

50376 1960 60

FACULTE DES SCIENCES

DE LILLE

CONTRIBUTION A LA DETERMINATION DES PARAMETRES D'UN QUARTZ TRANSDUCTEUR D'ULTRA-SONS ET REGLAGE DE CE TRANSDUCTEUR.-

Diplôme d'Etudes Supérieures

de

Sciences Physiques

par

Gérard POSSELLE.

présenté le 27 Juin 1960 devant la Commission d'Exemen:

MI.

Président

Examinateurs.

- Le sujet de ce travail m'a été proposé par Monsieur N. SEGARD. Il a été effectué sous sa direction et celle de Monsieur J. POULIQUEN, dans les laboratoires de la Faculté Libre des Sciences de Lille et de l'I.S.E.N.
- Qu'ils veuillent bien trouver ici l'expression de toute ma reconnaissance.
 - Je remercie Messieurs

 de la bienveillance avec laquelle ils ont suivi ce travail,

 dont ils ont accepté de former le jury.
 - Puis-je exprimer ma gratitude envers tous les Professeurs de la Faculté et de l'I.S.E.N., tout particulièrement Messieurs F. COCQUEREZ et A. DEFEBVRE, au personnel du laboratoire ainsi qu'aux chefs de travaux pratiques du laboratoire de métrologie de l'I.C.A.M.

INTRODUCTION

Le but de ce travail est une étude détaillée du quartz piézoélectrique.

Nous y considérons tout d'abord le quartz comme dipôle électrique puis comme transducteur d'ultrasons.

Dans un chapitre préliminaire, nous passons rapidement en revue le matériel utilisé.

Puis, dans une première partie, nous étudions le quartz, circuit électrique, tout d'abord non chargé, et ensuite, amorti par une charge acoustique constituée par de l'eau. Dans les deux cas, nous déterminons les constantes du dipôle équivalent. Nous en déduisons ensuite les différentes résonances existantes et le facteur de puissance $\cos \varphi$.

Enfin, dans une seconde partie, nous étudions le quartz transducteur d'ultrasons. L'étude des champs produits nous permet de donner une méthode rapide de réglage du parallélisme électrode HF - quartz. Dans de chapitre, nous décrirons :

- A.- Le générateur haute-fréquence.
- B. Le projecteur ultra-sonore.
- C. La sonde piézoélectrique.
- D.- Le Q metre et son appareillage auxiliaire : condensateur micrométrique et voltmètre de crête.
- E.- Le fréquencemètre.
- F.- La ligne à retard.

Ce sont là les appareils que nous avons le plus fréquemment utilisés.

A.- LE GENERATEUR HAUTE-PREQUENCE

Ce générateur a été construit au laboratoire de physique. Il a fait l'objet d'un précédent mémoire (7).

Il comprend 3 étages : l'étage pilote (une tétrode 6V6) qui fournit les oscillations HF, suivi de deux étages : l'étage intermédiaire (une tétrode 807) et l'étage de puissance (deux triodes 250TH en parallèle).

a) L'étage pilote :

Le tube, une 6V6, est une tétrode à faisce aux électroniques dirigés.

- Le circuit anodique contient un oscillateur classique R F B (Reversed feedback oscillator).
- La grille est polarisée automatiquement par un bloc RC (2 MA 100 pF) La tension écran est ajustable par un potentiomètre de 10 KA. Le découplage est assuré par une capacité de 1.000 pF branchée au curseur du potentiomètre, suivi d'une nouvelle cellule R C de découplage (5 KA, 1.000 pF).
- La liaison entre les 2 étages est réalisée par une capacité de 1.000 pF.

b) L'étage intermédiaire

C'est un premier étage amplificateur de puissance avec résonateur comme charge de plaque. Le tube est une 807 : tétrode à faisceaux électroniques dirigés.

- La polarisation de grille est mixte ; polarisation automatique doublée d'une polarisation fixe réglable. La polarisation automatique est obtenue par la résistance reliant la grille à la source de polarisation fixe (0 à 100 V) parfaitement filtrée.
- La tension écran est stabilisée par tubes néon. Le retour de la H.F. sur les néons est évité par une cellule RC en π (1.000**Λ**; 2 x 1.000 pF).
- Le circuit anodique comporte essentiellement un circuit résonant, self et condensateur en parallèle.

La puissance de sortie de l'étage est d'environ 30 watts.

- Liaison de l'étage intermédiaire à l'étage final : un condensateur de 250 p F assure le report de la composante alternative du courant plaque de la 807 sur les grilles des tubes de l'étage final.

c) L'étage final

C'est cet étage qui nous intéresse spécialement ; nous verrons, en effet, dans le chapître 3, qu'il a une influence considérable sur le cos φ et donc sur le rendement de l'ensemble.

C'est le second étage amplificateur de puissance

(puissance d'entrée : environ 30 watts puissance de sortie maxima : 425 à 450 watts).

Les tubes utilisés sont deux triodes 250 TH montées en parallèle. Ils travaillent en classe C.

Circuit de grille :

La polarisation de grille est fixe et réglable (-330 volts à -60 volts). Elle est prise sur le potentiomètre 15 (schéma 0,1) alimentée par une tension redressée par E Z 80 puis filtrée par la cellule en π (L 8 ; 2 x 1.000 p F).

Le circuit de grille comporte un circuit bouchon accordé (L 7 et C 7 en parallele) réuni à la source de polarisation.

L'accord de la fréquence du bouchon sur celle du signal d'entrée se fait par variation de L 7 (16).

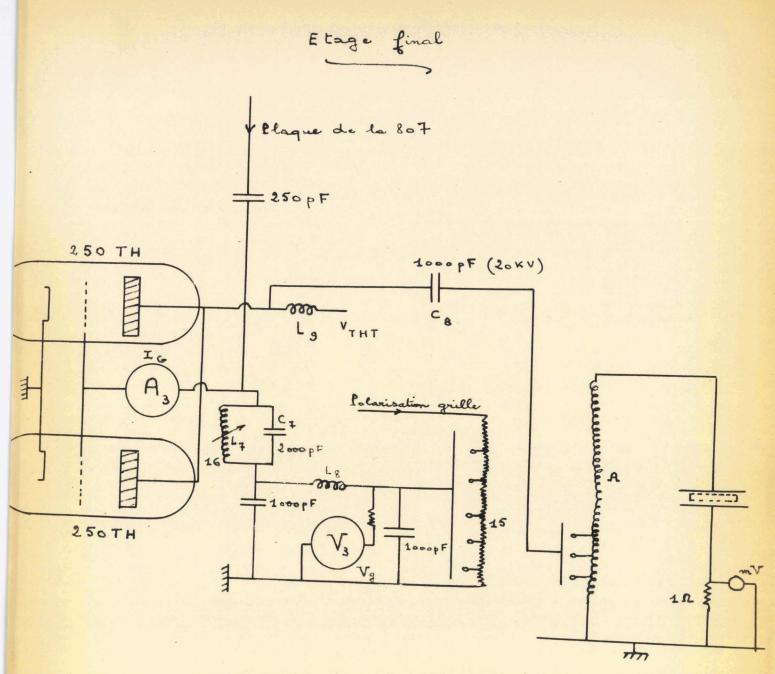


Schéma: 0,1

Circuit anodique :

Les anodes des 250 TH sont alimentées en parallèle par l'intermédiaire de la self L 9 (Cette self de choc arrête la composante H F du courant anodique qui passe presque entièrement dans le circuit d'utilisation, le quartz).

Il importe d'éliminer la T.H.T. continue d'anode qui, appliquée au quartz, le briserait ou le déformerait au point de le rendre incapable de vibrer. C'est le rôle de la capacité C 8 de 1.000 pF qui peut supporter une tension de 20 KV.

Par ailleurs, l'impédance du quartz à la résonance, même lorsque celle-ci est amortie par une charge acoustique importante, est nettement supérieure à l'impédance d'utilisation optima de l'étage final. Il importe d'adapter ces impédances.

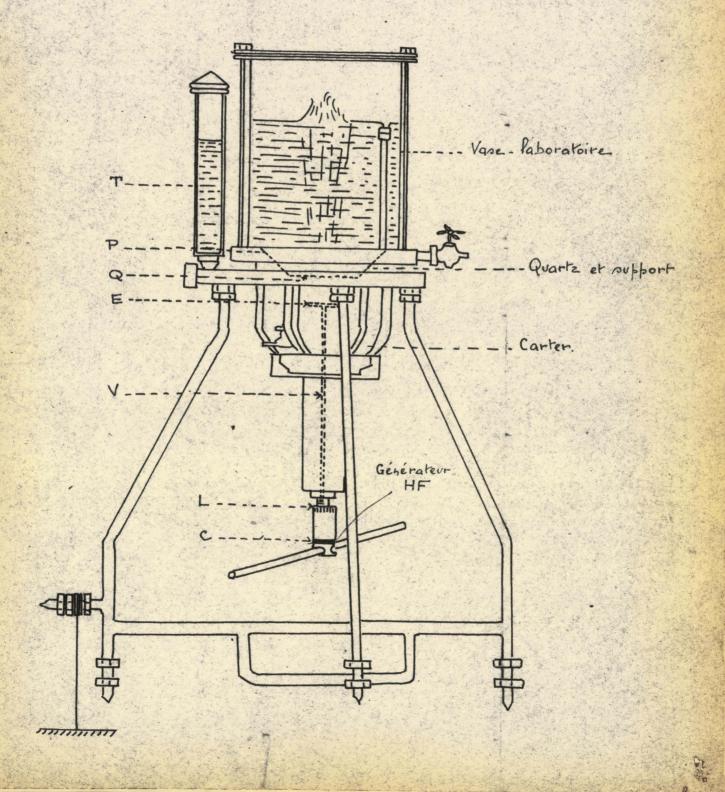
(
$$\int \text{tube} = 5.500 \,\Omega \, ; \, \eta^2 \int = \overline{5}^2 \times 5.500 \,\Omega \sim \mathbb{R} \, \text{du quartz}$$
)

C'est le rôle de l'autotransformateur A dont le primaire est placé en série entre C 8 et la masse. Ce circuit primaire est formé des x premières spires d'une self qui en comporte 75 ; la self totale forme le secondaire, les connexions sont telles que primaire et secondaire ont leur borne commune à la masse ; l'autre extrémité du secondaire est reliée à l'électrode H F du quartz.

Le nombre x de spires à prendre sur le primaire varie avec l'impédance d'entrée du quartz que l'on veut exciter ; on a prévu pour cela plusieurs sorties sur l'enroulement.

Pour le projecteur ultrasonore, nous devons prendre x=15 spires ; et la tension H F d'excitation du quartz est 75=5 fois plus forte que la tension H F fournie par l'étage final.

B.- LE PROJECTEUR ULTRASONORE


Le champ ultrasonore étudié est produit par un projecteur type L de la S C A M (figure 0,2).

Le quartz piézoélectrique vibrant, adapté de façon étanche sur le carter est en contact direct avec l'eau à ultrasoner contenue dans le vase laboratoire.

L'ensemble est supporté par un robuste trépied à vis calantes relié électriquement à la masse.

fig 0,2 PROJECTEUR ULTRASONORE.

(Echelle: 1/4)

100

a) Le quartz et le support :

Le quartz circulaire Q utilisé a environ 2,9 mm. d'épaisseur. Son diamètre est de 60 mm. ; en fait, le diamètre de la partie centrale vibrant au maximum est de 38 mm. (diamètre de l'électrode HT inférieure).

Le disque de quartz est maintenu par un joint élastique en "Réoprène" périphérique placé dans le plan nodal de vibration ; ainsi disposé, ce joint ne freine pratiquement pas les oscillations en épaisseur du quartz, et, d'autre part, assure l'étanchéité entre le carter inférieur et le vase-laboratoire supérieur. Ce joint souple, en s'écrasant, réalise en fait la fixation du quartz.

L'ensemble joint - quartz s'adapte dans un anneau métallique vissé sur le porte-quartz P, amovible, en forme de cuvette. Il se fixe sur le carter.

Pour éviter un court-circuit entre les deux faces du quartz par la tranche humide, il est nécessaire, avant montage, de le frotter soigneusement au benzène pur ainsi que le joint : nous éliminons ainsi la sueur et les corps gras ramenés par les doigts.

b) Le carter :

Le carter métallique est rempli de liquide isolant (pétrole distillé et desséché sur calcium). Il contient l'électrode HT.E (l'électrode de masse étant l'eau du vase-laboratoire que l'on rend plus conductrice par addition d'un peu de chlorure de sodium). Ce carter est à la masse, puisque réuni au trépied et à l'armature métallique du vase ; delà, l'importance d'utiliser un pétrole soigneusement desséché pour l'emplir, si l'on veut pouvoir employer une tension d'excitation importante sans risque de rupture du quartz.

On doit aussi éviter au maximum la formation de bulles de cavitation dans le pétrole en le versant délicatement lors du remplissage et en le dégazant par un travail prolongé en régime moyen. (12 à 24 heures). L'électrode HT.E est constituée par un disque métallique de 38 mm. de diamètre ; la H.T. lui est amenée par une tige conductrice verticale V, entourée d'un tube isolant de silice, qui n'apparaît que par son extrémité inférieure C où l'on connecte la sortie du générateur H F. Cette tige est en fait une vis à pas micrométrique ; on peut, en la tournant par son extrémité inférieure (à l'aide d'un manche isolant si la H.F. est appliquée, régler la distance électrode-quartz ; cette distance peut être lue sur un limbe L gradué en dixièmes de mm. tournant autour d'une échelle graduée en mm. (principe du palmer).

L'énergie ultrasonore émise dans le vase-laboratoire est maximum lorsqu'il y a réflexion totale sur l'électrode, des ultrasons émis par la face inférieure du quartz dans le pétrole.

c) Le vase-laboratoire :

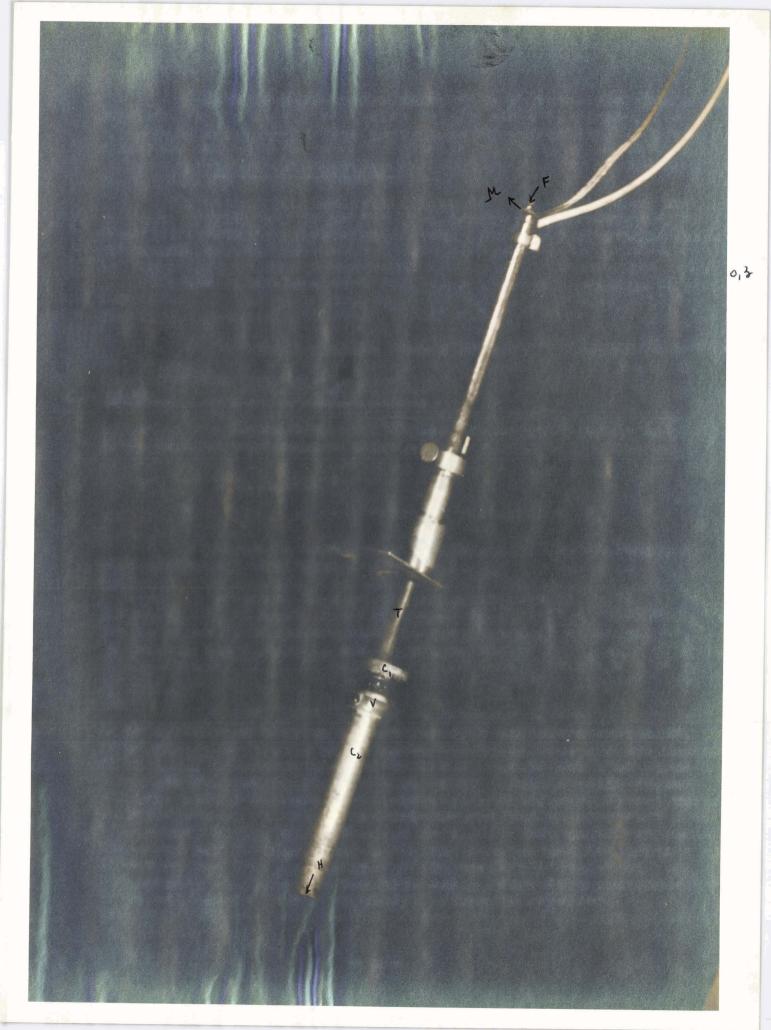
C'est un manchon cylindrique de Pyrez serré dans une monture métallique. Il se fixe, au-dessus du porte-quartz, à l'aide de 3 tiges filetées et écrous ; un joint plastique assure l'étanchéité.

Ses dimensions sont : hauteur = 20 cm; diamètre = 15 cm; sa capacité totale = 3,5 litres.

Un tube d'évacuation peut permettre le réglage de niveau du liquide.

C.- LA SOMDE PIEZOELECTRIQUE A QUARTZ

La construction et l'étalonnage de cette sonde ont fait l'objet d'un précédent mémoire (2).


a) Description:

Elle est représentée par la photographie 0,3.

Le corps de sonde, cylindrique, a 17 cm. de long ; il est adapté à l'extrémité d'un tube T.

Il comporte deux pièces concentriques de laiton C1 et C2; la pièce C2 (diamètre extérieur = 28 mm.) vient s'emboîter autour de la pièce C1 (diamètre extérieur = 25,5 mm.) et se visser, par sa partie supérieure V, sur un pas solidaire de T, afin d'assurer l'étanchéité, C1 et C2 constituent un double blindage; ce pas de vis est enduit d' "Hermétic". Un ressort est disposé entre C1 et C2.

- Le cylindre extérieur C2 est fermé, à son autre extrémité, par un disque de laiton soudé au centre duquel est découpé un carré de l cm. de côté ; c'est dans cette découpe que l'on place le quartz récepteur (l cm. x l cm. x 0,35 cm) de telle façon qu'il soit légèrement saillant vers l'extérieur. Il est collé latéralement et colmaté intérieurement par un bourrelet H de picéine. Enfin, un revêtement de picéine est coulé extérieurement sur le tout, sauf au centre où l'on met le quartz à nu sur une surface circulaire ; elle parfait l'étanchéité. La picéine, attaquée par les ultra-sons, doit être remplacée assez souvent (après plusieurs heures de service).

Lorsque la sonde est plongée dans l'eau, celle-ci joue le rôle d'électrode de masse. Pour ne pas amortir le quartz récepteur par des bulles, nous devons toujours travailler en eau fraîchement dégazée (une demi-journée environ).

- Le cylindre intérieur Cl contient le circuit adaptateur d'impédance

(voir principe): + la lampe adaptrice (montage cathodyne).

+ les résistances

+ les capacités

+ la diode

+ les connexions du chauffage filament et de la H T de la polarisation plaque

+ le câble de sortie H F.

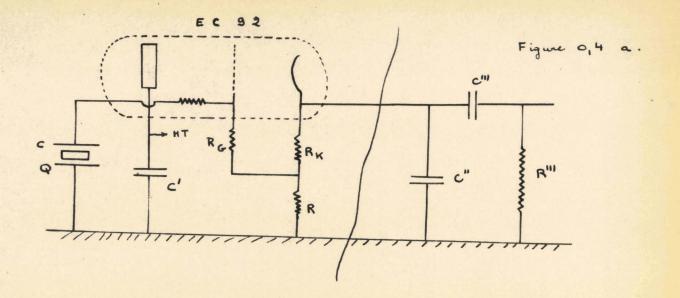
Sa paroi interne est tapissée d'une toile de verre siliconé pour assurer l'isolement électrique.

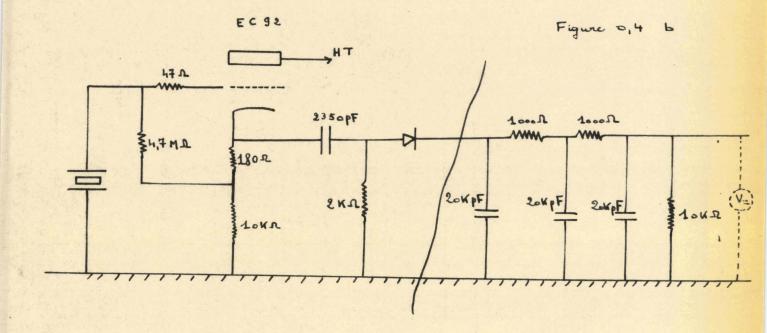
A son extrémité, un disque de laiton (diamètre = 12 mm.) émerge du bouchon de fermeture en plexiglass : c'est l'électrode H F directement connectée à la grille de la lampe.

Lorsque la sonde est montée et réglée, elle doit être appliquée sur la face interne du quartz ; pour éviter de décoller le quartz lors du réglage, une butée métallique, circulaire, intérieure à C2, arrête C1 dans sa descente.

- Le tube T (L = 25 cm., d = 15 mm.) contient une tige filetée P qui le traverse de part en part et permet le réglage en hauteur de Cl dans C2 par manoeuvre de l'écrou moleté M. Il contient également les fils de connexion d'entrée et le câble blindé de sortie.

Les prises de masse ont été multipliées de façon à réduire au maximum les effets de radiation H F.


N.B. - La H T de la polarisation plaque est fournie par un bloc d'alimentation stabilisée.


La tension de chauffage filament (6,3 volts) est obtenue par un transformateur (120/6,3 v.) blindé, précédé d'un filtre HF pour ne pas introduire des tensions parasites par l'intermédiaire des filaments.

b) Principe :

Nous avons apporté à la sonde une modification. Nous verrons, dans la seconde partie, une seconde modification.

Mous allons tout d'abord décrire le montage qui avait été réalisé lors de sa construction (2) [Schéma: figure: 0,4 a.]

Mous avons d'ailleurs vérifié que, la sonde hors de l'eau et le générateur en fonctionnement, nous ne remassions aucune tension parasite.

Nous avons donc travaillé sur la sonde modifiée représentée par la figure 0,4b.

c) Etalonnage de la sonde ainsi modifiée :

Les caractéristiques de la lampe sont alors :

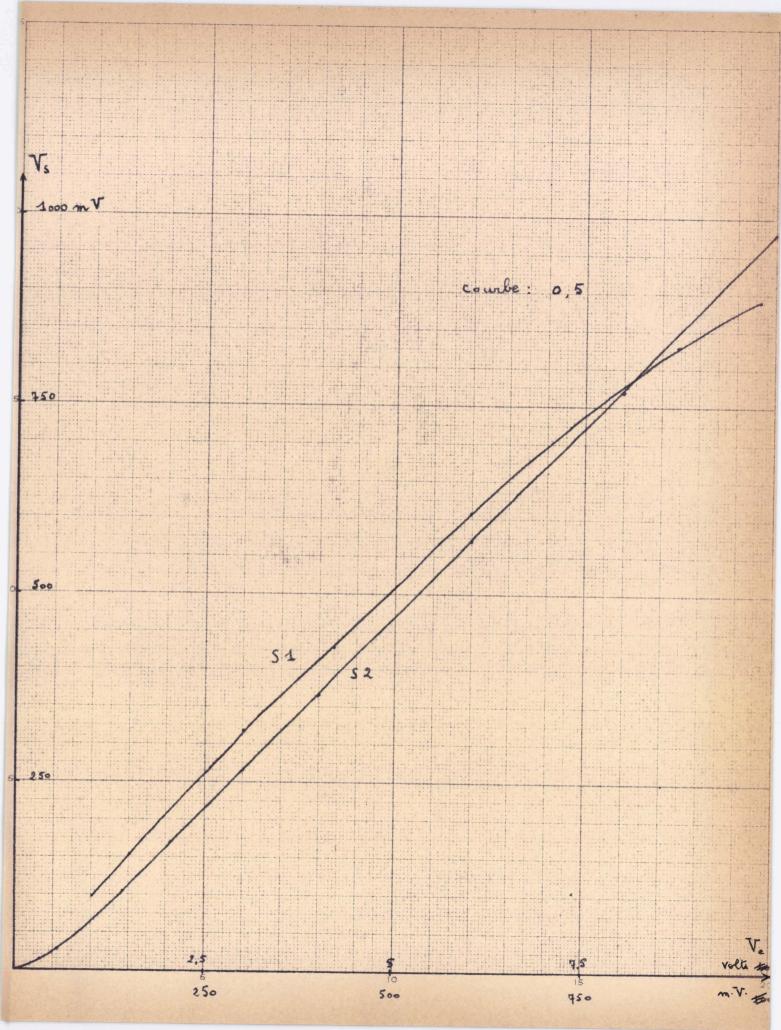
$$\rho = 15 \cdot 10^{3} \Omega$$

$$K = 60$$

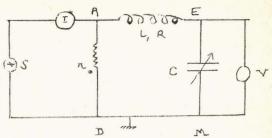
$$s = \frac{K}{e} = 4 \text{ m A /volt.}$$

$$RG = 4.7 \text{ M} \Omega$$

L'étalonnage a été fait avec un générateur H F Ferisol sortant l volt (pour la courbe S_1 , la tension a été amplifiée (ECF 80)


L'essai a été réalisé à 1 MHz.

V	volts entrée	9,80	8,70	7,30	6,00	5,00	4,20	3,20	2,40	1,50	1,00
V	sortie volts	8,90	8,30	7,25	6,10	5,10	4,30	3,20	2,50	1,51	0,98
							courbe Sl		0,5		
V	entrée milliv.	1.000	800	600	400	300	205	138	56	30	0
V	sortie m.V	980	770	570	365	265	170	105	28	15	6
							cour	be S2	0,5		


D.- LE Q METRE FERISOL type nº 803 Nº 912

a) Principe :

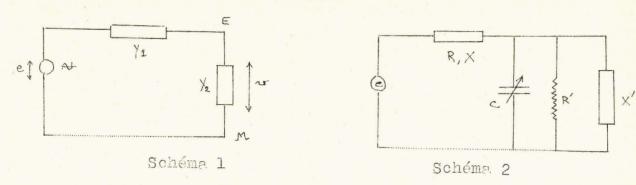
Le Q metre est basé sur les propriétés du circuit résonant.

Dans son schéma de principe ci-contre, S est un oscillateur variable en fréquence qui débite un courant, mesuré par un thermocouple, dans une résistance r_0 (= 0,04 Ω)

indépendante de la fréquence et très faible devant la résistance du circuit A E M D.

Le circuit résonant de base comprend : la résistance ro, la self L'extérieure au Q mêtre et connectée entre les bornes "injection" et "voltmêtre" sur la platine supérieure, un condensateur C de haute qualité, variable de 30 à 500 pF.

Un voltmètre électronique V placé aux bornes de C, permet de repérer la résonance du circuit (résonance de tension).


Si E est la tension H F injectée dans le circuit (aux bornes de r_0) et Vo la tension lue, à la résonance sur le voltmètre : Vo = Qo. E.

La valeur faible de \mathbf{r}_0 ne modifie pas sensiblement le "Q" du circuit.

II.B.- Le microsmpèremètre du thermocouple porte 2 repères : Q x l et Q x 2.

La première sensibilité permet de mesurer des "Q" < 250; la seconde est réservée aux 250 < "Q" < 500; ce qui correspond aux intensités 0,5 A et 0,25 A (fem 0,02 v et 0,01 v), E est ainsi connue et Vo est mesurée au voltmètre à lampe. Celui-ci a été pourvu de 2 graduations en volts (0 à 5 v et 0 à 1 v) et en surtension de 0-250 et 0-500. Pour mesurer des Q < 50, il existe une sensibilité spéciale du voltmètre électronique.

b) Formules de principe :

Dans le cas du schéma l où y_l et y₂ représentent les admittances des éléments figurés, la tension v entre E et M

est:
$$v = e \quad Y_1$$

$$Y_1 + Y_2$$

Dans le cas du Q mètre - (schéma 2) - R et X représentent la résistance et la réactance en série avec le condensateur, R' et X' les composantes parallèles de l'impédance mise aux bornes de C (les composantes correspondantes de l'admittance sont : $G = \frac{1}{R}$: conductance et $B = \frac{1}{X}$: susceptance)

Dans des conditions,

$$Y_1 = 1$$
 $= R$ $= R$

et
$$Y2 = j C\omega + G + jB = G + j (C\omega + B)$$
.

et
$$v = e$$
 $\frac{Y_1}{Y_1 + Y_2} = \frac{e}{(R + jX) \left[\left(\frac{R}{R^2 + X^2} + G\right) + j\left(C\omega - \frac{X}{R^2 + X^2} + B\right)\right]}$

En pratique, R $\langle X | (Q = \frac{L\omega}{R} > 10) \text{ et } R^2 \ll X^2$,

le voltmètre indiquera :

$$V \approx \frac{E}{\sqrt{\left(\frac{R}{x^2} + G\right)^2 + \left(C\omega - \frac{1}{x} + B\right)^2}}$$

En manoeuvrant C, on cherche le maximum V_{O} de V (résonance de tension).

Cette résonance aura lieu pour le dénominateur de (D 0,1) minimum.

soit
$$C\omega - \frac{1}{X} + B = 0$$
 soit $C\omega = \frac{1}{X} - B$

Dans ce cas,
$$E = 1 = R + GX$$
 (D 0,2)

c) Le condensateur micrométrique : type EM. 202

Il augmente les possibilités dans le domaine de la mesure des faibles capacités : la capacité minimum appréciable est, en effet, 0,01 pF.

C Maximum ≈ 130 pF. C résiduelle ≈ 50 pF.

d) Le voltmètre de crête : type AC. 103

Lorsque l'on veut apprécier des variations fines de tension, il est nécessaire de disposer de cet appareil donnant une échelle très dilatée et permettant un déplacement du zéro.

Sa sensibilité égale 12 fois celle du voltmètre de surtension du Q mètre.

Le galvanomètre de lecture est de grand diamètre : 120 mm; deux potentiomètres permettent un tarage préalable par rapport au Q mètre : l'un permet un déplacement du zéro, l'autre un réglage du gain pour faire coïncider les échelles.

L'appareil se branche sur le condensateur micrométrique.

Sensibilité : 0 à 0,4 volt

Valeur des divisions intermédiaires : 0,01 volt.

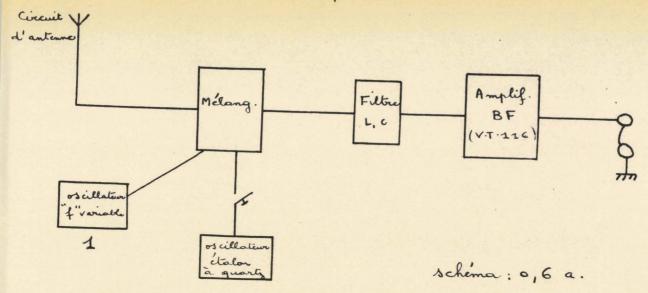
E.- LE FREQUENCEMETRE

C'est le fréquence de l'armée américaine B C - 221 T

série nº 21.796

fabriqué par la "Zenith Radio Corporation" Chicago (Illinois).

Il permet de mesurer des fréquences comprises entre 125 et 20.000 kHz.


Le principe est résumé par le schéma : 0,6 a .

On règle l'oscillateur à fréquence variable (étalon secondaire) sur l'oscillateur étalon à quartz par l'intermédiaire de la lampe mélangeuse.

On déconnecte l'oscillateur à quartz et on fait battre l'étalon secondaire ainsi réglé avec le circuit d'antenne (fréquence à mesurer). Le signal est ensuite amplifié (Amplification B F par une pentode V T 116) après être passé dans un filtre (circuit L C parallèle) pour être enfin appliqué aux écouteurs.

L'oscillateur hétérodyne est à couplage électronique (E.C.O.: électron coupled oscillator) qui procure une grande stabilité d'oscillations sur fondamentale ou harmoniques.

Fréquencemètre

Schéma de principe de l'oscillateur 1.

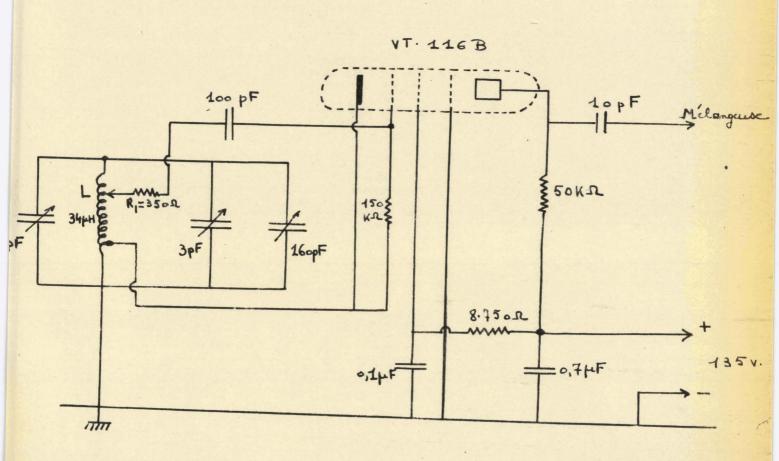


schéma : 0, 6 b.

On augmente encore la stabilité en accordant toute la self L et en branchant la connexion grille sur une prise faite sur la self

(schéma: 0,6 b)

Cette prise réduit, de plus, l'effet des variations de la capacité d'entrée de la lampe oscillatrice. Ces variations découlant, d'une part, de l'échauffement à l'intérieur de la lampe qui fait varier les distances respectives des électrodes dans les capacités internes, d'autre part des variations d'amplification ou de charge du circuit anodique, reportées sur le circuit d'entrée (la capacité grille-anode a un effet prépondérant sur le circuit d'entrée).

Dans un tel montage, il faut cependant avoir soin de ne pas faire une prise sur une partie trop faible du bobinage. On risquerait de provoquer l'apparition d'oscillations parasites faisant perdre tout le bénéfice du système.

Des tables donnent directement les correspondances entre les divisions lues sur un cadran (capacité variable) et les fréquences.

Ex: 4.350,4 : 959,6 kHz 4.354,2 : 960,0 kHz.

On peut admettre la proportionnalité dans chaque intervalle et estimer une fréquence à 100 Hz près.

N.B.- 1°) Lorsque l'on mesure les fréquences du Q mètre avec le fréquencemente, on peut améliorer la précision sur la mesure en branchant l'antenne de celui-ci sur le circuit du Q mètre.

Il y aura alors battement de l'équipage mobile du voltmètre (du Q mètre).

2°) On remarque bien sur le schéma de principe de l'oscillateur (0,6 b) que la connexion grille est faite sur une prise intermédiaire de la self L à travers une résistance Rl. A part cette disposition, c'est le schéma d'un E C O classique.

F.- LA LIGNE A RETARD

Cette ligne à retard que nous possédions au laboratoire a été réalisée par Monsieur Bernard TRENTESAUX (8) pour la mise au point d'un stroboscope à déphasage variable.

a) Principe:

Une ligne à retard comprend une self répartie et des capacités C formant un filtre en TT.

Si L est la self par unité de longueur, on démontre que le temps de transfert T par unité de longueur est égal à

 $T = \sqrt{LC}$

L'impédance caractéristique Z a pour valeur : Z

Entre L, C, Z et T on a les relations : L = 2 T Z et C = 2 T. Il y a donc entre les tensions d'entrée et de sortie un

déphasage $\phi = \omega \, \mathbb{T} = 2 \, \pi \, \mathbb{N} \, \mathbb{T} = \pi \, \mathbb{N} \, \sqrt{\text{LC}}$

N = fréquence de la tension d'entrée Ve.

- Ces résultats sont également valables si C est une capacité répartie comme l'indique la figure ci-contre.

Si la self est bobinée à spires jointives sur un cylindre métallique recouvert d'un isolant, la capacité C est proportionnelle à la largeur du bobinage, de même que la self L. Le temps de transfert T et par conséquent le déphasage φ sont donc fonctions linéaires de la longueur de la ligne à retard.

b) Description de la ligne :

- Un cylindre de laiton de longueur 40 cm. et de diamètre 22,75 mm est recouvert d'une pellicule uniforme de celluloid de 15/100 mm d'épaisseur formant diélectrique.

La self est constituée de 1.125 spires environ, bobinées jointivement sur une longueur de 360 mm (fil de cuivre, isolé au vernis, de 32/100 mm. de diamètre) et enrobée d'un film de plexiglass destiné à maintenir les spires. Le vernis du fil de cuivre a été enlevé sur une largeur de 2 mm, pour former une piste longitudinale sur laquelle glisse un charbon dont la pression est assurée par un ressort prenant appui sur le fond d'un cylindre de laiton.

Celui-ci est fixé à un curseur mobile sur une réglette longitudinale de section carrée, située à 14 mm. au-dessus du bobinage et reliée à une borne de sortie.

- La ligne est fermée sur son impédance caractéristique Zc calculée par application de la formule : $Z_{c} = \sqrt{Z_{o}}$. Z_{F} .

Zo et ZF étant respectivement les impédances de la ligne à circuit ouvert et à circuit fermé. Zc = 79,5 12

- La tension d'entrée Ve est appliquée entre la masse constituée par le cylindre de laiton, et l'entrée de la ligne.
- Les tensions d'utilisation sont prélevées :
 - + d'une part, en l point situé à 25 mm. environ du début de la ligne (côté entrée).
 - + d'autre part, au curseur à charbon en un point variable de la ligne.

Le temps de transfert T a pour valeur maximum 0,75 μ sec. ce qui correspond à un déphasage total de $\phi=\frac{3\pi}{2}$ pour les fréquences de travail.

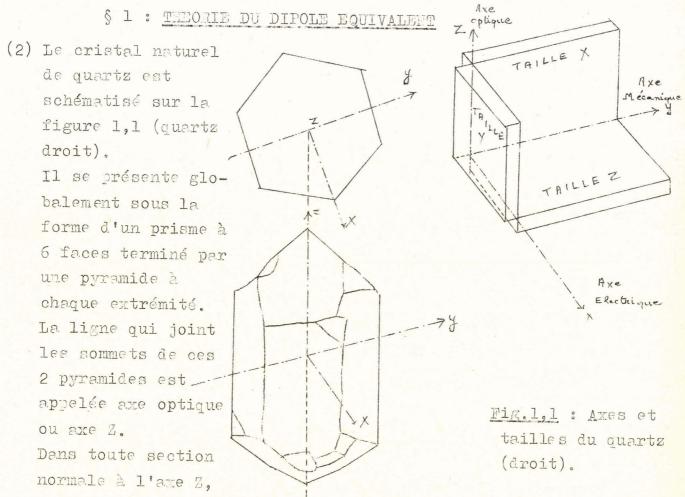
Lorsque le curseur est en A : $\phi = 0$

L'opposition de phase est obtenue en B tel que AB = 30,2 cm à 0,1 cm. La ligne présente les qualités suivantes :

- + déphasage, fonction rigoureusement linéaire de la longueur de la ligne
- + impédance caractéristique faible et donc possibilité d'être placée dans un circuit à basse impédance, sans inconvénient en H.F.
 - c) Etalonnage de la ligne en fonction de la fréquence :

Al MHz, on a trouvé: 30,2 cm pour 180 ° soit 5,96 °/cm.

or
$$\varphi = \omega T = T - 2\pi f = Xf$$


d'où

P KHz	900	910	920	930	940	950	960	970	980	990	1.000
9°/cm	5,37	5,43	5,48	5,54	5,60	5,66	5,72	5,78	5,84	5,90	5,96

(Tableau 0,7)

lère PARTIE : LE QUARTZ CONSIDERE COMMU CIRCUIT ELECTRIQUE

Chapître I : Dipôle équivalent à un quartz non chargé.
Détermination des constantes électriques.

les lignes qui joignent les arêtes opposées du cristal sont appelées axes électriques ou axes X,

et les axes Y dits axes mécaniques sont perpendiculaires aux faces.

Il existe donc 3 axes X et 3 axes Y.

Les lames dites de taille X, Y ou Z sont taillées de telle sorte que leur épaisseur soit selon les directions des axes X, Y ou Z, comme indiqué sur la figure 1,1.

A.- Lois de la piézoélectricité. (1)

Lorsque l'on exerce une force sur deux faces d'une lamelle de quartz, il apparaît des charges sur deux faces déterminées, celles qui sont perpendiculaires à l'axe électrique du cristal.

Les lois de la piézoélectricité sont les suivantes :

a) LOI DE CURIE :

Lorsque l'on exerce, sur deux faces opposées d'un parallélépipède rectangle d'un cristal piézoélectrique, un effort F, les charges Q crées sont :

- directement proportionnelles à l'effort F,
- directement proportionnelles au rapport s'

S': surfaces sur lesquelles apparaissent les charges S : surfaces sur lesquelles s'exerce l'effort F.

b) LOI DE LIPPMAN:

Quand on soumet un parallélépipède rectangle à un champ électrique dirigé suivant l'axe électrique du cristal, la lamelle de quartz subit une modification d'épaisseur et de longueur.

La variation de longueur est :

- directement proportionnelle à la différence de potentiel V
- directement proportionnelle au rapport S':

S': surface perpendiculaire à l'axe électrique S: surface de la face soumise aux efforts résultants.

$$x_0 = d S^1 V.$$

N.B.- La constante de proportionnalité d est la même pour ces 2 lois.

B. - Equation mécanique des mouvements du quartz

On peut supposer un quartz de taille X, c'est-à-dire que l'on considère les efforts suivant l'axe électrique.

Soit une lamelle de quartz, d'épaisseur e ; elle va vibrer longitudinalement suivant son fondamental, c'est-à-dire en demi-onde.

M.B. - Les quartz utilisés vibrent en effet en demi-onde.

Leur épaisseur est e > 2,85 mm.

 $F \sim 960 \text{ kHz.} = M.$

$$\lambda = \frac{c}{N} \qquad c : célérité du son dans le quartz = \sqrt{\frac{E}{N}}$$

$$E = 0.785. \ 10^{12} \ c \ G \ S$$

$$\rho = 2.65 \ g/cm^{3}$$

$$d'où c = \sqrt{\frac{78.5}{2.65}} \cdot 10^{10} = 5.450 \ m/s$$
et
$$\lambda m = 5.450 - 5.7 \ mm$$

et $\lambda_{mm} = \frac{5.450}{960} = 5,7 \text{ mm}.$

c'est-à-dire que : $e = \frac{\lambda}{2}$.

On peut traduire le mouvement par une équation de la forme:

(I) $\begin{cases} m & \frac{d^2 x_0}{dt^2} + \frac{dx_0}{dt} + kx_0 = F \end{cases}$

soit $(-m\omega^2 + j + j + k) \times x_0 = F$ en notation complexe

m : inertie en mouvement

f : terme dû à l'amortissement (frottement mécanique rayonnement dans l'air

k : constante de rappel ou dureté

(On pourra déterminer k en considérant que m $\omega_0^2 = k$ avec ω_0 : pulsation propre du quartz

Xo : élongation de la surface du quartz).

F : efforts exercés sur la lamelle.

Supposons qu'une ddp. V soit appliquée entre les faces du quartz ; il en résulte, d'après la loi de Lippman, une déformation

$$x_0 = d V$$
.

Celle-ci entraîne une force F donnée par : (N = Ei)

$$\frac{F}{S} = E \xrightarrow{X_0} \longrightarrow F = ES \xrightarrow{X_0} e$$

E: module d'Young pour la direction étudiée

S: la section

$$d'où F = E.S.d.V$$

Les équations (I) deviennent :

(II)
$$\begin{cases} m & \frac{d^2 x_0}{dt^2} + \frac{1}{2} \frac{dx_0}{dt} + kx_0 - \frac{ESdV}{e} = 0 \\ (-m\omega^2 + j \omega + k) x_0 - \frac{ESdV}{e} = 0 \end{cases}$$

C .- Etude électrique.

Sous l'action de la d.d.p, le condensateur, constitué par la lamelle de quartz placée entre 2 armatures, commence par prendre une charge q1 = c V

Quand la lamelle subit une déformation, la force $F = \frac{ES \times V_0}{e}$ fait apparaître les charges $q_2 = dF$ (loi de Curie)

$$q_2 = \underline{d} \underline{S} \underline{E} \underline{X}_0$$

La charge totale est alors égale à :

$$q = c V + \underline{d S E} X_0$$

Si l'on considère V comme le parametre de la partie mécanique, on reconnaît les équations de 2 circuits couplés et si l'on se reporte à la vitesse $v=j\omega X_0$ et au courant $I=j\omega Q$

les deux équations s'écrivent :

(III)
$$\begin{cases} \left[j \left(m \omega - \frac{k}{\omega} \right) + f \right] v - \frac{ESdV}{e} = 0 \\ j \omega c V + \frac{dSE}{e} v = I \end{cases}$$

D.- Etude de l'impédance électrique équivalente.

A partir des équations (III), éliminons v.

La première nous donne :
$$v = \frac{dSE}{e}$$
 $\frac{1}{j(m\omega - \frac{k}{\omega}) + f}$ $\frac{1}{j(m\omega - \frac{k}{\omega}) + f}$ (IV)
La seconde devient : $I = \begin{bmatrix} j\omega c + (\frac{dSE}{\omega})^2 & 1 \\ e & j(m\omega - \frac{k}{\omega}) + f \end{bmatrix}$

Le circuit équivalent d'un quartz dû à Watanabe (1928)

avec Co : capacité statique du quartz

$$I = \underbrace{V}_{Z} \qquad \text{avec} \quad \underbrace{1}_{Z} = \underbrace{1}_{Z_{1}} + \underbrace{1}_{Z_{2}}$$

Z1 : impédance de la branche (1) : Co

Z₂ : impédance de la branche (2) : L, C, R

$$\frac{1}{Z} = j\omega C_0 + \frac{1}{R + j\omega L} + \frac{1}{j\omega} = j\omega C_0 + \frac{j\omega C}{j\omega RC + 1 - LC\omega^2}$$

d'où

$$I = \int \omega C_0 + \frac{C}{RC + \frac{1}{J}\omega} - \frac{C}{J}$$
Or l'équation (IV) s'écrit:
$$I = \int \omega C_1 (dSE)^2 - \frac{C}{J} = \int C_0 (dSE)^2$$

l'équation (IV) s'écrit:

$$I = \left[j\omega C + \left(\frac{dSE}{e} \right)^2 + \frac{1}{4 - \frac{jK}{\omega} + jm\omega} \right]$$
The identifier A is a second A in A is a second A in A

En identifiant les deux relations de (T), on obtient :

$$\frac{1}{R} = \left(\frac{dSE}{e}\right)^{2} \frac{1}{f}$$

$$j\omega C = \left(\frac{dSE}{e}\right)^{2} \frac{1}{JK}$$

$$C = \frac{1}{K} \left(\frac{dSE}{e}\right)^{2}$$

$$L = m \left(\frac{e}{dSE}\right)^{2}$$

$$et C_{e} = C$$

E .- Application Numérique.

Montrons, tout d'abord, que pour m, il faut prendre \underline{M} , la moitié de la masse du quartz. (3).

Efforçons-nous, pour cela, de décrire d'une manière dynamique, comme un mouvement à un degré de liberté, le mouvement stationnaire de la lame vibrant en demi-onde. Comme variable, pour décrire ce mouvement, nous prendrons le déplacement \mathbf{x}_o de la face supérieure, étant entendu que la face inférieure a le déplacement $-\mathbf{x}_o$.

Le déplacement x de la tranche d'épaisseur dy à la hauteur y vaut alors :

$$x = x_0 \sin \frac{\pi y}{e}$$
 e: épaisseur de la lame

Soit p la masse spécifique du quartz, S la surface de la tranche, la force vive totale de la lame en train de vibrer vaêtre :

$$T = \frac{1}{2} \int_{y=-\frac{\pi}{2}}^{+\frac{\pi}{2}} S\left(\frac{dx}{dt}\right)^2 \sin^2 \frac{\pi y}{e} dy = \frac{1}{4} M\left(\frac{dx}{dt}\right)^2 = \frac{1}{2} \left(\frac{M}{2}\right) \left(\frac{dx}{dt}\right)^2$$

M étant la masse totale de la lame.

En prenant comme variable xo, tout se passe donc comme si la masse efficace m de la lame était la moitié de sa masse réelle.

A.H.

$$d = 2,15. \ 10^{-12} \ \text{m/volt} ; E = 0,785. \ 10^{11} \ \text{Nw} / \text{m}^2$$

$$d E = 2,15 \times 0,785. \ 10^{11} = 0,169$$

$$10^{12}$$

$$L = \frac{\text{me}^2}{(\text{dSE})^2} = \frac{\text{m}}{2} = \frac{\text{e}^2}{\text{d}^2 \text{S}^2 \text{E}^2} = \frac{\mu \text{Se}}{2} = \frac{\text{e}^2}{\text{d}^2 \text{S}^2 \text{E}^2} = \frac{\mu}{2} = \frac{\text{e}^3}{\text{d}^2 \text{E}^2}$$

Pour le quarts, $\mu = 2.650$ kgr/m3.

d'où
$$L = \frac{2.650}{2 \times (0,169)^2}$$
. $\frac{e^3}{8} = 46.400 \frac{e^3}{8}$ Henry.

LC
$$\omega_o^2 = 1$$
avec $\omega_o = 2\pi f_o = 2\pi c$

La lame vibre en demi-onde soit
$$\lambda = 2 e \rightarrow \omega = 2 \pi c = \pi c$$

$$d'où C = \frac{1}{L\omega_o^2} - \frac{2Sa^2E^2}{\mu e^3} = \frac{2Sa^2E^2}{\pi^2\mu e c^2}$$

$$mais c = \sqrt{\frac{E}{\mu}}, c^2 = \frac{E}{\mu} \rightarrow C = \frac{2Sa^2E}{\pi^2\mu e c^2}$$

$$C = \frac{2d\cdot dE}{\pi^2} \cdot \frac{S}{e} = \frac{2\times2,15\cdot10^{-12}\times0,169}{\pi^2} \times \frac{S}{e}$$

$$C = \frac{7}{4},37\cdot10^{-14} \cdot \frac{S}{e} \text{ on } \text{ Farad} = 7,37\cdot10^{-2} \cdot \frac{S}{e} \text{ on } \text{ pF}.$$

Appliquons ces résultats aux quartz que nous utilisons :

e ~ 0,287 cm.

Nous verrons ultérieurement (2ème partie : champs ultrasonores), que la surface utile du quartz correspond à la surface du piston.

Diamètre du piston : d = 3,8 cm.

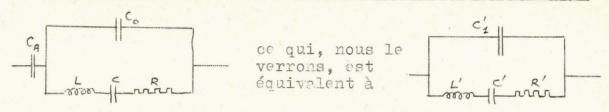
$$S = \frac{\pi \cdot d^{2}}{4} = \frac{\pi \times 3,8^{2}}{4} = 11,3 \text{ cm}^{2}$$

$$L = 46.400 \quad \frac{2,87^{3} \cdot 10^{-9}}{11,3 \cdot 10^{-4}} = 0,97 \text{ Henry}$$

$$C = \frac{7,37}{10^{2}} \cdot \frac{11,3 \cdot 10^{-4}}{2.87 \cdot 10^{-3}} = 29 \cdot 10^{-3} \text{ p F}$$

R est difficile à déterminer par suite des causes diverses d'amortissement.

§ 2. VERIFICATION:


DETERMINATION DES ELEMENTS L,R,C du DIPOLE PAR LA METHODE DE LA CREVASSE

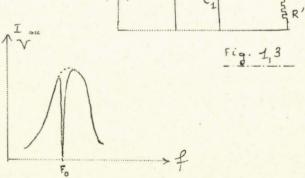
A. - Principe

a) Méthode de la crevasse -

Le schéma électrique équivalent à un quartz non en contact

avec ses armatures mais alimenté par une capacité série est :

c' : capacité des électrodes séparées par le diélectrique quartz, plus celle des connexions


L',c',R': circuit série équivalent aux vibrations mécaniques du quartz.

Le coefficient de surtension du cristal Q' = $\frac{L'\omega}{R'}$ est très grand, toujours > 1.000 et peut dépasser 100.000, c'est-à-dire que le cristal est peu amorti ; la courbe de résonance de L',c',R' est très aigüe et l'impédance de cette branche est très grande, sauf au voisinage immédiat de sa fréquence de résonance F_0 .

Tant que l'on n'est pas près de la résonance, l'impédance de L',c',R' est grande près de let l'impédance du quartz est sensiblement celle de C'...

Soit un circuit résonant (L,R,c) comportant un quartz en dérivation sur le condensateur c.

Sa courbe de résonance
I ou V en fonction de la
fréquence présente une
étroite et profonde
crevasse dont le
fond correspond à F.

la fréquence de résonance mécanique du quartz, c'est-à-dire à la résonance de la branche L'c'R'.

Le circuit est alors shunté par R' et son coefficient de surtension tombe à une valeur faible d'où la chute de tension aux bornes de c.

Cette courbe de résonance permet la détermination des éléments du dipôle équivalent au quartz.

Le quartz est ici placé aux bornes du Q mètre ; on fait varier la fréquence de l'injection et on relève la courbe de résonance.

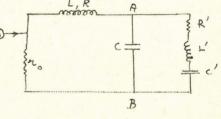
- N.B. En général, la crevasse partage la courbe en deux parties inégales et les fréquences des comes Pl et F2 ne sont pas symétriques par rapport à F_0 . Par réglages successifs de la capacité c du Q metre, on s'arrange pour obtenir des fréquences F1 et F2 symétriques par rapport à F_0 .
 - --> Equations fondamentales: (Fig. 1,3)
 - a) Condition de résonance :

+ a la résonance du quartz (Fo), le circuit résonant L,c n'est shunté que par R'. La condition de résonance de tension indépendante de la résistance en parallèle sur le condensateur, s'écrit :

(1)
$$L(c_2 + c_1) \omega_0^2 = 1$$
 avec $c = c_2$

+ de même pour la condition de résonance du quartz:

$$(2) \qquad \qquad \mathsf{L}' \, \mathsf{C}' \, \omega_{\varepsilon}^2 = \, \mathsf{l} \, .$$


En déconnectant le quartz, on retrouve la résonance sur F. pour

$$c = c_1$$
 telle que $c_1 \omega_0^2 = 1$
 $c'_1 = c_1 - c_2$

β) cornes:

Les réglages sont tels que c (A)

capacité d'accord du Q mètre. est la capacité d'accord du Q mètre. Elle comprend la capacité affichée + les capacités des appareillages

annexes (condensateur micrométrique), de liaison (câble coaxial) et la capacité parallèle d'entrée du quartz.

La tension disponible aux bornes de c, lorsque l'on a rétabli l'accord, quartz débranché, est

$$E = \frac{r_0 i L \omega}{R + r_0}$$

Mous pouvons, en tout état de cause, inclure ro dans la Mous pouvons, en tout état de présistance de la bobine dont le Q mesuré est bien $\underline{L}\omega$ et $\overline{R}+\overline{r_o}$ posons donc R : résistance totale.

Pour l'injection réglée à Q x 2, i = 0,25 A;
$$\mathbf{r}_0 = 0,04\Lambda$$
; $\rightarrow \mathbb{E} = 0,01$ Q = $\frac{Q}{100}$

Pour l'injection réglée à Q x l, i = 0,50 A;
$$r_0 = 0,04 \Omega$$
;
E = 0,02 Q = $\frac{2}{100}$.

Au voisinage de la surtension, c accordé \equiv Cl pour la pulsation propre du circuit ω , (Lc ω ; = l) identique à celle du circuit série du quartz (L'c' ω ; = l); vu des bornes A et B, le Q mètre est un générateur d'impédance interne :

$$Z_{0} = \frac{1}{jC_{L}\omega + \frac{1}{R+jL\omega}} = \frac{R+jL\omega}{jRC_{L}\omega + (1-LC_{L}\omega^{2})}$$

$$ex L = \frac{1}{C_{L}\omega^{2}} \longrightarrow Z_{0} = \frac{R+j\frac{\omega}{C_{L}\omega^{2}}}{jRC_{L}\omega + (1-\frac{\omega^{2}}{\omega^{2}})}$$

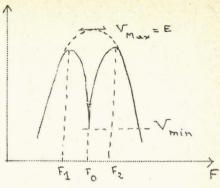
$$losans: \frac{\omega^{2}}{\omega^{2}} - 1 = \eta \qquad \left(et \frac{\omega^{2}}{\omega^{2}} = \eta + 1\right)$$

$$Z_{0} = \frac{R+j\frac{\omega}{C_{L}\omega^{2}}}{jRC_{L}\omega - \eta} = \frac{(R+j\frac{\omega}{C_{L}\omega^{2}})(-\eta - jRC_{L}\omega)}{R^{2}C_{L}^{2}\omega^{2}} + \eta^{2}}$$

$$ex Q_{0} = \frac{L\omega_{0}}{R} = \frac{1}{RC_{L}\omega_{0}} = \frac{(R+j\frac{\omega}{C_{L}\omega^{2}})(-\eta - jRC_{L}\omega)}{R^{2}C_{L}\omega^{2}} + \eta^{2}}$$

$$Z_{0} = \frac{-\eta R + R\frac{\omega^{2}}{\omega^{2}} - j\frac{\omega}{C_{L}\omega^{2}}\eta - jR^{2}C_{L}\omega}{(\eta + 1)\frac{1}{Q_{0}^{2}} + \eta^{2}}$$

$$Z_{0} = \frac{R}{(\eta + 1)\frac{1}{Q_{0}^{2}} + \eta^{2}} - j\frac{\omega}{C_{L}\omega^{2}}(\eta + R^{2}C_{L}^{2}\omega^{2})}{(\eta + 1)\frac{1}{Q_{0}^{2}} + \eta^{2}}$$


$$Z_{0} = \frac{R}{(\eta + 1)\frac{1}{Q_{0}^{2}} + \eta^{2}} - j\frac{\omega}{C_{L}\omega^{2}}(\eta + L^{2}C_{L}^{2}\omega^{2})}{(\eta + L^{2}C_{L}^{2}\omega^{2})}$$

$$Z_{0} = \frac{R}{(\eta + 1)\frac{1}{Q_{0}^{2}} + \eta^{2}} - j\frac{\omega}{C_{L}\omega^{2}}(\eta + L^{2}C_{L}^{2}\omega^{2})}{(\eta + L^{2}C_{L}^{2}\omega^{2})}$$

Lorsque ce générateur de tension débite sur l'impédance
$$Z' = R' + jL'\omega + \frac{1}{jc'\omega}$$
, la tension résultante v est $v = E$ $\frac{Z'}{Z_0 + Z'}$ et $(v) = (E) \frac{(Z')}{(Z_0 + Z')}$ $(v) = (E) \frac{1}{(1 + Z_0)}$

l) Lorsque l'on est à l'accord, c'est-à-dire au creux de la courbe de résonance :

$$L'\omega = \frac{1}{c'\omega}$$
 $Z' = R'$: impédance de la branche R', L', c'

et
$$Z_0 \neq Q_0^2 R - j \frac{\omega}{\omega_0^2 C_4} = Q_0^2 R - \frac{j \omega R}{\omega_0^2 R C_4} = Q_0^2 R - j Q_0 R = Q_0 R [Q_0 - j]$$

et R' =
$$\frac{\text{v min.}}{\text{E - v min.}}$$
 Q₀ R avec R = $\frac{\text{L}\omega_0}{\text{Q}_0}$ = $\frac{1}{\text{Q}_0}$ cl ω_0

d'où
$$R' = v \min$$
, Q_0
 $E - v \min$, $C_1 \omega_0$

2) Hors de la fréquence exacte d'accord : (Z') croît (Z' est l circuit résonant série)

 $\frac{(Z')}{(Z_0 + Z')}$ passe par des maxima si $(Z_0 + Z')$ passe par des minima.

$$Z_{o} = \frac{R}{(\eta + 1)\frac{1}{Q_{o}^{2}} + \eta^{2}} - j\frac{\omega}{c_{1}\omega_{o}^{2}} \cdot \frac{\eta + \frac{1}{Q_{o}^{2}}}{(\eta + 1)\frac{1}{Q_{o}^{2}} + \eta^{2}}$$

$$Z' = R' + jL'\omega + \frac{1}{jc'\omega} = R' + j\frac{\omega}{c'\omega_0^2} \left(L'c'\omega_0^2 - \frac{\omega_0^2}{\omega^2}\right) = R' + j\frac{\omega}{c'\omega_0^2} \left(1 - \frac{\omega_0^2}{\omega^2}\right)$$

or
$$\frac{\omega^2}{\omega_0^2} = \eta + 1$$
 d'ai $\frac{\omega_0^2}{\omega^2} = \frac{1}{\eta + 1}$ et $1 - \frac{\omega_0^2}{\omega^2} = \frac{\eta}{\eta + 1}$

$$Z_{0} + Z' = \frac{Q_{0}^{2} R}{1 + \eta + \eta^{2} Q_{0}^{2}} + R' - j \frac{\omega}{\omega_{0}^{2}} \left(\frac{1}{c_{1}} \cdot \frac{\eta + \frac{1}{Q_{0}^{2}}}{(\eta + 1) \frac{1}{Q_{0}^{2}} + \eta^{2}} - \frac{1}{c'} \frac{\eta}{\eta + 1} \right)$$

$$\left(\frac{1}{c_1} \cdot \frac{\eta + \frac{1}{Q_s^2}}{(\eta + 1)\frac{1}{Q_s^2} + \eta^2} - \frac{1}{c'} \cdot \frac{\eta}{\eta + 1}\right) = A$$

$$\eta + \frac{1}{Q_s^2} \approx \eta \quad \left(\eta \approx 0, 02; \frac{1}{Q_s^2} \approx \frac{1}{200^2} = 0, 00025; \text{ errews} < 2\%\right)$$

$$d'où A = \eta \left(\frac{1}{c_1} \cdot \frac{Q_s^2}{(\eta + 1) + Q_s^2 \eta^2} - \frac{1}{c'} \cdot \frac{1}{\eta + 1}\right)$$

La partie réelle de l'impédance varie avec le désaccord mais la variation des réactances du Q mètre et du quartz est beaucoup plus grande (1,1) ; en effet, à la fréquence d'accord ces réactances sont nulles et à une fréquence différente, elles croissent de telle sorte que leur somme soit nulle.

Il suffit donc d'annuler la réactance en dehors de l'accord; il vient :

$$\frac{A}{\eta} = 0 \quad \text{soit} \quad \frac{1}{c1} \cdot \frac{Q_0 2}{Q_0^2 \eta^2 + \eta + 1} = \frac{1}{c^*} \quad \frac{1}{\eta + 1}$$

$$c^* = c1 \quad \frac{1}{\eta + 1} \quad \frac{Q_0 2 \eta^2 + \eta + 1}{Q_0^2} = c1 \quad \frac{1}{\eta + 1} \left(\eta^2 + \frac{\eta + 1}{Q_0 2} \right)$$

Voyons l'ordre de grandeur de l'approximation (1,1).

Dans cette approximation, nous avons négligé la variation de la partie réelle de l'impédance avec le désaccord. Nous avons donc écrit

$$\frac{Q_0^2 R}{1 + \eta + \eta^2 Q_0^2} + R' = C^{te} \text{ c'est-à-dire } 1 + \eta + \eta^2 Q_0^2 \approx 1.$$

$$\frac{\eta}{1 + \eta} \approx \frac{2}{1.000} ; Q_0 \approx 200 ; Q_0 \eta = \frac{4}{10} \text{ soit } Q_0^2 \eta^2 = \frac{16}{100}$$

donc l'égalité $1 + \eta + \eta^2$ Qo2 = 1 est à 16 % près.

Il nous faut donc démontrer que cette variation ne change pas notablement la position des maxima.

Nous allons étudier les variations relatives du terme réel et celles du terme imaginaire par rapport à ce terme réel.

Le terme réel de Z_o + Z' est Q_o² R + R'. Sa variation relative sera plus faible que celle de Q_o² R $\frac{1+\eta+\eta^2Q_o^2}{1+\eta+\eta^2Q_o^2}$

Nous pouvons donc étudier le seul terme réel Q_0^2 R puisque sa variation sera encore majorée par rapport à la variation exacte.

$$\frac{Q_0^2 R}{1 + \eta + \eta^2 Q_0^2} \approx \frac{Q_0^2 R}{1 + \eta^2 Q_0^2} \approx \frac{Q_0^2 R (1 - \eta^2 Q_0^2)}{1 + \eta^2 Q_0^2}$$

De même A
$$\sim \frac{1}{c_1} \cdot \frac{\eta + \frac{1}{Q_0 2}}{\frac{1}{Q_0 2} + \eta^2} - \frac{1}{c_1} \eta$$

$$A = \eta \left[\frac{1}{c_1} Q_0^2 (1 - Q_0^2 + 2\eta^2) - \frac{1}{c'} \right]$$

A l'accord des cornes, A = 0 et n prend une valeur nl :

d'où c' =
$$\frac{c1}{Q_0^2(1-Q_0^2\eta_1^2)} = \frac{c_1}{Q_0^2} \frac{1+Q_0^2\eta_1^2}{Q_0^2} = \frac{c_1}{Q_0^2} + \frac{1}{\eta_1^2}$$

A devient :
$$A = \eta \left[\frac{1}{c_1} Q_0^2 (1 - Q_0^2 \eta^2) - \frac{Q_0^2 (1 - Q_0^2 \eta_1^2)}{c_1} \right]$$

$$= \eta \frac{Q_0^2}{c_1} \left[1 - Q_0^2 \eta^2 - 1 + Q_0^2 \eta_1^2 \right] = \frac{\eta Q_0^4 \eta_1^2 - \eta^2}{c_1^2}$$

correspondant à un désaccord, posons $\eta = \eta_1 + \varepsilon$

$$A = \frac{(\eta_1 + \varepsilon) Q_0^4}{C_1} \left[\eta_1^2 - (\eta_1 + \varepsilon)^2 \right] = \frac{(\eta_1 + \varepsilon) Q_0^4}{C_1} \left(-\varepsilon^2 - 2\eta_1 \varepsilon \right)$$

$$A \sim \frac{(\eta_1 + \varepsilon) Q_0^4}{c_1} \left(-2\eta_1 \varepsilon\right)$$
.

Si
$$\eta_1 \neq 0$$
, $A \sim -\frac{2\eta_1^2 Q_0^4 \epsilon}{c_1}$
d'où $Z_0 + Z' \sim Q_0^2 R \left[1 - (\eta_1^2 + 2\eta_1 \epsilon + \epsilon^2) Q_0^2\right] + j \frac{\omega}{\omega_0} \frac{2\eta_1^2 Q_0^4 \epsilon}{c_1} \epsilon$
 $Z_0 + Z' \sim Q_0^2 R \left(1 - Q_0^2 \eta_1^2 - 2 Q_0^2 \epsilon \eta_1\right) + 2j \frac{\omega}{\omega_0} \frac{\eta_1^2 Q_0^4 \epsilon}{c_1}$

Les variations relatives du terme réel sont :

$$\frac{2 Q_{0}^{2} \eta_{1} E}{1 - Q_{0}^{2} \eta_{1}^{2}} \approx 2 Q_{0}^{2} \eta_{1} E \approx 2 \times 4.10^{4} \times 2.10^{-3} E = 160 E$$

Les variations relatives du terme imaginaire par rapport au terme réel seront :

$$\frac{2 \eta_{1}^{2} Q_{0}^{4} E}{C_{1}} \qquad \frac{2 \eta_{1}^{2} Q_{0}^{2} E}{2 \eta_{1}^{2} Q_{0}^{2} E}$$

$$\frac{Q_{0}^{2} R \left(1 - Q_{0}^{2} \eta_{1}^{2}\right)}{R C_{1}} \qquad R C_{1}$$

$$R \sim 1 \Lambda \qquad \Rightarrow \frac{2 \times 4 \cdot 10^{-6} \times 4 \cdot 10^{4} E}{C_{1}} = \frac{2 \times 16 \cdot 10^{-2} E}{C_{1}}$$

$$C_{1} \sim 200 pF \Rightarrow \frac{32 \cdot 10^{-2} E}{2 \times 10^{-10}} = 16 \cdot 10^{8} E$$

donc Zo + Z' est comparable à :

p étant la valeur moyenne du terme réel.

$$(Z_0 + Z')^2 = \rho^2 (1 + 320 \varepsilon + 16^2 \cdot 10^2 \cdot \varepsilon^2 + 16^2 \cdot 10^2 \varepsilon^2)$$

Les variations de $(Z' + Z_0)$ dépendront uniquement du terme imaginaire si : $320 \epsilon + 16^2 \cdot 10^3 \epsilon^2 << 16^3 \cdot 10^{16} \epsilon^2$

Or ces deux termes seront du même ordre de grandeur si

320 E
$$\stackrel{?}{\sim}$$
 16 $\stackrel{?}{\sim}$ 10 $\stackrel{?}{\sim}$ 20 00 E $\stackrel{?}{\sim}$ 320 = 20 10 $\stackrel{-16}{\sim}$ = 1,25.10 $\stackrel{-16}{\sim}$ 16 16 16

or
$$\eta \approx \frac{2 \Delta F}{F_0} \approx 2.10^{-3}$$

 $\varepsilon = \Delta \eta$ qui correspondrait à une erreur absolue sur η_1 de 10^{-16} , ce qui est totalement négligeable devant 2. 10^{-3} .

L'approximation (1,1) est donc bien justifiée.

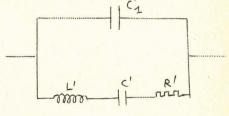
On tire L' de la relation : L' C' w = 1

Remarques: l.- Avant d'envisager cette théorie rigoureuse, nous avions écrit l'impédance du circuit en négligeant les résistances supposées faibles par rapport aux réactances.

Hous obtainons:
$$c' = c_1 \left(\frac{F_1 - F_2}{F_0}\right)^2$$
or $\left(\frac{F_1 - F_2}{F_0}\right)^2 \stackrel{?}{,} \eta^2$; en effet: $\eta = \frac{F_2}{F_0} - \frac{F_0^2}{F_0^2} = \frac{(F_2 + F_0)(F_2 - F_0)}{F_0^2}$

$$\eta = \frac{F_2 + F_0}{F_0} \stackrel{F_2 - F_0}{F_0} \stackrel{?}{,} 2 \stackrel{?}{,} \frac{\Delta F}{F_0} = \frac{F_1 - F_2}{F_0} \text{ et } \eta^2 = \left(\frac{F_1 - F_2}{F_0}\right)^2$$

gions $\frac{1}{\eta}$ devant η^2 .


Cette approximation n'est pas valable :

cl est une capacité difficile à réduire : capacité minimum du Q mètre, capacité du câble de liaison, capacité résiduelle du projecteur, capacité du condensateur micrométrique.

Or c'est faible, donc l'écart des fréquences des cornes est faible et les réactances ne deviennent pas prépondérantes.

2.- La théorie complète suppose que Fo, fréquence de résonance du quartz est la même que celle du circuit quartz-Q mètre.

b) Détermination de C_o , R, L, c. La méthode de la crevasse vient de nous permettre de déterminer les constantes du schéma équivalent (fig. 1,4)

Nous devons naturellement effectuer cette mesure sans amortir le quartz (sauf par sa fixation) c'est-à-dire en vidant pétrole et eau.

Hous appliquons donc la tension au piston, mais nous ne pouvons pas mettre le piston au contact du quartz [le quartz serait, dans cette hypothèse, trop amorti et nous n'observerions plus de crevasse dans la courbe $V = \{(F),]$.

La tension est donc appliquée au circuit par un condensateur c_A (piston-air-quartz). Le schéma équivalent à la figure (1,4)

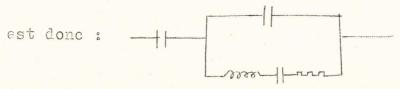
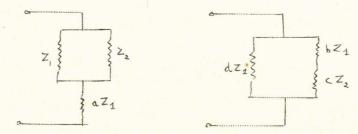



Fig. 1,5

Et ce n'est qu'à ce stade que nous retrouvons les valeurs co, R, L, c, envisagées (fig. 1,2) dans la théorie du dipôle équivalent au § 1.

Il nous faut donc, à présent, chercher les formules d'équivalence qui nous permettront de passer de c'l, L', c', R' à co, L, c, R.

Considérons donc les circuits suivants et cherchons les relations entre les coefficients a, b, c, d pour que les 2 circuits soient équivalents : (4)

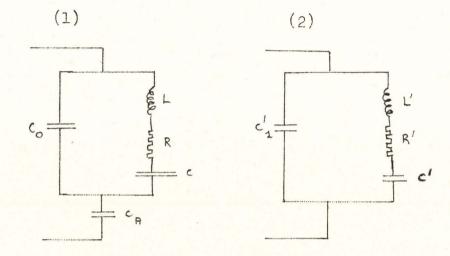
Exprimons que les impédances des 2 circuits sont égales :

L'égalité sera satisfaite si :

$$\frac{bd}{c} = a , d = a + 1 , \frac{b+d}{c} = 1$$

d'où b
$$(a + 1) = a (b + a + 1)$$

$$ab + b = ab + a (a + 1)$$


$$c = b d = a (a + 1)^{2}$$

$$a = a (a + 1)^{2}$$

$$c = (a + 1)^{2}$$

$$c = (a + 1)^{2}$$

Application au quartz :

$$Z_{1} = \frac{1}{jC_{0}\omega}; \quad Z_{1} = \frac{1}{jC_{0}\omega}; \quad Z_{2} = R + jL\omega + \frac{1}{jC\omega}$$

$$A = \frac{A}{Z_{1}} = \frac{C_{0}}{C_{A}}$$

Le circuit (2) équivalent au quartz est tel que : $\frac{1}{\int C_1' \omega} = d^{-2} 1 = \left(\alpha + 1 \right) Z_1 = \left(1 + \frac{c_0}{c_A} \right) \frac{1}{\int C_0 \omega}$

$$c'_{1} = \frac{c_{0}}{1 + \frac{c_{0}}{c_{A}}} \quad ou \quad c_{0} = \frac{c'_{1}}{1 - \frac{c'_{1}}{c_{A}}} \quad (\alpha)$$

$$R' + j L'\omega + \frac{1}{j c'\omega} = bZ_1 + cZ_2 = \frac{\alpha(\alpha + 1)}{j c_0 \omega} + (1 + \alpha)^2 \left[R + jL\omega + \frac{1}{j c\omega} \right]$$

$$R' = (1 + \alpha)^2 R = \left(1 + \frac{c_0}{c_A} \right)^2 R$$

$$R = \frac{R'}{\left(1 + \frac{c_0}{c_A} \right)^2} = \frac{R'}{\left(\frac{c_0}{c_1} \right)^2}$$

$$(\beta)$$

N.B.- En pratique, on mesure contact du quartz et en posant sur l'autre face du quartz une électrode de masse.

(Le schéma du quartz étant, en effet, dans ce cas, de la B.F., réduit à la seule capacité $c_{\rm c}$).

c) Remarque :

Cette méthode de mesure au Q mètre, à basse fréquence, permet d'étalonner c_A dans l'air et dans le pétrole en fonction de la distance piston-quartz.

On a, en effet, dans ce cas:
$$\frac{1}{c} = \frac{1}{c_0} + \frac{1}{c_A} = \frac{c_0 + c_A}{c_0 c_A}$$

$$c_0 c_A = c c_0 + c c_A$$
et $c_A = \frac{c \times c_0}{c_0 - c}$

c est donnée directement au (
$$c_1$$
: capacité d'accord sans quartz Q mètre = c_1 - c_2 (c_2 : " avec " - 32 -

B. - Mesures pour le Quartz nº 1.

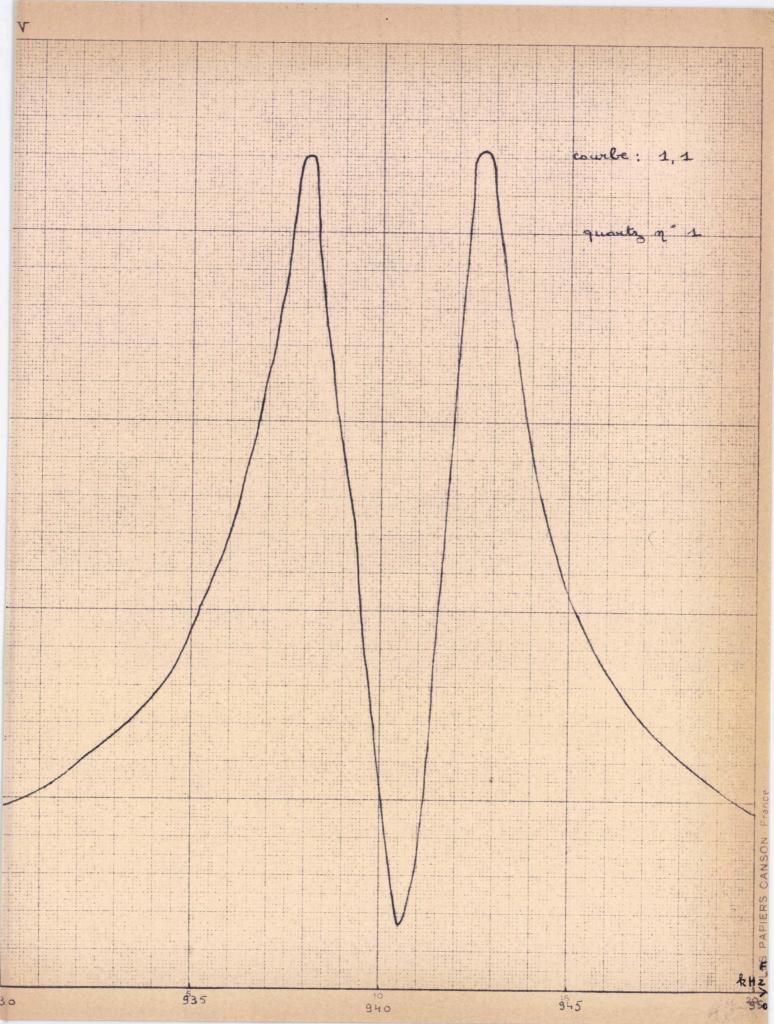
a) Relevé de la crevasse :

Le projecteur a été vidé de son eau et de son pétrole.

La tension délivrée par le Q mètre est appliquée au piston du projecteur, le piston se trouvant à une distance connue du quartz.

- Nous disposons au-dessus du quartz une électrode de masse.

L'indicateur de fréquences du Q mètre n'étant pas assez précis, on notera chaque fréquence à l'aide du fréquencemètre.


Nous chercherons enfin à avoir deux bosses symétriques en fréquence par rapport à F (crevasse) par un réglage du condensateur (c2).

La liaison Q mètre-projecteur est faite d'une manière assez rigide par un câble H.F. Pour déconnecter le projecteur, nous déconnectons le câble (son point chaud seulement, la masse restant branchée) du côté projecteur et non du côté Q mètre.

Dans ce cas, la capacité du câble se trouve du côté du Q mètre ; c'est le mode opératoire qu'il faut adopter pour avoir c'l - c₂ mais pour avoir la vraie valeur de c₁ (circuit du Q mètre seul), il faudrait déconnecter du côté Q mètre ou ajouter à c₁ : 70 pF qui est la capacité du câble à ces fréquences.

F Kz	930	935,2	937,2	957,6	938	938,4	938,8	939,2	939,6	940.
V v.	0,96	2,02	3,43	3,97	4,4	3,73	2,96	2,58	1,72	1,08
	940,4	940,5	940,8	941,2	941,	6 942	942,4	942,7	943,2	943,6
	0,41	0,33	0,52	1,16	2,2	6 3,33	4,36	4,43	3,95	3,32
Movedimosphine separation	944	944,4	944,8	945,2	945,6	946	947,2	948,8	950	
	2,88	2,50	2,22	2,00	1,84	1,68	1,37	1,12	0,95	COM TO A STATE OF THE STATE OF

L'étude de la courbe 1,1 nous donne : \mathbb{F}_1 = 938 kHz ; \mathbb{F}_0 = 940,5 kHz ; \mathbb{F}_2 = 942,7 kHz.

A la fréquence F_o : Quartz déconnecté: $c_1 = 214,7$ pF. (+ 70 pF). Quartz connecté: $c_2 = 188,2$ pF.

d'où c'₁ = $c_1 - c_2 = 26,5$ pr.

 $\rm V_{Max.}$ est obtenue en déconnectant le quartz à $\rm F_o$ et en rétablissant la résonance du circuit sans quartz.

 $V_{\text{Max}} = 5,24 \text{ volts} \longrightarrow Q_0 = 262$

Cette série de mesures a été faite à une distance pistonquartz quelconque.

Or, on remarque que les valeurs trouvées changent sensiblement avec cette distance.

Nous effectuons donc plusieurs mesures à des distances d différentes et nous utiliserons, pour la détermination de L',c', R', Q', celles faites à d=6,5/40 mm, distance moyenne d'utilisation

Mous avons utilisé pour plus de précision, le voltmètre de crête et le condensateur micrométrique de 130 pF.

+ Piston le plus près possible du quartz.:

 $F_1 = 938,2 \text{ kHz}$; V = 3,22 volts.

 $F_0 = 940,6$ kHz; v min.= 0,37 volt; $c_2 = 95$ pF.: Quartz connecté

 $V_{\rm Max} = 3,84 \text{ v}$; $c_1 = 115,97 \text{ pF.}$: Quartz déconnecté $Q_0 = 192$.

 $F_2 = 942,6 \text{ kHz}$; V = 3,23 volts. $\longrightarrow c_1 - c_2 = 20,97 \text{ pF}$

+ Piston à 1/10 mm du quartz :

 $F_1 = 938,3 \text{ kHz} ; V = 3,50 V ;$

Fo = 940,7 ; v min. = 0,31 v ; c_2 = 95 pF : Quartz connecté. $v_{\rm Max.}$ = 3,84 v ; c_1 = 115,40 pF : Quartz déconnecté.

 $Q_0 = 192.$

 $F_2 = 942,5$; V = 3,49 V; - $c_1 - c_2 = 20,40 pF$

+ Piston à 3/10 mm du quartz :

 $F_7 = 938,7 \text{ kHz} ; V = 3,56 \text{ volts}$

 F_o = 940,8 ; v min. = 0,33 v ; c_2 = 95 pF : Quartz connecté $v_{\rm Max}$ = 3,84 v ; c_1 = 115,17 : Quartz déconnecté c_0 = 192

 $F_2 = 942,4$; V = 3,56 V; $c_1 - c_2 = 20,17$ pF.

+ Piston à 6,5/10 mm du quartz :

 $P_1 = 938,75 \text{ kHz} ; V = 3,58 \text{ volts}$

Fo = 940,8; v min. = 0,37 v; c₂ = 95 + 176,2 = 271,2 pF: Quartz connecté

V_{Max.} = 3,84 v ; c_l = 114,59 + 176,2 = 290,79 pF : Quartz déconnecté Q_o = 192 (+ 70 pF du câble)

 $F_2 = 942,3$; V = 3,58 v. $c_1 - c_2 = 19,59$ pr.

N.B. - Cette derniere série de mesures à d = 6,5/10 mm = d moy. d'utilisation nous servira pour déterminer L', c', R'.

C'est la raison pour laquelle, ayant besoin de la valeur exacte de c_1 , nous avons ajouté à la capacité du condensateur micrométrique celle indiquée au Q motre (et celle du câble de liaison) qu'il est inutile de faire intervenir pour avoir la variation c_1 - c_2 .

Déterminons à présent L', c', R'; c'l.

$$c'_{1} = c_{1} - c_{2} = 19,59 \text{ pF.}$$

$$= c_{1} \frac{1}{\eta + 1} \left(\eta^{2} + \frac{\eta + 1}{Q_{0}^{2}} \right)$$

$$\eta = \frac{\omega^{2}}{\omega^{2}} - 1 \text{ est faible devant 1 ; on peut donc écrire :}$$

$$c' = c_{1} \left(\eta^{2} + \frac{1}{Q_{0}^{2}} \right) = \frac{360,79}{10^{12}} \left[\left(\frac{942,3}{940,8} - \frac{940,8}{940,8} \right)^{2} + \frac{1}{192} \right]$$

$$c' = 13,4. \ 10^{-15} \text{ F} = 13,4. \ 10^{-3} \text{ pF.}$$

b) Mesure directe de co à basse fréquence et calcul de L,R,c.

Nous déterminons maintenant la valeur exacte de co à l'aide du condensateur micrométrique et du voltmètre de crête.

A 50 kHz, (fréquence minima du Q motre) :

le piston et l'électrode se trouvent contre le quartz :

$$c_0 = 49,86 - 13,66 = 36,20 pF.$$

Avec de l'eau comme électrode de masse : $c_0 = 50,35 - 13,87 \text{ pF} = 36,48 \text{ pF}$

Adoptons comme valeur moyenne : | co = 36,4 pF. !

- N.B.- 1.- Des mesures faites à 100 kHz ont donné les mêmes résultats
 - 2.- Cette valeur de capacité co peut paraître élevée. En fait, cette valeur comporte en plus de la capacité statique du quartz celle du carter et de la colonne isolante portant l'électrode H F soit environ 18 pF.

En réalité, c'est bien la valeur co = 36,4 pF qui nous intéresse, c'est-à-dire la capacité statique du quartz monté sur le projecteur.

Connaissant L', c', R', c', et co nous pouvons déterminer L, R, c.

$$\underline{L} = \frac{L'}{\left(\frac{C_0}{C_1}\right)^2} = \frac{2,14}{36,4} = \frac{2,14}{1,85^2} = \frac{0,63 \text{ Henry.}}{1,85^2}$$

$$R = \frac{R'}{\left(\frac{C_0}{C_1}\right)^2} = \frac{9,6}{1,85^2} = \frac{2,8 \times \Omega}{1,85^2} = \frac{c' \left(\frac{C_0}{C_1}\right)^2}{1 - \frac{c'}{C_0} \cdot \frac{C_0}{C_1}} \sim c' \cdot \left(\frac{C_0}{C'_1}\right)^2 \text{ puisque}$$

$$\frac{c'}{C_0} \ll 1 \quad \text{et} \quad c = 13,4 \cdot 10^3 \times 1,85^2 = 45.10^3 \text{ p.f.}$$

Le schéma équivalent du quartz nº l non chargé et monté sur le projecteur est donc :

c) Etalonnage de c_A dans le pétrole en fonction de la distance piston-quartz:

Nous remettons le pétrole dans le carter et nous faisons la mesure de c (telle que $\frac{1}{c}=\frac{1}{c}+\frac{1}{c}$) à 50 kHz en fonction de la distance

d: piston-quartz:

d_{mm}	o _{mm}	2/10	1	2	4	8
		48,49 - 13,86	43,76-13,79	40,94 - 13,80	38,02 - 13,82	35,62 - 13,79
c _{pF}	T ()	=	=	=	-	=
Ďτ.	36,4	34,63	29,95	27,14	24,20	21,83

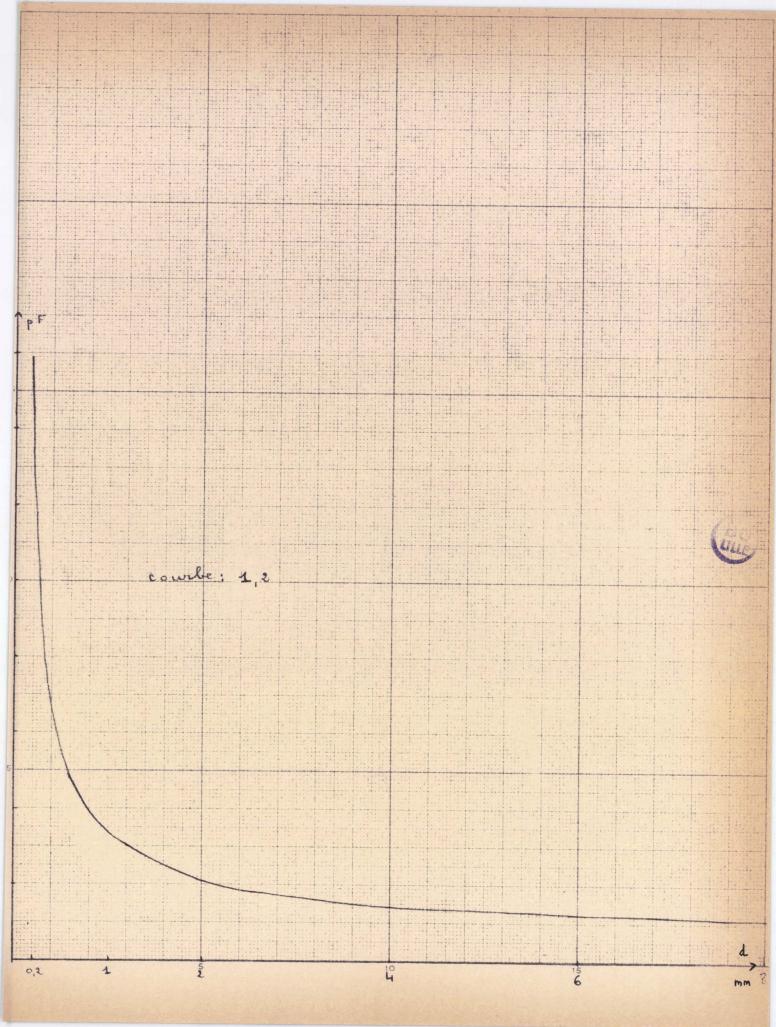
on en déduit donc c_{A} dans le pétrole par la formule

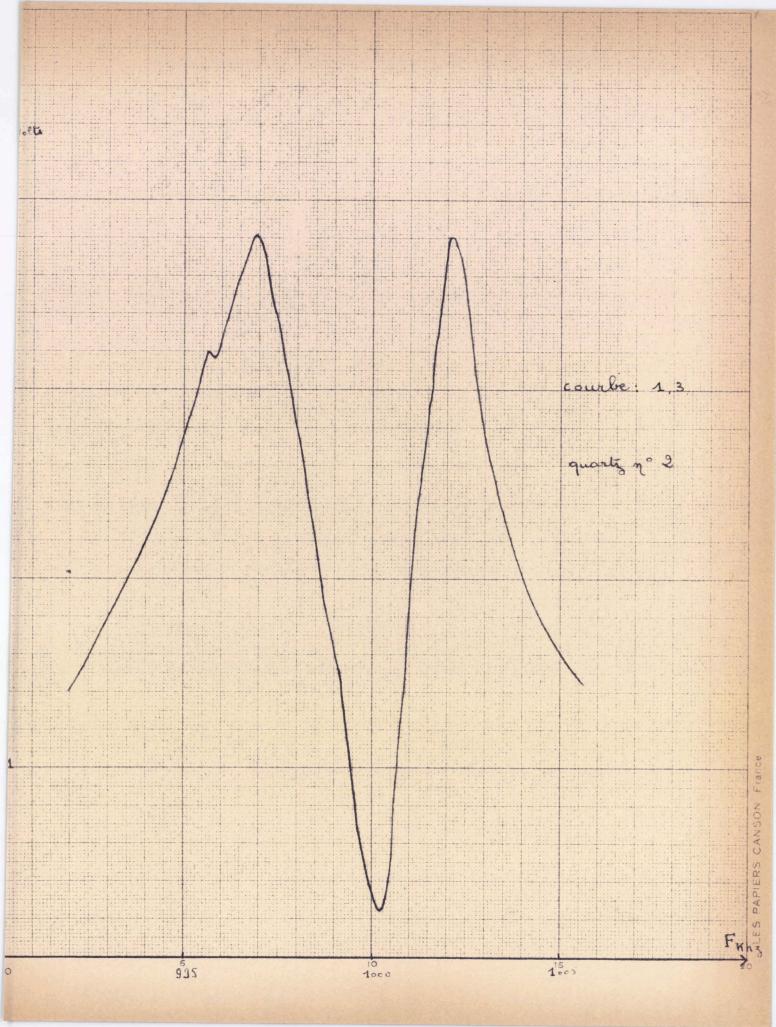
$$c_A = c_o \cdot c$$
 avec $c_o = 36,4$ pF.

d_{mm}	0	0,2	1	2	4	8	courbe	1.2
c _{A_{DF}}	∞	728	169	106	72,2	54,6		- , _

C .- Mesures pour le Quartz nº 2.

Nous allons étudier un second quartz, identique au premier, afin d'avoir des valeurs moyennes des constantes du diôle.


a) Relevé de la crevasse.


On opère, comme précédemment, sans pétrole et sans eau.

Distance piston-quartz = 6,5/10 mm.

PkHz.	992,1	994,6	995,6	995,85	996,95	998,2	999,1	1000,2	1000,9
^V volts	1,47	2,46	3,2	3,18	3,82	2,53	1,52	0,24	1,47
F	1001,3	1002	1003,3	1005,4					
V	2,45	3,80	2,52	1,5			courbe	: 1,3	
1		T 1 (+	J - J - J		7				

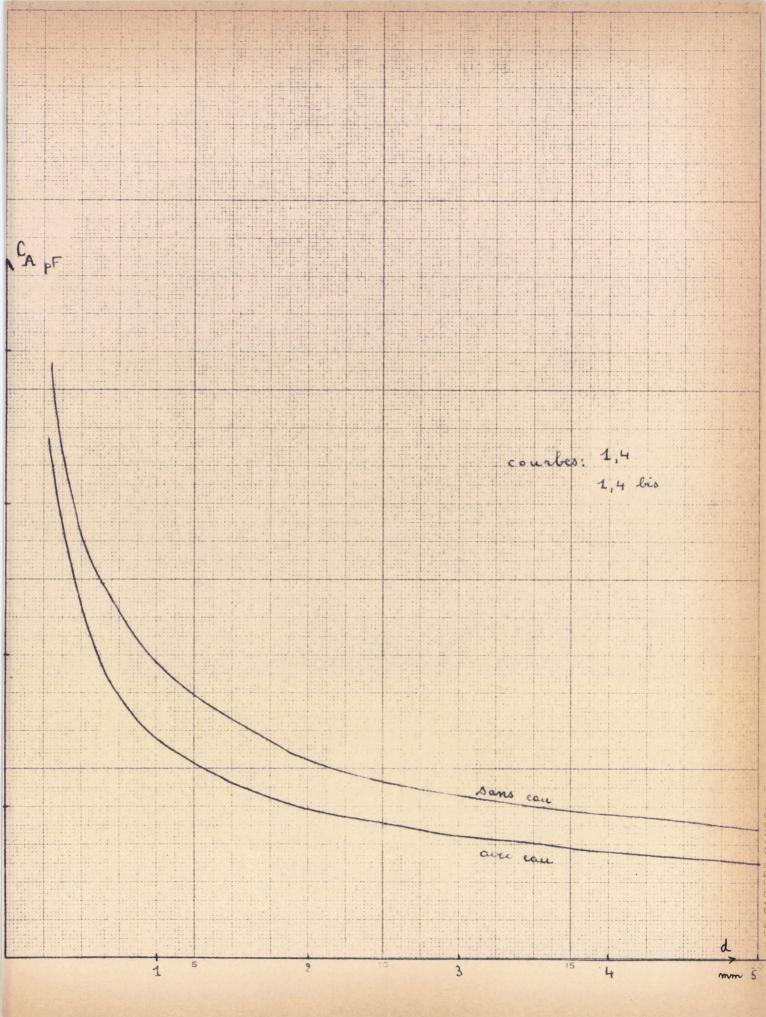
L'étude de la courbe 1,3 nous donne : $F_1 = 996,95$ kHz ; $F_0 = 1000,2$ kHz ; $F_2 = 1002$ kHz.

A la fréquence F_0 , Quartz déconnecté : c_1 = 120,5 pF (+ 70 pF)

Quartz connecté : c_2 = 99,7 pF

d'où c'_1 = c_1 - c_2 = 20,8 pF

A F_o , sans quartz, $V_{\text{Max}} = 4,24$ volts, $Q_o = 212$


d _{mm} .	0	0,3	0,65	1	2	5
c _{pF} sans eau	31,7	49,25 - 20 = 29,25	48,10 - 20 = 28,10	47,25 - 20 = 27 , 25		Marin 1
c pF avec eau	3 8,05	54,05 - 20 = 34,05	51,70 - 20 = 31,70		47,45 - 20 = 27,45	

D'où $c_A = \frac{c_o \cdot c}{c_o - c}$ avec $c_o = \begin{pmatrix} 31.7 \\ 38.05 \end{pmatrix}$.

d _{mm}	0	0,3	0,65	1	2	5		
c _{A pF} sans eau	∞	378	247	194	130	85	courbes	(1,4 (1,4bis
^C A pr avec eau	∞	325	190	145	98,5	62,5		

- N.B.- 1.- Hous avons utilisé pour le quartz n° 1 la valeur co avec électrode de masse sans eau et pour le quartz n° 2 co sans électrode de masse avec eau. Nous aurons ainsi la possibilité d'obtenir une valeur moyenne pour les constantes du dipôle équivalent au quartz.
 - 2.- Vmin., c'est-à-dire le creux de la crevasse, diminue quand le piston se rapproche du quartz : la crevasse s'approfondit.
 - 3.- Vmin. augmente l'grement avec le serrage du quartz : il y a donc léger amortissement du quartz avec ce serrage.

Mous avons relevé 2 courbes de Vo en fonction de la distance, piston-quartz, l'une sans aucun serrage, l'autre avec le serrage maximum à la main.

De ces valeurs, nous en déduisons :

$$C' = C_{1} \left(\eta^{2} + \frac{1}{Q_{0}^{2}} \right) = \frac{190,5}{10^{12}} \left[\frac{1002 - 1000,2}{1000,2}^{2} \right]^{2} + \frac{1}{212^{2}}$$

$$C' = \frac{1}{4},81 \cdot 10^{-3} \text{ pF}$$

$$L' = \frac{1}{C'\omega_{0}^{2}} = \frac{10}{1,81 \times H\pi^{2} \times 1000,2^{2} \times 10^{6}} = 3,24 \text{ Henrys}$$

$$R' = \frac{N_{min}}{E - N_{min}} \cdot \frac{Q_0}{C_1 \omega_0} = \frac{0.24}{H, 24 - 0.24} \times 212 \times \frac{10^{12}}{190,5 \times 27 \times 1000, 2.10^3} = 10,6 \text{ M} \Omega$$

b) Mesure directe de co à 50 kHz et calcul de L, R, c.

Le piston et l'électrode de masse se trouvent contre le quartz. Cette dernière est ici de l'eau; co = 58,05 - 20 = 3805 pF

$$\frac{R}{C_{1}} = \frac{L'}{\binom{C_{0}}{C_{1}}^{2}} = \frac{3,24}{\binom{38,05}{20,8}^{2}} = \frac{3,24}{1,83^{2}} = 0,97 \text{ H}.$$

$$\frac{R}{C_{1}} = \frac{R'}{\binom{C_{0}}{C_{1}}^{2}} = \frac{10,6}{1,83^{2}} = \frac{3,16 \text{ K}.\Omega}{1,83^{2}}$$

$$C \cong C' \left(\frac{C_{0}}{C_{1}}\right)^{2} = 26,2 \cdot 10^{-3} \text{ p F.}$$

Le schéma équivalent de ce quartz nº 2 non chargé est donc:

c) Etalonnage de c dans le pétrole en fonction de la distance d :

piston- quartz, à 50 kHz.

On mesure c telle que
$$\frac{1}{c} = \frac{1}{c_0} + \frac{1}{c_A}$$

On fera 2 séries de mesures, l'une avec l'électrode de masse contre le piston, l'autre en remplaçant cette électrode par de l'eau.

On sait que le quartz est habituellement serré dans son support par l'intermédiaire d'une couronne de caoutchouc qui, sans amortir trop le quartz, assure l'étanchéité entre la cuve à eau et la cuve à pétrole du projecteur.

Ce serrage s'effectue à l'aide d'une clef.

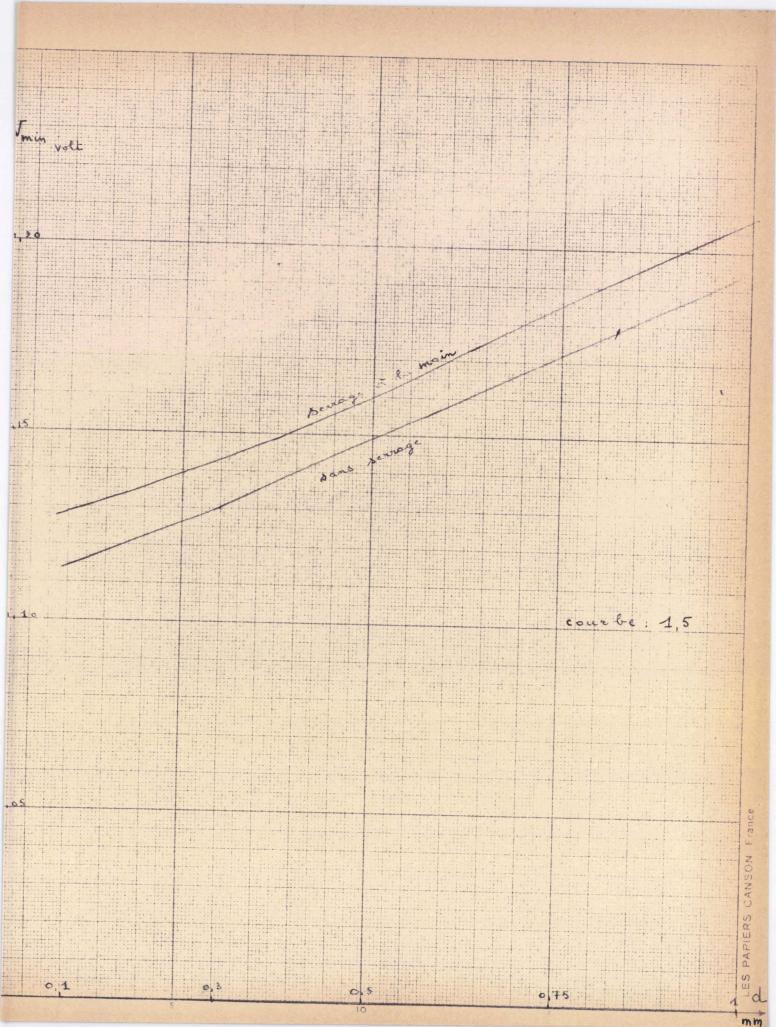
sans	Se	rra	20	•
	sans	sans se	ans serra	sans serrage

minimum en volt

distance d piston-quartz en mm/10	1	3	5	7,5	10
V minimum en volt	0,115	0,130	0,150	0,172	0,196.
b) serrage maximum à	la main	0		courb	es : 1,5
d en 1/10 de mm.	1	3	5	7,5	10
British Action (Controller Action Controller Act					

D.- Conclusion : comparaison entre les résultats théoriques et les résultats expérimentaux.

0,129 0,142 0,160 0,186 0,207.


	L	C	
Résultats théoriques	0,97 Hy	29. 10 ⁻³ pF	$\delta = 2,15. 10^{-12}$
Résultats expérimentaux	- 0,63 Hy - 0,97 Hy.	- 45. 10 ⁻³ pF -26,2.10 ⁻³ pF	$\delta = 2,66. \ 10^{-12}$

Les quartz nº 2, 3, 4 (étudiés dans la suite) ont une provenance différente du quartz nº 1.

Ces résultats semblent valables puisque :

- 1°) & utilisé dans le calcul de L et c théoriques peut varier normalement entre 1,64. 10⁻¹² et 2,39. 10⁻¹² MKSA
- 2°) une bonne précision de la mesure des capacités semble difficile à obtenir en dépit de l'utilisation d'un câble H F comme liaison Q mètre-projecteur. La déconnexion de ce câble du projecteur peut faire varier la capacité de quelques pF et par conséquent entacher d'erreur les mesures de co, c'1, par conséquent L, c puisque L = L'

$$\left(\frac{c_0}{c'_1}\right)^2$$

Calculons d'ailleurs l'erreur sur L' ou c' :

$$C' = \frac{c1}{Q^{2}} + c1 \, \eta^{2} ; \text{ posons } C' = y_{1} + y_{2}$$

$$\frac{\Delta y_{1}}{y_{2}} = \frac{\Delta C_{1}}{C_{1}} + 2 \frac{\Delta Q}{Q} = \frac{1}{490} + 2 \times \frac{H}{212} = 5,3.10^{-3} + 38.10^{-3} = H3,3.10^{-3}$$

$$\frac{\Delta y_{2}}{y_{2}} = \frac{\Delta C_{1}}{C_{1}} + 2 \frac{\Delta \eta}{\eta} = 0,53.10^{-2} + 2 \frac{\Delta \eta}{\eta}$$

$$\frac{\Delta Y}{\eta} = \frac{\Delta F}{F_{0}} = \frac{\Delta \alpha}{\eta} = \frac{\Delta \Lambda F}{\Delta F} + \frac{\delta F_{0}}{F_{0}} \approx \frac{\delta \Delta F}{\Delta F} = \frac{50}{5000} = 1,0.10^{-2}$$

$$\frac{\Delta y_{2}}{y_{2}} = 0,53.10^{-2} + 2,0.10^{-2} = 2,53.10^{-2} \times \frac{190}{212^{2}} = 18.10^{-5}$$

$$\Delta y_{1} = H,3.10^{-2} \times y_{2} = 4,3.10^{-2} \times \frac{190}{212^{2}} = 18.10^{-5}$$

$$\Delta y_{2} = 2,53.10^{-2} \times y_{2} = 2,53.10^{-2} \times C_{1}\eta^{2} = 2,53.10^{-2} \times 190 \times \frac{5}{10000^{2}}$$

$$\Delta y_{1} = 4.3.10^{-5} \times y_{2} = 2,53.10^{-2} \times C_{1}\eta^{2} = 2,53.10^{-2} \times 190 \times \frac{5}{10000^{2}}$$

$$\Delta y_{1} + \Delta y_{2} = \Delta C' = 30.10^{-5} = 3.10^{-4}$$

$$e \in \Delta C' = \frac{3.10^{-4}}{7,8.10^{-3}} \approx H.10^{-2}$$

Une erreur plus importante est certainement introduite dans la mesure de c'i donc sur L et c.

C'est pourquoi, il serait intéressant :

- l°) de travailler avec c_A maximum pour mesurer directement les vrais paramètres du ^Aquartz et ne plus introduire, de ce fait, l'erreur de la correction : $\left(\frac{c_o}{c'_1}\right)^2$.
- 2°) de construire un autre circuit du Q mètre pouvant utiliser de fortes selfs avec de faibles capacités. Nous aurions alors des fréquences de résonance (F_1 , F_2) beaucoup plus éloignées ce qui permettrait de simplifier les formules en négligeant $\frac{1}{Q^2}$ vis à vis de η^2 .

Il nous semble que, dans ces conditions, nous pourrions proposer une mesure correcte et facile du module (de piézoélectricité et du module d'Young E.

Nous pourrions même envisager des électrodes H F et de masse réduites en diamètre qui permettraient de déterminer les modules en différents points et de vérifier ainsi son homogénéité. Comparaison entre l'état de surface d'un quartz et sa crevasse.

§ 1 : OBSERVATION DE DIFFERENTES CREVASSES :

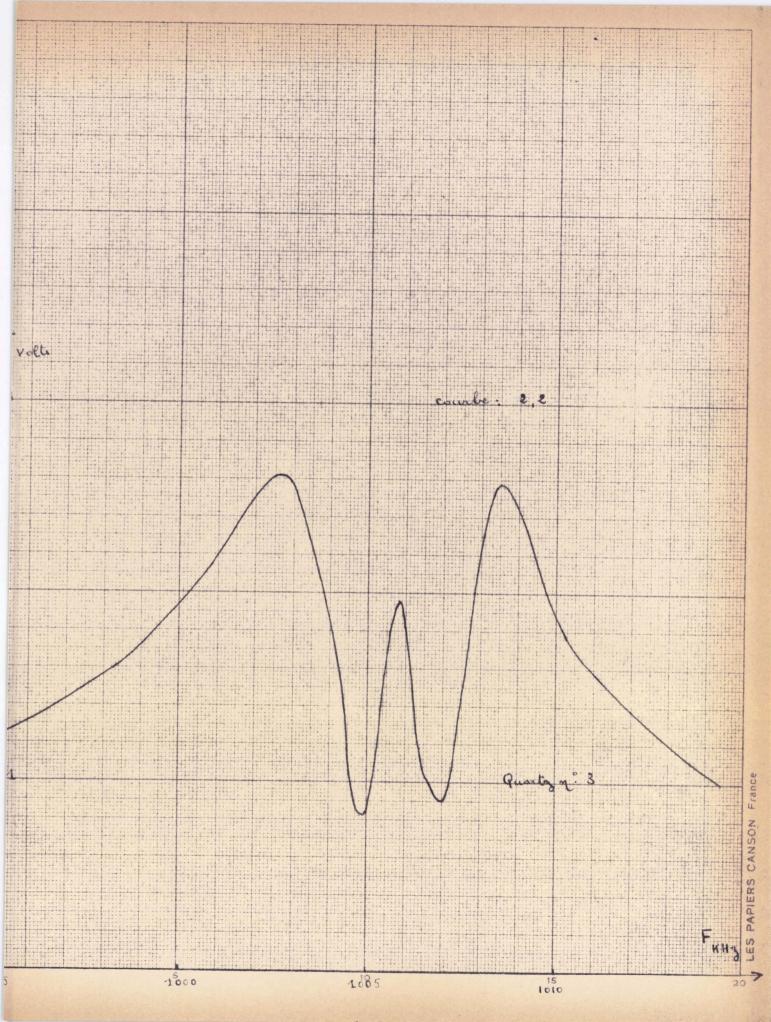
A l'examen de la courbe 1,3, qui est la crevasse du quartz nº 2, il apparaît une faille.

Ce quartz nº 2 faisait partie d'un lot de 3 quartz achetés à un même fournisseur. (Quartz nºs 2 - 3 - 4).

Le quartz nº l ayant été cassé par accident, nous étions dans l'obligation, pour le remplacer, de choisir entre ces trois quartz pré-cités.

La faille de la courbe 1,3 a commencé à nous faire douter du bon surfaçage du quartz. Nous avons donc décidé, pour fixer notre choix, de faire les courbes de résonance de ces 3 quartz et ceci avec une distance piston-quartz faible (de l'ordre de 1/10 mm) pour augmenter la sensibilité.

A. - Courbe de "résonance" du quartz nº 2:


H, KUZ	991,6	995,1 995,	,5 995,7	995,9	996,1	996,6 9	97,8 998	,35 998	,55
Vvolts	0,95	1,78 1,9	2 1,74	1,95	1,12	2,00	2,90 2,0	03 1,	15
F kHz	998,65	998,80	999,0	999,4	1000,1	1000,8	3 1002,5	1004,2	1011,2
Vvolts	1,55	1,08	1,90	1,00	0,10	0,32	2,05	2,90	1,00.

courbe : 2,1.

B. - Courbe de "résonance" du quartz nº 3:

F kHz	995,0 1000,2 1002,6 1003,8	1004,8 1005,8 1007,0 1007,8 1008,5
V _{volts}	1,00 2,00 2,62 2,00	0,82 1,96 0,90 2,00 2,58
F kHz	1010,9 1014,4	
V _{volts}	1,60 1,00	courbe : 2,2

0.	JO OLL DO	THE STREET WAS A SHARE WAS A	TTC 14 TO CO	The state of the s	CONTRACTOR - STREET	•			
F kHz	987,7	993,0 9	93,3 994	4,3 994,	5 995,2	995,9	996,1 999	6,35 99	16,5
V _{volts}	1,00	2,20	1,90 2	,70 2,2	0 2,98	1,58	1,00 1	,53 0	,86
F khz	996,9	997,7	997,9	998,05	998,35	998,4	5 998,75	998,8	999,9
Vvolts	2,40	0,52	0,70	0,55	1,20	1,12	1,72	1,65	2,98
F lehz	1003.6								

F 112 100),0

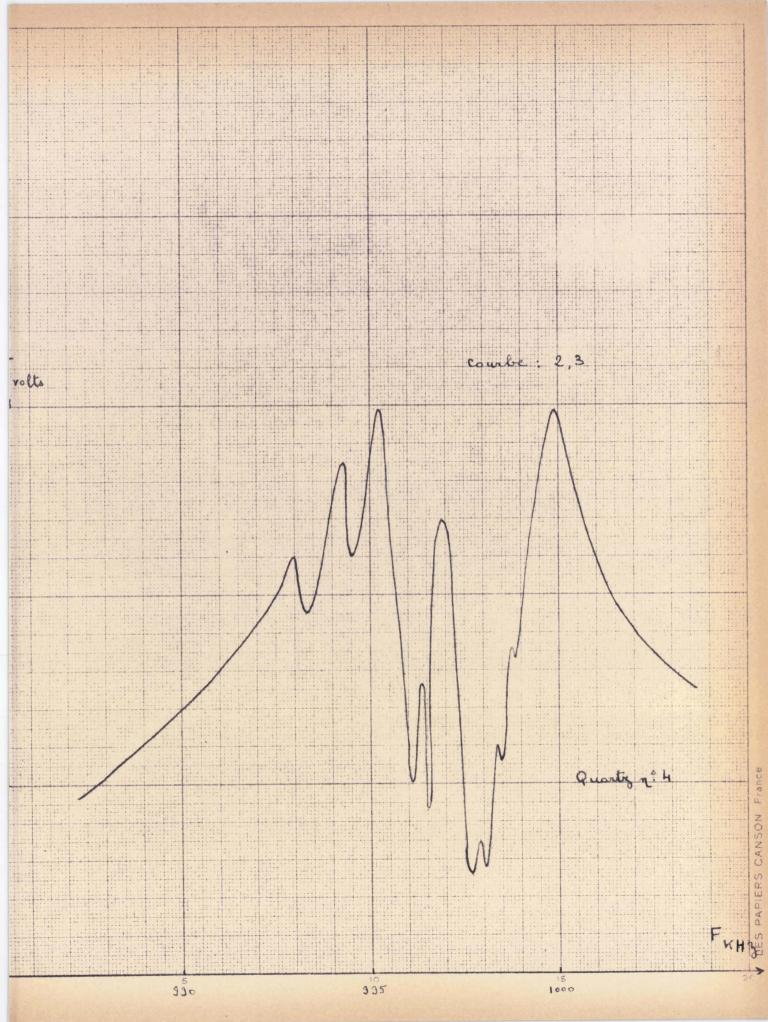
courbe: 2,3

Vvolts 1,50

A la simple observation de ces courbes 2, (1 2 des quartz (3 nºs 2, 3, 4, il paraissait probable que leur planéité laissait à désirer.

Reprenons ces 3 courbes :

C .- Courbe de "résonance" du quartz nº 4 :


(courbe 2,1 du quartz nº 2)
(courbe 2,3 du quartz nº 4)
ces 2 courbes présentent plusieurs

crevasses secondaires qui sembleraient montrer, qu'à cause d'une épaisseur variable, le quartz ne vibre pas d'un seul bloc mais qu'il se comporte comme un certain nombre de quartz ayant chacun leur fréquence propre dépendant de leur épaisseur et s'amortissant mutuellement.

En effet,
$$\rangle$$
 : $2e = \frac{c}{N}$ d'où $N = \frac{c}{kHz} = \frac{c}{2e}$

A chaque épaisseur, correspondrait une crevasse plus ou moins importante selon la surface du quartz présentant cette épaisseur.

La courbe 2,2 du quartz nº 3 ne présente pas de petites irrégularités ; par contre, la profonde crevasse est remplacée par deux crevasses moins profondes séparées par un maximum secondaire ce qui signifierait que le quartz a une variation d'épaisseur plus régulière mais assez importante qui le ferait vibrer comme 2 quartz différents, à $F_1 = 1004,8$ kHz et $F_2 = 1007,0$ kHz et s'amortissant l'un l'autre.

Il était donc indispensable de vérifier, pour ces trois quartz, que ces irrégularités étaient bien dues à une mauvaise planéité (Dans le cas contraire, nous aurions dû vérifier un manque d'homogénéité du quartz).

Il était, à priori, visible que le quartz le moins mauvais était le quartz n° 2.

§ 2. VERIFICATION DE L'ETAT DES SURFACES DE CES QUARTZ

A.- Appareil utilisé :

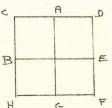
Pour étudier les variations d'épaisseur de ces quarts, on a utilisé un micro comparateur à 1μ

c'est le "Mikrokator" Nº 509 C.E.J.

de la Société C.E. Johansson et Cie - Paris ou Eskilstuna - Suède

Numéro du catalogue : 509-4 -

L'appareil est gradué de .- 30 a + 30 μ

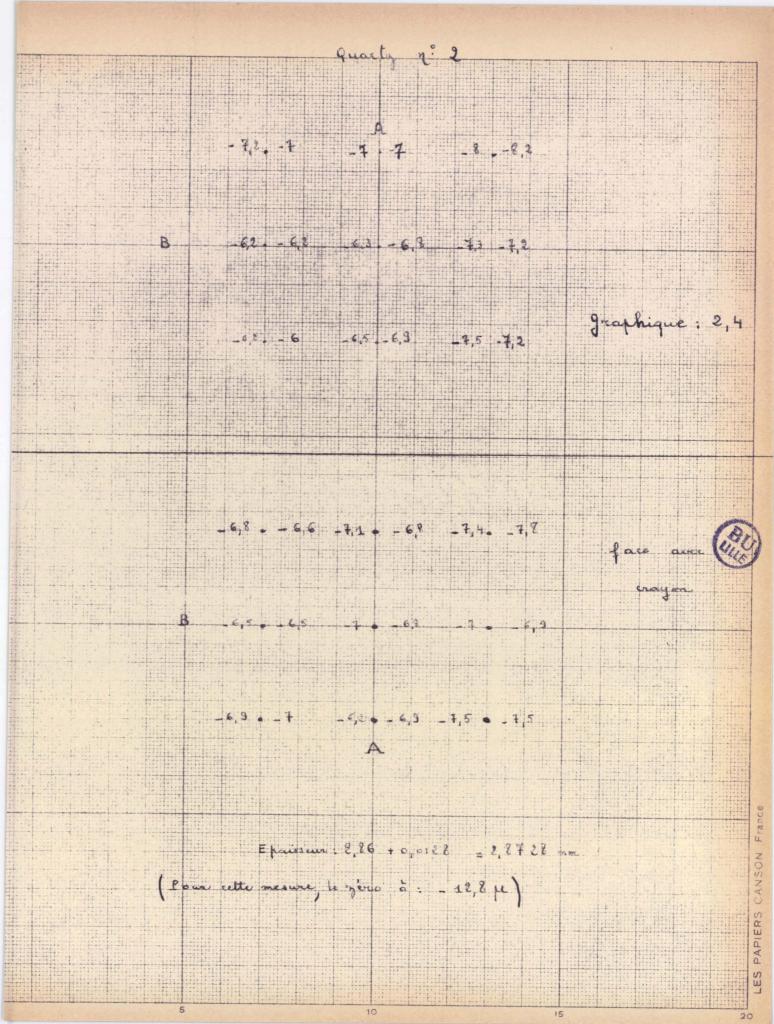

de the enthe.

Le bras, relié au cadran et touchant la pièce à étudier est compensé pour les variations de température.

B.- Mode opératoire

Nous avons porté sur le centre d'une face du quartz, après l'avoir nettoyé avec un linge, un quadrillage au crayon de

3 x 3 cm = 9 cm² ce qui correspond à une surface un peu inférieure à celle du piston.



Nous posons le quartz sur le

marbre de l'appareil. Nous descendons le dispositif contenant le bras jusqu'au contact avec un point quelconque du quartz et nous réglons sa hauteur pour mettre l'aiguille approximativement au zéro (ce qui nous permet d'enregistrer les variations maximales de $-30\,\mu$ à $+30\,\mu$ soit $60\,\mu$).

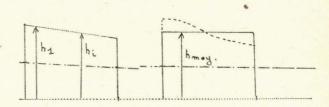
Mous effectuons un pointé sur chaque point A, B, C, D, E, F, G, H, du quadrillage puis un second en rebroussant chemin.

Nous avons ainsi un ensemble de valeurs (positives ou négatives) comme l'indiquent les graphiques 2, (4 (7 (10

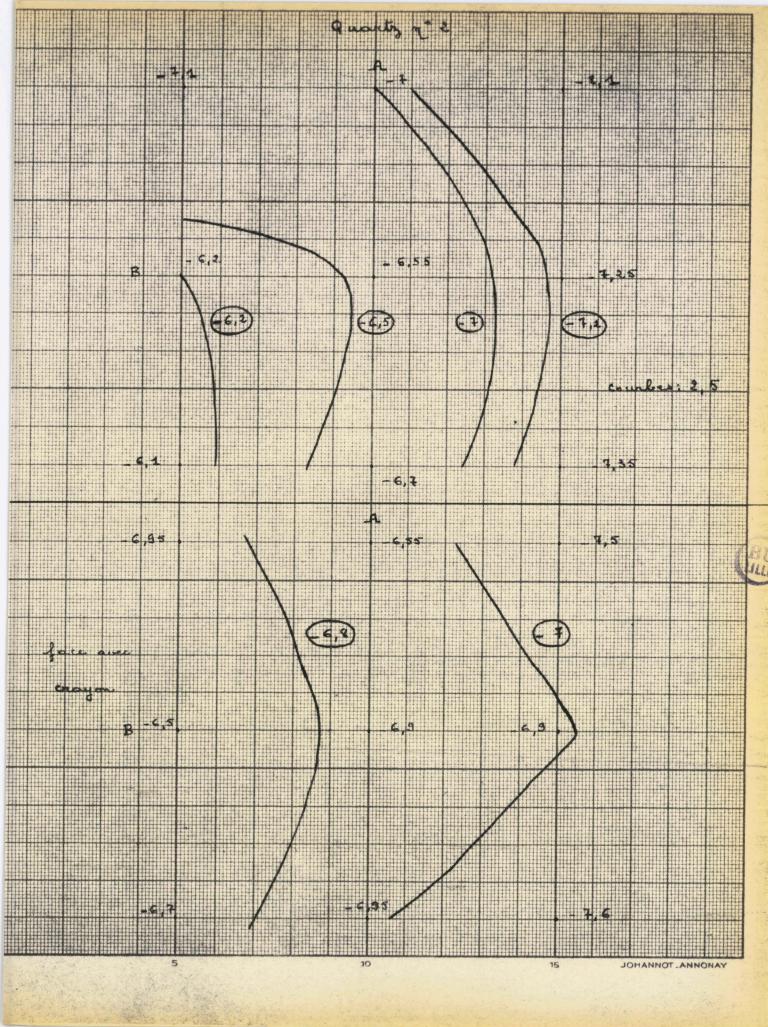
Mous retournons ensuite le quartz en lui faisant faire un demi-tour autour de l'axe B E et nous refaisons un double pointé.

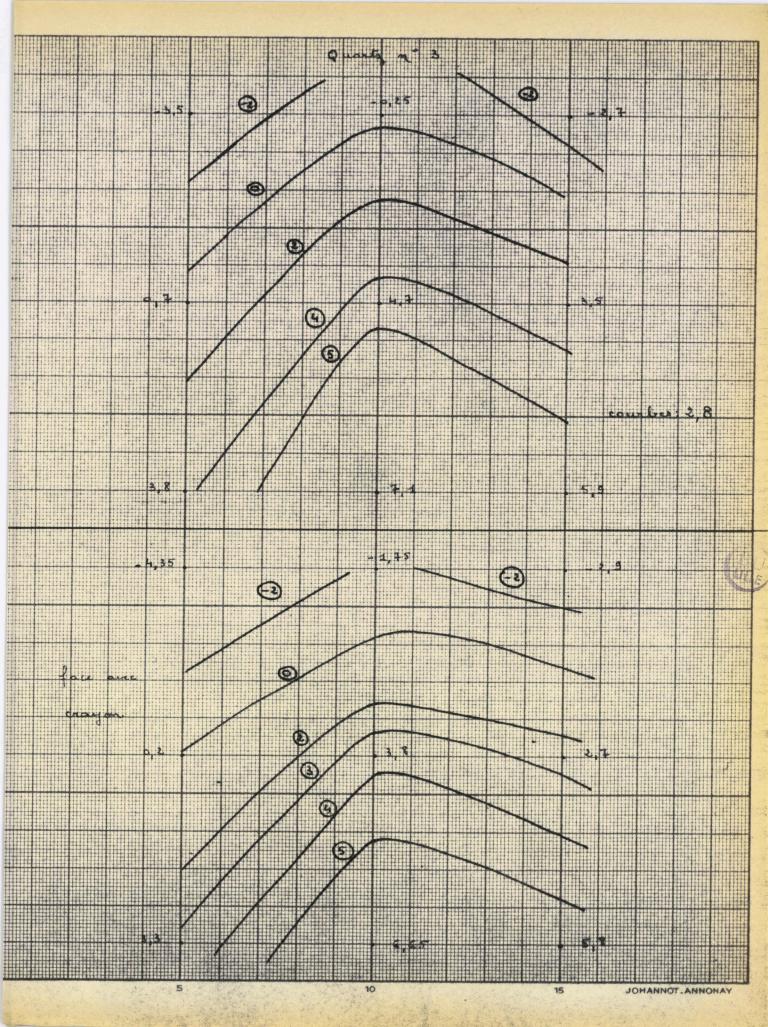
Nous faisons la moyenne arithmétique des deux mesures et nous pouvons ainsi tracer pour chaque face les courbes de même niveau en admettant la linéarité de la variation entre deux points.

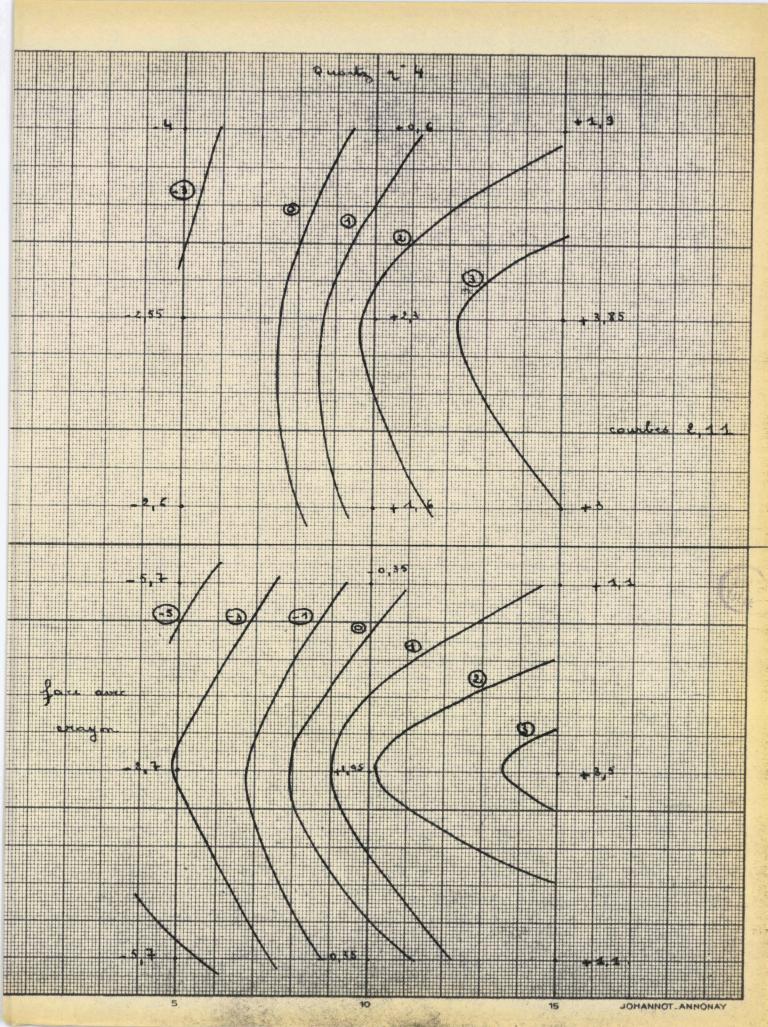
Nous obtenons ainsi les courbes : 2, (8 où la face (11 avec crayon a été retournée par rapport à l'axe horizontal B pour que les points A se correspondent.

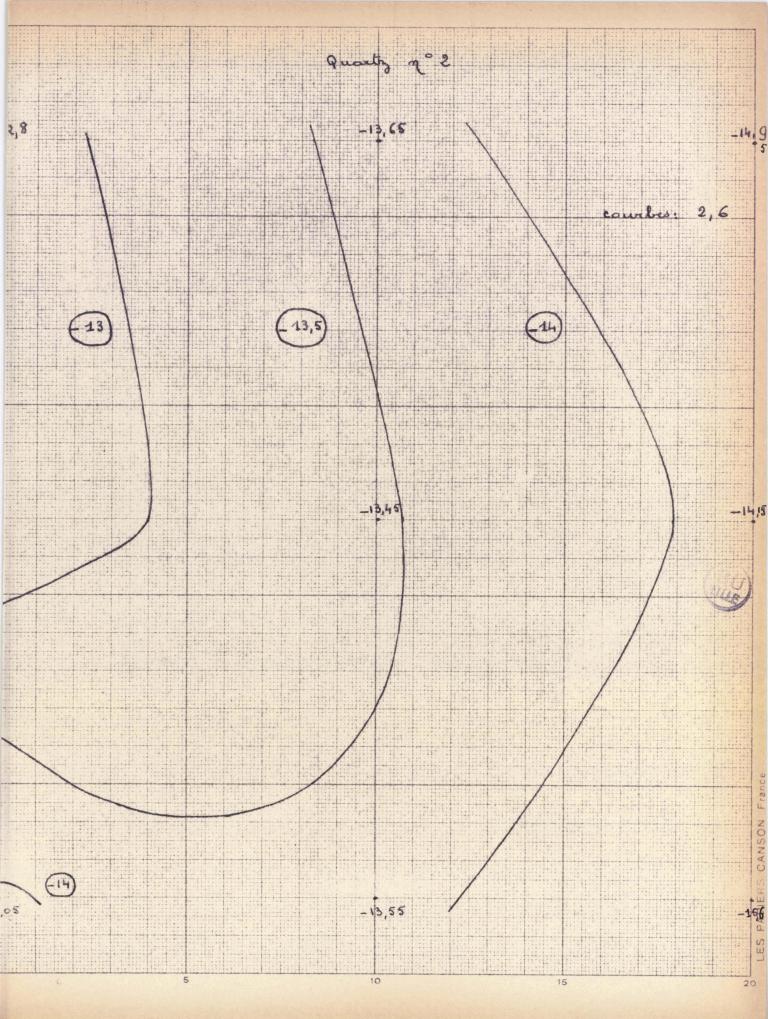

N.B. - On observe sur le ler pointé, celui relatif au quartz nº 2, (graphique : 2,4) que les valeurs sont toutes franchement négatives

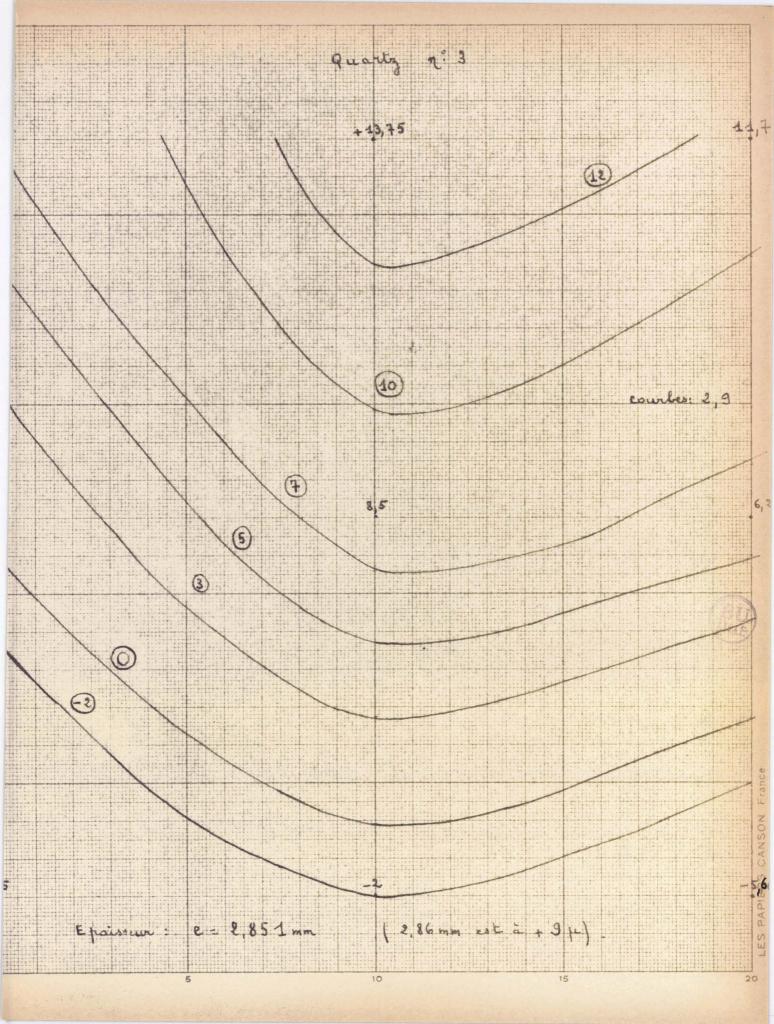
C'était le premier pointé ; nous étions partis du zéro mais par manque de précautions, (proximité des mains), le système avait subi une certaine dilatation alors que le quartz avait subi une dilatation beaucoup plus faible. Le dispositif étant compensé pour l'ensemble bras-pièce en métal (c'est-à-dire à coefficients de dilatation pratiquement égaux), cette différence de dilatation se traduisait sur le cadran comme un creux du quartz et l'indication devenait de plus en plus négative. Le manipulateur a donc dû se munir de gants de caoutchouc ce qui permit d'obtenir des mesures stables et reproductibles.

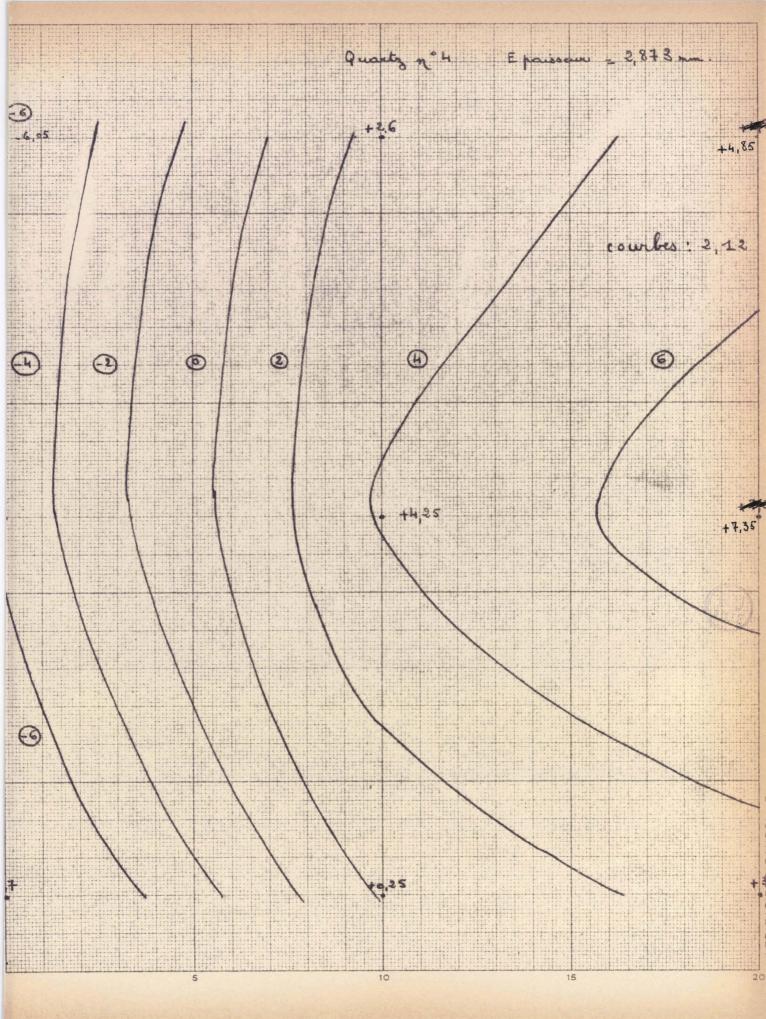

Le zéro n'ayant pas été refait, il correspond approximativement à - 7.


Enfin, nous cherchons à avoir les variations totales d'épaisseur pour les deux faces.


Si, en chaque point du quartz, nous notions h_i et que nous en faisions la somme, nous en déduirions un plan moyen horizontal à partir duquel nous porterions les variations totales d'épaisseur.




Pour tracer les courbes 2 { 9 nous faisons donc la somme algébrique des pointés de deux points correspondants sur chaque face et nous obtenons les variations totales d'épaisseur qui nous intéressent.



Enfin, pour mesurer l'épaisseur moyenne du quartz, nous plaçons au lieu du quartz, une cale calibrée qui était ici de 2,86 mm.

Quartz nº 2 : Avec la cale de 2,86 mm, l'aiguille indique - 12,8 μ ce qui signifie que le zéro de l'appareil correspond à :

2,86 + 0,0128 = 2,8728 mm.

C .- Examen des courbes :

a) Le quartz nº 2 semble, ici encore, le meilleur.

La face sans crayon présente une certaine irrégularité mais la variation d'épaisseur de la surface étudiée n'est que de l micron.

b) Le quartz nº 3 a un pointé beaucoup plus régulier. Il présente une surépaisseur en son milieu et la variation d'épaisseur de la surface étudiée est de 14 microns. (cotes - 2 à + 12).

Cette variation importante explique l'absence de crevasse nette.

c) Le quartz nº 4 ne présente pas autant d'irrégularités que l'on aurait pu le prévoir. Toutefois, il faut remarquer que, sur ce quartz, nous avons dû en chaque point, faire la moyenne de plusieurs mesures autour du trait de crayon et nous avons observé que, sur une surface circulaire de 2 mm de diamètre, la cote. variait facilement de 2 à 3 \mu : ce qui explique donc l'irrégularité de la crevasse : courbe 8.

Enfin, on voit que la variation d'épaisseur est assez importante puisque de lo $\boldsymbol{\mu}$.

Il résultait de cette étude que nous devions monter sur notre projecteur le quartz nº 2 visiblement le meilleur.

Les deux autres N°s 3 et 4 ont été renvoyés pour être resurfacés.

§ 3. COURBE DE RESONANCE DU QUARTZ Nº 3 RESURFACE

Les deux quartz ont été resurfacés au 1 micron près.

Prenons par exemple la nouvelle crevasse du quartz nº 3.

F kHz | 1000,9 1008,0 1009,6 1010,2 1010,6 1011,2 1011,6 1011,8 1011,9

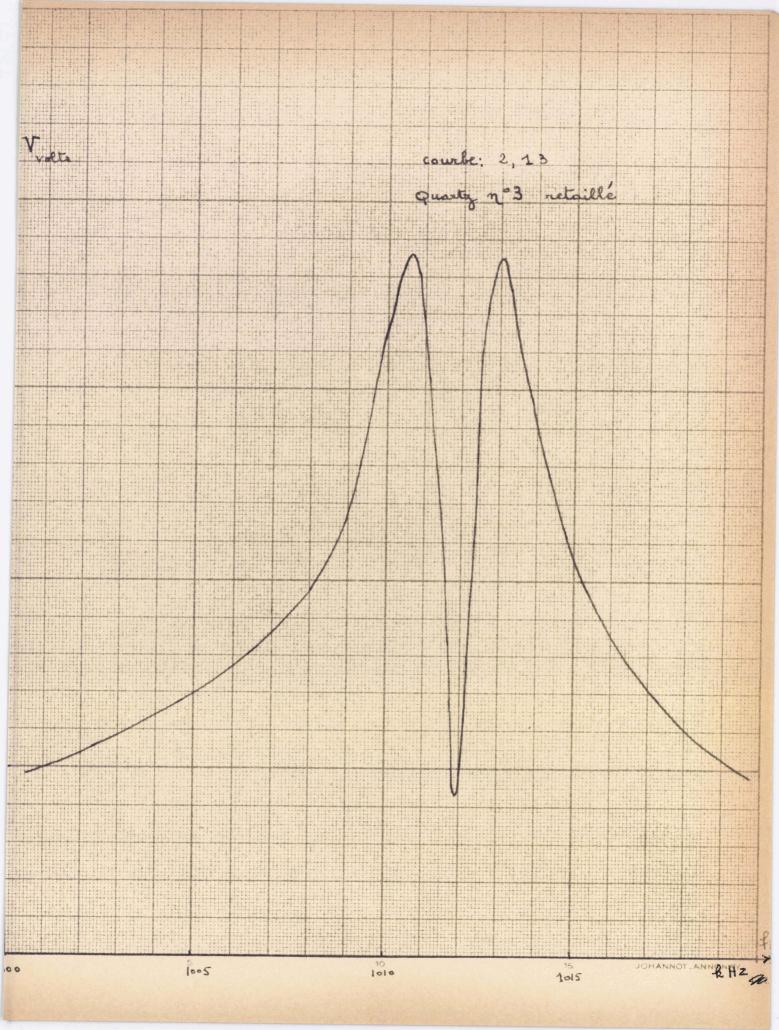
Vvolts | 1,0 1,95 3,0 3,5 3,72 3,0 2,0 1,0 0,86

F kHz	1012,1	1012,3	1012,5	1013,1	1013,8	1015,2	1019,4
Sample of the control of the color of the co	- magin annua nomo produnciam - neperio manivo d	tion / who are authorized province of a discover through their actions are	ann an	to sendo in estima additional descriptions and according to the	torquita in state . Cultural services Price . The	The Company and the Company of the C	and a time to make or care of the model of the care of
Vvolts	1,52	2,0	3,0	3,7	3,0	2,0	1,0.

courbe : 2,13

On notera que $F_o=1011,9$ kHz a augmenté par rapport à F_o $Max_o=1007,0$ khz avant resurfaçage ce qui est normal puisque la fréquence est inversement proportionnelle à l'épaisseur :

$$\lambda = 2 = \frac{c}{F}$$
 d'où $F = \frac{c}{2 e}$


Le resurfaçage correspondant à une diminution d'épaisseur, F devait augmenter. Calculons cette diminution : e'F' = e F d'où e' = $\frac{e}{F}$.

$$e'_{mm} = 2,851 \times \frac{1007}{1011,9} = 2,837 \text{ mm et } \Delta e = 14 \text{ microns.}$$

- § 4. CONCLUSION :

On peut donc vérifier la bonne planéité du quartz en observant sa courbe de résonance.

- si la crevasse présente de nombreuses petites failles, c'est que la surface du quartz présente de nombreuses petites irrégularités.
- si la courbe présente plusieurs crevasses, c'est que le quartz résonne sur plusieurs fréquences : son éparaseur moyenne varie notablement.

§ 1. NESURES AU Q METRE

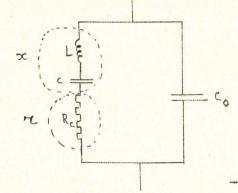
Nos quartz étant destinés à la production d'ultra-sons dans une cuve à eau, il était très intéressant de déterminer, connaissant le dipôle équivalent au quartz non chargé, ces éléments du dipôle lorsque le quartz est chargé par de l'eau.

Nous avons donc, à priori, pensé qu'il suffisait de refaire une crevasse au Q mètre avec le quartz monté normalement c'est-àdire alimenté par capacité "piston-pétrole-quartz" et surmonté d'une charge normale d'eau distillée (et légèrement salée) soit environ deux litres.

Or, nous constatons que, dans de telles conditions de charge, il n'apparaît plus de crevasse. Nous obtenons une courbe de résonance classique identique à celle du circuit du Q mètre si le quartz était déconnecté.

Nous avons donc procédé à différents essais :

- + Sans cau, en laissant lé pétrole. La crevasse n'apparaît pas.
- + Sans pétrole et avec de l'eau ajoutée goutte à goutte, à partir d'une charge d'environ lO gouttes d'eau, la crevasse disparaît. Le quartz est déjà trop amorti.


Il no s'agit donc plus de vouloir mosurer les constantes électriques du quartz chargé par la méthode de la crevasse puisque la charge normale de notre projecteur la faisait disparaître.

Nous avons donc cherché à utiliser le Q mètre dans son emploi normal de mesure de conductances et susceptances.

A.- Circuit Q mètre - Quartz

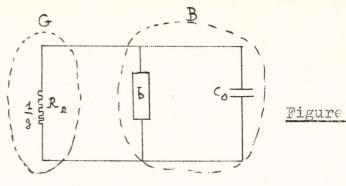
Figure 3,1

On cherche à obtenir les constantes du schéma équivalent suivant :

co : capacité statique du quartz

Rc: résistance correspondant au quartz chargé

Appelons x l'ensemble L, c


et r la résistance R_c. (Figure 3,1)

- 48 -

Lorsque nous branchons le quartz sur le Q mêtre, nous mesurons G et B correspondant au schéma de la figure 3,2.

G et B sont la conductance et la susceptance mesurées au Q mètre.

 $g = \frac{1}{R_p}$ et b sont la conductance et la susceptance en parallèle provenant du schéma équivalent avec r et x en série.

Cherchons donc les relations entre r, x et g et b.

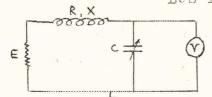
Ce sont les relations d'équivalence entre un circuit série et un circuit parallèle.

L'impédance du système doit rester la même.

Nous écrirons donc l'égalité de l'inverse des impédances donc des admittances.

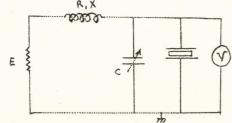
$$\frac{1}{Z} = \frac{r}{r^2 + x^2} ; b = \frac{-x}{r^2 + x^2}$$
avec ici $g = G = \frac{1}{R_p}$

Connaissant g = G = $\frac{1}{R_p}$ et B = b + c, ω avec c, connu, nous pouvons donc en déduire R_c = r et x


Nous nous sommes donc proposés de déterminer les variations de G et B avec la fréquence.

Mous utilisons le montage en parallèle sur le condensateur du Q mètre pour la mesure d'une impédance grande par rapport à celle de ce condensateur.

Nous opérons en deux temps :


1º) Quartz non connecté : nous réalisons la résonance.

Les formules de principe du Q mètre nous donnent:

$$\mathbf{c}_{1}\omega = \frac{1}{X}$$
; $\frac{1}{Q_{1}} = \frac{R}{X}$

2°) Nous connectons le quartz (G, B) et nous rétablissons la résonance avec le condensateur variable : c

Nous avons:
$$c_2 \omega = \frac{1}{X} - B$$
et $\frac{1}{32} = \frac{R}{X} + GX$

Mous tirons de là :

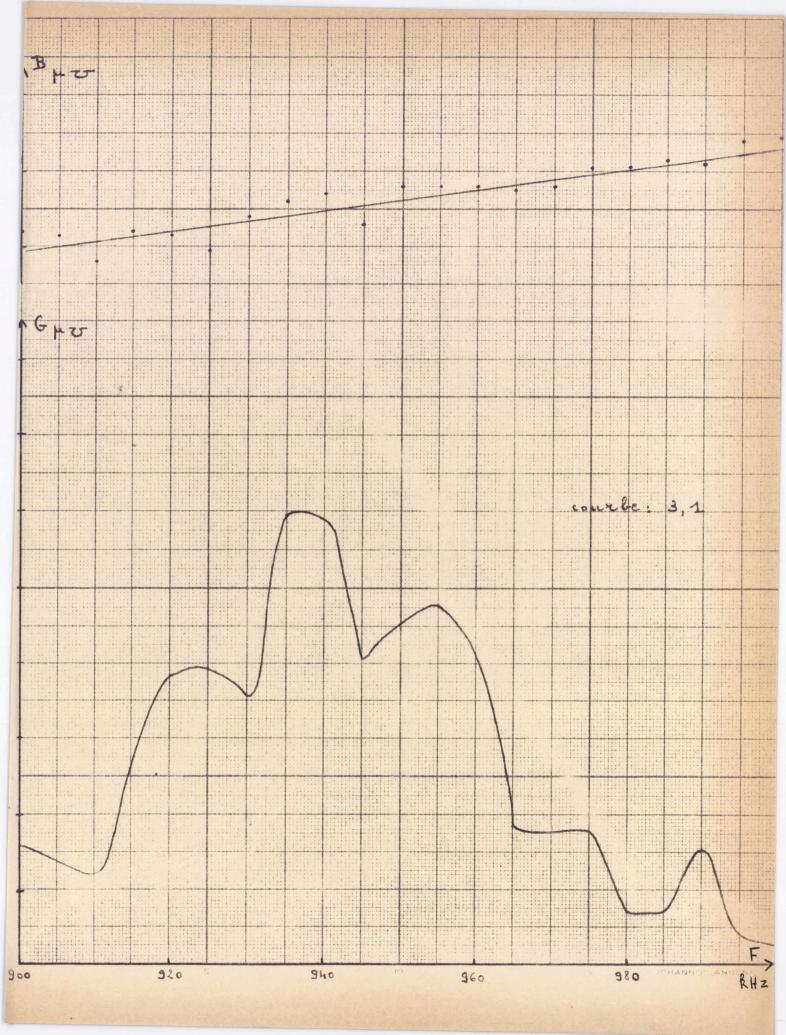
$$\frac{B = \frac{1}{X} - c_2 \omega = (c_1 - c_2) \omega = \frac{2\pi f \cdot \Delta c}{\int \Delta c}$$

$$et G = \frac{1}{X} \left(\frac{1}{Q_2} - \frac{R}{X} \right) = c_1 \omega \left(\frac{1}{Q_2} - \frac{1}{Q_1} \right) = 2\pi f c_1 \left(\frac{Q_1 - Q_2}{Q_1 Q_2} \right)$$

$$G = C_1 \cdot 2\pi f \frac{\Delta Q}{Q_1 \cdot Q_2}$$

B.- Mesures :

Nous avons alors effectué de nombreuses mesures (sur le Quartz nº 1)


- sans pétrole avec de l'eau
- avec pétrole et ajoutant de l'eau progressivement : 10 gouttes, 20 gouttes, des hauteurs de l cm, plusieurs centimètres, l litre d'eau, la charge normale

Nous en donnerons ici deux exemples :

la première : courbe 3,1 : pétrole et quelques centimètres d'eau

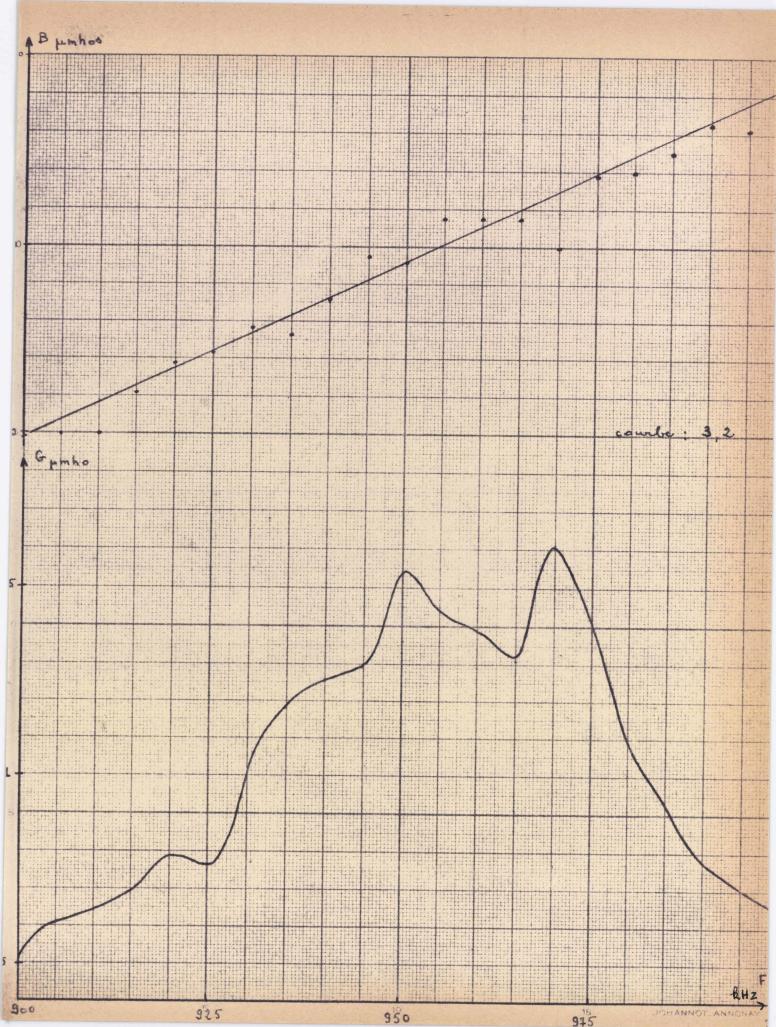
la seconde : courbe 3,2 : pétrole et charge normale d'eau.

1		10)										
r k H z	900	905	910	915	920	925	930	935	940	945	950	955
Q ₁	256	255	254	253	253	252,5	252	251	251	250	250	249
Q ₂	235	235	235	228	223	222	223	213	213	219	217	215
cl	233,6	230,7	227,8	225,2	2224	219,6	217,5	214,8	212,4	209,9	207,8	205,3
c ₂	210,3	207,6	205,4	202, 2	199,6	197,3	194,6	191,6	189,2	187,5	184,7	182,3
G _μ υ	0,460	0,440	0,414	0,560	0,583	0,695	0,655	0,895	0,890	0,705	0,755	0,780
Bµv	132,0	131,5	128,0	1320	131,5	129,5	134,0	136,0	137,0	133,0	138,0	138,0
F k H z	960	965	- 970	975	980	985	990	995	1000)		
3 _J	249	246	244,5	243,5	243	242	241	240	239	9		
Q ₂	218	224	223	222	226	225	220,5	224,5	224	4		
cl	203,1	200,6	198,3	196,2	194	191,7	189,6	187,8	3 185	, 6	cour	pe:3,1
c ₂	180,2	177,9	175,6	173,2	171,2	168,8	166,9	164,7	7 162	,6		
Gµv	0,700	0,485	0,475	0,478	0,370	0, 370	0,455	0,338	3 0,32	27		
Bµv	138,0	137,5	138,0	140,5	140,5	141,5	141,0	144,0) 144	,5		
		2°) M	êmes mo	sures	a.vec	char	ge nor	male d	l'eau.	Amenda		
F kHz	900	905	910	915	920	925	930	935	940	945	950	955
.Ql	256	255	253	252	252	250	250	249,5	248	247,5	2455	245
Q ₂	232,5	228	225	222	218	217,5	5 208,5	202	199	197	188	190,5
cl	233,6	230,7	227,9	225,3	222,5	219,9	217,7	215	212,6	210,2	2 207,7	7 205,5
c ₂	201,8	199	196,4	193,6	1997	188,2	2 185,9	183,4	180,9	178,3	3 176	173,6
Ġ	0,520	0,610	0,640	0,695	0,790	0,76	5 1,010	1,190	1,260	1,290	1,540	1,440
В	179,8	180,0	180,0	182,2	1838	184,3	3 185,	7 185,	187,2	189,5	189,2	2 191,5
						Complete Samuel Complete		The second second	THE WHITE PERSON AS THE PERSON	THE PERSON STATES	delegazone militarisme	PRODUCT OF SHARES AND ASSESSMENT OF SHARES AND

7 k H z	960	965	970	975	980	985	990	995	1000	
Ql	244	243	242	241	240	239,5	238,5	237,5	236,5	
Q ₂	191	192,5	183	188	197,5	202	206	208	209	
cl	203,1	200,8	198,4	196,5	194,1	191,9	189,7	187,5	185,7	courbe:3,2
^c 2	171,4	169,2	167,2	164,9	162,6	160,4	158,1	156,1	154	
G	1,390	1,310	1,610	1,400	1,070	0,922	0,780	0,700	0,648	
В	191,5	191,5	190,0	193,8	194,0	195,0	196,5	196,2	199,2	

Il résultait de l'observation de ces différentes courbes

- lo) que B croît sensiblement linéairement avec la fréquence
- 2°) que nous ne pouvions ainsi tirer de conclusion sur la varia-
- 3°) L'examen de cette dernière courbe faisait apparaître l'existence de résonances parasites dues probablement, aux ondes stationnaires qui se formaient par réflexion sur la surface de séparation liquide-air.

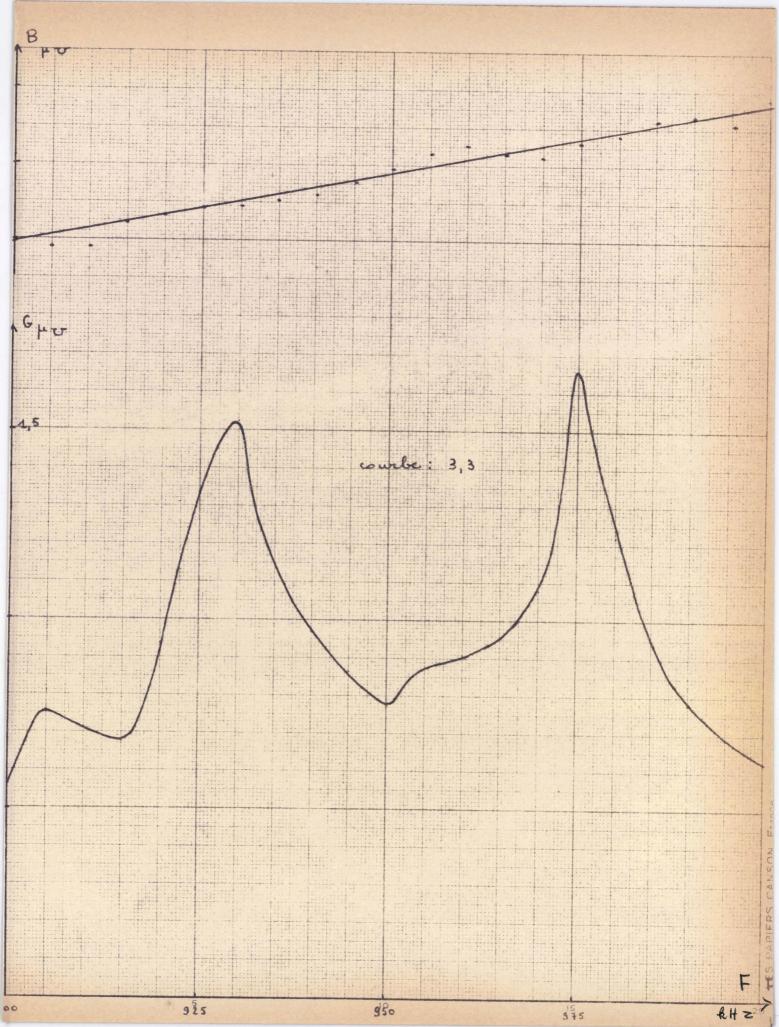

Cette hypothèse était renforcée par le fait suivant : si une cause extérieure (vibrations, choc,...) agitait la surface de l'eau lorsque l'on était à la résonance (mesure de Q₂), l'aiguille du voltmètre suivait les variations et Q₂ reprenait sa valeur initiale quand la surface était redevenue au repos : dans ce cas, en effet, les ondes stationnaires étaient détruites si elles existaient.

Nous avons donc eu l'idée d'éliminer ces ondes stationnaires de différentes manières.

a) en faisant varier la distance piston-quartz pour avoir un Q2 maximum.

Le Q_2 naximum correspondrait à la transmission optimum d'énergie c'est-à-dire dans le cas des ondes stationnaires.

Mais cette méthode ne pouvait plus correspondre à aucun schéma électrique dès l'instant que l'on a fait intervenir, dans les valeurs L', c', R' mesurées au Q mètre, la capacité série introduite par la distance piston-quartz.

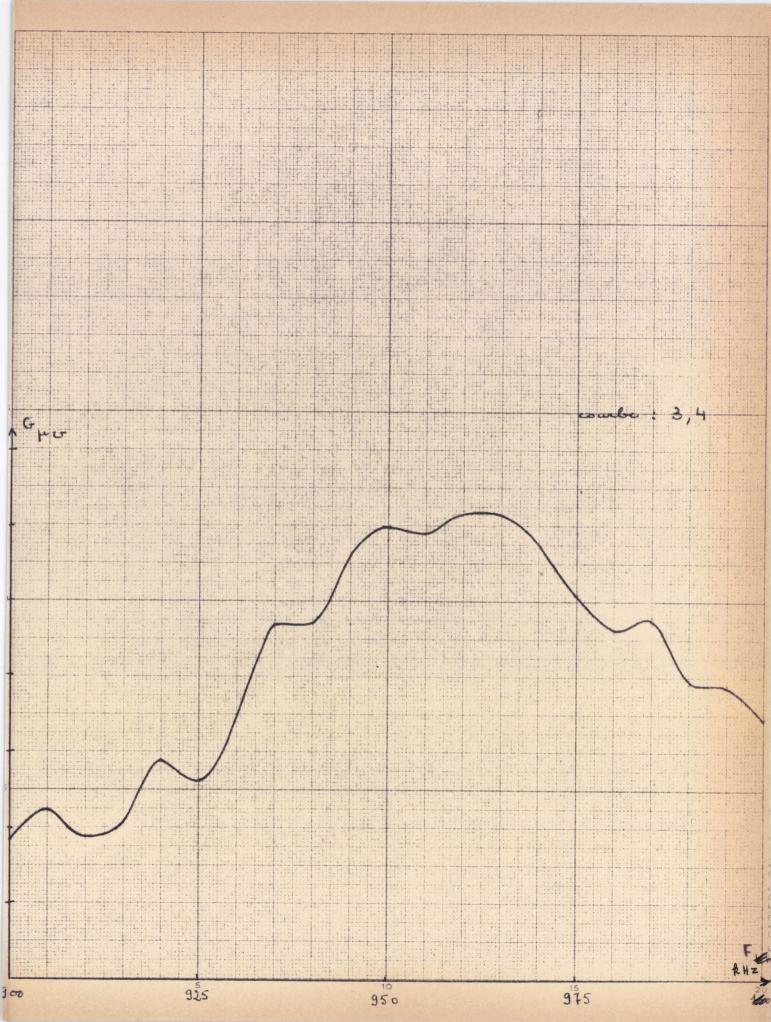

b) Nous avons ensuite mis à la surface du liquide de la cuve, un absorbant d'ondes stationnaires c'est-à-dire un corps qui présente sur le passage des ondes ultrasonores une surface non lisse donc non réfléchissante.

Comme absorbants d'ondes stationnaires, nous avons tout d'abord utilisé un bouchon de liège que l'on déposait à la surface du liquide. (la charge d'eau étant normale)

F kHz	900	905	910	915	920	925	930	935	940	945	950	955
Ql	255	254	252	250,5	250	249	247	246	245	244,5	243	242
Q ₂	230	221,5	221,5	221,5	211,5	197,5	190,5	201	206	209	211	206,5
cl	233,8	230,8	228	225,5	222,5	219,9	217,7	215,1	212,5	210,1	. 208	205,6
c ₂	202,0	199,2	196,6	193,8	190,8	188,2	186,1	183,5	18], 0	178,5	176,2	173,7
G _µ v	0,563	0,758	0,713	0,676	0,938	1,335	1,525	1,150	0,968	0,865	0,775	0,875
Ври	179,8	179,6	179,6	182,2	183,2	184,3	184,6	185,3	186,0	187,6	189,6	191,5
F khz	960	965	970	975	980	985	990) 99!	5 10	000	and the second s	
Ql	241	240	239	239,5	239	238	238	3 23	7 23	36		
Q ₂	204,5	202	197	180	192	200	205	,5 208	3 209	9,5		
c ₁	203,2	200,8	198,5	196,5	194,2	2 192	189	,7 187	,6 18	5,8	courk	e:3,3
c ₂	171,3	169,2	167,1	165	162,6	5 160,	3 158	,1 156	,3 154	1,1		
C.	0,908	0,955	1,080	1,650	1,220	0,950	0,78	0,69	90 0,6	525		
В	192,6	191,5	191,2	193,0	194,0	196,0	0 196	,5 195	,5 199	9,2		

Cette courbe nous nontre que nous n'avons guère éliminé les ondes stationnaires.

Il nous a donc fallu utiliser un autre absorbant qui était du coton hydrophile placé dans un montant rectangulaire en métal.


Nous placions le tout à quelques centimètres du quartz émetteur. Nous obtenions alors la courbe : 3,4 pour G.

r kHz	900	905	910	915	920	925	930	935	940	945	950	955
Ql	352	352	351	351	350	350	350	349	348	348	346	346
Q ₂	302	300	301	300	295	296	291	286	285	281	278	278
cl	371,4	367,1	362,7	358, 6	354,9	350,7	346,7	342,7	338,8	335,3	331,6	327,7
C 2	337,4	332,8	328,6	324,1	319,7	316,4	312,0	308,1	304,5	300,3	296,7	293,1
G _µ v	0,985	1,025	0,980	1,000	1,090	1,060	1,150	1,270	1,270	1,360	1,400	1,390
Market and the second		at merchigale er cale in en	KENNER, J. (Mineral No.) santan, mendiga seringa	od redge" gas stellorest redge over den 1831 virke filter er i	over, i rogijenskapel i i proir nedplani Agento	Oth, trifficacións geológicasiónsus crisco	elanje ostovanom si blav nakoli etn Arheam (Object Amerika (a sierblegt) der Abbelen Miller verse	TO MADE A MICH. SHOW ON THE	Comments of the gold from Collective and Miles	orodynaurakny omytosz rojky czybiące sk	Coord Albacusters explicitless quality Scholler
F KHz	960	965	970	975	980	985	990) 99	5	1000		
Q ₁	345	344	344	343	342	341	340	33	9	338		
Q ₂	. 276	275	276	278	279	277	280	27	9	280	COLL	be:3,4
cl	324,1	320,4	317,6	314	310,6	307,3	3 304,	3 300	,82	97,7		- J y I
) ^c 2	289,4	285,9	282,4	278,8	3 275,2	271,5	7 268,	4 265	,6 2	62,4		
G _µ z	1,415	1,415	1,380	1,310	1,260	1,280	1,19	00 1,1	90 1	,145		

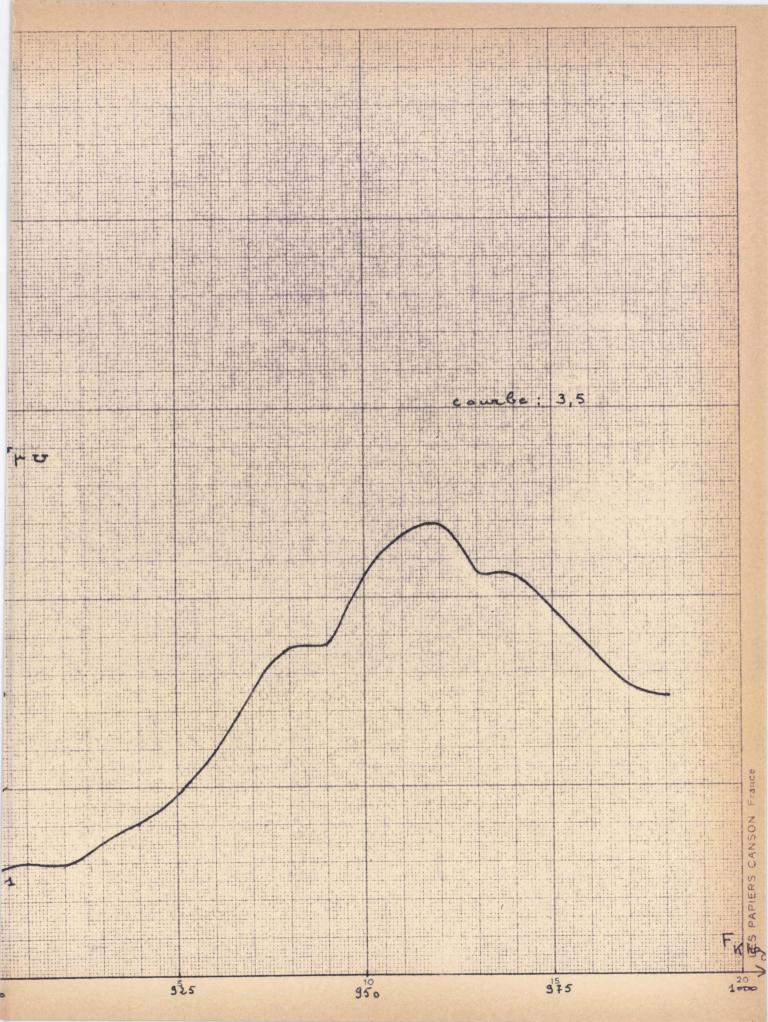
L'aspect de cette courbe montre que nous avons amélioré le procédé mais que les ondes stationnaires existent toujours.

c) Hous avons enfin essayé de supprimer les ondes stationnaires en faisant, à chaque mesure, varier la hauteur l'eau dans
la cuve jusqu'à obtenir un Q minimum ce qui correspond à l'absence d'ondes stationnaires puisque dans ce cas le passage des ultrasons est plus difficile. Il suffit d'une très faible variation de
la hauteur d'eau ; la variation de la charge statique est donc
infime.

Nous avons provoqué cette variation du niveau de l'eau en introduisant, à chaque mesure, un corps immergé (en l'occurrence un tourne-vis) et en choisissant son enfoncement optimum dans la cuve à eau, pour obtenir un Q2 minimum. On pourra constater à l'examen de la courbe 3,5 que le phénomène d'ondes stationnaires

a pratiquement disparu et on peut estimer avoir là la variation de G en ondes progressives.

L'expérience a été faite avec le quartz nº 2.


F KHz	900	905,2	910	915,2	920	925,2	930	935,2	940	945,2
g ₁	237	236	235	233	232	231	230	228	227	226
Q2	186	181	182	170	165	154	142	127	119	118
cl	168,5	166,4	163,7	160,6	158	155,4	152,8	150	147,8	145,2
c ₂	135,7	132,2	129,8	126,7	125,3	121,4	119	116,4	114,2	111,4
- G	1,10	1,22	1,16	1,46	1,60	1,95	2,41	3,08	3,49	3,49
В	185	194,5	194	195	189	197,5	197,5	197,5	198	201
	iller washing water for transcapping of 2 cox 1 X	and the same of th	A TO COME. THE COMPANY OF THE	*		and the second s		A CONTRACTOR OF A CONTRACTOR O	THE THE PERSON STREET	ogi, i të sheker sa tu të reje. I agazë
FkHz	950	955,2	960	965,2	2 970	975	,2 . 9	80 98	5,2	90
ĞI	225	223,5	222	221	220) 21	9 2	18 2	217 2	215
92	106	100	98	105	104	1 10	7 1	12 1	18 1	19
c ₁	142,8	140,6	138,4	1 136,2	2 133	,7 131	,3 12	9,3 12	27,1 12	24,9
^c 2	109,4	106,9	104,8	102,3	3 100	,3 98	, 2	96 9	3,7)1,8
G	4,25	4,65	4,75	4,12	2 4,	13 3,	84 3,	46 3	5,03 2	2,95
B	199	202	203	205	20	3 20	3 2	05 2	207 2	206
				The same of the sa	A STATE OF THE PARTY OF THE PAR	The state of the s	- Con Manual Control			

courbe: 3,5

Nous pouvons donc adopter la valeur moyenne 200 µ J pour B.

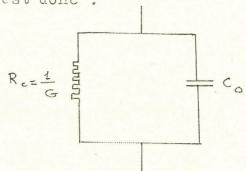
§ 2. DIPOLE EQUIVALENT DU QUARTZ CHARGE

Si nous reprenons les formules déduites des figures 3,1 et 3,2 nous avons :

$$B = b + C_0 \omega$$

$$G = g = \frac{\kappa}{r^2 + \alpha^2} = \frac{R_c}{R_c^2 + \alpha^2}$$

avec x donné par la relation : $b = \frac{-\infty}{R^2 + \infty^2}$


Or, pour nos quartz envisagés, C ~ 37 pF

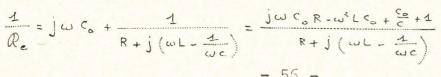
On constate que $b=B-c_{\circ}\omega$ est un terme tantôt selfique tantôt capacitif suivant la fréquence mais de toute façon faible par rapport à B. (& \sim 20.40-6)

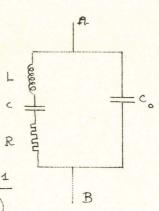
Si donc on néglige b, on aura x négligeable devant Rc

et
$$G = \frac{R_c}{R_c^2 + x^2}$$
 deviendra : $G = \frac{1}{R_c}$

Avec une bonne approximation, le dipôle équivalent du quartz chargé est donc :

avec la résistance Rc variable avec la fréquence.


§ 3. RESONANCES DE COURANT ET DE TENSION. RESONANCES SERIE ET PARALLELE


A. - Existance théorique de ces résonances :

a) Résonances série et parallèle Rs et Rp.

Reprenons le circuit équivalent du quartz :

Calculons tout d'abord la résistance $\mathcal{R}_{\mathbf{c}}$ entre A et B :

$$R_{e} = \frac{R + j(\omega L - \frac{1}{\omega e})}{j\omega C_{0}R - \omega^{2}LC_{0} + \frac{C_{0}}{c} + 1} = \frac{1}{j\omega C_{0}} \frac{R + j(\omega L - \frac{1}{\omega e})}{R + j(\omega L - \frac{1}{\omega e} - \frac{1}{\omega C_{0}})}$$

$$= \frac{1}{j\omega C_{0}} \frac{[R + j(\omega L - \frac{1}{\omega e})][R - j(\omega L - \frac{1}{\omega e} - \frac{1}{\omega C_{0}})]}{[R - j(\omega L - \frac{1}{\omega e} - \frac{1}{\omega C_{0}})^{2}}$$

$$= \frac{[\frac{-jR}{\omega C_{0}} + \frac{1}{\omega C_{0}}(\omega L - \frac{1}{\omega c})][R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega C_{0}})]}{[R^{2} + (\omega L - \frac{1}{\omega c} - \frac{1}{\omega C_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega C_{0}})]}{[R^{2} + (\omega L - \frac{1}{\omega c})]} \frac{[R^{2} + (\omega L - \frac{1}{\omega c})]}{[R^{2} + (\omega L - \frac{1}{\omega c})]} \frac{[R^{2} + (\omega L - \frac{1}{\omega c})]}{[R^{2} + (\omega L - \frac{1}{\omega c})]^{2}}$$

$$= \frac{1}{R^{2}} \frac{[R^{2} + (\omega L - \frac{1}{\omega c})]}{[R^{2} + (\omega L - \frac{1}{\omega c})]} \frac{[R^{2} + (\omega L - \frac{1}{\omega c})]}{[R^{2} + (\omega L - \frac{1}{\omega c})]^{2}} \frac{[R^{2} + (\omega L - \frac{1}{\omega c})]}{[R^{2} + (\omega L - \frac{1}{\omega c})]^{2}}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]} \frac{[R + j(\omega L - \frac{1}{\omega c})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]} \frac{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})]}{[R - j(\omega L - \frac{1}{\omega c} - \frac{1}{\omega c_{0}})}$$

$$= \frac{1}{R^{2}} \frac{[R + j(\omega L - \frac{1}$$

Les résonances série et parallèle sont données par l'annulation de la partie imaginaire soit :

Posons
$$c' = \frac{C_{\bullet}c}{C_{\bullet}+c} \rightarrow R^2 + \left(\frac{\omega^2 L C - 4}{\omega C C_{\bullet}}\right) = 0$$

$$R^2 \omega^2 cc' + \omega^4 L^2 cc' - \omega^2 Lc' - \omega^2 Lc + 4 = 0$$

$$\omega^4 L^2 cc' - \omega^2 \left[L(c+c') - R^2 cc'\right] + 4 = 0$$

$$\omega^4 L^2 cc' - \omega^2 \left[L(c+c') - R^2 cc'\right] + 4 = 0$$

$$\omega^2 est de la forme : \frac{\Delta \pm \sqrt{6}}{2 L^2 cc'}$$

$$Posons \frac{4}{Lc} = \omega^2$$

$$\frac{\Delta}{2 L^2 cc'} = \frac{C+c'}{2 L cc'} - \frac{R^2}{2 L^2} = \frac{\omega^2}{2} \left(1 + \frac{C}{c'} - \frac{R^2}{L^2 \omega^2}\right) = \frac{\omega^2}{2} \left(1 + 1 + \frac{C}{C_{\bullet}} - \frac{R^2}{L^2 \omega^2}\right)$$

$$\frac{2}{2} \frac{1}{1} = \frac{1}{2} \left(\frac{1}{1} - \frac{2}{1} \frac{1}{1} \frac{1}{1} \left(\frac{1}{1} - \frac{2}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \right) \right]$$
Calculons à présent le second terme :

$$\left(\frac{\sqrt{G}}{2 \lfloor^{2} cc'}\right)^{2} = \left(\frac{A}{2}\right)^{2} \left[\frac{\left[L(c+c') - R^{2}cc'\right]^{2} - 4 L^{2}cc'}{\left[L^{2} cc'\right]^{2} - 4 L^{2}cc'}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{\left[L(c+c') - R^{2}cc'\right]^{2}}{\left[L^{2} cc'\right]} - \frac{4}{\left[L^{2}cc'\right]}\right] \left(\frac{c+c'}{Lcc'} - \frac{R^{2}}{L^{2}}\right)^{2} - \frac{4}{\left[L^{2}cc'\right]}$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c+c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c+c')}{\left[L^{2}cc'\right]} + \frac{4cc'}{L^{2}cc'}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c+c')}{\left[L^{2}cc'\right]} + \frac{4cc'}{L^{2}cc'}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}cc'\right]} - \frac{4R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}\right]} - \frac{4R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}\right]} - \frac{4R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}c'^{2}\right]} - \frac{4R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}c'^{2}\right]} - \frac{4R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}c'^{2}\right]} - \frac{4R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{4}}{L^{4}} - \frac{2R^{2}(c-c')}{\left[L^{2}c^{2}\right]} + \frac{R^{2}}{L^{2}c}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{2}}{L^{2}}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{2}}{L^{2}}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-c')^{2}}{\left[L^{2}c^{2}c'^{2}\right]} + \frac{R^{2}}{L^{2}}\right]$$

$$= \left(\frac{A}{2}\right)^{2} \left[\frac{(c-$$

d'où l'expression précédente vaut
$$\left(\frac{1}{2}\right)^2 \left[\left(\frac{\sqrt{c_0} - R^2}{L^2}\right)^2 - \frac{4R^2}{L^3c}\right]$$

$$= \left(\frac{1}{2}\right)^2 \left[\left(\frac{\omega^2 c}{c_0} - \frac{R^2 \omega^2}{L^2 \omega^2}\right)^2 - \frac{4R^2 \omega^4}{L^2 \omega^2}\right]$$

$$= \frac{\omega_0^2}{2} \left[\left(\frac{c}{c_0} - \frac{R^2}{L^2 \omega^2}\right)^2 - \frac{4R^2}{L^2 \omega^2}\right]$$

et finalement :

$$\omega^{2} = \omega_{o}^{2} \left[1 + \frac{1}{2} \left(\frac{c}{c_{o}} - \frac{R^{2}}{L^{2}\omega_{o}^{2}} \right) + \frac{1}{2} \sqrt{\left(\frac{c}{c_{o}} - \frac{R^{2}}{L^{2}\omega_{o}^{2}} \right)^{2} - \frac{4R^{2}}{L^{2}\omega_{o}^{2}}} \right]$$

$$(33 A 2)$$

Le signe - devant la racine correspond à la résonance série R.S.:

Le signe
$$+$$
 " " " résonance parallèle : R.P : $\omega_{\underline{e}} = 2\pi f_{\underline{e}}$

Quand l'amortissement tend vers 0, R -> 0 d'où :

$$W_{\Delta} = W_{0}$$
 et $W_{g} = W_{0} \sqrt{1 + \frac{c}{c_{0}}}$ (§3 A 3)

Les différences de fréquences en cas d'amortissement et de non amortissement ne sont pas toujours à négliger.

Pour les distinguer, G. Becker (5) note R S et R P "idéales" dans le cas hypothétique de non amortissement et R S et R P "réelles" dans le cas d'amortissement efficace.

La différence de fréquences des R S ou R P réelles et des R S ou R P idéales sera appelée "écarts d'amortissement". : "D"

R S et R P réelles ne sont, somme toute, définies que lorsque l'expression sous le radical dans la formule (§ 3. A. 2) est réelle.

Pour que les résonances existent, il faut que :

$$\left(\frac{C}{C_{o}} - \frac{R^{2}}{\omega_{o}^{2}L^{2}}\right)^{2} - \frac{HR^{2}}{\omega_{o}L^{2}} > 0$$

$$\left(\frac{C}{C_{o}} - \frac{R^{2}}{\omega_{o}^{2}L^{2}} + \frac{2R}{\omega_{o}L}\right) \left(\frac{C}{C_{o}} - \frac{R^{2}}{\omega_{o}^{2}L^{2}} - \frac{2R}{\omega_{o}L}\right) > 0$$

$$\left(\frac{C}{C_{o}} - \frac{R^{2}}{\omega_{o}^{2}L^{2}} + \frac{2R}{\omega_{o}L}\right) \left(\frac{C}{C_{o}} - \frac{R}{\omega_{o}L}\right)^{2} + 1$$

$$\left(\frac{C}{C_{o}} -$$

Les racines de chaque facteur sont :

ler facteur : facteur
$$\alpha$$
: $\frac{R}{\omega_{c}L} = 1 - \sqrt{1 + \frac{c}{c}} = \infty$ < 0

2° facteur: facteur
$$\beta$$
: $\frac{R}{\omega_0 L} = 4 + \sqrt{1 + \frac{c}{c_0}} = \infty$ ">0

30 facteur: facteur
$$\gamma$$
: $\frac{R}{\omega_0 L} = -1 - \sqrt{1 + \frac{c}{c_0}} = \infty' < 0$

4º facteur : facteur
$$\delta$$
: $\frac{R}{\omega_{sL}} = -4 + \sqrt{1 + \frac{c}{c_{s}}} = \infty$ ">0

D'où le tableau suivant :

X			XII	0	X 11 4		X 11 11		+ 64
a	ASSESSMENT OF THE PROPERTY OF	0.00	0 +	+		+		+	
β	+	+	+	+		+	0	SERVICE COM COM	16 or No Allahar de Jacobs university
· · · · · · · · · · · · · · · · · · ·	Ass	0 +	+	+		+	10.20	+	E OF STANDS OF BUILD
8	+	+	+	+	0	-			MATTER CONTRACTOR
Produit	+	EUA	+	+		MCSp.	2000 - T. F. C. S.	+	

Les valeurs de $x = \frac{R}{\omega_o L}$ < n'ont pas de sens physique.

Il faut donc avoir : $0 < \frac{R}{\omega_{L}} \le \infty''$

$$\frac{R}{\omega_{o}L} \leq \sqrt{1+\frac{c}{c_{o}}-1} \quad \left(\frac{63}{63} \text{ A H}\right)$$

Il semble que, si l'on veut retrouver les résonances dans le cas d'un amortissement supérieur, il faudra que :

soit
$$\frac{R}{W_{o}L} \geqslant \sqrt{1 + \frac{C}{C_{o}}} + 1$$

Reprenons la formule (§ 3 A. 4):

$$\frac{c}{c_0} \ll 1 \qquad \text{donc} \qquad \sqrt{1 + \frac{c}{c_0}} \sim 1 + \frac{c}{2c_0}$$

$$\frac{R}{\omega_0 L} \leq 1 + \frac{c}{2c_0} - 1 \qquad \frac{R}{\omega_0 L} \leq \frac{c}{2c_0}$$

$$\frac{1}{\omega,L} = \omega_{o}C \rightarrow 2\omega_{o}RC \leq \frac{c}{C_{o}}$$
 soit encore:

$$2\omega_{o}C_{o}R \leq 1 \text{ (§ 3. A. 5)}$$

Dans le cas où $+\omega$ con le connection de la R S et de la R P.

La condition 4 w C R 2 peut encore s'écrire :

$$\frac{4 R^{2} C^{2}}{L C} \ll 1 \qquad \left(\omega^{2} = \frac{1}{L C} \right)$$

$$\frac{4 R^{2} C^{2}}{L^{2} C^{2} \omega^{2}_{0}} \ll 1 \qquad \left(L C \omega^{2}_{0} = 1 \right)$$
soit $H \left(\frac{C_{0}}{C} \right)^{2} \frac{1}{Q^{2}} \ll 1$

L'expression sous le radical dans la formule (§ 3 A. 2) peut alors s'écrire : $\left(\frac{c}{c_0}\right)^2 \left[1 + \frac{c_0^2}{c^2Q^4} - \frac{2C_0}{cQ^2} - 4 \frac{C_0^2}{c^2} \frac{4}{Q^2}\right]$

si $4\left(\frac{C_{\circ}}{c}\right)^{2}\frac{1}{Q^{2}}\ll1$, $\frac{C_{\circ}^{2}}{C^{2}Q^{4}}$ est encore plus petit car $\frac{H}{Q^{4}}\ll1$

puisque Q est très grand, donc :

et la racine est:
$$\sim \frac{c}{c_0} \left[1 + 2 \frac{c_0}{c} \right]$$

$$= \frac{c}{c_0} \left[1 - \frac{c_0}{c_0^2} \left(1 + 2 \frac{c_0}{c} \right) \right]$$

$$= \frac{c}{c_0} - \frac{1}{c_0^2} \left[1 + 2 \frac{c_0}{c_0^2} \right]$$

$$= \frac{c}{c_0} - \frac{1}{c_0^2} \left[1 + 2 \frac{c_0}{c_0^2} \right]$$

$$= \frac{c}{c_0} - \frac{1}{c_0^2} \left[1 + 2 \frac{c_0}{c_0^2} \right]$$

$$= \frac{c}{c_0} - \frac{1}{c_0^2} \left[1 + \frac{1}{c_0^2} \left(\frac{c_0}{c_0^2} \right) \right]$$

Le signe - correspond à ω_{λ} :

$$\omega_{\lambda}^{2} = \omega_{0}^{2} \left(1 + \frac{c_{0}}{c} \frac{1}{\rho^{2}} \right)$$
et
$$\omega_{\pm}^{2} = \omega_{0}^{2} \left[1 + \frac{c}{c_{0}} - \frac{1}{\rho^{2}} \left(\frac{c + c_{0}}{c} \right) \right]$$

$$d'_{0} = \omega_{0} \left(1 + \frac{1}{2} \frac{c_{0}}{c} \frac{1}{\rho^{2}} \right)$$

 $\omega_{2} = \omega_{0} \left[1 + \frac{1}{2} \frac{c}{c_{0}} - \frac{1}{20^{2}} \left(\frac{c + c_{0}}{c} \right) \right] \left(\frac{63}{4} \right) A = 6.$

Les membres dépendant de Q expriment l'influence de l'amortissement. La formule (§ 3 A. 6) nous montre que R. Parallèle indépendamment de l'amortissement (et approximativement) dépend de la capacité parallèle $\rm C_o$ et peut donc être déplacée par variation de $\rm C_o$.

Pour simplifier un peu les calculs, on introduit à la place de ω la grandeur : $\rho = \omega L - \frac{1}{2}$

$$\omega^{2} LC - \omega pc - 1 = 0$$

$$\omega = \frac{pc + \sqrt{p^{2}c^{2} + 4LC}}{2LC}$$

$$\omega = \frac{\rho c}{2LC} + \sqrt{\frac{HLc}{HL^2C^2} + \frac{\rho^2 c^2}{HL^2C^2}} = \frac{\rho}{2L} + \sqrt{\frac{1}{LC} + \frac{1}{LC} \frac{\rho^2 c}{4L}}$$

De plus,
$$Q = \frac{1}{\omega_{RC}}$$
 soit $\frac{1}{\omega_{C}} = R^2Q^2 = \frac{L}{C}$

et
$$\omega = \frac{\rho}{2L} + \omega_0 \sqrt{1 + \frac{\rho^2}{4 \varphi^2 R^2}}$$

On peut, dans la plupart des cas, négliger $\frac{\rho^2}{4\phi^2R^2}$ vis à vis de l $\left(\frac{\rho^2}{4R^2\Phi^2},\frac{\rho^2}{4L}\right)$ avec c faible) ce qui correspond à écrire :

$$\omega - \omega_0 = \frac{P}{2L} \qquad (§ 3. A. 8)$$

Quand on est à la pulsation ω , la réactance du quartz par pour valeur :

$$\frac{1}{Z_e} = j\omega C_o + \frac{1}{R}$$

$$d'où P_o = \frac{1}{\omega C_o}$$

Pour simplifier, on introduit la grandeur réduite $x = \frac{\rho}{\rho}$ et $\alpha = \frac{R}{\rho}$ désignée sous le nom d'amortissement parallèle.

La formule donnant la résistance équivalente (§ 3. A. 1)

$$Q_{e} = \frac{R \rho_{o}^{2} - j \left[\rho_{o} R^{2} + \rho \left(\rho - \rho_{o} \right) \rho_{o} \right]}{R^{2} + \left(\rho - \rho_{o} \right)^{2}}$$

$$= \frac{\rho_{o}^{3} R}{\rho_{o}^{2} \rho_{o}^{2}} - j \left[\frac{R^{2}}{\rho_{o}^{2}} + \frac{\rho}{\rho_{o}^{2}} \left(\frac{\rho}{\rho_{o}^{2}} - 1 \right) \right]}{\rho_{o}^{2} R^{2} \rho_{o}^{2}} \quad \text{and} \quad \rho_{o}^{2} = \infty \text{ et } \alpha = \frac{R}{\rho_{o}^{2}}$$

$$Re = P_0 \frac{\alpha - j \left[\alpha^2 + \infty \left(\infty - 1\right)\right]}{\alpha^2 + \left(\infty - 1\right)^2} \left(\S 3 A 9 \right)$$

Les courbes 3,6 a et b représentent la réactance du cristal exprimée en ρ pour $\alpha' = 0, 1$ et $\alpha' = 0$ $\left(\alpha = \frac{A}{C}\right)$.

D : écart d'amortissement

La courbe 3,6 c représente la résistance dynamique du cristal exprimée en $\rho_{o}\left(=\frac{4}{\omega c_{o}}\right)$

De la formule (§ 3. A. 9) on tire que, pour le cas des R.S et R.P. idéales (c'est-à-dire $\alpha = 0$) x (x - 1) = 0 c'est-à-dire:

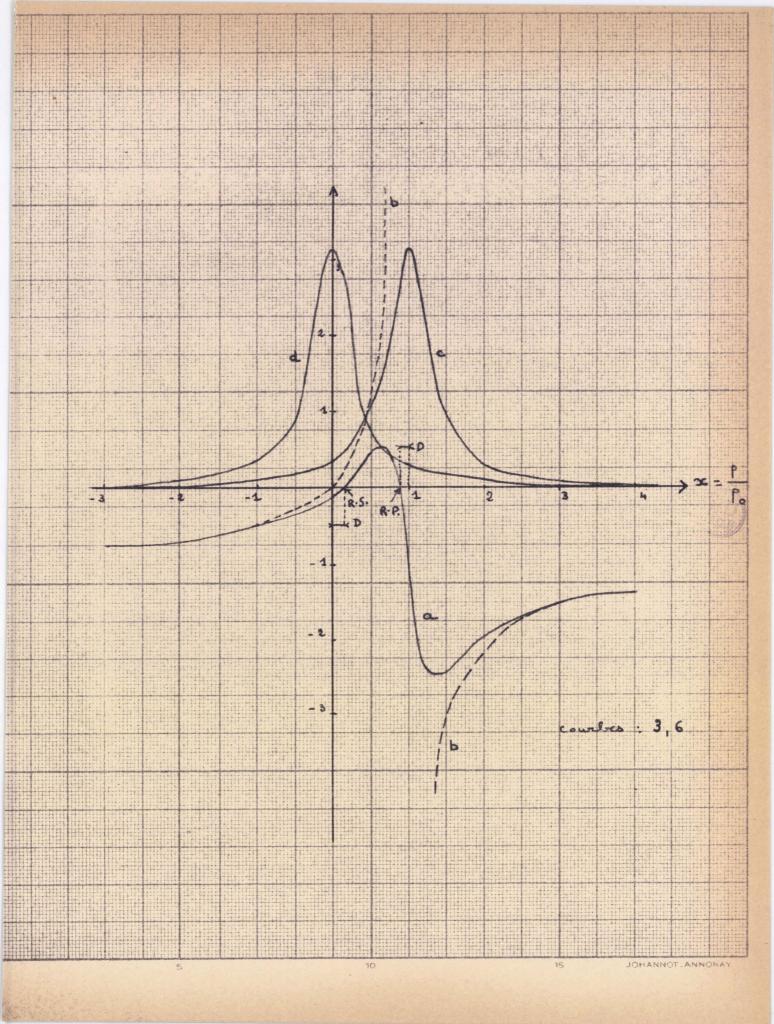
$$x_s = 0,$$
 $x_p = 1$ (§ 3. A. 10)

et pour le cas des R S et R P réelles :

$$x^{2} + x^{2} - x = 0 = x^{2} - x + \alpha^{2}$$

$$x = \frac{1 \pm \sqrt{1 - 4\alpha^{2}}}{2}$$

Quand α est faible devant (1): $\alpha = \frac{R}{R} = R\omega C_0$ $\alpha \approx \frac{1}{2} \left[1 \pm \left(1 - 2\alpha^2 \right) \right]$ $\alpha \approx \frac{1}{2} \left[1 - 1 + 2\alpha^2 \right] = \alpha^2$ $e^{\pm} \alpha_{R} \approx \frac{1}{2} \left[1 + 1 - 2\alpha^2 \right] = 1 - \alpha^2$


b) Résonance de tension et résonance de courant.

Quand on envoie à travers le dipôle cristal, un courant alternatif constant, à fréquence variable, la tension aux bornes du dipôle prend une valeur maximale pour la fréquence de "résonance de tension". Si, au contraire, on laisse la tension constante, le courant prend sa valeur maximale pour la fréquence de "résonance de courant".

Dans le ler cas, R est maximum, dans le 2º minimum.

(On trouve aussi pour ces 2 cas le terme de "résonance d'impédance")

La position de la résonance de courant et de la résonance de tension a été donnée par Gerber (Proc. I not. Radio Engrs 41 (1953) :

$$\infty_{\mathcal{T}} = \frac{1}{2} \left(1 + \sqrt{1 + 4\alpha^2} \right)$$

$$\infty_{\mathcal{T}} = \frac{1}{2} \left(1 - \sqrt{1 + 4\alpha^2} \right)$$

Les résonances de courant et de tension sont obtenues pour les minima et maxima de la résistance équivalente \mathcal{R}_{\bullet} soit pour les valeurs de x annulant la dérivée de \mathcal{R}_{\bullet} par rapport à x.

$$\mathbb{R}_{e}^{2} = \rho^{2} \frac{\chi^{2} + [\chi^{2} + (\chi - 1) \times]^{2}}{\left[\chi^{2} + (\chi - 1)^{2}\right]^{2}} \\
\left[\chi^{2} + (\chi - 1)^{2}\right]^{2} \\
\left[\chi^{2} + (\chi - 1)^{2}\right]^{2} = \rho^{2} \frac{2[\chi^{2} + (\chi - 1) \times](2\chi - 1)[\chi^{2} + (\chi - 1)^{2}]^{2} - 2[\chi^{2} + (\chi - 1)^{2}]^{2}}{\left[\chi^{2} + (\chi - 1)^{2}\right]^{4}} \\
\left[\chi^{2} + (\chi - 1)^{2}\right]^{4}$$

Mous développons donc le numérateur et l'identifions à zéro: après groupements de termes, on obtient:

$$2\alpha^{4} x - \alpha^{4} + 2x^{3} \alpha^{2} - 2x^{2} \alpha^{2} - x^{2} \alpha^{2} + x \alpha^{2} - 2\alpha^{2} (x - 1)^{2} x - x (x - 1)^{3}$$

$$-2(x - 1)\alpha^{2} - 2x \alpha^{4} + 2\alpha^{4} - \alpha^{2} x^{2} + 2x \alpha^{2} - \alpha^{2} = 0$$

soit finalement:
$$x^4 - 3x^3 + 3x^2 + (x^2 - 1) = -x^2(x^2 + 1) = 0$$

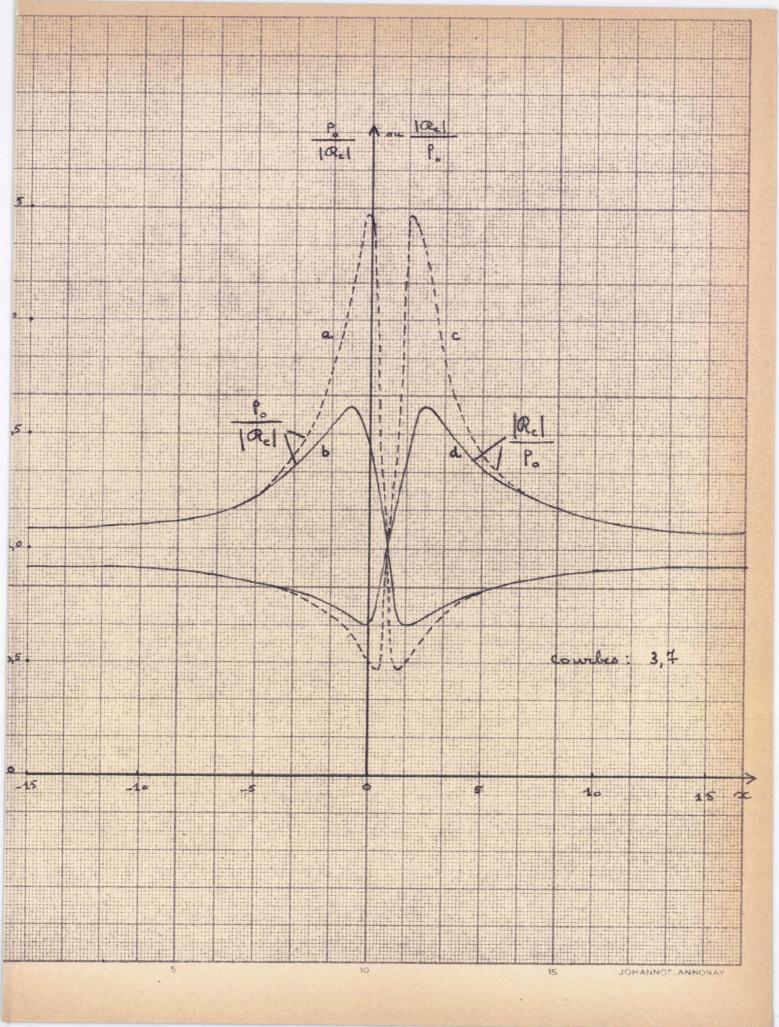
$$\left[x^2 - x - x^2\right] \left[x^2 - 2x + (x^2 + 1)\right] = 0$$

Le second facteur est un trinôme du second degré dont le discriminant $\Delta' = b^{12} - ac = 1 - a^2 - 1 = -a^2$ est négatif.

Les seules racines de cette équation sont donc celles de

$$x^{2} - x - a^{2} = 0$$
soit $x = \frac{1 \pm \sqrt{1 + 4\alpha^{2}}}{2} = \frac{1}{2} \left(1 \pm \sqrt{1 + 4\alpha^{2}} \right)$

La résonance de tension ∞_{σ} est dans le voisinage de la R P idéale et la résonance de courant κ_{τ} dans le voisinage de la R S idéale.


Ces résonances existent encore dans le cas où $< > \frac{1}{2}$ même si les R S et R P n'emistent pas.

Les courbes 3,7 donnent une représentation des fonctions

$$\frac{|\mathcal{R}_c|}{|\mathcal{R}_c|}$$
 en fonction de \hat{x} : courbe de résonance de courant $|\mathcal{R}_c|$

a: $\alpha^2 = \frac{1}{4}$

b: $\alpha^2 = \frac{1}{4}$

Re en fonction de x : courbe de résonance de tension :

 $c : x^2 = \frac{1}{4}$ $d : x^2 = 1$

c) Résonance de puissance :

Quand on relie le quartz à un générateur de tension alternative, à fréquence variable et à tension constante U, la puissance "dynamique" prise au générateur prend une valeur maximale pour la fréquence de résonance de puissance.

Le courant I traversant R, L, c, est alors maximum.

Ce courant dépend encore d'une résistance extérieure $\mathcal{R}_{\rm v}$ qui est connectée entre le générateur supposé sans résistance interne et le quartz.

Quand R, = R, est réelle, cette résonance donnée par Becker

est:
$$\infty_p = \frac{R_v^2}{R_v^2 + \rho_o^2}$$

Si $\mathbb{R}_{\mathbf{V}} = 0$, la résonance de puissance se confond avec la \mathbb{R} S idéale.

(La courbe 3,6 d représente la fonction $\frac{I_0}{V}$ pour $R_V = 0$ et $\alpha' = 0,1$)

Au maximum de cette courbe, règne la résonance de puissance.

Quand $R_{
m V}$ croît, la résonance de puissance tend vers la R P idéale.

(Il peut y avoir résonance de puissance même si R S et R P réelles n'existent pas parce que $\ll > \frac{1}{2}$).

Pour $\mathcal{R}_{v}=j\,\mathcal{P}_{v}$ (réactance pure), on a $\infty_{c}=\frac{\mathcal{P}_{v}}{\mathcal{P}_{v}}$ (formule valable pour $\mathcal{P}_{v}\neq\mathcal{P}_{v}$). (Si $\mathcal{P}_{v}=\mathcal{P}_{v}$ on aurait 2 circuits couplés).

M.B.- Si l'on considère la résonance de puissance obtenue au maximum de geyser dans la cuve, on trouve $F_p \sim 925~kHz$.

Or, la résonance de courant obtenue avec un générateur H F Ferisol se trouve vers l M Hz.

Les considérations précédentes sur les différentes résonances nous expliquent cet écart :

Les conditions de travail étant différentes (donc capacités, selfs parasites différentes), les résonances varient.

Exemple: l'introduction sur le générateur d'un diviseur de tension capacitif (4 pF - 400 pF) soit d'une capacité de 4 pF fait tomber Fp de 925 kHz à environ 910 kHz.

d) Application numérique à notre quartz : Fixons les conditions de travail. Le schéma complet de notre quartz chargé est :

$$f_{0}^{2} = \frac{1}{4 \pi^{2} L C} = \frac{10^{15}}{4 \pi^{2} \times 1.5 \times 17}$$

$$f_{0} \approx 10^{6} Hz \text{ et } \omega_{0} = 2\pi.10^{6}$$

Les résonances série et parallèle existent si

$$\frac{R}{\omega_{o}L} \leq \sqrt{1 + \frac{c}{c_{o}} - 1} \quad \text{out} \quad \text{Ai} \quad \frac{R}{\omega_{o}L} \geq \sqrt{1 + \frac{c}{c_{o}} + 1} \quad \left(\frac{6}{3} \text{ A 4}\right)$$

$$\frac{R}{\omega_{o}L} = \frac{250 \cdot 10^{3}}{2\pi \cdot 10^{5} \times 1,5} = \frac{1}{12 \pi} = 26, 6 \cdot 10^{-3}$$

$$\sqrt{1 + \frac{c}{c_{o}}} - 1 = \sqrt{1 + \frac{17 \cdot 10^{-3}}{36}} - 1 \approx 1 + \frac{1}{2} \cdot \frac{17 \cdot 10^{-3}}{36} - 1 \approx 0, 24 \cdot 10^{-3}$$

$$\sqrt{1 + \frac{c}{c_{o}}} + 1 \approx 2$$

$$\frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$$

Les résonances série et parallèle n'existent pas.

Ces résonances R_s et R_p , étant données par les intersections de cette courbe avec l'axe des x, <u>vérifions</u> que la courbe (3,6 a) ne coupe pas l'axe des x dans nos conditions d'amortissement.

$$x = \frac{R}{\rho_0}$$
 avec $\rho_0 = \frac{1}{\omega C_0} = \frac{10^{\frac{12}{2}}}{2\pi \cdot 10^6 \cdot 36} = \frac{10^6}{72\pi}$
et $\alpha = \frac{R}{\rho_0} = 250 \cdot 10^3 \frac{72\pi}{10^6} = 56,5$

La courbe 3,6 a représente les variations de la réactance du cristal ; or la résistance équivalente est :

$$R_{e} = \rho \frac{\alpha - j \left[\alpha^{2} + \infty (\infty - 1) \right]}{\alpha^{2} + (\infty - 1)^{2}}$$
 (§ 3 A 9)
- 66 -

La courbe 3,6 a représente donc :

$$-\rho_0 \frac{\alpha^2 + \infty (\alpha - 1)}{\alpha^2 + (\alpha - 1)^2} = f(\infty)$$
soit, dans notre cas,
$$-\rho_0 \frac{56.5 + \infty (\alpha - 1)}{56.5^2 + (\alpha - 1)^2} = f(\infty) = S$$

f (x) coupera l'axe des x pour S = 0 soit :

$$56,5 + x(x-1) = 0$$

 $x^2 - x + 56,5^2 = 0$

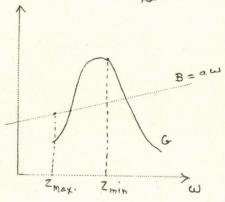
Cette équation du second degré dont le discriminant .

$$\Delta = b^2 - 4 \text{ ac} =$$

1 - 4 x 56,52 est négatif, n'admet donc pas de racines ;

S ne peut être nulle ; la courbe représentative ne coupe pas l'axe des x ; les résonances série et parallèle n'existent effectivement plus.

N.B. - On aurait pu dire que pour $\alpha = 0.25 = 1/4$, la courbe était déjà tangente à l'axe des x (dans ce cas $\Delta = 0$).


B .- Recherche des résonances de courant et de tension :

Nous avons tout d'abord, cherché à trouver les résonances de courant et de tension au générateur.

En fonction de la fréquence, nous mesurions V_{\bullet} aux bornes de la résistance de 1,5 Ω entre cuve et masse avec I_{\bullet} = Constante.

La forme des courbes G et B permettait de prévoir l'existence de ces résonances.

A I
$$_{\sim}$$
 = c^{te}, $v_{\text{Max.}}$ pour z_{min} :
c'était la résonance de tension.

Aucune des nombreuses mesures effectuées ainsi ne permettait de déceler quelque résonance.

Des mesures identiques effectuées au Q mêtre ou avec un générateur H F Ferisol ne furent pas plus fructueuses. C'est pourquoi, nous avons entrepris de reprendre une méthode de charge progressive.

Nous avons recherché la résonance de courant avec un générateur H F Ferisol délivrant 1,2 volt en notant, en fonction de la fréquence, la tension aux bornes d'une résistance de 100 Ω placée entre la sortie du projecteur et la masse du générateur.

Nous avons donc commencé par vider pétrole et eau. Le circuit était fermé par l'électrode de masse. On obtint la résonance de courant (: l° courbe des courbes : 3,8)

Puis nous avons effectué des séries de mesures en ajoutant successivement 5 gouttes d'eau à la fois (courbes : 3,8 ; 3,9 ; 3,10).

lo) Sans pétrole - Electrode de masse - Sans eau.

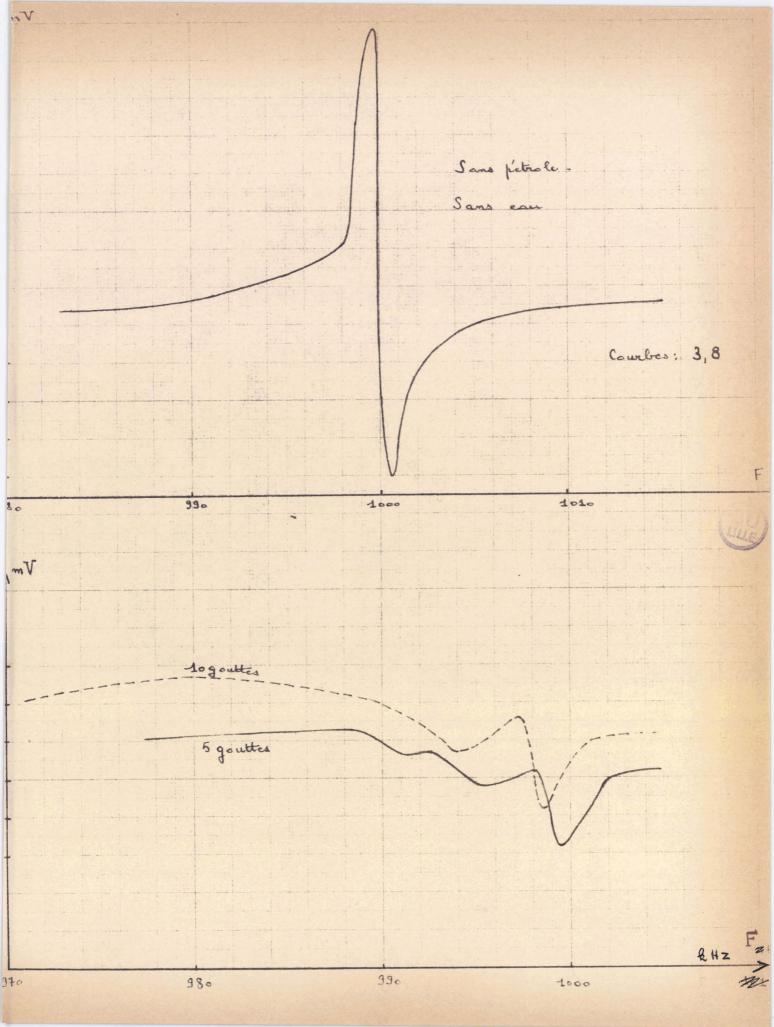
FkHz	983,6	991,2	998	999,7	1000,5	1004,2	1009,6	1015	
(Microbioscopies Control of the Cont	Object - State - Color	White the combination a state of the case of the	raine can be recorded and	THE SECTION SECTION STREET, AND RESIDENCE	or . Presidentendos dericalitare attacamentes	THE ACTION COMMANDER OF THE PARTY OF THE PAR	the continuous and continue and the cont	adin dipudir visidin di colore di paggiorna	
v_{mV}	19,4	19,8	21,1	26,8	15	18,8	19,4	19,6	

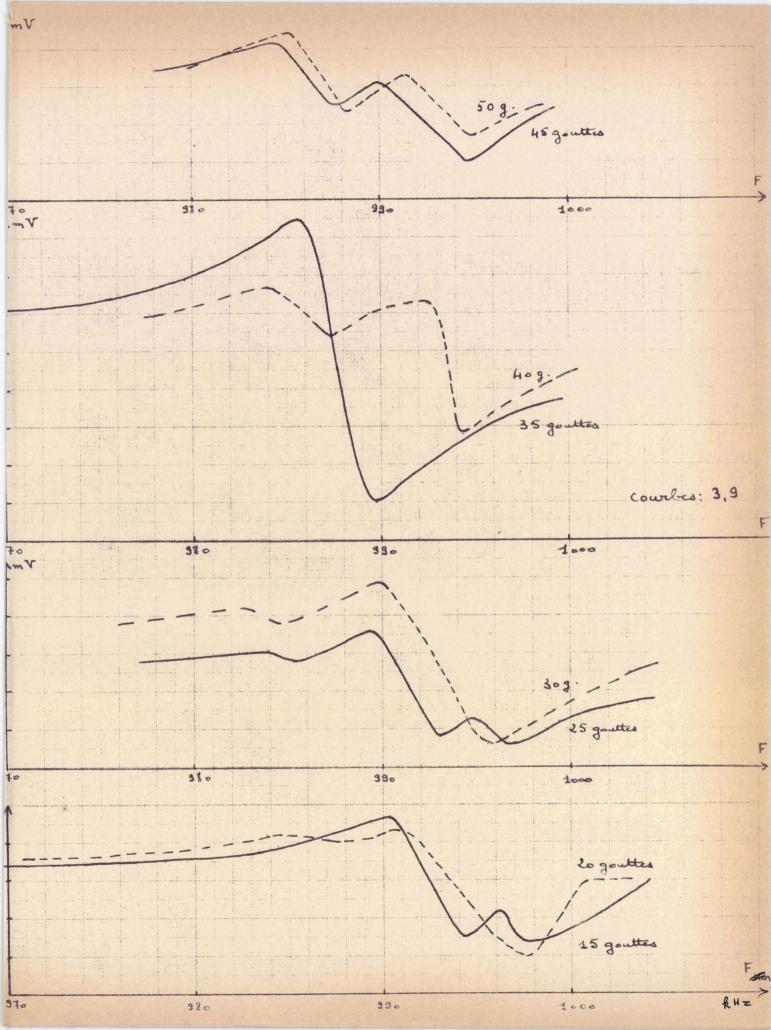
Les séries de mesures qui suivent, ont été faites toutes sans pétrole et avec électrode de masse.

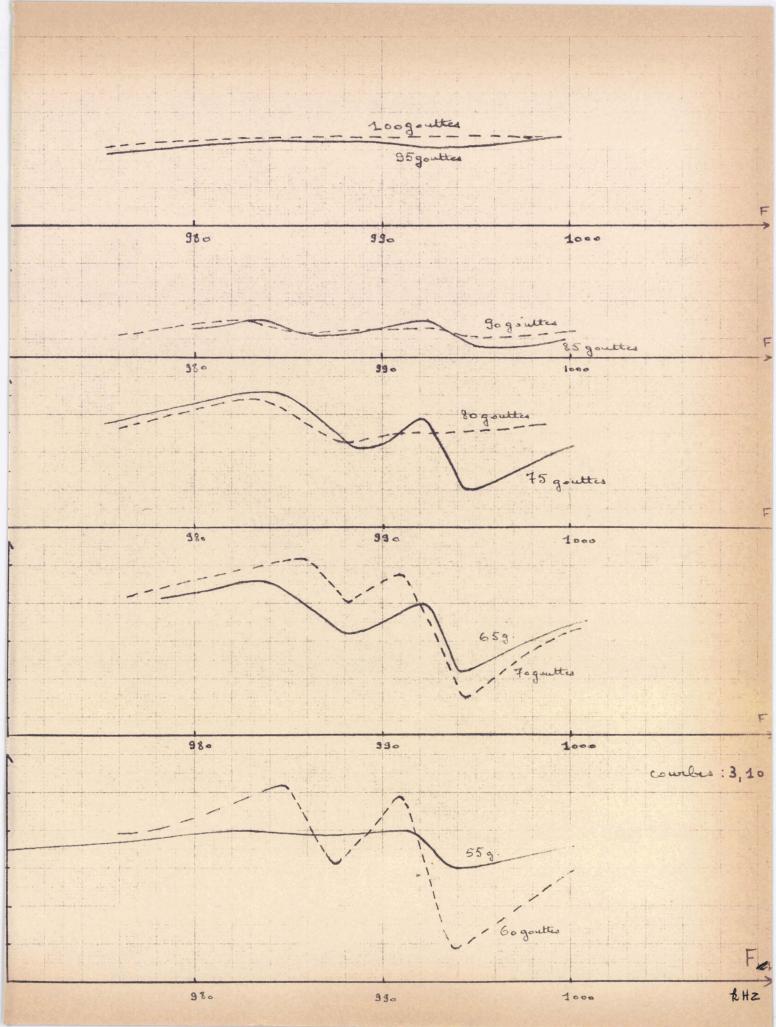
2°) 5 gouttes d'eau

FkHz	978,2	985,4	988,4	991,4	992,6	995,1	998,2	999,5	1002	1004,8
sonnathurusen richterus zwo, sin einem se	ESE OF THE PROPERTY AND ADDRESS OF THE	er erritari umatari. Ny orana	NAME OF PLANTER LABOUR OF STREET STREET	ch returned with the rest reserved	NOW THE PERSONNEL PROPERTY OF THE PERSONNEL	March of Section Association (Section 1997)	enter mateurenten op hen andersonen en seke	- Session and comments of the	And county residence of the second	Mark a market executable contributed in Emphasia and the contributed and
V mv	20,1	20,2	20,3	19,6	19,7	18,8	19,6	17,2	19	19,2

3°) 10 gouttes d'eau :


F	971	980,3	989,3	993,8	997,2	998,6	1001,2	1004,4
Martin all and a state of the s	The state of the s	terrole completeles received to the con-	to the market content or the end of the content of	en en men maneter en servicio de la companya de la	The second section of the second section of the second		No. 1276 F. St. Br. 1276 F. 1780 Physiologic Co. Physiological St. 1880 Physiological Co. 1880 Physiological Physiological Co. 1880 Physiological Co. 1880 Physiological Physiological Physiological Physiolog	marks and attended to the designation of
V	21,2	21,7	21,1	19,7	20,6	18,2	20	20,2


4°) 15 gouttes:


The State of the Lands of the Control of the Contro	959,7	969,5	984,4	990,4	994,2	996,2	997,6	1003,5
V	22,3	22,4	22,9	23,7	20,5	21,2	20,4	21,8

5°) 20 gouttes:

-	971,4	975,9	983,8	987,5	990,3	997,7	1000,5	1002,7
V	22,6	22,8	23,2	23	23,3	20	21,9	22

	6°) 25	goutte	S					
F	979,7	983,9	985,3	989,3 993	994,7	996,5	999,4	1003,5
V	23,9	24,1	23,8	24,6 21,8	22,3	20,6	22,2	22,7
	7°) 30	goutte	S :					
F	964,8	982,4	984,4	989,6	995,6	1003,1		
Water Control of Contr	24,1	25,2	24,8	25,9	21,6	23,5	ood .	
	8°) <u>35</u>	goutte	0000					
F	968,2	975,6	979,6	985,6	989,7	996,5	999,4	
V	25,1	25,4	25,9	27.5	20	23,2	23,7	and the same
	9°) 40	goutte	5					
Manager of the first of the fir	978,6	983,9	987,4	989,3	992,5	994,3	1000	
V	25	25,7	24,4	25	25,6	21,8	23,4	
	100) 45	goutte	Č °					
F	980,8	984,5	987,7	990,1	994,6	999,1		
V	25,2	25,7	24	24,6	22,5	23,9		
	110) 5() goutte	G · ·					
F	980,3	985	988,1	991,3	994,9	998,5		
V	25,1	25,9	25,8	24,8	23,2	24		
	120) 55	gouttes						
F	969,8	983	986,3	991,3	993,9	1000		
V	COMMON COMMON AND COMMON COMMO	ALCOHOL THE BOOK COMMON TO THE	24,9	E - RESTRICTED AND TOTAL CO. B. C. STOY, INCHES - LIBERY STREET	24	24,6		

	13°) <u>60</u>	gouttes	00				
F	978,3	984,6		987,4	990,9	993,9	1000
V	25,1	26,2		24,1	25,9	21,9	23,9
	14°) 65	gouttes	c				
F	980,2	983,7		988	992,1	994,1	998,7
V	25,3	25,6		24,2	25	23,2	24,2
	15°) <u>70</u>	gouttes	0				
F	975,7	985,7		988,1	990,9	994,4	999,1
A	25,2	26,2	e frifitzazar i fil	25	25,8	22,5	24,1
	160) 75	gouttes	0 0				
F	975,8	984,4		988,2	992	994,4	999,6
V	25,3	26,1	4300	24,6	25,4	23,5	24,6
	170) 80	gouttes	00				
F	976,4	983,1		987,7	991	992,7	996,5
V	25,2	25,9		24,8	25	25	25,1
	18°) 85	gouttes	0				
F	980,4	983,4		985,4	992,4	994,9	999,6
V	25,3	25,5	(4 strate	25,2	25,5	24,98	25
	19°) 90	gouttes	0 0				

976

25,1

25,5

25,3

1000

25,1 25,2

982,9 986,3 991,2 994,5

25,2

20°) 95 gouttes:

FI	975,6	986,8	989,7	993,6	1000
Minds colors of Miles Here, a man countries	DANIE MICHAEL COMBINE SANDON COMO ACOMO AC	Residence the restriction of the market screens	BUILDING WARREN WORKS TO SERVE OF THE SERVE	SANTER CONTROL TO A PARTY AND AND A VINCE	CONTRACTOR AND A STATE OF THE PARTY OF THE P
V	24,9	25,2	25,2	25,1	25,3

21°) 100 gouttes :

F	975,6	987	997,8	1000
	A PRODUCTION OF THE PROPERTY OF THE PARTY OF	to distribute of Charles and Charles and Charles	to reconstruction substantial products substantial or the	The sale when to these and the sale of the
V	25,1	25,3	25,3	25,3

On remarque :

- que déjà avec 5 gouttes le quartz est amorti,
- l'apparition d'irrégularités dues probablement aux ondes stationnaires sur presque toutes les courbes,
- la disparition quasi-totale de la résonance avec 100 gouttes d'eau soit une charge de 7,5 grammes sur le quartz.

En fait, les résonances de courant et de tension existent encore mais elles ne sont plus mesurables.

Il était intéressant d'essayer d'obtenir des courbes sans ondes stationnaires. On a donc remplacé la charge d'eau par une pression de gaz (oxygène) : on s'est alors aperçu qu'avec une pression de 2 kg/cm2, l'amortissement était encore pratiquement négligeable.

Différence de pression entre les 2 faces du quartz nulle ou égale à 1 kg/cm2.

FAHZ	993,8	1000	1000,8	1004	
V	17,3	19,4	15,7	17,1	25

or si l'on considère les valeurs de la réflexion R à la surface de séparation de l'eau

Dans le cas usuel de nos conditions de travail (quartz chargé par de l'eau), 63 % de l'énergie incidente sont réfléchis et, par conséquent, 37 % seulement, transmis.

Par contre, on remarque que l'interface eau/air et a fortiori solide/air se comporte comme un réflecteur parfait. L'importance de cette réflexion au contact solide-gaz montre pourquoi un générateur piézoélectrique ne peut être employé dans l'air avec un rendement utilisable.

On voit donc qu'avec le gaz il n'y a plus transfert d'énergie.

En résumé, on peut donc dire que les résonances de courant et de tension existent théoriquement mais ne sont plus mesurables dans nos conditions de travail.

§ 4.- MESURE DU COS φ

A.- Estimation par les mesures faites au Q mètre :

On a vu au § 2 que le dipôle équivalent au quartz chargé était : une résistance R_c (telle que $\frac{1}{R_c}$ = G) shuntée par une capacité C_o (telle que $C_o\omega$ = B) avec G et B mesurables directement au Q mètre.

Reprenons ce dipôle:
$$\frac{1}{Z} = G + jB = \frac{1}{R} + jC_0\omega$$

$$= \frac{1}{R_0} + jR_0C_0\omega$$

$$= \frac{1}{R_0}$$

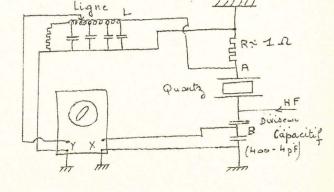
Reprenons les valeurs de B et G de la page

Fkhz	900	905,2	910	915,2	920	925;2	930	935,2	940	945,2
Gµv	1,10	1,22	1,16	1,46	1,60	1,95	2,41	3,08	3,49	3,49
Bro	185	194,5	194	195	189	197,5	197,5	197,5	198	201
$tg \mathbf{\varphi} = - \frac{B}{G}$	-168	-159,5	-167	-133,5	-118	-101	-82	-64	-56,7	-57,7
MANUFACTURE OF THE PARTY OF THE	CONTRACTOR CONTRACTOR CONTRACTOR	THE PLANT SHEETS BELLEVIANTED THE STREET	N. J. St. Co. Berlin, St. Co. St. Co. St.	COLORS TORS SON WAY VARY SURE SOME STORY	STATE OF THE STATE OF	W. SECTION OF CO. NO.	and the same of the same of the same of			

F	950	955,2	960	965,2	970	975,2	980	985,2	990
G	4,25	4,65	4,75	4,12	4,13	3,84	3,46	3,03	2,95
В	199	202	203	205	203	203	205	207	206
tg q	-46,8	-43,5	-42,6	-50	-49,2	-52,8	-59,3	-68,4	-69,8

On voit, par ce tableau, que $|tg \varphi| > 40$ c'est-a-dire que - 88° $< \varphi < - 90^\circ$ et $0 < \cos \varphi < 0,035$

Ce résultat nous laisse prévoir un rendement déplorable.


B.- Mesures du cos φ

Avant d'employer le tourne-vis pour la suppression des ondes stationnaires, nous avons longtemps obtenu des courbes de G et B pratiquement inutilisables (courbes : 3,1 ; 3,2 ; 3,3 ; 3,4).

C'est pourquoi nous avons entrepris de faire une mesure directe du $\cos\phi$

La ligne à retard se trouve sur le circuit courant qu'on applique à l'entrée verticale d'un oscillographe.

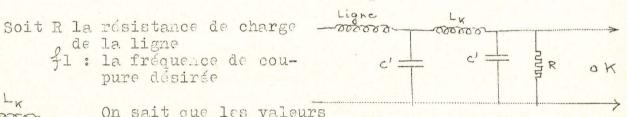
A l'entrée horizontale, on applique une fraction (1)

de la tension II F.

Principe de la mesure : la méthode de compensation.

Nous cherchons, par l'intermédiaire de la ligne, à obtenir une droite sur l'oscillographe (tensions injectées en phase) dans les deux cas suivants :

- lo) celui de la figure ci-contre
- 2°) celui où l'on amène la connexion L A en L B.


Les variations de phases apportées par la ligne à retard servent à compenser le déphasage de l'élément retiré du circuit : le quartz.

Mesure : Dans la disposition de la figure, nous réglons le curseur pour que l'ellipse devienne une droite : soit d la position du curseur : nous compensons alors le déphasage de l'ensemble : oscillographe - capacité des câbles - Quartz.

Mous amenons L A en L B et nous reformons la droite à la division do qui comporte le déphasage de l'oscillographe et des câbles.

En faisant la différence (d $_1$ - d $_2$) nous obtiendrons directement le déphasage ϕ cherché.

- a) Une première série de mesures nous a montré que le courant I HE était très déformé : l'ellipse, par conséquent, était aussi très déformée et, dans l'impossibilité d'obtenir une droite, les mesures étaient peu précises.
- b) Hous avons donc commencé par fabriquer un filtre.

On sait que les valeurs de self L_{K} et de capacité c' $_{k}$ d'une demi-cellule chargée par une résistance R et présentant une fréquence de cou-

pure ‡1 sont données par les formules :

$$L_{K} = \frac{R}{\pi f_{1}}$$
 et $C'_{K} = \frac{1}{\pi f_{1} R}$

Pour la ligne, $R = 79,5 \Omega$

Nous avons choisi la fréquence de coupure $f_1 = 1,2$ M Hz.

$$L_{K} = \frac{79.5}{\pi \times 1.2.10^{6}} = 21.1 \mu H$$

$$C'_{K} = \frac{1}{\pi \times 1.2.10^{6} \times 79.5} = 3.334 pF$$
et $C' = \frac{C'_{K}}{2} = \frac{3.334}{2} = 1.667 pF$

Nous avons donc construit la bobine, à noyau de ferrite ; sa valeur a été ajustée au Q mètre.

Les capacités ont été obtenues par associations convenables de capacités au mica.

Courbe d'affaiblissement :

Elle a été faite avec un générateur E F-Lérès donnant l volt et un millivoltmètre électronique Philips donnant directement l'affaiblissement en décibels.

FMHz	0,50	0,80	0,85 0,90	0,95	1	2	3	4	5	6	7
adb.	+0,9	+2,5	+2,9 +3,6	+4,4	+5	+16,1	+23	+28,2	+30,5	+31,1	+25,1
FMHz	8	9	10								
a db.	+22,1	+14,	3 +3,5								

- Une deuxième série de mesures avec ce filtre nous montra son insuffisance; un second filtre améliora sensiblement la mesure.

Nous avons décidé alors de fabriquer au total 4 filtres identiques.

2º filtre :

FMHz	0,50	0,80	0,85	0,90	0,95	1	2	3	4	5
a db	+1,1	+2,8	+3,4	+4	+4,6	+5,4	+15,1	+22,3	+26,8	+28,9
F MHz	6	7	8	9	10)				
a db	+29,3	+26,7	+23,	1 +15,	2 +4,	3				
	3º fil	tre :								
FMHz	0,50	0,80	0,85	0,90	0,95	1	2	3	4	
a db	+1,4	+3,1	+3,7	+4,3	+4,9	+5,3 +	16,4 -	-24,5	+28,3	•
FMHz	5	6.	7	8	9	10				
adh	+31,2	+31,	7 +25	,3 +2	3.6 +16	.3 +6	NAME OF THE PROPERTY OF THE PR			

4º filtre :

F _{MHz}	0,50	0,80	0,85	0,90	0,95	1	2	3	4
adb	+1,2	+2,6	+3,2	+3,9	+4,5	+5,2	2 +15	+22	+25,8
F MHz	5	6	7		8	9	10		
adb	+28,6	+27,5	+23	,7	-20	+12	+3,4		

Avec ces 4 filtres en série avec la ligne à retard, le courant H F était bien moins déformé : les mesures étaient faites avec une assez bonne précision.

Nous avons fait de nombreuses mesures et les résultats étaient tous comparables.

Le diviseur est mis : $F_{puissance} = 908 \text{ KHz}.$

F KHz	895,2	900	902	904	906	908	910	912
d ₁ -d ₂	27,5 - 1,8 (zéro)	26,8 -1,5	26,4	26,2 -1,3	26 - 1,1	25,6 -1	25,4	34 (zéro) -25,3
District Control Contr	25,7	25,7	+25	24,9	24,9	24,6	24,6	8,7
cm x %em=4	1370	135%8	1349, 3	1330,8	1340	133%,1	1330	470,2
 → voi	r (tableau	١٥,7).				A TO A MENT STREET STOLE	and action of the second of th	rida ada alima firmina antinina antinina ada ada ada ada ada ada ada ada ada a

F RHz	915,2	920	930	940
cm	33,7 -24,8	33,1 -24,1	31,9 -22	30,6 -20,1
	8,9	9	9,9	10,5
y °	480,5	49°,3		58°,8

Remarques :

l°) Pour trouver le signe du déphasage, il suffit de voir que, dans les mesures où F < 912 KHz, par exemple, d est voisin de l cm et d₁ de 25 cm.

$$d_2$$
 correspond au déphage de l'ensemble sans quartz (\mathbf{V}) d_1 " " avec " (I)

comme d₁ > d₂, il faut en déduire qu'il faut se porter en avant sur la ligne pour retrouver le courant en phase, ce qui signifie que le courant est en avance de phase sur la tension (mesure de d₂): c'est le propre du circuit capacitif donc déphasage négatif ; on transformera donc les 137° en - 43° les 47° en - 47°.

D'où résultat final :

FKHz	895,2	900	902	904	906	908	910	912	915,2	920
Y°	-430	- 44%,2	- 45%7	-46°,2	-460	- 46° , 9	-470	-47°,2	-48°,5	-49°,3
* Continue of the continue of	Miccall Mathematics - Pyth Mic G Table - G Pytholes コウザッシュ・ボ	ry versificacidatic reviews) (Ma. Landia, Landia) (Landia)	gille () gille (offer turne) (offer as the)	endouroper-trial and the first	erender i tra angerio est de las tass	er uuderta er - 16. vye - Traencoe - 1	t omgre er omgognene i te	THE CHARLES TO THE COME OF	PC (1805) Menulain y Life - Jide z viki yedi	the Management with another transfer control comparison.
F	930	940			(mah 1 a	2 5 6	n 7'	,		
1	-54°,8	-580,8	3		(TSDTE	au § 4.	D. 1.	<i>)</i>		

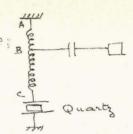
2°) φ et donc cos φ ne présentait pas, comme prévu, de variations notables. Mais il y avait une grosse différence entre ces valeurs de φ mesurées et celles déduites de tg φ = $-\frac{B}{\pi}$ où

φ était compris entre - 87° et - 90°.

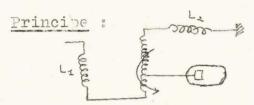
Une idée sur cet écart nous est venue en mesurant le cos par la même méthode mais avec un générateur H F Lérès au lieu de notre générateur d'ultra-sons.

Nous n'observions pas non plus de variations de φ mais sa valeur était d'environ - 65°.

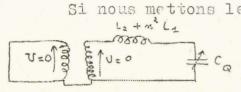
Il semblait donc que le générateur influençât :


soit la méthode de mesure soit effectivement la valeur du cos ϕ du projecteur d'ultra-sons donc son rendement.

Nous pouvions supposer tout d'abord que le rayonnement H F dû au générateur alimentant le transducteur avait une certaine incidence sur la mesure. Or, le générateur H F Lérès était blindé; la mesure ne coïncidant pas avec les résultats théoriques, il s'agit donc de l'influence de l'impédance de sortie du générateur.

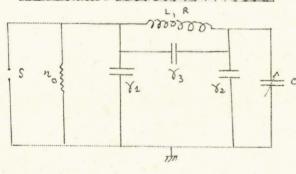

Nous allons montrer qu'effectivement notre générateur améliore le facteur de puissance dans les conditions habituelles de travail.

Tenons compte pour cela de la self de fuite de ce générateur qui vient s'ajouter en série au circuit du quartz (c'est la self de fuite de l'autotransformateur, adaptateur d'impédance).


Les connexions sont telles que primaire et secondaire ont leur borne commune à la masse; l'autre extrémité du secondaire est reliée à l'électrode H F du quartz.

Il fallait donc mesurer cette self de fuite.

Soient L, et L, les selfs de fuite primaire et secondaire d'un transforma-


Si nous mettons le primaire en court-circuit, nous pourrons mesurer au secondaire avec un O mètre (capacité Co) la self de fuite totale ramenée au secondaire et c'est précisément

celle-la que nous désirons connaître.

En fait, pour nous placer dans les conditions de travail (celles correspondant à la mesure du $\cos \phi$) nous faisons la mesure avec les triodes 250 T H de l'étage final, filaments allumés.

Nous avons refait la mesure avec ces mêmes tubes polarisés (par un bloc extérieur) à - 25 volts e est à dire à la tension de la la dentique s. correspondent au

Mesure de la self de fuite :

S, ro, c' sont les éléments constitutifs du Q metre.

L la self à mesurer.

Υ1, Y2 capacités des fils allant du Q metre à la self.

√3 : leur capacité mutuelle.

La mesure est effectuée à 908 kHz.

On trouve c' = 28,9 pF.

Nous déconnectons maintenant la self L tout en laissant les fils dans la position précédente.

En fait y est court-circuitée par ro faible.

Nous mesurons donc directement l'ensemble " χ - χ - χ - "avec une self du Q mètre qu'il suffira d'ajouter à c' (capacités en parallèle).

$$\gamma_2 - \gamma_3 = 9,7 \text{ pF} = \Gamma$$

d'où $c = c' + \Gamma = 38,6 \text{ pF}.$

et la self de fuite $L \neq \frac{1}{c\omega^2} = \frac{1}{38,6 \times H\pi^2 \times 9,908} = 0,725.10^3 H$

Le schéma équivalent au montage de mesure du cos φ est donc:

$$Z = \int_{2.45}^{2.45} \frac{1}{38.40^{-1}} = \int_{2.45}^{2.45} \frac{1}{1} \int_{2.45}^{2.4$$

On retrouve bien ici les valeurs de φ du tableau (§ 4. B 1)

Il résulte donc que le générateur permet donc d'améliorer le facteur de puissance du projecteur et par conséquent son rendement. (ici cos $\phi_{\rm Max} \cong \frac{\sqrt{\epsilon}}{2} = 0,7$)

Mous pourrions donc envisager, par une self série, d'adapter le circuit pour élever encore le facteur de puissance et le faire tendre vers l. 2ème PARTIE :

Chapitre IV : QUARTZ CONSIDERE COMME TRANSDUCTEUR D'ULTRA-SONS

A.- INTRODUCTION :

Dans un travail antérieur, Melle J. Cassette (2) avait prospecté, à l'aide de la sonde piézoélectrique, le champ ultrasonore produit par un quartz circulaire qu'on suppose vibrer comme un piston.

Elle a montré que si l'on veut retrouver cette forme de vibration transmise à l'eau, il faut opérer à distance faible du quartz (quelques centimetres).

Si l'on s'éloigne du quartz, l'amplitude des variations alternatives de pression, élevée au centre diminue rapidement quand on s'en éloigne : on se rapproche alors d'un maximum de p le long de l'axe.

Sp: écart de pression en un point par rapport à la pression d'équilibre.

Nous travaillerons en outre en ondes stationnaires (la sonde formant réflecteur).

Les courbes données dans cet ouvrage représentaient la tension de sortie à la sonde en fonction de l'abscisse de la sonde (abscisse repérée par rapport au quartz).

On constatait alors l'homogénéité du Γ p du plan d'onde ; d'autre part, $\delta V_V = K$. δp .)

Le point du départ de cette seconde partie nous a été fourni en voulant retrouver ces résultats.

Mous verrons qu'une amélioration dans le dépouillement des résultats nous apportera des renseignements précieux au réglage du parallélisme piston-quartz.

B. - ETUDE DES CHAMPS PRODUITS PAR LE QUARTZ Nº 2.

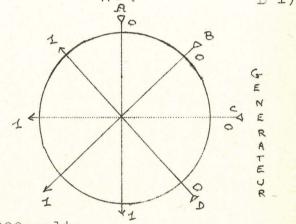
Le projecteur réglé, la sonde est introduite dans l'eau dégazée.

Vu sa longueur, il a fallu rehausser le niveau de suspension par le manchon N. (Planche 4,1).

Planche 4, 1 MUR N rojetur

Le tube T est gradué en cm; elle est engagée dans le guide cylindrique G₁ et la vis V₁ permet de la fixer à la hauteur voulue. La vis V₂ (pas = 0,75 mm) dont la pointe repose sur la piece G₄ permet un réglage fin en hauteur, notamment les réglages de régimes d'ondes sationnaires.

La pièce G comporte une plaque horizontale qui coulisse entre 2 tringles graduées ; elle permet d'écarter plus ou moins la sonde du centre du faisceau ultrasonore.

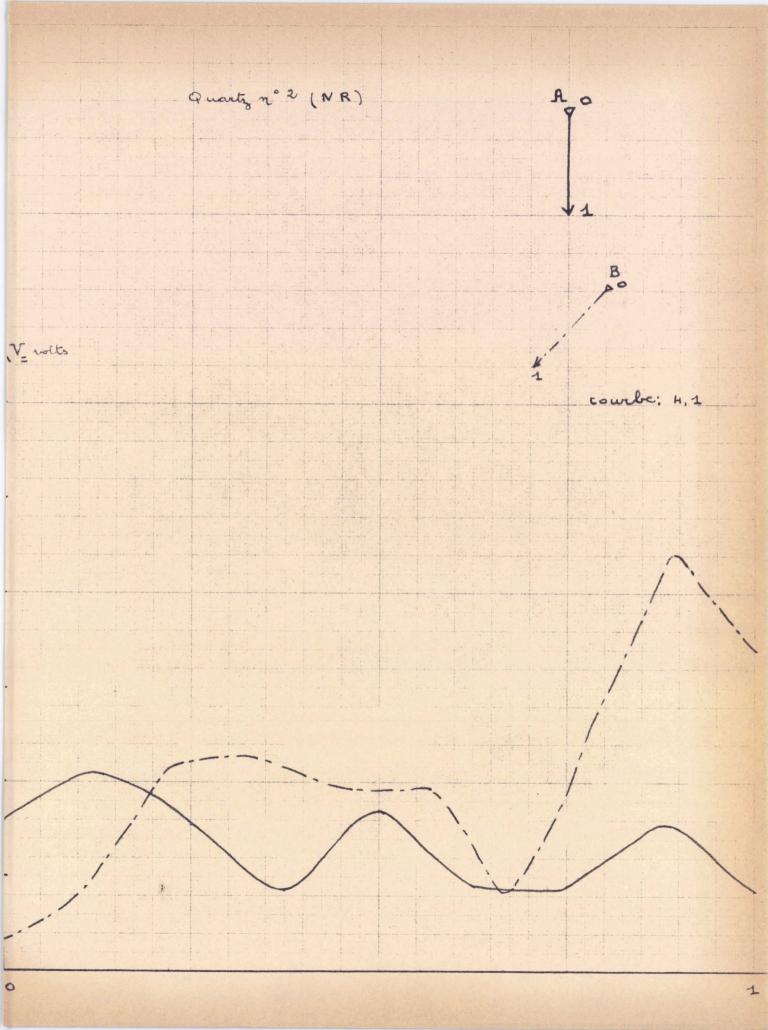

Enfin, le tout est adapté sur la pleque tournante S qui offre la possibilité d'effectuer les mesures dans tous les méridiens.

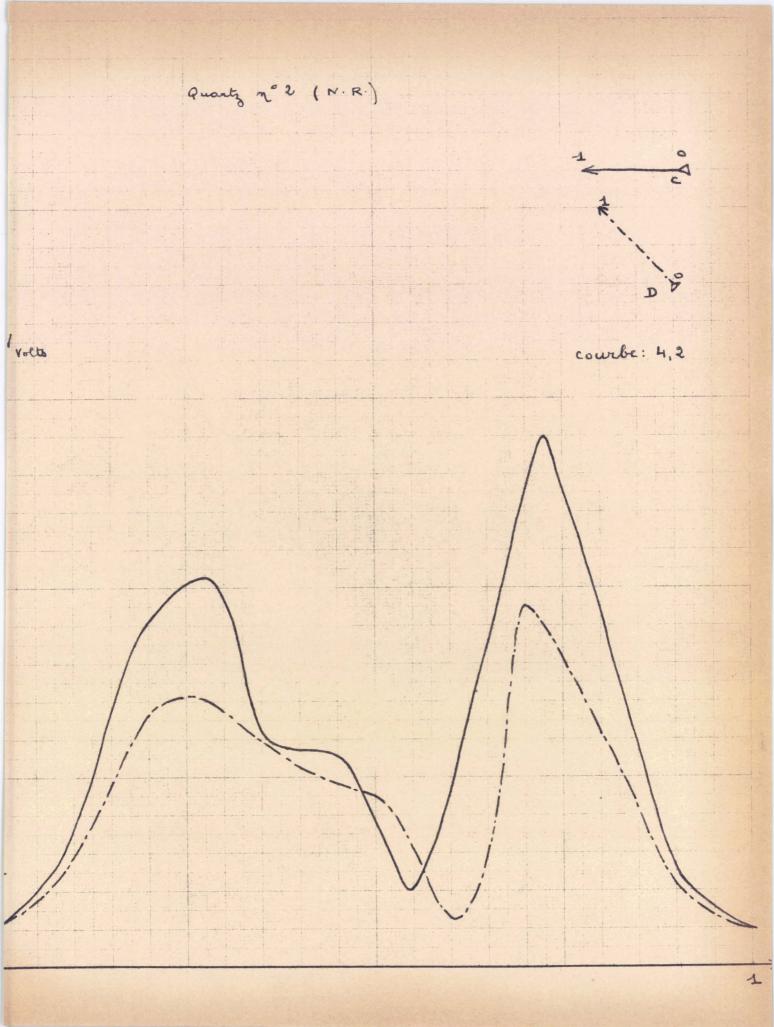
Mos pointés seront effectués tous les ½ cm. dans quatre directions A, B, C, D, repérées par rapport au générateur. (figure

Les mesures seront faites dans le sens O vers l.

La première mesure a été effectuée en réglant générateur et projecteur pour avoir le maximum de puissance : Réglage générateur : F_D = 931,9 kHz.

de la sonde.




 $V_{THT} = 2 \times 400 = 800 \text{ volts}$

Réglage piston : distance piston-quartz d = 7,5/10 mm.

1108708	DIE OOT	e composition F	In voil-days of	2 a - 1, 5/10 mm.	
Direction A:		0			1
	V=volts	1,60 2,10	1,55 0,85	1,70 0,90 0,90	1,55 0,85
Direction B :	National Printer and American State (Control of the Control of the	0	kaluurraen ar filmin salamanan 1.000 ookkas tilligensale (* 1940-1946) 21 de	t.	1
	V _{= V}	0,35 0,90 2,	15 2,25 1,95	5 1,95 0,85 2,55	4,40 3,40
Direction C :	0				1
	∇= 0,45	1,30 3,40 4,	10 2,35 2,20	0 0,80 2,90 5,60	3,25 0,95 0, 40
Direction D :	0				1
	V= 0,4	5 1,15 2,65 2	2,70 2,10 1,8	80 0,50 3,80 2,4	5 0,85 0,40
Nous porton	s V en f	nction de la	position	Courbes: $\begin{cases} 4 \\ 4 \end{cases}$	- 1 - 2.

- 82 -

Les courbes 4 - l nous montraient que dans les directions A et B la puissance était relativement faible.

Les courbes 4 - 2 par contre nous prouvaient l'existence de deux maxima d'inégale amplitude.

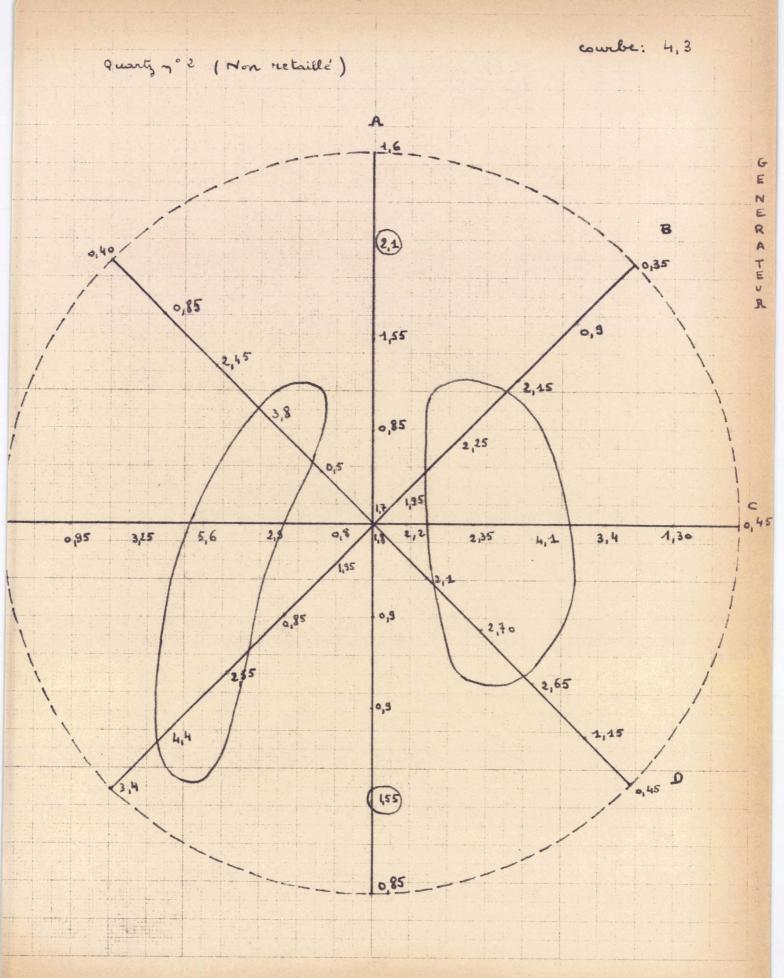
La représentation de ces quatre courbes nous sembla assez peu suggestive et c'est pourquoi nous avons décidé de porter les valeurs sur les rayons d'un cercle qui représenterait dès lors le quartz.

Nous y avons dessiné alors une forme approximative des geysers en traçant les équipotentielles les plus élevées. (courbe:

Ce genre de représentation semblait déjà être une améliora-

a) elle était plus parlante

b) elle permettait de se rendre compte de l'inexactitude possible des courbes comme 4 - 1 en certains points tels que le centre, (cette représentation permet un recoupement le long des différents axes).


Ceci est dû à l'imprécision de la mesure et notamment de la position de la sonde qui est assez mal déterminée.

La courbe 4 - 3 nous montrait l'existence de 2 geysers de part et d'autre de la direction A ce qui expliquait d'ailleurs le peu d'amplitude dans cette direction (4-1)

Nous en avons déduit que le générateur avait été mal réglé. Nous nous sommes donc proposés d'effectuer un réglage au moyen de la sonde:

- a) nous réglons comme précédemment F et d par la hauteur de geyser :
- b) nous mettons la sonde au-dessus du centre du quartz et nous réglons à nouveau F et la distance piston-quartz d pour avoir la tension de sortie maxima.

$$d = 5,3/10 \text{ mm}.$$

C:
$$V_V$$
 0,75 1,45 2,50 6,30 7,10 7,80 7,40 7,10 5,60 2,50 0,90 D: V_V 0,70 1,45 3,80 7,20 7,60 7,50 7,20 7,20 5,20 2,15 0,65

courbe: 4,4

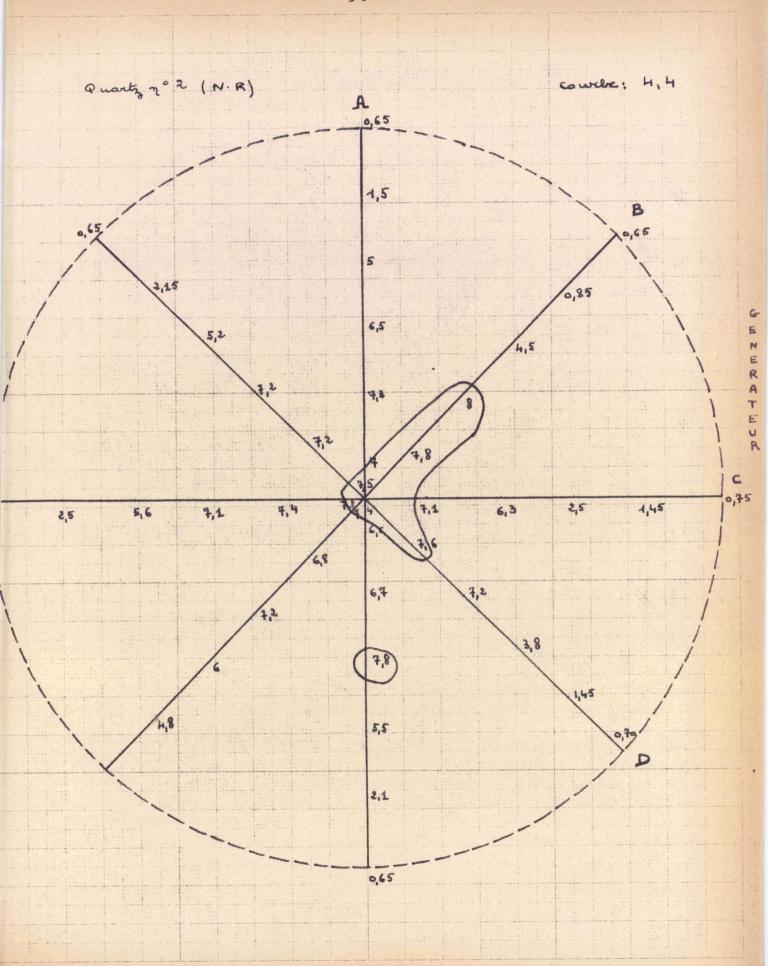
Cette courbe montrait que le geyser était plus centré mais qu'il existait encore des irrégularités.

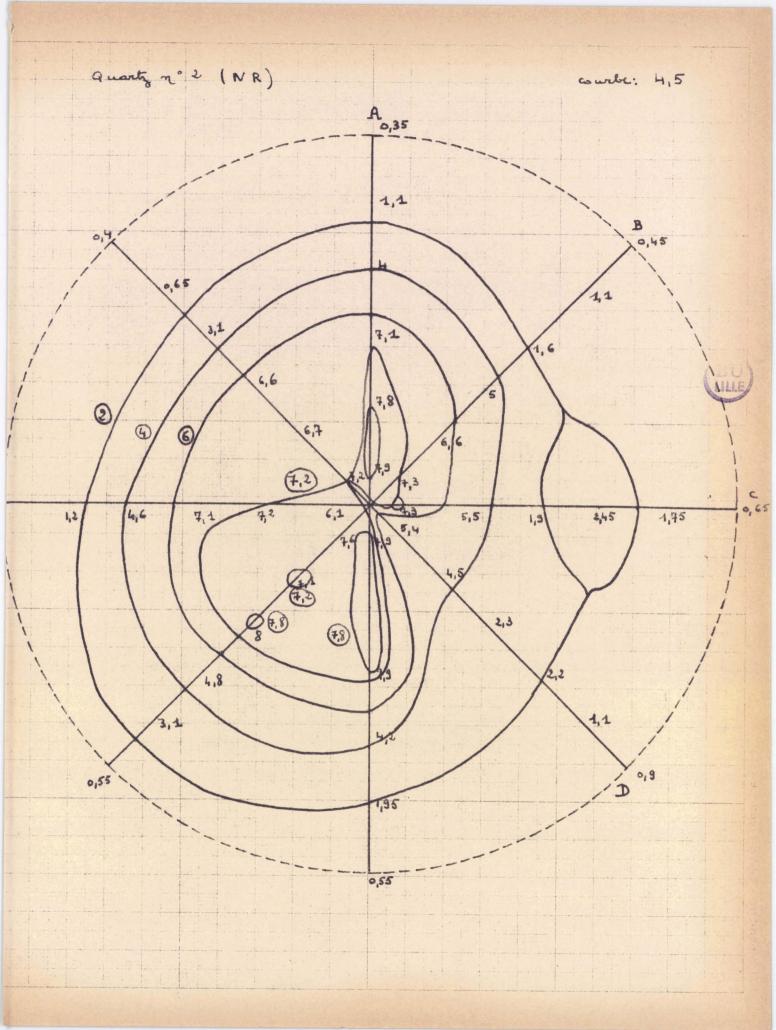
D'autre part, le rendement du générateur montrait que celui-ci n'était pas réglé à son optimum.

Il semblait donc que nous ne pouvions pas être satisfait d'un tel réglage et qu'il fallait peut-être incriminer le parallé-lisme piston-quartz.

Nous avons décidé donc d'effectuer le réglage en mettant la sonde dans le geyser (réglage de distance d "piston-quartz" à \mathbb{F}_p).

Lorsque le générateur est réglé à F_p et d pour avoir le geyser maximum, nous mettons la sonde dans le geyser et nous réglons à nouveau F_p et d. En pratique, le réglage ne changeait guère avec l'introduction de la sonde.

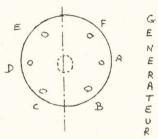

Mous avons décidé ensuite, à partir des mesures et de leur représentation circulaire, de tracer les courbes équipotentielles qui sont aussi des isobares. Sous cette forme, nous pouvions alors apprécier exactement la régularité du champ ultrasonore. (Nous admettons la proportionnalité des pressions entre chaque mesure).


 $F_0 = 922,4 \text{ kHz} ; d = 4,9/10 \text{ mm}.$

Direction:

		0								4	naudiju coppatition v vilonoca plikas kajden v	egjjunsrugensustet voteslakusetka s	1
A	V _{volts}	0,35	1,10	4,00	7,10	7,80	7,90	7,90	8,00	7,90	4,20	1,95	0,55
В		0,45	1,10	1,60	5,00	6,60	7,30	7,60	7,10	8,00	4,80	3,10	0,55
C	Manufacerenik "1784-3349men	0,65	1,75	2,45	1,90	5,50	7,30	6,10	7,20	7,10	4,60	1,25	0,55
D	MILES WEST TRANSPORTED AT THE	0,90	1,10	2,20	2,30	4,50	5,40	7,20	6,70	6,60	3,10	0,65	0,40
			AT AURIOUS	C. AND ASSESSMENT OF THE PARTY NAMED IN	TOTAL ST.	MANUSCOCKE AND STREET	to adventurate of the an individual service	AND THE PROPERTY OF THE PARTY OF THE PARTY.	O KTONE O AND CONTROL OF THE SECOND CONTROL	A rock a lease of property of			

courbe: 4-5



On voit par cette nouvelle interprétation

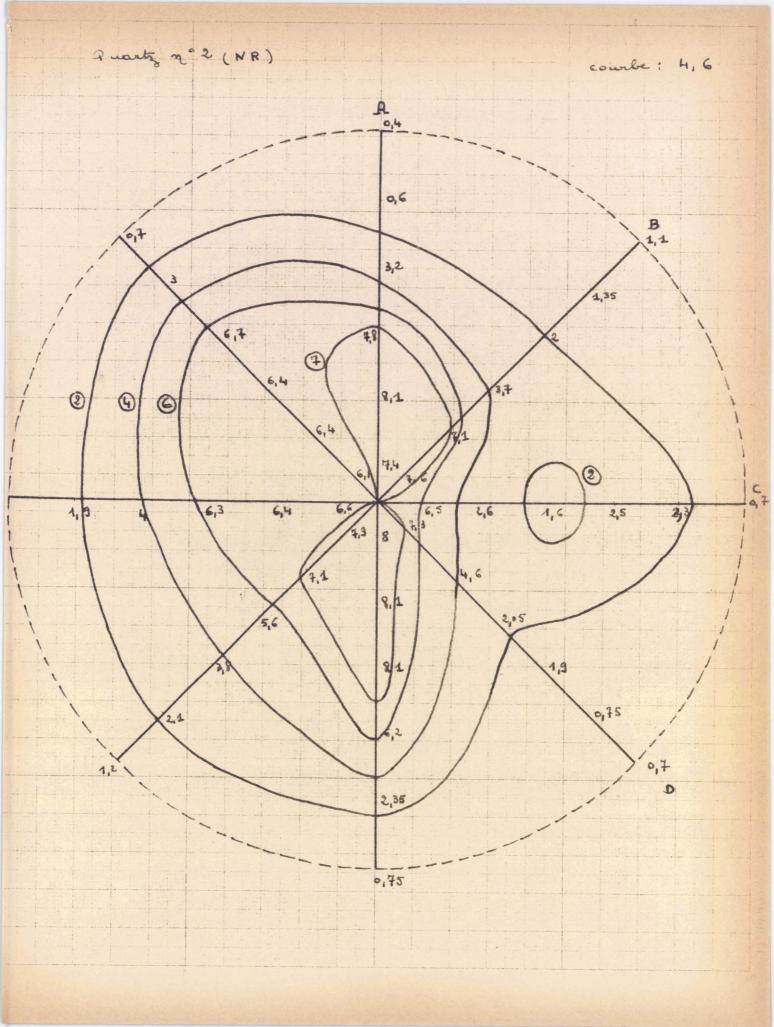
- a) une tendance à avoir plus d'énergie à gauche qu'à droite
- b) une faille dans la direction D.

Il semble donc bien que l'on doit entreprendre un réglage du parallélisme pour améliorer le champ ultrasonore.

La position de l'électrode-piston par rapport au carter (et par conséquent par rapport au quartz fixé au carter) est déterminée par le serrage de 6 écrous A, B, C, D, E, F.

Nous avons donc essayé de faire varier le parallélisme méthodiquement :

- a) en desserrant A d'un & tour et serrant D d'l & tour
- b) à partir de cette position, en serrant A d'1 tour et desserrant D d'1 tour
- c) en serrant F d'l 1 tour et desserrant B d'un 1 tour
- d) en desserrant F d'un tour et serrant B d'un tour.
- a) Nous desserrons A d'un ½ tour et nous serrons D d'un ½ tour.


(Le procédé de réglage étant toujours le même : nous réglons Fp et d par la hauteur du geyser et nous vérifions par d que la tension de sortie de la sonde dans le geyser est maxima).

Fp = 922,4 kHz ; d = 4,8/10 mm.

Water and		0											1
V:	Direction A	0,40	0,60	3,20	7,80	8,10	7,40	8,00	8,10	8,10	6,20	2,35	0,75
	В	1,10	1,35	2,00	3,70	7,10	7,60	7,90	7,10	5,60	3,80	2,10	1,20
M67/Manager.	C	0,70	2,30	2,50	1,60	2,60	6,50	6,60	6,40	6,30	4,00	1,90	0,75
	D	0,70	0,75	1,90	2,05	4,60	7,30	6,10	6,40	6,40	6,70	3,00	0,70

courbe: 4,6

L'énergie semble ici s'être portée un peu plus vers la gauche dans la direction D.

b) Nous serrons A d'un tour et nous desserrons D d'un tour.

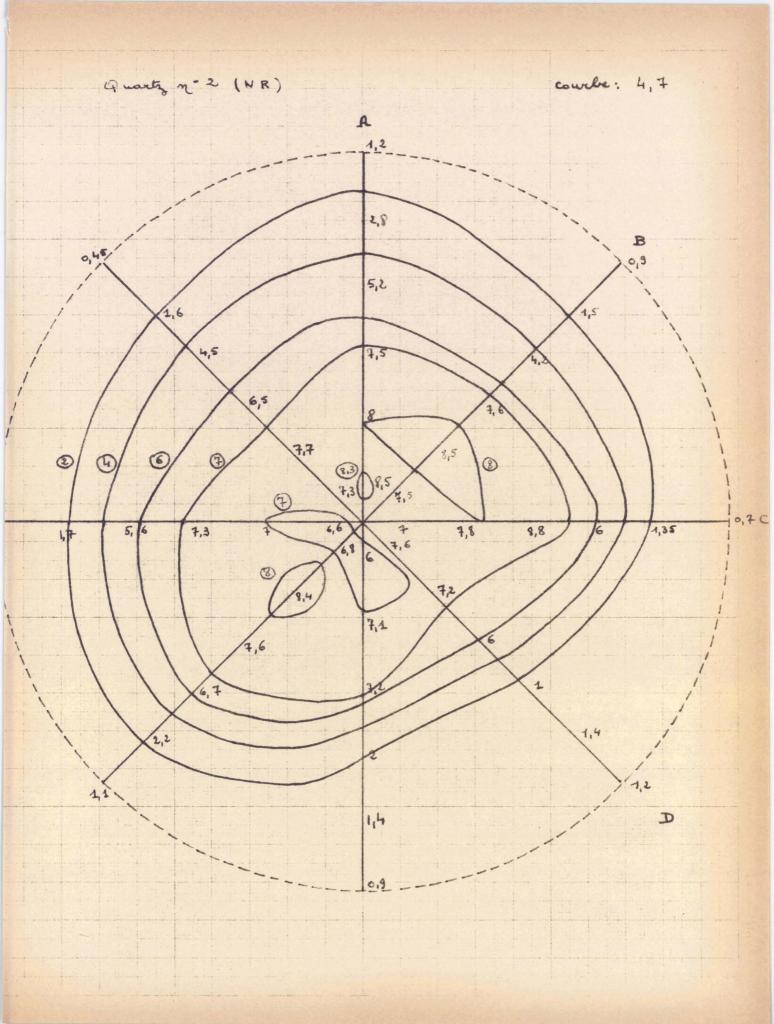
$$F_p = 924,1 \text{ kHz}; d = 4.8/10 \text{ mm}.$$

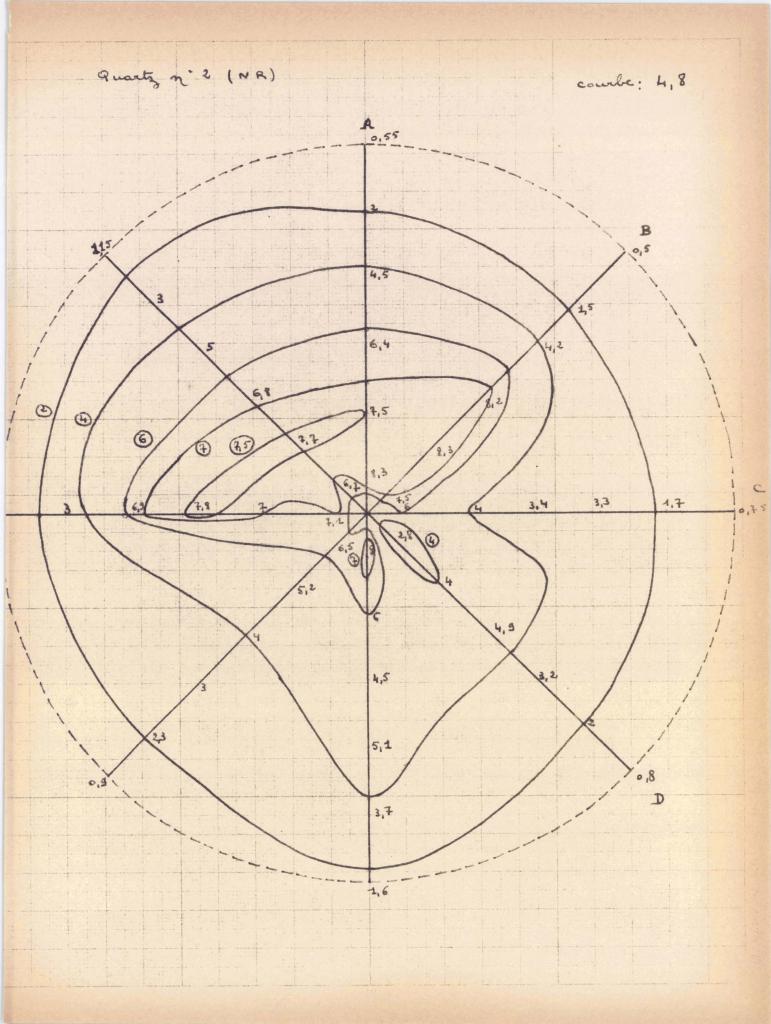
	0						T No COMPANY CONTROL TEXTS 1 TO ASSESS	A DESCRIPTION OF THE ACT OF THE	TO THE THE PART OF	particular to the second state.	on the state of th	1
V:Direction A	1,20	2,80	5,20	7,50	8,00	8,50	6,50	7,10	7,20	2,00	1,40	0,90
B	0,90	1,50	4,20	7,50	8,50	7,50	6,80	8,40	7,50	6,70	2,20	1,10
C	0,70	1,35	6,00	8,80	.7,80	7,00	6,60	7,00	7,30	5,60	1,70	0,80
D	1,20	1,40	1,00	6,00	7,20	7,60	7,30	7,70	6,50	4,50	1,60	0,45

courbe : 4,7

Cette courbe semblait très satisfaisante. Mais il ne s'agissait pas d'arrêter là les expériences pour trois raisons :

- Nous n'étions pas sûrs d'être à l'optimum (la suite des déréglages nous en donnera la certitude).
- Nous voulions voir les déformations successives.
- Le quartz monté était le quartz nº 2 donc un quartz non retaillé. Il faudrait de toute façon ré-équiper le projecteur d'un bon quartz.
- c) F est serré d'un ½ tour et B desserré d'un ½ tour.


 $F_0 = 922,7 \text{ kHz}$; d = 5,1/10 mm.


			TD =	9229	KIIZ	s O	= 59-	10 1	illi a			
	0										47.7	1
V: Direction A	0,55	2,00	4,50	6,40	7,50	8,30	8,00	6,00	4,50	5,10	3,70	1,60
В	0,50	1,50	4,20	8,20	8,30	7,50	6,50	5,20	4,00	3,00	2,30	0,90
С), 75	1,70	3,30	3,40	4,00	6,00	7,10	7,00	7,80	6,90	3,00	0,60
D	0,80	2,00	3,20	4,90	4,00	2,80	6,70	7,70	6,80	5,00	3,00	1,15

courbe : 4,8

d) F est desserré d'un tour et B serré d'un tour.

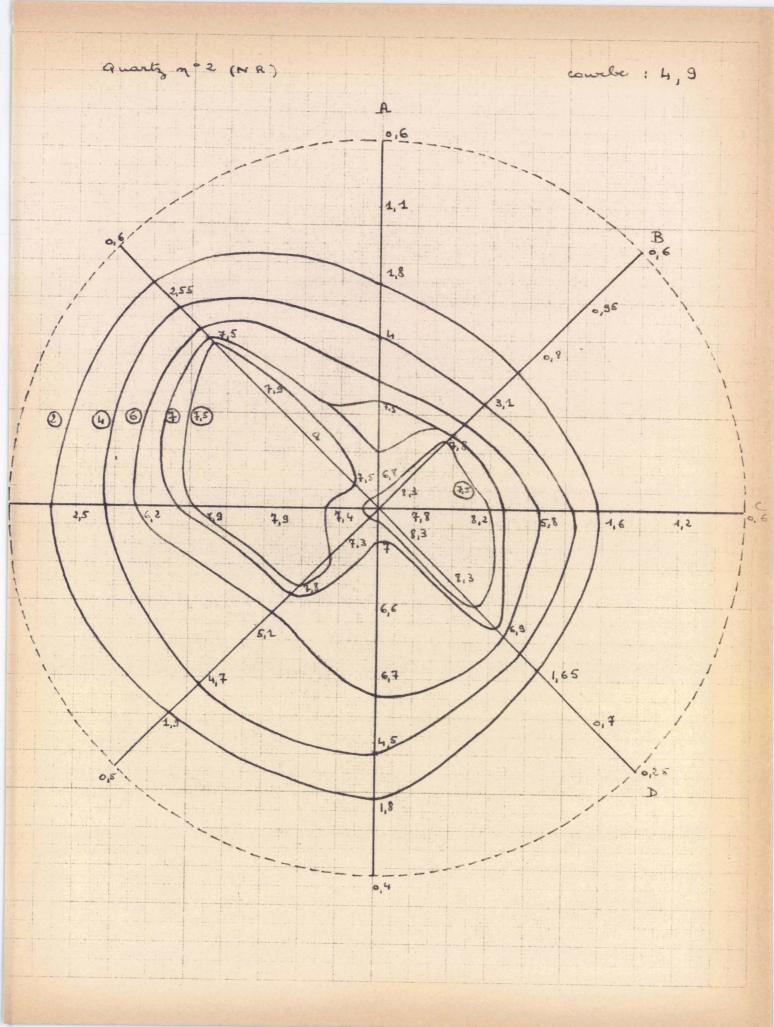
$$F_D = 922,7 \text{ kHz}$$
; $d = 5,1/10 \text{ mm}$.

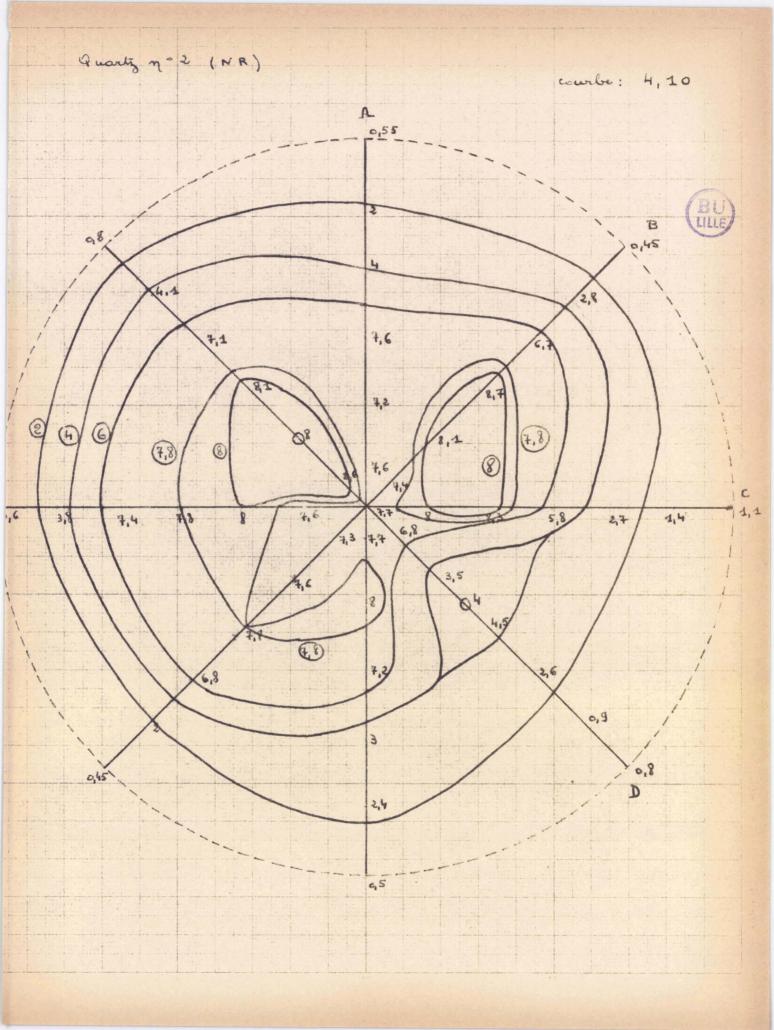
	0					,						
V:Direction A	0,60	1,10	1,80	4,00	7,50	6,80	7,00	6,60	6,70	4,50	1,80	0,40
В	0,60	0,95	0,80	3,10	7,80	8,30	7,30	7,80	5,10	4,70	1,90	0,50
С	0,60	1,20	1,60	5,80	8,20	7,80	7,40	7,90	7,90	6,20	2,50	1,10
D	0,25	0,70	1,65	6,90	8,30	8,30	7,50	8,00	7,90	7,50	2,55	0,60

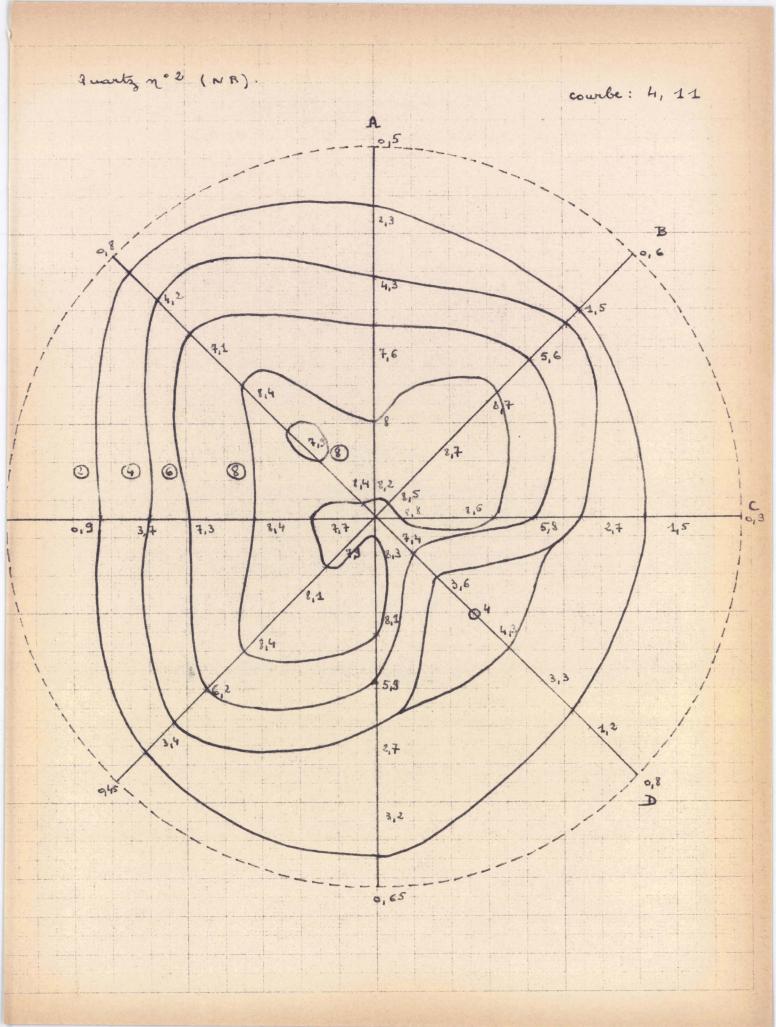
courbe: 4,9

Parmi les quatre courbes obtenues avec les précédents réglages, la plus satisfaisante était manifestement la courbe : 4,7.

Nous avons donc cherché par desserrage convenable de B et serrage de F à réobtenir une courbe semblable à 4,7 c'est-à-dire des équipotentielles assez bien centrées et assez régulières.


	0				1
V: Direction A	0,55 2,00	4,00 7,60	7,20 7,60 7,	70 8,00 7,20 3,00	2,40 0,50
В	0,45 2,80	6,70 8,70	8,10 7,40 7,	30 7,60 7,80 6,80	2,00 0,45
C	1,10 1,40 2	,70 5,80 8	,30 8,00 7,70	7,60 8,00 7,80 7,4	40 3,80 0,60
D	0,80 0,90	2,60 4,50	3,50 6,80 8,	60 8,00 8,10 7,10	4,10 0,80


courbe : 4,10


Cette courbe semblait assez satisfaisante, mais nous avons refait les mesures pour vérifier leur reproductibilité.

La courbe 4,11 montre que les équipotentielles se retrouvent dans leur ensemble.

		0											1
V: Tirection	A	0,50	2,30	4,30	7,60	8,00	8,20	8,30	8,10	5,90	2,70	3,20	0,65
	В	0,60	1,50	5,60	8,70	8,70	8,50	7,90	8,10	8,40	6,20	3,40	0,45
	C	0,90	1,50	2,70	5,80	8,60	8,80	7,70	8,40	7,30	3,70	0,90	0,65
*	D	0,80	1,20	3,30	4,30	3,60	7,40	8,40	7,90	8,40	7,10	4,20	0,80

Cette étude détaillée des champs permet le réglage du projecteur quant au parallélisme piston-quartz.

Cette étude ayant été faite sur un quartz non retaillé, nous nous sommes donc proposés de la recommencer avec un quartz nouvellement surfacé (au 1/2 micron pres).

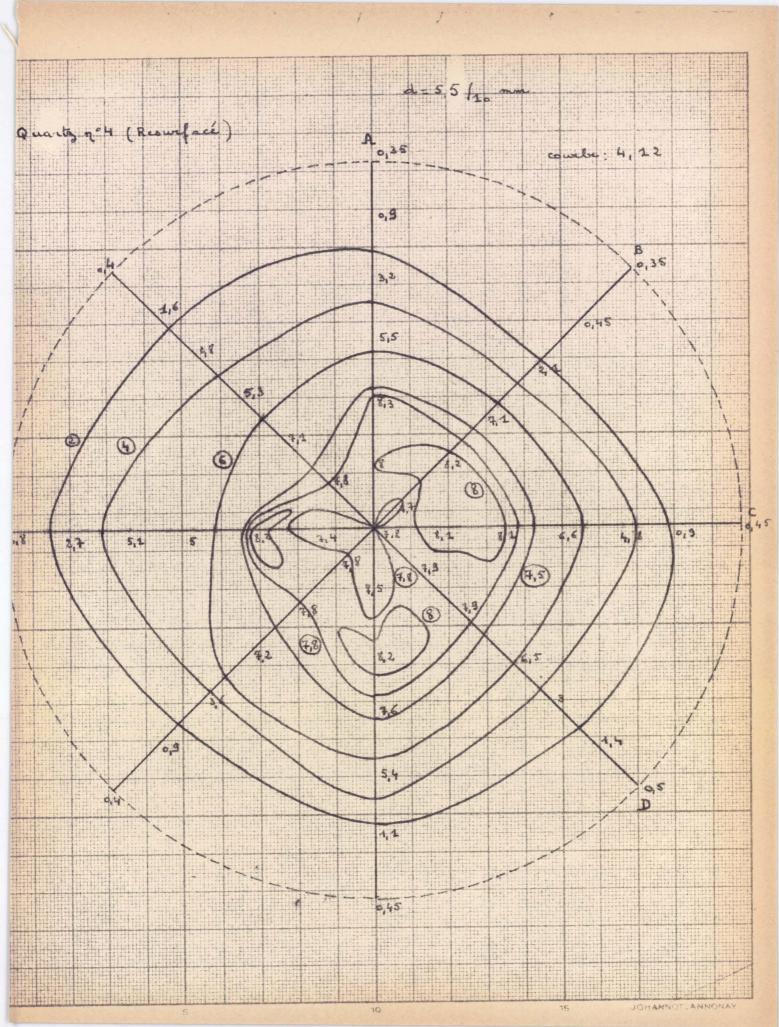
Nous verrons, en outre, que ce second essai nous permettra de perfectionner notre méthode de réglage en ce qui concerne sa rapidité : ce sera là l'objet du paragraphe C.

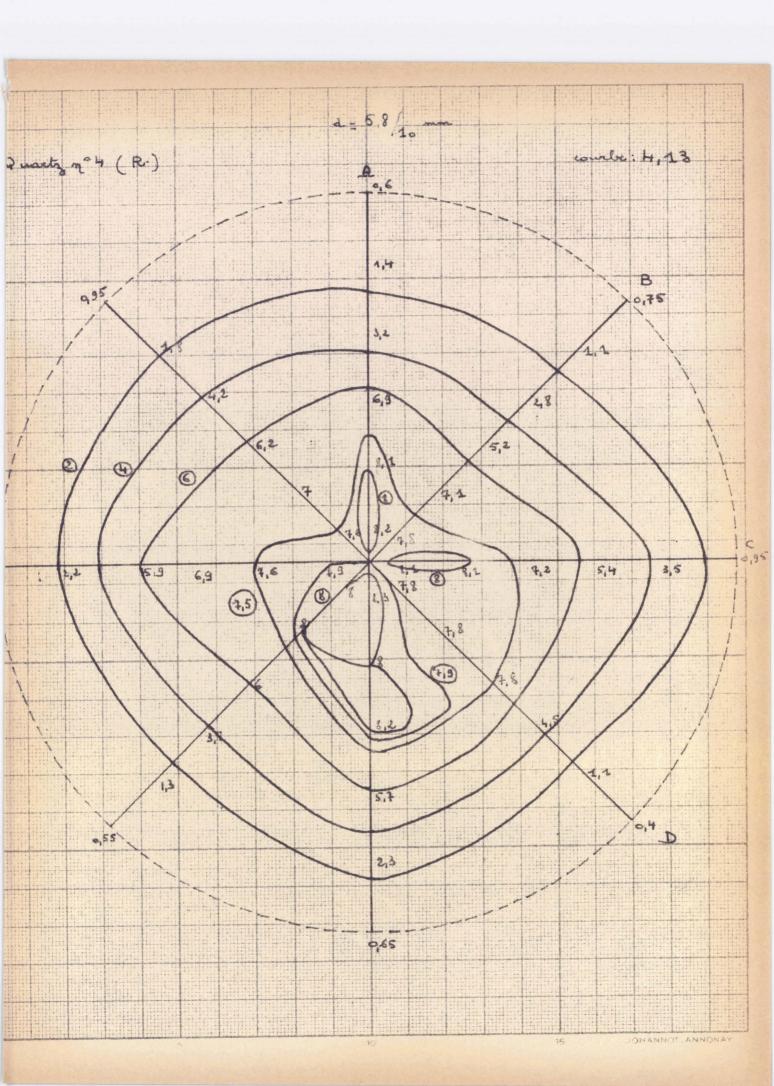
C .- ETUDE DES CHAMPS PRODUITS PAR LE QUARTZ Nº 4

Il y avait, au laboratoire, un second projecteur que l'on devait équiper d'un quartz nouvellement resurfacé. Nous avons donc pu faire l'étude des champs produits par un tel quartz, le n° 4.

Le quartz étant monté sur le projecteur, le piston lui étant le plus parallèle possible (nous cherchons aussi à centrer le piston par rapport au quartz) nous faisons un premier essai au réglage optimum, obtenu par la hauteur maximum du geyser.

 $F_D = 917,4 \text{ kHz}$; d = 5,5/10 mm.


		0	7											1
V:Direction	A	0,35	0,90	3,20	5,50	8,30	8,00	7,70	7,50	8,20	7,60	5,40	1,10	0,45
	В	0,35	0,48	5 2,10	7,	LO 8,	20 7,	70 7,	80 7,	80 7,2	0 3	,60 0	,90 0	,40
	C	0,45	0,90	4,80	6,60	8,10	8,10	8,00	7,40	8,20	5,00	5,10	2,70	0,80
	D	0,50	1,40	3,00	6,50	7,90	7,90	7,80	7,80	7,10	5,30	2,80	1,60	0,40


courbe : 4,12

Cette courbe montre un champ assez bien réparti.
Pour connaître l'inclinaison éventuelle du piston par rapport au quartz, il nous faut, comme on l'a vu précédemment, dérégler la distance piston-quartz d de part et d'autre de cette distance d = 5,5/10 mm.

Nous mettrons donc, tout d'abord, successivement : d = 5,8/cmm et d = 5,2/10 mm.

		0						đ	= 5,8	3/10 r	nm		1
V: Direction	A	0,60	1,40	3,20	6,90	8,10	8,20	8,30	8,00	8,20	5,70	2,30	0,65
	В	0,75	1,10	2,80	5,20	7,10	7,80	8,00	8,00	6,00	3,80	1,30	0,55
	C	0,95	3,50	5,40	7,20	8,10	8,10	7,90	7,60	6,90	5,90	2,20	0,70
	D	0,40	1,10	4,50	7,80	7,80	7,80	7,50	7,00	6,20	4,20	1,80	0,95

d = 5.2/10 mm.

	0
VaDirection A	0,80 2,60 4,80 8,00 8,70 8,70 8,30 8,10 8,10 6,70 2,70 0,60
B	0,60 2,20 4,70 7,20 7,90 8,30 8,20 8,10 8,10 6,80 2,90 0,60
С	1,30 3,30 6,30 7,80 8,30 8,30 8,30 8,30 8,00 8,00 6,00 1,40 1,10
D	0,80 2,80 6,80 7,90 8,00 8,10 8,10 8,10 8,20 6,20 1,30 1,10

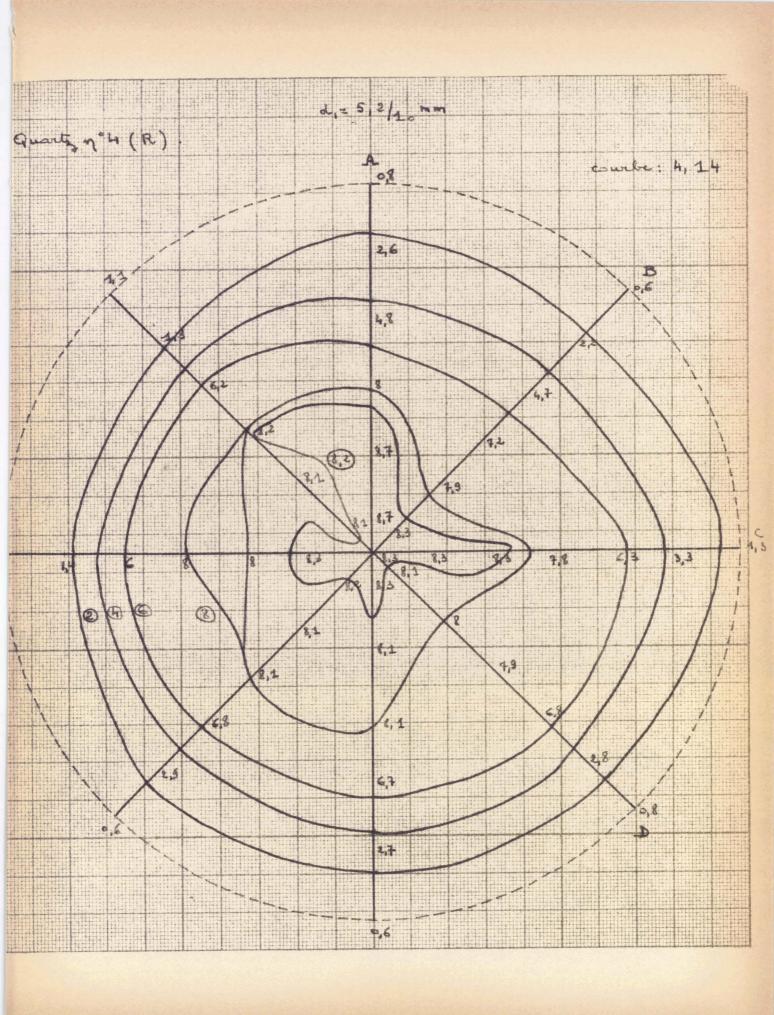
courbe : 4,14

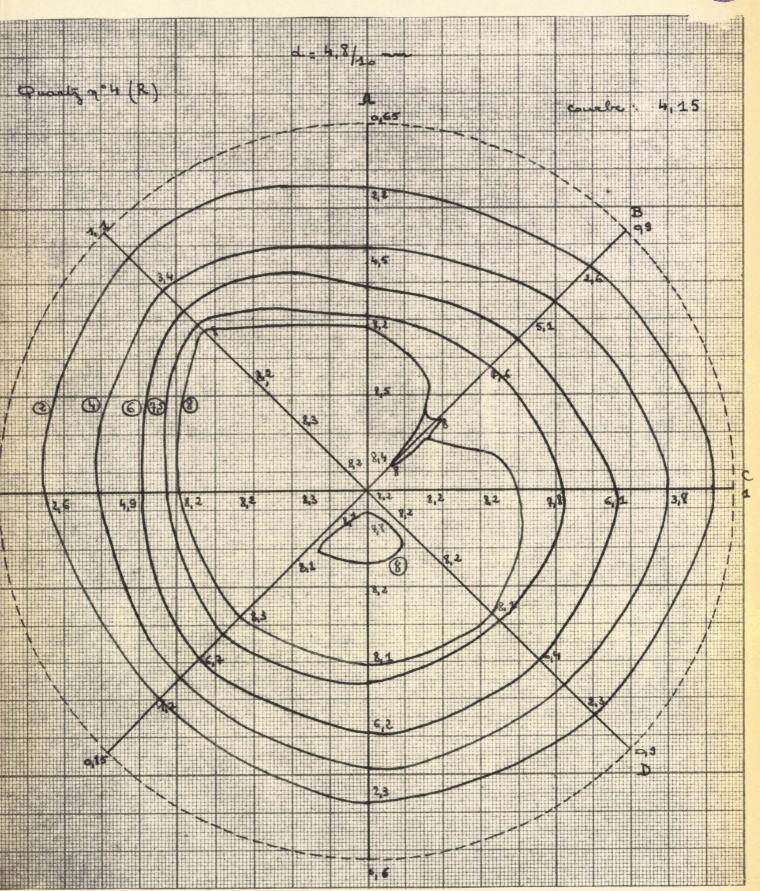
Il semble alors que, lorsque la distance d augmente de 5,2/10 mm à 5,8/10 mm, les champs se déplacent de la gauche vers la droite.

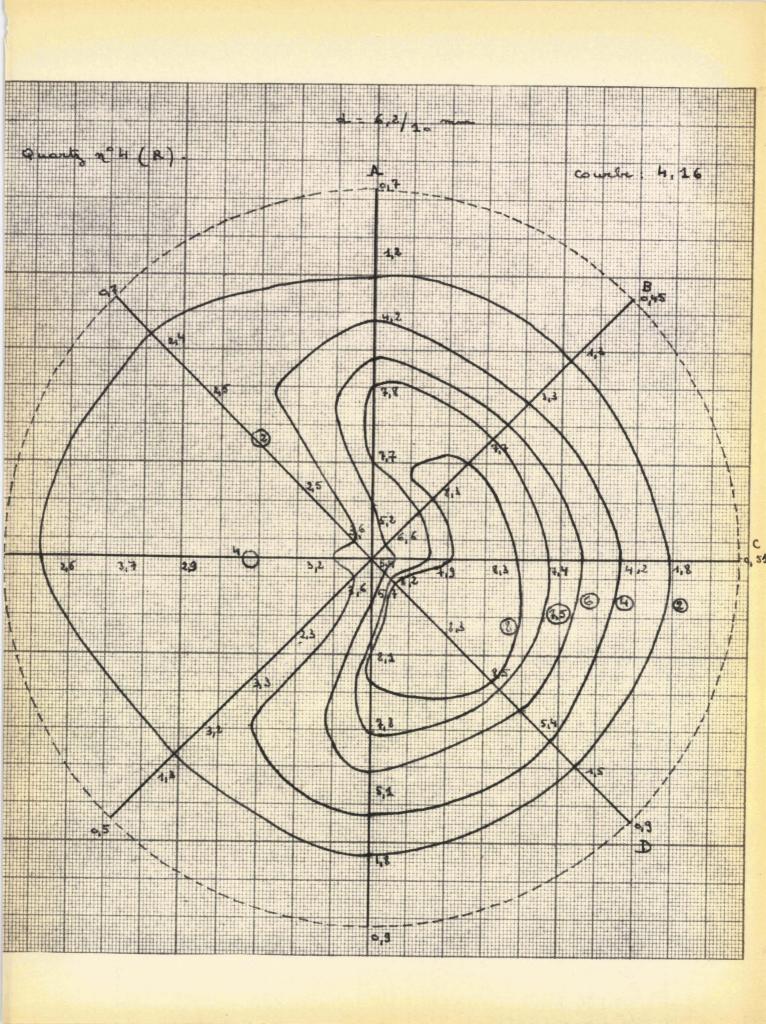
Pour en être plus sûr, nous avons donc refait 2 courbes l'une à 4,8/10 mm et l'autre à 6,2/10 mm.

d = 4,8/10 mm

	-	0		1
V:Direction .	A	0,65 2,20 4,50 8,20 8,50 8,40 7,80 8,20 8,10 6,20	2,30	0,60
The second section is the consequent of the second section of the section of the second section of the section of the second section of the section of the second section of the secti	В	0,90 2,60 5,10 7,60 8,00 8,00 8,10 8,10 8,30 6,70	1,70	0,85
	C	1,00 3,80 6,10 7,80 8,20 8,20 8,20 8,30 8,20 8,20 4,9	0 2,60	1,00
Contract of the Contract of th	D	0,90 2,30 6,40 8,10 8,20 8,20 8,20 8,30 8,20 8,00	3,40	1,10

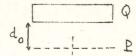

courbe : 4,15


d = 6,2/10 mm.


	. 09		
	0		1
V:Direction A	0,70 1,20 4,	20 7,80 7,70 5,20 5,70 8,10 7,80 5,10 1,80	0,90
В	0,45 1,30 3,	30 7,70 8,30 6,60 3,60 2,30 3,30 3,20 1,30	0,50
C	0,55 1,80 4,2	07,408,307,905,403,204,002,903,702,60	1,30
D	0,90 1,50 5,	40 8,30 8,30 8,20 3,60 2,50 2,00 2,50 2,40	0,70

courbe : 4,16

Ces deux dernières courbes montrent bien que, lorsque la distance augmente, le geyser (ou les régions de maxima) se déplacent de la gauche vers la droite.



Considérons donc le quartz et le piston horizontaux et soit do leur distance optima.

Nous travaillons au maximum de rendement Nous travallions an maximum de fondome (c'est-à-dire $V_{THT} = 2.000 \text{ V}$; $I_{THT} = 0.2 \text{ A}$; d_0 geyser de 5 cm environ) :

Cela revient à s'arranger à ce que l'énergie réfléchie par le piston revienne en phase sur le quartz pour être finalement renvoyée dans la cuve à eau.

Cette distance do correspond environ à $\frac{\lambda}{2}$; en effet,

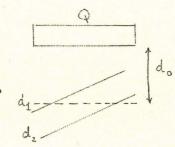
Apétrole > 1,4 mm. Or, nous travaillons toujours aux alentours de 0,5; 0,6 mm soit λ moins une distance due à l'anomalie de propaga-

tion au voisinage du piston et de la source.

Essayons donc, à partir de la position idéale do et des courbes, de trouver l'inclinaison du piston par rapport au quartz. Les courbes montrent que le champ se déplace de la gauche vers la droite quand la distance d augmente.

Si le piston était incliné vers la droite, quand d serait faible (position d]) c'est la partie à droite qui serait à la distance do optima :

le geyser serait à droite.


Quand la distance d augmenterait (piston en d2), c'est la partie à gauche qui serait à la distance optima : le geyser serait à gauche.

Notre piston se trouve donc incliné non pas vers la droite mais vers la gauche.

On voit bien alors que

si d est faible (d1) : le champ est à gauche si d est grand (d2) : le champ est à droite.

Les courbes 4,15 et 4,16 montrent que notre piston se trouve incliné vers la gauche.

D'autre part, considérant qu'au milieu de l'intervalle (4,8; 6,2) les champs sont convenables, il s'en déduit qu'il faut donc relever le piston à gauche et l'abaisser à

droite d'une quantité a = 6, 2 - 4, 8 = 0, 7/10 mm.

D'autre part, les écrous de réglage situés, par rapport à 0, à une distance à peu près double de 1 amèneront à faire un déplacement double soit environ : a' ~ 1,4/10 mm.

Nous avons donc effectué ce réglage à l'aide d'une clef dont le bras de levier est de 29 cm. et nous avons obtenu la courbe:4,17.

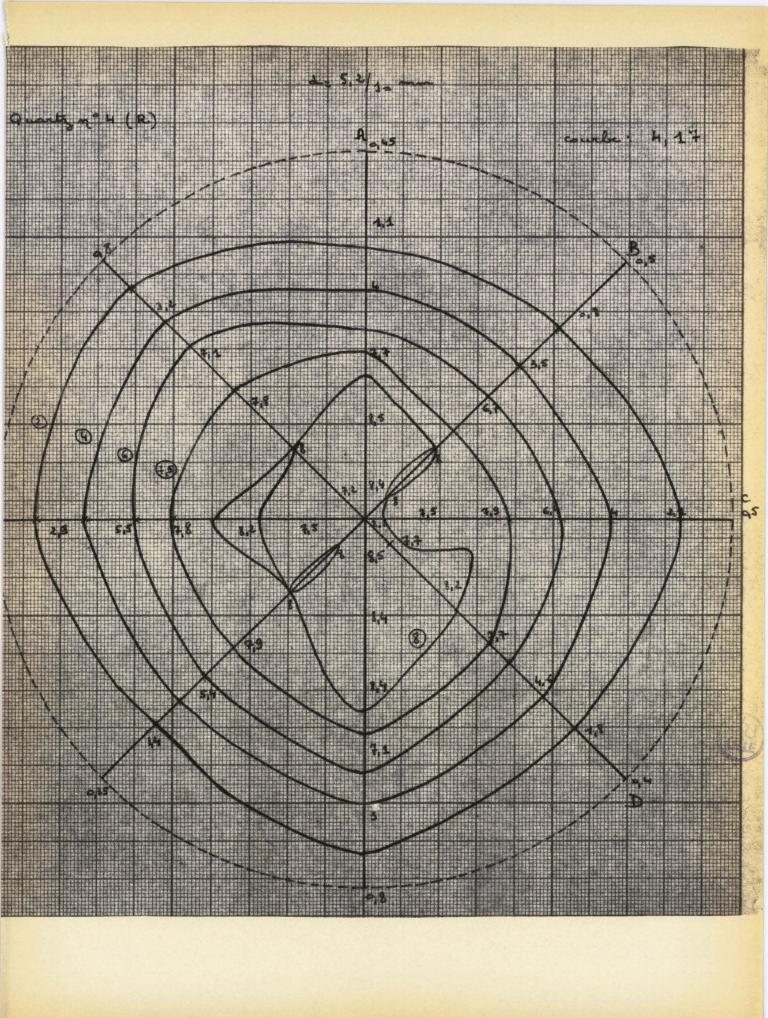
		0		ų.	_ 0,	5710	11111						1
V: Direction	À	0,45	1,L0	4,00	7,70	8,50	8,40	8,50	8,40	8,40	7,10	3,00	0,80
	В	0,50	0,80	3,50	6,50	8,00	8,00	8,00	8,00	7,90	5,40	1,40	0,35
X A	C	0,50	2,10	4,00	6,40	7,90	7,50 8	20 7	,50 8	,20 7	,80 5	,50 2	,90 0,70
	D	0,40	1,80	4,60	7,70	8,20	7,70	7,20	8,00	7,80	7,10	3,20	0,80

d - 5 2/10 mm.

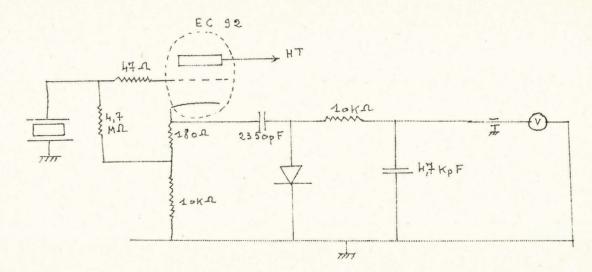
courbe : 4,17

En considérant cette courbe, on peut constater que le mode de réglage a été efficace. Le champ est relativement bien centré au moins jusqu'à l'équipotentielle 7,5.

Au centre, on constate encore quelques irrégularités. Nous les mettrons sur le compte du piston. Le projecteur ayant dû, en effet, être démonté, nous nous sommes aperçus que le piston manquait de planéité et présentait une certaine concavité.


D'autre part, comme nous voulions équiper notre projecteur d'un quartz nouvellement retaillé, nous avons appliqué notre méthode de réglage du parallélisme au quartz n° 3.

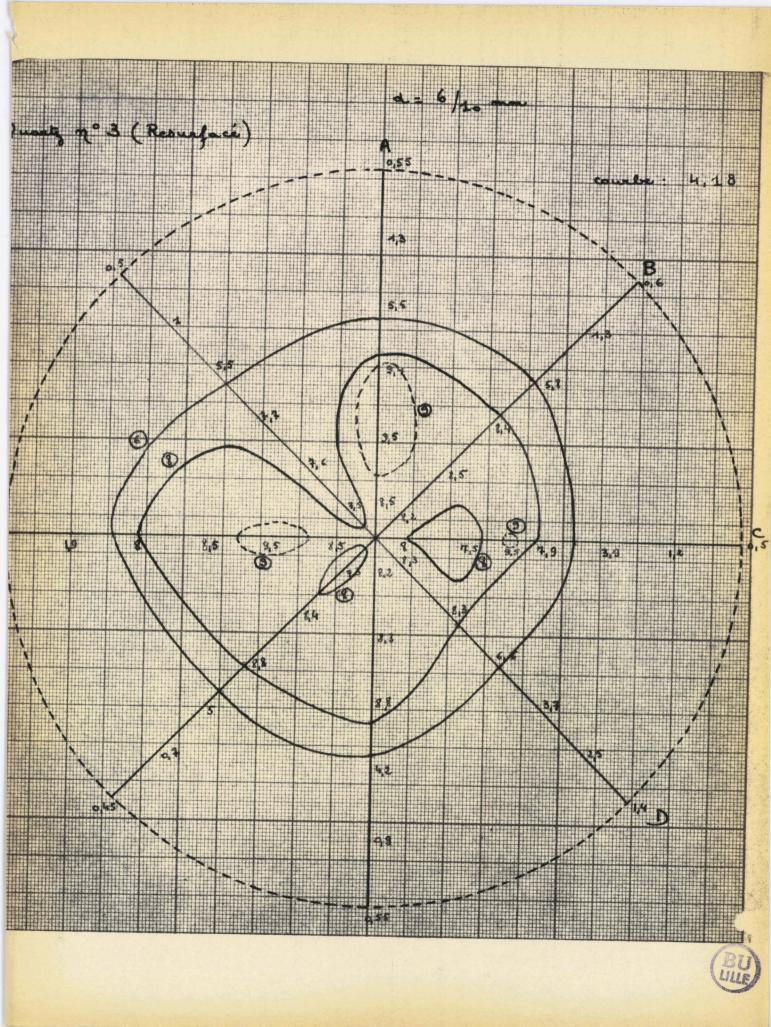
Mous allons voir dans le paragraphe D que ce mode de réglage est assez rapide puisqu'il ne nécessite que le tracé de quatre courbes de champs.

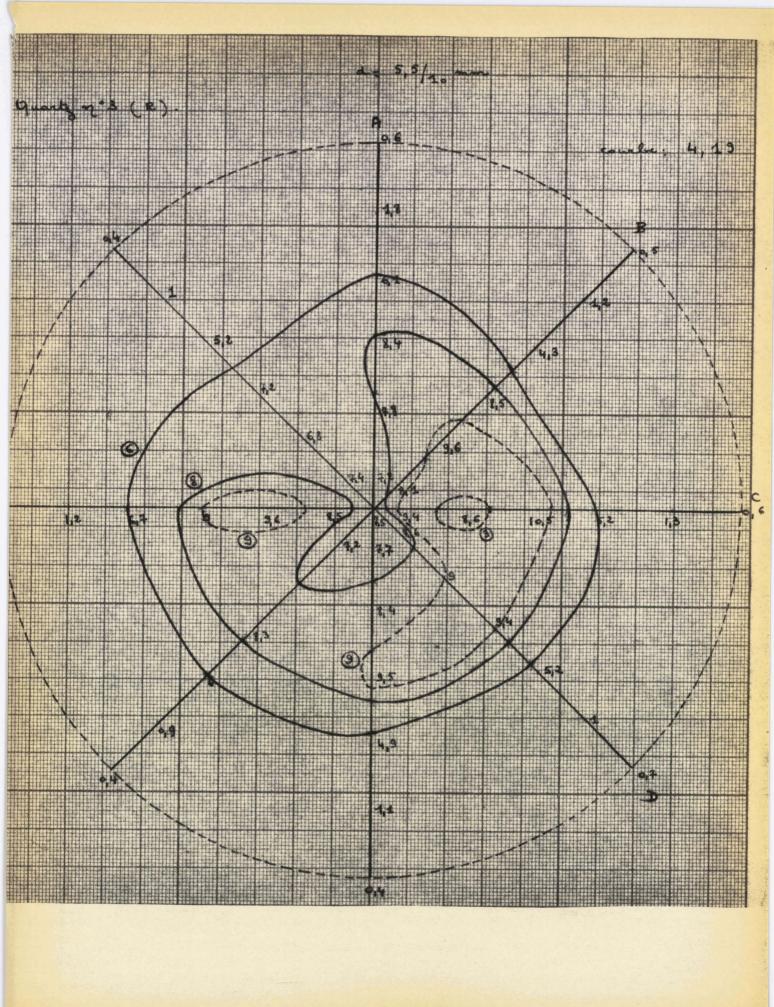

D .- REGLAGE DU PARALLELISME PISTON-QUARTZ AVEC LE QUARTZ Nº 3

Nous noterons tout d'abord une modification de la sonde.

nous avons essayé de remédier à la saturation qu'elle présentait au-delà de 8 volts.

Nous avons donc modifié le montage et avons obtenu une courbe de réponse linéaire jusqu'à environ 15 volts.


Nous remarquerons également que pour le montage de ce quartz nous avons employé la méthode de la bulle.


Nous nous arrangeons pour emprisonner une petite bulle d'air entre le piston et le quartz humecté de pétrole et pour l'amener au centre du piston au moyen des vis de réglage.

ipres quoi, on fait 3 courbes :

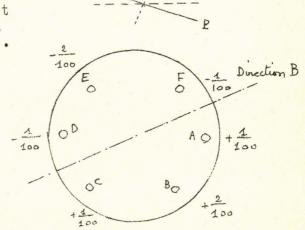
- a) l'une à la distance optimum do (réglage de la hauteur du geyser).
- b) une seconde avec d / do.
- c) une derniere dvec d > do.
- a) do = 6/10 mm; Fp = 934,7 kHz

	0
V:Direction A	0,55 1,30 5,50 9,40 9,50 8,50 8,20 8,30 8,80 4,20 0,90 0,55
В	0,60 1,30 5,80 8,40 8,50 8,20 7,30 8,40 8,80 5,00 0,70 0,45
C	0,50 1,20 3,90 7,90 9,50 7,50 8,00 8,50 9,50 8,50 8,00 1,90 0,40
D	1,40 2,50 3,70 6,60 8,30 8,30 7,50 7,60 7,70 5,50 1,00 0,50
	courbe : 4,18 b) d = do - 0,5/10 mm = 5,5/10 mm :
V:Direction A	0,60 1,80 6,10 8,40 7,80 7,20 7,70 8,40 9,50 4,90 1,10 0,40
V: Direction A	0,60 1,80 6,10 8,40 7,80 7,20 7,70 8,40 9,50 4,90 1,10 0,40 0,50 1,20 4,30 8,50 9,60 8,10 7,20 8,00 8,30 6,00 0,90 0,40
	ST VALUE AND A TO A T

c) $d = d_0 + 0.5/10 \text{ mm} = 6.5/10 \text{ mm}$.

		0											1
V: Direction	A	0,50	1,00	6,40	9,40	9,40	7,10	5,00	4,00	1,40	2,50	1,20	0,60
C. A. Chillege in vising generalized from C 100pm of youth Norman, vic. pyed, (Notice	В	0,60	1,70	3,40	5,80	6,30	7,30	6,20	6,20	6,10	3,60	0,70	0,30
	С	0,50	1,80	2,60	3,50	4,80	3,50	6,70	9,60	9,10	6,30	1,10	0,30
	D	0,90	2,30	3,30	2,70	1,80	3,70	6,80	8,20	9,50	6,50	1,30	0,40

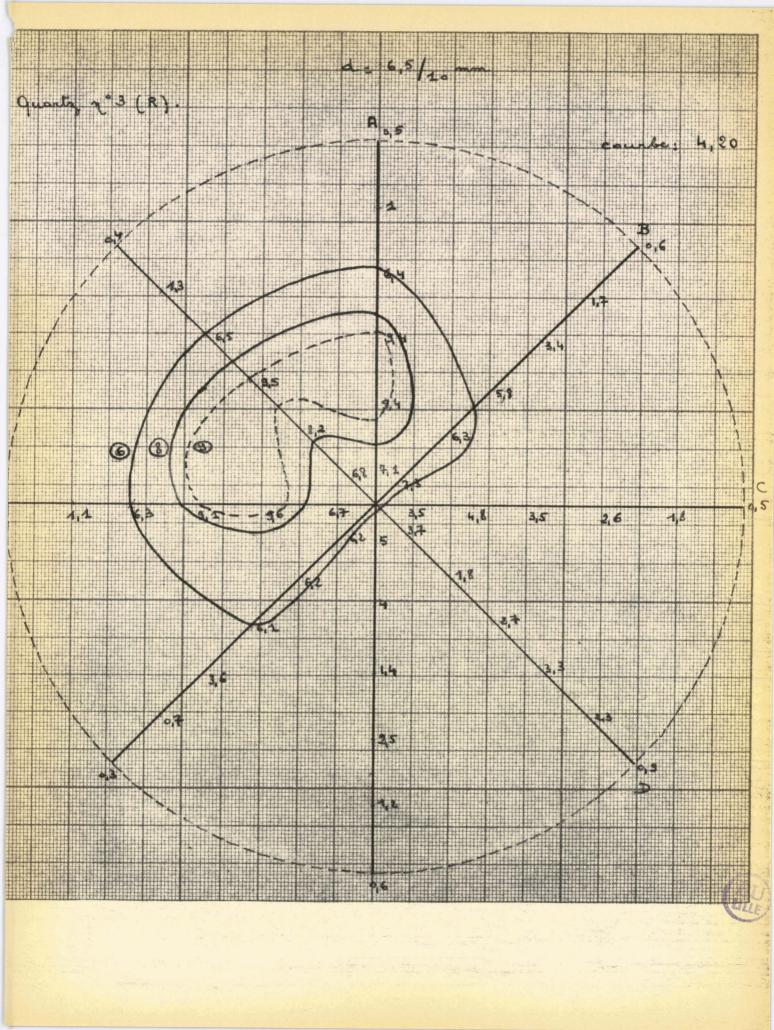
courbe : 4,20

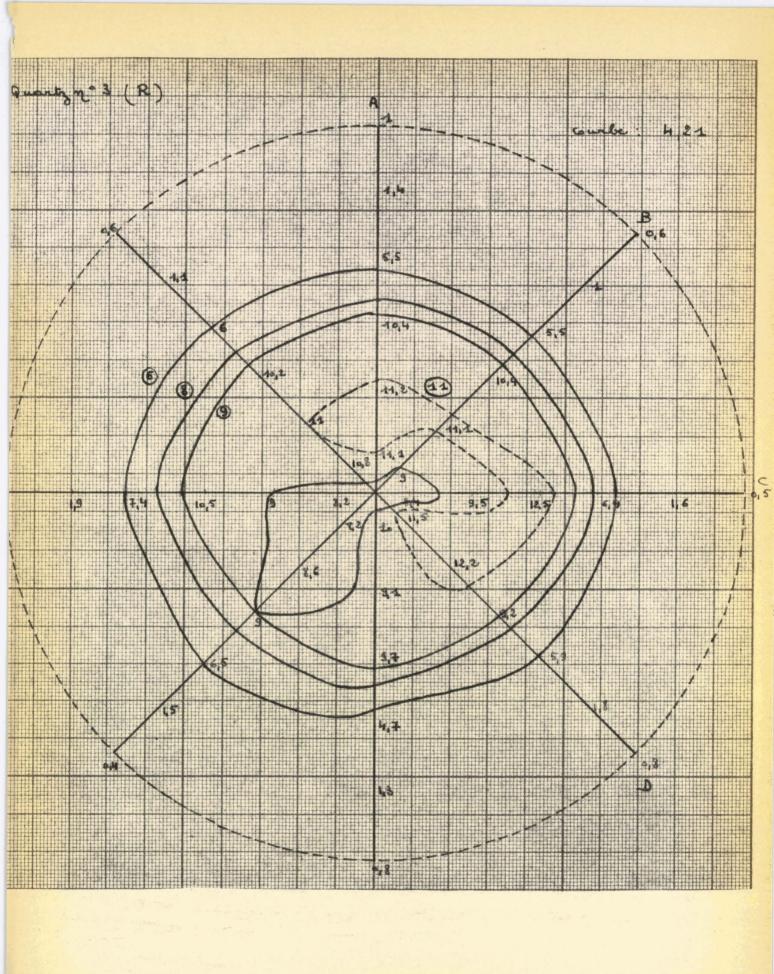

On observe aisément, à l'aide de ces 3 courbes, que le champ se déplace de droite à gauche quand d augmente (L'observation du geyser le montrait aussi). C'est le cas inverse de celui envisagé au paragraphe C avec le quartz n° 4.

Le piston P est donc incliné vers la droite.

Nous remarquons d'autre part que nous devons pivoter autour de la direction B qui reste toujours bonne.

Après ce réglage, nous refaisons une courbe et nous constatons que le champ est convenablement centré.


On a, sur la courbe 4,21, l'équipotentielle 6 qui représente l'image du piston.



Fp = 931,9 kHz; d = 6,2/10 mm.

		0											1
V: Direction	A	1,00	L,40	5,50	10,40	11,20	11,10	10,00	9,10	9,70	4,70	1,30	0,80
	В	0,50	1,00	5,50	10,40	11,10	9,00	8,20	8,60	9,00	6,50	1,50	0,40
	С	0,50	1,60	6,40	12,50	9,50	8,40	8,20	9,00	10,50	7,40	1,90	0,80
	D	0,80	1,80	5,90	9,20	12,20	11,50	10,80	11,00	10,20	6,00	1,10	0,60

courbe : 4,21

Il est facile de résumer cette seconde partie en disant que l'étude des champs ultra-sonores permet un réglage correct du parallélisme piston-quartz.

- a) Ce réglage nécessite 3 courbes à do, d2 < do et d2 > do
- b) Suivant l'allure de ces courbes, on peut en déduire l'inclinaison relative du piston par rapport au quartz.
- c) En déduire le réglage à faire par les vis et vérifier son efficacité par une 4° courbe.

CONCLUSION

- Les deux premiers chapîtres (1 et 2) nous donnent le moyen de tester un quartz. Nous avons vu qu'une meilleure précision et la construction d'un matériel adéquat nous permettraient une détermination correcte des modules d'Young et de piézoélectricité.
- Le chapître 3 nous a permis de mesurer l'adaptation du quartz au générateur et d'envisager une amélioration.
- Le chapître 4 nous a fourni un procédé d'obtention de champs ultra-sonores réguliers.

Nous avons, cependant, toujours travaillé en ondes stationnaires.

On pourrait, avec profit, étudier les déformations éventuelles des courbes de champs en renvoyant l'onde en opposition de phase (bien qu'il soit probable que l'énergie renvoyée par la sonde soit assez faible).

Enfin, dans le cas d'une adaptation parfaite ($\cos \phi = 1$), on aurait une façon simple de mesurer la puissance électrique qu'il s'agirait alors de rattacher à la puissance acoustique.

BIBLIOGRAPHIE

- 1. Deffontaines (E.) : Cours à l'I.S.E.N.
- 2. Cassette (J.) : Diplôme d'Etudes Supérieures Lille (1958)
- 3. Rocard : Dynamique générale des vibrations (1960)
- 4. Basseras : Problèmes de radioélectricité à l'usage de l'ingénieur (1954)
- 5. Becker (G.) : Notion de la résonance de cristaux piézoélectriques oscillants (1957)
- 6. Dognon (A.) : Les ultra-sons et leurs applications (1953)
- 7. Verhoye (P.) : Diplôme d'Etudes Supérieures Lille (1956)
- 8. Trentesaux (B.) : Diplôme d'Etudes Supérieures Lille (1959)