BUU 2020055

50376 1969

DIPLOME D'ETUDES APPROFONDIES DE SCIENCES PHYSICUES

Mention : ELECTRONIQUE

FLUCTUATION DU TAUX DE GENERATION PAR AVALANCHE DANS UN SEMICONDUCTEUR APPLICATION AU CALCUL DU BRUIT DELIVRE PAR UNE DIODE EN REGIME D'AVALANCHE

par Robert PERICHON Ingénieur I. S. E. N.

Jury : MM. les Professeurs R. GABILLARD Président

A. LEBRUN Examinateur E. CONSTANT 11

LILLE, le 12 Juillet 1969

SOMMAIRE

INTRODUCTION

CHAPITRE I

Origine physique du bruit de fond. Fluctuation du taux de génération par avalanche dans un semiconducteur.

CHAPITRE 2

Calcul du bruit d'avalanche d'un modèle simplifié en régime linéaire (diode PIN).

a) Etablissement de l'équation fondamentale

- b) Application au cas simple $\alpha_n = \alpha_p$
- c) Application au cas $\alpha_n \neq \alpha_p$ (α_n et α_p indépendants de x)
- d) introduction d'une zone de transit.

CHAPITRE 3

Calcul du bruit d'avalanche d'un modèle simplifié en régime non linéaire (diode PIN)

CHAPITRE 4

Bruit de modulation d'amplitude et de fréquence d'une diode A.T.T.

- a) Rappels de résultats généraux
- b) Etude expérimentale : mesure de la déviation de fréquence d'un oscillateur en bande X
 - 1. Principe et montage
 - 2. Résultats et comparaison avec d'autres oscillateurs hyper fréquences

CONCLUSION

ANNEXE I

BIBLIOGRAPHIE

INTRODUCTION

Les progrès technologiques réalisés au cours des dernières années ont fait apparaitre sur le marché, dans le domaine des hyperfréquences, des dispositifs semiconducteurs utilisant le phénomène d'avalanche.

Le rapport présenté ici porte sur le bruit de fond associé à ces dispositifs. Il a pour but d'étudier le processus physique de la génération de ce bruit, les paramètres qui en dépendent et l'optimalisation correspondante du composant.

Nous n'insisterons ici que sur les parties originales de ce travail. Ainsi nous développerons successivement :

- une étude physique complète de l'origine du bruit de fond.

- une théorie analytique du bruit en régime linéaire dans le cas où le taux d'ionisation des électrons est différent de celui des trous, étude qui jusqu'à présent n'a été traitée que sur ordinateur.

- l'amorce d'une théorie du bruit en régime non linéaire, c'est à dire dans le cas où le composant est utilisé en tant qu'amplificateur ou oscillateur.

- Le principe de calcul du bruit de modulation et de l'influence d'une synchronisation.

- la description d'un procédé de mesure de l'écart quadratique moyen en fréquence.

CHAPITRE I

ORIGINE PHYSIQUE DU BRUIT DE FOND FLUCTUATION DU TAUX DE GENERATION PAR AVALANCHE DANS UN SEMICONDUCTEUR

Dans toute cette étude, nous nous limiterons à un modèle unidimensionnel, toutes les grandeurs ne seront fonction que de la variable x reperét par un axe Ox perpendiculaire au plan de la jonction.

Le taux de génération $\overline{G(x,t)}$ dans un semiconducteur en avalanche est donné d'une manière générale par :

$$G(x,t) = \alpha_n(x,t) v_n n(x,t) + \alpha_p(x,t) v_p(x,t)$$
(1)

Dans cette expression v_n et v_p représentent les vitesses limites des porteurs supposét indépendantes de E, $\alpha_n et \alpha_p$ caractérisent les taux d'ionisation des électrons et des trous et n et p les concentrations des électrons et des trous. Dans le cas le plus général, α_p, α_p , n et p sont des fonctions du temps (en particulier en régime non linéaire et en oscillation) et de x.

 $\overline{G(x,t)}^{(x)}$ représente le nombre moyen de paires créés par unité de volume (ici de longueur) et de temps. En réalité, il faut tenir compte des fluctuations de G(x,t) dues <u>au caractère discret</u> de l'ionisation (création paire par paire).

Le taux de gérération instantané s'écrira :

 $G(x,t) = \overline{G(x,t)} + g(x,t) \quad \text{avec} \quad \overline{g(x,t)} = 0 \quad (2)$

Les caractéristiques de la fonction aléatoire g(x,t) peuvent être facilement déterminées si l'on suppose que les ionisations (production de paires) se font de façon indépendantes les unes des autres.

Considérons un modèle semiconducteur unidimentionnel décomposé en tranches

Les caractéristiques de la diode évoluant au cours du temps (pas d'équilibre statique), les différentes moyennes sont effectuées sur un ensemble de modèles semiconducteurs identiques.

d'épaisseur Δx très faible. S étant la section, G(x,t) le taux de génération instantané, calculons le nombre de paires ΔNp produits dans la tranche d'épaisseur Δx située entre l'abscisse x et x + Δx pendant l'intervalle de temps τ_0 .

$$\Delta Np = \int_{t}^{t + \tau_{0}} S G(t, x) \Delta x dt$$
(3)

Si les ionisations dans Ax sont des événements indépendants, l'écart quadratique moyen est :

$$\frac{(\Delta Np - \overline{\Delta Np})^2}{t} = \frac{\Delta Np}{t} = \int_{t}^{t + \tau_0} S G(t, x) \Delta x dt$$
(4)

Calculons l'intensité spectrale et l'écart quadratique moyen de g(t.x)

Dans le cas où τ_0 est beaucoup plus petit que la période d'oscillation, on peut négliger les variations de α , β , n et p donc de $\overline{G(t,x)}$ pendant τ_0 . La relation (4) devient :

$$(\Delta Np - \overline{\Delta Np})^2 = \overline{G(t,x)} S \Delta x \tau_0$$
 (5)

L'écart à la valeur moyenne est

$$(\Delta N_{\rm P} - \overline{\Delta N_{\rm P}}) = \Delta x \ S \ f \qquad g(t, x) \ dt$$

$$t \qquad t \qquad t \qquad t \qquad (\Delta N_{\rm P} - \overline{\Delta N_{\rm P}}) = \frac{1}{1} \qquad (f = t \ f$$

soit

 $g_{\tau} = \frac{(\Delta N p - \overline{\Delta N p})}{\Delta x S \tau_{o}} = \frac{1}{\tau_{o}} \int_{t}^{t + \tau_{o}} g(t, x) dt$ (6)

l'écart quadratique moyen, $g_{\tau}(g(t,x))$ intégré sur un temps τ_0) est (relation 5)

$$g_{\tau}^{2} = \frac{\overline{G(t,x)} \ S \ \Delta x \ \tau_{0}}{(S \ \Delta x \ \tau_{0})^{2}} = \frac{\overline{G(t,x)}}{S \ \Delta x \ \tau_{0}}$$
(7)

On en déduit l'intensité spectrale W_0 de g(x,t) (qui est indépendante de la fréquence puisque g(x,t) est une fonction aléatoire additive)⁽¹⁾.

$$g_{\tau}^{2}(t) = \frac{W_{o}}{2\tau_{o}} = \frac{\overline{G(t,x)}}{\Delta x \, S \, \tau_{o}}$$

Cette relation est valable si τ_0 est beaucoup plus grand que le temps de corrélation de g(x,t) ce qui est toujours vrai puisque g(x,t) est caractérisé par un temps de corrélation nul.

$$W_{o} = \frac{2 \left(v_{n} \alpha_{n}(x,t) n(x,t) + v_{p} \alpha_{p}(x,t) p(x,t) \right)}{\Delta x S}$$
soit
$$W_{o} = \frac{2 \left(\alpha_{n} \prod_{n} + \alpha_{p} \prod_{p} \right)}{q \Delta x S^{2}}$$
(8)

et l'écart quadratique de g(t), observé dans une bande passante Δf_{j} est $\overline{g^2} = W_{o} \Delta f$.

Intéressons nous maintenant au courant élémentaire ΔI_c produit dans la tranche d'épaisseur Δx . On a :

$$\Delta I_{c}(t) = q S G(t,x) \Delta x = \left[q S \overline{G(t,x)} + q S g(t,x)\right] \Delta x = \overline{\Delta I_{c}} + \Delta i_{g} \quad (10)$$

On a $\overline{\Delta i_{g}} = 0$ et $\overline{\Delta i_{g}}^{2} = q^{2} S^{2} \overline{g^{2}(t,x)} \Delta^{2} x$

Si l'on s'intéresse aux fluctuations de ce courant dans une bande passante Δf , on a :

$$\overline{\Delta i_g^2} = q^2 S^2 \quad W_0 \Delta f = 2 q(q_n I_n + q_p I_p) \Delta f \Delta x$$

soit en faisant tendre $\Delta x \rightarrow dx$

$$\overline{\operatorname{dig}^{2}} = 2 q \left(\operatorname{q}_{h} \operatorname{I}_{n} + \operatorname{q}_{p} \operatorname{f}_{p} \right) dx \Delta f \qquad (11)$$

Ces fluctuations du courant élémentaire produit par avalanche en chaque point du semiconducteur sont à l'origine du bruit présenté par un semiconducteur en avalanche. Ce bruit est dû au caractére discret des ionisations qui ont lieu paire par paire et est analogue au bruit de grenaille. Le calcul du bruit total présenté par la diode se fait à partir de (11) en supposant que les fluctuations de g(x,t) ouvdig (x,t) ne sont pas corrélées spatialement à un instant donné c'est à dire que $\overline{g(x_1, t_0)} g(x_2, t_0) = 0$. Le bruit délivré par le semiconducteur peut être représenté par un générateur de courant $\sqrt{i^2}$ ou de tension $\sqrt{u^2}$ dont il nous faudra calculer la valeur (on passe de l'un à l'autre facilement lorsque l'on connait l'impédance de la diode Z_D. Les schémas équivalents et les formules de passage sont donnés fig. 1). Remarquons que si l'on suppose que le bruit est suffisamment faible, l'impédance Z_D est à calculer en régime linéaire (en tenant compte éventuellement des modifications de cette impédance linéaire en présence d'oscillations). Pour obtenir $\overline{u^2}$ ou $\overline{i^2}$ il suffit d'ajouter quadratiquement les contributions résultant des différents

Figure 1

dig² dans le semiconducteur.

Si l'on s'intéresse au bruit dans une bande passante Δf_{j} autour de $f = \omega/2\pi$, on peut définir le coefficient de transfert sans dimension $F(\omega, x)$ tel que :

 $F(\omega, x) \operatorname{dig} (\omega, x) = \operatorname{di}_{m}$

où di_T est le courant total (court-circuit) résultant d'un dig de fréquence ω à l'abscisse x du semiconducteur. On a alors :

$$\overline{\mathbf{i}_{\mathrm{T}}^{2}} = \int_{0}^{\omega} |F(\omega, \mathbf{x})|^{2} \overline{\mathrm{dig}^{2}}(\omega, \mathbf{x}) = q \int_{0}^{\omega} |F(\omega, \mathbf{x})|^{2} (2a_{n} \mathbf{i}_{n} + 2a_{p} \mathbf{i}_{p}) d\mathbf{x} \quad (12)$$
soit encore si l'on veut déterminer $\overline{u_{\mathrm{T}}^{2}}$ en définissant l'impédance de transfert
telle que :

$$Z(x, x) \operatorname{dig}(\omega, x) = \operatorname{du}_{T}$$
 (circuit ouvert)

$$\overline{u_T^2} = \int_0^W |Z(x,\omega)|^2 \overline{dig^2}(\omega, x) = q \int_0^W |Z(x,\omega)|^2 2(\alpha_n I_n + \alpha_p I_p) dx$$
(13)

Cette formule a d'ailleurs été utilisée par Gummel et Blue ^(2, 3). On a par ailleurs : $\frac{\overline{u_T}}{\overline{u_T}} = |Z\delta|^2$

ce qui nous donne une relation intégrale entre $Z(\omega, x)$ et $F(\omega, x)$.

$$\frac{\text{Remarque}}{i_{T}^{2}} = 2 I_{c} (t) \int_{0}^{w} |F(w, x)|^{2} dx$$
b) si $\alpha_{n} = \alpha_{p}$ est indépendant de x et de t ainsi que $|F(w, x)|^{2}$. On a
$$\overline{i^{2}} = 2 q I_{o}(t) |F(w, x)|^{2}$$

2q I_c est le bruit de grenaille d'une diode classique et l'on voit que $|F(w, x)|^2$ est en quelque sorte le "coefficient d'amplification" de ce bruit de grenaille.

CHAPITRE II

/ CALCUL DU BRUIT D'AVALANCHE D'UN MODELE SIMPLIFIE EN REGIME LINEAIRE (DIODE P.I.N.)

Dans cette première approche du problème nous admettons que le courant de conduction est indépendant de l'abscisse x. Nous discuterons cette hypothèse par la suite.

a) Etablissement de l'équation fondamentale

Les équations de continuité dans la zone d'avalanche s'écrivent :

$$\frac{\partial n}{\partial t} = -v_n \frac{\partial n}{\partial x} + G + g \tag{14}$$

$$\frac{\partial \mathbf{p}}{\partial t} = \mathbf{v} \frac{\partial \mathbf{p}}{\partial \mathbf{x}} + \mathbf{G} + \mathbf{g}$$
(15)

où G est le taux de génération moyen des paires électrons-trous, g étant le taux de génération aléatoire $(v_n, v_p \text{ seront pris en valeur absolue, les conven-tions de signe sont précisées fig. 2).$

en supposant $v_n = v_p = v$ en réalité $v_n = 1,1 \ 10^7 \ cm/s$, $v_p = 9,5 \ 10^6 \ cm/s$ pour le silicium ⁽⁴⁾)

$$I_{c} = S q v (n + p) = I_{n} + I_{p}$$

 I_c étant le courant de conduction en zone d'avalanche on peut écrire en sommant (14) et (15)

$$\frac{1}{Sqv} \frac{I_c}{Qt} = -\frac{1}{Sq} \left(\frac{\partial I_n}{\partial x} - \frac{\partial I_p}{\partial x} \right) + 2G + 2g$$
(16)

or G peut s'écrire : $G = \frac{1}{Sq} \left(\alpha_{p} \mathbf{I}_{c} + (\alpha_{p} - \alpha_{n}) \mathbf{I}_{p} \right)$ (17)

Si on intègre l'expression (16) de O à δ (δ étant la longueur de la zone avalanche) on obtient :

$$\frac{1}{v}\int_{0}^{\delta}\frac{\partial I_{c}}{\partial t} dx = \left|I_{p}-I_{n}\right|_{0}^{\delta}+2\int_{0}^{\delta}\left(u_{n}I_{c}+u_{p}-u_{n}\right)I_{p} dx + 2q \int_{0}^{\delta}g dx \quad (18)$$

Le courant de conduction I_c est la somme du courant continu I_o et du courant i_c à la pulsation ω .

 $I_c = I_0 + i_c \text{ avec } i_c << I_0$ (I_0 est indépendant de x (5)).

Le courant total à la pulsation ω dans la zone avalanche est la somme du courant de conduction et du courant de déplacement.

$$i_T = i_c + j \omega \varepsilon e_a = i_c + i_d = cste$$

 i_T étant indépendant de x nous devons admettre, pour poursuivre le calcul, que i_c l'est aussi; cette hypothèse sera vérifiée dans la mesure où :^(#)

-soit $i_d << i_c$ (ce qui à priori sera toujours vrai à fréquence suffisemment faible.

(¥)

On peut d'ailleurs étudier plus en détail les conditions de validité de cette approximation.

Si l'on admet cette hypothèse réalisée : en posant i $g = q S \int_{0}^{\delta} g dx$, la relation (18) devient, compte tenu des conditions limites :

$$\frac{\tau_{\delta}}{2} j_{\omega} i_{c} = -I_{c} + I_{s} + I_{c} \int_{0}^{\delta} \left(\alpha_{n} + (\alpha_{p} - \alpha_{n}) \frac{I_{p}}{I_{c}}\right) dx + i_{g}$$
(19)

En décomposant les différentes grandeurs au premier ordre (linéarisation de l'équation (19)), il vient :

$$E = E_{0} + e_{a}$$

$$I_{p} = I_{p0} + i_{p}$$

$$\alpha_{n} = \alpha_{n0} + \alpha_{n0}^{\dagger} e_{a}$$

$$I_{c} = I_{0} + i_{c}$$

$$\alpha_{p} = \alpha_{p0} - \alpha_{p0}^{\dagger} e_{a}$$

$$\frac{I_{p}}{I_{c}} = \frac{I_{p0} + i_{p}}{I_{0} + i_{c}} \neq \frac{I_{p0}}{I_{0}} (1 + \frac{i_{p}}{I_{p0}} - \frac{i_{c}}{I_{0}})$$

où l'indice o correspond aux termes continus et où α'_{n_0} et α'_{p_0} sont les dérivées de α et de β par rapport à E, pour la valeur E = E.

L'expression (19) devient pour la composante continue

$$I_{s} + I_{o} (\psi_{op} - 1) = 0$$
 (20)

$$\psi_{\rm op}(E) = \int_0^{\delta} \left(\alpha_{\rm no}^+ (\alpha_{\rm po}^- \alpha_{\rm no}) \frac{I_{\rm po}}{I_{\rm o}} \right) dx = 1 - \frac{I_{\rm s}}{I_{\rm o}} = 1 - \frac{1}{M}$$
(21)

et pour la composante alternative :

$$\frac{\tau_{\delta}}{2} j\omega i_{c} = -\frac{i_{c}}{M} + I_{o} \int_{0}^{\delta} (\alpha'_{o} + (\omega'_{po} - \alpha'_{no})) \frac{I_{po}}{I_{o}} e_{a} dx + i_{g} + I_{o} \int_{0}^{\delta} (\alpha_{po} - \alpha_{no}) (\frac{i_{p}}{I_{po}} - \frac{i_{c}}{I_{o}}) dz$$
(22)

En remarquant que G peut encore s'écrire :

$$G = \frac{1}{Sq} \left(\prod_{p \in C} I_{c} + (\alpha_{n} - \alpha_{p}) I_{n} \right)$$
(17)

On peut effectuer le même calcul que précédemment avec cette nouvelle écriture de G, les équations (20) (21) et (22) deviennent :

 $\psi_{on} = \int_{0}^{\delta} \left(\alpha_{po} + (\alpha_{no} - \alpha_{po}) \frac{I_{no}}{I_{o}} \right) dx = 1 - \frac{I_{s}}{I_{o}} = 1 - \frac{1}{M}$

$$I_{s} + I_{o} (\psi_{on} - 1)$$
 (20')

avec

$$\frac{\tau_{\delta}}{2} j\omega i_{c} = -\frac{i_{c}}{M} + I_{o} \int_{0}^{\delta} \left(\alpha_{po}^{*} + (\alpha_{no}^{*} - \alpha_{po}^{*}) \frac{I_{no}}{I_{o}} e_{a}\right) dx + i_{g} + I_{o} \int_{0}^{\delta} (\alpha_{no}^{-} \alpha_{po}) \left(\frac{i_{n}}{I_{no}} - \frac{i_{c}}{I_{o}}\right) dx \qquad (22')$$

La comparaison des équations (21) et (21') montre que $\psi_{on} = \psi_{op}$; les deux équations continues sont identiques.

L'équation générale permettant le calcul de la composante alternative est obtenue en ajoutant (22) à (22')

$$\frac{\tau_{\delta}}{2} j\omega i_{c} = -\frac{i_{c}}{M} + \frac{I_{o}}{2} \int_{0}^{\delta} \left(\left(\alpha_{no}^{*} + \alpha_{po}^{*} \right) + \left(\alpha_{no}^{*} - \alpha_{po}^{*} \right) \frac{I_{no}^{-1} p_{o}}{I_{o}} \right) e_{a} dx + i_{g}$$

$$+ \frac{I_{o}}{2} \int_{0}^{\delta} \left(\alpha_{no}^{-} \alpha_{po}^{*} \right) \left(\frac{i_{n}}{I_{no}} - \frac{i_{p}}{I_{po}} \right) dx \qquad (23)$$

Dans la suite du calcul nous avons besoin de calculer $\overline{i_g^2}$. La relation (11) donne :

$$\frac{\overline{\operatorname{dig}}^{2}}{\operatorname{dig}^{2}} = 2q(\alpha_{n}I_{n} + \alpha_{p}I_{p}) \, \mathrm{dx} \, \Delta f$$

$$\frac{1}{\operatorname{dig}^{2}} = \int_{0}^{\delta} 2q(\alpha_{n}I_{n} + \alpha_{p}I_{p}) \, \mathrm{dx} \, \Delta f$$

en l'absence d'oscillation, on a $I_n = I_{no}$

$$I_p = I_{po}$$
 $\alpha_p = \alpha_{po}$

 $\alpha_n = \alpha_{no}$

(21')

d'où
$$\overline{i_g}^2 = 2q I_0 \Delta f \int_0^{\delta} (\alpha_{no} + (\alpha_{no} - \alpha_{po}) - \frac{I_{po}}{I_0}) dx$$

 $= 2q I_0 \Delta f \psi_0(E)$ (24)
or $\psi_0(E) = 1 - \frac{1}{M}$

d'où on en tire, quand le régime d'avalanche est établi, c'est à dire M tendant vers l'infini

$$\overline{\mathbf{i}_{g}^{2}} \neq 2\mathbf{q} \mathbf{I}_{O} \Delta \mathbf{f}$$
(25)

Cette relation est valable si $\alpha_n \neq \alpha_p$

b) Application au cas simple $\alpha_n = \alpha_p = \alpha$

L'équation (23), en supposant e_a indépendant de x, s'écrit dans ce cas :

$$(j\omega - \frac{\tau_{\delta}}{2} + \frac{1}{M}) i_{c} = I_{o} \psi'_{o} e_{a} + i_{g}$$
(26)
avec $\psi'_{o} = \int_{0}^{\delta} \alpha'_{o} dx$

Pour calculer le générateur de courant en court-circuit équivalent à la diode, $\sqrt{i^2}$, on annule la tension u_a aux bornes de la zone **a**valanche.

$$u_a = \int_0^{\delta} e_a dx = 0$$

ce qui entraine $e_a = 0$, e_a étant supposé indépendant de x. La régime avalanche étant établi on obtient :

$$\overline{i^{2}} = \frac{i_{g}^{2}}{\left(\frac{\omega \tau \delta}{2}\right)^{2}} = \frac{2q I_{o} \Delta f}{\frac{\omega^{2} \tau \delta^{2}}{4}}$$
(27)^(*)

(*) $\overline{i^2}$, générateur de courant en court circuit, correspond au $\overline{i^2}_{no}$ défini par Hines ⁽⁸⁾ avec $\tau_x = \frac{\tau_\delta}{2}$ Pour calculer le générateur de tension en circuit suvert $\sqrt{u^2}$, on annule le courant i_{π} sortant de la zone d'avalanche.

$$i_{T} = i_{c} + j_{\omega} \in Se_{a} = 0$$
 so $i_{c} = -j_{\omega} \in Se_{a}$

L'équation (26) devient :

$$(j\omega \frac{\tau_{\delta}}{2} + \frac{1}{M}) (-j\omega \varepsilon S e_{a}) = I_{o} \psi'_{o} e_{a} + i_{g}$$
(28)

Le régime d'avalanche étant établi, on obtient :

$$e_{a} (\omega^{2} \epsilon S \frac{\delta}{2} - I_{o} \psi'_{o}) = i_{g}$$

d'où $\overline{u^{2}} = e_{a}^{2} \delta^{2} = \frac{i_{g}^{2}}{|\omega^{2} \epsilon S \frac{\tau_{\delta}}{2} - I_{o} \psi'_{o}|^{2}}$

soit
$$\overline{u^2} = \frac{2q I_0 \delta^2 \Delta f}{|\omega^2 \varepsilon s \frac{\tau_\delta}{2} - I_0 \psi'_0|^2}$$
 (29)

En explicitant $\overline{u^2}$ au moyen de la fréquence d'avalanche définie par Gilden et Hines $\binom{9}{}$ et en négligeant, aux basses fréquences, le courant de déplacement par rapport au courant de conduction, on obtient :

$$\overline{u^2} \neq \frac{2q I_0 \delta^2 \Delta f}{\epsilon^2 S^2 \omega_a^4 \tau_\delta^2/4}$$
(30)

Le générateur de tension en circuit ouvert est indépendant de la fréquence et inversement proportionnel au courant continu (ω_a^2 étant de la forme K I_o).

c) Application au cas
$$\alpha_n \neq \alpha_p (q_h et \alpha_p \text{ indépendants de x})
L'équation (23) s'écrit, en supposant e_a indépendant de x :
 $\left(\frac{\tau_{\delta}}{2} j\omega + \frac{1}{M}\right) i_c = I_o \psi'_o e_a + i_g + S(\alpha_{no}, \alpha_{po})$ (31)$$

avec
$$\psi_{0} = \frac{1}{2} \int_{0}^{\delta} \left[(\alpha_{n0} + \alpha_{p0}) + (\alpha_{n0} - \alpha_{p0}) \frac{I_{n0} - I_{p0}}{I_{0}} \right] dx$$

et $S(\alpha_{n0} - \alpha_{p0}) = \frac{I_{0}}{2} \int_{0}^{\delta} (\alpha_{n0} - \alpha_{pn}) (\frac{i_{n}}{I_{n0}} - \frac{i_{p}}{I_{n0}}) dx$

Pour déterminer le générateur de courant de bruit en court circuit, $\sqrt{\frac{1}{i^2}}$, on calcule $S(\alpha_{no}, \alpha_{po})$ pour $e_a = 0$. $S(\alpha_{no}, \alpha_{po})$ est de la forme (m)

$$S(\dot{a}_{no}, \dot{a}_{po}) = -j\omega \frac{\tau_{\delta}}{2} \Phi$$
(32)

Dans ces conditions, l'équation (29) devient :

$$(j\omega \frac{\tau_{\delta}}{2}(1+\phi) + \frac{1}{M})i_{c} = i_{g}$$
 (33)

Le régime d'avalanche étant établi, le générateur de courant en court-circuit i2 est donné par :

$$\overline{i^{2}} = \frac{\frac{i_{g}^{2}}{g}}{\left(\omega \frac{\tau_{\delta}}{2}(1+\phi)\right)^{2}} = \frac{2q I_{o} \Delta f}{\frac{\omega^{2} \tau_{\delta}^{2}}{4}(1+\phi)^{2}}$$
(34)

Pour calculer le générateur de tension de bruit en circuit ouvert, $\sqrt{u^2}$, on annule le courant i_T sortant de la zone d'avalanche.

 $i_{m} = i_{c} + j \omega \varepsilon S e_{a} = 0$

Le calcul de $S(\alpha_{n0}, \alpha_{p0})$ pour $i_c = -j \omega \varepsilon S e_a$ donne (*) $S(\alpha_{no}, \alpha_{po}) = e_a \left(I_o \phi - \omega^2 \varepsilon S \frac{\tau_{\delta}}{2} \phi \right)$ (35)

soit en pertant $i_c = -j \omega \epsilon S e_a$ dans l'équation (31)

^(¥) Les calculs des expressions de Φ et ϕ sont relativement compliqués, Φ et ø sont généralement beaucoup plus petit que l et leur expressions seront développées dans une étude ultérieure.

- 13 -

$$i_{g} + e_{a} I_{o} (\psi_{o} + \phi) - \omega^{2} \xi S \frac{\tau_{\delta}}{2} (1 + \phi) e_{a} = 0$$
(36)
$$d'ou \quad \overline{u^{2}} = \overline{e_{a}^{2}} \delta^{2} = \frac{1}{|\omega^{2} \varepsilon S \frac{\tau_{\delta}}{2} (1 + \phi) - I_{o} (\psi_{o} + \phi)|^{2}}$$

soit
$$\overline{u^2} = \frac{2q I_0 \delta^2 \Delta f}{\left|\omega^2 \epsilon S \frac{\tau_\delta}{2} (1 + \phi) - I_0 (\psi_0^* + \phi)\right|^2}$$
 (37)

d) Introduction d'une zone de transit

L'équation générale en zone d'avalanche s'écrit :

$$\left(j\omega \frac{\tau_{\delta}}{2}\left(1+\phi\right)+\frac{1}{M}\right) i_{c} = e_{a}\left(I_{o}\left(\psi_{o}^{\dagger}+\phi\right)-\omega^{2}\varepsilon S \frac{\tau_{\delta}}{2}\left(1+\phi\right)\right)+i_{g} (38)$$

Pour définir l'impédance de la zone d'avalanche ainsi que la fréquence d'avalanche d'une manière similaire au cas $\alpha = \beta$, nous annulons i_g dans l'équation (38). On obtient :

$$\frac{i_{c}}{e_{a}\delta} = \frac{I_{o}(\psi'_{o}+\phi) - \omega^{2} \leq S \frac{\delta}{2}(1+\phi)}{j\omega \frac{\tau_{\delta}}{2}(1+\phi)\delta} = j(C_{a}\omega - \frac{1}{L_{a}\omega}) (39)$$

$$C_{a} = \frac{\varepsilon S}{\delta} \qquad L_{a} = \frac{\tau_{\delta} (1 + \phi)\delta}{2 I_{o} (\psi'_{o} + \phi)} \qquad (40)$$

La fréquence d'avalanche est dénifie par L C $\omega_a^2 = 1$

$$\omega_{a}^{2} = \frac{2 I_{o} (\psi_{o}^{*} + \phi)}{\varepsilon S \tau_{\delta} (1 + \phi)}$$
(41)

Le courant total sortant de la zone d'avalanche s'écrit :

$$i_{\rm T} = i_{\rm c} + j\omega \,\varepsilon \, S \, e_{\rm a} \tag{42}$$

Les équations (38) et (42) permettent d'écrire, pour les basses fréquences et l'avalanche étant établie :

- 14 -

$$i_{c}\left(1-\frac{\omega^{2}}{\omega_{a}}\right) = i_{T} + \frac{2j\omega}{\omega_{a}^{2}\tau_{\delta}(1+\phi)} i_{g}$$
(43)

Nous considérons ici, en plus de la zone d'avalanche une zone de longueur $W = \delta$, appelée zone de transit où les électrons et les trous transitent à la vitesse limite v.

Le courant de conduction en zone de transit s'écrit :

$$i_{ct} = i_c e$$
(44)

et le courant de déplacement s'obtient par :

$$-j\omega \frac{x}{v}$$

 $i\omega \in Se_t(x) = i_T - i_c e$ (45)

Le calcul de la tension aux bornes de la diode se fait en intégrant le champ sur la longueur de la zone de transit. δ étant très petit devant W, on peut négliger la contribution de la zone d'avalanche.

$$u = \frac{W}{j\omega\varepsilon S} \left(i_{T} - i_{c} F(\theta) \right)$$
ec
$$F(\theta) = \frac{1 - e^{-i\theta}}{i\theta} \qquad \theta = \omega \frac{W}{v}$$
(46)

avec

En portant (43) dans (46)

$$u = i_{T} \frac{1}{j\omega C} \left(1 - \frac{F(\theta)}{\omega^{2}}\right) - 2i_{g} \frac{F(\theta)}{C\omega^{2} \tau_{\delta}(1 + \phi) \left(1 - \frac{\omega^{2}}{\omega^{2}}\right)}$$
(47)
$$1 - \frac{\omega^{2}}{\omega^{2} \omega^{2}} \frac{C\omega^{2} \tau_{\delta}(1 + \phi) \left(1 - \frac{\omega^{2}}{\omega^{2}}\right)}{\omega^{2} \omega^{2}}$$

Le générateur de courant en court circuit, équivalent à la diode, s'obtient en annulant u :

$$\frac{1}{i^{2}} = 2q I_{0} \Delta f \left| \frac{2 j \omega F(\theta)}{\omega_{a}^{2} \tau_{\delta}(1+\phi) \left(1-\frac{\omega^{2}}{\omega_{a}^{2}}-F(\theta)\right)} \right|^{2}$$
(48)

De même pour le générateur de tension en circuit ouvert, équivalent à la diode, calculé en annulant i_m .

- 15 -

$$\overline{u^{2}} = 2q I_{o} \Delta f \left[\frac{2 F(\Theta)}{C \omega_{a}^{2} \tau_{\delta} (1 + \phi) (1 - \frac{\omega}{\omega_{a}^{2}})} \right]^{2} (m) (49)$$

On peut comparer cette formule à l'expression (37) obtenuédans le cas d'une zone d'avalanche saule, expression qui se simplifie dans le cas des basses fréquences où nous nous sommes placés pour faire le calcul précédent.

La formule (37) devient :

$$\frac{\overline{u_a^2} \neq \frac{2q I_o}{|C_a \frac{\tau_\delta}{2} (1 + \Phi) \omega_a^2|^2} \Delta f$$

dans ce cas :
$$\overline{u^2}_{total} \neq \overline{u^2}_{a} \left| \begin{array}{c} F(\theta) \\ 1 - \frac{\omega^2}{\omega_a} \end{array} \right|^2$$

(*) En annulant ϕ et ϕ on retrouve les résultats de Van der Pauw dans le cas où $\alpha = \beta$ (10).

CHAPITRE 3

CALCUL DU BRUIT D'AVALANCHE D'UN MODULE SIMPLIFIE EN REGIME NON LINEAIRE (DIODE P.I.N.)

L'appellation "régime non linéaire" signifie que la diode est employée comme amplificateur ou oscillateur.

Nous adopterons tout d'abord quelques hypothèses simplificatrices : soit $v_n = v_p$, $\alpha_n = \alpha_p$

L'équation fondamentale relative au courant de conduction s'écrit classiquement ^(*) (équation (19))

$$\frac{\tau_{\delta}}{2} \frac{d I_{cT}}{dt} = I_{cT} f_{o}^{\delta} \alpha(x, t) dx - I_{cT} + I_{s} + i_{g}$$
(50)

où I_{CT} est le courant total de conduction en zone d'avalanche.

 $I_{c_1}(t) = I_{c_1} e^{j \omega_0 t}$ et $i_{cb}(t) = i_{cb} e^{j \omega t}$

I_{CT} se décompose de la manière suivante :

$$\mathbf{1}_{cT} = \mathbf{I}_{o} + \mathbf{I}_{c1}(t) + \mathbf{i}_{cb}(t)$$

avec

I est le courant de polarisation de la diode

- Ic₁ est le courant alternatif à la pulsation ω correspondant à la fréquence d'ascillation.
- i_{cb} est le courant de bruit à la pulsation $\omega = \omega_0 + \omega_m$, dû à l'introduction du terme source i_g .

Posons : $\psi(E) = \int_{0}^{\delta} \alpha(x, t) dx$

E se décompose de la manière suivante :

L'établissement de l'équation suppose que I_c ∰ est indépendant de x. Pour connaitre les conditions de validité de cette approximation, se reporter à l'annexe I.

$$E = E_{o} + E_{a}(t) + e_{a}(t)$$

avec $E_{al}(t) = E_{al} e^{j \omega_0 t}$ et $e_a(t) = e_a e^{j \omega t}$

où E_o est le champ continu, E_{al} le champ alternatif à la pulsation ω_o et e_a la composante du champ aléatoire de bruit à la pulsation $\omega = \omega_o + \omega_m$, qui est supposé indépendant de x.

Si $E_{o} > E_{al} >> e_{a}$, on peut décomposer $\psi(E)$ au premier ordre en série de Taylor (on pourrait développer $\psi(E)$ au second ordre pour faire apparaître l'influence de l'harmonique 2).

$$\psi(E) = \psi_{0} + \psi'_{0} E_{a_{1}}(t) + \psi'_{0} e_{a}(t)$$

Ce développement nous permet d'obtenir une relation permettant le calcul des grandeurs caractéristiques du bruit, indépendante des solutions de la composante continue E_o et de la composante alternative E_{al} .

Supposons possible de court-circuiter la diode pour la fréquence f_1^* ($e_a = o$) et calculons le générateur de courant en court circuit, équivalent à la diode, en régime d'oscillation c'est à dire soumise à une tension et à un courant alternatifs.

L'équation (50) devient :

$$\frac{\tau_{\delta}}{2} \frac{d i_{cb}}{dt} = i_{cb} (\psi_{o} - 1) + i_{cb} \psi_{o}^{*} E_{a1}(t) + i_{g}(t)$$
(51)
Les courants de bruit i_{cb} et i_{g} peuvent s'écrire :

$$i_{cb} = \int_{-\infty}^{+\infty} a(\omega) e^{j\omega t} d\omega$$

$$i_{g} = \int_{-\infty}^{+\infty} b(\omega) e^{j\omega t} d\omega$$

(*) Ceci n'est possible physiquement que si ω est suffisamment éloigné de ω_0 , fréquence d'oscillation.

L'équation (51) devient :

$$\frac{\tau_{\delta}}{2} \int_{-\infty}^{+\infty} j\omega \ \mathbf{a}(\omega) \ \mathbf{e}^{j\omega \mathbf{t}} \ \mathbf{d}\omega = \int_{-\infty}^{+\infty} \mathbf{a}(\omega) \ \left(-\frac{1}{M} + \psi_{O}^{\prime} \ \mathbf{E}_{\mathbf{a}_{1}} \ \mathbf{e}^{j\omega_{O}\mathbf{t}}\right) \ \mathbf{e}^{j\omega \mathbf{t}} \ \mathbf{d}\omega + \int_{-\infty}^{+\infty} \mathbf{b}(\omega) \ \mathbf{e}^{j\omega \mathbf{t}} \ \mathbf{d}\omega$$
(52)

Ecrivons l'égalité des composantes pour $\omega_1 = \omega_0 + \omega_m$

$$\frac{\tau_{\delta}}{2} j \omega_{1} a(\omega_{1}) e^{j\omega_{1}t} = -\frac{a(\omega_{1})}{M} e^{j\omega_{1}t} + \psi_{0}^{*} E_{a_{1}} a(\omega_{m}) e^{j\omega_{1}t} + b(\omega_{1}) e^{j\omega_{1}t}$$
(53)

$$a(a_{\perp}) \left(\frac{t_{\delta}}{2} j\omega_{\perp} + \frac{1}{M}\right) = b(\omega_{\perp}) + \psi_{o}^{\dagger} E_{a_{\perp}} a(\omega_{m})$$
(54)

soit pour un régime d'avalanche établi (M→ ∞)

$$|\mathbf{a}(\omega_1)| \frac{2\tau_{\delta}^2 \omega_1^2}{4} = |\mathbf{b}(\omega_1) + \psi'_{o} \mathbf{E}_{a_1} \mathbf{a}(\omega_m)|^2$$

Les composantes $b(\omega_{1})$ et $a(\omega_{m})$ n'étant pas à la même fréquence, on aura $\overline{b(\omega_{1}) a^{\texttt{H}}(\omega_{m})} = \overline{b^{\texttt{H}}(\omega_{1}) a(\omega_{m})} = 0$ (corrélation nulle) soit $\frac{\tau_{\delta}^{2}}{4} \omega_{1}^{2} \overline{|a(\omega_{1})|^{2}} = \overline{|b(\omega_{1})|^{2}} + (\psi_{0}^{*} E_{a_{1}})^{2} \overline{|a(\omega_{m})|^{2}}$ (55)

L'intensité spectrale W_b de i_{cb} dans une bande Δf centrée sur ω_1 est donc : (W_g étant l'intensité spectrale de i_g dans une bande Δf)

$$W_{b}(\omega_{1}) = \frac{W_{g}(\omega_{1}) + (\psi_{o} E_{a_{1}})^{2} W_{b}(\omega_{m})}{\omega_{1}^{2} \frac{\tau_{\delta}}{\mu}}$$

or $W_g(\omega_1) = 2q I_0$ (équation 25)

et en l'absence de composante alternative (régime linéaire), la zone d'avalanche étant court-circuitée pour ω_m .

(*) Si l'égalité des composantes avait été ecrite pour une fréquence $\omega_2 = \omega_0 - \omega_m$ on retrouverait la même équation car $|a(\omega_m)| = |a(-\omega_m)|$. Le spectre de bruit est symétrique par rapport $a \omega_0$. $W_{b}(\omega_{m}) = \frac{2q I_{o}}{\omega_{m}^{2} \frac{\tau_{\delta}^{2}}{4}} \quad (\text{équation 27})$ $d'où \quad W_{b}(\omega_{1}) \neq \frac{2q I_{o} (1 + \frac{\psi' o^{2} E_{a_{1}}^{2}}{\omega_{m}^{2} \tau_{\delta}^{2}/4})}{\omega_{1}^{2} \frac{\tau_{\delta}^{2}}{4}} \quad (56)$

$$\mathbf{et}$$

 $\overline{i_{cb}^2} = W_b (\omega_l) \Delta f$

 $\omega_{1} \neq \omega_{0}$ si $\omega_{m} < \omega_{0}$

$$\frac{1}{i_{cb}^{2}} \neq \frac{2q I_{o} \Delta f}{\omega_{o}^{2} \frac{\tau_{\delta}^{2}}{4}} (1 + \frac{\psi'_{o} E_{a_{1}}^{2}}{\omega_{m}^{2} \frac{\tau_{\delta}^{2}}{4}})$$
(57)

On remarque donc une augmentation de la valeur du courant en court circuit par rapport à celui du régime linéaire. Cette augmentation est fonction du degré de non linéarité (ψ'_{o} Ea₁) et de l'écart de fréquence f_{m} .

L'état d'avancement de notre étude ne nous permet pas actuellement de donner les expressions des différents générateurs équivalents en régime non linéaire. Cependant, la même méthode qu'en régime linéaire semble pouvoir s'appliquer. Dans une étude ultérieure on se propose de calculer successivement le générateur de tension en circuit ouvert pour la zone d'avalanche et pour une diode réelle (adjonction d'une zone de transit). De même en associant la structure semiconductrice à un circuit R, L, C il sera possible de déterminer le bruit en phase et en quadrature. Ces deux équations nous permettront ensuite de calculer le bruit de modulation d'amplitude et le bruit de modulation de fréquence.

[#] La diode étant placée dans des conditions voisines de celle d'un autooscillation (la diode est soumise à une tension hyperfréquence auxiliaire) Kramer ⁽¹¹⁾ a observé une augmentation importante du bruit par rapport au régime linéaire. CHAPITRE 4

BRUIT DE MODULATION D'AMPLITUDE ET DE FREQUENCE D'UNE DIODE ATT

Lorsqu'un circuit est l'objet d'oscillations entretenues le bruit crée des perturbations de l'amplitude et de la phase de l'onde. Nous nous proposons ici de résumer les principaux résultats généraux et de discuter le cas d'une diode A.T.T.

a) Rappels de résultats généraux

La théorie d'Edson ⁽¹²⁾ permet de calculer la puissance du bruit de modulation d'amplitude et de fréquence en fonction de T, température de bruit de l'impédance de charge et des différentes caractéristiques du circuit hyperfréquence employé pour générer cette oscillation. Pour caractériser le spectre d'un oscillateur, on s'intéresse généralement, pour la modulation d'amplitude au rapport puissance de bruit sur puissance du signal et pour la modulation de fréquence, à l'écart quadratique moyen de fréquence, la mesure étant faite dans une bande rectangulaire B.

$$\frac{N}{S}(B) = \frac{2kTB/P_{o}}{s^{2} + 4 Q^{2} (\frac{f_{m}}{m})^{2}}$$
(58)

$$\sqrt{\Delta f^2}(B) = \frac{f_o}{Q} \sqrt{\frac{k TB}{P_o}}$$
(59)

où P_o est la puissance d'oscillation, f_o la fréquence d'oscillation, q_o le coefficient de qualité du circuit composé du résonateur et de l'élément actif, fm, l'écart entre la fréquence de mesure et f_o , s étant un paramètre s_aus dimension fonction du degré de non linéarité qui permet de linéariser le problème.

La difficulté de déterminer T, température effective de bruit de l'impédance de charge, limite l'emploi des relations (58) et (59). C'est pourquoi nous utiliserons les résultats du chapitre précédent pour décrire le schéma équivalent de l'oscillateur représenté figure 3.

Dans ce schéma, la charge G_o de l'oscillateur est supposée connue, la charge optimale G_o peut se calculer à partir de la théorie non linéaire ; (Allamando ⁽¹³⁾) elle est conjugué de la conductance présentée par la diode en régime non linéaire.

Le générateur de courant de bruit $\overline{i^2}$, sera fonction de la tension d'oscillation U et fournira une puissance de bruit à la charge G_o. On aura alors :

$$T = \frac{1}{\frac{1}{4 \text{ k B G}}}$$
(60)

A présent nous nous intéressons plus particulièrement au bruit de modulation de fréquence, beaucoup plus important que le bruit de modulation d'amplitude près de la fréquence porteuse.

Pour améliorer le spectre de l'oscillation près de la porteuse, il est alors intéressant d'étudier la synchronisation en phase par un oscillateur auxiliaire en reprenant la théorie de Kurokawa (1^4) . La figure 4 représente le modèle employé pour cette étude (\mathbf{x}) .

En se limitant au fondamental, la solution générale pour le courant est :

 (*) La résistance négative - R est fonction du courant i(t), Ri est la résistance série, R la résistance de charge.

$$i(t) = A(t) \cos (\omega_{o}t + \phi(t))$$

$$\overline{A(t)} = A_{o} \qquad \overline{\phi(t)} = 0$$
(61)

Les résultats obtenus pour les différents spectres de phase sont :

- si l'oscillateur n'est pas synchronisé

$$|\phi_{0}(\mathbf{f})|^{2} = \frac{2 e^{2}}{4 \omega^{2} L^{2} A_{0}^{2}}$$
(62)

où e² représente l'écart quadratique moyen de tension du bruit propre à l'oscillateur non synchronisé.

- si l'oscillateur est synchronisé par un signal de la forme e(t)= a_o cos $\omega_{\rm g}$ t, l'oscillateur synchronisé est caractérisé par $\overline{e^2}$, le "synchronisant" étant supposé sans bruit

$$|\Phi_{1}(\mathbf{f})|^{2} = \frac{2 e^{2}}{4 \omega^{2} L^{2} A_{0}^{2} + e_{0}^{2} \cos^{2} \Phi_{0}}$$
(63)

 $o\tilde{u}\omega_{\rm g} = \omega_{\rm o} + \Delta\omega_{\rm o} \operatorname{avec} \Delta\omega_{\rm o} = -\frac{a_{\rm o}}{2L}\sin\Phi_{\rm o}$ (64)

La plage de fréquence où la synchronisation est effective est

$$|\Delta \omega_{\text{omax}}| = \frac{a_o}{2L A_o}$$

- si l'oscillateur synchronisé et le "synchronisateur" sont tous deux bruyants (caractérisés par e^2 et $\overline{e^2}_S$).

$$|\Phi_{2}(\mathbf{f})|^{2} = \frac{1}{4\omega^{2}L^{2}A_{0}^{2} + a_{0}^{2}\cos^{2}\Phi_{0}} \left(\frac{2e_{S}^{2}a_{0}^{2}\cos^{2}\Phi_{0}}{4\omega^{2}L_{S}^{2}A^{2}g} + 2e^{2}\right) \quad (65)$$

L'amélioration par rapport au cas où l'oscillateur est seul se calcule alors facilement en reportant (62) dans (65)

- 22 -

- 23 -

$$|\Phi_{2}(\mathbf{f})|^{2} = |\Phi_{0}(\mathbf{f})|^{2} \frac{1}{1 + \frac{a_{0}^{2} \cos^{2} \Phi_{0}}{4 \omega^{2} L^{2} A_{0}^{2}}} + |\Phi_{s}(\phi)|^{2} \frac{1}{1 + \frac{4 \omega^{2} L^{2} A_{0}^{2}}{4 \omega^{2} L^{2} A_{0}^{2}}}$$
(66)
La puissance du "synchronisant" est : $P_{s} = \frac{a_{0}^{2}}{8 R_{0}}$
La puissance du "synchronisê" est : $P_{0} = \frac{A_{0}^{2} R_{0}}{2}$ (67)

La correspondance, spectre de phase, écart quadratique moyen de fréquence étant biunivoque on obtient :

$$\overline{\Delta f_{T}^{2}(B)} = \frac{\Delta f_{0}^{2}}{1 + \frac{\omega^{2}}{\omega_{m}^{2}} \frac{P_{s}}{P_{0}} \frac{\cos^{2} \Phi_{0}}{Q^{2}}} + \frac{\Lambda f^{2}}{1 + \frac{\omega^{2}}{\omega_{0}^{2}} \frac{Q^{2}}{\cos^{2} \Phi_{0}} \frac{P_{0}}{P_{s}}}$$
(68)

cos Φ_0 est relié à la fréquence du synchronisateur par (64). Lorsque cos Φ_0 tend vers zéro, il n'y a plus synchronisation et pour cos $\Phi_0 = 1$, ($\omega_g = \omega_0$) on retrouve les expressions des facteurs de réduction S_1 et S_2 définis par Hines, Collinet et Ondria ⁽¹⁵⁾.

L'expression (68) directement dérivée des résultats de Kurokawa est cependant plus générale. Nous représentons figure 5,

 $S_{1} = \frac{1}{1 + \frac{\omega_{m}^{2}}{\omega_{o}^{2}} Q^{2} \frac{P_{o}}{P_{1}}}$ et $S_{2} = \frac{1}{1 + \frac{\omega_{o}^{2}}{\omega_{m}^{2}} \frac{1}{Q^{2}} \frac{P_{s}}{P_{o}}}$ en fonction de $\frac{\omega_{m}}{\omega_{o}} Q$ pour les valeurs 1 et 10 de $\frac{P_{o}}{P_{s}}$

Une vérification expérimentale de ces résultats est en cours.

- b) <u>Etude expérimentale : Mesure de la déviation de fréquence d'un</u> oscillateur en bande X
 - 1. Principe et montage

Les perturbations de phase à la sortie de l'oscillateur produisent

FIGURE 4

MODELE UTILISE DANS L'ETUDE DE KUROKAWA

an d

une déviation moyenne de fréquence $\overline{\Delta f^2}$ (B) que nous nous proposons de mesurer. Pour ce faire nous utilisons un discriminateur hyperfréquence composé d'un ondemêtre en absorption qui est adapté pour augmenter la sélectivité de la réponse V(f). La partie de l'onde incidente réfléchie par le circuit discriminateur est détecté. Le détecteur est sensible uniquement au bruit de modulation de fréquence, dans la mesure où la pente de la réponse F(f) est suffisante pour pouvoir négliger le bruit de modulation d'amplitude par rapport au bruit de modulation de fréquence.

Le schéma synoptique est donné fig. 7.

2) Résultats et comparaison avec d'autres oscillateurs

Pour une diode A.T.T., la déviation moyenne de fréquence est indépendante de la fréquence basse de mesure f_m^{H} . (écart de fréquence entre la fréquence porteuse et la fréquence HF de mesure). Différents auteurs, (Josenhans ⁽¹⁶⁾, Rulison, Bibbons et Josenhans ⁽¹⁷⁾ donnent une déviation moyenne de fréquence comprise, d'une diode à l'autre, entre 50 et 500 Hz dans l kHz de bande, ce qui concorde avec nos résultats (fig. 6).

Comparativement à un klystron, on n'observe pas une déviation moyenne de fréquence en l/f. Cependant elle est supérieure d'un facteur 10 pour des f_m de l'ordre de l kHz et d'un facteur 100 pour des fm supérieures à 100 kHz (fig. 8). Pour une diode schottky en avalanche et une diode A.T.T., on observe une déviation moyenne de fréquence du même ordre de grandeur (fig. 8). Cependant on remarque une variation en fréquence ^{NH}. Il faut préciser qu'aucune mesure n'est parue dans la littérature à ce sujet et qu'une vérification plus probante serait d'augmenter notre gamme de mesure en faisant varier f_m de 100 Hz à 10 MHz et de mesurer un plus grand nombre d'échantillons.

[#] On remarquera que le spectre basse fréquence en régime linéaire présente cette même propriété.

On remarquera que le spectre basse fréquence en régime linéaire présente une variation similaire. Nous ne montrons pas ici la courbe correspondante à cet échantillon. Celle-ci a été mise en évidence par Vanoverschelde (18) car elle n'entrait pas dans le cadre de notre travail expérimental.

FIGURE 1

Schéma synoptique du banc de mesure de la déviation moyenne de fréquence en bande X

CONCLUSION

Les théories sur le bruit en régime linéaire avec $\alpha_n \neq \alpha_p$, et en régime non linéaire avec $\alpha_n = \alpha_p$ ne sont pas menées à leur terme. Cependant nous avons proposé une méthode qui permettra d'aboutir à des résultats analytiques facilement exploitables.

La déviation moyenne de fréquence d'un oscillateur A.T.T. limite ses performances par rapport à un klystron. Cependant l'association des deux (synchronisation par un klystron) permet d'obtenir des performances qui nous semblent intéressantes.

<u>ANNEXE</u> I

L'équation de Poisson nous donne :

$$\frac{d_{ea}}{dx} = \frac{q}{\epsilon} (n-p) \leq q \frac{(n+p)}{\epsilon} = \frac{i_c}{Sv\epsilon}$$

Dans ces conditions la variation Δe_a de e_a sur la longueur totale de la zone avalanche est :

d'où

$$\frac{|\Delta \mathbf{i}_{d}|}{\mathbf{i}_{c}} = \omega \varepsilon S |\Delta \mathbf{e}_{a}| = |\Delta \mathbf{i}_{c}|$$

$$\frac{|\Delta \mathbf{i}_{d}|}{\mathbf{i}_{c}} = \frac{|\Delta \mathbf{i}_{c}|}{\mathbf{i}_{c}} \ll \omega \tau_{\delta} \ll 1$$

L'hypothèqe i_c indépendant de x sera donc vérifiée si $\omega \tau_{\delta} << 1$ c'est à dire dans le cas d'une fréquence faible ou d'une longueur de zone d'ava-lanche très petite.

Remarquons qu'il ne suffit pas que la condition $\omega \tau_{\delta} << 1$ soit réalisée pour que e_a soit indépendant de x mais il est aussi nécessaire que la zone d'avalanche soit très petite et ce n'est que dans ce cas que l'on peut obtenir e_a indépendant de x.

En effet e est indépendant de x si

$$\frac{|\Delta e_{a}|}{e_{a}} < \frac{i_{c}}{S} \tau_{\delta}' \quad d'où \quad \frac{|\Delta e_{a}|}{e_{a}} < \frac{i_{c}}{c} \tau_{\delta} = \frac{i_{c}}{i_{d}} \omega \tau_{\delta} < 1$$

Cette condition semble incompatible avec la condition i indépendant de x. En effet aux fréquences très faibles $\frac{i_c}{i_d}$ croit fortement comme $1/\omega^2$. Cette inégalité ne pourra être vérifiée qu'en choisissant δ suffisamment petit suivant la fréquence utilisée. Différents auteurs (Gummel et Blue ⁽²⁾, Convert ⁽⁶⁾ et Vaterkowski ⁽⁷⁾) ont montré que l'hypothèse "e_a dépendant de x" ne modifie pas beaucoup les résultats obtenus avec ea indépendant de x. Vaterkowski montre plus précisément que l'approximation e_a indépendant de x est d'autant mieux vérifiée que δ est petit.

BIBLIOGRAPHIE

(1)	A VAN DER ZIEL, "Noise" Prentice Hall, Inc, New York, N.Y., Sec. 5.1b, 1954
(2)	H.K. GUMMEL et J.L. BLUE, I.E.E.E. Trans. Elect. Devices, ED 14, 9, .
	p. 569 - 580, 1967
(3)	J.L. BLUE, J. Appl. Phys., 38, 12, p. 4882 - 4887, 1967
(4)	E. CONSTANT et A. SEMICHON, Onde Electrique, p. 703 - 721, Juillet Aout 1968
(5)	S.T. FISCHER, I.E.E.E. Trans. Elect. Devices, ED 14, 6, p. 313 - 322, 1967
(6)	G. CONVERT, Publication interne C.S.F.
(7)	J.L. VATERKOWSKI, D.E.A. Electronique, Lille, Juillet 1969
(8)	M.E. HINES, I.E.E.F., Trans. Elect. Devices, FD 13, 1, p. 164 -168, 1966
(9)	M. GILDEN et M.E. HINES, I.E.E.E. Trans. Elect. Devices, ED 13, 1,
	p. 169 - 174, 1966
(10)	L.J. VAN DER PAUW, I.E.E.E. Trans. Elect. Devices, à paraitre
(11)	B. KRAMER, Thèse 3ème cycle, Electronique, Lille, Octobre 1968
(12)	W.A. EDSON, PIRE, 48, 8, p. 1454 - 1466, 1960
(13)	E. ALLAMANDO, Thèse 3ème cycle, Electronique, Lille, Octobre 1968
(14)	K. KUROKAWA, I.E.E.E. Trans. MTT, 16, 4, p. 234 - 240, 1968
(15)	M.E. HINES, J.C.R. COLLINET et J.G. ONDRIA, I.E.E.E. Trans MIT, 16, 9,
	p. 738 - 742, 1968
(16)	J. G. JOSENHANS, P.I.E.E.E., 54, p. 1478 - 1479, 1966
(17)	R.L. RULISON, G. GIBBONS, et S.G. JOSENHANS, PIEFE, 55, p. 223 - 224, 1967
(18)	A. VANOVERSCHELDE, D.E.A. Electronique, Juillet 1969

