BUU 2000 54

DIPLOME D'ETUDES APPROFONDIES DE SCIENCES PHYSIQUES Mention : ELECTRONIQUE

ETUDE DES PROPRIETES ELECTRIQUES BASSES FREQUENCES DES DIODES EN REGIME D'AVALANCHE POUR DES TEMPERATURES COMPRISES ENTRE 4, 2°K et 400°K.

par Joseph PRIBETICH

Maitre ès-sciences

Jury: MM. Les Professeurs R. GABILLARD Président

A. LEBRUN E. CONSTANT

Examinateur 11

LILLE, le 12 Juillet 1969

SOMMAIRE

INTRODUCTION

I. DESCRIPTION DES DISPOSITIFS EXPERIMENTAUX

- I.1. Températures comprises entre l'hélium et l'azote liquide
- I.2. Températures comprises entre l'azote liquide et la température ambiante

I.2.1. Température de l'azote liquide (point fixe à 77°K)
I.2.2 Températures comprises entre 77°K et 300°K

I.3. Températures supérieures à 300°K.

II. METHODES DE MESURE ET RESULTATS EXPERIMENTAUX

II.1. Mesures de la tension d'avalanche (U_)

II.2. Mesures de la résistance de charge d'espace (Rc)

II.3. Meaures de bruit aux basses fréquences

II.4. Résultats expérimentaux

II.4.1. Etude de la tension d'avalanche
II.4.2. Etude de la résistance de charge d'espace
II.4.3. Etude du bruit présenté en basse fréquence

III. EXPLOITATION DES RESULTATS

III.1. Etude de la tension d'avalanche Ua III.1.1. Calcul des coefficients γ_U et γ_E III.1.2. Calcul du coefficient α'_T a) $\alpha_n = \alpha_p = \alpha$ b) $\alpha_n = k \alpha_p$ III.1.3. Variations avec la température des paramètres fondamentaux de l'ionisation. III.2. Etude de la résistance de charge d'espace R

III.2.1. Principe de calcul de la résistance de charge d'espace

III.2.2. Expression généralee de la résistance de charge d'espace

III.2.2.1.
$$\alpha_n = \alpha_p = \alpha$$

 $|v_n| = |v_p| = v$
III.2.2.2. Cas général

; gen

$$a_{n} \neq a_{p}$$
$$v_{p} = k_{v} |v_{n}|$$

III.2.3. Variation de la vitesse limite des porteurs avec la température

III.3. Exploitation des mesures de bruit

III.3.1. Variation de la fréquence d'avalanche avec la température III.3.2. Uniformité des jonctions semidonductrices III.3.3. Bruit d'origine thermique

CONCLUSION

INTRODUCTION

Depuis plusieurs années, le laboratoire hyperfréquences et semiconducteurs de la Faculté des Sciences de LILLE étudie les propriétés hyperfréquences des diodes semiconductrices en régime d'avalanche. Ces propriétés sont généralement fonctions de la température. Il est donc indispensable de mesurer en fonction de ce paramètre les grandeurs électriques directement accessibles telles que la tension d'avalanche, la résistance de charge d'espace, le bruit aux basses fréquences. A partir de ces grandeurs, il est possible d'atteindre les paramètres fondamentaux (taux d'ionisation, vitesse des porteurs) et d'étudier leur comportement avec la température. Nous avons pour notre part, étudié les diodes semiconductrices au silicium, dans un intervalle de températures s'étendant de . l'hélium liquide (4,2 °K) à 400°K.

Dans une première partie, nous décrivons les différents dispositifs expérimentaux qui permettent d'opérer dans cette gamme de températures.

Dans une seconde partie, nous présentons rapidement les méthodes de mesures des grandeurs électriques directement accessibles : tension d'avalanche, résistance de charge d'espace et bruit présenté en basse fréquence. Nous présentons ensuite les résultats expérimentaux obtenus.

Enfin dans une troisième partie, nous exploitons, ces résultats et nous en déduisons les variations des paramètres fondamentaux du semiconducteur en function de la température T. Ainsi, à partir de la tension d'avalanche et de la résistance de charge d'espace, nous obtenons les variations avec T du taux d'ionisation et de la vitesse des porteurs. Par ailleurs, les mesures de bruit nous renseignent sur la structure interne et l'uniformité des diodes semiconductrices utilisées.

I. DESCRIPTION DES DISPOSITIFS EXPERIMENTAUX

L'intervalle de températures étudié ne permet pas l'utilisation de manière simple d'un appareillage unique. Ceci nous a amené à considérer plusieurs gammes de températures selon la technique de variation de température employée.

a) Pour les températures comprises entre l'hélium liquide (4,2 °K) et l'azote liquide (77°K), nous utilisons un cryostat avec de l'hélium liquide.

b) Pour les températures comprises entre l'azote liquide et la température ambiante (300°K), nous plongeons l'échantillon à étudier dans un bain d'azote liquide contenu dans un vase Dawar.

c) Pour les températures supérieures à 300°K, l'apport de chaleur est fourni par une résistance chauffante.

Nous présentons brièvement ces différents dispositifs.

I.1. Températures comprises entre l'hélium et l'azote liquide

Nous employons un cryostat métallique en acier inoxydable (cryostat standard T.B.T. C.A.2 de 2 litres). Dans notre cas, il faut adapter au cryostat une "tête) permettant le passage des cables électriques (qui alimentent la diode et les sondes de niveau) et l'introduction du siphon de transfert. La diode semiconductrice est placée dans une monture porte-échantillon fixée à la "tête" du cryostat par un tube en acier inoxydable : celui-ci assure la rigidité de l'ensemble et sert de protection au cable coaxial qui alimente la diode. Cette monture a été conçue pour que la diode reste en contact direct avec le fluide cryogénique. La figure 1 A) nous donne le schéma de cette monture. L'échantillon est placé dans la queue du cryostat et baigne dans l'hélium liquide. Les techniques des basses températures sont maintenant bien connues et nous représentons schématiquement figure 2 la méthode pour l'opération de transfert de l'hélium liquide du vase de stochage vers le cryostat.

Dans l'intervalle de températures étudié, il nous est, pour l'instant difficile de donner la valeur exacte de la température ; les appareils permettant

EMPLOYEE POUR T > 770K

cette mesure sont en cours de réalisation.⁽¹⁸⁾Méanmoins, à l'aide de la tension d'avalanche des diodes et du coefficient traduisant la variation de cette tension avec la température, il est possible d'en obtenir un ordre de grandeur (à 10°K environ). Par la suite nous utiliserons un thermccouple directement en contact avec le boitier de la diode et une sonde cryogénique qui nous donnera la température du bain.

I.2. <u>Température comprises entre l'azote liquide et la température</u> ambiante

Il est possible d'utiliser le cryostat pour cette gamme de températures Mais les manipulations ne sont pas aisées et les mesures ne peuvent être effectuées que pour une seule diode : en effet pour changer d'échantillon, il est nécessaire de ramener le cryostat à la température ambiante, puis de le remettre à nouveau en température (ce qui demande 48 heures environ). Nous pensons par la suite, modifier la monture de manière à pouvoir étudier plusieurs échantillons au cours d'une même manipulation. Nous avons donc été amenés à employer d'autres dispositifs. Pour couvrir l'intervalle considéré, deux techniques différentes ont été employées.

I.2.1. Température de l'azote liquide (point fixe à 77°K)

Nous utilisons la monture porte échantillon, décrite au paragraphe précédent. Celle-ci est immergée dans un bain d'azote liquide contenu dans un vase Dewar.

I.2.2. Températures comprises entre 77° et 300°K

Pour les températures supérieures à 77°K, nous utilisons une monture d'un autre type, déjà réalisée au laboratoire (le schéma est donné par la figure 1. B).

La masse de cuivre fixée sur cette monture plonge plus ou moins dans le bain d'azote liquide selon la température désirée. Nous avons pu ainsi couvrir la gamme 77°K - 250°K. La mesure de la température de la diode est effectuée avec un thermocouple directement en contact avec le boitier. Pour les températures voisines de 273°K,il est nécessaire de sortir entièrement la monture du bain. Un échange de chaleur se produit alors avec le milieu ambiant. Par cette méthode, nous couvrons la gamme 250° - 300°K.

I.3. Températures supérieures à 300°K

..

Ces températures sont obtenues en adaptant à la monture précédente une résistance chauffante. Il est également possible d'utiliser une enceinte thermostatée avec régulation de température. Dans ce cas nous employons un thermomètre pour connaitre la valeur de T.

II. METHODES DE MESURES ET RESULTATS EXPERIMENTAUX

Nous décrivons rapidement les méthodes de mesures qui permettent d'obtenir les grandeurs électriques que nous allons étudier :

- a) la tension d'avalanche
- b) la résistance de charge d'espace
- c) le bruit présenté aux basses fréquences.

Ensuite nous présentons les résultats expérimentaux obtenus sur des diodes semiconductrices réalisées par le L.E.P.

II.1. Mesures de la tension d'avalanche

Nous représentons ci-dessous le principe du montage. La diode est alimentée par un générateur de courant et nous relevons la tension d'avalanche avec un voltmètre numérique (ROCHAR A 14 81). Nous traçons la caractéristique statique donnant la tension fonction de la température pour un faible courant afin d'éviter l'échauffement de la diode.

II.2. Mesures de la résistance de charge d'espace (R_c)

Pour déterminer R_c , il faut éviter d'échauffer la diode par le courant de mesure : nous allons donc mesurer la résistance dynamique de la diode autour d'un point de polarisation variable avec un signal de mesure à haute fréquence (10 MHz).

Nous utilisons un pont d'impédance ⁽¹⁶⁾ qui permet la mesure des résistances pouvant atteindre 1000 A avec une bonne précision (1 %). La détection est faite par la méthode classique de la détection hétérodyne (la fréquence intermédiaire est égale à 100 kHz). Le schéma est représenté par la figure III.

Pour les mesures inférieures à 77° K, le cable coaxial reliant la diode au pont de mesure (1 mètre de longueur) introduit une erreur sur la mesure des résistances. Cette erreur a été évaluée et nous pouvons ainsi corriger les valeurs des résistances mesurées avec le cable. Toutes corrections effectuées, les mesures avec cable donnent des résultats en accord avec les mesures réalisées sans cable, ceci avec une précision de l'ordre de l Ω (pour les résistances inférieures à 100 Ω).

Il est donc possible d'utiliser cette méthode de mesures pour tout l'intervalle de températures étudié .

II .3. Mesures du bruit aux basses fréquences

Elles se font par une méthode de comparaison de bruit de la diode avec une source de bruit de référence. Pour obtenir la précision maximale, il est nécessaire d'appliquer une puissance constante au récepteur : il suffit d'atténuer plus ou moins l'une des deux sources de manière à observer la même déviation sur l'appareil de mesures. Le schéma de principe du dispositif est donné à la figure IV.

Les mesures ont été effectuées à différentes fréquences :

a) 10 kHz - 100 kHz.

Ces mesures sont réalisables pour toute la gamme de températures étudiée, car il est possible de compenser l'influence du cable coaxial alimentant la diode.

b) 30 MHz - 60 MHz

Pour ces fréquences, les mesures ne sont possibles que pour les températures supérieures à 77 °K, car l'influence du cable peut être difficilement compensée.

FIGURE 3

Schéma du dispositif utilisé pour la mesure de la résistance de charge d'espace

FIGURE 4 Schéma du dispositif employé pour les mesures de bruit en basse fréquence

II.4. Résultats expérimentaux

Les mesures des différentes grandeurs électriques ont été effectuées sur des échantillons de structure P⁺NN⁺ disponibles au laboratoire. Nous présentons maintenant les résultats expérimentaux obtenus.

II.4.1. Etude de la tension d'avalanche

Les courbes présentées fig.V montrent que les variations de la tension d'avalanche avec la température sont pratiquement linéaires pour les différentes diodes étudiées. Une légère rupture de pente se produit pour certaines diodes pour des températures de l'ordre de 150°K. Néanmoins, nous pouvons exploiter ces résultats en considérant que la tension d'avalanche varie linéairement avec la température entre 77°et 400°K.

II.4.2. Etude de la résistance de charge d'espace

La figure VI représente les variations de la résistance de charge d'espace en fonction de la température. Les mesures de R_c pour les échantillons étudiés sont difficiles car les variations de résistance ne sont que de quelques ohms entre 77[°]et 400[°]K. La variation avec la température peut être également considérée comme linéaire.

II.4.3. Etude du bruit présenté en basse fréquence

Les meaures de bruit en fonction de la température sont représentées sur les figures VII et VIII. Nous constatons un déplacement du maximum de bruit vers les courants plus élevés lorsque la température diminue, mais les variations du bruit sont faibles. La figure IX montre la variation de la tension aux bornes de la diode en fonction du courant pour $T = 77^{\circ}$ K. Sur le même graphique, nous représentons les spectres de bruit à 10 kHz et 100 kHz. Nous remarquons que la rupture de pente de la caractéristique statique U = f(I) se traduit par un maximum de bruit.

REMARQUE :

Dans nos expériences nous n'avons pas atteint la température de l'hélium liquide. La méthode indiquée précédemment pour évaluer la température pour l'intervalle 4,2° - 77 °K nous a permis d'estimer la température minimale atteinte à environ 40°K. a) Le vide d'isolement entre les enceintes d'azote et d'hélium liquide n'est pas assez poussé : il est de 10^{-2} à 10^{-3} Torr, alors que, pour un bon fonctionnement, ce vide doit atteindre 10^{-5} à 10^{-6} torr. Cela nécessite l'émploi d'une pompe secondaire à diffusion.

b) les pertes thermiques ont été augmentées par l'absence de disques réflecteurs (en aluminium mince) : environ 20 % en plus.

400 350 AP7 AS 1 300 AI 25 AQ 7 250 200 Variation de la tension d'avalanche en fonction 150 de la température FIGURE 5 100 50 **5**° 1001 106 80-> 60-50-20.

III. EXPLOITATION DES RESULTATS

Après avoir caractérisé les variations avec la température des grandeurs électriques, il est intéressant d'en déduire l'évolution des paramètres fondamentaux du phénomène d'avalanche. Cette étude est développée pour le taux d'ionisation, la vitesse de porteurs et le bruit présenté en basse fréquence.

III.1. Etude de la tension d'avalanche

Nous considérons pour cette étude, le modèle de TAGER ⁽¹⁾ (profil théorique P⁺NN⁺) qui est celui se rapprochant le plus de la structure des échantillons étudiés.

Il est possible, avec une bonne approximation, d'assimiler ce modèle à celui d'une jonction PN abrupte. En effet, le taux d'ionisation est une fonction rapidement croissante du champ électrique. Comme le montre le schéma ci-dessous, l'ionisation est pratiquement nulle pour la valeur E₀ du champ. Par ailleurs l'aire du triangle hachuré est négligeable car la concentration de la zone N (qui donne la pente du champ) et la largeur W sont importants.

- 9 -

- 10 -

Dans ce cas, nous avons les relations suivantes :

$$E \neq E_{M} \left(1 - \frac{X}{M}\right)$$
(1)

$$E \neq \neq \frac{2U}{W}$$
(2)

$$W \neq \frac{W_1}{\sqrt{U}} \neq \frac{W_1^2}{2} E_M$$
 (3)

 W_1 est la largeur de la jonction si nous appliquons une tension de l volt aux bornes de la jonction.

Nous avons :

$$W_1 = (\frac{1,317 \ 10^7}{N_D - N_A})$$
 pour le silicium.

III.1.1. Calcul des coefficients de variations γ_U et γ_E avec la température de la tension d'avalanche et du champ électrique maximum à l'avalanche.

En supposant une variation linéaire de la tension d'avalanche U_a avec la température et pour caractériser cette variation, MACKAY ⁽²⁾ introduit un coefficient γ_{II} en posant :

$$\gamma_{\rm U} = \frac{1}{\partial U_{\rm a}} \frac{U_{\rm a}}{\partial T}$$
(4)

Nous pouvons encore écrire la relation (4) sous la forme

$$U_{u}(T) = U_{n}(T_{0}) \left(1 + \gamma_{U}(T - T_{0}) \right)$$

$$(5)$$

où $U_a(T_o)$ et $U_a(T)$ sont les tensions d'avalanche aux températures T_o et T. Ce coefficient γ_U est positif et traduit bien les variations observées (voir figure 5).

Nous pouvons en déduire les variations du champ électrique maximum à l'avalanche avec la température. Nous appelons $\gamma_{\rm F}$ le coefficient qui traduit

ces variations et nous posons :

$$\gamma_{\rm E} = \frac{1}{E_{\rm a}} \frac{\partial E_{\rm a}}{\partial T}$$
(6)

ou encore : $E_a(T) = E_a(T_o) (1 + \gamma_E(T - T_o))$ (7)

 $E_a(T_o)$ et $E_a(T)$ sont les champs électriques maxima aux températures T_o et T.

Avec l'approximation du ler ordre, une relation simple relie les coefficients γ_{II} et γ_{E^*} En effet, nous avons :

 $2 \gamma_{\rm E} = \gamma_{\rm TI} \tag{8}$

Nous donnons ci-dessous les valeurs de γ_U pour des diodes disponibles au laboratoire, à partir de la relation (5) et des courbes expérimentales donnant les variations de la tension d'avalanche avec la température (figure 5)

Echantillon étudié	AP 7	AS 1	AS 11	AI 25	AQ 15	AQ 7
U _a (T _o) volts	56,5	79,4	80,2	84,6	93,3	93,5
γ _U 10 ⁻⁴ x(°K) ⁻¹	7,08	9,52	9,64	10,32	10,44	10,76

Le coefficient γ_U a été calculé pour des températures comprises entre 77° et 400°K. Nous remarquons que ce coefficient augmente avec les tensions d'avalanche croissantes. Ces résultats sont en bon accord avec les résultats expérimentaux trouvés par LEE et ses collaborateurs ⁽³⁾ et URGELL ⁽⁴⁾.

Pour les températures inférieures, NUTTAL et NIELD ⁽⁵⁾ ont constaté un changement de signe pour le coefficient γ_U : cela signifie que la tension d'avalanche augmente lorsque la température diminue. Ce changement de signe du coefficient γ_U se produit pour des températures voisines de 30°K. A cette température les impuretés ne sont pratiquement pas ionisées. Donc la résistance du substrat devient très grande. Nous n'observons alors que les variations de tension aux bornes de la résistance du substrat. Nous n'avons pas pu observer ce phénomène : la température minimale atteinte est de l'ordre de 40°K. Cette valeur a été déterminée en considérant que la courbe donnant les variations de la tension d'avalanche avec la température reste linéaire dans l'intervalle $30^\circ - 77^\circ$ K et en utilisant le coefficient γ_{U} .

III.1.2. Calcul du coefficient de variation α'_{T} avec la température du taux d'ionisation

Après avoir calculé les variations avec la température du champ maximum à l'avalanche, il est possible d'en déduire les variations du taux d'ionisation : en effet, celui-ci est une fonction du champ électrique. Nous appelons α'_{T} le coefficient traduisant les variations du taux d'ionisation avec la température ⁽⁶⁾ et nous posons :

$$\alpha'_{\rm T} = \frac{1}{\alpha} \quad \frac{\partial \alpha}{\partial {\rm T}} \tag{9}$$

La relation (9) peut encore s'écrire :

$$\alpha(\mathbf{T}) = \alpha(\mathbf{T}_{o}) \left(\mathbf{1} + \alpha^{*}_{\mathbf{T}}(\mathbf{T} - \mathbf{T}_{o}) \right)$$
(10)

 $\alpha(T)$ et $\alpha(T_o)$ sont les taux d'ionisation aux températures T et T_o . Nous calculons ce coefficient α'_T en nous limitant aux cas $\alpha_n = \alpha_p$ et $\alpha_n = k \alpha_p$: α_n et α_p sont les taux d'ionisation respectifs des électrons et des trous. Nous considérons que le terme k est une constante indépendante de la température et du champ électrique.

a)
$$\frac{\alpha}{n} = \frac{\alpha}{p} = \frac{\alpha}{2}$$

La condition d'avalanche s'écrit :

$$l = \frac{1}{M} = \int_{0}^{W} \alpha(E) dx$$
(11)

En utilisant les relations (1) et (3), nous obtenens :

$$1 - \frac{1}{M} = \frac{w_1^2}{2} \int_{0}^{E_M} \alpha(E) dE$$
 (12)

Lorsque le régime d'avalanche est établi, le taux de multiplication M devient infini. La relation (12) s'écrit alors :

$$1 = \frac{w_1^2}{2} \int_0^{E_M} \alpha(E) dE$$
 (13)

Pour obtenir la valeur du taux d'ionisation pour le champ maximum à l'avalanche Ea, nous dérivons la relation (13) par rapport au champ électrique : nous obtenons alors :

$$\alpha(E_a) = -\frac{4}{w_1^3} \frac{dw_1}{dE_a}$$
(14)

Nous calculons maintenant le coefficient α'_{T} . Pour cela, nous dérivons l'expression (13) par rapport à T, puis par rapport à E. En utilisant les relations (7) et (14) nous aboutissons à la relation :

$$\alpha'_{T} = \frac{1}{\alpha} \frac{\partial \alpha}{\partial T} = -\gamma_{E} \left(1 + \frac{E_{a}}{\alpha} \left(\frac{\partial \alpha}{\partial E_{a}} \right) \right)$$
(15)
b) $\alpha_{n} = k \alpha_{p} = \alpha$

La condition d'avalanche s'écrit maintenant (le taux de multiplication M étant infini)

$$f_{0}^{W} \alpha(E) dx = \frac{\log k}{k-1} = K$$
(16)

Pour le silicium nous avons k = 0,1 et K = 2,56

Nous considérons que le coefficient k est indépendant de la température et du champ électrique.

Par un calcul analogue, nous obtenons la valeur du coefficient α'_{T} qui est la même que celle trouvée dans le cas précédent, c'est à dire :

$$\alpha'_{\rm T} = \frac{1}{\alpha} \quad \frac{\partial \alpha}{\partial {\rm T}} = -\gamma_{\rm E} \left(1 + \frac{{\rm E}_{\rm a}}{\alpha} \left(\frac{\partial \alpha}{\partial {\rm E}_{\rm a}} \right) \right)$$
(15)

Pour calculer le coefficient α'_{T} , nous utilisons les courbes $\alpha = f(E)$ tracées par LEE et ses collaborateurs ⁽³⁾ qui donnent la variation du taux d'ionisation avec le champ électrique. Connaissant la valeur de la tension d'avalanche d'un échantillon, nous calculons le champ électrique E_a . Pour cette valeur du champ, nous obtenons immédiatement $\alpha(E_a)$ et $(\frac{\partial \alpha}{\partial E_a})_T$. Nous déterminons alors le terme entre crochets dans la relation (15) : ce terme est toujours positif. Le coefficient \sim_E ayant été calculé précédemment, nous obtenons la valeur de α'_T : cette valeur est négative, ce qui signifie que les variations du taux d'ionisation avec la température sont de sens inverse à celles du champ E_a . Nous en concluons que le taux d'ionisation augmente lorsque la température diminue.

Nous avons tracé les courbes $\alpha = f(T)$ donnant les variations du taux d'ionisation en fonction de la température pour l'échantillon AI 25 ainsi que les courbes données par CROWELL et SZE (figure 10).

Le coefficient de température α'_{T} est pratiquement le même pour les 2 courbes. Mais il existe un décalage pour la valeur du taux d'ionisation : ceci s'explique par le choix des valeurs de α à 300°K. Pour la même valeur du champ ($E_a = 3,6 \ 10^5 \ V/cm$) C. et S. donnent $\alpha = 3,7 \ 10^4 \ cm^{-1}$ alors que nous avons pris la valeur donnée par LEE et ses collaborateurs $\alpha = 2,9 \ 10^4 \ cm^{-1}$.

III.1.3. Variations avec la température des paramètres fondamentaux de l'ionisation

L'étude précédente nous permet de déterminer les variations analytiques du taux d'ionisation avec la température. A partir de cette étude nous calculons les variations avec la température des paramètres fondamentaux de l'ionisation :

> ε_i énergie nécessaire à l'ionisation ε_R énergie perdue au cours d'une collision non ionisante l_i libre parcours moyen entre 2 ionisations successives l_R libre parcours moyen entre 2 collisions non ionisantes.

SHOCKLEY ⁽⁸⁾ dans sa théorie introduit ces paramètres fondamentaux. Il calcule le taux d'ionisation en considérant que les porteurs peuvent subir d'une part des chocs ionisants avec création d'une paire électron trou et d'autre part des chocs non ionisants qui se traduisent par la production de phonons optiques. Il suppose, en outre, que la fonction de distribution de l'énergie des porteurs résulte de la superposition d'une distribution isotrope pour les porteurs de faible énergie et d'une distribution localisée dans la direction du champ pour les porteurs d'énergie élevée, responsables de l'ionisation. Il aboutit à l'expression suivante :

$$\alpha(E) = A e^{\frac{-E}{E}}$$

$$A = \frac{qE}{r \epsilon_{R}}$$

avec

$$B = \frac{\varepsilon_i}{q l_R}$$
(19)

q charge de l'électron E champ électrique

 $r = \frac{l_i}{l_R}$ nombre de chocs entre 2 collisions ionisantes successives. L'expression donnéepour le coefficient est conforme aux prévisions théoriques de BARAFF (9) qui aboutit à :

 $\alpha l_{R} = a e^{\frac{-i}{4E l_{R}}}$ (20)

Dans une première étape de calcul, nous supposons que le terme a est une constante indépendante de la température. De plus, il est possible de considérer que les variations avec la température de ε . (qui est peu différent de E_g , largeur de la bande interdite) sont négligeables ⁽¹⁰⁾. Dérivons l'expression (20) par rapport à T : nous obtenons :

$$\frac{1}{\alpha} \frac{\partial \alpha}{\partial T} + \frac{1}{l_R} \frac{\partial l_R}{\partial T} = \frac{\varepsilon_i}{qE l_R} \left(\frac{1}{E} \frac{\partial E}{\partial T} + \frac{1}{l_R} \frac{\partial l_R}{\partial T} \right)$$
(21)

En utilisant la relation (15) nous aboutissons au résultat suivant :

(17)

(18)

- 16 -

$$-\frac{1}{l_{R}}\frac{\partial l_{R}}{\partial T} = \frac{1}{E_{a}}\frac{\partial E_{a}}{\partial T}\left(\frac{\frac{\varepsilon_{i}}{qE l_{R}} + 1}{\frac{\varepsilon_{i}}{qE l_{R}} - 1} + \frac{\frac{E_{a}}{\alpha}\left(\frac{\partial \alpha}{\partial E_{a}}\right)}{\frac{\varepsilon_{i}}{qE l_{R}}}\right) \quad (22)$$

soit :

$$\frac{1}{l_{R}} \frac{\partial l_{R}}{\partial T} = -\gamma'_{E} \left(\frac{\frac{B}{E_{a}} + 1}{\frac{B}{E_{a}} + \frac{\alpha}{\alpha} \left(\frac{\partial \alpha}{\partial E_{a}} \right)} \right) \qquad (23)$$

$$\frac{B}{E_{a}} - 1 \qquad \frac{B}{E_{a}} - 1$$

H

avec B = 1,75 10⁶ V.cm⁻¹ E_a $\neq \neq$ 3,6 10⁵ V cm⁻¹ Y_E $\neq \neq$ 5 10⁻⁴ (°K)⁻¹

Nous obtenons alors :

$$\frac{1}{l_{R}} \xrightarrow{\partial l_{R}}{\partial T} \neq -14 \ 10^{-4} \ (^{\circ}K)^{-1}$$
(24)

Certains auteurs (7) (11) donnent comme loi de variation de ε_R et l_R avec la température la relation suivante :

$$\frac{l_{R}(o)}{l_{R}(T)} = \frac{\varepsilon_{R}(o)}{\varepsilon_{R}(T)} \neq 1 + 2n \neq 1 + e^{-(\frac{\varepsilon_{RO}}{kT})}$$
(25)

avec

$$n = \frac{1}{\frac{\varepsilon_{\rm R}(o)}{e^{\rm kT} - 1}}$$
(26)

$$\varepsilon_{\rm R}(o) = 63 \ 10^{-3} \ {\rm ev}$$

 $l_{\rm R}(o) = 47 \ 10^{-8} \ {\rm cm}^{-1} \ ({\rm trous})$
 $l_{\rm R}(o) = 76 \ 10^{-8} \ {\rm cm}^{-1} \ ({\rm \acute{e}lectrons})$

Par différentiation, nous obtenons la relation suivante

$$\frac{1}{l_{R}(o)} \frac{\partial l_{R}}{\partial T} = -\frac{\frac{2 \epsilon_{R}(o)}{kT^{2}} e^{-\frac{\epsilon_{R}(o)}{kT}}}{1 + 2 e^{-\frac{\epsilon_{R}(o)}{kT}}}$$
(27)

(31)

17

Nous avons alors
$$\frac{1}{l_R(o)} \xrightarrow{\partial l_R}{\partial E} \neq -12 \ 10^{-4} \ (^{\circ}K)^{-1}$$
 (28)

Nous voyons que les résultats donnés aux relations (24) et (28) sont du même ordre. Il semble donc que l'hypothèse a = cste est une bonne approximation.

III.2. Etude de la résistance de charge d'espace R

Pour mesurer la résistance de charge d'espace, il faut éviter au maximum l'influence des effets thermiques qui se traduisent par une résistance R_T se superposant à la résistance de charge d'espace. Nous travaillons dans ce but avec un signal de mesure haute fréquence (f = 10 MHz). Nous pouvons admettre que ce signal entraine une variation négligeable de la température de la jonction. En conséquence, la résistance R_T est beaucoup plus petite que la résistance de charge d'espace R_c , et nous mesurons directement la valeur de R_c . Nous avons en effet :

$$R_{\rm D} = \frac{d(\Delta U)}{dT} = R_{\rm c} + R_{\rm T} \neq R_{\rm c}$$
(29)

Cette résistance R_c peut facilement se calculer : nous en indiquons le principe de calcul. Puis nous donnons brièvement les principaux résultats analytiques obtenus. Enfin, à partir des variations avec la température de la résistance de charge d'espace, nous déduisons les variations avec ce paramètre de la vitesse limite des porteurs.

III.2.1. Principe de calcul de la résistance de charge d'espace

Nous considérons une jonction unidimensionnelle polarisée en régime d'avalanche. Nous nous situns en régime quasi statique.

Le champ électrique est, d'après la loi de POISSON

 $\frac{dE_{o}}{dx} = \frac{\rho_{o}}{\epsilon}$ (30) ρ_{o} densité de charges fixes.

La tension U aux bornes de la diode s'obtient à partir de la relation

$$U_{a} = \int_{0}^{W} E_{o}(x) dx$$

$$\frac{dE}{dx} = \frac{d(E + \Delta E)}{dx} = \frac{\rho_0}{\rho_0} + \frac{\rho_1}{\rho_1} = \frac{\rho_0}{\rho_0} + \frac{q}{q} (p - n) \quad (32)$$

ρ₁ est la densité de charges mobiles n et p sont les concentrations des électrons et des trous

Nous constatons alors une variation AU de la tension aux bornes de la jonction, telle que :

$$\Delta U = \int_{0}^{W} \Delta E \, dx \tag{33}$$

La résistance différentielle s'obtient directement à partir de AU, soit

$$R_{c} = \frac{d(\Delta U)}{dI}$$
(34)

III.2.2. Expression générale de la résistance de charge d'espace

III.2.2.1. cas
$$\alpha_n = \alpha_p$$

 $|\mathbf{v}_n| = |\mathbf{v}_p|$

Le calcul de la résistance différentielle a été développée au laboratoire par VAESKEN ⁽¹²⁾. Ces études ont permis de mettre en évidence une résistance négative quasi-statique. En y apportant quelques modifications de calcul, les résultats obtenus peuvent être utilisés pour calculer les variations avec la température de la vitesse limite des porteurs.

Nous rappelons brièvement les hypothèses de départ et nous donnons le résultat obtenu.

Nous nous plaçons dans le cas où les vitesses limites et les taux d'ionisation des électrons et des trous sont égaux. Nous avons alors :

$$a_n = a_p$$
$$|\mathbf{v}_n| = |\mathbf{v}_p|$$

Le taux d'ionisation α est une fonction du champ électrique. L'accroissement ΔE de champ provoque une augmentation $\Delta \alpha$ de α . Si cet accroissement est faible, nous pouvons développer α en série limitée au second ordre

$$\alpha(x) = \alpha_{0}(x) + \alpha'_{0}(x) \Delta E(x) + \alpha''_{0}(x) \frac{\Delta E^{2}(x)}{2}$$
(35)

Nous trouvons finalement pour l'expression de R_c dans le cas d'une structure semiconductrice P⁺NN⁺ (modèle de TAGER)

$$R_{c} \neq \frac{(W-\delta)^{2}}{2\varepsilon |v_{n}| S}$$
(36)

est la largeur de la zone en avalanche.

comme

$$\begin{aligned} &\alpha_n \neq \alpha_p \\ &|v_p| = k_v |v_n| & \text{avec} \quad k_v < 1 \end{aligned}$$

La méthode de calcul est identique : le développement en série de α_n et α_p est seulement limité au ler ordre, soit :

$$\alpha_{n}(E_{o} + \Delta E) = \alpha_{n}(E_{o}) + \frac{\partial \alpha n}{\partial E_{o}} \Delta E$$
 (37)

$$\alpha_{\rm p}({\rm E}_{\rm o} + \Delta {\rm E}) = \alpha_{\rm p}({\rm E}_{\rm o}) + \frac{\partial \alpha_{\rm p}}{\partial {\rm E}_{\rm o}} \Delta {\rm E}$$
(38)

Le résultat final, assez complexe, est en cours d'exploitation. Cela nécessite l'utilisation d'un ordinateur.

Nous avons pour la structure P'NN*

$$R_{c} = \frac{1}{\varepsilon |v_{n}| S} \int_{0}^{W} (\mathcal{N}(x) - \mathcal{F}(x)) dx$$
(39)

- 20 -

aveo

$$\mathfrak{M}(\mathbf{x}) = \frac{\mathbf{N}(\mathbf{x})}{\frac{J}{\varepsilon |\mathbf{v}_{\mathbf{n}}|}} = \frac{1}{\varepsilon |\mathbf{v}_{\mathbf{n}}|} \mathbf{x} \frac{\int_{0}^{W} \frac{\partial \alpha_{\mathbf{n}}}{\partial E_{0}} \mathbf{F}(\mathbf{x}) \, d\mathbf{x}}{\int_{0}^{W} \frac{\partial \alpha_{\mathbf{n}}}{\partial E_{0}} \, d\mathbf{x}}$$
(40)

$$\mathcal{F}(\mathbf{x}) = \frac{\mathbf{F}(\mathbf{x})}{\frac{J}{\varepsilon |\mathbf{v}_{\mathbf{n}}|}}$$
(41)

$$F(x) = \frac{J}{\varepsilon |v_n|} \int_0^x \left(1 - \frac{\lambda + 1}{\lambda} f(x^{\circ})\right) dx^{\circ}$$
(42)

$$f(x^{v}) = \int_{0}^{x} \alpha_{n} \exp \left(-\int_{x}^{x} (\alpha_{n} - \alpha_{p}) dx^{u}\right) dx^{v}$$
(43)

III.2.3. Variation de la vitesse limite des porteurs avec la température

Pour étudier les variations avec la température de la vitesse limite des porteurs, nous prenons comme hypothèse : $\alpha_n = \alpha_p$

$$|\mathbf{v}_n| = |\mathbf{v}_p| = \mathbf{v}_p$$

La formule donnant R_c s'écrit alors :

$$R_{c} \neq \neq \frac{(W-\delta)^{2}}{2 \varepsilon v S}$$
(36)

En décrivant cette relation par rapport à la température nous obtenons :

$$\frac{1}{R_{c}} \frac{\partial R_{c}}{\partial T} = -\left(\frac{2\delta}{W-\delta}\right) \frac{1}{\delta} \frac{\partial \delta}{\partial T} - \frac{1}{v} \frac{\partial v_{n}}{\partial T}$$
(44)

Nous supposons que la zone en avalanche δ est petite par rapport à la zone de transit : le premier terme de la relation (44) peut alors être négligé : Nous avons donc :

$$\frac{1}{R_{c}} \frac{\partial R_{c}}{\partial T} \neq -\frac{1}{v} \frac{\partial v_{n}}{\partial T}$$
(45)

FIGURE 11

Variation de la vitesse des porteurs en fonction de la température.

(T) (T. Cette relation nous permet de déduire les variations de la vitesse limite des porteurs v en fonction de la température à partir des variations de la résistance R_c. En effet, nous savons que la résistance de charge d'espace R_c décroit lorsque la température diminue (figure 6). Nous pouvons en conclure que la vitesse limite des porteurs suit la loi inverse, c'est à dire qu'elle croit lorsque la température diminue.

Nous représentons les variations de la vitesse avec la température en utilisant la relation suivante (valable en supposant une variation linéaire de R_c)

$$\mathbf{v}(\mathbf{T}) = \mathbf{v}(\mathbf{T}_{o}) \left(1 - \left\{ \frac{1}{R_{c}} - \frac{R_{c}}{T} \right\} (\mathbf{T} - \mathbf{T}_{o}) \right)$$
(46)

v(T) et $v(T_o)$ sont les vitesses limites des porteurs aux températures T et T_o . Si $T_o = 300^{\circ}$ K, nous avons

$$v(T_{0}) \neq 10^{7} cm/s$$

Nous avons représenté sur la figure ll la loi de variation donnée par la relation (46) pour les diodes étudiées, ainsi que la courbe proposée par DUH et MOLL ⁽¹³⁾.

Nous remarquons que les pentes des 2 courbes sont différentes. Nous pouvons expliquer cette différence par les approximations que nous avons faites : d'abord, le calcul de la résistance de charge d'espace a été mené dans un cas particulier ; d'autre part, nous avons négligé les variations de δ avec la température.

III.3. Exploitation des mesures de bruit

Nous étudions les spectres de bruit présenté par les diodes semiconductrices aux basses fréquences, c'est à dire pour des fréquences telles que f << f_a (f_a étant la fréquence d'avalanche). Chaque diode présentant son propre spectre de bruit, il est difficile d'en déduire des lois générales pour la variation du bruit avec la température. Nous nous limitons donc à des considérations générales déduites directement des courbes expérimentales.

III.3.1. Variation de la fréquence d'avalanche avec la température

Le maximum de bruit apparait pour une fréquence voisine de la fréquence d'avalanche. Les courbes donnant la variation du niveau de bruit en fonction du courant pour différentes températures (figures 7 et 8) montrent un déplacement du maximum de bruit vers les courants plus élevés lorsque la température diminue : nous en concluons que la fréquence d'avalanche décroit lorsque la température augmente. Nous retrouvons le résultat obtenu par CONSTANT et BOITTIAUX ⁽¹⁷⁾ en mesurant l'impédance de la diode.

III.3.2. Uniformité des jonctions semiconductrices

La figure 9 représente les variations de la tension aux bornes de la diode en fonction du courant de polarisation ainsi que les spectres de bruit à 10 kHz et 100 KHz. La rupture de pente de la caractéristique statique, c'est à dire la variation de la résistance R_D de la diode se traduit par un maximum anormal du niveau de bruit. Certains auteurs ⁽¹⁵⁾ ⁽¹⁶⁾ expliquent ce phénomène par la non uniformité de la jonction : la diode peut alors être considérée comme étant la somme d'un certain nombre de diodes élémentaires placées en parallèle. La courbe de bruit en fonction du courant va donc présenter autant de maxima qu'il y a de diodes élémentaires. Le relevé de la courbe de bruit en basse fréquence est donc un moyen pratique de vérifier l'uniformité de la jonction des diodes étudiées.

III.3.3. Bruit d'origine thermique

La figure 7 donne l'allure du spectre de bruit présenté par l'échantillon AI 25 à 20 KHz pour les températures 77°K et 290°K. Un maximum anormal du niveau de bruit se produit pour des courants assez élevés à 290°K Or la caractéristique statique U = f(I) ne présente pas de rupture de pente pour ces courants : ce maximum de bruit n'est donc pas du à la non uniformité de la jonction. Il semble que ce bruit soit d'origine thermique : cette supposition est d'ailleurs confirmée par la disparition totale de ce maximum à basse température (77°K).

CONCLUSION

Le travail présenté ici constitue une étude théorique et expérimentale de l'influence de la température sur les paramètres fondamentaux du phénomène d'avalanche pour l'intervalle 40° - 400°K. Pour mener à bien cette étude, des hypothèses simplificatrices ont été utilisées : nous avons considéré que les grandeurs électriques mesurées varient linéairement avec la température. D'autre part, nous avons envisagé une structure semiconductrice simplifiée.

Il reste maintenant à généraliser cette étude et à perfectionner les montages expérimentaux en essayant d'augmenter l'intervalle de températures Néanmoins, la théorie effectuée dans ce travail constitue une bonne base de départ pour ces études nouvelles.

BIBLIOGRAPHIE

- (1) <u>A.S. TAGER</u>, The avalanche transit diode and its uses in microwaves Soviet Physic Uspekhi, vol. 9, n° 6, p. 892 à 912, (1967)
- (2) <u>K.G. MACKAY</u>, Avalanche breakdown in silicon Phys. Rev., vol. 94, n° 4, p. 877 à 884, (1954)
- (3) C.A. LEE, R. A. LOGAN, R.L. BATDORF, J.J. KLEIMACK et W. WIEGMANN Ionization rates of holes and electrons in silicon Phys. Rev., vol. 134, n° 3 A, p. 761 à 772 (1964)
- (4) J. URGELL, Effets de multiplication par avalanche dans les jonctions au silicium.

Thèse d'Etat, Toulouse, (mai 1969)

- (5) <u>K.I. NUTTAL et M.W. NIELD</u>, Behaviour of silicon P-N junctions at temperatures between 4,2° et 300°K Int. J. Electronics, vol. 24, n° 1, p. 69 à 78 (1968)
- (6) <u>M.W. NIELD et J.H. LECK</u>, The effet of temperature on the ionization coefficient in silicor Int.J. Electronics, vol. 18, n°5, p. 449 - 458 (1965)
- (7) <u>C.R. CROWELL et S.M. SZE</u>, Temperature dependence of avalanche multiplication in semiconductors
 Appl. Phys. Letter, vol. 9, n° 6, p. 242 à 244 (1966)
- (8) <u>W. SHOCKLEY</u>, Problems related to P-N junctions in silicon Solid state electronics, vol. 2, nº1, p.35 à 67, (1961)
- (9) <u>C.A. BARAFF</u>, Distribution functions and ionization rates for hot electrons in semiconductors
 Phys. Rev. Vol. 128, n° 6, p. 2507 à 2517, (1962)
- (10) <u>F. ALLAMANDO</u>, Etude théorique et expérimentale de la puissance hyperfréquence délivrée par un semiconducteur en avalanche. Influence de la temperature. Thèse 3ème cycle, Lille, Octobre 1968

(11) <u>R. HALL</u>, Temperature coefficient of the breakdown, voltage of silicon P-N Junctions

Int. J. Electronics, vol. 22, nº 6, p. 513 à 519, (1967)

(12) <u>G. VAESKEN</u>, Possibilité de génération de puissance très haute fréquence à rendement élevé.

D.E.A. Electronique, Lille, Juin 1968

- (13) <u>C.Y. DUH et J.L. MOLL</u>, Temperature dependence of hot electron drift velocity in silicon at high electric field Solid state electronics, vol. 11, nº 10, p. 917 à 932 (1968)
- (14) <u>R.H. HAITZ</u>, Noise of self_sustaining avalanche discharge in silicon : lowfrequency noise studies

J. of appl. Phys. vol. 38, n° 7, p. 2935 à 2946, (1967)

- (15) <u>B. KRAMER</u>, Sur le bruit d'avalanche dans les semiconducteurs Thèse 3ème cycle, Lille, Octobre 1968
- (16) J. PAUQUET, Sur la réalisation d'un dispositif électronique permettant la détermination des propriétés thermiques, électriques et structurales des diodes semiconductrices en régime d'avalanche. Mémoire C.N.A.M., Lille, Juin 1968
- (17) <u>E. CONSTANT et B. BOITTIAUX</u>, Etude théorique de la fréquence d'avalanche dans un semiconducteur
 C.R. Acad. Sc. Paris, t. 268, p. 9 -12, (1969)
- (18) J. BAYARD, Etude et réalisation d'un ensemble de mesure de la tempérautre (4° à 400°K) utilisant une diode à avalanche. Rapport de fin de stage I.U.T., Juin 1969

