 1, 3), (h+ 1, 0)}) .
Note that then #(∆∩Z2) = 2g+8 and c(∆) = 4. If g = 2h+1 is odd but different
from 7, let ∆ be the trapezium

(10) conv ({(0, 0), (0, 3), (h, 3), (h+ 3, 0)}) .
Again, #(∆ ∩ Z2) = 2g + 8 and c(∆) = 4. Finally, if g = 7 then let ∆ be

(11) conv{(2, 0), (0, 2), (−2, 2), (−2, 0), (0,−2), (2,−2)}
(i.e. the polytope given in Figure 9(a)). Here, #(∆ ∩ Z2) = 19 and c(∆) = 0.

We first prove that

(12) dimM∆ = #(∆ ∩ Z2)− 1− dimAut(X(∆)k),

holds for the families of polytopes (9) and (10), for which the result then follows
from Proposition 8.3. This can be achieved using the well-known theory of trigonal
curves [11, 26]. More generally, let k, ℓ ∈ Z≥2 satisfy k ≤ ℓ, let ∆(1) be the
trapezium

1

k ℓ

and let ∆ = ∆(1)(−1). In general, ∆(1)(−1) need not be a lattice polygon: it may
take some of its vertices outside Z2; but when k = ℓ and k = ℓ− 1, corresponding
to (9) and (10), respectively, the polygon ∆(1)(−1) takes its vertices in Z2.
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Remark 12.2. In fact, using the combinatorial criterion from Lemma 10.2, one
can verify that ∆(1)(−1) is a lattice polygon if and only if ℓ ≤ (2g − 2)/3, where
g = k+ ℓ+ 2. This confirms a well-known inequality on the Maroni invariants of a
trigonal curve (where the inequality is proven using the Riemann-Roch theorem).

Then in these cases, if a curve V is ∆-nondegenerate, it is trigonal of genus
g = k+ℓ+2. By Proposition 1.7, it can be canonically embedded inX(∆(1))k, which

is the rational surface scroll Sk,ℓ ⊂ Pg−1
k . By Petri’s theorem [1], this scroll is the

intersection of all quadrics containing the canonical embedding. As a consequence,
two different such canonical embeddings must differ by an automorphism of Pg−1

k

that maps X(∆(1))k to itself; in other words, any two canonical embeddings of V
must differ by an automorphism of X(∆(1))k.

Now let f1, f2 ∈ k[x±, y±] be ∆-nondegenerate polynomials such that V (f1)
and V (f2) are isomorphic as abstract curves. Since the fans associated to ∆ and
∆(1) are the same, we have X(∆)k = X(∆(1))k. Under this identification, V (f1)
and V (f2) become canonical curves that must differ by an automorphism of X(∆)k.
Thus we can conclude (12). (We note that although any trigonal curve is canonically
embedded in some rational normal scroll Sk,ℓ and hence in someX(∆)k, it might fail
to be nondegenerate because it can be impossible to avoid tangency to X(∆)k \T2

k.)
To conclude, suppose that ∆ is as in (11). We refer to the pruned simplex (6)

and the accompanying discussion; here we have d = 6. It follows that if f is a ∆-
nondegenerate polynomial, then f gives rise to a plane sextic V with three nodes (at
the coordinate points) and no other singularities. Conversely, any trinodal sextic
where any line connecting two nodes intersects the curve transversally elsewhere, is
∆-nondegenerate. Since the latter is an open condition,M∆ is the Zariski closure
of the moduli space V3,6 of trinodal plane sextics. The variety V3,6 is in its turn the
image of a Severi variety [37], and it is classical that dimV3,6 = 16—for a modern
treatment, see Sernesi [36]. �

Remark 12.3. In his Ph.D. thesis, Koelman [22, Theorem 2.5.12] proves that Equa-
tion (12) holds for any polytope ∆ ⊂ R2 which is maximal and nonhyperelliptic. In
fact, Koelman assumes k = C, but his methods extend to an arbitrary algebraically
closed field k = k. This provides another proof of Theorem 12.1, but we are content
to prove our results in the above more elementary (and classical) way.
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Appendix: lattice polytopes of genus one

There are 16 equivalence classes of lattice polytopes having one interior lattice
point. Polytopes representing these are drawn below. This is a copy of [34, Figure
2], we include the list here for sake of self-containedness. It is an essential ingredient
in the proofs of Lemma 4.1 and Proposition 9.1.
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Moving out the edges of a lattice polygon

Wouter Castryck
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Abstract

We review previous work of (mainly) Koelman, Haase and Schicho, and
Poonen and Rodriguez-Villegas on the dual operations of (i) taking the
interior hull and (ii) moving out the edges of a two-dimensional lattice
polygon. We show how the latter operation naturally gives rise to an
algorithm for enumerating lattice polygons by their genus. We then report
on an implementation of this algorithm, by means of which we produce
the list of all lattice polygons (up to equivalence) whose genus is contained
in {1, . . . , 30}. In particular, we obtain the number of inequivalent lattice
polygons for each of these genera. As a byproduct, we prove that the
minimal possible genus for a lattice 15-gon is 45.

1 Introduction

(1.1) A lattice polygon is a (nonempty) convex polygon in R2 with vertices in
Z2. Points of Z2 are called lattice points. The dimension of a polygon ∆ is the
dimension of the smallest affine subspace of R2 containing ∆. The genus of a
two-dimensional lattice polygon is the number of lattice points in its topological
interior (when equipped with the subspace topology of R2). The genus of a
lower-dimensional lattice polygon is considered 0. A Z-affine transformation of
R2 is a map of the form ϕ : R2 → R2 : p 7→ pA+ b with A ∈ GL2(Z) and b ∈ Z2.
Two lattice polygons ∆ and ∆′ are called equivalent if and only if there exists
a Z-affine map ϕ such that ϕ(∆) = ∆′.

(1.2) We review a useful tool in the study of the combinatorics of lattice poly-
gons. The rough idea is to gradually peel off the lattice polygon by consecutively
considering the convex hull of the interior lattice points. Although this ‘onion
skin’ principle dates (at least) back to the work of Rabinowitz [24] and Koelman
[15], Haase and Schicho [12] noticed that to each step of the peeling, one can
associate a so-called legal loop catching the corresponding global information.
This allows one to apply a remarkable theorem due to Poonen and Rodriguez-
Villegas [23], in which the number 12 makes an intriguing appearance.

1
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The interior hull of a lattice polygon and the associated legal loop.

Whereas Haase and Schicho worked towards a refinement of a theorem by Scott
[25], our endpoint is a new and conceptual proof of a more precise conjecture
due to Coleman [8].

Theorem 1 (Coleman’s conjecture, 1978) Let ∆ be a lattice n-gon of genus
g ≥ 1. Let R be the number of lattice points on the boundary of ∆. Then
R ≤ 2g + 10 − n.

The first complete proof was provided in 2006 by Ko lodziejczyk and Olszewska
[17]. However, already in his 1991 Ph.D. thesis [15, Lemma 4.5.2(2)], Koelman
must have been unaware of the existence of this conjecture and was only one
sentence left from a proof. His argument heavily relies on another ‘12 theorem’
due to Oda [21, Remark on page 45], and can in fact be extended to cover a
non-trivial part of Poonen and Rodriguez-Villegas’ result, see (2.6). In their
turn, Haase and Schicho must have been unaware of this entire story: our proof
will merely add a couple of lines to their arguments. We therefore do not claim
many credits, but hope that this proof gives an indication of the unacknowledged
potential of the machinery. At the same time, we smoothen the theoretical and
historical framework.

(1.3) We then reverse the process of gradually peeling off a lattice polygon by
instead consecutively moving out its edges, following ideas that were discovered
by Koelman [15, Section 2.2], Haase and Schicho [12], and Ko lodziejczyk and
Olszewska [16]. This gives a natural and efficient way of enumerating lattice
polygons by their genus, up to equivalence. We will report on an implementa-
tion of this procedure using the Magma computer algebra system [5], by means
of which we produced the list of all equivalence classes of lattice polygons of
genus 1 ≤ g ≤ 30. This comprises approximately 368 MB of data that we made
available for download at http://wis.kuleuven.be/algebra/castryck/. As
a consequence, we can now answer virtually every reasonable question on lat-
tice polygons of genus 1 ≤ g ≤ 30. In particular, we obtain the number of
inequivalent lattice polygons for each of these genera. Up to our knowledge,
these numbers did not appear in the literature thus far, even for g as small as
3. Among the other consequences, we find:

Theorem 2 The minimal genus of a lattice 15-gon is 45.

2
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This fills in the smallest open entry of a list whose study was initiated by
Arkinstall [1] and that since invoked fair interest. E.g. only recently, it was
proven that the minimal genus of a lattice 11-gon is 17 (see [22]). Finally, we
introduce the lifespan of a lattice polygon, which measures how often its edges
can be moved out without tumbling off the lattice. We prove the following fact:

Theorem 3 A lattice n-gon has finite lifespan as soon as n ≥ 10.

For each 3 ≤ n ≤ 9, there exists an n-gon having infinite lifespan. Explicit
examples are provided in (3.6) below.

2 Legal loops associated to a lattice polygon

(2.1) In 1976, Scott proved the following theorem [25].

Theorem 4 (Scott, 1976) Let ∆ ⊂ R2 be a lattice polygon having g ≥ 1 lat-
tice points in its interior. Let R be the number of lattice points on the boundary
of ∆. Then R ≤ 2g + 7.

Moreover, Scott proved that equality holds if and only if ∆ is equivalent to
Conv{(0, 0), (3, 0), (0, 3)}. Two years later, Coleman conjectured that the re-
finement mentioned in Theorem 1 of (1.2) should hold. The usage of the word
‘theorem’ is now justified, due to a recent proof by Ko lodziejczyk and Olszewska
[17]. However, as already mentioned, it should be attributed in part to Koelman
[15, Lemma 4.5.2(2)]: see (2.6).
In 2009, Haase and Schicho revisited Scott’s bound and provided an alternative
proof. Implicitly though, they gave a new proof of Coleman’s conjecture, along
with a substantial refinement of the statement. An explicit version of this proof
will be given in (2.5). Along the way, we give an overview of the machinery
used, adapt certain definitions, and prove a number of facts that were merely
sketched in the literature before.

(2.2) The following two basic operations on lattice polygons will be crucial
throughout.

Definition (moving out the edges) Let ∆ ⊂ R2 be a two-dimensional lattice
polygon. Then each of its edges τ ⊂ ∆ corresponds to a unique half-plane

Hτ =
{

(x, y) ∈ R2
∣∣ aτx + bτy ≤ cτ

}

jointly satisfying ∆ = ∩τHτ . In this, aτ , bτ , cτ ∈ Z are uniquely determined by
the condition gcd(aτ , bτ ) = 1. Then we define

∆(−1) := ∩τH(−1)
τ

where
H(−1)

τ =
{

(x, y) ∈ R2
∣∣ aτx + bτy ≤ cτ + 1

}
.

3
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We say that ∆(−1) is obtained from ∆ by moving out the edges.

Definition (interior hull) Let ∆ ⊂ R2 be a two-dimensional lattice polygon
of genus at least 1. Then we define ∆(1) as the convex hull of the lattice points
in the interior of ∆. We say that ∆(1) is the interior hull of ∆.

We will abuse notation and write ∆(k) for ∆(1)(1)...(1) (the interior hull taken
k times consecutively), given that this is well-defined: note that ∆(1) need not
have interior lattice points. Likewise, we will write ∆(−k) for ∆(−1)(−1)...(−1)

(moving out the edges k times consecutively). Again, this may not be well-
defined since ∆(−1) need not be a lattice polygon: it may take vertices outside
Z2. It is sometimes convenient to write ∆(0) for ∆.

Examples where ∆(2) resp. ∆(−2) would not be well-defined.

A crucial property of lattice polygons is the following.

Theorem 5 (Koelman, 1991) Let ∆ ⊂ R2 be a two-dimensional lattice poly-
gon, such that ∆(1) is again two-dimensional. Then ∆(1)(−1) is a lattice polygon
containing ∆.

Proof. See Koelman [15, Lemma 2.2.13] or Haase–Schicho [12, Lemma 11]. �

Note that this theorem gives a criterion for a two-dimensional lattice polygon
Γ to satisfy that Γ(−1) is a lattice polygon: this will be the case if and only if
there exists a lattice polygon ∆ such that ∆(1) = Γ. Although the notions of
moving out the facets and taking the interior hull straightforwardly generalize
to higher dimensions, Theorem 5 does not. This is the main reason why we
restrict to dimension two in this article.

Definition (maximal polygon) A lattice polygon ∆ for which ∆(1) is two-
dimensional is called maximal if ∆ = ∆(1)(−1).

(2.3) We now review the theory of legal loops, in the sense of [23]. Throughout,
we will write o for the origin (0, 0) ∈ R2.

Definition (legal move) A legal move is a couple of points (p1, p2) with
p1, p2 ∈ Z2 such that Conv{o, p1, p2} ∩ Z2 = {o} ⊔

(
Conv{p1, p2} ∩ Z2

)
.

Note that p1 = p2 is a priori allowed. If p1 6= p2, then the condition reads that
the line connecting p1 and p2 lies at integral distance 1 from o, i.e. it has an
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equation of the form aX + bY = 1 for (necessarily coprime) a, b ∈ Z.

Definition (legal loop) A legal loop is a finite sequence P = (p0, . . . , pn−1),
where n ≥ 1, such that (pi, pi+1) is a legal move for all i = 0, . . . , n− 1. For any
primitive vector p0 ∈ Z2, the legal loop (p0) will be called trivial.

In the above, indices should be considered modulo n, i.e. pn = p0. Such abuse
of notation will be repeated throughout.

Definition (length) The length of a legal move s = (p1, p2) is defined to be

det

(
p1

p2

)

and will be denoted by ℓ(s). The length of a legal loop P is the sum of the
lengths of its legal moves and will be denoted by ℓ(P).

A legal loop P = (p0, . . . , pn−1) gives rise to a closed curve γ(P) in R2 \ {o} by
‘connecting the dots’. One way of making this precise is

[0, 1] → R2 \ {o} : t 7→ (nt− ⌊nt⌋)p⌊nt⌋+1 + (1 − nt + ⌊nt⌋)p⌊nt⌋,

although we will only be interested in γ(P) up to homotopy.

Definition (winding number) The winding number of a legal loop P is the
winding number of γ(P) around o in the sense of algebraic topology, i.e. the
image of its homotopy class under the unique isomorphism π1(R2 \ {o}) → Z
mapping the class of a counterclockwise loop around o to 1.

Definition (inverse loop) Let P = (p0, p1, . . . , pn−1) be a legal loop. Then
we define the inverse loop P−1 to be (pn−1, pn−2, . . . , p0).

Taking the inverse of a legal loop alters the sign of both the length and the
winding number.

Definition (equivalence) We equip the set of legal loops with the smallest
equivalence relation satisfying

1. (shifting) a legal loop (p0, p1, . . . , pn−1) is equivalent to (p1, . . . , pn−1, p0);

2. (merging and splitting moves) a legal loop (p0, p1, . . . , pn−1) is equivalent
to the legal loop (p0, q, p1, . . . , pn−1), where q is any lattice point on a line
through p0 and p1 at integral distance 1 from o;

3. (orientation-preserving lattice equivalence) a legal loop (p0, p1, . . . , pn−1)
is equivalent to (p0A, p1A, . . . , pn−1A) for any matrix A ∈ SL2(Z).
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One easily verifies that equivalence preserves the length and the homotopy class
of the corresponding curve. For that reason, we can unambiguously talk about
the length and the winding number of an equivalence class of legal loops P . The
former will be denoted by ℓ(P).
A pathological remark is that all trivial legal loops are equivalent. Indeed, if
p0, p1 ∈ Z2 are primitive vectors, one can always find a distinct point p2 ∈ Z2

such that both the line through p0 and p2 and the line through p1 and p2 lie at
integral distance 1 from o. By merging and splitting, (p0) ∼ (p0, p2) ∼ (p2) ∼
(p2, p1) ∼ (p1). The corresponding equivalence class will be called the trivial
class.

Definition (dual class) Let P be an equivalence class of legal loops. Take
a representant P = (p0, . . . , pn−1) for which pi 6= pi+1 for all i = 0, . . . , n − 1.
Define

qi =
pi+1 − pi

det

(
pi+1

pi

) .

Then the dual class P∨
is defined to be the class of (q0, . . . , qn−1).

The reader can check that this is well-defined. Note that the trivial class is
self-dual. In the non-trivial case, one can take a representant having no two
consecutive moves along the same line, by means of which one easily verifies

that P∨∨
= P.

p0

p1 p2

p3

p4

p5P

q0

q1

q2 q3

q4

q5 q0

q1

q2 q3

q4

q5

P∨

The above series of figures illustrates the construction of the dual class. The

notation P∨ should in principle be read as ‘a representant of P∨
’, but since P

does not contain any moves of length 0 we can unambiguously write P∨. Note
that the length of P is 1 − 3 + 1 + 3 + 1 + 1 = 4, whereas the length of P∨ is
1 + 1 + 3 + 1 − 1 + 3 = 8.

Theorem 6 (Poonen and Rodriguez-Villegas, 2000) Let P be a legal loop

of winding number ω. Then ℓ(P) + ℓ(P∨
) = 12ω.

Proof. This is hinted in the paper by Poonen and Rodriguez-Villegas [23], which
contains the details of the case where P is the boundary of a lattice polygon of
genus 1, ran through counterclockwise. Since the necessary adaptations for the
general case are not entirely trivial, we include the details here.
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The only external fact we need concerns the set S̃L2(Z), an element of which

is a pair (M, [γ]). Here M =

(
a b

c d

)
∈ SL2(Z) and γ is a homotopy class of

paths in R2 \ {o} from (0, 1) to (c, d). If (c, d) 6= (0,−1), one can consider a

straight-line path γ from (0, 1) to (c, d). In that case, we simply write M̃ instead

of (M, [γ]). The set S̃L2(Z) is turned into a group by the rule

(M1, [γ1]) · (M2, [γ2]) = (M1M2, [γ2 ∗ γM2
1 ]),

where ∗ is the concatenation of paths sharing an endpoint, and where γM2
1 is

the path obtained by composing γ1 with (a, b) 7→ (a, b)M2. A prominent role
is played by the element (I, loop), where I is the identity matrix and ‘loop’ is
the homotopy class of a counterclockwise loop around the origin. Namely, the

property of S̃L2(Z) that we need is the existence of a group homomorphism

Φ : S̃L2(Z) → Z under which (I, loop) is mapped to 12. This can be achieved in
various ways; see [23, Section 8.4] for a fancy proof in which the ‘12’ appears as
the weight of the modular discriminant.
By merging, splitting and switching to P−1 if necessary, we may assume that
P = (p0, . . . , pn−1) consists of moves of length 1 or −1 only, and that the move
(p0, p1) has length 1. Then an orientation-preserving lattice transformation
brings us to the case where p0 = (1, 0) and p1 = (0, 1). For i = 0, . . . , n − 1,
let si denote the legal move from pi to pi+1, and let Mi ∈ SL2(Z) be defined
inductively by

Mi ·Mi−1 · · ·M0 =

(
ℓ(si+1) · pi+1

pi+2

)
.

In particular Mn−1 · · ·M0 = I, but note that one even has

M̃n−1 · · · M̃0 = (I, [γ(P)]).

It follows that
n−1∑

i=0

Φ(M̃i) = 12ω.

Now there are two types of Mi:

either Mi =

(
0 1

−1 di

)
or Mi =

(
0 −1

1 di

)
,

depending on whether ℓ(si+1) = 1 or ℓ(si+1) = −1. Using that Φ((I, loop)) =
12, one accordingly finds that

Φ(M̃i) = 3 − di resp. Φ(M̃i) = di − 3.

Thus we conclude

(1)
n−1∑

i=0

ℓ(si+1) · (3 − di) = 12ω.
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On the other hand, if we define qi as in the above definition, and if we let s∨i be
the legal move from qi to qi+1, then di contains information about ℓ(si) + ℓ(s∨i ).
Namely,

1. if ℓ(si) = ℓ(si+1) = 1, then ℓ(si) + ℓ(s∨i ) = 3 − di;

2. if ℓ(si) = ℓ(si+1) = −1, then ℓ(si) + ℓ(s∨i ) = di − 3;

3. if ℓ(si) = 1 and ℓ(si+1) = −1, then ℓ(si) + ℓ(s∨i ) = di − 1;

4. if ℓ(si) = −1 and ℓ(si+1) = 1, then ℓ(si) + ℓ(s∨i ) = 1 − di.

Since a closed loop must switch as many times from being positively oriented
to being negatively oriented as conversely, we find that

n−1∑

i=0

ℓ(si) + ℓ(s∨i ) =

n−1∑

i=0

ℓ(si+1)(3 − di).

Together with (1), this concludes the proof. �

Remark. In case P is the boundary of a genus 1 polygon, Theorem 6 can be eas-
ily proven by exhaustively verifying it for the 16 representants of Theorem 10(b).
In a quest for explaining the ‘12’, Poonen and Rodriguez-Villegas gave three al-
ternative proofs. One of these is, essentially, the proof produced above. Of the
four approaches, it seems best-suited for addressing the general case. A fifth
proof manages to deal with the intermediate case where P has winding number
1 and consists of positively oriented moves only, and is implicitly contained in
the work of Koelman [15]; this is briefly elaborated in (2.6) below.

Remark. The notion of a legal loop can be generalized by dropping the con-
dition that the endpoints should coincide. Such curves have been studied by
Karpenkov in the context of lattice trigonometry, where they are called o-broken
lines [14, Definition 3.1]. In the same trigonometric philosophy, Poonen and
Rodriguez-Villegas suggested a connection between Theorem 6 and the Gauss-
Bonnet theorem. See [23, Section 10].

(2.4) Let ∆ be a lattice polygon such that ∆(1) is two-dimensional. To ∆(1),
we can associate in a natural way two legal loops, up to shifting.

Definition (edge-moving loop) Let p0, p1, . . . , pn−1 be the vertices of ∆(1),
enumerated counterclockwise. Let τi and τ ′i be the edges adjacent to pi, so that

pi is the top of the cone Hτi∩Hτ ′
i
. Let p

(−1)
i be the top of the cone H(−1)

τi ∩H(−1)
τ ′
i

.

The edge-moving loop P(∆(1)) is defined to be (p
(−1)
0 − p0, . . . , p

(−1)
n−1 − pn−1).

This is well-defined up to shifting.

Definition (normal fan loop) Let t0, . . . , tn−1 be the primitive generators
of the rays of the normal fan of ∆(1), enumerated counterclockwise. Along with
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o, two consecutive primitive generators always span a triangle having no interior
lattice points. Therefore, N (∆(1)) := (t0, . . . , tn−1) is a legal loop, well-defined
up to shifting. It will be called the normal fan loop of ∆(1).

Remark. If, conversely, the primitive generators of the normal fan of a two-
dimensional lattice polygon Γ span a legal loop, then this does not guarantee
that Γ = ∆(1) for some lattice polygon ∆. However, it does guarantee that
kΓ = ∆(1) for some lattice polygon ∆ and some Minkowski multiple kΓ. In
other words, there are two distinct reasons why a lattice polygon ∆ can fail to
be interior to a larger lattice polygon: either its normal fan is not a legal loop
(i.e. the fan is not Gorenstein using the terminology of (4.2)), or the polygon
is just too small.

The following lemma gives relationships between P(∆(1)) and N (∆(1)). We call
a legal loop P = (p0, p1, . . . , pn−1) convex if every move has positive length and
each pi lies on an edge of Conv{p0, p1, . . . , pn−1}. We call P strictly convex if
moreover each pi appears as a vertex. Note that convexity nor strict convexity
are properties of the equivalence class: they are not invariant under merging
and splitting. Observation (d) below is crucial and is essentially due to Haase
and Schicho.

Lemma 1 (a) N (∆(1)) has moves of strictly positive length only.

(b) The following are equivalent.

- P(∆(1)) has moves of positive length only,

- P(∆(1)) is convex,

- P(∆(1)) is strictly convex,

- N (∆(1)) is convex.

(c) The following are equivalent.

- P(∆(1)) has moves of strictly positive length only,

- N (∆(1)) is strictly convex.

(d) P(∆(1))
∨

= N (∆(1))

Proof. We only include the details for (d). Instead of N (∆(1)), we will consider
the legal loop T (∆(1)) obtained by considering the consecutive counterclockwise
direction vectors of the edges of ∆(1). Since T (∆(1)) is obtained from N (∆(1)) by
applying a 90◦ counterclockwise rotation, both legal loops are clearly equivalent.
If P(∆(1)) contains no legal moves of length 0, it follows by construction that

P(∆(1))
∨

= T (∆(1)). In general, the situation is more subtle, and it is conve-
nient to start from T (∆(1)) instead. The latter has no moves of length 0, so it
makes sense to talk of the dual T (∆(1))∨ of T (∆(1)), rather than of its class.
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p
(−1)
0

p0

p
(−1)
1

p1
p
(−1)
2

p2

p
(−1)
3

p3

p
(−1)
4

p4

p
(−1)
5

p5

p
(−1)
6

p6

∆(1)

1 = 2

3 = 4 = 5

6

0

P(∆(1)) 01

12

23

34

45

56 60

T (∆(1))

An example where P(∆(1)) has several moves of length 0.

After an orientation-preserving lattice transformation and a translation over an
integral vector if necessary, we may assume that

p0 = (a, 0), p1 = (0, 0), p2 = (p, q),

for integers a > 0 and coprime p, q < 0 such that q ≤ p < 0. Because moving out
the edges should result in a lattice polygon again, we must have p = −1. Then

p
(−1)
1 − p1 = (0, 1). On the other hand, the corresponding move of T (∆(1)) is

from (−1, 0) to (−1, q). This gives a vertex (0,−1) on the dual T (∆(1))∨. One
concludes that T (∆(1)) equals P(∆(1)) modulo a 180◦ rotation (and modulo
shifting). �

Lemma 2 Let ∆ be a lattice polygon such that ∆(1) is two-dimensional. Sup-
pose that ∆ is maximal. Let R be the number of lattice points on the boundary
of ∆ and let R(1) be the number of lattice points on the boundary of ∆(1). Then
ℓ(P(∆(1))) = R−R(1).

Proof. Using a normalization as above, one easily verifies that the length of

(p
(−1)
i − pi, p

(−1)
i+1 − pi+1) equals the difference between the number of lattice

points on the face (edge or vertex) of ∆ = ∆(1)(−1) connecting p
(−1)
i and p

(−1)
i+1

and the number of lattice points on the edge of ∆(1) connecting pi and pi+1. �

Remark. As pointed out in [27], there is a natural way of associating a legal
loop to any lattice polygon ∆ for which ∆(1) is two-dimensional, in such a way

that its length still measures R− R(1): for each vertex p
(−1)
i of ∆(1)(−1), let ai

and bi be the nearest-by lattice points on the adjacent edges of ∆(1)(−1) that
are contained in ∆ (considered counterclockwise). Then in the definition of

P(∆(1)), one should replace p
(−1)
i − pi by ai − pi, bi − pi.

(2.5) We are now ready to prove Coleman’s conjecture.

Proof of Theorem 1. Using the classification given in Theorem 10 below, the
statement is easily verified in case ∆(1) is not two-dimensional. So suppose to
the contrary that ∆(1) is two-dimensional. Then a second observation is that
it suffices to give a proof for the case where ∆ is maximal, i.e. ∆ = ∆(1)(−1).
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Indeed, if not, ∆ is obtained from ∆(1)(−1) by repeatedly clipping off a vertex.
At each step, the number of lattice points on the boundary is reduced by one,
whereas the number of vertices increases by at most one. Hence the validity of
Coleman’s conjecture for ∆ follows from its validity for ∆(1)(−1).

Now let n(1) be the number of vertices of ∆(1) and let R(1) be the number
of lattice points on its boundary. From the definition of moving out the edges,
we see that n ≤ n(1). From Lemmata 1 and 2, it follows that

R−R(1) = ℓ(P(∆(1))) = 12 − ℓ(N (∆(1))) ≤ 12 − n(1) ≤ 12 − n.

The statement then follows from R(1) ≤ g and g ≥ 2. �

Note that the proof yields the much stronger statement that

(2) R ≤ R(1) + 12 − n

as soon as ∆(1) is two-dimensional (regardless of whether ∆ is maximal or not).

(2.6) Building on work of Oda [21, Remark on page 45], Koelman proved a
statement which immediately implies Coleman’s conjecture. Let ∆ be a lattice
polygon with two-dimensional interior ∆(1). Let η be number of rays of the
smooth completion of the normal fan of ∆. Let R resp. R(1) be the number
of lattice points on the boundary of ∆ resp. ∆(1). Then [15, Lemma 4.5.2(2)]
states

(3) R(1) = R + η − 12.

Since η ≥ n, with n the number of vertices of ∆, Coleman’s conjecture follows.
Equality (3) even implies the ‘12 theorem’ for legal loops of winding number
1, all of whose segments are positively oriented (and for their duals, of course).
Indeed, let P = (p0, . . . , pn−1) be such a legal loop, then the pi can be thought
of as the generators of the rays of a fan. This fan can always be realized as
the normal fan of a certain two-dimensional lattice polygon. By the legal-loop-
properties of the fan, a sufficiently large Minkowski multiple ∆ of this lattice
polygon will be such that ∆(−1) takes vertices in Z2. Applying (3) to ∆(−1) then
implies the theorem, by noting that η = ℓ(T (∆)). Digging into Oda’s work, one
sees that this proof is somehow related to Poonen and Rodriguez-Villegas’ sec-
ond proof [23, Section 6] and the exercises in Fulton’s book [11, Section 2.5] to
which they refer. Using work of Hille and Skarke [13], it should be possible to
generalize the above to arbitrary winding numbers.

(2.7) We end this section by briefly commenting on Haase and Schicho’s ‘onion
skin theorem’ [12, Theorem 8]. Using n ≥ 3, inequality (3) yields R ≤ R(1) + 9,
which is the above-mentioned refinement of Scott’s bound that Haase and
Schicho obtained. In this case, one additionally checks that equality holds
if and only if ∆ is equivalent to dΣ for some integer d ≥ 4. Here Σ =
Conv{(0, 0), (1, 0), (0, 1)} is the standard 2-simplex. By recursively applying
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R ≤ R(1) + 9, whilst gradually ‘peeling off’ the lattice polygon, one obtains an
inequality relating R to the genus g of ∆ and to the ‘number of onion skins’.
This led Haase and Schicho to introducing the notion of level. Let n ≥ 0 be the
maximal integer for which ∆(n) is defined. The level of ∆ is (i) equal to n if
∆(n) is a point or a line segment, (ii) equal to n + 1/3 if ∆(n) is equivalent to
Σ, (iii) equal to n+ 2/3 if ∆(n) is equivalent to 2Σ, and (iv) is equal to n+ 1/2
if ∆(n) is any other two-dimensional lattice polygon of genus 0. Then the onion
skin theorem reads:

Theorem 7 (Haase and Schicho, 2009) Let ∆ be a convex lattice polygon
of level ℓ ≥ 1 and genus g, containing R lattice points on the boundary. Then
(2ℓ− 1)R ≤ 2g + 9ℓ2 − 2.

However, although the proof is beautiful, the resulting statement is not as deep
as one might hope. The reason is that applying R ≤ R(1) + 9 at each step is
too rough; it would be more powerful to include the number of vertices in the
argument, although we did not find an elegant way of doing so.
An alternative, more classically flavored measure for the number of onion skins
is the lattice width of ∆, which is the minimal integer s ≥ 0 for which there is a
Z-affine transformation mapping ∆ into the strip

{
(x, y) ∈ R2

∣∣ 0 ≤ y ≤ s
}

; it is
denoted lw(∆). Indeed, one can prove (see [6, Theorem 4] or [19, Theorem 13])
that for every lattice polygon ∆ of genus at least 1 one has lw(∆) = lw(∆(1))+2,
unless ∆ is equivalent to dΣ for some integer d ≥ 3, in which case lw(∆) =
lw(∆(1)) + 3 = d. Then by redoing the onion skin argument, using the lattice
width rather than the level, one obtains a closely related statement:

Theorem 8 Let ∆ be a two-dimensional lattice polygon of genus g, containing
R lattice points on its boundary. Then (lw(∆)−1) ·R ≤ 2g + 2 · (lw(∆)2−1).

Proof. If ∆ is a lattice polygon which has genus 0, or for which ∆(1) is not
two-dimensional, then the inequality can be verified by hand (using, e.g. Theo-
rem 10 below). Therefore, suppose that the lemma holds for all lattice widths
up to k − 1, k ≥ 3. Let ∆ be a lattice polygon with lw(∆) = k. If ∆ is equiv-
alent to kΣ, then the inequality holds by explicit verification (use lw(∆) = k,
g = (k−1)(k−2)/2, R = 3k). If not, then the result easily follows by induction,
using R ≤ R(1) + 8. �

As said, this is not a deep statement. Indeed, imagine ∆ being caught in a
horizontal strip

{
(x, y) ∈ R2

∣∣ 0 ≤ y ≤ lw(∆)
}

. Assume for ease of exposition
that both ∆ ∩ {y = 0} and ∆ ∩ {y = lw(∆)} are line segments of length a ≥ 3
and b ≥ 3 respectively. By focusing on the interior lattice points of these, one
sees that R ≤ (a − 1) + (b − 1) + 2 · (lw(∆) + 1). Applying Pick’s theorem to
the trapezoid spanned by these interior lattice points then yields

R ≤ 2

lw(∆) − 1
· g + 2 · (lw(∆) + 1)

which is indeed a rephrasing of Theorem 8.
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3 Consecutively moving out the edges

(3.1) Although it is not entirely clear whom it should be attributed to, the
following fact is well-known.

Theorem 9 Let g be a positive integer. If g ≥ 1 then there exists only a finite
number of equivalence classes of lattice polygons of genus g.

The classical argument works by noting that a lattice polygon of genus g ≥ 1
satisfies Vol(∆) ≤ 2g+ 5

2 (using Scott’s bound from Theorem 4 along with Pick’s
theorem) and that a lattice polygon with volume V can always be caught in a
lattice square of side length 4V – see Lagarias and Ziegler for an account that
deals with arbitrary dimension [18]. This yields an algorithm for enumerating
all equivalence classes of lattice polygons of genus g: consider all lattice polygons
that are contained in

[0, 8g + 10] × [0, 8g + 10]

and filter out unique representants of each conjugacy class. However, this is too
slow to be of any practical use.

(3.2) We present an alternative proof of Theorem 9 that leads to a more efficient
algorithm. The idea is to proceed by induction on g, based on Theorem 5. We
call a lattice polygon elliptic if it contains a unique lattice point in its interior.
A lattice polygon of genus g ≥ 2 is called hyperelliptic if its interior lattice points
are contained in a line.

Proof of Theorem 9. Suppose that the theorem holds for 0, 1, . . . , g − 1, where
g ≥ 1. We partition the set of (equivalence classes of) lattice polygons of genus
g as

(i) {elliptic or hyperelliptic lattice polygons}
(ii) ⊔

{
lattice polygons ∆ for which ∆(1) is two-dimensional of genus 0

}

(iii) ⊔
{

lattice polygons ∆ for which ∆(1) has genus ≥ 1
}

and prove the finiteness of each subset. For set (i), this follows from The-
orem 10(b-c) below. For set (ii), Theorem 10(a) shows that there is only a
finite number of possibilities for ∆(1); for each ∆(1), Theorem 5 states that
∆ ⊂ ∆(1)(−1), hence there is only a finite number of possibilities for ∆. Finally,
for set (iii), the induction hypothesis shows that there is only a finite number
of possibilities for ∆(1), and again Theorem 5 shows that there is only a finite
number of possibilities for ∆. �

Theorem 10 (Koelman, 1991) (a) Every two-dimensional lattice polygon
of genus 0 having R ≥ 3 lattice points on the boundary is equivalent to
exactly one of the following ⌊R/2⌋ polygons:

13
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(0, 0) (R − i− 2, 0)

(0, 1) (i, 1)

for i ∈ {0, . . . , ⌊R/2⌋− 1}, except if R = 6, where in addition one has the
possibility

(0, 0) (2, 0).

(0, 2)

(b) Every lattice polygon of genus 1 is equivalent to exactly one of the following
16 polygons:

(c) Every hyperelliptic lattice polygon of genus g ≥ 2 is equivalent to exactly
one of the following 1

6 (g + 3)(2g2 + 15g + 16) polygons:

(0,−1) (i,−1)

(1, 1) (1 + 2g − i, 1)

g ≤ i ≤ 2g

(0,−1)

(g + 1, 0)

(i,−1)

(1, 1) (1 + j, 1)

0 ≤ i ≤ g & 0 ≤ j ≤ i

g < i ≤ 2g + 1 & 0 ≤ j ≤ 2g − i + 1

(0,−1)

(g + 1, 0)(0, 0)

(i,−1)

(k, 1) (k + j, 1)

0 ≤ k ≤ g + 1 & 0 ≤ i ≤ g + 1 − k & 0 ≤ j ≤ i

0 ≤ k ≤ g + 1 & g + 1 − k < i ≤ 2g + 2 − 2k & 0 ≤ j ≤ 2g − i− 2k + 2.

Proof. A complete proof can be found in Chapter 4 of Koelman’s Ph.D. thesis
[15], but since there are no surprising ingredients, the proof could also be left as
a patience-involving exercise. Note that (a) and (b) have been (re)discovered
multiple times before and since. �

For our alternative proof of Theorem 9, a strongly simplified version of Theo-
rem 10 only involving finiteness statements would have been sufficient.

14
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(3.3) Our proof of Theorem 9 results in the following algorithm for enumerating
all lattice polygons of genus at most g up to equivalence.

Input: an integer g ≥ 1.
Output: a list [L1, L2, . . . , Lg] where each Li is a list containing a unique rep-
resentant of each equivalence class of lattice polygons of genus i.

In fact, the algorithm produces a list L = [L1,L2, . . . ,Lg], where each Li is a
list

[ℓi,3, ℓi,4, . . . , ℓi,2i+7],

and each ℓi,R is a list containing a unique representant of each equivalence class
of lattice polygons of genus i having R lattice points on the boundary. The lists
Li are then obtained by concatenating the ℓi,R’s for R = 3, . . . , 2i + 7. Remark
that the number of lattice points on the boundary of a genus i ≥ 1 lattice poly-
gon is indeed at most 2i + 7 by Theorem 4.

1. L := [ [ ], [ ], . . . , [ ] ] (g entries, indexed by 1, . . . , g);
2. for i = 1, . . . , g do;
3. L[i] := [ [ ], [ ], . . . , [ ] ] (2i + 5 entries, indexed by 3, . . . , 2i + 7)
4. for R = 3, . . . , 2i + 7 do
5. L[i][R] := list of (hyper)elliptic polygons of genus i
6. with R boundary points (using Theorem 10(b-c));
7. end for;
8. for all two-dimensional ∆ of genus 0 having i boundary points
9. (using Theorem 10(a)) do

10. L := [ unique representants of all polygons with interior ∆ ];
11. for Γ ∈ L do
12. L[i][#∂Γ ∩ Z2] cat:= [Γ];
13. end for;
14. end for;
15. for all (j, R) such that j + R = i and 3 ≤ R ≤ 2j + 7 do
16. for all ∆ ∈ L[j][R] do
17. L := [ unique representants of all polygons with interior ∆ ];
18. for Γ ∈ L do
19. L[i][#∂Γ ∩ Z2] cat:= [Γ];
20. end for;
21. end for
22. end for;
23. end for;

The three disjoint for-loops correspond respectively to the cases (i), (ii), (iii) of
our proof of Theorem 9. The operation ‘cat:=’ abbreviates ‘concatenate with’.
Listing all polygons with interior ∆ (see steps 10. and 17.) is done using Theo-
rem 5: one checks whether ∆(−1) is a lattice polygon. If not, then the resulting
set L is empty. If yes, then L consists of all lattice polygons Γ that can be

15
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obtained from ∆(−1) by taking away boundary points without affecting the in-
terior. Each time a lattice polygon is to be added, one checks whether or not it
is equivalent to a polygon that is already contained in the list. In our implemen-
tation below, checking the equivalence of two lattice polygons Γ and Γ′ is done
very naively: we simply try for all triples of consecutive vertices v1, v2, v3 ∈ Γ
(ordered counterclockwise) and v′1, v

′
2, v

′
3 ∈ Γ (ordered either clockwise or coun-

terclockwise) whether there is a Z-affine transformation ϕ taking vi to v′i (for
i = 1, 2, 3); if yes, it is necessarily unique. We then check whether ϕ(Γ) = Γ′.
The algorithm can be sped up by instead keeping track of the automorphisms
of ∆ (i.e., Z-affine transformations ϕ for which ϕ(∆) = ∆): indeed, if there is a
Z-affine transformation taking Γ to Γ′, it must be an automorphism of ∆ = Γ(1).
For almost all polygons, this automorphism group will consist of the identity
map only, resulting in a substantial speed-up.
While much more efficient than the naive method suggested in (3.1), note
that the problem is in itself exponential and that one cannot expect being able
to push the computation very far: if N(g) denotes the number of equivalence
classes of lattice polygons of genus g, then one can show that logN(g) grows like
3
√
g, although it is unknown whether limg→∞ logN(g)/ 3

√
g exists. See Bárány’s

survey paper [2] for some discussions on this matter.
We finally remark that Koelman already briefly described and implemented a
similar algorithm for enumerating lattice polygons by their total number of lat-
tice points, rather than their genus – see [15, Section 4.4].

(3.4) We have implemented the above algorithm in Magma [5], along with sev-
eral basic functions for dealing with lattice polygons, such as functions for com-
puting the genus, the number of boundary points, the interior hull, the polygon
obtained by moving out the edges, . . . We have also implemented an algorithm
due to Feschet [10, Section 3] for computing the lattice width of a lattice polygon
∆. The code can be found at http://wis.kuleuven.be/algebra/castryck/.
The intention is to make the code cleaner and more efficient in the future.
We have executed our current implementation on the input g = 30. This took
roughly one month of computation, although it is likely that keeping track of the
automorphism groups, as explained at the end of (3.3), would have shortened
this span considerably. The resulting output is stored in a file of approximately
368 MB, which has also been made available for download. We include some
summarizing data here – see Table 1, but of course our output can be used to
answer virtually every reasonable question on lattice polygons of genus ≤ 30.
Many of these questions have been asked explicitly in the literature before, see
e.g. [16, 24]. It is somewhat remarkable that the merit of exhaustive computa-
tion in tackling these questions has not been fully acknowledged thus far, with
the exception of the Ph.D. thesis of Koelman and some preliminary attempts
by Rabinowitz.

(3.5) We now focus on one particular problem: for every positive integer n,
what is the minimal genus g(n) of a lattice n-gon? Arkinstall [1], Rabinowitz
[24], Simpson [26], and Olszewska [22] elaborated this for various small values

16

40 Chapter 2. Moving out the edges of a lattice polygon



g N N (1) nmax n
(1)
max n

(1)
min lwmax lw

(1)
max R

(1)
min

1 16 16 6 6 3 3 3 3

2 45 22 6 6 4 2 2 5

3 120 63 6 6 3 4 4 5

4 211 78 8 8 3 4 4 6

5 403 122 7 7 3 4 4 7

6 714 192 8 8 3 5 5 6

7 1023 239 9 9 3 4 4 7

8 1830 316 8 8 4 4 4 8

9 2700 508 8 8 3 5 5 8

10 3659 509 10 10 3 6 6 8

11 6125 700 9 9 4 5 5 8

12 8101 1044 9 9 4 6 6 8

13 11027 1113 10 10 3 6 6 9

14 17280 1429 10 10 4 6 6 9

15 21499 2052 10 10 3 7 7 9

16 28689 1962 10 10 3 6 6 9

17 43012 2651 11 11 4 6 6 9

18 52736 3543 10 10 4 7 7 10

19 68557 3638 12 12 3 8 8 9

20 97733 4594 12 11 4 7 7 9

21 117776 5996 12 12 3 8 8 10

22 152344 6364 11 11 4 8 8 10

23 209409 7922 11 11 4 8 7 10

24 248983 9693 12 12 4 8 8 10

25 319957 10208 12 12 3 8 8 10

26 420714 12727 12 12 4 8 8 11

27 497676 15431 13 12 4 8 8 9

28 641229 15918 12 12 3 9 9 10

29 813814 20354 12 12 4 8 8 11

30 957001 23874 13 12 4 9 9 11

Table 1: A superscript (1) denotes that the corresponding invariant was obtained
by restricting the count to those polygons that are interior to another polygon
(which can be easily checked using Theorem 5). Then for each integer 1 ≤
g ≤ 30, the table shows the number of equivalence classes (N) of polygons of
genus g, the maximal resp. minimal number of vertices (nmax resp. nmin), the
maximal lattice width (lwmax) and the minimal number of lattice points on the
boundary (Rmin) that are possible for that genus. Note that nmin and Rmin

without superscript are always equal to 3, hence not included in the table. The
maximal number of points on the boundary (in both settings) is 2g + 6 except
if g = 1 (where it is 9) by Theorem 4, so again we did not include this.
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of n, leaving n = 15 as the smallest open entry. Up to n = 13, their results are
immediately confirmed by our computation. E.g. using Table 1, one can check
that g(11) = 17, a case which has provoked particular interest in the past and
was settled in 2006 only [22]. In fact, our output shows that there are three
inequivalent 11-gons realizing the bound:

Note that the second polygon is obtained from the third by clipping off the
right-most of the lower-most vertices. This is a general phenomenon: every
lattice n-gon having minimal genus can be transformed to a lattice n-gon having
minimal genus and all of whose boundary lattice points are vertices. This implies
that the minimal genus g(n) and the minimal volume V (n) of a lattice n-gon
are related through Pick’s theorem by V (n) = g(n) + n/2 − 1. These are the
contents of [26, Theorem 1]. In our case, it yields that every lattice 11-gon has
an area of at least 43/2. This bound is achieved by (and only by) the first two
of the above polygons.
Using a refined search, we managed to settle the case n = 15.

Proof of Theorem 2B. We first make some general observations. Let ∆ be a
lattice n-gon such that ∆(1) is two-dimensional. Write ∆max = ∆(1)(−1), let
n(1) resp. nmax be the number of vertices of ∆(1) and ∆max, and let R, R(1)

resp. Rmax be the number of lattice points on the boundaries of ∆, ∆(1) and
∆max. One obviously has

nmax ≤ n(1).

We also have
Rmax ≥ nmax + 2(n− nmax),

which follows because ∆ is obtained from ∆max by taking away a number of
boundary points (indeed, ∆ ⊂ ∆max by Theorem 5), and that each introduction
of a new vertex requires the existence of two lattice points on the boundary of
∆max that are not vertices. From the proof of Theorem 1 in (2.5) we see that

Rmax ≤ R(1) + 12 − n(1).

Then combining the three inequalities yields

R(1) ≥ 2n− 12,

while it is also clear that
n(1) ≥ ⌈n/2⌉.

18

42 Chapter 2. Moving out the edges of a lattice polygon



Now let ∆ be a lattice 15-gon of genus g = g(15). Note that by Theorem 10(c),
∆ is non-hyperelliptic, thus the above applies. In particular, we have

(4) n(1) ≥ 8 and R(1) ≥ 18.

Now since

is a lattice 15-gon of genus 45, it follows that g ≤ 45. We also know that g ≥ 43
by [26, Corollary 11(c)]. So suppose that g ∈ {43, 44}. Then with g(1) the genus
of ∆(1) we have that g(1) ≥ 1 because of Theorem 10(a) (note that n(1) ≥ 8),
and g(1) ≤ 26 because of (4). In particular, ∆(1) must be contained in our list
produced in (3.4).
The remainder of the proof is computational. Out of our list, we have selected
those lattice polygons Γ that are of the form ∆(1), i.e. for which Γ(−1) takes
vertices in the lattice (following Theorem 5), that have at least 8 vertices, that
contain at least 18 lattice points on the boundary, that have genus at most 26,
and for which the sum of the latter two invariants is contained in {43, 44}. This
resulted in 1929 polygons. For each such polygon Γ, we enumerated all poly-
gons ∆ for which ∆(1) = Γ, in a similar way as described in (3.3), and checked
whether any of these has 15 vertices. In each case, the answer was no. �

Finally, the picture below proves that g(17) ≤ 72 (Simpson’s previous upper
bound was 79) and that g(19) ≤ 105 (versus 112). Our guess is that these
bounds are not yet optimal.

A summarizing update of the currently known values of g(n) can be found in
Table 2. We conclude by remarking that the asymptotic behavior of g(n) is
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n 3 4 5 6 7 8 9 10 11 12

g(n) 0 0 1 1 4 4 7 10 17 19

n 13 14 15 16 17 18 19 20 21 22

g(n) 27 34 45∗ 52 [66, 72∗] 79 [96, 105∗] 112 [133, 154] 154

Table 2: Known values for g(n); values marked with an asterisk are new contri-
butions.

well-understood. It is known that for all n ≥ 3

1

8π2
<

V (n)

n3
≤ 1

54
(1 + o(1))

and that

lim
n→∞

g(n)

n3
= lim

n→∞
V (n)

n3

exists and lies close to (but is not equal to) 1/54. See [3] and the references
therein.

(3.6) A notion dual to the level, as introduced by Haase and Schicho and re-
viewed in (2.7), is the lifespan of a two-dimensional lattice polygon ∆ ⊂ R2,
which is defined to be the maximal k ∈ Z≥0 for which ∆(−k) is well-defined and
takes vertices in Z2, provided such a k exists. If no such k exists, the lifespan
is said to be infinite. Theorem 3 claims that an infinite lifespan can only occur
if the number of vertices n is at most 9.

Proof of Theorem 3. Suppose that ∆ has infinite lifespan. It suffices to prove
that all moves of the edge-moving loop P(∆) have positive length. Indeed, by
Lemma 1 this implies that the normal fan loop N (∆) is convex. Then the
convex hull of its primitive generators (which are in 1-to-1 correspondence with
the edges of ∆) must be contained in the list of Theorem 10(b). In particular, the
maximal number of primitive generators is 9, hence so is the maximal number
of edges (equalling the number of vertices).
So suppose by contradiction that there are two consecutive vertices pi and pi+1 of

∆ such that the move (p
(−1)
i −pi, p

(−1)
i+1 −pi+1) has negative length. As explained

in Lemma 2, this means that the edge of ∆(−1) connecting to p
(−1)
i and p

(−1)
i+1

must have become shorter, unless it has even disappeared, i.e. p
(−1)
i+1 = p

(−1)
i . If

no edge disappears, then it is easy to see that P(∆) = P(∆(−1)). By repeating

the argument, one eventually must have p
(−k)
i+1 = p

(−k)
i for some k ∈ Z≥1 (where

(−k) abbreviates (−1)(−1)...(−1)). We claim that ∆(−k−1) takes at least one vertex
outside Z2.

To see this, choose i such that p
(−k)
i+1 = p

(−k)
i , but p

(−k)
i+2 6= p

(−k)
i+1 . Modulo a Z-

affine transformation we may assume that p
(−k+1)
i+1 = (0, 0), that p

(−k+1)
i = (a, 0)

for some integer a > 0, and that p
(−k)
i+1 = p

(−k)
i = (0, 1).
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p
(−k+1)
i

p
(−k+1)
i+1

p
(−k)
i+1 = p

(−k)
i

L
(−1)
τleft

L
(−1)
τright

y = 0

y = 1

y = 2

Let τleft be the edge of ∆(−k) that is left adjacent to p
(−k)
i+1 = p

(−k)
i , and let Lτleft

be its supporting line. Move it out (in the sense of (2.2)) to obtain a line L
(−1)
τleft .

Because of our choice of i, L
(−1)
τleft contains the point (0, 2). Now similarly define

Lτright and L
(−1)
τright . The slope σ of Lτright (hence of L

(−1)
τright) satisfies 0 > σ > −1.

Since (1, 1) is a lattice point that is not contained in ∆(−k), the lines L
(−1)
τleft and

L
(−1)
τright must intersect in a point that lies strictly between y = 1 and y = 2. �

Note that the above proof actually gives a criterion for a two-dimensional lattice
polygon ∆ to have infinite lifespan. This will be the case if and only if ∆(−1)

is a lattice polygon and N (∆) is convex. Examples of n-gons (for n = 3, . . . , 9)
having infinite lifespan are given in the picture below.

4 Concluding comments

(4.1) Coleman’s conjecture (or at least parts of the proof given in (2.5)) can
be extended to certain non-convex lattice polygons. By a non-convex lattice
polygon we mean a closed region in R2 that can be bounded by a closed non-
self-intersecting curve that is piece-wise linear, with the endpoints of the linear
parts contained in Z2. For such a non-convex lattice polygon ∆, it makes sense
to define ∆(−1) by extending the corresponding notion of (2.2). Suppose it
takes vertices in Z2 and let R be the number of lattice points on its boundary.
Then with R(1) the number of lattice points on the boundary of ∆, we will
again have R = R(1) + 12 − ℓ(T (∆)), with T (∆) the legal loop spanned by the
direction vectors of the piece-wise linear boundary components of ∆.

(4.2) Much (if not all) of the foregoing can be related to toric geometry. It lies
beyond the scope of this article to go into much detail here, but we briefly men-
tion a few facts. We fully rely on the according references for the background.
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For a two-dimensional lattice polygon ∆, we denote the according toric surface

over C by X(∆), which we assume to be naturally embedded in P#(∆∩Z2)−1
C .

(i) If the primitive generators of the normal fan of ∆ span a legal loop (see
the corresponding remark in (2.4)), then by definition this is a Gorenstein fan,
which is equivalent to saying that X(∆) has only Gorenstein singularities [4,
Proposition 2.7]. In particular, if ∆ is the interior hull of another lattice polygon,
then X(∆) has only Gorenstein singularities. The converse is not true.
(ii) If this legal loop is moreover convex, then X(∆) is weak Fano, meaning
that the anticanonical bundle −KX(∆) is nef and big. If it is strictly convex,
then X(∆) is Fano, meaning that −KX(∆) is ample. See [20, Section 2.3]. In
particular, if a lattice polygon ∆ has infinite lifespan, then X(∆) is Gorenstein
and weak Fano. In this case, the converse holds as well.
(iii) Since convex legal loops (of winding number 1) have length at most 9, the
above implies that in the weak Fano case, ∆ can have no more than 9 edges
and vertices. This also follows from a well-known degree bound for weak Fano
surfaces X (namely, (−KX)2 ≤ 9).
(iv) If ∆(1) is well-defined and two-dimensional, then X(∆(1)) is the so-called
adjoint of X(∆). That is, X(∆(1)) is obtained from X(∆) by taking its image
under the map corresponding to OX(∆)(1)+KX(∆). See [9, 12] for more details.

(v) Conversely, if ∆ is two-dimensional and ∆(−1) has the same number of edges
as ∆, then X(∆(−1)) ∼= X(∆). The former is then embedded by the ample
line bundle OX(∆)(1) − KX(∆). Similarly, for k ≥ 0, if ∆(−k) has the same

number of edges as ∆, then X(∆(−k)) corresponds to the ample line bundle
OX(∆)(1) − kKX(∆). If this works for arbitrary k, one must have that −KX(∆)

is nef (and big, which is automatic), i.e. X(∆) is weak Fano. Along with (iii),
this gives some geometric insight in Theorem 3.
(vi) If ∆(1) is well-defined and two-dimensional, then the dimension of the auto-
morphism group Aut(X(∆)) is determined by the number of lattice points that
lie in the interior of a positively oriented move of P(∆(1)). See [7, Lemma 10.5]
and [15, phrase following (2.99)]. This was used in [7] to determine the dimen-
sion of the moduli space of generic hyperplane sections of X(∆).
(vii) The genus of a two-dimensional lattice polygon ∆ is equal to the genus of
a generic hyperplane section of X(∆). Such a generic hyperplane section will
be (hyper)elliptic if and only if ∆ is (hyper)elliptic. See [15, Section 3.2] or [7,
Lemma 5.1].
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The lattice size of a lattice polygon

Wouter Castryck and Filip Cools

Abstract

We give upper bounds on the minimal degree of a model in P2 and the min-
imal bidegree of a model in P1 × P1 of the curve defined by a given Laurent
polynomial, in terms of the combinatorics of the Newton polygon of the latter.
We prove in various cases that this bound is sharp as soon as the polynomial
is sufficiently generic with respect to its Newton polygon.

MSC2010: Primary 14H45, Secondary 14H51, 14M25

1 Introduction

Let k be an algebraically closed field and let f ∈ k[x±1, y±1] be an irreducible
Laurent polynomial whose Newton polygon, denoted by ∆(f), we assume to be two-
dimensional. Let T2 = k∗ × k∗ be the two-dimensional torus over k, and denote by
Uf ⊂ T2 the curve defined by f . (Throughout this paper, all curves are understood
to be irreducible, but not necessarily non-singular and/or projective.) For a curve
C/k we define s2(C) as the minimum of

S2(C) =
{
d ∈ N | C ≃ a curve of degree d in P2

}

and s1,1(C) as the lexicographic minimum of

S1,1(C) =
{
(a, b) ∈ N2

∣∣ a ≤ b and C ≃ a curve of bidegree (a, b) in P1 × P1
}
,

where ≃ denotes birational equivalence. The aim of this article is to give upper
bounds on the invariants s2(Uf ) and s1,1(Uf) purely in terms of the combinatorics
of ∆(f).

The invariant s2(C) has seen study in the past [11, 17, 19] but is not well-
understood. On the other hand we are unaware of existing literature explicitly
devoted to s1,1(C), even though for hyperelliptic curves the notion has made an
appearance [14] in the context of cryptography. Note that at first sight, the defini-
tion of s1,1(C) has a non-canonical flavor: instead of lexicographic, one could also
consider the minimum with respect to other types of monomial orders on N2. But
in fact we conjecture:
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Conjecture 1.1. For each curve C/k the set S1,1(C) admits a minimum with respect
to the product order ≤ × ≤ on N2.

Because the product order is coarser than every monomial order, this would mean
that the term ‘lexicographic’ can be removed without ambiguity. In Section 2 we
will state a number of basic facts on s2(C) and s1,1(C), along with some motivation
in favor of Conjecture 1.1.

Our central combinatorial notion is the lattice size lsX(∆) of a lattice polygon ∆
with respect to a set X ⊂ R2 with positive Jordan measure. In case ∆ 6= ∅ we define
it as the smallest integer d ≥ 0 for which there exists a unimodular transformation
ϕ : R2 → R2 such that

ϕ(∆) ⊂ dX.

A unimodular transformation that attains this minimum is said to compute the
lattice size. We will restrict ourselves to three instances of X , namely

[0, 1]× R, Σ = conv{(0, 0), (1, 0), (0, 1)}, � = conv{(0, 0), (1, 0), (0, 1), (1, 1)},

where it is convenient to define lsX(∅) = −1,−2,−1, respectively.
In the case of X = Σ the lattice size measures the smallest standard triangle

containing a unimodular copy of ∆.

ϕ

This was studied by Schicho [25], who designed an algorithm for finding a unimod-
ular transformation that maps a given polygon ∆ inside a small standard triangle.
He did this in the context of simplifying parametrizations of rational surfaces. Our
results below show that Schicho’s algorithm works optimally, that is, its output com-
putes the lattice size lsΣ(∆). In the case of X = [0, 1]×R the lattice size is nothing
else than the commonly studied lattice width, which we denote by lw(∆) rather
than ls[0,1]×R(∆). See [7, Lem. 5.2] for some of its properties, such as Fejes Tóth and
Makai Jr.’s result [12] that lw(∆)2 ≤ 8Vol(∆)/3. In the case of X = � the notion
implicitly appears in the work of Arnold [1] and Lagarias–Ziegler [22, Thm. 2] in the
context of counting lattice polygons (up to unimodular equivalence) with a given
volume; they found that ls�(∆) ≤ 4Vol(∆) as soon as ∆ is two-dimensional. Note
that this implies the bound lsΣ(∆) ≤ 8Vol(∆), which is most likely not sharp.

Recently, Lubbes and Schicho [23, Thm. 13] and the current authors [5, Thm. 4]
independently provided an explicit formula for lw(∆) in terms of lw(∆(1)), where
∆(1) denotes the convex hull of the lattice points in the interior of ∆; see Lemma 5.1
for a precise statement. This yields a recursive method for computing the lattice
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width in practical situations, by gradually ‘peeling off’ the polygon.1 The biggest
part of this article (Sections 3 and 4) is devoted to proving similar recursive formulas
for lsΣ(∆) and ls�(∆), which can again be used for computing the lattice size in
practice. In the former case one recovers Schicho’s algorithm. In the latter case the
proof entails that the unimodular transformations computing ls�(∆) essentially also
compute lw(∆). This is made precise in Section 5, where as a corollary we obtain:

Theorem 1.2. For each non-empty lattice polygon ∆ the set

S1,1(∆) =
{
(a, b) ∈ N2

∣∣ a ≤ b and ∃∆′ : ∆ ≃ ∆′ with ∆′ ⊂ [0, a]× [0, b]
}

admits a minimum with respect to the product order on N2, namely s1,1(∆) :=
(lw(∆), ls�(∆)).

Here ≃ denotes unimodular equivalence. We will sometimes (but not always) write
�a,b instead of [0, a] × [0, b]. The reader can view Theorem 1.2 as a combinatorial
version of Conjecture 1.1.

Now if we write
f =

∑

(i,j)∈Z2

ci,jx
iyj ∈ k[x±1, y±1]

then for every unimodular transformation ϕ : R2 → R2 the Laurent polynomial

fϕ =
∑

(i,j)∈Z2

ci,jx
ϕ1(i,j)yϕ2(i,j)

(with ϕ1 and ϕ2 the component functions of ϕ) satisfies ∆(fϕ) = ϕ(∆(f)). Since
Uf and Ufϕ are isomorphic it follows that

s2(Uf ) ≤ lsΣ(∆(f)) and s1,1(Uf ) ≤ s1,1(∆(f)), (1)

where the second inequality should be read lexicographically. While the first bound
is straightforward, we note that the second bound relies on Theorem 1.2. Our main
result, which shows up as a consequence to our recursive formulas for the lattice
size, refines these bounds:

Theorem 1.3. One has

s2(Uf) ≤ lsΣ(∆(f)(1)) + 3 and s1,1(Uf) ≤ s1,1(∆(f)(1)) + (2, 2). (2)

If ∆(f) ≃ dΥ for some d ≥ 2 then the first bound sharpens to s2(Uf ) ≤ 3d − 1; if
d = 2 then also the second bound sharpens to s1,1(Uf ) ≤ (3, 4).

1We remark that for very large polygons there exist more effective methods; see e.g. [13].
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Here Υ = conv{(−1,−1), (1, 0), (0, 1)}. The proof of Theorem 1.3 is given in Sec-
tion 6. We will see below that lsΣ(∆

(1))+3 ≤ ls(∆) and s1,1(∆
(1))+(2, 2) ≤ s1,1(∆)

as soon as ∆ is two-dimensional, and that the difference can be arbitrarily large.
Thus Theorem 1.3 can be seen as a considerable improvement over the bounds (1).
As a teasing example, consider a hyperelliptic curve C of genus g ≥ 2 defined by a
Weierstrass equation

f := y2 + h1(x)y + h2(x) = 0,

with h2 ∈ k[x] of degree 2g + 1 and h1 ∈ k[x] of degree at most g. Assume for
simplicity that h2(0) 6= 0, so that the Newton polygon ∆(f) equals

(0, 0) (2g + 1, 0)

(0, 2)

The interior polygon ∆(f)(1) equals conv{(1, 1), (g, 1)}; it is indicated by the dashed
line. In this case the bounds (1) read s2(C) ≤ 2g + 1 and s1,1(C) ≤ (2, 2g + 1),
while Theorem 1.3 yields s2(C) ≤ g+2 and s1,1(C) ≤ (2, g+1). The latter bounds
are actually sharp; see Section 2. More generally, we conjecture:

Conjecture 1.4. If f is sufficiently generic with respect to its Newton polygon
∆(f) 6≃ 2Υ, then the (smallest applicable) bounds of Theorem 1.3 are met.

In Section 7, where we will be more precise on what is meant by ‘sufficiently generic’,
we will prove this conjecture in a number of special cases.
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2 Basic facts on the minimal (bi)degree

Let C be a curve of (geometric) genus g over an algebraically closed field k. In
this section we discuss a number of basic properties of the invariants s2(C) and
s1,1(C). Throughout we make the assumption that char k = 0, because several of
our references rely on it.

In the case of s2(C) it is known that

3 +
√
8g + 1

2
≤ s2(C) ≤ g + 2.
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The lower bound is met if and only if C is birationally equivalent to a non-singular
projective plane curve. As for the upper bound one has s2(C) = g + 2 if and only
if C is elliptic or hyperelliptic. If g ≥ 6 then s2(C) = g + 1 if and only if C is
bi-elliptic. See [17] and the references therein for proofs.

In the case of s1,1(C) we prove an analogous statement:

Lemma 2.1. One has s1,1(C) = (c, d), where c is the gonality of C and d satisfies

g

c− 1
+ 1 ≤ d ≤ g + 1

unless c = 1, in which case d = 1. The lower bound is met if and only if C
is birationally equivalent to a non-singular curve in P1 × P1. If C is elliptic or
hyperelliptic then the upper bound is met.

Proof. If c = 1 then the statement is trivial, so we can assume that c ≥ 2.
As for the upper bound, fix a g1c on C and pick a point P ∈ C. Let D ∈ g1c be

such that P is in the support. Now construct a divisor D′ by gradually adding points
that are not in the support of D to the point P , until dimH0(C,D′) = 2. By the
Riemann-Roch theorem this happens after at most g steps, i.e. d := degD′ ≤ g+1.
By construction, the corresponding base-point free g1d does not have a factor in
common with our given g1c , so we can use g1c × g1d to map C to a birationally
equivalent curve of bidegree (c, d).

As for the other inequality, consider Baker’s bound [3], which says that the
genus of the curve defined by an irreducible Laurent polynomial f ∈ k[x±1, y±1] is
bounded by ♯(∆(f)(1) ∩ Z2). Now the Newton polygon of a polynomial of bidegree
(c, d) is contained in the rectangle:

(0, 0) (c, 0)

(c, d)(0, d)

Hence g ≤ (c−1)(d−1), from which the lower bound follows. If there is a singularity
in P1×P1, then without loss of generality we may assume that it concerns an affine
point (x0, y0). But then the Newton polygon of f(x+ x0, y + y0) is contained in:

(2, 0)

(0, 2)

(c, 0)

(c, d)(0, d)
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Therefore g ≤ (c − 1)(d − 1) − 1, which shows that the lower bound cannot be
attained in this case.

Finally, if C is elliptic or hyperelliptic then c = 2 so that the lower bound meets
the upper bound. �

We think that for c ≥ 2 the upper bound can be improved to g+3− c. Namely,
by Brill-Noether theory the space of g1g+3−c’s on C has dimension g − 2c+ 4, while
the subspace of pencils of the form g1c +base points has dimension g− 2c+3. This
gives plenty of base-point free g1d’s with d ≤ g + 3− c that do not obviously have a
factor in common with the given g1c . But we did not succeed in proving that there
indeed always exists such a truly independent g1d. The bi-elliptic case illustrates the
subtlety of the argument: here one has a full-dimensional component of dependent
g1g+3−c’s. Nevertheless the bound g + 3− c = g − 1 is valid here (and met); see [11,
Ex. 1.13].

As a special cases of Conjecture 1.1, we note:

Lemma 2.2. If the gonality of C is a prime number then S1,1(C) admits a minimum
with respect to the product order ≤ × ≤ on N2.

Proof. Fix a gonality pencil g1c . It suffices to show that if (a, b) ∈ S1,1(C) then
(c, a) ∈ S1,1(C) or (c, b) ∈ S1,1(C). In other words, it is sufficient to prove that at
least one of the given g1a and g1b is independent of our g1c . But if g1a and g1c have a
common factor, then by primality this factor must be g1c itself, and similarly for g1b .
Because g1a and g1b are mutually independent, the claim follows. �

We do not have much additional evidence in favor of Conjecture 1.1, except that
all our attempts to construct a counterexample failed in a suspicious way: each time
unexpected linear pencils popped up that made the statement true. As a typical
example, we considered the fiber product

C :

{
y31 = f1(x)
y32 = f2(x)

of two cyclic degree 3 covers of the projective line, with f1(x), f2(x) degree 6 polyno-
mials that are squarefree and mutually coprime. This is a 9-gonal curve of genus 28
by Riemann-Hurwitz, so in view of Lemma 2.1 we have (9, d) ∈ S1,1(C) with d ≤ 29.
On the other hand both covers naturally admit a g14, which when composed with
the g13 of the other curve gives rise to two independent g112’s on C, each of which has
a component in common with our g19. So we also find that (12, 12) ∈ S1,1(C), while
it is not obvious that (9, e) ∈ S1,1(C) with e ≤ 12, especially because the genus is so
high. However, in all concrete versions that we tried the substitution y1 ← y1 + y2,
when followed by a projection on the (x, y1)-plane, resulted in a plane degree 15
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curve having several triple points, each of which corresponds to a g112 by projection.
In this way we always found that (9, 12) ∈ S1,1(C).

3 A recursive formula for lsΣ(∆)

We begin by discussing some first properties. For d ∈ Z≥0 one has

lsΣ (conv{(0, 0), (d, 0)}) = d.

Indeed, it is immediate that conv{(0, 0), (d, 0)} ⊂ dΣ and that the integral distance
gcd(a2 − a1, b2 − b1) between two points (a1, b1), (a2, b2) ∈ (d − 1)Σ cannot exceed
d− 1. More generally, every lattice polygon that contains a line segment of integral
length dmust have lattice size at least d with respect to Σ. In particular lsΣ(dΣ) = d.

Lemma 3.1. Let ∆ be a non-empty lattice polygon. Then lw(∆) ≤ lsΣ(∆), and
equality holds if and only if ∆ ≃ dΣ for some integer d ≥ 0.

Proof. This follows because lw(dΣ) = d, while every strict subpolygon Γ ⊂ dΣ
satisfies lw(Γ) < d. �

A less straightforward lattice size calculation is:

Lemma 3.2. Let a, b ∈ Z≥0 and consider �a,b = [0, a]×[0, b]. Then lsΣ(�a,b) = a+b.

Proof. The case where a = 0 or b = 0 follows from the above considerations, so
we can assume that a, b ≥ 1. Instead of looking for the minimal d such that �a,b

can be mapped inside dΣ through a unimodular transformation, we will look for
the minimal d such that �a,b is contained in a unimodular transform of dΣ. More
precisely, we will prove the following assertion by induction on a+ b:

We have lsΣ(�a,b) = a + b. Moreover, there are exactly four ways of fitting
�a,b inside a unimodular transform of (a+ b)Σ:

The basis of our induction is the case a = b = 1. Here, the first part of the assertion
holds because �1,1 ⊂ 2Σ and Vol(�1,1) > Vol(Σ). The second part follows because
2Σ contains only 3 lattice points that are non-vertices. Therefore, when fitting �1,1

inside a transform of 2Σ, at least one of its vertices must coincide with a vertex
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of 2Σ, and the two adjacent vertices of �1,1 must coincide with the interior lattice
points of the respective adjacent edges of 2Σ. From this the claim follows easily.

Now assume that a, b ≥ 1 and (without loss of generality) that a ≥ 2. Clearly
�a,b ⊂ (a+b)Σ. Suppose that �a,b sits inside a unimodular transform of (a+b−1)Σ.
By applying the induction hypothesis to �a−1,b ⊂ �a,b we find that (a + b − 1)Σ
must enclose this subpolygon in one of the four manners above. But for each of
these four configurations, it is clear that �a,b itself could not have been contained
in (a + b− 1)Σ: contradiction. As for the second assertion, let Σ′ be a unimodular
transform of (a + b)Σ containing �a,b. Then

• each edge of Σ′ must contain at least one vertex of �a,b: otherwise we could
crop Σ′ to a unimodular transform of (a+ b− 1)Σ that still contains �a,b;

• at least one vertex v of Σ′ does not appear as a vertex of �a,b: otherwise the
latter would be a triangle;

• the edges of Σ′ that are adjacent to v cannot contain two vertices of �a,b each:
otherwise �a,b would contain two non-adjacent non-parallel edges.

So there must be an edge τ ⊂ Σ′ that contains exactly one vertex v of �a,b. Then the
transform of (a+ b−1)Σ obtained from Σ′ by shifting τ inwards contains �a,b \{v}.
In particular it contains (a translate of) �a−1,b. By applying the induction hypoth-
esis we find that Σ′ must be positioned in one of the four standard ways above. �

We now investigate the relation between lsΣ(∆) and lsΣ(∆
(1)). Since for d ≥ 3

one has (dΣ)(1) ≃ (d− 3)Σ, we have that

lsΣ(∆
(1)) ≤ lsΣ(∆)− 3 (3)

as soon as ∆ is two-dimensional (this includes the case where ∆(1) = ∅, which can
be verified separately). Typically, one expects equality to hold, but there are many
exceptions, which are classified by Theorem 3.5 below.

In what follows, we will make use of the following terminology and facts; see
[15, §4] or [21, §2.2] for proofs. An edge τ of a two-dimensional lattice polygon Γ is
always supported on a line aτX + bτY = cτ with aτ , bτ , cτ ∈ Z and aτ , bτ coprime.
When signs are chosen appropriately, we can moreover assume that Γ is contained
in the half-plane aτX+bτY ≤ cτ . The line aτX+bτY = cτ +1 is called the outward
shift of τ . It is denoted by τ (−1), and the polygon (which may take vertices outside
Z2) that arises as the intersection of the half-planes aτX + bτY ≤ cτ + 1 is denoted
by Γ(−1). If Γ = ∆(1) for some lattice polygon ∆, then the outward shifts of two
adjacent edges of Γ always intersect in a lattice point, and in fact Γ(−1) = ∆(1)(−1)

is a lattice polygon. Moreover, ∆ ⊂ ∆(1)(−1), i.e. ∆(1)(−1) is the maximal lattice
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polygon (with respect to inclusion) for which the convex hull of the interior lattice
points equals ∆(1).

Before stating Theorem 3.5, let us prove two auxiliary lemmas:

Lemma 3.3. Assume that there exist parallel edges τ ⊂ ∆ and τ ′ ⊂ ∆(1) whose
supporting lines are at integral distance 1 of each other, of respective lengths r and
s. If r ≥ s+ 3 then lsΣ(∆

(1)) = s and lsΣ(∆) = r.

Remark. As usual, by an edge we mean a one-dimensional face. In particular, if ∆(1)

is one-dimensional then it is an edge of itself. Example: consider the hyperelliptic
Weierstrass polygon

conv{(0, 0), (2g + 1, 0), (0, 2)}
from the introduction. Then lsΣ(∆

(1)) = g and lsΣ(∆) = 2g + 1. This shows that
the difference between lsΣ(∆) and lsΣ(∆

(1)) can be arbitrarily large.

Proof of Lemma 3.3. By using a unimodular transformation if needed, we can
assume that τ = conv{(−1,−1), (r − 1,−1)} and τ ′ = conv{(0, 0), (s, 0)}. Since
r ≥ s + 3 and ∆(1) cannot contain any lattice points on the line Y = 0 apart from
those contained in τ ′,

• the edge of ∆ that is left-adjacent to τ must pass through or to the right of
(−1, 0), and

• the edge of ∆ that is right-adjacent to τ must pass through or to the left of
(s+ 1, 0).

τ

τ ′
(−1, 0) (s+ 1, 0)

From the convexity of ∆ one immediately sees that ∆ ⊂ (−1,−1)+rΣ, and similarly
that ∆(1) ⊂ sΣ. Therefore lsΣ(∆

(1)) ≤ s and lsΣ(∆) ≤ r, and equality follows from
the considerations preceding Lemma 3.2. �

Lemma 3.4. Assume that ∆(1) is two-dimensional. Let s ≥ 1 be an integer such
that ∆(1) ⊂ sΣ, and assume that ∆(1) has an edge τ ′ in common with sΣ. Let τ ′(−1)

be its outward shift, and consider the face τ = ∆∩ τ ′(−1) of ∆, whose integral length
we denote by r. Then

lsΣ(∆
(1)) = s and lsΣ(∆) = max{r, s+ 3}.
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Remark. The face τ is either a vertex or an edge. In the former case, its integral
length is understood to be 0.

Proof. The fact that lsΣ(∆
(1)) = s follows immediately from the considerations

preceding Lemma 3.2. As for lsΣ(∆), in case r ≥ s + 3 the statement follows from
Lemma 3.3. So assume that r ≤ s + 3 (we reinclude the case r = s + 3 for the
sake of the symmetry of the argument below). Without loss of generality we may
suppose that τ ′ = conv{(0, 0), (s, 0)}. We claim that we can moreover assume that
τ ⊂ conv{(−1,−1), (s+ 2,−1)}, while still keeping ∆(1) ⊂ sΣ.

Assuming the claim, we can make the following reasoning.

• Clearly ∆ is contained in the half-plane Y ≥ −1.

• Suppose that ∆ contains a lattice point (a, b) for which a < −1. Because
b = −1 contradicts our claim, while b = 0 contradicts that ∆(1) ⊂ sΣ (indeed,
it implies that (−1, 0) ∈ ∆(1)), we must have b ≥ 1. Along with the fact that
∆(1) is two-dimensional (so that it must contain a lattice point on or above
the line Y = 1) this implies that (0, 1) ∈ ∆(1). But then, apart from the point
(a, b) itself, all lattice points which are contained in the triangle spanned by
(a, b), (0, 0) and (0, 1) must be elements of ∆(1). The volume of this triangle
being at least 1, Pick’s theorem implies that it must contain a lattice point
different from (a, b), (0, 0) and (0, 1). This contradicts ∆(1) ⊂ sΣ.

We conclude that ∆ is contained in the half-plane X ≥ −1.

• By applying the unimodular transformation (i, j) 7→ (s − i − j, j), one sees
that the foregoing reasoning also allows to conclude that ∆ is contained in the
half-plane X + Y ≤ s+ 1.

So the claim implies that ∆ ⊂ (−1,−1) + (s+ 3)Σ, and hence that lsΣ(∆) ≤ s+ 3,
which together with (3) proves the lemma.

To prove the claim, note that because r ≤ s+3, again using the transformation
(i, j) 7→ (s− i− j, j) if needed, we can assume that τ is contained in the half-plane
X ≥ −1. Let (a,−1) be the right-most vertex of τ . As long as a > s + 2, we can
apply a unimodular transformation of the form (i, j) 7→ (i+ j, j) to ∆, while

• keeping τ in the half-plane X ≥ −1 (here we again used that r ≤ s+ 3);

• keeping ∆(1) inside sΣ: indeed, because a > s + 2 and (s + 1, 0) /∈ ∆(1), the
edge of ∆ that is right-adjacent to τ must have a slope that is smaller than
1/2 (in absolute value), and hence the same must be true for the edge of ∆(1)

that is right-adjacent to τ ′.
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τ

τ ′

|slope| ≤ 1
2 (i, j) 7→ (i+ j, j)

τ

τ ′

|slope| ≤ 1, so ∆(1)

still contained in sΣ

This decreases the value of a by 1. So the claim follows by repeating this step until
a ≤ s+ 2. �

We are now ready to state and prove our recursive expression.

Theorem 3.5. Let ∆ be a two-dimensional lattice polygon. Then

lsΣ(∆) = lsΣ(∆
(1)) + 3,

except in the following situations:

• ∆ is equivalent to a Lawrence prism

(0, 0) (a, 0)

(0, 1) (b, 1)

where a = b = 1 or 2 ≤ a ≥ b ≥ 0, in which case lsΣ(∆
(1)) = −2 and

{
lsΣ(∆) = a + 1 if a = b,

lsΣ(∆) = a if a > b;

• ∆ is equivalent to

(0, 0) (2, 0),

(0, 2)

in which case lsΣ(∆
(1)) = −2 and lsΣ(∆) = 2;

• ∆ is equivalent to

(0, 0) (4, 0),

(0, 2)

in which case lsΣ(∆
(1)) = 0 and lsΣ(∆) = 4;
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• ∆ ≃ �a,b for certain a, b ≥ 2, in which case

lsΣ(∆
(1)) = a + b− 4 and lsΣ(∆) = a + b;

• there exist parallel edges τ ⊂ ∆ and τ ′ ⊂ ∆(1) whose supporting lines are at
integral distance 1 of each other, such that

♯(τ ∩ Z2)− ♯(τ ′ ∩ Z2) ≥ 4;

in this case lsΣ(∆
(1)) = ♯(τ ′ ∩ Z2) and lsΣ(∆) = ♯(τ ∩ Z2).

Remark. The third case conv{(0, 0), (4, 0), (0, 2)} can in some sense be viewed as a
special case of the last item, with τ ′ having length 0.

Proof. For the Lawrence prisms and the two explicit polygons the statement is
immediate, while the polygons �a,b are covered by Lemma 3.2 and the observation
that (�a,b)

(1) ≃ �a−2,b−2. The last statement follows from Lemma 3.3.
By (3) it remains to show that in all other situations lsΣ(∆

(1)) ≥ lsΣ(∆)−3. The
cases where ∆(1) is not two-dimensional can be analyzed explicitly using Koelman’s
classification: see [4, Thm. 10] or [21, Ch. 4]. We can therefore assume that ∆(1) is
two-dimensional. Let s = lsΣ(∆

(1)), so that we can suppose that ∆(1) ⊂ sΣ. If

∆(1)(−1) ⊂ (sΣ)(−1) (4)

then the theorem follows because ∆ ⊂ ∆(1)(−1) and (sΣ)(−1) ≃ (s + 3)Σ. So let us
assume that (4) is not satisfied. Without loss of generality we may then suppose
that ∆(1)(−1) is not contained in the half-plane

X + Y ≤ s+ 1.

This means that the edge of sΣ connecting (s, 0) and (0, s) cannot contain two
vertices of ∆(1). But it must contain at least one vertex v of ∆(1): if not, ∆(1) would
be contained in (s− 1)Σ, contradicting s = lsΣ(∆

(1)).
Write v = (a, s− a) for some a ∈ {0, . . . , s}. We distinguish between two cases.

• Assume that v lies in the interior of the edge of sΣ that connects (s, 0) and
(0, s), i.e. a /∈ {0, s}. Let v1 = (a1, b1) and v2 = (a2, b2) be the vertices of ∆(1)

that are adjacent to v, ordered counterclockwise, and for i = 1, 2 let τi be
the edge connecting vi and v. Note that b1 < s− a: otherwise ∆(1) would be
contained in conv{(0, s − a), (a, s − a), (0, s)} ≃ aΣ, which would contradict

s = lsΣ(∆
(1)). This means that the outward shift τ

(−1)
1 must intersect the line

segment spanned by v = (a, s− a) and v′ = (a+ 1, s− a).
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v′
v

v1

v2

X + Y = s+ 1

τ2

τ1
sΣ

But then b2 ≤ s − a, otherwise τ
(−1)
2 would also pass in between v and v′,

implying that τ
(−1)
1 and τ

(−1)
2 intersect in the half-plane X + Y ≤ s + 1:

a contradiction. We conclude that ∆(1) must be contained below the line
Y = s− a. By symmetry of arguments, it must also lie to the left of X = a.
Thus ∆(1) is contained in the rectangle

conv {(0, 0), (a, 0), (a, s− a), (0, s− a)} .
Now if any of these four vertices would not appear as an actual vertex of ∆(1)

then we would again contradict s = lsΣ(∆
(1)). Thus ∆(1) must be exactly this

rectangle, and ∆(1)(−1) ≃ �a+2,s−a+2. The case ∆ = ∆(1)(−1) being among our
exceptions, we can assume that at least one of the four vertices of ∆(1)(−1)

does not appear as an actual vertex of ∆. But then lsΣ(∆) ≤ s+3, as desired.

• Assume that v is an endpoint of the edge of sΣ connecting (s, 0) and (0, s),
i.e. a ∈ {0, s}. Without loss of generality we may assume that a = s. Again
let v1 = (a1, b1) and v2 = (a2, b2) be the vertices of ∆(1) that are adjacent to
v, ordered counterclockwise, and for i = 1, 2 let τi be the edge connecting vi
and v.

v X + Y = s+ 1

v2

v1 τ1

τ2

sΣ

We claim that v1 = (0, 0), i.e. a1 = b1 = 0. Indeed:

– Assume that b1 = 0. Then τ
(−1)
1 is the line Y = −1. Since τ

(−1)
2 must

intersect this line in a lattice point outside the half-plane X + Y ≤ s+1
we find (as in the proof of Lemma 3.4) that τ2 has slope at most 1/2 (in
absolute value), i.e. a2 ≤ s−2b2. From this it follows that a1 = 0: if not,
the unimodular transformation (i, j) 7→ (i + j − 1, j) maps ∆(1) inside
(s− 1)Σ, contradicting s = lsΣ(∆

(1)).
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– Assume that b1 6= 0. If a2 ≤ s− 2b2 then we would again find a contra-
diction with s = lsΣ(∆

(1)). Therefore a2 > s− 2b2, and by symmetry of

arguments also a1 < s− 2b1. But then τ
(−1)
1 passes through or above the

point (s+ 2,−1), while τ (−1)
2 passes through or to the left of (s+2,−1).

Taking into account their respective slopes, one sees that these lines must
intersect in the half-plane X + Y ≤ s + 1: a contradiction. So this case
cannot occur.

Thus τ1 = conv{(0, 0), (s, 0)}. Now consider the face τ = τ
(−1)
1 ∩ ∆ of ∆.

The case ♯(τ ∩ Z2) ≥ s + 4 being among our exceptions, we can assume that
♯(τ ∩ Z2) ≤ s+ 3. The theorem then follows from Lemma 3.4. �

Theorem 3.5 gives a recursive method for computing the lattice size with respect
to Σ in practice. For example, let ∆ be the lattice polygon below.

By taking consecutive interiors, we find the following ‘onion skins’.

The inner polygon is (equivalent to) a Lawrence prism with a = 4 and b = 2, while
the subsequent steps are not exceptional. We find lsΣ(∆) = lsΣ(∅)+ 6+ 3+3 = 10.
We remark that this is in fact a rephrasing of Schicho’s algorithm for simplifying
rational parametrizations of toric surfaces [25, §4]. Whereas Schicho proved that
the output of the algorithm is at worst twice the lattice size [25, Thm. 10], our result
shows that the result is actually optimal.

A Magma implementation of this method can be found in the file basic_commands.m
that accompanies [7]. For instance, the above example can be treated as follows:

> load "basic_commands.m";
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Loading "basic_commands.m"

> P := LatticePolytope([<8,0>,<6,1>,<2,4>,<0,6>,<0,8>,<3,7>,<5,6>]);

> LatticeSizeRecursiveSigma(P);

10

4 A recursive formula for ls�(∆)

Some basic properties of the lattice size with respect to � are that

ls�(conv{(0, 0), (d, 0)}) = d

for any d ∈ Z≥0 (in particular every lattice polygon that contains a line segment of
integral length d must have lattice size at least d with respect to �), and that for
each non-empty lattice polygon ∆ we have

lw(∆) ≤ ls�(∆) ≤ lsΣ(∆) ≤ 2 ls�(∆). (5)

By Lemma 3.1 the first two inequalities become equalities for (and only for) ∆ ≃ dΣ
with d ∈ Z≥0.

The aim is again to relate ls�(∆) to ls�(∆
(1)). Our treatment is very similar to

that of the previous section. Because (d�)(1) ≃ (d− 2)� for d ≥ 2, we have that

ls�(∆
(1)) ≤ ls�(∆)− 2 (6)

as soon as ∆ is two-dimensional (this includes the case where ∆(1) = ∅, which can
be verified explicitly). Typically one expects equality to hold, so our task amounts
to classifying the exceptions. We again rely on two auxiliary lemmas. The first is a
literal rephrasing of Lemma 3.3:

Lemma 4.1. Assume that there exist parallel edges τ ⊂ ∆ and τ ′ ⊂ ∆(1) whose
supporting lines are at integral distance 1 of each other, of respective lengths r and
s. If r ≥ s+ 3 then ls�(∆

(1)) = s and ls�(∆) = r.

Proof. By Lemma 3.3 we know that lsΣ(∆
(1)) = s and lsΣ(∆) = r, so by (5) we

find ls�(∆
(1)) ≤ s and ls�(∆) ≤ r. Equality follows from the considerations at the

beginning of this section. �

(Instead of invoking Lemma 3.3 one can also just copy its proof, basically.) Our
second lemma is analogous to Lemma 3.4, but the statement is slightly more subtle:

Lemma 4.2. Assume that ∆(1) is two-dimensional. Let s ≥ 1 be an integer such
that ∆(1) ⊂ s�, and assume that ∆(1) has at least one edge in common with s�.
Choose such an edge τ ′ for which the integral length r of the face τ = ∆ ∩ τ ′(−1) of
∆ is maximal. Then

ls�(∆
(1)) = s and ls�(∆) = max{r, s+ 2}.

Chapter 3. The lattice size of a lattice polygon 63



Proof. The fact that ls�(∆
(1)) = s follows immediately from the considerations

at the beginning of this section. As for ls�(∆), in case r ≥ s + 3 the statement
follows from Lemma 4.1. So assume that r ≤ s + 2. Without loss of generality we
may suppose that τ ′ = conv{(0, 0), (s, 0)}. In complete analogy with the proof of
Lemma 3.4 we can moreover assume that τ ⊂ conv{(−1,−1), (s + 1,−1)}, while
still keeping ∆(1) ⊂ s�. Still copying the reasoning from that proof, we conclude
that ∆ must be in the half-planes Y ≥ −1, X ≥ −1 and X ≤ s+ 1.

Y ≥ −1

X
≥
−
1

X
≤

s
+

1

τ ′

τ

s�

Now suppose that ∆ contains a lattice point (a, b) for which b > s+1. If 0 ≤ a ≤ s
then the point (a, s + 1) is contained in the triangle spanned by (a, b), (0, 0) and
(s, 0), therefore it must be contained in ∆(1), contradicting that ∆(1) ⊂ s�. We can
therefore make the following case distinction:

• ∆ is contained in the half-plane Y ≤ s+1. But this means that ∆ ⊂ (−1,−1)+
(s+ 2)� and hence that ls�(∆) ≤ s+ 2, which together with (6) allows us to
conclude.

• ∆ contains a point (−1, b) with b > s + 1. By considering the convex hull of
(−1, b), (0, 0) and (s, 0) this implies that sΣ ⊂ ∆(1). Now if

– the latter inclusion would be strict, or

– if b > s+ 2,

then one would obtain that (0, s+1) ∈ ∆(1) ⊂ s�, a contradiction. Therefore
b = s + 2 and ∆(1) = sΣ. In particular ∆(1) also has the vertical edge
conv{(0, 0), (0, s)} in common with s�. This means that (−1,−1) /∈ ∆, for
otherwise the corresponding face of ∆ would contain conv{(−1,−1), (−1, s+
2)} which has integral length s+3, contradicting the maximality of r. But then
the unimodular transformation (i, j) 7→ (i, i + j) maps ∆ inside (−1,−1) +
(s+2)�. Hence ls�(∆) ≤ s+2, which together with (6) allows us to conclude.
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• ∆ contains a point (s+1, b) with b > s+1. This case follows from the previous
one, by symmetry.

This proves the lemma. �

In the statement of Lemma 4.2, the condition of maximality is necessary. For
instance let ∆ be the polygon

(−1,−1) (s + 1,−1)
(s+ 1, 0)

(0, s + 2)

∆(1)

so that ∆(1) = sΣ ⊂ s�. Both conv{(0, 0), (0, s)} and conv{(0, 0), (s, 0)} are com-
mon edges, but the corresponding faces τ of ∆ have different integral lengths, namely
s+ 3 resp. s+ 2. So in this case the lattice size of ∆ with respect to � is s+ 3.

Let us include the following corollary to (the proof of) Lemma 4.2, for use in
Section 5. Define a horizontal resp. vertical skewing as a unimodular transformation
of the form

(
i
j

)
7→

(
±1 a
0 1

)(
i
j

)
+

(
b
0

)
resp.

(
i
j

)
7→

(
1 0
a ±1

)(
i
j

)
+

(
0
b

)

for some a, b ∈ Z (i.e. leaving the second resp. first coordinate invariant).

Corollary 4.3. Assume that ∆(1) is two-dimensional and contained in ls�(∆
(1)) ·�.

Suppose that these polygons have a unique edge in common. If this edge is horizontal
(resp. vertical) then there exists a horizontal (resp. vertical) skewing ϕ for which
ϕ(∆) ⊂ (−1,−1) + ls�(∆) ·�.

Proof. Let τ ′ be the common edge with s� where s = ls�(∆
(1)), and let τ =

τ ′(−1) ∩∆. Denote the integral length of the latter by r. Without loss of generality
we can assume that τ ′ is a horizontal edge of s�.

We actually claim the stronger statement that there exists a horizontal skewing
ϕ such that

ϕ(∆) ⊂ [−1, ls�(∆)− 1]× [−1, s+ 1].

To prove this it suffices to assume that τ ′ is the bottom edge of s�, so that we are
in the set-up from the proof of Lemma 4.2. We make a case distinction:

• either r ≤ s+2, in which case the proof of Lemma 4.2 yields that ls�(∆) = s+2
and, through the proof of Lemma 3.4, that there exists a horizontal skewing
ϕ such that

ϕ(∆(1)) ⊂ s� and ϕ(∆) ⊂ (−1,−1) + (s+ 2)� :
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indeed, the unicity of τ ′ excludes that sΣ ⊂ ϕ(∆(1)), so the last part of the
proof of Lemma 4.2 can be omitted;

• or r ≥ s + 3, in which case Lemma 4.1 yields that ls�(∆) = r and, through
the the proof of Lemma 3.3, that there exists a horizontal skewing ϕ such that
ϕ(∆) ⊂ (−1,−1) + r�.

In both cases the claim follows. �

We now state and prove our recursive expression.

Theorem 4.4. Let ∆ be a two-dimensional lattice polygon. Then

ls�(∆) = ls�(∆
(1)) + 2,

except in the following situations:

• ∆ is equivalent to a Lawrence prism

(0, 0) (a, 0)

(0, 1) (b, 1)

where 2 ≤ a ≥ b ≥ 0, in which case ls�(∆
(1)) = −1 and ls�(∆) = a;

• ∆ is equivalent to

(0, 0) (2, 0),

(0, 2)

in which case ls�(∆
(1)) = −1 and ls�(∆) = 2;

• ∆ is equivalent to one of

(0, 0) (3, 0),

(0, 3)

(0, 0) (3, 0),

(0, 2)

(0, 0) (3, 0),

(0, 2)
(2, 1)

(0, 0) (3, 0),

(0, 2) (1, 2)

in which case ls�(∆
(1)) = 0 and ls�(∆) = 3;

• ∆ is equivalent to
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(0, 0) (4, 0),

(0, 2)

in which case ls�(∆
(1)) = 0 and ls�(∆) = 4;

• there exist parallel edges τ ⊂ ∆ and τ ′ ⊂ ∆(1) whose supporting lines are at
integral distance 1 of each other, such that

♯(τ ∩ Z2)− ♯(τ ′ ∩ Z2) ≥ 3;

in this case ls�(∆
(1)) = ♯(τ ′ ∩ Z2) and ls�(∆) = ♯(τ ∩ Z2).

Remark. Except for 2Σ, the explicitly given polygons can in some sense be viewed
as special cases of the last item, with τ ′ having length 0.

Proof. For the Lawrence prisms and the six explicitly given polygons, the theorem
is immediate, while the last statement follows from Lemma 4.1.

By (6) it remains to show that in all other situations ls�(∆
(1)) ≥ ls�(∆) − 2.

The cases where ∆(1) is not two-dimensional can again be analyzed explicitly using
Koelman’s classification: see [4, Thm. 10] or [21, Ch. 4]. We can therefore assume
that ∆(1) is two-dimensional. Let s = ls�(∆

(1)) and suppose that ∆(1) ⊂ s�. If

∆(1)(−1) ⊂ (s�)(−1) (7)

then the theorem follows because ∆ ⊂ ∆(1)(−1) and (s�)(−1) ≃ (s + 2)�. So let us
assume that (7) is not satisfied. Without loss of generality we may then suppose
that ∆(1)(−1) is not contained in the half-plane X ≤ s + 1. By using a translation
if needed, we can assume that the both the lower edge and the right edge of s�
contain at least one vertex of ∆(1).

X = s+ 1

v v′

s�

∆(1)

By our assumption the right edge then contains exactly one such vertex, that we
denote by v = (s, a), for some a ∈ {0, . . . , s}.

We first reduce to the case where a = 0. Suppose that a > 0 and let v1 =
(a1, b1) and v2 = (a2, b2) be the vertices of ∆(1) that are adjacent to v, ordered
counterclockwise. For i = 1, 2 let τi be the edge connecting vi and v. By our
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assumption that the lower edge of s� contains at least one vertex of ∆(1) we have
that b1 < a. This means that the outward shift τ

(−1)
1 must intersect the line segment

spanned by v = (s, a) and v′ = (s+1, a). But then b2 ≤ a, otherwise τ
(−1)
2 would also

pass in between v and v′, implying that τ
(−1)
1 and τ

(−1)
2 intersect in the half-plane

X ≤ s + 1: a contradiction. We conclude that ∆(1) lies in the half-plane Y ≤ a.
But then a vertical flip followed by a vertical translation positions v at (s, 0), while
leaving our other assumptions unaffected.

So we can assume that v = (s, 0). We claim that this implies that at least one of
conv{(0, 0), (s, 0)} or conv{(0, s), (s, 0)} appears as an edge of ∆(1). Assuming the
claim we can conclude quickly. Indeed, in the former case we see that ∆(1) has an
edge in common with s�, so that the theorem follows from Lemma 4.2 (using that
we excluded the cases where r ≥ s + 3). In the latter case either (i, j) 7→ (i+ j, j)
or (i, j) 7→ (i, i+ j− s) positions ∆(1) inside s� in such a way that there is an edge
in common:

(i, j) 7→
(i+ j, j)

(i, j) 7→
(i, i + j − s)

So the theorem again follows from Lemma 4.2.
To prove the claim, as before let v1 = (a1, b1) and v2 = (a2, b2) be the vertices

of ∆(1) that are adjacent to v, ordered counterclockwise, and denote by τ1, τ2 the
corresponding edges. We make a case distinction.

• Assume that b1 = 0. Then τ
(−1)
1 is the line Y = −1. Since τ (−1)

2 must intersect
this line in a lattice point outside the half-plane X ≤ s+1 we find that τ2 has
slope at most 1 (in absolute value), i.e. a2 ≤ s− b2. It follows that ∆(1) ⊂ sΣ.
Now:

– if (0, 0) ∈ ∆(1) or (0, s) ∈ ∆(1) then the claim follows;

– if not then the transformation (i, j) 7→ (i + j − 1, j) maps ∆(1) inside
(s− 1)�, contradicting that s = ls�(∆

(1)).

• Assume that b1 6= 0. Then τ1 and τ2 cannot lie at opposite sides of the line
connecting (s, 0) and (0, s), i.e. one cannot simultaneously have a1 < s − b1
and a2 > s − b2, because otherwise τ

(−1)
1 and τ

(−1)
2 would intersect in the

half-plane X ≤ s + 1. But then either a2 ≤ s − b2, in which case ∆(1) ⊂ sΣ
and we can proceed as before, or a1 ≥ s − b1, in which case the situation is
entirely analogous.
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This completes the proof. �

Theorem 4.4 gives a recursive method for computing the lattice size with respect
to � in practice. Using the example ∆ from the end of the previous section, we see
that ls�(∆) = ls�(∅)+5+2+2 = 8. A Magma implementation can be found in the
file basic_commands.m that accompanies [7]. For instance, the foregoing example
can be treated as follows:

> load "basic_commands.m";

Loading "basic_commands.m"

> P := LatticePolytope([<8,0>,<6,1>,<2,4>,<0,6>,<0,8>,<3,7>,<5,6>]);

> LatticeSizeRecursiveSquare(P);

8

We include an immediate corollary to the above proof, for use in the next sec-
tion. Let s ∈ Z≥1. Then by a slice of s� we mean a line segment of the form
conv{(a, 0), (a, s)} or conv{(0, a), (s, a)} for some a ∈ {0, . . . , s}. By a diagonal we
mean conv{(0, s), (s, 0)} or conv{(0, 0), (s, s)}. Then we have:

Corollary 4.5. Suppose that ∆(1) is two-dimensional and contained in ls�(∆
(1))·�.

Assume that there is no edge of ∆(1) that is a slice or a diagonal of the latter. Then
ls�(∆) = ls�(∆

(1)) + 2 and ∆ ⊂ (−1,−1) + ls�(∆) ·∆.

5 A minimum with respect to the product order

This section is devoted to our combinatorial version of Conjecture 1.1, namely that
for each non-empty lattice polygon ∆ the set S1,1(∆) admits a minimum with respect
to the product order ≤ × ≤ on N2. It suffices to show that ∆ admits a unimodular
copy inside the rectangle

�lw(∆),ls�(∆) = [0, lw(∆)] × [0, ls�(∆)]. (8)

Indeed, then (lw(∆), ls�(∆)) ∈ S1,1(∆), and from the respective definitions of lw(∆)
and ls�(∆) it is clear that this concerns a minimum with respect to the product
order.

We need the following properties of the lattice width:

Lemma 5.1. If ∆(1) 6= ∅ then lw(∆) = lw(∆(1)) + 2, except if ∆ ≃ dΣ for some
d ≥ 3, in which case d = lw(∆) = lw(∆(1)) + 3. If moreover ∆(1) 6≃ dΣ for any
d ≥ 0 and

∆(1) ⊂ [0, lw(∆(1))] × R
then

∆ ⊂ [−1, lw(∆(1)) + 1] × R = [−1, lw(∆)− 1] × R.
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Proof. See [23, Thm. 13], where the second statement is phrased as follows: an
optimal viewangle for ∆(1) is also an optimal viewangle for ∆. �

Due to the special role of standard triangles, we treat the following case sepa-
rately:

Lemma 5.2. Let ∆ be a two-dimensional lattice polygon such that ∆(1) ≃ dΣ for
some d ≥ 1. Then there exists a unimodular transformation mapping ∆ inside (8).

Proof. If ∆(1) = dΣ then ∆ ⊂ (dΣ)(−1) ≃ (d + 3)Σ. If equality holds then
lw(∆) = ls�(∆) = d+3 and ∆ is indeed contained in a box of size (d+3)× (d+3).
If not then at least one of the vertices of (d + 3)Σ is not contained in ∆. By
applying a unimodular transformation if needed we can assume that it concerns the
right-most vertex. We now make a case distinction:

• If the left-most edge of (d + 3)Σ is contained in ∆, then ls�(∆) = d + 3 by
Lemma 4.1. On the other hand lw(∆) = d+2 by Lemma 5.1. We see that ∆
is contained in a box of size (d+ 2)× (d+ 3), as wanted.

(Remark: the example following the proof of Lemma 4.2 is of this kind.)

• If the left-most edge does not appear, then without loss of generality we can
assume that the top vertex is missing. Then ls�(∆) = d + 2 by Lemma 4.2,
while still lw(∆) = d + 2. We see that ∆ is contained in a box of size (d +
2)× (d+ 2), as wanted.

The lemma follows. �

We can now treat the general case.

Proof of Theorem 1.2. We will proceed by induction on lw(∆(1)). The base
case is where lw(∆(1)) ≤ 0, for which the theorem can be verified explicitly using
Koelman’s classification: see [4, Thm. 10] or [21, Ch. 4].

So assume that ∆(1) is two-dimensional. Because lw(∆(1)(1)) < lw(∆(1)) we can
apply the induction hypothesis to find that ∆(1) can be positioned inside the box

[0, lw(∆(1))] × [0, ls�(∆
(1))]. (9)

The foregoing lemma allows us to assume that ∆(1) is not a standard triangle. But
then ∆ must be contained in the strip

[−1, lw(∆)− 1] × R (10)

by Lemma 5.1. We make a case distinction:
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• Suppose that the box (9) is a square, i.e. lw(∆(1)) = ls�(∆
(1)). Then by

symmetry ∆ must also be contained in the strip

R × [−1, lw(∆)− 1].

So it is contained in the intersection

[−1, lw(∆)− 1] × [−1, lw(∆)− 1] ≃ [0, lw(∆)] × [0, lw(∆)].

Therefore ls�(∆) = lw(∆), and the statement follows.

• Suppose that the box (9) is not a square, i.e. lw(∆(1)) < ls�(∆
(1)). We make

a further distinction:

– Suppose that an edge of ∆(1) arises as a slice of ls�(∆
(1)) · �. Because

lw(∆(1)) < ls�(∆
(1)) it necessarily concerns one of the two vertical edges

of our box (9). By flipping horizontally if needed we can assume that
it concerns the left edge, which is then a common edge of ∆(1) with
ls�(∆

(1)) ·�.

ls�(∆(1))

lw(∆(1))
ls�(∆(1)) ·�

It is the unique such edge, so we can apply Corollary 4.3 to find a vertical
skewing ϕ such that ϕ(∆) ⊂ (−1,−1) + ls�(∆) · �. But the strip (10)
is invariant under vertical skewings. By taking the intersection, we find
that

ϕ(∆) ⊂ [−1, lw(∆)− 1] × [−1, ls�(∆)− 1] ≃ [0, lw(∆)] × [0, ls�(∆)],

as wanted.

– Suppose that ∆(1) does not have an edge arising as a slice of ls�(∆
(1)) ·�.

Because our box (9) is not a square, it cannot have a diagonal edge either.
So from Corollary 4.5 we see that

∆ ⊂ (−1,−1) + (ls�(∆
(1)) + 2) ·� = (−1,−1) + ls�(∆) ·�,

and we conclude as above.
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The theorem follows. �

We conclude this section by remarking that the above material can be used
to design an algorithm for simplifying rational parametrizations of toric surfaces,
following Schicho [25], where the focus now lies on the bidegree rather than the total
degree.

6 Proof of the main theorem

After this large chunk of combinatorics, let us return to algebraic geometry. As in
the introduction, let k be an algebraically closed field (of arbitrary characteristic),
let f ∈ k[x±1, y±1] be an irreducible Laurent polynomial, and assume that ∆(f)
is two-dimensional. Let Uf ⊂ T2 be the curve defined by f . Our aim is to prove
Theorem 1.3.

Proof of Theorem 1.3. First remark that the inequalities (2) are trivial as soon
as Uf is a rational curve, because the right-hand sides are at least 1 resp. (1, 1).
In particular, by Baker’s bound [3] we can assume that ∆(f)(1) is not empty. But
then the right-hand sides are at least 3 and (2, 2). For curves of genus one these
bounds can be met simultaneously. Indeed, pick a cubic (e.g. Weierstrass) model
and apply a projective transformation ensuring that the curve passes through the
two coordinate points at infinity. Then its affine part is defined by a polynomial
whose Newton polygon is contained in

(0, 0) (2, 0)

(2, 1)

(1, 2)(0, 2)

and therefore both in 3Σ and 2�. Thus we can assume that Uf is of genus g ≥ 2.
By Baker’s bound this implies that ♯(∆(f)(1) ∩ Z2) ≥ 2.

Let us begin with proving the first inequality s2(Uf) ≤ lsΣ(∆(f)(1)) + 3. By
the trivial bound (1) it suffices to analyze the exceptional polygons listed in Theo-
rem 3.5. Since ♯(∆(f)(1) ∩ Z2) ≥ 2 this leaves us with two cases:

• Assume that ∆(f) = �a,b for certain a, b ≥ 2. Pick a point (x0, y0) ∈ Uf .
Then the Newton polygon of f(x+ x0, y + y0) is contained in

conv{(1, 0), (a, 0), (a, b), (0, b), (0, 1)}.

But then xaybf(x−1+x0, y
−1+y0) is a polynomial of degree at most a+ b−1.

So s2(Uf ) ≤ lsΣ(∆(f))− 1 = lsΣ(∆(f)(1)) + 3.
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• Assume that there exist parallel edges τ ⊂ ∆(f) and τ ′ ⊂ ∆(f)(1) whose
supporting lines are at integral distance 1 of each other, of respective lengths
r and s, such that r ≥ s + 4. From Lemma 3.3 and its proof we see that
s = lsΣ(∆(f)(1)) and that we can assume that

τ = conv{(0, 0), (r, 0)} and τ ′ = conv{(1, 1), (s+ 1, 1)}.

This configuration implies that ∆(f) is contained in the half-planes X ≥ 0,
Y ≥ 0 and X + (r − s− 2)Y ≤ r. In other words,

f =

⌊r/(r−s−2)⌋∑

j=0

gj(x)y
j

for polynomials gj ∈ k[x] satisfying deg gj ≤ r − (r − s− 2)j and deg g0 = r.
Now factor g0(x) = g′0(x)h

′
0(x) with deg g′0 = s + 3 and deg h′0 = r − s − 3,

substitute y ← yh′0(x), and kill a factor h′0(x) to obtain

g′0(x) +

⌊r/(r−s−2)⌋∑

j=1

gj(x)h
′
0(x)

j−1yj.

One verifies that each term has degree at most s + 3, which proves that
s2(Uf) ≤ s+ 3 = lsΣ(∆(f)(1)) + 3.

As for the case where ∆(f) ≃ dΥ for some d ≥ 2, note that by Theorem 3.5 we have
lsΣ(dΥ) = 3d, so the bound we need to prove is sharper. Consider the embedding

ψ : T2 →֒ P3 = Proj k[X0, X1, X2, X3] : (x, y) 7→ (x−1y−1 : x : y : 1).

It embeds Uf in a projective curve Cf which arises as the intersection of the cubic
X0X1X2−X3

3 and an irreducible hypersurface of degree d, whose concrete equation
depends on f . In particular it is a curve of degree 3d. By [16, IV.Prop. 3.8 and
IV.Thm. 3.9] we can find a point on Cf , the general secant line through which is not
a multisecant. Projecting from such a point yields a birational equivalence between
Cf and a plane curve of degree 3d− 1, as wanted.

Next we address the inequality

s1,1(Uf) ≤ s1,1(∆(f)(1)) + (2, 2) =
(
lw(∆(f)(1)) + 2, ls�(∆(f)(1)) + 2

)
.

We make a case distinction.

• Assume that ∆(f)(1) ≃ (d− 3)Σ for some d ≥ 4, so that

ls�(∆(f)(1)) = lsΣ(∆(f)(1)) = d− 3.
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By the foregoing Uf has a plane model of degree d. Using a projective trans-
formation we can ensure that this model passes through the coordinate points
at infinity. As in the genus one case we end up with a model of bidegree
(d− 1, d− 1), as wanted.

• Suppose that ∆(f)(1) is not a standard triangle. By Lemma 5.1 we have
lw(∆(f)) = lw(∆(f)(1)) + 2. If we are not among the exceptions listed in
Theorem 4.4 then also ls�(∆(f)) = ls�(∆(f)(1))+2, and the statement follows
from the bound (1).

Because ♯(∆(f)(1)∩Z2) ≥ 2 only the last exception is a concern. Assume that
there exist parallel edges τ ⊂ ∆(f) and τ ′ ⊂ ∆(f)(1) whose supporting lines
are at integral distance 1 of each other, of respective lengths r and s, such
that r ≥ s+ 3. By Lemma 4.1 we know that s = ls�(∆(f)(1)). Thus our aim
is to apply a birational change of variables to f so that the result has bidegree
(lw(∆(f)), s+ 2).

Again, as in the proof of Lemma 3.3 we can assume that

τ = conv{(0, 0), (r, 0)} and τ ′ = conv{(1, 1), (s+ 1, 1)},

so that ∆(f) is contained in the half-planes X ≥ 0, Y ≥ 0 and X + (r − s−
2)Y ≤ r. This implies that ∆(f)(1) is contained in (1, 1) + sΣ, and because
we excluded standard triangles the top vertex of the latter cannot occur, from
which one sees that lw(∆(f)(1)) < s.

If we now use Theorem 1.2 to position ∆(f)(1) inside a box

[1, s+ 1]× [1, lw(∆(f)(1)) + 1],

then τ ′ necessarily arises as a horizontal line segment; we can assume it to
be the bottom segment conv{(1, 1), (s + 1, 1)}. By Lemma 5.1 our Newton
polygon ∆(f) is then contained in the strip

R × [0, lw(∆(f))]. (11)

Now once again as in the proof of Lemma 3.3 we can apply a horizontal
skewing to position τ at conv{(0, 0), (r, 0)}. We again obtain that ∆(f) is
contained in the half-planes X ≥ 0, Y ≥ 0 and X + (r − s − 2)Y ≤ r, while
it is also kept in the strip (11). In other words,

f =

lw(∆(f))∑

j=0

gj(x)y
j
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for polynomials gj ∈ k[x] satisfying deg gj ≤ r − (r − s − 2)j, deg g0 = r
and glw(∆(f)) 6= 0. Now factor g0(x) = g′0(x)h

′
0(x) with deg g′0 = s + 2 and

deg h′0 = r − s− 2, substitute y ← yh′0(x), and kill a factor h′0(x) to obtain a
polynomial

g′0(x) +

lw(∆(f))∑

j=1

gj(x)h
′
0(x)

j−1yj

of degree s+ 2 in x and degree lw(∆(f))) in y, as wanted.

It remains to show that s1,1(Uf) ≤ (3, 4) when ∆(f) = 2Υ. By Baker’s bound Uf

is a curve of genus at most 4. If Uf is hyperelliptic then the bound follows trivially
(because of the lexicographic order). If Uf is non-hyperelliptic of genus 3 then Uf

is birationally equivalent to a non-singular quartic in P2, and one can construct
a model of bidegree (3, 3) by forcing it through the coordinate points at infinity.
Finally if Uf is non-hyperelliptic of genus 4 then it is birationally equivalent to a
singular quintic in P2 by [16, IV.Ex. 5.4]. Using a projective transformation we can
assume that the curve passes through the coordinate points at infinity, one of these
being a singularity. Dehomogenizing yields an affine model of bidegree (3, 4) as
wanted. �

7 Cases where the bounds are sharp

In this section we again restrict to char k = 0, because of some references on which
we will rely. One of these references is a subsequent, more elaborate paper [7] of ours,
in which we study linear pencils that are encoded in the Newton polygon. At some
point in that paper, the lattice size with respect to Σ pops up as a convenient notion
[7, Thm. 7.2]. This is how we came up with the first inequality from Theorem 1.3,
which meant the start of this project.

We will make extensive reference to [7], even though it concerns a successive
paper. But we stress that no circular reasoning is being made: no statements in [7]
make use of any of the results of this section. Moreover, some of the results of [7]
that we need appear (in more disguised terms) in an earlier article by Kawaguchi
[18]. Finally, we emphasize that the primary aim of this section is to convince the
reader that the bounds from Theorem 1.3 often give the correct values of s2(Uf )
and s1,1(Uf ), and to give some evidence in favor of Conjecture 1.4; we will not push
the limits of our exposition.

Let us specify what we mean by f being sufficiently generic with respect to
its Newton polygon ∆(f). To each two-dimensional lattice polygon ∆ there is a
standard way of associating a toric surface X(∆) over k (along with an embedding
in P#(∆∩Z2)−1). This is a completion of the torus T2, so it is natural to consider
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the closure of Uf inside it. It turns out that for almost all Laurent polynomials f
the closure Cf of Uf inside X(∆(f)) is non-singular. More precisely, if one fixes
a two-dimensional lattice polygon ∆, then the locus of the Laurent polynomials f
for which ∆(f) = ∆ and Cf is non-singular is dense in the according #(∆ ∩ Z2)-
dimensional coefficient space. We refer to [9, §2] and [7, §4] for more background.

We now rephrase Conjecture 1.4 as follows.

Conjecture 7.1. If Cf is a non-singular curve and ∆(f) 6≃ 2Υ then

s2(Uf) = lsΣ(∆(f)(1)) + 3 and s1,1(Uf) = s1,1(∆(f)(1)) + (2, 2),

unless ∆(f) ≃ dΥ for some d ≥ 3, in which case s2(Uf ) = 3d− 1.

This would extend the list of geometric invariants that are known to be encoded in
the Newton polygon. We mention some of its current entries: if Cf is a non-singular
curve then

(i) its (geometric) genus g equals ♯(∆(f)(1) ∩ Z2); this is due to Khovanskii [20];

(ii) its gonality c equals lw(∆(f)(1)) + 2, unless ∆(f) ≃ 2Υ in which case the
gonality equals 3; this is [7, Cor. 6.2], whose proof strongly builds on previous
work of Kawaguchi [18];

(iii) it is isomorphic to a non-singular plane curve if and only if ∆(f)(1) = ∅ or
∆(f)(1) ≃ (d− 3)Σ for some d ≥ 3; this is [7, Cor. 8.2].

For an extension of this list we refer to [6, 7, 8]. Note the similarity between
statement (ii) and Conjecture 7.1.

An intuitive reason for the fact that many invariants are encoded in the Newton
polygon is that Cf canonically embeds inside X(∆(1)) ⊂ Pg−1, and that the defining
equations of the latter are so special (quadrics of very low rank) that they can often
be recovered from the canonical ideal of Cf itself. We refer to the introduction of
[6] for an extended discussion. Up to equivalence, the polygon Υ is the unique two-
dimensional polygon of the form ∆(1) for which the ideal of X(∆(1)) is not generated
by quadrics. This explains the special role of 2Υ, which is the only polygon having
Υ as its interior. If ∆(f) ≃ 2Υ then from (i) we find that Cf is a genus four curve,
for which

• s2(Uf) = 5, so the formula s2(Uf) = 3d − 1 is actually correct here: the
existence of a degree 5 model follows from Theorem 1.3, while degree 4 or less
would contradict that the genus is 5;
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• s1,1(Uf) = (3, 4) or s1,1(Uf ) = (3, 3), depending on whether the unique quadric
in which Cf canonically embeds is singular or not: in this case by [9, §6] there
exists an f ′ ∈ k[x±1, y±1] with

∆(f ′) = conv{(0, 0), (6, 0), (0, 3)} resp. ∆(f ′) = [0, 3]× [0, 3],

such that Cf ′ is non-singular and birationally equivalent to Uf ; the formulas
then follow from Theorem 7.3 below.

Alternatively, these formulas can be proved along the lines of [16, IV.Ex. 5.4].
Note that by Lemma 3.1 and (5) we have

−1 ≤ lw(∆(f)(1)) ≤ lsΣ(∆(f)(1)) and − 1 ≤ lw(∆(f)(1)) ≤ ls�(∆(f)(1)).

We can prove Conjecture 7.1 near both ends of these ranges.

Theorem 7.2. If Cf is non-singular and

lw(∆(f)(1)) ≤ 1 or lw(∆(f)(1)) ≥ lsΣ(∆(f)(1))− 2,

then s2(Uf ) = lsΣ(∆(f)(1)) + 3, unless ∆(f) ≃ 2Υ, 3Υ, in which case s2(Uf) = 5
and s2(Uf ) = 8, respectively.

Proof. By the above discussion we can assume that ∆(f) 6≃ 2Υ.
At the lower end, we can argue as follows:

• If lw(∆(f)(1)) = −1, or in other words if ∆(f)(1) = ∅, then Uf is rational
because of (i), and there is nothing to prove.

• If lw(∆(f)(1)) = 0, then ∆(f)(1) is a line segment, say of integral length g−1.
By (i) and (ii) we find that Uf is hyperelliptic of genus g. So s2(Uf ) = g + 2,
which indeed equals lsΣ(∆(f)(1)) + 3.

• If lw(∆(f)(1)) = 1 then ∆(f)(1) is equivalent to a Lawrence prism

(0, 0) (a, 0)

(0, 1) (b, 1)

with 1 ≤ a ≥ b ≥ 0. In this case Cf is a trigonal curve with scrollar invariants
a, b by [7, Thm. 9.1]. From [19, Lem. 2.1], which is expressed in terms of the
Maroni invariant b = min(a, b), we conclude that s2(Uf) = g + 1 − b = a + 3
if a > b, and s2(Uf ) = g + 2 − b = a + 4 if a = b. By Theorem 3.5, in both
cases this exactly matches with lsΣ(∆(f)(1)) + 3.
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At the other end, we make the following reasonings.

• Assume that lw(∆(f)(1)) = lsΣ(∆(f)(1)). Then by Lemma 3.1 we have that
∆(f)(1) ∼= (d − 3)Σ for some integer d ≥ 3. But then by (iii) our curve
Cf is isomorphic to a non-singular plane curve of degree d, and therefore
s2(Uf) = d = lsΣ(∆(f)(1)) + 3.

• If lw(∆(f)(1)) = lsΣ(∆(f)(1))− 1 then by (ii) the gonality of Uf equals

c = lsΣ(∆(f)(1)) + 1,

unless ∆(f) ≃ 2Υ, but this case was excluded. On the other hand, again by
(iii) every plane model is necessarily singular. This means that s2(Uf ) ≥ c+2,
because otherwise projection from a singular point on the plane model would
give a map to P1 of degree strictly less than c. We conclude that s2(Uf ) ≥
lsΣ(∆(f)(1)) + 3, and by Theorem 1.3 equality holds.

• If lw(∆(f)(1)) = ls(∆(f)(1))− 2 then by (ii) the gonality of Uf equals

c = lsΣ(∆(f)(1)).

By (iii) every plane model is singular and we find as above that s2(Uf) ≥
c + 2. In case ∆(f) ≃ 3Υ this matches with the upper bound from Theo-
rem 1.3, and we are done. We would like to show that s2(Uf ) ≥ c + 3 in
the other cases. So suppose that ∆(f) 6≃ 3Υ and assume by contradiction
that s2(Uf) = c + 2. In this case we see that the curve carries infinitely
many base-point free g1c+1’s, obtained by projection from the non-singular
points of a plane degree c + 2 model. By [7, Thm. 7.2] this is possible only if
∆(f)(1) ∼= conv{(0, 0), (1, 0), (3, 1), (2, 2), (1, 2)}, so that ∆(f) is of the form

(−1,−1) (0,−1)

(4, 1)

(2, 3)(1, 3)

(the dashed polygon indicates ∆(f)(1)). By (i) and (ii) our curve Cf has
gonality c = 4 and geometric genus g = 7. By [7, Cor. 6.3] and [7, Thm. 9.1]
the gonality pencil is unique and its scrollar invariants are 1, 1, and 2. Now
take a curve in P2 of degree d = c+2 = 6 that is birationally equivalent to Cf .
Because the gonality is 4 and the gonality pencil is unique, the curve must
have a unique singular point P , of multiplicity 2. The point P cannot be an
ordinary node or a cusp, otherwise the genus would be (d−1)(d−2)/2−1 = 9.
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Thus there is a unique tangent line at P which intersects the curve at P with
multiplicity at least 4. Using a transformation of P2 we can assume that
P = (0 : 1 : 0) and that this line is at infinity. Dehomogenizing the defining
equation then results in a polynomial g(x, y) that is supported on the following
polygon:

(0, 0) (6, 0)

(4, 2)

(0, 4)

The coefficient at y4 is non-zero because the gonality is 4. In particular our
g14 is given by the projection (x, y) 7→ x. Also note that at least one of the
coefficients at x4y2, x5y, x6 is non-zero, because the degree is 6. Now let
Dx ∈ g14 be the zero divisor of x−1, and similarly let Dy be the zero divisor of
y−1. The steepness of the above polygon ensures that Dy ≤ 2Dx. In particu-
lar H0(2Dx) ⊃ {1, x−1, x−2, y−1} is at least 4-dimensional. This shows that 0
must be among the scrollar invariants of our g14: a contradiction. We conclude
that s2(Uf ) ≥ c + 3: a contradiction. �

Theorem 7.3. If Cf is non-singular, ∆(f) 6≃ 2Υ and

lw(∆(f)(1)) ≤ 1 or lw(∆(f)(1)) ≥ ls�(∆(f)(1))− 1,

then s1,1(Uf ) = s1,1(∆(f)(1)) + (2, 2).

Proof. The case of rational and (hyper)elliptic curves follows from Lemma 2.1.
In the trigonal case:

• If g = 3 then ∆(f)(1) ≃ Σ and the upper bound from Theorem 1.3 reads (3, 3),
which is clearly sharp in the case of a trigonal curve.

• If g = 4 then either ∆(f)(1) ≃ conv{(0, 0), (2, 0), (0, 1)} or ∆(f)(1) ≃ �1,1;
indeed ∆(f)(1) ≃ Υ was excluded in the statement of the theorem. In the
latter case the upper bound from Theorem 1.3 reads (3, 3), which is clearly
optimal in the case of a trigonal curve. In the former case the upper bound
reads (3, 4), which is also optimal because by [7, Cor. 6.3] the gonality pencil
is unique, while the existence of a model of bidegree (3, 3) would contradict
that.
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• If g ≥ 5 then the g13 is always unique. From [24, Prop. 1] (see also [10,
Ex. 1.2.7]) one sees that there exists a base-point free g1d that is independent
from this g13 if and only if g−d does not exceed the Maroni invariant. Using the
same notation as in the foregoing proof, this condition reads g− d ≤ a, which
is equivalent with d ≥ b+ 2. Thus s1,1(Uf ) = (3, b+ 2) = s1,1(∆(f)) + (2, 2),
as wanted.

At the other end, we make the following reasonings.

• If lw(∆(f)(1)) = ls�(∆(f)(1)) then by (ii) the gonality of Uf equals

c = lw(∆(f)(1)) + 2 = ls�(∆(f)(1)) + 2

unless ∆(f) ∼= 2Υ, but this case was excluded. So s1,1(∆(f)(1))+(2, 2) = (c, c)
is clearly a lower bound for s1,1(Uf ), and by Theorem 1.3 equality holds.

• If lw(∆(f)(1)) = ls�(∆(f)(1))− 1 then

c = lw(∆(f)(1)) + 2 = ls�(∆(f)(1)) + 1,

and we similarly find that s1,1(∆(f)(1)) + (2, 2) = (c, c+ 1). So it is sufficient
to show that (c, c) /∈ S1,1(Uf), i.e. our curve does not carry two independent
gonality pencils. But by [7, Thm. 6.1] every gonality pencil is combinatorial,
i.e. it corresponds to projecting along some lattice width direction of ∆(f).
In particular lw(∆(f)) = c, and if Cf would admit two gonality pencils then
∆(f) would admit two R-linearly independent lattice width directions. By [7,
Lem. 5.2(v)] this would mean that ls�(∆(f)) = c. But then

c− 1 = ls�(∆(f)(1)) ≤ c− 2,

a contradiction. �
There is room for improvement in Theorems 7.2 and 7.3, in order to cover larger

ranges of lw(∆(f)(1)). At the lower end this seems difficult however. Whereas it is
well-understood which base-point free pencils occur in the hyperelliptic and trigonal
cases [24], for curves of higher gonality not much seems known, although Coppens
and Martens proved some potentially useful facts in the tetragonal case [11]. At the
upper end more seems possible: one can try to extend the results of [7, §7] in order to
describe the g1c+n’s on smooth curves in toric surfaces, for n = 2, 3, . . . It is expected
that these are always combinatorially determined, except for a finite (but increasing)
number of polygons. This would help in pushing the above arguments. The finite
number of exceptions can then hopefully be treated using an ad hoc idea, such as
the one used in the proof of Theorem 7.2. We expect this to become increasingly
difficult and case-distinctive, however. Alternatively, it might be possible to obtain
some results by using specialization of linear systems from curves to graphs [2, 5]
to reduce Conjecture 1.4 to a purely combinatorial statement.
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A minimal set of generators for the canonical ideal
of a non-degenerate curve

Wouter Castryck∗ and Filip Cools

Abstract

We give an explicit way of writing down a minimal set of generators for
the canonical ideal of a non-degenerate curve, or of a more general smooth
projective curve in a toric surface, in terms of its defining Laurent polynomial.

MSC2010: Primary 14H45, Secondary 14M25

Accompanying Magma file: canonical.m

1 Introduction

Let k be an algebraically closed field and consider the affine torus T2 = (k \ {0})2.
Let ∆ ⊂ R2 be a two-dimensional lattice polygon and define N = ](∆ ∩ Z2). In
this article we are concerned with algebraic curves Uf ⊂ T2 that are cut out by a
sufficiently generic Laurent polynomial

f =
∑

(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1].

Here ‘sufficiently generic’ means that f is contained in a certain Zariski dense subset
of the correspondingN -dimensional coefficient space. More precisely, to each (i, j) ∈
∆ ∩ Z2 we associate a formal variable Xi,j, and we let

PN−1 = Proj k[Xi,j](i,j)∈∆∩Z2 .

We have a natural embedding

ϕ∆ : T2 ↪→ PN−1 : (x, y) 7→
(
xiyj

)
(i,j)∈∆∩Z2 ,

∗Supported by F.W.O.-Vlaanderen.
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the Zariski closure of the image of which is a toric surface that we denote by Tor(∆).
Note that ϕ∆(Uf ) is contained in the hyperplane section

H :
∑

(i,j)∈∆∩Z2

ci,jXi,j = 0

of Tor(∆) ⊂ PN−1. Then by ‘sufficiently generic’ we mean that the Zariski closure
Cf of ϕ∆(Uf ) is a smooth projective curve that equals this hyperplane section.
Bertini’s theorem implies that this is indeed a Zariski dense condition. Alternatively
and more explicitly, for Cf to arise as a smooth hyperplane section of Tor(∆), it
suffices that f is non-degenerate with respect to ∆, in the sense that for each face
τ ⊂ ∆ (vertex, edge, or ∆ itself) the system

fτ =
∂fτ
∂x

=
∂fτ
∂y

= 0

has no solutions in T2. Here fτ is obtained from f by restricting to those terms
that are supported on τ . Non-degeneracy is known to be generically satisfied; see
[3, Prop. 1].

Remark. Every (nef and big) smooth projective curve C on a toric surface X arises
as such a toric hyperplane section. Indeed, let DC be a torus-invariant divisor on X
that is linearly equivalent to C, and let ∆ be the two-dimensional lattice polygon
associated to DC (here we use that C is nef and big). Then the T2-part of C is cut
out by a Laurent polynomial f ∈ k[x±1, y±1] that is supported on ∆. The above
construction then yields a hyperplane section Cf of Tor(∆) that is isomorphic to C.

We refer to [4, §3-4] and the references therein for more background, both on curves
in toric surfaces and on non-degenerate Laurent polynomials. Various of these ref-
erences assume the base field k to be of characteristic 0, but we emphasize that the
material presented below is valid in any characteristic.

The main result of this paper is an explicit recipe for writing down a minimal set
of generators for the canonical ideal of curves of the form Cf , where f ∈ k[x±1, y±1]
satisfies the above generic condition (e.g. non-degeneracy) with respect to a given
two-dimensional lattice polygon ∆.

A quick implementation of the resulting algorithm already heavily outperforms
Magma’s built-in function for computing canonical ideals [1]. The latter relies on
general lattice basis reduction algorithms that were developed by Hess [9]. Our
code can be found in the file canonical.m that accompanies the article. It allows
one to compute the canonical ideal of a non-degenerate curve of genus g ≈ 100 in
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a matter of minutes, whereas everything beyond g = 20 looks hopeless using the
Magma intrinsic, both in terms of time and memory. Of course, this comes at the
cost of working in less generality, but note that the condition of non-degeneracy is
generically satisfied (for a fixed instance of ∆), and easy to verify. It therefore seems
useful to begin the computation of the canonical ideal with a test for whether the
input polynomial is non-degenerate or not, and if yes, to proceed with the method
presented here.

Our starting point is a theorem by Khovanskii [10], stating that there exists a
canonical divisor K∆ on Cf such that a basis for H0(Cf , K∆) is given by

{
xiyj

}
(i,j)∈∆(1)∩Z2 ,

where ∆(1) denotes the convex hull of the interior lattice points of ∆. Here x, y are
viewed as functions on Cf through ϕ∆. See [5, Prop. 10.5.8] for a modern proof.
Two notable corollaries are:

• The genus of Cf equals g = ](∆(1) ∩ Z2).

• If g ≥ 2 then the linear system |K∆| maps Uf inside the image of ϕ∆(1) . In
particular:

– if ∆(1) is one-dimensional then the canonical image of Cf is a rational
normal curve of degree g − 1, hence Cf is hyperelliptic;

– if ∆(1) is two-dimensional, then Cf is non-hyperelliptic and the canonical
image of Cf is contained in the toric surface Tor(∆(1)) ⊂ Pg−1.

See [4, §4] and its references for more details.

In what follows we assume that Cf is non-hyperelliptic or, equivalently, that ∆(1) is
two-dimensional. Then the generators for the canonical ideal of Cf are gathered in
two steps.

• In Section 2, which can be seen as an addendum to previous work by Koelman
[12, 13], we will describe a method for finding a minimal set of generators for
the ideal of Tor(∆(1)). We also provide explicit formulas for the number of
generators in each degree. Because of the independent interest, we will do
this for toric surfaces Tor(Γ) where Γ is an arbitrary two-dimensional lattice
polygon (not necessarily of the form ∆(1)).

• Then in Section 3, we will explicitly describe which generators have to be
added in order to obtain a minimal set of generators for the canonical ideal
of Cf . These can be seen as analogues of Reid’s rolling factors [15], where the
‘rolling’ now happens in two directions, rather than one.
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Notation and terminology. We use a special notation for two recurring polygons

Σ = conv{(0, 0), (1, 0), (0, 1)}, Υ = conv{(−1,−1), (1, 0), (0, 1)},

and write ∼= to indicate unimodular equivalence. For instance, ∆ ∼= Σ if and
only if ∆ is a unimodular simplex. We recall that the convex hull of the interior
lattice points of a two-dimensional lattice polygon ∆ is denoted by ∆(1). If the
latter is again two-dimensional, we abbreviate ∆(1)(1) by ∆(2). We use ∆◦ to denote
the topological interior of ∆, and write ∂∆ for its boundary. A two-dimensional
lattice polygon ∆ is said to be hyperelliptic if ∆(1) is one-dimensional. If X is a
projectively embedded variety over k, we write I(X) for its defining ideal. For each
non-negative integer d we use Id(X) to denote the k-vector space of homogeneous
degree d polynomials that are contained in I(X).

2 The ideal of a toric surface

Let Γ ⊂ R2 be a two-dimensional lattice polygon and let N = #(Γ ∩ Z2). Define
Tor(Γ) as the Zariski closure inside PN−1 of the image of ϕΓ. A result due to
Koelman [12, 13] states that the ideal I(Tor(Γ)) is generated by all binomials

n∏

`=1

Xi`,j` −
n∏

`=1

Xi′`,j
′
`

for which
n∑

`=1

(i`, j`) =
n∑

`=1

(i′`, j
′
`)

where n ∈ {2, 3}. Moreover one can restrict to n = 2 if and only if ](∂Γ∩Z2) ≥ 4 or
Γ is a unimodular simplex. This result was generalized to property Np for arbitrary
p by Hering and Schenck; see [8, Thm. 4.20].

The current section can be seen as an addendum to Koelman’s work: we give explicit
formulas for the number of quadrics and cubics in a minimal set of homogeneous
generators for I(Tor(Γ)).

Lemma 1. For all integers d ≥ 0 one has:

dim Id (Tor(Γ)) =

(
](Γ ∩ Z2) + d− 1

d

)
− ](dΓ ∩ Z2).

Proof. The k-vector space morphism

χd : Id(PN−1)→ k[x±1, y±1] : Xi1,j1 · · ·Xid,jd 7→ xi1+···+idyj1+···+jd

has kernel Id(Tor(Γ)) and surjects onto 〈xiyj〉(i,j)∈dΓ∩Z2 (here we use that two-
dimensional lattice polygons are always normal [2, Prop. 1.2.2-4], i.e. every lattice
point in dΓ is the sum of d lattice points in Γ).
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The main result of this section is:

Theorem 2. A minimal set of generators for I(Tor(Γ)) consists of
(
](Γ ∩ Z2) + 1

2

)
− ](2Γ ∩ Z2) quadrics and cΓ cubics,

where

cΓ =





0 if ](∂Γ ∩ Z2) ≥ 4 or Γ ∼= Σ,
1 if ](∂Γ ∩ Z2) = 3, Γ 6∼= Σ, and Γ is non-hyperelliptic,
](Γ ∩ Z2)− 3 if ](∂Γ ∩ Z2) = 3, Γ 6∼= Σ, and Γ is hyperelliptic.

Proof. The formula for the number of quadrics follows from Lemma 1 along with the
fact that Tor(Γ) is not contained in any hyperplane of PN−1. By Koelman’s result,
it remains to prove the formula for the number of cubics cΓ when ](∂Γ∩Z2) = 3 and
Γ 6∼= Σ. We moreover know that cΓ ≥ 1 in these cases. Also recall that I(Tor(Γ)) is
generated by binomials.

First assume that Γ is non-hyperelliptic and Γ 6∼= Υ. Along with ](∂Γ∩Z2) = 3 and
Γ 6∼= Σ this implies that Γ(1) is two-dimensional; see e.g. Koelman’s classification
[11, Ch. 4], although this could also serve as an easy exercise. Let {v1, v2, v3} be the
three vertices of Γ and consider

Γ′ = conv
(
(∆ \ {v1}) ∩ Z2

)
.

Then Γ′ ⊃ Γ(1) is again a two-dimensional lattice polygon. We claim that there
are at least 4 lattice points on its boundary. Indeed, if there would only be 3 such
lattice points, then Γ′ would be a triangle whose vertices are {v, v2, v3}, where v is
contained in the interior of Γ, and the triangles v1-v-v2 and v1-v-v3 are unimodular
simplices (i.e. they do not contain any lattice points besides the vertices).

v2 = (a, b)

v3 = (c, d)

v1 = (0, 0) v = (1, 0)

We may assume that v1 = (0, 0), v = (1, 0), v2 = (a, b) and v3 = (c, d), where
b > 0 > d. By Pick’s theorem the unimodularity of v1-v-v2 and v1-v-v3 implies that
b = 1 and d = −1, and hence that Γ is contained in a horizontal strip of width 2: a
contradiction with the fact that Γ(1) is two-dimensional. So the claim follows. Now
consider a binomial

C = Xi1,j1Xi2,j2Xi3,j3 −Xi′1,j
′
1
Xi′2,j

′
2
Xi′3,j

′
3
∈ I3(Tor(Γ)) (1)
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and define ΓC = conv{(i1, j1), (i2, j2), (i3, j3), (i′1, j
′
1), (i′2, j

′
2), (i′3, j

′
3)}.

• If ΓC ( Γ, then by the above ΓC ⊂ Γ′ for a subpolygon Γ′ that contains at
least 4 lattice points on the boundary. So by Koelman’s result applied to Γ′

our cubic C can be written as a linear combination of a number of elements
of I2(Tor(Γ)).

• If ΓC = Γ then it is not hard to see that either (i1, j1), (i2, j2), (i3, j3) or
(i′1, j

′
1), (i′2, j

′
2), (i′3, j

′
3) are the three vertices of Γ; see [13, Lem. 2.6].

It follows that the sum or difference of two binomials C1, C2 ∈ I3(Tor(Γ)) that
are independent of I2(Tor(Γ)) is again a cubic binomial C. But the latter satisfies
ΓC ( Γ, so by the first observation C is expressible as a linear combination of ele-
ments of I2(Tor(Γ)). This proves that one cubic is sufficient, i.e. cΓ = 1.

Next assume that Γ is hyperelliptic or Γ ∼= Υ. Using that ](∂Γ ∩ Z2) = 3 we find
that it is unimodularly equivalent to

(−1, 1)

(0,−1)

(r, 0)

where r = #(Γ ∩ Z2)− 3. One verifies that the irreducible binomials in I3(Tor(Γ))
involving X−1,1 or X0,−1 must involve both variables in the same monomial. This
monomial is necessarily among

X−1,1X0,−1Xi,0 i = 1, . . . , r

and conversely, for each of these monomials there is a corresponding binomial
Ci ∈ I3(Tor(Γ)). As before we find that the difference or sum of two cubic bi-
nomials involving the same monomial X−1,1X0,−1Xi,0 is a linear combination of el-
ements of I2(Tor(Γ)). So we conclude that I(Tor(Γ)) is generated by I2(Tor(Γ)) ∪
{C1, . . . , Cr}. Because the quadratic binomials in I(Tor(Γ)) do neither involve X−1,1

nor X0,−1, the latter r cubics are independent of I2(Tor(Γ)).

We have included Magma code for computing such a minimal set of (binomial)
generators; see our accompanying file canonical.m. As for the quadratic generators,
this is done by naively gathering all relations of the form

(i1, j1) + (i2, j2) = (i′1, j
′
1) + (i′2, j

′
2)

for (i1, j1), (i2, j2), (i′1, j
′
1), (i′2, j

′
2) ∈ Γ∩Z2, and then finding a k-linearly independent

subset of the set of corresponding binomials

Xi1,j1Xi2,j2 −Xi′1,j
′
1
Xi′2,j

′
2
.
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In the case where ] (∂Γ ∩ Z2) = 3, Γ 6∼= Σ and Γ is non-hyperelliptic, a single bi-
nomial of the form (1) with (i1, j1), (i2, j2), (i3, j3) the vertices of Γ is added by
exhaustive search. In the hyperelliptic case the explicit construction from the above
proof is followed.

Example. The code below carries this out for the following lattice polygon (over
k = Q):

(0, 1)

(2, 4)

(7, 0)

> load "canonical.m"

Loading "canonical.m"

Loading "basic_commands.m"

> P := LatticePolytope([<0,1>,<7,0>,<2,4>]);

> time I := TorIdeal(P, Rationals());

Time: 0.110

This can be used as input to more advanced functions, such as the Magma intrinsic
for computing the Betti diagram:
> BettiTable(GradedModule(Ideal(I)));

[

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 0, 55, 320, 891, 1424, 1470, 972, 315, 16, 0, 0, 0 ],

[ 0, 1, 11, 71, 480, 1302, 1932, 1886, 1221, 485, 110, 11 ]

]

Remark. From the point of view of efficiency the above method leaves room for im-
provement. Especially the gathering of the quadratic generators can be done more
systematically, for instance using Gröbner bases computations. These are implicitly
invoked by the code below (a continuation of the above example):
> AA<x,y> := AffinePlane(Rationals());

> latticepoints := ConvexHull(P); N := #latticepoints;

> PP := ProjectiveSpace(Rationals(), N-1);

> phi_P := map< AA->PP | [x^p[1]*y^p[2] : p in latticepoints] >;

> time I := Ideal(Image(phi_P));

Time: 0.080

This produces a reduced Gröbner basis for Tor(Γ). In general this is not a minimal
set of generators, but its quadratic elements do form a basis of I2(Tor(Γ)), so that
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one can obtain a minimal set of generators by proceeding as above.

Remark. Up to unimodular equivalence, the only two-dimensional instances of ∆(1)

for which ](∂∆(1) ∩ Z2) = 3 are Σ and Υ. This can be shown using [7, Lem. 9-
11]. Therefore, for the purposes of describing the canonical ideal of curves in toric
surfaces, the above general treatment is more elaborate than needed. We have
included it because we believe it to be of independent interest.

3 An explicit description of the canonical ideal

Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a Laurent
polynomial satisfying the sufficiently generic condition from the introduction (e.g.
non-degeneracy). Assume that the corresponding curve Cf is non-hyperelliptic of
genus g ≥ 3, i.e. ∆(1) is two-dimensional and ](∂∆(1) ∩ Z2) ≥ 3. Let Ccan

f be the
canonical model of Cf obtained using |K∆|.

We already know that I(Ccan
f ) contains I(Tor(∆(1))), and from the previous section

we know how to find a minimal set of generators for the latter. In this section we
describe which generators have to be added in order to obtain a minimal set of
generators for I(Ccan

f ). A priori, it is not entirely trivial that it suffices to merely

add some generators, but note from the previous remark that Tor(∆(1)) is almost
always generated by quadrics, in which case this is clear. The only exception is when
∆(1) ∼= Υ, which corresponds to curves of genus 4, and is therefore well-understood.

Our main auxiliary tool is:

Theorem 3. The equality

dim Id(Ccan
f )− dim Id(Tor(∆(1))) = ]

((
(d− 1)∆(1)

)(1) ∩ Z2
)

holds for all integers d ≥ 2.

Proof. From Lemma 1 it follows that

dim Id(Tor(∆(1))) =

(
g + d− 1

d

)
− ](d∆(1) ∩ Z2).

On the other hand, let H(d) be the Hilbert function of the homogeneous coordinate
ring of Ccan

f ⊂ Pg−1. Then H(d) = (2g − 2)d + (1 − g) = (2d − 1)(g − 1) if d ≥ 2
(see [6, Cor. 9.4]), hence

dim Id(C) =

(
g + d− 1

d

)
− (2d− 1)(g − 1).
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So we are left with proving that

](d∆(1) ∩ Z2)− ]
((

(d− 1)∆(1)
)(1) ∩ Z2

)
= (2d− 1)(g − 1).

For this, write R(1) = ](∂∆(1) ∩ Z2) and consider the Ehrhart polynomial

Ehr∆(1)(k) = Vol(∆(1)) · k2 +
R(1)

2
· k + 1

of ∆(1). Since ](k∆(1) ∩ Z2) = Ehr∆(1)(k) and ]
(
∂
(
k∆(1)

)
∩ Z2

)
= kR(1) for all

k ∈ Z≥1, we have that

](d∆(1) ∩ Z2)− ]
((

(d− 1)∆(1)
)(1) ∩ Z2

)

= Ehr∆(1)(d)− Ehr∆(1)(d− 1) + ]
(
∂
(
(d− 1)∆(1)

)
∩ Z2

)

= (2d− 1)

(
Vol(∆(1)) +

R(1)

2

)

= (2d− 1)(g − 1).

This concludes the proof.

Remark. Some readers may prefer the following cohomological proof of Theorem 3
(brief). Assume for ease of exposition that Tor(∆) is smooth; if not the argument
below has to be preceded by a toric blow-up. Let DCf

be a torus-invariant divisor
on Tor(∆) that is linearly equivalent to Cf , let K be a torus-invariant canonical
divisor on Tor(∆), and define L = DCf

+K. When tensoring the exact sequence

0→ OTor(∆)(−DCf
)→ OTor(∆) → OCf

→ 0

with OTor(∆)(dL), taking cohomology and using the standard toric vanishing theo-
rems for H1 we get

0→ H0(Tor(∆), (d− 1)L+K)→ H0(Tor(∆), dL)→ H0(Cf , dL|Cf
)→ 0.

The respective dimensions of these spaces are seen to be

]
((

(d− 1)∆(1)
)(1) ∩ Z2

)
, dim

Id(Pg−1)

Id(Tor(∆(1)))
, and dim

Id(Pg−1)

Id(Ccan
f )

,

(indeed, by adjunction theory L|Cf
is a canonical divisor on Cf ), so that the theo-

rem follows.
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Now write
f =

∑

(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1]

and define Wd =
(
∆(1)

)◦ ∩
(

1
d−1

Z
)2

. Note that

]Wd = ]
((

(d− 1)∆(1)
)(1) ∩ Z2

)
.

To every w ∈ Wd we can associate a homogeneous degree d polynomial, as follows.
For each (i, j) ∈ ∆ ∩ Z2 there exist

v1,(i,j), . . . , vd,(i,j) ∈ ∆(1) ∩ Z2

such that
(i, j)− w = (v1,(i,j) − w) + . . .+ (vd,(i,j) − w). (2)

This follows from the inclusion
(
(d− 1)∆(1)

)(1)
+ ∆ ⊂ d∆(1) and the normality of

the polygon ∆(1). The d-form

Fd,w =
∑

(i,j)∈∆∩Z2

ci,jXv1,(i,j) · · ·Xvd,(i,j)

is well-defined modulo the ideal of Tor(∆(1)). It clearly vanishes on ϕ∆(1)(Uf ), hence
it is contained in the ideal of Ccan

f .

The forms Fd,w with w ∈ Wd are k-linearly independent of each other and of the
forms in Id(Tor(∆(1))). Indeed, this holds because

χd(Fd,w) = (x, y)(d−1)w · f,

where χd is the vector space morphism from the proof of Lemma 1. Hence any
linear combination in which the Fd,w’s appear non-trivially is mapped to a non-
zero multiple of f , and must therefore be non-zero itself. By Theorem 3, we can
conclude that a basis for Id(Ccan

f ) is obtained by adjoining {Fd,w}w∈Wd
to a basis

for Id(Tor(∆(1))). In other words:

Id(Ccan
f ) = Id(Tor(∆(1)))⊕ 〈Fd,w〉w∈Wd

. (3)

We are now ready to prove our main theorem.

Theorem 4. Let ∆ be a two-dimensional lattice polygon and let f ∈ k[x±1, y±1] be a
Laurent polynomial satisfying the sufficiently generic condition from the introduction
(e.g. non-degeneracy). Assume that ∆(1) is two-dimensional and let g = ](∆(1)∩Z2).
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• If ∆(2) 6= ∅ and ∆(1) 6∼= Υ, then a minimal set of generators for I(Ccan
f ) is

given by a basis for I2(Tor(∆(1))) and the quadrics {F2,w}w∈∆(2)∩Z2.

• If ∆(1) ∼= Υ then a minimal set of generators for I(Ccan
f ) is given by the cubic

defining Tor(∆(1)) ⊂ P3 and the quadric F2,w with ∆(2) = {w}.

• If ∆(1) ∼= Σ then a minimal set of generators for I(Ccan
f ) is given by the single

quartic F4,w with
(
∆(1)

)◦ ∩
(

1
3
Z
)2

= {w}.

• If ∆(1) ∼= 2Σ then a minimal set of generators for I(Ccan
f ) is given by a basis

for I2(Tor(∆(1))) and the three cubics F3,w,F3,w′ ,F3,w′′ with
(
∆(1)

)◦∩
(

1
2
Z
)2

=
{w,w′, w′′}.

• In the other cases a minimal set of generators for the ideal I(Ccan
f ) is given by

a basis for I2(Tor(∆(1))) and the g − 3 cubics F3,w with w ∈
(
∆(1)

)◦ ∩
(

1
2
Z
)2

.

Proof. From [4, Thm. 8.1], the assumptions ∆(2) 6= ∅ and ∆(1) 6∼= Υ imply that the
Clifford index of Cf is at least 2. In this case Petri’s theorem [14] guarantees that
I(Ccan

f ) is generated by quadrics and the statement follows from (3).

As for the other cases:

• If ∆(1) ∼= Υ, the claim follows by noting that Tor(Υ) is cut out by the cubic
X−1,−1X1,0X0,1 −X3

0,0 and that a canonical curve of genus 4 is of degree 6, so
that a single (necessarily unique) quadric suffices.

∆(1) = Υw

• The case ∆(1) ∼= Σ corresponds to smooth plane quartics and is obvious.

• If ∆(1) ∼= 2Σ then Cf is a smooth plane quintic. By Petri’s theorem we
know that I(Ccan

f ) is generated by quadrics and cubics. Since I(Tor(∆(1)) is

generated by quadrics, the statement follows from (3). (Note that Tor(∆(1))
is just the Veronese surface.)

∆(1) = 2Σw

w′ w′′
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• In the other cases Cf is a trigonal curve and ]
(
∂∆(1) ∩ Z2

)
≥ 4, so that

Tor(∆(1)) is generated by quadrics. By Petri’s theorem we know that I(Ccan
f )

is generated by quadrics and cubics, so that the statement again follows from
(3). (Note that Tor(∆(1)) is a rational normal surface scroll.) Remark that

]

(
(
∆(1)

)◦ ∩
(

1

2
Z
)2
)

= ]
((

2∆(1)
)(1) ∩ Z2

)
= g − 3

by Pick’s theorem.

w1 wg−3

This concludes the proof.

We remark that in the last case of trigonal curves, the generators F3,w are just the
‘rolling factors’ that were introduced by Reid; see [15]. For more general polygons,
our forms Fd,w can be viewed as analogues of these, where the ‘rolling’ is done in
two directions instead of one.

Theorem 4 immediately gives rise to an efficient algorithm for computing a minimal
set of generators for the canonical ideal of Cf , for a given Laurent polynomial
f ∈ k[x±1, y±1] that is non-degenerate with respect to its Newton polygon ∆(f).
As before we assume that

• ](∆(f)(1) ∩ Z2) ≥ 3, so that Cf is of genus g ≥ 3, and

• ∆(f)(1) is two-dimensional, so that Cf is non-hyperelliptic, or equivalently
that its Clifford index is at least 1 (otherwise the canonical image is just a
rational normal curve).

In case ∆(f)(1) ∼= Σ the output consists of a single quartic. If not, it consists of in-
dependent quadratic and cubic generators of the canonical ideal, i.e.

(
g−2

2

)
quadrics

and g − 3 cubics in the case of Clifford index 1, and just
(
g−2

2

)
quadrics in the case

of Clifford index at least 2. Indeed, all one needs to do is adding the appropriate
Fd,w’s to a minimal set of generators for Tor(∆(1)). Finding these Fd,w’s boils down
to finding relations of the form (2), which can be done by exhaustive search. An
implementation can be found in the Magma file canonicalideal.m that accompa-
nies this paper. The function of interest is called NondegIdeal().
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Example. The following sample code computes the canonical ideal of a genus 14
curve in a fraction of a second:
> load "canonical.m"

Loading "canonical.m"

Loading "basic_commands.m"

> R<x,y> := PolynomialRing(Rationals(),2);

> f := 13*x^6*y^5 - 6*x^6*y^4 + 2*x^3*y^5 + 4*x^3*y^4 + x^3 + 3*y^4;

> AA := AffineSpace(Rationals(),2);

> C := Curve(AA,f);

> Genus(C);

14

> time I := Ideal(NondegIdeal(f));

Time: 0.130

In sharp contrast, it takes the Magma intrinsic way over an hour.
> time I := Ideal(Image(CanonicalMap(C)));

Time: 5405.360

Note moreover that in the latter case, in general, the output does not consist of a
minimal set of generators.

Remark. Here again, the method can be slightly improved by taking into account
the corresponding remark from Section 2, i.e. by computing a set of generators for
I(Tor(∆(1))) using Gröbner bases. It is also possible to do this at once for the entire
ideal I(Ccan

f ), as below (continuation of the above example):
> latticepoints := ConvexHull(InnerPoints(NewtonPolytope(f)));

> g := #latticepoints;

> PP := ProjectiveSpace(Rationals(), g-1);

> phi_can := map< C->PP | [x^p[1]*y^p[2] : p in latticepoints] >;

> time I := Ideal(Image(phi_can));

Time: 0.370

This is already much faster than the Magma intrinsic, but slower than the previous
method (the difference in timing increases as the genus grows). Note again that the
output does not necessarily consist of a minimal set of generators.
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LINEAR PENCILS ENCODED IN THE NEWTON POLYGON

WOUTER CASTRYCK AND FILIP COOLS

Abstract. Let C be an algebraic curve defined by a sufficiently generic bivariate Lau-
rent polynomial with given Newton polygon ∆. It is classical that the geometric genus
of C equals the number of lattice points in the interior of ∆. In this paper we give
similar combinatorial interpretations for the gonality, the Clifford index and the Clifford
dimension, by removing a technical assumption from a recent result of Kawaguchi. More
generally, the method shows that apart from certain well-understood exceptions, every
base-point free pencil whose degree equals or slightly exceeds the gonality is combina-
torial, in the sense that it corresponds to projecting C along a lattice direction. Along
the way we prove various features of combinatorial pencils. For instance, we give an
interpretation for the scrollar invariants associated to a combinatorial pencil, and show
how one can tell whether the pencil is complete or not.

Among the applications, we find that every smooth projective curve admits at most
one Weierstrass semi-group of embedding dimension 2, and that if a non-hyperelliptic
smooth projective curve C of genus g ≥ 2 can be embedded in the nth Hirzebruch surface
Hn, then n is actually an invariant of C.
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1. Introduction

Let k be an algebraically closed field of characteristic zero, let T2 = (k∗)2 be the 2-
dimensional torus over k, and let f ∈ k[x±1, y±1] be an irreducible Laurent polynomial.
Denote by U(f) the curve in T2 defined by f . Let ∆(f) ⊂ R2 be the Newton polygon
of f , which we always assume to be two-dimensional. We say that f is non-degenerate
with respect to its Newton polygon if for every face τ ⊂ ∆(f) (including ∆(f) itself) the
system

fτ =
∂fτ
∂x

=
∂fτ
∂y

= 0

has no solutions in T2. (Here fτ is obtained from f by only considering those terms that
are supported on τ .) For a two-dimensional lattice polygon ∆ ⊂ R2, we say that f is ∆-
non-degenerate if it is non-degenerate with respect to its Newton polygon and ∆(f) = ∆.
For Laurent polynomials that are supported on ∆, the condition of ∆-non-degeneracy is
generically satisfied, in the sense that it is characterized by the non-vanishing of

Res∆

(
f, x

∂f

∂x
, y
∂f

∂y

)

(where Res∆ is the sparse resultant; see [11, Prop. 1.2] and [23, Thm. 10.1.2] for an accord-
ing discussion). An algebraic curve C/k is called ∆-non-degenerate if it is birationally
equivalent to U(f) for some ∆-non-degenerate Laurent polynomial f ∈ k[x±1, y±1].

Remark. Sometimes in the existing literature a projectively embedded variety is called
non-degenerate if it is not contained in a hyperplane. Our notion of non-degeneracy is
unrelated to this.

It is well-known that if C is ∆-non-degenerate, then several of its geometric properties
are encoded in the combinatorics of ∆. The most prominent example is that the geometric
genus equals the number of lattice points in the interior of ∆ [30, §4 Ass. 2]. The proof
of this fact is briefly recalled at the beginning of Section 4, because it entails an explicit
description of the canonical map that will play a role in Section 9. Other known examples
are that one can tell from ∆ whether C is hyperelliptic or not [31, Lem. 3.2.9], and whether
it is trigonal or not [8, Lem. 3]. Recently, this was extended to arbitrary gonalities
by Kawaguchi [29, Thm. 1.3] under the technical assumption that C is not birationally
equivalent to a smooth plane projective curve.

In Section 6 we revisit Kawaguchi’s proof, while making a more explicit connection
with the language of Newton polygons and getting rid of the above technical assumption.
Kawaguchi’s method yields that apart from some well-understood exceptional instances
of ∆, every gonality pencil on C is combinatorial, in the sense that it corresponds to a
projection of the form (x, y) 7→ xayb for coprime a, b ∈ Z. In this case, the gonality is
easily seen to equal the lattice width of ∆ (this notion will be recalled in Section 5). This
settles a conjecture by the current authors [8, Conj. 1], although most cases, including all
lattice polygons whose number of interior lattice points is not of the form (d−1)(d−2)/2,
were already covered by Kawaguchi’s work.
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In Section 7 we apply the same method to near-gonal pencils, i.e. base-point free linear
systems of the form g1γ+1, where γ is the gonality. It again turns out that, apart from
some reasonably well understood exceptions, every such pencil is combinatorial.

Then in Section 8, we prove that also the Clifford index and the Clifford dimension
of C are fully determined by the combinatorics of ∆. This is again inspired by [29],
but thanks to our coverage of the case of smooth projective plane curves (i.e., curves of
Clifford dimension 2) we are able to fill in the missing spots. In particular, we obtain a
purely combinatorial criterion for determining whether C is birationally equivalent to a
smooth projective curve in P2 or not.

Note that, as an immediate corollary to all this, we obtain that the gonality, the
Clifford index and the Clifford dimension do not depend on the specific choice of our
∆-non-degenerate curve C. This is an extension to arbitrary toric surfaces of a recent
theorem by Lelli-Chiesa [34, Thm. 1.2] on families of curves on rational (e.g. toric) surfaces
that carry an anticanonical pencil.

Next, in Section 9, we show that the scrollar invariants associated to a combinatorial
pencil (which specialize to the classical Maroni invariants in the case of a g13) have a nat-
ural combinatorial interpretation. The same interpretation allows one to decide whether
a given combinatorial pencil is complete or not.

Finally, Section 10 discusses a number of applications. One potential use of our results
is as a tool for constructing examples of curves having certain prescribed invariants (and
for finding lower bounds on the dimension of the corresponding moduli space). Among
the other byproducts we find that

• any curve (not necessarily non-degenerate) admits at most one Weierstrass semi-
group of embedding dimension two,

• if C is a non-hyperelliptic smooth projective curve of genus g ≥ 2 in the nth

Hirzebruch surface Hn, then n is actually an invariant of C.

2. Notation, terminology and conventions

For lattice polygons ∆,∆′ ⊂ R2, we say that ∆ is equivalent to ∆′ (notation: ∆ ∼= ∆′) if
∆′ is obtained from ∆ through a unimodular transformation, i.e. through a transformation
of the form

υ : R2 → R2 :

(
i
j

)
7→ A

(
i
j

)
+

(
a1
a2

)
, A ∈ GL2(Z), a1, a2 ∈ Z.

If A can be taken the unit matrix, we sometimes write ∆ ∼=t ∆
′ to emphasize that ∆ is

obtained from ∆′ through a translation. Note that if a Laurent polynomial

f =
∑

(i,j)∈∆∩Z2

ci,j(x, y)
(i,j)

is ∆-non-degenerate (where (x, y)(i,j) means xiyj) and υ is a unimodular transformation,
then

fυ =
∑

(i,j)∈∆∩Z2

ci,j(x, y)
υ(i,j)
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is υ(∆)-non-degenerate, and U(f) ∼= U(fυ). (Every unimodular transformation induces
an automorphism of T2.)

It is convenient to introduce a special notation for certain recurring polygons:

Σ � Υ Γ5
1 Γ5

2 Γ5
3 Γ7 Γ8.

Here the bold-marked lattice point indicates the point (0, 0) ∈ R2, although we are usu-
ally interested in lattice polygons up to equivalence only. Thus Σ is the standard simplex,
and dΣ (Minkowski multiple) is the Newton polygon of a generic degree d polynomial. If
∆ is a two-dimensional lattice polygon, we denote by ∆(1) the convex hull of its interior
lattice points. The boundary of ∆ is denoted by ∂∆.

Example. For d ≥ 3 one has (dΣ)(1) ∼= (d− 3)Σ. For d ≥ 1 one has (dΥ)(1) ∼= (d− 1)Υ.

Remark. Occasionally, we will also apply the notation ∆(1) to convex polygons ∆ that
are lower-dimensional and/or take vertices outside the lattice Z2. Here again we mean
the convex hull of the lattice points in the interior of ∆, where the interior is understood
to be empty in the lower-dimensional case.

If ∆(1) is two-dimensional, then the set of lattice polygons Γ for which Γ(1) = ∆(1)

admits a maximum with respect to inclusion [24, Lem. 9]. We denote this maximum by
∆max. It can be characterized as follows. Write ∆(1) as an intersection of half-spaces

r⋂

ℓ=1

Hℓ, with Hℓ =
{
(i, j) ∈ R2

∣∣ <(i, j), vℓ> ≥ −aℓ
}
,

where < ·, · > denotes the standard inner product on R2 and v1, . . . , vr are primitive
inward pointing normal vectors of the edges of ∆(1). Then

∆max =
r⋂

ℓ=1

H
(−1)
ℓ , where H

(−1)
ℓ =

{
(i, j) ∈ R2

∣∣ <(i, j), vℓ> ≥ −aℓ − 1
}
.

∆(1) ∆(1) ∆(1)

∆max

When applying this construction to an arbitrary two-dimensional lattice polygon Γ, one
ends up with a polygon Γ(−1) that is a lattice polygon if and only if Γ = ∆(1) for some
lattice polygon ∆; see [24, Lem. 10] for a proof of this convenient criterion. (If we call

{
(i, j) ∈ R2

∣∣ <(i, j), vℓ> = −aℓ − 1
}

the outward shift of the edge corresponding to index ℓ, then a necessary, but generally
insufficient condition for Γ(−1) to be a lattice polygon is that the outward shifts of any

100 Chapter 5. Linear pencils encoded in the Newton polygon



pair of adjacent edges intersect in a lattice point [24, Lem. 9].)

Remark. The criterion yields a method for algorithmically enumerating lattice polygons,
as elaborated in [6] and [31, §4.4]. We will use this in the proofs of Theorem 6.1 and
Theorem 7.2.

In Lemma 4.1 we will give a geometric interpretation of ∆max.
We use the notation Z(·) to denote the algebraic set associated to an ideal, and I(·)

to denote the ideal of an algebraic set.
A curve is always assumed irreducible, but we don’t a priori require it to be complete

and/or smooth. By the genus of a curve C, which we denote by g(C), we mean its
geometric genus unless otherwise stated. The gonality of C will be denoted by γ(C).
A canonical curve is a curve that arises as the canonical image of a non-hyperelliptic
smooth projective curve of genus g ≥ 3. A canonical model of a curve C is a canonical
curve that is birationally equivalent to C.

3. Divisors on toric surfaces

This section gathers some facts on divisors on toric surfaces. Our primary objective is
to fix notation and terminology, but we also group some statements that are somewhat
sprawled across our main references [15, 22].

To a two-dimensional lattice polygon ∆ we can associate a projective toric surface
Tor(∆) over k, in two ways:

• One can consider the (inner) normal fan Σ∆, and let Tor(∆) = Tor(Σ∆) be the
toric surface associated to it.

• One can define Tor(∆) as the Zariski closure of the image of

ϕ∆ : T2 →֒ PN : (x, y) 7→
(
xiyj

)
(i,j)∈∆∩Z2 (1)

(where N = ♯(∆ ∩ Z2) − 1). Explicit equations for Tor(∆) can be read from the
combinatorics of ∆, as follows. To each (i, j) ∈ ∆ ∩ Z2 one associates a variable
Xi,j. Then the ideal of Tor(∆) is generated by the binomials

n∏

ℓ=1

Xiℓ,jℓ −
n∏

ℓ=1

Xi′ℓ,j
′
ℓ

for which

n∑

ℓ=1

(iℓ, jℓ) =

n∑

ℓ=1

(i′ℓ, j
′
ℓ)

(apply [15, Prop. 2.1.4.(b,d)] to ∆ × {1} ⊂ R3). A result of Koelman states that
one can restrict to n ∈ {2, 3}, and to n = 2 as soon as ∂∆∩Z2 ≥ 4, see [32, 41].

Examples.
– Tor(Υ) = Z(X3

0,0 −X−1,−1X1,0X0,1) ⊂ P3,

– Tor(�) = Z(X0,0X1,1 −X1,0X0,1) ⊂ P3,
– Tor(Γ5

1) = Z(X2
0,0 −X−1,0X1,0, X

2
0,0 −X0,−1X0,1) ⊂ P4.

Both constructions give rise to the same geometric object by [15, Cor. 2.2.19.(b)] and the
series of equivalences in the proof of [15, Prop. 6.1.10]. But the second construction comes
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along with an embedding ψ : Tor(∆) →֒ PN , i.e. a very ample invertible sheaf ψ∗OPN (1)
on Tor(∆). Note that every complete fan in R2 arises as some Σ∆.

The self-action of T2 yields an action of T2 on ϕ∆(T2) that naturally extends to an
action on all of Tor(∆). The orbits of the latter are in a dimension-preserving one-to-one
correspondence with the faces of ∆. Denote the Zariski closures of the one-dimensional
orbits (corresponding to the edges of ∆ and to the rays of Σ∆) by D1, . . . , Dr. A Weil
divisor that arises as a Z-linear combination of the Dℓ’s is called torus-invariant. An
important example is K = −∑

ℓDℓ, which is a canonical divisor; see [15, Thm. 8.2.3] or
[22, §4.4]. To a torus-invariant Weil divisor D =

∑
ℓ aℓDℓ one can associate the polygon

∆D =
r⋂

ℓ=1

Hℓ, with Hℓ =
{
(i, j) ∈ R2

∣∣ <(i, j), vℓ> ≥ −aℓ
}
, (2)

where vℓ is the primitive generator of the corresponding ray in Σ∆. It can be proven [15,
Prop. 4.3.3] that

H0(Tor(∆), D) = { f ∈ k(x, y)∗ | div(f) +D ≥ 0 } ∪ {0} =
〈
xiyj

〉
(i,j)∈∆D∩Z2

(here 〈 · 〉 denotes the k-linear span; we view x and y as functions on Tor(∆) through ϕ∆).

Example. Let Σ be the fan given on the left, where the rays are enumerated as indicated.

1

2

34

5

6

Let D = 2D1 + D2 + 5D3 + 5D4 + D5 + 3D6. Then the corresponding half-planes are
drawn in the middle, and ∆D is depicted on the right. Remark that ∆D is not a lattice
polygon.

One can also show that D is Cartier if and only if the apex of Hℓ ∩Hm is an element
of Z2 for each pair ℓ,m corresponding to adjacent edges of ∆ [15, Thm. 4.2.8.(a,c)]. If
moreover every such apex is a vertex of ∆D then D is called convex (in particular, if D
is a convex torus-invariant Cartier divisor then ∆D is a lattice polygon). If this gives a
bijective apex-vertex correspondence then D is called strictly convex.

A torus-invariant Cartier divisor D is convex iff it is nef iff it is base-point free (i.e.
OTor(∆)(D) is generated by global sections) by [15, Thm. 6.1.7 and Thm. 6.3.12]. It is
strictly convex iff it is ample iff it is very ample [15, Thm. 6.1.14]. If D is convex then
all higher cohomology spaces are trivial [15, Thm. 9.2.3]. If D1 and D2 are convex torus-
invariant Cartier divisors, then their intersection number can be interpreted in terms of
a mixed volume:

D1 ·D2 = MV(∆D1 ,∆D2) = Vol(∆D1 +∆D2)− Vol(∆D1)− Vol(∆D2),
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where Vol(·) denotes the Euclidean area, and the addition of polygons is in Minkowski’s
sense (see [22, §5.3, first Cor.] and the reasoning preceding [22, §5.5, (2)]). This is an
instance of the Bernstein–Khovanskii–Koushnirenko (BKK) theorem.

Every Weil divisor on Tor(∆) is linearly equivalent to a torus-invariant Weil divisor
and two equivalent torus-invariant Weil divisors D1 and D2 differ by some div(xiyj) [15,
Thm. 4.1.3], so that the corresponding polygons ∆D1 and ∆D2 are translates of each other.
Therefore, if one is willing to work modulo ∼=t, one can associate a polygon ∆D to any
Weil divisor D (and a polygon ∆L to any invertible sheaf L). All definitions and state-
ments above carry through.

Example. We have ∆ψ∗OPN (1)
∼=t ∆. Indeed, using (2) it is straightforward to construct

a convex torus-invariant Cartier divisor D∆ such that ∆D∆
= ∆. But then the global

sections of OTor(∆)(D∆) and ψ∗OPN (1) are naturally identified. Since both sheaves are
globally generated, we find that OTor(∆)(D∆) ∼= ψ∗OPN (1), from which the claim follows.

Example. Let f ∈ k[x±1, y±1] be an irreducible Laurent polynomial and let U(f) be the
curve in T2 that it cuts out. Let ∆ be any two-dimensional lattice polygon and let C be
the Zariski closure of ϕ∆(U(f)) in Tor(∆). Let P (f,∆) be the smallest convex polygon
such that

• ∆(f) ⊂ P (f,∆), and
• all edges of P (f,∆) are parallel to an edge of ∆.

We claim that ∆C
∼=t P (f,∆). Indeed, consider the torus-invariant Weil divisor DC =

C − div(f), so that we can assume that ∆C = ∆DC
. Then f ∈ H0(Tor(∆), DC) and

therefore ∆C must contain the support of f . Moreover, as we are working on Tor(∆),
every edge of ∆C must be parallel to an edge of ∆. Each such edge must meet at least
one point of the support of f , because otherwise the pole order of f at the corresponding
torus-invariant prime divisor would be too large [15, Prop. 4.1.1]. So ∆C must be the
tightest fit, which is precisely P (f,∆).

4. Non-degenerate curves as smooth curves on toric surfaces

We show how non-degenerate Laurent polynomials naturally give rise to smooth curves
in toric surfaces, and discuss how the non-degeneracy condition can be relaxed slightly.
Much of the material below can be found (possibly in disguised terms) in [3, 10, 15]. On
the other hand, Lemmata 4.1–4.4 seem genuinely new.

Non-degenerate curves. Let ∆ be a two-dimensional lattice polygon and consider a
∆-non-degenerate Laurent polynomial

f =
∑

(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1].

Let C ⊂ Tor(∆) be the Zariski closure of ϕ∆(U(f)). From the non-degeneracy of f
one sees that C cuts out a smooth codimension 1 subscheme in every T2-orbit of Tor(∆).
Because Tor(∆) is normal [15, Thm. 3.1.5], this is equivalent to saying that C is a smooth
curve not containing any of the zero-dimensional toric orbits and intersecting the one-
dimensional orbits transversally.
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∆

τ1

τ2

τ3

τ4

R2

C
D2

D4

D1

D3Tor(∆)

Note that C is just the hyperplane section
∑

(i,j)∈∆∩Z2

ci,jXi,j = 0.

Therefore OTor(∆)(C) ∼= ψ∗OPN (1). In particular, C is a strictly convex Cartier divisor
and ∆C

∼=t ∆.
Toric surfaces are Cohen-Macaulay [15, Thm. 9.2.9] and therefore enjoy a nice adjunc-

tion theory, which we will use in the following form. Let DC be a torus-invariant divisor
that is linearly equivalent to C; for instance one may take DC = C − div(f). Then there
is a canonical divisor KC on C along with an exact sequence

0 → OTor(∆)(K) → OTor(∆)(DC +K) → OC(KC) → 0 (3)

of morphisms of sheaves of OTor(∆)-modules; locally the maps are given by ·f and restric-
tion to C, respectively.

The existence of such an exact sequence is (in far greater generality) well-known to spe-
cialists in birational geometry; for example, this is essentially covered by [33, Prop. 5.73].
However we could not find a ready-to-use statement in the literature, so let us include
the following flexible argument, which was explained to us by Karl Schwede. Consider
the short exact sequence

0 → OTor(∆)(−DC)
·f→ OTor(∆) → OC → 0

and note that OTor(∆)(K) is a so-called dualizing sheaf for Tor(∆); see [22, §4.4]. We
apply the sheafy Hom(·,OTor(∆)(K))-functor to form a long exact sequence

0 → Hom(OC ,OTor(∆)(K)) → Hom(OTor(∆),OTor(∆)(K)) → Hom(OTor(∆)(−DC),OTor(∆)(K))

→ Ext1(OC ,OTor(∆)(K)) → Ext1(OTor(∆),OTor(∆)(K)).

The first term vanishes because OC is torsion while OTor(∆)(K) is not. The last term
vanishes by [27, III.Prop. 6.3(b)]. Finally because Tor(∆) is Cohen-Macaulay, by [39,
Thm. 2.12(1)] the fourth term is a dualizing sheaf for C. This is just OC(KC) and (3)
follows.

Now note that ∆K = ∅, so that H0(Tor(∆), K) = 0. Also H1(Tor(∆), K) = 0, because
by toric Serre duality [15, Thm. 9.2.10] the left-hand side is isomorphic to H1(Tor(∆), 0),
which vanishes by Demazure’s theorem [15, Thm. 9.2.3]. Thus by taking the cohomology
of (3) one finds that the restriction map

H0(Tor(∆), DC +K) → H0(C,KC) (4)
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is an isomorphism. Since the polygon associated to DC +K equals ∆(1), we recover the
well-known fact that g(C) = ♯(∆(1) ∩ Z2). In fact, the isomorphism (4) also shows that

ϕ∆(1) |U(f) = κ ◦ ϕ∆|U(f), (5)

where κ : C → Pg(C)−1 is a canonical morphism. This seems less readily known, and will
play an important role in Section 9. Using that the canonical image is rational iff C is
hyperelliptic, this observation implies the aforementioned fact that C is hyperelliptic iff
the interior lattice points of ∆ are collinear; see [31, Lem. 3.2.9] or [8, Lem. 2] for more
details. If C is non-hyperelliptic (i.e. ∆(1) is two-dimensional) it follows that the canonical
image κ(C) lies in Tor(∆(1)) ⊂ Pg(C)−1.

Remark. If C is an arbitrary (possibly singular, possibly non-Cartier) complete curve
on Tor(∆) then the above adjunction process remains valid: one can still pick a torus-
invariant divisor DC that is equivalent to C, say with polygon ∆C (not necessarily a
lattice polygon!), and one will still find that the restriction map (4) is an isomorphism.
When interpreting the outcome, some prudence is needed:

• In the non-Cartier case, note that in general ∆
(1)
C is not the polygon associated to

DC + K, which is the polygon obtained from ∆C by shifting the edges inwards:
this could result in a polygon having vertices outside the lattice. But the lattice
points of both polygons are the same, so in the smooth case it remains justified

to say that g(C) = ♯(∆
(1)
C ∩ Z2).

• In the singular case we find that ♯(∆
(1)
C ∩Z2) is the arithmetic genus of C, rather

than its geometric genus.

We note that classical adjunction theory, as elaborated in most textbooks, requires the
ambient surface to be smooth. Even though Tor(∆) need not be smooth, it is possible to
prove the genus formula g(C) = ♯(∆(1)∩Z2) in this way, by first resolving the singularities
using a toric blow-up. This is the approach that is followed in [15, §10.5], for instance. We
will briefly sketch this blow-up process and show that it does not affect the combinatorics
of ∆, because for the application of Serrano’s Theorem 6.4 later on, we will need that the
ambient toric surface is smooth. (Serrano’s theorem plays the key role in the proofs of
Theorems 6.1 and 7.2.) So pick a subdivision Σ′ of Σ∆ such that the induced birational
morphism µ : Tor(Σ′) → Tor(Σ∆) is a resolution of singularities [15, Thm. 10.1.10]. Let
C ′ be the strict transform of C under µ. By non-degeneracy C ′ does not meet the
exceptional locus of µ, so C ′ = µ∗C ∼= C. Note that C ′ is again Cartier and convex,
although not strictly convex (unless the subdivision is trivial). It moreover remains true
that ∆C′ ∼=t ∆. To prove this, we can suppose that Σ′ is obtained from Σ∆ by inserting a
single ray σ′ (the general case then follows by repeating the argument). Let D1, . . . , Dr−2

be the torus-invariant prime divisors on Tor(Σ∆) corresponding to the rays of Σ∆ that
are non-adjacent to σ′, and let D′

1, D
′
2, . . . , D

′
r−2 be the according torus-invariant prime

divisors on Tor(Σ′). Then D′
i = µ∗Di for all i = 1, . . . , r − 2 (since D′

i does not meet the
exceptional locus of µ). Now by adding a divisor of the form div(xiyj) if needed, we see

that C is linearly equivalent to a torus-invariant Weil divisor of the form
∑r−2

ℓ=1 aℓDℓ.
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Dr−1
Dr

+div(xiyj)

Dr−1
Dr

But then C ′ = µ∗C ∼ ∑r−2
ℓ=1 aℓµ

∗Dℓ =
∑r−2

ℓ=1 aℓD
′
ℓ, from which it follows that ∆C′ ∼=t

∆C
∼=t ∆.

∆-toric curves. We now present a (slight) relaxation of the non-degeneracy condition.
Let ∆ be a two-dimensional lattice polygon. We say that an irreducible Laurent polyno-
mial f ∈ k[x±1, y±1] is ∆-toric if

(i) ∆(f) ⊂ ∆,
(ii) ∆(f) contains at least one point of every edge of ∆, i.e. P (f,∆) = ∆, and
(iii) the Zariski closure C of ϕ∆(U(f)) is a smooth curve in Tor(∆).

The condition that P (f,∆) = ∆ ensures that C again arises as a hyperplane section of
Tor(∆). We therefore still find that ∆C

∼=t ∆. All other conclusions of the preceding
section remain valid, except for the part on resolutions of singularities, where we add the
assumption that Σ′ does not subdivide any of the smooth cones of Σ∆. Indeed, if it would,
then this could affect ∆C . But since in practice there is no need for subdividing smooth
cones, this is not an issue. We also still obtain that g(C) = ♯(∆(1) ∩ Z2) and that there
is a canonical map κ : C → Pg(C)−1 satisfying (5). Remark that H.Baker’s bound [4]
implies g(C) ≤ ♯

(
∆(f)(1) ∩ Z2

)
, which together with ∆(f) ⊂ ∆ yields ∆(f)(1) = ∆(1), a

fact which can also be proved directly by making a local analysis at the zero-dimensional
T2-orbits of Tor(∆).

Geometrically, the only difference with ∆-non-degeneracy is that we allow C to contain
some of the non-singular zero-dimensional orbits, or to be tangent to some of the one-
dimensional orbits. It cannot pass through any of the singular zero-dimensional orbits
however: otherwise C would be singular as well.

A curve C/k is called ∆-toric if it is birationally equivalent to U(f) for a ∆-toric Lau-
rent polynomial f . This notion captures all smooth projective curves on toric surfaces,
as we will prove in Lemma 4.2 below (while this is not true for non-degenerate curves:
see Lemma 4.4).

Remark. In the definition of being ∆-toric, condition (iii) can be replaced by requiring
that

(iii’) g(C) = ♯(∆(1) ∩ Z2).

Indeed, in this case C is automatically smooth, because by adjunction theory ♯(∆(1)∩Z2)
equals the arithmetic genus, which in the case of singular curves is always strictly less
than the geometric genus [27, IV.Ex. 1.8]. Recall that (iii’) also implies ∆(f)(1) = ∆(1)
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by Baker’s bound, which in turn implies (ii) as soon as ∆(1) 6= ∅.

Here is a geometric interpretation for the polygon ∆max from Section 2.

Lemma 4.1. Let ∆ be a lattice polygon and assume that ∆(1) is two-dimensional. Let
f ∈ k[x±1, y±1] be ∆-toric and let C be the Zariski closure of ϕ∆(U(f)) in Tor(∆). Let κ
be as in (5), so that κ(C) can be viewed as a curve in the toric surface Tor(∆(1)). Then
∆κ(C)

∼=t ∆
max.

Proof. We see from (5) that κ(C) is the Zariski closure of ϕ∆(1)(U(f)) in Tor(∆(1)).
From the remark concluding Section 3 it follows that ∆κ(C) is equivalent to P (f,∆(1)),

the tightest polygon containing ∆(f) all of whose edges are parallel to an edge of ∆(1).
But this polygon is clearly ∆max = ∆(1)(−1). �

We now show that all smooth curves on toric surfaces are ∆-toric, for an appropriate
instance of ∆.

Lemma 4.2. Let C be a non-rational smooth projective curve on a toric surface, and let

∆̃C = conv(∆C ∩ Z2).

Then C is ∆̃C-toric.

Note that if ∆C is a lattice polygon (i.e. if C is Cartier) then ∆̃C = ∆C . The non-
rationality condition is not really a restriction: all smooth rational curves are isomorphic
to P1, hence Σ-toric.

Proof. Let X be our toric surface, containing the torus T2 as an open subset. Since C
is non-rational, it is non-torus-invariant. So C ∩ T2 is defined by an irreducible Laurent
polynomial f ∈ k[x±1, y±1]. The torus-invariant divisor DC = C − div(f) is equivalent
to C, so that we can assume that ∆C is the polygon associated to DC . Because f ∈
H0(X,DC) we see that f is supported on ∆C , and because ∆(f) is a lattice polygon we
even have that

∆(f) ⊂ ∆̃C ⊂ ∆C

and in particular that

♯(∆(f)(1) ∩ Z2) ≤ ♯(∆̃
(1)
C ∩ Z2) ≤ ♯(∆

(1)
C ∩ Z2). (6)

By adjunction theory the genus of C equals ♯(∆
(1)
C ∩ Z2). On the other hand by Baker’s

bound it is at most ♯(∆(f)(1)∩Z2). Thus the inequalities in (6) are equalities, and in par-

ticular the genus of C also equals ♯(∆̃
(1)
C ∩Z2). In other words, with respect to the lattice

polygon ∆̃C , our polynomial f satisfies condition (iii’) mentioned above, and therefore it

is ∆̃C-toric. �

From the proof we see that C is in fact also ∆(f)-toric, but we chose to provide a
polygon that depends on the divisor class of C only (up to translation). As an immediate
corollary to the previous lemmata and their proofs, we obtain:
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Lemma 4.3. Let ∆ be a lattice polygon and assume that ∆(1) is two-dimensional. Let
f ∈ k[x±1, y±1] be ∆-toric. Then f is also ∆max-toric.

This lemma will play an important role in the proofs of Theorems 6.1 and 7.2. It is
in the same vein as Kawaguchi’s notion of relative minimality [29, Def. 3.9], and can be
proven more directly, by noting that ∆ is obtained from ∆max by clipping off a number of
vertices, without affecting the interior. From Pick’s theorem it follows that such a vertex
is necessarily smooth, i.e. that the primitive normal vectors of its adjacent edges form
a basis of Z2. Then locally around the corresponding zero-dimensional orbit, Tor(∆max)
looks like A2 with C passing smoothly through the origin. The smoothness of C outside
these zero-dimensional orbits then just follows from the fact that f is ∆-toric.

Clearly every ∆-non-degenerate curve is ∆-toric. The converse implication may fail:

Lemma 4.4. There exist instances of two-dimensional lattice polygons ∆, along with
∆-toric curves that are not ∆-non-degenerate. More precisely, let

f = 1 + x5 + y2 + x2y3 ∈ k[x±1, y±1] and ∆ = conv{(0, 0), (5, 0), (2, 3), (0, 3)}.
Then f is ∆-toric, but U(f) is not ∆-non-degenerate, that is, it is not birationally equiv-
alent to U(f ′) for some ∆-non-degenerate Laurent polynomial f ′ ∈ k[x±1, y±1]

Proof. Our proof uses the theory of trigonal curves. We need the following facts. If
C/k is a trigonal curve of genus g ≥ 5, then the intersection of all quadrics containing its
canonical model Ccan ⊂ Pg−1 is a rational normal surface scroll S spanned by two rational
normal curves R1 and R2 of respective degrees e1 and e2, where e1 ≤ e2. These numbers
are uniquely determined and are called the Maroni invariants of Ccan. See [40, (4.11)]
for a proof, and [26, Ex. 8.17] and Section 9 for more background on this terminology.
For our needs it is important that if e1 < e2 then R1 is uniquely determined by S [26,
Prop. 8.20(b)]. It follows that in the case where e1 < e2, the number of points at which
Ccan is tangent to R1 is an invariant of C, which we denote by tC .

Now the reader can verify that f is indeed ∆-toric, i.e. the Zariski closure C of ϕ∆(U(f))
is a smooth curve in Tor(∆). Note that C is a trigonal curve of genus 5, since it is non-
hyperelliptic by [31, Lem. 3.2.9] and the map U(f) → T1 : (x, y) 7→ x is of degree 3. Let
Ccan be the canonical model obtained by taking the Zariski closure of ϕ∆(1)(U(f)) inside
Tor(∆(1)) ⊂ P4. Since the latter surface is generated by quadrics, it must be our rational
normal scroll S. The scrollar structure can easily be made explicit in this case. In partic-
ular, one verifies that e1 = 1 and e2 = 2, and that the line R1 is the torus-invariant prime
divisor of Tor(∆(1)) corresponding to the top edge of ∆(1). Now remark that Σ∆ = Σ∆(1) ,
so we have a natural isomorphism µ : Tor(∆(1)) → Tor(∆), which is compatible with the
respective embeddings of T2 in Tor(∆(1)) and Tor(∆), i.e. ϕ∆ = µ ◦ ϕ∆(1) . In particular
µ(Ccan) = C, and because µ behaves well with respect to the toric orbits we find that tC
can be interpreted as the number of points at which C is tangent to the torus-invariant
prime divisor of Tor(∆) corresponding to the top edge of ∆. Using this, one easily checks
that tC = 1. On the other hand, the same reasoning shows that if U(f) were ∆-non-
degenerate, then tC would be 0. �

Remarks.
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• It is not possible to construct similar counterexamples from arbitrary two-dimen-
sional lattice polygons. For instance, let ∆ = dΣ for some integer d ≥ 1, so that
Tor(∆) ∼= P2. Then every ∆-toric curve is ∆-non-degenerate. Indeed, using an
automorphism of P2, every smooth projective plane curve can be positioned in
such a way that it does not contain any of the coordinate points, and such that
it intersects the coordinate axes transversally.

• In all theorems and lemmata appearing in Sections 6 to 9 of this paper (which
contain our main results), the notions of being ∆-non-degenerate and ∆-toric are
interchangeable, i.e. only the property of being ∆-toric is used in the proofs. For
instance:

Corollary 6.2. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its
Newton polygon ∆ = ∆(f). Then the gonality of U(f) equals lw(∆(1))+
2, unless ∆(1) ∼= Υ (i.e. ∆ ∼= 2Υ), in which case it equals 3.

from Section 6 can be replaced by the slightly stronger statement that the gonality
of a ∆-toric curve equals lw(∆(1)) + 2, unless ∆(1) ∼= Υ, in which case it equals
3. We have chosen to state our main results in a toric-geometry-free language,
however.

5. Lattice directions and combinatorial pencils

Lattice directions. A lattice direction is just a primitive element of Z2. For a non-
empty lattice polygon ∆ and a lattice direction v = (a, b), the width of ∆ with respect to
v is the minimal d for which there exists an m ∈ Z such that ∆ is contained in the strip

m ≤ aY − bX ≤ m+ d.

Note that w(∆, v) = w(∆,−v). If w(∆, v) = d, we will sometimes say that v computes
d. It is convenient to define w(∅, v) = −1. (This notion appeared in [35, Def. 5] where it
is called the viewangle width.)

Example. The width of dΣ with respect to (1, 1) is 2d, while its width with respect to
(1,−1) is d.

··· ···

Lemma 5.1. If ∆ is two-dimensional, then for a given d ∈ Z≥0, the number of lattice
directions computing d is finite.

Proof. It suffices to prove that for each d, the number of lattice directions v for which
w(∆, v) ≤ d is finite. Since ∆ is two-dimensional we may assume that it contains the
standard simplex Σ (see e.g. [5, Prop. 1.2.4.(b)], although this easily follows from Pick’s
theorem), so that w(Σ, v) ≤ w(∆, v) for every v. Thus it suffices to prove that for each
d, the number of lattice directions v for which w(Σ, v) ≤ d is finite. But this is straight-
forward. �

Chapter 5. Linear pencils encoded in the Newton polygon 109



Assume that w(∆, v) = d ≥ 2. Write v = (a, b) and assume that ∆ is contained in the
strip m ≤ aY − bX ≤ m+ d. Then we define the width invariants of ∆ with respect to v
as the tuple

E(∆, v) = (Eℓ)ℓ=1,...,d−1

where

Eℓ = ♯
{
(i, j) ∈ ∆(1) ∩ Z2

∣∣ aj − bi = m+ ℓ
}
− 1.

(The reason for the −1 term will become clear in Section 9.)

Example. Let v = (1, 0) and d ∈ Z≥2. Then w(dΣ, v) = d and E(dΣ, v) = (d − 3, d −
4, d− 5, . . . , 1, 0,−1).

The lattice width of ∆ is

lw(∆) = min
v
w(∆, v).

Equivalently, lw(∆) is the minimal d such that ∆ is unimodularly equivalent to a lattice
polygon that is contained in a horizontal strip of height d; for the latter, two lattice
directions computing the lattice width are (±1, 0). If a lattice direction computes the
lattice width, we call it a lattice width direction for ∆.

Example. Let d ∈ Z≥0. Then lw(dΣ) = d. Indeed, clearly lw(dΣ) ≤ d, while lw(∆) ≥ d
follows from the fact that every edge of dΣ contains d+ 1 lattice points.

A convenient tool for computing lw(∆) is given by (i) from Lemma 5.2 below, which
gathers some useful facts about the lattice width:

Lemma 5.2. Let ∆ be a two-dimensional lattice polygon.

(i) One has lw(∆(1)) = lw(∆) − 2, unless ∆ ∼= dΣ for some d ≥ 2 in which case
lw(∆(1)) = lw(∆)− 3 = d− 3.

(ii) A lattice width direction for ∆ is also a lattice width direction for ∆(1); if moreover
∆(1) 6= ∅ and ∆(1) 6∼= (d− 3)Σ for any d ≥ 3, then the converse holds as well.

(iii) Assume lw(∆) ≥ 2 and ∆ 6∼= dΣ for any d ≥ 2. Then the width invariants of ∆
with respect to a lattice width direction are all non-negative.

(iv) There are at most 4 pairs ±v of lattice width directions for ∆; the bound is met
if and only if ∆ ∼= dΓ5

1 for some d ∈ Z≥1.
(v) If v1, v2 are lattice width directions for ∆, then |det(v1, v2)| ≤ 2; if equality holds

then ∆ ∼= dΓ5
1 for some d ∈ Z≥1.

(vi) One has lw(∆)2 ≤ 8
3
Vol(∆), and equality holds if and only if ∆ ∼= dΥ for some

d ≥ 1.

Proof. For (i) and (ii) see [8, Thm. 4] or [35, Thm. 13].
Claim (iii) can be proved by induction, as follows. Let v = (a, b) be a lattice width

direction for ∆ and let m be such that ∆ is contained in the strip m ≤ aY − bX ≤ m+
lw(∆). We have to show that for each ℓ = 1, . . . , lw(∆)−1 there exists an (i, j) ∈ ∆(1)∩Z2

such that aj − bi = m + ℓ. Now (i) implies that this must be the case for ℓ = 1 and
ℓ = lw(∆)− 1, while from (ii) it follows that v is also a lattice width direction for ∆(1).
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So the claim follows by recursively applying it to ∆(1); if at some point ∆(1) happens to
be of the form dΣ for some d ≥ 2 then the claim can be verified explicitly.

For (iv) see [17].
To prove (v), let v1, v2 be lattice width directions for ∆ for which |det(v1, v2)| > 1.

Using a unimodular transformation if needed, we can assume that v1 = (1,−1) and
v2 = (a, b) with a, b > 0, and that ∆ is contained in the strips 0 ≤ Y +X ≤ lw(∆) and
0 ≤ aY − bX ≤ lw(∆).

(1,−1)

(a, b)

Thus ∆ is contained in the parallelogram

conv

{
(0, 0),

(
alw(∆)

a+ b
,
blw(∆)

a+ b

)
,

(
(a− 1)lw(∆)

a+ b
,
(b+ 1)lw(∆)

a+ b

)
,

(
− lw(∆)

a+ b
,
lw(∆)

a+ b

)}
.

The horizontal width of this parallelogram equals (a+1)lw(∆)/(a+ b), while its vertical
width equals (b+ 1)lw(∆)/(a + b). By the definition of lw(∆) it follows that a = b = 1,
so that |det(v1, v2)| = 2. Moreover, these four vertices must be actual vertices of ∆. In
particular, they must be contained in Z2, from which one sees that lw(∆) is even, and

∆ ∼= lw(∆)
2

Γ5
1.

For (vi) see [21]. �

Note that Lemma 5.2.(v) implies that if ∆ has two linearly independent lattice width
directions v1, v2, then there is a unimodular transformation mapping ∆ inside lw(∆)�.
(Indeed, if |det(v1, v2)| = 1 then one can take a Z-linear transformation mapping v1 to
(1, 0) and v2 to (0, 1), and compose it with an appropriate translation; if |det(v1, v2)| 6= 1
then ∆ is of the form dΓ5

1, and the statement can be verified explicitly.) In particular, it
follows that

♯(∆(1) ∩ Z2) ≤ (lw(∆)− 1)2 (7)

in this case.

Example. Let ∆ be the lattice polygon

for which lw(∆) = 4 (as can be seen by applying Lemma 5.2.(i)). Clearly ±(1, 0) and
±(0, 1) are lattice directions computing lw(∆). It is also immediate that ∆ 6∼= dΓ5

1 for
any d ∈ Z≥1, so that by Lemma 5.2.(iv) the number of pairs ±v of lattice width direc-
tions is either two or three. But three is impossible, because by Lemma 5.2.(v) the third
pair would need to be among ±(1, 1),±(1,−1), both of which correspond to widths that
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strictly exceed 4.

Remark. Lemma 5.2.(iii) can also be proven using the well-known geometric fact that
gonality pencils are always complete, by combining Theorem 6.1 and Corollary 9.4 below.

Combinatorial pencils. Returning to the geometric side, let ∆ be a two-dimensional
lattice polygon, let v = (a, b) be a lattice direction, let f ∈ k[x±1, y±1] be a ∆-non-
degenerate or ∆-toric Laurent polynomial, and let C ⊂ Tor(∆) be the corresponding
smooth projective curve (i.e. the Zariski closure of ϕ∆(U(f)), where ϕ∆ is as in Section 3).
We associate to v a linear pencil gv on C as follows. For each c ∈ P1 = T1 ∪ {0,∞} we
have a function xayb − c on Tor(∆) (where xayb −∞ should be read as x−ay−b) whose
zero divisor Fc cuts out a divisor Dc on C. Then

gv = {Dc} c∈P1

Fc 6=C
.

In other words this is the trace on C of the linear system {Fc}c, in the sense of [27, p. 158].

Remark. The subscript Fc 6= C is usually superfluous, but it could indeed happen
that Fc = C for some c. Example: f = x + 1, ∆ = Σ, v = (1, 0) and c = −1. In
this example gv is just the linear system consisting of one base point, namely the point
(0 : 1 : 0) ∈ P2 = Tor(Σ) (note the abuse of language here). By genus considerations
Fc = C can occur only if ∆(1) = ∅. Since from Section 6 on, all our theorems and lem-
mata that involve combinatorial pencils exclude the case ∆(1) = ∅ (for other reasons),
the reader can in fact ignore the possibility of this event.

There are several ways of seeing that gv has degree w(∆, v). One approach, the de-
tails of which we leave to the reader, uses the BKK theorem along with the fact that
w(∆, v) = MV(∆, conv{0, v}). We will give a more elementary argument that gives finer
information.

Lemma 5.3. The pencil gv is of degree w(∆, v). More precisely, it splits into a base-
point free part of degree w(∆(f), v) and a fixed part of degree w(∆, v)− w(∆(f), v) that
is supported on at most two points. In particular, if

• f is ∆-non-degenerate, or
• v is a lattice width direction, lw(∆) ≥ 2, and ∆ 6∼= dΣ for all d ≥ 2,

then gv is base-point free.

Proof. We will assume that Fc 6= C for all c ∈ P1, and leave the details of the other
case to the reader. Then the rational map U(f) → T1 : (x, y) 7→ xayb extends to a
degree w(∆(f), v) morphism C → P1. Its fibers determine a base-point free pencil that
necessarily matches with the base-point free part of gv.

As for the fixed part, suppose that ∆ and ∆(f) are contained in the strips

m ≤ aY − bX ≤ m+ w(∆, v) and mf ≤ aY − bX ≤ mf + w(∆(f), v),

respectively. If ∆ has a unique vertex vlow lying on the line m = aY − bX , the corre-
sponding zero-dimensional orbit O(vlow) is contained in every divisor Fc. Similarly, if
there is a unique vertex vtop on the line m+w(∆, v) = aY − bX then O(vtop) is contained
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in every Fc. All other points of Tor(∆) lie on a unique Fc. This means that the fixed
part of gv is supported on at most these two points.

v

w(∆, v) w(∆(f), v)

vhigh

vlow

∆

∆(f)

Now if there is indeed a unique lower-most vertex vlow of ∆, then a local analysis shows
that a generic Fc intersects C in O(vlow) with multiplicity mf −m, or in other words, the
order of the fixed part of gv at O(vlow) equals mf −m. If there is no unique lower-most
vertex, then necessarily m = mf , otherwise there would be an edge of ∆ not supporting
any term of f , contradicting that f is ∆-toric. A similar analysis at the top then yields
that the fixed part of gv has degree w(∆, v)− w(∆(f), v).

For the last claim it suffices to note that if f is ∆-non-degenerate then ∆(f) = ∆, and
therefore w(∆(f), v) = w(∆, f), while if v is a lattice width direction, lw(∆) ≥ 2, and
∆ 6∼= dΣ for all d ≥ 2, then

w(∆(f), v) = w(∆(f)(1), v) + 2 = w(∆(1), v) + 2 = w(∆, v),

where the outer equalities follow from Lemma 5.2.(iii). �

A pencil on C that arises as gv for some lattice direction v is called combinatorial. The
number of combinatorial pencils is countable; in fact, by Lemma 5.1 there is only a finite
number of combinatorial pencils of each given degree. Note that the minimal degree of a
combinatorial pencil is lw(∆), from which we immediately find that the gonality γ(C) of
C is bounded from above by lw(∆). As we will see in Section 6, equality typically holds.

The correspondence between pairs ±v of lattice directions and combinatorial pencils
is usually 1-to-1, but there are counterexamples. For instance, let ∆ be a primitive
lattice parallelogram, i.e. a polygon of the form conv{(0, 0), v1, v2, v1 + v2} for linearly
independent primitive vectors v1, v2 ∈ Z2. Then

w(∆, v1) = w(∆, v2) = |det(v1, v2)| .
Assume that f is supported on the vertices of ∆ only, i.e.

f = c0,0 + c1,0(x, y)
v1 + c0,1(x, y)

v2 + c1,1(x, y)
v1+v2 ,

and that the coefficients ci,j are sufficiently generic. Then the fiber of U(f) → T1 :
(x, y) 7→ (x, y)v1 above a point c ∈ T1 \ {−c0,1c−1

1,1} matches with the fiber of U(f) → T1 :
(x, y) 7→ (x, y)v2 above

−c0,0 + cc1,0
c0,1 + cc1,1

.
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From this it follows that gv1 = gv2. The same construction works for the primitive lattice
triangle ∆ = conv{(0, 0), v1, v2}.

Example with v1 = (3, 2) and v2 = (1, 0). The graph below shows the (real affine) zero
locus of f = 3 + x+ x3y2 − x4y2 ∈ C[x, y].

The dashed line cuts out a typical fiber of x3y2, which is also a fiber of x.

Clearly, by degree considerations, w(∆, v1) 6= w(∆, v2) is a sufficient condition for v1, v2
to give rise to different combinatorial pencils. Another sufficient condition is as follows.

Lemma 5.4. Let ∆ be a two-dimensional lattice polygon and let f be a ∆-toric Laurent
polynomial. Let v1 6= ±v2 be lattice directions and let gv1 and gv2 be the corresponding
combinatorial pencils. If

w(∆(1), v1) > |det(v1, v2)| − 2 (8)

then gv1 6= gv2.

Proof. Fibers of

T2 → T1 : (x, y) 7→ (x, y)v1 and T2 → T1 : (x, y) 7→ (x, y)v2

intersect each other in at most |det(v1, v2)| points. Now because ∆(f)(1) = ∆(1), condition
(8) implies that w(∆(f), v1) > |det(v1, v2)|. We conclude that a general fiber of

U(f) → T2 : (x, y) 7→ (x, y)v1

cannot be contained in a fiber of U(f) → T2 : (x, y) 7→ (x, y)v2. The lemma follows. �

In the case of lattice width directions we obtain:

Corollary 5.5. Let ∆ be a two-dimensional lattice polygon and assume that ♯(∆(1)∩Z2) >
1. Let f be a ∆-toric Laurent polynomial, let v1 6= ±v2 be lattice width directions, and
let gv1 and gv2 be the according combinatorial pencils. Then gv1 6= gv2.

Proof. If |det(v1, v2)| = 1 then condition (8) amounts to ∆(1) 6= ∅, which is clearly
the case. So by Lemma 5.2.(iv) it remains to analyze the case where |det(v1, v2)| = 2
and ∆ ∼= dΓ5

1 for some integer d ≥ 2 (indeed, d = 1 is excluded in the statement of the
corollary). But here

w(∆(1), v1) = w((d− 1)Γ5
1, v1) ≥ lw((d− 1)Γ5

1) = 2(d− 1),
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so again condition (8) is satisfied. �

6. Gonality

We can now state our refinement of Kawaguchi’s theorem [29, Thm. 1.3].

Theorem 6.1. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f). Suppose that ∆(1) is not equivalent to any of the following:

∅, (d− 3)Σ (for some integer d ≥ 3), Υ, 2Υ, Γ5
1, Γ5

2, Γ5
3. (9)

Then every gonality pencil on (the smooth projective model of) U(f) is combinatorial.

Remark. In case ∆(1) is among Υ, 2Υ,Γ5
1,Γ

5
2,Γ

5
3, there is only a single corresponding ∆,

namely, 2Υ, 3Υ, 2Γ5
1, 2Γ

5
2 and 2Γ5

3, respectively.

Before we proceed to the proof of Theorem 6.1, let us discuss some corollaries. From
the énoncé it follows that if ∆(1) is non-equivalent to any of the polygons listed in (9),
then the gonality of U(f) equals the lattice width of ∆. Thus by Lemma 5.2.(i), if ∆(1) is
not among the polygons listed in (9) then the gonality of U(f) equals lw(∆(1)) + 2. The
other instances of ∆(1) can be analyzed case by case:

• If ∆(1) = ∅ then U(f) is rational, hence of gonality 1.
• If ∆(1) ∼= (d − 3)Σ then U(f) is birationally equivalent to a smooth projective
plane curve of degree d, hence of gonality d−1 by a result of Namba [38] (a proof
can also be found in [43, Prop. 3.13]).

• If ∆(1) ∼= Υ then U(f) is a non-hyperelliptic curve of genus 4, hence of gonality 3.
• If ∆(1) ∼= 2Υ then U(f) is birationally equivalent to a smooth intersection of two
cubics in P3, hence of gonality 6 by a result of Martens (see [8, Thm. 9] for more
details).

• If ∆(1) ∼= Γ5
i (i = 1, 2, 3) then U(f) is a non-hyperelliptic, non-trigonal curve of

genus 5 by [8, Lem. 3], hence of gonality 4.

We conclude:

Corollary 6.2. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f). Then the gonality of U(f) equals lw(∆(1))+2, unless ∆(1) ∼= Υ (i.e. ∆ ∼= 2Υ),
in which case it equals 3.

Unless ∆(1) ∼= Υ we can even read off the number of gonality pencils:

Corollary 6.3. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f).

• If ∆(1) = ∅ then there is a unique gonality pencil.
• If ∆(1) ∼= Υ then the number of gonality pencils is at most 2.
• If ∆(1) ∼= (d − 3)Σ for some d ≥ 3, or if ∆(1) ∼= 2Υ,Γ5

1,Γ
5
2,Γ

5
3, then there are

infinitely many gonality pencils.
• In all other cases the number of gonality pencils equals the number of lattice width
directions. In particular, the number of gonality pencils is at most 4, and the
bound is met iff ∆(1) ∼= dΓ5

1 for some d ≥ 2.
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Proof. The first three claims follow from the considerations above: rational curves
have a unique gonality pencil, non-hyperelliptic genus 4 curves carry one or two g13’s [27,
Ex. IV.5.5.2], smooth plane degree d curves admit infinitely many g1d−1’s [43, Prop. 3.13],
smooth intersections of cubics in P3 carry infinitely many g16’s [20, pp. 174-175], and non-
hyperelliptic, non-trigonal curves of genus 5 have infinitely many g14’s [1, Ex. IV.F]. The
last claim follows from Theorem 6.1, combined with Lemma 5.2.(iv) and Corollary 5.5. �

Example (revisited, see Section 5). Let ∆ be the lattice polygon

and let f ∈ k[x±1, y±1] be a ∆-non-degenerate (or ∆-toric) Laurent polynomial. Then
U(f) is a 4-gonal genus 7 curve carrying exactly two g14’s.

Remarks.

• Corollary 6.2 implies a conjecture by the current authors [8, Conj. 1]. It does not
imply the corresponding conjecture on metric graphs [8, Conj. 3 + Err.].

• Corollary 6.2 also implies that if ∆(1) ∼= Υ (i.e. if ∆ ∼= 2Υ), then a combinatorial
gonality pencil cannot exist. The same conclusion holds for ∆ ∼= dΣ for d ≥ 2. In
all other cases, there exists at least one combinatorial gonality pencil.

• In case ∆(1) ∼= Υ then both one and two g13’s can occur, depending on whether the
quadric on which the curve canonically embeds is singular or not [27, Ex. IV.5.5.2];
see [7, Thm. 4] for an explicit description of this quadric.

• Let k′ be an arbitrary field of characteristic 0 with algebraic closure k. Suppose
that f ∈ k′[x±1, y±1] is non-degenerate with respect to its Newton polygon when
considered as a Laurent polynomial over k. If ∆(f) 6∼= 2Υ, dΣ then the above
remark implies that γ(U(f)) = γk′(U(f)), where γk′(U(f)) is the minimal degree
of a k′-rational map to P1. If ∆(f) ∼= 2Υ or ∆(f) ∼= dΣ for some d ≥ 2 then this
may not be true. (Example: x2 + y2 + 1 ∈ R[x, y].)

• By letting k′ = C((t)), the preceding remark lends prudent support in favor of a
conjecture by M.Baker (stating that the gonality of a graph equals the gonality
of the associated metric graph [2, Conj. 3.14]) in the case of graphs associated to
regular subdivisions of lattice polygons [8, Err. §1].

• If ∆(1) is neither among the polygons excluded in Theorem 6.1, nor of the form
dΓ5

1 for some d ≥ 2, then Lemma 5.2.(v) implies that two different gonality pen-
cils on U(f) are always independent, in the sense that they span a base-point free
linear system of rank 2, defining a morphism U(f) → P2 that induces a birational
equivalence between U(f) and its image. (For general lattice directions v1 6= ±v2
the morphism C → P2 defined by gv1 and gv2 induces a degree |det(v1, v2)| cover.)
See [12, (1.2)] for more background on this terminology.

We now give a proof of Theorem 6.1. We recall that the main ideas are taken from
Kawaguchi [29], but that our proof covers the case where U(f) is birationally equivalent
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to a smooth projective plane curve (the key ingredient here being the block of text sur-
rounding (13) below).

Proof of Theorem 6.1. Let g = ♯(∆(1) ∩ Z2) be the geometric genus of U(f). Note
that our assumptions imply g ≥ 2. Recall that lw(∆(1)) = 0 if and only if U(f) is
hyperelliptic. By Lemma 5.2.(i) this holds if and only if lw(∆) = 2, hence a g12 can
be computed by projection along some lattice direction. Since the g12 of a hyperelliptic
curve is unique, Theorem 6.1 follows in this case. Thus we may assume that ∆(1) is
two-dimensional and that U(f) is of gonality γ ≥ 3.

From Lemma 4.3 we know that f is ∆max-toric, i.e. ϕ∆max(U(f)) completes to a smooth
projective curve C ⊂ Tor(∆max). Let Σ′ be a minimal smooth subdivision of Σ∆max and
let µ : Tor(Σ′) → Tor(Σ∆max) be the corresponding birational morphism. Let C ′ be the
strict transform of C under µ. Because the smooth subdivision was chosen minimal, C ′

does not meet the exceptional locus of µ. In particular, µ|C′ is an isomorphism of curves
and ∆C′ ∼=t ∆

max. Since Tor(Σ′) is smooth, every Weil divisor is Cartier.
By the BKK theorem (recall that C ′ is a convex divisor),

C ′2 = MV(∆max,∆max) = 2Vol(∆max) ≥ 3

4
lw(∆max)2 =

3

4
lw(∆)2,

where the third and fourth (in)equalities follow from Lemma 5.2.(i,vi). For small lattice
widths this bound can be improved: using the data from [6] one can computationally
verify that

C ′2 = 2Vol(∆max) ≥





18 if lw(∆max) = 3,
20 if lw(∆max) = 4,
25 if lw(∆max) = 5,
28 if lw(∆max) = 6

(10)

(remark that by Pick’s theorem it suffices to verify these inequalities for small genus only).
Magma code assisting the reader in this can be found in the accompanying file gonal.m.
The patient reader can also do an elaborate analysis by hand, following Kawaguchi [29,
Props. 3.10–3.12,4.3]. We stress that for these bounds it is essential that ∆max is maximal
and that ∆(1) is not among the polygons listed in (9).

We now come to the heart of the proof. Fix a gonality pencil g1γ and let p : C ′ → P1

be a corresponding morphism of degree γ. A theorem by Serrano [43, Thm. 3.1] states
that if C ′2 > (γ + 1)2 then p can be extended to a morphism Tor(Σ′) → P1. From this
it will follow that p is combinatorial (as explained in the last paragraph of the proof).
Unfortunately, in general we only have that2

C ′2 ≥ 3

4
lw(∆)2 ≥ 3

4
γ2. (11)

To bridge this, we follow an approach of Harui [28], who dug into Serrano’s proof to
extract Theorem 6.4 below.

We proceed by contradiction: assume that p cannot be extended to all of Tor(Σ′).
Then by Theorem 6.4 (note that C ′2 > 4γ) there exists an effective divisor V on Tor(Σ′)

2But note that for ‘most’ lattice polygons, the stronger bound C′2 > (γ+1)2 does hold, in which case
the proof simplifies a lot.
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satisfying

1 ≤ s < C ′ · V − s ≤ γ and C ′2 ≤ (γ + s)2

s
, (12)

where s = V 2. We may assume that V is torus-invariant, i.e. V =
∑
aℓDℓ for certain

integers aℓ (where the Dℓ’s are the torus-invariant prime divisors of Tor(Σ′)). From our
bounds (11) and (12) we see that

3

4
γ2 ≤ (γ + s)2

s
<

(γ + γ)2

s
=

4

s
γ2

which implies that s ≤ 5. Rewrite the first inequality as (3s − 4)γ2 − 8sγ − 4s2 ≤ 0: if
s ≥ 2 then the largest real root of the left-hand side, when viewed as a polynomial in γ,
is given by (4s + 2s

√
3s)/(3s − 4) which for s ≤ 5 is strictly less than 9. We conclude

that if γ ≥ 9 then s = 1. A finer analysis using the better bounds (10) shows that γ ≥ 4,
and that s = 1 except possibly if γ ∈ {6, 7, 8} in which case s ∈ {1, 2}.

We claim that this implies h0(Tor(Σ′), V ) ≤ s + 1. Suppose not, then ∆V contains at
least s + 2 lattice points. Let Γ be the convex hull of the lattice points in ∆V and let
DΓ =

∑
ℓ a

′
ℓDℓ be the torus-invariant divisor obtained by taking the a′ℓ’s minimal such

that

Γ ⊂
{
(i, j) ∈ R2

∣∣ <(i, j), vℓ> ≥ −a′ℓ
}
.

One verifies that DΓ is convex, that ∆DΓ
= Γ, and that aℓ ≥ a′ℓ for all ℓ, i.e. V −DΓ is

effective.

• Suppose that, up to a unimodular transformation, Γ contains a horizontal line
segment I of length ≥ 2. Then C ′ · V = C ′ · (DΓ + (V − DΓ)) is bounded from
below by

C ′ ·DΓ = MV(∆max,Γ) ≥ MV(∆max, I) ≥ 2 lw(∆max) = 2 lw(∆) ≥ 2γ,

where the first inequality follows because MV is an increasing function.This con-
tradicts C ′ · V ≤ γ + s.

• So we can assume that Γ does not contain such a line segment.
– If s = 1 then Γ contains at least 3 non-collinear lattice points. But then, by
applying a unimodular transformation if needed, we may assume that Σ ⊂ Γ.
One finds

C ′ · V ≥ MV(∆max,Γ) ≥ MV(∆max,Σ) = d (13)

where d is the smallest integer such that ∆max is contained in a translate of
dΣ (indeed, this follows from Bézout’s theorem). Then ∆(1) ⊂ (d− 3)Σ, and
by our assumptions this inclusion is strict. It follows that lw(∆(1)) ≤ d − 4,
hence by Lemma 5.2.(i) that lw(∆) = lw(∆max) ≤ d − 2. From (13) we
conclude that C ′ · V ≥ lw(∆) + 2. This contradicts C ′ · V ≤ γ + 1.

– If s = 2 then Γ contains at least 4 lattice points. By our assumption that it
contains no line segment of integral length 2, we can assume � ⊂ Γ or Υ ⊂ Γ,
again by applying a unimodular transformation if needed. In the former case
we have

C ′ · V ≥ MV(∆max,Γ) ≥ MV(∆max,�) = a+ b,
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where (a, b) is the ‘bidegree’ of f , i.e. the minimal couple of values for which
∆max is contained in a translate of [0, a]× [0, b]. This follows from the BKK
theorem applied to Tor(�) = P1×P1, and implies that C ′ ·V ≥ 2 lw(∆) ≥ 2γ.
In the latter case, by the BKK theorem applied to Tor(Υ), one similarly finds

C ′ · V ≥ MV(∆max,Γ) ≥ MV(∆max,Υ) = 3d,

where d is the smallest integer such that ∆max is contained in a translate of
dΥ. Because

2d = lw(dΥ) ≥ lw(∆max) ≥ γ (14)

we find that C ′ · V ≥ 3
2
γ. In both cases this contradicts C ′ · V ≤ γ+2; recall

that γ ≥ 6 in the s = 2 case.

Remark. The bound C ′ · V ≥ 3
2
γ can be proven more easily by noting that

Υ contains a line segment of integral length 3
2
; however, the argument using

(14) will reappear in the proof of Theorem 7.2, so we have included it for the
sake of consistency.

Our claim that h0(Tor(Σ′), V ) ≤ s+ 1 follows.
Because a lattice polygon having at most 3 lattice points cannot have any interior

lattice points, we deduce that h0(Tor(Σ′), V +K) = 0, with K = −∑
ℓDℓ the canonical

divisor from Section 3. The Riemann-Roch theorem yields that

1

2
(V +K) · V =

h0(Tor(Σ′), V +K)− h1(Tor(Σ′), V +K) + h0(Tor(Σ′),−V )− χ(OTor(Σ
′))

is bounded by −χ(OTor(Σ
′)) = −1, i.e. K · V ≤ −s − 2. But then Riemann-Roch also

tells us that

h0(Tor(Σ′), V ) = h1(Tor(Σ′), V )− h0(Tor(Σ′), K − V ) +
1

2
V · (V −K) + 1

is at least s + 2.
Thus we run into the desired contradiction, and we conclude that p can be extended

to all of Tor(Σ′). Let p̃ : Tor(Σ′) → P1 be such that p̃|C′ = p. Let F be a fiber of p̃,
so that F · C ′ = γ. Then C ′ · (F − C ′) ≤ γ − 3

4
γ2 < 0. Since C ′ is nef it follows that

h0(Tor(Σ′), F − C ′) = 0. Now by tensoring the short exact sequence

0 → OTor(Σ′)(−C ′) → OTor(Σ′) → OC′ → 0

with OTor(Σ′)(F ) and taking cohomology, we find the exact sequence

0 → H0(Tor(Σ′), F − C ′) → H0(Tor(Σ′), F ) → H0(C ′, F |C′) → . . . ,

which proves that h0(Tor(Σ′), F ) ≤ 2; here we used that h0(C ′, F |C′) = 2 because g1γ is
complete. Thus |F | is a linear system of rank 1, i.e. every element of |F | is a fiber of p̃.
Let D be a torus-invariant divisor that is equivalent to F . By translating if necessary we
may assume that (0, 0) ∈ ∆D, so that D is effective. But then D ∈ |F | and

H0(Tor(Σ′), D) =
〈
1, xayb

〉
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for some primitive (a, b) ∈ Z2. We find that p̃|T2 : (x, y) 7→ xayb (up to an automorphism
of P1), i.e. g1γ = g(a,b). �

Theorem 6.4 (Serrano, 1987). Let C be a smooth projective curve on a smooth projective
surface S, and let p : C → P1 be a surjective morphism of degree d. Suppose that C2 > 4d
and that p cannot be extended to a morphism S → P1. Then there exists an effective
divisor V on S for which

0 < V 2 < V · (C − V ) ≤ d and C2 ≤ (d+ V 2)2

V 2
.

Proof. By contradiction. Suppose that such an effective divisor V does not exist, then
one can replace Claim 6 in Serrano’s proof [43, p. 401] by the following reasoning (the
text below does not make sense without Serrano’s paper at hand):

Claim 6: a = 0. Suppose that a > 0. Then V1 is an effective divisor such that
0 < V 2

1 < V1 · V2 ≤ d because a < e. On the other hand,

C2 = a+ 2e+ b ≤ a+ 2e+
e2

a
≤ a+ 2d+

d2

a
=

(a+ V 2
1 )

2

V 2
1

.

Since V2 = C − V1 this contradicts our hypothesis. Hence, a = 0.
The rest of the proof can be copied word by word. �

7. Near-gonal pencils

By a near-gonal pencil on a smooth projective curve C/k we mean a base-point free
g1γ(C)+1 (note that such pencils need not exist). The method of the previous section can be
adapted to show that, apart from some reasonably well-understood exceptional instances
of ∆, every near-gonal pencil on a ∆-non-degenerate curve is combinatorial.

It is convenient to state our main result in terms of the lattice size, a notion to which
we have devoted a separate paper [9]. If ∆ 6= ∅, then its lattice size is defined as the
minimal integer d ≥ 0 such that ∆ is equivalent to a lattice polygon that is contained in
dΣ. We denote this integer by ls(∆), and let ls(∅) = −2. If ∆ is two-dimensional then, as
in the case of the lattice width (cf. Lemma 5.2.(i)), there exists an expression for ls(∆) in
terms of ls(∆(1)), allowing one to compute ls(∆) by gradually peeling off the polygon [9,
Thm. 3.5]. For our needs, one of the main results of [9] can be reformulated as follows:

Theorem 7.1. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f). Then the minimal degree of a (possibly singular) projective plane curve that
is birationally equivalent to U(f) is bounded by ls(∆(1)) + 3. If ∆(1) ∼= (d − 1)Υ for a
certain integer d ≥ 2 (i.e. ∆ ∼= dΥ), then it is moreover bounded by 3d− 1.

Proof. See [9, Thm. 1.3]. �

Remarks.

• If ∆(1) ∼= (d− 1)Υ then ls(∆(1)) + 3 = 3d (as can be verified using [9, Thm. 3.5]).
So the second bound is sharper in this case.

120 Chapter 5. Linear pencils encoded in the Newton polygon



• We expect that the (smallest applicable) bound of Theorem 7.1 is in fact sharp;
see [9, §7] for a discussion.

Our main result is as follows:

Theorem 7.2. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f), and let γ be the gonality of U(f). Suppose that

ls(∆(1)) ≥ lw(∆(1)) + 2 (15)

and that ∆(1) 6∼= 2Υ, 3Υ,Γ7,Γ8. Then every base-point free g1γ+1 on the smooth projective
model of U(f) is combinatorial.

Before we proceed to the proof of Theorem 7.2, let us analyze the list of polygons that
are excluded in the statement (this is a strict extension of the list of polygons that were
exluded in the statement of Theorem 6.1). First note that Theorem 7.2 implies that if
∆ is not among the excluded polygons, the number of base-point free g1γ+1’s is finite.
Opposed to that, we have:

Lemma 7.3. If ∆ violates condition (15) or ∆(1) ∼= 2Υ,Γ7, then the number of base-point
free g1γ+1’s is infinite.

Proof. A violation of condition (15) implies that U(f) is birationally equivalent to a
(possibly singular) plane curve of degree at most γ + 2. Indeed:

• If ∆(1) ∼= Υ then U(f) is a non-hyperelliptic genus 4 curve, hence of gonality
3. It is known that such curves admit a plane model of degree 5; see e.g. [27,
Ex. IV.5.4].

• If ∆(1) 6∼= Υ but ls(∆(1)) < lw(∆(1))+2, then by Corollary 6.2 the assumption can
be rephrased as ls(∆(1)) < γ. Along with Theorem 7.1 this implies that U(f) has
a projective plane model of degree at most γ + 2.

It follows that U(f) must have a plane model of degree exactly γ + 1 or γ + 2, because a
model of degree at most γ would contradict that γ equals the gonality (by projecting from
a point on this plane model). But then there exist infinitely many base-point free g1γ+1’s,
obtained either by projection from a point outside the plane model, or by projection from
a non-singular point on the plane model.

If ∆(1) ∼= 2Υ, so that ∆ ∼= 3Υ, then U(f) is a 6-gonal curve that is birationally
equivalent to a smooth intersection of two cubics in P3 = Proj k[X0,0, X−1,−1, X1,0, X0,1],
where one of the cubics is just Tor(Υ), i.e. it is given by X3

0,0 −X−1,−1X1,0X0,1 (see the
according remark following Theorem 6.1). By the trisecant lemma [27, IV.Prop. 3.8 and
IV.Thm. 3.9] we can find a point on this curve, the general secant through which is not a
multisecant. Projecting from this point gives a birational equivalence with a plane curve
of degree 8, and hence we again obtain infinitely many g17’s.

Finally, if ∆(1) ∼= Γ7 then γ = 4. Now there exists at least one base-point free g15
(namely g(0,1)). By Brill-Noether theory it then follows that the number of base-point
free g15’s is infinite. �

The exclusion of 3Υ (in which case γ = 8) is also necessary:
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Lemma 7.4. If ∆(1) ∼= 3Υ then there exists a base-point free g19, while there are no
combinatorial g19’s.

Proof. If ∆(1) ∼= 3Υ, then ∆ ∼= 4Υ and U(f) is a curve of genus 19 that is birationally
equivalent to a smooth intersection of Tor(Υ) and a quartic in P3. By Theorem 6.1 our
curve is 8-gonal, and there are exactly three g18’s. Geometrically, the three g18’s can be
visualized as pencils of planes through the three lines of Tor(Υ). By the trisecant lemma
we can find a point on the curve that is

(1) not contained in any of these three lines, and
(2) the general secant line through which is not a multisecant.

Projecting from such a point gives a birational map to a plane curve of degree 11, the
map being birational because of condition (2). Genus considerations yield that the curve
must be singular. Moreover, the singular points all have multiplicity 2. Indeed, if there
were a singularity of multiplicity 3, the pencil of lines through this point would cut out
one of our g18’s, which is impossible by condition (1). On the other hand, a singularity of
higher multiplicity would contradict that the gonality is 8. Then projecting from such a
singular point of multiplicity 2 yields a base-point free g19. We leave it to the reader to
verify that there are indeed no combinatorial g19’s. �

Finally, if ∆(1) ∼= Γ8, so that ∆ ∼= conv{(0, 0), (6, 2), (2, 4)}, then γ = 4 and it can be
checked that there are no combinatorial g15’s. On the other hand, the Laurent polynomial
f = 1 − x6y2 − x2y4 is non-degenerate with respect to its Newton polygon, while U(f)
admits a rational map

U(f) → A1 : (x, y) 7→ 1− xy2

x3y

of degree 5, and therefore carries a base-point free g15. Moduli-theoretic considerations
then allow one to draw the same conclusion for a non-empty open subset of the space of
Laurent polynomials f ∈ k[x±1, y±1] that are supported on ∆. Unfortunately, this does
not prove the corresponding statement for all ∆-non-degenerate (or ∆-toric) Laurent
polynomials, even though we believe that it should be true. But in any case this shows
that the exclusion of Γ8 is also necessary.

We now prove Theorem 7.2:

Proof of Theorem 7.2. This is very similar to the proof of Theorem 6.1. Let
g = ♯(∆(1) ∩ Z2) be the geometric genus of U(f). The assumptions imply that g ≥ 3.
Because hyperelliptic curves of genus at least 3 never carry a base-point free g13, we can
assume that ∆(1) is two-dimensional and that U(f) is of gonality γ ≥ 3.

As before, let C be the Zariski closure of ϕ∆max(U(f)) inside Tor(∆max), let Σ′ be a
minimal smooth subdivision of Σ∆max , let µ : Tor(Σ′) → Tor(Σ∆max) be the corresponding
birational morphism, and let C ′ be the strict transform of C under µ. Recall that C ′2 ≥
3
4
γ2. Using the data from [6], our list of sharpened lower bounds (10) can be adapted
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and extended to

C ′2 = 2Vol(∆max) ≥





24 if lw(∆max) = 3,
24 if lw(∆max) = 4,
30 if lw(∆max) = 5,
34 if lw(∆max) = 6,
46 if lw(∆max) = 7,
55 if lw(∆max) = 8,

(16)

unless ∆max is equivalent to one of the following three polygons,

∆1 ∆2 ∆3

whose respective lattice widths and doubled volumes are 5, 6, 6 and 25, 32, 33. See the
accompanying Magma file neargonal.m for assistance in verifying these bounds. It is
again essential that ∆max is maximal and that ∆(1) is not among the polygons excluded
in the énoncé (recall that this is a strict extension of the list of polygons that were
excluded in Theorem 6.1).

For now, assume that ∆max 6∼= ∆1,∆2,∆3: we will deal with these polygons later.
Consider a base-point free g1γ+1 on C ′ and let p : C ′ → P1 be a corresponding morphism
of degree γ + 1 (which exists precisely because our g1γ+1 is base-point free). Assume that

p cannot be extended to all of Tor(Σ′). Because C ′2 > 4(γ + 1) we can apply Serrano’s
Theorem 6.4 to obtain the existence of an effective divisor V on Tor(Σ′) for which

0 < s < C ′ · V − s ≤ γ + 1 and C ′2 ≤ (γ + 1 + s)2

s
, (17)

where s = V 2. The bounds on C ′2 imply that s = 1, except possibly if γ ∈ {4, . . . , 13} in
which case s ∈ {1, 2}.

We claim that this implies h0(Tor(Σ′), V ) ≤ s+1. Suppose not, and let Γ be as in the
proof of Theorem 6.1, i.e., it is a lattice polygon containing at least s + 2 lattice points,
with the property that C ′ · V ≥ MV(∆max,Γ).

• If Γ contains a line segment of integral length 2, then as before it follows that
C ′ · V ≥ 2γ, which contradicts C ′ · V ≤ γ + 1+ s (note that s = 1 in case γ = 3).

• So we can assume that Γ does not contain such a line segment.
– If s = 1 it therefore suffices to consider the case where Γ contains Σ (after
performing a unimodular transformation if needed). We again find C ′ ·V ≥ d
where d ≥ 0 is the smallest integer such that ∆max is contained in a translate
of dΣ. By definition of the lattice size, it follows that

C ′ · V ≥ ls(∆max) ≥ ls(∆(1)) + 3 ≥ lw(∆(1)) + 5 ≥ lw(∆) + 3 ≥ γ + 3.

Here the second inequality follows from [9, Eq. (2)], the third inequality fol-
lows from (15), and the fourth inequality follows from Lemma 5.2.(i). This
contradicts that C ′ · V ≤ γ + 1 + s = γ + 2.
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– If s = 2 then we can assume that γ ≥ 4 and that Γ contains a unimodular
copy of either � or Υ. As before we respectively find that C ′ · V ≥ 2γ and
C ′ · V ≥ 3

2
γ. In the former case this contradicts C ′ · V ≤ γ + 1 + s. In the

latter case, the contradiction follows for γ ≥ 7 only. To deal with the case
where γ ≤ 6, note that (14) can be rewritten as

2d = lw(dΥ) > lw(∆max) = γ,

where the last equality follows from Corollary 6.2, and the strict inequality
in the middle holds because the lattice width of a strict subpolygon of dΥ is
strictly less than 2d (we excluded the possibility that ∆max ∼= 2Υ, 3Υ in the
énoncé). It follows that for γ ≤ 6, the bound C ′ · V ≥ 3

2
γ can be refined to

C ′ · V ≥ 3
2
(γ + 1), which is now sufficient to contradict C ′ · V ≤ γ + 1 + s.

So we conclude that indeed h0(Tor(Σ′), V ) ≤ s+1. As in the proof of Theorem 6.1, along
with s ≤ 2 this again implies that h0(Tor(Σ′), V +K) = 0. The remainder of the proof is
an exact copy of the corresponding part of the proof of Theorem 6.1 (except in the last
paragraph, where now F ·C ′ = γ+1, but this doesn’t affect the argument). Remark that
for this part we need g1γ+1 to be complete, which is true because the contrary would lead
to infinitely many g1γ’s, contradicting Corollary 6.3.

It remains to deal with the case where ∆max is among ∆1,∆2,∆3. Here (17) only
allows us to conclude s ∈ {1, 2, 3}. If s ∈ {1, 2} then the above proof applies, so we
can assume s = 3. We claim that in this case h0(Tor(Σ′), V ) ≤ 3. Suppose not, then
there exists a lattice polygon Γ containing at least 4 lattice points, with the property
that C ′ · V ≥ MV(∆max,Γ).

• If Γ contains a line segment of integral length 2 then we again run into a contra-
diction (note that we only consider γ = 5 and γ = 6).

• If not then we can again assume that � ⊂ Γ or Υ ⊂ Γ. In the former case the
bound C ′ · V ≥ 2γ suffices to run into contradiction (again using that γ = 5, 6).
In the case Υ ⊂ Γ, the above sharpened bound C ′ · V ≥ 3

2
(γ + 1) results in a

contradiction for ∆2 and ∆3, but remains insufficient in the case of ∆1. Now it is
not hard to see that there is no unimodular transformation mapping ∆1 inside 3Υ.
Indeed, because the lattice width of a subpolygon of 3Υ that misses two vertices
of 3Υ is at most 4, we find that a unimodular copy of ∆1 inside 3Υ should have
an edge in common with 3Υ. But ∆1 contains only one edge having 4 lattice
points, and the width of ∆1 with respect to the direction of this edge is 8. So
∆1 can indeed impossibly fit inside 3Υ. It follows that the smallest multiple of Υ
containing a unimodular copy of ∆1 is 4Υ, from which

C ′ · V ≥ MV(∆max,Γ) ≥ MV(∆max,Υ) ≥ 3 · 4 = 12.

This gives the desired contradiction.

So we conclude that indeed h0(Tor(Σ′), V ) ≤ 3. This implies that h0(Tor(Σ′), V +K) = 0,
and the rest of the argument can again be copied word by word, essentially. �

Remark. Kawaguchi’s proof technique should in principle allow one to obtain similar
theorems on base-point free γ1γ+n’s for n = 2, 3, . . . Here condition (15) will have to be
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replaced by
ls(∆(1)) ≥ lw(∆(1)) + n+ 1.

However, an increasing number of exceptional polygons are expected to come into play,
both for geometric reasons (definitely, more and more multiples of Υ will show up) and
for proof-technical reasons (as in the case of ∆1,∆2,∆3 in the above proof). This might
be feasible for n = 2, although we did not try this in detail. For higher values of n we
expect a complete classification to become very complicated.

8. Clifford index and Clifford dimension

To a smooth projective curve C/k of genus g ≥ 4 one can associate its Clifford index

ci(C) = min{ d− 2r |C carries a divisor D with |D| = grd

and h0(C,D), h0(C,K −D) ≥ 2 }
(where K is a canonical divisor on C) and its Clifford dimension

cd(C) = min{ r | there exists a grd realizing ci(C)};
see [20]. In the case of a singular and/or non-complete curve C/k, we define ci(C)
and cd(C) to be the corresponding quantities associated to its smooth complete model.
In this section we give a combinatorial interpretation for the Clifford index and the
Clifford dimension. Again the key trick is due to Kawaguchi [29, Proof of Thm. 1.3.(iii)],
but thanks to our more careful analysis of the planar curve case we obtain a complete
statement.

Theorem 8.1. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f) and suppose that ♯(∆(1) ∩ Z2) ≥ 4. Then

• if ∆(1) ∼= (d− 3)Σ for d ≥ 5 then ci(U(f)) = d− 4 and cd(U(f)) = 2,
• if ∆(1) ∼= Υ then ci(U(f)) = 1 and cd(U(f)) = 1,
• if ∆(1) ∼= 2Υ then ci(U(f)) = 3 and cd(U(f)) = 3,
• in all other cases ci(U(f)) = lw(∆(1)) and cd(U(f)) = 1.

Proof. The first three cases correspond to smooth projective plane curves of degree
d ≥ 5, non-hyperelliptic curves of genus 4, resp. smooth intersections of pairs of cubics
in P3, while the cases ∆(1) ∼= Γ5

1,Γ
5
2,Γ

5
3 correspond to non-hyperelliptic, non-trigonal

curves of genus 5. In these situations the Clifford index and the Clifford dimension are
well-known; see [20, pp. 174-175] and [18, p. 225]. In all other cases Corollary 6.3 yields
that the number of gonality pencils is finite, while from Corollary 6.2 we know that
γ(U(f)) = lw(∆(1)) + 2. A result by Coppens and Martens [14] (see the discussion pre-
ceding [14, Thm.B]) then implies that ci(U(f)) = lw(∆(1)). By definition of the Clifford
dimension, this implies cd(U(f)) = 1. �

Remark. For curves C/k of genus 1 ≤ g ≤ 3 one sometimes defines

• ci(C) = 1 if C is a non-hyperelliptic genus 3 curve, and ci(C) = 0 if not,
• cd(C) = 1.

With these conventions, Theorem 8.1 remains valid when one replaces the condition
♯(∆(1) ∩ Z2) ≥ 4 with ♯(∆(1) ∩ Z2) ≥ 1.
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Corollary 8.2. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its (two-dimen-
sional) Newton polygon ∆ = ∆(f). Then U(f) is birationally equivalent to a smooth
projective plane curve if and only if ∆(1) = ∅ or ∆(1) ∼= (d− 3)Σ for some integer d ≥ 3.

Proof. The ‘if’ part is easily verified. As for the ‘only if’ part, let g be the geometric
genus of U(f), which is necessarily of the form (d− 1)(d− 2)/2 for some d ≥ 2. If d ≥ 5
then cd(U(f)) = 2 and the corollary follows from Theorem 8.1. If d = 2 or d = 3 then
the statement is trivial. If d = 4 then the claim follows because U(f) is non-hyperelliptic,
and because Σ is the only two-dimensional lattice polygon containing g = 3 lattice points
(up to unimodular equivalence). �

9. Scrollar invariants

We begin by recalling some facts on rational normal scrolls and on scrollar invariants.
Our main references are [19], [26, §8.26-29] and [42, §1-4].

Let n ∈ Z≥1 and let E = O(e1) ⊕ · · · ⊕ O(en) be a locally free sheaf of rank n on P1.
Denote by π : P(E) → P1 the corresponding Pn−1-bundle. We assume that 0 ≤ e1 ≤ e2 ≤
. . . ≤ en and that e1 + e2 + · · ·+ en ≥ 2. Set N = e1 + e2 + . . .+ en + n− 1. A rational
normal scroll of type (e1, . . . , en) in PN is the image of the induced morphism

µ : P(E) → PH0(P(E),OP(E)(1)),

composed with an isomorphism PH0(P(E),OP(E)(1)) → PN .
The dimension of a rational normal scroll of type (e1, . . . , en) equals n, while its degree

equals e1 + . . . + en = N − n + 1. This means that the classical lower bound deg(X) ≥
codimPN (X)+1 for projective varieties X ⊂ PN that are not contained in any hyperplane
is attained. Varieties for which this holds are said to have minimal degree. They have
been classified by Del Pezzo (the surface case, 1886) and Bertini (1907): any projective
variety of minimal degree is a cone over a smooth such variety, and the smooth such
varieties are exactly the rational normal scrolls with e1 > 0, the quadratic hypersurfaces,
and the Veronese surface in P5. See [19] for a modern proof.

There is an easy geometric way of describing rational normal scrolls. Consider linear
subspaces Pe1 , . . . ,Pen ⊂ PN that span PN . In each Peℓ , take a rational normal curve3 of
degree eℓ, e.g. parameterized by

νℓ : P1 → Peℓ : (X : Z) 7→
(
Zeℓ : XZeℓ−1 : · · · : Xeℓ

)
. (18)

Then
S =

⋃

P∈P1

〈ν1(P ), . . . , νn(P )〉 ⊂ PN

is a rational normal scroll of type (e1, . . . , en), and conversely every rational normal scroll
arises in this way. The scroll is smooth if and only if e1 > 0. In this case µ : P(E) → S is
an isomorphism. If 0 = e1 = . . . = eℓ < eℓ+1 with 1 ≤ ℓ < n, then the scroll is a cone with
an (ℓ− 1)-dimensional vertex. In this case µ : P(E) → S is a resolution of singularities.
Outside the exceptional locus, our Pn−1-bundle π : P(E) → P1 corresponds to

S \ Ssing → P1 : Q ∈ 〈ν1(P ), . . . , νn(P )〉 7→ P.

3If eℓ = 0 then this ‘curve’ is just a point, in fact. We will keep making this abuse of language.
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Abusing notation, we denote this map also by π. Abusing terminology, when talking
about the fiber of π above a point P , we mean the whole space 〈ν1(P ), . . . , νn(P )〉.

Now let C ⊂ Pg−1 be a canonical curve of genus g ≥ 3 and fix any pencil g1d on C.
Let K ∼ OC(1) be a canonical divisor on C. For an effective divisor D ∈ g1d, denote by
〈D〉 its linear span (if D is the sum of γ distinct points, the linear span of D is just the
linear span of these points; in general one defines it as the intersection of all hyperplanes
whose intersection divisor with C is at least D, see [42, §2.3]). The Riemann-Roch
theorem implies that h0(C,K − D) = g − d − 1 + h0(C,D), from which it follows that
the dimension of 〈D〉 equals

d− h0(C,D). (19)

This does not depend the specific choice of D. In particular, if our g1d is complete, then
the dimension of 〈D〉 is d− 2.

Consider

S =
⋃

D∈g1d

〈D〉 ⊂ Pg−1. (20)

Then S is a rational normal scroll by [19, Thm. 2] or [42, (2.5)], and it contains the
curve C. In most interesting cases dimS = d − h0(C,D) + 1, but it may happen that
dimS = d − h0(C,D), which holds iff h0(C,K − D) = 0, i.e. iff 〈D〉 = Pg−1. If g1d is
base-point free then C does not meet the singular locus of S (in which case the restriction
of π to C is a dominant rational map of degree d).

Let (e1, . . . , en) be the type of S. Then the numbers e1, . . . , en are called the scrollar
invariants of C with respect to g1d. When we talk about the scrollar invariants of C,
without making reference to a specific pencil, we always mean the scrollar invariants with
respect to a gonality pencil, but note that this may depend on the choice of the latter,
in which case the terminology is avoided. In the trigonal case the notion is well-behaved,
and here the scrollar invariants are better known under the name Maroni invariants.4

The scrollar invariants of an arbitrary non-hyperelliptic curve C/k of genus g ≥ 3 with
respect to a pencil g1d are then defined to be the corresponding invariants of a canonical
model.

If g1d = |D| is complete and base-point free then n = d− 1, and the scrollar invariants
can alternatively be described as follows:

h0(C,mD) =





h0(C, (m− 1)D) + 1 = m+ 1 if 0 ≤ m ≤ e1 + 1,

h0(C, (m− 1)D) + 2 if e1 + 1 < m ≤ e2 + 1,
...

...

h0(C, (m− 1)D) + d− 1 if ed−2 + 1 < m ≤ ed−1 + 1,

h0(C, (m− 1)D) + d = md− g + 1 if m > ed−1 + 1.

See [42, (2.4)] for more details, as well as a treatment of the general case (where our g1d
is not necessarily complete and/or base-point free).

4 Unfortunately, the existing literature is ambiguous at this point: sometimes one talks about the
Maroni invariant of a trigonal curve, in which case one could mean either e1 or e2 − e1.
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Remark. From this description it follows that if our g1d is complete and base-point free
then ed−1 ≤ 2g−2

d
. Indeed, if m > 2g−2

d
then h0(C,mD) = md − g + 1 and by the above

characterization, the smallest m for which h0(C,mD) = md− g + 1 is m = ed−1 + 1.

The main result of this section is as follows.

Theorem 9.1. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f), and assume that ∆(1) is two-dimensional. Let v be a lattice direction. Then
the multiset of scrollar invariants of U(f) with respect to gv equals the multiset of non-
negative width invariants of ∆ with respect to v.

Remark. As mentioned at the end of Section 4, our main results stay true if one weakens
the assumption of being ∆-non-degenerate to being ∆-toric. This also applies to Theo-
rem 9.1, but the argument becomes more technical due to the potential presence of base
points. For the sake of clarity, the proof below only handles the case of ∆-non-degenerate
Laurent polynomials. The extra ingredients in the ∆-toric case are then sketched in a
following remark.

Proof. Write d = w(∆, v), so that gv is a base-point free g1d. Using a unimodular
transformation if needed, we may assume that v = (a, b) = (1, 0) and that ∆ is contained
in the horizontal strip R× [0, d] ⊂ R2. Then the width invariants of ∆ with respect to v
are the numbers

Eℓ = ♯{(i, j) ∈ ∆(1) ∩ Z2 | j = ℓ} − 1,

where ℓ = 1, . . . , d− 1. We have to show that the scrollar invariants with respect to the
pencil cut out by p : U(f) 7→ T1 : (x, y) 7→ x are given by the multiset {Eℓ}ℓ=1,...,d−1∩Z≥0.
Denote the cardinality of this multiset by n.

Let C be the canonical model of U(f) obtained by taking the Zariski closure of its
image under the morphism ϕ∆(1) , as described in (5). For all ℓ ∈ {1, . . . , d− 1} for which
Eℓ ≥ 0, let PEℓ ⊂ Pg−1 be the linear subspace defined by Xi,j = 0 for all (i, j) ∈ ∆(1) ∩Z2

for which j 6= ℓ. That is, PEℓ is the subspace corresponding to the projective coordinates
(Xi,ℓ)(i,ℓ)∈∆(1)∩Z2 . Also consider the rational normal curves parameterized by νℓ : P1 → PEℓ

as in (18), i.e.
∀x ∈ k∗ : νℓ(x) = (1 : x : . . . : xEℓ).

Then ϕ∆(1) maps every (x, y) ∈ T2 inside the (n− 1)-dimensional linear subspace of Pg−1

spanned by the points νℓ(x). Indeed, abusing notation, one sees that when the νℓ(x)’s are
scaled by an appropriate power of x, the point ϕ∆(1)(x, y) arises as the linear combination

d−1∑

ℓ=1
Eℓ≥0

yℓνℓ(x).

Now for all but finitely many c ∈ k∗, the inverse image divisor p−1(c) consists of d distinct
points (c, y1), . . . , (c, yd) of U(f). For these c, the linear span 〈Dc〉 of Dc = ϕ∆(1)(p−1(c))
is contained in 〈νℓ(c)〉ℓ, and since the matrix

(
yℓi
)

i=1,...,d
ℓ=1,...,d−1
Eℓ≥0
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has rank n (indeed, its columns are linearly independent because by adding a number of
columns one obtains a (d×d)-Vandermonde matrix), we find that actually 〈Dc〉 = 〈νℓ(c)〉ℓ.
We conclude that the scroll S ⊂ Pg−1 swept out by our g1d is exactly the rational normal
scroll parameterized by the νℓ’s. Hence we obtain that the multiset of scrollar invariants
with respect to g1d equals the multiset consisting of the non-negative Eℓ’s, which is exactly
what we wanted. �

Remark (continued). If f is only ∆-toric, rather than ∆-non-degenerate, it may happen
that d′ < d, where d′ = w(∆(f), v) and d = w(∆, v). In this case gv decomposes into a
base-point free g1d′ and a fixed part F which is supported on at most two zero-dimensional
toric orbits, as explained in the proof of Lemma 5.3. The base-point free part corresponds
to the morphism p : U(f) → T1 : (x, y) 7→ x, and the above reasoning shows that for
all but finitely many c ∈ k∗, the linear span 〈Dc〉 of Dc = ϕ∆(1)(p−1(c)) equals 〈νℓ(c)〉ℓ.
For each of these Dc one clearly has 〈Dc〉 ⊂ 〈Dc + F 〉. We claim that actually equality
holds. This implies that the scroll swept out by gv coincides with the scroll swept out
by its base-point free part, so that Theorem 9.1 also follows in the ∆-toric case. Note
that it suffices to prove the claim under the assumption that ∆ = ∆max. Indeed, from
Lemma 4.3 (and the consequent remark) we see that if f is ∆-toric, then it is also ∆max-
toric. Of course switching from ∆ to ∆max may have an influence on gv, but it can only
affect the fixed part F , and if it does then F becomes replaced by F ′ with F ′ > F . So if
we can prove that 〈Dc〉 = 〈Dc + F ′〉 then necessarily 〈Dc〉 = 〈Dc + F 〉.

Let ∆(f) be contained in the strip mf ≤ Y ≤ mf + d′ and suppose that 0 < mf .
Recall that ∆ has a unique lower-most vertex vlow. Our assumption ∆ = ∆max = ∆(1)(−1)

ensures that also ∆(1) has a unique lower-most vertex and that the adjacent cones are
similar. Denote the corresponding zero-dimensional orbit by P .

mf

∆(f)

∆ =
∆max

∆(1)

vlow

Then locally around O(vlow) we have a natural isomorphism Tor(∆) → Tor(∆(1)) under
which O(vlow) corresponds to P . From the proof of Lemma 5.3 we conclude that C ⊂
Tor(∆(1)) intersects the zero divisor Fc of xayb − c, with c ∈ k∗ sufficiently generic,
with multiplicity mf in P . Our task is to prove that every hyperplane H containing the
support of Dc intersects C in P with multiplicity at least mf . But this follows from

IP,Pg−1(H,C) = IP,Tor(∆(1))(H ∩ Tor(∆(1)), C) ≥ IP,Tor(∆(1))(Fc, C) = mf ,

where IP,X(·, ·) denotes the intersection multiplicity of the arguments in P when viewed
as schemes inside X , and the inequality holds because H ⊃ 〈Dc〉 = 〈νℓ(c)〉ℓ ⊃ Fc. A
similar reasoning at the top (if needed) then proves that 〈Dc〉 = 〈Dc + F 〉.
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Example (revisited, see Sections 5 and 6). Let ∆ be the lattice polygon

where ∆(1) is marked in dashed lines. Let f ∈ k[x±1, y±1] be a ∆-non-degenerate (or
∆-toric) Laurent polynomial. Then U(f) is a 4-gonal genus 7 curve carrying exactly two
g14’s, namely g(1,0) and g(0,1). In the former case the scrollar invariants are {1, 1, 2} while
in the latter case they read {0, 2, 2}.

As a corollary to the proof of Theorem 9.1 we find:

Corollary 9.2. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f), where we assume that ∆(1) is two-dimensional. Let v be a lattice direction.
Then the rank of the complete linear system spanned by gv equals the number of negative
width invariants of ∆ with respect to v (counting multiplicities) plus 1.

Proof. Let d = w(∆, v) and let D ∈ gv, and assume that we work on the canon-
ical model C of U(f) from the proof of Theorem 9.1. By (19) we know that 〈D〉 is
(d − h0(C,D))-dimensional, while the proof of Theorem 9.1 tells us that the dimension
equals the number of non-negative lattice width invariants minus 1. From this the state-
ment follows. �

In particular we find the following combinatorial characterization of completeness:

Corollary 9.3. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f), where we assume that ∆(1) is two-dimensional. Let v be a lattice direction.
Then gv is complete if and only if the width invariants of ∆ with respect to v are all
non-negative.

Example. Let ∆ = dΣ for some d ≥ 2, so that U(f) is birationally equivalent to a
smooth plane curve of degree d. The width invariants of ∆ with respect to (1, 0) are
(d− 3, d− 4, . . . , 1, 0,−1), so that g(1,0) is not complete. (Indeed: it is a subsystem of the
g2d cut out by all line sections of P2.)

Corollary 9.4. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton polygon
∆ = ∆(f), where we assume that ∆(1) is two-dimensional. Then the dimension of the
scroll spanned by gv equals the number of non-negative lattice width invariants of ∆
with respect to v, unless this number is g (i.e. there are no strictly positive lattice width
invariants) in which case the dimension equals g − 1.

Proof. This follows from the considerations below formula (20), along with the combi-
natorial interpretation for d− h0(C,D) stated in the proof of Corollary 9.2. �

Remarks.
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• Inheriting the notation of the proof of Theorem 9.1, we have C ⊂ Tor(∆(1)) ⊂
S ⊂ Pg−1. One can verify that Tor(∆(1)) intersects the fiber of π above a point
x ∈ k∗ in a rational normal curve of degree γ − 2. Above (1 : 0), (0 : 1) ∈ P1 this
fiber may degenerate.

• Through Corollary 6.2 and Theorem 9.1, the upper bound 2g−2
γ

on the scrollar

invariants with respect to a gonality pencil g1γ implies the purely combinatorial
inequality

lw(∆) · Eℓ ≤ 2 ♯(∆(1) ∩ Z2)− 2,

where ∆ is understood to be contained in

{(i, j) ∈ R2 | 0 ≤ j ≤ lw(∆)}
and the Eℓ’s are the width invariants of ∆ with respect to any lattice width di-
rection. This inequality holds as soon as ♯(∆(1) ∩ Z2) ≥ 1 (including the cases
∆ = 2Υ and ∆ = dΣ, which can be verified separately). The bound can be at-
tained. For example, consider the lattice polygon ∆a,b = conv{(b, 0), (0, a), (0, 0)},
where a ≥ 2 and b is of the form ak−1 with k ∈ Z≥2. In this case, γ = lw(∆a,b) = a
is computed by (1, 0), and E1 = ak − k − 2 = 2g−2

γ
.

10. Applications

Curves with prescribed invariants. The results of this article might serve as a tool
in proving certain existence results in Brill-Noether theory. The number of inequivalent
lattice polygons grows very quickly with the genus (for instance, in genus 30 this number
is 957 001; see [6, Tab. 1]), resulting in a wide variety of Brill-Noether types, that (at least
in principle) can be scanned by exhaustive search. To highlight one example, let ∆ be
the following polygon.

Every ∆-non-degenerate (or ∆-toric) curve is a 5-gonal curve of genus 9 admitting exactly
three g15’s (corresponding to the lattice directions (1, 0), (0, 1) and (1,−1)), that are
independent of each other, and with respect to each of which the scrollar invariants are
{0, 1, 2, 2}. Moreover, by [31, Thm. 2.5.12] the locus of such curves inside the moduli
space M9 of curves of genus 9 has dimension 15. See [13] for a related discussion; note
that each of our g15’s is of ‘type II’ (i.e. 0 is among the scrollar invariants), as opposed to
the ‘type I’ pencils that are the main object of study in [13].

We want to stress that many Brill-Noether types are not represented in the toric world.
For instance, Lemma 5.2.(vi) shows that the gonality of a smooth curve in a toric surface
is O(

√
g), while general curves of genus g have gonality ⌈g/2⌉+ 1. So the class of curves

that we are considering in this article is rather special. In terms of moduli, the locus of
curves of genus g ≥ 4 that admit a smooth embedding in a toric surface has dimension
2g + 1, with the exception of g = 7, where the dimension reads 16; see [11]. Recall that
dimMg = 3g − 3.
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Weierstrass semi-groups of embedding dimension 2. The Weierstrass semi-group
of a point P on a smooth projective curve C is the set of possible pole orders at P of
functions that are regular on C \ {P}. This is a numerical semi-group, i.e. a sub-semi-
group of N with finite complement. A numerical semi-group is said to have embedding
dimension 2 if it is of the form aN+ bN for coprime integers a, b ≥ 2. Using Corollary 6.2
we can prove the following:

Theorem 10.1. If a smooth projective curve C/k carries a point P having a Weierstrass
semi-group of embedding dimension 2, then this semi-group does not depend on the choice
of P .

Remark. This is well-known in the case of hyperelliptic curves of genus g ≥ 2, all of
whose Weierstrass points have semi-group 2N+ (2g + 1)N.

Proof. If C has a Weierstrass point with semi-group aN + bN for coprime integers
a, b ≥ 2, then it is of genus (a − 1)(b − 1)/2 (by Riemann-Roch – this is the number of
gaps in the semi-group). We claim that C has gonality min{a, b}. Together, this implies
that a and b are indeed uniquely determined (up to order). To prove the claim, we use a
result of Miura stating that C is birationally equivalent to a smooth affine curve of the
form

cb,0x
b + c0,ay

a +
∑

ia+jb<ab

ci,jx
iyj, cb,0c0,a 6= 0.

See [37, Thm. 5.17, Lem. 5.30] or [36]. From this it is clear that C is ∆a,b-toric, where

∆a,b = conv{(b, 0), (0, a), (0, 0)}

(in fact C is even ∆a,b-non-degenerate, since an affine translation ensures appropriate be-
havior with respect to the toric boundary). By Corollary 6.2, we have that the gonality
of C equals lw(∆a,b) = min{a, b}. �

Remark. Miura studied curves having a Weierstrass semi-group of the form aN + bN in
the context of coding theory; he called them Ca,b curves. (In a recent past, Ca,b curves
have enjoyed fair interest from researchers in explicit algebraic geometry [16, 25, 37]).
Then another way to state Theorem 10.1 is that a curve cannot be simultaneously Ca,b
and Ca′,b′ for distinct pairs {a, b} and {a′, b′}.

Curves in Hirzebruch surfaces. We can use Theorem 9.1 to compute the scrollar
invariants of smooth curves on Hirzebruch surfaces. An immediate corollary to this
computation is that if a non-hyperelliptic smooth projective curve C of genus g ≥ 2 can
be embedded in the nth Hirzebruch surface Hn, then n is actually an invariant of C (that
is, it cannot be embedded in Hn′ for n′ 6= n).

Theorem 10.2. • The scrollar invariants (with respect to any gonality pencil) of
a smooth projective plane curve C/k of degree d ≥ 4 are {0, 1, . . . , d− 3}.
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• The scrollar invariants (with respect to any gonality pencil) of a smooth projective
curve C/k of genus g ≥ 2 and gonality γ in the nth Hirzebruch surface Hn are

{
g

γ − 1
+
(
ℓ− γ

2

)
n− 1

}

1≤ℓ≤γ−1

.

In particular, if γ > 2 then

n =
2g − 2(γ − 1)(e1 + 1)

(γ − 1)(γ − 2)

is an invariant of the curve.

Proof. Because H1 is a blow-up of P2, the first statement is actually a corollary to the
second. Nevertheless, we will treat it separately.

Let C ⊂ P2 be a smooth projective curve of degree d and fix a gonality pencil g1d−1

on C. By [43, Prop. 3.13(ii)], the latter is computed by projecting from a point of the
curve. Using a projective transformation we may assume that this point is (0 : 1 : 0).
Let F (X, Y, Z) be a corresponding defining homogeneous degree d polynomial. Then
F (x, y, 1) is ∆-toric, with

∆ = conv{(0, 0), (d, 0), (1, d− 1), (0, d− 1)},

and our g1d−1 corresponds to (x, y) 7→ x, i.e. it equals g(1,0). The statement now follows
from Theorem 9.1.

Next, let C be a smooth projective curve in Hn. Due to the toric description of
Hirzebruch surfaces [15, Ex. 3.1.16] we may assume that our curve C is ∆-toric, with

∆ = conv{(0, 0), (a+ dn, 0), (a, d), (0, d)}

for integers a ∈ Z≥0 and d ∈ Z≥2. Now

• If a = 0 and n = 1 then C is isomorphic to a smooth projective plane curve (of
degree d) and the statement follows from the first part.

• If a > 0 or n > 1 then by Theorem 6.1 there exists only one gonality pencil,
corresponding to vertical projection (i.e. γ = d). One finds that

g = ♯(∆(1) ∩ Z2) =
γ(γ − 1)

2
n+ (γ − 1)(a− 1)

and, by Theorem 9.1,

eℓ = a− 2 + ℓn (for 1 ≤ ℓ ≤ γ − 1).

From these two equalities the statement follows.
• If n = 0 then ∆ = [0, a] × [0, d] is a standard rectangle. If a 6= d then by
Theorem 6.1 there exists only one gonality pencil, corresponding to horizontal or
vertical projection (i.e. γ = d or γ = a). If a = d then there are two gonality
pencils. In both cases the statement follows similarly from Theorem 9.1. �

Chapter 5. Linear pencils encoded in the Newton polygon 133



Acknowledgments
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Computing graded Betti tables of toric surfaces

W. Castryck, F. Cools, J. Demeyer, A. Lemmens

Abstract

We present various facts on the graded Betti table of a projectively embedded
toric surface, expressed in terms of the combinatorics of its defining lattice polygon.
These facts include explicit formulas for a number of entries, as well as a lower bound
on the length of the linear strand that we conjecture to be sharp (and prove to be
so in several special cases). We also present an algorithm for determining the graded
Betti table of a given toric surface by explicitly computing its Koszul cohomology, and
report on an implementation in SageMath. It works well for ambient projective spaces
of dimension up to roughly 25, depending on the concrete combinatorics, although the
current implementation runs in finite characteristic only. As a main application we
obtain the graded Betti table of the Veronese surface ν6(P2) ⊆ P27 in characteristic
40 009. This allows us to formulate precise conjectures predicting what certain entries
look like in the case of an arbitrary Veronese surface νd(P2).

Contents

1 Introduction 1

2 Koszul cohomology of toric surfaces 7

3 First facts on the graded Betti table 10

4 Bound on the length of the linear strand 14

5 Pruning off vertices without changing the lattice width 18

6 Explicit formula for bN∆−4 20

7 Quotienting the Koszul complex 22

8 Computing graded Betti numbers 31

A Some explicit graded Betti tables 35

1 Introduction

Let k be a field of characteristic 0 and let ∆ ⊆ R2 be a lattice polygon, by which we
mean the convex hull of a finite number of points of the standard lattice Z2. We write
∆(1) for the convex hull of the lattice points in the interior of ∆. Assume that ∆ is
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two-dimensional, write N∆ = |∆ ∩ Z2|, and let S∆ = k[Xi,j | (i, j) ∈ ∆ ∩ Z2], so that
PN∆−1 = ProjS∆. The toric surface over k associated to ∆ is the Zariski closure of the
image of

ϕ∆ : (k∗)2 ↪→ PN∆−1 : (a, b) 7→ (aibj)(i,j)∈∆∩Z2 .

We denote it by X∆ and its ideal by I∆. It has been proved by Koelman [24] that
I∆ is generated by binomials of degree 2 and 3, where degree 2 suffices if and only if
|∂∆ ∩ Z2| > 3.

Our object of interest is the graded Betti table of X∆, which gathers the exponents
appearing in a minimal free resolution

· · · →
⊕

q≥2

S∆(−q)β2,q →
⊕

q≥1

S∆(−q)β1,q →
⊕

q≥0

S∆(−q)β0,q → S∆�I∆
→ 0

of the homogeneous coordinate ring of X∆ as a graded S∆-module, obtained by taking
syzygies. Traditionally one writes βp,p+q in the pth column and the qth row. Alternatively
and often more conveniently, the Betti numbers βp,p+q are the dimensions of the Koszul
cohomology spaces Kp,q(X∆,O(1)), which will be described in detail in Section 2.

Remark 1.1. If ∆ and ∆′ are lattice polygons, we say that they are unimodularly equivalent
(denoted by ∆ ∼= ∆′) if they are obtained from one another using a transformation from
the affine group AGL2(Z), that is a map of the form

R2 → R2 : (x, y) 7→ (x, y)A+ (a, b) with A ∈ GL2(Z) and a, b ∈ Z.

Unimodularly equivalent polygons yield projectively equivalent toric surfaces, which have
the same graded Betti table. So we are interested in lattice polygons up to unimodular
equivalence only.

In Section 3 we prove/gather some first facts on the graded Betti table. To begin with,
we show that it has the following shape:

Lemma 1.2. The graded Betti table of X∆ has the form

0 1 2 3 . . . N∆ − 4 N∆ − 3
0 1 0 0 0 . . . 0 0
1 0 b1 b2 b3 . . . bN∆−4 bN∆−3

2 0 cN∆−3 cN∆−4 cN∆−5 . . . c2 c1

, (1)

where omitted entries are understood to be 0. Moreover (∀` : c` = 0)⇔ ∆(1) = ∅.

We also provide a closed formula for the antidiagonal differences:

Lemma 1.3. For ` = 1, . . . , N∆ − 2 one has

b` − cN∆−1−` = `

(
N∆ − 1

`+ 1

)
− 2

(
N∆ − 3

`− 1

)
vol(∆)

where it is understood that bN∆−2 = cN∆−2 = 0.
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This reduces the determination of the graded Betti numbers to that of the bi’s (or of the
ci’s). Finally we give explicit formulas for the entries b1, b2, and bN∆−4, bN∆−3, which
then also yield explicit descriptions of c1, c2, c3, and cN∆−3. The precise statements are
a bit lengthy and can be found in Section 3.3.

We mentioned Koelman’s result on the generators of I∆: this was vastly generalized
in the Ph.D. thesis of Hering [22, Thm. IV.20], building on an observation due to Schenck
[34] and invoking a theorem of Gallego–Purnaprajna [18, Thm. 1.3]. She provided a com-
binatorial interpretation for the number of leading zeroes in the quadratic strand (the row
q = 2).

Theorem 1.4 (Hering, Schenck). If ∆(1) 6= ∅ then min{ ` | cN∆−` 6= 0 } = |∂∆ ∩ Z2|,
where ∂∆ denotes the boundary of ∆.

In Green’s language of property Np, this reads that S∆/I∆ satisfies Np if and only if
|∂∆ ∩ Z2| ≥ p+ 3. Hering’s thesis contains several other statements of property Np type
for toric varieties of any dimension.

In Section 4 we work towards a similar combinatorial expression for the number of
zeroes at the end of the linear strand (the row q = 1). We are unable to provide a definitive
answer, but we formulate a concrete conjecture that we can prove in many special cases.
The central combinatorial notion is the following:

Definition 1.5. Let ∆ be a lattice polygon. If ∆ 6= ∅, then the lattice width of ∆, denoted
lw(∆), is the minimal height d of a horizontal strip R× [0, d] in which ∆ can be mapped
using a unimodular transformation. If ∆ = ∅, we define lw(∆) = −1.

Remark that lw(∆) = 0 if and only if ∆ is zero- or one-dimensional. The lattice width
can be computed recursively; see [8, Thm. 4] or [28, Thm. 13]: if ∆ is two-dimensional
then

lw(∆) =

{
lw(∆(1)) + 3 if ∆ ∼= dΣ for some d ≥ 2,

lw(∆(1)) + 2 if not,

where Σ := conv{(0, 0), (1, 0), (0, 1)}.
The multiples of Σ, whose associated toric surfaces are the Veronese surfaces (more

precisely XdΣ is the image of P2 under the d-uple embedding νd), will keep playing a
special role throughout the rest of this paper. Another important role is attributed to
multiples of Υ = conv{(−1,−1), (1, 0), (0, 1)}. Finally we also introduce the polygons
Υd = conv{(−1,−1), (d, 0), (0, d)}, where we note that Υ1 = Υ. For the sake of overview,
these polygons are depicted in Figure 1, along with some elementary combinatorial prop-
erties.

Our conjecture is as follows:

Conjecture 1.6. If ∆ 6∼= Σ,Υ then one has min{ ` | bN∆−` 6= 0 } = lw(∆) + 2, unless

∆ ∼= dΣ for some d ≥ 2 or ∆ ∼= Υd for some d ≥ 2 or ∆ ∼= 2Υ

in which case it is lw(∆) + 1.
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(0, 0) (d, 0)

(0, d)

dΣ

lw(dΣ) = d

(dΣ)(1) ∼= (d− 3)Σ

(−d,−d)

(d, 0)

(0, d)

dΥ

lw(dΥ) = 2d

(dΥ)(1) ∼= (d− 1)Υ

(−1,−1)

Υd

lw(Υd) = d+ 1

Υ
(1)
d
∼= (d− 1)Σ

(0, d)

(d, 0)

Figure 1: Three recurring families of polygons

In other words we conjecture that the number of zeroes at the end of the linear strand
equals lw(∆)− 1, unless ∆ is of the form dΣ, Υd or 2Υ, in which case it equals lw(∆)− 2.

Remark 1.7. The excluded cases ∆ ∼= Σ,Υ are pathological: the Betti tables are

0
0 1
1 0
2 0

resp.

0 1
0 1 0
1 0 0
2 0 1

,

i.e. the entire linear strands are zero.

As explained in Section 4 the upper bound min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2 follows
from the fact that our toric surface X∆ is naturally contained in a rational normal scroll
of dimension lw(∆) + 1, which is known to have non-zero linear syzygies up to column
p = N∆ − lw(∆)− 2. Then also X∆ must have non-zero linear syzygies up to that point,
yielding the desired bound. Thus another way of reading Conjecture 1.6 is that the natural
bound coming from this ambient rational normal scroll is usually sharp. This is in the
philosophy of Green’s Kp,1 theorem [1, Thm. 3.31] that towards the end of the resolution,
‘most’ linear syzygies must come from the smallest ambient variety of minimal degree. In
the exceptional cases dΣ, Υd and 2Υ we can prove the sharper bound min{ ` | bN∆−` 6=
0 } ≤ lw(∆) + 1 by following a slightly different argument, using explicit computations in
Koszul cohomology.

We can prove sharpness of these bounds in a considerable number of special situations,
overall leading to the following partial result towards Conjecture 1.6.

Theorem 1.8. If ∆ 6∼= Σ,Υ then one has min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2. If

∆ ∼= dΣ for some d ≥ 2 or ∆ ∼= Υd for some d ≥ 2 or ∆ ∼= 2Υ

then moreover one has the sharper bound lw(∆)+1. In other words the sharpest applicable
upper bound predicted by Conjecture 1.6 holds. Moreover:

• If N∆ ≤ 32 then the bound is met.
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• If a certain non-exceptional lattice polygon ∆ (i.e. not of the form dΣ,Υd, 2Υ) meets
the bound then so does every lattice polygon containing ∆ and having the same lattice
width. In particular if lw(∆) ≤ 6 then the bound is met.

† If ∆ = Γ(1) for some larger lattice polygon Γ and if Green’s canonical syzygy conjec-
ture holds for smooth curves on X∆ (known to be true if H0(X∆,−KX∆

) ≥ 2) then
the bound is met.

Sharpness in the cases where N∆ ≤ 32 is obtained by explicit verification, based on
the data from [7] and using the algorithm described in Section 8; this covers more than
half a million (unimodular equivalence classes of) small lattice polygons. The statement
involving lw(∆) ≤ 6 relies on this exhaustive verification, along with the classification
of inclusion-minimal lattice polygons having a given lattice width, which is elaborated
in [12].

Remark 1.9. The statement marked with † will not be proven in the current paper, even
though it is actually the reason why we came up with Conjecture 1.6 in the first place.
To date, Green’s canonical syzygy conjecture for curves in toric surfaces remains open
in general, but the cases where H0(X∆,−KX∆

) ≥ 2 are covered by recent work of Lelli-
Chiesa [25], which allows one to deduce Conjecture 1.6 for all multiples of Υ, for all
multiples of Σ, for all polygons [0, a] × [0, b] with a, b ≥ 1, and so on. The details of
this are discussed in a subsequent paper [11], which is devoted to syzygies of curves in
toric surfaces. For the sake of conciseness we have chosen to keep the present document
curve-free.

Next we describe our algorithm for determining the graded Betti table of X∆ ⊆ PN∆−1

upon input of a lattice polygon ∆, by explicitly computing its Koszul cohomology. The
details can be found in Section 8, but in a nutshell the ingredients are as follows. The
most dramatic speed-up comes from incorporating the torus action, which decomposes
the cohomology spaces into eigenspaces, one for each bidegree (a, b) ∈ Z2, all but finitely
many of which are trivial. Another important speed-up comes from toric Serre duality,
enabling a meet-in-the-middle approach where one fills the graded Betti table starting
from the left and from the right simultaneously. A third speed-up comes from the explicit
formula for the antidiagonal differences given in Lemma 1.3, thanks to which it suffices
to determine half of the graded Betti table only. Moreover if

∣∣∂∆ ∩ Z2
∣∣ is large (which

is particularly the case for the Veronese polygons dΣ) then many of these entries come
for free using Hering and Schenck’s Theorem 1.4. A fourth theoretical ingredient is a
combinatorial description of certain exact subcomplexes of the Koszul complex that can
be quotiented out, resulting in smaller vector spaces, thereby making the linear algebra
more manageable. Because this seems interesting in its own right, we have devoted the
separate Section 7 to it. Final ingredients include sparse linear algebra, using symmetries,
and working in finite characteristic. More precisely, most of the data gathered in this
article, some of which can be found in Appendix A, are obtained by computing modulo
40 009, the smallest prime number larger than 40 000.

Remark 1.10. By semi-continuity the entries of the graded Betti table cannot decrease
upon reduction of X∆ modulo some prime number. Therefore working in finite character-
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istic is fine for proving that certain entries are zero, as is done in our partial verification
of Conjecture 1.6. But entries that are found to be non-zero might a priori be too large,
even though we do not expect them to be. Therefore the non-zero entries of some of
the graded Betti tables given in Appendix A are conjectural. For technical reasons our
current implementation does not straightforwardly adapt to characteristic zero, but we
are working on fixing this issue. Although it would come at the cost of some efficiency,
this should enable us to confirm all of the data from Appendix A in characteristic zero.

In view of the wide interest in syzygies of Veronese modules [5, 14, 19, 27, 30, 31, 32],
the most interesting new graded Betti table that we obtain is that of X6Σ ⊆ P27, i.e. the
image of P2 under the 6-uple embedding ν6, in characteristic 40 009. Up to 5Σ this data
was recently gathered (in characteristic zero) by Greco and Martino [19]. An extrapolating
glance at these Betti tables naturally leads to the following conjecture:

Conjecture 1.11. Consider the graded Betti table of the d-fold Veronese surface XdΣ. If
d ≥ 2 then the last non-zero entry on the linear strand is

bd(d+1)/2 =
d3(d2 − 1)

8
,

while if d ≥ 3 then the first non-zero entry on the quadratic strand is

cg =

(
N(dΣ)(1) + 8

9

)

where N(dΣ)(1) = |(dΣ)(1) ∩ Z2| = (d− 1)(d− 2)/2.
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2 Koszul cohomology of toric surfaces

As is well-known, instead of using syzygies, the entries of the graded Betti table can also
be defined as dimensions of Koszul cohomology spaces, which we now explicitly describe
in the specific case of toric surfaces. We refer to the book by Aprodu and Nagel [1] for an
introduction to Koszul cohomology, and to the books by Fulton [17] and Cox, Little and
Schenck [13] for more background on toric geometry.

For a lattice polygon ∆ we write V∆ for the space of Laurent polynomials

∑

(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1],

which we view as functions on X∆ through ϕ∆. This equals the space H0(X∆, L∆) of
global sections of O(L∆), where L∆ is some concrete very ample torus-invariant divisor
on X∆ satisfying O(L∆) ∼= O(1). More generally Vq∆ = H0(X∆, qL∆) for each q ≥ 0.

Then the entry in the pth column and the qth row of the graded Betti table of X∆ is
the dimension of the Koszul cohomology space Kp,q(X∆, L∆), defined as the cohomology
in the middle of

∧p+1
H0(X∆, L∆)⊗H0(X∆, (q − 1)L∆)

δ−→
∧p

H0(X∆, L∆)⊗H0(X∆, qL∆)

δ′−→
∧p−1

H0(X∆, L∆)⊗H0(X∆, (q + 1)L∆)

which can be rewritten as

∧p+1
V∆ ⊗ V(q−1)∆

δ−→
∧p

V∆ ⊗ Vq∆ δ′−→
∧p−1

V∆ ⊗ V(q+1)∆. (2)

Here the coboundary maps δ and δ′ are defined by

v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗ w 7→
∑

(−1)sv1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ∧ v̂s ∧ · · · ⊗ vsw (3)

where s ranges from 1 to p + 1 resp. 1 to p, and v̂s means that vs is being omitted. In
particular one sees that b` is the dimension of the cohomology in the middle of

∧`+1
V∆

δ−→
∧`

V∆ ⊗ V∆
δ′−→
∧`−1

V∆ ⊗ V2∆, (4)

where we note that the left map is always injective. On the other hand c` is the dimension
of the cohomology in the middle of

∧N∆−1−`
V∆ ⊗ V∆

δ−→
∧N∆−2−`

V∆ ⊗ V2∆
δ′−→
∧N∆−3−`

V∆ ⊗ V3∆, (5)

for all ` = 1, . . . , N∆ − 3.
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2.1 Duality

A more concise description of the c`’s is obtained using Serre duality. Because the version
that we will invoke requires us to work with smooth surfaces, we consider a toric resolution
of singularities X → X∆ and let L be the pullback of L∆. Then L may no longer be very
ample, but it remains globally generated by the same global sections V∆. Let K be the
canonical divisor on X obtained by taking minus the sum of all torus-invariant prime
divisors. By Demazure vanishing one has H1(X, qL) = 0 for all q ≥ 0, so that we can
apply the duality formula from [1, Thm. 2.25], which in our case reads

Kp,q(X,L)∨ ∼= KN∆−3−p,3−q(X;K,L),

to conclude that

b` = dimK`,1(X∆, L∆) = dimK`,1(X,L) = dimKN∆−3−`,2(X;K,L),

c` = dimKN∆−2−`,2(X∆, L∆) = dimKN∆−2−`,2(X,L) = dimK`−1,1(X;K,L),

again for all ` = 1, . . . , N∆ − 3. Here the attribute ‘;K’ denotes Koszul cohomology
twisted by K, which is defined as before, except that each appearance of · ⊗H0(X, qL) is
replaced by · ⊗H0(X, qL+K). Using that H0(X, qL+K) = V(q∆)(1) for q ≥ 1 and that

H0(X,K) = 0 we find that b` is the cohomology in the middle of

∧N∆−2−`
V∆ ⊗ V∆(1)

δ−→
∧N∆−3−`

V∆ ⊗ V(2∆)(1)
δ′−→
∧N∆−4−`

V∆ ⊗ V(3∆)(1) (6)

and, more interestingly, that c` is the dimension of the kernel of

∧`−1
V∆ ⊗ V∆(1)

δ′−→
∧`−2

V∆ ⊗ V(2∆)(1) . (7)

For example this gives a quick way of seeing that c1 = dim ker(V∆(1) → 0) = N∆(1) .

2.2 Bigrading

For (a, b) ∈ Z2 we call an element of

∧p
V∆ ⊗ Vq∆

homogeneous of bidegree (a, b) if it is a k-linear combination of elementary tensors of the
form

xi1yj1 ∧ · · · ∧ xipyjp ⊗ xi′yj′

satisfying (i1, j1) + · · · + (ip, jp) + (i′, j′) = (a, b). The coboundary morphisms δ and δ′

send homogeneous elements to homogeneous elements of the same bidegree, i.e. the Koszul
complex is naturally bigraded. Thus the Koszul cohomology spaces decompose as

Kp,q(X,L) =
⊕

(a,b)∈Z2

K(a,b)
p,q (X,L)
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where in fact it suffices to let (a, b) range over (p + q)∆ ∩ Z2. Similarly, we have a
decomposition of the twisted cohomology spaces

Kp,q(X;K,L) =
⊕

(a,b)∈Z2

K(a,b)
p,q (X;K,L)

where now (a, b) in fact runs over
(
p∆ + (q∆)(1)

)
∩Z2. In particular also the b`’s and the

c`’s, and as a matter of fact the entire graded Betti table, decompose as sums of smaller
instances. We will write

b`,(a,b) = dimK
(a,b)
`,1 (X,L), b∨`,(a,b) = dimK

(a,b)
N∆−3−`,2(X;K,L),

c`,(a,b) = dimK
(a,b)
N∆−2−`,2(X,L), c∨`,(a,b) = dimK

(a,b)
`−1,1(X;K,L),

so that

b` =
∑

(a,b)∈Z2

b`,(a,b) =
∑

(a,b)∈Z2

b∨`,(a,b) and c` =
∑

(a,b)∈Z2

c`,(a,b) =
∑

(a,b)∈Z2

c∨`,(a,b).

Example 2.1. For ∆ = 4Σ one can compute that c3 = dimK2,1(X;K,L) = 55, which
decomposes as the sum of the following numbers.

0
0 0
0 1 0
0 1 1 0
0 2 2 2 0
0 2 3 3 2 0
0 2 3 4 3 2 0
0 1 2 3 3 2 1 0
0 1 1 2 2 2 1 1 0
0 0 0 0 0 0 0 0 0 0

Here the entry in the ath column (counting from the left) and the bth row (counting from
the bottom) is the dimension c∨3,(a,b) of the degree (a, b) part. In other words we think of

the above triangle as being in natural correspondence with the lattice points (a, b) inside
2∆ + ∆(1) = (1, 1) + 9Σ.

2.3 Duality versus bigrading

An interesting observation that came out of a joint discussion with Milena Hering is that
duality respects the bigrading along the rule

K(a,b)
p,q (X,L)∨ ∼= K

σ∆−(a,b)
N∆−3−p,3−q(X;K,L),

where σ∆ denotes the sum of all lattice points in ∆. We postpone a proof to [2], but note
that taking dimensions yields the formulas

b`,(a,b) = b∨`,σ∆−(a,b) and c`,(a,b) = c∨`,σ∆−(a,b). (8)
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These imply that Kp,q(X,L) is actually supported on the degrees (a, b) that are contained
in

(p+ q)∆ ∩
(
σ∆ − (N∆ − 3− p)∆− ((3− q)∆)(1)

)
,

and similarly that Kp,q(X;K,L) vanishes outside

(
p∆ + (q∆)(1)

)
∩ (σ∆ − (N∆ − p− q)∆) .

The image below illustrates this for ∆ = 2Υ, p = 4, q = 1, where Kp,q(X;K,L) is
supported on 9Υ ∩ (−10Υ):

(−10, 10)

(10, 0)

(0, 10)

(9, 9)

(−9, 0)

(0,−9)

In principle this could be used to speed up our computation of the graded Betti table,
because it says that certain bidegrees can be omitted. Unfortunately the vanishing hap-
pens in a range of bidegrees that is dealt with relatively easily anyway. Therefore, the
computational advantage is negligible and we will not use this in our algorithm.

3 First facts on the graded Betti table

3.1 Overall shape of the graded Betti table

We prove the shape of the graded Betti table of X∆ announced in Lemma 1.2, by invoking
some well-known theorems from the existing literature. It is also possible to give a more
elementary, handcrafted proof using Koszul cohomology.

Proof of Lemma 1.2. Hochster has proven that S∆/I∆ is a Cohen–Macaulay module [13,
Ex. 9.2.8]. Its Krull dimension equals 3, and therefore the Auslander–Buchsbaum formula
[15, Thm. A.2.15] implies that the graded Betti table has non-zero entries up to column
p = N∆ − 3. Now it is well-known that the Hilbert polynomial PX∆

(d) of X∆ is given by
the Ehrhart polynomial

|d∆ ∩ Z2| = vol(∆)d2 +
|∂∆ ∩ Z2|

2
d+ 1, (9)
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and that this matches with the Hilbert function HX∆
(d) for all integers d ≥ 0. In fact,

the smallest integer s such that PX∆
(d) = HX∆

(d) for all d ≥ s is

{
0 if ∆(1) 6= ∅,
−1 if ∆(1) = ∅.

From [15, Cor. 4.8] we conclude that the Castelnuovo–Mumford regularity of X∆ equals
2, unless ∆(1) = ∅ in which case it equals 1.

The polygons for which ∆(1) = ∅ have the following geometric characterization:

Lemma 3.1. The surface X∆ ⊆ PN∆−1 is a variety of minimal degree if and only if
∆(1) = ∅.

Proof. By definition X∆ has minimal degree if and only if degX∆ = 1 + codimX∆. By
the above formula (9) for the Hilbert polynomial this can be rewritten as

2 vol(∆) = N∆ − 2

which by Pick’s theorem holds if and only if ∆(1) = ∅.

It follows that if ∆(1) = ∅ then the graded Betti table of X∆ is of the form

0 1 2 3 . . . N∆ − 4 N∆ − 3
0 1 0 0 0 . . . 0 0

1 0
(
N∆−2

2

)
2
(
N∆−2

3

)
3
(
N∆−2

4

)
. . . (N∆ − 4)

(
N∆−2
N∆−3

)
(N∆ − 3)

(
N∆−2
N∆−2

)
,

(10)

because the Eagon–Northcott complex is exact in this case; see for instance [15, App. A2H].
It also follows that if ∆(1) 6= ∅ then bN∆−3 = 0; see [1, Thm. 3.31(i)]. From a combinatorial
viewpoint the two-dimensional lattice polygons ∆ for which ∆(1) = ∅ were classified in
[23, Ch. 4]: up to unimodular equivalence they are 2Σ and the Lawrence prisms

(0, 0) (a, 0)

(b, 1)(0, 1)

for integers a ≥ b ≥ 0 with a > 0.

The respective corresponding X∆’s are the Veronese surface in P5 and the rational normal
surface scrolls of type (a, b). One thus sees that Conjecture 1.6 is true if ∆(1) = ∅.

3.2 Antidiagonal differences

From the explicit shape (9) of the Hilbert polynomial, the closed formula

b` − cN∆−1−` = `

(
N∆ − 1

`+ 1

)
− 2

(
N∆ − 3

`− 1

)
vol(∆)

for the antidiagonal differences, which was announced in Lemma 1.3, can be proved by
induction. We will give a slightly more convenient argument using Koszul cohomology.
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Proof of Lemma 1.3. The proof relies on three elementary facts:

(i) Pick’s theorem,

(ii) for any bounded complex of finite-dimensional vector spaces Vj one has
∑

j

(−1)j dimVj =
∑

j

(−1)j dimHj ,

where Hj is the cohomology of the complex at place j,

(iii) for all n, k,N ≥ 0 we have
∑n

j=0(−1)j
(
N
n−j
)(
j
k

)
= (−1)k

(
N−k−1
n−k

)
.

We compute

b` − cN∆−1−` =
`+1∑

j=0

(−1)j+1 dimK`−j+1,j(X∆, L∆)

(ii)
=

`+1∑

j=0

(−1)j+1 dim

(∧`+1−j
V∆ ⊗ Vj∆

)

=
`+1∑

j=0

(−1)j+1

(
N∆

`+ 1− j

)
Nj∆

(i)
= −

`+1∑

j=0

(−1)j
(

N∆

`+ 1− j

)
(j2 vol(∆) +

j

2

∣∣∂∆ ∩ Z2
∣∣+ 1)

(i)
= −

`+1∑

j=0

(−1)j
(

N∆

`+ 1− j

)
(j2 vol(∆) + j(N∆ − vol(∆)− 1) + 1)

= −
`+1∑

j=0

(−1)j
(

N∆

`+ 1− j

)(
2 vol(∆)

(
j

2

)
+ (N∆ − 1)

(
j

1

)
+

(
j

0

))

(iii)
= −2 vol(∆)

(
N∆ − 3

`− 1

)
+ (N∆ − 1)

(
N∆ − 2

`

)
−
(
N∆ − 1

`+ 1

)

= −2 vol(∆)

(
N∆ − 3

`− 1

)
+ `

(
N∆ − 1

`+ 1

)
,

which equals the desired expression.

We note the following corollary to Lemma 1.3:

Corollary 3.2. For all ` one has that b` ≥ cN∆−1−` if and only if

` ≤ (N∆ − 1)(N∆ − 2)

2 vol(∆)
− 1.

Remark 3.3. Note that 2 vol(∆) = 2N∆−|∂∆∩Z2|−2 by Pick’s theorem. This is typically
≈ 2N∆, so the point where the c`’s take over from the b`’s is about halfway the Betti table.
If |∂∆∩Z2| is relatively large then 2 vol(∆) becomes smaller when compared to N∆, and
the takeover point is shifted to the right.
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3.3 Explicit formulas for some entries

We can give a complete combinatorial characterization of eight entries. Six of these are
rather straightforward:

Corollary 3.4. On the quadratic strand one has

c1 = N∆(1) , c2 =

{
(N∆ − 3)(N∆(1) − 1) if ∆(1) 6= ∅,
0 if ∆(1) = ∅,

cN∆−3 =





0 if |∂∆ ∩ Z2| > 3,

1 if |∂∆ ∩ Z2| = 3 and dim ∆(1) = 2,

N∆ − 3 if |∂∆ ∩ Z2| = 3 and dim ∆(1) ≤ 1.

On the linear strand one has

b1 =

(
N∆ − 1

2

)
− 2 vol(∆), bN∆−3 =

{
0 if ∆(1) 6= ∅,
N∆ − 3 if ∆(1) = ∅,

b2 = 2

(
N∆ − 1

3

)
− 2(N∆ − 3) vol(∆) + cN∆−3.

Proof. The formulas for b1 and c1 follow immediately from Lemma 1.3, where in the
latter case we use that N∆ − 2 − 2 vol(∆) = N∆(1) by Pick’s theorem. The entry cN∆−3

equals the number of cubics in a minimal set of generators of I∆, which was determined
in [9, §2]. Together with Lemma 1.3 this then gives the formula for b2. The formula for
bN∆−3 was discussed above, and the formula for c2 then again follows using Lemma 1.3
in combination with Pick’s theorem.

In Section 6 we will extend this list as follows. This will take considerably more work,
and depends on our proof of Conjecture 1.6 for polygons of small lattice width, given in
Section 5.

Theorem 3.5. Assume that N∆ ≥ 4, or equivalently that ∆ 6∼= Σ. Then we have

bN∆−4 = (N∆ − 4) ·B∆ where B∆ =





0 if dim ∆(1) = 2, ∆ 6∼= Υ2,

1 if dim ∆(1) = 1 or ∆ ∼= Υ2,

(N∆ − 1)/2 if dim ∆(1) = 0,

N∆ − 2 if ∆(1) = ∅

and

c3 = (N∆ − 4)

(
(N∆ − 3) vol(∆)− (N∆ − 1)(N∆ − 2)

2
+B∆

)
.
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4 Bound on the length of the linear strand

4.1 Bound through rational normal scrolls

Let ∆ ⊆ R2 be a two-dimensional lattice polygon and apply a unimodular transformation
in order to have ∆ ⊆ R× [0, d] with d = lw(∆). For each j = 0, . . . , d consider

mj = min{a | (a, j) ∈ ∆ ∩ Z2} and Mj = max{a | (a, j) ∈ ∆ ∩ Z2}.

These are well-defined, i.e. on each height j there is at least one lattice point in ∆, see for
instance [10, Lem. 5.2]. Recall that X∆ is the Zariski closure of the image of

ϕ∆ : (k∗)2 ↪→ PN∆−1 : (α, β) 7→ (αm0β0, αm0+1β0, . . . , αM0β0,

αm1β1, αm1+1β1, . . . , αM1β1,

...

αmdβd, αmd+1βd, . . . , αMdβd).

It is clear that this is contained in the Zariski closure of the image of

(k∗)1+d ↪→ PN∆−1 : (α, β1, . . . , βd) 7→ (αm0β0, α
m0+1β0, . . . , α

M0β0,

αm1β1, α
m1+1β1, . . . , α

M1β1,

...

αmdβd, α
md+1βd, . . . , α

Mdβd)

where β0 = 1. This is a (d + 1)-dimensional rational normal scroll, spanned by rational
normal curves of degrees M0 −m0, M1 −m1, . . . , Md −md (some of these degrees may
be zero, in which case the ‘curve’ is actually a point). Its ideal is obtained from I∆

by restricting to those binomial generators that remain valid if one forgets about the
vertical structure of ∆. More precisely, we associate to ∆ a lattice polytope ∆′ ⊆ Rd+1

by considering for each (a, b) ∈ ∆ ∩ Z2 the lattice point

(a, 0, 0, . . . , 1, . . . , 0), where the 1 is in the (b+ 1)st place (omitted if b = 0),

and taking the convex hull. For example:

(0, 0) (6, 0)

(7, 1)

(5, 2)(1, 2)

(0, 1) ∆

(0, 0, 0) (6, 0, 0)

(7, 1, 0)(0, 1, 0)

(5, 0, 1)(1, 0, 1)

∆′

Then our scroll is just the toric variety X∆′ associated to ∆′; this is unambiguously defined
because ∆′ is normal, as is easily seen using [6, Prop. 1.2.2]. We denote its defining ideal
viewed inside I∆ ⊆ S∆ by I∆′ .
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As a generalization of (10), it is known that a minimal free resolution of the coordinate
ring S∆/I∆′ of a rational normal scroll is given by the Eagon–Northcott complex, from
which it follows that the graded Betti table of X∆′ has the following shape:

0 1 2 3 . . . f − 2 f − 1
0 1 0 0 0 . . . 0 0

1 0
(
f
2

)
2
(
f
3

)
3
(
f
4

)
. . . (f − 2)

(
f

f−1

)
(f − 1)

(
f
f

) (11)

where f = degX∆′ = N∆′ −d−1 = N∆−d−1. Because all syzygies are linear, this must
be a summand of the graded Betti table of X∆, from which it follows that:

Lemma 4.1. min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2.

4.2 Explicit construction of non-exact cycles

We can give an alternative proof of Lemma 4.1 by explicitly constructing non-zero elements
in Koszul cohomology. From a geometric point of view this approach is less enlightening,
but it allows us to prove the sharper bound min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1 in the cases
∆ ∼= dΣ,Υd (d ≥ 2) and ∆ ∼= 2Υ. As we will see, the sharper bound for dΣ immediately
implies the sharper bound for Υd.

For ` = 1, . . . , N∆ − 3 recall that b` is the cohomology in the middle of

∧`+1
V∆

δ−→
∧`

V∆ ⊗ V∆
δ′−→
∧`−1

V∆ ⊗ V2∆.

It is convenient to view this as a subcomplex of

∧`+1
V∆ ⊗ VZ2

δZ2−→
∧`

V∆ ⊗ VZ2

δ′Z2−→
∧`−1

V∆ ⊗ VZ2 ,

where VZ2 = k[x±1, y±1]. In what follows we will abuse notation and describe the basis
elements of V∆ and VZ2 using the points (i, j) ∈ Z2 rather than the monomials xiyj .

Our technique to construct an element of ker δ′\ im δ will be to apply δZ2 to an element
of
∧̀ +1 V∆⊗VZ2 such that the result is in

∧̀
V∆⊗V∆. This result will then automatically

be contained in ker δ′, but it might land outside im δ. We first state an easy lemma that
will be helpful in proving that certain elements are indeed not contained in im δ. Fix a
strict total order < on ∆ ∩ Z2 and consider the bases

B = {P1 ∧ . . . ∧ P`+1 |P1 < . . . < P`+1, P1, . . . , P`+1 ∈ ∆ ∩ Z2},

B′ = {P1 ∧ . . . ∧ P` ⊗ P |P1 < . . . < P`, P, P1, . . . , P` ∈ ∆ ∩ Z2}
of
∧̀ +1 V∆ and

∧̀
V∆ ⊗ V∆, respectively.

Lemma 4.2. If x ∈ ∧̀ +1 V∆ has n non-zero coordinates with respect to B, then δ(x) has
(`+ 1)n non-zero coordinates with respect to B′.
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Proof. Write x =
∑n

i=1 aiPi,1 ∧ . . .∧Pi,`+1, ai ∈ k \ {0}, where the Pi,1 ∧ . . .∧Pi,`+1’s are
distinct elements of B. Then

δ(x) =

n∑

i=1

`+1∑

j=1

(−1)jaiPi,1 ∧ . . . ∧ P̂i,j ∧ . . . ∧ Pi,`+1 ⊗ Pi,j

Each term in this sum is ±ai times an element of B′, and the number of terms is (`+ 1)n,
so we just have to verify that these elements of B′ are mutually distinct, but that is easily
done.

Our alternative proof of the upper bound min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2 now goes
as follows.

Alternative proof of Lemma 4.1. As before, we can assume that ∆ ⊆ R × [0, d] with d =
lw(∆). Let ` = N∆− d− 2 and let P1, . . . , P`+1 be the points (i, j) ∈ ∆ for which i > mj ,
indexed so that P1 < . . . < P`+1. Now consider

y = δZ2(P1 ∧ . . . ∧ P`+1 ⊗ (−1, 0))

=

`+1∑

s=1

(−1)sP1 ∧ . . . ∧ P̂s ∧ . . . ∧ P`+1 ⊗ (Ps + (−1, 0)).

Clearly y ∈ ∧̀ V∆ ⊗ V∆ and therefore y ∈ ker δ′. So it remains to show that y /∈ im δ.
Suppose y = δ(x) for some x ∈ ∧̀ +1 V∆. Since y has ` + 1 nonzero coordinates with
respect to the basis B′, by the previous lemma x has just one non-zero coordinate with
respect to the basis B. Therefore we can write

x = aP ′1 ∧ . . . ∧ P ′`+1, a ∈ k \ {0}, P ′1 < . . . < P ′`+1,

so that

y = δ(x) =
`+1∑

s=1

a(−1)sP ′1 ∧ . . . ∧ P̂ ′s ∧ . . . ∧ P ′`+1 ⊗ P ′s.

Comparing both expressions for y, we deduce that {P1, . . . , P`+1} = {P ′1, . . . , P ′`+1}. This
gives us a contradiction since the two expressions for y have a different bidegree. Summing
up, we have shown that bN∆−d−2 6= 0, from which Lemma 4.1 follows.

The same proof technique enables us to deduce a sharper bound in the exceptional
cases dΣ (d ≥ 2) and 2Υ.

Lemma 4.3. If ∆ ∼= dΣ for some d ≥ 2 then min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1.

Proof. We can of course assume that ∆ = dΣ. Recall that N∆ = (d+1)(d+2)/2 and that
lw(∆) = lw(dΣ) = d. Let ` = N∆ − d− 1 = d(d+ 1)/2. Let P1, . . . , P` be the elements of
(d− 1)Σ ∩ Z2 and define

y = δZ2

(
(d− 1, 1) ∧ P1 ∧ . . . ∧ P`)⊗ (1, 0)− (d, 0) ∧ P1 ∧ . . . ∧ P` ⊗ (0, 1)

)
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=
∑̀

s=1

(−1)s(d, 0) ∧ P1 ∧ . . . ∧ P̂s ∧ . . . ∧ P` ⊗ (Ps + (0, 1))

−
∑̀

s=1

(−1)s(d− 1, 1) ∧ P1 ∧ . . . ∧ P̂s ∧ . . . ∧ P` ⊗ (Ps + (1, 0)).

As in the previous proof, since y ∈ ∧̀ V∆ ⊗ V∆ we have y ∈ ker δ′. The fact that y /∈ im δ
follows from the fact that the number of nonzero coordinates with respect to B′ is 2`. If
y were in the image, then by our lemma 2` should be divisible by `+ 1, hence ` ≤ 2. But
` = d(d+ 1)/2 ≥ 3 because d ≥ 2: contradiction, and the lemma follows.

Lemma 4.4. If ∆ ∼= 2Υ then min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1.

Proof. Here we can assume ∆ = 2Υ and note that N∆ = 10 and lw(∆) = lw(2Υ) = 4.
With ` = N∆ − d− 1 = 5, in exactly the same way as before we see that

δZ2

(
(1, 0) ∧ (0, 1) ∧ (0, 0) ∧ (−1,−1) ∧ (−1, 0) ∧ (0,−1)⊗ (−1,−1)

+ (1, 0) ∧ (0, 1) ∧ (0, 0) ∧ (−1,−1) ∧ (0,−1) ∧ (−2,−2)⊗ (0, 1)

− (1, 0) ∧ (0, 1) ∧ (0, 0) ∧ (−1,−1) ∧ (−1, 0) ∧ (−2,−2)⊗ (1, 0)
)

is a non-zero cycle: it has 12 = 2(` + 1) terms, so if it were in im δ, then any preimage
should have two terms, and we leave it to the reader to verify that this again leads to a
contradiction. Alternatively, the reader can just look up the graded Betti table of X2Υ in
Appendix A.

Lemma 4.5. If ∆ ∼= Υd for some d ≥ 2 then min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 1.

Proof. From the combinatorics of Υd it is clear that if one restricts to those equations
of XΥd

not involving X−1,−1, one obtains a set of defining equations for XdΣ. Thus the
linear strand of the graded Betti table of XdΣ is a summand of the linear strand of the
graded Betti table of X∆. From Lemma 4.3 we conclude that

min{ ` | bN∆−` 6= 0 } ≤ min{ ` | bNdΣ−` 6= 0 }+ 1 ≤ lw(dΣ) + 2 = d+ 2.

The lemma follows from the observation that lw(∆) = d+ 1.

4.3 Conclusion

Summarizing the results in this section, we state:

Theorem 4.6. If ∆ 6∼= Σ,Υ then one has min{ ` | bN∆−` 6= 0 } ≤ lw(∆) + 2. If

∆ ∼= dΣ for some d ≥ 2 or ∆ ∼= Υd for some d ≥ 2 or ∆ ∼= 2Υ

then moreover one has the sharper bound lw(∆)+1. In other words the sharpest applicable
upper bound predicted by Conjecture 1.6 holds.
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5 Pruning off vertices without changing the lattice width

Theorem 5.1. Let ∆ be a two-dimensional lattice polygon and let p ≥ 1. Let P be a vertex
of ∆ and define ∆′ = conv(∆ ∩ Z2 \ {P}), where we assume that ∆′ is two-dimensional.
If Kp,1(X∆′ , L∆′) = 0 then also Kp+1,1(X∆, L∆) = 0.

Proof. Consider

∧p+1
V∆′

δ1−→
∧p

V∆′ ⊗ V∆′
δ2−→
∧p−1

V∆′ ⊗ V2∆′

and ∧p+2
V∆

δ3−→
∧p+1

V∆ ⊗ V∆
δ4−→
∧p

V∆ ⊗ V2∆

where the δi’s are the usual coboundary maps. Assuming that ker δ2 = im δ1 we will
show that ker δ4 = im δ3. Suppose the contrary: we will find a contradiction. Let L :
Rn → R be a linear form that maps different lattice points in ∆ to different numbers,
such that P attains the maximum of L on ∆. This exists because P is a vertex. For any
x ∈ ∧p+1 V∆⊗ V∆ define its support as the convex hull of the set of Pj,i’s occurring when
expanding x in the form

x =
∑

i

λiP1,i ∧ . . . ∧ Pp+1,i ⊗Qi.

Here as in Section 4 we take the notational freedom to write points rather than monomials,
and of course we do not write any redundant terms. Choose an x ∈ ker δ4 \ im δ3 such
that the maximum that L attains on the support of x is minimal, and let P ′ ∈ ∆∩Z2 be
the unique point attaining this maximum. Rearrange the above expansion as follows:

x =
∑

i

λiP
′ ∧ P1,i ∧ . . . ∧ Pp,i ⊗Qi + terms not containing P ′ in the ∧ part (12)

where all Pj,i’s are in ∆′ and Qi ∈ ∆. We claim that in fact Qi ∈ ∆′, i.e. none of the Qi’s
equals P . Indeed, otherwise when applying δ4 the term −λiP1,i ∧ . . .∧Pp,i ⊗ (P ′ +Qi) of
δ4(x) has nothing to cancel against, contradicting that δ4(x) = 0. Let

y =
∑

i

λiP1,i ∧ . . . ∧ Pp,i ⊗Qi ∈
∧p

V∆′ ⊗ V∆′ . (13)

We have

0 = δ4(x) = −P ′ ∧ δ2(y) + terms not containing P ′ in the ∧ part.

Because terms of P ′ ∧ δ2(y) cannot cancel against terms without P ′ in the ∧ part, δ2(y)
must be zero, and therefore y ∈ im δ1 by the exactness assumption. So write y = δ1(z)
with

z =
∑

i

µiP
′
1,i ∧ . . . ∧ P ′p+1,i ∈

∧p+1
V∆′ .
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Let P ′′ be the point occurring in this expression such that L(P ′′) is maximal. Since there
is no cancellation when applying δ1 one sees that P ′′ is in the support of y, hence in
the support of x and therefore L(P ′′) < L(P ′). This means that L achieves a smaller
maximum on the support of z than on the support of x. Finally, let

x′ = x+ δ3(P ′ ∧ z) = x− P ′ ∧ y − z ⊗ P ′.

Since x ∈ ker δ4 \ im δ3 we have x′ ∈ ker δ4 \ im δ3 and by (12) and (13) one concludes that
L will achieve a smaller maximum on the support of x′ than on the support of x, namely
L(P ′′). This contradicts the choice of x.

This immediately implies the following corollary, which is included in the statement
of Theorem 1.8 in the introduction.

Corollary 5.2. Let ∆ and ∆′ be as in the statement of the above theorem. Assume that
lw(∆) = lw(∆′), that ∆′ 6∼= dΣ,Υd for any d ≥ 1 and that ∆′ 6∼= 2Υ. If Conjecture 1.6
holds for ∆′ then it also holds for ∆.

In order to deduce Conjecture 1.6 for polygons having a small lattice width, we note
the following.

Lemma 5.3. Let ∆ be a two-dimensional lattice polygon, let d = lw(∆), and assume that
removing an extremal lattice point makes the lattice width decrease, i.e. for every vertex
P ∈ ∆ it holds that

lw(conv(∆ ∩ Z2 \ {P})) < d.

Then there exists a unimodular transformation mapping ∆ into [0, d]× [0, d].

Proof. The cases where ∆(1) ∼= ∅ or where ∆(1) ∼= dΣ for some d ≥ 0 are easy to verify. In
the other cases lw(∆(1)) = lw(∆)− 2 = d− 2 and the lattice width directions for ∆ and
∆(1) are the same [28, Thm. 13]. Assume that ∆ ⊆ R× [0, d], fix a vertex on height 0 and
a vertex on height d, and let P be any other vertex. Then lw(conv(∆∩Z2 \{P})) ≤ d−1,
where we note that a corresponding lattice width direction is necessarily non-horizontal,
and that along such a direction the width of ∆(1) is at most d−2. But then equality must
hold, and in particular it must also concern a lattice width direction for ∆(1), hence it must
concern a lattice width direction for ∆. We conclude that ∆ has two independent lattice
width directions, and the lemma follows from the remark following [10, Lem. 5.2].

Let us call a lattice polygon ∆ as in the statement of the foregoing lemma ‘minimal’,
and note that this attribute applies to each of the exceptional polygons dΣ,Υd, 2Υ men-
tioned in the statement of Conjecture 1.6. In order to prove Conjecture 1.6 for a certain
non-exceptional polygon ∆, by Corollary 5.2 it suffices to do this for any lattice polygon
obtained by repeatedly pruning off vertices without changing the lattice width. Thus the
proof reduces to verifying the case of a minimal lattice polygon, unless it concerns one of
the exceptional cases dΣ,Υd, 2Υ, in which case one needs to stop pruning one step earlier
(otherwise this strategy has no chance of being successful).
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In other words the above lemma implies that if Conjecture 1.6 is true for all lattice
polygons ∆ for which N∆ ≤ (d + 1)2 + 1, then it is true for all lattice polygons ∆ with
lw(∆) ≤ d. This observation, along with our exhaustive verification in the cases where
N∆ ≤ 32, reported upon in Section 8, allows us to conclude that Conjecture 1.6 is true as
soon as lw(∆) ≤ 4. This fact will be used in the proof of our explicit formula for bN∆−4.

But one can do better: in a spin-off paper [12] devoted to minimal polygons, the
second and the fourth author show that if ∆ is a minimal lattice polygon with lw(∆) ≤ d
then

N∆ ≤ max
{

(d− 1)2 + 4, (d+ 1)(d+ 2)/2
}
.

From this, using a similar reasoning, the conjecture follows for lw(∆) ≤ 6, as announced
in the statement of Theorem 1.8.

6 Explicit formula for bN∆−4

In this section we will prove Theorem 3.5, whose statement distinguishes between the
following four cases: 




∆(1) = ∅,
dim ∆(1) = 0,

dim ∆(1) = 1 or ∆ ∼= Υ2,

dim ∆(1) = 2 and ∆ 6∼= Υ2.

We will treat these cases in the above order, which as we will see corresponds to increasing
order of difficulty. The first case where ∆(1) = ∅ follows trivially from (10), so we can skip
it. Now recall from (6) that bN∆−4 is the dimension of the cohomology in the middle of

∧2
V∆ ⊗ V∆(1)

δ−→ V∆ ⊗ V(2∆)(1)
δ′−→ V(3∆)(1) .

Because K0,3(X;K,L) ∼= KN∆−3,0(X,L) = 0, where we use that ∆ 6∼= Σ, we have that the
map δ′ is surjective. In particular we obtain the formula

bN∆−4 = dim coker δ − |(3∆)(1) ∩ Z2|.

Case dim ∆(1) = 0

If dim ∆(1) = 0 then δ is injective, so

bN∆−4 = dim(V∆ ⊗ V(2∆)(1))− dim(
∧2

V∆)− |(3∆)(1) ∩ Z2| = (N∆ − 4)(N∆ − 1)/2,

as can be calculated using Pick’s theorem, thereby yielding Theorem 3.5 in this case
(alternatively, one can give an exhaustive proof by explicitly computing the graded Betti
tables of the toric surfaces associated to the 16 reflexive lattice polygons).
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Case dim ∆(1) = 1 or ∆ ∼= Υ2

The graded Betti table of XΥ2 can be found in Appendix A, where one verifies that
bNΥ2

−4 = b3 = 3, as indeed predicted by the statement of Theorem 3.5. Therefore we

can assume that dim ∆(1) = 1. The polygons ∆ having a one-dimensional interior were
explicitly classified by Koelman [24, §4.3], but in any case it is easy to see that, using a
unimodular transformation if needed, we can assume that

∆ = conv{(m1, 1), (M1, 1), (m0, 0), (M0, 0), (m−1,−1), (M−1,−1)}

for some mi ≤Mi ∈ Z. Here m0 < M0 can be taken such that

∆ ∩ (Z× {0}) = {m0,m0 + 1, . . . ,M0} × {0}.

Write ∆(1) = [u, v]× {0}, then

(2∆)(1) = ∆ + ∆(1) = conv{(mi + u, i), (Mi + v, i) | i = 1, 0,−1}.

Now consider VZ = k[x±1] and define a morphism

f : V∆ ⊗ V(2∆)(1) → k[x−1, x0, x1]⊗ VZ
by letting (a, b) ⊗ (c, d) 7→ xbxd ⊗ (a + c), where again we abusingly describe the basis
elements of V∆, V(2∆)(1) and VZ using lattice points rather than monomials. Note that

f(δ((a, b) ∧ (c, d)⊗ (e, 0))) = f((a, b)⊗ (c+ e, d)− (c, d)⊗ (a+ e, b)) = 0,

so im δ ⊆ ker f .
We claim that actually equality holds. First note that every element α ∈ ker f decom-

poses into elements ∑

j

λj(aj , bj)⊗ (cj , dj)

for which ({bj , dj}, aj+cj) is the same for all j: indeed, terms for which these are different
cannot cancel out when applying f . Note that

∑
j λj = 0, so one can rewrite the above

as a linear combination of expressions either of the form

(a, b)⊗ (c, d)− (a′, b)⊗ (c′, d)︸ ︷︷ ︸ or of the form (a, b)⊗ (c, d)− (a′, d)⊗ (c′, b)︸ ︷︷ ︸
(i) (ii)

where a + c = a′ + c′, the points (a, b), (a′, b) resp. (a, b), (a′, d) are in ∆, and the points
(c, d), (c′, d) resp. (c, d), (c′, b) are in (2∆)(1). As for case (i), these can be decomposed
further as a sum (or minus a sum) of expressions of the form (a, b)⊗ (c, d)− (a+ 1, b)⊗
(c− 1, d), which can be rewritten as

δ((a, b) ∧ (c− e, d)⊗ (e, 0)− (a+ 1, b) ∧ (c− e, d)⊗ (e− 1, 0))

and therefore as an element of im δ, at least if e can be chosen in the interval [max(u+1, c−
Md),min(v, c − md)]. The reader can verify that this is indeed non-empty, from which
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the claim follows in this case. As for (ii), with e chosen from the non-empty interval
[max(u, c′ −Mb),min(v, c′ −mb)] one verifies that

δ((c′ − e, b) ∧ (a′, d)⊗ (e, 0)) = (c′ − e, b)⊗ (a′ + e, d)− (a′, d)⊗ (c′, b),

allowing one to replace (ii) with an expression of type (i), and the claim again follows.
Summing up, we have

bN∆−4 = dim im f − |(3∆)(1) ∩ Z2|

=
∑

{i,j}⊆{−1,0,1}
|[mi +mj + u,Mi +Mj + v] ∩ Z| −

2∑

i′=−2

∣∣∣(3∆)(1) ∩ (Z× {i′})
∣∣∣ .

Each lattice point of (3∆)(1) = 2∆+∆(1) appears in an interval on the left, and conversely.
To see this it suffices to note that each lattice point of 2∆ arises as the sum of two lattice
points in ∆, which is a well-known property [21]. So all terms with i + j 6= 0 cancel out
the terms with i′ 6= 0, and we are left with

|[m1 +m−1 + u,M1 +M−1 + v] ∩ Z|+ |[2m0 + u, 2M0 + v] ∩ Z|
−
∣∣∣(3∆)(1) ∩ (Z× {0})

∣∣∣ .

Term by term this equals

(
|∂∆ ∩ Z2|+N∆(1) − 2− ε

)
+ (2(M0 −m0) +N∆(1))

− (2(M0 −m0) + (2− ε) +N∆(1))

where ε := (u−m0)+(M0−v) ∈ {0, 1, 2} denotes the cardinality of ∂∆∩(Z×{0}). Because
the above expression simplifies to N∆ − 4, this concludes the proof in the dim ∆(1) = 1
case.

Case dim ∆(1) = 2 and ∆ 6∼= Υ2

In this case our task amounts to proving that bN∆−4 = 0, but this follows from Conjec-
ture 1.6 for polygons ∆ satisfying lw(∆) ≤ 4, which was verified in Section 5.

7 Quotienting the Koszul complex

We now start working towards an algorithmic determination of the graded Betti table of
the toric surface X∆ ⊆ PN∆−1 associated to a given two-dimensional lattice polygon ∆.
Essentially, the method is about reducing the dimensions of the vector spaces involved, in
order to make the linear algebra more manageable. This is mainly done by incorporating
bigrading and duality. However when dealing with large polygons a further reduction
is useful. In this section we show that the Koszul complex always admits certain exact
subcomplexes that can be described in a combinatorial way. Quotienting out such a
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subcomplex does not affect the cohomology, while making the linear algebra easier, at
least in theory. For reasons we don’t understand our practical implementation shows that
the actual gain in runtime is somewhat unpredictable: sometimes it is helpful, but other
times the contrary is true. But it is worth the try, and in any case we believe that the
material below is also interesting from a theoretical point of view.

We first introduce the subcomplex from an algebraic point of view, then reinterpret
things combinatorially, and finally specify our discussion to the case of the Veronese
surfaces XdΣ. In the latter setting the idea of quotienting out such an exact subcomplex
is not new: for instance it appears in the recent paper by Ein, Erman and Lazarsfeld [14,
p. 2].

7.1 An exact subcomplex

We begin with the following lemma, which should be known to specialists, but we include
a proof for the reader’s convenience.

Lemma 7.1. Let M be a graded module over k[x1, . . . , xN ] and suppose that the multiplication-
by-xN map M →M is an injection. Then the Koszul complexes

. . .→
∧p+1

V ⊗M →
∧p

V ⊗M →
∧p−1

V ⊗M → . . .

and

. . .→
∧p+1

W ⊗M/(xNM)→
∧p

W ⊗M/(xNM)→
∧p−1

W ⊗M/(xNM)→ . . .

have the same graded cohomology. Here V and W denote the degree one parts of the
polynomial rings k[x1, . . . , xN ] and k[x1, . . . , xN−1], respectively.

Proof. Denote by M ′ the graded module M/(xNM). For every p ≥ 0 we have a short
exact sequence

0 −→
(∧p

W ⊗M
)
⊕
(∧p−1

W ⊗M
)

α−→
∧p

V ⊗M β−→
∧p

W ⊗M ′ −→ 0,

by letting

α
(
v1 ∧ . . . ∧ vp ⊗m, w1 ∧ . . . ∧ wp−1 ⊗m′

)

= v1 ∧ . . . ∧ vp ⊗ xNm + xN ∧ w1 ∧ . . . ∧ wp−1 ⊗m′

and β(v1 ∧ . . . ∧ vp ⊗m) = π(v1) ∧ . . . ∧ π(vp) ⊗m, where π : V → W maps xi to itself
if i 6= N and to zero otherwise, and m denotes the residue class of m modulo xNM . As
usual if p = 0 then it is understood that

∧p−1W ⊗M = 0. We leave a verification of the
exactness to the reader, but note that the injectivity of the multiplication-by-xN map is
important here.

On the other hand the spaces

Cp =
(∧p

W ⊗M
)
⊕
(∧p−1

W ⊗M
)
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naturally form a long exact sequence . . .→ C2 → C1 → C0 → 0 along the morphisms

dp : Cp → Cp−1 : (a, b) 7→ (−b+ δp(a),−δp−1(b))

where δp and δp−1 are the usual coboundary maps, as described in (3). Exactness holds
because if dp(a, b) = 0 then dp+1(0,−a) = (a, b). Overall we end up with a short exact
sequence of complexes:

...
...

...
↓ ↓ ↓

0 → ∧p+1 W ⊗M ⊕∧p W ⊗M → ∧p+1 V ⊗M → ∧p+1 W ⊗M ′ → 0
↓ ↓ ↓

0 → ∧p W ⊗M ⊕∧p−1 W ⊗M → ∧p V ⊗M → ∧p W ⊗M ′ → 0
↓ ↓ ↓
...

...
...

This gives a long exact sequence in (co)homology, and the result follows from the exactness
of the left column.

Now we explain how to exploit the above lemma for our purposes. We can apply it to
the Koszul complex

. . .→
∧p+1

V∆ ⊗
⊕

i≥0

Vi∆ →
∧p

V∆ ⊗
⊕

i≥0

Vi∆ →
∧p−1

V∆ ⊗
⊕

i≥0

Vi∆ → . . .

as well as to the twisted Koszul complex

. . .→
∧p+1

V∆ ⊗
⊕

i≥1

V(i∆)(1) →
∧p

V∆ ⊗
⊕

i≥1

V(i∆)(1) →
∧p−1

V∆ ⊗
⊕

i≥1

V(i∆)(1) → . . .

These are complexes of graded modules over the polynomial ring whose variables corre-
spond to the lattice points of ∆. In both cases the variable corresponding to whatever
point P ∈ ∆ ∩ Z2 can be chosen as xN , because multiplication by xN will always be
injective. Then the lemma yields that we can replace Vi∆ by V(i∆)\((i−1)∆+P ) in the first
complex, and that we can replace V(i∆)(1) by V(i∆)(1)\(((i−1)∆)(1)+P ) in the second complex.
In both cases we must also replace the V∆’s in the wedge product by V∆\{P}. Splitting
these complexes into their graded pieces we conclude that Kp,q(X,L) can be computed as
the cohomology in the middle of

∧p+1
V∆\{P} ⊗ V((q−1)∆)\((q−2)∆+P ) −→

∧p
V∆\{P} ⊗ V(q∆)\((q−1)∆+P )

−→
∧p−1

V∆\{P} ⊗ V((q+1)∆)\(q∆+P ),

and that the twisted Koszul cohomology spaces Kp,q(X;K,L) can be computed as the
cohomology in the middle of

∧p+1
V∆\{P} ⊗ V((q−1)∆)(1)\((q−2)∆+P )(1) −→

∧p
V∆\{P} ⊗ V(q∆)(1)\((q−1)∆+P )(1)
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−→
∧p−1

V∆\{P} ⊗ V((q+1)∆)(1)\(q∆+P )(1) .

Here for any A ⊆ Z2 we let VA ⊆ k[x±1, y±1] denote the space of Laurent polynomials
whose support is contained in A.

Remark 7.2. The coboundary morphisms are still defined as in (3), with the additional
rule that xiyj is considered zero in VA as soon as (i, j) /∈ A.

Remark 7.3. It is important to observe that the above complexes remain naturally bi-
graded, and that this is compatible with the bigrading described in Section 2.2. In other

words, for any (a, b) ∈ Z2, also the spaces K
(a,b)
p,q (X,L) and K

(a,b)
p,q (X;K,L) can be com-

puted from the above sequences.

7.2 Removing multiple points

In some cases we can remove multiple points from ∆ by applying Lemma 7.1 repeatedly.
In algebraic terms this works if and only if these points, when viewed as elements of
V∆, form a regular sequence for the graded module M , where M is either

⊕
i≥0 Vi∆ or⊕

i≥1 V(i∆)(1) . The length of a regular sequence is bounded by the Krull dimension of M ,
which is equal to 3. So we can never remove more than three points. It is well-known
that for graded modules over Noetherian rings any permutation of a regular sequence is
again a regular sequence, so the order of removing points does not matter. Concretely,
after removing the points P1, . . . , Pm we get the complex

. . . −→
∧p+1

V∆\{P1,...,Pm} ⊗
Mq−1

P1Mq−2 + . . .+ PmMq−2

−→
∧p

V∆\{P1,...,Pm} ⊗
Mq

P1Mq−1 + . . .+ PmMq−1
−→ . . .

where Mi denotes the degree i part of M . Here, as before, we abuse notation and identify
the points Pi ∈ ∆ with the corresponding monomials in V∆. So for M =

⊕
i≥0 Vi∆ this

gives

. . . −→
∧p+1

V∆\{P1,...,Pm} ⊗ V(q−1)∆\((P1+(q−2)∆)∪...∪(Pm+(q−2)∆))

−→
∧p

V∆\{P1,...,Pm} ⊗ Vq∆\((P1+(q−1)∆)∪...∪(Pm+(q−1)∆)) −→ . . .

while for M =
⊕

i≥1 V(i∆)(1) it gives

. . . −→
∧p+1

V∆\{P1,...,Pm} ⊗ V((q−1)∆)(1)\((P1+((q−2)∆)(1))∪...∪(Pm+((q−2)∆)(1)))

−→
∧p

V∆\{P1,...,Pm} ⊗ Vq∆\((P1+((q−1)∆)(1))∪...∪(Pm+((q−1)∆)(1))) −→ . . .

The question we study in this section is which sequences of points P1, . . . , Pm ∈ ∆ ∩ Z2

are regular, where necessarily m ≤ 3.
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We first study the problem of which sequences of two points are regular. As for
M =

⊕
i≥0 Vi∆, if we first remove a point P ∈ ∆∩Z2 then we end up with M/PM , whose

graded components in degree q ≥ 1 are of the form Vq∆\(P+(q−1)∆), while the degree 0
part is just V0∆. Multiplication by another point Q ∈ ∆ ∩ Z2 in M/PM corresponds to

Vq∆\(P+(q−1)∆)
·Q−→ V(q+1)∆\(P+q∆).

In order for the sequence P,Q to be regular this map has to be injective for all q ≥ 1.
This means that

((q∆\(P + (q − 1)∆)) +Q) ∩ (P + q∆) ∩ Z2 = ∅.

Subtracting P +Q yields

(q∆− P )\((q − 1)∆) ∩ (q∆−Q) ∩ Z2 = ∅,

eventually leading to the criterion

P,Q is regular for
⊕

i≥0

Vi∆ ⇔

∀q ≥ 1 : (q∆− P ) ∩ (q∆−Q) ∩ Z2 ⊆ (q − 1)∆. (14)

Similarly we find

P,Q is regular for
⊕

i≥1

V(i∆)(1) ⇔

∀q ≥ 1 : (q∆− P )(1) ∩ (q∆−Q)(1) ∩ Z2 ⊆ ((q − 1)∆)(1). (15)

These criteria are strongly simplified by the equivalences 1. ⇐⇒ 2. ⇐⇒ 9. of the
following theorem:

Theorem 7.4. Let ∆ be a two-dimensional lattice polygon. For two distinct lattice points
P,Q ∈ ∆, the following are equivalent:

1. P,Q is a regular sequence for
⊕

i≥0 Vi∆.

2. P,Q is a regular sequence for
⊕

i≥1 V(i∆)(1).

3. (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆ for some q > 1.

4. (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆ for all q ≥ 1.

5. ((q∆)◦ −P )∩ ((q∆)◦ −Q) ⊆ ((q− 1)∆)◦ for all q ≥ 1, where ◦ denotes the interior
for the standard topology on R2.

6. ((q∆)(1) − P ) ∩ ((q∆)(1) −Q) ∩ Z2 ⊆ ((q − 1)∆)(1) ∩ Z2 for all q ≥ 1.

7. (q∆− P ) ∩ (q∆−Q) ∩ Z2 ⊆ (q − 1)∆ ∩ Z2 for all q ≥ 1.
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8. Let ` be the line through P and Q. For both half-planes H bordered by `, the polygon
H ∩∆ is a triangle with P and Q as two vertices (this may be degenerate, in which
case it is the line segment PQ).

9. ∆ is a quadrangle and P and Q are opposite vertices of this quadrangle (this may be
the degenerate case where ∆ is a triangle and P,Q are any pair of vertices of ∆).

Proof. The equivalences 1. ⇐⇒ 7. and 2. ⇐⇒ 6. follow from the foregoing discussion.
3. =⇒ 4.: assume that 3. holds for some q > 1. Let q′ ≥ 1, we show that it also holds
for q′. Let W ∈ (q′∆− P ) ∩ (q′∆−Q), we need to show that W ∈ (q′ − 1)∆.

In case q′ > q, we define δ = (q − 1)/(q′ − 1) < 1. Now consider

W ∈ ((q′ − 1)∆ + (∆− P )) ∩ ((q′ − 1)∆ + (∆−Q))

δW ∈ ((q − 1)∆ + δ(∆− P )) ∩ ((q − 1)∆ + δ(∆−Q))

⊆ ((q − 1)∆ + (∆− P )) ∩ ((q − 1)∆ + (∆−Q))

= (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆.

We conclude that W ∈ (q′ − 1)∆.
If q′ < q, we find

W + (q − q′)∆ ⊆
[
(q′∆− P ) ∩ (q′∆−Q)

]
+ (q − q′)∆

⊆ (q′∆− P + (q − q′)∆) ∩ (q′∆−Q+ (q − q′)∆)

⊆ (q∆− P ) ∩ (q∆−Q) ⊆ (q − 1)∆.

Since W + (q − q′)∆ ⊆ (q − 1)∆, it follows that W ∈ (q′ − 1)∆.
4. =⇒ 5.: this holds by taking interiors on both sides and using the fact that

(A ∩B)◦ = A◦ ∩B◦.
5. =⇒ 6.: intersect with Z2 on both sides and use ∆◦ ∩ Z2 = ∆(1) ∩ Z2.
6. =⇒ 7.: let W ∈ (q∆− P ) ∩ (q∆−Q) ∩ Z2.

W +
(

(3∆)(1) ∩ Z2
)

=
(
W + (3∆)(1)

)
∩ Z2

⊆
[
q∆ + (3∆)(1) − P

]
∩
[
q∆ + (3∆)(1) −Q

]
∩ Z2

⊆
[
((q + 3)∆)(1) − P

]
∩
[
((q + 3)∆)(1) −Q

]
∩ Z2

⊆ ((q + 2)∆)(1) ∩ Z2.

Since (3∆)(1) must contain a lattice point, it follows that W ∈ (q − 1)∆ ∩ Z2.
7. =⇒ 8.: we show this by contraposition, so we assume that item 8. is not satisfied

for a half-plane H.
Let T a vertex of H ∩ ∆ at maximal distance from `, and assume for now that this

distance is positive. Let R be a vertex of H ∩∆, distinct from P , Q and T (the fact that
such an R exists follows from the assumption). Without loss of generality, we may assume
that R lies in the half-plane bordered by the line PT that does not contain Q. Choose
coordinates such that the origin is P .
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P = O Q

T

R

`

H ∩∆

Figure 2: 7. =⇒ 8.

P = O Q TR

`

Figure 3: degenerate case (where T may be
equal to Q)

Equip R with barycentric coordinates

R = αT + βQ+ γP = αT + βQ. (16)

Because of the position of R, we know that 0 ≤ α ≤ 1 and β < 0.
Choose an integer q > max{1,−β−1}. Let W = qR. We claim that

W ∈
(
(q∆) ∩ (q∆−Q) ∩ Z2

)
\ (q − 1)∆, (17)

contradicting 7. Since R is a vertex of H ∩∆, we immediately have W ∈
(
(q∆) ∩ Z2

)
\

(q − 1)∆. It remains to show that W ∈ q∆−Q. Using (16), we have

W +Q = qR+Q = qR+ β−1(R− αT )

= (q + β−1)R+ (−β−1α)T

This is a convex combination of qP = O, qR and qT because

q + β−1 ≥ 0, −β−1α ≥ 0,

and
(q + β−1) + (−β−1α) = q + β−1(1− α) ≤ q.

It follows that W +Q ∈ q∆.
In the degenerate case where T ∈ `, without loss of generality one can assume that

there is a vertex R such that R and Q lie on opposite sides of P = O. One proceeds as
above with α = 0 and β < 0.

8. =⇒ 9.: this follows immediately from the geometry: ∆ must be the union of two
triangles on the base PQ.

9. =⇒ 3.: we show this for q = 2. By assumption, the lattice polygon ∆ is a convex
quadrangle PRQS (possibly degenerated into a triangle, i.e. one of R or S may coincide
with P or Q). We need to show that

(2∆− P ) ∩ (2∆−Q) ⊆ ∆ (18)

The left hand side is clearly contained in the cones R̂PS and R̂QS, whose intersection is
precisely our quadrangle PRQS = ∆.
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R

S

P 2Q− P

2R− P

2S − P

2P −Q Q

2R−Q

2S −Q

∆

2∆−Q 2∆− P

Figure 4: 9. =⇒ 3. with q = 2

Now let us switch to regular sequences consisting of three points. We have the following
easy fact:

Lemma 7.5. Let P,Q,R ∈ ∆ ∩ Z2 be distinct. Then P,Q,R is a regular sequence for
M =

⊕
i≥0 Vi∆ (resp. M =

⊕
i≥1 V(i∆)(1)) if and only if

P,Q, Q,R, P,R

are regular sequences.

Proof. It is clearly sufficient to prove the ‘if’ part of the claim. Assume for simplicity that
M =

⊕
i≥0 Vi∆, the other case is similar. Since P,Q is regular, all we have to check is

that
Vq∆\((P+(q−1)∆)∪(Q+(q−1)∆))

·R−→ V(q+1)∆\((P+q∆)∪(Q+q∆))

is injective, or equivalently that

(q∆\((P + (q − 1)∆) ∪ (Q+ (q − 1)∆)) +R) ∩ ((P + q∆) ∪ (Q+ q∆)) = ∅.

This condition can be rewritten as

q∆ ∩ ((q∆ + P −R) ∪ (q∆ +Q−R)) ⊆ (P + (q − 1)∆) ∪ (Q+ (q − 1)∆). (19)

Since P,R is regular we know that q∆∩ (q∆ +P −R) ⊆ P + (q− 1)∆ by (14). Similarly
because Q,R is regular we have q∆ ∩ (q∆ +Q−R) ⊆ Q+ (q − 1)∆. Together these two
inclusions imply (19).

As an immediate corollary, we deduce using Theorem 7.4:

Corollary 7.6. Let ∆ be a two-dimensional lattice polygon. For three distinct lattice
points P,Q,R ∈ ∆, the following statements are equivalent:

1. P,Q,R is a regular sequence for
⊕

i≥0 Vi∆.

2. P,Q,R is a regular sequence for
⊕

i≥1 V(i∆)(1).

3. ∆ is a triangle with vertices P , Q and R.
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7.3 Example: the case of Veronese embeddings

Let us apply the foregoing to ∆ = dΣ for d ≥ 2, whose corresponding toric surface is the
Veronese surface νd(P2) with coordinate ring

SdΣ
∼= k ⊕ VdΣ ⊕ V2dΣ ⊕ V3dΣ ⊕ V4dΣ ⊕ V5dΣ ⊕ . . . (20)

By the foregoing corollary the sequence of points (0, d), (d, 0), (0, 0) is regular for SdΣ.
When one removes these points along the above guidelines, the resulting graded module
is

k ⊕ VdΣ\{(0,d),(d,0),(0,0)} ⊕ Vconv{(d−1,d−1),(2,d−1),(d−1,2)} ⊕ 0⊕ 0⊕ 0⊕ . . .
which can be rewritten as

k ⊕ VdΣ\{(0,d),(d,0),(0,0)} ⊕ V(d,d)−(dΣ)(1) ⊕ 0⊕ 0⊕ 0⊕ . . . (21)

We recall from the end of Section 7.1 that multiplication is defined by lattice addition,
with the convention that the product is zero whenever the sum falls outside the indicated
range. In order to find the graded Betti table of νd(P2), it therefore suffices to compute
the cohomology of complexes of the following type:

∧`+1
VdΣ\{(0,d),(d,0),(0,0)} −→

∧`
VdΣ\{(0,d),(d,0),(0,0)} ⊗ VdΣ\{(0,d),(d,0),(0,0)}

−→
∧`−1

VdΣ\{(0,d),(d,0),(0,0)} ⊗ V(d,d)−(dΣ)(1) (22)

Indeed, the cohomology in the middle has dimension dimK`,1(X,L) = b` and the cokernel
of the second morphism has dimension dimK`−1,2(X,L) = cN∆−1−`.

We can carry out the same procedure in the twisted case. The resulting graded module
is

k ⊕ V(dΣ)(1) ⊕ V(d,d)−dΣ\{(0,d),(d,0),(0,0)} ⊕ V{(d,d)} ⊕ 0⊕ 0⊕ . . .
For instance, one finds that K∨`,1(X,L) ∼= KN∆−3−`,2(X;K,L) is the cohomology in the
middle of

∧N∆−`−2
V(dΣ)\{(0,d),(d,0),(0,0)} ⊗ V(dΣ)(1) −→

∧N∆−`−3
VdΣ\{(0,d),(d,0),(0,0)} ⊗ V(d,d)−dΣ\{(0,d),(d,0),(0,0)}

−→
∧N∆−`−4

VdΣ\{(0,d),(d,0),(0,0)} ⊗ V(d,d).

As a side remark, note that this complex is isomorphic to the dual of (22). Thus this
gives a combinatorial proof of the duality formula K∨`,1(X,L) ∼= KN∆−3−`,2(X;K,L) for
Veronese surfaces.

Let us conclude with a visualization of the point removal procedure in the case where
d = 3 (in the non-twisted setting). Figure 5 shows how the coordinate ring gradually
shrinks upon removal of (0, 3), then of (3, 0), and finally of (0, 0). The left column shows
the graded parts of the original coordinate ring (20) in degrees 0, 1, 2, 3, while the right
column does the same for the eventual graded module described in (21).
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Figure 5: Removing three points for ∆ = 3Σ

8 Computing graded Betti numbers

8.1 The algorithm

To compute the entries b` and c` of the graded Betti table (1) of X∆ ⊆ PN∆−1 we use the
formulas (4) and (7). In other words, we determine the b`’s as

dim ker

(∧`
V∆ ⊗ V∆ →

∧`−1
V∆ ⊗ V2∆

)
− dim

∧`+1
V∆,

while the c`’s are computed as

dim ker

(∧`−1
V∆ ⊗ V∆(1) →

∧`−2
V∆ ⊗ V(2∆)(1)

)
.

Essentially, this requires writing down a matrix of the respective linear map and computing
its rank. As explained in Section 2.2 we can consider these expressions for each bidegree
(a, b) independently, and then just sum the contributions c∨`,(a,b) resp. b`,(a,b). This greatly
reduces the dimensions of the vector spaces and hence of the matrices that we need to
deal with.

Remark 8.1. The subtracted term in the formula for b` can be made explicit:

dim
∧`+1

V∆ =

(
N∆

`+ 1

)
.
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However we prefer to compute its contribution in each bidegree separately (which is easily
done, see Section 8.2), the reason being that the b`,(a,b)’s are interesting in their own right;
see also Remark 8.2 below.

Speed-ups

Lemma 1.3 allows us to obtain bN∆−1−` from c` and cN∆−1−` from b`, so we only compute
one of both. In practice we make an educated guess for what we think will be the easiest
option, based on the dimensions of the spaces involved. Moreover, using Hering and
Schenck’s Theorem 1.4 we find that c` vanishes as soon as ` ≥ N∆ + 1 − |∂∆ ∩ Z2|. For
this reason the computation of b1, . . . , b|∂∆∩Z2|−2 can be omitted, which is particularly
interesting in the case of the Veronese polygons dΣ, which have many lattice points on
the boundary.

Remark 8.2. From the proof of Lemma 1.3 we can extract the formula

b`,(a,b) − cN∆−1−`,(a,b) =

`+1∑

j=0

(−1)j+1 dim

(∧`+1−j
V∆ ⊗ Vj∆

)

(a,b)

(23)

for each bidegree (a, b) ∈ Z2 and each ` = 1, . . . , N∆ − 2. Here the subscript on the
right hand side indicates that we consider the subspace of elements having bidegree (a, b).
As explained in Section 8.2, we can easily compute the dimensions of the spaces on the
right hand side in practice. Together with (8) this allows one to obtain the bigraded
parts of the entire Betti table, using essentially the same method. As an illustration,
bigraded versions of some of the data gathered in Appendix A have been made available
on http://sage.ugent.be/www/jdemeyer/betti/.

We use the material from Section 7 to reduce the dimensions further. As soon as we
are dealing with an n-gon with n ≥ 5, then by Theorem 7.4 we can remove one lattice
point only. In the case of a quadrilateral we can remove two opposite vertices. In the case
of a triangle we can remove its three vertices. For simple computations we just make a
random amenable choice. For larger computations it makes sense to spend a little time
on optimizing the point(s) to be removed, by computing the dimensions of the resulting
quotient spaces.

Remark 8.3. As we have mentioned before, from a practical point of view the effect of
removing lattice points is somewhat unpredictable. In certain cases we even observed
that, although the resulting matrices are of considerably lower dimension, computing the
rank takes more time. We currently have no explanation for this.

Another useful optimization is to take into account symmetries of ∆, which naturally
induce symmetries of multiples of ∆ and ∆(1). For example for b`, consider a symmetry
ψ ∈ AGL2(Z) of (` + 1)∆ and let (a, b) be a bidegree. Then b`,(a,b) = b`,ψ(a,b). The

analogous remark holds for c`, using symmetries ψ of (`− 1)∆ + ∆(1).
A final speed-up comes from computing in finite characteristic, thereby avoiding in-

flation of coefficients when doing rank computations. We believe that this does not affect
the outcome, even when computing modulo very small primes such as 2, but we have no
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proof of this fact. Therefore this speed-up comes at the cost of ending up with conjectural
graded Betti tables. However recall from Remark 1.10 that the graded Betti numbers can
never decrease, so the zero entries are rigorous (and because of Lemma 1.3 the other entry
on the corresponding antidiagonal is rigorous as well).

Writing down the matrices

The maps we need to deal with are of the form

∧p
VA ⊗ VB δ−→

∧p−1
VA ⊗ VC , (24)

where A, B and C are finite sets of lattice points and δ is as in (3), subject to the additional
rule mentioned in Remark 7.2. For a given bidegree (a, b), as a basis of the left hand side
of (24) we make the obvious choice

{xi1yj1 ∧ . . . ∧ xipyjp ⊗ xi′yj′ | (i′, j′) = (a, b)− (i1, j1)− . . .− (ip, jp) and

{(i1, j1), . . . , (ip, jp)} ⊆ A and (i′, j′) ∈ B},

where {(i1, j1), . . . , (ip, jp)} runs over all p-element subsets of A. In the implementation,
we equip A with a total order < and take subsets such that (i1, j1) < . . . < (ip, jp). We
do not need to store the part xi

′
yj
′

since that is completely determined by the rest (for
a fixed bidegree). We use the analogous basis for the right hand side of (24). We then
compute the transformation matrix corresponding to the map δ in a given bidegree, and
determine its rank.

Note that the resulting matrix is very sparse: it has at most p non-zero entries in every
column, while the non-zero entries are 1 or −1. Therefore we use a sparse data structure
to store this matrix.

Implementation

We have implemented all this in Python and Cython, using SageMath [33] with LinBox [26]
for the linear algebra. In principle the algorithm should work equally fine in characteristic
zero (at the cost of some efficiency) but for technical reasons our current implementation
does not support this. For the implementation details we refer to the programming code,
which is made available at https://github.com/jdemeyer/toricbetti.

8.2 Computing the dimensions of the spaces

Given finite subsets A,B ⊆ Z2, computing the dimension of the space
∧p VA⊗VB in each

bidegree can be done efficiently without explicitly constructing a basis. These dimensions
determine the sizes of the matrices involved. Knowing this size allows to estimate the
amount of time and memory needed to compute the rank. We use this to decide whether
to compute b` or cN∆−1−`, and which point(s) we remove when applying the material from
Section 7.
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Namely, consider the generating function (which is actually a polynomial)

fA(X,Y, T ) =
∏

(i,j)∈A
(1 +XiY jT ). (25)

Then the coefficient of XaY bT p is the dimension of the component in bidegree (a, b) of∧p VA. The generating function for
∧p VA ⊗ VB then becomes

fA,B(X,Y, T ) =
∏

(i,j)∈A
(1 +XiY jT ) ·

∑

(i,j)∈B
XiY j . (26)

If we are only interested in a fixed p, we can compute modulo T p+1, throwing away all
higher-order terms in T .

8.3 Applications

As a first application we have verified Conjecture 1.6 for all lattice polygons containing
at most 32 lattice points with at least one lattice point in the interior (namely we used
the list of polygons from [7] and took those polygons for which N∆ ≤ 32). There are
583 095 such polygons; the maximal lattice width that occurs is 8. Apart from the ten ex-
ceptional polygons 3Σ, . . . , 6Σ,Υ2, . . . ,Υ6 and 2Υ, we verified that the entry bN∆−lw(∆)−1

indeed equals zero. In the exceptional cases, whose graded Betti tables are gathered in
Appendix A, we found that bN∆−lw(∆) equals zero. Together with Theorem 4.6 this proves
that Conjecture 1.6 is satisfied for each of these lattice polygons. The computation was
carried out modulo 40 009 and took 1006 CPU core-days on an Intel Xeon E5-2680 v3.

As a second application we have computed the graded Betti table of the 6-fold Veronese
surface X6Σ, which can be found in Appendix A. Currently the computation was done
in finite characteristic only (again 40 009) and therefore some of the non-zero entries are
conjectural. The computation took 12 CPU core-days on an IBM POWER8. This new
data leads to the guesses stated in Conjecture 1.11, predicting certain entries of the graded
Betti table of XdΣ = νd(P2) for arbitrary d ≥ 2.

• The first guess states that the last non-zero entry on the row q = 1 is given by
d3(d2 − 1)/8. This is true for d = 2, 3, 4, 5 and has been verified in characteristic
40 009 for d = 6, 7.

• The second guess is about the first non-zero entry on the row q = 2, which we believe
to be (

N(dΣ)(1) + 8

9

)
.

Here we have less supporting data: it is true for d = 3, 4, 5 and has been verified in
characteristic 40 009 for d = 6. On the other hand our guess naturally fits within
the more widely applicable formula

(
N∆(1) − 1 +

∣∣{ v ∈ Z2 \ {(0, 0)} |∆(1) + v ⊆ ∆ }
∣∣

N∆(1) − 1

)
,
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which we have verified for a large number of small polygons. It was discovered and
proven to be a lower bound by the fourth author, in the framework of his Ph.D.
research; we refer to his upcoming thesis for a proof.

A Some explicit graded Betti tables

This appendix contains the graded Betti tables of X∆ ⊆ PN∆−1 for the instances of ∆
that are the most relevant to this paper. The largest of these Betti tables were computed
using the algorithm described in Section 8. Because these computations were carried out
modulo 40 009 the resulting tables are conjectural, except for the zero entries and the
entries on the corresponding antidiagonal. The smaller Betti tables have been verified
independently in characteristic zero using the Magma intrinsic [3], along the lines of [9,
§2]. For the sake of clarity, we have indicated the conjectural entries by an asterisk. The
question marks ‘???’ mean that the corresponding entry has not been computed.

Σ (N∆ = 3) : 2Σ (N∆ = 6) : 3Σ (N∆ = 10) :

0

0 1
1 0
2 0

0 1 2 3

0 1 0 0 0
1 0 6 8 3
2 0 0 0 0

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 27 105 189 189 105 27 0
2 0 0 0 0 0 0 0 1

4Σ (N∆ = 15) :

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 75 536 1947 4488 7095 7920 6237 3344 1089 120 0 0
2 0 0 0 0 0 0 0 0 0 0 55 24 3

5Σ (N∆ = 21) :

0 1 2 3 4 5 6 7 8 · · ·
0 1 0 0 0 0 0 0 0 0
1 0 165 1830 10710 41616 117300 250920 417690 548080 · · ·
2 0 0 0 0 0 0 0 0 0

· · · 9 10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0 0 0
1 · · · 568854 464100 291720 134640 39780 4858 375 0 0 0
2 0 0 0 0 2002 4200 2160 595 90 6

6Σ (N∆ = 28) :

0 1 2 3 4 5 6 7 8 · · ·
0 1 0 0 0 0 0 0 0 0
1 0 315 4950 41850 240120 1024650 3415500 9164925 20189400 · · ·
2 0 0 0 0 0 0 0 0 0
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· · · 9 10 11 12 13 14 15 · · ·
0 0 0 0 0 0 0 0
1 · · · 36989865 56831850 73547100 80233200 73547100 56163240 35102025 · · ·
2 0 0 0 0 0 0 0

· · · 16 17 18 19 20 21 22 23 24 25

0 0 0 0 0 0 0 0 0 0 0
1 · · · 17305200 6177545∗ 1256310∗ 160398∗ 17890∗ 945∗ 0 0 0 0
2 48620∗ 231660∗ 593028∗ 473290∗ 218295∗ 69300 15525 2376 225 10

7Σ (N∆ = 36) :

· · · 26 27 28 29 30 31 32 33

0 0 0 0 0 0 0 0 0
1 · · · ??? 53352∗ 2058∗ 0 0 0 0 0
2 27821664∗ 8824410∗ 2215136 434280 64449 6832 462 15

Υ = Υ1 (N∆ = 4) : 2Υ (N∆ = 10) :

0 1

0 1 0
1 0 0
2 0 1

0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 24 84 126 84 20 0 0
2 0 0 0 0 20 36 21 4

Υ2 (N∆ = 7) : Υ3 (N∆ = 11) :

0 1 2 3 4

0 1 0 0 0 0
1 0 7 8 3 0
2 0 0 6 8 3

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0 30 120 210 189 105 27 0 0
2 0 0 0 21 105 147 105 40 6

Υ4 (N∆ = 16) :

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 81 598 2223 5148 7920 8172 6237 3344 1089 120 0 0 0
2 0 0 0 0 55 450 2376 4488 4950 3630 1859 612 117 10

Υ5 (N∆ = 22) :

0 1 2 3 4 5 6 7 8 9 · · ·
0 1 0 0 0 0 0 0 0 0 0
1 0 175 1995 11970 47481 135660 290820∗ 476385∗ 597415∗ 581724∗ · · ·
2 0 0 0 0 0 120∗ 1575∗ 9555∗ 52650∗ 172172∗

· · · 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0
1 · · · 466102∗ 291720∗ 134640∗ 39780∗ 4858∗ 375∗ 0 0 0 0
2 291720∗ 338130∗ 291720∗ 194782∗ 102120∗ 39900 11305 2205 266 15

Υ6 (N∆ = 29) :
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· · · 18 19 20 21 22 23 24 25 26

0 0 0 0 0 0 0 0 0 0
1 · · · ??? 160398∗ 17890∗ 945∗ 0 0 0 0 0
2 16095603∗ 7911490∗ 3140445∗ 995280 246675 46176 6150 520 21
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A LOWER BOUND FOR THE GONALITY CONJECTURE

WOUTER CASTRYCK

Abstract. For every integer k ≥ 3 we construct a k-gonal curve C along with
a very ample divisor of degree 2g + k − 1 (where g is the genus of C) to which
the vanishing statement from the Green-Lazarsfeld gonality conjecture does not
apply.

The gonality conjecture due to Green and Lazarsfeld [GL86] states that for C
a smooth complex projective curve of genus g ≥ 1 and gonality k ≥ 2, and L a
globally generated divisor on C of sufficiently large degree, one has the following
vanishing criterion in Koszul cohomology:

(1) Ki,1(C,L) 6= 0 ⇔ 1 ≤ i ≤ h0(C,L)− k − 1.

This conjecture was proved two years ago by Ein and Lazarsfeld [EL15], who more-
over provided the sufficient lower bound degL ≥ g3. In the meantime this was
improved to degL ≥ 4g − 3 by Rathmann [Ra16].

It is likely that this bound can be improved further, although Green and Lazars-
feld already noted [GL86, p. 86] that one at least needs

(2) degL ≥ 2g + k − 1

because of the non-vanishing of Kg−1,1(KC + D), for any divisor D of rank 1 and
degree k on C. Very recently Farkas and Kemeny [FK16] showed that if C is suffi-
ciently generic inside the moduli space of k-gonal curves of genus g then the bound
(2) is sufficient for the vanishing criterion (1) to hold. Moreover they conjectured
that this should be true for all curves whose genus is large enough when compared
to the gonality, a statement referred to as the effective gonality conjecture. Results
due to Green [Gr84, Thm. 3.c.1] resp. Teixidor i Bigas [Te07, Prop. 3.8] imply that
this is indeed the case for trigonal resp. tetragonal curves of genus g > 3 resp. g > 6.

In this note we aim for an improved delimitation of the foregoing considerations,
through the following result.

Theorem. For each k ≥ 3 there exists a curve C of genus g = k(k − 1)/2 along
with a very ample divisor L of degree 2g + k − 1 such that

(3) Kh0(C,L)−k,1(C,L) 6= 0.

In particular, the bound (2) is not sufficient for the gonality conjecture to apply.

The main conclusions to be drawn are that on the one hand, at most, one can
hope to improve Rathmann’s bound to degL ≥ 2g + k, and that on the other
hand g > k(k − 1)/2 is a necessary lower bound in the statement of Farkas and
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Kemeny’s effective gonality conjecture. In particular one observes that the special
cases implied by the works of Green and Teixidor i Bigas are sharp.

The construction is short and explicit: we let C be a smooth plane curve of
degree k+ 1 carrying two total inflection points. By positioning these points at the
coordinate points (1 : 0 : 0) and (0 : 1 : 0) at infinity, and moving the intersection
point of the corresponding tangent lines to the finite coordinate point (0 : 0 : 1),
we can assume that inside A2 our curve is defined by a polynomial f(x, y) whose
Newton polygon Γ is as follows:

(0, 0)

(k, 1)

(1, k)

Conversely, every curve C defined by a sufficiently generic polynomial that is sup-
ported on the above polygon will do. We let L = (k + 1)D where

D + (1 : 0 : 0) + (0 : 1 : 0)

is the effective divisor cut out by the line at infinity. Being a smooth plane curve of
degree k+ 1, the genus of C equals g = k(k− 1)/2, while its gonality is k by [Se87,
Prop. 3.13]. Finally the degree of L equals (k+1)(k−1) = 2g+k−1, as announced.

Identifying the function field of C with the field of fractions of C[x, y]/(f(x, y)),
we have the following lemma:

Lemma. L is a very ample divisor, and the vector space H0(C,L) admits the
monomial basis

{xiyj | i ≥ 1, j ≥ 1, i+ j ≤ k + 1 }.
In particular h0(C,L) =

(
k+1

2

)
= k(k + 1)/2.

Proof. The very-ampleness follows from degree considerations. As for the other
statement, it follows from basic principles in toric geometry that H0(C,L) is gener-
ated by all monomials that are supported on Γ; see for example [CDV06, Thm. 2] for
a ready-to-use statement1, where we note that our divisor L is exactly the divisor
DC given there. These monomials are given by

{ 1 } ∪ {xiyj | i ≥ 1, j ≥ 1, i+ j ≤ k + 1 },

1Strictly spoken that theorem only applies if f(x, y) is non-degenerate with respect to its Newton
polygon, in our case meaning that C is non-tangent to the line at infinity, but it holds more
generally. (On the other hand, for the purpose of proving our main theorem, adding the non-
degeneracy assumption is fine.)
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which are linearly dependent because f(x, y) = 0. Since f(x, y) has a non-zero
constant term we can eliminate 1 from the above set, and the remaining monomials
are clearly linearly independent functions on C. �

If one uses the above basis of H0(C,L) to embed C in

P(k+1
2 )−1

then it naturally lands inside the (k−1)-fold Veronese surface νk−1(P2). This implies
that we have an injection

Kk(k+1)/2−k,1
(
P2,OP2(k − 1)

)
↪→ Kk(k+1)/2−k,1(C,L) = Kh0(C,L)−k,1(C,L).

But it is known that the former space is non-trivial; see e.g. [CCDL16, Thm. 1.8].
From this our theorem follows.

Remark. The curve C, when embedded using L, can be viewed as a hyperplane
section of the projectively embedded toric surface XΓ associated to the lattice poly-
gon Γ. Thanks to the Cohen-Macaulay property of toric surfaces, the graded Betti
tables of C and XΓ are the same. In previous joint work with Cools, Demeyer
and Lemmens [CCDL16], we had already observed ‘exceptional’ vanishing behavior
among the linear syzygies in the case of XΓ (there Γ was denoted as Υk−1). As it
turns out, this percolates to the curve level, thereby saying something meaningful
about the gonality conjecture.

Remark. We work over C because for instance [EL15] does so as well, but the
theorem presented above is valid over any algebraically closed field, with the same
proof.
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On graded Betti tables of curves in toric surfaces

W. Castryck, F. Cools, J. Demeyer, A. Lemmens

Abstract

In a first part of this paper, we prove constancy of the canonical graded
Betti table among the smooth curves in linear systems on certain toric sur-
faces, namely those that are Gorenstein weak Fano. In a second part, we
show that Green’s canonical syzygy conjecture holds for all smooth curves of
genus g ≤ 32 on arbitrary toric surfaces. Conversely we use known results
on Green’s conjecture (due to Lelli-Chiesa) to obtain new facts about graded
Betti tables of toric surfaces.

Contents

1 Introduction

2 An exact sequence involving six terms

3 Gorenstein weak Fano toric surfaces

4 Constancy results

5 Connections with Green’s conjecture

1 Introduction

Let k be an algebraically closed field of characteristic zero, let ∆ ⊆ R2 be a two-
dimensional lattice polygon, and consider an irreducible Laurent polynomial

f =
∑

(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1] (1)

that is supported on ∆. Let S∆ = k[Xi,j | (i, j) ∈ ∆ ∩ Z2 ] be the polynomial ring
obtained by associating a formal variable to each lattice point in ∆. We think of it as
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the homogeneous coordinate ring of projective (N∆−1)-space, where N∆ = |∆∩Z2|.
Consider the map

ϕ∆ : (k∗)2 ↪→ PN∆−1 : (α, β) 7→ (αiβj)(i,j)∈∆∩Z2 ,

the Zariski closure of the image of which is a toric surface that we denote by X∆.
Let Uf be the curve in (k∗)2 defined by f = 0, and assume that the closure Cf of
ϕ∆(Uf ) inside X∆ is a smooth hyperplane section, necessarily cut out by

∑

(i,j)∈∆∩Z2

ci,jXi,j = 0.

This assumption is generically true, i.e. it holds for a dense open subset of the
space of Laurent polynomials that are supported on ∆. For instance a well-known
generically satisfied sufficient condition reads that f is ∆-non-degenerate, in the
sense of [2].

Remark 1.1. Whenever one is given a non-rational smooth projective curve C inside
a toric surface X, equipped with an embedding ϕ : (k∗)2 ↪→ X, then one can show
that C arises in the above way. Namely let PC be the polygon associated to a
torus-invariant divisor on X that is linearly equivalent to C; see [10, §4.3] for how
this polygon is constructed. Define ∆ = conv(PC ∩ Z2), where we note that if
C is Cartier then PC is a lattice polygon and ∆ = PC . If for f one takes the
generator of the ideal of ϕ−1(C) inside k[x±1, y±1] that is supported on ∆, then the
above assumption is satisfied and one has Cf ∼= C. We refer to [6, §4] for more
background on these claims.

Under our generic assumption that Cf is a smooth hyperplane section, many of
its geometric invariants can be told explicitly from the combinatorics of ∆. The
starting result was proven by Khovanskii [17], who obtained that the geometric
genus g(Cf ) is given by N∆(1) = |∆(1) ∩ Z2|, where ∆(1) denotes the convex hull of
the lattice points in the interior of ∆. To avoid low genus pathologies, from now
on let us assume that |∆(1) ∩ Z2| ≥ 4. Then recent work of mainly Kawaguchi
(a technical assumption was removed by the first two current authors) provides a
similar combinatorial interpretation for the Clifford index ci(Cf ); see [9, 11] for some
background on this invariant.

Theorem 1.2 (see [6, 16]). One has ci(Cf ) = lw(∆(1)) unless ∆(1) ∼= Υ, ∆(1) ∼= 2Υ
or ∆(1) ∼= (d− 3)Σ for some d ∈ Z≥5, in which case one has ci(Cf ) = lw(∆(1))− 1.

Here lw denotes the lattice width [3] and ∆ ∼= ∆′ indicates that ∆′ can be obtained
from ∆ using a linear transformation R2 → R2 : (x y) 7→ (x y)A + b, where
A ∈ GL2(Z) and b ∈ Z2 (unimodular equivalence). The polygons Υ and Σ are given
by conv{(−1,−1), (1, 0), (0, 1)} resp. conv{(0, 0), (1, 0), (0, 1)}, and the multiples
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are in Minkowski’s sense. As a corollary to Theorem 1.2, we note that Cf is non-
hyperelliptic if and only if ∆(1) is two-dimensional.

The proof of Theorem 1.2 entails similar interpretations for the gonality and the
Clifford dimension. Finer data that is known to be encoded in the combinatorics of
∆ includes the scrollar invariants [6] associated to a gonality pencil, which specialize
to the Maroni invariants in the trigonal case. Assuming that ∆ satisfies a mild
condition, it also includes the first scrollar Betti numbers associated to a gonality
pencil, which specialize to Schreyer’s invariants b1, b2 in the case of tetragonal curves
(where the mild condition is void); see [5, 7].

An immediate consequence is that all these invariants depend on ∆ only. This
is an a priori non-trivial fact that can be rephrased as constancy (of the Clifford
index, the gonality, . . . ) among the smooth curves in linear systems of curves
on toric surfaces. The existing literature contains other results of this type. For
instance recent work of Lelli-Chiesa proves constancy of the gonality and the Clifford
index for curves in certain linear systems on other types of rational surfaces [19]. A
theorem by Green and Lazarsfeld states that constancy of the Clifford index holds
in linear systems on K3 surfaces [13], although here constancy of the gonality is not
necessarily true.

In view of Theorem 1.2 and Green’s canonical syzygy conjecture [12], it is natural
to wonder whether similar constancy results hold for the entire graded Betti table

0 1 2 3 . . . g − 4 g − 3 g − 2
0 1 0 0 0 . . . 0 0 0
1 0 a1 a2 a3 . . . ag−4 ag−3 0
2 0 ag−3 ag−4 ag−5 . . . a2 a1 0
3 0 0 0 0 . . . 0 0 1,

(2)

of the canonical image of Cf in Pg−1, where g = g(Cf ) = |∆(1) ∩Z2|. When writing
down the above shape we assume that Cf is non-hyperelliptic, or equivalently that
∆(1) is two-dimensional, so that the canonical map κ : Cf → Pg−1 is an embed-
ding. We will keep making this assumption throughout the rest of the article. An
attractive feature of smooth curves in toric surfaces is that κ is well understood.
Indeed, a refined version of Khovanskii’s theorem provides us with a canonical divi-
sor K∆ on Cf whose associated Riemann-Roch space H0(Cf , K∆) admits the basis
{xiyj | (i, j) ∈ ∆(1) ∩ Z2 }. Thus for this choice of canonical divisor one has that

κ ◦ ϕ∆|Uf
= ϕ∆(1)|Uf

.

As a consequence the canonical model of Cf , which we denote by C, satisfies

C ⊆ X∆(1) ⊆ Pg−1.
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We therefore expect some interplay between the graded Betti table of C and that
of X∆(1) , which is known to be of the form

0 1 2 3 . . . g − 4 g − 3
0 1 0 0 0 . . . 0 0
1 0 b1 b2 b3 . . . bg−4 bg−3

2 0 cg−3 cg−4 cg−5 . . . c2 c1,

(3)

by [8, Lemma 1.2].
The main result of this article is the following constancy statement, whose proof

is given in Section 4:

Theorem 1.3. If

• X∆(1) is a Gorenstein weak Fano toric surface, or

• |∂∆(1) ∩ Z2| ≥ g/2 + 1,

then for all ` = 1, . . . , g − 3 we have a` = b` + c`. In particular, in these cases the
graded Betti table of C is independent of the coefficients of f .

Here ∂∆(1) denotes the boundary of ∆(1).
We note that the Gorenstein weak Fano condition can be easily rephrased in

combinatorial terms, as is done in Section 3 below. This case covers all polygons
∆ satisfying ∆(1) ∼= (d − 3)Σ for some d ≥ 5, leading to the statement that the
canonical graded Betti table of a smooth plane degree d curve depends on d only.
On the other hand, the class of polygons ∆ for which |∂∆(1) ∩Z2| ≥ g/2 + 1 covers
all cases where lw(∆(1)) ≤ 2 by [5, Lemma 9]. Such polygons correspond to trigonal
and certain tetragonal curves, where constancy was known to hold before [5, 24].

We actually believe that the sum formula a` = b` + c` is true for a considerably
larger class of polygons than the ones covered by the above theorem. Of course,
even when the formula fails, it might still be true that the graded Betti table of C
does not depend on f , i.e. the defect might depend on ∆ and ` only. Examples of
such behaviour are given in Section 4. We leave it as an open question whether or
not this is true in general.

We end this article in Section 5 with a somewhat disjoint discussion on how
Green’s canonical syzygy conjecture, concerning graded Betti tables of canonical
curves, relates to a conjecture that we have formulated in a previous article [8],
concerning graded Betti tables of toric surfaces. In particular, we settle new cases
of both conjectures. For instance we find that Green’s conjecture holds for all
smooth curves on toric surfaces of genus at most 32.
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2 An exact sequence involving six terms

Let ∆ be a lattice polygon with two-dimensional interior lattice polygon ∆(1). Let
f ∈ k[x±1, y±1] be an irreducible Laurent polynomial as in (1) and assume that the
corresponding hyperplane section Cf of X∆ is smooth.

Let ρ : X → X∆ be the minimal toric resolution of singularities, i.e. X is
the toric surface associated to the smooth subdivision of the inner normal fan to
∆ in which no more new rays are introduced than needed. It can be obtained
using Hirzebruch-Jung continued fractions as described in [10, §10.2]. Let K be
the canonical divisor on X obtained by taking minus the sum of all torus-invariant
prime divisors [10, Thm. 8.2.3].

Because Cf does not meet the singular locus of X∆, it pulls back to an isomorphic
curve C ′ on X. Define Df = C ′ − div(f), where f is viewed as a function on X
by pushing it forward along ϕ∆ and then pulling it back along ρ. This is a torus-
invariant divisor that is linearly equivalent to C ′.

Lemma 2.1. One has:

• The divisor Df is base-point free, and the polygon PDf
associated to Df is ∆.

• Its adjoint divisor L := Df + K is also base-point free, and the polygon PL
associated to L is ∆(1).

The second statement might be of interest to people studying Fujita type results;
see [18, 21]. Here the minimality of our resolution X → X∆ is important, as the
reader can tell from the proof below. Also recall that for divisors on a smooth toric
surface, the notions of base-point free and nef are synonymous [10, Thms. 6.1.7 and
6.3.12].

Proof. Let Σ∆ be the fan of X∆ (i.e., the inner normal fan to ∆) and let Σ be the
fan of X. Denote by U(Σ) the set of primitive generators of the rays of Σ, and let
U(Σ∆) ⊆ U(Σ) be the subset of vectors that correspond to rays of Σ∆. Since the
divisor Df is torus-invariant, it is of the form

∑
v∈U(Σ) avDv, where Dv ⊆ X is the

prime divisor corresponding to the ray generated by v. Let H(v, av) be the half-
plane of points x ∈ R2 satisfying 〈x, v〉 ≥ −av and let L(v, av) be the line defined
by 〈x, v〉 = −av. As explained in [6, §4], we have that

PDf
=

⋂

v∈U(Σ)

H(v, av) =
⋂

v∈U(Σ∆)

H(v, av) = ∆.

Moreover, if u ∈ U(Σ) \ U(Σ∆) corresponds to a ray that lies in between two con-
secutive rays of Σ∆ with primitive generators v, w ∈ U(Σ∆), then L(u, au) passes
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through the vertex L(v, av) ∩ L(w, aw) of ∆. In other words, if v, w ∈ U(Σ) corre-
spond to consecutive rays of Σ, then L(v, av) ∩ L(w, aw) ∈ ∆. By [10, Prop. 6.1.1],
this just means that Df is base-point free.

Since K = −∑v∈U(Σ)Dv, we have that L =
∑

v∈U(Σ)(av − 1)Dv. It follows that
the polygon associated to L is

PL =
⋂

v∈U(Σ)

H(v, av − 1).

To prove that L is base-point free, again by [10, Prop. 6.1.1] it suffices to show
that for all v, w ∈ U(Σ) that correspond to adjacent rays, the lattice point m1 =
L(v, av − 1) ∩ L(w, aw − 1) belongs to PL. Because X is smooth, the vectors v, w
form a basis Z2, hence using a unimodular transformation if needed we may assume
that v = (1, 0) and w = (0, 1). Then the point m1 becomes (−av + 1,−aw + 1).
From the base-point-freeness of Df we know that

m = (av, aw) ∈ ∆ ⊆ H(v, av) ∩H(w, aw).

Now consider v′, w′ ∈ U(Σ∆) such that m ∈ L(v′, av′) ∩ L(w′, aw′), so v′ and w′

are the primitive normal vectors of the edges of ∆ that are adjacent to the vertex
m. We can assume that L(v′, av′) is steeper than L(w′, av′), and note that it could
happen that v′ = v and/or w′ = w. In order to prove that m1 ∈ PL, it suffices
to show that L(v′, av′) passes strictly above m1 and that L(w′, aw′) passes strictly
below m1. We only prove the statement for v′; the one for w′ follows by symmetry.

m
m1

L(v, av)

L(w, aw)

L(v′, av′ )

L(w′, aw′ )

∆

w′
w = (0, 1)

v = (1, 0)

v′

Let v0 = v, v1, . . . , vn = v′ be the vectors in U(Σ) from v up to v′ going clockwise.
We claim that all vi satisfy xi > −yi, where vi = (xi, yi). For i = n, this claim
tells us that L(v′, av′) passes strictly above m1. Suppose our claim is false and let
i be minimal such that xi ≤ −yi. Note that i > 0. It is impossible that xi = −yi,
because in that case w = (0, 1) and vi = (1,−1) would be a basis of Z2, so would be
able to delete the rays corresponding to vj ∈ U(Σ) with j < i, while the associated
toric surface would still be a resolution of singularities of X∆, contradicting the
minimality assumption. So xi < −yi. Also xi−1 > −yi−1, by the minimality of i.
Now vi−1 and vi must form a basis of Z2 and hence the determinant xiyi−1− xi−1yi
of the matrix formed by vi and vi−1 is ±1. But xi−1(−yi) > xi−1xi > (−yi−1)xi, and
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since we have two strict inequalities, the difference is at least 2. This contradicts
that the determinant is ±1, proving our claim.

It remains to show that PL = ∆(1). Because L is base-point free, again from
the criterion [10, Prop. 6.1.1] we see that PL is a lattice polygon. Now since it is
contained in the interior of PDf

= ∆, while on the other hand it clearly contains

∆(1), the claim follows.

The above lemma is valuable in investigating how the graded Betti table (2) of
the canonical model C of Cf relates to the graded Betti table (3) of X∆(1) . We
assume that the reader is familiar with how the entries a`, b`, c` for ` = 1, . . . , g − 3
arise as dimensions of Koszul cohomology spaces. We refer to [1] for more back-
ground, and to [8, §2] and [15] for a discussion that is specific to toric surfaces. For
what follows, it is convenient to define a0 = b0 = c0 = ag−2 = bg−2 = cg−2 = 0.

Our starting point is the standard exact sequence 0 → OX(−C ′) → OX →
OC′ → 0 of sheaves of OX-modules. It can be rewritten as

0→ OX(−Df )
µf−→ OX −→ OC′ → 0,

where µf denotes multiplication by the function f . By the adjunction formula
KC′ := L|C′ is a canonical divisor on C ′. Tensoring the above exact sequence with
OX(qL) then gives exact sequences

0→ OX((q − 1)L+K)
µf−→ OX(qL) −→ OC′(qKC′)→ 0

for all q ≥ 0. We claim that H1(X, (q − 1)L + K) = 0, which by Serre duality [10,
Thm. 9.2.10] is equivalent with H1(X, (1 − q)L) = 0. Indeed for q = 0 and q = 1
this is true by Demazure vanishing [10, Thm. 9.2.3], while for q ≥ 2 it follows from
Batyrev-Borisov vanishing [10, Thm. 9.2.7(a)]. In both cases we used that L is base-
point free, while in the latter case we also used that PL = ∆(1) is two-dimensional.
Thus by taking cohomology we obtain a short exact sequence

0→
⊕

q≥0

H0(X, (q − 1)L+K)
µf−→
⊕

g≥0

H0(X, qL) −→
⊕

q≥0

H0(C ′, qKC′)→ 0

of k-vector spaces. In a natural way, this can be viewed as an exact sequence
of graded modules over S∆(1) = S∗V∆(1) , where V∆(1) = H0(X,L) and S∗ denotes
the symmetric algebra. By [1, Lem. 1.25] we find a long exact sequence in Koszul
cohomology:

· · · → Kp,q−1(X;K,L)
µf−→ Kp,q(X,L) −→ Kp,q(C

′, KC′)

−→ Kp−1,q(X;K,L)
µf−→ Kp−1,q+1(X,L) −→ Kp−1,q+1(C ′, KC′)→ . . .

Chapter 8. On graded Betti tables of curves in toric surfaces 187



Now note that the image of X
|L|−→ Pg−1, where g = h0(X,L) = |∆(1) ∩ Z2|, is

nothing else but X∆(1) . Thus

b` = dimK`,1(X,L) and c` = dimKg−2−`,2(X,L) = dimK`−1,1(X;K,L)

for ` = 0, 1, . . . , g − 2, where the last equality again follows from Serre duality,
as explained in more detail in [8, §2.1]. Combining these formulas with a` =
dimK`,1(C ′, KC′) we find for each ` = 0, 1, . . . , g − 2 our desired exact sequence, of
the form

0→ b` → a` → c`
µf−→ cg−1−` → ag−1−` → bg−1−` → 0 (4)

where we abusingly write the dimensions, rather than the cohomology spaces them-
selves.

Remark 2.2. It follows that

b` + c` − cg−1−` − bg−1−` = a` − ag−1−`.

The right hand side is known to be equal to

(
g − 1

`− 1

)
(g − 1− `)(g − 1− 2`)

`+ 1

using the Hilbert polynomial of the canonical curve C. This formula also follows
from [8, Lem. 1.3], by using instead the left hand side of the equality.

3 Gorenstein weak Fano toric surfaces

As before let ∆ be a lattice polygon with two-dimensional interior ∆(1). Let Σ∆

denote the inner normal fan to ∆, and as in the proof of Lemma 2.1 let U(Σ∆) be the
set of primitive generators of its rays. The prime divisor associated to v ∈ U(Σ∆)
will again be denoted by Dv. For reasons that will become apparent in the next
section, we are interested in situations where the polygon P−K∆

associated to the
anticanonical divisor

−K∆ =
∑

v∈U(Σ)

Dv

on X∆ is a lattice polygon. Using the criteria in [10, Chapter 6] one sees that this
holds if and only if −K∆ is base-point free (i.e., nef) and Cartier. Since −K∆ is
always big, we conclude that we are actually interested in the cases where X∆ is a
so-called Gorenstein weak Fano toric surface.

Note that P−K∆
has one interior lattice point only, namely the origin, therefore as

soon as we are in the Gorenstein weak Fano case, it concerns a reflexive polygon. Its
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dual polygon is the convex hull of the vectors v ∈ U(Σ∆), which is then also reflexive.
It is not hard to see that the argument works in both ways, i.e. a toric surface is
Gorenstein weak Fano if and only if the convex hull of the primitive generators of
the rays of its fan is a reflexive polygon. Up to unimodular equivalence, there are
16 reflexive polygons [22, Prop. 4.1], so a toric surface is Gorenstein weak Fano if
and only if its fan is a coherent crepant refinement of the inner normal fan to one
of these 16 polygons. That is, it is obtained by inserting a number of rays (possibly
none) that pass through a lattice point on the boundary of the dual polygon.

inner normal fan

A similar criterion was proven to hold in any dimension by Nill [22, Prop. 1.7], to
whom’s paper we refer for more background.

The aim of the current section is to show that the Gorenstein weak Fano property
enjoys a certain robustness.

Lemma 3.1. If X∆ is Gorenstein weak Fano and X → X∆ is the minimal toric
resolution of singularities, then also X is Gorenstein weak Fano, and moreover
P−K = P−K∆

.

Here, as in the previous section, K denotes the canonical divisor on X obtained by
taking minus the sum of all torus-invariant prime divisors.

Proof. Consider the maximal coherent crepant refinement of Σ∆, obtained by in-
serting a ray for each lattice point on the boundary of the reflexive polygon obtained
by taking the convex hull of U(Σ). This clearly gives a resolution of singularities.
Therefore the fan Σ of X must be obtained from Σ∆ by inserting a number of these
rays (possibly none, possibly all). We conclude that Σ is also a coherent crepant
refinement of Σ∆, and both claims follow.

For our second robustness statement, we need the following notation. Given
a lattice polygon ∆ with two-dimensional interior lattice polygon ∆(1), then ∆max

is defined as the maximal lattice polygon Γ (with respect to inclusion) satisfying
Γ(1) = ∆(1). The polygon ∆max can be obtained from ∆(1) by moving out its edges
over an integral distance 1. Therefore each edge of ∆max is parallel to an edge of
∆(1), although the converse may fail, because it could happen that an edge shrinks
to length 0. See [6, §2] and the references therein for more background.
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Lemma 3.2. If X∆ is Gorenstein weak Fano, then also X∆(1) is Gorenstein weak
Fano. Moreover, the latter property holds if and only if X∆max is Gorenstein weak
Fano, and in this case the normal fans to ∆(1) and ∆max are the same.

Proof. We will rely on the following observation: let X be a Gorenstein weak Fano
projective toric surface, and let X ′ be a toric blow-down of X, i.e. the toric surface
obtained by removing a certain number of rays from the fan defining X. Then X ′ is
also Gorenstein weak Fano. Indeed, if the primitive generators of the rays of a fan
span a reflexive polygon, then this remains true after dropping some of these rays.

We first prove the last equivalence, namely that X∆(1) is Gorenstein weak Fano
if and only if the same is true for X∆max . As noted above, the inner normal fan
to ∆(1) is a subdivision of the inner normal fan to ∆max, which by the foregoing
observation implies the ‘only if’ part of the statement. As for the ‘if’ part, assume
that ∆max is Gorenstein weak Fano. We will show that the subdivision is in fact
trivial, i.e. the normal fans to ∆(1) and ∆max are the same, from which the desired
conclusion follows. Indeed, suppose that there is an edge τ ⊆ ∆(1) that disappears
after moving out the edges, i.e. its length shrinks to 0, and choose it such that there
is an adjacent edge τ ′ that does not disappear. Let v be the vertex common to
τ and τ ′. Using a unimodular transformation if needed we can assume that τ is
supported on the line y = 0, that v = (0, 0), and that the next lattice point on τ ′ is
(−b, a) with a ≥ b ≥ 1. The outward shifts of the supporting lines of τ and τ ′ meet
in the point

w =

(
b− 1

a
,−1

)
,

which is necessarily a lattice point, hence b = 1 and w = (0,−1). Now let τ ′′ be
the first non-disappearing edge at the other side of τ ; note that it might a priori
not be adjacent to it. Denote its primitive inner normal vector by (c, d), so that its
supporting line is of the form cx+ dy = e. Notice that c ≤ −1 and moreover e ≤ c
because (1, 0) is contained in the corresponding half-plane. Now the outward shift
of this line (defined by cx + dy = e − 1) must also pass through w, leading to the
identity

d = −e+ 1 > 1.

This contradicts the being Gorenstein weak Fano of ∆max, because the convex hull of
(a, b), (c, d) and the other primitive generators of the rays of its normal fan contains
(0, 1) as an interior point.

As for the first implication, note that ∆ is obtained from ∆max by clipping off a
number of vertices. We show that these vertices can be glued back on, one by one,
while preserving the Gorenstein weak Fano property. Remark that a vertex can only
be clipped off if it is ‘smooth’, meaning that a unimodular transformation takes it
to (0, 0) with the adjacent edges lining up with the coordinate axes: otherwise ∆(1)
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would be affected. Up to changing the order of the coordinates, the clipping then
necessarily happens along the segment connecting (0, 1) and (a, 0) for some a ≥ 0.
We make a case distinction between three removal types.

• Type 1: none of the adjacent edges was removed completely. This means that
glueing back the vertex boils down to dropping a ray from the inner normal
fan, which preserves the Gorenstein weak Fano property.

• Type 2: exactly one of the adjacent edges was removed completely. Then the
situation is either of the following:

τ

(0, 1)

(0, 0)

τ ′

(a, 0)

τ

(0, 1)

(0, 0) (a, 0)

One of the primitive generators of the rays of the inner normal fan to ∆ is
given by (1, a).

In the first case, the primitive normal vector to τ ′ is of the form (b, c) for
some c < 0 and b ≥ 1, where the latter inequality holds because τ ′ cannot be
horizontal (otherwise ∆ would have an empty interior). This means that (1, 0)
belongs to the polygon spanned by the primitive generators, and therefore it
stays reflexive upon replacement of (1, a) by (1, 0), i.e. the Gorenstein weak
Fano property is preserved when glueing back our vertex.

In the second case we find (1, 0) among the primitive generators of the rays
of the inner normal fan. If a > 2 then by the Gorenstein weak Fano property
all other primitive generators must belong to the triangle

(1, a)

(1, 0)

(
− 2
a−2,− a

a−2
)

because otherwise either (0, 1) or (0,−1) would belong to the interior of the
polygon they span. If a > 4 then 2/(a − 2) < 1, so the above region cannot
contain the primitive normal vector to τ , which has to have a strictly negative
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first coordinate: a contradiction. If a = 4 then the primitive normal vector to
τ is necessarily (−1,−2), which gives a contradiction with the fact that ∆(1)

is two-dimensional. If a = 3 one finds (−1,−1), (−1,−2) or (−2,−3), each of
which cases again yields a contradiction with the two-dimensionality of ∆(1).

If a = 2 then the region becomes a half-strip

(1, 2)

(1, 0)

where now the conclusion reads that the primitive normal vector to τ has a
negative second coordinate (possibly zero): this means that ∆ is contained
in a vertical strip of width 2, once again contradicting the fact that ∆(1) is
two-dimensional. Thus we conclude that a = 1, and a similar reasoning shows
that the primitive normal vector to τ must be of the form (b, 1) for some
b < 0. But this means that the polygon spanned by the primitive normal
vectors contains (0, 1), and therefore the Gorenstein weak Fano property is
preserved upon replacement of (1, a) = (1, 1) by (0, 1), i.e. upon glueing back
our vertex.

• Type 3: the two adjacent edges are removed completely. Then the situation
must be as follows.

τ

(0, 1)

(0, 0)

τ ′

(a, 0)

This is very similar to before. In the cases where a ≥ 2 one again obtains
a contradiction, either with the Gorenstein weak Fano property or with the
two-dimensionality of ∆(1): the region in which the primitive normal vector
to τ should be contained becomes even smaller. If a = 1 then we find that
the primitive normal vectors to τ and τ ′ are (1, b) resp. (b′, 1) for integers
b, b′ < 0, so we can replace (1, 1) by the pair (0, 1), (1, 0), i.e. we can glue back
our vertex.

This concludes the proof.
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One corollary is that, in the statement of Theorem 1.3, the condition thatX∆(1) is
Gorenstein weak Fano can be replaced by X∆ being Gorenstein weak Fano, although
the resulting theorem is strictly weaker.

4 Constancy results

In this section we prove Theorem 1.3. As before let ∆ be a lattice polygon with
two-dimensional interior ∆(1), let f be as in (1) and assume that it defines a smooth
hyperplane section Cf of X∆. Let X → X∆ be the minimal toric resolution of
singularities. We use the set-up and notations from Section 2. From (4), we conclude
the following:

Lemma 4.1. For each ` = 0, 1, . . . , g − 2 one has that a` = b` + c` iff ag−1−` =
bg−1−` + cg−1−` iff

K`−1,1(X;K,L)
µf−→ K`−1,2(X,L)

is the zero map.

Recall that µf denotes multiplication by f . Explicitly, this is the map induced by
the vertical maps (also denoted by µf ) of the commutative diagram

∧`−1 V∆(1) ⊗ V∆(1)(1)
δ−→ ∧`−2 V∆(1) ⊗ V(2∆(1))(1)

↓ µf ↓ µf∧` V∆(1) ⊗ V∆(1)
δ−→ ∧`−1 V∆(1) ⊗ V2∆(1)

δ−→ ∧`−2 V∆(1) ⊗ V3∆(1) ,

where as before V∆(1) = H0(X,L) is the space of Laurent polynomials that are
supported on ∆(1). Similarly V∆(1)(1) = H0(X,L+K) denotes the space of Laurent
polynomials that are supported on ∆(1)(1), and so on; see also [8, §2]. The δ’s are
the usual boundary morphisms

v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗ w 7→
∑

s

(−1)sv1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ∧ v̂s ∧ · · · ⊗ vsw

(v̂s means that vs is being omitted) and the µf ’s act like

v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗ w 7→ v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗ fw,

where fw indeed ends up in the target space because ∆ + ∆(1)(1) ⊆ 2∆(1) and
∆ + (2∆(1))(1) ⊆ 3∆(1). From now on, let us denote ∆(1)(1) by ∆(2).

Then indeed K`−1,1(X;K,L) is the kernel of the top row while K`−1,2(X,L) is
the cohomology in the middle of the bottom row. In view of Lemma 4.1, our aim is
to find conditions under which µf = 0 on the level of cohomology. It is convenient
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to introduce a multiplication map for each monomial xiyj that is supported on ∆.
That is, for each (i, j) ∈ ∆∩Z2 we consider the morphism µi,j : K`−1,1(X;K,L)→
K`−1,2(X,L) that is induced by

v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗ w 7→ v1 ∧ v2 ∧ v3 ∧ v4 ∧ · · · ⊗ xiyjw.

Note that
µf =

∑

(i,j)∈∆∩Z2

ci,jµi,j.

In fact we even have
µf =

∑

(i,j)∈∂∆∩Z2

ci,jµi,j (5)

thanks to the following observation:

Lemma 4.2. If (i, j) ∈ ∆(1) then µi,j = 0 on the level of cohomology.

Proof. This follows from a well-known type of reasoning; see e.g. [1, Lem. 2.19].
Explicitly, if

α =
∑

r

crvr,1 ∧ vr,2 ∧ · · · ∧ vr,`−1 ⊗ wr ∈
∧`−1

V∆(1) ⊗ V∆(2)

is in the kernel of δ, then one verifies that µi,j(α) is the coboundary of

−
∑

r

crx
iyj ∧ vr,1 ∧ vr,2 ∧ · · · ∧ vr,`−1 ⊗ wr ∈

∧`
V∆(1) ⊗ V∆(1) (6)

and therefore vanishes on the level of cohomology.

The above argument does not work for (i, j) ∈ ∂∆ because in that case xiyj /∈
V∆(1) and therefore (6) may not be contained in

∧` V∆(1) ⊗ V∆(1) . However, the
condition that (i, j) ∈ ∆(1) can be relaxed:

Lemma 4.3. If (i, j) ∈ ∆ can be written as (i1, j1)+(i2, j2) such that (i1, j1) ∈ ∆(1)

and (i2, j2) + ∆(2) ⊆ ∆(1), then µi,j = 0 on the level of cohomology.

Proof. In the above proof

−
∑

r

crx
i1yj1 ∧ vr,1 ∧ vr,2 ∧ · · · ∧ vr,`−1 ⊗ xi2yj2wr ∈

∧`
V∆(1) ⊗ V∆(1)

serves as a replacement for (6).
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It is natural to try to take (i2, j2) ∈ P−K , so that xi2yj2 ∈ H0(X,−K). Indeed
recall that V∆(2) = H0(X,L + K) and V∆(1) = H0(X,L), so in this case we indeed
have that (i2, j2) + ∆(2) ⊆ ∆(1). Such an appropriate decomposition of (i, j) ∈ ∆
can be found only if

xiyj ∈ H0(X,−K) ·H0(X,L). (7)

Often H0(X,−K) consists of the constant functions only, i.e. P−K ∩ Z2 = {(0, 0)},
in which case (7) is impossible as soon as (i, j) ∈ ∂∆. On the other hand, if the
right hand side of (7) generates all of H0(X,Df ), or equivalently, if the map

H0(X,−K)⊗H0(X,L)→ H0(X,Df ) (8)

is surjective, then we can conclude that all µi,j’s are zero on cohomology, and there-
fore the same is true for µf .

We are ready to prove our main result:

Proof of Theorem 1.3. We will assume that ∆ = ∆max, i.e. ∆ is the maximal poly-
gon having ∆(1) as its interior. This is not a restriction: as soon as Cf ⊆ X∆ is a
smooth hyperplane section, this is also the case for the Zariski closure of ϕ∆max(Uf )
viewed inside X∆max , as explained in [6, §4]. Moreover, the statement of Theorem 1.3
only involves ∆(1), which is left unaffected.

We first deal with the case where X∆(1) is Gorenstein weak Fano, which by
Lemma 3.2 holds if and only if X∆ is Gorenstein weak Fano (because of our as-
sumption that ∆ is maximal). By Lemma 3.1 then also X is Gorenstein weak Fano,
and moreover P−K = P−K∆

. Now note that

P−K + ∆(1) = ∆.

Indeed, the inclusion ⊆ is obvious, while for the other inclusion it is enough to
prove that each vertex m of ∆ is in P−K + ∆(1). Let v, w be consecutive elements
of U(Σ) such that m = L(v, av) ∩ L(w, aw). By the proof of Lemma 2.1 we know
that m1 = L(v, av − 1) ∩ L(w, aw − 1) ∈ ∆(1), hence m = m0 + m1 ∈ P−K + ∆(1)

with m0 = L(v, 1) ∩ L(w, 1).
But then also

(P−K ∩ Z2) + (∆(1) ∩ Z2) = ∆ ∩ Z2

by [14, Thm 1.1], because the inner normal fan to P−K = P−K∆
coarsens that of ∆(1).

Indeed, it obviously coarsens the inner normal fan to ∆, which by Lemma 3.2 is
equal to the inner normal fan to ∆(1). But this precisely means that (8) is surjective,
so the maps µf are all trivial on the level of cohomology, and the conclusion follows
from Lemma 4.1.

As for the other case where |∂∆(1) ∩ Z2| ≥ g/2 + 1, the maps µf are trivial
for a much simpler reason, namely because the dimension c` of the domain or the
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dimension cg−1−` of the codomain (or both) is zero. This in turn follows from a
result due to Hering and Schenck, stating that min{ ` | cg−` 6= 0 } = |∂∆(1) ∩ Z2|;
see [15, Thm. IV.20] or [23].

We believe that the sum formula a` = b` + c` holds for a considerably larger
class of lattice polygons, although there are counterexamples (if there were not,
then this would have negative consequences for Green’s canonical syzygy conjecture,
as explained in Remark 5.6 in the next section). The smallest counterexample we
found lives in genus g = 12. Namely, consider f = x6 + y2 + x2y6 along with its
Newton polygon ∆ = conv{(0, 2), (6, 0), (2, 6)}. A computer calculation along the
lines of [4] shows that the graded Betti table of the canonical model of Cf is given
by

0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 0 0
1 0 45 231 550 693 399 69 0 0 0 0
2 0 0 0 0 69 399 693 550 231 45 0
3 0 0 0 0 0 0 0 0 0 0 1

while that of X∆(1) is given by

0 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 0 0 0 0
1 0 39 186 414 504 295 69 0 0 0
2 0 0 0 0 1 105 189 136 45 6.

Here one sees that the exact sequence (4) for ` = 5 reads:

0→ 295→ 399→ 105
µf−→ 1→ 69→ 69→ 0.

So µf is not trivial in this case, but rather surjective onto its one-dimensional
codomain.

Another natural question is whether it is true in general that the graded Betti
table of C is independent of the coefficients of f , even if the sum formula does not
hold. In general one has for each ` = 1, . . . , g − 3 that

a` = b` + c` − dim imµf

and constancy holds if and only if dim imµf depends on ∆ and ` only. From (5)
it follows that, at least, there is no dependence on the coefficients ci,j that are
supported on ∆(1). In other words, only the coefficients that are supported on the
boundary might a priori matter. A consequence of this observation is that constancy
of the graded Betti table holds for primitive lattice triangles, i.e. lattice triangles
without lattice points on the boundary, except for the three vertices. Indeed, using
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a transformation of the form f ← γf(αx, βy), with α, β, γ ∈ k \{0}, one can always
arrange that the three coefficients supported on the vertices (i1, j1), (i2, j2), (i3, j3)
are all 1. This means that a` = b` + c` − dim im (µi1,j1 + µi2,j2 + µi3,j3), regardless
of the coefficients of f .

5 Connections with Green’s conjecture

Let C be a smooth projective non-hyperelliptic curve over k of genus g ≥ 4, and
assume that it is canonically embedded in Pg−1. Green in [12] showed that the
number of leading zeros on the quadratic strand of the graded Betti table of C is at
most its Clifford index ci(C). The so-called canonical syzygy conjecture, or Green’s
conjecture, predicts that equality holds. More precisely, if we denote the graded
Betti table of C as in (2), then the conjecture can be phrased as follows:

Conjecture 5.1 (Green).

min{` | ag−` 6= 0} = ci(C) + 2.

Returning to our smooth curve Cf of genus g = |∆(1) ∩ Z2|, where as before we
assume that ∆(1) is two-dimensional and contains at least 4 lattice points, we recall
that its canonical model lives inside X∆(1) ⊆ Pg−1. The aim of this section is to tie
Green’s conjecture to a conjecture that we stated in a previous paper [8, Conj. 1.6],
concerning the length of the linear strand of the graded Betti table of a projectively
embedded toric surface. In the particular case of X∆(1) , it reads:

Conjecture 5.2 (see [8]). Assume that ∆(1) 6∼= Υ. Denoting the graded Betti table
of X∆(1) ⊆ Pg−1 as in (3), we have that

min{` | bg−` 6= 0} =





lw(∆(1)) + 1 if ∆(1) ∼= (d− 3)Σ for some d ≥ 5,

lw(∆(1)) + 1 if ∆(1) ∼= 2Υ,

lw(∆(1)) + 2 in all other cases.

In [8] we proved that the right hand side always gives an upper bound, and that
the conjecture is true for g ≤ 32 (through a computer verification).

The connection between both conjectures is as follows.

Lemma 5.3. If Conjecture 5.1 holds for smooth irreducible hyperplane sections
Cf ⊆ X∆ then Conjecture 5.2 correctly predicts the length of the linear strand of the
graded Betti table of X∆(1). Moreover, if |∂∆(1) ∩ Z2| ≥ lw(∆(1)) + 2, then also the
converse implication holds.
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Remark 5.4. Note that if ∆(1) ∼= Υ then Conjecture 5.2 is tautologically true, while
Conjecture 5.1 is known to hold for curves of genus g = NΥ = 4. Therefore we
ignore this case in the proofs below.

Proof. Note that the right hand sides of the equalities in Conjecture 5.1 and Con-
jecture 5.2 agree by Theorem 1.2. Let us denote this common quantity by γ.

First assume that Conjecture 5.1 holds for some smooth irreducible hyperplane
section Cf ⊆ X∆. To deduce Conjecture 5.2 for X∆(1) , it suffices to prove that
bg−(γ−1) = 0. This follows from the fact that ag−(γ−1) = 0, along with the exact
sequence (4) for ` = g − (γ − 1).

For the other implication we need to show that ag−(γ−1) = 0. Since bg−(γ−1) = 0
by assumption, thanks to (4) it suffices to show that cg−(γ−1) = 0. But this
follows from Hering and Schenck’s aforementioned result [15, Thm. IV.20] that
min{` | cg−` 6= 0} = |∂∆(1) ∩ Z2|. Because of the stated inequality, we have that

γ − 1 ≤ lw(∆(1)) + 1 ≤ |∂∆(1) ∩ Z2| − 1,

hence indeed cg−(γ−1) = 0.

As a first application, we find:

Corollary 5.5. Green’s conjecture holds for all smooth curves on toric surfaces of
genus g ≤ 32.

Proof. In view of Remark 1.1 it suffices to prove the conjecture for curves of the form
Cf ⊆ X∆. Now, as mentioned, our Conjecture 5.2 has been verified computationally
for all interior lattice polygons ∆(1) having at most 32 lattice points. Another
computation shows that in this range, up to unimodular equivalence the only interior
lattice polygon ∆(1) that does not satisfy the inequality |∂∆(1) ∩Z2| ≥ lw(∆(1)) + 2
is ∆(1) = Υ. Thus the claim follows from Lemma 5.3.

Remark 5.6. It is not so easy to find interior lattice polygons for which the inequality
|∂∆(1) ∩ Z2| ≥ lw(∆(1)) + 2 does not hold. Here the condition of being interior
is crucial: if we omit this assumption, it is trivial to find counterexamples (e.g.
the primitive lattice triangles that we encountered at the end of Section 4 can
have arbitrarily large lattice width). The smallest interior counterexample that
we encountered is ∆(1) where ∆ = conv{(4, 0), (0, 10), (10, 4)}. This concerns a
9-gon without extra points on the boundary, satisfying g = |∆(1) ∩ Z2| = 36 and
lw(∆(1)) = 8, see Figure 1. If we want to check Green’s conjecture for this specific
polygon ∆, we need to show that a27 = 0 (since g − (γ − 1) = 27). Using the
algorithm from [8] we checked that b27 = 0, therefore Conjecture 5.2 holds in this
case. On the other hand c27 6= 0 by Hering and Schenck’s result, so we cannot use
(4) to conclude that a27 = 0. In fact if the sum formula a27 = b27 + c27 from the
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∆

Figure 1: Counterexample to the inequality |∂∆(1) ∩ Z2| ≥ lw(∆(1)) + 2

statement of Theorem 1.3 would be true in this case (which we do not believe it is),
then from c27 6= 0 it would follow that a27 6= 0 and hence that Green’s conjecture is
false!

As a second application, we use known cases of Green’s conjecture to deduce
new cases of Conjecture 5.2. Here the main input is due to Lelli-Chiesa, who
proved Green’s conjecture for curves on smooth rational surfaces, modulo certain
assumptions, the most restrictive one being the existence of an anticanonical pencil.
Let us state her result more precisely, adapting the notation to our specific case of
curves of the form Cf ⊆ X∆. Because the ambient surface needs to be smooth, as in
Section 2 we let X → X∆ be the minimal toric resolution of singularities and write
C ′ for the pull-back of Cf . Again we let Df = C ′−div(f) and consider the canonical
divisor K = −∑vDv, where v ranges over the set U(Σ) of primitive generators of
the rays of the fan Σ of X.

Theorem 5.7 (see [19]). Assume that the following conditions are satisfied:

• L = Df +K is big and nef,

• h0(X,−K) ≥ 2,

• if h0(X,−K) = 2, then the Clifford index of a general curve C ∈ |Df | is not
computed by restricting the anticanonical divisor to C.

Then Green’s conjecture is true for Cf .

Note that the second condition can be rephrased as |P−K ∩ Z2| ≥ 2. The first
condition is automatically satisfied for toric surfaces: L is nef because of Lemma
2.1 and big because ∆(1) is two-dimensional. The next two lemma’s show that also
the third condition is void in our case.

Lemma 5.8. Let X be a toric surface with h0(X,−K) = 2. If ∆ = PD is the
polygon of a torus-invariant nef Cartier divisor D on X, then lw(∆) < |∂∆ ∩ Z2|.
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Proof. The fact that D is nef and Cartier ensures that ∆ is a lattice polygon. Now
there is a non-zero lattice point m0 ∈ P−K and by using a unimodular transforma-
tion if needed, we can assume that m0 = (1, 0). Let y1 (resp. y2) be the minimum
(resp. maximum) of the second coordinates of the points of ∆. For all v ∈ U(Σ),
we have that 〈m0, v〉 ≥ −1, hence the first coordinate of each v ∈ U(Σ) is at least
−1. Consider an edge e at the right hand side of ∆, i.e. an edge whose inner normal
vector has a strictly negative first coordinate. Then the corresponding v ∈ U(Σ)
must have first coordinate equal to −1. Hence, if e intersects a horizontal line at
integral height, then this point of intersection is a lattice point. As a consequence
|∂∆ ∩ Z2| > y2 − y1 ≥ lw(∆).

Lemma 5.9. Let X be a smooth toric surface with h0(X,−K) = 2. Let D be a
torus-invariant nef divisor on X such that D+K is big and nef. Then for a general
curve C ∈ |D| the Clifford index is not computed by −K|C.

Proof. Note that all divisors are Cartier because of the smoothness assumption.
Denote the (lattice) polygon PD corresponding to D by ∆. The short exact sequence
0→ OX(−D −K)→ OX(−K)→ OC(−K|C)→ 0 yields the long exact sequence

0→ H0(X,−D −K)→ H0(X,−K)→ H0(C,−K|C)→ H1(X,−D −K)→ . . .

Since D+K is big and nef, the polygon PD+K = ∆(1) is two-dimensional and we have
that h0(X,−D−K) = h1(X,−D−K) = 0 by Batyrev-Borisov vanishing. It follows
that h0(C,−K|C) = h0(X,−K) = 2. Hence, the divisor −K|C gives rise to a linear
system on C of rank r = h0(C,−K|C) − 1 = 1 and degree

∑
v∈U(Σ) deg(Dv|C) =

|∂∆ ∩ Z2|. Now if the Clifford index of C would be computed by −K|C , then
we would have ci(C) = |∂∆ ∩ Z2| − 2. On the other hand, by Theorem 1.2 and
Lemma 5.8, we have that ci(C) ≤ lw(∆(1)) ≤ lw(∆) − 2 < |∂∆ ∩ Z2| − 2, a
contradiction.

We can now conclude:

Corollary 5.10. If
|P−K

∆(1)
∩ Z2| ≥ 2,

then Conjecture 5.2 correctly predicts the length of the linear strand of the graded
Betti table of X∆(1).

Proof. Because the statement only involves ∆(1), we can assume that ∆ is maximal.
Using a unimodular transformation if needed, we can also assume that (1, 0) is
contained in the polygon associated to −K∆(1) , which implies, as in the proof of
Lemma 5.8, that all inner normal vectors to ∆(1) having a strictly negative first
coordinate must be of the form (−1, b) for some b ∈ Z. But then the same must
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be true for ∆ = ∆max, which is obtained from ∆(1) by moving out the edges over
an integral distance 1. Then it is not hard to see that the minimal toric resolution
of singularities X → X∆ is obtained by inserting rays whose primitive generators
are of the form (a, b) with a ≥ −1. In other words (1, 0) ∈ P−K , and therefore
we can apply Lelli-Chiesa’s theorem to conclude that Green’s conjecture is true for
any smooth hyperplane section Cf ⊆ X∆. The conclusion now follows from Lemma
5.3.

As a special case we find that Conjecture 5.2 is true if X∆(1) is Gorenstein weak
Fano.
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A combinatorial interpretation for Schreyer’s
tetragonal invariants

Wouter Castryck and Filip Cools

Abstract

Schreyer has proved that the graded Betti numbers of a canonical tetrago-
nal curve are determined by two integers b1 and b2, associated to the curve
through a certain geometric construction. In this article we prove that in the
case of a smooth projective tetragonal curve on a toric surface, these integers
have easy interpretations in terms of the Newton polygon of its defining Lau-
rent polynomial. We can use this to prove an intrinsicness result on Newton
polygons of small lattice width.

MSC2010: Primary 14H45, Secondary 14M25

1 Introduction

Let k be an algebraically closed field of characteristic 0 and let T2 = (k∗)2 be the
two-dimensional torus over k. Let ∆ ⊂ R2 be a two-dimensional lattice polygon
and consider the associated toric surface Tor(∆) over k, i.e. the Zariski closure of
the image of

ϕ∆ : T2 ↪→ P](∆∩Z2)−1 : (α, β) 7→ (αiβj)(i,j)∈∆∩Z2 .

Let
f =

∑

(i,j)∈Z2

ci,jx
iyj ∈ k[x±1, y±1]

be an irreducible Laurent polynomial and consider its Newton polygon

∆(f) = conv
{

(i, j) ∈ Z2
∣∣ ci,j 6= 0

}
.

Let Uf ⊂ T2 be the curve cut out by f . We say that f is ∆-non-degenerate if
∆(f) ⊂ ∆ and for every face τ ⊂ ∆ (vertex, edge, or ∆ itself) the system

fτ =
∂fτ
∂x

=
∂fτ
∂y

= 0
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has no solutions in T2. Here

fτ =
∑

(i,j)∈τ∩Z2

ci,jx
iyj.

For a fixed instance of ∆ and given that ∆(f) ⊂ ∆, the condition of ∆-non-
degeneracy is generically satisfied. It implies that the Zariski closure Cf of ϕ∆(Uf )
inside Tor(∆) is non-singular. A curve that is isomorphic to Cf for some ∆-non-
degenerate Laurent polynomial is in turn called ∆-non-degenerate.

Non-degenerate curves form an attractive class of objects from the point of view
of explicit algebraic geometry. On the one hand they vastly generalize well-known
families such as elliptic curves, hyperelliptic curves, trigonal curves1, smooth plane
curves, Ca,b curves, . . . covering a much broader range of geometric situations.
On the other hand they remain very tangible, because many important geometric
invariants can be told by simply looking at the combinatorics of ∆. Two notable
instances are:

• the (geometric) genus g, which equals ](∆(1) ∩ Z2), where ∆(1) is the convex
hull of the interior lattice points of ∆; see [10];

• the gonality γ, which equals lw(∆), except if ∆ ∼= 2Υ or ∆ ∼= dΣ for some
d ≥ 2, where

Υ = conv{(−1,−1), (1, 0), (0, 1)} and Σ = conv{(0, 0), (1, 0), (0, 1)},
in which case it equals lw(∆) − 1; here lw denotes the lattice width, and ∼=
indicates unimodular equivalence; see [4, Lem. 6.2]. (Shorter characterization:
γ = lw(∆(1)) + 2 except if ∆ ∼= 2Υ in which case γ = 3.)

Similar interpretations exist for the Clifford index and the Clifford dimension [4, §8],
and in some cases for the minimal degree of a plane model [6]. The current paper
extends the list of combinatorial features of non-degenerate curves, by focusing on
tetragonal curves. Namely, we give the following interpretation for the invariants b1

and b2, as introduced by Schreyer in [14, (6.2)]. The definition of these invariants
will be recalled in Section 2 below.

Theorem 1. Let C be a tetragonal ∆-non-degenerate curve. Then Schreyer’s cor-
responding set of invariants {b1, b2} is given by

{
](∂∆(1) ∩ Z2)− 4 , ](∆(2) ∩ Z2)− 1

}
.

1Strictly spoken, there do exist trigonal curves that are not non-degenerate; for example see [4,
Lem. 4.4]. But all trigonal curves are ‘morally’ non-degenerate, in the sense that they can always
be embedded in a toric surface, which is sufficient for most applications. See also the remark at
the end of this section.
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Here ∂ denotes the boundary and ∆(2) = ∆(1)(1) is the convex hull of the interior
lattice points of ∆(1).

Example 2. The Laurent polynomial f = 1 + y2 − x6y2 + x6y4 ∈ C[x, y] is ∆-non-
degenerate, where ∆ is as follows.

The dashed lines indicate ∆(1). One verifies, purely by looking at the Newton
polygon, that Cf is a tetragonal curve of genus 9 with b1 = b2 = 2. (In view of
[4, Cor. 6.3, Thm. 9.1], one can even say that it carries a unique g1

4, whose scrollar
invariants read 1, 1, 4; see Remark 2 below for more background on this terminology.)

Schreyer’s invariants are known to determine the Betti diagram of the canonical
ideal, and vice versa [14, (6.2)]. In particular, Theorem 1 implies that in the tetrag-
onal case, the Betti diagram is combinatorially determined. We believe that this
holds in much greater generality (work in progress).

A second aim of this paper is to initiate a discussion on the intrinsicness of ∆.
Namely, given the many geometric invariants that are encoded in the Newton poly-
gon, one might wonder to what extent it is possible to reconstruct ∆ from the
abstract geometry of a given ∆-non-degenerate curve Cf . The best one can hope
for is to find back ∆ up to unimodular equivalence, because unimodular transforma-
tions correspond to automorphisms of T2. Another relaxation is that (usually) one
can only expect to recover ∆(1), rather than all of ∆. For example, let f ∈ k[x, y]
be dΣ-non-degenerate for some integer d ≥ 2 and let (x0, y0) ∈ Uf be sufficiently
generic. Then f ′ = f(x+x0, y+ y0) is ∆-non-degenerate, where ∆ is obtained from
dΣ by clipping off the point (0, 0). In this case ∆ 6∼= dΣ, while clearly Cf ∼= Cf ′ .
More generally, pruning a vertex off a lattice polygon ∆ without affecting its inte-
rior boils down to forcing the curve through a certain non-singular point of Tor(∆),
which is usually not intrinsic. One is naturally led to the following question.

Question 3 (intrinsicness). Let ∆,∆′ be two-dimensional lattice polygons for which
there exists a curve that is both ∆-non-degenerate and ∆′-non-degenerate. Does it
follow that ∆(1) ∼= ∆′(1)?

Our conjecture is that for ‘most’ pairs of polygons the answer is yes. E.g., this is
known to be true as soon as
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(a) ∆(1) is one-dimensional, because a ∆-non-degenerate curve is hyperelliptic of
genus g ≥ 2 if and only if ∆(1)∩Z2 consists of g collinear points [11, Lem. 3.2.9],

(b) ∆(1) = ∅ or ∆(1) ∼= (d − 3)Σ for some integer d ≥ 3, because a ∆-non-
degenerate curve is abstractly isomorphic to a smooth plane curve if and only
if ∆(1) is a multiple of the standard simplex (up to equivalence) [4, Cor. 8.2].

(c) ∆(1) ∼= [0, a] × [0, b] for some integers a ≥ b ≥ −1 with (a + 1)(b + 1) 6= 4,
because a ∆-non-degenerate curve of genus g 6= 4 can be embedded in P1×P1

if and only if ∆(1) is a standard rectangle (up to equivalence); see [5]. The
assumption g 6= 4 is necessary: see the discussion following (d) below.

Let us indicate why we expect Question 3 to have an affirmative answer for many
more instances of ∆, while gathering some material that will be needed in Section 2.
Our starting point is a theorem by Khovanskii [10], stating that there exists a canon-
ical divisor K∆ on Cf such that a basis for the Riemann-Roch space H0(Cf , K∆) is
given by {

xiyj
}

(i,j)∈∆(1)∩Z2 . (1)

Here x, y are to be viewed as functions on Cf through ϕ∆. Note that one recovers
the statements that g = ](∆(1) ∩Z2) and that Cf is hyperelliptic if and only if ∆(1)

is one-dimensional; see [7, Lem. 5.1] for more details. If ∆(1) is two-dimensional,
then Khovanskii’s theorem implies that the canonical model Ccan

f of Cf satisfies

Ccan
f ⊂ Tor(∆(1)) ⊂ Pg−1.

But surfaces of the form Tor(∆(1)) are very special. Most notably, they are of low
degree, and they are generated by binomials. The idea is that they are so special
that there is room for at most one such surface containing Ccan

f . This idea is not
always true, but the exceptions seem rare. If it is true, then the following general
and seemingly new statement allows one to recover ∆(1). A proof will be given in
Section 3.

Theorem 4. Let ∆,∆′ be two-dimensional lattice polygons with

](∆ ∩ Z2)− 1 = ](∆′ ∩ Z2)− 1 = N,

and suppose that Tor(∆),Tor(∆′) ⊂ PN can be obtained from one another using a
projective transformation. Then ∆ ∼= ∆′.

Using this, we can immediately extend the above list to the case where

(d) ](∆(1) ∩ Z2) ≥ 5 and ∆(2) = ∅, which holds if and only if Cf is trigonal of
genus g ≥ 5, or isomorphic to a smooth plane quintic [4, §8]. In this case
Tor(∆(1)) can be characterized as the unique irreducible surface containing
Ccan
f that is generated by quadrics. Indeed, the fact that it is generated by

quadrics follows from [12], while uniqueness follows from Petri’s theorem [13].
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The above argument breaks down in the genus 4 case where ∆ ∼= 2Υ, because
Tor((2Υ)(1)) = Tor(Υ) is not generated by quadrics. And indeed, using this, it is not
hard to cook up examples of (2Υ)-non-degenerate curves that are non-degenerate
with respect to [0, 3]× [0, 3], and also of (2Υ)-non-degenerate curves that are non-
degenerate with respect to conv{(0, 0), (4, 0), (0, 2)}. (See §5.6 of our unpublished
arXiv paper 1304.4997 for an extended discussion; see also Example 13 below.)

In Section 2 we will give a similar but more complicated recipe for recovering
Tor(∆(1)) in most tetragonal cases. More precisely, we extend the list with the
situation where

(e) lw(∆(1)) = 2 and ](∂∆(1) ∩ Z2) ≥ ](∆(2) ∩ Z2) + 5, which holds if and only if
Cf is tetragonal and b1 ≥ b2 + 2. In this case Tor(∆(1)) can be characterized
as the unique surface containing Ccan

f that is linearly equivalent to 2H − b1R,
when viewed as a divisor inside the scroll spanned by a g1

4.

More explanation will be given in Section 4. Of course, in establishing this, we will
make extensive use of Theorem 1 and its proof.

Remark 5. Even though we formulate our results in terms of non-degenerate curves,
they remain valid for the slightly more general class of arbitrary smooth curves
in toric surfaces. Indeed, to a smooth (non-torus-invariant) curve C in a toric
surface ϕ : T2 ↪→ X one can always associate a ‘defining Laurent polynomial’
f ∈ k[x±1, y±1], by which we mean a generator of the ideal of ϕ−1C. It is well-
defined up to multiplication by cxiyj for some c ∈ k∗ and (i, j) ∈ Z2. One then just
proceeds with f and ∆ = ∆(f), as if f were ∆-non-degenerate. We refer to [4, §4]
for a more extended discussion.

Acknowledgement.

This research was carried out in the framework of Research Project G093913N of
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2 Schreyer’s tetragonal invariants

Let C/k be a tetragonal curve of genus g ≥ 5 and assume it to be canonically
embedded in Pg−1. Fix a gonality pencil g1

4 on C and consider

S =
⋃

D∈g1
4

〈D〉 ⊂ Pg−1,

where 〈D〉 ⊂ Pg−1 denotes the linear span of D. One can show that S is a rational
normal threefold scroll whose type we denote by (e1, e2, e3), where we assume 0 ≤
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e1 ≤ e2 ≤ e3. One has degS = e1 + e2 + e3 = g − 3, and S is non-singular if and
only if e1 > 0. If e1 = 0 then the singularities are resolved by the natural map
µ : P(E) → S, where E is the locally free sheaf O(e1) ⊕ O(e2) ⊕ O(e3) on P1; if
e1 > 0 then µ is an isomorphism. The Picard group of P(E) is freely generated by
the hyperplane class H = [µ∗(O(1))] and the ruling class R consisting of the fibers
of the projection π : P(E)→ P1. The following intersection-theoretic identities hold:
H3 = g − 3, H2 · R = 1 and R2 = 0. For more general background and references,
see [4, §9] and [14, §2-4].

Remark 6. The numbers e1, e2, e3 are called the scrollar invariants of C with respect
to our g1

4.

Now let C ′ be the strict transform under µ of our canonical curve C ⊂ S. Schreyer
proved that C ′ is the complete intersection of surfaces Y and Z in P(E), with
Y ∼ 2H − b1R, Z ∼ 2H − b2R, b1 + b2 = g − 5 and −1 ≤ b2 ≤ b1 ≤ g − 4. He
moreover showed that b1, b2 are invariants of the curve: they depend neither on the
canonical embedding, nor on the choice of the g1

4, nor on the choice of Y and Z. If
b1 > b2, which is automatic if g is even, then Y is in fact unique, and µ(Y ) ⊂ Pg−1 is
independent of the chosen g1

4. For these particular statements we refer to [14, (6.2)].

The goal of this section is to prove the combinatorial interpretation for Schreyer’s
invariants b1, b2 stated in Theorem 1. Using the abbreviations

B = ](∂∆(1) ∩ Z2)− 4, B(1) = ](∆(2) ∩ Z2)− 1,

we will in fact show:

Theorem 7. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton
polygon ∆ = ∆(f), and suppose that Cf is tetragonal. Then its invariants b1, b2

statisfy {b1, b2} = {B,B(1)}. If moreover B > B(1) then the surface µ(Y ) associated
to the canonical model Ccan

f from Section 1 equals Tor(∆(1)).

Proof. The assumption that Cf is tetragonal is equivalent to lw(∆(1)) = 2 and
∆ 6∼= 2Υ. We can also suppose that ∆ 6∼= 5Σ, because this case can be reduced to

∆ ∼= conv{(1, 0), (5, 0), (0, 5), (0, 1)}

by means of a coordinate transformation, as explained in the discussion preceding
Question 3. By [4, Lem. 5.2] we can therefore suppose that

∆(1) ⊂
{

(X, Y ) ∈ R2 | 0 ≤ Y ≤ 2
}

and ∆ ⊂
{

(X, Y ) ∈ R2 | − 1 ≤ Y ≤ 3
}
.
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Then the projection map Uf → T1 : (x, y) 7→ x has degree 4, i.e. it gives rise to a
g1

4 on Cf . As remarked in Section 1, the canonical model Ccan
f obtained using the

basis (1) of H0(Cf , K∆) satisfies

Ccan
f ⊂ Tor(∆(1)) ⊂ Pg−1.

The scroll S corresponding to our g1
4 is easily seen to be the Zariski closure of the

image of the map

T3 ↪→ Pg−1 : (α, β, γ) 7→
(
(αi)(i,0)∈∆(1)∩Z2 : (βαi)(i,1)∈∆(1)∩Z2 : (γαi)(i,2)∈∆(1)∩Z2

)
.

(Note that the scrollar invariants e1, e2, e3 are precisely the numbers

]{(i′, j′) ∈ ∆(1) ∩ Z2 | j′ = j} − 1

for j = 0, 1, 2, up to order; for a generalization of this observation, see [4, §9].)
Moreover, one verifies that S contains Tor(∆(1)), i.e. the above chain of inclusions
extends to

Ccan
f ⊂ Tor(∆(1)) ⊂ S ⊂ Pg−1.

Now let µ : P(E) → S be as above and denote by C ′ the strict transform of Ccan
f

under µ. Similarly, denote by T ′ the strict transform of Tor(∆(1)). Write the divisor
class of T ′ as aH + bR with a, b ∈ Z. Let F be the fiber of π above α ∈ T1 ⊂ P1.
Then µ(F ) is a P2 whose intersection with Tor(∆(1)) has β = y and γ = y2 as
parameter equations on T2 ⊂ P2. In particular this intersection is a conic, so we
have that

a = (aH + bR) ·H ·R = T ′ ·H ·R = 2.

Next, we compute the intersection product T ′ ·H2 in two ways. On the one hand we
find the degree of Tor(∆(1)), which equals 2Vol(∆(1)) because the Hilbert polynomial
of Tor(∆(1)) equals the Ehrhart polynomial of ∆(1), see [8, Prop. 9.4.3]. On the other
hand one has

T ′ ·H2 = (2H + bR) ·H2 = 2(g − 3) + b.

We obtain that b = 2Vol(∆(1)) − 2(g − 3) = −B, where the latter equality follows
from Pick’s theorem. In conclusion, T ′ ∼ 2H −BR. Now

• if Y = T ′ then it is immediate that b1 = B and, consequently, b2 = B(1),

• if Y 6= T ′ then if we intersect Y ∼ 2H − b1R and T ′ ∼ 2H −BR on P(E), we
obtain a (possibly reducible) curve whose image under µ has degree

H ·(2H−BR) ·(2H−b1R) = 4(g−3)−2b1−2B ≤ 4(g−3)−2(g−5) = 2g−2.

This follows from 2b1 ≥ b1 +b2 = g−5 and 2B ≥ B+B(1) = g−5 if B ≥ B(1),
and from 2b1 ≥ b1 + b2 + 1 = g − 4 and 2B = g − 6 if B < B(1); see Lemma 9
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below. In both cases, if either one of the inequalities would be strict, then
we would run into a contradiction because C ′ is contained in this intersection
(and µ(C ′) = Ccan

f , being a canonical curve, has degree 2g − 2). We conclude

that b1 = b2 = B = B(1) = g−5
2

or b1 = B(1) = g−4
2

and b2 = B = g−6
2

.

All conclusions follow.

Remark 8. Assume that Cf is not isomorphic to a smooth plane quintic, i.e. ∆(1) 6∼=
2Σ. Then by Petri’s theorem [13] the ideal of Ccan

f is generated by quadrics. In this
case we can construct (instances of) Schreyer’s surfaces Y, Z ⊂ P(E) in a concrete
way, by explicitly giving the defining equations of µ(Y ), µ(Z) ⊂ S. Indeed, by [3,
Thm. 4] the ideal of Ccan

f is minimally generated by quadrics

b1, . . . , br, b
′
1 . . . , b

′
s,F2,w1 , . . . ,F2,wt ,

where

• the r =
(
g−3

2

)
binomials bi generate I(S),

• the s = (4g − 6)− ](2∆(1) ∩ Z2) binomials b′i cut Tor(∆(1)) out in S,

• t = ](∆(2) ∩ Z2) = B(1) + 1 and the quadrics F2,wi
are constructed in the

explicit manner described in [3]. Note that there is some freedom in the way
these quadrics arise.

Then if Ff ⊂ P(E) denotes the strict transform under µ of the joint zero locus of the
quadrics F2,wi

, one can verify that Ff ∼ 2H − B(1)R, so that one can take Y = T ′

and Z = Ff if B ≥ B(1), and Y = Ff and Z = T ′ if B < B(1).

We end this section by explicitly listing the lattice polygons for which B ≤ B(1).
We will need the following property of two-dimensional lattice polygons of the form
∆(1). An edge τ of a two-dimensional lattice polygon Γ is always supported on a
line aτX + bτY = cτ with aτ , bτ , cτ ∈ Z and aτ , bτ coprime. When signs are chosen
appropriately, we can assume that Γ is contained in the half-plane aτX + bτY ≤ cτ .
Then the line aτX + bτY = cτ + 1 is called the outward shift of τ . It is denoted
by τ (−1), and the polygon (which may take vertices outside Z2) that arises as the
intersection of the half-planes aτX + bτY ≤ cτ + 1 is denoted by Γ(−1). If Γ = ∆(1)

for some lattice polygon ∆, then the outward shifts of two adjacent edges of Γ al-
ways intersect in a lattice point, and in fact Γ(−1) = ∆(1)(−1) is a lattice polygon.
Moreover, ∆ ⊂ ∆(1)(−1), i.e. ∆(1)(−1) is the maximal lattice polygon with respect to
inclusion for which the convex hull of the interior lattice points equals ∆(1). See [9,
§4] or [11, §2.2] for proofs.
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Even though the following statement is purely combinatorial, given its geometric
interpretation, it is natural to abbreviate g = ](∆(1) ∩ Z2). Similarly, we will write
g(1) = ](∆(2) ∩ Z2).

Lemma 9. Let ∆ be a lattice polygon with lw(∆(1)) = 2. Then we have:

• B < B(1) if and only if

∆(1) ∼= Γ4k+4 := conv {(0, 0), (k, 0), (2k + 2, 1), (k + 1, 2), (1, 2)}

for some integer k ≥ 0. In this case g = 4k + 4, B = 2k − 1 and B(1) = 2k.

• B = B(1) if and only if either

∆(1) ∼= Γm4k+5 := conv {(0, 0), (k, 0), (2k + 2, 1), (k +m, 2), (m, 2), (0, 1))}

for some integers k ≥ 0 and 0 ≤ m ≤ k + 2 (in these cases, g = 4k + 5 and
B = B(1) = 2k), or

∆(1) ∼= Γ4k+3 := conv {(0, 0), (k, 0), (2k + 1, 1), (k + 1, 2), (1, 2)}

for some integer k ≥ 1 (in this case, g = 4k + 3 and B = B(1) = 2k − 1), or

∆(1) ∼= Γ4k+1 := conv {(0, 0), (k, 0), (2k, 1), (k, 2), (1, 2)}

for some integer k ≥ 2 (in this case, g = 4k + 1 and B = B(1) = 2k − 2).

Proof. First we consider the polygons with g(1) equal to 0 and 1 separately. If
g(1) = 0 then ∆(1) ∼= 2Σ, hence B = 2 > B(1) = −1. If g(1) = 1 then B(1) = 0, hence
B ≤ B(1) if and only if g ≤ 5. It is easy to check that there is one such polygon in
genus 4 (namely ∆ ∼= 2Υ, so ∆(1) ∼= Υ = Γ4) and three such polygons in genus 5
(corresponding to ∆(1) ∼= Γ0

5,Γ
1
5,Γ

2
5). Each of these appear in the classification.

If g(1) ≥ 2, we can use Koelman’s classification [11, Section 4.3] of lattice poly-
gons Γ with lattice width 2. One can assume that Γ = ∆(1) is contained in the strip
{(X, Y ) ∈ R2 | 0 ≤ Y ≤ 2}. Koelman subdivided these polygons into three types:

• Type 0: there is no boundary lattice point of Γ with Y = 1.
Then up to equivalence Γ = ∆(1) is of the form

(1, 2)

(0, 0)

(1 + 2g(1) − k, 2)

(k, 0)

(1, 1) (g(1), 1)
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with g(1) ≤ k ≤ 2g(1). One sees that B = 2g(1) − 2 and B(1) = g(1) − 1, so
B ≤ B(1) implies that g(1) ≤ 1: a contradiction.

• Type 1: there is one boundary lattice point of Γ with Y = 1.
Up to equivalence Γ = ∆(1) is of the form

(1, 2)

(0, 0)

(`+ 1, 2)

(k, 0)

(1, 1)

(g(1), 1)

with 0 ≤ k ≤ 2g(1) + 1 and
{

0 ≤ ` ≤ k if 0 ≤ k ≤ g(1),
0 ≤ ` ≤ 2g(1) − k + 1 if g(1) < k ≤ 2g(1) + 1.

Since moreover Γ is an interior lattice polygon we have that Γ(−1) takes its

vertices inside Z2, leading to the inequalities k ≥ g(1)−1
2

and ` ≥ g(1)−1
2

. For
this type, B = k + ` − 1 ≥ g(1) − 2 and B(1) = g(1) − 1. So if B ≤ B(1)

then either k = ` = g(1)−1
2

(and g = 4k + 4 ≡ 0 mod 4), or k = ` = g(1)

2
(and

g = 4k + 3 ≡ 3 mod 4), or k = g(1)+1
2

and ` = g(1)−1
2

(and g = 4k + 1 ≡
0 mod 4). We find back the polygons Γ4k+1,Γ4k+3,Γ4k+4 from the statement
of the lemma.

• Type 2: there are two boundary lattice points of Γ with Y = 1.
Up to equivalence Γ = ∆(1) is of the form

(m, 2)

(0, 0)

(m+ `, 2)

(k, 0)

(1, 1)

(g(1), 1)

with 0 ≤ m ≤ g(1) + 1, 0 ≤ k ≤ 2g(1) + 2− 2m and
{

0 ≤ ` ≤ k if 0 ≤ k ≤ g(1) + 1−m,
0 ≤ ` ≤ 2g(1) − k − 2m+ 2 if g(1) + 1−m < k ≤ 2g(1) + 2− 2m.

Since moreover Γ is an interior lattice polygon, we also get the inequalities

k ≥ g(1)−1
2

and ` ≥ g(1)−1
2

. If B ≤ B(1) then since B = k + ` ≥ g(1) − 1 = B(1),

we have that k = ` = g(1)−1
2

, B = B(1) = 2k and g = 4k + 5. So we get the
polygons Γm4k+5 from the statement.
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This concludes the proof.

Remark 10. For each lattice polygon Γ = Γg,Γ
m
g appearing in the statement of the

lemma, there is only one polygon ∆ for which ∆(1) = Γ, namely ∆ = Γ(−1). Note
that (Γ4)(−1) ∼= 2Υ and recall that a (2Υ)-non-degenerate curve is trigonal, rather
than tetragonal.

3 From toric surfaces to polygons

This section is devoted to proving Theorem 4. As an a priori remark, note that it is
important to impose that Tor(∆) and Tor(∆′) are obtained from one another using
a transformation of PN , rather than just isomorphic. For instance, let

∆ = conv{(0, 0), (3, 0), (3, 2), (0, 2)} and ∆′ = conv{(0, 0), (5, 0), (5, 1), (0, 1)},

then Tor(∆),Tor(∆′) ⊂ P11 are isomorphic (because their normal fans are the same),
but not projectively equivalent, as they have different degrees (6 resp. 5). Here
clearly ∆ 6∼= ∆′.

Proof. We assume familiarity with the theory of divisors on toric surfaces, along
the lines of [4, §3]. Notation-wise, we will write

• Σ∆ for the (inner) normal fan associated to a given two-dimensional lattice
polygon ∆, and

• ∆D for the polygon (well-defined up to translation) corresponding to a Weil
divisor (or a Cartier divisor, or an invertible sheaf) D on a given toric surface.

The proof then works as follows. Let ∆ and ∆′ be as in the statement of Theorem 4.
The projective transformation induces an automorphism Tor(∆) → Tor(∆) that
sends OTor(∆)(1) to OTor(∆′)(1). Because

∆ ∼= ∆OTor(∆)(1) and ∆′ ∼= ∆OTor(∆′)(1)

it suffices to prove the following general statement: if

ι : Tor(∆)
∼=−→ Tor(∆′)

is an isomorphism between two toric surfaces, and if D is a Weil divisor on Tor(∆),
then

∆D
∼= ∆ι(D).

Now it is known that two isomorphic toric varieties always admit a toric isomorphism
between them [1, Thm. 4.1], i.e. an isomorphism that is induced by a GL2(Z)-
transformation taking Σ∆ to Σ∆′ . It is clear that such an isomorphism preserves
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polygons (up to equivalence). Therefore we may assume that Σ∆ = Σ∆′ and that
ι is an automorphism of Tor(∆). Every such automorphism can be written as the
composition of

• a toric automorphism,

• the automorphism induced by the action of an element of T2,

• a number of automorphisms of the form eλv , where λ ∈ k and v ∈ Z2 is a
column vector of ∆, i.e. a primitive vector v for which there exists an edge
τ ⊂ ∆ such that u+ v ∈ ∆ for all u ∈ (∆ \ τ) ∩ Z2. To describe eλv explicitly,
assume that v = (0,−1) and that τ lies horizontally (the general case can
be reduced to this case by using an appropriate unimodular transformation).
Then Tor(∆) can be viewed as a compactification of T2∪ (x-axis) rather than
just T2. On T2 ∪ (x-axis), eλv acts as (x, y) 7→ (x, y + λ). The column vector
property ensures that this extends nicely to all of Tor(∆).

Example. Let ∆ = [0, 1]× [0, 1] and consider the map

ϕ : T2 ∪ (x-axis) ↪→ Tor(∆) : (x, y) 7→ (1, x, y, xy).

The point (x, y + λ) is mapped to (1 : x : y + λ : xy + λx). So here

eλ(0,−1) : (X0,0 : X1,0 : X0,1 : X1,1) 7→ (X0,0 : X1,0 : X0,1 + λX0,0 : X1,1 + λX1,0).

See [2, Thm. 3.2] for a proof of this statement, along with a more elaborate discus-
sion. Now the first type of automorphisms preserves polygons up to equivalence, as
before. The second type also preserves polygons because it preserves torus-invariant
Weil divisors. As for the third type, let Dτ be the torus-invariant prime divisor cor-
responding to the base edge τ of v. Then by adding a divisor of the form div(xiyj)
if needed, one can always find a torus-invariant Weil divisor that is equivalent to
D and whose support does not contain Dτ ; see [4, §4] for more details. But such a
divisor is preserved by eλv , hence the theorem follows.

4 Intrinsicness for tetragonal curves

We are ready to explain why intrinsicness holds for lattice polygons ∆ satisfying

lw(∆(1)) = 2 and B ≥ B(1) + 2,

that is, for the polygons of type (e) from the introduction. Let C be a ∆-non-
degenerate curve. Then it is a tetragonal curve (indeed, B ≥ B(1) + 2 implies
∆ 6∼= 2Υ) whose Schreyer invariants b1, b2 satisfy b1 ≥ b2 + 2. By Theorem 7 we
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find that Schreyer’s surface µ(Y ) ⊂ Pg−1 equals Tor(∆(1)). Now suppose that C
is also ∆′-non-degenerate for some two-dimensional lattice polygon ∆′. By the
tetragonality of C we have lw(∆′(1)) = 2. In analogy with the previous notation,
write

B′ = ](∂∆′(1) ∩ Z2)− 4, B′(1) = ](∆′(2) ∩ Z2)− 1,

so that
{
B′, B′(1)

}
= {b1, b2} by Theorem 7. It follows that either

B′ ≥ B′(1) + 2 or B′(1) ≥ B′ + 2.

But the latter is impossible by Lemma 9, which states that B′(1) is at most B′ + 1.
Therefore B′ > B′(1) and, again by Theorem 7, we find that µ(Y ) is given by
Tor(∆′(1)). We conclude that Tor(∆(1)) and Tor(∆′(1)) are equal, possibly modulo
a projective transformation. Intrinsicness now follows from Theorem 4.

This argument can be refined. For instance, in genus g 6≡ 0 mod 4 it suffices that
B ≥ B(1) + 1, because in this case Lemma 9 yields the sharper bound B′(1) ≤ B′.
In genus g ≡ 2 mod 4 one sees that this is automatically satisfied.

By pushing this type of reasoning, we obtain the following statement.

Theorem 11. Let ∆,∆′ be two-dimensional lattice polygons and let there be a curve
that is both ∆-non-degenerate and ∆′-non-degenerate. Suppose that lw(∆(1)) = 2
and define g = ](∆(1) ∩ Z2) = ](∆′(1) ∩ Z2).

• Case g ≡ 0 mod 4. If ∆(1),∆′(1) 6∼= Γg then ∆(1) ∼= ∆′(1). This is automatic if
](∂∆(1) ∩ Z2) ≥ ](∆(2) ∩ Z2) + 5.

• Case g ≡ 1 mod 4. If ∆(1),∆′(1) 6∼= Γmg for all 1 ≤ m ≤ (g + 3)/4 then

∆(1) ∼= ∆′(1). This is automatic if ](∂∆(1) ∩ Z2) ≥ ](∆(2) ∩ Z2) + 4.

• Cases g ≡ 2, 3 mod 4. Here one always has ∆(1) ∼= ∆′(1).

Proof. The cases g ≡ 0, 2 mod 4 follow along the above lines of thought. For the
case g ≡ 3 mod 4 one remarks that Schreyer’s invariants coincide if and only if
B = B(1), which by Lemma 9 happens if and only if ∆(1) ∼= ∆′(1) ∼= Γg. If not then
B ≥ B(1) + 1, and one proceeds as before.

The most subtle case is when g ≡ 1 mod 4. If g = 5 then Schreyer’s invariants
coincide if and only if ∆(1) ∼= ∆′(1) ∼= Γ0

5 (indeed, the polygons Γ1
5 and Γ2

5 appearing in
Lemma 9 were excluded in the statement), so this is analogous to the g ≡ 3 mod 4
case. If g > 5 then one draws the weaker conclusion that Schreyer’s invariants
coincide if and only if ∆(1) and ∆′(1) are among Γg and Γ0

g. To distinguish between
both cases, one notes that the scrollar invariants e1, e2, e3 are

g − 5

4
,
g − 1

4
,
g − 3

2
and

g − 5

4
,
g − 5

4
,
g − 1

2
,
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respectively. Here we implicitly used that our curve carries a unique g1
4 by [4,

Cor. 6.3], so it does make sense to talk about the scrollar invariants. We conclude
that ∆(1) ∼= ∆′(1) ∼= Γ0

g if the curve has two coinciding scrollar invariants, and that

∆(1) ∼= ∆′(1) ∼= Γg if not.

Remark 12. Note that the theorem remains valid if we replace ‘for all 1 ≤ m ≤
(g + 3)/4’ by ‘for all m ∈ {0, . . . , (g + 3)/4} \ {i}’, for whatever i.

Example 13. Let g ≥ 4 satisfy g ≡ 0 mod 4, and denote by ∆g the (unique) lattice

polygon for which ∆
(1)
g = Γg. Then it is possible that a ∆g-non-degenerate curve

is also non-degenerate with respect to a lattice polygon ∆′ for which ∆′(1) 6∼= Γg.
For instance, consider f = 1 − x2y4 − x g

2
+2y2 and f ′ = (y4 − 1)x

g
2

+1 + 4y2. Both
polynomials are non-degenerate with respect to their respective Newton polygons.
Note that ∆(f) ∼= ∆g and that ∆(f ′)(1) 6∼= Γg. Now the rational maps

Uf → Uf ′ : (x, y) 7→
(
x,

1− xy2

x
g
4

+1y

)

Uf ′ → Uf : (x, y) 7→
(
x,

2y

x
g
4

+1(1 + y2)

)

are inverses of each other, so Cf and Cf ′ are isomorphic. We conclude that Cf is
both ∆g-non-degenerate and ∆(f ′)-non-degenerate.

Example 14. We conjecture that for each g ≥ 5 with g ≡ 1 mod 4 and each 0 ≤
n,m ≤ (g+3)/4, there exists a curve that is both ∆n

g - and ∆m
g -non-degenerate. Here

∆n
g and ∆m

g are the unique lattice polygons having Γng and Γmg as their respective
interiors.

Loosely speaking, we believe that the following strategy for finding such a curve
always works (although we could not prove this). From Sections 1 and 2 we know
that the canonical model Ccan

f of a ∆n
g -non-degenerate curve Cf satisfies Ccan

f ⊂
Tor(Γng ) ⊂ S ⊂ Pg−1, where S is a rational normal scroll of type

(
g − 5

4
,
g − 5

4
,
g − 1

2

)
,

and that Ccan
f arises as the intersection of two surfaces Y and Z inside the class

2H − g − 5

2
R

(the role of µ, which is only relevant for g = 5, is ignored for the sake of exposi-
tion). Recall from Remark 8 that one can take Y = Tor(Γng ), and Z = Ff . The
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idea is to switch the role of Y and Z, in the sense that one chooses f such that
Ff = θ(Tor(Γmg )) for some θ ∈ Aut(S) ⊂ Aut(Pg−1). Because non-degeneracy is
generically satisfied, one expects θ−1(Y ) to be of the form Ff ′ for some ∆m

g -non-
degenerate Laurent polynomial f ′.

Explicit examples in genus g = 5 can be found in our unpublished arXiv paper
1304.4997. For g = 9 and {n,m} = {0, 3} we used the above approach to find that

∆0
9 ∆3

9

the ∆0
9-non-degenerate Laurent polynomial

f = 8x5y + 36x4y + 66x3y − x2y2 + 62x2y − x2 + 33xy + 9y − 2x−1y3 − 2x−1y2 − 4x−1y − 3x−1 − 3x−1y−1

and the ∆3
9-non-degenerate Laurent polynomial

f ′ = 2x5y3 + x5y2 − x5y − 6x4y − 15x3y + 2x2y2 − 14x2y + x2 − 15xy − 6y − x−1y + 3x−1 + 3x−1y−1

define birationally equivalent curves in T2. To describe the automorphism θ explic-
itly, we need to pick coordinates of Pg−1. When thought of as the ambient space of
Tor(Γ0

9), we will write

Pg−1 = ProjV with V = k[X0,0, X1,0, X0,1, X1,1, X2,1, X3,1, X4,1, X0,2, X1,2],

where Xi,j is the coordinate corresponding to the lattice point (i, j) ∈ Γ0
9 (the origin

is understood to be the bold-marked lattice point). Similarly, when thought of as
the ambient space of Tor(Γ3

9) we write

Pg−1 = ProjW with W = k[X0,0, X1,0, X0,1, X1,1, X2,1, X3,1, X4,1, X3,2, X4,2].

Then, on the level of coordinate rings, θ : V → W can be defined by



θ(X0,1)
θ(X1,1)
θ(X2,1)
θ(X3,1)
θ(X4,1)
θ(X0,2)
θ(X1,2)
θ(X0,0)
θ(X1,0)




=




1 4 6 4 1 0 0 0 0
1 5 9 7 2 0 0 0 0
1 6 13 12 4 0 0 0 0
1 7 18 20 8 0 0 0 0
1 8 24 32 16 0 0 0 0
1 1 0 0 0 1 1 1 1
1 2 0 0 0 1 2 1 2
0 0 0 1 1 2 2 3 3
0 0 0 1 2 2 4 3 6




·




X0,1

X1,1

X2,1

X3,1

X4,1

X3,2

X4,2

X0,0

X1,0




.

We leave it to the reader to verify that θ maps S to S and sends Tor(Γ3
9) to Ff and

Ff ′ to Tor(Γ0
9) (for an appropriate choice of defining equations for Ff and Ff ′).
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Intrinsicness of the Newton polygon for smooth
curves on P1 × P1

Wouter Castryck and Filip Cools

Abstract

Let C be a smooth projective curve in P1 × P1 of genus g 6= 4, and assume
that it is birationally equivalent to a curve defined by a Laurent polynomial
that is non-degenerate with respect to its Newton polygon ∆. Then we show
that the convex hull ∆(1) of the interior lattice points of ∆ is a standard
rectangle, up to a unimodular transformation. Our main auxiliary result,
which we believe to be interesting in its own right, is that the first scrollar
Betti numbers of ∆-non-degenerate curves are encoded in the combinatorics
of ∆(1), if ∆ satisfies some mild conditions.

MSC2010: Primary 14H45, Secondary 14J25, 14M25

1 Introduction

Let f ∈ k[x±1, y±1] be an irreducible Laurent polynomial over an algebraically
closed field k of characteristic zero and let U(f) be the curve it defines in the two-
dimensional torus T2 = (k∗)2. The Newton polygon ∆ = ∆(f) of f is the convex
hull in R2 of all the exponent vectors in Z2 of the monomials that appear in f with
a non-zero coefficient. We will always assume that ∆ is two-dimensional. We say
that f is non-degenerate with respect to its Newton polygon ∆ (or more briefly, f is
∆-non-degenerate) if and only if for each face τ ⊂ ∆ (including τ = ∆) the system

fτ =
∂fτ
∂x

=
∂fτ
∂y

= 0

does not have any solutions in T2. Here, fτ is obtained from f by only considering
the terms that are supported on τ . This condition is generically satisfied. Consider
the map

ϕ∆ : T2 → P](∆∩Z2)−1 : (x, y) 7→ (xiyj)(i,j)∈∆∩Z2 .
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The Zariski closure of its full image ϕ∆(T2) is a toric surface Tor(∆), while the
Zariski closure of ϕ∆(U(f)) is a hyperplane section Cf of Tor(∆), which is smooth
if f is non-degenerate. We will denote the projective coordinates of P](∆∩Z2)−1 by
Xi,j where (i, j) runs over ∆ ∩ Z2.

We say that a smooth curve C is ∆-non-degenerate if and only if it is birationally
equivalent to U(f) for a ∆-non-degenerate Laurent polynomial f . Note that if C is
moreover projective, then it is isomorphic to Cf . If C is ∆-non-degenerate, then a lot
of its geometric properties are encoded in the combinatorics of the lattice polygon
∆. For instance, its geometric genus g(C) equals the number of interior lattice
points of ∆ [10]. Similar interpretations were recently provided for the gonality
[3, 9], the Clifford index and dimension [3, 9], the scrollar invariants associated to
a gonality pencil [3] and Schreyer’s tetragonal invariants [5].

Given this long list, the following question (initiated in [5]) naturally arises: to
what extent can we recover ∆ from the geometry of a ∆-non-degenerate curve? At
least, we have to allow two relaxations to this question. First, we can only expect
to find back the polygon ∆ up to a unimodular transformation, i.e. an affine map
of the form

χ : R2 → R2 :

(
x
y

)
7→ A

(
x
y

)
+B

with A ∈ GL2(Z) and B ∈ Z2, since these maps correspond to automorphisms of T2.
Secondly, we can (usually) only hope to recover the convex hull of the interior lattice
points of ∆, denoted by ∆(1) (see [5] for an easy example demonstrating the need
for this relaxation). In fact, all the aforementioned combinatorial interpretations
are in terms of the combinatorics of ∆(1) rather than ∆ (e.g. g(C) = ](∆(1) ∩ Z2)).

Given a ∆-non-degenerate curve C, we say that the Newton polygon ∆ is in-
trinsic for C if and only if for all ∆′-non-degenerate curves C ′ that are birationally
equivalent to C, we have that ∆(1) ∼= ∆′(1). Hereby, we use ∼= to denote the uni-
modular equivalence relation. Before stating some intrinsicness results, we give
notations for some special lattice polygons:

�a,b = conv{(0, 0), (a, 0), (0, b), (a, b)} for a, b ∈ Z≥0,

Σ = conv{(0, 0), (1, 0), (0, 1)},
Υ = conv{(−1,−1), (1, 0), (0, 1)}.

The Newton polygon is intrinsic for all rational (∆(1) = ∅), hyperelliptic (∆(1) is one-
dimensional, and therefore determined by the genus) and trigonal curves of genus
at least 5 (∆(1) has lattice width 1, and is determined by the Maroni invariants).
However, there are trigonal curves of genus 4 for which ∆ is not intrinsic: there exist
curves which are non-degenerate with respect to polygons ∆ and ∆′, with ∆(1) = Υ
and ∆′(1) = �1,1. Intrinsicness of the Newton polygon for tetragonal curves was
studied in [5]: the Newton polygon ∆ is intrinsic if g(C) mod 4 ∈ {2, 3}, but it
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might occasionally be not intrinsic if g(C) mod 4 ∈ {0, 1}. From [3], it follows that
non-degenerate smooth plane curves of degree d ≥ 3 (∆(1) ∼= (d− 3)Σ) and curves
with Clifford dimension 3 (∆(1) ∼= 2Υ) have an intrinsic Newton polygon. Moreover,
a partial result was given for non-degenerate curves on Hirzebruch surfaces Hn: the
value n is intrinsic.

In this paper, we examine intrinsicness of ∆ for curves on P1×P1. Namely, we will
show that a ∆-non-degenerate curve C of genus g 6= 4 can be embedded in P1 × P1

(if and) only if ∆(1) = ∅ or ∆(1) ∼= �a,b for a, b ∈ Z≥0 satisfying g = (a + 1)(b + 1);
see Theorem 18 in Section 3. In order to prove this result, we give a combinatorial
interpretation for the first scrollar Betti numbers of ∆-non-degenerate curves with
respect to a gonality pencil, as soon as ∆ satisfies some mild conditions (see Section
2).

Notations. Let PN be a projective space with coordinates (X0 : . . . : XN). For
each projective variety V ⊂ PN , we write I(V ) ⊂ k[X0, . . . , XN ] to indicate the
homogeneous ideal of V and Id(V ) ⊂ I(V ) to indicate its homogeneous degree d
piece. If J ⊂ k[X0, . . . , XN ] is a homogeneous ideal, then Z(J) ⊂ PN is the zero
locus of the polynomials in J .

Acknowledgements. We would like to thank Christian Bopp, Marc Coppens
and Jeroen Demeyer for some interesting discussions. This research was supported
by Research Project G093913N of the Research Foundation - Flanders (FWO), by
the European Community’s Seventh Framework Programme (FP7/2007-2013) with
ERC Grant Agreement 615722 MOTMELSUM, and by the Labex CEMPI (ANR-
11-LABX-0007-01).

2 First scrollar Betti numbers

2.1 Definition

We start by recalling the definition and some properties of rational normal scrolls.
Let n ∈ Z≥2 and let E = O(e1) ⊕ · · · ⊕ O(en) be a locally free sheaf of rank n

on P1. Denote by π : P(E) → P1 the corresponding Pn−1-bundle. We assume that
0 ≤ e1 ≤ e2 ≤ . . . ≤ en and that e1+e2+· · ·+en ≥ 2. Set N = e1+e2+. . .+en+n−1.
Then the image S = S(e1, . . . , en) of the induced morphism

µ : P(E)→ PH0(P(E),OP(E)(1)),

when composed with an isomorphism PH0(P(E),OP(E)(1))→ PN , is called a rational
normal scroll of type (e1, . . . , en). Up to automorphisms of PN , rational normal
scrolls are fully characterized by their type.

They can also be described in a geometric way: consider linearly independent
projective subspaces Pe11 , . . . ,Penn ⊂ PN of dimensions e1, . . . , en, so their span is the
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whole projective space PN . For each i ∈ {1, . . . , n}, fix a rational normal curve in
Pi of degree ei parametrized by a Veronese map νi : P1 → Peii . Then

S = ∪P∈P1〈ν1(P ), . . . , νn(P )〉 ⊂ PN

is a rational normal scroll of type (e1, . . . , en).
The scroll is smooth if and only if e1 > 0. In this case, µ : P(E) → S is an

isomorphism. If 0 = e1 = . . . = e` < e`+1 with 1 ≤ ` < n, then the scroll is a cone
with an (` − 1)-dimensional vertex. In this case µ : P(E) → S is a resolution of
singularities and

µλ : P(E) ∼= P(E ⊗ OP1(λ))→ S ′ = S(e1 + λ, . . . , en + λ)

is an isomorphism for all integers λ > 0.
The Picard group of P(E) is freely generated by the class H of a hyperplane

section (more precisely, the class corresponding to µ∗OPN (1)) and the class R of a
fiber of π; i.e.

Pic(P(E)) = ZH ⊕ ZR.

We have the following intersection products:

Hn = e1 + . . .+ en, H
n−1R = 1 and R2 = 0

(where R2 = 0 means that any appearance of R2 annihilates the product). If we
denote the class which corresponds to µ∗λOPN+nλ(1) by H ′, we obtain the equality
H ′ = H + λR in Pic(P(E)).

Let C/k be a smooth projective curve of genus g and gonality γ ≥ 4. Assume
that C is canonically embedded in Pg−1 and fix a gonality pencil g1

γ on C. By [6,
Thm. 2],

S =
⋃

D∈g1γ

〈D〉 ⊂ Pg−1

is a (γ − 1)-dimensional rational normal scroll containing C. If S is of type
(e1, . . . , eγ−1), the numbers e1, . . . , eγ−1 are called the scrollar invariants of C with
respect to g1

γ. Using the Riemann-Roch theorem, one can see that eγ−1 ≤ 2g−2
γ

.

The following theorem extends a result from [13] on tetragonal and pentagonal
curves to arbitrary curves.

Theorem 1. Let C be a canonically embedded smooth projective curve of genus g
and gonality γ ≥ 4. If g1

γ is a gonality pencil on C, let S ⊂ Pg−1 be the rational
normal scroll swept out by g1

γ and let C ′ be the strict transform of C under the
resolution µ : P(E) → S. Then there exist effective divisors D1, . . . , D(γ2−3γ)/2
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on P(E) along with integers b1, . . . , b(γ2−3γ)/2, such that D` ∼ 2H − b`R for all `
and C ′ is the (scheme-theoretical) intersection of the D`’s. Moreover, the multiset
{b1, . . . , b(γ2−3γ)/2} does not depend on the choice of the D`’s, and

(γ2−3γ)/2∑

`=1

b` = (γ − 3)(g − γ − 1).

Proof. Define βi = i(γ−2−i)
γ−1

(
γ
i+1

)
and note that β1 = (γ2 − 3γ)/2. The existence

follows from [13, Cor. 4.4] and its proof, where the D`’s come from an exact sequence
of OP(E)-modules

0→ OP(E)(−γH + (g − γ + 1)R)→
βγ−3∑

`=1

OP(E)(−(γ − 2)H + b
(γ−3)
` R)→ · · ·

→
β2∑

`=1

OP(E)(−3H + b
(2)
` R)→

β1∑

`=1

OP(E)(−2H + b`R)→ OP(E) → OC′ → 0. (1)

Tensoring (1) with OP(E)(2H + bR) for a sufficiently large integer b and computing
the Euler characteristics of the terms in the resulting exact sequence, one can show
that ∑

`

b` = (γ − 3)(g − γ − 1);

see [1, Prop. 2.9].
We are left with showing the independence of the multiset {b1, . . . , b(γ2−3γ)/2}.

Herefore, consider the exact sequence

β1∑

`=1

OP(E)(−D`)→ OP(E) → OC′ → 0. (2)

If π : P(E)→ P1 is the Pγ−2-bundle and ξ is the generic point of P1, then

π−1(ξ) = Pγ−2
k(ξ) = ProjS,

where S = k(ξ)[x0, . . . , xγ−2]. Applying · ⊗P1 k(ξ) to (2) yields an exact sequence
of graded S-modules, that can be extended to a minimal free resolution

0→ S(−γ)→ S(−γ + 2)⊕βγ−3 → · · · → S(−2)⊕β1 → S → SC′ → 0

of the coordinate ring SC′ of C ′ over k(ξ) (see [13, Lemma 4.2] and [2, Step A
of Thm. 2.1]). As explained in [13, proof of Thm. 3.2] and [2, proof of Step B of
Thm. 2.1], this resolution can be lifted to a minimal free resolution of OP(E)-modules
extending (2). This resolution is unique up to isomorphism by [13, Thm. 3.2] or [2,
Thm. 1.3], which implies the independence.
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We call the invariants b1, . . . , b(γ2−3γ)/2 the first scrollar Betti numbers of C with
respect to g1

γ. The main goal of this section is to give a combinatorial interpretation
for these invariants for non-degenerate curves.

In [5], we already treated the case of tetragonal ∆-non-degenerate curves: the
first scrollar Betti numbers are given by

](∂∆(1) ∩ Z2)− 4 and ](∆(2) ∩ Z2)− 1.

These numbers are independent from the choice of the gonality pencil. This will no
longer be true for non-degenerate curves of higher gonality.

2.2 Scrollar invariants for non-degenerate curves

Let f be a ∆-non-degenerate Laurent polynomial and consider the corresponding
smooth curve Cf ⊂ Tor(∆) ⊂ PN with N = ](∆∩Z2)−1. Assume that the polygon
∆(1) is two-dimensional.

By [10], Cf is a non-rational and non-hyperelliptic curve and there exists a
canonical divisor K∆ on Cf such that

H0(Cf , K∆) = 〈xiyj〉(i,j)∈∆(1)∩Z2

(where x, y are functions on Cf through ϕ∆). In particular, the curve Cf has genus
g = ](∆(1)∩Z2) ≥ 3; see [3] for more details. Moreover, the Zariski closure C = Ccan

f

of the image of U(f) under

ϕ∆(1) : T2 ↪→ Pg−1 : (x, y) 7→ (xiyj)(i,j)∈∆(1)∩Z2 (3)

is a canonical model for Cf . We end up with the inclusions

C ⊂ T = Tor(∆(1)) = ϕ∆(1)(T2) ⊂ Pg−1,

where T is a toric surface since ∆(1) is two-dimensional.
A lattice direction is a primitive integer vector v = (a, b) ∈ Z2. The width

w(∆, v) of ∆ with respect to a lattice direction v is the smallest integer ` such that
∆ is contained in the strip k ≤ aY − bX ≤ k + ` of R2 for some k ∈ Z. The
lattice width is defined as lw(∆) = minv w(∆, v). Lattice directions v that attain
the minimum are called lattice-width directions.

In [3], we gave a combinatorial interpretation for the gonality γ of C = Ccan
f (or

Cf ) in terms of the lattice width of ∆:

γ =





lw(∆) = lw(∆(1)) + 2 if ∆ 6∼= 2Υ and ∆ 6∼= dΣ for all d ∈ Z≥4,

lw(∆)− 1 = lw(∆(1)) + 2 if ∆ ∼= dΣ for some d ∈ Z≥4,

lw(∆)− 1 = lw(∆(1)) + 1 if ∆ ∼= 2Υ,
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where we use our assumption that ∆(1) is two-dimensional. From now on, we make
the stronger assumption that γ = lw(∆) ≥ 4, and that ∆(1) is not equivalent with
kΣ for any k or Υ, hence ∆ 6∼= dΣ and ∆ 6∼= 2Υ. Then each lattice-width direction
v = (a, b) gives rise to a rational map

C 99K P1 : (xiyj)(i,j)∈∆(1)∩Z2 7→ xayb

of degree equal to the gonality γ. We call the corresponding linear pencil g1
γ of C

a combinatorial gonality pencil. If ∆ is sufficiently big (for a precise statement, see
[3, Corollary 6.3]), each gonality pencil on C is combinatorial.

Fix a lattice-width direction v of ∆. After applying a suitable unimodular
transformation χ, we may assume that v = (1, 0) and that ∆ is contained in the
horizontal strip 0 ≤ Y ≤ γ in R2. So, the gonality map C 99K P1 associated to v is
the vertical projection to the x-axis. Write

i(−)(j) = min{i ∈ Z | (i, j) ∈ ∆(1)} and i(+)(j) = max{i ∈ Z | (i, j) ∈ ∆(1)}

for all j ∈ {1, . . . , γ − 1}. By [3, Theorem 9.1], the scrollar invariants e1, . . . , eγ−1

of C with respect to g1
γ are equal to Ej := i(+)(j) − i(−)(j) for j ∈ {1, . . . , γ − 1}

(up to order). In fact, a Zariski dense part of the scroll S is parametrized by

(a1, . . . , aγ−1, x) ∈ Tγ 7→ (ajx
i−i(−)(j))(i,j)∈∆(1)∩Z2 = (aj, . . . , ajx

Ej)1≤j≤γ−1 ∈ Pg−1.

Note that T = Tor(∆(1)) ⊂ S since the map ϕ∆(1) can be obtained from the above

parametrization by restricting to aj = xi
(−)(j)yj, so we get the inclusions

C ⊂ T ⊂ S ⊂ Pg−1. (4)

If S is singular, then µ : S ′ = S(e1 +λ, . . . , eγ−1 +λ) ∼= P(E)→ S is a resolution
of singularities for each integer λ > 0 (hereby, we slightly abuse notation: µ is
the map µ ◦ µ−1

λ using the notations in Section 2.1). Let C ′ and T ′ be the strict
transforms of respectively C and T under µ. For each lattice polygon Γ ⊂ R2, write
Γ[λ] to denote the Minkowski sum of Γ and [(0, 0), (λ, 0)] ⊂ R2. In other words, Γ[λ]
is obtained from Γ by stretching it out in the horizontal direction over a distance
λ. Using this notation, one can see that T ′ = Tor(∆(1)[λ]) = Tor(∆[λ](1)). We end
up with the inclusions

C ′ ⊂ T ′ ⊂ S ′ ⊂ Pg−1+λ(γ−1). (5)

2.3 First scrollar Betti numbers of toric surfaces

Let C be a ∆-non-degenerate curve and fix a combinatorial gonality pencil g1
γ on C,

corresponding to a lattice direction v. We work under the following assumptions:
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(i) ∆(1) is not equivalent with kΣ for any k or Υ, and γ = lw(∆) ≥ 4,

(ii) v = (1, 0) and ∆ is contained in the horizontal strip 0 ≤ Y ≤ γ, so that g1
γ

corresponds to the vertical projection,

(iii) the curve C is canonically embedded, so that we obtain the sequence of inclu-
sions C ⊂ T ⊂ S ⊂ Pg−1 from (4).

Recall that the scrollar invariants e1, . . . , eγ−1 of C with respect to g1
γ match with

E1, . . . , Eγ−1 (up to order). Consider µ : P(E) → S and let T ′ ⊂ P(E) be the
strict transform of T = Tor(∆(1)) under µ, as in Section 2.2. If ∆ satisfies the
condition P1(v) defined below (see Definition 4), we will provide effective divisors
D1, . . . , D(γ−2

2 ) on P(E) along with integers b1, . . . , b(γ−2
2 ), such that the following

three conditions are satisfied:

• T ′ is the (scheme-theoretical) intersection of the D`’s,

• D` ∼ 2H − b`R for all ` (where H is the hyperplane class and R is the class
of a fibre in Pic(P(E))), and,

• ∑(γ−2
2 )

`=1 b` = (γ − 4)g − (γ2 − 3γ) + ](∂∆(1) ∩ Z2).

In what follows, we will also assume that e1 > 0, so that P(E) ∼= S. This condition
is not essential (see Remark 9), but it allows us to work with the inclusion T ⊂ S
rather than T ′ ⊂ P(E). For convenience, we will use the notation Dj1,j2 for the
the divisors, where j1, j2 ∈ {1, . . . , γ − 1} such that j2 − j1 ≥ 2, and denote the
corresponding invariants by Bj1,j2 . Below, we will first introduce divisors Yj1,j2,r of
S. Afterwards (see Definition 6), we will define the divisors Dj1,j2 by means of the
divisors Yj1,j2,r.

For each j1, j2 ∈ {1, . . . , γ − 1} such that j2 − j1 ≥ 2 and 1 ≤ r ≤ j2−j1
2

, let
Yj1,j2,r ⊂ S be the subvariety defined by the binomials of I2(Tor(∆(1))) having the
form

Xi1,j1Xi2,j2 −Xi′1,j1+rXi′2,j2−r.

One can see that Yj1,j2,r is a (γ − 2)-dimensional toric variety Tor(Ωj1,j2,r), where
Ωj1,j2,r ⊂ Rγ−2 is a full-dimensional lattice polytope (see Example 3 for a tangible
instance). The (Euclidean) volume of this polytope equals

1

(γ − 2)!
(2(E1 + . . .+ Eγ−1)− (Ej1 + Ej2 − εj1,j2,r)),
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where εj1,j2,r is defined as ε
(−)
j1,j2,r

+ ε
(+)
j1,j2,r

, with

ε
(−)
j1,j2,r

=

{
0 if i(−)(j1 + r) + i(−)(j2 − r) ≤ i(−)(j1) + i(−)(j2)

1 if i(−)(j1 + r) + i(−)(j2 − r) > i(−)(j1) + i(−)(j2)

= max{0, (i(−)(j1 + r) + i(−)(j2 − r))− (i(−)(j1) + i(−)(j2))},

and

ε
(+)
j1,j2,r

=

{
0 if i(+)(j1 + r) + i(+)(j2 − r) ≥ i(+)(j1) + i(+)(j2)

1 if i(+)(j1 + r) + i(+)(j2 − r) < i(+)(j1) + i(+)(j2)

= max{0, (i(+)(j1) + i(+)(j2))− (i(+)(j1 + r) + i(+)(j2 − r))}.

In the above equalities for ε
(−)
j1,j2,r

and ε
(+)
j1,j2,r

, we use the following result.

Lemma 2. The inequalities

i(−)(j1 + r) + i(−)(j2 − r) ≤ i(−)(j1) + i(−)(j2) + 1

and
i(+)(j1 + r) + i(+)(j2 − r) ≥ i(+)(j1) + i(+)(j2)− 1

hold for all j1, j2 ∈ {1, . . . , γ − 1} such that j2 − j1 ≥ 2 and 1 ≤ r ≤ j2−j1
2

.

Proof. We only show the first inequality; the second one follows by symmetry.
Consider the line segment L = [(i(−)(j1), j1), (i(−)(j2), j2)], and let (i′, j1 + r) and
(i′′, j2−r) be the intersection points of L with the horizontal lines at heights j1+r and
j2−r. Note that L is contained in the interior of ∆ and that i′+i′′ = i(−)(j1)+i(−)(j2).
If i(−)(j1+r)+i(−)(j2−r) ≥ i(−)(j1)+i(−)(j2)+2 = i′+i′′+2, then i′ ≤ i(−)(j1+r)−1
or i′′ ≤ i(−)(j2 − r)− 1, so (i(−)(j1 + r)− 1, j1 + r) or (i(−)(j2 − r)− 1, j2 − r) is a
lattice point lying in the interior of ∆. This is in contradiction with the definition
of i(−)(·).
Example 3. Assume that ∆ = ∆(f) is as in Figure 1 (here γ = 5).

0

1

2

3

4

5
∆

j

Figure 1: picture of ∆

Appropriate instances of Ωj1,j2,r can be realized as in Figure 2.

Here, ε1,3,1 = 1 (since ε
(+)
1,3,1 = 1), ε1,4,1 = 0 and ε2,4,1 = 1 (since ε

(−)
2,4,1 = 1).
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Ω1,3,1 Ω1,4,1 Ω2,4,1

Figure 2: picture of the Ωj1,j2,r’s

The intersection of Yj1,j2,r with a typical fiber of S → P1 is a quadratic hypersur-
face, hence there is a Bj1,j2,r ∈ Z such that Yj1,j2,r ∼ 2H − Bj1,j2,rR. Taking the
intersection product of the latter equation with Hγ−2, we get

deg Yj1,j2,r = Yj1,j2,r ·Hγ−2 = 2Hγ−1 −Bj1,j2,rH
γ−2R

= 2(e1 + . . .+ eγ−1)−Bj1,j2,r

= 2(E1 + . . .+ Eγ−1)−Bj1,j2,r,

but deg Yj1,j2,r = (γ − 2)! · Vol(Ωj1,j2,r), so Bj1,j2,r equals Ej1 + Ej2 − εj1,j2,r.
Write

S(−)
j1,j2

=

{
r ∈

{
1, . . . ,

⌊
j2 − j1

2

⌋}
| ε(−)
j1,j2,r

= 0

}

and

S(+)
j1,j2

=

{
r ∈

{
1, . . . ,

⌊
j2 − j1

2

⌋}
| ε(+)
j1,j2,r

= 0

}
.

Definition 4. We say that ∆ satisfies condition P1(v) if and only if there are

no integers j1, j2 ∈ {1, . . . , γ − 1} with j2 − j1 ≥ 2 such that S(−)
j1,j2

and S(+)
j1,j2

are
non-empty and disjoint.

In other words, the condition P1(v) means that for each pair of integers j1, j2 ∈
{1, . . . , γ − 1} with j2 − j1 ≥ 2 either at least one of the sets S(−)

j1,j2
, S(+)

j1,j2
is empty,

or there is a common r ∈
{

1, . . . ,
⌊
j2−j1

2

⌋}
for which ε

(−)
j1,j2,r

= ε
(+)
j1,j2,r

= 0. There is a

useful criterion to check whether S(−)
j1,j2

is empty or not (and analogously for S(+)
j1,j2

):

S(−)
j1,j2

= ∅ if and only if all the lattice points (i(−)(j), j) with j1 < j < j2 lie strictly

right from the line segment L =
[
(i(−)(j1), j1), (i(−)(j2), j2)

]
.

In the above definition, we also allow the lattice direction v to be different from
(1, 0): in that case, first take a unimodular transformation χ such that χ(v) = (1, 0)
and that χ(∆) is contained in the horizontal strip 0 ≤ Y ≤ γ, and replace ∆ by
χ(∆) while checking the condition. The definition is independent of the particular
choice of the unimodular transformation χ.

In fact, in some of the examples below, the lattice direction v is (1, 0), but ∆
is contained in a horizontal strip of the form k ≤ Y ≤ k + γ with k 6= 0. In that
case, we do not really need to apply any unimodular transformation χ first: we can
define the sets S(−)

j1,j2
and S(+)

j1,j2
for j1, j2 ∈ {k + 1, . . . , k + γ − 1}.
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Example 5. Assume that a part of ∆(1) looks as in Figure 3 (for some large enough
n).

∆(1)

(5, 15)

(4, 12)

(3, 9)

(2, 6)

(1, 3)

(0, 0)

(n, 15)

(n+ 1, 10)

(n+ 2, 5)

(n+ 3, 0)

Figure 3: part of ∆(1)

In Table 1, the sets S(−)
j1,j2

and S(+)
j1,j2

are given for all couples (j1, j2) with j1 +j2 = 15

in this part of the polytope ∆(1).

(j1, j2) S(−)
j1,j2

S(+)
j1,j2

(0, 15) {3, 6} {5}
(1, 14) {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6}
(2, 13) {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
(3, 12) {3} {1, 2, 3, 4}
(4, 11) {1, 2, 3} {1, 2, 3}
(5, 10) {1, 2} ∅
(6, 9) ∅ {1}

Table 1: table of subsets S(.)
j1,j2

We conclude that ∆ does not satisfy condition P1(v) (consider j1 = 0 and j2 = 15).

For all polygons ∆ that satisfy condition P1(v), we give a recipe to construct
the divisors Dj1,j2 in terms of the subvarieties Yj1,j2,r.

Definition 6. Assume that the lattice polygon ∆ satisfies condition P1(v).

• If S(−)
j1,j2
∩S(+)

j1,j2
6= ∅, we define Dj1,j2 as Yj1,j2,r with r ∈ S(−)

j1,j2
∩S(+)

j1,j2
minimal.

Set εj1,j2 = εj1,j2,r = 0.

• If S(−)
j1,j2

= ∅ and S(+)
j1,j2
6= ∅ or vice versa, take r ∈ S(−)

j1,j2
∪S(+)

j1,j2
minimal, define

Dj1,j2 = Yj1,j2,r and set εj1,j2 = εj1,j2,r = 1.
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• If S(−)
j1,j2

= S(+)
j1,j2

= ∅, define Dj1,j2 = Yj1,j2,1 and set εj1,j2 = εj1,j2,1 = 2.

Remark 7. In Definition 6, the divisor Dj1,j2 is always of the form Yj1,j2,r and r is
chosen such that εj1,j2,r is minimal, or equivalently, Bj1,j2,r is maximal. Moreover,

if Dj1,j2 = Yj1,j2,r and if we define ε
(−)
j1,j2

= ε
(−)
j1,j2,r

and ε
(+)
j1,j2

= ε
(+)
j1,j2,r

, then

ε
(−)
j1,j2

= min
s
ε

(−)
j1,j2,s

, ε
(+)
j1,j2

= min
t
ε

(+)
j1,j2,t

and εj1,j2 = ε
(−)
j1,j2

+ ε
(+)
j1,j2

. (6)

Here, it is crucial that ∆ satisfies condition P1(v): if S(−)
j1,j2

and S(+)
j1,j2

were non-

empty and disjoint, then minr εj1,j2,r = 1 (take r ∈ S(−)
j1,j2
∪ S(+)

j1,j2
), but mins ε

(−)
j1,j2,s

=

mint ε
(+)
j1,j2,t

= 0.
If we set Bj1,j2 = Ej1 + Ej2 − εj1,j2, we have that Dj1,j2 ∼ 2H −Bj1,j2R and

∑
j2−j1≥2 Bj1,j2 = (γ − 4)(E1 + . . .+ Eγ−1) + E1 + Eγ−1 −

∑
j2−j1≥2 εj1,j2

= (γ − 4)(g − γ + 1) + E1 + Eγ−1 −
∑

j2−j1≥2 εj1,j2 .

Example 8. If ∂∆(1) meets each horizontal line of height j ∈ {2, . . . , γ − 2} in

two lattice points, we have εj1,j2,r = 0 and S(−)
j1,j2

= S(+)
j1,j2

=
{

1, . . . ,
⌊
j2−j1

2

⌋}
for all

j1, j2, r. Hence, ∆ satisfies condition P1(v). Moreover, εj1,j2 = 0 and Dj1,j2 = Yj1,j2,1
for all j1, j2. In this case,

](∂∆(1) ∩ Z2) = (E1 + 1) + (Eγ−1 + 1) + 2(γ − 3)

and
∑
εj1,j2 = 0, so

∑
Bj1,j2 = (γ − 4)g − (γ2 − 3γ) + ](∂∆(1) ∩ Z2).

Remark 9. If S is singular, let λ > 0 be an integer and consider the inclusions
from (5). Note that ∆[λ] satisfies condition P1(v) if and only if ∆ satisfies condition
P1(v). We can define the subvarieties Yj1,j2,r and Dj1,j2 of S ′ in the same way as
we did before (using ∆[λ] instead of ∆). Since H ′ = H + λR, we get that

Yj1,j2,r ∼ 2H ′ − ((Ej1 + λ) + (Ej2 + λ)− εj1,j2,r)R = 2H −Bj1,j2,rR

and Dj1,j2 ∼ 2H −Bj1,j2R.

We are now able to state and prove the main result of this subsection.

Theorem 10. If ∆ satisfies condition P1(v), there exist
(
γ−2

2

)
effective divisors

Dj1,j2 on P(E) (with j1, j2 ∈ {1, . . . , γ − 1} and j2 − j1 ≥ 2) such that

• T ′ is the (scheme-theoretical) intersection of the divisors Dj1,j2,
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• Dj1,j2 ∼ 2H −Bj1,j2R for all j1, j2, where Bj1,j2 = Ej1 + Ej2 − εj1,j2, and,

• ∑j2−j1≥2 Bj1,j2 = (γ − 4)g − (γ2 − 3γ) + ](∂∆(1) ∩ Z2).

Proof. By Remark 9, we may assume that S is smooth, hence P(E) ∼= S. We
need to prove that I(Tor(∆(1))) = I(

⋂
Dj1,j2), where the inclusion I(

⋂
Dj1,j2) ⊂

I(Tor(∆(1))) is trivial. Pick an arbitrary quadratic binomial

f = Xi1,j1Xi2,j2 −Xi3,j3Xi4,j4 ∈ I(Tor(∆(1))).

These binomials generate the ideal, so we only need to show that f ∈ I(
⋂
Dj1,j2).

Note that j1 + j2 = j3 + j4, so we may assume that j1 ≤ j3 ≤ j4 ≤ j2. Moreover, if
j1 = j3 and j4 = j2, we get that f ∈ I(S) ⊂ I(

⋂
Dj1,j2). So we may even assume

that j1 < j3.
Take r such that Dj1,j2 = Yj1,j2,r. We claim that

I := i1 + i2 = i3 + i4 ≥ i(−)(j1 + r) + i(−)(j2 − r).

If ε
(−)
j1,j2

= ε
(−)
j1,j2,r

= 0, this follows from

I ≥ i(−)(j1) + i(−)(j2) ≥ i(−)(j1 + r) + i(−)(j2 − r).

If ε
(−)
j1,j2

= ε
(−)
j1,j2,r

= 1, we have that ε
(−)
j1,j2,j3−j1 = 1 by (6) (since ∆ satisfies condition

P1(v)), hence

I ≥ i(−)(j3) + i(−)(j4) = i(−)(j1 + r) + i(−)(j2 − r),

where we use Lemma 2. Analogously, we can show that I ≤ i(+)(j1 +r)+i(+)(j2−r).
The above claim implies that we can find integers i′1, i

′
2 such that i′1 + i′2 = I,

i(−)(j1 + r) ≤ i′1 ≤ i(+)(j1 + r), i(−)(j2 − r) ≤ i′2 ≤ i(+)(j2 − r), hence

Xi1,j1Xi2,j2 −Xi′1,j1+rXi′2,j2−r ∈ I(Dj1,j2) = I(Yj1,j2,r).

So we may replace the term Xi1,j1Xi2,j2 in f by Xi′1,j1+rXi′2,j2−r (and in particular,
j1 by j1 + r and j2 by j2 − r). Continuing in this way, we will eventually get that
j1 = j3 and j4 = j2, hence f ∈ I(S). This will happen after a finite number of steps
since the maximum of j2 − j1 and j4 − j3 decreases after each step.

We are left with proving the formula for the sum of the Bj1,j2 ’s. By Remark 7
and the elaboration of Example 8, it suffices to show that the sum of the εj1,j2 counts
the number of times that ∂∆(1) intersects the horizontal lines of height 2, . . . , γ − 2
in a non-lattice point. Let A(−) be the set of couples (j1, j2) such that j1, j2 ∈
{1, . . . , γ − 1}, j2 − j1 ≥ 2 and S(−)

j1,j2
= ∅ (or equivalently, the line segment L =[

(i(−)(j1), j1), (i(−)(j2), j2)
]

passes left from all the lattice points (i(−)(j′), j′) with
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j1 < j′ < j2). LetB(−) be the set of integers j ∈ {1, . . . , γ−1} such that (i(−)(j), j) 6∈
∂∆(1). We claim that the sets A(−) and B(−) have the same cardinality. We will do
this by giving a concrete bijection between these sets. Analogously, we can define
the sets A(+) and B(+), and prove that they have the same number of elements. The
theorem follows directly, since ](A(−)∪A(+)) =

∑
j1,j2

εj1,j2 by (6) and ](B(−)∪B(+))
is the number of non-lattice point intersections.

If (j1, j2) ∈ A(−), then the line segment L = [(i(−)(j1), j1), (i(−)(j2), j2)] will pass
at the left hand side of the lattice points (i(−)(j), j) with j1 < j < j2. For precisely
one of these lattice points, the horizontal distance to L will be equal to the minimal
value 1

j2−j1 . Consider the map

α(−) : A(−) → B(−)

sending the couple (j1, j2) to the value of j of that lattice point; see below for an
example. On the other hand, if j ∈ B(−), thus (i(−)(j), j) 6∈ ∂∆(1), then there
should be lattice points (i(−)(j1), j1) and (i(−)(j2), j2) with j1 < j < j2 such that
L = [(i(−)(j1), j1), (i(−)(j2), j2)] passes left from (i(−)(j), j). If we take a couple
(j1, j2) that satisfies this property and has a minimal value for j2−j1, then (j1, j2) ∈
A(−). Indeed, if (i(−)(j′), j′) with j1 < j′ < j2 lies on or left from L, then either
(j1, j

′) or (j′, j2) would also satisfy the condition and would have a smaller value
for the difference of the heights. Now let’s show that the couple (j1, j2) is unique.
If not, there exists another couple (j′1, j

′
2) ∈ A(−) with j′1 < j < j′2 such that

L′ = [(i(−)(j′1), j′1), (i(−)(j′2), j′2)] passes left from (i(−)(j), j) with j′2 − j′1 = j2 − j1.
We may assume that j′1 < j1 < j < j′2 < j2. Then L passes left from (i(−)(j′2), j′2)
and L′ passes left from (i(−)(j1), j1), so L′′ = [(i(−)(j′1), j′1), (i(−)(j2), j2)] passes left
from all the lattice points (i(−)(j′), j′) with j′1 < j′ < j2 (see Figure 4). Let’s denote

(i(−)(j2), j2)

(i(−)(j′1), j
′
1)

(i(−)(j′2), j
′
2)

(i(−)(j1), j1)

L′′

L

L′

Figure 4: the line segments L, L′ and L′′

the horizontal distance from the line segment L′′ to the lattice point (i(−)(j′), j′) by

d(j′). Using Lemma 2, we obtain that d(j′1 + r) +d(j2− r) = 1 for all 1 ≤ r ≤ j2−j′1
2

.
For precisely one integer j′1 < j′ < j2, the distance d(j′) is equal to the minimal
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value 1
j2−j′1

. On the other hand, except for j′ = j1 or j′ = j′2, the distance d(j′) has

to be at least 1
j2−j1 = 1

j′2−j′1
, since (i(−)(j′), j′) lies strictly right from L or L′. So we

may assume that j′ = j1 (the case j′ = j′2 is analogous), hence d(j1) = 1
j2−j′1

and

d(j′2) = 1 − 1
j2−j′1

(using r = j1 − j′1 above). It follows that the horizontal distance

to L′′ from the point on L′ on height j1 is equal to

j1 − j′1
j′2 − j′1

· d(j′2) =
j1 − j′1
j′2 − j′1

· j2 − j′1 − 1

j2 − j′1
≥ j1 − j′1
j2 − j′1

≥ 1

j2 − j′1
= d(j1),

so L′ does not pass left from (i(−)(j1), j1), a contradiction. In conclusion we can
consider the map

β(−) : B(−) → A(−)

sending j to the unique such couple (j1, j2).
The maps α(−) and β(−) are inverse of each other. For instance, to prove that the

map α(−) ◦ β(−) is the identity map on B(−), consider j ∈ B(−) and write β(−)(j) =
(j1, j2). If α(−)(j1, j2) = j′ 6= j, then the horizontal distance from (i(−)(j), j) to L =
[(i(−)(j1), j1), (i(−)(j2), j2)] is of the form d

j2−j1 with 1 < d < j2− j1. But then either

L′ = [(i(−)(j′), j′), (i(−)(j2), j2)] (the case j′ < j) or L′′ = [(i(−)(j1), j1), (i(−)(j′), j′)]
(the case j′ > j) passes left from (i(−)(j), j). This is in contradiction with β(−)(j) =
(j1, j2), since j2 − j′ and j′ − j1 are both strictly smaller than j2 − j1. We leave the
proof of the equality β(−) ◦ α(−) = IdA(−) as an exercise.

Example 11. Consider a polygon ∆ of which a part of the boundary of ∆(1) is as
in Figure 5 (the (i, j)-coordinates are translated a bit).

7

6

5

4

3

2

1

0
0 1 2 3

Figure 5: part of ∂∆(1)

For this horizontal slice of the polygon,

A(−) = {(0, 2), (0, 7), (2, 4), (2, 7), (4, 6), (4, 7)} and B(−) = {1, 2, 3, 4, 5, 6}.

The map α(−) is defined as follows:

(0, 2) 7→ 1 , (0, 7) 7→ 2 , (2, 4) 7→ 3 , (2, 7) 7→ 4 , (4, 6) 7→ 5 , (4, 7) 7→ 6.
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One can show that the Dj1,j2 ’s in Theorem 10 can be used to resolve OT ′ as
an OP(E)-module, following Schreyer [13]. For this one needs that the fibers of
π|T ′ : T ′ → P1 have constant Betti numbers and that the corresponding resolutions
are pure, but this can be verified. So it is justified to call the Bj1,j2 ’s the first
scrollar Betti numbers of the toric surface Tor(∆(1)), even though we will not push
this discussion further.

2.4 First scrollar Betti numbers of non-degenerate curves
relative to the toric surface

We will use the same set-up and assumptions as in the beginning of Section 2.3. The
assumption (i) implies that ∆(2) 6= ∅. Moreover, we also use the notations appearing
in the inclusions (5), so C ′ and T ′ are the strict transforms of the canonically
embedded ∆-non-degenerate curve C and the toric surface T under the resolution
µ : S ′ ∼= P(E) → S. In this section, we will present divisors on S ′ that scheme-
theoretically cut out C ′ from T ′.

Herefore, we rely on the following construction from [4]. Write

f =
∑

(i,j)∈∆∩Z2

ci,jx
iyj ∈ k[x±1, y±1]

and consider w ∈ ∆(2)∩Z2. For each (i, j) ∈ ∆∩Z2, there exist ui,j, vi,j ∈ ∆(1)∩Z2

such that (i, j)−w = (ui,j −w) + (vi,j −w). Hereby, we use that ∆ + ∆(2) ⊂ 2∆(1)

and that the polygon ∆(1) is normal. Then the quadrics

Qw =
∑

(i,j)∈∆∩Z2

ci,jXui,jXvi,j ∈ k[Xi,j](i,j)∈∆′(1)∩Z2 ,

where w ranges over ∆(2) ∩ Z2, scheme-theoretically cut out C from T .
In order to create the divisors D`, we will need an extra condition on ∆, which

garantees that we can choose the lattice points ui,j, vi,j in a particular way.

Definition 12. We say that ∆ satisfies condition P2(v) if for each lattice point (i, j)
of ∆ and each horizontal line L, there exist two (not necessarily distinct) horizontal
lines M1,M2, such that for all w ∈ L ∩∆(2) ∩ Z2, there exist ui,j ∈ M1 ∩∆(1) ∩ Z2

and vi,j ∈M2 ∩∆(1) ∩ Z2 (dependent on (i, j) and w) such that

(i, j)− w = (ui,j − w) + (vi,j − w).

Remark 13. Write

i(−−)(j) = min{i ∈ Z | (i, j) ∈ ∆(2)} and i(++)(j) = max{i ∈ Z | (i, j) ∈ ∆(2)}
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for all j ∈ {2, . . . , γ−2}. An equivalent definition is as follows: ∆ satisfies condition
P2(v) if and only if for all (i, j) ∈ ∆ and for all j′ ∈ {2, . . . , γ − 2}, there exist
j1, j2 ∈ {1, . . . , γ − 1} such that j1 + j2 = j + j′ and

i+ [i(−−)(j′), i(++)(j′)] ⊂ [i(−)(j1), i(+)(j1)] + [i(−)(j2), i(+)(j2)]. (7)

This condition is obviously satisfied for (i, j) ∈ ∆(1) (take j1 = j and j2 = j′).
Moreover, the condition also holds if (i, j) lies on the interior of a horizontal edge
(i.e. the top or bottom edge) of ∆. Indeed, assume for instance that (i, j) lies in the
interior of the top edge [(i−, j), (i+, j)] of ∆. We have that

i(−)(j′ + 1) + i(−)(j − 1) ≤ i(−−)(j′) + i− + 1 ≤ i(−−)(j′) + i.

Hereby, the first inequality follows by replacing L in the proof of Lemma 2 by the
half-closed line segment [(i(−−)(j′), j′), (i−, j)[. Analogously, we get that

i(+)(j′ + 1) + i(+)(j − 1) ≥ i(++)(j′) + i,

so (7) follows for j1 = j′ + 1 and j2 = j − 1.

Although at first sight the condition P2(v) might seem strong, it is not so easy
to cook up instances of lattice polygons ∆ for which the condition is not satisfied.
The smallest example we have found is a polygon with 46 interior lattice points and
lattice width 10.

Example 14. Let ∆ be as in Figure 6 (the dashed line indicates ∆(1)).
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0

∆

0 1 2 3 4 5 6 7 8 9 10

Figure 6: A lattice polygon ∆ that does not satisfy condition P2(v)

We claim that ∆ does not satisfy condition P2(v). Indeed, take the top vertex (i, j) =
(4, 10) of ∆ and the horizontal line L at height 6. For the point w ∈ L ∩∆(2) ∩ Z2,
consider the bold-marked lattice points (3, 6) and (6, 6) on L. In both cases, there is
a unique decomposition of (i, j)− w:

(1, 4) = (0, 1) + (1, 3) resp. (−2, 4) = (−1, 2) + (−1, 2).
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So one sees that it is impossible to take the ui,j’s and/or the vi,j’s on the same line,
which proves the claim.

Theorem 15. If ∆ satisfies condition P2(v), then there exist γ−3 effective divisors
D` on P(E) (with 2 ≤ ` ≤ γ − 2) such that

• C ′ is the (scheme-theoretical) intersection of T ′ and the divisors D`,

• D` ∼ 2H −B`R for all `, where

B` = i(++)(`)− i(−−)(`) = −1 + ]{(i, j) ∈ ∆(2) ∩ Z2 | j = `},

so ∑

2≤`≤γ−2

B` = ](∆(2) ∩ Z2)− (γ − 3).

Proof. The formula for the sum
∑

` B` is easily verified, so we focus on the other
assertions. Take λ ≥ 0 so that S ′ = S(e1+λ, . . . , eγ−1+λ) is smooth (and isomorphic
to P(E)) and define ∆′ = ∆[λ]. We are going to use the inclusions

C ′ ⊂ T ′ ⊂ S ′ ⊂ Pg−1+λ(γ−1)

from (5), where T ′ = Tor(∆′(1)). Write (Xi,j)(i,j)∈∆′(1)∩Z2 for the projective coordi-

nates on Pg−1+λ(γ−1).
Let ` ∈ {2, . . . , γ − 2} and denote the lattice points of ∆[2λ](2) of height ` by

w0, . . . , wB`+2λ. If w ∈ {w0, . . . , wB`+2λ} and (i, j) ∈ ∆, then we claim that we can
find ui,j, vi,j ∈ ∆′(1) such that (i, j) − w = (ui,j − w) + (vi,j − w), in such a way
that their second coordinates are independent from w. Indeed, since ∆ satisfies
condition P2(v), there exist j1, j2 ∈ {1, . . . , γ − 1} such that j1 + j2 = j + ` and

i+ [i(−−)(`), i(++)(`)] ⊂ [i(−)(j1), i(+)(j1)] + [i(−)(j2), i(+)(j2)],

hence

i+ [i(−−)(`), i(++)(`) + 2λ] ⊂ [i(−)(j1), i(+)(j1) + λ] + [i(−)(j2), i(+)(j2) + λ].

This implies that we can take ui,j and vi,j with second coordinates j1 and j2. Define

Qw =
∑

(i,j)∈∆∩Z2

ci,jXui,jXvi,j ∈ k[Xi,j](i,j)∈∆′(1)∩Z2 .

A consequence of the choice of ui,j, vi,j is that

XwsQwr+1 −Xws+1Qwr ∈ I(S ′)
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(rather than just I(T ′)) for all r ∈ {0, . . . , B` + 2λ− 1} and s ∈ {0, . . . , B` +λ− 1}.
Since

Xw1

Xw0

=
Xw2

Xw1

= . . . =
XwB`+λ

XwB`+λ−1

is a local parameter for the (γ − 2)-plane R(0:1) = π−1(0 : 1) ⊂ S ′, it follows that
the R(0:1)-orders of

Z(Qw1),Z(Qw2), . . . ,Z(QwB`+2λ
) (8)

increase by 1 at each step. For a similar reason, with R(1:0) = π−1(1 : 0) ⊂ S ′, the
R(1:0)-orders of (8) decrease by 1 at each step. We conclude that there exists an
effective divisor D` such that for all i ∈ {0, . . . , B` + 2λ} we have

Z(Qwi) = i ·R(0:1) + (B` + 2λ− i) ·R(1:0) + D` (9)

on S ′. The divisor D` is in fact the divisor of S ′ cut out by the quadrics in (8).
Using (9) and Remark 9, we get that

D` ∼ 2H ′ − (B` + 2λ)R = 2H −B`R,

so it is sufficient to show that the quadrics Qw (where w ranges over ∆[2λ](2) ∩ Z2)
cut out C ′ from T ′. If λ = 0, this follows from [4, Theorem 3.3].

Before we prove this, we need to introduce one more notion: for each lattice
polygon Γ with two-dimensional Γ(1), write Γmax to denote the largest lattice poly-
gon with interior lattice polygon equal to Γ(1), so Γmax ⊃ Γ. The polygon Γmax can
be constructed as follows. Let v1, . . . , vr be the primitive inward pointing normal
vectors of the edges of Γ(1) and write Γ(1) as an intersection ∩rt=1Ht of half-planes

Ht = {P ∈ R2 | 〈P, vt〉 ≥ at}

(where 〈·, ·〉 denotes the standard inner product and at ∈ Z). Then

Γmax = ∩rt=1 H
(−1)
t with H

(−1)
t = {P ∈ R2 | 〈P, vt〉 ≥ at − 1}.

We will use the following two properties (see [3, Section 2] for other properties of
Γmax):

• If Γ(2) 6= ∅, then 2Γ(1) = Γ(2) + Γmax, since both lattice polygons are defined
by the half-planes 2Ht = {P ∈ R2 | 〈P, vt〉 ≥ −2at}.

• If Φ1,Φ2 are lattice polygons such that Φ1 + Γ ⊂ Φ2 + Γmax, then Φ1 ⊂ Φ2

if Φ2 satisfies the following condition: it is the intersection of half-planes H ′t
with H ′t of the form

{P ∈ R2 | 〈P, vt〉 ≥ bt}
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for some bt ∈ Z (hence parallel to Ht).

Indeed, if Φ1 6⊂ Φ2, take a lattice point P in Φ1 \ Φ2. Then 〈P, vt〉 < bt for
some value of t. Take Q ∈ Γ with 〈Q, vt〉 = at − 1 (this is always possible).
We have that P + Q ∈ Φ1 + Γ and 〈P + Q, vt〉 < at + bt − 1, but Φ2 + Γmax

is the intersection of the half-planes H ′′t = {P ∈ R2 | 〈P, vt〉 ≥ at + bt − 1}, so
P +Q 6∈ Φ2 + Γmax, a contradiction.

Now take F ∈ I(C ′) homogeneous of degree d and let

ξ : k[Xi,j](i,j)∈∆′(1)∩Z2 → k[x±1, y±1]

be the ring morphism that maps Xi,j to xiyj. Since ξ(F )(x, y) = 0 for all (x, y) ∈ T2

with f(x, y) = 0 (and f is irreducible), the Laurent polynomial ξ(F ) has to be of the
form cf for some c ∈ k[x±1, y±1]. The Newton polygon of cf is equal to ∆(c) + ∆,
while the Newton polygon ∆(ξ(F )) is contained in

d∆′(1) = (d− 2)∆′(1) + ∆′(2) + ∆′max = (d− 2)∆′(1) + ∆[2λ](2) + ∆max

(here, we use the first property of maximal polygons with Γ = ∆′). So we obtain
that

∆(c) + ∆ ⊂ (d− 2)∆′(1) + ∆[2λ](2) + ∆max.

Now we can use the second property of maximal polygons with Φ1 = ∆(c), Φ2 =
(d − 2)∆′(1) + ∆[2λ](2) and Γ = ∆. Note that Φ2 might have a horizontal (top or
bottom) edge while ∆(1) has not, but this is not an issue (since ∆(1) 6∼= kΣ). It
follows that

∆(c) ⊂ (d− 2)∆′(1) + ∆[2λ](2).

So we can write
c =

∑

w=(i,j)∈∆[2λ](2)∩Z2

gi,jx
iyj

for polynomials gi,j ∈ k[x, y] with ∆(gi,j) ⊂ (d− 2)∆′(1). For all lattice points w =
(i, j) ∈ ∆[2λ](2) ∩ Z2, there is a homogeneous polynomial Gi,j ∈ k[Xi,j](i,j)∈∆′(1)∩Z2

such that ξ(Gi,j) = gi,j. On the other hand, ξ(Qw) = xiyjf , hence

ξ(F ) = cf =
∑

w=(i,j)∈∆[2λ](2)∩Z2

ξ(Gi,j)ξ(Qw).

So F −∑w=(i,j) Gi,jQw belongs to the kernel of the map ξ, which implies that it is

contained in Id(T ′), which is what we wanted to prove.
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2.5 First scrollar Betti numbers for non-degenerate curves

We are ready to prove the main result of this section, by combining the results from
Sections 2.3 and 2.4.

Theorem 16. Let ∆ be a lattice polygon with lw(∆) ≥ 4 such that ∆(1) 6∼= Υ and
∆(1) 6∼= kΣ for any integer k. Assume that ∆ satisfies the conditions P1(v) and
P2(v), where v is a lattice-width direction. Let C be a ∆-non-degenerate curve and
let g1

γ be the combinatorial gonality pencil on C corresponding to v (with γ = lw(∆)).
Then the first scrollar Betti numbers of C with respect to g1

γ are given by

{B`}`∈{2,...,γ−2} ∪ {Bj1,j2}j1,j2∈{1,...,γ−1}
j2−j1≥2

.

Proof. We use the notations and set-up from Section 2.3. Theorem 10 and Theorem
15 imply that there exist divisors D` ∼ 2H −B`R on P(E), with ` ∈ {2, . . . , γ− 2},
and divisors Dj1,j2 ∼ 2H−Bj1,j2R on P(E), with j1, j2 ∈ {1, . . . , γ−1} and j2−j1 ≥
2, such that C ′ is the scheme-theoretical intersection of these divisors. So we can
use Theorem 1 to conclude the proof. Note that indeed

∑

`∈{2,...,γ−2}
B` +

∑

j1,j2∈{1,...,γ−1}
j2−j1≥2

Bj1,j2 = (γ − 3)(g − γ − 1),

as announced in the theorem.

We believe that the above theorem is of independent interest. For instance it
is not well-understood which sets of (first) scrollar Betti numbers are possible for
canonical curves of a given genus and gonality, and our result can be used to prove
certain existence results. It has been conjectured that “most” curves have so-called
balanced (first) scrollar Betti numbers, meaning that max |bi − bj| ≤ 1, see [1] and
the references therein. Non-degenerate curves are typically highly non-balanced,
since one expects the Bj1,j2 ’s to be about twice the B`’s.

Example 17. Consider the following lattice polygons ∆1 and ∆2 of lattice width
7 (and lattice-width direction v = (1, 0)), which only differ from each other at the
right hand side.
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The polygon ∆1 does not satisfy all the combinatorial constraints of Theorem 16,
since condition P2(v) does not hold: S(−)

2,6 = {1} and S(+)
2,6 = {2}. Although we have

not pursued this, we believe that the conditions P1(v) and P2(v) are always fulfilled
if γ < 7.

On the other hand, the polygon ∆2 meets all the conditions from the statement,
and so we can apply Theorem 16. The first scrollar Betti numbers of a ∆2-degenerate
curve are as follows:

B1,3 = 12 B1,4 = 10 B1,5 = 10 B1,6 = 9 B2,4 = 10
B2,5 = 10 B2,6 = 9 B3,5 = 8 B3,6 = 8 B4,6 = 7
B2 = 4 B3 = 4 B4 = 4 B5 = 3

The sum of these numbers is 108, which agrees with (γ − 3)(g − γ − 1) for g = 35
and γ = 7.

3 Intrinsicness on P1 × P1

Theorem 18. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its (two-
dimensional) Newton polygon ∆ = ∆(f), and assume that ∆ 6∼= 2Υ. Then U(f)
is birationally equivalent to a smooth projective genus g curve in P1 × P1 if and
only if ∆(1) = ∅ or ∆(1) ∼= �a,b for some integers a ≥ b ≥ 0, necessarily satisfying
g = (a+ 1)(b+ 1).

Proof. We may assume that U(f) is neither rational, nor elliptic or hyperelliptic
(and hence that ∆(1) is two-dimensional) because such curves admit smooth com-
plete models in P1 × P1. So for the ‘if’ part we can assume that b ≥ 1. But then
Tor(∆(1)) ∼= P1 × P1, and the statement follows using the canonical embedding (3).

The real deal is the ‘only if’ part. At least, if a curve C/k is birationally equiv-
alent to a (non-rational, non-elliptic, non-hyperelliptic) smooth projective curve in
P1×P1, then it is ∆′-non-degenerate with ∆′ = [−1, a+1]× [−1, b+1] for a ≥ b ≥ 1:
this follows from the material in [3, Section 4] (one can use an automorphism of
P1 × P1 to ensure appropriate behavior with respect to the toric boundary). Note
that ∆′(1) = �a,b. The geometric genus of C equals g = (a + 1)(b + 1) by [10] and
its gonality equals γ = b+ 2 by [3, Cor. 6.2]. We observe that

• g is composite.

• C has Clifford dimension equal to 1 by [3, Theorem 8.1].

• the scrollar invariants of C (with respect to any gonality pencil) are all equal
to g/(γ−1)−1. Indeed, by [3, Theorem 6.1], every gonality pencil is computed
by projecting along some lattice-width direction v. If a > b, then the only pair
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of lattice-width directions is ±(1, 0) and from [3, Theorem 9.1], we find that
the corresponding scrollar invariants are a, a, . . . , a. If a = b, we also have the
pair ±(0, 1), giving rise to the same scrollar invariants.

• if γ ≥ 4, then the first scrollar Betti numbers (with respect to any gonality
pencil) take exactly two distinct values: 2g/(γ − 1) − 2 and g/(γ − 1) − 3.
Indeed, ∆′ satisfies condition P1(v) (see Example 8), but also condition P2(v):
take (j1, j2) = (j, `) if j ∈ {−1, . . . , b + 1}, (j1, j2) = (j + 1, ` − 1) if j = −1
and (j1, j2) = (j − 1, ` + 1) if j = b + 1. By Theorem 16 we find that these
numbers are 2a, 2a, . . . , 2a, a− 2, a− 2, . . . , a− 2.

A first consequence is that U(f) admits a combinatorial gonality pencil. Indeed, ∆
cannot be of the form 2Υ (excluded in the statement of the theorem), nor of the
form dΣ for some d ≥ 2: the cases d = 2 and d = 3 correspond to rational and
elliptic curves (excluded at the beginning of this proof), the case d = 4 corresponds
to curves of genus 3 (not composite), and the cases where d ≥ 5 correspond to
curves of Clifford dimension 2.

Without loss of generality we may then assume that v = (1, 0) and ∆ ⊂ { (i, j) ∈
R2 | 0 ≤ j ≤ γ }, so that our gonality pencil corresponds to the vertical projection.
By [3, Theorem 9.1], the numbers E` = −1 + ]{(i, j) ∈ ∆(1) ∩ Z2 | j = `} (for
` = 1, . . . , γ − 1) are the corresponding scrollar invariants. Hence the E`’s must all
be equal to E := g/(γ − 1)− 1 ≥ 1.

This already puts severe restrictions on the possible shapes of ∆(1). By horizon-
tally shifting and skewing we may assume that the lattice points at height j = 1 are
(0, 1), . . . , (E, 1) and that the lattice points at height j = 2 are (0, 2), . . . , (E, 2). If
γ = 3, it follows that ∆(1) has the desired rectangular shape, so we may suppose
that γ ≥ 4. Then by horizontally flipping if needed, we can assume that the lattice
points at height j = 3 are (i, 3), . . . , (E + i, 3) for some i ≥ 0. Now i ≥ 2 is impos-
sible, for this would introduce a new lattice point at height j = 2; thus i = 0 or
i = 1. Continuing this type of reasoning, we obtain that the lattice points of ∆(1)

can be seen as a pile of n blocks of respectively m1, . . . ,mn sheets, where each block
is shifted to the right over a distance 1 when compared to its predecessor.

We need to show that n = 1, because then ∆(1) has the desired rectangular shape.
We will first prove that ∆ statisfies condition P1(v). Since i(+)(j)− i(−)(j) = E for
each value of j, the inequality

ε
(−)
j1,j2,r

+ ε
(+)
j1,j2,r

≤ 1

holds (so never ε
(−)
j1,j2,r

= ε
(+)
j1,j2,r

= 1) for all j1, j2 ∈ {2, . . . , γ − 2} with j2 − j1 ≥ 2

and r ∈
{

1, . . . ,
⌊
j2−j1

2

⌋}
. This implies that

S(−)
j1,j2
∪ S(+)

j1,j2
=

{
1, . . . ,

⌊
j2 − j1

2

⌋}
.
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m1 sheets

m2 sheets

mn sheets

Figure 7: lattice points of ∆(1) in sheets

Now assume that S(−)
j1,j2

and S(+)
j1,j2

are non-empty and disjoint. In this case, we can

take r, s ∈
{

1, . . . ,
⌊
j2−j1

2

⌋}
such that

ε
(−)
j1,j2,r

= ε
(+)
j1,j2,s

= 0 and ε
(+)
j1,j2,r

= ε
(−)
j1,j2,s

= 1.

If r < s, we get that

i(−)(j1 + s) + i(−)(j2 − s) > i(−)(j1) + i(−)(j2)

and
i(+)(j1) + i(+)(j2) > i(+)(j1 + r) + i(+)(j2 − r).

Subtracting E from both sides of the latter equation yields

i(−)(j1) + i(−)(j2) > i(−)(j1 + r) + i(−)(j2 − r),

so

i(−)((j1 + r) + (s− r)) + i(−)((j2 − r)− (s− r)) ≥ i(−)(j1 + r) + i(−)(j2 − r) + 2,

which is in contradiction with Lemma 2. A similar contradiction can be obtained
if r > s.

Now let’s prove that ∆ also satisfies property P2(v), where we assume that n ≥ 2.
By Remark 13 and a symmetry consideration (rotation over 180◦), it suffices to
check the condition for lattice points (i, j) that lie on the left side of the boundary
of ∆ (and even of ∆max). Take ` ∈ {2, . . . , γ − 2}, w = (i(−−)(`), `) and ui,j =
(i1, j1), vi,j = (i2, j2) ∈ ∆(1) such that (i, j) − w = (ui,j − w) + (vi,j − w), hence
j1 + j2 = j + `. It is sufficient to prove that

i+ i(++)(`) ≤ i(+)(j1) + i(+)(j2). (10)

246 Chapter 10. Intrinsicness of the Newton polygon for smooth curves in P1 ×P1



First assume that |j − `| > |j2 − j1|. If j ∈ {1, . . . , γ − 1}, then

(i+ E) + i(++)(`) ≤ (i(−)(j) + E) + i(+)(`)

= i(+)(j) + i(+)(`)

≤ i(+)(j1) + i(+)(j2) + 1,

where we use Lemma 2 for the last inequality. Since E ≥ 1, the desired inequality
(10) follows. We still need to check (10) for points (i, j) ∈ ∂∆ with j = 0 and j = γ,
in particular i = −1 resp. i = n − 1 because we can assume that (i, j) lies on the
left side of the boundary of ∆max.

• If (i, j) = (−1, 0), the line segment L between (i + E, j) = (E − 1, 0) and
w′ = (i(++)(`), `) ∈ ∆(2) intersects the horizontal lines of heights j1 and j2 in
points that belong to ∆(1). Using a similar argument as in the proof of Lemma
2, we obtain that (i + E) + i(++)(`) ≤ i(+)(j1) + i(+)(j2) + 1, which gives us
(10) using E ≥ 1.

• Analogously, we can handle the case (i, j) = (n − 1, γ): the line segment L
between (i + E, j) = (n + E − 1, γ) and w′ will intersect the horizontal lines
of heights j1 and j2 in points that are contained in ∆(1) and (10) follows.

If |j − `| = |j2 − j1|, we may assume that j1 = j ∈ {1, . . . , γ − 1} and j2 =
` ∈ {2, . . . , γ − 2}. But then the inequalities i ≤ i(−)(j1) ≤ i(+)(j1) and i(++)(`) ≤
i(+)(j2) yield (10).

We still have to consider the case where |j − `| < |j2 − j1|, which implies that
j ∈ {1, . . . , γ − 1}. By Lemma 2, we have that

i(−)(j) + i(−)(`) ≤ i(−)(j1) + i(−)(j2) + 1,

hence

i+ i(++)(`) ≤ i(−)(j) + i(+)(`)

= i(−)(j) + i(−)(`) + E

≤ i(−)(j1) + i(−)(j2) + E + 1

≤ i(+)(j1) + i(+)(j2).

Since both conditions P1(v) and P2(v) hold for ∆, we can apply Theorem 16. If
n ≥ 2, then there is at least one first scrollar Betti number having value E − 1 =
g/(γ − 1) − 2, for instance B2. This is distinct from both 2g/(γ − 1) − 2 and
g/(γ−1)−3: contradiction. Therefore n = 1, i.e. ∆(1) has the requested rectangular
shape.
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4 Open questions

Here are two interesting open questions related to this paper:

1. In Section 2, we gave a combinatorial interpretation for the first scrollar Betti
numbers of ∆-non-degenerate curves C in terms of the combinatorics of ∆, in
case ∆ satisfies the condition P1(v) (see Definition 4) and P2(v) (see Defini-
tion 12). Can this be generalized to all polygons ∆? There seems to be no
geometric reason why this wouldn’t be the case, but we did not succeed to get
rid of the conditions.

2. In Theorem 18 of Section 3, we showed that non-degenerate curves on P1×P1

have an intrinsic Newton polygon (at least, if g 6= 4). Can this be generalized
to ∆-non-degenerate curves on Hirzebruch surfaces Hn? In this case, we
expect ∆(1) = ∅ or ∆(1) ∼= conv{(0, 0), (a+nb, 0), (a, b), (0, b)} for some integers
a, b, n ≥ 0 .
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CURVES IN CHARACTERISTIC 2 WITH NON-TRIVIAL 2-TORSION

WOUTER CASTRYCK, MARCO STRENG, DAMIANO TESTA

Abstract. Cais, Ellenberg and Zureick-Brown recently observed that over finite fields
of characteristic two, all sufficiently general smooth plane projective curves of a given
odd degree admit a non-trivial rational 2-torsion point on their Jacobian. We extend
their observation to curves given by Laurent polynomials with a fixed Newton polygon,
provided that the polygon satisfies a certain combinatorial property. We also show that
in each of these cases, the sufficiently general condition is implied by being ordinary.
Our treatment includes many classical families, such as hyperelliptic curves of odd genus
and Ca,b curves. In the hyperelliptic case, we provide alternative proofs using an explicit
description of the 2-torsion subgroup.

1. Introduction

The starting point of this article is a recent theorem by Cais, Ellenberg and Zureick-
Brown [CEZB, Thm. 4.2], asserting that over a finite field k of characteristic 2, almost
all smooth plane projective curves of a given odd degree d ≥ 3 have a non-trivial k-
rational 2-torsion point on their Jacobian. Here, ‘almost all’ means that the corresponding
proportion converges to 1 as #k and/or d tend to infinity. The underlying observation is
that such curves admit

• a ‘geometric’ k-rational half-canonical divisor Θgeom: the canonical class of a
smooth plane projective curve of degree d equals (d − 3)H , where H is the class
of hyperplane sections; if d is odd then 1

2
(d− 3)H is half-canonical,

• an ‘arithmetic’ k-rational half-canonical divisor Θarith (whose class is sometimes
called the canonical theta characteristic), related to the fact that over a perfect
field of characteristic 2, the derivative of a Laurent series is always a square [Mum,
p. 191].

The difference Θgeom − Θarith maps to a k-rational 2-torsion point on the Jacobian. The
proof of [CEZB, Thm. 4.2] then amounts to showing that, quite remarkably, this point is
almost always non-trivial.

There exist many classical families of curves admitting such a geometric half-canonical
divisor. Examples include hyperelliptic curves of odd genus g, whose canonical class is
given by (g − 1)g12 (where g12 denotes the hyperelliptic pencil), and smooth projective
curves in P1

k×P1
k of even bidegree (a, b) (both a and b even, that is), where the canonical

class reads (a − 2)R1 + (b − 2)R2 (here R1, R2 are the two rulings of P1
k × P1

k). The
families mentioned so far are parameterized by sufficiently generic polynomials that are
supported on the polygons
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d

d

0
smooth plane curves

of degree d

2g + 2

2

0
hyperelliptic curves

of genus g

a

b

0
curves in P1

k ×P1
k

of bidegree (a, b),

respectively. The following lemma, which is an easy consequence of the theory of toric
surfaces (see Section 2), gives a purely combinatorial reason for the existence of a half-
canonical divisor in these cases.

Lemma 1. Let k be a perfect field and let ∆ be a two-dimensional lattice polygon. For
each edge τ ⊂ ∆, let aτX + bτY = cτ be its supporting line, where gcd(aτ , bτ ) = 1.
Suppose that the system of congruences

(1) { aτX + bτY ≡ cτ + 1 (mod 2) }τ edge of ∆

admits a solution in Z2. Then any sufficiently general Laurent polynomial f ∈ k[x±1, y±1]
that is supported on ∆ defines a curve carrying a k-rational half-canonical divisor on its
non-singular complete model.

In the proof of Lemma 1 below, where we describe this half-canonical divisor explicitly,
we will be more precise on the meaning of ‘sufficiently general’.

Here again, when specializing to characteristic 2, there is, in addition, an arithmetic
k-rational half-canonical divisor. So it is natural to wonder whether the proof of [CEZB,
Thm. 4.2] still applies in these cases. We will show that it usually does.

Theorem 2. Let ∆ be a two-dimensional lattice polygon satisfying the conditions of
Lemma 1, where in addition we assume that ∆ is not unimodularly equivalent to

1

3
(3, 1)

k

1
0
for some k ≥ 1

or 1
0

for some 0 ≤ k < ℓ ≥ 3
with k even and ℓ odd.

(ℓ, 1)

(k, 2)

Then there exists a non-empty Zariski open subset S∆/F2 of the space of Laurent polyno-
mials that are supported on ∆ having the following property. For every perfect field k of
characteristic 2 and every f ∈ S∆(k), the Jacobian of the non-singular complete model
of the curve defined by f has a non-trivial k-rational 2-torsion point.

(Right before the proof of Theorem 2 we will define the set S∆ explicitly.) As a conse-
quence, if k is a finite field of characteristic 2, then the proportion of Laurent polynomials
that are supported on ∆, which define a curve whose Jacobian has a non-trivial k-rational
2-torsion point, tends to 1 as #k → ∞. See the end of Section 3, where we also discuss
asymptotics for increasing dilations of ∆, i.e. the analogue of d→∞ in the smooth plane
curve case. In Section 4 we give sufficient conditions that have a more arithmetic flavor,
involving the rank of the Hasse-Witt matrix.

These observations seem new even for hyperelliptic curves of odd genus1 (even though
this is a well-known fact for the subfamily of hyperelliptic curves having a prescribed

1In view of the asymptotic consequences discussed in Section 3, this observation shows that [CFHS,
Principle 3] can fail for g > 2.
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k-rational Weierstrass point; see below). In this case we can give alternative proofs using
an explicit description of the 2-torsion subgroup; see Section 5. Another interesting class
of examples is given by the polygons

a

b

0

where a and b are not both even. The case a = b corresponds to the smooth plane curves
of odd degree considered in [CEZB]. The case gcd(a, b) = 1 corresponds to so-called Ca,b

curves. The case b = 2, a = 2g + 1 (a subcase of the latter) corresponds to hyperelliptic
curves having a prescribed k-rational Weierstrass point P . Note that in this case g12 ∼ 2P ,
so there is indeed always a k-rational half-canonical divisor, regardless of the parity of g.

Remark 3. This explains why Denef and Vercauteren had to allow a factor 2 while gen-
erating cryptographic hyperelliptic and Ca,b curves in characteristic 2; see Sections 6
of [DV1, DV2].

Finally, the case b = 3, a ≥ 4 corresponds to trigonal curves having maximal Maroni
invariant (that is trigonal curves for which the series (h0(ng13))n∈Z≥0

starts increasing by
steps of 3 as late as the Riemann-Roch theorem allows it to do); if a = 6, these are
exactly the genus-4 curves having a unique g13.

We conclude by stressing that the results in this paper are unlikely to generalize to
characteristic p > 2, by lack of an appropriate analogue of our arithmetic half-canonical
divisor Θarith.

2. Half-canonical divisors from toric geometry

Let k be a perfect field, let f =
∑

(i,j)∈Z2 ci,jx
iyj ∈ k[x±1, y±1] be a Laurent polynomial,

and let
∆(f) = conv

{
(i, j) ∈ Z2

∣∣ ci,j 6= 0
}

be the Newton polygon of f , which we assume to be two-dimensional. We say that f
is non-degenerate with respect to its Newton polygon if for every face τ ⊂ ∆(f) (vertex,
edge, or ∆(f) itself) the system

fτ =
∂fτ
∂x

=
∂fτ
∂y

= 0 with fτ =
∑

(i,j)∈τ∩Z2

ci,jx
iyj

has no solutions2 over an algebraic closure of k. For a given two-dimensional lattice
polygon ∆, we say that f is ∆-non-degenerate if ∆(f) = ∆ and f is non-degenerate
with respect to its Newton polygon. The condition of ∆-non-degeneracy is generically
satisfied, in the sense that it is characterized by the non-vanishing of

ρ∆ := Res∆

(
f, x

∂f

∂x
, y

∂f

∂y

)
∈ Z[ci,j |(i, j) ∈ ∆ ∩ Z2]

(where Res∆ is the sparse resultant; ρ∆ does not vanish identically in any characteris-
tic [CV, §2]). Non-degenerate Laurent polynomials are always (absolutely) irreducible.

2Note that this is in fact automatically true if τ is a vertex.
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To a two-dimensional lattice polygon ∆ one can associate a toric surface Tork(∆),
which is a compactification of T2

k = Spec k[x±1, y±1] to which the natural self-action of
the latter extends algebraically. This extended action decomposes Tork(∆) in a finite
number of orbits, which naturally correspond (in a dimension-preserving manner) to the
faces of ∆; for each face τ , write O(τ) for the according orbit. Now if f ∈ k[x±1, y±1] is a
∆-non-degenerate Laurent polynomial, the non-degeneracy condition with respect to ∆
itself ensures that it cuts out a non-singular curve Cf in T2

k = O(∆). Similarly, one finds
that its compactification C ′

f in Tork(∆) does not contain any of the zero-dimensional
O(τ)’s, and that it intersects the one-dimensional O(τ)’s transversally.

∆

τ1

τ2

τ3

τ4

R2

T2
k

C ′
f O(τ2)

O(τ4)

O(τ1)

O(τ3)Tork(∆)

In particular, since Tork(∆) is normal, the non-degeneracy of f implies that C ′
f is a

non-singular complete model of Cf . See [CC, §3-4] and [CDV, §2] for more details.

Example 4. Assume that ∆ = conv{(0, 0), (d, 0), (0, d)}. In this case Tork(∆) is just the
projective plane, and the toric orbits are

• T2
k = O(∆),

• the three coordinate points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1), which are the
orbits of the form O(vertex),
• the three coordinate axes from which the coordinate points are removed: these
are the orbits of the form O(edge).

Thus C ′
f is a non-singular projective plane curve that is non-tangent to any of the coor-

dinate axes, and that does not contain any of the coordinate points. This is essentially
an if-and-only-if: an absolutely irreducible Laurent polynomial f ∈ k[x±1, y±1], for which
∆(f) ⊂ ∆, is ∆-non-degenerate if and only if its zero locus in T2

k compactifies to a non-
singular degree d curve in P2

k that is non-tangent to the coordinate axes, and that does
not contain the coordinate points.

Example 5. Let g ≥ 2 be an integer, and consider f = y2 + h1(x)y + h0(x), where
deg h1 ≤ g+1, deg h0 = 2g+2, and h0(0) 6= 0. Then ∆(f) = conv{(0, 0), (2g+2, 0), (0, 2)},
and Tork(∆(f)) is the weighted projective plane Pk(1 : g + 1 : 1). Here again, if f is
non-degenerate with respect to its Newton polygon then C ′

f is a non-singular curve that
is non-tangent to the coordinate axes and that does not contain any coordinate points.
In this case C ′

f is a hyperelliptic curve of genus g (cf. Remark 8).

Now for each edge τ ⊂ ∆ let ντ ∈ Z2 be the inward pointing primitive normal vector
to τ , let pτ be any element of τ ∩ Z2, and let Dτ be the k-rational divisor on C ′

f cut out

254 Chapter 11. Curves in characteristis 2 with non-trivial 2-torsion



by O(τ). Using the ∆-non-degeneracy of f one can prove

(2) div
dx

xy ∂f
∂y

=
∑

τ edge

(−〈ντ , pτ 〉 − 1)Dτ .

Here 〈·, ·〉 is the standard inner product on R2. See [CDV, Cor. 2.7] for an elementary
but elaborate proof of (2). It is possible to give a more conceptual proof using adjunction
theory, along the lines of [CLS, Prop. 10.5.8].

Remark 6. From the theory of sparse resultants it follows that ∂f/∂y does not vanish
identically, so that the left-hand side of (2) makes sense. Note also that 0 = df =
∂f
∂x
dx+ ∂f

∂y
dy, so we could as well have written

(3) div
dy

xy ∂f
∂x

.

Proof of Lemma 1. Assume that f is ∆-non-degenerate (which, as mentioned above, is a
non-empty Zariski open condition). Let (i0, j0) ∈ Z2 be a solution to the given system
of congruences. We claim that the translated polygon (−i0,−j0) + ∆ is such that all
corresponding 〈ντ , pτ 〉’s are odd. To see this, note that in this case (0, 0) is a solution
to the according system of congruences (1). This implies that all cτ ’s are odd. Together
with 〈ντ , pτ 〉 = ±cτ this yields the claim. So by applying the above to x−i0y−j0f , we find
that

Θgeom =
∑

τ edge

−〈ντ , pτ〉 − 1

2
Dτ

is a k-rational half-canonical divisor on C ′
x−i0y−j0f

= C ′
f . �

Example 4 (continued). Assume that d is odd, so that the conditions from Lemma 1
are satisfied. Applying the above proof with (i0, j0) = (1, 1) yields

Θgeom =
d− 3

2
D∞

where D∞ is the divisor cut out by the line at infinity. So we recover the divisor class
mentioned in the introduction.

Remark 7. Still assume that ∆ = conv{(0, 0), (d, 0), (0, d)} with d odd. We already noted
that the condition of non-degeneracy restricts our attention to smooth plane curves of
degree d that do not contain the coordinate points and that intersect the coordinate
axes transversally. But of course any smooth plane curve of degree d carries a k-rational
half-canonical divisor. This shows that the non-degeneracy condition, even though it
is generically satisfied, is sometimes a bit stronger than needed.3 For a general two-
dimensional lattice polygon ∆, the according weaker condition reads that f is ∆-toric,
meaning that ∆(f) ⊂ ∆, that ∆(f)(1) = ∆(1), and that Cf compactifies to a non-singular

3The reader might want to note that there always exists an automorphism of P2
k that puts our smooth

plane curve in a non-degenerate position (at least if #k is sufficiently large). But for more general
instances of ∆, the automorphism group of Tork(∆) may be much smaller (e.g. the only automorphisms
may be the ones coming from the T2

k-action), in which case it might be impossible to resolve tangency
to the one-dimensional toric orbits.
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curve C ′
f in Tork(∆). Here ∆(1) denotes the lattice polygon obtained by taking the convex

hull of the Z2-points that lie in the interior of ∆, and similarly for ∆(f)(1). See [CC, §4]
for more background on this notion. Now we have to revisit Remark 6, however: there
do exist instances of ∆-toric Laurent polynomials f ∈ k[x±1, y±1] for which ∂f/∂y does
vanish identically (example: take f = 1+x2y2+x3y2 and ∆ = ∆(f)). For these instances
the left-hand side of (2) does not make sense. But in that case ∂f/∂x does not vanish
identically (otherwise Cf would have singularities), and one can prove that (2) holds with
the left-hand side replaced by (3).

Remark 8. We mention two other well-known features of ∆-non-degenerate (or ∆-toric)
Laurent polynomials, that can be seen as consequences to (2); see for instance [CC, CV]
and the references therein:

• the genus of C ′
f equals #

(
∆(1) ∩ Z2

)
,

• if #
(
∆(1) ∩ Z2

)
≥ 2, then C ′

f is hyperelliptic if and only if ∆(1) ∩ Z2 is contained
in a line.

3. Proof of the main result

Lemma 9. Let ∆ be a two-dimensional lattice polygon and suppose as in Lemma 1
that (1) admits a solution in Z2. If ∆ is not among the polygons excluded in the hypothesis
of Theorem 2, then there is a solution of (1) contained in ∆ ∩ Z2.

Proof. Let us first classify all two-dimensional lattice polygons ∆ for which the reduction-
modulo-2 map π∆ : ∆ ∩ Z2 → (Z/(2))2 is not surjective. If the interior lattice points of
∆ lie on a line, then surjectivity fails if and only if ∆ is among

(0, 0)

(0, 1)

(k, 0),
(for some k ≥ 1)

(a)

(0, 0)

(1, 2)

(2, 0),

(b)

(0, 1)

(1, 2)

(2, 1)

(1, 0),

(c)

(0, 1)

(k, 2)

(ℓ, 1)

(0, 0)
(0 ≤ k ≤ ℓ ≥ 3, k even)

(d)

(up to unimodular equivalence). This assertion follows from Koelman’s classification;
see [Koe, Ch. 4] or [Cas, Thm. 10]. Now any two-dimensional lattice polygon ∆ can be
peeled into ‘onion skins’, by subsequently taking the convex hull of the interior lattice
points, until one ends up with a lattice polygon whose interior lattice points are contained
in a line.

If π∆ is not surjective, then clearly πΩ is not surjective for each onion skin Ω. In particular,
the last onion skin must necessarily be among (a-d).

But for a lattice polygon to arise as an onion skin of a strictly larger lattice polygon ∆
is a stringent condition. Using the criterion from [HS, Lem. 9-11] one sees that the only
polygons among (a-d) of this type are the polygons (a) with k = 1 or k = 2, the polygon
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(b) and the polygon (c). The same criterion shows that the only instance of such a larger
∆ for which π∆ is not surjective is

(0,−1)

(−1, 2)
(2, 0)

(e)

(up to unimodular equivalence). The latter, again by [HS, Lem. 9-11], is not an onion skin
of a strictly bigger lattice polygon itself. This ends the classification: up to unimodular
equivalence, the instances of ∆ for which π∆ is not surjective are (a)-(e).

Now let ∆ be a two-dimensional lattice polygon and suppose that (1) admits a solution
in Z2. If π∆ is surjective, then it clearly also admits a solution in ∆ ∩ Z2. So we may
assume that ∆ is among (a-e). Then the lemma follows by noting that cases (b), (c) and
(d) with ℓ even admit the solution (1, 1) ∈ ∆∩Z2, and that cases (a), (e) and (d) with ℓ
odd were excluded in the énoncé. �

Remark 10. Because of Remark 8, the excluded polygons correspond to certain classes
of smooth plane quartics, rational curves, and hyperelliptic curves, respectively.

We can now define the variety S∆ mentioned in the statement of Theorem 2. Namely, we
will prove the existence of a non-trivial k-rational 2-torsion point under the assumption
that

• f is ∆-non-degenerate (i.e. the genericity assumption from Lemma 1), and
• for at least one solution (i0, j0) ∈ ∆ ∩ Z2 to the system of congruences (1), the
corresponding coefficient ci0,j0 is non-zero.

So we can let S∆ be defined by ci0,j0ρ∆ 6= 0.

Remark 11. Here again, one can weaken the condition of being ∆-non-degenerate to
being ∆-toric, as described in Remark 7. When that stronger version is applied to
∆ = conv{(0, 0), (d, 0), (0, d)} with d odd, one exactly recovers [CEZB, Thm. 4.2].

Proof of Theorem 2. By replacing f with x−i0y−j0f if needed, we assume that (0, 0) ∈ ∆
is a solution to the system of congruences (1) and that the constant term of f is non-zero.
As explained in [Mum, p. 191], C ′

f comes equipped with a k-rational divisor Θarith such
that 2Θarith = div dx. (Recall that the derivative of a Laurent series over k is always a
square, so the order of dx at a point of C ′

f is indeed even.) On the other hand, Lemma 1
and its proof provide us with a k-rational divisor Θgeom such that

2Θgeom = div
dx

xy ∂f
∂y

.

In order to prove that Θgeom 6∼ Θarith (and hence that Jac(C ′
f) has a non-trivial k-rational

2-torsion point), we need to show that

xy
∂f

∂y
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is a non-square when considered as an element of the function field k(Cf). If it were a
square, then there would exist Laurent polynomials α,G,H such that

(4) H2xy
∂f

∂y
+ αf = G2 in k[x±1, y±1],

where f ∤ H . Taking derivatives with respect to y yields

(α +H2x)
∂f

∂y
=

∂α

∂y
f,

which together with (4) results in
(
(α +H2x)α +H2xy

∂α

∂y

)
f = (α+H2x)G2.

Since f is irreducible, it follows that f | (α +H2x) or f | G2. Using (4) and f ∤ H , the
latter implies that f | ∂f

∂y
, which is a contradiction (by the theory of sparse resultants, see

Remark 6; one can alternatively repeat the argument using (3) if wanted). So we know
that f | (α +H2x). Along with (4) we conclude that there exists a Laurent polynomial
β ∈ k[x±1, y±1] such that

H2x

(
y
∂f

∂y
+ f

)
+ βf 2 = G2.

Taking derivatives with respect to x yields

H2

(
f + x

∂f

∂x
+ y

∂f

∂y
+ xy

∂2f

∂x∂y

)
+

∂β

∂x
f 2 = 0.

Since f has a non-zero constant term, the large factor between brackets is non-zero. On
the other hand, since f ∤ H , it must be a multiple of f 2. Note that ∆(f 2) = 2∆(f), while
∆(f + · · ·+ xy∂2f/(∂x∂y)) ⊂ ∆(f). This is a contradiction. �

We end this section by discussing some asymptotic consequences to Theorem 2.

Growing field size. Let ∆ be a two-dimensional lattice polygon satisfying the conditions
of Theorem 2. Let k be a finite field of characteristic 2. Because non-degeneracy is
characterized by the non-vanishing of ρ∆, the proportion of ∆-non-degenerate Laurent
polynomials f ∈ k[x±1, y±1] (amongst all Laurent polynomials that are supported on ∆)
converges to 1 as #k →∞. Then Theorem 2 implies:

lim
#k→∞

Prob
(
Jac(C ′

f)(k)[2] 6= 0
∣∣ f ∈ k[x±1, y±1] is ∆-non-degenerate

)
= 1.

As soon as #(∆(1) ∩ Z2) ≥ 2 this is deviating statistical behavior: in view of Katz-
Sarnak-Chebotarev-type density theorems [KS, Theorem 9.7.13], for a general smooth
proper family of genus g curves, one expects that the probability of having a non-trivial
rational 2-torsion point on the Jacobian approaches the chance that a random matrix in
GLg(F2) satisfies det(M − Id) = 0, which is

−
g∑

r=1

r∏

j=1

1

1− 2j
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by [CFHS, Thm. 6]. For g = 1, 2, 3, 4, . . . , these probabilities are 1, 2
3
, 5
7
, 32
45
, . . . (converg-

ing to about 0.71121).
In the table below we denote by �i the square [0, i]

2 (for i = 2, 3, 4), by Hg the hyperel-
liptic polygon conv{(0, 0), (2g+2, 0), (0, 2)} (for g = 7, 8), and by E the exceptional poly-
gon conv{(1, 0), (3, 1), (0, 3)} from the statement of Theorem 2. Each entry corresponds
to a sample of 104 uniformly randomly chosen Laurent polynomials f ∈ k[x±1, y±1] that
are supported on �2,�3, . . . The table presents the proportion of f ’s for which Jac(C ′

f)
has a non-trivial k-rational 2-torsion point, among those f ’s that are non-degenerate
with respect to their Newton polygon ∆(f) = �2,�3, . . . The count was carried out
using Magma [BCP], either by using the intrinsic function for computing the Hasse-Weil
zeta function, or by spelling out the Hasse-Witt matrix [SV, Thm. 1.1] and applying
Manin’s theorem [Man].

k
�2

(g = 1)

�3

(g = 4)

�4

(g = 9)

H7

(g = 7)

H8

(g = 8)

E
(g = 3)

F2 0/0 0.370 0.958 0.995 0.670 0.143
F4 0.750 0.621 1.000 1.000 0.795 0.449
F8 0.884 0.654 1.000 1.000 0.852 0.591
F16 0.940 0.697 1.000 1.000 0.872 0.661
F32 0.968 0.704 1.000 1.000 0.877 0.696
F64 0.986 0.716 1.000 1.000 0.880 0.694
F128 0.992 0.703 1.000 1.000 0.889 0.708
F256 0.996 0.709 1.000 1.000 0.888 0.707

asymptotic

prediction
1 32

45
≈ 0.711 1 1 8

9
≈ 0.889 5

7
≈ 0.714

Note that the conditions of Theorem 2 are satisfied for �2, �4 and H7. So here we proved
that the proportion converges to 1. In the case of H8, by the material in Section 5 (see
Corollary 27) we know that the proportion converges to 8

9
. In the other two cases �4 and

E we have no clue, so our best guess is that these follow the GLg(F2)-model.

Growing polygon. Let k be a finite field of characteristic 2. If ∆ is a two-dimensional
lattice polygon satisfying the conditions of Lemma 1, then the same holds for each odd
Minkowski multiple (2n + 1)∆. It seems reasonable to assume that the proportion of
(2n + 1)∆-non-degenerate Laurent polynomials f ∈ k[x±1, y±1], amongst all Laurent
polynomials that are supported on (2n + 1)∆, converges to a certain strictly positive
constant.

This is certainly true for the larger proportion of (2n+1)∆-toric Laurent polynomials.
Namely, using [Poo2, Thm. 1.2] one can show that this proportion converges to

ZTork(∆)\S((#k)−3)−1 · ZS((#k)−1)−1

as n→∞; here S denotes the (finite) set of singular points of Tork(∆), and Z stands for
the Hasse-Weil Zeta function. It should be possible to prove a similar statement for non-
degenerate Laurent polynomials by redoing the closed point sieve in the proof of [Poo2,
Thm. 1.2], but we did not work out the details of this.
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On the other hand, the number of solutions to (1) inside (2n + 1)∆ ∩ Z2 tends to
infinity. So the assumption would allow one to conclude:

lim
n→∞

Prob
(
Jac(C ′

f)(k)[2] 6= 0
∣∣ f ∈ k[x±1, y±1] is (2n+ 1)∆-non-degenerate

)
= 1.

This is again deviating statistical behavior: in view of Cohen-Lenstra type heuristics, one
naively expects a probability of about

1−
∞∏

j=1

(1− 2−j) ≈ 0.71121;

see [CEZB] for some additional comments.
When applied to (2n+1)Σ-toric Laurent polynomials, where Σ is the standard simplex,

one recovers the claim made before [CEZB, Thm. 4.2].

4. Connections with the rank of the Hasse-Witt matrix

Let us revisit the proof of Theorem 2 from the previous section. Our sufficient condition
that

(5) ci0,j0 6= 0 for at least one solution (i0, j0) ∈ ∆ ∩ Z2 to the system (1)

(see right before Remark 11) seems rather equation-specific. However, it is easy to show
that automorphisms of Tork(∆) cannot alter whether (5) is satisfied or not. For instance,
in the case of smooth plane projective curves of odd degree d ≥ 3, one verifies that if

F (X, Y, Z) =
∑

i+j≤d

ci,jX
iY jZd−i−j ∈ k[X, Y, Z]

is such that ci,j = 0 as soon as both i and j are odd, then applying a linear change of
variables does not affect this. This suggests that something more fundamental is going
on. In Conjecture 15 below we will formulate a guess for a geometric interpretation
of condition (5), involving the rank of the Hasse-Witt matrix (or of the Cartier-Manin
operator, if one prefers). We will prove this guess in a number of special cases. Our main
references on the Hasse-Witt matrix are [Man, Ser, SV].

Here is a first fact:

Lemma 12. Let k be a perfect field of characteristic 2, let ∆ be a two-dimensional lattice
polygon satisfying the conditions of Lemma 1, and let f =

∑
(i,j)∈Z2 ci,jx

iyj ∈ k[x±1, y±1]

be a ∆-non-degenerate (or ∆-toric) Laurent polynomial. Let

• g be the genus of C ′
f , i.e. g = #(∆(1) ∩ Z2), and

• ρ be the number of solutions (i0, j0) ∈ ∆ ∩ Z2 to the system of congruences (1).

If ci0,j0 = 0 for every such solution, then the rank of the Hasse-Witt matrix of C ′
f is at

most g − ρ.

Proof. By [CDV, Cor. 2.6 and 2.7] we find that

(6)

{
xiyj

dx

xy ∂f
∂y

}

(i,j)∈∆(1)∩Z2
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is a basis for the space of regular differentials on C ′
f . (If in the ∆-toric case the de-

nominator happens to vanish identically, one can replace dx/(∂f/∂y) by dy/(∂f/∂x) as
explained in Remark 7.) Assume that ci0,j0 = 0 for each of the ρ solutions (i0, j0) ∈ ∆∩Z2

to the system (1). Remark that these solutions are all contained in ∆(1). One then verifies
that the ρ corresponding differentials zi0,j0dx, where

zi0,j0 =
xi0yj0

xy ∂f
∂y

,

satisfy ∂zi0,j0/∂x = 0. Following the construction from [SV, §1] we conclude that at least
ρ rows of the Hasse-Witt matrix with respect to the basis (6) are zero. �

As an interesting corollary we obtain:

Corollary 13. Let k and ∆ be as before and let f be a ∆-non-degenerate (or ∆-toric)
Laurent polynomial over k. Assume moreover that ∆ is not among the polygons excluded
in the statement of Theorem 2. If C ′

f is ordinary then it has a non-trivial k-rational
2-torsion point on its Jacobian.

Proof. In view of Lemma 9, the fact that ∆ is not among the excluded polygons ensures
that ρ > 0. A result by Serre [Ser, Prop. 10] says that C ′

f is ordinary if and only if its
Hasse-Witt matrix has rank g. So the previous lemma implies that if C ′

f is ordinary, then
(5) is satisfied. The claim now follows from Theorem 2. �

Remark 14. The following alternative proof of Corollary 13 was suggested to us by
Christophe Ritzenthaler. A result by Stöhr and Voloch [SV, Cor. 3.2] states that the
Hasse-Witt matrix has rank g−h0(C ′

f ,Θarith). So if C
′
f is ordinary then h0(C ′

f ,Θarith) = 0,
and in particular Θarith cannot be linearly equivalent to an effective divisor. Now if ∆
is not among the excluded polygons, then by Lemma 9 there is at least one solution
(i0, j0) ∈ ∆ ∩ Z2 to the system (1). Fix such a solution and consider the corresponding
translated polygon (−i0,−j0) + ∆, as in the proof of Lemma 1. We again find that all
〈ντ , pτ 〉’s are odd, but now because (0, 0) ∈ (−i0,−j0) + ∆ we also find that they are
strictly negative. In other words the resulting half-canonical divisor Θgeom is effective.
Hence Θgeom and Θarith are non-equivalent. Their difference then yields a non-trivial
k-rational 2-torsion point on Jac(C ′

f).

Our guess is that Lemma 12 admits the following converse. This would give the desired
geometric interpretation of condition (5).

Conjecture 15. Let k be a perfect field of characteristic 2, let ∆ be a two-dimensional
lattice polygon satisfying the conditions from Lemma 1, and let f be a ∆-non-degenerate
(or ∆-toric) Laurent polynomial. Then the rank of the Hasse-Witt matrix of C ′

f is at least

g−ρ, and the bound is attained if and only if ci0,j0 = 0 for every solution (i0, j0) ∈ ∆∩Z2

to the system of congruences (1).

We can prove this conjecture in a number of special cases. Because the statements
seem interesting in their own right, we will each time reformulate (and sometimes refine)
Conjecture 15 accordingly.
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Theorem 16 (Conjecture 15 for smooth plane curves of odd degree). Let k be a perfect
field of characteristic 2, let d ≥ 3 be an odd integer and let f =

∑
i+j≤d ci,jx

iyj ∈ k[x, y]

define a smooth plane projective curve C/k of degree d and genus g = (d − 1)(d− 2)/2.
Then the rank of the Hasse-Witt matrix of C is bounded from below by

g − d2 − 1

8
=

3

8
(d− 1)(d− 3)

Furthermore equality holds if and only if ci,j = 0 as soon as i and j are odd.

Proof. Recall from Remark 14 that Stöhr and Voloch [SV, Cor. 3.2] proved that the rank
of the Hasse-Witt matrix is g−h0(C,Θarith). By the Brill-Noether theory of smooth plane
curves [Har, Thm. 2.1] we have

(7) h0(C,D) ≤
d−1
2

d+1
2

2
= (d2 − 1)/8

for any divisor D on C of degree g − 1. In particular this also holds for D = Θarith, from
which the lower bound follows. As for the last statement, by [Har, part 2b of Thm. 2.1]
the bound in (7) is attained if and only if D is in the class of d−3

2
H , i.e. if and only if

D ∼ Θgeom. But the proof of Theorem 2 (or of [CEZB, Thm. 4.2]) is precisely about
showing that if ci,j 6= 0 for some i and j that are both odd, then Θarith 6∼ Θgeom. This
yields the ‘only if’ part, while the ‘if’ part follows from Lemma 12. �

Theorem 17 (Conjecture 15 for hyperelliptic curves of odd genus). Let k be a perfect
field of characteristic 2. Let C be a hyperelliptic curve of odd genus g ≥ 3, given in
weighted projective form by

(8) C : Y 2 +H1(X,Z)Y = H0(X,Z),

where H1 and H0 in k[X,Z] are homogeneous of degrees g + 1 and 2g + 2 respectively.
Then the rank of the Hasse-Witt matrix of C equals

g − 1

2
deg gcd

(
H1, Z

−1 ∂

∂X
H1

)
.

In particular, it is bounded from below by

g − g + 1

2
=

g − 1

2
,

where equality holds if and only if ∂
∂X

H1 = 0.

Proof. Write H1 =
∑g+1

i=0 ciX
iZg+1−i and define

P (X,Z) =

(g+1)/2∑

i=0

c2iX
iZ(g+1)/2−i and Q(X,Z) =

(g−1)/2∑

i=0

c2i+1X
iZ(g−1)/2−i.

Note that H1 = P 2+XZQ2 and ∂
∂X

H1 = ZQ2. Now the polynomial f = y2+H1(x, 1)y+
H0(x, 1) is ∆-toric, where ∆ = conv{(0, 0), (2g+2, 0), (0, 2)}; here C ′

f is nothing else but
C. An explicit computation shows that the Hasse-Witt matrix with respect to the basis
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(6) equals, up to a reordering of the rows, the Sylvester matrix of P and Q. It is well-
known that the corank of the Sylvester matrix of two polynomials equals the degree of
their greatest common divisor, which in our case equals

deg gcd(P,Q) =
1

2
deg gcd(P 2, Q2) =

1

2
deg gcd

(
H1, Z

−1 ∂

∂X
H1

)
.

The remaining claims follow immediately. �
Remark 18. This indeed implies Conjecture 15 for hyperelliptic curves of odd genus
because ∂

∂X
H1 = 0 if and only if all terms ci,jx

iyj in f = y2 +H1(x, 1)y+H0(x, 1) with i
and j odd are 0.

Remark 19. The lower bound (g − 1)/2 holds for arbitrary curves C of genus g (not
necessarily odd) over fields of characteristic 2, and it can be attained by hyperelliptic
curves only. This follows from Clifford’s theorem, as explained in [SV, Cor. 3.2].

Theorem 20 (Conjecture 15 for the exceptional polygons). Let k be a perfect field of
characteristic 2, let ∆ be one of the polygons

1

3
(3, 1) or 1

0
for some 0 ≤ k < ℓ ≥ 3
with k even and ℓ odd

(ℓ, 1)

(k, 2)

that were excluded in the statement of Theorem 2, and let f ∈ k[x±1, y±1] be ∆-non-
degenerate (or ∆-toric). Then the rank of the Hasse-Witt matrix of C ′

f is equal to g =

#(∆(1) ∩ Z2). In particular C ′
f is ordinary.

Proof. The polygon on the left corresponds to smooth plane quartics of the form

c1,0XZ3 + c1,1XY Z2 + c2,1X
2Y Z + c3,1X

3Y + c1,2XY 2Z + c0,3Y
3Z.

The Hasse-Witt matrices of smooth plane quartics are explicitly described at the end of
[SV, §3]. In our case this gives 


c1,1 c3,1 0
0 c2,1 c0,3
c1,0 0 c1,2




with determinant c1,1c2,1c1,2 + c1,0c3,1c0,3. With the aid of a computer algebra package
one can verify that this determinant is non-zero (using that the curve is smooth).

As for the polygons on the right, we have that f = cxky2 + h1(x)y + c′ for non-zero
c, c′ ∈ k and a degree ℓ = g + 1 polynomial h1(x) ∈ k[x]. Substituting y ← yx−k and
multiplying the equation by c−1xk puts our curve in the Weierstrass form

y2 + c−1h1(x)y + c−1c′xk.

Using that k is even one sees that h1(x) is square-free (otherwise there would be an affine
singularity). The result then follows from the previous theorem. �

A fun corollary is the following geometric sufficient condition for ordinarity. Remark
that similar conditions have been described before (such as the existence of 7 bitangent
lines, which is actually sufficient and necessary; see [SV, §3]).
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Corollary 21. Let C be a smooth plane quartic curve over a field k of characteristic 2
admitting three non-colinear inflection points, such that the corresponding tangent lines
are precisely the lines through two of these points.

Then C is ordinary.

Proof. A projective transformation positions the three inflection points at (0 : 0 : 1), (0 :
1 : 0) and (1 : 0 : 0). One verifies that the dehomogenization of the corresponding defining
polynomial is ∆-non-degenerate, where ∆ is the left-most polygon in the statement of
the previous corollary. �

Remark 22. Theorems 16, 17 and 20 provide several characteristic 2 examples of fam-
ilies of curves whose Hasse-Witt matrices have constant rank. This (partly) addresses
Question 2 of [FP, §3.7].

5. Hyperelliptic curves

Let C be a hyperelliptic curve of genus g ≥ 2 over a perfect field k. Then C has a
smooth weighted projective plane model of the form (8). The Newton polygon of (the
defining polynomial of) the corresponding affine model y2 +H1(x, 1)y − H0(x, 1) = 0 is
contained in a triangle with vertices (0, 0), (2g + 2, 0) and (0, 2), and is generically equal
to this triangle. In particular, Theorem 2 implies that if the characteristic of k is 2 and C
is sufficiently general of odd genus, then its Jacobian has a non-trivial k-rational 2-torsion
point. By Corollary 13 we can replace ‘sufficiently general’ by ‘ordinary’.

The purpose of this stand-alone section is to give alternative proofs of these facts
(Corollaries 25 and 27), using an explicit description of the 2-torsion subgroup of Jac(C).

Theorem 23. Let C/k be a hyperelliptic curve over a perfect field k of characteristic 2
given by a smooth model (8). The Jacobian of C has no rational point of order 2 if and
only if H1(X,Z) is a power of an irreducible odd-degree polynomial in k[X,Z].

Corollary 24. Let C/k be a hyperelliptic curve of odd 2-rank over a perfect field k of
characteristic 2. Then the Jacobian of C has a k-rational point of order 2.

Corollary 25. Let C/k be an ordinary hyperelliptic curve of odd genus over a perfect
field k of characteristic 2. Then the Jacobian of C has a k-rational point of order 2.

Corollary 26. Let C/k be a hyperelliptic curve of genus 2m − 1 over a perfect field k of
characteristic 2, for some integer m ≥ 2. If the Jacobian of C has no k-rational point of
order 2, then it has 2-rank zero, but it is not supersingular.

Finally, for integers g, r ≥ 1, let cg,r be the proportion of equations (8) over F2r that
define a curve of genus g whose Jacobian has at least one rational point of order 2.
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Corollary 27. The limit limr→∞ cg,r exists and we have

lim
r→∞

cg,r =

{
1 if g is odd,

g/(g + 1) if g is even.

Proof of Theorem 23. All we need to do is describe the two-torsion of the Jacobian Jac(C)
of C. Since we were not able to find a ready-to-use statement in the literature, we give a
stand-alone treatment, even though what follows is undoubtedly known to several experts
in the field; for instance, it is implicitly contained in [EP, PZ]. Let k be an algebraic

closure of k. Note that C has a unique point Q(a:b) = (a :
√
F (a, b) : b) ∈ C(k) for every

root (a : b) ∈ P1
k
of H1 = H1(X,Z). This gives n points, where n ∈ {1, . . . , g + 1} is

the number of distinct roots of H1. Let D be the divisor of zeroes of a vertical line, so
D is effective of degree 2. All such divisors D are linearly equivalent, and are linearly
equivalent to 2Q(a:b) for each (a : b). In particular, if we let

A = ker




⊕

(a:b)

(Z/2Z)
∑

// (Z/2Z)


 ,

then we have a homomorphism

A −→ Jac(C)(k)[2]

(c(a:b) mod 2)(a:b) 7−→ (
∑

(a:b)

c(a:b)Q(a:b))− (
1

2

∑

(a:b)

c(a:b))D.

In fact, this map is an isomorphism. Indeed, it is injective because if the divisor of a
function is invariant under the hyperelliptic involution, then so is the function itself, i.e. it
is contained in k(x). But at the points Q(a:b) such functions can only admit poles or zeroes

having an even order. Surjectivity follows from the fact that Jac(C)(k)[2] is generated by
divisors that are supported on the Weierstrass locus of C. This can be seen using Cantor’s
algorithm [Kob, Appendix.§6-7], for the application of which one needs to transform
the curve to a so-called imaginary model; this is always possible over k. Alternatively,
surjectivity follows from the injectivity and the fact that #Jac(C)(k)[2] = 2n−1 by [EP,
Thm. 1.3].

Then in particular, the rational 2-torsion subgroup Jac(C)(k)[2] is isomorphic to the
subgroup of elements of A that are invariant under Gal(k/k), that is, to

Ak = ker


⊕

P |H1

(Z/2Z)→ (Z/2Z) : (cP )P 7→
∑

P

cP deg(P )




where the sum is taken over the irreducible factors P of H1.
The only way for Ak to be trivial is for H1 to be the power of an irreducible factor P

of odd degree. �

Proof of Corollary 24. Let n be the degree of the radical R of H1. The 2-rank of C equals
n − 1 (as in the proof of Theorem 23; see e.g. [EP, Thm. 1.3]). So if the 2-rank is odd,
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then R has even degree, which implies that H1 is not a power of an irreducible odd-
degree polynomial. In particular, Theorem 23 implies that C has a non-trivial k-rational
2-torsion point. �
Proof of Corollary 25. This is a special case of Corollary 24 since in characteristic 2, the
2-rank of an ordinary abelian variety equals its dimension. �
Proof of Corollary 26. If there is no rational point of order 2, then H1 is a power of a
polynomial of odd degree dividing deg H1 = g + 1 = 2m. In other words, it is a power
of a linear polynomial and hence the 2 rank of C is zero. There are no supersingular
hyperelliptic curves of genus 2m − 1 in characteristic 2 by [SZ, Thm. 1.2]. �
Proof of Corollary 27. As r → ∞, the proportion of equations (8) for which H1 is not
separable becomes negligible. By Theorem 23 it therefore suffices to prove the corre-
sponding limit for the proportion of degree g + 1 polynomials that are not irreducible
of odd degree. If g is odd then this proportion is clearly 1. If g is even then this is
the same as the proportion of reducible polynomials of degree g + 1, which converges to
1− (g + 1)−1. �
Remark 28. In Corollary 27, instead of working with the proportion of equations (8), we
can work with the corresponding proportion of F2r -isomorphism classes of hyperelliptic
curves of genus g. This is because the subset of equations (8) that define a hyperelliptic
curve of genus g whose only non-trivial geometric automorphism is the hyperelliptic
involution (inside the affine space of all equations of this form) is non-empty [Poo1],
open, and defined over F2 (being invariant under the Gal(F2,F2)-action). See also [Zhu].

We finish by identifying the 2-torsion point from the proof of Theorem 2 in the hyperel-
liptic case with one of the 2-torsion points from the proof of Theorem 23. The former proof
provides Θarith and Θgeom with 2Θarith ∼ 2Θgeom, hence the class of T = Θarith −Θgeom is
two-torsion. We have 2Θarith = div dx. To compute 2Θgeom, we need to take an appropri-
ate model as in the proof of Lemma 1. The bivariate polynomial y2+H1(x, 1)y+H0(x, 1)
gives an affine model of our hyperelliptic curve C, and if g is odd, then the system from
Lemma 1 admits the solution (1, 1). By the proof of that lemma, we should then look at
the toric model C ′

f where

f = x−1(y +H1(x, 1) + y−1H0(x, 1)).

Then Θgeom is given by 2Θgeom = div 1

xy ∂f
∂y

dx, so we compute

∂f

∂y
= x−1(1 + y−2H0(x, 1)) = x−1y−1 H1(x, 1).

We find

T = Θarith −Θgeom =
1

2
div xy

∂f

∂y
=

1

2
divH1(x, 1),

where divH1(x, 1) is twice the sum of all points P(a:b) as (a : b) ranges over the roots
of H1(X,Z) in P1

k
(with multiplicity), minus (g + 1) times the divisor D of degree 2 at

infinity. This is the 2-torsion point from the proof of Theorem 23 corresponding to the
element (1, 1, . . . , 1) ∈ Ak.
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