1966

UNIVERSITE DE LILLE FACULTE DES SCIENCES 50376 1966 59

# MEMOIRE

pour l'obtention du
DIPLOME D'ETUDES SUPERIEURES
DE SCIENCES PHYSIQUES

Contribution à la connaissance des diverses fractions obtenues par distillation d'un goudron de carbonisation de basse température par la chromatographie gazeuse

par

# JEAN DESORMEAUX

JURY:

Président :

Monsieur J. E. GERMAIN

Examinateurs:

Monsieur M. BLANCHARD

Monsieur R. MAUREL

Membre invité: Monsieur E. GRAND'RY

LILLE, le 20/12 1966

# SOMMAIRE.

# Lère Partie : TRAVAUX THEORIQUES.

| Chapitre I: Introduction                                                                | Pages<br>1 |
|-----------------------------------------------------------------------------------------|------------|
| Chapitre II: Etude bibliographique                                                      | 2 à 6      |
| § I - classement des goudrons d'après<br>leur degré de pyrolyse                         |            |
| primaire 2 & 3                                                                          |            |
| § 2 - composition des goudrons primaires                                                |            |
| IIème Partie : TRAVAUX PRATIQUES.                                                       |            |
| Chapitre I : Méthodes d'analyse et mise au point de la chromatographie en phase gazeuse |            |
| appliquée à l'étude des huiles de goudron                                               | 7 à 43     |
| § I- Examen des fractions neutres 7 à 32                                                | 2          |
| A- Appareillage 7                                                                       |            |

| B <b>-</b> | Ide                                                             | ntification des                                                                                                          |         |  |  |  |  |  |
|------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
|            | constituants élués.                                             |                                                                                                                          |         |  |  |  |  |  |
|            | I-                                                              | Origine et utilisation des substances de référence                                                                       | 7 & 8   |  |  |  |  |  |
|            | 2-                                                              | Application des procédés graphiques à l'aide de 4 phases stationnaires : Silicone DC, Réoplex 400, Apiezon L, Elastomère | -       |  |  |  |  |  |
|            | 3-                                                              | Conclusions                                                                                                              | I2 & I3 |  |  |  |  |  |
| C-         | Etuc                                                            | de d'un mélage paraf-                                                                                                    |         |  |  |  |  |  |
|            | fin                                                             | ique/oléfinique_sur                                                                                                      |         |  |  |  |  |  |
|            | colonne BB' oxydiproprio-                                       |                                                                                                                          |         |  |  |  |  |  |
|            | nit                                                             | cile                                                                                                                     | 13      |  |  |  |  |  |
|            | 1                                                               | Identification des<br>paraffines et oléfines<br>en mélange étalon                                                        | I4 & I5 |  |  |  |  |  |
|            | 2- (                                                            | Conclusions                                                                                                              | I5 .    |  |  |  |  |  |
| D <b>-</b> | <u>Ide</u>                                                      | ntification des                                                                                                          |         |  |  |  |  |  |
|            | Description des paraffines ramifiées 16  I- Etude d'une essence |                                                                                                                          |         |  |  |  |  |  |
|            |                                                                 | Etude d'une essence<br>'Seca " sur Apiezan L.                                                                            | 17      |  |  |  |  |  |
|            | 1                                                               | Etude d'une essence<br>'Seca "sur Silicone                                                                               | 18      |  |  |  |  |  |

| E- Application de la chroma-                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------|
| tographie gazeuse à                                                                                                   |
| l'échelle préparative19                                                                                               |
| I- Examen d'une huile de<br>lavage sur 2 phases dif-<br>férentes : Bentone 34/<br>Apiezon L et Silicone<br>DC 19 à 22 |
| 2- Scindement de l'huile<br>de lavage en sous-<br>fractions 23 à 27                                                   |
| 3- Examen chromatographi-<br>que des sous-fractions<br>piégées 27 à 30                                                |
| 4- Conclusions 3I & 32                                                                                                |
| § II- Examen des fractions acides 33 à 43                                                                             |
| A- Essais sur le Diester de<br>l'acide phtalique du<br>3,3,5-triméthylcyclohexanol 33à38                              |
| B- Essais sur la phase<br>Triméthylpelargonate 39 à 41                                                                |
| C- Applications sur le Xylé-<br>nol polonais 4I à 43                                                                  |

| Chapitre     | II : Etude d'un goudron résultant de la carbonisation à basse température en lit fluidisé du charbon                                                                                                             |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | d'Houthaelen (veine I6) Bassin de<br>Campine (Belgique)                                                                                                                                                          |
| § I -        | Pré-traitement du goudron 44à 56                                                                                                                                                                                 |
|              | A- Isolement du goudron brut 45 B- Séparation du brai 45 à 47 C- Distillation fractionnée. 48& 49 D- Extraction acides-bases. 50 à 52 E- Chromatographie d'absorption sur gel de Silice (Méthode F.I.A.) 53 à 56 |
|              | (He offodd F. L.A.) )) ayo                                                                                                                                                                                       |
| § 2 <b>-</b> | Synthèse des résultats :                                                                                                                                                                                         |
|              | hydrocarbures neutres identifiés                                                                                                                                                                                 |
|              | dans la fraction 50-I20°C 57 à 6I                                                                                                                                                                                |
| § 3 -        | Synthèse des résultats : hydrocarbures neutres identifiés dans la fraction I20-I80°C 62 à 65                                                                                                                     |
|              | Synthèse des résultats : comps identifiés dans la fraction acide 50-I20°C                                                                                                                                        |
| § 5 <b>-</b> | Synthèse des résultats : corps identifiés dans la fraction acide I20-I80°C                                                                                                                                       |

§ 6 - Conclusions ...... 69 & 70

IIIème Partie : CONCLUSIONS GENERALES 71 à 73

Références bibliographiques.

UNIVERSITE DE LILLE FACULTE DES SCIENCES .

MEMOIRE

pour l'obtention du DIPLOME D'ETUDES SUPERIEURES DE SCIENCES PHYSIQUES

CONTRIBUTION A LA COMMAISSANCE DES DIVERSES FRACTIONS OBTENUES PAR DISTILLATION D'UN GOUDRON DE CARBONISATION DE BASSE TEMPERATURE PAR LA CHROMATOGRAPHIE GAZEUSE

par

JEAN DESORMEAUX

JURY :

Président : Monsieur J.E. GERMAIN

Examinateurs : Monsieur M.BLANCHARD

Monsieur R. MAUREL

Membre invité: Monsieur E. GRAND'RY

UNIVERSITE DE LILLE

FACULTE DES SCIENCES
-:-:-:-:-:-:-:-:

# DOYENS HONORAIRES :

MM.PRUVOST, LEFEBVRE, PARREAU.

# PROFESSEURS HONORAIRES :

MM. ARNOULT, BEGHIN, CAU, CHAPELON,
CHAUDRON, CORDONNIER, DEHEUVELS,
DEHORNE, DOLLE, FLEURY, GERMAIN,
KOURGANOFF, LAMOTTE, LELONG,
Mme LELONG, MM. MAZET, MICHEL,
NORMANT, PARISELLE, PASCAL,
PAUTHENIER, ROIG, ROSEAU,
ROUBINE, WIEMANN, ZAMANSKY,
KAMPE DE FERIET.

DOYEN:

M. TILLIEU

Professeur de Physique

### ASSESSEURS :

MM. DURCHON

Professeur de Zoologie

HEUBEL

Professeur de Chimie Minérale

### PROFESSEURS :

MM. BACCHUS

Astronomie Calcul Numérique

BECART

Physique

BERKER

Mécanique des Fluides

BLOCH

Psychophysiologie

BONNEMAN-BEMIA

Chimie et Physico-Chimie Industrielles

BONTE

Géologie appliquée

BOUGHON

Mathématiques

BOUISSET

Physiologie animale

BOURIQUET

Botanique

CELET

Géologie

CORSIN

Paléobotanique

DECUYPER

Mathématiques

DEDEKER

Professeur associé de Mathématiques

DEFRETIN

Biologie marine

**DEHORS** 

Physique Industrielle

DELATTRE

Géologie

DELEAU

Géologie

DELHAYE

Chimie Minérale

DESCOMBES

Calcul différentiel et intégral

GABILLARD

Radioélectricité et Electronique

GERMAIN

Chimie Générale et Chimie Organique

GLACET

Chimie

GONTIER

Mécanique des Fluides

HEIM DE BALZAC Zoologie

HOCQUETTE

Botanique générale et Appliquée

M. LEBEGUE

Botanique

Mme LEBEGUE

Physique

M. LEBRUN

Radioélectricité et Electronique

Melle LENOBLE

Physique

MM. LIEBART

Radioélectricité

LINDER

Botanique

LUCQUIN

Chimie Minérale

MARION

Chimie

Melle MARQUET

Mathématiques

MM. MARTINOT-LAGARDE Mécanique des Fluides

MAUREL

Chimie

MENESSIER

Géologie

MONTREUIL

Chimie Biologie

PARREAU

Mathématiques

PEREZ

Physique Expérimentale

PHAM MAU QUAN

Mécanique rationnelle et

expérimentale

POUZET

Calcul Numérique

PROUVOST

Géologie

SAVARD

Chimie Générale

SCHALLER

Zoologie

SCHILTZ

Physique

Mme SCHWARTZ

Analyse supérieure

MM. TRIDOT

Chimie

VIVIER

Biologie animale

WATERLOT

Géologie et Minéralogie

WERTHEIMER

Physique

# MAITRES DE CONFERENCES :

MM. BEAUFILS

Chimie Générale

BLANCHARD

Chimie Générale

BOILLET

Physique

BUI TRONG LIEU Mathématiques

CHASTRETTE

Chimie Générale

COMBET

Mathématiques

CONSTANT

Physique

DERCOURT

Géologie et Minéralogie

DEVRAINNE

Chimie Minérale

Mme DRAN

Chimie Appliquée

MM. FOATA

Mathématiques

FOURET

Physique

GAVORET

Physique

HERZ

Mathématiques

HUARD DE LA MARRE Calcul Numérique

LACOMBE

Mathématiques

MAES

Physique

MONTARIOL

Chimie

MORIAMEZ

Physique

MOUVIER

Chimie

NGUYEN PHONG CHAU Physique

PANET

Electromécanique

RAUZY

Mathématiques

SAADA

Physique

SEGARD

Chimie Biologique

TUDO

Chimie Minérale Appliquée

VAZART

Botanique

VAILLANT

Mathématiques

VIDAL

Physique Industrielle

METTETAL

Zoologie

# SECRETAIRE GENERAL, ATTACHE PRINCIPAL :

Monsieur LEGROS

# ATTACHES D'ADMINISTRATION :

Messieurs COLLIGNON

FACON

JANS

LEROY

-:-:-:-:-:-:-:-:-:-

Monsieur le Professeur J.E. Germain, Directeur de l'Ecole Nationale Supérieure de Chimie de Lille, a bien voulu nous attribuer un travail. C'est au cours des nombreux entretiens qu'il nous a accordés que se sont progressivement dégagés et précisés les éléments de cette recherche.

Monsieur E. Grand'Ry, Directeur des Laboratoires de Recherches de la Carbonisation Centrale a bien voulu, lui aussi, s'intéresser à notre travail. Sous sa bienveillante autorité et avec l'aide de ses conseils éclairés, nous avons pu mener à bien la réalisation de ce document.

Que Monsieur Le Professeur J.E. Germain et Monsieur Le Directeur E. Grand'Ry trouvent ici le témoignage de notre plus vive reconnaissance.

Notre gratitude va encore à tous les membres du personnel du Laboratoire de Recherches de la Carbonisation Centrale qui, en maintes circonstances, nous ont fourni une aide précieuse et efficace. Nous remercions en particulier :

Messieurs P.Dath et J.André, chez qui nous avons trouvé de façon constante conseils et encouragements.

DESORMEAUX J.

lère Partie : TRAVAUX THEORIQUES.

# Chapitre I: Introduction.

Le présent travail constitue une contribution à la connaissance des diverses fractions obtenues par distillation d'un goudron de carbonisation de basse température par la chromatographie en phase gazeuse.

La difficulté d'analyse des huiles de goudron réside dans le fait que d'une part elles contiennent un grand nombre de composants dont la plupart sont encore inconnus et que d'autre part parmi les combinaisons déjà identifiées, la plus grande partie n'intervient qu'en très faible quantité.

Nous nous sommes efforcés de traiter le goudron par des méthodes d'analyse nombreuses et variées afin d'en permettre la résolution par la chromatographie en phase gazeuse.

Cette dernière technique nous a permis d'obtenir une vue d'ensemble qualitative et quantitative de la composition d'une partie des fractions isolées d'un goudron en provenance des Laboratoires de Recherches de la S.A. de la Carbonisation Centrale de Tertre.

# § I - <u>Classement des différents goudrons d'après leur</u> <u>degré de pyrolyse primaire</u>.

Si on traite le charbon thermiquement, la substance organique subit une destruction caractéristique. La composition des produits qui prennent naissance est fonction des conditions de température et de la manière dont les produits de pyrolyse sont évacués. De plus, la nature propre du charbon mis en oeuvre joue un rôle important.

Ceci mène au concept de " goudron naissant " qu'il convient de préciser.

Nous entendons par là des goudrons qui sont obtenus à basse température (entre 360°C et 520°C) soit avec un maximum de production de goudron et un minimum de décomposition. C'est un goudron dit "primaire "qui nous a servi de matière première pour notre recherche d'identification des constituants neutres, acides et basiques des différentes fractions isolées.

Vahrman (I) a donné dans une échelle d'estimation, le degré primaire de différents goudrons préparés :

- I- Le goudron obtenu sous haut vide ( le plus primaire )
- 2- Le goudron de basse température ( cornues chauffées extérieurement )

- 3- Le goudron de cornue verticale en exploitation continue.
- 4- Le goudron de four à coke ( le moins primaire)
- 5- Le goudron de cornue verticale en exploitation discontinue.

# § 2 - Composition des goudrons primaires.

Un goudron primaire est composé en principe de :

- a- Paraffines et Oléfines.
- b- Naphtènes.
- c- Aromatiques alkylés.
- d- Phénols.
- e- Amines.
- f- Matières résineuses.

La plus grande partie des constituants définis n'intervient qu'en très faible quantité, toujours inférieure à I% et fréquemment de l'ordre de 0,01 %.

Warnes (2) et Fisher (3) donnent environ 200 composants du goudron de haute température et Rhodes (4) indique 348 matières provenant du goudron de basse et haute température. Dans un aperçu sur les travaux depuis I9IO, Kruber (5) cite environ 200 matières identifiées. Il estime que le nombre des constituants se situe aux environs de I0.000.

Coppens et ses collaborateurs (6) s'appliquèrent à travailler sur un goudron obtenu par carbonisation à 600° d'un charbon à haute teneur en matières volatiles. Ils séparent la fraction d'huile neutre bouillant en dessous de 280° en paraffines et cycloparaffines, oléfines et aromatiques par la méthode d'indicateurs fluorescents d'absorption modifiée. (F.I.A.)

Les fractions paraffiniques et oléfiniques sont alors soumises à la chromatographie gazeuse à I90° sur une colonne contenant de la graisse de silicone sur des grains calibrés de brique réfractaire avec l'hélium comme gaz vecteur.

La fraction paraffinique qui représente I6,5% de l'huile neutre bouillant en dessous de  $280^\circ$  est constituée en prédominance de paraffines normales de  $C_9$  à  $C_{I6}$  avec des composants mineurs correspondants à 5 séries homologues des différentes isoparaffines du même rang et de même nombre d'atomes de carbone.

La fraction oléfimique (II % de l'huile neutre bouillant en dessous de 280°C ) comprend également des oléfines normales de C  $_9$  à  $^{\rm C}$  I6  $^{\rm *}$ 

Il fut trouvé qu'environ les 3/4 restants de l'huile neutre étaient composés de constituants aromatiques.

Boyer (7) et ses collaborateurs soumirent du goudron primaire à une extraction à contre courant, le distillèrent et le séparèrent également en plusieurs types d'hydrocarbures à l'aide d'une colonne chromatographique préparative F.I.A. équipée de gel de silice, puis ces

fractions obtenues furent analysées par chromatographie en phase gazeuse.

La spectroscopie infrarouge et ultraviolette fut utilisée pour identifier les composants piégés après séparation. Des composants paraffiniques et oléfiniques constitués de plus de I3 carbones furent ainsi mis en évidence.

La plupart de ceux-ci étaient à chaine droite. Les composants aromatiques étaient aussi abondants.

Maher (8) soumit l'huile neutre à l'examen chromatographique sur colonne à silicone à 220° et piégeage pour examen infrarouge après avoir extrait d'une huile de basse température bouillant de 90°C à 275°C, les acides à la soude à I0% d'une façon conventionnelle et les bases à l'acide sulfurique à 25 %. Il a trouvé que les constituants des huiles neutres étaient largement aliphatiques. Au palier de température de I60° sur colonne à silicone, les pics majeurs émergés sont les mêmes qu'à 220° mais si on étudie la même huile sur Apiézon L à I60°, ces pics majeurs sont divisés en 2. Le premier de chaque paire étant cependant le plus fort.

Les premiers de ces pics piégés et examinés par spectrométrie ont révélé qu'ils correspondaient à une structure vinyl type alcène comme dans une oléfine normale.

L'intérêt de cette étude réside dans l'élimination successive des composants des huiles. L'huile est d'abord extra ite avec de l'acide sulfurique à 80°. Le premier de chaque pic double est éliminé ou sérieusement réduit. Ceci met en relief la présence d'une série d'oléfines. En lavant avec de l'acide sulfurique à 98 %, quelques pics mineurs sont résorbés.

Les paraffines normales furent éliminées par passage à 220° sur tamis moléculaire 5A. Maher démontre de la sorte que la paire de pics majeurs était constituée de paraffines normales et de I-cléfines.

A la suite de ses travaux, Maher a conclu que les huiles de basse température qu'il a étudiées étaient constituées en grande partie de séries homologues de paraffines et d'oléfines avec de petites quantités d'isomères ramifiés.

Les recherches entreprises dans la suite ont établi que pour les paraffines normales la plupart des termes renferme de 5 à 33 atomes de Carbone. Pour les paraffines ramifiées quelques termes isolés et la famille des méthyl-2 paraffines ont été identifiés (6) - (9) - (II) - (I2) - (I3) - (I4).

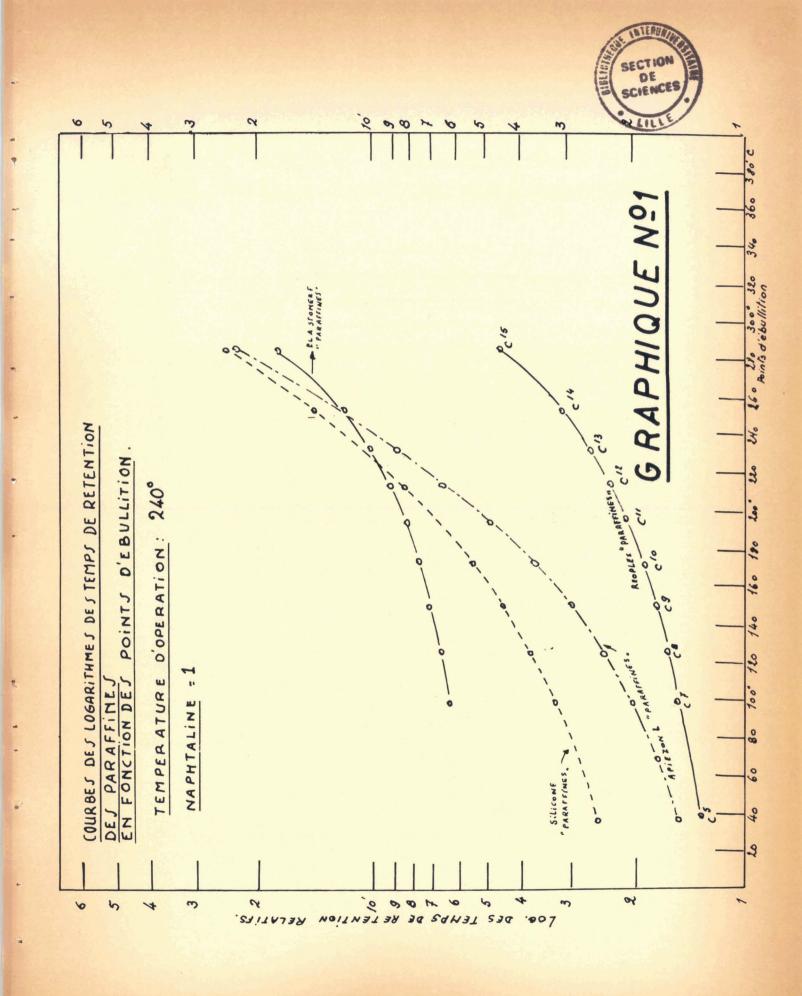
Parmi les cycloparaffines, seuls les cyclopentane, cyclohexane et quelques-uns de leurs dérivés simples ont été signalés (II) - (I4).

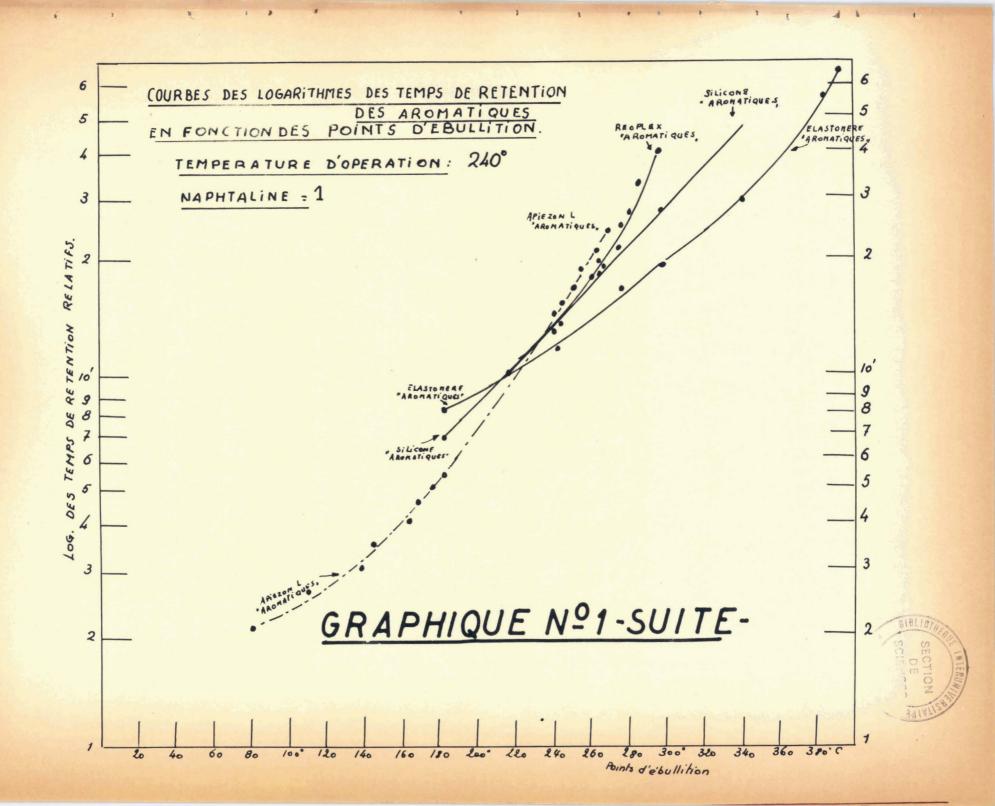
Jäger et Kattwinkel (I3)- (I4) identifièrent quelques composés aromatiques notamment des combinaisons méthyl, éthyl, propyl, du benzène, de l'indène, du styrène et du benzofurane.

IIe Partie : TRAVAUX PRATIQUES.

# CHAPITRE I : METHODES D'ANALYSE ET MISE AU POINT DE LA CHROMATOGRAPHIE GAZEUSE APPLIQUEES A L'ETUDE DES HUILES DE GOUDRON.

# § I - Examen des fractions neutres.


# A. Appareillage.


Il existe à l'heure actuelle de nombreux appareils commerciaux de chromatographie en phase gazeuse. Nous nous sommes servis d'un ensemble de chromatographie construit par les soins du Service de Recherches de la Carbonisation Centrale de Tertre.

Différentes conditions de travail ont été appliquées à cette installation et sont reprises au cours des chapitres suivants.

- B. Identification des constituants élués.
  - I- Origine et utilisation des substances de référence.

Nous disposons d'une gamme de corps étalons d'origine commerciale, tandis que les alcanes normaux de





de C<sub>5</sub> à C<sub>16</sub> proviennent de l'Institut français du Pétrole et une série d'aromatiques depuis le benzène jusqu'au chrysène du Laboratoire Central des Mines de l'Etat Hollandais.

L'identification des constituants des huiles de goudron par chromatographie en phase gazeuse est liée à la connaissance des temps de rétention, c'est-à-dire le temps qui s'est écoulé entre l'injection et l'apparition maximum du pic sur le chromatogramme, temps qui se traduit par la mesure d'une longueur.

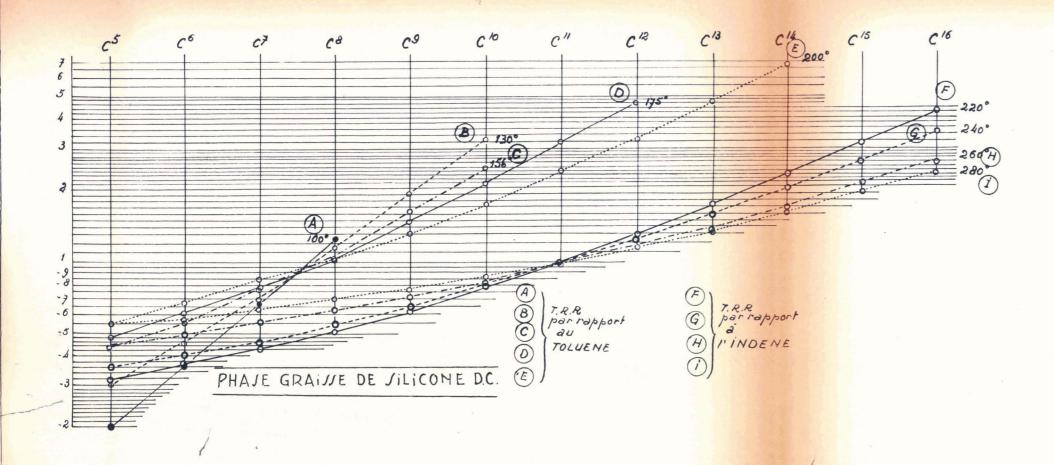
Nous pourrions donc de ce fait, dresser un catalogue des temps de rétention qui devrait, en principe, permettre de reconnaitre que tel pic correspond à tel corps comme un point d'ébullition permet d'identifier une substance inconnue. Comme il n'est pas possible de réunir toutes les substances étalons nécessaires à la comparaison directe des temps de rétention, nous avons recours à des procédés graphiques.

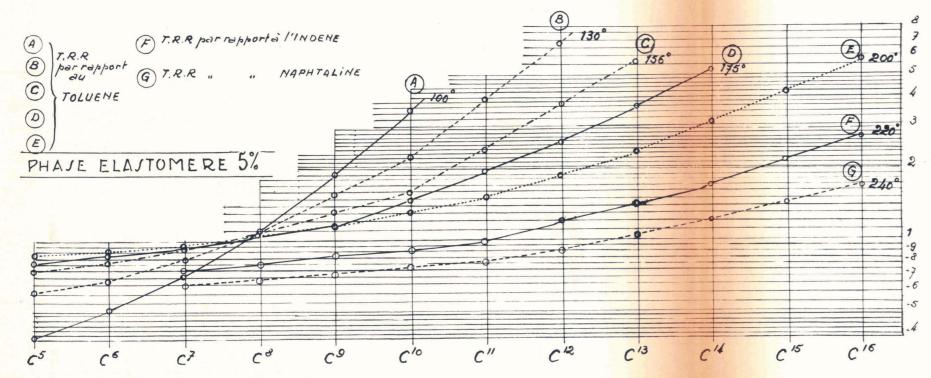
2- Application de procédés graphiques à l'aide de 4 phases stationnaires : Silicone DC, Reoplex 400, Apiezon L, Elastomère.

Nous établissons un faisceau de courbes semi-logarithmiques : temps de rétention en fonction de la température d'ébullition (I5). Ces courbes sont obtenues à partir de corps pur en notre possession (graph. 1).

Pour améliorer la précision et éviter des corrections, nous avons recours à la technique de l'étalon interne (I6).

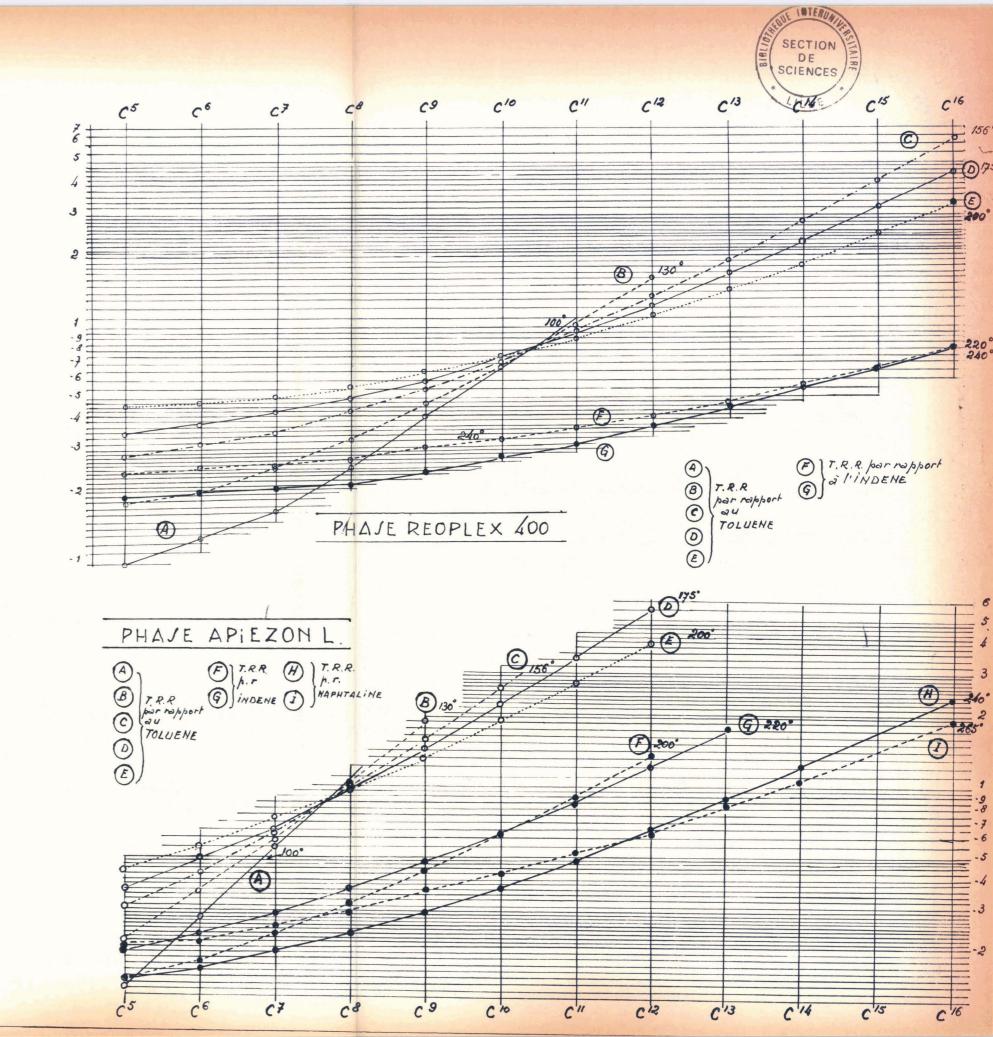
Elle constitue à introduire dans le mélange des corps à identifier, une substance connue, choisie de telle sorte que son pic n'interfère pas ceux des autres solutés.

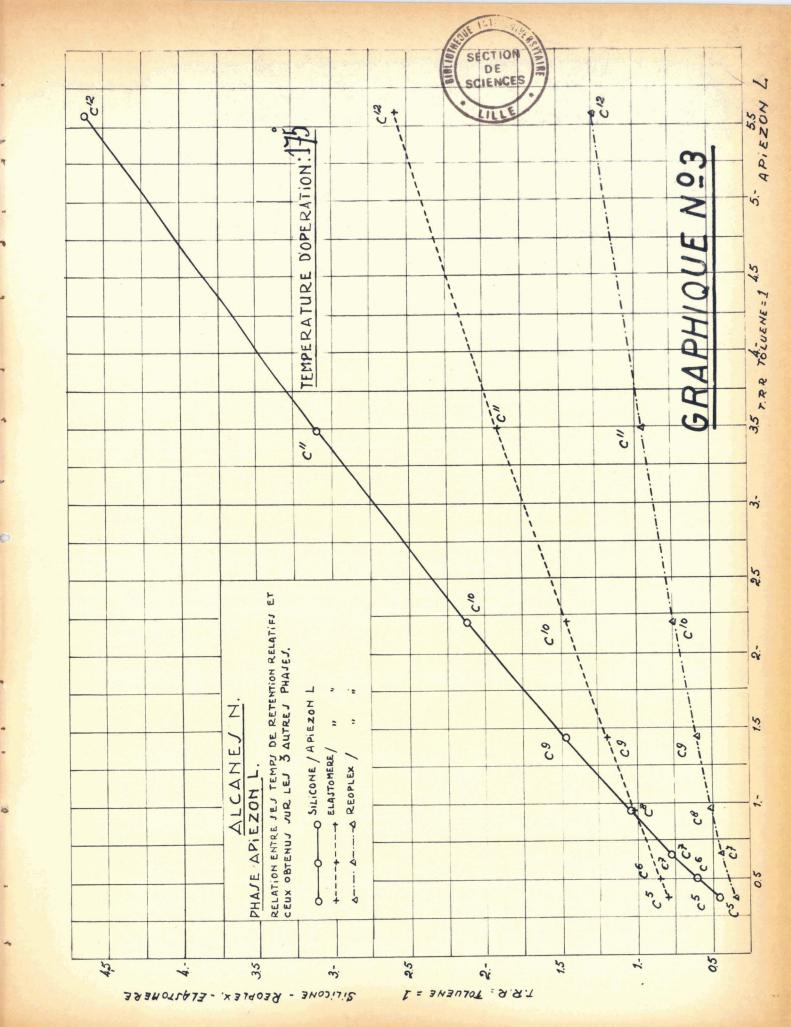

On se sert alors du temps de rétention relatif exprimé par le rapport des temps de rétention du soluté et de l'étalon.

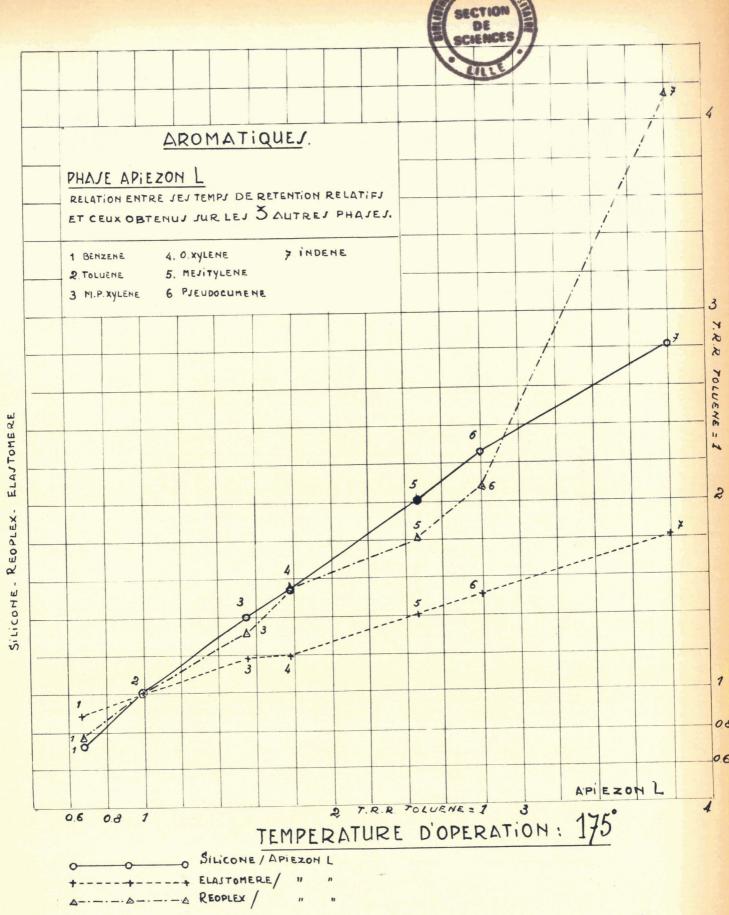

Expérimentalement, nous avons donc déterminé les ramports des distances des alcanes et des aromatiques vis à vis des étalons : Toluène, Indène, Naphtaline, à divers paliers de température.

Comme il s'est avéré que lors d'un essai d'orientation sur une huile de goudron, il subsistait trop d'incertitudes concernant l'identification de nombreux corps, nous avons poursuivi l'établissement de diagrammes sur trois autres phases stationnaires aux mêmes paliers de température que précédemment.

Nous obtenons ainsi des droites différemment inclinées pour une même série de corps suivant les phases stationnaires utilisées.


La confrontation de ces droites expérimentales avec les corps à étudier éliminera un certain nombre de doutes.




TEMPS DE RETENTION RELATIFS MESURES SUR 4 PHASES A DIFFERENTES TEMPERATURES EN FONCTION DU NOMBRE D'ATOMES DE CARBONE DES ALCANES NORMAUX.

GRAPHIQUE Nº 2







GRAPHIQUE Nº4

En outre, l'on sait que dans une série homologue, le logarithme du temps de rétention est une fonction linéaire du nombre de groupements -CH2. (I7). Le temps de rétention ayant été déterminé expérimentalement pour 2 ou 3 membres d'une série homologue, on peut déduire ainsi graphiquement le temps de rétention que donneront dans les mêmes conditions opératoires les autres constituants de la série (graphique 2).

D'autre part si dans un graphique, on porte pour divers composés, en abcisses, les temps de rétention obtenus sur une première phase fixe et en ordonnées, leurs temps de rétention déterminés sur une seconde phase stationnaire, les points représentatifs des divers composés se placent sur une série de droites convergeant vers l'origine (I8). La pente de chaque droite est caractéristique de la structure moléculaire des composés qui les déterminent (graph. 3-4).

Si les points représentatifs des valeurs, l'une obtenue sur une première phase, l'autre sur une seconde, tombent sur une des droites d'un diagramme préalablement établi pour diverses familles de composés, cette droite indiquera la famille à laquelle appartient la substance inconnue.

Lors de l'établissement des graphiques, la position du point représentatif d'une substance sur la droite caractéristique de sa famille permettra en outre de fixer la grandeur approximative de sa masse moléculaire ou de sa température d'ébullition.

# TECHNIQUE J APPLIQUEE J POUR LA CHROMATOGRAPHIE DES CORPS NEUTRES DANS LE GOUDRON.

| TABLEAUN PI BU)                         |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| T°LIMITE<br>O'<br>UTILISATION           | 340°                                                                                                                                                                                                                       | °okë                                                                                                                                                                                                                                    | 300°                                                                                                                                                                                                                                                                 | 350                                                                                                                                                                                                           |  |  |
| DETECTION                               | Filament de<br>Platine<br>Résistance:<br>30 ohms                                                                                                                                                                           | Filoment de<br>Plotine<br>Révistance ;<br>30 otus                                                                                                                                                                                       | Filament de<br>platine<br>Resistance :<br>30 ohms                                                                                                                                                                                                                    | Filoment de<br>Plotine.<br>Resistonce:<br>30 ohms.                                                                                                                                                            |  |  |
| QUANTITE<br>ECHANTILLON<br>(Microlitre) | ري<br>ري<br>ري                                                                                                                                                                                                             | <sup>રે</sup> ં જ<br>' જ                                                                                                                                                                                                                | es<br>S                                                                                                                                                                                                                                                              | ي قيد                                                                                                                                                                                                         |  |  |
| DEBIT GAZ<br>CC/minute                  | 50                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                            |  |  |
| GAZ<br>VECTEUR                          | Hélium.                                                                                                                                                                                                                    | Hélium                                                                                                                                                                                                                                  | Helium                                                                                                                                                                                                                                                               | Hélium                                                                                                                                                                                                        |  |  |
| Tº FOUR                                 | 100° - 130° 175° 200° - 175° 240° - 265° 280°                                                                                                                                                                              | 100° - 130°<br>156° - 175°<br>200° - 220°<br>240°                                                                                                                                                                                       | 100° - 130°<br>156° - 175°<br>240° - 220°<br>240° - 265°                                                                                                                                                                                                             | 100 - 130°<br>45 156° - 175°<br>200° - 288°<br>240° - 265°                                                                                                                                                    |  |  |
| PO,DV DE CHARGE DE<br>LA COLONNE        | BRIQUES DE SIL-O-CEL  - Dumensions: 40 à 60 meshs - La phase stationnaire est dissoure dans C.Cl 100 parties de briques sont proposat de Briques Silicone - 20 change charge est murie a 150 pendant 12 heures sous Halium | BRIGUES DE SIL-O-CEL - D'mensions 40 à 60 meshs - La phase stationnaire est dissoute dans C.C.V. 100 parties do brigues 20 parties de Brigues 20 parties de Brigues 20 parties da Reopiex. La colonne charge est murie à 150 parque est | BR. QUES DE SIL-O-CEL - Dimonsions: 40 à 60 meshs - Le phese stationaire - Le celonne charges est - murie e d'SO pendent - 12 he ures sous Helium | BRIQUES DE SILOCCEL 100-130°  Dimensions: de 26 60 mens 156°-175°  La phase stationneire  est dissoure dans C.Cl. 200°-200°  Spannes B feastomer  La Colonne Charges  Est murie 2/156  Pendant 12 heures 3003 |  |  |
| Col.                                    | *                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                             |  |  |
| LONC.<br>CoL.                           | 6                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                             |  |  |
| PHAJE. STATIONNAIRE                     | GRAINE DE SILICONE D.C. "Dow Corning Heigh Vacuum Grasse, midland Michigan . U.J.A.                                                                                                                                        | REOPLE × 400 "The Geigy Company Ita". Rhodes Middelton Menschaster                                                                                                                                                                      | APIEZON L. "Apreyon L. Grease " Edwards High Vacuum Ltd. Manor Royal Crawloy . Busiex.                                                                                                                                                                               | ELAJTOMERE "Sslicone Elestomère" E 301. Laboratory Chemical Griffin et George (Sales) Ltd                                                                                                                     |  |  |

TEMPS DE RETENTION RELATIFS SELON LES TEMPERATURES D'OPERATION.

|                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | TABLEAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NoI                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 4 1                                   |          | " ELAJTOMERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , , ,                                                             | (nore) '88 ' 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DE                                      | EJ       | T NOT RESON T'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 16 1                                                              | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PERA<br>300                             | AS       | PR REOPLEX GOO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1111                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PALIER DE<br>TEMPERATURE<br>300°        | I        | J.U SMUSITIC MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | _        | IET YSTOMERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DE TUR                                  | 5        | . 7 WOZZIJA W Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S S S S S S S S S S S S S S S S S S S   | ASE      | 004 x 3.4034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 1 1 V -:                                                          | ***   ***   ***   ***   ***   ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PALIER DE<br>TEMPERATURE                | PH       | 7.0 24051218 A F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "      | 1111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1111                                                                | 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |          | 322401473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TUR                                     | F.       | '7 NOTZIN T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 0.21<br>0.25<br>0.26<br>0.35<br>0.42<br>0.62<br>0.62<br>0.62<br>0.62<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     | 15 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S S S S S S S S S S S S S S S S S S S   | ASE      | A PEOPLEX 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      | 000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     | 11111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PALIER DE<br>TEMPERATURE<br>265º        | HA       | APPLIANT OCHE D.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 25.00 53.00 54.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r t r t                                                             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         |          | ·   ELGSTOMERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | · 130<br>1440<br>1440<br>1440<br>1440<br>1440<br>1440<br>1440<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p 3 3 2                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ER DE                                   | EJ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.15<br>0.24<br>0.29<br>0.39<br>0.48<br>0.48<br>0.48<br>0.68<br>1.21<br>1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 3 E                                                             | 0.25<br>0.25<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40                                      | ASI      | A REOPLEX 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      | इ । इ.इ. इ.इ.इ.इ.इ.इ.च                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1111                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PALIE!<br>TEMPER                        | PH       | A ST. CONE D.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i)     | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,1-1-5                                                             | 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |          | ·· ELASTOMERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | 200 000 000 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R DE                                    | ES       | APIEZON L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 2000 2000 0 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , , ,                                                             | 88,55846,8488,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 220                                     | 2        | 007 x 3740 3 X M O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | 5 ' 2 X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | मुक्त । विश्व से विश्व । । किन्य में है । । । । । । । । ।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PALIER<br>TEMPE                         | PHA      | SILICONE D.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11     | 632 0<br>0-53 0<br>0-53 0<br>0-53 0<br>0-53 0<br>1-3 0<br>1-3 6<br>1-3 6<br>1- | 1 - 1 - 3C - 3                                                      | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000    |
|                                         | 1        | 3 3 3 MO 1 C K 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0.58<br>0.58<br>0.48<br>0.48<br>0.46<br>0.48<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     | 38, 48, , , 8, 58, 37, , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PALIER DE<br>TEMPERATURE<br>200°        | E        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Jag 2 2 2 2 8 8 · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3. 1. 1. 1                                                          | 23 TREET . 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ARA<br>000                              | A SE     | a m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11     | 0.14<br>0.15<br>0.19<br>0.19<br>0.19<br>0.22<br>0.23<br>0.23<br>0.41<br>0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 1 1 1                                                             | るの、かななな。 あまさ なななれ、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ALI                                     | PHA      | T A SYLICONE D.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 0.25<br>0.25<br>0.24<br>0.58<br>0.77<br>0.04<br>0.29<br>0.29<br>0.29<br>0.29<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * 1 1 1                                                             | 第章 1 2 3 2 2 2 1 1 2 2 2 2 2 3 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | -        | - ELASTOMERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 0.08<br>0.08<br>0.08<br>0.08<br>0.08<br>0.08<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , , , , ,                                                           | 1.13 0 0 1.14 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.15 0 0 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DE                                      | ES       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1111                                                                | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ER Z                                    | 2        | NOZZYWY TE WEODYEX 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      | 0.360.57<br>0.49<br>0.51 0.96<br>0.50 1.43<br>0.95 3.49<br>0.95 3.49<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | 13. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PALIER DE<br>TEMPERATURE<br>175.        | PHA      | C M REOPLEX 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     | 32633313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | <u> </u> | " ELASTONERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | はのかなればまるが、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | を 1 4 2 3 名 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DE<br>TUR                               | >        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0004 + + 01 00 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | 23. 1. 25. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | PHASE    | C M REOPLEX 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     | 0.85<br>0.45<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | 2, 1.38<br>1.38<br>1.38<br>1.38<br>1.56<br>1.38<br>1.56<br>1.56<br>1.56<br>1.56<br>1.56<br>1.56<br>1.56<br>1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PALIER DE TEMPERATURE 156               | Hd       | THE STREAM TO LEAD A STREAM OF LEAD OF |        | 042 0.29 0.31 0.25 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1                                                             | 0.69 0.74 0.62<br>1.5 1.38 1.65<br>1.61 1.61 1.61 1.61 1.62 1.93<br>2.53 2.53 2.53<br>2.53 2.53 2.53<br>2.53 2.53 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>a</u> +                              | 1        | ELGSTOMERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 33 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , , 1 1                                                             | 8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TUR                                     | 2        | ш.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0.22 060 042 0.29 0.31 0.35 0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | 8. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30°                                     | PHASE    | DE XEOPLEX 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n<br>n | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PALIER DE<br>TEMPERATURE<br>130         | Hd       | 7 8 82001.68 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31     | 0,30 0.18<br>0,45 0.21<br>0,31 0.34<br>1,15 0.34<br>1,193 0.47<br>3,31 0.70<br>1,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x = x = x = x                                                       | 0.000<br>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                       | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.38<br>0.50<br>0.74<br>1.13<br>1.19<br>1.19<br>1.19<br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 1 1                                                             | 0.69<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PALIER DE<br>TEMPERATURE                | E.S.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1 1 1                                                             | 10.470.06<br>10.470.06<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>10.470.0<br>1 |
| ER                                      | PHASE    | T WESDER ON TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | 0,10 0,14<br>0,13 0,22<br>0,17 0,54<br>0,26<br>0,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PALI                                    | Hd       | OS XILCONE D.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.7    | 8.30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * * * *                                                             | 4.51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                       | _        | 7 3 3 3 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |          | HOTT DEBULLITION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | od'    | 36.1<br>68.7<br>98.4<br>125.7<br>125.7<br>194.5<br>214.5<br>23.4<br>23.4<br>25.2<br>28.2<br>28.4<br>28.4<br>28.4<br>28.4<br>28.4<br>28.4<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.3<br>172<br>213.4<br>127/54                                     | 80,2<br>136,2<br>146,4<br>146,4<br>164,8<br>106,3<br>177,<br>177,<br>177,<br>177,<br>177,<br>177,<br>177,<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |          | CORPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ALCAMES M.  PENTANE HERTANE HEPTANE OCTANE NONANE UNOECANE UNOECANE TETRADECANE TETRADECANE TETRADECANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALKENES  OCTENE 1  DECENE 1  DODECENE 1  TERRADECENE 1  AROMATIQUES | BENZENE TOLUENE TYLDENE TYLDENEENE M. XYLENE MEJTYLENE YEUDOCUMENE YORINDENE THOUSENE MINDENE THOUSENE MINDENE MINDENE THOUSENE MINDENE MINDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | 2.5 A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Le tableau I rassemble les conditions opératoires des déterminations chromatographiques.

Le tableau II reprend les résultats.

# 3 - Conclusions .

# Phase Silicone.

Pour tous les paliers de température envisagés, les points des alcanes normaux se situent sur une courbe. Pour les aromatiques, les points sont en ligne droite avec un changement de direction au niveau de l'indène (Graph.I).

# Phase REOPLEX 400 ( phase polaire )

Aliphatiques : les points se succèdent sur une courbe harmonieusement étalée.

Aromatiques: En réalité la suite des points se situe sur 3 droites, une du benzène au pseudocumène, une deuxième de l'Indène à l'Acénaphtène et une troisième vers les termes supérieurs. Les suites des points suivent en gros la tendance des droites établies au graphique I. Les changements de direction des droites suivent l'allure du grossissement de la molécule. On pourrait en conclure que cette phase permet la discrimination par famille des noyaux simples et des noyaux condensés (graph. 1).

# Phase élastomère 5%

Aliphatiques : Allure curviligne.

Aromatiques : en ligne droite avec changement de direction au niveau du Mésitylène (Graph. 1).



PHAJE JTATIONNAIRE: β,β' OXYDIPROPRIONITRILE.

TEMPERATURE DE REGIME : 70°
LONGUEUR COLONNE : 6 m.
GAZ VECTEUR : HELIUM 50 cc/min

LIMITE DES POSSIBILITES D'UTILISATION DE LA COLONNE.

# GRAPHIQUE Nº5

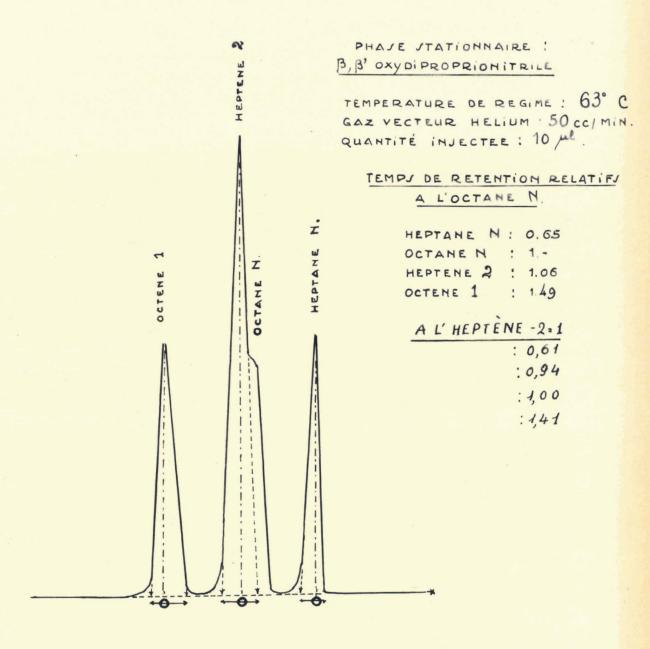
UNDECANE

DECAME

# Phase APIEZON L.

Aliphatiques : Allure curviligne.

Aromatiques : Allure droite avec changement de direction au niveau du Mésitylène (Graph. 1).


C. Etude d'un mélange paraffinique/Oléfinique sur colonne BB' Oxydiproprionitrile.

Un mélange synthétique d'alcanes normaux de C5 à CI6 a été constitué avec le toluène comme aromatique de référence et élué à 70°.

Ceci a permis de constater que le toluène (P.E. IIO°6) s'éluait longtemps après le Dodécane normal (P.E. 2I4°5). Cette phase différencie donc nettement les paraffines des aromatiques.

Malheureusement, la phase étudiée ne convient que jusqu'au niveau du Nonane normal (P.E. I50°8). En effet, au-dessus du point d'émergence de cet hydrocarbure, les pics sont lâches et estompés ce qui rendrait l'interprétation quantitative illusoire (Graph. 5).





# GRAPHIQUE Nº6

SCIENCES

# I- Identification des paraffines et oléfines en mélange étalons.

Nous ne disposons, comme étalons, que de deux alcènes : l'Octène I et l'Heptène 2. Le mélange suivant a été constitué et élué à 63°C (Graph. 6).

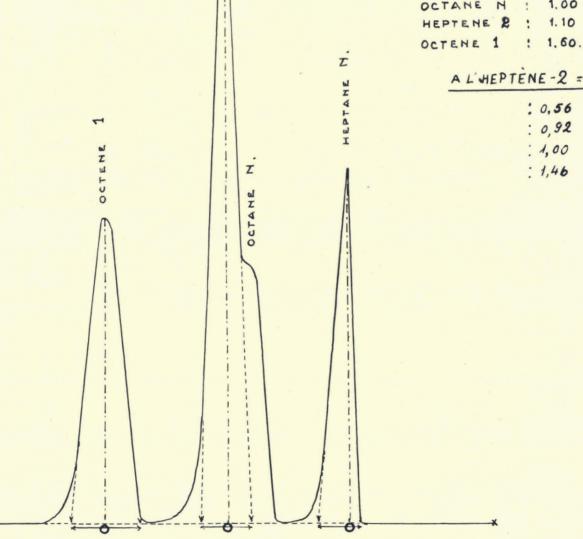
| Constituants | P.E.  | T.R.R. |
|--------------|-------|--------|
| Heptane N    | 98°4  | 0,61   |
| Octane N     | I25°7 | 0,94   |
| Heptène -2 - | 82°4  | Ι,-    |
| Octène - I - | I2I°3 | I,49   |

Les temps de rétention sont relatifs à l'heptène 2 .

La phase sépare nettement les paraffines des Oléfines de même nombre d'atomes de carbone. Cependant une certaine asymétrie de pics est à retenir : asymétrie inverse de l'Octène I - par rapport à l'Heptane normal.



PHAJE STATIONNAIRE : B.B' OXYDIPROPRIONITRILE


> TEMPERATURE DE REGIME GAZ VECTEUR : HELIUM 50 cc/Min. QUANTITE INJECTEE : 10 ML.

## TEMPS DE RETENTION RELATIFS

A L'OCTANE Nº 1

1.00

A L'HEPTÈNE -2 = 1



GRAPHIQUE Nº7



## PHAJE JTATIONNAIRE!

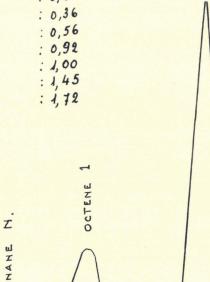
TEMPERATURE DE REGIME: 50° C GAZ VECTEUR : HELIUM 50 cc/MINUTE QUANTITE INJECTEE 10 pl.

## TEMPS DE RETENTION RELATIFS A L'OCTANE N: 1

PEHTANE N: 0.30

HEXAME N: 0.41

HEPTANE N: 0.61


OCTANE N: 1.
HEPTENE 2: 1.09

OCTENE 1: 1.58

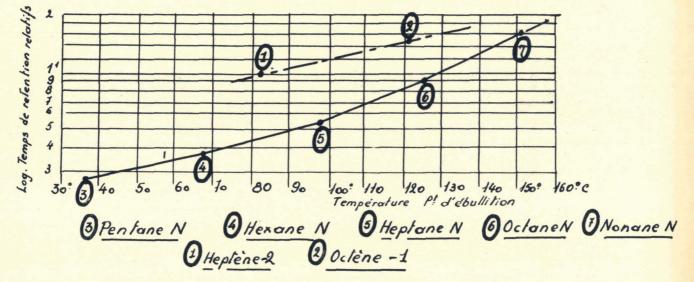
NONANE N: 1.87

A L'HEPTÈNE -2 = 1

: 0,28 : 0,28



GRAPHIQUE Nº 8


PENTANE N.

ż

Phase stationnaire : \$ 3' oxydiproprionitrile Température de régime : 50°c

Logarithmes des temps de retention relatifs a l'Heptène - 2 = 1 en fonction

des points d'ébullition des corps





GRAPHIQUE Nº 9

A 50°, l'asymétrie du pic de l'Heptane normal perdure et disparait pour l'Octène-I (Graph.7).

Le mélange d'alcanes normaux de C5 à C9 avec l'Octène- I et l'Heptène- 2 (graph.8) donne les temps de rétention suivants :

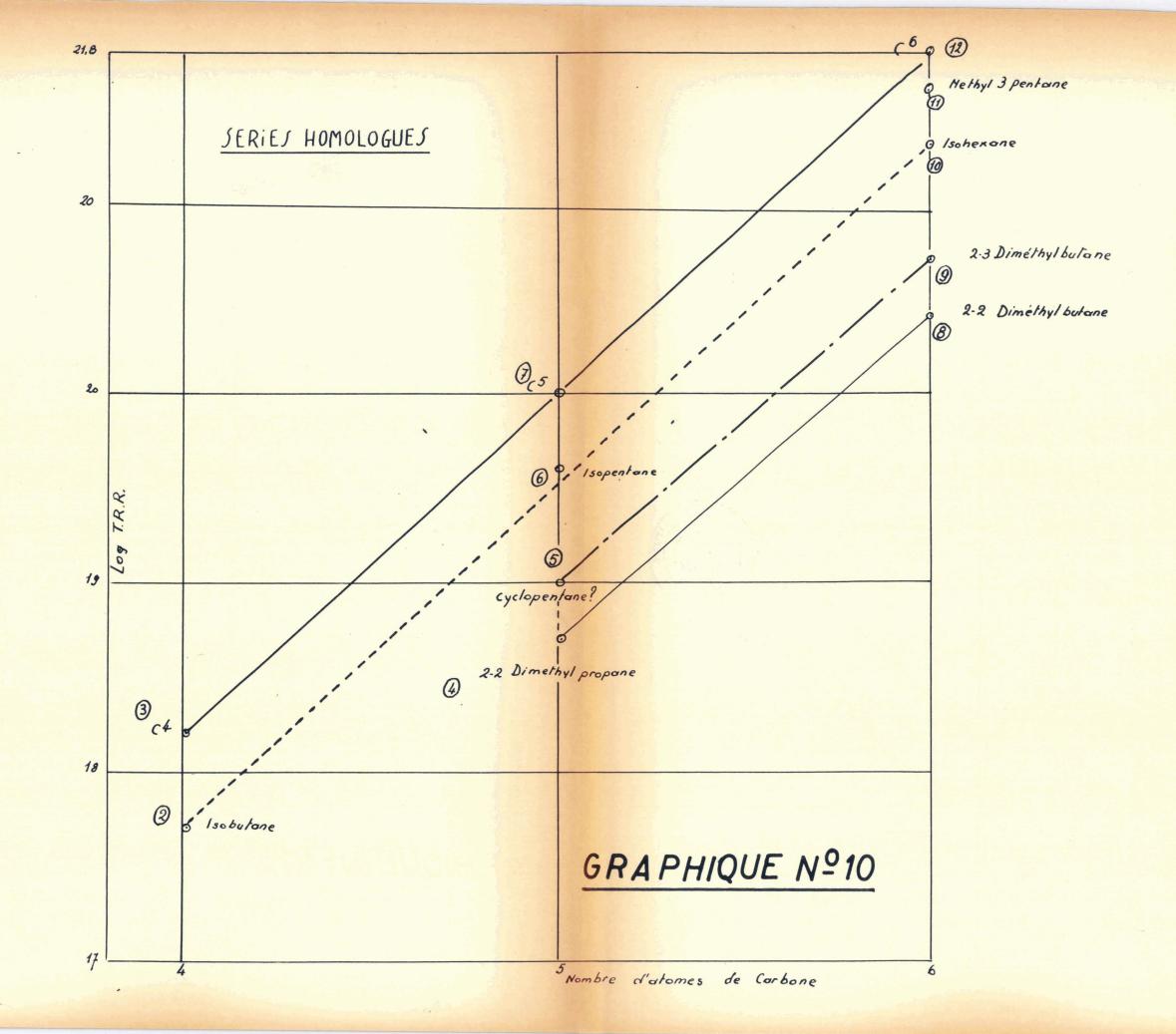
Pentane N. : 0,28

Hexane N. : 0,38

Heptane N. : 0,56

Octane N. : 0,92

Heptène-2 : I,
Octène-I : I,45


Nonane N. : I,72

La courbe des logarithmes des temps de rétention des corps en fonction de leurs points d'ébullition (graph.9) montre la différenciation nette donnée par la colonne entre les alcanes et les alcènes.

## 2- Conclusions:

La phase BB' Oxydiproprionitrile sépare avantageusement les aliphatiques des aromatiques mais ne peut convenir que jusqu'au C9.

La discrimination entre alcanes et alcènes est réalisée mais le fait d'être limité en étalons oléfiniques ne permet pas ici d'exploiter fructueusement ces résultats.





## D. Identification des paraffines ramifiées.

Selon l'Inichar (I9), la position des pics intercalaires entre deux alcanes homologues ne se présente pas de façon quelconque. Chaque pic représentant une paraffine normale est précédée d'un groupe de plusieurs pics mineurs se reproduisant avec une périodicité régulière pour suggérer la présence probable de plusieurs séries homologues (I9).

On sait que dans une série homologue, le logarithme des temps de rétention est une fonction linéaire du nombre d'atomes de carbone. Dans le cas d'un mélange constitué de termes appartenant à différentes séries homologues, la représentation graphique des logarithmes des temps de rétention, en fonction du nombre d'atomes de carbone donne lieu à une série de droites parallèles représentatives des diverses séries en présence.

Une essence "Seca "a été analysée afin de révéler les séries homologues des paraffines en C5 et C6.

La présence de pics intercalaires a pu de ce fait être élucidée (Graph.IO et II).

Les phases Apiezon L. et Silicone D.C. ont servi à ce travail.

## I - Etude d'une essence " SECA " sur Apiezon L.

Phase stationnaire Apiezon L. 20 %

Support : Type Sil-O-Cel lavé à l'eau régale.

Dimension: 30/60 Mesh.

Colonne: type colonne conventionnelle.

Dimensions : Longueur : 6 mètres

Diamètre : 4 mm.

Température opérationnelle : IOO°C.

Détection : Conductibilité thermique.

Fils de tungstène

Longueur : IO cm, Résistance : 30 Ohms.

Gaz vecteur : Helium 50cc/min.

Quantité injectée : 2 à 5 microlitres.

Le tableau III rassemble les résultats.

| T.R mm | T.R.R. | Log. T.R.R |    | Corps               |
|--------|--------|------------|----|---------------------|
| I6     | 0,47   | I,68       | I  | ?                   |
| 20     | 0,59   | I,77       | 2  | Isobutane           |
| 22,5   | 0,66   | I,82       | 3  | Butane              |
| 25     | 0,74   | I,87       | 4  | 2,2_Diméthylpropane |
| 27     | 0,79   | I,90       | 5  | Cyclopentane        |
| 3I     | 0,91   | I,96       | 6  | Isopentane          |
| 34     | I,-    | 2,-        | 7  | Pentane             |
| 37,5   | I,IO   | 2,04       | 8  | 2,2-Diméthylbutane  |
| 40     | I,I8   | 2,07       | 9  | 2,3-Diméthylbutane  |
| 45,5   | I,34   | 2,13       | IO | Isohexane           |
| 48,5   | I,43   | 2,16       | II | 3 -Méthylpentane    |
| 52     | I,53   | 2,18       | I2 | Hexane              |



## 2- Etude d'une essence " Seca " sur Silicone D.C.

Conditions opératoires.

Phase stationnaire : Silicone D.C. 20 %.

Support : Type : Sil-O-Cel lavé à l'eau régale.

Dimensions: 30/60 Mesh.

Colonne: Type: Colonne conventionnelle.

Dimensions : longueur : 6 mètres.

diamètre : 4 mm .

Température opérationnelle : IOO°.

Détection : Conductibilité thermique. Fils de Platine.

Longueur IO cms. Résistance : 30 Ohms.

Gaz vecteur : Hélium 50 cc/min.

Quantité injectée : 2 à 5 microlitres.

Le tableau IV rassemble les résultats.

| T.R.mm                   | T.R.R.                       | Log. T.R.R.          | Corps                                                         |
|--------------------------|------------------------------|----------------------|---------------------------------------------------------------|
| I4<br>I8<br>20,5         | 0,28<br>0,36<br>0,4I         | I,36<br>I,56<br>I,6I | I ? 2 Isobutane 3 Butane N                                    |
| 22,5<br>24,5<br>29<br>32 | 0,45<br>0,49<br>0,58         | I,65<br>I,69<br>I,76 | 4 2,2-Diméthylpropane 5 Cyclopentane 6 Isopentane 7 Pentane N |
| 34,5<br>37,75<br>43      | 0,64<br>0,69<br>0,76<br>0,86 | I,8I<br>I,83<br>I,88 | 8 2,2_Diméthylbutane 9 2,3_Diméthylbutane 10 -                |
| 46,25<br>60              | 0,93<br>I,-                  | I,93<br>I,97<br>2,-  | II - I2 Hexane N.                                             |

E. Application de la chromatographie gazeuse à l'échelle préparative.

Les colonnes préparatives permettent la sélection de coupures serrées de mélange de composants jusqu'à ce qu'une concentration suffisante de chaque substance soit obtenue.

Une huile de lavage a été analysée dans son entièreté, puis scindée en trois coupures, lesquelles ont été ensuite soumises à la chromatographie en phase gazeuse.

I. Examen de l'huile de lavage totale sur 2

phases différentes : Bentone 34/Apiezon L et
Silicone DC.

## Conditions opératoires.

Support : type Briques de Sil-O-Cel.

Dimensions: I47/I75 microns.

Gaz vecteur : Type : Azote.

Colonne : Type conventionnel.

Dimensions : long. I,9 m;

diam. int. 4 mm.

Détection : Type F.I.D.

Température de la colonne : I68°C.

Température de la chambre de vaporisation:350°C.

Quantités injectées : 4 microlitres.

La colonne Bentone 34/Apiezon L a été choisie parce qu'elle est très sélective et qu'elle permet de détecter des traces de constituants. De plus, nous pouvions comparer la chromatographie d'une huile de lavage totale à l'aide d'un détecteur à ionisation de flamme à celle révélée par le système Silicone/Catharomètres.

Le tableau VI rassemble les résultats obtenus à l'aide de la phase : Bentone 34/Apiezon L. dont les proportions sont respectivement 5 et 7 % .

La phase Silicone DC a été comparée dans les mêmes conditions mais à une température de 238° sur catharomètres. Les résultats obtenus à l'aide de cette deuxième phase sont repris dans le tableau VII.

Elution sur bentone 34/Apiezon L de l'huile de lavage totale

Tableau VI.

| PIC<br>n°I                                                                  | T.R.                                                                                                                                           | T.R.R                                                                | P.Eb.<br>Consti-<br>tuants<br>Etalons | tuants                                                                                                                                                     | Constituants<br>étalonnés | Constituants<br>relevés d'après<br>P.Eb.du graph.                                                                                                                           |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1234567891113111111222222222333333333334<br>0123456789012345678901234567890 | 2 4 5 5 7 8 9 9 0 5 5 7 8 9 9 0 5 5 7 8 9 9 0 5 5 7 8 9 9 0 5 5 7 8 9 9 0 5 5 7 8 8 8 8 8 0 0 8 8 15 17 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0,15<br>0,17<br>0,19<br>0,24<br>0,28<br>0,34<br>0,42<br>0,47<br>0,49 | 217,9<br>241<br>244,7<br>255          | 80,I<br>IIO<br>I33<br>I38<br>I47<br>I552<br>I83<br>I203<br>2214<br>257<br>262<br>265<br>271<br>284<br>288<br>294<br>297<br>299<br>290<br>305<br>307<br>312 |                           | Benzène Toluène  Xylène  Xylène  Triméthylbenzène Indène Ethylbenzène Propylxylène Méthylindène  Ethylnaphtaline 2-7 Diméthylnapht I-3 " I-2 " 2-3 "  Triméthylnaphtaline " |

Tableau VII.

Elution sur Silicone DC de l'huile de lavage totale.

| Pic<br>nº   | T.R.                                     | T.R.R | Etalon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P.Eb.des<br>Consti-<br>tuants<br>d'après<br>graph.<br>Log.<br>T.R.R. | Constituants<br>Etalons       | Constituants<br>relevés d'après<br>P.Eb/Log.T.R.R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I           | 39                                       | 0,29  | And the second s | 167,8                                                                |                               | Iseudocumène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2           | 45                                       | 0,33  | I83,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Indène                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | 49                                       | 0,36  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I90                                                                  |                               | Méthylindène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4           | 57                                       | 0,42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 207                                                                  |                               | Durène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5           | 62                                       | 0,46  | 217,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Naphtaline                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6           | 73                                       | 0,54  | And the sand |                                                                      |                               | Diméthylindènes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7           | 74                                       | 0,55  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8           | 81,5                                     | 0,61  | 24I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      | .Méthylnapht.                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9           | 84                                       | 0,62  | 244,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | .Méthylnapht.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IO          | 98                                       | 0,71  | 254,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Diphényle                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| II          | 107,5                                    | 0,80  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                               | Diméthylnapht.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I2          | IIO                                      | 0,82  | a disconnection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I3          | I24                                      | 0,92  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                               | I-2 Diméthylnapht.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I4          | I34,5                                    |       | 276,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Acénaphtène                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I5          | I45,5                                    |       | 285,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Oxyde de Diphényle            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16          | I57,5                                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                               | Triméthylnapht.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17          | I74                                      | I,29  | 247,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Fluorène                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I8          | I84                                      | I,37  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 303                                                                  |                               | Méthyloxyde de dyphényle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I9          | I95                                      | I,45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310                                                                  | ,                             | Dihydroanthracène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20          | 232                                      | I,72  | and the second s | 322                                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21          | 250                                      | I,86  | The state of the s | 329                                                                  |                               | Benzothionaphtène                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22          | 270                                      | 2,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335                                                                  |                               | 5-6 Benzothionaph-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23          | 290                                      | 2,16  | 340,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Phénanthrène +<br>Anthracène. | WE INTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a programme | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | All vill acelle.              | SECTION OF THE PROPERTY OF THE |

# 2- Scindement de l'huile de lavage en sous-fractions

En appliquant la chromatographie gazeuse à l'échelle préparative, le but poursuivi est de scinder une huile en sous-fractions.

Ces différentes coupures, par suite d'une concentration plus importante et d'un domaine d'ébullition plus restreint, nous permettront une identification plus aisée des constituants.

## Conditions opératoires :

Phase: type Silicone E.30I.20 %

Support : type : Briques de Sil-O-Cel.

Dimension: 295 à 589 microns

Gaz vecteur : Type : hydrogène.

débit : 250 M3/min.

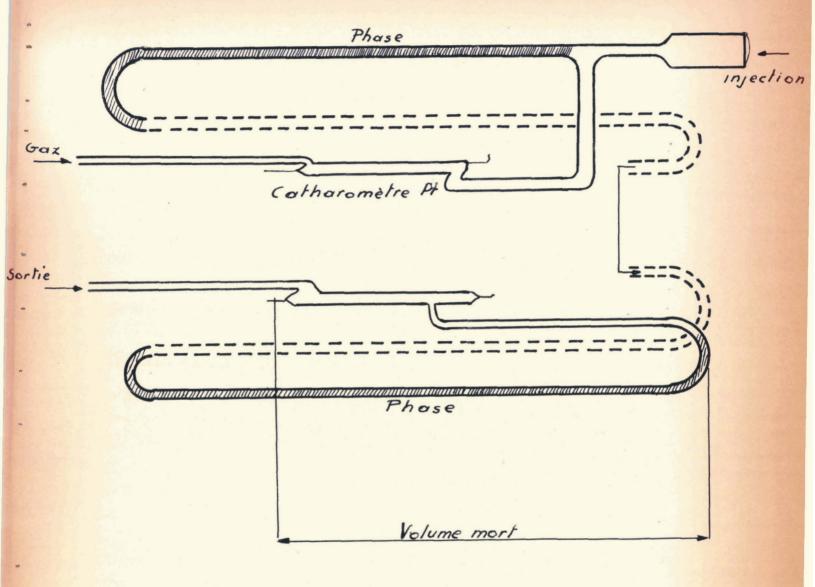
Colonne : Type : assemblage en forme de

trombonne ( 4 éléments en

pyrex )

Dimensions : long 4 m.

Diam. int. II mm.


Détection : type : Conductivité thermiques.

dimension : filaments de Platine

de IO cm de long.

To de la colonne : 220°C

Injections: 70 microlitres à I/4 cm3



# SCHEMA Nº1 DE LA

COLONNE



Au delà d'une injection d'I/4 cm3, la colonne s'engorge, ce qui se traduit par des épaulements de pics. Ces derniers n'augmentent plus proportionnellement en fonction de la quantité injectée.

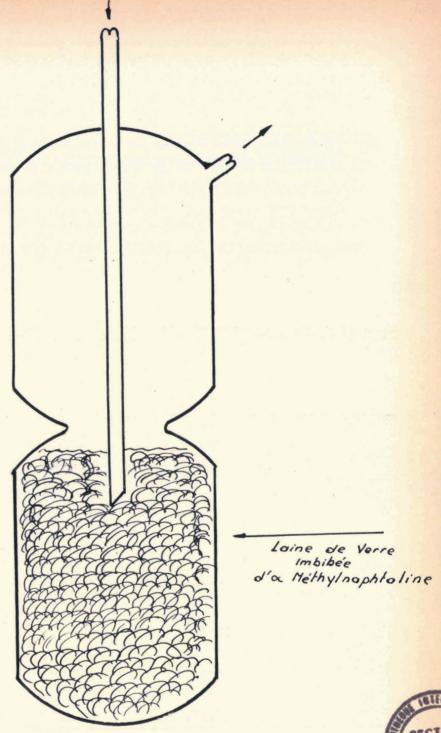
#### SCHEMA DE LA COLONNE.

Lors de la mise en régime de la colonne, dès que la température de 240°C était atteinte, nous avons remarqué des vapeurs blanches sortant de la colonne, fait que nous avons supposé dû à une élution de phase provoquée par un point chaud du thermostat.

En réalité, il s'agissait de corps lourds restant dans la colonne provenent d'essais antérieurs d'orientation.

Pour la mise au point, nous avons choisi l'huile de lavage s'étalant sur une gamme de points d'ébullition des divers composants de I80 à 340°C.

Nous nous sommes proposé de piéger deux zones, afin de vérifier si le système pouvait capter sélectivement certains constituants dans une huile donnée.


Iº La zone des diméthylnaphtalines : piège nºI. 2º La zone Acénaphtène/oxyde de diphényle : piège n°2:

Les parties s'étalant de la Naphtaline au Diphényle et de l'Oxyde de Diphényle au Fluorène ont été réunies dans le piège n° 3.

Le tableau V rassemble les résultats.

| Composants                                                             | %                                      | Pièges n°                |
|------------------------------------------------------------------------|----------------------------------------|--------------------------|
| Naphtaline<br>?<br>.méthylnaphtaline<br>.méthylnaphtaline<br>Diphényle | 23,60<br>2,94<br>II,73<br>7,03<br>6,I9 |                          |
| Diméthylnapthalines<br>?                                               | 4,I5<br>2,76                           | piège n° I<br>piège n° 3 |
| Acénaphtène<br>Oxyde de Diphényle                                      | I6,63<br>I4,90                         | piège n° 2               |
| Fluorène                                                               | 10,06                                  |                          |







SCHEMA Nº2

Nous avons repris le principe d'un piège relevé dans la littérature (20). Garni de laine de verre imbibé d' Méthylnapthtaline pour absorber les constituants, le piège est placé en bout de colonne et retiré immédiatement après passage de la zone désirée.

Nombre d'injections d'huile de lavage : I2.

Nombre de piegeages : Zone I : I2

Zone 2 : I2

Zone 3 : 4.

Les pièges ont été placés dans un bain de glace pour plus de sécurité.

Les pièges sont lavés au chlorure de méthylène.

A la suite de ces manipulations, nous nous sommes trouvés en présence des sous-fractions suivantes :

- <u>Piège n° I</u>: sous-fraction n° I: a)Diméthylnaphtaline en solution dans l'

  Méthylnaphtaline.
  - b)Lavage du piège n° I au Chlorure de méthylène.
- <u>Piège n° 2</u>: sous-fraction n° 2: Acénaphtène/Oxyde de Diphényle en solution dans l' Méthylnaphtaline et chlorure de méthylène.
- Piège n° 3: sous-fraction n° 3: Huile de lavage (Acénaphtène/oxyde de diphényle diméthylnaphtalines)
  en solution dans l'
  Méthylnaphtaline et
  chlorure de méthylène.
  - 3- Examen chromatographique des différentes sous-fractions piégées.

Les sous-fractions piégées ont été analysées dans les conditions suivantes :

Phase: Bentone 34/Apiezon L.

% 5 **7** 

Support: Sil-O-Cel I47-I75 microns.

Gaz vecteur : Azote I kg/cm2

Colonne: I,9 m; diam.int. 4 mm

Détection : F.I.D.

T°: colonne I55°C, chambre de vaporisation: 350°C.

Injections: 8 microlitres.

Les tableaux VIII, IX et X rassemblent les

résultats.

### TABLEAU VIII.

Sous-fraction n° I: a)

| Pic<br>n°<br>col.<br>pré-<br>para-<br>tive      | Pic<br>n°<br>col.<br>ana-<br>lyti-<br>que        | T.R.                                                       | T.R.R.                                                                    | Constituants | Remarques                   |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|--------------|-----------------------------|
| I<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>IO | 19<br>20<br>-<br>21<br>-<br>22<br>23<br>24<br>25 | 48<br>55<br>60<br>62<br>65,5<br>69<br>71<br>78<br>81<br>88 | I<br>I,I4<br>I,25<br>I,29<br>I,35<br>I,44<br>I,48<br>I,62<br>I,69<br>I,83 | I,3 "        | impuretés<br>et méthylnapht |



b) il n'y a que des traces de constituants dans la solution de lavage.

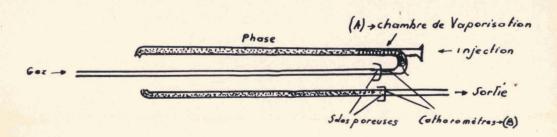
Ces traces sont inappréciables.

TABLEAU IX

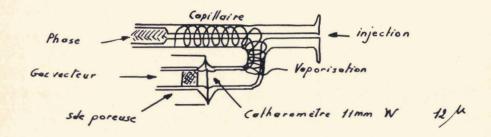
Sous-fraction nº 2

| Pic<br>n°<br>colon-<br>ne<br>prépa-<br>rati-<br>ve. | onoly                      | T.R.                                  | T.R.R.                             | Constituants                                                                      |
|-----------------------------------------------------|----------------------------|---------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|
| I 2 3 4 5                                           | I9<br>22<br>25<br>26<br>27 | I6,25<br>68,5<br>77,5<br>9I<br>II6,25 | I,<br>I,48<br>I,68<br>I,97<br>2,5I | CH <sub>2</sub> CL <sub>2</sub> Méthylnaphtaline ? Acénaphtène Oxyde de diphényle |

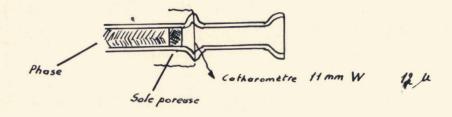



TABLEAU X.

Sous-fraction no 3.


| Pic<br>n°<br>colonne<br>prépa-<br>rative | Pic<br>n°<br>colonne<br>analy-<br>tique | T.R.  | T.R.R.             | Constituants                    |
|------------------------------------------|-----------------------------------------|-------|--------------------|---------------------------------|
|                                          | -                                       |       | ****************** |                                 |
| I                                        |                                         |       |                    | CH <sub>2</sub> Cl <sub>2</sub> |
| 2                                        | 6,7                                     | 7,5   | 0,16               | Xylène                          |
| 3                                        | 9                                       | IO    | 0,22               | Xylène                          |
| 4                                        | IO                                      | I2    | 0,26               | Triméthylbenzène ?              |
| 5                                        | 11                                      | I3,25 | 0,29               | Indène                          |
| 6                                        | -                                       | I4,25 | 0,31               | ?                               |
| 7                                        | I2                                      | I5,75 | 0,34               | Ethylxylène                     |
| 8                                        | -                                       | I7    | 0,37               | ?                               |
| 9                                        | I3                                      | 20,5  | 0,41               | Propylxylène ?                  |
| IO                                       | I7                                      | 28    | 0,61               | Nahptaline                      |
| II                                       | -                                       | 37    | 0,80               | -                               |
| 12                                       | I8                                      | 43,25 | 0,94               | Méthyln <b>apht</b> aline       |
| I3                                       | I9                                      | 46,25 | I                  | Méthylnaphtaline                |
| I4                                       | 20                                      | 54    | I,I7               | Diphényle                       |
| I5                                       |                                         | 56    | I,2I               | ?                               |
| I6                                       | 21                                      | 6I    | I,32               | Ethylnaphtaline                 |
| I7                                       | -                                       | 92    | I,99               | ?                               |
| I8                                       | 28                                      | II6   | 2,51               | ?                               |
| I9                                       | 30                                      | I55   | 3,35               | Triméthylnaphtaline             |
| 20                                       | 3I                                      | I60   | 3,46               | ?                               |
|                                          |                                         |       |                    |                                 |




# COLONNE PREPARATIVE



## A. Chambre de vaporisation



# B. Détection: fils de W. transversaux



SCHEMA Nº 3



#### 4. Conclusions .

Nous avons obtenu 40 pics sur l'huile de lavage totale chromatographiée sur Bentone 34/Apiezon L. et 23 seulement sur la phase Silicone DC.

Ces résultats appuient le choix d'un détecteur à ionisation de flamme, parce que très sélectif qualitativement. Cependant ce mode de détection ne nous a pas offert
suffisamment de reproductibilité du point de vue quantitatif.
Nous ne l'avons pas utilisé pour la suite de nos travaux.

La colonne préparative nous a permis de couper l'huile de lavage du goudron en différentes fractions suivant les caractères des constituants présents dans l'échantillon. Les fractions dont les représentants sont en faible pourcentage dans l'huile de lavage totale sont, par suite de leur isolement par piègeages répétés, plus accessibles à l'analyse chromatographique.

La colonne préparative employée a été améliorée au point de vue sélectivité, sensibilité, diminution du volume mort.

- a) <u>sélectivité</u>: La colonne a été rendue sélective en admettant en tête une chambre de vaporisation permettant outre l'introduction d'une plus grande quantité d'échantillon, de vaporiser instantanément les constituants.
- b) <u>Sensibilité</u>: La sensibilité a été accrue en remplaçant les Catharomètres de platine par des fils de Tungstène (long. 5 cm).

c) <u>Volume mort</u>: Le volume mort de la colonne a été diminué entre autre modification en disposant originalement les filaments de Tungstène transversalement.

La colonne ainsi modifiée permet l'introduction de quantités plus grandes d'échantillons : 3/4 de Cm<sup>3</sup>.

Les résultats sont tels que ce dernier dispositif, malgré sa section 4 fois plus grande, offre plus d'avantages que les colonnes classiques de 4mm de diamètre intérieur, réputées comme très sélectives.

## § 2 - Examen des fractions acides.

Sassemberg et Wrabetz (2I) recommandent le di-ester de l'acide phtalique 3,3,5 - triméthylcyclohexanol, phase idéale, selon les auteurs pour séparer complètement un mélange de tous les crésols isomères, les xylénols et l'O.Ethylphénol.

Une seconde phase, le Triméthylolpropanetripelargonate a été également étudiée dans le même but. Cette phase nous a été recommandée par la firme Perkin Elmer.

A. Essais sur le Di-ester de l'acide phtalique du 3,3,5 - triméthylcyclohexanol.

Le tableau XI reprend les conditions opératoires pour une série d'essais effectuée sur un mélange synthétique s'étendant du phénol au I,3,4 - xylénol.

Le tableau XII donne les détails des valeurs obtenues à la suite d'un essai sur ce mélange synthétique.

Le tableau XIII relève l'ensemble des temps de rétention relatifs individuels obtenus à la suite de 20 analyses sur ce mélange synthétique.

Le mélange de huit constituants purs a été séparé en huit fractions.

Cependant les temps de rétention obtenus diffèrent suivant que la phase était traitée ou non par I%  $\rm H_3$   $\rm PO_4$ .

Si l'on compare les résultats trouvés par Sassemberg et Wrabetz (colonne 2I), on remarque une légère différence avec nos temps de rétention relatifs.

## TABLEAU XI .

| Es-<br>sais<br>n°                              | st st                      | a-<br>on                                  | Sup-<br>port<br>Sil-O Cel<br>Dinen<br>sion | . ne                                  | 9                                      | Tem<br>rati | ch.                     | ti<br>Ty-<br>pe | on<br>- Fi-      | ve<br>Ty-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AZ<br>cteur<br>Débit<br>cc/                                                      | in-                                        | 33<br>33<br>44<br>44 | tes<br>se<br>en-<br>re- | Nbre<br>corps<br>in-<br>jec-<br>.tés  | Pics<br>élu-<br>és                                                                                                                  |
|------------------------------------------------|----------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------|-------------|-------------------------|-----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|----------------------|-------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| I 2 3 4 5 6 7 8 9 10 II 2 I3 I4 I5 I6 I7 I8 I9 | Experimental wheely thouse | T5 11 11 11 11 11 11 11 11 11 11 11 11 11 | 80<br>mesh<br>"                            | I,5m I,2m " " " " " " " " " " " " " " | 11<br>11<br>11<br>11<br>11<br>11<br>11 | I30°        | 11 11 11 11 11 11 11 11 | 11              | deraphiere h. 30 | H <sub>2</sub> "" " H <sub>e</sub> H <sub>2</sub> "" " " H <sub>e</sub> H <sub>2</sub> "" " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I00<br>I50<br>250<br>I20<br>I75<br>"I00<br>7I<br>I20<br>I20<br>I20<br>I20<br>I50 | 3 " " 8 " 10 8 2 " " 5 " 6 4 2 2 " " " " " | 9<br>I0<br>9<br>9    |                         | 4 4 4 6 6 8 8 4 4 6 6 6 8 3 7 6 4 4 4 | 4<br>4<br>4<br>5<br>5<br>8<br>8<br>3<br>3<br>4<br>4<br>4<br>6<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |
| 20                                             | -                          | 11                                        | 1                                          | 11                                    | **                                     | TT          | 11                      | 11              |                  | The state of the s | 11                                                                               | ## P1                                      | 8                    | 1                       | 8                                     | 8                                                                                                                                   |

TABLEAU XII.

| Constituants                                                                              | T.R. mm                                                        | T.R.R.                                                     |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|
| Phénol O.Crésol P.Crésol M.Crésol I,2,4-Xylénol I,2,5-Xylénol I,3,5-Xylénol I,3,4-Xylénol | 67,5<br>91,5<br>123,5<br>129<br>165,5<br>173<br>255,5<br>285,5 | 0,74<br>I,<br>I,36<br>I,42<br>I,82<br>I,90<br>2,8I<br>3,I4 |

TABLEAU XIII.

| Constituants             | I           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3            | 4    | 5    | 6            | 7            | 8    | 9           |
|--------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|------|--------------|--------------|------|-------------|
| Phénol<br>O.Crésol       | 0,74<br>I,- | 0,74<br>T.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,74<br>I,-  | '    |      | 0,75         | 0,73         | 0,74 | 0,73<br>l,- |
| P.Crésol<br>M.Crésol     | 1,35        | 1,34<br>1,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,37<br>1,43 | 1,35 | 1,31 | 1,32<br>1,40 | 1,29<br>1,37 | _    | -           |
| 1,2,4-Xylé-<br>nol       |             | And the state of t | -            | 1,81 | ·    | 1,77         | 1,74         |      | _           |
| 1,2,5- id.<br>1,3,5- id. | _           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | _    | -    | 1,81<br>2,60 | 1,76<br>2,56 | -    | -           |
| 1,3,4- id.               |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | -    |      | 2,92         | 2,83         | _    | -           |

|                                            | 10   | 11               | 12                 | 13               | 14                       | <b>1</b> 5 | 16   | 17                          | 18          |
|--------------------------------------------|------|------------------|--------------------|------------------|--------------------------|------------|------|-----------------------------|-------------|
| Phénol<br>O.Crésol<br>P.Crésol<br>M.Crésol | 0,76 | 0,77<br>1,-<br>- | -<br>1,-<br>-<br>- | 0,75<br>1,-<br>- | -<br>1,-<br>1,30<br>1,39 | _          | 0,75 | 0,73<br>1,-<br>1,45<br>1,53 | 1,-<br>1,45 |

| Constituants                                                                              | 19                          | 20                                                          | 21                                                          |  |
|-------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|
| Phénol O.Crésol P.Crésol M.Crésol I,2,4-Xylénol I,2,5-Xylénol 1,3,5-Xylénol 1,3,4-Xylénol | 0,73<br>1,-<br>1,39<br>1,49 | 0,74<br>1,-<br>1,36<br>1,42<br>1,82<br>1,90<br>2,81<br>3,14 | 0,75<br>1,-<br>1,26<br>1,37<br>1,74<br>1,83<br>2,51<br>2,77 |  |

B- Essais sur le triméthylolpropanetripelargonate.

TABLEAU XIV : conditions opératoires.

| Essais | ph.Stat.    | Support                                |                 | Colonne         |                  | Température |                    |
|--------|-------------|----------------------------------------|-----------------|-----------------|------------------|-------------|--------------------|
| Ио     | %           | Туре                                   | Dim.            | Туре            | Dim.             | Colonne     | Chambre<br>de vap. |
| 1      | I5 %        |                                        | 60/I00<br>meshs | 2170NNOS/20NNOS | I,2m lg<br>4mm Ø | I58 °       | 350°               |
| 2      |             | 7=2-0                                  | -               | . N. C          | -                | I62 °       | 90                 |
| 3      | <b></b>     | )-C                                    | -               | Ş               | -                | 160°        | that all agent     |
| 4      |             | ~_1                                    |                 | è               | -                | _           |                    |
| 5      | <del></del> | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                 | 7.3.74          |                  |             |                    |
| 6      | -           |                                        | -               | 3               |                  | -           |                    |
|        | Š           |                                        |                 |                 | ,                |             |                    |

| Essais                | Détect                | ion            | Gaz Vect             |                               | teur Quantités         |       | vit.<br>entr. | Corps              | Pics                                  |
|-----------------------|-----------------------|----------------|----------------------|-------------------------------|------------------------|-------|---------------|--------------------|---------------------------------------|
| n°                    | Туре                  | Fila-<br>ments | Туре                 | Débit<br>cc/ <sub>min</sub> . |                        | lité  | du<br>pa-     | in-<br>jec-<br>tés | élu <b>é</b>                          |
| 1<br>2<br>3<br>4<br>5 | ctivité<br>Historique | TUNG STENE     | He<br>H <sub>2</sub> | 50<br>-<br>70<br>-            | l microli-<br>tre<br>- | 8 1 1 | 1 2           | 9 9 9 9            | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
| 6                     | endictiv              | 202            | -                    | -                             | -                      | -     | 1             | 9                  | 7                                     |

## TABLEAU XV : Etalons.

Phénel

O.Crésol

P.Crésol

M.Crésol

I-2-4 Xylénol

I-2-5 Xylénol

I-3-5 Xylénol

I-3-4 Xylén•1

Pseudocuménol

TABLEAU XVI : Temps de rétention relatifs des Phénols.

| Essais                                                                                        | 1                                | 2                                | 3                                 | 4                                 | 5                                 | 6                                 |
|-----------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Phénol O.Crésol P,M Crésol I,2,4 et I,2,5 Xylénol I,3,5 -Xylénol I,3,4 -Xylénol Pseudocuménol | 1,- 1,30 1,67 2,19 2,78 3,18 4,- | 1,- 1,32 1,70 2,26 2,85 3,28 4,4 | 1,- 1,30 1,67 2,20 2,78 3,17 3,95 | 1,- 1,3I 1,66 2,17 2,75 3,13 3,94 | 1,- 1,30 1,66 2,17 2,74 3,14 3,93 | 1,- 1,30 1,66 2,16 2,74 3,12 3,91 |



Ce tableau montre que le mélange des 9 phénols est séparé en 7 fractions. Les M.P. Crésols sont élués sans être séparés, de même le I,2,4-Xylénol et le I,2,5-Xylénol.

L'emploi d'Hélium ou d'hydrogène comme gaz porteur semble indifférent.

Si l'on étudie à présent un mélange industriel de phénols de goudron, la phase reste efficace, ce qui se vérifie d'après les pics symétriques et pointus que l'on a obtenus.

Cette dernière constatation n'a pu être vérifiée avec la phase : triméthylcyclohexanol. Nous avons retenu par conséquent le trimethylolpanetripelargonate comme phase stationnaire efficace pour la séparation des phénols du goudron dans le présent travail.

- C- Application sur un " Xylénol Polonais "
- a) Conditions opératoires identiques à l'exception de : température de colonne : I62°C.
  Gaz porteur : Hé 50 CC/min.
  Phase stationnaire : triméthylpelargonate

Le TABLEAU XVII rassemble les résultats.

| Constituants                                                                                                    | T.R.                                                                       | T,R,R.                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|--|--|
| Phénol O-Crésol P-Crésol M-Crésol I,2,4 - Xylénol I,2,5 - Xylénol I,3,5 - Xylénol I,3,4 - Xylénol Pseudocuménol | 80,5<br>105<br>133,5<br>133,5<br>171,5<br>271,5<br>236,5<br>266,5<br>353,5 | 1,- 1,30 1,66 1,66 2,13 2,13 2,83 3,35 4,38 |  |  |



b) Conditions opératoires identiques à l'exception de :
 Température de colonne : I58°C.
 Gaz porteur : H2 : 50 cc/min.
 Phase stationnaire : triméthylpelargonate

Le TABLEAU XVIII rassemble les résultats

| Constituants                                                                                                | т.к.                                                                   | T.R.R.                                           |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|
| Phénol O-Crésol P-Crésol M-Crésol I,2,4 -Xylénol I,2,5 -Xylénol I,3,5 -Xylénol I,3,4 -Xylénol Pseudocuménol | 80,5<br>105,5<br>139,5<br>139,5<br>174,5<br>174,5<br>232<br>265<br>357 | 1,- 1,31 1,73 1,73 2,16 2,16 2,16 2,38 3,29 4,43 |



# CHAPITRE II: ETUDE D'UN GOUDRON RESULTANT DE LA CARBONISATION A BASSE TEMPERATURE EN LIT FLUIDISE DU CHARBON D'HOUTHAELEN ( veine I6)

#### § 1 - Prétraitement du goudron.

Le goudron examiné au cours de ce travail provient du Laboratoire de Recherches de la Carbonisation Centrale de Tertre. Il est obtenu à partir d'un charbon en provenance de la veine I6 du Siège de Houthaelen (Campine, Belgique). L'indice de matières volatiles sur charbon brut se situe aux environs de 31 %.

La carbonisation est réalisée entre 3' 520° en lit fluidisé.

Les installations de récolte séparent les sous-produits liquides et gazeux.

La fraction liquide appelée " goudron naissant brut " représente 7,33 % ( 73,3 kilogs/Tonne) du charbon. Le tableau XIX ressemble les rendements pondéraux.

L'opération de fractionnement ainsi que la séparation en huiles neutres, acides et basiques a été réalisée suivant le schéma général n° I.

## A- Isolement du goudron brut.

Pour récupérer le goudron naissant de l'installation de carbonisation, il est nécessaire de le solubiliser au chlorure de méthylène par rinçage des divers éléments de l'appareillage utilisé. Le goudron ainsi traité est filtré de façon à retenir les fines particules de coke ou de charbon entrainées. Ce résidu est soumis à l'extracteur Soxhlet. La solution ainsi obtenue est ajoutée au filtrat de la séparation précédente.

## B- Séparation du brai.

Le goudron brut est traité dans un évaporateur rotatif afin de séparer les huiles du brai. Cette opération s'effectue en élevant progressivement la température à la pression ordinaire jusque 250° sous atmosphère d'azote. Lorsque cette température est atteinte, une pression absolue de 50 mm de mercure est appliquée ce qui équivaut d'après les diagrammes de conversion de Beale (23) à une température de 360° sous pression atmosphérique.

TABLEAU XIX: rendement en goudron naissant de

la Carbonisation :

73,3 kg goudron/tonne charbon.

Poids charbon traité : 26.625 gr.

Poids goudron brut : I.953 gr.

Rendement : 1953 x I.000 = 73,3 kg goudron/
T.Charbon

TABLEAU XX : bilan de la distillation (évaporateur rotatif).

| FRACTIONS    | Poids<br>grs | Rendements<br>kg/T | %    |
|--------------|--------------|--------------------|------|
| Goudron brut | I953         | 73,3               | IOO  |
| Brai         | 8I4,5        | 30,6               | 4I,7 |
| Huiles       | II38,5       | 42,7               | 58,3 |

## C- Distillation fractionnée.

Les huiles sont fractionnées suivant le schéma n° I . L'appareillage en plus de son équipement classique est pourvu d'un dispositif permettant un entrainement gazeux.

Le tablezu XXI rassemble les résultats de la distillation.

| Poids des huiles o                                               | de départ : II38,5                        | gr.                                  |
|------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| Fractions                                                        | Poids gr                                  | %<br>                                |
| 50 - I20° I20 - I80° I80 - 250° 250 - 280° non distillé + pertes | I76,2<br>270,0<br>250,6<br>I88,0<br>253,7 | I5,5<br>23,7<br>22,0<br>I6,5<br>22,3 |



Le <u>tableau XXII</u> rassemble les résultats apportés au goudron brut.

( brai compris )

| Poids du goudron d                                                    | le départ : 1953                          | gr                                       |
|-----------------------------------------------------------------------|-------------------------------------------|------------------------------------------|
| Fractions                                                             | Poids gr                                  | %                                        |
| 50 - I20° I20 - I80° I80 - 250° 250 - 280° non distillé + pertes brai | 176,2<br>270,0<br>250,6<br>188,0<br>253,7 | 9,0<br>I3,9<br>I2,8<br>9,6<br>I3<br>4I,7 |



#### D- Extractions acides et basiques.

Les fractions obtenues sont libérées de leurs constituants acides et basiques.

La méthode généralement utilisée pour obtenir les acides contenus dans une huile est l'extarction à l'aide d'une solution de soude à IO % .

L'huile est agitée dans une boule à décanter avec une quantité suffisante de soude à IO % saturée de Na Cl. Après la séparation de la fraction acide, l'opération est répétée à deux reprises différentes en ajoutant successivement une quantité de réactif alcalin.

Les solutions alcalines de déphénolage décantées sont lavées à l'éther pour éliminer les huiles neutres pouvant subsister dans les phénates ; les phénols sont libérés des phénates par l'acide chlorhydrique jusqu'à  $P_{\rm H}$   $\stackrel{<}{\sim}$  2 et décantée par la suite.

Les solutions de chlorure de sodium résultant de l'acidification sont lavées à l'éther à trois reprises pour récupérer les corps acides éventuellement dispersés.

Les produits ainsi obtenus sont alors rassemblés et séchés sur du sulfate de sodium anhydre et ensuite filtrés. Le filtre est lavé à l'éther et par évaporation de ce dernier les phénols sont isolés. La séparation des bases est réalisée et répétée au moyen d'acide chlorhydrique à IO%. La solution acide est lavée à l'éther afin de récupérer les huiles entrainées. Les bases sont séparées de la solution acide par ajustement du P<sub>H</sub> > I2 au moyen de potasse concentrée. L'extraction est faite à l'éther. La solution étherée est séchée sur du sulfate de sodium anhydre et ensuite filtrée. Le filtre est lavé à l'éther et par évaporation de ce dernier du filtre et on obtient les bases.

SECTION

SCIENCES

Ventilation des corps acides et basiques des diverses fractions.

Tableau XXIII : fraction (50-I20°) poids en gr. I76,2

| Fractions | Poids gr | % en pds |
|-----------|----------|----------|
| Acide     | 96       | 54,5     |
| Basique   | 6,3      | 3,6      |
| Neutre    | 73,8     | 4I,9     |

Tableau XXIV : fraction ( I20-I80°) poids en gr. 270

| Fractions | Poids gr | %  |
|-----------|----------|----|
| Acide     | 91,8     | 34 |
| Basique   | 2,7      | 1  |
| Neutre    | 175,5    | 65 |

Tableau XXV: fraction ( I80-250°) poids en gr. 250,6

| Fractions | Poids gr       | %             |
|-----------|----------------|---------------|
| Acide     | 46 <b>,</b> I  | I8 <b>,</b> 4 |
| Basique   | I6 <b>,</b> 0  | 6 <b>°,</b> 4 |
| Neutre    | I88 <b>,</b> 5 | 75 <b>;</b> 2 |

## E- Chromatographie d'adsorption sur gel de silice : (Méthode F.I.A.)

Par la méthode F.I.A. (IO) les hydrocarbures saturés, les oléfines et les aromatiques additionnés de colorants fluorescents, se séparent chromatographiquement dans une colonne capillaire ad hoc remplie de gel de silice activé.

Les indicateurs fluorescents (xx): mélange de Soudan III, d'un colorant traceur des oléfines et d'un colorant traceur des aromatiques, sont adsorbés sur le gel de silice (xxx) et cheminent le long de la colonne avec les hydrocarbures spécifiques auxquels ils sont accordés.

Lorsque l'entièreté de la prise d'essai est parvenue dans la partie " analyseur " de la colonne, on note des séparations selon des longueurs visibles à la

<sup>(</sup>x): F.I.A. = Fluorescent Indicator Adsoprtion.

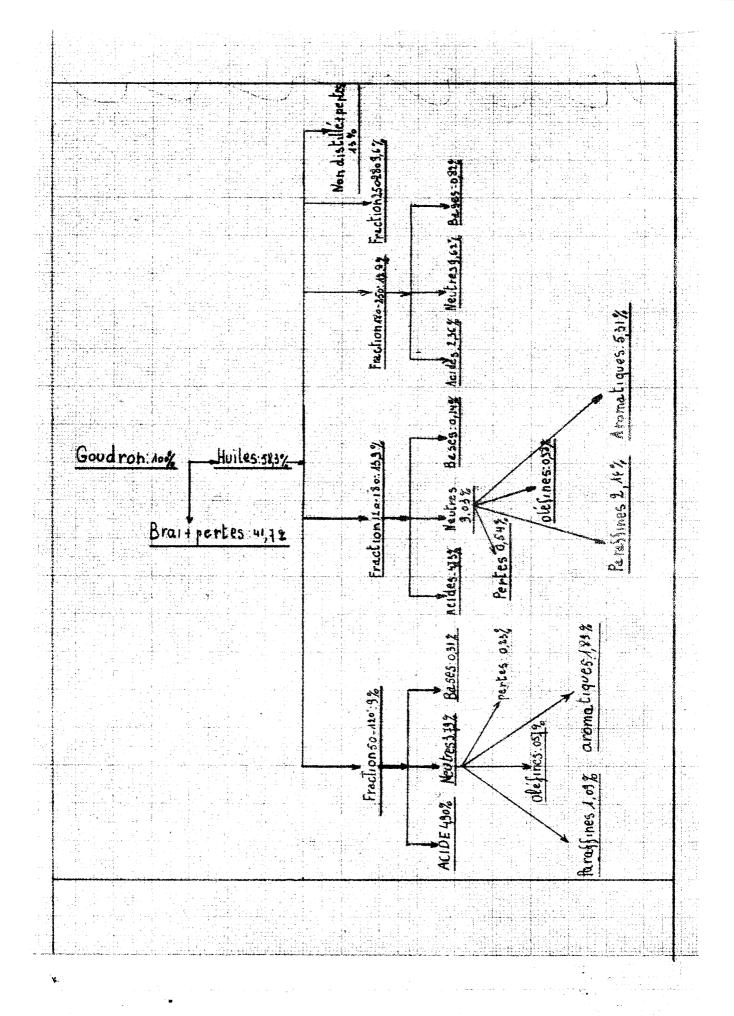
<sup>(</sup>xx): en provenance : Patent Chemicals Inc.333, Mc Lean Bd.
Patterson 4, N.J.

<sup>(</sup>xxx): en provenance: Davison Chemical Corp.
Baltimore 3, Id.

lumière U.V., mesurables et transformables en volume, puis en pourcents et enfin en poids des trois familles d'hydrocarbures présents.

La méthode F.I.A. a été appliquée à l'échelle préparative en utilisant des colonnes permettant de traiter des prises d'échantillon de IOcc. A l'exception des dimensions des colonnes, le mode opératoire est identique à celui qui est suivi lors des déterminations analytiques.

Le <u>tableau XXVI</u> reprend le bilan pondéral établi par la méthode F.I.A. de deux des fractions neutres du goudron.


Le tableau XXVII récapitule les pourcentages en poids rapportés au goudron des différentes fractions isolées et traitées

<u>Tableau XXVI</u>: bilan de la séparation par la méthode F.I.A.

| FRACTION 50-120 NEUTRE                                |                                  |                             | FRACTION 120-180° NEUTRE                              |                                  |                             |  |
|-------------------------------------------------------|----------------------------------|-----------------------------|-------------------------------------------------------|----------------------------------|-----------------------------|--|
| POIDS : I,745 gr                                      |                                  |                             | POIDS : I,92I gr                                      |                                  |                             |  |
| Hydrocarbures                                         | Poids<br>gr                      | %                           | Hydrocarbures Poids gr                                |                                  |                             |  |
| paraffiniques<br>oléfiniques<br>aromatiques<br>pertes | 0,505<br>0,266<br>0,869<br>0,I05 | 28,9<br>15,2<br>49,9<br>6,0 | paraffiniques<br>oléfiniques<br>aromatiques<br>pertes | 0,46I<br>0,209<br>I,I35<br>0,II6 | 24,0<br>IO,9<br>59,I<br>6,0 |  |

Tableau XXVII : bilan exprimé par rapport au goudron.

| FRACTION 50-120° NEUTRE                               |                                 |                              | FRACTION I20-180° NEUTRE             |                                   |                                      |  |
|-------------------------------------------------------|---------------------------------|------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--|
| POIDS : 73,8 gr                                       |                                 |                              | POIDS : 175,5 gr                     |                                   |                                      |  |
| Hydrocarbures Poids % gr                              |                                 |                              | Hydrocarbures Poids gr               |                                   |                                      |  |
| paraffiniques<br>oléfiniques<br>aromatiques<br>pertes | 2I,34<br>II,22<br>36,85<br>4,42 | I,09<br>0,57<br>I,89<br>0,23 | oléfiniques<br>aromatiques<br>pertes | 42,I2<br>I9,I3<br>I03,72<br>I0,53 | 2,I6<br>0,98<br>5,3I<br>0,54<br>8,99 |  |



§ 2 - Analyse chromatographique de la fraction 50-I20° neutre

Synthèse des résultats

| CONSTITUANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Procé-<br>dés<br>d'iden-<br>tifica-<br>tion | %<br>paraf-<br>fines<br>= IOO                                               | % fract. neutre 50-120° = 100                                                 | % fract. totale 50-I209 = I00                                                                            | totales                                                                                                    | %<br>goudron<br>= IOO                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Al paraffines normales.  pentane hexane heptane octane nonane décane undécane dodécane tridécane tétredécane pentadécane hexadécane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E (I)                                       | 0,I<br>0,I<br>0,I<br>0,2<br>I,0<br>3,4<br>8,8<br>I7,4<br>I7,1<br>8,6<br>3,7 | 0,029<br>0,029<br>0,029<br>0,058<br>0,983<br>2,983<br>2,942<br>2,485<br>I,069 | 0,012<br>0,012<br>0,012<br>0,012<br>0,024<br>0,121<br>0,412<br>1,066<br>2,107<br>2,071<br>1,041<br>0,448 | 0,0019<br>0,0019<br>0,0019<br>0,0019<br>0,0037<br>0,0188<br>0,0639<br>0,1652<br>0,3210<br>0,1614<br>0,0694 | 0,0011<br>0,0011<br>0,0011<br>0,0011<br>0,0022<br>0,0110<br>0,0373<br>0,0963<br>0,1904<br>0,1871<br>0,0941<br>0,0405 |
| A <sub>2</sub> paraffines ramifiées.  méthyl-2 hexane cotane | (2)(3)                                      |                                                                             | 0,029<br>0,029<br>0,145<br>0,405<br>I,676<br>I,994<br>0,665                   | 0,012<br>0,012<br>0,061<br>0,170<br>0,702<br>0,835<br>0,279                                              | 0,0019<br>0,0019<br>0,0095<br>0,0264<br>0,1088<br>0,1294<br>0,0432                                         | 0,00II<br>0,00II<br>0,0055<br>0,0154<br>0,0634<br>0,0754<br>0,0252                                                   |

| Méthyl-3 heptane "tétradécane pentadécane diméthyl-2,3 octane "nonane décane "undécane "dodécane "tridécane "tétradécane diméthyl-2,6 nonane | traces<br>I,9<br>I,<br>traces<br>0,5<br>I,7<br>4,1<br>3,3<br>I,2<br>0,3           | 0,549<br>0,289<br>0,145<br>0,491<br>1,185<br>0,896<br>0,347<br>0,087                            | 0,230<br>0,121<br>0,061<br>0,206<br>0,497<br>0,375<br>0,642<br>0,145<br>0,036                   | 0,0357<br>0,0188<br>0,0095<br>0,0319<br>0,0770<br>0,0581<br>0,0995<br>0,0225<br>0,0056                     | 0,0208<br>0,0110<br>0,0055<br>0,0186<br>0,0449<br>0,0339<br>0,0580<br>0,0131<br>0,0033                     |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| non identifiés.  C <sub>I5</sub> N < X < C <sub>I6</sub> N                                                                                   | 2,7                                                                               | 0 <b>,</b> 780                                                                                  | 0 <b>,</b> 327                                                                                  | 0,0507                                                                                                     | 0,0296                                                                                                     |
| pertes                                                                                                                                       | 0,5                                                                               | 0,145                                                                                           |                                                                                                 |                                                                                                            |                                                                                                            |
|                                                                                                                                              | 100,0                                                                             | 28 <b>,</b> 9                                                                                   |                                                                                                 |                                                                                                            |                                                                                                            |
| B Composés oléfiniques oléfines normales en I  C5 C6 C7 C8 C9 CI0 CII CI2 CI3 CI4 CI5 CI6                                                    | oléfi-<br>nes =<br>IOO<br>0,3<br>0,6<br>0,5<br>1,8<br>10,3<br>16<br>15,6,6<br>1,7 | 0,046<br>0,046<br>0,092<br>0,076<br>0,076<br>0,578<br>1,566<br>2,432<br>2,280<br>1,003<br>0,258 | 0,019<br>0,019<br>0,039<br>0,032<br>0,070<br>0,242<br>0,656<br>I,019<br>0,955<br>0,420<br>0,108 | 0,0029<br>0,0029<br>0,0060<br>0,0050<br>0,0109<br>0,0375<br>0,1017<br>0,1579<br>0,1480<br>0,0651<br>0,0167 | 0,0017<br>0,0017<br>0,0035<br>0,0029<br>0,0064<br>0,0219<br>0,0593<br>0,0921<br>0,0863<br>0,0380<br>0,0380 |

iuston Se Se Selation

| 000017<br>000017<br>000017<br>000017<br>000017<br>000017<br>000017<br>000017<br>000017                                                                                                                        | 6:00,00 | 5 0,0714<br>6 0,0161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0,0449                                                                                                                                                                                    | 9 0,0046              | 57 0,0150                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 9 0,0227<br>0,0095<br>0,032I |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|
| 00000000000000000000000000000000000000                                                                                                                                                                        | 0,002   | 0,122<br>0,027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0770                                                                                                                                                                                      | 0,007                 | 0,025                          | No. 23 Mary 2 State - Light - |                        | 0,038<br>0,016<br>0,055      |
| 00000000000000000000000000000000000000                                                                                                                                                                        | 6HO 0   | 0,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,497                                                                                                                                                                                       | 0,05I                 | 991.0                          | en kantalak,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 0,25H<br>0,105<br>0,355      |
| 00000000000000000000000000000000000000                                                                                                                                                                        | 0,046   | I,885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I,186                                                                                                                                                                                       | 0,I22                 | 0,395                          | I5,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 0,599<br>0,850<br>0,848      |
| (5)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(1)<br>(1)<br>(1)<br>(2)<br>(3)<br>(4)<br>(4)<br>(5)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7 | 0       | 12,4<br>2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,8                                                                                                                                                                                         | ω <b>,</b> Ο          | 2,6                            | 100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aro-<br>mati-<br>que = | 0 HOH                        |
| LH/TE(4                                                                                                                                                                                                       | H<br>H  | المراجع والمراجع والم | i daga ah #54fafa                                                                                                                                                                           |                       | allenetist, i attituees        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                              |
| ω.Φ. ω.                                                                                                                                                                                                       | नु ह    | I4 N < X < méthyl-3<br>tétradécène-1<br>I5 N < X < C I 6 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | metny1-5 tetradece-<br>ne <x 15n<="" <="" td=""><td>C<sub>I6</sub> N &lt; X</td><td>solvant + impuretés<br/>de tête</td><td></td><td>C. Arometiques</td><td>X ?<br/>X?<br/>X ? (A)</td></x> | C <sub>I6</sub> N < X | solvant + impuretés<br>de tête |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C. Arometiques         | X ?<br>X?<br>X ? (A)         |



| méthylcyclopentane benzène X?(B) X? toluène diméthylcyclohexane éthylbenzène M.P. Xylènes                                                                                                                                                                                                                    | C <sub>R</sub><br>E<br>C <sub>R</sub><br>E | 0,I<br>I,0<br>0,2<br>0,1<br>0,3<br>0,6<br>(I,0 | 0,050<br>0,499<br>0,100<br>0,050<br>0,150<br>0,299                                                                       | 0,02I<br>0,209<br>0,042<br>0,02I<br>0,063<br>0,125<br>0,209                                                                                                  | 0,0033<br>0,0324<br>0,0065<br>0,0033<br>0,0098<br>0,0194                                                                                                                                                                 | 0,0019<br>0,0189<br>0,0038<br>0,0019<br>0,0057<br>0,0113                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O.Xylène X? (C) mésitylène pseudocumène hemimellitène hydrindène indène X? 4 éthyl O Xylène X? (D) 5 méthyl benzofurane 3-5 diethyl toluène naphtaline x-3 diméthylindène 4-7 diméthylinène X? azulène 2 méthyl napht I " X? diphényle X? (E) diméthylnaphtalines méthyldiphényle triméthylnaphtaline pertes | E EEEEE C C C C C C E E C C C C C C C C    | 0H222233532685533842H2 804,<br>100,            | 3,443<br>4,391<br>2,695<br>2,645<br>1,697<br>4,291<br>2,196<br>1,098<br>0,798<br>1,098<br>4,092<br>0,399<br>1,996<br>6,0 | 0,105<br>0,418<br>0,409<br>0,543<br>0,648<br>1,669<br>0,523<br>1,443<br>0,669<br>1,77<br>1,798<br>0,460<br>0,460<br>0,460<br>1,715<br>0,836<br>2,514<br>41,9 | 0,0163<br>0,0324<br>0,0648<br>0,0778<br>0,0713<br>0,0842<br>0,1004<br>0,1004<br>0,1037<br>0,2852<br>0,1750<br>0,1717<br>0,1198<br>0,2787<br>0,1426<br>0,0713<br>0,0518<br>0,0713<br>0,2658<br>0,0259<br>0,1296<br>0,3897 | 0,0095<br>0,0189<br>0,0378<br>0,0454<br>0,0416<br>0,0491<br>0,0585<br>0,0585<br>0,0605<br>0,0473<br>0,1663<br>0,1663<br>0,1663<br>0,16625<br>0,06425<br>0,06425<br>0,0416<br>0,0302<br>0,0416<br>0,0756<br>0,0756<br>0,2272 |



- (I) E : étalonnage
- (2) LH : lignes homologues
- (3) C : calcul des P.Eb. suivant la formule empirique de Greenshield et Rossini
- (4) T.E.: température d'ébullition
- (5)  $C_R$ : correspondence sur plusieurs chromatogrammes ( col.  $t^{ure}$  )
  - X ? (A) : cyclopentane ?
  - X ? (B) : diméthylcyclopentane ?
  - X ? (C) : propylbenzène ou isopropylbenzène ?
  - X ? (D) : isopropyl p.xylène ?
  - X ? (E) : oxyde de diphényle ?

## § 3 - Analyse chromatographique de la fraction I20-I80° neutre

## Synthèse des résultats.

| CONSTITUANTS                                                                                                                                                                                             | Pro-<br>cédés<br>d'iden-<br>tifi-<br>cation | % paraf- fines = IOO                                                          | % fraction neutre 50-I20° = I00                                                                 | % fract. totale 50-I20° = I00                                                 | % huiles totales = IOO                    | %<br>gou-<br>dron<br>= IOC                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|
| A <sub>1</sub> - paraffines normales  hexane heptane octane nonane décane undécane dodécane tidécane tétradécane pentadécane hexadécane heptadécane octadécane nonadécane eicosane heineicosane docosane | E<br>11<br>11<br>11<br>11<br>11<br>11       | traces<br>traces<br>traces<br>0,I<br>0,,I,7<br>0,,7,1,9,9,8,1<br>10,7,3,2,4,5 | 0,024<br>0,024<br>0,024<br>0,024<br>0,168<br>1,376<br>1,376<br>4,386<br>1,080<br>1,488<br>1,080 | 0,016<br>0,016<br>0,016<br>0,796<br>1,544<br>2,620<br>1,620<br>1,295<br>0,967 | 0,026<br>0,189<br>0,366<br>0,477<br>0,621 | 0,002<br>0,002<br>0,002<br>0,015<br>0,015<br>0,213<br>0,278<br>0,362<br>0,179<br>0,134<br>0,097 |

|                                          | A <sub>2</sub> - paraf                                                                                     | fines<br>mifiées                                                      |                                        |                                                               |                                                                                                          | ,                                                                                                        | ** ****                                                                                                  | - Additional and a second and a |
|------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | méthyl -                                                                                                   | - 2 nonane décane undécane dodécane tridécane tétradécane heptadécane | L.H.C.                                 | traces<br>traces<br>traces<br>0,I<br>0,9<br>2,9<br>2,5<br>I,4 | 0,024<br>0,216<br>0,696<br>0,600<br>0,336                                                                | 0,016<br>0,140<br>0,452<br>0,390<br>0,218                                                                | 0,004<br>0,033<br>0,107<br>0,092<br>0,052                                                                | 0,002<br>0,019<br>0,062<br>0,054<br>0,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          | 17<br>17<br>71                                                                                             | nonadécane<br>eicosane                                                | 11<br>11                               | I,0<br>I,0                                                    | 0,240                                                                                                    | 0,I56<br>0,I56                                                                                           | 0,037                                                                                                    | 0,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          | ; <b>'</b>                                                                                                 | heineico-<br>sane                                                     | 11                                     | 0,6                                                           | 0,144                                                                                                    | 0,094                                                                                                    | 0,022                                                                                                    | 0,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          |                                                                                                            |                                                                       |                                        |                                                               | 24,00                                                                                                    |                                                                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | indosés :                                                                                                  |                                                                       |                                        |                                                               |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | diméthyl<br>"                                                                                              | 2,6 tridécar<br>" pentadéc                                            | ne<br>cane                             |                                                               |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | B- <u>Oléfin</u><br><u>oléfin</u>                                                                          | niques<br>nes n en I.                                                 |                                        | oléfi-<br>nes =<br>IOO                                        |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| теритеритеритеритеритеритеритеритеритери | décène<br>undécè<br>dodécè<br>tridéc<br>tétrad<br>pentad<br>hexadé<br>heptad<br>octadé<br>nonadé<br>eicosè | ene<br>ene<br>ène<br>écène<br>écène<br>écène<br>écène<br>cène         | E.H<br>ELH<br>ELH<br>ELH<br>ELH<br>ELH | 0,II<br>0,,II<br>0,,7<br>0,,7<br>10,,3<br>11,6<br>3,1,2       | 0,0II<br>0,0II<br>0,0II<br>0,076<br>0,458<br>0,86I<br>I,134<br>I,232<br>0,654<br>0,360<br>0,174<br>0,13I | 0,007<br>0,007<br>0,007<br>0,049<br>0,298<br>0,560<br>0,737<br>0,80I<br>0,425<br>0,234<br>0,113<br>0,085 | 0,002<br>0,002<br>0,002<br>0,012<br>0,071<br>0,133<br>0,175<br>0,190<br>0,101<br>0,055<br>0,027<br>0,020 | 0,00I<br>0,00I<br>0,00I<br>0,007<br>0,04I<br>0,078<br>0,102<br>0,111<br>0,059<br>0,032<br>0,016<br>0,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 0,0II<br>0,196<br>0,643<br>0,621                                                    | 0,007<br>0,127<br>0,418<br>0,404                                                                   | 0,002<br>0,030<br>0,099<br>0,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,00I<br>0,0I7<br>0,058<br>0,056 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,4<br>2,0<br>I,3 | 0,371<br>0,218<br>0,142                                                             | 0,241<br>0,142<br>0,092                                                                            | 0,057<br>0,034<br>0,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,033<br>0,020<br>0,0I3          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,3               | 0,687                                                                               | 0,447                                                                                              | 0,106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,062                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,9               | 0 <b>,7</b> 52                                                                      | 0,489                                                                                              | 0,116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,068                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 <b>,</b> I      | 0,447                                                                               | 0,29I                                                                                              | 0,069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,040                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,4               | 0,371                                                                               | 0,24I                                                                                              | 0,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,033                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I,4               | 0,153                                                                               | 0,099                                                                                              | 0,023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,013                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I0,8              | I,I77                                                                               | 0,765                                                                                              | 0,181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,106                            |
| - Table and the second | 100,0             | IO,9                                                                                |                                                                                                    | ATTAC TREET TO THE TANK TO THE |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LHCR              | I,8<br>5,9<br>LHC <sub>R</sub> 5,7<br>3,4<br>2,0<br>I,3<br>6,9<br>4,I<br>3,4<br>I,4 | I,8 0,196 0,643 0,621 3,4 0,37I 0,218 1,3 0,142 6,9 0,752 4,I 0,447 3,4 0,37I I,4 0,153 I0,8 I,177 | I,8 0,196 0,127 0,418 0,418 0,621 0,404 0,241 0,241 0,142 0,092 0,092 0,447 0,291 3,4 0,371 0,241 1,4 0,153 0,099 0,765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |



| C- Arometiques                                                                                                                                    |                     | aroma-<br>tiques<br>= IOO                     |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| X ? méthyl-3 indène X ? naphtaline éthyl-2 indène diméthyles indènes X ? Azulène méthyl-2 naphtaline méthyl-I " diphényl " 2,7 + 2,6              | CR<br>E<br>CR<br>"" | 0,3<br>0,5<br>0,1<br>1,9<br>2,1<br>4,6<br>8   | 0,177<br>0,296<br>0,473<br>0,650<br>0,650<br>1,123<br>1,300<br>1,241<br>4,373<br>3,310<br>1,655 | 0,II5<br>0,I92<br>0,307<br>0,423<br>0,423<br>0,730<br>0,845<br>0,807<br>2,842<br>2,I52<br>I,076 | 0,027<br>0,046<br>0,073<br>0,100<br>0,100<br>0,173<br>0,200<br>0,191<br>0,674<br>0,510<br>0,255 | 0,016<br>0,027<br>0,043<br>0,058<br>0,058<br>0,101<br>0,116<br>0,111<br>0,393<br>0,297<br>0,148 |
| diméthyl "I,6 + I,7                                                                                                                               | 98                  | 3,6                                           | 2,128                                                                                           | I,383                                                                                           | 0,328                                                                                           | 0,191                                                                                           |
| diméthyl " I,5 + I,3                                                                                                                              | 11                  | 8,6                                           | 5,083                                                                                           | 3,304                                                                                           | 0,783                                                                                           | 0,456                                                                                           |
| diméthyl "<br>2,3 + I,4                                                                                                                           | 11                  | 10,7                                          | 6,324                                                                                           | 4,III                                                                                           | 0,974                                                                                           | 0,568                                                                                           |
| diméthyl " X (A) Acénaphtène Oxyde de déphényle triméthylnaphtaline triméthylnaphtaline diméthyldiphényle fluorène X ? X (B) 2,3,6,7-tétraméthyl- | E E CR              | 6,5<br>4,3<br>4,5<br>5,7<br>3,9<br>2,9<br>1,0 | 3,546<br>2,660<br>2,54I<br>2,660<br>3,0I4<br>3,369<br>2,305<br>I,4I8<br>I,7I4<br>0,827<br>0,59I | 2,305<br>I,729<br>I,652<br>I,729<br>I,959<br>2,190<br>I,498<br>0,922<br>I,II4<br>0,538<br>0,384 | 0,546<br>0,410<br>0,392<br>0,410<br>0,464<br>0,519<br>0,355<br>0,219<br>0,264<br>0,128<br>0,091 | 0,318<br>0,239<br>0,229<br>0,239<br>0,271<br>0,303<br>0,207<br>0,128<br>0,154<br>0,075<br>0,053 |
| naphtaline 2-méthyl fluorène X ? X ? X ? dibenzothiophène                                                                                         | CR<br>"<br>CR       | 0,4<br>0,6<br>0,9<br>2,8<br>I,3<br>I,4        | 0,236<br>0,355<br>0,532<br>I,655<br>0,768<br>0,827                                              | 0,153<br>0,231<br>0,346<br>1,076<br>0,499<br>0,538                                              | 0,036<br>0,055<br>0,082<br>0,255<br>0,II8<br>0,I28                                              | 0,02I<br>0,032<br>0,048<br>0,149<br>0,069<br>0,075                                              |
| phénanthrène + anthra<br>cène<br>X?                                                                                                               | E                   | 0,8<br><u>1,4</u>                             | 0,473<br>0,827<br>59,I                                                                          | 0,307<br>0,538                                                                                  | 0,073<br>0,I28                                                                                  | 0,043                                                                                           |
| pertes X(A)méthyldiphényle X(B) xanthène                                                                                                          | Andrew Comments     | 100,0                                         | 6,00<br>59,I                                                                                    | 3,900<br>61,1                                                                                   | 0,924                                                                                           | 0,539                                                                                           |

## § 4 - Analyse chromatographique de la fraction 50-I20° acide

## Synthèse des résultats

| Constituants                                                                                                                                                                                        | Procé-<br>dés<br>d'iden-<br>tifica-<br>tion |                                                            | % fraction totale 50-I20° = I00                                                                  | tota-                                                                                                    | %<br>gou-<br>dron<br>= 100                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Phénol O-Crésol 2,6 - Xylénol M + P Crésols Gaïacol 2,4 + 2,5 - Xylénols 6-Ethyl O-Crésol 2,3-Xylénol 3,5-Xylénol 4 Ethyl O-Crésol + ) 3,4 Xylénol 5 Ethyl O-Crésol 4 Ethyl M.Crésol Hemimellitenol | EEEECECEECE T                               | 8,13,53,99,51<br>13,53,99,51<br>13,53,99,51<br>13,53,99,51 | 4,687<br>6,595<br>I,799<br>I0,628<br>I,799<br>9,126<br>2,995<br>2,995<br>2,726<br>3,107<br>2,981 | 0,726<br>I,022<br>0,279<br>I,647<br>0,279<br>I,428<br>0,330<br>0,465<br>0,853<br>0,482<br>0,363<br>0,152 | 0,423<br>0,596<br>0,163<br>0,960<br>0,163<br>0,833<br>0,192<br>0,270<br>0,497<br>0,247<br>0,281<br>0,212<br>0,089 |
|                                                                                                                                                                                                     |                                             | 100,0                                                      | 54,5                                                                                             | 8,4                                                                                                      | 4,9                                                                                                               |



#### Conditions opératoires :

Phase: Triméthylolpropanetripelargonate.

% : I5

Support : Chromosorb

I47-I75 u

Gaz vecteur : Helium 50 cc/min. et

Hydrogène: 70 cc/min.

Colonne : long. 2,3 m Diam : 3mm.

Détection : Conductivité thermique.

Température de colonne : I70 et I90°C.

To de la chambre de vaporisation : 300°C.

§ 5 - Anal chromatographique de la fraction I20-I80° acide

Conditions identiques à la fraction précédente.

## Synthèse des résultats.

| Constituants                                                                                                                                                                                                                                      | Procé-<br>dés<br>d'iden-<br>tifi-<br>cation | %<br>acides<br>= IOO                          | % fraction totale I20-I80° = I00                                                                                              | % huiles totales = IOO                                                                                                  |                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Phénol O-Crésol 2,6-Xylénol M,P-Crésols Gaïacol 2,4 + 2,5 -Xylénols                                                                                                                                                                               | EEEECE                                      | 0,2<br>0,4<br>0,2<br>2,7<br>0,6<br>7,5        | 0,068<br>0,136<br>0,068<br>0,918<br>0,204<br>2,550                                                                            | 0,016<br>0,032<br>0,016<br>0,218<br>0,048<br>0,604                                                                      | 0,I27                                                                                                                      |
| 6 Ethyl O-Crésol + 2,3-Xylénol 3,5 -Xylénol 3,4 -Xylénol 5 éthyl O-Crésol 4 Ethyl M-Crésol Isopseudocuménol () Hemihellitenol Ethyl-6 Xylénol 2,3 4 N Propyl O-Crésol ? Indanol-4 Méthylindanes 4 ol Diméthylpyrocatéchol Indanol-5 Préhnitol ? ? | EEEEC ECC ECC CEC                           | I,,55,563074426925056<br>II50230434544432393, | 0,544<br>3,876<br>1,870<br>0,850<br>1,24<br>3,560<br>1,4936<br>1,4836<br>1,484<br>1,564<br>1,666<br>1,0850<br>1,0230<br>1,224 | 0,129<br>0,919<br>0,443<br>0,040I<br>0,200<br>0,832I<br>0,3355<br>0,3379<br>0,3379<br>0,3379<br>0,246<br>0,766<br>0,290 | 0,258<br>0,023<br>0,117<br>0,169<br>0,484<br>0,188<br>0,207<br>0,254<br>0,254<br>0,254<br>0,150<br>0,177<br>0,141<br>0,447 |



## 6 - Conclusions .

Les identifications chromatographiques ont été réalisées à l'aide de substances de référence et de procédés graphiques.

Les huiles neutres (22,4%) isolées du goudron de carbonisation de basse température contiennent dans la fraction (50-I20): 28,9 % hydrocarbures paraffiniques, I5,2 % hydrocarbures oléfiniques et 49,9 % hydrocarbures aromatiques. Dans la fraction (I20-I80), ces différentes classes d'hydrocarbures représentent respectivement 24 %; I0,9 %; 53,I %.

Les hydrocarbures paraffiniques de la fraction (50-I20) se répartissent de la façon suivante : paraffines normales : 6I % ; paraffines ramifiées : 39 % Dans la fraction I20-I80, la répartition est la suivante : 89 % et II % . Les paraffines normales sont largement prépondérantes.

Dans la série des paraffines normales, il apparaît un premier maximum qui se situe au niveau du tétradécane, et un second maximum au niveau de l'heptadécane normal.

Les paraffines ramifiées constituent quatre familles homologues : les méthyl-2 sont en majorité mais

les méthyl-3; diméthyl-2,3; diméthyl-2,6 sont présents. Le méthyl-2 tridécane est parmi les paraffines ramifiées le corps le plus abondant : 7,8%. Il est à remarquer l'absence du méthyl-2 pentadécane ainsi que celle du méthyl-2 hexadécane.

Les oléfines sont en majorité des I-oléfines mais des oléfines ramifiées en méthyl-3 sont également présentes. L'absence des méthyl-3 pentadécène et méthyl-3 hexadécène est également étonnante.

Les hydrocarbures aromatiques sont pour la plupart des dérivés du benzène et de la naphtaline. Nous avons pu identifier une quarantaine de corps. Ces dérivés sont présents en quantité plus grande que le benzène et la naphtaline. Des corps lourds tels que le phénanthrène et anthracène ont été trouvés.

Les huiles acides ( II,99 % ) isolées du goudron sont constituées outre le phénol, de ses dérivés méthylés. Les xylénols sont les plus abondants. L'indanol et plusieurs de ses dérivés sont aussi présents.

Les substances à caractère basique que nous avons extraites dou goudron sont faiblement représentées. Elles n'ont pas fait l'objet d'une étude détaillée faute de temps.

#### III me partie

#### CONCLUSIONS GENERALES .

Nous avons étudié diverses fractions obtenues par distillation d'un goudron de carbonisation de basse température par la chromatographie en phase gazeuse.

Le goudron examiné provient du laboratoire de Recherches de la Carbonisation Centrale de Tertre. Il est obtenu par traitement thermique en lit fluidisé entre 360 et 550°C d'un charbon en provenance de la veine I6 du siège de Houthaelen (Campine-Belgique). L'indice de matières volatiles se situe aux environs de 31 %.

Afin de permettre la résolution par la chromatographie en phase gazeuse, nous avons effectué une longue série de mises au point portant sur l'appropriation de diverses phases, colonnes analytiques et préparatives, détecteurs, ainsi que la valorisation de procédés graphiques et de substances de référence.

Après isolement du goudron, le brai a été éliminé de celui-ci et les huiles obtenues ont fait l'objet de nos recherches.

Cinq fractions ont été isolées par distillation fractionnée avec entraînement gazeux inerte. Nous avons soumis trois de ces fractions à des extractions acides et basiques dans le but d'isoler les différentes classes chimiques. Deux de ces fractions obtenues ont été scindées, par la chromatographie d'adsorption sur silicagel en présence d'indicateurs fluorescents ( méthode F.I.A.) en hydrocarbures paraffiniques, oléfiniques et aromatiques. Ces fractions ainsi que les fractions acides ont été analysées par chromatographie en phase gazeuse.

L'identification des bases n'a pas été abordée.

Grâce à la chromatographie en phase gazeuse, nous avons mis en évidence parmi les hydrocarbures paraffiniques, plusieurs séries de familles homologues, dans lesquelles nous avons constaté la prépondérance de : tétradécane N, heptadécane N, méthyl-2 tétradécane, méthyl-2 heptadécane.

Les fractions oléfiniques présentent les mêmes analogies.

Les constituents aromatiques sont représentés principalement par les diméthylnaphtelines alors que de faibles teneurs en benzène et naphtalène sont présentes.

D'autre part, la prédominance des xylénols est à retenir dans les fractions acides.

La chromatographie en phase gazeuse s'est révélée un outil indispensable pour aborder des problèmes aussi complexes que ceux du goudron.

Les quelques méthodes d'analyse qui ont été éprouvées et employées se sont révélées efficaces dans l'étude de ce présent travail.

#### Références bibliographiques importantes.

- I- VAHRMAN M., J.Appl.Chem., 1952, n°2, p.532,538.
- 2- WARNES A.R., Coal Tar Distillation and Working up of Tar Products, London 1923.
- 3- FISHER C R., Composition on Coal Tar and Light Oil, Bureau of Mines Bull. 1938, p.432.
- 4- RHODES E.C., Chemistry of Coal Utilisation, New-York, 1945, Vol.2, 8, p.I287.
- 5- KRUBER O., RAEITHEL A., GRIGOLEIT G., Erdöl U.Kohle 1955,8, p.637.
- 6- COPPENS L., BRICTEUX J. et NEURAY M., Bulletin technique "Houille et dérivés "Inichar 1960, n° 21.
- 7- BOYER A F., FERRAND R., LADAM A., PAYEN P., Chimie et Industrie 1961, 86, p.923.
- 8- MAHER, J of Chrom. 1963, 10.
- 9- LEWIS H.R., Chem. and. Ind., 1959, p.1049.
- IO-DIN 51791 BESTIMMUNG des GEHALTES an SCOHLENWASSER-STOFF - GRUPPEN , Mars 1964
- II-YASUI H.J. Chem.Soc.Japan, 1960, 33, p. 1498.
- I2-CHANG T.C.L. et KARR C Jr Anal.Chem.Acta 1962,26, p.410.
- I3+JAGER A et KATTWINKEL G., Erdöl und Kohle 1955,8,p.629.
- I4- " " p.706.
- I5-JAMES A.T. et MARTIN AJP, Biochimie J, I952,50,p.679.

- I6- RAY N.H., J.App.Chem. 1954,4.
- I7- LITTLEWOOD AB., Phillips CGS et PRICE DT, J.Chem.Soc. 1955, p.1480.
- I8- JAMES AT. et MARTIN AJP, British Medical Bull. 1954, IO, p.170.
- I9- INICHAR, Bulletin Technique " Houille et Dérivés " 1960 n° 2I.
- 20- J. of Chrom. 1964 , V.13, n° 2, p.377, 381.
- 2I- SASSEMBERG et WRABETZ Anal Chem. 1961 p.184, 423 .
- 22- GREENSHIELDER J.B. et ROSSINI F.D. J.Phys.Chem. 1958, 62 p.271.
- 23- BEALEE.S.L. The Science of Petroleum, 1938, vol.2, p.1280 Oxford University Press.