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Foreword

Data sciences aim at retrieving useful information from observed data. In general, this goal is formalized as the
estimation problem of an unknown and potentially multidimensional variable θ. Most of the time, we do not have
access to direct observations of this variable and we must deduce as much as possible from data that have an ill
known link to the variable. This process is called inference.

This process is doomed to fail if data and variable are unrelated. The existence of a pattern between observa-
tions and the variable of interest is a prerequisite to inference and we will assume that this pattern does exist. In
practice, this pattern can be highly complex and it is not always useful to understand it in details. To mitigate our
lack of knowledge on the mechanism relating our data to θ, a solution is to resort to approximate reasoning. This
is usually acceptable as long as one is able to quantify the approximation effects on the obtained estimation. By
accepting to resort to approximate reasoning, one enters a whole new world of models that can potentially be
more simple and computationally tractable as compared to the real one.

The most popular framework for this type of reasoning is probabilistic modeling. Probability theory has been
extensively studied by many mathematicians for many centuries and its ability to capture efficiently random
phenomenons and to represent uncertain information is remarkable. Thanks to probabilities, one can evaluate
which value of θ is more likely than others. When the analysis permits it (as in Bayesian statistics), one can also
determine to what extent the predictions on θ are reliable. Beyond the need for simplifying models, probabilistic
modeling is also justified sometimes by the random feature of some data (presence of noise).

If data allow only to retrieve partial knowledge concerning θ, it is legitimate to wonder if they can in the mean
time allow to estimate exact probabilities of θ. Obviously, there are two levels of uncertainty: uncertainty on the
actual value of θ and uncertainty in the probability values of the variable values.

Several solutions are possible to take these two levels of uncertainty into account. In absolute terms, it is neces-
sary to compute probabilities of probabilities (random measures).

The solution introduced by Dempster 1967 offers an intermediate answer and allows to define two functions
that can be seen as upper and lower bounds of the probabilities of θ. The lower bound is called belief function and
gave its name to the eponymous theory. Inference can be performed on the basis of the framework laid bare by
Dempster and later completed by Shafer 1976 and several other authors.

Belief function based approximate reasoning is the main subject of this manuscript. Across research activities I
carried out in my early associate professor career, I mainly focused on endowing the space where belief functions
live with structures that allow belief function analysis, comparison and combination. My main approach consisted
in deriving new tools that are consistent with the informational content of a belief function.
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Résumé

La science des données a pour but principal l’extraction de connaissances à partir d’observations. De manière
générale, le but est de déterminer la valeur prise par une variable inconnue θ. N’ayant pas accès directement à des
observations de cette variable, il faut alors déduire un maximum d’informations sur θ à partir des données dont
nous disposons. Ce processus de déduction se nomme inférence.

Ce processus n’a aucune chance d’aboutir si les données sont indépendantes de la variable θ. L’existence d’un
lien sémantique entre les observations et la variable d’intérêt est un pré-requis qu’on supposera vérifié. En pra-
tique, ce lien peut être d’une très grande complexité et il n’est pas forcément utile de le comprendre en détail.
Pour palier notre méconnaissance du mécanisme liant nos données à θ, une solution consiste à avoir recours au
raisonnement approximatif. Le tout est de pouvoir quantifier l’approximation et ses effets sur notre estimation.
Si l’on accepte le recours à cette pratique, on ouvre la voie à tout un nouveau monde de modèles qui prendront
potentiellement une forme beaucoup plus simple et synthétique que le modèle réel.

L’outil privilégié pour ce type raisonnement est la modélisation probabiliste. Ce formalisme largement étudié
par les mathématiciens depuis plusieurs siècles a montré sa capacité à capturer efficacement des phénomènes
aléatoires et à représenter des informations incertaines. Grâce aux probabilités, on peut savoir quelle valeur de
θ est plus vraisemblable qu’une autre. Quand l’analyse probabiliste est poussée (approche Bayésienne) on sait
également dire quel degré de confiance nous pouvons accorder à notre prédiction de la valeur de θ.

Au delà de l’intérêt du raisonnement approximatif, la modélisation probabiliste se justifie aussi parfois par le
caractère incertain des données (présence de bruit).

Si les données ne nous permettent de remonter qu’à une connaissance partielle de θ, il est légitime de se de-
mander si elles permettent de remonter à une connaissance exacte des probabilités de θ. A l’évidence, il y a un
double niveau d’incertitude : incertitude sur la valeur prise par θ et incertitude sur la valeur des probabilités de θ.

Plusieurs solutions sont possibles pour prendre en compte ce double niveau. Dans l’absolu, il faut alors calculer
des probabilités de probabilités (mesures aléatoires). La solution proposée par Dempster 1967 offre une réponse
intermédiaire en permettant d’obtenir deux fonctions pouvant être vues respectivement comme une borne in-
férieure et une borne supérieure sur les valeurs des probabilités de θ. La borne inférieure est appelée fonction de
croyance et a donné son nom à la théorie éponyme qui consiste à construire des processus inférentiels dans le
cadre posé par Dempster puis complété par de nombreux auteurs.

Le raisonnement approximatif à partir de fonctions de croyance est l’objet principal de ce mémoire. Au cours
des travaux de recherche que j’ai pu mener dans mon début de carrière d’enseignant-chercheur, je me suis prin-
cipalement attaché à doter l’espace dans lequel vivent les fonctions de croyance de structures permettant leur
analyse, comparaison et combinaison. Dans cette démarche, mon objectif principal a été de dériver de nouveaux
outils cohérents avec le contenu informationnel d’une fonction de croyance.
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List of Symbols

Notation Description
PX Probability distribution of the discrete random variable X

pX Probability density of the continuous random variable X

Ω An abstract space inducing probabilities in another space through a random variable

σΩ The canonical σ-algebra or σ-field associated to a space Ω.

µ A probability measure on Ω

X A random variable representing observations

X The space where X takes its values

θ The (ill-known) variable of interest

Θ The space where the variable of interest lives

2Θ The power set induced by the space Θ

n The size of Θ when this latter is finite

N The size of 2Θ when this latter is finite, i.e. N = 2n

N The set of positive integers

R The set of reals

E The expectation operator

Γ A multi-valued mapping

Γ−1
⊤ Upper pseudo inverse of Γ

Γ−1
⊥ Lower pseudo inverse of Γ

Γ−1 Pseudo inverse of Γ (in the usual sense)

P⊤ Upper probability induced by a multi-valued upper inverse

P⊥ Lower probability induced by a multi-valued lower inverse

S A source

bel A belief function

pl A plausibility function

q A commonality function

b An implicability function

w A conjunctive weight function

v A disjunctive weight function
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Notation Description
m A mass function

m Negation of a mass function

mB A categorical mass function focused on the subset B ⊆ Θ

mw
B A simple mass function with B and Θ as focal elements

mw A discounted mass function with discount rate w

m1|B or m1 (.|B) Conditional mass function

π A contour function or possibility distribution

N A necessity measure

Π A possibility measure

ν A capacity

ν∗ The conjugate capacity of ν

1B The indicator function for set B

Bc The complement of set B

projΘ Set projection operator

∆ Set symmetric difference

\ Set difference

|.| Set cardinality

Φ Cdf of a centered Gaussian distribution with unit variance

Unif[a;b] The uniform distribution on the interval [a; b]

min or ∧ The minimum operator

max or ∨ The maximum operator

PΘ The simplex of probability measures on Θ

P A probability measure set (p.m.-set), i.e. a subset of PΘ

Pν The core of the capacity ν

νP The lower probability induced by P

νP The upper probability induced by P

vec The vectorization operator

m A mass vector

I The identity matrix

1 The all-ones matrix

J The matrix with null components except those on the anti-diagonal which are equal to 1

K∩α An α-specialization matrix

K∪α An α-generalization matrix
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Notation Description
⊗ Product measure

⊕ Dempster’s rule

∩⃝α An α-conjunctive rule

∪⃝α An α-disjunctive rule

∩⃝ The conjunctive rule

∪⃝ The disjunctive rule

? The cautious rule

> The bold rule

⊓ A distance based conjunctive operator

⊔ A distance based disjunctive operator

⪯ A pre-order

⊑ A partial order

Spe Specificity measure for mass functions

Card Expected cardinality for mass functions

κ Dempster’s degree of conflict

κ (m) Mass assigned to ∅, i.e. m (∅)

κA Conflict induced by the conjunctive combination of the family A of mass functions

κA (α) Conflict induced by the conjunctive combination of the family A of discounted mass
functions - discount rates are the entries of α

ℓ The cardinality of a family of mass functions

M The mass space

Mx (m1) The set of mass functions that are x-included in m1

dJ Jousselme distance

d f ,k Lk norm based distance between set functions of type f ∈ {pl, q, bel, b}

d∩,α
mat,k Lk matrix norm based distance between between α-specialization matrices

d∪,α
mat,k Lk matrix norm based distance between between α-generalization matrices

d∩,α
opk k operator matrix norm based distance between between α-specialization matrices

d∪,α
opk k operator matrix norm based distance between between α-generalization matrices



10



General introduction

This document has been written as part of the preparation of my Habilitation à diriger les recherches (HDR) degree.
It is focused on my main research interest which is the theory of belief functions. In the body of this document,
I thus develop a presentation of this framework and of my contributions in this field. This presentation is spread
across several chapters. In the first chapter, I try to give a global picture of uncertainty theories and how the
theory of belief functions places itself in this picture. In the second chapter, I present important elements of the
theory. My personal contributions are sorted in the three next chapters which review the structure of the space
where belief functions live. I examine order theoretic structures, metric structures and algebraic structures, hence
the title of this document. The body of this document is written as if it was a monograph on belief functions and
associated structures therefore I will use a conventional writing style and use ”we” instead of ”I”. However, I will
spend more time on my personal contributions (providing proofs and more examples) because this is necessary for
my evaluation. Of course, this should not be interpreted as a narcissist fascination for my own work.

In the next paragraphs, I will give a short presentation of belief functions and their applications. Since the
evaluation of an HDR candidate is not limited to one research topic, I will also present briefly my other research
activities which mainly deal with medical image processing and machine learning.

I will also give some personal and general information on my career as assistant professor in the university of
Lille1. To summarize my career, I will address separately the following points: teaching activities, team leading
activities and scientific activities. Concerning scientific activities, I will highlight PhD supervisions and related
publications as well as other publications that were written outside the scope of these PhDs.

0.1 Belief functions in a nutshell

In the late sixties, Arthur P. Dempster published a series of papers around a mathematical model that can be
viewed as a random variable which cannot be precisely observed. By precisely observed, we mean that a real-
ization of this variable does not always translate in a single valued observation but a set valued one. Dempster’s
model relies on two ingredients: a probability space and a multi-valued mapping (a mapping whose values are
sets). By introducing pseudo-inverses of this multi-valued mapping, he shows that the model can also be viewed
as a system of lower and upper bounds for probabilities associated to the variable values.

A few years later, Dempster supervised Glenn Shafer’s seminal work which introduced many results for this
model. After his PhD, Shafer published a book to summarize his ideas and he defended that reasoning under
uncertainty using this model makes sense and generalizes some probabilistic calculus rules but it is not always
necessary to rely on an underlying probability space. The functions that share the same properties as Dempster’s
lower probabilities are thus called in general belief functions. Those sharing the same properties as Dempster’s
upper probabilities are called plausibility functions. Since plausibility functions are in bijective correspondence
with belief functions, the term belief functions became after some time the default denomination of the model and
the whole framework as well.

The pioneering work of Dempster and Shafer has dragged the attention of many researchers from the artificial
intelligence, statistical sciences and mathematical logic communities. We have recently celebrated 50 years of
research on belief functions and related topics. The next chapter are mainly focused on theoretical aspects of belief
functions therefore I want to mention here that the framework has been applied in many fields (see table 1).

I personally discovered the framework of belief functions in the second year of my PhD when I had the idea
to combine several likelihood functions to improve a particle filter for vehicle tracking in on-road videos. Ten
years later, my interest for Dempster and Shafer’s ideas is untouched. After I was recruited as assistant professor
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Application Field Examples of approaches relying on belief functions
Machine Learning •Denœux 1995 presents a k nearest neighbor classification algo-

rithm where data points induce belief functions.
•Xu et al. 2015 present a calibration method to turn the output
of classifiers like SVMs into belief functions and build a classifier
ensemble.
•Denœux et al. 2015 introduce an unsupervised iterative clus-
tering algorithm. Data point dissimilarities are used to compute
cluster membership plausibilities. This approach is non-parametric
and the number of clusters can be set to an arbitrary initial value.

Information Fusion •Clemens et al. 2016 use a belief function based sensor fusion as
part of a self localization and mapping algorithm. The benefits of
belief functions as compared to standard probabilities is that the
origins of map uncertainties are more easy to interpret (lack of
information, inconsistencies between sensor outputs, etc.)
•Klein et al. 2009 combine belief functions based on likelihood
functions to obtain robust estimates of the probability that an
object is present in an image. Each likelihood relies on different
image features (texture, shape, color and movement). The object is
tracked through an image sequence using a particle filter.

Intelligent Vehicles •El Zoghby et al. 2014 introduce an approach allowing vehicles to
build belief functions that characterize the uncertainty of the pres-
ence of obstacles on road. Information is exchanged with neighbor
vehicles as part of vehicular ad hoc networks.

Computer Vision •Gong and Cuzzolin 2017 address human pose estimation. Map-
pings from image features to poses are learned from examples. Be-
lief functions allow to learn multi-valued mappings. The approach
outperforms relevance vector machines or Gaussian process re-
gression.

Econometrics •Autchariyapanitkul et al. 2014 use belief functions for quantile
regression in order to predict stock returns in the capital asset
pricing model.

Signal & Image
Processing

•Lian et al. 2017 introduce a belief function based voxel clustering
technique for a segmentation in 3D medical imaging.
•Labourey et al. 2015 use Denœux’s belief function based k nearest
neighbor classifier on sound signals to recognize human activity.

Statistics •Martin et al. 2010 build a high dimensional statistical test by
using belief function based inference. In particular, they derive a
Poisson process homogeneity test which outperforms a likelihood
ratio test.

Social Networks •Dhaou et al. 2017 use belief functions to detect communities in
large graphs representing connected people in a social network.

Risk analysis •Démotier et al. 2006 assess the plausibility of various noncompli-
ance scenarios for water treatment based on weak information.

Table 1: A short list of articles with
applications of belief functions.
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in Lille1, I began to study several tools in the framework of belief functions around notions of conflict, distances
and combinations. These works will be exposed in the next chapters. I also diversified a bit my activities as I will
explain in the next section.

0.2 Other research activities

In this section, I give a brief presentation of research activities of mine that are unrelated to belief functions.

0.2.1 Medical image processing

I started working on a medical image processing problem during the supervision of Cyrille Feudjio’s PhD. These
works were focused on mammograms (X-ray imaging of woman’s breast). This imaging modality is the most
frequently used one around the world to detect breast cancer signs because of its moderate cost. Given the huge
amount of mammograms produced during screening campaigns, radiologists are seeking computerized assistance
to analyze these images.

The goal of this PhD was to design an image processing methodology that allows to prioritize patients. Physi-
cians have established a strong correlation between the amount of dense tissues in mammary glands and cancer
risk. Consequently, we addressed dense tissue segmentation in order to compute an approximate dense tissue
ratio.

We rapidly realized that the problem must be tackled step by step. Indeed, there are several image regions
that are irrelevant for dense tissue detection: background and pectoral muscle tissues. We thus designed specific
algorithms for these preliminary tasks. Figure 1 summarizes the global approach.

 

 

Figure 1: Analysis steps of a mammogram
to detect dense tissues.

The two preliminary steps were performed using a standard segmentation technique, namely fuzzy c-means.
Our contribution does not lie on the image processing side but only on the methodology consisting in using
spatial information and a post-processing to obtain a really satisfying image region detection. The proposed
methodologies achieves better or comparable results as compared to state-of-the-art approaches with a limited
complexity.

The final step is more original from an image processing standpoint. First, dense tissues can be accurately seg-
mented by a mere thresholding operation. The problem thus translates into a threshold estimation one. We pro-
posed to use the same threshold for each mammogram provided they underwent a histogram specification prior
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to thresholding. We build an objective function to optimize in order to find the gamma correction that will best
lead to the prescribed histogram which is a bimodal one (one mode for dense tissue pixels, the other one for non-
dense tissue pixels). This objective function relies on a Wasserstein distance between the target histogram and
the histogram obtained after gamma correction. A difficulty is that some mammogram histograms are unimodal
(only dense tissues or no dense tissues at all) therefore we added a regularization term to the objective function to
prevent too strong image modifications.

0.2.2 Machine learning

Since many information fusion questions arise when working with belief functions, I started to wonder if infor-
mation fusion (on the decision side) could be useful for supervised classification or regression tasks. I discovered a
vast literature on various ways of mixing learning algorithms. There are of course the famous ensemble methods
(like bagging and boosting) but also more generic approaches to mix heterogeneous classifiers.

A simple idea consists in training several classifiers on the same dataset and tune their hyperparameters at
best. We can then perform a majority vote on their predictions. Even this simple scheme turns out to allow lower
error rates sometimes. However, the fusion of classifier predictions can obviously be improved if we take their
reliabilities into account. This idea is the starting point of Mahmoud Albardan’s PhD which is ongoing.

So far, we have come up with an approach relying on confusion matrices. The matrices are estimated by cross-
validation. We normalize them to obtain conditional distributions of classifier predictions given the true class.
We then combine these probability distributions using parametrized t-norms followed by a renormalization. The
t-norm parameter allows to select our model from a continuum ranging from the independence case to the total
dependence case. By total dependence, we mean that classifiers always predict the same classes. The t-norm
parameter is set by grid search. Preliminary results are promising and a manuscript was submitted in june.

0.3 Career

0.3.1 General information

Birth date 14/09/1982

Position Maître de conférences - associate professor (appointed on 01/09/2009)

Career duration 8 years

Institution Université Lille1 Sciences et Technologies

Research unit CRIStAL UMR CNRS 9189

Research team Signals, Models and Applications (SIGMA)

Address bat. P2, avenue Carl Gauss, cité scientifique, 59655 Villeneuve d’Ascq,
France

Phone number +33 3 20 43 48 77

Email john.klein@univ-lille1.fr

Homepage http://sigma.univ-lille1.fr/node/85

0.3.2 Education

• 2005-2008: PhD in the University of Rouen / LITIS laboratory - Suivi robuste d’objets dans les séquences d’images
par fusion de sources, application au suivi de véhicules dans des scènes routières.
Jury members :
– Olivier Colot (reviewer), professor, Université Lille1 Sciences et Technologies,

http://cristal.univ-lille.fr/
http://sigma.univ-lille1.fr/node/85
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– Thierry Denoeux (reviewer), professor, Université de Technologie de Compiègne,
– Claude Lorgeau (examiner), professor, Ecole des Mines de Paris,
– Laurent Trassoudaine (examiner), professor, Université Blaise Pascal de Clermont Ferrand,
– Pierre Miché (Director), professor, Université de Rouen,
– Christèle Lecomte (Supervisor), associate professeur, Université de Rouen,

• 2002-2005: Higher Engineer School at Ecole Nationale Supérieure d’Electronique, Informatique et Radio-communications
de Bordeaux (ENSEIRB), telecommunication department and Master degree in signal and image processing in
the University of Bordeaux 1 (in 2005),

• 2000-2001: Classes préparatoires aux grandes écoles, lycée Corneille, Rouen, section MPSI/MP.

0.3.3 Teaching activities

Since I arrived at the university of Lille1, my teaching activities are mainly around:
• Signal processing (temporal and frequency analysis, analog and digital filtering),
• Computer engineering (multi-task and real time operating systems),
• Programming (C language),
• Data sciences (machine learning and data fusion),
• Mobile robotics (introduction using LEGO mindstorm robots).
The above subjects are taught to master students. I also occasionally took part in control theory, digital electronics
and industrial information technologies units for bachelor students. For each unit, I completely renewed the course
materials (slides, exercises and practicals).

Most of the time, I teach in the electrical engineering and automation department of the university, which is the
department I am assigned to. I also teach sometimes in the computer sciences department and in another partner
institution named Ecole Centrale de Lille (one of the French grandes écoles).

In France, the due teaching workload is 192 hours a year for associate and full professors. I accepted almost
every year overtime teaching hours because the number of students joining our department keeps growing year
after year while the number of teaching staff members does not. In the worst case, overtime hours reached 50% of
my annual workload which impacted my scientific production.

0.3.4 Management

In 2012, I became the leader of the automation team of the electrical engineering and automation department of
the university. This team is responsible for teaching units related to
• control theory,
• industrial and field information technologies,
• signal processing,
• computer engineering.

There are 12 tenured teaching staff members in the team (2 full professors and 10 associate professors) and
from 2 to 6 temporary teaching members (teaching assistants and PhD students). The team also comprises two
electronics technicians, one IT manager and one secretary.

My missions are
• treasury management,
• meeting conduction,
• interacting with faculty dean and university vice-presidents,
• recruitment management,
• assignment of teachings to team members,
• advising during periodic organization revision of the department.
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0.3.5 Publication history

International Journals International Conferences
(with JCR certification) (with reviewing process)

7 8

My scientific production is summarized by the above table and is detailed below. My name is in bold letters
so as to highlight my author position. The names of my former PhD students are underlined. Some of my recent
publications do not have PhD students as co-authors. These publications are either research works I carried out-
side the scope of PhD supervisions or are a continuation of PhD related works after the student graduated and left
our resarch unit. Also, publications in connection with my PhD are spotted with ⋄ symbol.

0.3.5.1 Articles in international journals

(from most recent to oldest)
1. J. Klein, S. Destercke, O. Colot, Idempotent conjunctive and disjunctive combination of belief functions by distance

minimization, in International Journal of Approximate Reasoning (Impact Factor: 2.69), vol. 92, pp. 32-48,
2018 https://doi.org/10.1016/j.ijar.2017.10.004

2. J. Klein, S. Destercke, O. Colot, Interpreting evidential distances by connecting them to partial orders: Application
to belief function approximation, in International Journal of Approximate Reasoning (Impact Factor: 2.69), vol.
71, pp. 15-33, April 2016, http://dx.doi.org/ 10.1016/j.ijar.2016.01.001.

3. S. Li, H. Wang, Y. Tian, A. Aitouche and J. Klein. Direct power control of DFIG wind turbine systems based on
an intelligent proportional-integral sliding mode control, in ISA Transactions (Impact Factor: 2.60), vol. 64, pp.
431-439, September 2016, http://dx.doi.org/10.1016/j.isatra.2016.06.003.

4. M. Loudahi, J. Klein, J. M. Vannobel and O. Colot, Evidential Matrix Metrics as Distances Between Meta-Data
Dependent Bodies of Evidence, in IEEE Transactions on Cybernetics (Impact Factor: 4.94), vol. 46, no. 1, pp.
109-122, Jan. 2016., doi: 10.1109/TCYB.2015.2395877

5. M. Loudahi, J. Klein, J.-M. Vannobel, O. Colot, New distances between bodies of evidence based on Dempsterian
specialization matrices and their consistency with the conjunctive combination rule, in International Journal of
Approximate Reasoning (Impact Factor: 2.69), vol. 55, issue 5, pp. 1093-1112, July 2014,
http://dx.doi.org/10.1016/j.ijar.2014.02.007.

6. C. Feudjio, J. Klein, A. Tiedeu, O. Colot, Automatic extraction of pectoral muscle in the MLO view of mam-
mograms, in Physics in Medicine and Biology (Impact Factor: 2.81), vol.58 , no. 23, pp.8493-515, 2013, doi:
10.1088/0031-9155/58/23/8493.

7. J. Klein and O. Colot, Singular sources mining using evidential conflict analysis in International Journal of Ap-
proximate Reasoning (Impact Factor: 2.69), vol. 52, pp. 1433–1451, Dec. 2011, http://dx.doi.org/10.1016/j.ijar.2011.08.005

8. ⋄J. Klein, C. Lecomte and P. Miché, Hierarchical and conditional combination of belief functions induced by visual
tracking, in International Journal of Approximate Reasoning (Impact Factor: 2.69), vol. 51, pp. 410-428, March
2010, http://dx.doi.org/10.1016/j.ijar.2009.12.001

0.3.5.2 Articles in international conferences

(from most recent to oldest)
9. J. Klein, S. Destercke, O. Colot. Idempotent Conjunctive Combination of Belief Functions by Distance Minimiza-

tion, in Belief Functions: Theory and Applications: Fourth International Conference, BELIEF 2016, Pragua,
Czech Republic, September 21-23, 2016. Lecture Notes in Computer Science, Springer. doi: 10.1007/978-3-319-
45559-4_16 Best paper award

http://www.journals.elsevier.com/international-journal-of-approximate-reasoning
https://doi.org/10.1016/j.ijar.2017.10.004
http://www.journals.elsevier.com/international-journal-of-approximate-reasoning
http://www.sciencedirect.com/science/article/pii/S0888613X16000025
https://www.journals.elsevier.com/isa-transactions
http://www.sciencedirect.com/science/article/pii/S0019057816301112
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221036
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7035103
http://www.journals.elsevier.com/international-journal-of-approximate-reasoning
http://www.sciencedirect.com/science/article/pii/S0888613X1400036X
http://iopscience.iop.org/0031-9155
http://iopscience.iop.org/article/10.1088/0031-9155/58/23/8493/meta;jsessionid=A27324D21E5FAA2B1838D5FB7DCA99BA.c3.iopscience.cld.iop.org
http://iopscience.iop.org/article/10.1088/0031-9155/58/23/8493/meta;jsessionid=A27324D21E5FAA2B1838D5FB7DCA99BA.c3.iopscience.cld.iop.org
http://www.journals.elsevier.com/international-journal-of-approximate-reasoning
http://www.sciencedirect.com/science/article/pii/S0888613X11001204
http://www.journals.elsevier.com/international-journal-of-approximate-reasoning
http://www.sciencedirect.com/science/article/pii/S0888613X09001819
http://link.springer.com/chapter/10.1007%2F978-3-319-45559-4_16
http://link.springer.com/chapter/10.1007%2F978-3-319-45559-4_16
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10. J. Klein, M. Loudahi, J. M. Vannobel, O. Colot, α-Junctions of Categorical Mass Functions, in Belief Functions:
Theory and Applications: Third International Conference, BELIEF 2014, Oxford, UK, September 26-28, 2014.
Lecture Notes in Artificial Intelligence, Springer, doi: 10.1007/978-3-319-11191-9_1

11. M. Loudahi, J. Klein, J. M. Vannobel, O. Colot, Fast Computation of Lp Norm-Based Specialization Distances
between Bodies of Evidence, in Belief Functions: Theory and Applications: Third International Confer-
ence, BELIEF 2014, Oxford, UK, September 26-28, 2014. Lecture Notes in Artificial Intelligence, Springer, doi:
10.1007/978-3-319-11191-9_46

12. J. Klein, O. Colot, A Belief Function Model for Pixel Data, in Belief Functions: Theory and Applications: Second
International Conference, BELIEF 2012, Compiègne, France, September 26-28, 2014. Lecture Notes in Artificial
Intelligence, Springer, doi: 10.1007/978-3-642-29461-7_22

13. J. Klein, O. Colot, Automatic discounting rate computation using a dissent criterion, in Belief Functions: Theory
and Applications: First International Conference, BELIEF 2010, Brest, France, September 26-28, 2010.

14. ⋄J. Klein, C. Lecomte and P. Miché, Preceding car tracking using belief functions and a particle filter, in IEEE
International Conference on Pattern Recognition, ICPR 2008, Tampa, FL, USA, December 8-11, 2008,
doi:10.1109/ICPR.2008.4761008

15. ⋄J. Klein, C. Lecomte and P. Miché, Tracking objects in videos with texture features, in IEEE International
Conference on Electronics, Circuits and Systems, ICECS 2007, Marrakech, Morocco, December 11-14, 2007,
doi:10.1109/ICECS.2007.4511049.

16. ⋄J. Klein, C. Lecomte and P. Miché, Fast Color-Texture Discrimination: Application to Car Tracking, in IEEE
Intelligent Transportation Systems Conference, ITSC 2007, Seattle, WA, USA, September 30- October 3, 2007,
doi:10.1109/ITSC.2007.4357765

0.3.6 PhD supervision

I have completed the supervision of two PhDs and one is ongoing. I give details on these PhDs hereafter. I want
to stress that all former PhD students have published articles in international journals with a JCR impact factor.
Concerning the ongoing PhD of Mahmoud Albardan, a manuscript has been submitted to ”Information Fusion”
and another one is in preparation.

Student Name Mehena Loudahi
PhD Title Distances matricielles dans la théorie des fonctions de croyance pour

l’analyse et caractérisation des interactions entre les sources d’informations
PhD type Contrat doctoral de l’université Lille1
Start Date 01/09/2011

Defense Date 01/12/2014
Related Publications 2 international journals, 2 international conferences and 1 national con-

ference
Supervisors Olivier Colot (Director), Jean-Marc Vannobel and John Klein

Supervision rate 50%
Post graduation

position
Lecturer at Université d’Artois

http://link.springer.com/chapter/10.1007%2F978-3-319-11191-9_1
http://link.springer.com/chapter/10.1007%2F978-3-319-11191-9_46
http://link.springer.com/chapter/10.1007%2F978-3-319-11191-9_46
http://link.springer.com/chapter/10.1007%2F978-3-642-29461-7_22
http://ieeexplore.ieee.org/document/4761008/
http://ieeexplore.ieee.org/document/4511049/
http://ieeexplore.ieee.org/document/4357765/
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Student Name Cyrille Feudjio Kougoum
PhD Title Segmentation of mammographic images for computer aided diagnosis
PhD type Cotutelle with the University of Yaoundé1 (Cameroon), Erasmus Mundus

funding
Start Date 01/09/2012

Defense Date 05/10/2016, the defense was delayed by 8 months in the wake of excep-
tional administrative problems (visa denied by French authorities). The
defense was initially scheduled in December 2015.

Related Publications 1 international journal
Supervisors in Lille1 Olivier Colot (Director) and John Klein

Supervisors in
Yaoundé1

Alain Tiédeu (Co-Director)

Supervision rate 50%
Post graduation

position
Associate professor in Buea (Cameroon)

Student Name Mahmoud Albardan
PhD Title Fusion de signaux physiologiques pour la reconnaissance d’états émotionnels
PhD type Contrat doctoral de l’université Lille1
Start Date 01/09/2015

Defense Date 31/08/2018 (prevision)
Related Publications 1 paper submitted to an international journal

Supervisors Olivier Colot (Director) and John Klein
Supervision rate 70%

0.3.7 Peripheral research and education activities

A researcher’s professional life is not limited to article writing, proof derivation or programming. We also have
to carry out a number of peripheral tasks for our institutions and scientific community. Here follows a number of
these tasks.

Associate professor
recruitment
committee

I joined 2 committees as local member (as vice-president for one of them)
and 1 committee as non-local member in Université d’Artois.

Article Review Reviewer for IJAR (International Journal of Approximate Reasoning), IEEE
Transactions on Cybernetics, PRL (Pattern Recognition Letters), ESWA
(Expert Systems With Applications) and Information Sciences.



19

Project Sino-French CAI YUANPEI program for the development of the sino-
French laboratory of automatic control and signal processing (LaFCAS).
International collaboration between Lille1/Ecole Centrale de Lille and
Nanjing University of Science and Technology. Project manager: Abdel
Aitouche and Haoping Wang.
The Cai Yuanpei program is meant to help to start ”co-tutelle” PhD be-
tween France and China. There is no global funding but depending on
demand, Campus France covers travel fees for supervisors and provides a
grant for a PhD student long stay in France. The project lasted for 2 years
(2015 and 2016). Although, a co-tutelle could not be established due to ad-
ministrative complications on the Chinese side, the PhD student (Shanzhi
Li) joined CRIStAL for 2 years. The PhD was initially thought to cover
automatic control and estimation under uncertainty problems for wind
turbine control. I was involved for a time in the supervision of Shanzhi
Li but given that he is more keen on automatic control than estimation,
we decided to focus on these aspects and I withdrew from the supervising
team since my expertise in this field is limited.

European INTERREG project INCASE - this project is an education Eu-
ropean project for the 2 seas (Channel and north sea) geographic area.
This project involves 11 public institutes and universities from Belgium,
France, the Netherlands and UK. The project is concerned with the pro-
duction of educational material and demonstrators in the field of 4.0
industry. This covers industrial IoT, mobile robotics and smart homes.
This is a three year project that started in September 2016. In total, the
project budget is around 4,500,000€.

Professional
development courses

I gave a 2 day lecture on Machine Learning in June 2017 for Ministry of
armies staff members. This training course was performed as part of the
ANR EVE project although I am not a project member.

Local responsibilities Coordinator of invited talks for the Signal&Image team of LAGIS and for
the SIGMA team of CRIStAL (till June 2015).

Invited member of the computer sciences, electrical engineering and
automation board (since 2015).

Event Organization Member of the organizing committee of the Third School on belief functions
and their applications, Stella Plage, France, 2015.

Collaborations With Sebastien Destercke from Heudiasyc, Compiègne, France,
With Haoping Wang from Nanjing University of Science and Technology,
China.
With Cyrille Feudjio and Alain Tiédeu from Yaoundé 1 University,
Cameroon.

http://www.ambafrance-cn.org/Inauguration-d-un-laboratoire-sino-francais-a-Nankin
http://bfas.iut-lannion.fr/?q=node/41
http://bfas.iut-lannion.fr/?q=node/41




1Belief functions and related frameworks
for inference under uncertainty

Inference is about making deductions about a variable of interest based on
observed data. Because of data imperfections and our lack of knowledge
on the model governing the relationships between observed and hidden
variables, formal frameworks for reasoning under uncertainty are needed.

One such uncertainty theory is the theory of belief functions, a.k.a.
Dempster-Shafer theory or evidence theory. We present the main features
of this theory in the present chapter through the prism of statistical in-
ference in order illustrate the concepts and their interests. We will also
evoke the information fusion paradigm which bears some resemblance
with inference. In information fusion, we also generally aim at making
deductions about an unknown variable but we do not process raw obser-
vations but instead pieces of information that can potentially have already
been distilled1 from data. 1. This can be understood as the action

of a previous processing in the data analy-
sis flowchart but more generally it can also
be the action of human reasoning. Indeed
Shafer illustrated many concepts with
respect to human testimony combination.

We start with a short presentation of probability theory which is by
far the most popular uncertainty theory. Afterwards, we present belief
functions and stress their added value as compared to mainstream proba-
bilities but also the many connections between the two theories. Finally,
we also present other related uncertainty frameworks that are highly
overlapping belief function theory.

Besides, we also aim at reviewing different presentations and inter-
pretations of belief functions in an approximate chronological order. We
hope this will help the reader to get a global picture of the theory as well
the motivations behind it which stem from statistical sciences.

1.1 A quick overview of probability theory

In this section, we provide a modest overview of the development of
probability theory across modern history.

1.1.1 Milestones in the development of probabilities as a theory

There are many reported mathematical approaches to games of chance in
ancient civilizations but the framework known today as the probability
theory is the result of the aggregation of contributions that started by the
time of the Renaissance in the western civilization. Across Europe, several
eminent scholars were motivated by getting deeper insights in betting
games and the notion of randomness, luck or uncertainty at large.

In the 17th century, Cardano analyzed dice throwing problems and
pointed out the relevance of ratios of favorable outcome counts against
the total number of outcomes. In the mean time, Pascal and de Fermat had
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a correspondence on a question raised by Chevalier de Méré concerning
the odds of getting at least a double six on 24 rolls of a pair of dices. De
Méré correctly inferred that the odds of getting a double six in a single
throw is 1 against 36. He unfortunately mistook about the odds of getting
a double six after 24 rolls which he believed was 24 out of 36. The falsity
in de Méré reasoning is obvious to modern statisticians. First, following
de Méré reasoning throwing 36 times the dices implies sure win which
is obviously untrue. Second, performing an analysis of the underlying
binomial distribution, we have

P (at least one double six in 24 rolls) = 1− P (no double six in 24 rolls) ,

(1.1)

= 1−
(

35
36

)24
, (1.2)

= 0.4914. (1.3)

A correct analysis of the problem was deduced by Pascal and de Fermat.
In the 18th century, several contributors boosted the development of

probabilities as a theory bringing more nobility to the scientific ques-
tions at stake which, since then, are not anymore regarded as merely a
science of dice throws. Bernoulli introduced a first version of the law of
great numbers. De Moivre introduced (among other things) the concept of
statistical independence, the approximation of the binomial distribution
by a normal one and he laid the foundations of the central limit theorem.
Another contemporary of Bernoulli and de Moivre was Bayes. This cler-
gyman derived the premises of Bayes theorem which is pivotal to almost
any statistical inference problem. The strong implications of the formula
were however much studied in the 20th century from which the commu-
nity of Bayesian statistics arose. It is hard to say though if Bayes himself
would have embraced the philosophy behind Bayesian statistics as his
writings do not deal with probability interpretation.

The 19th century was a turning point for probabilities with successful
applications in new areas of sciences and most notably physics with
Gauss deriving of the orbit of Ceres and with Boltzmann’s and Gibbs’
modeling of gases. The theory development was in the meantime pursued
notably by Laplace who introduced the moment generating functions, the
least square method2 and hypothesis testing. He also instated the concept 2. Laplace actually proposed a prob-

abilistic model for estimation errors that
he believed should be Laplace distributed.
By minimizing the sum of absolute devi-
ations, one retrieves the sample median
as estimator. The true least square setting
(with quadratic error minimization) was
introduced by Legendre but was also
claimed by Gauss. Gauss asked himself
what probability density and what error
minimization problem yield the arithmetic
average as estimator. He thereby derived
the normal distribution.

of inductive probabilities which has a strong Bayesian flavor.
Finally, during the course of the 20th century, the probability theory

endured a fast and accelerated development around several aspects. It
has touched almost any area of sciences. Some of the main highlights of
this time are the axiomatization of probabilities by Kolmogorov and the
development to a general theory of stochastic processes by Kolmogorov
and Kinchin (as well as many other preceding contributors like Markov
and Lévy).

In the 20th century (and late 19th century), statistics also emerged as
a science of its own although it has always coexisted with probability
throughout their mutual developments. Some of the most influential
statisticians are Pearson, Fisher, Jeffreys, Neyman and de Finetti.
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1.1.2 Frequencies and subjective probabilities

The interpretation of probabilities has dragged the attention of many
mathematicians and statisticians but since the middle of the 20th century
the discussions in this scope have lead to different schools of thought
which advocate respectively for different understandings of what prob-
abilities are and how they should be used in practice. Two such main
schools are briefly presented hereafter.

1.1.2.1 Frequentism

The first school of thought, which was for a very long time the main-
stream one (if not the only one) is called frequentism. It advocates that
the probability of any event is the limiting frequency of occurrence of
the event, i.e. the number of observed occurrences versus the number of
trials when this latter number tends to infinity. This allows to grasp ran-
domness and the model is supported by experiments which is an essential
point in sciences. Typical frequentist probabilities are those involved
in the problem of Chevalier de Méré. The events to which we assign
probabilities are not true or false in general. We can only evaluate how
frequently they are true or false.

The second school of thought, which will be presented in the next para-
graph is Bayesianism. However, it is important to stress that frequentist
approaches are not forbidden to resort to Bayes theorem which also holds
for frequentist probabilities.

1.1.2.2 Bayesianism

Scholars involved in the development of probability theory rapidly came
to the conclusion that uncertainty is a broader notion than randomness.
Randomness stems from ontic or aleatoric uncertainty. In contrast, un-
certainty may also be epistemic, meaning that it arises from incomplete
knowledge. Some events are not repeatable and yet, it is possible to assign
them a degree of belief of being true. Such degrees of beliefs are called
subjective or personal probabilities. For example, one such event can be
the presence or absence of a disease for a given patient. This event is ei-
ther true or false. There is no repeated trials involved in the probability
judgment of this event. Yet, given a series of observed symptoms such a
probability can be inferred3. 3. The probabilities relating the pres-

ence of the disease to symptoms may be
frequentist ones. These probabilities ought
to be the frequency of occurrence of the
symptoms when this patient was sick. If
one resorts to frequency of occurrences
of the symptoms when someone is sick,
then the end result is not anymore the
probability of the patient being sick given
the symptoms, but the probability of
someone randomly sampled from the
human population being sick given the
symptoms.

Roughly speaking, Bayesians accept all sorts of probabilities while
frequentists reject subjective probabilities. But the Bayesian approach
goes far beyond this. One of its guiding principles4 is to draw conclusions

4. sometimes called the conditionality
principle.

about an unknown quantity based on observed data only. In frequentist
approaches, it is not rare to manipulate conditional probabilities of the
data given an unseen variable which is criticized by Bayesians on the
grounds that inferences should be based on the events that happened, not
which might have happened. To motivate this, suppose we can choose
from two experiments producing a sample allowing inference for some
parameter θ. The probability to choose this or that experiment does not
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depend on θ. Yet, if frequentist approaches like significance tests relying
on p-values, we may get different conclusions from the same data depend-
ing on the experiment protocol. This is violation of likelihood principle
which states that inferences should be based on data only.

The Bayesians also view inference as a belief update. Accepting that we
all have prior (personal) beliefs on the variable of interest, collected data
are confronted with this prior and we update our beliefs accordingly.

Furthermore, the Bayesian approach is also deeply entwined with
decision theory and aims at taking decisions based on the integrated risk
(or Bayes risk). This amounts to derive a decision rule by minimizing
the posterior expected loss5. The computation of this quantity involves 5. The posterior expected loss is the

expectation of a prescribed loss function
against the posterior distribution.

integrating out all hidden variables. It is unclear if those approaches that
do not resort to the integrated risk can be called Bayesian, leaving them to
a ”statistical no man’s land”.

1.1.3 Measure-theoretic formalization

After Borel and Lebesgue introduced measure theory, Kolmogorov pro-
posed a measure-theoretic axiomatization of probabilities that is up to
now mostly undisputed. The main motivation behind this axiomatization
is that it unifies discrete and continuous (or mixes of those) in a single
framework. In this section, we briefly recall fundamental definitions of
this framework so as to introduce notations and highlight differences
with other objects defined in the theory of belief functions or imprecise
probabilities.

Measure theory relies on the concept of σ-algebras.

Definition 1. let Ω denote an abstract space. A σ-algebra σΩ is a subset
of 2Ω such that:
• σΩ ̸= ∅,
• for all set A ∈ σΩ, Ac ∈ σΩ (closed under complementation),

• for all set sequences (An)n≥0 ∈ σΩ,
( ∪

n≥0
An

)
∈ σΩ (closed under

countable union).
A pair (Ω, σΩ) is called measurable space.

Roughly speaking, Ω is the exhaustive set of possible and exclusive
outcomes of an uncertain experiment. In the dice throw example, there
are six possible outcomes (no more no less). The result of the experiment
is an integer ranging from 1 to 6 and nothing else. The σ-algebra related
to this experiment is the set of all random events that can be defined
based on the experiment, like {having an odd number}.

From this definition of σ-algebras follows that of measurable functions.

Definition 2. Let (Ω, σΩ) and (Θ, σΘ) be two measurable spaces. Let f
be a mapping from Ω to Θ. f is a measurable function if the preimage of
B by f is in σΩ: f−1 (B) ∈ σΩ, ∀B ⊆ Θ.

A measurable function is a function whose preimages are discernible
events. Let us now move to the concept of probability measure (Kol-
mogorov’s axioms).
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Definition 3. Let (Ω, σΩ) denote a measurable space. A probability
measure µ is a mapping from σΩ to the interval [0; 1] such that:
• µ (∅) = 0,
• µ (A ∪ B) = µ (A) + µ (B), for all A, B ∈ σΩ such that A ∩ B = ∅

(additivity),
• µ (Ω) = 1.

The triplet (Ω, σΩ, µ) is called probability space. Let us now introduce
a key concept for probabilistic analysis:

Definition 4. A measurable mapping θ from a probability space (Ω, σΩ, µ)

to a measurable space (Θ, σΘ) is called random variable (r.v.).

The term random variable is rather awkward since this object is in fact
not a variable but a mapping. The explanation behind this terminology is
that usually Θ is a subset of N (discrete r.v.) or R (continuous r.v.). The
σ-algebra associated with the co-domain of the r.v. contains quantifiable
events like {θ ≤ 2}. We will use the following convention to denote the
distribution of some r.v.:
• Pθ = µ ◦ θ−1 in the discrete case,
• pθ for the density of µ ◦ θ−1 w.r.t. Lebesgue (assuming existence) in the

continuous case and Pθ (B) also denotes µ ◦ θ−1 (B) =
∫

B pθ (a) da.
When there is no ambiguity the r.v. in subscript may be omitted.

Finally, we also recall the definition of the expectation.

Definition 5. Let θ denote a real r.v. from (Ω, σΩ, µ) to (Θ, σΘ). The
expectation6 of a function7 f is the following integral (if it exists): 6. The general definition of the ex-

pectation does not rely on some r.v. but
only on a given measure µ. When there
is no r.v. in action, the expectation will be
denoted by Eµ [ f ] =

∫
f dµ.

7. f is real valued and measurable.

Eθ [ f ] =
∫

Θ
f dPθ . (1.4)

Likewise, when there is no ambiguity the r.v. in subscript may be omit-
ted. The concept of expectation is more general than that of probability
since

Eθ [1B] =
∫

Θ
1BdPθ , (1.5)

=
∫

B
dPθ , (1.6)

= Pθ (B) , (1.7)

where 1B is the indicator function for set B.

1.1.4 Shortcomings of probabilities

There are no mathematical inconsistency in the theory of probabilities but
only interpretability shortcomings, so to speak. These may occur when
we try to match the mathematical objects defined above to describe a
given situation involving uncertainty. Two types of situations must be
distinguished:
• representation shortcoming: the situation cannot be described by a

probability distribution which is either too or less informative than
needed,
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• paradoxes: the set of axioms (or calculus rules derived from them) lead
to a counter-intuitive result.
As we will see in the next section, there are many situations involv-

ing uncertainty that cannot be described by a single probability measure.
Once one has accepted this observation, then representation shortcomings
are merely mismatches between the prerequisites of probability theory
and the studied situation. Belief functions have a greater representation
power than probabilities although they cannot cover either all possible
situations with uncertain features. In particular, probabilities find it diffi-
cult to encode ”don’t know” messages while belief functions can.

Paradoxes are more problematic because they may imply that some
axioms should be revised or that some operations should be forbidden.
Note that, one should be careful with paradoxes in probabilities as they
may be incurred by an initial mistake in the problem understanding and
several paradoxes were solved without jeopardizing the axioms8. 8. The Monty Hall paradox is solved by

a careful (but standard) Bayesian analysis.Most reported paradoxes focus on the everlasting debate between
frequentists and Bayesians but, to the best of our knowledge, there is no
paradox resulting in a real clash of axioms. The only paradox that we
highlight in this subsection is the wine/water paradox which is actually
featuring representation shortcoming regarding ignorance therefore I am
a bit uncomfortable with use of the word paradox in this case.

Example 1. For a given volume of liquid, we know that the liquid is a
(tragic) mix of wine and water. We know that the ratio X of wine to water
is between 1

3 and 3. What is the probability that X < 2?
The principle of indifference (PI) (see Keynes 1921) states that in the

absence of information about some quantity X, we should assign equal
probability density value to any possible value of X. Following PI, X ∼
Unif[ 1

3 ;3] and we have

P (X < 2) =
2− 1

3

3− 1
3

, (1.8)

=
5
8

(1.9)

Let Y = 1/X denote the ratio of water to wine. It is also known with
certainty that Y ∈

[
1
3 ; 3
]
. Applying PI again, Y ∼ Unif[ 1

3 ;3] and we have

P (X < 2) = P
(

Y >
1
2

)
, (1.10)

=
3− 1

2

3− 1
3

, (1.11)

=
15
16
̸= 5

8
. (1.12)

The wine/water example thus refutes the legitimacy of PI not axioms
of probabilities. In fact, it is acknowledged by most probabilists that the
uniform distribution is not uninformative and it is ill advised to use it
in situations involving epistemic uncertainty while it can be perfectly
justified for aleatory uncertainty. A more conservative probabilistic model
consists in introducing a distribution on the set of laws of X as usually
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done in Bayesian nonparametrics but this idea is not unrelated to belief
functions (see comments in 1.3.3).

1.2 Belief function theory

This section is an attempt to give an objective overview of the theory of
belief functions. It contains the definitions of many concepts that will be
further studied in other chapters.

1.2.1 Dempster’s system of lower and upper probabilities

Although there are prior related works, Dempster 1967 is considered as
the starting point of the vast and widely used theory of belief functions.
In this article, Dempster does not use the terminology ”belief function”.
This term was later coined by Shafer and conveys an interpretation of
Dempster’s ideas which was not present at this stage.

Dempster’s paper focuses on the introduction of a mathematical way
to propagate uncertainty from a probability space (Ω, σΩ, µ) to some
other measurable space (Θ, σΘ) through a so called multi-valued mapping
Γ.

Definition 6. A multi-valued mapping (or set-valued mapping) Γ is a
mapping which has values in the power set of some space Θ.

Γ : Ω −→ 2Θ

In Dempster 1967 and other references, a
multi-valued mapping Γ : Ω −→ Θ is an
object inducing a mapping from Ω to 2Θ .
These two notions are undifferentiated in
this monograph.Obviously, a notion of measurability for the mapping Γ is needed to

make the propagation operational. This starts with the introduction of
pseudo-inverses of Γ.

Definition 7. The upper inverse of a multi-valued mapping Γ : Ω −→ 2Θ

is defined as

Γ−1
⊤ (B) = {ω | Γ (ω) ∩ B ̸= ∅} , ∀B ⊆ Θ.

Definition 8. The lower inverse of a multi-valued mapping Γ : Ω −→ 2Θ

is defined as

Γ−1
⊥ (B) = {ω | Γ (ω) ⊆ B} , ∀B ⊆ Θ.

Equipped with these inverses, the definition of measurability in the
context of multi-valued mappings is intuitively the following.

Definition 9. A multi-valued mapping Γ is strongly measurable
9 iff for any B ∈ σΘ, Γ−1

⊤ (B) ∈ σΩ. 9. When Θ is finite, strong measurabil-
ity is equivalent to either:
• Γ−1

⊥ (B) ∈ σΩ, ∀B ∈ σΘ
• Γ−1 (B) = {ω | Γ (ω) = B} ∈

σΩ, ∀B ∈ σΘ

Obviously, if a strongly measurable multi-valued mapping is such that
for any ω, Γ (ω) is a singleton, then Γ is a random variable. In the general
case, Γ is formally equivalent to a random set but its interpretation is
completely different from that of random sets which is usually a model for
a random quantity whose actual value is a set.

Under the above measurability conditions and if µ ◦ Γ−1
⊤ (Θ) ̸= 0,

Dempster’s system of lower and upper probabilities is obtained as:
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• P⊤ = 1
µ◦Γ−1

⊤ (Θ)
× µ ◦ Γ−1

⊤ (upper probability),

• P⊥ = 1
µ◦Γ−1

⊤ (Θ)
× µ ◦ Γ−1

⊥ (lower probability).
The terminology ”lower and upper probabilities” is justified by the fact

P⊥ (B) is the minimal amount of probability mass that is transfered from
µ to B while P⊤ (B) is the maximal amount of probability transfered from
µ to B. These two set functions encompass many probability measures
on Θ. This probability measure set (or p.m.-set for short) dominates10 the 10. A measure P on Θ dominates a

lower probability P⊥ iff P (B) ≥ P⊥ (B),
for all B ∈ σΘ .

lower probability function.
This system is entirely characterized by the quadruplet (Ω, σΩ, µ, Γ)

which is called a source. The subsets Γ (ω) of Θ are called the focal sets
of the source. An important remark is that the p.m.-set induced by a
source is entirely characterized by either the function P⊤ or P⊥ because

P⊤ (B) = 1− P⊥ (Bc) , ∀B ⊆ Θ. (1.13)

Bc denotes the complement of set B in Θ.

Example 2. Suppose an urn contains 10 black or white marbles. The urn
is partially spilled and we observe that it contains at least 4 black marbles
and 2 white ones. Now let Θ = {white; black} denote the set of possible
colors. Let Ω denote the set of marbles. Define a multi-valued mapping
from Ω to 2Θ as described in figure 1.1. Let also µ denote the uniform
probability measure on Ω. By definition, we have that

P⊥ ({white}) = 0.2 ≤ P (white) ≤ P⊤ ({white}) = 0.6, (1.14)
P⊥ ({black}) = 0.4 ≤ P (black) ≤ P⊤ ({black}) = 0.8. (1.15)

The obtained bounds completely match the obvious conclusions that
anyone would draw based on the observed data. Yet, this example might
be misleading in the sense that upper and lower probabilities do not
always encompass the actual target distribution to infer. This is dependent
on the chosen model.

? ?

? ?

black white

Ω

Γ

Θ

Figure 1.1: Multi-valued mapping ex-
ample: 4 black marbles are revealed
and mapped to {black}, 2 white ones
are mapped to {white}. The remain-
der of the marbles are mapped to
{white; black} = Θ.

Example 3. (example 1 continued) Let Θ = [0;+∞] and suppose Γ is
a constant multi-valued mapping: ΓX (ω) =

[
1
3 ; 3
]
. In the wine/water

paradox presented in example 1, X is a r.v. representing the ratio of wine
to water and it is known with certainty that X ∈

[
1
3 ; 3
]
. This information

can be encoded by the source (Ω, σΩ, µ, ΓX). Concerning the odds that
X < 2, we obtain

P⊥,X ([0; 2]) = 0, (1.16)
P⊤,X ([0; 2]) = 1. (1.17)

Now concerning Y = 1/X the ratio of water to wine, we know that
Y ∈

[
1
3 ; 3
]
as well. The same source can be used as an uncertainty model

for Y. We can write

P⊥,Y

([
1
2

;+∞
])

= 0 = P⊥,X ([0; 2]) , (1.18)

P⊤,Y

([
1
2

;+∞
])

= 1 = P⊤,X ([0; 2]) (1.19)
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Consequently, contrary to the probabilistic modeling of this problem,
there is no contradiction arising in the belief function framework by
confronting the odds of a ratio and the odds of the inverse ratio.

We can also derive notions of lower and upper expectations through
Riemann–Stieltjes integral.

Definition 10. For any measurable function f : Θ −→ R, we define
• EP⊤ [ f ] =

∫ +∞
−∞ v dP⊥

(
f−1 ([−∞; v])

)
, (upper expectation)

• EP⊥ [ f ] =
∫ +∞
−∞ v dP⊤

(
f−1 ([−∞; v])

)
, (lower expectation)

The interchange between upper and lower symbols is not intuitive
but is illustrated as sidenote.11 The sidenote also illustrates that upper

11. Suppose that f = 1B , the indicator
function on subset B ⊆ Θ. Let (vi)

p
i=0 de-

note a series of scalar such that

−a = v0 < v1 < . . . < vp = a

with a ∈ R+ . By definition of the
Riemann–Stieltjes integral, we have

EP⊤ [1B] = lim
a→+∞

lim
∆→0

p

∑
i=1

ξi

[
P⊥
(

f−1 ([−∞; vi ])
)

−P⊥
(

f−1 ([−∞; vi−1])
)]

,

(1.20)

with ξi ∈ [vi−1; vi ] and ∆ = max
i

vi −
vi−1.

When a is large enough there is only
one interval

[
vj−1; vj

]
in which the term

under the sign symbol is not null and
1 ∈

[
vj−1; vj

]
. We obtain

EP⊤ [1B] = lim
∆→0

ξi

[
P⊥
(

f−1 ([−∞; vj
]))

−P⊥
(

f−1 ([−∞; vj−1
]))]

,

(1.21)

Since vj > 1, then

P⊥
(

f−1 ([−∞; vj
]))

= 1

In addition, if one chooses ξ j = vj , as ∆
gets smaller, then ξ j → 1, which gives

E⊤ [1B] =
[
1− P⊥

(
f−1 ([−∞; vj−1

]))]
,

(1.22)

= P⊤
(

f−1 ([−∞; vj−1
]))

.

(1.23)

= P⊤ (B) . (1.24)

and lower expectations are more general concepts than upper and lower
probabilities.

Dempster also introduces in his paper a number of operations on
lower and upper probabilities starting with conditioning. Dempster’s
conditioning on B consists in considering the multi-valued mapping
Γ ∩ B. This happens to take a usual form for upper probabilities:

P⊤ (A ∩ B) = P⊤ (A|B) P⊤ (B) (1.25)

The corresponding result for lower probabilities does not mimic Bayes
rule and is omitted.

Another interesting idea proposed by Dempster is combination via
a mechanism nowadays known as Dempster’s rule. Suppose we have
two sources S1 = (Ω1, σ1, µ1, Γ1) and S2 = (Ω2, σ2, µ2, Γ2). These
two sources can be combined under Dempster’s rule into a single one as
follows:

S1⊕2 = (Ω1 ×Ω2, σ1 × σ2, µ1 ⊗ µ2, Γ12) , (1.26)

where we have Γ12 (A) = Γ1 (A) ∩ Γ2 (A). Because we use the product
measure µ1 ⊗ µ2, independence between each event in σ1 with respect to
those in σ2 is a prerequisite to use the rule. The upper and lower proba-
bilities induced by S1⊕2 are denoted by P⊤,1⊕2 and P⊥,1⊕2 respectively,
the symbol ⊕ being the notation for Dempster’s rule. The combination
operation translates into a rather complicated expression except for upper
probabilities of singletons. In particular, for each singleton {a}, we have

P⊤,1⊕2 (a) ∝ P⊤,1 (a) P⊤,2 (a) , ∀a ∈ Θ. (1.27)

The multiplicative constant involved in the above equation stems from We will use interchangeably P⊤,1 (θ) or
P⊤,1 ({θ}) for any set function when
dealing with singletons.

those probabilities that are transferred to ∅ through Γ12 and imply a
renormalization.

When Γ2 is a constant multi-valued mapping, Dempster’s conditioning
is recovered therefore Dempster’s rule is often regarded as a generaliza-
tion of conditioning.

Dempster also introduces a third set function for which Dempster’s
combination is easy to compute. This relies on a third definition of
pseudo-inverse of multi-valued mappings:

Γ̃−1 (B) = {ω | Γ (ω) ⊆ B} , ∀B ⊇ Θ. (1.28)
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The renormalized push forward measure q = 1
µ◦Γ−1

⊤ (Θ)
× µ ◦ Γ̃−1 is called

commonality function. The combination of two commonality functions q1

and q2 induced by the sources defined above writes

q1⊕2 = q1 ⊙ q2 (entrywise product). (1.29) The entrywise product is also often called
Hadamard product.

1.2.2 Shafer’s mathematical theory of evidence

In his famous essay, Shafer 1976 follows a different path as Dempster
and starts by formally defining belief functions and then investigate to
what extent such objects are adapted to quantify degrees of belief of
events and achieve inference on variables of interest. This means that he
does not build belief functions upon a source but instead proposes belief
functions as an alternative representation of uncertainty as compared
to probabilities. In his work, Shafer also shares a vision of how belief
functions should be interpreted as numbers quantifying uncertainty
and what are the connections to probabilities. He also introduces many
instrumental calculus rules for belief functions that are valid tools beyond
the scope of his interpretation and introduction of belief functions.

In this subsection, we give a brief sketch of his pioneering work and
try to outline the differences with Dempster’s system of lower and upper
probabilities. The analysis starts with the following definition of a belief
function.

Definition 11. Let (Θ, σΘ) denote some measurable space. A belief
function is a mapping bel : σΘ → [0; 1] verifying the three following
conditions
(i) bel (∅) = 0,
(ii) bel (Θ) = 1,
(iii) For any k ≥ 2 and any collection of events B1, . . . , Bk in σΘ, . When k = 2 and B1 ⊆ B2, condition (iii)

implies bel (B1) ≤ bel (B2), a property
known as monoticity. More comments on
this are given in 1.3.2bel

(
k∪

i=1

Bi

)
≥ ∑

s⊆{1;...;k}
s ̸=∅

(−1)|s|+1 bel

∩
j∈s

Bj

 . (1.30)

When inequalities in condition (iii) are equalities, then a belief function
is formally equivalent to a probability measure and (1.30) is known as the
inclusion-exclusion principle.

Another equivalent representation is given by plausibility functions
whose definition is the following.

Definition 12. Let (Θ, σΘ) denote some measurable space. A plausibility
function is a mapping pl : σΘ → [0; 1] verifying the three following
conditions
(i) pl (∅) = 0,
(ii) pl (Θ) = 1,
(iii) For any k ≥ 2 and any collection of events B1, . . . , Bk in σΘ, . Similarly, when k = 2 and B1 ⊆ B2,

condition (iii) implies pl (B1) ≤ pl (B2)

pl

(
k∩

i=1

Bi

)
≤ ∑

s⊆{1;...;k}
s ̸=∅

(−1)|s|+1 pl

∪
j∈s

Bj

 . (1.31)
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From the above definition, it clear that, like for lower and upper proba-
bilities, we have

bel (B) = 1− pl (Bc) , ∀B ∈ σΘ. (1.32)

Before reviewing Shafer’s argumentation, we immediately give an impor-
tant result (from Nguyen 1978) which explains the link between belief and
plausibility functions with lower and upper probabilities.

Theorem 1. Let P⊥ and P⊤ denote respectively the lower and upper proba-
bilities induced by the source (Ω, σΩ, µ, Γ). Then P⊥ is a belief function and
P⊤ is a plausibility function.

In his seminal work, Shafer 1973 proves a representation theorem that
states that for any belief function, one can build a probability space and a
lower inverse that are a source for the belief function12. To avoid dupli- 12. More precisely, Shafer shows that

for any belief function, one can construct
a probability space and a probability
allocation mapping that induce the be-
lief function. The proposed probability
allocation mapping in the theorem proof
matches the definition of a multi-valued
mapping lower inverse.

cating nomenclatures, we will now use the terms belief and plausibility
functions in place of Dempster’s lower and upper probabilities.

Going back to the justification of belief functions as appropriate un-
certainty model, Shafer argues that the rules belief function must obey
are attractive because they allow to commit a portion of belief to some
subset of Θ (as in probability theory) without implying that the remainder
is committed to its negation (unlike probability theory). In many situa-
tions, the collected evidence can only translate into supporting subset B
(nothing more, nothing less) up to a given degree in [0; 1].

Example 4. (example 2 continued) In the urn example, four black marbles
were revealed. In light of this piece of evidence, we assigned a 0.4 degree
of belief to the singleton {black}. But it would not make sense to assign
1− 0.4 = 0.6 degree of belief to {white}! This is not possible because
there is missing information.

The baseline statistical approach would be to compute maximum like-
lihood estimates of the ball proportions. One thus obtains P̂ (black) = 2

3
and P̂ (white) = 1

3 . Without denying the relevance of this frequentist
approach, it is obvious that accepting these estimates as our beliefs on ball
proportions is not justified based on observed data solely but also relies
on additional assumptions. In particular, one assumes that the sample size
is large enough to allow the discrepancies between the estimates and the
expected values to be below a predefined appropriate threshold13. 13. This idea is the one carried by

Hoeffding concentration inequalities.
Shafer also argues that belief functions cannot grasp randomness but

only subjective uncertainty. For instance, take a dice throw experiment. If
the frequentist probabilities are known then one will adopt these frequen-
cies as beliefs on the dice thrown outcome. However, if the frequencies
are unknown, then it makes sense to adopt personal beliefs based on some
available evidence and these degrees of belief are very unlikely to equate
the frequencies.

Epistemic uncertainty is yet very often encoded using probability mea-
sures in the Bayesian framework and therefore they obey the additivity
property while belief functions in general do not. In Shafer’s view, these
subjective probabilities are just a subclass of belief functions and Bayesian
reasoning is compatible with the proposed framework. So belief functions
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are just a wider class of models in which degrees of belief may not be
additive.

Another idea that is behind Shafer’s approach is to derive a framework
in which the degrees of belief can be constructed incrementally by appli-
cation of Dempster’s rule to elementary beliefs. Since Dempster’s rule is
operational only for belief functions, the appeal of the definition 11 is ob-
vious. This ambition was partially achieved as Shafer proved that a large
class of belief functions14 can be decomposed in this fashion but the result 14. These are called separable belief

functions.does not hold in general.
Around ten years ago, Dempster 2008 published a paper to revisit his

and Shafer’s ideas to present them in a more amenable way for statisti-
cians. Dempster reaffirms his conviction that belief function calculus is a
powerful framework for inference based on incomplete and uncertain evi-
dence. He also sheds light on the fact that the framework can be regarded
as a construction based on three-valued logic. In addition to usual logi-
cal state ”true” and ”false”, a third state ”unknown” is considered. Note
that these are not logical states since the third one is the logical disjunc-
tion of the two first and consequently they are epistemic states. Stricto
sensu, we ought to define the states as ”known to be true”, ”known to be
false” and ”unknown”. Belief functions assign non-negative probabili-
ties (u, v, w) to each such state for each member of the field σΘ such that
u + v + w = 1. The rules given in definition 11 are just constraining
triplets to take values matching principled allocation of degrees of belief.
In particular, if a set B is assigned the triplet (u, v, w) then obviously Bc

must be assigned (v, u, w). In fact, since for any C ⊆ B, C being ”true”
implies B is also ”true”, then u = bel (B). It follows that v = bel (Bc)

and w = 1 − bel (B) − bel (Bc)15. Example 2 is also a relevant illus-

15. The belief function maps each mem-
ber B of the σ-field to their u-probabilities.
The plausibility function can also be
defined in the same fashion by mapping
each B to probabilities 1 − v, i.e. the
probability mass that is not committed
against B. So we see that our ignorance
on the truth (or falsity) of B is featured by
pl (B)− bel (B) = w.

We can also remark that for any
B′ ⊆ B, if B′ is true then it logically
implies that B is also true and it follows
that bel (B′) ≤ bel (B). So we might be
willing to evaluate to what extent each
B′ contributes to the u-probability of B.
We can do that by introducing the mass
function which decomposes the belief
function is in this way :

bel (B) = ∑
B′⊆B

m
(

B′
)

.

Then, we see that bel (Θ) = 1 implies
that ∑B⊆Θ m (B) = 1. We have also
that bel ({a}) = m ({a}). Since bel is
∞-monotonic (1.30), by induction, we get
that m (B) ≥ 0 for any B ⊆ Θ. Finally,
these results entirely specifies a mass
function which also specifies the belief or
plausibility functions since each of these
functions is in bijective correspondence
with any other.

tration of this machinery. Dempster concludes that belief functions are
ordinary textbook probabilities allowing to assign non zero probabilities
to ”unknown”. Similar justifications are given in Dubois et al. 1996.

1.2.3 Random sets

Define the (usual) inverse of a multi-valued mapping Γ as Γ−1 (B) =

{ω | Γ (ω) = B}. If the preimage through Γ−1 of any element in σΘ is
an element of σΩ, then Γ abides by the (usual) definition of measurability
and Γ is formally equivalent to a random set16. The push-forward mea-

16. Roughly speaking, a random set is a
random variable whose values are sets.

sure 1
µ◦Γ−1(Θ)

× µ ◦ Γ−1 is the distribution of this random set. This result
was proved by Nguyen 1978. He also shows that in the finite case, the
distribution of the random set is the mass function17.

17. See 2.1 for the definition of those
functions. In the present chapter, a mass
function can be merely regarded the set
function m = 1

µ◦Γ−1(Θ)
× µ ◦ Γ−1 induced

by a source.

In spite of this equivalence, there is little connection between random
sets in the sense of Mathéron 1975 and Kendall 1974 and belief functions
as they encode very different kinds of information. Indeed, when per-
forming inference in the random set setting, the parameter of interest is a
set while in the belief function setting it remains point-valued.

Example 5. Suppose you want to infer the spoken languages of a ran-
domly picked person on earth: Θ1 = {English; French; Spanish}. Your
observed data is that someone speaks English with probability 1

2 , French
with probability 1

10 and Spanish with probability 1
3 . It is possible to infer
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the spoken languages from this basic information but the end result is a
distribution of subsets of Θ1. By making an independence assumption
(just for illustration), we would deduce for example that the probability
that someone speaks English and French solely is:

µ (Γ = {English; French}) = 1
2
× 1

10
×
(

1− 1
3

)
Suppose now you want to infer the birth country of a randomly picked
person on earth: Θ2 = {UK; France; Spain}. Now the variable of in-
terest takes only one value at most. Based on the remark that someone
speaks the home language of his birth country with probability 0.9, then
we could combine all information by deconditioning or vacuously extend-
ing18 the probability distributions to belief functions on the product space 18. These operations are presented in

2.4.Θ1 × Θ2. After marginalizing on Θ2, the end result is this time a belief
function.

Complements on this question are given in Couso and Dubois 2014.

1.2.4 Random codes

A few years after publishing his book, Shafer 1981 offered a new elegant
interpretation of belief functions as random codes for partial knowledge.
In this interpretation, any element ω in the probability space (Ω, σΩ, µ)

is a code representing some imprecise information about θ of the form
{θ ∈ B}. Exactly one of the codes is selected at random. The chance
that a code ω is selected is known and is given by µ (ω). It follows that
µ ◦ Γ−1 (B) is the probability that the message is {θ ∈ B} (and nothing
less, nothing more).

1.2.5 Smets’ transferable belief model

In an attempt to clarify the benefits of belief functions for reasoning under
uncertainty, Smets and Kennes 1994 introduced the Transferable Belief
Model (TBM). This model shares Shafer’s core idea: the allocation of
probability mass only to some subset B as justified by evidence without
implying any support to Bc. However, the TBM distinguishes itself from
Shafer’s theory of evidence regarding the following essential aspects:
• a two-stage reasoning: subjective beliefs are first constructed from

accumulated evidence and the quantification of the beliefs yield a belief
function (credal step). Second, a probability distribution is computed
from the belief function that best qualifies for an operational decision
making process (pignistic19 step). Indeed, probability distributions are 19. From pignus (”bet”).

instrumental to take rational decisions with minimal expected loss.
• the relaxation of the null mass requirement for ∅. In this case, we no

longer have bel (B) = 1− pl (Bc) but instead bel (B) = 1− pl (Bc)−
κ with κ ∈ [0; 1]. Smets interprets κ as the support given to the possi-
bility that the true value of the variable of interest does not lie within
Θ. He calls this relaxation the ”open world assumption”. In contrast,
upholding the empty set positive mass ban is the ”closed world as-
sumption”. Note that, in fine, the empty set mass is eliminated20 when 20. The mass of the empty set cannot

be eliminated if it has accumulated max-
imal support just like upper and lower
probabilities are not defined in this case.
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computing the pignistic distribution and therefore the closed world
assumption is resilient. In this monograph, the mass assigned to the
empty set is considered more as an algebraic convenience rather than a
feature of the open world assumption.

• an axiomatic derivation of Dempster’s rule of combination. This
derivation is presented in details in Smets 1990 and is built upon previ-
ous works (Klawonn and Schwecke 1992; Klawonn and Smets 1992).
Smets is also a promoter of the least commitment principle (LCP)

which states that when several belief functions qualify as uncertainty
models that are consistent with evidence, then one should select a belief
function with minimal degrees of belief. The notion of commitment of
a belief function anticipates the definition of partial orders for belief
functions that will be reviewed in chapter 3.

Another feature of the TBM claimed by Smets is that the model (at
least at the credal stage) is not built upon pre-existing probability space,
random variable or what so ever. More precisely, the pre-existence of a
probabilistic model is not necessary which does not mean that building
belief functions in this way is wrong. Recently, there has been a renewed
interest in belief functions induced by mechanisms that are highly coupled
with probability theory (Martin et al. 2010; Denœux 2014; Kanjanatarakul
et al. 2014; Xu et al. 2015). My personal thoughts on this point is that
belief function theory makes sense on its own as an uncertainty theory
but since probability theory has been extensively studied it is desirable to
explain belief functions as a construction of simpler objects with which
we are familiar. It is also a mean to drag the attention of new researchers
by showing that belief functions are no academic extravagance but rely on
sound and simple probabilistic arguments.

1.2.6 Fiducial inference

Suppose the observed data can be explained by the following sampling
model consisting in
(i) a φ-equation relating a data point X, the parameter θ to be inferred

and a pivotal quantity U as

X = φ (θ, U) (1.33)

(ii) a probability measure µ defined on measurable subsets of space U

where U takes its values.
Given this model, suppose also that observing two quantities out of the
triplet (X, θ, U) uniquely determines the third one. In the fiducial21 infer- 21. from fiducia (“trust”)

ence framework, X is a single sufficient statistic for the single parameter
θ (a very strong prerequisite). The strength of the fiducial argument is
that the uncertainty on X prior to sampling is transferred to θ after. To
illustrate these concepts in action we give an example drawn from Martin
et al. 2010.

Example 6. Suppose θ is the first moment of a normal distribution with
unit variance. Let U ∼ Unif[0;1] and Φ denote the cdf of a centered
reduced normal distribution. Finally, define the φ-equation as

X = θ + Φ−1 (U) (1.34)
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This procedure is actually the usual way to build many random genera-
tors. As observed by Fisher 1930, events {θ ≤ a} and {U ≥ Φ (X− a)}
are equivalent. The fiducial probability of {θ ≤ a} is thus Φ (X− a),
meaning that θ ∼ N (X, 1).

The fiducial distribution can be deemed as a form of prior-free poste-
rior distribution. In the above example, the posterior distribution obtained
from Bayesian analysis yields the same result when choosing Jeffreys flat
prior.

Belief functions are a successor of fiducial inference in the sense that
the specification of a prior distribution is unnecessary (but still possible if
wanted). Belief functions do not resort to sufficient statistics and are not
limited to inference for a scalar parameter. Indeed, a key to the general-
ization of fiducial inference is precisely to relax the uniqueness of θ given
(X, U) and the uniqueness of U given (X, θ).

Define a multi-valued mapping Γ : U→ 2X×Θ such that

Γ (u) = {(x, θ) ∈ X×Θ | X = φ (θ, u)} . (1.35)

Using the above mapping Γ, we can define a source (U, σU, µ, Γ). The
inference mechanism relies mainly on conditioning with respect to events
{X = x} or {θ = a}.

1.2.6.1 Conditioning on θ

One can define a multi-valued mapping featuring the piece of information
θ = a:

Γa = {(x, θ) ∈ X×Θ | θ = a} . (1.36)

The expression is not dependent on the φ-equation or on u and the multi-
valued mapping is thus constant (w.r.t. u). This constant set is just made
of all pairs (x, a) that are elements of the product space X×Θ. Intersect-
ing mappings Γ and Γa yields a multi-valued mapping whose images are
subsets of the a-cross section of X×Θ. It can be projected22 down to 2X 22. Projecting in this context is under-

stood as dropping one of the components
of pairs in the product space, since the
mapping is constant over the other
component.

which gives

projX (Γ (u) ∩ Γa) = {x ∈ X | X = φ (a, u)} , (1.37)
= {φ (a, u)} (1.38)

Since projX ◦ (Γ ∩ Γa) is a point-valued mapping, the corresponding
belief and plausibility functions coincide and are the sampling distribution
PX|θ=a. This result is compliant with the fiducial model.

1.2.6.2 Conditioning on X

Likewise, one can define a multi-valued mapping featuring the piece of
information X = x:

Γx = {(x, θ) ∈ X×Θ | X = x} . (1.39)

Taking intersection with Γ and projecting on x-cross sections gives the
following multi-valued mapping

projΘ (Γ (u) ∩ Γx) = {a ∈ Θ | x = φ (a, u)} . (1.40)
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This mapping is, in general, set-valued and the corresponding belief and
plausibility functions no longer coincide. This posterior belief function
belθ|x allows us to evaluate to what extent the observed data imply some
event {θ ∈ B} and it is therefore the result of the inference procedure.

Example 7. (example 6 continued) In this example, we illustrate that
the belief function analysis delivers compliant results with the fiducial
analysis. Suppose X = x is the only observation we have to determine
the mean value of a reduced normal distribution. Following the above
procedure, the posterior belief function is

belθ|x (B) = µ ({u | projΘ (Γ (u) ∩ Γx) ⊆ B}) (1.41)

Since the φ-equation can be reversed, X = x implies θ = x−Φ−1 (u)
and consequently, projΘ (Γ (u) ∩ Γx) are singletons. The belief function
writes

belθ|x (B) = µ
({

u | x−Φ−1 (u) ∈ B
})

(1.42)

The probability that Φ−1 (U) falls in x− B is the same as the probability
that an N (x, 1) distributed random variable falls in B therefore we obtain
the same result as in example 6.

Example 8. We provide another example to illustrate that the belief
function based procedure does not necessarily resort to a single sufficient
statistic. This example is given in Dempster 1966 and rephrased in Martin
et al. 2010.

Let
{

x(1), . . . , x(r)
}

denote iid samples drawn from Ber (θ). Define the
following φ-equation:

X(i) = 1Ui≤θ , (1.43)

and Ui ∼ Unif[0;1]. Taking the fiducial belief function analysis on the
product space Xr × Θ, a posterior belief function is obtained. Dempster
shows that a closed form expression of this function for events {θ ≤ a}
can be obtained by reasoning on the random variable NX which is the
number of successes in the r Bernoulli trials.

1.2.7 Shortcomings of belief functions

The theory of belief functions, as any other uncertainty theory, is not
exempt of limitations and it may lead to questionable results. Pearl 1990
conveyed a sharp analysis of belief functions and raised debates around
several aspects of the theory:
• Interpretation: Pearl proposes a new interpretation of belief functions

as probabilities of provability. He explains that the mass function can
be regarded as the probability distribution of logical theories (a set of
axioms). The degree bel (A) is then the sum of probabilities of those
theories from which A follows as logical consequence.
Pearl argues that there are unfortunately only a few situations in which
one wishes to infer such probabilities. Without denying the relevance
of this interpretation23, it does not imply that other interpretations are 23. This interpretation was sustained by

Kohlas and Monney 1995 in their mathe-
matical theory of hints which relies on the
same probabilistic mechanisms as those
introduced by Dempster 1967. Kohlas and
Monney 2008 also use this interpretation
to perform fiducial inference.

not equally valid.
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• Ability to represent partial knowledge: Pearl lists a number of exam-
ples when available evidence is insufficient to infer precise probabil-
ities but instead probability bounds. In these examples, these bounds
cannot be encoded by a belief function. Dempster 1967 had already
shown that upper and lower probabilities as defined in his article are
in correspondence with a subclass of p.m.-sets and there is no surprise
in finding situations where belief functions do not fit prescribed prob-
ability bounds. Every uncertainty theory has a limited representation
power and, in principle, we ought to choose the least general frame-
work in which there is feasible representation for the situation we wish
to analyze.

• Updating: Pearl also rejects belief functions as valid lower probabilities
because they cannot be updated through Dempster’s conditioning in
any circumstances. Actually, he shows that in the ”three prisoners
problem” 24 Dempster’s conditioning fails to retrieve the appropriate

24. Among three prisoners {a1, a2, a3},
one of them is randomly selected for
execution using a uniform distribution.
Prisoner a1 convinces a jailer to reveal
if either a2 or a3 are to be spared. The
jailer is forbidden to reveal to a1 what will
happen for him but this information seems
neutral to the jailer and he tells a1 that
a2 will be spared. By carrying a careful
probabilistic analysis, the jailer is correct
and the probability that a1 will be killed
remains 1

3 after conditioning on the newly
acquired information. This example is
reminiscent of the Monty Hall ”paradox”.

The lower/upper probability version
of the problem is obtained by saying that
the probability that the jailer gives the
name a2 or a3 given that a1 will be killed
is unknown. Let λ denote the probability
he names a2 in the event that a1 will be
killed. We have

P (a1|a2 spared) = P (a2 spared|a1) P (a1)
3
∑

i=1
P (a2 spared|ai) P (ai)

,

(1.44)

=
P (a2 spared|a1)

P (a2 spared|a1) + P (a2 spared|a3)
,

(1.45)

=
λ

1 + λ
. (1.46)

We deduce that

0 ≤ P (a1|a2 spared) ≤ 1
2

.

Also, if λ = 1
2 as in the precise version

of the 3 prisoners puzzle, we obtain
P (a1|a2 spared) = 1

3 .

p.m.-set and instead returns a single probability distribution which
does not account for some of the aspects of the toy example. This
explained by the fact that we start with an initial uniform distribution
and Dempster’s rule cannot revise a single distribution into a set of
distributions. Consequently, this is more a critic of Dempster’s rule to
combine upper or lower probabilities than a critic of the theory to have
appropriate foundations for upper and lower probabilistic calculus.
Shafer 1992 argues that Dempster’s rule cannot be applied in the ”three
prisoners problem” because the independence assumption is not ver-
ified. Indeed, the event on which the conditioning is performed is
constrained and the probability spaces inducing the belief functions
are related. The aleatory choice of the jailer cannot be made without
knowledge of the sentenced prisoner. Pearl 1992 is not really con-
vinced by this argument, but at least, his example highlights that the
dependent source pitfall of Dempster’s rule is not easy to avoid and
even Dempster’s conditioning cannot be used blindly.
Another form of conditioning was proposed by Halpern and Fagin
1992: for any A ⊆ Θ and any B ⊆ Θ such that bel (B) > 0 where bel
is a belief function on Θ inducing the p.m.-set P , then the conditional
plausibility function is given by

pl (A|B) = sup
P∈PΘ

P (A|B) , (1.47)

=
pl (A ∩ B)

pl (A ∩ B) + bel (Ac ∩ B)
, (1.48)

and the conditional belief function by PΘ denotes the probability distribution
simplex for Θ.

bel (A|B) = inf
P∈PΘ

P (A|B) , (1.49)

=
bel (A ∩ B)

bel (A ∩ B) + pl (Ac ∩ B)
. (1.50)

By construction, this alternative conditioning offers a correct treatment
of the three prisoners problem.
Dubois et al. 1996 advocate that two different intellectual processes
must be distinguished when performing beliefs update: focusing and
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revision. Focusing consists in integrating a factual case specific piece of
information which is the most frequent use case of Bayes rule. Revision
consists in substituting population wise prior beliefs by new ones. So
focusing is a selection process while revision is a correction one and
they translate into different mathematical formulations. The authors
explain that Dempster’s rule is well adapted to revision while Halpern
and Fagin’s conditioning should be preferred for focusing.
It is hard to tell if the 3 prisoners problem translates in a focusing or
revision but in the frequentist version of the problem, i.e. prisoners are
sampled with equal probabilities and when the sentenced prisoner is a1

the jailer samples from Ber (λ), then we are in the focusing framework
and belief function and Bayesian solutions agree. This result can be
checked by numerical simulation. If the marginal distribution of pris-
oners are subjective personal probabilities of prisoner a1, then there
is no ground truth as to how probability masses are redistributed after
learning that a2 is spared. Dempster’s rule selects the distribution with
highest entropy (P (a1|a2 spared) = 1

2 ) whereas the Bayesian solution
is unchanged.

• Evidence pooling: Pearl acknowledges that belief functions have
some merits in evidence pooling provided that each belief function
summarizing a piece of evidence is combined with a prior probability
distribution over the variable of interest thereby yielding a posterior
distribution that is readily operational for decision making. Most of the
time, the same information as the one contained in such belief func-
tions can be encoded in likelihood functions which are computationally
more easily tractable. There are however, situations in which the evi-
dence is too imprecise to be easily translated into a likelihood function
and then a belief function becomes instrumental.

Another criticism addressed to belief functions is that, in general25, 25. Since belief functions are epistemic
random sets they inherit the long-run fre-
quency properties of these latter. Anyway,
most of the time, belief functions encode
epistemic uncertainty where there is no
notion of multiple runs, since the event is
either true or false but cannot be repeated.

they do not have long-run frequency properties. Without this property,
the statistical conclusions that can be drawn from a belief function based
analysis must be carefully examined.

To overcome this difficulty, one can also build specific inference pro-
cedures where the property holds. For instance, Martin et al. 2010 use
the fiducial inference based procedure and replace the pivotal measure µ

with a belief function. They thus derive a less committed26 belief function 26. This means that the p.m.-set of this
function is a superset of the p.m.-set of
the other one. This notion will be more
formally defined in chapter 3.

that achieves long-run frequency properties. Building upon this procedure
they can safely introduce exact high-dimensional hypothesis tests.

Similarly as in the fiducial belief function analysis, Kanjanatarakul et
al. 2016 use an inference model relying on a φ-equation but the end result
is the predictive belief function on X induced by a likelihood-based belief
function on θ. The action of the observed data on our beliefs on future
occurrences of X is thus conveyed by the likelihood function solely. The
proposed estimator is consistent in the sense that the predictive belief
function tends to the true distribution of X as the dataset size tends to
infinity.

On more practical grounds, a notorious limitation of belief function
is the exponential complexity in the size n of Θ. By accepting to lose
additivity, then degrees of belief cannot be summarized by means of a
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distribution anymore (no free lunch). To avoid this difficulty, most of
belief function practitioners use models where belief functions have a
limited number of focal elements. When many variables are studied, the
graphical model of Shenoy and Shafer 2008 helps to avoid unnecessary
complexities when propagating beliefs.

Concerning, the specific case of continuous variables, plausibilities
values may be vanishing. This calls for a notion of density function for
plausibilities that is, to the best of our knowledge, only available for belief
functions on Borel intervals of the real line (Smets 2005). Note that this is
more an open problem than a shortcoming.

1.3 Other related uncertainty models

There are other uncertainty and partial ignorance models than probabili-
ties or belief functions. For example, Cantor’s set theory can be regarded
as a model of imprecision. In this section we present three other frame-
works for reasoning under uncertainty two of which are more general
than belief functions and the other one being formally encompassed by
belief functions.

1.3.1 Possibility theory
The presentation of possibility theory
displayed in this subsection is inspired
from Dubois et al. 1996.

Suppose a model where one sorts subsets B ⊆ Θ into three families:
• T the family of true propositions,
• F the family of false propositions,
• and U the family of undecided propositions.
Define two functions N and Π that respectively represent the certainty of
truth and the possibility of truth. More formally,

N (B) = 1T (B) , (1.51)
Π (B) = 1T ∪U (B) (1.52)

Take two events B1 and B2. If they are both certain then so is B1 ∩ B2 and
if at least of one of them is not certain then B1 ∩ B2 is not certain either.
We thus have

N (B1 ∩ B2) = min {N (B1) ;N (B2)} . (1.53)

Conversely, if at least either B1 or B2 is possible then so is B1 ∪ B2, hence

Π (B1 ∪ B2) = max {Π (B1) ; Π (B2)} . (1.54)

Moreover, if B is impossible then Bc is surely true, hence

Π (B) = 1−N (Bc) . (1.55)

Now, by preserving the above logical rules but allowing N and Π to take
values in [0; 1] and to represent graded membership of families T and
T ∪ U , then we obtain a framework called possibility theory introduced
by Zadeh 1978 and further elaborated by Dubois and Prade 1988.

In this framework, the function N is called necessity measure and
the function Π is called possibility measure. It is easily checked that
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consonant belief functions27 are formally equivalent to necessity mea- 27. See 2.2.4 for a definition of this
subclass of belief functions.sures. An important appealing aspect of possibility measures is that they

share the same memory complexity as probability distributions. Indeed,
functions N and Π can be retrieved from the possibility distribution28 28. The possibility distribution is the

contour function (see 2.2.4) in the belief
function framework.

π (a) = Π ({a}).

1.3.2 Imprecise probabilities

We have already mentioned that many situations in which probability
bounds are defined cannot be encoded into a belief function (like the
examples given in Pearl 1990 to outline the limits of the representation
power of belief functions). By relaxing the 3rd axiom in the definition of
belief functions, we obtain objects that can encode any probability bound
system and are most often called imprecise probabilities or probability
intervals.

A pivotal notion in the imprecise probability framework is the concept
of Choquet capacity29. We first present rapidly this concept and related 29. The term capacity is explained by the

fact that Choquet introduced these objects
while working on models for electrical
charge of capacitors.

notions before showing that imprecise probabilities formally encompass
belief functions although in practice this will be dependent on the chosen
interpretation of belief functions.

Definition 13. Let ν denote a set-function from 2Θ to R. ν is said to be a
capacity if it has the following properties:
• ν (∅) = 0,
• ν (Θ) = 1,
• A ⊆ B⇒ ν (A) ≤ ν (B), for any A, B in 2Θ (monotony).

We immediately remark that any belief or plausibility function is a
capacity while the converse is not true. The discrepancy between the two
concepts is featured by the following property.

Definition 14. A capacity ν : 2Θ → [0; 1] is said to be k-monotonic, with
k ∈N∗, if and only if for any family of k events A = (Ai)

k
i=1, one has:

∑
I⊆A

(−1)|I| ν

(∩
A∈I

A

)
≤ ν

( ∪
1≤i≤k

Ai

)
. (1.56)

Now, we understand that belief functions are ∞-monotonic capacities
and that imprecise probabilities have an intrinsic much bigger representa-
tion power.

Other instrumental definitions are:
• super-additivity: ν (A) + ν (B) ≤ ν (A ∪ B), ∀A, B ⊆ Θ s.t. A ∩ B =

∅,
• sub-additivity: ν (A) + ν (B) ≥ ν (A ∪ B), ∀A, B ⊆ Θ s.t. A ∩ B =

∅,
• conjugate capacity: ν∗ is the conjugate capacity of ν if ν∗ (A) =

1− ν (Ac), ∀A ⊆ Θ,
• core30: the core Pν of a capacity ν is the set of probability measures

30. There is a clash of terminologies
in the literature as the core of a belief
function as defined by Shafer is the union
of its focal elements:∪

ω∈Ω

Γ (w) = {a ∈ Θ|pl (a) > 0} .

In this document, the core refers only
to the subset of PΘ encompassed by the
belief functions. Shafer’s definition is
referred to as focal core.

dominating ν: {P ∈ PΘ|ν ≤ P} and PΘ denotes the probability distri-
bution simplex for Θ.

To conclude this short presentation of capacity theory we give the follow-
ing two instrumental lemmas.



belief functions and related frameworks for inference under uncertainty 41

Lemma 1. All cores are convex closed subsets of PΘ. 31 31. The contraposition is not true. There
is however one-to-one correspondence
between closed convex subsets of proba-
bilities and lower and upper previsions (cf.
Walley 2000).

Lemma 2. For any 2-monotonic capacity ν, we have Pν ̸= ∅.

The next question is how do we relate capacities with probability
bounds? We will give a general32 definition of lower and upper probabili- 32. general in the sense that it goes

beyond Dempster’s definition.ties relying on p.m.-sets.

Definition 15. Let Pi denote a p.m.-set. The lower probability νPi
of Pi

is a mapping defined as follows:

νPi
: 2Θ → [0; 1] ,

A → min
µ∈Pi
{µ (A)} . (1.57)

The upper probability νPi of Pi is a mapping defined as follows:

νPi : 2Θ → [0; 1] ,

A → max
µ∈Pi
{µ (A)} . (1.58)

Finally, the following important theorem achieves our goal.

Theorem 2. Any lower (resp. upper) probability of a p.m.-set is a super-
additive (resp. sub-additive) capacity.

Furthermore, the upper probability νPi of Pi is the conjugate of its lower
probability:

νPi = ν∗Pi
. (1.59)

In the next chapter, we will see that the Möbius transform maps belief
functions to convenient equivalent representations known as mass func-
tions. The Möbius transform can also be used for capacities but it yields
a mass function that is no longer guaranteed to be non-negative. This
function is thus more rarely used in imprecise probabilities since for now
it lacks a clear interpretation.

We will briefly comment on the interpretation of imprecise probabili-
ties whose most widely accepted one was proposed by Walley 1991. It is a
behavioral one that relies on the gambling framework of de Finetti. In this
framework, the probability P (A) is understood as the price one is ready
to bet on A being true. The payoff is the indicator function 1A. In this
context, a lower probability is understood as the highest acceptable buy-
ing price of the gamble, and the upper probability is the lowest acceptable
selling33 price of the gamble. If the upper and lower probabilities coincide,

33. Selling the gamble is like betting
against A.

then they jointly represent the fair price for the gamble since this is the
price at which either side of the gamble are tempting.

Walley 2000 later argued that imprecise probabilities are an insuffi-
ciently expressive model of partial ignorance and uncertainty and there-
fore he recommends to use upper and lower coherent previsions. Roughly
speaking, these latter are obtained in the same fashion as lower and upper
probabilities but min and max operators are applied to expectations34

34. For instance, a coherent lower
prevision is given by

min
µ∈Pi

{
Eµ [g]

}
, (1.60)

where Eµ is the expectation w.r.t. mea-
sure µ and g is a gamble, i.e. a bounded
measurable mapping from θ to R. So a
coherent lower prevision is a gamble func-
tional. Using gambles that are indicator
functions, we retrieve the definition of a
lower probability.

instead of measures. Closed convex subsets of PΘ are in bijective corre-
spondence with lower and upper previsions.
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1.3.3 Random measures

Earlier in this chapter, we argued that there are two levels of uncertainty
in inference problems: uncertainty in the values of the variable of interest
and uncertainty in the degrees of belief that we can assign to each can-
didate value. Following this logic, each estimated probability P̂ (B) for
B ⊂ Θ can be regarded as a random variable in [0; 1].

Zooming out to the whole object P̂, this latter is a random measure.
This means that our uncertainty model relies on probabilities of probabil-
ities. Random measures appear quite frequently in probabilistic analyses
especially in Bayesian nonparametrics35 or when point processes are in- 35. In such approaches, one tries to

infer the posterior distribution on the set
of candidate distributions for θ. It is a
nonparametric method because there are
infinitely many possible distributions Pθ .

volved. For instance, a (normalized) sum of Dirac masses each centered on
a real random variable is a special type of point process (with fixed size)
on the real line and it is also a random measure.

Interestingly, random measures enjoy a much wider acceptance and
popularity among statisticians than the other frameworks presented
in this chapter. The concept of imprecise probabilities is close to a ran-
dom measure with uniform distribution over its core. As a consequence,
random measures are a very general model of uncertainty among those
discussed. The imprecise probability model is however not formally cov-
ered by random measures with uniform distributions for the same reasons
that set theory is not encompassed by probability theory. First, just like
for the wine/water paradox, we have epistemic uncertainty on the true
distribution and a uniform distribution on distributions is not uninfor-
mative. A possibility distribution equal to the indicator function of the
core is more adapted to describe our ignorance on the true distribution.
Second, in general, deriving second order probabilities requires much
more information than what is necessary to obtain imprecise probabilities.
Consequently, a uniform distribution on a set of distributions may be in-
terpreted as the results of observations that the distribution happens to be
one of the element of this set with equal frequency.

Random measures are however more difficult to analyze as part of
some multi-valued logic or gambling protocols. Nonetheless, they resort
to hardly more elaborated concepts than probability theory initially pro-
vides. This tends to show that all the frameworks evoked in this chapter
are just different facets of the same objective. We are back to square one!

1.4 Conclusions

Random
Measures

Lower and Up-
per Previsions

Imprecise
Probabilities

Belief Functions

Probabilities Possibilities

Set Theory

Figure 1.2: Frameworks for reasoning
under uncertainty. Arrows symbolize
generalization relationship between
frameworks.

In this chapter, a (non-exhaustive) review of uncertainty theories has
been conducted ranging from probability theory to belief functions or
imprecise probabilities. From this analysis, it appears that all these frame-
works share strong connections and that the selection of one of these
frameworks is motivated by a trade-off between representation power and
computation efficiency. Figure 1.2 summarizes the relationships between
these frameworks. Depending on available data, it has been highlighted
that some theories are too specific to produce a model fitting the data
without adding additional assumptions. Going for a larger class of mod-
els is at the expense of computation load since more general frameworks
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have fewer axioms and simplifying calculus rules.
When the data does not allow to assign a probability to some event

(and in turn to its complement), then a third party comes into play: prob-
ability of ”don’t know”. The theory of belief functions appears as the
simplest framework allowing to grasp such a three-valued logic and gen-
eralizing probability theory.

Our goal in the next chapters is to try to get insights as to the structure
of the space where belief functions live. To best use the framework, it
is indeed important to understand what operations, distances or binary
relations can be defined in accordance with the spirit of the concepts
presented in this chapter. Before addressing these topics, we review some
important elements of belief function calculus in the next chapter.





2Elements of belief function calculus in
finite spaces

In this chapter, we give basic elements of belief function calculus defined
on a finite space Θ. Others elements maybe given in later chapters where
they are particularly instrumental. Readers that are familiar with the
theory of belief functions may skip this chapter.

2.1 Bijective transformations

There are several alternative set functions which can encode the same
level of information as belief functions. We have already seen two such
functions: plausibility and commonality functions. Since belief functions
can encode more general uncertainty models than probability functions,
they have a larger memory complexity, namely O (N) while probabilities
have a complexity in O (n). It thus sounds logical that all functions with
an equivalent representation power as belief functions have the same
complexity.

The most instrumental set functions in the belief function framework
are mass functions denoted in general by m. There are obtained from
functions bel by Möbius transform.

The following table gives (forward and backward) transition formulas
between mass functions and other set functions. They are given in the
case of allowed positive mass for ∅ and they may simplify otherwise.

bel → m m→ bel

m (A) =


∑

B⊆Θ,
B⊆A

(−1)|A|−|B| bel (B) if A ̸= ∅

1− bel (Θ) if A = ∅

bel (A) = ∑
B⊆Θ,

B⊆A,B ̸=∅

m (B)

pl → m m→ pl

m (A) =


∑

B⊆Θ,
B⊆A

(−1)|A|−|B|+1 pl (Bc) if A ̸= ∅

1− pl (Θ) if A = ∅

pl (A) = ∑
B⊆Θ,

B∩A ̸=∅

m (B)

q→ m m→ q
m (A) = ∑

B⊆Θ,
B⊇A

(−1)|A|−|B| q (B) q (A) = ∑
B⊆Θ,
B⊇A

m (B)

Table 2.1: Transition relations be-
tween mass functions and be-
lief/plausibility/commonality functions.

Mass functions were implicitly evoked in the previous chapter as it can
also be retrieved through the usual pseudo-inverse of the multi-valued
mapping as

m =
1

µ ◦ Γ−1
⊤ (Θ)

× µ ◦ Γ−1. (2.1)

This formula highlights the fact that B is a focal element iff m (B) > 0.
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It must also be stressed that mass functions take values in [0; 1] and that
they sum to one

∑
A⊆Θ

m (A) = 1. (2.2)

Given the above remarks, the mass m (A) is understood as how much
evidence supports {θ ∈ A} being true while not allowing to decide
among values in A.

Another set function type that is sometimes instrumental are impli-
cability functions b. These functions are only useful when m (∅) > 0
otherwise they coincide with belief functions. Indeed, we have

b (A) = bel (A) + m (∅) , ∀A ⊆ Θ. (2.3)

2.2 Subclasses of belief functions

There is a hierarchy of subclasses of belief functions which have specific
properties some of which can for instance alleviate the complexity burden
incurred by belief functions because they have limited number of focal
elements. We review these subclasses from most simple to most general
ones.

2.2.1 Categorical belief functions

Categorical belief functions lie at the bottom of the hierarchy and they
represent imprecise but certain statements such as θ ∈ B. Any categorical
mass function has thus only one focal element B with unit mass. We
denote such a categorical mass function by mB and we have

mB (A) =

1 if A = B

0 if A ̸= B
. (2.4)

Categorical mass functions obviously have the same representation power
as sets therefore belief functions formally encompasses set theory.

2.2.2 Bayesian belief function

When the multi-valued mapping maps elements of Ω to singletons, the
source induces a bona fide probability measure and the multi-valued
mapping is a random variable. It is alo nonetheless a belief function which
can be further processed as such. These functions are called Bayesian
belief functions.

Bayesian and categorical belief functions are intersecting but none
is included in the other. Belief functions that are both categorical and
Bayesian have a mass function assigning unit mass to a singleton. They
encode statements of the kind θ = a with certainty. This is the most
desirable end result of an inferential procedure but in practice it can only
be obtained as limiting case when one has an infinite dataset.
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2.2.3 Simple belief functions

Simple belief functions (or simple support belief functions) were studied
and introduced by Shafer 1976 who regards them as elementary pieces of
information. Indeed, they represent circumstances under which evidence
has only enabled to support one hypothesis θ ∈ B with limited probabil-
ity. They have two focal elements : B and Θ. Their corresponding (simple)
mass functions are denoted by mw

B and we have

mw
B (A) =


1− w if A = B

w if A = Θ

0 otherwise

. (2.5)

Simple belief functions generalize categorical ones as m0
B = mB.

2.2.4 Consonant belief functions

When the focal elements of a belief function are nested1, the belief func- 1. Focal elements are nested if for any
two such sets B1 and B2, we have either
B1 ⊆ B2 or B2 ⊆ B1. In other words,
the inclusion is a total order for focal
elements.

tion is said to be consonant. Consequently, consonant belief functions
have at most n focal elements and have the same memory complexity
as probability distributions. A property featuring this complexity is the
following: for any consonant belief function bel, the corresponding plau-
sibility function pl is given by

pl (B) = max
a∈B

pl (a) , ∀B ⊆ Θ. (2.6)

Now we see that knowing plausibilities of singletons is enough to retrieve
the whole plausibility function. The restriction of the plausibility function
to singletons is often called the contour function.

More generally, consonant belief functions are such that

bel (A ∩ B) = min {bel (A) ; bel (B)} , ∀A, B ⊆ Θ, (2.7)
pl (A ∩ B) = max {pl (A) ; pl (B)} , ∀A, B ⊆ Θ. (2.8)

Consonant belief functions generalize simple ones. Indeed, for any
simple mass function mw

B , its focal elements are B and Θ and B ⊆ Θ.

2.2.5 Separable belief functions

As previously mentioned, Shafer 1976 intended to show that belief func-
tions represent states of beliefs that are achieved by successive combi-
nations of elementary pieces of evidence through Dempster’s rule. Such
belief functions are said to be separable. To formalize this idea, we need
to specify the elementary pieces of evidence. These pieces are embodied
by simple belief functions. Consequently, a separable mass function m is
such that

m =
⊕
B⊂Θ

mw(B)
B , (2.9)

where w (B) is called the conjunctive weight function2. There are several 2. In this setting, the function w takes
values in [0; 1]. A more general version of
this function was introduced by Smets in
connection with another decomposition
that will be detailed in 2.7.

possible such decompositions. The above becomes unique for instance
when
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• m ̸= mΩ,
• each simple mass function is focused on a different subset of Θ,
• w (B) = 1 whenever B ̸⊆ {a ∈ Θ|pl (a) > 0}.
Unfortunately, some belief functions are not separable.

Example 9. Let m denote a mass function such that m = βmA +

(1− β)mAc with β ∈ (0; 1). A set B ̸∈ {A; Ac} cannot be involved
in the decomposition (i.e. w (B) = 1) otherwise either for any C ̸= B
we have w (C) > 0 and consequently B is a focal element or we would
need w (C) = 0 for some C ̸= B but then all the focal elements of m
are subsets of C and thus C = Θ. The only remaining candidate simple
mass functions for a decomposition are thus mw

A and mw′
Ac but this implies

that either Θ is a focal element (which is untrue) or w = w′ = 0 and
Dempster’s rule does not apply, hence a decomposition cannot be found
for m.

2.2.6 Dogmatic belief functions

A dogmatic belief function is such that Θ is not a focal element or equiv-
alently that its corresponding mass function is such that m (Θ) = 0. In
practice, non-dogmatic functions are preferred because Dempster’s rule
always applies if one of the two operands is non-dogmatic.

A belief function is dogmatic and simple if and only if it is categorical.
When a belief function is separable and dogmatic, then ∃B s.t. w (B) = 0
and focal elements are subsets of B3. 3. In fact, a conditioning on B has been

performed and the restriction of the mass
function to subsets of B is a separable
mass function whose domain is 2B .2.2.7 Normal belief functions

The relaxation of the constraint m (∅) = 0 as in Smets’ TBM leads to a
definition allowing to distinguish between those functions that comply
with the constraint and those that do not. In this open world context, a
belief function whose mass function is such that m (∅) = 0 is said to be
normal (or normalized). In contrast, mass functions such that m (∅) > 0
are called subnormal mass functions. Finally the union of the two families
is of course the entire set of mass functions, but if one desires to stress
that m (∅) > 0 is possible, then one speaks of unnormalized mass
functions.

2.3 Discounting

When we want to assembly several sources in order to reduce our un-
certainty on the value of θ, we can use a combination operation like
Dempster’s rule. But we cannot not always assume that each source is
built upon relevant evidence. For instance, a source may be built from
sensor measurements but the sensor may be uncalibrated and if the model
does not take this aspect into account the corresponding belief function
conveys erroneous information.

Under such circumstances, it is possible to reduce the impact of a
source of information and its corresponding mass function using an
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operation called discounting introduced by Shafer 1976. Discounting a
mass function m with discount rate α ∈ [0, 1] is defined as:

mα (B) =

{
(1− α)m (B) if B ̸= Θ,

(1− α)m (B) + α if B = Θ.
(2.10)

The higher α is, the stronger the discounting. Thanks to discounting, the
mass function induced by a source is transformed into a function closer
to the vacuous mass function mΘ. One may remark that a simple mass
function mw

A is the categorical function mA discounted with rate w.
Mercier et al. 2008 proposed a refined discounting, in which discount

rates are tailored for each subset B ⊂ Θ and each mass function. The
discounting is consequently more precise and specific. It is, however, nec-
essary to have enough information allowing subset-specific discount rate
computation. Other generalized mass function correction mechanisms
are introduced in Kallel and Hégarat-Mascle 2009 and Mercier et al. 2010
allowing for instance a mass function to be reinforced instead of being
discounted.

As part of sequential approaches (Schubert 2010, Zhang et al. 2007,
Klein and Colot 2010), it is sometimes needed to discount a mass func-
tion m step by step: mα1◦α2 = (mα1)α2 with ◦ the composition law for
successive discountings. If discountings are repeated k times with rates
(α1, ..., αk), one has the following property (Smets 2007) :

mβ
i = mα1◦...◦αk

i , (2.11)

with β = 1−
k

∏
i=0

(1− αi) . (2.12)

In particular, when ∀i, αi = α, we have β = 1− (1− α)k.

2.4 Coarsening and refinement

An interesting aspect of belief functions is that they can propagate the
encoded uncertainty on the variable of interest to other spaces than Θ
representing different levels of granularity. For instance, suppose θ rep-
resents a real variable quantified on four levels Θ = {θ1; θ2; θ3; θ4} and
we are able to infer a belief function on Θ. What can we deduce if the
variable needs later to be quantified on 2 or 8 levels instead of 4?

It turns out that our beliefs on θ can be propagated to a new variable
space through a mapping ρ that is called a refining.

Definition 16. A multi-valued mapping ρ : Θ → 2Y is a refining if the
family {ρ (a)}a∈Θ is a partition of Y .

Let m denote the mass function inferred on Θ and m′ the mass func-
tion that we want to obtain on a new space denoted by Y . Depending on
the cardinality of Y , we have that:

• ρ : Θ → 2Y is a refining and m′
( ∪

a∈A
ρ (a)

)
= m (A) , ∀A ⊆ Θ and

all other masses are null (refinement case). In this case, m′ is called the
vacuous extension of m.



50 algebraic structures and metrics for belief functions

• ρ : Y → 2Θ is a refining and we need to resort to pseudo-inverses.
In this context, ρ−1

⊤ is called outer reduction and ρ−1
⊥ is called inner

reduction. For some pseudo-inverse ρ−1, the new mass function m′ on
Y is obtained as

m′ (B) = ∑
A⊆Θ,

ρ−1(A)=B

m (A) (coarsening case). (2.13)

If we use an outer reduction, m′ is called the marginal mass function of
m.

Example 10. Let Θ = {θ1, θ2} and Y = {y1; y2; y3} denote two spaces.
Suppose there exist a refinement ρ as illustrated in figure 2.1 such that :

ρ (θ1) = {y1, y3} ,

ρ (θ2) = {y2} .

Let us introduce the following mass function over Θ:

subset ∅ {θ1} {θ2} {θ1, θ2} = Θ
m 0 0.2 0.1 0.7

θ2 θ1

y2 y1 y3

Θ

ρ

Y

Figure 2.1: Refining mapping example: the
first element of Θ is mapped to an element
of Y and the second to a pair of elements
of Y .

The mass function m′ on Y induced by ρ from m is:

subset ∅ {y1} {y2} {y1, y2} {y3} {y1, y3} {y2, y3} Y
m′ 0 0 0.1 0 0 0.2 0 0.7

Now, suppose we want to perform the opposite operation starting from
function m′. The outer and inner reductions are:

subset ∅ {y1} {y2} {y1, y2} {y3} {y1, y3} {y2, y3} Y
ρ−1
⊤ ∅ {θ1} {θ2} Θ {θ1} {θ1} Θ Θ

ρ−1
⊥ ∅ {θ1} {θ2} ∅ {θ1} {θ1} ∅ Θ

In this case, using (2.13) with any of the above pseudo-inverses yields
another mass function m′′ equating m:

subset ∅ {θ1} {θ2} {θ1, θ2} = Θ
m′′ = m 0 0.2 0.1 0.7

2.5 Belief functions on product spaces

When performing inference, two spaces are involved: the variable space
Θ and the observation space X. The full uncertainty model thus implies
the definition of a belief function on the product space Θ ×X and we
need to retrieve this ”joint”4 belief function from marginal or conditional 4. A joint belief function actually refers

to a more specific object than a belief
function on a product space see 5.4 for a
definition.

ones (and vice-versa).
We have already mentioned two ways to perform conditioning and

these two apply also in the case of a belief function on a product space.
We will now explain how to perform marginalization. The theory of belief
function also contains two principled ways to obtain a belief function on
the product space from a conditional or marginal one. These latter are
known as ballooning and vacuous extensions and are also presented in
the following paragraphs.



elements of belief function calculus in finite spaces 51

2.5.1 Marginalization

Let m denote a mass function on the product space Θ×X. Suppose we
want to compute the marginal mass function m′ on one of the marginal
spaces, say Θ. This amounts to a particular form of coarsening. Marginal-
ization relies on the concept of set projection: ∀B ⊆ (Θ×X)

X

Θ

–

–

–

–

projΘ (B) B

Figure 2.2: Illustration of the set projection
of some focal element B in 2Θ×X to a
subset of Θ.

projΘ (B) =
∪

(a,x)∈B

{a} , (2.14)

= {a ∈ Θ|∃x ∈ X s.t. (a, x) ∈ B} . (2.15)

The set A = projΘ (B) is also the smallest set such that B ⊆ (A×X),
see figure 2.2 for an illustration. Now, the marginal mass function m′ is
obtained as

m′ (A) = ∑
B⊆Θ×X

projΘ(B)=A

m (B) , ∀A ⊆ Θ (2.16)

The refining map underlying the coarsening of marginalization is ρ (A) =

A×X for any A ⊆ Θ. Using the outer reduction, m′ is obtained. More-
over, we also have

pl′ (A) = pl (A, X) , ∀A ⊆ Θ. (2.17)

2.5.2 Extension

Generally speaking, computing a ”joint” belief function from a marginal
or a conditional one is an ill posed problem for several joint belief func-
tions have the same marginal or conditional distributions. Additional
information or hypotheses must thus be used to select among candidate
functions on the product space.

In the theory of belief functions, the least commitment principle (LCP)
is often used to that end. It consists in selecting the function that contains
as little information5 as possible among the candidate ones. Let m denote

5. To make the LCP operational, a
partial order on belief functions must be
defined in order to sort belief functions
based on their informational content. Such
partial orders are presented in chapter 3

a marginal (resp. conditional) mass function on Θ. If a mass function m′

on Θ×X is an LCP solution then m′ is called an extension. Extensions
can be regarded as special kinds of refinements.

In the case where m is a marginal mass function, the LCP solution m′

is known as the vacuous extension and is given by

m′ (B) =

m (A) if B = A×X

0 otherwise
. (2.18)

X

Θ

–

–

–

–

A Cylindrical extension of A

Figure 2.3: Illustration of the cylindrical
extension of some focal element A in 2Θ

to a subset of Θ×X.

The same refining mapping as in the marginalization process is under-
lying the vacuous extension. The focal elements of m′ are called cylindri-
cal extensions of those of m (see figure 2.3).

In the case where m is a mass function obtained after conditioning on
some E ⊂ X, the LCP solution m′ is known as the ballooning extension
(or conditional embedding) and is given by

m′ (B) =

m (A) if B = (A× E) ∪ (Θ×X \ E)

0 otherwise
. (2.19)
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X

Θ

–

–

–

–

| |E

A

Ballooning extension of A

Figure 2.4: Illustration of the ballooning
extension of some focal element A in 2Θ

to a subset of Θ×X. It is assumed that
Dempster’s conditioning on Θ× E with
E ⊂ X was previously performed on the
joint belief function.

Figure 2.4 illustrates that the ballooning extension selects the largest
focal element in 2Θ×X such that conditioning (or intersecting) with Θ× E
and projecting on Θ gives A. Observe that the ballooning extension is the
LCP solution for Dempster’s conditioning only.

In both these extensions, the application of the LCP translates into
selecting the largest possible focal elements for m′ (subject to the con-
straints induced by marginalization or conditioning).

2.6 The α-junctions

In this subsection, a brief presentation of α-junctions (Smets 1997) is pro-
posed. Suppose two sources S1 and S2 are induced by pieces of evidence
allowing them to induce two mass functions m1 and m2 respectively on
the same space Θ. In general, we dot no know if the pieces of evidence of
S1 and S2 are independent, shared or a mix of those.

Evidential combination rules (such as Dempster’s rule) address the
problem of aggregating the two functions m1 and m2 into a single one
synthesizing both of the initial evidence bodies. Let f be a combination
operator for mass functions, i.e. m12 = f (m1, m2) with m12 a mass func-
tion depending only on m1 and m2. Such an operator is an α-junction if it
possesses the following properties:
• Linearity6: ∀λ ∈ [0, 1] , f (m, λm1 + (1− λ)m2) = λ f (m, m1) + 6. The operator is linear on the vec-

tor space spanned by categorical mass
functions but the output of the operator
remains a mass function only in case of
convex combination.

(1− λ) f (m, m2),
• Commutativity: f (m1, m2) = f (m2, m1),
• Associativity: for any additional mass function m3, f ( f (m1, m2) , m3) =

f (m1, f (m2, m3)),
• Neutral element: ∃me | ∀m, f (m, me) = m,
• Anonymity: for any mapping Υ : 2Θ −→ 2Θ such that its restriction

on Θ is a permutation and Υ (B) =
∪

e∈B
Υ (e) when |B| > 1, we have

f (m1 ◦ Υ, m2 ◦ Υ) = m12 ◦ Υ,
• Context preservation: pl1 (B) = 0 and pl2 (B) = 0 =⇒ pl12 (B) =

0, ∀B ⊆ Θ.
In short, α-junctions are thus linear combination rules that do not depend
on the order in which pieces of evidence are processed. The justification
behind these properties are detailed in Smets 1997. In the same article,
Smets proves that the neutral element me can only be either m∅ or mΘ.
Depending on this, two sub-families arise: the α-disjunctive rules denoted
by ∪⃝α and the α-conjunctive rules denoted by ∩⃝α. For both of these
families, Pichon and Denoeux 2009 provided the following computation
formulas: ∀E ⊆ Θ, ∀α ∈ [0, 1]

m1∩α2 (E) = ∑
A,B,C⊆Θ,

(A∩B)∪(Ac∩Bc∩C)=E

m1 (A)m2 (B) α|C
c |α|C|, (2.20)

m1∪α2 (E) = ∑
A,B,C⊆Θ,

(A∆B)∪(A∩B∩C)=E

m1 (A)m2 (B) α|C|α|C
c |, (2.21)

with α = 1− α and ∆ the set symmetric difference.

Some simplified formulas when combining
categorical mass functions are given in
Klein et al. 2014.

When α = 1, the classical conjunctive and disjunctive rules are re-
trieved. We denote these rules by ∩⃝ = ∩⃝1 and ∪⃝ = ∪⃝1. These rules have
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simplified expressions: ∀E ⊆ Θ,

m1∩2 (E) =∑
A,B⊆Θ,
A∩B=E

m1 (A)m2 (B) , (2.22)

m1∪2 (E) =∑
A,B⊆Θ,
A∪B=E

m1 (A)m2 (B) . (2.23)

Computing an α-junctive combination has, in general, a complexity of N3

while the conjunctive and disjunctive rules have a complexity of N2.
Moreover, we introduce specific notations regarding the α-junctive

combination of a given function m1 with a given categorical function mB:
• m1|B := m1 ∩⃝mB, this mass function is sometimes referred to as m1

given B,
• m1∩αB := m1 ∩⃝

αmB,
• m1∪αB := m1 ∪⃝

αmB,
• m1|αB stands for the combination of m1 and mB using an α-junction

when distinguishing conjunctive and disjunctive cases is unnecessary.
Remember that mB is interpreted as θ ∈ B with certainty. The above
operations are thus often called conditioning on B.

Dempster’s rule is closely related to the conjunctive rule. Indeed, since
Dempster’s rule was initially introduced for normal belief functions, the
degree of belief assigned to ∅ is ultimately redistributed to the focal sets.
We have

m1⊕2 (B) =
1

1− κ
m1∩2 (B) , ∀B ⊆ Θ, (2.24)

and κ = m1∩2 (∅) is called Dempster’s degree of conflict.
There are plenty other ways to combine mass functions and we will

present some others in chapter 5. α-junctions are presented earlier be-
cause they will also be instrumental in chapter 3.

The interpretation of α-junctions is related to information items con-
cerning the truthfulness of the sources S1 and S2. In an information
fusion context, such items are known as meta-information and truth-
fulness is a special kind of meta-information. Actually, several forms of
truthfulnesses can be observed in practice but regarding α-junctions the
following ”adversarial” definition is retained: Si is untruthful if it supports
the opposite of what it knows to be true.

Depending on the truthfulness of sources, very different decisions can
be made in the end, which accounts for the importance of taking meta-
information into account in information fusion problems. In general, our
knowledge about the truthfulness of each source is imprecise and uncer-
tain and it is therefore expressed as a mass function on a meta-domain Ti.
Pichon 2012, explains that an element ti

C ∈ Ti is understood as the fact
that Si is truthful when it supports {θ ∈ C} and it is untruthful when it
supports {θ ∈ Cc}. Let us provide a simple example where everything is
deterministic:

Example 11. Suppose that |Θ| = 4 and the meta-data concerning Si is
that ti

C has probability 1 with C = {θ1, θ2}. If the source of information
Si delivers only one certain piece of evidence θ ∈ A = {θ2, θ3}, then four
different situations are encountered:



54 algebraic structures and metrics for belief functions

• The source gives support to θ2 and can be trusted about θ2. We con-
clude that θ2 is a possible value for θ.

• The source gives no support to θ1 and can be trusted about θ1. We
conclude that θ1 is a not possible value for θ.

• The source gives support to θ3 but cannot be trusted about θ3. We
conclude that θ3 is not a possible value for θ.

• The source gives no support to θ4 but cannot be trusted about θ4. We
conclude that θ4 is a possible value for θ.

All in all, the testimony of the source is θ ∈ A but given the meta-data,
the actual testimony is θ ∈ (A∆C)c.

When considering a pair of sources (S1; S2), meta-events belong to
T1 × T2. Pichon also proves that:
• for α-conjunctions, the underlying meta-information is that each meta-

event {either both sources are fully truthful or they both lie about Cc} ={(
t1
Θ; t2

Θ
)

;
(
t1
C; t2

C
)}

has probability α|C|α|C
c |.

• for α-disjunctions, the underlying meta-information is that each meta-
event {one source is fully truthful while the other one lies at least about
C} = ∪

E⊆Cc

{(
t1
Θ; t2

E
)

;
(
t1
E; t2

Θ
)}

has probability α|C
c |α|C|.

In particular, when α = 1, the above probabilities are null whenever
C ̸= Θ in the conjunctive case and whenever C ̸= ∅ in the disjunctive
case. The meta-information thus reduces to:
• for the conjunctive rule, the event {both sources are fully truthful} has

probability 1.
• for the disjunctive rule, the event {at least one of the sources is fully
truthful} has probability 1.

Note that α-junctions are a particular case of a combination process in-
troduced in Pichon et al. 2012 where a general framework for reasoning
under various meta-information is formalized.

2.7 Decompositions

We have seen that some belief functions can be decomposed using Demp-
ster’s rule and such functions are called separable. We can think of similar
decompositions with respect to other rules. Smets 1995 showed that non-
dogmatic mass functions (m(Ω) > 0) can be decomposed using the
conjunctive rule. This decomposition of a mass function into simple ones
is always unique and relies on a generalized definition of the conjunc-
tive weight function. In this case, the codomain of conjunctive weight
functions is (0;+∞) and not [0, 1]. Having w (A) < 1 is understood
as the fact that some evidence has been collected allowing to support A
being true. Having w (A) > 1 means that A is unlikely to the point that
a significant amount of evidence needs to be collected before starting to
support A being true. Finally, w (A) = 1 stands for a neutral opinion
regarding event A. We refer to Denœux 2008 for more details on conjunc-
tive weight functions. The decomposition writes

m = ∩⃝
B⊂Θ

mw(B)
B . (2.25)

The simplest transition relations allowing to compute conjunctive
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weight functions are obtained from commonality functions as follows:

w (A) = ∏
E⊇A

q (E)(−1)|E|−|A|+1
, ∀A ⊆ Θ. (2.26)

The non-dogmatic condition prevents division by zero to happen in Equa-
tion (2.26). In practice, when a dogmatic mass function m has to be turned
into a conjunctive weight function, one can discount it with a very small
discount rate as compared to the minimum positive mass of m. The dis-
count rate can be chosen as small as necessary so that the values of w
stabilize to some value up to a prescribed precision threshold.

When mass functions are unnormalized (m(∅) > 0), a dual decompo-
sition can be obtained using disjunctive weight functions denoted by v:

m = ∪⃝
B ̸=∅

mB
v(B), (2.27)

where each function mB
v(B) is defined as

mB
v(B) (E) =


1− v (E) if E = B,

v (E) if E = ∅,

0 otherwise

. (2.28)

Disjunctive weight functions can be computed for instance from implica-
bility functions as follows:

v (A) = ∏
E⊆A

b (E)(−1)|A|−|E|+1
, ∀A ⊆ Θ. (2.29)

In the same fashion as conjunctive weight functions, one turns a normal-
ized mass function m into a disjunctive weight function by artificially
assigning an infinitesimal mass value to ∅ and then renormalize so that
∑E⊆Θ m(E) = 1. Such a constraint may be perceived as less natural than
m(Θ) > 0, in particular under a closed-world assumption.

2.8 Matrix calculus for belief functions

Mass functions can be viewed as vectors belonging to the vector space
RN with categorical mass functions as base vectors. Since mass functions
sum to one, the set of mass functions is the simplexM in that vector
space whose vertices are the base vectors {mA}A⊆Θ. This simplex is also
called mass space (Cuzzolin 2008). In this paper, the following notations
and conventions are used :
• Vectors are column vectors and are written in bold small letters. The

operator vec maps a set function or a distribution to its vector form.
For instance, mi = vec (mi) is the mass vector corresponding to a
mass function mi. The length of mass vectors is N. The jA

th element
of a mass vector mi is such that mi (jA) = mi(A) with jA the in-
teger index of the set A according to the binary order. The binary
order7 (Smets 2002) is a common way to index elements of 2Θ without

7. For a given finite set Θ =
{θ1, . . . , θn}, the representation of
subsets A ⊆ Θ, known as binary order,
is the following: each subset A is associ-
ated to a binary number made of n bits
and this number has a 1 at position i if
θi ∈ A, and 0 otherwise. For example,
when Θ = {θ1, θ2, θ3}, the binary rep-
resentation of the subset {θ2, θ3} is 110.
Then, considering the integer number
IntA in base 10 obtained from the binary
representation of A, each subset defines
a unique vector index nA = IntA + 1
starting from 1 (∅) to 2n (Θ).

supposing any order on Θ.
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• Matrices are written in bold capital letters. They are square and their
size is N × N. A matrix can be represented by X = [X (iA, jB)], or
alternatively by the notation X = [X(A, B)], ∀A, B ∈ Θ. The row and
column indexes iA and jB are those corresponding to the subsets A and
B using the binary order.

• I is the identity matrix.
• 1 is the all-ones matrix.
• J is the matrix with null components except those on the anti-diagonal

which are equal to 1. J is a permutation matrix reversing lines in case
of right-handed product and reversing columns in case of left-handed
product.

Matrix calculus as part of the theory of belief functions is especially inter-
esting when it comes to mass function α-junctive combination. In Smets
2002 and Smets 1997, Smets shows that equation (2.20) and (2.21) can be
written as a product between a matrix and a mass function vector. Let
K∩1,α be a matrix such that K∩1,α(A, B) = m1∩αB (A) and K∪1,α a matrix
such that K∪1,α(A, B) = m1∪αB (A). One has:

m1∩α2 = K∩1,α ·m2, (2.30)
m1∪α2 = K∪1,α ·m2. (2.31)

These matrices are also in one-to-one correspondence with the mass func-
tion m1. We call K∩1,α and K∪1,α the α-specialization and α-generalization
matrices corresponding to m1. In general, all such matrices will be called
evidential matrices. When it is not necessary to stress the dependency
of evidential matrices on α and on the conjunctive/disjunctive cases, an
evidential matrix is denoted by K1 for the sake of equation concision. In
particular, when α = 1, we see that the conjunctive (2.22) and disjunctive
(2.23) combinations can be rewritten as a dot product.

Each element of K1 represents the mass assigned to a set A after learn-
ing that {θ ∈ B}: K1(A, B) = m1|αB (A). In other words, K1 does not
only represent the current state of belief depicted by m1 but also all reach-
able states from m1 through an α-junctive conditioning. From a geometric
point of view (Cuzzolin 2004), each column of an evidential matrix K1

corresponds to the vertex of a polytope C1, called the conditional sub-
space of m1. Example 12 illustrates this latter remark.

Example 12. Let |Θ| = 2 and m1 = λm{θ1} + λmΘ with λ ∈ [0; 1] and
λ = 1− λ. In the conjunctive case, we have :

K∩1,α =


λα + λ 0 λ 0

0 λα + λ 0 λ

λα 0 λ 0
0 λα 0 λ

 .

The four column vectors of K∩1,α are (from left to right) : m1∩α∅, m1∩α{θ1},
m1∩α{θ2}, and m1. By definition the polytope C1 is the following subset of
M:

C1 =

{
m ∈ M | m = ∑

A⊆Θ
λAm1∩α A, ∑

A⊆Θ
λA = 1, λA ∈ [0; 1]

}
.



elements of belief function calculus in finite spaces 57

Any mass function m ∈ C1 is the result of the combination of m1 with
another mass function using a given α-junction. Evidential matrices are
consequently relevant candidates for assessing dissimilarities between
bodies of evidence in compliance with α-junctions as we will see in chap-
ter 4.

Most importantly, if K1 and K2 are two evidential matrices and if K12

denotes the matrix corresponding to the α-junction of m1 with m2, then
one has:

K12 = K1 ·K2. (2.32)

Moreover, the transpose of any evidential matrix K is a stochastic matrix,
meaning that all lines sum to one: tK · 1 = 1, with tK the transpose
matrix of K. Finally, KA will denote the evidential matrix corresponding
to the categorical mass function mA.

2.9 Inference

As we have already commented in several parts of this monograph,
inference is about making deductions concerning a variable of inter-
est θ ∈ Θ based on observations that are elements of a space X. Let
D =

{
x(1), . . . , x(nx)

}
denote the collected set of observations, or

dataset.
In the Bayesian probabilistic framework, we start with initial beliefs on

the true value of θ which is regarded as a random variable. These beliefs
are represented by a prior probability distribution P0. When data arrive,
each datum is regarded as a realization of a random variable X and we
will update our beliefs based on a dependence model between X and θ.
From Bayes rule, we write

P (θ = a|D) = P (D|θ = a) P0 (θ = a)
P (D) . (2.33)

The probability P (D|θ = a) is called likelihood and evaluates how likely
are the data for a given value of θ. We need a model to estimate the like-
lihood. This model can be obtained from information about how data
points are sampled or it can be just assumed based on the shape of empir-
ical distributions. The probability P (D) is the evidence and usually does
not need to be evaluated because it is not dependent on θ so we can still
compute the posterior distribution P (θ = a|D) by multiplying the like-
lihood and the prior and then renormalize so that the distribution sums to
one. The posterior distribution stands for our updated beliefs as to what
can be inferred about θ.

In the belief function framework, we can reproduce this reasoning. In
lack of any available information, we can choose a vacuous mass function
as prior: m0 = mΘ. If there is a really justified reason why we are not ig-
norant regarding θ, we can choose a more informative mass function and
in particular, if we believe that P0 is justified, we can choose a Bayesian
mass function such that m0 ({a}) = P0 (θ = a) for any a ∈ Θ. A likeli-
hood function can also be used as basis to induce a belief function on Θ as
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proposed by Shafer 1976. The corresponding plausibility function is

plD ({a}) = P (D|θ = a)
sup
a′∈Θ

P (D|θ = a′)
, ∀a ∈ Θ, (2.34)

plD (A) = sup
a′∈A

plD
({

a′
})

, ∀A ⊆ Θ. (2.35)

By construction, this belief function is consonant. Now if we combine m0

with mD by Dempster’s rule, we obtain a posterior mass function m. In
addition, if m0 is a Bayesian mass function, the posterior mass function
coincides with the posterior distribution issued by the Bayesian reasoning
(see Denœux 2014).

Another inference scheme was proposed by Smets 1993. It is known as
the generalized Bayesian theorem (GBT). Suppose we are given a set of
conditional8 mass functions on X : (m (.|θ = a))a∈Θ, a prior m0 and for 8. Unless stated otherwise, m (.|B)

denotes a conditioning à la Dempster.simplicity only one datum D = {x}. The GBT procedure is the following
1. Compute ballooning extension of each m (.|θ = a) and the vacuous

extensions of m0 to obtain n + 1 mass functions on Θ×X;
2. Combine all of them using ∩⃝;
3. Condition on Θ× {x};
4. Marginalize on Θ.
If m0 = mΘ, for any A ⊆ Θ and any E ⊆ X, the posterior mass function
obtained from the GBT procedure is such that its plausibility values write

pl (A|E) ∝ 1− ∏
a∈A

(1− pl (E|θ = a)) . (2.36)

When we have nx observations that are cognitively independent 9, the 9. Cognitive independence holds if for
any E1 and E2 ⊆ X, we have

pl (E1 × E2|θ = a) = pl (E1|θ = a)× pl (E2|θ = a) .
conjunctive combination of each posterior mass function obtained by
applying the GBT to each observation is equal to the GBT solution if
we had performed conditional embedding in Θ × Xnx in step 1 and
conditioning on Θ×

{
x(1)

}
× . . .×

{
x(nx)

}
in step 3.

When all conditional mass functions and the prior mass function are
Bayesian, the GBT boils down to usual Bayes rule. The GBT cannot be
applied blindly as it inherits the independence assumption that is required
to use ∩⃝. A discussion on the limitations of the GBT is given in Dubois
and Denœux 2010.

Of course, the fiducial style of inference presented in 1.2.6 is another
possible way to obtain quantified beliefs regarding the actual value of θ.

2.10 Decision making

We have already mentioned the pignistic transform which is a central
concept in the second stage of Smets’ TBM. Smets has axiomatized the
derivation of the pignistic probability distribution. He gives three de-
sirable properties10 for a candidate distribution P to qualify as the best 10. The result in Smets and Kennes 1994

is a bit more general. The authors look
for any bounded map compliant with
the 3 assumptions. The end result is the
probability distribution (2.37)

representative of a given mass function m:
(i) P (a) depends only on masses m (B) where a ∈ B,
(ii) the same probability mass is assigned to any a ∈ Θ before or after

permutation over the element indices,
(iii) if a candidate value a is ruled out by m, then P (a) = 0.
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Under the above conditions, the pignistic distribution necessarily writes
as

P (a) = ∑
A⊆Θ,
a∈A

1
|A|

m(A)

1−m(∅)
. (2.37)

Given a probability distribution on (Θ, σΘ), then standard decision theory
applies. Suppose a decision must be made for variable y ∈ Y and the
variable is dependent on θ. The elements of Y are called acts and are
mappings from Θ to the set of consequences O. Decisions on what act
to choose to do can be made based on an uncertainty model for θ and a
reward (or utility)11 function r : O → R. The real r (y (a)) is the payoff 11. Some people also prefer working

with loss functions. A loss function is
obtained by multiplying a utility function
with −1.

of deciding y when θ = a.

Example 13. Suppose a∗ is an estimate of θ. An act consists in se-
lecting an element a∗ among those in Θ. The set of consequences is
O = {match;mismatch}. Then the act of selecting a∗ is formally de-
fined as

y (a) =

match if a = a∗

mismatch if a ̸= a∗
. (2.38)

The set of acts Y is the set of such selection mappings. Furthermore, all
mistakes are equally penalized (say r (mismatch) = 0) and all correct
estimations are equally rewarded (say r (match) = 1), then

EP [r ◦ y] = ∑
a∈Θ

r (y (a)) P (a) , (2.39)

= ∑
a∈Θ

1a∗ (a) P (a) , (2.40)

= P (a∗) (2.41)

The act with maximal expected reward is thus obtained for a∗ = arg max
a∈Θ

P (a).

Observe that the result holds when P is the actual distribution of θ

whereas in practice we have only access to an estimated distribution.

In general, decisions can be made when a preference preorder ⪯ can
be obtained for the set of acts. Decision making based on probabilities
is strongly supported by Savage’s theorem. Savage starts by defining
rationality requirements for decision in the form of seven axioms12. If the 12. These axioms follow a certain logic

and they are presented in A.1.axioms hold for a given preorder, then he proved the following result.

Theorem 3. A preference preorder ⪯ among acts with rationality require-
ments exists iff there is a finitely additive probability measure P and a
utility function r such that

y1 ⪯ y2 ⇔ EP [r ◦ y1] ≤ EP [r ◦ y2] , (2.42)

⇔
∫

r (y1 (a)) dP (a) ≤
∫

r (y2 (a)) dP (a) . (2.43)

Furthermore, P is unique and r is unique up to an affine transform.

We see that making a decision in a probabilistic way translates into a
sound preference relation. Concerning the pignistic distribution, Smets
argues that one of its main features is that it avoids sure loss (Dutch
books13). 13. A Dutch book appears when any act

incurs a negative reward with probability
1.
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The second axiom of Savage is called the sure thing principle. By re-
laxing the sure thing principle into a weaker form14, Gilboa 1987 showed 14. The weaker form allows to prefer

acts relying on known probabilities as
compared to those relying on unknown
probabilities. The sure thing principle is
violated in these circumstances. Such a
situation appears in Ellsberg’s paradox.

that preference preorders can be obtained by substituting the measure
P with a non-additive measure. Since bel and pl are such objects, they
can serve as basis for decision making. For example, a preference can be
derived from upper expected rewards as

y1 ⪯ y2 ⇔ EP⊤ [r ◦ y1] ≤ EP⊤ [r ◦ y2] . (2.44)

Going back to the estimation case where all mistakes are equally penal-
ized and all correct estimations are equally rewarded, expected upper
rewards are plausibilities of singletons and therefore, the act with maxi-
mal upper expected reward is obtained for a∗ = arg max

a∈Θ
pl (a).

2.11 Conclusions

In spite of an increased complexity as compared to probabilistic calcu-
lus, belief function calculus offers a variety of operations allowing this
framework to be operational for many tasks involving decision making
under uncertainty. The comprehensive set of evidential tools allows prac-
titioners to build belief functions from data, update them when necessary,
perform inference and draw conclusions in a principled way.

In the next chapters, we will see other tools that allow the set of mass
functions (mass space) to acquire different kinds of structure: order theo-
retic structure, metric structure and algebraic structure. We will also see
that these three kinds of structures have intricate connections and that we
can elaborate on them to derive other evidential calculus rules.



3Belief spaces: from posets to lattices

In the previous chapter, we have encountered a number of situations
where one must select a belief function from a set of candidate ones. This
is notably the case when applying the least commitment principle which
consists in choosing the least informative function among those examined.
But on what basis can we select the solution function? We need a tool
allowing to sort belief functions.

The simplest kind of such tools are pre-orders and partial orders. En-
dowing the belief space with these binary relations yields one of the crud-
est order theoretic structure and in case of a partial order, this structure is
known as a poset1. In this chapter, we will review pre-orders and partial 1. a short for partially ordered set.

orders for belief functions and see how they can be used to compare two
belief functions. We will also see some approaches allowing to compare
belief functions relatively to a finite family of belief functions. Finally, we
will see that the poset structure can be augmented to obtain a lattice for
separable belief functions only. Also, the mass space structure generalizes
the boolean algebra structure of set theory but the mass space is not a
boolean algebra itself.

3.1 Pairwise comparison of belief functions

A first way to characterize the underlying structure of the mass space
M is to look for binary relations allowing pairwise comparisons of mass
functions, and in particular partial orders. In this section, we give a short
reminder on binary relations and corresponding structures. Afterwards,
we present some frequently used partial orders in the theory of belief
functions. Those orders rely either on the amount or on the coherence of
the encoded information in the belief functions.

3.1.1 Pre-orders, partial orders and all that

A binary relation is a subset R ofM×M and if a pair (m1, m2) is
in R, we understand that m1 is connected to m2. A binary relation can
thus also be seen as an oriented graph. One usually denotes alternatively
(m1, m2) ∈ R or m1Rm2.

Definition 17. A pre-order ⪯ is a binary relation onM with the follow-
ing properties:
• reflexivity: m ⪯ m for all m ∈ M,
• transitivity: for any triplet (m1, m2, m3) ∈ M3 such that m1 ⪯ m2 and

m2 ⪯ m3, we have m1 ⪯ m3.

Definition 18. A partial order ⊑ is a pre-order with the antisymmetry
property:
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• for any pair (m1, m2) such that m1 ⊑ m2 and m2 ⊑ m1, we have
m1 = m2.

The pair (M,⊑) is called partially ordered set or poset for short. If
in addition, each pair (m1, m2) inM is comparable, i.e. we have either
m1 ⊑ m2 or m2 ⊑ m1, then ⊑ is a total order but no such order can be
defined for belief functions (or other related set functions) if we want it to
generalize set inclusion.

Using partial orders, one can define the following concepts:
• An element m ofM such that m ⊑ m′ for any m′ ∈ M0 ⊂ M is

called a lower bound ofM0.
• Conversely, an element m ofM such that m′ ⊑ m for any m′ ∈
M0 ⊂M is called an upper bound ofM0. From their definitions, least upper bounds

and greatest lower bounds are unique
when they exist.

• A lower bound m of a subsetM0 ⊂ M such that for any lower bound
m′ ofM0, m′ ⊑ m is called a greatest lower bound.

• An upper bound m of a subsetM0 ⊂ M such that for any upper
bound m′ ofM0, m ⊑ m′ is called a least upper bound.

• The minimum element (a.k.a. bottom) ⊥ of a poset (if it exists) is the
only element that is a lower bound of any subset ofM.

• The maximum element (a.k.a. top) ⊤ of a poset (if it exists) is the only
element that is an upper bound of any subset ofM.

• A minimal element m of a subsetM0 ⊂ M is such that m′ ̸⊑ m for
any other m′ ∈ M0.

• A maximal element m of a subsetM0 ⊂ M is such that m ̸⊑ m′ for
any other m′ ∈ M0.

Finally, a poset such that it is possible to find a least upper bound and a
greatest lower bound for any pair (m1, m2) is called a lattice. Figure 3.1
gives an example of lattice which is a finite subset ofM. m1

m2 m3

m4 m5 m6

m7 m8

m9

⊏ ⊏

⊏ ⊏ ⊏ ⊏

⊏⊏ ⊏⊏

⊏ ⊏

Figure 3.1: Example of a lattice. Let
M0 = {m1; . . . ; m9} ⊊ M. We see
that we can find a greatest lower bound
and a least upper bound for any pair of
elements inM0. This is no longer true for
M0 \ {m1} for instance as (m2; m3) has
no lower bound at all insideM0 \ {m1}.
However m2 and m3 are two minimal
elements ofM0 \ {m1}.

Such qualitative relations are adapted tools to express links between
belief functions. In the case of partial orders, the relation ⊒ can express a
logical or semantic notion of ”more than”. For instance, one can define a
partial order to model notions such as of ”more informative than”, ”more
inconsistent than”, ”more consonant than”, etc. without the need to make
every pair of belief functions comparable. This has the advantage to give
clear semantics to the relation.

3.1.2 Informative partial orders for belief functions

Partial orders comparing the amount of informative contents formalize
the notion of inclusion between belief functions, and play an essential role
in approximation problems. Indeed, it is often desirable to compute an ap-
proximation of a general belief function such that the approximation be-
longs to a subclass of belief functions with smallest complexity and fewer
focal elements. When the approximation is included in the initial belief
function, one speaks of inner approximation. When the approximation
contains the initial belief function, one speaks of outer approximation. To
define such notions of inclusion, we then have to rely on partial orders.
Several definitions (c.f. Yager 1986; Dubois and Prade 1986; Denœux 2008)
are found in the literature:
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i) m1 is pl-included in m2, denoted m1 ⊑pl m2, if pl1(A) ≤ pl2(A) for
all A ∈ 2Θ, where pli is the plausibility induced by mi.

ii) m1 is b-included in m2, denoted m1 ⊑b m2, if b1(A) ≥ b2(A) for all
A ∈ 2Θ, where bi is the implicability induced by mi.

iii) m1 is bel-included in m2, denoted m1 ⊑bel m2, if bel1(A) ≥ bel2(A)

for all A ∈ 2Θ, where beli is the belief induced by mi.
iv) m1 is q-included in m2, denoted m1 ⊑q m2, if q1(A) ≤ q2(A) for all

A ∈ 2Θ, where qi is the commonality induced by mi. The partial order ⊑w allows only non-
dogmatic mass function comparisons
while ⊑v allows only subnormal mass
function comparisons. The definitions of
the conjunctive and disjunctive weight
functions can be extended to categorical
mass functions. Yet, several conjunctive
and disjunctive decompositions are
possible for categorical mass functions.
We retain the following ones:
• The conjunctive weight function wB of

mB is such that

wB (A) =

{
0 if A ⊇ B
1 otherwise

. (3.1)

• The disjunctive weight function vB of
mB is such that

vB (A) =

{
0 if A ⊆ B
1 otherwise

. (3.2)

We consider that the partial orders
are also valid for this subclass of mass
functions.

v) m1 is w-included in m2, denoted m1 ⊑w m2, if w1(A) ≤ w2(A) for all
A ∈ 2Θ, where wi is the conjunctive weight function induced by mi.

vi) m1 is v-included in m2, denoted m1 ⊑v m2, if v1(A) ≥ v2(A) for all
A ∈ 2Θ, where vi is the disjunctive weight function induced by mi.

vii) m1 is π-included in m2, denoted m1 ⪯π m2, if π1(a) ≤ π2(a) for all
a ∈ Θ, where πi is the contour function induced by mi.

viii) A function m1 is a specialization of m2, denoted m1 ⊑s m2, if there
exist a non-negative N × N matrix S = [S (i, j)] such that

for j = 1, . . . , N,
N

∑
i=1

S (i, j) = 1,

S (i, j) > 0⇒ Ai ⊆ Aj,

for i = 1, . . . , N,
N

∑
j=1

m2(Aj)S (i, j) = m1(Ai).

The term S (i, j) > 0 is the mass proportion of the focal set Aj that
“flows down” to focal set Ai. The order in which subsets are indexed is
arbitrary.
A subclass of specialization matrices are Dempsterian specialization

matrices. A matrix Di is a Dempsterian specialization matrix if it is a spe-
cialization matrix and if for any Ek ⊆ Ej, one has Di (k, j) = mi|Ej

(Ek)

for some mass function mi. Now, one writes m1 ⊑d m2 if m1 is a special-
ization of m2 relying on a Dempsterian matrix D0 which actually means
that m1 = m0 ∩⃝m2

2. 2. Dempsterian specialization ma-
trices are special cases of α-conjunctive
matrices.

The strict version ⊏ of these inclusions is simply obtained when the
inequalities are strict for at least one subset of Θ, and in the case of d- or
s-inclusion when S (i, j) > 0 for at least one pair Ai ⊊ Aj

3. 3. For d-inclusion, this is true when-
ever the Dempsterian matrix is not the
identity matrix, i.e. it is not in correspon-
dence with the vacuous mass function.

All these concepts extend classical set inclusion, in the sense that if
A ⊆ B, then mA ⊑y mB for any y ∈ {v, w, d, pl, b, bel, q, s, π} (for
w- and v-inclusions see comments in the margin). It is well known that
set-inclusion is a partial order on 2Θ. Likewise, these binary relations are
partial orders onM except ⪯π which is just a pre-order. These partial
orders are not total orders in the sense that we may have m1 ̸⊑y m2 and
m2 ̸⊑y m1.

Due to the duality between pl and b, pl- and b-inclusions are equiva-
lent notions. When m(∅) = 0, then pl-, b- and bel-inclusion coincide,
and m1 ⊑pl m2 is then equivalent to inclusion of their respective cores:
P1 ⊆ P2.

The following implications hold between these notions of inclu-
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sion (Dubois and Prade 1986):

m1 ⊑w m2

m1 ⊑v m2

}
⇒ m1 ⊑d m2 ⇒ m1 ⊑s m2 ⇒

{
m1 ⊑pl m2

m1 ⊑q m2

}
⇒ m1 ⪯π m2.

(3.3)
Since v-, w-, d-, s-, pl- and q-inclusion are antisymmetric, that is m1 ⊑y

m2 and m1 ⊒y m2 implies m1 = m2 for y ∈ {v, w, d, s, pl, q}, we also
have

m1 ⊏w m2

m1 ⊏v m2

}
⇒ m1 ⊏d m2 ⇒ m1 ⊏s m2 ⇒

{
m1 ⊏pl m2

m1 ⊏q m2
(3.4)

3.1.3 Coherence pre-orders for belief functions

We can think about other orders related to important notions in evidence
theory. For instance, an important notion within evidence theory is the
consistency of pieces of information encoded inside a mass function, from
which follows the notion of conflict between sources. There are two main
ways to evaluate the consistency of a mass function, a strong and a weak
one. The strong consistency measure is given by

Ξ(m) = max
a∈Θ

π(a) (3.5)

and the weak consistency measure by

κ(m) = m(∅). (3.6)

Destercke and Burger 2013 showed that Ξ (m) = 1 iff the focal elements
of m do not have an empty intersection. This means that if we continue
to receive evidence supporting the same events then we will converge
to a categorical mass function and never experience total conflict4. Con- 4. Let {mi}ℓi=1 denote a family of mass

functions such that they have the same
focal elements F = {E1, . . . , Ek}. Let E0
denote the non empty intersection of the
focal sets: E0 =

∩k
j=1 Ej . We have

ℓ⊕
i=1

mi −→
ℓ→∞

mE0 .

cerning weak consistency, κ can be understood as the amount of support
given to incompatible events after one applied the conjunctive rule for
instance.

Each measure defines a pre-order on the mass space:
i) Mass m1 is strongly less consistent than m2, denoted m1 ⪯sc m2, if

Ξ(m1) ≤ Ξ(m2).
ii) Mass m1 is weakly less consistent than m2, denoted m1 ⪯wc m2, if

κ(m1) ≥ κ(m2).
Again, strict inequalities yield strict relations. ⪯sc and ⪯wc are total
pre-orders, as any two elements can be compared, but distinct elements
m1, m2 may be equally consistent.

3.1.4 Specificity pre-orders for belief functions

There several circumstances5 in which it is desirable to evaluate to what 5. See 5.4.1 where specificity measures
are used to build combination rulesextent a belief function support small, precise hypotheses or large, impre-

cise hypothesis. In other words, we need to evaluate how large are focal
elements.

The specificity (Dubois and Prade. 1985) of a mass function is defined
as

Spe (m) = ∑
B⊆Θ
B ̸=∅

m (B) log2 (|B|) . (3.7)
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This measure also yields a pre-order for belief functions such that m{a}
achieves a minimal null value and mΘ achieves a maximal value.

Another possibility is to resort to the expected cardinality as if we were
dealing with an ontic random set:

Card (m) = ∑
B⊆Θ
B ̸=∅

m (B) |B|. (3.8)

This measure achieves a minimal null value when m = m∅. The max-
imal value is achieved when m = mΘ: Card (mΘ) = n. This measure
generalizes anyway set cardinality as Card (mA) = |A|.

The notion of specificity is also featuring informative content and
consequently one can wonder which specificity pre-orders refine infor-
mative which partial orders. For example, it can be conjectured that the
pre-order spanned by the expected cardinality refines ⊑s. Studying these
relationships is an interesting research direction.

Also, under an open world assumption, all three mentioned types of
orders (informative, coherence and specificity) are somewhat overlapping
notions. Indeed, we have λm∅ + (1− λ)mB ⊏d mB for any B ̸= ∅ and
any λ ∈ (0; 1]. We also have that λm∅ + (1− λ)mB is more specific
than mB according to both definitions presented in the above paragraphs.
Especially when B is a singleton, it hard to envisage anything more infor-
mative or more specific than mB. Obviously, λm∅ + (1− λ)mB is less
coherent than mB therefore the specificity pre-orders and the informative
partial orders seem to grasp several aspects of mass function contents.
It is not mathematically speaking incorrect to use specificity pre-orders
and informative partial orders with unnormalized mass functions but one
should be aware that this is going beyond their initial purposes and con-
sequently the interpretation of the end results drawn from them must be
handled with extra care.

3.2 Comparisons within families of belief functions

In an information fusion context, one may be given several pieces of
information each of them summarized as a source (Ω, σΩ, µi, Γi). A
family of belief functions is induced by these sources and for each pair in
this family, we can use the previously mentioned pre-orders and partial
orders to draw comparisons. Yet, one can wonder to what extent family
based comparisons would be more interesting.

In this vein, the literature focuses on coherence pre-orders. Indeed,
a very challenging open problem is the detection of irrelevant or decep-
tive pieces of information. A usual prerequisite postulate to tackle this
problem is that belief functions with small ”intra-family” coherence are
a minority. If we accept this postulate, the belief functions we want to
discard are significantly different from the rest of the family regarding the
encoded information carried by the functions. In this context, we are now
looking for a way to compare belief functions relatively to the family to
which they belong.

Mining singular belief functions can be performed in several ways.
Schubert 1996, 2010 proposed a criterion ci, called the degree of falsity,
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that evaluates the contribution of each individual mass function mi in
the computation of the degree of conflict obtained after combining all
functions in A = {m1, . . . , mℓ}. This degree of conflict is denoted by
κA =

(
∩⃝ℓ

i=1mi

)
(∅). The degree of falsity is obtained as

ci =
κA − κA\{mi}
1− κA\{mi}

(3.9)

where A \ {mi} is the set difference of A and {mi}. It is clear that if mi

is the only mass function advocating for a particular solution, there will
be a significant drop from κA to κA\{mi}. Consequently, this very singular
mass function will have a large degree of falsity.

Martin et al. 2008 have also introduced several criteria, called con-
flict measures, evaluating the conflict provoked by a mass function as
compared to a set of mass functions. These criteria are defined using a
distance dJ between belief functions introduced by Jousselme et al. 2001:

dJ (m1, m2) =

√
1
2
(m1 −m2)

T ·D · (m1 −m2) (3.10)

with mi the vector form of the mass function mi and D a N × N matrix
whose elements are D (A, B) = |A ∩ B| / |A ∪ B|. Martin et al. propose
then the following conflict measures Confi:

Confi =
1

ℓ− 1

ℓ

∑
j=1
i ̸=j

dJ
(
mi, mj

)
, (3.11)

or Confi = dJ (mi, m•) , (3.12)

with m• the combination of mass functions in A \ {mi}. m• can be
obtained using different combination rules or by using the mean. Fur-
thermore, the authors propose to tune this measure using some function
f :

f (Confi) . (3.13)

The heuristic for choosing f indicated by the authors is f (x) = 1 −(
1− xλ

)1/λ and λ = 1.5.
Klein and Colot 2011 introduced another criterion denoted ξi which

shares the same philosophy as the degree of falsity. It is defined as

(personal contribution)ξi =
1

( ℓ−1
ℓ0−1 )

∑
s⊆A,
mi∈s,
|s|=ℓ0

[
κs − κs\{mi}

]
(3.14)

with ℓ0 = min {|s| , s ⊂ A such that κs > 0} the size of the smallest
subset of the family A with a positive degree of conflict. The binomial
coefficient ( ℓ−1

ℓ0−1 ) guarantees that ξi is upper bounded by 1. A known
result is that for any mass function m and any family A,

κA ≤ κA∪{m}. (3.15)

In other words, the degree of conflict can only increase when a new mass
function comes into play. We call this phenomenon the curse of conflict.
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From this result, it follows that ξi is non negative. Most of the time, the
integer ℓ0 is equal to 2 but it may happen that no pairwise conflict is
observed while a positive degree of conflict is obtained for a triplet of
mass functions. When ℓ0 = 2, there are ℓ− 1 terms in the summation of
equation (3.14) which becomes

ξi =
1

ℓ− 1 ∑
mj∈A\{mi}

[
κ{mi ;mj} − κ{mj}

]
. (3.16)

If in addition all mass functions are normal, then ξi is proportional to the
average of pairwise degrees of conflict involving function mi:

ξi =
1

ℓ− 1 ∑
mj∈A\{mi}

κ{mi ;mj}. (3.17)

The computation of ξi in general may seem computationally more
demanding. The computation load can be reduced by viewing κA as a
function of discounting rates applied to each member of A. Let αi denote
the discounted rate applied to function mi. These rates are concatenated
in a vector α and κA (α) denotes the degree of conflict of the family{

mα1
1 , . . . , mαℓ

ℓ

}
. We have

ξi = − lim
k→∞

2k(ℓ−1)

( ℓ−1
ℓ0−1 )

× ∂κA
∂αi

([
1−

(
1
2

)k
]

1

)
. (3.18)

Consequently, when k is large, ξi can be approximated by a numerical
partial derivative of the degree of conflict induced by identically dis-
counted mass functions. So the cost of computing ξi is of the same order
as the computation of two degrees of conflict between ℓ mass functions.
This approximation stems from the following result which we call conflict
decomposition 6:

(personal contribution)

6. Shafer 1976, theorem 3.5 is another
conflict decomposition result.

If A = {m1, . . . , mℓ} denotes a
family of ℓ normal mass functions that
can be combined by Dempster’s rule
denoted mA =

⊕ℓ
i=1 mi , then for any

normal mass function mℓ+1, we have
κA∪{mℓ+1} = κA + κ{mA ,mℓ+1} .

Proposition 1. (Conflict decomposition) ∀A ⊂ M, |A| = ℓ > 1,

κA

(
1
2

1
)
=

1
2ℓ ∑

s⊆A,
s ̸=∅

κs. (3.19)

This results states that the global conflict arising from A (after dis-
counted each member by 1

2 ) is proportional to the average of degrees of
conflict arising from the sub-families of A.

Any of the criteria presented in this section yields a total pre-order
for the family A by using the usual order for reals on the criteria values.
When ℓ = 2, the criterion ξi subsumes the weak consistency measure. In
practice, the criterion ξi has a more stable behavior w.r.t. the proportion
of singular sources and is less dependent on ℓ (the size of A) as illustrated
in the following example.

Example 14. Suppose a family of mass functions A is the union of two
sub-families A1 and A2 with respective cardinalities ℓ1 and ℓ2. Suppose
also that A1 =

{
mx

A, . . . , mx
A
}
and A2 =

{
mx

B, . . . , mx
B
}
with x ∈ [0; 1]

and A ∩ B = ∅. Let r = ℓ1
ℓ denote the ratio of functions supporting A in

A.
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It can be proved (see Klein and Colot 2011) that in this case, ξi is linear
w.r.t. r and does not depend on ℓ = ℓ1 + ℓ2. The linearity of ξi as well
as the non-linearity of ci and Confi7 can be seen on figure 3.2. The curves 7. The version of criterion Confi used

in this experiment is computed as Jous-
selme distance between the examined
function and the average of the remaining
ones. According to our experience, this
version achieves the best performances in
this case.

displayed in this figure are obtained for ℓ = 20 mass functions. The varia-
tions of the criteria are given for several values of x: x ∈ {0; 0.1; . . . 0.9}.

When x = 0 and r = 0, there is only one function in A1 giving full
support to A while those in A2 give full support to B. There is conse-
quently a clash between the messages encoded in the two subgroups and
all three criteria reach a maximal value of 1.

Obviously, criterion ci dynamics are concentrated around r = 0.5
where the majority switches from A2 to A1 while the two other criteria
are decreasing more gradually. It can be noted that when x = 0, the
degree of falsity ci cannot be formally computed as we have ci =

0
0 .

Finally, we can also mention a recent alternative approach by Schubert
2016 which relies on entropy8 discrepancies instead of conflict discrepan- 8. The notion of entropy for a belief

function whose core is P can be defined as
max
P∈P

H (P) where H is the usual entropy
function for probability distributions.

cies. Indeed, if removing a mass function mi from a combination process
yields a mass function with a smaller entropy, then it can be postulated
that mi is singular. The author shows that this new criterion (or a com-
bined version of these two) outperforms ci in the detection of deceptive
messages.

3.3 Lattices of belief functions

A legitimate question coming to mind is: can the mass space, regarded as
a poset, be granted a richer structure by endowing it with additional oper-
ations? If for a given partial order ⊑, we could find a way to compute the
unique maximal element among mass functions upper bounded by both
m1 and m2 as well as the unique minimum element among mass functions
lower bounded by both m1 and m2, then the mass space would have a
lattice structure. These two operations are called in general a conjunction
and a disjunction. In the following paragraphs, we will examine different
candidate conjunction/disjunction operations but none of them achieve a
lattice structure forM. Only one reported work allows to derive a lattice
structure for a subset of the mass space.

First, we see that the pair of α-junctions ( ∩⃝α; ∪⃝α) are unfortunately
not eligible as conjunction/disjunction operations. Indeed, from the lat-
ticial definition of a conjunction and a disjunction, we deduce that such
operations are mandatorily idempotent9. This means that if m1 = m2, 9. If m1 = m2, there is only one

maximal mass function upper bounded by
m1, i.e. m1 itself. Likewise, m2 is the only
minimal mass function lower bounded by
m2.

then both their conjunction and disjunction are again m1. However, when
α = 1, for any partial order ⊑x , x ∈ {w, d, s, q, pl}, we have that the
quadruplet (M,⊑x, ∩⃝, ∪⃝) generalizes10

(
2Θ,⊆,∩,∪

)
which is a dis-

10. We mean that using ⊑, ∩⃝ or ∪⃝ on
categorical belief functions is tantamount
to using ⊆, ∩ or ∪ on the subsets that are
the focal elements of the categorical belief
functions.

tributive lattice.
Pairs of α-junctions are not appropriate conjunction/disjunction pairs

but maybe we can still find greatest lower bounds and least upper bounds
for any pair (m1; m2) ∈ (M,⊑x), for some x ∈ {w, d, s, pl, q} anyway.
This is also untrue because, in general maximal lower bounds (or minimal
upper bounds) are not unique (Dubois et al. 2001). This has to be proved
for each partial order individually. Indeed, letMx (m1) denote the set of
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Figure 3.2: Variability of coherence criteria
relatively to a family A of belief functions.
3 criteria are examined: ξi (a), ci (b) and
Confi (c). The family A is partitioned
into 2 subfamilies containing simple mass
functions. Each function assigns a mass
1− x to either set A or B depending on
which group it belongs to. The sets A and
B are not intersecting. The criteria for
some mass function mi supporting A are
shown as functions of r the proportion of
mass functions supporting A for several
values of x: x ∈ {0; 0.1; . . . 0.9}.
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mass functions that are x-included in m1:

Mx (m1) = {m ∈ M|m ⊑x m1} .

The implications (3.3) imply

Mw (m1) ⊊Md (m1) ⊊Ms (m1) ⊊
{
Mq (m1)

Mpl (m1)
, (3.20)

and consequently a maximal lower bound for one partial order is not
necessarily also a maximal lower bound for another. We only provide a
counter example for ⊑d.

Example 15. Suppose Θ = {a; b}. We want to find a greatest lower
bound w.r.t. ⊑d for the pair (m1; m2) and

m1 =
1
3

m{b} +
2
3

mΘ, (3.21)

m2 =
1
3

m{a} +
2
3

mΘ. (3.22)

Observe that

m1|{a} ∩⃝m2 =

(
1
3

m∅ +
2
3

m{a}

)
∩⃝m2, (3.23)

=
1
3

m∅ ∩⃝m2 +
2
3

m{a} ∩⃝m2, (3.24)

=
1
3

m∅ +
2
3

m{a}, (3.25)

= m1|{a} (3.26)

and thus m1|{a} ∈ Md (m1) ∩Md (m2). Suppose there exist m′ ∈
Md (m1) ∩Md (m2) and m1|{a} ⊑d m′, then we have m′ ∩⃝m′′ = m1|{a}
for some m′′ ∈ M. In particular, since m′ ∈ Md (m2), there exist some
m′′′ such that m′ = m2 ∩⃝m′′′ and it follows that

m2 ∩⃝m′′′ ∩⃝m′′ = m1|{a}. (3.27)

By conditioning on both sides by {a}, we obtain

m2|{a} ∩⃝m′′′ ∩⃝m′′ = m1|{a}. (3.28)

Since m2|{a} = m{a}, the lefthanded term is either equal to m{a} or
to m∅, none of which are equal to m1|{a}. This contradiction implies
that m1|{a} is a maximal element ofMd (m1) ∩Md (m2). By notation
symmetry, so is m2|{b}. Since m2|{b} ̸⊑d m1|{a} and m1|{a} ̸⊑d m2|{b},
there is no greatest lower bound for the pair (m1; m2).

In the belief function literature, conjunctions and disjunctions for belief
functions were introduced only for subclasses of belief functions. Kennes
1991 placed the theory of belief functions under the umbrella of category
theory. In short, category theory is a meta-framework relying essentially
on oriented graphs. States of beliefs about the variable of interest are
nodes and by integration of new evidence we move to another node. This
transition is embodied by an arrow relating the two nodes. Formally
speaking, since several arrows can relate two nodes, then we obtain a
multigraph. Examples of categories are:
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• power sets: the nodes are subsets and an arrow is a pair of subsets such
that one of them is included in the other one,

• probabilities: the nodes are probability distributions on a given ab-
stract space and arrows are subsets of this space. Indeed, the usual
transition11 is conditioning which relies on a subset. 11. Other probability kinematics are

possible for instance using the total prob-
ability theorem. Suppose Ps and Pt are
respectively the source and target distri-
butions defined on Θ. Let B = (Bi)

nB
i=1

denote a partition of Θ. A distribution Pa
on the σ-field spanned by B is an arrow
linking source and target distributions by

Pt (A) =
nB

∑
i=1

Ps (A|Bi) Pa (Bi) . (3.29)

• belief functions: the nodes are belief functions and the arrow are belief
functions as well. More precisely, an arrow is a belief function whose
combination by Dempster’s rule with the source node yield the target
node.
The above comments highlight the fact that belief functions can be

either interpreted as static objects (states of beliefs) or dynamic ones
(transitions between states). An essential point in category theory is
that two arrows can be ”plugged” if the target of the first is the source
of the second. This yields a notion of composition for arrows and the
associativity of compositions is one of the axioms of the theory.

Kennes proves that a conjunction and a disjunction can be defined for
separable unnormalized belief functions. We shall denote the set of such
function by U ⊂ M. Let m1 and m2 denote two unnormalized separable
belief functions. Consequently, for i ∈ {1; 2},

mi = ∩⃝
B⊆Θ

mwi(B)
B .

We can define the following conjunction/disjunction operations

m1∧m2 = ∩⃝
B⊊Θ

mw1(B)∧w2(B)
B (Conjunction), (3.30)

m1∨m2 = ∩⃝
B⊊Θ

mw1(B)∨w2(B)
B (Disjunction), (3.31)

where ∧ is the minimum operator for reals, and ∨ the maximum operator.
Let m and m′ denote two functions in U. The function m is the source of
an arrow whose target is m′ if there exist another unnormalized separable
mass function m0 such that m∧m0 = m′. This induces a partial order
on U. We see that for non-dogmatic functions in U, this partial order
coincides with ⊑w therefore, this partial order is denoted by ⊑w̃

12. If 12. m1 ⊑w̃ m2 iff there is an arrow
whose source is m2 and target is m1.a mass function is w̃-included in m1 and m2, then it is also w̃-included

in their conjunction as defined above. Similarly, if m1 and m2 are w̃-
included in a mass function, then their disjunction as defined above is also
w̃-included in this function. In conclusion, (U,⊑w̃,∧,∨) is a lattice.

In addition, this lattice is distributive because ∧ and ∨ are distributive
over each other. It is also a bounded lattice whose top and bottom are
respectively mΘ and m∅. Indeed, the conjunctive weight function corre-
sponding to mΘ is constant one and w1 (B) ∧ 1 = w1 (B) , ∀B, hence
m1 ⊑w̃ mΘ. The decomposition of m∅ is not unique. A possible decom-
position for m∅ is obtained using a constant zero weight function. Since
w1 (B) ∧ 0 = 0, ∀B, we see that m∅ ⊑w̃ m1.

Building upon Kennes’ work, Denœux 2008 extended these results
to other large classes of belief functions. Using Smets’ decomposition
and generalized conjunctive weight functions, for any pair (m1; m2) of
non-dogmatic belief functions, Denœux’s cautious rule ? is given by

m1 ? m2 = ∩⃝
B⊊Θ

mw1(B)∧w2(B)
B (3.32)
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The author also introduces the bold rule >, which is defined for any
pair (m1; m2) of subnormal (non null mass for ∅) mass functions as

m1 > m2 = ∪⃝
A ̸=∅

mA
v1(A)∧v2(A), (3.33)

where mA
x denotes a mass function such that

mA
x (E) =


1− x if E = A,

x if E = ∅,

0 otherwise

. (3.34)

Now, if V denotes the set of subnormal and non-dogmatic mass func-
tions, the next question is: Is (V,⊑w, ?, >) a lattice? Sadly, the answer is
no 13 because the disjunction for ⊑w should obviously be 13. Formally speaking the set of non-

dogmatic mass functions endowed with
⊑w and ? is a meet-semilattice, while the
set of subnormal mass functions endowed
with ⊑v and > is a join-semilattice.

∩⃝
B⊊Θ

mw1(B)∨w2(B)
B . (3.35)

Although this operation is defined (notably for unnormalized separable
mass functions), it does not yield a bona fide mass function in general (see
Denœux 2008 - example 5 for a counter example).

In chapter 5, we will derive other rules that share a similar philosophy
as the one presented in this section. There are however not conjunctions
or disjunctions in the latticial sense because they are not associative.

Finally, we could also hope that a complement operator for unnormal-
ized separable mass functions could be defined, in which case we obtain
a boolean algebra. The complement of a mass function m ∈ U is a mass
function mc ∈ U such that

m∧mc = m∅, (3.36)
and m∨mc = mΘ. (3.37)

We cannot always find such a function in U as illustrated by the following
simple example.

Example 16. Let Θ = {a; b}. We want to find a candidate complement
function for the simple function mx

{a} (which is of course separable) with
0 < x < 1. The corresponding conjunctive weight function w is given by

set ∅ {a} {b}
w 1 x 1

The conjunctive weight function of mΘ is given by

set ∅ {a} {b}
wΘ 1 1 1

We deduce that wc ({a}) = 1 because we need w ({a}) ∨ wc ({a}) = 1
to have m∨mc = mΘ. But this implies

set ∅ {a} {b}
w ∧ wc wc (∅) x wc ({b})

To obtain m∧mc = m∅, we see that the only solution is to choose
wc (∅) = 0 while wc ({b}) can be set to an arbitrary value, say y. Then,
this means that mc = m∅ but wc is not in line with our convention (3.1)
which states that
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set ∅ {a} {b}
w∅ 0 0 0

We have to stick to a given convention otherwise the partial order ⊑w̃

is not well defined for categorical mass functions. Choosing another
convention is not a solution because the decomposition of m∅ cannot
depend on x.

There is a notion of complement operator in the belief function liter-
ature known as the negation of a mass function. The negation of a mass
function mi is denoted by mi. The function mi is such that ∀A ⊆ Θ,
mi(A) = mi(Ac). Some De Morgan relations can be proved for α-
junctions based on mass function negations:

m1 ∩⃝αm2 = m1 ∪⃝
αm2, (3.38)

m1 ∪⃝αm2 = m1 ∩⃝
αm2, (3.39)

for any pair (m1; m2) ∈ M2 (see in Smets 2002 for a proof). A corollary
result is that (M,⊑x, ∩⃝, ∪⃝, .), x ∈ {w, d, s, pl, q}, generalizes the usual
boolean algebra

(
2Θ,⊆,∩,∪, .c

)
.

Generally speaking, the advantage of establishing a boolean algebra
structure is that it is highly coupled to propositional logic from which
follows semantics and interpretations. Belief functions can however be
interpreted in terms of modal logic (see Harmanec et al. 1996).

3.4 Conclusions

As illustrated in this chapter, it is not much difficult to define a partial
order for belief functions so as to acquire a poset structure. In addition,
all existing partial orders (or pre-orders) are easily interpretable and help
to understand some of the logic behind evidential reasoning. In spite
of this, there is still room for further interpretability of these tools. For
example the informative partial orders allow comparisons of normal mass
functions with subnormal ones. When two mass functions are equally
consistent, we understand very clearly the conclusions of the partial order
in terms of information content. When mass functions have different
levels of inconsistency, the comparison is harder to understand as there
is no information encoded by ∅. Inconsistency and information content
should perhaps be captured separately and the definitions of informative
partial orders may be revised accordingly.

Besides, unsurprisingly, it is a much more difficult task to define con-
junction and disjunction operations in the latticial sense. Indeed, a lattice
structure is a lot richer than a poset structure. When dealing with a rather
general framework such as belief functions, deriving rich structures is
highly challenging (if not a dead-end) because the generality of the frame-
work is at the expense of axioms from which structures usually follow.

In chapter 5, we will see that latticial notions of conjunction or disjunc-
tion are not unrelated to that of combination rules on which magma or
monoid structures rely. These structures remain, however, rather simple
too.





4Belief spaces as metric spaces

In the previous chapter, we have seen how to compare belief functions
based on pre-orders and partial orders. Such tools allow to (partially)
sort belief functions. Sometimes, sorting is not enough and we would
like to quantify the difference between two belief functions. Distances
(or metrics) are mathematical tools allowing to obtain such quantitative
comparisons.

In this chapter, we will review distance and dissimilarities as part of the
theory of belief functions. When endowed with a metric, the belief space
is a metric space. But since belief functions live in a simplex embedded
in a vector space and have specific semantics, a number of aspects of the
theory should be reflected by a belief function metric. We will thus also
comment on desirable properties for belief function metrics with respect
to combination rules and partial orders.

4.1 Metrics for belief functions

In this section, we will review the most popular metrics (or distances)
found in the belief function literature. After recalling basic notions of
metric spaces, we present distances between mass vectors. Indeed, the
presentation of evidential distances is more convenient under the geo-
metric view of belief functions developed by Cuzzolin 2004, 2008, 2010a,
2010b through several papers. We also present distances between eviden-
tial matrices, i.e. α-specialization and α-generalization matrices.

4.1.1 Distances: general concepts and definitions

Metrics (or distances) are meant to translate the intuitive notion of gap
between elements of a given space into mathematically sound objects.
Since the work of Fréchet 1906, the universally accepted definition of a
distance is the following:

Definition 19. A distance, or metric, in an abstract spaceH is a mapping
d : H×H → [0, a] with a ∈ R+∗ that satisfies the following properties:
1. Symmetry : d(e1, e2) = d(e2, e1),
2. Reflexivity : d(e1, e1) = 0,
3. Separability : d(e1, e2) = 0⇒ e1 = e2,
4. Triangle inequality : d(e1, e2) ≤ d(e1, e3) + d(e3, e2),
for any e1, e2, e3 ∈ H.

The reflexivity and separability properties are often aggregated in a
global property known as definiteness.

When the scalar a is finite, the metric is said to be bounded. If a map-
ping d possesses a subset of the properties in the above definition, d is in
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general called a dissimilarity function. Table 4.1 gives which properties
hold for widely used dissimilarities.

(Full) Metric Semi-metric Quasi-metric Pseudo-metric
(1) Symmetry x x x
(2) Reflexivity x x x x
(3) Separability x x x
(4) Triangle inequality x x x

Table 4.1: Properties of dissimilarities and
metrics.

4.1.2 Evidential distances

An evidential distance is simply a distance defined on the mass space
M. It is not necessary to investigate distances in other belief spaces.
By other belief spaces, we mean those spaces whose elements are other
set functions that are in bijective correspondence with mass functions.
Indeed, let us denote by E such a space and by f the bijection fromM to
E . Then if d is a metric on E , then d ( f (.) , f (.)) is a metric onM.

In this section, we start with a presentation of some evidential dis-
tances obtained by viewingM as a subset of the vector space RN . Next,
we also present evidential distances obtained from matrices that are in
one-to-one correspondence with mass functions. Finally, we briefly re-
view a few dissimilarities for belief functions.

4.1.2.1 Mass vector metrics

A generic strategy to build an evidential distance is to use a distance
defined on RN and apply it to mass functions as if they were any vector
of that space. The most popular class of distances for multidimensional
real vectors are Minkowski distances:

dW,k (m1, m2) =

((
[U ·m1 −U ·m2]

k/2
)T
· [U ·m1 −U ·m2]

k/2
)1/k

,

(4.1)
with W a positive definite matrix whose Cholesky decomposition is

The notation ma represents the Hadamard
(or entrywise) product of a copies of the
vector m. In contrast, Ma denotes the
matrix product of a copies of the matrix
M.

W = UT ·U and k a positive real. The matrix U is upper triangular.
Usual choices for parameter k are integer values and among these

k = 2 is the most preferred one as it yields a euclidean distance (com-
puted in different bases of RN). Concerning matrix W, standard choices
are matrices proportional to a matrix mapping mass vectors to belief
(Cuzzolin 2011), plausibility (Denœux 2001) or commonality vectors
(Klein et al. 2016b). We call those distances Lk norm based distances as
they write

d f ,k :M×M → [0, 1] ,

m1 ×m2 → 1
a
∥f1 − f2∥k , (4.2)

where f is a generic symbol for evidential set functions ( f ∈ {bel; pl; q; b; w; v})
and ∥.∥k is the usual Lk norm:

∥f∥k =

(
∑

1≤i≤N
|fi|k

) 1
k

, ∀f ∈ RN . (4.3)
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From Loudahi et al. 2016, the normalizing constant a is given by:

a = max
A,B∈2Θ

d f ,k (mA, mB) . (4.4) (personal contribution as part of M.
Loudahi’s PhD)

We do not get into the details of what are the values of matrices W un-
derlying distances d f ,k. These matrices are given in Smets 2002. Besides,
some of these distances (4.2) are equivalent. In particular, for any k ∈ N∗,
we have:

db,k = dpl,k. (4.5)

If we work with normal belief functions, we have db,k = dbel,k = dpl,k.
Other authors proposed more specific choices for matrix W relying on

set similarity functions. In chapter 3, we already mentioned Jousselme
distance (Jousselme et al. 2001):

dJ (m1, m2) =

√
1
2
(m1 −m2)

T ·D · (m1 −m2) (4.6)

The entries of matrix D are given by D (A, B) = |A∩B|
|A∪B| . This is the

Jaccard index for sets A and B. Another possible choice is the Dice index
2|A∩B|
|A|+|B| .

As remarked in a survey on evidential distances by Jousselme and
Maupin 2012, a key point in the choice of W is the ability of it to reflect
the fact that the base vectors of the mass space are in correspondence
with sets. Since the power set 2Θ has a poset structure when endowed the
inclusion partial order, the distance values between base vectors should
be compliant with this structure. For instance, m{a} should be closer
to m{a;b} than to m{b}. In section 4.3, we will see that this principle is
subsumed by a mathematical property featuring the consistency of an
evidential distance with partial orders for belief functions.

The survey by Jousselme and Maupin 2012 contains many other ref-
erences and details on evidential distances and is a must-read for anyone
willing to use evidential distances.

4.1.2.2 Evidential matrix metrics

Any distance between mathematical objects that are in bijective cor-
respondence with mass functions is a legitimate candidate evidential
distance. We know that such a correspondence exists between mass func-
tions and α-specialization or α-generalization matrices. A matrix distance
applied to members of those matrix classes thus automatically yield other
evidential metrics.

The set of N × N matrices is denoted byMat and has the algebraic
properties of a vector space as well. Consequently, matrix distances are
not much different from vector distances. Similarly as for vector distances,
we can rely on norms to build distances. A matrix norm is defined as
follows:

Definition 20. A matrix norm ∥.∥ is a mapping defined onMat −→ R+

satisfying the following conditions: ∀, A and B ∈ Mat
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1. ∥A∥ = 0⇔ A = 0,
2. ∥λA∥ = |λ|. ∥A∥, for all λ ∈ R+,
3. ∥A + B∥ ≤ ∥A∥+ ∥B∥,

A matrix norm is sub-multiplicative, if in addition one has:

∥A · B∥ ≤ ∥A∥ × ∥B∥ .

Any norm induces a distance defined as the norm of the difference be-
tween a pair of elements. Alleging that a matrix norm is bounded for
evidential matrices, Loudahi et al. 2016 introduce the following families of
normalized evidential distances:

(personal contribution as part of M.
Loudahi’s PhD)

Definition 21. An α-specialization distance d is a mapping such that
there exists a bounded matrix norm ∥.∥ and an α-conjunction ∩⃝α with:

d :M×M → [0, 1] ,

m1 ×m2 → 1
a
∥∥K∩1,α −K∩2,α

∥∥ . (4.7)

K∩i,α is the α-specialization matrix corresponding to mi and

a = max
A,B∈2Θ

∥∥K∩A,α −K∩B,α
∥∥

is a normalization factor.

(personal contribution as part of M.
Loudahi’s PhD)

Definition 22. An α-generalization distance d is a mapping such that
there exists a bounded matrix norm ∥.∥ and an α-disjunction ∪⃝α with:

d :M×M → [0, 1] ,

m1 ×m2 → 1
a
∥∥K∪1,α −K∪2,α

∥∥ . (4.8)

K∪i,α is the α-generalization matrix corresponding to mi and

a = max
A,B∈2Θ

∥∥K∪A,α −K∪B,α
∥∥

is a normalization factor.

The family of α-specialization distances is an extension of the fam-
ily introduced in Loudahi et al. 2014b which corresponds to the α = 1
case. In this case, 1-specialization distances are just called specialization
distances.

Among existing matrix norms, the most frequently used are Lk norms
and operator norms. Lk matrix norms are also known as entry-wise
norms. Since matrices are elements of the vector spaceMat, the defi-
nition of Lk matrix norms is the following:

∥A∥k =

(
∑

1≤j≤N
∑

1≤i≤N
|Aij|k

) 1
k

. (4.9)

Both Lk vector norms and Lk matrix norms are denoted by ∥.∥k. They are
easily distinguished since vectors are in small letters and matrices are in
capital letters.
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The k-operator norm ∥.∥opk, also known as induced norm, is defined
for any matrix A ∈ Mat as follows:

∥A∥opk = max
x∈RN ,x ̸=0

∥Ax∥k
∥x∥k

= max
x∈RN ,∥x∥k=1

∥Ax∥k . (4.10)

with ∥.∥k the classical Lk vector norm. In particular, the 1-operator norm
writes

∥A∥op1 = max
1≤j≤N

∑
1≤i≤N

|Aij|. (4.11)

Observe that any evidential matrix K is such that ∥K∥op1 = 1. In the
sequel, dmat,k denotes the α-specialization or α-generalization distance
relying on the Lk matrix norm. The notation dopk is used when the dis-
tance relies on the k-operator norm. In the same fashion as for evidential
matrices, the value of α and the conjunctive or disjunctive nature of these
distances are given in exponent when necessary.

A first result to mention concerning those distances is that there is a
duality between α-specialization distances and α-generalization distances
that relies on the concept of mass function negation and the De Mor-
gan relations (3.38) and (3.39). The following proposition formalizes this
duality.

(personal contribution as part of M.
Loudahi’s PhD)

Proposition 2. Suppose α ∈ [0, 1]. Let d∩ be an α-specialization distance
with respect to the α-conjunctive rule ∩⃝α and relying on an operator or Lk

matrix norm. Let d∪ be an α-generalization distance with respect to the α-
disjunctive rule ∪⃝α and relying on the same norm. For any mass functions
m1 and m2 on a domain Θ, one has:

d∩ (m1, m2) = d∪ (m1, m2) . (4.12)

Proposition 2 allows us to anticipate the fact that if an α-specialization
distance satisfies a given property then so does its α-generalization coun-
terpart. It also sheds light on ties between α-specialization distances and
α-generalization distances. When α ∈ {0; 1}, it appears that these ties are
stronger as illustrated by Lemma 3:

(personal contribution as part of M.
Loudahi’s PhD)

Lemma 3. Let d∩,α be an α-specialization distance with respect to the α-
conjunctive rule ∩⃝α and relying on an operator or Lk matrix norm. Let d∪,α

be an α-generalization distance with respect to the α-disjunctive rule ∪⃝α

and relying on the same norm. For any mass functions m1 and m2 on Θ, one
has:

d∩,0 = d∪,0, (4.13)
d∩,1 = d∪,1. (4.14)

This result shows that, for extreme values of α, α-specialization dis-
tances and α-generalization distances coincide. Consequently, the under-
lying meta-information is treated in the same way in these special cases.
The following example shows that this is not true when α ∈ ]0, 1[:

Example 17. Suppose m is a mass function on Θ and B is a subset of Θ.
Let m be such that:

m = 0.3mB + 0.5mBc + 0.2mΘ.
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Figure 4.1 shows α-specialization and α-generalization distances relying
on the L1 matrix norm between m and mB when |Θ| = 3 and |B| = 2.
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α-specialization distance dmat,1
α-generalization distance dmat,1

Figure 4.1: Different α-specialization
and α-generalization distances relying
on the L1 matrix norm. These distances
are computed between two given mass
functions m1 and m2 such that m1 = mB
and m2 = 0.3mB + 0.5mBc + 0.2mΘ , with
|Θ| = 3 and |B| = 2.

Evidential matrix metrics have a greater complexity than vector met-
rics but their computation can be accelerated based on results in Loudahi
et al. 2014a.

4.1.2.3 Dissimilarities

A large number of dissimilarities for belief functions can be found in the
literature. The main ways to build dissimilarities are:
• by mapping mass functions to pignistic probability distributions

(Zouhal and Denœux 1998; Tessem 1993) or to fuzzy membership
functions (Han et al. 2011),

• by resorting to conflict measures (Shafer 1976; Ke et al. 2013)1, 1. Burger 2014 explains that some
desirable properties for conflict measures
and for metrics cannot be simultaneously
satisfied and that these two different
notions should be characterized by dif-
ferent numerical measures. In spite of
this, Pichon and Jousselme 2016 shows
that inconsistency measures discussed
in Destercke and Burger 2013 has some
connection with L∞ norm based distances
between plausibilities.

• by resorting to angular2 measures (Wen et al. 2008),

2. mT
1 ·W·m2

∥m1∥W∥m2∥W
, where

∥m∥W =
√

mT ·W ·m,

can be interpreted as the cosine of the
angles between mass vectors.

• by using bi-dimensional measures whose entries are either distances or
dissimilarities (Liu 2006).
Another possibility is to build a compound measure. Liu et al. 2011

build such a measure from a pignistic distribution distance and a conflict
measure. Depending on the chosen components and the way they are
aggregated, a compound measure may however remain a full metric.
The metric introduced by Mo et al. 2016 is the convex combination of
Jousselme distance dJ with a distance introduced by Sunberg and Rogers
2013. This latter distance relies on Hamming distance and allows to grasp
an order relation on Θ when one such binary relation exists.

4.2 Consistency of evidential distances with combination rules

The evidential distances listed in the previous section possess all the prop-
erties of metrics and are legitimate measures to characterize how different
two belief functions are. Most of them have been used successfully in a
given applicative context (machine learning, belief function approxima-
tion or parameter estimation for evidential operations). On a theoretical
ground, we will see that additional desirable properties can be required
so that evidential distances are consistent with other components of the
theory, starting in this section with combination rules.

4.2.1 A definition of consistency between rules and distances

A reasonable postulate is that if some information is incorporated into
two mass functions by combining each of them with the same third party
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mass function, then they should be closer after combination than before.
Loudahi et al. 2014b, 2016 formalize this idea into the following definition
of consistency of an evidential distance with a combination rule:

(personal contribution as part of M.
Loudahi’s PhD)

Definition 23. Let ⊙ be a combination rule and d an evidential distance. d
is said to be consistent with respect to ⊙ if for any mass functions m1, m2

and m3 on Θ:

d (m1 ⊙m3, m2 ⊙m3) ≤ d (m1, m2) . (4.15)

Let us focus on separable mass functions which can be decomposed
into elementary pieces of evidence (simple mass functions) using Demp-
ster’s combination rule. Using a consistent evidential distance, we see that
mass functions are all the closer as their decompositions involve identical
elementary pieces of evidence.

Conversely, using a distance for which this property holds, then any
mapping of the kind f0 (m) = m ⊙ m0 defined on the mass space is
1-lipschitz.

4.2.2 Results on the consistency with α-junctions

We now give a collection of results from Loudahi et al. 2016 that establish
the consistency of evidential matrix metrics with α-junctions. We also
give in appendices some of the proofs of these results when they are not
excessively long.

The first result deals with these distances when the 1-operator norm is
used:

(personal contribution as part of M.
Loudahi’s PhD)
See apprendix A.2 for a proof.

Proposition 3. Any α-specialization or α-generalization distance dop1

defined using the 1-operator norm is consistent with its corresponding α-
junctive combination rule.

Another result holds when α-specialization or α-generalization dis-
tances are defined using the L1 matrix norm. To prove this result, it is first
necessary to introduce the following lemma:

(personal contribution as part of M.
Loudahi’s PhD)

Lemma 4. Suppose m1 and m2 are two mass functions defined on Θ and A
and B are two subsets such that A ⊆ B ⊆ Θ. Then, the following properties
hold for any α-conjunctive rule ∩⃝α and any α-disjunctive rule ∪⃝α

∥m1∩α A −m2∩α A∥1 ≤ ∥m1∩αB −m2∩αB∥1 , (4.16)
∥m1∪α A −m2∪α A∥1 ≥ ∥m1∪αB −m2∪αB∥1 . (4.17)

From this lemma, we deduce the following corollary:

(personal contribution as part of M.
Loudahi’s PhD)

Corollary 1. Suppose m1 and m2 are two mass functions defined on Θ. Let
dop1 be an α-specialization or α-generalization distance defined using the
1-operator norm. We have:

dop1 (m1, m2) =
1
a
∥m1 −m2∥1 . (4.18)

This means that the 1-operator distance dop1 is the L1 distance between
mass vectors for any α. This corollary also implies that a = 2 for dop1.
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Equipped with these preliminary results, the following proposition re-
garding the consistency of distances defined using the L1 norm can be
derived:

(personal contribution as part of M.
Loudahi’s PhD)
See apprendix A.2 for a proof.

Proposition 4. Any α-specialization or α-generalization distance dmat,1

defined using the L1 matrix norm is consistent with its corresponding α-
junctive combination rule.

One last result is available for α-specialization or α-generalization
distances defined using the L∞ matrix norm:

(personal contribution as part of M.
Loudahi’s PhD)
See apprendix A.2 for a proof.

Proposition 5. Any α-specialization or α-generalization distance dmat,∞

defined using the L∞ matrix norm is consistent with its corresponding α-
junctive combination rule.

The following example illustrates the inconsistency of distances dJ ,
dmat,2, dop2 and dop∞ with respect to α-junctions through a numerical
experiment.

Example 18. For each distance and each value of α, one iteration of the
experiment carried out in this example consists in picking three random
mass functions and check if inequality (4.15) is verified. The number of
times that the property is verified over the number of iterations gives the
consistency rate of the distance for a given α.

In order to provide such rates, it is necessary to generate mass func-
tions randomly. It is sufficient to draw simple mass functions because
cases of inconsistency are more frequent with such functions. Random
simple mass functions are drawn uniformly using an algorithm presented
in Burger and Destercke 2013 and applied to simple mass function sub-
simplices.

In figure 5.1, consistency rates for α-conjunctive rules and several
evidential distances are shown. For this experiment, 1e4 iterations were
used. Figure 5.2 shows the same results for α-disjunctive rules.

As expected, the rates of dop1, dmat,1 and dmat,∞ are 100% in both
the conjunctive and disjunctive cases. A rate under 100% is sufficient to
prove the inconsistency of a distance. We can therefore conclude that
dmat,2, dop2 and dop∞ are inconsistent when α ̸= 0. It can be conjectured
that they are consistent when α = 0. The experiment also proves the
inconsistency of dJ with any α-junction except for the disjunctive case
when α = 0. Its consistency in this latter case may also be conjectured.

4.3 Consistency of evidential distances with partial orders

Following the idea of the previous section, we now move to another
consistency question between evidential distances and partial orders as
defined in chapter 3.

4.3.1 A definition of consistency between orders and distances

The previous chapter highlighted the benefits of partial orders for belief
functions which allow to sort belief functions in easily interpretable ways.
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Figure 4.2: Consistency rates of several
evidential distances with α-conjunctive
rules with respect to parameter α.
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By endowing the mass space with one of these partial orders and a dis-
tance, it makes sense to require that the chosen distance preserves this
interpretation and gives distance values compliant with inclusion rela-
tions. Among other possibilities, Klein et al. 2016c formalize this notion of
compliance as follows:

(personal contribution)
Definition 24. Given a partial order ⊑y defined overM, an evidential
distance (or dissimilarity) d is said to be ⊑y-compatible if for any mass
functions m1, m2 and m3 such that m1 ⊑y m2 ⊑y m3, we have:

max {d (m1, m2) ; d (m2, m3)} ≤ d (m1, m3) , (4.19)

Moreover, d is said to be ⊏y-compatible (in the strict sense) if m1 ⊏y

m2 ⊏y m3 implies a strict inequality: max {d (m1, m2) ; d (m2, m3)} <

d (m1, m3).

In particular, if the partial order ⊑y has3 a minimum ⊥ ∈ M and 3. Recall that minimum and maximum
elements ⊥, ⊤ of ⊑ are such that for any
other element x, ⊥ ⊏ x ⊏ ⊤.

a maximum element ⊤ ∈ M, then satisfying strict compatibility in
Definition 24 ensures that d refines the partial order ⊑y into a total pre-
order ⪯y defined as m1 ⪯y m2 if d(⊥, m1) ≤ d(⊥, m2).

Conversely, we will say that a distance is not compatible, or incompat-
ible, with a partial order if Definition 24 is not satisfied for some triplet
m1, m2, m3, that is m1 ⊑y m2 ⊑y m3 and max {d (m1, m2) ; d (m2, m3)} >
d (m1, m3). While the compatibility of a partial order with a distance
could be defined in a different way, using a ⊑y-incompatible distance on a
problem involving ⊑y seems ill-advised.

The trivial distance4 is obviously compatible with any non-strict partial 4. For any m and m′ , the trivial metric
equals 1 whenever m ̸= m′ .order and incompatible with any strict order. In general, this tends to

show that ⊏y-compatibility in the strict sense is a lot more valuable
property than ⊑y-compatibility.

When possible, the implications between different orders (see Equa-
tion (3.3)) can be used to avoid checking the compatibility of a distance
with respect to all partial orders, as shown by the next proposition.

(personal contribution)
See apprendix A.3 for a proof.

Proposition 6. Consider two partial orders ⊑x , ⊑y such that ⊑x⇒⊑y and
a distance d, then
• if d is ⊑y-compatible, then it is ⊑x-compatible;
• if d is ⊑x-incompatible, then it is ⊑y-incompatible.

An immediate corollary follows concerning the strict part:

(personal contribution)
Corollary 2. Consider two partial strict orders ⊏x , ⊏y such that ⊏x⇒⊏y

and a distance d, then
• if d is strictly ⊏y-compatible, then it is strictly ⊏x-compatible;
• if d is strictly ⊏x-incompatible, then it is strictly ⊏y-incompatible.

4.3.2 Results on the consistency with informative partial orders

Klein et al. 2016c proved the consistency of several vector based evidential
distances with information partial orders as summarized by the following
proposition:

(personal contribution)
See apprendix A.3 for a proof.

Proposition 7. For any k ∈N∗ \ {∞}, the following assertions hold:
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• the distances db,k and dpl,k are ⊏pl and ≺π-compatible in the strict sense,
• the distance dbel,k is ⊏bel-compatible in the strict sense,
• the distance dq,k is ⊏q and ≺π-compatible in the strict sense.
• the pseudo-distance dπ,k is ≺π-compatible in the strict sense.
The same results also hold for k = ∞ with non-strict orders.

We can easily check that the dissimilarities based on pignistic proba-
bility distribution distances are not compatible with the partial order ⊑w,
and therefore are also not compatible for any other partial order compar-
ing informative content implied by ⊑w. Indeed, consider the following
example.

Example 19. Let Θ = {a, b, c} and consider three mass functions such
that their corresponding conjunctive weight functions are

set ∅ {a} {b} {a; b} {c} {a; c} {b; c}
w1 1 0.2 0.2 1 0.2 1 1
w2 1 0.2 0.4 1 0.2 1 1
w3 1 1 1 1 1 1 1

Let Pi denote the pignistic probability distributions corresponding to
each mass function. We have m1 ⊑w m2 ⊑w m3, but P1 = P3 and
P2 ̸= P1. If dBetP denotes a (full) metric between pignistic probability
distributions, reflexivity implies dBetP(P1, P3) = 0, but separability
implies dBetP(P1, P2) ̸= 0.

This shows that using dBetP,k is ill-advised in problems involving infor-
mative content, such as the approximation of belief functions.

A more surprising fact is that Jousselme distance dJ is unfortunately
incompatible with ⊑y for y ∈ {w, d, s, q, pl, bel}, as show the next two
counter-examples.

Example 20. Let Θ = {a, b} and consider three mass functions such that
their corresponding conjunctive weight functions are

set ∅ {a} {b}
w1 1 0.2 0.25
w2 1 1 0.25
w3 1 1 0.6

We have m1 ⊑w m2 ⊑w m3 but dJ(m1, m3) ≈ 0.63 < dJ(m1, m2) ≈
0.66, hence dJ is ⊑w-incompatible. Proposition 6 gives the incompatibility
with all the other mentioned partial orders except ⊑bel .

Concerning ⊑bel , another counter-example is required:

Example 21. Let Θ = {a, b} and consider the mass functions:

set ∅ {a} {b} Θ
m1 0 0.3 0.4 0.3
m2 0 0 0.2 0.8
m3 0.4 0 0.1 0.5
bel1 0 0.3 0.4 1
bel2 0 0 0.2 1
bel3 0 0 0.1 0.6
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We have m1 ⊑bel m2 ⊑bel m3, but dJ(m1, m3) ≈ 0.36 < dJ(m1, m2) ≈
0.38, hence dJ is ⊑bel-incompatible. This counter-example also refutes the
compatibility between ⊑bel and dissimilarities based on pignistic probabil-
ity distribution distances because P2 = P3 = 1{b} ̸= P1. If dBetP denotes a
(full) metric between pignistic probability distributions, reflexivity implies
dP(P2, P3) = 0, but separability implies dBetP(P1, P2) ̸= 0.

4.4 Conclusions

This chapter sheds light on the fact that there are plenty of relevant ways
to define distances for belief functions and that the mass space has a met-
ric space structure. Establishing this structure is important as evidential
distances have many applications on both theoretical grounds and practi-
cal grounds. Reported applications of evidential distances are:
• quality assessment of an evidential algorithm (Fixsen and Mahler 1997),
• parameter optimization (Zouhal and Denœux 1998),
• as building block of an evidential operator like a conflict measure

(Martin et al. 2008), an approximation algorithm (Cuzzolin 2010a, Klein
et al. 2016c) or a combination rule (Klein et al. 2016b).
We also advocated that the derivation of a distance for belief functions

should not be disconnected from other aspects of the theory of belief
functions. By defining properties featuring the bonds between distances
and partial orders or combination rules, some metrics are proved to be
compliant with either an informative partial order or an α-junction.

In spite of recent advances, there are still open problems with eviden-
tial distances. First, as the reader may have remarked, there is an empty
intersection among distances consistent with α-junctions and those con-
sistent with partial orders. Deriving one for which the two properties hold
(or proving the impossibility thereof) is a challenging problem. Second,
other kinds of consistencies can be thought of and would require inves-
tigations. One could examine the consistency with refining mappings or
with uncertainty measures for instance. Finally on the very subject of
the consistency between distances (or dissimilarities) and informational
content, other properties may also be desirable. In the probability theory,
the informative content of a distribution is measured by means of the
entropy. The Kullback–Leibler divergence is a distribution dissimilarity
that achieves built-in compatibility with entropy as it is defined as the
cross entropy of the compared distributions (say p1 and p2) minus the
entropy of the first distribution (p1). It is thus interpreted as a measure
of information gain from revising one beliefs from p2 to p1. Obviously,
the Kullback–Leibler is however not a metric as it is not symmetric. To
the best of our knowledge, this track has yet hardly been explored as the
generalization of entropy to belief functions is itself still an open problem
(cf. Jirousek and Shenoy 2018).



5Belief spaces: from magmas to monoids

In the first chapter, we have explained that the theory of belief func-
tions is meant to build models for reasoning under uncertainty. One such
reasoning is inference, that is, we want to make deductions about an un-
known variable of interest θ ∈ Θ based on data in X. In many situations,
like distributed systems, partial deductions are computed locally and
must be aggregated later. In the theory of belief functions, combination
rules like Dempster’s rule or Smets’ α-junctions allow to perform such an
aggregation.

In this chapter, we will review combination rules for belief functions.
We will see that depending on the rule, the belief space acquire differ-
ent types of algebraic structures. In the two previous chapters, we have
seen how to perform qualitative and quantitative comparisons of belief
functions. We will also see that these comparisons are instrumental in the
definition of many combination rules. Several combination rules have been

introduced in the previous chapters. We
recall their definitions so that this chapter
is self-contained.
α-junctions: for any E ⊆ Θ

(m1 ∩⃝αm2) (E) = ∑
A,B,C⊆Θ,

(A∩B)∪(Ac∩Bc∩C)=E

m1 (A)m2 (B) α|C
c |α|C|,

(m1 ∪⃝αm2) (E) =∑
A,B,C⊆Θ,

(A∆B)∪(A∩B∩C)=E

m1 (A)m2 (B) α|C|α|C
c |,

Conjunctive and disjunctive rules: for any
E ⊆ Θ

(m1 ∩⃝m2) (E) =∑
A,B⊆Θ,
A∩B=E

m1 (A)m2 (B)

(m1 ∪⃝m2) (E) =∑
A,B⊆Θ,
A∪B=E

m1 (A)m2 (B) ,

Dempster’s rule: for any E ⊈= ∅

(m1 ⊕m2) (E) =
1

1− κ
(m1 ∩⃝m2) (E) ,

where κ = (m1 ∩⃝m2) (∅).
Cautious and bold rules:

m1 ? m2 = ∩⃝
B⊊Θ

mw1(B)∧w2(B)
B ,

m1 > m2 = ∪⃝
A ̸=∅

mAv1(A)∧v2(A),

where mA
x denotes a mass function such

that

mA
x (E) =


1− x if E = A,
x if E = ∅,
0 otherwise

.

5.1 Structures induced by rules

This section presents structures that are obtained by endowing the mass
space with a combination rule. We also evoke structures that cannot be
achieved.

5.1.1 Magmas

As already observed earlier, belief functions are quite general objects and
we cannot hope for very rich algebraic structures for belief spaces. The
crudest structure is the magma structure.

Definition 25. LetM denote some space and ⋆ denote a mappingM×
M → M. The structure (M, ⋆) is called magma and the mapping ⋆ is
called binary operation.

This definition applies to the mass space by endowing it with a combi-
nation rule. Clearly for any α ∈ [0; 1], both (M, ∩⃝α) and (M, ∪⃝α) are
magmas. It does not apply for Dempster’s rule ⊕ because the combina-
tion of two maximally conflicting mass functions is not defined. Likewise,
the cautious ? and bold > rules only induce a magma on subsets ofM,
i.e. on the set of non-dogmatic mass functions and the set of subnormal
mass functions respectively. In practice, a dogmatic mass function mi

can still be used as input for ?. Indeed, mi can be turned into a conjunc-
tive weight function by discounting it with a very small discount rate as
compared to the minimum positive mass of mi. The discount rate can be
chosen as small as necessary so that the values of wi stabilize to some
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value up to a desired precision threshold. In the same way, one turns a
normalized mass function mi into a disjunctive weight function by artifi-
cially assigning an infinitesimal mass value to ∅ and then renormalize so
that ∑E⊆Θ m(E) = 1 and this function can be used as input for >.

When the combination rule inducing the magma has some properties,
the magma inherits those thereby yielding subcategories of magmas. For
instance if the rule is associative then we obtain a semigroup structure.
Table 5.1 gives the list of magma subcategories thus obtained.

Rule property Induced structure
Associativity Semigroup
Reversibility Quasigroup

Associativity & Commutativity & Idempotence Semilattice
Associativity & Neutral element Monoid

Associativity & Neutral element & Reversibility Group
Associativity & Neutral element & Reversibility & Commutativity Abelian Group

Table 5.1: Some subcategories of magmas.

In the rest of this section, we comment on some subcategories in the
context of the theory of belief functions. For a reference on this topic, see
Daniel 2004 which stems from Hájek and Valdes 1991 who introduced the
algebraic notion of Dempsteroid1. 1. This custom algebraic structure is

obtained when n = |Θ| = 2 by endowing
the set of non categorical mass functions
with Dempster’s rule, a neutral element
(vacuous mass function), an indempotent
element (evenly distributed Bayesian
mass function), a pre-order and the de-
combination operation for Dempster’s
rule although this latter operation is not
defined for any mass function.

5.1.2 Monoids

A majority of rules on the belief function literature induce a commu-
tative monoid structure for the mass space. Examples of such rules are
α-junctions. The associativity and commutativity of these rules is a con-
sequence of the commutativity and associativity of the set operations
on which these rules rely (see subscripts of the sum sign in equations
(2.20) and (2.21)). It is also easily shown that the neutral element2 of any 2. a neutral element is a function me

such that m ⋆ me = m, for any m in the
magma (M, ⋆).

α-conjunctive rule is the vacuous mass function mΘ while the neutral
element of any α-disjunctive is the maximal conflict mass function m∅.

Conversely, it can also be proved that the only absorbing element 3 3. An absorbing element ma is such
that for any element m in a magma
(M, ⋆), ma ⋆ m = ma. If a magma has an
absorbing element, then it is unique.

(or zero element) of any α-conjunctive rule is the maximal conflict mass
function m∅ while the absorbing element of any α-disjunctive rule is
the vacuous mass function mΘ. As a consequence of this property, in an
information fusion context, the mass assigned to ∅ cannot decrease (curse
of conflict) in the conjunctive case whereas the mass assigned to Θ cannot
decrease (curse of ignorance) in the disjunctive case.

The cautious rule does not induce a monoid structure for the set of
non-dogmatic mass function because there is no neutral element for
this rule. Likewise, the bold rule does not induce a monoid for the set of
subnormal mass functions.

Several rules inducing a commutative monoid will be presented in
the rest of this chapter. The fact that many authors strove to obtain this
structure is maybe explained by the popularity of belief functions in
the information fusion community. Indeed, when we combine pieces of
information, most applicative contexts will require that the order with
which the pieces of information are aggregated has no impact on the end
result, hence commutativity and associativity. The need for a neutral
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element is perhaps less obvious except in the conjunctive case. In this
case, any piece of information is taken for granted and if one piece stands
for total ignorance, it makes perfect sense that it has no impact on the end
result. So what is really desirable is not only to have a neutral element
but also that this element stands for total ignorance as the vacuous mass
function mΘ does in the theory of belief functions.

5.1.3 Semilattices

If rules inducing a monoid structure are legion, those inducing semilat-
tices are quite few. Idempotence is patently difficult to obtain even for
very general families of rules as the following one.

Definition 26. Let ψE : 2Θ × 2Θ → [0; 1] denote some functions indexed
by set E ⊆ Θ such that for any pair (m1, m2) of mass functions on Θ, the
set function m : 2Θ → R defined as

m (E) = ∑
A,B⊆Θ

ψE (A, B)m1 (A)m2 (B) , ∀E ⊆ Θ, (5.1)

is a mass function.
The rule induced by functions (ψE)E⊆Θ is a quadratic rule.

We call these rules quadratic ones as any mass value is obtained as

m (E) = mT
1 ·ΨE ·m2,

where ΨE is an N × N matrix whose entries are ψE (A, B). The values
of ψE (A, B) can be understood as the proportion of the mass product
m1 (A)m2 (B) that flows to E through this combination. We see that
α-junctions are a subfamily of the quadratic rules4. For example, the

4. In the conjunctive case, if we set

ψE (A, B) = ∑
C⊆Θ,

(A∩B)∪(Ac∩Bc∩C)=E

α|C
c | (1− α)|C| ,

then the corresponding quadratic rule
coincides with ∩⃝α . More generally, the
behavior-based fusion scheme of Pichon
et al. 2012 also writes as a quadratic rule.conjunctive rule is retrieved by setting ψE = 1E (A ∩ B) for all E ⊆ Θ.

Going back to idempotence, the following result holds.

(personal contribution) [unpublished]Proposition 8. No quadratic rule is idempotent.

Proof. Suppose the quadratic rule induced by functions (ψE)E⊆Θ is
quadratic and idempotent. Applying the rule to a categorical mass func-
tion mC , we have

mC (E) = ψE (C, C)mC (C)mC (C) , ∀E ⊆ Θ, (5.2)
⇔ 1C (E) = ψE (C, C) , ∀E ⊆ Θ. (5.3)

This means that all diagonal elements of ΨE are null except ψE (E, E) =

1. Now, let m denote a mass function such that E is the only subset in Θ
that is not a focal element.

m (E) = 0, (5.4)
⇔ ∑

A,B⊆Θ
ψE (A, B)m (A)m (B) = 0 (5.5)

⇔ ∑
A,B⊆Θ

A ̸=E,B ̸=E

ψE (A, B)m (A)m (B) = 0. (5.6)

Since all other subsets are focal elements of m and the above sum is a sum
of non negative terms, we deduce ψE (A, B) = 0 if E ̸= A or E ̸= B.
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Now, let m denote the mass function such that m (E) = 1
N for all

E ⊆ Θ. Again, by idempotence, we obtain

m (E) = ∑
A,B⊆Θ

ψE (A, B)m (A)m (B) , ∀E ⊆ Θ (5.7)

⇔ 1
N

= ∑
A,B⊆Θ

ψE (A, B)
1

N2 , ∀E ⊆ Θ, (5.8)

⇔ N = ∑
A,B⊆Θ

ψE (A, B) , ∀E ⊆ Θ. (5.9)

We continue to add constraints on functions ψE by examining a function
m′ defined as

m′ (E) =

 1
N−1 if E ̸= C

0 if E = C
.

Applying the same reasoning as for m, we obviously have

N − 1 = ∑
A,B⊆Θ

A ̸=C,B ̸=C

ψE (A, B) , ∀E ⊆ Θ. (5.10)

By subtracting (5.10) to (5.9), we get

1 = ∑
A⊆Θ
A ̸=C

ψE (A, C) + ∑
B⊆Θ
B ̸=C

ψE (C, B) + ψE (C, C) . (5.11)

Remembering that ψC (C, C) = 1, we deduce that ψC (A, C) =

ψC (C, B) = 0. The result being true for any subset C, the functions
ψE are now fully specified as

ψE (A, B) =

1 if A = B = E

0 otherwise
, ∀E ⊆ Θ. (5.12)

This set of functions ψE does not induce a combination rule. Indeed, take
two categorical mass functions mA and mB as inputs such that A ̸= B, the
obtained set function by application of relation (5.1) is constant zero.

An obvious way to derive an idempotent rule is to resort to good old
average. In fact, any convex combination kind of rule is idempotent. The
average is however not associative but only quasi-associative. Suppose
you have previously combined functions m1, . . . , mℓ. Quasi-associativity
means that there is a way to compute combinations iteratively without
storing the whole set of mass functions {m1, . . . , mℓ} and restart the
combination from scratch when a new function mℓ+1 arrives. In practice,
quasi-associativity is very important and the added value of associativity
as compared to quasi-associativity is limited. The average rule can be clas-
sified as disjunctive because the focal core of the average of input mass
functions is the union of the focal cores of these input mass functions.
Consequently, any candidate solution with a positive plausibility for some
input mass function also has a positive plausibility after combination. The
most important drawback of averaging mass functions is that the theo-
retical foundations of this rule have not yet been addressed. For example,
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Dempster’s rule rely on strong probabilistic grounds; α-junctions are un-
derstood in terms of source truthfulnesses and the cautious and bold rules
relies on informative partial orders. The meaning of an average of mass
functions remains, in general, more difficult to justify. A noteworthy ex-
ception is the convex combination of a mass function with the vacuous
one, i.e. discouting. As we will see in 5.4.2, the discounting operation re-
lies on a meta-information based update. Besides, the average rule does
not have a neutral element.

As already remarked in chapter 3, the cautious and bold rules are
idempotent and they induce a semilattice on the set of non-dogmatic
mass functions and the set of subnormal mass functions respectively.
Careful readers will raise objections as the definition of semilattices in
this chapter is not the same as in chapter 3! In chapter 3, the notion of
semilattice always comes along with a partial order whereas this is not
mandatory in the algebraic version of the definition. In spite of this, the
order theoretic and algebraic definitions of semilattices are equivalent,
because any binary operation induces a partial order 5. 5. Let ⊑? denote the following partial

order for non dogmatic mass functions:

m1 ⊑? m2 ⇔ m1 = m1 ? m2. (5.13)

If m1 ⊑w m2, then w1 (A) ≤ w2 (A),
for all A ⊊ Θ. It follows that w1 (A) ∧
w2 (A) = w1 (A) and thus m1 ? m2 =
m1.

If m1 ⊑? m2, then by definition of ?,
w1 (A) ∧ w2 (A) = w1 (A), for all A ⊊
Θ. It follows that w1 (A) ≤ w2 (A) and
m1 ⊑w m2.

Finally, ⊑? and ⊑w are equivalent.

Some other idempotent rules can be derived by relying on optimization
techniques as explained in section 5.3. The motivations behind the deriva-
tion of idempotent rules are mainly dealing with dependent sources when
the dependence in question is hard to assess. Alleging mass functions (or
a subclass of those) can be decomposed w.r.t. to an idempotent rule, then
two identical elementary pieces of evidence will not be counted twice in a
combination between two such functions. This cautious approach does not
lead to unjustified reinforcement of the support given to focal elements.
In the worst case, combining two copies of the same evidence (maximal
dependency) using Dempster’s rule or the conjunctive rule generates such
unjustified reinforcements.

5.1.4 Groups

A frustrating point in the theory of belief functions is that no existing rule
has achieved to induce a group structure and there is little hope that any
rule can. The difficulty in deriving a group structure is that there is not
always an inverse mass function, i.e. a mass function that would undo
the mass reallocation incurred by a combination. If we place ourselves
under the framework of category theory6, we may a find path from a 6. See section 3.3.

mass function m1 to m2 but in general we will not be able to find path
back to m1. From an artificial intelligence point of view, a model allowing
to go back to a previous state of beliefs seems more in line with human
reasoning. Yet belief functions were never meant to achieve reversibility
in the first place.

Obviously, the inversion requirement is incompatible with conjunc-
tivity and disjunctivity. If a candidate solution a ∈ Θ is discarded by
a mass function mi (i.e. pli ({a}) = 0), then this piece of information
is propagated in a conjunctive7 combination end result. So, conjunctive 7. We refer here to a more general

notion of conjunction or disjunction than
the one presented in 3.3.

operators generate intrinsically irreversible mass allocations. Likewise,
if a candidate solution a ∈ Θ is not discarded by a mass function mi

(i.e. pli ({a}) > 0), then this piece of information is propagated in a
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disjunctive combination end result.
There are of course some rules that are neither conjunctive nor disjunc-

tive like the average of mass functions or some that will be introduced
in the next section. To the best of our knowledge, none of them induce
a group structure. Besides, the notions of inverse mass function w.r.t to
conjunctive and disjunctive rules that rely on so called decombination8 8. Suppose m = m1 ∩⃝m2 and we learn

that m2 turns out not to be supported by
evidence. We can ”remove” m2 from m by
combining m with a function m̃ such that

q̃ (B) =
q1 (B)
q2 (B)

, ∀B ⊆ Θ.

We usually denote m ̸∩⃝m2 = m ∩⃝m̃. In
general, m̃ is not a bona fide mass function
as entrywise divisions of commonality
functions are not always commonality
functions and m̃ is not the inverse of m2
as m2 ∩⃝m̃ ̸= mΘ .

A similar reasoning applies in the dis-
junctive case using implicability functions.

(Smets 1995; Denœux 2008) should not be confused with reversibility.
Let m1 and m2 denote two functions and m12 is the result of their com-
bination using a given rule ⋆. Decombination is a mathematical process
that allows to retrieve either m1 or m2 from m12. Reversibility means that
decombination is achievable by combining m12 with some other mass
function using the same rule as the one that yielded m12, i.e. ∃m and m′

s.t. m12 ⋆ m = m1, m12 ⋆ m′ = m2.
Desirable as it may be, reversibility may also be too strong a require-

ment for recovering previous states of beliefs. When humans change their
minds and revise their beliefs accordingly, they do not necessarily use
the same process for forward and backward moves. Another possibility is
that one first selects a combination operator based on meta-information
and then apply it (see Klein et al. 2009 for an example of such an approach
applied to a computer vision context). In conclusion, it may be sufficient
that a pair of rules allow reversibility.

5.2 Alternatives to conjunction or disjunction

Conjunctive and disjunctive rules can be regarded as two extreme infor-
mation fusion tools and when the reliability of the sources is limited but
not inexistent, intermediate solutions are desirable. In this section, we will
present rules that are neither conjunctive nor disjunctive (like the average
rule). They mainly fall in two categories: those relying on alternative poli-
cies for conflict redistribution and those that are a mix of conjunctive and
disjunctive rules.

5.2.1 Conflict redistribution

Dempster 1967 introduces a normalizing constant in his expression of
upper and lower probabilities and this constant is actually necessary
because some probability mass is not assigned to non empty subsets of Θ.
When we use Dempter’s rule, this constant is still in action and we have
seen that it is understood as 1− κ where κ is called Dempster’s degree of
conflict and represents the mass arising from inconsistent focal elements
of each input belief function.

One of the debated question in the wake of Dempter and Shafer’s
contributions is the relevance of this way to redistribute the conflict,
that is, a multiplicative redistribution with equal strength for each focal
element of the combination result belief function.

Yager 1987 argues that the mass assigned to non empty informative9 9. We mean that A ̸= ∅ and A ̸= Θ.

subsets A should be m1 ∩⃝m2 (A) because cross-checked evidence suggests
so. The usual conflict redistribution may artificially inflate the support
given to A. The only focal element whose support can be increased at no
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risk is obviously Θ. The combination result mass function myag obtained
by applying Yager’s rule to input functions m1 and m2 is

myag (A) =


0 if A = ∅

m1 ∩⃝m2 (Θ) + m1 ∩⃝m2 (∅) if A = Θ

m1 ∩⃝m2 (A) otherwise

. (5.14)

This rule is neither conjunctive nor disjunctive10. Furthermore, this rule is

10. If m1 = m{a} and m2 = m{b}
then myag = mΘ , so b is an impossible
candidate value for θ in m1 but it is a
possible one in myag, hence the rule is
not conjunctive. If m1 = m{a} and
m2 = m{a,b} then myag = m{a} , so b is
a possible candidate value for θ in m2 but
it is not a possible one in myag, hence the
rule is not disjunctive.

commutative, quasi-associative and mΘ is the neutral element.
A motivation behind Yager’s rule is also to introduce an alternative

rule that provides a more legitimate outcome in Zadeh 1986 ”counter
example” to Dempster’s rule of combination.

Example 22. Let Θ = {a, b, c} denote some space and we need to
combine the following mass functions on Θ:

m1 = 0.99m{a} + 0.01m{b}, (5.15)

m2 = 0.99m{c} + 0.01m{b}. (5.16)

In this case, we obtain m1 ⊕ m2 = m{b}. Zadeh argues that Dempster’s
rule combines evidence in a dubious fashion because we conclude that
θ = b with certainty whereas this possibility was given little support by
both sources. It can also be argued that evidence encoded in m1 implies
that c is not a possible solution and the evidence encoded in m2 implies
that a is not either. So, we are left with b only and Dempster’s rule result
follows this logic.

Applying Yager’s rule, we obtain myag = 0.0001m{b} + 0.9999mΘ, a
result which is arguably more cautious than m1 ⊕m2.

Another point that dragged the attention of several authors is that con-
flict should maybe not be treated as a global aggregated value but instead
as a collection of smaller pieces each of which stems from a pair (E1, E2)

of non intersecting focal elements of each input mass function. Each piece
of conflict can then be redistributed in a tailored way depending on E1

and E2.
For instance, if m1 = m{a} and m2 = m{b}, then myag = mΘ, a result

that is even more conservative than the disjunctive rule (if n > 2). Since
the conflict in here has its roots in the incompatibility of the respective
focal elements E1 = {a} and E2 = {b}, Dubois and Prade 1992 suggest
to redistribute this conflict on the disjunction of the focal elements. The
combination result mass function mdp obtained by applying Dubois and
Prade’s rule to input functions m1 and m2 is

mdp (A) =


0 if A = ∅

m1 ∩⃝m2 (A) + ∑
B,C⊆Θ
B∩C=∅
B∪C=A

m1 (B)m2 (C) otherwise . (5.17)

Dubois and Prade’s rule has the same general properties as Yager’s rule11.

11. In this monograph, rule properties
are discussed in algebraic terms. Dubois
et al. 2016 discuss rule properties from
an information fusion perspective. In
this scope, Dubois and Prade’s rule pos-
sesses more properties than Yager’s or
Dempster’s rule.

Yager and Dubois and Prade rules are members of a family of rules
introduced by Lefevre et al. 2002. In this setting, a set function β gives
the amount of the conflict that is redistributed to each subset12. The set

12. Take β (Θ) = 1 and Yager’s rule is
retrieved.

Take β (A) = 1
1−κ ∑

B,C⊆Θ
B∩C=∅
B∪C=A

m1 (B)m2 (C)

for A ̸= ∅ and Dubois and Prade’s rule is
retrieved. In this latter case the function β
depends on m1 and m2 as well.
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function β sums to one: ∑B⊆Θ β (B) = 1. The combination result mass
function mlef obtained by applying one such rule to input functions m1

and m2 is

mlef (A) =

β (∅)m1 ∩⃝m2 (∅) if A = ∅

m1 ∩⃝m2 (A) + β (A)m1 ∩⃝m2 (∅) otherwise
. (5.18)

Any such rule has at least the same general properties as Yager’s rule
except that if β (∅) = 1, the corresponding rule is conjunctive because
we retrieve ∩⃝.

An adaptive tailored conflict redistribution was proposed by Smaran-
dache and Dezert 2005 under the name partial conflict redistribution
(PCR) rule. The combination result mass function mpcr obtained by apply-
ing PCR rule to input functions m1 and m2 is Equation (5.19) is not well defined when

one of the denominators is zero. When-
ever this happens the corresponding
fraction is actually discarded from the
formula. We preferred not to make this
condition explicit in (5.19) otherwise it
becomes harder to read.

mpcr (A) = m1 ∩⃝m2 (A)+ ∑
B⊆Θ

B∩A=∅

[
m1 (A)2 m2 (B)

m1 (A) + m2 (B)
+

m1 (B)m2 (A)2

m1 (B) + m2 (A)

]
,

(5.19)
for A ̸= ∅ and mpcr (∅) = 0.

In this case, if E1 is a focal element of m1, E2 a focal element of m2 and
E1 ∩ E2 = ∅, then a part of the conflict bounces back to E1 and E2. It is
adaptive in the sense that the redistribution is dependent on input mass
functions.

The PCR rule is commutative. It is not disjunctive because when there
is no conflict it coincides with the conjunctive rule. It is not conjunctive
either because if m1 = m{a} and m2 = m{b}, then mpcr = 1

2 m{a} +
1
2 m{b}. The neutral element is the vacuous mass function mΘ because
there is no conflict when one input mass function is this one and mΘ is
the neutral element of the conjunctive rule. A major difficulty is that the
PCR rule is not quasi-associative and the computation complexity is not
linear in the number of sources. The same remark also holds for Dubois
and Prade’s rule.

5.2.2 Compound rules

There are plenty of ways to build compound rules and we do not have
the ambition to list them all. For instance, it is quite obvious that the
convex combination of any set of rules is a well defined rule. This can be
formalized as follows

Proposition 9. Let m1 and m2 denote two mass functions on Θ. Let
m(1), . . . , m(ℓ) denote the combination results obtained by application of
ℓ different rules with m1 and m2 as inputs. If each rule induces a magma for
the mass space, then for any positive reals (λi)

ℓ
i=1 such that ∑ℓ

i=1 λi = 1,
the rule returning the mass function ∑ℓ

i=1 λim(i) induces a magma as well.

The proof of this proposition is trivial as the convex combination of
mass functions is a mass function.

As an example, Martin and Osswald 2007 proposed a convex combi-
nation of Dubois and Prade’s rule and PCR rule. Other authors (Delmotte
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et al. 1995; Delmotte et al. 1996) propose a convex combination of the
conjunctive and disjunctive rules where the coefficients are derived from
source reliabilities. In general, combination coefficients can be tuned by
grid search on a performance measure related to the targeted application.

The approach of Florea et al. 2009 is in line with the idea of a convex
combination of the conjunctive and disjunctive rules but with a minor
variation in the sense that the result of the combination is enforced to be
a normal mass function. This family of rules is called robust combina-
tion rules (RCR). The combination result mass function mrcr obtained by
applying one such rule to input functions m1 and m2 is

mrcr (A) =

0 if A = ∅

α (κ)m1 ∩⃝m2 (A) + β (κ)m1 ∪⃝m2 (A) otherwise
.

(5.20)
The constraint on parameters α and β allowing mrcr to be a bona fide
mass function is

(1− κ) β (κ) = 1− α (κ) . (5.21)

The parameters are written as functions of Dempster’s degree of conflict
because this degree is instrumental to tune the parameters. Any RCR rule
is commutative and quasi-associative13. If β (0) = 0, then mΘ is the 13. This property follows from the

associativity of ∩⃝ and ∪⃝. One just has to
keep track of the results of these combina-
tions to compute coefficients α and β and
eventually the RCR combination result.

neutral element for such RCR rules.
RCR rules are subsumed by an approach by Martin and Osswald 2007

where the mixing coefficients are dependent on the focal elements of the
input mass functions (both in the conjunctive and disjunctive compo-
nents). This larger class of rules is known as mix rules. The combination
result mass function mmix obtained by applying one such rule to input
functions m1 and m2 is

mmix (A) = ∑
B,C⊆Θ

B∩C= A

ψ1 (B, C)m1 (B)m2 (C)+ ∑
B,C⊆Θ
B∪C=A

ψ2 (B, C)m1 (B)m2 (C) .

(5.22)
As default coefficient choice, the authors propose to use Jaccard in-

dexes for the disjunctive component and one minus this index for the
conjunctive one:

ψ1 (B, C) = 1− |B ∩ C|
|B ∪ C| , (5.23)

ψ2 (B, C) =
|B ∩ C|
|B ∪ C| . (5.24)

Any mix rule is commutative but not necessarily quasi-associative.

5.3 Distance based rules

Dubois et al. 2016 consider fusion problem from an abstract point of
view, and merely require conjunctive and disjunctive rules to satisfy
the following principle: given items of information I1, . . . , Iℓ and an
information ordering ⊑ relation defined on them, a rule is conjunctive if
its result I∩ is such that

I∩ ⊑ Ii, ∀i ∈ {1, . . . , ℓ}
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and is disjunctive if its result I∪ is such that

I∪ ⊒ Ii, ∀i ∈ {1, . . . , ℓ}.

They then recommend (in absence of other information) to follow the LCP
principle14 in the conjunctive case, and the “most committed principle” 14. As explained in chapter 1, this prin-

ciple reads: when several belief functions
qualify as uncertainty models that are
consistent with evidence, then one should
select a belief function with minimal
degrees of belief.

in the disjunctive case to pick a combination result. This view has the ad-
vantage that it makes no a priori assumption about the shape of the rule,
nor about the dependence assumption it should satisfy. The remainder of
this subsection presents a recent approach from Klein et al. 2016b, 2016a
where computable idempotent operators are obtained, starting with a
conjunctive operator in 5.3.1 and pursuing with a disjunctive one in 5.3.4.

5.3.1 A generic way to derive conjunctive rules using partial orders

Rather than seeing a conjunctive combination as a particular operator de-
fined either on the mass functions m1, . . . , mℓ or on the weight functions
w1, . . . , wℓ, a mass m∗ resulting from a conjunction can just be considered
as (i) more informative (in the sense of some partial order ⊑ f ) than any
m1, . . . , mℓ and (ii) one of the least committed elements (in terms of infor-
mation) among those, in accordance with the LCP. Formally speaking, if
we denote by

M f (mi) :=
{

m ∈ M | m ⊑ f mi

}
(5.25)

the set of all mass functions more informative than mi, then m∗ should be
such that:
(i) m∗ ∈ M f (m1) ∩ . . . ∩M f (mℓ),
(ii) ̸ ∃m′ ∈ M f (m1) ∩ . . . ∩M f (mℓ) such that m∗ ⊏ f m′.
The first constraint expresses the conjunctive behavior of such an ap-
proach. The second constraint says that m∗ is a maximal element (i.e.
a least committed solution) for admissible solutions subject to the first
constraint.

While this solution is generic and does not require any explicit model
of dependence, it should be noted that the choice of the partial order
to consider is not without consequence. Considering those mentioned
in chapter 3, Equation (3.20) tells us that for example thatMw(m) ⊆
Mpl(m), hence the space of solutions will be potentially much smaller
when choosing ⊑w rather than ⊑pl . In practice and in accordance with
the LCP, it seems safer to choose the most conservative partial orders,
i.e., in our case ⊑pl or ⊑q. We will see in Section 5.3.5 that it can have an
important impact on the combination results, even for simple examples.

While this definition of the cautious result of a conjunctive combi-
nation appears natural, it still faces the problem that many different
solutions m∗ could actually fit the two constraints, as ⊑ is a partial order.
This means that to identify a unique solution, we need an additional crite-
rion, that preferably leads to efficient computations. One idea to solve this
problem is to use distances that are compatible with ⊑.
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5.3.2 Distance based conjunctive operators from soft LCP

To derive new conjunctive operators, Klein et al. 2016b introduce a
weaker form of least commitment principle which is called soft LCP.
This principle states that when there are several candidate mass func-
tions compliant with a set of constraints, the one with minimal distance
value from the vacuous mass function15 should be chosen for some ⊑- 15. It can be argued that uniqueness

of the solution is retrieved by resorting
to a pre-order spanned by the functional
m→ d (m, mΘ)

compatible distance. This is a soft version of the LCP in the sense that
relying only on a given partial order is too demanding and this require-
ment is relaxed by resorting as well to a distance consistent with the order
in question. From an optimization standpoint, the approach consists,
however, in adding constraints ensuring uniqueness.

The resulting conjunctive operator, denoted ⊓, depends on the chosen
distance d, and is defined as follows

(personal contribution)
Definition 27. for any set of ℓ functions {m1, .., mℓ}, we have

m1 ⊓ ..⊓ml = arg min
m∈M f (m1)∩..∩M f (mℓ)

d (m, mΘ) . (5.26)

According to Klein et al. 2016c, corollary 4, the problem induced by the
soft LCP is a convex optimization problem with a unique solution if the
chosen distance is an Lk norm based distance d f ,k that is ⊏ f -compatible
and if 2 ≤ k < ∞. In this case, the operator is parametric and is denoted
by ⊓ f ,k.

Considering results in Klein et al. 2016c, the operator ⊓ f ,k can be ap-
plied for f ∈ {pl, q}. Because there is no reported evidential distance in
the literature that is ⊑w, ⊑d or ⊑s-compatible, the operator ⊓ f ,k cannot
be easily instanciated for f ∈ {w, d, s}. This is not a major drawback, as
those partial orders limit the space of solutions by inducing more restric-
tive spacesM f (mi). 16

16. Concerning ⊑w , one can derive a
⊑w-compatible distance by computing
∥w1 − w2∥k . However, the minimization
problem solution cannot be formulated as
in (5.26) because mΘ is not the maximum
of (M,⊑w). Yet, m∅ is its minimum
and one can look for the mass function
with maximal distance from m∅ . In this
case, we obtain an LCP solution that is
actually the cautious rule, i.e. ? = ⊓w,k ,
because this is one of the rare exceptions
where the raw application of LCP leads
to a unique solution anyway. The inverse
pignistic (Dubois et al. 2008) is another
example of an LCP problem with a unique
solution.

Concerning ⊓bel,k, there is no theoretical impediment but a practical
one. Indeed, one may haveMbel (m1) ∩Mbel (m2) = ∅. When f ∈
{pl, q}, we know that such intersections are not empty because they
always contain m∅.

Operators ⊓q,k and ⊓pl,k can be easily implemented using standard
solvers available in scientific programming libraries because they amount
to a convex minimization problem.

Observe that a soft LCP solution is an LCP solution to the problem
presented in the previous subsection as long as mΘ is the maximum of(
M,⊑ f

)
17. Indeed condition (i) is verified by construction. Concerning

17. This is also true if m∅ is the min-
imum of

(
M,⊑ f

)
and if the operator

consists in maximizing the distance to m∅ .

condition (ii), suppose ∃m′ ∈ M f (m1)∩ . . .∩M f (mℓ) such that m∗ ⊏ f

m′. As d is consistent with ⊏ f , m∗ ⊏ f m′ ⊏ mΘ implies d(m′, mΘ) <

d(m∗, mΘ) which is in contradiction with the very definition of m∗, hence
condition (ii) is verified as well.

Just for a quick illustration we provide the following example which is
a continuation of Denœux 2008, example 2.

Example 23. Let Θ = {a, b, c}. Here are two non-dogmatic mass func-
tions along with their combinations under operators ⊓q,2, ⊓pl,2 and other
standard approaches.
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subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Θ
m1 0 0 0 0.3 0 0 0.5 0.2
m2 0 0 0.3 0 0 0 0.4 0.3

m1 ⊓q,2 m2 0 0 0.2 0.1 0 0 0.5 0.2
m1 ⊓pl,2 m2 0 0 0.3 0 0 0 0.4 0.3

m1 ∩⃝m2 0 0 0.6 0.12 0 0 0.2 0.08
m1 ? m2 0 0 0.42 0.09 0 0 0.43 0.06

We see that the conjunctive and cautious rules transfer much more mass
to {b} than operators ⊓q,2 and ⊓pl,2 do. Also, observe that m1 ⊓pl,2 m2 =

m2 because m2 ⊏pl m1.

5.3.3 Properties of distance based conjunctive operators

The commutativity of the set-intersection and the symmetry property
of distance give that ⊓ f ,k is commutative. Each operator ⊓ f ,k is also
idempotent: for any possible solution m ∈ M f (m1) \ {m1}, we have
d f ,k (m1, mΘ) < d f ,k (m, mΘ) because d f ,k is ⊑ f -compatible and m ⊑ f

m1 ⊑ f mΘ, hence m1 ⊓ f ,k m1 = m1.
Each of these operators are also conjunctive by construction, in the

sense that the output mass function is more informative than any of the
initial mass functions. Indeed if mi states that a is not a possible value of
the unknown quantity (pli(a) = 0), then any function inM (mi) also
states so. Since the combination result belongs toM (mi), then this piece
of information is propagated by ⊓ f ,k.

Except for the f = w case18, these operators are, however, not associa- 18. Remember that ? = ⊓w,k and ? is
associative (c.f. Denœux 2008)tive because we can have

M f

(
m1 ⊓ f ,k m2

)
⊊M f (m1) ∩M f (m2) .

The above remark is illustrated by the following example in the f = q
case.

Example 24. Let Θ = {a, b, c} denote some space. Let us introduce the
following mass functions on Θ:

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Θ
m1 0 0.1 0 0 0 0 0.1 0.8
m2 0 0 0 0.1 0.1 0 0 0.8

m1 ⊓q,2 m2 0 1/15 1/15 0 1/15 0 0 0.8
q1 1 0.9 0.9 0.8 0.9 0.8 0.9 0.8
q2 1 0.9 0.9 0.9 0.9 0.8 0.8 0.8

q1 ∧ q2 1 0.9 0.9 0.8 0.9 0.8 0.8 0.8
q12 1 1/15 1/15 0.8 1/15 0.8 0.8 0.8

where q12 denotes the commonality function in correspondence with
m1 ⊓q,2 m2. Let m3 denote the following mass function

subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Θ
m3 0 0.1 0 0 0.3 0 0.2 0.4
q3 1 0.5 0.6 0.4 0.9 0.4 0.6 0.4

We have q3 ≤ q12 and thus m3 ∈ Mq (m1) ∩Mq (m2). However
m1 ⊓q,2 m2 ̸⊑ m3 and thus m3 ̸∈ Mq

(
m1 ⊓q,2 m2

)
.
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Fortunately, when f ∈ {pl, q}, the constraints of the minimization
problem can be stored and updated iteratively, meaning that ⊓ f ,k is quasi-
associative 19. Let c denote a set function from 2Θ to [0; 1] which is meant

19. Quasi-associativity is induced by
the associativity of the entrywise mini-
mum. The picture is not that simple for
f ∈ {s, d}, and should one identify a ⊑s
or ⊑d-compatible distance making the
corresponding operators ⊓s and ⊓d oper-
ational, then obtaining quasi-associativity
is not ensured. Indeed, to our knowledge
the characterization of the set of inner
approximations of a mass function does
not translate in compact constraints for
these partial orders. For instance, we
know from Cuzzolin 2004 thatMd (mi) is
a simplex with at most N vertices. Yet, in
general the intersection of simplices is not
a simplex but a polytope whose vertices
are not easily derived and can grow in
number after each iteration. Whether
there is an easy way to characterize these
intersections is a topic for further research.

to store the problem constraints. Algorithm 5.1 allows to compute com-
binations using ⊓q,k sequentially. The same algorithm works for ⊓pl,k.
In practice, what we simply do is storing, for each set A, the lowest com-
monality (resp. plausibility) value encountered in {m1, . . . , mℓ}.

Algorithm 5.1: Sequential combination using ⊓q,k

entries : {m1, .., mℓ}, k ≥ 2.
c← min {q1; q2} (entrywise minimum).
m← m1 ⊓q,k m2.
for i from 3 to ℓ do

c← min {c; qi} (entrywise minimum).
m← arg min

m′
dq,k (m′, mΘ) subject to q′ ≤ c.

end for
return m.

It can be argued that the choice of screening distance values from the
least committed mass function in definition 27 is somewhat arbitrary.
The following lemma shows that, for ⊓q and ⊓pl , another relevant choice
yields the same operators:

(personal contribution)
See A.4 for a proof.

Lemma 5. For f ∈ {q, pl} and for any finite integer k such that k ≥ 2, one
has:

m1⊓ f ,k ..⊓ f ,k ml = arg min
m∈M f (m1)∩..∩M f (mℓ)

d f ,k (m, mΘ) = arg max
m∈M f (m1)∩..∩M f (mℓ)

d f ,k (m, m∅) .

(5.27)

Getting nearer to the least committed state of belief is thus equivalent
to drifting apart from the most committed one for these two operators.

Another interesting property to investigate is the compatibility with
Dempster’s conditioning (1.25). The next proposition shows that it is
retrieved as a special case of the ⊓q,k conjunctive rule.

(personal contribution)
See A.4 for a proof.

Proposition 10. Let m0 denote a mass function. For any finite integer k
such that k ≥ 2 and any subset A ⊆ Θ, we have

m0 ⊓q,k mA = m0|A. (5.28)
Concerning ⊓pl,k , no result is available
but simulations suggest that it may be
conjectured.

Another property that can be sometimes interesting is invariance with
respect to refinement. As shows the next example, the operators ⊓ f ,k do
not commute with refining mappings, for the main reasons that distances
are in general not invariant with respect to refinements (for a discussion
about this, see Destercke and Burger 2013).

Example 25. Let Θ = {a, b, c} and Y = {y1, y2, y3, y4} denote two
spaces. Suppose there exist a refining mapping r such that :

r (a) = {y1, y4} ,

r (b) = {y2} ,

r (c) = {y3} .

Let us introduce the following mass functions on Θ:
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subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Θ
m1 0.1 0 0.1 0.5 0.1 0 0.1 0.1
m2 0 0 0 0.3 0.1 0.3 0 0.3

We chose k = 2 in this example and omit
it in the operator notation: ⊓q = ⊓q,2.Let us denote by m′1 and m′2 the mass functions on Y induced by r

from m1 and m2, respectively. The mass function m′1⊓q2 induced by r
from m1 ⊓q m2 is not equal to m′1 ⊓q m′2. In particular, we have m′1 ⊓q

m′2 ({y3}) = 0.2 while m′1⊓q2 ({y3}) = 0.1.

Although informative partial orders are preserved after refinement, the
sets of more informative functionsM f (mi) are different. In example 25,
the hypothesis a is refined into two elements: y1 and y4. This implies
increased freedom in the selection of the mass function minimizing the
distance from the vacuous function. In general, there is no reason why
this solution should be in correspondence (through mapping r) with the
solution obtained without refining.

A last point that deserves investigation is the presence of a neutral
element.

(personal contribution)
See A.4 for a proof.

Proposition 11. For any finite integer k such that k ≥ 2 and any f ∈
{d, s, q, pl}, the unique neutral element of operator ⊓ f ,k is the vacuous mass
function mΘ.

5.3.4 Distance based disjunctive operators

In the same fashion as the conjunctive case, one can consider that a mass
function m∗ resulting from a disjunction should be (i) less informative (in
the sense of some partial order ⊑ f ) than any m1, . . . , mℓ and (ii) should
be among the most committed elements (in terms of information) among
those. This is a dual reasoning as LCP. Formally speaking, if we denote by

G f (mi) :=
{

m ∈ M | mi ⊑ f m
}

(5.29)

the set of all mass functions less informative than mi, then m∗ should be
such that:
(i) m∗ ∈ G f (m1) ∩ . . . ∩ G f (mℓ),
(ii) ̸ ∃m′ ∈ G f (m1) ∩ . . . ∩ G f (mℓ) such that m′ ⊏ f m∗.

Again, such a procedure does not lead to a unique solution in general
(except when f = v). One way to circumvent this issue is to select the
mass function in G f (m1) ∩ . . . ∩ G f (mℓ) with minimal distance from
the minimum of

(
M,⊑ f

)
(if it exists) as long as the chosen metric is

⊏ f -compatible. The resulting disjunctive operator, denoted ⊔, depends on
the chosen distance d, and is defined as follows

(personal contribution)Definition 28. for any set of ℓ functions {m1, .., mℓ}, we have

m1 ⊔ ..⊔ml = arg min
m∈G f (m1)∩..∩G f (mℓ)

d (m, m∅) . (5.30)

Let us focus on
(
M,⊑ f

)
, f ∈ {pl, q}, where a unique minimal

element exists and is m∅. According to corollary 3 in Klein et al. 2016c,
this problem is a convex optimization problem with a unique solution if
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the chosen Lk norm based distance d f ,k is ⊏ f -compatible and if 2 ≤ k <

∞. The corresponding parametric operator is denoted by ⊔ f ,k.
The fact that m∅ is the most committed mass function for ⊑q and ⊑pl

is not very intuitive. The following lemma delivers a better intuition as
to what operators ⊔q and ⊔pl consist of, as it shows that they can be
understood as the maximization of the distance from the vacuous mass
function which is more intuitive.

Lemma 6. For f ∈ {q, pl} and for any finite integer k such that k ≥ 2, one
has:

m1⊔ f ,k ..⊔ f ,k ml = arg min
m∈G f (m1)∩..∩G f (mℓ)

d f ,k (m, m∅) = arg max
m∈G f (m1)∩..∩G f (mℓ)

d f ,k (m, mΘ) .

(5.31)

(personal contribution)

The proof of this lemma is identical to that of Lemma 5. The combina-
tion operators ⊔q,k and ⊔pl,k have similar properties as their conjunctive
counterparts. They are commutative, idempotent and quasi-associative20 20. Again, when f = v, ⊔v,k = > and

this rule is associative (Denœux 2008).but not invariant to refinement. Quasi-associativity is achieved using
algorithm 5.2 which is almost the same as algorithm 5.1.

Algorithm 5.2: Sequential combination using ⊔q,k

entries : {m1, .., mℓ}, k ≥ 2.
c← max {q1; q2} (entrywise maximum).
m← m1 ⊓q,k m2.
for i from 3 to ℓ do

c← max {c; qi} (entrywise maximum).
m← arg min

m′
dq,k (m′, m∅) subject to q′ ≥ c.

end for
return m.

The neutral element of some of the disjunctive operators is given by
the following proposition.

(personal contribution)
Proposition 12. For any finite integer k such that k ≥ 2 and any f ∈
{d, s, q, pl}, the unique neutral element of operator ⊔ f ,k is the total conflict
mass function m∅.

The proof of proposition 12 is very similar as the one of proposition
12 and is thus omitted. The key point is that m∅ is the minimum of(
M,⊑ f

)
for f ∈ {d, s, q, pl}.

Just for a quick illustration we provide the following example which is
a continuation of Denœux 2008, example 7.

Example 26. Let Θ = {a, b, c}. Here are two subnormal mass functions
along with their combinations under operators ⊔q,2, ⊔pl,2 and other
standard approaches.
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subset ∅ {a} {b} {a, b} {c} {a, c} {b, c} Θ
m1 0.1 0 0 0.3 0 0 0.6 0
m2 0.1 0 0.5 0 0 0 0.4 0

m1 ⊔q,2 m2 0.1 0 0 0.3 0 0 0.6 0
m1 ⊔pl,2 m2 0.1 0 0 0.3 0 0 0.6 0

m1 ∪⃝m2 0.01 0 0.05 0.18 0 0 0.64 0.12
m1 > m2 0.006 0 0.0298 0.1071 0 0 0.2143 0.6429

We see that the disjunctive and bold rules transfer much more mass to
Θ than operators ⊔q,2 and ⊔pl,2 do. Also, observe that m1 ⊔q,2 m2 =

m1 ⊔pl,2 m2 = m1 because m2 ⊏q m1 and m2 ⊏pl m1.

5.3.5 Related works: discussion and experiments

This section provides two quick comparisons of distance based operators
and popular combination rules. They demonstrate that distance based
operators allow to redistribute masses more gradually than standard
approaches. The sensitivity w.r.t. parameters k and f is studied in Klein
et al. 2016a, section 5.3. Implementation details when k = 2 are given in
Klein et al. 2016a, appendix A.

5.3.5.1 A comparison with related works in the conjunctive case

As said earlier, the main motivation in obtaining an idempotent rule is to
circumvent the source independence assumption when it is obviously un-
reasonable or hard to assess. There are many works that have addressed
the problem of deriving alternatives to Dempster’s rule or the conjunctive
rule that do not rely on independence assumptions.

A principled and common approach is to rely on a set of axiomatic
properties as done by Dubois et al. 2016 or to adapt existing rules from
other frameworks as proposed by Destercke and Dubois 2011. In practice,
such axioms seldom lead to a unique solution, and it is then necessary to
advocate more practical solutions. A distance based rule can be seen as
an instance of such an approach, where the axiom consists in using the
LCP over sets of f -included masses, and the practical solution is to use a
distance compliant with such an axiom. The approaches of Cattaneo 2003
and Denœux 2008 can also be seen as instances of the same principle.
The former proposes to solve a conflict minimization problem rather
than minimizing the informative content (thus not strictly following
an LCP principle), while the latter focuses on using the setMw(m1) ∩
. . . ∩Mw(mℓ) and the order ⊑w, and demonstrates that in this case
there is a unique LCP solution known in closed form. Finally, an idea of
combination by distance minimization is suggested but not studied in
Cattaneo 2003, 2011. As will be seen in 5.4, this author pursues a different
goal anyway as the constraints are on marginal mass functions.

Table 5.2 summarizes some basic theoretical properties satisfied by
operators ∩⃝, ⊕, ? and ⊓ f ,k.

Let us illustrate the operator discrepancies on a simple situation
inspired from Zadeh’s counter-example (c.f. Zadeh 1986). Suppose
m1 = αm{b} + (1− α)m{a} and m2 = αm{b} + (1− α)m{c} are
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operator condition for use commutativity associativity idempotence invariance w.r.t. neutral
refinement element

∩⃝ none yes yes no yes mΘ

⊕ m1 ∩⃝2 (∅) < 1 yes yes no yes mΘ? m1 (Θ) > 0 and m2 (Θ) > 0 yes yes yes yes none
⊓q,k none yes quasi yes no mΘ

⊓pl,k none yes quasi yes no mΘ

Table 5.2: Summary of rule properties.
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Figure 5.1: Mass assigned to
{b} after combination of m1 =
αm{b} + (1− α)m{a} and m2 =
αm{b} + (1− α)m{c} with ∩⃝, ? and
⊓ f ,2.

two mass functions on a frame Θ = {a, b, c}. Figure 5.1 shows the
mass assigned to {b}, the commonly supported element of m1 and m2,
after combination by ∩⃝, ? and ⊓ f ,2. The same masses are obtained for
f ∈ {pl, q}. A very small mass ϵ = 1e − 4 was assigned to Θ while a
mass ϵ

2 was removed from each focal element of each input mass function
when using ? so as to circumvent the non-dogmatic constraint.

As could be expected, the distance based operator tries to maintain
as much evidence on {b} as possible. A striking fact is that we have
obviously m1 ⊓ f ,2 m2 ({b}) = α. More precisely, we have m1 ⊓ f ,2 m2 =

(1− α)m∅ + αm{b}. This result can be proved for any finite k ≥ 2
when f = q. Let q1∧2 denote the entrywise minimum of functions q1

and q2. In this particular setting, q1∧2 happens to be a valid commonality
function. Consequently, m1∧2 ∈ Mq (m1) ∩Mq (m2). By definition of
the partial order ⊑q, for any function m ∈ Mq (m1) ∩Mq (m2), we have
m ⊑q m1∧2. Since we also have m1∧2 ⊑q mΘ and dq,k is ⊑q-compatible,
then m1 ⊓q,k m2 = m1∧2. In other words, the distance based operators
coincide with the minimum rule applied to commonalities in this case.
When f = pl, the result can also be proved. For any m ∈ Mpl (m1) ∩
Mpl (m2), the constraints pl ({a}) = pl ({c}) = 0 imply that only {b}
and ∅ are possible focal sets for m. More precisely, this actually implies
thatMpl (m1) ∩Mpl (m2) is the segment (1− β)m∅ + βm{b} inM
parametrized by β ∈ [0; α]. ⊑pl is a total order for this segment. From
relation (4.19), we obtain m1 ⊓pl,k m2 = (1− α)m∅ + αm{b}.

A closed form expression for the other rules can also be obtained. It
is easy to see that m1 ∩⃝m2 =

(
1− α2)m∅ + α2m{b}. Concerning the

cautious rule, taking the limit ϵ→ 0, we obtain

m1 ? m2 =

m∅ if α < 1

m{b} if α = 1
.

This example shows also that the behavior of Denœux’s cautious rule? may not be so cautious, as it keeps no mass on {b} except when α = 1.
This is a quite bold behavior, due mainly to the fact thatMw induces
stronger constraints thanMpl orMq. This clearly shows that while
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idempotence is a pre-requisite to have a cautious attitude towards source
(in)dependence, it is not sufficient to guarantee a really cautious behavior
when mass functions are not identical. Even the conjunctive rule appears
to have an intermediate behavior as compared to the two others, hence
could be termed as more cautious than Denœux’s rule. In Denœux 2008,
example 3, Denœux actually shows that using ? can yield a mass function
that is w-included in the result of the conjunctive combination. It should
also be stressed that this is a limit use case for ?, hence arguably an
unfavourable one.

The normalized versions of these three rules deserve also some com-
ments. This time, we obtain m1 ⊓∗q,k m2 = m1 ⊓∗pl,k m2 = m1 ⊕ m2 =

m{b} which is the result criticized by Zadeh. In contrast, the normalized
cautious rule achieves a progressive reduction of the support given to {b}
as α decreases. The normalized cautious rule appears to offer an inter-
mediate behavior as compared to the conjunctive rule and either of the
unnormalized operator ⊓q,k or ⊓pl,k. In particular, when α = 1

2 , m1 ?∗ m2

is the uniform Bayesian mass function whereas operators ⊓q,k and ⊓pl,k

are still giving some support to {b} solely. This time, the rule ?∗ ap-
pears indeed more cautious than ours, but it could be argued to no longer
be really conjunctive, as it supports every element whereas each source
respectively discarded one as totally impossible.

5.3.5.2 A comparison with related works in the disjunctive case

The distance based disjunctive operators are compared to standard dis-
junctives rules: ∪⃝ and >. Table 5.3 summarizes some basic theoretical
properties satisfied by operators ∪⃝, > and ⊔ f ,k.

operator condition for use commutativity associativity idempotence invariance w.r.t. neutral
refinement element

∪⃝ none yes yes no yes m∅> m1 (∅) > 0 and m2 (∅) > 0 yes yes yes yes none
⊔q,k none yes quasi yes no m∅

⊔pl,k none yes quasi yes no m∅

Table 5.3: Basic properties of operators ∪⃝,> and ⊔ f ,k .

Let us illustrate the disjunctive operator discrepancies on a simple situ-
ation analogous to the experiment presented in the conjunctive case. Sup-
pose m1 = αm{a,b} + (1− α)m{a,c} and m2 = αm{a,b} + (1− α)m{b,c}
are two mass functions on a frame Θ = {a, b, c}. Figure 5.2 shows the
mass assigned to {a, b} after combination by ∪⃝, > and ⊔ f ,2. The same
masses are obtained for f ∈ {pl, q}. A very small mass ϵ = 1e− 4 was
assigned to ∅ while a mass ϵ

2 was removed from each focal element of
each input mass function when using > so as to circumvent the subnor-
mality constraint.

The aspect of figure 5.2 is remarkably similar to the conjunctive case
but the conclusions that we will draw from it are different. As could
be expected, the distance based disjunctive operators try to maintain
as much evidence on {a, b} as possible. A striking fact is that we have
obviously m1 ⊔ f ,2 m2 ({a, b}) = α. More precisely, we have m1 ⊔ f ,2

m2 = (1− α)mΘ + αm{a,b}.
This result can be proved for any finite k ≥ 2 when f = q. Let

q1∨2 denote the entrywise maximum of functions q1 and q2. We have



belief spaces: from magmas to monoids 105

 

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

α

m
({
a
,b
})

a
ft
er

co
m
b
in
a
ti
o
n ∪©

∨© and ∨©∗

tf,2

 

Figure 5.2: Mass assigned to {a, b}
after combination of m1 = αm{a,b} +
(1− α)m{a,c} and m2 = αm{a,b} + (1−
α)m{b,c} with ∪⃝, > and ⊔ f ,2.

q1∨2 ({a}) = q1∨2 ({b}) = 1 which implies that for any m ∈ Gq (m1) ∩
Gq (m2), only supersets of {a, b} can be focal sets of m. In this example,
this means that m = βm{a,b} + (1− β)mΘ with β ∈ [0; 1]. Observing
that if q denotes the commonality function in correspondence with m, we
also have

q1∨2 ({c}) ≤ q ({c}) ,

⇔ 1− α ≤ ∑
B⊆{c}

m (B) .

Since Θ is the only set that is a superset of both {a, b} and {c}, we de-
duce that m (Θ) ≥ 1− α or equivalently β ≤ α.

More precisely, this actually implies that Gq (m1) ∩ Gq (m2) is the
segment (1− β)mΘ + βm{a,b} inM parametrized by β ∈ [0; α]. ⊑q

is a total order for this segment. This segment can also be seen as the set
of mass functions obtained by discounting αm{a,b} + (1− α)mΘ. From
relation (4.19), we obtain m1 ⊔q,k m2 = (1− α)mΘ + αm{a,b}. When
f = pl, the same reasoning applies.

A closed form expression for the other rules can also be obtained. It is
easy to see that m1 ∪⃝m2 =

(
1− α2)mΘ + α2m{a,b}. Concerning the bold

rule, taking the limit ϵ→ 0, we obtain

m1 > m2 =

mΘ if α < 1

m{a,b} if α = 1
.

Like in the conjunctive example, the behavior of the bold rule > is
symptomatic of the fact that Gw induces stronger constraints than Gpl or
Gq. The bold rule keeps no mass on {a, b} except when α = 1. Finally,
the disjunctive rule appears to have an intermediate behavior as compared
to the two others. Also, this time all normalized versions of these rules
coincide with their unnormalized counterparts.

5.4 Combination on product spaces

In the previous section, combination rules are seen as binary opera-
tions onM×M but this does not mean that on the way from a pair
(m1, m2) ∈ M2 to a combined mass function m ∈ M we cannot
visit larger spaces thanM. In particular, when we want to combine two
sources

(
Ω1, σΩ1 , µ1, Γ1

)
and

(
Ω2, σΩ2 , µ2, Γ2

)
where the codomain

of Γ1 and Γ2 is Θ, we can be interested in the set of mass functions on
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Θ× Θ whose marginals are the mass functions induced by each source.
Let us introduce the following set of mass functions

J Θ×Θ
12 =

{
m ∈ J Θ×Θ| ∑

E⊆Θ
m (E, B) = m1 (B) and

∑
F⊆Θ

m (B, F) = m2 (B) , ∀B ⊆ Θ

}
,

In this section, we need to specify the
space Z spanning the mass space, which is
thus now denoted asMZ .

where J Θ×Θ is the set of functions on Θ × Θ such that their focal
elements are cross products E× F for E and F subsets of Θ. In this case
we note m (E× F) = m (E, F) and the function m is called a joint mass
function. We have

J Θ×Θ ⊊MΘ×Θ

because subsets of Θ × Θ can have more complicated forms21. For any 21. see figure 2.2 for an example of a
subset that is not a cross product.joint mass function m, the marginalization (2.16) boils down to a summa-

tion
∑

B⊆Θ1×Θ2
projΘ1

(B)=A

m (B) = ∑
E⊆Θ2

m (A, E) , ∀A ⊆ Θ1.

Here we add subscripts to space Θ so as to specify the corresponding
source but Θ1 = Θ2 = Θ.

This section presents a number of approaches that resort to such joint
mass functions to produce the combination result.

5.4.1 Approximate joint mass functions

Alleging we know the joint mass function m whose marginals are m1

and m2 induced by sources with unknown dependencies, Cattaneo 2003
derives the conjunctively combined mass function Conj [m] as

Conj [m] (B) =


1

1−K(m) ∑
E,F⊆Θ
E∩F=B

m (E, F) if B ̸= ∅

0 if B = ∅

, (5.32)

where K (m) = ∑
E,F⊆Θ
E∩F=∅

m (E, F). If the joint mass function factorizes as

the product of the marginals, then Dempster’s rule is retrieved. Destercke
and Dubois 2011 use the same mechanism in an unnormalized context and
the conjunctive rule is retrieved under the same assumption. This obser-
vation is one way to better understand what are necessary conditions to
apply Dempster’s rule or the conjunctive rule.

The real challenge in these approaches is obviously to obtain the joint
mass function from marginals which is an ill-posed problem for infinitely
many joint mass functions share identical marginals. Among other possi-
bilities, Cattaneo 2003 proposes to obtain the joint mass function through
conflict minimization

m∗ ∈ arg min
m12∈J Θ×Θ

12

K (m12) (5.33)

This optimization problem has in general multiple solutions. He thus
argues that among the minimally conflictual joint mass functions, the
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least specific (3.7) among the Conj [m∗] should be retained as final result.
Unfortunately, there may still be multiple mass functions minimizing
both conflict and specificity. When the induced rule is well defined, the
obtained combination is commutative and idempotent.

Destercke and Dubois 2011 advocate for least committed solutions in
order to select joint mass functions in J Θ×Θ

12 but again such solutions are
not unique. They also prove the existence of idempotent conjunctive rules
that can be built using the commensuration method 22 so that the solution

22. A pair of mass functions such that
they have the same number of focal
elements and the same mass values are
said to be commensurate. For instance,
m1 = 0.25m{a} + 0.75m{b,c} and
m2 = 0.25m{a,b} + 0.75m{a,c} are
commensurate.

The commensuration method (Dubois
and Yager 1992) consists in subdividing (in
an additive way) each mass value into a
set of smaller values so that subdivisions
of mass functions are commensurate.
They can be then combined by assigning
mass subdivisions to the intersection of
the focal elements to which they belong
in each of the input mass functions. The
result is dependent on the way masses are
split and focal element are indexed.

is in J Θ×Θ
12 and has maximal expected cardinality (3.8). However, they

fail to obtain an operational way to compute the combined mass function
in the general case.

Cattaneo 2011 made a second contribution in the wake of the afore-
mentioned one. He argues that the combined joint mass should be

m ∈ Conj

 arg max
m12∈J Θ×Θ

12

pl12

 = arg max
m0∈Ms(m1)∩Ms(m2)

pl0, (5.34)

or the equivalent process with commonality functions. Since there is
again, in general, multiple solutions, the author recommends to use an in-
formative content measure to select the least informative function among
candidate ones. Actually the approach of Destercke and Dubois 2011 is in
line with the above where the measure in question is the expected cardi-
nality. Any rule of this kind is ensured to be conjunctive, commutative,
idempotent, quasi-associative and to generalize Dempster’s conditioning.

However, these rules are not fully specified since the information
measure will not mandatorily yield a unique solution either and the max-
imization problem is not trivial to solve. Cattaneo thus suggests to use
another rule as a proxy for the above one. This rule is denoted by ⋏⃝ and
specified by the following system of equations

m̃ (A) = max

{
0; 1− pl1 ⋏ pl2 (Ac)− ∑

B⊊A
m̃ (B)

}
, ∀A ⊆ Θ, (5.35)

where
pl1 ⋏ pl2 (A) = min

B⊆A
pl1 (B) + pl2 (A \ B) . (5.36)

The system can be solved incrementally by starting to compute m̃ (∅).
The function m̃ needs to be renormalized to obtain a bona fide mass func-
tion so the combination result is

m1 ⋏⃝m2 =


m̃

∑
B⊆Θ
B ̸=∅

m̃(B) if ∑
B⊆Θ
B ̸=∅

m̃ (B) > 0

mΘ otherwise
. (5.37)

This rule is also conjunctive, commutative, idempotent, quasi-associative
and a generalization of Dempster’s conditioning. On top of that, it is
invariant w.r.t. refinement. The author actually introduces two general
class of rules with equivalent properties (one class for plausibilities and
another one for commonalities). This rule is an approximation of the
objective one as it coincides in a number of situations (when n = 2 for
instance) but when it does not, we cannot really quantify how close the



108 algebraic structures and metrics for belief functions

two rules are. As final remark, the vacuous mass function is the neutral
element of both the objective and proxy rules. From (5.34), this is obvious
asMs (mΘ) =M. For the proxy rule, we can write

pl1 ⋏ plΘ (A) = min
B⊆A

pl1 (B) + plΘ (A \ B) , (5.38)

= min
B⊆A

pl1 (B) + 1, (5.39)

= min
B⊆A

pl1 (B) , (5.40)

= pl1 (A) . (5.41)

In this case, the computation of m̃ is just a straightforward computation of
m1 from pl1.

5.4.2 Meta-information integration

We have seen in 2.6 that belief functions are instrumental to tackle the
problem of information fusion under meta-knowledge regarding the
truthfulness of the sources. In particular, α-junctions allow to rectify spe-
cial forms of untruthfulnesses inside the combination process. Pichon et
al. 2014 proposed a more general combination framework that generalizes
α-junctions and allow to perform combination under various forms of un-
truthfulness (partially or completely deceptive information) or irrelevance
(lack of useful information).

When a piece of information is irrelevant, we have to throw it away.
For instance, a broken sensor may deliver a constant value that is just
meaningless. When a piece of information is untruthful, there may be a
way to rectify it and integrate it. For instance, a biased sensor delivers
useful information once the bias is subtracted to the reported value.

Example 27. Let T and R denote two binary variables representing re-
spectively the truthfulness and the relevance of a piece of information.
Let S denote the space of pairs (R, T). Define the following multi-valued
mapping ΓA : S → 2Θ:

ΓA (R, T) =


A if R = T = 1

Ac if R = 1 and T = 0

Θ otherwise

.

The source (S , σS , µs, ΓA) induces a belief function on Θ. The cor-
responding mass function m is specified by two probability values:
q = µs (T = 1|R = 1) and p = µs (R = 1). We obtain the following
separable mass function

m (B) =


p.q if B = A

p. (1− q) if B = Ac

1− p if B = Θ

0 otherwise

.

This mass function is interpreted as the rectified version of the testimony
θ ∈ A under uncertain truthfulness and relevance. When information is
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surely truthful as long as it is relevant (q = 1), the discounting operation
(2.10) is retrieved and the rectified mass function is m1−p

A .

The above example can be generalized in several ways. If the basic
testimony is not a categorical mass function mA but a general one m
induced by the source (Ω, σΩ, µ, Γ), then we can define a rectified source(
Ω× S , σΩ×S , µ⊗ µs, Γ̃

)
and

Γ̃ (ω, R, T) =


Γ (ω) if R = T = 1

Γ (ω)c if R = 1 and T = 0

Θ otherwise

, (5.42)

= ΓΓ(ω) (R, T) . (5.43)

In a more general case, meta-information also comes in the form of a
belief function on S . So here, we have two sources:
• a source containing information on θ: (Ω, σΩ, µ, Γ) which induces a

belief function on Θ. The corresponding unnormalized mass function
is denoted by m = µ ◦ Γ−1.

• a source containing meta-information on (R, T): (Ω′, σΩ′ , µmeta, Γmeta)

which induces a belief function on S . The corresponding unnormalized
mass function is denoted by mmeta = µmeta ◦ Γ−1

meta.
The behavior based correction (BBC) scheme consists in the following
combination of these two sources so as to obtain the rectified source
(Ω×Ω′, σΩ×Ω′ , µ⊗ µmeta, Γrec) and ∀ω ∈ Ω, ∀ω′ ∈ Ω′

Γrec
(
ω, ω′

)
=

∪
s∈Γmeta(ω′)

Γ̃ (ω, s) . (5.44)

So if mrec denotes the rectified version of mass function m that is induced
by the rectified source, we obtain for all B ⊆ Θ

To better understand how (5.48) is ob-
tained from (5.47): let H denote a subset
of S ; let A denote a subset of Θ such that∪
s∈H

ΓA (s) = B.

Some of the terms in the sum of (5.47)
are the following

∑
ω∈Γ−1(A),ω′∈Γ−1

meta(H)

µ (ω)× µmeta
(
ω′
)

and the above sum is equal to m (A)×
mmeta (H). So (5.47) can be rewritten as a
sum of such partial sums for any H and A
that are compliant with the constraint.

mrec (B) = µ⊗ µmeta ◦ Γ−1
rec (B) , (5.45)

= ∑
ω∈Ω,ω′∈Ω′

Γrec(ω,ω′)=B

µ⊗ µmeta
(
ω, ω′

)
, (5.46)

= ∑
ω∈Ω,ω′∈Ω′

Γrec(ω,ω′)=B

µ (ω)× µmeta
(
ω′
)

, (5.47)

= ∑
A⊆Θ,H⊆S∪

s∈H
ΓA(s)=B

m (A)×mmeta (H) . (5.48)

BBC is a generalization of the ballooning extension (2.19). Besides,
when the meta-source induces a vacuous mass function on S and S is the
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meta-frame from example 27, we obtain

mrec (B) = ∑
A⊆Θ,H⊆S∪

s∈H
ΓA(s)=B

m (A)mmeta (H) , (5.49)

= ∑
A⊆Θ∪

s∈S
ΓA(s)=B

m (A) , (5.50)

= ∑
A⊆Θ
Θ=B

m (A) , (5.51)

=

1 if B = Θ

0 otherwise
. (5.52)

So when the meta-knowledge is not available, BBC follows an extremely
cautious strategy and suggest to throw away all information.

Finally, if we want to combine two sources and their respective meta
sources, we can just rectify each source individually and then combine the
rectified sources using the conjunctive rule. The frame S can take more
general forms than just (R, T) pairs, see Pichon et al. 2014, example 1 and
2.

5.5 Conclusions

By viewing combination rules as binary operations, we can examine what
algebraic properties hold for the mass space, depending on the chosen rule
it is endowed with. Like for other kinds of structures previously discussed
in this monograph, our main conclusion is that the mass space cannot
attain very rich structures. Even the group structure does not seem to
be achievable for belief functions because combination operations are
difficult to reverse, albeit not totally impossible. The absence of group
structure is not a strong impediment to the theory of belief functions
because there are more general or complementary operations that can
help to recover a previous state of belief if necessary.

In the hierarchy of algebraic structures, the entire mass space can be
granted (at most) the status of commutative monoid. Some subsets of it
can be granted the status of semilattice, as already seen in chapter 3. We
review the structure status of the mass space w.r.t. the rules presented in
this chapter in table 5.4.

Rule Algebraic structure Space
α-junction Commutative Monoid Mass space
⊓ and ⊔ Idempotent Commutative Magma Mass space? Semilattice Set of non dogmatic mass functions> Semilattice Set of subnormal mass functions
Yager Commutative Magma mass space

Dubois and Prade Commutative Magma mass space
Lefervre Commutative Magma mass space
PCR Commutative Magma mass space
RCR Commutative Magma mass space
Mix Commutative Magma mass space
⋏⃝ Idempotent Commutative Magma Mass space

Table 5.4: Algebraic structures induced by
combination rules.
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General Conclusion

In this general conclusion, we start with a bundle of the most important general comments we made on the theory
of belief functions throughout this monograph. Finally, we examine several research directions that we plan to
follow in short, middle and long term.

5.6 Take home messages on belief functions and associated structures

In the quest for a mathematical theory of uncertainty, several frameworks have been developed through the past
centuries. All of them are somehow connected and share a vision of quantifiable chances of events through num-
bers living in the unit interval [0; 1]. These models allow us to evaluate what outcome is more likely than the
others with respect to an ill known variable of interest.

A major difficulty in deriving a unified and comprehensive theory of uncertainty is that uncertainty has several
facets. We have evoked aleatory and epistemic uncertainties but there are other taxonomies. The diversity in
the nature of uncertainty makes it difficult for a mathematical tool to meet the requirements induced by each
uncertainty type.

One aspect of uncertainty, known as Knightian uncertainty, is that there are usually several levels of uncer-
tainty especially in a statistical context where we want to infer the variable of interest from data. If a model
allows us to compute a real valued estimate of the chances of an event (first level), this value itself may not be
certain. We can also evaluate how likely this value is (second level) but again this evaluation is subject to un-
certainty. This phenomenon is reminiscent of a fractal behavior. Obviously, the mathematical complexity grows
with the uncertainty level one touches and we most often build first order models (with credible or confidence
intervals) and sometimes second order ones. In this monograph, the presented frameworks address Knightian
uncertainty and are attempts to provide intermediate solutions between the first and the second level. For the
first level, probability theory is undisputed and has proved to provide excellent results in almost every field of
science. The full second order consists in probabilities of probabilities but is very abstract and complex to use in
practice. Consequently, it appears justified to look for trade-off frameworks with higher representation power
than probabilities but less computation burden than second order probabilities.

This monograph offers insights into the theory of belief functions which is a simplified second order model that
generalizes probability theory. The axioms in this theory allow to perform calculus in a computationally feasible
way in many situations and applicative contexts. A belief function can be interpreted as probability bounds, but
not all set of probability bounds can be represented by a belief function. Belief functions can also be interpreted
as the probability that evidence implies that the variable of interest belongs to a given set. The theory of belief
functions comprises mathematical tools allowing to build belief functions from data, update them when necessary,
perform inference and draw conclusions in a principled way.

It is nonetheless, in general, more difficult to use belief functions than standard probabilities as some of these
tools have subtle pre-requisites. In the probability framework, independence assumption are frequently assumed
and even if it is not verified, the model remains consistent. For example the naive Bayes classifier makes such an
assumption which is actually instrumental to prevent overfitting. In contrast, alleging illegitimate independence
when using belief functions and for instance combine them using Dempster’s rule can lead to misleading conclu-
sions. Let alone these pitfalls, belief function calculus has most of the time a higher time and memory complexity
than probabilistic calculus.

Since belief functions are rather general objects as compared to probability distributions or sets, a very rich
structure for belief spaces cannot be achieved. By belief spaces, we mean the space where belief functions live and
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those isomorphic to this one. Three types of structures have been reviewed in this manuscript:
• order theoretic structure,
• metric structure,
• algebraic structure.

By combining all these structures, a belief space is (at most) a partially ordered metric commutative monoid.
Some subspaces can be granted the status of semi-lattice and one of them is a (full) lattice.

A linear presentation of these structures is nearly impossible as they are quite intricate notions. Metrics can be
used to derive pre-orders or combination rules. Some combination rules induce partial orders (for subclasses of
belief functions). Partial orders and combination rules should be consistent with metrics. In conclusion, the global
picture is rather complex. We hope that this monograph is nonetheless pleasant to read and does justice to the
logic behind belief functions and the structures of their space.

5.7 Future research directions

In this section, we give research perspectives regarding open problems and challenging tasks in connection with
the theory of belief functions. These perspectives will be addressed in the coming year (short term), in the next
two years (middle term) or at a horizon of five years (long term)

5.7.1 Short term perspectives

Most of the personal contributions reported in this document are related to distances for belief functions. Since
some expertise in this field has been acquired, we plan to pursue some efforts in this direction. In particular, an
open problem evoked in the conclusions of chapter 4 is that no distance has been proved to be consistent with
both a combination rule and an informative partial order. We will investigate this question in the next months.
The consistency of evidential distance with other aspects (like uncertainty measures) is also a complementary
question to be addressed.

In addition, the collaboration with Sebastien Destercke will be continued and his expertise in imprecise proba-
bilities will allow us to investigate the possibility to carry over these concepts to this more general framework. To
that end, we will need to identify candidate distances and informative partial orders. Obviously, the set inclusion
relation between closed convex subsets of probability distributions induces an informative partial order for lower
previsions. The partial order obtained by comparing plausibility functions can be generalized to a comparison
between upper probabilities. Some dissimilarities for lower previsions are introduced in Abellán and Gómez 2006.
One of these dissimilarities possess properties that are related to our definition of consistency between distances
and partial orders in the belief function theory.

An important topic which is outside of the scope of this monograph (but no less important) is the application
of the theory of belief functions in various fields of engineering sciences and econometrics. A field of application
in which we have made a contribution is signal and image processing. In this field, the aim is to process functional
data (i.e signals) and extract relevant information and patterns from them. In Klein and Colot 2012, we introduced
an image contour detection method based on an evidential model of pixel values. A grayscale image is a 2D finite
grid. Each grid point is called pixel and is assigned a quantized value. Most of the time this value is encoded on
one byte, hence 256 pixels values are possible. We proposed a belief function model for pixel values. The corre-
sponding belief function is consonant and the focal elements are nested supersets of the sensor value. We showed
that Dempster’s degree of conflict obtained when combining belief functions induced by a pixel neighborhood
provides remarkable contour detection performances as compared to standard approaches.

More generally, we have the feeling that Dempster’s idea of a random variable which cannot be precisely ob-
served is well adapted to appraise the uncertainty in digital signals. A similar idea is also developed by Cooman
and Zaffalon 2004 using lower previsions. A manuscript is under preparation in which we elaborate on this idea
to derive pixel value upper probabilities. We customize the general digital signal modelization problem to the case
of photon counting sensors and apply it image denoising. The preliminary results proves that the model produces
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competitive performances as compared to the famous Yaroslavsky filter.

5.7.2 Middle term perspectives

As middle term perspective, we plan to focus on another application field of belief functions or ill-known proba-
bilities at large: machine learning. A first track to follow is the adaptation of the probabilistic classifier combina-
tions that have been studied as part of Mahmoud Albardan’s PhD. The bulk of this seminal work is an attempt to
circumvent the classifier output dependencies by applying idempotent probability distribution aggregation using
t-norms followed by a renormalization. The aggregated distributions are empirical performance conditional prob-
abilities (actual class given predicted class). This approach allows to define a continuum of models ranging form
independence to total dependence using only one hyperparameter. By using a model to build belief functions for
the same variable, idempotent combination rules may be tried as well.

Another idea is to apply Pichon et al. 2014’s behavior based correction to derive robust classifiers. The rele-
vance of a classifier may be evaluated empirically at training time through cross-validation. If the output of the
classifier is a belief function, we can use this information to compute rectified belief functions so that poorly rele-
vant classifiers have less influence in the final class prediction. As for truthfulness, the goal may not be to estimate
it from data but to obtain a classifier that can be updated at limited cost, i.e. we do not have to retrain the classifier
to integrate this piece of meta-information.

5.7.3 Long term perspectives

As remarked in chapter 5, deriving a reversible combination rule is extremely challenging. A more realistic goal
is to introduce a methodology that relies on several rules or other mechanisms and achieves evidence deletion
and insertion. The behavior based correction mechanism is one such approach but it requires meta-information.
When this meta-information is missing, a spare technique would be useful. Intuitively, the solution lies in a subtle
mixture of conjunctive and disjunctive rules. For instance, the rule introduced Dubois and Prade 1992 is a partial
answer. Indeed for any mass function whose focal core is A, its combination with mAc using this rule returns
the vacuous mass function mΘ, so we could conclude that any combination with a simple mass function can be
”undone”. As shown in the following example, this is not true because the rule is not associative.

Example 28. Let Θ = {a, b, c} denote a space. Suppose we have combined m1 = 1
2 m{a} +

1
2 m{b} and m2 =

1
2 m{a} +

1
2 m{a,b} using Dubois and Prade’s rule. In this case, we obtain mdp = 1

2 m{a} +
1
4 m{b} +

1
4 m{a,b}. The

question is: can we find a mass function m such that by combination under Dubois and Prade’s rule with mdp
yields m1?

First, as suggested above, we may want to try m = m{c} because in this case the combination of m and m2 is
the vacuous mass function. This does not work as mdp combined with m{c} using Dubois and Prade’s rule yields
also the vacuous mass function, so we do not recover m1.

Second, we remark that a focal element of m that does not contain a generates conflict with the mass assigned
to {a} in mdp so some positive mass will be assigned to their disjunction which is not a focal element of m1.
Likewise, a focal element of m must contain b as well so it must be a superset of {a, b}. But since {a, b} is a focal
element of mdp, a positive mass will be assigned to {a, b} by the conjunctive component of Dubois and Prades
rule, ergo m1 cannot be recovered.

Although reversibility is not achieved in the above toy example, there are many situations in which Dubois and
Prade’s rule achieves decombination because its conjunctive component is compensated by the disjunctive one
and conversely.

Example 29. Let m1 = mA and m2 = mB denote two categorical mass functions on Θ such that A ∩ B ̸= ∅.
In this case, their combination by Dubois and Prade’s rule is mdp = mA∩B. The question is: can we find a mass
function m such that by combination under Dubois and Prade’s rule with mdp yields m1?
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This time the answer is yes. Take m = mA\(A∩B). The combination of mdp and m using Dubois and Prade’s
rule amounts to a the disjunctive rule which yields m1 = mA.

A first stepping stone would be to prove that such compensations are possible at least using a pair of rules.

5.8 Career review

In this very last section, I give some comments on my eight-year long experience as assistant professor in the
university of Lille1. Since these comments are personal, I will not use the conventional ”we” but the subjective ”I”
instead.

5.8.1 Teaching

Teaching is much more challenging than what general public pictures. From my experience, a key point in the
success of a teaching unit is the ability of the lecturer to adapt the message to the audience. For instance, I teach
machine learning related units to three different groups of students (students from the computer sciences depart-
ment, students from the electrical engineering and automation department and students from Ecole Centrale de
Lille who have a strong mathematical background). For each group, I had to find different justifications as to why
this course unit was important in their future careers. I also had to design different practicals because they do not
have the same expectations. Mathematicians want to see equations in actions. Computer scientists want to code
and use libraries. People from engineering sciences want to apply it in their field of expertise.

Of course teaching is not just of question of pleasing students and meet their expectations. Sometimes, complex
concepts and technicalities need to be detailed. Students can accept them if they are rapidly proved to be relevant
and not just piled for the whole semester.

I believe I have improved my abilities to pass on knowledge but there is also room for further improvements.
I had the opportunity to benefit from colleagues to exchange ideas and good practices. In Lille1 and in Centrale,
colleagues are strongly committing themselves to improve teaching materials year after year. On the downside,
the volume of hours we need to teach is, in my opinion, too big to really be efficient in this task. Another problem
is that the profile of students is changing rapidly and we are not really aware of what they really know or not.
Also, at the university, the audience is very heterogeneous and it is almost impossible to deliver teachings that
satisfy the best students while not letting others drowning.

5.8.2 Research

I have achieved several goals that I had when I took my assistant professor position. I have pursued my interest
in belief functions and have now the feeling to have a much deeper understanding of the theory than at the end
of my PhD. Perhaps, the greatest aspect of my job is that I keep learning day after day and I now see that this is
essential.

Another satisfaction is that I have enlarged my field of expertise to medical image processing and machine
learning. For each of these topics I have supervised (or am supervising) a PhD. Ideally, I would like to take advan-
tage of these skills by mixing them (use evidential models to derive classifiers, use machine learning for medical
image segmentation and so on).

Sometimes, I have a few regrets not to have worked as postdoc for a couple of years because this allows to
boost the publication list since postdoc people have acquired scientific writing abilities and do not have to spend
time on teaching. Postdoc positions are also very instrumental to build an international network and increase the
visibility of research activities. I have national collaborations but an objective for the next years is to start also
international ones.

The pace of my publications has increased and I am confident that I can maintain it. In spite of the pressure
of institutions, I have tried to focus on publication quality not quantity. I select journals whose review policy is
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trustworthy and there is limited overlap between my papers (except when a journal article is an extended version
of a conference one).

Another point that I need to work on is research project management. In France, as in almost every country,
there are national institutions (CNRS and ANR) that launch project campaigns every year. The corresponding
project are endowed with substantial fundings and increase a researcher visibility. Perhaps, I had the feeling that
I needed to accomplish more before applying to these calls for projects but I think the time has come for stepping
up. My laboratory (CRIStAL) and my research team (SigMA) provide a nice research and motivating environment
that is helpful to apply for such projects.

5.8.3 Team leading

Team leading is really not something I expected to do so early and it was not a motivation when I took my assis-
tant professor position. Yet, after three years the teaching team leader got retired and the dean of the computer
sciences, electrical engineering and automation faculty asked me to be his successor. I accepted and started to
involve myself in the management of my university.

The first year was difficult because I took part in the organization revision of the electrical engineering and
automation bachelor which lead to endless negotiations as to what teaching units we keep, modify or leave un-
touched. After two years, I got a better understanding of the university system and started to enjoy the responsi-
bilities. I have the feeling that I succeeded to defend the interests of my team. I also learned that team leading is
a very daily responsibility and I am often interrupted in the middle of a research effort because there are urgent
matter to discuss. An essential point in team leading is being a good listener and pay attention to colleagues.
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AAppendices

a .1 Rationality requirement axioms

Savage 1954 defined seven axioms which he argues are necessary conditions to make rational decisions. For some
preorder ⪯ endowing the set of acts Y, the seven axioms are
(i) the preorder ⪯ is a total preorder.
(ii) sure thing principle: for any pair of acts (y, y′) let yAy′ denote the following compound act:

(
yAy′

)
(a) =

y (a) if a ∈ A

y′ (a) if a ∈ Ac
. (A.1)

If y1 Ay′ ⪯ y2 Ay′, then we say that y1 ⪯ y2 given A w.r.t. y′. The sure thing principle states that if y1 ⪯ y2

given A holds w.r.t. y′ then it holds as well w.r.t. any other act.
(iii) If for any pair of acts (y, y′), y ⪯ y′ given A, then A is said to be null.

If A is not null and if (y, y′) are constant acts, then for any act y0 y0 Ay ⪯ y0 Ay′ ⇔ y ⪯ y′.
(iv) Let y1, y′1, y2, y′2 denote four constant acts with the following strict preference relations: y1 ≺ y′1 and y2 ≺ y′2.

For any A, B ⊆ Θ,
y1 Ay′1 ⪯ y1By′1 ⇔ y2 Ay′2 ⪯ y2By′2. (A.2)

(v) There are two constant acts y⊥ and y⊤ with a strict preference: y⊥ ≺ y⊤.
(vi) For any y1, y2, y3 in Y such that y1 ⪯ y2, there is a finite partition (Bi)

k
i=1 of Θ such that

y1Biy3 ⪯ y2 and y1 ⪯ y2Biy3, ∀i. (A.3)

(vii) For two acts y1 and y2, if y1 is preferred (resp. less preferred) to the constant act y2 (a) for each a ∈ A, then
y1 ⪰ y2 (resp. y1 ⪯ y2) given A.

a .2 Proofs of results on the consistency of distances with α-junctions

Proof. (of prop. 3) - Suppose m1, m2 and m3 are three mass functions defined on Θ. K1, K2 and K3 are their
respective evidential matrices with respect to a given α-junction denoted by ⊙α. The 1-operator-norm has the
sub-multiplicative property, i.e. for all matrices A and B, one has:

∥AB∥op1 ≤ ∥A∥op1 . ∥B∥op1

One can thus write:

∥(K1 −K2)K3∥op1 ≤ ∥K1 −K2∥op1 . ∥K3∥op1 ,

Given that ∥K3∥op1 = 1, we have:

∥(K1 −K2)K3∥op1 ≤ ∥K1 −K2∥op1 ,

⇔ dop1 (m1 ⊙α m3, m2 ⊙α m3) ≤ dop1 (m1, m2) .

By definition, this latter inequality means that distance dop1 is consistent with rule ⊙α.
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Proof. (of prop. 4) - Suppose m1, m2 and m3 are three mass functions defined on Θ. Suppose K1, K2 and K3 are
their respective evidential matrices with respect to an α-junction denoted by ⊙α. The L1 norm of a matrix is the
sum over all columns of the L1 norms of its column vectors:

∥(K1 −K2)K3∥1= ∑
A⊆Θ

∥∥∥m13|α A −m23|α A

∥∥∥
1

, (A.4)

with mi3|α A = mi ⊙α mA ⊙α m3. Besides, according to proposition 3, dop1 is consistent with ⊙α. Inequality (4.15)
thus applies, and after multiplying both sides of this inequality by the normalizing constant of the distance, we
have that for any A ⊆ Θ: ∥∥∥(K1|α A −K2|α A

)
K3

∥∥∥
op1

≤
∥∥∥K1|α A −K2|α A

∥∥∥
op1

,

with Ki|α A the evidential matrix corresponding to mi|α A with respect to ⊙α. Now applying corollary 1 on each
side of the above inequality gives: ∥∥∥m13|α A −m23|α A

∥∥∥
1
≤
∥∥∥m1|α A −m2|α A

∥∥∥
1

. (A.5)

Let us now use this inequality in equation (A.4):

∥(K1 −K2)K3∥1 ≤ ∑
A⊆Θ

∥∥∥m1|α A −m2|α A

∥∥∥
1

,

∥(K1 −K2)K3∥1 ≤ ∥(K1 −K2)∥1 .

Finally, dividing both sides of the above inequality by the normalizing constant of the distance gives:

dmat,1 (m1 ⊙α m3, m2 ⊙α m3) ≤ dmat,1 (m1, m2) .

By definition, this latter inequality means that distance dmat,1 is consistent with rule ⊙α.

Proof. (of prop. 5) - Suppose m1, m2 and m3 are three mass functions defined on Θ. K1, K2 and K3 are their
respective evidential matrices with respect to an α-junction ⊙α. The L∞ norm of a matrix is the max of the L∞

norms of its column vectors. Since a column vector of Ki writes as mi|αB with B ⊆ Θ, there exists a subset E such
that :

∥(K1 −K2)K3∥∞ =
∥∥∥(K1 −K2)m3|αE

∥∥∥
∞

,

=

∥∥∥∥∥(K1 −K2) ∑
Y⊆Θ

m3|αE (Y)mY

∥∥∥∥∥
∞

,

≤ ∑
Y⊆Θ

m3|αE (Y) ∥(K1 −K2)mY∥∞ .

Again, the L∞ norm of K1−K2 is the max of the L∞ norms of its colums vectors : maxY⊆Θ ∥(K1 −K2)mY∥∞ =

∥(K1 −K2)∥∞. Each term in the previous inequation is maximized by ∥(K1 −K2)∥∞ which gives:

∥(K1 −K2)K3∥∞ ≤ ∑
Y⊆Θ

m3|αX (Y) ∥(K1 −K2)∥∞ ,

≤ ∥(K1 −K2)∥∞ .

After normalization, the above inequation gives

dmat,∞ (m1 ⊙α m3, m2 ⊙α m3) ≤ dmat,∞ (m1, m2)

.
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a .3 Proofs of results on the consistency of distances with partial orders

Proof. (of prop. 6) - The second implication follows from the first one by contraposition, hence we will only show
the first one. For this, take any triplet m1, m2, m3 such that m1 ⊑x m2 ⊑x m3. We then have

m1 ⊑x m2 ⊑x m3 ⇒ m1 ⊑y m2 ⊑y m3

⇒ max {d12; d23} ≤ d13

where dij = d(mi, mj). The first implication following from ⊑x⇒⊑y, and the second one from the ⊑y-compatibility
of d.

Proof. (of prop. 7) - We will start with distance dpl,k with k < ∞, and will then proceed with the others:
• for distances dpl,k: let pl1, pl2 and pl3 denote three plausibility functions induced by m1, m2, m3. Let us sup-

pose that m1 ⊏pl m2 ⊏pl m3. We can write
(

dpl,k(m1, m3)
)k

=
(
∥pl1 − pl3∥k

)k ,

= ∑
A⊆Θ
|pl1 (A)− pl3 (A) |k.

Since m1 ⊏pl m2 ⊏pl m3, we know that for any A ⊆ Θ:

|pl1 (A)− pl3 (A) | ≥ max {pl3 (A)− pl2 (A) ; pl2 (A)− pl1 (A)} ≥ 0

and that the inequality is strict for at least one subset. This gives :(
dpl,k(m1, m3)

)k
> ∑

A⊆Θ
max

{
(pl3 (A)− pl2 (A))k ,

(pl2 (A)− pl1 (A))k
}

As the sum of maxima is always higher than the maximum of the sums, this gives(
dpl,k(m1, m3)

)k
>max

{
∑

A⊆Θ
(pl3 (A)− pl2 (A))k ,

∑
A⊆Θ

(pl2 (A)− pl1 (A))k
}

>max
{ (
∥pl1 − pl2∥k

)k ,

(
∥pl2 − pl3∥k

)k
}

.

The last inequality is equivalent to :

dpl,k (m1, m3) > max
{

dpl,k (m1, m2) ; dpl,k (m2, m3)

}
. (A.6)

• for distances db,k: given equation (A.6) and db,k = dpl,k (Lemma 1 in Klein et al. 2016c), the proof is immediate.
• for distances dbel,k: the proof is actually similar to the one for dpl,k. Let bel1, bel2 and bel3 denote three belief

functions induced by m1, m2, m3 and suppose that m1 ⊏bel m2 ⊏bel m3. We then have:

dbel,k (m1, m3)
k = (∥bel1 − bel3∥k)

k ,

= ∑
A⊆Θ
|bel1 (A)− bel3 (A) |k.
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Since m1 ⊏bel m2 ⊏bel m3, we know that for any A ⊆ Θ:

|bel1 (A)− bel3 (A) | ≥ max {bel2 (A)− bel3 (A) ; bel1 (A)− bel2 (A)} ≥ 0

and that the inequality is strict for at least one subset. The proof then follows by an analogous reasoning to the
one used for plausibilities.

• for distances dq,k, the proof follows the same pattern. Simply consider q1, q2, q3 induced by m1, m2, m3 such
that m1 ⊏q m2 ⊏q m3, then

dq,k (m1, m3)
k = (∥q1 − q3∥k)

k ,

= ∑
A⊆Θ
|q1 (A)− q3 (A) |k.

and the proof follows similarly to the previous cases.
• for pseudo-distances dπ,k, the proof follows again the same pattern (with a sum over a ∈ Θ).
The proof for the k = ∞ case is omitted. It is given in Klein et al. 2016c, Appendix B.

a .4 Proofs of results on distance based combination rules

Proof. (of lemma 5) - We give a proof for ⊓q. The one for ⊓pl follows a similar scheme.
Let us denote by m∗ the mass function yielded by m1 ⊓q m2. For any mass function m ∈ Mq (m1) ∩ .. ∩

Mq (mℓ), we thus have

∥q− qΘ∥k ≥ ∥q∗ − qΘ∥k ,

⇔ ∥1− q∥k ≥ ∥1− q∗∥k .

The above inequality comes from the fact that commonalities for the vacuous mass function are constant with
value one. Observing that there is a symmetry relating function g (x) = ∥1− x∥ with function h (x) = ∥x∥ for
any vector x in the unit hypercube, we deduce

∥q∥k ≤ ∥q∗∥k ,

⇔ ∥q− q∅∥k ≤ ∥q∗ − q∅∥k .

The above inequality is obtained by remembering that q∅ has null value for all non-empty set. It has value one for
∅ but this is tantamount to add the same constant term to both sides of the inequality.

Proof. (of prop. 10) - The commonality function corresponding to the categorical mass function mA is given by

qA (B) =

1 if B ⊆ A

0 otherwise
. (A.7)

From this, one obviously has q0 (B) qA (B) = q0 (B) ∧ qA (B). Remembering that entrywise product of two
commonality functions is the commonality function of their conjunctive combination, we have

Mq (m0) ∩Mq (mA) =Mq

(
m0|A

)
.

By definition ofMq

(
m0|A

)
, its unique maximal element is m0|A, meaning that ∀m ∈ Mq

(
m0|A

)
, one has

m ⊑q m0|A. Now since we also have that m0|A ⊑q mΘ and dq,k is ⊑q-compatible, then

arg min
m∈Mq(m0)∩Mq(mA)

dq,k (m, mΘ) = m0|A. (A.8)
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Proof. (of prop. 11) - The vacuous mass function mΘ is the maximum of
(
M,⊑ f

)
for f ∈ {d, s, q, pl} which im-

plies thatM f (mΘ) =M. Consequently, the feasible set of m ⊓ f ,k mΘ isM f (m). By defintion ofM f (m), we
have m⊓ f ,k mΘ ⊑ f m. Since distance d is consistent with ⊑ f , m⊓ f ,k mΘ ⊑ f m ⊑ f mΘ implies d

(
m ⊓ f ,k mΘ, mΘ

)
≤

d (m, mΘ). But m⊓ f ,k mΘ has by definition minimal distance to mΘ therefore we also have d
(

m ⊓ f ,k mΘ, mΘ

)
≥

d (m, mΘ), hence m ⊓ f ,k mΘ = m.
Furthermore, suppose me ̸= mΘ is a neutral element. Since mΘ is neutral, me ⊓ f ,k mΘ = me but since me is

neutral as well then me ⊓ f ,k mΘ = mΘ hence a contradiction.
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