THESE

présentée à la FACULTE des SCIENCES de l'UNIVERSITE de LILLE.

pour obtenir

le titre de DOCTEUR TROISIEME CYCLE (Mention : Chimie de la Houille)

par

François G A S C H K A Licencié - ès - Sciences

CINETIQUE DE L'OXYDATION DU BENZENE SUR CATALYSEURS AU VANADIUM - MOLYBDENE.

Soutenue à LILLE le 1964

Président

R. MAUREL

M.M. J.E. GERMAIN

M. BLANCHARD

Examinateurs

EN SOUVENIR DE HON PERE

10

-

C

0

En

A MA HERE

A MON MAITRE ET PRESIDENT DE JURY Monsieur le Professeur J.E. GERMAIN Directeur de l'Ecole Nationale Supérieure de Chimie de LILLE

100 20

9

Ce travail a été réalisé au Centre de Carbochimie de la Faculté des Sciences de LILLE. Nous tenons à exprimer à Monsieur le Professeur J.E. GER AIN toute notre reconnaissance. Il a inspiré cette étude et nous a guidé constamment.

Nous remerçions Monsieur R. MAUREL et Monsieur M. BLANCHARD qui ont bien voulu faire partie du Jury d'Examen.

Nous ne saurions oublier le Service des Bourses des Mines des Houillères du Bassin du Nord et du Pas-de-Calais dont l'aide matérielle nous a permis d'exposer aujourd'hui cette thèse.

FACULTE DES SCIENCES DE LILLE

Doyens honoraires : MM. P. PRUVOST, M.H. LEFEBVRE.

Professeurs honoraires :

MM. ARNOULT, BEGHIN, BROCHARD, CAU, CHAPELLON, CHAUDRON, CORDONNIER DEHEUVELS, DEHORNE, DOLLE, FLEURY, P. GERMAIN, LAMOTTE, LELONG, KOURGANOFF, Mme LELONG, MM. MAZET, A. MICHEL, NORMANT, PARISELLE, PASCAL, PAUTHENIER, ROIG, ROSEAU, ROUBINE, WIEMANN, ZAMANSKY.

Doyen : M. PARREAU, Professeur de Mathématiques

Assesseur : M. DURCHON, Professeur de Zoologie

Professeurs :

٢. _

.

М1.	BACCHUS	Astronomie
	BERKER	Mécanique des Fluides
	BONNEMAN-BENIA	Chimie et Physico-Chimie industrielles
	BONTE	Géologie appliquée
	BOUISSET	Physiologie animale
Метте	CHAMFY	Mathématiques
141.	CORSIN	Paléobotanique
	DECUYPER	Mathématiques
	DEFRETIN	Biologie marine
	DEHORS	Physique industrielle
	DELATTRE	Géologie
	DESCOMBES	Calcul différentiel
	GABILLARD	Radioélectricité et Electronique
	GERMAIN	Chimie générale et Chimie organique
	GLACET	Chimie
	GONTIER	Mécanique des fluides
	HEIM de BALSAC	Zoologie
	HEUBEL	Chimie minérale
	HOCQUETTE	Botanique générale et appliquée
	KAMPE de FERIET	Mécanique des fluides
	LEBEGUE	Botanique
	LEBRUN	Radioélectricité et Electronique
Melle	LENOBLE	Physique
М.	LUCQUIN	Chimie

М.	MARTON
	PH DOLLAR
Morr	-IARQUET
. 111	MARTINOT-LAGARDE
	MAUREL
	MENNESSIER
	MONTREUIL
	PEREZ
	PHAM MAU QUAN
	POITOU
	ROUELLE
	SAVARD
	SCHALLER
	TILLIEU
	TRIDOT
	VIVIER
	WATERLOT
	VERTHEIMER

Chimie Mathématiques Mécanique des fluides Chimie Géologie Chimic Biologie Physique Mécanique générale Algèbre supérieure Physique et électricité industrielles Chimie générale Zoologie Physique Chimie Zoologie Géologie et Minéralogie Physique

Maîtres de conférences :

-

.

MI.	BECART	Physique
	BLANCHARD	Chimie appliquée
	BOILLET	Physique
	BOURIQUET	Botanique
	CELET	Géologie
	DELHAYE	Chimie
Mmc	LEBEGUE	Physique
141	HERZ	Calcul numérique
	HUARD de la MARRE	Calcul numérique
	LACOLIBE	Mathématiques
	LIEBART	Radioélectricité
	LINDER	Botanique
	MONTARIOL	Métallurgie
	POLVECHE	Géologie
	POUZET	Mathématiques
	PROUVOST	Géologie
	SCHILTZ	Physique

CHAPITRE 1

INTRODUCTION

Données de la littérature sur la cinétique

La synthése de l'anhydride maléique par oxydation du benzène en phase vapeur commença à être étudiée dès 1900.

Cette méthode de synthése prit un grand essort grâce aux travaux de WEISS, DOWNS et BURNS (1919) (1).

La première production industrielle d'anhydride maléique fut réalisée en 1933.

A l'heure actuelle, cette production est trés importante, l'anhydride maléique étant une matiére première dans la fabrication des polyesters.

Néanmoins les études cinétiques de cette réaction sont peu nombreuses.

La première date de 1950 par le Suédois BERTIL HANMAR (2).

Nous avons groupé dans un tableau toutes les données cinétiques fournies par la littérature.

			+		
rapport ;ène			r.	ρl	C 1 2
Ordre•par à l'oxyg	en mn Hg = 150	= 150	= 170	0 <p<sub>0<300 P_B = 10,5</p<sub>	4 <₽°<540 ₽ _B ?
	<u>д</u> д	ро Д	_م °	R 	Ň
port le	۲'n	ΓN	г	0 1 H	0,78
Ordre par ra _f au ben z én	PB en mn Hg $2.5 \le P_B \le 5$ $P_0 = 150$	7 < P _B <14 P _o = 150	lo < P _B <20 P = 150	P _B <70 P ₀ = 150	P _B ≪19,5 50 ≪P₀≪150
• Energie d'activation Kcal/mole	28 1 4	19 - 20	15		22,6
Domaine de températures	375°c 400°c	325°c 450°c	450° c 530° c	375° c	380° c 440° c
Catalyseurs	V205- M₀03/ A1	V205/A12 03	Ag20- V205- 16003 Al2 03 / Sic	V205-K2S04/Si02	V205-M003/A1203
Auteurs	Hamnar (2) (1951)	Holsen (3) (1954)	Steger (6)	Mars (4) (1958)	Ioffe (5) (1962)

2.-

Nous pouvons nous rendre compte que l'unanimité n'est pas réalisée parmi tous ces résultats.

Les résultats de Ioffe (5) sont parus durant notre travail. Une confrontation sera donc intéressante.

Ioffe a utilisé un système en continu avec recyclage (fig. 1)

L'intérêt de ce système est d'éliminer la pression partielle d'anhydride maléique et éviter son effet sur la vitesse d'oxydation du benzéne.

Notre installation est un réacteur intégral isotherme sans recyclage.

De tous ces résultats, nous pouvons conclure que dans tous les cas l'ordre de réaction diminue aux pressions élevées.

Sur la courbe représentant la vitesse de réaction en fonction de la pression partielle de benzéne ou d'oxygène, (Fig. 2) celleci devient indépendante. de cette pression à partir d'une certaine valeur. Mais il n'y a pas de maximum, donc pas d'adsorption compétitive des deux réactants.

CHAPITRE 11

MONTAGE EXPERIMENTAL

L'oxydation catalytique du benzène est une réaction très rapide, le temps de contact étant de l'ordre d'une fraction de seconde aux températures et sur les catalyseurs étudiés.

C'est pourquoi afin d'étudier la cinétique de la réaction une méthode dynamique doit être utilisée.

a) Description de l'appareil : (Fig 3)

Nous avons repris le montage mis au point dans nos laboratoires par Monsieur MAYEUX (7).

Après passage dans un dépoussiéreur l'air est aspiré par un compresseur. Le débit d'air entrant est réglé par une fuite. Un système d'épuration primaire de l'air est composé de deux tubes de potasse caustique en plaques et d'un tube de silicagel.

Le débit d'air est mesuré par un compteur à air sec.

Cet air est envoyé dans un système d'épuration secondaire composé d'un piége à charbon actif et d'un piége à tamis moléculaire (zéolite artificielle type A Linde).

Cet air ainsi purifié est divisé en deux courants à l'aide de vis pointeaux.

L'air primaire dont le débit est mesuré par un rotamétre de précision se sature en vapeur de benzène en passant dans un système saturateur - thermostat.

L'air secondaire et l'air primaire après passage dans un mélangeur sont envoyés dans le réacteur.

A la sortie du réacteur, une vis pointeau permet d'envoyer une partie des gaz dans un maléimètre.

Ce débit est mesuré par un débitmètre à bulles.

L'autre partie des gaz passe dans une série de pièges refroidis à - 80°c (acétone + carboglace) qui arrêtent l'anhydride maléique, l'eau et le benzène n'ayant pas réagi : Une fraction de ce gaz ainsi purifié est envoyée dans un analyseur de gaz pour CO₂ type "ONERA" après passage dans un tube de ponce sulfoiodique qui oxyde le CO en CO₂.

6.-

La réaction étant très exothermique, la difficulté réside surtout en la construction d'un réacteur isotherme.

Cette difficulté a été résolue par le réacteur représenté sur la figure 4.

Le réacteur est un tube cylindrique en acier inoxydable $(\emptyset = 14 \text{ mn}, 1 = 600 \text{ mn}).$

Cc tube est entièrement plongé dans un bain de sel fondu. Le sel est un mélange eutectique de composition : 53 % NO₃K + 7 % NO₃ N_a + 40 % NO₂ N_a (sel Hougton n° 275)

La température de fusion de ce sel est 149°c et la température de décomposition 570°c.

Le domaine de température est suffisant pour l'étude de la réaction envisagée. La forme en U du bain de sel permet l'évacuation de la chaleur de réaction, ceci par le mouvement circulaire du sel donné par la turbine. Le chauffage est assuré par des résistances électriques et la température du bain est régulée par un régulateur électronique (type "SENSILAB" T $\stackrel{+}{=} 2^{\circ}$ c)

La charge de catalyseur est maintenue entre deux grilles.

Doux gaines métalliques traversant tout le réacteur, permettent l'introduction de thermocouples et la mesure du profil de température.

Un cylindre d'acier sous la charge de catalyseur permet de diminuer l'espace mort.

Cc réacteur isotherme remplit très bien son rôle si l'on en juge par le profil de température horizontal obtenu (Fig. 5).

Lc / T s'échelonne suivant les cas entre 3°c ct 15°c.

Nous suivons l'évolution de la réaction grâce à deux enregistreurs électroniques.

A chaque instant, nous pouvons connaître la production d'anhydride maléique, et le pourcentage de CO + CO₂ dans les gaz sortants.

L'analyseur de gaz est un analyseur de CO_2 (0 - 5%) à absorption infra-rouge. Cet analyseur "ONERA" est branché sur un potentiomètre qui enregistre à chaque instant la teneur en $CO + CO_2$ des gaz sortants.

Quant à la teneur en anhydride maléique, elle est mesurée en continu par conductimétrie (Fig. 6).

Une solution contenant 0,33 g de Na Cl par litre d'eau distillée passe d'abord dans une cellule de référence.

Puis ce réactif est intimement mélangé avec les gaz sortants chauds (afin d'éviter toute cristallisation de l'anhydride maléique et d'augmenter sa solubilité) grâce au serpentin contenant deux cols de cygne.

La solution d'acide maléique ainsi formée, après passage dans un réfrigérant thermostaté à 21° 5 tombe dans la cellule de mesure.

Les deux cellules sont plongées dans un bain d'huile de vaseline thermostaté à 21° 5.

Les deux cellules sont en outre incorporées dans un pont de Wheatstone.

La différence de potentiel est envoyée sur un potentiomètre enregistreur.

Une courbe d'étalonnage préalablement établie nous permet de convertir les mV enregistrés en mg d'anhydride maléique par litre de réactif.

9.-

b) Etude théorique de la réaction

L'équation de la réaction d'oxydation du benzéne peut s'écrire

(1) $C6 H_6 + 4 O_2 \longrightarrow C_4 H_2 O_3 + CO + CO_2 + H_2 O_3$

Si nous admettons que les seuls produits importants de la réaction sont l'anhydride maléique, le CO et le CO_2 . Il faut signaler que le rapport CO/CO_2 n'est pas forcément égal à l.

Nous verrons lors de notre étude l'évolution du rapport CO/CO₂.

Le rapport théorique air / benzène qui correspond à cette réaction est :

(en poids : 7,06 en pratique : 25 - 30
(en volume gazeux : 19,04 (gaz parfaits)
(Rapport en volume = rapport en masse x 2,69).

Le CO et le CO₂ peuvent être également produits par l'oxydation totale du benzène suivant la réaction :

(2) $C_6 H_6 + 6 O_2 = 3 CO + 3 CO_2 + 3 H_2 O$

Là encore le rapport CO/CO2 peut être différent de l.

Dans les produits piégés à la sortie du réacteur nous avons décelé de la benzoquinone (l'anhydride maléique était coloré). Ceci confirmerait la suggestion de HAMMAR sur la réaction

Le mécanisme réactionnel suivant a été proposé par

MARGOLIS et ROGINSKY :

HOLSEN qui a étudié cette réaction a trouvé que l'oxydation du phénol était complète à 375 °c et que la conversion en quinone était de 0,4 % à 420°c sur catalyseur : oxyde de vanadium déposé sur alumine.

Nous allons étudier les variations de trois grandeurs caractéristiques en fonction du temps de contacté

(1) <u>T T U</u> : taux de transformation utile défini par le rapport T T U = <u>benzène transformé en anhydride maléique</u> benzène introduit 2) T T G : taux de transformation global

défini par le rapport

$$T T G = \frac{benzène consommé}{benzène introduit}$$

le T T G mesure <u>l'activité</u> globale du catalyseur.

3) Rendement : défini par le rapport

 $Rt = \frac{benzène \ transformé \ en \ anhydride \ maléique}{benzène \ consommé} = \frac{T \ T \ U}{T \ T \ G}$

le rendement mesure la <u>sélectivité</u> du catalyseur.

La détermination du T T U est aisée, tandis que celle du T T G suppose la récupération du benzène non oxydé dans les produits sortants. La quantité de benzène étant très faible, cette récupération s'avère très délicate.

Aussi l'analyse des gaz sortants peut nous permettre le calcul direct du rendement.

Le T T G sera mesuré par le rapport T T U / Rt.

Détermination directe du Rendement :

soit R le rendement.

une mole de benzène disparue a donné :

- par la réaction (1)
- par la réaction (2)
- par la réaction (2)

$$\begin{cases}
R mole A.M. R mole CO R$$

12.-

Appelons r le rapport du nombre de moles de CO + CO₂ au nombre de moles d'anhydride maléique (A M) formées dans le même temps.

$$r = \frac{2(3-2R)}{R} \qquad \text{soit} \qquad R = \frac{6}{r+4}$$

Cette relation reste valable si ce rapport CO/CO₂ est différent de l.

Le temps de contact 5s'obtient en divisant le volume libre du lit catalytique par le débit de gaz qui le traverse, mesuré dans les conditions de température et de pression qui régnent dans le lit.

$$S = \frac{V}{F} \times \frac{273}{T(1+\frac{1}{a})}$$

$$\begin{cases}
P : \text{ pression en atmosphére dans le lit} \\
a : rapport air / benzène en mole \\
F : débit d'air sec mesuré à 0°c \\
et l atmosphére en litre / seconde \\
V : volume libre dans le lit cataly- tique en litre \\
T : température absolue dans le lit \end{cases}$$

Avant de commencer toute étude, un calcul d'erreur permettra de nous faire une opinion quant à la précision des mesures dans les cas les plus défavorables.

1) T T U =
$$\frac{benzène}{benzène} \xrightarrow{A M} M$$

benzène introduit

A M = nb mg AM/l x débit liquide x $\frac{\text{Air total}}{\text{Air partiel}}$ $\frac{\Delta(A M)}{(A M)}$ 4%

benzène introduit : lecture au rotamètre $\frac{\triangle (B)}{(B)} = 1\%$

2) Rt =
$$\frac{6}{r+4}$$
 r = $\frac{nb \text{ moles } CO + CO_2}{nb \text{ moles } A M}$ $\frac{\triangle (CO + CO_2)}{(CO + CO_2)} = 1\%$
3) T T G = $\frac{T T U}{Rt}$ T T G = $\frac{nb \text{ moles } CO + CO_2}{nb \text{ moles } benzène \text{ introduit}}$

$$\frac{A(T T G)}{(T T G)} = \frac{2\%}{2\%}$$

L'allure des courbes représentant le T T U, le T T G et le Rendement en fonction du temps de contact présente des caractéristiques données (Fig. 7).

- Le T T G croît avec le temps de contact et approche asymptotiquement de 100 %.

- Le Rendement décroît uniformément avec le temps de contact.

- Le T T U (qui est le produit des deux précédents) passe par un maximum.

Il est évident qu'un catalyseur sera caractérisé au mieux par le début de ces courbes, c'est à dire aux faibles temps de contact, puisque pour tous les catalyseurs le T T G tend vers 100 % et le Rendement vers zéro lorsque le temps de contact croît.

14 .-

Pour déterminer la sélectivité du catalyseur qui est la valeur du rendement extrapolée au temps de contact nul, nous traçons la courbe du TTU en fonction du TTG (Fig. 8).

Le réseau des courbes du T T U et du Rendement pour un catalyseur donné permet de déterminer les conditions optimas de fabrication et la notion de production spécifique doit alors intervenir.

La production spécifique est par définition la quantité d'anhydride maléique produite en moyenne par unité de temps et par unité de volume de catalyseur.

Exprimons cette quantité en moles, et soit V' le volume total du lit catalytique en litre (différent du volume libre du lit V).

Nous avons appellé F le débit d'air total à l'entrée mesuré dans les conditions normales et exprimé en litre / seconde et a le rapport air / benzène en volume. On trouve alors :

$$p = \frac{F x (T T U)}{22.4 x a x V^{1}} \text{ mole / l / sec}$$

Le rapport V / V! = i représente le pourcent d'espace libre dans le lit catalytique.

Le temps de contact ayant été défini par la relation

$$\delta = \frac{V}{F} \quad \frac{273 P}{T (1 + 1)} \quad \text{sec}$$

En éliminant le rapport F / V entre ces deux équations nous obtenons la relation :

$$p = \frac{(T T U)}{\delta} \frac{1}{22.4 a} \frac{273 P}{T (1 + \frac{1}{a})} \text{ mole / 1 / sec}$$

Nous voyons que la production spécifique est proportionnelle à la pente de la droite joignant l'origine au point considéré sur la courbe du T T U.

D'autre part, cette relation montre que la production spécifique diminue lorsque le temps de contact augmente.

En pratique on calcule directement la production spécifique sans passer par le temps de contact \acute{o}

Schéma cinétique réactionnel :

Le fait qu'en réalité le Rendement ne tend pas vers 100 % lorsque le temps de contact tend vers zéro est en faveur du système réactionnel suivant et déjà proposé par divers auteurs (5-6).

La sélectivité (rendement initial en anhydride maléique) est évidemment définie par le rapport $\frac{V1}{V3 + V1}$ lorsque $\delta \longrightarrow 0$

Cette sélectivité devrait être de loo % si la combustion totale passait entiérement par l'intermédiaire de l'anhydride maléique ($V_3 = 0$)

Le rendement pour des conversions appréciables dépend cependant de VL, V2 et V3 et il sera d'autant plus élevé que le catalyseur

1) aura une meilleure sélectivité initiale.

Vl élevé V3

2) brûlera moins rapidement l'anhydride maléique formé

c) Catalyseur :

L'étude cinétique de la réaction sera effectuée avec le catalyseur de base de la synthése maléique. Ce catalyseur est un dépôt d'oxydes de vanadium (V2 05) et de molybdène (Mo 03) sur grains d'alumine alpha.

Préparation du catalyseur :

1) préparation de l'oxyde de vanadium : à partir du vanadate d'ammonium.

dans une capsule en porcelaine, chauffée au bain-marie, on introduit : 2,5 l d'eau distillée

80 g de métavanadate d'ammonium et on dissout en agitant (l heure à 70°c) (0,6 l d'eau distillée 60 cc d'acide nitrique concentré (d = 1,42)

Cette solution nitrique est versée lentement dans la capsule en maintenant la température à 70°c.

A la fin de l'addition le papier congo doit virer au bleu, sinon on rajoute un peu d'acide nitrique dilué.

On porte à ébullition pendant une demi-heure et on vérifie une seconde fois au papier congo qu'il reste un excès d'acide nitrique.

On refroidit à 30°c tout en agitant bien pour maintenir la suspension du précipité, puis on filtre et on lave le gateau de V2 05 jusqu'à neutralité des eaux de lavage. 8 à 10 lavages par 300 cc d'eau distillée sont nécessaires On séche à l'étuve à 100 - 120°c.

2) préparation du catalyseur :

dans une capsule de quartz de 250 mm, on introduit 1 550 cc d'acide chlorhydrique R.P. et 312 g. d'oxyde de vanadium. Par chauffage modéré, en trois heures, la dissolution est complète. Une goutte de solution évaporée sur plaque de porcelaine doit laisser une tache bleue.

On ajoute 94 g. d'acide molybdique et on concentre le liquide à mi-volume par une douce ébullition (3 heures).

On ajoute alors : 300 cc d'éthanol (96° pur) 300 cc d'acide chlorhydrique 300 cc d'eau distillée puis 2 500 g. d'alundum en grains.

On agite avec une palette et évapore à sec. Vers la fin de l'opération, il faut intensifier le brassage, des vapeurs blanches de chlorure d'ammonium se dégagent. On doit chauffer jusqu'à disparition complète de ces vapeurs (200°c).

Après refroidissement, le catalyseur est tamisé pour éliminer les fines. Il se présente sous forme de grains de 1,6 à 2,5 mm, de couleur verte et contenant environ 8 % d'oxydes de vanadium.

Les principaux oxydes obtenus sont : $V_2 0_5 - V_2 0_4 - M_0 0_3$ Oxydes que nous allons doser afin de caractériser chaque catalyseur. Dosage des catalyseurs :

1) Dosage de V2 05 : (8)

On réduit V^{5+} à l'état de V^{4+} en milieu acide (SO₄ H₂ + PO₄ H₃) par le sel de Mohr (sel ferreux) en présence de diphenylamine sulfonée comme indicateur.

Les ions Mo⁶⁺ ne gênent pas le dosage.

2) Dosage de $V_2 O_4 : (9)$

On oxyde V⁴⁺ à l'état de V⁵⁺ en milieu peu acide (SO4 H₂) (1,5 \leq pH \leq 2) et à chaud (t° \leq 50°c) par une solution de permanganate titrée.

3) Dosage de Mo 03 : (10)

On réduit M_0^{6+} à l'état de H_0^{3+} par une colonne de Jones (zinc amalgamé). La solution est ensuite recueillie dans une solution de sel ferrique et titrée par le permanganate.

Les oxydes de vanadium sont réduits en V^{2+} puis réoxydés en V^{5+} par le permanganate.

Remarque :

Les oxydes de vanadium V2 05 et V2 04 ne sont pas les seuls présents. En effet SIHARD et STEGER (11) ont prouvé l'existence d'un oxyde de formule V2 04,34 (V12 026) déterminé par les rayons X. Et les oxydes catalytiquement actifs correspondraient à un degré d'oxydation compris entre ceux des composés définis V2 05 et V2 04,34.

	Al ₂ 03	V2 05	V2 04	M ₀ 03	V4+ V total	% molaire de Mo 03 des oxydes
CATA nº 6	88,16 %	7,45%	1,79 %	2,60 %	20,2 %	25,8 %
CATA nº 7	87,44 %	8,17 %	1,71 %	2,68 %	18,7 %	25,3 %
CATA nº 8	87,96 %	7,72 %	1,59 %	2,73 %	17,8%	24,6 %

Résultats : pourcentages pondéraux (catalyseurs neufs)

Une étude de IOFFE et LIOUBARSKY (12) montre un maximum d'activité pour le catalyseur $V_2 \ 0_5 - M_0 \ 0_3$ à un pourcentage molaire de 25 à 30 % de $M_0 \ 0_3$ des oxydes.

Nos catalyseurs sont donc dans ce domaine.

Le catalyseur de base posséde une très bonne reproductibilité, comme le prouve les réseaux de courbes cinétiques des catalyseurs n° 6 et n° 7 (Fig. 9).

Nous avons d'ailleurs rapporté la vitesse de réaction non plus par grammes de catalyseur (matières actives + support) mais par gramme de matières actives pour les deux catalyseurs de base n° 6 et n° 7.

AIR	T = 420°c	air / benzène = 8	30	
catalyseur no	6 neuf à 50 %	catalyseur nº 7 neuf à 50 $\%$		
v x 10-3	v x 10=3	v x 10-3	v x 10-3	
0,99 mole/h/g cata	8,35 mole/h/g mat. active	l,059 mole/h/g cata	8,43 mole/h/g mat. active	

D'autre part ce catalyseur posséde une très longue durée de vie.

Le catalyseur n° 6 après une période de travail de six mois n'accusait qu'une baisse d'activité de 15 %.

Des mesures d'aires spécifiques ont été effectuées par B.E.T. gravimétrique (thermobalance) et volumétrique dans nos laboratoires par Monsieur BONNELLE et Madame WROBEL.

	gravimétrie	volumétrie
support - alumine 🛠	0,34 - 0,6 m²/g	
catalyseur nº 6 neuf	1,75 m ² /g	1,62 m2/g
catalyseur nº 7 neuf		1,69 m ² /g
catalyseur nº 8 neuf	1,79 m ² /g	3,3 m ² /g
catalyseur nº 6 usagé	0,52 m ² /g	
catalyseur nº 7 usagé	0,74 m ² /g	

Le catalyseur étant peu poreux la réaction est donc localisée à la surface externe des grains. L'alumine × ne possédant pas de surface interne élimine les diffusions.

Le dépôt d'oxydes sur l'alumine triple son aire spécifique.

Il faut signaler que TREMAN (13) affirme que les catalyseurs à porosité élevée (par exemple le gel de silice comme support) accroissent la formation de CO₂. Nous pouvons déjà remarquer dans le tableau des aires spécifiques, que la porte d'activité du catalyseur sera en grande partie due au départ ou au frittage des matiéres actives fixées sur le support.

Le réacteur d'un volume de 88 cm³ peut être chargé de 98 grammes de catalyseur.

Généralement la charge de catalyseur sera diluée à 50 % en poids à l'aide du support inerte (49 grammes de catalyseur + 49 grammes de support) afin de diminuer considérablement le "mur de chaleur" et d'obtenir ainsi un profil de température plat.

La deuxième raison de cette dilution du catalyseur est l'obtention de faibles temps de contact (0,3 seconde) pour un débit d'air maximum de 220 litres/heure.

Notre étude cinétique comprendra cinq parties :

- 1) effet de la pression partielle de benzène
- 2) effet de la pression partielle d'oxygéne
- 3) effet de la pression partielle de gaz carbonique
- 4) effet de la température
- 5) effet de la dilution de la charge catalytique.

23 -
CHAPITRE 111

EFFETS DE LA PRESSION PARTIELLE DE BENZENE

Nous allons pour cette étude faire varier la pression partielle de benzène en maintenant les autres variables constantes.

Pour cela nous étudierons le réseau de courbes TTU, TTG et Rendement en fonction du temps de contact δ pour différents rapports air/benzène.

La température sera maintenue à 420° c et l'oxydation sera effectuée par l'air. L'excés d'air étant important la pression partielle d'oxygène sera constante à 1 % prés (P₀ = 159 mn Hg)

Les réseaux de courbes obtenus sont analogues à celui représenté sur la figure 7.

Les courbes représentatives des pressions partielles de tous les produits (initiaux et finaux) en fonction du taux de conversion global (T T G) (Fig. 10) montrent l'évolution de la réaction.

La pression partielle de benzène ainsi que celle de l'oxygène diminuent linéairement lorsque le taux de conversion augmente. Alors qu'inversement la pression partielle de $CO + CO_2$, de la vapeur d'eau, et de l'anhydride maléique augmentent avec le taux de conversion.

Toutefois la pression partielle d'anhydride maléique passe par un maximum.

a) étude de l'ordre de réaction : (vitesse globale)

La cinétique de la réaction par rapport au benzène sera représenté par la courbe de la vitesse initiale de disparition du benzène en fonction de sa pression partielle.

La vitesse initiale de réaction est calculée dans la partie rectiligne (aux faibles temps de contact) de la courbe du T T G.

La vitesse de réaction est mesurée en moles de benzène ayant réagies par heure et par gramme de catalyseur (catalyseur supporté)

 $v = \frac{T T G x nb moles de benzène introduites par heure}{poids de catalyseur en grammes}$

dilution	$P_B \times 10^2$ atm.	P _B mn Hg	log P _B mn Hg	v x 103 mole/h/g	log v
100	l	7,60	0,881	0,446	- 3,350
90	1,11	8 , 45	0,927	0,721	- 3,142
80	1,25	9,5	0,978	0 , 779	- 3,109
70	1,43	10,85	1 , 035	0,830	- 3,081
60	1,665	12, 65	1,102	0 , 830	- 3,081

Catalyseur n° 6 dilué à 50 % : T = 420°c Po = 159 mn Hg

La courbe représentative (Fig. 11) indique que la vitesse de réaction est indépendante de la pression partielle de benzène pour $P_B > 11 \text{ mn } H_{\mathcal{C}}$.

Néanmoins l'intervalle de pressions partielles de benzène étant assez réduit, nous avons reitéré cette étude sur le catalyseur n° 7 qui est un peu plus actif que le précédent et dans un domaine de pressions partielles de benzène compris entre 5 et 19 mn Hg.

Les conditions opératoires sont les mêmes que précédemment : $T = 420^{\circ}c \quad P_{o} = 159 \text{ mn Hg.}$

<u>Catalyseur nº 7 dilué à 50 %</u> : $T = 420^{\circ}c$ P_o = 159 mn Hg

dilution	PB x 102 atm.	P _B mn Hg	log P _B mn Hg	v x 103 mole/h/g	log v
150	0,667	5,06	0 ,7 05	0,681	- 3,166
140	0,715	5 , 43	0,735	0,674	- 3,172
130	0,770	5 , 85	0,767	0 , 7 <i>2</i> 0	- 3,142
120	0,833	6 , 33	80 1 ،	0,784	- 3,106
110	0,909	6,90	0,839	0,837	- 3,077
100	l	7,60	0,881	0 , 915	- 3,039
90	1,11	8,45	0,927	0,978	- 3,010
80	1,25	9,50	0,978	1, 059	- 2,975
70	1,43	10,85	1, 035	1,1 40	- 2, 943
60	1,665	12,65	1,102	1,211	- 2,917
55	1,817	13,80	1,1 40	1, 230	- 2,910
50	2	15,20	1,182	1 , 265	- 2,898

Nous avons continué cette étude après une interruption de six semaines, et observé une légère baisse de l'activité dûe au vieillissement du lit catalytique.

La courbe obtenue se trouve un peu décalée par rapport à la précédente, ceci à cause de la baisse d'activité mais n'influe en rien sur les résultats cinétiques (les courbes étant paralléles).

27 .-

log v mole/h/g

dilution	$P_B \ge 10^2$ atm.	P _B mn Hg	log PB mn Hg	v x 10 ³ mole/h/g	log v
80	1,25	9,5	0,978	0,998	- 2,998
50	2	15 , 2	1 , 182	1 ,2 32	- 2,909
45	2 ,2 2	16,9	1,227	1,229	- 2,911
40	2 , 50	19	1,279	1,229	- 2,911

Catalyseur n° 7 dilué à 50 %: T = 420°c P₀ = 159 mn Hg

Les résultats obtenus confirment les précédents, la vitesse initiale de réaction est indépendante de la pression partielle de benzène pour $P_B > 15,5$ mn Hg.

En traçant la courbe du logarithme de la vitesse en fonction du logarithme de la pression partielle (Fig. 12) nous pouvons déterminer l'ordre de réaction par rapport au benzène.

L'ordre de réaction est un ordre variable compris entre l et O.

HAIMAR (2) et STEGER (7) sont d'accord pour affirmer que la vitesse d'oxydation du benzène est directement proportionnelle à la concentration du benzène (coefficient égal ou légèrement inférieur à 1).

Nos résultats recoupent ceux obtenus par P. MARS (4) qui trouve un ordre compris entre l et O pour le benzène avec un palier à $P_B = 12,5$ mn Hg obtenu lors de l'oxydation par l'air. (Fig. 13) Catalyseur : $V_2 O_5 - K_2 SO_4 /Si O_2$

L'ordre de réaction trouvé par IOFFE (6) en oxydant par l'air ($P_0 = 195 \text{ mn Hg}$) est de 0,78 pour une pression partielle de benzène inférieure à 19,5 mn Hg. (Fig.14) Catalyseur : $V_2 \ 05 \ . \ M_0 \ 03 \ /Al_2 \ 03$

réaction devient indépendante de la pression partielle de benzène.

29.-

b) étude de la sélectivité :

Nous avons vu que la sélectivité du catalyseur était la valeur du Rendement extrapolé au temps de contact zéro. Cette sélectivité est déterminée par la courbe du T T U en fonction du T T G (Fig. 8).

Catalyseur n° 6 dilué à 50 %: T = 420°c P₀ = 159 mn Hg

P _{B m} n Hg	7,6	8,45	9,5	10,85	12, 65
Sélectivité	71 %	71 , 5 %	71 , 5 %	72 %	70 %

Nous voyons que la sélectivité est indépendante de la pression partielle de benzène.

L'étude du catalyseur n° 7 nous fournit aussi une sélectivité constante et égale à $71\% \pm 1\%$ dans l'intervalle de pressions partielles de benzène compris entre 5 et 19 mn Hg.

La sélectivité est égale au rapport
$$\frac{V_1}{V_1 + V_3}$$
: le

rapport V_3 / V_1 est indépendant de la pression partielle de benzène.

Ccci tendrait à prouver que la réaction d'oxydation ménagée du benzène (réaction l) et la réaction de combustion totale (réaction 3) posséderaient le même ordre de réaction par rapport au benzène (page 16)

IOFFE (5) avait trouvé 0,78 comme ordre de réaction

pour l'oxydation ménagée et 0,71 pour la combustion totale du benzène.

c) étude du T T U :

Lors de l'étude avec le catalyseur n° 6 nous avons représenté la variation de la production spécifique en fonction du temps de contact pour différentes pressions partielles de benzène (Fig. 15).

Les courbes sont paralléles et montrent que la production spécifique augmente avec la pression partielle de benzène.

Cette production spécifique est d'autant plus grande que le temps de contact est faible. Toutefois on accuse une chute de la production spécifique en anhydride maléique aux très faibles temps de contact. Ceci s'explique par une formation plus importante de benzoquinone.

Cette formation de benzoquinone explique aussi la chute du Rendement en anhydride maléique aux faibles temps de contact sur le réseau de courbes cinétiques (Fig. 7).

Contrairement à la théorie, les quantités de CO et de CO₂ formées ne sont pas égales.

Pour toutes les pressions partielles de benzène, le catalyseur n° 6 donne un rapport CO_2 /CO voisin de 1,45 et pratiquement constant.

Ce fait a déjà été signalé par HAIMAR (2) et par HOLSEN (3).

Catalyseur n° 6 dilué à 50 %: T = 420°c P_o = 159 mn Hg

dilution	P _{B mn Hg}	maximum du T T U	R t au T T U maximum	production spé- cifique au T T U maximum
100	7,6	45 % S = 1,17 sec	55,5 %	ll,4 g/Kg _{cata/h}
90	8 , 45	53,5 % "= 1,15 sec	66 %	14,7 g/Kgcata/h
80	9 , 5	55,5 % "= 1,20 sec	65,5 %	16,8 g/Kg _{cata/h}
70	10 , 85	56 % "= 1,25 sec	65 %	17,7 g/Kg _{cata/h}
60	12 , 65	52,5 % "= 1,25 sec	64,5 %	19,3 g/Kg _{cata/h}

Le maximum du T T U est en moyenne de l'ordre de 55 % (temps de contact moyen : 1,20 seconde)

(Ce temps de contact est mal défini car le maximum est très plat).

Le rendement moyen correspondant au maximum du T T U est voisin de 65 %.

Naturellement la production spécifique à ce maximum croît avec la pression partielle de benzène.

CHAPITRE 1V

EFFETS DE LA PRESSION PARTIELLE D'OXYGENE

La pression partielle de benzène étant maintenue constante ainsi que la température, nous allons faire varier la pression partielle d'oxygène et tracer les réseaux de courbes cinétiques pour chaque pression partielle d'oxygène.

A cet effet, différents mélanges Air-Azote ou Oxygène-Azote sont préparés dans des bouteilles de gaz comprimé.

Le pourcentage d'oxygène des différents mélanges est ensuite dosé à l'appareil d'Orsat.

Le catalyseur est ici encore dilué à 50 % en poids avec le support.

Le rapport "air" / benzène sera maintenu à 80, ce qui nous donnera une pression partielle de benzène de 9,5 mn Hg.

La température du bain de sel du réacteur sera réglée à 420°c.

a) étude de l'ordre de réaction :

Tout comme pour le benzène, la cinétique de la réaction par rapport à l'oxygène sera étudiée en mesurant pour chaque pression partielle d'oxygène la vitesse initiale de réaction exprimée en moles de benzène ayant réagies par heure et par gramme de catalyseur.

% °2	$P_0 \times 10^2$ atm	P _o mn Hg	log P _o mn Hg	v x 10 ³ mole/h/g	log v
5	5	38	1,580	0 , 5 3 0	- 3,276
7	6 , 97	53	1 , 724	0,561	- 3,250
12	11,97	91	1,959	0,680	- 3,168
20,9 (air)	20 , 9	159	2,202	0 , 779	- 3,109
25,5	25 , 45	, 193 , 5	2,282	0 , 770	- 3,114
					-

Catalyseur n° 6 dilué à 50 %: T = 420°c PB = 9,5 mn Hg.

La courbe représentative de la vitesse de réaction en fonction de la pression partielle d'oxygène (Fig. 16) indique que la vitesse initiale de réaction devient indépendante de la pression partielle d'oxygène pour $P_0 > 159$ mn Hg. c'est à dire pour un pourcent d'oxygène supérieur à celui de l'air.

Cette étude a été reconduite sur le catalyseur n° 7 afin de vérifier ces résultats.

% 0 ₂	$P_0 \times 10^2$ atm	P _o mn Hg	log P _o mn Hg	v x 10 ³ mole/h/g	log v
3,2	3,2	24,3	1 , 386	0,396	- 3,402
5,8	5 , 79	44	1,644	0,547	- 3,262
8,8	8,82	67	1 , 826	0 , 675	- 3,171
12,1	12,1	92	1,964	0,755	- 3,122
16	16	121,5	2 , 085	0,815	- 3,089
20,9 (air)	20 , 9	159	2,202	0,855	- 3,068
26,1	26 , 05	198	2,297	0 , 865	- 3,063
32	32	243	2,386	0,855	- 3,068

Catalyseur n° 7 dilué à 50 %: T = 420°c P = 9,5 mn Hg.

Ces résultats portés sur la courbe en figure l6 confirment le palier à P_0 = 159 mn Hg.

Les courbes sont là encore décalées, le catalyseur n° 7 étant plus actif que le n° 6.

La courbe du logarithme de la vitesse de réaction en fonction du logarithme de la pression partielle d'oxygène détermine l'ordre de réaction par rapport à l'oxygène (Fig. 17).

Cet ordre de réaction est un ordre variable compris entre l et 0.

Les travaux de P. MARS (4) sur catalyseur $V_2 05 - K_2 SO_4 / Si 0_2$ fournissent un ordre inférieur à l par rapport à l'oxygène avec un palier à P₀ = 300 mn Hg. (Fig. 18)

c'est à dire l'ordre 0 ceci pour une pression partielle de benzène de 10,5 mn Hg.

La pression partielle de benzène n'est pas indiquée. Mais il faudrait tenir compte de l'influence du freinage des vapeurs d'anhydride maléique sur la vitesse d'oxydation. Influence qui d'après IOFFE diminuerait du tiers la vitesse de réaction :

Dans les mêmes conditions IOFFE obtient les vitesses suivantes: - sans élimination de l'anhydride maléique produit

 $v = 0,6.10^{-3} \text{ mole/h/g}$

- avec élimination de l'anhydride maléique produit

 $v = 0,95.10^{-3} \text{ mole/h/g.}$

Dans la réaction d'oxydation du benzène l'ordre par rapport

à l'anhydride maléique a été trouvé négatif et égal à -0,74

Donc d'après IOFFE il y aurait une dégénérescence d'ordre par rapport à l'oxygène en présence de l'anhydride maléique.

b) étude de la sélectivité :

Nous avons cherché à déterminer l'influence de la concentration en oxygène sur la sélectivité.

Catalyseur n° 6 dilué à 50 %: T = 420°c PB = 9,5 mn Hg.

Po mn.Hg	38	53	91	159	193,5
Sélectivité	71 %	71 %	70 , 5 %	71,5 %	71 %

La sélectivité est indépendante de la pression partielle d'oxygène et reste égale à 71 $\% \pm 0.5 \%$

L'étude effectuée sur le catalyseur n° 7 confirme ces résultats.

 $\frac{V_1}{V_1 + V_3}$ étant indépendant de P_o le rapport des vitesses V3 / V₁ est donc indépendant de la pression partielle d'oxygène.

IOFFE (6) trouvait bien que la réaction d'oxydation ménagée (réaction 1) et la réaction de combustion totale (réaction 2) avaient le même ordre de réaction par rapport à l'oxygène. c) étude du TTU:

Le réseau de courbes de la production spécifique du catalyseur n° 6 en fonction du temps de contact (Fig. 20) montre une nette augmentation de la production pour de faibles temps de contact, alors qu'aux temps de contact élevés celle-ci ne varie guère avec la pression partielle d'oxygène.

Catalyseur n° 6 dilué à 50 %: T = 420°c PB = 9,5 mn Hg

% 02	P _{o mn Hg}	maxim	um du T T U	Rt au T T U maximum	production spé- cifique au T T U maximum
5	38	54 , 5 %	S = 1,9 sec	62,5 %	10,3 g/Kg _{cata/h}
7	53	54,5 %	₩ = 1,85 sec	62,5 %	10,9 g/Kg _{cata/h}
12	91	54 , 5 %	" = 1,10 sec	70 %	16,5 g/Kg _{cata/h}
20,9 (air)	159	55 %	″=1,25 sec	65,5 %	16,8 g/Kg _{cata/h}
25,5	193,5	56 %	// = 1,20 sec	65 %	16,65g/Kg _{cata/h}

Ce tableau nous montre l'inutilité d'oxyder avec un mélange dont la teneur en oxygène est supérieure à celle de l'air (aucune influence sur le Rendement, la production spécifique et le T T U).

Nous remarquons aux faibles teneurs en oxygène du gaz oxydant, une chute plus accentuée du rendement aux faibles temps de contact, alors qu'aux fortes teneurs en oxygène (supérieure à celle de l'air) nous n'observons pas cette chute.

Aux faibles temps de contact et faible pression d'oxygène il y aurait donc une oxydation incomplète du benzène et formation de benzoquinone suivant le schéma en page ll.

Nous avons dosé la benzoquinone par iodométrie sur une solution alcoolique des produits sortants.

C'est ainsi que pour les faibles temps de contact, la conversion en benzoquinone pouvait atteindre l %.

CHAPITRE V

EFFETS DE LA PRESSION PARTIFILE DE GAZ CARBONIQUE

Les pressions partielles de benzène et d'oxygène étant maintenues constantes ainsi que la température, nous avons fait varier la pression partielle de gaz carbonique dans le mélange oxydant.

Pour cela nous avons préparé un mélange ternaire $0_2 - N_2 - CO_2$ dans une bouteille de gaz comprimé.

Le gaz carbonique et l'oxygène sont dosés à l'appareil d'Orsat.

Le pourcent d'oxygène est tel que la pression particlle d'oxygène correspond à une valeur étudiée précédemment (Chap. lV $P_0 = 91$ et $P_0 = 159$ mn Hg).

La réaction est étudiée à 420°c, le rapport "air" / benzène étant de 80 et la masse catalytique du réacteur diluée à 50 %.

La mesure directe du gaz carbonique de la réaction devient alors impossible. Néanmoins un analyseur de gaz "ONERA" à absorption de rayonnement infra-rouge nous permet d'enregistrer le pourcent d'oxyde de carbone produit dans les gaz sortants. (Le CO₂ ne semble pas gêner le dosage).

Nous avons donc déterminé directement le T T G à l'aide de prises de gaz ("air" + benzène) à l'entrée et à la sortie du réacteur.

Après dissolution du benzène contenu dans l'échantillon gazeux dans du cyclohexane pur, nous avons mesuré le coefficient d'absorption du mélange ainsi obtenu par spectrophotométrie ultra violette ($\lambda = 2\ 800\ \text{A}^{\circ}$).

Une courbe d'étalonnage précédemment établie traduit le coefficient d'absorption en milligrammes de benzène par litre de cyclohexane.

Le T T G est alors le rapport du benzène ayant réagi au benzène introduit pendant le même temps.

T T G = nb mg benzène entrée réacteur - nb mg benzène sortie réacteurnb mg benzène entrée réacteur

Le T T G calculé à partir du Rendement (Rt / T T U) en tenant compte du rapport CO_2 / CO à 420°c donne des résultats analogues.

L'étude a été faite avec deux mélanges oxydants sur les deux catalyseurs de base.

41.-

mélange gazeux utilisé : 41 % $\rm CO_2$ + 12 % $\rm O_2$ + 47 % $\rm N_2$

₽ _{B mn Hg}	P _{omn Hg}	PCO2 mn Hg	v x 10 ³ mole/h/g	Sélec- tivité	T T U maximum	Rt au TTU maximum
9,5	- 9 1	0	0,680	70,5%	54,5% S =1,1	70 %
9 , 5	91	312	0,637	57 %	54,5% //= 1, 8	59 %

Catalyseur n° 7 dilué à 50 % : T = 420° c

mélange gazeux utilisé : 18 % CO₂ + 20 % O₂ + 62 % \mathtt{N}_2

B _{mn Hg}	Po _{mn Hg}	P _{CO2} mn Hg	v x 10 mole/h/g	Sélec- tivité	T T U maximum	Rt au T T U maximum
9,5	159	0	1, 005	70 %	56 % S = 1,2	6 5, 5 %
9,5	152	1.37	0,980	65 %	55 % //= 1 , 2	59 , 5 %

Sur le réseau de courbes cinétiques obtenu nous observons une légère diminution du T T U accompagné d'une légère augmentation du T T G mais une chute importante du Rendement (Fig. 21 - 22).

L'action du gaz carbonique a peu d'effet sur la vitesse initiale de réaction.

L'ordre de réaction par rapport au gaz carbonique serait négatif et voisin de zéro (tg $\propto -0,01$)

Toutefois le CO₂ semble agir surtout sur la sélectivité et sur le Rendement en les diminuant nettement.

Le recyclage des gaz n'est donc pas très indiqué.

La sélectivité c'est à dire $\frac{V_1}{V_1 + V_3}$ diminuant avec l'introduction de gaz carbonique dans le mélange oxydant, le rapport des vitesses V_3 / V_1 diminue lorsque la pression partielle de CO₂ augmente.

La réaction d'oxydation ménagée (réaction 1) serait davantage freinée par le gaz carbonique que la réaction de combustion totale (réaction 3).

Une publication de IOFFE et LIOUBARSKY(5) parue entre temps indique que la vitesse d'oxydation du benzène est indépendante de la concentration en gaz carbonique, oxyde de carbone et vapeur d'eau dans le mélange oxydant.

Ceci se traduit par le fait que le benzène et l'anhydride maléique s'adsorbent très fortement sur le catalyseur, leurs coefficients d'adsorption étant beaucoup plus grands que ceux du CO₂, CO et de l'eau.

CHAPITRE V1

EFFET DE LA TEMPERATURE

Pour cette étude nous allons faire varier la température de la réaction en maintenant constantes la pression partielle de benzène (rapport air/benzène = 80) et la pression partielle d'oxygène (oxydation par l'air atmosphérique) $P_{\rm B} = 9,5$ mn Hg $P_{\rm O} = 159$ mn Hg

La charge de catalyseur est de 98 grammes diluée à 50 % en poids avec le support comme précédemment.

a) mesure des énergies d'activation :

Nous avons tracé le réseau de courbes cinétiques à 380° c 400° c - 420° c et 450° c.

L'étude cinétique à des températures supérieures à 450°c avec la charge catalytique diluée à 50 % (le débit d'air entrant étant limité à 220 l/h) étant impossible, le catalyseur est alors déchargé et dilué à 25 % (24,5 g catalyseur + 73,5 g de support). En calculant la vitesse initiale de réaction pour chaque température nous pouvons établir le graphique d'Arrhénius et déterminer ainsi l'énergie d'activation de la réaction.

	raratheart u. o attag a 20 %	10 :	гB	~ 992	mппg	ro	- 109	mn	н,
--	------------------------------	------	----	-------	------	----	-------	----	----

température	$\frac{1}{TK} \times 10^3$	v x 10 ³ mole/h/g	log v
380°c	1,532	0,392	- 3,407
400° c	1,485	0,676	- 3,170
420° c	1 , 445	0,992	- 3,004
450° c	1 , 385	1 , 534	- 2,814

Catalyseur n° 6 dilué à 25 $\frac{7}{2}$: PB = 9,5 mn Hg Po = 159 mn Hg

température	$\frac{1}{TK} \times 10^3$	v x 10 ³ mole/h/g	log v
420°c	1 , 445	0 , 775	- 3,111
4 <i>5</i> 0°c	1 , 385	1 , 255	- 2,901
470° c	1,345	1,495	- 2,826
500° c	1 ,2 95	1,893	- 2,723

Nous constatons sur le graphique d'Arrhénius (Fig. 23) que les courbes Log $v = f\left(\frac{1}{TK}\right)$ obtenues avec le catalyseur dilué à 50 % et le catalyseur dilué à 25 % ne coïncident pas.

Ceci est expliqué par la perte de matières actives du catalyseur dilué à 25 %, perte intervenue lors du déchargement du catalyseur dilué à 50 % du réacteur. Cette perte de matières actives diminue la vitesse spécifique.

D'autre part la forte courbure observée aux hautes températures, à partir de 450°c, indique l'entrée dans la zone diffusionnelle.

Toutefois la désactivation du catalyseur aux hautes températures explique aussi cette courbure.

Après l'étude à 500°c, un point test à 420°c nous montre la désactivation de la charge catalytique.

La courbure sur le graphique d'Arrhénius n'est due que partiellement à la désactivation du catalyseur. Aux températures élevées il y aurait intervention de la diffusion externe en phase gaz près de la surface du catalyseur.

De ce fait l'énergie d'activation apparente décroît aux températures élevées.

46.-

- Catalyseur dilué à 50 % :

entre 380°c et 400°c : E = 23,5 Kcal/mole entre 380°c et 420°c : E = 21,4 Kcal/mole entre 400°c et 450°c : E = 16,7 Kcal/mole

- Catalyseur dilué à 25 % :

entre 420°c et 470°c : E = 16,1 Kcal/mole entre 470°c et 500°c : E = 10,1 Kcal/mole

Nous pouvons remarquer que les deux portions de droites en regard pour le catalyseur dilué à 50 % et le catalyseur dilué à 25 % sont sensiblement parallèles.

Les énergies d'activation sont pratiquement égales dans les deux cas dans le même domaine de températures (E = 16,7 Kcal/mole et E = 16,1 Kcal/mole)

L'énergie d'activation de la réaction ne serait donc pas fonction de l'activité du catalyseur.

Nous avons relevé quelques valeurs d'énergies d'activation de cette réaction trouvées par différents auteurs.

Auteurs	Catalyseurs	Domaine de t ${ m \ l}$	EKcal/mole
HAMMAR (2)	V ₂ 05 - M ₀ 03/Al métallique	375°c - 400°c	28 <u>+</u> 4
STEGER (7)	Λg ₂ 0 - V ₂ 05 - M ₀ 03 - Al ₂ 03/SiC	450°c - 500°c	15
HOLSEN (3)	V205/Al2 03	325°c - 450°c	19 - 20
IOFFE (5)	V205 - M003/Al2 03	380°c - 420°c	22,6

47.-

Ces différentes valeurs d'énergies d'activation corroborent assez bien nos résultats.

b) étude de la sélectivité :

Nous avons cherché à déterminer l'influence de la température sur la sélectivité.

Catalyseur n° 6 dilué à 50 %: P_B = 9,5 mn Hg P₀ = 159 mn Hg

températurc	380° c	400°c	420° c	450°c
sélectivité	70 %	70 %	70 %	67,5 %

La sélectivité semble commencer à diminuer à partir de 450° c. En tenant compte que la sélectivité s'exprime par le rapport $\frac{V_1}{V_1 + V_3}$ (page 16) ceci voudrait dire que la vitesse de réaction d'oxydation totale du benzène croît un peu plus vite avec la température que la vitesse de réaction d'oxydation du benzène en anhydride maléique.

Résultat corroboré par IOFFE (5 - 6) qui trouve une énergie d'activation de 37 Kcal/mole pour la réaction d'oxydation totale contre 22,6 Kcal/mole pour la réaction d'oxydation en anhydride maléique.

Le catalyseur n° 6 dilué à 25 % dans les mêmes conditions de pressions partielles donne à 420°c une sélectivité de 52,5 %. Cette chute sensible de la sélectivité sera étudiée ultérieurement avec la dilution de la masse catalytique (Chap. VII)

c) étude du TTU:

Le réseau de courbes de la production spécifique en fonction du temps de contact (Fig. 24) montre une nette augmentation de la production avec la température pour les faibles temps de contact. Alors que pour des temps de contact élevés la production spécifique tend vers une limite commune quelque soit la température.

Catalyseur n° 6 dilué à 50 %: P_B = 9,5 mn Hg P₀ = 159 mn Hg

température	maximum du T T U	Rt au T T U maximum	production spéci- fique au T T U maximum
380° c	56,5 % S = 2,06 sec	64 %	10,45 g/Kgcata/h
400° c	57 % <i>"</i> = 1,6	65,5 %	12,4 g/Kgcata/h
420° c	55,5 % "= 1,25	62,5 %	16,2 g/Kgcata/h
450° c	57,5 % "= 1,15	65 %	18,1 g/Kgcata/h

Le maximum du T T U est constant, de l'ordre de 56,5 % ainsi que le rendement au maximum du T T U qui est de l'ordre de 64 %.

La chute du rendement aux faibles temps de contact par formation de benzoquinones est d'autant plus grande que la température de réaction est faible.

<u>Catalyseur</u> n° 6 dilué à 25 %: P_B = 9,5 mn Hg P_o = 159 mn Hg

température	maximum du T T U	Rt au T T U maximum	sélectivité
420°c	41,5 % = 1,01 sec	51,5 %	52 , 5 %

La chute du maximum du T T U ainsi que du rendement correspondant peut être attribuée à la perte accidentelle de matières actives du catalyseur lors de la décharge.

- catalyseur n° 6 dilué à 50 % : 9,4 % de $V_2 O_5 + V_2 O_4$ - catalyseur n° 6 dilué à 25 % : 8,2 % de $V_2 O_5 + V_2 O_4$

A 500°c, les courbes du T T U et du Rendement présentent des anomalies dues à une rapide désactivation du catalyseur.

Les phénomènes de diffusion perturbent aussi très certainement les mesures aux températures élevées.

A 500°c le maximum du T T U ne put être atteint en raison de sa position, située à un temps de contact inférieur à 0,1 seconde.

Nous avons également remarqué que le rapport CO_2/CO augmente avec la température.

Ce rapport de 1,45 à 420°c passe à 1,9 à 500°c pour le catalyseur n° 6.

CHAPITRE VIL

EFFETS DE LA DILUTION DE LA CHARGE CATALYTIQUE

Nous avons étudié les effets produits par la dilution de la charge catalytique observés lors de l'étude de la température.

Nous avons tracé les courbes cinétiques pour le catalyseur n° 7 neuf avec trois valeurs différentes de la dilution du lit catalytique.

Trois charges ont été essayées au réacteur

1) catalyseur n° 7 à 25 % :

24,5 grammes de catalyseur + 63,5 grammes de support

2) catalyseur nº 7 à 50 % :

49 grammes de catalyseur + 49 grammes de support

3) catalyseur n° 7 à 68,5%:

67 grammes de catalyseur + 31 grammes de support.

Le catalyseur et le support sont intimement mélangés afin d'obtenir un profil de température rectiligne. Nous avons porté sur un même graphique les courbes obtenues avec les trois lits catalytiques afin de déterminer l'effet du support inerte (Fig. 25).

Les trois essais ont été effectués à 420°c et avec un rapport air/benzène de 80, le temps de contact étant rapporté au volume de catalyseur.

masse catalytique	v x 10 ³ mole/h/g	T T U maximum	Rt au T T U maximum	Sélectivité
c ata à 68,5%	1,110	57,5 %	63 , 5 %	70 %
c ata à 50 %	1,059	56 %	65 , 5 %	70 %
c ata à 25 %	0,970	39 %	51 %	55 %

Nous avons calculé dans le précédent tableau la vitesse initiale de réaction rapportée au gramme de catalyseur.

De ce fait nous voyons qu'il y a une légère augmentation de la vitesse de réaction avec la quantité de catalyseur dans le lit catalytique.

Mais ceci l'explique par le gradient de température des différents lits catalytiques.

 $\begin{cases} \text{Catalyseur à 68,5\%} : \Delta T = 10^{\circ}\text{c} \\ \text{Catalyseur à 50\%} : \Delta T = 7^{\circ}\text{c} \\ \text{Catalyseur à 25\%} : \Delta T = 3^{\circ}\text{c} \end{cases}$

52,-

Nous avons vérifié sur le graphique d'Arrhénius que ces différences de températures expliquent les différences de vitesses de réaction.

Nous avons porté sur un graphique les vitesses de réaction en fonction du poids de catalyseur (Fig. 26).

A propos du catalyseur n° 6, le dosage du catalyseur neuf utilisé pour la charge catalytique à 50 % nous avait donné 9,4 % en poids de V₂ 05 + V₂ 04.

Ce catalyseur après avoir été déchargé du réacteur afin de diluer le lit catalytique à 25 % ne contenait plus que 8,20 % de V_2 05 + V_2 04.

Et le dosage du catalyseur à 25 % après utilisation donnait 8,05 % de V2 05 + V2 04.

On voit donc qu'une partie des matières actives du catalyseur porté à température de travail se détache du support. Cette perte intervient lors du frottement de la gaine métallique du thermocouple inférieur afin de décharger le lit catalytique du réacteur (1,20% de perte soit, $\frac{1,2}{9,4} \ge 100 = 13\%$ en valeurs relatives).

Cette perte de matières est ensuite très atténuée lors de la seconde opération de déchargement de la masse catalytique (0,15 % de perte soit, $\frac{0,15}{8,20} \times 100 = 2 \%$ en valeurs relatives).

Cette perte de matières actives explique la très nette chute de la vitesse de réaction du catalyseur à 50 % au catalyseur à 25 % à propos de l'étude de la température sur le catalyseur n° 6.

masse catalytique	catalyseur à 25 %	catalyseur à 50 %	catalyseur à $68_95\%$
catalyseur nº 7 catalyseur nº 6	0,970 10 ⁻³ mole/h/g 0,775 10 ⁻³ mole/h/g	1,059 10-3 molc/h/g 0,992 10-3 mole/h/g	1,110 10-3 mole/h/g

L'astérique indique une vitesse de réaction obtenue avec une charge catalytique provenant d'une charge à 50 % déjà utilisée de ce catalyseur.

Compte tenu de l'écart de gradient de température la chute de la vitesse de réaction des masses catalytiques à 25 % et à 50 % du catalyseur n° 6 est expliqué par la perte de matières actives de ce catalyseur.

Mais toutefois ceci n'explique pas la chute de la sélectivité pour le catalyseur dilué à 25 %.

En effet une charge neuve à 25 % (catalyseur n° 7) nous donne une sélectivité beaucoup plus faible que la normale (55% au lieu de 70 %).

La sélectivité étant le rapport du T T U sur le T T G extrapolé au temps de contact nul, nous voyons que la chute de la sélectivité du catalyseur dilué à 25 % provient de la chute du T T U.

Le maximum du T T U tombe de 55 % à 39 %.

54	•~··
----	------

masse catalytique	catalyseur à 25 $\%$	catalyseur à 50 %	catalyseur à 68,5 ½
c atalyseur nº 7 c atalyseur nº 6	0,970 10 ⁻³ mole/h/g	1,059 10 ⁻³ molc/h/g 0,992 10 ⁻³	1,110 10-3 mole/h/g
	mole/h/g	mole/h/g	

L'astérique indique une vitesse de réaction obtenue avec une charge catalytique provenant d'une charge à 50 % déjà utilisée de ce catalyseur.

Compte tenu de l'écart de gradient de température la chute de la vitesse de réaction des masses catalytiques à 25 % et à 50 % du catalyseur n° 6 est expliqué par la perte de matières actives de ce catalyseur.

Mais toutefois ceci n'explique pas la chute de la sélectivité pour le catalyseur dilué à 25 %.

En effet une charge neuve à 25 % (catalyseur n° 7) nous donne une sélectivité beaucoup plus faible que la normale (55 % au lieu de 70 %).

La sélectivité étant le rapport du T T U sur le T T G extrapolé au temps de contact nul, nous voyons que la chute de la sélectivité du catalyseur dilué à 25 % provient de la chute du T T U.

Le maximum du T T U tombe de 55 % à 39 %.

Cette baisse du T T U ne peut être due qu'à l'oxydation de l'anhydride maléique formé.

Or, il a été prouvé que l'oxydation de l'anhydride maléique sur le catalyseur est freinée par le benzène qui sert d'inhibiteur de la réaction.

Cette baisse de la sélectivité correspond à une très grande proportion de support inerte dans le lit catalytique.

Il est donc logique de penser que l'oxydation de l'anhydride maléique se produit en grande partie sur le support diluant.

Une étude ultérieure conduite en ce sens par Monsieur FOLLET dans nos laboratoires confirme ces résultats.

Essail : Le réacteur étant à moitié rempli de catalyseur à 50 %, l'étude cinétique conduite à 420°c et avec un rapport

24,5 g catalyseur + 24,5 g support air/benzène de 80 fournit une sélectivité initiale de

70 %

Essai 2 : Le réacteur contient une charge de catalyseur identique

24,5 g catalyseur + 24,5 g support

49 g support

à celle du ler essai mais la moitié inférieure de ce réacteur étant remplie de support inerte. L'étude cinétique conduite à 420°c et avec un rapport air/benzène de 80 fournit une sélectivité initiale de 55 %.

Ces deux sélectivités correspondent parfaitement aux sélectivités de notre catalyseur nº 7 dilué à 50 % et à 25 %.

Le support serait un catalyseur de destruction de l'anhydride maléique et pas du benzène, car le T T G est constant.

Cette destruction n'apparaît que dans le catalyseur dilué à 25 % (page 53) où la quantité de support est importante (environ l grain de catalyseur pour 3 grains de support).

CHAPITRE V111

DISCUSSIONS ET CONCLUSIONS

1) <u>Compatibilité des résultats obtenus avec la cinétique proposée</u> par MARS (4)

Nous avons adopté le calcul de P. MARS sur les constantes de vitesse dans son étude de la cinétique de la réaction d'oxydation du benzène à notre propre étude.

La vitesse de réaction serait proportionnelle à la pression partielle de benzène et celle de l'oxygène et au recouvrement Θ de l'oxygène sur la surface catalytique.

Soit V_B le nombre de moles de benzène qui réagit par unité de temps et par gramme de catalyseur.

$$v_{\rm B} = \frac{d N_{\rm B}}{dt} = K_{\rm B} P_{\rm B} \Theta$$

et V_0 le nombre de moles d'oxygène qui réagit par minute et par gramme de catalyseur.

$$V_{o} = \frac{d N_{o}}{dt} = K_{o} P_{o} (1 - \Theta) \quad (adsorption \ de \ 0_{2})$$

 θ étant le recouvrement de la surface par l'oxygène

Une mole de benzène consomme 🗙 moles d'oxygène

$$V_{\rm B} = \frac{1}{3} V_{\rm O}$$
 3.25 (équation de réaction)

L'état stationnaire nous donne

$$K_{B} P_{B} = K_{o} P_{o} (1 - \Theta)$$

d'air =
$$\frac{1}{1 + \frac{\alpha K_B P_B}{K_o P_o}}$$
 et $V_B = \frac{1}{\frac{1}{K_B P_B} + \frac{\alpha}{K_o P_o}}$

Pour une pression partielle de benzène constante et élevée nous aurions

$$V_{\rm B} = \frac{K_{\rm o}}{\propto} P_{\rm o}$$

la réaction serait alors du premier ordre par rapport à l'oxygène.

Et pour une pression partielle d'oxygène constante et élevée nous obtiendrons

$$V_{B} = K_{B} P_{B}$$

et la réaction serait à ce moment là du premier ordre par rapport au benzène. Vérification de la cinétique de MARS :

a) sous la forme différentielle :

Admettons la cinétique de MARS

(1)
$$\mathbf{v} = \frac{1}{\frac{1}{K_{\rm B} P_{\rm B}} + \frac{cx}{K_{\rm o} P_{\rm o}}}$$
 ou $\frac{1}{\mathbf{v}} = \frac{1}{K_{\rm B} P_{\rm B}} + \frac{cx}{K_{\rm o} P_{\rm o}}$

v vitesse de disparition du benzène en mole/unité de temps nous avons mesuré :

$$\begin{cases} \mathbf{v} = \mathbf{f} (\mathbf{P}_{\mathrm{B}}) & \hat{\mathbf{a}} & \mathbf{P}_{\mathrm{o}} = \mathbf{cte} \quad (\text{ordre / benzène}) \\ \mathbf{v} = \mathbf{f} (\mathbf{P}_{\mathrm{o}}) & \hat{\mathbf{a}} & \mathbf{P}_{\mathrm{B}} = \mathbf{cte} \quad (\text{ordre / oxygène}) \end{cases}$$

- dans le ler cas :

$$\frac{1}{v} = f\left(\frac{1}{P_{B}}\right) \text{ est une droite} \qquad \left(\begin{array}{c} \text{de pente } \frac{1}{K_{B}} \\ \text{d'ordonnée à l'origine } \frac{\alpha}{K_{O} P_{O}} \end{array}\right)$$

- dans le 2ème cas :

$$\frac{1}{v} = \frac{f}{\left(\frac{1}{P_{0}}\right)} \text{ est une droite} \qquad \begin{cases} \text{de pente } \frac{X}{K_{0}} \\ \text{d'ordonnée à l'origine } \frac{1}{K_{B} P_{B}} \end{cases}$$

Une vérification avec le catalyseur nº 7 montre que les points expérimentaux sont alignés, avec toutefois un écart notable pour les plus faibles valeurs de l/P (donc aux pressions élevées) (Fig. 27 et Fig. 28).

Nous avons calculé les constantes de vitesses K_0 et K_B dans les 2 cas. (T = 420°c $\not = 5$)

$$\frac{P_{B} = \text{cte}}{K_{0} = 0,0945 \text{ mole at}^{-1} \text{ g}^{-1} \text{ h}^{-1}}$$

$$K_{B} = 0,0830 \text{ mole at}^{-1} \text{ g}^{-1} \text{ h}^{-1} \qquad \frac{K_{0}}{K_{B}} = 1,06$$

$$P_{0} = \text{cte}$$

$$K_{0} = 0,1195 \text{ mole at}^{-1} g^{-1} h^{-1}$$

$$K_{B} = 0,1050 \text{ mole at}^{-1} g^{-1} h^{-1} \frac{K_{0}}{K_{B}} = 1,14$$

Les valeurs de $K_0~$ et $K_{\rm B}~$ dans les 2 cas concordent à lo % prés.

b) sous la forme intégrée (relation entre $\boldsymbol{\mathcal{T}}$ et $\boldsymbol{\mathcal{S}}$)

Calcul de la relation entre \mathcal{T} (T T G) et \mathcal{S} pour le réacteur à lit fixe de catalyse maléique (le calcul de MARS a été fait pour un réacteur à lit fluidisé).

Admettons la cinétique de MARS :

(1)
$$\mathbf{v} = \frac{1}{\frac{1}{K_{\rm B} P_{\rm B}} + \frac{c \mathbf{X}}{K_{\rm O} P_{\rm O}}}$$

v : vitesse de réaction en moles de C₆ H₆ disparues par unité de temps et par unité de masse de catalyseur (masse totale M dans le volume V)

P_B : pression partielle de benzène
P_o : pression partielle d'oxygène
K_B, K_o : coefficients de vitesse exprimés en moles par unité de temps et de pression.

On introduit dans le réacteur par unité de temps N moles d'air et N/a moles de benzène (a : rapport air/benzène en moles).

L'équation de base du réacteur tubulaire idéal est, si la conversion est définie par rapport au benzène.

(2)
$$\int -\frac{dN_B}{V} = M$$

entrée N_B . flux molaire du benzène en un
point du réacteur où la vitesse
est v.

Il faut exprimer N_B et v en fonction de \mathcal{T} (indice ° à l'entrée)

(3)
$$\zeta = 1 - \frac{N_B}{N_B^\circ} = 1 - \frac{P_B}{P_B^\circ}$$
 $N_B^\circ = \frac{N}{a}$

61.--

62.-

(4)
$$N_{\rm B} = \frac{N}{a} (1 - \overline{C})$$
 $- dN_{\rm B} = \frac{N}{a} d\overline{C}$.

Les pressions partielles sont proportionnelles en chaque point aux flux molaires ; le flux molaire total est

(5)
$$\frac{P_{o}}{N_{o}} = \frac{P_{B}}{N_{B}} = \frac{P}{N\left(1 + \frac{1}{a}\right)}$$

$$P : \text{ pression totale (t-1 atm})$$

$$d N_{o} = \propto d N_{B} \quad (\text{par definition de of })$$

$$N_{o}^{o} - N_{o} = \propto (N_{B}^{o} - N_{B})$$

$$= \propto \frac{N}{a} \quad \mathcal{T} \quad d^{*} a \text{ près } (3)$$

de plus.

(6)
$$N_0 = N (0, 21 - \frac{\alpha}{a} \tau)$$

d'après $N_0^0 = 0,21 \text{ N}$ (air à 21 $\% 0_2$)

à partir de (4), (5) et (6) on calcule

$$P_{B} = P \frac{N_{B}}{N(1 + \frac{1}{a})} \qquad P_{o} = P \frac{N_{o}}{N(1 + \frac{1}{a})}$$
$$P_{B} = P \frac{1 - \zeta}{1 + a} \qquad P_{o} = P \frac{0.21 a - 0.21}{1 + a}$$

d'où selon (1)

(7)

$$\mathbf{v} = \frac{1}{\frac{1}{K_{\rm B} P \frac{1-\zeta}{1+a}} + \frac{\alpha}{K_{\rm o} P \frac{0,21 a - \alpha \zeta}{1+a}}} = \frac{P}{1+a} \frac{1}{\frac{1}{K_{\rm B} (1-\zeta)} + \frac{1}{K_{\rm o} (0,21 a - \alpha \zeta)}}$$

portant (4) et (7) dans (2) il vient :

×

$$\frac{1}{v} = \frac{1+a}{P} \left[\frac{1}{K_{B}(1-\tau)} + \frac{\alpha}{K_{0}(0,21 a - \alpha\tau)} \right]$$

$$M = \frac{1+a}{a} \frac{N}{P} \left[\sqrt{\frac{d\tau}{K_{B}(1-\tau)}} + \frac{\alpha}{K_{0}(0,21 a - \alpha\tau)} \right]$$

$$\frac{1}{K_{B}} \int \frac{d\tau}{1-\tau} + \frac{1}{K_{0}} \int \frac{\alpha d\tau}{0,21 a - \alpha\tau} = \frac{M}{N} \frac{P}{1+a}$$

$$\frac{1}{K_{B}} \frac{\log \frac{1}{1-\tau}}{1-\tau} + \frac{1}{K_{0}} \frac{\log \frac{1}{0,21 a - \alpha\tau}}{0,21 a - \alpha\tau} = \frac{M}{N} \frac{P}{1+a} + \text{ote}$$
conditions aux limitos :
$$\frac{a}{K_{B}} a = \text{ote} \qquad N \longrightarrow \sigma \qquad \overline{\tau} \longrightarrow \sigma$$

$$\frac{1}{K_{0}} \frac{\log \frac{1}{1-\tau}}{1-\tau} = \frac{1}{K_{0}} \frac{\log \frac{0,21 a}{0,21 a - \alpha\tau}}{0,21 a - \alpha\tau} = \frac{M}{N} \frac{P}{1+a}$$

$$\frac{1}{K_{B}} \log \frac{1}{1-\tau} + \frac{1}{K_{0}} \log \frac{0,21 a}{0,21 a - \alpha\tau} = \frac{M}{N} \frac{P}{1+a}$$

$$\frac{1}{K_{B}} \log \frac{1}{1-\tau} + \frac{1}{K_{0}} \log \frac{1}{0,21 a - \alpha\tau} = \frac{M}{N} \frac{P}{1+a}$$

Notons que N $\left(1 + \frac{1}{a}\right)$ est le flux molaire total à l'entrée du réacteur donc :

$$\frac{F}{v_{M}} = N \left(\frac{1+1}{a} \right) \qquad v_{M} : \text{ volume molaire a T, P.}$$

$$F : \text{ flux en volume gazeux.}$$

Si le réacteur contient la masse M de catalyseur, et si V est le volume total du lit, la fraction de volume libre étant B, le temps de contact est par définition

$$S = \frac{BV}{F} \qquad F_{=} \frac{BV}{S} \qquad (F \text{ ramené à P et T})$$

$$N \left(1 + \frac{1}{a}\right) = \frac{BV}{S \cdot v_{M}}$$

$$\frac{M}{N} \frac{P}{\left|1 + \frac{1}{a}\right|} = \frac{M \cdot P \cdot v_{M}}{B \cdot V} \cdot S$$

Notons que : p $v_{M} = RT$ (loi des gaz parfaits) et que $\frac{M}{V} = m$ masse de catalyseur par unité de volume du lit (densité de la charge active)

$$\frac{M}{N} \frac{P}{\left(\frac{1+\frac{1}{a}}{a}\right)} = \frac{m R T}{B} \tilde{G}$$

d'où l'équation finale liant au et δ .

(8)
$$\frac{1}{K_{B}} \operatorname{Log} \frac{1}{1-\zeta} + \frac{1}{K_{O}} \operatorname{Log} \frac{1}{1-\frac{Q}{O,2La}C} = \frac{m R T}{B} S$$

Cette équation différe de celle de MARS par le 2ème terme.

En effet MARS a fait le calcul dans le cas d'un réacteur à agitation parfaite (lit fluidisé) et non pas d'un réacteur tubulaire (lit fixe).

Partant d'une expérience à T = cte donnant \mathcal{T} (TTG) en fonction de $\hat{\mathcal{S}}$, on doit pouvoir vérifier (8) et calculer K_0 et K_B puisqu'on connaît m, B et T.

64.-

Calcul de 🛪 :

Nombre de moles d'oxygène consommées par mole de benzène \propto dépend du Rendement et du rapport $CO_2 / CO = b$ (1,45 à 420°c) et un calcul simple donne

$$\alpha = \frac{4,5+7,5 \text{ b} - (1+3 \text{ b}) \text{ R}}{1+\text{b}}$$

si
$$\begin{cases} b = 1,45 \\ R = 70\% \end{cases}$$
 $\propto = 4,75 \qquad \begin{cases} b = 1,45 \\ R = 55\% \end{cases}$ $\propto = 5,1$

On voit que la valeur de MARS (x = 5) est raisonnable.

si
$$\begin{cases} x = 5 \\ a = 80 \end{cases}$$
 $\frac{x}{0,21a} = \frac{5}{16,8} = 0,297$

Etant donné l'imprécision sur \propto (qui varie en fait avec τ , il augmente quand τ augmente parce que R diminue) on peut prendre 0,3.

si
$$\begin{cases} T = 420^{\circ}c \\ P = 1 \text{ atm} \end{cases} \text{ pv}_{\text{M}} = R T = 57 \text{ 000 cm}^3 \text{ x atm.}$$

le volume du lit catalytique $V = 88 \text{ cm}^3$ et la masse de catalyseur est M = 48.5 grammes.

$$m = \frac{48,5}{88} = 0,55 \text{ g/cm}^3$$

La fraction libre du lit est estimée à 50 % (B=0,5)

$$\frac{m R T}{B} = \frac{57\ 000\ x\ 0,55}{0,5} = 62\ 500\ g\ x\ atm.$$

et_les_constantes de vitesses (K_o et K_B) seront en mole at⁻¹ g⁻¹ h⁻¹(si δ est en heure)

Il faudra done vérifier :

$$\begin{aligned}
\delta_{h} &= \frac{\delta_{sec}}{3600} \\
\frac{1}{K_{B}} \log \frac{1}{1-\tau} + \frac{1}{K_{0}} \log \frac{1}{1-0.3\tau} = 62500\delta = \frac{62500}{3600}\delta \sec = 17.35\delta \sec \\
\begin{cases}
T &= 420^{\circ}c & \text{rapport air/benzène} = 80 \\
\text{dilution du catalyseur : 50 %}
\end{aligned}$$

.

66.-

On peut employer la méthode suivante :

$$\frac{1}{K_{B}} + \frac{1}{K_{O}} \left(\frac{\frac{\log \frac{1}{1 - 0.3C}}{\log \frac{1}{1 - C}}}{\log \frac{1}{1 - C}} \right) = 62500 \frac{S}{\frac{\log \frac{1}{1 - C}}{\log \frac{1}{1 - C}}}$$

porter
$$y = \frac{\delta}{\log \frac{1}{1 - \zeta}}$$
 en fonction de $x = \frac{\log \frac{1}{1 - 0.3\zeta}}{\log \frac{1}{1 - \zeta}}$
$$\frac{1}{K_B} + \frac{1}{K_0} x = 62500 y$$

On doit trouver une droite de pente
$$\frac{1}{K_0 \times 62500}$$
 et l'ordonnée à l'origine 1

d'ordonnée à l'origine
$$\frac{1}{K_B \times 62500}$$
.

,

Une vérification expérimentale sur les catalyseurs n° 6 et n° 7 montre que nous obtenons effectivement une droite (Fig. 29)

Les droites à 420° c pour le catalyseur n° 6 et le catalyseur n° 7 sont confondues. Nous avons tracé ces droites pour différentes températures ce qui nous permettra de calculer l'énergie d'activation des 2 constantes de vitesses.

t°c	$\frac{1}{Tk}$	К _В	Log K _B	К _о	Log K _o
380°	0,153 10 ⁻²	0 , 40	- 0,915	0 ,0 0985	- 4,61
400°	0,149 10 ⁻²	0,53	-0,635	0,0189	- 3,97
420°	0,144 10 ⁻²	0,80	- 0,224	0290ء 0	- 3,54
450°	0,138 10 ⁻²	1 , 6	+ 0,47	0 , 047	- 3,05

Catalyseur n° 6 dilué à 50 % air/benzène = 80

Les constantes de vitesses sont exprimées en mole $at^{-1} g^{-1} h^{-1}$

En traçant la courbe Log $K = f\left(\frac{1}{TK}\right)$ nous pouvons déterminer l'énergie d'activation des 2 constantes de vitesse (Fig. 30)

Une différence dans ces 2 calculs réside surtout en la valeur de la constante $K_{\rm B}.$

Calcul sous forme différentielle à 420°c

 $\begin{cases} K_{o} = 0, l & \text{mole at}^{-1} g^{-1} h^{-1} \\ K_{B} = 0,095 & \text{mole at}^{-1} g^{-1} h^{-1} \end{cases} \qquad \frac{K_{B}}{K_{o}} = 0,95 \end{cases}$

Calcul sous forme intégrée à 420°c

 $\begin{cases} K_{0} = 0,029 \text{ mole at}^{-1} g^{-1} h^{-1} \\ K_{B} = 0,80 \text{ mole at}^{-1} g^{-1} h^{-1} \end{cases} \qquad \frac{K_{B}}{K_{0}} = 27.5$

Ceci s'explique par les courbures des graphiques 27 et 28. Les valeurs de K_B et K_o calculées à partir de la forme intégrée sont des valeurs moyennes alors que celles des graphiques 27 et 28 correspondent aux faibles pressions P_o et P_B .

Il est bien connu qu'on peut vérifier dans un réacteur intégral une loi cinétique fausse dont les constantes "dynamiques" sont en fait variables avec la conversion (15). 2) <u>Compatibilité des résultats obtenus avec la cinétique</u> proposée par IOFFE (5 - 6)

Nous avons adopté le schéma cinétique de IOFFE

De même, notre étude a été basée sur le fait que les vitesses d'évolution des processus (2) et (3) sont du même ordre de grandeur et d'un ordre plusieurs fois plus faible que la vitesse d'évolution du processus (1).

Les résultats obtenus à propos de l'effet du gaz carbonique, de la détermination de l'ordre de réaction par rapport au benzène, ainsi que la mesure des énergies d'activation correspondent.

Toutefois une très nette divergence apparaît à propos de la détermination de l'ordre de réaction par rapport à l'oxygène.

Nous n'avons étudié l'ordre par rapport à l'oxygène que pour une seule pression partielle de benzène. Il serait donc nécessaire de refaire une étude de l'ordre par rapport à l'oxygène pour d'autres valeurs de la pression partielle de benzène.

Par son montage IOFFE évite l'influence du freinage des vapeurs d'anhydride maléique sur la vitesse d'oxydation.

Contrairement à la théorie, les quantités de CO et de CO_2 produites ne sont pas égales.

Dans tous les cas nous avons trouvé un rapport molaire CO_2/CO supérieur à un.

3

HANDMAR (2) (catalyseur : $V_2 O_5 - M_0 O_3/Al_2 O_3$) avait déjà signalé ce fait, et HOLSEN (3) (catalyseur : $V_2 O_5/Al_2 O_3$) a étudié l'évolution de ce rapport CO_2/CO avec les données de la réaction.

Nous avons trouvé que le rapport CO₂/CO était indépendant du temps de contact (HAMMAR également).

Les pressions partielles de benzène et d'oxygène n'ont pas d'influence sur ce rapport.

Toutefois la température a une très grande influence sur le rapport CO_2/CO_2 .

Le rapport molaire CO_2/CO augmente linéairement avec la température (Fig. 31).

Nous voyons donc que là, les résultats obtenus sont très divergents de ceux proposés par HOLSEN.

CONCLUSIONS

3

Nous avons vu que la cinétique de la réaction d'oxydation catalytique du benzène en phase vapeur était complexe.

Néanmoins à la lumière des différents travaux, cette cinétique est maintenant un peu mieux connue ; Certains points sont encore à revoir en particulier l'étude de l'ordre de réaction par rapport à l'oxygène.

Du point de vue pratique, la conclusion de ce travail est qu'il n'y a pas de possibilité d'amélioration du rendement de la réaction par la cinétique. Ceci est du domaine de l'étude du catalyseur (structure).

Nous avons montré que la sélectivité était indépendante des pressions partielles d'oxygène et de benzène.

Cette sélectivité diminue légèrement avec la température à partir de 450°c et diminue aussi en présence d'une forte proportion de gaz carbonique dans le mélange oxydant.

Cette sélectivité serait spécifique de cette famille de catalyseurs.

Une étude complémentaire du catalyseur est donc nécessaire, en particulier l'influence du rapport $\frac{V}{M_O}$ dans le catalyseur de base.

.

ŧ

Cette étude devra être suivie par l'essai de divers promoteurs ajoutés au catalyseur de base, ces promoteurs étant d'abord essayés au microréacteur différentiel.

BIBLIOGRAPHIE

.

ŧ

1 - WEISS J. M, DOWNS C.R, BURNS R.M. Ind. Eng. Chem. 15 965 (1923) 2 - G. BERTIL HAMMAR - Svenk Kemisk Tidskrift nº 5 p. 165-176 (1952) 3 - HOLSEN J.N. - Thèse D. Washington Univ. St Louis Missouri (1954) 4 - MARS P. - Thèse Univ. Delft (Holl.) (1958) 5 - I.I. IOFFE, A G LIOUBARSKI. Kin i Kataliz (URSS) nº 3 p. 261-270 (1962) 6 - I.I. IOFFE, A G LIOUBARSKI. Kin i Kataliz (URSS) nº 4 p. 294-298 (1963) 7 - J.K. DIXON, J E LONGFIELD in "Catalysis" (P.H. EINETT) nº 7 p. 182 (1960)8 - A. MAYEUX - Thèse 3è cycle. Univ. Lille (1963) 9 - DUCRET. Anal. Chim. Acta 1. 135 (1947)10 - DUCRET - Bull. Soc. Chim. 10. 334 (1943) 11 - ARRINGTON - RICE - U.S. Bur. Mines Rept Investigations nº 3 441 (1939)12 - SIMARD - STEGER - SIEGEL - ARNOTT, Ind. Eng. Chem. 47. 1424 (1955) 13 - I.I. IOFFE - A G LIOUBARSKI, Z.J. EJKOWA, Kin i Kataliz 3, 194 (1962)14 - TREHAN - SURI - THAMPY. (Inde) C.A. 52. 8916 15 - C.D. PRATER - R.M. LEGO in Adv in Cat. VIII p. 293

73.-

CHAPITR	E	Page
l – I	NTRODUCTION	l
11 - M	ONTAGE EXPERIMENTAL	
	a) Description de l'appareil	5
	b) Etude théorique de la réaction	10
	c) Catalyseurs	18
111 - E	FFETS DE LA PRESSION PARTIELLE DE BENZENE	
ł	a) Etude de l'ordre de réaction	25
1	b) Etude de la sélectivité	30
	c) Etude du T T U	31
JV – E	FFETS DE LA PRESSION PARTIELLE D'OXYGENE	
ć	a) Etude de l'ordre de réaction	34
1	b) Etude de la sélectivité	37
× (c) Etude du T T U	38
V – E	FFETS DE LA PRESSION PARTIELLE DE GAZ CARBONIQUE	40
3	a) Mesure des énergies d'activation	44
1	o) Etude de la sélectivité	48
c	c) Etude du T T U	49
VII - EI	FFETS DE LA DILUTION DE LA MASSE CATALYTIQUE	52
VIII- D	ISCUSSIONS ET CONCLUSIONS	57

TABLE DES MATIERES

74.-