
contributions to single- and multi-
objective optimization

towards distributed and autonomous massive
optimization

Habilitation à Diriger des Recherches
Spécialité : Informatique

bilel derbel

contributions to single- and multi-
objective optimization: towards dis-
tributed and autonomous massive
optimization

Univ. Lille, France
http://www.cristal.univ-lille.fr/∼derbel

Habilitation à Diriger des Recherches (HDR)
Defended December 11, 2017, Lille, France

Evaluation committee - jury:
- Dr. Hernan E. aguirre, HDR, Shinshu Univ., Japan, jury member
- Prof. Pascal bouvry, Univ. of Luxembourg, Luxembourg, reviewer
- Prof. José A. lozano, Univ. of the Basque Country, Spain, reviewer
- Prof. Nouredine melab, Univ. of Lille, France, mentor
- Prof. Frédéric saubion, Univ. of Angers, France, reviewer
- Prof. Pierre sens, Univ. of Paris 6 (UPMC, Pierre and Marie Curie), France, jury member
- Prof. Lionel senturier, Univ. of Lille, France, jury chair

http://www.cristal.univ-lille.fr/~derbel

Bilel Derbel: Contributions to single- and multi- objective optimization, Towards distributed and
autonomous massive optimization, © Defended December 11, 2017, Lille, France.

page web:
http://www.cristal.univ-lille.fr/∼derbel

courriel:
bilel.derbel@univ-lille1.fr

http://www.cristal.univ-lille.fr/~derbel
mailto:bilel.derbel@univ-lille1.fr

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to the reviewers and the members of the jury
who accepted to read this document and who attended the defense. In deed, this habilitation
would not have been possible without the expert feedback and the insightful comments of
Hernan Aguirre, Jose Lozano, Nouredine Melab, Frédéric Saubion, Pierre Sens and Lionel
Senturier.

This habilitation was a unique opportunity to provide a unified overview of my research
trajectory during the last few years. In this respect, I would like to warmly thank all my
colleagues in the DOLPHIN research group in Lille; in particular, Nouredine Melab and El-
Ghazali Talbi for their kind support. Thanks so much to the Master, PhD students and the
post-docs I had the chance to collaborate with; especially, Trong-Tuan Vu and Christopher
Jankee, for their hard work and the pleasurable experience we had together. Besides, I
would like to thank all my colleagues in the computer science department of the University
of Lille, in the CRIStAL research center, and in Inria. They highly contributed making my
research and teaching activities very much enjoyable.

I am very much grateful to all the colleagues I had the chance and the honor to collaborate
with; in particular, Kiyoshi Tanaka, Hernan Aguirre, Cyril Fonlupt and Qingfu Zhang for
their friendship and their strong commitment to the development of our common scientific
ideas and research collaborations. There is in fact evidence that, due to their continuous
support, the next coming years will be again very intensive in research collaborations and
in scientific exchanges between France, Japan, Hong Kong, and beyond.

I am also so much grateful to my friends Arnaud Liefooghe and Sébastien Verel. Without
their big support and their precious advice, it would not be possible to conduct most of the
research described in this document.

Last but not least, I would like to thank all my family. To my dear wife Yosra and my
little diamond Ela - thanks so much for your patience and your love.

iii

CONTENTS

1 introduction 1

1.1 From theoretical distributed algorithms to optimization 1

1.2 Current Research Topics 3

1.3 Document Outline 5

2 distributed and parallel branch-and-bound 7

2.1 Introduction and Background 8

2.1.1 B&B in a nutshell 8

2.1.2 Compute Environments and Paradigms 9

2.1.3 Parallel and Distributed B&B: The Main Challenges 11

2.1.4 Parallel and Distributed B&B: Literature Overview 12

2.2 Contribution #1: Dynamic Load-Balancing in B&B 15

2.2.1 Work Stealing: the Basics in a Nutshell 15

2.2.2 Tree-based Dynamic Load-Balancing 16

2.2.3 Selected Experimental Results 18

2.3 Contribution #2: Node-Heterogeneous Work Stealing 20

2.3.1 A large-scale Multi-core Multi-CPU Multi-GPU B&B Approach (3MBB) 20

2.3.2 Selected Experimental Results. 22

2.4 Contribution #3: Link-heterogenous B&B Load Balancing 24

2.4.1 Dynamic load balancing under Link-Heterogeneity 24

2.4.2 A Generic Link-heterogenous Work-Stealing Algorithm 26

2.4.3 Selected Experimental Results 27

2.5 Conclusions and Perspectives 29

3 distributed and adaptive heuristic optimization 33

3.1 Introduction and Background 34

3.1.1 General context, motivations and goals 34

3.1.2 Adaptive Operator Selection: A focused Literature Overview 37

3.1.3 Benchmarking Operator Selection 39

3.2 Contribution #1: Distributed Adaptive Operator Selection 42

3.2.1 DAMS and Select-Best-and-Mutate strategy 43

3.2.2 Independent and Collective Machine Learning based Strategies 43

3.2.3 A simple Master/Worker Architecture 45

3.2.4 Selected Experimental Results 47

3.3 Contribution #2: Benchmarking for Adaptive Operator Selection 49

3.3.1 The Fitness Cloud Model 50

3.3.2 Selected Experimental Results 52

3.4 Other related contributions 54

3.4.1 Hyperheuristics based on neighborhood tree search 54

3.4.2 Landscape-aware offline algorithm configuration 56

3.5 Conclusion and perspectives 57

4 multi-objective optimization and decomposition 61

4.1 Introduction and Background 62

4.1.1 General Context and Definitions 62

4.1.2 Evolutionary Multi-Objective Algorithms 64

4.1.3 Moea/d: Motivation, Challenges and Literature Overview 66

4.2 Contribution #1: Design Components of Decomposition based Approaches 69

iv

contents v

4.2.1 On the Impact of the Scalarizing Functions 69

4.2.2 Improving Mating Selection and Replacement in Moea/d 72

4.3 Contribution #2: Distributed decomposition-based approaches 76

4.3.1 A distributed localized and adaptive approach 77

4.3.2 Designing Parallel Multiobjective Decomposition 81

4.4 Other related contributions 85

4.4.1 Connecting Decomposition and Local Search 85

4.4.2 Design of Adaptive Evolutionary Operators 87

4.5 Conclusions and Perspectives 89

5 looking at the future 93

a extended cv 97

a.1 Academic Position 97

a.1.1 General Information 97

a.1.2 Education and Academic Milestones 97

a.2 Doctoral and Student Supervision 98

a.2.1 PhD Students Supervision 98

a.2.2 Invited and External PhD Student Supervision 98

a.2.3 Postdoctoral Supervision 99

a.2.4 Master 2 Student Supervision 99

a.2.5 Master 1 Student Supervision 99

a.3 Funded projects and scientific animation 100

a.3.1 Funded projects and scientific responsibilities 100

a.3.2 Research dissemination and visibility 102

a.4 Summary of teaching activities 104

b personnel bibliography after phd 107

b.1 Book Chapter 107

b.2 International peer reviewed journals 107

b.3 International conferences with committee and proceedings 107

c bibliography 113

1 INTRODUCT ION

This document aims at providing an overview of my scientific activities and contributions
in the field of single- and multi- objective optimization in general, with a particular interest
in distributed and parallel optimization, and general-purpose search algorithms.

Before going into a more focused description of the research topics addressed in this doc-
ument, I would like to first share with the reader some milestones in my research develop-
ments showing how my (re)search trajectory has been evolving from theoretical distributed
algorithms to optimization. It is also the opportunity for me to highlight very briefly some
of my research contributions in the theory of distributed algorithms (which is otherwise not
discussed elsewhere in this document), and to give a short overview of my initial scientific
background.

1.1 from theoretical distributed algorithms to op-
timization

from south to north. During my PhD thesis at the University of Bordeaux (LaBRI)
from 2002 to 2006, and later as an assistant professor (ATER) at the University of Aix-
Marseille 1 in 2006-2007, I was mainly working on the theoretical aspects of distributed and
graph algorithms. After I moved to the University of Lille in September 2007 as an associate
professor (Maı̂tre de Conférences) within the DOLPHIN (now BONUS) research group of
the CRIStAL (previously LIFL) Laboratory and Inria, I continued working on those aspects
and in the same time started to progressively work in the optimization field, as discussed in
the following paragraphs.

locality in distributed algorithms. I was, and to some extent, I am still, interested
in the local aspects of distributed computing [Pel00a]. In a distributed or decentralized
system, a number compute entities interact in order to compute some task. Interaction
among compute entities is in general enabled through some kind of communication and a
fully distributed algorithm is a protocol to be executed locally by each compute entities. A
compute entity typically has a very local view of the global state of the distributed system,
since only a snapshot of the state of the other entities with whom it is interacting directly
is available at some moment of the system time-life. Thus, each distributed compute entity
has to make decisions based on this local view, hopefully leading to a correct and efficient
evolution of the global state of the whole distributed system. In this context, my initial
background is on the (time) complexity analysis of distributed graph algorithms from a
very theoretical perspective and relating directly to the locality of the problem to be solved.

theoretical distributed graph algorithms. Let us consider a standard graph-based
message passing distributed model, where the nodes of the graph model the distributed
entities, and the edges of the graph model the fact that two nodes can communicate together
by sending and receiving messages. Let us also assume a very simple setting where the
system can operate in rounds, where each round costs one time unit, and a node can send
and receive a message to each of his neighbors in this time unit. It is not difficult to see
that if a distributed algorithm has a time complexity O(τ), that is every node terminates
after at most O(τ) time units/rounds, then all the (topological) information used by every
node to compute the intended task lies exactly in the ball of radius O(τ). When it comes

1

2 introduction

to compute distributively some graph structure, like a spanning tree or a coloring, this
means that if initially every node knows the local topology of the graph up to distance O(τ),
then it can compute the intended task in one round. Of course, this reasoning holds in
a very theoretical model, known as the ”Linial’s free model” or the ”Local model” [Lin92;
Pel00b]. This kind of theoretical model allows one to study a fundamental question which is
tightly related to the (time and message) complexity of distributed algorithms: ”what local
information does every node need in order to compute some task?” or equivalently ”what
is the locality degree of a distributed task?”. In this context, during the very first years of
my carrier as an associate professor, I continued working on different theoretical models
(e.g., [DMZ10; Der+09; DG08; Der+08; Der08; DMG08]); where I was mainly interested
in computing distributively in a fully decentralized manner a number of graph structures
appearing at the bottleneck of a number of networking and telecommunication applications,
and are often considered in graph theory as core problems. These aspects are not addressed
in this document. They are only discussed very briefly in the following two paragraphs
highlighting how my scientific interests shifted to the optimization field.

distributed graph spanners. I was firstly interested in the locality of computing the
so-called graph spanners. More formally, an (α,β)-spanner of a graph G is a subgraph H
that approximates distances in G within a multiplicative factor α and an additive error β,
ensuring that for any two nodes u, v, dH(u, v) 6 α · dG(u, v) +β. For this kind of structures,
we are interested in optimizing another criteria: the weight (or the number of edges) of the
subgraph H, i.e., not only preserve distance in the skeleton H, but make it as sparse as pos-
sible. It is well-known for instance that every n-node graph has a (2k− 1, 0)-spanner with
O(n1+1/k) edges, k is an integer parameter, which can be obtained by a modification of
the Kruskal’s minimum spanning tree algorithm [Alt+93]. This is also related to the Erdös-
Simonovits Girth Conjecture [Erd64; ES82], where it is believed that every (α,β)-spanner
with α+ β < 2k+ 1 must have Ω(n1+1/k) edges for some worst-case graphs. During my
PhD, I was mainly concerned with spanners having a purely multiplicative stretch factor
(β → 0), and continued studying purely additive spanners (α → 0) as an associate profes-
sor. For instance, we were able to derive new lower and upper bounds for the distributed
construction of nearly additive graph spanners [Der+09]; where we provide a generic and
deterministic distributed algorithm that in constant number of rounds constructs, for every
n-node graph and integer k > 1, an (α,β)-spanner of O(βn1+1/k) edges, where α and β
are constants depending on k, e.g., a (1+ ε,O(1/ε)k−2)-spanner of O(ε−k+1n1+1/k) edges
for any ε ∈ (0, 4]. Such a result is actually based on some pre-processing steps involving
advanced tools from graph theory such as the distributed computation of sparse clusters
and independent/dominated sets.

randomized distributed symmetry breaking. The previous considerations are purely
theoretical in the sense that the runtime analysis is derived with respect to a purely theo-
retical message passing model which informs about the locality of a distributed task in an
ideal scenario. Nonetheless, such a model might not hold in practice and I was interested
in a more realistic setting where communications between neighboring nodes are subject
to collisions and/or interferences [GW13]. Computing distributed scheduling schemes en-
abling collision-free message transmission is hence mandatory for such a distributed set-
ting, e.g., in multi-hop radio networks, wireless ad-hoc networks, etc. From an optimization
perspective, such a scheduling can ’simply’ be viewed as a graph problem. From a dis-
tributed perspective, this turns out to be a symmetry breaking problem where the major
challenge is to avoid that two nodes transmit simultaneously and given that nothing about
the surrounding and/or global distributed environment is available locally for each node.
In this context, I was interested in the distributed self-organization of nodes using two
standard techniques for distributed symmetry breaking in graphs: randomized algorithms
and graph-based structures such as node coloring, independent sets and edge matchings,

1.2 current research topics 3

and contributed some theoretical and applied results [Jem+15; Jem+13; Ghr+13; DT10a;
DT10b]. For instance, in [DT10a], we are able to prove that under the harsh SINR (Signal-to-
Interference-plus-Noise Ratio) physical model, and for every n-node unit disk graph with
maximum degree ∆, there exists a distributed algorithm computing with high probability
and in at most O(∆ logn) time slots a (1,O(∆))-coloring, that is a coloring where nodes
at distance 1 have different colors and at most O(∆) different colors are used overall. The
time bound is actually optimal up to a logarithmic factor and is proved by combining graph
properties with conventional ’theory’ and analysis tools in randomized algorithms.

optimization begins.. . In parallel to the previously-mentioned research, my scientific
interests started shifting progressively to combinatorial optimization and high-performance
parallel computing. This was motivated from two scientific perspectives. Firstly, distributed
algorithms can be considered as a fundamental building-block in many massively parallel
and large-scale compute environments. Tackling large-scale or hard optimization problems
often requires to organize the communications between the available processing units in
a smart manner. As such, and given the strong involvement of my research team in the
first national large-scale experimental grid established in France [Gri], I started looking
at the application of different graph based structures, e.g., small world graph, distributed
hash-tables, etc, with the aim of efficiently applying them in the design of parallel and
fully distributed optimization algorithms. Some fundamental aspects related to termina-
tion detection, fault-tolerance, formal verification and complexity analysis, which are not
described in this document, were in particular studied within the first PhD Thesis [Dja13] I
had the opportunity to co-supervise. Later, designing parallel and distributed optimization
algorithms [AT02; Alb05; Tal09] became one of my main scientific activities as discussed
all along this document. Secondly, locality in distributed algorithms have, in some sense, a
number of common aspects with general-purpose search heuristics. For instance, and specif-
ically with respect to parallel search heuristics, there exist a number of widely-used models
and algorithmic frameworks, e.g., the island model, cellular genetic algorithms, ant colony
metaheuristics, where local cooperation is shown to play a crucial role. Hence, I start being
naturally interested in designing high-level (distributed) search algorithms which would
rely on simple local rules that would imply a powerful global behavior of the underlying
(distributed) system. Later, designing autonomous, high-level and general-purpose opti-
mization algorithms [HMS12] became one of my favorite research topics, together with the
systematic analysis and the fundamental understanding of their behaviors.

1.2 current research topics

Generally speaking, my current research activities are related to a number of interrelated
topics including combinatorial single-objective optimization, evolutionary multi-objective
optimization, general-purpose and autonomous optimization algorithms, fitness landscape
analysis and of course parallel and distributed algorithms. My main focus is on the design,
analysis and understanding of high-level search algorithms, where parallelism and distributed com-
putations play a crucial role, both to take full benefit from the ever-increasing growth of high
performance and large scale compute facilities, and to improve the robustness of the underly-
ing optimization procedures with respect to the ever-increasing complexity of optimization
problems and their specific features and application domains. Accordingly, my research can
be viewed following four interrelated aspects as summarized in the following paragraphs
providing a more focused description of my current scientific interests and objectives. This
shall also constitute the main concern of the rest of this document.

large-scale parallelism. Optimization algorithms for solving optimization problems
are time consuming when applied to difficult, expensive and/or large real-life problem in-

4 introduction

stances. Distributed and massively parallel modern compute environments (see e.g., [Hus+13])
harnessing huge amount of computational resources (e.g., super-computers [Top], grids [Gri],
clouds [Ama; Zha+11]) are a key option and a unique opportunity to speed-up the opti-
mization process. Designing efficient and scalable parallel and distributed algorithms for
that purpose is a challenging task, not only because of several technological issues such as
the hardware characteristics of a target compute platform and the underlying programming
paradigms (shared memory, message exchange, virtualization, etc), but also because the op-
timization flow might itself be difficult to think and to design distributively in parallel. In
this context, I am interested in designing fully distributed optimization algorithms, as well
as their effective deployment in large-scale and massively parallel compute environments.

locality and cooperation. Metaheuristics and evolutionary algorithms have been proved
to be extremely efficient in solving hard optimization problems [Hol75; Gol89; HS04; Tal09].
Although a large body of the literature is devoted to the parallelization of such algorithms [AT02;
Alb05], there still remain a wide field to be explored when it comes to set up novel dis-
tributed and parallel search heuristics both at the design level and at the implementation
and deployment level. In this context, I am interested in adopting a principled approach
where the algorithm is thought and designed in parallel till the beginning eventually fitting
a real compute platform. This includes the use of a purely local information when design-
ing the different components of an algorithm and the design of novel local coordination
mechanisms that do not rely on any global information but rather on a cooperative informa-
tion acquired during the optimization process. The objective is two-fold: (i) design effective
optimization techniques, and (ii) run them efficiently on large-scale compute environments
without much additional design efforts.

adaptiveness and learning. The performance of an optimization algorithm depends
heavily on the accurate configuration and combination of its several algorithmic compo-
nents and their respective parameters. Besides, there might be a plethora of approaches that
one can adopt to tackle a given optimization problem. An algorithm that is well suited for a
particular instance type might fail when executed on another one. It might even be the case
that different algorithms have to be combined at different stages of the optimization pro-
cess in order to achieve optimal performances. This is especially the case when designing
general purpose solvers that are intended to tackle problem instances or problem domains
having different characteristics. In this respect, I am interested in the design of autonomous
optimization techniques [HMS12] in order to improve the robustness of existing optimiza-
tion methods and to enable the automatic design of novel and high-level search algorithms.
This is also related to the on-line and off-line tuning and selection of algorithms, as well
as other algorithmic techniques coming from the learning and computational intelligence
fields, such as portfolio design, performance prediction, surrogates and meta-models, etc.
Generally speaking, being able to adapt the optimization process depending on the prob-
lem being considered, the instance one wants to tackle, the current state of the search, the
variable setting, the search trajectory, the possible components or parameters, etc, requires
learning mechanisms that I am interested in designing, analyzing and understanding.

multi-objective optimization. In real-life applications, one has to deal with a num-
ber of objective functions to be optimized simultaneously although being by essence pair-
wise conflicting [Deb01; CLV07]. In contrast to single-objective problems, where the goal
is to compute one solution optimizing one cost functions, multi-objective problems imply
a whole set of solutions providing the best possible compromises. Finding such a set, or
even an approximation of it, is usually a challenging task for which specific solving method-
ologies and approaches are needed. In this context, I am interested in the development of
computationally efficient evolutionary algorithms, with a particular focus on decomposition
based techniques [ZL07] that consists in transforming the original problem in a number of

1.3 document outline 5

(smaller) sub-problem using some scalarizing function, and solving the so-obtained subprob-
lems cooperatively. This kind of approaches offers in fact a high degree of flexibility, e.g.,
when leveraging existing single-objective evolutionary algorithms, and enable parallelism in
a rather natural manner. Additionally, it is worth-noticing that the research issues discussed
in the previous paragraphs still hold in the multi-objective setting, and I also consider to
address them while coping with the multi-dimensional nature of the objective space.

1.3 document outline

The rest of this document provides an overview of some of the research I conducted in
collaboration with different colleagues and postdoctoral student, as well as PhD and Master
students I had the chance to co-supervise or to work with. For clarity, some contributions
are not included in this document. In particular, my early contributions on the locality and
theory of distributed algorithms are not presented and some of my recent contributions are
also omitted. My goal is in fact to provide the reader a consistent overview of my main
current research interests and activities and, it is my hope, a clear idea about the research
path I would like to follow in the future.

The rest of the document is organized following a simple classification of the optimization
problems and algorithms I am interested in, namely, whether an exact or a heuristic approach
is considered and whether the target optimization problem is single- or multi- objective. The
described contributions are there-by structured into three chapters, each one eventually
dealing with one or more particular facets of the research topics mentioned in the previous
section.

In Chapter 2, we consider exact (single-objective) optimization algorithms where we are
mainly concerned with the design of parallel and scalable high performance load-balancing
algorithms to cope with the dynamic and irregular tree search work-load in a heterogeneous
compute environment. Our general goal is two-fold: (i) provide a systematic investigation
of the design of parallel B&B in a large-scale and massively parallel environment, and (ii)
improve and leverage the existing dynamic load-balancing protocols from the High Perfor-
mance Computing (HPC) community.

In Chapter 3, we consider evolutionary (single-objective) optimization algorithms, where
we are mainly concerned with the design and analysis of online distributed adaptive op-
erator selection techniques. Other related contributions in the sequential setting are also
highlighted with respect to hyperheuristics and offline algorithm configuration. Our gen-
eral goal is three-fold: (i) leverage existing operator selection techniques from reinforcement
learning in the distributed setting, (ii) enhance our fundamental understanding of the be-
havior and dynamics of existing techniques in lights of the properties of the considered
optimization scenario, and (iii) strengthen the existing methodologies in attempt to estab-
lish more automated and autonomous optimization algorithms.

In Chapter 4, we consider (evolutionary) multi-objective optimization algorithms, where
we are mainly concerned with the design of sequential and distributed decomposition-based
techniques. Other related contributions on the design and incorporation of evolutionary op-
erators based on local search and adaptive (machine learning based) stochastic sampling
are also discussed; respectively for discrete and continuous domains. Our general goal
is three-fold: (i) reduce the curse of dimensionality by adopting a divide-and-conquer ap-
proach allowing to incorporate a high level parallelism, (ii) contribute to the strengthening
of the main design components of such an approach and the analysis of their combined ef-
fect on the search behavior and dynamics, and (iii) enhance our understanding of the main
challenges and bottlenecks for a high quality and computationally efficient multi-objective
optimization process.

Besides some standard and well understood optimization paradigms and algorithmic con-
cepts that the reader is assumed to be familiar with, the chapters are self-contained and pair-

6 introduction

wise independent. Each chapter starts with a short abstract summarizing the corresponding
contributions, and providing a general outline, together with a summary of related scien-
tific projects and collaborations. It then follows a general introduction providing the neces-
sary background, definitions, related work, etc, and stating the general challenges and the
adopted methodology. A description of our contributions, organized in different sections, is
then provided and some selected experimental results are discussed. We in fact choose to go
briefly into some empirical findings, since our work is essentially based on a systematic and
comprehensive empirical analysis. The last section of each chapter provides a conclusion,
and a number of general perspectives are discussed as well.

In Chapter 5, we provide a general conclusion where our main research perspectives are
discussed from a very general perspective in light of our current and on-going projects.
Notice also that an extended CV including our research projects, research and teaching re-
sponsibilities, student supervision, personal bibliography etc, is provided in Appendices A
and B.

2 D ISTR IBUTED AND PARALLEL
BRANCH-AND-BOUND

In this chapter, we describe our main contributions to the design of efficient parallel and
distributed Branch-and-Bound (B&B) algorithms in both homogeneous and heterogeneous
compute environments, where heterogeneity can occur either at the computing-node level
or at the communication-link level. This piece of research was mainly conducted in the
context of Trong Tuan Vu PhD Thesis [Vu14]; where the focus is on balancing B&B workload
accurately and on leveraging state-of-the-art dynamic load-balancing algorithms coming
from the High Performance Computing (HPC) literature. The following aspects will be
addressed:

• In the introductory section, a general overview of B&B and the different types of
compute environments that we shall consider is first given. The design challenges, as
well as some related work, are then highlighted. The goal is to provide the reader with
a brief overview of some critical aspects to effectively set up a parallel B&B algorithm;
while abstracting as much as possible the technical, yet important, implementation
and technological issues.

• In Section 2.2, a tree-based load-balancing protocol is described and its efficiency is
studied in a large-scale node-homogeneous compute environment. Our goal is to high-
light the effectiveness of carefully structuring compute nodes using a distributed tree
like architecture, compared to a (centralized) Master/Worker architecture, and more
importantly compared to the well-established random work stealing based dynamic
load-balancer.

• In Section 2.3, a heterogeneous multi-core multi-CPU multi-GPU approach is then de-
scribed and its parallel efficiency is demonstrated. To the best of our knowledge, the
performance obtained when applying the underlying parallel and distributed proto-
cols for the permutational flowshop problem, constitute the state-of-the-art both in
terms of parallel efficiency and distributed scalability.

• In Section 2.4, an adaptive distributed load-balancing protocol based on the work
stealing paradigm and dedicated to link-heterogeneous compute environments is de-
scribed and its behavior is studied using an emulation-based approach. We show in
particular that, independently of parallel B&B, our distributed protocol is able to out-
perform existing algorithms for unbalanced tree search workload dynamic scheduling.

related publications, projects and collaborators.

collaborators. A. Ali (Postdoctoral Supervision), A. Bendjoudi, M. Djamai (PhD Super-
vision), N. Melab, T.T. Vu (PhD Supervision)

publications. [Dja13; Vu14; VD16; VD14; VDM13; Vu+12]

projects. HEMERA Inria large wingspan project (Responsible for Challenge A - COPS)
(2010-2014), BQR Emergent Research (Coordinator) (2012-2013). (See Appendix A.3)

7

https://www.grid5000.fr/Hemera

8 distributed and parallel branch-and-bound

2.1 introduction and background

2.1.1 B&B in a nutshell

serial b&b. Branch-and-Bound (B&B) is a universal search algorithm [LD10] that can
be used to find the optimal solution(s) with respect to a given optimization problem. The
general idea of B&B is to represent the search space as a tree, where the root of the tree rep-
resents the whole search space, and the intermediate nodes represent smaller sub-problems
where typically the range of few variables has been fixed or restricted. Generally speaking,
a sequential B&B algorithm uses four operators as illustrated in the high level template of
Algorithm 1. The algorithm maintains a list of subproblems which constitutes the nodes of
the search tree. At each iteration, one specific subproblem, that is one intermediate node in
the search tree, is selected to be processed. Processing a subproblem first consists in com-
puting its cost. If the subproblem is a leaf in the tree, then this means that all the variables
of the subproblem have been determined, and a complete solution is obtained. In this case,
the quality of the solution is evaluated using the cost function of the original problem to
be optimized. The newly computed solution is retained if its quality is better than the best
one found so far in previous iterations. Otherwise, the cost of the subproblem is computed
using a problem-dependent method. Without loss of generality, this corresponds to the
computation of a lower bound in case minimization is considered. If the computed lower-
bound is worst than the quality of the best solution found so far (i.e., the best known upper
bound), the subproblem and all its potential descendants are discarded and not expanded
further in the tree. This is known as the pruning phase of B&B. If the lower-bound does not
allow to prune, the branching operation is activated and the current subproblem is further
decomposed into two or more smaller subproblems. The newly computed subproblems
represent new intermediate node in the tree, with the current subproblem originating them
being their parent, and so on until all the search tree is fully explored.

sources of parallelism. Pruning the B&B nodes can significantly reduce the size of the
search space by exploring only those parts that exhibit promising costs. However, B&B is
a computing intensive algorithm that requires a relatively huge computational effort espe-
cially when dealing with large-scale and difficult problem instances. Parallel and distributed
computing is among the classical alternatives that are used in order to speed up the com-
putations of serial B&B. This has been the object of abundant work and a relatively rich
literature can be found about the subject. In particular, the sources of parallelism in B&B are
now well-identified and one can find several taxonomies and classifications on the subject
B&B [Tri86; TB92; GC94; BCG00]. All these classifications share the following simple obser-
vation. The problem-dependent bounding operation is many often the most time consuming
part of a serial B&B algorithm and much gain can be obtained when parallelizing this step.
This type of parallelism is known as low level or node-based. We can distinguish two basic
variants. In the first variant, the bounding operation is parallelized when executed for one
single subproblem. In the context of our study, this is of limited interest since the bound-
ing operation is problem-dependent. In the second variant, many bounding operations are
carried out for different subproblems which constitutes a much more generic and standard
source of parallelism in parallel B&B. Tightly related to this source of parallelism, another
important type of parallelism in B&B consists in exploring different subproblems in paral-
lel. This is known as high level or tree-based parallelism. It typically consists in exploring
different B&B subtrees in parallel, that is distributing the computed subproblems over the
available computing processes and performing the serial B&B in parallel. This type of paral-
lelism enables to implicitly perform the bounding operation in parallel when concurrently
exploring different subtrees, but it might also imply different tree explorations strategies
than the original serial B&B (in the same manner that different branching strategies can
impact the search [Cer+17]).

2.1 introduction and background 9

Algorithm 1: A simplified template of serial B&B for minimization problems

Input: r : root node (representing the whole problem to be solved);
f : objective function vector, to be minimized;
uy∗ : initial upper bound (e.g., obtained with a heuristic);

Output: x∗ : optimal solution; y∗ = f(x∗) : optimal objective value;
1 T←− {r} ; // BB active tree

2 while T 6= ∅ do
// Select the next node to be explored in the B&B tree (e.g., DFS, BFS)

3 N←− Select(T) ;
4 T←− T \ {N} ; // node N will now be explored

5 N := (N1, . . . ,Nk)←− Decompose Branch(N) ;
6 for ` ∈ {1, · · · ,k} do

// if N` is a final node (feasible complete solution)

7 if N` is a leaf then
8 if f(N`) 6 y∗ then
9 x∗ ←− N`; y∗ ←− f(N`); uy∗ ←− y∗;

10 N←− N \ {N`} ;
11 else

// Pruning by infeasibility

12 if X(N`) is not feasible then
13 N←− N \ {N`} ;
14 else

// Compute lower bound (problem-dependent)

15 LB(N`)←− a lower bound with respect to partial solution N` ;
// Pruning by bounds

16 if y∗ < LB(N`) then
17 N←− N \ {N`} ;

// Updating the tree with the newly created (not pruned) nodes

18 T←− T∪N ;

In practice, computing resources with different characteristics are nowadays increasingly
available in the form of public and private clouds, grids, aggregated clusters and personal
computers scattered over possibly large-scale distributed platforms connected via a network.
This huge number of parallel an distributed resources offers an impressive compute power
which is in theory sufficient to tackle large problem instances. On the other hand, exploiting
such a compute power when parallelizing B&B is challenging mainly due to the complexity
coming from the considered system architectures. In our work, we consider to use comput-
ing resources coming from both shared and distributed memory systems. For completeness,
we first sketch the characteristics of the computing environments and the underlying com-
pute architecture considered in this work, and then we state the underlying challenges with
respect to parallel B&B.

2.1.2 Compute Environments and Paradigms

shared memory systems. A shared memory system refers to a computing environment
where all threads/processors share some common memory space. The interconnection of
processors to the main memory defines the particular type of the architecture in shared
memory systems (e.g., UMA, NUMA, etc). The most common shared memory systems use
one or more multicore processors in which a multicore processor has multiple CPUs or cores

10 distributed and parallel branch-and-bound

on a single chip. Such systems assume that processors are able to access directly any part of
the main memory thanks to a logical address space. From a programming or engineering
perspective, writing parallel programs for shared memory systems requires to coordinate
the work of the different threads. This is not difficult per se; however, achieving parallel
efficiency is generally a challenging task. One of the most critical issue is the synchronization
of the communications among the threads via some local operations on the shared variables.
For instance, in parallel B&B, an idle thread running on a core can perform load balancing
to migrate some subproblems from another working thread. The idle thread has to remove
the subproblems out of the work pool of the working thread and to write them into its
own pool. This can cause data race issues. Synchronization techniques are hence borrowed
to transform simultaneous accesses to a sequence of several single access. Obviously, this
comes with a price and reduces the potential parallelism of a system. Besides, when dealing
with particular types of devices such as GPUs (Graphics Processing Units), memory access
is perhaps the most severe issue that might impact parallel performance.

distributed memory systems. A distributed memory system indicates that the underly-
ing processing units (PUs) do not share a common memory but are connected through some
kind of networks, allowing them to communicate through the message passing paradigm.
Although the quality of the distributed interconnect is getting better and better, and allows
for a relatively fast delivery of messages, communications in distributed message passing
systems are in general much expensive compared to the local communication enabled by
shared memory. This constitutes the first challenge when dealing with parallel algorithms
in such a compute environment especially if high performance and scalability are the main
objectives. In this work, we are interested in large-scale distributed systems where PUs
could be geographically distributed and connected through different types of physical net-
works (i.e Local area networks or Wide area networks). Such systems are generally built
as an aggregation of several types of PUs connected by different types of networks; thus,
exposing different levels of hardware and network hierarchies, and leading to a complex
system and network architecture. This raises several challenging issues for setting up large-
scale distributed protocols. Heterogeneity is one critically important aspect in nowadays
modern platforms [Top]. It is also the main focus of the work described in this chapter.
For the parallel B&B algorithms that we are interested-in, we shall distinguish two main
types of heterogeneity in accordance with the general classification commonly used in the
high performance and distributed computing community [BR10a]: node-heterogeneity and
link-heterogeneity. Node-heterogeneous systems use more than one kind of processors with
possibly different compute powers and abilities according to their hardware/memory archi-
tectures. For example, a node can be simply a single CPU, multi-core CPU or a complex one
with a multi-core CPU equipped with a many-core GPUs of different potential computing
capabilities. Link-heterogeneous systems refers to the use of different physical networks
connecting the underlying PUs. The PUs can thus communicate with different network
speeds and bandwidths: ethernet, infiniband, LANs, WANs. etc.

centralized vs. decentralized computing. A centralized computing architecture, of-
ten termed as Master/Worker (MW), is widely used when setting up parallel and dis-
tributed computing systems and algorithms. PUs are split into one (or possibly few) mas-
ter(s) and several workers. The master is the central point of the system which usually
manages all the control and coordination/synchronization operations. The workers are in
turn responsible for most of the computations. In parallel B&B, the master usually con-
trols the assignment of subproblems to workers and the workers perform B&B computation
like branching, bounding, selecting and pruning. In our experience, we observed that this
model can lead to rather efficient protocols (especially in small scales); however, for large
scales, the performance drops dramatically mainly because of the bottleneck created at the
master level. In contrast, a decentralized computing architecture is intended to leverage

2.1 introduction and background 11

the communication bottleneck that might occur at any PU. It refers to a fully distributed
management of PUs and does not count on any centralized master. Generally speaking,
the communication between PUs is organized following some deterministic or probabilis-
tic patterns, hence implying some kind of abstract communication topology called overlay.
This usually allows one to distinguish between two classes of decentralized architectures;
those organized following (i) an unstructured overlay, where no fixed topology is imposed,
typically when messages are exchanged on a random basis; and those using (ii) a structured
overlay, typically following a tree, a hypercube or a distributed hash table as in peer-to-peer
computing. It is worth-noticing that some architectures referred to as Hierarchical Master
Worker (HMW) are simply to be viewed as using a decentralized tree-like overlay topology
in which some PUs are specialized to play some specific actions, hence offering a kind of
compromise between a fully decentralized and a fully centralized architecture.

2.1.3 Parallel and Distributed B&B: The Main Challenges

Abstracting away from the characteristics of the distributed environment and the program-
ming paradigm, a parallel B&B algorithm is essentially a parallel tree search algorithm where
the tree is constructed dynamically at runtime as a consequence of the branching and prun-
ing operations. At every node of the tree, a bound has to be computed before determining
whether the tree can be expanded/explored or not. At a first glance, it is straightforward to
set up a parallel a B&B algorithm. In our opinion, however, the main point is not on how to
parallelize the B&B on a specific platform, but how to achieve high performance and scal-
ability with respect to that specific platform. On the one hand, as the parallel exploration
is carried out (either to compute bounds or to explore subtrees), the workload has to be
distributed fairly among the available PUs. On the other hand, considering that most target
platforms are heterogeneous with possibly different levels of hierarchy and compute ability
of the underlying PUs, different tightly coupled issues for a parallel efficient B&B have to
be addressed. We summarize them in the following.

mapping b&b parallelism. The main types of parallelism exposed in a generic B&B is
(i) at the node level to evaluate (bound) several B&B tree nodes (subproblems), and, (ii) at
the tree level, to explore different B&B subtrees in parallel (bound, prune and branch) [Tri86;
TB92; GC94; BCG00]. However, one still have to decide how to generate B&B work units
and to which PUs they should be assigned. For instance, the optimal traversal strategy
adopted when expanding new active nodes (e.g., DFS, BFS, etc), and subsequently assigning
them to some available PUs can depend on the particular optimization problem at hand.
Moreover, since some PUs can be better suited to deal with a particular type of parallel B&B
operations, mapping these well-established sources of parallelism in B&B to the underlying
hardware can constitute a difficulty. In our work, we are mainly concerned with CPUs
or GPUs. In contrast to CPU cores, the GPU cores can suffer from thread divergence due
B&B work execution. Hence, we shall simply restrict the GPU side to deal with the B&B
node-parallelism, that is the bounding of a number of B&B active nodes. Since the bounding
operation is problem-specific, B&B node-parallelism can it-self imply some issues, but which
can only be investigated in the context of a particular optimization problem. This is of
limited interest in the context of our work since our goal is to gain insights in the design of
general-purpose parallel B&B algorithms.

workload irregularity. The dynamic and irregular nature of the B&B tree constitutes
a major source of workload unbalance that can dramatically prevent high performance and
scalability. Processing the search tree distributively in parallel is trivial, for instance, by
iteratively generating and distributing subproblems over the available PUs. However, such
a naive approach often fails to achieve high parallel efficiency because (i) the shape of the
search tree is unknown in advance, i.e., it is difficult to predict in advance the nodes of the

12 distributed and parallel branch-and-bound

tree that would generate enough work for subsequent iterations, and (ii) the actual explored
subtrees differ in shape and have very unbalanced structures, e.g., the depth and the number
of nodes that could be attained when following different branches are highly variable. In
this respect, we argue that the main challenge is the design of an accurate load balancing
mechanism where B&B workload can unfold dynamically at runtime.

platform heterogeneity. The heterogeneity of the compute environment is the other
critically important issue when balancing workload across different PUs. For instance, the
compute power of PUs of the same type could be substantially different when considering
different clusters in a grid-like platform. The computational capability of different PUs
can also be very substantial. According to the optimization problem being tackled, the
relative performance can for instance range from few to hundreds orders of magnitude
in favor of a modern GPU device compared to the most recent CPU cores. Similarly, the
communication cost can vary very substantially depending on the different types and means
of the communication medium used by the different PUs. This impacts the time PUs stay
idle, and hence, can strongly decrease scalability and parallel efficiency. In brief, besides
dealing with the unpredictable B&B workload, addressing the heterogeneity of large-scale
compute environments is mandatory for high performance.

distributed global operations. The cost of the best known feasible solution needs to
be maintained in order to prune subproblems efficiently. This information is hence to be
shared distributively between all B&B parallel processes. Moreover, we have to deal with
termination detection, that is to determine whether the search process is terminated or some
PUs are still processing some nodes in the B&B trees, in which case the underlying tasks still
have to be shared. Although termination detection is often not as critical as the previously
mentioned aspects, and can be managed using standard techniques [Dij87], it appears to
have a non-negligible impact if not well embedded in the underlying protocols.

2.1.4 Parallel and Distributed B&B: Literature Overview

The previously discussed challenges are in general at the core of several studies. Given the
abundant literature on the subject, it is beyond the scope of this document to go through a
detailed discussion of related work. A non exhaustive set of representative approaches are
nonetheless discussed in the following.

shared and distributed memory b&b. One can find several studies dealing with shared
memory parallel B&B, see e.g., [JS89; SD12; Sil+14; Dro+12; BB10; KJL13a; BDW11; ECG11;
OD10; OD12]. In such a setting, work pool(s) management is a common issue which is
shown to play an important role. In fact, we can see from the generic template of Algo-
rithm 1 that an iteration of a B&B consists of a procedure to pop a subproblem from a
pool, perform a set of operations (branching, bounding and pruning), and then insert one
or several generated subproblems into the pool. Work pool management then refers to a
specific data structure (e.g. array, list, map, stack, queue, etc) placed in a memory location
where PUs access generated subproblems. Obviously, this is tightly related to distributing,
and thus balancing, the B&B workload. Simultaneous I/O operations to the same work
pool(s) pose several issues. In practice, there are two common strategies. In single pool
based algorithms, only one memory location is used to maintain a single global pool shared
among PUs. Synchronization techniques are then unavoidable when popping/pushing a
B&B node from/to the single global pool. For instance, a single pool approach is presented
in [MMT13], where the authors reported a relatively big gap between their implementation
and the ideal linear speed up. In multiple pool based algorithms, a set of different memory
locations are used to handle B&B work units. There are some variants depending on the
number of pools used in the system, namely collegial, grouped and mixed. In the first case,

2.1 introduction and background 13

each PU has its own pool. In the second one, all PUs are partitioned in several groups and
each group shares the same work pool. The choice of the number of pools depends on
the number of PUs as well as their accessing frequency. The last one is a mixed between
collegial and grouped.

In this context, we can cite the work of Casado et al. [Cas+08] who proposed two multi-
threaded schemes for parallel B&B. In the first scheme, all threads share a global pool of gen-
erated subproblems therefore a synchronization mechanism is designed in a master-worker
style. In the second scheme, each thread manages a local pool to avoid synchronization
overheads and a dynamic load balancing is proposed to deal with the B&B irregularity. At
each iteration, if a certain condition is satisfied, a thread creates a new one and migrates
work from its local pool to the pool of the new one. The condition for new thread creation
is described as follows: the number of running threads are less than the total number of
available cores and there is more than one subproblem in the local pool of the thread. In the
same spirit, Evtushenko et al [EPS09] presented a B&B solver that allows to deal with both
shared and distributed memory environments. At the shared memory level, a global pool
and one local pool per compute thread are implemented. When a thread becomes idle it
picks a subproblem from the shared pool, or it stays blocked unit the shared pool is fulfilled.
After a number of steps, a thread migrates some problems from its local pool to the shared
pool which stands for load balancing. At the distributed memory level, they use a master-
worker like paradigm to coordinate the distributed threads. Similar load-balancing consid-
erations are addressed in [Her+13b; Her+13a], where a thread can create a new one if the
maximum number of threads is not reached. Barreto et al. [BB10] conducted a comparison
of parallel B&B approaches on shared and distributed memory systems using respectively
OpenMP and MPI. A good speedup of both implementations compared to the sequential
one is reported; however, the speedup using MPI was found to be slightly better than with
OpenMP. This might appear counter-intuitive at the first sigh since it is in fact well under-
stood that inter-communication is much costly in MPI where exchanged messages have to
pass through standard networks connecting computers. However, this result also enlightens
the negative impact of using synchronization mechanisms in shared memory systems. Most
of previously mentioned approaches and more recent ones, e.g., [Mez+14; Ler+14; Sil+14;
SD12], try to address the (shared and distributed) memory hierarchy mapping and the pool
management issues with respect to B&B workload. Despite their skillful design, previous
approaches suffer scalability issues when considering large distributed environments.

centralized master-worker (mw) b&b. In (message-passing) distributed environments,
the classical Master-Worker (MW) paradigm is widely used for parallel B&B. Most often, the
distribution and scheduling of B&B work units run only on the master which tries to main-
tain a faithful global view of work being processed. Among others [Gou+00; GLY00; CF01],
we can cite the B&B@GRID approach described in [MMT07b; Mez07], where an interval
representation of B&B work units for the permutation-like problems is investigated in at-
tempt to reduce the communication latency and the cost of synchronizing and updating
the workers. Otten et al. [OD10; OD12] introduced a scheme to predict the complexity of
a subproblem so that subproblems can be evenly distributed among workers based on the
prediction scheme. Initially, the master node explores the tree up to a parallelization fron-
tier for having enough subproblems, then send them to its workers and wait for the result.
Balancing the B&B workload is then ensured by the prediction scheme which estimates the
size of the explored space of a subproblem (i.e. the number of explored nodes to solve a
subproblem). In [KJL10] a Master-Worker algorithm called GAUUB is proposed, and then
improved by proposing another version called GALB [KJL12; KJL13b] that reduces load un-
balancing among the available processors. The algorithm GALB is composed of two steps:
initialization and distribution. The master executes the initialization step by performing
the sequential B&B algorithm until reaching a fixed level L of the search tree in order to
generate a large amount of work to distribute among the slaves processors and therefore to

14 distributed and parallel branch-and-bound

ensure load balancing for all processors in the second distribution step. Generally speaking,
it is well understood that MW-based approaches are only suitable at small or intermediate
scales, which is also confirmed by our own investigations. Some hierarchical master-worker
(HMW), as well as fully decentralized, schemes are proposed to solve the scalability of MW.

hierarchical master-worker (hmw) and decentralized b&b. Despite the many vari-
ations that one could find, the key idea of HMW B&B is simply to use several masters
organized hierarchically following a tree overlay. As such, there are in general two types of
layers that are considered: a control layer comprising one or more levels of masters and a
work layer composing workers. For example, Aida et al. [AF02; AO05] proposed a three-tier
tree structure comprising a supervisor, masters and workers. The supervisor is the root
node of the tree and manages all masters. Workers are grouped into sets and each set is
managed by a master. The supervisor and the masters are in charge of all communications
among workers belonging to different sets such as load balancing, and broadcasting upper
bound values. Similarly, Xu et al. [Xu+05] proposed a framework to implement parallel
search algorithms called APLS. The framework uses the following entities: Master, Hub
and Workers. A hub controls a fixed number of workers and the number of hubs increases
proportionally with the number of workers. Load balancing is also taken into account at
two levels: intra-cluster and inter-cluster. In the first level, the hub manages dynamic load
balancing and the workers periodically update their workload to the hub, hence helping the
hub to detect and to correct an unbalanced situation. This design principle is also shared
in other studies and frameworks, e.g., [EPH01; Dro+12; Dic07]. In [BMT12b; BMT12a], the
authors suggest a MHW architecture which allows workers to additionally communicate
directly together after receiving a task from the master hence exposing less communication
bottleneck to the masters. This actually implies a kind of communication overlay, and is in-
line with other fully distributed or peer-to-peer existing algorithms, e.g., [FM87; IF00; Dic07;
Dja13; Meh+09; Meh+08]. Each peer in such systems has in general a local pool storing all
work units for processing. When the local pool of a peer is empty, the peer basically sends
work requests. Upon receiving a work request, a peer shares some work units from its local
pool to the requesting peer. This is actually performed according to some load balancing
policy. To cite a few, in [LM92; TLM95], the authors proposed to balance the workload of a
peer with its neighbors by means of a weight function which takes into account the quality
and the quantity of generated subproblems. The quantity is the number of subproblems in
a local pool. The quality is the minimum cost of generated subproblems of a local pool.

gpu based parallel b&b. The previous approaches and related issues (pool manage-
ment, synchronization issues, memory mapping, hierarchical and distributed architectures,
load balancing, etc), are continuously revisited with respect to the devices and hardwares
that can compose a large-scale compute environment. In particular, one can find a number
of studies dealing with the integration of GPU devices in parallel B&B, e.g., see [Cha13]
and the references there-in. A single GPU device can offer an impressive compute power
when bounding different tree nodes in parallel, which is the main type of parallelism that
a GPU device might offer. In fact, implementing the whole B&B process inside the GPU
device is a difficult task, mainly because of thread divergence issues and the difficulty in
handling efficiently the different memory levels. As mentioned before, the obtained speed-
ups with respect to a single CPU are hence problem-depend since the bounding operation
depends on the problem one wants to tackle. In the context of our work, we rather focus
on the scalability issues. In fact, when multiple GPU devices are combined with multiple
multi-core CPUs, most of the existing approaches fail to be highly scalable which is mainly
attributed to the heterogeneity of the underlying compute systems and the unbalanced and
fine-grained workload of parallel B&B, e.g., [Gmy+17; CM16; CM15].

2.2 contribution #1: dynamic load-balancing in b&b 15

2.2 contribution #1: dynamic load-balancing in b&b

The main contribution of the work described in the rest of this chapter is to bring high
performance on the scene of parallel optimization, by cross-fertilizing parallel B&B with
general-purpose dynamic load balancing algorithms; thus bridging the gap between the
solving of difficult optimization problems and the establishment of novel large-scale dis-
tributed and parallel algorithms.

As discussed previously in Section 2.1.3 about the main challenges that one has to face,
and as witnessed by the bench of studies described in the previous section, the most re-
current issue in the design of parallel B&B is how to balance the workload dynamically at
runtime. This is since the parallelism exposed by generic B&B is straightforward in our
opinion; but, keeping all PUs busy doing useful work at any time of the execution is the
main point that may prevent high performance and scalability.

Although being critically important, balancing workload is not always addressed in an
explicit manner. This can mainly be attributed to the technical complexity of setting up an
effective B&B parallelization on top of a specific compute environment, especially when deal-
ing with a new type of parallel hardwares or parallel technologies. Interestingly, there exist
a relatively well-established body of research, coming form high performance and parallel
computing community, that deals explicitly with dynamic load balancing. In this section,
we will in particular focus on the first steps we made in leveraging such techniques for par-
allel B&B in a large-scale compute environment. To better position our first contribution, we
start providing a brief overview of state-of-the-art general purpose (i.e., independent from
B&B) load balancing techniques.

2.2.1 Work Stealing: the Basics in a Nutshell

Load balancing is tightly related to the more general problem of task scheduling which is a
well known problem that, besides B&B, can occurs in a different number of situations and
application fields, e.g., [Kum+94; XL97; WR93; Lar+17]. In our setting, we are interested in
the Dynamic load balancing of the workflow generated at runtime by a parallel application,
that is, when the work units or the tasks of the corresponding application are generated dur-
ing the course of the computations, and nothing about what each PU is executing, neither
the cost or the number of work units, can be assumed beforehand. As such, the main goal
of a dynamic load balancing method is to offload work units from overloaded PUs to under-
loaded/idle PUs dynamically at runtime in order to ensure that all PUs have approximately
the same workload at any time of the application execution.

Different general-purpose methods have been developed so-far [BS81; ELZ86; KGV94;
SKS92]. They are often fully distributed and implemented using multiple work pools. More
specifically, each PU is associated with a single pool for storing and sharing the tasks gener-
ated at runtime. Existing methods can then be distinguished in three types, depending on
who is the main initiator of the load balancing operations. In work pushing [ELZ86], it is the
role of overloaded PUs to balance workload. In this class of methods, a PU with a non empty
work pool automatically offloads tasks to an appropriately chosen PU, typically when it has
more tasks than a threshold value. Every PU has then to decide on how to select a target
PU, as well as on how many tasks to offload and how often. In work stealing [BS81], it is the
role of idle PUs to start a load balancing operation. When a PU finds no task in its local pool,
it simply requests another PU; which then offloads tasks if its own work pool is not empty,
or rejects the request. The idle PU repeats this process until effectively fetching some work
somewhere. Similarly, a PU has to decide on how to select a target PU whenever it is idle
and how many tasks to offload when receiving a request. The third class of approaches is
without surprise hybrid [SKS92], in the sense that it combines the previous two approaches
by both offloading tasks from overloaded PUs, or stealing on demand when PUs are idle.

16 distributed and parallel branch-and-bound

In work-pushing, good load balancing strongly depends on how often tasks are offloaded
in a system, which is generally controlled using some predefined thresholds. If these thresh-
olds are not well optimized to the correct value depending on the target application, tasks
will be moved ahead either so often or so rarely. Furthermore, work pushing could be unsta-
ble when the granularity of workload is high and the application highly irregular, i.e., even
when the system load is high at some stage of the execution and all PUs are actually busy,
task offloading will still occur. Hence, it can be argued that work pushing is not a good
choice for highly irregular applications like parallel B&B. In contrast, work stealing appears
to be more suited, and it is actually chosen as a scheduler for load balancing in several
well-established softwares and frameworks (e.g Cilk [FLR98a], Intel TBB [Int], OpenMP 3.0
[Ope11] and Javelin [Nea+00]).

In work-stealing, a PU running out of work is called thief, whereas those that service
thieves’ work requests are called victims. The most important factors for an efficient work-
stealing based protocol are: (i) the selection strategy adopted by a thief to chose its victims
and (ii) the work sharing strategy which is the amount of work offloaded from a victim to a
thief. This was addressed in a number of studies and in different application settings, e.g.,
[MIY11; Din+07; Din+09; Cyb89; FLR98b; Oli+07; OP08; Sar+11; MIY11; QW10a; RLP11].

The main issue when designing an appropriate selection strategy is to minimize the time
the thieves stay idle searching for work. The most simple selection strategy is a random one,
i.e., a thief chooses one victim uniformly at random. The so-obtained random work stealing
protocol is actually at the corner stone of several other variants. The work sharing strategy
is in turn responsible for balancing the load evenly between a victim and a thief; which
will subsequently becomes a potential victim. The most common strategy is the steal-half
strategy which consists in offloading half of the work units available at the victim local pool.
The goal behind coupling an appropriate victim selection with an appropriate work-sharing,
is to flood the whole idle PUs in the system with fresh work as quick as possible, and hence
to maximize the global parallel efficiency of the system.

From a purely theoretical perspective, Blumofe and Leiserson proved in a seminal pa-
per [BL99] that random work stealing is essentially optimal (up to some constants) in
terms of time, and communication. To be more precise, a random work-stealing algorithm
for scheduling the so-called fully strict (well-structured) multithreaded computation model is
presented and analyzed in the so-called atomic-access model. Under those theoretical as-
sumptions, which are not detailed in this document for clarity, it is proved that the ex-
pected time of random work-stealing when executed by p identical parallel processors is
Tp = T1/p+O(T∞), where T1 is the minimum serial execution time of the multithreaded
computation and T∞ is the minimum execution time with an infinite number of processors.
Similar tight bounds (for divide-and-conqueror computations) are also provided for the
amount of communication required between the p processors, which is actually better than
the bounds previously known for work-sharing. Such results, even restricted to some theo-
retical assumptions, comfort us in the idea that random work stealing is a highly effective
approach to dynamic load balancing, especially in our target parallel B&B.

2.2.2 Tree-based Dynamic Load-Balancing

Our first contribution is on the design of a work stealing distributed protocol improving the
performance of basic random work stealing in a large-scale distributed environment [Vu+12].
The main idea is that structuring computing nodes in a specific overlay can help addressing
the issue of fetching work efficiently. Based on our previous investigations on the behavior
of peer-to-peer B&B algorithms [Dja13], we describe in the following the core idea of our
tree-based work stealing protocol for B&B dynamic load balancing.

stealing on tree edges. Let us assume that PUs are organized logically following a
rooted tree. The target application to be parallelized is initially pushed at the root PU. An

2.2 contribution #1: dynamic load-balancing in b&b 17

idle PU steals synchronously downwards and upwards in the tree. In the down phase,
every idle PU first requests its children. The steals are sent sequentially by choosing a child
uniformly at random at each step. Then, if and only if all children are idle, a steal is sent
at last upwards to the parent. Conceptually, this corresponds to a random work stealing
strategy, but considering only the set of children that have not sent a request upwards yet.

stealing on bridge edges. The previous protocol exhibits much locality, since tasks
inside a subtree will always be completely finished before load balancing requests are sent
to the parent. This property leads to some drawbacks, basically because a PU only steals
upward when its subtree becomes entirely idle. Therefore the whole subtree remains idle
during the round trip of the parent upward steal request. To handle this issue, while main-
taining a low communication overhead, we introduce what we call Bridge-based work steals
with the aim of speeding up work flow from overloaded subtrees to under-loaded ones.
Apart from the tree edges, we propose to connect PUs being far away each other using
random bridge edges. Those bridge edges are to be viewed as logical shortcuts that can be
traveled by work to reach under-loaded subtrees more quickly. In this approach, every PU
v further requests work from one PU r through a bridge edge bv→r chosen uniformly at ran-
dom among PUs being neither children nor parent. More precisely, in parallel while requesting
its neighbors in the tree, every idle PU v asynchronously sends a steal request over bv→r. Such
an asynchronous steal request does not block v waiting for a response from r. Instead, v is
allowed to concurrently search for work from its neighboring PUs in the tree, as described
previously. If the remote neighbor r owns work, then it immediately services v. If r is idle,
then this means that r has already sent an asynchronous work request through its bridge
edge, and it is also requesting its respective direct neighbors. Thus, whenever an idle node,
say p, gets work from its neighbors or through its bridge, then it immediately services all
nodes from which a steal request was received. Let us remark that this distributed strategy
operates in a recursive manner, implicitly building up a logical cluster of idle PUs. Conse-
quently, all idle PUs are more likely to cooperate efficiently in searching for fresh work.

tree-dependent work sharing. The previous protocol is further combined with the
following work sharing strategy. We propose to dynamically adjust the amount of work
transferred from one PU to another one according to the size of the overlay subtrees. Based
on the observation that idle PUs should not be selfish when searching for work, but should
acquire enough work to serve their neighbors, our work sharing policy is overlay-dependent:
a PU simply divides its current work into the ratio of its own tree size and the tree size of
the requesting PU; which is to contrast with a standard steal-half strategy.

other b&b specific operations To gain in generality, some B&B specific issues were
hidden in the previous discussion. The work acquired by a PU is in fact assumed to repre-
sent a B&B work unit which might be a B&B active node, as well as any alternative encoding
of B&B subtrees. Each PU is then responsible for executing a B&B on the work units it ac-
quires, that is, the standard branching, bounding and pruning operations as specified by
a serial B&B and with respect to the optimization problem. Moreover, the sharing of the
best feasible solution found by a B&B process is managed by sending messages through the
overlay tree. Finally, termination detection is also handled in a distributed fashion following
tree edges. Notice that without the bridge steals, termination can be detected straightfor-
wardly by the root of the tree; however, we manage to carefully implement a wave-based
distributed protocol in order to safely ensure that no work units are still traveling along an
asynchronous work-transfer responses.

18 distributed and parallel branch-and-bound

2.2.3 Selected Experimental Results

We present in the following some selected experimental results from our extensive and com-
prehensive study [Vu14; Vu+12]. It is worth-noticing that conducting a fair and sound exper-
imental study is not straightforward, especially when dealing with parallel and distributed
algorithms applied to optimization. In our work, we put much attention not only in evalu-
ating the relative performance of the proposed protocols, but also to elicit their behavior in
terms of scalability and parallel efficiency. We emphasis that the aim of the following para-
graphs is to provide a very brief synthesis of our experimental procedure and its rationale,
while focusing on the main lessons that we were able to learn.

benchmarks. We consider the solving of the Flow-Shop optimization problem (i.e., min-
imize the makespan Cmax) and the well-known Taillard’s instances {Ta21, · · · , Ta30} of the
family Ta-20 ∗ 20, i.e., 20 jobs and 20 machines [Tai93]. Besides, we consider the so-called
Unbalanced Tree Search (UTS) [Oli+07] benchmark, which is the reference general-purpose
benchmark from the parallel computing and HPC community. It simply consists in explor-
ing/counting the nodes of a parameterized tree with extreme variation/imbalance in the
relative size of its induced subtrees. The tree is actually unknown beforehand and can only
be constructed at runtime using a splittable, deterministic random stream generated using
the SHA-1 secure hash algorithm. The UTS was actually designed to be the representative
adversary benchmark to evaluate the parallel performance of irregular state space exploration
and combinatorial search algorithms like parallel B&B.

competing protocols and testbed. Besides studying the behavior of our tree-based
algorithm with different parameter settings, we consider three algorithms based on the
three main paradigms used so-far for B&B: a Master/Worker algorithm as introduced by
the B&B@Grid approach [MMT07a; MMT07b; Mez07], a hierarchical Master/Worker algo-
rithm as introduced by the so-called Adaptive Hierarchical Master-Worker (AHMW) B&B
approach [BMT12b; BMT12a; Ben12], and a fully decentralized algorithm based on the
standard random work-stealing paradigm using a steal-half strategy, considered as a HPC-
oriented baseline algorithm. All protocols are experimented on top of the Grid’5000 French
national experimental grid [Gri]. Two clusters were involved in our experiments and up to
1200 compute cores are used.

experimental results. Our first finding is that our proposed protocol is able to perform
at its best when configured with an overlay-tree having a well tuned average degree. This is
because most of the work is expected to flow over the tree edges, and hence a small diameter
tree is mandatory for work to reach idle process efficiently. Besides, stealing using bridge-
edges is proved to provide a significant improvement especially when considering the UTS
benchmark. Among the different competing algorithms, the hierarchical approach, which
at first sight presents some similarity with ours since it is based on a structuring some
masters using a tree overlay, is surprisingly found to perform very poorly. For instance,
at the relatively moderate scale of 200 cores, our approach is found to be more than 10
times faster in average over all the considered flowshop instances. This result can actually
be explained by the particular B&B work mapping used in [BMT12b; BMT12a]. A BFS-like
problem-specific strategy is in fact adopted there-in to explore the B&B tree when solving the
flowshop problem, which is sufficient to provide a good parallel efficiency of the hierarchical
architecture, but very likely not to provide optimal parallel solving times. Turning to the
MW approach, which was actually believed to be a state-of-the-art approach for solving
large-scale Flow shop instances, it is found to suffer a scalability issue as illustrated in
Fig. 1 showing its relative performance at a large scale of 1200 cores. We actually found
that the master worker approach can only be efficient at the small and moderate scales,
or when considering huge B&B instances for which distributing workload is anyway not a

2.2 contribution #1: dynamic load-balancing in b&b 19

 400

 600

 800

 1000

 1200

 1400

 1600

Ta
21

Ta
22

Ta
23

Ta
24

Ta
25

Ta
26

Ta
27

Ta
28

Ta
29

Ta
30

E
x
p

lo
re

d
 N

o
d

e
s
 (

x
1

0
3
 n

o
d

e
s
)

Flowshop Instances

BTD, dmax=10 MW

 0

 20

 40

 60

 80

 100

Ta
21

Ta
22

Ta
23

Ta
24

Ta
25

Ta
26

Ta
27

Ta
28

Ta
29

Ta
30

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 (

%
)

Flowshop Instances

BTD, dmax=10 MW

Figure 1: Relative performance when using 1200 compute cores of a MW approach compared to our
approach (the notation BTD refers to stealing with Bridge edges and following a Tree overlay
constructed deterministically with maximum degree dmax at most 10). Left: number of
explored nodes per second that is the number of bounding operations performed in parallel.
Right: B&B parallel efficiency that is the proportion of time devoted to performing B&B
useful work against waiting for some work to process.

 0
 200 400 600 800 1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
x
 1

0
3
 s

e
c
o

n
d

s
)

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 (

%
)

n

Time of RWS

Time of BTD, dmax=10

PE of RWS

PE of BTD, dmax=10

 0
 200 400 600 800 1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
x
 1

0
3
 s

e
c
o

n
d

s
)

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 (

%
)

n

Time of RWS

Time of BTD, dmax=10

PE of RWS

PE of BTD, dmax=10
 0
 128 192 256 320 384 448 512

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

x
 1

0
3
 s

e
c
o
n
d
s
)

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

n

TREE=BIN, Size=157B nodes
 GEN-PARAMS: b=2000 q=0.4999995 m=2 r=599

Time of RWS

Time of BTD, dmax=10

PE of RWS

PE of BTD, dmax=10

Figure 2: Execution time and Parallel efficiency (PE) when scaling the number of PUs and using re-
spectively our approach (BTD) and random work stealing (RWS), to solve two representative
fine-grained B&B instances: Ta21 (Left), Ta23 (Middle) and a reference UTS instance (Right).
Execution time and Parallel efficiency (PE), as a function of overlay size n for UTS.

challenging issue. From a purely parallel perspective, dealing with fine-grained parallelism
in B&B is the main critical issue as we scale up the distributed resources. Lastly, work-
stealing based protocols, are found to provide a fairly good performance not only for parallel
B&B applied to the flowshop problem, but more generally when applied to the problem-
independent UTS benchmark. As illustrated in Fig. 2, standard random work stealing is
confirmed to be highly efficient in the moderate scales. However, there is still an opportunity
for further improvements as demonstrated by the relative performance of our tree-based
protocol. At the largest scales requiring to deal with very fine-grained parallelism, random
work stealing reaches its limits, since idle nodes try to catch victims ’blindly’ using random
requests. In contrast, our tree centric approach tends to minimize communication delays by
distributing the load in a more deterministic/cooperative manner and the gain in parallel
efficiency, thus in speed-up, is substantial.

20 distributed and parallel branch-and-bound

2.3 contribution #2: node-heterogeneous work steal-
ing

As a second contribution, we consider the design of parallel B&B for node-heterogeneous
platforms harnessing a mixture of shared memory and distributed memory components. In
order to achieve high performance, heterogeneity brings further challenges especially when
dealing with dynamic load balancing. In this respect, we present in this section a large-scale
multi-core multi-CPU multi-GPU approach based on leveraging the work-stealing paradigm
and providing near-optimal linear speed-ups under different compute settings. Although
some recent attempts on the subject can be reported, the performance of the proposed
approach, as well as its scalability, constitute to the best of our knowledge, the state-of-the-
art for node-heterogeneous parallel B&B.

2.3.1 A large-scale Multi-core Multi-CPU Multi-GPU B&B Approach (3MBB)

mapping b&b work for cpus and gpus. Motivated by the difference between the com-
pute abilities of CPU and GPU cores, we consider a combination of a parallel DFS and BFS
tree traversals when selecting the B&B nodes to be bounded in parallel. Since a GPU can
be efficient only when it can bound many tree nodes in parallel, we have to prepare enough
work (by decomposing enough subproblems) before activating the GPU device computa-
tions. A DFS traversal allows us to quickly go deep in the search tree, hopefully finding
good complete solutions quickly; However, it does not allow us to infer much parallelism to
be handled by the GPU device. In contrast, a BFS traversal makes it possible to generate suf-
ficiently many B&B nodes to push into the GPU device. Hence, a DFS is always performed
in the case of a CPU where as a BFS is preferred when dealing with GPUs.

Moreover, input data containing several B&B tree nodes has to be transferred from the
CPU host core to the GPU memory, then a GPU kernel is executed on the input data, and
the outputs (the computed bounds) are copied back from the GPU to the CPU host. In
standard CPU host / GPU device execution, the previous operations are done sequentially.
In other words, while the CPU host is performing select, branch or prune operations, or even
while copying data to and from the device, the GPU is stalled. Similarly, while the eval-
uation of B&B tree nodes is running inside the GPU device, the CPU host is stalled. To
gain in parallel efficiency, the CPU host can in fact dispatch operations into the GPU device
asynchronously and continue its computation. Hence, a sequence of operations (namely:
copy data from CPU to GPU, perform parallel bounding operations at GPU device and
copy results from GPU to CPU) is wrapped into a stream which is asynchronously dispatched
to GPU device for execution. This simple idea, which is straightforwardly enabled using
CUDA programming facilities, allows us to significantly speedup the runtime of some ex-
isting approaches [Cha13] by up to 40%. Technically speaking, and although being straight-
forward, this illustrates the importance of properly mapping B&B parallelism with respect
to the enabling compute technology.

More importantly, there exist two main levels of parallelism exposed by the distributed
environment we are interested in: intra-node parallelism which refers to the shared memory
computations among CPU cores and the inter-node parallelism which refers to the (message-
passing) distributed computations. Having in mind that the difference in communication
cost between shared memory and distributed memory systems can be very substantial, the
main challenge is then to distribute workload efficiently. As discussed next, we adopt a
hybrid approach leveraging random work stealing to operate efficiently with respect to the
two above mentioned levels of parallelism.

intra-node parallelism. Let us first zoom in the case of a single shared-memory multi-
core component. We basically use asynchronous multiple work pools in our design and

2.3 contribution #2: node-heterogeneous work stealing 21

private

split pointer

releasereacquire

public

pop

push

owner thread

lo
c
k

steals

...
...

...

threads

shared memory

lo
c
k
−
f
r
e
e

L
IF

O

F
IF

O

Figure 3: Simplified view of a split work pool

we consider random work stealing for load-balancing. The straightforward approach where
each thread manages a fully sharable work pool introduces high communication overhead
as locking is required to synchronize the multiple accesses to the work pool of a given thread.
We found that the most appropriate approach is to use a work pool split into private and
public part as originally described in [Din+09]. The private region is managed by the owner
thread and the public one is exposed to other threads. These two regions constitute a single
data structure endowed with a split pointer (identifying the frontier between the two regions)
in order to avoid any data manipulation overheads. The amount of tasks of the private and
public regions are then adjusted by moving the split pointer forward or backward without
any memory copies as illustrated in Fig. 3. The private portion works like a Stack (LIFO)
and the public portion works like a Queue (FIFO). The LIFO property of the private region
allows threads to perform DFS search on the B&B tree. The FIFO property of the public
region allows threads to share coarse grain B&B subproblems that are likely to generate
more children subproblems; and thus it encourages the transfer of useful B&B workload.
The steal attempts from the public region of a given thread are handled using a standard
lock operation; but the victim thread is lock-free with respect to its private region so that it
can continue processing B&B subproblems and freely push/pop tasks.

A crucial feature is to adjust the amount of work units in the private and public region
at runtime. For this purpose, the split pointer is associated with two operations: release and
reacquire. The release operation is handled by the owner thread every time the public part
gets empty (because work was stolen so far by other threads), and the split pointer is then
moved to half of the private queue. The reacquire operation refers to the reverse operation
which we handle depending the following two rules. GPU split pointer: refers to performing
the reacquire operation in advance before the private region is completely empty. This is
only performed when a core is also hosting a GPU device. In fact, it might happen that the
private part does not allow to generate enough work to push into the GPU device. CPU split
pointer: This is with respect to any thread even those not hosting any GPU devices. In this
case, the reacquire operation is performed if and only if the private region is empty. The
split pointer is always moved to half the public region (if not empty).

To summarize, every time a thread in one single shared memory component wants to process
a B&B subproblem, it takes one from the front of its local queue which actually lies in the
private part. Every time a thread generates new subproblems, they are pushed again at the
front of the private part. When a thread runs out of work, it attempts to steal work from
the public part of another victim thread chosen uniformly at random. If the public part
of victim’s queue is not empty, then the thread is able to steal some work from the tail of
the queue after locking it, and hence it can push stolen work at the front of its own private
queue. Otherwise, no work is found and the steal operation is renewed until some work is
fetched or global termination is announced.

22 distributed and parallel branch-and-bound

inter-node parallelism using hybrid stealing. In our approach, stealing across dis-
tributed nodes is only enabled when all threads detect that there is no work available in
any pool of the shared memory component they belong to. Whenever a shared memory
component runs out of work, distributed steals are performed by solely one thread, elected
initially as the leader. A leader functions like the other threads with one main difference:
it additionally manages the distributed steals when work is no more available locally. A
distributed steal then consists in sending work requests to another remote leader chosen
uniformly at random using message passing. For the above protocol to work correctly, we
have to manage termination properly, which is done using a tree overlay topology spanning
the leaders. Since distributed steals are initiated if and only if all the threads at the leaders
are idle, it is easy to see that whenever termination is detected among leaders, the other
threads can be informed immediately using a shared memory variable maintained by every
leader. In the same way, the exchange of the best solution needed for the B&B pruning is
handled distributively using the same tree overlay.

adaptive aggregated steal granularity. To set the amount of work to be transferred,
we consider the following adaptive strategy. Every PU maintains at runtime a measure
reflecting its power, say x, which is continuously with respect to the work processed in pre-
vious iterations. We simply use the average time needed for processing a B&B subproblem.
The amount of work to be transferred is then in the proportion of x/(x+ y), where y is the
computing power maintained locally by the victim. To be more precise, for a distributed
work transfer among two leaders in different shared memory components, the power of a
compute node is measured as an aggregated value of all the threads at the shared memory
node, and the amount of work is computed with respect to all available tasks in the public
regions of the underlying local threads. A thief leader i computes the aggregated power
Xi =

∑
k xi,k (where xi,k is the computing power of thread k leaded by i) and sends a work

request to a randomly selected victim j while wrapping the value of Xi. Upon receiving
a steal request, the victim leader j also measures its aggregated power Xj =

∑
` xj,`. The

amount of work to be transferred is then in the proportion of Xi
Xi+Xj

. Technically speaking,

the victim leader j collects sj,` = tj,` · Xi
Xi+Xj

work units from the public region of every
work pool of all the local threads ` (where tj,` is the amount of work at the public region of
thread ` leaded by j). A total amount of S =

∑
` sj,` work units are then transferred to the

requesting thief i. Notice that this work-sharing strategy is essentially an adaptation of the
steal-half strategy designed in order to cope with the heterogeneous compute power of the
underlying PUs (CPUs or GPUs).

2.3.2 Selected Experimental Results.

Our approach comes with several components that we manage to experiment in a systematic
manner in order to better understand the benefits of intra-node and inter-node parallelism,
as well as, the impact of work-stealing as initially described in the extensive study provided
in [Vu14; VDM13; VD16]. Here-after, we highlight our most distinguishable findings.

experimental settings Three clusters C1, C2 and C3 of the Grid’5000 French national
experimental grid [Gri] were involved in our experiments. Cluster C1 contains 10 nodes,
each equipped with 2 CPUs of 2.26Ghz Intel Xeon processors with 4 cores per CPU. Each
node is coupled with two Tesla T10 GPUs. Each GPU contains 240 CUDA cores, a 4GB
global memory, a 16.38 KB shared memory and a warp size of 32 threads. Cluster C2 (resp.
C3) is equipped with 72 nodes (resp. 34 nodes), each one equipped with 2 CPUs of 2.27 Ghz
Intel Xeon processor with 4 cores per CPU (resp. 2 CPUs of 2.5 Ghz Intel Xeon processor
having 4 cores) and a network card Infiniband-40G. We use the standard Taillard’s Flowshop
instances in the family 20 ∗ 20. Only the bounding operation has to be executed inside the

2.3 contribution #2: node-heterogeneous work stealing 23

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 4 8 16 32 64 128 256 512

S
p

e
e

d
u

p

#CPUsâ��

2MBB

3MBB

Linear GPU normalized Speedup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 4 8 16 32 64 128 256 512

S
p

e
e

d
u

p

#CPUs

2MBB

3MBB

Linear GPU normalized Speedup

Figure 4: Speedup (GPU-normalized) of the 3MBB approach compared to 2MBB when scaling CPUs
and using 0 GPU (Left) and 4 GPUs (Right). The X-axis is in the log scale and reported
speed-ups are w.r.t. one GPU.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 16

S
p

e
e

d
u

p

#GPUs

Steal 1/2

Adaptive

Linear GPU normalized Speedup

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 128 256

S
p

e
e

d
u

p

#CPUs

Steal 1/2

Weighted Steal

Adaptive

Linear GPU normalized Speedup

Figure 5: Left: Speedup when scaling heterogenous GPUs (1/2with the maximum compute power s?,
1/4 with s?/2, 1/4 with s?/4), and using 128 heterogenous CPUs (1/2 from cluster C2, 1/2
from cluster C3). Speedup is w.r.t. the GPU with the maximum compute power s?. Right:
Speedup when scaling CPUs and using 2 (homogeneous) GPUs.

GPU devices. We consider the kernel implementation provided by [CM12; Mel+12] and use
it in a blackbox manner. For the sake of analysis, we manage to configure the compute
environment so that different GPUs could have different speeds and hence to be able to
study the impact of different compute powers of CPUs and GPUs rendering different degree
of heterogeneity. Besides, we consider to study our approach when disabling the inter-
node parallelism, that is when considering only distributed memory PUs. Accordingly, our
approach is denoted by 3MBB in the following while the variant performing only remote
(standard random) steals is denoted by 2MBB (multi-CPU multi-GPU B&B).

experimental results. As it can be seen in Fig. 4, our approach (3MBB) is able to obtain
a near-linear speedup, while continuing to scale rather efficiently compared to the 2MBB ap-
proach. This shows that taking into account both inter- and intra- node parallelism, which
is inherent to shared and distributed memory heterogeneous systems, is crucially important
for scalability. Actually, for moderate scales, the 2MBB is still a fairly good approach which
again indicates that random work stealing can be extremely efficient. However, one should
pay much attention in setting the amount of work to be transferred between the different
PUs especially when their relative compute power is significantly different. This is shown
in Fig. 5, where different heterogeneous settings are experimented with the 2MBB approach.
In particular, we can see (Fig. 5 Left) that a system containing only GPUs devices, but with
different compute powers can only deliver its best performance when the amount of work
to be stolen is set proportionally. More interestingly, when considering few (homogenous)

24 distributed and parallel branch-and-bound

GPUs devices and scaling up the number of CPUs (Fig. 5 Right) from small to large, the
overall performance of the system can even downgrade at some intermediate scales; basi-
cally because the most powerful PUs are disturbed too often by the other less powerful PUs,
hence resulting in a situation where work is traveling back and forth from these two types
of PUs. In contrast, our approach can deal with such issues in a consistent manner and al-
low us to take full benefits from every available PUs, possibly having a relatively restricted
compute power.

2.4 contribution #3: link-heterogenous b&b load
balancing

Continuing our efforts on the design of effective dynamic load balancing algorithms for
parallel B&B, our last contribution addresses the challenges behind the link-heterogeneity
of large-scale platforms. Link-heterogeneity appears as distributed resources are typically
connected through different communication networks [Kie+02; PBH99]. Previous studies,
coming from the high performance community, have mostly considered the heterogeneity
in communication speed by investigating the specific hierarchy proper to each compute en-
vironment such as multi-cluster platforms [BBB96], geographically distributed multi-cluster
multi-site grids [VKB01; Van+04; JH13], and others [GB10; Pil+12; ABB00]. Skillful de-
sign practices have been gained; however, the designed solutions and protocol variants are
essentially platform-dependent. In particular, there is still little insights [Pil+12] into how
network latency impacts fine-grained parallelism and how distributed communications have
to be optimized to face the increasing complexity of such heterogeneity in a portable and
unified manner. This makes it more complicated for designers and programmers to deal
with different types of distributed environments, which may result in ad-hoc implementa-
tions burdening the parallelization process and leading to non-efficient protocols. On the
other hand, a knowledge about the computing platform could not be available at the time
an application needs to be effectively deployed. For instance, cloud-oriented infrastructures
have the distinct characteristic of hiding the actual physical mapping of resources, and re-
cent studies [Zha+11] showed that the interconnection latencies in virtualized environments
pose the most severe issue when executing HPC workloads. In the following, we first de-
scribe a very simple platform-independent model for link-heterogeneity and some related
load-balancing algorithms. We then discuss our main contribution on the design a general
purpose link-heterogenous work stealing protocol [VD14].

2.4.1 Dynamic load balancing under Link-Heterogeneity

a simple distributed model. Generally speaking, modeling the heterogeneity of mod-
ern multi-computer distributed systems is a difficult task which is, per se, the subject of sev-
eral dedicated research investigations, e.g. [Cap+05]. We shall consider an abstract model
upon which we can easily think and build generic link-heterogenous protocols indepen-
dently of a particular target platform. In line with previous studies [BR10b], we focus
on the case of distributed nodes having identical computing powers and heterogeneous
communication resources. The set of computing nodes V are fully connected and form a
complete interconnection graph G, i.e., every node can communicate with any other node
in the system by message passing. To model the interconnection heterogeneity, we endow
the graph G with a function ω : V × V → R; which assigns for each pair of nodes i and
j a real-valued weight ωi,j informing about the cost experienced by node i when commu-
nicating with node j. The more the communication over edge (i, j) is costly, the higher is
the weight ωi,j. Every node i is assumed to know solely the local weights ωi,j connecting
it with every other nodes j 6= i; thus hiding all the architectural characteristics the physical

2.4 contribution #3: link-heterogenous b&b load balancing 25

resources. In our work, we concentrate on link heterogeneity so that the function ω shall
simply be viewed as a measure of nodes pairwise latency; that is, the network delay in a
point-to-point message exchange. The above model exposes a flat view of the distributed
environment which is to contrast to the hierarchical nature of grids, clouds, and more gen-
erally large-scale compute platforms. We argue that depending on how the function ω is
defined, this is however sufficient to reason about link-heterogeneity

Considering such a distributed model, we adopt a work-stealing based approach. It
is worth-noticing that the theoretical results on the optimality of random work stealing
(RWS) [BL99] as discussed previously in this document cannot hold unless the weights ωi,j
are pair-wise equal, e.g., a multi-cpu single cluster network-homogenous system. When
the ωi,j are non-uniform, it is not difficult to see that victim selection in work-stealing is
still the key for workload to fold efficiently. In the following, we review two state-of-the-art
HPC approaches that were specifically designed to deal with non-uniform communication
latencies.

probabilistic work stealing (pws). The general idea of PWS [QW10b] is to pick up
nearby processors in priority. It suggests to use a measure estimating the distance between
computing nodes; and to modify the classical RWS algorithm in the following way: “the
probability to choose a target computer for steal attempts is not uniform anymore but in-
stead proportional to the inverse of the distance between the thief and the target”. This
corresponds to every thief i choosing its victim with probability:

pi,j =

1
ωi,j∑
j6=i

1
ωi,j

(1)

Such a victim selection procedure enable to privilege the stealing over fast links without dis-
carding the possibility of using slow links, in an attempt to reduce the average latency
of steal requests. It also has the nice property of being inherently local and platform-
independent – it enables to capture the possibly different levels of hierarchy that might
be implied by the computing architecture without loosing in generality nor in efficiency, as
experimentally shown in [QW10b] on a hierarchical system of 8 processors. Nevertheless,
we found no in-depth investigations on large-scale more complex platforms. As the system
scale increases, it is likely that the gap between communication costs over different links
increases substantially. This might have the effect of decreasing drastically the probability
of stealing over slow links; thus eventually isolating some compute nodes and making work
stuck at few regions without being able to flow fairly and quickly in the system.

adaptive cluster-aware random stealing (acrs). This protocol is an improvement of
the so-called CRS protocol described originally in [VKB01]. As its name indicates, CRS was
designed specifically for two level hierarchical platforms; where every sub-group of nodes
running on a whole homogenous single-cluster needs to be explicitly identified, hence being
platform-dependent. Given that every node is aware of its cluster, CRS extends on RWS by
further allowing each node to steal work asynchronously from a randomly chosen remote
clusters. Hence, in CRS, an idle node steals in his own cluster by performing intra-cluster
synchronous steals as in RWS, and in parallel, it also sends one additional asynchronous
intra-cluster work request. ACRS [Van+04] extends on CRS by adapting the probability
of choosing inter-cluster victims: the probability of choosing a remote cluster is inversely
proportional to the communication cost between clusters. Although the CRS and ACRS
algorithms can be proved to provide good performance, they still suffer from some design
limitations. Basically, and besides being platform-dependent, they can lead to situations
where tasks might be transferred several times in advance for nothing, e.g., when both inter-
and intra- cluster steals are successful, this might result in a ping-pong effect where tasks
are moving back and forth between clusters.

26 distributed and parallel branch-and-bound

Algorithm 2: Link-Heterogenous Work-Stealing (LWS): distributed high level pseudo-
code for every node i ∈ V .

Data: V\i = {1, 2, · · · ,n} \ {i}: neighbors’ identifiers; T: a parameter;
1 flag asyn steal request←− false ; flag syn steal request←− false ;
2 ∀j ∈ V\i, cj ←− 1; Y ←− 0 ;
3 while termination do
4 job←− check for work from local pool ;
5 if job 6= ∅ then
6 process job ;
7 else
8 if

∑
j∈V\i

cj % T = 0 then
9 Vasyn ←− Partition Victims() ;

10 ∀j ∈ Vasyn, qj ←−
1/ωi,j∑

`∈Vasyn
1/ωi,`

;

11 ∀j ∈ V\i, rj ←−
cj∑

`∈V\i
c`

;

12 ∀j ∈ V\i, pj ←−
pi,j · rj∑

`∈V\i
pi,` · r`

;

13 if ¬ flag asyn steal request && Y > X then
14 s← a node in Vasyn selected with prob. qs ;
15 Send an asynchronous work request to s ;
16 flag asyn steal request←− true ;

17 if ¬ flag syn steal request then
18 k← a node in V\i selected with prob. pk;
19 Send a synchronous work request to k ;
20 ck ← ck + 1 ; flag syn steal request←− true ;

21 Handle Timer() ;

2.4.2 A Generic Link-heterogenous Work-Stealing Algorithm

Inspired by PWS and ACRS, we propose a new generic distributed algorithm called LWS [VD14]
and depicted by the high level code of Algorithm 2. Our algorithm is based on the key ob-
servation that increasing work locality is mandatory to counteract link-heterogeneity in dy-
namic load-balancing. The more we structure the steal probabilities over the weighted graph
G and encourage nodes to communicate over fast links; the more it is likely for the work to
flow over a set of edges forming paths of minimum weights. Nevertheless, waiting for work
over fast links might be less time efficient than directly acquiring work by stealing over slow
links. This poses a dilemma which is difficult to face because workload is unpredictable and
nodes can not assume in advance where some fresh work can be fetched deterministically.
The key ingredients of LWS are: (i) to dynamically identify a set of preferred victims, (ii)
to ’predict’ when synchronous probabilistic steals would be sufficient to make work flow
efficiently, and (iii) when further asynchronous steals would be necessary. This is achieved
locally and adaptively at each distributed node as discussed in the following.

When becoming idle, a node first starts sending synchronous steals. A thief sends syn-
chronous steals probabilistically as in PWS; but using a modified probability function to
select victims (lines 17 to 20): Every node i stores the number of synchronous work requests
cj that have been issued towards node j (lines 2 and 20). The probability for node i to choose
victim j is inversely proportional to the communication latency between i and j, and pro-
portional to the local counter cj. This probability is denoted by variable pj (line 12) which
is computed as a multiplicative aggregation of the two probability functions rj (line 11) and

2.4 contribution #3: link-heterogenous b&b load balancing 27

Procedure HandleTimer
1 if a reply msg from node ` is pending then
2 work ←− check for work by processing msg;
3 if work 6= ∅ then
4 Unpack work and push into the local pool;

5 if ` = k then
6 if work 6= ∅ then Y ←− 0 ; X←− X+ωi,k ;
7 else Y ←− Y+ωi,k ; X←− X/2 ;
8 flag syn steal request←− false ;
9 else flag asyn steal request←− false ;

pi,j (given by Eq. 1). Clearly, this strategy accentuates the locality between a thief i and its
previous victims, and aims at isolating few very preferred victims from where it is likely to
be very fast to check for work. The other victims, which are likely to be connected with
slow links, are not completely discarded. They are in fact requested for work asynchronously
to avoid loosing time waiting for steal replies. However, only a restricted set of victims is
considered as follows.

Each node separates between preferred synchronous victims and asynchronous ones us-
ing (at runtime) a partitioning procedure (Procedure Partition Victims line 9). It is ac-
tually based on the k-means clustering algorithm with k = 2 (i.e., neighbors are clustered
in two groups); and where the victims’ counters cj are used to define similarity between
the two so-obtained means. More specifically, the group of victims having the lowest coun-
ters’ values is identified as the set Vasyn (line 9) from which asynchronous probabilistic
steals should be performed (line 14). Besides, in order to avoid an unnecessary work trans-
fer, a thief starts an asynchronous steal first only after it makes a number of synchronous
steal attempts towards its preferred victims. The starting signal is handled in procedure
Handle Timer through control variables X and Y which play the role of adaptive timers.
Our idea is to distributively detect the availability of work among nearby processors by
self-adjusting a time window over which work is expected to flow synchronously. Inspired
by the additive-increase/multiplicative-decrease feedback approach for congestion avoid-
ance [CJ89], if a synchronous steal made by thief i to preferred victim k is successful then
the waiting window X is increased proportional to network latency, that is by ωi,k. Oth-
erwise, X is decreased by half and the ’elapsed time’ Y is increased by ωi,k. Only after Y
exceeds X that an asynchronous steal is sent to a victim s selected from Vasyn with probabil-
ity qs (line 14), inversely proportional to the communication costs.

To be complete, notice that we also introduce a parameter T to define the number of
synchronous steal attempts that have to be performed before control variables are updated
(line 8). We also omitted specifying in Algorithm 2 that nodes are concurrently checking
for incoming messages, as well as the technical details regarding distributed termination
detection which is handled using a tree-overlay as previously described in this document.

2.4.3 Selected Experimental Results

methodology. In order to gain insights into the impact of link heterogeneity, we adopt an
emulation-based experimental methodology which is to contrast to real or simulation-based
experiments. On the one hand, real experiments involve running a real-application on a
real experimental-platform, which is generally believed to provide high realism. However,
experimenters face many difficulties to validate their algorithms, e.g., platform dependency,
result reproducibility, etc. In the context of studying link-heterogeneity, this is even more
challenging since it is difficult to set up the network in a particular and already established
platform. On the other hand, simulation facilitates the study of complex configurations at

28 distributed and parallel branch-and-bound

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16

Number of Clusters c -- C_Env(c,p=0.5), UTS

RWS

CRS

ACRS

PWS

LWS

200

300

400

500

600

800

1000

1500

 1 2 4 8 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of Clusters c -- C_Env(c,p=0.5), B&B

RWS

CRS

ACRS

PWS

LWS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.25 0.5 0.75 1

Probability p of fast inter-node links -- VF_Env(p), UTS

RWS

PWS

LWS

200

300

400

500

600

800

1000

1500

 0 0.25 0.5 0.75 1

Probability p of fast inter-node links -- VF_Env(p), B&B

RWS

PWS

LWS

Figure 6: The obtained execution time of different competing algorithms and in different scenarios.
First column: UTS. Second column: B&B (Ta21). Top: C Env(c,p = 0.5) and Bottom
VF Env(p).

the prices of a relative loss in realism. By combining the advantages of these two experi-
mental methodologies, emulation appears to be an appropriate solution for experimenting
complex distributed configurations with real applications. We hence use Distem [Sar+13]
to emulate a broad range of complex link-heterogeneous network configurations. Generally
speaking, Distem is a distributed systems emulator for realistic environments appearing in
cloud, peer-to-peer, high performance computing or grid systems. It uses virtualization to
transform a homogeneous real-cluster into an experimental platform where nodes have dif-
ferent power and/or are linked together through a complex network topology; thus making
it an ideal tool for our study.

We would like to emphasis that real-CPU compute nodes of a real distributed test-bed
are used in our experiments; only network link latencies are artificially configured through
Distem. In fact, Distem is used on top of one cluster of the Grid’5000 experimental grid [Gri].
The cluster in use has 92 nodes, each one equipped with 2 CPU of 2.5 Ghz Intel Xeon pro-
cessor with 4 cores per cpu and a network card infiniband-20G. Besides the proposed LWS
algorithm, the other competing protocols are: RWS [BL99], PWS [QW10b], CRS [VKB01]
and ACRS [Van+04]. Every PU in our experiments is deployed with Distem on a dedicated
physical compute core initialized and configured with the corresponding communication la-
tencies. The latencies are managed internally by Distem without any additional operations
at the application level. We use the Flowshop instances as target problems in our experi-
ments, as well as the UTS benchmark as described previously in Section 2.2.3. As very brief
overview of our experimental findings are described in the following.

results on grid-like and clustered environments (c env). We here assume that
nodes are grouped into some clusters where the network latency inside and outside the
clusters defines a two-level communication hierarchy. In the first level, the latency between

2.5 conclusions and perspectives 29

nodes from the same cluster is set to a fixed value of 0.2 ms. In the second level, clusters are
assumed to be fully connected with WAN links which are further split into two sub-groups,
fast WAN links with latency in the range Rgrid

fast = {30, 40, 50} (ms); and slow WAN links

with latency in the range Rgrid
slow = {100, 150, 200} (ms). Inter-cluster pairwise node latency is

then picked uniformly at random from set Rgrid
fast with probability p and from set Rgrid

slow with
probability 1−p. In Fig. 6 (Top), we summarize the average execution time obtained for p =

1/2 where we also manage to vary the number of clusters c in the range {1, 2, 4, 8, 16} with
equal number of nodes in each cluster. We can clearly see that LWS is able to obtain the best
performance independently of the configuration and application benchmark. We also can
see that RWS is the worst performing protocol which actually shows that link-heterogeneity
can decrease performance dramatically if not handled accurately when balancing the load
of such highly irregular benchmark applications. Besides, the rather simple PWS protocol
is shown to perform consistently good with respect to the more sophisticated and platform-
dependent CRS and ACRS algorithms. As it will be shown in the next paragraphs, PWS is
however not a good option when handling a more stringe communication environment.

results on ’virtualized’ flat environments (vf env). Motivated by cloud, Inter-
net, and peer-to-peer computing systems, we consider a network setting where no fixed
hierarchy is set a priori. Instead, compute nodes are fully connected and the commu-
nication latency between each pair of nodes are randomly drawn from one of the two
ranges Rflat

fast = {1, 3, 5, 10} (ms) and Rflat
slow = {50, 100, 150, 200} (ms) following a Bernoulli-

distribution with parameter p ∈ {0, 0.25, 0.5, 0.75, 1}. Typically, the group of fast links is with
respect to different clusters of different cities of the same country, or different workstations
in distant countries of the same continent. The group of slow links represents typically inter-
continent communication links. Notice that in such an environment, CRS and ACRS can not
apply. In Fig. 6 (Bottom), we can see that LWS performs significantly better than PWS and
RWS; achieving up to an acceleration factor of two. Actually, we see a significant impact
of link latency when parameter p is in the range {0, 0.25}. This corresponds to roughly less
than 25% of links being fast. Below that percentage, LWS suffers a deterioration in execution
time for UTS while being relatively robust for B&B. Above that percentage, both LWS and
PWS stabilize quickly with LWS being better. This indicates that LWS is able to schedule
work steals efficiently by exploiting maximally the few fast links available in the network.
Actually, by a more in-depth analysis, we are able to show that LWS is distributively con-
structing a kind of probabilistic network spanner [PS89] connecting nodes. Such a graph
spanner is used to make work flow probabilistically in an efficient manner; which form both
a theoretical and applied perspective suggests that defining and constructing probabilistic
graph spanners is a good option for the purpose of dynamic load balancing. Interestingly,
we found that that the communication structure implied implicitly by LWS between the dif-
ferent nodes has the very specific properties of being sparse and contains very few nodes
with high in-degree modeling how much often a node shall steal from another one; thus
improving work locality and optimizing the global cost of synchronous work transfers.

2.5 conclusions and perspectives

summary. In this chapter, we presented our main contributions in designing parallel B&B
while addressing two major challenges: dealing with the irregularity of B&B tree search,
and dealing with the heterogeneity of the compute platform. From an optimization per-
spective, and although the designed algorithms are experimented using the permutational
flowshop problem, there are thought to be as generic as possible in order to gain insights
into the design of irregular tree-search algorithms in general. From a distributed and high
performance perspective, the designed protocols are based on relatively advanced algorith-

30 distributed and parallel branch-and-bound

mic paradigms, and technological and software considerations. As a by-product, novel
dynamic load balancing distributed protocols based on hybrid and adaptive work stealing
are derived and proved to be extremely efficient. For instance, our multi-core multi-CPU
multi-GPU B&B approach can be considered as a state-of-the-art both in terms of parallel
efficiency and distributed scalability.

The experimentation methodology that we adopted all along our research is also an im-
portant facet of our contribution. Since we are both concerned with optimization and high
performance, a fair and reproducible experimental validation process was mandatory. On
one side, we demonstrated that our approaches were competitive when compared to differ-
ent well-established techniques for load-balancing that do not depend on the B&B algorithm
that we are considering. This is for instance the motivation behind using the Unbalanced
Tree Search benchmark. On the other side, we considered a broad range of of experimental
distributed scenarios enabled either (i) through the use of a real test-bed with different con-
figurations and different scales or (ii) the use of advanced emulated environments leading
to a high degree of flexibility. This allowed us for instance to study the impact of network
link heterogeneity while proposing a new generic protocol which is able to improve the per-
formance of some state-of-the-art algorithms designed for specific compute environments.
We in fact advocate for such a methodology, not only for the sake of reproducibility and fair-
ness, but more importantly because it allows one to gain a more fundamental understanding
of the main underlying challenges, both at the algorithmic and technological levels, and to
push towards the design of innovative approaches and ideas to tackle them.

high performance .. . to be continued. From a high performance point of view, and
despite the fact that the designed protocols are proved to be extremely efficient, the per-
spectives of the work described in this chapter are numerous. Firstly, different future devel-
opments can be considered with respect to the target compute environments. There is in
fact a global race from both academia and industry in order to strengthen and to generalize
the use, the development and the manufacturing of advanced computing products, services
and technologies. For instance, virtualized environments and high performance cloud com-
puting oriented (pay-as-you-go) facilities were shown to present a relevant and plausible
alternative to classical and standard compute platforms such as in-door clusters and super-
computers. In such a setting, both the underlying networking and compute resources can
be heterogenous and they might even be dynamic and/or not available to the final users. It
is also with no-surprise that other hardwares and software components with new compute
characteristics and abilities will continue to appear and to be integrated in existing com-
pute platforms, which then implies to continue investigating how the existing techniques
and algorithms can be adapted accordingly. This also implies that the optimization com-
munity should stay updated with respect to the rapid advances made by the distributed
and high performance computing community, and should work actively in transferring and
cross-fertilizing their respective expertise.

parallel tree search. There are also a number of other interesting perspectives of our
work with respect to the design of novel parallel and distributed optimization algorithms
in general. In fact, B&B is one particular tree-search algorithm using some specific pol-
icy to decompose the search space and to traverse it. Many other search algorithms are
based on this decomposition principle and can be characterized by the dynamic and irreg-
ular nature of their workload, e.g., [FMM94; HW13; GK99]. We are also interested in other
decomposition-based algorithms where parallelism and high performance computing are
expected to play a crucial role as in parallel B&B. For instance, one contribution [DP15] (not
described in this document) deals with the benchmarking of the so-called Simultaneous Op-
timistic Optimization (SOO) algorithm [Mun14], coming from the machine learning field,
and tightly related to the DiRect (Dividing Rectangle) algorithm [JPS93]. In few words, the
SOO algorithm is a global continuous optimizer which has theoretically provable perfor-

2.5 conclusions and perspectives 31

mance for functions being locally ‘smooth’ near their global optima but where the actual
smoothness is not known. As B&B, SOO can be viewed as a divide-and-conquer tree search
algorithm where tree nodes are dynamically mapped to cells representing decreasing con-
tinuous subdomains. Cells are selected and expanded dynamically in an iterative manner
based on multi-armed bandit theory to (lower) bound the quality of already expanded cells.
Deriving parallel SOO algorithms is one very challenging and promising research question,
not only because the unpredictable workload of its computing intensive workflow, but also
because parallelism opens an entire set of novel possibilities for designing new distributed
and machine learning based cooperative policies for tree node selection.

connecting exact and heuristic search. Finally, let us note that B&B as an exact op-
timization algorithm is different in nature from the other heuristic search algorithms that
we shall consider in the rest of this document. Besides hybridization and other commonly
known techniques used to speed up the search, there are a number of interesting and in-
novative ideas that one can consider to bridge the gap between exact and heuristic search
algorithms in general. In fact, although several research works in connecting exact and
heuristic search algorithms can be found, most efforts address them independently, and
search strategies that are appropriate for one class of approaches are not directly applica-
ble when the other class is considered. Very often, the argument for switching from exact
to heuristics is only based on the instance size or computational complexity results. This
is true to some extent; however, this division discourages cross-fertilization of algorithmic
ideas developed for both methods. In deed, the idea would be rather to adopt a unified
approach which is a requirement to efficiently and effectively tackle the optimization prob-
lems encountered in today’s complex application domains. For that purpose, one interesting
research path that we would like to investigate consists in (i) viewing/modeling an exact or
heuristic procedure as exploring a possibly large neighborhood structure, e.g., partial trees
in the case of B&B, (ii) characterizing what makes the exploration of such a neighborhood
effective or not by designing high level features typically inspired by the so-called fitness
landscape analysis, and (iii) use advanced machine learning techniques to both identify/pre-
dict the features that can play a role on the performance of different search strategies, and
to adapt/configure the search accordingly before hand or at runtime. The establishment of
such a methodology would represent a substantial advance in unifying exact and heuristic
search algorithms, which we are actively working on in collaboration with our colleagues
from the University of Coimbra, Portugal, with whom a bilateral project in this line was
recently submitted.

3 D ISTR IBUTED AND ADAPT IVE
HEUR IST IC OPT IM I ZAT ION

In this chapter, we describe our main contributions on the design and analysis of high-level
autonomous heuristic search algorithms. The main focus is on the adaptive operator selec-
tion problem tackled from a distributed perspective and using machine learning inspired
techniques. The following aspects will be addressed:

• In the introductory section, we state the general motivations of our work and recall
some background about online algorithm selection, and related paradigms such as of-
fline tuning and hyperheuristics. In particular, some related work, focusing on existing
adaptive operator selection techniques and the distributed island model, are discussed
at the aim of illustrating the different challenges one has to consider.

• In Section 3.2, a distributed adaptive algorithm selection framework using both the
island model and the Master/Worker paradigm is described. A brief analysis of its be-
havior and performance from a very abstract level is highlighted, i.e., unlike the previ-
ous chapter, we focus on studying the optimization and search ability of the proposed
algorithms which is to be considered as a first step towards a practical deployment.

• In Section 3.3, a new model, based on Fitness Cloud, and allowing a more fundamental
analysis of the effectiveness of the considered adaptive algorithm selection techniques
is described. Some examples, to be considered as representative adversary optimiza-
tion scenarios, are described and analyzed briefly in order to better illustrate what
makes an adaptive selection technique relevant or not, especially when compared to a
static offline strategy.
This piece of research was mostly conducted within the PhD Thesis of Christopher
Jankee under the supervision of my colleagues from the Univ. Littoral Côte d’Opale,
Sébastien Verel and Cyril Fonlupt, .

• In Section 3.4, we complement the contributions presented in the previous section by
discussing very briefly other tightly related research issues that we had the opportu-
nity to study. More precisely, we highlight our work on the design of a high-level
neighborhood tree search hyperheuristic, and our recent investigation on the develop-
ment of a landscape-aware methodology for offline algorithm configuration.

related publications, projects and collaborators.

collaborators. H. Aguirre, H. Derbel, C. Fonlupt, C. Jankee (PhD Supervision), A.
Liefooghe, K. Tanaka, S. Verel

publications. [Jan17; Lie+17b; Jan+16; Jan+15; Jan+17b; Jan+17a; DV11; DD12; Yah+15]

projects. S3-BBO Ayame/Inria associate team (2015-2017), JSPS-MEXT bilateral, France
/ Japan, project (2013-2016). (See Appendix A.3)

33

http://francejapan.gforge.inria.fr/doku.php?id=associateteam
http://francejapan.gforge.inria.fr/doku.php
http://francejapan.gforge.inria.fr/doku.php

34 distributed and adaptive heuristic optimization

3.1 introduction and background

3.1.1 General context, motivations and goals

General Context

blackbox optimization and metaheuristics. In this chapter, we consider the solving
of blackbox optimization problems using general purpose search heuristics. Blackbox op-
timization refers to the situation where no problem-specific properties nor hypothesis can
be known beforehand; and thus nothing but the fitness/objective values associated to a
given (candidate) solution can be used by the optimization process. Solving a blackbox
optimization problems consists in exploring a number of solutions by only evaluating their
fitness values. Metaheuristics are general purpose heuristics that are designed to operate
independently of a given particular problem, which makes them well suited to a blackbox
optimization scenario. Among the large panorama of existing metaheuristics, we can dis-
tinguish those that handle a single solution at once in each iteration, such as, iterated local
search (ILS) [LMS10], variable neighborhood search (VNS) [MH97], simulated annealing
(SA) [KGV83], tabu search (TS) [Glo86], etc; and those that are based on a population (or a
set) of solutions that are evolved at each iteration, such as genetic algorithms (GA) [Hol75;
Gol89] and genetic programming (GP) [Koz90], and other (bio-inspired) and evolutionary al-
gorithms (EA) such as ant-colony optimization (ACO) [Dor92], particle swarm optimization
(PSO) [KE95] and model based heuristics such as Evolution Strategy [Rec73] and estimation
of distribution algorithms (EDA) [LL01], to cite a few. Reviewing in details the design prin-
ciples of such metaheuristics is out-of the scope of this document, and the reader is referred
to existing surveys and books on the subject [GK06; Dre+06; Tal09; Jon06].

metaheuristics working principle and limitations. A metaheuristic can be viewed
as an iterative search process, where in each iteration a number of solutions are newly gen-
erated using some operators that does not depend in general on the optimization problem
it-self; but only, on the numerical representation of solutions. For example, a mutation/per-
turbation operator could generate a new solution by changing the value of some variables
in a given solution to some other values, randomly or possibly following some probability
distribution. In a permutation-based solution, a neighborhood operator can switch or shift
some values in the permutation. In a binary solution, a crossover operator can be used to
generate new solutions from some existing solutions by properly mixing their variable val-
ues, etc. There exist several kinds of operators that can be embedded within a metaheuristic
in order to iteratively generate and explore new solutions. The fitness values of the solutions
explored so-far, in the previous iterations, is then the only information that is used to guide
the search. This is actually where different parameters and basic algorithmic components
can eventually be embedded, e.g., different types of operators for solutions’ generation, dif-
ferent types of acceptance criteria to define the search trajectory, different types of search
memory, exploration rate, explicit diversity rate in a population or different mating selection
and replacement policies, etc. Given the large spectrum of available metaheuristics and the
corresponding components and parameters, it becomes more and more difficult, even for ex-
pert and well-trained algorithm designers, to identify the best possible choice when tackling
a given instance of the same problem or when considering different problems coming from
different application domains. We argue that this is actually one of the main limitations
towards a more generalized use of metaheuristics and the related search paradigms.

General Motivations

algorithm configuration. In this chapter, we are concerned with the accurate configu-
ration of general purpose search heuristics, with the main objective of gaining in generality
and designing more powerful automated and autonomous search algorithms [HMS12]. It

3.1 introduction and background 35

is in fact well known that the performance of a heuristic search process, and any algorithm
in general, heavily depends on the accurate choice of its algorithmic components and their
respective parameters. Besides, from a theoretical point of view, the No Free Lunch theo-
rem [WM97] demonstrates that no algorithm outperforms another one in average on the
whole set of combinatorial optimization problems; hence, leading to the difficult challenge
of designing an effective (autonomous) selection mechanism that is able to decide which
algorithm to choose, or at least which parameters’ values to set for a particular algorithm,
and with respect to a given problem or instance. Notice that parameter setting can also be
viewed as an algorithm selection problem when the number of parameters or components of
the algorithm is a finite set. In this context, Rice [Ric76] was the first to propose an algorithm
selection methodology based on feature extraction and on a per-instance selection principle.
Such a methodology was extended in other studies [Smi09; ME14; Muñ+15]. For example,
the work presented in [ME14] supports that by using the problem features, the performance
of an algorithm can be predicted using some machine learning techniques and without ef-
fectively running the algorithm. With the increasing number of available algorithms, and
the number of the possible components, the general problem of algorithm selection and
configuration has become more and more popular, and is regularly tackled using different
methodologies and techniques [Kot14; HMS12]. Instead of developing a new optimization
algorithm, the design of a highly competitive algorithm turns out to the identification of the
most suitable one among a portfolio of exiting algorithms or alternatively the most suitable
combination/setting of basic components/parameters. This is in our opinion one of the
major challenges that the optimization community has to face, and which constitutes the
first motivation of our work.

distributed optimization. On the other hand, the ever-increasing demand in comput-
ing performance as well as the advent of new compute facilities and the establishment of
robust and large scale massively parallel platforms, open tremendous research opportuni-
ties for pushing forward the development and uptake of metaheuristics and evolutionary
optimization algorithms. In this context, a number of parallel and distributed optimization
models and algorithms can be additionally considered. Consequently, further (cooperative)
search strategies can be designed and additional algorithmic components and parameters
can hence be integrated to optimally fit a distributed/parallel compute environment. This
means that further design choices are available, more parameters are to be set, and thus, the
process of deciding what is an optimal fit becomes even more complex and more challeng-
ing. This constitutes our second main motivation.

For completeness, let us recall that a relatively large number of studies exist on the
design of parallel and distributed metaheuristics and optimization algorithms in general,
e.g., [Sud15; Alb05; Tal09]. Although reviewing all the literature is out-of-the-scope of this
document, let us comment that two main classes of approaches are usually distinguished:
(i) those exposing low level parallelism with the main goal of providing a substantial parallel
speed-up when solving an optimization problem without impacting the search process, typ-
ically when the evaluation function is costly, and (ii) those exposing high-level parallelism
typically referring to the situation where multiple, possibly different, search processes are
executed in cooperative and parallel manner. To some extent, our work can also be posi-
tioned in the second class of approaches with one main distinguishable feature. Our focus
is on the design of algorithm selection mechanisms that are used to guide the distributed
search by deciding adaptively on the accurate actions to be executed distributively. More-
over, our approach is of fundamental interest, in the sense, that we do not target a specific
problem nor we consider specific compute environments. We rather attempt to gain a better
understanding of the benefits of adaptive and autonomous search algorithms, by focusing
on the design and analysis of novel distributed strategies. In particular, and in order to focus
more deeply on the pure algorithmic and optimization challenges of setting a distributed
approach to adaptive algorithm selection, we leave behind the scene the characteristics of

36 distributed and adaptive heuristic optimization

the intended compute platforms and the corresponding parallel and distributed implemen-
tation issues. We instead consider an abstract model where it is simply assumed that some
computing nodes are available and can communicate using some abstract communication
medium, typically by message passing.

General Goals

In the following paragraphs, we first recall a very general, and widely adopted, taxonomy
for algorithm configuration and highlight our interests in the so-called on-line setting. We
then state more explicitly the general challenges behind adopting a distributed approach
and the target optimization scenario, namely adaptive operator selection.

online and offline selection. Two tightly related methodologies are commonly adopted
for algorithm selection and parameter setting [HMS12; Eib+07; LLM07; Kra10]. In the offline
setting, also called tuning, the algorithm is first selected and finely tuned, and only then it is
executed from scratch on the target and unseen problem instance. Some methods use per-
formance prediction methods based on problem features such as in SATzilla [Xu+08], and
some others are based on searching in the space of possible algorithms or components or
parameters, such as racing techniques [Bir+02; Bir09]. In the online setting, also called control,
algorithm configuration is handled simultaneously with the optimization process, e.g., [Di
+15; Fia+10a; BP14]). Different classes of approaches can be identified. Those using some
deterministic policy to typically pre-schedule before-hand how the parameters will evolve all
along the search process. Those that are based on an adaptive policy, that defines the set of
components to be used according to some information acquired during the search. Those
called self-adaptive that typically attach the parameters to the solutions being optimized and
make them evolve as being intrinsically part of the optimization process. In this context, we
are interested in adaptive selection approaches that consists in the online selection, among
a number of alternatives in a portfolio given beforehand, of an appropriate choice to con-
sider next in the search according to the current state of the optimization process. In other
words, this consists in getting a continuous feedback from the optimization algorithm being
executed, and deciding accordingly on the next choice. Generally speaking, this can also be
viewed as an optimization process which follows the multi-armed bandit [KJ87] framework
where the arms are the available alternatives (i.e., algorithms/components in the portfolio).
The adaptive selection is then performed as follows. A reward is computed according to
the performance observed in previous iterations. Then, a reinforcement machine learning is
applied in order to decide which alternative to consider in the current iteration, typically ac-
cording to some exploration-exploitation rules. Following this framework, several existing
machine learning techniques have been used and studied in the past, e.g., [GLS16; Di +15;
Fia+10a; DaC+08]. In the reminder, we mainly target an online setting and we essentially
adopt a multi-armed bandit oriented methodology, although some of our recent contribu-
tions consider the offline setting as it will be highlighted in the very end of this chapter.

distributed vs. sequential selection. On the other hand, we argue that the design
and analysis of online selection strategies require a special attention when considering a dis-
tributed or parallel compute environment. In fact, specific distributed coordination and/or
cooperation mechanisms between the set of available resources are required in order to
achieve optimal performances, which raises a number of specific issues and challenges.
For instance, in contrast to a sequential compute setting, one can benefit from the set of
performances, and subsequently a set of rewards, observed by several processes running
concurrently and not only a single one, which is a fundamental difference with a sequential
design. One can adopt either a homogenous policy in which all distributed processes exe-
cute the same algorithm at each iteration or instead a heterogeneous policy where the pro-
cesses are instructed to execute different algorithms; thus, allowing to pre-schedule different
exploration-exploitation trade-offs. Additionally, it is not clear what distributed architecture

3.1 introduction and background 37

should be adopted, e.g., fully decentralized framework, Master/Worker, hierarchical, which
then can imply different selection policies. Addressing such issues is precisely the main
objective of the work described in this chapter.

optimization scenario and benchmarking. The previously discussed aspects cannot
be considered independently of the problem being tackled. In fact, although algorithm selec-
tion techniques aim at gaining in generality, their performance can still be impacted by the
optimization scenario (e.g., the number of available algorithms, the scale of the distributed
system, the type of components to choose, etc) and the characteristics of the considered
problem instance. Firstly, most of our work falls in the framework of adaptive operator
selection [GLS16; GL12; Fia+10a; Fia+09; DaC+08], where a portfolio containing combina-
torial or evolutionary operators is assumed. We target the relatively simple, yet challenging,
optimization setting where a number of (basic) operators are available and can be used
during the search process. A noticeable feature of our work is however the nature of the
distributed setting we are considering. Secondly, we mostly focus on common and widely
used abstract benchmark functions, and we leave behind the scene the possible application
to other more sophisticated or application oriented problems. In particular, we propose a
new set of abstract benchmark instances, to be considered as a separate contribution in the
sense that they aim to enable a more fundamental understanding of the expected behavior
of the considered selection strategies.

In the following, and before moving to the description of our contributions, we shall
first provide an overview of related work, by only focusing on the principled studies and
approaches that are very tightly and directly related to our work, as well as on some exiting
optimization benchmark problems. Our goal is not to cover the huge body of literature on
algorithm selection and related aspects such as portfolio design, autonomous search, etc;
but simply to provide the reader with the necessary background to better appreciate and
position the main contributions discussed afterward in this chapter.

3.1.2 Adaptive Operator Selection: A focused Literature Overview

reinforcement learning inspired techniques. A number of reinforcement machine
learning techniques have been proposed for the online (adaptive) selection of operators.
Back to the early works of Grefenstette [Gre86], one standard technique consists in pre-
dicting the performance of a set of operators using a simple linear regression, which then
allows to select the best operator according to the prediction given by the regression. Recent
works embeds selection into a multi-armed bandit framework dealing more explicitly with
the tradeoff between the exploitation of the best so far identified algorithm, and the explo-
ration of the remaining potentially under-estimated algorithms. The portfolio of available
alternatives is then viewed as a set of arms, each one corresponding to one alternative that
can be used at any iteration of the search. The optimization process has then to decide on
the arm to be activated at each iteration. Once an arm is executed, a reward relating to the
observed performance is computed, which constitutes the feedback that the optimization
process gets at each iteration. The main difficulty is that the probability distribution of the
reward with respect to an arm cannot be known in advance, and one has to make a guess
on the best arm using a restricted number of samples. This corresponds to the situation
where different (stochastic) evolutionary operator are available, but have an unknown and
variable behavior when executed at some stage of the search. The main challenge is then to
be able to define an accurate reward function and to decide online on the best arm or best
sequence of arms to execute, knowing than the decision of executing an arm has typically
the effect of modifying the current state of the search, e.g., the current solution, and hence
to (unknown) current probability distribution of arms’ rewards.

38 distributed and adaptive heuristic optimization

In this context, a simple selection strategy is the so-called ε-greedy strategy which consists
in selecting the algorithm with the best estimated performance at rate (1− ε), and a random
one at rate ε. More advanced strategies are however available as sketched in the following.
The Upper Confidence Bound (UCB) strategy [ACF02] is a state-of-the-art framework in
reinforcement machine learning which consists in estimating the upper confidence bound
of the expected reward of each arm by µ̂i+C · ei, where µ̂i is the estimated (empirical) mean
reward of arm i, ei is the standard error of the prediction and C a parameter allowing to tune
the exploitation/exploration trade-off. It then selects the algorithms with the higher bound
(for maximization problem). In our setting, where the arms (i.e., the algorithm/operator to
select) could be neither independent nor stationary, the estimation of the expected reward
can be refined using a sliding window where only theW previous performance observations
are considered [Fia+10a]. The Adaptive Pursuit (AP) strategy [Thi05] is another technique
using an exponential recency weighted average to estimate the expected reward, and based
on a parameter α to tune the adaptation rate of the estimation. This is used to define
the probability of selecting every algorithm from the portfolio. At each iteration, these
probability values are updated according to a learning rate β, which basically allows to
progressively increase the selection probability for the best algorithm, and to decrease it for
the other ones.

Due to their generality, the before-mentioned techniques are very often used in different
optimization and application contexts and adapted accordingly, e.g., [Wu+16; BP14; Li+02;
VHS13; VMS12]. However, one key aspect for a successful application is the estimation of
the expected quality of an algorithm according to the rewards computed at the previous
iterations. Some authors showed that the maximum reward over a sliding window can
improve the performance compared to the mean on some combinatorial problems [Fia+10a;
Can+13]. In genetic algorithms, the reward can be computed not only based on the quality
but also on the diversity of the population [Mat+09]. In other studies [Fia+10b], a rank based
approach is adopted in order to avoid performance normalization issues. The choice of an
accurate reward is in fact crucially important since it guides the whole selection process.

hyperheuristics. Another principled and very tightly related methodology to algorithm
selection is based on the so-called Hyperheuristic search paradigm. A hyperheuristic [Bur+10]
can be considered as a high-level search algorithm operating in the heuristic space, and
implying a (hyper-)search strategy that can autonomously combine different available low-
level heuristics considered as building blocks. Hyperheuristics can be classified from differ-
ent orthogonal perspectives [Bur+10; Bur+13], e.g., whether their design involves learning or
not, whether their are online or offline, etc. In particular, unlike generative hyperheuristics
where one aims at generating new and more complex heuristics, Selective hyperheuristics
allows one to select and to combine different low-levels heuristics adaptively during the
search. In [CKS01; ÖBK08] for instance, low-level heuristics (e.g., operators/neighborhoods)
are chosen either greedily or probabilistically, based on scoring and ranking functions that
take into account several criteria such as the time it takes to run a low-level heuristic, its
observed performance, etc. Other strategies inspired by the way metaheuristics operate can
also be found in the literature, see e.g., [CC08].

distributed (island-based) techniques. In the distributed setting, relatively few stud-
ies can be found on the design of adaptive selection approaches compared to the sequential
setting. Nonetheless, the subject is not new and has been addressed implicitly or explicitly
in the past, e.g., [Can98; Can+12; Bia+09; RGK05; DB13; PDB12]. It is actually the case of
the so-called Island model which was extensively studied in the past [Tom05]. The island
model is considered as inherently distributed and can be viewed as a suitable model to
tackle the algorithm selection problem from a fully decentralized perspective. In its very
basic form, different entities called islands are organized according to some graph structure,
where each island is a node in the graph and two neighboring islands, linked by an edge,

3.1 introduction and background 39

can directly cooperate together. From a distributed or parallel perspective, an island can for
instance be associated to a distributed process and the topology defining the neighboring
islands can be viewed as the communication pattern underlying the distributed communi-
cation protocol. There are several ways to design an optimization algorithm following the
island model; depending on the size (granularity) of the population handled at each island,
the algorithm executed locally at each island, and the cooperation strategy such as the mi-
gration policy which defines how solutions are exchanged between neighboring islands. In
particular, in the so-called heterogeneous island model, every island can execute a different
algorithm than the other islands in the system, which makes it very tightly related to the
design of distributed algorithm selection strategies. There are basically two classes of pa-
rameters that can be controlled in a (distributed) island model: the parameters related to
the migration policy, and the parameters that define the algorithm to execute at each node.
For instance, in [Sor+15; Can+12; GL12; GL11], a heterogeneous island model where each
island can apply its own evolutionary operator and where the migration policy is controlled
online is considered. More specifically, a probability matrix is maintained online in order to
control the migration rate between islands. According to the performance of each island in
producing promising solutions when applying the corresponding operator, the rates are in
fact updated using a reinforcement learning principle. In [Fer+14], an approach to control
the migration policy is also proposed when the population is spatially structured following
a 2d-grid by moving solution either randomly or according to solutions’ similarity. Several
other investigations can actually be found in order to demonstrate the benefits of controlling
the algorithms being executed by each island, e.g., [GF11; TF13; Gar+14; TC02]. It is in gen-
eral shown that using a collection of different parameters, algorithms, etc, distributed over
the collection of islands, provides better performance compared to a uniform static setting.

In our work, we consider to explicitly leverage the existing (machine learning based) se-
quential techniques sketched previously, to the distributed setting. We first consider the
island model as a suitable tool to design the target distributed adaptive algorithm selection
strategies. We also consider a more simple model based on a Master/Worker architecture.
The Master/Worker (M/W) architecture has been extensively considered in the past due to
its simplicity and effectiveness. However, we are not aware of in-depth studies addressing
the design principles underlying a M/W adaptive algorithm selection approach. Both for
the island-based and the M/W approaches, we empirically analyze the behavior of differ-
ent selection strategies by adopting a simulation based methodology. As mentioned before,
taking into account the implementation and technical issues arising when effectively imple-
menting a distributed framework in a real compute environment are left as future work. In
this respect, our work is to be viewed both as an attempt to fill the gap between distributed
algorithm selection and the well-established existing sequential approaches, as well as a first
step towards their effective deployment.

3.1.3 Benchmarking Operator Selection

Generally speaking, the understanding of the performance and dynamics of an algorithm
selection strategy is a difficult issue, which motivated the establishment of a number bench-
mark functions and libraries [Bis+16]. Existing work from the literature considered different
case studies ranging from simple abstract problems, to more concrete complex problems,
possibly coming from different domains and applications, e.g., SAT, constraints satisfaction,
scheduling, planning, bin packing. In the context of the operator selection problem, we follow
the existing literature, and we there-by focus on simple combinatorial benchmark functions
and evolutionary algorithms, constituting a simplification of what could occur in practice
when solving a complex optimization problem. This is in an attempt to gain insights into
the fundamental behavior of the considered distributed and adaptive algorithm selection
techniques.

40 distributed and adaptive heuristic optimization

Firstly, we focus on a basic optimization setting (e.g., [DaC+08; Fia+09]) where an algo-
rithm from the portfolio consists in the application of one iteration of a standard (1 + λ)

evolutionary algorithm. In other words, given a current solution, λ new solutions (or off-
springs, neighbors) are generated using an operator selected before-hand from the portfolio,
and only the best solution (having the best fitness value) among the (1+ λ) ones survives
in the next iterations. This is to be considered as a basic building-block that can be used in
more sophisticated optimization algorithms.

Secondly, we focus on different abstract and tunable benchmark problems. This is a very
critical aspect since the performance a given approach can only be understood in light of the
properties of the considered problem instances. Two classes of benchmarks can be consid-
ered. In the first class, standard (blackbox) optimization problems are used. This however
can only highlight the search behavior according to the properties of those considered prob-
lems. In the second class [GLS16; Thi05; Fia+10a], the problem and the stochastic operators
are abstracted and the performance of each available operator is then defined according
to the current state of the search. This has the advantage of studying important features
such as the number of operators, the frequency of change of the best operators, the quality
difference between operators, etc. In the following paragraphs, we recall the benchmarks
that we pick from the first class, namely, the so-called OneMax and NK-landscapes. The
benchmarks used from the second class are based on the so-called Fitness Cloud Model and
are described later in this chapter as a separate contribution.

onemax. The OneMax problem, the ”drosophila” of evolutionary computation, was exten-
sively used within the framework of adaptive operator selection [Fia+09]. Besides, different
analytic studies on the behavior of standard evolutionary operators were conducted using
the OneMax problem [Chi+15; DD14; GL11]. It is thus well suited to understand the per-
formance and the dynamics of the considered adaptive approaches. OneMax is a unimodal
problem defined on binary strings of size N. The fitness is simply the number of 1s in the
bit-string, i.e., given a bit-string x ∈ {0, 1}N, f(x) =

∑N
i=1 xi. The optimum is obviously

trivial and its fitness is N.

Following the literature, we consider a portfolio composed of standard c-bit-flip and k-
bit mutation operators. The c-bit-flip operator flips each bit with probability c/N where
c is a parameter. The k-bit operator flips exactly k different bits chosen at random. In
order to give an intuitive idea about the behavior of such operators, we depict in Fig. 7 the
expected improvement in the fitness value (y-axis) when applying one iteration of a (1+ λ)-
EA using different operators on a solution of a given fitness (x-axis) [GL11]. In the top left
subfigure, we can see that 1-bit-flip allows to obtain a slightly better improvement over the
1-bit operator, which is due to the fact that the 1-bit-flip is able to mutate more than one bit
with a non-zero probability. Despite that the difference is small, it could significantly impact
performance when one has the possibility to choose among the two operators all along the
search. In the top right subfigure, the difference in the fitness improvement obtained by
4 operators suggest that there is an optimal sequence in which the operators have to be
selected and applied successively from the portfolio in order to reach a high quality solution
in minimum time. In the bottom subfigures, we can also see the impact of parameter λ
on the fitness improvements. For instance, this should give the reader a hint on how a
selection strategy can perform when several (1+ λ)-EAs are executed by a variable number
of distributed processes.

nk-landscapes. The family of NK-landscapes constitutes a more sophisticated model of
multimodal problems [Kau93] that are proved to be NP-complete. As for the OneMax, the
search space is binary strings of size N: {0, 1}N. N refers to the problem size, and K to

3.1 introduction and background 41

0 200 400 600 800 1000
fitness

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

kFlip = 1
FlipBitc = 1

500 600 700 800 900 1000
fitness

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

flipBit c = 1
5 bits
3 bits
1 bits

(a) (b)

0 200 400 600 800 1000
Fitness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

c=1 λ=1

c=1 λ=2

c=1 λ=4

c=1 λ=8

c=1 λ=16

c=1 λ=32

0 200 400 600 800 1000
Fitness

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

k=1 λ=1

k=1 λ=2

k=1 λ=4

k=1 λ=8

k=1 λ=16

k=1 λ=32

(c) (d)

Figure 7: Expected improvement for the OneMax problem [GL11] for a bit-string of size N = 1000. (a)
relative performance of the 1-bit-flip and the 1-bit operators with λ = 1. (b) relative perfor-
mance of the 1-bit-flip, 1-bit, 3-bit and 5-bit operators with λ = 1. (c) relative performance
of the 1-bit-flip operator using different values of λ. (d) relative performance of the 1-bit
operator using different values of λ.

the number of bits that influence a particular position from the bit-string, i.e., the epistatic
interactions. The objective function f : {0, 1}N → [0, 1) to be maximized is defined as follows.

f(x) =
1

N

N∑
i=1

fi(xi, xi1 , . . . , xiK)

where fi : {0, 1}K+1 → [0, 1) defines the component function associated with each bit xi. By
increasing the number of epistatic interactions K from 0 to (N− 1), NK-landscapes can be
gradually tuned from smooth to rugged and highly non-linear. The position of these inter-
actions are set at random and the component values are uniformly distributed in the range
[0, 1). Of course, the interaction between variable is not available in a blackbox optimization
scenario. Our interest in the NK-landscapes stems from the fact that different bit-flip muta-
tion rates are believed to provide different performances. To illustrate this claim, we show
in Fig. 8, the empirical probability to improve a solution with a given fitness and using the
c-bit-flip for different values of parameter c. We can clearly see that the operator which
is likely to provide an improvement depends strongly of the attained fitness level, which
makes NK-landscapes both challenging to solve by a blackbox optimizer and interesting to
study and analyze.

42 distributed and adaptive heuristic optimization

0.0

0.2

0.4

0.6

0.50 0.55 0.60 0.65 0.70 0.75
fitness

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

c

1

2

4

8

16

Figure 8: Empirical improvement probabilities vs. fitness level for a NK-landscape with K = 4 and
different c-bit-flip operators c ∈ {1, 2, 4, 8, 16}.

Algorithm 3: Example of a distributed oracle strategy

1 Generate a random solution on each node Ni with i ∈ {1, · · · , 4};
2 Run M3 in parallel on each Ni with i ∈ {1, · · · , 4};
3 Exchange best found solution;
4 Run M1 in parallel on each Ni with i ∈ {1, 2};
5 Run M2 in parallel on each Ni with i ∈ {3, 4};
6 Exchange best found solution;
7 Run M4 in parallel on each Ni with i ∈ {1, · · · , 4};
8 Return best found solution;

3.2 contribution #1: distributed adaptive operator
selection

The first contribution described in this chapter is on the design and analysis of a distributed
framework for adaptive algorithm selection. Let us assume we are given a set of com-
putational resources that can for instance be distributed over a network and exchanging
messages, or some parallel processors having some shared memory to communicate. As
an illustration, let us consider the following simple artificial example. Assume we have 4
distributed nodes {N1, . . . ,N4} organized as depicted in Fig 9 and a portfolio of 4 meta-
heuristics {M1, . . . ,M4}. Our goal is to design a distributed strategy that decides how to
distribute the execution of these metaheuristics over the available nodes and what kind of
information should be exchanged by computational nodes to obtain the best possible solu-
tion in least time. To make it simple, assume that the best (oracle) strategy is actually given
by the template of Algorithm 3 and illustrated in Fig. 9, i.e., any other distributed strategy
cannot outperform Algorithm 3. The question we are trying to answer is then: How can we
design a distributed strategy which is competitive compared to the (unknown) distributed
oracle? Finding such a strategy is obviously a difficult task. In fact, finding the best mapping
of our metaheuristics into the distributed environment is in itself an optimization problem
which could be even harder than the initial optimization problem we are trying to solve.

In this context, we propose a distributed adaptive metaheuristic selection (DAMS) frame-
work [DV11; Jan17] allowing us to leverage previous sequential techniques. In the remain-
der, we assume that the distributed resources can communicate together following an island
model, while abstracting away the physical communication layer and the underlying tech-
nical implementation issues. We first discuss the DAMS framework and a simple adaptive
selection strategy called SBM. Alternative independent and collective selection strategies

3.2 contribution #1: distributed adaptive operator selection 43

M3

M3 M3

M3

M2 M4M1

M4 M4

M4

M1 M2

Figure 9: Illustration of the distributed oracle strategy of algorithm 3.

based on classical multi-arms bandits are then discussed, and a simple Master/Worker al-
ternative model is also described [Jan+17b; Jan+17a; Jan17].

3.2.1 DAMS and Select-Best-and-Mutate strategy

The DAMS framework, initially presented in [DV11] and then extended in [Jan+17b; Jan+17a;
Jan+15; Jan17], is basically a heterogeneous island-based framework that allows computa-
tional nodes to coordinate their actions distributively in an online fashion. In Algorithm 4,
we sketch the high-level code to be executed in parallel by every distributed node. At each
iteration, or distributed round, a different metaheuristic (or algorithm or operator) from a
portfolio can be applied to the subpopulation maintained locally at every node, and the
metaheuristic could be different from one node to another. We distinguish three basic levels
that can be controlled during one round of a DAMS algorithm: the distributed, the selection
and the atomic levels. At the distributed level, information between neighboring nodes are
exchanged, migration of solutions is achieved, and the reward with respect to the previously
executed metaheuristics are eventually communicated. At the metaheuristic selection level,
which is our main focus, one metaheuristic is selected from the portfolio according to the
previously collected rewards. At the last level, the selected metaheuristic is applied and a
corresponding (local) reward is computed.

A simple policy that we can adopt at the algorithm selection level is the so-called Select-
Best-and-Mutate (SBM) strategy [DV11]. With probability 1− pmut, SBM selects the meta-
heuristic having the best reward in the last round among all neighbors (including the cur-
rent node), and with a mutation rate pmut, SBM selects one random metaheuristic from the
portfolio while excluding the best (lastly rewarded) one. In others words, SBM has an inten-
sification component that selects the best rewarded metaheuristics among the ones selected
at the previous round by the neighboring nodes, and a diversification component that al-
lows to explore new randomly selected metaheuristics. In SBM, the reward is the maximum
reward observed in the last round in the actual node and its neighbors. In other words,
the maximum reward is estimated using solely the neighboring nodes and no long-term
memory is used to store the rewards from the previous rounds.

As an illustration, we show in Fig. 10 the behavior of the SBM strategy using a fully
connected island model. For simplicity only two operators (using the OneMax problem)
are considered, namely 1-bit and 4-bits. In the right subfigure, we consider the expected
improvement of the best solution obtained with SBM (circled gray points), compared to
the one obtained when applying either the 1-bit operator (triangle red points) or the 4-bit
operator (square green points) all over the nodes. We can see that the performance of the
two operators (in terms of the expected fitness improvement, right subfigure) decreases
when the global optimum is approached. More importantly, depending on the actual value
of the current best in the system, one should alternatively select either the 1-bit or the 4-bit
operator, and the SBM strategy seems to correctly handle this issue.

3.2.2 Independent and Collective Machine Learning based Strategies

The (maximum) reward considered at the selection level of SBM has a collective nature since
every distributed node needs to know the local rewards of neighbors computed at the low

44 distributed and adaptive heuristic optimization

Algorithm 4: DAMS algorithm for each computation node
Inputs: A portfolio of metaheuristics M

1 P ← Init Pop() M← Init Meta(M); r← Init Reward() ;
2 repeat
3 /∗ Distributed Level: migration and information sharing ∗/
4 Send Msg(r,M,P) to each neighbor ;
5 P← {} ; S← {} ;
6 for each neighbor w do
7 Receive Msg(r ′,M ′,P ′) from w ;
8 P← P∪ {P ′} ;
9 S← S∪ {(r ′,M ′)} ;

10 P ← Update Population(P,P) ;
11 /∗ Metaheuristic Selection Level ∗/
12 M← Select Meta(M, (r,M), S);
13 /∗ Atomic Low Level: apply metaheuristic and compute reward ∗/
14 Pnew ← Apply(M,P) ;
15 r ← Reward(P,Pnew) ;
16 P ← Pnew ;
17 until Stopping condition is satisfied;

100 252 300

500 655 700

800 900

Round
Fitness

904
1000

Round
Fitness

403
900

Round
Fitness

298
800

Round
Fitness

127
500

Round
Fitness

198
655

Round
Fitness

219
700

Round
Fitness

24
100

Round
Fitness

74
300

Round
Fitness

62
252

100 252 300 500 655 700 800 900 1000

(a) (b)

Figure 10: Illustration of a run of the DAMS-SBM strategy for OneMax (N = 1000) and a portfolio of
2 operators.

level after executing the previously selected metaheuristics. One could however remark
that instead of selecting the best rewarded metaheuristic from neighboring nodes, each dis-
tributed node can independently select the best rewarded metaheuristic, eventually using
solely a sliding window of size W, as usually done in sequential machine learning based
strategies. Thus, by considering that the rewards are computed and maintained in an in-
dependent manner by every distributed node, several other techniques from the literature
can actually be used in a rather straightforward manner. For example, a variation of SBM
can be the well-known ε-greedy strategy in multi-armed bandits, which selects the arm (al-
gorithm) with the highest estimated expectation with rate 1− ε, and uniformly at random
an arm with rate ε. Accordingly, the DAMS framework can be enriched with other more

3.2 contribution #1: distributed adaptive operator selection 45

sophisticated (independent and collective) approaches based on Adaptive Pursuit (AP) and
Upper Confidence Bound (UCB) algorithms, as briefly discussed in the following.

independent selection strategies. Using AP, a metaheuristic i is selected by dis-
tributed node j, at each distributed round t, with probability pi,j,t, and the probabilities
are updated according to the reward computed locally at the low atomic level of node j.
Technically speaking, AP is divided into three parts: the update of the reward estimation
q̂i,t,j of the metaheuristics, the update of the probabilities pi,j,t, and the selection of the
metaheuristic. The following equation defines how the reward of a metaheuristic i can be
updated by node j, i.e., variable ri,j,t is the reward at round t of the metaheuristic i with
respect to node j, and parameter α ∈ (0, 1] is the adaptation rate.

q̂i,j,t+1 = q̂i,j,t +α . (ri,j,t − q̂i,j,t)

The update of the probabilities pi,j,t is as follows (where i∗t denotes the metaheuristic
with the best q̂i,j,t):

pi,j,t+1 =

{
pi,j,t +β . (pmax − pi,j,t), if i = i∗t
pi,j,t +β . (pmin − pi,j,t), otherwise.

Similarly, several Upper Confidence Bound (UCB) algorithms from the literature [Fia+10a]
can also be applied. Let ni,j,t be the number of times the ith metaheuristic is applied up to
round t by a given distributed node j, and let q̂i,j,t denotes the average empirical reward of
metaheuristic i at that node. At each round t, a distributed node j selects the metaheuristic
that maximizes the following quantity:

q̂i,j,t +C .

√
2 log(

∑
` n`,j,t)

ni,j,t

where parameter C enables to control the exploitation/exploration trade-off. Notice that the
UCB strategy is an optimal strategy for stationary problems with independent arms which is
actually not the case when dealing with our algorithm selection setting. In fact, the average
empirical reward could be far from the current new reward, since the current solution is
being optimized by the search process. To overcome this drawback, the average empirical
reward can be computed over a sliding window by considering the last W rounds. We also
consider a dynamic version of UCB introduced in [Fia+10a] and using the Page-Hinkley
(PH) test to detect whether the empirical rewards collected for the best metaheuristic have
changed significantly (which comes at the price of using two additional parameters, a restart
threshold γ and a robustness threshold δ).

collective selection strategies It should now be clear how to design other collective
DAMS variants by simply injecting the rewards from neighboring nodes in the previous
equations. For example, in collective AP, the rewards collected by a node from its neighbors
during the previous distributed round can be iteratively used to update the reward estima-
tion at that node. In the collective versions of UCB strategies, the empirical average can
also be updated using the rewards from neighboring nodes and the numbers of times ni,j,t
that each metaheuristic i is applied by a node j can also updated accordingly. This kind
of information can be exchanged locally between node at the distributed level and used
subsequently at the selection level of DAMS. As it will be argued later, collective strategies
should in general be preferred over independent strategies.

3.2.3 A simple Master/Worker Architecture

The DAMS framework was initially thought to operate in an island like distributed model,
which makes it general enough to leverage several existing techniques. However, its anal-
ysis and deployment could be challenging in practice due to the interdependency of the

46 distributed and adaptive heuristic optimization

Algorithm 5: Adaptive M/W algorithm for the master node

1 (θ1, θ2, ..., θn)←Selection Strategy Initialization();
2 x? ← Solution Initialization() ; f? ← f(x?);
3 repeat
4 for each worker i do
5 Send Msg(θi, x?, f?) to worker i;

6 Wait until all messages are received from all workers;
7 for each worker i do
8 (ri, xi, fi)← Receive Msg() from worker i;

9 x? ← xi; f? ← fi s.t. fi = max{f?, f1, f2, . . . , fn};
10 (R1,R2, ...,Rk)← Reward Aggregation((θ1, r1), ..., (θn, rn));
11 (θ1, θ2, ..., θn)← Selection Strategy(R1,R2, ...,Rk);
12 until stopping criterion is satisfied;

local decisions that are made locally by every distributed node and the complex behavior
that can emerge form such a system. We there-by consider an alternative simple architec-
ture [Jan+17a; Jan+17b] based on the Master/Worker model.

overall design principles. The proposed architecture is sketched in Algorithm 5 de-
picting the high-level code executed by the master. One can remark that the three levels
(distributed, selection, and atomic) designed for DAMS are re-visited to fit into the M/W
model. More specifically, the M/W framework operates in different parallel rounds. At
each round, the master sends an initial solution and algorithm (θi) to be executed by each
worker i. The role of each worker is to compute a new candidate solution to be send back
to the master. In addition, every worker computes a local reward in order to render the
quality of its assigned algorithm θi. Different kinds of local rewards can be considered at
this stage. In our work, we focus on elitist evolutionary algorithms to be selected and ap-
plied by the workers. Hence, the best solution is always sent to the workers and the local
reward computed by a single worker is the positive improvement observed when applying
the selected algorithm. The master then waits for all local solutions computed in parallel by
the workers, and updates the best solution x? to be considered in the next round, and so on.
More importantly, the local rewards collected by the master are used in order to select a new
set of algorithms to be assigned to the workers in the subsequent rounds, which actually
constitutes the adaptive and core part of our proposal. Two tightly coupled issues are to be
handled by the master in order to set up an effective adaptive mechanism: (i) how to aggre-
gate the local rewards sent by the workers and (ii) how to select the new set of operators
accordingly. This is sketched in the next paragraphs.

local reward aggregation. All adaptive operator selection strategies such as ε-greedy,
Adaptive Pursuit, Upper Confidence Bound, etc (see Section 3.1.2), need to get one single
reward value as a feedback. In our distributed setting, a set of local rewards are computed
by the distributed nodes (the workers). Unlike sequential algorithms, the set of local re-
wards observed in parallel cannot be viewed simply as a sequence of independent rewards
that would be given iteratively to a sequential strategy. This holds for the DAMS frame-
work discussed previously and is now made more explicit since only the master is allowed
to execute the selection step. Hence, one specific design component of our M/W frame-
work is the way to aggregate the local reward values into one global reward value. We
distinguish two main aggregation strategies: (i) the mean or the (ii) maximum of the local
rewards, possibly computed over a sliding window of size W. Despite their simplicity, the
two previous local reward aggregation strategies are fundamentally different. For instance,
assuming that the fitness improvement after applying a stochastic operator is given by a

3.2 contribution #1: distributed adaptive operator selection 47

probability distribution, the mean of the reward values computed by the workers allows to
estimate the expectation of this distribution with a high accuracy, whereas the maximum
gives information on its extremes.

homogeneous vs. heterogeneous adaptive selection. As mentioned previously, the
master needs to select one operator for each worker. We consider both (i) a Homogeneous
(Ho) adaptive strategy, in which the same operator is selected by the master and assigned
to all workers, and (ii) a Heterogeneous (He) adaptive strategy, in which the master selects,
possibly different operators to be assigned to the workers. The rationale behind a homoge-
neous strategy is that in each round there exists one relevant operator providing an optimal
performance, and hence should be executed simultaneously in parallel by all workers. This
is a rather exploitation-guided strategy which aims at avoiding to loose function evaluations,
and to post-pone the exploration component to act in-between two consecutive rounds. In
contrast, the rationale behind a heterogeneous strategy is that a set containing a mixture of
different operators is expected to perform better than a set containing the same operator,
in the sense that: (i) the probability of obtaining a better solution when executing different
operators in each round is larger, and/or (ii) a relatively small number of evaluations spent
exploring non-necessarily optimal operator(s) at each round allows to better predict the best
operator(s) to select next.

In the homogeneous setting, we consider three standard machine learning based selec-
tion strategies, namely, ε-greedy, AP, and UCB. The same operator computed by any of
these strategies is assigned by the master to the workers. Notice that the difference with a
sequential selection is the way the reward is computed by the workers and maintained by
the master, which is crucially important for those methods to operate accurately. In the het-
erogeneous setting, we consider to execute either the ε-greedy strategy or the AP strategy
iteratively for each worker.

adaptive batch scheduling. Finally, we consider the situation where the communica-
tion cost is non-negligible compared to the time a distributed node takes to execute the
optimization step. For this purpose, we propose to endow our M/W framework with an
adaptive batch scheduling mechanism allowing the master to select and send a whole bench
of algorithms to be executed iteratively in a sequence by every worker [Jan+17a] (instead of
executing just a single one). This is achieved by simply extending the previous homogenous
and heterogeneous strategies to handle a variable number of selected algorithms for every
worker. Notice that addressing batch scheduling using machine learning techniques is a
challenging issue [DKB14]. In this context, our work is to be viewed as a first step allowing
to better understand the different trade-offs that can be attained in terms of communication
cost and solution quality when applying a distributed adaptive selection strategy.

3.2.4 Selected Experimental Results

The selection strategies designed in our work were systematically analyzed under different
configurations in order to gain a better understanding of their behavior. In the following,
we only highlight some illustrative results using the DAMS island based framework.

dams setup. We use an elitist migration policy. Each node (island) sends its current
solution to its neighboring nodes. The best solution from the set containing the received
solutions and the current solution of the node replaces the current solution. The DAMS
algorithm stops when the global maximum is found by one node, or when the number of
distributed rounds exceeds a fixed limit (i.e., a synchronous distributed model is assumed).
The performance of algorithms is measured either by considering the number of rounds to
reach the global maximum (for OneMax), or using the so-called expected running time (ERT)
(for NK landscapes). The ERT is the expected running time to reach a fixed fitness with a
simulated restart. It is given by: Es[T] + (1− p̂s)/p̂s.Tlimit where p̂s the estimated success

48 distributed and adaptive heuristic optimization

Table 1: One-Max problem with N = 1000. Rank of each strategy. For each topology and graph size,
a cell depicts the number of other selection strategies which statistically outperforms (accord-
ing to the Wilcoxon test at confidence level p = 0.05) the strategy considered in the column.
The 0 value is the best one: no other strategy significantly outperforms the considered one.

Topo. Size cst rand SBMi SBMc APi APc UCB
UCBi UCBc HPi HPc Wi Wc

circle 4 8 4 1 0 7 7 10 11 2 3 3 3

circle 16 4 6 3 0 4 0 10 11 1 6 6 6

circle 32 4 6 3 1 4 0 10 11 2 6 6 9

circle 64 4 6 3 2 4 0 10 11 1 6 6 9

grid 4 8 4 1 0 4 9 10 11 2 4 3 3

grid 16 4 5 2 0 4 0 10 11 1 4 6 4

grid 32 4 5 3 1 4 0 10 11 1 4 4 6

grid 64 4 6 3 1 4 0 10 11 1 6 6 9

rnd. 4 7 3 0 0 5 7 10 11 0 3 3 3

rnd. 16 4 4 1 0 4 3 10 11 1 4 4 5

rnd. 32 4 4 3 1 4 0 10 11 2 4 4 9

rnd. 64 4 4 3 1 4 0 10 11 1 4 4 9

compl. 4 7 3 1 0 7 7 10 10 2 3 3 3

compl. 16 6 3 1 0 5 6 11 10 1 4 3 9

compl. 32 3 3 2 0 3 8 11 10 1 3 3 9

compl. 64 3 3 2 0 3 3 11 10 1 3 7 9

Average 4.875 4.312 2 0.4375 4.375 3.125 10.187 10.75 1.25 4.187 4.437 6.562

rate, and Es[T] is the average number of rounds when the fitness level is reached. Four
island topologies are considered in the following: the complete topology where each node
is connected to all others nodes, a random topology where there is an edge between two
nodes with probability parameter (p = 0.1), the grid topology which is a two-dimensional
regular square where each node is connected to the four nearest neighbors, and the circle
topology where every node is connected to two others nodes to form a circle. The size of the
networks is set to n ∈ {4, 16, 32, 64}. In order to have the same number of fitness evaluations
in one round whatever the network size n, the λ parameter used in the (1+ λ)-EAs is set to
64/n. The independent strategies (i.e., no reward sharing) are highlighted with letter i and
collective ones with letter c. When a window is used to compute the rewards (i.e., for UCB),
letter W is used. Moreover, some baseline strategies are used: the random strategy (rnd.)
where each node selects independently at random one metaheuristic to execute at each
round, the constant strategy (cst.) where each node selects independently at random one
metaheuristics to execute during the whole algorithm, and the uniform constant strategy
(unif.) where all nodes execute the same metaheuristic during the whole algorithm (only
the results obtained with the best performing metaheuristic are presented).

onemax. In Table 1, we show the relative behavior of different strategies experimented
with a portfolio composed by four (1+ λ)-EA based on 1-bit-flip, 1-bit, 3-bit and 5-bit oper-
ators1. First, the performance of the different strategies are consistent with the considered
network configurations in the sense that they can overall be ranked similarly independently
of the topology type or graph size. More importantly, we remark that the impact of ex-
changing reward information (collective strategies) between nodes has a strong impact on
performance. Interestingly, the impact is positive in the case of SBM and AP, whereas it
is not when considering UCB. In fact, SBMc appears to overall outperform all the other
strategies and APc appears to performing best when both considering the circle, grid and
random topologies with large number of nodes. In contrast, the performance of the four
implemented versions of UCB is deteriorating systematically as the information from neigh-
bors is incorporated. This also suggests that the UCB strategy has to be carefully rethought
in order to infer accurate exploration-exploitation tradeoffs in the distributed setting. We
shall see in the rest of this chapter that other variants using UCB and a simple Master/-
Worker model are actually very efficient.

1 This is a standard experimental setting from the literature.

3.3 contribution #2: benchmarking for adaptive operator selection 49

Table 2: NK-landscapes with N = 1000 and K = 1, 4, 8. Rank of the different strategies according to
the topology and the number of nodes.

Topo. Size unif cst rand. SBMi SBMc APi APc UCB
UCBi UCBc HPi HPc Wi Wc

K = 1

compl. 16 0 9 6 3 7 12 2 1 10 4 5 8 11

compl. 64 0 10 7 6 1 4 9 12 3 2 5 11 8

circle 16 0 2 11 3 5 1 10 8 7 6 4 12 9

circle 64 0 7 8 2 1 6 4 12 9 3 10 11 5

average 0 7 8 3.5 3.5 5.75 6.25 8.25 7.25 3.75 6 10.5 8.5

K = 4

compl. 16 0 6 12 9 1 11 3 2 4 8 10 5 7

compl. 64 0 6 3 8 5 11 12 1 4 10 2 7 9

circle 16 1 11 12 8 4 5 6 3 7 0 2 10 9

circle 64 0 10 9 11 6 7 12 5 4 3 2 1 8

average 0.25 8.25 9 9 4 8.5 8.25 2.75 4.75 5.25 4 5.75 8.25

K = 8

compl. 16 1 3 9 0 11 7 6 2 10 4 8 5 12

compl. 64 0 12 4 10 3 6 9 11 2 5 8 1 7

circle 16 7 0 4 5 6 12 3 9 10 2 1 8 11

circle 64 0 2 12 3 11 8 9 5 10 7 1 4 6

average 2 4.25 7.25 4.5 7.75 8.25 6.75 6.75 8 4.5 4.5 4.5 9

nk-landscapes. In Table 2, we show the relative behavior in terms of ERTs of different
strategies experimented with a portfolio composed by five (1+ λ)-EA based on the c-bit-flip
operator with c ∈ {1, 2, 4, 8, 16}. Perhaps the most interesting observation for NK-landscapes
is that the uniform-static strategy is the best performing and none of the considered DAMS
variants is able to outperform it. This might be surprising at first sight, but not if we account
for the time required to learn the metaheuristic to apply. In fact, the fitness level for NK-
landscapes can be shown to increase very abruptly in the early stages of the search (see
Fig. 8). Hence, the different fitness windows where one has to choose the best operator
are very tight which is to contrast with the time it may need for a strategy to detect which
operator is actually the best to apply. Actually, the general lessons that we can learn from our
experiments with the NK-landscapes can be formulated as following. First, in a blackbox
scenario, the time during which a metaheuristic is the best one could depend strongly on the
problem fitness landscape. Hence, learning this landscape at runtime is for sure a plausible
alternative. Second, further studies are needed to characterize the cost of the learning stage
in an adaptive selection strategy in function of the considered landscape, and to design
novel alternative strategies that would be able to minimize the learning cost.

3.3 contribution #2: benchmarking for adaptive op-
erator selection

With no surprise, an algorithm selection strategy can have different behaviors depending
on the benchmark problem at hand. For instance, for the NK-landscapes, the performance
of the adaptive strategies was mitigated compared to static ones. This raises the difficult
challenge of eliciting what makes an online selection strategy effective and when it should
be preferred to an offline and finely tuned static one. We argue that two issues have to be
considered in a combined manner in order to tackle this challenge: (i) the exploitation/ex-
ploration trade-off exposed by a given strategy which is often tightly related to the way the
rewards are computed and updated, and (ii) the features relating the optimization problem
to the considered algorithms in the portfolio. These two aspects were previously considered
in the literature. For instance, in [BP14], continuous benchmarks from the COCO platform
are experimented using a portfolio of variants of the well-established differential evolution
operator. Other studies considered to directly define the rewards associated with the algo-
rithms included in the portfolio using particular stochastic distributions [Thi07; Fia+10a].
In [Thi07], the set of possible rewards is defined by different uniform random distributions

50 distributed and adaptive heuristic optimization

Algorithm 6: A single-solution single-operator basic metaheuristic (e.g., a (1+ λ) −

EA).

1 x0 ← initial solution();
2 repeat
3 for i ∈ {1, . . . , λt} do
4 yi ← operator(xt);

5 xt+1 ← selection(xt,y1, . . . ,yλ);
6 until stopping criterion is satisfied;

that are reassigned randomly to the portfolio at different time intervals. Seemingly the same
idea is used by a panel of studies by Fialho and others [DaC+08]. For instance, in [Fia+10a],
the so-called ’Two-Values benchmarks’ is used where two possible reward values and a
probability of wining the highest is defined depending on pre-computed time intervals. Re-
cently, a benchmark is proposed in [GLS16] where the rewards depend on the number of
times that an operator is applied during a time window.

Several properties should ideally be fulfilled by a relevant benchmark for the algorithm
selection problem. First, one has to take into account the stochasticity of most heuristic algo-
rithms. Hence, the reward of each algorithm in the portfolio should typically be defined by
choosing a relevant probability distribution. Moreover, to accurately appreciate the relative
quality of a target adaptive algorithm selection strategy, the so-called ’oracle’, that is the
optimal selection strategy, should be known. At last, since the performance of an algorithm
in the portfolio could evolve during the optimization process, the reward distribution has
to be tightly coupled with the state of the search. We argue that despite their skillful design,
the existing benchmarks are not sufficient by their own to allow for a global fundamen-
tal understanding of the design of adaptive methods and the setting of relevant theory for
them.

In the following, we discuss our contribution [Jan+16; Jan17] to the design of a general
purpose benchmarking methodology. Inspired by previous work form fitness landscape
analysis [VCC03], we propose a high-level approach to generate abstract ’benchmark’ sce-
narios based on the Fitness Cloud (FC) model. The proposed approach is to be viewed in
a complementary manner to existing benchmarks. In the FC model, the state of the search
is naturally defined by the fitness of the current solution, and the performance of a given
metaheuristic is function of this fitness value. The reward distribution is hence not controlled
explicitly; but instead, implied by the considered adaptive mechanisms.

3.3.1 The Fitness Cloud Model

Although the proposed approach is independent of a particular metaheuristic, let us con-
sider for the sake of clarity the template of Algorithm 6 rendering the design of a basic
single-solution single-operator metaheuristic. The considered iterative algorithm has two
parts. First, a stochastic local operator is applied to the current solution xt to produce a
set of λt candidate solutions yi. For instance, such an operator could be the random bit-
flip mutation when the search space is the set of binary strings. Second, a new current
solution xt+1 is selected. This is typically performed according to the fitness values of the
newly generated solutions yi, and the current solution xt. Notice that despite its simplicity
such a template encompasses a wide range of algorithms.

fitness cloud. The Fitness Cloud Model (FCM) informs about the fitness value of solu-
tions after one iteration according to the fitness of the current solution. To make it simple,
the FC model supposes that the state of the search is only given by the fitness ft = f(xt)

of the current solution xt. Assuming that the selection of the next solution only takes into

3.3 contribution #2: benchmarking for adaptive operator selection 51

M 1

M 2

1

Fitness

E 1,1

E 1,2

E 2,2

E 2,1

0

+
+

+

+

+

r

Ex
pe

ct
ed

 Im
p

ro
ve

m
en

t
(E

)

Fitness

P
r(

f(y
) =

 z
' |

 f
t=

 z
)

E+

ft z=

μ(z) z + K= μ

σ(z) =Kσ

Figure 11: Fitness cloud model: scenario with two metaheuristics and two fitness ranges.

account the fitness values (which is a common practice for a wide range of blackbox opti-
mization algorithms), no particular model is required for this. However, a specific model
is needed for the fitness values of the newly generated solutions in order to capture the
stochastic behavior of most evolutionary operators. The basic idea behind the FC model
is to assume that the fitness distribution after applying a stochastic operator, say op, is
given by a conditional probability distribution that depends solely on the current fitness:
Prop(f(y) = z′ | ft = z). Of course, such a distribution is not known in practice. Nonethe-
less, we consider to define it explicitly, which allows us to explicitly relate the behavior of
an operator to the current state of the search, i.e., the fitness level attained currently. Conse-
quently, by simply defining different such probability distributions emulating the behavior
of different (virtual) operators, we end up with an abstract and high-level ’benchmark’ that
can be emulated and experimented with respect to specific adaptive selection strategies.
Notice however that this is very different from standard benchmark design methodologies
which operate at the solution space. Roughly speaking, the word ’benchmark’ is to be under-
stood with respect to the online algorithm selection problem which consists in computing
the best/optimal scheduling of operators.

The first step when using the Fitness Cloud Model (FCM) as a benchmark for algorithm
selection, is to specify the conditional probability distribution. Different choices can be
made such as discrete distributions (binomial, Poisson, etc.), or continuous distributions
(normal, Weibull, etc.). Given its properties of convergence, we choose to use a normal
distribution: Pr(f(y) = z′ | ft = z) ∼ N(µ(z),σ2(z)) where µ(z) and σ2(z) are respectively the
mean and the variance of the normal distribution which can depend on the current fitness
ft. As a consequence, the evolution of the fitness during one iteration follows a conditional
probability distribution which embeds the previous distribution and which depends on how
the selection of the next solution is carried out by the optimization process. One important
feature of the probability distribution is the expected improvement after one iteration, denoted
by E+(z), which is the expected progress of the fitness given the current fitness value is z:

E+(z) =

∫∞
z

Pr(ft+1 = z′ | ft = z) z
′ dz′

The previous considerations are enough general to allow us to define in a high-level
manner the behavior of applying one algorithm from a portfolio as a function of the fitness
level attained globally by the optimization process. By only fixing the parameters of the
conditional probability (or the expected improvement), we end up with a high-level portfolio
in which the effect of applying one metaheuristic given one current initial solution with a
given fitness level is explicitly fixed. Of course, those parameters are not made available for
the algorithm selection strategy it-self.

a concrete example. A simple (benchmark) optimization scenario that we can emulate
using the FC model is illustrated in Fig. 11. Two elitist (virtual) metaheuristics are consid-
ered in the portfolio and the possible fitness values are normalized in the range [0, 1]. The

52 distributed and adaptive heuristic optimization

whole range [0, 1] is then divided into two fitness ranges: the first one from fitness 0 to
r 6 1, and the second range from r to 1. The relative behavior of each algorithm in the
portfolio is modeled accordingly in each fitness range. At each fitness range, we shall fix
the mean and variance of the conditional normal distribution as follows: µi(z) = z+ Kµi
and σ2i (z) = Kσi where for each metaheuristic Mi, i ∈ {1, 2}, parameters Kµi and Kσi are
different constant numbers at each fitness range. Therefore, we end up with 9 parameters
to be fixed in this scenario: r, and the 8 parameters for the normal distributions for each
metaheuristic and at each fitness range. However, we can show that the expected running
time to reach the optimal value 1 depends solely on the expected improvement of each meta-
heuristic (when using an elitist strategy). Hence, only 5 parameters are free as illustrated by
Fig. 11; where E+i,j denotes the expected fitness improvement of metaheuristic Mi, i ∈ {1, 2},
for the fitness range j ∈ {1, 2}. Notice that in our example, we assume that the best meta-
heuristic for the first fitness range is M1, whereas it switches to M2 in the second fitness
range, i.e., E+2,1 < E+1,1, and E+1,2 < E+2,2, which makes it straightforward to figure out the
’oracle’ strategy when evaluating the performance of given selection strategy. Finally, like
in many optimization problems, we assume that the expected improvement decreases when
the fitness range increases: E+1,2 < E

+
1,1, and E+2,2 < E

+
2,1.

Besides this example, we can generate several other types of scenarios [Jan17]; by con-
sidering different number of algorithms with variable relative fitness cloud distributions,
different fitness ranges modeling different stages of the optimization, different modeling of
how the fitness cloud distribution with respect to one algorithm evolves as a function of the
fitness range (e.g., linearly), etc. The major difficulty is then to fix the parameters of the
model in order to end up with an appropriate and relevant benchmark allowing to study
a particular target issue, e.g., the ability of a selection strategy to detect the best algorithm,
the ability to discard non-useful ones, the time to learn the best algorithms, the ability to
outperform a static strategy, etc.

3.3.2 Selected Experimental Results

results in the sequential setting. From the illustrative scenario described in the
previous section, we are able to study 3 concrete cases exposing different challenges. In
Fig. 12, we summarize these 3 experimental cases while providing the parameters used in
the FC model. First, notice that we choose Kµ negative in order to emulate the behavior of a
typical stochastic evolutionary operator that decreases (in average) the fitness of the current
solution as it is the case very often in practice. In all the 3 cases, the EIs of M1 and M2 are
the same in the first fitness range and differ by a factor of 2. In Case 1, the EI values are
much more closer in the second range compared to Case 2, i.e., an oracle for Case 1 would
act as in Case 2, but the performance of a static selection strategy that would always choose
M1 becomes much closer to the oracle than in Case 2. As for Case 3, the same factor of 2
is kept between the EIs in the second range; but the EIs has been reduced by a huge factor
of 15, hence making the progress in the second range relatively much more difficult than in
the first range compared to Case 2.

In Fig. 13, we show the performance obtained when using: (i) two static strategies (choos-
ing one metaheuristic during the whole run), (ii) two adaptive ones (based on standard AP
and UCB), (iii) a random (baseline selection) strategy, and (iv) the oracle strategy. The per-
formance is the average number of evaluations to reach the target fitness value 1 and it is
depicted as a function of the length r of the first fitness range considered in the scenario.
Actually, the relative expected improvements and the r-value allows us to elicit different
relative behaviors of the considered strategies. Notice in particular that the difference over
the r-values of the performance between the oracle and the best static strategy (either with
M1 orM2) represents the maximum performance gap between an optimal adaptive method
and an optimal offline static strategy tuned for each value of r. This gives a hint on when
an adaptive online strategy should be preferred over an offline one. The comparison of case

3.3 contribution #2: benchmarking for adaptive operator selection 53

Values are given with a factor of 10−3.

Cases Meta. Fitness range 1 Fitness range 2

E+
i,1 Kµi Kσi E+

i,2 Kµi Kσi

Case 1
M1 6 −1 16.27 1.8 −2 6.72
M2 3 −1 8.72 2 −2 7.24

Case 2
M1 6 −1 16.27 1 −2 4.59
M2 3 −1 8.72 2 −2 7.25

Case 3
M1 6 −1 16.27 0.2 −2 2.14
M2 3 −1 8.72 0.4 −2 2.84

Static(M1)

Static(M2)

Length of the Fitness Range 1 (r)

A
vg

. N
u

m
b

er
 o

f
e

va
lu

at
io

n

Uniform

Oracle

0 1

-1
E 2,2

-1
E 1,2

-1
E1,1

-1
E2,1

+

+

+

+

Figure 12: Parameters values of the FC model in 3 representative cases (left table) with the corre-
sponding (tight) upper bounds on the expected running time (right subfigure)

0.0 0.2 0.4 0.6 0.8 1.0

Length the Fitness Range 1 (r)
150

200

250

300

350

400

450

500

550

A
v
g
.
n
u

m
b
e
r

o
f

e
v
a
lu

a
ti

o
n

Oracle
static(M1)
static(M2)
Uniform
UCB
AP

0.0 0.2 0.4 0.6 0.8 1.0
Length of the Fitness Range 1 (r)

100

200

300

400

500

600

700

800

900

1000

A
v
g
.
n
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n

Oracle
Static(M1)
Static(M2)
Uniform
UCB
AP

0.0 0.2 0.4 0.6 0.8 1.0

Length of the Fitness Range 1 (r)
0

1000

2000

3000

4000

5000

A
v
g
.
n
u

m
b
e
r

o
f

e
v
a
lu

a
ti

o
n

Oracle
Static(M1)
Static(M2)
Uniform
UCB
AP

Figure 13: Comparison of selection methods with the best parameters settings for UCB, and for AP.
From left to right: test cases 1, 2, and 3.

2 and 3 shows that when the average expected improvements at the second stage is much
lower than in the first stage, an adaptive method becomes less efficient except when the
length of the first stage is very large. Indeed, the time that can be gained in the first stage
becomes negligible and the main difficulty then turns out to be the final convergence to the
optimum value. When the scale of the average expected improvements between the two
stages is moderate like in test case 2, an adaptive method like UCB strategy is very effec-
tive. However, when the performance difference between metaheuristics at one stage of the
search becomes small, like in test case 1, the problem is equally difficult for all metaheuris-
tics in the portfolio, and the adaptive selection becomes rather useless besides the fact that
it becomes more difficult to detect the best performing metaheuristic at a given iteration.

results in the distributed setting. In the distributed setting, we use an even more
simple scenario where only one fitness range and two operators with fixed parameters of
the FC model are considered. However, the mean and standard deviations are chosen in
a specific manner in order to better grasp the behavior of different distributed selection
strategies with respect to the different aspects such as: the number of distributed nodes,
the reward aggregation function, the impact of a heterogeneous selection strategy, and the
communication-to-computation cost. In particular, one can see in Fig. 14 the relative per-
formance of different Homogeneous and Heterogeneous selection strategies discussed pre-
viously and using the adaptive Master/Worker architecture. We are for instance able to
show that using a mean reward aggregation function is clearly outperformed by a maxi-
mum reward function. The difference between a homogeneous and heterogeneous setting
is also found to be mitigated and depends on the selection it-self. When comparing the
best setting of given selection policy, the UCB strategy appears to be the best one, followed
by ε-greedy strategy, which are both better than the AP strategy. These first results can be
explained by the ability of the UCB machine-learning inspired strategy to efficiently learn
the best operator to apply in a given distributed round when using the maximum reward.
All adaptive strategies are also found to share a relatively good performance when the other

54 distributed and adaptive heuristic optimization

R
an

d.
 H

o

R
an

d.
 H

e

U
C
B
 M

a
x

U
C

B
 M

e
a
n

A
P

H
e

M
a
x

A
P

H
e

M
e
a
n

A
P

H
o

M
a
x

A
P

H
o

M
e
a
n

Ɛ
-G

re
ed

y
H

e
M

a
x

Ɛ
-G

re
ed

y
H

e
M

e
a
n

Ɛ
-G

re
ed

y
H

o
M

a
x

Ɛ
-G

re
ed

y
H

o
M

e
a
n

Δ
-G

re
e
d
y2000

2500

3000

3500

4000

4500

5000

5500

N
u
m

b
e
r

o
f

ro
u
n
d
s

Figure 14: Number of distributed rounds to the optimal fitness using operator 1 ∼ N(−10−4, 10−4),
and operator 2 ∼ N(−10−3, 5× 10−4) and n = 256 workers.

design components, that is the choice of the reward function, and the heterogeneity type,
are well designed.

3.4 other related contributions
As briefly discussed in the introduction, in addition to our interest to the online adaptive
and distributed algorithm selection problem, we were also concerned by other tightly related
issues and methodologies dealing with the proper configuration and high-level design of
general purpose search heuristics. This is discussed in the following by mainly highlighting
the general context of our research and sketching some contributions on hyperheuristic
design [DD12] (Section 3.4.1) and offline parameter configuration [Lie+17b] (Section 3.4.2).
Both contributions are with respect to a sequential compute environment.

3.4.1 Hyperheuristics based on neighborhood tree search

As mentioned in the introduction of this chapter, online adaptive algorithm selection shares
a number of issues with selective hyper-heuristics [Bur+10]. Selective hyper-heuristics deal
with the accurate (adaptive) combination of different low level heuristics, especially when
dealing with cross-domain optimization [Och12; Bur+11], i.e., different problems from dif-
ferent domains tackled by the same (’autonomous’) optimization algorithm. In our research,
we were also interested in such high-level search algorithms, specifically in the context of
the design of advanced local search based algorithms combining multiple neighborhood
operators [DD12; Yah+15]. In the following, we provide an overview of our contribution
on the combination of different neighborhood structures within an effective and problem
independent local search hyperheuristic [DD12].

multiple neighborhood local search. Local search heuristics [HS04] refer to algo-
rithms where a solution is updated iteratively while performing little transformations on its
vicinity. Those transformations are usually based on a neighborhood function (or structure)
N : X → 2X, which assigns a set of neighboring solutions N(x) ⊂ X to any solution x ∈ X.
In its most basic variant, referred to as hill-climbing, the local search stops when the current
solution is not outperformed by any neighbor, i.e., a local optimum is reached.

3.4 other related contributions 55

Given a number of neighborhood structures, their accurate combination within a local
search based optimization process raises different design issues. Variable neighborhood
search (VNS) and its several variants [MH97], is a popular metaheuristic in this context
which is are based on the systemic change of the neighborhood structure within the search.
Starting with a first neighborhood structure, a Variable Neighborhood Descent (VND) per-
forms local search until no further improvements are possible. From this local optimum,
the local search is continued with the next neighborhood. If an improving solution is found,
then the local search continues with the first neighborhood, otherwise the next available
neighborhood is explored, and so on until no further improvements can be obtained. It
is well known that the performance of VND (and VNS in general) can highly depend on
the order the neighborhoods are alternated. In standard variants, it is often admitted that
ordering neighborhoods in an increasing cost/size is a reasonable strategy.

The issue of how to combine/exploit/search different neighborhoods is not new and one
can find many different studies on the subject. To cite a few, in [PR08], a fast relaxation
of neighborhoods is evaluated in order to select the most accurate solutions. In [HR06], a
self-adaptive strategy is used to rank neighborhoods and to dynamically choose the best
suited ordering. A number of specific multi-neighborhood combination functions can also
be found. For instance, many studies consider to take the union of some basic neighbor-
hoods. The so-called neighborhood composition and the token-ring search are also other
well known neighborhood combination functions, see e.g., [LHG11; GS06; GRH08; LGH11;
VMS12]. Hyper-heuristics can also be considered as a high-level approach operating in the
neighborhood space and providing advanced hyper-strategies for neighborhood combina-
tion.

neighborhood tree search. In an attempt to gain in generality when dealing with the
combination of several available neighborhood structures, we rely on the simple observa-
tion that defining how neighborhoods are alternated is nothing else than defining a specific
hyper-strategy to traverse a neighborhood tree, where the root of the tree represents the
initial candidate solution and intermediate nodes represent solutions obtained by applying
one of the possible neighborhoods. In other words, we view the trajectory of a multiple
neighborhood search as a high-level neighborhood path, where path nodes are solutions
and every hop in the path represents the exploration of one solution using one neighbor-
hood among those available. Following this observation, we term a neighborhood tree search
(NTS) a strategy which is able to traverse the neighborhood tree efficiently searching for
promising paths. It should be clear that a systematic traversal (exploration of all neighbor-
hood branches) is not efficient especially when the number of neighborhoods is high. This
should actually remind us of several general purpose strategies from exact optimization,
such as dynamic programming and branch-and-bound, as well as from machine learning,
such as Monte-Carlo tree search.

In [DD12], we investigate the possibility of backtracking to previously visited solutions
while branching and pruning tree nodes all along the search trajectory. We show that this
idea with basic iterative improvement descents leads to efficient local search strategies both
in terms of solution quality and computing cost. More specifically, we consider a simple ran-
domized neighborhood selection strategy, where the choice of which neighborhood to select
at runtime is made uniformly at random among those not yet explored. When effectively
branching a neighborhood, we consider both deterministic and randomized adaptive strate-
gies, basically relying on the neighborhood path traversed by the search in previous rounds.
As for backtracking, we investigate strategies based on tournament selection inspired by
standard evolutionary selection.

We study the properties of the proposed approach by considering simultaneously two
different and well-studied problems: the Single Machine Total Weighted Tardiness Prob-
lem (SMTWTP) in the family of scheduling problems, and Location Routing Problem (LRP).
Both problems are NP-Hard and allows us to study the effectiveness of our hyperheuristic

56 distributed and adaptive heuristic optimization

approach when tackling relatively complex problems coming from different optimization
domains. Many previous studies have been successfully applied to solve the SMTWTP us-
ing hybrid variable neighborhood like searches. LRP is a more sophisticated problem which
involves two simultaneous decisions: which depots to open (location problem) and what
routes to plan (routing problem). Common to these two problems, a number of natural
neighborhood structures can be considered making them two excellent case studies to ana-
lyze how the designed NTS variants perform (e.g., twelve neighborhoods are used for LRP).
Through extensive experiments, we show that NTS is able to dynamically find its way along
the neighborhood tree without any specific tuning and leads to substantial improvements
in the solving of the two considered problems. More importantly, we were concerned by
providing a comprehensive analysis of the complex behavior of an NTS based algorithm at
the aim of gaining a better understanding of its critical design components. In particular,
we show that NTS can lead to different (and incomparable) trade-offs in terms of solution
quality and running time depending on the branching/pruning strategy used to explore/-
traverse the neighborhood tree which makes it a promising approach offering novel and
interesting (hyper-)search abilities.

3.4.2 Landscape-aware offline algorithm configuration

In addition to online adaptive algorithm selection approaches, we were recently concerned
by offline algorithm configuration. Given a number of algorithm parameters, (offline) auto-
matic algorithm configuration [Bir09] seeks a good configuration, that is a particular fixed
choice of the parameter values that best suits the solving of some a priori unknown instances.
The motivation of such a methodology is not only to get rid from the burden of a manual cal-
ibration or the bias of personal and ad-hoc configuration processes, but more importantly
to set up a principled approach for algorithm design, allowing to systematically explore
their strengths and weaknesses when tackling a whole family of problems. Several ap-
proaches have been proposed, ranging from experimental design [AL06], statistics [Bar06],
heuristic search [Hut+09], and racing [Bir+02; Bir09; Lóp+16]. In the following, we provide
an overview of our contribution on bridging automatic algorithm configuration with fitness
landscape analysis [Ver16], at the aim of achieving more powerful general purpose blackbox
optimization algorithms [Lie+17b].

automatic algorithm configuration. Most of the existing automatic algorithm config-
uration methods can be viewed from a machine learning perspective as operating in a train-
ing phase followed by a test or a production phase. Based on some given instances forming
the training set, the training phase is intended to learn a good configuration that would
hopefully perform well when experimented later, on some new unseen instances coming
from the production phase. Like any machine learning technique, the properties of the train-
ing set is a key issue in order to guarantee a high accuracy of the output configuration. The
heterogeneity of training instances was for instance found to be a challenging issue when
using iterated racing in the context of a tuning scenario implying SAT instances [Lóp+16].
We actually argue that a single output parameter configuration might not be suitable for the
target algorithm to best suit a whole set of (heterogeneous) instances having different prop-
erties. Like a number of other existing studies [XHL10; HHL11; Kad+10], we hence advocate
for the computation of a set of configurations, not a single one, that can then be mapped
accurately with respect to the characteristics or features of an instance. For instance, in Hy-
dra [XHL10], a portfolio builder is used together with an automatic configuration method
in order to construct a portfolio of algorithm configurations. The portfolio builder typically
uses problem features to discard or add new configurations found by automatic configu-
ration, and the method was proved effective when experimented with SAT specific tools.
However, it requires both a suitable portfolio builder and a domain-specific knowledge. In
our work, we are concerned with blackbox optimization and hence propose to rely on the

3.5 conclusion and perspectives 57

so-called fitness landscape analysis to extract and to inject problem independent features
into the tuning process.

fitness landscape analysis. Generally speaking, fitness landscapes analysis [Ver16]
provides a set of general-purpose tools and a principled approach to systematically inves-
tigate the characteristics of an optimization problem in an attempt to guide algorithm de-
signers towards a more in-depth understanding of the search behavior, and thus towards
more effective algorithms [Mer04; RE14]. A typical issue addressed in fitness landscape
analysis consists in studying how the performance of a given algorithm configuration can
be impacted in light of some features extracted with respect to the considered problem in-
stances. In particular, different general-purpose features were studied for this aim [RE14],
and such landscape features have proved their usefulness in characterizing instances [SL12].
The general idea developed in our work is that such features can actually serve to differen-
tiate which parameter configuration can be more suitable for a particular problem instance,
both during the training phase and during the production phase. In other words, since it
might be useless to search for just one single parameter configuration for a heterogeneous
instance set, an alternative solution would be to consider a whole set of configurations that
are explicitly associated with some computable instance features.

injecting landscape-extracted features into algorithm configuration. In our
recent work [Lie+17b], we adopt a landscape-oriented methodology to strengthen the ac-
curacy of automated algorithm configuration based on iterated racing. By partitioning the
training set into different groups based on the value of landscape features, we conduct an
independent training phase in parallel for each group, thus ending up with multiple algo-
rithm configurations corresponding to the different groups. At the production phase, the
appropriate configuration is selected based on the feature value of the considered instance.
As a byproduct, we are able to derive a novel landscape-aware methodology that comple-
ment existing automatic algorithm configuration techniques. By fairly taking into account
the extra computational cost induced by our methodology, we investigate the gain of de-
ciding which parameter configuration to choose for an unseen production instance based
on general-purpose low-cost computable features. Our empirical findings, using a set of
NK-landscape heterogeneous instances with a variable degree of ruggedness and neutral-
ity, reveal that landscape-aware iterated racing is able to find better configurations when
experimented with a conventional memetic algorithm with tunable population size, varia-
tion operators, crossover and mutation rates.Our work can actually be viewed as a first step
towards the establishment of more powerful and finely tuned landscape aware optimiza-
tion algorithms. It can also be viewed to some extent as providing a very simple high-level
(blackbox) portfolio builder that, it is our hope, would serve as a basic template to design
a more advanced and principled approach targeting the solving of complex, blackbox and
cross-domain optimization problems.

3.5 conclusion and perspectives

summary. In this chapter, we described our work on the design of high-level optimization
techniques for the proper choice of algorithm components and parameters, with a particular
focus on adaptive online operator selection techniques. Two main challenges are specifically
addressed: (i) how to design distributed strategies allowing distributed nodes to adaptively
coordinate their actions at the aim of cooperatively identifying the best performing algo-
rithm at different steps of the optimization process, and (ii) what makes an adaptive selec-
tion strategy effective and when it should be preferred to a static a priori fixed choice. For
that purpose, we rely both on an island model and a Master/Worker architecture, to lever-
age existing machine learning techniques designed to operate in an inherently sequential

58 distributed and adaptive heuristic optimization

setting. In particular, we show that reward aggregation and heterogeneity can play a cru-
cially important role. We also propose an abstract and high-level methodology based on the
fitness cloud model allowing us to emulate an adversary benchmark optimization setting
for the operator selection problem. By explicitly modeling the behavior of an algorithm as a
function of the fitness level reached at some steps of the optimization, we are able to show
that state-of-the-art techniques can only succeed when the learning-to-optimization cost/-
time is kept reasonable which might actually be a function of the underlying landscape(s).
On the other hand, and besides adaptive algorithm selection, we were also concerned by
other high-level autonomous and automated search paradigms, i.e., hyperheuristics and of-
fline parameter tuning. Several perspectives of our work can be identified. Some of them
are discussed in the following.

parallel and distributed deployment. The adaptive distributed algorithms proposed
in our work were validated using a simulation oriented methodology, since our primary
goal was to first gain a more fundamental understanding of the main design challenges and
the way to effectively address them. In this respect, a clear perspective of our work is to con-
sider concrete implementations of our protocols in a real distributed and parallel compute
environment and considering more sophisticated application-oriented problems. We argue
that the main challenge will be to handle the practical communication-to-computation cost,
which we addressed in a very abstract manner, e.g., number of messages, batch schedul-
ing. Two extreme scenarios need further investigations. In a very fine-grained compute
setting where the cost of function evaluation is extremely low, different extensions of our
distributed algorithm selection framework can be considered in order to better fit the con-
crete compute environment. For instance, a hierarchical distributed design based on the
hybridization of the Master/Worker architecture and the Island model is an interesting
option which would: (i) eventually fit a complex hardware setting where shared memory
and/or distributed devices are available, and (ii) provide new opportunities in designing
more powerful adaptation mechanisms using advanced reward aggregation functions and
cooperative selection mechanisms. The other extreme scenario is when the cost of function
evaluation is huge, typically corresponding to the so-called expensive optimization setting
requiring to use specific sampling techniques and meta-models, e.g. [JSW98; Vu+17]. Be-
sides the fact that parallelism is a must since one can for instance take much benefit from
the fact that more function evaluations can be made in parallel; several other interesting
research questions can be raised. For instance, an interesting issue is whether different
exploration/exploitation trade-offs ruling the design of existing adaptive techniques can
be designed in order to satisfy the harsh conditions and/or restrictions on the amount of
available (distributed) computing time.

other distributed techniques. We notice that our work on hyperheuristics and offline
landscape aware tuning was described in a sequential setting. Nonetheless, parallelism and
distributed algorithms are not far away when having a more close and global look at our
work. Firstly, the proposed neighborhood tree search hyperheuristic can benefit from a high-
level distributed design. Similar to the parallel Branch-and-Bound discussed in the previous
chapter, high-level parallelizations would be an interesting research path. From a solution
quality perspective, this means that cooperative and distributed branching and pruning op-
erations at the neighborhood space level can be designed, which would eventually lead to
a more effective search. For instance, by smartly coupling the solution space and the neigh-
borhood space, the computing flow can be redesigned in order to make different parallel
processes explore concurrently and cooperatively diversified and promising subtrees in the
neighborhood tree. From a running time perspective, parallel tree exploration strategies
would definitively lead to a high-level parallel search with a substantial speed-up. Secondly,
our offline landscape aware methodology is actually inherently parallel, since the training
instances are partitioned into independent clusters. This means that the training time can

3.5 conclusion and perspectives 59

be straightforwardly decreased proportionally to the number of clusters. Knowing that the
training phase can be rather compute intensive, such a straightforward implication is in our
opinion a nice property. Moreover, this simple observation leads to several other advanced
research issues. In fact, the configurations found for a subset of instances can serve to
finely tune an algorithm on an other subset of instances. Distributed tuning processes can
hence benefit from information exchange and online cooperation to share (resp. discard)
promising (resp. poor) subsets of parameters, which would lead to novel high-level and
distributed automatic configuration algorithms. Interestingly, the assumption that instances
with ’similar’ landscape features can be tackled using ’similar’ algorithms, configurations,
components, etc, needs to be addressed in a more comprehensive manner especially in a
blackbox optimization scenario. For instance, deriving a similarity or distance measure that
can relate the instance space to the parameter space is a hot issue. Thus, there is much
research to conduct in this direction independently of the target algorithmic technique (e.g.,
online or offline) and the nature of the compute environment (e.g., distributed or not).

online and offline cross-domain optimization. The work described in this chapter
can be viewed from a more global research perspective as an attempt to increase the gener-
ality of heuristic search algorithms given the wide range of problem domains that one can
encounter. A global perspective of our work is to generalize the use of online and offline
control and tuning techniques and to improve their cross-domain ability. For that purpose,
we have identified three major research approaches. Firstly, online and offline techniques
can be coupled to work hand in hand in order to better address the heterogeneity of problem
domains and instances. For example, offline parameter tuning can be viewed as an optimiza-
tion/decision problem under uncertainty, where the uncertainty comes from the algorithm
it-self and from the problem domain/instance as well. In this respect, machine learning
based (adaptive) approaches, e.g., multi-armed bandits, domain adaptation, transfer learn-
ing, can be particularly helpful in order to improve the robustness of existing automatic
configuration tools. Secondly, injecting blackbox landscape features into the optimization
process is a promising research direction that needs more in-depth investigations. For ex-
ample, what (cross-domain) blackbox features are the most effective in informing about the
difficulty of a problem instance, or the efficiency of some available algorithms, is a difficult
question. How to extract those features, a priori or even a posterior, in an online or in an
offline fashion, and how to guide the high-level search accordingly is another challenging
perspective. Finally, parallelism and distributed computation are of course a key aspect. The
design of distributed and autonomous solvers that would be able to learn while optimizing,
or inversely to optimize while learning, is a promising research path, since such an approach
would naturally take into account the cost of additional learning or optimization efforts and
simultaneously offer novel algorithmic options such as the possibility of exchanging useful
information informing about the degree of similarity or difficulty of different problems.

4 MULT I -OB JECT IVE OPT IM I ZAT ION AND
DECOMPOS IT ION

In this chapter, we describe our main contributions in multi-objective optimization with a
particular focus on decomposition based approaches. The main challenge is on the design
and analysis of novel algorithmic components at the aim of studying and improving the
search ability of decomposition-based algorithms, and taking full benefits from their high-
level enabled parallelism. The following aspects will be addressed:

• In the introductory section, we recall some background on multi-objective evolutionary
optimization. We also provide an overview of the state-of-the-art decomposition-based
Moea/d algorithm, while stating our general scientific interest in such a framework.

• In Section 4.2, we discuss our contributions on two core issues in decomposition,
namely (i) the specification and understanding of the scalarizing function used to
transform the original multi-objective problem into several single-objective problems,
and (ii) the mating selection and replacement mechanisms used to evolve the popula-
tion. These aspects are studied in a sequential compute environment.

• In Section 4.3, we discuss our contributions on designing parallel decomposition algo-
rithms. First, we deal with the adaptive and distributed setting of the weight vectors
used in decomposition. We show that using very local distributed rules to define the
search directions adaptively, can lead to high quality solutions and high parallel effi-
ciency. Second, we provide a fine-grained message passing variant of Moea/d which
is to our best knowledge the first to achieve scalability while providing non-trivial
approximation quality / acceleration trade-offs.

• In Section 4.4, we discuss very briefly some issues related to the design of effective
search operators. First, we highlight our work on connecting local search with decom-
position for discrete problems, and we show how decomposition can lead to novel
evolutionary components that are simple enough to enable parallelism. Second, we
highlight our work on incorporating machine learning inspired techniques to design
multiobjective evolutionary operators. In particular, we describe a new alternative to
leverage the well-established single-objective CMA-ES (Covariance Matrix Adaption
Evolution Strategy) optimizer for multi-objective problems.

collaborators, projects and related publications
collaborators. H. Aguirre, D. Brockhoff, M. Basseur, O. Cuate, M. Drodzik, A. Goëffon,
A. Liefooghe, G. Marquet, S. Martinez-Zapotecas, H. Monzon, J. J. Palacios Alonso, M.
Sagawa, O. Schuetze, J. Shi, K. Tanaka, E-G. Talbi, S. Verel, Q. Zhang

publications. [Der+14b; Lie+17a; Mon+17; Shi+17b; Sag+17; Cua+17; Der+16; Der+16;
Sag+16; Bas+16; Mar+15a; Mar+15b; Dro+14; TBD13; LD16; AD15; Mar+14; Der+14a; Der+15;
DBL13]

projects. ANR PRCI France/Hong-Kong BigMO project (Coordinator; HK coordina-
tor: Q. Zhang) (2017-2021), PHC Procore France/Hong-Kong (Coordinator) (2016-2017),
International associated Lab France/Japan LIA-MODO (Co-founder) (2017-), JSPS-MEXT
France/Japan project (2013-2016), S3-BBO Ayame/Inria associate team (2015-), ECOS Nord
France/Mexico Project (2016-2020). (See Appendix A.3)

61

https://sites.google.com/view/bigmo/
https://sites.google.com/view/lia-modo/
http://francejapan.gforge.inria.fr/doku.php
http://francejapan.gforge.inria.fr/doku.php?id=associateteam

62 multi-objective optimization and decomposition

4.1 introduction and background

4.1.1 General Context and Definitions

multi-objective optimization and decision making. Multi-objective optimization ap-
pears in several application fields, such as ambient intelligence, cloud computing, logistics,
smart-cities, etc, where the underlying problems can be modeled as optimization problems
with multiple criteria to be optimized simultaneously. For example, on may wish to min-
imize the cost of deploying sensors in a city while maintaining a good quality of service
to users and minimal disruption during the deployment phase. In practice, these objective
functions are many often conflicting, and it is unlikely to find one single solution which is
able to optimize all target objectives simultaneously at the same time. Instead, there exist a
whole set of solutions providing different trade-offs between the considered objectives.

From a decision making perspective, the main issue when considering a multi-objective
optimization problem is to choose one appropriate solution that best meets the expectations,
constraints or preferences of the decision maker. Actually, solving a multi-objective opti-
mization problem is tightly related to the decision making process, and three main classes
of approaches are to be differentiated. In the first class, called a-priori, the decision maker
provides some knowledge about her preference before even the optimization process is car-
ried on. The main goal is to help the optimization process computing the desired solution.
In practice, this consists many often in transforming the original multi-objective problem
into a single objective problem where traditional techniques form single-objective optimiza-
tion can be used. However, the decision maker might not have any specific knowledge
about the problem at hand, and providing an accurate modeling of her preferences might
be a difficult issue. In the second class, called a-posteriori, the goal is to find the whole
set of solution offering the best attainable objective trade-offs or a good representative (ap-
proximated) subset. This allows the decision maker to eventually acquire a full knowledge
about this set and to extract one solution that best suits her expectations. Although there
is no need to model the decision making preferences, computing a whole set of possible
solutions is a challenging task and the analysis of these solutions by the decision makers
might also be an issue, especially when a large number of objectives are to be considered.
In the third class, called interactive, the decision maker needs to continuously interact with
the optimization process in an online iterative fashion. In particular, the decision maker can
progressively refine her preferences according to the information and knowledge gained
while the optimization process is running.

It is worth-noticing that each of these different classes present both some limitations and
some benefits, depending on the problem to tackle and the decision making setting. In
our work, we are mainly concerned with a posteriori approaches, and more particularly on
providing the decision maker with an approximated solution set, i.e., the decision making
phase it-self is not addressed but only the optimization phase.

basic definitions. In the rest of this chapter, a multi-objective optimization problem is de-
fined by an objective vector function f = (f1, f2, . . . , fM) with M > 2, and a set X of feasible
solutions in the decision space. In the combinatorial case, X is a discrete set. Actually, our
work is mostly concerned with the combinatorial case, and hence this is assumed in the rest
of this chapter unless stated explicitly. Let Z = f(X) ⊆ IRM be the set of feasible outcome
vectors in the so-called objective space. To each solution x ∈ X is then assigned exactly one
objective vector z ∈ Z, on the basis of the vector function f : X → Z with z = f(x). In a
maximization context, an objective vector z ∈ Z is dominated by an objective vector z′ ∈ Z,
denoted by z ≺ z′, iff ∀m ∈ {1, 2, . . . ,M}, zm 6 z′m and ∃m ∈ {1, 2, . . . ,M} such that zm < z′m.
By extension, a solution x ∈ X is dominated by a solution x′ ∈ X, denoted by x ≺ x′, iff
f(x) ≺ f(x′). This is illustrated in Fig. 15. A solution x? ∈ X is said to be Pareto optimal (or
efficient, non-dominated), if there does not exist any other solution x ∈ X such that x? ≺ x.

4.1 introduction and background 63

x3

x2

x1

f2

f1
decision space objective space

non-dominated

dominated

x3

x2

x1

f2

f1
decision space objective space

Pareto set Pareto front

Figure 15: Illustration of the Pareto dominance relation, Pareto Set, and Pareto Front.

The set of all Pareto optimal solutions is called the Pareto set (or the efficient set). Its mapping
in the objective space is called the Pareto front. One of the most challenging task in multi-
objective optimization is to identify a minimal complete Pareto set, i.e., one Pareto optimal
solution for each point from the Pareto front.

Generating a complete Pareto set is often infeasible for two main reasons [Ehr05]: (i) the
number of Pareto optimal solutions is typically exponential in the size of the problem in-
stance, and (ii) deciding if a feasible solution belongs to the Pareto set may be NP-complete.
Therefore, the overall goal is often to identify a ’good-quality’ Pareto set approximation. To
this end, heuristics in general, and evolutionary algorithms in particular, have received a
growing interest since the late eighties [Deb01; CLV07], which constitutes the main focus
of our work. We also notice that two classes of problems can be distinguished according
to the number of objectives. Multi-objective optimization problems often refer to a setting
where 2 or 3 objectives are considered, whereas problems with at least 4 are termed as
many-objective [ITN08]. This is mainly motivated by the specific challenges and goals cor-
responding to these two situations. In fact, the probability that a solution is Pareto optimal
usually increases with the number of objectives and hence the size of the Pareto set increases.
Consequently, the properties that should be fulfilled by an approximation set, as well as the
design and relative performance of an optimization algorithm, can be seemingly different
according to which class of problems is considered.

Before providing an overview on the existing evolutionary multi-objective optimization
algorithms, we first discuss standard techniques used to evaluate the quality of an approxi-
mation set.

quality indicators. In contrast to a single-objective scenario, where the objective value
of a solution is a single numerical value which is sufficient to assess its relative quality, in
multi-objective optimization it is not clear how to appreciate the quality of a whole set of
solutions. This is a critically important issue which is still being addressed in several re-
search work, not only to compare different sets or algorithm outputs, but also to improve
the dynamics of a multi-objective optimization process. Generally speaking two main prop-
erties are considered: (i) the diversity of solutions that is their ability to represent a wide
and representative range of the Pareto front/set, and (ii) convergence which provides an idea
on the how far the solutions are from the Pareto front. Of course, when considering a spe-
cific algorithm, this is to be related to the available computing effort. Among the different
approaches allowing to render the quality of an approximation set, quality indicators are a
standard and common tool. Such indicators assign, to any solution set, a real-value reflect-
ing a given aspect of approximation quality. A large spectrum of quality indicators have
been designed such as the inverted generational distance (IGD), The epsilon indicator (EPS),
the R-metrics family (R), the hypervolume (HV) [KTZ06; ZKT08; Zit+03]. Notice that one
single indicator might not be sufficient to provide a precise interpretation of the quality of
a set, and it also depends on many factors such as the shape of the Pareto front, the distri-
bution of non-dominated vectors in the objective space, or some user-defined parameters.

64 multi-objective optimization and decomposition

Consequently, there is no perfect agreement between these different indicators, which we
actually studied more thoroughly in [LD16], but we do not present in this document for
clarity. In the rest of this document, we shall use two popular indicators when assessing
the performance of the different proposed algorithms, namely the epsilon indicator and the
hypervolume. Roughly speaking, the epsilon indicator family gives the minimum factor by
which the approximation set has to be translated in the objective space in order to (weakly)
dominate the reference set, that is the exact or the best known solution set. The hypervol-
ume gives the multidimensional volume of the portion of the objective space that is weakly
dominated by an approximation set. The reader is referred to [KTZ06; ZKT08; Zit+03] for
more formal definitions and for further considerations on the performance assessment of
multi-objective optimization algorithms.

4.1.2 Evolutionary Multi-Objective Algorithms

As mentioned previously, the Pareto set/front is generally impossible to enumerate in an
exact manner and/or in a reasonable amount of time, though some exact techniques exist
in the literature, e.g., [Vis+98; SSP06]. In our work, we focus on the design and analysis
of evolutionary heuristic search algorithms [Deb01; CLV07]. Evolutionary Multiobjective
Optimization (EMO) approaches have been in fact proved to be extremely effective due the
high quality of solutions they are able to compute, and also due to their adaptability to a
wide spectrum of applications. These approaches have solid foundations and come with
different classes containing multiple algorithms that are being continuously developed and
enhanced. Generally speaking, most multi-objective evolutionary algorithms follow a stan-
dard algorithmic scheme where a population of solutions is evolved in an iterative manner.
An external archive, of bounded or unbounded size, gathering all non-dominated solutions
found so-far during the search, might be additionally maintained. The output is then either
the population it-self, the archive, or a subset of non-dominated solutions, depending on
the optimization context. During the search process, specific mating selection and replacement
mechanisms are then used in order to respectively (i) choose some parents from which new
individuals are created using some variation operators, and (ii) then update the population
(and the archive) by incorporating the newly generated solutions. Apart from the varia-
tions operators used to generate new individuals, the dynamics of an evolutionary process
in terms of convergence towards the Pareto front and diversity of computed solutions is
tightly related to how the selection and replacement are designed. We can distinguish three
main classes of approaches as described in the following.

pareto dominance based approaches. Algorithms from this family mostly rely on a
dominance relation in order to ’compare’ different solutions at the selection and replace-
ment steps. For instance, we can cite the well-established and popular NSGA-II [Deb+02]
algorithm which uses non-dominating sorting in order to rank the solutions in the popu-
lation, as well as other local search approaches [Lie+09] such as Pareto Local Search (PLS)
[PCS04; LTZ04]. For the sake of illustration, the high level code of a basic PLS algorithm is
given in the template of Algorithm 7: from the current archive (containing only currently
non-dominated solutions) a non-visited solution is selected, its neighbors according to a
neighborhood structure are evaluated, and those that are non-dominated are simply added
to the archive, and so on, until the neighborhood of all solutions in the archive are explored.

indicator based approaches. Algorithms in this family rely on a quality indicator in or-
der to guide the multiobjective search. The goal is in general to converge towards a solution
set optimizing the underlying indicator. The so-called Indicator-Based Evolutionary algo-
rithm (IBEA) [ZK04] is one of the most representative algorithm in this family together with
the so-called SMS-MOEA [BNE07b]. For the sake of illustration, we provide in Algorithm 8

a high level algorithmic template. Notice that to a solution x is attributed a real-valued

4.1 introduction and background 65

Algorithm 7: Pareto Local Search (PLS) using an unbounded archive.
1 x0← initial (non-visited) solution;
2 A← {x0};
3 repeat
4 Select a non-visited solution x ∈A;
5 Explore neighboring solutions in N(x) and mark x as visited;
6 A← replace A with non-dominated solutions from A∪N(x);
7 until All solutions are visited;

Algorithm 8: Indicator-Based Evolutionary Algorithm (IBEA). The ’fitness’ of a solu-
tion is defined by function h using an indicator-based contribution I, e.g., in IBEA,

h(x) =
∑
x
′∈P\{x}(−e

−I(x
′
,x)/κ), κ a constant, and I relates to the epsilon indicator.

1 P← initial population ;
2 repeat
3 P ′ ← Select solutions from P;
4 Q← generate new solutions from P

′
using a variation operator;

5 Evaluate the solution in Q using the fitness function h;
6 P← Replace P by solutions from P∪Q;
7 until stopping condition is satisfied;

Algorithm 9: Moea/d. µ (single-objective) subproblems g(.|λi) are defined with re-
spect to every search direction (weight vector) λi.
1 (λ1, . . . ,λµ)← generate µ initial weights/directions;
2 ∀i ∈ {1 . . .µ}, B(i)← the T -neighborhood of sub-problems i, i.e., the closest weights to λi;
3 (x1, . . . ,xµ)← generate initial population of size µ;
4 repeat
5 for i ∈ {1 . . .µ} do
6 Select x and x

′
randomly in {xj : j ∈ B(i)};

7 y← mutation crossover repair(x, x
′
);

8 for j ∈ B(i) do
9 if g(y|λj) is better than g(xj|λj) then

10 xj← y;

11 until stopping condition is satisfied;

number h(x) which depends on an indicator function I. This function is to be viewed as
associating a fitness value to every individual and hence allowing to compare them, and to
eventually prefer one over the other at the selection and replacement steps.

decomposition based approaches. In our work, we are mainly concerned by this fam-
ily of approaches, also referred to as aggregation-based or scalarizing-based. They rely
on the reformulation of the original multi-objective problem in a number of single- or
multi- objective smaller (sub)-problems that are solved either cooperatively or indepen-
dently. Among the different existing algorithms, e.g., cMOGA [MIG01], MOGLS [Jas02;
IM98], MSOPS [Hug03], etc, the so-called Multiobjective Optimization Evolutionary Algo-
rithm based on Decomposition (Moea/d) [ZL07] is one of the most popular algorithms that
has been attracting a lot of attention from the community in the last few years. In the rest
of this section, we provide a more throughout description of Moea/d for which the basic
template is given in Algorithm 9.

The idea of Moea/d is to cooperatively search for good-performing solutions in multiple
regions of the Pareto front by decomposing the multi-objective problem into a number of
scalarized single-objective sub-problems. Many different scalarizing functions [Mie99] can

66 multi-objective optimization and decomposition

be used for this purpose. Popular examples are the weighted sum (W) and the weighted
Tchebycheff (T) functions defined below:

WS(x, λ) =
m∑
i=1

λi · fi(x) , T(x, λ) = max
i∈{1,...,m}

λi ·
∣∣z?i − fi(x)

∣∣

where λ = (λ1, . . . , λm) is a weighting coefficient vector such that λi > 0 for all i, and
z? = (z?1, . . . , z?m) is a utopian point dominating all other points, i.e., ∀i,∀x, z?i > fi(x). T (resp.
WS) is to be minimized (resp. maximized).

Given such a scalar function g, and for each sub-problem i ∈ {1, . . . ,µ}, the goal of
Moea/d is to approximate the solution x with the best scalarizing function value g(x, λi).
For that purpose, it maintains a population P = (x1, . . . , xµ), each individual correspond-
ing to a good-quality solution for one sub-problem. For each sub-problem i ∈ {1, . . . ,µ}, a
set of neighbors B(i) is defined, which is typically the set of T closest weighting coefficient
vectors using the euclidian distance. To evolve the population, subproblems are optimized
cooperatively based on this neighborhood relation. At a given iteration corresponding to
one sub-problem i, two solutions are selected at random from B(i), and an offspring solu-
tion y is created by means of variation operators (e.g., mutation, crossover, repair functions,
etc). Then, for every sub-problem j ∈ B(i), if y improves over j’s current solution xj then
y replaces it, i.e., for g = T, if g(y, λj) < g(xj, λj) then set xj = y. The algorithm continues
looping over sub-problems, optimizing them one after the other, until a stopping condition
is satisfied.

4.1.3 Moea/d: Motivation, Challenges and Literature Overview

general motivation. Most of the work described in this chapter deals with the design
and analysis of decomposition based algorithms, in particular within the Moea/d frame-
work. Our motivation for adopting such an approach can be explained from different orthog-
onal perspectives. First, one of the most appealing and distinctive feature of the Moea/d

framework is its simplicity. Simplicity, in addition of being a desirable aspect in general,
leads in the case of decomposition to both efficient and effective solving procedure. In
fact, decomposition follows the relatively simple and well-established ”divide-and-conquer”
paradigm. Breaking a multi-objective problem into several ’smaller’ sub-problems solved in
a cooperative manner is thus a natural outcome to reduce the complexity and the difficulty
inherent to the tackled problems. For instance, compared to other dominance or indica-
tor based approaches, the computational flow of Moea/d does not require sophisticated or
computationally expensive operations, such non-dominated sorting, hypervolume computa-
tions, etc. Moreover, decomposition enables parallelism, in the sense that the computations
inherent to different sub-problems could be intuitively distributed over a possibly large-
scale computing environment. As such, the distributed nature of a decomposition-based ap-
proach, when dealing with large-scale or computationally intensive problems, opens novel
opportunities for designing new parallel solving algorithms that can be deployed over a
real massively parallel platform with reduced re-engineering efforts for practitioners. Con-
sidering ’smaller’ subproblems also allows to incorporate the lessons learnt from the past
more easily in a smart manner. This increases the flexibility of the designed approaches, as
can be witnessed by the numerous versions and extensions of Moea/d for a wide range
of optimization problems and scenarios; see e.g. [MOE]. For instance, existing evolution-
ary operators, as well as machine learning techniques, which are extensively studied in the
single objective setting, could be wisely coupled within a decomposition-based optimiza-
tion approach, either to ease the solving of each sub-problem and to guide the search in a
high-dimensional space, or to help identifying the best possible interactions and coordina-
tion rules between the involved sub-problems. Of course, decomposition comes with other
challenges that have to be accurately addressed.

4.1 introduction and background 67

general challenges. Generally speaking, three main challenges are addressed in our
work as discussed in the following paragraphs. As for any other optimization technique,
setting up an effective decomposition-based approach relies on the design and integration
of several components that can be configured in many different ways. The specification of
these components and their combination is crucially important. We can classify decomposi-
tion components into two high-level (and coarse-grained) categories. The first one enables
to define how to decompose the original problem into a set of sub-problems both in the
objective and in the variable space, thus specifying the regions where it would be more
interesting to focus the search for promising solutions. The components from the second
category enable to effectively solve the sub-problems and to guide the search within each of
the so-defined region. The first central challenge addressed in our work is the coordination
of these two categories of components, their joint specification, and the interaction between
the computations occurring at the different regions defined by the decomposition in order to
reduce the computational cost of the underlying global solving procedure while improving
its effectiveness.

As mentioned before, and since the solving process is by essence distributed among differ-
ent cooperating sub-problems, decomposition also implies the distribution of the underlying
computations among possibly large-scale computing resources. Nevertheless, considering a
computing platform as a simple physical medium to be used in a straightforward manner
can inevitably result in incompatibility issues between the designed algorithms and their
effective deployment and parallelization. A more appropriate approach is thus to think the
distribution of the computational flow till the beginning at the time the different compo-
nents of a decomposition-based multi-objective optimization algorithm are specified, which
constitute the second general challenge addressed in our work.

Finally, we are also interested in a more global approach where decomposition is one
choice that can eventually complement several other possible ones. The challenge is then
to be able to better understand what makes decomposition different from other approaches
and tools, and for which optimization problems or scenarios. The ultimate (global) goal of
our work is in fact to strengthen the existing solving procedures, optimization methodolo-
gies, algorithms, etc, and to improve their efficiency, quality, robustness, etc.

In the rest of this section, we provide a more focused literature overview in an attempt to
better position our contributions all along the large panorama of studies on decomposition
and the Moea/d framework in particular.

brief history and literature overview. The origins of the original Moea/d frame-
work [ZL07] go back to the cellular multi-objective genetic algorithm (C-MOGA) and its
related variants [MIG00a; MIG00b]. The main differences rely in the fact that the Moea/d

framework allowed to (i) strengthen the concept of neighboring cooperating subproblems,
by explicitly addressing the issue of local neighborhood-based mating selection and replace-
ment, and (ii) to point in a more comprehensive way the importance of the scalarizing func-
tions used to define the cooperating subproblems and to guide the search accordingly. Fol-
lowing these two aspects, several other studies followed, motivated by the success and effec-
tiveness of such a framework, e.g., a variant of Moea/d was the winner of the CEC 2009 con-
ference competition dealing with continuous multi-objective benchmark instances [ZLL09;
LZ09]. A recent comprehensive survey can be found in [Tri+17], where different lines of re-
search along the Moea/d framework are classified and discussed thoroughly. Following the
classification of [Tri+17], we are mainly concerned with the following four critical aspects:
(i) the weight vector specification which is related to the decomposition methodology, (ii)
the mating selection and replacement mechanisms, (iii) the computational effort underlying
the Moea/d algorithm, and (iv) the design and integration of variation operators. In the
following, some related work are highlighted very briefly in order to allow the reader to
better position our work and contributions.

68 multi-objective optimization and decomposition

In the conventional Moea/d algorithm, some initial weighted vectors need to be gener-
ated. Standard techniques using a simplex-lattice design [DD98] are not always appropriate,
since they may guide the search to a non-uniform distribution of the solutions along the
Pareto front. Alternative methods were hence considered for this purpose, e.g., general-
ized decomposition [GPF13], two layer approaches [Li+15b], and others [Zap+15]. Besides
the standard weighted sum and Tchebychev scalarizing functions, other types of scalarizing
approaches were also considered, e.g., penalty based schemes [Sat15a; YJJ17], angle based
schemes [Che+16]. More importantly, it was shown that adapting the weighting function-
s/vectors can lead to substantial improvements. For instance, mixing different scalarizing
functions simultaneously and adaptively is considered in [Ish+10; Ish+09]. In [WZZ15], the
impact of using the Lp norm is analyzed, and an online adaptive approach to estimate an
accurate value of the p parameter is derived in [WZZ16]. Moreover, alternative decomposi-
tion strategies using region decomposition [Wan+16; LGZ14] and reference vectors [Che+16]
were recently proposed in order to derive enhanced convergence and diversity search dy-
namics. In our work, we consider to conduct an in-depth analysis of using different scalar-
izing functions in decomposition, and provide a alternative perspective to understand the
fundamental difference between different ones. Weight adaptation is also one of our con-
cerns and we address this issue form a distributed local perspective.

Tightly related to this aspect, extensive research was conducted in order to study, improve
and extend, the basic mating selection and replacement mechanisms of Moea/d. In fact, we
remark that mating selection within Moea/d is performed exclusively among neighbors.
Assuming that nearby sub-problems have similar solutions, the neighborhood size is critical
for an accurate exploration/exploitation balance. Moreover, the replacement mechanism
can lead to a situation where several neighbors are replaced by the same offspring. It can
also lead to the situation where a solution which does improve a subproblem not belonging
to the neighborhood, is discarded. This can imply a loss in both diversity and convergence,
and likely a loss in performance. Different techniques can be adopted to deal with such
issues, by typically adapting the neighborhood size, adjusting the neighborhood with re-
spect to the selected subproblem, restricting the number of replacements, using different
neighborhoods, etc. Among the different variants that one can find, a notable one called
Moea/d-de, can be considered as a state-of-the-art [LZ09], and was extensively studied
in the context of continuous and difficult benchmark functions using the well-established
differential evolution operator as a crossover. Two simple modifications to basic Moea/d

are actually considered in Moea/d-de. The first modification uses an extra probability pa-
rameter δ allowing parents to be selected from the whole population instead of solely the
T -neighborhood. The second one uses an extra parameter nr to bound the number of neigh-
bors that can be replaced by a newly generated offspring. In our work, we consider different
novel selection and replacement strategy to improve the behavior of Moea/d while high-
lighting in a more comprehensive manner what makes one strategy better than the other.
We also designed selection and replacement to be compatible with a distributed design.

The third critical aspect in Moea/d is the specification of the computational effort devoted
to the solving of every single subproblem. In the original Moea/d variant, all subproblems
are in fact treated equally. This might lead to some issues, typically when the Pareto front
has a complicated shape, or when different regions of the Pareto front have different degrees
of difficulty [Qi+14; ZLL09; Li+15a]. This is actually tightly related to the specification of
weight vectors. Generally speaking, two kind of approaches are used: dynamically allocat-
ing the computational resources in terms of the number of function evaluations attributed
to each subproblem, and adapting the weight vectors themselves to better guide the search.
Besides, when the function evaluation is expensive, different studies can be found on the use
of surrogates and meta-models to speed-up the search, e.g., [ZC13; Zha+10]. In our work,
we mainly addressed the question of how to distribute the computational flow of Moea/d

over different parallel processes, and how to design novel variants allowing a high level
parallelism. This is actually one research issue that was considered scarcely in the past.

4.2 contribution #1: design components of decomposition based approaches 69

The last critical aspect is the specification of the variation operators used to create new
candidate solutions. There were in this respect several studies both to incorporate existing
widely used operators and techniques (differential evolution, local search, particle swarm,
ant colony, estimation of distribution, etc) and also to design improved variants that can take
benefits from the cooperative process of solving neighboring sub-problems, e.g., see [Tri+17].
Some work also considered to study the combination of different operators, and also the
adaptive on-line selection [Li+02] or off-line tuning [BLS15] of search operators within
Moea/d. The interesting observation here is that the design of accurate variation opera-
tors and their intelligent combination is essential when tackling different problem instances
or domains. This is also correlated with the specification of the other components such as
the choice of the scalarizing function and the mating selection and replacement, which all
together allow to efficiently improve the population quality. In our work, we also worked
actively in incorporating novel variation operators both for combinatorial domains, where
the community still lacks much knowledge on a systematic way of handling decomposition,
and also for continuous domains where we were mainly interested by machine learning
inspired techniques.

In the rest of this chapter, we shall provide a more detailed description of our contribu-
tions covering explicitly or implicitly most of the previously discussed aspects. Our con-
tributions are actually structured following three lines. In Section 4.2, we focus on weight
vector specification, mating selection and replacement, in a standard sequential setting. In
Section 4.3, we focus on the benefits of the high level parallelism allowed by decomposition.
In Section 4.4, we address the design and the incorporation of search operators.

4.2 contribution #1: design components of decom-
position based approaches

The first research line adopted in our work concerns the design and analysis of the algorith-
mic components that can be plugged into a decomposition based approach. In the following,
we first provide an overview of our contribution on analyzing the impact of using specific
scalarizing functions. Then-after, we describe our contributions on designing improved vari-
ants of Moea/d based on novel mating selection and replacement mechanisms.

4.2.1 On the Impact of the Scalarizing Functions

Let us recall that there exist many ways of decomposing a multiobjective optimization prob-
lem using a (set of) single-objective scalarizing functions, including the prominent examples
of weighted sum (WS), weighted Chebychev (T), or augmented weighted Chebychev (Saug) [Mie99].
For most of them, theoretical results, especially about which Pareto-optimal solutions are
attainable, exist [Mie99; Kal00] but they are typically of too general nature to allow for
statements on the actual search performance of (stochastic) optimization algorithms. Within
the Moea/d framework, such functions were mostly studied by evaluating their ability to
provide a good approximation set and by comparing the relative performances of the under-
lying multi-objective algorithms, e.g., [IAN13; Sat15b]. In our work [Der+14a], we instead
abstract away from any particular scalarizing function, and rather focus in understanding
which general properties of them influence the search behavior of EMO algorithms. We
argue by means of experimental investigations that it is not the actual choice of the scalar-
izing function or their parameters that makes the difference in terms of performance, but
rather the general properties of the resulting lines of equal function values. To this end, and

70 multi-objective optimization and decomposition

Table 3: Overview of some scalarizing functions, and the corresponding angles of the lines of equal
function values with the standard Pareto dominance cone.

scalar function Sgen parameters opening angles reference

WS(z) =w1|z
∗
1 − z1|+w2|z

∗
2 − z2| α = 0, ε = 1 θ1 = arctan

(
−
w1
w2

)

θ2 = π
2
+ arctan

(w1
w2

)
[Mie99]

T(z) = max{λ1|z∗1 − z1|,λ2|z∗2 − z2|} α = 1, ε = 0 θ1 = 0
θ2 = π/2

[Mie99]

Saug(z) = T(z)+ε (|z∗1 − z1|+ |z∗2 − z2|) α = 1,
w1 =w2 = 1

θ1 = arctan
(
− ε
λ1+ε

)

θ2 = π
2
+ arctan

(
ε

λ2+ε

)
[Mie99]

Snorm(z) = (1−ε)T(z)+εWS(z) α = 1 − ε,
wi = 1/λi

θ1 = arctan(− εw1
(1−ε)λ2+εw2

)

θ2 = π
2
+ arctan(εw2

(1−ε)λ1+εw1
)

[Der+14a]

for problems with 2 objectives, we consider the following general scalarizing function that
covers the special cases of WS1 , T, and Saug functions:

Sgen(z) = α ·max {λ1 · |z∗1 − z1|, λ2 · |z∗2 − z2|}+ ε (w1 · |z∗1 − z1|+w2 · |z∗2 − z2|)

where z = (z1, z2) is the objective vector of a feasible solution, z∗ = (z∗1, z∗2) a utopian
point, λ1, λ2,w1, and w2 > 0 scalar weighting coefficients indicating a search direction in
objective space, and α > 0 and ε > 0 parameters to be fixed. For more details about
the mentioned scalarizing functions and their relationship, we refer to Table 3 where we
consider a case of Sgen that combines WS and T with a single parameter ε: the normalized
Snorm(z) = (1− ε)T(z) + εWS(z) where α = 1− ε and ε ∈ [0, 1].

One important property of a scalarizing function turns out to be the shape of its sets of
equal function values, that is the curve in the objective space where all points of the curve
have the same scalar value with respect to the considered configuration of the scalarizing
function. The following proposition, leveraging previous work [Mie99], states that these
equi-function-values are given by two straight lines characterized by the opening angles θi
they form with the f1-axis, as illustrated in Fig. 16.

Proposition 1 Let z∗ be a utopian point, λ1, λ2,w1, and w2 > 0 scalar weighting coefficients, α >
0 and ε > 0, where at least one of the latter two is positive. Then, the polar angles between the equi-
utility lines of Sgen and the f1-axis are θ1 = arctan(− εw1

αλ2+εw2
) and θ2 = π

2 + arctan(εw2
αλ1+εw1

).

We are able to provide empirical evidence on the fact that the dynamics of the search pro-
cess is rather ’independent’ of the scalarizing function under consideration or its parameters.
Instead, we show that the search process is guided by the positioning of the lines of equal
function values in the objective space—described by the opening angle, i.e., θ1 and θ2. Using
the ρMNK landscapes [Ver+13; AT07] as a benchmark problem, Fig. 16 shows three typical
exemplary executions of a single objective (1+ λ)-EA, endowed a standard bit-flip mutation,
and optimizing the single objective scalar function Sgen. The typical initial solution maps
around the point z = (0.5, 0.5) in the objective space, which is the average objective vector
for a random solution of ρMNK landscapes. One can see that the evolution of the current
solution can be explained by the combination of two effects. The first one is given by the
bit-flip mutation operator, that produces more offspring in a particular direction compared
to the other ones, due to the underlying characteristics of the ρMNK landscapes under con-
sideration. The second one is given by the lines of equal function values, i.e., the current
solution moves perpendicular to the equi-fitness lines, following the gradient direction in
the objective space. We can remark that the search process is mainly guided by the lower
part of the cones of equal function values when the direction is above the initial solution,
and vice versa. When the direction angle δ is smaller (resp. larger) than π/4, the dynamics of
the search process are better captured by the opening angle θ1 (resp. θ2). Geometrically, the

1 Contrary to the standard literature, our formalization assumes minimization and we therefore have included the
utopian point z̄ that is typically assumed to be z̄ = (0,0) for minimization.

4.2 contribution #1: design components of decomposition based approaches 71

 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7

f2

f1

Iter=1
Iter=2

Iter=4
Iter=8

Iter=16
Iter=32

Iter=64
Iter=128 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7

f2

f1

Iter=1
Iter=2

Iter=4
Iter=8

Iter=16
Iter=32

Iter=64
Iter=128 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7

f2

f1

Iter=1
Iter=2

Iter=4
Iter=8

Iter=16
Iter=32

Iter=64
Iter=128

Figure 16: Exemplary runs of a (1+ λ)-EA for different direction angles δ (straight line) and different
ε-values using Snorm and ρMNK landscapes (ρ = −0.7). Shown are the best known Pareto
front approximation, the offspring at some selected generations, the evolution of the parent,
and the lines of equal function values. Left: ε = 0, δ = 3

10 · π2 . Middle: ε = 1, δ = 3
10 · π2 .

Right: ε = 0.6, δ = 7
10 · π2 .

π/8

π/4

3π/8

-π/2 -3π/8 -π/4 -π/8 0

F
in

a
l
a

n
g

le
 φ

Opening θ1

0

π/8

π/4

δ
 ∈

 [
0
,π

/4
]

3π/16

π/4

5π/16

-π/2 -3π/8 -π/4 -π/8 0

F
in

a
l
a

n
g

le
 φ

Opening θ1

0

π/8

π/4

δ
 ∈

 [
0
,π

/4
]

π/8

3π/16

π/4

5π/16

3π/8

π/8 3π/16 π/4 5π/16 3π/8

F
in

a
l
a

n
g

le
 φ

:
S

n
o
rm

Final angle φ:Saug

δ = π/16

δ = π/8

δ = 3 π/16

δ = π/4

δ = 5 π /16

δ = 3 π /8

δ = 7 π /16

Figure 17: Left (resp. Middle): scatter plots showing final angle φ(ε) and opening θ1(ε) for ρ = −0.7
and Snorm (resp. Saug). Every color is for a fixed δ and variable ε. Right: Scatter plot
showing (φ(Snorm),φ(Saug)).

optimal solution with respect to a scalarizing function correspond to the intersection of one
of the ‘highest’ lines of equal fitness values in the gradient direction and the feasible region
of the objective space. Although the above description is mainly intuitive, a more detailed
analysis can support this general idea.

In Fig. 17, we show the scatter plot of the final angle φ, that a solution found by the (1+λ)-
EA forms with the f1-axis, as a function of the opening angle θ1 for different direction
angles2 δ ∈ [0,π/4]. The scatter plot gives a set of values (θ1(ε),φ(ε)) for different ε-
values in Snorm and in Saug. From Proposition 1, for a given direction angle δ, the opening
angle θ1 belongs to the interval [δ− π/2, 0] for Snorm, and to the interval [−π/4, 0] for Saug.
Independently of the scalarizing function, when the direction angle is between 0 and around
3π/16 (blue color), the value of φ is highly correlated with the opening angle θ1. For such
directions, a simple linear regression confirms this observation and allows us to explain the
relation between the opening angle and the final angle. Interestingly, this is independent of
the definition of the scalarizing function, and depends mainly on the property of the lines
of equal function values. This tells us that the lines of equal fitness values are guiding the
search process following the gradient direction given by the opening angle in the objective
space. In Fig. 17 (Right), we can see that the obtained final angles are equivalent when the
opening angle is the same, even for different direction angles and/or scalarizing functions.
In fact, we observe that the final angles obtained are very similar for the scalarizing functions
Snorm and Saug if δ is the same for both functions and the ε-values are chosen in order to
have matching opening angles. Whatever the δ- and ε-values, the points are close to the
line y = x, which shows that independently of the scalarizing function, the final angle is
strongly correlated to the opening angle, and not to a particular scalarizing function.

2 Roughly speaking, the direction angle is the angle between the line defined by the weight vector in the objective
space and the f1-axis.

72 multi-objective optimization and decomposition

To summarize, our empirical investigations allows us to show that it is the opening of the
lines of equal function values that explicitly guides the search towards a specific region of
the objective space. In particular, when combining multiple scalarizing search processes to
compute a whole approximation set, these lines play a crucial role to achieve diversity. While
our results are in some sense natural and intuitive and consider simple search procedures,
they make a fundamental step towards strengthening the understanding of the properties
and dynamics of more complex algorithmic settings. They also rise new interesting issues
that were hidden by the complex design of well-established algorithms. For instance, we
are able to highlight the importance of a non-uniform configuration of scalarizing functions
(i.e., different parameters for different weighting coefficient or in different search direction)
which, to the best of our knowledge, was not considered so-far. Moreover, other types of
opening angles can be directly defined without necessarily using a particular scalarizing
function. For instance, this can offer more flexibility when tuning decomposition-based
algorithms, e.g., defining the opening angles without being bound to a fixed closed-form
definition, but adaptively, with respect to the current search state. In particular, this suggests
that common techniques and paradigms in on-line and off-line parameter setting are worth
to be investigated to set the opening angles, instead of designing new scalarizing functions.

4.2.2 Improving Mating Selection and Replacement in Moea/d

a generational moea/d approach. As mentioned in the related work section, Moea/d

could suffer from a lack of diversity due to the locality of its selection and replacement
mechanism. In [Mar+14], we show that this can also be caused by the fact that in Moea/d,
sub-problems are optimized iteratively in a sequence. As can be seen in the template of
Algorithm 9, parents are selected randomly from the neighborhood of the sub-problem
being processed. Thus, it might happen that a solution with the potential of producing a
good offspring, gets never selected for reproduction. Additionally, because a neighbor’s
solution might be replaced as soon as a better offspring is found, this solution gets actually
no chance to survive in the population. To increase the chance for a solution to survive in
the population, we investigate the idea of evolving the whole population simultaneously by
optimizing all subproblems in a generational manner as detailed in Algorithm 10.

Contrary to Moea/d where a single offspring is generated at each iteration, our frame-
work is basically a (µ+ µ)-EA where the first stage consists in generating µ offsprings and
the second stage consists in updating the whole population for the next round. The first
stage corresponds to mating selection where one new offspring is created for every subprob-
lem. Specifically, we consider two alternatives: (i) either the solution of the current subprob-
lem is always selected to be a parent and hence included for variation (x = s), or (ii) parents
are picked randomly from neighbors in the usual way Moea/d proceeds (x = c). Here, s
refers to a Selfish policy, whereas s refers to a Collective strategy. Only when all subproblems
are treated and all µ new offspring solutions are created, the second stage of replacement
occurs. In this stage, the subproblems are processed iteratively and we again consider two
alternatives: (i) either the solution of a subproblem is compared to the offspring created at
this subproblem (y = s), or (ii) the solution of the current subproblem is compared to the
offsprings created in all neighboring subproblems (y = c). Notice that Algorithm 10 is fully
compatible with Moea/d and some other variants as in [LZ09], i.e., parameters δ and nr.

By combining the different selfish and collective generational selection and replacement
policies, we are able to show substantial improvement over Moea/d

3, as illustrated in Fig. 18

rendering the “anytime” behavior of designed algorithms for different ρMNK landscapes
having different objective correlations. In particular, we can see that all combinations are
able to make improvements, with Moead-sc and Moead-cc being consistently better than
Moea/d. We also remark that Moead-sc and Moead-cc are more systematically improving

3 Notice that [LZ09] was the winner of the CEC 2009 competition, and is considered as a reference state-of-the-art
variant of Moea/d for difficult continuous benchmark problems.

4.2 contribution #1: design components of decomposition based approaches 73

Algorithm 10: Moead-xy (x, y ∈ {s, c}), a generational Moea/d.
Input:

{
λ1, · · · ,λµ

}
: weight vectors w.r.t sub-problems; g: a scalarizing function; B(i): the neighbors of sub-problem

i ∈ {1, · · · ,µ}; P=
{
p1, · · · ,pµ

}
: the initial population.

1 while Stopping Condition do
2 for i ∈ {1, · · · ,µ} do
3 if rand(0,1) < δ then Bi ← B(i) ; /* Neighborhood Setting */
4 else Bi ← P ;

5 if x = s then /* Selfish mating selection */
6 k← i;
7 else if x = c then /* Collective mating selection */
8 k← rand(Bi);

9 `← rand(Bi); while ` = k do `← rand(Bi);

10 if rand(0,1) < cr then /* Variation operators */
11 oi ← crossover(pk,p`); oi ←mutation(oi);
12 else oi ←mutation(pk) ;
13 if oi is infeasible then repair(oi);

14 for i ∈ {1, · · · ,µ} do ci ← 0;
15 for i ∈ {1, · · · ,µ} do /* Environmental replacement */
16 if y = s then /* Selfish replacement */
17 p′ ← oi;
18 if g(p′,λi) better than g(pi,λi) then pi ← p′ ;
19 else if y = c then /* Collective replacement */
20 shuffle(Bi);
21 for j ∈ Bi do
22 p′ ← oj;
23 if cj < nr then
24 if g(p′,λi) better than g(pi,λi) then pi ← p′; cj ← cj + 1 ;

upon Moead-ss for test instances having conflicting objectives; whereas Moead-ss is able
to outperform its competitors as the objective correlation gets higher. Actually, we can show
that our strategies induce different intensification/diversification trade-offs both at the local
level of every single-objective scalarized subproblem; but also at a more global level when
considering the whole approximation set. When a selfish (resp. collective) mating selection
is considered, the probability that a solution in the population gets selected for reproduction
is 1 (resp. 1− (1− 1/T)T). This means that all our strategies imply diversified offsprings
since no solution in the current population gets replaced before exploring its potential. At
the replacement stage, if a collective strategy is adopted, then the single-objective search at
every subproblem is intensified since the probability that a locally improving solution can be
found is higher. But this might increase the number of copies in the current approximation
set. When a selfish replacement is considered, it is more likely that the number of copies
is minimized; but at the price of delaying the advance of the population towards the front.
For correlated objectives, and since the front is not too large, it is sufficient that only few
solutions are able to approach the front in order to get good overall performance. Thus, a
selfish replacement can be accurate. This is not the case for anti-correlated objectives where
both the local improvements and the global spread of solutions are crucial.

Besides, we consider in [AD15] to study the behavior of the Moea/d framework, includ-
ing our generational designed approach, when applied to other sophisticated combinatorial
optimization problems. Our goal is to gain a more in-depth understanding of the ben-
efits and limitations of decomposition-based evolutionary algorithms, compared to other
approaches, such dominance based algorithms, and to provide enhanced algorithmic com-
ponents allowing for optimal performance. In the rest of this section, we provide a bench
of results we are able to obtain, and we describe an alternative replacement strategy which
is shown to be highly effective. All results in the rest of this section are with respect to the
Fuzzy Job Shop Scheduling Problem (FJSP) with two objectives for which a formal definition
and related work can be found in [AD15].

74 multi-objective optimization and decomposition

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100

I- H
 i
n

d
ic

a
to

r

Evaluations (x 10
4
)

MOEA/D

MOEAD-ss

MOEAD-sc

MOEAD-cs

MOEAD-cc

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0 20 40 60 80 100

I- H
 i
n

d
ic

a
to

r

Evaluations (x 10
4
)

MOEA/D

MOEAD-ss

MOEAD-sc

MOEAD-cs

MOEAD-cc

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0 20 40 60 80 100

I- H
 i
n

d
ic

a
to

r

Evaluations (x 10
4
)

MOEA/D

MOEAD-ss

MOEAD-sc

MOEAD-cs

MOEAD-cc

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 20 40 60 80 100

I- H
 i
n

d
ic

a
to

r

Evaluations (x 10
4
)

MOEA/D

MOEAD-ss

MOEAD-sc

MOEAD-cs

MOEAD-cc

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100
I- H

 i
n

d
ic

a
to

r

Evaluations (x 10
4
)

MOEA/D

MOEAD-ss

MOEAD-sc

MOEAD-cs

MOEAD-cc

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0 20 40 60 80 100

I- H
 i
n

d
ic

a
to

r

Evaluations (x 10
4
)

MOEA/D

MOEAD-ss

MOEAD-sc

MOEAD-cs

MOEAD-cc

Figure 18: Convergence plots of Moead-xy w.r.t. hypervolume difference and for different ρMNK
landscapes (with fixed bit string size N = 128 and two objectives M = 2). Columns are re-
spectively for instances with objective correlation ρ ∈ {−0.7, 0.0, 0.7}. Rows are respectively
for instances with a degree of non-linearity K ∈ {4, 8}. µ = 128, T = 8, δ = 1.0, cr = 1.0,
nr = 0 and g = T in Algorithm 10.

Table 4: Comparing Moea/d vs. Nsga-ii using FJSP instances. Average indicator value and the
standard deviation (in parentheses, with a multiplicative factor of 10−1) are reported. Gray
cells indicate that the algorithm in the corresponding column is significantly better than the
other one using a statistical t-test with confidence 0.05.

instance Hypervolume Indicator Epsilon Indicator
Moea/d Nsga-ii Moea/d Nsga-ii

ABZ7 0,382(0,38) 0,423(0,32) 0,179(0,39) 0,141(0,32)
ABZ8 0,373(0,31) 0,428(0,35) 0,218(0,33) 0,164(0,36)
ABZ9 0,349(0,44) 0,415(0,33) 0,244(0,47) 0,180(0,35)
FT10 0,549(0,48) 0,591(0,39) 0,199(0,50) 0,163(0,40)
FT20 0,203(0,24) 0,241(0,18) 0,110(0,23) 0,076(0,18)
La21 0,427(0,33) 0,449(0,37) 0,158(0,34) 0,142(0,40)
La24 0,429(0,36) 0,456(0,39) 0,181(0,38) 0,162(0,40)
La25 0,440(0,30) 0,445(0,32) 0,163(0,32) 0,165(0,33)
La27 0,228(0,24) 0,254(0,29) 0,184(0,26) 0,166(0,33)
La29 0,235(0,31) 0,254(0,27) 0,201(0,36) 0,190(0,30)
La38 0,608(0,51) 0,683(0,34) 0,199(0,48) 0,132(0,31)
La40 0,618(0,45) 0,691(0,36) 0,204(0,43) 0,145(0,35)

moea/d vs nsga-ii . Surprisingly, when comparing the performance of conventional Moea/d

to the popular (dominance based) NSGA-II algorithm [Deb+00] (See Table 4), we can see that
Nsga-ii is substantially outperforming Moea/d. To fully understand this huge difference
between the two approaches, we show in Fig. 19 the evolution of the average number of
different solutions (in the objective space) in the population maintained by both approaches
as a function of the number of function evaluations for one representative instance. We
observe that Nsga-ii is able to maintain more different solutions than Moea/d in the first
stages of the run; or equivalently, that the number of copies in Moea/d population is in-
creasing very abruptly. We clearly attribute this to the fact that as soon as a good solution is
found in Moea/d, it will immediately replace all solutions from the neighbor subproblems.
Although this strategy could speed-up convergence, it obviously prevents the evolution-
ary operators to produce improving offsprings in diversified regions in the objective space,
which provides another evidence on the lack of diversity that basic Moea/d can suffer.

4.2 contribution #1: design components of decomposition based approaches 75

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 5 10 15 20 25 30 35 40 45 50

%
 D

if
fe

re
n

t
so

lu
to

in
s

function evaluations / 1000

MOEA/D NSGA-II

Figure 19: Evolution of the percentage of different objective vectors in the population for Moea/d

and Nsga-ii.

recursive opportunistic replacement. Although some existing variants of Moea/d,
e.g., Moea/d-nr4 [LZ09], are able to enhance the original Moea/d and to obtain highly
competitive results compared to Nsga-ii, we found that they still do not handle the diver-
sity issue in an accurate manner. We there-by consider to study the behavior of our previ-
ously described generational approach Moead-xy [Mar+14] as well as a new variant, called
Moea/d-ro, in which population diversity is managed in a more explicit manner. More
specifically, we directly check solution diversity, locally at the neighborhood level, and we
manage to design a non-oblivious replacement. First, we simply do not allow an offspring
to replace a solution if there already exists a solution having the same objective values in
the corresponding neighborhood. Every time this condition is satisfied and the replacement
is activated with respect to an offspring, say y, and a neighboring subproblem solution, say
xj, we do the following. The offspring y becomes the new current solution for subproblem
j, but the previous solution xj is not discarded if it can improve the solution of other neigh-
bors. Hence, we recursively check whether there is an opportunity that solution xj replaces
a solution j ′ in the neighborhood B(j) of subproblem j. If such a solution is found, a new
replacement is activated and so on until no improvement is observed. Notice that with this
strategy we do maintain diversity but we also attempt to improve convergence since we
heuristically check whether a solution can serve for some subproblems before discarding it
from the population.

In Table 5, we can see that for most instances but one, the Moea/d-ro strategy provides
the best results, followed by our Moead-ss generational approach, for which no significant
statistical difference is found with Moea/d-ro. A huge difference between Moea/d-ro and
Moead-ss can however be elicited when examining more carefully their runtime behavior.
In Fig. 20, we provide an illustration of this claim. In the first sub-figure, the Y-axis repre-
sents the average hypervolume obtained by each algorithm, while the X-axis measures the
number of calls to the evaluation function (in the logarithmic scale). Overall, even though
Moead-ss and Moea/d-ro obtain similar hypervolume values at the end, we see that the
evolution of both in time is different. For Moea/d-ro, Moea/d-nr, and even Nsga-ii, they
obtain good results even with a short amount of function evaluations, while Moead-ss is
much slower converging to good results. Actually, in the first stages Moead-ss performs
worse than Moea/d-nr, but it is able to outperform it after a given number of evaluations.
In the right part of Fig. 20, we see the number of different objective vectors that are main-
tained within the population during the evolution of the algorithms. The Moea/d-ro has
a 100% of different solutions, which is to contrast with the other considered algorithms. In
our opinion, this diversity property is what makes one variant of Moea/d better than the
other depending on the available amount of computational effort.

To conclude on our contributions with respect to the mating selection and replacement
of Moea/d, we would like to comment that the very local nature of the neighborhood

4 In this variant, the number of replacement is controlled by a parameter nr, where a new solution can replace at
most nr old ones in the T -neighborhood.

76 multi-objective optimization and decomposition

Table 5: Comparison of Moea/d-ro [AD15], Moead-ss [Mar+14], Moea/d-nr [LZ09], and Nsga-
ii [Deb+00], using FJSP instances. (µ = 100, T = 100, nr = 1, δ = 1 when it holds).

instance Hypervolume Indicator Epsilon Indicator
Moea/d-nr Moead-ss Moea/d-ro Nsga-ii Moea/d-nr Moead-ss Moea/d-ro Nsga-ii

ABZ7 0,435(0,35) 0,446(0,27) 0,456(0,30) 0.423(0,32) 0,128(0,37) 0,112(0,28) 0,106(0,34) 0,141(0,32)
ABZ8 0,446(0,33) 0,459(0,32) 0,477(0,33) 0,428(0,35) 0,144(0,34) 0,129(0,34) 0,112(0,34) 0,164(0,36)
ABZ9 0,425(0,41) 0,435(0,35) 0,445(0,38) 0,415(0,33) 0,167(0,42) 0,156(0,38) 0,148(0,48) 0,180(0,35)
FT10 0,617(0,45) 0,634(0,41) 0,643(0,42) 0,591(0,39) 0,135(0,46) 0,117(0,43) 0,109(0,47) 0,163(0,40)
FT20 0,238(0,20) 0,249(0,20) 0,243(0,23) 0,241(0,18) 0,079(0,18) 0,068(0,18) 0,073(0,20) 0,077(0,18)
La21 0,470(0,27) 0,456(0,29) 0,478(0,33) 0,449(0,37) 0,119(0,29) 0,132(0,32) 0,112(0,34) 0,142(0,40)
La24 0,472(0,47) 0,491(0,30) 0,507(0,36) 0,456(0,39) 0,141(0,48) 0,122(0,30) 0,108(0,34) 0,162(0,40)
La25 0,472(0,35) 0,485(0,30) 0,494(0,32) 0,445(0,32) 0,136(0,37) 0,120(0,30) 0,115(0,38) 0,165(0,33)
La27 0,270(0,29) 0,274(0,22) 0,279(0,28) 0,254(0,29) 0,142(0,35) 0,134(0,24) 0,134(0,29) 0,166(0,33)
La29 0,278(0,31) 0,283(0,32) 0,300(0,31) 0,254(0,27) 0,158(0,34) 0,148(0,34) 0,134(0,35) 0,190(0,30)
La38 0,706(0,36) 0,709(0,36) 0,721(0,30) 0,683(0,34) 0,112(0,31) 0,111(0,34) 0,101(0,29) 0,132(0,31)
La40 0,684(0,41) 0,697(0,35) 0,726(0,31) 0,691(0,36) 0,147(0,37) 0,135(0,34) 0,109(0,44) 0,145(0,35)

0.100

0.150

0.200

0.250

0.300

0.350

400 4000 40000

H
y

p
e

rv
o

lu
m

e

function evaluations (log scale)

MOEA/D+nr MOEA/D-ss MOEA/D-RO NSGA-II

(a) Hypervolume evolution for La29

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 5 10 15 20 25 30 35 40 45 50

%
 D

if
fe

re
n

t
so

lu
to

in
s

function evaluations / 1000

MOEA/D+nr MOEA/D-ss MOEA/D-RO NSGA-II

(b) Diversity evolution for La29

Figure 20: Runtime evolution of the hypervolume (Left) and the % of different solutions in the pop-
ulation (Right), using Moea/d-ro [AD15], Moead-ss [Mar+14], Moea/d-nr [LZ09], and
Nsga-ii [Deb+00]), and for one representative FJSP instance.

relation defined among subproblems can imply very specific dynamics with respect to the
global population. In fact, by a wave effect, what happens at the neighborhood level, starts
spreading until eventually impacting the whole population. This simple observation is
actually very difficult to elicit in a more formal or empirical manner, but its is at the heart of
Moea/d. Depending on how the wave is moving from one subproblem to another, and how
aggressive it is, one can obtain different trade-offs in terms of diversity and convergence.
Mating selection combined with the evolutionary operators enables to control the wave
magnitude, that is how good a new solution is likely to be with respect to one subproblem
when the population is fixed. Replacement combined with the scalarizing function enables
to prevent the wave to vanish too quickly and to continue moving, iteration after iteration,
towards interesting unexplored or efficient regions. In our opinion, being able to control
this complex behavior using simple local rules is the key in designing a highly effective
decomposition-based evolutionary optimization procedure.

4.3 contribution #2: distributed decomposition-based
approaches

The second research line adopted in our work consists in exploring the decentralized na-
ture of decomposition-based approaches. Our general goal is two-fold. On the one side,
since the divide-and-conquer paradigm underlying decomposition can expose a high level
parallelism, we target the design of cooperative search algorithms with improved approxi-
mation quality. On the other side, the parallelism exposed by such algorithms would even-
tually allow one to tackle large-scale problems, to speed-up the search and to take much
benefits from the increased availability and computing power of nowadays large-scale dis-

4.3 contribution #2: distributed decomposition-based approaches 77

Algorithm 11: Dlbs – high level code to be executed by every distributed node i.
1 xi← initial solution corresponding to node vi;
2 repeat

// communicate positions

3 zi← (zi1,zi2) the position of solution xi in the bi-objective space, zi = f(xi);
4 Send zi to neighboring nodes;
5 Zi← receive neighboring positions;

// variation

6 x← Mutation(xi);
// replacement

7 if LFZ
i
(x) > LFZ

i
(xi) then

8 xi← x;

9 until Stopping condition is satisfied;

tributed platforms. The first contribution described in this section concerns the design of
novel adaptive and local rules that can dynamically adjust the weight directions used in
multi-objective decomposition [Der+14b]. The second contribution is on the design of novel
parallel variants of Moea/d and the analysis of their potential in solving large optimization
problems [Der+15].

4.3.1 A distributed localized and adaptive approach

In this section, we consider the design of an adaptive distributed mechanism [Der+14b] for
the proper setting of the weight vectors used in decomposition based approaches. Let us
notice that this is in line with other work we had on the same subject [DBL13], where weight
vectors are defined as a function of the objective values of the whole population, and which
is not discussed here for the sake of conciseness. A unique of the contribution presented in
the following is the design of a cooperative and distributed approach which is inherently
local; meaning that it is thought to be independent of any global knowledge, thus making it
particularly suitable for a large-scale effective deployment.

dlbs: distributed localized bi-objective search. Given a number of distributed
computing nodes, our aim is to self-coordinate them locally, in order to cooperatively and
adaptively search different regions of the Pareto front. The algorithm designed for bi-
objective optimization problems is summarized in the high level template of Algorithm 11.
For the clarity of the representation, we only consider the setting where each compute node
is actually evolving one unique solution, i.e., we consider a one-to-one mapping between
the distributed nodes and the solutions of the population. The nodes/population are then
organized following a distributed line where every node/solution, except those being at the
two extremes of the line, have exactly two distinct neighbors. According to this logical line
structure, we design local rules based solely on the relative positions of neighboring solu-
tions in the objective space. This can be viewed as an island based approach, where the
information exchanged between neighboring nodes does not involve any migration. The
designed rules are then based on the definition of localized (scalar) fitness functions, denoted
LF, to be optimized locally, and allowing every distributed node to focus on a different
region of the objective space based on the position of its neighbors.

localized fitness functions. The choice of the localized fitness function LF is the key
ingredient of our approach. We study two alternatives allowing every distributed node to
focus on the sub-region being orthogonal to the positions of its neighbors. This is with the
exception of the two extreme nodes where the search is simply guided by the values of the
corresponding objective value. The two designed scalar functions are summarized in Fig. 21.
The first scalar function, denoted LFOD, is based on a weighted sum. Given a candidate

78 multi-objective optimization and decomposition

vi+1

vi−1

vi

z
i+1
1z

i−1
1

z
i+1
2

z
i−1
2

f2

f1

z
i−1
2

f2

vi+1

vi−1

vi

f1
z

i−1
1

z
i+1
1

z
i+1
2

Figure 1: Illustration of the selection for replacement using to the localized fitness function
LFOD (left) and LFH (right). All solutions i ∈ {2, · · ·n − 1} concurrently adopt the
same strategy with respect to their relative neighbors. The crosses without circle are the
candidate solutions Si. The arrow shows the selected candidate solutions that replace the
current one vi.

with zref ∈ Z a reference point and Λ(·) the Lebesgue measure. The hyper-
volume contribution of a point z ∈ Z with respect to a non-dominated set A
is then given as follows (Beume et al., 2007).

∆H(z, A) = IH(A)− IH(A \ {z}) (3)

Dominated points do not contribute to the hypervolume. In the two-objective
case, if we assume that the elements of the non-dominated set A are sorted in
the increasing order with respect to f1-values, the hypervolume contribution
can be reduced as follows.

∆H(zi, A) = (zi
1 − zi−1

1) · (zi
2 − zi+1

2) (4)

In our distributed approach, a node does not have a global view of the current
population of solutions being processed in parallel by other nodes. The only
information a node vi can use is the position of its two neighboring solutions
in objective space, i.e. Z i. Without loss of generality, let us assume that
zi−1
1 ! zi+1

1 . Our second hybrid hypervolume-based localized fitness function
is defined as follows.

LFZi

H (x) =

{
(f1(x)− zi−1

1) · (f2(x)− zi+1
2) if f1(x) " zi−1

1 and f2(x) " zi+1
2

0 otherwise
(5)

11

vi+1

vi−1

vi

z
i+1
1z

i−1
1

z
i+1
2

z
i−1
2

f2

f1

z
i−1
2

f2

vi+1

vi−1

vi

f1
z

i−1
1

z
i+1
1

z
i+1
2

Figure 1: Illustration of the selection for replacement using to the localized fitness function
LFOD (left) and LFH (right). All solutions i ∈ {2, · · ·n − 1} concurrently adopt the
same strategy with respect to their relative neighbors. The crosses without circle are the
candidate solutions Si. The arrow shows the selected candidate solutions that replace the
current one vi.

with zref ∈ Z a reference point and Λ(·) the Lebesgue measure. The hyper-
volume contribution of a point z ∈ Z with respect to a non-dominated set A
is then given as follows (Beume et al., 2007).

∆H(z, A) = IH(A)− IH(A \ {z}) (3)

Dominated points do not contribute to the hypervolume. In the two-objective
case, if we assume that the elements of the non-dominated set A are sorted in
the increasing order with respect to f1-values, the hypervolume contribution
can be reduced as follows.

∆H(zi, A) = (zi
1 − zi−1

1) · (zi
2 − zi+1

2) (4)

In our distributed approach, a node does not have a global view of the current
population of solutions being processed in parallel by other nodes. The only
information a node vi can use is the position of its two neighboring solutions
in objective space, i.e. Z i. Without loss of generality, let us assume that
zi−1
1 ! zi+1

1 . Our second hybrid hypervolume-based localized fitness function
is defined as follows.

LFZi

H (x) =

{
(f1(x)− zi−1

1) · (f2(x)− zi+1
2) if f1(x) " zi−1

1 and f2(x) " zi+1
2

0 otherwise
(5)

11

Figure 21: Illustration of the replacement mechanism in Dlbsusing the localized fitness function
LFOD (left) and LFH (right). The crosses without circle are the candidate solutions and
the arrow shows the selected candidate solutions that replace the current one.

solution x at some distributed node i, it is scored according to the following function, where
Zi is the couple of neighbors’ objective values.

LFZ
i

OD(x) = w1 · f1(x) +w2 · f2(x); where w1 = zi−12 − zi+12 ,w2 = zi+11 − zi−11

Notice that notation OD stands for Orthogonal Direction and it is inspired by the dichotomic
scheme proposed by [AN79], while being strictly local. The second scalar function, denoted
by LFH, is based on the hypervolume indicator. The score of a candidate solution x at some
distributed node i is defined as following.

LFZ
i

H (x) =

{
(f1(x) − z

i−1
1) · (f2(x) − zi+12) if f1(x) > zi−11 and f2(x) > zi+12

0 otherwise

Using the LFH function, we intuitively hypothesis that by selecting candidate solutions
maximizing the local hypervolume contribution at each node, the global hypervolume of the
new set of solutions is likely to be better than the previous one. Notice however that only
the local coordinate of neighbors in the objective space are used when defining the local
hypervolume contribution at each distributed node, i.e., they serve to define a reference
point. Moreover, it may happen that all solutions generated in the candidate set of one
distributed node have a LFH-value of 0, e.g., when they are all dominated by at least one
neighboring position. In this special case, we use the LFOD function in order to avoid a
random selection and make the current solutions evolving closer to the Pareto front.

The two previously defined functions are then to be maximized locally using standard
evolutionary operators. They differs essentially by the lines of local equi-fitness values they
are able to imply (see Section 4.2.1), and other localized fitness functions could have been
considered as well. Our main goal is in fact to study the effectiveness of such locally defined
functions in evolving the solutions distributively towards high quality approximation sets.
A representative bench of results is hence discussed in the following.

selected experimental results. We study the performance and the behavior of the de-
signed distributed localized functions using a broad range ρMNK landscape instances with
different values forN (the bit-string size), K (the degree of non-linearity) and ρ (the objective
correlation). We also consider the scalability of our approach when using a variable number

4.3 contribution #2: distributed decomposition-based approaches 79

Table 6: Dlbs – relative performance using the hypervolume for different ρMNK landscapes (same
holds for the epsilon indicator). The value in each cell corresponds to the number of other
algorithms that significantly (p-value= 0.05) outperform the algorithm in the corresponding
column and for the instance given in the row. In braces, the hypervolume indicator value.
µ = 128.

ρ N K DlbsOD DlbsH Piws Hemo

−0.7 128 4 0 (1.846) 0 (1.919) 2 (2.365) 3 (3.667)

−0.7 128 8 0 (1.914) 0 (1.984) 2 (2.275) 2 (2.375)

−0.7 256 4 0 (1.529) 1 (1.618) 2 (1.779) 3 (4.190)

−0.7 256 8 0 (1.580) 1 (1.680) 2 (1.771) 3 (2.906)

−0.7 512 4 0 (0.985) 1 (1.107) 2 (1.253) 3 (3.352)

−0.7 512 8 0 (1.248) 1 (1.318) 2 (1.461) 3 (2.836)

0.0 128 4 1 (1.778) 1 (1.876) 3 (2.491) 0 (1.406)

0.0 128 8 1 (1.677) 2 (1.821) 3 (2.178) 0 (1.043)

0.0 256 4 0 (1.272) 2 (1.390) 3 (1.613) 0 (1.284)

0.0 256 8 1 (1.219) 2 (1.349) 3 (1.582) 0 (0.667)

0.0 512 4 0 (1.038) 1 (1.115) 3 (1.339) 0 (1.068)

0.0 512 8 1 (1.107) 2 (1.214) 3 (1.379) 0 (0.822)

+0.7 128 4 1 (1.518) 2 (1.651) 3 (2.277) 0 (1.255)

+0.7 128 8 0 (0.629) 2 (0.743) 3 (0.968) 0 (0.567)

+0.7 256 4 1 (0.618) 2 (0.695) 3 (0.804) 0 (0.378)

+0.7 256 8 1 (0.526) 2 (0.609) 3 (0.721) 0 (0.329)

+0.7 512 4 1 (0.521) 2 (0.571) 3 (0.647) 0 (0.252)

+0.7 512 8 1 (0.556) 2 (0.623) 3 (0.673) 0 (0.316)

of distributed nodes, which corresponds to the population size µ. Two baseline algorithms
called Piws and Hemo are used for the sake of comparison. In Piws, we consider a set
of uniformly distributed weight vectors. The weight vectors are fixed and do not change
in the course of optimization. Each distributed node then execute multiple independent
rounds with its assigned weight vector and uses a weighted sum fitness function to select
candidate solutions. This allows us to appreciate the impact of our localized strategies on
approximation quality and also the impact of distributed communications on running time.
In Hemo, we use a (µ+ λ) variant of SMS-EMOA [BNE07a], with a one-shot replacement
strategy, which is a sequential and global hypervolume-based evolutionary multi-objective
optimization algorithm. This allows us to appreciate how efficient our local strategies are
compared with a global strategy having a full global knowledge of the search state, i.e., the
whole current population.

As illustrated in Table 6 providing a bench of results, our weighted sum based variant
DlbsOD is better than the hypervolume based variant DlbsH. This is actually to be inter-
preted in lights of our study on the impact of the scalarizing functions (Section 4.2.1); but
from a more local and dynamic perspectives since the lines of equi-fitness values implied
by the two localized fitness functions are not fixed but evolve dynamically. In Fig. 22, we
show the trajectory of solutions in the objective space when using DlbsOD, which give an
illustration of the dynamics of the search process and the way the adaptive strategy could
lead to well spread and improved solutions. When comparing Dlbs to Piws, we can see
that Dlbs performs substantially better independently of the localized fitness function that
is considered. This is attributed to the local information exchanged in our cooperative and
adaptive strategies; which is to contrast with Piws where search directions are static. When
comparing Dlbs to Hemo, we found that DlbsOD is better when having conflicting objec-
tives (ρ < 0), where as Hemo is better for highly correlated objectives (ρ > 0). Based on
a very local information, Dlbs can find relatively well diversified solutions when the ob-
jectives are in conflicts; however, a more global algorithm like Hemois able to find better
solutions in a more focused area of the objective space which is intuitively a good option
when the objectives are correlated. At this point, one should notice that the previous dis-
cussion holds when comparing Dlbs to Hemo using the same fixed number of function
evaluations; but with no considerations to execution time. With no surprise, it turns out
that the running time of Dlbs is impressively better than the running time of the inherently

80 multi-objective optimization and decomposition

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

f2

f1

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

f2

f1

t=0

t=16

t=32

t=112

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140

di
st

an
ce

 to
 o

rig
in

iteration

3π/16

π/4

5π/16

 0 20 40 60 80 100 120 140
an

gl
e

iteration

Figure 22: Dynamics of DlbsOD for a ρMNK landscape with K = 4, ρ = 0.0, N = 128 and n = µ = 128

distributed nodes. Top-left: Evolution of the nodes trajectory (not all 128 trajectories are
shown). Top-right: Evolution of the neighborhood graph. Bottom-left: Evolution of the
average distance (and standard deviation) between node positions and the origin in the
objective space. Bottom-right: Evolution of node angles.

sequential and global Hemo algorithm (especially because Hemorequires global operations
such as hypervolume computation, etc).

To conclude our analysis, we remark that the original motivation of the Dlbs approach
is to show how adapting the search directions distributively, and relying on a very local in-
formation, can lead to effective and scalable decomposition-based parallel algorithms. Our
results allows us to support that such a methodology is promising and should be inves-
tigated more extensively. For instance, the Dlbs approach could be combined with more
sophisticated mating selection and replacement strategies as in sequential Moea/d. Shar-
ing/Migrating solutions among distributed nodes is also another limitation of the Dlbs ap-
proach. These different possibilities raise other challenges specific to the parallelization of
the computational flow of other standard decomposition-based algorithms such as Moea/d.
The next sections describe our contributions in this respect.

In Fig. 23, we illustrate the parallel performance of Dlbs using a message passing dis-
tributed implementation. Notice that since only four real values are exchanged between
neighboring nodes, the size of messages used to effectively implement Dlbs does not de-
pend on the solution encoding or problem size; which is technically speaking an interesting
feature that allows us to scale our approach very efficiently. In particular, we are able to
show substantial speedups depending on problem size, which is tightly related to the cost
of the fitness function evaluation. The parallel efficiency, that is the computation to com-
munication cost, is already around 90% for instances of size N = 512, and reaches more
than 95% for large instances of size N = 2048. We also obtain linear acceleration factors
when comparing our message passing implementation of Dlbs to a sequentially simulated
implementation of the same algorithm using a singe compute entities. This shows that from
a purely parallel perspective, our Dlbs approach is able to scale efficiency both as a function
of problem size and number of distributed resources.

4.3 contribution #2: distributed decomposition-based approaches 81

128 256 512 2048

0.
6

0.
7

0.
8

0.
9

problem size (N)

no
de

s
ef

fic
ie

nc
y

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

C
P

U
 ti

m
e

D
LB

S
(n

,µ
=

n)
 /

C
P

U
 ti

m
e

D
LB

S
(1

,

number of computing nodes (n)

N=128
N=2048

linear acceleration

Figure 23: Parallel efficiency and scalability of Dlbs. Left: Average ratio of computing time over
execution time; showing the impact of the fitness function evaluation time as a function of
N (µ = n = 128). Right: Average acceleration ratio of Dlbs with respect to the population
size µ and n = µ distributed nodes.

4.3.2 Designing Parallel Multiobjective Decomposition

In this section, we are concerned with the design of parallel decomposition-based multi-
objective algorithms. It is worth-noticing that one can find an extensive literature on design-
ing parallel/distributed multi-objective solving methods [VZL03; CLV07; Tal+08; BAE09].
Two interdependent issues are usually addressed: (i) how to decrease the computational
complexity of a specific multi-objective algorithms and (ii) how to make parallel processes
cooperate to improve the quality of the Pareto set approximation, see e.g., [ZL02; DZJ03;
CS04; MTC06; TYG06; MBS07; HYM07; Dur+08; Fig+10; Mos10; Dor+13]. Reviewing all
the literature is out-of-the-scope of this document, However, let us comment that parallel
and cooperative techniques implicitly come with the idea of decomposing the search into a
number of sub-problems so that a diversified set of solutions, in terms of Pareto front qual-
ity, can be obtained. The main challenge is on defining efficient strategies to either divide
the search space or the objective space. For instance, the population induced by a particle
swarm multi-objective algorithm is divided [MBS07] into sub-swarms which are then co-
ordinated through a master-slave approach. The diffusion model [VZL03] and the island
model [Tom05; ZL02; Dor+11] have also been extensively adopted to design distributed co-
operative methods. In the so-called cone separation techniques [Bra+04; SUZ05; BAE09], the
objective space is divided into regions distributed over some islands.

Surprisingly, investigating to what extent a well established algorithm such as Moea/d,
where decomposition of the objective space is explicit, can be redesigned to run efficiently in
large-scale parallel compute environments is not yet fully addressed; although one can find
few attempts in this direction [ND10; Dur+11; MI14]. We attribute this to the following two
questions : (i) How to maintain the search ability of the Moea/d framework when attempt-
ing to break the dependencies in the computational flow of its original implementation and
(ii) How to deal with the fine-grained parallelism that is likely to be encountered when
effectively deploying the so-obtained variants at a large distributed scale? The challenge
standing behind the previous questions is to derive novel parallel algorithms presenting
a good balance between approximation quality and speed-up in the largest scales where
fine-grained workload can drastically prevent high performance, especially in the scenario
where communication cost is non-negligible compared to the objectives’ evaluation cost.
The work described in the following is mainly an attempt to address this challenge while
gaining more insights into the best practices one has to follow when adopting a parallel
decomposition-based approach.

82 multi-objective optimization and decomposition

design bottleneck and overview of existing parallel moea/d variants. The mat-
ing selection and the replacement in Moea/d are performed using the information coming
from the T -neighborhood of each subproblem. Hence, this creates a dependency between
subproblems when attempting to evolve their respective solutions in parallel. One the other
side solving the so-defined subproblems independently would offer obvious parallelism;
but is not accurate of optimal performance. This issue was first studied in [ND10; Dur+11]
where the authors investigated the intuitive idea that non-overlapping sub-problems, i.e.,
sub-problems having disjoint T -neighbors, could be processed in parallel. It is in particular
shown in [ND10] that interesting speed-ups can be obtained at the price of significantly
deteriorating the approximation quality compared to sequential Moea/d. In [MI14], a par-
allel variant of Moea/d based on the island model is investigated. In such a model, every
island evolves a sub-population of individuals with respect to some sub-problems. Selected
individuals are then sent to other islands during a migration phase. The parallel efficiency
of the such a model is demonstrated with a 8-core shared-memory machine and a specific
thread-based implementation. However, it is well understood that scaling up such a thread
based approach while maintaining its accuracy can suffer several shortcomings; mainly
because concurrent shared-memory read/write operations are no more possible, and dis-
tributed communication is typically many orders of magnitude more costly, which can then
be prohibitive for quality and/or parallel efficiency.

a fine-grained (message passing) parallel moea/d. Understating how the quality
of Moea/d is affected by parallelism, and what speed-ups can be attained when facing
fine-grained parallelism at large distributed scales, is not yet fully accomplished. Our work
departs from the previously mentioned studies in several aspects; but it also retains in-
sightful lessons learnt from them. As in [ND10; Dur+11], the idea of handling overlapping
neighbors is a key point for scalability and high-quality approximation. As in [MI14], we
get also inspired by the island model, but we do not explicitly rely on the conventional
concept of islands (migration, etc) which allows us finely optimize our approach when fac-
ing fine-grained parallelism. Actually, we basically rely on our contribution on deriving
a generational variant of Moea/d (Section 4.2.2) in order to incorporate parallelism while
maintaining a good approximation set.

Our parallel Moea/d scheme, called Mp-Moea/d, is summarized in Algorithm 12 to be
executed independently in parallel by every processing unit (PU), i.e., all variables are local
and not shared in any way. A one-to-one mapping between subproblems and PUs is con-
sidered while assuming seemingly the same T -neighborhood relation between subproblems.
Notice that this is a harsh assumption which allows us to fairly study the scalability of our
scheme with very fine-grained computations. The computations performed by every PU are
then divided in two stages. The first stage is performed locally without any communica-
tion, whereas the second stage requires communication with neighbors. The goal of every
PU is two-fold: (i) to identify an improving solution for its own sub-problem, and (ii) to
check whether an improving solution is found w.r.t. neighboring sub-problems. For this
purpose, every PU maintains locally a representative copy of the solution of each neighbor.
A PU then performs the same selection and variation mechanisms as in the conventional
Moea/d, with essentially three main modifications: (i) the PU current solution is always
selected for reproduction as in Moead-sc (Section 4.2.2), (ii) the number of iterations dur-
ing which new offspring solutions are generated is controlled by a parameter tmax, and (iii)
since the current remote solutions of neighbors are not available locally, a PU simply checks
whether any newly generated offspring does improve any of the local copies maintained for
every neighbor. The idea here is that, if the local copies are sufficiently up-to-date, then the
protocol has the ability to concurrently generate a ‘good’ offspring and to correctly detect
any improvement on behalf of neighboring PUs. The improving offspring solutions are mo-
mentarily saved in order to be shared in the communication stage which allows to update
and synchronize the local copies.

4.3 contribution #2: distributed decomposition-based approaches 83

Algorithm 12: Mp-Moea/d: High level code for every distributed node i

Input: B(i): neighboring sub-problems; λj for every j ∈ B(i): neighbors’ weight vectors;
// Neighbors’ local copies initialization

1 Initialize

(
∪j∈B(i)xj, z?

)
; flag← 0;

2 while Stopping Condition do
// Stage #1: Local computations

3 for j ∈ B(i) \ {i} do yj ← xj; ;
4 Repeat tmax times:

// Mating selection and variation

5 `← rand(B(i) \ {i});
6 y← Crossover Mutation Repair(xi, x`);

// Local Replacement

7 if g(y, λi) < g(xi, λi) then
8 xi ← y; flag← 1;

// Check for neighbors’ improvements

9 for j ∈ B(i) \ {i} do
10 if T(y, λj) < T(yj, λj) then yj ← y; ;

// Stage #2: Distributed update

11 Distributed Local Copies Update (flag);

After the local computation stage, the second stage involving the update of local copies is
activated. This stage is quite technical and is not detailed in Algorithm 12. It is designed to
handle the following two main situations that can occur in the first stage: (i) an improving
solution with respect to the PU’s own sub-problem has been identified, (ii) improving solu-
tion(s) for one (or more) neighboring sub-problem(s) have been identified. In the first case,
the PU has to notify its neighbors so that they can update their local copies with its new
current solution. In the second case, a PU has to notify the corresponding neighbors so that
they can update their own solutions with a new improving offspring. Symmetrically, a PU
checks whether these situations occur at one (or more) neighbor(s) before resuming a new
stage of local computations.

The technical implementation of the above described update mechanism is to be handled
carefully since this is where fine-grained parallelism can prevent scalability. The fastest the
states of PUs are updated with fresh information from neighbors, the better should be the
approximation quality. On the other side, synchronizing PUs distributively implies a non-
negligible communication cost that might even dominate the cost of local computations.
This is precisely why we have introduced the parameter tmax, which offers the possibility of
controlling the relative cost of local computations by setting the communication frequency.
Moreover, we consider both a synchronous and asynchronous message passing implemen-
tations where all (local copies) distributed update operations are aggregated into a single
message in order to reduce the number of messages transmitted over the network. In the
synchronous case, every PU sends a message with accurate information to its neighbors,
and then blocks waiting for their respective messages to be received. This synchronous im-
plementation provides the guarantee that all PUs will be updated with fresh information;
however, additional acknowledgements have to be issued in order to avoid deadlock situa-
tions, which has the drawback of introducing idle times. An asynchronous implementation
allows us to reduce idle times by removing the remote synchronization costs; however, it
does not guarantee that the local copies of PUs are up-to-date. Hence, it can lead to the sit-
uation where the evolutionary optimization is eventually resumed for several rounds with
outdated information, which can constitute a penalty in terms of approximation quality.

84 multi-objective optimization and decomposition

ρ = −0.8 ρ = −0.4 ρ = 0.0 ρ = 0.4 ρ = 0.8
N

=
1
2
8

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60 70 80

E
p
s
ilo

n
 I
n
d
ic

a
to

r

Acceleration

sync

1
2 3

4
56

async

1 2 3
4 5

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60 70
Acceleration

sync

1 2 3
4 56

async

1
2

3 4
56

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60 70
Acceleration

sync

1 2
3 4

5
6

async

1 2
3 4 5

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60 70 80
Acceleration

sync

1
2 34 5 6

async

1
2

3
4 5 6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60 70
Acceleration

sync

1
2 345 6

async

1 2
3

4 5 6

N
=
5
1
2

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 10 20 30 40 50 60 70 80 90

E
p
s
ilo

n
 I
n
d
ic

a
to

r

Acceleration

sync

1
2

3
4 56

async

1 2
3

4 5
6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 10 20 30 40 50 60 70 80 90
Acceleration

sync

1
2

3
45

6

async

1 2 3
45

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 10 20 30 40 50 60 70 80 90 100
Acceleration

sync

1

2 34
5
6

async

1 2
3 45

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 10 20 30 40 50 60 70 80 90 100
Acceleration

sync

1 2
34

56

async

1
2 3

4 5
6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 10 20 30 40 50 60 70 80 90 100
Acceleration

sync

1 2 3
4
56

async

1
2 3 4

5 6

N
=
2
0
4
8

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 20 30 40 50 60 70 80 90 100 110

E
p
s
ilo

n
 I
n
d
ic

a
to

r

Acceleration

sync

1

2
3

4

5
6

async

1
2

3

4

5

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 20 30 40 50 60 70 80 90 100 110
Acceleration

sync

1

2

3
4 5

6
async

1

2
3

4

5
6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 20 30 40 50 60 70 80 90 100 110
Acceleration

sync

1

2

3

4
5

6
async

1

2

3
4

5

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 20 30 40 50 60 70 80 90 100 110
Acceleration

sync

1

2

3
4

5
6

async

1

2
3

4

5

6

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 20 30 40 50 60 70 80 90 100 110
Acceleration

sync

1

2
3

4

5

6

async

1
2

3
4

5

6

Figure 24: Acceleration vs. Quality (Epsilon indicator) as a function of tmax for different ρMNK
landscapes with K = 4 and M = 2.

selected experimental results. Our experimental investigations using a message pass-
ing implementation reveal that our Mp-Moea/d can actually achieve a non-trivial trade-off
in terms of approximation quality and parallel efficiency. This is illustrated in Fig. 24 for
different ρMNK landscapes where we consider approximation quality (indicator’s value)
and acceleration as the couple of goals one would like to achieve simultaneously. Here the
acceleration is measured as the ratio between the running time of sequential Moea/d and
the parallel running time of Mp-Moea/d using 128 compute cores. Each point represents
the acceleration (x-axis) and the approximation quality (y-axis) corresponding to one value
of the update frequency parameter tmax (reported as a label in the figure), and where the
horizontal line with thick contour represents the average approximation quality obtained
by the sequential Moea/d (with a 95% confidence interval). Since the quality indicators
are to be minimized, the points being below this line indicate that Mp-Moea/d is compet-
itive compared to Moea/d. Similarly, since acceleration is to be maximized (with an ideal
value at 128), points being farther on the right-side of each subfigure indicate better parallel
efficiency.

We can observe that approximation quality rather drops with higher tmax-values, whereas
acceleration becomes better. The interesting observation is that there exists values for which
quality is very competitive to sequential Moea/d with substantial improvements in ac-
celeration. In particular, when considering small-size instances, for which relatively high
speed-ups are more difficult to achieve since the evaluation function cost becomes relatively
low compared to communication cost, we observe that the impact of tmax on quality is
less pronounced. Hence, larger tmax-values have the overall effect of significantly improv-
ing acceleration without a substantial drop in terms of speed-up. Notice for example that
speed-ups of up to 70 can be obtained with a quality being similar to Moea/d for N = 128

whereas a speed-up of only 10 to 20 is obtained with tmax = 1. Secondly, the obtained
trade-offs depend on the correlation between the objective functions, especially for large-
size instances. In fact, the more correlated the objective functions, the harder it is to obtain
higher acceleration without a significant drop in performance. We attribute this to the fact
that for such an objective correlation, an improving solution found at some PU with re-
spect to a given sub-problem, is more likely to dominate neighboring solutions, and thus to
subsequently produce new improving offsprings that speed-up the convergence of the opti-
mization of neighboring sub-problems. This is actually related to the replacement dynamics

4.4 other related contributions 85

in Moea/d and to the wave effect discussed previously at the end of Section 4.2.2. Hence,
communicating improving offspring solutions immediately, as they are discovered at every
PU, is more critical for approximation quality. This is less likely to happen when dealing
with anti-correlated objective functions for which the size of the Pareto front is larger, and
where diversity can balance this ’side’-effect. Notice also that the more conflicting the ob-
jectives, and the larger the instances, the more an asynchronous implementation dominates
the synchronous one, both in approximation quality and acceleration. For example, for such
configurations, asynchronous Mp-Moea/d is able to attain a near linear acceleration while
being as good as Moea/d in terms of approximation quality.

4.4 other related contributions
In our research, we were also interested in other challenges that do not relate solely to
decomposition techniques, in the sense that they are common to other search paradigms
and concern other important aspects of multi-objective optimization in general [Lie+17a;
Mon+17; Shi+17b; Sag+17; Cua+17; Der+16; Der+16; Sag+16; Bas+16; Mar+15a; Mar+15b;
Dro+14; TBD13]. Firstly, whether we are given a discrete or a continuous multi-objective
problem is an important aspect one has to take into account. In particular, the (evolutionary)
operators one has to consider and the way they are effectively incorporated into a general-
purpose multi-objective search process is of crucial importance. Secondly, a multi-objective
search process has very specific dynamics that are difficult to elicit especially because of the
curse of dimensionality. In the following, we provide a brief overview on some of our recent
work on these aspects. In Section 4.4.1, we highlight our contributions on incorporating lo-
cal search procedures in multi-objective decomposition for combinatorial domains [Der+16;
Der+16; Shi+17b]. In Section 4.4.2, we highlight our contributions on designing adaptive
evolutionary operators for multi-objective optimization [Mar+15b; Sag+16; Sag+17].

4.4.1 Connecting Decomposition and Local Search

general motivation. Local search (Ls) is at the corner-stone of different advanced (single-
objective) meta-heuristics and evolutionary algorithms that have been extensively studied
and tuned by the optimization community especially when dealing with combinatorial op-
timization problems. The algorithmic components, the parameters and the variants of the
Moea/d framework are however very often investigated for continuous problems. Although
some adaptations exist for the combinatorial setting [Cha+08; KZB13; KZB14], we can safely
claim that no systematic and comprehensive studies considering the incorporation of Ls

ingredients within Moea/d can be found. In this respect, we argue that room for new
research investigations exists in order to design novel multi-objective search algorithms
based on both local search and decomposition for the efficient solving of difficult combi-
natorial optimization problems. Generally speaking, we are interested not only in bringing
standard single-objective local search techniques into the framework of Moea/d, but also
in investigating how decomposition techniques can be used to improve local search based
multi-objective algorithms, such as the well-established Pareto-Local Search (PLS) algorithm,
belonging to the family of dominance-based algorithms (See section 4.1.2).

incorporating ls into moea/d. The class of (single-objective) local search heuristics [HS04]
encompasses several algorithms having different components and different degrees of com-
plexity. A common ingredient being at the basis of a successful algorithm in this class is the
neighborhood exploration and the move strategy. In fact, the two basic components of Ls are:
(i) the definition of at least one neighborhood relation/structure, providing for every single
solution a set of neighboring solutions that can be derived by performing little changes or
perturbations, and (ii) the setting of the move strategy, that is how to explore those neigh-

86 multi-objective optimization and decomposition

boring solutions and how to guide the search process when iteratively moving from one
solution to another. Standard and typical move strategies in a single-objective setting are
as follows. In a best-improvement (or steepest descent) move strategy, the neighbor that im-
proves the most the evaluation function is selected at each iteration. In a first-improvement
move strategy, the first improving neighbor which is found is immediately selected. This
strategy avoids to systematically generate and evaluate the whole neighborhood. Moreover,
the neighborhood structure can be used as a an evolutionary mutation operator when some
few neighboring solutions are sampled at random, and then the improving ones (if any) are
considered for a possible move. Hence, a random strategy can be considered as well, where
a random neighbor is generated at each iteration, and replaces the current solution iff there
is an improvement.

Given that the Moea/d framework transforms the original problem into multiple single
objective ones, integrating such move strategies is actually a natural outcome. However,
important design technicalities have to be explicitly and carefully specified for optimal per-
formance. In particular, one has to manage the crucial exploration/exploitation aspects
when creating new solutions and replacing old ones from and into the population in order
to guarantee a reasonable balance between the diversity of the population and the conver-
gence toward the Pareto front. In [Der+16], we study how the replacement flow of Moea/d

can be adapted and hybridized to support simple local search move strategies. Despite their
simplicity, the obtained algorithm variants are shown to have very different search dynamics
and behavior. Our study is actually conducted by designing a new set of bi-objective travel-
ing salesman problem (TSP) instances5 with tunable objective correlations, hence leveraging
existing standard ones, e.g., [LT10; PS09]. We are for instance able to show that the ranks of
the different move strategies (in terms of approximation quality) depends strongly on the ob-
jective correlation factor. We also study the anytime performance (that is the approximation
quality using different amount of computing budgets) of the different local search variants
and consider their behavior with respect to other Moea/d specific parameters, such as the
population size, the maximum number of replaced solutions, and the probability of parent
selection. Our results revealed strong evidence on the need of adaptive (online) mechanism
to select and combine different move strategies on line in the Moea/d framework. This
indicates that incorporating Ls into Moea/d is still in its very infancy beginning, and hence,
would deserve much more attention and research investigations.

bringing decomposition into pls .. . in parallel. Local search is not restricted to the
solving of (multiple) single-objective (sub-)problems and can be applied as a whole concept
to multi-objective optimization problems as well. As illustrated previously in the template
of Algorithm 7, Pareto-Local Search (PLS) can be viewed as a local search operating at a set
level and stopping naturally after reaching a Pareto local optimum set [PSS07]. Although
the basic PLS illustrated in Algorithm 7 enables to obtain high quality approximation sets,
it is well known that its convergence speed is low and several strategies have been proposed
[DT12; DLS15; Gei11; Lie+12] in order to overcome this issue. Actually, PLS has three
main problem-independent components that were shown to be crucially important for its
anytime performance [DLS15; Lie+12]: (i) the selection step that is what next solution to
choose to explore from the archive, (ii) the neighborhood exploration which related directly
to the move strategies discussed in the previous section, and (iii) the acceptance criterion
that is how to update the archive which is tightly related to the replacement mechanism.
We can also remark that with the exception of the exploration step, the two other strategies
need to have full knowledge of the archive, which makes it rather challenging to derive a
high level parallel version of PLS. In [Shi+17b], we study how we can get inspiration from
decomposition-based techniques in order to improve the different PLS components, and in
the same time to be able to parallelize it.

5 The instances and their description are made available online at the MoCObench repository dedicated to multiob-
jective combinatorial optimization problem instances.

http://mocobench.sourceforge.net/

4.4 other related contributions 87

We consider to decompose the objective space evenly into several small regions based
on some weight vectors as in [LGZ14]. In the bi-objective case, this consists in delimiting a
small region of the objective space using a reference point and two consecutive (neighboring)
lines passing through the reference point as in standard Moea/d. Then, we consider to run
in parallel several cooperating PLS processes, each one operating in one of the so-defined re-
gions. When a PLS process finds a solution out-side the boundaries of its region defined by
decomposition, it simply ignore it unless no solutions within the boundaries exist in its local
archive. The selection and replacement steps of basic PLS are also redesigned accordingly.
The components of every parallel PLS process are updated with respect to the weight vector
corresponding to the region where it is expected to operate. A weighted sum is hence used
as a scalar function allowing every PLS process to have a total order on the solutions it can
generate by local search. Instead of selecting or replacing a solution from the archive based
on dominance, every parallel PLS process uses the scalar function (parametrized by the cor-
responding weight vector) to rank solutions and hence to differentiate between them. This
allows us not only to coordinate the parallel PLS processes locally by simply using differ-
ent weight vectors, but also to reduce drastically the size of the archive maintained globally.
Our experimental investigations on standard instances of the well-established multiobjective
Unconstrained Binary Quadratic Programming (mUBQP) problem, for which conventional
PLS is known to provide high quality results, show that bringing decomposition into PLS,
is beneficial both at the selection and replacement levels to improve convergence, while en-
abling a very efficient high level parallel design that was un-explored until now. Of course,
this opens the door to further investigations both to improve the anytime behavior of PLS
and also to deploy PLS on large scale distributed environments and for large scale instances.

4.4.2 Design of Adaptive Evolutionary Operators

In Moea/d, an evolutionary operator applied at a subproblem is not only acting selfishly
to improve the solution of its current sub-problem by “stealing information” from others,
but it also behaves in an altruistic way by helping to improve the solutions of neighbors. In
some sense, this allows to impact the distribution of solutions that can be obtained in every
iteration, and hopefully helps in searching promising regions. From a very general perspec-
tive, the most important aspect for a successful evolutionary multi-objective algorithm is
perhaps its ability to generate new promising solutions and hence to push the population
effectively towards the Pareto front. While the internal algorithm-specific mechanisms, such
as the population structure, the mating selection, the replacement, etc, are undoubtedly ex-
tremely important, the design of powerful and accurate evolutionary operators is another
challenging issue. In our work, we are interested in this aspect as well [Mar+15b; Sag+16;
Sag+17; Mar+15a; Dro+14]; and in particular, in techniques and algorithms that are able to
capture the dependencies between the variables and to exploit the information obtained so
far in order to adapt and to control the generation of new candidate solutions online during
the search. This is highlighted in the next paragraphs for continuous domains.

injecting cma-es in moea/d. In [Mar+15b], we investigate new opportunities offered
by the flexibility of Moea/d in incorporating the well-established CMA-ES (Covariance Ma-
trix Adaption Evolution Strategy) [HO01]. Our interest in combining the CMA-ES with
MOEA/D stems from two sources. On the one hand, CMA-ES has been shown to be among
the best performing single-objective blackbox algorithms, with typically superior perfor-
mance to other popular evolutionary operators such as Differential Evolution and other
numerical optimizers—especially when the problems are difficult and the budgets are not
too small [Han+10]. On the other hand, recent investigations [Han11] showed that external
solutions can be easily injected into the algorithm to gain information from good solutions
that are not sampled directly by the algorithm itself. Both aspects together make the CMA-
ES with solution injection a highly interesting candidate to be used within a multi-objective

88 multi-objective optimization and decomposition

decomposition based framework like Moea/d, where the population is precisely structured
to enable single-objective subproblems to directly share interesting solutions. We therefore
propose a novel variant of Moea/d where CMA-ES is used as the core single-objective evo-
lution engine and where the injection idea allows us to incorporate information from neigh-
boring scalarizing problems into the search distributions. Notice that several multi-objective
versions of the CMA-ES algorithm exist [IHR07; ISH07] which, however, do not resemble
the framework of Moea/d but instead aim at maximizing the hypervolume of a solution set
in the framework of indicator-based algorithms. Besides being able to obtain competitive re-
sults, in particular compared to multi-objective CMA-ES, our investigations highlight novel
promising alternatives by either leveraging the existing single-objective CMA-ES related
variants (e.g., restart conditions, population size control, etc) and/or by exploring decom-
position specific features (e.g. parallelization is enabled in a quite straightforward manner,
the choice of appropriate scalarizing functions with respect to single-objective CMA-ES, etc).
Our goal is in fact beyond beating existing variants of Moea/d or multi-objective CMA-ES
on some benchmarks; but more importantly, we aim at gaining a more fundamental un-
derstanding of what makes a multi-objective evolutionary process effective and under what
conditions in line with other recent studies [CML17; Cas+17].

learning variable importance to guide recombination. In the same research line,
we consider the idea of learning, in an online fashion based on statistical modeling, which
variables affect convergence to the Pareto front. The rational behind this idea is that dif-
ferent subsets of variables may influence convergence towards different objective subspaces,
while others may influence diversity. This can be the case for instance when dealing with
many objective problems, where convergence is crucially important for an optimization pro-
cess to approach the high dimensional Pareto Front. Although it is not clear that a sharp
separation of variables always exists (a complex and a priori unknown interaction of several
variables usually affect both convergence and diversity), this kind of approach can allow to
extract a valuable knowledge of the problem being tackled, and in particular, help designing
improved and finely tuned evolutionary operators. In [Sag+16; Sag+17], we propose to use
the Pareto ranking induced by non-dominated sorting [Deb+00] as the score to render how
good solutions are with respect to convergence. We then bias standard variation operators
accordingly in order to help finding Pareto optimal solutions as soon as possible, and hence
to improve the algorithm convergence. We use random forest [Bre01], a machine learning al-
gorithm, in order to perform a regression of the Pareto rankings, in terms of non-dominated
sorting, over decision variables at each iteration. From fitting the statistical regression model,
we obtain estimates of the variable importance, which we later use to select the variables
that will undergo variation. Besides showing that such an approach is able to achieve a
significantly better convergence on some well-established continuous benchmark instances,
our investigations suggest that the design of machine learning-enhanced evolutionary oper-
ators is one promising research direction that can definitely help catching the complexity of
multi-objective optimization problems.

We conclude this section by emphasizing the importance of designing accurate evolution-
ary operators (both for continuous and discrete domains). For multi-objective optimization
problems, where besides the size of the Pareto front and its dimensionality which are in fact
a big issue, the design of a relevant evolutionary operator that can accommodate simultane-
ously to the properties of the considered objectives and to the current state of the population
is extremely important. In our opinion, incorporating the lesson learnt from single objective
optimization can only be a first step and much research remain to do in order to come out
with evolutionary operators designed specifically to deal with the multi-objective nature of
given problem.

4.5 conclusions and perspectives 89

4.5 conclusions and perspectives

summary. In this chapter, we provided an overview of our research contributions on evo-
lutionary multi-objective optimization, with a particular focus on decomposition based ap-
proaches. Our work can be viewed along different tightly related challenges. First, we
addressed the analysis of the impact of using some particular scalarizing function and shed
more light on the corresponding search behavior. By proposing novel mating selection and
replacement mechanisms, and more importantly by conducting extensive empirical investi-
gations to compare and understand the implied search dynamics and performance relatively
to other existing techniques, we are able to provide a more fundamental understanding of
the trade-off in terms of diversity and convergence that a decomposition based framework
such Moea/d allows to obtain. The other critical component for a successful evolutionary
algorithm, is the design of efficient variation operators. For this purpose, we investigated
the hybridization of decomposition with other search paradigms that were mostly consid-
ered in the single objective setting, in an attempt to design more effective search procedures.
For discrete problems which constitute our central focus, we consider to connect local search
with decomposition in order to design novel and systematic high level approaches. In fact,
we argue that the community lacks much knowledge on the benefits of tackling a combi-
natorial multi-objective problem with decomposition, which can essentially be attributed
to the lack of insights into the accurate choice of the standard tools from combinatorial
optimization and their effective integration into decomposition. For continuous problems,
we consider adaptive and machine learning based techniques in order to guide the search
efficiently. For instance, our first investigations on leveraging the state-of-the-art CMA-ES
single objective optimizer and the underlying search paradigms, i.e., stochastic model based
sampling and cooperative adaption, are in our opinion a very interesting research path to
follow in order to design novel multi-objective specific search operators. Additionally, one
important aspect of our work consists in thinking decomposition in a very local manner,
in the sense, that we paid much attention in designing local cooperative rules in order to
enhance solution quality, and also to enable parallelism to take full benefits from large scale
distributed and parallel resources. In our opinion, the high level parallelism exposed by the
divide-and-conquer paradigm underlying decomposition is in fact a strong feature that will
allow to design more powerful and more effective search procedures and to tackle increas-
ingly complex and costly optimization problems.

understanding multi-objective search. Decomposition is to be viewed as a tool and
not as a goal. In this respect, we are also interested in other fundamental research issues
which relates to the understanding and the eliciting of multi-objective search behavior and
dynamics. In fact, despite the number of available algorithms, their skillful design and their
flexibility when applied to a large spectrum of problems, a key ingredient to make them ef-
ficient and effective lies in the choice of their components in order to be specifically adapted
to the multi-objective optimization problem being tackled. This might even depend on the
intrinsic properties of the problem instance being considered. For instance, why solving a
sub-problem cooperatively is fundamentally more effective than solving it independently?
Is it because cooperation implies better search behavior or is it because some hidden as-
pects with respect to the problem at hand makes it more simple? Or is it because of the
two aspects? Why different operators are expected to provide different performance and
for which problem instances? What makes it difficult to tackle optimization problems with
many objectives? Is it solely because the intractability and curse of dimension? Many other
questions can be raised with respect to multi-objective optimization and evolutionary algo-
rithms in general. In this respect, there is evidence that a principled approach using new
tools and techniques dedicated to the understanding of the behavior of existing algorithms
in light of the properties of the multi-objective problem under study, are needed. Such
tools and techniques exist in the single-objective optimization literature, where a number

90 multi-objective optimization and decomposition

of paradigms, for instance from the fitness landscape analysis, have proved to be extremely
helpful in attaining such a goal. Motivated by their success and their accuracy, there was
recently several studies leveraging the single-objective case and pushing fitness landscape
analysis a step toward the development of new statistical methodologies and the identifica-
tion of general-purpose characteristics and features that fit the multi-objective nature of a
given optimization problem; including some of our recent contributions that were not dis-
cussed in this document [Lie+17a; Mon+17]. However, still a relatively huge gap remains
between the design of multi-objective randomized search heuristics and the fundamental
understanding of their effectiveness with respect to the properties of the tackled problem.
This represent a difficult challenge that is timely to address in order to avoid being trapped
in ad-hoc or hyper-specialized optimization methodologies.

understanding and designing decomposition. The previous research perspective
can be considered more thoroughly in the context of decomposition based approaches. The
overall research objective is to design an appropriate algorithmic framework adopting the
evolutionary decomposition paradigm and its algorithmic Gestalt. Firstly, a key point is to
identify the different possible decomposition strategies, and to systematically study their
behavior as a function of the target problem properties in order to strengthen them with
new and accurate algorithmic components. Secondly, we should keep in mind that it can
be unwise and uneconomic to always ignore the knowledge and experience gained in the
past. In this respect, decomposition makes it more flexible to incorporate existing solving
technique although an in-depth re-design could be necessary to fit the multi-objective na-
ture of the tackled problems. For instance, and as argued before, decomposition is clearly
one key technique to enable scalability, given that the original multi-objective optimization
problem is broken into smaller single objective sub-problems. However, decomposition can
occur not only in the objective space, but also in the variable space which we will have to
address in the future in order to fully cope with the possibly complex and large scale nature
of optimization problems. Thirdly, we need to better understand the relation between the
structural properties of an optimization problems and the parameters/components used in a
decomposition based algorithm in order to consolidate the scientific foundations of such an
approach. In fact, we argue that we need to develop a comprehensive methodology inform-
ing about what makes a decomposition effective and efficient (and why), and what are the
intrinsic features that makes it effective or not for a multi-objective problem. As a byprod-
uct, one concrete and possible solving approach is then to adapt state-of-the-art off-line and
on-line automatic algorithm design and portfolio based techniques (See Chapter 3) viewed
as high level optimization tools to efficiently search the space of possible configurations
(e.g., in terms of the number of weight vectors, the type of aggregation function to choose,
the constraints to define sub-problems, the parameters to use for every sub-problem, etc).
Some research in this line already exist but it is still in its very infancy beginnings. We in
fact need innovative generic tools, especially taking inspiration from existing high level au-
tonomous and machine learning inspired search paradigms, that can be applied specifically
to multi-objective optimization, thus eventually ending with autonomous cross-domain de-
composition solvers with minimum burden for non-expert end-users.

making it parallel and .. . local. Taking advantage from the decentralized nature of de-
composition, combined with the compute power of modern massively parallel platforms, is
the other obvious perspective of our work. In particular, the possible sources of parallelism
exposed naturally by decomposition are good candidates for effective problem solving on
massively parallel compute platforms. Parallelism is then to be viewed as a key element that
will open the doors towards new algorithmic concepts that would not rise otherwise. An
interesting research perspective is to address the heterogenous and hierarchical nature of
modern devices and platforms in order to achieve scalability and high performance within
decomposition. Different parallelization paradigms and models, different programming

4.5 conclusions and perspectives 91

languages and libraries, different implementation strategies will be required. Our message
passing and fine-grained parallel Moea/d provides some hints on some critical issues to
be address. When considering a more generalized decomposition approach for solving
possibly large scale problems, the challenge of achieving high performance and scalability
without decreasing search performance is even more difficult to address. In this respect,
future work will have to focus on identifying the different sources of parallelism induced by
decomposition (both in objective and decision space) independently of their effective paral-
lelization. For instance, scalability in general implies imbalanced computations. In the case
of decomposition, different sub-problems can be expected to require variable computational
efforts to be solved; and high level parallelism can provide alternative solving approaches.
Some work on estimating the relative difficulty of each sub-problem exist in the sequential
setting and using simple scalarizing functions; which is based on collecting information
about the estimated progress rate on-line during the search process. However, to our best,
no distributed approach considering adaptive and on-line cooperative learning between dif-
ferent parallel processes has been investigated so-far. Our work on distributed adaptive
algorithm selection and machine learning inspired technique can be coupled with decom-
position in order to locally adapt not only the effort to solve some subproblems but also
the algorithmic components or parameters that are used in the cooperative and distributed
solving process.

5 LOOK ING AT THE FUTURE

In this document, we presented an overview of our research work at the crossroad of dis-
tributed and high performance computing, general-purpose search optimization algorithms
in general. The last few years were in fact relatively rich in collaborations and contributions
which allowed us to address a number of research topics related to both exact and heuristic
search, sequential and distributed algorithms, evolutionary algorithms and related machine
learning inspired approaches, single- and multi- objective optimization. The number of per-
spectives and future work that were discussed previously in this document with respect
to each chapter, tell much about the complexity of optimization problems and the need to
cross-fertilize the knowledge from a relatively wide range of fields in computational science
before ending with a global, effective, and unified optimization methodology. In this respect,
my research objectives are mostly motivated by the proposal of principled approaches for
the design, analysis and understanding of optimization problems and algorithms.

It is our opinion in fact that in order to face the ever-increasing complexity of nowa-
days optimization problems and related applications, what is needed is not ’yet another’
algorithm, but a determined and significant attempt to reformulate our fundamental under-
standing of the difficulty of solving optimization problems, right across the wide spectrum
of optimization techniques and algorithms. There is evidence that standard optimization
approaches need to be renovated by taking inspiration from other tightly-related fields in
computational intelligence, statistics, machine learning, and distributed computing, in order
to come out with new cutting-edge innovative and effective techniques and algorithms. Our
ambition in the future is to build on the success of general purpose search heuristics, the
maturity of meta-modeling and machine learning techniques, the advent of new analytics-
driven methodologies in computational intelligence, and the availability of modern parallel
computing facilities, in order to design, analyze, and evaluate novel algorithms and tech-
niques in the context of large scale, heterogenous and cross-domain optimization problems.
This is discussed in more details in the following paragraphs, which are tightly related to the
current research activities that we are carrying out both within our newly created research
team, our newly created France/Japan International associated Lab on massive optimization
and computational intelligence (LIA-MODO), our ANR France Hong Kong bilateral project
on big multi-objective optimization (bigMO), and in collaboration with several colleagues,
without whom this piece of research would not be possible (see e.g., Appendix A.3).

massive and big optimization problems and algorithms. Following the evolution
of modern computational science, the field of optimization is inevitably shifting rapidly to
the ‘big’ era where the large-scale nature of applications implies optimization problems,
models and algorithms, increasingly large-scale and heterogeneous, coming from various
applications and domains, with a large number of decision variables and conflicting ob-
jective functions of different nature, and with multiple sources of uncertainty. For instance,
many optimization problems within the context of sustainable systems, multidisciplinary en-
gineering design and innovation are increasingly complex, and involve large-size instances,
cross-domain formulations and heterogeneous objectives, as well as multiple sources of un-
certainty, for instance due to heavy simulations or missing data. Such characteristics lead to
massive optimization problems, and raise new important and difficult scientific challenges
for researchers and practitioners, that traditional approaches will hardly succeed when fac-
ing them. What is needed is to push the boundaries of existing optimization approaches, to
go beyond the small- or medium- scale problems investigated so far in the literature, and to

93

94 looking at the future

design innovative flexible general-purpose and computationally intelligent algorithms able
to efficiently and effectively tackle such massive optimization problems. Although some
research dealing with the aforementioned characteristics can be found, the global difficult
challenge is to propose a unified approach. In particular, we are interested in developing
and setting up the foundations of cutting-edge autonomous solvers able to globally and
jointly address the challenges encountered in problems from massive optimization follow-
ing the after-mentioned aspects. Large-scale optimization problems, which commonly involve
hundreds of variables that induce a large increase in the solution space where the optimiza-
tion algorithm operates. Any-objective optimization problems, where one, multiple, or many
criteria are to be simultaneously optimized, typically leading to a significant increase in
the number of optimal trade-offs to be identified. Cross-domain optimization problems, where
one has to deal with continuous, integer, categorical variables, or even more complex struc-
tures such as permutations, strings, trees, or graphs, that may be mixed among themselves.
Expensive optimization problems, where the propagation of environmental parameters or the
requirement of heavy simulations makes it already computationally demanding to obtain
the quality of one single candidate solution at the evaluation stage.

The general goal is hence to foster the next generation of optimization algorithms for solv-
ing such problems from the incoming ”big” optimization era by precisely investigating the
modeling, the algorithmic resolution as well as the fundamental and experimental analysis
of massive optimization problems. Arguing that such massive optimization problems raise
new challenges, in particular because of (a) their dimensionality in terms of variables, (b) of
objectives, (c) their heterogeneity, and (d) their expensive and uncertain nature, our research
perspectives strive after jointly addressing these aspects, and can be viewed following four
interconnected scientific objectives.

landscape-aware optimization algorithms. The class of optimization problems en-
countered in real-life complex application domains is wide and heterogeneous. This ex-
plains the plethora of (ad-hoc) optimization techniques specialized in solving a particu-
lar problem formulation. On the contrary, general-purpose optimization methods such as
Branch-and-Bound (complete, but quickly impractical for large-size problems) and general-
purpose search heuristics from computational intelligence (e.g. stochastic local search, meta-
heuristics, evolutionary algorithms) constitute upper-level methodologies that can be used
as guiding strategies in designing underlying optimization algorithms. Our goal precisely
lies in the foundation, analysis and intelligent design of enhanced general-purpose optimiza-
tion algorithms, search paradigms and their design principles, as well as innovative ways
of combining them. However, being effective and efficient in solving the target problem
always requires a proper configuration and adaptation of the general-purpose optimization
approach. As such, most algorithms continue to be designed on the basis of intuition, and
require an intensive phase of trials and errors for parameter setting. One way of address-
ing this in practice is to rely on parameter tuning in order to automatically configure an
optimization algorithm by finding the most appropriate parameter setting, specialized for a
given set of problem instances. Complementarily, we aim at avoiding hyper-specialized ap-
proaches, and at improving the way we develop optimization algorithms by incorporating a
more fundamental approach in their design process. Our goal is to understand the difficul-
ties a given optimization approach has to face, and what makes it efficient, independently
of the target application, by deriving high-level and relevant features able to catch problem
difficulty by means of tools from fitness landscape analysis, statistics and machine learning
data analysis. Such an analytics-driven methodology, based on fitness landscape analysis
and extensive benchmarking efforts, would allow, not only to understand what makes a
problem difficult or an optimization approach efficient, but also to predict the algorithm
performance, to select the most appropriate configuration from an algorithm portfolio, and
to adapt and improve the algorithm design for unknown optimization domain and prob-

looking at the future 95

lem instances. This can for instance lead to the establishment of cross-domain autonomous
solver that can address the challenges of massive and big optimization problem.

model-assisted and simulation optimization. In expensive optimization, evaluating
the quality of a candidate solution is particularly demanding computationally speaking and
might even be uncertain or subject to noise. This is typically the case when the evaluation
step corresponds to the result of a (black-box) complex system simulation, or because of the
large number of environmental parameters encountered in multidisciplinary engineering
design and innovation, as well as sustainable systems. In this context, existing algorithms
from optimization and computational intelligence suffer from slow convergence, and their
scalability then raises new scientific challenges. To overcome this, one interesting approach
is to rely on surrogate models and machine learning algorithms in order to predict the
solutions quality without necessarily and systematically computing their (expensive/uncer-
tain) objective value(s). The goal here is to accelerate the convergence of the optimization
process and to improve the quality of final solutions. More particularly, different issues
have to be addressed including: the suitability of advanced statistical and machine learning
meta-models for large-scale optimization, the choice of the output to be predicted by these
meta-models, their prediction accuracy and their parameter sensibility, the uncertainties and
inaccuracies occurring in their responses, the choice of the data set from which the meta-
model learns from, and the integration of the learning phase within the optimization process.
Estimation-of-distribution and other model-assisted computational intelligence algorithms
will also have to be strengthened and renovated. This consist in explicitly modeling the key
features (such as variable interactions) that impact solutions quality, and to use this model as
an algorithm component in order to produce new candidate solutions with an expected im-
proved quality. The challenge for such techniques is mainly to deal with the characteristics
of massive optimization problems and to scale accurately along the objective and decision
spaces. Finally, because of the target application context, the computational cost of designed
approaches is anyway prohibitive. As a consequence, distributed approaches are mandatory
for addressing these different issues, with an effective parallelization on high performance
computing platforms, which comes with additional specific challenges as discussed later.

decomposition-based optimization algorithms. Given the large-scale nature of the
target applications and the underlying optimization problems, in terms of the number of
variables and objectives, a natural answer is to decompose the original global massive opti-
mization problem to be solved into several sub-problems for which solutions are computed
and aggregated taking inspiration from the divide and conquer paradigm. However, set-
ting up an effective decomposition-based optimization approach relies on the design and
integration of several components that are to be configured accurately. Firstly, we need to
better define the set of sub-problems to be solved cooperatively, by decomposing the original
problem into a set of sub-problems within a smaller region of the variable space and/or the
objective space, so as to increase the efficiency of the optimization process. One key aspect is
to be able to interconnect the possibly large-scale variable space with the possibly large scale
objective space and to find a high level and unified decomposition methodology, e.g., based
on landscape features. Secondly, novel cooperative computational intelligence algorithms
and mechanisms are still needed in order to solve each sub-problem, and to specify the
local rules of interaction and cooperation governing the global optimization process. The
basic idea is to view the solving of an optimization problem as a complex system operating
at different local parts (the sub-problems), so that the overall global computational power is
eventually larger than the sum of its parts. In our opinion, this simple principle is the key
for the successful solving of massive optimization problems. This will in particular allow to
continue taking full benefits from the large-scale distributed and parallel compute facilities.
In addition, decomposition-based optimization approaches will open important challenges
in the design of new ways of combining general-purpose search heuristics (e.g. stochastic

96 looking at the future

local search, meta-heuristics, evolutionary algorithms) with exact algorithms (e.g. branch-
and-bound, mathematical programming, dynamic programming) and/or machine learning
algorithms in order to solve massive optimization problems. In fact, there is still a gap to fill
between all of these techniques and decomposition can constitute the bridge to interconnect
them in a flexible and effective manner.

decentralized optimization algorithms. The goal here is to push forward the design,
study, and validation of generic approaches for massive and big optimization, through the
investigation of appropriate techniques that can fit in the large-scale and distributed nature
of modern compute facilities. On the one hand, the power of modern and massively paral-
lel compute platforms is becoming both huge and increasingly available for the community.
Distributed large-scale high-speed interconnected CPUs, together with multi-core proces-
sors, many-core accelerators and co-processors, are without a doubt increasingly popular
and widely deployed, not only in high-performance dedicated clusters and grids, but also
in non-expert oriented environments such as distributed workstations and cloud compute
facilities. On the other hand, the characteristics of massive optimization give rise to difficult
challenges, beyond the ability of commonly-used optimization algorithms. In this respect,
there is evidence that parallel optimization and evolutionary computing will play a crucially
important role in order to foster the next generation of optimization techniques, and to ac-
celerate their impact. The challenge is then to foster the cross-fertilization of optimization
algorithms, distributed algorithms and high performance and massively parallel computa-
tion. Expert knowledge about parallel computing helps in creating and deploying parallel
algorithms for different types of architectures and devices, e.g., cloud, multi-core, GPUs, etc.
However, this implies the need for a careful definition of proper benchmarks, software tools,
and metrics to measure the behavior of algorithms in a meaningful way. From a purely
parallel and high performance point-of-view, the deployment of the designed massive opti-
mization approaches over a real parallel computing testbed poses several issues that need to
be addressed. In our opinion, the main challenge is the scalability with respect to the num-
ber of computing resources which has to be addressed by integrating the advances made
by the high performance community in order to avoid ad-hoc problem specific approaches,
that will anyway fail to follow the rapid evolution of large scale modern compute facilities.
Moreover, a conceptual separation between ’physical’ parallelism and decentralized/dis-
tributed algorithms (whether implemented in parallel or not) is needed not only to better
and fairly analyze the resulting algorithms, but also to offer a high level algorithmic design
that can still be adapted to the ever-evolving large scale compute environments with the
minimum re-engineering efforts. In particular, all the previously-mentioned issues, such as
sub-problem solving, expensive evaluation, or model-assisted approaches, have be though
while taking their effective parallelization into account, and the potential gain of having a
large distributed computing power available.

To conclude, and as one can guess given the large spectrum of the target future challenges
and objectives, my research follows a global and collective methodology that I am constantly
developing, as evidenced by my collaborations and projects which strongly nourished my
work and experience. My scientific ambition is in fact to contribute to the emergence of
a new generation of optimization algorithms that are able to adapt to the complexity and
heterogeneity of current and future systems and applications whose scales and costs pose
as many new challenges as research opportunities.

A EXTENDED CV

a.1 academic position

a.1.1 General Information

Birthday � 20 November 1977, Maharès, Tunisia
Family � Married (1 child)
Research Labs � CRIStAL, CNRS UMR 9189, Lille, France

Inria Lille – Nord Europe
The France/Japan MODO International Associated Lab

Contact � (0033) (03) 28 77 85 82 / 59 35 86 47 (office time)
(0033) (07) 81 57 12 97

Web � http://cristal.univ-lille.fr/∼derbel

a.1.2 Education and Academic Milestones

Since 2017 � Member and Co-founder of the France/Japan International Associ-
ated Laboratory LIA MODO

2016-2017 � CRCT at the national level (CNU Section 27), 1/2 year Sabbatical
permission

2016-2020 � PEDR (Bonus for doctoral supervision and research, rank: A)
2012-2016 � PES (Bonus for research excellence, rank: A)
2010-2015 � Co-director (and Co-creation) of MOCAD, Master 2 speciality, Com-

puter Science Department, IEEA, Univ. Lille
Since 2007 � Associate Professor, Univ. of Lille, France

BONUS (previously DOLPHIN) research group
CRIStAL CNRS UMR 9189, Inria Lille – Nord Europe

2006-2007 � Assistant professor (ATER), Univ. Provence Aix-Marseille 1, France
MOVE team, LIF Laboratory, CNRS UMR 7279

2002-2006 � PhD in Computer Science, LaBRI, CNRS UMR 5800, Univ. of Bor-
deaux 1, France
Title: Local aspect in Distributed Algorithms
Jury: P. Fraigniaud (Reviewer), D. Peleg (Reviewer), C. Gavoille (Pres-
ident), G. Melançon, Y. Métivier (Co-supervisor), M. Mosbah (Co-
supervisor)
Team: Combinatorics and Algorithm (Theme: Distributed Algo-
rithms)

2005-2006 � Assistant professor (ATER), IUT Univ. of Bordeaux 1 (Computer Sci-
ence Department)

2002 � Engineer/MSc in Computer Science, ENSEIRB High School, Univ. of
Bordeaux 1, France

1998 � High preparatory school (Math MP*), Lycée du Parc, Lyon

97

https://sites.google.com/view/lia-modo/
http://cristal.univ-lille.fr/~derbel
https://sites.google.com/view/lia-modo/
https://sites.google.com/view/lia-modo/

98 extended cv

a.2 doctoral and student supervision

a.2.1 PhD Students Supervision

. Mathieu DJAMAÏ

• Title: Peer-to-Peer Branch-and-Bound in the Grid

• Date : 01/10/2009 - 11/03/2013

• Co-supervisor: N. Melab

• Grant: MESR (French Government), Univ. Lille, EDSPI (doctoral school)

• Co-authored publications: IPDPS [DDM11a], ICSCS [DDM11b], [DDM13], finalist
of the SCALE challenge (4th IEEE International Scalable Computing Challenge)
at CCGRID (11th International Symposium on Cluster, Cloud and Grid, Newport
Beach, USA, 2011).

• Research engineer, France.

. Trong Tuan VU

• Title: Heterogeneity and locality-aware work stealing for large scale Branch-and-Bound
irregular algorithms

• Date: 01/10/2011 - 12/12/2014

• Co-supervisor: N. Melab

• Grant: Inria CORDI, HEMERA Project

• Co-authored publications: FGCS [VD16], CCGRID [VD14], LION [VDM13], CLUS-
TER [Vu+12]

• Current position: Research engineer, London, UK

. Christopher JANKEE

• Title: Optimization and Distributed Adaptive Metaheuristics in a Parallel environment

• Date: 01/10/2014 - xx/02/2018

• Supervisors: C. Fonlupt and S. Verel, Université du Liottoral Côte d’Opale, Calais

• Co-authored publications: PPSN [Jan+16], EA [Jan+15; Jan+17b], IJCCI [Jan+17a]

a.2.2 Invited and External PhD Student Supervision

. Oliver CUATE. PhD student CINVESTAV-IPN, Mexico (2013–). Bilateral ECOS Nord
(France) / ANUIES (Mexico) project (see Section A.3). Pareto exploration in many-
objective optimization. Supervisor: O. Schütze, Cinvestav, MX. Doctoral visit from Apr.
to Jun. 2016. Co-authored publications: [Cua+17].

. Miyako SAGAWA. PhD student at Shinshu University, Nagano, Japan (2014-2018).
JSP-MEXT and S3-BBO France/Japan bilateral project (see Section A.3). Learning vari-
able importance for many-objective optimization problems. Supervisors: H. Aguirre and K.
Tanaka, Shinshu Univ., JP. Doctoral visits: from October to November 2014 and from
Apr. to Jun. 2016. Co-authored publications: [Sag+17; Sag+16].

. Martin DROZDIK. PhD student at Shinshu University, Nagano, Japan (2011-2015). JSP-
MEXT France/Japan bilateral projects (see Section A.3). Improvements, understanding
and performance of multi-objective Differential Evolution. Supervisors: H. Aguirre et K.
Tanaka, Univ. Shinshu, JP. Doctoral visit: from Nov. 2013 to Sep. 2014. Co-authored
publications: [Dro+14].

a.2 doctoral and student supervision 99

. Hiba YAHYAOUI. PhD student at the Univ. of Jendouba, Tunisia (2014-2017). Adaptive
metaheuristics with multiple neighborhoods. Supervisor: S. Krichen. Doctoral visits: three
month doctoral visits in 2013, 2014 and 2015. Co-authored publications: [Yah+15].

. Juan Jose PALACIOS ALONSO. PhD student at the Univ. of Oviedo, Spain (2012-2015).
Metaheuristic strategies for scheduling under uncertainty. Supervisor: Camino Rodriguez
Vela. Doctoral visit: from Oct. to Dec. 2014. Co-authored publications: [AD15].

a.2.3 Postdoctoral Supervision

. Saul ZAPOTECAS-MARTINEZ. JSPS-MEXT project (see Section A.3). Decomposition-
based multi-objective optimization. Postdoctoral stay (1 year): from Nov. 2014 to Mar.
2015 and from Jun. 2015 to Dec. 2015. Co-authored publications: [Mar+15a; Mar+15b].

. Asim ALI. HEMERA Inria project (see Section A.3). Peer-to-Peer algorithms for large
scale combinatorial optimization. Postdoctoral stay (1 year): from Oct. 2010 to Sep. 2011.
Co-authored publications: [Vu+12].

a.2.4 Master 2 Student Supervision

. Alexandre VERKYNDT. 6 months internship (2016). Subject: Expensive multi-objective
decomposition using surrogates.

. Alexandre VERKYNDT. 6 months project (2015). Subject: Decomposition based multi-
objective optimization.

. Antoine ASSEMAN. 6 months project (2014). Subject: Parallel Pareto Local Search.

. Gauvain MARGUET. 6 months internship (2014). Subject: Parallel multi-objective decom-
position.

. Gauvain MARQUET. 6 months internship (2013). Subject: Evolutionary multi-objective
decomposition.

. Ghazi TEKAYA. 4 months internship (2012). Subject: Routing in sensor networks.

. Hiba YAHYAOUI. 6 months internship (2012). Subject: Bringing Order in Variable Neigh-
borhood Search.

. Rémi DEGRUSON. 6 months project (2012). Subject: Benchmarking multiobjectivization
algorithm on COCO.

. Dhoha GHRAB. 9 months internship (2011). Subject: Graph coloring and hierarchical
routing in sensor networks.

. Mahmoud HAMMOUDA. 4 months internship (2009). Subject: Self-optimization in
radio networks.

. Mathieu DJAMAÏ. 5 months internship (2009). Subject: fully distributed Branch-and-
Bound.

a.2.5 Master 1 Student Supervision

. Valentin OWCZAREK. 4 months project (2015). Subject: Extending and benchmarking
SOO on COCO.

. Delphine POUX. 4 months project (2015). Subject: Greedy optimization algorithms for an
agriculture problem.

100 extended cv

. Yoann DUFRESNE. 4 months project (2015). Subject: Localized multi-objective optimiza-
tion.

. Luis Diego ARENAS PIMENTEL. 4 months internship (2010). Subject: Radio network
algorithm simulation and visualization.

. Abhishek SINGH. 4 months internship (2009). Subject: Distributed Combinatorial Opti-
mization in Telecommunications.

. Nicolas GOUVY and Pamela WATTEBLED. 4 months internship (2009). Subject: Weighted
graph distributed algorithm simulation and visualization.

a.3 funded projects and scientific animation

a.3.1 Funded projects and scientific responsibilities

Funded projects

. ANR PRCI BigMO France / Hong Kong

• Role: Principal investigator (Coordinator)

• Title: BigMO / Big Multi-objective Optimization

• Date: 2017 - 2021 (4 years)

• Grant: co-funded by the ANR (FR) and the RGC (HK) agencies. HK coordinator:
Qingfu Zhang. 240,000 Euros. (Seemingly the same budget is available for the
partner in Hong Kong).

. International Associated Laboratory LIA MODO Lille / Shinshu

• Role: Participant and co-founder

• Title: MODO / Frontiers on Massive Optimization and Computational Intelli-
gence

• Date: 2017 - 2021 (4 years renewable)

• Grant: local LIA between Univ. Lille (FR) and Shinshu University (JP). Manpower
and budget are fixed on an annual basis by the institutions of the two partners.
Co-directors: Hernan Aguirre (JP) et Arnaud Liefooghe (FR).

. Bilateral ECOS Nord / ANUIES, France / Mexico, project

• Role: Participant and co-writer

• Title: many-objective evolutionary optimization: applications to engineering and
smart cities.

• Date: 2016 - 2020 (4 years)

• Grant: co-funded by the ECOS Nord (FR) and the ANUIES (MX) programs. Joint
PhD funding; two weeks stay (senior researcher), and two-month stay (student
junior researcher) per year.

. University Internationalization project

• Role: Participant

• Title: Massive optimization

• Date: 2016 - 2018 (3 years)

• Grant: Univ. Lille 1. 12,000 Euros. Bilateral France / Japan project. Principle
Investigator: Arnaud Liefooghe.

https://sites.google.com/view/bigmo/
https://sites.google.com/view/lia-modo/

a.3 funded projects and scientific animation 101

. University BQR International project

• Role: Participant

• Title: Analytics Learning-driven multi-objective

• Date: 2016 (1 year)

• Grant: Univ. Lille 1. 3,000 Euros. Bilateral France / Japan project. Principle
Investigator: Arnaud Liefooghe.

. PHC Procore bilateral, France / Hong Kong, project

• Role: Principal Investigator

• Title: Decomposition based multi-objective optimization

• Date: 2015 - 2017 (2 years)

• Grant: PHC Procore / RGC. 9,000 Euros per year. Same budget is available for
the partner in Hong Kong.

. Ayame/Inria S3-BBO, France / Japan, associate team

• Role: Participant

• Title: Threefold scalability in any-objective black-box optimization

• Date: 2014 - 2017 (3 years renewable)

• Grant: JSPS (JP) and Inria (FR). Partners: Shinshu Univ. (JP), Tao (Inria Saclay,
FR), Dolphin (Univ. Lille, Inria Lille, FR). 10,000 euros per year for the french
partners and student internship support. Same budget is available for the partner
in Japan. Coordinators: Hernan Aguirre (JP) and Anne Auger (FR).

. JSPS-MEXT bilateral, France / Japan, project

• Role: Participant

• Title: Global research on the framework of evolutionary solution search to accel-
erate innovation

• Date: 2013 - 2016 (2,5 years)

• Grant: JSPS (JP). Fundings for Univ. de Lille: 2,5 post-doctoral position; 1 year
PhD stay. Participants: Univ. Shinshu (JP), Tao (Inria Saclay, FR), Dolphin (Univ.
Lille, Inria Lille, FR), Univ. Du Littoral Côte d’Opale, Calais, FR. Principal inves-
tigator: K. Tanaka (JP).

. University BQR Emergent Research project.

• Role: Principal Investigator

• Title: Toward massive parallel optimization on hybrid P2P/GPU architectures

• Date: 2012 (1 year)

• Grant: Univ. Lille 1. 6,000 Euros.

. ADT Inria HEMERA large wingspan project

• Role: Coordinator of challenge A - COPS (1 over 14)

• Title: Large Scale Computing for Combinatorial Optimization Problems.

• Date: 2010 - 2014 (4 years)

• Grant: Inria. Three-year PhD fund (Trong Tuan Vu), one-year postdoc position
(Asim Ali), et missions. Participants: several research teams involved in the
Grid’5000 [Gri] experimental grid organized in 8 working groups and 14 scientific
challenges. Coordinator: Christian Perez, Inria Lyon

http://francejapan.gforge.inria.fr/doku.php?id=associateteam
http://francejapan.gforge.inria.fr/doku.php
https://www.grid5000.fr/Hemera

102 extended cv

. Inria STIC bilateral, France / Tunisia, project

• Role: Principal Investigator

• Title: Coloring and spanning structure for radio networks

• Date: 2011 - 2013 (2 years)

• Grant: Inria STIC. 10,000 Euros. Same budget is available for the partner in
Tunisia.

Scientific animation

. Member of the restricted recruitment committee for associate professorship in com-
puter science (CoS, section 27), University of Valenciennes, LAMIH, 2017.

. Member of the recruitment committee for associate professorship in computer science
(section 27), University Lille 1, since 2010.

. Member of the Grid5000 GIS site-leaders committee (2013-2015)

. Member of the CLDD committee at Inria Lille (Commission Locale Développement
Durable) (2012-2014)

. Member of the information system infrastructure working group, FIL, University Lille
1, since 2015.

a.3.2 Research dissemination and visibility

International visibility

. Associate Editor, IEEE Transactions on Systems, Man and Cybernetics: Systems, since
2016.

. Member of the IEEE CIS Task Force on Decomposition-based Techniques in Evolution-
ary Computation, since 2017.

. Co-Foundation of the International Associated Laboratory between the University of
Lille (France) and Shinshu University (Japan): MODO / Frontiers on Massive Opti-
mization and Computational Intelligence, inauguration, Jul. 2017. (see Section A.3)

. Establishment of the new moea/d website dedicated to multi-objective decomposition.

. Participation to the creation of the Inria associate team France / Japan (S3-BBO), 2014

(see Section A.3).

. Participation to the creation of the memorandum of understanding (MoU) between
University of Lille and Shinshu University (Japan), Feb. 2014

Scientific Awards

. Our paper [Shi+17b] wins the best student paper award in SEAL 2017.

. Our paper [Mar+14] was nominated to the best paper award in PPSN 2014.

. Our paper [DT10b] wins the best paper award in ICDCN 2010.

https://coda-group.github.io/ieee-cis-dtec.html
https://coda-group.github.io/ieee-cis-dtec.html
https://sites.google.com/view/lia-modo/
https://sites.google.com/view/lia-modo/
https://sites.google.com/view/moead/home

a.3 funded projects and scientific animation 103

International sabbatical and research visits

. One week visit to City University, Hong Kong, October 2017. Hosting professor:
Qingfu Zhang.

. Three weeks visit to Shinshu University, Nagano, Jun. - Jul. 2017. Hosting professors:
Kiyoshi Tanaka, Hernan Aguirre.

. Two months visit (CRCT) to IST (Instituto Superior Tecnico), University of Lisboa,
Portugal; Jan. - Mar. 2017. Hosting professor: José Rui Figueira.

. One week visit to the University of Coimbra, Portugal, Feb. 2017. Hosting professor:
Luis Paquete.

. One week visit to City University, Hong Kong, Oct. 2016. Hosting professor: Qingfu
Zhang.

. One week visit to Shinshu University, Nagano, Japan, Dec. 2015. Hosting professors:
Kiyoshi Tanaka, Hernan Aguirre.

. One week visit to Shinshu University, Nagano, Japan, May 2015. Hosting professors:
Kiyoshi Tanaka, Hernan Aguirre.

. Two weeks visits to Shinshu University, Karuizawa, Japan, Dec. 2014. Hosting profes-
sors: Kiyoshi Tanaka, Hernan Aguirre.

Scientific organization committees

. Co-organization of the ADEMO (Advances in Decomposition-based Multiobjective Op-
timization) special session at CEC (International Congress on Evolutionary Computa-
tion). Vancouver Canada. 2016.

. Co-organization of the EMO@MCDM (Evolutionary Multi-objective Optimization) spe-
cial session at MCDM (International conference on Multicriteria Decision Making).
Malaga, Spain. 2013.

. Invited Editor EJOR (European Journal of Operation Research). Special issue on Evo-
lutionary Multi-objective Optimization. 2013.

. Co-organization of the 8th school summer ”Artificial Evolution”. Quiberon, France.
2013.

. Co-organization of the (annual) grid’5000 summer school in Lille, 2010.

. Co-organization de annual grid’5000 day in Lille in 2011, 2010, 2009 and 2008.

Reviewing activities

. Member of the restricted recruitment committee for associate professorship in com-
puter science (CoS, section 27), University of Valenciennes, LAMIH, 2017.

. Expert reviewer for the ANR french national agency (optimization, evolutionary algo-
rithms, parallel and distributed algorithms) in 2010, 2014 and 2016.

. Expert reviewer for project proposal, University of Luxembourg, 2010.

. I am serving as a reviewer on a regular basis in a number of conferences and journals,
e.g.,:

• IEEE Transactions on Evolutionary Computation

• IEEE Transactions on Systems Man and Cybernetics

https://sites.google.com/site/bilelderbelpro/home/ademo-cec16

104 extended cv

• Applied Soft Computing

• Soft Computing

• Swarm and Evolutionary Computation

• Computers & Operations Research

• International Transactions in Operational Research

• The Computer Journal

• Computers & Industrial Engineering

• Computational Optimization and Applications

• RAIRO - Operations Research

• Simulation Modeling Practice and Theory

• GECCO (ACM Genetic and Evolutionary Computation Conference)

• CEC (IEEE Congress on Evolutionary Computation)

• EvoCOP (LNCS Evolutionary Computation in Combinatorial Optimization)

Main current senior collaborators

. International: Dr. H. Aguirre (Shinshu University, Japan), Pr. K. Tanaka (Shinshu
University, Japan), Pr. Q. Zhang (City University, Hong Kong), Dr. O. Schuetze
(CINVESTAV-IPN, Mexico), Pr. J. R. Figueira (IST, Univ. Lisboa, Portugal), Dr. L.
F. C. Paquete (University of Coimbra, Portugal), Manuel Lopez-Ibanez (University of
Manchester, UK), Saul Zapotecas Martinez (Mexico), Juan Jose Palacios Alonso (Spain)

. National: Pr. S. Verel (Univ. Littoral Côte d’Opale, Calais), Pr. C. Fonlupt (Univ.
Littoral Côte d’Opale, Calais), Dr. Matthieu Basseur, Dr. Adrien Goëffon University of
Angers (University of Angers), Dr. Dimo Brockhoff (CR, Inria Paris Saclay)

a.4 summary of teaching activities

Responsibilities

. Co-creation (2010) and Co-responsible (2010-2015) of MOCAD (Complex Models, Al-
gorithms, and Data), a Master 2 Speciality in the Computer Science Department, Uni-
versity of Lille.
This last year master speciality was proposed in the context of the 2010-2014 teaching
offer. It replaces the previous existing research Master with a different organization
and objective. The lectures proposed in MOCAD cover some topics addressed in a
number of research teams in the CRIStAL Lab and Inria. We had the challenge of
coordinating and organizing the lectures content, and promoting the speciality with
respect to students and related organizations. A number of MOCAD student continue
into the PhD program every year since its establishment.

. Creation, development and administration of the online student recruitment website
at the Computer Science Department (FIL), since 2010.

. Responsible of different lectures in the first and second year Master, at the computer
science department (See table below summarizing my main teaching involvements).

. Regular student project supervision.

http://www.fil.univ-lille1.fr/portail/index.php?dipl=MInfo&sem=MOCAD&ue=ACCUEIL&label=Pr%C3%A9sentation
http://www.fil.univ-lille1.fr/portail/index.php?dipl=MInfo&sem=MOCAD&ue=ACCUEIL&label=Pr%C3%A9sentation
https://candidature.fil.univ-lille1.fr/

a.4 summary of teaching activities 105

Lectures Summary

Lecture Type Level Year

Object-oriented design (COO) TD/TP L3 Info (FIL, IEEA, Univ. Lille) 2015/20–
Functional programming (PF) TD/TP L3 Info (FIL, IEEA, Univ. Lille) 2015/2016

Big-data Technology (TLDE)* C/TD/TP M2 Info MOCAD (FIL, IEEA, Univ. Lille) 2014/20–
Advanced Object-oriented design (COA)* C/TD/TP M1 Miage FA (FIL, IEEA, Univ. Lille) 2013/2015

Combinatorial Optimization (OC)* C/TD/TP M2 Info MOCAD (FIL, IEEA, Univ. Lille) 2010/20–
Cluster and grid computing (CGC)* C/TD/TP M2 Info TIIR (FIL, IEEA, Univ. Lille) 2009/2014

Algorithms and applications (AeA)* C/TD/TP M1 Info (FIL, IEEA, Univ. Lille) 2009/20–
Parallel and distributed programming (PPD) TD/TP M1 Info (FIL, IEEA, Univ. Lille) 2008/20–
Supervised Project (PJE)* C/TD/TP M1 Info (FIL, IEEA, Univ. Lille) 2007/20–
Design of distributed Web applications (CAR)* C/TD/TP M1 Miage (FIL, IEEA, Univ. Lille) 2007/2015

Object-oriented design (COO)* C/TD/TP M1 Miage (FIL, IEEA, Univ. Lille) 2007/2015

Network and Unix (STU) TD/TP M2 Info TIIR (FIL, IEEA, Univ. Lille) 2007/2009

Advanced Object-oriented design (COA) TD/TP M1 GMI (FIL, IEEA, Univ. Lille) 2007/2008

Networking TD/TP M1 Info (Univ. Marseille Aix 1) 2006/2007

Parallel and distributed programming TD/TP M1 Info (Univ. Marseille Aix 1) 2006/2007

Operation research TP M1 Info (Univ. Marseille Aix 1) 2006/2007

Data base administration TD/TP IUT 2 (Univ. Bordeaux 1) 2005/2006

Object-oriented design and UML TD/TP IUT 2 (Univ. Bordeaux 1) 2005/2006

Algorithms and programming TD/TP IUT 1 (Univ. Bordeaux 1) 2004/2005

Algorithms and data structures TD Engineer high school (ENSEIRB, Bordeaux) 2003/2005

Object-oriented programming* C/TD/TP Engineer high school (ENSEIRB, Bordeaux) 2003/2005

Human computer interfaces* C/TP Engineer high school (ENSEIRB, Bordeaux) 2003/2004

*: Responsible of the lecture organization
C: Main lecturer (Cours)
TD: Exercise session (Travaux dirigés)
TP: Practical programming session (Travaux pratique)

B PERSONNEL B IBL IOGRAPHY AFTER
PHD

b.1 book chapter
[DDM13] Mathieu Djamaı̈, Bilel Derbel, and Nouredine Melab. “Large sclae P2P-Inspired

Problem solving: a formal and experimental study.” In: Large Scale Network-
Centric Distributed Systems. Ed. by A. Y. Zomaya and H. Sarbazi-Azad. John
Wiley & Sons, 2013, pp. 73–102.

b.2 international peer reviewed journals
[VD16] Trong-Tuan Vu and Bilel Derbel. “Parallel Branch-and-Bound in multi-core

multi-CPU multi-GPU heterogeneous environments.” In: Future Generation Comp.
Syst. 56 (2016), pp. 95–109.

[Jem+15] Imen Jemili, Dhouha Ghrab, Amine Dhraief, Abdelfettah Belghith, Bilel Derbel,
Ahmed S. Al-Mogren, and Hassan Mathkour. “CHRA: a coloring based hierar-
chical routing algorithm.” In: J. Ambient Intelligence and Humanized Computing
6.1 (2015), pp. 69–82.

[Der+14b] Bilel Derbel, Jérémie Humeau, Arnaud Liefooghe, and Sébastien Verel. “Dis-
tributed Localized Bi-objective Search.” In: European Journal of Operational Re-
search 239 (2014), pp. 731–743.

[DMZ10] Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. “Sublinear Fully Dis-
tributed Partition with Applications.” In: Theory Comput. Syst. 47.2 (2010), pp. 368–
404.

[DG08] Bilel Derbel and Cyril Gavoille. “Fast deterministic distributed algorithms for
sparse spanners.” In: Theor. Comput. Sci. 399.1-2 (2008), pp. 83–100.

b.3 international conferences with committee and
proceedings

[Cua+17] Oliver Cuate, Bilel Derbel, Arnaud Liefooghe, El-Ghazali Talbi, and Oliver
Schütze. “An Approach for the Local Exploration of Discrete Many Objective
Optimization Problems.” In: Evolutionary Multi-Criterion Optimization - 9th Inter-
national Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings.
2017, pp. 135–150.

[Jan+17a] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “Analy-
sis of a batch strategy for a Master-Worker adaptive selection algorithm frame-
work.” In: The 9th International Joint Conference on Computational Intelligence (IJCCI).
2017.

[Jan+17b] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “On the
Design of a Master-Worker Adaptive Algorithm Selection Framework.” In: The
15th LNCS International conference on Artificial Evolution (EA). 2017.

107

108 Bibliography

[Lie+17a] Arnaud Liefooghe, Bilel Derbel, Sébastien Vérel, Hernán E. Aguirre, and Kiyoshi
Tanaka. “A Fitness Landscape Analysis of Pareto Local Search on Bi-objective
Permutation Flowshop Scheduling Problems.” In: Evolutionary Multi-Criterion
Optimization - 9th International Conference, EMO 2017, Münster, Germany, March
19-22, 2017, Proceedings. 2017, pp. 422–437.

[Lie+17b] Arnaud Liefooghe, Bilel Derbel, Sébastien Vérel, Hernán E. Aguirre, and Kiyoshi
Tanaka. “Towards Landscape-Aware Automatic Algorithm Configuration: Pre-
liminary Experiments on Neutral and Rugged Landscapes.” In: Evolutionary
Computation in Combinatorial Optimization - 17th European Conference, EvoCOP
2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings. 2017, pp. 215–
232.

[Mon+17] Hugo Monzón, Hernán E. Aguirre, Sébastien Vérel, Arnaud Liefooghe, Bilel
Derbel, and Kiyoshi Tanaka. “Closed state model for understanding the dy-
namics of MOEAs.” In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2017, Berlin, Germany, July 15-19, 2017. 2017, pp. 609–616.

[Sag+17] Miyako Sagawa, Hernán E. Aguirre, Fabio Daolio, Arnaud Liefooghe, Bilel
Derbel, Sébastien Vérel, and Kiyoshi Tanaka. “Learning variable importance
to guide recombination on many-objective optimization.” In: 5th International
Conference on Smart Computing and Artificial Intelligence (SCAI). 2017, to appear.

[Shi+17a] Jialong Shi, Qingfu Zhang, Bilel Derbel, and Arnaud Liefooghe. “A Parallel
Tabu Search for the Unconstrained Binary Quadratic Programming problem.”
In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia, San
Sebastián, Spain, June 5-8, 2017. 2017, pp. 557–564.

[Shi+17b] Jialong Shi, Qingfu Zhang, Bilel Derbel, and Arnaud Liefooghe. “Using Parallel
Strategies to Speed Up Pareto Local Search.” In: The 11th International Conference
on Simulated Evolution and Learning. 2017, to appear.

[Bas+16] Matthieu Basseur, Bilel Derbel, Adrien Goëffon, and Arnaud Liefooghe. “Ex-
periments on Greedy and Local Search Heuristics for ddimensional Hypervol-
ume Subset Selection.” In: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference, Denver, CO, USA, July 20 - 24, 2016. 2016, pp. 541–548.

[Der+16] Bilel Derbel, Arnaud Liefooghe, Qingfu Zhang, Hernán E. Aguirre, and Kiyoshi
Tanaka. “Multi-objective Local Search Based on Decomposition.” In: Parallel
Problem Solving from Nature - PPSN XIV - 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings. 2016, pp. 431–441.

[Jan+16] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “A Fitness
Cloud Model for Adaptive Metaheuristic Selection Methods.” In: Parallel Prob-
lem Solving from Nature - PPSN XIV - 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings. 2016, pp. 80–90.

[LD16] Arnaud Liefooghe and Bilel Derbel. “A Correlation Analysis of Set Quality
Indicator Values in Multiobjective Optimization.” In: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24,
2016. 2016, pp. 581–588.

[Sag+16] Miyako Sagawa, Hernán E. Aguirre, Fabio Daolio, Arnaud Liefooghe, Bilel Der-
bel, Sébastien Vérel, and Kiyoshi Tanaka. “Learning variable importance to
guide recombination.” In: 2016 IEEE Symposium Series on Computational Intelli-
gence, SSCI 2016, Athens, Greece, December 6-9, 2016. 2016, pp. 1–7.

[AD15] Juan José Palacios Alonso and Bilel Derbel. “On Maintaining Diversity in MOEA/D:
Application to a Biobjective Combinatorial FJSP.” In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15,
2015. 2015, pp. 719–726.

Bibliography 109

[Der+15] Bilel Derbel, Arnaud Liefooghe, Gauvain Marquet, and El-Ghazali Talbi. “A
fine-grained message passing MOEA/D.” In: IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015. 2015, pp. 1837–1844.

[DP15] Bilel Derbel and Philippe Preux. “Simultaneous optimistic optimization on the
noiseless BBOB testbed.” In: IEEE Congress on Evolutionary Computation, CEC
2015, Sendai, Japan, May 25-28, 2015. 2015, pp. 2010–2017.

[Jan+15] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “Distributed
Adaptive Metaheuristic Selection: Comparisons of Selection Strategies.” In: Ar-
tificial Evolution - 12th International Conference, Evolution Artificielle, EA 2015,
Lyon, France, October 26-28, 2015. Revised Selected Papers. 2015, pp. 83–96.

[Mar+15a] Saúl Zapotecas Martı́nez, Bilel Derbel, Arnaud Liefooghe, Hernán E. Aguirre,
and Kiyoshi Tanaka. “Geometric Differential Evolution in MOEA/D: A Pre-
liminary Study.” In: Advances in Artificial Intelligence and Soft Computing - 14th
Mexican International Conference on Artificial Intelligence, MICAI 2015, Cuernavaca,
Morelos, Mexico, October 25-31, 2015, Proceedings, Part I. 2015, pp. 364–376.

[Mar+15b] Saúl Zapotecas Martı́nez, Bilel Derbel, Arnaud Liefooghe, Dimo Brockhoff,
Hernán E. Aguirre, and Kiyoshi Tanaka. “Injecting CMA-ES into MOEA/D.”
In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015. 2015, pp. 783–790.

[Yah+15] Hiba Yahyaoui, Saoussen Krichen, Bilel Derbel, and El-Ghazali Talbi. “A Hy-
brid ILS-VND Based Hyper-heuristic for Permutation Flowshop Scheduling
Problem.” In: 19th International Conference in Knowledge Based and Intelligent In-
formation and Engineering Systems, KES 2015, Singapore, 7-9 September 2015. 2015,
pp. 632–641.

[Der+14a] Bilel Derbel, Dimo Brockhoff, Arnaud Liefooghe, and Sébastien Vérel. “On the
Impact of Multiobjective Scalarizing Functions.” In: Parallel Problem Solving from
Nature - PPSN XIII - 13th International Conference, Ljubljana, Slovenia, September
13-17, 2014. Proceedings. 2014, pp. 548–558.

[Dro+14] Martin Drozdik, Kiyoshi Tanaka, Hernán E. Aguirre, Sébastien Vérel, Arnaud
Liefooghe, and Bilel Derbel. “An Analysis of Differential Evolution Parame-
ters on Rotated Bi-objective Optimization Functions.” In: Simulated Evolution
and Learning - 10th International Conference, SEAL 2014, Dunedin, New Zealand,
December 15-18, 2014. Proceedings. 2014, pp. 143–154.

[Mar+14] Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe, and El-Ghazali Talbi. “Shake
Them All! - Rethinking Selection and Replacement in MOEA/D.” In: Parallel
Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana,
Slovenia, September 13-17, 2014. Proceedings. 2014, pp. 641–651.

[VD14] Trong-Tuan Vu and B. Derbel. “Link-Heterogeneous Work Stealing.” In: 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid). 2014, pp. 354–363.

[DBL13] Bilel Derbel, Dimo Brockhoff, and Arnaud Liefooghe. “Force-Based Coopera-
tive Search Directions in Evolutionary Multi-objective Optimization.” In: Evo-
lutionary Multi-Criterion Optimization - 7th International Conference, EMO 2013,
Sheffield, UK, March 19-22, 2013. Proceedings. 2013, pp. 383–397.

[Ghr+13] Dhouha Ghrab, Bilel Derbel, Imen Jemili, Amine Dhraief, Abdelfettah Belghith,
and El-Ghazali Talbi. “Coloring based Hierarchical Routing Approach.” In: Pro-
ceedings of the 4th International Conference on Ambient Systems, Networks and Tech-
nologies (ANT 2013), the 3rd International Conference on Sustainable Energy Informa-
tion Technology (SEIT-2013), Halifax, Nova Scotia, Canada, June 25-28, 2013. 2013,
pp. 188–196.

110 Bibliography

[Jem+13] Imen Jemili, Dhouha Ghrab, Abdelfettah Belghith, Bilel Derbel, and Amine
Dhraief. “Collision aware coloring algorithm for wireless sensor networks.” In:
2013 9th International Wireless Communications and Mobile Computing Conference,
IWCMC 2013, Sardinia, Italy, July 1-5, 2013. 2013, pp. 1546–1553.

[TBD13] Thanh-Do Tran, Dimo Brockhoff, and Bilel Derbel. “Multiobjectivization with
NSGA-ii on the noiseless BBOB testbed.” In: Genetic and Evolutionary Computa-
tion Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013, Compan-
ion Material Proceedings. 2013, pp. 1217–1224.

[VDM13] Trong-Tuan Vu, Bilel Derbel, and Nouredine Melab. “Adaptive Dynamic Load
Balancing in Heterogeneous Multiple GPUs-CPUs Distributed Setting: Case
Study of B&B Tree Search.” In: 7th International Conference on Learning and Intel-
ligent Optimization (LION). 2013, pp. 87–103.

[DD12] Houda Derbel and Bilel Derbel. “On neighborhood tree search.” In: Genetic and
Evolutionary Computation Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11,
2012. 2012, pp. 1261–1268.

[Vu+12] Trong-Tuan Vu, Bilel Derbel, Ali Asim, Ahcene Bendjoudi, and Nouredine
Melab. “Overlay-Centric Load Balancing: Applications to UTS and B&B.” In:
14th IEEE International Conference on Cluster Computing (CLUSTER). 2012, pp. 382–
390.

[DV11] Bilel Derbel and Sébastien Verel. “DAMS: Distributed Adaptive Metaheuris-
tic Selection.” In: Genetic And Evolutionary Computation Conference (GECCO).
Dublin, Ireland: ACM, 2011, pp. 1955–1962.

[DDM11a] Mathieu Djamaı̈, Bilel Derbel, and Nouredine Melab. “Distributed B&B: A Pure
Peer-to-Peer Approach.” In: 25th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011 -
Workshop Proceedings. 2011, pp. 1788–1797.

[DDM11b] Mathieu Djamaı̈, Bilel Derbel, and Nouredine Melab. “Impact of logical overlay
upon a Pure P2P approach for the B&B algorithm.” In: IEEE Inter. Conf. on
Systems and Computer Science (ICSCS’11). 2011.

[DT10a] Bilel Derbel and El-Ghazali Talbi. “Distributed Node Coloring in the SINR
Model.” In: 2010 International Conference on Distributed Computing Systems, ICDCS
2010, Genova, Italy, June 21-25, 2010. 2010, pp. 708–717.

[DT10b] Bilel Derbel and El-Ghazali Talbi. “Radio Network Distributed Algorithms in
the Unknown Neighborhood Model.” In: Distributed Computing and Network-
ing, 11th International Conference, ICDCN 2010, Kolkata, India, January 3-6, 2010.
Proceedings. 2010, pp. 155–166.

[Der+09] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. “Local Com-
putation of Nearly Additive Spanners.” In: Distributed Computing, 23rd Inter-
national Symposium, DISC 2009, Elche, Spain, September 23-25, 2009. Proceedings.
2009, pp. 176–190.

[Der08] Bilel Derbel. “Local Maps: New Insights into Mobile Agent Algorithms.” In:
Distributed Computing, 22nd International Symposium, DISC 2008, Arcachon, France,
September 22-24, 2008. Proceedings. 2008, pp. 121–136.

[Der+08] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. “On the local-
ity of distributed sparse spanner construction.” In: Proceedings of the Twenty-
Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC
2008, Toronto, Canada, August 18-21, 2008. 2008, pp. 273–282.

Bibliography 111

[DMG08] Bilel Derbel, Mohamed Mosbah, and Stefan Gruner. “Mobile Agents Imple-
menting Local Computations in Graphs.” In: Graph Transformations, 4th Inter-
national Conference, ICGT 2008, Leicester, United Kingdom, September 7-13, 2008.
Proceedings. 2008, pp. 99–114.

C B IBL IOGRAPHY

[Ama] Amazon Inc. High Performance Computing (HPC). URL: http://aws.amazon.com/ec2/hpc-
applications/.

[Gri] Grid’5000. Grid’5000 French national experimental gird. URL: https://www.grid5000.fr/.

[Int] Intel. Intel Threading Building Blocks.

[MOE] MOEA/D website. Website dedicated to decomposition based multi-objective opti-
mization. URL: https://sites.google.com/view/moead/home.

[Top] Top500. Top500 SuperComputers. URL: https://www.top500.com/.

[Cas+17] Olacir R. Castro, Roberto Santana, José Antonio Lozano, and Aurora Pozo.
“Combining CMA-ES and MOEA/DD for many-objective optimization.” In:
2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia, San Se-
bastián, Spain, June 5-8, 2017. 2017, pp. 1451–1458.

[CML17] Josu Ceberio, Alexander Mendiburu, and José Antonio Lozano. “Are we gen-
erating instances uniformly at random?” In: 2017 IEEE Congress on Evolution-
ary Computation, CEC 2017, Donostia, San Sebastián, Spain, June 5-8, 2017. 2017,
pp. 1645–1651.

[Cer+17] Audrey Cerqueus, Xavier Gandibleux, Anthony Przybylski, and Frédéric Saubion.
“On branching heuristics for the bi-objective 0/1 unidimensional knapsack prob-
lem.” In: J. Heuristics 23.5 (2017), pp. 285–319.

[Cua+17] Oliver Cuate, Bilel Derbel, Arnaud Liefooghe, El-Ghazali Talbi, and Oliver
Schütze. “An Approach for the Local Exploration of Discrete Many Objective
Optimization Problems.” In: Evolutionary Multi-Criterion Optimization - 9th Inter-
national Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings.
2017, pp. 135–150.

[Gmy+17] Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. “IVM-
based parallel branch-and-bound using hierarchical work stealing on multi-
GPU systems.” In: Concurrency and Computation: Practice and Experience 29.9
(2017).

[Jan17] Christopher Jankee. PhD Thesis. PhD Thesis. Calais, France, 2017.

[Jan+17a] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “Analy-
sis of a batch strategy for a Master-Worker adaptive selection algorithm frame-
work.” In: The 9th International Joint Conference on Computational Intelligence (IJCCI).
2017.

[Jan+17b] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “On the
Design of a Master-Worker Adaptive Algorithm Selection Framework.” In: The
15th LNCS International conference on Artificial Evolution (EA). 2017.

[Lar+17] J. L. J. Laredo, F. Guinand, D. Olivier, and P. Bouvry. “Load Balancing at the
Edge of Chaos: How Self-Organized Criticality Can Lead to Energy-Efficient
Computing.” In: IEEE Transactions on Parallel and Distributed Systems 28.2 (2017),
pp. 517–529.

113

114 Bibliography

[Lie+17a] Arnaud Liefooghe, Bilel Derbel, Sébastien Vérel, Hernán E. Aguirre, and Kiyoshi
Tanaka. “A Fitness Landscape Analysis of Pareto Local Search on Bi-objective
Permutation Flowshop Scheduling Problems.” In: Evolutionary Multi-Criterion
Optimization - 9th International Conference, EMO 2017, Münster, Germany, March
19-22, 2017, Proceedings. 2017, pp. 422–437.

[Lie+17b] Arnaud Liefooghe, Bilel Derbel, Sébastien Vérel, Hernán E. Aguirre, and Kiyoshi
Tanaka. “Towards Landscape-Aware Automatic Algorithm Configuration: Pre-
liminary Experiments on Neutral and Rugged Landscapes.” In: Evolutionary
Computation in Combinatorial Optimization - 17th European Conference, EvoCOP
2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings. 2017, pp. 215–
232.

[Mon+17] Hugo Monzón, Hernán E. Aguirre, Sébastien Vérel, Arnaud Liefooghe, Bilel
Derbel, and Kiyoshi Tanaka. “Closed state model for understanding the dy-
namics of MOEAs.” In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2017, Berlin, Germany, July 15-19, 2017. 2017, pp. 609–616.

[Sag+17] Miyako Sagawa, Hernán E. Aguirre, Fabio Daolio, Arnaud Liefooghe, Bilel
Derbel, Sébastien Vérel, and Kiyoshi Tanaka. “Learning variable importance
to guide recombination on many-objective optimization.” In: 5th International
Conference on Smart Computing and Artificial Intelligence (SCAI). 2017, to appear.

[Shi+17a] Jialong Shi, Qingfu Zhang, Bilel Derbel, and Arnaud Liefooghe. “A Parallel
Tabu Search for the Unconstrained Binary Quadratic Programming problem.”
In: 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia, San
Sebastián, Spain, June 5-8, 2017. 2017, pp. 557–564.

[Shi+17b] Jialong Shi, Qingfu Zhang, Bilel Derbel, and Arnaud Liefooghe. “Using Parallel
Strategies to Speed Up Pareto Local Search.” In: The 11th International Conference
on Simulated Evolution and Learning. 2017, to appear.

[Tri+17] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh. “A Survey of Multiobjective
Evolutionary Algorithms Based on Decomposition.” In: IEEE Transactions on
Evolutionary Computation 21.3 (2017), pp. 440–462.

[Vu+17] Ky Khac Vu, Claudia D’Ambrosio, Youssef Hamadi, and Leo Liberti. “Surrogate-
based methods for black-box optimization.” In: ITOR 24.3 (2017), pp. 393–424.

[YJJ17] Shengxiang Yang, Shouyong Jiang, and Yong Jiang. “Improving the multiobjec-
tive evolutionary algorithm based on decomposition with new penalty schemes.”
In: Soft Computing 21.16 (2017), pp. 4677–4691.

[Bas+16] Matthieu Basseur, Bilel Derbel, Adrien Goëffon, and Arnaud Liefooghe. “Ex-
periments on Greedy and Local Search Heuristics for ddimensional Hypervol-
ume Subset Selection.” In: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference, Denver, CO, USA, July 20 - 24, 2016. 2016, pp. 541–548.

[Bis+16] Bernd Bischl et al. “ASlib: A benchmark library for algorithm selection.” In:
Artificial Intelligence 237.Supplement C (2016), pp. 41–58.

[CM16] Imen Chakroun and Nouredine Melab. “HB&B@GRID: An heterogeneous grid-
enabled Branch and Bound algorithm.” In: International Conference on High Per-
formance Computing & Simulation, HPCS 2016, Innsbruck, Austria, July 18-22, 2016.
2016, pp. 697–704.

[Che+16] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. “A Reference Vector Guided Evo-
lutionary Algorithm for Many-Objective Optimization.” In: IEEE Transactions
on Evolutionary Computation 20.5 (2016), pp. 773–791.

Bibliography 115

[Der+16] Bilel Derbel, Arnaud Liefooghe, Qingfu Zhang, Hernán E. Aguirre, and Kiyoshi
Tanaka. “Multi-objective Local Search Based on Decomposition.” In: Parallel
Problem Solving from Nature - PPSN XIV - 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings. 2016, pp. 431–441.

[GLS16] Adrien Goëffon, Frédéric Lardeux, and Frédéric Saubion. “Simulating non-
stationary operators in search algorithms.” In: Applied Soft Computing 38 (2016),
pp. 257–268.

[Jan+16] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “A Fitness
Cloud Model for Adaptive Metaheuristic Selection Methods.” In: Parallel Prob-
lem Solving from Nature - PPSN XIV - 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings. 2016, pp. 80–90.

[LD16] Arnaud Liefooghe and Bilel Derbel. “A Correlation Analysis of Set Quality
Indicator Values in Multiobjective Optimization.” In: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24,
2016. 2016, pp. 581–588.

[Lóp+16] M. López-Ibáñez, J. Dubois-Lacoste, L. Cáceres, M. Birattari, and T. Stützle.
“The irace package: Iterated racing for automatic algorithm configuration.” In:
Oper Res Pers 3 (2016), pp. 43–58.

[Sag+16] Miyako Sagawa, Hernán E. Aguirre, Fabio Daolio, Arnaud Liefooghe, Bilel Der-
bel, Sébastien Vérel, and Kiyoshi Tanaka. “Learning variable importance to
guide recombination.” In: 2016 IEEE Symposium Series on Computational Intelli-
gence, SSCI 2016, Athens, Greece, December 6-9, 2016. 2016, pp. 1–7.

[Ver16] Sébastien Verel. Apport à l’analyse des paysages de fitness pour l’optimisation mono-
objective et multiobjective. HDR Thesis. Calais, France, 2016.

[VD16] Trong-Tuan Vu and Bilel Derbel. “Parallel Branch-and-Bound in multi-core
multi-CPU multi-GPU heterogeneous environments.” In: Future Generation Comp.
Syst. 56 (2016), pp. 95–109.

[Wan+16] L. Wang, Q. Zhang, A. Zhou, M. Gong, and L. Jiao. “Constrained Subproblems
in a Decomposition-Based Multiobjective Evolutionary Algorithm.” In: IEEE
Transactions on Evolutionary Computation 20.3 (2016), pp. 475–480.

[WZZ16] R. Wang, Q. Zhang, and T. Zhang. “Decomposition-Based Algorithms Using
Pareto Adaptive Scalarizing Methods.” In: IEEE Transactions on Evolutionary
Computation 20.6 (2016), pp. 821–837.

[Wu+16] Xiuli Wu, Pietro Consoli, Leandro Minku, Gabriela Ochoa, and Xin Yao. “An
Evolutionary Hyper-heuristic for the Software Project Scheduling Problem.” In:
PPSN XIV. Springer International Publishing, 2016.

[AD15] Juan José Palacios Alonso and Bilel Derbel. “On Maintaining Diversity in MOEA/D:
Application to a Biobjective Combinatorial FJSP.” In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15,
2015. 2015, pp. 719–726.

[BLS15] Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. “Com-
paring Decomposition-Based and Automatically Component-Wise Designed
Multi-Objective Evolutionary Algorithms.” In: Evolutionary Multi-Criterion Op-
timization: 8th International Conference, EMO 2015, Guimarães, Portugal, March
29 –April 1, 2015. Proceedings, Part I. Ed. by António Gaspar-Cunha, Carlos
Henggeler Antunes, and Carlos Coello Coello. Cham: Springer International
Publishing, 2015, pp. 396–410.

[CM15] Imen Chakroun and Nouredine Melab. “Towards a heterogeneous and adap-
tive parallel Branch-and-Bound algorithm.” In: J. Comput. Syst. Sci. 81.1 (2015),
pp. 72–84.

116 Bibliography

[Chi+15] Francisco Chicano, Andrew M. Sutton, L. Darrell Whitley, and Enrique Alba.
“Fitness Probability Distribution of Bit-Flip Mutation.” In: Evolutionary Compu-
tation 23.2 (2015). PMID: 24885680, pp. 217–248.

[Der+15] Bilel Derbel, Arnaud Liefooghe, Gauvain Marquet, and El-Ghazali Talbi. “A
fine-grained message passing MOEA/D.” In: IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015. 2015, pp. 1837–1844.

[DP15] Bilel Derbel and Philippe Preux. “Simultaneous optimistic optimization on the
noiseless BBOB testbed.” In: IEEE Congress on Evolutionary Computation, CEC
2015, Sendai, Japan, May 25-28, 2015. 2015, pp. 2010–2017.

[Di +15] Giacomo Di Tollo, Frédéric Lardeux, Jorge Maturana, and Frédéric Saubion.
“An experimental study of adaptive control for evolutionary algorithms.” In:
Applied Soft Computing 35 (2015), pp. 359–372.

[DLS15] Jérémie Dubois-Lacoste, Manuel López-Ibáñez, and Thomas Stützle. “Anytime
Pareto local search.” In: European Journal of Operational Research 243.2 (2015),
pp. 369–385.

[Jan+15] Christopher Jankee, Sébastien Vérel, Bilel Derbel, and Cyril Fonlupt. “Distributed
Adaptive Metaheuristic Selection: Comparisons of Selection Strategies.” In: Ar-
tificial Evolution - 12th International Conference, Evolution Artificielle, EA 2015,
Lyon, France, October 26-28, 2015. Revised Selected Papers. 2015, pp. 83–96.

[Jem+15] Imen Jemili, Dhouha Ghrab, Amine Dhraief, Abdelfettah Belghith, Bilel Derbel,
Ahmed S. Al-Mogren, and Hassan Mathkour. “CHRA: a coloring based hierar-
chical routing algorithm.” In: J. Ambient Intelligence and Humanized Computing
6.1 (2015), pp. 69–82.

[Li+15a] H. Li, M. Ding, J. Deng, and Q. Zhang. “On the use of random weights in
MOEA/D.” In: 2015 IEEE Congress on Evolutionary Computation (CEC). 2015,
pp. 978–985.

[Li+15b] K. Li, K. Deb, Q. Zhang, and S. Kwong. “An Evolutionary Many-Objective
Optimization Algorithm Based on Dominance and Decomposition.” In: IEEE
Transactions on Evolutionary Computation 19.5 (2015), pp. 694–716.

[Mar+15a] Saúl Zapotecas Martı́nez, Bilel Derbel, Arnaud Liefooghe, Hernán E. Aguirre,
and Kiyoshi Tanaka. “Geometric Differential Evolution in MOEA/D: A Pre-
liminary Study.” In: Advances in Artificial Intelligence and Soft Computing - 14th
Mexican International Conference on Artificial Intelligence, MICAI 2015, Cuernavaca,
Morelos, Mexico, October 25-31, 2015, Proceedings, Part I. 2015, pp. 364–376.

[Mar+15b] Saúl Zapotecas Martı́nez, Bilel Derbel, Arnaud Liefooghe, Dimo Brockhoff,
Hernán E. Aguirre, and Kiyoshi Tanaka. “Injecting CMA-ES into MOEA/D.”
In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015. 2015, pp. 783–790.

[Muñ+15] Mario A. Muñoz, Yuan Sun, Michael Kirley, and Saman K. Halgamuge. “Algo-
rithm selection for black-box continuous optimization problems: A survey on
methods and challenges.” In: Information Sciences 317 (2015), pp. 224–245.

[Sat15a] Hiroyuki Sato. “Analysis of inverted PBI and comparison with other scalarizing
functions in decomposition based MOEAs.” In: Journal of Heuristics 21.6 (2015),
pp. 819–849.

[Sat15b] Hiroyuki Sato. “Analysis of inverted PBI and comparison with other scalarizing
functions in decomposition based MOEAs.” In: J. Heuristics 21.6 (2015), pp. 819–
849.

Bibliography 117

[Sor+15] Jorge A Soria-Alcaraz, Gabriela Ochoa, Adrien Göeffon, Frédéric Lardeux, and
Frédéric Saubion. “Combining Mutation and Recombination to Improve a Dis-
tributed Model of Adaptive Operator Selection.” In: International Conference on
Artificial Evolution (Evolution Artificielle). Springer. 2015, pp. 97–108.

[Sud15] Dirk Sudholt. “Parallel Evolutionary Algorithms.” In: Springer Handbook of Com-
putational Intelligence. Ed. by Janusz Kacprzyk and Witold Pedrycz. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2015, pp. 929–959.

[WZZ15] Rui Wang, Qingfu Zhang, and Tao Zhang. “Pareto Adaptive Scalarising Func-
tions for Decomposition Based Algorithms.” In: Evolutionary Multi-Criterion Op-
timization: 8th International Conference, EMO 2015, Guimarães, Portugal, March
29 –April 1, 2015. Proceedings, Part I. Ed. by António Gaspar-Cunha, Carlos
Henggeler Antunes, and Carlos Coello Coello. Cham: Springer International
Publishing, 2015, pp. 248–262.

[Yah+15] Hiba Yahyaoui, Saoussen Krichen, Bilel Derbel, and El-Ghazali Talbi. “A Hy-
brid ILS-VND Based Hyper-heuristic for Permutation Flowshop Scheduling
Problem.” In: 19th International Conference in Knowledge Based and Intelligent In-
formation and Engineering Systems, KES 2015, Singapore, 7-9 September 2015. 2015,
pp. 632–641.

[Zap+15] S. Zapotecas-Martinez, H. E. Aguirre, K. Tanaka, and C. A. C. Coello. “On the
low-discrepancy sequences and their use in MOEA/D for high-dimensional ob-
jective spaces.” In: 2015 IEEE Congress on Evolutionary Computation (CEC). 2015,
pp. 2835–2842.

[BP14] Petr Baudiš and Pet Pošı̀k. “Online Black-Box Algorithm Portfolios for Continu-
ous Optimization.” In: Parallel Problem Solving from Nature–PPSN XIII. Springer,
2014, pp. 40–49.

[Der+14a] Bilel Derbel, Dimo Brockhoff, Arnaud Liefooghe, and Sébastien Vérel. “On the
Impact of Multiobjective Scalarizing Functions.” In: Parallel Problem Solving from
Nature - PPSN XIII - 13th International Conference, Ljubljana, Slovenia, September
13-17, 2014. Proceedings. 2014, pp. 548–558.

[Der+14b] Bilel Derbel, Jérémie Humeau, Arnaud Liefooghe, and Sébastien Verel. “Dis-
tributed Localized Bi-objective Search.” In: European Journal of Operational Re-
search 239 (2014), pp. 731–743.

[DKB14] Thomas Desautels, Andreas Krause, and Joel W. Burdick. “Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization.” In: Journal of
Machine Learning Research 15.1 (2014), pp. 3873–3923.

[DD14] Benjamin Doerr and Carola Doerr. “The impact of random initialization on the
runtime of randomized search heuristics.” In: GECCO ’14 - Conference on Genetic
and Evolutionary Computation. ACM. Vancouver, Canada: ACM, 2014, pp. 1375–
1382.

[Dro+14] Martin Drozdik, Kiyoshi Tanaka, Hernán E. Aguirre, Sébastien Vérel, Arnaud
Liefooghe, and Bilel Derbel. “An Analysis of Differential Evolution Parame-
ters on Rotated Bi-objective Optimization Functions.” In: Simulated Evolution
and Learning - 10th International Conference, SEAL 2014, Dunedin, New Zealand,
December 15-18, 2014. Proceedings. 2014, pp. 143–154.

[Fer+14] Carlos M. Fernandes, Juan LJ Laredo, Juan Julian Merelo, Carlos Cotta, Rafael
Nogueras, and Agostinho C. Rosa. “Shuffle and Mate: A Dynamic Model for
Spatially Structured Evolutionary Algorithms.” In: Parallel Problem Solving from
Nature–PPSN XIII. Springer, 2014, pp. 50–59.

118 Bibliography

[Gar+14] Mario Garcı́a-Valdez, Leonardo Trujillo, Juan Julián Merelo-Guérvos, and Fran-
cisco Fernández-de-Vega. “Randomized Parameter Settings for Heterogeneous
Workers in a Pool-Based Evolutionary Algorithm.” In: Parallel Problem Solving
from Nature–PPSN XIII. Springer, 2014, pp. 702–710.

[KZB14] Liangjun Ke, Qingfu Zhang, and R. Battiti. “Hybridization of Decomposition
and Local Search for Multiobjective Optimization.” In: IEEE Transactions on Cy-
bernetics 44.10 (2014), pp. 1808–1820.

[Kot14] Lars Kotthoff. “Algorithm Selection for Combinatorial Search Problems: A Sur-
vey.” In: AI Magazine (2014).

[Ler+14] Rudi Leroy, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. “Work
Stealing Strategies For Multi-Core Parallel Branch-and-Bound Algorithm Using
Factorial Number System.” In: Programming Models and Applications on Multi-
cores and Manycores (PMAM). Orlando, FL, USA: ACM, 2014, 111:111–111:119.

[Li+02] Ke Li, Alvaro Fialho, Sam Kwong, and Qingfu Zhang. “Adaptive Operator
Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on
Decomposition.” In: IEEE Transactions on Evolutionary Computation 18.1 (2014-
02), pp. 114–130.

[LGZ14] H. L. Liu, F. Gu, and Q. Zhang. “Decomposition of a Multiobjective Optimiza-
tion Problem Into a Number of Simple Multiobjective Subproblems.” In: IEEE
Transactions on Evolutionary Computation 18.3 (2014), pp. 450–455.

[ME14] KatherineM. Malan and AndriesP. Engelbrecht. “Fitness Landscape Analysis
for Metaheuristic Performance Prediction.” In: Recent Advances in the Theory
and Application of Fitness Landscapes. Ed. by Hendrik Richter and Andries En-
gelbrecht. Vol. 6. Emergence, Complexity and Computation. Springer Berlin
Heidelberg, 2014, pp. 103–132.

[MI14] Andrea Mambrini and Dario Izzo. “PaDe: A Parallel Algorithm Based on the
MOEA/D Framework and the Island Model.” In: Parallel Problem Solving from
Nature – PPSN XIII: 13th International Conference, Ljubljana, Slovenia, September
13-17, 2014. Proceedings. 2014, pp. 711–720.

[Mar+14] Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe, and El-Ghazali Talbi. “Shake
Them All! - Rethinking Selection and Replacement in MOEA/D.” In: Parallel
Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana,
Slovenia, September 13-17, 2014. Proceedings. 2014, pp. 641–651.

[Mez+14] Mohand Mezmaz, Rudi Leroy, Nouredine Melab, and Daniel Tuyttens. “A
Multi-core Parallel Branch-and-Bound Algorithm Using Factorial Number Sys-
tem.” In: IEEE 28th International Parallel and Distributed Processing Symposium
(IPDPS). 2014, pp. 1203–1212.

[Mun14] Rémi Munos. “From Bandits to Monte-Carlo Tree Search: The Optimistic Prin-
ciple Applied to Optimization and Planning.” In: Foundations and Trends in Ma-
chine Learning 7.1 (2014), pp. 1–129.

[Qi+14] Yutao Qi, Xiaoliang Ma, Fang Liu, Licheng Jiao, Jianyong Sun, and Jianshe Wu.
“MOEA/D with adaptive weight adjustment.” In: Evolutionary computation 22.2
(2014), pp. 231–264.

[RE14] Hendrik Richter and Andries Engelbrecht, eds. Recent Advances in the Theory
and Application of Fitness Landscapes. Emergence, Complexity and Computation.
Springer, 2014.

[Sil+14] J.M.N. Silva, C. Boeres, L.M.A. Drummond, and A.A. Pessoa. “Memory aware
load balance strategy on a parallel branch-and-bound application.” In: Concur-
rency and Computation: Practice and Experience (2014).

Bibliography 119

[Vu14] Trong-Tuan Vu. Heterogeneity and locality-aware work stealing for large scale Branch-
and-Bound irregular algorithms. PhD Thesis. Lille, France, 2014.

[VD14] Trong-Tuan Vu and B. Derbel. “Link-Heterogeneous Work Stealing.” In: 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid). 2014, pp. 354–363.

[Bur+13] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. “Hyper-heuristics: a survey of the state of
the art.” In: JORS 64.12 (2013), pp. 1695–1724.

[Can+13] Caner Candan, Adrien Goëffon, Frédéric Lardeux, and Frédéric Saubion. “Pa-
rameter Setting with Dynamic Island Models.” In: Learning and Intelligent Opti-
mization. Springer, 2013, pp. 253–258.

[Cha13] I. Chakroun. Parallel heterogeneous Branch and Bound algorithms for multi-core and
multi-GPU environments. PhD Thesis. Lille, France, 2013.

[DBL13] Bilel Derbel, Dimo Brockhoff, and Arnaud Liefooghe. “Force-Based Coopera-
tive Search Directions in Evolutionary Multi-objective Optimization.” In: Evo-
lutionary Multi-Criterion Optimization - 7th International Conference, EMO 2013,
Sheffield, UK, March 19-22, 2013. Proceedings. 2013, pp. 383–397.

[Dja13] M. Djamai. Algorithmes Branch-and-Bound Pair-a-Pair pour grilles de calcul. PhD
Thesis. Lille, France, 2013.

[DDM13] Mathieu Djamaı̈, Bilel Derbel, and Nouredine Melab. “Large sclae P2P-Inspired
Problem solving: a formal and experimental study.” In: Large Scale Network-
Centric Distributed Systems. Ed. by A. Y. Zomaya and H. Sarbazi-Azad. John
Wiley & Sons, 2013, pp. 73–102.

[DB13] Bernabé Dorronsoro and Pascal Bouvry. “Cellular genetic algorithms without
additional parameters.” In: The Journal of Supercomputing 63.3 (2013), pp. 816–
835.

[Dor+13] Bernabé Dorronsoro, Grégoire Danoy, Antonio J. Nebro, and Pascal Bouvry.
“Achieving super-linear performance in parallel multi-objective evolutionary
algorithms by means of cooperative coevolution.” In: Computers & Operations
Research 40.6 (2013). Emergent Nature Inspired Algorithms for Multi-Objective
Optimization, pp. 1552–1563.

[Ghr+13] Dhouha Ghrab, Bilel Derbel, Imen Jemili, Amine Dhraief, Abdelfettah Belghith,
and El-Ghazali Talbi. “Coloring based Hierarchical Routing Approach.” In: Pro-
ceedings of the 4th International Conference on Ambient Systems, Networks and Tech-
nologies (ANT 2013), the 3rd International Conference on Sustainable Energy Informa-
tion Technology (SEIT-2013), Halifax, Nova Scotia, Canada, June 25-28, 2013. 2013,
pp. 188–196.

[GPF13] Ioannis Giagkiozis, Robin C. Purshouse, and Peter J. Fleming. “Generalized
Decomposition.” In: Evolutionary Multi-Criterion Optimization - 7th International
Conference, EMO 2013, Sheffield, UK, March 19-22, 2013. Proceedings. 2013, pp. 428–
442.

[GW13] Olga Goussevskaia and Roger Wattenhofer. “Scheduling with interference de-
coding: Complexity and algorithms.” In: Ad Hoc Networks 11.6 (2013), pp. 1732–
1745.

[HW13] Y. Hamadi and C.M. Wintersteiger. “Seven Challenges in Parallel SAT Solving.”
In: AI Magazine 34.2 (2013), pp. 99–106.

120 Bibliography

[Her+13a] Juan F. R. Herrera, Leocadio G. Casado, Eligius M. T. Hendrix, Remigijus
Paulavicius, and Julius Zilinskas. “Dynamic and Hierarchical Load-Balancing
Techniques Applied to Parallel Branch-and-Bound Methods.” In: 8th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC).
2013, pp. 497–502.

[Her+13b] Juan F.R. Herrera, Leocadio G. Casado, Remigijus Paulavicius, Julius ilinskas,
and Eligius M.T. Hendrix. “On a Hybrid MPI-Pthread Approach for Simplicial
Branch-and-Bound.” In: IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum (2013), pp. 1764–1770.

[Hus+13] Hameed Hussain et al. “A survey on resource allocation in high performance
distributed computing systems.” In: Parallel Computing 39.11 (2013), pp. 709–
736.

[IAN13] Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. “A Study on the Speci-
fication of a Scalarizing Function in MOEA/D for Many-Objective Knapsack
Problems.” In: LION7. 2013, pp. 231–246.

[JH13] V. Janjic and K. Hammond. “How to be a Successful Thief.” In: 19th Inter. Conf.
on Parallel Proc. (Euro-Par). 2013, pp. 114–125.

[Jem+13] Imen Jemili, Dhouha Ghrab, Abdelfettah Belghith, Bilel Derbel, and Amine
Dhraief. “Collision aware coloring algorithm for wireless sensor networks.” In:
2013 9th International Wireless Communications and Mobile Computing Conference,
IWCMC 2013, Sardinia, Italy, July 1-5, 2013. 2013, pp. 1546–1553.

[KZB13] Liangjun Ke, Qingfu Zhang, and R. Battiti. “MOEA/D-ACO: A Multiobjective
Evolutionary Algorithm Using Decomposition and Ant Colony.” In: IEEE Trans-
actions on Cybernetics 43.6 (2013), pp. 1845–1859.

[KJL13a] S. Kouki, M. Jemni, and T. Ladhari. “Scalable Distributed Branch and Bound
for the Permutation Flow Shop Problem.” In: 8th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC). 2013, pp. 503–508.

[KJL13b] S. Kouki, M. Jemni, and T. Ladhari. “Scalable Distributed Branch and Bound for
the Permutation Flow Shop Problem.” In: P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2013 Eighth International Conference on. 2013, pp. 503–508.

[MMT13] M. Mezmaz, N. Melab, and D. Tuyttens. “A Multithreaded branch-and-bound
algorithm for solving the flow-shop problem on a multicore environment.” In:
Large Scale Network-Centric Distributed Systems. Ed. by H. Sarbazi-Azad and A. Y.
Zomaya. John Wiley & Sons, Inc., Hoboken, New Jersey, 2013. Chap. 3.

[Sar+13] L. Sarzyniec, T. Buchert, E. Jeanvoine, and L. Nussbaum. “Design and Evalua-
tion of a Virtual Experimental Environment for Distributed Systems.” In: 21st

Inter. Conf. on Parallel, Distributed and Network-Based Processing. 2013.

[TF13] R. Tanabe and A. Fukunaga. “Evaluation of a randomized parameter setting
strategy for island-model evolutionary algorithms.” In: Evolutionary Computa-
tion (CEC), 2013 IEEE Congress on. 2013, pp. 1263–1270.

[TBD13] Thanh-Do Tran, Dimo Brockhoff, and Bilel Derbel. “Multiobjectivization with
NSGA-ii on the noiseless BBOB testbed.” In: Genetic and Evolutionary Computa-
tion Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013, Compan-
ion Material Proceedings. 2013, pp. 1217–1224.

[VHS13] Nadarajen Veerapen, Youssef Hamadi, and Frédéric Saubion. “Using Local
Search with adaptive operator selection to solve the Progressive Party Prob-
lem.” In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013,
Cancun, Mexico, June 20-23, 2013. 2013, pp. 554–561.

Bibliography 121

[Ver+13] Sébastien Verel, Arnaud Liefooghe, Laetitia Jourdan, and Clarisse Dhaenens.
“On the structure of multiobjective combinatorial search space: MNK-landscapes
with correlated objectives.” In: Eur J Oper Res 227.2 (2013), pp. 331–342.

[VDM13] Trong-Tuan Vu, Bilel Derbel, and Nouredine Melab. “Adaptive Dynamic Load
Balancing in Heterogeneous Multiple GPUs-CPUs Distributed Setting: Case
Study of B&B Tree Search.” In: 7th International Conference on Learning and Intel-
ligent Optimization (LION). 2013, pp. 87–103.

[ZC13] Saúl Zapotecas Martı́nez and Carlos A. Coello Coello. “MOEA/D Assisted by
Rbf Networks for Expensive Multi-objective Optimization Problems.” In: Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation.
GECCO ’13. Amsterdam, The Netherlands: ACM, 2013, pp. 1405–1412.

[Ben12] A. Bendjoudi. Scalable and fault tolerant hierarchical B&B algorithms for Computa-
tional Grids. PhD Thesis. Algiers, Algeria, 2012.

[BMT12a] A. Bendjoudi, N. Melab, and E. -G. Talbi. “Hierarchical Branch and Bound
Algorithm for Computational Grids.” In: Future Generation Computer Systems
(FGCS) 28.8 (2012), pp. 1168–1176.

[BMT12b] A. Bendjoudi, N. Melab, and E-G. Talbi. “An adaptive hierarchical master-
worker framework for grids: Application to B&B algorithms.” In: Journal of
Parallel and Distributed Computing (JPDC) 72.2 (2012), pp. 120–131.

[Can+12] Caner Candan, Adrien Goeffon, Frédéric Lardeux, and Frédéric Saubion. “A dy-
namic island model for adaptive operator selection.” In: Proceedings of the 14th
annual conference on Genetic and evolutionary computation. ACM. 2012, pp. 1253–
1260.

[CM12] I. Chakroun and M. Melab. “An Adaptative Multi-GPU based Branch-and-
Bound. A Case Study: the Flow-Shop Scheduling Problem.” In: 14th IEEE In-
ternational Conference on High Performance Computing and Communications. 2012.

[DD12] Houda Derbel and Bilel Derbel. “On neighborhood tree search.” In: Genetic and
Evolutionary Computation Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11,
2012. 2012, pp. 1261–1268.

[Dro+12] Maciej Drozdowski, Pawel Marciniak, Grzegorz Pawlak, and Maciej Plaza. “Grid
Branch-and-Bound for Permutation Flowshop.” In: Parallel Processing and Ap-
plied Mathematics. Vol. 7204. LNCS. Springer, 2012, pp. 21–30.

[DT12] Madalina M. Drugan and Dirk Thierens. “Stochastic Pareto local search: Pareto
neighbourhood exploration and perturbation strategies.” In: J. Heuristics 18.5
(2012), pp. 727–766.

[GL12] Adrien Goëffon and Frédéric Lardeux. “Autonomous Local Search Algorithms
with Island Representation.” In: Learning and Intelligent Optimization. Ed. by
Youssef Hamadi and Marc Schoenauer. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 390–395.

[HMS12] Youssef Hamadi, Eric Monfroy, and Frédéric Saubion, eds. Autonomous Search.
Springer, 2012.

[KJL12] Samia Kouki, Mohamed Jemni, and Talel Ladhari. “A Load Balanced Distributed
Algorithm to Solve the Permutation Flow Shop Problem Using the Grid.” In:
Proceedings of the 2012 IEEE 15th International Conference on Computational Science
and Engineering. CSE ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 146–153.

[Lie+12] Arnaud Liefooghe, Jérémie Humeau, Salma Mesmoudi, Laetitia Jourdan, and
El-Ghazali Talbi. “On dominance-based multiobjective local search: design, im-
plementation and experimental analysis on scheduling and traveling salesman
problems.” In: J. Heuristics 18.2 (2012), pp. 317–352.

122 Bibliography

[Mel+12] N. Melab, I. Chakroun, M. Mezmaz, and D. Tuyttens. “A GPU-accelerated B&B
Algorithm for the Flow-Shop Scheduling Problem.” In: 14th IEEE Conf. on Clus-
ter Computing. 2012.

[Och12] Gabriela Ochoa. “Hyper-heuristics and Cross-domain Optimization.” In: Pro-
ceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Com-
putation. GECCO ’12. Philadelphia, Pennsylvania, USA: ACM, 2012, pp. 1197–
1214.

[OD12] Lars Otten and Rina Dechter. “Advances in Distributed Branch and Bound.”
In: ECAI 2012 - 20th European Conference on Artificial Intelligence. Including Presti-
gious Applications of Artificial Intelligence (PAIS-2012) System Demonstrations Track,
Montpellier, France, August 27-31 , 2012. 2012, pp. 917–918.

[Pil+12] L.L. Pilla et al. “A Hierarchical Approach for Load Balancing on Parallel Multi-
core Systems.” In: 41st Inter. Conf. on Parallel Processing (ICPP). 2012, pp. 118–
127.

[PDB12] Frédéric Pinel, Grégoire Danoy, and Pascal Bouvry. “Evolutionary Algorithm
Parameter Tuning with Sensitivity Analysis.” In: Security and Intelligent Informa-
tion Systems: International Joint Conferences, SIIS 2011, Warsaw, Poland, June 13-14,
2011, Revised Selected Papers. Ed. by Pascal Bouvry, Mieczysław A. Kłopotek,
Franck Leprévost, Małgorzata Marciniak, Agnieszka Mykowiecka, and Henryk
Rybiński. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 204–216.

[SD12] Abdorreza Savadi and Hossein Deldari. “A Bridging Model for Branch-and-
Bound Algorithms on Multi-core Architectures.” In: 5th International Sympo-
sium on Parallel Architectures, Algorithms and Programming. PAAP. 2012, pp. 235–
241.

[SL12] Kate Smith-Miles and Leo Lopes. “Measuring instance difficulty for combina-
torial optimization problems.” In: Comput Oper Res 39.5 (2012), pp. 875–889.

[VMS12] Nadarajen Veerapen, Jorge Maturana, and Frédéric Saubion. “An exploration-
exploitation compromise-based adaptive operator selection for local search.”
In: Genetic and Evolutionary Computation Conference, GECCO ’12, Philadelphia, PA,
USA, July 7-11, 2012. 2012, pp. 1277–1284.

[Vu+12] Trong-Tuan Vu, Bilel Derbel, Ali Asim, Ahcene Bendjoudi, and Nouredine
Melab. “Overlay-Centric Load Balancing: Applications to UTS and B&B.” In:
14th IEEE International Conference on Cluster Computing (CLUSTER). 2012, pp. 382–
390.

[BDW11] Mihai Budiu, Daniel Delling, and Renato F. Werneck. “DryadOpt: Branch-and-
Bound on Distributed Data-Parallel Execution Engines.” In: International Paral-
lel and Distributed Processing Symposium (IPDPS). Washington, DC, USA, 2011,
pp. 1278–1289.

[Bur+11] Edmund K. Burke, Michel Gendreau, Gabriela Ochoa, and James D. Walker.
“Adaptive Iterated Local Search for Cross-domain Optimisation.” In: Proceed-
ings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM,
2011, pp. 1987–1994.

[DV11] Bilel Derbel and Sébastien Verel. “DAMS: Distributed Adaptive Metaheuris-
tic Selection.” In: Genetic And Evolutionary Computation Conference (GECCO).
Dublin, Ireland: ACM, 2011, pp. 1955–1962.

[DDM11a] Mathieu Djamaı̈, Bilel Derbel, and Nouredine Melab. “Distributed B&B: A Pure
Peer-to-Peer Approach.” In: 25th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011 -
Workshop Proceedings. 2011, pp. 1788–1797.

Bibliography 123

[DDM11b] Mathieu Djamaı̈, Bilel Derbel, and Nouredine Melab. “Impact of logical overlay
upon a Pure P2P approach for the B&B algorithm.” In: IEEE Inter. Conf. on
Systems and Computer Science (ICSCS’11). 2011.

[Dor+11] Bernabé Dorronsoro, Grégoire Danoy, Pascal Bouvry, and Antonio J. Nebro.
“Multi-objective Cooperative Coevolutionary Evolutionary Algorithms for Con-
tinuous and Combinatorial Optimization.” In: Intelligent Decision Systems in
Large-Scale Distributed Environments. Ed. by Pascal Bouvry, Horacio González-
Vélez, and Joanna Kołodziej. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 49–74.

[Dur+11] Juan Durillo, Qingfu Zhang, Antonio Nebro, and Enrique Alba. “Distribution
of Computational Effort in Parallel MOEA/D.” In: International Conference on
Learning and Intelligent Optimization (LION). LNCS. 2011.

[ECG11] J.F.S. Estrada, L. G. Casado, and I Garcia. “Adaptive Parallel Interval Global
Optimization Algorithms Based on their Performance for Non-dedicated Mul-
ticore Architectures.” In: 19th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP). 2011, pp. 252–256.

[Gei11] Martin Josef Geiger. “Decision support for multi-objective flow shop schedul-
ing by the Pareto Iterated Local Search methodology.” In: Computers & Industrial
Engineering 61.3 (2011), pp. 805–812.

[GL11] A. Goeffon and F. Lardeux. “Optimal One-Max Strategy with Dynamic Island
Models.” In: Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE International
Conference on. 2011, pp. 485–488.

[GF11] Yiyuan Gong and Alex Fukunaga. “Distributed island-model genetic algorithms
using heterogeneous parameter settings.” In: Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5-8 June, 2011. 2011,
pp. 820–827.

[Han11] N. Hansen. Injecting External Solutions Into CMA-ES. Tech. rep. INRIA, 2011.

[HHL11] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential Model-Based Op-
timization for General Algorithm Configuration.” In: Learning and Intelligent
OptimizatioN. 2011, pp. 507–523.

[LGH11] Z. Lü, F. Glover, and J.-K. Hao. “Neighborhood Combination for Unconstrained
Binary Quadratic Problems.” In: MIC Post-Conference Book. 2011, pp. 49–61.

[LHG11] Z. Lü, J.-K. Hao, and F. Glover. “Neighborhood analysis: a case study on
curriculum-based course timetabling.” In: J. of Heuristics 17 (2 2011), pp. 97–
118.

[MIY11] S-J Min, C. Iancu, and K. Yelick. “Hierarchical Work Stealing on Manycore
Clusters.” In: 5th Conference on Partitioned Global Address Space Prog. Models.
2011.

[Ope11] OpenMP. OpenMP Application Program Interface. 2011.

[RLP11] Kaushik Ravichandran, Sangho Lee, and Santosh Pande. “Work stealing for
multi-core HPC clusters.” In: 17th inter. conf. on Parallel processing (Euro-Par).
2011, pp. 205–217.

[Sar+11] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and
Sriram Krishnamoorthy. “Lifeline-based global load balancing.” In: 16th ACM
Symp. on Principles and practice of parallel programming (PPoPP ’11). 2011, pp. 201–
212.

[Zha+11] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. “Cloud versus in-house cluster:
Evaluating Amazon cluster compute instances for running MPI applications.”
In: Inter. Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC). 2011, pp. 1–10.

124 Bibliography

[BB10] Lucio Barreto and Michael Bauer. “Parallel Branch and Bound Algorithm - A
comparison between serial, OpenMP and MPI implementations.” In: Journal of
Physic: Conference series 256.1 (2010), p. 012018.

[BR10a] O. Beaumont and AL. Rosenberg. “Link-heterogeneity vs. node-heterogeneity
in clusters.” In: High Performance Computing (HiPC), 2010 International Conference
on. 2010, pp. 1–8.

[BR10b] O. Beaumont and A.L. Rosenberg. “Link-heterogeneity vs. node-heterogeneity
in clusters.” In: International Conference on High Performance Computing (HiPC).
2010, pp. 1–8.

[Bur+10] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and John R. Woodward. “A Classification of Hyper-heuristic Approaches.”
In: Handbook of Metaheuristics. Ed. by Michel Gendreau and Jean-Yves Potvin.
Boston, MA: Springer US, 2010, pp. 449–468.

[DMZ10] Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. “Sublinear Fully Dis-
tributed Partition with Applications.” In: Theory Comput. Syst. 47.2 (2010), pp. 368–
404.

[DT10a] Bilel Derbel and El-Ghazali Talbi. “Distributed Node Coloring in the SINR
Model.” In: 2010 International Conference on Distributed Computing Systems, ICDCS
2010, Genova, Italy, June 21-25, 2010. 2010, pp. 708–717.

[DT10b] Bilel Derbel and El-Ghazali Talbi. “Radio Network Distributed Algorithms in
the Unknown Neighborhood Model.” In: Distributed Computing and Network-
ing, 11th International Conference, ICDCN 2010, Kolkata, India, January 3-6, 2010.
Proceedings. 2010, pp. 155–166.

[Fia+10a] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michele Sebag. “Ana-
lyzing Bandit-based Adaptive Operator Selection Mechanisms.” In: Annals of
Mathematics and Artificial Intelligence – Special Issue on Learning and Intelligent
Optimization 60 (2010). Ed. by R. Battiti et al., pp. 25–64.

[Fia+10b] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michele Sebag. “Analyz-
ing bandit-based adaptive operator selection mechanisms.” In: Annals of Math-
ematics and Artificial Intelligence 60.1-2 (2010), pp. 25–64.

[Fig+10] J. R. Figueira, A. Liefooghe, E.-G. Talbi, and A. P. Wierzbicki. “A Parallel Mul-
tiple Reference Point Approach for Multi-objective Optimization.” In: European
Journal of Operational Research 205 (2010), pp. 390–400.

[GB10] N. Gast and G. Bruno. “A Mean Field Model of Work Stealing in Large-scale
Systems.” In: ACM International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS). 2010, pp. 13–24.

[Han+10] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posı́k. “Comparing results of
31 algorithms from the black-box optimization benchmarking BBOB-2009.” In:
GECCO workshop on Black-Box Optimization Benchmarking (BBOB’2010). Ed. by J.
Branke et al. ACM, 2010, pp. 1689–1696.

[Ish+10] Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, and Yusuke Nojima. “Simul-
taneous Use of Different Scalarizing Functions in MOEA/D.” In: Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation. GECCO ’10.
Portland, Oregon, USA: ACM, 2010, pp. 519–526.

[Kad+10] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. “ISAC –
Instance-Specific Algorithm Configuration.” In: European Conference on Artificial
Intelligence. 2010, pp. 751–756.

Bibliography 125

[KJL10] Samia Kouki, Mohamed Jemni, and Talel Ladhari. “Deployment of Solving
Permutation Flow Shop Scheduling Problem on the Grid.” English. In: Grid
and Distributed Computing, Control and Automation. Vol. 121. Communications in
Computer and Information Science. Springer, 2010, pp. 95–104.

[Kra10] Oliver Kramer. “Evolutionary self-adaptation: a survey of operators and strat-
egy parameters.” In: Evolutionary Intelligence 3.2 (2010), pp. 51–65.

[LD10] Ailsa H. Land and Alison G. Doig. “An Automatic Method for Solving Discrete
Programming Problems.” English. In: 50 Years of Integer Programming 1958-2008.
Springer Berlin Heidelberg, 2010, pp. 105–132.

[LMS10] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. “Iterated local
search: Framework and applications.” In: Handbook of Metaheuristics. Springer,
2010, pp. 363–397.

[LT10] T. Lust and J. Teghem. “Two-phase Pareto local search for the biobjective trav-
eling salesman problem.” In: Journal of Heuristics 16.3 (2010), pp. 475–510.

[Mos10] Sanaz Mostaghim. “Parallel Multi-objective Optimization Using Self-organized
Heterogeneous Resources.” In: Parallel and Distributed Computational Intelligence.
Vol. 269. Studies in Computational Intelligence. Springer, 2010, pp. 165–179.

[ND10] Antonio J. Nebro and Juan José Durillo. “A Study of the Parallelization of the
Multi-Objective Metaheuristic MOEA/D.” In: International Conference on Learn-
ing and Intelligent Optimization (LION). LNCS. 2010, pp. 303–317.

[OD10] Lars Otten and Rina Dechter. “Load Balancing for Parallel Branch and Bound.”
In: 10th Workshop on Preferences and Soft Constraints. 2010, pp. 51–65.

[QW10a] Jean-Noël Quintin and Frédéric Wagner. “Hierarchical work-stealing.” In: 16th

inter. conference on Parallel processing (Euro-Par). 2010, pp. 217–229.

[QW10b] J.-N. Quintin and F. Wagner. “Hierarchical Work-stealing.” In: 16th Inter. Conf.
on Parallel Processing (EuroPar). 2010, pp. 217–229.

[XHL10] Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. “Hydra: Automatically Con-
figuring Algorithms for Portfolio-based Selection.” In: Conference on Artificial
Intelligence. 2010, pp. 210–216.

[Zha+10] Q. Zhang, W. Liu, E. Tsang, and B. Virginas. “Expensive Multiobjective Opti-
mization by MOEA/D With Gaussian Process Model.” In: IEEE Transactions on
Evolutionary Computation 14.3 (2010), pp. 456–474.

[Bia+09] Marco Biazzini, Balazs Banhelyi, Alberto Montresor, and Mark Jelasity. “Dis-
tributed Hyper-heuristics for Real Parameter Optimization.” In: Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO ’09.
New York, NY, USA: ACM, 2009, pp. 1339–1346.

[Bir09] Mauro Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer,
2009.

[BAE09] Lam T. Bui, Hussein A. Abbass, and Daryl Essam. “Local models — an ap-
proach to distributed multi-objective optimization.” In: Computational Optimiza-
tion and Applications 42.1 (2009), pp. 105–139.

[Der+09] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. “Local Com-
putation of Nearly Additive Spanners.” In: Distributed Computing, 23rd Inter-
national Symposium, DISC 2009, Elche, Spain, September 23-25, 2009. Proceedings.
2009, pp. 176–190.

[Din+09] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and
Jarek Nieplocha. “Scalable Work Stealing.” In: ACM Conference on High Perfor-
mance Computing Networking, Storage and Analysis (SC). Portland, Oregon, 2009,
53:1–53:11.

126 Bibliography

[EPS09] Yuri Evtushenko, Mikhail Posypkin, and Israel Sigal. “A framework for parallel
large-scale global optimization.” English. In: Computer Science - Research and
Development 23.3-4 (2009), pp. 211–215.

[Fia+09] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michele Sebag. “Dynamic
Multi-Armed Bandits and Extreme Value-based Rewards for Adaptive Opera-
tor Selection in Evolutionary Algorithms.” In: LION’09. Ed. by T. Stuetzle et al.
Vol. 5851. LNCS. Springer Verlag, 2009, pp. 176–190.

[Hut+09] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. “ParamILS:
An Automatic Algorithm Configuration Framework.” In: J. Artif. Int. Res. 36.1
(2009), pp. 267–306.

[Ish+09] Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, and Yusuke Nojima. “Adap-
tation of Scalarizing Functions in MOEA/D: An Adaptive Scalarizing Function-
Based Multiobjective Evolutionary Algorithm.” In: Evolutionary Multi-Criterion
Optimization: 5th International Conference, EMO 2009, Nantes, France, April 7-10,
2009. Proceedings. Ed. by Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux,
Jin-Kao Hao, and Marc Sevaux. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 438–452.

[LZ09] Hui Li and Qingfu Zhang. “Multiobjective Optimization Problems With Com-
plicated Pareto Sets, MOEA/D and NSGA-II.” In: IEEE Trans. Evolutionary Com-
putation 13.2 (2009), pp. 284–302.

[Lie+09] Arnaud Liefooghe, Salma Mesmoudi, Jérémie Humeau, Laetitia Jourdan, and
El-Ghazali Talbi. “A Study on Dominance-Based Local Search Approaches for
Multiobjective Combinatorial Optimization.” In: Engineering Stochastic Local Search
Algorithms. Designing, Implementing and Analyzing Effective Heuristics: Second In-
ternational Workshop, SLS 2009, Brussels, Belgium, September 3-4, 2009. Proceedings.
Ed. by Thomas Stützle, Mauro Birattari, and Holger H. Hoos. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 120–124.

[Mat+09] Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer, and Michele
Sebag. “Extreme compass and dynamic multi-armed bandits for adaptive op-
erator selection.” In: Evolutionary Computation, 2009. CEC’09. IEEE Congress on.
IEEE. 2009, pp. 365–372.

[Meh+09] Malika Mehdi, Mohand-Said Mezmaz, Nouredine Melab, El-Ghazali Talbi, and
Pascal Bouvry. “P2P computing for large tree exploration-based exact optimi-
sation.” In: IJGUC 1.3 (2009), pp. 252–260.

[PS09] L. Paquete and T. Stützle. “Design and analysis of stochastic local search for the
multiobjective traveling salesman problem.” In: Computers & Operations Research
36.9 (2009), pp. 2619–2631.

[Smi09] Kate A. Smith-Miles. “Cross-disciplinary Perspectives on Meta-learning for Al-
gorithm Selection.” In: ACM Comput. Surv. 41.1 (2009), 6:1–6:25.

[Tal09] El-Ghazali Talbi. Metaheuristics: from design to implementation. Vol. 74. John Wiley
& Sons, 2009.

[ZLL09] Q. Zhang, W. Liu, and H. Li. “The performance of a new version of MOEA/D
on CEC09 unconstrained MOP test instances.” In: 2009 IEEE Congress on Evolu-
tionary Computation. 2009, pp. 203–208.

[Cas+08] L. G. Casado, J. A. Martinez, I. Garcia, and E. M. T. Hendrix. “Branch-and-
Bound Interval Global Optimization on Shared Memory Multiprocessors.” In:
Optimization Methods Software 23.5 (2008), pp. 689–701.

[CC08] K. Chakhlevitch and P. I. Cowling. “Hyperheuristics: Recent Developments.”
In: Adaptive and Multilevel Metaheuristics. 2008, pp. 3–29.

Bibliography 127

[Cha+08] Pei Chann Chang, Shih Hsin Chen, Qingfu Zhang, and Jun Lin Lin. “MOEA/D
for flowshop scheduling problems.” In: CEC. 2008, pp. 1433–1438.

[DaC+08] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag. “Adap-
tive operator selection with dynamic multi-armed bandits.” In: Proceedings of
the 10th Annual Conference on Genetic and Evolutionary Computation. ACM Press,
2008, p. 913.

[Der08] Bilel Derbel. “Local Maps: New Insights into Mobile Agent Algorithms.” In:
Distributed Computing, 22nd International Symposium, DISC 2008, Arcachon, France,
September 22-24, 2008. Proceedings. 2008, pp. 121–136.

[DG08] Bilel Derbel and Cyril Gavoille. “Fast deterministic distributed algorithms for
sparse spanners.” In: Theor. Comput. Sci. 399.1-2 (2008), pp. 83–100.

[Der+08] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. “On the local-
ity of distributed sparse spanner construction.” In: Proceedings of the Twenty-
Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC
2008, Toronto, Canada, August 18-21, 2008. 2008, pp. 273–282.

[DMG08] Bilel Derbel, Mohamed Mosbah, and Stefan Gruner. “Mobile Agents Imple-
menting Local Computations in Graphs.” In: Graph Transformations, 4th Inter-
national Conference, ICGT 2008, Leicester, United Kingdom, September 7-13, 2008.
Proceedings. 2008, pp. 99–114.

[Dur+08] Juan José Durillo, Antonio J. Nebro, Francisco Luna, and Enrique Alba. “A
study of master-slave approaches to parallelize NSGA-II.” In: IEEE International
Symposium on Parallel and Distributed Processing (IPDPS). 2008, pp. 1–8.

[GRH08] A. Goeffon, J.-M. Richer, and J.-K. Hao. “Progressive Tree Neighborhood Ap-
plied to the Maximum Parsimony Problem.” In: IEEE/ACM Trans. Comput. Biol.
Bio. 5 (2008), pp. 136–145.

[ITN08] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. “Evolutionary many-
objective optimization: A short review.” In: 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence). 2008, pp. 2419–
2426.

[Meh+08] Malika Mehdi, Mohand-Said Mezmaz, Nouredine Melab, El-Ghazali Talbi, and
Pascal Bouvry. “An Efficient Hybrid P2P Approach for Non-redundant Tree
Exploration in B&B Algorithms.” In: Second International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS-2008), March 4th-7th, 2008, Tech-
nical University of Catalonia, Barcelona, Spain. 2008, pp. 360–365.

[OP08] Stephen Olivier and Jan Prins. “Scalable Dynamic Load Balancing Using UPC.”
In: 37th International Conference on Parallel Processing (ICPP). 2008, pp. 123–131.

[ÖBK08] E. Özcan, B. Bilgin, and E. E. Korkmaz. “A comprehensive analysis of hyper-
heuristics.” In: Intell. Data Anal. 12 (2008), pp. 3–23.

[PR08] J. Puchinger and G. Raidl. “Bringing order into the neighborhoods: relaxation
guided variable neighborhood search.” In: J. of Heuristics 14 (5 2008), pp. 457–
472.

[Tal+08] El-Ghazali Talbi, Sanaz Mostaghim, Tatsuya Okabe, Hisao Ishibuchi, Günter
Rudolph, and Carlos A. Coello Coello. “Parallel Approaches for Multiobjec-
tive Optimization.” In: Multiobjective Optimization – Interactive and Evolutionary
Approaches. Vol. 5252. LNCS. 2008, pp. 349–372.

[Xu+08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla:
Portfolio-based Algorithm Selection for SAT.” In: J. Artif. Intell. Res. (JAIR) 32

(2008), pp. 565–606.

128 Bibliography

[ZKT08] E. Zitzler, J. Knowles, and L. Thiele. “Quality Assessment of Pareto Set Approx-
imations.” In: Multiobjective optimization – interactive and evolutionary approaches.
Vol. 5252. Lecture Notes in Computer Science. Springer, 2008. Chap. 14, pp. 373–
404.

[AT07] H. E. Aguirre and Kiyoshi Tanaka. “Working principles, behavior, and perfor-
mance of MOEAs on MNK-landscapes.” In: European Journal of Operational Re-
search 181.3 (2007), pp. 1670–1690.

[BNE07a] N. Beume, B. Naujoks, and M. Emmerich. “SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume.” In: EJOR 181.3 (2007), pp. 1653–1669.

[BNE07b] Nicola Beume, Boris Naujoks, and Michael Emmerich. “SMS-EMOA: Multi-
objective selection based on dominated hypervolume.” In: European Journal of
Operational Research 181.3 (2007), pp. 1653–1669.

[CLV07] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary
Algorithms for Solving Multi-Objective Problems. Second. Springer, 2007.

[Dic07] A. Diconstanzo. Branch-and-Bound with peer-to-peer for large scale grids. PhD The-
sis. France: Ecole doctorale STIC, 2007.

[Din+07] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and C.-W. Tseng. “Dy-
namic Load Balancing of Unbalanced Computations Using Message Passing.”
In: 21th IPDPS. 2007, pp. 1–8.

[Eib+07] A. E. Eiben, Zbigniew Michalewicz, Marc Schoenauer, and J. E. Smith. “Param-
eter Control in Evolutionary Algorithms.” In: Parameter Setting in Evolutionary
Algorithms. Springer, 2007, pp. 19–46.

[HYM07] Tomoyuki Hiroyasu, Kengo Yoshii, and Mitsunori Miki. “Discussion of par-
allel model of multi-objective genetic algorithms on heterogeneous computa-
tional resources.” In: ACM Genetic and Evolutionary Computation Conference. 2007,
pp. 904–904.

[IHR07] C. Igel, N. Hansen, and S. Roth. “Covariance Matrix Adaptation for Multi-
objective Optimization.” In: Evolutionary Computation 15.1 (2007), pp. 1–28.

[ISH07] Christian Igel, Thorsten Suttorp, and Nikolaus Hansen. “Steady-State Selection
and Efficient Covariance Matrix Update in the Multi-objective CMA-ES.” En-
glish. In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg,
2007, pp. 171–185.

[LLM07] Fernando G.. Lobo, Cludio F. Lima, and Zbigniew Michalewicz. Parameter Set-
ting in Evolutionary Algorithms. 1st. Springer Publishing Company, Incorporated,
2007.

[Mez07] M. Mezmaz. Une approche efficace pour le passage sur grilles de calcul de methodes
dóptimisation combinatoire. PhD Thesis. Lille, France, 2007.

[MMT07a] M. Mezmaz, N. Melab, and E-G. Talbi. “A Grid-based Parallel Approach of
the Multi-Objective Branch and Bound.” In: Proceedings of the 15th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing. PDP
’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 23–30.

[MMT07b] M.-S. Mezmaz, N. Melab, and E.-G. Talbi. “A Grid-enabled Branch and Bound
Algorithm for Solving Challenging Combinatorial Optimization Problems.” In:
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2007,
pp. 1–9.

[MBS07] Sanaz Mostaghim, Juergen Branke, and Hartmut Schmeck. “Multi-objective
particle swarm optimization on computer grids.” In: Genetic and Evolutionary
Computation Conference (GECCO). ACM, 2007, pp. 869–875.

Bibliography 129

[Oli+07] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan,
and Chau-Wen Tseng. “UTS: an unbalanced tree search benchmark.” In: 19th

inter. conf. on Languages and compilers for parallel computing (LCPC). 2007, pp. 235–
250.

[PSS07] Luis Paquete, Tommaso Schiavinotto, and Thomas Stützle. “On local optima in
multiobjective combinatorial optimization problems.” In: Annals of Operations
Research 156.1 (2007), p. 83.

[Thi07] Dirk Thierens. “Adaptive Strategies for Operator Allocation.” In: Param. Setting
in EA. Vol. 54. Springer, 2007, pp. 77–90.

[ZL07] Q. Zhang and H. Li. “MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition.” In: IEEE Transactions on Evolutionary Computation
11.6 (2007), pp. 712–731.

[AL06] Belarmino Adenso-Diaz and Manuel Laguna. “Fine-Tuning of Algorithms Us-
ing Fractional Experimental Designs and Local Search.” In: Oper. Res. 54.1
(2006), pp. 99–114.

[Bar06] Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer,
2006.

[Dre+06] Johann Dreo, Alain Petrowski, Patrick Siarry, and Eric Taillard. Metaheuristics
for hard optimization: methods and case studies. Springer Science & Business Media,
2006.

[GS06] L. Gaspero and A. Schaerf. “Neighborhood Portfolio Approach for Local Search
Applied to Timetabling Problems.” In: J. of Mathematical Modelling and Algo-
rithms 5 (2006), pp. 65–89.

[GK06] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics. Vol. 57.
Springer Science & Business Media, 2006.

[HR06] B. Hu and G. Raidl. “Variable neighborhood descent with self-adaptive neighborhood-
ordering.” In: 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Meta.
2006.

[Jon06] Kenneth A. De Jong. Evolutionary computation: A Unifed Approach. MIT Press,
2006.

[KTZ06] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. TIK Report 214. ETH Zurich, 2006.

[MTC06] Nouredine Melab, El-Ghazali Talbi, and Sébastien Cahon. “On Parallel Evolu-
tionary Algorithms on the Computational Grid.” In: Parallel Evolutionary Com-
putations. Vol. 22. Studies in Computational Intelligence. Springer, 2006, pp. 117–
132.

[SSP06] Francis Sourd, Olivier Spanjaard, and Patrice Perny. “Multi-objective branch
and bound. Application to the bi-objective spanning tree problem.” In: 7th Inter-
national Conference in Multi-Objective Programming and Goal Programming. Tours,
France, 2006.

[TYG06] K.C. Tan, Y. J. Yang, and C.K. Goh. “A distributed Cooperative coevolutionary
algorithm for multiobjective optimization.” In: IEEE Transactions on Evolutionary
Computation 10.5 (2006), pp. 527–549.

[AO05] K. Aida and T. Osumi. “A case study in running a parallel branch and bound
application on the grid.” In: Symposium on Applications and the Internet. 2005,
pp. 164–173.

[Alb05] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley, 2005.

130 Bibliography

[Cap+05] F. Cappello, P. Fraigniaud, B. Mans, and A.L. Rosenberg. “An algorithmic
model for heterogeneous hyper-clusters: rationale and experience.” In: Int. J.
Found. Comput. Sci. 16.2 (2005), pp. 195–215.

[Ehr05] M. Ehrgott. Multicriteria optimization. Second. Springer, 2005.

[RGK05] Prapa Rattadilok, Andy Gaw, and Raymond S. K. Kwan. “Distributed Choice
Function Hyper-heuristics for Timetabling and Scheduling.” In: Practice and
Theory of Automated Timetabling V: 5th International Conference, PATAT 2004, Pitts-
burgh, PA, USA, August 18-20, 2004, Revised Selected Papers. Ed. by Edmund
Burke and Michael Trick. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 51–67.

[SUZ05] F. Streichert, H. Ulmer, and A. Zell. “Parallelization of Multi-Objective Evolu-
tionary Algorithms using Clustering Algorithms.” In: Int. Conf. on Evo. Multi-
Criterion Optimization (EMO). LNCS. 2005, pp. 92–107.

[Thi05] Dirk Thierens. “An adaptive pursuit strategy for allocating operator probabili-
ties.” In: Proceedings of the 7th annual conference on Genetic and evolutionary com-
putation. ACM. 2005, pp. 1539–1546.

[Tom05] Marco Tomassini. Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time (Natural Computing Series). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[Xu+05] Y. Xu, T. K. Ralphs, L. Ladányi, and M. J. Saltzman. “ALPS: A framework for
implementing parallel search algorithms.” In: 9th INFORMS Computing Society
Conference. 2005, pp. 319–334.

[Bra+04] J. Branke, H. Schmeck, K. Deb, and M. Reddy. “Parallelizing Multi-Objective
Evolutionary Algorithms: Cone Separation.” In: IEEE Congress on Evolutionary
Computation (CEC). 2004, pp. 1952–1957.

[CS04] Carlos A. Coello Coello and Margarita Reyes Sierra. “A Study of the Paralleliza-
tion of a Coevolutionary Multi-objective Evolutionary Algorithm.” In: Mexican
Int. Conf. on Artificial Intelligence (MICAI). LNCS. 2004, pp. 688–697.

[HS04] Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Ap-
plications. Elsevier / Morgan Kaufmann, 2004.

[LTZ04] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. “Running time analysis of
evolutionary algorithms on a simplified multiobjective knapsack problem.” In:
Nat Comput 3.1 (2004), pp. 37–51.

[Mer04] Peter Merz. “Advanced Fitness Landscape Analysis and the Performance of
Memetic Algorithms.” In: Evolutionary Computation 12.3 (2004), pp. 303–325.

[PCS04] L. Paquete, M. Chiarandini, and T. Stützle. “Pareto Local Optimum Sets in
the Biobjective Traveling Salesman Problem: An Experimental Study.” In: Meta-
heuristics for Multiobjective Optimisation. Vol. 535. Lecture Notes in Economics
and Mathematical Systems. Springer, 2004. Chap. 7, pp. 177–199.

[Van+04] R. Van Nieuwpoort, J. Maassen, G. Wrzesinska, T. Kielmann, and H. E. Bal.
“Adaptive Load-Balancing for Divide-and-Conquer Grid Applications.” In: Jour-
nal of Supercomputing (2004).

[ZK04] Eckart Zitzler and Simon Künzli. “Indicator-based selection in multiobjective
search.” In: Parallel Problem Solving from Nature-PPSN VIII. Springer. 2004, pp. 832–
842.

[DZJ03] Kalyanmoy Deb, Pawan Zope, and Abhishek Jain. “Distributed Computing of
Pareto-Optimal Solutions with Evolutionary Algorithms.” In: Int. Conf. on Evo.
Multi-Criterion Optimization (EMO). LNCS. 2003, pp. 534–549.

Bibliography 131

[Hug03] E. J. Hughes. “Multiple single objective Pareto sampling.” In: Evolutionary Com-
putation, 2003. CEC ’03. The 2003 Congress on. Vol. 4. 2003, 2678–2684 Vol.4.

[VZL03] David A. van Veldhuizen, Jesse B. Zydallis, and Gary B. Lamont. “Considera-
tions in engineering parallel multiobjective evolutionary algorithms.” In: IEEE
Trans. Evolutionary Computation 7.2 (2003), pp. 144–173.

[VCC03] Sébastien Verel, Philippe Collard, and Manuel Clergue. “Where are Bottlenecks
in NK Fitness Landscapes?” In: CoRR abs/0707.0641 (2003).

[Zit+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca.
“Performance Assessment of Multiobjective Optimizers: An Analysis and Re-
view.” In: IEEE Transactions on Evolutionary Computation 7.2 (2003), pp. 117–132.

[AF02] K. Aida and Y. Futakata. “High-performance parallel and distributed comput-
ing for the BMI eigenvalue problem.” In: International Parallel and Distributed
Processing Symposium (IPDPS). 2002, pp. 71–78.

[AT02] E. Alba and M. Tomassini. “Parallelism and evolutionary algorithms.” In: IEEE
Transactions on Evolutionary Computation 6.5 (2002), pp. 443–462.

[ACF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem.” In: Machine learning 47.2-3 (2002), pp. 235–256.

[Bir+02] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. “A
Racing Algorithm for Configuring Metaheuristics.” In: Genetic and Evolutionary
Computation Conference. 2002, pp. 11–18.

[Deb+02] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. “A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II.” In: IEEE Transactions on Evolutionary
Computation 6.2 (2002), pp. 182–197.

[Jas02] A. Jaszkiewicz. “On the performance of multiple-objective genetic local search
on the 0/1 knapsack problem - a comparative experiment.” In: IEEE Transac-
tions on Evolutionary Computation 6.4 (2002), pp. 402–412.

[Kie+02] T. Kielmann, H.E. Bal, J. Maassen, R. Van Nieuwpoort, L. Eyraud, R. Hof-
man, and K. Verstoep. “Programming environments for high-performance Grid
computing: the Albatross project.” In: Future Generation Computer Systems 18.8
(2002), pp. 1113–1125.

[TC02] Shisanu Tongchim and Prabhas Chongstitvatana. “Parallel genetic algorithm
with parameter adaptation.” In: Information Processing Letters 82.1 (2002). Evolu-
tionary Computation, pp. 47–54.

[ZL02] Zhong-Yao Zhu and Kwong-Sak Leung. “Asynchronous self-adjustable island
genetic algorithm for multi-objective optimization problems.” In: IEEE World
on Congress on Computational Intelligence (WCCI 2002) (2002), pp. 837–842.

[Bre01] Leo Breiman. “Random Forests.” In: Machine Learning 45.1 (2001), pp. 5–32.

[CF01] Qun Chen and Michael C. Ferris. “FATCOP: A Fault Tolerant Condor-PVM
Mixed Integer Programming Solver.” In: SIAM Journal on Optimization 11.4
(2001), pp. 1019–1036.

[CKS01] P. I. Cowling, G. Kendall, and E. Soubeiga. “A Hyperheuristic Approach to
Scheduling a Sales Summit.” In: 3th Int. Conf. on Pract. and Th. of Auto. Timetabling.
2001, pp. 176–190.

[Deb01] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Chichester,
UK: John Wiley & Sons, 2001.

[EPH01] Jonathan Eckstein, Cynthia A. Phillips, and William E. Hart. PICO: An Object-
Oriented Framework for Parallel Branch and Bound. Technical Report. Rutgers Uni-
versity, 2001.

132 Bibliography

[HO01] N. Hansen and A. Ostermeier. “Completely Derandomized Self-Adaptation in
Evolution Strategies.” In: Evolutionary Computation 9.2 (2001), pp. 159–195.

[LL01] Pedro Larraanaga and Jose A. Lozano. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Norwell, MA, USA: Kluwer Academic
Publishers, 2001.

[MIG01] Tadahiko Murata, Hisao Ishibuchi, and Mitsuo Gen. “Specification of Genetic
Search Directions in Cellular Multi-objective Genetic Algorithms.” In: Evolution-
ary Multi-Criterion Optimization: First International Conference, EMO 2001 Zurich,
Switzerland, March 7–9, 2001 Proceedings. Ed. by Eckart Zitzler, Lothar Thiele,
Kalyanmoy Deb, Carlos Artemio Coello Coello, and David Corne. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 82–95.

[VKB01] R. Van Nieuwpoort, T. Kielmann, and H.E. Bal. “Efficient Load Balancing for
Wide-area Divide-and-conquer Applications.” In: 8th Symp. on Principles and
Practices of Para. Programming. 2001, pp. 34–43.

[ABB00] U.A. Acar, G.E. Blelloch, and R.D. Blumofe. “The Data Locality of Work Steal-
ing.” In: 15th ACM Symposium on Parallel Algorithms and Architectures (SPAA).
2000, pp. 1–12.

[BCG00] Benoı̂t Bourbeau, Teodor Gabriel Crainic, and Bernard Gendron. “Branch-and-
bound Parallelization Strategies Applied to a Depot Location and Container
Fleet Management Problem.” In: Parallel Computing 26.1 (2000), pp. 27–46.

[Deb+00] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. “A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II.” In: Con-
ference on Parallel Problem Solving from Nature (PPSN VI). Ed. by M. Schoenauer
et al. Vol. 1917. LNCS. Springer, 2000, pp. 849–858.

[Gou+00] J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. “An enabling framework
for master-worker applications on the Computational Grid.” In: The 9th Inter-
national Symposium on High-Performance Distributed Computing. 2000, pp. 43–50.

[GLY00] J.-P. Goux, Jeff Linderoth, and Michael Yoder. “Metacomputing and the Master-
Worker Paradigm.” In: Preprint MCS/ANL-P792-0200, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne. 2000.

[IF00] A Iamnitchi and I Foster. “A problem-specific fault-tolerance mechanism for
asynchronous, distributed systems.” In: Parallel Processing, 2000. Proceedings.
2000 International Conference on. 2000, pp. 4–13.

[Kal00] Ignacy Kaliszewski. “Using trade-off information in decision-making algorithms.”
In: Computers & Operations Research 27.2 (2000), pp. 161–182.

[MIG00a] Tadahiko Murata, Hisao Ishibuchi, and Mitsuo Gen. “Cellular Genetic Local
Search for Multi-Objective Optimization.” In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO ’00), Las Vegas, Nevada, USA, July 8-12,
2000. 2000, pp. 307–314.

[MIG00b] Tadahiko Murata, Hisao Ishibuchi, and Mitsuo Gen. “Cellular Genetic Local
Search for Multi-objective Optimization.” In: Proceedings of the 2Nd Annual Con-
ference on Genetic and Evolutionary Computation. GECCO’00. Las Vegas, Nevada:
Morgan Kaufmann Publishers Inc., 2000, pp. 307–314.

[Nea+00] MichaelO. Neary, Alan Phipps, Steven Richman, and Peter Cappello. “Javelin
2.0: Java-Based Parallel Computing on the Internet.” English. In: Euro-Par 2000
Parallel Processing. Vol. 1900. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2000, pp. 1231–1238.

[Pel00a] David Peleg. Distributed Computing: A Locality-sensitive Approach. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2000.

Bibliography 133

[Pel00b] David Peleg. “Proximity-preserving labeling schemes.” In: Journal of Graph The-
ory 33.3 (2000), pp. 167–176.

[BL99] R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded computations
by work stealing.” In: J. ACM 46 (5 1999), pp. 720–748.

[GK99] A. Grama and V. Kumar. “State of the art in parallel search techniques for
discrete optimization problems.” In: IEEE Transactions on Knowledge and Data
Engineering 11.1 (1999), pp. 28–35.

[Mie99] K. Miettinen. Nonlinear Multiobjective Optimization. Boston, MA, USA: Kluwer,
1999.

[PBH99] A. Plaat, H.E. Bal, and R. F H Hofman. “Sensitivity of parallel applications
to large differences in bandwidth and latency in two-layer interconnects.” In:
HPCA. 1999, pp. 244–253.

[Can98] Erick Cantu-Paz. “A Survey of Parallel Genetic Algorithms.” In: CALCULA-
TEURS PARALLELES, RESEAUX ET SYSTEMS REPARTIS 10 (1998).

[DD98] Indraneel Das and John E. Dennis. “Normal-Boundary Intersection: A New
Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimiza-
tion Problems.” In: SIAM Journal on Optimization 8.3 (1998), pp. 631–657.

[FLR98a] Matteo F, Charles E. L, and Keith H. R. “The implementation of the Cilk-5
multithreaded language.” In: SIGPLAN Not. 33 (5 1998), pp. 212–223.

[FLR98b] Matteo F, Charles E. L, and Keith H. R. “The implementation of the Cilk-5
multithreaded language.” In: SIGPLAN Not. 33 (5 1998), pp. 212–223.

[IM98] H. Ishibuchi and T. Murata. “A multi-objective genetic local search algorithm
and its application to flowshop scheduling.” In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 28.3 (1998), pp. 392–403.

[JSW98] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient Global Op-
timization of Expensive Black-Box Functions.” In: Journal of Global Optimization
13.4 (1998), pp. 455–492.

[Vis+98] M Visée, Jacques Teghem, Marc Pirlot, and Ekunda L. Ulungu. “Two-phases
Method and Branch and Bound Procedures to Solve the Bi-objective Knapsack
Problem.” In: Journal of Global Optimization 12.2 (1998), pp. 139–155.

[ZT98] Eckart Zitzler and Lothar Thiele. “Multiobjective optimization using evolu-
tionary algorithms — A comparative case study.” English. In: Parallel Problem
Solving from Nature (PPSN V). Vol. 1498. Lecture Notes in Computer Science.
Springer, 1998, pp. 292–301.

[MH97] Nenad Mladenovic and Pierre Hansen. “Variable neighborhood search.” In:
Computers & OR 24.11 (1997), pp. 1097–1100.

[WM97] David H Wolpert and William G Macready. “No free lunch theorems for opti-
mization.” In: Evolutionary Computation, IEEE Transactions on 1.1 (1997), pp. 67–
82.

[XL97] Chengzhong Xu and Francis C. Lau. Load Balancing in Parallel Computers: Theory
and Practice. Norwell, MA, USA: Kluwer Academic Publishers, 1997.

[BBB96] J.E. Baldeschwieler, R.D. Blumofe, and E.A. Brewer. “ATLAS: an infrastructure
for global computing.” In: 7th ACM SIGOPS Workshop on Systems support for
worldwide applications. 1996, pp. 165–172.

[KE95] J. Kennedy and R. Eberhart. “Particle swarm optimization.” In: Neural Networks,
1995. Proceedings., IEEE International Conference on. Vol. 4. 1995, pp. 1942–1948.

134 Bibliography

[TLM95] S. Tschoke, R. Lubling, and B. Monien. “Solving the traveling salesman problem
with a distributed branch-and-bound algorithm on a 1024 processor network.”
In: Parallel Processing Symposium, 1995. Proceedings., 9th International. 1995, pp. 182–
189.

[FMM94] R. Feldmann, P. Mysliwiete, and B. Monien. “Studying Overheads in Massively
Parallel MIN/MAX-tree Evaluation.” In: 6th ACM Symposium on Parallel Algo-
rithms and Architectures. Cape May, New Jersey, USA, 1994, pp. 94–103.

[GC94] B. Gendron and T.G. Crainic. “Parallel Branch-and-Bound Algorithms: Survey
and Synthesis.” In: Operations Research 42 (6 1994), pp. 1042–1066.

[KGV94] Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vempaty. “Scalable Load
Balancing Techniques for Parallel Computers.” In: J. Parallel Distrib. Comput.
22.1 (1994), pp. 60–79.

[Kum+94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to Parallel Computing. Benjamin/Cummings, 1994.

[Alt+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah A. Joseph, and José Soares.
“On Sparse Spanners of Weighted Graphs.” In: Discrete & Computational Geome-
try 9.1 (1993), pp. 81–100.

[JPS93] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. “Lipschitzian optimization
without the Lipschitz constant.” In: Journal of Optimization Theory and Applica-
tions 79.1 (1993), pp. 157–181.

[Kau93] S. A. Kauffman. The Origins of Order. New York: Oxford University Press, 1993.

[Tai93] E. Taillard. “Benchmarks for basic scheduling problems.” In: European Journal
of Operational Research 64.2 (1993), pp. 278–285.

[WR93] M. H. Willebeek-LeMair and A. P. Reeves. “Strategies for dynamic load bal-
ancing on highly parallel computers.” In: IEEE Transactions on Parallel and Dis-
tributed Systems 4.9 (1993), pp. 979–993.

[Dor92] Marco Dorigo. “Optimization, Learning and Natural Algorithms.” PhD thesis.
Italy: Politecnico di Milano, 1992.

[Lin92] Nathan Linial. “Locality in Distributed Graph Algorithms.” In: SIAM J. Comput.
21.1 (1992), pp. 193–201.

[LM92] R. Luling and B. Monien. “Load balancing for distributed branch amp; bound
algorithms.” In: Parallel Processing Symposium, 1992. Proceedings., Sixth Interna-
tional. 1992, pp. 543–548.

[SKS92] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. “Load Distribut-
ing for Locally Distributed Systems.” In: Computer 25.12 (1992), pp. 33–44.

[TB92] H.W.J.M. Trienekens and A. Bruin. Towards a Taxonomy of Parallel Branch and
Bound Algorithms. Technical Report. Rotterdam, Netherlands: Econometric In-
stitute, Erasmus University, 1992.

[Koz90] John R Koza. Genetic programming: A paradigm for genetically breeding populations
of computer programs to solve problems. Stanford University, Department of Com-
puter Science, 1990.

[CJ89] Dah-Ming Chiu and Raj Jain. “Analysis of the Increase and Decrease Algo-
rithms for Congestion Avoidance in Computer Networks.” In: Comput. Netw.
ISDN Syst. 17.1 (1989), pp. 1–14.

[Cyb89] G. Cybenko. “Dynamic load balancing for distributed memory multiproces-
sors.” In: J. Parallel Distrib. Comput. 7 (2 1989), pp. 279–301.

[Gol89] David E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
2. Addison-Wesley, Reading, MA, 1989.

Bibliography 135

[JS89] J.M. Jansen and F.W. Sijstermans. “Parallel branch-and-bound algorithms.” In:
Future Generation Computer Systems 4.4 (1989), pp. 271–279.

[PS89] D. Peleg and A.A. Schäffer. “Graph spanners.” In: Journal of Graph Theory 13.1
(1989), pp. 99–116.

[Dij87] E. W. Dijkstra. “Derivation of a termination detection algorithm for distributed
computations.” In: Control Flow and Data Flow: concepts of distributed program-
ming (1987), pp. 507–512.

[FM87] Raphael Finkel and Udi Manber. “DIB - a distributed implementation of back-
tracking.” In: ACM Trans. Program. Lang. Syst. 9 (2 1987), pp. 235–256.

[KJ87] Michael N. Katehakis and Arthur F. Veinott Jr. “The Multi-Armed Bandit Prob-
lem: Decomposition and Computation.” In: Math. Oper. Res. 12.2 (1987), pp. 262–
268.

[ELZ86] D.L. Eager, E.D. Lazowska, and J. Zahorjan. “Adaptive load sharing in homo-
geneous distributed systems.” In: IEEE Transactions on Software Engineering, SE-
12.5 (1986), pp. 662–675.

[Glo86] Fred Glover. “Future paths for integer programming and links to artificial in-
telligence.” In: Computers & operations research 13.5 (1986), pp. 533–549.

[Gre86] John J Grefenstette. “Optimization of control parameters for genetic algorithms.”
In: Systems, Man and Cybernetics, IEEE Transactions on 16.1 (1986), pp. 122–128.

[Tri86] H.W.J.M. Trienekens. Parallel Branch and Bound on an MIMD System. Techni-
cal Report. Rotterdam, Netherlands: Econometric Institute, Erasmus University,
1986.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated an-
nealing.” In: Science 220.4598 (1983), pp. 671–680.

[ES82] Paul Erdös and M Simonovits. “Compactness results in extremal graph theory.”
In: Combinatorica 2.3 (1982), pp. 275–288.

[BS81] F. Warren Burton and M. Ronan Sleep. “Executing Functional Programs on a
Virtual Tree of Processors.” In: Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture. FPCA ’81. Portsmouth, New
Hampshire, USA: ACM, 1981, pp. 187–194.

[AN79] Y. P. Aneja and K. P. K. Nair. “Bicriteria Transportation Problem.” In: Manage-
ment Science 25.1 (1979).

[Ric76] John R. Rice. “The Algorithm Selection Problem.” In: Advances in Computers 15

(1976), pp. 65–118.

[Hol75] John H Holland. “Adaptation in natural and artificial system.” In: Ann Arbor,
University of Michigan Press (1975).

[Rec73] Ingo Rechenberg. “Evolutionsstrategie – Optimierung technischer Systeme nach
Prinzipien der biologishen Evolution.” PhD thesis. Technical University of Berlin,
1973.

[Erd64] Paul Erdös. “Extremal Problems in Graph Theory.” In: Publ. House Cszechoslovak
Acad. Sci., Prague. 1964, pp. 29–36.

	Titlepage
	Acknowledgments
	Contents
	1 Introduction
	1.1 From theoretical distributed algorithms to optimization
	1.2 Current Research Topics
	1.3 Document Outline

	2 Distributed and Parallel Branch-and-Bound
	2.1 Introduction and Background
	2.1.1 B&B in a nutshell
	2.1.2 Compute Environments and Paradigms
	2.1.3 Parallel and Distributed B&B: The Main Challenges
	2.1.4 Parallel and Distributed B&B: Literature Overview

	2.2 Contribution #1: Dynamic Load-Balancing in B&B
	2.2.1 Work Stealing: the Basics in a Nutshell
	2.2.2 Tree-based Dynamic Load-Balancing
	2.2.3 Selected Experimental Results

	2.3 Contribution #2: Node-Heterogeneous Work Stealing
	2.3.1 A large-scale Multi-core Multi-CPU Multi-GPU B&B Approach (3MBB)
	2.3.2 Selected Experimental Results.

	2.4 Contribution #3: Link-heterogenous B&B Load Balancing
	2.4.1 Dynamic load balancing under Link-Heterogeneity
	2.4.2 A Generic Link-heterogenous Work-Stealing Algorithm
	2.4.3 Selected Experimental Results

	2.5 Conclusions and Perspectives

	3 Distributed and Adaptive Heuristic Optimization
	3.1 Introduction and Background
	3.1.1 General context, motivations and goals
	3.1.2 Adaptive Operator Selection: A focused Literature Overview
	3.1.3 Benchmarking Operator Selection

	3.2 Contribution #1: Distributed Adaptive Operator Selection
	3.2.1 DAMS and Select-Best-and-Mutate strategy
	3.2.2 Independent and Collective Machine Learning based Strategies
	3.2.3 A simple Master/Worker Architecture
	3.2.4 Selected Experimental Results

	3.3 Contribution #2: Benchmarking for Adaptive Operator Selection
	3.3.1 The Fitness Cloud Model
	3.3.2 Selected Experimental Results

	3.4 Other related contributions
	3.4.1 Hyperheuristics based on neighborhood tree search
	3.4.2 Landscape-aware offline algorithm configuration

	3.5 Conclusion and perspectives

	4 Multi-objective optimization and Decomposition
	4.1 Introduction and Background
	4.1.1 General Context and Definitions
	4.1.2 Evolutionary Multi-Objective Algorithms
	4.1.3 Moea/d: Motivation, Challenges and Literature Overview

	4.2 Contribution #1: Design Components of Decomposition based Approaches
	4.2.1 On the Impact of the Scalarizing Functions
	4.2.2 Improving Mating Selection and Replacement in Moea/d

	4.3 Contribution #2: Distributed decomposition-based approaches
	4.3.1 A distributed localized and adaptive approach
	4.3.2 Designing Parallel Multiobjective Decomposition

	4.4 Other related contributions
	4.4.1 Connecting Decomposition and Local Search
	4.4.2 Design of Adaptive Evolutionary Operators

	4.5 Conclusions and Perspectives

	5 Looking at The Future
	A Extended CV
	A.1 Academic Position
	A.1.1 General Information
	A.1.2 Education and Academic Milestones

	A.2 Doctoral and Student Supervision
	A.2.1 PhD Students Supervision
	A.2.2 Invited and External PhD Student Supervision
	A.2.3 Postdoctoral Supervision
	A.2.4 Master 2 Student Supervision
	A.2.5 Master 1 Student Supervision

	A.3 Funded projects and scientific animation
	A.3.1 Funded projects and scientific responsibilities
	A.3.2 Research dissemination and visibility

	A.4 Summary of teaching activities

	B Personnel Bibliography after PhD
	B.1 Book Chapter
	B.2 International peer reviewed journals
	B.3 International conferences with committee and proceedings

	C Bibliography

	source: HDR de Bilel Derbel, Lille 1, 2017
	lien: lilliad.univ-lille.fr
	d: © 2017 Tous droits réservés.

