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Avant-propos

”Physics would be dull and life most unfulfilling if all physical phenomena around us were
linear. Fortunately, we are living in a nonlinear world. While linearization beautifies physics,
nonlinearity provides excitement in physics”, Y.R. Shen dans The Principles of Nonlinear
Optics. Ce passage provient de l’un de mes plus anciens contact avec la littérature de la
Physique du non-linéaire. En le lisant pour la première fois, j’étais loin d’imaginer qu’il allait
être l’essence même de toute ma carrière scientifique. L’optique non-linéaire a été ma porte
d’entrée dans ce monde au début de ma thèse. Après celle-ci, les différentes techniques de
modélisation mathématique et numérique que j’avais dû apprendre à utiliser m’ont donné les
moyens d’accéder à un domaine encore plus vaste: l’étude des phénomènes d’auto-organisation.

Mes recherches de position post-doctoral m’ont alors conduit à l’Université du Chili à Santi-
ago. L’objectif principal de ce projet post-doctoral était d’explorer la formation d’autres formes
de structures spatiales localisées dans les systèmes forcés paramétriquement. Mon retour à
Lille pour une seconde position post-doctorale, suivi de mon recrutement en tant que Mâıtre
de conférences a aussi consacré le retour de l’Optique non-linéaire parmi mes thématiques de
recherche et plus particulièrement l’Optique non-linéaire guidée.

Ce mémoire d’habilitation porte donc sur des travaux de recherche réalisés depuis la fin de
ma thèse. Ils sont le fruit de collaborations avec les personnes suivantes : Majid TAKI (Lille),
Marcel CLERC (Santiago du Chili), Monica GARCIA-ÑUSTES (Valparaiso), Sylvain BARBAY
(Saclay), Mustapha TLIDI (Bruxelles). Puisque ”Enseigner, c’est apprendre deux fois”–Joseph
Joubert, mes collaborations avec les chercheurs en formation pendant ces différentes étapes
de mon parcours ont été autant d’opportunités d’accrôıtre mes compétences.

Je profite de ce préambule pour témoigner ma gratitude envers les membres du jury. Je
voudrais également remercier toutes les personnes avec qui j’ai eu le plaisir de travailler durant
ces années de recherche : qu’ils sachent que toutes ces collaborations m’ont été extrêmement
agréables.
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Introduction

This manuscript presents an overview of my research activities since the end of my PhD
thesis. The following two words sum up these activities: Dissipative structures.

The concept of dissipative structures was introduced by I. Prigogine in the late 1960s
to explain the process of structuring and spontaneous organization within systems far from
the thermodynamic equilibrium. The basic idea was the following: contrary to the ther-
modynamics principle stating that irreversible processes usually move towards more dis-
order, self-organized and stable structures can arise from even more disordered systems
[Nicolis and Prigogine, 1977]1.

The authorship of the expression dissipative structure is undoubtedly attributed to Prigogine.
However, the problematic of self-organization was previously posed in Schrödinger’s What’s
Life? back in 1944 [Schrödinger, 1992]. Through this book Schrödinger discussed the following
question: ”How can the events in space and time which take place within the spatial boundary
of a living organism be accounted for by physics and chemistry?”. In its attempt to unify biology,
physics and chemistry on a common basis, it is essentially the capacity of the living to defy the
second principle of thermodynamics that is questioned [Schrödinger, 1992, Rossi et al., 2008].
Less than a decade later, Turing published his works showing how reaction-diffusion phe-
nomenon of chemical species can generate spatial structuring [Turing, 1952], and suggest a
link to biological patterns.

It is in this context that I. Prigogine has formulated the concept of dissipative struc-
tures providing a solution to this contradiction of living system: ”create order from disor-
der” [Nicolis and Prigogine, 1977]. A few years later, H. Hanken theorized the concept of
Synergetics based on an approach similar to statistical physics to study transition from the
disordered light of a lamp to the highly ordered light of a laser [Haken, 1978]. The main
idea, consecrated by the elaboration of his widely admitted theory, is the link between self-
organization and the breaking of symmetry, more specifically spontaneous symmetry breaking
[Yates, 2012]. The symmetry invoked here refers to the spatial symmetry i.e. the homogeneous
distribution of the system extension.

To study some problems of thermodynamic phase transition, Landau and Lifshitz
[Landau and Lifshitz, 1940] have introduced the concept of symmetry-breaking from which,
the order parameter concept is based. Behind this idea, Landau suggests that whenever a
loss of symmetry takes place, a new thermodynamic parameter can be introduced such that
its value is zero in the symmetric case. This order parameter can then be used to mea-
sure the amount of disorder in the broken symmetry state. An interesting feature in Lan-
dau’s theory is that the order of the nonlinear expansion of the physical pertinent quantity2

[Ginzburg and Landau, 1950, Binder, 1973, Devonshire, 1954] is defined by the type of tran-
sition.

1http://www.nobelprize.org/nobel prizes/chemistry/laureates/1977/prigogine-facts.html
2e.g. dipolar moment for magnetic material or superfluidity density for superconductor
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6 CHAPTER 1. INTRODUCTION

This leads us to one of the crucial element needed for the emergence of order from dis-
order: nonlinearity. It is present in almost every area of modern science. It is that much
linked to dissipative structures the latter has become a branch of what is now called nonlinear
dynamics. As Turing pointed out, diffusion plays a key role in the symmetry breaking process.
Beyond the diffusion phenomenon, here emphasis should put on the key role of all the spatial
coupling processes. Hence, spatial symmetry breaking needs at least diffusion [Turing, 1952],
diffraction [Newell and Moloney, 1992], dispersion (when by analogy time plays the role of the
space e.g. in wave guide-based system) [Agrawal, 2013], local or global coupling in discrete
system [Kaneko, 1986, Kuramoto, 1984]. The direct consequence of the underlying coupling
phenomena is the selection of the characteristic length scale of the structures that could be
supported by the considered system. Thus, the dimensions of the dissipative structures range
from astronomic length scale (Jupiter’s red spot) down to the nanoscale (scaffolding-induced
stability of individual cells) [Scott et al., 2006]. The corresponding patterns are of such a va-
riety that it would be futile to draw up an exhaustive list. However, among the most recurrent
patterns reported in many fields of modern science such as biology, optics, chemistry, hydro-
dynamics and quantum physics, one has localized structures, square, stripe hexagonal patterns
and vortices.

The general purpose of nonlinear physicists, be they use a stochastic or a deterministic
approach, can be summarized into the following points:

� By mean of the known physical laws, find the set of nonlinear partial differential equations
that describe the evolution of the system.

� Identify the symmetry breaking transition and describe the nature of the emerging pat-
terns in the parameters space.

It is from this last point that the study of the dissipative structures have acquired its universal
feature, which is essentially illustrated by the concept of instability. Indeed, any dynamical
system undergoing a symmetry breaking implies an instability processes which can be addressed
by the linear stability analysis recapitulated as follows. Generally speaking, the spatiotemporal
evolution of a continuous system of n variables lumped together in the vector u (x, t) is written
as follows:

∂tu = N(u,∇, α), (1.1)

where N is a nonlinear function of u (x, t), ∇ the spatial differential operator acting on u and
α the control parameter measuring the action of the external environment on the system.

Basically, the stability of a solution u0 is evaluated by setting u = u0 + δ. The linearization
around u0 yield to the evolution of the perturbation δ

∂tδ =
dN(u)

du

∣∣∣∣∣
u0

δ. (1.2)

The system is said to be linearly stable if a perturbation decreases during the evolution and
unstable otherwise. In case of neutral evolution–no decay nor amplification of the perturbation–
the system is said to be linearly marginal. This case constitutes the transition point character-
ized by a specific value of the control parameter α. In addition, to determine the spatial length
scales involved in the symmetry breaking, the decomposition of the perturbation into Fourier
modes δ = δq exp(q · x) is the standard practice.
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Next the linear stability is studied with respect to the modes q when acting upon the con-
trol parameter α. Even though it is a powerful tool to determine the length scales of the
final dissipative structure, the linear stability analysis fails to describe the evolution beyond
the critical point because of the diverging of the exponential growth. Therefore, to solve the
fully nonlinear system, an approach is to introduce some order parameters and compute their
evolution with respect to the distance from the critical point [Haken, 1978]. This approach is
referred to in the literature as the weakly nonlinear approach and it is formally carried out by
means of the near-identity transformation [Rand, 1994] method or the multi-scale expansion
[Kevorkian and Cole, 1996]. In general, the form of the resulting order parameter equation is
closely related to those of the eigenvalues of the linear operator corresponding to the consid-
ered solution, thus on the nature of the bifurcation. The universal aspect of these reduced
equations comes from their only dependence on the nature of the bifurcation. They are re-
ferred to as amplitude equation in spatially extended systems or normal form otherwise. Such
a modus operandi, starting with the linear stability analysis and ended with the amplitude
equation is one of the three types of theoretical approaches generally applied to nonlinear dy-
namical systems. The second one, more qualitative, is based on topological techniques such as
catastrophe theory or singularity theory to map the possible dynamical behaviors in the system
[Kubicek and Marek, 1983]. The third approach consists of solving the full – microscopic –
equations of motion of the considered system by means of computer simulations.

In practice, the latter approach is used in combination with one of the first two as verification
and validation tool. However, the very existence of some sub-fields of nonlinear dynamical
system theory is closely related to the development of numerical tools. When deterministic
systems exhibit random evolutions, e.g. chaotic or spatiotemporal chaotic states are perfect
examples. The theory of ”few degrees of freedom”temporal chaos itself dates back from before
the dissipative structures discipline [Cross and Hohenberg, 1993, Pismen, 2006]. The case of
the works of E. Lorenz are the perfect illustration of the contingency between development of
computer simulation and the rise of the theoretical understanding of the nature of chaos. In the
same way, the spatiotemporal chaos theory developed to understand ”how chaotic phenomena
relate to dissipative structures” has taken advantage of the computer simulation approach.

Through these approaches, my research activities have focused on the mechanisms leading
to the emergence of well localized structures in dissipative systems. Generally speaking, the
first report on a well localized solution in an extended system goes back to the year 1844 by J.S.
Russell [Russell, 1844]. A few decades later, they were mathematically understood as solutions
of the class of integrable partial differential equations. Consequently, they form a family
solutions resulting from a perfect balance between a broadening effect (diffraction or dispersion)
and a material nonlinearity. While this condition effectively excluded the dissipative systems
of those capable of supporting localized solutions, theoretical studies followed by experimental
observations proved otherwise. Indeed, by a balance between the influx of energy and the
losses in addition to the conditions stated previously, the extended dissipative systems are able
to generate perfectly localized solutions and, unlike conservative localized structures, they are
unique for each set of parameters.

It has been almost forty years since dissipative solitons are the object of particular atten-
tion in all fields of modern physics, as in biology, just to mention a few. It emerges from all
the observations that the localized dissipative structures have a universal characteristic: they
behave like particles. This property makes them dynamic objects with interaction capabilities
whose potential applications are as diverse as the variety of systems in which they have been
observed. Typical representatives example can be found in nonlinear optics, where one may
mention the possibility of all optical switching and routing devices [Chen et al., 2012], opti-
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cal data buffering [Firth, 2010], and optical logical gates [Ballarini et al., 2013]. Whether the
prospect of technological applications technological scope is immediately obvious or not, the
development of theoretical tools to understand the processes that support the emergence, evo-
lution and interactions involving localized structures remains fundamental. These fundamental
aspects, keeping in mind the experimental feasibility, are and will remain the main purpose of
my research activities exposed here.

The manuscript is organized as follows: Part I covers the presentation of the dynamical
systems that I have studied. For each case, after writing the equations of motion of the
physical system the derivation of the reduced prototype model is considered. In addition,
possible specific improvements of standard numerical integration methods is detailed when
necessary. In part II, I present a selection of results of my contribution on exposing the
domain of existence of dissipative localized structures, their interaction, and stability features.
I conclude this report by current milestones on complex spatiotemporal dynamics in part III.
Specifically, the emergence of spatiotemporal chaos in dissipative systems and its implications
for some recent hot topics such as rogue waves dynamics is presented.



I

Mathematical modeling of physical systems
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Abstract

Spontaneous and dramatic change in the spatial symmetry is inherent to self-organization or
self-ordering in natural systems. From the beginning of this area of theoretical modern physics,
the main challenge is the accuracy of the predictions. Addressing this challenge requires a good
perception and identification of the underlying processes to determine the adequate physical
law and fundamental principle that applies. Since the end of my thesis, I have studied a variety
of systems. The aim of this part is to present an overview of these systems.

The first system is a vertically driven-damped chain of pendulum. The elementary con-
stituent of this system is a pendulum with vertically oscillating pivot. Each pendulum of the
chain is assumed to be elastically coupled to its nearest neighbor. The second system is a
chain of spin submitted to an oscillating magnetic field. In this case, the elementary system is
a spin animated by a precessional dynamic. It corresponds to a anisotropic ferromagnetic wire
in the one dimensional case and the 2D version model corresponds to a ferromagnetic plane.
The next system is a vertically shaken rectangular water channel.

The aforementioned systems have in common the ability to exhibit parametric resonance
when the driving is harmonically modulated. Therefore, they can be described by the same
reduced model: the parametrically damped and driven nonlinear Schrödinger equation. The
derivation of this equation starting from the microscopic equations is also considered.

In addition to parametrically driven systems, a large part of my activities is devoted to the
pattern forming in optical systems. More specifically, I am interested on temporal instabilities
on optical fiber-based waveguide. Two configurations are considered. In the first case, the
propagation of the light pulse in an optical fiber is presented. After that, the modeling of a
light circulating in a fiber with coupled ends is performed. The first case can be considered
as a conservative system while the other is a dissipative one. The resulting models are the
nonlinear Schrödinger equation and the Lugiato-Lefever equation, respectively. Before being
named after Lugiato and Lefever in optics, this equation was referred as the driven and damped
nonlinear Schrödinger equation.
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The vertically driven and damped coupled
chain of pendulum

The interest for the dynamics of coupled oscillator is a very old problem. The state of the
art can be traced back to the proposition of Huygens [Huygens, 1669, Bennett et al., 2002]
to use a set of two identical pendulum-watches to measure longitudes during sea navigation.
Related phenomena include synchronization, quenching, phase locking, and amplitude death.
All these phenomena are closely related to the nature of the coupling and also to the way that
energy is injected in the system. In this chapter I consider the processes by which an energy
storage parameter of a singly or multi-resonant system is harmonically modulated. Such a
process known as parametric forcing, first studied by Faraday [Faraday, 1831] in the nineteenth
century. Since then it has been shown to produce a large variety of dissipative structure in
almost all the area of modern physics. A sketch of this physical system is given in Figure 2.1.

Figure 2.1: Schematic representation of a ver-
tically driven chain of pendula: all pendulums
are equally spaced by ∆a and coupled with ideal
spring and the horizontal rod oscillates vertically
in time. For the sake of simplicity, a single pen-
dulum is assumed to have a total mass m and a
length L.
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a sin(ωt) a sin(ωt)

a sin(ωt)

In this setup the deviation of the j-th pendulum of the chain experience the gravity (including
the acceleration of the pivot) Fgravity, the elasticity due to neighborhood coupling Felastic and
the viscous friction Fdamping ∝ ∂tθ j. Assuming the spacing much smaller than the individual

pendula length L, then Felastic = −kL
(
θ j+1 − 2θ j − θ j−1

)
. Since the displacement of the pivot

is given by a sin (ωt), the effective gravity reads g ± aω2 sin (ωt), with the sign conveniently
chosen depending on the origin of the date t. Hence, after Newton’s second law the motion
of the j-th pendulum of the chain is given by:

∂2θ j

∂t2 + 2α
∂θ j

∂t
+ ω2

0
[
1 + 4γ sin (ωt)

]
sin θ j − K

(
θ j+1 − 2θ j − θ j−1

)
= 0, (2.1)
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14 CHAPTER 2. THE DRIVEN CHAIN OF PENDULUM

where γ = aω2/(4ω2
0L), K = k/m and α the damping parameter. This equation is the

driven and damped version of the well-known Frenkel-Kontorova model. Hence, when the
discreteness can be neglected the system can be described by the perturbed sine-Gordon
[Braun and Kivshar, 2004] equation:

∂2θ

∂t2 + 2α
∂θ

∂t
+ ω2

0
[
1 + 4γ sin (ωt)

]
sin θ − K∆a2 ∂

2θ

∂x2 = 0. (2.2)

For a vanishing coupling and damping, the oscillators then obey to the Mathieu equation. In
the ω − γ plane, this equation is known to have an infinite sequence of domains–the Arnold’s
tongues–in which the pendulum can acquire an undamped periodic motion around the vertical
axis [Landau and Lifshitz, 1966]. These tongues are located at ωn/ω0 = 2/n are increasingly
narrower for higher values of n and for non vanishing damping the most visible one for small
values of γ correspond to n = 1 also known as the 2:1 resonance. For small deviations, the
following approximation sin θ ∼ θ − θ3/6 may apply. In practice, the small deviation regime
corresponds to the situation where the damping and the driving strength are also small, says the
quasi-reversible limit. It is also convenient to use the dimensionless form of Eq. (2.2) setting

t = T/ω0, µ = α/ω0, x = X
√

K∆a2/(2ω2
0) and Ω = ω/ω0. Hence, in the quasi-reversible limit

its follows:
∂2θ

∂T 2 + 2µ
∂θ

∂T
+ θ −

θ3

6
+ 4γ sin (Ωt) θ − 2

∂2θ

∂X2 = 0. (2.3)

To explore the dynamical behavior of the system in the Ω−γ plane but close to the 2:1 resonance
it is useful to introduce a detuning parameter such that Ω = 2 (1 + ν). In the quasi-reversible
limit Eq. (2.3) is nothing but the harmonic oscillator perturbed with small damping, energy
injection, weak coupling and anharmonicity. Consequently, one can introduce the following
ansatz:

θ (X,T ) = A (X,T ) eiT + Ā (X,T ) e−iT + W(A, Ā,T ). (2.4)

In this ansatz, Ā stands for the complex conjugate (c.c) of A and W(A, Ā, t) is a small correction
term to the harmonic response (W � A) and we may also consider that ∂TT A � ∂T A � A in
addition to γ ∼ µ ∼ ν ∼ ∂XX � 1. Introducing (2.4) in (2.3) and collecting terms in {eiT , e−iT }

and their harmonics leads to:

LW =

(
−2i∂T A − 2iµA +

1
2
|A|2A + 2∂XXA + 2iγĀe2iνT

)
eiT +

1
6

A3e3iT +2iγAei(3+2ν)T +c.c., (2.5)

where the operator L = (∂TT + 1). The goal of the approach is then a proper evaluation of
W. Let set grhs, the right hand side of Eq. (2.5). Hence, owing that LW = grhs is a linear
equation in W, non-trivial solutions can be found if and only if the grhs is in the image of L.
This condition can be hold by the Fredholm’s alternative1 [Pismen, 2006] stating that the grhs

is orthogonal to the Kernel of the adjoint operator L†. To this end it is necessary to introduce
an inner product of functions space. In the current case it reads:

〈 f , g〉 =
1

2π

∫ T0+2π

T0

f̄ (T ) g (T ) dT. (2.6)

Here, it is straightforward to check that 〈 f ,Lg〉 = 〈L† f , g〉. That is, L is a self-adjoint operator.
Consequently, the elements of its Kernel are given by {eiT , e−iT }. This means that the result
of any product that includes one of these elements and the operator L or L† is null. Hence,
setting 〈 f | = eiT and |g〉 = LW = grhs the inner product gives:

1This condition is also known as the solvability condition.
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∂T B = −iνB − µB − i|B|2B − i∂XX B + γB̄, (2.7)

where A = 2BeiνT . Next, considering this latter result in Eq. (2.5) it follows:

W = −

[
1
6

B3 + i
γ

2
B
]

e3i(1+ν)T , (2.8)

from which the ansatz can be rewritten as:

θ (X,T ) = 2B (X,T ) ei(1+ν)T −

[
1
6

B (X,T )3 + i
γ

2
B (X,T )

]
e3i(1+ν)T + c.c. (2.9)

Eq. (2.7) is the parametrically driven and damped nonlinear Schrödinger (PDNLS) equation
[Barashenkov et al., 1991]. It is the prototype model highly used to describe parametrically
forced system near to the quasi-reversible limit.





3

Ferromagnetic driven systems

As I mentioned in the introduction, one of the outstanding feature of the dissipative struc-
tures is that their characteristic length scale range from astronomic scale to nanoscale. Mag-
netic system by the characteristic length [Liu et al., 2005] of their interactions are very good
candidates to observe micro and nanoscale dissipative structures. Dissipative structures of
magnetization dynamics are widely used for information storage in magnetic materials. From
theoretical point of view, two approaches are generally used to model the magnetization dy-
namics. The first on is based one writing the Heisenberg hamiltonian and the second one
consists on energetic considerations. The former one is considered here.

ẑ

ŷ

x̂

Si,j+1

(h
0 +

Γcos(ωt)) x̂

Si−1,j

Si,j(t)
Si+1,jSi,j−1

Figure 3.1: Schematic representation of an uni-
axial anisotropic Heisenberg ferromagnetic layer.
Small arrows represent the local magnetization
(Si, j) and the large arrow stands for the external
magnetic field.

Let’s consider a two-dimensional anisotropic Heisenberg ferromagnetic layer formed by
Nx × Ny spins or magnetic moment exposed to an external magnetic field, which is con-
tained in the plane (x, y) and oriented in the direction x̂ ≡ (1, 0, 0). Figure 3.1 de-
picts the setup of the considered system. Therefore, the Hamiltonian of the chain reads
[Kittel, 1949, Zharnitsky et al., 1998]:

H =

N∑
i, j

(−JxSi, jSi+1, j − JySi, jSi, j+1 + 2D(S z
i, j)

2 − gµ(S x
i, j)Hx). (3.1)

where {Jx, Jy} are the exchange coupling constants, Hx and D account for the external magnetic
field and the anisotropy energy, respectively. For the sake of simplicity, Jx and Jy will be
taken identical in the following (Jx = Jy = J). When the quantum effects are small enough,
the spin vectors Si, j can be treated as classical spin or magnetic moment [Mikeska, 1978].
According to this latter assumption, the dynamics of the magnetic moment Si, j is governed by

Ṡi, j = −γSi, j ×
(
∂H/∂Si, j

)
[Kosevich et al., 1990], where γ is the gyromagnetic constant.
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Hence, Si satisfies

Ṡi, j = −γSi, j×
[
−J

(
Si−1, j − 2Si, j + Si+1, j

)
− J

(
Si, j−1 − 2Si, j + Si, j+1

)
+ 4DS z

i, jẑ − gµHx x̂ + 4JSi, j
]
.

(3.2)
Thus, taking Si, j(t) → S(r, t), where r(x, y) accounts for the coordinates in the plane and

Jγ
(
Si+1, j − 2Si, j + Si−1, j

)
+ Jγ

(
Si, j+1 − 2Si, j + Si, j−1

)
→ l2ex∇

2
⊥S, where lex denotes the charac-

teristic interaction length and ∇2
⊥ is the Laplacian operator in the new transversal coordinates

(∇2
⊥ ≡ ∂xx + ∂yy). The exchange length can be interpreted as the length below which atomic

exchange interactions dominate typical magnetostatic fields. It also determines the thick-
ness of soft-magnetic films above which the 2D magnetization dynamics assumed here fails
[Liu et al., 2005].

Moreover, introducing phenomenologically the Gilbert damping, the motion of the magne-
tization field is governed by the well-known Landau-Lifshtiz-Gilbert (LLG) equation:

∂τm = −m ×
[
lex∇

2
⊥m − β (m · ẑ) ẑ + he − α∂τm

]
, (3.3)

where m = mx x̂ + myŷ + mzẑ stands for the unit vector of the magnetization; we have also
introduce the following normalization {τ→ γMst , β → 4D/γ, he → gµH/γMs} with Ms the
magnetization of saturation defined as m = S/Ms; where β > 0 is the anisotropy constant
(easy-plane magnetization), and α the damping parameter. This parameter for several types of
material is small. When the magnetic field is time-dependent, the above model (3.3) is a time
reversible system perturbed with injection and dissipation of energy. Hence, as far as these
perturbations remain small the system can be consider in the quasi-reversible limit. Considering
the external magnetic field along the x̂-axis such that he = h(t)x̂, the equilibrium magnetization
is parallel to the applied external field: m(r, t) = (1, 0, 0). Then, taking advantage of the unitary
norm of the local magnetization, it is convenient to write:

m =

√
1 − m2

⊥ x̂ + m⊥ (r, t) , (3.4)

where m⊥ =

√
m2

y + m2
z is the component of the magnetization perpendicular to the easy-

plane. Recalling the quasi-reversible limit, m⊥ should be smaller than 1. Therefore, the
following approximation m '

(
1 − m2

⊥/2
)

x̂ + m⊥ (r, t) can be used in the cartesian projection

of Eq. (3.4). Neglecting the nonlinear term higher than O
(
m3

y ,m
2
ymz,m3

z ,mym2
z

)
and those

including a spatial derivative the precession dynamics is model by

ṁy = − (β + H) mz − αHmy + l2ex∇
2
⊥mz − β

m2
y + m2

z

2
mz, (3.5a)

ṁz = Hmy − α (β + H) mz − l2ex∇
2
⊥my. (3.5b)

Let’s have a quick look on the case of uncoupled magnetic domains (all the spatial derivative
are null) with constant external applied field. Extracting my in Eq. (3.5b) and replacing it in
Eq. (3.5b) with respect to the time and replacing the term ṁz in equation (3.5a) after some,
algebra it follows at the leading order1:

m̈z = −H0
(
β + H2

0

)
mz − α(β + 2H0)ṁz +

β

2H0

(
ṁ2

z + H0m2
z

)
mz. (3.6)

1This is equivalent to consider that operators, variables, and parameter scale as α ∼ m2
y ∼ m2

z � 1 and
∂t ∼ H0 ∼ β ∼ of order of O(1).
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This equation is the analogue of a nonlinear forced and damped oscillator with natural frequency
ω0 =

√
H0 (β + H0). Now back to the full set of Eqs. (3.5) with the external magnetic field

composed of constant and periodic terms, the resulting setup can be consider in the parametric
forcing regime : H = H0 + h1(τ) = H0 + Γ sin[2ω0(1 + ν)τ] with ν � 1. As for the case of the
driven chain of pendulum, the response of the system can be grasped by introducing:(

mx

my

)
= A (r, τ) eiω0τ

( √
H0 + β

−i
√

H0

)
+ c.c. + W. (3.7)

Hence, using the scaling Γ ∼ α ∼ ν ∼ ∇2
⊥ � 1 together with ∂ττA � ∂τA � A it comes at the

leading order:

LW = ∂τA
( √

H0 + β

−i
√

H0

)
eiω0τ +

(
l2ex∇

2
⊥ − iαω0

)
A

(
i
√

H0√
H0 + β

)
eiω0τ

−
Γ

2
Ā

(
−i
√

H0√
H0 + β

)
e2iω0ντeiω0τ

+ i
β

2

√
H0 (4H0 + β) |A|2 A

(
1
0

)
eiω0τ + i

β2

2

√
H0A3

(
1
0

)
e3iω0τ + c.c.

(3.8)

In this relation, the linear operator L and its adjoint L† are given by

L =

(
∂τ H0 + β

−H0 ∂τ

)
and L† =

(
−∂τ −H0

H0 + β −∂τ

)
. (3.9)

Then, the elements of the Kernel of L† are {eiω0τv, e−iω0τv̄} with v =
(√

H0,−i
√

H0 + β
)T

and
the inner product is defined as follows:

〈f, g〉 =
ω0

2π

∫ τ0+ω0/2π

τ0

f̄ (τ) · g (τ) dτ. (3.10)

where the symbol · denotes the inner product of vectors with complex components i.e. the
dot product of C2, and f̄ is the complex conjugate of the vector f. The amplitude of mz(z, t)
satisfies

2ω0∂τA = −i
β
(
ω2

0 + 3H2
0

)
2

|A|2A − i (β + 2H0) l2ex∇
2
⊥A − αω0 (β + 2H0) A +

βΓ

2
Āe2iνω0τ. (3.11)

Finally, the 2D version of equation Eq. (2.7) is found after setting

B =

√√√
β
(
ω2

0 + 3H2
0

)
4ω2

0

Ae−iνω0τ, (3.12a)

(X,Y) =

√
2ω2

0

(β + 2H0)

(
x

lex
,

y
lex

)
, (3.12b)

µ =
α (β + 2H0)

(2ω0)
, (3.12c)

γ =
Γβ

4ω2
0

, (3.12d)

T = ω0τ. (3.12e)

Notice that 1D equivalent of Eq. (3.11) can be derive in the same way considering an easy
plane ferromagnetic wire.
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The vertically driven rectangular water
channel

The history of the parametric instability began with the Faraday experiments in which a liquid
was driven by vertical harmonic oscillations. Since then, dynamics of standing waves produced
by such a forcing is still extensively studied. Elsewhere, these studies have played a crucial role in
the experimental evidence of a large variety of dissipative structures. From the theoretical point
of view, mathematical description of Faraday experimental setup have been started with the
seminal paper of Benjanin and Ursell [Benjamin and Ursell, 1954] where they analyzed Faraday
waves of an irrotational inviscid fluid. The main result of this analysis is providing an interpreta-
tion of the linear behavior of the inviscid fluid as a Mathieu oscillator. Later, an extension of this
to the damped version for viscous fluid have been provided [Cerda and Tirapegui, 1998]. Imme-
diately afterwards the observation of non-propagative hydrodynamic soliton [Wu et al., 1984],
many theoretical studies have attempted to model the contribution of the nonlinearities
[Miles, 1984, Larraza and Putterman, 1984, Zhang and Vinals, 1997]. With the same goal to
describe the evolution of the free surface of a fluid in a closed basin as depicted by Figure 4.1,
many strategies have been used [Gordillo, 2012]. Remarkably, many of these approach have
produced similar results. Only two of the main strategies are recalled here. The first one

Figure 4.1: Schematic representation of the water surface elevation to be studied. The νi j are some of
the canonical modes νi j supported by a rectangular basin of length l, breadth w, and filled with a fluid
layer of depth d [Gordillo, 2012].

proposed by Larraza and Putterman [Larraza and Putterman, 1984] consists on the theoretical
description of the system depicted by Figure 4.1. It starts by writing the equations for the
bulk (Laplace equation), the impermeability condition for the walls and the bottom and the
kinematic and dynamic boundary condition at the free-surface (Bernoulli principal) for an ideal
irrotational inviscid fluid. With the notations introduced in Figure 4.1 it results the following
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22 CHAPTER 4. THE DRIVEN WATER CHANNEL

set of equations:

∇2Φ = 0, in V (4.1a)

∇Φ · n = 0, at ∂C (4.1b)

∂zΦ − ∂tη − ∇⊥η · ∇⊥Φ = 0, (4.1c)

∂tΦ +
1
2

(∇Φ)2 + g (1 − f (t)) η −
γ

ρ
κ = 0. at z = η (x) (4.1d)

Next this set of equations is directly expanded up to the third order.1 The second approach
proposed by Miles invokes the average Laplacian method (see e.g. [Miles, 1984] for further
details). In both cases, it appears that the amplitude equation for the surface elevation is
closely related to the canonical modes νi j (i and j ∈ R) sketched in Figure 4.1. According to
the experimental observations [Wu et al., 1984], the dominant mode corresponds to ν01. The
expression of the surface elevation in this case is given by [Umeki, 1991, Denardo et al., 1990]:

η (x, y, t) =
[
η1 (x, t) eiωt + c.c.

]
cos (πy/w) +

[
η2 (x, t) e2iωt + c.c. + η(0)

2 (x, t)
]

cos (2πy/w) . (4.2)

Here ω stands for the half of the driving frequency. In the following, the acceleration of this
driving is taken in the quasi-reversible limit and (ω − ω1) /ω � 1 where ω1 =

√
gkT , with

k = π/w and T = tanh (kd), is the frequency related to the transverse mode. Under these
considerations, η1 represents the slowly varying (in both time and space) amplitude of the
dominant mode ν01. Hence, η2 and η(0)

2 are small compared to η1. Following the approach of
Larraza and Putterman, at the leading order, the solvability condition gives2

2iω∂tη1 − c2∂2
xη1 −

(
ω2 − ω2

1 − 2iωα
)
η1 − 2iω2Γη̄1 − δω

2k2 |η1|
2 η1 = 0, (4.3)

where

c2 =
g
2k

[
T + kd

(
1 − T 2

)]
, (4.4a)

δ =
1
8

(
6T 4 − 5T 2 + 16 − 9T−2

)
. (4.4b)

After introducing

T = ωt, (4.5a)

X =
x

cω
, (4.5b)

ν =
ω2 − ω2

1

2ω2 , (4.5c)

µ =
α

ω
, and (4.5d)

A = k
√

2δη1 (4.5e)

one recovers the Eq. (2.7).

1Notice that in their original work Larraza and Putterman did not threat the periodic forcing.
2The damping parameter α has been introduced through ∂t → ∂t +α. This suppose that the damping effects

are coming only from the kinematic viscosity. However, in [theseLeo] other sources of the dissipation have been
discussed in detail.
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Propagation in fiber optics

The three examples presented before are illustrative for the universality of the processes
underlying the dynamics of the dissipative structures. Specifically, parametric forcing have
played a crucial role on the understanding of solitons being dissipative or conservative. However,
there is an area where solitons rapidly became not only laboratory curiosities but also of many
technological interests: said nonlinear optics. Beyond solitons, the development of nonlinear
optics in the following the mastery of lasers have greatly contributed to the experimental and
theoretical studies of self-organization. In this history, nonlinear fibers optics is one of the
most important achievement. In particular the availability of low-loss fibers at the beginning
of seventies was the start of this revolution. In this section the fundamental concepts behind
the modeling of the light-matter interactions in optical fibers are presented.

Core

Cladding

Jacket

R
a
d
ia

l d
is

ta
n
c
e

Index

nco

ncl

a

b

a

b

Figure 5.1: Sketch of refractive index profile and the cross-sectional diagram of a step-index fibre.

Generally speaking, a successful propagation in an optical fiber consists on guiding a light
wave inside a central glass core with a refractive index nco. This core is surrounded by a
cladding whose refractive index ncl is slightly lower than nco allows the necessary total internal
reflexion. Fibers with such a structure (see Figure 5.1) are referred to as step-index fibers,
while graded-index fibers are characterized by a gradual decrease of the index from the core
to the cladding [Agrawal, 2013]. The approach presented here is based on the propagation in
step-index fibre. The evolution of the electric along the fiber is given by:

∇2E (r, t) −
1
c2

∂2E (r, t)
∂t2 = µ0

∂2Pl (r, t)
∂t2 + µ0

∂2Pnl (r, t)
∂t2 , (5.1)

where c = (µ0ε0)−1/2 is the speed of the light in vacuum. µ0 and ε0 are the vacuum permeability
and the permittivity, respectively. ∇2 is the Laplacian associated to r = xx̂ + yŷ + zẑ. Pl and
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Pnl are the linear and nonlinear polarization vectors, respectively. Sincs an optical fiber has
cylindrical symmetry, and so it is a centro-symmetric medium, the leading nonlinearity is cubic.
Hence,

Pl (r, t) = ε0

∫ ∞

∞

χ(1) (t − t′
)

E
(
r, t′

)
dt′ (5.2a)

and

Pnl (r, t) = ε0

$ ∞

−∞

χ(3) (t − t1, t − t2, t − t3) (E (r, t1) · E (r, t2)) E (r, t3) dt1dt2dt3 (5.2b)

In general, the contributions of the nonlinear part in the total refractive index is small.
Consequently Pnl can be treated as a small perturbation to Pl. For pulses larger enough
(duration not shorter than 100 fs), the spectral width ∆ω and the central frequency are such
that ∆ω/ω0 � 1 (quasi-monochromatic field). Under these assumptions and considering a
maintained polarization of the electric field, the slowly varying envelope approximation can be
used:

E (r, t) =
1
2

x̂
[
E (r, t) eiω0t + c.c.

]
. (5.3)

Therefore, the polarizations can be written in the same form as:

Pl (r, t) =
1
2

x̂
[
Pl (r, t) eiω0t + c.c.

]
. (5.4a)

Pnl (r, t) =
1
2

x̂
[
Pnl (r, t) eiω0t + c.c.

]
. (5.4b)

Inserting (5.3) in (5.6) leads to:

Pl (r, t) = ε0

∫ ∞

−∞

χ(1) (t − t′
)

E (r, t) e−iω(t−t′)dt′. (5.5)

Next assuming that the nonlinear response is instantaneous, the time dependence of χ(3) is
given by the product of three delta function of the form δ (t − ti). That is, the nonlinear
polarization reads Pnl (r, t) = ε0χ

(3) |E (r, t)|2 E (r, t). Substituting (5.3) in (5.4b) and keeping
only resonant terms the nonlinear polarization can be written as follows:

Pnl (r, t) = ε0εnlE (r, t) , (5.6)

where the nonlinear dielectric constant εnl ≡
3
4χ

(3) |E (r, t)|2 can be assumed constant in the
limit of validity of the slowly varying envelope approximation. With this assumption, Eq. (5.1)
in the Fourier space can be written in the form:

∇2Ẽ − ε (ω) k2
0Ẽ = 0, (5.7)

where k0 = ω/c, ε (ω) = 1 + χ̃(1) (ω) + εnl, and

Ẽ (r, ω − ω0) =
1

2π

∫ ∞

−∞

E (r, t) ei(ω−ω0)tdt. (5.8)

According to the assumptions made above the effective dielectric constant can be written

ε (ω) = n (ω)2 + n (ω) ∆n, (5.9)

with ∆n = n2 (ω) |E|2+i α f
2k0

such that ∆n � n (ω). In practice, when V = k0a
√

n2
co − n2

cl
< 2.405,

the transverse distribution of the intensity profile is very closed to the TEM00 mode. Then,
the solution of (5.7) can be obtained introducing

Ẽ (r, ω − ω0) = F (x, y) Ã0 (z, ω − ω0) eiβ0z, (5.10)



25

where F (x, y), Ã0 (z, ω − ω0), and β0 are the transverse profile, the slowly longitudinal enve-
lope, and the propagation constant, respectively. It results from the slowly varying envelope
approximation that ∂2

z Ã0 � ∂zÃ0 � Ã0. Therefore F, Ã0 and β0 are solutions of the following
set of eigenvalue problems:(

∂2

∂x2 +
∂2

∂y2

)
F −

[
n2k2

0 + 2nk2
0∆n − β̃2

]
F = 0, (5.11a)

2iβ0
∂Ã0

∂z
+

(
β̃2 − β2

0

)
Ã0 = 0 (5.11b)

where β̃ to be determined, is the eigenvalue for both transverse and longitudinal operators.
Setting β̃ = β (ω) + ∆β such that ∆β ∼ ∆n � β (ω), the leading order gives [Agrawal, 2013]:

F (x, y) ≈ e−
x2+y2

w2 , (5.12)

where w/a ≈ 0.65 + 1.619V−3/2 + 2.879V−6. As far as V < 2.405, the single propagation mode
is not affected by ∆n. Next ∆β is found to be:

∆β =
k0
! ∞
−∞

∆n |F (x, y)|2 dxdy! ∞
−∞
|F (x, y)|2 dxdy

. (5.13)

Making use of the approximation β̃2 − β2
0 ≈ 2β0

(
β̃ − β0

)
, Eq. (5.11b) becomes:

∂Ã0

∂z
= i

[
β (ω) + ∆β − β0

]
Ã0. (5.14)

At this point, it is worthy to note that β (ω) = n (ω) ωc manifests the chromatic dispersion of
the fiber. In practice, this dependence is given by a Taylor expansion of the dispersion relation
around the carrier frequency ω0 as:

β (ω) = β0 +

∞∑
m=1

βm

m!
(ω − ω0)m , (5.15)

with βm =
dmβ
dωm

∣∣∣∣
ω=ω0

(m = 0, 1, 2, . . . ). Finally the equation of the propagation in the Fourier

space is given by:
∂Ã0

∂z
= i

β1 (ω − ω0) +

∞∑
m=2

βm

m!
(ω − ω0)m + ∆β

 Ã0 (5.16)

which, going back to the time domain can be written in the form:

∂A0

∂z
= β1

∂A0

∂t
+ i

∞∑
m=2

(−i)m βm

m!
∂mA0

∂tm −
α f

2
A0 + i

k0n2
! ∞
−∞
|F (x, y)|4 dxdy! ∞

−∞
|F (x, y)|2 dxdy

|A0|
2 A0. (5.17)

In this equation, A0 is in units of electric field (V/m). However, for practical reasons it is
convenient to have a direct link with the optical power. Therefore, introducing

Aeff =

(! ∞
−∞
|F (x, y)|2 dxdy

)2! ∞
−∞
|F (x, y)|4 dxdy

,

|A|2 =
1
2
ε0nc |A0|

2
" ∞

−∞

|F (x, y)|2 dxdy,

γ =
2ω0n2

ε0nc2Aeff
, and

T = t − β1z,
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(5.1) can be written in the form of the generalized nonlinear Schrödinger (NLS) equation:

∂A
∂z

= −
α

2
A + i

∞∑
m=2

(−i)m βm

m!
∂mA
∂T m + iγ |A|2 A. (5.19)

q

❊✐
r

Figure 5.2: Sketch of an optical fiber ring res-
onator. The ends of the fiber are lumped to-
gether with a coupler (in gray) with intensity
transmission θ and reflexion ρ.

By coupling the ends of an optical fiber, the resulting passive resonator is modelized by
considering Eq. (5.19) together with some adequate boundary conditions. Hence, a fiber ring
cavity, as depicted in Figure 5.2, can be analytically described as follows1:

∂zA( j) (z,T ) = −
α

2
A( j) (z,T ) − i

β2

2
∂2A( j) (z,T )

∂T 2 + iγ
∣∣∣A( j) (z,T )

∣∣∣2 A( j) (z,T ) , (5.20a)

A( j+1) (0,T ) =
√
θEi (T ) +

√
ρA( j) (L,T ) exp (−iΦ0) , (5.20b)

where Φ0 is the linear phase accumulated after a round trip. This set of equations, is referred
to as the Ikeda map [Ikeda, 1979] or full map equations. From the analytical point of view,
except for the linear stability analysis, it is a hard task to study nonlinear evolution of such a
system directly via Eqs. (5.20). When a light pulse with peak power P0 and duration T0 is
injected into the fiber, one can defines the dispersion length LD =

√
T0/ |β2| and the nonlinear

length LNL = (γP0)−1. Hence, for a propagation length L much smaller than LD and LNL the
pulse can be considered unaffected by the dispersion effects (e.g., temporal spreading) and
the nonlinear effects (e.g., self-phase modulation), respectively. In this case, if in addition the
finesse F is high enough ∆ω � ωFS R, the mean-field approximation can be used to describe the
full map equations. Consequently, after one roundtrip the solution of (5.20a) can be written
in the form:

A( j) (L,T ) ≈ A( j) (0,T ) + L
∂A( j) (0,T )

∂Z

∣∣∣∣∣∣
z=0

≈

[
1 −

αL
2
− i

β2L
2

∂2

∂T 2 + iγL
∣∣∣A( j) (0,T )

∣∣∣2] A( j) (0,T ) . (5.21a)

For a resonant pumping, the acquired phase after a roundtrip is 2kπ where the integer k
labels the cavity resonances. Then, the distance to the closest cavity resonance is measured
introducing δ = 2kπ − Φ0. Assuming δ ∼ θ � 1, the term

√
ρ exp (−iΦ0) in (5.21a) can be

written in the form:

√
ρ exp (−iΦ0) =

√
1 − θ exp (−iΦ0) ≈

(
1 −

θ

2

)
(1 − iδ) ≈ 1 −

θ

2
− iδ.

Using this approximation after inserting (5.21a) in (5.20b) leads to:

A( j+1) (0,T ) ≈
√
θEi (T ) +

[
1 −

θ

2
−
αL
2
− iδ − i

β2L
2

∂2

∂T 2 + iγL
∣∣∣A( j) (0,T )

∣∣∣2] A( j) (0,T ) . (5.22)

1Without loss of generality, we take into account only the group velocity dispersion β2.
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From this equation, one can easily identify the quantity that measures the change in the
temporal profile from one roundtrip to another at the coupler as A( j+1) (0,T ) − A( j) (0,T ) ≈
tR∂t′A (t′,T ) with t′ = jtR. Finally setting:

S = Ei
√
γθL, (5.23a)

ψ = A
√
γL, (5.23b)

t =
t′

tR
, (5.23c)

τ = T

√
2
|β2L|

, (5.23d)

α =
θ + α f L

2
, (5.23e)

η = sgn (β2) = ±1, (5.23f)

the mean-field evolution is given by the Lugiato-Lefever model:

∂ψ

∂t
= S − (α + iδ)ψ + i |ψ|2 ψ − iη

∂2ψ

∂τ2 . (5.24)

It is the prototype mean field model for the passive Kerr resonators [Grelu, 2015]. Note that,
before laser systems, Eq. (5.24) has been derived in early reports to describe the plasma driven
by a radio frequency field [Morales and Lee, 1974, Nozaki and Bekki, 1984] and the condensate
in the presence of an applied ac field [Kaup and Newell, 1978].





II

Contribution to the study of dissipative localized
structures
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Abstract

In this part of the manuscript I present a selection of some milestone of my research activities
on the field covered by the different systems described in the previous part. There is no
particular motivations of their choice and no chronological link neither. It is just an overview
and other choice may be also relevant since many of these works are connected.

I will begin with my contribution on the theoretical prediction of the interaction of paramet-
rically excited dissipative localized structures(LS) in one dimensional extension. As I mentioned
in the introductory part, dissipative localized structures can be understood as macroscopical
particles. Owing to, they may be described by a family of continuous parameters such as their
location, charge, width, just to mention a few. Particles are also known to interact. That
is, solitons are also expected to do so. The problem of interaction of localized structures has
begun with the born theory of soliton itself [Zabusky and Kruskal, 1965] and keeps being of
great interest. In the context of parametrically driven systems, many experimental works have
reported such an interaction. Similar behavior of particles such as attraction or repulsion has
been observed and studied. In general, it is the phase of the soliton that plays the role of the
charge. Our contribution to this area has provided a theoretical background to this interac-
tion. The calculations were performed through the parametrically driven and damped nonlinear
Schrödinger equation. The experimental validation of our theory was realized by measurements
in a vertically accelerated water channel. The successful prediction of isolated pair interaction
theory motivated us to consider the case of one-dimensional multi-soliton interaction as an
analog of diluted gas of particles. This study allows the prediction of the power law of the
multi-soliton interaction. On the basis of this power law, we have proposed a protocol to para-
metrically excite dissipative localized structures without the need of perturbations that falls
in their basin of attraction. The theory developed for the localized structures interaction has
also revealed the key role played by the phase. By a careful numerical analysis of the exact
soliton solution of the PDNLS equation (2.7), it appears that the phase can acquire a non-
uniform distribution. The study of this hidden phase dynamics is also presented. It leads to the
proposition of novel type of dissipative LS which we have named phase shielding soliton. The
PDNLS equation is undoubtedly a good model to describe parametrically excited dissipative
structures.

In what concerns my activities on optical system, I have chosen to first present the results
obtained in revisiting the spatiotemporal linear stability analysis. In the introductory part, I
have mentioned the symmetry breaking process in terms of a homogeneous state which breaks
up into a periodic state. This process shared by many physical systems is widely referred to as
the modulational instability (MI). In the general context of the linear stability analysis, MI is
characterized by assuming the solutions of the linearized equations of motion having the form
of a monochromatic wave. It is known as the normal-mode approach which is an indispensable
part of any linear stability analysis. However, within the normal-mode approach the dynamics
of realistic spatially localized perturbations cannot be treated. To address this dynamics,
one has to treat an initial-value problem formulation for the linearized equations of motion.
Therefore, the use of the spatiotemporal theory in terms of convective and absolute instability
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must be employed. This theory attempts to address the answer to the following questions. How
does one describe the dynamical evolution of a localized pulse (wave packet) with both finite
duration and size (finite spectrum and finite wave number) that emerges from fluctuations
in unstable regime? What are the career frequency and wave number of the merging pulse?
And more importantly what is the group velocity of the pulse? During its evolution does the
wave packet spreads in all directions (absolute unstable regime) or not (convective unstable
regime)? Finally, if any, is there any transition from one regime to another? The answers to
these questions are even more fundamental when the considered system exhibits intrinsic parity
symmetry breaking. We have considered these problems in two contexts: the case of simple
propagation described by the Nonlinear Schrödinger equation and also the case of the fiber ring
cavity where the effects of the slope of the dispersion curve have been included. The results
of this latter case can be clearly identified as the starting point of one of my currently main
concerns: the spatiotemporal chaos and their connection to the extreme events or rogue waves
dynamics. Extreme events or rogue waves are also called freak waves, killer waves, abnormal
waves, depending on the authors. They are occasional occurrence of abrupt excursions to
values that differ significantly from the average level. In just a few short years, the study of
extreme events has become a topic of growing interest. Optical analogue of the hydrodynamic
rogue waves are short duration and intense light pulse. They may result from collisions of
solitons or from emergence of a class of exact solutions of the mathematical model understudy.
Extreme events were initially studied in the context of conservative systems. However, these
concerns rapidly extended to dissipative systems. This part of the manuscript is devoted to a
description of the formulation of tools from the theory of chaos. The connection of measured
pertinent observables with the emergence of extreme event is also discussed.
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Parametric dissipative structures:
Interactions and hidden dynamics

6.1/ Soliton pair interaction

Related publications: [32, 34, 35]

This work was done during my postdoctoral position at the University of Chile in Santiago.
The general purpose was the study of parametrically excited dissipative LS. At this moment, an
unexplored feature was the behavior of such a LS when coexisting with another one. Indeed,
there were many attempts in this direction in both experiments and numerics without providing
an analytical prediction [Gordillo, 2012]. Here below the outline of our attempts to address
this theoretical lack starting with the Eq. (2.7). For a negative detuning (ν < 0), Eq. (2.7)
has non trivial exact steady solitonic solutions of the form [Barashenkov et al., 1991]:

cos (2θ0) =
µ

γ
, (6.1a)

R±(X) =
√

2δ±sech (δ± [X − X0]) , (6.1b)

where δ± =
√
−ν − γ sin (2θ0) =

√
−ν ±

√
γ2 − µ2 such that ψ(X, τ) ≡ ψ±(X) = χR±(X)eiθ0 .

A

0

-100 0 100

0.4

χ = +1
χ = −1

R
c

o
s

(θ
)

X

∆(τ )

B

-0.4

Figure 6.1: Illustration of a state of pair
of interacting dissipative solitons. The
aim of the theoretical study is the deter-
mination of the effective phase and the
instantaneous velocity (∆̇) of solitons.

Thus, these solitons are completely characterized by: two related parameters, amplitude
(
√

2δ±) and width (δ−1
± ), the phase, θ0 that is fixed by the balance between injection and

dissipation of energy, plus two others arbitrary parameters, the position (X0) linked to spatial
translation symmetry displayed by Eq. (2.7) and the polarity (χ = ±1, hence this is a sign

parameter). ψ+ solutions are stable only when µ < γ <
√
µ2 + ν2 with small detuning. That

is, describing the interaction of adjacent and isolated two solitons given is equivalent to model
the configuration depicted in Figure 6.1.
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A solution of this state can be written as

R(X, τ) = R0
+

(
X −

∆(τ)
2

)
+ χR0

+

(
X +

∆(τ)
2

)
+ρ(X,∆), (6.2a)

θ(X, τ) = θ0 + ϕ(X,∆), (6.2b)

where ρ(X,∆) and ϕ(X,∆) are small correction functions. For simplicity, we focus on the
parameter region near the saddle-node bifurcation, that is

√
γ2 − µ2 � µ ∼ γ. In addition,

we consider that the solitons are sufficiently separated from each other (diluted) so then we
can consider that ∆(t) varies slowly. Consequently, we have ∆̈ � ∆̇ � 1 and ∆ · δ1/2

+ � 1.
Introducing the ansatz ψ = R(X, τ) exp [iθ(X, τ)] in Eq. (2.7), and using the parameter variation
method, we obtained after straightforward calculations (see Ref. [Clerc et al., 2009] and details
therein) the expression of the phase correction ϕ(X,∆) and the instantaneous position (∆(t))
of the form:

ϕ = ∆̇Θ(X,∆) + O(
√
γ − µ), (6.3a)

∆̇ = −
3χ

〈
∂z+R+,+ | R2

+,+R+,−

〉
2µ

〈
∂z+R+,+ | WΘ

〉 , (6.3b)

where

Θ(X,∆) ≡ −

X∫
−∞

dX′

2W2

X′∫
−∞

dyW
(
∂z+

R+,+ − χ∂z−R+,−
)
, (6.4a)

〈
∂z+R+,+ | WΘ

〉
= −

∫ ∞

−∞

dz∂zR+,+W(z)

X∫
−∞

dX′

W2(X′)

X′∫
−∞

dyW(y)Λ(y), (6.4b)

〈
∂z+R+,+ | R2

+,+R+,−

〉
=

∫ ∞

−∞

dz∂zR+,+(z)R2
+,+ (z) R+,− (z + ∆) , (6.4c)

W = R0
+(z+ ≡ X − ∆/2) + χR0

+(z− ≡ X + ∆/2) =
(
R+,+ + χR+,−

)
,(6.4d)

Λ(y) ≡ ∂z+
R+,+(y) − χ∂z−R+,−(y). (6.4e)

Integrals (6.4.a-c) can be evaluated taking whichever of the two solitons and considering the
asymptotic tendency of one soliton around the other one. For this purpose, let us consider
the soliton R+,+ (which is represented by the curve around A in Figure 6.1), where the soliton
represented by the curve around B decays exponentially: R+,− (z + ∆) ≈ 2

√
2δ+e−δ+(z+∆). Then

the integral (6.4.c) can be approximated by〈
∂z+R+,+ | R2

+,+R+,−

〉
≈ 2
√

2δ+e−δ+∆

∫ ∞

−∞

dz∂zR+,+(z)R2
+,+ (z) e−δ+z, (6.5)

leading finally to the law of soliton pair interaction [Clerc et al., 2009]

∆̇ ≈ −Rχe−δ+∆, (6.6)

where

R =
3
√

2δ+

∫ ∞
−∞

dz∂zR+,+(z)R2
+,+ (z) e−δ+z

µ
∫ ∞
−∞

dz∂zR+,+W(z)
X∫
−∞

dX′
W2(X′)

X′∫
−∞

dyW(y)Λ(y)

(6.7)
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is a positive constant. In the limit of large interaction distance, R explicitly reads:

R =
8δ3

+

µ
. (6.8)

Therefore, the dynamics of a pair of solitons is over-damped and governed by interactions

45
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0 2 4 6 8 10 × 104

(NS)

( 0 )
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30

35

4 0 Figure 6.2: Temporal evolution of two soli-
tons separation distance ∆(t). The red squares
stand for the distance obtained numerically from
Eq. (2.7). The corresponding spatiotemporal di-
agram is given in inset. The solid line is ob-
tained from the formula (6.9). The parameters
are µ = 0.115, γ = 0.27, and ν = −0.063.

that decrease exponentially with the soliton-soliton distance. This interaction is attractive
(repulsive) when solitons are in (out of) phase, that is for χ = 1 (χ = −1). For a given initial
condition, we can integrate the evolution of the soliton distance, which takes the form

∆ (τ) =
1
δ+

ln (δ+R (τ0 − τ)) , (6.9)

where τ0 is determined by the initial condition by

τ0 = χ
eδ+∆0(τ=0)

δ+R
, (6.10)

and ∆0 accounts for both the initial condition and the critical separation distance.

For in-phase solitons, formula (6.9) is valid only for τ < τ0. This time is related to the
characteristic time of fusion between the two particles. Hence, two dissipative solitons that are
in-phase follow a logarithmic decrease of their separation distance. Otherwise, the separation
distance increases. The configuration depicted in Fig 6.1 has been used as the initial condition
of the numerical integration of Eq. (6.9). The result is displayed in Fig 6.2. As can be seen
from this figure, evolution of the intra-pulse separation distance is in a good agreement with
the analytical prediction. The experimental measurements in the rectangular water channel
described in chapter 4 are also in a good agreement with the logarithmic law predicted by the
Eq. (6.9) as shown in Figs. 6.3.

With an adequate initial condition, a multi-soliton state can be formed (see e.g. Fig 6.4a).
The evolution of this state displays a cascade of pair interaction described above. In such
a state, the evolution is mainly mediated by the nearest neighbor interaction because of the
exponentially decaying interaction strength. Hence, the multi-soliton state can be seen as a
set of three interacting solitons as depicted in Fig 6.4b. Therefore, time needed to move from
three to a single soliton is given by τ′0 ∝ eδ+∆̃ + e3δ+∆̃/2, where 2∆̃ is the distance between the

(i−1)-th and (i+1)-th soliton. When ∆̃ is large, the following approximation: τ0 ≈ τ1 = e3δ+∆̃/2

may be used. For a large number of solitons it is convenient to follow the evolution of the
average distance defined as

〈∆〉 =

∑
i=0

(zi+1 − zi)

N
, (6.11)
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Figure 6.3: Interaction processes of two solitons in phase (a) and out of phase (b) obtained experi-
mentally in a vertically driven rectangular water container. The symbols (◦) are extracted from of the
surface elevation profile h(x, t) (density plots inserts). The continuous curves are the corresponding
fit ∆(t) = a · ln(b · (t0 − t)) motivated by formula (6.9). Adjusted parameters are: {a/H = 2.1 ± 0.2,
b = 2.8 ± 0.6s−1 and t0 = 8.2 ± 0.2s} and {a/H = 3.0 ± 0.2, b = 3.8 ± 0.9 s−1 and t0 = 6.9 ± 0.6s.} for
(a) and for (b), respectively.
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Figure 6.4: (a) Amplitude spatio-
temporal density plot of numerical solu-
tion of Eq. (2.7) for µ = 0.05, γ = 0.053,
and ν = −0.03. The black solid line rep-
resents the profile at a given time. (b)
Geometrical picture of the three interact-
ing solitons.

with N the number of dissipative solitons. Consequently, the average distance 〈∆〉 is an implicit
function of the time through the quantity N which is a time-dependent function as a conse-
quence of the coalescence process (〈∆〉 = f (t)). Changing the distance from 〈∆〉 to 〈∆〉 + 〈∆〉0
produces a dilation of the collision time from t0 to t0e3δ〈∆〉0/2. Thus, the dynamics controlled
by Eq. (6.11) is self-similar. Introducing the following self-similar law

zi+1 − zi−1 → zi+1 − zi−1 + 〈∆〉0, (6.12a)

t → te3δ〈∆〉0/2, (6.12b)

Eq. (6.11) is invariant. We get that f (t) must satisfy the condition:

f (t) + 2〈∆〉0 = f (te3δ〈∆〉0/2),

from which we deduce the temporal evolution of the average distance 〈∆〉 as coarsening law:

〈∆〉 = 〈∆〉0 +
4
3δ

ln t, (6.13)

where 〈∆〉0 is an arbitrary constant depending on the initial condition. Therefore, for a dilute
gas of solitons the average separation between solitons grows logarithmically with time. Finally,
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Figure 6.5: Left column: Average soliton-soliton distance evolution for the coalescence cascade. Right
column: the separation distance for a soliton pair that survives almost to the end of the cascade
coalescence process. Squares represent the numerical results and the blue solid lines give the nonlinear
interpolations with respect to our analytical predictions Eqs. (6.9) and (6.13). The numerical results
obtained from: (a-b) the PDNLS equation [µ = 0.05, γ = 0.053, and ν = −0.03]; (c-d) the pendulum
chain [γ = 0.21, µ = 0.1, ν = −0.03] and (e-f) the ferromagnetic spin chain [H0 = 0.2, h1 = 0.044,
β = 4.8, α = 0.02, ν = −0.03].

numerical simulations of the prototype model of Eq. (2.7), the chain of pendulum Eq. (2.2),
and the 1D chain of spin Eq. (3.3) provide a validation of this power law (see Figure 6.5).

Parametrically excited solitons given by (6.1) appear via a saddle-node bifurcation. Hence,
they are generated only if an external perturbation falls into their basin of attraction. Any
spontaneous formation is a priori not possible. By contrast, a non zero homogeneous steady
state can emerge spontaneously inside the Arnold’s tongue |ν| 6

√
γ2 − µ2. This homogeneous
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solution is modulationally unstable in the stability domain of the solitons. Then, starting with a
detuning inside the tongue and switching in the stability domain of the non-propagative soliton,
modulational instabilities leads to a cascade of coalescing collisions (cf. Figs. 6.4). The law of
Eq. (6.13) allows the estimation of the time to reach an quasi-stationary solitons state, with
any external energy injection.

6.2/ Hidden dynamics of parametrically driven systems

Related publications: [19, 25, 31]

From the study of the interaction process, it follows from (6.3a) that the surviving soliton
should present a homogeneous phase profile. Instead of, we have observed that the phase still
displaying a complex dynamics. Therefore, we have closely analyzed the phase dynamics of
the single soliton to check if the observed non-homogeneous phase was a remanent effect of
the interaction. The results of the numerical simulations were surprising. Even starting with
a single soliton, many non-homogeneous phase distributions were observed. Some of these
results are displayed in Figure 6.6. In all the cases, we can observe the variation in the
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Figure 6.6: Different Phase Shielding Soliton states (PSS) in the parametrically driven damped non-
linear Schrödinger equation with µ = 0.10, ν = −0.12, γ = 0.14, and L = 200. Dashed (red) and solid
(blue) lines account for the modulus and phase of the complex field, respectively.

structure of the phase far from the location of the center-of-mass of the soliton. Therefore,
without loss of generality the profile of the phase can be studied considering the asymptotic
behavior of the amplitude. Next, owing to the symmetry displayed by the observed distributions,
the analytical treatment could be done in a semi-infinite domain. Let’s recall the ansatz
ψ = R(X, τ) exp

[
iφ(X, τ)

]
with R(X, τ) given by (6.1b). Taking R(X, τ) → 2

√
2δe−

√
δ(X−X0) for

(X − X0)→ ∞ the equation for φ(X, τ) can be written in the form:

∂XXϕ = 2
√
δ∂Xϕ + µ − γ cos(2ϕ). (6.14)

This equation has heteroclinic solutions corresponding to phase fronts, which are analytically
well described by the following ansatz:

ϕF ≈ arctan


√
γ − 2µ
γ + 2µ

tanh

√
γ2 − 4µ2(X − X f )√
−8ν + 4

√
γ2 − 4µ2

 , (6.15)
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Figure 6.7: Stability of solitons: a) Bifurcation diagram in the γ − ν space for µ = 0.1, the painted
region corresponds to the phase shielding soliton region and striped area is the region of soliton with
constant phase. b), c) and d) are the spectra of the soliton with constant phase before (system size
L = 520) , during (L = 564) and after (L = 600) the bifurcation, respectively, for γ = 0.105, µ = 0.1,
and ν = −0.08.

where x f accounts for the position of phase front, i.e. the point at which the spatial derivative
of the phase front has its global maximum. Hence, using the same strategy as in the study of
the solitons interaction leads to an equation for the position x f :

Ẋ f = A + Be−2
√
δX f , (6.16)

with A =
∫ ∞
−∞

[ν + δ + sin(2ϕF) − (∂zϕF)2]∂zϕFdz/C, C =
∫ ∞
−∞

(∂zϕF)2 dz and B =

8δ
∫ ∞
−∞

e−2
√
δz∂zϕFdz/C where z = X − X f . A and B are real quantities whose signs depend

on the transient phase configuration. However, in most of the configurations, they are of
opposite sign providing stable equilibrium solution Xs

f for X f . Generally speaking, Xs
f roughly

corresponds to the homogenous extension of the phase around the soliton. Consequently, the
constant phase soliton can be observed only if the spatial domain is smaller than Xs

f . This
result has been confirmed by the stability analysis of the constant phase soliton by computing
its linear spectrum for different sizes of the system as shown in Figure 6.7.

In two dimensional extended systems, parametrically excited stable solitons have been also
observed. In that case, we have shown that the solitons always embed all the possible stable
configurations that can be observed in the 1D case. This result is summed up by the Figure 6.8.

Numerical simulations have also been performed to confirm the presence of the shell-type
phase structure in the microscopic set of equations. The main observations are that in many
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Figure 6.8: Front and back view Phase shielding soliton observed in two-dimensions for the Eq (2.7)
with γ = 0.140, ν = −0.068 and µ = 0.125.

cases only a 2π symmetric phases remains. Careful investigations have shown the key role played
by the higher order correction terms in each particular system. These corrections correspond
to higher-order terms that are not taken into account in the amplitude equation approach at
dominant order. Such corrections are negligible far from the position of the dissipative soliton
but become relevant in the phase near the soliton core. The presence of corrective terms also
affects the phase dynamics itself, as the phase front dynamics is led by an exponentially small
force.



7

Spatiotemporal dynamics in optical fiber
systems: Convective/Absolute instability

and spatiotemporal chaos

7.1/ Convective/Absolute instability of the Nonlinear Schrödinger equa-
tion

Related publications: [7, 17, 21, 23, 27]

Developed by Briggs [Briggs, 1964], the study of the dynamics of an initial localized distur-
bances, i.e., absolute and convective instabilities, is treated as a linear initial-value problem.
The key tool consists on the evaluation of the asymptotic solution of the problem in both
space and time, using a combined Fourier-Laplace transform and a consistent mathematical
formalism (see also [Bers, 1973]). Here, this theory is revisited in the framework of the scalar
NLS.

In the reference frame corresponding to a stationary observer, the linear response of a
dynamical system can be expressed as an inverse Fourier-Laplace integral:

ϕ (x, t) =

∫ ∞

−∞

dk
∫ iσ+∞

iσ−∞

S (ω, k)
D (ω, k)

ei (kx0 − ωt)dω, (7.1)

where the function S (ω, k) represents the external perturbations, and D (ω, k) the dispersion-
relation function of the system. In the inverse Laplace integral in (7.1), the integration is
performed along the Bromwich contour [Drazin and Reid, 2004],

B = {ω|ωi = σ,−∞ < ωr < ∞}, (7.2)

where σ is greater than the maximum growth rate of the monochromatic waves, σ > σm =

max{ωi|D(k, ω) = 0,−∞ < k < ∞}.

In practice, it is convenient to consider the general case of the solution in a frame of reference
moving with the velocity V with respect to the absolute frame, that is x = x0 + Vt, where x0
is fixed. In the moving frame, by a change of variable in the double integral the solution can
be brought to the form

ϕ (x0 + Vt, t) =

∫ ∞

−∞

dk
∫ iσ+∞

iσ−∞

S (ω + Vk, k)
D (ω + Vk, k)

ei (kx0 − ωt)dω. (7.3)

Since the function S (ω, k) represents the external disturbance is in some sense arbitrary. That
is, it does not affects the asymptotic properties of the solution.

Therefore, given that V is fixed, the Briggs [Briggs, 1964] collision criterion (see also
[Bers, 1973]) may apply in the evaluation of the integral (7.3). This criterion allows to identify

41
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Figure 7.1: Movement ω↘ ω0 of ω (top) and
the corresponding conformal map in the complex
k plane (bottom). Its illustrates the collision of
two k−roots originating on opposite sides of the
real k− axis when ω↘ ω0.

the points in the upper complex half-plane, {ωi > 0}, that contribute to the temporal growth of
the solution. For the solution given in (7.1) the identification is preformed as follows. Let ω0
be a point in the upper complex half-plane (positive gain) and let ω↘ ω0 denotes a movement
of the point ω along the vertical line passing through ω0 from above the Bromwich contour
till ω0, as illustrated in the top panel of Figure 7.1. We also denote kn(ω), n = 1, 2, . . . , all
the k−roots of D(k, ω) = 0. For ω laying above the Bromwich contour, all the k−roots are
located away from the real k−axis because σ > σm. When ω ↘ ω0 the k−roots move in the
complex k−plane. The point ω0 contributes to the growth of the solution if and only if, in
the most common case, two of the k−roots originating on opposite sides of the real k−axis
collide when ω reaches the point ω0 in the movement ω↘ ω0. This type of a collision is called
a pinching collision. Generally, a collision of at least two of the several k−roots originating
on opposite sides of the real k−axis will produce a point ω0 contributing to the instability
[Brevdo, 1988, Ward et al., 2000]. Hence, at the collision point k = k0, the function D(k, ω)
has at least a double root in k. Formally, the latter satifies:

D (ω + Vk, k) = 0,
∂D (ω + Vk, k)

∂k
= 0, (7.4)

which simplifies to
dω(k0)

dk
= 0. Finally, the contribution of a point (ω0, k0) to the asymptotic

solution (t → ∞) is given by:

C(x0, ω0) = a(k0, ω0, x0)
1
√

t
eik0x0e−iω0t, (7.5)

where k = k0 is the collision point as described above. In many cases, the k−roots of D(k, ω) = 0
cannot be explicitly computed analytically. If so, the points satisfying the collision criterion can
be found by numerically following the movement of the images of the Bromwich contour on
the complex k−plane under the transformations k = kn(ω), n = 1, 2, . . . . Hence, the asymptotic
evolution of C(x0, ω0) is an exponentially growth (decay) if

{
< (ω0) > 0

}
(
{
< (ω0) < 0

}
). For

< (k0) = 0 one can then observe t−1/2 power law decay.
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of the numerical solution of the Eq. (5.19) from
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We have used the approach described above in the case of the nonlinear Schrödinger equa-
tion (5.19),1 and obtained the impulse response. Here, I only focus on the result of our analysis
of the phase. Indeed, the analytical solution provides us an access to the instantaneous phase
profile. Therefore, we have compared this profile with those obtained by the numerical inte-
gration of the Eq. (5.19) for a large nonlinear length to validate the linear approximation. The
instantaneous profile was computed by detecting the wavelet ridges. The result is displayed in
Figure 7.2. As can be seen from this figure, no local wavenumber exists in the band |k0

r | < 1
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Figure 7.3: Normalized output profiles
corresponding to Gaussian initial pertur-
bations

(
ϕ (x, 0) ∝ e−(x/20)2

e−ik0 x
)
. Integra-

tion time is t = 30.

(see Figure 7.2). This result is quiet surprising, since the initial condition is characterized
by a homogeneous spectrum. To elucidate this point, we have integrated Eq. (5.19) starting
with a gaussian wavepacket. The results are summarized in Figure 7.3 which gives different
characteristic behaviors. Indeed, for a range of k0 around 1 the growth of the wavepacket
preserve the initial profile. Outside this range the initial profile is lost. Hence, by analogy to
the group delay of a temporal pulse, we have computed the group displacement. This quantity
provide an estimation of the translational shift variation as a function of the wavenumber of
an impulse traveling through the system. The result is given in Figure 7.3b. As can be seen
from this figure, the group displacement is zero for 0.6 6 k 6 1.7 and presents fast variations
elsewhere. On the other hand it appears from this result that starting with a pulse with central
wavenumber lying in the aforementioned region does not produce any distortion. In contrary,
any initial pulse with central wavenumber outside this region will experience some distortions
leading to a non-localized structure as can be seen from right panels on Figure 7.3a.

When the considered system exhibits an intrinsic symmetry-breaking, two scenarios can be
observed from the growing wavepacket. In the first scenario, the localized disturbance moves

1Actually, we have use the spatial version of the Eq. (5.19): ψt = iψxx + i |ψ|2 ψ.
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Figure 7.4: (a) Absolute instability; (b) convective instability

away from the place of its origin, but spreads in space fast enough so that, at every point of the
medium, growth occurs destroying eventually the base state throughout. This is the scenario of
absolute instability. In the alternative scenario, the temporally growing wave-train propagates
in space more rapidly than it spreads leaving behind, during such a development, a decaying
disturbance at every fixed point in space. In this case the medium is called absolutely stable, but
convectively unstable. A schematic one-dimensional illustration of the spatiotemporal evolution
of the envelope of wave-train in the absolutely unstable case and in the convectively unstable,
but absolutely stable case is presented in Figure 7.4. In optical fiber systems, when the group
velocity dispersion parameter (β2) is small, the effect of the slope of the dispersion curve (β3)
can become important. The impact of this latter parameter has been widely explored. All these
study have pointed out that third order dispersion deeply impacts the evolution when evolving
state is localized. In the case of the fiber ring cavity, the nonlinear stage of the modulational
instability is also affected. Consequently, the slowly varying envelope S of the modulation
instability was found to obey to following equation:

∂S
∂t

= S + (1 + ib)
∂2S
∂τ2 − (1 + ic)|S |2S , (7.6)

where b and c are real values that vanished for β3 = 0. This equation is referred to as the com-
plex Ginzburd-Landau equation. In turn, this envelope has a traveling solution whose stability
can be studied in scope of the convective/absolute theory. The transition from convective to
absolute regime was already reported. However, as shown by the results of the numerical sim-
ulations in Figure 7.5 of the Eq. (7.6) the transition coincides with a spatiotemporal complex
dynamics.

a) b)

Figure 7.5: Convective (a) and absolute (b) instabilities displayed by the traveling wave solution of the
complex Ginzburg-Landau equation.

This result was a turning point in my activities. Indeed, the Lugiato-Lefever equation
is known to support extremely complex dynamics since the first derivations. The general
applicability of this equation to driven dissipative passive resonators, plus the abundance of
the complexity that it exhibits was the motivation to have some tools that can be used when
conventional tools fail2. In this sense, one of the best ways to address the stability whenever
the nature of the regime (from linear to strongly nonlinear) is to consider it in the sense of

2By conventional tool, I mean linear and weakly nonlinear analyses.
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Lyapunov. The following section is devoted to the basics and the application of this theory to
some new concerns of the nonlinear dynamical system theory: the study of rogue waves.

7.2/ Spatiotemporal chaos and rogue waves dynamics

Related publications: [3, 6, 9, 8, 11]

When a dynamical system displays complex behavior, a major concern is to know how far
nearby initial conditions in the phase space will be separated after a large number of iterations.
To do so, one of the best approaches is the computation of the Lyapunov exponents. Here
below, an introduction to this quantity initially called Characteristic numbers of functions by
Lyapunov. Let’s consider the case of a map given by: xn+1 = f (xn) where f (x) is nonlinear
function. That is, after one iteration, x0 produces x1. Therefore, if we assume |δx0| � 1 such
that x̃0 = x0 + δx0 produces x̃1 = x1 + δx1 then,

x̃1 = x1 + δx1 = f (x0 + δx0) ≈ (x0) +
d f
dx

∣∣∣∣∣
x0

δx0. (7.7)

From the single iteration deviation expression δx1 ≈ f ′ (x0) δx0 it follows for n-th iterations:
δx1 = Πn−1

m=0 f ′ (xm) δx0. While the perturbations are small, for large enough iterations n, it is
expected that |δx1| = κn |δx0|, where

κ ≈ lim
n→∞

(∣∣∣∣∣δx1

δx0

∣∣∣∣∣)1/n

. (7.8)

Later, introducing the Lyapunov exponent λ = ln κ leads to

λ = lim
n→∞

1
n

n−1∑
m=0

ln
(∣∣∣ f ′ (xm)

∣∣∣) . (7.9)

Actually, this is the largest Lyapunov exponent. Its determination allows the demonstration
of a chaotic (λ > 0) or a non-chaotic (λ < 0) dynamical behavior. The computation of the
largest Lyapunov exponent is a useful tool for low dimensional system (in general no more than
3 dynamical variables). For a d-dimensional system (d > 3) it is convenient to compute not
only the largest exponent but a set of exponents also named Lyapunov spectrum. To introduce
this concept, let’s consider a d-dimensional system given by:

du
dt

= F (u) , (7.10)

with an initial condition u0 and u ∈ Rd. Then, the evolution of a small perturbation w of a
trajectory ũ (t) in the phase space is described by the following linearized equation:

dw
dt

=
∂F (u)
∂u

∣∣∣∣∣ũ w = M (ũ) w. (7.11)

The Jacobian M (ũ) is a function of time via ũ (t). Now, after some large time evolution, a
set of initial conditions for Eq. (7.11) formed by a sphere of radius l is excepted to transform
into an ellipsoid with d principal axes. Let’s label l j, j = 1, d these principal axes. Hence, the
Lyapunov exponents for the trajectory ũ (t) are given by:

λ j = lim
t→∞

1
t

ln
(
l j

l

)
. (7.12)
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In practice, the set of initial conditions is composed of N orthonormal vectors wk (k = 1..N)
of radius one obtained by applying the modified Gram-Schmidt orthogonalization procedure
such that 〈wm,wn〉 = δmn and ‖wk‖ = 1 ∀k. The resulting initial condition matrix is given by
W (t0) = [w1 (t0) w2 (t0) · · · wN (t0)]. Then, each iteration from t to t + ∆t transforms W to
W′ following (7.11). Next, the Gram-Schmidt procedure is applied again leading to W′ = QR.
Therefore, Q is an orthogonal matrix and R an upper-triangular matrix. The columns of Q are
then used as the initial conditions for the next iteration, while from the diagonal elements of
R it follows:

λn
k =

1
∆t

ln Rkk, (7.13)

for the n-th iteration. Finally, for n→ ∞, the Lyapunov spectrum is obtained by averaging the
λn

k and sorting descending (λ1 > λ2 > · · · > λN). When a system is demonstrated chaotic, with
the Lyapunov spectrum, one may be interested in the minimal number of variable to describe
this attractor. There are many definition of the dimension of a chaotic attractor. However, after
the computation of the Lyapunov spectrum, it is convenient to use the conjecture proposed
by Yorke and Kaplan: the so-called Yorke-Kaplan dimension (DYK) or Lyapunov dimension. In
terms of the Lyapunov spectrum the Yorke-Kaplan dimension is given by [Ott, 2002]

DYK ≡ p +

∑p
i=1 λi∣∣∣λp+1

∣∣∣ , (7.14)

where p is the largest integer that satisfies
∑p

i=1 λi > 0. The Lyapunov spectrum is also a
useful tool to differentiate low dimensional temporal chaos and high dimensional spatiotemporal
chaos. The Ruelle’s conjecture states that the Lyapunov exponents should converge to a
continuous spectrum in the presence of a spatiotemporal chaos. As a consequence, DYK ∝ Lnd

where nd is the number of spatial variables.

Taking advantage of the computing facility in the laboratory, we have implemented a parallel
version of the algorithm described above. This implementation was performed to be indepen-
dent of the dynamical system. Hence, we were able to apply it to various systems. Only two
of them are presented here.

� Spatiotemporal chaos of bistable ring resonators
The Lugiato-Lefever equation (5.24) is known to operate in both monostable or bistable
regime. To do so, one has to set δ >

√
3α for the bistability otherwise the system will

operate in the monostable regime. In case of bistability, the Eq. (5.24) can exhibit a
dissipative localized structure. By increasing the driving strength, this localized struc-
ture undergoes an Andronov-Hopf bifurcation leading to a breathing localized structure.
Increasing further the driving, the breathing localized structure can seed two equal-speed
counter-propagating fronts between the homogeneous and a complex spatiotemporal
states. This process is illustrated in Figure 7.6a and 7.6b. The complex dynamics pre-
sented here was already reported. However, for the first time we were able to perform
a rigorous characterization in terms of the Lyapunov spectrum. This leads to the con-
clusion that the complex dynamics observed is of a spatiotemporal chaos nature. We
have also shown that the Yorke–Kaplan dimension can be considered as a good order
parameter to characterize the bifurcation diagram associated with spatiotemporal chaos
(see 7.6c). Finally, we have identified different operating regimes, in particular the co-
existence between the spatiotemporal chaos, the breathing localized structure, and the
homogeneous steady state.
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Figure 7.6: (a) Spatiotemporal evolution of oscillatory lo-
calized structures obtained from numerical simulation of
Eq. (5.24). The dashed lines mark separation between the
chaotic and the homogeneous background. From these lines
one can determine the front speed. (b) The front speed V
and (c) Bifurcation diagram of spatiotemporal chaos showing
the Yorke-Kaplan dimension, DYK , as function of the inten-
sity of pumping. The insets account for the Lyapunov spectra
obtained for four values of the pumping intensity indicated
by the symbol Γ j ( j = 1, 2, 3, 4). The parameters are δ = 1,
α = 0.16 and when fixed, S 2 = 0.1225 (a).

� Spatiotemporal chaos-induced dissipative extreme events in a laser cavity
In recent years, a great effort has been devoted to the understanding of the observed
large deviations in extended deterministic systems, the so called extreme events. As
defined in [Nicolis and Nicolis, 2012], a time-recording of the dynamics of a macroscopic
systems maintained out of equilibrium may consist of well defined periods where a rele-
vant variable undergoes small variations around a well defined level. Occasionally, abrupt
excursions to higher values that differ significantly from the average may appear, and
these excursions are called extreme events. These events are ubiquitous in the nature.
In optics, an extreme event is characterized by a rare and intense optical intensity pulse.
The study of extreme events and extreme waves [Onorato et al., 2013] has been moti-
vated by the analogy with rogue waves in hydrodynamics [Kharif and Pelinovsky, 2003]
that are giant waves observed in the ocean. Indeed, some conservative systems in
optics and deep water waves in the ocean can share a common description by the
nonlinear Schrödinger equation [Solli et al., 2007]. Most of the studies in this con-
text have taken place in optical fibers where the interplay of nonlinearity, disper-
sion and noise can generate extreme events [Dudley et al., 2008, Mussot et al., 2009,
Kibler et al., 2010, Arecchi et al., 2011]. Extreme events in conservative systems are of-
ten associated with the merging dynamics of coherent structures [Antikainen et al., 2012,
Birkholz et al., 2013, Pierangeli et al., 2015], and this mechanism has also been found
in a dissipative, fiber-laser systems [Mussot et al., 2009, Lecaplain et al., 2012]. Other
mechanisms observed in dissipative systems involve stochastically induced transitions
in multi-stable systems [Pisarchik et al., 2011] or the temporal chaotic dynamics in
a non spatially extended laser with optical injection [Bonatto et al., 2011]. Extreme
events have been found in a variety of optical cavity systems, such as an injected
nonlinear optical cavity [Montina et al., 2009], fiber lasers [Randoux and Suret, 2012,
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Lecaplain et al., 2012], solid-state lasers [Kovalsky et al., 2011], optical liquid crys-
tal light valve with optical feedback [Clerc et al., 2016], and semiconductor lasers
[Bonatto et al., 2011, Bosco et al., 2013]. Within the framework of a collaboration with
our partners in Santiago and Paris-Saclay, the role of spatial coupling has been studied
in an extended microcavity laser with integrated saturable absorber [Selmi et al., 2016].
Without the spatial coupling, this system is known to be free of any irregular dynam-
ics. However, experimental measurements in a unidimensional configuration unveiled an
increasing complexity with the pump power. From a theoretical perspective, the model
of the aforementioned experiment consists in three coupled nonlinear partial differential
equations

∂E
∂t

=
[
(1 − iα)G + (1 − iβ)Q − 1

]
E + i

∂2E
∂x2 ,

∂G
∂t

= γg
[
µ −G(1 + |E|2)

]
, (7.15)

∂Q
∂t

= γq
[
−γ − Q(1 + s|E|2)

]
,

for the intracavity electric field amplitude E(x, t), the carrier density in the gain (saturable
absorber) medium G(x, t) (Q(x, t)). The non-radiative carrier recombination rates are
γg and γq with pumping µ and linear absorption γ. Our computation of the Lyapunov
spectrum shows that the complexity induced the spatial coupling is spatiotemporal chaos.

a )

b)

c )

d)

H (arb. u.)

H (arb. u.)

H (arb. u.)

H (arb. u.)

Figure 7.7: Experimental observation of extreme events in a spatially extended microcavity laser.
Excerpt of the temporal evolution of the intensity at a fixed position, corresponding logarithm of the
PDF of the intensity height H and Fourier spectrum for different normalized pump values P/Pth : a)
1.02, b) 1.17, c) 1.20 and d) 1.25. Extreme events (AI > 2) are emphasize in red.

The outstanding feature of this result is that the emergence of this complexity is followed
by a change in the statistics of the experimental intensity profile. Indeed, as can be seen
from Figure 7.7, records of the intensity above the significant wave height appear in a
non-gaussian statistics.

Next the ratio of the extreme events and the kurtosis was studied with respect to the laser
pump. The results are recorded in Figure 7.8. The main conclusion from this study is
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Figure 7.8: Emergence of extreme events and spatiotemporal chaos according to different observables.
a) proportion of extreme events pEE (×) and excess kurtosis γ2 (∗) as function of pump parameter µ
considering the height of the total intensity across the laser. b): largest Lyapunov exponent max(λi)
(squares) and Kaplan-Yorke dimension DKY (circles, from Eq.(??)) as function of pump parameter µ.
c): proportion of extreme events pEE (×) and excess kurtosis γ2 (∗) as function of pump parameter µ
considering the intensity of the local spatiotemporal maxima.

that the spatiotemporal chaos is prerequisite to observe the extreme events in this system,
but increasing the complexity does not imply more extreme events. Then, coupling the
statistical, spectral and chaos analyses we have identified the quasi-periodicity to be the
route to the spatiotemporal chaos. Consequently, at the onset of the chaotic regime the
dynamics is dominated by a spatiotemporal intermittency. It is also in this regime that
the highest ratio of extreme event are recorded.
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Throughout this report, I exposed an overview of my research activities since the end of my
PhD thesis. These activities are widely dominated by the control of the localized dissipative
structures which are ubiquitous in the nature. They are of a great interest for the scientific
community since they can represent the macroscopic analogs of elementary physical particles.
Thanks to this particle like behavior, mechanisms behind the formation, the interaction, and
motion of localized structures remain a challenge. In particular, localized structures of physical
systems in which losses must be balanced by energy injection are of particular interest. Among
the ways to inject energy in dissipative systems, the one of harmonically modulating some
parameters took a particular place in my activities. In this case, a resonance can be achieved
by modulating a relevant parameter close to the twice of the natural frequency of the system.
The parametrically excited localized structures are parametrized by one continuous parameter:
the position which appears to be arbitrary. In the presence of another localized state, this
position becomes a dynamic parameter. The theoretical study of the pair-interaction has given
a law which decreases exponentially with the separation distance and it is attractive (repulsive)
for two dissipative solitons that are in phase (out of phase). The majority of the dissipative
structures can arise spontaneously above a given threshold. Conversely, in general, a dissipative
solitary wave needs an external perturbation that falls into its basin of attraction. However,
solitary wave generated parametrically coexist with homogeneous state, that is easier to excit.
This homogeneous state always undergoes an instability leading to an irregular cascade of
attractive solitons pair-interaction. The time scale of the formation of the non propagative
multi-soliton state obeys a self-similar law, which has been derived from the two isolated
soliton interaction law. Far from the position of its center-of-mass, parametric dissipative
soliton can develop an unexpected non uniform phase profile. The asymptotic exponential
decay of the amplitude has been shown to rule the transient dynamics before reaching the
equilibrium configurations. The denominated phase shielding solitons have been also observed
in two-dimension. These 2D solitons are characterized by always embedding in the same state
all the possible stable configurations observed in 1D.

Since many years, my research activities have also focused in optical fiber systems. The
modulational instability process has been intensively studied in this system. It is the result of
an instability of a continuous wave solution of the generic model used to describe this system:
the Nonlinear Schrödinger equation. The studies of this instability are generally based on the
Fourier modal decomposition of the perturbation. When modulation instability is seeded by
a localized initial condition, the latter approach fails and the stability may be addressed by
means of an initial-value problem formalism. This approach allows us to compute the global
(spatiotemporal) gain of the system which displays a gap in the band of standard modulation-
ally unstable wavenumber. We also show through the determination of the group displacement
that this band gap induced a region of wavenumbers where the group delay vanishes. In this
region we have observed that pulses maintain their shape without distortion. However, any
initial pulse with a wavenumber outside this region experiences many distortions. The same
approach was also used in a setup where the ends of a fiber are coupled. The effect of the
internal parity symmetric breaking coming from the slope of the dispersion curve has been
included. The transition from convective to absolute instability was shown to coincide with
the complex spatiotemporal evolution. An adequate tool to address the characterization of
such complex dynamics is the computation of Lyapunov spectrum. Generally speaking the
Lyapunov exponents are obtained by an algorithm based on the Gram-Schmidt orthonormal-
ization. We have implemented this algorithm using parallel computing tools in a way that is
free of the considered physical system. In the fiber ring cavity, for the first time, we were able
to give a rigorous demonstration of the spatiotemporal chaos mediated by unstable breathing
cavity soliton. In another cavity system, a semi-conductor laser with saturable absorber, the
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spatiotemporal chaos has been shown to induce the emergence of extreme events.

Although the study of extreme events keeps attracting a great interest in nonlinear physics,
the topic is now in the mature stage. From now on, the main concerns are not the evidence
of this structures, but rather how to manipulate them. The question of their predicability has
also arose as a major concerns. Before addressing these questions, their detection in a complex
dynamical evolution is of crucial importance. In this scope, the experiment seems to be ahead
of the theory. Indeed, many recent reports of fast measurement technics leading to real time
observation of extreme events. However, from theoretical point of view, all these observations
are the opportunity to consider many questions about the mechanisms of energy exchange
upstream and downstream of the formation of extreme events. Fortunately, like Lyapunov
exponents, the dynamical systems theory has many other performant tools that can be used to
address these problems. In particular, information theory can be of special interest. In short-
and midterm place it is in this direction that I would like to focus my activities.
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Cuellar, G., and Taki, M. (2011). Rogue waves in a multistable system. Phys. Rev. Lett.,
107:274101.

[Pismen, 2006] Pismen, L. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer
Series in Synergetics. Springer Berlin Heidelberg.

[Rand, 1994] Rand, R. H. (1994). Topics in nonlinear dynamics with computer algebra, vol-
ume 1. CRC Press.

[Randoux and Suret, 2012] Randoux, S. and Suret, P. (2012). Experimental evidence of extreme
value statistics in raman fiber lasers. Opt. Lett., 37(4):500–502.

[Rossi et al., 2008] Rossi, F., Ristori, S., Rustici, M., Marchettini, N., and Tiezzi, E. (2008).
Dynamics of pattern formation in biomimetic systems. Journal of Theoretical Biology,
255(4):404.



BIBLIOGRAPHY 63

[Russell, 1844] Russell, J. S. (1844). Report on waves. In 14th meeting of the British Association
for the Advancement of Science, volume 311, page 1844.

[Schrödinger, 1992] Schrödinger, E. (1992). What is life?: With mind and matter and autobio-
graphical sketches. Cambridge University Press.

[Scott et al., 2006] Scott, A. et al. (2006). Encyclopedia of nonlinear science. Routledge.

[Selmi et al., 2016] Selmi, F., Coulibaly, S., Loghmari, Z., Sagnes, I., Beaudoin, G., Clerc, M. G.,
and Barbay, S. (2016). Spatiotemporal chaos induces extreme events in an extended micro-
cavity laser. Phys. Rev. Lett., 116:013901.

[Solli et al., 2007] Solli, D. R., Ropers, C., Koonath, P., and Jalali, B. (2007). Optical rogue
waves. Nature, 450(7172):1054–1057.

[Turing, 1952] Turing, A. (1952). The chemical theory of 185. morphogenesis. Phil. Trans. Roy.
Soc. B, 7.

[Umeki, 1991] Umeki, M. (1991). Parametric dissipative nonlinear schrödinger equation. Journal
of the Physical Society of Japan, 60(1):146–167.

[Ward et al., 2000] Ward, H., Ouarzazi, M., Taki, M., and Glorieux, P. (2000). Influence of
walkoff on pattern formation in nondegenerate optical parametric oscillators. Physical Review
E, 63(1):016604.

[Wu et al., 1984] Wu, J., Keolian, R., and Rudnick, I. (1984). Observation of a nonpropagating
hydrodynamic soliton. Physical Review Letters, 52(16):1421.

[Yates, 2012] Yates, F. E. (2012). Self-organizing systems: The emergence of order. Springer
Science & Business Media.

[Zabusky and Kruskal, 1965] Zabusky, N. J. and Kruskal, M. D. (1965). Interaction of”solitons”
in a collisionless plasma and the recurrence of initial states. Physical review letters, 15(6):240.

[Zhang and Vinals, 1997] Zhang, W. and Vinals, J. (1997). Pattern formation in weakly damped
parametric surface waves. Journal of Fluid Mechanics, 336:301–330.

[Zharnitsky et al., 1998] Zharnitsky, V., Mitkov, I., and Levi, M. (1998). Parametrically forced
sine-gordon equation and domain wall dynamics in ferromagnets. Physical Review B,
57(9):5033.





Selected publications

65





Characterization of spatiotemporal chaos in a
Kerr optical frequency comb and in all fiber
cavities
Z. LIU,1 M. OUALI,1 S. COULIBALY,1,* M. G. CLERC,2 M. TAKI,1 AND M. TLIDI3

1Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
2Departamento de Física, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
3Optique Nonlinéaire Théorique, Université Libre de Bruxelles (U.L.B.), CP 231, Campus Plaine, B-1050 Bruxelles, Belgium
*Corresponding author: saliya.coulibaly@univ‑lille1.fr

Received 28 December 2016; revised 10 February 2017; accepted 13 February 2017; posted 14 February 2017 (Doc. ID 283776);
published 3 March 2017

Complex spatiotemporal dynamics have been a subject of
recent experimental investigations in optical frequency
comb microresonators and in driven fiber cavities with
Kerr-type media. We show that this complex behavior
has a spatiotemporal chaotic nature. We determine numeri-
cally the Lyapunov spectra, allowing us to characterize
different dynamical behavior occurring in these simple de-
vices. The Yorke–Kaplan dimension is used as an order
parameter to characterize the bifurcation diagram. We
identify a wide regime of parameters where the system ex-
hibits a coexistence between the spatiotemporal chaos, the
oscillatory localized structure, and the homogeneous steady
state. The destabilization of an oscillatory localized state
through radiation of counter-propagating fronts between
the homogeneous and the spatiotemporal chaotic states
is analyzed. To characterize better the spatiotemporal
chaos, we estimate the front speed as a function of the pump
intensity. © 2017 Optical Society of America

OCIS codes: (070.5753) Resonators; (190.4370) Nonlinear optics, fi-

bers; (190.3100) Instabilities and chaos; (190.5530) Pulse propaga-

tion and temporal solitons.
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Experiments supported by numerical simulations of driven
cavities such as whispering-gallery-mode microresonators lead-
ing to optical frequency comb generation have demonstrated
the existence of complex spatiotemporal dynamics [1].
Similar complex dynamics have been observed in all-fiber
cavities [2–4]. In most of these studies, complex behaviors
are characterized by a power spectrum [1], filtering spatiotem-
poral diagrams [4], embedding dimension, and time series
analysis [2,3]. However, these tools are inadequate to distin-
guish between spatiotemporal chaos, low dimensional chaos,
and turbulence. A classification of these phenomena has been
reported in the literature (see for instance [5–11]). In the case of
spatiotemporal chaos, the Lyapunov spectrum has a continuous

set of positive values. This matches the definition that has been
proposed in [5,7]. In the case of a low dimensional chaos, the
Lyapunov spectrum possesses a discrete set of positive values.
However, the turbulence or weak turbulence is characterized by
a power law cascade of a scalar quantity such as energy and
norm [12]. On the basis of the Lyapunov spectrum, we cannot
conclude that the system develops a turbulence.

In this Letter, we characterize the complex behavior reported
in the paradigmatic Lugiato–Lefever equation (LLE, [13]) that
describes Kerr optical frequency combs and fiber cavities. For
this purpose, we use a rigorous tools of dynamical systems
theory. We show that this complex behavior has a spatiotem-
poral chaotic nature. We estimate the Lyapunov spectra. The
Yorke–Kaplan dimension (DYK) is used as an order parameter
to establish the bifurcation diagram of the spatiotemporal
chaos. In addition, we show that the spatiotemporal chaos,
the oscillatory localized state and the homogeneous steady state
(HSS) can coexist in a finite range of the pumping intensity.
The destabilization of an oscillatory localized state through ra-
diation of counter-propagating fronts between the HSS and the
spatiotemporal chaotic state is also discussed by estimating the
front speed as a function of the pump intensity.

Driven Kerr cavities with a high Fresnel number—assuming
that the cavity is much shorter than the diffraction and the non-
linearity spatial scales—is described in the mean field limit by
the LLE [13]. This equation has been extended to model both
fiber cavities [14,15] and optical frequency comb generation
[16–18], in which the diffraction is replaced by dispersion.
This model reads

∂ψ
∂t

� S − �α� iδ�ψ � i
2

∂2ψ
∂τ2

� ijψ j2ψ ; (1)

where ψ�t; τ� is the normalized slowly varying envelope of the
electric field that circulates within the cavity, and S is the am-
plitude of the injected field which is real and constant. The
time variable t corresponds to the slow evolution of ψ over suc-
cessive round-trips. τ accounts for the fast dynamics that de-
scribes how the electric field envelope changes along the
fiber [14–16]. The parameters α and δ are the cavity losses,
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and the cavity detuning, respectively. In addition, Eq. (1) has
been derived in the context of left-handed materials [19].
Note that Eq. (1) has been derived in early reports to describe
the plasma driven by a radio frequency field [20,21] and the
condensate in the presence of an applied ac field [22].

The model, Eq. (1), supports stationary localized [23] and
self-pulsating localized [24] structures. In the conservative
limit, �α; S� → �0; 0�, localized structures have analytical
solutions [25–28]. It has been also shown that, in this limit,
localized structures can exhibit regular time oscillations and dis-
play a complex behavior [25–27]. An example of complex spa-
tiotemporal behavior is plotted in the τ − t map of Fig. 1(a).
The time evolution of the field amplitude that circulates inside
the cavity exhibits large amplitude localized pulses. These
pulses have irregular distribution along the τ coordinate [see
Fig. 1(a)]. The characterization of this behavior can be achieved
by means of Lyapunov exponents, which provide an informa-
tion about the sensitivity of close initial conditions [7]. When
the largest Lyapunov exponent is positive, the system develops
chaos, but not necessarily a spatiotemporal chaos. To distin-
guish between these two complex dynamical behaviors, it is
necessary to compute the Lyapunov spectra composed by a
set of exponents [5–7]. Spatiotemporal chaos has a
Lyapunov spectrum with a continuous set of positive values.
In contrast, chaos possesses a Lyapunov spectrum with a dis-
crete set of positive values. The Lyapunov exponents is denoted
by fλig, where i labels the exponents (i � 1;…; N ) and λp ≤ λq
(p ≥ q). By using the strategy proposed in [29,30], we compute
numerically the Lyapunov spectrum for largeN . The numerical
simulations are obtained by using periodic boundary condi-
tions that are compatible with both Kerr optical frequency
combs and fiber cavity geometries. Figure 1(b) shows a typical
continuous Lyapunov spectrum. Hence, we infer that the
complex dynamical behavior shown in Fig. 1(a) is a spatiotem-
poral chaos.

The main feature of the Lyapunov spectra is that they are
proportional to the physical system size. This implies that the
upper limit of the strange attractor dimension of spatiotemporal
chaos—the Kaplan–Yorke dimension (DYK)—is an extensive
quantity that increases with the physical system size [6].
This latter quantity provides an information on the level of
the strange attractor complexity and is defined by [31]

DYK ≡ p�
Pp

i�1 λi
λp�1

; (2)

where p is the largest integer that satisfies
Pp

i�1 λi > 0.
Figure 1(c) displays DYK as a function of the number of dis-
cretization points, which shows that this dimension is indeed
an extensive physical quantity as it linearly increases with the
system size. Therefore, as one increases the system size, the
dimension of the strange attractor grows proportionally.

To establish the bifurcation diagram of the spatiotemporal
chaos, we fix the detuning and the dissipation values, and we
numerically estimate DYK by varying the pumping intensity.
The initial condition consists of a single peak localized struc-
ture. The summary of the results is illustrated in Fig. 2. When
increasing the pump intensity, the LLE has a zero Yorke–
Kaplan dimension, i.e., DYK � 0 until the system reaches
S2 ≡ S2�. For S2 > S2�, the system exhibits a transition toward
a spatiotemporal chaos, i.e., DYK > 0. This behavior lasts for
large pumping intensity values. When decreasing S2, the spa-
tiotemporal chaos persists down to the point S2 ≡ S2−, as shown
in Fig. 2. From this figure, we clearly see a hysteresis loop
involving a spatiotemporal chaos, a pulsating localized struc-
ture, and a HSS in the range S2− < S2 < S2�. The inset in
Fig. 2 shows the continuous Lyapunov spectra for different val-
ues of the pump intensity. Remarkably, the middle panel of the
inset shows two Lyapunov spectra (Γ2 and Γ3) obtained for the
same parameters values indicating the coexistence of two quali-
tatively different dynamical behaviors.

Fig. 1. Spatiotemporal chaos. (a) τ − t map shows a complex
spatiotemporal behavior obtained by numerical simulation of
Eq. (1) with α � 0.16, δ � 1, and S2 � 0.16 with 512 grid points.
(b) Corresponding Lyapunov spectrum, and (c) Yorke–Kaplan dimen-
sion as a function of the system size L is indicated by the diamond red
points. L � 512Δτ with Δτ is the step-size integration. The linear
growth of DYK dimension is fitted by a slope of 1.73, as shown by
the gray dashed line.

Fig. 2. Bifurcation diagram of spatiotemporal chaos showing the
Yorke–Kaplan dimension, DYK , as a function of the intensity of
pumping obtained by numerical simulations of Eq. (1). The insets
account for the Lyapunov spectra obtained for four values of the
pumping intensity indicated by the symbol Γj (j � 1; 2; 3; 4).
The parameters are δ � 1, and α � 0.16. The grid points is 512. The
spectra are composed of N � 496 exponents.
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In what follows, we establish a bifurcation diagram showing
a coexistence between the spatiotemporal chaos, the oscillatory
localized structure, and the HSS. In order to show different
operating regimes, the total intracavity field amplitude ‖ψ‖ ≡R jψ�t; τ�j2dτ as a function of the pumping intensity is shown
in the bifurcation diagram Fig. 3. The upper (lower) HSS
branch indicated by a dashed (solid) gray line is modulationally
unstable (stable) [13]. For small pumping intensity, the system
has a stationary stable localized state in the range S2LS < S2 <
S2PS (see Fig. 3). When increasing the pumping intensity,
the localized state becomes self-pulsating in the range
S2PS ≤ S2 < S2�. When further increasing S2, the system exhib-
its spatiotemporal chaos. When decreasing S2, the spatiotem-
poral chaos persists down to S2−. As in the bifurcation diagram
of DYK (see Fig. 2), the system presents an hysteresis loop
involving three different robust states: HSS, pulsating localized
structures, and spatiotemporal chaos.

It is well known that model (1) exhibits radiation from a
localized state of two counter-propagating fronts between
the homogeneous and the complex spatiotemporal states
[32]. An example of this behavior is depicted in the τ − t
map shown in Fig. 4(a). To characterize this transition, we es-
timate numerically the front speed. Figure 4(b) shows the front
speed as a function of the pump intensity in the vicinity of the
instability associated with localized states. Right and left fronts
propagate with almost the same speed. As the pumping inten-
sity is increased, the front speed continues to increase until the
system reaches the lower limit point of bistable HSSs. Similar
behavior has been reported in pattern forming systems where
the front propagates between a HSS and a periodic pattern
[33–35], between either of the two HSSs [36,37], or even
between a HSS and the spatiotemporal intermittency [38].

From a practical point of view, a driven ring cavity made with
an optical fiber could support a spatiotemporal regime. However,
by using a constant injected beam, i.e., cw operation, it is hard to
reach the high-intensity regime where we can observe the spatio-
temporal chaos and its coexistence with a homogeneous back-
ground. To overcome this limitation, it is necessary to drive
the cavity by synchronously pumping with a pulsed laser. The
time-of-flight of the light pulses in the cavity should be adjusted
to the laser repetition time. All experiments using this simple
device with a pulse laser have shown evidence of complex spatio-
temporal behaviors [2–4,39]. Therefore, the phenomenon
described in this Letter should be observed experimentally.

In conclusion, by using rigorous tools of dynamical system
theory, such as Lyapunov spectra, we have quantitatively shown
that the complex behavior observed experimentally in the Kerr
optical frequency combs [1] and in the fiber cavity [2–4] is of a
spatiotemporal chaos nature. We have also shown that the
Yorke–Kaplan dimension can be considered as a good order
parameter to characterize the bifurcation diagram associated
with spatiotemporal chaos. Finally, we have identified different
operating regimes, in particular the coexistence between spatio-
temporal chaos, the self-pulsating localized structure, and the
homogeneous steady state. The observed complex states are ex-
ponentially sensitive to the initial conditions, exhibit complex
spatiotemporal chaos, and have exponential power spectrum.
Hence, this behavior is not of a turbulent nature. Therefore,
our finding is important for the analysis, or classification of
the various complex spatiotemporal behaviors observed in
practical dissipative systems.

Fig. 3. Bifurcation diagram of model Eq. (1). The total intracavity
intensity ‖ψ‖ versus the pump intensity S2 with δ � 1, and
α � 0.16. The continuous and dashed thick gray lines point out
the stable and unstable HSS, respectively. The continuous blue lines
indicate the extrema of the total intracavity intensity ‖ψ‖ of localized
states. The cloud of blue scattered points accounts for the spatiotem-
poral chaotic state. Note that the horizontal graduation unit is equal to
0.05.

Fig. 4. Front radiation from an oscillating unstable localized state.
(a) Spatiotemporal evolution of oscillatory localized structures ob-
tained from the numerical simulation of Eq. (1). The parameters
are S2 � 0.1225, δ � 1, and α � 0.16. The dashed lines mark a sep-
aration between the chaotic and the homogeneous background. From
these lines, one can determine the front speed. (b) Front speed V as a
function of the pump intensity obtained for δ � 1 and α � 0.16.
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Supercontinuum generation (SCG) in optical fibers arises
from the spectral broadening of an intense light, which re-
sults from the interplay of both linear and nonlinear optical
effects. In this Letter, a nondestructive optical time domain
reflectometry method is proposed for the first time, to the
best of our knowledge, to measure the spatial (longitudinal)
evolution of the SC induced along an optical fiber. The
method was experimentally tested on highly nonlinear fibers.
The experimental results are in a good agreement with the
optical spectra measured at the fiber outputs. © 2017
Optical Society of America
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Supercontinuum generation (SCG) consists of the develop-
ment of a broad continuous spectrum when high-power optical
pulses propagate through a nonlinear medium such as an op-
tical fiber [1]. This phenomenon is well known to the scientific
community by its universal aspect and led to many practical
achievements. The most important application of SCG to
the field of telecommunications is the design of multi-wave-
length sources for ultra-broadband wavelength-division-multi-
plexed systems based on spectral slicing of SC generated by a
single laser [2–4]. SCs are also exploited in spectroscopy [5,6],
pulse compression [7,8], tomography [9–11], metrology
[12,13], and in the generation of optical clocks using frequency
combs [14]. During the past decade, SCG in optical fibers has
been extensively studied, and many contributions have been
published [15–19]. It was notably established that when a fiber
is pumped in the anomalous dispersion region and operating in
the nanosecond pulse regime, the modulation instability (MI)
plays a key role in the spectral broadening [20]. This Letter
does not intend to provide an analysis of the SCG mechanisms,
as it has already been largely covered by the literature [15–19],
but instead aims to fill a gap in the metrology of the SC.
Indeed, the SC spectrum can easily be measured at the fiber

output, but no adequate method has been proposed to measure
the spatial evolution of the spectral broadening along the fiber.
Note that spatial evolution means here the evolution in the
longitudinal direction of propagation. So far, the only way
to obtain a spatially resolved measurement of the SCG is to
use the cutback method, which leads to the destruction of
the fiber and, for this reason, cannot be implemented in situ,
i.e., in a fiber communication network. This cutback method
consists of measuring the spectrum spatial evolution with an
optical spectrum analyzer (OSA) at discrete points by succes-
sively cutting the fiber end by a length given by the desired
spatial resolution. In this Letter, an experimental method based
on an optical time domain reflectometer (OTDR) is proposed
for the nondestructive measurement of the SC spatial evolution
along an optical fiber in the nanosecond pulse regime. The in-
terest of our new method is twofold. On a fundamental level, it
will provide a nondestructive method to compare the predic-
tions obtained by numerical simulations with experimental re-
sults. On a more applied level, this method will enable the
design optimization of broadband sources based on SCG. In
the field of telecommunications, it could enable the localization
of fiber trunks presenting a nonlinear coefficient that is too
high (and, thus, a non-negligible crosstalk) along an optical
fiber communication link. A first attempt to use a reflectometry
technique for the distributed measurement of MI was described
in Ref. [21]. However, a spatial resolution of only 27.5 m was
reached, and only a first-order MI was characterized. The
method proposed in this Letter allows obtaining a worst spatial
resolution of 6.6 m. Moreover, second-order MI and SCG can
be detected. To the best of our knowledge, this is the first time
that the spatial evolution of the SC spectral broadening process
along an optical fiber is measured. Until now, the SC spatial
evolution could be only estimated by means of numerical
simulations or measured by the cutback method [18].

An OTDR [22] is a widely used instrument in the field of
telecommunications to characterize a fiber network and to
localize defects. It makes it possible to obtain information along
a fiber link without causing its destruction. The best spatial
resolution of commercially available OTDRs is typically
30 cm. As the internal source of a commercially available
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OTDR is a low-power broadband source and, since one needs a
narrowband high-power optical source for the generation of an
SC, the device must be adapted. For that purpose, a series of
extra components must be added. They are represented in the
dotted box in Fig. 1, which describes the proposed measure-
ment setup. The optical pulses emitted by the source included
in the OTDR are converted to electrical pulses by the photo-
detector, which are used to synchronize an electrical pulse
generator. The latter generates an electrical pulse train that
has a repetition rate identical to that of the OTDR. The pulse
duration determines the spatial resolution of the measurement
[22]. This electrical signal is then used to modulate a
continuous-wave tunable laser source by means of an
electro-optic modulator of a 40 dB extinction ratio. The gen-
erated optical pulses are amplified by an erbium-doped fiber
amplifier (EDFA) in order to obtain the peak power level
needed to generate modulation instability/SC in fibers. The
tunable filter 1 centered on the tunable laser wavelength aims
to filter out the majority of the EDFA noise. An optical circu-
lator routes the amplified optical pulses into the fiber under
test. At the fiber input, an optical signal pulse train having
the same repetition rate as the signal transmitted by the
OTDR and having the desired characteristics to generate
MI/SC (pump wavelength and peak power) is obtained.
When the high-peak-power optical pulses propagate in the
fiber, the optical spectrum continuously broadens all along
the fiber. Let us consider that a new SC component at a wave-
length λ is generated. As it propagates through the fiber, it
undergoes locally the Rayleigh backscattering process. The gen-
erated backscattered signal propagates toward the fiber input
and reaches the detector of OTDR after passing through the
two circulators and the tunable filter 2. The OTDR detector
measures the power of the backscattered signal as a function of
time, while the pulse propagates down the fiber. The reference
time (t � 0) is the time at which the pulse is generated by the
internal clock of the OTDR. The timescale can be converted
into a distance scale when taking into account the fiber-
effective refractive index. The OTDR used in the experiments
considers an effective refractive index of 1.467. Let us note that
the insertion of any additional component generating an extra
time delay will result in a distance offset in the OTDR trace.
Centering the tunable filter 2 on wavelength λ, the OTDR
automatically displays the spatial evolution of the λ component
of the SC along the fiber. This mechanism can be extended to
all wavelengths generated by the SC. By changing the center

wavelength of the tunable filter 2, we can finally obtain the
spatial evolution of the SC spectrum along the fiber.

As described in the introduction, the nanosecond pulse re-
gime was considered in this Letter. In this regime, the initial
dynamics of SCG development is dominated by the phenome-
non of spontaneous MI. The first experimental investigation
consisted of the distributed measurement of spectral broaden-
ing in the case where only modulation instability plays a role.

Experiments were performed with two highly nonlinear
fibers [23] manufactured by Sumitomo Electric Industries, de-
noted in our experiments by fibers 1 and 2 and having very
different dispersion profiles and nonlinear coefficients. The
pulse width was set to 25 ns. The pulse shape was almost
rectangular, since the rise time was close to 50 ps. The pulse
extinction and the sample rate of the detection system were
equal to 40 dB and 1.4 cm, respectively. Filters 1 and 2 have
bandwidths of 1 nm and 950 pm, respectively. For both fibers
under test, pumping was performed in the anomalous
dispersion regime. The parameters of the experiments are sum-
marized in Table 1, where P0�W � is the pulse peak power,
γ�w · km�−1 is the nonlinear coefficient at 1550 nm, L is [m]
the fiber length, λP [nm] is the pump wavelength, α�dB∕km�
is the linear attenuation coefficient at 1550 nm, and λ0 [nm] is
the zero-dispersion wavelength (ZDW) of the fiber. Note that
fiber 1 has one ZDW, while fiber 2 presents a flattened
dispersion curve with two ZDWs.

The backscattered power spatial evolution at the pump and
the two MI component wavelengths were measured for fiber 1
(2) and displayed in Figs. 2(a) and 2(b). The peak at 0 m is due
to a Fresnel reflection at the OTDR front end. The backscat-
tered signal of the fiber under test starts at around 40 m because
of the offset delay caused by the extra components added to
externally modulate the tunable laser. The blue curves corre-
spond to the pump components, while the black (red) curves
are related to the Stokes (anti-Stokes) components. A total loss
of 1.8 (1.95) dB at the pump wavelength was measured for
fiber 1 (2), whereas a total loss of 0.144 (0.2) dB was expected
according to their linear attenuation. The extra loss of power is
due to nonlinear effects. Between 45 and 185 m for fiber 1 and
between 50 and 320 m for fiber 2, the levels of the backscat-
tered powers at the Stokes and anti-Stokes wavelengths are

Fig. 1. Experimental method for the distributed measurement of
SC generation.

Table 1. Fiber Parameters for the First Two Experiments

PO γ α λp L λ0

Fiber 1 2.3 20 0.6 1561 240 1554
Fiber 2 2.23 10 0.4 1565 500 1535 and 1588
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Fig. 2. Spatial distribution of backscattered powers measured at the
pump (blue), Stokes (back) and anti-Stokes (red) wavelengths for fibers
1 (a) and 2 (b).
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lower than the detection threshold of the OTDR. As soon as
the level of the backscattered powers related to the MI Stokes
and anti-Stokes wavelengths rises above the OTDR threshold
detection, the spatial evolution of the two MI components can
be measured. One can notice that for fiber 1, the MI intensity
grows until the fiber end while for fiber 2, it grows first and
then saturates.

From systematic measurement of the backscattered power
spatial distribution performed by tuning the tunable filter 2,
a map of the spectrum of the light generated along the optical
fiber can be obtained. The mapping of the nonlinear spectral
broadening in the tested fibers is shown in Figs. 3(a) and 3(b).
From the mapping, one can precisely localize where the differ-
ent components are generated along the fibers. In particular,
the spatial evolution of the fundamental and secondary MI
components can be observed.

The goal of the next experimental investigation is to apply
the OTDR method to measure the spatial evolution of the full
SC, whose development requires the modulation instability, as
well as other nonlinear phenomena such as self-phase modula-
tion and stimulated Raman scattering [24]. For that purpose,
fibers 1 and 2 were characterized by the same experimental
setup with an increased value on the input peak power. P0

was fixed to 7 W (7.3 W) for fiber 1 (2). The measured spatial
evolution of the SC spectrum along fiber 1 (2) is shown in
Figs. 3(c) and 3(d). Note that this is the first time, to the best
of our knowledge, that a mapping showing the spatial evolution
of an SC along an optical fiber is measured. The initial stage of
the wave propagation is dominated by an approximately sym-
metrical spectral broadening detected from 80 m (240 m) dis-
tance for fiber 1 (2). This result agrees with the nonlinear wave
propagation theory in the nanosecond pulse regime, which pre-
dicts that the SC is initiated from the modulation instability
[15]. After approximately 175 m (360 m) of propagation,
the spectral broadening becomes highly asymmetric due to
the significant impact of the third-order dispersion and
Raman scattering. After 175 m (360 m) and until the fiber
end, the spectrum continues to broaden as a result of cascaded
MI processes and Raman scattering (at longer wavelengths)
[24]. The peak around 1600 nm in fiber 1 is due to the gen-
erated redshifted solitons. For fiber 2, the peak around

1616 nm corresponds to the second-order modulation instabil-
ity arising from the fourth-order dispersion (β4) and the pres-
ence of the second ZDW. The peak grows over time and shows
a slight blueshift, indicating that there is both Raman scattering
and a phase-matched transfer of energy across the ZDW in the
form of dispersive waves.

The spectral broadening measured at different locations
along fiber 1 with the proposed method is displayed in
Fig. 4. The light spectrum at 80 m is typical of a location where
the two symmetrical MIs are observed. Along a propagation
distance of 165 m, the generation of second-harmonic MI com-
ponents is detected. A slight asymmetry can also be observed in
the amplitude of the two fundamental MI components due to
the third-order dispersion effect. At 180 m, this asymmetry is
more pronounced due to the strong impact of Raman scatter-
ing. At 240 m (fiber end), Raman scattering is responsible for
the large broadening. The characteristics of the spectrum mea-
sured at the fiber end are qualitatively similar to those published
for the long regime [15].

In order to validate the nondestructive OTDR method, the
output spectra obtained at the end of the fibers were compared
with those measured by an OSA. The comparison is presented
in Fig. 5, where the optical spectra measured at the end of the
fibers with the proposed method are displayed in red, while
the spectra obtained with an OSA are displayed in black.
Figures 5(a) and 5(b) show the MI spectra measured at the out-
put of fiber 1 (2) with a pump peak power of 2 W (2.3 W).
Figures 5(c) and 5(d) show the SC spectra measured at the out-
put of fiber 1 (2) with a pump peak power of 7 W (7.3 W). A
good agreement is obtained between the two measurements.
Note that the MI frequency shift Ω is not the same for the
two fibers. This results from different nonlinear coefficients
and dispersion profiles [24]. Let us specify that we measure
the mean SC, since an averaging is performed over 30 s when
measuring an OTDR trace in order to increase the SNR.

In order to evaluate the effective spatial resolution, the pulse
duration at the end of the fiber under test was determined over
the whole analyzed spectral range. The maximum pulse dura-
tion obtained over the spectral range (1450–1650 nm) was 66
(64) ns for fiber 1 (2). Therefore, worse spatial resolution due
to the finite pulse duration is 6.6 m. Note that since OTDRs
operate by measuring the backscattered signal intensity as a
function of the propagation round-trip time, the calculated

Fig. 3. Mapping of the nonlinear spectral broadening in the fibers
under test. (a) and (b) correspond to the mapping of the nonlinear
broadening due to the MI evolution in fibers (1) and (2), respectively.
(c) and (d) show the mapping of the nonlinear broadening due to the
SC generation in fibers (1) and (2), respectively.
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distance can be affected by the dispersion of the fiber under
test. We evaluated the corresponding error by taking into ac-
count the two extreme wavelengths of our spectral analysis
(1450–1650 nm), neglecting the nonlinear group velocity cor-
rections and assuming a constant dispersion equal to the largest
dispersion of the fiber over this range (Dmax) and considering a
backscattering position located close to the fiber end. This
analysis provides an upper bound limit on the distance detun-
ing induced by the dispersion. Taking into account that jDmaxj
is equal to 2�0.344� ps · km−1 · nm−1 for fiber 1 (2), the maxi-
mum localization detuning is given by 9.81 (3.5) mm. Finally,
the spatial resolution of the measurement system can be im-
proved by updating some of the components used in the setup.
If a centimeter resolution is required, the modulator can be
upgraded in order to generate 100 ps pulses. Working with
pulses of 100 ps implies that the backscattered signal will not
be strong enough to be detected by a conventional OTDR. A
photon-counting OTDR can be used to increase the detection
SNR. Such an upgrade would allow characterizing the SC proc-
ess in a photonic crystal fiber (PCF).

In conclusion, a nondestructive method for the measure-
ment of the SC spatial evolution (in the nanosecond regime)
along optical fibers was proposed. The method was successfully
tested in two highly nonlinear fibers under two different input
peak power conditions leading to MI generation only and to
SCG. The spectra measured at the fiber output are in very good
agreement with those measured by an OSA, which validates the
proposed method at the only accessible point for standard OSA
measurement. Moreover, the method can be performed with-
out damaging the fiber and perturbating the intrinsic dynamics
of nonlinear processes. It is worth emphasizing that, to the best
of our knowledge, mappings of the SC spectral evolutions
could, until now, only be estimated by means of simulations

or by using the cutback method. In a more general perspective,
this method is not limited to fiber systems, but can be applied
for a more general class of nonlinear systems where internal
measurement is desired, as long as some reflective points are
present along the optical path.
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Fig. 5. Comparison of the optical spectra measured at the fiber out-
put with the proposed method (red) and with an OSA (black) at the
end of the fiber. (a) MI spectra measured at the output of fiber 1 with a
pump peak power of 2 W. (b) MI spectra measured at the output of
fiber 2 with a pump peak power of 2.3 W. (c) SC spectra measured at
the output of fiber 1 with a pump peak power of 7 W. (d) SC spectra
measured at the output of fiber 2 with a pump peak power of 7.3 W.
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Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics
of coherent structures. We present experimental and numerical results on the physics of extreme event
appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber.
This system can display deterministic irregular dynamics only, thanks to spatial coupling through
diffraction of light. We have identified parameter regions where extreme events are encountered and
established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the
correspondence between the proportion of extreme events and the dimension of the strange attractor.

DOI: 10.1103/PhysRevLett.116.013901

A record spawned by a natural system may consist of
periods where a relevant variable undergoes small varia-
tions around a well-defined level provided by its long-time
average, with the occasional occurrence of abrupt excur-
sions to values that differ significantly from the average
level, called extreme events [1]. Extreme and rare events
are ubiquitous in nature. In optics, an extreme event is
characterized by a rare, intense optical pulse in a given
intensity probability density distribution. The study of
extreme events and extreme waves [2] has been motivated
by the analogy with rogue waves in hydrodynamics [3]
that are giant waves recently observed in the ocean and
whose formation mechanism is still not well understood.
Physically, it is based on the fact that some conservative
systems in optics and deep water waves in the ocean can be
described by the nonlinear Schrödinger equation [4]. Most
of the studies in this context have taken place in optical
fibers where the interplay of nonlinearity, dispersion and
noise generates extreme events [5–8]. Extreme events such
as rogue waves in optics and fluids are often associated
with the merging dynamics of coherent structures [9–11],
with a stochastically induced transition in multistable
systems [12] or with chaotic dynamics in low dimensional
systems [13]. Extreme events have been observed in optical
cavity systems, such as an injected nonlinear optical cavity
[14], fiber lasers [9,15], solid-state lasers [16] and semi-
conductor lasers [13,17]. The role of spatial coupling has
not been studied until recently in a pattern-forming optical
system composed of a photorefractive crystal subjected to
optical feedback [18,19] or a low Fresnel number solid-
state laser [20], while most of the characterizations of
extreme events were done from a statistical point of view,
without establishing their origin from the dynamical system
point of view.
In this Letter, we report on experimental and numerical

results on the physics of extreme event appearance in a

spatially extended nonlinear dissipative system and estab-
lish the origin of this dynamics in the emergence of
spatiotemporal chaos. Our system is a planar microcavity
laser with an integrated saturable absorber [21,22] pumped
along a rectangular aperture, implementing a quasi-1D
spatially extended nonlinear dissipative system (cf. Fig. 1).
Besides the very different dynamical regimes that can be
observed in it (e.g., laser cavity solitons [22,23] or excitable
regimes [24,25]), a particularity of this system is that in the
absence of spatial coupling it does not display irregular or
aperiodic dynamics or extreme events [26]. However,
spatial coupling through diffraction and nonlinear effects
can make the dynamics become more irregular, especially
if the system has a large aspect ratio (or Fresnel number) as

(a) (b) (c)

FIG. 1. Top panels: Images of the surface of the extended
microcavity laser with an integrated saturable absorber below
(left) and above (right) the laser threshold. The dark (yellow)
zone is the gold mask delimiting the pumping region. Bottom
panels: (a) Temporal cross-correlation XC;Mðtk; xmÞ (see text)
between the detector responses in points C (xm ¼ 0) and M at
delays tk ¼ kΔt. (b) Same as (a) restricted to extreme events at
point C. (c) Average of the responses at point M and at times
where an abnormal event has occurred in the center of the
laser in C.
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is the case here. Above the laser threshold, self-pulsing
takes place, and we study experimentally the impact of the
pumping intensity on the intensity statistics and on the
occurrence of extreme events. By recording the dynamics
simultaneously in two different spatial points, we are able
to study whether the extreme events occur through a
mechanism of coherent structure collision. Indeed, sta-
tionary and propagative laser coherent structures were
predicted [27–32] in this system, and stationary structures
were observed [22,23] in some parameter regions. With the
help of a mathematical model, linear stability and numeri-
cal analysis of the dynamics, we unveil the dynamical
origin of the extreme events found.
The microcavity structure used in this experiment is

described in Refs. [22,23]. A gold mask is deposited onto
the sample surface to define the pump geometry. We
concentrate on an elongated pump profile with a gold
opening having 80 μm length and 10 μm width. The linear
microcavity is pumped above threshold, and the intensity in
a point close to its center is recorded with a fast avalanche
photodiode (5-GHz bandwidth). The temporal signal is
amplified thanks to a low noise, high bandwidth amplifier
and acquired with a 6-GHz oscilloscope at 20 GS=s
(Δt ¼ 50 ps). Up to 50 × 106 points can be acquired in
a single trace. Figure 1 shows the near field of the laser
below and above threshold, respectively.
Time traces once acquired are treated to display the

histogram of the intensity heights. Figure 2 displays
histograms versus the pump parameter. At normalized
pump power P=Pth ¼ 1.02, where Pth is the pump at laser
threshold, they are characterized by a quadratic decay in the
tails, and the probability density function (PDF) looks like
a Rayleigh distribution for a positive-valued Gaussian
process. As the pump is increased, the statistics develops
long tails with an initial exponential decay (P=Pth ¼ 1.17).
For still higher pump values, the PDF becomes exponential
(P=Pth ¼ 1.20) and then redisplays Gaussian tails
(P=Pth ¼ 1.25). The global evolution of the mean ampli-
tude versus pump intensity is reminiscent of the dynamics
expected for a zero-dimensional laser with a saturable
absorber [33]: Close to threshold, a quite regular amplitude
pulse train sets in [see Fig. 2(c)]. For higher pump
intensities, the mean pulse period increases and, because
of the spatial coupling, the amplitude becomes very
irregular and displays a complex dynamics [Figs. 2(d),
2(g), and 2(h)]. We have computed the threshold amplitude
for extreme events, adopting the traditional hydrodynam-
ical criterion. We consider as extreme events those events
having a height H twice the significant height Hs (mean of
the highest tertile of the PDF), i.e., with an abnormality
index AI ≡H=Hs > 2 [2]. The heightH is extracted as the
maximum of the left and right intensity heights
H ¼ maxðHl;HrÞ. Note that the results do not change
significantly by considering either H, Hl, or Hr. To get
rid of the large number of small peaks of noise at the

left of the PDF, we compute the significant height Hs only
by considering events whose height is larger than the
observed maximum peak dark noise amplitude, which is
about 5 mV (note that the rms noise is only 0.9 mV).
This threshold introduces a more stringent criterion for
extreme event detection. Extreme events are depicted in
red under the histograms presented in Fig. 2. We observe
that the maximum number of extreme events is obtained in
the PDF with a non-Gaussian tail, i.e., with a normalized
pump of 1.17.
The statistics of times between two spikes with AI > 2

displays a Kramers statistics with exponential behavior
such that spike appearance obeys a Poisson, memoryless
process. We now study the spatiotemporal structure of the
statistics of emitted pulses. We record the dynamics in two
points: one at a fixed position at the center of the laser
(represented by point C) and the other moving along the
long line laser (point M). This is made by enlarging
the laser surface image by optical magnification and
placing the detectors in that plane. On the bottom panels
in Fig. 1, we plot the normalized cross-correlation Xc;mðkÞ
of the N ¼ 105 first recorded points (5 μs) between the
signal recorded at the central detector yc at point C and the
one at the moving detector ym at location M, 1 ≤ m ≤ 20
such that

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. (a,b,e,f) Logarithm of the PDF of the intensity height H
at position C for different normalized pump values. Extreme
events (AI > 2) are shown in red. (c,d,g,h) Excerpts of the time
evolution for the corresponding pumps. (d) A 20-ns zoom on the
central extreme event.
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Xc;mðkÞ ¼
1

Nσycσym

X

i

½ycðiÞ − ȳc�½ymðiþ kÞ − ȳm�

where the bar symbol and σ indicate the mean value and
the standard deviation. In the central part there is a zone
with high positive (green) cross-correlation followed and
preceded by two bands of negative cross-correlation. The
temporal band in which the cross-correlation is nonzero
extends about 2 ns from around zero delay. Therefore, we
can infer the existence of a finite correlation length in the
system, which is smaller than the lasing system size (about
30 μm). However, since the correlation bands are vertical
at these time scales, we do not have clear evidence of
propagation effects (at least with the temporal resolution
of our setup), though there is a slight bending of the
correlated band (in green). In Fig. 1(b) we restrict the
cross-correlation around the points where AI > 2; i.e., we
consider only extreme events. Notice that there are no
major differences between the two cross-correlations;
hence, there does not seem to be any statistical marker
of the appearance of an extreme event in this regime and,
in particular, no clear sign of propagation of a coherent
structure either. These results indicate that extreme height
intensity peaks appear in a spatial correlation zone and
disappear almost immediately everywhere in this zone.
Correlation is therefore maximum at zero delay for almost
all positions detected. Figure 1(c) depicts the average of
the responses at position M and at times where an
abnormal event has occurred in the center of the laser
in C. The average shows a clear time asymmetry around
the correlated structure; every selected event begins with a
large amplitude dip followed by a large positive peak. On
the wings of the correlated zone, we can see another dip.
In this system extreme events thus appear and disappear
almost simultaneously everywhere in a correlation win-
dow. There is no evidence, at least up to our temporal
resolution, of a clear collision of coherent structures
leading to the observed behavior. Instead, we consider
the complexity in the spatiotemporal dynamics itself as the
dynamical origin of extreme events.
To this aim, we compare our findings with numerical

simulations of an envelope equation of a one-dimensional
spatially extended laser with a saturable absorber [34]. The
model consists of three coupled nonlinear partial differ-
ential equations,

∂E
∂t ¼ ½ð1 − iαÞGþ ð1 − iβÞQ − 1�Eþ i

∂2E
∂x2 ;

∂G
∂t ¼ γg½μ − Gð1þ jEj2Þ�;
∂Q
∂t ¼ γq½−γ −Qð1þ sjEj2Þ�; ð1Þ

for the intracavity electric-field envelope Eðx; tÞ and the
carrier density in the gain (resp. saturable absorber) section

Gðx; tÞ [resp. Qðx; tÞ]. The nonradiative carrier recombi-
nation rates are γg and γq with pumping μ and linear
absorption γ. The Henry enhancement factors in both
sections are α and β, respectively. Diffraction is included
through the complex Laplacian term. Time has been
rescaled to the field lifetime in the cavity, which is
calculated as 8.0 ps, given the cavity design parameters.
Space is rescaled to the diffraction length wd, which is
7.4 μm. We take parameters compatible with our semi-
conductor system: α ¼ 2, β ¼ 0, s ¼ 10, γg ¼ γq ¼ 0.005
and γ ¼ 0.5. The equations are simulated using the Xmds2

package [35] with a split operator method and an adaptive,
fourth-order Runge-Kutta method for time integration. The
width of the integration region w is w=wd ¼ 24 with a top-
hat pumping of width wp=wd ¼ 12. Based on the results
developed in Ref. [34], we can describe the main properties
of the plane-wave stationary solutions and of the linear
stability analysis. The results are shown in Fig. 4 for the
latter set of parameters. The plane-wave characteristic
curve of the laser has a C shape with a subcritical
bifurcation at threshold for μth ¼ 1þ γ, provided
s > 1þ 1=γ. In a certain range of parameters, the system
also exhibits an Andronov-Hopf bifurcation giving rise to
self-pulsation (for μ < μH ∼ 3.08). When including the
spatial degree of freedom, a linear stability analysis reveals
that the upper branch is usually Turing unstable everywhere
(gray region), giving rise to a complex spatiotemporal
dynamics. An Andronov-Hopf instability can also occur for
small harmonic perturbations in space with a band of
unstable wave vectors k (blue region disconnected from the
vertical axis).
The logarithm of the PDF for the theoretical height

distribution for Eq. (1) is shown in Fig. 3. For low pumping
it displays a subexponential tail with a small number of
extreme events. Then the tail of the PDF progressively
becomes more and more exponential at the start of the
distribution, with a large deviation for large events giving
rise to a maximum number of extreme events for μ ¼ 2.9.
The tail of the distribution then becomes quasiexponential
at μ ¼ 3.1 and then subexponential again at μ ¼ 3.4, with a
decrease in the number of extreme events. These observa-
tions reproduce qualitatively well what is found in the
experiment. Moreover, the shape of the distribution seems
to be strongly correlated to the presence or not of an
Andronov-Hopf bifurcation: Only when it is present
can we observe a heavy-tailed distribution. At the transi-
tion between the Hopf-Turing and Turing-only regions,
we observe the maximum number of extreme events
(for μ ¼ 2.9).
A characterization of chaos and spatiotemporal chaos

can be achieved by means of Lyapunov exponents [36].
These exponents measure the growth rate of generic small
perturbations around a given trajectory in a finite dimen-
sional dynamical systems. There are as many exponents as
the dimension of the system under study. Additional
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information about the complexity of the system can be
obtained from the exponents, for instance, the dimension of
the strange attractor (spectral dimensionality) or measures
of the dynamic disorder (entropy) [37] or characterization
of the bifurcations diagram [38]. The analytical study of
Lyapunov exponents is a thorny endeavor and, in practice,
inaccessible. Hence, a reasonable strategy is to derive the
exponents numerically by discretizing the set of partial
differential equations (1). Let N be the number of discre-
tization points; then the system has N Lyapunov exponents
λi. If the Lyapunov exponents are sorted in decreasing order
and in the thermodynamic limit (N → ∞), these exponents
converge to a continuous spectrum as Ruelle conjectured
[39]. Therefore, if the system has spatiotemporal chaos in
this limit, there exists an infinite number of positive
Lyapunov exponents. The set of Lyapunov exponents
provides an upper limit for the strange attractor dimension
through the Kaplan-Yorke dimension [37], DKY ¼
pþPp

i−1 λi=λpþ1, where p is the largest integer that
satisfies

Pp
i−1 λi > 0. In the thermodynamic limit the

Yorke-Kaplan dimension diverges with the size of the
system as a consequence of the Lyapunov density [40]. We
have calculated the Lyapunov spectrum (cf. Fig. 4) corre-
sponding to the total intensity integrated over x in the
model (1). This figure clearly shows that when the system
exhibits extreme events, it is in a regime of spatiotemporal
chaos with several nonzero Lyapunov exponents in the
Lyapunov spectrum and an absence of structure in the delay
embedding.
Moreover, we have computed the proportion of extreme

events pEE, the normed kurtosis γ2 ¼ E½ððX − μÞ=σÞ4� − 3
and the Kaplan-Yorke dimension DKY versus the pump in
Fig. 5. Both pEE and γ2 display a maximum versus pump of
around μ≃ 3 with some correlated oscillations. DKY
increases steadily from zero at μ ¼ 1.525 and then saturates

after μ ¼ 2. From these findings we infer that there is a
smooth or supercritical transition of the system into
spatiotemporal chaos, and this behavior is concomitant
with the increase of the number of extreme events. Note,
however, that there is no reason why there should be a strict
correlation between DKY and pEE since the latter is related
to the structure of the attractor itself and not only to its
dimension [41].
In conclusion, we have shown experimental results of

extreme event appearance in a quasi-1D broad area laser
with a saturable absorber. We have analyzed the physical
origin of extreme events that occur because of the onset of
deterministic spatiotemporal chaos in the system. Irregular
dynamics is obviously a prerequisite for the observation of
extreme events, but we show in our work that the
proportion of extreme events is not directly linked to the
evolution of the Kaplan-Yorke dimension. A higher dimen-
sional dynamics does not necessarily lead to a higher
number of extreme events. The origin of extreme events in
that case is thus to be found in the nature of the
spatiotemporal complexity that takes place, and thus, it
could offer interesting prospects for control by changing
the system geometry or the nature of the coupling.

FIG. 4. Phase portrait of the LSA model. The left panel shows
the characteristic curve μðIÞ (red) along with the unstable wave-
vector regions of the linear stability analysis (Turing instability,
grey; Andronov-Hopf instability, blue). The right axis is μ and the
left axis is the modulus jkj of the unstable wave vectors. The
plane-wave Hopf curve is shown as a dashed blue line. The right
panel shows the computed Lyapunov spectrum for different pump
parameters and corresponding two-dimensional delay embedding
for the total intensity ItotðtÞ.

FIG. 5. Left panel: Proportion of extreme events (pEE, blue
circles) and normed kurtosis (γ2, red squares) versus pump μ.
Right panel: Kaplan-Yorke dimension (DKY, blue diamonds)
versus pump μ.

FIG. 3. Logarithm of the PDF of the theoretical height distri-
bution for the 1D laser with a saturable absorber, Eq. (1), versus
pump parameter μ. Extreme events (AI > 2) are shown in red.
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Villeneuve d’Ascq Cedex, France, EU
(Received 30 June 2011; published 14 December 2011)

A novel type of parametrically excited dissipative solitons is unveiled. It differs from the well-known

solitons with constant phase by an intrinsically dynamical evolving shell-type phase front. Analytical and

numerical characterizations are proposed, displaying quite a good agreement. In one spatial dimension,

the system shows three types of stationary solitons with shell-like structure whereas in two spatial

dimensions it displays only one, characterized by a !-phase jump far from the soliton position.

DOI: 10.1103/PhysRevLett.107.254102 PACS numbers: 05.45.Yv, 89.75.Kd

Macroscopic systems maintained out of equilibrium are
characterized by the possibility of the emergence of
particle-type solutions or localized states. These states
have been observed in different fields such as magnetic
materials, liquid crystals, gas discharge, chemical reac-
tions, fluids, granular media, and nonlinear optics media,
among others (see the reviews [1–3], and references
therein). Although these states are spatially extended,
they exhibit properties typically associated with particle-
like states. Consequently, one can characterize them with a
family of continuous parameters such as position, ampli-
tude, and width. For time-reversible systems where injec-
tion and dissipation of energy can be viewed as
perturbations—quasireversible systems [4]—the prototype
model that exhibits localized states is the parametrically
driven damped nonlinear Schrödinger equation [5]. This
model has been derived in several contexts to describe the
appearance of patterns and localized structures, such as
vertically vibrated Newtonian fluid layers [6], nonlinear
lattices [7], optical fibers [8], Kerr type optical parametric
oscillators [9], easy-plane ferromagnetic materials exposed
to an oscillatory magnetic field [10], and a parametrically
driven damped chain of pendula [11]. One of the greatest
benefits of this model is to present analytical solutions for
localized states characterized by a constant phase and a
bell-like shape for the amplitude [10].

In this Letter, we show that localized states of quasir-
eversible parametric systems present an unexpectedly rich
phase front dynamics. More precisely, the stationary local-
ized states have a shell-type structure in the phase, for a
large range of parameters. These stable structures are of
three types. We term these solutions phase shielding sol-
itons. Using the asymptotic amplitude equation, valid far
from the position of the localized states, we determine
analytically the shape of phase fronts and its dynamics.
This dynamics is characterized by the juxtaposition of two
forces, one due to relative stability between the phases and
the other related to spatial variations of the tail of the
dissipative soliton. As a result of this force balance, these

localized states exhibit a phase structure that shields the
soliton. Numerical simulations show quite good agreement
with our analytical predictions.
The envelope of an oscillation for extended conservative

systems in the presence of small energy injection through a
parameter modulation and energy dissipation—via damp-
ing phenomena—is described by the parametrically driven
damped nonlinear Schrödinger equation

@tc ¼ "i"c " ijc j2c " i@xxc "#c þ $ !c ; (1)

where the envelope c ðx; tÞ is a one-dimensional complex
field, !c stands for the complex conjugate of c , and fx; tg
describe, respectively, the spatial and temporal coordi-
nates. The detuning parameter is ", which is proportional
to the difference between half of the forcing frequency and
the natural frequency of the oscillator field. # is the damp-
ing parameter, and $ stands for the forcing amplitude of the
parametric forcing. The higher-order terms in Eq. (1) are
ruled out by a scaling analysis, since # & 1, "'#' $,
jc j'#1=2, @x '#1=2, and @t '#1=2.
Introducing the following change of variables c ¼

Rðx; tÞei’ðx;tÞ in Eq. (1), the model reads

@tR ¼ 2@xR@x’þ R@xx’"#Rþ $R cosð2’Þ; (2)

@t’ ¼ """ R2 " @xxR

R
þ ð@x’Þ2 " $ sinð2’Þ; (3)

where R and ’ stand for the amplitude and phase of c ,
respectively. The previous set of equations in the region

of parameters """
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 "#2

p
( 0, exhibit stationary

dissipative solitons of the form Rsðx; x0Þ ¼ffiffiffiffiffiffi
2%

p
sechð

ffiffiffiffi
%

p
½x" x0*Þ and ’s ¼ arccosð#=$Þ=2 with

% + ""þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2 "#2

p
[10] [see Fig. 1(a)]. Hence, the lo-

calized states are defined as having a bell shape in the
modulus and a constant phase. However, when we try to
observe the previous solution, numerical simulations show
that an unexpected and rich phase dynamics arises. Such
dynamics initially establishes a bell shape in the modulus
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of the amplitude. Then, a constant phase appears around
the position of the localized state. At a latter stage, after
some intricate transients, a pair of fronts that connect
different phase equilibrium emerge. These equilibria are
characterized by cosð2’0Þ ¼ #=$. Finally, a rather slow
dynamics of phase front propagation is established, which
ends with the formation of a pair of stationary fronts that
connect steady states. Figure 1(b) illustrates the above
described time evolution of phase dynamics. The system
has four phase equilibria in the range from "! to !.
Therefore, the stable dissipative solitons have three types
of shell-like phase structures. Figures 1(c)–1(e) outline
these solutions. Because of the fact that the function
cosð2&Þ has period !, the phase difference at the ends of
the dissipative soliton can be zero or ! (cf. Fig. 1). Thus,
this last localized state is characterized by a phase differ-
ence given by zero around the core and ! at the ends. It is
important to mention that dissipative solitons represented
in Figs. 1(a), 1(c), and 1(e), are homoclinic orbits for the
spatial system in polar representation fR;’g. However, the
dissipative soliton shown in Fig. 1(d) corresponds to a
heteroclinic solution. In Cartesian representation
fReðAÞ; ImðAÞg all these solutions correspond to homo-
clinic orbits.

For the purpose of understanding and capturing the
wealth of these phase front solutions, let us consider

Eq. (1) in a semi-infinite domain, with zero flux boundary
conditions. The system can exhibit a dissipative soliton
located at one edge, with the phase formed by a single front
[see Fig. 2(a)]. In addition it is worth noting that these
phase fronts emerge at a distance far from the core of the
soliton, i.e., at a distance much larger than 1=

ffiffiffiffi
%

p
.

Accordingly, Rðx; xoÞ , 2
ffiffiffiffiffiffi
2%

p
e"

ffiffiffi
%

p
ðx"x0Þ for x" x0 - 0,

with x0 at the left edge of the region of interest. Together
with Eq. (2) this approximation leads to the following
Newton-type equation

@xx’ ¼ 2
ffiffiffiffi
%

p
@x’þ#" $ cosð2’Þ: (4)

This equation has heteroclinic solutions corresponding to
phase fronts, which analytically are well described by

’Fðx;xfÞ , arctan
" ffiffiffiffiffiffiffiffiffiffiffiffiffi

$.#

$/#

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2"#2

p
ðx" xfÞ

2
ffiffiffiffi
%

p
#
; (5)

where xf accounts for the position of phase front, i.e., the
point at which the spatial derivative of the phase front has
its global maximum. Thus, the phase front solutions are
parametrized by a continuous parameter xf. Figure 2 shows
the numerically computed phase fronts, which present a
difference of 1% with respect to expression (5). Notice that
if one considers the first correction to the previous equation
’ , ’F þ @x’F=2

ffiffiffiffi
%

p
this difference decreases to 0.8%.

As it can be also seen from Fig. 2(b), this front displays
an unexpected dynamical behavior characterized by a non-
uniform translation. To describe this dynamics, we pro-
mote the front position to a time-dependent function xfðtÞ.
Hence, using Eq. (3) and formula (5), we obtain

" _xf@x’F ¼ "ð"þ %Þ " 8%e"2
ffiffiffi
%

p
x

þ ð@x’FÞ2 " $ sinð2’FÞ; (6)

where _xf stands for the time derivative of xf. Multiplying
the above equation by @z’F with z + x" xf, and intro-
ducing the following inner product hfjgi + R

fgdz, we
obtain the following equation for the phase front after
straightforward calculations,
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FIG. 2 (color online). Phase propagation: (a) phase front pro-
file considering half of the dissipative soliton; (b) spatiotemporal
diagram of phase front obtained from Eq. (1) by $ ¼ 0:083, " ¼
"0:063, and # ¼ 0:058. The dashed curve is the numerical
solution obtained using Eq. (7).

FIG. 1 (color online). Solitons in the parametrically driven
damped nonlinear Schrödinger equation: (a) soliton with
constant phase; (b) space-time diagram for the phase ’ðx; tÞ of
Eq. (1) with $ ¼ 0:123, " ¼ "0:093, and # ¼ 0:100; (c), (d),
and (e) solitons with phase shell-like structure obtained numeri-
cally from Eq. (1) for $ ¼ 0:083, " ¼ "0:063, and # ¼ 0:058.
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_x f ¼ Aþ Be"2
ffiffiffi
%

p
xf ; (7)

where

A + hð"þ %þ $ sinð2’FÞ " ð@z’FÞ2Þj@z’Fi
h@z’Fj@z’Fi

;

B + 8%
he"2

ffiffiffi
%

p
zj@z’Fi

h@z’Fj@z’Fi
are real numbers, which can be either positive or negative
depending on the shape of the phase front. For example,
when one considers a front that increases monotonically
with the spatial coordinate, A (B) is a negative (positive)
constant. The term proportional to A accounts for the
constant speed at which the larger phase invades the
smaller value. This speed can be understood as a conse-
quence of the energy difference between these states.
Hence, this term gives rise to phase fronts propagating
towards the soliton position. Conversely, the term propor-
tional to B accounts for the effect of spatial variation of the
tail of the amplitude soliton, which induces a force that
leads to phase fronts moving away from the localized state.
Consequently, the superposition of these two opposing
forces generates a stable equilibrium for the position of
the phase front, which is consistent with the dynamics
illustrated in the space-time diagram in Fig. 2. The dashed
curve in Fig. 2(b) represents the solution obtained from
Eq. (7), using the above formulas A and B. Modifying the
parameters, we observe that as $ increases the equilibrium
position is smaller; i.e., the shell-type structure surround-
ing the soliton decreases. Instead, as " increases the equi-
librium position of the phase front also grows.

Considering now the soliton located at the center of the
spatial region, a small disturbance on the system produces
some complex transients on the phase dynamics, ending by
the formation of a pair of fronts propagating in opposite
directions away from the soliton core. The dynamics of
these fronts differs from that of the single front by the
inclusion of an interaction process which decays exponen-
tially with the distance between the fronts. As the system
displays two types of phase fronts monotonically increas-
ing or decreasing, then the soliton exhibits three different
types of shield structures in its phase, as shown in Fig. 1.
Hence, the dissipative solitons in parametrically driven
systems have a rich dynamics of phase fronts.

To understand the correspondence between the constant
phase solitons and phase shielding solitons, we have per-
formed a numerical linear stability analysis similar to the
one made in Ref. [12], considering both the control pa-
rameters and size of the system L. When L is small enough
the spectrum—set of eigenvalues associated with the linear
stability analysis—is characterized by being centered on an
axis parallel to the imaginary one [cf. Fig. 3(b)], where
every single eigenvalue has negative real part. Increasing L
the set of eigenvalues begin to collide creating a curve of
eigenvalues (a continuum). For a critical value of L this

curve collides with the imaginary axis at a nonzero fre-
quency [cf. Fig. 3(c)]. Therefore the system exhibits an
Andronov-Hopf bifurcation. Figure 3 outlines the spec-
trum before, during, and after the bifurcation.
From previous numerical analysis, one can infer that the

soliton with homogeneous phase is unstable, over a wide
parameter region, for sufficiently large values of L. In
short, there exists a critical value of L for which the soliton
with constant phase is unstable to small perturbations in
phase and amplitude. Because of the analytical complexity
of this analysis, we have only determined numerically this
critical value. For a system size smaller than the critical
one, we observe that for parameters 0< $"# & 1, the
soliton with constant phase is stable. Increasing the forcing
amplitude $, the soliton becomes unstable by an
Andronov-Hopf bifurcation similar to the one shown in
Fig. 3. This figure illustrates the region in parameter space
where this solution is stable and unstable. In the shaded
region in Fig. 3, we found stable phase shielding solitons.
To study the robustness of the phase dynamics around

the soliton, we consider the two-dimensional spatial ex-
tension of Eq. (1), that is, the @xx operator is replaced by a
two-dimensional Laplacian operator r2 ¼ @xx þ @yy. It is
well known that this equation has soliton type solutions
with a constant phase [13], which are the natural extensions
of the one-dimensional case. However, an analytical ex-
pression for these solutions is unknown. Considering a
similar parameter region of phase shielding solitons in
one dimension, we observe a rich phase fronts dynamics
in two dimensions. If one slightly perturbs the soliton, after
some complex transient in the phase dynamics we observe
the appearance of a circular phase front that spreads slowly.
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FIG. 3 (color online). Stability of solitons: (a) schematic rep-
resentation of bifurcation diagram in the $" " space for # ¼
0:050, the shaded region corresponds to the phase shielding
soliton region, and the striped area is the region of soliton
with constant phase. (b), (c), and (d) are the spectra of the
soliton with constant phase before (system size L ¼ 520), during
(L ¼ 564), and after (L ¼ 600) the bifurcation, respectively, for
$ ¼ 0:263, # ¼ 0:050, and " ¼ "0:083.
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For later times, the front becomes asymmetric, giving rise
to another front. Finally, the two fronts become stationary,
creating a shieldlike structure around the soliton. Figure 4
shows the stationary phase structure observed numerically
in a two-dimensional system. It is important to note that we
only see phase shielding structure as a state of equilibrium
for dissipative soliton in a large system size. The two-
dimensional solution is characterized by being composed
of all the solutions found in one dimension. Indeed, if one
performs different cuts containing the center (soliton posi-
tion), one can recognize the observed solutions in
one dimension (see Fig. 1). A surprising property of the
shell-like structure observed is that if one calculates the
phase change on a path that connects two opposite points

with respect to the position of the soliton (
R
"
~r’d~s)

within the region close to the position of the soliton one
finds that this is zero. Nevertheless, if one takes this type
of path far away from the soliton position, one findsR
"
~r’d~s ¼ .!.
In conclusion, localized structures in parametrically

forced systems have a rich and unexpected phase dynam-
ics, creating novel types of localized states. We expect that
phase shielding solitons could be observed experimentally
in simple coupled forced oscillators, such as vertically
driven fluid layers in narrow cells, optical parametrical
oscillators, driven magnetic media, and a chain of coupled
oscillators.

Shell-like phase structure must play a significant role in
soliton interaction, since bound states of two solitons show
a complex phase structure [14]. Experimental observations
show an intricate temporal dynamics of dissipative solitons
[15] which cannot be explained from uniform phase sol-
itons. Work in this direction is in progress.
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PACS 89.75.Kd – Patterns
PACS 75.10.Hk – Classical spin models
PACS 75.25.-j – Spin arrangements in magnetically ordered materials (including neutron and

spin-polarized electron studies, synchrotron-source X-ray scattering, etc.)

Abstract – A theoretical study of the interaction of localized precession states on an easy-plane
ferromagnetic layer submitted to a magnetic field that combines a constant and an oscillating part
is reported. Within the framework the Landau-Lifshitz-Gilbert equation, we perform a comparison
of analytical studies and micromagnetic simulations. Close to the parametric resonance, the
parametrically driven damped nonlinear Schrödinger equation models this system. By means of
this amplitude equation we are able to characterize the localized precession states and their pair
interaction law. Numerically, we have a good agreement with the pair interaction law.

Copyright c⃝ EPLA, 2010

Introduction. – During the last years, emerging
macroscopic particle-type solutions or localized states
in macroscopic extended dissipative systems have been
observed in different fields, such as: domains in magnetic
materials, chiral bubbles in liquid crystals, current
filaments in gas discharge, spots in chemical reactions,
localized states in fluid surface waves, oscillons in
granular media, isolated states in thermal convection,
solitary waves in nonlinear optics, among others. Hence,
one can infer the universality of the localized-states
dynamics. Although these states are spatially extended,
they exhibit properties typically associated with particles.
Consequently, one can characterized them with a family
of continuous parameters such as position, amplitude and
width. This is exactly the type of description used in more
fundamental physical theories like quantum mechanics
and particle physics. However, localized states emerging
in extended dissipative systems are characterized by
being made of a large number of atoms or molecules (of
the order of Avogadro’s number) that behave coherently.
The paradigmatic example of macroscopic localized states
are solitons reported in the context of fluid dynamics,
nonlinear optics and Hamiltonian systems [1]. The

(a)E-mail: saliya.coulibaly@phlam.univ-lille1.fr
(b)Current address: Max Planck Institute for Polymer Research -
55021 Mainz, Germany, EU.

solitons arise from a robust balance between dispersion
and nonlinearity. The generalization of this concept to
dissipative and out-of-equilibrium systems has led to
several studies in the last decades, in particular to the
definition of localized structures intended as patterns
appearing in a restricted region of space [2,3].
In one-dimensional systems, localized states can be

described, geometrically speaking, as spatial trajectories
that connect a steady state with itself, that means, they
are homoclinic orbits from the viewpoint of the dynamical-
systems theory (see the review [4] and references therein),
while domain walls or fronts are seen as spatial trajectories
joining two different steady states —heteroclinic curves—
of the corresponding spatial dynamical system [5]. In a
particular case the localized patterns can be understood
as homoclinic orbits in the Poincaré section of the
corresponding spatial-reversible dynamical system [4–7].
The particular case of localized patterns can also be
understood as a consequence of the interaction of fronts
with oscillatory tails [8,9]; the characterization of such
a localized structure is well known and details can be
found in [10,11]. All the aforementioned scenario cannot
be extended to localized states in two-dimensional space
systems, which currently lack an equivalent geometrical
description as those developed in the one-dimensional
systems [4]. There is another type of stabilization
mechanism that generates localized structures without
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Fig. 1: (Colour on-line) Schematic representation of an uniax-
ial anisotropic Heisenberg ferromagnetic layer. Small arrows
represent the local magnetization (Si,j) and the large arrow
stands for the external magnetic field.

oscillatory tails based on non-variational effects [12],
where the fronts interaction is led by the non-variational
terms [13]. Localized structures that we shall study are
of non-variational type.
A characteristic property of particle-type solutions

is that their interaction can be described simply in
terms of continuous parameters describing the localized
states. Recently, improved experimental techniques have
increased the interest in the study of interaction of
localized states [14,15]. The understanding of the pair
interaction law of localized states allows us to compre-
hend the evolution of the system to equilibrium; more
importantly, we expect a more efficient management
and control of these localized states for their potential
applications. This has a particular technological interest
in new storage media like semiconductor cavity [16].
One of the most prominent parametric oscillators in the
context of spintronics are the nanopillars [17], the ability
to generate and study the localized structures and the
interaction between them opens up the possibility of
developing new magnetic devices.
The aim of this letter is to study, in the classical spin

limit, the interaction of localized precession states on
an easy-plane ferromagnetic spin layer submitted to an
external magnetic field that combines a constant and
an oscillating part. This magnetic system is described
phenomenologically by the Landau-Lifshitz-Gilbert equa-
tion. In this framework we perform a comparative study
of analytical results and micromagnetic simulations. Close
to the parametric resonance, the parametrically driven
damped nonlinear Schrödinger equation models this
system. By means of this amplitude equation we are able
to characterize the pair interaction law between localized
excitations. Numerically, we have a good agreement with
the proposed pair interaction law.

Parametrically driven magnetic layer. – Let us
consider a two-dimensional anisotropic Heisenberg ferro-
magnetic layer formed by Nx×Ny spins or magnetic
moment exposed to an external magnetic field, which is
contained in the plane (x, y) and oriented in the direction

x̂≡ (1, 0, 0). Figure 1 depicts the setup of the system
under study. When the quantum effects are small enough,
the spin vectors Si,j can be treated as classical spin
or magnetic moment [18] and satisfies the dynamical
evolution Ṡi,j =−γSi,j × (∂H/∂Si,j) [19], where γ is the
gyromagnetic constant and the Hamiltonian H has the
form [20]

H =
N∑

i,j

(−JxSi,jSi+1,j −JySi,jSi,j+1

+2D(Szi,j)
2− gµ(Sxi,j)Hx). (1)

Here, {Jx, Jy} are the exchange coupling constants
which are of the same order of magnitude, Hx and
D account for the external magnetic field and the
anisotropy energy, respectively. The characterization
and the understanding of this discrete system is a
complicated task. Hence we study the continuum limit
of this set of the ordinary differential equations [18,21].
Thus we can assume that Si,j(t)→ S(r⃗, t), where r⃗(x, y)
accounts for the coordinates describing the magnetic
plane and taking the limit Jxγ(Si+1,j − 2Si,j +Si−1,j)+
Jyγ(Si,j+1− 2Si,j +Si,j−1)→ (lx∂2x+ ly∂2y)S, scaling the
spatial coordinates (lx∂2x+ ly∂

2
y)S→ lex∇2⊥S, where lex

denotes the characteristic interaction length and ∇2⊥ is
the Laplacian operator in the new transversal coordinates
(∇2⊥ ≡ ∂xx+ ∂yy). Finally, introducing phenomenolog-
ically the Gilbert damping, the motion of the magne-
tization field is governed by the well-known Landau-
Lifshtiz-Gilbert equation

∂τM=M×
[
∇2⊥M−β(M · ẑ)ẑ+He−α∂τM

]
, (2)

whereM≡ S/Ms stands for the unit vector of the magne-
tization, with Ms the saturation magnetization; we have
also considered the following normalization of scales and
parameters {τ → γMst, β→ 4D/γMs, He→ gµH/γMs},
where β > 0 is the uniaxial easy-plane anisotropy constant,
and α is the damping parameter. This damping parame-
ter for a great quantities of materials is small. Assuming
that the external magnetic field is constant and neglecting
damping effects (α= 0), the dynamics of model (2) is time
reversible. However, when we consider the effects of damp-
ing and an external magnetic field with both a constant
and an oscillatory part, model (2) becomes a quasi-
reversible type, i.e. a time reversible system perturbed
with injection and dissipation of energy. The instabilities
of these types of systems have been studied during the last
decades [22].
As a result of the anisotropy and constant external

field (He = h0x̂), the natural equilibrium of the previous
model (2) corresponds to the magnetization field lying
in the direction of the external magnetic field, M= x̂
(cf. fig. 1). When spatial coupling is ignored, it is easy
to show that the dynamics around this equilibrium is
described by a nonlinear oscillator with natural frequency
ω0 =

√
h0(β+h0) [23,24]. It is worthy to note that in
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Fig. 2: (Colour on-line) Localized precession states obtained
from micromagnetic simulation (mms) of model (2) by β = 1,
h0 = 0.1, α= 0.01, Γ= 0.009 and ω= 0.328. The background
color describes the value of the intensity of Mx. The arrows
represent the instantaneous local magnetization unit vectorM.
Its respective color scale accounts for the value of the angle

θ≡ (̂x̂,M). The inset shows a profile of My and is compared
with the variational approximation (ac) given by (5).

eq. (2), the magnetization components are proportional to
the external magnetic field, which therefore acts as a para-
metric forcing. Then if this field combines a constant and
a time-periodic part (He = [h0+Γ cos(ωt)]x̂) oscillating
about twice the natural frequency (ω≡ 2(ω0+ ν), where
ν is the detuning parameter), the system exhibits a para-
metric resonance at Γ2(β/4ω0)2 = α2(β/2+h0)2+ ν2 for
small {ν, h0,α,Γ} —Arnold’s tongue. Dynamically speak-
ing this resonance corresponds to an undamped precession
of the magnetization unit vector around the direction of
the external magnetic field with the angular velocity ω0.

Localized precession states. – The inclusion of
spatial coupling should increase the complexity of the
dynamics. For example, one expects the formation of
patterns, domain walls, and localized states near the
parametric resonance. This wide range of phenomena is
described in a unified manner near the parametric reso-
nance by the parametrically driven damped nonlinear
Schrödinger equation [25]. In order to show that the LLG
system can exhibit this kind of solutions, we have numer-
ically solved (2) using the fixed step fourth-order Runge-
Kutta scheme (dt= 10−4), over a square lattice of size
250× 250 a.u. with spatial a discretization step set to 0.1
in both directions. Numerical solutions of (2) are simul-
taneously compared with those obtained by integration of
the equivalent stereographic representation [26] in order
to check their accuracy. Figure 2 illustrates the typical
non-propagative localized precession states obtained from
these simulations. This magnetic state, is characterized
by a localized precession surrounded by a static magnetic
state that lies in the x-direction.
Changing the detuning and the amplitude of the forcing,

the system exhibits a stable uniform precession state,

t

80

100

120

140

x
0

50
100

150
200

250

y

0

50

100

150

200

250

Fig. 3: (Colour on-line) Space-temporal diagram of interaction
of a pair of localized precession states obtained from model (2)
by the same parameters of fig. 1 . The circles represent the core
of the localized states, i.e. the isolines of the full width at half
maximum of the localized state.

which exhibits a spatial instability when the detuning is
decreased. This instability is characterized initially by the
appearance of a pattern with a well-defined wavelength,
which then decomposes into a gas of localized precession
states. The subsequent dynamics of this system is led
by the interaction of these states. This interaction is
characterized by the collision of a pair of localized states,
ended by a coalesce process from which there emerges a
single localized precession state. In fig. 3 this process is
shown.

Parametrically driven damped nonlinear
Schrödinger equation. – To understand the localized
precession state and the interaction between them, in
the quasi-reversible limit (Γ∼ ν ∼ α≪ ω0) and close to
the parametric resonance, we can introduce the following
Ansatz [23,24] into eq. (2):

Mx ≈ 1−
M2y +M

2
z

2
,

My ≈
1

h0

[
1+
Γ

h0

]
Ṁz,

Mz ≈ 4

√
ω0h0

β(ω20 +3h
2
0)
ψ(r⃗, t)ei(ω0+ν)t+ c.c., (3)

to the dominant order. After straightforward calculations
and imposing a solvability condition for the corrections
of the previous Ansatz we find (the parametrically driven
damped nonlinear Schrödinger equation)

∂tψ=−iνψ− i|ψ|2ψ− i∇2⊥ψ−µψ+ γψ̄, (4)

with γ ≡ βΓ/4ω0 and µ≡ (β/2+h0)α. This model has
been derived in several contexts to describe pattern and
localized structures, such as vertically oscillating layers of
water [27], nonlinear lattices [28], optical fibers [29], Kerr-
type optical parametric oscillators [30], among others.
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It is well known that eq. (4) exhibits stable non-
propagative dissipative solitons in two spatial dimen-
sions [31]. The localized states have the form
ψ=±Rs(r= |r⃗ |)eiθ0 , where cos(2θ0) = µ/γ, and Rs
satisfies the equation ∂rrRs+ ∂rRs/r−λRs+R3s = 0,
where λ≡−ν+

√
γ2−µ2 > 0. To our knowledge, there

does not exist an analytical solution of the localized
state. However the asymptotic behaviors of this solution
are well defined: for instance R(r→∞)→ e−

√
λr/
√
r.

Furthermore, using the variational method, one can also
obtain a good approximation by [32]

Rs(r) =A0
√
λ sec h

(

B0

√
λ

2
r

)

, (5)

where A0 = 2.166 and B0 = 1.32. From this variational
approach and using the Ansatz (3), one can have an
adequate representation for the localized precession states.
In inset of fig. 2, we contrasted this approach with those
obtained from micromagnetic simulations of the model (2).
We note that there is a quite good agreement.
From the approximated localized state (5), one can

infer that for negative detuning, this solution appears by
a saddle-node bifurcation when dissipation and energy
injection are equal (γ = µ and ν < 0). Furthermore, this
solution is unstable when the uniform magnetization
M= x̂ —which supports this localized state— becomes
unstable at Arnold’s tongue (γ2 = ν2+µ2, by ν < 0).
The characteristic size and amplitude of the localized
precession states, respectively, are 1/

√
λ and

√
λ.

Pair interaction law of localized states. – We
consider two localized states sufficiently separated, i.e. the
distance between them is greater than the characteristic
size of the localized states. Hence, we can introduce the
following Ansatz: ψ(r, t) =R(r, t)eiθ(r,t),

R = R+s

(
r+
∆(t)

2
r̂

)
+χR−s

(
r− ∆
2
r̂

)
+ ρ (r⃗,∆) ,

θ = θ0+ϕ(r⃗,∆) , (6)

where R±s are non-propagative dissipative solitons, ∆(t)
stands for the distance between the localized states (∆≫√
λ), r̂ is the unit vector in the direction between the
localized states, χ=±1 is a sign that defines whether
the solutions are in or out of phase, ρ(r⃗,∆) and ϕ(r⃗,∆)
are, respectively, the corrections functions. Defining W ≡
R+s +χR

−
s , considering the parameter region where the

dissipation and injection of energy are similar (0< γ−
µ≪ 1), introducing the above Ansatz into eq. (4) and
linearizing correction functions, we obtain

W∂tW = ∇⃗⊥(W 2∇⃗⊥ϕ), (7)

W∂tϕ=Lρ− 2µϕ− 3χR+s R−s W, (8)

where L≡−ν+
√
γ2−µ2+3W 2+ ∇⃗2⊥ is a linear op-

erator.
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Fig. 4: (Colour on-line) Phase ϕ around one of the two
interacting localized solitons of eq. (4) using γ = 0.53, µ= 0.25
and ν = 0.05. a) two-dimensional representation, b) solid and
dashed lines are, respectively, the profile of ϕ obtained from
the numerical simulation of model (4) and fit (9).

To solve the above equations, we need to derive ϕ.
However finding a global solution for ϕ remains a difficult
task. Nevertheless, if localized states are diluted we can
find ϕ around the center of each dissipative soliton.
In order to get ϕ, we changed our reference system
by r⃗ ′ = r⃗+ r̂∆/2, and in consequence, we approximate
the functionsW (r′ = |r⃗ ′|)≈R+s (r′) and ∂tW≈ ∆̇∂r′R+s /2.
Next, using the approximation (5) and integrating eq. (7),
after straightforward calculations we find out that

ϕ(r′) =−∆̇
4

(
r′− 1
2B
Shi(2Br′)

)
≡ ∆̇Θ(r′), (9)

where Shi(2Br′) is the hyperbolic sine integral. Figure 4
compares this approximation with those obtained from
numerical simulations.
Replacing expression (9) into eq. (8), we find a linear

equation in ρ. To solve this linear equation, we use
the Fredholm alternative [2]. Therefore we introduce the
following inner product: ⟨f |g⟩=

∫∫
fg dxdy, where L is

self-adjoint and its kernel is characterized by {∂r′R±s }.
Then applying this product to eq. (8), we find the following
solvability condition (pair interaction law):

∆̇ =−χ 3
aµ

∫ r′

0
∂r′R

−
s (R

−
s )
2R+s (r̂

′−∆x̂) r′dr′dθ

≈−χ b
aµ

e−
√
λ∆

√
∆
, (10)

where a= ⟨∂r′R−s |Θ⟩ and b≡ 3A
∫ r′
0 ∂r′R−s (R

−
s )
2−

e−
√
λr cos θdr′. The pair interaction law is derived using

the asymptotic behavior of the localized state. Hence, the
localized precession states experience an exponential force
of attraction (χ= 1) or repulsion (χ=−1) if they are in
or out of phase. In the limit of diluted localized states
the prefactor 1/

√
∆ is a correction of the dominant term

which is exponential. However, when these states are
located closer to this prefactor it becomes more relevant.
Hence the interaction of localized precession states is

like over-damped two-dimensional particles with two types
of charges where the interaction is only radial. In fig. 5
the evolution of the distance between the localized states
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Fig. 5: (Colour on-line) Temporal evolution of the separation
distance ∆(t). The points represent the separation distance
obtained from a) micromagnetic simulations of the model (2)
using the parameters of fig. 2 and b) numerical simulations
of eq. (4), using the parameters of fig. 4. The solid line is
the evolution of the separation distance deduced from the
interaction law (10).

obtained using the pair interaction law is compared to
those obtained from the numerical simulations of the para-
metrically driven damped nonlinear Schrödinger equation
and micromagnetism simulations of the model (2). We find
a remarkable agreement.
In the case of reversible two-dimensional systems, using

Lagrangian methods one can derive a similar interaction
law, however the radial dynamics can be enhanced by the
appearance of tangential forces [33,34].

Conclusions. – We have theoretically studied the
interaction of localized precession states on an easy-plane
ferromagnetic spin layer submitted to a magnetic field that
combines a constant and an oscillating parts. We have
performed a comparison of analytical studies and micro-
magnetic simulations. Close to the parametric resonance,
we are able to characterize the localized precession states
and their pair interaction law. Numerically, we have a good
agreement with the pair interaction law.
Given the numerical parameters that we have consid-

ered in the micromagnetic simulations in the case of
permalloy (Ms ≃ 10 kOe) and Ni (Ms ≃ 6.2 kOe) the char-
acteristic size of the localized precession state is 43 nm and
57 nm, respectively. Therefore the description presented
here corresponds to a particular-type state of nanoscale.
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Abstract:

Nonlinear systems maintained out of equilibrium can spontaneously generate a variety of self-organized states called dissipative
structures. Because of their ability to confine energy, the so-called localized dissipative structures are considered as the
macroscopic analogues of elementary particles. As such they are of great interest of the community of the nonlinear science
from optics to biology. In this book, problems related to these particle-like properties are discussed. The first part is devoted
to the study of the interaction of two isolate or a diluted gas localized structures generated by parametric forcing: forcing by
which one of the relevant parameters of the system is modulated. In the vicinity of the parametric resonance, such systems
have in common to be described by the same reduced model, the parametrically driven and damped nonlinear Schrödinger
equation. The soliton solutions of this equation have the particularity of having two arbitrary parameters: the position and a
polarity parameter related to the phase. The interaction of two solitons of the same polarity has been shown to be attractive,
resulting in the radiative fusion from which only one of the solitons remains. In the opposite case the solitons repel each other.
Being repulsive or attractive, the interaction process is largely dominated by the asymptotic behavior of the solitons. For a
multi-solitons states with the same polarity, the number of the remaining solitons follows a self-similar law derived from the
isolated pair interaction. The second part of the paper summarizes my works related to the study of extreme events. Within a
few years, the study of these very intense, rare and unpredictable localized structures has become a highly attractive research
area. Although linear wave analysis can explain some aspects of the behavior of extreme events, it is generally accepted that
nonlinearity plays a central role in the appearance of very high amplitude structures. Moreover, the recent observation of
similarities between hydrodynamic and optical systems has led to the development of optical non-linear experimental devices
to explore dynamic and stochastic aspects. Although the analogies between hydrodynamics and optics have been known since
the 1960s, optical studies have shown in 2010 that this correspondence applies even within the limit of extreme nonlinear
localization. This led to the first studies in conservative systems that allowed to link nonlinear turbulence processes to the
generation of extreme events from noise. These studies have also revealed a new class of extreme events in the form of a
rational localized structure known as the Peregrine soliton. However, despite the advances made by nonlinear optics, studies
have often been limited to an essentially ideal class of extreme events in the absence of dissipation and more complex dynamics
such as internal feedback loops. The works presented here show how the application of the tools of the theory of dynamic
systems made it possible to make the link between the extreme events and the spatiotemporal chaos in dissipative systems.

Keywords: Dissipative Structures, Dissipative Solitons, Dynamical system theory, Spatiotemporal chaos, Extreme events

Résumé :

Les systèmes non-linéaires maintenus hors équilibre peuvent générer spontanément une diversité d’états auto-organisés appelés
structures dissipatives. De par leur capacité à confiner de l’énergie, les structures dissipatives dites localisées, sont souvent
considérées comme les analogues macroscopiques de particules élémentaires. A ce titre, elles cristallisent une grande partie des
efforts de la communauté du non-linéaire de l’optique à la biologie. Dans cet ouvrage, des problématiques liées à ces propriétés
de type particule sont abordées. La première partie est consacrée à l’étude de l’interaction de deux, puis de N structures
localisées générées par forçage paramétrique: forçage par lequel un des paramètres pertinents du système est modulé. Au
voisinage de la résonance paramétrique, tous les systèmes ont en commun le fait d’être décrits par le même modèle réduit:
l’équation de Schrödinger non-linéaire paramétrique avec dissipation. Les solutions de type soliton de cette équation ont la
particularité d’avoir deux paramètres arbitraires: la position et un paramètre de polarité lié à la phase. L’interaction de deux
solitons de même polarité a été démontrée attractive avec pour résultat une fusion radiative de laquelle un seul des solitons
subsiste. Dans le cas contraire l’interaction est répulsive. Répulsif ou attractif, le processus d’interaction est largement dominé
par le comportement asymptotique des solitons. Pour plusieurs solitons de même polarité en interaction, l’évolution du nombre
de soliton suit de façon auto-similaire la loi d’échelle obtenue pour deux solitons isolés. La deuxième partie du mémoire résume
mes travaux consacrés à l’étude des évènements extrêmes. En l’espace de quelques années, l’étude de ces structures localisées
très intenses, rares et imprévisibles est devenue un sujet de recherche très attractif. Bien que l’analyse des ondes linéaires puisse
expliquer certains aspects du comportement des évènements extrêmes, il est généralement admis que la non-linéarité joue un
rôle central dans l’apparition de structures d’amplitude très élevée. De plus, l’observation récente des similitudes entre les
systèmes hydrodynamiques et optiques a conduit au développement de dispositifs expérimentaux non-linéaires optiques pour
en explorer les aspects dynamiques et stochastiques. Bien que les analogies entre hydrodynamique et optique soient connues
depuis les années 1960, ce n’est que très récemment, en 2010, que des études en optique ont montré que cette correspondance
s’applique même dans la limite de localisation non-linéaire extrême. Cela a conduit aux premières études dans des systèmes
conservatifs qui ont permis de lier des processus de turbulence non-linéaire à la génération d’évènements extrêmes à partir du
bruit. Ces études ont aussi permis la mise en évidence d’une classe fondamentalement nouvelle d’évènements extrêmes sous
forme de structure localisée rationnelle connue sous le nom de soliton de Peregrine. Pourtant, en dépit des avancées apportées
par l’optique non-linéaire, les études se sont très souvent limitées à une classe essentiellement idéale d’événement extrême en
l’absence de dissipation et de dynamique plus complexe. Les travaux présentés ici montrent comment l’application des outils
de la théorie des systèmes dynamiques a permis de faire le lien entre les évènements extrêmes et le chaos spatio-temporel dans
des systèmes dissipatifs.

Mots-clés : Structure dissipatives, Solitons dissipatifs, Théorie des systèmes dynamiques, Chaos spatio-temporel, Évène-

ments extrêmes
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