50376 DES SCIENCES ET TECHNIQUES DE LILLE 503761972

145

Nº d'ordre 348

THESE

présentée à

L'UNIVERSITÉ DES SCIENCES ET DES TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE SPÉCIALITÉ

par

WILLEMOT Edmond

RESONANCES DE CORIOLIS ENTRE ETATS VIBRATIONNELS EXCITES DES MOLECULES DU TYPE TOUPIE ASYMETRIQUE

Application à l'identification des spectres de rotation pure des différentes substitutions dèuterées de la molecule d'acide formique

Soutenue le 30 novembre 72 devant la Commission d'examen

Membres du Jury

М.	WERTHEIMER
М.	BELLET
М.	CERF
М.	FAYT

Président Rapporteur Examinateur Membre invité

U.E.R. DE PHYSIQUE FONDAMENTALE

UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

المتشاهلين ويلك المتلك المتلك المتلك والرا المتلك الرك المتلك المتلك

DOYENS HONORAIRES De l'Ancienne Faculté des Sciences

MM. H. LEFEBVRE, PARREAU

PROFESSEURS HONORAIRES des Anciennes Facultés de Droit et

Sciences Economiques, des Sciences et des Lettres

M. ARNOULT, Mme BEAUJEU, MM. BEGHIN, BROCHARD, CAU, CHAPPELON, CHAUDRON, CORDONNIER, DEHEUVELS, DEHORNE, DEHORS, FAUVEL, FLEURY, P. GERMAIN, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, NORMANT, PARISELLE, PASCAL, PAUTHENIER, PEREZ, ROIG, ROSEAU, ROUBINE, ROUELLE, WIEMAN, ZAMANSKI.

۰.

PRESIDENT de l'UNIVERSITE

DES SCIENCES ET TECHNIQUES DE LULAS

M. DEFRETIN René

M. BACCHUS Pierre

Professeur de Biologie Marine, Directeur de l'Institut de Biologie Maritime et Régionale de Wimereux

PROFESSEURS TITULAIRES

M. BEAUFILS Jean-Pierre M. BECART Maurice M. BIAYS Pierre M. BLOCH Vincent M. BONNEMAN Pierre M. BONTE Antoine M. BOUGHON Pierre M. BOURIQUET Robert M. CAPET Marcel-Francis M. CELET Paul M. CONSTANT Eugène M. CORSIN Pierre M. DECUYPER Marcel M. DEFRETIN René M. DELATTRE Charles M. DURCHON Maurice M. FAURE Robert M. FOURET René M. GABILLARD Robert M. GEHU Jean-Marie M. GLACET Charles M. GONTIER Gérard M. GUILLAUME Jean M. HEUBEL Joseph M. JOLY Robert Me LENOBLE Jacqueline M. LOMBARD Jacques

Astronomie Chimie Générale Physique Géographie Psychophysiologie Chimie et Physico-Chimie Industriel] Géologie Appliquée Mathématiques Biologie Végétale Institut de Préparation aux Affaires Géologie Physique Industrielle-Electronique Paléobotanique Mathématiques Générales Biologie Marine Géologie Générale Zoologie Générale et Appliquée Mécanique Physique Radio-Electricité-Electronique Institut Agricole Chimie Organique Mécanique Biologie Vegetale Chimie Minérale Biologie (Amiene) Physique Expérimentale Sociologie

PROFESSIORS TITULAIRED (suite)

M, MONTARIOL Frédéric M, MONTREUIL Jean M. POUZET Pierre Me SCHWARTZ Marie-Hélène M. TILLIEU Jacques M. TRIDOT Gabriel M. VAILLANT Jean M. VIDAL Pierre M. VIVIER Emile M, WERTHEIMER Raymond M. ZEYTOUNIAN Radyadour

M. BOUISSET Simon

M. DELHAYE Michel

M. FLATRES Plorre M. URBPUN André

M. LENDER Robert

d. . OCQUIN Michel

M. PARREAU Michel

M. PRUDHOMME Rémy

M. SCHILTZ René

Chi ie Appliquée Chim. + Biologique Informatique Analyse Supérieure Physique Théorique Chimie Mathématiques Automatique Biologie Animale Physique Mathématiques

PROFESSEURS A TITRE PERSONNEL

Physiologie Animale Chimie Géographie Electronique

Betanique Chimie Physique Mathématiques Appliquées Droit et Sciences Economiques Physique

PROFESSEURS SANS CHAIRE

M. BRILLET Jean M. BILLARD Jean M. BODARD Marcel M. BOILLET Pierre M. DERCOURT Jean-Michel M. DEVRAINNE Pierre M. GOUDMAND Pierre M. GRUSON Laurent M. GUILBAULT Pierre M. LACOSTE Louis M. LANDAIS Jean M. LEHMANN Daniel M. LOUCHEUX Claude M. MAES Serge Vie MARQUET Simone M. MONTEL Marc M. PANET Marius M. PROUVOST Jean

Physique Physique Botanique Physique Géologie Chimie Minérale Chimie Physique Mathématiques Biologie Biologie Chimie Mathématiques Chimie Physiaue Mathématiques Physique I.E.E.A. Minéralogie

MAITRES DE CONFERENCES (et chargés de fonctions)

Economie Politique Sciences Economiques Géographie Mathématiques Mathématiques Biologie Mécanique des Fluides Mathématiques Biologie Biologie Végétale

M. ADAM Michel

- M. ANDRE Charles
- M. ANGRAND Jean-Pierre
- A ANTOINE Philippe
- M. AUBIN Thierry
- M. BART André
- M. BEGUIN Paul
- M. BKOUCHE Rudolphe
- M. BOILLY Bénoni
- M. BONNEMAIN Jean-Louis

see fo

M. BONNOT Ernest M. BOSCQ Denis M. BRIDOUX Michel M. BRUYELLE Pierre M. CAPURON Alfred M. CARREZ Christian M. CORDONNIER Vincent M. CORTOIS Jean M. COULON Jean M. DEBOURSE Jean-Pierre M. DEBRABANT Pierre M. DELAUNAY Jean-Claude M. DOUKHAN Jean-Claude M. DRIEUX Baudouin M. DYMENT Arthur M. ESCAIG Bertrand M. FONTAINE Jacques M. FROELICH Daniel M. GAMBLIN André M. GOBLOT Rémi M. GOSSELIN Gabriel M. GRANELLE Jean-Jacques M. GUILLAUME Henri M. HERMAN Maurice M. JOURNEL Gérard Mle KOSMANN Yvette M. KREMBEL Jean M. LABLACHE COMBIER Alain M. LAURENT François M. LAVAGNE Pierre Mle LEGRAND Denise Mle LEGRAND Solange Me LEHMANN Josiane M. LENTACKER Firmin M. LEROY Yves M. LHENAFF René M. LOCQUENEUX Robert M. LOUAGE Francis Me MAILLET Monique M. MAIZIERES Christian M. MALAUSSENA Jean-Louis M. MERIAUX Emile M. MESSELYN Jean M. MIGEON Michel M. PAQUET Jacques M. PARSY Fernand M. PECQUE Marcel M. PERROT Pierre M. PERTUZON Emile M. PONSOLLE Louis M. POVY Jean-Claude M. RACZY Ladislas Me RENVERSEZ Françoise M. ROUSSEAU Jean-Paul M. ROY Jean-Claude M. SALMER Georges

Biol. e Végétale Mathén itiques Chimie Géographie et Aménagement Spatial Biologie Animale I.E.E.A. Informatique Physique I.E.E.A. Sciences Economiques et Sociales Sciences Appliquées Sciences Economiques et Sociales Physique I.E.E.A. Mathématiques Physique Génie Electrique Sciences Appliquées Géographie Mathématiques Sociologie Sciences Economiques Sciences Economiques et Sociales Physique Sciences Appliquées Mathématiques Chimie Chimie Automatique Sciences Economiques et Sociales Mathématiques Mathématiques Mathématiques Géographie et Aménagement Spatial Electronique Géographie Physique Sciences Appliquées Sciences Economiques I.E.E.A. Sciences Economiques et Sociales Sciences de la Terre Physique Chimie (Sciences Appliquées) Sciences Appliquées Mathématiques Chimie Chimie Biologie Chimie (Valenciennes) Sciences Appliquées Physique Sciences Economiques et Sociales Physiclogie Animale Biologie Radio Electricité Electronique

. . . / . . .

MAITRES DE CONFERENCES (et chargés de fonctions) (Suite)

M. SEGUIER Guy
M. SIMON Michel
M. SLIWA Henri
M. SMET Pierre
M. SOMME Jean
MLe SPIK Geneviève
M. TOULOTTE Jean-Marc
M. TREANTON Jean-René
M. VANDORPE Bernard
M. VILETTE Michel
M. WATERLOT Michel
Me ZINN JUSTIN Nicole

Electronique Psychologie Chimie Physique Géographie Chimie Biologique Sciences Appliquées Sciences Economiques et Sociales Chimie Physique Génie Mécanique Géologie Mathématiques

à ma mère.

Pour certaines molécules, la faible différence d'énergie existant entre deux niveaux de vibration particuliers perturbe profondément la structure des niveaux de rotation. Lorsque les termes de couplage dépendent des opérateurs de rotation, on a alors une résonance de type Coriclis.

Plusieurs molécules du type toupie asymétrique présentant un cas de résonance de Coriolis ont fait l'objet d'études tant en spectroscopie infra-rouge, qu'en spectroscopie hertzienne. La plupart de ces molécules appartiennent au groupe de symétrie C₂v.

A notre connaissance, la seule étude sérieuse concernant une molécule de type C présentant un cas de résonance de Coriolis forte a été faite par C. SAMSON⁽¹⁰⁾. Elle a pour objet l'identification du spectre de rotation pure des états vibratio-nels excités v_7 (625 cm⁻¹) et v_9 (638 cm⁻¹) de la molécule d'acide formique.

L'attribution donnée par J.K. WILMSHURST ⁽¹⁶⁾ aux deux fréquences vibrationnelles v_6 et v_8 (respectivement 1105 cm⁻¹ et 1033 cm⁻¹) de cette même molécule suggère l'existence d'un type de résonance de Coriolis faible dont l'étude serait justifiable d'un traitement par une méthode de perturbation. L'étude des spectres de rotation pure de ces deux états vibrationnels excités nous a permis de vérifier cette hypothèse.

Le tableau III - 1 résume les attributions données par T. MIYAZAWA et K.S. PITZER⁽¹¹⁾ aux vibrations v_7 et v_9 des différents composés deutérés de HCOOH. La valeur relativement faible des écarts entre ces deux vibrations nous a amené à entreprendre l'étude des spectres de rotation pure des états vibrationnels excités v_7 et v_9 des trois molécules HCOOD, DCOOD et DCOOH.

Les résultats obtenus sont détaillés au chapitre III et confirment l'existence d'une résonance de Coriolis faible pour chacune des deux molécules HCOOD et DCOOD. Cette étude a nécessité un traitement numérique particulier reposant sur l'utilisation d'une méthode de perturbation dont le chapitre V expose les détails. Nous avons enfin mis en évidence et analysé un cas de résonance de Coriolis particulièrement forte pour la molécule DCOOH. Les résultats numériques obtenus font l'objet du chapitre IV. Il nous ont permis une nouvelle vérification, de l'étude théorique de la résonance de Coriolis précédemment développée par C. SAMSON et qui est rappelée au chapitre II.

- 3 -× . CHAPITRE - I -MATERIEL UTILISE

ERRATA

.

INTRODUCTION	:	Ligne 17 lire : " qui serait justiciable "
Page 9	:	ligne 10 lire : "Représentation en mécanique classique"
Page 42	:	3 lígnes avant la fin:
		lire : " en ce qui concerne DCOOD"
Page 58	:	dans la 2 ^{ème} opération de l'organigramme:
		lire : " M =2J+1 "

A - SPECTROMETRE VIDEO

Les transitions de rotation pure les plus intenses ont été mesurées à l'aide d'un spectromètre vidéo classique conforme au schéma de la figure I -1. L'étude théorique et technique des caractéristiques de l'équipement de ce spectromètre est développéedans le cours de D.E.A. de Physique moléculaire ⁽¹⁾, ainsi que dans de nombreux ouvrages ^(2,3,4). Le choix de ce type de spectromètre est motivé par sa simplicité d'emploi permettant la prospection rapide de larges gammes de fréquence et par le fait que sa sensibilité s'est avérée suffisante pour le travail entrepris.

* <u>La cellule</u> utilisée est en guide standard de la bande K et possède une longueur de 16m. Cela lui confère une excellente sensibilité sur la gamme 20-80 GHz et une sensibilité suffisante jusqu'à 160 GHz.

* Les sources hyperfréquences utilisées sont des klystrons réflex balayés à la fréquence de 50 Hz par une tension en dent de scie appliquée sur le réflecteur. De 8 à 80 GHz, nous utilisons les fondamentaux des klystrons en notre possession. La multiplication de fréquence nous a permis de mesurer des transitions jusqu'à des fréquences de 160 GHz.

Deux types de multiplicateurs commerciaux ont alors été utilisés. - un multiplicateur PHILIPS destiné à produire l'harmonique 2 de deux klystrons 5 mm VARIAN.(VRE 2103 B1 et B7) Soit une gamme de fréquence comprise entre 100 et 115 GHz.

- un multiplicateur CUSTOM MICROWAVE⁽⁵⁾ produisant l'harmonique 2 de trois klystrons 5mm VARIAN (VRE 2103 B16, B12 et B6) soit une gamme de fréquence comprise entre 115 et 160 GHz.

B - SPECTROMETRES A EFFET STARK DE TYPE HUGHES ET WILSON

L'étude des transitions de très faibles intensités a nécessité l'utilisation d'un spectromètre du type Hughes et Wilson classique (cellule de 1 m en bande X) développé depuis longtemps au laboratoire (6). Ce spectromètre, ainsi que nous le verrons au chapitre IV, nous a été d'une grande utilité en nous permettant l'identification de transitions de J faible . Il faut toutefois remarquer, que compte-tenu de la forte atténuation des cellules, la spectrométrie stark permet difficilement l'emploi de la multiplication de fréquence pour l'obtention des fréquences élevées.

C - MESURES DE FREQUENCES

La mesure précise des fréquences des raies a demandé l'emploi de deux types de montage couramment utilisés dans le laboratoire (6,7,8).

Dans le premier montage, on fait battre sur un cristal mélangeur l'hyperfréquence F' d'un klystron oscillateur étalon (gamme 2-4GHz de type Férisol) stabilisable point par point sur des fréquences définies par F = n 120± 30 MHz avec l'hype fréquence du klystron de Source et on mesure la fréquence intermédiaire F_i à l'aide d'un récepteur de trafic.

Dans le second montage, l'hyperfréquence étalon F' peut varier continuement et nous pouvons utiliser un récepteur fixe pour détecter la fréquence de battement F_i .C'est le premier type de montage qui a été le plus souvent utilisé. Ces deux types de montage permettent d'estimer l'erreur relative commise lors de la mesure d'une raie. Elle est de l'ordre de quelques 10⁻⁷ en spectrométrie vidéo classique. Il faut néanmoins quelquefois multiplier ce rapport par un facteur deux ou trois dans certaines conditions expérimentales moins favorables (rang d'harmonique élevé ou rapport signal/bruit de la raie peu supérieur à 1). En spectrométrie stark, l'augmentation de la largeur de la raie diminue la précision de la mesure. L'erreur relative est alors estimée à quelques 10^{-6} .

D - ISOTOPES UTILISES

L'acide formique dideutéré DCOOD est un produit Merck (pureté 99 %) fourni par labo-service.

L'étude approfondie de la molécule DCOOH a nécessité l'emploi d'un produit Merck à la pureté 99 % en atome D fourni par la maison O.S.I. Enfin les établissements labo-service nous ont fourni l'isotope HCOOD enrichi en 98 % en atome D fabriqué par la firme KOCH-LIGHT. Il faut remarquer que, du fait de la relative faiblesse de la liaison acide O-H (ou D) l'échange des atomes D et H s'effectue très facilement. En conséquence, il n'a jamais été possible d'isoler totalement la substitution isotopique à étudier, et la présence simultanée des 4 molécules, a rendu souvent difficile l'identification de certaines transitions de faible intensité.

Figure I - 1 : Spectromètre vidéo

			С	H	A	Ρ	I	Т	R	Ε	-	II	-				
E	Т	U	D	Е			т	H	E	0	R	I	Q	U	E		

•.

L'étude des phénomènes de rotation - vibration nécessite un hamiltonien que l'on décompose généralement en deux parties, H_0 hamiltonien d'ordre zéro et H_T hamiltonien d'intéraction rotation- vibration.

Lorsqu'il y a une quasi-dégénérescence entre des niveaux de vibration, on dit que l'on a une résonance, qui, lorsque les termes de couplage dépendent des opérateurs de rotation, est appelée résonance de type de Coriolis. C'est ce type de résonance que nous nous proposons d'étudier.

Dans ce cas, le traitement habituel de l'hamiltonien H_I par des transformations de contact, c'est-à-dire par une méthode de perturbation, n'est plus valable et la détermination des niveaux d'énergie de rotation - vibration nécessite une diagonalisation directe dans le sous - espace des vibrations quasi- dégénérées.

L'étude théorique de ce problème a déjà été prévue par E.B. WILSON⁽¹⁸⁾ et par H.H. NIELSEN⁽¹⁹⁾, dans des articles généraux sur l'interaction rotation - vibration.

A - ETUDE DE LA RESONANCE DE CORIOLIS

A -1 L'hamiltonien de vibration-rotation

Nous avons choisi l'hamiltonien utilisé par R. WERTHEIMER dans son cours de D.E.A.⁽²⁰⁾ de Physique Moléculaire :

$$H = \frac{1}{2} \left(\vec{P} - \vec{P}_{I} \right) \cdot \vec{\mu} \cdot \left(\vec{P} - \vec{P}_{I} \right) + \frac{1}{2} \cdot \sum_{s} \pi_{s}^{2} + \nabla(\theta_{s})$$

- · P est l'observable moment cinétique total de la molécule.
- P_I est l'observable moment cinétique relatif au mouvement des particules qui constituent la molécule par rapport au solide principal correspondant aux positions d'équilibre des noyaux.

 \circ θ_{a} est une coordonnée normale de vibration.

I set le moment conjugué correspondant à cette vibration
normale. (
$$\Pi_s = \frac{\partial P}{\partial \theta_s}$$
).

• $\vec{\mu}$ est le tenseur inverse du tenseur \vec{I} , tenseur d'inertie instantané du solide principal correspondant aux noyaux. \vec{I} peut être décomposé en trois parties homogènes par rapport aux coordonnées normales et dont les degrés respectifs sont 0, 1 et 2.

$$\vec{I} = \vec{I}_{eq} + \Sigma \vec{a}_{s} \theta_{s} + \Sigma \vec{A}_{rs} \theta_{r} \theta_{s} \theta_{s} \cdot \vec{a}_{s} \theta_{s} \theta_{r} \theta_{s} \cdot \vec{b}_{rs} \theta_{s} \theta_{s} \cdot \vec{b}_{rs} \theta_{s} \theta_{$$

Le tenseur $\stackrel{\Rightarrow}{\mu}$ peut donc être développé en série:

$$\overrightarrow{\mu} = \overrightarrow{\mu} + \Sigma \overrightarrow{s} \overrightarrow{s} \overrightarrow{s} + \Sigma \overrightarrow{s} \overrightarrow{s} \overrightarrow{s} \overrightarrow{s} \overrightarrow{s} = \overrightarrow{\mu} + \overrightarrow{\mu} + \overrightarrow{\mu}$$

V(θ) est l'énergie potentielle

Cet hamiltonien est un opérateur vectoriel construit à partir de sa représentation en mécanique ondulatoire. Le choix de cet opérateur vectoriel, lié à une observable, relève directement de l'axiomatique du modèle moléculaire adopté.

Développons H :

 $H = H_{o} + H_{I} \text{ avec} :$ $H_{o} = \frac{1}{2} \vec{P} \cdot \vec{\mu}_{o} \cdot \vec{P} + \frac{1}{2} \Sigma_{s} (\Pi_{s}^{2} + \omega_{s}^{2} \theta_{s}^{2})$ $H_{I} = \frac{1}{2} \vec{P} \cdot \vec{\mu}_{1} \cdot \vec{P} + \frac{1}{2} \vec{P} \cdot \vec{\mu}_{2} \cdot \vec{P} \cdot - \frac{1}{2} (\vec{P}_{I} \cdot \vec{\mu} \cdot \vec{P} + \vec{P} \cdot \vec{\mu} \cdot \vec{P}_{I})$ $+ \vec{P}_{I} \cdot \vec{\mu} \cdot \vec{P}_{I} + V(\theta_{s}) - \frac{1}{2} \Sigma_{s} \omega_{s}^{2} \theta_{s}^{2}$

a) Approximation d'ordre zéro

On voit donc que l'approximation d'ordre zéro de l'hamiltonien H, soit H_o, s'obtient en supposant que $\vec{P}_I = 0$ et $\vec{\psi}_1 = \vec{\psi}_2 = 0$

Lorsque \vec{P}_I ne contient aucune contribution d'origine électronique et que les spins sont négligés, on montre que l'on peut écrire:

$$\vec{P}_{I} = \Sigma_{st} \vec{\chi}_{st} \theta_{s} \Pi_{t}$$

Le vecteur $\vec{\chi}_{st}$ (dont les composantes sont généralement appelées coefficients de couplage de Coriolis) est défini par la relation:

 $\vec{\chi}_{st} = \Sigma_i \quad \vec{\ell}_i s \wedge \vec{\ell}_i t$

$$\vec{\zeta}_{i} = \sum_{s} M \, i_{i}^{-1/2} \, \vec{\ell}_{is} \, \theta_{s};$$

 $\dot{\zeta}_i$ représentant les déplacements du i^{ème} noyau par rapport à sa position d'équilibre.

D'une façon générale \vec{P}_{τ} , peut donc se décomposer suivant :

$$\vec{P}_{I} = \vec{P}_{I}^{o} + \vec{P}_{I}^{l}$$
;

expression dans laquelle \vec{P}_{I}^{O} liée uniquement aux 2 types de vibration dégénérées, possède des éléments diagonaux par rapport à la base des vecteurs d'états de H_o. Dans le cas des toupies asymétriques, seul cas qui intéresse notre étude, il n'y a pas de vibrations dégénérées et $\vec{P}_{I}^{O} = 0$

Compte-tenu de la décomposition de H_o en une somme d'hamiltoniens indépendants, l'espace des états de vibration- rotation se réduit donc, dans l'approximation d'ordre zéro, à un produit tensoriel des espaces des états de chacun des composants de la somme: produit tensoriel de l'espace des états de rotation (terme $\frac{1}{2}$ \vec{P} . $\vec{\mu}_{o}$. \vec{P}) et de l'espace des états de vibration ($\frac{1}{2}$ Σ_{s} ($\Pi_{s}^{2} + \omega_{s}^{2} \theta_{s}^{2}$)

b) Termes de perturbation

 H_I peut être considéré comme un opérateur de perturbation de H_o . Les termes de la première ligne de H_I représentent un opérateur de perturbation qui agit à la fois dans le sous-espace de rotation et dans le sous-espace de vibration.

Les termes de la seconde ligne de H_I ne comportent que des opérateurs qui agissent dans l'espace des états de vibration. Ils sont donc diagonaux par rapport aux nombres quantiques de rotation.

Les différents opérateurs composant l'hamiltonien de perturbation sont donc toujours au moins des opérateurs du sous-espace de vibration. De manière générale, ils se présentent sous la forme $O_R^{O_V}$, et leurs éléments de matrice par rapport aux vecteurs propres de H_o se mettent toujours sous la forme $E_R |O_R|E_R$, $> < E_V |O_V|E_V$, >.

A-2- Traitement particulier de la résonance de Coriolis

a) Principe de la méthode employée

Le traitement par perturbation de l'hamiltonien complet H ne peut être abordé qu'après examen complet des dégénérescences.

Pour les toupies asymétriques H_o est affecté uniquement de la dégénérescence M qui est liée à l'isotropie de l'espace, mais son influence peut être écartée en choisissant la direction privilégiée P_Z pour définir la base des vecteurs propres de H_o. D'autre part, pour ces mêmes toupies asymétriques, il n'existe pas de vibrations dégénérées.

L'expérience confirme la notion de vibration normale. Il faut donc admettre que pour le cas des vibrations, toutes les perturbations sont justifiables de la théorie des perturbations stationnaires; c'està-dire que :

 $| < E_{V} | O_{V} | E_{V} > | < | E_{V} - E_{V} | = V$ et V'

En ce qui concerne les rotations, l'écart entre les niveaux de rotation suppose que $|E_R - E_R| \ll |E_V - E_V|$ ce qui conduit à considérer que $|\langle E_V | 0_V | E_V \rangle|$ n'est pas forcément petit devant $|E_R - E_R \rangle|$. Si tel est le cas, on admet que les états de rotation d'un même niveau de vibration ($E_V = E_V$) doivent être traités comme s'ils appartenaient au même sous-espace d'états quasi dégénérés de ce niveau de vibration.

Plus généralement, s'il advient que $E_V \approx E_V$, on étend la méthode, en considérant le sous-espace des états de rotation des deux niveaux de vibration, comme étant quasi-dégénérés. On dit alors que les niveaux de rotation des deux états de vibration concernés sont couplés par une résonance de Coriolis. C'est l'étude de ce dernier cas qui fait l'objet de ce chapitre

b) <u>Structure de la matrice du hamiltonien dans le cas d'une</u> résonance de Coriolis

Tous les opérateurs de l'hamiltonien de perturbation étant diagonaux en J, la matrice de la restriction de H au sous-espace de quasi-dégénéréscence est conforme à la figure II -1. Chacune des deux vibrations considérées donne naissance à une infinité de niveaux de rotation représentés par les carrés hâchurés situés le long de la diagonale principale. Chacun de ces carré ϵ t caractérisé par une valeur du nombre quantique J et par les 2J + 1 valeurs du nombre quantique K (-J<K+J). Il est donc de côté (2J+1). La diagonale secondaire est le lien des termes diagonaux en J et τ ($\tau = K_{-1} - K_{+1}$)(2,20) dans la notation de MULLIKEN) mais non diagonaux par rapport aux nombres quantiques de vibration. Les carrés pointillés contenant les termes diagonaux en J mais non par rapport aux autres nombres quantiques représentent donc les termes de perturbation.

Par réarrangement des lignes et des colonnes, le déterminant caractéristique de cette matrice peut facilement être factorisé sous la forme de la figure II-2. Cette dernière remarque est particulièrement importante pour le calcul des valeurs propres correctes de H au premier ordre qui se réduisent alors aux valeurs propres de cette matrice.

Pour pousser le calcul à un ordre supérieur, il faudrait réduire les termes de couplage entre les différents sous-espaces de vibration, en suivant la méthode habituelle consistant à effectuer une transformation unitaire sur la base des vecteurs propres de H_o ou à laisser cette base fixe tout en effectuant la transformation correspondante sur les opérateur de perturbation (18,19,20). C'est cette dernière méthode qui est connue sous le nom de transformation de contact ou de VAN VLECK.

Examinons maintenant parmi les opérateurs constituant H_I , ceux qui formeront la partie pointillée de la figure II -2.Nous nous limiterons dans le développement de H_I aux termes du 2^{ème} ordre par rapport aux vibrations normales ou à leurs moments conjugués.

Figure II -1 : Matrice de H dans le cas de deux états v et v' quasi dégénérés

- 13 -

Figure II -2 : Matrice de la figure II -1 après réarrangement des lignes et des colonnes. Les opérateurs de perturbation de la forme $\vec{P}_{I}, \vec{\mu}, \vec{P}_{I}$ de la deuxième ligne du second membre de H_{I} , diagonaux en J et τ appartiennent donc à la diagonale secondaire de II -1, mais ils sont au moins du 4^{ème} ordre par rapport aux coordonnées normales et à leurs moments conjugués. Puisque $\vec{\mu}_{I}$ est du premier ordre par rapport aux coordonnées normales, $\frac{1}{2} \vec{P}, \vec{\mu}_{I}, \vec{P}$ n'apporte aucune contribution à la partie pointillée de la matrice. Celle-ci est donc constituée des éléments de matrice des opérateurs $\frac{1}{2} \vec{P}, \mu_{2}, \vec{P}$ et $\frac{1}{2} (\vec{P}_{I}, \vec{\mu}_{o}, \vec{P} + \vec{P}, \vec{\mu}_{o}, \vec{P}_{I})$ qui sont du 2^{ème} ordre par rapport aux coordonnées normales et à leurs moments conjugués.

Le problème de la détermination des niveaux de rotation des états en résonance de Coriolis est donc de diagonaliser les différents "blocs" de la matrice représentée sur la figure II -2. La détermination plus précise des éléments de matrice de ces blocs va maintenant être entreprise dans le cas de la molécule d'acide formique pour les états de vibration v_7 et v_9 . Cette méthode reste évidemment valable pour les différentes substitutions deutérées de cette molécule, à condition toutefois que celle-ci concerne des états de vibration identiques ou symétriquement équivalents (v_6 et v_8 par exemple).

- A -3 Application aux états de vibration v_7 et v_9 de l'acide <u>formique</u>
- a) <u>Détermination des éléments de matrice non nuls des opérateurs</u> <u>de couplage</u>

Ainsi que nous le verrons au chapitre III, l'acide formique est une molécule plane appartenant au groupe de symétrie C_s et ses vibrations v_7 et v_9 sont respectivement de type A (vibrations dans le plan) et de type A' (vibrations hors du plan). Pour résoudre le problème, il suffit de disposer d'une table des caractères primitifs du groupe C_s et de décomposer l'espace à 3 dimensions, qui contient \vec{P} , vecteur axial, en ses composante irréductibles de ce groupe, pour obtenir le classement de celles-ci. C'est ce qui a été fait par divers auteurs^(21,22).

Toutefois dans notre cas particulier du groupe C_s, la décomposition peut être obtenue immédiatement par un raisonnement élémentaire. La symétrie par rapport à un plan est équivalente au produit I x C_2 , d'une rotation C_2 d'axe perpendiculaire au plan et d'angle I et d'une inversion I par rapport au point d'intersection de cet axe et du plan. L'inversion I n'altérant pas un vecteur axial, la symétrie par rapport à un plan se ramène donc dans le cas de notre problème à une rotation de I autour d'un axe perpendiculaire au plan. En se référant à la figure III -1, on remarque que la composante P^C (l'axe c étant perpendiculaire au plan de symétrie) reste invariante et que les composantes P^a et P^b se changent respectivement en $-P^a$ et $-P^b$ dans la symétrie par rapport au plan molaculaire. Par la même opération de symétrie, les coordonnées normales de vibration changent de signe. Il résulte des remarques précédentes que la détermination des éléments non nuls s'obtient facilement en se basant sur le fait que chaque terme de l'hamiltchien doit rester invariant pour chacune des opérations de recouvrement de la molécule.

Appliquons donc cette méthode à chacun des deux termes intervenant dans H_{T} :

. Terme $-\frac{1}{2} (\vec{P}_{I}, \vec{\mu}_{o}, \vec{P} + \vec{P}, \vec{\mu}_{o}, \vec{P}_{I})$ $\vec{P}_{I} = \sum_{st} \vec{\chi}_{st} \theta_{s} \Pi_{t}$ avec s de type A et t de type A'. Compte-tenu des remarques précédentes l'examen des propriétés de symétrie d'opérateur du type $\theta_{s} \Pi_{t} P^{\alpha}$ (α pour a, b et c) indique immédiatement que dans notre cas les seuls éléments non nuls correspondent à P^{a} et P^{b} .

. Les termes de la forme $\frac{1}{2} \overrightarrow{P}$, $\overrightarrow{\mu}_2$, \overrightarrow{P} conduisent à examiner les propriétés de symétrie de $\theta_s \theta_t P^{\alpha} P^{\beta}$. Il est donc clair que les seuls éléments non nuls correspondent à P^a . P^c et P^b . P^c .

b) Calcul des éléments non nuls de la matrice de couplage H_I

1°) Calcul des éléments $\langle E_V | H_I | E_V$,

Le changement de variable habituel ⁽²⁰⁾ consistant à poser $q = \left(\frac{\omega}{\hbar}\right)^{1/2} \theta$ et $p = \left(\frac{\hbar}{\omega}\right)^{1/2} \Pi$ nous donne les éléments de matrice non nuls de p et q:

 $|\mathbf{q}| \quad \forall \pm 1 > = \frac{1}{2} (2\mathbf{v} + 1 \pm 1)^{1/2}$ $|\mathbf{v}| \mid \mathbf{v} \pm 1 = \mp \frac{\mathbf{i} \mathbf{k}}{2} (2\mathbf{v} + 1 \pm 1)^{1/2}$

On en déduit immédiatement les éléments de matrice des opérateurs q.q' et q.p'. [v, v' |q.q'| v±1, v'+1> = $\frac{1}{4}$ {(2v +1±1)(2v'+1+1)} $\frac{1/2}{1/2}$ [v,v'|q.p'| v±1, v'+1> = $\pm \frac{11}{4}$ {(2v+1±1)(2v'+1+1)} $\frac{1/2}{1/2}$ Dans le cas des vibrations v_7 et v_9 de l'acide formique, nous caractériserons l'état v_7 par $v_7 = 1$, $v_9 = 0$ c'est-à-dire par le ket $|1,0\rangle$, l'état v_9 par $v_7 = 0$, $v_9 = 1$ c'est-à-dire le ket $|0,1\rangle$ et les vecteurs bras correspondant. Les éléments de matrice dont nous aurons besoin s'écrivent alors:

$$0,1|q_7, q_9|1,0> = \frac{1}{2}$$

 $0,1|q_7, q_9|1,0> = \frac{11}{2}$

et leurs hermitiques conjugués. En particulier on a évidemment:

 $et \qquad q_7, p_0 > = - q_0, p_7$

$$h_{1}^{79} = -\sum_{\alpha} \frac{P_{1}^{\alpha}}{I^{\alpha}} = -$$

En se référant à la précédente définition des vecteurs $\vec{\zeta}_{st}$, il est clair que $\vec{\zeta}_{st} = -\vec{\zeta}_{ts}$. On a alors

$$h_{1}^{79} = - \Sigma_{\alpha} \frac{P^{\alpha}}{I^{\alpha}} \zeta_{79}^{\alpha} \{ (\frac{\omega_{9}}{\omega_{7}})^{1/2} q_{7} p_{9} - (\frac{\omega_{7}}{\omega_{9}})^{1/2} q_{9} p_{7} \}$$

Connaissant les éléments de matrice de $q_s \cdot p_t$ on a alors: $0,1 \mid h_1^{79} \mid 1,0 = -\frac{i \frac{1}{2}}{2} \epsilon_{\alpha} \zeta_{79}^{\alpha} \{ (\frac{\omega_9}{\omega_7})^{1/2} (\frac{\omega_7}{\omega_9})^{1/2} \frac{p^{\alpha}}{1} \}$

Comme nous l'avons vu dans le paragraphe précédent les seuls éléments non nuls sont ceux correspondant à P^a et P^b , on a donc finalement:

$$\begin{array}{c} 0;1 \mid h_{1}^{79} \mid 1,0 = -\frac{i\hbar}{2} \quad \zeta_{7,9}^{a} \left\{ \left(\frac{\omega_{9}}{\omega_{7}}\right)^{1/2} + \left(\frac{\omega_{7}}{\omega_{9}}\right)^{1/2} \right\} \quad \frac{P^{a}}{I^{a}} \\ - \frac{\hbar}{2} \quad \zeta_{79}^{b} \quad i \left(\frac{\omega_{9}}{\omega_{7}}\right)^{1/2} + \left(\frac{\omega_{7}}{\omega_{9}}\right)^{1/2} \right\} \frac{P^{b}}{I^{b}} \end{array}$$

et, bien sûr, les éléments complexes conjugués.

* Cas des opérateurs -
$$h_2^{79} = \frac{1}{2} \vec{P} \cdot \vec{\mu}_2 \cdot \vec{P} \cdot$$

$$= \frac{1}{2} \vec{P} \cdot \vec{b}_{st} \cdot \theta_s \theta_t \cdot \vec{P}$$

$$h_2^{79} = \frac{1}{2} z_{79} \sum_{\substack{\alpha = \alpha, \beta \text{ ou c} \\ (\alpha = \alpha, \beta \text{ ou c}) \\ (\beta = \alpha, \beta \text{ ou c})} b_{st}^{\alpha\beta} \frac{\mu}{\omega s t} q_s q_t P^{\alpha} P^{\beta}$$

Comme nous l'avons vu précédemment les éléments de matrice non nuls correspondent à $\alpha=a$, $\beta=c$ ou $\alpha=b$, $\beta=c$. Dans l'un et l'autre cas on a donc:

$$h_2^{79} = \frac{1}{2} \sum_{79} \frac{h}{\varphi_s \varphi_t} \{b_{st}^{\alpha\beta} q_s q_t P^{\alpha\beta} + b_{st}^{\alpha\beta} q_s q_t P^{\alpha} P^{\beta}\}$$

$$h_{2}^{79} = \sum_{\substack{(ac)\\(bc)}} \frac{1}{2} \frac{h}{\omega_{7}\omega_{9}} \{ b_{79}^{\alpha\beta} \cdot q_{7} \cdot q_{9} P^{\alpha} \cdot P^{\beta} + b_{97}^{\alpha\beta} q_{9} \cdot q_{7} P^{\alpha} \cdot P^{\beta} \}$$

$$+ b_{79}^{\beta\alpha} \cdot q_{7} \cdot q_{9} P^{\beta} P^{\alpha} + b_{97}^{\alpha\beta} q_{9} \cdot q_{7} \cdot P^{\beta} \cdot P^{\alpha} \}$$

Compte tenu des propriétés de symétrie du tenseur $\frac{3}{\mu}$, on doit avoir $b_{st}^{\alpha\beta} = b_{ts}^{\alpha\beta} d'où$:

$$h_{2}^{79} = \frac{1}{2} \qquad \frac{h}{\omega_{7} \omega_{9}} \sum_{\substack{(a c) \\ (b c)}} \{ b_{79}^{\alpha\beta} (q_{7} q_{9} P^{\alpha}, P^{\beta} + q_{9}, q_{7}, P^{\beta}, P^{\alpha}) \}$$

Nous connaissons maintenant les éléments de matrice de q_s. q_t, on a donc immédiatement:

$$\begin{array}{rcl} & 0,1 & h_{2}^{79} & |1,0\rangle &= \frac{1}{4} & (a,c) & \frac{1}{\omega_{7}} & (b_{79}^{\alpha\beta} + b_{79}^{\beta\alpha}) & (P^{\alpha} \cdot P^{\beta} + P^{\beta} \cdot P^{\alpha}) \\ & 0, & (b,c) &$$

et les éléments complexes conjugués.

2°) Calcul des éléments $\langle \mathbf{E}_{\mathbf{r}} | \mathbf{H}_{\mathbf{I}} | \mathbf{E}_{\mathbf{r}} \rangle$

Pour terminer ce calcul des éléments des matrices de couplage, il ne reste plus qu'à déterminer ceux de P^a , P^b , $(P^{\alpha}.P^{c}+P^{c}.P^{a})$, $(P^{b}.P^{c}+P^{c}.P^{b})$ dans la base des vecteurs propres |J,K,M de H_o. Il nous faut auparavent fixer deux conventions :

La première concerne le choix de la représentation utilisée pour relier les composantes de \tilde{P} sur les axes principaux d'inertie (a, b, c) et sur le système local (x, y, z). Parmi les six représentations possibles⁽⁴⁾, nous avons choisi la représentation I^I : nous aurons donc la correspondance $a \leftrightarrow z$, $b \leftrightarrow x$, $c \leftrightarrow y$.

La seconde convention concerne le facteur de phase arbitraire multipliant les vecteurs d'états. En Physique moléculaire, on adopte généralement le choix suivant: le facteur de phase est choisi de telle façon que les éléments de matrice de P_y soient réels; les éléments de matrice de P_x sont alors purement imaginaires. Avec cette convention, les seuls éléments non nuls P_x et P_y étart de la forme $\binom{(20)}{x}$

 $J,K,M|P_{\sigma}|J,K:1, M g = x, y$

on a :
$$\langle J,K,M|P_x|J,K\pm 1,M=\pm i$$
 $\langle J,K,M,|P_y|J,K\pm 1,M \rangle$

* Calcul des éléments correspondant à h₁⁷⁹

Les éléments non nuls de P_z et P_x sont: $\langle J, K, M | P_z | J, K, M \rangle = \cancel{k.K}$ et $J, K, M | P_x | J, K \pm 1, M = \pm \frac{i\cancel{k}}{2} \sqrt{J(J+1) - K(K \pm 1)}$ Le calcul des éléments du type $\langle 0, 1 J, K, M | h_1^{79} | 1, 0, J, K, M \rangle$ est alors immédiat:

• 0,1,K
$$|h_1^{79}||1,0,K \rangle = -\frac{i\hbar^2}{2I_a} \zeta_7^a + (\frac{\omega_9}{\omega_7})^{1/2} + (\frac{\omega_7}{\omega_9})^{1/2} + K$$

on definit le coefficient $g_a = \frac{\hbar^2}{2} \cdot \frac{\zeta_7^a}{I_a} \{(\frac{\omega_9}{\omega_7})^{1/2} + (\frac{\omega_7}{\omega_9})^{1/2}\}$

ce qui donne, avec l'utilisation du paramètre de rotation habituel $A = \frac{M}{4\pi I_a} :$ $g_a = h A \quad \zeta_{79}^a + (\frac{\omega_9}{\omega_7})^{1/2} + (\frac{\omega_7}{\omega_9})^{1/2} \}.$

En spectroscopie hertzienne A est généralement exprimé en unité de fréquence, c'est pourquoi nous préférons le coefficient:

$$G_{a} = \frac{g_{a}}{h} = A z_{79}^{a} \{ (\frac{\omega_{9}}{\omega_{7}})^{1/2} + (\frac{\omega_{7}}{\omega_{9}})^{1/2} \}$$

qui sera également exprimée en unité de fréquence.

• 0,1,K
$$|h_1^{79}|1,0,K=1 = \pm \frac{\mu^2}{2} - \frac{\zeta_{79}^{b}}{1^{b}} \{(\frac{\omega_9}{\omega_7})^{1/2} + (\frac{\omega_7}{\omega_9})^{1/2} \}....$$

D'une façon analogue, nous définissons le coefficient

$$g_{b} = \frac{\hbar^{2}}{2I^{b}} \qquad \zeta_{79}^{b} + (\frac{\omega_{9}}{\omega_{7}})^{1/2} + (\frac{\omega_{7}}{\omega_{9}})^{1/2} \}$$

et pour la même raison:

£

$$G_{b} = \frac{g_{h}}{h} = B \quad \zeta_{79}^{b} \quad \{ (\frac{\omega_{9}}{\omega_{7}})^{1/2} + (\frac{\omega_{7}}{\omega_{9}})^{1/2} \}$$

alors:

$$0,1,K |h_1^{79}| 1,0,K \pm 1 = \pm G_b \times \frac{1}{2} \sqrt{J(J+1) - K(K\pm 1)}$$

* Calcul des éléments correspondant à h_2^{79}

Les éléments de matrice de P_x , P_y , P_z , nous permettent de calculer ceux des opérateurs P_z , P_y+P_y . P_z et P_x . $P_y + P_y$. P_x (cf Annexe n°1) on a :

$$K | \{P_z, P_y, P_y, P_z\} | K \pm 1 = \frac{M^2}{2} \{2K \pm 1\} \sqrt{J(J+1) - K(K \pm 1)}$$

et $K \mid \{P_x, P_y - P_y, P_x\} \mid K \pm 2 > = \pm \frac{i \not h^2}{2} \sqrt{J(J+1) - K(K\pm 1)} \cdot \sqrt{J(J+1 - (K\pm 1))} (K\pm 2)$ ce qui nous donne les éléments de matrice de h_2^{79} .

• 0,1,K $| \overset{79}{h_2} |$ 1,0,K: 1 = \cancel{k}^2 . $\frac{\cancel{k}}{\omega_7 \omega_9}$ t^{ac}. $\frac{1}{2} (2K \pm 1) \sqrt{J(J+1) - K(K \pm 1)}$ Nous définissons le coefficient f_{ac} = $\frac{\cancel{k}^3}{\omega_7 \omega_9}$ t^{ac}

et
$$F_{ac} = \frac{\frac{1}{ac}}{h}$$
 en unités de fréquences.
• 0,1,K $|h_2^{79}|$ 1,0,K ±2> =
± $i k^2$. $\frac{k}{\omega_7 \omega_9}$. t^{bc} . $\frac{1}{2} \sqrt{J(J+1) - K(\pm 1)}$. $\sqrt{J(J+1) - (K\pm 1)(K\pm 2)}$

Nous définissons de même $f_{bc} = \frac{k^3}{\omega_7 \omega_9} t^{bc}$

et
$$F_{bc} = \frac{1}{h}$$

. Récapitulatif

Compte tenu de l'hermiticité de la matrice, les éléments de la matrice de couplage s'écrivent :

$$\begin{array}{l} 0,1,K \mid h_{1}^{79} \mid 1,0,K \rangle = - <1,0,K \mid h_{1}^{79} \mid 0, K \rangle = -i \ G_{a} \ K \\ 0,1,K \mid h_{1}^{79} \mid 1,0,K \rangle = -<1,0,K \mid h_{1}^{79} \mid 0,1,K \rangle \\ = \pm G_{b} \cdot \frac{1}{2} \cdot \sqrt{J(J+1)-K(K-1)} \\ 0,1,K \mid h_{2}^{79} \mid 1,0,K \rangle = <1,0,K \mid h_{2}^{79} \mid 0,1,K \rangle \\ = F_{ac} \cdot \frac{1}{2} \quad (2K \pm 1)\sqrt{J(J+1)-K(K \pm 1)} \\ 0,1,K \mid h_{2}^{79} \mid 1,0,K \rangle = <1,0,K \mid h_{2}^{79} \mid 0,1,K \rangle \\ = \pm i \ F_{bc} \cdot \frac{1}{2} \sqrt{J(J+1)-K(K+1)} \cdot \sqrt{J(J+1)-(K \pm 1)(K \pm 2)} \\ \end{array}$$

B - RESOLUTION DU PROBLEME

Cette étude théorique de la résonance de Coriolis adaptée au cas particulier de l'acide formique, nous a permis d'écrire le hamiltonien de vibration-rotation. Il nous faut maintenant résoudre notre problème: c'est-à-dire calculer les énergies des niveaux de rotation des états vibrationnels excités dans le but de déterminer numériquement les différents paramètres moléculaires introduits. Deux méthodes différentes peuvent être utilisées, suivant que la perturbation des niveaux de rotation pure apportée par la résonance entre les deux états vibrationnels concernés est faible ou au contraire est forte. Ce sous-chapitre exposera le principe théorique de ces deux méthodes. L'étude numérique sera entreprise au chapitre V.

B -1 : Cas d'une résonance faible: traitement par perturbation

Dans certains cas (cf. chapitre III), la résonance de Coriolis est suffisamment faible pour n'affecter que très légèrement la structure des niveaux de rotation pure des états vibrationnels excités. Il est alors logique d'admettre que les termes de couplage de la matrice H_I sont très petits devant ceux de H_o. Dans ce cas il doit être possible de déterminer une solution approchée satisfaisante en utilisant une méthode de perturbation stationnaire. A l'aide de cette méthode, nous avons donc entrepris la détermination d'une solution approchée de l'équation caractéristique {H - λ I} = 0.

Dans un but de simplification d'écriture, appelons matrice «J>>, les matrices carrées de côtés2(20+1) correspondant à chaque valeur du nombre quantique J (cf. figure II -2). Dans ces mêmes matfices ralement admis⁽¹⁹⁾ que les paramètres de couplage avant une influence prépondérante sont ceux correspondant au terme - $\frac{1}{2}(1,\frac{3}{2},\vec{P}_{I}+\vec{P}_{I},\vec{E}_{o},\vec{P})$ du hamiltonien H_I, c'est-à-dire les paramètres G_a et G_b. En outre, les résultats numériques obtenus par C. SAMSON⁽¹⁰⁾ avec HCOOH permettent de justifier cette hypothèse. La notation usuellement employée en spectroscopie hertzienne pour désigner les niveaux de rotation d'une toupie asymétrique est celle de MULLIKEN⁽²⁰⁾ J_{K-1, K+1}. Celle-ci n'est définie, en fait, que dans le cas des rotateurs indépendants. Dans un but de clarté nous avons toutefois conservé cette notation en lui ajoutant simplement un indice v prenant les valeurs 7 ou 9 suivant que les niveaux appartiennent à l'état v_7 ou à l'état v_9 . Un niveau d'énergie de rotation, valeur propre d'une matrice $\langle J \rangle$, sera donc désignée par la notation $J_{K-1,K+1}$ v . De plus, neus utiliserons dans ce paragraphe, la notation en <<blocs>> suivante pour les matrices < J>>

W	C
с*	w'

cù C et C^{*} désignent les éléments de couplage conjugués. Tout d'abord, en suivant la méthode habituellement employée pour le rotateur rigide, nous avons effectué un changement de base caractérisé par une matrice de transformation formée de 2 matrices de WANG⁽¹⁰⁾.

La figure II - 3 résume la transformation effectuée.Les <
blocs>> de la forme XWX et XW'X peuvent à leur tour être diagonalisés en effectuant des changements de base caractérisés respectivement par les matrices T_7 et T_9 . Dans la figure II -4 qui résume cette dernière transformation, Λ et Λ' sont donc des matrices diagonales.

- 23 -

Nous voyons immédiatement sur la matrice transformée de la figure II-4 que la perturbation qui n'apparaît pas sur les termes diagonaux, n'intervient pas au premier ordre. Nous pouvons alors déterminer les valeurs propres de la matrice par un calcul de perturbation, au second ordre; les valeurs propres étant dans ce cas définies par :

 $E = E_n^{o} + E_n' = \frac{V_n W_{nm}}{E_n^{o} - E_m^{o}}$, où E_n^{o} est l'énergie non perturbée et V_{nm}

désigne les termes de couplage. Ce t a lement n'est valable qu'à la condition que le terme perturbateur soit petit par rapport au terme non perturbé, ce qui est l'hypothèse motivant ce paragraphe. Cette méthode n'est aisément utilisable que pour des matrices < J = 1 >> et < J=2>. Nous allons maintenant en détailler le calcul.

* Cas de la matrice < J=1

La figure II -5 donne la matrice <J=1>> dont les éléments sont calculés au sous-chapitre précédent. La double transformation de WANG permet d'obtenir la matrice transformée figurant à la figure II-6. Nous remarquons tout de suite que les
blocs>> XWX et XW'X sont diagonaux et que la transformation de la figure II - 4 est ici inutile. Le calcul des valeurs propres est immédiat et nous obtenons la valeur des niveaux d'énergie figurant en annexe n°2.

* Cas de la matrice <- J =2>>

La figure II -7 donne la matrice <<J=2>> de départ. La double transformation de WANG transforme cette matrice en celle figurant en II-8. Nous constatons ici que la transformation exposée en II - 4 est nécessaire pour diagonaliser les blocs >> XWX, XW'X, respectivement schématisés par les tableaux:

377 737

VIJIV

$$\lambda_{7} = \lambda_{202} \quad 7 = \frac{a_{7}^{+c} 7}{2} - \frac{1}{2} \sqrt{(a_{7}^{+c} 7)^{2} - (a_{7}^{-c} 7 - b_{7}^{2})}$$
$$= 2(A+B+C) - 2 \sqrt{(B-C)^{2} + (A-B) \times ... (A-C)}$$

Les composantes du vecteur propre associé à λ_7 vérifient l'équation b₇ x+(a₇- λ_7) y=0, d'où l'on tire : $\frac{y}{b_7} = \frac{x}{\lambda_7 - a_7} = k_7$ (facteur de norme)

$$\begin{cases} x = k_7 (\lambda_7 - a_7) \\ y = k_7 b_7 \end{cases}$$

De la même façon, les composantes du vecteur propre associé à λ'_7 vérifient le système:

 $\begin{cases} x' = k'_7 b_7 \\ y' = k'_7 (\lambda'_7 - C_7) & \text{avec } k'_7 \text{ facteur de norme. En remarquant} \\ que \lambda_7 + \lambda'_7 = a_7 + c_7, \text{ on montre facilement que } : \frac{1}{k'_7^2} = \frac{1}{k_7^2} \end{cases}$

Le calcul des composantes de ces deux vecteurs nous permet d'écrire la matrice de changement de base T_7 . Un raisonnement absolument identique pour XW'X nous donne la matrice de changement de base T_0 .

La connaissance de ces deux matrices nous permet de diagonaliser XWX et XW'X. Le tableau II - 9 donne la matrice finale.

Un calcul immédiat fournit les valeurs des dix niveaux d'énergie de rotation pour J = 2. Ces valeurs sont reportées à l'annexe III.

ω , , , , , , , , , , , , , , , , , , ,				
	ω ₇ + A+B+4C			
		ω , + λ _γ		
			ω ₇ 1 Α+4 Β +C	
				ω ₇ + 4A+B+C
			^G b ^{xk} g ^x [bg-√3(λ'g- Cg)]	2iG _a x ^k 9 ^b 9
			iG _a	—G _ь
			G _b ×k ₉ ×	2iG _a xk _g
			(λ ₉ -a ₉ -√3 . b ₉)	×(λ _g -a _g)
G _b ×k ₇ ×[√3 (λ' ₇ −C ₇)− b ₇]	iG _a	^G b ^{×k} 7 [×] {√3b7 -(λ7-87)]	(λ ₉ -a ₉ -√3 . b ₉)	x(λ ₉ -ε ₉)

• . . :

La correspondance des symboles avec les paramètres moléculaires figure dans l'annexe III.

Figure II - 9 - 1 Matrice $\langle J=2 \rangle$ après les transformations T_7 et T_9

	, ,		^G _b ×k ₇ ×[√3 (λ' ₇ −c ₇)b ₇]	–2iG _a x ^k 7 ^b 7
			-iG _a	G _b
			^G b ^{×k} 7 × [√3b ₇ -(λ ₇ - ^a 7 ⁾]	-2lG _a × k ₇ (λ ₇ -s ₇)
_{G_b×k₉×[b₉- √3(λ′₉-c₉)]}	iG _a	G _b ×k ₉ ×[λ ₉ ₅ ₉ √3b ₉]		
–2iG _a x ^k 9 ^b 9	– G _b	–2iG _a x k ₉ (λ ₉ –a ₉)		
ω ₉				
	ω ₉ + Α+Β'+4C'			
		λ ⁹ π ⁸ ≁		
			ω ₉ + Α'+4Β'+C	
				ω _g + 4A\$ Β' → C'

La correspondance des symboles avec les paramètres moléculaires figure dans l'annexe III.

Figure II - 9 -2 Matrice <<J = 2 >> après les transformations ${\rm T}_7$ et ${\rm T}_Q$

Nous possédons maintenant les données théoriques suffisantes permettant de calculer les paramètres moléculaires qui nous intéressent. La procédure de calcul numérique et les résultats obtenus seront exposés au chapitre V.

B -2 - Cas d'une résonance forte: Diagonalisation directe après simplification des matrices <<J>>

Dans le cas d'une résonance forte, les termes des 2 matrices $T_7 \times C \times T_9$ et $T_9 \times C^* \times T_7$ ne peuvent plus être considérés comme petits par rapport aux termes de Λ et Λ' et la méthode précédente n'est plus valable. Nous sommes alors obligés de diagonaliser directement chacun des <<blocs>> de dimension 2(2J+1) de la matrice de la figure II -2 et de tenir compte de tous les paramètres de couplage. Ces <<blocs>> seront dorénavant appelés H_J . Une telle diagonalisation est évidemment fort complexe et le traitement numérique (qui sera exposé au chapitre V) s'avère long et par conséquent d'un emploi peu pratique. Il est toutefois possible de simplifier la procédure en divisant la dimension de chacune des H_J précédentes par 2. Il ne nous reste plus ensuite qu'à diagonaliser des matrices de rang 2 J+1.

L'étude complète de cette méthode est détaillée par D. DANGOISSE dans sa thèse (23). Dans l'étude du problème des rotateurs rigides et indépendants les propriétés de symétrie des états de rotation pure permettent, à l'aide du théorème de WIGNER, de décomposer les matrices de rang (2J+1) en 4 sous matrices de rang plus faible (20). Un raisonnement analogue nous conduira à la factorisation que nous recherchons.

۲

(84) 144)

Figure II -5 Matrice <<J =1>>

Α + ω ₇					iG
	в+с + ω ₇				G _b
		Α+Β + ω ₇	-iG	G _b	
		iG _a	ω ₉ + Α+C'		
·		G _b		ω ₉ + в+С'	
iG	Gb				ω ₉ + Α ΄ +Β΄

Figure II -6 Matrice <<J=l>> transformée.

٠

Figure II -7 Matrice <<J =2>>

Contraction of the local division of the loc	1. The second	1.1.1.2.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							No. of Concession, Name of
4A+B+C + @ ₇		√з(с–в)						-G _р	–2iG _a
	Α+ B+4C + ω ₇							2iG _a	G _b
√3(с-в		3(B+C) + ⁽¹⁾ 7						√3 G _b	
			A t4Bt C + ω ₇		G _ь	−iG _a	_√3G _b		
				4 Α†Β +C +ω ₇	-2iG _a	G _b			
			Gь	2iG _a	ω ₉ + 4A+B+C		√з(с′−в′)		
			iGa	–G _b		ω + 9 Α'+Β'+C'			
			–√3G _b		√З(с′–в′)		ω ₉ + 3(β4C')		
G	iGa	√3G _b						Α'+4B'+C' + ω ₉	
2iG _a	G _ь								ω ₉ + 4Α'+Β'+C'

Figure II - 8 : Matrice <<J = 2 >>

Double transformée de WANG

1°) Propriétés de symétrie des vecteurs d'états de vibration $|v_7 v_9\rangle$

Dans le cas d'une molécule plane, la symétrie par rapport au plan de la configuration d'équilibre est physiquement réalisable et l'hamiltonien de vibration-rotation commute donc avec cette opération de symétrie. L'axe de plus grande inertie d'une molécule plane est perpendiculaire à ce plan. Dans le cas de l'acide formique (et de ses composés deutérés), et en accord avec la représentation I^{Γ} utilisée, l'axe c est l'axe de plus grande inertient et le plan moléculaire contient les deux axes a et b. Appelons donc σ_{ab} l'opération de symétrie par rapport à ce plan.

On décompose l'espace des états en représentations irréductibles du groupe de symétrie C_s de cette molécule; cela revient à construire une base de vecteurs propres de σ_{ab}

$$\begin{array}{ccc} C_{s} & E & \sigma_{ab} \\ A & 1 & 1 \\ A' & 1 & -1 \end{array}$$

σ_{ab} a donc pour valeurs propres + 1 et -1 correspondant respectivement à des vecteurs propres de symétrie de type A et A'. La vibration v_7 est de type A et celle v_9 de type A' on a donc:

$$\sigma_{ab} | v_7, v_9 = (-1)^{v_9} | v_7, v_9^>$$

c'est-à-dire que le vecteur d'état de vibration $|v_7, v_9\rangle$ est vecteur propre de σ_{ab} avec les valeurs propres ±1 suivant que v_9 est pair ou impair.

> 2°) <u>Propriétés de symétrie des vecteurs d'états de rotation</u> $\sigma_{ab} = I X R_{c}$

 R_c = Rotation de Π autour de l'axe C.

I = inversion par rapport au point d'intersection de C et du plan (a, b).

D'après les résultats que donne la mécanique quantique sur les mouvements d'origine orbitale, nous pouvons écrire:

 $I | J,K,M \rangle = (-1)^J | J,K,M \rangle$

$$2^{-1/2} \{ |J,K,M>\pm |J,-K,M>| \}$$

c'est-à-dire que l'on peut écrire:

$$\mathbb{R}_{c} \{ | J, K, M > \pm | J, -K, M > \} = \pm (-1)^{J} \{ | J, K, M > \pm | J, K, M > \}$$

Les vecteurs propres de R_c sont évidemment aussi vecteurs propres de I; on a donc:

$$2^{-1/2}\sigma_{ab}\{|J,K,M>\pm |J,-K,M>\} = \pm 2^{-1/2} (-1)^{2J} \{|J,K,M>\pm |J,-K,M>$$

$$\sigma_{ab} 2^{-1/2}\{|J,K,M>\pm |J,-K,M>\} = 2^{-1/2} \pm \{|J,K,M>\pm |J,-K,M>\}$$

3°) Propriétés de symétrie des vecteurs d'états de vibration-rotation

Compte-tenu des 2 relations précédentes:

$$\sigma_{ab} | v_7, v_9 \rangle \equiv 2^{-1/2} \{ |J, K, M \rangle \pm |J, -K, M \rangle \} = \pm 2^{-1/2} (-1)^{v_9} | v_7, v_9 \rangle \equiv \{ |J, K, M \rangle \pm |J, -K, M \rangle \}$$

Nous pouvons maintenant conclure: - pour $v_q = 0$

 $|v_7, v_9^{>\infty} \{ | J, K, M^{>} + | J, -K, M^{>} \} \text{ sont vecteurs d'états de type A.}$ Ils sont au nombre de (J+1) Les J vecteurs $|v_7, v_9^{>} \infty \{ | J, K, M^{>} - | J, -K, M^{>} \} \text{ sont de type A'.}$ - pour $v_9 = 1$ Les J vecteurs $|v_7, v_9^{>} \infty \{ | J, K, M^{>} - | J, -K, M^{>} \} \text{ sont de type A.}$ Les J_H vecteurs $|v_7, v_9^{>} \infty \{ | J, K, M^{>} + | J, -K, M^{>} \} \text{ sont de type A'}$

La matrice formée des 2 matrices de WANG, déjà utilisée au paragraphe précédent, permet d'effectuer le changement de base

 $\{|v_7, v_9\rangle \cong |J, K, M\rangle\} \longrightarrow$

$$\{ |v_7, v_9\rangle \ge 2^{-1/2} \{ |J, K, M\rangle \pm |J, -K, M\rangle \} \}$$

Cette transformation décompose donc l'espace des états de vibrationrotation en représentations irréductibles du groupe C_s, qui, comme nous l'avons vu, sont au nombre de deux.

Chacun des <<blocs>> H_J des côtés (2(2J+1)) de notre hamiltonien y sera donc décomposé en 2 <<blocs>> de dimensions égales (2J+1).

La procédure de calcul numérique exposée au chapitre V permet, après diagonalisation de chacun de ces <<blocs>> de rang 2J+1, de calculer les paramètres moléculaires qui nous intéressent. CHAPITRE-III-

APPLICATION A DES CAS DE RESONANCE

FAIBLE:

ETUDE DES MOLECULES HCOOH, HCOOD, ET DCOOD

•

~

La molécule d'acide formique monomère, comme ses différentes substitutions deutérées, est une toupie faiblement asymétrique qui possède la symétrie C_s. Les valeurs du paramètre d'asymétrie de Ray $K = \frac{2A-B-C}{A-C}$ trouvées par A. DELDALLE⁽⁹⁾ sont portées dans le tableau suivant:⁽¹⁵⁾

	К	µ en Debye a	µ, en Debye	μ
HCOOH HCOOD DCOOD	-0,951 -0,936 -0,892	1,391 ± 0,005 1,377 ± 0,005	0,26 ±0,04 0,26 ±0,02	1,415± 0,01 1,39 ± 0,01

Chaque moment dipolaire de ces différentes molécules possède une composante prépondérante μ_a suivant l'axe de moindre inertie et une composante de plus faible valeur μ_b suivant l'axe de moyenne inertie (fig. III -1).

Figure III -1

Elles sont caractérisées par des spectres de rotation pure ayant la même allure générale.

* Spectre de l'état fondamental

- Les transitions de type \underline{R}_a ($\Delta J=1$, $\Delta K_{-1}=0$) correspondant à la composante μ_a du moment dipolaire, constituent les transitions les plus intenses du spectre. Leur disposition en <<pre>paquets>> régulièrement espacés
est très caractéristique des toupies faiblement asymétriques.

- Les transitions de type Q_a ($\Delta J = 0$, $\Delta K_{-1} = 0$) donnent lieu, suivant les valeurs de J et de K_{-1} , à des raies de moyennes et faibles intensités. Elles sont localisées essentiellement en basse fréquence. - Les transitions dues à la composante μ_b du moment dipolaire (de types R_b , P_b et Q_b) constituent un spectre de faible intensité car $\mu_b << \mu_a$ (rapport ($\frac{\mu_b}{\mu_a}$) $^2 \sim 0,032$). Toutefois la contribution de ces transitions est essentielle pour la détermination précise de la totalité des paramètres moléculaires ⁽⁷⁾.

* Spectre des états vibrationnels excités.

En spectroscopie hertzienne, les états vibrationnels excités de plus faible énergie (\sim < 1500 cm⁻¹) donnent lieu à des spectres d'absorption suffisamment intenses pour pouvoir être étudiés.

L'étude des spectres de rotation pure des 2 premiers états vibrationnels excités v_7 et v_9 de HCOOD et DCOOD et des 3^{ème} et 4^{ème} états vibrationnels excités v_6 et v_8 de HCOOH constituent 1'objet principal de ce chapitre.

Les études entreprises par T. MYAZAWA et K.S. PITZER (11) d'une part, et J.K. WILMSHURST⁽¹⁶⁾ d'autre part, ont permis d'attribuer aux vibration O - D (v_9 hors du plan) et O - C - O (v_7 dans le plan) pour les molécules DCOOD et HCOOD et aux vibrations C- H (v_8 hors du plan) et C-O-H (v_6 dans le plan) pour la molécule HCOOH les valeurs figurant dans le tableau suivant:

cm ⁻¹	НСООН	HCOOD	DCOOD
0-D(v ₉)	625	541	537
0-C-0(v ₇)	638	562	558
с-н(∿ ₈)	1033		
с-о-н(∿ ₆)	1105		

TABLEAU III -1 -

L'étude précédemment entreprise par C. SAMSON⁽¹⁰⁾ et l'écart relativement important entre les couples concernés, laisse supposer, pour chacune des 3 molécules, une résonance de Coriolis faible.

Ce chapitre se propose de vérifier l'exactitude de cette hypothèse.

La possibilité de pouvoir identifier sans ambiguité les spectres de rotation des différents états vibrationnels excités qui nous intéressent nécessite, notamment la connaissance préalable du spectre de rotation des états fondamentaux de chacune des trois molécules. Les travaux de C.SAMSON⁽¹⁰⁾ et A. DELDALLE⁽⁹⁾ ont permis de résoudre ce problème pour les molécules HCOOD et DCOOD. En ce qui concerne cette dernière molécule 34 transitions supplémentaires ont été mesurées. La totalité du spectre observé figure au tableau T₁. Le tableau T₂ donne les vileurs des constantes moléculaires ainsi obtenues. Par contre il nous a fallu entreprendre l'étude de la molécule HCOOD.

A - ETUDE DU SPECTRE DE ROTATION DE L'ETAT FONDAMENTAL DE HCOOD

Partant des paramètres moléculaires récemment proposés par A. DELDALLE⁽⁹⁾, il nous faut obtenir des constantes susceptibles de calculer sans ambiguité toutes les transitions relatives à l'état fondamental. Pour cela, il est connu qu'il est nécessaire de mesurer un grand nombre de raies de tous les types R_a; Q_a, R_b, P_b et Q_b, dans une gamme de fréquence la plus large possible⁽¹²⁾. Il est, de plus, nécessaire de développer jusqu'à un ordre élevé les théories d'interaction rotationvibration employées.

A - 1 - Etude au l^{er} ordre

Les paramètres de départ nous permettent d'identifier la première transition de type b $4_{04} \rightarrow 4_{13}$ (Q_b) et deux transitions supplémentaires de type Q_a . Les nouveaux paramètres alors obtenus, en utilisant un calcul de moindre carré ainsi que la théorie de Watson au l^{er} ordre ⁽¹³⁾, s'avèrent suffisants pour identifier 3 nouvelles raies de type Q_b de J faible ainsi qu'une vingtaine de nouvelles transitions des deux types R_a et Q_a .

A - 2 - Etude au 2^{eme} ordre.

Les 63 transitions de types R_a , Q_a et Q_b alors connues nous permettent finalement, en ayant recours à la théorie de Watson au $2^{\tilde{e}me}$ ordre ⁽¹³⁾, de calculer des nouveaux paramètres moléculaires. Des itérations successives, au fur et à mesure d'identifications de nouvelles transitions, permettent actuellement de proposer des constantes moléculaires qui rendent parfaitement compte du spectre de rotation de l'état fondamental.

Le tableau T₃, en annexe,contient les paramètres de la dernière itération entreprise à l'aide des 81 transitions contenues dans le tableau T₄.

B - IDENTIFICATION DES SPECTRES DE ROTATION DES ETATS VIBRATIONNELS EXCITES v_7 ET v_9 DES MOLECULES HCOOD ET DCOOD

L'étude des états vibrationnels v_7 et v_9 de ces 2 molécules mettra en évidence l'existence d'une résonance de Coriolis très faible. Leurs comportements voisins nous conduisent donc à en aborder simultanément l'étude.

Dans l'hypothèse d'un rotateur indépendant, et quels que soient les paramètres moléculaires, les transitions $2_{02} \xrightarrow{3} 3_{03}$, $2_{21} \xrightarrow{3} 3_{22}$ et $2_{20} \xrightarrow{3} 3_{21}$, de fréquences respectives f_1 , f_2 et f_3 (distorsion centrifuge négligée), sont équidistantes en fréquence; c'est-à-dire que f_2^{-} $f_1 = f_3 - f_2$. Cette méthode qui consiste à rechercher dans le spectre expérimental un groupe de 3 transitions équidistantes et qui a déjà été employée avec succés pour identifier les spectres de l'état fondamental de HCOOH et de ses substitutions isotopiques, nous a servi comme point de départ. Elle a tout de suite révélé la présence, dans une zone de fréquence d'une dizaine de GHz centrée sur l'emplacement du triplet de l'état fondamental , de deux triplets caractéristiques. Une première hypothèse d'identification de ces 6 raies est rendue possible par l'utilisation de l'effet Stark.

B - 1 - Identification par effet Stark

La méthode a déjà été utilisée avec succès pour HCOOH et son principe en a été, à cette occasion, longuement développé ^(10,14). Rappelons brièvement la technique: il suffit de comparer le comportement des composantes Stark des raies non identifiées avec la référence que constituent les raies de l'état fondamental, tout en se plaçant dans des conditions expérimentales aussi voisines que possible pour ce qui est de la pression du gaz dans la cellule, de la vitesse du balayage, de l'intensité du champ statique appliqué et de l'énergie incidente. Cette méthode nous a d'abord confirmé l'identification des 6 transitions des deux triplets précédents. Elle a ensuite permis d'identifier toutes les transitions de type R_a de J \leq 3.

L'emploi d'une méthode graphique nous permet ensuite de compléter l'identification des transitions de type R_g.

B - 2 - Méthode graphique

Appelons f. 1a fréquence d'une transition R_a de l'état fondamental et f. 1a fréquence de la même transition appartenant à l'un des deux états excités étudiés. Nous avons tracé les courbes $\Delta f = f_{ex}$. f_{fond}. en fonction de la valeur J du niveau supérieur, pour une même famille de transitions; famille caractérisée par les valeurs de K₋₁ et de S_K = K₋₁+ K₊₁.

Les identifications précédentes, qui correspondent à des transitions entre niveaux de rotation caractérisés par des J<3 ont ainsi toutes été confirmées une fois de plus. Par ailleurs, cette méthode de calcul conduit à un classement en deux groupes des transitions que nous attribuerons par la suite aux états vibrationnels excités v_7 et v_9 .

Par extrapolation à J = 5, 6 et 7, ces courbes nous ont permis de localiser sans grande ambiguité, parmi les nombreuses raies résiduelles mesurées entre 100 et 160 GHz, les transitions correspondantes. Les figures III - 3, 4, 5 et 6 montrent les différentes courbes obtenues pour HCOOD, III - 7, 8, 9 et 10 celles correspondant à DCOOD.

B -3 - Hypothèse des rotateurs indépendants

Le tableau III -2 met en évidence la quasi-équidistance des trois transitions de chacun des triplets précédents. Il nous suggère l'existence d'une très faible résonance en ce qui concerne HCOOD; par contre , si une résonance existe pour DCOOD elle est sans doute extrêmement faible. Il doit donc être possible, à l'aide des raies que nous possédons, et pour chacun des deux états vibrationnels étudiés séparément, d'obtenir des paramètres moléculaires susceptibles de localiser la position des premières transitions de type Q_a de J faible. Nous avons tout d'abord utilisé le modèle de Watson au l^{er} ordre Pour chaque état nous avons ainsi identifié en moyenne 35 raies (une vingtaine de R_a , une dizaine de Q_a de $K_{-1} = 1$ et 2 et surtout 3 Q_b de J faible).

a) <u>En ce qui concerne HCOOD</u>, l'utilisation de ces 35 transitions permet d'obtenir une solution en laissant varier tous les paramètres (A, B, C et les 5 constantes en P⁴). Les paramètres ainsi déterminés permettent le calcul de toutes les transitions connues avec un écart moyen $f_m^{-f}c$ de 0,44 pour l'état v_7 et de 0,18 pour l'état v_9 . Les résultats portés aux tableaux III -11 et III - 12 indiquent clairement que les paramètres en P⁴ n'ont aucun sens, surtout en ce qui concerne Δ_{v} .

Une seconde solution est alors recherchée en fixant Δ_{K} et δ_{K} aux valeurs obtenues pour l'état fondamental. Cette méthode se justifie en faisant la remarque que seules les transitions de type μ_{b} sont susceptibles de déterminer valablement ces deux paramètres. Les écarts moyens sont ici légèrement supérieurs à ceux précédemment obtenus: 0,662 pour μ_{7} et 0,363 pour ν_{0} .

Toutefois, les solutions sont nettement plus acceptables (tableaux III -11 et III -12). Une solution approchée est donc obtenue. Le tableau III-13 indique que ce sont les transitions caractérisées par des valeurs de J relativement élevées qui sont mal calculées. Dans le cas d'une résonance forte, C. SAMSON⁽¹⁰⁾ indiquait que les effets de la résonance étaient les plus importants pour ce type de transition.

En conclusion, cette solution nous a permis d'identifier les spectres de rotation pure, des états vibrationnels excités v_7 et v_9 . Un phénomène de résonance faible est mis en évidence; il est décelé au niveau des transitions de J élevé. Il est donc probable que la méthode de perturbation stationnaire qui n'utilise que des transitions de J =1 et 2 ne conduise à aucun résultat. Par contre, un calcul par diagonalisation directe devrait nous donner les valeurs des constantes Δ et G_b et nous confirmer, de cette façon, l'existence de la faible résonance.

b) <u>En ce qui concerne DCOD</u>, le même schéma de calcul a été utilisé. Les tableaux III -14 et III -15 permettent de suivre l'évolution des résultats. Une conclusion identique au cas précédent peut être obtenue.

B - 4 - Méthode de boucles

Cette dernière méthode permet de confirmer une fois de plus l'identification de certaines transitions et sert en quelque sorte de vérification. Ce sont les transitions entre niveaux de rotation présentant la disposition de la figure III -16, où les flèches simples désignent des transitions de type R_a précédemment identifiées et où les flèches doubles désignent des transitions de type Q_a qui intervienntne dans ces <<boucles>>

Les identifications des trois transitions Q_b peuvent également être confirmées par l'utilisation d'une méthode similaire (figure III -17): les flèches simples correspondent toujours aux transitions de type R_a mais les flèches doubles désignent maintenant les transitions de type Q_b.

- 43 -

CODEnMAZ	^v 9	Fond	D (lamental	c 0 0 D en MHz	6 ₂
	_	n .			
	64587,40	65242,10	65312,56	63119,77	63683,72
1-1-0-0	$\Delta_1 = 145, 7$	∆ ₁ = 196,8	∆ ₁ =369,4	∆ ₁ =324,1	∆ <mark>1</mark> =399 , 4
	64733,07	65438,91	63881,97	63443,83	64083,10
	∆ ₂ =148,0	Δ = 191,2	∆ = 368,4 2	∆ ₂ = 324,8	∆ ₂ =397,0
	64881,15	65630,14	64250,42	63768,66	64480,11
				The decision of the superconst	
95573649CW-002		20102042/1282	4-1 -17, 3 , F		

Tableau III -2 . Triplets de transitions J = 2 - 3 = 3

pour HCOOD et DCOOD.

(2015) L'UT

* $\Delta_1 = f_2 - f_1 = f_{(2_{2_1}+3_{2_2})}^{-1} (2_{0_2}+3_{0_3})$ * $\Delta_2 = f_3^{-f_2} = f_{(2_{2_0}+3_{2_1})}^{-1} (2_{2_1}+3_{2_2})$ - 44 -

Figure III - 4 Courbes Af an fonction de S

-- 46 -

HC12 00D ETAT EXCITE V9

- 48 -

50 -K-1" OK. J. و۔ م 4 · (?) ADF(MHz) N 500 Figure III - 8 Courbes Δf en fonction de J -00 -0 -K-1" OK" 3 Å∆F(MHz) 2 -500. -1000 -0 -0 X -1 0 2-8-<u>A</u> C F (M H z) 395 141 5001

DC¹² 00D ETAT EXCITE V7

- 51 -

66099,57 11762,553	65451,469 11610,035	K K 65491,63 11609,695
9,955 1018	9968,774 0,0086	9969,070 -0,9409
595	0,090 1,00	0,113 41
12146	-0,0055	-0,00083
4	0,044	-0,110

.

Tableau III -11 HCOOD Etat v_{γ} : hypothèse rotateurs indépendants.

- 53 -

A 66099,57 67084,15 67041,43 B 11762,553 11853,396 67041,43 C 9969,955 9958,156 9957,838 Δ_J 0,01018 0,0117 0,0135 Δ_K 1.00 1.00 -0.240 δ_K 0,02146 0,047 0,048 δ_K 0,043 0,0443 0,1947	MHz	FONDAMENTAL	∆ _K et å _K bloqués	$\Delta_{\mathbf{K}}$ et $\delta_{\mathbf{K}}$ libres
B 11762,553 11853,396 11853,675 C 9969,955 9958,156 9957,838 Δ_J 0,01018 0,0117 0,0135 $\Delta_J k$ 0,01018 0,0117 0,0135 $\Delta_J k$ 0,0117 0,0117 0,0135 $\Delta_k 1,00$ -0,230 -0,240 1,00 1,00 -11,60 $\delta_k 0,002146$ 0,0047 0,0048 0,0043 0,0443 0,01947	A	66099,57	67084,15	67041,43
C 9969,955 9958,156 9957,838 Δ_{JK} 0.01018 0.0117 0.0135 Δ_{JK} -0.0595 0.0117 0.0135 Δ_{K} 1.00 1.000 -0.240 δ_{J} 0.002146 0.0047 0.0048 0.0048	р	11762,553	11853,396	11853,675
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U	9969,955	9958,156	9957 , 838
$ \int_{\mathbf{K}} \Delta_{\mathbf{K}} -0.230 -0.230 -0.240 \\ \lambda_{\mathbf{K}} -1.00 -1.00 \\ \delta_{\mathbf{J}} 0.002146 0.00047 0.0048 \\ 0.0043 0.0443 0.0443 0.1947 $	٥	0,01018	0,0117	0,0135
$ \int_{K} \int_{K} \frac{1,00}{0,0047} = 1,00 = 1,00 = 0,0047 = 0,0048 = 0,0048 = 0,0043 = 0,0444 = 0,0444 = 0,0044 = 0,0444 = 0$	ÅJK	-0,0595.	-0,230	-0,240
δ _J δ _K 0,0047 0,0048 0,0043 0,043 0,0443 0,1947	$^{\Delta}\mathbf{K}$	1,00	1,00	-11,60
δ _K 0.043 0.0443 0.1947	ô,	0,002146	0,0047	0,0048
	Ř	0,043	0,0443	0,1947
	BUS			- -

·

-12 HCOOD Etat v_9

Tableau III -12

- 54 -

		n an baile a baile a tha a' a bha ann an ann an ann ann ann ann ann ann	Contraction of the second			CONTRACTOR STATES
	ETAT EY	ICITE V7		ETAT EXC	ITE v9	
ANSITIONS	f,mesurée(MHz)	f. calculée(MHz)	<	E. mesurée(MHz)	f. calculée(MHz)	4
North International Control of the C						
E14 27	16407 <u></u> 95	16407,70	0,25	18941°43	18941°46	000
5	24602,80	24602,79	0,01	28396,05	28396,16	-
	57158,84	57159,05	-0,21	59069,10	59069,01	0,08
	59744 , 68	59744,51	0,17	62073 <u>,</u> 47	62072,56	60 [°] 0-
03 12 	44797,95	44798,06	-0,11	45518,62	45518,47	0,14
10 11	64733,07	64733,30	-0,23	65438°90	65438,93	-0,02
2. 6. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	130569,62	130567,79	1,84	132296,13	132297,10	-0,98
25 ⁷ 26	150745,42	150747,88	-2,46	*		
133 734 133 734	151370,29	151369,00	1,29	153139,86	153139,02	0,84
(<u>au</u> (rea						5121 1944 1945 1945 1945 1945 1945 1945 194

* Transition non mesurée Tableau III -13 HCOOD Etats excités v_7 et v_9

quelques fréquences calculées avec l'hypothèse des rotateurs indépendants

- 55 -

ZHM	FONDAMENTAL	∆ _K et å _K bloqués	${}^{\Lambda}_{K}$ et ${}^{\delta}_{K}$ libres
A	50816,556	50596,223	50598,80
ρ¢	11759,832	11616,460	11616,199
U	9534,233	9532,040	9532,241
۵	0,0096	0,00830	0,00605
ΔJK	-0,033	0,0216	0,034
$^{\Delta}\mathbf{K}$	0,49	0,49	3,02
о С	0,00241	0,00094	0,00062
^δ Κ	0,035	0,035	-0,079

Tableau III - 14 : DCOOD état v_7

- 56 -

ibres						·				
$^{\Delta_{ extsf{K}}}$ et $^{\delta_{ extsf{K}}}$ 1	51,243,17	11841,574	9519,097	0,0128	-0,104	-0, 73	0,00435	0,129		
∆ _K et ô _K bloqués	51244,436	11841,368	9519,283	0,0110	-0,0940	0,49	0,00416	0,35		
FONDAMENTAL	50816.556	11759,832	9534,233	0,0096	-0,033	0,49	0,00241	0,035		
MHz		4	O	۵j	Δ_{TV}	A	19	× w		

Tableau III - 15 DCOOD état v_9

- 57 -

Cette méthode permet en outre de *<*tester*>>* la qualité des mesures. Par exemple, en ce qui concerne le cas important des transitions de type Q_b, nous pouvons vérifier les égalités suivantes: Pour la molécule HCOOD;

$$\begin{aligned} &\text{état } v_9 \ ({}^1_{01} \ \stackrel{\Rightarrow}{\rightarrow} \ {}^1_{10}) + ({}^1_{10} \stackrel{\Rightarrow}{\rightarrow} \ {}^2_{11}) - ({}^2_{02} \stackrel{\Rightarrow}{\rightarrow} \ {}^2_{11}) - ({}^1_{01} \stackrel{\Rightarrow}{\rightarrow} \ {}^2_{02}) \ = \ 0,020 \text{ MHz.} \end{aligned}$$

$$&\text{état } v_7 \ ({}^1_{01} \ \stackrel{\Rightarrow}{\rightarrow} \ {}^1_{10}) + ({}^1_{10} \stackrel{\Rightarrow}{\rightarrow} \ {}^2_{11}) - ({}^2_{02} \stackrel{\Rightarrow}{\rightarrow} \ {}^2_{11}) - ({}^1_{01} \stackrel{\Rightarrow}{\rightarrow} \ {}^2_{02}) \ = \ * \end{aligned}$$

et pour la molécule DCOOD:

 $\begin{aligned} &\text{état } v_9 \quad (2_{02} \div 2_{11}) + (2_{11} \div 3_{12}) - (3_{03} \div 3_{12}) - (2_{02} \div 3_{03}) = 0,187 \quad \text{MHz} \\ &\text{état } v_7 \quad (2_{02} \div 2_{11}) + (2_{11} \div 3_{12}) - (3_{03} \div 3_{12}) - (2_{02} \div 3_{03}) = -0,203 \quad \text{MHz} \end{aligned}$

C - IDENTIFICATION DES SPECTRES DE ROTATION DES ETATS VIBRATIONNELS EXCITES v_6 ET v_8 DE LA MOLECULE HCOOH

Après l'étude de C. SAMSON⁽¹⁰⁾ relative à l'état fondamental et aux deux premiers états vibrationnels excités v_7 et v_9 en résonance de Coriolis forte, nous avons entrepris l'identification des états vibrationnels excités v_8 (1033 cm⁻¹) et v_6 (1105 cm⁻¹). L'écart entre ces deux niveaux de vibration devrait donner lieu à une résonance de Coriolis faible dont l'un des premiers effets serait l'apparition d'une légère dissymétrie dans la disposition relative caractéristique des transitions de rotation pure de type R_a J = 2+3. L'objet de cette étude est de vérifier cette hypothèse.

C -1 - Etude du spectre de rotation des états vibrationnels excités

La très faible intensité des transitions appartenant à v_6 et v_8 (moins de 1% de l'intensité des transitions correspondantes de l'état fondamental) nécessite l'utilisation d'un spectromètre de type Hughes et Wilson.

* En ce qui concerne l'état v_7 , la transition $l_{01} \rightarrow l_{10}$ se superpose avec la transition $5_{33} \rightarrow 4_{40}$ de l'état fondamental de D₂0; elle n'a donc pu être observée. Les transitions de type $R_a J = 0 \rightarrow 1$, $J = 1 \rightarrow 2$ et $J = 2 \rightarrow 3$ qui sont les plus intenses et dont le comportement en spectrométrie Stark est le plus caractéristique, ont d'abord été identifiées. Il faut toutefois remarquer que leur très faible intensité a rendu l'observation de leurs composantes Stark difficile. Néanmoims, la plupart des attributions peuvent être confirmées par la méthode de courbe déjà employée (figure III -18).

L'examen du groupe central des transitions R_a , $J = 2 \div 3$ (tableau III -19), dont la disposition relative caractéristique est conservée, indique déjà que la perturbation apportée par la résonance est trop faible pour être nettement mise en évidence par ce procédé. Une première détermination des paramètres, obtenue en négligeant la distorsion centrifuge, utilise les développements limités qui permettent de calculer les niveaux d'énergie de rotation des toupies légèrement asymétriques ⁽²⁾. Ces premiers paramètres permettent l'identification de quelques transitions de type Q_a de K_{-1} . L'identification de 10 transitions Q_a de $K_{-1} = 1$ et 2 est ensuite obtenue, pour chacun des états v_6 et v_8 par améliorations successives des paramètres précédents.

C - 2 - Détermination des paramètres moléculaires

Compte-tenu de leurs intensités trop faibles, aucune transition correspondant à la composante μ_b du moment dipolaire n'a pu être mesurée. En faisant l'hypothèse de rotateurs indépendants, nous ne possédons pour le calcul des 3 constantes A, B, C et des 5 paramètres de distorsion centrifuge $(\Delta_J, \Delta_K, \Delta_{JK}, \delta_J, \delta_K)$ au l^{er} ordre de la théorie de Watson, que des transitions dues à la seule composante μ_a du moment dipolaire. Dans de telles conditions, A est mal comme , Δ_K et δ_K sont complétement indéterminées et une procédure de calcul par une méthode de moindres carrés classique s'avère inutilisable. Les paramètres de rotation de départ étant très approchés, une méthode de calcul basée sur une procédure est d'abord nécessaire pour améliorer les paramètres. Cette procédure met en jeu un choix judicieux de 6 transitions R_a et Q_a. Elle emploie d'une part les 3 paramètres de rotation A, B et C et d'autre part les 3 paramètres de distorsion centrifuge Δ_T , Δ_{IK} et δ_L .

Les deux autres constantes \triangle_K et δ_K restent constamment fixées à une valeur qui correspond à celle déterminée lors de l'étude de l'état fondamental. Ces paramètres améliorés sont dans un deuxième temps utilisés dans une procédure de moindres carrés classique mettant en jeu les 18 Ici encore, les deux paramètres \triangle_K et δ_K conservent leur valeur de départ. Dans le cas contraire, la méthode de calcul converge vers des résultats n'ayant aucun sens physique.

Le tableau III -20 permet de comparer les résultats obtenus pour l'état v_6 lorsque Δ_K et δ_K sont <libres>> ou <<bloqués>>. Le tableau III -21 donne la valeur des 6 paramètres calculés pour chacun des 2 états de vibration dans l'hypothèse de deux rotateurs indépendants. Les 36 transitions identifiées pour l'ensemble de ces deux états sont reportées dans les tableaux T_{11} et T_{12} en annexe.

C - 3 - Conclusion

Pour chacun des deux états vibrationnels, les écarts moyens sont de l'ordre de 300 kHz. Etant donné le nombre réduit de transitions observées, le fait que ces transitions n'appartiennent qu'au type μ_a , et qu'à cause de leurs très faibles intensités elles ne soient mesurées qu'avec peu de précision, il nous est impossible de tirer une conclusion valable de cette étude. Les valeurs des paramètres obtenus à l'aide de l'hypothèse des rotateurs indépendants (tableau III -21) nous paraissent toutefois suffisants pour décrire le spectre observable ($R_a Q_a$), ce qui permettra la poursuite ultérieure du travail concernant les états v_7 et v_0 de HCOOH.

- 61 -

. Δ		125,0		122,5			
Etat excité v ₆	66942 , 24		67067,26		67189,77		
ETAT FONDAMENTAL	67291,05	∆ ₁ =123,7	67414,74	Δ ₂ =121,3	67536,09		f(2 →3) = f(2 →3
Transitions (MHz)	$2_{02}^{+3}_{03}$	-	$2_{21}^{+3}_{22}$		$220^{+3}21$		ال ب ب ب ب ب ب

Tableau III -19. triplet de transitions J = 2 *3 HCOOH État excité v₆

* $\Delta_1 = f_2 - f_1 = f(2_{21} + 3_{22}) - f(2_{02} + 3_{03})$ * $2^{2} = f_3 - f_2 = f(2_{20} + 3_{21}) - f(2_{21} + 3_{22})$

- 62 -

(305)

$\Delta_{ m K}$ et $\delta_{ m K}$ libres	78258	12003,1	10352,40	0,0212	-0,112	97,90	0,002	0,015	
$\Delta_{f K}$ et $\delta_{f K}$ říkés	77855	12003,1	10352,3	0,013	60°0	1,17	0,0021	0,043	
ETAT FONDAMENTAL	77512,232	12055,1061	10416,1157	0,0099	-0,0863	1,1719	76100,0	0,0430	
MHz	A	£	U	۲	ΔJK	₽ ₽	ر گ	δK	

Tableau III -20 $\, {\rm HC}^{12}$ OOH Paramètre état ${\rm v}_{6}$

80S

- 63 -

MHz	Etat excité v ₆	Etat excité v <mark>8</mark>
¥	7785\$;±2,8	76712
Æ	12003,40,1	12001,5 ± 0,01
U	10352,3 ± 0,1	10419,8±0,1
٦	0,0131± 0,008	0,0071± 0,003
∆ JK	-0,09 ± 0,01	-0,07. ± 0,02
ŝ	0,0021 ± 0,00008	0,0018 ± 0,0001
,		
*^K	1,1719	1,719
*∆ _K	0,0430	0,0430

* fixés à la valeur de l'état fondamental

Tableau III-21 Hc^{12} 00H Etats excités v_{6} et v_{8} .

Paramètres l^{er} ordre théorie de Watson

64 -

385 101

APPLICATION AU CAS D'UNE RESONANCE

FORTE: ETUDE DE LA MOLECULE DCOOH.

CHAPITRE - IV -
Comme HC¹²OOH et les substitutions deutérées que nous venons d'étudier, la molécule DC¹²OOH est une toupie faiblement asymétrique (K =-0,912)⁽⁹⁾. Son moment dipolaire possède également une composante prépondérante μ_a suivant l'axe de moindre inertie et une composante de plus faible valeur μ_b suivant l'axe de moyenne inertie. (figure IV -1).

Cette molécule doit donc présenter un spectre de rotation assez voisin de ceux décrits au chapitre précédent. L'étude des spectres de rotation pure des deux premiers états exictés v_7 et v_9 constitue l'objet principal de ce chapitre.

A - ETUDE DU SPECTRE DE L'ETAT FONDAMENTAL

Ici encore, la possibilité d'identifier sans ambiguité les spectres de rotation des différents états vibrationnels qui nous intéressent nécessite la connaissance préalable du spectre de rotation de l'état fondamental. Cette étude est, dans ses grandes lignes, identiques à celle entreprise pour HCOOD au chapitre III.

* Etude au premier ordre

Dans une première étape, les paramètres proposés par A. DELDALLE⁽⁹⁾ nous ont permis de mesurer 3 Q_b et une de dizaine de Q_a supplémentaires, de J faible. Un calcul portant sur toutes les transitions connues (29 R_a , 24 Q_a et 3 Q_b) nous fournit alors un nouveau jeu de paramètres améliorés par l'apport des 3 transitions de type Q_b (tableau IV -2). Ces paramètres permettent l'identification immédiate de 2 transitions de type R_b de J faible et d'une transition Q_b de J assez élevé. Les calculs ont été effectués en utilisant une méthode de moindre carré à partir de la théorie de Watson au 1^{er} ordre (13).

* Etude au second ordre

Les transitions entre niveaux de grande énergie (J élevé) de l'état fondamental correspondent à des raies dont les intensités très faibles sont voisines de celles dues à des états vibrationnels excités. Leur identification nous est donc indis; nsable. Cela ne peut se faire que par un calcul précis de leur fréquence et l'expérience montre que les effets de distorsion centrifuge d'ordre supérieur, jusqu'alors négligés, prennent une grande importance. Nous avons alors repris le problème de la détermination des paramètres rendant compte de l'ensemble du spectre à l'aide de la théorie de Watson à l'ordre deux en incluant dans le calcul d'itéraction des paramètres la totalité des transitions mesurées. Les paramètres ainsi trouvé nous ont permis d'identifier un grand nombre de transitions (de types R_a , R_b , Q_b , D_b et Q_a) jusqu'à des valeurs de J de 36 et de K_, de 6. Une nouvelle itération mettant en jeu l'ensemble de tout le spectre expérimental nous a ensuite donné les paramètres définitifs figurant dans le tableau T₁₃ de l'annexe. Les transitions Q_ade J très élevés et quelques transitions R_b d'intensité très faible , mesurées en spectrométrie Stark dans des conditions difficiles, sont entachées d'erreurs de mesure pouvant aller jusqu'à 250kHz. Le tableau T₁₄ regroupe toutes les transitions de l'état fondamental actuellement connues.

B - IDENTIFICATION DU SPECTRE DE ROTATION PURE DES ETATS VIBRATIONNELS EXCITES v_7 et v_9 : Cas d'une résonance de Coriolis forte.

Comme pour la molécule d'acide formique $HCOOH^{(10)}$, le spectre infrarouge de la molécule DCOOH présente de nombreuses difficultés d'identification. Cela est particulièrement vrai pour l'infra-rouge lointain dont l'attribution des bandes expérimentales reste discutée. L'identification la plus récente est celle de T. MYAZAWA et K.S. PITZER⁽¹¹⁾. Ils attribuent à la vibration fondamentale de torsion 0 - H (v_9 hors du plan) la fréquence 629 cm⁻¹ et à la vibration de déformation 0 - C - O (v_7 dans le plan) la fréquence 620 m⁻¹. Dans cette hypothèse, les spectres de rotation pure des états vibrationnels excités v_7 et v_9 de DC¹²OOH seraient susceptibles d'être perturbés par une résonance de type Coriolis.

MHz	Paramètres Deldalle	Paramètres "Q _b "	
A	57709 ,35	57709,235	
B	12055,906	12055,9898	
С	9955,672	9955,6061	
$^{\Delta}$ J	0,0093	0,0094	
∆jk	-0,039	-0,0391	
۵ _K	0,751	0,778	
δ _J	0,0022	0,0022	
δ _K	0,036	0,038	

Tableau IV -2

.

Paramètre de la molécule DCOOH - Etat fondamental Théorie de Watson ordre 1

Nous retrouverions alors un cas voisin de celui étudié pour HC¹²OOH⁽¹⁰⁾. L'écart entre les deux niveaux de vibration est plus faible pour DCOOH que pour HCOOH (9 cm⁻¹ au lieu de 14 cm⁻¹); il paraît donc raisonnable de supposer <<à priori>> que la perturbation des spectres de rotation serait plus forte dans le premier cas que dans le second.

Nous nous proposons dans ce chapitre de vérifier ces deux hypothèses que nous venons d'émettre.

B -1 - Identification du spectre de rotation pure.

Nous avons entrepris une recherche systématique de toutes les transitions comprises entre 60 et 70 GHz; le triplet central des transitions $R_a J = 2 + 3$ de l'état fondamental étant localisé aux environs de 66 Ghz. (cf. tableau T_{14}). Parmi les raies mesurées et qui, de par leurs intensités relatives sont susceptibles d'appartenir aux états vibrationnels excités γ_7 et γ_9 , il n'a pas éta possible de trouver la disposition caractéristique. L'échec de cette méthode semble déjà confirmer notre première hypothèse : spectre de rotation pure des états vibrationnels excités v_7 et v_9 fortement perturbé par une résonance de Coriolis.

L'identification des premières transitions de type R_a de J faible (J \leqslant 3) n'a été possible que par utilisation de l'effet Stark.

* Identification par effet Stark.

Cette méthode permet d'émettre une hypothèse d'identification pour les transitions de type R_a de J < 3, pour chacun des deux états v_7 et v_9 . A titre d'exemples, les figures IV - 3, 4, 5 et 6 montrent quelques exemples d'enregistrements ainsi effectués.

Cette méthode, très commode pour les transitions R_a de J faible, s'est toutefois révélée inefficace pour les autres types de transitions.

. En ce qui concerne les Q_a , les différentes composantes du multiplet ne sont convenablement résolues que pour des champs statiques de l'ordre de 2500 V/ cm, ce qui est supérieur à la valeur du champ statique habituellement fourni par notre appareillage. . L'intensité relative très faible des transitions de type Q_b de J faible permet difficilement l'observation du comportement des composantes du multiplet Stark.

Nous avons en recours à l'emploi de la méthode graphique pour confirmer ou compléter l'identification des transitions de type R____

* Méthode graphique

L'utilisation de la méthode, décrite au chapitre précédent, a confirmé l'identification des transitions de type R_a de J<3, pour lesquelles nous avions formulé une hypothèse. Cette méthode nous permet encore de classer en deux groupes les transitions que nous attribuerons par la suite aux états v_7 et v_9 . L'extrapolation de ces courbes pour J = 5, 6 et 7 nous permet enfin de localiser les transitions de type R_a appartenant aux familles correspondantes.

Les figures IV - 7, 8, 9 et 10 montrent les différentes courbes obtenues.

* Méthode de << boucles>>

La troisième méthode précédemment utilisée confirme une nouvelle fois l'identification de certaines transitions.

Ce sont les transitions entre niveaux de rotation présentant la disposition de la figure IV -11, où les flèches simples désignent des transitions de type R_a précédemment identifiées et où les flèches doubles correspondent à des transitions de type Q_a qui interviennent dans ces boucles.

Toutes les transitions de cette figure ont été identifiées pour 1'état $\sqrt{7}$. Par exemple, nous pouvons ainsi vérifier les égalités suivantes: $(5_{15}^{+}5_{14}) + (5_{14}^{-}6_{15}) - (5_{15}^{+}6_{16}) - (6_{16}^{+}6_{15}) = -0,232$ MHz $(6_{16}^{+}6_{15}) + (6_{15}^{+}7_{16}) - (6_{16}^{+}7_{17}) - (7_{17}^{+}7_{16}) = -0,418$ MHz

Figure IV -7 : Courbes Af en fonction de J

DC12 OOH ETAT EXCITE V9

9115 ULE

Figure IV - 8 Courbes Δf en fonction de J

DC1200H ETAT EXCITE V9

(3US

898 998

77 -

Figure IV - 10

Courbes Δf en fonction de J

DC12 OOH ETAT EXCITE V7

(BUS L'LLE

- 78 -

Les 39 transitions ainsi identifiées par ces trois méthodes sont portées dans le tableau IV-13. L'importance de la résonance de Coriolis, qui, nous l'avons déjà dit, se manifeste par une perturbation de tout le spectre de rotation pure des 2 états impliqués, et en particulier par la destruction de la disposition caractéristique des 3 transitions $2_{02} \xrightarrow{3}_{03}$, $2_{21} \xrightarrow{3}_{22}$ et $2_{20} \xrightarrow{4}_{21}$ est nettement mis en évidence par la figure IV -12.

Il convient aussi de noter que la seule méthode ayant permis l'identification des transitions R_a de J = $4 \rightarrow 5$, J = $5 \rightarrow 6$ et J = $6 \rightarrow 7$ et de K₋₁ \neq l est la méthode graphique, et qu'en conséquence il s'agit d'une identification trè fragile. Celle-cí ne sera confirmée que par l'étude numérique exposée dans le chapitre V. De plus, à ce niveau , aucune transition due à la composante μ_b n'a pu être identifiée. Il est évident qu'un calcul approché utilisant l'approximation de deux rotateurs indépendants n'a dans ce cas aucun sens.

DC¹²OOH: Disposition relative du groupe central des transitions R_a : J = 2 \rightarrow J = 3

21

LILLE

Transitions	Etat ^v 7 en MHz	Etat v ₉ en MHz
⁰ ∞ ^{→1} 01	21773,465	22201,373
$1_{11}^{+2}_{-12}$	41699,438	42209,432
$1_{01} \rightarrow 2_{02}$	43491,349	44327,575
10^{211}	45352,598	46677,744
$2_{12}^{3}_{13}$	62510,239	
² 02 ^{→3} 03	65099,256	66302,354
$2_{21} + 3_{22}$	6516 8, 006	67012,534
² 20 ⁺³ 21		67316,366
2 ₁₁ →3 ₁₂	67994,240	69934,810
4 ₂₃ +5 ₂₄	108433,440	111432,584
4 ₀₄ →5 ₀₅		1095 08,310
4 ₁₄ +5 ₁₅		105179,580
⁵⁰ 5 ^{→6} 96		130622,760
⁵ 15 ^{→6} 16	124646,568	126021,330
5 ₁₄ →6 ₁₅	135569,140	
⁵ 24 ^{→6} 25	129941,322 ?	133520,716

Tableau IV - 13 DC¹²OOH : transitions identifiées par des méthodes expérimentales

Transitions	Etat v (MHz) 7	Etat v ₉ (MHz)
$5_{23} \rightarrow 6_{24}$ $6_{16} \rightarrow 7_{17}$ $6_{15} \rightarrow 7_{16}$ $6_{25} \rightarrow 7_{26}$ $6_{24} \rightarrow 7_{25}$ $3_{13} \rightarrow 3_{12}$ $4_{13} \rightarrow 4$	145226,95 157901,63 151392,10 10966,06 18274,19	136001,12 146799,97 155513,31 159319,26 13336,53 22202,17
$4^{14}^{44}^{13}$ $5^{15}^{5}^{15}^{14}$ $6^{16}^{6}^{15}$ $7^{17}^{7}^{16}$	ou 18276,37 27404,39 3832 7,20 51001,463	

Tableau IV -13 (suite)

CHAPITRE -V-

-

•

ETUDE NUMERIQUE

A - METHODES NUMERIQUES

A -1 - Méthode par perturbation

1°) Principe

L'étude théorique exposée en II - B -1 nous a permis d'exprimer, grâce à l'utilisation d'une méthode de perturbation stationnaire, la valeur des niveaux d'énergie de rotation pure en fonction des 9 paramètres moléculaires A_7 , B_7 , C_7 , A_9 , B_9 , Δ , G_a et G_b , pour les valeurs de J = 1 et 2. L'expérience montre que le paramètre G_a une très faible influence sur les transitions utilisées. Nous l'avons donc négligé et nous nous sommes attachés à déterminer les valeurs des 8 paramètres restants et en particulier celles de A et G_b; seuls paramètres susceptibles de préciser l'importance de la résonance.

Il nous suffit donc de résoudre un système de 8 équations à 8 inconnues grâce à la procédure GRESOLPIV⁽²⁵⁾ que nous allons décrire. Soit $F_n(x_1, \dots, x_n) = 0$ un système de n équations à n inconnues. Deux cas sont à distinguer:

(1) Si les fonctions F_n sont linéaires par rapport aux x_i , on peut mettre le système sous la forme matricielle A X = B.

(2) Si les fonctions F_n ne sont pas linéaires par rapport aux x, on doit alors les développer en séries de TAYLOR autour d'un point arbitraire X (x, ,..., x).

Posons $dx_{\underline{i}} = x_{\underline{i}} - x_{\underline{i}}$ ($1 \le i \le n$) on a: $F_n(x_1, \ldots, x_n) = F_n(x_1, \ldots, x_n) + \sum_{\underline{i}} (\frac{\partial F_n}{\partial x_{\underline{i}}}) dx_{\underline{i}} = 0$ et nous sommes alors amenés à résoudre le système suivant:

A d X = -F où les éléments de matrice de A sont :

 $A_{j}^{i} = \left(\frac{\partial F_{i}}{\partial x_{i}}\right)_{x}$

Partons de la solution approchée $\hat{X}(x_1, \dots, x_n)$. Nous posons $FM_1 - FC_1 = \hat{R}_1$ Nous devons donc résoudre le système linéaire AdX=R avec $A_{j}^{i}=(\frac{\partial FC_{i}}{\partial x_{i}})^{\circ}_{X}$

Dans notre cas, les fonctions F_n, obtenues à partir des valeurs propres des matrices <<3>>, ne sont évidemment pas linéaires et nous avons dû employer la méthode (2)

Le moyen le plus naturel de résoudre un système de n équations à n inconnues est d'exprimer l'une des inconnues en fonction des autres au moyen de l'une des équations, et de porter cette expression dans les autres équations. On est ainsi ramené à la résolution d'un système de n-l équations à n-l inconnues que l'on peut traiter de manière analogue. Supposons les équations et les inconnues ordonnées de telle façon que l'on tire toujours la première inconnue de la première équation dans le système résiduel. Les formules de transformation de la k^{ième} étape seront:

$$dx_{k} = \frac{\frac{r_{k}^{(k)} - \frac{n}{1 + k + 1} + \frac{k}{1} + (k)}{\frac{k}{2} + \frac{k}{k} + (k)}}{\frac{k}{2} + \frac{k}{k} + \frac{k}{k} + \frac{k}{2} + \frac{k}{2}$$

avec les formules récurantes:

$$s_{j}^{i(k+1)} = a_{j}^{i(k)} - a_$$

formules dans lesquelles les indices entre parenthèse expriment le rang de cet élément matriciel. Le dénominateur $a_k^{(k)}$ est appelé le $k^{i me}$ pivot. Le calcul complet comporte l'application répétée des formules précédentes. Cet algorithme dû à GAUSS, nous donne alors comme solution approchée:

X = X + dX et ainsi de suite, par itérations successives jusqu'à ce que le critère de convergence soit satisfait.

La procédure employée permet, en outre, en recherchant dan chaque cas le pivot maximal le mieux adapté à la résolution itération, une convergence beaucoup plus nettes

2) Description du programme de calcul

. Nous calculons d'abord numériquement les 8 fréquences FC₁ après les avoir judicieusement choisies en fonction de la détermination la plus précise possible de nos 8 paramètres.

. Nous construisons ensuite le jacobien A. C'est un tableau à 8 lignes et 8 colonnes constitué de la façon suivante: l'élément A_j^i de la i^{ième} ligne et de la j^{ième} colonne s'écrit:

 $A_{j}^{i} = \frac{FC_{j}(x_{1}, \dots, x_{1} + dx_{1}, \dots, x_{8}) - FC_{j}(x_{1}, \dots, x_{1}, \dots, x_{8})}{dx}$

qui correspond donc à l'approximation très sommaire des dérivées

∂FC j ∂x j

. La procédure grésolpiv nous permet ensuite de résoudre le système AdX = dF.

Ce programme de calcul est entièrement détaillé dans le listing n°l figurant en annexe.

A - 2 - Diagonalisation directe

l°) Principe

Après diagonalisation des matrices hermitiques J, (matrices de rang (2J+1) issues de la factorisation exposée en II -B -2), par la méthode de JACOBI, nous avons déterminé les ll paramètres du problème par la méthode des moindres carrés.

Le problème est plus général que celui exposé précédemment. Nous avons maintenant à résoudre le système $F_p(x_1, \ldots, x_n) = 0$, système de p équations à n inconnue avec p beaucoup plus grand que n . Des transformations analogues à celles employées au paragraphe A -1 nous conduisent à résoudre l'équation matricielle : AdX = -F.

Il existe divers critères pour définir la valeur probable des dx. En particulier si l'on prend les résidus $r_k = -f_k - \frac{n}{k} a_i^k dx_i$ (l<k<p), on peut chercher à rendre minimum la fonction $g = \sum_k rk^2$.

Ce critère s'appelle le critère des moindres carrés et dans ce cas (25) on est donc amené à résoudre le système A AdX + -AF de n équations à n inconnues, système que l'on résoud par les méthodes itératives précédemment exposées. (25)

La construction des matrices A correspondant aux différentes étapes de notre calcul est très longue, ce qui rend cette procédure d'un emploi peu pratique. Il faut néanmoins remarquer que la factorisation des matrices J a considérablement diminué la durée du calcul (d'un facteur 4 environ pour des J de 7). Ce procédé de calcul du jacobien ne donne de bons résultats qu'à la condition que A ait été construite à partir de paramètres assez proches de la solution recherchée.

- 86 -

2[°]) Description du programme

. Après la construction des matrices factorisées J⁽²³⁾ et leur diagonalisation par la méthode de JACOBI les valeurs propres obtenues sont classées par une procédure croissance. Nous appellerons sousprogramme JACOBI cette première partie du calcul. Les valeurs propres calculées sont ensuite rangées dans un tableau T G.

Construction du tableau T G. C'est un tableau à Q lignes correspondant aux Q niveaux d'énergie valeurs propres des matrices J. Les 12 colonnes de TG sont ainsi constituées:
La colonne 1 est formée avec les niveaux d'énergie calculés à partir des paramètres de départ X_j ((1 ≤ j ≤11)). Soit W_i(X₁,...,X_j,... X₁₁) pour le i^{ême} niveau(1≤i≤Q)
La colonne (j+1) est formée avec les niveaux d'énergie calculés à partir des valeurs X_j, sauf le j^{iême} paramètre qui est accru de Δ_x, soit W_{j+1} (x₁,...,x_j+Δx,... x₁₁) pour le i^{ême} niveau.

L'organigramme de la partie du tableau qui construit T G est présenté sur la figure V-1.

Une procédure supplémentaire permet, en outre, de retirer du calcul tout paramètre. Ce qui entraîne comme conséquence le fait que les colonnes correspondantes du tableau T G ne sont pas calculées. Cela diminue encore la durée du calcul d'une façon fort appréciable. Cette procédure est utilisée pour tester la validité d'un paramètre et à chaque foix que deux d'entre eux sont corellés.

<u>Construction du tableau T</u>. C'est la matrice de résolution de la méthode des moindres carrés. C'est un tableau à I lignes qui correspondent aux I transitions mesurées et utilisées dans le calcul Les J colonnes correspondent aux paramètres utilisés. La fréquence calculée de la i^{ême} transition entre niveaux de rotation (notés K et L) est :

 $FC_{i} = TG_{K,i} - TG_{L,i}$ La fréquence calculée à l'aide des paramètres de départ dont le j^{ième} est accru s'écrit:

$$FC_{j}^{i} = T G_{K,j+1} - TG_{L,j+1}$$

On en déduit alors l'élément T_i^i du tableau T de la façon suivante:

$$T_{j}^{i} = FC_{j}^{i} (x_{1}, ..., x_{j-1}, x_{j}^{+} \Delta x_{1} x_{j+1} x_{11}) - FC^{i} (x_{1}, ..., x_{11})$$

qui correspond à l'approximation très sommaire des dérivées $\frac{\partial FC_{1}}{\partial x}$

. Les paramètres sont ensuite déterminés par la méthode des moindres carrés. A ce niveau, un sous-programme de glissement d'indices permet de supprimer telle ou telle ligne du tableau T. Avec ce qui a été mentionné précédemment, nous pouvons donc éliminer une ou plusieurs transitions dont l'identification paraît douteuse ou dont on désire tester l'influence sur les paramètres. Nous pouvons de même maintenir constant un ou plusieurs paramètres lors des itérations. Le programme du calcul en annexe est exposé en détail dans le listing 2

Les deux programmes relatifs au calcul par perturbation ou par diagonalisation directe ont été écrits en langage ALGOL M 40. Les calculs ont été effectués au centre de calcul numérique de l'Université de Lille I sur un calculateur HONEY WILL-BULL GAMMA M 40.

B - APPLICATION A LA DETERMINATION DES PARAMETRES MOLECULAIRES

B - 1 - Cas des résonances faibles : HCOOD et DCOOD

L'étude entreprise au chapitre III a mis en évidence le comportement voisin des molécules HCOOD et DCOOD. En outre, elle nous a fait émettre l'hypothèse de la présence, chez chacune d'elles, d'une résonance de Coriclis faible. Ces deux raisons nous amènent à exposer simultanément la détermination de leurs paramètres moléculaires.

Rappelons, en outre, que les conclusions du 3^{ème} chapitre nous conduisent à douter de l'efficacité du calcul par la méthode de perturbation. Cette technique se révèle toutefois très efficace en ce qui concerne l'attribution des raies aux états v_7 et v_6 .

a) Méthode par perturbation

Dans le cas particulier de la matrice $\langle J = 1 \rangle$, nous avons pu déduire du calcul de perturbation un renseignement qualitatif important. Les résultats exposés à l'annexe II, compte-tenu du fait que la matrice $\langle J = 0 \rangle$ n'est pas perturbée (E₀₀₀₇) = 0 et E₀₀₉ = Δ), nous donnent les fréquence suivantes:

$$f(0_{007}^{+1}017) = B_7 + C_7 + \frac{G_b^2}{(B_7 + C_7) - (A_9 + B_9 + \Delta)}$$

$$f(0_{009}^{+1}019) = B_9 + C_9^{+1} + \frac{G_b^2}{(B_9 + C_9 + \Delta) - (A_7 + B_7)}$$

En supposant, comme cela est généralement admis, que les paramètres du rotateur rigide (A,B,C) des états vibrationnels excités d'une molécule sont voisins de ceux de l'état fondamental, l'examen des expressions de ces deux fréquences permet immédiatement de classer, sans doute possible, les transitions en groupes appartenant à l'un ou l'autre des états excités. En effet, en prenant pour Δ la valeur indiquée par T. MIYAZAWA et K. PITZER⁽¹¹⁾, soit 21 cm⁻¹, on voit immédiatement que le terme de perturbation, pour la transition $0_{007} \rightarrow 1_{017}$, est négatif (déplacement vers les basses fréquences par rapport à l'état fondamental), tandis que le terme correctif pour la transition $0_{009} \rightarrow 1_{019}$ est positif (déplacement vers les hautes fréquences par rapport à l'état fondamental). La transition $0_{007} \rightarrow 1_{010}$ possédant la plus basse fréquence sera alors attribuée à l'état v_7 et celle possédant la plus haute fréquence à l'état v_0 .

La méthode graphique mentionnée dans les chapitres précédents permet immédiatement le classement recherché. Cette méthode, déjà utilisée pour HCOOH par C. SAMSON⁽¹⁰⁾, a été employée avec succés pour les molécules HCOOD et DCOOD.

L'hypothèse des rotateurs indépendants permet de connaître la contribution de la distorsion centrifuge pour chacune des raies identifiées. Nous calculons alors les fréquences corrigées de la distorsion centrifu - ge (f. corr. = f. distorsion) pour chacune des transitions des 2 états vibrationnels. Le calcul de perturbation, utilisant un choix judicieux de 8 fréquences corrigées, ne permet pas de déterminer d'une façon valable les deux paramètres \triangle et G_b . La cause essentielle de cet échec serait due au fait que ce calcul n'utilise que des transitions de J = 1 et 2. Dans ce cas, la contribution de \triangle et G_b à la perturbation est de l'ordre de grandeur des erreurs expérimentales et de celles commises sur l'estimation de la distorsion centrifuge.

b) Diagonalisation directe

1°) Cas de la molécule HCOOD

Nous avons finalement employé le calcul par diagonalisation directe qui permet d'utiliser les 70 transitions connues. L'introduction de transitions Q_a de J \leqslant 10 devrait ici éliminer la cause essentielle de l'échec précédent.

Les paramètres de départ sont dans le tableau V -2.

Les 6 paramètres $(A_7, B_7, C_7, A_9, B_9, C_9)$ sont ceux obtenus au cours du calcul approché faisant l'hypothèse des rotateurs indépendants, Δ_K et δ_K étant «fixés»» (tableaux III -11 et III -12).

. Nous avons introduit la valeur de \triangle donnée par T. MYAZAWA et K.S. PITZER⁽¹¹⁾ soit 21 cm⁻¹ (630 000 GHz).

. Nous avons estimé G à 500 MHz en calculant sa contribution sur l'ensemble du spectre expérimental.

. La résonance de Coriolis est faible. Elle justifie donc le fait que nous avons <<fixé>> les valeurs de G_a, F_{ac} et F_{bc} égales à zéro.

Le calcul par diagonalisation directe incluant l'ensemble des transitions mesurées corrigées de la distorsion centrifuge, nous donne les paramètres du tableau T_7 . Ces derniers calculent l'ensemble du spectre avec un écart moyen de l8 kHz (tableaux T_5 et T_6). La comparaison de ces résultats avec les paramètres des tableaux III -11 et III - 12 montre que la solution obtenue à l'aide de l'hypothèse des rotateurs indépendants était très satisfaisante. Les valeurs trouvées pour Δ et G_b indiquent clairement que la résonance est faible.

La dernière colonne des tableaux T_4 et T_5 correspondent à la contribution due au phénomène de résonance. Elle est obtenue en faisant la différence entre:

- * $f_{calculée}$ avec \triangle et $G_b = 0_c$
- * f. calculée avec ∆ et G_b correspondant aux valeurs finales obtenues. = f. cal.

2°) Cas de la molécule DCOOD

En ce qui concerne cette seconde molécule, le même traitement numérique est appliqué. Les paramètres de départ (tableau V - 3) sont choisis d'une façon identique:

. A7, B7, C7, A9, B9, C9, correspondent aux solutions obtenues lors de l'étude utilisant l'hypothèse des rotateurs indépendants.

> . Δ est fixé à 21 cm⁻¹ (11). . G_b est estimé à 300 MHz. . G_a = F_{ac} = F_{bc} = 0.

La solution obtenue (tableaux T_8 , T_9 et T_{10} en annexe) correspondent à un écart moyen de 9kHz. Comme dans le cas précédent, nous pouvons conclure à une résonance très faible.

c) <u>Règles de sommes</u>

Cette dernière méthode permet de controler la validité des résultats précédents.

Les niveaux d'énergie caractérisés par des valeurs de J \leq 3 et des valeurs de K₋₁ = 0 ou 1 ont pour les états v_7 et v_9 , la disposition représentée à la figure V-4.

Etat v7	Etat v ₉	
A = 65451,469 MHz	67084,153 MHz	
$B_7 = 11610,035 \text{ MHz}$	11853,396 MHz	
C ₇ = 9968,774 MHz	9958,156 MHz	
$\Delta = 630000 \text{ MHz}$		
$G_{b} = 500 $ MHz		
$G_a = 0$		
$F_{ac} = 0$		
$F_{bc} = 0$		

Tableau V -2 Molécule HCOOD Etats excités 27 et 29 Paramètres de départ pour le calcul par diagonalisation directe.

Etat v_7 A₇ = 50596,223 MHz B₇ = 11616,460 MHz C₇ = 9532,010 MHz $\Delta = 630000$ MHz G₂ = 300 MHz

 $\Delta = 630000 \text{ MHz}$ $G_{b}^{=} 300 \text{ MHz}$ $G_{a}^{=} 0$ $F_{ac}^{=} 0$ $F_{bc}^{=} 0$

Tableau V -3 Molécule DCOOD Etats excités v_7 et v_9

paramètres de départ du calcul par diagonalisation directe

A + C	0	iG _a	0	0	0
0	B + C	G _{1,}	0	0	0
-iG _a	G _b	∆ + A'≁B'	0	0	0
0	0	0	A + B	iG _a	G _b
0	0	0	- i G	∆ + A'+C'	0
0	0	0	−G _b	0	∴ + B'+C'

Figure V -5 : Matrice J =1 après transformation de WANG et réarrangement des lignes et des colonnes.

Sur cette figure, les différentes flèches désignent les transitions mesurées de type R_a , Q_b ou Q_a . On voit immédiatement qu'il est possible de déduire, des différentes fréquences mesurées, les énergies de tous les niveaux de rotation correspondant à J = 1. (Tableaux V-4 et V-7).

Par réarrangement des lignes et des colonnes, la matrice simplifiée << J =1 >> obtenue après transformation de WANG(figure II -6) peut aisément être factorisée (figure V-5). Nous pouvons alors écrire des règles de sommes par simple utilisation de l'invariance de la trace des matrices. Ces règles de sommes fournissent des équations de vérification des paramètres déterminés par un calcul numérique. Les 2 équations de vérification qui nous ont paru les plus intéressantes sont les suivantes:

$$\{1\} C_7 - C_9 = \frac{1}{2} \left\{ \{E(1_{1,1,7}) + E(1_{0,1,7}) + E(1_{1,0,9}) - (E(1_{1,1,9}) + E(1_{0,1,9}) + E(1_{$$

 $E(1_{1,0,7})\}$

 $\{2\} \quad A_{7}^{+}B_{7}^{+}C_{7}^{+}A_{9}^{+}B_{9}^{+}C_{9}^{-} \frac{1}{2} \{E(1_{1,1,7}) + E(1_{0,1,7}) + E(1_{1,0,7}) + E(1_{0,1,9}) + E(1_{0,1,7}) \}$

 $E(1_{1,1,9}) + E(1_{1,0,9})$

où $E(1_{i,j,v})$ désigne les niveaux correspondant à J=1. Il faut noter que, si la première équation n'est valable en toute rigueur que dans le cas où F = F = 0, la seconde, liée à la trace de la matrice J+1 complète (figure II-5), est valable dans le cas général.

* Nous avons ainsi vérifié la validité des paramètres des tableaux T₇ et T₁₀. Les résultats sont portés dans le tableau V -6.
 On notera la qualité des constantes obtenue par le calcul.

- 95 -

Equations		{1} MHz	{2} MHz
Calcul avec les paramètres	HCOOD	10,62	175925,29
des tableaux T7 et T10	DCOOD	12,73	144349,71
Calcul avec les niveaux	HCOOD	8,91	175925,2
J =1	DCOOD	13,05	144348,92

Tableau V - 6

	Etat v ₇	Etat V ₉	Nbre de transit. = N
101	21148,67	21360,80	1
111	60127,60	60762,85	7
110	62212,07	63085,55	2
			· · · ·

N = nombre de transitions mesurées utilisée pour obtenir l'énergie du niveau

Tableau V - 7 : Exemple pour DCOOD: Niveaux d'énergie J =1

B - 2 -<u>Cas de la résonance forte</u>: Molécule DCOOH
1°) <u>Calcul des paramètres</u>.

Les premiers calculs numériques ont porté sur les transitions R_a et Q_a de J \leqslant 7 et de K_{-1} \leqslant 2 qui ont été précédemment identifiées (tableau IV - 13).

Les paramètres de départ ont été estimés de la façon suivante: . En ce qui concerne A₇, B₇, C₇, A₉, B₉, C₉, nous avons pris les résultats obtenus au cours de l'étude relative à l'état fondamental (tableau T₁₃) Etat v_7 (MHz) A₇ = 55 700 MHz B₇ = 11 930 MHz C₇ = 9945 MHz A = 289500 MHz C₈ = 6010 MHz C₉ = 9965 MHz A = 289500 MHz C₉ = 9965 MHz F_{ac} = -100 MHz F_{bc} = -100 MHz

Tableau V -8 : Molécule DC¹²00H Etats excités v₇ et v₉ Paramètres de départ pour le calcul par diagonalisation directe.

. pour \triangle , nous avons pris la valeur proposée par T. MYAZAWA et K.S. PITZER⁽¹¹⁾, soit 9 cm⁻¹ (270000GHz).

. Il s'agit d'un cas de résonance forte. Nous avons donc utilisé pour G_a et G_b, des valeurs comparables à celles obtenues par C. SAMSON⁽¹⁰⁾ lors de l'étude de la molécule HCOOH.

Nous avons alors essayé de déterminer l'effet de ces paramètres sur la disposition caractéristique des raies centrales des transitions R_a , J =2+3 (figure IV - 12). Les résultats de cette étude numérique figurent dans le tableau V-8. Ces constantes nous ont servi de paramètres de départ pour l'étude numérique utilisant le programme de calcul par diagonalisation directe détaillé en V-A-2.

Par des calculs successifs, nous avons finalement identifié 52 transitions appartenant aux 2 états vibrationnels excités v_7 et v_9 , dont 4 de type Q_b. Le calcul par diagonalisation directe incluant l'ensemble des transitions mesurées corrigées de la distorsion centrifuge de l'état fondamental nous donne les paramètres figurant au tableau T₁₅.

Ces derniers calculent l'ensemble du spectre avec un écart moyen de 17 MHz (tableaux T $_{16}$ et T $_{17}$,)

Les nombreuses difficultés rencontrées tout au long de cette étude nécessitent les remarques suivantes:

. Le paramètre G_a a peu d'influence, sur la plupart des transitions utilisées: en conséquence, il reste mal déterminé.

. Certains des ll paramètres utilisés sont corellés; en particulier, les paramètres F et G ne peuvent être simultanément déterminés dans une même itération.

2°) Règles de sommes

Les résultats concernant la vérification de la validité des constantes obtenues sont portés au tableau V ~9. On note naturellement un écart plus important que dans le cas des résonances faibles. Il est bien évident que les résultats obtenus dans ce cas de résonance forte sont de qualités inférieures.

3°) Conclusion

L'avant-dernière colonne des tableaux T_{16} et T_{17} correspond à la différence:

- fréquence calculée avec les 11 paramètres (f. cal.)

- fréquence calculée lorsque $\Delta = G = G = F = F = 0$.

Elle traduit donc la contribution due au phénomène de résonance. On y constate nettement l'importance de la résonance, surtout au niveau des transitions de J et K₁ élevés.

Les ordres de grandeurs des constantes Δ , G_b , G_a , F_{ac} et F_{bc} obtenues permettent de conclure, sans aucun doute possible, à l'existence d'une résonance de Coriolis très forte entre les états vibrationnels v_7 et v_9 de DCOOH.

Pour que les différences f. calculées -f. mesurées deviennent inférieures aux erreurs expérimentales, il serait maintenant nécessaire d'in troduire les termes de la distorsion centrifuge, et peut être les termes d'ordre supérieur du couplage de Coriolis. Ces approximations sont certainement l'une des causes de la valeur relativement élevée de l'écart moyen mentionné. (17 MHz). Une telle étude nécessiterait un nombre nettement plus important de données expérimentales, essentiellement des transitions de type μ_h correspondant à des J suffisamment élevés.

	{1} (MHz)	{2} (MHz)
Calcul à l'aide des paramètres	-10,4	159523,6
Calcul avec les niveaux J =1	- 22,9	159544,59

Tableau V - 9 : Règles de sommes
C O N C L U S I O N

Après l'identification des spectres de rotation des états fondamentaux des molécules HCOOD et DCOOH, nous avons entrepris l'étude des états vibrationnels excités v_7 et v_9 de HCOOD, DCOOH, et des états vibrationnels excités v_6 et v_8 de HCOOH.

Nous avons mis en évidence l'existence de résonances faibles entre les états vibrationnels v_7 et v_9 des formes DCOOD et HCOOD et entre les états v_6 et v_8 de HCOOH.

Nous avons montré que la méthode de calcul par perturbation stationnaire que nous avons mise au point ne permet pas d'obtenir une solution valable pour les cas étudiés. Cette méthode devrait cependant être utilisable pour des résonances moyennes; cas que nous n'avons pas observé au cours de cette étude.

Des considérations de symétrie nous ont permis de simplifier le modèle général de calcul par diagonalisation directe proposé par C. SAMSON⁽¹⁰⁾. Cette méthode nous a permis de déterminer une solution raisonnable en ce qui concerne les molécules HCOOD et DCOOD. Elle a en particulier confirmé les attributions des vibrations fondamentales proposées par MYAZAWA et PITZER⁽¹¹⁾. Nous avons ainsi obtenus des écarts respectifs de 21,005 cm⁻¹ (630 160 MHz) et de 21,034 cm⁻¹ (631036 MHz) entre les fréquences des centres de bande des vibrations v₂ et v₀ de HCOOD et DCOOD.

Nous avons mis en évidence une résonance très forte entre les états vibrationnels excités v_7 et v_9 de la molécule DCOOH. La contribution de la résonance pouvant, dans ce cas, atteindre 4 GHz au niveau de transitions de type R_a de J =6 + 7 et K₋₁ = 3.

L'étude numérique entreprise nous permet d'atteindre une solution qui confirme pleinement les attributions des vibrations fondamentales données par MYAZAWA et PITZER⁽¹¹⁾. Nous avons ainsi trouvé un écart de 9,7 cm⁻¹ (290850MHz) entre les fréquences des centres de bande des vibrations v_7 et v_0 de DCOOH. Les paramètres obtenus ne permettent cependant un calcul du spectre observé qu'avec un écart moyen de l'ordre de 17 MHz.

Dans le cas d'une résonance forte, il apparaît nécessaire d'introduire la distorsion centrifuge et peut être des termes de couplage d'ordre supérieur.Au niveau de la méthode de calcul utilisée, il reste encore à améliorer la procédure de calcul du jacobien, en l'adaptant au cas général dans lequel les paramètres de départ sont totalement inconnus.

La poursuite ultérieure de l'étude de la molécule d'acide formique devra naturellement tenir compte de ces remarques. Cela devrait nous permettre une analyse complète des bandes infrarouges des spectres de rotation-vibration, ce qui permettrait, en outre, d'interpréter le fonctionnement d'un laser moléculaire à acide formique. Annexe - 1 - CALCUL DES ELEMENTS DE MATRICE DE $P_y P_z + P_z P_y$

On a : $P_y P_z + P_z P_y = (P_y P_z - P_z P_y) - 2P_z P_y = -ihP_x - 2P_z P_y$ compte tenu des règles de commutation du moment cinétique.

Les éléments de matrice non mais de l'éguillement

$$< K | P_{X} | K \pm 1 > = \pm i \frac{h}{2} \sqrt{J (J+1) - K (K\pm 1)}$$

on a donc
$$< K | -i \hbar P_{X} | K \pm 1 > = \pm \frac{h^{2}}{2} \sqrt{J (J+1) - K (K\pm 1)}$$

Les éléments de matrice non nuls de $P_z P_y$ sont :

$$<$$
 K | P_z P_y ; K ± 1 $>$ = $\sum_{K'}$ $<$ K | P_z | K' $>$ $<$ K' | P_y | K ± 1 $>$

Les seuls éléments de matrice non nuls de ${\rm P}_{\rm Z}$ étant

$$< K \mid P_z \mid K > = h K$$

on a

$$< K | P_z P_y | K \pm 1 > = \frac{h}{2} \times \sqrt{J (J+1) - K (K\pm 1)}$$

Finalement on a donc :

$$< K \mid P_{y} \mid P_{z} + P_{z} \mid P_{y} \mid K \pm 1 > = \frac{\hbar^{2}}{2} (2 \mid K \pm 1) \sqrt{J (J+1) - K (K\pm 1)}$$

Annexe -2 - CALCUL DES ELEMENTS DE MATRICE DE $P_x P_y + P_y P_x$

On a
$$P_x P_y + P_y P_x = (P_x P_y - P_y P_x) + 2 P_y P_x$$

= $-ihP_z + 2 P_y P_x$

Les éléments de matrice non nuls de P_z étant $< K + P_z + K > = \hbar K$ on a $< K + -i\hbar P_z + K > = -i\hbar^2 K$.

 $P_y^{}$ $P_x^{}$ a des éléments de matrice non nuls de la forme

$$< K | P_{y} P_{x} | K > et < K | P_{y} P_{x} | K \pm 2 >$$

$$< K | P_{y} P_{x} | K > = < K | P_{y} | K - 1 > < K - 1 | P_{x} | K >$$

$$+ < K | P_{y} | K + 1 > < K + 1 | P_{x} | K >$$

$$= \frac{\hbar}{2} \sqrt{J} (J+1) - K (K-1) ... (i \frac{\hbar}{2}) \sqrt{J} (J+1) - K (K-1) + \frac{\hbar}{2} \sqrt{J} (J+1) - K (K+1) ... (-i \frac{\hbar}{2}) \sqrt{J} (J+1) - K (K+1) = i \frac{\hbar^{1}}{2} K$$

D'où

$$< K \mid 2 P_y P_x \mid K > = i \hbar^2 K$$

nous avons donc finalement $< K \mid P_x \mid P_y \mid P_y \mid K > = 0$.

Il reste donc les éléments de matrice :

$$< K + P_y P_x + P_x P_y + K \pm 2 > = < K + 2 P_y P_x + K \pm 2 >$$

avec

$$< K | P_{y} P_{x} | K \pm 2 > = < K | P_{y} | K - 1 > < K - 1 | P_{x} | K \pm 2 >$$

+ $< K | P_{y} | K + 1 > < K + 1 | P_{x} | K \pm 2 >$

Compte tenu de la forme des éléments de matrice non huls de P_x et P_y nous trouvous :

$$< K + P_y P_x + P_x P_y + K \pm 2 > = \pm i \frac{\hbar^2}{2} \sqrt{J} (J + 1) - (K \pm 1) \cdot \sqrt{J} (J + 1) - (K \pm 1) (K \pm 2)$$

ANNEX III : Niveaux d'énergie J =2 par perturbation.

$$2_{207} = \lambda^{*}_{7} \gamma^{*} \frac{x^{2}k_{7}^{2}(\sqrt{3}(\lambda^{*}_{7}-c_{7})-b_{7})^{2}}{\lambda^{*}_{7}-(\Lambda^{*}+4B^{*}+C^{*}+\Delta)} - \frac{4z^{2}k_{7}^{2}b_{7}^{2}}{\lambda^{*}_{7}-(4\Lambda^{*}+B^{*}+C^{*}+\Delta)}$$

$$2_{127}^{*}+A^{*}B^{*}+4C^{-} \frac{z^{2}}{A^{*}B^{*}+4C^{-}(\Lambda^{*}+4B^{*}+C^{*}+\Delta)} + \frac{x^{2}}{A^{*}B^{*}+4C^{-}(C_{9}+\Delta)}$$

$$2_{027}^{*} = \lambda_{7} + \frac{x^{2}k_{7}^{2}(\sqrt{3}b_{7}-(\lambda_{7}-a_{7}))^{2}}{\lambda_{7}-(\Lambda^{*}+4B^{*}+C^{*}+\Delta)} - \frac{4z^{2}k_{7}^{2}(\lambda_{7}-a_{7})^{2}}{\lambda_{7}^{-}(C_{9}+\Delta)}$$

$$2_{117}^{*}=A^{*}+4B^{*}C + \frac{x^{2}k_{9}^{2}(b_{9}-\sqrt{3}(\lambda^{*}-g^{-}))^{2}}{A^{*}+4B^{*}C^{-}(\lambda^{*}-g^{-})^{2}} - \frac{z^{2}}{A^{*}+4B^{*}C^{-}(\Lambda^{*}+B^{*}+4C^{*}+\Delta)}$$

$$+ \frac{x^{2}k_{9}^{2}+(\lambda_{9}-a_{9})-\sqrt{3}b_{9})^{2}}{A^{*}+4B^{*}C^{-}(\Lambda^{*}-g^{+}+\Delta)}$$

$$2_{217}^{*} = C_{7}^{-} - \frac{4z^{2}k_{9}^{2}b_{9}^{2}}{C_{7}^{-}(\lambda^{*}-g^{+}+\Delta)} + \frac{x^{2}}{C_{7}^{-}(\Lambda^{*}+B^{*}+4C^{*}+\Delta)}$$

$$- \frac{4z^{2}k_{9}^{2}(\lambda_{9}-a_{9})^{2}}{C_{7}^{-}(\lambda_{9}+\Delta)} + \frac{x^{2}k_{9}^{2}(b_{9}-\sqrt{3}(\lambda_{9}-c_{9}))^{2}}{C_{7}^{-}(\Lambda^{*}+B^{*}+4C^{*}+\Delta)}$$

$$- \frac{4z^{2}k_{9}^{2}(\lambda_{9}-a_{9})^{2}}{C_{7}^{-}(\lambda_{9}+\Delta)} + \frac{x^{2}k_{9}^{2}(b_{9}-\sqrt{3}(\lambda_{9}-c_{9}))^{2}}{A^{*}g^{+}\Delta^{-}(\Lambda^{*}+4B^{+}C)} - \frac{z^{2}}{A^{*}g^{+}\Delta^{-}C_{7}}$$

$$2_{129}^{*} + x^{*}A^{*}B^{*}+4C^{*}+\Delta - \frac{z^{2}}{A^{*}B^{*}+4C^{*}+\Delta^{-}(A^{*}+4B^{+}C)} + \frac{x^{2}}{A^{*}B^{*}+4C^{*}+\Delta^{-}C_{7}}$$

$$2_{029} = \lambda_9 + \Delta + \frac{X^2 k_9^2 \{(\lambda_9 - a_9) - \sqrt{3} b_9\}^2}{g^{+\Delta} - (A + 4B + C)} - \frac{4Z^2 k_9^2 (\lambda_9 - a_9)}{\lambda_9^{+\Delta - C_7}}$$

$$2_{119} = A^{3} + 4B^{1} + C^{1} + \Delta + \frac{X^{2}k_{7}^{2} (\sqrt{3}(\lambda'_{7} - C_{7}) - b_{7})^{2}}{A^{1} + 4B^{1} + C^{1} + \Delta - \lambda_{7}^{2}} - \frac{A^{1} + 4B^{1} + C^{1} + \Delta - \lambda_{7}^{2}}{A^{1} + 4B^{1} + C^{1} + \Delta - \lambda_{7}^{2}}$$

$$\frac{z^{2}}{A^{*}+4B^{*}+C^{*}+\Delta^{-}(A+B+4C)} + \frac{x^{2}k_{7}^{2}(\sqrt{3} b_{7}^{-}(\lambda_{7}-a_{7}))^{2}}{A^{*}+4B^{*}+C^{*}+\Delta^{*}-\lambda_{7}}$$

$$2_{219} = C_{9} + \Delta - \frac{4z^{2}k_{7}^{2}b_{7}^{2}}{C_{9} + \Delta - \lambda^{2}_{7}} + \frac{x^{2}}{C_{9} + \Delta - (A + B + 4C)} - \frac{4z^{2}k_{7}^{2}(A_{7} - A_{7})^{2}}{C_{9} + \Delta - (A + B + 4C)}$$

Correspondance des symboles utilisés.

$$a_7 = 3(B+C)$$
 $b_7 = \sqrt{3}(C-B)$ $C_7 = 4A+B+C$
 $a_9 = 3(B'+C')$ $b_9 = \sqrt{3}(C'-B')$ $C_9 = 4A'+B'+C'$

$$\Delta = \omega_{9} - \omega_{7}$$

$$\lambda_{7} = 2(A+B+C) - 2\sqrt{(B-C)^{2} + (A-B)(A-C)}$$

$$\lambda_{7} = 2(A+B+C) + 2\sqrt{(B-C)^{2} + (A-B)(A-C)}$$

$$\lambda_{9} = 2(A^{3}+B^{3}+C^{3}) - 2\sqrt{(B^{3}-C^{3})^{2} + (A^{3}-B^{3})(A^{3}-C^{3})}$$

$$\lambda_{9}^{3} = 2(A^{3}+B^{3}+C^{3}) + 2\sqrt{(B^{3}-C^{3})^{2} + (A^{3}-B^{3})(A^{3}-C^{3})}$$

$$\lambda_{9}^{3} = 2(A^{3}+B^{3}+C^{3}) + 2\sqrt{(B^{3}-C^{3})^{2} + (A^{3}-B^{3})(A^{3}-C^{3})}$$

$$\frac{1}{k_{9}^{2}} = b_{7}^{2} + (b_{7}^{3}-a_{7})^{2}$$

$$\frac{1}{k_{9}^{2}} = b_{9}^{2} + (b_{9}^{3}-a_{9})^{2}$$

$$X=G_{b}$$

$$Z = iG_{a}$$

TABLEAU $-T_1 - DC^{12}OOD$: Etat fondamental : transitions identifiées

Transitions					Ecart			
Niv.	Sup.	Ni	v. Inf.	F. calculées MHz	statisti- que	F. mesurées. MHz	∆ MHz	
2	22	2.8	6 23	7873.61	•01	7873+65	• 0.4	
34 7	27	34	7 28	8157.39	•02	8157.47	•08	
17 6	15	17	4 1 4	9182.59	•01	9182.61	•02	
23 5	18	23	5 19	10724.35	•01	10724.36	*01	
12 3	19	12	3 10	10864.42	.01	10864.44	•02	
7 2	5		2 6	10959.30	.01	10959.32	•02	
29 t	23	20	6 24	11520+29	•02	11529.33	•04	
19 4	14	13	4 15	13905+45	•01	13905+46	• 01	
24 5	19	24	5 20	15700.09	• 0 1	15700.10	•01	
30 7	24	30	6 25	16520.95	•02	16520+96	•01	
36 7	29	36	7 30	16589.62	•03	16539+67	•05	
i3 🔅	10	13	3 11	16731.37	•01	15731.39	•02	
	Ċ.	~	2 7	17641.98	.01	17642.00	•02	
4 i	75	4	4	22237.04	•01	22237+12	•08	
25 5	20	25	5 21	22425.07	•02	22425+07	00	
37 2	30	\$ 7	7 31	23070.64	- 03	23070+66	.02	
31	25	31	6 25	23224+03	.02	23224+02	01	
14. 5	11	14	3 12	24650.41	•0;	24650.43	•02	
	-,	4	2 ;	26525+04	.01	26525+07	•03	
20 4	15	20	4 17	28969.10	.02	23969.11	.01	
26 5	21	24	5 22	31263-30	•02	31263+27	03	
38 7	31	3.9	7 32	31542.46	•03	31542+42	04	
32 6	2-6	32	6 27	32000+12	•03	32000+07	05	

												1
	C	{	4	÷	l	5		33312+28	•01	33312.31	•03	
	15	3	12	15	3	13		34890 • 76	•02	34890•78	•02	
	10	с. 4.	8	10	2	9		37733+91	•01	37733.94	•03	
	21	/;	17	21	ζ.	13		39966+51	•02	39966.50	01	
	2	1		I	١	l		40362.45	•01	40362+47	•02	
	45	14	27	43	÷	33		40429.32	•05	40429.32	00	
	I	I	0	ţ	0	ł		41281.86	•01	41281+88	•02	
	39	7	32	30	7	33		42384+61	•04	42384+54	-•07	
And a second second	2	ú	i,	ì	0	1		42495+40	•01	42495.43	•03	
an color in the second	2.1	5	ć ć.	4 4	3	23		42553+95	•02	42553+91	~ •04	
	2	1	1	2	ŋ	2		43599.91	•01	43599+87	->04	
	2	1	i	1	Į	U		44813+45	•01	44813.47	•02	
	2 52	I	5	C	ļ	6		46528.24	•01	46528.31	•07	
	3	l	2	3	ŋ	3		47247 • 80	• 0 1	47247.79	-•01	
	16	<u>}</u> ;	15	16	3	14		47625.73	•02	47625.75	•02	
	4	('	G	3]	3		50361.81	•02	50361.79	02	
		2		11	2	10		51295+69	• Q 1	51295.77	• 0 3	
	14. 1	1	2	4	C	4	*	52421.00	•01	52420+81	18	
	5	I	4	5	0	5		59355.60	• 0 1	59355+57	03	
	L	Į	l	0	0	0		69350+33	•00	60350.28	05	
	3	ł	ز	2	1	2		60486.66	•01	60486+68	+02	
	7	I	6	7	I	7		6!802.82	•01	61802.82	00	
	17	3	14	17	3	15		62921.14	• 0.2	62921+13	-•01	
	3	0	3	2	0	2		63512+57	•01	63512+56	-+01	
	3	2	2	2	2	I		63881.95	•01	63881.97	•02	
	3	2	1	2	2	0		64250.52	•01	64250+42	-•10	
	12	2	10	12	2	11		67157.72	•02	67157.77	•05	
	3	l	2	2	1	I		67160•46	.01	67160+47	•01	
	5	C	ť.,	- 4		ų		74480+14	•02	74480+17	.03	Ķ
	2											

* Nouvelle transition identifiée

									i
3	I	7	3	I	8	79008+56	•01	79008.59	•03
2	1	2	1	0	1	79418.75	. •01	79418.77	•02
7	1	6	7	0	7	79434.53	•01	79434+51	-•02
5	1	5	4	1	4	100523.45	•01	100523•45	•00
19	3	16	10	3	17*	100966.99	.02	100967.00	•01
. 9	2	7	2	1	8 *	101036.45	•02	101036+42	-•03
7	2	5	7	I	6 *	101762+72	•02	101762.73	•01
5	. T1	5	4	0	4 *	104664.09	.01	104664.15	•06
5	2	4	4	2	3*	106261.71	.01	106261.71	-•01
5	4	1	4	4	0*	106676+32	،02	106676.16	-+}7
5	3	3	. 4	3	2 *	106761.58	•01	106761.57	-•01
5	3	2	4	3	1 *	106811.80	•01	106811.71	-•09
5	2	- 3	5.	, I	4 *	107394.90	.03	107394.93	•03
5	2	3	4	2	2	108062.70	•01	108062+68	02
5	1	4	4	١	3 🛢	111598.70	•01	111598•77	•07
4	I	4	3	0	3	114443.21	.02	114443.09	-•12
12	2	10	12	ł	11.	115265.34	•02	115265+23	•11
37	6	31	37	6	32	117572 • 14	•06	117572.15	•01
10	I	0	10	1	10	118421.09	.02	118421.07	02
6	I	6	5	1	5	120407.66	•01	120407.78	•12
7	Ç	7	6	1	6	122559+39	•02	122559+15	24
20	.3	17	. 20	3	18	123408.96	•03	123408.72	-•24
6	a	6	5	0	5	124685•34	•01	124685.43	•09
13	2		13	ł	12	125037.39	.02	125037.34	05
10	1	ģ	10	0	10	126376.47	•02	126376.57	•10
15	2	13	15	2	14	127133.26	•02	127133.44	•18
6	2	5	5	2	. 4	127342+80	.01	127342.75	-•05
6	5	Ş	5	5	J	127996 • 69	+03	127996 • 77	•08

-* Nouvelles transitions identifiées.

-107 -

.

		····.							
6	4	3	5	4	2	128075+81	•02	128075+95	•14
6	4	2	5	4	I	128077.67	• 02	128077.73	•06
6	3	4	5	3	3	128203.02	•01	128203.06	•04
6	3	3	5	3	2	128336.33	•0}	28336.27	-•06
б	i	5	5	I	4	133623•61	•01	133623+63	•02
26	4	22	26	4	23 *	135251+43	•04	135251+41	02
14	2	12	14	ł	13	137526+53	•02	137526.47	06
5	2	4	5	I	5	137530.74	•03	137530+75	•01
1044 •		10	1. I	I		140080.90	•03	140081+05	•15
7	۱	7	6	1	6	140191.09	•02	140191.09	-•00
32.	5	27	32	5	25*	141633.71	•06	141833.77	•06
6	2	5	6	ł	6*	144465+88	•03	144465+90	•02
10	1	9	9	5	8*	144882.81	•06	144882+80	01
11	1	10	11	0	11*	145921.95	•03	145921.86	10
8	C	8	7	1	7 ∗	146001 • 44	•03	146001+50	•06
6	I	6	5	0	5*	146450.97	•02	146450+95	-•02
21	۰،	18	21	3	10*	147823.07	•03	147823.00	-•05
7	2	6	6	2	5*	148331+46	•01	148331.36	10
7	4	4	6	4	3 ±	149510.06	• 02	149510+11	•05
7	4	3	6	4	2*	149516.24	•02	149516+24	•01
7	3	5	6	3	4¥	149673.62	•02	149673.60	02
7	3	4	6	3	3 *	149971.37	•02	149971.40	•02
16	S	14	16	2	15*	150529.09	•03	150529.09	•01
15	2	13	15	1	14*	152701.13	•02	152701.06	-•07
16	3	13	16	2	14*	152840+34	•04	152840.39	•05
7	2	5	· i	2	4*	153045+46	•01	153045.50	•04
17	3	14	17	2	15	154911.77	.04	154911.77	•00
14	3	11	14	2	12*	155890+53	•04	155890.57	•04

* Nouvelles transitions identifiées.

TABLEAU T₂ MOLECULE DC¹²OOD: Etat fondamental. Paramètres : Théorie de Watson au 2^{ème} ordre

MHz	PARAMETRES 2 ^{ème} ORDRE
A	50816,5 3 6±0,01
B	11759,889±0,003
C	9534,172±0,003
Constantes du l ^{er} ordre	
L	$0,00964\pm 3 \times 10^{-6}$
∆jk	$-0,0336\pm1.10^{-4}$
۵ĸ	0,499±3.10 ⁻³
δ _J	0,002415±1.10 ⁻⁶
δ _K	0,035±1.10 ⁻³
Constantes du 2 ^{ème} ordre	
H _{KJ}	-0,000032±4.10 ⁻⁶
н _к	0,0004±9.10 ⁻⁵
2h _J	0,000000050±5.10 ⁻⁹

TABLEAU T

.

HC¹²OOD : Etat fondamental. Paramètres (théorie de Watson)

Miz	PARAMETRES DELDALLE	PARAMETRES 2 ^{ème} ORDRE
A	66100,18	66099,57±0, 0 7
В	11762,475	11762,553±0,004
C	9969,964	9969,955±0,004
∆_ن	0, 0101	0,01018±1.10 ⁻⁵
۵ _{JK}	-0,0590	-0,059±1.10 ⁻⁴
۵ _K	0,94	1,00±5.10 ⁻²
δ _J	0,00214	0,002146±4.10 ⁻⁶
^б к	0,05115	0,044±1.10 ⁻³
Н.,,		$-1,2.10^{-5}\pm 2.10^{-6}$
2h _J		$-1, 8.10^{-8} \pm 2.10^{-9}$
h _K		1,2.10 ⁻³ ±2.10 ⁻⁵

÷

HC¹²OOD: Etat fondamental : Transitions identifie

		Trans	sitions			F. calculées	E t at statisti-	F. mesurées i- MHz	Δ
Niv.	Sup	•	Niv.	I	nf.	MHz	que	MHz	MHz
8	S	6	3	2	7(D)	8831.26	.02	8831.27	•01
15	3	12	15	3	13(D)	11328.64	•03	11328.67	•03
22	4	18	22	4	19(D)	11441.89	•04	11441.90	•01
ŝ,	2	7	ņ	2	8(D)	13619.47	•03	13619•41	06
30	5	25	30	5	26	14116+35	•06	14116-33	03
23	4	10	23	4	50(D)	15832+79	•05	15832+80	•01
16	3	13	16	3	14(D)	16156.91	•04	16156.94	03
4	I	3	4	١	4	17917.83	.02	17917.85	•02
31	5	26	31	5	27	18945.15	•06	18945 • 12	03
10	Ś	3	10	2	9	19941.56	.03	19941+66	• 1 1
17	3	14	17	3	15	22408.60	•04	22403.64	•04
32	5	27	32	5	28	25063.67	•07	25063.62	05
11	5	9	11	2	10	27960•75	•04	27960.55	20
25	7,	51	25	4	22	28635.96	•05	28636.02	•06
33	5	28	33	5	29	32692.58	• 0 7	32693.02	• 4,4
4	C	4	3	ſ	3	36445.94	•06	36446.15	•21
26	4	22	26	4	23 (D)	37479.36	06	37479.36	00
6	1	5	6	ł	6	37577.66	•05	37577.84	•18
12	2	10	12	2	(D)	37790.98	•05	37791.00	•02
19	3	16	19	3	17 (D)	39971+50	•05	39971.54	•04
2	1	2	I	1	(D)	41672.58	•01	41672.52	06
27	4	23	27	Ŀ	24 (D)	48210.92	•07	48210.92	00
2	0	2	I	0	I (D)	43421.08	.01	43421.10	.02
2	1	۱.	1	1	0 (D)	45257+28	•01 .	45257.37	•09

1								analis anti sugata	andread Andread State of State		·	
	13	2	11	13	2	12 _(D)	49495.69	*	• 115	49495.71	•02	
	7	I	6	7	1	7 (D)	50035.64	t	•06	50035.60	-•04	
	20	5	17	20	3	। ९ (D)	51590.95	Ì	•07	51590.97	•02	
	35	5	30	35	5	31	53343.23	*	•07	53343.43	•21	
	1	۱	0	1	0	1	56128.64	Ŧ	•06	56128.75	•12	
and the second se	2	I	I	2 .	0	3	57964.84	1	•06	57985.03	•19	
	3	1	2	3	0	3	60800.26	t	.06	60800.33	•07	
	28	4	24	28	4	25	60984.91	+	•10	60934+87	-•04	
	14	2	12	14	2	13	63092.23	+_	• 08	63092.29	•06	
	8	ł	7	8	1	8	64200.72	+	•09	64200+63	09	
	4	1	3	4	С	4	64730.30	+	•06	64730.13	-•17	
The second s	3	0	3	2	0	2	65022.17	+	.02	65022 .22	•04	
	3	2	2	5	2.	l	65197.85	+	•02	65197.90	• 05	
	21	3	13	21	3	19	65230 • 61	+	•10	65230.62	•01	
	3	2	ł	2	2	0	65372.10	<u>+</u>	•02	65372+09	01	
	36	5	31	35	5	32	66746.12	<u>+</u>	• 1 1	66746.59	• 47	
	3	I	2	2	1	(D)	67857.59	+	.02	67857.62	•03	
	5	0	5	4	0	4	107793.28	+	+03	107793.28	•00	
	5	4	1	4	4	0	108763.78	-}* 	•02	108763.77	-•01	
	5	3	3	4	3	2	108805 • 81	<u>+</u>	•02	108895•84	04	
	5	3	2	4	3	1	108819.71	+	.02	108819.76	•05	
	6	I	6	5	ł	5	124681.19	+	•03	124681.25	•06	
	ó	0	ΰ	5	0	5	128888.48	+	.03	[28838•5]	•04	
	6	2	5	5	2	4(D)	130193.28	+	•03	130193.24	-•04	
	6	5	2	5	5	I(D)	130512.81	+	•03	130512.69	-•12	
	8	5	I .	5	5)(D)	130512.81	+	•03	130512+69	-•12	
	6	3	4	5	3	3(D)	130614.28	+	•02	130514•48	•20	
	6	3	3.	5	3	2(D)	130551.30	+ -	•02	130651+42	•12	
	6	2	4	5	2	ʒ(D)	131690.75	+	•03	131690.58	-•17	
	5	1	5	5	I	4(D)	135394,98	+	•03	135394.82	16	BUS)

(a) mesurées par MIRRI.

Transitions identifiées (suite)

A. DELDALLE

(D) mesurées par

• 0.8	.02	• 00		• 02	• 00	07	- 26	•08	60 • •	•04	• 05	• 02	0.	-0.	- 05	• 03	••03	• 0 •	• 06	• 50	-0.	01.	• 03	• 06	07		
 145312.87	142753•66	151778.74	152264 • 95	152238.87	152343.36	152344.38	152442•60	152526+01	154137.58	157770.81	210948.03	216195.58	217541.42	217541.42	217546.55	217565.45	217565•45	217606.89	217606.89	217689.54	217689.54	217854.44	217868.60	218028•88	237532.34	308164•66	
50.	• 03	• 03	• 0 4	٤O .	• 03	£0.	•02	•05	£0•	۴O.	• 04	• 04	60.	6 0 •	• 05	• 05	• 05	• 05	• 05	• 0 •	• 0 4	• 03	• 03	• 0 ?	• 05	•	
4-1	+)	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-1-1	→	+1	+1	41	+-1	4 \$	+1	41	+1	+1	+1	
145312.80	149753.64	. 151778.74	152265+06	152238•85	152343.45	152344.45	152442.86	152525.93	154137.67	157770+77	210948.01	216195.56	217541.41	217541.41	217546.57	217565.48	217565 • 48	217606.83	217606.83	217689.34	217689.53	217854.34	217868.57	218028.97	237532.41	308164.69	
 ,	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(D	(D)	(D)	(<u>D</u>)	Â	(<u>a</u>)	(Ĥ	Ê	<u>(</u>	<u>(</u> 2)	(D)	(<u>a</u>)	e	(a)	(<u>A</u>	Â	1
9	6	S	0		m	\sim	4	3	4	5	6	8	0		~	η	CJ	4	Μ	2	4	ં	5	7	6	14	
	0	2	9	Ś	4	-1	г	n	2		0	61	6	¢.	တ	7	۲-	9	9	с С	2 L	4	¢.	ъ	0		
Ģ	6	0	6	9	ę	9	6	9	9	6	6		6	σ.	6	6	0,	6	Ú.	6	6	6	6	6	0	·7 	
7	7	Ģ,		C J	7	m	£	ţ	S	¢,	01	6		C1	т	17	n	ភ	4	6	5	2	\$	හ	0	5	
	0	~	ب	υ	4	ţ	М	n	~ ~		0	\sim	6	C.	C)	7	2	s)	ç	ъ.	ഹ	4	4	Μ	ŝ	-	
~	~	7	7	7	7	7	5	7	2	2	01	0	0	0	01	0	01	0	01	0	0	0	01	0	-	15	

\$

,

TABLEAU T5

.

HC¹²OOD Etat excité v₇ : Transitions identifiées

		·			
Transiti Niv.Sup.	ons Niv.inf	F. Calculées MHz	F. corrigées MHz	∆ Coriolis MHz	F. me sur ées MHz
4137	4147	16408.85	16402.85	0,2	16407,95
5147	5157	24604.18	24604+19	0,2	24602,80
6157	6167	34422.61	34422.62	0,5	34420,68
2127	1117	41516.34	41516:34	0,2	41515,64
2027	1017	43120.63	43120.63	0,2	43120,13
2117	1107	44798.83	44798.84	0,1	44797 ,9 5
2117	2027	57160.90	57160.90	0,2	57158,84
3127	3037	59747.10	59747.10	0,2	59744 ,6 8
3137	2127	62251.66	62251.66	0,3	62250,06
4137	4047	63322.51	63322.51	0,2	63319,15
3037	2027	64588.69	64588.69	0,4	64587,41
3227	2217	64736.38	64736.38	0,2	64733,07
3217	2207	64884.07	64884+60	0,2	64881,15
3127	2117	67174.89	67174.89	0,2	67173,04
5157	4147	103634.55	103634.55	. 0,4	103629,23
5057	4047	107160.52	107160.52	0,5	107155,81
5247	4237	107811.85	107811.85	1,0	107803,08
5417	4407	107976.12	107976.13	1,0	107958,09
5337	4327	103015.61	108015+61	0,6	108003,63
5327	4317	108026+52	108026.52	0,7	108014,73
6167	5157	124267.67	124267+67	0,4	124259,12
6067	5057	128199.64	128199+64	0,5	128191,82
6257	5247	129306.53	129306.53	1,3	129293,41
6517	5507	129565+15	129565.16	0,8	129530,85
	8. ···				

•

6-

.

					, 1
6427	5417	129598,54	129598.55	1,0	129574,67
6347	5337	129601+69	129661+69	0,8	129645,33
6337	5327	129690+75	129690.76	1,0	129674,53
6247	5237	130579+43	130579.43	1,8	130569,63
6157	5147	134036+10	134086+10	0,6	134077,28
7177	6167	144854 • 12	144854.12	1,1	144841,13
7077	6067	[4904]+01	149041.01	0,5	149028,85
7267	6257	150764+39	150764.39	2,4	150745,42
7617	6607	151155+01	151155.04	2,7	151094,61
7527	6517	151182.71	151182.72	0,5	151139,60
7447	6437	151235+21	151235+22.	1,2	151204,50
7437	6427	151235.94	151235.95	1,2	151205,21
7347	6337	151391+99	151391.99	1,3	151370,29

Transitions identifiées (suite

TABLEAU T6

HC¹²OOD Etat excité vg: Transitions identifiées

Transition	ns				
		f. calculées	F. corrigées	∆ Coriolis	F.mesurées
Niv. Sup.	Niv. Inf	MHz	MHz	MHz	
. 4139	4149	18947.03	18947+02	0,1	18941,43
5149	5159	28407.29	28407.28	0,2	28396,05
6159	6169	39736+34	39736.33	0,3	39716,54
2129	. 1119	41727+25	41727.86	0,1	41728,81
2029	1019	43575.14	43575.00	0,1	43574 ,9 2
2119	1100	45518+32	45518.30	0,1	45518,62
7169	7179	52907+94	52907.93	0,3	52874,15
1109	1019	57126+00	57126.00	0,0	57125,28
2119	- 2029	59069 17	59069 • 17	0,0	59069,16
- 3129	3039	62073.24	62073.24	0,1	62073,47
3139	2129	62562+18	62562+20	0,1	62563,23
3039	2029	65243+06	65243.00	0,2	65242,10
3229	2219	65434.63	65434+60	0,1	
3219	22 09	65626+20	65626.20	• 0,2	65630,14
3129	2119	68247+12	68247 • 13	0,1	68246,60
5159	4149	104117.70	104117.70	0,3	104117,56
5419	4409	109164.33	109164.30	0,5	109194,62
5339	4329	109214+68	109214.70	0,4	109229,04
5329	4319	109230+59	109230.60	0,4	109244,81
6060	5059	129224+18	129224+20	0,5	129217,06
6259	5240	130653+61	30653.60	1,1	130656,21
6519	5509	130989+18	130989.16	0,7	131048,54
6429	5419	131032+51	131032.50	0,3	131066,01
	,	1		5	

•					
6349	5339	131112+14	131112+15	0,2	131126,44
6339	5329	131154+48	131154.49	0,4	131168,46
6249	5239	132298.33	132298.34	1	132296,13
6159	5149	136149.84	136149.80	0,5 ~	136139,09
7179	6169	145464.64	145464+60	0,3	145460,48
7079	6069	150091+22	150091.23	0,6	150080,77
7449	6439	152919+00	152919.00	0,4	152954,43
7439	6429	152920+19	152920.20	Э,4	152955,61
7349	6339	153127.87	153127.89	0,2	153139,86
7259	6249	154896+71	154895.73	0,2	154887,86
•					

.

(1020)

TABLEAU T7

*HCOOD Etats v_7 et v_9 paramètres : calcul par diagonalisation directe

Etat v ₇ (MHz)	Etat V ₉ (MHz)
$A_7 = 65451, 4$	A ₉ =6 7084,1
B ₇ = 11610,02	B ₉ =11853,38
C ₇ =9968,77	C ₉ =9958,15
$\Delta = 630160$ $G_{b} = 27,9$ $G_{a} = 0$ $F_{ac} = 0$ $F_{bc} = 0$	

BAR

. TABLEAU T8

 $DC^{12}OOD$: Etat excité v_7 : Transitions identifiées.

Transitions			onnalista punta punt Pr		
		F. calculées	F. Corrigées	A Coriolis	F. mesurées
Niv.Sup.	Niv.Inf	MHz	MHz	MHz	MHz
			y gana dalam nyaar de sala magang sala da 1919 ya sa sa saka ka mar na mar na mar sa mar sa 1919 ya sa sa mar s		
4137	4147	20830+59	20830+60	0,1	20828,36
5147	5157	31211.23	31211.24	0,1	31207,47
2127	1117	40212+49	40212.49	0,2	40212,31
2027	1017	42215.56	422 5+55	0,0	42215,27
2117	2027	43230.04	43236.05	0,2	43228,94
2117	1107	44381+39	44381.38	0,0	44380,81
3127	3037	46629+53	46629.53	0,4	46628,72
4137	4047	51435+98	51435.99	0,40	51433,57
5147	5057	57861.09	57861.10	0,4	57857 , 56
7167	7177	57951.30	57951.32	0,211,50	57941,58
3137	2127	60268+83	60268-83	0,0	60268,14
3037	2027	63120.71	63120.71	0,1 .	63119,78
3227	2217	63445+41	63445.41	0,2	63443,83
3217	2207	63770+11	63770.11	0,2	63768,66
3127	2117	66520.19	66520.19	0,1	66518,81
5157	4147	100195+46	100195.46	0,1	100192,20
5057	4047 -	104150+98	104150+98	0,0	104147,37
5247	42.37	105561+52	105561.53	0,5	105556,20
5417	4407	105923.49	105923.49	0,3	105915,44
5237	4227	107152.56	107152.57	d,3 147,0	2107147,82
5147	4137	110576+09	110576.10	0,2	110571,23
6167	5157	120040+09	120040.08	0,1	120034,40
					1

΄.

		A REAL PROPERTY AND ADDRESS OF THE OWNER ADDRESS OF			
	•				
6067	5057	124170+09	124170.09	0,9	124164,08
6257	5247	126524+99	126525.00	0,6	126516,46
6517	5507	127094+41	127094.42	0,2	127080,10
6437	5427	127167.05	127167.06	0,1	• 127155,52
6427	5417	127168+50	127168.51	0,2	127156,96
6347	5337	127284.59	127234.60	0,1	127275,04
6337	5327	127395+14	127395.14	0,1	127385,81
6247	5237	129244+27	129244.28	0,5	129236,37
6157	5147	132436.24	132436.24	0,1	132428,20
7177	6167	139794+88	139794.88	0,2	139785,90
7077	6067	143839.49	143839.50	0,8	143829,63
7267	6257	147407.99	147407.99	0,7	147395,01
7527	6517	148328-33	148328.33	0,2	148308,84
7447	6437	148442.55	148442.56	0,2	148426,36
7437	6427	148447.36	148447.37	0,3	148431,24
7357	6347	148596+18	148596.19	0,2	148582,17
7347	6337	148843.35	148843.36	0,2	148829,77
		1	1	Į · .	1

.

•

	I	C ¹² OOD: Etat e	xcité Mg: Mansit	tions identi	fiées.	
Transitions		F.Calculées	F.corrigées	A Coriolis	F.mesurées	
Niv. Sup.	Niv. In	MHz	MHz	MHz	MHz	
4139	4149	23202+14	23202.13	0,4	23197,81	
5149	5159	34756+60	34756.59	0,3	34747,19	
2129	1112	40399.22	40399+22	0,1	40399,60	
2029	1019	42621+67	42621.67	0,0	42621,38	
2119	2029	44146.87	44146.87	0,0	44146,59	
2119	1109	45043.39	45043.39	0,1	45043,21	
3129	3039	47963.66	47963.65	0,0	47963,17 .	
6159	6169	48540.54	48540.52	0,2	48523,11	
4139	4049	53385+78	53385.77	0,1	53384 ,23	
3139	2129	60537+84	60537+84	0,5	60538,51	
5149	5059	60665.79	60665.79	0,2	60661,52	
3039	2029	63684.64	63684.63	0,2	63683 ,72	
3229	2219	64081.96	64081.95	0,1	64083,10	
3219	2209	64479.28	64479 = 28	0,1	64480,113	
3129	2119	67501.42	67501+42	0,0	67500,19	
5050	4049	104863.80	104863.80	0,1	104859,828	
5249	4239	106581.89	106581.89	0,3	106580,80	
541?	4409	107025+12	107025.11	0,3	107034,020	
5339	4329	107118.47	107118.47	0,1	107121,13	
5329	4319	107174.44	107174.43	0,1	107176,90	
5239	4229	108520.88	108520.87	10851 0,1	7, 1 108517,41	
5149	4139	112143.82	112143.81	0,1	112137;39	
6169	5159	120472-52	120422+52	0.1	120469,02	

PULE

6060	5059.	124852.69	124862.68	1,1	124856,50
6259	5249	127716.14	127716.14	0,6	127712,53
6519	5509	128413.23	[284]3.22	0,2	128431,21
6439	5429	128502+00	128501.99	0,1	1285 09,98
6429	5419	128504+14	128504.13	0,2	128512,03
6349	5339	128639.76	128639.76	0,1	128639,96
6249	5239	131015+23	131015.22	0,5	131006,80
.*6159	5149	134256+46	134256.46	0,2	134245,30
7179	6169	140249+19	140249.19	0,2	140243,17
7269	6259	148752+10	148752.10	1,0	148744 ,84
7619	6609	149803.79	149803.77	048 0	149835,43
7529	6519	149878+52	149878.50	0,2	149895,46
7449	6439	150017+82	150017+82	0,1	150023,00
7439	6429	150024.94	150024.93	0,2	150029,98
7359	6349	150192.74	150192.74	0,3	150188,97
7349	6339	150524+45	150524.45	0,3	150519,44
7169	6159	156172+01	156172.00	0,2	156154,70

٠.

Transitions identifiées (suite)

.

13

ι

Tableau TiO

 $DC^{12}OOD$ Etats excites v_7 et: 9

Paramètres obtenus par diagonalisation directe.

Etat v ₇	Etat 9
$A_7 = 50596, 2$ $B_7 = 11616, 46$ $C_7 = 9532, 01$	$A_{9} = 51244,4$ $B_{9} = 11841,36$ C. = 9519.28
1	
∆ = 63 1036	антонтралово-чайлов в 964, 2000 в. 2000 волование нарислодо волово на селективно на на вод <u>так</u> о десени фи <mark>н</mark> и
G _b = 25,3	
$G_a = 0$	
$F_{ac} = 0$	
$F_{bc} = 0$	

Tableau Tli

·							y na -y - a Carlonny Monorana an		
11	Lans	SICION	•			F. calculées	Ecart	F. mesurées	Δ
N	iv.	Sup.	Niv.	In	f.	MHz	statisti- que	MHz	MHz
9	2	7	9	2	8	9775.68	+ 22	9775 • 6 7	-•01
3	1	2	3	1	3	9902+58		9903.61	1.03
10	2	ម	10	2	9	14441.07.	.22	14440.99	-•08
á	I	3	4	١	4	16501 • 71	•16	16501•81	•10
11	5	9	11	2	10	20460 • 64	° 5.5	20460.29	÷+35
1	0	l	0	0	0	22355+38	•00	22355+24	-•14
5	ł	4	5	l	ġ	24745.04	÷19	24745.12	•08
12	2	10	12	2	11	27979.24	• 34	27979.55	•31
2	i	2	ł	1	1	43060.32	• 28	43060.29	03
2	0	2		0	1	44679.81	•28	44679.84	•03
7	ł	6	7	I	7	46128.54	.23	46128.08	-•46
8	1	7	8	1	8	59235+36	• 32	59235+47	•11
7	2	2	2	2	1	67067 • 23	.27	67067.26	•03
3		3	2	C	2	66942.42	.31	66942+24	-•18
3	2	1	2	2	0	67189.69	.27	67189.77	• 08
3	1	2	2	I	I	69521.80	• 24	69521.87	•07
3		13	2	1	2 *	64568,40	.23	64569,36	-0,98
	*]	Non ut	ilìsée	da	ns le	calcul.			

Tableau T12

		 • . •					nggan minelaka pertakan dari kendar dar		
Tr	v.S	up.	ns Niv.	Ini	f.	F. calculées MHz	Ecart etatisti- que	F. mesurées MHz	∆ MHz
							ningen i Minister – son indersemblik förstörn av Hilling komme		
9	2	7	9	2	8	9150.91	s [5]	9150.96	•05
3	- 1	2	3	١	3	9 488•23	9] [)	9488 •35	•12
10	2	8	10	2	9	13527+36	.32	13527 • 44	•09
4	· 1	3	4	ł	4	15811.40	•21	15811.60	• 2 O
11	2	ç	· 11	2	10	19181.76	• 52	19181+19	57
ł	Ű	I	0	0	0	22421.39	00	22421.36	03
5	ł	4	5 -	- 1	5	23710+34	• 25	23710.06	-•28
12	2	10	12	2	11	26255.11	• 4 9	26255.48	• 36
6	l	5	6	1	6	33178+15	• 27	33178.02	13
2	1	2	. 1	I	l	43261.44	.34	43261.12	32
7	.1	6	7	ł	7	44203+05	• 30	44203.25	• 20
2	0	2	1	0	I	44813.97	• 34	44813.55	-•41
2	ł	1	1	I	0	46424.35	• 54	46425.09	•73
· 3	١	7	8	I	8	56766.50	• 46	56766.34	16
3	1	3	2	١	2	64874.08	• 30	64873.28	80
3	D	ز	2	0	2	67148.97.	• 40	67148.56	-•41
3	2	2	2	2	I	67265.24	.53	67265.13	-•11
3	ł	2	2	I	I	69617.90	• 31	69619.22	1.32

HC¹²OOH Etat excité v₈. Transitions identifiées hypothèse rotateurs indépendents

,

(206 Lucue)

Tableau T13

DC¹²00H. Etat fondamental (théorie de Watson)

Paramètres en MHz	Constantes du 2 ^{ème} ordre
A	57709,190±0,019
В	12055,977±0,003
C	9955.607 ±0.003
Constantes du ler ordre	
$^{\Delta}$ J	0,00940±3x 10 ⁻⁵
	-0,039±2.10 ⁻⁴
۲. م	0,75±1.10 ⁻³
δ _T	0,002216±2.10 ⁻⁶
5 م	0,0380±1.10 ⁻⁴
Constantes du 2 ^{ème} ordre	
	-6
н _к ј	-0,000021±8.10
н _к	0,00018±7.10 ⁻⁵
h _K	0,000010±5 10 ⁻⁶
	(BUS Page

Tableau T14

	 T1	ransi	tions					T			
							F. Calculées	Ec	art	F. mesurées	Δ
Ni	v . Sı	up.	Niv.	It	ıf.		MHz	t	tatis- ique	MHz	MHz
7	2	5	7	2	6		(D) ⁸⁵⁵⁹ •55	<u> +</u>	•01	8559•58	•03
12	2	11	11	3	8		10766.23	1	•09	10766.28	•05
13	3	10	13	3	11		(D) 10917.52	Ţ	•02	10917.59	•07
19	4	15	19	4	16		(D) 2 .50	t	•03	11121.56	•06
3	i '	2	3	I	3		(D) 12599.15	ŧ	•01	12599•17	•02
6	ł	5	5	2	_ 4		13094.74	t	• 03	13094.70	03
8	2	6	. 8	2	7		(D) 13918+93	<u>+</u>	•01	13918.98	•05
26	5	21	26	5	22		(D) 14579.36	· +	•04	14579.40	•04
20	4	16	20	4	17		(D) 16130.82	t	•03	16130+88+	•06
14	3	11	14	3	12		(D) 16350.95	1±	•02	16351.02	+07
27	5	22	27	5	23		20378.68	1	•04	20378 • 46	-•22
9	. 2	7	9	2	8		21178+52	+	•02	21178.58	•06
6	2	4	7	I	7		21579.25	<u>†</u>	•04	21579.09	-•15
3	0	3	2	ł	2		22127+65	+	•01	22127.39	27
12	4	9	13	3	10		27275.86	t	•05	27275+81	05
5	1	4	5	1	5		31457.52	t	•02	31457+26	-•26
16	3	13	16	3	14		32898+95	+	•03	32898.86	-•09
5	2	3	6	1	6		33325 • 18	+	•04	33325+21	•03
29	5	24	29	5	25		37529.91	Ł	•05	37529.53	38
16	5	11	17	4	14		38665.47	t	•06	38665.45	-•02
7	1	6	6	2	5		41741.59	+	•04	41741.58	-•02
2	1	2	L.	I	, I	1	(D) 41922.88	1	•01	41922.88	•00
	2	9	11	2	10	Ň	(D) 42063.17	t	•03	42063.25	•08

RAZ RAZ Transitions identifiées (suite) - 128-

2341923420(D)42226.80 \pm .0542226.82.02247172562043005.23 \pm .0943005.42.118202101(D)43952.061.0143952.09.0361.561.6(D)43971.87 \pm .0243971.96.091731.417315(D)4469.03 \pm .0344469.09.06268212972245613.42 \pm .0845613.241921110(D)46123.16 \pm .0146123.18.0240431346628.15 \pm .0247752.57253292.4338.2543854.32 \pm .1248854.37.053052530526(D)49470.21 \pm .0749470.21.0021120249923.92 \pm .0249923.61311148123953269.38 \pm .0853269.870031230353311.87 \pm .0253311.93.06376313765254809.38 \pm .1254807.3701122101221155821.74 \pm .0355821.66093												
247172562043005.23 $\frac{1}{2}$.0943005.42.18202101(D)43952.062.0143952.09.03615616(D)43971.97 $\frac{1}{2}$.0243971.96.091731417315(D)44469.03 $\frac{1}{2}$.0344469.09.062682129772245613.42 $\frac{1}{2}$.0845613.24.1921110(D)46123.16 $\frac{1}{2}$.0146123.18.0240431346628.15 $\frac{1}{2}$.0246628.21.0642251547273.60 $\frac{1}{2}$.024752.57.253222.43382543854.32 $\frac{1}{2}$.1248654.37.053052530526(D)49470.211.0749470.21.0021120249923.92 $\frac{1}{2}$.0249923.61311148123953269.38 $\frac{1}{2}$.0253311.93.06376313765254809.38 $\frac{1}{2}$.1254807.3701122101221155821.74	23	4	19	23	5 4	20	(D)	42226 • 80	t	•05	42226.82	•02
2 0 2 1 0 1 (D) 43952.06 $\frac{1}{2}$.01 43952.09 .03 6 1 5 6 1 6 (D) 43971.87 $\frac{1}{2}$.02 43971.96 .09 17 3 1.4 17 3 1.5 (D) 44469.03 $\frac{1}{2}$.03 44469.09 .06 28 8 21 29 7 22 45613.42 $\frac{1}{2}$.08 45613.24 19 2 1 1 1 0 (D) 46123.16 $\frac{1}{2}$.01 46628.21 .06 4 0 4 3 1 3 46628.15 $\frac{1}{2}$.02 46628.21 .06 4 10 1 0 1 .47752.82 $\frac{1}{2}$.02 46854.37 .05 30 5 25 30 5 26 (D) 49470.21 2 .07 49470.21 .00 2 1 2 0 2 53269.38 $\frac{1}{2}$.02 53311.93 .06 3	24	7	17	25	6	20		43005.23	1	•09	43005.42	•18
6 1 6 1 6 (D) 43971.87 \pm .02 43971.96 .09 17 3 14 17 3 15 (D) 44469.03 \pm .03 44469.09 .06 26 8 21 29 7 22 45613.42 \pm .08 45613.24 19 2 1 1 1 0 (D) 46123.16 \pm .01 46628.21 .06 4 0 4 3 1 3 46628.15 \pm .02 46628.21 .06 4 2 2 5 1 5 477752.82 \pm .02 47752.57 25 32 9 24 35 8.25 43854.32 \pm .12 44854.37 .05 30 5 25 30 5 26 (D) 49470.21 \pm .02 49923.61 31 11 4 8 12 3 9 53269.38 \pm .08 53269.87 00 3 1 2 <td>2</td> <td>0</td> <td>2</td> <td>1</td> <td>0</td> <td>1</td> <td>(D)</td> <td>43952.06</td> <td>1</td> <td>• 0 [</td> <td>43952.09</td> <td>•03</td>	2	0	2	1	0	1	(D)	43952.06	1	• 0 [43952.09	•03
1731417515(D) $44469\cdot03$ t $\cdot 03$ $44469\cdot09$ $\cdot 06$ 2682129722 $45613\cdot42$ t $\cdot 08$ $45613\cdot24$ $-\cdot 19$ 21110(D) $46123\cdot16$ t $\cdot 01$ $46123\cdot18$ $\cdot 02$ 404313 $46628\cdot15$ t $\cdot 02$ $46628\cdot21$ $\cdot 066$ 422515 $47273\cdot60$ t $\cdot 04$ $47273\cdot49$ $-\cdot 10$ 110101 $47752\cdot82$ t $\cdot 02$ $47752\cdot57$ $-\cdot 25$ 3292433825 $43854\cdot32$ t $\cdot 12$ $48854\cdot37$ $\cdot 05$ 3052530526(D) $49470\cdot21$ t $\cdot 07$ $49470\cdot21$ $\cdot 000$ 211202 $49923\cdot92$ t $\cdot 02$ $49923\cdot61$ $-\cdot 31$ 11481239 $53269\cdot38$ t $\cdot 02$ 53311.93 $\cdot 06$ 312303 53311.87 t $\cdot 02$ 53311.93 $\cdot 06$ 3763137632 $54809\cdot38$ t $\cdot 12$ 54807.37 $-\cdot 01$ 1221012211 $55821\cdot74$ t $\cdot 03$ 58641.28 $\cdot 09$ 3134 </td <td>6</td> <td>1</td> <td>5</td> <td>e</td> <td>5 1</td> <td>6</td> <td>(D)</td> <td>43971+87</td> <td>t</td> <td>•02</td> <td>43971.96</td> <td>•09</td>	6	1	5	e	5 1	6	(D)	43971+87	t	•02	43971.96	•09
268212972245613.42 \pm .0845613.24 19 21110046123.16 \pm .0146123.18.0240431346628.15 \pm .0246628.21.0642251547273.60 \pm .0447273.491011010147752.82 \pm .0247752.5725329243382548854.32 \pm .1248854.37.0053052530526(D)49470.21 \pm .0749470.21.0021120249923.92 \pm .0249923.61311148123953269.38 \pm .0253311.93.0631230353311.87 \pm .0253311.93.06376513765254809.38 \pm .1254809.3701122101221155821.74 \pm .0355821.660941340455069.00 \pm .0258069.04.03183171831658419.13 \pm .0458419.19.0771671758481.19 \pm .0358481.28.093132<	17	3	14	17	, 3	15	(D)	44469.03	t	•03	44469.09	•06
2 1 1 1 0 $46123 \cdot 16$ $\pm \cdot 01$ $46123 \cdot 18$ $\cdot 02$ 4 0 4 3 1 3 $46628 \cdot 15$ $\pm \cdot 02$ $46628 \cdot 21$ $\cdot 066$ 4 2 2 5 1 5 $47773 \cdot 60$ $\pm \cdot 02$ $47752 \cdot 57$ $- \cdot 257$ 32 9 24 33 8 25 $43854 \cdot 32$ $\pm \cdot 12$ $48854 \cdot 37$ $\cdot 055$ 30 5 25 30 5 26 (D) $49470 \cdot 21$ $\pm \cdot 07$ $49470 \cdot 21$ $\cdot 007$ 2 1 2 0 2 $49923 \cdot 92$ $\pm \cdot 02$ $49923 \cdot 61$ $- \cdot 31$ 11 4 8 12 3 9 $53269 \cdot 38$ $\pm \cdot 02$ $49923 \cdot 61$ $- \cdot 61$ 3 1 2 3 0 3 $53311 \cdot 87$ $\pm \cdot 02$ $53311 \cdot 93$ -666 37 6 31 37 6 32 $54809 \cdot 38$ $\pm \cdot 12$ $54809 \cdot 37$ $- \cdot 01$	28	8	21	29	7	22		45613.42	t	•08	45613.24	-•19
40431346628.15 $\pm \cdot 02$ 46628.21.0642251547273.60 $\pm \cdot 04$ 47273.491011010147752.82 $\pm \cdot 02$ 47752.5725329243382548854.32 $\pm \cdot 12$ 48854.37.053052530526(D)49470.21 $\pm \cdot 07$ 49470.21.0021120249923.92 $\pm \cdot 02$ 49923.61311148123953269.88 $\pm \cdot 02$ 53311.93.0631230353311.87 $\pm \cdot 02$ 53311.93.06376313763254809.38 $\pm \cdot 12$ 54809.3701122101221155821.74 $\pm \cdot 03$ 55821.660941340458069.00 $\pm \cdot 02$ 58069.04.0318317183<16	2	1	ł	I	ł	0	(D)	46123.16	+	•01	46123.18	•02
422515 47273.60 $\frac{1}{2}$ 0.4 47273.49 10 110101 47752.82 $\frac{1}{2}$ 0.2 47752.57 25 3292433925 43854.32 $\frac{1}{2}$ 12 48854.37 $.05$ 3052530526(D) 49470.21 $\frac{1}{2}$ 0.7 49470.21 $.00$ 211202 49923.92 $\frac{1}{2}$ 0.7 49470.21 01 11481239 53269.88 $\frac{1}{2}$ 0.8 53269.87 00 312303 53311.87 $\frac{1}{2}$ 0.2 53311.93 0.66 3763137632 54809.38 $\frac{1}{2}$ 12 54807.37 01 1221012211 55021.74 $\frac{1}{2}$ 0.3 5869.04 0.3 1831718316 58419.13 $\frac{1}{2}$ 0.4 58069.04 0.2 3152631527 63979.84 $\frac{1}{2}$ 0.2 62840.40 0.2 3152631527 63979.84 $\frac{1}{2}$ 0.2 65751.14 0.5 313202 (D) 65751.09 $\frac{1}{2}$ 0.2 66034.60 0	4	0	4	7	; ;	3		46628.15	+	•02	46628.21	•06
1i0i01. 47752.92 $\pm .02$ 47752.57 25 3292433825<	4	. 2	2	5	i 1	5		47273.60	t	•04	47273.49	10
32 9 24 33 8 25 48854.32 $\frac{1}{2}$ 48854.37 $.05$ 30 5 25 30 5 26 (D) 49470.21 1 $.07$ 49470.21 $.00$ 2 1 1 2 0 2 49923.92 $\frac{1}{2}$ $.02$ 49923.61 31 11 4 8 12 3 9 53269.38 $\frac{1}{2}$ $.08$ 53269.87 00 3 1 2 3 0 3 53311.87 $\frac{1}{2}$ 0.2 53311.93 $.06$ 37 6 31 37 6 32 54809.38 $\frac{1}{2}$ 12 54809.37 01 12 210 12 211 55821.74 $\frac{1}{2}$ 0.3 55821.66 09 4 1 3 4 0 4 58069.00 1 $.02$ 58069.04 $.03$ 18 317 18 316 58419.13 $\frac{1}{2}$ 0.4 58419.19 0.7 7 1 6 7 1 7 58481.19 1 0.3 58481.28 0.99 3 1 3 2 1 2 63973.84 1 0.9 63978.83 01 5 1 4 5 0 5 64385.11 1 0.9 65751.14 0.5 3 2 2 2 1 1 10 66317.28 <	I	1	0	1	0	1		47752.82	+:	۰02	47752.57	-•25
30 5 25 30 5 26 (D) 49470.21 1 0.07 49470.21 0.07 2 1 1 2 0 2 49923.92 1 0.02 49923.61 31 11 4 8 12 3 9 53269.88 1 0.02 49923.61 31 3 1 2 3 0 3 53269.88 1 0.02 53311.93 0.06 37 6 31 37 6 32 54809.38 1 1.2 54807.37 01 12 210 12 211 55821.74 t 0.02 58069.03 02 4 1 3 4 0 4 58069.00 t 0.22 58069.04 0.03 18 317 18 316 58419.13 t 0.4 58069.04 0.03 18 317 18 316 58419.13 t 0.02 58069.04 0.02 31 3 2 1 2 62840.37 t 0.02 58481.28 0.99 3 1 3 2 1 2 63978.84 -02 64385.16 0.05 3 1 3 2 2 2 1 1 0.9 66317.31 t 0.2 3 2 2 2 1 1 0.2 66317.28 03 3 2 <	32	9	24	. 33	8	25		48854.32	t	•12	48854.37	•05
211202 49923.92 $\pm .02$ 49923.61 31 11481239 53269.38 $\pm .08$ 53269.87 00 312303 53311.87 $\pm .02$ 53311.93 $.06$ 3763137632 54809.38 $\pm .12$ 54809.37 01 1221012211 55821.74 $\pm .03$ 55821.66 09 413404 58069.00 $\pm .02$ 58069.04 $.033$ 1831718316 58419.13 $\pm .04$ 58419.19 $.07$ 716717 58481.91 $\pm .02$ 62840.40 $.02$ 31526315<27	30	5	25	30	5	26	(D)	49470 • 21	t	•07	49470.21	•00
11481239 53269.88 \pm .08 53269.87 00 312303 53311.87 \pm .02 53311.93 $.06$ 3763137632 54809.38 \pm .12 54809.37 01 1221012211 55821.74 \pm .03 55821.66 09 413404 58069.00 \pm .02 58069.04 $.03$ 18317.18316 58419.13 \pm .04 58419.19 $.07$ 716717 58481.19 \pm .03 58481.29 $.09$ 313212 62840.37 \pm .02 62840.40 $.02$ 3152631527 63973.84 \pm .09 63978.83 01 514505 64385.11 \pm .02 64385.16 $.05$ 303202(D) 65751.09 \pm .02 65751.14 $.05$ 32221(D) 66317.31 \pm .02 66317.28 03 312211(D) 69139.05 \pm .02 69139.14 $.09$ 2542125422 71303.35 \pm .06 71303.30 05	2	1	· J	2	: 0	2		49923.92	t	•02	49923.61	-•31
312303 53311.87 $\frac{1}{2}$.02 53311.93 .063763137632 54809.38 $\frac{1}{2}.12$ 54809.37 01 1221012211 55821.74 $\frac{1}{2}.03$ 55821.66 09 413404 58069.00 $\frac{1}{2}.02$ 58069.04 $.03$ 1831.6 58419.13 $\frac{1}{2}.04$ 58419.19 0.7 716717 58481.9 $\frac{1}{2}.02$ 62840.40 313212 62840.37 $\frac{1}{2}.02$ 64385.16 0.9 313212 63973.84 $\frac{1}{2}.02$ 64385.16 0.02 3152.6315 2.7 63973.84 $\frac{1}{2}.02$ 64385.16 0.05 303202(D) 65751.09 $\frac{1}{2}.02$ 663751.14 0.05 32221(D) 66034.68 $\frac{1}{2}.02$ 66034.60 08 321220(D) 66317.31 $\frac{1}{2}.02$ 66317.28 03 312211(D) 69139.05 $\frac{1}{2}.02$ 69139.14 0.99 2542125422 71303.35 $\frac{1}{2}.06$ 71303.30 05	11	4	8	12	3	9		5 3269.3 8	<u>+</u>	•08	53269.87	-•00
3763137632 54809.38 $\pm .12$ 54809.37 01 1221012211 55821.74 $\pm .03$ 55821.66 09 413404 58069.00 $\pm .02$ 58069.04 $.033$ 18317.18316 58419.13 $\pm .04$ 58419.19 $.07$ 716717 58481.19 $\pm .03$ 58481.28 $.097$ 313212 62840.37 $\pm .02$ 62840.40 $.02$ 3152631527 63973.84 $\pm .09$ 63978.83 01 514505 64385.11 $\pm .02$ 64385.16 $.055$ 303202(D) 65751.09 $\pm .02$ 66034.60 08 321220(D) 66317.31 $\pm .02$ 66317.28 03 312211(D) 69139.05 $\pm .02$ 69139.14 $.09$ 2542125422 71303.35 $\pm .06$ 71303.30 05	3	۱	2	3	5 0	3		53311.87	+	•02	53311.93	•06
1221012211 55821.74 $\pm .03$ 55821.66 09 413404 58069.00 $\pm .02$ 58069.04 $.03$ 1831718316 58419.13 $\pm .04$ 58419.19 $.07$ 716717 58481.19 $\pm .03$ 58481.28 $.09$ 313212 62840.37 $\pm .02$ 62840.40 $.02$ 31 526 31 527 63973.84 $\pm .09$ 63978.83 01 514505 64385.11 $\pm .02$ 64385.16 $.05$ 303202(D) 65751.09 $\pm .02$ 66034.60 08 321220(D) 66317.31 $\pm .02$ 66034.60 08 321220(D) 69139.05 $\pm .02$ 66317.28 03 312211(D) 69139.05 $\pm .02$ 69139.14 $.09$ 2542125422 71303.35 $\pm .06$ 71303.30 05	37	6	31	31	7 6	32		54809.38	+	•12	54809.37	-•01
413404 58069.00 $\pm .02$ 58069.04 $.03$ 18317.18316 58419.13 $\pm .04$ 58419.19 $.07$ 716717 58481.19 $\pm .03$ 58481.28 $.097$ 313212 62840.37 $\pm .02$ 62840.40 $.02$ 3152631 $5 27$ 63973.84 $\pm .09$ 63978.83 01 514505 64385.11 $\pm .02$ 64385.16 $.057$ 303202(D) 65751.09 $\pm .02$ 65751.14 $.058$ 32221(D) 6634.68 $\pm .02$ 66034.60 08 321220(D) 69139.05 $\pm .02$ 69139.14 $.097$ 2542125422 71303.35 $\pm .06$ 71303.30 056	12	2	10	12	2 2	11		55821.74	<u>+</u>	•03	55821,66	-•09
18317.18316 $58419 \cdot 13$ $\pm \cdot 04$ $58419 \cdot 19$ $\cdot 07$ 716717 $58481 \cdot 19$ $\pm \cdot 03$ $58481 \cdot 28$ $\cdot 09$ 313212 $62840 \cdot 37$ $\pm \cdot 02$ $62840 \cdot 40$ $\cdot 02$ 3152631527 $63973 \cdot 84$ $\pm \cdot 09$ $63978 \cdot 83$ $- \cdot 01$ 514505 $64385 \cdot 11$ $\pm \cdot 02$ $64385 \cdot 16$ $\cdot 05$ 303202(D) $65751 \cdot 09$ $\pm \cdot 02$ $65751 \cdot 14$ $\cdot 05$ 32221(D) $66034 \cdot 68$ $\pm \cdot 02$ $66034 \cdot 60$ $- \cdot 08$ 321220(D) $66317 \cdot 31$ $\pm \cdot 02$ $66317 \cdot 28$ $- \cdot 03$ 312211(D) $69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ 2542125422 $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $- \cdot 05$	4	ļ	- 3	· •	4 0	4		58069. 00	f	•02	58069.04	•03
716717 $58481 \cdot 19$ $\pm \cdot 03$ $58481 \cdot 28$ $\cdot 09$ 313212 $62840 \cdot 37$ $\pm \cdot 02$ $62840 \cdot 40$ $\cdot 02$ 3152631527 $63973 \cdot 84$ $\pm \cdot 09$ $63978 \cdot 83$ $-\cdot 01$ 514505 $64385 \cdot 11$ $\pm \cdot 02$ $64385 \cdot 16$ $\cdot 05$ 303202(D) $65751 \cdot 09$ $\pm \cdot 02$ $66034 \cdot 60$ $-\cdot 08$ 32221(D) $66034 \cdot 68$ $\pm \cdot 02$ $66034 \cdot 60$ $-\cdot 08$ 321220(D) $66317 \cdot 31$ $\pm \cdot 02$ $66317 \cdot 28$ $-\cdot 03$ 312211(D) $69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ 2542125422 $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $-\cdot 05$	18	3	17.	1 8	3 3	16		58419.13	t	•04	58419.19	•07
313212 62840.37 $\pm .02$ 62840.40 $.02$ 3152631527 63973.84 $\pm .09$ 63978.83 01 514505 64385.11 $\pm .02$ 64385.16 $.05$ 303202(D) 65751.09 $\pm .02$ 66034.60 08 32221(D) 66034.68 $\pm .02$ 66034.60 08 321220(D) 66317.31 $\pm .02$ 66317.28 03 312211(D) 69139.05 $\pm .02$ 69139.14 $.09$ 2542125422 71303.35 $\pm .06$ 71303.30 05	7	1	6	-	7 1	7		58481.19	t	•03	58481.28	•09
$31 \cdot 5 \cdot 26$ $31 \cdot 5 \cdot 27$ $63973 \cdot 84$ $\pm \cdot 09$ $63978 \cdot 83$ $-\cdot 01$ $5 \cdot 1 \cdot 4$ $5 \cdot 0 \cdot 5$ $64385 \cdot 11$ $\pm \cdot 02$ $64385 \cdot 16$ $\cdot 05$ $3 \cdot 0 \cdot 3$ $2 \cdot 0 \cdot 2$ $0 \cdot 65751 \cdot 09$ $\pm \cdot 02$ $65751 \cdot 14$ $\cdot 05$ $3 \cdot 2 \cdot 2$ $2 \cdot 2 \cdot 1$ $0 \cdot 66034 \cdot 68$ $\pm \cdot 02$ $66034 \cdot 60$ $- \cdot 08$ $3 \cdot 2 \cdot 1$ $2 \cdot 2 \cdot 0$ $0 \cdot 66317 \cdot 31$ $\pm \cdot 02$ $66317 \cdot 28$ $- \cdot 03$ $3 \cdot 1 \cdot 2$ $2 \cdot 1 \cdot 1$ $0 \cdot 69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ $25 \cdot 4 \cdot 21$ $25 \cdot 4 \cdot 22$ $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $- \cdot 05 \cdot 6$	3	1	3	:	2 1	2		62840.37	. ±	•02	62840.40	•02
514505 $64385 \cdot 11$ $\pm \cdot 02$ $64385 \cdot 16$ $\cdot 05$ 303202(D) $65751 \cdot 09$ $\pm \cdot 02$ $65751 \cdot 14$ $\cdot 05$ 32221(D) $66034 \cdot 68$ $\pm \cdot 02$ $66034 \cdot 60$ $- \cdot 08$ 321220(D) $66317 \cdot 31$ $\pm \cdot 02$ $66317 \cdot 28$ $- \cdot 03$ 312211(D) $69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ 2542125422 $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $- \cdot 05$	31	· 5	26	• 3	5	27		63973.84	±	•09	63978+83	-•01
303202(D) $65751 \cdot 09$ $\pm \cdot 02$ $65751 \cdot 14$ $\cdot 05$ 32221(D) $66034 \cdot 68$ $\pm \cdot 02$ $66034 \cdot 60$ $- \cdot 08$ 321220(D) $66317 \cdot 31$ $\pm \cdot 02$ $66317 \cdot 28$ $- \cdot 03$ 312211(D) $69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ 2542125422 $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $- \cdot 05$	5	I	4	:	5 0	5		64385 • 11	t	•02	64385+16	•05
32221(D) 66034.68 $\pm .02$ 66034.60 08 321220(D) 66317.31 $\pm .02$ 66317.28 03 312211(D) 69139.05 $\pm .02$ 69139.14 $.09$ 2542125422 71303.35 $\pm .06$ 71303.30 05	3	0	3		2 0	2	(D)	65751.09	±	•02	65751.14	•05
321220(D) $66317 \cdot 31$ $\pm \cdot 02$ $66317 \cdot 28$ $-\cdot 03$ 312211(D) $69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ 2542125422 $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $-\cdot 05$	3	2	2	:	2 2	: 1	(D)	66034.68	t	•02	66034+60	-•08
31221(D) $69139 \cdot 05$ $\pm \cdot 02$ $69139 \cdot 14$ $\cdot 09$ 2542125422 $71303 \cdot 35$ $\pm \cdot 06$ $71303 \cdot 30$ $- \cdot 05$	3	2	•1	:	2 2	0	(D)	663 7 . 31	+	•02	66317.28	03
25 4 21 25 4 22 71303.35 + .06 71303.3005	3	i	2	•	2 1	1	(D)	69139.05	+	•02	69139+14	•09
	25	4	2.1	2	5_4	22		71303+35	+	•06	71303.30	05 (

-129-

.

Transitions identifiées (suite)

						·····			
13	2	1 }	13	2	12	71766.35	± .04	71766.43	•07
5	I	5	۵	0	6	72463.32	<u>†</u> •02	72468.39	•07
5	۱	5	4	1	4	104509.91	£ •02	104509.92	•01
5	° C	5	4	0	4	108661.40	± .02	108661.43	•03
5	2	4	4	2	3	109897.66	± .02	109897.69	•03
. 5	4	1 -	4	4	0	110216.85	1.02	110216.80	05
5	3	3	4	3	2	110284.74	±.02	110284.78	•04
5	3	2	4	3	ł	110316.00	± .02	110316.03	•03
5	2.	3	4	2	2	111289.25	± .02	111289.27	•02
5	ł	4	4	ł	3	114977+51	1.02	114977.49	-•01
12	2	10	. 12	1	11	124302.62	±.05	124302.68	•07
4	1	4	3	0	3	124419•94	± •03	[24420.3]	•37
10	I	9	10	0	10	125471.71	± .04	125471.89	•18
5	2	3	5	1	4	127105.33	t •04	127105.36	•03
6	С	6	5	0	5	(D) 129663.81	<u>t</u> .03	129668.67	-•14
16	2	14	16	2	15	131661.54	1.05	131661.46	~• 08
6	2	5	5	2	4	(D) 131745.35	± •02	131745.38	•03
6	5	2	. 5	5	Ì	(D) 132249.85	±.04	132249.75	-•10
6	5	ł	5	5	0	(D) 132249.85	÷ •04	132249.75	10
6	4	3	5	4	2	(D) 132309.16	±.02	132309+13	-•03
6	4	2	5	4	l	(D) 132310.10	±.02	132310.03	-•07
6	3	4	5	3	3	(D) 324 4.34	±.02	132414.24	-•10
6	3	3	5	3	2	(D) 132497.45	<u>t</u> •02	132497 • 46	•01
6	2	4	5	2	3	(D) 134136.96	<u>+</u> •02	134136.96	•00
25	4	24	28	4	25	134218.13	1.11	134218.14	•02
6	I	5	. 5	1	4	(D) 137752.02	Ţ.03	137752.14	•12
14	2	12	14	1	13	140194.79	±.07	140194+89	•10
11	t	10		0	11	143901.40	±.05	143901+35	05

							-			
7	1	7	6	1	6	(a)145882•88	1	•03	145882.95	•07
8	0	8	. 7	I	7	146671.26	t	•04	146671.27	•02
7	0	7	6	0	6	(a)150345.15	t	.03	150345+06	-•09
15	2	13	15	I	14	151900.50	+	•07	151900+58	•08
7	2	6	6	2	5	(a)153521.64	+	•03	153521+68	•04
7	6	1	6	6	0	(a)154285•52	±	•10	154285+66	• 4
7	5	2	6	5	I	(a)154332.92	+	•05	154332+94	•02
. 7	4	4	6	4	3	(a)154428.03	±	•03	154427.84	-•19
7	4	3	. 6	4	2	(a) 5443 •15	+	•03	154431.13	֥02
7	3	4	6	3	3	(a) 54757·21	<u>+</u>	•03	154757•18	
17	2	15	17	2	16	155096.33	t	.07	155096+21	-•12
7	2	5	6	2	4	(a)157241.53	t	•03	157241•48	05
б	I	6	5	0	5	158165+26	t	•03	158165.35	•09
7	1	6	6	ĩ	5	$(a)^{160392 \cdot 20}$	t	.03	160392.07	-•13
 	•									,

(D) mesurées par A. DELDALLE

.

(a) mesurées par MIRRI

- 130-

٠

٠.

TABLEAU TI5

Etat v ₇ (MHz)	Etat ν _g (MHz)
A ₇ = 56747	A ₉ = 58847
B ₇ =11917	B ₉ =12094
c ₇ =9953	C ₉ =9963
∆ = 290848	
G _b ≖ 5702	
$G_a = 50$	
$F_{ac} = -39$	
$F_{bc} = -215$	

DC¹²OOH: Etats excités v_7 et v_9 : Paramètres

.

TABLEAU TIG

$DC^{12}OOH$ Etat excité v_7 transitions identifiées

Transitions						
		f.calculées	F. corrigées	∆ Coriolis	F. mesurées	
Niv.Sup.	Niy.Ind.	MHz	MHz	MHz	MHz.	
3127	3137	10978.19	10967.59	-804,8	10966,06	
1017	7	21777.13	21773.49	-94,32	21773,46	
5147	5157	27425 . 18	27410.58	-2000,0	27404,39	
6157	6167	38344 • 81	38336.43	-2794,0	38327,20	
2127	1117	41706.57	41699.36	-72,2	41699,44	
2027	1017	43498.31	43491.63	-81,4	43491,35	
2117	1107	45365.94	45352.96	-341,0	45352,60	
2117	2027	48620.36	48620.95	-200,2	48620,95	
7167	7177	51005.29	51019.16	-3723,4	51001,46	
3127	3037	51524.40	51516.01	-454,3	51516,01	
3137	2127	62522.17	62510.52	-107,26	62510,24	
3037	2027	65107.67	65100.17	-254,6	65099,25	
3227	2217	65175.87	65168.07	-438,5	65168,00	
3217	2207	65432.65	65397,98	-433,5	65397,81	
3127	2117	68011.71	67995.44	-508,6	67994,24	
5247	4237	108415.06	108436.33	-801.9	108433.44	
6167	5157	124663.62	124651.30	-202.4	124646.57	
6037	5057	128744.73	128743.94			
6257	5247	129922+85	129947.06	343,0	128/3/,52	
6347	5337	130331.01	130358.96	-1021,9 -1210,3	129941,33 130354,96	
6157	5147	135583.25	135578.51	-996,3	135569,14	
7177	6167	145244.44	145234.75	-231,8	145226,95	
7267	6257	151332+50	151401.86	-1278,5	151392,10	
7167 .	6157	157904.92	157916.31	-1159,2	157901,63	

TABLEAU T17

$DC^{12}OOH$: Etat excité v_g Transitions identifiées

Transit	ions	F.calculées	F.corrigées	∆ Coriolis	F.mesurées	
Niv.Sup.	Niv.Inf.	MHz	MHz	MHz	MHZ	
3129	3139	13327.35	13338.06	545,4	13336,53	
1019	9	22192.58	22201.41	135,1	22201,37	
4139	4149	22159.45	22205,77	864,1	22202,17	
2129	1119	42206.70	42209.43	222,4	42209,51	
2029	1019	44312.17	44327.85	268,5	44327,57	
6159	6169	46010.97	45944.00	1394,4	45934,10	
	1109	46653.50	46678.10	408,0	46677,74	
2119	2029	51185.10	51192.76	99.4	51192,75	1
3129	3039	54813.72	54825.19	293,3	54825,19	
3139	2129	63259.61	63277.79	327,0	63277,51	
3039	2029	66285.89	66303.26	397,8	66302 ,3 5	
3229	2219	67024.12	67012.60	851,8	67012,53	
3219	2209	67324.32	67316.53	867,8	67316,36	
3129	2119	69914•51	69936.01	591,6	69934,81	
5159	4149	105189.67	105182.13	525,1	105179,58	
5059	4049	109520.08	109511.62	632.9	109508.31	
5249	4239	111442.12	111435+47	1313,1	111432,58	
6169	5159	126054.99	126026.06	632,0	126021,33	
6339	5329	128711.28	128741.62	-4067,1	128737,52	
6069	5059	130671.67	130629.82	740,7	130622,76	
6259	5249	133532.77	133526.44	1508,2	133520,71	
6249	5239	135955.79	136008.54	1525,5	136001,12	
7179	6169	146860.83	146807.90	760.0	146799,97	
7359	6349	150864.18	150841.20	-4039.2	150832,85	
7349	6339	150968.00	150968.00	4121.0	150963.24	
7079	6069	151481.26	151386.23	827,1	151376,55	
7269	6259	155534.93	155523.07	1685 4	155512-31	ſ
7259	6249	159247.43	159332.15	1652,1	159319,26	

Listing L₁:

) ÷

Méthode par perturbation

```
'BEGIN''INTEGER'I, J, COMP, AL;
'REAL'A7, B7, C7, A9, B9, C9, LAM7, LAM9, LAMP7, LAMP9, K7, K9;
'REAL'ET;
'REAL' 'ARRAY'Z, DZ, ACCR[[18], FM, DF, FC, FAC[[18], A1[[18,]18];
'PROCEDURE'IMP(XI,NI);
'VALUE'NI;
'INTEGER'NI i
'ARRAY'XI;
'BEGIN''INTEGER'I;
'FOR'I:=|'STEP'I'UNTIL'NI'DO''BEGIN'EDIT("L18.12\,X1[]);
SPACE(5);
'END';
PRINT(2);
'END'IMP;
'PROCEDURE'GRESOLPIV;
'CODE';
TEXT("2(1)=A\);
SPACE(10);
TEXT("Z(2)=B\);
SPACE(10);
TEXT("Z[3]=C\);
SPACE(10);
TEXT("Z[4]=APN);
SPACE(10);
TEXT("Z[5]=BP\);
SPACE(10);
TEXT("Z[6]=CP\);
SPACE(10);
TEXT("Z[7]=X\);
SPACE((0);
TEXT("Z[8]=DELTAN);
SPACE(10);
PRINT(2):
'FOR'I:=|'STEP'|'UNTIL'8'DO'Z[]]:=DATA;
'FOR'1:=1'STEP'1'UNTIL'8'DO'ACCR[1]:=DATA;
AL := DATA;
TEXT("AL?=\);
PRINT(2):
EDIT("F6.0\,AL);
PRINT(2);
'FOR'1:=1'STEP'1'UNTIL'8'DO'FM(1):=DATA;
TEXT("Z?=\);
PRINT(2);
IMP(Z,8);
TEXT("ACCR?=\);
PRINT(2);
IMP(ACCR,8);
COMP:=01
RETOUR:COMP:=COMP+1;
A7:=3*(Z[2]+Z[3]);
B7:=SQRT(3)*(2[3]-2[2]);
C7 = Z[2] + Z[3] + 4 = Z[1];
A9:=3*(Z[5]+Z[6]);
89 = SQRT(3) + (Z[6] - Z[5])
C91=Z[5]+Z[6]+4*Z[4];
LAM7 := 2*(Z[1]+Z[2]+Z[3]) = 2*SQRT((Z[2]=Z[3])+2+(Z[1]=Z[2])*(Z[1]=Z[3])
));
```
```
LAMP7:=2*(Z[]]+Z[2]+Z[3])+2*SQRT((Z[2]-Z[3])+2+(Z[]]-Z[2])*(Z[]]-Z[3
1));
LAM91=2*(Z[4]+Z[5]+Z[6])=2*SQRT((Z[5]-Z[6])+2+(Z[4]-Z[5])*(Z[4]-Z[6])
));
LAMP9:=2*(Z[4]+Z[5]+Z[6])+2*SQRT((Z[5]-Z[6])+2+(Z[4]-Z[5])*(Z[4]-Z[6
1)):
K7:=1/SQRT(B7+2+(LAM7=A7)+2);
K9:=1/SORT(89+2+(LAM9-A9)12):
FC[]]:=Z[]]+4*Z[2]+Z[3]-LAM7+Z[7]*K9+2*((B9-SQRT(3)*(LAMP9-C9))+2)/(
Z[]]+4*Z[2]+Z[3]-(LAMP9+Z[8]))+Z[7]*K912*((LAM9-A9-SQRT(3)*B9)12)/(Z
[]]+4*Z[2]+Z[3]-(LAM9+Z[8]))-Z[7]*K7+2*((SQRT(3)*B7-(LAM7-A7))+2)/(L
AM7 = (Z[4] + 4 \times Z[5] + Z[6] + Z[8]));
FC[2]:=Z[4]+4*Z[5]+Z[6]-LAM9+Z[7]*K7+2*((SQRT(3)*(LAMP7-C7)-B7)+2)/(
Z[4]+4*Z[5]+Z[6]+Z[8]-LAMP7)+Z[7]*K7+2*((SQPT(3)*B7-(LAM7-A7))+2)/(Z
[4]+4*Z[5]+Z[6]+Z[8]-LAM7)-Z[7]*K9+2*(((LAM9-A9)-SQRT(3)*B9)+2)/(LAM
9+Z[8]-(Z[]]+4*Z[2]+Z[3]));
FC[3]:=3*Z[2]+Z[3]+Z[7]*K9!2*((B9)=(SQRT(3)*(LAMP9=C9))!2)/((Z[1]+4*
Z[2]+Z[3])-(LAMP9+Z[8]))+Z[7]*K912*(((LAM9-A9)-(SQRT(3)*89))12)/((Z[
1_{+4*2[2]+2[3]} - (LAM9+2[8]) - 2[7]/((2[1]+2[2]) - (2[5]+2[6]+2[8]));
F0[4]:=3*Z[5]+Z[6]+Z[7]*K7+2*(((SQRT(3)*(LAMP7-C7))=B7)+2)/((Z[4]+4*
Z151+Z[61+Z[8])-LAMP7)+Z[7]*K7+2*((SQRT(3)*B7-(LAM7-A7))+2)/((Z[4)+4-
*Z[5]+Z[6]+Z[8])-LAH7)-Z[7]/((Z[4]+Z[5]+Z[8])-(Z[2]+Z[3]));
FC[5] = Z[2] + 3 = Z[3] + Z[7] / ((Z[1] + Z[2] + 4 + Z[3]) - (4 + Z[4] + Z[5] + Z[6] + Z[8]))
FC[6]:=Z[5]+3*Z[6]+Z[7]/((Z[4]+Z[5]+4*Z[6]+Z[8])-(4*Z[1]+Z[2]+Z[3]))
1
FC[7] = 2[2] + 2[3] + 2[7]/((2[2] + 2[3]) + (2[4] + 2[5] + 2[8]));
FC[8]:=Z[5]+Z[6]+Z[7]/((Z[5]+Z[6]+Z[8])-(Z[]]+Z[2]));
TEXT("FC?=\);
SPACE (25);
TEXT("FM?=\);
SPACE(25);
TEXT("DIF?FC-FM?=\);
PRINT(2);
'FOR'1:=['STEP'1'UNTIL'8'DO''BEGIN'DF(1):=FC(1)-FM(1);
EDIT("L18.12\,FC[1]);
SPACE(7);
EDIT("L18+12\;FM[1]);
SPACE(7);
EDIT("L18+12\,DF[]]);
PRINT(2);
'END':
TEXT("ECART?TYPEN);
PRINT(2);
ET:=0:
'FOR'I:=['STEP'I'UNTIL'8'DO'ET:=ET+ABS(DF[]));
ET := ET/8;
EDIT("L18.12\,ET);
PRINT(2);
'IF'COMP=9'THEN''GOTO'FINI
TEXT("JACOBIENN);
PRINT(2);
'FOR'II=I'STEP'I'UNTIL'8'DO''BEGIN'Z[]]=Z[]]+ACCR[]]
FAC[]:=Z[]:+4*Z[2]+Z[3]-LAM7+Z[7]*K9+2*((B9-SQRT(3)*(LAMP9-C9))+2)/
(Z[|]+4*Z[2]+Z[3]-(LAMP9+Z[8]))+Z[7]*K9+2*((LAM9-A9-SQRT(3)*B9)+2)/(
2[1]+4*2[2]+2[3]-(LAM9+2[8]))-2[7]*K7+2*((SQRT(3)*B7-(LAM7-A7))+2)/(
LAM7-(Z[4]+4*Z[5]+Z[6]+Z[8]));
FAC[2]:=Z[4]+4*Z[5]+Z[6]-LAM9+Z[7]*K7+2*((SQRT(3)*(LAMP7-C7)+B7)+2)/
```

- 135 -

```
(Z[4]+4*Z[5]+Z[6]+Z[8]-LAMP7)+Z[7]*K7+2*((SQRT(3)*B7-(LAM7-A7))+2)/(
Z[4]+4*Z[5]+Z[6]+Z[8]-LAM7)-Z[7]*K9+2*(((LAM9~A9)-SQRT(3)*B9)+2)/(LA
M9+Z[8]-(Z[1]+4*Z[2]+Z[3]));
FAC[3]:=3*7[2]+7[3]+7[7]*K912*((B9)-(SQRT(3)*(LAMP9-C9))12)/((7[1]+4
*Z[2]+Z[3])-(LAMP9+Z[8]))+Z[7]*K912*(((LAM9-A9)-(SQRT(3)*B9))12)/((Z
[1]+4*Z[2]+Z[3])-(LAM9+Z[8]))-Z[7]/((Z[1]+Z[2])-(Z[5]+Z[6]+Z[8]));
FAC[4]:=3*Z[5]+Z[6]+Z[7]*K7+2*(((SQRT(3)*(LAMP7-C7))-B7)+2)/((Z[4]+4
*Z[5]+Z[6]+Z[8])-LAMP7)+Z[7]*K7+2*((SQRT(3)*B7-(LAM7-A7))+2)/((Z[4]+
4*Z[5]+Z[6]+Z[8])-LAM7)-Z[7]/((Z[4]+Z[5]+Z[8])-(Z[2]+Z[3]));
F...C[5];=Z[2]+3*Z[3]+Z[7]/((Z[]]+Z[2]+4*Z[3])-(4*Z[4]+Z[5]+Z[6]+Z[8])
);
f_{4}(6) = 2(5) + 3 + 2(6) + 2(7) / ((2(4) + 2(5) + 4 + 2(6) + 2(8)) - (4 + 2(1) + 2(2) + 2(3))
);
FAC[7] := Z[2] + Z[3] + Z[7] / ((Z[2] + Z[3]) - (Z[4] + Z[5] + Z[8]));
FAC[8]:=Z[5]+Z[6]+Z[7]/((Z[5]+Z[6]+Z[8])-(Z[1]+Z[2]));
'FOR'J:=['STEP'I'UNTIL'8'DO''BEGIN'AI[J,I]:=(FAC[J]-FC[J])/ACCR[I];
EDIT("L18.12\,A1[J,]);
'END';
PRINT(2);
Z[1] = Z[1] = ACCR[1]
'END'I:
'FOR'I:=7'STEP'I'UNTIL'8'DO''BEGIN''FOR'J:=I'STEP'I'UNTIL'8'DO'AI(J)
I]:=AL*A1[J,I];
'END':
TEXT("JACOBIEN?PONDEREN);
PRINT(2):
'FOR'I:=I'STEP'I'UNTIL'8'DO''BEGIN''FOR'J:=I'STEP'I'UNTIL'8'DO''BEGI
N'EDIT("L18.12\,A1[J,1]);
PRINT(2);
'END';
'END';
GRESOLPIV(A), DF, DZ, 8, IMPOSSIBLE);
DZ[7]:=DZ[7]/AL;
DZ[8]:=DZ[8]/AL;
*FOR*1:=1*STEP*1*UNTIL*8*D0*Z[1]:=Z[1]+DZ[1];
TEXT("NOUVELLE?VARIABLE?DE?DEPART?Z?=\);
PRINT(2);
IMP(Z,8);
'IF'COMP#7'THEN''GOTO'RETOUR;
IMPOSSIBLE: TEXT ("SYSTEME?NON?RESOLVABLEN);
PRINT(2);
FIN: 'END'
```

```
Listing L2:
```

Diagonalisation directe.

```
'BEGIN''COMMENT'MOINDRE&CAR&CORIOLIS;
'INTEGER'M, J, K, I, L, Q, NT, P, TOUR, NC, COMP, LT, R, KI, JO, JM, HL, H2;
'INTEGER'NP, NTS, NPS, PR, TR;
'REAL'AI, BI, CI, EPS, TI, S, EPSI, MM;
'BOOL'BO;
'INTEGER ' ARRAY'W[1:128];
'INTEGER''ARRAY'TS[1:50],PS[1:11];
*REAL **ARRAY*AR, AI[|:|5, [:|5], U, V[]:30], TG[|:|28, |:|2], X, DX, ACCR[0:1
1],ACCR1[0:[1];
PROCEDURE 'MOINDRCAR;
'CODE';
'PROCEDURE'CROISSANCE(A, B+L+M);
VALUE 'L, M;
'INTEGER'L, M;
*AREAY*A: B:
BEGIN' INTEGER' [,U, J;
*REAL *H(N:
*FOR*U:=L*STEP*I*UNTIL*M*DO**BEGIN*MIN*=@40;
*FOR*I=L*STEP*I*UNTIL'M*DO**BEGIN**1F*ALI:
1:
J = I;
'END';
'END';
B[U]:=MIN;
A(J):=@40;
'END';
'END'CROISSANCE;
'PROCEDURE'JACO(N, AR, AI, LAMBDA, EPSILON);
'VALUE'N, EPSILON;
'INTEGER'N;
'REAL'EPSILON;
'ARRAY'AR, AI, LAMBDA;
BECIN' INTEGER' I.J.P.Q.KI
'REAL'X,Y,WR,WI,E,F,DI,D2,D,MUR,MUI,R,CR,CI,G,H,UR,UI,ZR,ZI,S,T;
'PROCEDURE'TRANSFO(R,TR,TI,UR,UI,WR,WI,ZR,ZI);
*VALUE * R, TR, TI, UR, UI, WR, WI;
'REAL'R, TR, TI, UI, WR, WI, ZR, ZI, UR;
'BEGIN'ZR:=R*UR+TR*WR-TI*WI;
'IF'ABS(ZR)<@-15'THEN'ZR:=0;
ZI:=R*UI+TI*WR+TR*WI;
'IF'ABS(ZI)<@-15'THEN'ZI:=0;
'END';
ITERATION: 'FOR'P:=I'STEP'I'UNTIL'N-I'DO''FOR'Q:=P+I'STEP'I'UNTIL'N'D
0''IF'ABS(AR[P,Q])+ABS(AI[P,Q])#O'THEN''BEGIN'X;=AR[P,P];
Y := AR[Q,Q];
WR:=AR[P,Q];
WI := AI (P,Q);
E := X - Y :
F:=SQRT(E*E+4*(WR*WR+W1*W1));
D|:=E+F:
02:=E-F;
D:='IF'ABS(DI)>ABS(D2)'THEN'DI'ELSE'D2;
MUR:=2*WR/D;
MUI:=2*WI/D;
R:=//SQRT(I+MUR+MUR+MUI*MUI);
CR:=R*MUR;
CII=R*MUII
```

- 137 -

```
G := 2 * (CR * AR[P,Q] + CI * AI[P,Q]) * R;
H:=X*R*R+Y*(CR*CR+CI*CI);
T_{:=Y*R*R+X*(CR*CR+CI*CI);}
AR[P+P] = G+H;
AR[Q,Q] := T-G;
AR[P,Q] := A[P,Q] := 0;
'IF'P>=2'THEN''FOR'K:=I'STEP'I'UNTIL'P-I'DO''BEGIN'UR:=AR[K,P];
UI := AI[K, P];
WR:=AR[K,Q];
WI := AI[K,Q]:
TRANSFO(R, CR, -CI, UR, UI, WR, WI, ZR, ZI);
AR[K,P]:=ZR;
AI[K, P]:=Z[;
TRANSFO(R, -CR, -CI, WR, WI, UR, UI, ZR, ZI);
AR[K,Q]:=ZR;
AI[K,Q]:=ZI'END';
'IF'Q>=P+2'THEN''FOR'K:=P+1'STEP'1'UNTIL'Q-1'DO''BEGIN'UR:=AR[P,K];
U_1 := A_1 [P,K];
WR:=AR[K,Q];
diseAltK.011
TRANSFO(R,-CR,-CI,WR,WI,UR,-UI,ZR,ZI);
ARIK, Q) ##ZRI
A1[K,Q]:=Z]|
TRANSFO(R, CR, CI, UR, UI, WR, -WI, ZR, ZI);
AR[P,K] := ZR;
A][P,K]:=Z]*END*;
'IF'Q<=N-1'THEN''FOR'K:=Q+1'STEP'1'UNTIL'N'DO''BEGIN'UR:=AR(P+K);
UI:=AI[P,K];
WR:=AR[Q,K];
WII = AI[Q,K]:
TRANSFO(R, CR, CI, UR, UI, WR, WI, ZR, ZI);
AR[P,K]:=ZR:
A1[P,K]:=Z1;
TRANSFO(R,-CR,CI,WR,WI,UR,UI,ZR,ZI);
ARIQ,K1:=ZR;
AI[Q,K]:=ZI'END';
'END';
S:=0;
T := ABS(AR[N,N]);
'FOR'I:=I'STEP'I'UNTIL'N-I'DO''BEGIN''FOR'J:=I+I'STEP'I'UNTIL'N'DO'S
T := T + ABS(AR[I,I]) * END*;
'IF'T=O'THEN''GOTO'END;
'IF'S/T>=EPSILON'THEN''GOTO'ITERATION;
END: 'FOR'J:=!'STEP'!'UNTIL'N'DO'LAMBDA(J):=AR(J,J);
'END'JACO;
'PROCEDURE'MATRICE(BO, AR, AI);
'BOOL'BO;
'ARRAY'AR,AI;
'BEGIN''INTEGER'I,L;
'REAL'MM;
'IF'BO'THEN''BEGIN''FOR'I'=!'STEP'I'UNTIL'3'DO''BEGIN'MM'=X(I);
X[[]:=X[[+3];
X[[+3] = MM;
'END';
MMI=X[0]1
X[0] := X[7];
X[7]:=MM;
```

```
- 139 -
X[8] := -X[8]:
X[9] := -X[9];
'END';
'FOR'I:=I'STEP'I'UNTIL'M'DO''FOR'L:=I'STEP'I'UNTIL'M'DO'AR[[,L]:=AI[
[+L];=0;
'IF'M=['THEN''BEGIN'A1[1,1]:=0;
AR[|,|]:=X[0];
'GOTO'ET:
'END';
'FOR'I:=!'STEP'I'UNTIL'J+I'DO''BEGIN'K:=I-J-I;
AR[[, ]]:=(X[1]) + (X[2] + X[3])/2) + K + (X[2] + X[3]) + J + (J+1)/2 + X[0];
AI[M+1-I,I]:=K*X[9];
'END':
'FOR'I:=J+2'STEP'I'UNTIL'M'DO''BEGIN'K:=1-J-I;
AR[1,[]:=(X[4]=(X[5]+X[6])/2)*K*K+(X[5]+X[6])*J*(J+1)/2+X[7];
A^{[M+[-1]]} = K * X [9];
'END';
AR[J,J]:=AR[J,J]+(X[3]-X[2])*J*(J+1)/4;
AR[J+2,J+2]:=AR[J+2,J+2]-(X[6]-X[5])*J*(J+1)/4;
A[[J+2,J]] = A[[J+2,J] + X[[]] + J*(J+1)/2;
A:[J:J=2]=AI[J,J+2]=X[||]*J*(J+1)/2;
'FOR'1:=1'STEP'1'UNTIL'J-1'DO''BEGIN'K:=1-J-1:
AR(1+1+2)==AR(1+2+1)==(X(3)-X(2))*SQRT((J*J-(K+1)*(K+1))*((J+1)*(J+1
)-(K+1)*(K+1)))/4;
'END':
'FOR'1:=J+2'STEP'1'UNTIL'M-2'DO''BEGIN'K:=1-J-1;
AR[1, I+2]:=AR[I+2, I]:=(X[6]-X[5])*SQRT((J*J-(K+1)*(K+1))*((J+1)*(J+1)
) - (K + [) * (K + [))) / 4;
'END';
'FOR'I:=2'STEP'I'UNTIL'J'DO''BEGIN'K:=1-J-1;
AR[M+]-I,I-]]:=AR[I-],M+]-1]:=(X[8]+(2*K-1)*X[10])*SQRT(J*(J+1)+K*(K
-1))/2;
AR[M+2-1,1]:=AR[1,M+2-1]:=(-X[8]+(2*K-1)*X[10])*SQRT(J*(J+1)-K*(K-1)
1/2:
'END';
AR[J+2,J+1]:=AR[J+1,J+2]:=(-X[8]-X[10])*SQRT(2*J*(J+1))/2;
'FOR'I:=3'STEP'I'UNTIL'J'DO''BEGIN'K:=1-J-1;
AI[M+1-I,I-2]:=AI[I,M+3-I]:=-X[||]*SQRT((J*(J+1)-K*(K-1))*(J*(J+1)-(
K-1)*(K-2)))/2;
A [ [ M + 3 - ] , [ ] : = A [ [ 1 - 2 , M + [ - ] ] : = - A ] [ ] , M + 3 - [ ] ;
'END';
'IF'M=3'THEN''GOTO'ET;
AR[J+],J~]]:=AR[J~],J+[]:=AR[J+],J~]]*5QRT(2);
A1[J+3,J+1]:=X[||]*SQRT((J*(J+1)=2)*(2*J*(J+1)))/2;
AI[J+1,J+3]:==AI[J+3,J+1];
ET: IF 'BO'THEN' BEGIN' FOR'I:= ['STEP'I'UNTIL'3'DO''BEGIN'MM:=X[I];
X[T] = X[T+3];
X[]+3]:=MM;
'END';
MM = X[0]
X[0] := X[7];
X[7]:=MM;
X[8] = -X[8];
X[9] := -X[9]:
'END':
 *END * MATRICE;
TEXT("VALEURS?DE?DEPARTN) |
PRINT(2);
```

```
- 140 -
X[0]:=0;
ACCR[0]:=0;
'FOR'I = I'STEP'I'UNTIL'II'DO''BEGIN'X[]] = DATA;
EDIT("L23.12\,X[]]);
ACCR[1] = DATA;
EDIT("F8.4\.ACCR[]]);
PRINT(1);
'END';
JO:=DATA:
JM = DATA:
HI:=DATA:
EDIT("F3.ON,HI);
PRINT(2);
H2:=DATA;
EDIT("F3.0\,H2);
PRINT(2);
L:=1:=0;
'FOR'J:=JO'STEP'I'UNTIL'JM'DO''BEGIN'I:=I+L;
L_{1}=2*J+1;
PRORIMERO'STEP'I'UNTIL'J'DO''BEGIN''IF'M>I'THEN'K:=M-I'ELSE'K:=O;
'FCR'Q: =K'STEP'I'UNTIL'M'DO''BEGIN'I:=I+I;
H(1):=1000:J+10:00*M+10*(J-0)+H1;
W[]+L]:=W[]]+H2-H];
'END';
'END';
'END';
EPS1:=10000;
LT:=DATA;
NP:=DATA;
TEXT("NP=\);
EDIT("F4.ON,NP);
PRINT(2);
NTS:=DATA;
TEXT("NTS=\);
EDIT("F4.ON,NTS);
PRINT(2);
'FOR'I := I'STEP'I'UNTIL'NTS'DO''BEGIN'TS([]:=DATA;
EDIT("F4.0\, TS[]]);
'END';
PRINT(2);
NPS:=DATA:
TEXT("NPS=\);
EDIT("F4.ON, NPS);
PRINT(2);
'FOR'1:=1'STEP'1'UNTIL'NPS'DO''BEGIN'PS(1):=DATA;
EDIT("F4.ON, PS[1]);
'END':
PRINT(2);
'BEGIN''REAL''ARRAY'FM, DF[0:LT], T[0:LT, 1:11];
'INTEGER''ARRAY'WI,W2[0:LT];
W1[0]:=W2[0]:=0;
'FOR'Q: = I'STEP'I'UNTIL'LT'DO''BEGIN'WI(Q]: =DATA;
W2[Q] := DATA;
FM[Q] := DATA;
******
EPS:=0.00000011
```

```
COMP:=0:
                                                              - 141 -
RETOUR : COMP := COMP + 1 :
NC:=11:
NT := 0;
L_1 = 1;
'FOR'TOUR:=0'STEP'I'UNTIL'NC'DO''BEGIN''IF'TOUR=0'THEN''GOTO'EL:
NT := NT + I;
'IF'NT+L-I=PSIL]'THEN''BEGIN'L:=L+I;
NTI=NT-1:
'GOT0'E2:
'END''ELSE''BEGIN'X(NT+L-1):=X[NT+L-1]+ACCR[NT+L-1];
'FOR'I:=I'STEP'I'UNTIL'II'DO''BEGIN'EDIT("L18,12\,x(1);
PRINT(2);
'END';
ACCRI[NT]:=ACCR[NT+L-];
*FOR * I = 1 * STEP * 1 * UNTIL * 1 + NPS * DO * * BEGIN * EDIT ( * L18 + 12 \, ACCR1 ( 11 ) :
PRINT(2);
'END';
'END';
E1:Q1=0;
*FOR*J:#20*STEP'I'UNTIL'JM'DO''BEGIN'M:=2*J+[;
Psala
BOI= 'FALSE'I
MATRICE (BO, AR, AI);
JACO(M, AR, AI, U, EPS);
BO:='TRUE';
MATRICE (BO, AR, AI);
JACO(M, AR, AI, V, EPS);
'FOR'1:=1'STEP'1'UNT1L'M'DO'U[1+M]:=V[1];
'FOR'I:=!'STEP'|'UNTIL'J'DO''BEGIN'MM:=U[J+[+1];
U[J+]+[]:=U[2*M-J+]]:
U[2*M-J+1]:=MM;
'END';
CROISSANCE(U, V, I, M);
K:=M+1;
CROISSANCE(U,V,K,2*M);
'FOR'I:=!'STEP'|'UNTIL'2*M'DO''BEGIN'Q:=Q*|;
TG[Q,NT+1] := V[P];
P := P + 1 :
'END';
EDIT("L18.12\, TG[Q, NT+1]);
PRINT(1);
'END'J:
'IF'TOUR=O'THEN''GOTO'E2;
X[NT+L-1] = X[NT+L-1] - ACCR[NT+L-1];
*************************CONSTRUCTION=DE=LA=MATRICE=T****************************
*************
TEXT("CALCUL?DES?FREQUENCESN);
PRINT(2);
'FOR'Q:=!'STEP'!'UNTIL'LT'DO''BEGIN''FOR'!:=!'STEP'!'UNTIL'!28'DO''B
EGIN''IF'W[I]=W2[Q]'THEN'K:=1;
'IF'W[I]=WI[Q]'THEN'J:=I;
'END'I
DF[Q] := TC[J, I] - TC[K, I];
*FOR * 1 = 2 'STEP ' | 'UNTIL' 12-NPS'DO''BEGIN'T (Q, 1+1) = TG(J, 1) - TG(K, 1);
T[Q, [-]] := (T[Q, [-]] - DF[Q]) / ACCR[[[-]];
'END'I
```

```
E3:EDIT("F3,0\,Q);
                                                                    - 142 -
SPACE(5);
EDIT("F5.0\,W1[Q]);
SPACE (3) :
EDIT("F5.0\,W2[Q]);
SPACE(3);
EDIT("F9,2, DF(Q]);
SPACE(3);
EDIT("F9.2\,FM[Q]);
SPACE(3);
DF[Q] := FM[Q] - DF[Q];
EDIT("F8.2\, DF[Q]);
PRINT(2);
'END'Q:
TEXT("VALEUR . MOYENNEN);
A | := 0;
B | :=0;
L:=1:
'FOR'Q'=|'STEP'|'UNTIL'LT'DO''BEGIN''IF'Q=TS(L)'THEN''BEGIN'L'=L+|;
'GOT0'E5;
'END';
Ali=Al+ADC(DF[Q]);
B:==B:+DF(0)*DF(0);
E5: 'END':
Al:=Al/(LT-NTS):
EDIT("F8,4),AI);
SPACE(5);
PRINT(1);
TEXT("E+Q+MN);
BI:=SQRT(BI)/(LT-NTS);
EDIT("F8.4 \land B1);
PRINT(1):
'FOR'1:=['STEP'|'UNTIL'||'DO'EDIT("L23+12\,X[1]);
PRINT(1);
L:=1;
TR:=TS[]]-];
'IF'TR=-I'THEN''BEGIN'TR:=LT;
'COTO'E4:
'END';
'FOR'I:=TS(|]'STEP'I'UNTIL'LT'DO''BEGIN''IF'I=TS(L)'THEN''BEGIN'L:=L
+ | ;
'COTC'GI;
'END';
TR:=TR+1;
DF(TR) := DF[I];
'FOR'J:=!'STEP'!'UNTIL'||-NPS'DO'T[TR,J]:=T[[,J];
GI: 'END'I;
E4:MOINDRCAR(T, DF, DX, TR, 11-NPS);
L_{i=1i}
'FOR'J:=PS[]]'STEP'I'UNTIL'PS[NPS]'DO''BEGIN''IF'J=PS[L]'THEN''BEGIN
*'FOR'K:=||'STEP'-|'UNTIL'J+|'DO'DX[K]:=DX[K-]];
DX[J] = 0;
L:=L+1;
'END';
'END';
'FOR'I:=|'STEP'|'UNTIL'||'DO''BEGIN'EDIT("L23.12\,X[1]);
X [ ] ] = X [ ] + D X [ ] ] ;
EDIT("L23.12\,DX[1]);
 EDIT("L23.12\,X[]);
 PRINT(1);
 'END';
 'IF'COMP=3'THEN''GOTO'STOP;
 GOTO'RETOUR;
 IMPOSSIBLE: 'END'LT;
 STOP: 'END'
```

- (2) 3 С,Н, Sai C BELLET, TOWNES and A.L.SCHAWLOW, Cours de D, E, Ade Microwave Spectroscopy. Physique Moléculaire, Lille, (1970)
- Mc, GRAW, HILL New York (1955)
- (3) BUTTER WORHS. D.J.E. INGRAM, LONDON Spectroscopie (1955) ar Radio and Microwave Frequencie Ś
- **(**4) Ę, ACADEMIC PRESS , WOLLRAB, Rotational spectra and molecular New York (1967) structure
- (5)CUSTOM MICROWAVE COMPONENT BY EMORY HORWATH, Lengwood Florida. вох 75
- (6) A. MOISES Rapport de D.E.A. (1965) Université de Lille
- (7)C. SAMSON, Thèse de Docteur-Ingénieur Sciences

Faculté des

- Faculté des Sciences de Lille (1965)
- (8) Α, BAUER, thèse de 3ème ^fcycle, Faculté des Sciences de Lille (1965)
- (9) Å DELDALLE, thèse de 3^{ème} cycle, Faculté des Sciences de Lille (1969)
- (00) de Lille,(1971) C, SAMSON, Thèse de Doctorat, Université des Sciences et Techniques
- (11)Ļ MIYAZAWA, K.S. PITZER J. Chem. Phys. <u>30</u> 1076 (1959)
- (12) <u>د.</u> BELLET, Thèse de Doctorat, Annale Physique 10 27(1966)
- (13) J.K.G. WATSON, J. Chem. . Phys. <u>45</u> 1360 (1966); <u>46</u> 1935 (1967);
- (14)Ę 48 (1968); 48 4517 WILLEMOT, Rapport de D.E.A., (1968), Université des

Sciences

e t

- Techniques de Lille , (1970).
- (15) H. KIM, R.KELLER et W.D. GWINN, J. Chem. Phys. 37 2748 (1962)
- (16)J.K. WILMSHURST, <u>ب</u> Chem. Phys. 25 478(1956)
- (17) R.C. MILLIKAN et K.S. PITZER, J. Chem. Phys. 27 1305 (1957)
- (8) E. BRIGHT-WILSON J,R, , J. Chem. Phys. 4 313 (1936)
- (01) Н, Н, NIELSEN., Rev. Mod. Phys. 23 90 (1951)
- (21) (20) T.OKA et Y. MORINO, J. Phys. R. WERTHEIMER, Cours de D.E.A. de Soc. Japan, <u>16</u> Physique Moléculaire, 1235 (1961) Lille(1971)
- (22)L. HENRY, Thèse de Doctorat, Faculté des Sciences de Paris, (1965)
- (23)Ď, DANGOISSE, Thèse de 3^{ème} cycle, Université des Sciences et
- Techniques de e Lille, ¢۱ paraître
- (24) E. DURAND, Solutions numériques des équations MASSON (1961) algébriques
- (25) J,C, HERTZ, Cours d'Analyse Numérique ų Lille (1963)

INTRODUCTION CHAPITRE I - MATERIEL UTILISE A- Spectromètre vidéo 4 B- Spectromètre à effet Stark 4 C- Mesures de fréquences 5 D- Isotopes utilisés 5 CHAPITRE II - ETUDE THEORIQUE A- Etude de la résonance de Coriolis A -1 - Le hamiltonien de rotation-vibration 8 A -2 - Traitement particulier de la résonance de Coriolis 11 A -3 - Application aux états de vibration v_7 et v_0 de l'acide formique 15 B- Résolution du problème B -1 - Etude d'une résonance faible: traitement par perturbation 21 B -2 - Etude d'une résonance forte: Diagonalisation directe 28 CHAPITRE III - CAS DE RESONANCES FAIBLES: ETUDE DES MOLECULES HCOOH, DCOOD, et HCOOD. 39 A- Etude du spectre de rotation de l'état fondamentale de HCOOD 39 B -Etude des spectres de rotation des états de vibration v_7 et v_9 de HCOOD et DCOOD 40 C- Etude des spectres de rotation des états de vibration v_6 et v_8 de HCOOH 58 CHAPITRE IV- CAS D'UNE RESONANCE FORTE: ETUDE DE LA MOLECULE 65 DCOOH A- Etude du spectre de rotation de l'état fondamental 66 B- Etude du spectre de rotation des états de vibra-67 tion v_7 et v_6 : CHAPITRE V - ETUDE NUMERIQUE A- Méthodes numériques A -1 - Méthode par perturbation 84 A -2 - Diagonalisation directe 86 B- Détermination des paramètres moléculaires B -1 Cas des résonances faibles 89

B -2 - Cas de la résonance forte. 92

page.

CONCLUSION

ANNEXES

Annexe 1:	Calcul des éléments de matrice	102
	de P P z P P z y	
Annexe 2:	Calcul par perturbation:	
	Niveaux d'énergie J =1	103
Annexe 3:	Calcul par perturbation:	
	Niveaux d'énergie J= 2	104

TABLEAUX

Tableau T1: DCOOD. Etat fondamental	105
transitions mesurées.	
Tableau T2: DCOOD. Etat fondamental: paramètres	<i>i</i> 0ò
Tableau T3: HCOOD. Etat fondamental: paramètres.	1 i C
Tableau T4: HCOOD. Etat fondamental:	ti na s
transitions identifiées.	
Tableau T5: HCOOD. Etat excité \mathbb{S}_7 :	
transítions identitiées.	14
Tableau T6: HCOOD. Etat excité	
transitions identitiées.	116
Tableau I7: HCOOD. Etats excités v_7 et v_9	
paramètres,	* (8
Tableau 18: DCOOD. Etat excité v ₇ :	
transitions identifiées.	119
Tableau T9: DCOOD. Etat excité s ₉ :	
transitions identifiées,	121
Tableau TiO: DCOOD . Etats excités v_7 et v_9 :	
paramètres.	123
Tableau III: HCOOH. Etat excité 06:	
transitions identifiées.	124
Tableau T12: HCOOH. Etat excité 🔩:	
transitions identifiées.	2.5
Tableau T13: DCOOH. Etat fondamental:	
paramètres.	. 2×.
Tableau Ti4: DCOOH. Etat fondamental:	
transitions identifiées.	÷., *

Tableau Tl	15:	DCOOH Etats excités v_7 et v_9 :	
		paramètres	131
Tableau Tl	16:	DCOOH Etat excité v ₇ :	
		transitions identifiées	132
Tableau Ti	17:	DCOOH.Etat excité v ₉ :	
		transitions identifiées	133

LISTINGS:

г ¹ :	Méthode	par	perturbation		134
L,2:	Méthode	par	Diagonalisation	directe	137

Ce travail a été effectué à l'U.E.R. de Physique de l'Université des Sciences et des Techniques de Lille, dans le Laboratoire de Spectroscopie Hertzienne, Equipe de Recherche Associée au C.N.R.S., dirigé par Monsieur le Professeur WERTHEIMER.

Je suis heureux de pouvoir exprimer toute ma reconnaissance à Monsieur le Professeur WERTHEIMER pour avoir su encourager mes débuts dans la recherche scientifique et pour l'honneur qu'il a bien voulu me faire en présidant le Jury.

Je tiens à exprimer ma profonde gratitude à Monsieur le Professeur BELLET qui a dirigé ce travail et en a suivi les différentes phases avec un intérêt constant.

Je remercie très vivement Monsieur le Docteur CERF d'avoir bien voulu juger ce travail et a accepté d'être membre du Jury.

Mes vifs remerciements vont également à Monsieur le Professeur FAYT, Professeur à l'Université de Louvain, qui a bien voulu accepter de se joindre au Jury.

Je remercie également Madame REMY pour l'aide qu'elle m'a apportée dans la partie programmation et Monsieur Pierre BEHAGUE qui a bien voulu se charger de la partie exploitation.

Une fructueuse collaboration s'est établie tout au long de ce travail avec Monsieur D. DANGOISSE à qui je tiens à exprimer toute ma reconnaissance.

J'adresse enfin mes remerciements à ceux qui ont contribué à la confection matérielle de ce mémoire, et en particulier à Mademoiselle SALLE qui s'est chargée avec compétence à la tâche ingrate de la frappe du manuscrit.

