N^o d'ordre 219

50376 1970 **165**

THESE

présentée à la

Faculté des Sciences de l'Universitè de Lille

pour l'obtention du grade de

Docteur ès Sciences Physiques par :

Jean-Marc TOULOTTE

Ingénieur ISEN

CONTRIBUTION A L'ETUDE DE LA COMMANDE ET DE LA

COMPENSATION DES SYSTEMES ECHANTILLONNES A MODULATEUR

NON LINEAIRE

Soutenue le 16 octobre 1970 devant la commission d'examen :

MM	P. VIDAL	Président
	F. LAURENT	
	L. POVY	
	R. BONNEFILLE	Examinateurs
	Y. SEVELY	
	S. WEGRZYN	

A mes parents A mon grand-père UNIVERSITE DE LILLE

FACULTE DES SCIENCES

DOYENS HONORAIRES

MM. H. LEFEBVRE, PARREAU

PROFESSEURS HONORAIRES

MM. ARNOULT, BROCHARD, CAU, CHAPPELON, CHAUDRON, DEHEUVELS, DEHORNE, DEHORS FLEURY, P.GERMAIN, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, MM. MAZET, MICHEL, NORMANT, PARISELLE, PAUTHENIER, ROIG, ROSEAU, ROUBINE, ROUELLE, WIEMAN, ZAMANSKY.

PROFESSEURS TITULAIRES

M. BACCHUS Pierre M. BEAUFILS Jean Pierre M. BLOCH Vincent M. BONNEMAN Pierre M. BONTE Antoine M. BOUGHON Pierre M. BOURIQUET Robert M. CELET Paul M. CONSTANT Eugène M. CORSIN Pierre M. DECUYPER Marcel M. DEDECKER Paul M. le Doyen DEFRETIN René M. DELATTRE Charles M. DURCHON Maurice M. FOURET René M. GABILLARD Robert M. BLACET Charles M. GONTIER Gérard M. GUILLAUME Jean M. HEUBEL Joseph Mme LENOBLE Jacqueline M. MONTREUIL Jean Mme SCHWARTZ Marie Hélêne M. TILLIEU Jacques M. TRIDOT Gabriel M. VIDAL Pierre M. VIVIER Emile M. WATERLOT Gérard M. WERTHEIMER Raymond

Astronomie et Calcul Numérique Chimie Générale Psychophysiologie Chimie Industrielle Géologie Appliquée Mathématiques Biologie Végétale Géologie Générale Electronique Paléobotanique Mathématiques Mathématiques Directeur du Laboratoire de Biologie Maritime de Wimereux Géologie Générale Biologie Animale Physique Electronique Chimie Organique Mécanique des Fluides Biologie Végétale Chimie Minérale Physique Chimie Biologique Mathématiques Physique Chimie Minérale Appliquée Automatique Biologie Animale Géologie et Minéralogie Physique

PROFESSEURS A TITRE PERSONNEL

M. BOUISSET Simon M. DELHAYE Michel M. LINDER Robert M. LUCQUIN Michel M. PARREAU Michel M. SAVARD Jean M. SCHALLER François

M. SCHILTZ René

Physiologie Animale Chimie Physique et Minérale 1^e Cycle Biologie Végétale Chimie Physique Mathématiques Chimie Générale Biologie Animale Physique

PROFESSEURS SANS CHAIRE

M. BELLET Jean
M. BODARD Marcel
M. BOILLET Pierre
M. DERCOURT Jean Michel
M. DEVRAINNE Pierre
Mle MARQUET Simone
M. MONTARIOL Frédéric
M. PROUVOST Jean

M. VAILLANT Jean

Physique Biologie Végétale Physique Géologie et Minéralogie Chimie Minérale Mathématiques Chimie Minérale Appliquée Géologie et Minéralogie Mathématiques

MAITRES DE CONFERENCES (et chargés des fonctions)

M. AUBIN Thierry M.BEHUIN Paul M. BILLARD Jean M. BKOUCHE Rudolphe M. BOILLY Bénoni M. BONNOT Ernest M. CAPURON Alfred M. CARREZ Christian M. CORDONNIER Vincent M. CORTOIS Jean M. COULON Jean M. DEBRABANT Pierre M. ESCAIG Bertrand M. FROELICH Daniel M. GOBLOT Rémi M. GOUDMAND Pierre M. GRUSON Laurent M. GUILBAULT Pierre M. HERMAN Maurice M. HUARD DE LA MARRE Pierre M. JOURNEL Gérard Mle KOSMANN Yvette M. LABLACHE COMBIER Alain M. LACOSTE Louis M. LANDAIS Jean M. LAURENT François M. LEHMANN Daniel Mme LEHMANN Josiane M. LOCOUENEUX Robert M. LOUAGE Francis M. LOUCHEUX Claude M. MAES Serge M. MAIZIERES Christian M. MESSELYN Jean M. MIGEON Michel M. MONTEL Marc M. OUZIAUX Roger M. PANET Marius M. PAQUET Jacques

Mathématiques Pures Mécanique des Fluides Physique Mathématiques Biologie Animale Biologie Végétale Biologie Animale Calcul Numérique Calcul Numérique Physique Electrotechnique Sciences Appliquées Physique Sciences Appliquées Mathématiques Chimie Physique Mathématiques Physiologie Animale Physique Calcul Numérique Sciences Appliquées Mathématiques Chimie Générale Biologie Végétale Chimie Organique Automatique Mathématiques Mathématiques Physique Sciences Appliquées Chimie Physique Physique Electrotechnique Physique Sciences Appliquées Physique Sciences Appliquées Electrotechnique Sciences Appliquées

M. PARSY Fernand M. POVY Lucien M. RACZY Ladislas M. ROUSSEAU Jean Paul M. ROYNETTE Bernard M. SALMER Georges M. SMET Pierre M. VANDORPE Bernard M. WATERLOT Michel Mme ZINN JUSTIN Nicole Mécanique des Fluides Automatique Radioélectricité Physiologie Animale Mathématiques Electronique Physique Sciences Appliquées Géologie Générale Mathématiques Notre nature itinérante nous a mené du Centre d'Automatique de l'Université de Lille I au Département des Sciences Appliquées de l'Université de Sherbrooke -Canada, en passant par le Laboratoire de Génie Electrique de la Faculté des Sciences de Paris, pour enfin revenir à Lille. Aussi est-il facile d'imaginer à combien de personnes nous sommes redevable Qu'ils soient tous vivement remerciés pour leur aide, leurs conseils et leurs témoignages d'intérêt.

Toutefois nous désirons tout particulièrement exprimer à Monsieur le Professeur VIDAL notre gratitude et également notre admiration. En effet il a su à la fois nous guider et nous suivre dans toutes nos pérégrinations. Qu'il en soit doublement remercié.

Monsieur le Professeur LAURENT nous a aidé et encouragé tout au long de ce travail. Il nous a fait l'amitié de bien vouloir être un de nos juges. Nous le prions de bien vouloir accepter nos plus vifs remerciements.

Nous remercions également très sincèrement Monsieur le Professeur POVY pour l'aide apportée à la correction de notre thèse. Il a accepté de faire partie de notre Jury et nous y sommes très sensible

Lors de notre passage au Laboratoire de Génie Electrique de la Faculté des Sciences de Paris, nous avons eu la chance d'être accueilli par Monsieur le Professeur BONNEFILLE. Par sa bienveillance et par l'intérêt qu'il nous a toujours marqué, celui-ci a profondement orienté notre carrière. Il nous a de plus honoré en acceptant de juger notre travail. Nous le prions de croire à notre gratitude.

Monsieur le Professeur SEVELY a bien voulu accepter la lourde charge d'être notre parrain au Centre National de la Recherche Scientifique. Sans cesse indulgent envers un filleul qui n'a pas toujours été très attentif à ses conseils, il a su corriger notre trajectoire souvent défectueuse. Nous regrettons de ne pas avoir sa verve toute méridionale pour lui exprimer notre amicale reconnaissance.

Nous avons été tout particulièrement honoré et très touché de la présence dans notre jury de Monsieur le Professeur WEGRZYN, Membre de l'Académie des Sciences de Pologne. Les relations très étroites qui existent entre l'Institut d'Automatique de Silésie et notre laboratoire ont été pour nous une très grande source d'enrichissement. La direction de nos recherches quand nous étions au CNRS à Paris a été assurée par Monsieur le Professeur OLMER. Il nous a prodigué beaucoup d'intérêt et a grandement facilité notre insertion dans ses laboratoires. Qu'il veuille bien accepter nos très vifs remerciements.

Notre séjour au Canada a été rendu possible grâce au concours de Monsieur DENIS, Directeur de la Planification au Ministère de l'Education du Québec et de Monsieur DELISLE, Directeur du département de Génie Electrique de l'Université de Sherbrooke ; nous sommes heureux de pouvoir les remercier ici. Nous gardons également un souvenir un peu nostalgique de tous les amis qui ont rendu notre passage en Amérique du Nord si agréable.

Nos remerciements iront encore à Monsieur MELIN pour son amicale collaboration.

Enfin nous ne saurions terminer cet avant-propos sans exprimer notre reconnaissance à tous les collaborateurs du Centre d'Automatique qui nous ont subi avec autant d'indulgence et de gentil**lesse** et qui, directement ou indirectement, ont contribué à la réalisation de ce travail.

Introduction Générale

Les recherches dont nous rendons compte ici, ont été entreprises au Laboratoire d'Automatique de la Faculté des Sciences de Lille et au Laboratoire de Génie Electrique de la Faculté des Sciences de Paris, associé au C.N.R.S. Elles ont été effectuées en collaboration avec le Département de Génie Electrique de l'Université de Sherbrooke (Province de Québec - Canada) et portent sur la commande et la correction des systèmes échantillonnés à commande non linéaire.

Le contrôle d'un processus pour être efficace exige une connaissance préalable, la meilleure possible, des réactions du système aussi bien en régime permanent qu'en régime dynamique. C'est pourquoi après avoir montré comment déterminer dans l'espace séquence les équations de fonctionnement d'un système comprenant à la fois un élément tachymétrique et un réseau correcteur numérique, nous considérons plus particulièrement les problèmes posés, d'une part, par la précision en régime établi, et d'autre part, par la stabilité et le temps de réponse. Afin de compléter l'analyse du comportement du système lorsqu'il est soumis à une entrée ou à des variations de paramètres, nous présentons ensuite des méthodes graphique et numérique pour déterminer l'évolution de la réponse transitoire et des coefficients de sensibilité.

La seconde partie de cette étude est consacrée à la correction et à la commande des processus discrets, avec pour objectif une réponse indicielle optimale. L'analyse de l'influence des correcteurs tachymétrique et numérique nous amène à considérer le problème de la commande discrète non linéaire dans l'espace séquence. On peut alors montrer que ce problème se ramène à celui plus large de la commande dans l'espace d'état que nous envisageons dans le dernier chapitre.

CHAPITRE I

MISE EN EQUATION

L'analyse des processus linéaires à commande non linéaire dans lesquels l'information est transmise sous forme d'échantillons pris à des instants déterminés peut se faire à partir de divers modèles mathématiques. Ceux-ci dépendent du choix d'un espace de référence.

Dans ce travail nous nous pencherons presque essentiellement sur la représentation des systèmes dans l'espace séquence [36]. Celui-ci est défini par l'ensemble des vecteurs d'état dont les composantes sont les valeurs successives prises par une variable d'état en des instants discrets. Le nombre de valeurs est égal à la dimension de l'espace d'état.

Lorsque le processus à commander remplit les conditions d'observabilité [33], ce que nous supposerons vérifié dans toute la suite de l'étude, l'espace séquence est un espace d'état et caractérise complètement le système.

Le premier chapitre montre comment obtenir dans cet espace les équations représentatives d'un processus discret comportant à la fois un retour par les variables d'état et un élément correcteur numérique. Ces équations se présentent sous forme normale naturelle [4] c'est-à-dire sous forme de relations de récurrence non-linéaires faisant intervenir les composantes du vecteur séquence. I.1 - Description du système

Le système considéré (figure I.1) comporte dans la chaîne d'action :

- un élément à commander correspondant à un filtre linéaire à coefficients constants de transmittance $L(p) = \frac{N(p)}{Q(p)}$. Dans le cas où cet organe est non linéaire à non linéarité séparable, celle-ci est considérée incluse dans l'élément modulateur.

- un modulateur non linéaire quelconque continu ou discontinu

- un réseau corresteur numérique caractérisé par la relation de récurrence

 $\sum_{i=0}^{r} \alpha_{r-i} \bigvee_{n+r-i} = \sum_{i=0}^{r} \beta_{r-i} \varepsilon_{n+r-i} (\alpha_{r} \neq 0)$ (I.1)

Dans la chaîne de retour on dispose d'un réseau tachymétrique général R(p).

Dans cet ensemble N(p), Q(p) et R(p) sont des polynômes en p de degré respectif m, q et l. Nous supposerons dans toute la suite de ce travail que m+l \leq q. Dans ce cas, qui physiquement correspond à la majorité des systèmes, le schéma I.1, vis à vis de l'erreur ϵ ou de la sortie du correcteur w, peut se ramener à un filtre à commander 1/Q(p) et à un correcteur tachymétrique R(p).N(p)

de degré m+1. Le nombre de paramètres nécessaires pour décrire complètement l'organe à commander est égal au degré de Q(p). Ces paramètres constituent le vecteur état Y de composantes {y, y⁽¹⁾, ..., y^(q-1)}.

- 3 -

Remarque :

Dans les systèmes réels le filtre à commander peut avoir une structure plus complexe. La transmittance L(p) se décompose souvent en sous-blocs L_i(p) correspondant à des unités physiques bien déterminées reliées **entre elles soit** directement, soit par l'intermédiaire de boucles, la commande n'étant pas nécessairement appliquée en début de chaine.

Le retour par les variables d'état représenté par le polynome R(p) est alors physiquement possible à partir des sorties des blocs L_i(p).

On suppose pour toute l'étude que ce système a une structure telle que les conditions d'observabilité et de commandibilité sont toutes vérifiées.

I.2 - Equation de récurrence matricielle en boucle ouverte

Un filtre tel que 1/Q(p) peut toujours être décomposé en une suite de filtres élémentaires du premier, du second ordre et d'intégrateurs. Le comportement de cet ensemble entre les instants d'échantillonnage t_n et t_{n+1} peut alors être décrit par un ensemble d'équations différentielles linéaires :

$$a_{q-1} \frac{dy^{(q-1)}(t_{n}+t)}{dt} + y^{(q-1)}(t_{n}+t) = c_{q-1} k (w_{n}, t)$$

$$a_{q-2} \frac{dy^{(q-2)}(t_{n}+t)}{dt} + y^{(q-2)}(t_{n}+t) - b_{q-2}^{q-1} y^{(q-1)}(t_{n}+t) = 0$$

$$a_{q-k+1} \frac{dy^{(q-k+1)}(t_{n}+t)}{dt} + y^{(q-k+1)}(t_{n}+t) - b_{q-k+1}^{q-k+2} y^{(q-k+2)}(t_{n}+t) + y^{(t_{n}+t)} = 0$$

$$a_{q-k} \frac{dy^{(q-k)}(t_{n}+t)}{dt} - b_{q-k}^{q-k+1} y^{(q-k+1)}(t_{n}+t) = 0$$

$$a_{q} - k \frac{dy^{(q-k)}(t_{n}+t)}{dt} - b_{q-k}^{q-k+1} y^{(q-k+1)}(t_{n}+t) = 0$$

Les variables d'état $y^{(q-k+1)}$ et $y^{(q-k)}$ sont associées à un filtre élémentaire de second ordre, l'équation d'ordre zéro est celle d'un intégrateur. L'ensemble I.2 sera utilisé ultérieurement ; lors de la mise en équation, on préfère se servir d'une écriture différente pour les filtres du second ordre. Ceux-ci sont décomposés en deux éléments du premier ordre à constantes complexes conjuguées.

Le système (I.2) peut alors se mettre sous forme condensée :

$$\frac{d \mathbf{Y}(t_n+t)}{dt} + D \mathbf{Y} (t_n+t) = \mathbf{E} \mathbf{k}(\mathbf{w}_n, t)$$
 (I.3)

dans laquelle Y est le vecteur état considéré à l'instant $t_n + t$; $D = \{d_{ij}\}$ une matrice carrée triangulaire supérieure à coefficients constants réels ou complexes, E une matrice colonne à coefficients constants.

Avec $t_n = nT$ comme instant initial, la solution au bout d'une période d'échantillonnage T = constante, donne l'équation de récurrence matricielle en boucle ouverte :

$$Y_{n+1} = A Y_n + K(w_n)$$
 (I.4)

où Y_n est le vecteur état pris à l'instant nT, $K(w_n)$ une fonction qui dépend de la nature du modulateur et où $A = e^{-TD}$ matrice triangulaire supérieure ayant comme éléments sur la diagonale principale :

$$e^{-d}$$
ii^T (i = 0 à q-1) notés D_i.

L'équation caractéristique de la matrice A s'écrit alors :

(I.6)

$$\prod_{i=0}^{q-1} (r-D_i) = 0$$
 (1.5)

soit encore

5

où γ_i sont des constantes réelles ($\gamma_0 = 1$).

 $\sum_{i=0}^{q} \gamma_i r^{q-i} = 0$

. 6 ...

Si donc :

$$\begin{array}{c}
 Y_{n+1} = A Y_n + K_n \\
 Y_{n+2} = A^2 Y_n + A K_n + K_{n+1} \\
 Y_{n+2} = A^3 Y_n + A^2 K_n + A K_{n+1} + K_{n+2} \\
 Y_{n+3} = A^3 Y_n + A^{2-1} K_n + A^{q-2} K_{n+1} + \dots + A K_{n+q-2} + K_{n+q-1}
\end{array}$$

$$\begin{array}{c}
 Y_{n+q} = A^q Y_n + A^{q-1} K_n + A^{q-2} K_{n+1} + \dots + A K_{n+q-2} + K_{n+q-1}
\end{array}$$

puisque toute matrice vérifie son polynome caractéristique, on peut écrire :

$$Y_{n+q} + \sum_{i=1}^{q} \gamma_i Y_{n+q-i} = \sum_{i=1}^{q} \sum_{j=0}^{i-1} \gamma_j A^{i-j-1} K_{n+q-i}$$
(I.8)

Ecrivons cette relation pour une composante y^(s) du vecteur état :

$$y_{n+q}^{(s)} + \sum_{i=1}^{q} \gamma_i y_{n+q-i}^{(s)} = \sum_{i=1}^{q} \sum_{j=0}^{i-1} \gamma_j (\delta_{n+q-i}^{i-j})^{(s)}$$
 (I.9)

où ${\binom{i-j}{n+q-i}}^{(s)}$ représente pour la composante d'ordre s ce que devient l'apport de la régulation à l'instant n+q-i après i-j périodes d'échantillonnage.

I.4 - Equation de récurrence du système en boucle fermée

Considérons maintenant la chaine de retour, elle est constituée par le polynome en p : N(p) R(p) de degré $m+l \leq q$.

Ceci se traduit par la relation de récurrence :

$$\varepsilon_n = \varepsilon_n - \sum_{s=0}^{m+\ell-1} \lambda_s^* y_n^{(s)*}$$
(I.10)

où y_n^(s) * sont les dérivées successives de y prises à l'instant nT.

Il est possible d'obtenir une relation faisant intervenir les variables d'état précedemment définies et d'écrire :

$$\varepsilon_{n} = \varepsilon_{n} - \sum_{s=0}^{m+\ell-1} \lambda_{s} y_{n}^{(s)}$$
(I.11)

On a alors en tenant compte de (I.9) :

$$\varepsilon_{n+q} + \sum_{i=1}^{q} \dot{\gamma}_{i} \varepsilon_{n+q-i} = \varepsilon_{n+q} + \sum_{i=1}^{q} \dot{\gamma}_{i} \varepsilon_{n+q-i} - \cdots$$

$$\cdots - \sum_{s=0}^{m+\ell-1} \sum_{i=1}^{q} \frac{i-1}{i=0} \left(\delta_{n+q-i}^{i-j}\right)^{(s)} \quad (I.12)$$

 δ_{n+q-i}^{i-j} étant une fonction de w_n+q-i, la dernière relation peut se mettre sous forme condensée :

$$\varepsilon_{n+q} + \sum_{i=1}^{q} \gamma_i \varepsilon_{n+q-i} = \varepsilon_{n+q} + \sum_{i=1}^{q} \gamma_i \varepsilon_{n+q-i} + \sum_{i=1}^{q} f_i(w_{n+q-i}) \quad (I.13)$$

Il faut maintenant tenir compte du réseau correcteur caractérisé par la relation :

$$r \qquad r \qquad r$$

$$\sum_{i=0}^{r} \propto w_{n-i} = \sum_{i=0}^{r} \beta_{p-i} \epsilon_{n-i} \qquad (1.14)$$

associéeà r conditions initiales.

En effectuant une somme pondérée (coefficients v_i) des relations (I.14) prises à des instants successifs et en tenant compte de (I.13), on obtient :

$$\begin{array}{c} \mathbf{r} \\ \Sigma \\ \mathbf{i=0} \end{array} \stackrel{\beta}{\mathbf{r-i}} \stackrel{q}{\sum} \mathbf{\gamma}_{j} \stackrel{e}{\mathbf{n+q-i-j}} \stackrel{+}{\underset{i=0}{\overset{\Gamma}{\mathbf{r}}}} \stackrel{\beta}{\mathbf{r-i}} \stackrel{q}{\underset{j=1}{\overset{\Sigma}{\mathbf{r}}}} f_{j}(\mathbf{w}_{\mathbf{n+q-j-i}}) = . \\ \dots = \stackrel{q}{\sum} \stackrel{r}{\mathbf{r}} \stackrel{r}{\underset{j=0}{\overset{\Sigma}{\mathbf{r}}}} \stackrel{q}{\mathbf{r}} \stackrel{r}{\underset{j=0}{\overset{\Gamma}{\mathbf{r}}}} \stackrel{q}{\mathbf{r}} \stackrel{r}{\underset{j=0}{\overset{\Gamma}{\mathbf{r}}}} (\mathbf{I}.15)$$

ce qui peut être ordonné finalement de la manière suivante :

$$\begin{array}{ccc} q+r & & q+r & & q+r \\ \Sigma & \rho_i & e_{n-i+q+r} & = & \Sigma & \zeta_i & w_{n+q+r-i} & + & \Sigma & g_i & (w_{n+q+r-i}) \\ i=o & & i=1 \end{array}$$
 (I.16)

Les coefficients ρ_i et ζ_i sont définis par :

D'autre part $g_i \begin{pmatrix} w_{n+q+r-i} \end{pmatrix}$ s'exprimera par la relation : $(i=1 \ge q+r)$ $g_i \begin{pmatrix} w_{n+q+r-i} \end{pmatrix} = -\sum_{\substack{j=i-q \ge 0}}^{i-1 \le r} \beta_{r-j} f_{i-j} \begin{pmatrix} w_{n+q+r-i} \end{pmatrix}$ (I.19)

Lorsque le correcteur ne présente pas de numérateur c'est-à-dire lorsque

 $\beta_{r-i} = 0$ (i=0 à r-1), l'équation (I.16) s'écrit plus simplement :

$$\beta_{o} \sum_{i=0}^{q+r} \gamma_{i} e_{n+q+r-i} = \sum_{i=0}^{q+r} \zeta_{i} w_{n+q+r-i} - \beta_{o} \sum_{i=r+1}^{q+r} f_{i-r} (w_{n+q+r-i}) (I.20)$$

En annexe I, nous donnons un exemple de mise en équation. Il s'agit de la commande d'un filtre du second ordre avec intégration (moteur).

A partir des caractéristiques de chaque élément, par les calculs que nous venons de présenter - soit successivement la détermination de la relation matricielle en boucle ouverte, de l'équation de récurrence faisant intervenir le retour par les variables d'état, et enfin l'obtention de l'équation utilisant 1 réseau numérique - nous avons montré comment il était possible de ramener les équations de fonctionnement du système complet à une forme que l'on sait traiter : la forme normale naturelle. L'exploitation de celle-ci permettra dans les chapitres II et III d'analyser le comportement du système en régime permanent et en régime dynamique.

Les équations (I.16) et (I.20) appellent toutefois quelques commentaires quant aux conditions initiales. Pour être représentatives du système physique, elles doivent être associées à q+r conditions initiales dont q proviennent de la relation (I.13) et r de la relation (I.14). L'instant nT étant pris comme instant de départ, la seule valeur connue **a**u départ pour l'équation (I.13) est alors c_n . Il faut donc déterminer les (q-1) autres par le calcul.Les r conditions correspondant plus spécifiquement au correcteur sont soit déterminées par le fait physique soit fixées à l'avance.

En effet le système étant à l'équilibre, si une modification de consigne intervient à un instant nT inconnu, alors ε et wont fixés par l'état d'équilibre c'est-à-dire sont nuls ou constants. Mais il peut arriver également que l'entrée soit appliquée à l'instant nT prévu comme origine des temps. Il est alors possible de choisir arbitrairement certaines valeurs c'est-à-dire d'initialiser le réseau correcteur. Toutes ces notions seront examinées plus particulièrement lors du sixième chapitre.

CHAPITRE II

ETUDE DU REGIME PERMANENT

En régime permanent, ce qui intéresse l'utilisateur, c'est d'avoir le système le plus précis possible. L'étude de la précision se fait en général en utilisant les entrées classiques de la forme t^n (η entier \ge 0). Lorsque la valeur de η est fixée, l'erreur dépend surtout du nombre d'intégrateurs que comporte le processus. C'est pourquoi dans un premier paragraphe nous examinerons l'influence de ces intégrations. Celle-ci sera caractérisée par des relations particulières concernant les coefficients γ_i .

Nous regarderons ensuite les conséquences de ces relations sur l'erreur en régime permanent pour diverses entrées et comment il est quand même possible dans certains cas de rendre nul cet écart en réglant convenablement les coefficients du correcteur numérique.

II.1. Influence des intégrations

Reprenons les équations (I.5.) et (I.6.) c'est-à-dire :

$$q^{-1} = 0 \quad (II.1.)$$

$$i=0 \quad r^{q} + \sum_{i=1}^{q} \gamma_{i} \quad r^{q-i} = 0 \quad (II.2.)$$

Elles sont caractéristiques de la structure du système et en particulier pour chaque intégrateur que possède le système, un des coefficients D_i est égal à un.

Si donc on dispose d'un intégrateur, la relation :

$$1 + \sum_{i=1}^{q} \gamma_i = 0$$
 (II.3.)

est vérifiée, car, avec r=1, la relation (II.1.) est satisfaite si au moins un élément D_i est égal à 1.

Lorsque le filtre à commander comporte deux intégrateurs, on peut montrer que :

$$(q+1) + \sum_{i=1}^{q} \gamma_i (q+1-i) = 0$$
 (II.4.)

Cette équation peut encore se mettre sous la forme :

(q+1)
$$(1 + \sum_{i=1}^{q} \gamma_i) - \sum_{i=1}^{q} i \cdot \gamma_i = 0$$
 (II.5.)

Puisque le système possède deux intégrations, la relation (II.3.) est valable, il reste donc à vérifier :

Or les coefficients γ_i peuvent se mettre sous la forme 2 :

$$\begin{vmatrix} \bar{\mathbf{y}}_0 = \mathbf{i} \\ \gamma_k = (-1)^k & \sum_{i=1}^{q} \Pi D_i \\ \mathbf{i} = \mathbf{i} & \mathbf{k} \end{vmatrix}$$
 (II.7.)

où Π D_i est le produit k à k des q différents termes D_i. k

Dans ce cas le membre de gauche de (II.6.) s'écrit :

$$\begin{array}{c} q \\ \Sigma \\ (-1)^{k} \\ k=1 \end{array} \begin{array}{c} k \\ i=1 \end{array} \begin{array}{c} q \\ i \\ k \end{array} \begin{array}{c} \Pi \\ i \\ k=1 \end{array} \begin{array}{c} D \\ i \\ k=1 \end{array} \begin{array}{c} q \\ \Pi \\ k=1 \end{array} \begin{array}{c} Q \\ \Pi \\ k=1 \end{array} \begin{array}{c} Q \\ \Pi \\ k=1 \end{array} \begin{array}{c} (1-D) \\ i \\ i\neq k \end{array} \begin{array}{c} (11.8.) \\ i\neq k \end{array}$$

Pour annuler (II.8.), il faut avoir au moins deux éléments D_i égaux à un. Un filtre comportant trois intégrations donnerait :

$$(q+1)^{2} + \sum_{i=1}^{q} \gamma_{i} \cdot (q+1-i)^{2} = 0$$
 (II.9.)

on peut en effet ramener cette relation compte tenu de (II.3.) et (II.6.) à :

$$\sum_{i=1}^{q} i^{2} \cdot \gamma_{i} = 0$$
 (II.10.)

(II.10.) se développe à partir de (II.7.) comme :

Cette expression ne s'annule que si au moins trois termes D_i deviennent égaux à l'unité.

Plus généralement si le système possède (n+1) intégrations, on aura la relation :

$$(q+1)^n + \sum_{i=1}^{q} \gamma_i (q+1-i)^n = 0$$
 (II.12.)

qui peut se ramener à :

$$\sum_{i=1}^{q} i^{\eta} \cdot \gamma_{i} = 0$$
 (II.13.)

Si dans le développement de (II.13.) on tient compte de l'annulation des (n-1)premiers termes par le fait que le système possède au moins n intégrations, il reste alors le dernier terme :

Celui-ci ne peut s'annuler que si au moins (n+1) éléments D_i sont égaux à un.

11.2. Réponse permanente aux entrées classiques

Nous allons considérer dans ce paragraphe le régime permanent du système soumis à une entrée du type (tⁿ) et nous examinerons suivant le nombre d'intégration la possibilité d'avoir une erreur permanente nulle.

II.2.1. Entrée en échelon de position

Reprenons les équations (I.13.) et (I.16.). LOrsque le système a atteint son régime permanent, c'est-à-dire lorsque n devient suffisamment grand, on a la relation :

$$\varepsilon \begin{bmatrix} \mathbf{q} & \mathbf{q} \\ \mathbf{i} + \boldsymbol{\Sigma} & \boldsymbol{\gamma}_{\mathbf{i}} \end{bmatrix} = \varepsilon \begin{bmatrix} \mathbf{q} & \mathbf{q} \\ \mathbf{i} + \boldsymbol{\Sigma} & \boldsymbol{\gamma}_{\mathbf{i}} \end{bmatrix} + \varepsilon & \mathbf{f}_{\mathbf{i}} \quad (\mathbf{w})$$

$$\begin{bmatrix} \mathbf{q} + \mathbf{r} \\ \boldsymbol{\Sigma} & \boldsymbol{\rho}_{\mathbf{i}} \end{bmatrix} = \varepsilon \begin{bmatrix} \mathbf{r} & \mathbf{q} \\ \boldsymbol{\Sigma} & \boldsymbol{\zeta}_{\mathbf{i}} \end{bmatrix} \quad \mathbf{w} + \varepsilon & \mathbf{g}_{\mathbf{i}} \quad (\mathbf{w})$$

$$\begin{bmatrix} \mathbf{q} + \mathbf{r} \\ \mathbf{z} & \boldsymbol{\varphi}_{\mathbf{i}} \end{bmatrix} = \varepsilon = \begin{bmatrix} \mathbf{r} & \mathbf{q} + \mathbf{r} \\ \boldsymbol{\Sigma} & \boldsymbol{\zeta}_{\mathbf{i}} \end{bmatrix} \quad \mathbf{w} + \varepsilon & \mathbf{g}_{\mathbf{i}} \quad (\mathbf{w})$$

où ε, e, w représentent les valeurs permanentes de l'erreur, de l'entrée et de la sortie du correcteur numérique.

Si le filtre à commander possède une intégration, en tenant compte de la relation (II.3.), on a la somme des fonctions f_i (w) qui est nulle. Une solution correspond à w nul. Celle-ci rend compte de la réalité physique car un système comportant un intégrateur et placé en régime établi dans une position, garde cette position, s'il n'est soumis à aucune sollicitation.

Si w est nul, la seconde équation (II.15.) est toujours vérifiée car :

Lorsque le filtre ne possède pas d'intégration, on doit écrire :

$$1 + \sum_{i=1}^{q} \gamma_{i} = \gamma \neq 0$$
 (II.17.)

Pour que є soit nulle, il importe pour w de vérifier l'équation :

$$e\gamma + \sum_{i=1}^{q} f_i(w) = 0$$
 (II.18.)

Compte tenu de (I.17.) à (I.19.) et de (II.17.), on peut mettre la seconde relation (II.15.) sous la forme :

A cause de la relation (II.18.), on obtient l'annulation de l'écart si les coefficients du correcteur vérifient la condition :

$$\begin{array}{c} \mathbf{r} \\ \Sigma \\ \mathbf{i=0} \end{array} \stackrel{\alpha}{\mathbf{r-i}} = 0 \qquad (11.20.)$$

11.2.2. Entrée en échelon de vitesse at

L'équation (I.13.) dans le cas d'une entrée en échelon de vitesse devient lorsque n est suffisamment grand :

$$\varepsilon (1+\sum_{i=1}^{q} \gamma_i) = aT(n+q) (1+\sum_{i=1}^{q} \gamma_i) - aT \sum_{i=1}^{q} i \gamma_i + \sum_{i=1}^{q} f_i (w)$$
(II.21.)

Si le système possède deux intégrations, d'après (II.3.) et (II.6.) on en arrive pour les mêmes raisons que précédemment à prendre w égal à zéro pour avoir une erreur nulle en régime permanent.

Dans le cas où on ne dispose que d'une seule intégration, w doit avoir une valeur constante non nulle qui vérifie :

$$\begin{array}{c} q & q \\ \Sigma & f_{\star} & (w) = aT \sum_{i=1}^{N} i \cdot \gamma_{i} & (II.22.) \\ i = 1 & i = 1 & i \end{array}$$

Sans intégration, il n'est pas possible d'avoir une erreur permanente nulle. En effet, pour équilibrer l'effet du terme de (II.21.) où intervient n, il faudrait avoir une commande qui puisse devenir infiniment grande. L'équation (I.16.), lorsque le régime permanent est atteint, s'écrit :

$$\begin{array}{cccc} q+r & q+r & q+r \\ aT & \Sigma & \rho_{1} & (n+q+r-i) = w & \Sigma & \zeta_{1} + & \Sigma & g_{1} & (w) \\ i=0 & i=1 & i=1 \end{array}$$
(II.23.)

soit :

aT(n+q+r) $\begin{array}{cccc} q+r & q+r & q+r & q+r \\ \Sigma & \rho_i & -aT & \Sigma & i. \\ i=0 & i=0 & i=0 & i=1 \end{array} \qquad (II.24.)$

Lorsque le système comporte deux intégrations, pour obtenir w nul, il faut avoir, en tenant compte de (II.16.) :

$$\sum_{i=0}^{q+r} i \cdot \rho_i = 0 \qquad (11.25.)$$

Soit :

(II.26.) peut encore se mettre sous la forme :

$$\begin{bmatrix} \alpha & & & & & \\ \Sigma & \mathbf{i} \cdot \gamma_{\mathbf{i}} \\ \mathbf{i}=0 & & & \\ & \mathbf{i}=0 & & & \\ & \mathbf{i}=0 & & & \mathbf{i}=0 \\ & & & & \mathbf{i}=0 \\ & & & & \\ & & & \\$$

Cette condition est toujours vérifiée quel que soit β_i (i = 0 a r) étant donné les relations (II.3.) et (II.6.).

Quand le système ne comporte qu'une seule intégration, l'équation (II.24.) devient compte tenu de (II.16.):

$$-aT \sum_{i=0}^{q+r} \frac{q+r}{i=0} = w \sum_{i=0}^{q+r} \zeta_i + \sum_{i=1}^{q+r} g_i (w)$$
(II.28.)

soit :

11.2.3. Entrée d'ordre n

On peut facilement généraliser les notions précédentes au cas où l'entrée est d'ordre η . Si le système possède $\eta+1$ intégrations, on impose que la suite récurrente en w tende vers zéro en régime définitif. Dans le cas où il manque une intégration, la convergence devra se faire vis à vis d'une valeur de w définie par la relation :

$$\sum_{i=1}^{q} f_{i} (w) = (-1)^{\eta-1} a T^{\eta} \sum_{i=1}^{q} (i)^{\eta} \gamma_{i}$$
 (II.30.)

Il convient alors de choisir les coefficients α de manière à ce que :

$$\sum_{j=0}^{r} \alpha_{r-j} = 0 \qquad (II.31.)$$

les coefficients β_i pouvant être quelconques. Si la relation (II.31.) n'est pas vérifiée, on aura une erreur en régime permanent égale à :

$$\varepsilon_{p} = w \frac{\sum_{i=0}^{\Sigma} \alpha_{r-i}}{\sum_{i=0}^{\Sigma} \beta_{r-i}} \qquad \begin{bmatrix} r \\ \Sigma \\ i=0 \end{bmatrix} \qquad (II.32.)$$

où w est obtenu à partir de (II.30.). Lorsque le système possède moins de n intégrations, on ne peut obtenir de réponse sans erreur permanente que si la commande devient infiniment grande. Ceci ne peut jamais se produire à cause des saturations l'erreur tend alors vers l'infini.

II.2.4. Exemple

Avec l'exemple de l'annexe I, comme le système possède une intégration la réponse indicielle ne présente pas d'erreur en régime établi. Pour une entrée en rampe e = at, on devra appliquer une commande constante w définie par :

Ceci permet d'obtenir w par la relation :

$$k(|w|) = \frac{aT}{A \text{ signe } w}$$
(II.34.)

puisque $T_{in} = k \quad (|w_n|).$

Dans le cas où la relation (II.31.) n'est pas vérifiée l'erreur en régime permanent s'écrira, si $T_{in} = k \cdot |w_n|$ et si $\sum_{r=0}^{r} \beta_{r-i} \neq 0$:

$$\varepsilon_{p} = \frac{aT}{Ak} \frac{\sum_{i=0}^{\infty} \alpha_{r-i}}{r}$$
(II.35.)
$$\sum_{i=0}^{\infty} \beta_{r-i}$$

Conclusion

Dans les idées relatives au régime permanent que nous venons d'énoncer au cours de ce chapitre, nous reconnaissons, écrit de façon plus générale, ce que nous savions pour les systèmes discrets linéaires. Pour une entrée donnée du type t^{η}, les résultats se résument ainsi : lorsque le processus comporte au moins le nombre d'intégrateur requis, l'erreur en régime établi est nulle. S'il manque une intégration, l'écart est égal à une constante et peut être déterminé par les équations présentées ci-dessus. Par un choix judicieux des coefficients du correcteur numérique, on peut annuler cette constante. Pour les systèmes où le nombre d'intégration estimouffisant, l'erreur devient infiniment grande.

CHAPITRE III

ETUDE DU REGIME DYNAMIQUE DES SYSTEMES ECHANTILLONNES

Lors des chapitres précédents, nous avons mis en évidence la possibilité de ramener à une forme que l'on sait traiter les équations caractéristiques du fonctionnement des systèmes discrets comportant un correcteur numérique.

La forme normale naturelle, obtenue à partir de la représentation dans l'espace séquence, permet d'utiliser les nombreux travaux effectués à partir de cette forme sur la stabilité $\begin{vmatrix} 3 & 3 & 8 \\ 3 & 8 & 8 \end{vmatrix}$, la stabilité vis à vis des conditions initiales $\begin{vmatrix} 30, 31 \\ 22 & 24 \end{vmatrix}$, le temps de réponse $\begin{vmatrix} 9, 10 \\ 25, 26 \end{vmatrix}$.

Le comportement dynamique d'un système est en grande partie lié aux notions de stabilité et de temps de réponse, l'une indiquant si le système, éloigné de sa position d'équilibre, y revient, l'autre spécifiant le mode de retour. Dans ce chapitre nous proposons d'apporter quelques précisions sur ces notions. La condition de stabilité est considérée comme la condition de décroissance dans un espace métrique de la distance entre le point représentatif de l'état du système et le point correspondant à l'état d'équilibre. Le temps de réponse donne l'indication de la vitesse de décroissance.

III.1. Stabilité

Un système d'ordre q commandé par échantillonnage et possédant un correcteur numérique d'ordre r peut être entièrement caractérisé par q+r valeurs Celles-ci constituent les composantes d'un vecteur w_n élément d'un espace vectoriel à q+r dimensions défini sur le corps des réels et appelé espace séquence.

La relation générale du chapitre I pour le système en régulateur :

ou plus simplement :

$$w_{n+q+r} + \sum_{i=1}^{q+r} h_i (w_{n+q+r-i}) \cdot w_{n+q+r-i} = 0$$
 (III.2.)

correspond à une application de cet espace sur lui-même et peut se mettre sous la forme séquence matricielle :

$$W_{n+1} = A_n W_n \qquad (III.3.)$$

où A_n est une matrice non linéaire fonction des composantes de \mathbb{W}_n . Le choix du vecteur \mathbb{W} conduit à deux représentations possibles. En prenant pour composantes les valeurs successives de \mathbb{W} aux divers instants d'échantillonnage on obtient pour A_n la forme compagnon. Si la composante \mathbb{W}_n^i d'ordre i du vecteur \mathbb{W}_n est égale à :

$$\mathbf{w}_{n}^{i} = \mathbf{w}_{n+1}^{i-1} + \mathbf{h}_{i-1} \quad \mathbf{w}_{n}^{i}$$

et d'autre part :

$$w_{n+1}^{q+r} + h_{q+r} = 0$$
 (III.4.)

la matrice A_n a alors la forme de Frobenius. Afin de pouvoir faire l'étude de la stabilité, nous effectuons le changement de base : $\mathbf{W}_n = P Z_n$ avec $P = \text{diag}(a_1, \dots, a_q) \quad \begin{vmatrix} a_1 > 0 \\ i \end{vmatrix}$ (III.5.) L'équation (III.3.) devient alors :

$$Z_{n+1} = B_n Z_n \qquad (III.6.)$$

Considérons en particulier un espace vectoriel muni de la métrique d et supposons cet espace complet, c'est-à-dire que toute suite de points de l'espace est une suite de Cauchy. Le point fixe de la transformation est ramené à l'origine. Dans le cadre des opérations contractées ou ce qui revient au même des fonctions de Ljapunov du type norme $V(Z_n) = \Psi(Z_n)$, la condition de stabilité s'écrit :

$$d(Z_{n+1}) \leq \alpha d(Z_n) \qquad 0 < \alpha < 1 \qquad (III.7.)$$

où d(Z_n) représente la distance à l'origine du point courant de l'espace prise à l'instant nT.

La condition de stabilité peut également se mettre sous la forme :

$$\sup \frac{d(Z_{n+1})}{d(Z_n)} = S_{\varphi \varphi} (B_n) < \alpha \qquad 0 < \alpha < 1 \quad (III.8.)$$

où $S_{\psi\psi}$ (B_n) est la norme de la matrice B_n générée à partir de la norme de vecteur Ψ (Z_n).

En appliquant la condition (III.8.) aux trois normes de Hölder usuelles : somme des modules, norme euclidienne et écart maximum - cette dernière notée norme d'ordre infini ne vérifie pas en fait les inégalités de Hölder et de Minkowski on constate que la condition la plus large de stabilité est obtenue d'une part avec la forme compagnon et la norme d'ordre infini, d'autre part à partir de la forme de Frobenius et de <u>la</u> norme d'ordre un. Cette condition correspond à celle de Wegrzyn-Vidal 1, 29 et s'écrit :

$$\begin{array}{c|c} q+r \\ \Sigma & h_i & < 1-\varepsilon \\ i=1 \end{array}$$
 (III.9.)

Cette condition peut être étendue au cas probabiliste 27, 28. Nous venons de voir la condition que doit remplir le système pour que la suite des grandeurs de commande w converge vers une limite finie généralement nulle. Dans ce cas qu'advient-il de la suite des grandeurs & ? Pour répondre à cette question, considérons la relation caractéristique du réseau correcteur numérique :

$$\begin{array}{cccc} \mathbf{r} & \mathbf{r} \\ \Sigma & \alpha_{\mathbf{r}-\mathbf{i}} & \mathbf{w}_{\mathbf{n}+\mathbf{r}-\mathbf{i}} & = & \Sigma & \beta_{\mathbf{r}-\mathbf{i}} & \varepsilon_{\mathbf{n}+\mathbf{r}-\mathbf{i}} \\ \mathbf{i}=0 & \mathbf{r}-\mathbf{i} & \mathbf{i}=0 & \mathbf{r}-\mathbf{i} & (\alpha_{-}\neq 0) \end{array}$$
 (III.10.)

Le décalage dans le temps de cette relation permet d'écrire, puisque w_{n-i} et ε_{n-i} (i > 0) correspondent à des conditions initiales fixées et finies.

$$\beta \cdot \varepsilon_n = \alpha \cdot w_n^* + K \qquad (III.11.)$$

$$\beta = \begin{bmatrix} 3_{r} - -\beta_{0} \\ \beta_{r} - \beta_{1} \\ 0 \\ \beta_{r} \end{bmatrix}; \qquad \alpha = \begin{bmatrix} \alpha_{r} - \alpha_{0} \\ \alpha_{r} - \alpha_{1} \\ 0 \\ \beta_{r} \end{bmatrix}$$

- 21 -

et où K est un vecteur dépendant des conditions initiales dont les composantes sont bornées. Si β_r est différent de zéro, on peut écrire :

$$\Psi(\varepsilon_n) \leq S_{\varphi\varphi} (\beta^{-1}\alpha). \Psi(w_n^*) + \Psi(\beta^{-1}K)$$
 (III.12.)

Si $\Psi(w_n)$ converge de part la condition III.9, alors $\Psi(w_n^*)$ convergera également. Comme $\Psi(K)$ est bornée, on aura convergence pour la suite des valeurs ε_n si tous les α_i et β_i sont bornés et si β_r est différent de zéro.

III.2. Temps de réponse

La condition pour que au bout de s périodes d'échantillonnage, on ait un mode de décroissance tel que :

$$d(Z_{n+s}) \leq \beta/100 \quad d(Z_n)$$

peut être obtenue à partir de la relation (III.8.) en définissant α par :

$$\alpha^{\mathbf{S}} = \beta/100 \qquad (\text{III.14.})$$

En utilisant la norme générée à partir de la norme de Hölder d'ordre un et appliquée à la forme de Frobenius on retrouve la condition de Vidal | 1 | :

$$\begin{array}{c|c} q+r \\ \Sigma & h_i & \frac{1}{\alpha^i} < 1-\varepsilon \end{array} \quad (III.15.)$$

III.3. Stabilité vis-à-vis des conditions initiales

Lorsque le système de par la non-linéarité ou le modulateur ne remplit pas la condition de stabilité précédemment définie, celle-ci donne dans le plan des variables un domaine quéassure la stabilité si la trajectoire d'état partant d'un point de ce domaine y reste contenue quel que soit n.

Dans ce cas il importe de savoir si, partant de conditions initiales données, le système va converger. Il convient alors de définir un domaine de stabilité par rapport aux conditions initiales.

Dans ce sens plusieurs méthodes ont été proposées $\begin{vmatrix} 30 \\ 31 \end{vmatrix}$; la première méthode est celle des hypersurfaces équipotentielles de Ljapunov ou ce qui revient au même des surfaces isodistances. Elle consiste à chercher la valeur C de la constante C telle que V = C ou d = C de manière à ce que l'hypersurface de Ljapunov ou isodistance correspondante soit à l'intérieur de l'hypervolume de stabilité défini à partir de cette fonction de Ljapunov ou de cette fonction distance.

La seconde méthode revient à déterminer une séquence de volume D_i telle que $D_{i+1} \subset D_i$ et telle que l'origine soit intérieure à tous les D_i . Le volume D_o max inclus dans le domaine de stabilité L est alors un domaine de stabilité vis-à-vis des conditions initiales.

Dans les paragraphes suivants nous montrerons d'une part comment obtenir un domaine immédiat de stabilité vis-à-vis des conditions initiales et d'autre part, comment déterminer le plus grand domaine de conditions initiales contenu dans le domaine de stabilité.

III.3.1. Hypercube des conditions initiales

Soit le système régi par l'équation (III.2.). Cherchons le domaine D_1 transformé du domaine D_0 dans la transformation (III.3.) où D_0 est défini par :

$$(D_{o}) \begin{cases} | w_{n}^{i} | < b_{i} \\ i = 1 \ a \ q+r \end{cases}$$
(III.16.)

Le domaine D, est alors :

$$(D_{1}) \begin{cases} |w_{n+1}^{i}| < b_{i+1} & (i=1 \ge q+r-1) \\ |w_{n+1}^{q+r}| < |h_{q+r} \cdot b_{1} + \dots + h_{1} \cdot b_{q+r}| \end{cases}$$
(III.17.)

La condition pour que $D_1 \subseteq D_0$ s'écrit :

- 23 -

$$\begin{cases} b_{i+1} \leq b_{i} \\ |h_{q+r} | b_{1} + \dots + |h_{1} | b_{q+r} | \leq b_{q+r} \end{cases}$$
(III.18.)

La seconde condition peut encore s'écrire en tenant compte de la première :

$$\begin{array}{c|c} q + r \\ \Sigma & | h_i | < \frac{b_{q+r}}{b_1} \end{array} \quad (III.19.)$$

Le plus grand hypervolume D_0 sera obtenu lorsque $\frac{b_{q+r}}{b_1} < 1 - \varepsilon$ puisque

pour cette valeur on trouve la condition de stabilité (III.9.) et donc : Le plus grand hyperparallélépipède des conditions initiales contenu dans l'hypervolume de stabilité défini par la relation III.9 est l'hypercube $|w_n^i| < b \forall i$, les limites étant exclues, où b est une constante positive déterminée par :

$$\Sigma |h_i(b)| = 1$$
 (III.20.)
i=1

111.3.2. Méthode du domaine récurrent

Il est possible d'obtenir le plus grand domaine de stabilité par rapport aux conditions initiales contenu dans un domaine L de stabilité par rapport aux variables en utilisant la méthode suivante :

Considérons la transformation III.3. Celle-ci fait passer du plan d'état W au plan d'état U. La relation III.9 définit le domaine de stabilité par rapport aux variables soit L dans le plan W et M dans le plan U.

Le transformé M_1 du domaine L peut être divisé en deux parties M_1' et M_1'' intérieure et extérieure à M.

 M''_1 correspond à une partie L' de L qui ne peut appartenir au domaine des conditions initiales. Mais la partie correspondante de M'_1 doit aussi être supprimée, sinon dans une transformation ultérieure le domaine obtenu ne sera pas contenu dans le domaine de stabilité. Soit M_2 cette partie de M'_1 , il lui correspond

une partie L_1 de L ; on reprend alors le même raisonnement jusqu'à ce que l'intersection du domaine tel que M_2 et du domaine restant tel que M_1^i soit vide. La méthode est illustrée par l'exemple suivant :

III.3.3. Exemple

Soit l'équation de récurrence du second ordre :

$$\mathbf{w}_{n+2} + \mathbf{w}_{n+1}^2 + \mathbf{w}_n^2 = 0$$
 (III.21.)

la condition de stabilité (III.9.) permet d'écrire :

$$|w_{n+1}| + |w_n| < 1 - \varepsilon$$
 (III.22.)

La transformation (III.3.) s'écrire avec $\mathbb{W}_n : \{ \mathbb{W}_n^{(1)}, \mathbb{W}_n^{(2)} \}$

$$W_{n+1} = A_n W_n$$
 où $A_n = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ -w_n^{(1)} & -w_n^{(2)} \end{bmatrix}$ (III.23.)

Le passage du plan W au plan U sera alors défini par :

$$\begin{pmatrix} w_n^{(1)} & \longrightarrow & u = w_n^{(2)} \\ w_n^{(2)} & \longrightarrow & v = - \left[(w_n^{(1)})^2 + (w_n^{(2)})^2 \right]$$
 (III.24.)

Dans le plan (u, v, le transformé du domaine de stabilité correspond à l'ensemble : A U B U C U D U E, de la figure III.1.

Remarquons que le domaine C dans le plan (u, v) correspond au transformé du domaine immédiat de stabilité vis-à-vis des conditions initiales $\left(\left| \mathbf{w}_{n}^{(1)} \right| < 1/2 \right)$

$$|w_n^{(2)}| < 1/2$$
 (III.25.)

Pour avoir un domaine de conditions initiales il faut que le transformé du domaine de stabilité soit lui-même contenu dans le domaine |u| + |v| < 1Pour qu'il en soit ainsi il faut supprimer du plan (u, v) les domaines A et E, ce qui revient à supprimer dans le plan W les domaines extérieurs aux cercles $\left[(0, \pm 1/2), R = \frac{\sqrt{5}}{2} \right]$

Pour que la transformation soit de nouveau possible, il faut aussi supprimer ces domaines dans le plan U c'est-à-dire le domaine E.

La nouvelle suppression qui en découle n'atteignant pas une partie du domaine précédemment défini, nous avons alors dans le plan W le domaine D_0 de stabilité (figure III.2.). Son transformé est complètement contenu dans D_0° .

III.4. Temps de réponse par rapport aux conditions initiales

- 1 ----

De la même manière que pour la stabilité, la condition (III.15.), n'assure un temps de réponse en s périodes d'échantillonnage à β % que si la trajectoire reste contenuedans le domaine quel que soit n. Il convient donc également ici de définir un domaine de temps de réponse vis à vis des conditions initiales.

Les méthodes présentées pour la stabilité pourront s'appliquer à partir du domaine défini par la condition (III.15.). En particulier la méthode du domaine **immédiat de forme hyperparallélé**pipèdique se trans**pose** simplement. La relation (III.18.) étant remplie lorsqu'on se trouve dans le domaine de stabilité ce qui est le cas à fortiori dans le domaine de temps de réponse, il suffit de choisir les coefficients b_i tels que la condition suivante soit remplie pour une valeur de α donnée :

$$\sum_{i=1}^{q+r} |h_i(b_i)| \cdot \frac{1}{\alpha^i} < 1 \qquad (III.26.)$$

Conclusion

La forme normale naturelle à laquelle nous avons pu nous ramener permet une étude analytique relativement aisée du régime dynamique des systèmes échantillonnés à commande non linéaire comportant un réseau correcteur numérique. Toutefois, dans cette étude, le système est considéré en régulateur. Afin de compléter l'analyse du comportement du processus lorsque celui-ci est soumis à une entrée, nous présentons, dans les pages qui vont suivre, des méthodes graphique et numérique d'étude de la réponse d'un système discret à une sollicitation quelconque. Puis, pour voir l'influence des variations de paramètre ou de structure, nous nous pencherons sur l'analyse graphique de l'évolution des divers coefficients de sensibilité.

CHAPITRE IV

- 28 -

METHODE GRAPHIQUE D'ANALYSE DU

COMPORTEMENT DYNAMIQUE DES SYSTEMES ECHANTILLONNES NON LINEAIRES

La détermination analytique des régimes transitoires des systèmes discrets non linéaires soumis à une sollicitation quelconque conduit généralement à des calculs délicats. Les méthodes classiques ne permettent d'obtenir les valeurs des variables d'état qu'aux seuls instants d'échantillonnage, si toutefois l'ordre du système n'est pas trop élevé. Or il importe souvent en pratique de connaître complètement l'allure des sorties. La méthode proposée, adaptée de celle de Bachkirov $\begin{bmatrix} 11 \\ 12 \end{bmatrix}$ donne graphiquement pour une entrée quelconque la réponse d'un système entre les instants de discrétisation. Nous aborderons ensuite à titre d'exemple, les trois problèmes suivants :

- systèmes avec hystérésis
- système à modulation de largeur
- système à période variable et à modulation intégrale (IPFM)

Puis nous montrerons comment il est possible de déterminer les trajectoires dans le plan de phase pour les systèmes du second ordre.

Les équations rendant compte de la construction précédente conduiront ensuite à une mise en oeuvre des divers processus sur machine numérique.

IV.1. Exposé de la méthode de construction graphique 13

L'organe à régler du système de la figure IV.l est un filtre d'ordre q caractérisé par une fonction de transfert L(p). Cet élément est commandé par le signal élaboré à partir de $\varepsilon(t)$ (ou w dans le cas d'un correcteur numérique) par un échantillonneur non linéaire.

-- 29

Figure IV.1.

Les équations qui régissent le comportement du système entre les instants d'échantillonnage sont données en (I.2). La chaîne de retour est caractérisée par la relation :

$$\varepsilon(t_n) = \varepsilon(t_n) - \sum_{r=0}^{q-1} \lambda_r y^{(r)}(t_n)$$
 (IV.1)

Or la solution de l'équation différentielle

$$\tau \frac{dz(t)}{dt} + z(t) = f(t)$$
 $z(0) = z_0$ (IV.2)

peut se mettre sous la forme :

$$z(t+\Delta t) = \frac{\Delta t}{T_c} \left[f(t+\frac{\Delta t}{2}) - z(t) \right] + z(t) \quad (IV.3)$$

En comparant le développement en série des équations IV.2 et IV.3, on constate que l'approximation faite est du troisième ordre en At, l'écart est égal à :

$$\frac{\Delta t^{3}}{3!} \left[\frac{f''(t)}{4T} + \frac{f'(t)}{2T^{2}} \right]$$

Notons d'autre part que si f(t)est la fonction unitaire u(t), il n'y a pas d'erreur. Dans la relation (IV.3) Δt désigne le pas de construction et T vaut :
$$T_{c} = \frac{\Delta t}{1 - e}$$
(IV.4)

30

Le passage de (IV.2) à (IV.3) se justifie de la manière suivante : soit une exponentielle $e^{-t/\tau}$ et un intervalle de temps Δt constant, la projection sur l'axe des temps de la sécante passant par les points d'abscisses t_0 et t_0 + Δt et prolongée jusqu'à cet axe reste constante quelque soit t_0 et égale à T_c .

Donc en assimilant la fonction f(t)quelconque à une fonction escalier $\begin{bmatrix} 14 \\ 14 \end{bmatrix}$ de pas Δt et en prenant la valeur de la fonction au milieu d'un intervalle, il suffit de décaler de $T_c - \frac{\Delta t}{2}$ l'origine de f(t) et de relier respectivement les points a et a', b et b', c et c' etc... de la figure IV.2 pour obtenir l'allure approchée de z(t).

figure IV.2.

Dans le cas où le filtre **est** un intégrat**eur**, il est possible de se ramener à l'équation (IV.2) en écrivant :

$$\frac{\tau dz(t)}{dt} + z(t) = f(t) + z(t) = f_{1}(t)$$
(IV.5)

D'autre part une équation différentielle du second ordre se traite facilement en appliquant simultanément le procédé aux deux relations :

$$\tau_{1} \frac{dz(t)}{dt} = y(t)$$

$$\tau_{2} \frac{dy(t)}{dt} + y(t) = f(t) - z(t)$$
(IV.6)

Pour résoudre le système (I.2) compte tenu de son écriture il suffit d'utiliser la méthode en commençant par la composante d'ordre (q-1). La réponse obtenue pour cette première composante sert de fonction f(t) pour la seconde équation et ainsi de **sui**te. On remarque donc que la construction reste plane même pour un système d'ordre élevé.

Au bout du temps $\Delta t_n = t_{n+1} - t_n$, période d'échantillonnage, on détermine la nouvelle valeur k ($\varepsilon_{t_{n+1}}$, α , t) en tenant compte de la non linéarité et de la relation (IV.1). On reprend alors le processus avec le nouveau vecteur condition initiale Y(t_{n+1}) et le cas échéant avec de nouveaux paramètres a_j , b_k^j , c_j si ceux-ci varient à chaque période. Notons également qu'aucune restriction n'a été faite sur la non linéarité, celle-ci pouvant être avec mémoire comme nous allons le voir sur l'exemple suivant.

IV.2. Exemples d'application

IV.2.1. Moteur avec hystérésis

Un élément de transmittance $L(p) = \frac{1}{p(1+p)}$ se trouve placé dans un régulateur à retour unitaire comportant dans sa chaîne d'action un échantillonneur bloqueur suivi d'une non linéarité du type hystérésis. Le système est abandonné à lui-même à partir de conditions initiales $y^{(1)}(0) = 0$ et $y(0) = y_0$. Les équations (I.2) deviennent dans ce cas :

Figure IV. 3

Figure IV.4

33.

$$\frac{dy^{(1)}(nT+t)}{dt} + y^{(1)}(nT+t) = k(\varepsilon_n)$$
(IV.7)
$$\frac{dy(nT+t)}{dt} = y^{(1)}(nT+t)$$

Les allures des réponses des composantes de ce système sont données figure (IV.3). La connaissance de tous les antécédents permet de savoir comment il importe de se déplacer sur le cycle.

IV.2.2. Asservissement à modulation de largeur

Le même élément L(p) que celui de l'exemple précédent se trouve maintenant dans la chaîne d'action d'un asservissement à retour unitaire. Le modulateur de l'erreur fournit entre deux instants d'échantillonnage (durée ls) une impulsion calibrée de hauteur A signe (ε_n) et de largeur $T_{in} = K |\varepsilon_n|$. Les conditions initiales étant nulles, on désire étudier la réponse du système à un échelon de position. Les équations sont données en (IV.7) et la construction est celle de la figure IV.4. Sur le schéma sont représentés non seulement les composantes y et y⁽¹⁾ mais aussi l'entrée du système, la sortie du modulateur et la caractéristique de l'élément non linéaire.

IV.2.3. Système à période variable (I.P.F.M)

Figure IV.5

L'exemple que nous allons traiter maintenant entre dans le cadre des systèmes multimodulés à période variable $\begin{bmatrix} 15 \\ 15 \end{bmatrix}$. Dans ces systèmes le signal de commande de l'organe à régler est la somme instantanée des m sorties $i_j(t)$ $(1 \le j \le m)$ du modulateur M. Les signaux $i_j(t)$ sont élaborés à partir des m fonctions d'erreur :

$$E_{j}(t) = f_{j} \begin{bmatrix} e(t) & w_{j}(t) & t \end{bmatrix}$$
 (IV.8.)

Un organe de conversion à une entrée et m sorties caractérise la chaîne de retour (figure IV.5).

Chaque signal de sortie du modulateur est caractérisé par la fonction $H_{j}^{kj} = (t), k$ où k est un paramètre variable par valeurs discrètes dans l'intervalle $-\infty$; $+\infty$; de plus :

$$i_j(t) = i_j^{kj}(t) \text{ pour } t \in \begin{bmatrix} t \\ n, t \\ n+p \end{bmatrix}$$

les instants t_n et t_n correspondent à deux commutations successives de la j^{ième} sortie et satisfont les deux relations :

$$\begin{array}{c|c} \mathbf{H}_{j}^{kj} & [\mathbf{E}_{j}(\mathbf{t}_{n}), \mathbf{k}_{j}] = 0 \\ \mathbf{H}_{j}^{k'j} & [\mathbf{E}_{j}(\mathbf{t}_{n+p}), \mathbf{k}_{j}] = 0 \end{array}$$
(IV.9)

k, et k' sont deux valeurs successives ou confondues du paramètre k. La suite $j \in j$ est définie par l'annulation de l'une quelconque des fonctions \mathbb{H}_{j}^{kj} $(1 \leq j \leq m, k \in [-\infty; +\infty])$ Le filtre considéré dans notre exemple est décrit par la fonction de transfert $L(p) = \frac{1}{p(p+1)}$. Le modulateur est caractérisé par :

$$\begin{vmatrix} k_{1} \\ H_{1} \\ E_{1}(t), k_{1} \\ i_{j}(t) = A \text{ signe } \begin{bmatrix} E_{j} \\ m \end{bmatrix} e(t) - y(t) \\ dt - k_{1} \\ (IV.10) \\ i_{j}^{\dagger}(t) \end{vmatrix}$$

où $i'_{j}(t)$ est une impulsion calibrée d'amplitude unité et de largeur h. L'organe de sommation introduit une saturation de valeur A sur l'entrée du filtre L(p)

Figure IV.6

Après avoir déterminé y et y⁽¹⁾, la méthode nous permet de calculer R(t) = $\int y(t)dt$ et Q(t) = $\int e(t)dt$. Cela revient à ajouter deux équations de même type que celle déjà traitée.

Il y a émission d'impulsion lorsque $\mathbb{R}_{1}^{k_{1}} \mid \mathbb{E}_{1}(t), k_{1} \mid s'annule c'est-à$ $dire si <math>k_{1} = \pm N$ (N étant le quantum), lorsque $R(t) = Q(t) \pm N$. Le choix de k_{1} impose de réinitialiser à zéro R(t) et Q(t) à chaque émission d'impulsion.

La construction de la figure IV.6 correspond à : N=0,5 ; A=7 ; h=0,2s ; l'entrée étant un échelon d'amplitude égale à 5.

Remarque :

l°) Le quantum N peut être une fonction quelconque de l'erreur, des variables d'état ou une fonction fixée à l'avance.

2°) Pour le traitement de problème comportant des modulateurs à contrôle dérivé, il est parfois nécessaire de déterminer la dérivée du signal de sortie lorsque le filtre L(p) ne comporte pas d'intégration. La dérivée peut s'obtenir soit à partir des équations de base par combinaison linéaire des variables d'état tracées, soit en utilisant le processus inverse de celui de l'intégration.

IV.3. Cas des systèmes du second ordre. Construction dans le plan de phase

Dans le cas des systèmes du second ordre, il est possible de ramener la construction précédente dans le plan de phase. En effet les équations s'écrivent : $(nT \le t \le (n+1)T)$

$$\begin{bmatrix} \tau_{1} & \frac{dy^{(1)}(t)}{dt} + y^{(1)}(t) = k (\varepsilon_{n}, t) \\ & (IV.11) \\ \tau_{2} & \frac{dy(t)}{dt} + y(t) = y^{(1)}(t) \end{bmatrix}$$

Les coordonnées d'un point du plan de phase à partir de son antécédent sont d'après (IV.3) :

- Figure IV 7-

- 38 --

$$y^{(1)}(t+\Delta t) = y^{(1)}(t) + \frac{\Delta t}{T_{c_1}} \left[\frac{k(\varepsilon_n, t + \frac{\Delta t}{2}) - y^{(1)}(t)}{k(\varepsilon_n, t + \frac{\Delta t}{2}) - y^{(1)}(t)} \right]$$
(IV.12)
$$y(t + \Delta t) = y(t) + \frac{\Delta t}{T_{c_2}} \left[\frac{y^{(1)}(t + \frac{\Delta t}{2}) - y(t)}{y^{(1)}(t + \frac{\Delta t}{2}) - y(t)} \right]$$

Considérons le schéma de la figure IV.7. Sur l'axe k(ε) portons les valeurs successives de k(ε) prises aux instants (2 λ + 1) $\frac{\Delta t}{2}$ (λ entier positif). D'autre part dans le plan (y⁽¹⁾ 0 y) traçons les droites :

(
$$\Delta$$
) $y^{(1)} = y$
(D_1) $y^{(1)} = y - \Delta t$
(D_2) $y^{(1)} = y + T_{c_2} - \Delta t$

les relations :

$$\frac{cd}{ae} = \frac{bd}{be} \quad et \frac{gc'}{AE} = \frac{o'c'}{o'A} \quad (IV13)$$

rendent compte géométriquement des relations (IV.12)

La construction dans le plan de phase se fait en deux étapes. Partant de $y^{(1)}(t)$, nous déterminons d'abord les points de l'axe $0y^{(1)}$ correspondant à $y^{(1)}(t + \frac{\Delta t}{2})$ et $y^{(1)}(t + \Delta t)$. Soit maintenant le point l : { y(t), $y^{(1)}(t)$ }. La parallèle à Oy passant par le point 0'{y(t), (Δ) } coupe (D_1) en A. Par A nous menons une parallèle à $0y^{(1)}$ qui coupe (D_2) en B. O'B coupe la droite $y^{(1)} = y^{(1)}(t + \frac{\Delta t}{2})$ au point g. Ce point a pour abscisse $y(t + \Delta t)$. On en déduit le point 2 : { $y(t + \Delta t)$, $y^{(1)}(t + \Delta t)$ }.

Dans le cas où **la seconde équation IV.11** correspond à un intégrateur, le point g se trouve sur la droite : $y^{(1)} = y^{(1)}(t + \frac{\Delta t}{2}) + y(t)$ au lieu d'être sur $y^{(1)} = y^{(1)}(t + \frac{\Delta t}{2})$. Pour le système du second ordre à racine imaginaire, il suffit d'appliquer simultanément les deux parties de la construction avant de passer à la détermination du point suivant.

Pour illustrer la méthode reprenons l'exemple IV.21. La trajectoire de phase est représentée figure IV.8.

IV.8 Figure

40 1070 La méthode de construction que nous venons d'exposer s'applique à la détermination des régimes transitoires aussi bien des systèmes continus que des systèmes échantillonnés. Toutefois pour ces derniers, comme l'entrée $k(\varepsilon_n)$ du filtre à commander est dans un grand nombre de cas une impulsion calibrée d'amplitude constante les points déterminés sont parfaitement exacts pour la première composante. L'erreur finale se trouve ainsi nettement diminuée. D'autre part les réactions sur l'entrée du filtre n'interviennent qu'aux seuls instants d'émission d'impulsion ce qui facilite encore la mise en oeuvre du procédé. Enfin les équations de base de la construction peuvent être utilisées pour une détermination des variables d'état des systèmes sur machine numérique.

IV.4. Utilisation de machine numérique pour la détermination des régimes transi-

toires

A partir de l'équation (IV.3), le procédé de construction, que nous venons de décrire, peut facilement s'adapter à l'obtention des réponses transitoires des systèmes échantillonnés non linéaires sur machine numérique.

Nous le montrerons sur deux exemples : un système à modulation de largeur et un modulateur à contrôle intégral.

IV.4.1. Système à modulation de largeur

Reprenons l'exemple du paragraphe IV.2.2. En prenant un pas de calcul de 0,2 s, les équations s'écrivent :

$$Y^{(1)}(I) = 0,81.8 Y^{(1)}(I-1) + 0,182 G$$

$$Y(I) = Y(I-1) + 0,091 \left[Y^{(1)}(I) + Y^{(1)}(I-1) \right]$$
(IV.14.)

$$\varepsilon(I) = E(I) - Y(I)$$

G caractérise la valeur prise par la commande du filtre lors de l'itération I. A chaque instant d'échantillonnage, l'écart entre l'entrée et la sortie fixe les valeurs de G pour les cinq itérations suivantes. Le programme écrit en Fortran IV donné figure IV.9 correspond à une entrée sinusoïdale. Les résultats des calculs, effectués sur IBM 360 au centre de calcul de l'Université de Sherbrooke (Canada), sont représentés figure IV.10. La figure IV.11 donne l'allure des réponses pour une entrée en échelon de position.

IV.4.2. Système à modulation intégrale

Dans le paragraphe IV.2.3 nous avons vu que pour déterminer la réponse de ce système, il suffisait d'ajouter deux équations correspondant à l'intégration de l'entrée et de la sortie.

En tenant compte des valeurs numériques précédemment définies, nous obtenons les équations suivantes :

$$Y^{(1)}(I) = 0,9045 Y^{(1)}(I-1) + 0,0955 U(I-1)$$

$$Y(I) = Y(I-1) + 0,0477 \left[Y^{(1)}(I) + Y^{(1)}(I-1)\right]$$

$$R(I) = R(I-1) + 0,0477 \left[Y(I) + Y(I-1)\right]$$

$$\varepsilon(I) = 5,0 - Y(I)$$

$$Q(I) = Q(I-1) + 0,0955 * 5,0$$

$$V(I) = Q(I) - 0,5$$

$$W(I) = Q(I) + 0,5$$

La fonction U(I) caractérise la sortie du modulateur lors de l'itération I. Elle peut prendre les trois valeurs +A, -A, ou O. L'instant d'émission d'impulsion est défini par : R(I) = W(I) ou R(I) = V(I). Il arrive fréquemment qu'à la fin de l'itération on ait :

R(I) > W(I) ou R(I) < V(I)

Dans ce cas il faut déterminer l'instant d'émission $\beta(I)$. Ceci est grandement facilité par le fait qu'entre chaque itération, les trajectoires sont des droites. Ayant obtenu $\beta(I)$, on calcule $Y^{(1)} \mid \beta(I) \mid$, $Y \mid \beta(I) \mid et \epsilon \mid \beta(I) \mid$. Il convient alors de réinitialiser R(I) et Q(I) à zéro. Ces éléments constituent les nouvelles conditions initiales pour la suite des opérations.

Comme il y a deux cycles de calcul par impulsion, il importe également de garder en mémoire la valeur suivante de U(I), notée F(I+1). Le programme de calcul est donné figure IV.12. Les courbes sont représentées figure IV.13. - Figure IV. 9.

292 <u>2852222222226526526226526226526226</u> 0 24 00 part C or w 5 NA parts parts 00 -GD TO 6 G=0 YP(I)=0.818*YP(I-1)+0.132*G Y(I)=Y(I-1)+0.091*(YP(I)+YP(I-1) E(I)=7.0*SIN(0.157*I+1.413) EPS(I)=E(I)-Y(I) IF(N-91)11.12.12 WRITE(6.100)YP=Y.EPS.E FORMAT(*YP=*7/9(10(2X.F7.3.1X)) MODULATION 1F7.3.1) 21X1/// STOP END DO 10 I=M*L IF(I-N+1-EPSP(N)) IF(EPS(N))5*4*4 I=1 E(I)=7.0*SIN(0.15 EPS(I)=E(I)-Y(I) N=N+5 M=N+1 60 T NII 11 60 DIMENSION EPS(96).EPSP(96).YP(96).Y(96).E(96) READ(5.200)Y(1).YP(1) FORMAT(2F7.3) L=N+5 1 = 51 .3.1X)/)/ TO C -+100)YP*Y*EPS*E
*YP= *//9(10(2X*F7*
)/)/6(2X*F7*3*IX)//
E= *//9(10(2X*F7*3)) ABS(EPS 0F LARGEUR-TRANSITNIRE-ENTREE (N))+1.5 TUNP 5 2 が -2 pand afr in journet Be 4 june W 3.1X1/1/6(2X,F7.3.1X)/// -Geogle 3.1X)/)/6(2X,F7.3.1X)///* /* EPS= *//9(10(2X,F7.3.1 -----SINUSUIDALE .

a deple a

- 46-

	the base which there is a second state	
	С	IPFM -TRANSITOIRE-ENTREE ECHELON
T		DIMENSION YP(81), Y(81), R(81), EPS(81), Q(81), V(81), W(81), U(81), BETA(
		181),F(82)
2		READ(5,200)YP(1),Y(1),R(1),Q(1),U(1),BETA(1),F(1)
3	200	EDRMATIZEE 4
4		
	C	L'ENTREE EN ECHELON EST D'AMPLITUDE 5.0
5		EPS(1)=5.0-Y(1)
6		1=2
	С	BETA REPRESENTE L'ABSCISSE TEMPS
7	nadattäätaipeittööttäistevatatti antoriku	
8		F(I) = 0.0
	С	F(I) MEMORISE LA COMMANDE U(I) POUR L'ITERATION SUIVANTE
9		GO TO 40
10	18	BETA(I+1)=BETA(I)+0.1
11		[=[+]
12	40	YP[I]=0.9045*YP[I-1]+0.0955*U[I-1]
13		$Y(1) = Y(1-1) + 0.0477 \neq (YP(1) + YP(1-1))$
14		R(I) = R(I-1) + 0.0477 + (Y(I) + Y(I-1))
15		EPS(1) = 5 = 0 - Y(1)
16		Q(I) = Q(I-1) + 0.0955 * 5.0
	С	LE QUANTUM EST EGAL A 0.5
17	ne Standark and Januard Mary 1914 Science and Transformed Paral	
18		$W(1) = Q(1) + O_*5$
19		IF((R(1).LT.W(1)).AND.(R(1).GT.V(1)))GO TO 2
20		IF((R(1).E0.W(1)).OR.(R(1).E0.V(1)))G0 T0 4
21		IF(R(I).LT.V(I))GO TO 9
22		IF(R(I).GT.V(I))GO TO 10
23	2	
24		F(I+1) = 0.0
25		GO TO 17
26	la.	R(I)=0.0
27		Q(1) = 0.0
28		IF(EPS(1))6.2.8
29	6	$U(1) \simeq - I_{0}(1)$
30	rtadalanda in a Doritign (ContributionActivity) - a discosting	F(1+1) = -7.0
31		GO TO 17
32	8	U(1) = 7.0
33		F(1+1)=7.0
34		G0 T0 17
35	9	AIP=BETA(I)-0.1*(R(I)-V(I))/(R(I)-V(I)+V(I-1)-R(I-1))
36	nan de Martin Martin (San de Barriño) a saint d	
37	10	$ALP = BETA(I) - 0.1 \neq (R(I) - W(I)) / (R(I) - W(I) + W(I-1) - R(I-1))$
38	11	B=10.0*(YP(1)-YP(1-1))*ALP+YP(1)-10.0*(YP(1)-YP(1-1))*BETA(1)
39		$C = 10.0 \times (Y(I) - Y(I-1)) \times ALP + Y(I) - 10.0 \times (Y(I) - Y(I-1)) \times BETA(I)$
40		YP(1)=
41		Y(I) = C
uningenterrow ls 7	laansa sense 2014 allanud 120 aminitas ahanno anna	FPS(I)=5_0+V(I)
43		RETAILISALP
44	299.0	8(1)=0.0
45		Q(I)=0.0
46		[F(FPS(1))6.14.8
47	14	IF(A)P-RETA(1-1)-0.025)16.16.2
to R	annonininina antanan 1 Au	การการการการการการการการการการการการการก
40	10	F(1+1)=F(1)
50	17	IE(I-81)18-10-19
6.8	10	WRITERA, INOIVP, V. RETA
11	17	EDRMAT(* YP= 1/10/812X_F8_4_1X1/12X_F8_4_1X//* Y= */10/812X_F8_4_1
36	100	1×1/12×.FR_6.1×//* RFTA= */10/8/2×.FR_6.1×1/12×.FR_6.1×//1
5 2	zerendik Markendinsson annen sin en	ner and a second s a condition second s
30		FNO
"a week		544 1 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T

. 47-

Les méthodes graphique et numérique que nous venons d'exposer permettent une détermination complète de la réponse d'un processus discret à une sollicitation quelconque. Elles présentent l'avantage de rester facilement utilisables pour des systèmes d'ordre élevé et pour des modulateurs de n'importe quel type y compris les modulateurs multiples à période variable.

La méthode numérique est très intéressante pour simuler un processus comme nous le verrons lors du chapitre VI pour le réglage optimal d'un paramètre à partir d'un critère intégral. Notons toutefois qu'avec les systèmes d'ordre élevé, il convient, comme dans les méthodes classiques d'intégration numérique, de recycler le calcul afin de diminuer l'erreur. Le chapitre VI est consacré à l'application de la méthode graphique à la détermination de l'évolution des divers coefficients de sensibilité des systèmes non linéaires à commande impulsionnelle.

4.5. Conclusion

La méthode **de** construction graphique que nous venons de présenter est destinée à mettre en évidence le comportement dynamique d'un asservissement discret entre les instants d'échantillonnage et résoudre ainsi par exemple le problème des oscillations cachées. Cette technique va par ailleurs permettre une connaissance plus approfondie du système par l'intermédiaire des coefficients de sensibilité, ceux-ci feront l'objet du chapitre suivant.

CHAPITRE V

ETUDE DES COEFFICIENTS DE SENSIBILITE DES SYSTEMES

NON LINEAIRES IMPULSIONNELS

Lors de la synthèse d'un asservissement non linéaire à commande impulsionnelle, il importe de connaître les réactions du système à diverses influences comme par exemple aux variations de paramètres ou des conditions initiales. Il convient de distinguer toutefois trois grandes catégories de coefficients de sensibilité [16], [17] [18].

- La sensibilité paramétrique qui rend compte de l'influence des paramètres extérieurs à l'objet à réguler.

- La sensibilité par rapport à la période de discrétisation

- La sensibilité de structure vis à vis des paramètres de l'organe à commander.

Nous nous proposons de déterminer graphiquement ces divers coefficients, en résolvant simultanément les systèmes d'équations qui sur une période d'échantillonnage régissent respectivement le système et son modèle sensible. La connaissance des coefficients de sensibilité permet de voir l'évolution de la solution pour de petites variations des paramètres. En première approximation on peut écrire :

$$\Delta y = \sum_{i} u_{i}(t) \Delta q_{i} \quad si \quad u_{i} = \frac{\partial y}{\partial q_{i}}$$
 (V.1)

L'existence des coefficients u_i exige que les Δ_{q_i} ne changent pas l'ordre du système.

V.I - Equations de sensibilité

Le système d'équation (I.2) peut se mettre sous forme condensée :

$$M = \frac{dY(t_n+t)}{dt} + BY(t_n+t) = Ck(\varepsilon_{t_n}, \alpha, t)$$
 (V.2)

- 49 -

où M est une matrice carrée diagonale (a $_j \neq 0$ j = 1 à q), les matrices M, B et C sont à coefficients constants.

Dans le cas d'un modulateur quelconque $k(e_t, \alpha, t)$ est une fonction continue par morceau sur l'intervalle de temps (t_n, t_{n+1}) avec discontinuités de première espèce. En notant par $t_{i,n}$ les **ins**tants de discontinuité de $k(e_t, \alpha, t)$ sur (t_n, t_{n+1}) la relation (V.2) devient :

$$M \frac{dY(t_n+t)}{dt} + B Y(t_n+t) = C k_i(\varepsilon_{t_n}, \alpha, t) t \in (t_{(i-1),n}; t_{i,n})$$

et $t_{i,n} = t_n + t_i$ (V.3)

où k est une fonction continue de t, de α et de ε_t et où t, peut dépendre de ε_t et de α . Notons toutefois que pour une classe importante de système.

$$k (\varepsilon_{t_{n}}, \alpha, t) = k (\alpha, t).$$

D'autre part dans les systèmes physiques, Y est continu par rapport à t.

Le vecteur coefficient de sensibilité par rapport à un paramètre α est défini par l'équation :

$$\mathbf{U}(t_n+t) = \frac{\delta Y(t+t)}{\delta \alpha} \qquad (V.4)$$

Supposons que les instants d'échantillonnage t sont définis par la relation :

$$g(Y_{t_n}, t_n, \alpha) = 0$$
 (V.5)

il est alors possible de déterminer $\frac{dt}{d\alpha}$ au moyen de l'expression :

$$\frac{dt_n}{d\alpha} = -\frac{\frac{\delta g}{\delta \mathbf{Y}_t} \mathbf{U}(t_n) + \frac{\delta g}{\delta \alpha}}{\frac{\delta g}{\delta \mathbf{Y}_t} \mathbf{F}_t^{-1} \mathbf{F}_t^{-1} + \frac{\delta g}{\delta t}} \qquad (V.6)$$

où $\mathbf{F}_{t_n}^{-1} = -\mathbf{M}^{-1} \mathbf{B} \mathbf{Y}(t_n) + \mathbf{M}^{-1} \mathbf{C} \mathbf{k}^{-1}(t_n). \qquad (V.7)$

Le signe négatif indique que les termes sont pris à l'instant $t_n = \epsilon(\epsilon > 0$ petit). De la même manière si t_i est défini par l'équation :

$$f_{i}(Y_{t_{n}}, t_{i}, \alpha) = 0 \qquad (V.8)$$

$$\frac{\partial f_{i}}{\partial Y_{t_{n}}} \left[U(t_{n}) + F_{n} \frac{dt_{n}}{d\alpha} \right] + \frac{\partial f_{i}}{\partial \alpha}$$

$$\frac{\partial f_{i}}{\partial t_{i}} \frac{\partial f_{i}}{\partial t_{i}} \qquad (V.9)$$

Remarquons toutefois que dans certains cas t, peut être déterminé à partir de :

$$f_{i}(Y_{t_{i}}, t_{i}, \alpha) = 0$$
 (V.10)

la relation (V.9) devient alors :

$$\frac{dt_{i}}{d\alpha} = \frac{\frac{\delta f_{i}}{\delta Y_{t_{i}}} U^{-}(t_{i}) + \frac{\delta f_{i}}{\delta \alpha}}{\frac{\delta f_{i}}{\delta Y_{t_{i}}} F^{-}t_{i} + \frac{\delta f_{i}}{\delta t}}$$
(V.11)

La discontinuité que présententles coefficients de sensibilité aux instants t et t_{i,n} peut être déterminée e**n** utilisant les résultats de Rozenvasser [19], [20]

$$\Delta U_{j} = -M^{-1} C \Delta k_{j} \frac{dt_{j}}{d\alpha} \qquad (V.12)$$

 $\Delta k_{j} = k^{\dagger}(\varepsilon_{t_{n}}, t_{j}^{\dagger}, \alpha) - k^{\dagger}(\varepsilon_{t_{n}}, t_{j}^{\dagger}, \alpha) \quad (V.13)$

où

Si l'instant initial ne dépend pas de a, la condition initiale s'écrit :

$$U_{o} = \frac{dY(t_{o})}{d\alpha} \qquad (V.14)$$

L'équation de sensibilité dans le cas le plus général est donnée par la relation :

$$t \in \begin{bmatrix} t_{(i-1),n} & ; & t_{i,n} \end{bmatrix}$$
 :

$$M \xrightarrow{d U(t + t)}_{dt} + B U(t + t) + \frac{dA}{d\alpha} \xrightarrow{d Y(t + t)}_{dt} + \frac{dB}{d\alpha} Y(t + t) = \dots$$

$$\dots = C \frac{dk_i}{d\alpha} + \frac{dC}{d\alpha} k_i$$

avec :
$$\frac{dk_{i}}{d\alpha} = \frac{\delta k_{i}}{\delta \varepsilon_{t}} \frac{d\varepsilon_{t}}{d\alpha} + \frac{\delta k_{i}}{\delta \alpha}$$
 (V.15)

or:
$$\varepsilon_{\mathbf{t}_{n}} = \mathbf{e}_{\mathbf{t}_{n}} - \sum_{\mathbf{r}=\mathbf{0}}^{q-1} \lambda_{\mathbf{r}} y_{\mathbf{t}_{n}}^{(\mathbf{r})}$$

d'où $\frac{d\varepsilon_{\mathbf{t}_{n}}}{d\alpha} = \frac{d}{\alpha} \frac{\mathbf{e}_{\mathbf{t}_{n}}}{d\alpha} - \sum_{\mathbf{r}=\mathbf{0}}^{q-1} \frac{d\lambda_{\mathbf{r}}}{d\alpha} y_{\mathbf{t}_{n}}^{(\mathbf{r})} - \sum_{\mathbf{r}=\mathbf{0}}^{q-1} \lambda_{\mathbf{r}} \frac{dy_{\mathbf{t}_{n}}^{(\mathbf{r})}}{d\alpha}$ (V.16)

et en tenant compte de (I.2)

$$\frac{dy_{t}^{(r)}}{d\alpha} = U_{t}^{-(r)} + \frac{dt_{n}}{d\alpha} \begin{bmatrix} \frac{c_{r}}{a_{r}} & k & (\varepsilon_{t}, \alpha, t_{n}) - \frac{q-1}{2} & \frac{b_{r}}{a_{r}} & y_{t}^{(j)} \end{bmatrix} (V.17)$$

Ces diverses relations permettent d'obtenir les coefficients de sensibilité dans tous les cas. Nous allons en montrer l'application aux trois sortes de coefficients sur un exemple précis.

V.2 - Applications

L'exemple que nous traiterons est celui du paragraphe IV.2.2. Compte tenu du modulateur les équations de fonctionnement sont les suivantes:

$$\frac{dy}{dt} = y^{(1)}$$

$$\frac{dy}{dt} = y^{(1)}$$

$$\tau \frac{dy^{(1)}}{dt} + y^{(1)} = A \text{ signe } \varepsilon_n$$

$$\begin{vmatrix} -nT + T_{in} < t < (n+1)T \\ -\tau & \frac{dy^{(1)}}{dt} = y^{(1)} \\ -\tau & \frac{dy^{(1)}}{dt} = 0 \end{vmatrix}$$
(V.18)

de plus : $\varepsilon_n = e_n - y_n$

et
$$\begin{vmatrix} T_{in} = K \cdot |\varepsilon_n| & \text{si } \varepsilon_n < T/K \\ T_{in} = T & \text{si } \varepsilon_n \ge T/K \end{vmatrix}$$

L'étude qui suit sera faite dans le cas où $\tau = 1$ s.

V.1.1 - Sensibilité paramétrique

Considérons par exemple la sensibilité par rapport au paramètre K.

Il n'y a pas de discontinuité aux instants d'échantillonnage. La valeur de la discontinuité à l'instant T. est d'après (V.12) : ¹n

$$\Delta u = 0 \qquad (V.19)$$
$$\Delta u^{(1)} = \frac{A}{\tau} (\operatorname{sign} \varepsilon_n) \frac{\mathrm{dT}_{in}}{\mathrm{dK}}$$

(V.19) peut encore s'écrire :

$$\Delta u = 0 \qquad (V.20)$$
$$\Delta u^{(1)} = \frac{\mathbf{A}}{\tau} \cdot \varepsilon_{n} - \frac{\mathbf{A} \cdot \mathbf{K}}{\tau} u_{n}$$

En régime saturé $\Delta_{u}^{(1)}$ devient nul.

Les conditions initiales sont nulles et les équations de sensibilité s'écrivent :

$$\frac{du}{dt} = u^{(1)}$$
(V.21)
$$\tau \frac{du^{(1)}}{dt} + u^{(1)} = 0$$

La méthode décrite dans le chapitre précédent permet de faire la construction en résolvant simultanément les équations du système et de son modèle ssensible. Les réponses du système ont été déterminées figure IV.4. Les coefficients de sensibilité paramétrique sont donnés figure V.1.

V.2.2 - Sensibilité par rapport à la période d'échantillonnage T

On a dans ce cas une discontinuité à l'instant t et à l'instant t, n en effet :

$$\frac{dt_n}{dT} = n \quad \text{et} \frac{dt_{i,n}}{dT} = n + \frac{dT_{i,n}}{dT} \quad (V.22)$$

Les discontinuités s'écrivent de la même manière que précédemment :

$$\Delta u_{t_{n}}^{(1)} = -n \frac{A}{\tau} \text{ signe } \varepsilon_{n}$$

$$\Delta u_{t_{n}}^{(1)} = -n \frac{A}{\tau} \text{ signe } \varepsilon_{n}$$

$$\Delta u_{t_{n},n}^{(1)} = 0 \qquad (V.23)$$

$$\Delta u_{t_{n},n}^{(1)} = \frac{A}{\tau} (\text{signe } \varepsilon_{n})(n + \frac{dT_{in}}{dT})$$
Notons qu'en régime saturé $\Delta u_{t_{i,n}}^{(1)} = \Delta u_{t_{n+1}}^{(1)} = 0 \text{ car } \Delta k = 0$

$$\Delta u_{t_{i,n}}^{(1)} \text{ peut encore s'écrire :}$$

$$\Delta u_{t_{i,n}}^{(1)} = \frac{n}{\tau} (\text{signe } \varepsilon_{n}) + \frac{A}{\tau} \frac{K}{dT} \frac{d\varepsilon_{n}}{dT} \qquad (V.24)$$

τ

$$\frac{d\varepsilon_n}{dT} = \frac{de(nT)}{dT} - u(nT) - ny^{(1)}(nT) \qquad (V.25)$$

Dans l'exemple choisi, l'entrée étant un échelon de position unitaire, $\frac{de(nT)}{dT}$ est nul. Les équations de sensibilité ont alors des conditions initiales nulles :

$$\frac{du}{dt} = u^{(1)}$$
(V.26)
$$\tau \frac{du^{(1)}}{dt} + u^{(1)} = 0$$

La construction graphique à partir de ces données est indiquée figure V.2.

V.2.3 - Sensibilité de structure

Nous cherchons cette fois des coefficients de sensibilité par rapport à la constante de temps.

La seule discontinuité se produit à l'instant T_{in}, elle est égale à :

$$\Delta u = 0 \qquad (V.27)$$
$$\Delta u^{(1)} = -\frac{A}{\tau} \frac{K}{\tau} u(nT)$$

En régime saturé Au⁽¹⁾ devient nul.

Les conditions initiales sont nulles et les équations de sensibilité s'écrivent :

$$\tau \frac{\mathrm{d}u}{\mathrm{d}t} = u^{(1)} \qquad (V.28)$$

$$\tau \frac{\mathrm{d}u}{\mathrm{d}t}^{(1)} + u^{(1)} = -\frac{\mathrm{d}y}{\mathrm{d}t}^{(1)}$$

Pour obtenir la construction de l'évolution des coefficients de sensibilité (figure V3), il est nécessaire dans ce cas de faire intervenir $\frac{dy}{dt}^{(1)}$. Ce terme peut être déterminé à partir des équation (V.18) et donc à partir de la construction des régimes dynamiques du système.

où

. 56 -

V.3 - Conclusion

La méthode que nous venons d'exposer, présente à notre sens un intérêt dans le cadre de l'étude des réactions du système à une variation, à une indétermination de certains de ses paramètres. L'utilisation de constructions graphiques malgré son caractère approché, en concordance avec l'approximation au premier ordre effectuée lors des calculs, est d'une mise en oeuvre très commode. Dans ces conditions, il convient alors, le cas échéant de modifier le système pour améliorer ses performances, et aborder ainsi le problème de la compensation.

La difficulté dans l'étude de l'évolution des coefficients de sensibilité des systèmes impulsionnels est de déterminer les variations de valeur des coefficients qui apparaissent lors des commutations de la commande. Ceci étant résolu à partir des équations (V.12) et (V.13), il suffit alors d'appliquer la méthode graphique à la fois au système et à son modèle sensible, pour connaître en régime dynamique les coefficients de sensibilité vis à vis des paramètres, vis à vis de la période d'échantillonnage et vis à vis de la structure du système à commander. Dans ce dernier cas, on suppose que la variation du paramètre ne change pas l'ordre du système.

L'étude de la sensibilité vis à vis des conditions initiales, qui se ramène à la sensibilité paramétrique donne à l'utilisateur unemesure du pouvoir dispersif de son dispositif.

Les résultats obtenus dans ce chapitre sont relatifs aux petites variations des paramètres, comme dans toutes les méthodes utilisant les équations de sensibilité.

CHAPITRE VI

CORRECTION DES ASSERVISSEMENTS DISCRETS À COMMANDE NON LINEAIRE

Les éléments d'analyse présentés dans les chapitres précédents ont montré l'importance des coefficients non linéairesh, de l'équation III.2. La notion de stabilité et de temps de réponse nous indique que le système a une réponse d'autant meilleure que le domaine des h, est plus petit. Ceci est souvent contradictoire avec la nature de la non-linéarité ou du modulateur. Cette contradiction équivalente au dilemme stabilité précision des systèmes linéaires, ne peut être supprimée qu'en introduisant des éléments susceptibles de modifier la nature du système.

Parmi les dispositifs de correction, nous distinguerons particulièrement d'une part les correcteurs placés dans la chaine de retour utilisant lorsque cela est possible les composantes du vecteur état (retour tachymátrique) et d'autre part les réseaux numériques placés dans la chaine d'action utilisant les composantes du vecteur séquence. Il est toujours possible de **se ramener** à l'un de ces deux modes de correction.

Le but de la correction est d'obtenir la meilleure réponse possible à une sollicitation déterminée, suivant un critère donnant la performance optimale. Le choix d'un tel critère est plutôt subjectif et dépend généralement des préoccupations de l'utilisateur. Par exemple un système de commande peut être mis au point sur la base d'une réponse transitoire donnée à une entrée en échelon, ou sur la base d'un coût minimum d'énergie de commande. Il ne peut donc exister **de commande** optimale universellement applicable. Chaque type de modulateur, de non linéarité, chaque processus à commander et chaque forme de consigne doivent être considérés de manière individuelle, un système optimisé à partir d'un certain critère peut très bien faillir lorsqu'on change le standard de qualité.

Dans cette étude, nous considérerons les réponses du système aux entrées classiques et en particulier à l'échelon de position. Le but est d'approcher le mieux possible les réponses prototypes. Un système d'ordre qest dit prototype lorsqu'il a le nombre d'intégrations requis pour l'entrée considérée comme nous l'avons vu au chapitre II et lorsqu'il rend nul l'écart entre l'entrée et la sortie en q périodes d'échantillonnage.

VI.I - Réseaux correcteurs tachymétriques

Lorsqu'un certain nombre de variables d'état sont physiquement accessibles, une manière fort puissante de corriger les systèmes échantillonnés est de placer dans la chaine de retour une transmittance R(p), polynome en p. A la sortie de cet élément, on obtient donc une combinaison linéaire des variables de phase ceci, dans la réalité, sans transformer la chaine directe, modifie la structure de l'objet à régler lorsque la boucle est fermée.

Dans les systèmes linéaires, il est possible d'ajuster les coefficients du retour de manière à assurer une réponse prototype aux entrées classiques, en rendant nuls $\begin{bmatrix} 32 \end{bmatrix}$ tous les coefficients h_i de l'équation de récurrence III.2. Lorsque la commande est non linéaire, il faut se contenter d'approcher la réponse optimale par un réglage approprié des paramètres pour rendre par exemple le plus petit possible un critère portant sur l'écart entre l'entrée et la sortie du système. Ceci peut se faire soit en utilisant directement l'équation de récurrence et une intégration à partir de l'extrapolation linéaire entre les points soit en se servant de la méthode de simulation numérique du chapitre IV, comme il est fait dans l'annexe II pour le réglage d'un moteur à une réponse indicielle vis à vis d'un critère intégral.

Les résultats obtenus nous permettent de constater une amélioration très sensible de la réponse. Non seulement il y a une diminution particulièrement nette de la longueur du régime transitoire, mais il y a surtout une réduction appréciable de l'amplitude du premier dépassement. En effet en prenant un coefficient λ donnant une valeur moyenne optimale pour diverses amplitudes B de l'entrée, les pourcentages de premier dépassement avec ou sans retour tachymétrique sont résumés dans le tableau suivant : (niveau de saturation $\varepsilon = 4$; $\tau = 0,6$ s; T = 1 s; A = 5).

2	30 %	10 %
4	44 %	7 %
6	30 %	1,6 %
8	25 %	2 %
10	17 %	2,6 %

Le système compensé est peu sensible aux variations du coefficient de retour comme l'indique l'analyse de la sensibilité du chapitre V et les courbes de l'annexe II.

L'utilisation d'un critère pour l'étude de ce réglage présente l'avantage d'englober naturellement le phénomène de saturation ceci évite de devoir déterminer quelle équation de transition saturée - non saturée il importe de considérer. En effet suivant la disposition des états saturés et non saturés dans la séquence des états du système, on a la possibilité d'avoir un nombre important d'équations de récurrence servant à décrire complètement l'évolution du processus. C'est sans doute le plus grand inconvénient de la représentation dans l'espace séquence, car pour un système d'ordre q, les q valeurs antérieures de la variable considérée interviennent. Dans l'espace des variables, c'est seulement la valeur précédente mais des q variables d'état qui entre dans les calculs.

VI.2 - Cas particulier du moteur

Considérons dans ce paragraphe un moteur commandé par un modulateur quelconque qui émet dans la période d'échantillonnage (figure VI.1) (r+1) signaux $U_i(t)$ à des instants t_i (i=0 à r) : U_i et t_i peuvent être fonctions de la variable de commande ε_n (ou w_n s'il y a un correcteur).

y étant la sortie et z sa dérivée, le comportement du système entre les instants t_{i-1} et t_i , est complètement caractérisé par les équations :

- 62 -

Figure VI.1

$$z(t) = z(t_{i-1}) e^{-\frac{(t-t_{i-1})}{\tau}} + \frac{e^{-t/\tau}}{\tau} \int_{\substack{+i-1 \ t_{i-1}}}^{t} (\alpha) e^{\alpha/\tau} d\alpha$$

$$y(t) = y(t_{i-1}) + \tau \left| \frac{1-e^{-\frac{(t-t_{i-1})}{\tau}}}{1-e^{-\frac{(t-t_{i-1})}{\tau}}} \right| z(t_{i-1}) + \int_{\substack{+i-1 \ t_{i-1}}}^{t} \frac{e^{-\beta/\tau}}{\tau} \dots (VI.1)$$

$$\dots \int_{\substack{+i-1 \ t_{i-1}}}^{\beta} u_{i-1} (\alpha) e^{\alpha/\tau} d\alpha d\beta$$

Comme il est possible de transformer l'intégrale de la deuxième équation (VI.1) sous la forme :

$$\int_{t_{i-1}}^{t} \frac{e^{-\beta/\tau}}{\tau} \int_{t_{i-1}}^{\beta} t_{i-1}^{+} U_{i-1}(\alpha) e^{\alpha/\tau} d\alpha d\beta = \dots$$

$$\dots \int_{t_{i-1}}^{t} U_{i-1}(\beta) d\beta - e^{-t/\tau} \int_{t_{i-1}}^{t} U_{i-1}(\beta) e^{\beta/\tau} d\beta \quad (VI.2)$$

En posant :

$$g_{i-1} = \int_{t_{i-1}}^{t_i} U_{i-1}(\beta) d\beta \text{ et } k_{i-1} = \int_{t_{i-1}}^{t_i} U_{i-1}(\beta) e^{\beta/\tau} d\beta \quad (VI.3)$$

On obtient :

$$\begin{bmatrix} y_{i} \\ z_{i} \\ z_{i} \end{bmatrix} = \begin{bmatrix} 1 & \tau(1-D_{i-1}) \\ 0 & D_{i-1} \end{bmatrix} \begin{bmatrix} y_{i-1} \\ z_{i-1} \\ z_{i-1} \end{bmatrix} + \begin{bmatrix} g_{i-1} - e^{-t_{i}/\tau_{k_{i-1}}} \\ \frac{1}{\tau} e^{-t_{i}/\tau_{k_{i-1}}} \end{bmatrix}$$
(VI.4)
= $e^{\frac{(t_{i} - t_{i-1})}{\tau}}$

avec Di-1 =

soit encore : $Z_{i} = A_{i-1} Z_{i-1} + K_{i-1}$ (VI.5)

Pour déterminer la relation entre Z_T et Z_o , appliquons r fois l'équation (VI.5) ; ceci entraine

$$Z_{T} = (\sum_{i=0}^{L} A_{i}) \times Z_{0} + \sum_{j=1}^{r} (\sum_{i=j}^{r} A_{i}) \times K_{j-1} + K_{r} \quad (VI.6)$$

A cause des propriétés particulières des matrices A_i , on peut finalement écrire :

$$\begin{bmatrix} \mathbf{y}_{\mathrm{T}} \\ \mathbf{z}_{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \tau(\mathbf{1}-\mathbf{D}) \\ \mathbf{0} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{\mathrm{o}} \\ \mathbf{z}_{\mathrm{o}} \end{bmatrix} + \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \boldsymbol{\Sigma} & \mathbf{g}_{\mathrm{i}} - \mathbf{D} & \boldsymbol{\Sigma} & \mathbf{k}_{\mathrm{i}} \\ \mathbf{i}=\mathbf{0} & \mathbf{i}=\mathbf{0} & \mathbf{i} \end{bmatrix}$$
(VI.7)

avec $D = e^{-T/\tau}$

Dans la chaine de retour, on dispose d'un élément tachymétrique de coefficient λ . En appliquant la pondération de coefficients l ; -(1+D) ; D comme en annexe I on arrive à la relation :

$$\varepsilon_{n+2} - (1+D) \varepsilon_{n+1} + \sum_{i=0}^{r} g_{i,n+1} + D(1-\frac{\lambda}{\tau}) \sum_{i=0}^{r} k_{i,n+1} + D \varepsilon_{n} + \cdots$$
(VI.8)
$$\cdots - D \sum_{i=0}^{r} g_{i,n} + D(1-\frac{\lambda}{\tau}) \sum_{i=0}^{r} k_{i,n} = e_{n+2} - (1+D)e_{n+1} + D e_{n}$$

Dans le cas particulier ou λ est égal à la constante de temps τ du moteur l'équation devient :

$$\varepsilon_{n+2} - (1+D)\varepsilon_{n+1} + \sum_{i=0}^{r} g_{i,n+1} + D\varepsilon_{n} - D\sum_{i=0}^{r} g_{i,n} = e_{n+2} - (1+D)e_{n+1} + \cdots + De_{n} \quad (VI.9)$$

Il est intéressant de comparer cette relation avec celle du moteur commandé par modulation d'amplitude et non linéarité indépendante lorsque l'élément tachymétrique est réglé à la valeur τ :

$$\varepsilon_{n+2} - (1+D) \varepsilon_{n+1} + D \varepsilon_n + T k(\varepsilon_{n+1}) - T D k(\varepsilon_n) = \dots$$

... $\Theta_{n+2} - (1+D)\varepsilon_{n+1} + D\varepsilon_n$ (VI.10)

Cela permet de définir le système non linéaire associé ; il possède une non linéarité caractérisée par :

$$k(\varepsilon_{n}) = \frac{1}{T} \sum_{i=0}^{r} \int_{t_{i,n}}^{t_{i+1,n}} U_{i,n}(\beta) d\beta \qquad (VI.11)$$

où t_{i,n} et U_{i,n}(β) peuvent dépendre de ε_n .

Considérons en particulier maintenant la commande (figure VI.2) par une impulsion de forme quelconque f(t) modulée en largeur (par exemple, commande par thyratron à la fermeture).

La non-linéarité associée est alors :

Figure VI.2

On peut alors sans difficulté utiliser les méthodes de compensation des systèmes à non linéarité séparable et à commande linéaire avec saturation. Citons par exemple l'usage de non linéarités complémentaires et de réseaux correcteurs numériques [34]. Si de plus l'impulsion est calibrée de hauteur Asigne (ε_n) et si la modulation est linéaire $T_i(\varepsilon_n) = H \cdot |\varepsilon_n|$ on est simplement ramené à un système linéaire avec saturation dont le gain de la chaine d'action vaut :

 $K = \frac{A H}{T}$ (VI.13)
Pour avoir un système prototype d'ordre q à partir de la représentation dans l'espace séquence, on impose que l'arreur soit nulle et reste nulle à partir de q **périodes** d'échantillonnage. Lorsque dans la chaine de retour on dispose d'un élément tachymétrique, la combinaison linéaire des variables d'état de coefficients λ_i est égale à la consigne ce qui correspond dans l'hyperespace d'état à un hyperplan. Pour l'itération suivante, si la consigne reste constante, la commande étant nulle, le système évolue en régime libre. S'il est possible de trouver un hyperplan tel que le système abondonné à lui même y évolue constamment, on pourra avoir un processus prototype vis à vis de l'erreur, mais pas au niveau de la sortie. Celle-ci tend asymptotiquement vers la valeur optimale, si le système est stable en régime libre.

Soit Y la valeur du vecteur état à l'instant nT et soit à cet instant l'erreur égale à zéro. La combinaison linéaire des variables d'état peut alors se mettre sous la forme :

$$Y_n^T \wedge = a \qquad (VI.14)$$

où a est la valeur de la consigne et où Λ est le vecteur colonne en λ_i . Le système évolue suivant l'équation :

$$Y_{n+1} = A Y_n$$
 (VI.15)

Pour que la solution évolue dans le même hyperplan, il faut que :

$$Y_{n+1}^{T} \Lambda = Y_{n}^{T} \Lambda = a$$
 (VI.16)
soit encore $A^{T} \Lambda = \Lambda$ (VI.17)

et donc il faut que Λ soit vecteur de Λ^{T} pour la valeur propre l. Ceci peut se produire pour les systèmes comportant au moins une intégration.

Par exemple dans le cas du moteur avec les coefficients de retour 1 et λ , la matrice A étant :

$$A = \begin{bmatrix} 1 & \tau (1-D) \\ 0 & D \end{bmatrix}; D = e^{-T/\tau}$$
(VI.18)

Pour la valeur propre 1, le vecteur propre a pour composantes 1 et τ . Dans le paragraphe précédent, nous avions vu la possibilité de linéariser le processus en utilisant $\lambda = \tau$. Il convient donc lorsqu'on utilise cette propriété intéressante de prendre soin, lors de l'élaboration du réseau correcteur numérique, d'évi ter d'atteindré avec une commande nulle la droite correspondant à une combinaison linéaire ayant même valeur que la consigne.

VI - Réseau correcteur numérique

Lorsqu'après un réglage des coefficients de retour, **c'est**-à-dire en utilisant une correction du processus dans l'espace d'état, moyen particulièrement simple à mettre en œuvre, ou lorsqu'on dispose de e_n on n'a pas obtenu des performances satisfaisantes, on peut essayer d'utiliser l'espace séquence en plaçant dans la chaine d'action un réseau correcteur numérique. Les équations de fonctionnement des systèmes discrets non linéaires avec de tels correcteurs ont été établies au cours du premier chapitre. De par la forme particulière des termes non linéaires $g_i(w_{n+q+r-i})$ donnée par la relation (I.19), nous voyons qu'il n'est pas possible d'obtenir un réglage prototype quelles que soient les conditions initiales et l'amplitude de l'échelon de position, considéré comme entrée dans toute cette étude. En effet pour i=1 et q+r, $g_i(w_{n+q+r-i})$ ne comporte qu'un seul terme, soit $\beta_r \cdot f_1(w_{n+q+r})$ et $\beta_o \cdot f_d(w_n)$.

Il faudrait donc rendre nul β_0 et β_r ce qui rendrait uniques les termes correspondant à i = 2 et i = q+r-1, ceci entrainant β_i =0. Pour résoudre au mieux le problème du réglage des divers coefficients du correcteur, il est tout d'abord possible de pratiquer comme nous l'avons fait dans l'étude du retour tachymétrique, en incluant même les coefficients accessibles de la chaine de retour dans les paramètres à régler. Les méthodes numériques de simulation et d'optimisation se généralisent facilement et permettent de définir une structure moyenne, optimale pour une plage donnée de variation de l'amplitude de l'entrée et des conditions initiales.

Notons que dans tous les cas, il est intéressant de prendre en considération la condition déterminée au chapitre II :

qui donne un régime permanent convenable pour un nombre d'intégrations inférieur d'une unité au nombre requis.

Toute les considérations précédentes n'excluent pas la possibilité d'obtenir une réponse prototype dans le cas où le système travaille dans des conditions précises fixées à priori.

VI.4.1 - Réglage prototype par réseau correcteur numérique

Dans cette partie, nous utilisons une description du système par deux équations de récurrence. La première d'ordre q porte sur le comportement du processus, la seconde d'ordre r décrit le fonctionnement du réseau correcteur. Cela semble plus intéressant qu'une seule équation globale, car à priori on ne peut connaitre la valeur de r pour une utilisation donnée. Nous allons voir que lorsqu'elle est possible une étude appropriée de la première équation permet d'utiliser les méthodes classiques du linéaire pour déterminer l'ordre et les coefficients du réseau correcteur numérique.

L'instant nT étant considéré comme instant initial, on analyse le réglage prototype du système pour une consigne appliquée à cet instant. Le processus doit être considéré comme étant auparavant au repos autour d'une consigne nulle, la seule quantité qu'il est donné de connaître étant la valeur de l'erreur E_n prise comme condition initiale. Or pour que la représentation soit caractéristique du système physique (équation (I.12)), il importe pour un système d'ordre q d'avoir q conditions initiales. Il faut donc déterminer les q-1 autres valeurs de l'erreur. Pour cela, reprenons les éléments présentés dans le premier chapitre.

Pour calculer à partir de ε_n les valeurs de ε_{n+1} (i = 1 à q-1), nous allons établir un ensemble d'équation en opérant de la même façon que pour l'obtention de (I.12). Nous prenons la somme des équations (I.7) avec les coefficients de pondération γ_i , mais avec un décalage d'une période à chaque fois. En tenant compte du fait qu'avant l'instant nT, le système est considéré comme étant au repos, on obtient les équations :

$$Y_{n+q-1} + \frac{q-1}{i=1} Y_{i} Y_{n+q-i-1} = \frac{q-1}{i=0} Y_{i} A^{q-i-1} Y_{n} + \frac{q-1}{i=1} \frac{i-1}{j=0} Y_{j} A^{i-j-1} K_{n+q-i-1}$$

$$Y_{n+q-2} + \frac{q-2}{i=1} Y_{i} Y_{n+q-i-2} = \frac{q-2}{\sum_{i=0}^{\infty}} Y_{i} A^{q-i-2} Y_{n} + \frac{q-2}{\sum_{i=1}^{\infty}} Y_{j} A^{i-j-1} K_{n+q-i-2}$$

$$Y_{n+2} + \frac{2}{i=1} Y_{i} Y_{n+2-i} = \frac{2}{i=0} Y_{i} A^{2-i} Y_{n} + \frac{2}{i=1} \sum_{j=0}^{i-1} Y_{j} A^{i-j-1} K_{n+2-i}$$

$$Y_{n+1} + Y_{1} Y_{n} = \frac{1}{\sum_{i=0}^{\infty}} Y_{i} A^{1-i} Y_{n} + Y_{0} K_{n}$$
(VI.20)

Ecrivons ces relations pour une composante $y^{(s)}$ du vecteur état :

$$y_{n+q-1}^{(s)} + \frac{q^{-1}}{i=1} \gamma_{i} y_{n+q-i-1}^{(s)} = c_{q-1}^{(s)} + \frac{q^{-1}}{\sum} \sum_{i=1}^{i-1} \gamma_{i} (\delta_{n+q-i-1}^{i-j})^{(s)}$$

$$y_{n+q-2}^{(s)} + \frac{q^{-2}}{i=1} \gamma_{i} y_{n+q-i-2}^{(s)} = c_{q-2}^{(s)} + \frac{q^{-2}}{\sum} \sum_{i=1}^{i-1} \gamma_{i} (\delta_{n+q-i-2}^{i-j})^{(s)}$$

$$y_{n+2}^{(s)} + \frac{2}{i=1} \gamma_{i} y_{n+2-i}^{(s)} = c_{2}^{(s)} + \frac{2}{\sum} \sum_{i=1}^{i-1} \gamma_{i} (\delta_{n+2-i}^{i-j})^{(s)}$$

$$y_{n+1}^{(s)} + \gamma_{1} y_{n}^{(s)} = c_{1}^{(s)} + \gamma_{0} (\delta_{n}^{1})^{(s)}$$

$$(VI.21)$$

avec $\gamma_0 = 1. (\delta_{n+q-i}^{i-j})^{(s)}$ représente pour la composante d'ordre s ce que devient l'apport de la régulation à l'instant n+q-i après i-j périodes d'échantillonnage et où $c_i^{(s)}$ correspond pour cette même composante à l'apport pondéré des conditions initiales. Celui-ci n'est pas nul comme pour l'équation d'ordre n+q, nous voyons donc que les conditions initiales dans l'espace séquence dépendent de toutes les composantes du vecteur état initial.

En utilisant la relation :

$$\varepsilon_{n} = \varepsilon_{n} - \sum_{s=1}^{m+\ell-1} \lambda_{s} y_{n}^{(s)}$$
(VI.22)

on peut écrire les équations qui définissent les conditions initiales ϵ_{n+i} (i=1 à q-1) :

$$\begin{split} & \sum_{n+q-1}^{q-1} + \sum_{i=1}^{q-1} \gamma_{i} \varepsilon_{n+q-i-1} = e_{n+q-1} + \sum_{i=1}^{q-1} \gamma_{i} \varepsilon_{n+q-i-1} - \cdots \\ & \dots - \sum_{s=1}^{m+\ell-1} \zeta_{s} c_{q-1}^{(s)} + \dots - \sum_{s=1}^{m+\ell-1} \zeta_{s} \zeta_{s} \sum_{i=1}^{q-1} \gamma_{i} (\delta_{n+q-i-1}^{i-j})^{(s)} \\ & \dots - \sum_{s=1}^{m+\ell-1} \zeta_{s} c_{q-1}^{(s)} + \dots - \sum_{s=1}^{m+\ell-1} \zeta_{s} \zeta_{s}^{(s)} \sum_{i=1}^{m+\ell-1} \gamma_{i} (\delta_{n+q-i-1}^{i-j})^{(s)} \\ & \dots - \sum_{n+2}^{q-1} \varepsilon_{n+2-i} = \varepsilon_{n+2} + \sum_{i=1}^{2} \gamma_{i} \varepsilon_{n+2-i} - \sum_{s=1}^{m+\ell-1} \zeta_{s} \zeta_{s}^{(s)} \sum_{s=1}^{m+\ell-1} \zeta_{s}^{(s)} \sum_{s=1}$$

On désire déterminer une commande prototype d'ordre q pour une entrée en échelon de position d'amplitude B. On suppose que le système possède une intégration, c'est-à-dire que l'erreur en régime permanent est nulle avec une commande nulle. Cela ne change en rien la généralité du problème, s'il n'en est pas **ainsi** il vient s'ajouter des termes constants. Pour avoir un système prototype d'ordre q, il faut que l'erreur s'annule et reste nulle à partir de q périodes d'échantillonnage. Réécrivons la relation (I.12) en opérant un décalage d'une période à chaque fois et en imposant ε_{n+i} et δ_{n+i} nuls pour i = q à 2 q-1. A partir du chapitre II, nous savons que si le système possède une intégration, $\Sigma \gamma_i$ est i=0

La relation (VI.23) peut se mettre sous la forme :

Г₁ où et : 1 -1

$$\Delta = \begin{pmatrix} \mathbf{m} + \ell - 1 & q - 1 & i - 1 \\ \Sigma & \lambda_{s} & \Sigma & \Sigma & \gamma_{j} & (\delta_{n+q-1-j}^{i-j}(s)) \\ \mathbf{s} = 1 & \mathbf{i} = 1 & \mathbf{j} = \mathbf{0} & \gamma_{j} & (\delta_{n+q-1-j}^{i-j}(s)) \\ \mathbf{m} + \ell - 1 & 2 & \mathbf{i} = 1 \\ \Sigma & \lambda_{s} & \Sigma & \Sigma & \gamma_{j} & (\delta_{n+2-i}^{i-j})(s) \\ \mathbf{s} = 1 & \mathbf{i} = 1 & \mathbf{j} = \mathbf{0} & \gamma_{j} & (\delta_{n+2-i}^{i-j})(s) \\ \mathbf{m} + \ell - 1 & \Sigma & \lambda_{s} & (\delta_{n}^{1}) \\ \mathbf{s} = 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Puisque y est toujours différent de zéro sinon le système serait d'ordre q-1, on peut éliminer & entre (VI.25) et (VI.26) et écrire le système non linéaire de q équations à q inconnues :

$$\Gamma_{1} \Gamma^{-1} \delta + \Delta = \Gamma_{1} E - C \qquad (VI.27)$$

La solution de ces équations, lorsqu'il en existe au moins une et qu"elle se trouve dans le domaine de commandabilité, définit la suite des valeurs de commande w_{n+i} qui par l'intermédiaire de l'équation (VI.25) donne la suite des valeurs de ε_{n+i} . La détermination du réseau correcteur numérique se fait alors simplement comme en linéaire. L'ordre et les valeurs des coefficients dépendent des deux suites précédentes, mais aussi du fait qu'il y a ou non initialisation.

$$\varepsilon = \Gamma_1 E - C - \Delta \qquad (VI.26)$$

Quand le système n'a pas de solution ou lorsqu'on se trouve dans une zone de saturation, le problème devient particulièrement délicat. On présentera au chapitre suivant, sur un exemple pris dans l'espace d'état, les difficultés inhérentes aux systèmes à domaine de commandabilité limitée.Notons ici que les représentations dans l'espace des variables ou dans l'espace séquence sont équivalentes, elles se déduisent l'une de l'autre par changement de base linéaire.

VI.4.2 - Exemple

Soit l'exemple de l'annexe I. Avec les équations de fonctionnement en boucle ouverte :

$$\begin{bmatrix} y_{n+1} \\ y_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & \tau(1-D) \\ 0 & D \\ y_{n} \\ y_{n} \end{bmatrix} + A_{n}^{i} \begin{bmatrix} T_{n} - \tau D(D_{n}-1) \\ 0 \\ D(D_{n}-1) \end{bmatrix}$$
(VI.28)

et

 $\varepsilon_n = e_n - y_n - \lambda y_n' \qquad (VI.29.)$

On a pu définir l'équation de récurrence (A.I.2.)

$$e_{n+2} - (1+D)e_{n+1} + De_n = e_{n+2} - (1+D)e_{n+1} + De_n + f_1(w_{n+1}) + f_2(w_n)$$

avec :

$$f_{1}(w_{n+1}) = A_{n+1}' \begin{bmatrix} D(D_{i n+1} - 1) (\tau - \lambda) - T_{i n+1} \end{bmatrix}$$

$$f_{2}(w_{n}) = A_{n}' \begin{bmatrix} -D(D_{i,n} - 1) (\tau - \lambda) + D T_{in} \end{bmatrix}$$
(VI.30.)

Pour avoir un système prototype à un échelon B, puisqu'il y a une intégration, il suffit d'imposer ε_{n+2} , ε_{n+3} et w_{n+2} nuls, soit à partir de l'équation (VI.30.) :

$$f_1(w_{n+1}) + f_2(w_n) = -(1+D) \varepsilon_{n+1} + D\varepsilon_n$$
$$f_2(w_{n+1}) = D \varepsilon_{n+1}$$

Il convient maintenant de déterminer les conditions initiales dans l'espace **séquence**. Pour cela on applique la pondération à l'équation VI.28 pour déterminer :

$$\varepsilon_{n+1}^{-(1+D)}\varepsilon_n = \varepsilon_{n+1}^{-(1+D)}\varepsilon_n^{+} D y_n^{+} \lambda y_n^{(1)} - \tau(1-D)y_n^{(1)} + f_1(w_n) \quad (VI.32.)$$

Et finalement en éliminant ε_n et ε_{n+1} , on obtient le système non linéaire :

$$f_{2}(w_{n}) + f_{1}(w_{n+1}) + \frac{(1+D)}{D} f_{2}(w_{n+1}) = DB - D y_{n} - \lambda D y_{n}^{(1)}$$

$$f_{1}(w_{n}) - \frac{f_{2}(w_{n+1})}{D} = -B + y_{n} + \begin{vmatrix} \overline{\tau}(1-D) + \lambda D \end{vmatrix} y_{n}^{(1)}$$
(VI.33)

Par une transformation linéaire matricielle de coefficients $p_{11} = \frac{\tau(1-D) - \lambda}{(\lambda-\tau) (1-D)}$

et $p_{12} = \frac{\tau(1-D^2) - \lambda}{(\lambda-\tau) (1-D)}$ on trouve la première équation (VII.11.) et avec les coefficients

 $p_{21} = \frac{D}{(\lambda - \tau) (1 - D)} \quad \text{et } p_{22} = \frac{D^2}{(\lambda - \tau) (1 - D)} \quad \text{on obtient la deuxième équation du système (VII.11.) qui traite ce problème dans l'espace d'état. Notons que si <math>\lambda \neq \tau$

car dans ce cas le système est linéarisé et sa structure est différente.

Pour les systèmes non linéaires, la forme même des équations de récurrence rend impossible un réglage prototype pour des conditions initiales et une amplitude d'entrée quelconque, que ce soit avec retour tachymétrique ou avec correcteur numérique. Toutefois par un ajustement approprié des coefficients, l'obtention de certaines réponses approchées peut se faire de manière suffisamment performante, montrant l'efficacité d'un retour par les variables d'état.

Pour utiliser un réseau correcteur dans l'espace séquence, nous avons du définir précisément la notion de condition initiale. Le calcul de ces valeurs fait intervenir l'ensemble des conditions initiales de l'espace d'état. Dans le cas où elles ne peuvent être toutes connues, il faudra opérer une évaluation en cours de fonctionnement et ainsi allonger considérablement le temps de réponse. Le problème de la détermination d'un filtre numérique revient finalement au problème de la commandabilité des systèmes non linéaires et peut se traiter de façon équivalente dans l'espace des variables d'état ou dans l'espace séquence. Le chapitre suivant sera consacré plus particulièrement à ces questions.

CHAPITRE VII

- 75 -

COMMANDE PROTOTYPE DES SYSTEMES DISCRETS

Parmi toutes les façons performantes de commander un système dynamique un des modes importants est le mode de commande en temps minimum. Un système ainsi réglé tend à réduire à zéro l'écart entre la consigne et la sortie ainsi que toutes ses dérivées, en un temps minimum, ou ce qui revient au même, un tel système place le plus vite possible sa sortie dans une certaine position et l'y maintient. Le problème consiste alors à trouver une commande admissible compte tenu des états initial et final.

Un système est commandable s'il est possible de déterminer un vecteur de commande susceptible de le faire passer d'un état initial Y_i à l'instant zéro dans un état Y_f en un temps fini.

En linéaire cette définition permet de donner des conditions sur la nature du filtre, le vecteur de commande s'obtenant simplement à partir de relations matricielles linéaires (33.34). En commande non linéaire, ce vecteur ne peut être déterminé aussi facilement. L'influence entre les instants d'échantillonnage nT et (n+1)T, de l'entrée du filtre linéaire est complètement définie par le vecteur $K(W_n)$ où W_n est le vecteur de commande ; l'équation caractéristique de l'évolution du système en boucle ouverte s'écrit comme en (I.4).

$$Y_{n+1} \approx A Y_n + K (W_n)$$
 (VII.1)

Y est le vecteur état d'ordre q pris à l'instant nT et où A est la matrice du filtre en régime libre.

Nous allons montrer tout d'abord que le temps d'établissement d'un système de commande dépend de l'ordre du système, et aussi de la nature du vecteur de commande, les conditions initiales étant quelconques.

Dans la section suivante, nous envisagerons le problème des saturations.

Enfin nous préciserons, à partir de quelques exemples, les difficultés inhérentes aux phénomènes non linéaires. Comme dans le chapitre précédent, nous considérerons plus particulièrement la réponse à un échelon de position.

VII.1. Nature du vecteur de commande

Si l'on désire que le système réponde en une période d'échantillonnage, puisque le vecteur initial Y est connu on a :

$$K(W_{n}) = Y_{n+1} - A Y_{n} = Z \qquad (VII.2)$$

Dans le domaine de commandabilité, c'est à dire là où au moins une solution réelle existe, la relation (VII.2) indique en général une modulation du signal par un nombre de paramètres égal à l'ordre du filtre à commander [35] Lorsque W_n est un scalaire, on peut se ramener à une équation du même type que (VII.2) en écrivant :

$$Y_{n+q} - A^q Y_n = Z = K(W)$$
 (VII.3)

où W est le vecteur de commande à q composantes défini cette fois dans l'espace séquence. Si la solution du système reste dans le domaine de commandabilité, on aura une réponse prototype en q périodes d'échantillonnage. Plus généralement, pour une commande multimodulée d'ordre m, on peut obtenir une réponse en p périodes d'échantillonnage si mp > q (q ordre du système).

VII.2 - Systèmes avec saturation

Dans la majorité des systèmes la commande est toujours, soit limitée par des saturations naturelles, soit limitée par la saturation du modulateur. Le temps minimum requis pour amener un processus d'un état initial Y_i à un état d'équilibre Y_f est alors plus long, puisqu'il est impossible de dépasser un certain apport de commande (énergie finie). Considérons la séquence de commande en temps minimal d'un processus d'ordre q supposé monomodulé, sans saturation. Elle est représentée par un **ense**mble de q valeurs W₁ (i=n à n+q-1) qui dans l'espace de commande correspond à un point. Chaque application de la commande réduit la dimension de l'espace d'une unité et si le système dispose du nombre d'intégrationsnécessaire, l'origine est atteinte en q périodes d'échantillonnage .

Quand le signal de commande est sujet à saturation, on est amené à définir dans l'espace de commande, un domaine de commandabilité. Si le point précédemment défini pour le système sans saturation se trouve à l'extérieur de ce domaine, le temps minimum est plus grand que q périodes et il convient d'augmenter d'une unité l'ordre de l'espace de commande. Dans ce nouvel espace, la solution si elle existe se trouve sur une hypercourbe qui peut soit couper, soit être tangente, soit enfin être extérieure au domaine de commandabilité. On a alors, soit une infinité de solutions, soit une solution, soit aucune solution admissible et il importe d'augmenter à nouveau l'ordre de la commande.

Dans les systèmes à commande non linéaire, le problème est beaucoup plus difficile du fait que les solutions sont souventmultiples, il faut alors effectuer un choix, comme nous allons le voir sur les exemples suivants.

VII.3. Exemples

où D = $e^{-T/\tau}$

VII.3.1. Système du premier ordre avec retard pur

Comme premier exemple considérons un système du premier ordre avec retard à la commande. Ce modèle, qui correspond en première approximation à un procès physique tel un four, est commandé par modulation de largeur. En notant S la sortie et Z une variable intermédiaire, les équations de récurrence qui régissent le fonctionnement du système sont les suivantes :

$$Z_{n+1} = Z_n D + A'_n (D_{in}^{-1}) D_R D$$

$$S_{n+1} = Z_{n+1} \quad \text{si } T_{in} < T - T_R \quad (VII.4)$$

$$= Z_n D + A'_n (1 - D D_R) \text{ si } T_{in} > T - T_R$$
; $A'_n = A \text{ signe } U_n$; $D_{in} = e^{T_i n / \tau}$; $D_R = e^{T_R / \tau}$; $T_{in} = H \cdot |U_n|$

- 77 -

Le temps de retard T_p est supposé compris entre 0 et T.

La réponse prototype d'un tel système étant possible en une période d'échantillonnage, pour une entrée en échelon de position d'amplitude B on impose $S_{n+1} = B$. La condition initiale $S_n = Z_n$ étant fixée, la valeur à atteindre par la commande est égale à :

$$ATT = S_{n+1} - Z_n D \qquad (VII.5)$$

Or il n'est pas possible de dépasser en valeur absolue

$$SA = A (1 - DD_p)$$
(VII.6)

Si donc ATT est plus grand que SA, ou se trouve en saturation, sinon on résoud l'équation non linéaire en utilisant par exemple la méthode subroutine de Newton Raphson.

L'organigramme du calcul est présenté figure VII.1. La subroutine RTNI donne la valeur X de la solution et un message d'erreur IER indique s'il y a convergence ou non. La résolution du problème dépend non seulement de l'existence d'une solution mais aussi de la convergence de la méthode de calcul et donc de la qualité de l'algorithme. C'est un point nouveau important que nous retrouverons avec plus d'acuité encore dans les exemples suivants. Il viendra alors s'ajouter le problème du choix entre plusieurs solutions possibles.

Dans cet exemple, avec les valeurs numériques indiquées dans l'organigramme de calcul, les résultats obtenus sont donnés dans le tableau VII.2. On y constate que la présence de la saturation à augmenter le temps de réponse de deux périodes d'échantillonnage.

79

_						
	IEH	R = 0				
	S =	0.000000	Z =	0.0000000	U =	4.000000
	s =	3.8546990	Ζ =	5.4045140	U =	4.0000000
-	S =	5.8429070	Z =	7.3927230	U =	2.8575670
	S =	6.0000000	Z =	6.0000000	U =	3.1644320
	S =	6.0000000	Z =	6.0000010	U =	3.1644320
-	S =	6.0000000	Z =	6.0000010	U =	3.1644320
	S =	6.0000000	Z =	6.0000010	U =	3.1644320
	S =	6.0000000	Z =	6.0000010	U =	3.1644320
-	S =	6.000000	Z =	6.0000010	U =	3.1644320
	S =	6.0000000	Z =	6.0000010	U =	
	COMPII	LE TIME =	3.79 SEC	, EXECUTION	TIME =	0.86 SEC, OBJECT CODE = 4104 BYTES

TABLEAU VII.2.

VII.3.2. Moteur en commande multimodulée

Considérons maintenant un moteur utilisé en organe de position commandé à la fois par modulation d'amplitude avec saturation (signal u_n^1) et par modulation de largeur (signal u_n^2). L'équation de fonctionnement du système en boucle ouverte est la suivante :

$$\begin{bmatrix} S_{n+1} \\ S_{n+1} \\ S_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & \tau(1-D) \\ 0 & D \end{bmatrix} \begin{bmatrix} S_n \\ S_n \\ S_n \\ S_n \end{bmatrix} + u_n^1 \begin{bmatrix} T - \tau(1-D) \\ 1 - D \end{bmatrix} + A'_n \begin{bmatrix} T_{n-\tau D}(D_{n-1}) \\ D(D_{n-1}) \end{bmatrix}$$
(VII.7)

où S' représente la dérivée de la sortie et :

$$D = e^{-T/\tau}$$
; $A_n^{\prime} = A$ signe (u_n^2) ; $T_{in} = H$. $|u_n^2|$; $D_{in} = e^{in/\tau}$

Considérons que l'effet de u_n^l et u_n^2 est le même au point de vue de la saturation de la modulation ce qui physiquement est normal car c'est en général l'objet à commander qui fixe la saturation.

Pour obtenir un système prototype en une période lorsqu'il n'y a pas de limitation, il faudrait choisir les valeurs de u_n^1 et de u_n^2 telles que la relation vectorielle suivante soit vérifiée :

$$\begin{array}{c|c} & T & -\tau (1-D) \\ u_{n}^{1} & 1-D \end{array} + A_{n}^{\prime} & T_{n} & \tau D(D_{n}^{-1}) \\ 1 & D(D_{n}^{-1}) \end{array} = \begin{bmatrix} ATT \\ ATT \end{bmatrix} (VII.8)$$

avec

$$ATT = S_{n+1} - S_n - (1-D) S_n'$$
$$ATTP = S_{n+1}' - D S_n'$$

Il est possible de représenter dans le plan (ATT ; ATTP) un réseau de courbes (figure VII.3) à diverses valeurs de u_n^1 et de u_n^2 . L'influence de u_n^1 est matérialisée par une translation suivant une droite de la courbe fonction de u_n^2 avec u_n^1 nul.

Les courbes de la figure VII.3 ont été tracées avec les valeurs numériques suivantes : $\tau = T = 1$ s ; H = 1/4 ; A = 7.

Deux zones sont alors mises en évidence : une zone où il existe une seule solution et une autre où trois solutions sont possibles. Si maintenant nous tenons compte des saturations, nous devons découper le plan en neuf régions suivant le type de solutions possibles (figure VII.4). Le domaine d'atteignabilité c'est à dire celui où il existe au moins une solution non saturée correspond au domaine hachuré.

Figure VII.4.

A partir des conditions initiales et de l'amplitude de l'entrée, nous pouvons définir dans le plan (ATT, ATTP) le point à atteindre. Deux types de problèmes doivent alors être résolus. Il importe d'abord de regarder s'il existe une solution non saturée, et quand il y en a plusieurs, dans quel sens effectuer un choix. Si d'autre part la ou les solutions sont saturées, il convient de décider comment se placer sur la limite du donaine d'atteignabilité pour avoir une efficacité maximum.

Pour résoudre le premier problème, on a intérêt à effectuer une transformation de l'équation (VII.8.) afin d'obtenir :

$$u_{n}^{1}T + A T u_{n}^{2} = ATT + \tau \cdot ATTP \qquad (VII.9.)$$

$$A'_{n} \begin{bmatrix} T_{in}(1-D) - TD (D_{in}-1) \end{bmatrix} = (1-D) ATT - \begin{bmatrix} T - \tau(1-D) \end{bmatrix} ATTP = Y$$

La seconde équation seule est non linéaire et ne dépend que de u_n^2 ; la courbe Y(u²) à l'allure ci-contre(figure VII.5).

avec :

$$u_{M}^{2} = \frac{\tau}{H} \log \frac{\tau(1-D)}{TD}$$
$$Y_{M} = A \begin{bmatrix} \tau(1-D) \log \frac{\tau(1-D)}{TD} - \tau(1-D) + TD \end{bmatrix}$$

Si $Y > Y_M$ il n'y a pas de solution non saturée. Lorsque $Y < Y_M$, on peut d'abord effectuer une recherche entre 0 et u_M^2 pour voir si la solution u_n^1 correspondante est non saturée. On considère ensuite l'intervalle entre u_M^2 et - u_S^2 . Cela implique l'utilisation d'algorithmes appropriés, comme par exemple la méthode itérative de Mueller. Lorsqu'il existe deux solutions non saturées, nous retenons celle qui par exemple nécessite le minimum d'énergie.

rée. -M usun usun s

(VII.10.)

Figure VII.5.

Si dans les calculs précédents, il n'a pas été possible de trouver une solution convenable, c'est-à-dire si le point à atteindre est hors du domaine d'atteignabilité, la méthode idéale consiste à se placer sur la limite du domaine permis à l'endroit où la distance au point considéré est la plus petite. En pratique cela est souvent difficile, car cette frontière a en général une forme assez complexe. Une autre façon de procéder est de pratiquer comme en linésire. Lorsqu'une grandeur est saturée, on la met à sa valeur de saturation ; ce moyen, certes le plus simple, ne donne pas forcément un bon résultat, il suffit, comme dans notre exemple d'avoir une des limites de saturation à l'origine pour ne pas avoir de solution.

Par exemple considérons le point A de la figure VII.3, point à atteindre. Il se trouve dans une zone où trois cas sont possibles, deux saturés sur u^1 , un saturé sur u^2 . La solution la meilleure serait le point B, d'autre part en prenant les limites de saturation , on obtient les trois positions C, D, E correspondant aux trois solutions.

Sur la figure VII.5 lorsque Y > Y_M, nous nous trouvons dans le cas où il y a une solution unique saturée sur u². Le mieux que l'on puisse faire est d'obtenir Y_M en prenant u²_M. Il convient alors de régler u¹ non saturé de manière à avoir la distance la plus courte. Finalement il existe un grand nombre de stratégie possible suivant le désir de l'utilisateur : simplicité ou efficacité. Nous pouvons voir sur ce simple système du second ordre, la difficulté des problèmes à résoudre.

Nous présentons en Annexe III une résolution sur machine numérique 181360, notre intention dans ce chapitre étant uniquement de préciser les contraintes qu' apportent les commandes non linéaires.

VII.3.3. Moteur commandé par modulation de largeur

Si nous reprenons l'exemple précédent en n'utilisant que la commande non linéaire par modulation de largeur, nous savons qu'il est possible d'avoir un système prototype d'ordre deux, c'est-à-dire qu'au lieu de se placer dans l'espace des variables (u_n^l, u_n^2) , on se place dans l'espace séquence (u_n, u_{n+1}) . En utilisant les notations habituelles, l'équation de fonctionnement est alors la suivante :

$$(\text{VII.11}) \begin{bmatrix} \mathbf{S}_{n+2} \\ \mathbf{S}_{n+2}' \\ \mathbf{S}_{n+2}' \end{bmatrix} = \begin{bmatrix} 1 & \tau(1-D^2) \\ \mathbf{D}_{n+2}' \\ \mathbf{D}_{n+2}' \end{bmatrix} \begin{bmatrix} \mathbf{S}_{n} \\ \mathbf{S}_{n}' \\ \mathbf{D}_{n+2}' \end{bmatrix} \begin{bmatrix} \mathbf{T}_{n-\tau}D^2(D_{n-1}) \\ \mathbf{D}_{n+1}' \\ \mathbf{D}_{n+1}' \end{bmatrix} \begin{bmatrix} \mathbf{T}_{n+1}^{-\tau}D(D_{n+1}^{-1}) \\ \mathbf{D}_{n+1}^{-\tau}D(D_{n+1}^{-1}) \end{bmatrix}$$

Nous pouvons également dans ce cas, avec les mêmes valeurs numériques que précédemment, tracer dans le plan (ATT , ATTP) un réseau de courbes correspondant à diverses valeurs de u_n et de u_{n+1} . La figure VII.6 montre qu'il peut y avoir une solution, deux solutions ou aucune solution. La non-existence de résultat dans certaine région du plan rend plus difficile encore la résolution du problème. La seule façon d'obtenir une colution consiste à regarder si l'objectif se trouve dans le domaine d'atteignabilité indiqué en trait fort sur la figure VII.6. Lorsqu'on est hors du domaine on choisit sur la frontière le point le plus proche de celui à atteindre quand on est dans le domaine, il est possible de résoudre le système d'équations, mais le choix d'un algorithme à deux variables avec limitation sur les variables est délicat, les problèmes de convergence étant beaucoup plus difficile à régler.

VII.3.4. Remarque sur la linéarisation d'un modulateur de largeur

La courbe caractéristique de l'influence de la commande du type modulation de largeur sur un moteur dans le plan de phase est définie paramétriquement par les

relations :

$$| x = A | \overline{T_{in}} - \tau D(D_{in} - 1)]$$

$$y = AD (D_{in} - 1)$$

$$(VII.12.)$$

$$avec T_{in} = H. | U | ; D_{in} = e^{-T} ; U > 0$$

La courbe étant symétrique par rapport à l'origine, on ne considère que U positif. Nous désirons voir dans le domaine des limitations physiques permises l'écart entre cette courbe et celle du système linéaire possédant le même niveau de saturation. La droite caractéristique est dans ces conditions définie par :

$$\begin{vmatrix} x = A \\ T - \tau (1-D) \\ y = A (1-D) \\ U/U_{S} \end{vmatrix}$$
(VII.13.)

avec $HU_S = T$

L'écart sur x ou sur y est maximum pour une commande U telle que :

$$e^{HU/\tau} = \frac{\tau(1-D)}{TD}$$
(VII.14.)

La valeur de l'écart est alors :

$$\varepsilon_{\mathbf{x}} = \tau \cdot \varepsilon_{\mathbf{y}} = AD\tau \quad \boxed{\alpha} \quad \text{Log } \alpha = \alpha + 1$$
 (VII.15.)
où $\alpha = \frac{\tau(1-D)}{TD}$

Ceci permet de calculer les erreurs relatives sur x et sur y :

$$\varepsilon_{\mathbf{r}\mathbf{x}} = \frac{\alpha \operatorname{Log} \alpha - \alpha + 1}{\operatorname{Log} \alpha \cdot \left|\frac{1}{\underline{D}} - \alpha\right|}$$
(VII.16.)
$$\varepsilon_{\mathbf{r}\mathbf{y}} = \frac{\alpha \operatorname{Log} \alpha - \alpha + 1}{\alpha \operatorname{Log} \alpha}$$

L'erreur tend vers zéro lorsque T/ τ tend vers zéro. Dans le cas qui nous intéresse avec T/ τ = 1, l'erreur maximum commise en prenant le système linéa**risé** aurait été de 23 % sur y et de 41 % sur x.

Toutefois, pour un objet à régler donné et un modulateur déterminé lorsqu'une étude préalable de l'écart avec le système linéaire donne une approximation satisfaisante, le problème se trouve considérablement simplifié, car il est possible d'utiliser l'approche linéaire pour répondre aux délicates questions de saturation et de faire les calculs précis pour les points situés dans le domaine d'atteignabilité.

VII.4. Utilisation pratique Conclusion

Dans les problèmes où la structure globale (retour, type de correcteur, du système n'est pas préalablement fixée, il importe à l'utilisateur de trouver un mode quelconque de correspondance entre la sortie du filtre à régler et l'entrée du modulateur de manière à tenir compte de la série de valeurs obtenues dans les pa**ra**graphes précédents.

Lorsque le système est destiné à répondre à un seul type de consigne, le moyen le plus simple d'obtenir un système prototype est de se servir des correcteurs classiques du linéaire. Par contre si le but est multiple, il convient bien souvent de passer par l'intermédiaire de machine numérique et de convertisseurs. Cet ensemble est en réalité imposé par d'autres contingences, le système étant un élément d'un système hiérarchisé.

En considérant par exemple dans le premier cas le système du paragraphe VII.3.1 avec correcteur numérique et retour unitaire, les méthodes classiques conduisent pour l'entrée considérée à l'équation caractéristique :

$$1,5 u_{n+3} - 0,963 u_{n+2} - 0,497 u_{n+1} - 0,04 u_n = \varepsilon_{n+3} - 0,285 \varepsilon_{n+1} + 0,075 \varepsilon_n$$
 (VII.17)

Dans le second cas, en supposant les variables d'état toutes mesurables, on est placé devant le problème de la mise en place d'une commande numérique en temps réel. Lorsqu'on utilise l'espace des variables de commande, c'est-à-dire lorsque le système peut être prototype en une période d'échantillonnage, la difficulté consiste à obtenir dans un temps très court la valeur à appliquer. Puisque les algorithmes sont souvent difficiles à mettre en oeuvre à cause du problème des saturations, les résultats seront d'autant meilleurs que les processus seront lents.

Il ne s'agit pas de perdre, par un mauvais rapport temps machine - période d'échantillonnage, la précision que l'on avait cherché à obtenir par des calculs délicats.

- 88 -

Dans l'espace séquence de commande, puisqu'on détermine les valeurs pour plusieurs périodes, il importe de recaler la commande, si le résultat n'est pas en conformité avec ce qui a été prévu. Cela se fait en augmentant le temps prototype. Un choix doit alors être fait entre deux possibilités : avoir une certaine erreur mais un temps assez court ou avoir une réponse optimale en beaucoup plus de temps.

Dans ce chapitre, notre but a été de poser les problèmes qui apparaissent avec les systèmes de commande non linéaire. S'il est possible d'indiquer de façon assez générale les difficultés inhérentes à ces processus, c'est dans chaque cas particulier qu'il faut fixer jusqu'à la méthode de résolution pour avoir des performances satisfaisantes à une consigne donnée. Toutefois, une théorie générale reste possible,mais en l'absence d'outils mathématiques appropriés il convient de considérer celle-ci dans le cadre d'un prolongement de nos recherches. ANNEXE I

Mise en équation - Exemples

Soit l'exemple de la figure AI.1 correspondant à la commande d'un moteur par un modulateur de largeur.

Figure AI.1

Les équations en boucle ouverte sont les suivantes en posant $D_{in} = e^{T_{in}/\tau}$ $D = e^{-T/\tau}$, $A'_n = A$ signe (W_n) et avec $T_{in} = k$ ($|W_n|$) : $\begin{bmatrix} y_{n+1} = y_n + A'_n T_{in} - A'_n \tau D (D_{in}-1) + \tau (1-D) y_n^{(1)} \\ y_{n+1}^{(1)} = y_n^{(1)} D + A'_n D (D_{in}-1) \end{bmatrix}$ (AI.1) Appliquons la pondération de coefficients 1 ; -(1+D) ; D, on obtient :

$$\varepsilon_{n+2} - (1+D) \varepsilon_{n+1} + D \varepsilon_{n} = e_{n+2} - (1+D) e_{n+1} + D e_{n} + \dots$$

$$\dots + A_{n+1}^{\dagger} \begin{bmatrix} D & (D_{i,n+1} - 1) & (\tau - \lambda) - T_{in+1} \end{bmatrix} \quad (AI.2)$$

$$\dots + A_{n}^{\dagger} \begin{bmatrix} D & (D_{i,n} - 1) & (\lambda - \tau) + D & T_{in} \end{bmatrix}$$

qui peut se mettre sous la forme :

(AI.3)
$$\varepsilon_{n+2} - (1+D) \varepsilon_{n+1} + D \varepsilon_n = e_{n+2} - (1+D) e_{n+1} + D e_n + f_1(w_{n+1}) + f_2(w_n)$$

Considérons tout d'abord un correcteur d'ordre 1 caractérisé par :

$$\alpha_{1} w_{n+1} + \alpha_{0} w_{n} = \beta_{1} \varepsilon_{n+1} + \beta_{0} \varepsilon_{n}$$

Cela entraîne :

$$e_{n+2} \beta_{1} + e_{n+1} \left| \frac{\beta_{0} - \beta_{1} (1+D)}{\beta_{0} - \beta_{1} (1+D)} \right| + e_{n} \left| \frac{\beta_{1} D - \beta_{0} (1+D)}{\beta_{1} - \beta_{0} (1+D)} \right| + \beta_{0} D e_{n-1} = \dots$$

$$\cdots - \alpha_{1} w_{n+2} + w_{n+1} \left| \frac{\alpha_{0}}{2} - \alpha_{1} (1+D) \right| + w_{n} \left| \frac{\alpha_{1} D}{\alpha_{1} - \alpha_{0} (1+D)} \right| + \alpha_{0} D w_{n-1} + \dots$$

$$\cdots - \beta_{1} f_{1} (w_{n+1}) - \left| \frac{\beta_{1}}{\beta_{1}} f_{2} (w_{n}) + \beta_{0} f_{1} (w_{n}) \right| - \beta_{0} f_{2} (w_{n+1}) \quad (AI.4.)$$
Pour un correcteur du second ordre c'est-à-dire :

$$\alpha_2 \mathbf{w}_{n+2} + \alpha_1 \mathbf{w}_{n+1} + \alpha_0 \mathbf{w}_n = \beta_2 \mathbf{\varepsilon}_{n+2} + \beta_1 \mathbf{\varepsilon}_{n+1} + \beta_0 \mathbf{\varepsilon}_n$$

on obtiendrait :

$$\beta_{2} e_{n+3} + e_{n+2} \begin{bmatrix} \beta_{1} - \beta_{2}(1+D) \end{bmatrix} + e_{n+1} \begin{bmatrix} \beta_{2} D - \beta_{1}(1+D) + \beta_{0} \end{bmatrix} + e_{n} \begin{bmatrix} \beta_{1} D - \beta_{0}(1+D) \end{bmatrix} + \dots$$

$$\dots + \beta_{0} D e_{n-1} = \alpha_{2} w_{n+3} + w_{n+2} \begin{bmatrix} \alpha_{1} - \alpha_{2}(1+D) \end{bmatrix} + w_{n+1} \begin{bmatrix} \alpha_{0} - \alpha_{1}(1+D) + \alpha_{2} D \end{bmatrix} + \dots$$

$$\dots + w_{n} \begin{bmatrix} \alpha_{1} D - \alpha_{0}(1+D) \end{bmatrix} + \alpha_{0} D w_{n-1} - \beta_{2} f_{1}(w_{n+2}) - \begin{bmatrix} \beta_{2} f_{2}(w_{n+1}) + \beta_{1} f_{1}(w_{n+1}) \end{bmatrix} + \dots$$

... -
$$\left| \frac{\beta_1}{\beta_1} f_2(w_n) + \beta_0 f_1(w_n) \right| + \beta_0 f_2(w_{n-1})$$
 (AI.5.)

Dans le cas d'un correcteur d'ordre trois on aurait :

$$\beta_{3} e_{n+4} + e_{n+3} \left| \beta_{2} - \beta_{3} (1+D) \right| + e_{n+2} \left| \beta_{1} - \beta_{2} (1+D) + \beta_{3} D \right| + e_{n+1} \left| \beta_{0} - (1+D) \beta_{1} + \cdots \right|$$

$$\cdots + \beta_{2} D + e_{n} \left| \beta_{1} D - \beta_{0} (1+D) \right| + \beta_{0} D e_{n-1} = \alpha_{3} w_{n+4} + w_{n+3} \left| \alpha_{2} - \alpha_{3} (1+D) \right| + \cdots$$

$$+ w_{n+2} \left| \alpha_{3} D - \alpha_{2} (1+D) + \alpha_{1} \right| + w_{n+1} \left| \alpha_{0} - \alpha_{1} (1+D) + \alpha_{2} D \right| + w_{n} \left| \alpha_{1} D - (1+D) \alpha_{0} \right| + \cdots$$

$$+ \alpha_{0} D w_{n-1} - \beta_{3} f_{1} (w_{n+3}) - \left| \beta_{3} f_{2} (w_{n+2}) + \beta_{2} f_{1} (w_{n+2}) \right| - \left| \beta_{2} f_{2} (w_{n+1}) + \beta_{1} f_{1} (w_{n+1}) \right| \cdots$$

$$- \left| \beta_{1} f_{2} (w_{n}) + \beta_{0} f_{1} (w_{n}) \right| - \beta_{0} f_{2} (w_{n-1})$$

$$(AI.6.)$$

Remarque :

Lorsque le modulateur est saturé $T_{in} = T$ et on a alors :

$$\begin{bmatrix} f_1(w_{n+1}) = A_{n+1}^{\dagger} & (1-D) & (\tau-\lambda) - T \end{bmatrix}$$

$$f_2(w_n) = A_n^{\dagger} & (1-D) & (\lambda-\tau) + TD$$
(AI.7.)

ANNEXE II

Réglage du retour tachymétrique d'un moteur

Considérons un moteur en organe de position caractérisé par sa constante de temps τ et commandé par un modulateur de largeur émettant des impulsions de hauteur A' = A signe (ε_n) et de largeur $T_{in} = k |\varepsilon_n|$. Dans le retour on dispose d'un élément tachymétrique de coefficient λ .

Afin d'obtenir une réponse indicielle en temps minimum par un réglage approprié de λ , analysons l'influence de ce coefficient sur trois critères intégraux : l'intégrale du carré de l'écart entre l'entrée et la sortie, l'intégrale de la valeur absolue de l'écart et l'intégrale de la valeur absolue de l'écart multiplié par le temps.

Le système lui-même est simulé sur machine numérique en utilisant la méthode du chapitre IV. La détermination des trois critères ne posent alors aucune difficulté. Elle se fait par l'approximation du trapèze. Il faut toutefois considérer le cas où l'écart entrée-sortie change de signe.

Dans une étude préliminaire nous avons pu constater tout d'abord que l'erreur du système, différence entre l'entrée et une combinaison linéaire des variables d'état de coefficients 1 et λ , pouvait donner une solution optimale pour le critère sans que la sortie soit optimale c'est pourquoi nous avons considéré l'écart entre l'entrée et la sortie du système. D'autre part l'intégration peut être arrêtée au bout de six périodes d'échantillonnage, les critères étant alors largement significatifs. Les figures AII.1 à AII.3 montrent les courbes I des trois critères en fonction de λ pour diverses valeurs de l'entrée B. Les figures AII.4 et AII.5 correspondent au troisième critère avec les valeurs de la constante de temps $\tau = 1$ s et $\tau = 3$ s.

La période d'échantillonnage est de 1 seconde, l'amplitude A est égale à 5 et la valeur de k à 1/4. Lorsque le système approche de l'équilibre, la méthode de simulation, avec le Δt choisi, laisse un seuil d'imprécision égal à 0.4. En effet le comportement exact du système simulé est celui d'un dispositif à modulation de largeur quantifiée $\begin{bmatrix} 4 \\ -4 \end{bmatrix}$. On pourrait augmenter la précision en prenant un nombre de pas plus grand par période d'échantillonnage. On tendrait alors vers un modulateur continu de largeur : ceci explique également la présence de palier sur les courbes. Les résultats nous permettent de constater que le critère temps est le plus sensible. Il présente de plus l'avantage de tenir compte de la longueur du transitoire.

Lors d'une recherche systèmatique de l'extrémum sur machine numérique (liste des instructions en FORTRAN IV ci-jointe), nous avons donc utilisé le critère temps multiplié par la valeur absolue de l'écart. D'autre part la présence de palier dans les courbes nous empêchent d'utiliser les méthodes classiques du gradient. Nous avons alors fait une recherche du minimum basée sur la série de Fibonnaci (subroutine FIPAL) et le calcul du gradient à pas croissant (subroutine GRAP). Cette dernière indique si la série de Fibonnaci doit être prise directement ou à rebours, ou encore si l'on a atteint la zone du minimum.

Sur les figures AI.6, AI.7, AI8, nous avons tracé les courbes de sortie pour diverses valeurs de l'entrée B en utilisant une valeur de λ identique pour toutes les entrées. Cette valeur a été prise pour satisfaire sensiblement aux choix optimaux indiqués par la machine.

97_

Recherche de la valeur de l optimum suivant le critère temps

	C CO	RRECTION LAMBDA-MIN-ECHELON MOD.LARGEUR
1		DIMENSION $EP(1)$, $EB(1)$, $EQ(1)$, $X(1)$
2		COMMON B, Y(61), XEP, XEB, XEQ
3		Y(1) = 0.0
4	an teach-shift a constant of the state of the state	
5		B=12.
6	14	8=8-2.0
7		EP(1) = B - Y(1)
8		EB(1) = ABS(EP(1))
9		EQ(1) = EP(1) * * 2
10	\$\$\$\$\$#\$	
11	24 	XEB=EB(1)
12		$X \in C = E \cap C (1)$
13		CALL FIPAL(3.,.025,1,.0,X,CRI,NP)
14		WRITE(6,100)X(1),CRI,B,NP
15	100	FORMAT(* LAMBDA MIN=*F14.3,2X,*CRTA=*F14.3,2X,*B=*F14.3,2X,*NP=*13
GREEK MAD THE REAL	n Solar turovina discher der State der Solar der	
16		CALL CRITER(1, X, CRI)
17		WRITE(6,200)Y
18	200	FCRMAT(* Y=*/5(10(2X,F7.3,1X)/)11(2X,F7.3,1X)/)
19		IF(2B)14,15,15
20	15	STOP
21	Rodo paga na juga na kana da na kana da	END

ator a window for the second second	a selected a fille margin from	
22		SUBROUTINE FIPALIAINT.PRF.NORDRF.VIN.X.CRI.NP)
6 E		A MARTINE A LA MERINA PERSONAL PE
23		DIMENSION KIII
	С	INITIALISATION
74		NP=0
1. · ·		
23		IFTAINFFREELUUSISI
		TERMES DE LA SERIE DE FIBONACEI
26		7 60=1
~~~		n norre autor
21		
28		2 F2=F1+F0
29		1F101NT-PRF#F216.6.4
30		
90		
21		
32		GC TO 2
33		
35		D DELLATAINT/FZ
34		XO=VIN
35		$X1 = DFI TA \neq FO + XO$
3 A		
30		
37	·/	X(D=X)
38		CALL CRITER(NORDRE,X.CRI)
20		¥(1)=¥2
.27		
40		CALL CRITER(NURDRE,K,CRII)
41		NP=NP+2
- 20-	c	DEBOUDS SEDIE FIRONNACCI
	٩.,	
<u> </u>	and and the state of the state	
43		F1=F0
la la		F0=F2-F1
1.5		15((0))-(0))12,30,10
42	-10-	
	C	REDUCTION DE L'INTERVALLE D'INCERTITUDE
46		10 X2=X1
47		CRI1=CRI
L. Q	n garang yan ta kana sin kir	VI-VALELIAGEA
70		
49		
50		CALL CRITER(NORDRE,X,CRI)
<b>K</b> 1		N C = N C A 1
91		in the set
52		GU IU 14
	<u> </u>	REDUCTION DE L'INTERVALLE D'INCERTITUDE
52		12 X0=X1
23		
24		X L=X Z
55		CRI=CRII
56		メクコメロ+わた1 美点本产作
e 7		
21		$A \in \mathbb{R}^{d}$
58	and a constraint of the second	CALLERIERINGRY CALLERING CONTRACTOR CONT
59		NP=NP+1
8 M		GC \$0 14
υu	<b></b>	
	C	LA REUMERUME EST-ELLE FINIE
61		30 X(1)=X1
43		CALL GRAP(X.NORDRF.CRI.IGO.MPO5)
	1	
63	an castin a shairin	NPENFFEF
64		IF(IG0)31,32,31
65		32 GO TO 100
کر کی۔ حرید		
66		31 1F(10U-1)33924933
67		34 GC TC 10
60		33 60 TO 12
10		22 39 19 19 18 16 87 17 19 19 10 10 10 10
<u> </u>		
70		18 IF(CRI1+CRI)22,22,20
71		20 XM=X1
73		CO TO 23
		n n n n n n n n n n n n n n n n n n n
13		しん 美術平天之
74		CRI=CRI1
	<u> </u>	DEPLACEMENT DE L'INTERVALLE POUR NOUVELLE RECHERCHE

- 1
|                               |                                                                   | and the field with                                          |
|-------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|
| nanomeni temperatu<br>Physics | 23                                                                | IF (AINT-XM-2, *PRE)25,25,99                                |
| 76                            | 25                                                                | VIN=XH-2. *PRE                                              |
| 77                            |                                                                   | G0 T0 7                                                     |
| 78                            | 99                                                                | X(L)=XM                                                     |
| 79                            | 100                                                               | RETURN                                                      |
| 80                            |                                                                   |                                                             |
| 81                            | sund die Druck zu die Heimminden Friedrich die Statum - Wie Ander | SUBROUTINE GRAP(X, NORDRE, CRI, IGO, MP, DXIN)              |
| 82                            |                                                                   | DIMENSION X(NORDRE), XP(1), XN(1)                           |
| 83                            |                                                                   | MP=0                                                        |
| 84                            | 12                                                                | P=0                                                         |
| 85                            | 3 La                                                              | P=P+1                                                       |
| 86                            | ur an ann an                        |                                                             |
| 87                            |                                                                   | XP(1)=X(1)+DXP                                              |
| 88                            |                                                                   | CALL CRITER(NORDRE, XP, CRIP)                               |
| 89                            |                                                                   | NP=NP+1                                                     |
| 90                            |                                                                   | GRACP=(CRI-CRIP)/OXP                                        |
| 91                            |                                                                   | IF(GRADP)1,2,1                                              |
| and Salan                     |                                                                   |                                                             |
| 93                            | Eq.                                                               |                                                             |
| 94                            |                                                                   | DXN=DXIN*N                                                  |
| 95                            |                                                                   | XN(1)=X(1)-DXN                                              |
| 96                            |                                                                   | CALL CRITER (NORDRE, XN, CRIN)                              |
| 97                            |                                                                   | MP=MP+1                                                     |
| <u>98</u>                     | MagnetsSigg.cgst.cgmAutorSigner-defHubmerfilts                    | <u>GRADN=ICRIN-GRIJ/DXN</u>                                 |
| 99                            |                                                                   | IF(GRACN)3,4,3                                              |
| 100                           | 3                                                                 | GRANP=GRADP*GRADN                                           |
| 101                           |                                                                   | IF(GRANP)5,6,6                                              |
| 102                           | 5                                                                 | IGO=0                                                       |
| 103                           | 6                                                                 | IF(GRADP)7,8,8                                              |
| 104                           | มี<br>เมาะการเกิดสารเราะสุดาร์การเกิดสารเสียง                     | ICO # 1                                                     |
| 105                           | 8                                                                 | IGC=2                                                       |
| 106                           |                                                                   | WRITE(6, 300)X, CRI, IGO                                    |
| 107                           | 300                                                               | FORMAT(4x, * x= * F14.7, 2x, * CRI=* F14.7, 2x, * 160=* 11) |
| 108                           |                                                                   | RETURN                                                      |
| 109                           |                                                                   | END                                                         |

楹

10	ladiorfic humu stargest on statingstic health of any hird of	SUBROUTINE CRITER (NORDRE, X, CRI)
the second		DIMENSION X(NORDRE), YP(61), EPSP(61), EPS(61), EP(61), EB(61), EQ(61), C
	and a second sec	LRTA(61)
12		COMMON B, Y(61), XEP, XEB, XEQ
.13	*	EP(1)=XEP
14	na na naje na stanovni na konstructiva na svoje stanovni stanovni na s	EB(1)=XEB
.15		EQ(1) = XEQ
.16		CRTA(1) = 0.0
17		VP(1)=0.0
18		EPS(1) = B - Y(1) - X(1) * YP(1)
.19		DO 10 N=1,51,10
20	nak Shire ayanga poʻligang solar asaging solar (san	EPSP(N) = ABS(EPS(N)) + 2.5 + 1.5
121		M=N+1
1.22		L=N+10
123		DC 10 I=M,L
24		IF(I-N+1-EPSP(N))2,2,3
125	2	IF(EPS(N))4,5,5
26	ana	
27		GO TO 6
128	la,	6=-5
129		GO TO 6
130	5	G=5
131	6	YP(1)=0.846*YP(1-1)+0.154*G
L. 3. Zacana	na dalaman yang san sila an araba dina nasilakan ka	YII)=YII-1)+0.047*(YPII)+YPII-1))
133		EPS(I) = B - Y(I) - X(I) * YP(I)
134		EP(1) = B - Y(1)
135		EB(I) = ABS(EP(I))
136		EQ(I)=EP(I)**2
137		IF(EP(I)*EP(I-1))7,8,8
138		$\underline{CRIAU} = \underline{CRIA(I-1) + (EB(L) * (I-1) + EB(I-1) * (I-2)) * AO5}$
139		GO TO 10
40	7	CRTA(I) = CRTA(I-1) + ((EQ(I-1)*(I-2)+EQ(I)*(I-1))/(EB(I)*EB(I-1)))/2C
141	10	CONTINUE
142		CRI=CRTA(61)
143		RETURN
64	undingter international and an and	

.



104 -





## ANNEXE III

#### Moteur en commande multimodulée

Lors du chapitre VII, nous avons examiné de manière générale les problèmes posés par la commande multimodulée d'un moteur. Dans cette annexe, nous allons considérer en détail la méthode pour obtenir la valeur des variables de commande donnant un système prototype. Après avoir rappelé les équations de fonctionnement, nous suivrons la procédure sur le bloc diagramme ci-joint.

Les équations qui régissent le comportement du système, avec les valeurs numériques du paragraphe VII.3.2, sont les suivantes :

$$\begin{split} \mathbf{S}(\mathbf{I}) &= \begin{bmatrix} 1 & 0.632 \\ 0 & 0.368 \end{bmatrix} \quad \begin{vmatrix} \mathbf{S}(\mathbf{I}-1) \\ \mathbf{SP}(\mathbf{I}) \end{bmatrix} + \mathbf{U}\mathbf{I}(\mathbf{I}-1) \\ \mathbf{SP}(\mathbf{I}-1) \end{bmatrix} + \mathbf{U}\mathbf{I}(\mathbf{I}-1) \\ \begin{bmatrix} 0.368 \\ 0.632 \end{bmatrix} + \mathbf{A}_{\mathbf{I}-1}^{*} \begin{bmatrix} \mathbf{T}_{\mathbf{i},\mathbf{I}-1} - 0.368(\mathbf{D}_{\mathbf{i},\mathbf{I}-1} - 1) \\ 0.368(\mathbf{D}_{\mathbf{i},\mathbf{I}-1} - 1) \end{bmatrix} \\ \mathbf{A}\mathbf{V}\mathbf{C} \mathbf{A}_{\mathbf{I}-1}^{*} = 7 \text{ signe } \begin{bmatrix} \mathbf{U}\mathbf{2} (\mathbf{I}-1) \end{bmatrix} ; \quad \mathbf{T}_{\mathbf{i},\mathbf{I}-1} = 0,25 \\ \mathbf{U}\mathbf{2}(\mathbf{I}-1) \end{bmatrix} \quad (\mathbf{A}\mathbf{I}\mathbf{I}\mathbf{I}, \cdot) \\ \mathbf{C} \mathbf{U}_{\mathbf{i},\mathbf{I}-1}^{*} = \mathbf{C}_{\mathbf{i},\mathbf{I}-1}^{*} = \mathbf{C}_{\mathbf{i},\mathbf{I}-1}^{*} \end{bmatrix}$$

Ul est saturé pour la valeur A = 7 et U2 à la valeur US=4 ce qui donne pour les deux commandes le même niveau de saturation. Le point à atteindre étant défini par (ATT ; ATTP), nous avons à résoudre un système non linéaire à deux inconnues :

U1(I-1) 
$$\begin{bmatrix} 0.368 \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ... \\ ...$$

qui peut encore s'écrire :

(AIII.3) 
$$\begin{vmatrix} U1(I-1) + 7 U2(I-1) &= ATT + ATTP &= ATM \\ A_{i,I-1} & 0.632 T_{i,I-1} - 0.368(D_{i,I-1} - 1) \end{vmatrix} = 0.632 ATT-0.368 ATTP=ATMP$$

La seconde équation ne dépend plus que de U2 et le **me**mbre de gauche est représenté en fonction de U2 figure VII.5 avec YM=0.54 et UM=2.16;

Après avoir introduit les données et les conditions initiales, nous initialisons la boucle d'itération au moyen du calcul de ATT, ATTP, ATM, ATMP en fonction du but fixé c'est-à-dire de S(I) et SP(I). Il est possible d'avoir au moins une solution non saturée en U2 quand |ATMP| < YM. Lorsque nous avons l'égalité la solution est U2 =± UM. Si la valeur de U1 correspondante ne dépasse pas la saturation, nous abordons l'itération suivante, sinon nous orientons le programme vers l'étude des cas saturés. Avec |ATMP| < YM, deux solutions non saturées sont possibles sauf dans le cas où ATMP = 0. Nous avons alors les trois valeurs limites de U2 : 0 ; US ; -US.

Pour déterminer les solutions en U2, utilisons une subroutine où les bornes de recherche sont imposées ; celle-ci suit le schéma d'itération de Mueller : bissection successive et interpolation parabolique inverse. Calculons ensuite les valeurs de U1 correspondantes et éliminons les cas donnant lieu à saturation ; si alors plusieurs solutions restent valables, nous retenons celle qui fait intervenir la plus petite énergie de commande.

Nous abordons maintenant le problème de la saturation. A cause de la disposition de la zone d'atteignabilité dans le plan (ATT ; ATTP), nous avons opté pour une projection oblique du point saturé sur la frontière du domaine. L'axe de projection, perpendiculaire à l'axe du domaine, a une pente égale à - 0.58. La frontière du domaine étant constituée de plusieurs courbes, on sépare le plan (ATT ; ATTP) en plusieurs zones (figure AIII.1).Il est alors possible de déterminer les coordonnées du point limite. Il est à l'intersection de la courbe correspondante et de la droite de pente -0.58, passant par le point à atteindre.



On obtient alors facilement les valeurs de la commande soit directement soit en résolvant, par la subroutine déjà rencontrée, une équation non linéaire en U2. Il est alors nécessaire de calculer les valeurs S(I) et de SP(I) obtenues et le cycle suivant d'itération peut alors commencer.

Il est intéressant de noter que dans le cas de commande saturée, il est souvent plus avantageux de prendre des valeurs de Ul et U2 intermédiaires plutôt que les valeurs de saturation. La liste des instructions et les résultats numériques dans le cas de conditions initiales nulles sont fournis ci-après.







S ALMORENZO DA LA SUPERSONNEL	le transversi de førs den seders rage for		on de nue manager a la contra de la contra legen en la contra de contra de la contra de la contra de la contra
	\$108	TOULOTTE, ACCT=21342	
	C CO	MMANDE DE PROCESSUS PROTOTYPES	
	C	RESERVATION POUR 20 PERIODES	
and a		DIMENSION S(20), SP(20), U2(20)	
na rema canada di karanan	and a the second statement of the second	COMMON UL(20), ATMP, BT	anna soka nameskola ana akan da seberu pada ana aman sangar puru pada di seberu kanga s
3		EXTERNAL FCT.FCTL	
	C	DONNEES ET INITIALISATION	
Lą		YM=+54	
5		UM=2.16	
Ó		US=/4.	
	ann priosta ana printi mierna sa anno ana an		nt, aanuun eesintäinistaa vastaa vastaa väitä käitä käinen kyösepuus 11 nävetä kääköisikerisistösekee
8		$b = b_{a}$	
9			
10		S(1)=0.0	
11		2⊢{T}≈0°0	
h L	~		
nananananananan S	มเของและเอาจากการการการการการการการการการการการการกา	DEBUT DE LA DUULE DE VALUUL	nnor kanna nyanya ni kanan ing manjarika kana kana kana kana kana kana kana k
10	L		
1 C			
10		SP(1/=U	
10		ATTD_COTTA_ 340%COTT_11	
10		ATT = 27(1/= + 200 - 27(1 - 1) + CO(1)	
warned and common	nan an an ann an an an an an an an an an	ATMD- 234ATT- 2608ATTD	a Alaan ee waalaan waxaa kaa ahayahayaa iyo uu saagad 116 waxaa walaa ahaya ahaa ahaa ahaa ahaa ahaa ahaa
1. 7	r	ALMY - ODZ *ALL - DO *ALLY DENT_IL SVICTED DEC COLUTIONE NO MON EATHDEEC	
20	L.	TELARCIATER DES SULUTIONS DZ NUN SATURES	
6.10	£**	HNC SCHATTON EN 112 & JAHM	
21	2	TELATMOLE, Q. O	
22	8	112/ 1-13 mm 11M	
na sense de la companya de la company Na companya de la comp	กระ ราพอากระการมี การมาพอากระการที่ไม่จ	nedalitaharina da hara analisha ana ana ana ana ana ana ana ana ana a	una en en data para nativa en conseguente da Anno a admitinto o caligare del Conservation de Conservation de C
24	9		
25	10	$(1)(1=1) = \Delta TM - 7 + 12(1-1)$	
8	6	UT EST-IL SATURE-SINON SOLUTION	
26		IF(ABS(U)(1-1))-A)11.11.4	
	C	IL PEUT EXISTER 2 SOLUTIONS NON SATUREES FN U2	
27		IFIATMP15.6.7	nter som tanannans som männskanskanskanskanskanskanskanskanskansk
28	5	CALL RIMILX.F.FCTUM.O IE-02.10C.IER)	
29		IF(IER)54,64,54	
30	64	UR 1 = X	
31		CALL RIMI(X, F, FCT, -US, -UM, , 1E-02, 100, IER)	
32		(F(IER)54,65,54	
33	65	UR2=X	oor and a product of a more an and a constrained of the rate of a data and a data and a data and a data and a d
34		GO TO 12	
	C	SI ATMP=0 ON A LES 3 SOLUTIONS LIMITES EN U2	
35	6	UR1=0.	
36		UR 2=US	
37	novikaza je zakona je stalo na se stalo se stal	UR3=-US	
38		UP1=ATM	
39		UP2=ATM-28.	
40,		UP3=ATM+28.	
41		IF(ABS(UP3)-A)13,13,14	
42	7	CALL RIMI(X,F,FCT,O.,UM, LE-02,100,IER)	
annon an anno	antinent auf näre sam seinen männande seiner fra s	IF(IER)54,66.54	te este en an en antien de la de
in the	66	UR 1 = X	
45		CALL RTMI(X,F,FCT,UM,US, IE-02,100,IER)	
46	5 and	1+(1EK)54,67,54	
41	67	UR2=X	
48	12	UPI=AIM-7.*UKI	A
and the formation of th	alantararan ang kanalang kana Ing kanalang	UPZEAIM-1.FURZ	
	C	SUPORTONS NON SULARES EN OT ET CHETX POOK ON MINIM	UM D.ENEKGIF

. 113 .

	50		14	1F(ABS(UP1)-A)17.17.18	
	51		18	IF(ABS(UP2)-A)23.23.4	
	52		13	IF(ABS/UP1)-A)15.15.16	
	52		16	1101=1103	
	54		. So 8. P	101=103	
51569		n Laighi (Sabhann agus ghainn a	1 7	TEIARCHINA CONTRACTOR A 101.01.00	ur es d'annéhand ogs declass tagén en en en ange set de partie to bodanne tagén ar variant anné anna se se s'ap
	Se de		15	ICIARS/1021_A110 10 20	
	20 5 1		20	100-1003	
	51		20	UP2-UP3	
	28		~ *		
	29		64		
MARCES	<u> </u>	ereenia ynsiattwêrmeara	With Station and Station	ELZ= A * A B S (UK ( ) * A B S (UP Z)	
	01			1+1+1++12/23/23/22	
	62		23	U2(1-1)=UR2	C. S. L. S. S. K. S. Market and S.
	63			U1(1-1)=UP2	
	64		-	GO TO 11	
	65		22	U2(I-1) = UR1	
12384	66	enter valatteler valerationen over Guerger	100.000 performance	UIL ( we ) ) to UP ]	Nan Turka pundin takatura pana dikan kan karu bula uningka kara papa para ang bana pangan kan karu karu buba bu
	67			GO TO 11	
	68		19	EI1=A*ABS(UR1)+ABS(UP1)	
	69			EI2=A*ABS(UR2)+ABS(UP2)	
	70			EI3=A*ABS(UR3)*ABS(UP3)	
	71			IF(EI1-E12)24,24,25	
LANSING MALE	72	en constant Station private priv	24	IE(ELL-EL3)26.26.27	
	73		25	IF(EI2-EI3)28,28,27	
	74		26	U2((-1)=UR)	
	75			U1(I=1)=UP1	
	76			GO TO 11	
	77		27	U2(I-1)=UR3	
and the second	78	NORMAL PROFESSION OF STREET	manus for the solution for some	U1(I-1)=UP3	
	79			60 TO 11	nets ser have samt sint talenda trivisitet visit and samt talenda successful and the same talenda strands in the same ser is a segment so
	80		2.8	U2(I-1) = UR2	
	81			U1(I-1)=UP2	
	82			CO TO 11	
		C		LA SOLUTION EST SATUREE	
	83		4	BT=ATTP+.58*ATT	
0.0000	a com ana san san ang ang ang ang ang ang ang ang ang a	C	ran an Antonia ana anna Anna an Arain	DETERMINATION DES ZONES ET DES SOLUTIONS	nn a mart i geolaíoch a martain saideatachta bhas anns an tar anns an tarainn a thaile bhan chantain an sin ann
	84			IF(8T-11.86)30.29.29	
	85		29	UII I I mail ma	
	86			1211-11=11S	
	87			G0 T0 33	
	88		30	IF(BT+11.86)31.31.32	
videos	29	this with the stand stand stand stand	t F	หางสีมพัทธสินที่มีหมือนการให้เป็นขึ้นกำลังสินที่สารใหญ่แก่สินที่อยู่และสารและสารและสารและและสารและสารและสารและส         { { mai } } = m }	uonganon Pangilan Rumannyi anintara dalah makana kara kara kara tahun ang tahun dalam kara pana ang pana barg
	90			19/1-11=11	
	91			G0 T0 33	
	62		32	IF(ATTD-1, 72\$ATT134, 34, 35	
	63	-	24	161RT36, Q4124, 27, 20	
	04		27		
6 etch	06	Our offer faithing we also as	evennelionian	un 1227 1 m. 1 m. 0	n an ann an A
	40			CO TO 32	
	07		25	15/0T_5_0/130_40_41	
	0.0	45	40	ar a war war war war war war war war war	
1	70	*	-40		
	100				
10.000	101	weinderstaar of the state	0 £		con และกรรมสารรณชาวิทยาล์ เป็นกรรมสารรณชาวิทยาล์ เสียงสารรณชาวิทยาล์ เห็นการการการการการการสารรณชาวิทยาล์ เป็นป
	101		38	1710172+70142+43+44	
	102		63		
	103			ULLIMIJEMA	
	1.04		- 10 and	GU TU 33	
	105		39	1+(81-2.96)45,46,47	÷.
toritorige	106	anna ann ann ann ann ann ann ann ann an	unservice de la company		
	107				

and all the part of the start o		. 115.
108		GO TO 33
109	44	IF(BT-8.91)48,49,50
110	49	U2(1-1)=UM
111		U1(I-1)=A
112	Doorflaageriskon der voertejne zue Staterioof	
113	45	IF(8T+8.91)51.52.53
114	52	U2(I-1) = -UM
115		
116		GO TO 33
117	50	
118	nte administration activities date a stat	CALL RIMICX + + + CII+UM+US++ + COZ+100+1E-
119	1.0	IF(IEK)54+08+54
120	08	$U \ge (1-1) = \lambda$
121	F 3	
222	21	$\begin{array}{c} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$
123		LALL RIMINAFFECTION UNA CLEUCALUUGIENT
1 3 C.		
126	07	CO TO 22
120	48	
128	10	1111I-11-19#RT-3.51
120		GO TO 33
130	53	1121 T-11 =-11M
131	มอกเหลากกะ เมครีไม่มหรื่องคร	unitalitation of the second decrement of the second
132		GO TO 33
133	42	U1(I-1) = -A
134		CALL RTMI(X, F, FCT1, 0., UM, . 1E-02, 100, IER)
135		IF(IER)54,70,54
136	70	
137		GO TO 33
138	47	U1(11)=A
139		CALL RTMI(X, F, FCT1, -UM, O., .1E-02, 100, IER)
140		IF(1ER)54,71,54
141	71	U2(1-1)=X
And Berner	n an	
143	36	$U_2(1-1) = -U_2$
2 4 49		UI(1-1)=1.19*BI+7.
145		
140	41	
141	. 7 7	VIII-13-14/2 21 20
140 1.10	eneren an	
147	01	A A = A A
151		
152	62	AX=12/(-1)
153	10 G	AP=A
154	63	AIX=FXP(-25*AX)
155	าและการสะบาทการสิทธิสานทาง	$S(1) = S(1-1) + .632 \times SP(1-1) + .368 \times U1(1-1) + 1.75 \times U2(1-1)368 \times AP \times (AIX-1)$
156		SP(1)=.368*SP(1-1)+.632*U1(1-1)+.368*AP*(AIX-1.)
157	11	IF(1-L)1.54,54
158	. 54	
159		WRITE(6,200)IER,(S(J),SP(J),UI(J),U2(J),J=1,II),S(I),SP(I)
160	200	FORMAT(4X, * IER=* I1/(2X, *S=*F14.7.*SP=*F14.7.*U1=*F14.7.*U2=*F14.7.
		1))
161		STOP
162		END
		and a second of the second s

out into addatation in the first out of the	purcenteristic analysistic	2000 state OK an addition of Quarter	
163			SUBROUTINE RTMI(X,F,FCT,XLI,XRI,EPS,IEND,IER)
	C		
	C		
	C		PREPARE ITERATION
164	esen-president volumit table	Denne der Michael von der miter	
165			XL=XLI
166-			XR=XRI
167			X=XL
168			TOL = X
169			F=FCT(TOL)
170	na ang ing ing ing ing ing ing ing ing ing i	canderectorisación col rele	1F(F)1,16,1
171		1	for the second sec
172			X=XR
173			TOL = X
174			F=FGI(TOL)
175		~	1F(F)2,16,2
175	nankaungi santasa kelimi	and the second second	FR=F [F(SIGN(1FL)+SIGN(1FR)]25.3.25
	С		a a d a la cara d a a for an for de la cara de la construction de la cara de la construction de la cara de la c
	C		BASIC ASSUMPTION FL*FR LESS THAN ZERO IS SATISFIED.
	C		GENERATE TOLERANCE FOR FUNCTION VALUES.
178		3	1=0
179	on and the second s	s-bender Garden (64). M	IQLF=100.*EPS
	С		
	C		
	С		START ITERATION LOOP
180		lap	
	C		
101	anan a Manara	roli 8 404 e vizitar ak	STARL BISFULLUN LUUP
101			VU IJ NELAICIVU
102			
194			F = FCT(TOL)
1.95			121616.14.5
196		15	IEISIGN(1, E)+SIGN(1, EP))7.6.7
literet the or the second s	100-315dt/185km-455mg	สมสาราชาติสำคราม	หารีกกันหารีการที่สารที่สารที่สารที่หารีการที่หารีการที่สารที่สารที่สารที่สารที่หารีการการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการทางการท
	Č		INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR
187		6	TOL=XL
188			XL=XR
189			XR=TOL
190	NI N		TOL=FL
191			FL=FR
192			FR=TOL
193		7	TOL=F-FL
194			A=F +TOL
195			A = A + A
196	an and bright in scores	s un a concentration de la conc	1F1A-FR#1FR-FL118,9,9
197		8	IF(1-IEND)17,17,9
198,		9	XR=X
199			
	, C		The average and the started the
200	C		TEST UN SATISFACTURY ACCURACY IN BISECTION LOUP
201	esatolicat 10930 intellikoa	6647.9899. <b>8</b> 69.9999.9999	A = A B S ( XR )
202			IF(A-1.)11.11.10
203		10	TOL=TOL*A
204		11	IF(ABS(XR-XL)-TOL)12,12,13
205		12	IF(ABS(FR-FL)-TOLF)14,14,13
206	D CONTRACTOR OF THE	13	CONTINUE
	C		END OF BISECTION LOOP

. 116 .

and the second second

		a and a second second second	a dit .
1	r		
	C		NO CONVERGENCE AFTER LEND ITERATION STEPS FOLLOWED BY IEND
	C.		SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION
	C		VALUES AT RIGHT BOUNDS. ERROR RETURN.
207	0		IER=1
208	ker neren der konstant	J. 40	IF(ABS(FR)-ABS(FL))16,16,15
209		15	X=XL
210			
211		16	RETURN
	C		
G-velanotatio (BRAdamasan	Construction	nafatatan Mangalar	COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLATION
212		17	A=FR-F
213			$UX = (X - XL) \neq L = (L_0 + L \neq (A - (UL)) (A \neq (LK - L))) = UL$
214			A Mark
212			
210			
218	ni a calculor da Miller (Miller	ika danini kenalifuntu rubuk	
219			1-1-1-18-16-18
tour Cer #	С		er t. f. ov f. w. f. a.w.
	C		TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP
220		18	TOL=EPS
2. Pullourour	upsointrysisteriotics	Antorial and a factor and a	A = ABS(X)
222			IF(A-1.)20,20,19
223		19	TGL=TOL *A
224		20	IF(ABS(DX)-TOL)21,22,22
225	~	21	1+(ABS(+)
	L		DECOMPATION OF NEXT DISECTION LOOD
226	anter a file cont	2 7	TEISICNII, FISSICNII, FIIIZZ 23,24
220		23	XR=X
228		the of	FR=F
229			GO TO 4
230		24	XL=X
231	ered Stationastan Age	uude#est#eadessides	
232			XR=XM
233			FR=FM
234			GO TO 4
	C		END OF ITERATION LOOP
	L.		
	norman Honesso f	Notati al Alfred State State Son-	EDDOD DETHON IN CACE OF UDDING INDIT RATA
225	0	25	IRREP
236		Richer and	RETURN
237			END
B.L.M. Starting of the Starting of	noradilija Tojeno je kao je	n estatut alteratut alter	
2			
	-		

		- 118 -	
270		EUNCTION ECTEVA	addahooddalayaattahootti Jan I Jackan Agenta (Jackan)
230		COMMON UTTOOLATMP.RT	
240		IF(X)55.55.56	
241	55	$5 \Delta X = -X$	
242		AP=-7.	
243		GO 10.57	ngaar teendelikkap yn odd yn Gangel ander yn dan her yn yr yn onnoenin ander yn y
244	56	6 AX=X	
245		AP = 7.	
246	57	7 FCT=AP*(.158*AX368*(EXP(.25*AX)-1.))-ATMP	
247		RETURN	
248	ungeneren di optic Malant Bezardi genalgeren en e	FND	araman Manda mangga yang kanalan kana kana kana kana kana kana k
areasing frequencies and	istanistanti firikoj (de las tento en konse		nan anayan da kayan karang saya ana ang karang karang sayan sa
249		FUNCTION FCTIIX)	
250		COMMON U1(20), ATMP, BT	
251		1F(X)58,58,59	
252	58	B AX∞X	
under State Stat	ารสิทธิสิทธิศักราชการสามสุดสิทธิสามส์สามส์สา		est Gootene ( Gootene and the set of the set
254	6.0	GO IO 60	
200	23		
250	60	$AP = i \bullet$ $ATY = CYD f = D C \pm A Y F$	
254	U U	FETISI. 019×X+. 155×A0×/AIX-1. 1+. 845×111/1-11-81	
259		RETURN	
260	an dataoontoinin ptosiin thur _{data} a suorstadining, (25		taan Nadi dheyaa aa dalaa taa ahaa ni dhalaa ahaa ahaa ahaa ahaa ahaa ahaa ah
LER = (	3		
Atr Raf	0.0000	0.0000SP = 0.00000001 = 0.631197002 = 2.1599990	

-ultr- -ultr-	C.CC00000SP=	0.00000001=	0.6311970U2=	2.1599990	
anten anter di musique de la comunicación de la comunicación de la comunicación de la comunicación de la comuni anten a	2.167848CSP=	2.243347001=	-2.826019002=	2.1599990	
04,04 14,499	4.4812380SP=	0.883938501=	-3.234424002=	2.1599990	
arih Arro	5.7851880SP=	0.125564601=	-1.532187002=	0.2316335	
ander Ander Ander	6.000000SP=	0.000000001=	0.000000002=	0.000000	nover 2014 Mar or real corrections and an One
	6.000000SP=	0.000000001=	0.0000000U2=	0.000000	
	6.000000SP=	0.00000001=	0.0000000U2=	0.0000000	
talaan +495. 2009-1000-1000 (Salibala Carifornia)	6.000000SP=	0.000000001=	0.00000000000000	0.0000000	
orda enda	6.000000SP=	0.00000001=	0.0000000U2=	0.000000	
-stafe	6.00000005P=	0.00000001=			
MPILE	TIME: 11.27 5	EC. EXECUTION TIME	= 0.51 SEC.0	JECT CODE= 11	552 BYT

# BIBLIOGRAPHIE

<u>P.VIDAL</u> " Systèmes échantillonnés non linéaires " Gordon and Breach 1968.

2

3

4

5

1

F.R. GANTMACHER "Théorie des matrices " Dunod 1966.

E.A. BARBAŠIN

"Introduction à la théorie de la stabilité " (En Russe) Fizmatigiz Moscou 1967.

L. POVY

Contribution à l'analyse et à la synthèse des asservissements échantillonnés non linéaires en régime dynamique ".
Thèse présentée à la Faculté des Sciences de l'Université de Lille
Juin 1969.

S. WEGRZYN, O. PALUSINSKI, F.LAURENT, P.VIDAL

" Application du théorème de Banach sur la contraction à la détermination des domaines de stabilité des systèmes échantillonnés ". Communication à la 2ème Conférence d'Automatique de Bulgarie Varna, Septémbre 1967.

6

S. WEGRZYN, L. POVY, F. LAURENT, P. VIDAL

" Contribution de l'algèbre de Banach à l'étude de la stabilité globale des systèmes discrets non linéaires " Quatrième Conférence Nationale d'Automatique de Pologne Cracovie Juin 1967.

7 R. FLIPO, L. POVY, J.M. TOULOTTE " Sur la stabilité d'un système discret non linéaire du premier ordre comportant un modulateur binaire d'impulsions ". C.R. Ac.des Sciences, tome 265, p.901-903, décembre 1968. 8 L. POVY, J.M. TOULOTTE, P. VIDAL " Stabilité de divers systèmes discrets quantifiés ". International Pulse Symposium IFAC Budapest 1967. 9 F. LAURENT " Sur la stabilité globale et le temps de réponse d'un système échantillonné non linéaire" C.R. Ac.des Sciences, tome 260, p. 4444-4447, Avril 1965. 10. Y. SEVELY, P. VIDAL " Sur le temps de réponse d'une chaîne de régulation à modulation de largeur des impulsions à partie continue du premier et deuxième ordre ". C.R. Ac.des Sciences, tome 258, p.3821. 11 P.I. TCHINAEV "Systemes autoadaptatifs, calcul et projet " Dunod 1966. 12 AIZERMAN " Theory of Automatic control " Addison-Wesley 1963. 13 R. DAVID, C. MELIN, J.M. TOULOTTE "Détermination graphique des régimes transitoires des systèmes nonlinéaires à commande impulsionnelle ". R.G.E. Tome 78, n° 7-8 - 1969.



C.R. Acad. Sc, tome 264, p. 779-780, Avril 1967.

23.

F. LAURENT, C. MAIZIERES

" Sur la dispersion des réponses, à une entrée quelconque, des systèmes non linéaires, continus ou échantillonnés ".

IFAC Symposium sur la sensibilité et l'adaptativité - Dubrovnik 1968.

# . 24.

#### F. LAURENT, C. MAIZIERES

" Sur une majoration de l'écart entre les réponses, à une entrée quelconque, des systèmes asservis non linéaires, continus ou échantillonnés ".

C.R. Acad. Sc. t.266, p. 686-689, Mars 1968.

### F. LAURENT

 Sur une majoration en amplitude des oscillations limites des systèmes échantillonnés non linéaires "
 C.R. Acad. Sc. t.262, p.659-661, Mars 1966.

26.

25.

H. DEBERGHES, D. DEBERGHES, F. LAURENT

"Sur la majoration des oscillations limites d'un système échantillonné non linéaire à partie continue d'ordre m, soumis à une entrée aléatoire C.R. Acad. Sc. t.266, p. 963-954, Avril 1968.

27. <u>P. VIDAL, Z. BUBNICKI, F. LAURENT</u> "Stabilité probabiliste des systèmes échantillonnés non linéaires " C.R. Acad. Sc. t.266, p.951-952, Avril 1968.

28.

H. DEBERGHES, J.M. TOULOTTE, F. LAURENT, D. DEBERGHES, P. VIDAL

" Sur la stabilité asymptotique des systèmes échantillonnés non linéaires soumis à une entrée aléatoire ".

C.R. Acad. Sc. t.266, p. 745-746, Avril 1968.

29.

S. WEGRZYN, J.C. GILLE, P. VIDAL, O. PALUSINSKI

" Stabilité illimitée des systèmes échantillonnés non linéaires dans les espaces métriques "

C.R. Acad. Sci, tome 270, p.418-421, Février 1970.

30	S. WEGRZYN, J.C. GILLE, O. PALUSINSKI, P. VIDAL "The stability domain with respect to initial conditions " IFAC, Londres, Juin 1966.
31	<ul> <li>S. WEGRZYN, P. VIDAL</li> <li>"Critère de stabilité des systèmes échantillonnés non linéaires par rapport aux conditions initiales "</li> <li>C.R. Acad. Sc. tome 261, p. 4990-4993, Décembre 1965.</li> </ul>
32.	J.M. TOULOTTE, F.LAURENT, P. VIDAL "Régulation par échantillonnage et correction tachymétrique " International Pulse Symposium, IFAC, Budapest Avril 1967.
33.	R. BOUDAREL, J. DELMAS, P. GUICHET "Commande optimale de processus " Tome 1, Dunod 1968.
34.	J.T. TOU " Modern Control Theory " Mc Grawhill 1964.
35.	<ul> <li>F. LAURENT</li> <li>" Sur la commande d'un filtre linéaire par des impulsions multimodulés "</li> <li>C.R. Acad. Sc. tome 270, p.288-289, Janvier 1970.</li> </ul>
36.	<u>P. MONTEL</u> "Leçons sur les récurrences et leurs applications " Gauthier. Villars – Paris 1957.

- 123 -

#### Conclusion Générale

Dans ce travail nous avons porté notre attention sur un mode particulier de description des systèmes discrets à commande non linéaire : la représentation dans l'espace séquence par des équations de récurrence mise sous forme normale naturelle. Celle-ci permet d'aborder la majorité des problèmes de l'analyse et de la synthèse des processus échantilionnés. Mais si le formalisme utilisé assure une présentation simple des résultats, il fait apparaître tous les paramètres sous une forme telle qu'il n'est plus possible de séparer les diverses influences physiques. Dans le cas de l'analyse des processus avec entrée, la forme normale naturelle est difficilement exploitable, alors que par l'utilisation des variables d'état, les méthodes graphiques et numériques que nous avons présentées rendent compte, quels que soient l'entrée et le processus, de l'évolution des réponses et des coefficients de sensibilité.

D'autre part, la synthèse à partir de la représentation dans l'espace séquence est certes possible mais elle est d'un emploi particulièrement malaisé à cause du problème des conditions initiales.

Si, lors de l'analyse, des modèles mathématiques assez éloignés du fait physique comme la forme précédente permettent d'obtenir des résultats fort intéressants, dans la synthèse il faut se rapprocher le plus possible de la réalité. En effet, il n'est pas à ce niveau de théorie générale qui puisse résoudre les problèmes dans leur ensemble. Le mode de résolution est spécifique à chaque système, à chaque entrée et à chaque critère de qualité. C'est pourquoi dans notre dernier chapitre après avoir défini très généralement les principes de commandabilité, nous avons tenté sur des exemples de faire apparaître les difficultés et d'indiquer certains moyens de les surmonter.

Four avancer plus avant au travers de ces problèmes, il nous semble important de confronter les résultats théoriques acquis aux réalités quotidiennes de l'industrie. On se heurte d'abord aux délicates questions de l'analyse des phénomènes, puis de la détermination des modèles mathématiques. Il est possible à ce moment de comparer les prévisions et les faits, c'est alors que l'on peut comprendre qu'il ne devrait y avoir ni automatique théorique, ni automatique appliquée mais de l'automatique qui s'applique.

# Table des Matières

Introduction	Pages
Chapitre I : Mise en équation	. 2
Introduction	. 2
I.1. description du système	. 3
I.2. équation de récurrence en boucle ouverte	. 4
I.3. passage de la forme matricielle à la forme scalaire en boucle ouverte	. 6
I.4. équation de récurrence en boucle fermée	. 6
Conclusion	. 9
Chapitre II : Etude du régime permanent	. 10
Introduction	. 10
II.1. Influence des intégrations	. 10
II.2. Réponse permanente aux entrées classiques	. 12
II.2.1. Entrée en échelon de position	. 12
11.2.2. Entrée en échelon de vitesse	. 14
II.2.3. Entrée d'ordre p	. 15
17.2.4. Exemple	. 16
Conclusion	. 17
Chapitre III : Etude du régime dynamique	. 18
Introduction	. 18
III.1. Stabilité	18
III.2. Temps de réponse	. 21
III.3. Stabilité vis à vis des conditions initiales	21
III.3.1. Hypercube des conditions initiales	22
III.3.2. Méthode du domaine récurrent	. 23
III.3.3. Exemple	. 24

		Pages
	III.4. Temps de réponse vis à vis des conditions initiales	. 27
	Conclusion	. 27
Chapitre	<u>IV</u> : Méthode graphique d'analyse du comportement dynamique des systèmes échantillennés non-linéaires	. 28
	Introduction	. 28
	IV.1. Exposé de la méthode de construction graphique	. 28
	IV.2. Exemples d'application	. 31
	IV.2.1. Moteur avec hystérésis	. 31
	IV.2.2. Asservissement à modulation de largeur	. 34
	IV.2.3. Système à période variable (IPFM)	. 34
	IV.3. Cas des systèmes du second ordre - Construction dans le plan de phase	. 37
	IV.4. Utilisation de machine numérique pour la détermination des régimes transitoires	. 41
	IV.4.1. Système à modulation de largeur	. 41
	IV.4.2. IPFM	. 42
	Conclusion	. 48
Chapitre	V : Etude des coefficients de sensibilité des systèmes non linéaires impulsionnels	. 49
	Introduction	. 49
	V.1. Equation de sensibilité	. 49
	V.2. Applications	. 52
	V.2.1. Sensibilité paramétrique	. 53
	V.2.2. Sensibilité vis à vis de la période d'échantillon- nage T	. 54
	V.2.3. Sensibilité de structure	. 55
	Conclusion	. 59
Chapitre (	<u>VI</u> : Correction des asservissements discrets à commande non Linéaire	. 60
	Introduction	. 60
	VI.1. Réseaux correcteurs tachymétriques	. 61
	VI.2. Cas particulier du moteur	. 62

1	Pages
VI.3. Remarque sur le retour tachymétríque	. 66
VI.4. Réseaux correcteurs numériques	. 67
VI.4.1. Réglage prototype par réseau correcteur numérique …	. 68
VI.4.2. Exemple	. 72
Conclusion	. 74
Chapitre VII : Commande prototype des systèmes discrets	. 75
Introduction	. 7.5
VII.1. Nature du vecteur de commande	. 76
VII.2. Systèmes avec saturation	. 76
VII.3. Exemples	. 77
VII.3.1. Système du premier ordre avec retard pur	。7 <b>7</b>
VII.3.2. Moteur en commande multimodulée	. 80
VII.3.3. Moteur commandé par modulation de largeur	. 85
VII.3.4. Remarque sur la línéarisation d'un modulateur de largeur	85
VII.4. Utilisation pratique - Conclusion	83
Conclusion générale	124
Bibliographie	129
Table des matières	125
<u>Annexe 1</u>	9 <b>0</b>
Annexe II	91
Annexe III	107
Contraction of the second seco	

----