50.376 1971 nº d'ardie: 246

50376 1971 72

THESE présentée

A L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de DOCTEUR TROISIÈME CYCLE

(CHIMIE STRUCTURALE)

ETUDE DE LA STRUCTURE D'HALOGENURES DE TANTALE V PAR SPECTROMETRIE RAMAN

Thèse soutenue le

1971 devant la Commission d'Examen

M.DELHAYE M.BRIDOUX D. THOMAS

10 Mai

Président Examinateurs UNIVERSITE DE LILLE FACULTE DES SCIENCES

DOYENS HONORAIRES

MM. H.LEFEBVRE, M.PARREAU

PROFESSEURS HONORAIRES

MM. ARNOULT, BROCHARD, CAU, CHAPPELON, CHAUDRON, DEHEUVELS, DEHORNE, DOLLE, FLEURY, P. GERMAIN, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, ROUELLE, WIEMAN, ZAMANSKY, CORDONNIER.

PROFESSEURS TITULAIRES

M. BACCHUS Pierre M. BEAUFILS Jean-Pierre M. BECART Maurice M. BLOCH Vincent M. BONNEMAN Pierre M. BONTE Antoine M. BOUGHON Pierre M. BOURIQUET Robert M. CORSIN Pierre M. DECUYPER Marcel M. DEDECKER Paul M. le Doyen DEFRETIN : René M. DEHORS M. DELATTRE Charles M. DURCHON Maurice M. FOURET René M. GABILLARD Robert M. GLACET Charles M. GONTIER Gérard M. HEUBEL Joseph M. LIEBAERT M. MONTREUIL Jean M. MORIAMEZ Michel M. MARTINOT LAGARDE M. PEREZ Jean-Pierre M. PHAM MAU QUAN M. POUZET Pierre Mme SCHWARTZ Marie-Hélène M. TILLIEU Jacques M. TRIDOT Gabriel M. VIDAL Pierre M. VIVIER Emile M. WATERLOT Gérard M. WERTHEIMER Raymond

Astronomie et Calcul Numérique Chimie Générale I.U.T. Lille Paychophysiologie Chimie Industrielle Géologie Appliquée Mathématiques Biologie Végétale Paléobotanique Mathématiques Mathématiques Directeur du Laboratoire de Biologie Maritime de Wimereux Automatique Géologie Générale Biologie Animale Physique Electronique Chimie Organique Mécanique des Fluides Chimie Minérale I.U.T. Lille Chimie Biologique I.U.T. Valenciennes Mécanique des Fluides Physique Mathématiques I.U.T. Lille Mathématiques Physique Chimie Minérale Appliquée E.N.S.C.L. Automatique Biologie Animale Géologie et Minéralogie Physique

PROFESSEURS A TITRE PERSONNEL

M. BENADOU Jean M. LUCQUIN Michel M. LEBRUN André M. PARREAU Michel M. SAVARD Jean M. SCHALLER François

M. SCHILTZ René

Mathématiques Chimie Physique C.U.E.E.P. Mathématiques Chimie Générale Biologie Animale Physique

PROFESSEURS SANS CHAIRE

M. BELLET Jean M. BODART Marcel M. BOUISSET Simon M. CELET Paul M. CONSTANT Eugène M. DELHAYE Michel M. DERCOURT Jean-Michel M. DEVRAINNE Pierre M. GUILLAUME Jean Mme LENOBLE Jacqueline M. LINDER Robert Mlle MARQUET Simone M. MONTARIOL Frédéric M. PROUVOST Jean M. VAILLANT Jean

Physique Biologie Végétale Physiologie Animale Géologie Générale Electronique Chimie Physique et Minérale ler Cycle Géologie et Minéralogie Chimie Minérale Biologie Végétale Physique Biologie Végétale Mathématiques Chimie Minérale Appliquée Géologie et Minéralogie Mathématiques

MAITRES DE CONFERENCE (et Chargés des fonctions)

M. ABBAR M. AUBIN Thierry M. BEGUIN Paul M. BILLARD Jean M. BKOUCHE Rudolphe M. BOILLET Pierre M. BOILLY Bénoni M. BONNOT Ernest M. BRIDOUX Michel M. CAPURON Alfred M. CARREZ Christian M. CHOQUET Marcel M. CORTOIS Jean M. COULON Jean-Paul M. GOUDMAND Pierre'. M. GRUSON Laurent M. GUILBAULT Pierre M. HERMAN Maurice M. HUARD de la MARRE Pierre M. JOLY Mlle KOSMANN Yvette

I.U.T. Amiens Mathématiques Pures Mécanique des Fluides Physique Mathématiques Physique Biologie Animale Biologie Végétale I.U.T.Béthune Biologie Animale Calcul Numérique I.U.T. Lille Physique Electrotechnique Chimie Physiques Mathématiques Physiologie Animale Physique Calcul Numérique Biologie Animale Mathématiques

M. LABLACHE COMBIER Alain M. LACOSTE Louis M. LANDAIS Jean M. LAURENT François M. LEHMANN Daniel Mme LEHMANN Josiane M. LEROY Jean Marie M. LEROY Yves M. LOUAGE Francis M. LUUCHEUX Claude M. MAES Serge M. MAIZIERES Christian M. MESSELYN Jean M. MIGEON Michel M. MONSIGNY Michel M. MONTEL Marc M. MONTUELLE Bernard Mme MORIAMEZ-BOULLET Claude M. NICOLE Jacques M. PANET Marius M. PAQUET Jacques M. PARSY Bernard M. PONSOLLE Louis M. POVY Jean Claude M. RACZY M. ROOS Philippe M. ROY Jean Claude M. SAADA Georges M. SALMER Georges M. SMET Pierre M. SEGUIER Guy M. THOMAS Daniel M. WATERLOT Michel Mme ZINN JUSTIN Nicole

Chimie Générale Biologie Végétale Chimie Organique Automatique Mathématiques Mathématiques E.N.S.C.L. I.U.T. Lille Sciences Appliquées Chimie Physique Physique Automatique Physique Sciences Appliquées Chimie Biologique Physique I.U.T. Lille I.U.T. Valenciennes E.N.S.C.L. Electrotechnique Sciences Appliquées Mécanique des Fluides C.S.U. Valenciennes Sciences Appliquées Radioélectrique I.U.T. Lille Psychophysiologie Physique Electronique Physique I.U.T. Béthune C.S.U.Valenciennes Géologie Générale Mathématiques

Ce travail a été réalisé au Laboratoire de Spectroscopie Raman de l'Université des Sciences et Techniques de Lille, sous la direction de Monsieur le Professeur Delhaye. Je tiens à lui exprimer toute ma reconnaissance pour les inestimables conseils dont il m'a fait bénéficier et pour les encouragements qu'il m'a toujours prodigués.

Que Messieurs les Professeurs D.Thomas et M.Bridoux veuillent bien trouver ici l'expression de ma profonde gratitude pour l'honneur qu'ils m'ont fait de juger ce mémoire.

Je remercie Madame M.B.Delhaye pour l'expérience et les conseils dont elle m'a fait bénéficier dans l'élaboration et la réalisation de ce travail.

J'adresse mes remerciements et ma profonde reconnaissance aux Chercheurs et aux membres du Personnel Technique du Laboratoire de Spectroscopie Raman pour l'aide qu'ils m'ont apportée au cours de ce travail.

Sommaire Pages Introduction. Chapitre I : Vibrations cristallines et interprétation des spectres Raman de solides cristallisés. I.A. Symétrie dans les cristaux 2 . . I.A.1 - Groupe spatial. I.A.2 - Groupe facteur. I.A.3 - Groupe ponctuel cristallographique. I.A.4 - Groupe de site. I.A.5 - Groupe moléculaire. I.A.6 - Propriétés des différents groupes. I.B. Dynamique des réseaux cristallins..... 5 I.B.1 - Mise en équation du mouvement. I.B.2 - Recherche des solutions. I.B.3 - Conditions cycliques. I.B.4 - Passage aux coordonnées normales et solution de l'équation de Schrödinger. I.B.5 - Cas des cristaux moléculaires. I.B.6 - Application à la spectrométrie Raman. I.C. Méthodes de dénombrement 15 I.C.1 - Méthode de Bhagavantam et Venkatarayudu. I.C.2 - Méthode du site de Halford. I.C.3 - Comparaison des deux méthodes. I.D. Conclusion 20 Chapitre II Description des dispositifs expérimentaux. II.A - Source monochromatique 23 II.B - Platines de transfert 24 II.B.1 - Températures comprises entre 293 et 600°K. II.B.2 - Températures comprises entre 77 et 293°K. II.B.3 - Tenpérature ambiante. II.C. Système dispersif 26 II.C.1 - Les ghosts. II.C.2 - Lumière diffuse. II.D. Détection..... 27

Chapitre III : Etude des spectres Raman des pentachlorure et penta- bromure de tantale.	
III.A. Etude du pentachlorure de tantale	3 0
III.A.1 - Purification de TaCl ₂ . III.A.2 - Hypothèses structurales.	
III.A.2.a: Forme moléculaire. III.A.2.b: Forme cristalline.	
III.A.3 - Spectre Raman du solide cristallisé. III.A.4 - Influence de la température. III.A.5 - Spectre Raman de TaCl ₅ fondu. III.A.6 - Discussion.	
	76
111.B. Etude du pentabromure de tantale	90
III.B.1 - Préparation et purification. III.B.2 - Hypothèses structurales. III.B.3 - Spectre Raman du solide cristallisé. III.B.4 - Influence de la température. III.B.5 - Etude du pentabromure fondu. III.B.6 - Discussion.	
III.C. Comparaison des spectres	41
III.C.1 - Modes internes.	
III.C.l.a : Relation entre les fréquences et les intensités. III.C.l.b.: Influence de la température	
III.C.2. Modes externes	
III.C.Z - Moues externes.	
III.D. Détermination des modes normaux de vibration	46
III.D.1 - Corrélation. III.D.2 - Calcul des modes normaux de vibration.	
III.E. Interprétation des spectres	49
III.F. Conclusions	51
Chapitre IV. Spectre Raman du pentafluorure de tantale.	
IV.A. Purification	53
IV. B. Forme cristalline	53
IV.B.1 - Hypothèses structurales . IV.B.2 - Spectre Raman.	
IV.C. Forme fondue	56
IV.D. Conclusion	56

Chapitre V : Etude de deux propriétés chimiques du pentabromure de tantale par spectrométrie Raman .	
V.A. Mise en évidence de bromures mixtes de phosphore et de tantale	59
V.A.1 - Préparation des échantillons. V.A.2 - Etude des spectres Raman . Interprétation .	
V.B. Action du trifluorure d'arsenic sur le pentabromure de tantale en suspension dans le tétrachlorure de carbone	62
V.B.1 - Réaction . V.B.2 - Spectres Raman. V.B.3 - Interprétation.	
V.C. Conclusion	65

Bibliographie.

INTRODUCTION

.

4/

De nombreuses études sur les dérivés chlorés et bromés du tantale V avaient été faites depuis 1947 (1), (2), (3) ; elles aboutissaient toutes à la structure monomère de symétrie D_{3h} . Ce n'est qu'en 1963 (4) qu'est née l'idée d'une attribution suivant la structure dimère de symétrie D_{2h} . En 1968, I.R. HEATTIE, T.R.GILSON et G.A.OZIN (5) ont présenté des spectres plus complets de ces composés, levé la conrusion existant sur les coïncidences apparentes entre les spectres Raman et infrarouge, et donné ainsi un argument de poids en faveur de la structure dimère de symétrie D_{2h} .

Pour de telles molécules dimères possédant deux ponts halogène, il a été montré que les modes actifs en Raman ont sensiblement les mêmes fréquences que les modes actifs en infrarouge (6), (7), (8).

D'autres études montrent que la molécule de TaX₅ (X = Cl, Br) est dimère en phase solide (9) et en solution (10) dans CCl_4 et le nitrométhane.

Une étude à haute résolution du spectre Raman du solide cristallisé, nous a montré l'existence de nombreuses raies ne pouvant être attribuées à partir de la simple structure dimère D_{2h} ; nous avons été amenés à considérer l'environnement cristallin des molécules de Ta₂Cl₁₀ et Ta₂Br₁₀ et à rechercher une attribution plus complète des spectres.

Le pentafluorure de tantale a été mis en évidence par RUFF et SCHILLER en 1911 (11). L'étude par radiocristallographie (12) montre l'existence de molécules tétramères Ta_4F_{20} dans la phase solide.

Le spectre Raman de TaF₅ solide a été étudié par I.R.BEATTIE K.M.S.LIVINGSTON, G.A.OZIN et D.J.REYNOLIS (13). Nous avons voulu compléter cette étude et apporter des renseignements supplémentaires pour l'attribution du spectre Raman.

· · · · ·

. .

CHAPITRE I

VIBRATIONS CRISTALLINES ET INTERPRETATION

DES SPECTRES RAMAN DE SOLIDES CRISTALLISES

Dans cette première partie nous nous proposons d'exposer brièvement les bases de la théorie des réseaux cristallins et d'en retirer les résultats nécessaires aux spectroscopistes pour prévoir et interpréter les spectres de composés cristallins.

Nous montrerons comment la théorie des groupes peut être utilisée pour un dénombrement des vibrations d'un réseau cristallin.

/ I.A. - Symétrie dans les Cristaux . -/ (14), (15), (16).

I.A.1 - Groupe spatial :

Dans un cristal parfait et infini on peut montrer que la structure du réseau peut se reproduire à l'aide d'opérations de recouvrement qui amènent en coïncidence les points homologues. Les points à l'infini s'échangent entre eux.

Le fait qu'un cristal soit constitué par la répétition d'une maille définie par $\vec{a_1}$ $\vec{a_2}$ $\vec{a_3}$ au moyen de trois translations indépendantes, à l'existence d'une opération de symétrie R est associée la présence d'une infinité d'opérations (R|t) avec t module du vecteur $\vec{t} = \sum_{\alpha} h_{\alpha} \vec{a_{\alpha}}$ et h entier.

Si on se limite aux opérations pour lesquelles la translation est plus petite que la maille, les transformations R sont de 22 types :

- . L'identité (notée 1),
- . les rotations (notées 2, 3, 4 et 6),
- . les déplacements hélicoïdaux (notés $2_1, 3_1, 3_2, 4_1, 4_2, 4_3, 6_1, 6_2, 6_3, 5_4, 6_5$),
 - . l'inversion (notée 1),
 - . la réflexion par rapport à un plan (notée m),
 - . les glissements, c'est-à-dire, le produit d'une réflexion et d'une translation (notés a,b,c,n ou d suivant l'orientation),

. les rotations inversions (notées 3, 4, 3),

In peut noter que dans un cristal non seulement les éléments de symétrie se recouvrent par des translations h_{\propto} a_{\propto} , mais encore qu'ils se

répètent à l'intérieur de la maille au moyen des autres opérations de symétrie.

Les opérations du type (R | t) possèdent les propriétés suivantes :

- . Il existe une opération identité (E | 0),
- . Le produit de deux opérations de recouvrement est lui-même une opération de recouvrement.
- . A chaque opération de recouvrement est associée une opération inverse.

L'ensemble dénombrable des opérations de symétrie à l'intérieur d'un cristal possède donc la structure d'un groupe triplement infini appelé <u>groupe d'espace (S</u>). Il en existe 230 distincts répertoriés dans les Tables Internationales de Rayons X (17).

I.A.2 - Groupe facteur :

Il est possible de déterminer à l'intérieur du groupe spatial (S), le sous-groupe invariant des translations $(T_3) = (E \mid t)$ tel que :

 $(T_3) = (R + t) \cdot (T_3) \cdot (R + t)^{-1}$

Ce sous-groupe est le produit direct des trois groupes infinis ($E \mid h_1 \mid a_1$), ($E \mid h_2 \mid a_2$) et ($E \mid h_3 \mid a_3$); il définit un réseau tridimensionnel de points congurents ; BRAVAIS a montré qu'il en existe 14 distincts.

On peut ainsi mettre en évidence un groupe quotient du groupe d'espace, appelé groupe facteur (F): $(S) = (T_3)$. (F)

Chaque élément du groupe facteur est donc formé par la classe triplement infinie de toutes les opérations du groupe d'espace, qui ne diffèrent entre elles, que par une translation. L'élément identité est défini dans ce cas par le sous-groupe de translation (T₃).

I.A.3 - Groupe ponctuel cristallographique :

Le groupe facteur est isomorphe d'un des 32 groupes ponctuels cristallographiques qui rassemblent les différents éléments de symétrie de la maille élémentaire ; c'est-à-dire qu'à chaque élément du groupe facteur correspond un élément du groupe ponctuel, avec les mêmes lois de composition interne, donc la même table de multiplication. Habituellement ces groupes sont confondus, mais correspondent cependant à des notions différentes : un élément du groupe ponctuel cristallographique est une opération, tandis que l'élément correspondant du groupe facteur est un ensemble d'opérations définies à une translation près.

I.A.4 - Groupe de site :

Il est possible de considérer l'ensemble des opérations de symétrie laissant un point du cristal invariant. Si ce point est pris arbitrairement, cet ensemble ne comporte généralement que l'identité, tandis que s'il est situé sur un élément ou à l'intersection de plusieurs éléments de symétrie, les opérations déterminent un groupe ponctuel appelé groupe de site (P) (18).

Le groupe de site peut encore se définir comme traduisant la symétrie du cristal pour un observateur placé au point considéré.

I.A.5 - Groupe moléculaire :

Une molécule placée dans un cristal possède, si on fait abstraction du reste de la maille, des éléments de symétrie propres qui définissent un groupe ponctuel : le groupe moléculaire (M).

- 4 -

I.A.6 - Propriétés des différents groupes :

L'ensemble des opérations formant le groupe de site(P) fait partie du groupe ponctuel isomorphe du groupe facteur (C) ; les éléments de (P) sont munis de la loi de composition interne opérant dans (C) ; on peut alors considérer le groupe de site comme un sous-groupe du groupe ponctuel cristallographique.

Si une molécule a son centre de gravité confondu avec un site de symétrie donné, les opérations du groupe de site, qui font correspondre deux atomes équivalents de la molécule, sont aussi des opérations du groupe moléculaire. Le groupe de site peut être considéré comme un sous groupe du groupe moléculaire et décrit la symétrie réelle de la molécule placée dans le cristal.

/ I.B. - Dynamique des Réseaux Cristallins . /

I.B.1 - Mise en équation du mouvement : (19)

Soit un cristal constitué de N mailles possédant chacune n atomes. La position du k^{ième} atome à l'intérieur de la l^{ième} maille peut être définie par le vecteur :

$$\vec{r}$$
 (l, k) = \vec{r} (l) + \vec{r} (k)

avec les conditions :

$l \leq k \leq 3n$ et $O \leq l \leq N$

Le cristal va donc posséder 3n N degrés de liberté caractérisés chacun par les deux indices l et k.

Au cours du mouvement les variables U_x , U'_x ..., seront les déplacements, des atomes autour de leur position d'équilibre, définie par \vec{r} (l, k).

- 5 -

Nous avons :

 $U_{\mathbf{x}} (\mathbf{l} \mathbf{k}) = \mathbf{d} \mathbf{r} (\mathbf{l}, \mathbf{k}) \text{ pour un atome } \mathbf{x}$ $U_{\mathbf{x}}^{\dagger} (\mathbf{l}^{\dagger} \mathbf{k}^{\dagger}) = \mathbf{d} \mathbf{r} (\mathbf{l}^{\dagger}, \mathbf{k}^{\dagger}) \text{ pour un atome } \mathbf{x}^{\dagger}$

L'énergie cinétique du cristal s'écrit :

$$T = \frac{1}{2} \qquad \sum_{\substack{k \in \mathbf{X} \\ k \in \mathbf{X}}} M_{\mathbf{x}} \quad U_{\mathbf{x}}^{2} \quad (1 \ k)$$

avec :

$$U_{\mathbf{x}}(\mathbf{l} \mathbf{k}) = \frac{\partial}{\partial \mathbf{t}} U_{\mathbf{x}}(\mathbf{l} \mathbf{k})$$

avec : M_{x} la masse de l'atome x .

L'énergie potentielle peut être développée en série par rapport aux déplacements que l'on considère comme infiniment petits, d'où :

$$V = V_{o} + \frac{\sum_{l k x} \left(\frac{\partial V}{\partial U_{x} (l k)} \right)_{o} U_{x} (l k)$$
$$+ \frac{1}{2} \sum_{l k x} \frac{\sum_{l' k' x'} \left(\frac{\partial U_{x} (l k) \partial U_{x} (l' k')}{\partial U_{x} (l k) \partial U_{x} (l' k')} \right)_{o} U_{x} (l k) U_{x} (l k)$$

Cette relation peut par un choix convenable des origines du potentiel et des déplacements, se limiter au terme du second degré : approximation harmonique .

$$V = \frac{1}{2} \sum_{\substack{l \ k \ x}} \sum_{\substack{l' \ k' \ x'}} \left(\frac{\partial^2 v}{\partial u_x(l \ k) \ \partial u_x'(l' \ k')} \right)_0 \cdot u_x(l \ k) \cdot u_x'(l' \ k')$$

$$V = \frac{1}{2} \sum_{l \ k \ x} \sum_{l' \ k' \ x'} V_{x \ x'} (l \ k, \ l' \ k') \cdot U_{x} (l \ k) \ U_{x} (l \ k) U_{x} (l' \ k')$$
Les termes $V_{xx'} (l \ k, \ l' \ k') = \left(\frac{\partial^{2} V}{\partial U_{x} (l \ k) \partial U_{x} (l' \ k')} \right)$

sont appelés constantes d'interaction ou constantes de force du cristal ; elles sont identiques si on passe d'une maille à une autre, car l'énergie potentielle possèdant les propriétés de symétrie du groupe spatial, est inchangée par une translation.

A partir du lagrangien L = T - V et de l'équation de Lagrange : $\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial U_x(l \ k)} \right) - \frac{\partial L}{\partial U_x(l \ k)} = 0$ il est possible, connaissant l'énergie potentielle et l'énergie cinétique, de tirer les 3n N équations qui décriront le mouvement.

Elles sont de la forme :

$$M_{\mathbf{x}} \cdot \left(\frac{\mathfrak{d}^2}{\mathfrak{d}_t^2} - \mathbb{U}_{\mathbf{x}}(\mathbf{l} \mathbf{k})\right) = -\frac{1}{\mathfrak{l}' \mathbf{k}' \mathbf{x}'} - \mathbb{V}_{\mathbf{x}\mathbf{x}'}(\mathbf{l} \mathbf{k}, \mathbf{l}' \mathbf{k}') \cdot \mathbb{U}_{\mathbf{x}}'(\mathbf{l}' \mathbf{k}')$$

I.B.2 - Recherche des solutions :

Les solutions les plus simples de l'équation de mouvement peuvent être de la forme :

$$U_{\mathbf{x}} (\mathbf{l} \mathbf{k}) = U_{\mathbf{x}} (\mathbf{k} \mathbf{K}) \exp \left(2\pi \mathbf{i} (\mathbf{K} \cdot \mathbf{r} (\mathbf{l} \mathbf{k}) - \omega (\mathbf{K}) \mathbf{t} \right)$$

qui représente une onde plane monochromatique de pulsation ω et de vecteur d'onde \overline{K} dirigé, pour un cristal isotrope, suivant la normale aux plans d'onde.

En portant la valeur des solutions dans l'équation du mouvement, on obtient un système homogène de 3n équations, fonction du paramètre K. Elles seront du type :

$$\omega^{2}(\vec{K}) \cdot U_{x}(k, \vec{K}) = \sum_{k'}^{\Sigma} D_{xx'}(kk'\vec{K}) \cdot U_{x}'(k'\vec{K})$$

avec :

$$D_{xx'}(kk'K) = \frac{1}{\sqrt{Mx Mx'}} \sum_{l'} V_{xx'}(lk, l'k') \exp(2\pi i(K.r(lk)))$$

 $\sum_{k'=1}^{3 n} D_{xx'} (kk'K) représente la matrice dynamique du cristal et ne dépend pas de la maille choisie.$

Pour chaque valeur du vecteur d'onde \overline{K} il existe pour le déterminant de l'équation séculaire :

$$|D_{xx'}(k k' k) - 4 \pi^2 \omega^2 \delta k k'| = 0$$

3n racines réelles positives.

Ainsi les 3n N fréquences propres du réseau peuvent être groupées suivant les 3N branches d'une fonction du paramètre K appelées <u>relations de</u> <u>dispersion</u>.

$$\omega = \omega_j(\vec{k})$$
 $0 \le j \le 3n$

Ces relations portées sur un diagramme donnent les courbes de dispersion.

Le déphasage entre les mailles s'exprime par la relation $\Psi = \overline{K/2}$ i On voit que si $\overline{K} = 0$ toutes les mailles du cristal vibrent en phase. L'étude de la fonction potentielle montre alors l'existence de 3 fréquences nulles qui correspondent à des translations d'ensemble du cristal. Ces nouvements peuvent être comparés à une propagation d'ondes sonores longitudinales à l'intérieur du cristal, si \overline{K} est voisin de 0.

Les trois branches ayant leur fréquence nulle pour $\overline{K} = 0$ sont appelées <u>branches acoustiques</u>.

Duns un réseau cristallin pour l'approximation harmonique, les fréquences propres du cristal se répartissent en 3n branches : - 3 branches dites <u>acoustiques</u> de fréquence nulle pour $\vec{K} = 0$. - 3n 3 branches dites <u>optiques</u> de fréquence non nulle pour $\vec{K} = 0$.

I.B.3 - Conditions cycliques :

Pour étudier les différentes valeurs prises par le vecteur d'onde K il est nécessaire de connaître les valeurs limites liées à la géométrie et aux dimensions du cristal éclairé.

Soit un cristal infini et parfait divisé en mailles géantes d'arêtes $N_1a_1 N_2a_2$ et N_3a_3 ; N_1 , N_2 , et N_3 étant des entiers très grands. Les conditions cycliques de ECRN-VON KARMAN qui s'écrivent :

 $\exp(2\pi i K \cdot N_1 a_1) = \exp(2\pi i K \cdot N_2 a_2) = \exp(2\pi i K \cdot N_3 a_3) = 1$ identifient les 3n N vibrations du cristal parallélépipédique éclairé avec celles d'une maille de même grandeur prise dans un cristal infini théorique. Elles définissent dans chaque maille géante $N_1 \times N_2 \times N_3 = N$ solutions ou N valeurs du vecteur K.

Si on définit les vecteurs de base $\overrightarrow{b\beta}$ du réseau réciproque par $\overrightarrow{b\beta}$. $\overrightarrow{a_A} = \delta_{\alpha}\beta$ il est possible d'écrire les conditions cycliques sous la forme :

 \vec{K} . $N_{\vec{x}} \vec{a}_{\vec{x}} = h_{\vec{\beta}}$

avec h a nombre entier variant de 0 à N donc :

$$K = \sum_{\beta=1}^{3} \frac{h\beta}{N\beta} \cdot \frac{b\beta}{\beta}$$

K va prendre N valeurs fractionnaires comprises dans l'intervalle O, \overrightarrow{b} . En général on prend une notation symétrique :

$$-\frac{1}{2} \overrightarrow{b}_{3} \leqslant \overrightarrow{K} \leqslant + \frac{1}{2} \overrightarrow{b}_{3}$$

qui définit la <u>première zone de BRILLOUIN</u> du réseau réciproque (20). Celle-ci contient donc les extrêmités des N vecteurs d'onde K ; elle est laissée invariante par le groupe ponctuel isomorphe du groupe facteur. La valeur K = 0 est représenté par le centre de la zone de BRILLOUIN ; les solutions de K sont symétriques par rapport à ce centre.

Dans un cristal, si le nombre N de mailles est suffisamment grand et si on considère nulles les interactions à grande distance, les phénomènes de surface ne touchent qu'un petit nombre d'atomes et la distribution des fréquences dans les différentes branches, ne dépend ni des conditions aux limites, ni de la forme du cristal.

L'hamiltonien H = V + T s'écrit pour le cristal :

$$H = \frac{1}{2} \sum_{lkx} \sum_{l'k'x'} V_{xx'}(lk l'k') U_{x}(lk) U_{x}'(l'k') + \frac{1}{2} \sum_{lkx} M_{x} U_{x}^{2}(l k)$$

Il existe une transformation linéaire des coordonnées $U_{\chi}(lk)$ qui réduit l'hamiltonien à sa forme diagonale.

Si nous posons :

$$U_{x}(1 k) = \frac{1}{\sqrt{N M}} \sum_{K j} e_{j}(1k k) \cdot Q_{j}(K) \cdot exp. (2 \pi i k \cdot \vec{r} (1 k))$$

pour une racine j de l'équation séculaire, avec $e_j(lk \ K)$ les composantes des vecteurs de base du nouveau système des coordonnées normales $Q_j(K)$, l'hamiltonien devient :

$$H = \frac{1}{2} \sum_{K j} \left[P^{*}_{j} (K) \cdot P_{j} (K) + \omega_{j}^{2} (K) \cdot Q^{*}_{j} (K) \cdot Q_{j} (K) \right]$$

 $P_j(K)$ est le moment conjugué ; on peut le remplacer par un opérateur agissant sur la fonction d'onde pour le passage en mécanique quantique.

 $P_j(\vec{K}) = Q_j(\vec{K}) - ih \frac{\delta}{\delta Q_j(\vec{K})}$

L'équation de SCHRODINGER du cristal vibrant s'écrit :

$$H \Psi = \frac{1}{2} \sum_{j \in K} \left[-\frac{h^2 \partial^2}{\partial q_j^2(\vec{K})} + \omega_j^2(\vec{K}) q_j^2(\vec{K}) \right] = E \Psi$$

La résolution de cette équation nous donne pour les valeurs de l'énergie :

$$E_{j}(K) = (v + \frac{1}{2}) \quad h \omega_{j}(K)$$

v est le nombre quantique de vibration.

Cette relation quantifiée de l'énergie nous conduit à considérer que la lumière incidente peut agir avec le cristal pour créer ou détruire un ou plusieurs quanta de vibration du réseau. Par analogie avec la théorie électromagnétique ces quanta sont appelés phonons (21).

Le processus de diffusion peut se faire de deux manières, nous les illustrons par les diagrammes de FEYMAN.

. Processus du premier ordre dans lequel un seul phonon est soit créé (a), soit détruit (b).

photon $h(y_0 - y_1)$ photon $h(y_0 - y_1)$ (a) (b) $\frac{h(\dot{v}_0 + \dot{v}_1)}{-\dot{v}_1}$ (a) phonon h ∂₁ photon phonon $h \mathcal{V}_{1}^{\mathcal{N}}$

. Processus du second ordre dans lequel deux phonons participent à la diffusion.

Ils peuvent être tous les deux créés (c) (composantes Stokes), l'un crée et l'autre détruit (e) (composantes Stokes ou antistokes) ou tous les deux détruits (d) (composantes antistokes).

Dans les deux cas nous avons conservation de l'énergie et du vecteur d'onde K .

$$E_{\text{incidente}} = E_{\text{phonons}} + E_{\text{diffusée}}$$
$$\overrightarrow{K}_{\text{incident}} = \overrightarrow{K}_{\text{phonons}} + \overrightarrow{K}_{\text{diffusé}}$$

La diffusion provoquée par le processus des phonons acoustiques s'appelle : l'effet BRILLOUIN.

I.B.5 - Cas des cristaux moléculaires :

Dans le cas d'un réseau cristallin formé de molécules, il est possible de décomposer les énergies cinétiques et potentielles en plusieurs termes.

L'énergie potentielle peut s'écrire :

$$V + V_s + \sum_{r} \sum_{i} V_{i}^r + V_{mm} + V_{ms}$$

V est l'énergie potentielle de la maille,

 $\sum_{r} \sum_{i=1}^{r} v_{i}^{r}$ est la somme des énergies potentielles relatives aux mouvements internes de la molécule non perturbée,

 V_{mm} , est l'énergie due au couplage des vibrations internes des molécules,

V est l'énergie due au couplage entre le réseau et les vibrations internes des molécules.

L'énergie cinétique se met sous la forme :

$$T = \sum_{r} \sum_{i} \left[T^{r}_{si} + T^{r}_{mi} + T^{r}_{msi} \right]$$

 $\sum_{\mathbf{r}} \sum_{\mathbf{i}} \mathbf{T}^{\mathbf{r}}_{si} \quad \text{est l'énergie de rotation et de translation des molécules} \\ \sum_{\mathbf{r}} \sum_{\mathbf{i}} \mathbf{T}^{\mathbf{r}}_{mi} \quad \text{est l'énergie cinétique interne des molécules.}$

 $\sum_{r} \sum_{i} T^{r}_{msi}$ est l'énergie d'interaction entre le moment angulaire propre aux molécules et le moment angulaire du réseau.

Il est difficile, dans la plupart des cas, de négliger les termes V_{mm} , V_{ms} et T_{msi}^{r} et de séparer les vibrations de la maille et des molécules, on peut cependant avec une bonne approximation séparer les (3n-3) branches optiques d'un cristal moléculaire en modes internes et en modes externes :

. Les modes internes dus au couplage entre les vibrations fondamentales des molécules.

. Les modes externes dus au couplage entre les mouvements des molécules considérées comme des édifices rigides (mouvements de translation et de rotation empêchée autour des axes d'inertie).

Trois modes résultant (22), (23) du couplage entre les translations, donneront naissance aux branches acoustiques.

La figure I donne un exemple de courbe dispersion pour un cristal moléculaire contenant X molécules formées chacune de Y atomes.

I.B.6 - Application à la spectrométrie Raman :

En spectrométrie Raman, le domaine habituellement utilisé s'étend de 0 à 3 000 cm⁻¹ ; le vecteur d'onde \tilde{K} peut donc prendre comme valeur maximale :

$$\pi \tilde{\nu} = 9 420 \text{ cm}^{-1}$$

Courbes de dispersion pour un cristal moléculaire dans la demie première zone de BRILLOUIN

La maille primitive contient X molécules Les molécules sont formées de Y atomes

Cette valeur est négligeable devant la valeur maximale que peut prendre le vecteur d'onde \tilde{K} à l'intérieur de la première zone de ERILLOUIN (10^8 cm⁻¹ pour une maille élémentaire de 3 Å d'arête).

Ceci amène une grande simplification dans l'étude du spectre Raman, car on peut se limiter au centre de la zone de BRILLOUIN, c'est-àdire prendre K = 0; toutes les mailles vibrent en phase.

Les caractères des représentations irréductibles du sous-groupe des translations T_3 d'ordre N = $N_1 N_2 N_3$ sont de la forme :

 $(T_3) = \exp 2 \pi K \cdot r (1 k)$

Pour K = 0, on a $\gamma(T_3) = 1$. Dans ce cas les représentations irréductibles du groupe spatial se réduisent à celles du groupe facteur, ce dernier possède les mêmes représentations irréductibles que le groupe ponctuel isomorphe. La méthode des caractères employés pour les molécules individuelles est applicable au dénombrement des vibrations cristallines.

/ I.C. - Méthodes de dénombrement.

Le dénombrement des modes de vibration d'un cristal, peut se faire en considérant seulement les atomes présents dans la maille réduite. Si cette maille contient n atomes le classement des 3n degrés de liberté peut se faire suivant deux méthodes :

> . Méthode de BHAGAVANTAM et VENKATARAYUDU (24), . Méthode du site de HALFORD (18).

IC.1 - Méthode de BHAGAVANTAM et VENKATARAYUDU :

Elle est analogue à celle utilisée pour le dénombrement des modes normaux de vibration d'une molécule isolée (25). Le nombre total de modes normaux est donné par la relation :

 $n_{k} = \frac{1}{g} \sum_{j} n_{j} \left(\begin{pmatrix} R \\ k \end{pmatrix} \right)^{(R)} \left(\begin{pmatrix} R \\ j \end{pmatrix} \right)^{(R)}$

g est l'ordre du groupe facteur,

n, le nombre d'opérations dans la classe j,

(R)
 le caractère de la représentation irréductible k,

(R)
 le caractère tiré de la table de caractères du groupe ponctuel iso j ...norphe du groupe facteur.

Les caractères $\begin{pmatrix} (R) \\ h \end{pmatrix}$ sont les suivants :

-. Modes normaux de vibrations internes et externes . -

 $\chi_{1}^{(R)} = \omega_{R} \left(\frac{1}{2} + 1 + 2 \cos \frac{2 k \pi}{n} \right) \quad \text{où}$

 \mathcal{M}_{R} est le nombre d'atomes invariants dans les opérations de symétrie R du cristal.

-. Modes acoustiques . -

$$\int_{J}^{(R)} \left[A\right] = \pm 1 + 2\cos \frac{2k\pi}{n}$$

-. Modes externes de translation . -

$$\begin{pmatrix} (R) \\ J \end{bmatrix} T = \begin{bmatrix} \omega_{R}(s) - 1 \end{bmatrix} \left(\frac{1}{2} + 1 + 2\cos \frac{2k\pi}{n} \right) \quad \text{out}$$

1990 and 19

 $\omega_{\rm R}({
m s})$ est le nombre de groupes polyatomiques ou monoatomiques restants invariants dans l'opération de symétrie R.

- . Modes externes de libration ou de rotation empêchée . -

$$\begin{pmatrix} (R) \\ j \end{pmatrix} \begin{bmatrix} L \end{bmatrix} = \omega_{R}(s-n) \quad (1 \pm 2\cos \frac{2k\pi}{n})$$

où $\omega_{R}(s-n)$ est le nombre de groupes polyatomiques restant invariants dans l'opération de symétrie R.

Certaines règles doivent être observées pour la détermination des atomes ou des groupements invariants dans l'opération de symétrie R :

- . Par la définition même du site cristallographique, les opérations de symétrie formant le groupe de site laissent inchangé l'atome situé dans ce site.
- . Les axes hélicoïdaux et les plans de glissement ne peuvent laisser aucun atome invariant.

Dans cette méthode les modes de vibrations internes sont obtenus par différence entre le nombre total de modes et le nombre de modes externes.

I.C.2 - Méthode de site de HALFORD :

HALFORD a montré que la symétrie de site peut être utilisée pour le dénombrement des modes de vibration, à condition de considérer les autres groupements dans leur position d'équilibre. Le principe de la méthode est le suivant :

. - Pour les modes internes :

On peut classer les modes de vibration d'une molécule isolée par rapport à ses propres éléments de symétrie suivant la méthode générale de dénombrement. Si le centre de gravité de la molécule est placé dans un site de symétrie donné, les vibrations sont alors classées par rapport aux éléments de symétrie du site occupé.

Nous avons dans ce cas un abaissement de la symétrie qui entraîne un éclatement des modes dégénérés et une levée des interdictions formulées par les règles de sélection de la molécule isolée ; ceci est appelé <u>effet</u> de site.

Il est possible de le prévoir en établissant le diagramme de corrélation entre le groupe moléculaire et le groupe de site. Il existe des tables permettant de tracer ces diagrammes (26).

Les vibrations des molécules de même espèce peuvent se coupler de façon symétrique ou antisymétrique par rapport aux éléments de symétrie de la maille pour donner les modes internes de vibration. Cet effet de couplage est prévu par la corrélation entre le groupe ponctuel isomorphe du groupe facteur et le groupe de site.

En général les effets de site qui mettent en jeu des forces intermoléculaires sont plus importants que les effets de couplage qui mettent en jeu des forces intramoléculaires. Dans le premier cas,il est parfois possible d'observer une séparation des composantes de plusieurs dizaines de cm⁻¹, dans le second cas la séparation ne dépasse jamais quelques cm⁻¹,

and provide the second

-. Pour les modes externes :

Les molécules sont considérées comme des ensembles rigides qui peuvent effectuer des mouvements de translation et de rotation empêchée, les modes normaux associés à ces mouvements sont déterminés par la symétrie du site occupé par la molécule. Ces mouvements se couplent de façon symétrique ou antisymétrique par rapport aux éléments de symétrie de la maille réduite pour donner les modes externes.

Le nombre et le type de ces modes sont prévus par la corrélation entre le groupe ponctuel isomorphe du groupe facteur et le groupe de site.

Aux modes de translation il faut retirer les trois modes acoustiques correspondant aux translations de la maille sans déformation.

. <u>Remarque</u> - Il est nécessaire de faire une distinction entre la maille réduite et la maille élémentaire utilisée en cristallographie.

Pour les réseaux primitifs (P) ou rhomboédriques (R) elles se confondent, pour les réseaux à base centrée (A B ou C) ou centrés (I), on utilise une maille réduite moitié de la maille élémentaire, pour des réseaux à faces centrées (F) la maille réduite est égale au quart de la maille élémentaire. Le rapport est appelé multiplicité de la maille.

I.C.3 - Comparaison des deux méthodes :

De part la nature des approximations, les résultats obtenus par les deux méthodes sont identiques, cependant elles apportent chacune des renseignements supplémentaires pour les modes internes.

-. Site de HALFORD :

La lecture des diagrammes de corrélation permet de prévoir pour chacun des modes de la molécule isolée le nombre de composantes et leur espèce quand la molécule est soumise au champ cristallin.

- 19 -

- . BHAGAVANTAM et VENKATARAYUDU :

Cette méthode donne un résultat global pour les modes internes par différence du nombre total des modes du cristal et du nombre de modes externes en considérant uniquement les sites occupés par les atomes.

Dans le cas d'une molécule possédant plusieurs axes de symétrie équivalents ce résultat global nous permet de justifier le choix de la corrélation dans la méthode du site de HALFORD. En effet, les conventions d'axes des cristallographes et des spectroscopistes étant différentes, le choix de l'axe commun à la molécule et au site n'est pas toujours immédiat.

/ . - I.D. Conclusion . - /

La dynamique des réseaux cristallins permet de définir les conditions d'utilisation de la théorie des groupes dans l'attribution des modes observés dans le spectre Raman de solides cristallisés.

La séparation ou la non séparation des composantes d'une raie Raman dans un cristal n'a pas de caractère absolu ; sa mise en évidence dépend de la largeur de la raie, conditionnée par la température, et du pouvoir de résolution du spectromètre utilisé.

L'observation des effets de site ou des effets de couplage permet dans certains cas de définir ou de confirmer la structure d'un cristal, et de donner une première interprétation des modes de la molécule placée dans le réseau cristallin.

Pour attribuer complétement les fréquences observées une étude de la polarisation suivant les différentes composantes du tenseur de polarisabilité est nécessaire sur un monocristal orienté. Elle permet de plus, de déceler un dédoublement par une modification du profil de la raie étudiée

- 20 -

dans le cas d'une extinction différente des deux composantes.

•

.

•

.

La nature chimique des composés étudiés a limité notre travail à l'étude de poudres polycristallines ou de monocristaux non orientés.

· · · · · · · · · · · · ·

ing a second second

CHAPITRE II

•

DESCRIPTION DES DISPOSITIFS EXPERIMENTAUX

1

.

a the second second

##
L'installation classique de spectrométrie Raman (Fig.II.1) comprend :

- . Une source de lumière monochromatique.
- . Une platine porte-échantillons.
- . Un système dispersif.
- . Un détecteur et un enregistreur.

Nous décrirons brièvement chaque élément de l'installation, ainsi que les conditions à observer au cours des études réalisées sur des solides ou des sels fondus.

s encênsê se is

laser

Fig:

Schéma optique du spectrométre

BUS

/ . - II.A. - Source monochromatique . - /

Les Lasers permettent d'obtenir une lumière parfaitement monochromatique et exempte de fond continu. La grande densité énergétique disponible dans un faisceau peu divergent permet, en le focalisant dans l'échantillon, l'observation d'un effet Raman intense à partir de très faibles quantités de substance.

23 -

Le choix de la longueur d'onde utilisée doit être fait en considérant la transmission de l'échantillon, les effets photochimiques et la présence possible de bandes dues à la fluorescence. L'utilisation d'une grande longueur d'onde permet pour un type donné de monochromateur d'augmenter la dispersion réciproque : ce qui est avantageux dans le cas d'études à haute résolution.

Pour des échantillons transparents dans le rouge, les Lasers utilisés sont :

. Laser He-Ne (OIP 181 E) émettant la raie 6 328 A avec une puissance de 70 mW au niveau de l'échantillon.

. Laser à Krypton ionisé (coherent Radiation Laboratories Model 52), émet plusieurs raies stimulées. Un selecteur intracavité nous permet de choisir la radiation 6 471 Å avec une puissance de 200 mW au niveau de l'échantillon. Il permet donc d'obtenir des spectres intenses avec une bonne résolution.

L'élimination des raies non stimulées du plasma dans le cas d'un Laser à gaz est nécessaire pour l'étude de liquides non optiquement vides (suspension ou courants de convection) ou de solides polycristallins ; deux techniques peuvent être employées (Fig.II.2) :

- . Filtre interférentiel,
- . Filtre spatial.

Schéma des filtres

La perte énergétique due au filtrage du faisceau excitateur est parfois préjudiciable à la qualité du spectre. En l'absence de tous filtres, il est possible d'identifier les raies parasites en comparant plusieurs spectres réalisés avec deux longueurs d'onde excitatrices voisines (6 328 Å et 6 471 Å).

. - II.B. - Platines de transfert . - /

 $\mathbf{x} \in \mathcal{X}$

and the second secon

Elles assurent et maintiennent la focalisation optimale du faisceau laser dans l'axe du porte-échantillon (27) et le transfert de la lumière diffusée sur la fente du monochromateur par l'intermédiaire d'une optique de grandissement l. Elles peuvent comporter en outre :

. Un rotateur de polarisation sur le faisceau excitateur.

. Un miroir concave assurant un double passage du faisceau laser dans l'échantillon.

. Un second miroir concave centré sur l'échantillon permettant t de recueillir une partie de la lumière diffusée. On peut ainsi pratiquement doubler l'intensité du spectre Raman.

Certains montages réalisés au laboratoire (28) permettent l'étude des substances dans une gamme de température entre 77 et 600°K.

<u>II.B.1 - Températures comprises entre 293 et 600°K</u>: Ce montage (Fig.II.3) est constitué :

> D'une résistance chauffante supportant un porte-échantillon percé de quatre fenêtres pour l'illumination de la substance et l'extraction de la lumière diffusée.

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

Starten Maria and Antonio Starten and Antonio Starten and Antonio Starten and Antonio Starten and Antonio Start

- . Une microcuve Raman en verre "pyrex" de diamètre 4 mm de contenance $20\mu\ell$ que l'on place dans le logement axial du porte-échantillon.
- . Un système de régulation thermique commandé par un thermocouple fer-constantan dont la jonction est mise en contact avec la microcuve à l'intérieur du porteéchantillon.

L'ensemble est placé à l'intérieur d'un support permet-

tant l'orientation de l'échantillon dans les trois directions de l'espace.

II.B.2 - Températures comprises entre 77 et 293°K :

Ce montage est constitué d'un cryostat à circulation, il comporte (Fig.II.4) :

- . Un échangeur thermique formé d'une chambre de vaporisation et d'un serpentin où circule le fluide cryogénique (azote liquide).
- . Un porte-échantillon en cuivre rouge percé de 4 orifices circulaires latéraux en contact avec l'échangeur thermique.
- . Une enceinte étanche au vide, munie de deux fenêtres et de deux miroirs orientables sous vide.
- . Un dispositif de régulation thermique commande par l'intermédiaire d'un thermocouple la circulation du fluide où le réchauffage du porte-échantillon.

Les cuves utilisées sont constituées par un tube cyclindrique en verre "pyrex" de 6 mm extérieur. L'échantillon occupe un volume d'environ $50\mu d$.

II.B.3 - Température ambiante :

Nous disposons au laboratoire d'une platine pour solides, schématisée dans la figure (II.5).

Le faisceau Laser est concentré sur l'échantillon à l'aide d'un miroir concave (M_2) mobile ; la lumière diffusée, reprise par un miroir concave (M_3) et un miroir plan (M_4) est concentrée sur la fente d'entrée

Platine pour échantillons solides à température ambiante

Schéma de principe

du spectromètre à l'aide d'un objectif de transfert. Ce montage permet l'utilisation de très faibles quantités de substances.(29).

/ . - II.C. - Système dispersif . - /

Les études ont été réalisées sur monochromateurs doubles CODERG PH.1, comportant deux monochromateurs identiques du type EBERT FASTIE de 600 mm de focale, équipés de réseaux plans de diffraction (BAUSCH and LOMB) de 90 mm de côté ; ces derniers sont utilisés dans le premier ordre.

Les fentes d'entrée et de sortie commutables offrent un choix de 10 valeurs fixées de 0,2 à 20 cm⁻¹ pour 6400° Å; la fente intermédiaire est réglable manuellement de façon continue.

Un réglage fin du couplage entre les deux réseaux peut-être obtenu à l'aide d'une vis micrométrique dans le cas d'études à haute résolution .

Deux types de problèmes se sont posés lors de l'enregistrement des spectres ; la présence de ghosts et la lumière diffuse.

II.C.l. - Les ghosts :

Ce sont des images parasites de la raie Rayleigh provoquées par des défauts périodiques introduits lors de la gravure mécanique des réseaux, sur le spectre nous observons des raies supplémentaires d'intensité appréciables dans le domaine correspondant aux très basses fréquences. Le taux de ghosts est caractéristique de la matrice utilisée pour la fabrication des réseaux. Pour ne pas les attribuer à des raies Raman, nous avons déterminé leur position dans le spectre en comparant les études réalisés sur deux spectromètres équipés, l'un de réseaux à 1 200 traits par mm, l'autre de réseaux à 1 800 traits par mm.

II.C.2. - Lumière diffuse :

Pour observer avec suffisamment de précision des raies de très faible intensité au voisinage d'une raie intense, l'emploi des réseaux à très faible taux de lumière diffuse est obligatoire. Les réseaux taillés mécaniquement possèdent un taux de lumière parasite plus faible que les réseaux taillés avec contrôle interférométrique.

Cependant au cours des réglages, un grand soin doit être apporté aux différentes pièces optiques des monochromateurs (réseaux, miroirs, lentilles et fenêtres), à la position des caches limitant l'ouverture des faisceaux à leur valeur utile, ainsi qu'aux parois des compartiments.

Dans un monochromateur double, le flux de lumière parasite est proportionnel au produit des surfaces des fentes, aussi nous avons intérêt à réduire la largeur et la longueur des trois fentes dans la mesure où l'énergie disponible le permet. Les fentes d'entrée et de sortie sont choisies identiques et la fente intermédiaire est réglée de manière à ne pas affaiblir le signal utile, tout en amenant au minimum la lumière parasite.

/ . - II.D. - Détection . - /

Le photomultiplicateur employé est muni d'une photocathode trialcaline (antimoine potassium sodium césium) de type S 20. Sa sensibilité spectrale s'étend de 3 000 à 8 000 Å avec un maximum vers 4200 Å. Le flux

- 27 -

lumineux est concentré sur une petite partie de la photocathode.

Pour améliorer le rapport signal/bruit du détecteur, il est utile d'atténuer le bruit thermique de la photocathode et des dynodes, ainsi que les bruits dus à l'ionisation des gaz résiduels de la photocellule. Deux méthodes sont employées au laboratoire :

> . Le refroidissement du photomultiplicateur à une température voisine de 200°K qui rend négligeable l'émission thermoélectronique de la photocathode et des premières dynodes, sans perturber de manière sensible le rendement quantique de la photocathode (28).

• • • • •

. La striction magnétique destinée à dévier les électrons émis thermiquement par la partie inutilisée de la photocathode (30), (31) et à optimaliser le rapport signal/bruit.

·.....

/ . - II. E. - Amplificateur - Enregistrement . - /

Le courant anodique du photomultiplicateur est mesuré grâce à un amplificateur à courant continu de gain unité et de grande impédance d'entrée.

Des filtres R.C. sont commutés à l'entrée de l'amplificateur, afin d'obtenir les conditions optimales d'enregistrement suivant la vitesse de balayage et l'ouverture des fentes. Le signal amplifié sort sous faible impédance pour être transmis à un enregistreur potentiométrique classique. .0.

 $\psi_{1,2}(z_{1}, z_{2}, z_{1}) = -\frac{1}{2} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \psi_{1,j}(z_{1}, z_{2}, z_{2}) + \sum_{j=1}^{n} \psi_{1,j}(z_{1}, z_{2}) + \sum_{j=1}^{n$

CHAPITRE III

ETUDE DES SPECTRES RAMAN DES

PENTACHLORURE ET PENTABROMURE DE TANTALE

1

Nous avons mené parallèlement l'étude du pentachlorure de tantale et celle du pentabromure. Les spectres nous ont montré une grande similitude des structure entre ces deux composés.

Dans ce chapitre nous donnons les résultats expérimentaux pour chaque halogénure. Une comparaison des spectres et de l'influence de la température, nous permet de tirer quelques conclusions pour l'interprétation des spectres Raman.

/ III.A. - Etude du pentachlorure de tantale . -/

<u>III.A.1 - Purification de TaCl</u>₅ :

Le pentachlorure utilisé est un produit commercial provenant des laboratoires "Koch and Light", son degré de pureté est de 99,9 %.

Afin d'éviter toute trace d'impureté dans l'échantillon, nous l'avons sublimé sous vide, et introduit dans le tube Raman sous atmosphère sèche. C'est un solide blanc très hygroscopique.

III.A.2 - Hypothèses structurales :

III.A.2a - Forme moléculaire :

La molécule dimère Ta $_2$ Cl possède une symétrie D ; les deux molécules sont réunies par deux ponts halogène.

Avec les conventions d'axes utilisées dans la figure (III.1) on peut décrire les vibrations fondamentales par la représentation totalement réduite :

$$\Gamma_{vib} = 6 A_{g}(R_{p}) + 2 A_{u}(ia) + 4 B_{lg}(R) + 4 B_{u}(IR) + 2 B_{2g}(R) + 5 B_{2u}(IR) + 3 B_{2g}(R) + 4 B_{2u}(IR)$$

soit 15 raies dans le spectre Raman dont 6 polarisées et 13 dans le spectre infrarouge. La présence d'un centre de symétrie fait intervenir la règle de mutuelle exclusion.

III.A.2b - Forme cristalline :

ZALKIN et SANDS (9) ont montré par radiocristallographie que les cristaux de TaCl₅ et NbCl₅ sont isomorphes et sont constitués de molécules dimères.

Structure de Ta₂Cl₁₀ Fig: III 1

 ${\rm Ta_2Cl}_{10}$ cristallise dans le système monoclinique, son groupe d'espace est C 2/m (6 $^3_{\rm 2h}$).

La maille est constituée de 6 groupements dimères occupant 2 sites 2a (C_{2h}) et 4 sites 4 i(C_s). Les atomes de tantale sont disposés dans des sites 4 g(C_2) et 8 j(C_1); les atomes de chlore dans six séries de huit sites 8 j(C_1) et trois séries de quatre sites 4 i(C_s).

La figure III.l donne une schématisation de cette structure cristalline par projection de la maille élémentaire sur le plan xy

En considérant que la symétrie de la molécule à l'état libre est conservée dans le cristal, nous pouvons tracer les diagrammes de corrélation pour les deux séries de sites occupés (Fig.III.2).

Nous prenons comme éléments de symétrie communs aux sites et à la molécule, l'axe y dans le cas du site C_{2h} et le plan xy dans le cas du site C_s .

La lecture de ce diagramme permet de prévoir pour les modes de vibration internes : 2 4 A $_g$ + 21 B $_g$ + 21 A $_g$ + 24 B $_u$. Pour les modes externes nous prévoyons :

Librations	$2 A_g + 4 B_g + 2 A_u + 1 B_u$
Translations	2 A _g + 1 B _g + 1 A _u + 2 B _u
Modes acoustiques	$1 A_{11} + 2 B_{11}$

La méthode de BHAGAVANTAM et VENKATARAYUDU aboutit au même dénombrement, et permet ainsi de confirmer le choix du plan et de l'axe communs à la molécule et au cristal, dans la méthode par corrélation.

Le tableau ci-dessous résume ces résultats.

÷.,	Tableau :	Γ.
	and the second sec	

	Nb total de modes actifs	Modes internes	Modes de trans- lations	Modes de librations	Modes acous- tiques	Activité
Ag	28	24	2	2	0	Raman
Bg	26	21	1	4	0	Raman
Au	24	21	1	2	1	I.R.
B _u	27	24	2	l	2	I.R.
			}		ļ	

Ce dénombrement indique que chacun des 15 modes de la molécule isolée doit se scinder en deux modes de même espèce (A_g ou B_g) attribuables l'un aux molécules placées dans les sites de symétrie C_{2h}, l'autre aux molécules placées dans des sites de symétrie C_s. L'intensité relative des raies dans chacun des spectres n'est fonction que du site cristallographique occupé.

On doit également observer dans le spectre Raman du cristal une levée de l'interdiction pour les 15 modes "Ungerade" (actifs en I.R. ou inactifs) de la molécule isolée ; ils donnent naissance à des modes d'espèce A_g ou B_g pour les molécules placées dans les sites de symétrie C_s .

En résumé, on peut prévoir que le spectre Raman du pentachlorure de tantale cristallisé sera la superposition :

. Des spectres caractéristiques des molécules placées dans les sites de symétrie C et C (Le décalage en fréquence n'est pas prévisible mais²doit rester faible).

- . Des raies attribuables aux modes primitivement interdits en Raman, d'intensité faible.
- . Des modes externes de vibration correspondant aux molécules placées dans chacun des sites cristallographiques occupés.

III.A.3 - Spectre Raman du solide cristallisé :

Le spectre obtenu à température ambiante (Fig.III.3) présente 25 raies dans l'intervalle spectral 0-420 cm⁻¹. L'étude d'un échantillon refroidi à la température de l'azote liquide (Fig.III.4)nous donne un affinement des raies et une meilleure résolution (Fig.III.4bis)^{*}; on peut alors dénombrer 37 raies.

On note une augmentation des fréquences (de l à 9 cm^{-1}) quand on passe de la température ambiante à la température de l'azote liquide.

Les intensités relatives, compte tenu de l'affinement des raies, se conservent sauf pour la raie à 38 cm⁻¹ qui s'affaiblit par refroidissement de l'échantillon.

On observe un dédoublement de plusieurs raies dans le spectre à haute résolution. L'écart observé entre les deux composantes de chacun de ces doublets, de 2 à 4 cm⁻¹ est très supérieur à la limite de résolution du spectromètre.

Les fréquences observées dans les spectres obtenus à température ambiante et à basse température sont résumées dans le tableau II.

Remarque : Les nombres d'ondes sont donnés à 0,1 cm⁻¹ près ; ceci n'est valable qu'en valeur relative à l'intérieur d'un même spectre. Les valeurs absolues sont généralement données à + 1 cm⁻¹près.

* L'indice G indique la présence de Ghosts.

- 33 -

Fig: 田 3 C C C C C C C C C Ta2Cl10 solide T: ambiante Ex:6471Å F: 0,6cm¹ C C C C **CC**マ BUS

-. Tableau 2 . -

Fréquences et Rapports d'Intensités dans le Spectre Raman de Ta₂Cl₁₀

Sel Fondu		S T. am	olide biante	Solide T. 100°K		Remarques et Attri- bution des Modes du	Solide I.R.	
\tilde{v} cm ⁻¹	I	ρ	Jcm ⁻¹	I	$\overline{\mathfrak{d}}_{\mathrm{cm}}^{-1}$	I	Cristal	J cm ^{−1}
			33 38,3 52,4 57 73	<0,1 3,4 0,2 <0,1 0,1 {	36,4 44,2 5 2,5 58,4 59,8 75,4 79,3	<0,1 1,3 <0,1 0,1 <0,1 0,1 0,1	Librations Modes externes	73
88 (p)	£		93,6	0,2	95,2	0,2		
00(P)		M O	96,3	1,1	98,1	0,9	$\begin{cases} A + A (dédoublement) \\ g g \\ g \end{cases}$	
101 125(P)	m f	0,76	101,9 106,1 118,7 126,6	0,2 0,1 0,2 3,3	103,9 108,7 120,1 129 8	0,3 0,2 0,2 3,5	\leftarrow levée d'interdiction $\stackrel{*}{\rightarrow}$	121
144	f	0,77	135,6	1,8	137,3	1,9) ² g ⁻² g	
			137,6	<0,1	139,3	< 0,1	} (dédoublement)	
-			-		141 150,5	< 0,1 < 0,1	< x ← x	140 150
162	f	-	162,4	0,6	161,5 163,6	0,7) (dédoublement)	166
171	F	0,71	170,6	4,3 {	169,2 171,6	3,1 0,2	(dédoublement)	
190	F	0,75	195,4	3,7	173,5 187 195,8	< 0,1 < 0,1 3	< x < < x < < < < < < < < < < < < < <	
			239,8	<0,1	240,3	< 0,1	* *	203 231
270	f	0,75	272,5	0,4	275,7 285	0,4 < 0.1	(dédoublement)	255
327	tf	-	345.6	0.1	346	0.1)	
361(P)	m	0,5	357,5 364,9 381,7	0,8 2,8 1,1	351,4 359,5 366,2 383,3 385	<0,1 0,5 2,7 0,9	← * A + A } (dédoublement)	359 379
387	f		389,6	0,8	391	0,6	(dédoublement ?)	
420(P)	tF	n 0	420,6	10	393 417,7 422,5	<0,1 1,5 10	A + A (dédoublement)	393 409

III.A.4 - Influence de la température

Nous avons étudié le spectre du pentachlorure dans un intervalle compris entre 100 et 480°K, c'est-à-dire entre une température obtenue facilement avec l'azote liquide et la température de fusion (Fig.III.5(a), (b),(c).

On peut remarquer que toutes les fréquences qu'il a été possible de suivre, se déplacent linéairement en fonction de la température. Une relation du type $\tilde{v} = \tilde{v}_0$ -aT rend compte du phénomène observé dans l'intervalle de température étudié. La valeur de la pente a variant de O à 4,2 10⁻² cm⁻¹/degré.

Cette loi n'est pas vérifiée au voisinage de la fusion, pour une raie de basse fréquence (38 cm^{-1} à température ambiante) qui marque une décroissance plus rapide. Ce fait nous permet de l'attribuer à un mode externe de libration.

Dans un domaine de température voisin de la fusion, la diminution des forces de rappel près de la barrière de réorientation, augmente l'amplitude des mouvements de libration ; ceci a pour effet de diminuer la fréquence du pivotement correspondant, et d'augmenter l'intensité relative de la raie. Nous observons effectivement ce phénomène près de la fusion, la raie 38 cm^{-1} possède une intensité relative de 0,9 par rapport à la plus intense du spectre, contre 0,34 à température ambiante, et 0,13 à 100°K.

Une autre phénomène à noter est l'influence de la température sur certains modes internes ; en effet à l'exception des raies à 150, 162, 170, et 240 cm⁻¹ toutes les fréquences du spectre varient de l à 7 cm⁻¹ dans le domaine de température étudié. Nous pouvons relier de manière qualitative

- 34 -

Fig: II 5 (c)

N(cm⁻¹) Variation du spectre de Ta₂Cl₁₀ avec la température

l'amplitude de cette variation, à une contraction anisotrope de la maille ; en effet la perturbation du champ cristallin suivant une direction particulière va modifier la fréquence et l'amplitude de certains modes normaux, par exemple des torsions du pont suivant un axe parallèle à **u**ette direction.

III.A.5 - Spectre Raman de TaCl₅ fondu :

Le pentachlorure de tantale fond à 485 % en donnant un liquide jaune paille.

Le spectre du sel fondu (Fig.III.6) est comparable au spectre du solide cristallisé ; on peut cependant noter une augmentation de l'intensité de la raie à 420 cm⁻¹ et le glissement de certaines fréquences. On relève la présence de 12 raies .

L'étude du spectre a été faite suivant les deux composantes de polarisation : composante I (intensité totale diffusée quand le vecteur champ électrique de l'onde incidente est perpendiculaire à la direction d'observation), composante i (intensité totale diffusée quand le vecteur champ électrique de l'onde incidente est parallèle à la direction d'observation).

Les valeurs du taux de dépolarisation .fnous indiquent .4 raies polarisées.

Les résultats sont résumés dans le tableau 2 .

III.A.6 - Discussion :

Ces premiers résultats nous permettent de donner quelques conclusions :

. Les spectres obtenus confirment la forme dimère de la molécule à l'état solide et à l'état fondu.

. Si le spectre du solide cristallisé ne contient pas le nombre de raies prévues (35 au lieu de 54), il n'est pas en contradiction avec la structure cristalline donnée par ZALKIN et SANDS ; en effet on observe :

. Un dédoublement de certaines raies du spectre.

. L'apparition de raies faibles ayant même fréquence que des raies visibles dans le spectre infrarouge.

La complexité du spectre attendu rend possible des dégénérescences accidentelles ; ce qui explique l'absence de certains modes dans les spectres observés.

. La non linéarité observée (sur la fig. III.5(a)) pour la raie 38 cm^{-1} au voisinage de la fusion est très faible si on le compare à celui des cristaux moléculaires organiques (32). Ce fait peut montrer que l'énergie réticulaire du cristal de Ta₂Cl₁₀ reste approximativement constante dans tout le domaine de température étudié , et que la barrière de réorientation de la molécule est assez importante.

/.- III.B. - Etude du Pentabromure de Tantale . - /

III.B.1 - Préparation et purification : (Fig.III.6bis)

Le pentabromure de tantale utilisé a été préparé par bromuration directe du tantale pulvérulent vers 400 - 450°C en tube scellé (33). La réaction est quantitative au bout de 72 heures.

Le produit obtenu contient un peu de brome en excès que nous éliminons en tirant sous vide ; le pentabromure est ensuite purifié par sublimation et introduit dans le tube Raman sous atmosphère sèche.

C'est un solide jaune orangé très hygroscopique.

III.B. 2- Hypothèses structurales :

La molécule dimère Ta_2Br_{10} possède une symétrie D_{2h} comme Ta_2Cl_{10} ; les deux édifices monomères sont réunis par deux ponts halogène. Nous utilisons pour le dénombrement les mêmes conventions d'axes qu'avec le chlorure.

Nous avons donc 15 modes actifs dans le spectre Raman. L'étude radiocristallographique de NbBr₅ et TaBr₅ faite par ROLSTEN en 1958, (34),(35), attribue à ces pentabromures une structure orthorhombique avec 8 groupements MX₅ par maille. Le groupe d'espace possible serait Pbam (D_{2h}^{9}) .

Dans cette hypothèse, les molécules peuvent être placées soit dans les sites 4h ou 4g de symétrie C_s , soit dans les sites 4f ou 4e de symétrie C_2 . Les diagrammes de corrélation possibles nous permettent de prévoir que dans tous les cas chaque mode actif ou inactif de la molécule isolée va donner par **e**ffet de couplage intermoléculaire quatre modes dans le cristal.

Deux de ces modes sont du type "gerade"; les deux autres du sont type "ungerade". Ceci nous donne dans le spectre Raman :

- . Un dédoublement des modes actifs de la molécule isolée.
- . L'apparition de dublets ayant même fréquence moyenne que les raies du spectre infrarouge.
- . Douze modes externes se répartissant en six librations et six rotations.

Au total 72 raies dans le spectre Raman.

III.B.3 - Spectre Raman du solide cristallisé :

Le spectre du pentabromure de tantale solide a température ambiante (Fig.III.7), se compose de 20 raies dans l'intervalle spectral 0 - 300 cm^{-1} .

Fig:Ⅲ8 Ta2Br10 solide T:Azote liquide Ex:6471Å F:0,6cm¹ BUS

A la température de l'azote liquide, un affinement des raies nous permet d'en dénombrer 36. (Fig.III.8 - III.8.bis). Les fréquences relevées dans les spectres obtenus à basse température et à température ambiante, sont résumées dans le tableau⁴.

Comme dans le cas du pentachlorure on note une augmentation des fréquences quand on passe de la température ambiante à la température de l'azote liquide.

Les intensités relatives, compte tenu de l'affinement des raies se conservent sauf pour la raie à 27 cm⁻¹ qui augmente avec la température

On peut noter un dédoublement de certaines raies dans le spectre à haute résolution du pentabromure refroidi à une température voisine de l'azote liquide.

La comparaison des spectres du pentachlorure et du pentabromure, montre la similitude de la structure des deux composés ; nous reviendrons sur ce fait dans le paragraphe III.C.

III.B.4 - Influence de la température :

Le spectre du pentabromure de tantale a été étudié dans un intervalle de température compris entre 100 et 480°K. La fig.III.9(a),(b), montre l'évolution de quelques fréquences du spectre en fonction de la température.

On remarque que la décroissance est linéaire de la forme $\overline{\nu} = \overline{\nu}_{0}$ - at et qu'elle est moins importante que dans le cas du pentachlorure. Il faut cependant signaler les raies 27 et 166 cm⁻¹ à la température ambiante qui se déplacent respectivement de 7 et 6 cm⁻¹ quand on passe de 100 à 480°K.

- 38 -

-. Tableau 4 . -

Fréquences et Rapports d'Intensités dans le Spectre Raman de Ta₂Br₂10

à l'Etat Solide

Solide T. ambiant I.R.Beatti	ce Le(5)	Solide T.ambiar	nte	Solide T. azote li	quide	Remarques et Attribution des Modes du Cristal	Solide IR. (5)
$\overline{\sqrt{2}}$ (cm ⁻¹)	I	$\overline{v}(cm^{-1})$	I	[√ (cm ⁻¹)	I		\overline{v} (cm ⁻¹)
48 54	0,1	27,4 39,2 53,2	4,3	32,1 33,7 40,7 53 55,8	1,9 < 0,1) ,1 < 0,1 } 0,3	Libration Modes de vibrations externes	53
60	1.1	56)	57,9			
75	0,5	67,6 71,5 75,8) }1	68,4 72,4 76,3),3 0,6 0,6		
82	5,4	80,3	5	82 84	4,6 <1	X	81
90	2,4	87,3	3,1 {	88,5 90,8	2,4	(dédoublement)	
		103	<0,1	103,4	0,1	levée d'interdic-	96
112	3.9	108,3	3	108,5 112 4	2,7)	105
	232	113	1,9	114,6	\$1,2	(dédoublement)	
126	3,8	124,6	3,7	125,8	3, 8		128
150	0,1	∿152	U,1 (~152 167,6	●,1)	<u>₹</u> ₩	150
170	1	166	0,6 (169,5	• ,6	(dédoublement)	163
223	4 ,3	220	4	220,9 227,8	4,5 0,2		219
236	●,3	235,1	0,4 {	234,2 235,6	} 0,4	(dédoublement)	
		243,8 247,9	1,3 0,7 (245,8 249 260,7 262.7	1,6 0,7 6,1 0.2	X	252 258
266	10	264,6	10)	266,3 271,4	10 0,2	(dédoublement)	

Variation du spectre de Ta₂Br₁₀ avec la température

Fig: II 9(b)

Variation du spectre de Ta₂Br₁₀ avec la température

Il nous est difficile dans ce cas de faire une distinction entre modes internes et modes externes. La seule conclusion directe est l'attribution de la raie à 27 cm^{-1} à un mode de libration.

La fréquence 166 cm⁻¹ peut difficilement être attribuée à un mode externe, à cause de sa valeur élevée par rapports à des fréquences attribuables à des modes internes de la molécule. Le glissement important montre qu'elle peut être attribuée à un mouvement sensible aux contractions de la maille ; ce mouvement particulier pourrait être la torsion du pont halogène autour d'un axe de symétrie ; mouvement assez voisin d'une libration.

Au cours de cette étude il nous a été impossible d'atteindre le voisinage de la fusion ; en effet à partir de 500°K le pentabromure de tantale solide prend une couleur rouge sombre ; le spectre obtenu est peu intense et difficilement exploitable pour un pointé précis des fréquences.

III.B.5 - Etude du pentabromure fondu :

Le pentabromure de tantale fond à 523°K ; il donne un liquide rouge sombre. La faible épaisseur de l'échantillon permet le passage du faisceau laser et l'extraction de la lumière diffusée, sans absorption importante d'énergie.

Au cours de cette étude, nous avons remarqué qu'après retour à température ambiante, un solide vert s'est déposé sur les parois du tube. Ceci indique une décomposition partielle du pentabromure.

Les enregistrements sont effectués rapidement dès la fusion pour éviter une trop forte décomposition de l'échantillon (Fig.III.10).

Le spectre du pentabromure fondu comporte 7 raies (dont 2 polarisées) qui ne correspondent ni en fréquence, ni en intensité aux raies

du spectre du composé cristallisé. Il est impossible dans ce cas d'interpréter le spectre suivant la symétrie D_{2h} de la forme dimère.

La représentation totalement réduite de la forme monomère peut s'écrire :

$$\int_{vib}^{7} = 2 A'_{1}(R_{p}) + 2 A''_{2} (IR) + 3 E'(R. IR) + E'' (R)$$

Soit 6 raies dans le spectre Raman, dont 2 polarisées.

L'attribution des raies observées, aux modes normaux du modèle monomère de symétrie D_{3h} semble plausible, sauf pour la raie 221 cm⁻¹ excédentaire ; en effet nous relevons les mêmes valeurs en fréquences que I.R.HEATTIE et G.A.OZIN (36) dans le spectre du pentabromure gazeux ; cette forme ne contenant que le monomère. (Tableau 3).

La raie à 221 cm⁻¹ peut être due à un produit de la décomposition partielle du pentabromure ; par contre, si elle appartient au spectre de TaBr₅ elle doit être interprétée comme une harmonique de la E' à 113 cm⁻¹, qui donne une A'₁. Il n'a pas été possible de déterminer avec précision le taux de dépolarisation, elle apparaît cependant polarisée sur la fig.III.10.

TaBr ₅	liquide		TaBr ₅ gazeux (BEATTIE)		
J cm ⁻¹	Ū cm ⁻¹ I		⊽ cm ⁻¹	Attribution	
256	m	_		ې ₅ (E')	
243	tF	0,10	24o (P)	λ ₁ (Α' ₁)	
221	m	-		$J_{2 E' = A'_{1}}?$	
189	m	0,60	182(P)	λ ₂ (Α' ₁)	
113	F	0,79	110	٥ ₆ (٤')	
100	F	0,74	93	λ ₈ (ε")	
80	f		70	ν ₇ (ε')	

-. Tableau 3 . -

III.B. 6 - Discussion :

Les spectres obtenus nous permettent de tirer quelques conclusions :

. Le pentabromure de tantale à l'état liquide se trouve sous la forme monomère de symétrie D_{3h} .

Le spectre du solide cristallisé ne comporte pas le nombre de raies calculé sur la base de l'hypothèse structurale de ROLSTEN ; ceci peut s'expliquer par le nombre important des raies dans un intervalle spectral assez réduit qui peut entraîner plusieurs dégénérescences accidentelles.

. On peut noter l'apparition de raies faibles ayant même fréquence que des raies visibles en infrarouge ; il n'a cependant pas été possible de les dédoubler.

. Certaines raies intenses du spectre se dédoublent quand on refroidit le pentabromure à la température de l'azote liquide.

. L'hypothèse d'une structure orthorhombique avec un groupe d'espace D_{2h}^{-9} n'est pas en contradiction avec les spectres observés ; il ne nous a pas été possible cependant de trouver des arguments en sa faveur.

/. III.C. - Comparaison des Spectres . - /

III.C.1 - Modes internes :

III.C.la - Relation entre les fréquences et les intensités -Les spectres du pentachlorure et du pentabromure de tantale, présentés précédemment sont comparables dans leurs domaines spectraux respectifs (0 - 430 cm⁻¹ pour Ta₂Cl₁₀ et 0 - 270 cm⁻¹ pour Ta₂Br₁₀). Ceci semble logique en considérant la même structure dimère de symétrie D_{2h}.

En comparant graphiquement (Fig.III. 11) les fréquences cabactéristiques du spectre de Ta_2Cl_{10} avec les fréquences correspondantes relevées dans le spectre de Ta_2Br_{10} , on s'aperçoit qu'il existe une relation linéaire entre les fréquences des deux spectres.

Pour cela nous devons faire correspondre des raies d'intensités relatives différentes.

. Aux raies 162,4 et 170,6 cm⁻¹ respectivement d'intensité relative 0,6 et 4,3 de Ta₂Cl₁₀, nous devons faire correspondre le doublet 108,3 - 113 cm⁻¹ d'intensité 3 et 1,9.

. Aux trois raies 345,6 , 357,5 et 364,9 cm⁻¹ d'intensité relative 0,1 - 0,8 et 2,8 de Ta_2Cl_{10} , nous faisons correspondre les raies 220 - (228) et 235,1 cm⁻¹ d'intensités relatives 4 - 0,2 et 0,4 de Ta_2Br_{10} .

Dans ces deux cas, nous avons une inversion de l'ordre des intensités à l'intérieur des multiplets quand nous passons de Ta $_2$ Cl $_{10}$ à Ta $_2$ Br $_{10}$.

Tous les points ainsi obtenus sont voisins d'une droite passant par l'origine et de pente 1,55 ; cette valeur est très voisine du rapport $\sqrt{mBr/mCl} = 1,50$. Dans cette expression mBr et mCl sont les masses atomiques du brome et du chlore.

Il est donc possible d'écrire :

$$\frac{\bar{v} (\mathrm{Ta}_{2}\mathrm{Cl}_{10})}{\bar{v} (\mathrm{Ta}_{2}\mathrm{Br}_{10})} = 1,55 \neq \neq \sqrt{\frac{\mathrm{mBr}}{\mathrm{mCl}}} = 1,50$$

Nous avons porté en pointillés sur la Fig.III.ll, la droite de pente 1,50 correspondant à la racine du rapport des masses.

On observe pour les raies de basse fréquence, un écart à la linéarité ; il n'est pas possible de les attribuer toutes à des modes externes de vibration, en effet les raies (93 - 96) et lol cm⁻¹ de Ta₂Cl₁₀ sont visibles dans le spectre de l'état liquide. Cet écart peut s'interpréter en considérant la perturbation due au champ cristallin . L'énergie mise en jeu lors des vibrations du cristal est du même ordre de grandeur que l'énergie correspondante aux modes internes de la mo-lécule ; ces derniers sont alors très perturbés.

III.C. 1b : Influence de la température -

L'étude du glissement en fréquence en fonction de la température nous permet de trouver d'autres similitudes dans les spectres du pentachlorure et du pentabromure de tantale.

La raie située à 272,2 cm⁻¹ à température ambiante dans le spectre de Ta₂Cl₁₀, glisse en fréquence de manière identique que la raie 166 cm⁻¹ du spectre de Ta₂Br₁₀. La valeur de la pente a = 1,7 10^{-2} cm⁻¹ par degré est la plus forte de celles relevées pour les modes internes dans les deux spectres.

Ces deux fréquences me correspondent sur la droite de pente 1,55 définie plus haut. Elle peuvent être attribuées toutes deux, à un mouvement voisin d'un pivotement ; à l'intérieur de telles molécules, il peut y avoir la torsion symétrique du pont halogène autour d'un axe de symétrie.

- 43 -

On peut faire d'autre part les observations suivantes :

a) La raie 126,6 cm⁻¹ de Ta_2Cl_{10} glisse de 1,6 10⁻² cm⁻¹ par degré ; la raie correspondante dans le spectre de Ta_2Br_{10} glisse de 0,9 10⁻² cm⁻¹ par degré.

b) Les fréquences du doublet 162,4 - 170,6 cm⁻¹ de Ta_2Cl_{10} ne sont pas modifiées par un changement de température ; le même phénomène est observé pour le doublet 108,3 - 113 cm⁻¹ de Ta₂Br₁₀.

c) Aucun glissement en fréquence n'est observé pour la raie 345,6 cm⁻¹ de Ta₂Cl₁₀ ainsi que pour celle située à 220 cm⁻¹ de Ta₂Br₁₀. Ce fait semble confirmer notre choix dans la correspondance des raies établie plus haut sur la droite.

d) Des fréquences attribuées a des levées d'interdiction (1050 et 239,8 cm⁻¹ pour Ta_2C1_{10} , 103,4 et 152 cm⁻¹ pour Ta_2Br_{10}) ne sont pas modifiées par refroidissement des échantillons.

Dans chacun de ces quatre cas les fréquences dont les variations avec la température sont identiques, peuvent être attribuées à des modes de même espèce dans chacun des spectres.

III. C.2 - Modes externes :

Une raie intense attribuée à un mode externe de libration a été relevée dans les deux spectres (38,3 cm⁻¹ pour Ta_2Cl_{10} et 32,1 cm⁻¹ pour Ta_2Br_{10} a température ambiante).

- 45 -

Nous pouvons mettre en parallèle dans le tableau 5 les fréquences des modes externes de vibration pour les deux composés :

ition
tion
ed'in- ction?)

Tableau 5 : Modes externes de vibration à la température de l'azote liquide

On remarque de grandes analogies entre ces deux spectres ; en effet ils comportent une raie intense et d'autres bandes plus faibles. Le rapport de fréquences entre les raies correspondantes est voisin de 1,40 sauf pour les couples 52,5 - 33,7 cm⁻¹ et 59,8 - 53 cm⁻¹.

Ceci semble nous indiquer une similitude entre les deux structures cristallines.

Pour les oscillations externes d'un cristal, seules interviennent des foces intermoléculaires. La fonction potentiel alors déterminée par les distances intermoléculaires et la symétrie du cristal, peut être mise sous la forme simplifiée de LENNARD-JONES :

$$\emptyset = \frac{1}{2} \sum \left(\frac{A}{r^{12}} - \frac{B}{r^6} \right)$$

pour des cristaux moléculaires.

La modification de \emptyset change les fréquences et les amplitudes des modes externes. Quand nous passons du pentachlorure au pentabromure nous avons une modification, mais nous gardons le même rapport en fréquence et des intensités relatives comparables. Ceci indique une conservation des distances intermoléculaires, donc de la symétrie du cristal.

La détermination d'un système orthorhombique pour le cristal de Ta₂Br₁₀ n'est pas en contradiction avec ces résultats en effet le système monoclinique dans lequel cristallise Ta₂Cl₁₀ est pseudo-orthorhombique ($5 = 90,6^{\circ}$). Dans ces conditions il est possible de considérer la même géométrie pour les deux systèmes.

Ceci rejoint l'étude de ZALKIN et SANDS en 1958 . Ils indiquent que les cristaux de NbBr₅ et TaCl₅ semblent être isomorphes.

/ III.D. - Détermination des Modes Normaux de Vibration . - /

La molécule dimère Ta $_2X_{10}$ (X = Cl, Br) de symétrie D_{2h} peut être considérée comme la juxtaposition de deux motifs Ta X_6 (X = Cl, Br) de symétrie Ch ; les deux groupements Ta X_6 mettant en commun deux atomes d'halogène chacun.

Il est possible connaissant les représentations irréductibles des ions $TaCl_6$ et $TaBr_6$ de retrouver celles des molécules dimères Ta_2Cl_{10} et Ta_2Br_{10} . Un calcul des modes normaux des molécules dimères devient possible par ce schéma.

III.D. 1 - Corrélation :

La représentation totalement réduite des ions du type TaX_6^- peut s'écrire :

 $\int_{\text{vib}}^{} = A_{\text{lg}}(R) + E_{\text{g}}(R) + 2 F_{\text{lu}}(IR) + F_{\text{2u}}(ia)$

Le groupement TaX₆ dans la molécule dimère ne conserve comme élément de symétrie qu'un des six axes C_2 partageant un angle Cl-Ta-Cl et que deux plans perpendiculaires entre aux (r h et σ d) ce qui détermine un groupe de symétrie C_{2v} .

Il est donc possible de classer les différents modes normaux de l'ion TaX₆ par rapport à cette nouvelle symétrie.

Ces modes normaux se couplent de manière symétrique et antisymétrique par rapport aux nouveaux éléments de symétrie définis par la juxtaposition des deux groupements.

Cette méthode permet de retrouver les représentations irréductibles de la molécule dimère $\operatorname{Ta}_2 X_{10}$ à partir de l'ion $\operatorname{Ta} X_6$.

Nous .schématisons cette corrélation :

Symétrie Oh	Symétrie C _{2v}	Symétrie D _{2h}	
TaX ₆	TaX ₆ dans Ta ₂ X ₁₀	Ta ₂ X ₁₀	
Alg	A ₁	$A_{g} + B_{2u}$	
Eg		$A_{g} + B_{2u}$ $B_{lg} + B_{ju}$	
F _{2g}	$ \left\{\begin{array}{ccc} A_1 & & & \\ A_2 & & & \\ B_1 & & & \\ \end{array}\right\} $	$A_{g} + B_{2u}$ $B_{2g} + A_{u}$ $B_{3g} + B_{1u}$	
Flu	$ \begin{pmatrix} A_1 \\ B_1 \\ B_2 \end{pmatrix} $	$A_{g} + B_{2u}$ $B_{3g} + B_{1u}$ $B_{1g} + B_{3u}$	
F _{2u}	$ \begin{pmatrix} A_1 \\ A_2 \\ B_2 \end{pmatrix} $	$A_{g} + B_{2u}$ $B_{2g} + A_{u}$ $B_{lg} + B_{zu}$	

Modes normaux et fréquences de vibration des ions TaX₆

Fig: I	TaC	16	TaBr6		
/		Raman	IR	Raman	IR
	√1 (A1g)	380		230	
	ν ₂ (Eg)	300		179	
	√ ₃ (F _{1u})		320		213
	√4(F _{1u})		160		106
	√5(F2g)	181		114	
	√ ₆ (F _{2u})	cm ⁻ 1	cm ⁻ 1	cm⁻1	BUS ULL cm ⁻ 1

Les mouvements de translation et de rotation de chacun des motifs TaX_6 sont interdits par la mise en commun des atomes d'halogène ; ils ne sont pas comptés dans le dénombrement.

Par cette méthode, nous obtenons la représentation totalement réduite suivante :

$$\int_{\text{vib}}^{n} = 6 A_{g}(R) + 4 B_{lg}(R) + 2 B_{2g}(R) + 3 B_{3g}(R) + 2 A_{u}(ia) + 3 B_{lu}(IR) + 6 B_{2u}(IR) + 4 B_{3u}(IR)$$

Cette représentation est voisine de celle déterminée par le dénombrement habituel :

$$\int_{vib}^{1} = 6 A_{g}(R) + 4 B_{lg}(R) + 2 B_{2g}(R) + 3 B_{3g}(R) + 2 A_{u}(ia) + 4 B_{lu}(IR) + 5 B_{2u}(IR) + 4 B_{3u}(IR).$$

Le nombre total de représentations irréductibles obtenu par chacune des deux méthodes est équivalent. Le dénombrement donne 30 modes normaux, dont 15 actifs en Raman, 13 actifs en infrarouge et 2 inactifs. La répartition entre les différentes espèces se retrouve dans les deux dénombrements, avec cependant une inversion $B_{2u} \rightarrow B_{1u}$ dans la méthode par corrélation (1 et 2 ne signifiant qu'une numérotation par rapport aux plans,

B_{1u} et B_{2u} désignent des mouvements semblables).

III.D.2 - Calcul des modes normaux de vibration :

La figure III.12 schématise les six modes normaux de vibration des ions octaédriques TaX_6^- (X = Cl, Br) (37) et donne les fréquences correspondantes dans les spectres Raman et Infrarouge (5). Pour un mode d'espèce n fois dégénéré nous déduisons n modes, possèdant les propriétés de symétrie décrites à la fois dans les tables de caractère des groupes Oh et $C_{_{OU}}$.

Les n modes doivent être orthogonaux entre eux ; ils sont obtenus par une combinaison linéaire des vibrations de la série dégénérée; certains se retrouvent par une opération de symétrie du groupe Oh.

Nous couplons ces modes de manière symétrique ou antisymétrique par rapport aux nouveaux éléments de symétrie de la molécule Ta_2X_{10} (l'axe $C_2(x)$, le plan σ (zx) et le centre d'inversion i).

Nous obtenons par ce moyen la représentation des 30 modes normaux de vibration (Fig.III.13) prévus par la corrélation.

L'éclatement des modes dégénérés qui pourra être observé dans le spectre peut être très important. Il peut atteindre 20 cm⁻¹ dans le cas d'un effet de site ou la perturbation est beaucoup moins importante que dans ce cas.

805 LILLE

/ III.E. - Interprétation des Spectres . - /

L'ensemble des résultats obtenus nous permet de déterminer parmi le grand nombre de raies visibles, celles attribuables aux modes internes et aux modes externes, et de tirer quelques conclusions sur les mouvements des molécules du type Ta_0X_{10} .

Sur le tableau 6 nous avons mis en parallèle les fréquences des deux dérivés halogénés du tantale, avec entre crochets les dédoublements relevés dans chacun des spectres, et les levées d'interdiction observées. Les 15 modes internes de la molécule isolée sont numérotés dans l'ordre des fréquences croissantes. A partir du diagramme de corrélation, nous pouvons connaître approximativement la répartition des espèces dans chacun des spectres à l'aide des fréquences caractéristiques des ions TaCl₆

et TaBr₆.

Fig: III 13 Modes normaux de vibration de la molécule Ta₂X₁₀

Les deux raies les plus intenses dans les spectres peuvent être attribuées à des modes du type $A_g(A_{lg} \rightarrow A_g)$.

Les groupes de raies dans les domaines spectraux 270 - 400 cm⁻¹ pour Ta₂Cl₁₀ et 160 - 250 cm⁻¹ pour Ta₂Br₁₀ peuvent être attribués à l'éclatement des fréquences $\sqrt[3]{(E_g)}$ et $\sqrt[3]{(F_{1u})}$; une attribution plus précise n'est pas permise puisqu'on ne connaît pas l'importance de la perturbation apportée au groupement TaX₆ donc la séparation des composantes pour chacun des modes.

Les 9 autres raies du spectre peuvent s'interpréter par l'éclatement des $\sqrt[3]{4}(F_{1u})$, $\sqrt[3]{5}(F_{2g})$ et $\sqrt[3]{6}(F_{2u})$. Ici encore il n'est pas possible de faire une attribution plus précise.

L'étude en température permet de déceler les mouvements de torsions symétriques du pont halogéne, qui sont d'après le calcul, des modes normaux de vibration du type B_{2g} ou B_{3g} .

L'inversion des intensités observées pour les triplets 345,6 - 357,5 - 364,9 cm⁻¹ de Ta₂Cl₁₀ et 220 - (228) - 235,1 cm⁻¹ de Ta₂Br₁₀, peut s'expliquer en considérant les modes normaux de Ta₂X₁₀.

La raie 364,9 cm⁻¹ de Ta₂Cl₁₀ est attribuée après l'étude de la phase fondue a un mode du type A_g; elle provient de l'éclatement de la $\bigvee_{3}(F_{1u})$ ou de la $\bigvee_{2}(E_{g})$ de l'édifice TaCl₆; on remarque que le mode de vibration du type A_g (4) calculé à partir de la $\bigvee_{3}(F_{1u})$ fait intervenir le rapprochement de tous les atomes d'halogène et de l'atome de tantale de chaque côté du pont.

Ce mouvement doit être très perturbé quand on passe du chlorure au bromure ; la diminution de l'amplitude de vibration modifie l'intensité de la raie. rrequences et attributions pour la molécule Ta2X10

Rytrails of Sand applications			
	Ta2 C 110 V cm 1	Ta2Br10 Vcm1	Attribution possible
1	(952) (98,1)	68,4	
2	103,9	_ 72,4	
3	108,7 _	_ 76,3	
	120,1	84	-
4	129,8 .	82	
5	(137,3) (139,3) -	(88,5) (90,8)	$F_{1u} - A_g(5) + B_{3g}(3) + B_{1g}(3)$
	141 150,5	103,4	$F_{2g} \rightarrow A_{g}(3) + B_{3g}(1) + B_{2g}(1)$
6	(161,5) (163,6)	- 108,5	$(F_{2u} \rightarrow A_g(6) + B_{2g}(2) + B_{1g}(6) + B_{2g}(6) + B_{2g}(6)$
7	(169,2) (171,6) 173,5	- (112,4) (114,6)	
8	(187)? (195,3)? 240,3	125,8 152	<
9	$\begin{pmatrix} 275,7\\ 285 \end{pmatrix}$	$+ \begin{pmatrix} 167.6\\ 169.5 \end{pmatrix}$	Torsion du pont $(B_{2g} \text{ ou } B_{3g})$
10	346 351,4	220	
11	359,5	227,8	$ F_{1u} - A_{g}(4) + B_{1g}(2) + B_{3g}(4)$
12	366,2	+(243,2)	$F \rightarrow (2) \cdot B \cdot (1)$
13	$\begin{pmatrix} 383,3\\ 385 \end{pmatrix}$ -	- 245,8	$\int Lg \longrightarrow Ag(2) + D'g(1)$
14	(391)	249	
BUS LILLE		260,7	🛶 (levée d'intendiction)
15	(417,7) (422,5) -	$+\left(^{2627}_{266,3}\right)$	A1g Ag(1)
		2714	- Tableau: 6

/ III.F. - Conclusions . - /

Nous avons dans cette étude déterminé les fréquences des modes de vibration des molécules de pentachlorure et de pentabromure de tantale à partir de faits expérimentaux (dédoublement de raies ; variation des fréquences avec la température).

La structure cristalline donnée par ROLSTEN pour Ta₂Br₁₀ semble confirmée; l'analogie trouvée entre les modes externes des deux halogénures ne peut s'expliquer que par un groupe d'espace orthorhombique ou pseudo-orthorhombique.

Pour les molécules dimères de ce type les mouvements des deux atomes de tantale peuvent être considérés comme très petits. Il est remarquable que les pentachlorures et pentabromures de niobium ont des fréquences très voisines de leurs homologues du tantale (13) malgré une différence de masse importante entre le niobium et le tantale.

La relation linéaire entre les fréquences de $\text{Ta}_2\text{Cl}_{10}$ et celles de $\text{Ta}_2\text{Br}_{10}$ nous amène à considérer l'existence d'une relation simple entre les matrices F des deux halogénures. L'expérience montre qu'il en est de même pour des halogénures de symétrie tétraédrique (38).

Le déplacement, en fonction de la température, des raies Raman de basse fréquence a été étudié pour des cristaux moléculaires organiques par de nombreux auteurs. I.ICHISHIMA (32) a proposé une relation linéaire entre les fréquences des modes externes et la température. Ce fait semble s'appliquer aussi aux fréquences des modes internes et externes des cristaux moléculaires minéraux, dans l'intervalle de température étudié. La décroissance des modes externes au voisinage de la fusion est moins marquée que dans le cas de cristaux organiques, ce qui montre la forte cohésion des solides cristalliés étudiés. Un spectre infrarouge lointain et une étude de polarisation sur

monocristal pourraient nous apporter des données complémentaires.

.

••••••••••••••••

CHAPITRE IV

SPECTRE RAMAN DU PENTAFLUORURE DE TANTALE

۰,

/ IV. - Spectre Raman du Pentafluorure de Tantale . - /

IV.A - Purification . -

Le pentafluorure utilisé est un produit commercial, provenant de**s** laboratoires "Koch and Light". L'échantillon a dû être sublimé plusieurs fois avant d'être utilisé ; il est introduit dans le tube Raman sous atmosphère sèche : c'est un solide blanc très hygroscopique.

Une sublimation lente a permis d'obtenir un monocristal ; l'extrême sensibilité du produit à l'air humide n'a pas permis une orientation suivant ses axes cristallographiques par cliché de Lauë.

IV.B - Forme cristalline . -

IV.B. 1 - Hypothèses structurales :

Des études en rayons X des pentafluorures de niobium - et de tantale (12) montrent la présence de molécules tétramères ; les quatre motifs TaF₅ sont reliés entre eux par des ponts halogène (Fig.IV.l,a) $(TaF_5)_4$ cristallise dans le groupe d'espace $C_{2/m}$ (C_{2h}^{3}) .

La maille élémentaire cristallographique est formée de deux groupemènts : tétramères occupant des sites de symétrie C_{2h} . Les atomes de tantale sont dans des positions $4g(C_2)$ et 4 $i(C_s)$; les atomes de fluor sont dans deux séries de quatre sites 4 $i(C_s)$ et quatre séries de huit sites 8 $j(C_1)$.

La molécule tétramère isolée possède une symétrie D_{4h} (voir Fig. III.14.a). Nous pouvons écrire la représentation totalement réduite pour Ta_4F_{20} :

(b) Diagramme de corrélation

BUS

$$i_{vib} = 6 A_{lg}(R_{p}) + 4 A_{2g}(ia) + 6 B_{lg}(R) + 5 B_{2g}(R) + 6 E_{g}(R) + 2 A_{lu}(ia) + 4 A_{2u}(IR) + 3 B_{lu}(ia) + 4 B_{2u}(ia) + 10 E_{u}(IR)$$

La maille réduite est composée d'un seul groupement tétramère; le groupe de site est confondu avec le groupe ponctuel de la maille C_{2h} ; l'axe de symétrie C_2 commun au site et du cristal, contient deux atomes de tantale. La corrélation doit donc se faire suivant un axe C'_2 de la molécule tétramère.

La lecture du diagramme de corrélation (Fig.IV.l.b) nous permet de prévoir pour les modes de vibrations internes :

 $18 \text{ A}_{g} + 15 \text{ B}_{g} + 15 \text{ A}_{u} + 18 \text{ B}_{u}$

Pour les modes externes nous prévoyons :

and the second second

Librations	$2 B_{g} + 1 A_{g}$
Translation	0
Modes acoustiques	$1 A_{u} + 2 B_{u}$

Dans ce cas la règle de mutuelle exclusion présente dans le groupe moléaulaire D_{4h} demeure dans le cristal. Seule une levée d'interdiction pour les 4 A_{2g} de la molécule isolée est prévisible.

La méthode de BHAGAVANTAM et VENKATARAYUDU aboutit aux mêmes résultats et confirme le choix de l'axe C'₂ pour la corrélation. Nous résumons l'ensemble d**e**s résultats dans un tableau.

	Nombre total de modes actifs	Modes internes	Modes de trans- lation	Modes de librations	Modes acous- tiques	Activité
A g Bg	19 17	18 15	0	1 2	0	Raman Raman
^A u B _u	15	15 . 18	0	0 0	1 `2	I.R. I.R.
						L

-. Tableau 7 . -

Ce dénombrement nous fait prévoir la présence de 39 modes de vibration, dans le spectre Raman du solide cristallisé.

IV.B.2 - Spectre Raman :

La présence d'impuretés fluorescentes, même après plusieurs sublimations, n'a pas permis l'obtention d'un spectre de bonne qualité. Nous avons pu cependant dénombrer 16 raies. L'orientation du monocristal étant quelconque il n'a pas été possible de faire l'étude de toutes les composantes du tenseur de polarisabilité. Mais nous avons cependant pu choisir plusieurs orientations du vecteur champ électrique excitateur et diffusé. Ceci nous a permis de distinguer les modes du type A_g et ceux du type B_g .

La Fig.IV.2 donne des spectres obtenus d'après des orientations différentes du vecteur champ électrique. E incident parallèle (c), et perpendiculaire (b) à la direction d'observation.

Pour l'attribution nous admettons que la raie à 757 cm⁻¹ peut être assignée à un mode du type $A_g(13)$ en effet, c'est la plus intense du spectre, donc celle qui correspond au tenseur de polarisabilité le plus symétrique. Nous considérons ensuite les extinctions dans le même rapport. L'attribution est résumée dans le tableau 8.

Dans le tableau 8 nous avons disposé les fréquences de NbF₃; en effet les pentaBluorures de niobium et de tantale ont même structure tétramère D_{4h} et des spectres sont de même allure, avec toutefois des différences marquées dans les intensités relatives ; cet écart est explicable par la différence de maxse existant entre le niobium et le tantale.

Nous pouvons faire un parallèle entre notre attribution basée sur une étude en polarisation, et l'attribution de I.R. BEATTIE et

	SI	pectre de	TaF ₅	Spectre de NbF ₅ (BEATTIE)			
	5 cm ⁻¹	$5 \mathrm{cm}^{-1}$ I Attribution des modes du cristal		√ cm ⁻¹	I	Attribution	
	757	tF	A g	766	ttF	$A_{lg} A_{g}$	
	728	m	Bg	752	f	$B_{1g} \rightarrow A_{g}$ ou $E_{g} \rightarrow A_{g} + B_{g}$	
	712	f	Bg				
	699	F	A g	716	tF	B _{2g} → B _g	
	688	tf	Bg				
	672	m	Bg	688	f	$B_{lg} \longrightarrow A_{g}$	
	647	m	A g	656	m		
	273	F	A g	270	mF	$A_{lg} \rightarrow A_{g} \text{ ou } B_{lg} \rightarrow A_{g}$	
	252	tf	- 1914 - Alexandria	252	tſ		
	236	mF	Bg	238	tf		
	219	m	Bg	226	f		
	203	tf	-				
	180	f	-	182	f		
	128	m	Ag	163	f		
BUS) 121	m	Bg				
	95	f	Bg				

ses collaborateurs, basée sur un calcul théorique des fréquences.

Ce calcul repose sur la détermination des matrices G et F par la méthode de DECIUS et WILSON, en négligeant les interactions entre les angles du pont, et les torsions dues aux déplacements de chaque édifice monomère. Les constantes de force pour $(NbF_5)_4$ sont déduites de celles de MoF₆. Les rapports utilisés pour le transfert de MoF_6 a $(NbF_5)_4$ sont tirés d'autres molécules possédant un pont halogène.

Nous remarquons que les approximations faites par I.R.BEATTIE dans le calcul des fréquences amènent certaines contradictions avec les résultats expérimentaux.

IV. C - Forme fondue . -

Aucune étude n'a pu à ce jour préciser la structure de TaF₅ à l'état fondu ; les résultats obtenus dans les précédents travaux ne sont pasen désaccord avec ceux attendus pour un polymère, la présence d'une forme monomère n'a pu être mise en évidence.

La présence d'impuretés fluorescentes a rendu les spectres inexploitables, dans nos expériences.

IV.D. - Conclusion . -

Le nombre de raies observées dans le spectre Raman du dérivé fluoré du tantale (V) est nettement inférieur à celui que l'on peut prévoir à partir des résultats de radiocristallographie.

Nous ne pouvons cependant rien en conclure car la qualité des spectres obtenus n'est pas suffisante pour l'observation de raies faibles. Ceci est probablement dû à la présence d'impuretés fluorescentes que nous n'avons pour l'instant pas pu éliminer.

Nous pensons qu'une purification plus rigoureuse des échantillons permettra d'obtenir des spectres des phases cristalline et fondue de meilleure qualité, et ainsi pouvoir conclure sur la symétrie de TaF₅.

CHAPITRE V

ETUDE DE DEUX PROPRIETES CHIMIQUES

DU PENTABROMURE DE TANTALE

PAR SPECTROMETRIE RAMAN

• ;

.

Au cours de l'étude des dérivés halogénés du tantale, nous avons observé deux propriétés du pentabromure de tantale.

> . Action sur un bromure pour donner l'ion hexebromé TaBr₆ . Echange d'halogènes.

> > ¢

Ces réactions ont pu être mises en évidence par l'emploi de la spectrométrie Raman, comme méthode analytique.

/ V.A. - Mise en Evidence de Bromures Mixtes de Phosphore et de Tantale . - /

L'étude du chlorure mixte de phosphore et de tantale (39), (40) a montré une structure ionique du type $PCl_4^+ TaCl_6^-$. Par analogie il nous a semblé intéressant d'essayer de mettre en évidence des bromures mixtes de phosphore et de tantale.

Ce travail a été effectué en collaboration avec : P DHAMELINCOURT (41).

V.A.1 - Préparation des échantillons :

Les échantillons sont préparés par fusion à 300°C de mélanges des deux solides PBr₅ et TaBr₅ en proportions variables. Ces fusions sont réalisées dans des tubes scellés en verre Pyrex de 6 mm de diamètre que l'on utilise ensuite comme cellule Raman.

On obtient après refroidissement lent, des solides dont la couleur varie du jaune au brun suivant les proportions initiales des constituants.

V.A.2 - Etude des spectres Raman - Interprétation :

Nous pouvons classer les spectres obtenus en trois catégories (Fig.V.l), suivant les valeurs du rapport :

 $\frac{\text{Nombre de moles de TaBr}_5}{\text{Nombre de moles de PBr}_5}$

(a). - $TaBr_5/PBr_5$ > 1 . - On observe en plus du spectre de $TaBr_5$ de nouvelles raies que l'on ne peut attribuer à PBr_5 (Spectre (a)).

(b). - TaBr₅/PBr₅ ⁽¹⁾ l . - Les nouvelles raies observées dans le spectre (a) sont présentes dans le spectre (b) avec une grande intensité.

(c). - $TaBr_5/PBr_5 < 1$. - Le spectre (c) ne contient ni les raies de PBr₅, ni celles de TaBr₅. Les raies intenses qui le composent, différentes de celles du spectre (a) apparaissent très faiblement dans le spectre (b).

Les fréquences de nouvelles raies obtenues sont présentées dans le tableau 9.

Le nombre et la position des raies observées dans les spectres obtenus mettent en évidence la présence des ions PBr_{μ}^{+} et $TaBr_{6}^{-}$ (42),(5).

Dans les spectres (b) et (c) les fréquences attribuables à l'ion PBr_4^+ sont différentes. Cet écart nous conduit à envisager deux types de structure possible pour les mélanges obtenus.

. Dans le mélange (c) riche en PBr_5 une partie des ions Br^{-} formant PBr_5 réagirait sur TaBr_5 pour donner des ions TaBr_6 selon :

$$nPBr_5 + x TaBr_5 \longrightarrow (PBr_4^+)_n (Br^-)_{n-x} (TaBr_6)_x$$

Les valeurs de n et de x paraissent varier très peu d'une expérience à l'autre car les raies caractéristiques se retrouvent dans plusieurs essais.

. Dans les mélanges (a) et (b) riches en TaBr $_5$ ou équimoléculaires, la totalité des ions Br ${\rm \bar{}}$ de PBr $_5$ réagiront selon :

 $PBr_5 + TaBr_5 \longrightarrow PBr_4^+, TaBr_6^-$

(a) TaBr ₅ PBr ₅ > 1		(b) TaBr ₅ PBr ₅ v 1		(c) TaBr5 PBr5 <1	
ν̃ cm ^{−1}	I	√ cm ⁻¹	I	<u>J</u> cm ⁻¹	I
42 -69(*) 106 116(*) 134	0,2 0,9 2 5,5 0,3	69 96 106 116 134	0,6 0,3 2 3 0,3	29 39 50 106 116 134	0,9 3,5 0,7 0,9 0,3 5
140	5,5	14 8	6	151	0,9
17 2 216 236 254 496 503	0,3 4 10 1 0,2	174 216 236 242 254 496 503	0,1 0,6 4 0,3 10 1 0,3	236 242 476 487 499	0,2 10 0,9 0,7 0,3

(*) dont l'intensité est perturbéépar une raie de TaBr₅

TABLEAU

.

La maille du composé serait constituée seulement des ions ${\rm PBr}_4^{\ +}$ et ${\rm TaBr}_6^{-}$.

Dans cette hypothèse nous résumons dans le tableau 10, les fréquences caractéristiques des ions et leur attribution.

(PBr ₄ ⁺) _n (Br ⁻) _n	-x (TaBr ⁻) _x	PBr ₄ ⁺ TaBr ₆ ⁻	
PBr4+	^{TaBr} 6	PBr ₄ +	TaBr ₆
$ \begin{array}{c} 499 \\ 487 \\ 476 \end{array} \begin{array}{c} \overline{}_{3}(F_{2}) \\ 242 \\ \overline{}_{1}(A_{1}) \\ 151 \end{array} $	236) ₁ (A _{1g}) -) ₂ (E _g)	503) 496∫ ^J 3 ^{(F} 2 ⁾ 254 V ₁ (A ₁)	236
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\$	106 ⁽⁾ 5(E _g)	148 $_4(F_2)$	106) ₅ (F _{2g})

-. Tableau 10. -

L'éclatement important des modes primitivement dégénérés de l'ion PBr₄⁺ (23 cm⁻¹ pour la $\Im_3(F_2)$ et 17 cm⁻¹ pour la $\Im_4(F_2)$) indique une distorsion très forte de cet ion dans le composé $(PBr_4^+)_n$ $(Br^-)_{n-x}$ $(TaPr_6^-)_n$. Pour l'ion TaBr_6 on ne remarque qu'un glissement par rapport aux fréquences de l'ion en solution (5). La variation est identique dans les deux composés et aucune structure fine n'a pu être décelée.

Une étude plus précise de la structure cristalline de ces composés n'est pas possible à partir des mélanges. Nous nous proposons d'isoler ces bromures mixtes de phosphore et de tantale et de poursuivre leur étude à haute résolution, afin d'obtenir des renseignements supplémentaires sur leur structure.

V.B - Action du Trifluorure d'Arsenic sur le Pentabromure de Tantale en / suspension dans le Tétrachlorure de Carbone. -

Au cours d'essais de fluoration de TaBr₅ par AsF₃ nous avons pu mettre en évidence un échange d'halogènes entre les trois composés TaBr₅-AsF₃ et CCl_4 .

V.B.1 - Réaction . -

AsF₃ est ajouté lentement sur TaBr₅ en suspension dans CCl_4 (Fig. V.2). Au cours de l'addition, nous voyons apparaître un solide grisâtre qui tend à disparaître avec un excès d'AsF₃. La solution est ensuite filtrée et distillée.

Après évaporation des fractions contenant AsF_3 et CCl_4 (la solution est placée au bain marie), le résidu est placé plusieurs jours au contact de noir animal et distillé sous vide.

Les différentes fractions, début, milieu et fin de distillation, sont ensuite placées dans des cellules Raman et étudiées.

Fig:∑-2 Action de AsF3 sur TaBr5 en suspension dans CCl4

V.B.2 - Spectres Raman . -

Les spectres obtenus (Fig.V.3) s'étendent dans le domaine spectral 0- 410 cm⁻¹.

L'évolution des intensités relatives permet de mettre en évidence un mélange de chlorobromures d'arsenic $(AsCl_3 - AsCl_2Br - AsClBr_2 - AsBr_3)$,(tableau ll),dont les spectres sont connus (43), (44).

Le nombre réduit de raies observées peut s'expliquer par les nombreuses dégénérescences accidentelles et la largeur des bandes observées.

∫ _{cm} -1 observé	Ĵ _{cm} ⁻¹ ^{AsCl} 3	Ĵ cm ⁻¹ AsCl ₂ Br	√ _{cm} ⁻¹ AsBr ₂ C1	J cm ⁻¹ AsBr ₃
104			103 ⁾ _3(A')	98 Ј ₄ (Е)
130		129) ₄ (A')	130) ₆ (A")	128 J ₂ (A ₁)
143		142) ₆ (A")		
156	158 👌 (E)		$154 J_4(A')$	
178		178 J ₃ (A')		
196	194 $v_2(A_1)$		280) ₅ (A")	275 J ₃ (E)
284		282 ³ 2(A')	280 ⁾ 1(A')	284 J ₁ (A ₁)
376	370) ₃ (E)	380 J ₁ (A')	380 ³ (A')	
409	405 J ₂ (A ₁)	380 ³ 5(A")		
Symétrie	с _{зv}	C _s	C _s	C _{3v}

-. TABLEAU 11 . -

Les deux halogénures ont été mis en évidence par potentiométrie.

V.B.3 - Hypothèses . -

La présence de bromure d'arsenic dans les différentes fractions recueillies indique une réaction d'échange d'halogènes entre le pentabromure de tantale et le trifluorure d'arsenic.

Le chlorure et les chlorobromures d'arsenic, ne peuvent s'expliquer que par l'intervention du tétrachlorure de carbone dans la réaction.

Ce travail est en cours de réalisation ; une analyse chimique et spectroscopique approfondie n'a pas encore été faite ; certains mélanges binaires ont cependant été étudiés.

. CCl₄, AsF₃ - Les deux liquides ne sont pas miscibles : les spectres des deux phases ne présentent aucune raie nouvelle.

. CCl₄, TaBr₅ - Le pentabromure de tantale est peu soluble dans le tétrachlorure de carbone et forme une suspension.

. CCl_4 , $AsBr_3$ - Les liquides sont parfaitement miscibles ; le spectre de la solution même après un séjour de quelques heures au bain marie ne comporte que les raies de CCl_4 et de $AsBr_3$.

. AsF₃, TaBr₅ - La réaction est violente ; nous obtenons deux phases :

- . un solide blanc que nous avons pu caractériser comme étant du bromure d'arsenic,
- une phase liquide où cristallisent de fines aiguilles, après un temps de repos à température ambiante. Une trop forte fluorescence de cette partie nous a gêné lors de la caractérisation par spectrométrie Raman.

Ceci montre que la présence de chlorure d'arsenic ne peut s'expliquer par un échange direct entre le tétrachlorure de carbone et un halogénure d'arsenic ; il faut considérer l'action du pentabromure de tantale dans cette réaction d'échange .

Le mécanisme précis fera l'objet d'une étude ultérieure.

/ V.C - Conclusion . - /

L'étude de ces deux propriétés du pentabromure de tantale montre l'intérêt de la spectrométrie Raman dans l'analyse de mélanges réactionnels.

En phase solide comme en phase liquide, l'analyse peut se faire directement dans le réacteur, sans destruction des produits. L'évolution des intensités relatives et des fréquences caractéristiques, renseigne sur la composition du mélange (bromochlorures d'Arsenic) et sur la structure des composés obtenus (bromures mixtes de phosphore et de tantale).

CONCLUSION

.

.

1

Nous avons rappelé la théorie de la dynamique des réseaux cristallins et les résultats utiles pour le dénombrement des modes normaux de vibration ; ce dernier peut se faire suivant deux méthodes complémentaires, méthode de Bhagavantam et Venkatarayudu et la méthode du site de Halford.

Nous avons ensuite présenté les installations de spectrométrie Raman utilisées au laboratoire, en précisant les conditions observées pour l'étude de solides cristallisés.

Nous avons appliqué l'analyse du groupe facteur aux dérivés halogenés du tantale V, et étudié l'effet de la symétrie cristalline sur les spectres Raman de ces composés. Ceci nous a permis d'expliquer le nombre important de raies et les dédoublements observés dans les spectres Raman du pentachlorure et du pentabromure de tantale en phase solide.

L'étude en fonction de la température et une comparaison des spectres Raman apporte de nouvelles données expérimentales pour l'attribution de certaines fréquences aux vibrations de la molécule. Nous obtenons une confirmation de l'analogie de structure existant entre les cristaux de pentachlorure et de pentabromure de tantale.

Le calcul des modes normaux pour une molécule dimère du type $\operatorname{Ta}_{2}X_{10}$, permet d'attribuer certains domaines spectraux aux mouvements des molécules.

Les spectres Raman des sels fondus permettent de conclure à une forme monomère pour le pentabromure et de confirmer la forme dimère du pentachlorure. L'étude du penta**£**luorure de tantale n'a pas permis de conclure quant à la structure tétramère du solide cristallisé, à cause de la qualité insuffisante des spectres obtenus.

Le dernier terme de la série des halogénures de tantale V ; le pentaiodure de tantale, n'a pas été étudié ; c'est un solide noir très hygroscopique qui se décompose sous le faisceau laser. Aucun spectre n'a pu être ob**b**enu jusqu'à ce jour, même à basse température.

La spectrométrie Raman utilisée comme méthode analytique nous a permis de mettre en évidence de nouveaux composés et une réaction d'échanger d'halogènes. Elle apparaît, associée aux méthodes chimiques, comme une technique d'analyse très fructueuse.

BIBLIOGRAPHIE

.

.

(1)	H.Mouren, P.Sue, M.Magat.	Vol.Commemoratif Victor Henri, (1947-1948), p.125.
(2)	G.L.Carlson.	Spectrochim. Acta, (1963), 19, <u>8</u> , p. 1291.
(3)	R.F.W.Bader, K.P. Huang.	J.Chem.Phys, (1965), <u>43</u> , p.3760.
(4)	R.A.Walton, B.J.Bridson.	Spectrochim. Acta., (1967), 23, <u>8</u> , p.2489.
(5)	I.R.Beattie, T.R.Gilson, G.A.Ozin.	J.Chem.Soc.,(A), (1968), p.2765.
(6)	I.R.Beattie, G.A.Ozin,T.R.Gilson. J.Chem.Soc., (1968), p.813.	
(7)	I.R.Beattie, T.Gilson, P.Cockin	g. J.Chem.Soc., (1967), p.702.
(8)	R.D.Werder, R.A.Frey, Hs.H.Gunt	hard. J.Chem.Phys., (1967), <u>47</u> , p. 159.
(9)	A.Zalkin, D.E.Sands.	Acta, Cryst., (1958), <u>11</u> , p.615.
(10)	L.Kepert, R.S.Nyholm.	J.Chem.Soc., (1965), p.2871.
(11)	Ruff et Schiller.	Z.anorg.Chem. (1911), <u>72</u> , p.329.
(12)	A.J.Dedwards.	J.Chem.Soc.(1964), p.3714.
(13)	I.R.Beattie, K.M.S.Livingston, G.A.Ozin, D.J.Reynods.	J.Chem.Soc.(A), (1969), p.958.
(14)	A.Schoenflies.	"Krystallsysteme und Krystallstruktur" (B.F.Tenbneur Leipzig 1891).
(15)	H.Schoenflies.	"Theorie der Krystallstruktur" Berlin (1932).
(16)	W.H.Zachariasen.	"Theory of X-Rays diffraction in crystals" Wiley and Sons, New-York ,(1945).
(17)	International Tables of X-Ray C	rystallography. Vol.1.
(18)	R.S.Halford.	J.Chem.Phys. (1946), 14,8.
. (19)	M.Born, K.Huang.	"Dynamical Theory of Lattice Vibration" Oxford Clarendon Press, (1954).
(20)	L.Brillouin.	Ann.Phys.(1922), 17, 88.
(21)	W.Cochran.	"Phonons" R.W.H.Stevenson, Editor,Oliver and Boyds (1966).
(22)	A.Kastler, A.Rousset.	C.R.Acad.Sc.Paris, (1941), 212, p.645.

,

(23)	A.Kastler, A.Rousset.	J. đe Phys. et Le Rad.,(1941), <u>2</u> , p.49.
(24)	S.Bhagavantam, T.Venkatarayudu.	Proc.Indian.Acad.Sci.,(1939),A. 2, p.224.
(25)	J.E.Rosenthal, G.M.Murphy.	Rev.Mod.Phys.(1936),8, p.317.
(26)	E.B.Wilson, J.C.Decius, P.C.Cross	. Molecular vibrations, Mac Graw-Hill New-York, 1955.
(27)	M.Delhaye, M.Migeon.	C.R.Acad.Sc.Paris, (1966), 262, p.702
(28)	F.Wallart.	Thèse, Lille (1970).
(29)	Mme M.Deporcq-Stratmains, R.Demol.	Revue du G.A.M.S. (1969), <u>V.</u> 5, n°3, p.243.
(30)	R.Facon, J.Wrobel.	Bull.Soc.Chim.Fr., (1968), 2, p.13.
(31)	R.Facon.	D.E.S., Lille (1968).
(32)	I.Ichishima.	J.Chem.Soc.Japan.(A),(1969) p.958.
(33)	A.H.Cowley, F.Fairbrother, N.Scot	t. J.Chem.Soc.(1958), p.3133.
(34)	R.F.Rolsten.	J. Phys. Chem. (1958), <u>62</u> , p.126.
(35)	R.F.Rolsten.	J.Am.Chem.Soc.(1958), <u>80</u> , p.2952.
(36)	I.R.Beattie, G.A.Ozin.	The Spex.Speaker (Spex.Ind.)XIV.n°4 decembre 1969.
(37)	K.Nakamoto.	"Infrared spectra of inorganic and co-ordination compounds", Wiley, London 1963.
(38)	C.Cerf.	Bull.Soc.Chim.Fr.(1970),11, p.3885.
(39)	Halogen Chemistry, Academic Press	, London and New-York, 3; p.141.
(40)	P.Reich, H.Preiss .	Z.Chem., (1967), <u>7</u> , p.115.
(41)	M.Delhaye, P.Dhamelincourt, J.C.Merlin.	C.R.Acad.Sc.Paris.(B), (1971), <u>272</u> p.461.
(42)	P.Dhamelincourt, Mme Crunelle-Cras	s Bull.Soc.Chim.France, (1970), 7, p.2470.
(43)	A.Müller, B.Krebs, I.Elvebredd, B.	Vizi, S.I.Cyion. Journal of Molecular Structure V.2, n°2.
(44)	Anwendungen der schwingungsspektra H.Siebert Spinger-Verlag. Be	oskopie in der Anorganischem Chemie rlin. Heidlberg. New-York.

1

1 1