

50.376 1970 134

THÈSE

présentée à la

FACULTÉ DES SCIENCES DE L'UNIVERSITÉ DE LILLE

pour obtenir le grade de

DOCTEUR DE SPÉCIALITÉ EN PHYSIQUE

Jean_Luc DESTOMBES

METHODES D'IDENTIFICATION DU SPECTRE DE ROTATION DES MOLECULES LOURDES FORTEMENT ASYMETRIQUES

APPLICATION AU CHLORURE DE THIONYLE

Soutenue le 16 Juillet 1970 devant la Commission d'Examen

M.WERTHEIMER Président M.BELLET Examinateur M.JOURNEL Examinateur M.GRANER Membre invité

Liste pour Thèses - 26.3.70

UNIVERSITE DE LILLE FACULTE DES SCIENCES

DOYENS HONORAIRES

MM. H.LEFEBVRE, M. PARREAU

PROFESSEURS HONORAIRES

MM. ARNOULT, BROCHARD, CAU, CHAPPELON, CHAUDRON, DEHEUVELS, DEHORNE, DOLLE, FLEURY, P. GERMAIN, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, MM. MAZET, MICHEL, NORMANT, PARISELLE, PAUTHENIER, ROIG, ROSEAU, ROUBINE, ROUELLE, WIEMAN, ZAMANSKY, CORDONNIER.

PROFESSEURS TITULAIRES

M. BACHHUS Pierre M. BEAUFILS Jean-Pierre M. BECART Maurice M. BLOCH Vincent M. BONNEMAN Pierre M. BONTE Antoine M. BOUGHON Pierre M. BOURIQUET Robert M. CORSIN Pierre M. DECUYPER Marcel M. DEDECKER Paul M. Le Doyen DEFRETIN René M. DEHORS M. DELATTRE Charles M. DURCHON Maurice M. FOURET René M. GABILLARD Robert M. GLACET Charles M. GONTIER Gérard M. HEUBEL Joseph M. LIEBART M. MONTREUIL Jean M. MORIAMEZ Michel M. MARTINOT LAGARDE M. PEREZ Jean-Pierre M. PHAM MAU QUAN M. POUZET Pierre Mme SCHWARTZ Marie-Hélène M. TILLIEU Jacques M. TRIDOT Gabriel M. VIDAL Fierre M. VIVIER Emile

Astronomie et Calcul Numérique Chimie Générale I.U.T. Lille Psychophysiologie Chimie Industrielle Géologie Appliquée Mathématiques Biologie Végétale Paléobotanique Mahtématiques Mathématiques Directeur du Laboratoire de Biologie Maritime de Wimereux Automatique Géologie Générale Biologie Animale Physique Electronique Chimie Organique Mécanique des Fluides Chimie Minérale I.U.T. Lille Chimie Biologique I.U.T. Valenciennes Mécanique des Fluides Physique Mathématiques I.U.T. Lille Mathématiques Physique Chimie Minérale Appliquée E.N.S.C.L. Automatique Biologie Animale .../ ...

M. WATERLOT Gerard M. WERTHEIMER Raymond Géologie et Minéralogie Physique

PROFESSEURS A TITRE PERSONNEL

M. BENADOU Jean

- M. LUCQUIN Michel
- M. LEBRUN André
- M. PARREAU Michel
- M. SAVARD Jean
- M. SCHALLER François
- M. SCHILTZ René

Chimie Générale Biologie Animale Physique

Mathématiques

Mathématiques

C.U.E.E.P.

Chimie Physique

PROFESSEURS SANS CHAIRE

M. BELLET Jean M. BODART Marcel M. BOUISSET Simon M. CELET Paul M. CONSTANT Eugène M. DEHAYE Michel M. DERCOURT Jean-Michel M. DEVRAINNE Pierre M. GUILLAUME Jean Mme LENOBLE Jacqueline M. LINDER Robert Mle MARQUET Simone M. MONTARIOL Frédéric M. PROUVOST Jean M. VAILLANT Jean Physique Biclogie Végétale Physiologie Animale Géologie Cénérale Electronique Chimie Physique et Minérale 1er Cycle Géologie et Minéralogie Chimie Minérale Biologie Végétale Physique Biologie Végétale Mathématiques Chimie Minérale Appliquée Géologie et Minéralogie Mathématiques

MAITRES DE CONFERENCE (et chargés des fonctions)

- M. ABBAR
 M. AUBIN Thierry
 M. BEGUIN Paul
 M. BILLARD Jean
 M. BKOUCHE Rudolphe
 M. BOILET Pierre
 M. BOILLY Bénoni
 M. BONNOT Ernest
 M. BRIDOUX Michel
 M. CAPURON Alfred
 M. CAPREZ Christian
 M. CORTOIS Jean
 M. CONLON Lean Baul
- M. COULON Jean-Paul

I.U.T. Amiens Mathématiques Pures Mécanique des Fluides Physique Mathématiques Physique Biologie Animale Biologie Végétale I.U.T. Béthune Biologie Animale Calcul Numérique I.U.T. Lille Physique Electrotechnique

.../...

Mme DRAN Raymonde M. GOUDMAND Pierre M. CRUSON Laurent M. GUIBAULT Pierre M. HERMAN Maurice M. HUARD de la MARRE Pierre M. JOLY Mle. KOSMAN Yvette M. LABLACHE COMBIER Alain M. LACOSTE Louis M. LANDAIS Jean M. LAURENT François M. LEHMANN Daniel Mme LEHMANN Josiane M. LEROY Jean-Marie M. LEROY Yves M. LOUAGE Francis M. LOUCHEUX Claude M. MAES Serge M. MAIZIERES Christian M. MESSELYN Jean M. MIGEON Michel M. MONSIGNY Michel M. MONTEL Marc M. MONTUELLE Bernard Mme MORIAMEZ BOULLET Claude M. NICOLE Jacques M. PANET Marius M. PAQUET Jacques M. PARSY Fernand M. PONSOLLE M. POVY Jean-Claude M. RACZY M. ROOS Philippe M. ROY Jean-Claude M. SAADA Georges M. SALMER Georges M. SMET Pierre M. SEGUIER Guy M. THOMAS Daniel M. WATERLOT Michel Mme ZINN Justin Nicole

Chimie Organique Chimie Physique Mathématiques Physiologie Animale Physique Calcul Numérique Biologie Animale Mathématiques Chimie Générale Biologie Végétale Chimie Organique Automatique Mathématiques Mathématiques E.N.S.C.L. I.U.T. Lille Sciences Appliquées Chimie Physique Physique Automatique Physique Sciences Appliquées Chimie Biologique Physique I.U.T. Lille I.U.T. Valenciennes E.N.S.C.L. Electrotechnique Sciences Appliquées Mécanique des Fluides C.S.U. Valenciennes Sciences Appliquées Radioélectrique I.U.T. Lille Psychophysiologie Physique Electronique Physique I.U.T. Béthune C.S.U. Valenciennes Géologie Générale Mathématiques

Ce tradil a été effectué au Laboratoire de Spectroscopie Hertzienne du Département de Physique de la Faculté des Sciences de LILLE, sous la direction de Monsieur le Professeur WERTHEIMER, à qui je tiens à exprimer ma plus profonde gratitude.

Les programmes de calculs ont été établis par Madame WERTHEIMER et je profite de l'occasion qui m'est donnée ici de lui adresser mes plus sincères remerciements pour son aide bienveillante.

Je remercie vivement Monsieur le Professeur BELLET qui a accepté de faire partie du Jury.

J'exprime toute ma reconnaissance à Monsieur JOURNEL pour l'intérêt constant qu'il a porté à ce travail.

Je témoigne aussi ma gratitude au Centre National de la Recherche Scientifique qui m'a permis de mener à bien cette étude et je remercie tout particulièrement Monsieur GRANER, Maître de Recherche, qui a parrainé mon travail et a bien voulu se joindre au Jury.

Que Monsieur le Professeur STEENBECKELIERS soit également remercié pour l'aide qu'il nous a apportée tout au long de ce travail.

Tous mes remerciements vont enfin à l'équipe du Laboratoire et en particulier à mes collègues et amis J. BURIE, A. DUBRULLE, et C. MARLIERE, dont la collaboration m'a été des plus précieuses.

Mes remerciements sont également acquis à l'ensemble du Personnel Technique du Département de Physique.

- 1 -

S O M M A I R E

INTRODUCTION

CHAPITRE I - THEORIE DE LA DISTORTION CENTRIFUGE DE J.K.G. WATSON

A - ASPECTS GENERAUX DE LA THEORIE

- 1- PRINCIPE DE LA METHODE
- 2- HAMILTONIEN STANDARD
- 3- TRANSFORMATION UNITAIRE
- 4- DETERMINABILITE DES COEFFICIENTS
- 5- HAMILTONIEN REDUIT

B - ETABLISSEMENT DU HAMILTONIEN REDUIT D'ORDRE 1

CHAPITRE II - PROGRAMME DE CALCUL.

1- FORME DU HAMILTONIEN

2- TRAITEMENT NUMERIQUE.

CHAPITRE III - EXTENSION DU SPECTRE Q.

A - ETUDE DU SPECTRE EN BASSE FREQUENCE

1- RAPPEL DES RESULTATS ACQUIS.

- 2- CALCUL DES CONSTANTES D'ORDRE O et 1
- 3- CALCUL DES FREQUENCES DES TRANSITIONS

B - EXTENSION DU SPECTRE VERS LES HAUTES FREQUENCES.

CHAPITRE IV - APPAREILLAGE.

- 1- SPECTROMETRE
- 2- DISPOSITIF DE STABILISATION
- 3- BALAYAGE LENT DE LA SOURCE HAUTE FREQUENCE
- 4- MARQUAGE EN FREQUENCE.

CHAPITRE V - METHODES D'IDENTIFICATION DES RAIES DE BRANCHE R.

- A CHOIX DE LA GAMME DE TRAVAIL
- B METHODE DES MULTIPLETS
 - 1- EXISTENCE DE NIVEAUX QUASI DEGENERES
 - 2- MISE EN EVIDENCE DE MULTIPLETS
 - 3- INTENSITE DES MULTIPLETS
 - 4- CALCUL DE PERTURBATION
 - 5- GENERALISATION
 - 6- CORRECTION DUE A LA DISTORTION CENTRIFUGE
 - 7- CONCLUSION
- C DETERMINATION DES PARAMETRES A+C ET Δ_{II}
 - 1- PRINCIPE DE LA METHODE
 - 2- CONDITIONS D'APPLICATION
- CHAPITRE VI RECHERCHE EXPERIMENTALE DES TRANSITIONS DE BRANCHE R.
 - 1- IDENTIFICATION DE TRANSITIONS DE TYPE R.
 - 2- CALCUL DE MOINDRES CARRES

CONCLUSION

L'étude du spectre de rotation de la molécule de chlorure de thionyle S) Cl_{35} Cl_{35} dans la gamme de fréquence 8000- 30 000 MHz a conduit G. JOURNEL à l'identification des transitions de branche Q ($\Delta J = 0$) et à la détermination des paramètres de rotation A - C et K.

L'identification complète du spectre de la molécule nécessite la connaissance des constantes de rotation A, B, C et de tous les coefficients de distortion centrifuge. Certains de ces paramètres ne peuvent être atteints que par l'identification de transitions de branche R ($\Delta J = 1$).

Une étude préalable montre que seul un petit nombre de raies de ce type est susceptible d'être observé entre 8000 et 30 000 MHz. Ces transitions correspondent à des valeurs de J peu élevées et leur intensité est très faible. Plusieurs essais d'identification dans cette zone de fréquences n'ont jamais conduit à des résultats cohérents.

En effet la présence d'un grand nombre de raies faibles dues certainement aux états excités de la molécule SO Cl₃₅ Cl₃₅ et à ses substitutions isotopiques, rend le problème pratiquement inextricable en basses fréquences.

La même étude montre que les transitions de branche R situées en haute fréquence sont de J plus élevés. Les méthodes classiques d'identification (effet Stark, structure quadripolaire) sont alors inapplicables. Par contre, le nombre de ces transitions augmente et leur intensité croît considérablement. Nous nous sommes donc orientés vers une étude en haute fréquence , dans la gamme 50 000 - 80 000 MHz.

Un rapide examen du spectre expérimental dans cette zone montre que la densité de ce spectre est sans commune mesure avec celle déjà élevée observée en basses fréquences. Afin de limiter les choix possibles, il est indispensable d'éliminer les raies de branche Q en calculant leur fréquence.

Il est nécessaire dans ce calcul de tenir compte de la distortion centrifuge. La récente théorie de WATSON se prête bien à une telle étude dans le cas d'une molécule non plane fortement asymétrique. Un programme de calcul de fréquences et de détermination des paramètres d'ordre 0 et 1 a été mis au point à partir de cette théorie. L'introduction dans ce calcul des transitions identifiées en basses fréquences a confirmé les attributions et a permis la détermination de ces paramètres.

Certains coefficients de distortion centrifuge d'ordre 2 ont été obtenus par G. STEENBECKELIERS à l'Université de Louvain. L'expérience confirme parfaitement les calculs effectués à l'aide de ces résultats. L'identification des raies de branche Q se fait alors sans ambiguité.

Nous proposons 154 nouvelles attributions dans la gamme 55 000 - 75 000 MHz.

Cependant, dans cette gamme, près de 80 % des transitions observables avec une intensité non négligeable restent non identifiés. La recherche des raies de branche R rend nécessaire la mise au point de méthodes nouvelles d'identification.

Nous en exposons deux qui utilisées conjointement ont permis l'identification des transitions de type R et la détermination des paramètres A+C et Δ_{τ} .

Ces méthodes semblent suffisamment générales pour pouvoir être utilisées dans l'étude de molécules lourdes fortement asymétriques. Dans un premier chapitre nous rappelons brièvement la théorie de la distortion centrifuge de J.K.G. WATSON, en nous attachant plus particulièrement à l'établissement du hamiltonien réduit d'ordre 1. Le chapitre II donne quelques indications sur la façon dont a été conçu le programme de calcul par ailleurs très classique. L'exploitation des résultats acquis en basses fréquences fait l'objet du troisième chapitre.

২

Après une rapide description de l'apparaillage utilisé dans notre étude en haute fréquence, nous développons dans le chapitre V deux méthodes d'identification. L'application au cas de la molécule de chlorure de thionyle et la détermination de tous les paramètres d'ordre 0 et 1 concluent notre étude.

CHAPITRE I

THEORIE DE LA DISTORTION CENTRIFUGE DE J.K.G. WATSON

Peu d'auteurs se sont attachés au problème pratique de la détermination des coefficients de distortion centrifuge d'une molécule du type toupie asymétrique à partir des transitions de rotation observées expérimentalement.

KIVELSON et WILSON {1} ont donné une expression approchée de l'énergie d'un niveau sous la forme d'un développement. Les travaux de DREIZLER, DENDL et RUDOLPH {2} {3} ont montré que dans le cas d'une molécule non plane, le traitement au premier ordre de KIVELSON et WILSON conduit à une indétermination des coefficients du développement.

L'analyse de cette indétermination a conduit J.K.G. WATSON à développer une théorie générale de la distortion centrifuge {4} ,{5}, {6}, {7}.

1. - PRINCIPE DE LA METHODE

Une transformation unitaire appliquée à un opérateur laisse inchangées les valeurs propres de celui-ci.

Le hamiltonien de rotation d'une toupie asymétrique se présente sous la forme générale d'une série de puissances des composantes J_x , J_y , J_z du moment cinétique total J. Si l'opérateur unitaire a une forme analogue, le hamiltonien résultant de la transformation se présente encore sous la forme d'une série de puissances de J_x , J_y , J_z .

Les coefficients du hamiltonien transformé dépendent alors des paramètres de la transformation unitaire. Tenant compte que ceuxci sont arbitraires, il est possible de les choisir de façon à éliminer le maximum de termes du hamiltonien et à simplifier ainsi le calcul des valeurs propres. L'expression obtenue après cette opération est appelée Hamiltonien réduit, noté H_{red}.

2. - HAMILTONIEN STANDARD

Le hamiltonien de départ H_o est choisi de façon très formelle:

$$H_{o} = \sum_{p,q,r=0}^{\infty} h_{pqr} \left(J_{x}^{p} J_{y}^{q} J_{z}^{r} + J_{z}^{r} J_{y}^{q} J_{x}^{p} \right)$$

Ce choix est justifié par le fait que toute expression de la mécanique quantique peut être ramenée à cette forme standard à l'aide des relations de commutation des composantes du moment cinétique. Des considérations d'hermiticité et d'invariance par rapport au renversement du temps montrent que les coefficients h_{pqr} sont réels et ne sont non nuls que si p + q + r = n est pair.

Les termes du hamiltonien peuvent être classés par rapport aux opérations de symétrie du groupe ponctuel D_2 . Leur symétrie et leur nombre sont donnés dans le tableau I

	1	•			
	р	· q	r	Nombre de termes	
A	e	e	е	$\frac{1}{2}(m + 1)(m + 2)$	
B _x	е	0	0		
B y	ο	е	0	$\left \frac{1}{2} m (m-1) \right $	
B z	o	O	e		TABLEAU I
Total				(2m + 1)(m+ 1)	

D'une manière générale la série de puissance qui constitue H_o converge rapidement, c'est-à-dire que les coefficients h_{pqr} sont bien séparés du point de vue ordre de grandeur, au moins tant qu'il n'est pas nécessaire de faire intervenir des termes d'ordre élevé.

J.K.G. WATSON propose la forme qualitative:

$$h_{pqr} % k^{2m} T_e = k^{2(p+q+r)} T_e$$
(2)

avec : k = variation relative des distances interatomiques T_e = énergie électronique

3. - TRANSFORMATION UNITAIRE

Soit U un opérateur unitaire quelconque, le hamiltonien transformé s'écrit:

$$\hat{H} = U^{-1} H_{o} U$$

La nécessité d'obtenir un hamiltonien transformé qui possède les mêmes propriétés d'hermiticité et d'invariance par rapport au renversement du temps que H_o, impose la forme suivante pour l'opérateur unitaire:

 $U = e^{iS} = e^{iS_1} e^{iS_3} e^{iS_5} \dots$ (3) avec $S = \sum_{2m-1}^{\infty} s_{\alpha\beta\gamma} (J_x^{\alpha} J_y^{\beta} J_z^{\gamma} + J_z^{\gamma} J_y^{\beta} J_x^{\alpha})$ $\alpha + \beta + \gamma = 2m - 1$ Le tableau II donne le nombre et la symétrie des paramètres $\cdot^{s}{}_{\alpha\beta\gamma}$.

•	α	β	γ		
A	0	o	0	$\frac{1}{2} m(m-1)$	
B _x	0	е	е		
By	е	0 -	е	$\left \frac{1}{2} m (m-1) \right $ TABLEA	UII
B z	е	e	0		
Total				m (2m + 1)	

avec les mêmes notations que pour les coefficients h $_{\rm pqr},$ les paramètres s $_{\alpha\beta\gamma}$ ont pour ordre de grandeur :

$$s_{\alpha\beta\gamma} \sim k^{2} (\alpha+\beta+\gamma)-2$$
 (4)

L'opérateur U étant unitaire, nous avons :

 $U^{\dagger} = U^{-1} = \dots e^{iS_5} e^{-iS_3} e^{-iS_1}$

Il est donc possible d'effectuer successivement chaque transformation correspondant aux différentes valeurs de 2 m - 1:

$$H_2 = e^{-iS_1} H_0 e^{+iS_1}$$

 $H_1 = e^{-iS_3} H_2 e^{+iS_3}$ (5)

$$H_{2m} = e^{-iS_{2m}-1} H_{2m-2} e^{+iS_{2m}-1}$$

 ${\rm H}_{\rm 2m}$ pourra toujours être mis sous la forme standard:

$$H_{2m} = \sum_{p+q+r \text{ pair}}^{\infty} h^{(2m)} \left(J_x^p J_y^q J_z^r + J_z^r J_y^q J_x^p \right)$$
(6)

4. - DETERMINABILITE DES COEFFICIENTS

En mettant en évidence les différents ordres, il est possible d'écrire symboliquement le hamiltonien:

$$H_{2m} = \sum_{n} h_{n}^{(2m)}$$
 avec $n = p+q+r$

ou encore;

$$H_{2n} = T_{e} \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda & y \end{array} \right) \left(\begin{array}{c} \lambda & y \\ k & y \end{array} \right) \left(\begin{array}{c} \lambda &$$

La transformation unitaire qui transforme H_{2m} en H_{2m+2} revient à remplacer J_{α} par $e^{-iS_{2m}+1}$ $J_{\alpha} = e^{+iS_{2m}+1}$ soit symboliquement:

$$+ J + k^{2m} \int 2m + 1 + k^{8m} \int 4m + 1 + \dots$$

H_{2m+2} s'écrit alors:

$$H_{2n+2} = H_{2n} + O\left(\Psi_e \mathbf{k}^{\mu_m + \mu}\right)$$

où 0 $(T_e k^{4m+4})$ signifie " d'ordre pas plus grand que ". Les coefficients $h_{pqr}^{(2m)}$ qui résultent des transformations e^{-iS_1} $e^{-iS_{2m}-1}$ sont déterminables s'ils subissent une variation petite devant leur valeur à la suite de la transformation $e^{iS_{2m}+1}$,

soit:
$$h \frac{(2m)}{pqr} = h \frac{(2m+2)}{pqr}$$

Des relations (2) et (7) on tire :

4m + 4 > 2(p+q+r)

En résumé, les transformations unitaires successives $e^{-iS_1}, \ldots e^{-iS_{2m}} - 1$ ne mettent en évidence que les coefficients déterminables $h_{pqr}^{(2m)}$ tels que :

p + q + r < 2m (8)

5. - HAMILTONIEN REDUIT

Le hamiltonien transformé ${\rm H}_{\rm 2m}$ s'écrit sous la forme standard:

 $H_{2m} = \sum_{p+q+r \text{ pair}}^{\infty} h_{pqr}^{(2m)} (J_x^p J_y^q J_z^r + J_z^r J_y^q J_x^p)$

Les coefficients $h_{pqr}^{(2m)}$ sont des fonctions des coefficients h_{pqr} du hamiltonien de départ H_o et aussi des paramètres s_{$\alpha\beta\gamma$} de l'opérateur S_{2m} -1

D'après les tableaux I et II, le nombre de termes de type B_x dans le hamiltonien est le même que le nombre de termes de type B_x de l'opérateur unitaire. Ces termes peuvent donc être éliminés du hamiltonien par un choix convenable des paramètres de S_{2m -1}.

Il est de même pour les termes de type B_y et B_z . D'une manière générale, il est donc possible d'éliminer les termes non totalement symétriques par rapport aux opérations de symétrie du groupe D_2 et ceci quelle que soit la symétrie propre de la molécule.

Les coefficients et combinaisons de coefficients déterminables sont totalement symétriques c'est-à-dire de type A. Leur nombre est 2m + 1. L'élimination des m (m -1) autres termes se fera de façon à annuler dans la matrice du hamiltonien écrite dans la base de la toupie symétrique, les éléments tels que $\Delta K = \pm 4, \pm 6...$

En résumé, le hamiltonien réduit possède les trois propriétés:

- Il est totalement symétrique par rapport aux opérations de symétrie du groupe D₂.
- Il ne contient que 2m + 1 termes de degré total 2m.
- Ses éléments de matrice dans la base de la toupie symétrique sont du type $\Delta K = 0, \pm 2$

Avant de passer à l'établissement pratique du hamiltonien réduit d'ordre 1, nous donnons une relation utile dans la suite:

$$i \left(H_{R}, J_{x}^{P} J_{y}^{q} J_{z}^{r} + J_{z}^{r} J_{y}^{q} J_{x}^{p} \right) =$$

$$2p (Z - Y) \left(J_{x}^{P-1} J_{y}^{q+1} J_{z}^{r+1} + J_{z}^{r+1} J_{y}^{q+1} J_{x}^{p-1} \right) \qquad (9)$$

$$+2q (X - Z) \left(J_{x}^{P+1} J_{y}^{q-1} J_{z}^{r+1} + J_{z}^{r+1} J_{y}^{q-1} J_{x}^{P+1} \right)$$

$$+2r (Y - X) \left(J_{x}^{P+1} J_{y}^{q+1} J_{z}^{r-1} + J_{z}^{r-1} J_{y}^{q+1} J_{x}^{P+1} \right)$$

$$+ \text{ termes de plus bas degré en } J_{x}, J_{y}, J_{z}.$$

Des relations (3) et (6) il est possible de déduire

$$h_{pqr}^{(2m)} = h_{pqr}^{(2m-2)} + 2(p+1)(Z-Y) s_{p+1}, q-1, r-1 + 2(q+1)(X-Z) s_{p-1}, q+1, r-1 (10) + 2(r+1)(Y-X) s_{p-1}, q-1, r+1$$

B. ETABLISSEMENT DU HAMILTONIEN REDUIT D'ORDRE 1

En application de la théorie générale, nous donnons quelques détails sur l'établissement du hamiltonien réduit d'ordre 1, en mettant en évidence les procédés d'élimination des coefficients non déterminables.

Le hamiltonien H_o est de la forme:

 $H_{o} = 2h_{200} J_{x}^{2} + 2h_{020} J_{y}^{2} + 2h_{002} J_{z}^{2} \qquad (\text{ termes A})$ + $h_{011} (J_{y}J_{z}+J_{z}J_{y}) + \cdots + (\text{ termes B}_{x})$

+(termes
$$B_y$$
) + (termes B_z)
+ $2h_{400} J_x^{4} + 2h_{040} J_y^{4} + 2h_{004} J_z^{4}$
+ $h_{220} (J_x^2 J_y^2 + J_y^2 J_x^2) + h_{022} (J_y^2 J_z^2 + J_z^2 J_y^2) + h_{202} (J_x^2 J_z^2 + J_z^2 J_x^2)$
(termes A)

+
$$h_{013}(J_y J_z^3 + J_z^3 J_y) + h_{031}(J_y^3 J_z + J_z J_y^3) + h_{211}(J_x^2 J_y J_z + J_z J_y J_x^2)$$

(termes B_x)

+ (termes B_y) + (termes B_z)

L'établissement du hamiltonien réduit correspondant va faire intervenir les transformations unitaires :

a) - Transformation
$$e^{-iS_1}$$
: $H_2 = e^{-iS_1} H_0 e^{+iS_1}$
S₁ s'écrit S₁= 2s₁₀₀ J_x + 2s₀₁₀ J_y + 2s₀₀₁ J_z

Cette transformation concerne la déterminabilité des seuls termes quadratiques.

 S_1 peut aussi s'écrire $S_1 = \omega \stackrel{\rightarrow}{e} \stackrel{\rightarrow}{J}$. Dans ces conditions l'opérateur unitaire e^{iS1} correspond à une rotation des axes d'un angle ω autour de la direction e. Par un choix convenable de cette rotation, il est possible d'éliminer les termes non totalement symétriques. Cette opération revient à diagonaliser le tenseur d'inertie de la molécule.

Le hamiltonien réduit correspondant est donc le hamiltonien du rotateur rigide.

$$\begin{split} & H_{R}^{-} X J_{x}^{2} + Y J_{y}^{2} + Z J_{z}^{2} \\ \text{avec} \quad 2h_{200}^{(2)} = X, \ 2h_{020}^{(2)} = Y, \ 2h_{002}^{(2)} = Z \\ & h_{110}^{(2)} = h_{011}^{(2)} = h_{011}^{(2)} = 0 \\ & b) - \underline{\text{Transformation}}_{1} e^{\underline{iS}_{3}} : H_{4}^{-} e^{-\underline{iS}_{3}} H_{2}^{-} e^{\underline{iS}_{3}} \\ & \text{Aprds la transformation précédente, le hamiltonien} \\ \text{s'écrit, en tenant compte des termes d'ordre supérieur:} \\ H_{2}^{-} X J_{x}^{2} + Y J_{y}^{2} + Z J_{x}^{2} \\ & + h_{000}^{(2)} J_{x}^{-4} + h_{040}^{(2)} J_{y}^{-4} + h_{004}^{(2)} J_{z}^{-4} \\ & + h_{220}^{(2)} (J_{x}^{-2} J_{y}^{-2} + J_{y}^{-2} J_{x}^{-2}) + \dots \\ & + h_{213}^{(2)} (J_{y}^{-2} J_{z}^{-2} + J_{y}^{-2} J_{x}^{-2}) + \dots \\ & + h_{013}^{(2)} (J_{y}^{-2} J_{z}^{-4} + J_{y}^{-2} J_{x}^{-2}) + \dots \\ & + h_{013}^{(2)} (J_{y}^{-2} J_{z}^{-4} + J_{z}^{-2} J_{y}) + \dots \\ & + (\text{ termes } B_{y}) + (\text{ termes } B_{z}) \\ \\ S_{3}^{-} \text{ est de la forme:} \\ \\ S_{3}^{-} \text{ e$$

+ (termes B_v) + (termes B_z)

- 12 -

D'après les tableaux I et II, il n'y a que 5 coefficients ou combinaisons de coefficients déterminables. Leur ordre est $k^8 T_{a}$

. Nous nous limitons donc dans les calculs a cet ordre. Nous avons

 $H_{14} \simeq H_{2} + i \{H_{2}, S_{3}\}$

Les paramètres s_{$\alpha\beta\gamma$} intervenant dans S₃ sont d'ordre k⁴. Par conséquent, les seuls termes en k⁸ T_e dans{H₂, S₃} ne peuvent provenir que de {H_R, S₃}

d'où
$$H_{\mu} \simeq H_2 + i \{H_R, S_3\}$$

Compte tenu des relations (10), les coefficients du hamiltonien ${\rm H}_{\rm h}$ s'écrivent:

type A:
$$h_{400}^{(4)} = h_{400}^{(2)}$$

 $h_{040}^{(4)} = h_{040}^{(2)}$
 $h_{040}^{(4)} = h_{040}^{(2)}$
(11)

 $h_{220}^{(4)} = h_{220}^{(2)} + 2 (Y - X) s_{111}$ $h_{202}^{(4)} = h_{202}^{(2)} + 2 (X - Z) s_{111}$ $h_{002}^{(4)} = h_{002}^{(2)} + 2 (Z - Y) s_{111}$ (11')

type B_x :

. • • .

$$h_{013}^{(4)} = h_{013}^{(2)} + 2 (Z - Y) s_{102}$$
(12)

$$h_{031}^{(4)} = h_{031}^{(2)} + 2 (Z - Y) s_{120}$$
(12)

$$h_{031}^{(4)} = h_{031}^{(2)} + 4 (X - Z) s_{120} + 4 (Y - X) s_{102} + 6 (Z - Y) s_{300}$$

D'après la relation (8) les coefficients $h_{031}^{(2)}$, $h_{013}^{(2)}$... sont indéterminables. Un choix convenable des paramètres de la transformation permet d'éliminer les termes correspondant dans le hamiltonien transformé.

En effet, en posant $h_{013}^{(4)} = h_{103}^{(4)} = \dots = 0$, le système (12) peut être résolu par rapport aux inconnues $s_{102}^{, s}$, $s_{120}^{, \dots}$

Après élimination des termes non totalement symétriques, le hamiltonien transformé se simplifie:

$$\begin{split} H_{l_{4}} &= X J_{x}^{2} + Y J_{y}^{2} + Z J_{z}^{2} \\ &+ 2h_{400}^{(4)} J_{x}^{4} + 2h_{040}^{(4)} J_{y}^{4} + 2h_{004}^{(4)} J_{z}^{4} \\ &+ h_{220}^{(4)} (J_{x}^{2}J_{y}^{2} + J_{y}^{2}J_{x}^{2}) + h_{202}^{(4)} (J_{x}^{2}J_{z}^{2} + J_{z}^{2}J_{x}^{2}) + h_{022}^{(4)} (J_{y}^{2}J_{z}^{2} + J_{z}^{2}J_{z}^{2}) \\ H_{l_{4}} dépend de 6 coefficients h_{400}^{(4)}, h_{040}^{(4)} \dots \\ Les relations (11) et (11') fournissent deux combinaisons déterminables: \end{split}$$

 $h_{220}^{(4)} + h_{202}^{(4)} + h_{022}^{(4)} = h_{220}^{(2)} + h_{202}^{(2)} + h_{022}^{(2)} = \tau_1$ X $h_{022}^{(4)} + Y h_{202}^{(4)} + Z h_{220}^{(4)} = X h_{022}^{(2)} + Y h_{202}^{(2)} + Z h_{220}^{(2)} = \tau_2$

qui, jointes aux 3 relations (11) donnent 5 coefficients indépendants.

Le paramètre s_{111} qui à ce stade du calcul reste arbitraire, va permettre d'exprimer $H_{i_{4}}$ en fonction de 5 coefficients indépendants.

Le hamiltonien H_{\downarrow} ne contient que des termes de type A, totalement symétriques, qui ne sont donc fonction que de J_x^2 , J_y^2 , J_z^2 . En utilisant les deux relations:

$$J_{x}^{2} = \frac{1}{2} \left(J^{2} - J_{z}^{2} + (J_{x}^{2} - J_{y}^{2}) \right)$$
$$J_{y}^{2} = \frac{1}{2} \left(J^{2} - J_{z}^{2} - (J_{x}^{2} - J_{y}^{2}) \right)$$

Il est possible d'écrire H_h sous la forme :

$$\begin{split} H_{l_{4}} &= \frac{1}{2} (X+Y)J^{2} + (Z - \frac{X+Y}{2}) J_{z}^{2} + \frac{1}{2} (X-Y) (J_{x}^{2} - J_{y}^{2}) \\ &+ (J^{2})^{2} \left[\frac{h_{l_{4}00}^{(l_{4})} + h_{0l_{4}0}^{(l_{4})} + h_{00l_{4}}^{(l_{4})}}{2} \right] \\ &+ J_{z}^{l_{4}} \left[\frac{h_{l_{4}00}^{(l_{4})} + h_{0l_{4}0}^{(l_{4})}}{2} + 2h_{00l_{4}}^{(l_{4})} + \frac{h_{220}^{(l_{4})}}{2} - h_{202}^{(l_{4})} - h_{022}^{(l_{4})} \right] \\ &+ J_{z}^{2}J^{2} \left[-h_{l_{4}00}^{(l_{4})} - h_{0l_{4}0}^{(l_{4})} - h_{220}^{(l_{4})} + h_{202}^{(l_{4})} + h_{022}^{(l_{4})} \right] \\ &+ (J_{x}^{2} - J_{y}^{2}) \left[J^{2} - \frac{h_{l_{4}00}^{(l_{4})} - h_{0l_{4}0}^{(l_{4})}}{2} + J_{z}^{2} \left(\frac{h_{0l_{4}0}^{(l_{4})} - h_{l_{4}00}^{(l_{4})}}{2} + \frac{h_{202}^{(l_{4})} - h_{022}^{(l_{4})}}{2} \right) \right] \\ &+ \left[J^{2} - \frac{h_{l_{4}00}^{(l_{4})} - h_{0l_{4}0}^{(l_{4})}}{2} - \frac{h_{22}^{(l_{4})}}{2} - \frac{h_{202}^{(l_{4})} - h_{022}^{(l_{4})}}{2} \right] \right] (J_{x}^{2} - J_{y}^{2}) \\ &+ \left[J_{x}^{2} - J_{y}^{2} \right]^{2} \left[-\frac{h_{l_{4}00}^{(l_{4})} + h_{0l_{4}0}^{(l_{4})}}{2} - \frac{h_{220}^{(l_{4})}}{2} - \frac{h_{220}^{(l_{4})}}{2} \right] \right] \end{split}$$

Seul le dernier terme présente des éléments de matrice autres que ceux du type $\Delta K = 0, \pm 2$.

L'élimination de ce terme s'obtient en posant

$$h_{400}^{(4)} + h_{040}^{(4)} - h_{220}^{(4)} = 0$$

qui fournit, grâce aux relations (11') une valeur particulière de s_{111;}

$$s_{111} = \frac{1}{2(Y - X)} \left[h_{1/20}^{(2)} + h_{040}^{(2)} - h_{220}^{(2)} \right]$$

$$d'où h_{202}^{(4)} = h_{202}^{(2)} + \frac{X - Z}{Y - X} \left[h_{400}^{(2)} + h_{040}^{(2)} - h_{220}^{(2)} \right]$$
(13)

$$h_{022}^{(4)} = h_{022}^{(2)} + \frac{Z - Y}{Y - X} \left[h_{400}^{(2)} + h_{040}^{(2)} - h_{220}^{(2)} \right]$$

Le hamiltonien réduit s'écrit:

$$H_{red} = \frac{1}{2} (X+Y) J^{2} + (Z - \frac{X+Y}{2}) J_{z}^{2} - \Delta_{J} (J^{2})^{2}$$

$$- \Delta_{JK} J^{2} J_{z}^{2} - \Delta_{K} J_{z}^{4}$$

$$+ (J_{x}^{2} - J_{y}^{2}) (\frac{X-Y}{4} - \delta_{J} J^{2} - \delta_{K} J_{z}^{2})$$

$$+ (\frac{X - Y}{4} - \delta_{J} J^{2} - \delta_{K} J_{z}^{2}) (J_{x}^{2} - J_{y}^{2})$$
(14)

Les valeurs des 5 coefficients de distortion centrifuge se déduisent des relations (11), (12), (13)

$$\Delta_{J} = -2 \left(h_{400}^{(2)} + h_{040}^{(2)} \right)$$

$$\Delta_{JK} = 3 \left(h_{400}^{(2)} + h_{040}^{(2)} \right) - \left(h_{220}^{(2)} + h_{202}^{(2)} + h_{022}^{(2)} \right)$$

$$\Delta_{K} = -2 \left(h_{400}^{(2)} + h_{040}^{(2)} + h_{004}^{(2)} \right) + \left(h_{220}^{(2)} + h_{202}^{(2)} + h_{022}^{(2)} \right)$$
(15)
$$\delta_{J} = - \frac{h_{400}^{(2)} - h_{040}^{(2)}}{2}$$

$$\delta_{K} = 2h_{040}^{(2)} \frac{X-Z}{X-Y} + 2h_{040}^{(2)} \frac{Y-Z}{X-Y} + \left(- h_{202}^{(2)} + h_{022}^{(2)} + h_{220}^{(2)} \frac{2Z-X-Y}{X-Y} \right)$$

- 16 -

Dans ce chapitre, nous avons voulu donner les lignes générales de la méthode de WATSC, en détaillant quelque peu les différents procédés d'élimination de certains termes.

L'établissement du hamiltonien réduit à un ordre quelconque ne pose pas de difficultés de principe. Nous donnons comme exemple le hamiltonien réduit d'ordre 2:

- 17 -

C I P I T R E II.

PROGRAMME DE CALCUL

1. - FORME DU HAMILTONIEN

Les calculs s'éffectuent directement à partir de la matrice du hamiltonien réduit d'ordre 1, pris sous la forme indiquée par G. STEENBECKELIERS {8} :

$$H_{red} = \frac{A+C}{2} J^{2} + \frac{A-C}{2} \left[\frac{\kappa-1}{2} J^{2} - \frac{\kappa-3}{2} J_{z}^{2} \right]$$
$$-\Delta_{J} (J^{2}) - \Delta_{JK} J^{2} J_{z}^{2} - \Delta_{K} J_{z}^{4}$$

$$+ \frac{A-C}{2} \frac{(x+1)}{2} (J_{x}^{2} - J_{y}^{2}) - 2\delta_{J} J^{2} (J_{x}^{2} - J_{y}^{2})$$

- $\delta_{K} \left((J_{x}^{2} - J_{y}^{2}) J_{z}^{2} + J_{z}^{2} (J_{x}^{2} - J_{y}^{2}) \right)$

 H_{red} s'obtient en écrivant le hamiltonien général (14) à l'aide de la représentation I^r de KING, HAINER et CROSS {9}.

Pour chacun des blocs diagonaux définis par une valeur de J, la matrice de H_{red} peut s'écrire s ξ + H, où ξ est la matrice unité d'ordre 2J+1, et H une matrice dont les éléments non nuls correspondent à $\Delta K = 0$, ±2.

En posant : $R_1 = \frac{A+C}{2}$ $R_2 = \frac{A-C}{2}$ $R_3 = \kappa$ $R_4 = \Delta_J$, $R_5 = \Delta_{JK}$, $R_6 = \Delta_K$, $R_7 = 2\delta_J$, $R_8 = \delta_K$

$$\begin{cases} s_{0} = R_{1} J (J+1) \\ s_{1} = s_{0} - R_{4} J^{2} (J+1)^{2} \\ H_{K,K}^{(0)} = R_{2} \begin{cases} K^{2} + \frac{R_{3} - 1}{2} \{J(J+1) - K^{2}\} \\ H_{K,K}^{(1)} = H_{K,K}^{(0)} - K^{2} \{R_{5} J(J+1) + R_{6} K^{2}\} \end{cases}$$

$$\begin{cases} H_{K,K+2}^{(0)} = g(J,K+1) R_2 \frac{R_3 + 1}{2} \\ H_{K,K+2}^{(1)} = H_{K,K+2}^{(0)} - g(J,K+1) \left\{ R_7 J(J+1) + R_8 \left[K^2 + (K+2)^2 \right] \right\} \\ \text{avec } g(J,K) = -\frac{1}{2} \sqrt{\left(J(J+1) - K(K-1) \right) \left(J(J+1) - (K+1)K \right)} \end{cases}$$

La matrice H a la même forme que celle du rotateur rigide. Il est donc possible de lui appliquer les transformations classiques indiquées par KING, HAINER et CROSS {9}

Le calcul des valeurs propres de H est alors ramené au calcul des valeurs propres de matrices de la forme:

2. - TF TEMENT NUMERIQUE

Les valeurs propres ont été calculées par la méthode de RUTISHAUSER à convergence accélérée.

Une procédure de moindres carrés nous a permis de déterminer les paramètres de WATSON d'ordre 0 et 1. Le calcul permettant la détermination des paramètres d'ordre 2 est en cours de programmation.

La linéarisation de ce problème nous a été suggérée par G. STEENBECKELIERS {8}.

Nous nous sommes heurtés à des difficultés dans le calcul des polynomes caractéristiques correspondant à des J élevés. Nous avons dû opérer non que la matrice Λ -mais sur la matrice M définie par:

$$M = r R \Lambda R^{-1}$$

avec $R = \begin{bmatrix} r \\ r^2 O \\ O \\ r^n \end{bmatrix}$

Nous avons choisi $r = \frac{1}{J(J+1)}$

Les programmes ont été conçus et réalisés au Laboratoire de calcul numérique de la Faculté des Sciences de Lille par Madame R. WERTHEIMER. EXTENSION DU SPECTRE Q

A-ETUDE DU SPECTRE EN BASSES FREQUENCES

1. - RAPPEL DES RESULTATS ACQUIS

Les données de diffraction électronique permettent de prévoir que la molécule possède un plan de symétrie dans lequel est situé le moment dipolaire μ . Les transitions observées sont du type μ^{b} cu μ^{C} .

Dans la gamme 8000-30 000 MHz, l'étude des transitions de branche Q ($\Delta J=0$) et l'identification d'un grand nombre de transitions de cette branche a confirmé la structure précédente et a permis d'améliorer la connaissance des deux paramètres de rotation A-C et κ accessibles à partir du spectre Q {10} {11}

> Les valeurs obtenues sont : $\begin{cases}
> A-C = 3125, 2MHz \\
> \kappa = -0, 44869
> \end{cases}$

Il faut notèr que la méthode d'identification utilisée, qui fait intervenir l'allure générale du spectre expérimental dans la gamme 8000-30 000 MHz, conduit à l'identification de J très élevés. Aucune transition de J inférieur à 6 n'est connue et trois seulement sont de J inférieur à 10. Ces identifications de J faible ne sont en rien privilégiées par rapport à celles de J élevés. Au contraire, les raies correspondantes sont d'intensité très faible et les risques d'erreur dans les attributions sont accrus. Ainsi la seule raie de J égal à 6 a été mal identifiée.

Les paramètres A-C et κ déduits de l'étude de telles transitions ne peuvent donc pas représenter les constantes de rotation du rotateur rigide. Il est nécessaire de tenir compte dans leur détermination de la distortion centrifuge. Celle-ci étant relativement importante (elle dépasse 4000 MHz pour des J de l'ordre de 75), il est possible d'espérer une bonne détermination des paramètres d'ordre 0 et 1.

2.- CALCUL DES CONSTANTES D'ORDRE O ET 1

Les premiers calculs ont été effectués par G. STEENBECKE-LIERS, alors que notre programme n'était pas encore au point $\{12\}$. Tout en confirmant très largement les attributions et les valeurs des paramètres A-C et κ donnés par G. JOURNEL, ces calculs ont montré que certaines transitions de faible intensité avaient été mal identifiées.

Nous avons repris la mesure des fréquences de ces raies et les résultats présentés dans la suite tiennent compte de ces corrections.

Le calcul des constantes d'ordre 0 et ¹ a été effectué à l'aide du programme de calcul exposé précédemment. Les résultats sont regroupés dans le tableau III.

En utilisant une méthode sensiblement différente de la notre, G. STEENCECKELIERS a pu pousser les calculs jusqu'à l'ordre 2 {12}. Malgré une indétermination très marquée due à une faible contribution du second ordre (inférieure à 10MHz pour des valeurs de J de l'ordre de 75), il a pu donner un jeu de paramètres du second ordre. Leurs valeurs sont données dans le tableau III.

Nous avons calculé les fréquences des transitions observées dans la gamme 8000 - 30 000 MHz à l'aide des paramètres d'ordre, 0, 1 et2.

- 23	-
------	---

	 46 transitions	88 transitions
MHz	^b QetQ ^C J < 25	^b Q et Q ^C J < 70 (G. STEENBECKELIERS)
A+C	-	-
A-C	3:26,424	3126,428
к	- 0,448436 (115)	- 0,448435(045)
∆ _J	-	
ДК	- 0,00211(7(4:3)	- 0,002173(668)
Δ _K	0,006751(C35)	0,006858(583)
$^{\delta}\mathrm{J}$	0,000401(398)	0,000398(218)
δ _K	0,001121(808)	0,001175(898)
	 	anning an anning anning anning anning anning anning an
HJ	-	
^Н ЈК		- 0,0000001292
^н кј		- 0,0000002038
н _к	•	0,0000010649
nj		0,0000000056
ⁿ JК		0,0000000000
^п к		- 0,0000010977
Ecart	 	
moyen	45 kHz	60 kHz
		BUS

TABLEAU III.

Le tableau IV reprend les identifications de G. JOURNEL, compte tenu des mesures que nous avons été amenées à refaire à la suite des premiers calculs. Le jeu de paramètres utilisé permet une interprétation complète du spectre expérimental de la molécule $SOCl_{35}$ Cl_{35} dans la gamme étudiée.

	S(DC1 35 C1 CQ		
J _{K-1} K1	→ ^J K'-1 ^K 1	f c MHz	f _m MHz	f _m - f _c MHz
29 9.20	²⁹ 10.20	7 264,03	7 264,17	+ 0,14
3210.22	³² 11.22	7 426,40	7 426,33	- 0,07
3511.24	³⁵ 12.24	7 540,98	7 540,94	- 0,04
3812.26	³⁸ 13.26	7 615,32	7 615,31	- 0,01
41 13.28	4114,28	7 656,12	7 656,16	+ 0,04
⁴⁴ 14.30	⁴⁴ 15.30	7 669,30	7 669,31	+ 0,01
47 15.32	4716.32	7 660,12	7 660,21	+ 0,09
⁵⁰ 16.34	⁵⁰ 17.34	7 633,23	7 633,26	+ 0,03
⁵³ 17.36	⁵³ 18.36	7 592,73	7 592,62	- 0,11
56 _{18.38}	⁵⁶ 19.38	7 542,24	7 542,23	- 0,01
¹⁰ 3. 7	¹⁰ 4. 7	7 165,08	7 165,35	+ 0,27
¹³ 4. 9	¹³ 5.9	8 248,91	8 248,91	< 0,01
¹⁶ 5.11	166.11	9 149,14	9 149,16	+ 0,02
¹⁹ 6.13	¹⁹ 7.13	9 893,29	9 893,32	+ 0,03
²² 7.15	²² 8.15	10 502,85	10 502,84	- 0,01
²⁵ 8.17	²⁵ 9.17	10 995,61	10 995,59	- 0,02
28 9.19	28 _{10.19}	11 386,84	11 386,83	- 0,01
.31	³¹ 11.21	11 689,93	11 689,89	- 0,03
³⁴ 11.23	³⁴ 12.23	11 916,85	11 916,82	- 0,03
³⁷ 12.25	³⁷ 13.25	12 078,34	12 078,33	- 0,01
4013.27	4014.27	12 184,07	12 184,06	- 0,01 (BUS)

TABLEAU IV

-26**-**

$\begin{bmatrix} J_{K_{-1}} & K_{1} \rightarrow J_{K'_{-1}} & K_{1} \end{bmatrix}$	f _c	fm	f _m -f
	MHz	MHz	MHz
⁴³ 14.29 ⁴³ 15.29	12 242,79	12 242,78	-0,03
⁴⁶ 15.31 ⁴⁶ 16.31	12 262,41	12 262,41	<0,01
⁴⁹ 16.33 ⁴⁹ 17.33	12 250,04	12 250,06	+0,02
⁵² 17.35 ⁵² 18.35	12 212,11	12 212,12	+0,01
⁵⁵ 18.37 ⁵⁵ 19.37	12 154,36	12 154,35	-0,01
58 _{19.39} 58 _{20.39}	12 081,95	12 081,99	+0,04
61 _{20.41} 61 _{21.41}	11 999,49	11 999,53	+0,04
61 _{21.43} 64 _{22.43}	11 911,08	11 911,12	+0,04
67 _{22.45} 67 _{23.45}	11 820,40	11 820,48	+0,08
7023.47 7024.47	11 730,71	11 730,80	+0,09
73 _{24.49} 73 _{25.49}	11 644,95	11 645,07	+0,12
7625.51 7626.51	11 565,74	11 565,69	- 0,05
⁶ 2. ⁴ ⁶ 3. ⁴	7.970,22	7 970,17	-0,05
⁹ 3.6 ⁹ 4.6	9 895,89	9 895,90	+0,01
¹² 4. 8 ¹² 5. 8	11 519,92	11 519,96	+0,004
¹⁵ 5.10 ¹⁵ 6.10	12 897,13	12 897,16	+0,03
¹⁸ 6.12 ¹⁸ 7.12	14 064,16	14 064,19	+0,03
21 7.14 21 8.14	15 048,34	15 048,35	+0,01
²⁴ 8.16 ²⁴ 9.16	15 871,68	15 871,69	+0,01
²⁷ 9.18 ²⁷ 10.18	16 552,79	16 552.60	-0,19
³⁰ 10.20 ³⁰ 11.20	17 107,99	17 108,02	+0,03

(uur)

- 27 -

JK_1 K	JK. K	f _c	ſ, m	ť – ť m c
		MH z.	MHz	MHz
3311.22	3312.22	17 551,94	17 551,95	+0,01
³⁶ 12.24	36 13.24	17 897,98	17 897,83	-0,15
39 ₁₃₋₂₆	3914.26	18 158,36	18 158 , 38	+0,02
4214.28	42	18 344,41	18 344,38	-0,03
45 15 30	45 16.30	18 466,59	18 466,67	+0,08
48 16.32	48 17.32	18 534,59	18 534,59	<0,01
عر ، <u>ن</u> ،				
8 2 5	8), 5	12 580 58	12 580 52	- 0.06
)) <i>)</i>	4.	14 845 10		-0.11
4.7	5.7	14 045,10	16 906 11	-0.10
14 5.9	14 6. 9	16 806,53	10 000,41	-0,12
17 6.11	37 7.11	18 509,98	18 509,99	+0,01
20 7.13	²⁰ 8.13	19 987,60	19 987,60	<0,01
23 8.15	23 _{9,15}	21 264,33	21 264,32	-0,01
26 9.17	26 _{10.17}	22 360,78	22 360,78	<0,01
²⁹ 10.19	²⁹ 11.19	23 294,82	23 294,93	+0,11
³² 11.21	³² 12.21	24 082,42	24 082,50	+0,08
35 12.23	³⁵ 13.23	24 738,22	24 738,25	+0,03
3813.25	3814.25	25 275 , 84	25 275,87	+0,03
4114.27	41 15.27	25 708,07	25 708,22	+0,15
44 15.29	4416.29	26 046,99	26 046,90	-0,09
47 16.31	47 17.31	26 304,06	26 304,01	-0,05
5017.33	⁵⁰ 18.33	26 490,09	26 490,23	+0,14

(Te)

- 28 -

J _{K-1} K ₁	→ J _{K'1 ^K1}	fc	f° m	f f m c
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	MHz	MHz	
53 _{18.35}	⁵³ 19.35	26 615,36	26 615,38	+0,02
5619.37	56 _{20.37}	26 689,56	26 689,55	-0,01
5920.39	⁵⁹ 21.39	26 721,82	26 721,80	-0,02
6221.41	61 22.41	26 720,71	26 720,70	-0,01
6522.43	6523.43	26 694,29	26 694,36	+0,07
6823.45	68 _{24.45}	26 650,06	26 650,02	-0,04
7124.47	7125.47	26 595,05	26 595,11	+0,06
7425.49	74 _{26.49}	26 535,80	26 536,00	+0,20
No.				
10 4.6	10 5 6	17 872,78	17 872,83	+0,05
¹³ 5.8	¹³ 6. 8	20 475,83	20 475,90	+0,07
¹⁶ 6.10	16 7.10	22 786,36	22 786,42	+0,06
¹⁹ 7.12	19 8.12	24 839,79	24 839,87	+0,08
22 8.14	22 9.14	26 662,67	26 662,66	-0,01
²⁵ 9.16	²⁵ 10.16	28 276,32	28 276,27	-0,05
28 _{10.18}	28	29 698,81	29 698,86	+0,05
³¹ 11.20	31 _{12.20}	30 946,14	30 946,15	+0,01
34 _{12.22}	³⁴ 13.22	32 032,90	32 033,05	+0,15
37 _{13.24}	37 _{14.24}	32 972,74	32 972,64	-0,10
4014.26	40 _{15.26}	33 778,62	33 778,61	-0,01
4315.28	⁴³ 16.28	34 462,94	34 462,91	-0,03
4616.30	4617.30	35 037,68	35 037,69	+0,01
4917.32	49 ₁₈ .32	35 514,46	35 514,47	+0,01

•

1.89

- 29 -

$J_{K_{-1}K_{1}} \rightarrow J_{K'_{-1}K_{1}}$	f _c MHz	f m MHz	f - f m c MHz
52 _{18.34} 52 _{19.34}	35 904,50	35 904,45	-0,05
55 _{19.36} 55 _{20.36}	36 218,69	36 218,92	+0,23
58 _{20.38} 58 _{21.38}	36 467,56	36 467,50	-0,06
12 5. 7 12 6. 7	23 555,59	23 555,64	+0,15
15 6. 9 15 7. 9	26 490,44	26 490,36	-0,08
18 7.11 18 8.11	29 152,16	29 152,13	-0,03
21 8.13 21 9.13	31 567,59	31 567,56	-0,03
²⁴ 9.15 ²⁴ 10.15	33 757,61	33 757,58	-0,03
2710.17 2711.17	35 739,45	35 739,36	-0,05
14 6.8 14 7.8	29 349,82	29 349,83	+0,01
17 7.10 17 8.10	32 594,60	32 594,59	-0,01
20 8.12 20 9.12	35 592,63	35 592,77	+0,14

(1003) (1115)
- 30 -

SOC1₃₅ C1₃₅ bQ

$J_{K_1K_1} \xrightarrow{\rightarrow} J_{K'_1K'_1}$	f _c MHz	f m MHz	f - f m c MHz
¹⁹ 7.12 ¹⁹ 8.11	27 898,19	27 898,14	-0,05
20 7.13 20 8.12	25 764,28	25 764,28	<0,01
21 7.14 21 8.13	24 902,98	24 903,05	+0,07
²² 7.15 ²² 8.14	25 761,20	25 761,19	-0,01
²³ 7.16 ²³ 8.15	28 453,73	28 453,80	+0,07
²⁴ 7.17 ²⁴ 8.16	32 726,36	32 726,26	-0,10
21 8 13 21 9 12	33 550 , 75	33 550,69	-0,08
22 8.14 22 9.13	30 610,23	,30 610,17	-0,06
23 8.15 23 9.14	28 431,62	28 431,57	-0,05
²⁴ 8.16 ²⁴ 9.15	27 707,10	27 707,15	+0,05
²⁵ 8,17 ²⁵ 9,16	28 850,87	28 850,81	-0,06
26 8.18 26 9.17	31 915,77	31 915,81	+0,04
27 8,19 27 9.18	36 564,09	36 564,12	-0,03
²⁴ 9.15 ²⁴ 10.14	36 339,48	36 339,48	<0,01
²⁵ 9.16 ²⁵ 10.15	33 221,96	33 222 02	+0,06
26 _{9.17} 26 _{10.16}	31 047,60	31 047,69	+0,09
27 _{9.18} 27 _{10.17}	30 504,27	30 504,31	+0,04
²⁸ 9.19 ²⁸ 10.18	31 965,50	31 965,44	-0,06
²⁹ 9.20 ²⁹ 10.19	35 416,03	35 416,09	+0,06 (BUS)

- 31 -

$J_{K_{-1}K_{1}} \xrightarrow{\rightarrow} J_{K'-1}K'_{1}$	f c MHz	f m MHz	f _m - f _c MHz
$\begin{array}{r} 29_{10.19} 29_{11.18} \\ 30_{10.20} 30_{11.19} \\ 31_{10.21} 31_{11.20} \end{array}$	33 629,02	33 629,02	<0,01
	33 307,06	33 307,93	0,13
	35 112,68	35 112,70	+0,02
$\begin{array}{rrrr} 32_{11.21} & 32_{12.20} \\ 33_{11.22} & 33_{12.21} \end{array}$	36 190,05	36 190,08	+0,03
	36 125,63	· 36 125,64	-0,01

٠

B - EXTENSION DU SPECTRE VERS LES HAUTES FREQUENCES

L'étude théorique du problème de la recherche de transitions de type R montre qu'il y a intérêt à étendre la gamme étudiée vers les hautes fréquences.

L'intensité des transitions de ce type y est en effet plus grande qu'en basse fréquence. Afin de limiter autant que possible le nombre de raies attribuables aux transitions de branche R, il est nécessaire d'éliminer celles qui sont de type Q et qui possèdent des intensités comparables aux raies recherchées.

Le tableau V regroupe 154 nouvelles transitions identifiées grâce au calcul de leur fréquence à partir du jeu de paramètres d'ordre 0,1 et 2.

	BRANCHE ^C Q	TABLEAU V	
$J_{K_1K_1} \rightarrow J_{K'_1K'_1}$	e e	f m	f _m - f _c
	MHz	MHz	MHz
			an a bhair a' fha ann an a
$28_{12.16} \rightarrow 28_{13.16}$	59 183,05	59 182,9Ò	-0,15
²⁹ 12.17 → ²⁹ 13.17	57 226,03	57 225,96	-0,07
$31_{13.18} \rightarrow 31_{14.18}$	62 917,86	62 917,67	-0,19
$32_{13,19} \rightarrow 32_{14,19}$	60 663,33	60 663,50	+0,17
33 ₁₃₋₂₀ + 33 ₁₄₋₂₀	57 506 , 53	57 506,60	+0,07
$32_{14,18} \rightarrow 32_{15,18}$	69 829,54	69 829,48	-0,06
33_{12} 10 * 33_{15} 19	68 408,16	68 408,27	+0,11
34 ₁₄₋₂₀ * 34 ₁₅₋₂₀	66 532,88	66 532,70	-0,18
$35_{14,21} + 35_{15,21}$	63 956,36	63 965,48	+0,12
36 _{14,22} + 36 _{15,22}	60 397,75	60 397,80	+0,05
37 _{14.23} - 37 _{15.23}	55 540 , 68	55 540 , 50	-0,18
³⁵ 15.20 → ³⁵ 16.20	73 758,99	73 758,85	-0,14
36 _{15.21} → 36 _{16.21}	72 153,26	72 153,35	+0,09
37 _{15.22} * 37 _{16.22}	70 033,03	70 032,87	-0,16
³⁸ 15.23 ^{- 38} 16.23	67 137,00	67 137,19	-0,19
3915.24 3916.24	63 142,75	63 142,68	-0,07
40 _{15.25} + 40 _{16.25}	57 772,35	57 772,46	+0,11
$40_{16.24} \rightarrow 40_{17.24}$	73 422,59	73 422,32	-0,27
41 _{16.25} + 41 _{17.25}	70 182,72	70 182,52	-0,20
$42_{16.26} \rightarrow 42_{17.26}$	65 747,10	67 747,27	+0,17

۴.,

(6

- 34 -

$ \begin{bmatrix} J_{K-1} & \downarrow & J_{K'-1} \end{bmatrix} $	f _c MHz	f m MHz	f - f c MHz
⁴³ 16.27 ^{+ 43} 17.27	59 855,14	59 855,22	+0,08
⁴⁵ 17.28 ^{→ 45} 18.28 ⁴⁶ 17.29 ^{→ 46} 18.29	68 216,38 61 796,72	68 216,60 61 796,56	+0,22 -0,16
$^{48}_{18.30} \xrightarrow{\rightarrow 48}_{19.30}$ $^{49}_{18.31} \xrightarrow{\rightarrow 49}_{19.31}$ $^{50}_{18.32} \xrightarrow{\rightarrow 50}_{19.32}$	70 556,32 6 3 605,03 55 160,71	70 556,40 63 605,13 55 160,56	+0,08 +0,10 -0,15
⁵² 19.33 ^{→ 52} 20.33 ⁵³ 19.34 ^{→ 53} 20.34	65 288,25 56 312,20	65 288,18 56 312,40	-0,07 +0,20
⁵⁵ 20.35 ⁷ 55 _{21.35}	66 854,88	66 854,69	-0,19
⁵⁸ 21.37 ^{→ 58} 22.37	68 313,75	68 314,01	+0,26
$61_{22.39} \xrightarrow{7} 61_{23.39}$ $64_{23.41} \xrightarrow{9} 64_{24.41}$	69 674,02 70 945,13	69 674,13 70 945,02	+0,11
65 _{23.42} 7 65 _{24.42}	59 958,29	59 958,16	-0,13
$67_{24.43} \xrightarrow{7} 64_{25.43}$ $68_{24.44} \xrightarrow{7} 68_{25.44}$	72 136,80 60 681,76	60 681,90	-0,20
			(BUS) integ

BRANCHES $^{b}Q: K_{-1} + K_{1} = J$

	f_	f_	f f
	C MHz	m MHz	MH7
	``````````````````````````````````````		
26 _{6.20} → 26 _{7.19}	53 337,13	53 337,30	+0,17
27 6.21 → 27 7.20	57 339,91	57 340,07	+0,16
28 6.22 → 28 7.21	61 137,45	61 137,68	+0,23
²⁹ 6.23 ^{→ 29} 7.22	64 804,16	64 804,31	+0,15
30 6.24 ^{-&gt; 30} 7.23	68 387,12	68 387,30	+0,18
28 _{7.21} → 28 _{8.20}	53 663,99	53 664,13	+0,14
²⁹ 7.22 ^{+ 29} 8.21	58 063,33	58 063,48	+0,15
30 _{7.23} → 30 _{8.22}	62 139,16	62 139,39	+0,23
31 _{7.24} ⁺ 31 _{8.23}	65 998,73	65 999,02	+0,28
		, ,	
³¹ 8.23 → ³¹ 9.22	58 265 <b>,</b> 76	58 265,85	+0,09
32 _{8.24} → 32 _{9.23}	62 745,04	62 745,16	+0,12
33 _{8.25} → 33 _{9.24}	66 888,54	66 888,64	+0,10
³⁴ 8.26 ³⁴ 9.25	70 806,71	70 806,56	-0,15
³³ 9.24 · ^{→ 33} 10.23	57 809 <b>,</b> 95	57 809,82	-0,13
³⁴ 9.25 → ³⁴ 10.24	62 834,92	62 834,95	+0,03
$35_{9.26} \rightarrow 35_{10.25}$	67 386,84	67 386,90	+0,06
$3^{\prime}_{11.26} \xrightarrow{3^{\prime}} 3^{\prime}_{12.25}$	54 648,48	54 648,60	+0,12
³⁸ 11.27 → ³⁸ 12.26	60 934,65	60 934,76	+0,11
$39_{11.28} \rightarrow 39_{12.27}$	66 707,67	66 707,80	+0,13 (1445)

- 36 -

^J K _{−1} K ₁ → ^J K'−1 ^{K'} 1	f _c MHz	f m MHz	f - f m c MHz
⁴² 13.29 → ⁴² 14.28	56 210,48	56 210,40	-0,08
$43_{13.30} \rightarrow 43_{14.29}$	63 035,07	63 034,90	-0,17
$44_{13.31} \rightarrow 44_{14.30}$	69 587,19	69 587,30	+0,11
⁴⁵ 14.31 ^{→ 45} 15.30	60 214,32	60 214,50	+0,18
⁴⁶ 14.32 → ⁴⁶ 15.31	67 232,62	67 232,75	+0,13
⁴⁷ 14.33 ^{+ 47} 15.32	73 895,96	73 895,72	-0,24
³⁹ 15.24 ^{→ 39} 16.23	64 374,76	64 374,55	-0,21
⁴⁰ 15.25 → ⁴⁰ 16.24	60 199,64	60 199,50	-0,14
⁴¹ 15.26 → ⁴¹ 16.25	55 511,07	55 510 <b>,</b> 86	-0,21
48 15.33 + 48 16.32	64 234,30	64 234,37	+0,07
$41_{16,25} \rightarrow 41_{17,24}$	70 927,95	70 928,08	+0,13
$42_{16.26} \rightarrow 42_{17.25}$	67 251,97	67 252,13	+0,16
⁴³ 16.27 → ⁴³ 17.26	62 760 <b>,</b> 65	62 760 <b>,</b> 50	-0,15
⁴⁹ 16.33 ^{→ 49} 17.32	54 866,02	54 866,04	+0,02
⁵⁰ 16.34 ^{→ 50} 17.33	61 035,92	61 036,14	+0,22
⁵¹ 16.35 ^{→ 51} 17.34	68 265,98	68 266,21	+0,23
⁴⁶ 17.29 ^{→ 46} 18.28	65 233,31	65 233,50	+0,19
⁴⁷ 17.30 ^{→ 47} 18.29	60 093,03	60 093,25	+0,22
⁴⁸ 17.31 ^{→ 48} 18.30	55 475,43	55 475,00	+0,57 double
⁵³ 17.36 → ⁵³ 18.35	64 827,84	64 827,95	+0,11
⁵⁴ 17.37 ^{→ 54} 18.36	72 304,85	72 304,60	-0,25
			$\begin{pmatrix} \theta \\ \psi \\ \psi \\ \psi \\ \mu \\ \mu \end{pmatrix}$

• •

$ \begin{array}{c} J_{K_{-1}K_{1}} \xrightarrow{\rightarrow} J_{K'-1}K'_{1} \\ \hline \end{array} $	f _c MHz	f _m MHz	fm - f MHz c
$49_{18,31} \xrightarrow{+ 49} 19.30$	67 626,72	67 626,91	+0,19
$50_{18.32} \rightarrow 50_{19.31}$	62 298,93	62 298,68	-0,25
$51_{18.33} \rightarrow 51_{19.32}$	57 662,02	57 662,19	+0,17
⁵² 18,34 ^{→ 52} 19.33	54 751,96	54 751,80	-0,16
$53_{18.35} \xrightarrow{53} 53_{19.34}$	54 351,94	54 351,81	-0,13
$5^{4}$ 18.36 $\rightarrow 5^{4}$ 19.35	56 771,86	56 771,97	+0,11
⁵⁵ 18.37 ^{→ 55} 19.36	61 778,68	61 778,83	+0,15
56 _{18.38} → 56 _{19.37}	68 640,41	68 640,86	+0,45 double
52 ₁₀ 22 → 52 ₂₀ 22	69 949 <b>,</b> 83	69 950,06	+0,23
$53_{10} 3_{1} \rightarrow 53_{20} 33$	64 460,95	64 460,73	-0,22
$54_{19,35} \rightarrow 54_{20,34}$	59 835,87	59 835,73	-0,14
⁵⁵ 19.36 ^{→ 55} 20.35	57 117,67	57 117,48	-0,19
56 _{19.37} → ⁵⁶ 20.36	57 050,49	57 050,40	0,09
⁵⁷ 19.38 ^{→ 57} 20.37	59 877,15	59 877,24	+0,09
⁵⁸ 19.39 → ⁵⁸ 20.38	65 284 <b>,</b> 48	65 284,63	+0,15
⁵⁵ 20.35 ^{→ 55} 21.34	72 211,39	72 211,64	+0,25
⁵⁶ 20.36 ^{→ 56} 21.35	66 587,98	66 588,24	+0,26
⁵⁷ 20.37 ^{→ 57} 21.36	62 004,25	62 004,50	+0,25
⁵⁸ 20.38 ^{→ 58} 21.37	59 502,59	59 502 <b>,</b> 76	+0,17
⁵⁹ 20.39 ^{→ 59} 21.38	59 782,87	59 782 <b>,</b> 63	-0,24
⁶⁰ 20.40 → ⁶⁰ 21.39	63 018,94	63 019,05	+0,11
61 _{20,41} → 61 _{21.40}	68 817,30	68 817 <b>,</b> 55	+0,25

- 38 -

$J_{K-1}K_1 \xrightarrow{J}K'-1 \xrightarrow{K'} 1$	f	f	f - f
	c	m	m - c
	MHz	MHz	MHz
$59_{21.38} \stackrel{7}{\rightarrow} 59_{22.37}$ $60_{21.39} \stackrel{7}{\rightarrow} 60_{22.38}$ $61_{21.40} \stackrel{7}{\rightarrow} 61_{22.39}$ $62_{21.41} \stackrel{7}{\rightarrow} 62_{22.40}$	68 688,29	68 688,50	+0,21
	64 173,49	64 173,79	+0,30
	61 910,01	61 910,16	+0,15
	62 549,28	62 549,47	+0,19
			(BUS)

# BRANCHE ^bQ : $K_{-1} + K_1 = J + 1$

$J_{K-1}K_1 \rightarrow J_{K'-1}K'_1$	f _{c MHz}	f MHz	fm - f MHzc
³⁰ 9.22 - ³⁰ 10.21	57 011,36	57 011,22	-0,14
31 9.23 + 31 _{10.22}	60 373,82	60 373,67	-0,15
$32_{9.24} \rightarrow 32_{10.23}$	63 891,96	63 892,08	+0,12
$33_{9.25} \rightarrow 33_{10.24}$	67 488,17	67 488,00	-0,17
³⁴ 9.26 → ³⁴ 10.25	71 110,36	71 109,98	-0,38 double
$31_{10.22} \rightarrow 31_{11.21}$	55 556 <b>,</b> 70	55 556 <b>,</b> 78	+0,08
³² 10.23 [→] ³² 11.22	58 372,28	58 372,07	-0,21
³³ 10.24 [→] ³³ 11.23	61 553,19	61 553,02	-0,17
³⁴ 10.25 → ³⁴ 11.24	64 983,00	64 893,26	+0,26
³⁵ 10.26 → ³⁵ 11.25	68 561,61	68 561,78	+0,17
$36_{10.27} \rightarrow 36_{11.26}$	72 211,70	72 211,84	+0,14
³² 11.22 → ³² 12.21	55 613,35	55 613,67	+0,32
³³ 11.23 → ³³ 12.22	57 471,70	57 471,86	+0,16
$3^{4}$ 11.24 $\rightarrow$ $3^{4}$ 12.23	59 896,64	59 896,50	-0,14
$35_{11.25} \rightarrow 35_{12.24}$	62 795,52	62 795,36	-0,16
³⁶ 11.26 → ³⁶ 12.25	66 052,01	66 051,90	-0,11
³⁷ 11.27 → ³⁷ 12.26	69 549,18	69 549,66	+0,48 double
³⁸ 11.28 → ³⁸ 12.27	73 186,80	73 186,98	+0,18
34 12.23 $\rightarrow ^{34}$ 13.22	58 413,88	58 413,98	+0,10
$35_{12.24} \rightarrow 35_{13.23}$	59 737,93	59 738,10	+0,17
$36_{12.25} \rightarrow 36_{13.24}$	61 684,69	61 684,84	+0,15
		· ·	(uuu)

$J_{K_{-1}K_{1}} \rightarrow J_{K'_{-1}K'_{1}}$	f _{c MHz}	f MHz	fm - f MHz ^c
		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
37 _{12.26} → 37 _{13.25}	64 198,45	64 198,72	+0,27
3812.27 * 3813.26	67 180,71	67 180,53	-0,18
³⁹ 12.28 * ³⁹ 13.27	70 512,19	70 512,40	+0,21
⁴⁰ 12.29 → ⁴⁰ 13.28	74 075,47	74 075,38	-0,09
$31_{13.19} \rightarrow 31_{14.18}$	64 209,69	64 209,50	-0,19
32 _{13.20} → 32 _{14.19}	63 258,12	63 257,85	-0,27
37 13.25 * 37 14.24	62 418,92	62 418,84	-0,08
³⁸ 13.26 * ³⁸ 14.25	63 826,20	63 826,00	-0,20
³⁹ 13.27 → ³⁹ 14.26	65 863 <b>,</b> 23	65 862,97	-0,26
4013.28 - 4014.27	68 466,37	68,466,61	+0,24
41 13.29 + 41 14.28	71 531,58	71 531,75	+0,17
$37_{14.24} \rightarrow 37_{15,23}$	65 587,59	65 587,31	-0,28
38 _{14.25} → 38 _{15.24}	65 312,40	65 312,31	-0,09
39 _{14.26} 39 _{15.25}	65 547,29	65 547,06	0,23
40 _{14.27} * 40 _{15.26}	66 389,24	66 389,16	-0,08
⁴¹ 14.28 [→] ⁴¹ 15.27	67 882,64	67 882,80	+0,16
42 _{14.29} + 42 _{15.28}	70 011,20	70 011,44	+0,24
43,4.30 * 43,15.29	72 703,66	72 703,53	-0,13
37 _{15.23} → 37 _{16.22}	72 033,31	72 033,58	+0,27
³⁸ 15.24 → ³⁸ 16.23	70 960,66	70 960,86	+0,20
³⁹ 15.25 → ³⁹ 16.24	70 030,33	70.030,46	+0,13
4015.26 + 4016.25	69 371,05	69 371,26	+0,21

- 41 -

^J K ₋₁ K ₁ → ^J K' ₋₁ K' ₁	f _c MHz	f _m MHz	fm_fc MHz
			- - -
⁴¹ 15.27 → ⁴¹ 16,26	69 122,37	69 122,56	+0,19
$42_{15.28} \rightarrow 42_{16.27}$	69 411,54	69 411,72	+0,18
⁴³ 15.29 → ⁴³ 16.28	70 329,09	70 329,25	+0,16
44 _{15.30} + 44 _{16.29}	71 910,78	71 911,02	+0,24
⁴¹ 16.26 + ⁴¹ 17.25	74 726,13	74 726,00	-0,13
⁴² 16.27 ^{+ 42} 17.26	73 769,57	73 769,38	-0,19
43 _{16.28} + 43 _{17.27}	73 113,17	73 113,02	-0,15
⁴⁴ 16.29 ^{+ 44} 17.28	72 897,20	72 897,11	-0,09
⁴⁵ 16.30 * ⁴⁵ 17.29	73 245,52	73 245,74	+0,22
46 _{16.31} + 46 _{17.30}	74 241,89	74 241,64	-0,25
			- - -
			I (UUS)

# *C H A P I T R E IV*

# APPAREILLAGE

L'étude expérimentale des transitions de type Q et R a nécessité l'extension de la gamme de notre spectromètre à modulation Stark jusqu'à 80 000 MHz.

L'instabilité des sources hyperfréquences augmentant considérablement l'incertitude sur la mesure des fréquences, nous avons été amené à réaliser un spectromètre susceptible d'être stabilisé en tout point de la gamme.

# 1.- SPECTROMETRE: fig.1

Le spectromètre utilisé est du type " spectromètre à modulation Stark" de HUGUES et WILSON. Cet appareillage ayant fait l'objet de nombreuses descriptions {13}, {14}, nous en rappelons simplement le schéma synoptique.

# 2.- DISPOSITIE DE STABILISATION.

Nous avons dû utiliser une stabilisation à deux étages

# a) <u>Stabilisation d'un klystron</u> <u>SIVERS LAB (8,2 - 12,4 GHz)</u>; fig. 2

Un signal de fréquence f issu d'un synthétiseur Rhode et Schwarz XUC synchronisé à partir de l'étalon 5 MHz du laboratoire, est mélangé après multiplication au signal f'issu du klystron SIVERS LAB.

Le signal f' - nf recueilli à la sortie du cristal mélangeur est amplifié, mis en forme; sa phase est alors comparée à celle d'un signal de référence issu du XUC, à l'aide d'un " synchronizer type XKG".





Fig: 2 STABILISATION DE PHASE

Tout écart de phase se traduit par une tension de correction qui est appliquée au réflecteur du klystron.

La fréquence du générateur SIVER LAB est donnée par la relation:

 $f' = nf \pm 30 MHz$ 

# b) Stabilisation de la source hyperfréquence:

La stabilisation du klystron est obtenue par un dispositif analogue au précédent.Le générateur SIVERS LAB est utilisé comme étalon de fréquence. La phase du signal F - n'f' est comparée à celle d'un signal de référence issu du XUC à l'aide d'un synchriminateur Schomandl F.D.S.30

La fréquence F du klystron stabilisé est alors F = n'f'  $\pm$  30 MHz.

# 3.- BALAYAGE LENT DE LA SOURCE HAUTE FREQUENCE

Afin d'obtenir une amplitude de balayage suffisante, nous avons choisi de faire varier la fréquence f de l'étalon XUC. L'amplitude de balayage est donnée par la relation

# $\Delta F = nn' \Delta f$

L'excursion en fréquence  $\Delta f$  est obtenue par l'intermédiaire d'un oscillateur d'interpolation ( O.F.V.) commandé par un signal électrique issu d'un générateur T.B.F. Philips.

4.- MARQUAGE EN FREQUENCE {15}

L'oscillateur d'interpolation O.F.V. est compté en permanence à l'aide d'un fréquencemètre ROCHAR A 1439. Le marquage se traduit par la levée de plume de l'enregistreur au changement de chiffre de l'une des décades du compteur. La lecture de la fréquence à chaque levée de plume permet de connaître la fréquence v correspondant à chacun des marqueurs. Les rangs d'harmonique n et n' étant connus, on en déduit la fréquence F de la source.

#### METHODES D'IDENTIFICATION DES RAIES DE BRANCHE R.

La densité très importante du spectre expérimental ne laisse aucun espoir d'identification des raies de branches R par simple élimination des transitions Q, identifiées grâce au calcul de leur fréquence {cf Chap.III }. En effet, sur 200 raies intenses observées dans la gamme 63-68 GHz, 35 seulement sont attribuables aux transitions de type Q^b ou Q^c.

Ce problème de densité du spectre est propre aux toupies fortement asymétriques qui possèdent des constantes de rotation A, B, C faibles. Il est important pour l'étude de molécules de ce type de mettre au point des méthodes d'identification qui fassent intervenir des particularités facilement observables du spectre expérimental.

Après avoir donné quelques indications sur le choix de la gamme de travail, nous exposerons deux méthodes qui, utilisées conjointement ont permis l'identification du spectre R de la molécule SOCl₃₅ Cl₃₅ dans l'état fondamental de vibration.(*)

### A - CHOIX DE LA GAMME DE TRAVAIL

L'identification des transitions de type  ${}^{b}Q$  et  ${}^{c}Q$  a pu être menée a bien grâce à l'étude en basse fréquence en utilisant des particularités du spectre mises en évidence théoriquement {10}, {11}, {16}.

(*) Les calculs qui illustrent ce chapitre ont été effectués avec les paramètres correspondant à la molécule SOCl₃₅ Cl₃₅. Une étude de l'intensité théorique des transitions R observables dans cette gamme montre que les plus intenses d'entre elles dépassent à peine le seuil de sensibilité de l'appareillage: fig.3. Nous avons tracé la courbe S = f(J) pour les transitions de branches Q et R comprises entre 8000 et 30 000 MHz; S désigne une quantité tabulée intervenant dans l'expression de l'intensité d'une transition ( cf V 4). Le seuil de sensibilité reporté sur cette figure a été déterminé expérimentalement par l'étude de transitions de type Q d'intensité très faible.

La même étude montre par contre que l'intensité des transitions de type R croît considérablement avec la valeur de J, c'est-à-dire avec la fréquence.

Nous avons donc été amené à étudier le spectre expérimental entre 55 000 et 75 000 MHz, où l'intensité des raies de branche R est du même ordre de grandeur que celle des autres transitions observables.

Nous verrons dans le paragraphe qui suit que d'autres arguments conduisent également à une étude en haute fréquence .

## B - METHODE DES MULTIPLETS

# 1.- EXISTENCE DE NIVEAUX QUASI-DEGENERES

Dans ce paragraphe, nous n'étudierons que les transitions appartenant aux groupes suivants:

: -

(I) 
$$\begin{cases} J_{J,0} \neq (J+1) \\ J_{J,1} \neq (J+1) \\ (J+1).1 \end{cases}$$

correspondant à la composante  ${}^{C}\mu$  du moment dipolaire

- 46 -



(II)  $\begin{cases} J_{J,0} \rightarrow (J+1)(J+1).1 \\ J_{J,1} \rightarrow (J+1)(J+1).0 \end{cases}$ (III)  $\begin{cases} J_{0,J} \rightarrow (J+1)(J+1) \\ J_{1,J} \rightarrow (J+1)(J+1) \\ J_{1,J} \rightarrow (J+1)(J+1) \end{cases}$ 

correspondant à la composante u

correspondant à la composante b

Dans le cas d'une molécule quelconque possédant les trois composantes du moment dipolaire, il faut ajouter le groupe suivant:

(IV) 
$$\begin{cases} J_{0,J} \rightarrow (J+1)_{(0(J+1))} & \text{correspondent à la composante} \\ J_{1,J} \rightarrow (J+1)_{(1(J+1))} & \mu^{a} \end{cases}$$

Les transitions de ce type sont en effet les plus intenses des transitions de branche R et donc les plus susceptibles d'être utilisées dans l'identification de celles-ci.

Dans le cas de la toupie symétrique allongée, les niveaux  $J_{J,0}$  et  $J_{J,1}$  qui interviennent dans les groupes (I) et (II) sont dégénérés, ils correspondent en effet à la même valeur de K = K₋₁; de même les niveaux définis par la même valeur de K = K₋₁ ( groupes III et IV) sont dégénérés dans le cas de la toupie symétrique applatie.

Pour une molécule faiblement asymétrique( $\kappa$  voisin de -1 et de +1), cette dégénérescence n'est pratiquement pas levée. Le tableau VI donne les valeurs de E( $\kappa$ ) pour différentes valeurs de  $\kappa$  comprises entre -1 et +1 et pour les niveaux définis par J = 10 et J= 15.

# TABLEAU VI

ĸ	1010.0	¹⁰ 10.1	¹⁵ 15.0	¹⁵ 15.1
-1	90,000000	90,000000	210,00000	210,00000
-0,8	91,027797	91,027797	211,54091	211,54091
-0,5	92,689470	92,689470	214,02886	214,02886
-0,2	94,536357	94,536357	216,78935	216,78935
0	95,905729	95,905725	218,83287	218,83287
+0,2	97,426540	97,426482	221,09903	221,09903
+0,5	100,142561	100,140369	225,13537	225,13535
+0,8	104,001413	103,901244	230,77579	230,76856
+1	110,000000	108,000000	240,00000	238,00000

Elle l'est d'autant moins que la valeur de J caractérisant

le niveau est plus élevée: fig.⁴. Nous n'avons porté sur cette figure que les valeurs E ( $\kappa$ ) des niveaux du type  $J_{J.0}$  et  $J_{J.1}$ ; les niveaux  $J_{0.J}$  et  $J_{1.J}$  s'en déduisent par la relation classique :

$$E_{J_{K_{-1}K_{1}}} (\kappa) = - E_{J_{K_{1}K_{-1}}} (-\kappa)$$

WANG {17} et KIVELSON {18} ont donné l'expression de l'écart entre deux niveaux caractérisés par la même valeur de  $K_{-1}$  ou de  $K_1$ 

$$\Delta w = \frac{A-C}{2} b^{K} \frac{(J+K)!}{8^{K-1} (J-K)! \{(K-1)!\}^{2}}$$
(V-1)



Dans cette expression:

- * b =  $\frac{\kappa + 1}{\kappa 3}$  pour les niveaux qui sont dégénérés pour  $\kappa = -1$ K est alors égal à K₋₁.
- *  $b = \frac{\kappa 1}{\kappa 3}$  pour les niveaux qui sont dégénérés pour  $\kappa = + 1$ K est alors égal à  $K_1$ .

Pour les niveaux considérés dans ce paragraphe, K = J :

$$(V -2) \qquad \Delta w = \frac{A-C}{2} \qquad b^{J} \frac{(2J)!}{8^{J-1} \{ (J-1)! \}^{2}}$$

Comme nous l'avons déjà remarqué Aw tend rapidement vers O quand J augmente : fig.5 et 6. Voir également les tableaux VIII et IX.

### 2.- MISE EN EVIDENCE DE MULTIPLETS

Les transitions des groupes (I) et (II) d'une part, (III) et (IV) d'autre part, font intervenir les mêmes niveaux. La quasi dégénérescence de ceux-ci permet de prévoir que les transitions correspondantes se présentent sous l'aspect de doublets ou de quadruplets.

Considérons à titre d'exemple, les niveaux  $J_{J.0}$ ,  $J_{J.1}$  et  $(J+1)_{(J+1).0}$ ,  $(J+1)_{(J+1).1}$ : fig. 7 Un calcul simple conduit aux relations suivantes:

$$f_1 - f_4 = f_3 - f_2 = \Delta w$$
  
(V-3)  
 $f_3 - f_1 = f_2 - f_4 = \Delta w'$ 







Dans la mesure où la levée de dégénérescence est faible, les relations précédentes montrent que les fréquences  $f_1$ ,  $f_2$ ,  $f_3$ ,  $f_4$ sont très voisines. La figure d'absorption observée expérimentalement correspond alors à la disposition caractéristique de la figure 8.



où les transitions ont été représentées avec leur intensité relative théorique.

Tenant compte de l'expression de Aw donnée par WANG, nous avons dans le cas général :

$$\frac{\Delta w}{\Delta w}^{\dagger} = \frac{b}{4} \frac{J+1}{\tau^2}$$

relation qui fixe la forme de la figure d'absorption.

Quand  $\Delta w$  et  $\Delta w'$  deviennent inférieurs à la limite de résolution de l'appareillage, les quatre transitions sont situées à la même fréquence. La figure d'absorption correspondante est alors unique et son intensité très grande. Le même phénomène se produit pour les niveaux ( $J_{0,J}$ ) et ( $J_{1,J}$ ).

# 3.- INTENSITES DES MULTIPLETS

Le coefficient d'absorption maximum relatif à une transition  $J_{K_{-1}K_1} \xrightarrow{\rightarrow J'K'_{-1}K'_1}$  est de la forme:  $\gamma_{max} = C \overset{g}{=} \mu^2 e \overset{W(J_{K_{-1}K_1})}{\overset{g}{=} S} V-4$ 

où. $^{g}_{\mu}$  est la composante du moment dipolaire intervenant dans la transition envisagée.

. W( J_{K_1}K.) est l'énergie du plus bas niveau de la transition .^g S une quantité tabulée {19} relative à la transition

Le rapport des intensités de deux transitions  ${}^{b}R$  et  ${}^{c}R$  s'écrit:

$$\frac{b_{\gamma_{\text{max}}}}{c_{\gamma_{\text{max}}}} = \left(\frac{b_{\mu}}{c_{\mu}}\right)^{2} \qquad \frac{b}{c_{S}} = e^{-\frac{(W^{b}-W^{c})}{kT}}$$

Les transitions étudiées font intervenir des niveaux quasi dégénérés; par conséquent  $W^b \simeq W^c$ .

Dans le cas particulier de la molécule de chlorure de thionyle  $SOCl_{35}$   $Cl_{35}$ , le rapport  ${}^{b}\mu/{}^{c}\mu$  est de l'ordre de  $\frac{1}{2}$ . La relation précédente devient alors:

$$\frac{\gamma_{\text{max}}}{c_{\gamma_{\text{max}}}} = \frac{1}{4} + \frac{S}{c_{S}}$$
 (V - 5)

Une transition de type  ${}^{b}\mu$  a une intensité égale au quart de l'intensité d'une transition de type  ${}^{c}\mu$  de même valeur de S.

Lorsque les niveaux du type  $J_{J,0}$  et  $J_{J,1}$  intervenant dans les transitions des groupes (I) et (II) sont quasi dégénérés l'étude des quantités tabulées S relatives à ces transitions montre que celles-ci sont égales: fig.9. Il en est de même pour les transitions appartenant au groupe III: fig.10

Compte tenu de ce résultat, l'intensité des quadruplets dégénérés est environ  $\frac{5}{2}$  fois plus importante que celle d'une raie unique.

Dans la molécule SOCl₃₅ Cl₃₅, la composante  ${}^{a}\mu$  du moment dipolaire est nulle. Les multiplets des groupes (III) et (IV) se réduisent en fait à des doublets dont l'intensité est deux fois plus importante que celle d'une raie unique.

La comparaison de l'intensité des raies de type ^bQ et^CQ à celle des multiplets R indique que ces derniers doivent être parmi les raies les plus intenses du spectre. La figure 11 représente l'allure du spectre de la molécule SOCl₃₅ Cl₃₅ dans la gamme 60 000 - 75 000 MHz. Seules les transitions de J inférieur à 40 ont été reportées.

# 4. - CALCUL DE PERTURBATION

Dans l'approximation du rotateur rigide, le hamiltonien de la toupie asymétrique peut se mettre sous la forme :

$$H = \frac{A+C}{2} J^2 + \frac{A-C}{2} W$$

Dans le cas de quasi dégénérescence qui nous intéresse, l'énergie des niveaux est justiciable d'un calcul de perturbation stationnaire, en considérant l'opérateur W sous la forme:

$$W = W + V$$







Fig: 11

i

où  ${\tt W}_{\rm o}$  est l'opérateur correspondant à la toupie symétrique.

Dans la base de la toupie symétrique, la matrice de  ${\tt W}_{\rm o}$  est diagonale.

Ses éléments de matrice peuvent être écrits en utilisant les re présentations  $I^r$  ou  $III^r$  de KING, HAINER et CROSS {9}^(*)

$$W_{J_{k}K}^{(\circ)} = \langle J_{k}K | W_{o} | J_{k}K \rangle = \mp \{J(J+1)-2K^{2}\}$$

Les éléments de matrice de V s'écrivent:

$$< J, K | V | J, K > = \mp H \{ J(J+1) - K^2 \}$$

$$< J, K | V | J, K-2 > = \frac{H}{2} \left\{ J(J+1) - (K-1)K \} \{ J(J+1) - (K-1)(K-2) \} \right\}$$
  
1/2

Les valeurs de K et H sont alors:

- niveaux  $J_{J,0}$  et  $J_{J,1}$  totalement dégénérés pour  $\kappa$ = -1
- niveaux  $J_{0,J}$  et  $J_{1,J}$  totalement dégénérés pour  $\kappa = +1$  $H = \frac{1}{2} (\kappa - 1)$

Dans le cas de toupie symétrique, l'énergie de l'un de ces niveaux s'écrit:

$$W^{(\circ)} = \frac{A+C}{2} \quad J(J+1) \quad \pm \frac{A-C}{2} \quad J(J-1)$$

La fréquence f d'une transition J  $\rightarrow$ J+1 et l'écart en fréquence  $\Delta f$  entre deux transitions successives sont :

$$f_{J \rightarrow J+1}^{(\circ)} = (A+C)(J+1) \pm (A-C) J$$
$$\Delta f_{(\circ)}^{(\circ)} = (A+C) \pm (A-C)$$

(*) Dans les expressions qui suivent, le signe supérieur correspond à la représentation I^r, le signe inférieur à la représentation III^r.

 $\begin{cases} K = K_{-1} \\ H = -\frac{1}{2} (\kappa + 1) \end{cases}$ 

Cette dernière relation montre que les quadruplets des groupes (I) et (II) d'une part, (III) et (IV) d'autre part, sont équidistants respectivement de 2A et 2C.

Un calcul de perturbation stationnaire fournit les corrections d'ordres successifs sur les niveaux. Les problèmes posés par la dégénérescence des niveaux (J,K) dans la toupie symétrique n'apparaissent évidemment pas puisque nous n'effectuons pas de calcul à l'ordre K.

Les corrections sur un niveau (J,K) s'écrivent, en posant :

Ordre 1:  $\delta W_{J,K}^{(1)} = \langle J, K | V | J, K \rangle$ 

(2) 
$$\sim$$
 (2)  $\sim$  (2) (

Ordre 2: 
$$\delta W_{J,K}^{(2)} = \sum_{K'} \frac{\langle J,K' \rangle \sqrt{J_{J,K}} \sqrt{J_{J,K}}}{W_{J,K}^{(\circ)} - W_{J,K'}^{(\circ)}}$$

Ordre 3: 
$$\delta W_{J,K}^{(3)} = \sum_{K'K''} \frac{\langle J,K| \ V \ | J,K' \rangle \ \langle J,K'| \ \overline{V} \ | J,K'' \rangle \ \langle J,K''| \ V \ | J,K \rangle}{\left( W_{J,K'}^{(\circ)} - W_{J,K}^{(\circ)} \right) \left( W_{J,K''}^{(\circ)} - W_{J,K}^{(\circ)} \right)}$$

Les corrections sur le niveau W, la fréquence f et l'écart en fréquence Af sont reportées dans le tableau VII.

Nous n'avons considéré dans ce calcul que les niveaux correspondant à  $K_{-1} = J$  ou  $K_1 = J$ .

L'écart en fréquence de deux multiplets dégénérés J-1>J et J>J+1 s'écrit:

* pour les groupes (I) et (II):  
(V-6) 
$$\Delta f = 2A + \frac{A-C}{2} \left( \frac{H^2}{4 J(J-1)(J-2)} - \frac{H^3}{8 J(J-1)(J-2)} + H^4 f(\frac{1}{J}) + \ldots \right)$$
  
où  $H = -\frac{1}{2} (\kappa + 1)$ 

* pour les groupes ( III) et (IV) :

$$(V-7) \quad \Delta f = 2C - \frac{A-C}{2} \left( \frac{H^2}{4 J(J-1)(J-2)} - \frac{H^3}{8 J(J-1)(J-2)} + H^4 f(\frac{1}{J}) + \ldots \right)$$
  
où  $H = \frac{1}{2} (\kappa - 1)$ 

Les corrections d'ordre 2 et 3 sur  $\Delta f$  ont été calculées pour quelques valeurs de J. Elles sont données en MHz dans les tableaux VIII et IX.



TABLEAU VII
J $\delta(\Delta f)MHZ$	5	10	15	20
Ordre 2	1,627	0,305	0,125	0,067
Ordre 3	0,204	0,038	0,015	0,008
Δw	0,440	10 ⁻⁵	<10 ⁻⁶	<10 ⁻⁶

### * groupes (I) et (II) : TABLEAU VIII

* groupes (III) et (IV): TABLEAU IX

J δ(Δf)MHz	5	10	15	20	25
Ordre 2	14,653	2,746	1,127	0,609	0,381
Ordre 3	5,495	1,030	0,422	0,228	0,143
Δw	212,191	1,843	0,010	10 ^{<b>-</b>5}	<10 ⁻⁵

Nous avons également reporté dans ces deux tableaux la

valeur de l'écart  $\Delta w$  entre les niveaux  $(J_{J,0})$  et  $(J_{J,1})$  d'une part,  $(J_{0,J})$  et  $(J_{1,J})$  d'autre part. Les corrections d'ordre 2 et 3 sont d'autant plus faibles que la dégénérescence est moins levée.

### 5.- GENERALISATION

Dans l'hypothèse du rotateur rigide, le calcul de perturbation a montré que les transitions des groupes (I), et (II), (III) et (IV) donnaient naissance à deux séquences de raies équidistantes très intenses. Dans le cas général des niveaux (J  $_{K_{-1}} K_1$ ), le calcul de perturbation met encore en évidence les deux équidistances 2A et 2C, mais les corrections d'ordre 2 et 3 n'ont pas une forme simple.

Afin d'étudier l'écart en fréquence des transitions du type  $J_{K_{-1}} \xrightarrow{K_{-1}} K_{-1} \xrightarrow{K'_{-1}} K'_{-1}$ , nous avons tracé les courbes  $\Delta f = f(J)$ pour les trois groupes de transitions suivants:

• Branche R

$$(I') \begin{pmatrix} J_{K_{-1} \ K_{1} \ \to (J+1) \\ J_{K_{-1} \ (K_{1}+1) \ \to (J+1) \\ K_{-1} \ (K_{1}+1) \ (K_{-1}+1) \ (K_{1}+1) \end{pmatrix} \text{ avec } K_{-1} + K_{1} = J$$

• Branche ^b_R

$$(II') \begin{bmatrix} J_{K_{-1} \ K_{1}} & \Rightarrow (J+1) \\ K_{-1} \ (K_{-1}+1) \ (K_{-1}+1) \ (K_{-1}+1) \end{bmatrix} \text{ avec } K_{-1} + K_{1} = J$$

• Branche ^bR

$$(III') \begin{pmatrix} J_{K_{-1} \ K_{1}} & \to (J+1) \\ K_{-1} & (K_{-1}-1) & (K_{1}+1) \\ J_{(K_{-1}-1) \ K_{1}} & \to (J+1) \\ K_{-1} & (K_{1}+1) \end{pmatrix} \text{ avec } K_{-1} + K_{1} = J+1$$

Les fréquences sont calculées numériquement dans l'hypothèse du rotateur rigide. Les figures 12, 13 et 14 donnent l'allure des courbes  $\Delta f=f(J)$ obtenues pour les trois groupes précédents.

Les courbes des groupes (I') et (II') ont la même asymptote. Il s'agit d'une droite horizontale Af=cte.







Cette constante est numériquement égale à la valeur de 2A. L'asymptote commune aux courbes du groupe (III') correspond à la valeur numérique de 2C.

L'allure des réseaux de courbes appelle une remarque. Les courbes caractérisées par les valeurs successives de K₋₁ ouK₁ ne tendent vers l'asymptote que pour des valeurs de J de plus en plus élevées. Les multiplets correspondant sont alors rejetés à des fréquences élevées.

Les courbes des figures 9 et 10 montrent par ailleurs que ces transitions sont d'intensité plus faible que celles étudiées précédemment.

L'importance de ces multiplets dans la recherche des transitions de type R est donc moindre. -Remarque-

Comme nous l'avons vu, l'existence de multiplets intenses équidistants est liée à la quasi dégénérescence de certains niveaux. Celle-ci dépend de la valeur de  $\kappa$  mais aussi de la valeur de  $\frac{A-C}{2}$ .

Dans le cas de molécules lourdes, pour lesquelles  $\frac{A-C}{2}$  et  $\frac{A+C}{2}$  sont faibles, ou dans le cas de molécules faiblement asymétriques, la quasi dégénérescence des niveaux apparaît pour des J plus faibles et donc pour des fréquences plus basses. Les multiplets correspondant peuvent alors être observés.

### 6.- CORRECTION DUE A LA DISTORTION CENTRIFUGE

Un calcul de perturbation analogue au précédent peut être effectué sur le hamiltonien réduit de WATSON pris sous la forme :

 $H_{red} = H_{o} + V$  ou  $H_{o}$  est le hamiltonien réduit de la toupie symétrique.

- 60 -

Nous ne donnons que les résultats qui concernent les transitions des groupes (I) et (II). Le niveau (J,J) de la toupie symétrique s'écrit:

$$E_{J,J}^{\circ} = \frac{A+C}{2} \quad J(J+1) + \frac{A-C}{2} \quad J(J-1) \\ -\Delta_{J} \quad J^{2}(J+1)^{2} - J^{2} \left[ \Delta_{JK} \quad J(J+1) + \Delta_{K} \quad J^{2} \right]$$

Les corrections successives sur les niveaux quasidégénérés (J,J,O) et (J,J,1) sont de la forme:

	$\delta(W_{J,J})$
Ordre 1:	- <u>A-C</u> H.J
Ordre 2:	$\frac{A-C}{2}  \frac{J(2J-1)}{8(J-1)}  \left(8  H\delta + H^2  (1+\Delta)\right)$
Ordre 3:	$-\frac{A-C}{2} \frac{J(2J-1)}{16(J-1)} \left( 8 H^{2} \delta + H^{3} (1+2 \Delta) \right)$

$$\delta = \frac{\delta_{J}}{A-C} \quad J(J+1) + \frac{\delta_{K}}{A-C} \quad \left(J^{2} + (J-2)^{2}\right)$$

avec

$$\Delta = \frac{\Delta_{JK}}{A-C} \quad J(J+1) \qquad + \frac{\Delta_K}{A-C} \quad \left(J^2 + (J-2)^2\right)$$

Le calcul de la fréquence d'une transition  $J_{J,0} \rightarrow J^{+1}(J^{+1}) = J^{+1}_0$  ainsi que de l'écart  $\Delta f$  entre deux transitions successives montre que :

 $\Delta f = 2A + g (J, \Delta_J, \Delta_{JK}, \dots)$ 

où g (  $J, \Delta_J, \Delta_{JK}$ ...) n'est pas une fonction simple.

Qualitativement il est donc possible de prévoir que la distance entre deux multiplets n'est pas constante. Le calcul numérique de f et Af par diagonalisation directe confirme ces prévisions. Les figures 15 et 16 montrent l'évolution de f et Af en fonction de J, pour les transitions des groupes I' et III'. Af s'éloigne de la valeur 2A ou 2C à mesure que J croît.

Cependant, pour les multiplets dégénérés les plus intenses de la gamme 50 000- 100000 MHz, la correction due à la distortion centrifuge n'excède pas un millième de 2A ou 2C: tableaux X et XI.

J	5	9
<u>Af-2A</u> 2A	2.10 ⁻⁴	7.10-4
f° _{MHz}	58 376,00	99 054;53

* groupe (I')

TABLEAU X

groupe (III') TABLEAU XI

$\frac{\Delta f - 2C}{2C} = 3.10^{-4} = 3.10^{-4} = 5.10^{-4}$	J.	12-	15	20 .
f 52 608.50 64 366.91 83 961.93	<u>Áf-2</u> C 2C	3.10 ⁻⁴	3.10 ⁻²⁴	5.10-4
MHz	f MHz	52 608,50	64 366,91	83 961,93

- 61 -





### 7. - CONCLUSION

La présence de niveaux quasidégénérés même dans le cas de molécules fortement asymétriques entraîne l'existence de multiplets. Dans l'approximation du rotateur rigide, un calcul de perturbation effectué sur ces niveaux a permis de montrer que l'écart en fréquence entre deux quadruplets dégénérés est constant et caractéristique des paramètres de rotation A et C de la molécule. L'intensité de ces transitions est très importante.

Le calcul numérique des fréquences des transitions confirme ces résultats. Il permet également de tenir compte de la distortion centrifuge et montre que l'équidistance des multiplets n'est plus parfaite.

Cependant, pour les valeurs de J qui correspondent à des fréquences de transitions aisément observables, la correction due à la distortion centrifuge reste faible. Des valeurs de A et C, approchées à quelques millièmes, peuvent être obtenues par simple observation du spectre expérimental, avant même toute identification.

## c - determination des parametres A+c et ${\rm A}_J$

L'identification du spectre Q de la molécule SOCl₃₅Cl₃₅ a permis d'obtenir les valeurs des paramètres : (A-C)  $\kappa$ ,  $\Delta_{JK}$ ,  $\Delta_{K}$ ,  $\delta_{J}$ ,  $\delta_{\chi}$ . L'identification complète du spectre de rotation de cette molécule nécessite la détermination des deux paramètres (A+C) et  $\Delta_{J}$ .

La méthode que nous décrivons dans cette partie est applicable dès que le spectre Q est identifié.

#### 1.- PRINCIPE DE LA METHODE

Nous avons vu au chapitre II que l'énergie du niveau  ${}^J{\rm K}_{\!-\!1}{\rm K}_{\!-\!1}$  est de la forme:

W  $J_{K_{-1}K_{1}} = \frac{A+C}{2} J(J+1) - \Delta_{J} J^{2} (J+1)^{2} + \lambda (J_{K_{-1}K_{1}})$ ou  $\lambda (J_{K_{-1}K_{1}})$  est la valeur propre de la matrice réduite H, correspondant au niveau  $J_{K_{-1}K_{1}}$ .

Cette valeur propre ne dépend que des 6 paramètres déduits de l'identification du spectre Q. Elle est donc calculable exactement.

La fréquence de la transition

 $J^{-1}_{K_{-1}K_{1}} \xrightarrow{\rightarrow} J_{K'-1}K'_{1} \qquad \text{s'ecrit:}$   $W(J) - W(J^{-1}) = (A+C)J^{-1} \xrightarrow{4} \Delta_{J} J^{2} + \left(\lambda (J_{K'_{-1}} K'_{1}) - \lambda (J^{-1}_{K_{-1}}K_{1})\right)$ 

Compte tenu de la structure probable de la molécule, il est possible de calculer une valeur approchée de (A+C) soit (A+C)_o. Par contre la valeur du coefficient de distortion centrifuge  $\Delta_J$ est inconnue. Comme il s'agit d'un terme petit, nous posons  $\Delta_J=0$ . La fréquence théorique f_o d'une transition de type R calculée avec ces valeurs approchées est alors:

$$\mathbf{f}_{\circ} = (\mathbf{A}+\mathbf{C})_{\circ} \mathbf{J} + \left( \lambda (\mathbf{J}_{\mathbf{K}'-1}\mathbf{K}') - \lambda (\mathbf{J}-1_{\mathbf{K}-1}\mathbf{K}') \right)$$

L'identification du spectre R permet de déduire les valeurs vraies de (A+C) et  $\Delta_J$  qui rendent compte du spectre expérimental. Aux erreurs de mesure près, la fréquence d'une transition calculée avec ces valeurs est égale à la fréquence mesuréef de la transition. Elle s'écrit:

mile p ecrit.

$$f_{m} = (A+C)J - 4 \quad \Delta_{J} \quad J^{3} + \left(\lambda (J_{K'-1}K') - \lambda (J-1_{K-1}K_{1})\right)$$
  
ou, en posant A+C= (A+C) 
$$+ \delta (A+C)$$

$$f_{m} = (A+C)_{o} J + \left(\lambda(J_{K'-1}^{K'}) - \lambda(J-1_{K-1}^{K'})\right) +$$

+  $\delta(A+C)J - \Delta_J J^3$ 

Tenant compte de la relation (V-8) nous obtenons:

$$\frac{f_{m} - f_{o}}{J} = \delta(A+C) - 4 \Delta_{J} J^{2} \qquad (V-9)$$

$$f_{m} - f_{o}$$

La quantité  $\frac{2m}{J}$  est une fonction linéaire de  $J^2$ . Cette relation est à la base d'une méthode graphique de détermination de A+C et  $\Delta_T$ .

- 1. Les fréquences théoriques  $f_o$  des transitions R les plus intenses susceptibles d'être observées dans la gamme étudiée sont calculées avec les valeurs A+C = (A+C)_o et  $\Delta_T = 0$
- 2. Chacune de ces transitions caractérisées par J est attribuée successivement à toutes les raies intenses du spectre expérimental observé de part et d'autre de la fréquence théorique  $f_o$ . L'étendue de cette exploration est évidemment en fonction de J et de l'erreur probable faite dans le calcul de  $(A+C)_o$ : fig. 17



3. Les quantités  $\frac{\int_{m}^{-f_{o}}}{J}$  sont calculées pour chacune de ces attributions et portées sur un graphique en fonction de J².

Les points correspondant aux transitions R recherchées s'alignent sur une droite d'ordonnée à l'origine  $\delta(A+C)$  et de pente -4  $\Delta_{J}$ : fig. 18.





Des solutions fortuites peuvent apparaître. Il est facile de lever le doute en calculant les fréquences des autres transitions R à l'aide des paramètres déduits de ces différentes solutions et en éliminant celles qui ne permettent pas d'interpréter le spectre expérimental.

### 2. - CONDITIONS D'APPLICATION

La méthode qui vient d'être exposée est utilisable dès que le spectre Q est identifié. Cependant dans le cas général, les transitions de branche R sont d'intensité moyenne et il faut alors envisager un nombre très important de combinaisons. La méthode graphique devient alors inapplicable pratiquement. Par contre, utilisée conjointement à la méthode des multiplets, elle permet d'identifier les transitions R et de déterminer les paramètres A+C et  $\Delta_{I}$ .

En effet, la mise en évidence de séquences de raies intenses équidistantes permet d'attribuer ces transitions à des raies de branche ^bR ou ^CR sans aucune ambiguité et de déterminer une valeur de  $(A+C)_{o}$  avec une bonne approximation. La méthode graphique fournit alors les valeurs exactes de A+C et  $\Delta_{T}$ .

Remarquons encore que si le spectre Q est identifié, la valeur de A-C est connue exactement. Il suffit alors de mettre en évidence une seule série de raies équidistantes pour obtenir une valeur approchée de A+C.

La recherche expérimentale de ces transitions est facilitée si l'une des équidistances est relativement faible.

## C H A P I T R E IV

#### RECHERCHE EXPERIMENTALE DES TRANSITIONS DE TYPE R

Comme nous l'avons déjà fait remarquer, la densité du spectre expérimental en raies moyennes et grandes est très importante, de l'ordre de 40 transitions par GHz. Après élimination des transitions de type Q, plus de 80 % de ces raies restent non identifiées.

L'observation expérimentale de transitions Q dont l'intensité est du même ordre de grandeur que celle des multiplets R recherchés montre que les raies correspondantes sont effectivement très intenses. Cependant un nombre important de raies du spectre expérimental possède des intensités tout à fait comparables. Ce nombre est évidemment très supérieur à celui des transitions R inconnues.

#### 1.- IDENTIFICATION DE TRANSITIONS DE TYPE R

La structure probable de la molécule déduite des données de diffraction électronique et améliorées grâce à l'identification du spectre Q fournit une valeur approchée de A+C :  $(A+C)_o = 7\ 285\ MHz$ , avec une incertitude difficile à évaluer mais certainement de l'ordre de quelques centaines de MHz.

Les valeurs de 2A et 2C sont alors:

 $2A = 10 \ 411 \ MHz$  $2C = 4 \ 156 \ MHz$ 

Etant donnée la valeur élevée de 2A, peu de multiplets des groupes I et II seront observables. Dans la gamme 55 000-75 000 MHz, il y a donc intérêt à essayer de mettre en évidence la séquence correspondant à l'équidistance 2C. Le spectre théorique a été calculé avec les valeurs  $(A+C)_{o} = 7285$  MHz et  $\Delta_{J} = 0$ . Les autres paramètres sont ceux qui résultent de l'identification du spectreQ. Les multiplets dégénérés susceptibles d'être observés dans la gamme 55 000 - 75 000 MHz sont reportés dans le tableau XII, première colonne. Ces transitions sont au nombre de 5.

Il existe une disproportion très grande entre le nombre de transitions recherchées (5) et le nombre de raies observées expérimentalement qui est de l'ordre de 700.

TABLEAU XII	f _o	ť,	f . m	Intensité
		corrigée	1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	an a sa giyan yana katan k
13 1.13 $^{\rightarrow}$ 14 0.14	59 871,50	56 528,44	56 52 7.80	60-000
¹³ 0.13 ⁺ ¹⁴ 1.14	59 871,61	56 528 <b>,</b> 55	<i>JO JE</i> 1900	00.000
$14_{1.14} \rightarrow 15_{0.15}$	64 031,87	60 447,77	60 447,30	65 000
¹⁴ 0.14 ^{+ 15} 1.15	64 031,91	60 447,81		MALI J. L. LANGEVING, M. M. M. M. M. MARINE, M. M. MARINE, M.
¹⁵ 1.15 ⁺¹⁶ 0.16	68 192,54	64 367,10	64 366 <b>,</b> 97	70 000
¹⁵ 0.15 ^{~16} 1.16	68 192,55	64 367,11		
$16_{1.16} \rightarrow 17_{0.17}$	72 <b>3</b> 53,53	68 286,11	68 286,09	75 000
16 0.16 $\rightarrow$ 171.17	72 353,53	68 286,11		
$17_{1.17} \rightarrow 18_{0.18}$	76 514,86	72 204,94	72 205,41	80 000
17 _{0.17} + ¹⁸ 1.18	76 514,86	72 204,94		

La méthode des doublets fournit alors de nombreuses solutions. Il a été nécessaire d'utiliser conjointement les deux méthodes décrites précédemment.

Sur la figure 19, nous avons tracé l'écart expérimental Af en fonction de J. L'erreur faite sur la mesure des fréquences est importante environ 600 kHz. Il est en effet évident qu'il n'est pas question de faire une mesure précise de la fréquence des quelques 700 raies observables entre 55 000 et 75 000 MHz.

Les valeurs de A+C et  $\Delta_J$  déduites de la méthode graphique permettent le calcul des fréquences d'autres transitions R, en particulier celles des quelques quadruplets intenses (^bR,^cR) observables dans la gamme étudiée.

Les valeurs suivantes ont été obtenues:

$$\delta(A+C) = -237,79 \text{ MHz}$$

$$4 \Delta_{J} = 5,1 \ 10^{-3} \text{ MHz}$$

$$A+C = 7047,21 \text{ MHz}$$

$$\Delta_{J} = 0,00127 \text{ MHz}$$

La deuxième colonne du tableau XII donne les fréquences calculées à l'aide de ces paramètres.

Il faut noter qu'avec une valeur de  $\delta(A+C)$  aussi importante, les transitions de J de l'ordre de 16 sont situées à plus de 4000 MHz de leur fréquence théorique f_o. Cet écart étant du même ordre de grandeur que l'équidistance 2C, il y a risque d'attribuer à la transition  $J-1_{0,J-1} \rightarrow J_{1,J}$ , la raie correspondant à la transition  $J_{0,J} \rightarrow J+1_{1(J+1)}$ 

Dans la méthode graphique, il y a donc lieu d'étudier une très large gamme de part et d'autre de f_o.



Avec les valeurs de A+C et  $\Delta_J$  données ci-dessus et les autres paramètres déduits du spectre Q, nous avons pu recalculer les transitions de branche R avec un écart  $f_m - f_c$  toujours inférieur à 1MHz. Il est inutile d'espérer dans ces conditions améliorer encore les paramètres A+C et  $\Delta_T$  par la méthode graphique.

### 2.- CALCUL DE MOINDRES CARRES

Les trois constantes A+C, A-C,  $\kappa$  et les 5 paramètres de distortion centrifuge d'ordre 1 ont été calculés par itérations successives.

Trois jeux de transitions ont été utilisés , les résultats des calculs sont consignés dans le tableau XIII. Celui-ci montre que les trois jeux de paramètres obtenus sont cohérents, malgré un écart moyen assez élevé, qui s'explique par le manque de précision dans la mesure de la fréquence des transitions du type R. La détermination des paramètres obtenus est cependant très suffisante pour permettre l'identification de toutes les transitions de type R. Une série de mesures précises actuellement en cours fournira une meilleure détermination des paramètres d'ordre 0 et 1.

Le calcul effectué avec les 105 transitions de J inférieur à 30 bénéficie d'un écart moyen assez faible. C'est ce qui nous le fait préférer pour l'instant, en attendant les résultats des nouvelles mesures.

- 71 -

1 1 1 3

047,112 3126,452 48432(147) 001160(298) 002056(944)	7047,148 3126,420 -0,448443(539) 0,001214(449) -0,002028(902)	7047,120 3126,468 -0,448432(752) 0,001158(301) -0,002182(632)
047,112 3126,452 448432(147) 001160(298) 002056(944)	7047,148 3126,420 -0,448443(539) 0,001214(449) -0,002028(902)	7047,120 3126,468 -0,448432(752) 0,001158(301) -0,002182(632)
3126,452 448432(147) 001160(298) 002056(944)	3126,420 -0,448443(539) 0,001214(449) -0,002028(902)	3126,468 -0,448432(752) 0,001158(301) -0,002182(632)
48432(147) 001160(298) 002056(944)	-0,448443(539) 0,001214(449) -0,002028(902)	-0,448432(752) 0,001158(301) -0,002182(632)
001160(298) 002056(944)	0,001214(449) -0,002028(902)	0,001158(301) -0,002182(632)
02056(944)	-0,002028(902)	-0,002182(632)
	1	J
06404(865)	0,006237(652)	0,006935(819)
000400(978)	0,000399(801)	0,000398(033)
0120 9(393)	0,001149(623)	0,001246(177)
200 kHz	240 kHz	150 kHz
	200 kHz	200 kHz 240 kHz

Les transitions de branche R identifiées sont reportées dans le tableau XIV.

. . •

TABLEAU XIV

$\begin{bmatrix} J_{K_{-1}K_1} & \rightarrow J+1_{K_{-1}K_1} \end{bmatrix}$	f _c MHz	f _m MHz	f - f MHz
6 _{6.0} → 7 _{7.0}	68 547 <b>,</b> 24	68 547,84	+ 0,60
⁶ 6.1 → 7 _{7.1}	68 547,28	68 547,84	+ 0,56
6 _{5.1} → 7 _{6.1}	63 218,71	63 219,35	+ 0,64
⁶ 5.2 → 76.2	63 222,87	63 223,20	+ 0,33
⁸ 5.4 → ⁹ 6.4	72 888,59	72 889,12	+ 0,53
$7_{3.5} \xrightarrow{7} 8_{4.5}$	58 542,41	58 542,00	- 0,41
$7_{3.4} \rightarrow 8_{4.4}$	55 746,95	55 746,60	- 0,35
$8_{4.5} \rightarrow 9_{5.5}$	67 835,67	67 836,16	+ 0,49
8 _{4,4} → 9 _{5,4}	66 700,49	66 700,10	- 0,39
⁸ 3.6 → 94.6	64 294,17	64 293,80	- 0,37
8 _{3.5} → 9 _{4.5}	60 105,46	60 105,00	- 0,46
$9_{4.5} \rightarrow 10_{5.5}$	70 723,30	70 723,60	+ 0,30
⁸ 2.7 [→] 9 _{3.7}	63 312,80	63 312,45	- 0,35
$9_{3.6} \rightarrow 10_{4.6.}$	65 053 <b>,</b> 98	65 053 <b>,</b> 70	-0,28
$10_{4.6} \rightarrow 11_{5.6}$	74 656,80	74 656,64	- 0,16
⁹ 2.8 → ¹⁰ 3.8	70 242,82	70 242,24	- 0,58
$9_{2.7} \rightarrow 10_{3.7}$	65 530,27	65 530,05	- 0,22
$10_{3.7} \rightarrow 11_{4.7}$	70 814,36	70 814,56	+ 0,20
9 _{1.8} → ¹⁰ _{2.8}	69 202,31	69 202,48	+ 0,17
¹⁰ 2.8 → 11 _{3.8}	73 360,32	73 360,24	-0,08
			(RUS)

# BRANCHE ^bR

a) doublets

. •

$J_{K-1}K_{1} \xrightarrow{\rightarrow J+1}K'-1K' 1$	f c MHz	f m MH z	f - f m c MHz
¹³ 1.13 ¹⁴ 0.14	56 527,97	56 528,80	-0,17
¹³ 0.13 ¹⁴ 1.14	56 528,08		-0,28
¹⁴ 1,14 ¹⁵ 0.15	60 447,50	60 447.30	-0,20
¹⁴ 0.14 ¹⁵ 1.15	60 447,54		-0,24
¹⁵ 1.15 ¹⁶ 0.16	64 366,92	64 366.97	-0,05
¹⁵ 0.15 ¹⁶ 1.16	64 366,93		-0,04
¹⁶ 1.16 ¹⁷ 0.17	68 286,21	68 286,09	-0,12
¹⁶ 0.16 ¹⁷ 1.17	68 286,21		-0,12
¹⁷ 1.17 ¹⁸ 0.18	72 205,36	72 205,41	+0,05
¹⁷ 0.17 ¹⁸ 1.18	72 205,36		+0,05
b) raies uniques			
$J_{K_{-1} K_{1}} \xrightarrow{\rightarrow J+1} K'_{-1} K'_{1}$	f _c MHz	f m MHz	f - f MHz
¹² 1.11 ¹³ 2.12	55 917,37	55 917,78	+0,41
14 1.13 15 2.14	63 743,04	63 743,30	+0,26
¹⁵ 1.14 ¹⁶ 2.15	67 659,70	67 660,08	+0,38
¹⁶ 1.15 ¹⁷ 2.16	71 577,15	71 577,36	+0,21
¹⁶ 2.15 ¹⁷ 1.16	71 576,78	71 577,36	+0,58
			BUS

- 73 -

## CONCLUSION

L'utilisation de la théorie de WATSON relative à la distortion centrifuge a confirmé les résultats déjà acquis sur la molécule de chlorure de thionyle SO Cl₃₅ Cl₃₅. Elle a permis l'amélioration de certains paramètres et l'observation de nouvelles transitions situées en hautes fréquences.

La détermination de toutes les constantes de rotation d'ordre 0 et d'ordre 1 implique la recherche des raies de branche R. Cette étude, rendue difficile par la densité très grande du spectre, nous a conduit à mettre au point deux méthodes d'identification uniquement basées sur l'allure du spectre expérimental.

A partir de ces identifications, un calcul de moindres carrés a donné les résultats suivants:

A = 5086,79 MHz, B = 2822,55 MHz, C = 1960,32 MHz  $\Delta_J = 0,001158301$  MHz  $\Delta_{JK} = -0,002182632$  MHz  $\Delta_K = 0,006935819$  MHz  $\delta_J = 0,000398033$  MHz  $\delta_K = 0,001246177$  MHz

Ces méthodes qui permettent d'accéder à des valeurs approchées de A et C semblent particulièrement efficaces dans l'étude des molécules lourdes fortement asymétriques. Nous nous proposons actuellement de les appliquer à l'étude du spectre R de la molécule de chlorure de sulfuryle, dont le spectre Q est déjà connu {14}. Les calculs préalables laissent supposer que nous pourrons très rapidement résoudre ce problème. D'une manière générale, l'identification de transitions de J élevés permet de déterminer tous les coefficients de distortion centrifuge, détermination qui n'avait jamais pu jusque maintenant être tentée pour les molécules du type XYZ₂ et XY₂Z₂.

Dans l'orientation future de notre travail, nous pensons pouvoir utiliser ces résultats au cours d'études sur les forces interatomiques intervenant dans les molécules de ce type.

# B I B L I O G R A P H I E

- [1] D. KIVELSON and E.B. WILSON Jr. Approximate treatment of the effect of centrifugal distortion on the rotational energy levels of asymmetric rotor molecules. J.Chem.Phys. 20, 1575-79 (1952)
- {2} H.DREIZLER und G. DENDL. Erfahrungen bei der Analyse der Zentrifugal aufweitung in Rotationsspecktren. I Diméthylsulfoxyd.

Z. Naturforschung 20.a, 30-37 (1965)

{3} H. DREIZLER und H.D. RUDOLPH- Erfahrungen bei der Analyse der Zentrifugalaufweitung in Rotationspektren. II Dimethylsufild

Z. Naturforschung 20.a, 749.51 (1965)

- [4] J.K.G.WATSON-Determination of centrifugal distortion coefficients of asymmetric top molecules. II. Dreizler, Dendl, and Rudolph's results. J. Chem.Phys. 48, 181-185 (1968)
- {5} J.K.G. WATSON. Centrifugal corrections for asymmetric top molecules. J. Chem. Phys. 45, 1360-61 (1966)
- J.K.G. WAISON. Determination of centrifugal distortion coefficients of asymmetric top molecules.
   J. Chem.Phys.46,1935-49 (1967)
- {7} J.K.G. WATSON. Determination of centrifugal distortion coefficients of asymmetric top molecules. III. Sextic coefficients. J. Chem.Phys. 48,4517-24 (1968)

- {8} G. STEENBECKELIERS. Traitement au second ordre du rotateur. Spectres hertziens de la molécule S³²0¹⁶ Annales de la Soc. Sci. de Bruxelles 82, III 331-404 (1968)
- {9} G.KING,R.M. HAINER, R.C. CROSS. The asymmetric rotor J.Chem. Phys. 11,27 - 42 (1943)
- {10} J. BURIE, J.L. DESTOMBES, A. DUBRULLE, G. JOURNEL, Comptes Rendus, 267, série B, p48-50 (1968)
- {11} G. JOURNEL Thèse de doctorat, Faculté des Sciences Université de Lille ( 1969)
- {12} G. STEENBECKELIERS. Travaux non publiés.
- {13} A, MOÏSES. D.E.A. Faculté des Sciences , Université de Lille ( 1965)
- {14} M.C. ABBAR. Thèse de doctorat Faculté des Sciences Université de Lille ( 1966)
- {15} J. BURIE. Thèse de 3ème cycle Faculté des Sciences, Université de Lille ( 1968)
- {17} S.C. WANG. On the asymmetrical top in quantum mechanics
  Phys. Rev. 34,243 ( 1929)
- {18} D. KIVELSON-A(K+2) Order formula for asymmetry doublets in rotational spectra. J. Chem. Phys. 21, 536-38 (1953)
- {19} P.F. WACKER-M.R. PRATTO. Microwave spectra tables: line strengths of asymmetric rotors. N.B.S. Monograph 70, volume II ( décembre 1964)

G. JOURNEL, A. DUBRULLE, J.L. DESTOMBES, Mme MARLIERE C. Méthode d'identification des raies de branche R de la molécule de chlorure de thionyle SOC1₃₅C1₃₅, Comptes Rendus, à paraître.



{20}