

5037619723

UNIVERSITÉ DES SCIENCES ET DES TECHNIQUES DE LILLE

THESE DE 3° CYCLE MENTION PHYSIQUE DU SOLIDE

LE FACTEUR DEBYE_WALLER DUTELLURE

Membresdu Jury: M BILLARD Prés M FOURET Rap M MESSELYN Exa

Président Rapporteur Examinateur

Présentée à Lille le 9 Fevrier 1972

Vincent WARIN

دری افکار محمد الکام وقت شوی وید. شوی افکار ایکار الای دوری الاکار ایک: «»» ر

DOYENS HONORAIRES de l'Ancienne Faculté des Sciences

MM. H. LEFEBVRE, PARREAU

PROFESSEURS HONORAIRES des anciennes Facultés de Droit et

Sciences Economiques, des Sciences et des Lettres

M. ARNOULT, Mme BEAUJEU, MM. BEGHIN, BROCHARD, CAU, CHAPPELON, CHAUDRON, CORDONNIER, DEHEUVELS, DEHORNE, DEHORS, FAUVEL, FLEURY, P. GERMAIN, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, NORMANT, PARISELLE, PASCAL, PAUTHENIER, PEREZ, ROIG, ROSEAU, ROUBINE, ROUELLE, WIEMAN, ZAMANSKY.

PRESIDENT DE L'UNIVERSITE

DES SCIENCES ET TECHNIQUES DE LILLE

M. DEFRETIN René

Professeur de Biologie Marine Directeur de l'Institut de Biologie Maritime et Régionale de Wimer

PROFESSEURS TITULAIRES

M. BACCHUS Pierre M. BEAUFILS Jean-Pierre M. BECART Maurice M. BIAYS Pierre M. BLOCH Vincent M. BONNEMAN Pierre M. BONTE Antoine M. BOUGHON Pierre M. BOURIQUET Robert M. CAPET Marcel-Francis M. CELET Paul M. CONSTANT Eugène M. CORSIN Pierre M. DECUYPER Marcel M. DEFRETIN René M. DELATTRE Charles M. DURCHON Maurice M. FOURET René M. GABILLARD Robert M. GEHU Jean-Marie M. GLACET Charles M. GONTIER Gérard M. GUILLAUME Jean M. HEUBEL Joseph M. JOLY Robert Mme LENOBLE Jacqueline M. LOMBARD Jacques M. MONTARIOL Frédéric M. MONTREUIL Jean

Astronomie Chimie Cénérale Physique Géographie Psychophysiologie Chimie et Physico-Chimie Industrielle Géologie Appliquée Mathématiques Biologie Végétale Institut de Préparation aux Affaires Géologie Physique Industrielle-Electronique Paléobotanique Mathématiques Générales Biologie Marine Géologie Générale Zoologie Générale et Appliquée Physique Radio-Electricité-Electronique Institut Agricole Chimie Organique Mécanique Biologie Végétale Chimie Minérale Biologie Animale Physique Expérimentale Sociologie Chimie Appliquée Chimie Biologique ,

Informatique I. POUZET Pierre Analyse Supérieure Ime SCHWARTZ Marie-Hélène Physique Théorique 1. TILLIEU Jacques Chimie 1. TRIDOT Gabriel Mathématiques 1. VAILLANT Jean Automatique 1. VIDAL Pierre Biologie Animale 4. VIVIER Emile Physique 1. WERTHEIMER Raymond PROFESSEURS A TITRE PERSONNEL Physiologie Animale 4. BOUISSET Simon Chimie 4. DELHAYE Michel Géographie M. FLATRES Pierre Electronique 1. LEBRUN André Botanique M. LINDER Robert Chimie Physique M. LUCQUIN Michel Mathématiques Appliquées M. PARREAU Michel Droit et Sciences Economiques M. PRUDHOMME Rémy Physique M. SCHILTZ René PROFESSEURS SANS CHAIRE Physique M. BELLET Jean Physique M. BILLARD Jean Botanique M. BODARD Marcel M. BOILLET Pierre Physique Géologie M. DERCOURT Jean-Michel Chimie Minérale M. DEVRAINNE Pierre Chimie Physique M. GOUDMAND Pierre Mathématiques M. GRUSON Laurent Biologie M. GUILBAULT Pierre Biologie M. LACOSTE Louis Chimie M. LANDAIS Jean Mathématiques M. LEHMANN Daniel Chimie M. LOUCHEUX Claude Physique M. MAES Serge Mathématiques Mle MARQUET Simone Physique M. MONTEL Marc I.E.E.A. M. PANET Marius Minéralogie M. PROUVOST Jean MAITRES DE CONFERENCES (et chargés de fonctions) Economie Politique M. ADAM Michel Sciences Economiques M. ANDRE Charles Géographie M. ANGRAND Jean-Pierre Mathématiques M. ANTOINE Philippe Mathématiques M. AUBIN Thierry **Biologie** M. BART André Mécanique des Fluides M. BEGUIN Paul Mathématiques M. BKOUCHE Rudolphe M. BOILLY Ténoni Biologie Biologie Végétale M. BONNEMAIN Jean-Louis Biologie Végétale M. BONNOT Ernest Géographie et Aménagement Spatial M. BRUYELLE Pierre Biologie Animale M. CAPURON Alfred I.E.E.A. M. CARREZ Christian Informatique M. CORDONNIER Vincent Physique M. CORTOIS Jean I.E.E.A. M. COULON Jean Sciences Appliquées M. DEBRABANT Pierre Physique M. DOUKHAN Jean-Claude

M. DRIEUX Baudouin

-2-

.../...

I.E.E.A.

MAITRES DE CONFERENCES (et chargés de fonctions)(suite)

M. DYMENT Arthur M. ESCAIG Bertrand M. FONTAINE Jacques M. FROELICH Daniel M. GAMELIN André M. GOBLOT Rémi M. GOSSELIN Gabriel M. GRANELLE Jean-Jacques M. HERMAN Maurice M. HUARD de la MARRE Pierre M. JOURNEL Gérard Mle KOSMANN Yvette M. KREMBEL Jean M. LABLACHE COMBIER Alain M. LAURENT François M. LAVAGNE Pierre Mle LEGRAND Denise Mle LEGRAND Solange Me LEHMANN Josiane M. LENTACKER Firmin M. LEROY Jean-Marie M. LEROY Yves M. LHENAFF René M. LOCQUENEUX Robert M. LOUAGE Francis Me MAILLET Monique M. MAIZIERES Christian M. MALAUSSENA Jean-Louis M. MANBRINI Jean M. MERIAUX Emile M. MESSELYN Jean M. MIGEON Michel M. MUSSCHE Guy M. NICOLE Jacques M. OLIVEREAU Jean-Michel M. OUZIAUX Roger M. PAQUET Jacques M. PARSY Fernand M. PERROT Pierre M. PONSOLLE Louis M. POVY Jean-Claude M. RACZY Ladislas Me RENVERSEZ Françoise M. ROUSSEAU Jean-Paul M. SALMER Georges M. SEGUIER Guy M. SIMON Michel M. SLIWA Henri M. SMET Pierre M. SOMME Jean Mle SPIK Geneviève M. TOULOTTE Jean-Marc M. TREANTON Jean-René M. VANDORPE Bernard M. VILETTE Michel M. WATERLOT Michel

Mathématiques Physique Génie Electrique Sciences Appliquées Géographie Mathématiques Sociologie Sciences Economiques Physique I.E.E.A. Sciences Appliquées Mathématiques Chimie Chimie Automatique Sciences Economiques et Sociales Mathématiques Mathématiques (Calais) Mathématiques Géographie et Aménagement Spatial Chimie Electronique Géographie Physique Sciences Appliquées Sciences Economiques I.E.E.A. Sciences Economiques et Sociales Biologie Sciences de la Terre Physique Chimie (Sciences Appliquées) Sciences Economiques Chimie Analytique Biologie Technologie des Machines Sciences Appliquées Mathématiques Chimie Chimie (Valencienne) Sciences Appliquées Physique Sciences Economiques et Sociales Physiologie Animale Radio Electricité Electronique Electronique Psychologie Chimie Physique Géographie Chimie Biologique Sciences Appliquées Sciences Economiques et Sociales Chimic Physique Génie Mécanique Géologie

-3-

A mes Parents,

A ma Femme.

1

Ce travail a été effectivé au Laboratoire de Physique du solide (Section Rayons X) de l'Université des Sciences et Techniques de Lille sous la direction de Monsieur le Professeur FOURET. Je tiens à lui exprimer toute ma gratitude et tous mes remerciements pour sa grande patience et pour les conseils nombreux qu'il n'a cessé de me prodiguer depuis mon entrée dans le laboratoire.

Je remercie Monsieur le Professeur BILLARD qui a bien voulu présider mon jury et Monsieur le Professeur MESSELYN qui a accepté d'en être membre.

Mes vifs remerciements vont également à Madame REMY et Monsieur COLSON qui se sont chargés de la programmation et de l'exécution des calculs numériques souvent longs et fastidieux.

J'adresse aussi mes remerciements à ceux qui ont contribué à la confection matérielle du présent mémoire et en particulier à Mademoiselle SALLE, qui a bien voulu se charger de la tâche ingrate de la frappe.

Enfin, je ne saurais oublier toute l'équipe du laboratoire et plus spécialement à Messieurs MORE et MARION qui m'ont beaucoup aidé dans ce travail tant dans les mesures expérimentales que dans la mise au point des calculs.

- TABLE DES MATIERES -

INTRODUCTION

CHAPITRE I: LE FACTEUR DE DEBYE-WALLER D'UN CRISTAL AYANT LA STRUCTURE DU TELLURE

1) STRUCTURE DU TELLURE

2) INTENSITE DIFFUSEE PAR UN CRISTAL

3) LE FACTEUR DE DEBYE--WALLER

4) EXPRESSION DU FACTEUR DE STRUCTURE CORRIGE DU FACTEUR DE DEBYE-WALLER

CHAPITRE II: INTENSITE INTEGREE D'UN CRISTAL DE POUDRE

1) INTENSITE D'UN CRISTAL DE POUDRE

2) CORRECTIONS SUR LES INTENSITES

a) CORRECTION D'ABSORPTION

b) CORRECTION D'EXTINCTION PRIMAIRE ET SECONDAIRE

3) ETUDE EXPERIMENTALE

a) PREPARATION DE LA POUDRE

b) CONDITIONS EXPERIMENTALES. INTENSITE MESUREE

4) DISCUSSION

a) CHOIX DE LA GROSSEUR DE LA POUDRE

b) RESULTATS

CHAPITRE III: ETUDE DE L'INTENSITE D'UN CRISTAL

1) INTENSITES INTEGREES

2) CORRECTIONS

a) CORRECTION D'ABSORPTION

b) CORRECTION DE DISPERSION

3) DISPOSITIF EXPERIMENTAL -

a) MONTAGE

b) REGLAGES

4) ANALYSE DE LA DIVERGENCE

a) DIVERGENCE HORIZONTALE

b) DIVERGENCE VERTICALE

c) CONSTRUCTION DU DOMAINE DE DIVERGENCE

d) INTENSITE DIFFUSEE PAR L'AGITATION THERMIQUE

5) RESULTATS

RESULTATS EXPERIMENTAUX RESULTAT DU CALCUL NUMERIQUE CONCLUSION.

INTRODUCTION

L'objet de ce travail est la détermination précise du facteur de Debye--Waller d'un cristal de Tellure à la température ordinaire.

Précédemment MORE [1] avait effectué la détermination de B_{33} et étudié sa variation en fonction de la température. Il obtient un bon accord entre la valeur expérimentale et la valeur calculée à partir du modèle pseudo-harmonique utilisé à toute température [2]. Son calcul lui avait permis de montrer que $B_{11} \# 2B_{22}$ ce qui est en profond désaccord avec les valeurs expérimentales déterminées par Cherin et Unger sur un diagramme de Weissemberg du plan de base [3].

Il est donc intéressant de reprendre l'ensemble des mesures dans le plan de base en effectuant une mesure au diffractomètre des intensités intégrées, en y retranchant la contribution de la diffusion du 1^{er} ordre due à l'agigation thermique et voir si l'accord se faisant avec les valeurs expérimentales de Cherin et Unger ou avec le modèle de Hufin. Ceci nous fournit en même temps un test sur la validité du modèle dynamique que nous avons utilisé jusqu'à maintenant [1] [4]

L'étude expérimentale comprend deux parties. La première partie correspond aux mesures d'intensités intégrées d'un cristal de poudres de tellure. Après avoir retranché les extinctions primaire et secondaire, nous calculons la valeur des composantes B_{11} , B_{22} , B_{33} et ρ .

Dans la seconde partie nous étudions l'intensité intégrée d'un cristal de tellure dont l'un des axes d'ordre 2 est perpendiculaire à la face d'entrée. Après avoir corrigé notre intensité de la contributior de la diffusion par les ondes élastiques nous calculons par une méthode des moindres carrés la valeur des composantes B_{11} , B_{22} , B_{33} du tenseur de Debye-Waller ainsi que ρ

CHAPITRE-I-

LE FACTEUR DE DEBYE-WALLER D'UN CRISTAL AYANT LA STRUCTURE DU TELLURE

1) STRUCTURE DU TELLURE

Le cristal de Tellure appartient au groupe spatial P3₁21. Il est décrit par un réseau hexagonal dont les vecteurs $\vec{a_1}$ et $\vec{a_2}$ ont même module $|\vec{a_1}| = |\vec{a_2}|$, l'angle $(\vec{a_1}, \vec{a_2}) = \frac{2\pi}{3}$, $\vec{a_3}$ est perpendiculaire à $\vec{a_1}$ et $\vec{a_2}$ et $|\vec{a_3}| = C$

A 20°C,
$$a = 4,4572$$
 Å
c = 5,9269 Å

La maille élémentaire comporte 3 atomes repérés par les indices 1, 2, 3 disposés sur une hélice verticale de pas c, de rayon ρ dont nous préciserons la valeur. Si l'on convient de placer l'atome 1 dans le plan d'origine, les deux autres ont alors les côtés c/3 et -c/3 (Fig.1). Dans le système d'axes $\vec{a_1}, \vec{a_2}, \vec{a_3}$, les coordonnées numériques sont donc:

stome (1)	(u, o, o)	
atome (2)	(o, u, 1/3)	avec $u = \rho_{/a}$
atome (3)	(– u, –u, –1/3)	

Il y a recouvrement du réseau par:

- rotation de $\frac{2\pi}{3}$ n autour de oz suivie d'une translation $\frac{\pi}{3}$ n - rotation de π autour de $\overrightarrow{a_1} = \overrightarrow{OA}$ - rotation de π autour de $\overrightarrow{a_2}$ suivie de $\frac{\overrightarrow{e_3}}{3}$ - rotation de π autour de OB suivie de $-\frac{\overrightarrow{a_3}}{3}$

2) INTENSITE DIFFUSEE PAR UN CRISTAL

Nous adopterons les notations suivantes:

j repère un atome à l'intérieur d'une maille

 \overrightarrow{p} , \overrightarrow{m} sont des vecteurs du réseau direct

k, j vont de l'origine de maille considérée au centre de l'atome correspondant

 u_m^j est le déplocement dù à l'agitation thermique de l'atome j de sa position d'équilibre.

M est un verteur du réseau résiproque

$$\vec{X}$$
 est un verteur de diffusion repéré dans le réseau réciproque tel que $\vec{X} = \frac{\vec{S}}{\lambda} - \frac{\vec{S}_0}{\lambda}$

S étant le vecteur unitaire porté par le rayon diffusé moyen

 \overrightarrow{S}_0 le vecteur unitaire porté par le rayon incident moyen.

λ la longueur d'onde de la radiation incidente et l'angle $(\vec{s}_0, \vec{S}) = 2\theta$, l'angle de diffusion $f_j(\vec{X})$ est le facteur de diffusion atomique de l'atome j pour le vecteur d'onde \vec{X} $e^{-B_j(\vec{X})}$ est le facteur de Debye Waller de l'atome j pour le vecteur d'onde \vec{X} $f'_j(\vec{X}) = f_j e^{-B_j(\vec{X})}$ facteur de diffusion compte tenu du facteur de Debye-eWaller ω (\vec{S}, \vec{r}) est la fréquence circulaire de l'onde élastique pilotée par le vecteur d'onde \vec{S} pour le mode \vec{r} . $E(\vec{S}, \vec{r})$ est l'énergie de l'onde élastique pilotée par le vecteur d'onde \vec{S} pour le mode \vec{r} .

 $\dot{\xi^{i}}$ (S, r) est un vecteur propre de la matrice

$$\gamma_{\alpha\beta}^{j\,k} = \gamma_{\alpha\beta}^{j\,k} e^{-i2\pi \hat{S}(\vec{j}-\vec{k})}$$

où
$$\gamma^{j\,k}_{lphaeta}$$
 est la matrice de Fourier

Pour un vecteur d'onde S donné, la matrice de Fourier à la dimension 9x9 et conduit à 9 valeurs propres et vecteurs propres repérés par l'indice r.

 ϵ = amplitude diffusé par un électron libre

N' = nombre de maille du réseau

 $\mu =$ masse d'une maille élémentaire

 $\mu_i = \text{ masse de l'atome j}$

L'intensité moyenne du rayonnement correspondant au vecteur de diffusion \overrightarrow{X} a pour valeur

$$<\mathbf{I}>=\epsilon^{2}\sum_{\mathbf{m},\mathbf{j}}\sum_{\mathbf{p},\mathbf{k}}\mathbf{f}'_{\mathbf{j}} e^{\mathbf{i}\frac{2\pi\mathbf{X}}{\mathbf{X}}}\mathbf{f}'_{\mathbf{k}} e^{-\mathbf{i}\frac{2\pi\mathbf{X}}{\mathbf{X}}\mathbf{k}}e^{-\mathbf{i}\frac{2\pi\mathbf{X}}{\mathbf{X}}(\mathbf{m}-\mathbf{p})}]$$

$$\exp \left\{ \frac{2\pi^2 X^2}{N' \mu} \sum_{\substack{S,r}} \frac{E(\vec{S,r})}{\omega^2(\vec{S,r})} \left\{ \xi^j(\vec{S,r}) \xi^k(\vec{S,r}) e^{-i2\pi \vec{S}'(\vec{m-p})} + \text{quantité} \right\} \right\}$$

On développe en série l'exponentielle et on peut mettre l'intensité diffusée sous la forme

$$< D = < I_0 > + < I_1 > + < I_2 > + \dots$$

Ce sont les intensités diffusées d'ordre 0, 1, 2

On aura:

 $\langle I_0 \rangle$ a un maximum très étroit pour $\overrightarrow{X} = \overrightarrow{M}$. Cette condition correspond à la condition de Bragg 2d sin $\theta = \lambda$ Lorsque cette condition est réalisée on a:

$$\langle \mathbf{I}_{0} \rangle = N'^{2} \epsilon^{2} | \sum_{j} f'_{j} e^{i \frac{2\pi \vec{M} \cdot \vec{j}}{\vec{M} \cdot \vec{j}}}$$

 $\mathbf{F} (\vec{M}) = \sum_{j} f'_{j} e^{i \frac{2\pi \vec{M} \cdot \vec{j}}{\vec{M} \cdot \vec{j}}}$ est le facteur de structure pour le vecteur \vec{M}

Dans le calcul du facteur de structure, chaque facteur de diffusion atomique f_j est remplacé à cause de l'agitation thermique par le facteur :

$$\mathbf{f'}_{\mathbf{j}} = \mathbf{f}_{\mathbf{j}} \quad \mathbf{e} \quad - \begin{pmatrix} 2 \pi^2 \mathbf{X}^2 \\ \mathbf{N'} \mu \\ \vdots \\ \mathbf{S}, \mathbf{r} \end{pmatrix} \stackrel{\mathbf{\Sigma}}{\underset{\mathbf{S}, \mathbf{r}}{ \vdots } |\xi|^{\mathbf{j}} (\mathbf{S}, \mathbf{r})|^2 \quad \frac{\mathbf{E} (\mathbf{S}, \mathbf{r})}{\omega^2 (\mathbf{S}, \mathbf{r})} \end{pmatrix}$$

 $\rightarrow \rightarrow$

De même nous obtenons

$$\langle \mathbf{I}_{1} \rangle = 2 \pi^{2} X^{2} \epsilon^{2} N' \sum_{j,k} \frac{\mathbf{f}_{j}' \mathbf{f}_{k}' \mathbf{e}^{i2\pi \times (j-k)}}{\sqrt{\mu_{j}} \mu_{k}} X$$

$$\sum_{\substack{\vec{s},\vec{r}}} \frac{E(\vec{s},\vec{r})}{\omega^{2}(\vec{s},r)} \left(\xi^{j}(\vec{s},r) \ \overline{\xi}^{k}(\vec{s},r) \ \Delta (\vec{X}-\vec{s}) + \overline{\xi}^{j}(\vec{s},r) \ \xi^{k}(\vec{s},r) \ \Delta (\vec{X}+\vec{s}) \right)$$

ici $\mu_j = \mu_k$

Les termes \triangle (\overrightarrow{X} + \overrightarrow{S}) et \triangle (\overrightarrow{X} - \overrightarrow{S}) sont différents de 0 si \overrightarrow{X} - \overrightarrow{S} ou \overrightarrow{X} + \overrightarrow{S} = \overrightarrow{M}

Posons:

$$\xi^{j}(\overrightarrow{S},r) = \zeta^{j}(\overrightarrow{S},r) e^{-i2\pi S}$$

On obtient

$$\langle \mathbf{I}_1 \rangle = \frac{4\pi^2 \mathbf{X}^2 \mathbf{N}' \epsilon^2}{\mu} \sum_{j} \sum_{ij} \sum_{ij} \sum_{j} \sum_{ij} \sum_{j} \sum_{ij} \sum_{ij} \sum_{j} \sum_{ij} \sum_{ij} \sum_{j} \sum_{ij} \sum$$

 $<I_2>$ est une expression plus compliquée faisant intervenir à la fois deux ondes élastiques (interaction à deux phonons). [4]

Au voisinage des nœuds $<I_1>$ (interaction à 1 phonon) est prépondérant devant $<I_2>$. On négligera $<I_2>$ dans la suite.

3) LE FACTEUR DE DEBYE-WALLER

Dans le calcul du facteur de structure, l'agitation thermique corrige celui-ci par l'expression

$$f'_{j} = f_{j} \exp \left(-\frac{2\pi^{2}X^{2}}{N'\mu}\sum_{\vec{S},\vec{r}} |\xi^{j}(\vec{S},r)|^{2} \frac{E(\vec{S},r)}{\omega^{2}(\vec{S},r)}\right)$$

ou encore sous la forme simplifiée $f'_{j} = f_{j} e^{-B_{j}(\vec{X})}$

Ce facteur intervient aussi bien dans $< I_0 >$ que dans $< I_1 >$. Il nous semble plus intéressant de faire la détermination de $B_j(\vec{X})$ à partir des pics de diffractions Il a été montré que $B_j(\vec{X})$ peut s'écrire sous la forme $B_j(\vec{X}) = \sum_{\alpha\beta} B^j X_{\alpha\beta} X_{\beta}$ [1]

avec
$$B_{\alpha\beta}^{I} = \frac{\pi^{2}}{N'\mu_{J}} \sum_{\mathbf{S},\mathbf{r}} \left[\overline{\xi}^{I}(\mathbf{S},\mathbf{r}) \xi^{I}(\mathbf{S},\mathbf{r}) \overline{\xi}^{I}(\mathbf{S},\mathbf{r}) \xi^{I}(\mathbf{S},\mathbf{r}) \right] \frac{E(\mathbf{S},\mathbf{r})}{\omega^{2}(\mathbf{S},\mathbf{r})}$$

On peut faire deux remarques sur ce résultat

a)
$$B^{j} = B^{j}$$

 $\alpha\beta \quad \beta\alpha$
b) $B^{j} = \frac{2\pi^{2}}{N'\mu_{j}} \sum_{\vec{s}, r} |\xi^{j}(\vec{s}, r)|^{2} = \frac{E(\vec{s}, r)}{\omega^{2}(\vec{s}, r)}$

d'où

$$\sum_{j\alpha} B^{j}_{\alpha\alpha\alpha} = \frac{2\pi^{2}}{N'\mu_{j}} \qquad \sum_{\substack{s,r \\ s,r \\$$

Compte tenu des relations d'orthogonalités

$$\sum_{j,\alpha} \overline{\xi}_{\alpha}^{j} (\vec{S}, r) \xi^{j} (\vec{S}, r) = \delta rr'$$

On a:
$$\sum_{j,\alpha} B^{j}_{\alpha \alpha} = \frac{2\pi^{2}}{N'\mu_{j}} \sum_{\vec{S},r} \frac{E(S,r)}{\omega^{2}(\vec{S},r)}$$

Si par l'opération A = [S] \overrightarrow{v} (S)] on passe de l'atome $\overrightarrow{j_0}$ à l'atome $\overrightarrow{j_1}$ le tenseur B^{jo} est alors transformé en B^{j1} = S B^{jo} \widetilde{S}

En appliquant les opérations de symétrie du groupe spatial, les tenseurs de Debye-Waller pour les trois atomes de la maille élémentaire sont de la forme,

$$B^{1} = \begin{bmatrix} B_{11} & 0 & 0 \\ 0 & B_{22} & B_{23} \\ 0 & B_{23} & B_{33} \end{bmatrix} B^{2} = \begin{bmatrix} \frac{B_{11} + 3B_{22}}{4} & -\frac{\sqrt{3}}{4}(B_{11} - B_{22}) & -\frac{\sqrt{3}}{2}B_{23} \\ -\frac{\sqrt{3}}{4}(B_{11} - B_{22}) & \frac{3E_{11} + B_{22}}{4} & -\frac{B_{23}}{2} \\ -\frac{\sqrt{3}}{2}B_{23} & -\frac{\sqrt{3}}{2}B_{23} & -\frac{W_{3}}{2}B_{33} \end{bmatrix} B^{2} = \begin{bmatrix} \frac{\sqrt{3}}{4}(B_{11} - B_{22}) & -\frac{\sqrt{3}}{4}(B_{11} - B_{22}) & -\frac{\sqrt{3}}{4}B_{23} \\ -\frac{\sqrt{3}}{4}(B_{11} - B_{22}) & \frac{3E_{11} + B_{22}}{4} & -\frac{B_{23}}{2} \\ -\frac{\sqrt{3}}{2}B_{23} & -\frac{B_{23}}{2} & -\frac{B_{33}}{2} \end{bmatrix} B^{2}$$

$$B^{3} = \begin{bmatrix} \frac{B_{11} + 3B_{22}}{4} & \frac{\sqrt{3}}{4}(B_{11} - B_{22}) & \frac{\sqrt{3}}{2} & B_{23} \\ \frac{\sqrt{3}}{4}(B_{11} - B_{22}) & \frac{3B_{11} + B_{22}}{4} & -\frac{B_{23}}{2} \\ \frac{\sqrt{3}}{2} & B_{23} & -\frac{B_{23}}{2} & B_{33} \end{bmatrix}$$

où les composantes du tenseur ont été exprimées dans un système d'axes trirectangulaires tels que

Ox1 est dirigé suivant l'axe d'ordre 2 passant par l'atome 1

 Ox_2 est perpendiculaire à Ox_1 et Ox_3 Ox_3 est dirigé suivant l'axe $\overrightarrow{a_3}$

On remarque que les traces B^1 , B^2 , B^3 sont égales et que les composantes $B^1_{33} = B^2_{33} = B^3_{33} = B_{33}$

4) EXPRESSION DU FACTEUR DE STRUCTURE CORRIGEE DU FACTEUR DE D.W.

Nous avons vu que le Tellure est décrit par un téseau hexagonal. Dans un système d'axe orthogonal dont OX₁ correspond avec un axe d'ordre 2 les coordonnées de X seront déterminées par :

$$\vec{X}$$
 : $\frac{h}{a}$; $\frac{2k+h}{a\sqrt{3}}$; $\frac{\ell}{c}$

Les trois coordonnées des trois atomes dans le réseau direct sont:

(1) = u, o, o (2) = o, u, 1/3 avec $u = \rho/a$ (3) = -u, -u, -1/3

Calculons pour les différents atomes l'expression de ${\rm B}_{\rm j}$ (X)

$$B_{j}(X) = \Sigma_{\alpha\beta} B_{\alpha\beta} X^{\alpha} X^{\beta}$$

En tenant compte de la symétrie des tenseurs $B_j(\vec{x})$, nous obtenons: $B_j(x) = B_{11} x^1 x^1 + B_{22} x^2 x^2 + B_{33} x^3 x^3 + 2B_{12} x^1 x^2 + 2B_{13} x^1 x^3 + 2B_{23} x^2 x^3$

D'où les expressions de ${\sf B}_{\tilde{1}}$ (X) pour les 3 atomes

$$B_{1}(X) = B_{11} \frac{h^{2}}{a^{2}} + B_{22} \frac{(2k+h)^{2}}{3a^{2}} + B_{33} \frac{\ell^{2}}{c^{2}} + 2B_{23} \frac{\ell(2k+h)}{a c \sqrt{3}}$$

$$B_{2}(X) = B_{11} \frac{k^{2}}{a^{2}} + B_{22} \frac{(2h+k)^{2}}{3a^{2}} - \frac{2B_{23}}{a c \sqrt{3}} \ell(2h+k) + B_{33} \frac{\ell^{2}}{c^{2}}$$

$$B_{33}(X) = B_{11} \frac{(h+k)^{2}}{a^{2}} + B_{22} \frac{(h-k)^{2}}{3a^{2}} + 2B_{23} \frac{\ell(h-k)}{a c \sqrt{3}} + B_{33} \frac{\ell^{2}}{c^{2}}$$
(1)

Nous pouvons en déduire alors Fhk?

$$F_{hk\ell} = \sum_{j \ j} f_{j} e^{i2\pi(hx_{j}^{1} + kx_{j}^{2} + \ell x_{j}^{3})} e^{-B_{j}(\vec{X})}$$

En tenant compte des coordonnées numériques des atomes et du fait que $f_1 = f_2 = f_3 = f_0$ on obtient:

$$F_{hkl} = f_{o} \left\{ e^{i2\pi hu} e^{-B_{1}} + e^{i2\pi (Ku + \frac{l}{3})} e^{-B_{2}} + e^{-i2\pi (hu + ku + \frac{l}{3})} e^{-B_{3}} \right\} (2)$$

ce qui donne en posant $V = 2\pi u$

$$L = \frac{2\pi Q}{r}$$
 une intensité réfléchie proportionnelle à:

$$|F_{hk}g|^{2} = f_{0}^{2} \left\{ e^{-2B_{1}} + e^{-2B_{3}} + 2e^{-(B_{1} + B_{2})} \cos(hV - kV - L) + 2e^{-(B_{1} + B_{3})} \cos(2hV + kV + L) + 2e^{-(B_{2} + B_{3})} \cos(hV + 2kV + 2L) \right\}$$
(3)

CHAPITRE - II -

ETUDE DE L'INTENSITE DES POUDRES

Une raie donnée est formée par les réflexions sur tous les plans réticulaires ayant la même distance réticulaire. Suivant la symétrie, ces réflexions peuvent avoir le même facteur de structure. L'intensité de Bragg est donnée par la formule:

$$I = I_0 \frac{Qn}{8\pi r \sin\theta} dV = i dV$$
(4)

I représente la puissance diffractée sur l'unité de longueur d'une raie Debye-Scherrer enregistrée à la distance r de l'échantillon

In l'intensité par unité de surface du faisceau incident.

$$Q = \frac{e^4}{m^2 c^4} \cdot \frac{1 + \cos^2 2\theta}{2 \sin 2\theta} \cdot \frac{\lambda^3}{V_c^2} |F_{hk} g|^2$$

$$r^{2}_{e} = \frac{e^{4}}{m^{2}c^{4}} = 7,9.10^{-26}$$

 θ l'angle de Bragg

 $\frac{1 + \cos^2 2\theta}{2 \sin 2\theta}$ est le facteur de Lorentz-polarisation lorsque le faisceau incident n'est pas polarisé.

Fhkl est le facteur de structure corrigé du Facteur de Debye-Waller

n est le facteur de multiplicité

dV l'élément de volume de la poudre.

Les angles de Bragg à considérer sont ceux du système hexagonal. Dans ce système à une réflexion générale h, k, ℓ , est associée 23 réflexions équivalentes. Pour le système rhomboédrique P3₁2, l'absence de centre de symétrie fait que ces réflexions se séparent en 2 groupes de facteurs de structure différents. Ce sont:

1^{er} groupe { h, k, l; k. h.l; h,
$$h+k$$
, l; $h+k$, \bar{h} , l; k, $\bar{h}+k$, l; $h+k$, k, l
 h, k, \bar{l} ; k. h, \bar{l} ; \bar{h} , $h+k$, \bar{k} ; $\bar{h}+k$, h, \bar{l} ; \bar{k} , $h+k$, \bar{k} ; $\bar{h}+k$, k, \bar{l}

(5)

$$h,k,l; k,h.l; h,h+k,l; h+k,h,l; h+k,l; h+k,k,k$$

$$h,k,l;k,h,l;h,h+k,l;h+k,h,l;k,h+k,l;h+k,k,l$$

Pour chaque groupe, les facteurs de structures sont donnés dans le tableau [1]

Pour les réflexions particulières, le facteur de multiplicité diminue au fur et à mesure que la symétrie augmente. Ces facteurs sont donnés par le tableau ci-dessous:

Indice	n	Indice	n
h. k. l	12	h.h.o	3
h.h.l	6	h.o.o.	3
h.o.l	6	0.0.l	1
h.k.o	6		

D'où l'expression de l'intensité pour une raie donnée

 $totale = (lhkl + lhk\bar{l})n$

2) CORRECTIONS SUR LES INTENSITES

a) Correction d'Absorption

On utilise une plaquette de poudre suffisamment épaisse pour que le faisceau soit totalement absorbé. Les mesures étant faites au diffractomètre, la surface de l'échantillon est constamment perpendiculaire à la bissectrice des rayons incident et diffracté.

hĸĺ	$ F_{hk}g ^2$	F _{hkl} ²	Σ F ²	∑f _o ²∖Ff
1.0.0	0,663	0,663	3,978	3606
1.0.1	0,385	7,36	46,47	93869
1.0.2	0,354	6,97	43,92	74664
1.1.0	5,12	5,12	30,72	50380
1.1.1	1,255	1,255	15,06	23520
2.0.0	0,749	0,749	4,5	6651
2.0.1	2,32	4,12	38,64	55062
2.0.2	3,91	2,18	36,54	46551
2.1.1.	2,24	1,24	41,76	47397
2.1.2	1,14	2,10	38,88	40785
3.0.0	1,414	1,414	8,48	8734
3.0.1	3,64	0,482	24,72	24917,8
1.1.4	0,937	0,937	11,24	11 071
0.0.3	7,74	7,74	15,48	23359
1.0.5	0.233	4.77	30	26820

•

TABLE AU 1

A la profondeur x, l'intensité du faisceau incident est réduite à

 $I_x = I_0 e^{-\mu \rho x}$ ceci si le faisceau est normal à la face.

 μ = coefficient d'absorption massique de l'échantillon

 ρ = masse volumique de l'échantillon

et si nous supposons la plaquette de poudre d'épaisseur infinie

 $I = \int_{0}^{\infty} dI = \frac{iS}{2\mu\rho}$ ou S est la section du faisceau incident et i l'intensité diffractée par

unité de volume.

Cette hypothèse se justifie dans notre cas. En effet pour une radiation incidente Moka

$$\rho = 6,25 \text{ g/cm}^3$$
 $\rho \mu = 218,75 \text{ cm}^{-1}$

Le faisceau incident est alors affaibli de 99 % pour la traversée d'une épaisseur de matière de l'ordre de 0,21mm

Ceci nous montre aussi que la correction d'absorption dans ce cæ particulier est indépendante de θ . La surface irradiée est $\frac{S}{\sin\theta}$. Aussi quand l'incidence est rasante, la moindre irrégularité de la surface peut produire d'appréciables variations d'intensité.

b) Correction d'Extinction

On supposera notre poudre comme formé par un agrégat de petits blocs de dimensions très faibles (de l'ordre du micron). Les blocs sont légèrement désorientés les uns par rapport aux autres. Ce modèle s'explique d'abord par l'étendue du domaine angulaire de réflexion. Ce qu'on mesure quand on fait tourner notre poudre ce n'est plus l'intervalle dans lequel la réflexion se produit dans un bloc mais l'écart angulaire entre les plans les plus désorientés des blocs actifs. Les irrégularités de position et d'orientation entre les blocs élémentaires permettent de considérer qu'ils émettent des ondes diffractées incohérentes.

Dans ces conditions Darwin [8] a montré qu'il pouvait exister 2 effets d'extinction: l'extinction primaire et l'extinction secondaire.

L'extinction primaire

Soit un bloc cristallin parfait ayant une certaine épaisseur. Plaçons nous dans les conditions de réflexion sélective. Lors de la traversée des différents plans réticulaires, le rayonnement diminue rapidement en intensité. De plus il existe des réflexions successivement sur les différents plans réticulaires. A chaque réflexion il y a un déphasage de $\pi/2$ ce qui produit une diminution des amplitudes au fur et à mesure que le rayonnement traverse les plans réticulaires.

Cet effet qui ne doit pas être confondu avec l'absorption ordinaire est appelé extinction primaire. Dans ce cas, le pouvoir réflecteur P est donné par

$$\mathbf{P} = \frac{\mathbf{Q}'}{2\mu\rho}$$

avec
$$Q' = Q$$

 $2t \sqrt{\frac{Q \cot g \theta}{\lambda(1 + \cos^2 2\theta)}}$

Q étant donné par la formule (5) t étant la grosseur des blocs cristallin

le terme

$$\frac{\text{th} \left(2t \sqrt{\frac{\Omega \cot g \theta}{\lambda(1 + \cos^2 2\theta)}}\right)}{2t \sqrt{\frac{\Omega \cot g \theta}{\lambda(1 + \cos^2 2\theta)}}}$$

est appelé le facteur d'affaiblissement

Ce facteur égale 1 pour t très patit, décroit avec t d'autant plus vite que Q est important .(Fig.2)

Nous avons calculé théoriquement le facteur d'affaiblissement en fonction de la grosseur des blocs cristallins.(tableau2). Nous constatons que pour des blocq inférieurs à 1μ le facteur d'affaiblissement est pratiquement constant et que nous pouvons alors négliger l'extinction primaire.

L'extinction secondaire [8] [9]

Supposons maintenant que l'on peut négliger l'extinction primaire. Considérons un plan de réflexion à une profondeur x dans le cristal. Si I_0 est l'intensité du rayonnement incident, l'intensité arrivant à une profondeur x serait réduite à $I_0 e^{-\mu - x \cos ec \theta}$ par l'absorption ordinaire. Mais la réduction d'intensité est plus grande que cela puisqu'une certaine fraction de l'intensité est réfléchie par chaque bloc traversé. Il y aura ainsi une composition des différentes intensités réfléchies par les différentes blocs situées à différentes profondeurs. Ici, il n'y a pas de relations de phase entre les différentes réflexions et pour obtenir l'effet résultant d'un grand nombre de blocs nous avons à additionner les intensités et non les amplitudes comme dans le cas de l'extinction primaire.

Darwin montre qu'au lieu du coefficient d'absorption linéaire ordinaire μ_0 , le coefficient effectif peut s'écrire:

$$\mu_{e} = \mu_{o} + g\Omega$$

g étant un coefficient constant pour un échantillon donné dépendant de la nature de la mosaïcité

$$\Omega = \frac{\lambda^3}{V_c^2} \quad |\mathsf{F}|^2 \quad (\frac{e^2}{\mathsf{mc}^2})^2 \quad \frac{1+\cos^2 2\theta}{2\sin 2\theta}$$

Le pouvoir réflecteur devient: $P = \frac{O}{2\mu_e \rho}$

en remplaçant $\mu_{\rm e}$ par son expression

 $P = \frac{O}{2\rho(\mu_0 + gQ)}$

d'où P = $\frac{P_0}{1+gP_0}$

hk l	pour t = 1/2	t== 1	$t = 2\mu$
1.0.0.	0,96	0,87	0,64
1.0.1	0,89	0,68	0,40
1.0.2	0,95	0,85	0,60
1.1.0	0,93	0,76	0,48
1.1.1	0,99	0,94	0,80
2.0.0.	0,99	0,97	0,89
2.0.1	0,97	0,91	0,72
2.0.2	0,99	0,94	0,80
2.1.1	0,99	0,97	0,90
2.1.2	0,99	0,98	0,94
3.0.0	0,99	0,985	0,945
3.0.1	0,99	0,98	0,925
1.1.4	0,99	0,99	0,97
ì. 0 .5	0,99	0,98	0,94
0.0.3	0,99	0,94	0,80

TABLEAU 2

avec $P_0 = \frac{Q}{2\rho\mu_0}$, pouvoir réflecteur du cristal idéalement imparfait.

D'après des mesures faites par Darwin[9] et Havighurst [10], nous pouvons négliger l'extinction secondaire lorsque les blocs deviennent plus petits que 100μ

3) ETUDE EXPERIMENTALE

a) PREPARATION DE LA POUDRE

La poudre dont nous disposons vient de la maison «Hoboken». Sa pureté est de 99,99 % . La grosseur moyenne des grains est de l'ordre de 100μ . Notre premier travail a été de réduire la grosseur de cette poudre. Pour cela nous avons construit une broyeuse suivant le principe ci-dessous.

Deux pots contenant la poudre > broyer avec une quinzaine de billes d'agathe de diamètre égal à 5 mm, tournent autour des axes CC' et DD'

Pour obtenir un broyage plus uniforme et pour éviter que la poudre vienne se coller sur les parois des pots, ceux-ci, étant inclinés d'un angle de 20° environ, par rapport aux axes CC' et DD', tournent autour des deux axes AA' et BB'

La poudre que nous récupérons n'a pas une grosseur homogène. Elle varie de 1 μ à 40 μ environ.

A ce stade se pose un second problème, celui de la granulométrie, c'est-à-dire la séparation des poudres en fonction de leur grosseur. Une première sélection est faite à l'aide du granulotest « TAMISOR». Ceci nous permet de classer notre poudre suivant les catégories suivantes:

- poudre dont la taille est inférieure à 25 μ

- poudre dont la taille est comprise entre 25μ et 50μ

- poudre dont la taille est supérieure à 50μ

La poudre de Tellure étant assez grasse, il nous semblait que la grosseur des particules de poudres que nous obtenons, était formé par l'aglomérat de particules plus fines. Nous avons donc cherché un autre moyen de s'éparation. Pour cela nous avons employé une centrifugeuse qui nous a permis d'obtenir des poudres dont les particules étaient classées de la manière suivante.

Soit ϕ la dimension maximum de la particule.

Nous obtenons les différentes catégories suivantes:

 $\phi < 1 \mu$ $1 \mu < \phi < 3 \mu$ $3 \mu < \phi < 10 \mu$ $10 \mu < \phi < 25 \mu$

b) CONDITIONS EXPERIMENTALES - INTENSITE MESUREE [11] [12] (fig.3)

Le but de la manipulation est donc la recherche de l'intensité intégrée d'une plaquette de poudre. La source de rayons X est un tube scellé Siemens à foyer fin à anticathode de cuivre. La distance de la source à l'axe du goniomètre, c'est-à-dire le rayon du cercle du goniomètre est de 170mm. Le goniomètre employé est du type Omega--Siemens qui permet la rotation du bras compteur et celle du support de l'échantillon à une vitesse rigoureusement moitié. Un réglage est prévu pour amener la normale à la face de l'échantillon sur la bissectrice de OS et SP. La position du compteur peut être lue au 1/100 de degré près. Le compteur entraîné par un moteur peut tourner à des vitesses différentes suivant les conditions expérimentales (2°/ minute, 1°/ minute, 1/4° minute, 1/8° minute, 1/16° minute).

L'échantillon est préparé en tassant la poudre dans une cuvette avec un liant de façon à obtenir une surface bien plane. La cuvette est cirulaire et de diamètre D = 30 mm. Après différents essais, nous avons choisi comme liant une résine époxy dissoute dans du trichloroéthyleine. Pour s'assurer d'une meilleure répartition au hasard des blocs mossiques, l'échantillon tourne autour d'un axe horizontal perpendiculaire au plan de l'échantillon. On demande au goniomètre de fournir:

des raies intenses et un pouvoir de résolution élevé. Ces deux conditions sont contradictoires.

Fig: 3

	Augmentation du pouvoir de résolution	Augmentation de l'intensité
Diaphragme-Compteur	diminuer	augmenter
Absorption dans l'échantillon	couche plus mince	préparation plus épaisse
Diaphragme d'ouverture	diminuer	augmenter
Fente de Soller	en place	enlevée.

Compte-tenu des remarques précédentes, nous avons choisi comme fente réceptrice une fente égale à deux fois la largeur à mi-hauteur. Quant à celle d'entrée, elle sera 3 à 4 fois plus large que la fente réceptrice. Après calcul notre choix s'est porté sur les combinaisons de fentes suivantes.

Fente entrée en mm	Fente sortie en mm
0,6	0,2
1,2	0,4

La divergence horizontale et la divergence verticale sont déterminées à l'aide de fentes (fig.3) La source a pour dimension 10 mm x 0,4 mm.

La fente d'entrée F_1 , limite la divergence des rayons incidents a une valeur de l'ordre du degré. Il faut remarquer que la largeur de la partie irradiée de la plaquette de poudre croît lorsque θ diminue. Nous sommes donc amenés à prendre une fente plus petite pour la mesure des intensités des réflexions données par un angle de Bragg petit.

F2 est la fente réceptrice

F₃ sert à éliminer le rayonnement diffusé.

Avec une hauteur de 10 mm, la divergence des rayons dans le plan perpendi culaire au plan de la figure, produirait un élargissement important des raies. On réduit cette divergence par l'adjonction de fentes de Soller F_4 et F_5 . Elles sont constituées par une série de très minces lamelles métalliques parallèles d'un métal absorbant.

Elles ont pour longueur 20 mm et l'écart entre chaque lamelles est de 0,5 mm. La divergence verticale est alors raménées à 2° .

Enfin, pour réduire d'une façon notable l'intensité K_{β} par rapport à la raie K_{α} (rapport 1/600) on intercalle dans le faisceau direct un filtre de Nickel d'épaisseur 0,021 mm.

Les mesures d'intensités sont faite de la façon suivante: Après avoir positionné la plaquette de poudre en $\theta_{M} = \frac{2\theta_{1} + \theta_{2}}{3}$ pour une réflexion donnée,

> $θ_1$ étant l'angle de Bragg pour $λ_{k\alpha 1}$ $θ_2$ étant l'angle de Bragg pour $λ_{k\alpha 2}$ $θ_M$ sera appelé l'angle moyen de Bragg pour le doublet $λ_{k\alpha 1} = λ_{k\alpha 2}$

on mesure la largeur à mi-hauteur de la raie et on effectue un balayage du compteur de deux fois la largeur à mi-hauteur tel que le bruit de fond avant la réflexion c'est-à-dire au départ du balayage soit égal au bruit de fond après la réflexion, c'est-à-dire à la fin du balayage. De ce nombre de coups, il suffira de retrancher le bruit de fond. Le bruit de fond est déterminé en comptant avant et après la réflexion pendant un temps identique à la moitié de la durée du balayage.

4) DISCUSSION

a) Choix de la grosseur de la poudre

La formule (4) n'est applicable que si l'extinction primaire, l'extinction secondaire et l'orientation privilégiée solent des facteurs négligeables.

Nous avons vu précédemment que pour des blocs mosaiques de dimensions inférieures à 100 microns, nous pouvons négliger l'extinction secondaire.

Pour l'extinction primaire et l'orientation privilégiée nous avons fait une étude expérimentale sur trois réflexions.

Pour différentes grosseurs de poudres, nous avons fabriqué différents échantillons dont nous avons étudié les intensités intégrées pour [1.1.0], [1.0.2], [0.0.3], [tableau n°3]. La variation du facteur d'extinction primaire pour ces trois réflexions est donnée par la figure 4. Nous remarquons que si notre poudre est formée de blocs cristallins inférieurs à 0,5µ la correction due à l'extinction primaire est négligeable.

De l'étude des intensités des réflexions [1.1.0],[1.0.2] et [0.0.3] nous remarquons que le rapport $\frac{1003}{102}$ est pratiquement constant pour une taille des poudres inférieure à 20 microns. Ceci permet de supposer que la poudre utilisée est formée par l'aglomérat de plusieurs blocs mosaïques. Si nous observons $\frac{1}{102}$ nous constatons aussi que pour des tailles de poudres de 3 à 20 μ , ce rapport reste constant. Ceci confirme notre remarque précédente c'est-à-dire qu'il n'existe pas de rapport entre la grosseur des grains et les dimensions des blocs mosaïques. Lors de l'exploitation des résultats nous effectuerons nos calculs en supposant le facteur d'extinction primaire variable. Etude de l'intentisé en fonction de la grosseur des Poudres (Intensité Relative)

Diamètre	1.1.0	1.0.2	0.0.3	1 <u>110</u> 1102	1 <u>003</u> 1102
1μ	580	695	168	0,834	0,24
<3μ	415	551	131	0,75	0,24
	767	1650	250	0,74	0,24
	757	1050		0.70	
10-+-20.	705	1050	202	0.73	0.26
10 φ 20μ	795	000	263	0,74	0,20
	680	980	250	0,70	U,25
	663	910	242	0,73	0,26

- TABLEAU 3 -

l'échantillon A formé avec des poudres dont la grosseur moyenne est de 10 μ l'échantillon B formé avec des poudres dont la grosseur moyenne est de 1 μ

Mous faisons tourner chaque échantillon d'un angle de 30⁹, autour d'un axe horizontal contenu dans le plan d'incidance et nous mesurons l'intensité pour ces différentes positions de l'échantillon [fig.5-6]

Nous constatons que pour l'échantillon A, les rapports des intensités sont constants tandis que pour l'échantillon B l'intensité de [1.1.0] prend 2 maximums pour 2 positions se déduisant l'une de l'autre de 180° ce qui nous permet de supposer qu'il y orientation préférentielle pour des directions données. Pour éviter cela, nous nous sommes donc limités a des tailles de poudres de 3μ

b) Résultats expérimentaux

Ces mesures comme nous l'avons vu, ont été faites avec un tube à anticathode de cuivre. Ceci nous permettait d'avoir des intensités plus élevées mais peu de réflexions. Pour augmenter ce nombre de réflexions, nous aurions pu employer un tube à anticathode de Molybdeine qui arune longueur d'onde environ 2 fois plus petite que celle du cuivre ($\lambda_k Cu = 1,54$ 2Å $\lambda_k M_o = 0,709$ Å). Mais vu la largeur des réflexions, les différentes réflexions s'interpénétraient et les résultats n'étaient pas exploitables.

Des mesures effectuées nous pouvons en déduire pour chaque réflexion

$$|F^{M}|^{2} = |F^{M}_{hk}|^{2} + |F^{M}_{hk\bar{k}}|^{2} = \frac{|Mes|}{n.A(F.L.P)}$$

I_{Mes} étant l'intensité intégrée relative pour une réflexion donnée

A étant le facteur d'échelle

F.L.P. étant le facteur de Polarisation et de Lorentz et n le facteur de multiplicité Les résultats sont récapitulés dans le tableau n°4

Il nous reste pour atteindre le rayon de giration ρ et les éléments du tenseur de Debye-Waller $\left(e \stackrel{\beta}{\mathfrak{h}^2} \right)$ à tenir compte de l'extinction primaire et de l'extinction secondaire.

La correction d'extinction primaire suppose connue la taille des cristallites. Nous savons seulement que la poudre que nous utilisons à une taille inférieure à 3μ . Nous avons vu aussi que la poudre était sans doute formée par l'aglomérat de plusieurs « blocs mosaïques». Nous avons effectué les calculs en supposant que les tailles des blocs sont t = 0,5 μ , 1 μ , 2 μ .

hkĺ	θМ	S.L.P.	f	f ₀ ²	obs	facteur d'extinction Primaire	IFM212
						pour t= $1/2\mu$	
	41°50	17.0500					
1.0.0	11 52	47,2596	46,4	2152,96	1430	0,96	30,27
1.0.1	13°79	32,3530	44,95	2020,50	9379	0,89	289,89
1.0.2	19°14	15,9014	41,25	1701,56	3360	0,95	211,30
1.1.0	20°25	14,0516	40,50	1640,25	2484,8	0,93	176,81
1.1.1	21°70	12,0347	39,6	1568,18	928	0,99	77,11
0.0.3	22°97	10,5837	38,85	1509,32	644	0,99	
2.0.0	23°55	10,000	38,45	1478,50	231,5	0,99	23,15
2.0.1	24°84	8,8552	37,75	1425,06	1612,5	0,97	182,09
2.0.2	28°48	6,4926	35,70	1274,50	959	0,99	147,71
2.1.1	32°98	4,6915	33,70	1135,69	707	0,99	150,69
2.1.2	36°09	3,90	32,4	1049,76	478	0,99	122,55
3.0.0	36 [°] 82	3,7539	32,1	1030,41	86,70	0,99	23
3.0.1	37°82	3,5730	31,75	1008,06	274	0,99	76,89
1.14	38°67	3,4382	31,40	985,96	88,61	0,99	27,79
1.05	42 [°] 87	2,9646	29,90	894,01	216,97	0,99	73,21
						1	

- TABLEAU 4-

Nous tenons compte de l'extinction secondaire en traitant g le facteur dont dépend l'extinction secondaire comme une inconnue.

Donc pour chaque valeur de t, nous calculons les éléments du tenseur de Debye--Waller ainsi que ρ rayon de giration et g facteur d'extinction secondaire ce qui nous donnent 6 inconnues. Pour mener: à bien notre calcul nous possédons 15 équations donnés par les 15 mesures d'intensités intégrées qui a été possible de faire.

Nous avons appliqué à ce système une procédure de moindres carrés par minimisation, mise au point au Laboratoire de Calcul numérique de Lille où nos calculs ont été effectués. Les résultats sont récapitulés dans le tableau 5. Le nombre limité de mesures ne nous permettent pas de conclure quant à nos résultats. Par exemple une variation de 20 % sur B_{22} entraine une variation du coefficient de réabilité de 0,5 %.

Nous nous permettrons simplement de faire quelques remarques.

Tout d'abord le facteur d'extinction secondaire est négligeable quelle que soit la taille des blocs envisagés. Ceci était attendu d'après les résultats d'Havirghust [10].

Si nous supposons que la taill e des blocs mosaïques augmente, il semble que les résultats s'éloignent de ceux donnés par Cherin-Unger [3] ($B_{11} = 0,400$; $B_{22} = 0,380$) Ceci nous incite à dire qu'il n'existe pas dans le cas de la Poudre de Tellure de relation entre la grosseur des poudres et la taille des «blocs mosaïques».

Enfin il est prudent pour résoudre d'une manière satisfaisante un système de n équations par la méthode des moindres carrés utilisée, de ne pas avoir plus de $\frac{n}{4}$ inconnues.

Le manque d'information (15 réflexions pour 6 inconnues) nous a conduit à étudier l'intensité d'un cristal.

	Sans extinction primaire	Avec Ex		
Taille des blocs		0,5μ	1μ	2μ
B ₁₁	0,38	0,455	0.643	0.910
B ₂₂	0,44	0,50	0.637	0.740
в ₃₃	0,44	0,475	0.576	0.720
^B 23	0,26	0,25	0.247	
p/a	0,261	0,2614	0.2621	0.261
Coefficient de Réalibilité	5 %	5 %	4 %	5 %

- TABLEAU 5-

- CHAPITRE III-

ETUDE DE L'INTENSITE D'UN CRISTAL

Compte tenu des nombreuses difficultés rencontrées lors du choix des dimensions des poudres, nous avons recommencé les mesures en utilisant 2 cristaux de Tellure, ayant des orientations différentes. Le premier cristal à sa face qui contient un axe d'ordre 2, l'autre a sa face perpendiculaire à l'axe d'ordre 2. Le premier nous permettra d'obtenir les intensités des nœuds de la forme h, k, o et le second celles de la forme h.h.l.

I) INTENSITES INTEGREES

Nous nous proposons donc de déterminer le tenseur de Debye-Waller par une mesure des Intensités intégrées des raies diffractées. Pour cela nous utilisons un faisceau monochromatique issu d'un monochromateur à lame courbe.

Si I_o est l'intensité incidente reçue par le cristal, oc le fait tourner autour d'un axe normal au plan d'incidence à la vitesse angulaire ω depuis l'angle $\theta - \eta$ jusqu'à $\dot{\theta} + \eta$ (θ étant l'angle de Bragg pour une réflexion sélective et η de grandeur suffisante pour inclure toute la réflexion dans la fente réceptrice du faisceau.)

Le pouvoir réflecteur ou intensité intégrée est alors

$$P = \frac{E\omega}{l_0} = QdV$$

E étant l'énergie totale réfléchie par le cristal tournant autour d'un axe normal au plan d'incidence à la vitesse ω

In est l'intensité du faisceau incident.

dV le volume diffractant.

Le calcul montre que:

$$Q = \frac{\lambda^3}{V_c^2} \left(\frac{e^2}{mc^2}\right)^2 \frac{1}{\sin 2\theta} \frac{1 + \cos^2 2\alpha \cos^2 2\theta}{1 + \cos^2 2\alpha} F^2 hk\ell$$

où le faisceau incident est polarisé par réflexion d'angle α sur la lame d'un monochromateur

d'où $I_0 = A (F.L.P.) |F_{hk}\varrho|^2$

où A est le facteur d'échelle

F.L.P. le facteur de Lorentz-Polarisation

$$= \frac{1 + \cos^2 2\alpha \cos^2 2\theta}{1 + \cos^2 2\alpha} \qquad \frac{1}{\sin 2\theta}$$

 $|F_{hk}\varrho|^2$ = facteur de structure corrigé de l'agitation thermique.

2) CORRECTIONS

a) CORRECTION D'ABSORPTION [13]

Lors de l'étude de l'intensité intégrée d'un cristal de poudre nous avons vu que dans le cas particulier des réflexions symétriques, l'intensité était indépendante de θ . et que la correction d'absorption était équivalente pour les différentes intensités. Voyons ce que devient cette correction lorsque les réflexions sont asymétriques .(fig. 7)

Soient:

- $I_0 =$ Intensité du faisceau incident
- dl = Intensité diffracté par un élément dx

D = Fraction d'intensité incidente diffractée par un élément dx de l'échantillon

- u = longueur traversée par le rayon incident dans l'échantillon
- v = longueur traversée par le rayon réfléchi

 θ = angle de Bragg

- μ = coefficient d'absorption du métal
- a = angle de rotation de la surface du cristal

$$\alpha = \theta - a$$

x = OH.

L'intensité incidente à une profondeur x de la surface du cristal est

$$I = I_0 e^{-\mu} \frac{x}{\sin a}$$

Pour un élément diffractant dx, l'intensité diffractée sera

$$dI = I_0 e^{-\mu u} \cdot D e^{-\mu v} dx$$

En considérant l'échantillon d'épaisseur infini pour la pénétration des rayons et d'après la géométrie du faisceau nous obtenons

$$I = I_0 D \qquad \frac{1}{\mu (1 + \frac{\sin \alpha}{\sin b})}$$

d'où
$$I = \frac{\alpha}{2\mu}$$
 $\sin(\theta + \alpha) + \sin(\theta - \alpha)$

$$I = I_B (1 + tg \alpha \cot \theta)$$

 $\frac{I_0 D}{2\mu} = I_B \text{ intensité dans le cas des réflexions de Bragg.}$

b) CORRECTION DE DISPERSION [7] [14]

Dans le calcul du facteur de diffusion atomique, on suppose que la fréquence ω de la radiation incidente est grande en comparaison de la fréquence d'absorption ω_k de l'atome diffusant.

Une telle approximation est acceptable dans beaucoup de cas mais elle peut ramener une erreur allant jusqu'à 5 % et même 10 %, dans certains cas ($\omega \# \omega_k$). Il est donc nécessaire pour les mesures d'intensités intégrées de faire une correction de dispersion.

Le facteur de diffusion total f pour une fréquence ω de la radiation incidente peut se mettre sous la forme:

$$f = f_{0} + \Delta f' + i \Delta f''$$

Si nous posons $\frac{\Delta f'}{f_{0}} = \delta' \qquad \frac{\Delta f''}{f_{0}} = \delta''$
$$|f|^{2} = f_{0}^{2} [(1 + \delta')^{2} + \delta''^{2}] = f_{0}^{2} K$$

K étant le facteur de dispersion.

Les résultats sont consignés dans le tableau 6

Factour	de dispersion		
acteur	de dispersion		

h	n	k	l	K	h	k	l	к
1.		1	0	0,976	3	3	1	0,95
2.		2.	0	0,965	3.	3.	2.	0,95
3.		3.	0	0,950	3.	3.	3.	0,95
4.		4.	0	0,934	3.	3.	4.	0,94
5.		5.	0	0,910	3.	3.	5	0,94
1.		З.	0	0,96	4.	4.	1	0,93
1.		4.	0.	0,955	4.	4.	2	0,93
1.		5.	0	0,95	4.	4.	3	0,93
1.		6.	0	0,94	4.	4.	4.	0,92
1.		7.	0	0,93	4.	4.	5	0,928
2		3.	0	0,96	4,	4.	6	0,92
2	•	4.	0	0,95	4.	4.	7	0,92
2		5.	0	0,94	4 .	4.	8	0,92
2		6.	0	0,93	4.	4.	9	0,91
2		7.	0	0,92	4.	4.	10	0,91
3	•	4.	0	0,94	0.	2.	0	0,98
3	•	5.	0	0,93	0.	3.	0	0,97
3		6.	0	0,92	0.	4.	0	0,96
					0.	5.	0	0,95
					0.	6.	0	0,94
					0.	7.	0	0,93
					0.	8.	0	0,92
			1				1	

- TABLEAU 6-

a) MONTAGE

La source de rayons X ext un tube scellé Siemens à foyer fin à anticathode de Molybde ne dont on utilise les radiations caractéristiques.

$$\lambda_{k\alpha_1} = 0,70926 \text{ Å}$$

 $\lambda_{k\alpha_2} = 0,71354 \text{ Å}$

Un monochromateur à lame de quartz courbe permet de séparer celles—ci du fond continu et d'éliminer K_{β} . Nous avons utilisé le tube au maximum de puissance (900 watts).

Le compteur employé est un photoscintillateur à cristal d'Iodure de Sodium. Il est associé à une baie de mesure équipée d'un sélecteur d'amplitude.

b) REGLAGES

Le but des réglages est:

1°) de centrer le faisceau incident sur l'axe du goniomètre

2°) de faire passer la face du cristal étudié par l'axe du goniomètre.

3°) d'illuminer toujours la même région du cristal (ceci est de loin la condition la moins bien réalisée.) Un réglage préliminaire est réalisé à l'aide d'une pointe de centrage matérialisant l'axe du goniomètre et d'une lunette. Un réglage plus fin est obtenu sous le faisceau de rayons X. Pour cela on utilise la méthode de Cornu qui consiste à rechercher une réflexion sélective connue pour des positions symétriques du cristal de part et d'autre de la direction du faisceau incident avec une fente compteur aussi fine que possible.

Les écarts observés avec la valeur θ théorique sont dûs principalement à un mauvais alignement du faisceau incident sur l'axe du goniomètre et à un excentrement de l'échantillon (fig. 8)

Un déplacement de la source S en S' tel que SS' = e produit un écart sur 2θ égal à $\Delta \theta_1 = \frac{\theta}{R}$ (R étant le rayon du diffractomètre. Il est à remarquer que cet écart n'est pas symétrique et s'il augmente 2θ dans une position de réflexion il le diminue dans sa position symétrique.)

Un excentrement de la surface du cristal par rapport à l'axe du goniomètre f apporte un déplacement $\Delta \theta_2 = \frac{2f \cos \theta}{R}$ et il affecte 2θ de la même manière pour les deux positions symétriques.

Les mesures faites pour des positions de réflexion symétriques conduisent à des erreurs $\Delta \theta$ et $\Delta \theta'$ fonctions de $\Delta \theta_1$ et $\Delta \theta_2$. La connaissance du zéro permet de séparer les contributions de chaque erreur, de parfaire le réglage et de mesurer le paramètre «a».

Décentrage de l'échantillon avant l'axe

Le faisceau ne passe pas par l'axe

- e = excentrement du faisceau
- R = rayon du diffractiomètre

Une étude géométrique précise de la divergence des rayons incidents et diffusés est nécessaire, pour déterminer le domaine de divergence qui intervient dans le calcul de $< I_1 >$. Remarquons tout d'abord que nous focalisons le rayonnement monochromaté sur le cristal. Ceci a un double avantage. Théoriquement cela diminuera notre domaine de divergence. Pratiquement cela nous permettra de travailler avec des réflexions d'angles 2θ faibles, tout en conservant un flux incident assez conséquent. Par contre, ce montage a le désavantage d'être plus sensible aux défauts du cristal d'ou l'intérêt d'illuminer la même région du cristal.

a) DIVERGENCE HORIZONTALE

Vu du centre du cristal la fente réceptrice a une largeur angulaire $\epsilon = 1,5 \ 10^{-2}$ rad et du centre de la fente de réception la zone de cristal illuminée est vue sous l'angle $\gamma = 2,4.10^{-3}$ rad (fig. 9) m₁ et m₂ sont les traces des rayons extrêmes du faisceau incident sur la surface du cristal.

b) DIVERGENCE VERTICALE

Perpendiculairement au plan horizontalé le faisceau incident a une ouverture angulaire & déterminée expérimentalement (fig.10)

 $\zeta = 1,80 \quad 10^{-2} \text{ radians.}$

L'angle sous lequel on voit la hauteur du cristal éclairé est tel que $\nu = 2,1 \ 10.^{-2}$ rad et l'angle sous lequel on voit la hauteur de la fente de réception est tel que $\mu = 6.10^{-2}$ rad.

c) CONSTRUCTION DU DOMAINE DE DIVERGENCE (FIG. 11)

Dans un plan horizontal, le rayon moyen incident OP se réflechit en P et coupe la sphère d'Ewald en M. A un rayon incident donné correspondent les rayons diffusés contenus dans l'angle *e* dû à la largeur de la fente de réception. Ceci détermine le segment AD de part et d'autre de M sur la sphère d'Ewald.

Nous pouvons répéter le même raisonnement pour les rayons OP' et OP'' auxquels correspondent les sphères de traces Σ_{p} , Σ_{p} , dans le plan horizontal.

On assimilera les segments curvilignes à des segments de droite et A' D' D' A' a un parallélogramme. Il est à noter que la dimension D' D' est très faible. Ceci est dû au fait que nous focalisons sur le cristal,

Lors de la rotation ω du cristal, le rayon OP vient en OP₁ alors que M vient en M₁ l'angle η étant petit, on peut considérer que M₁ M est perpendiculaire à OM.

Dans le plan vertical, la construction du domaine de divergence est montrée fig. 10_{α} et ne présente pas de difficulté.

Fig: 9

- 36

BUS

- 37 --

Fig: 10

$$AD = \frac{\epsilon}{\lambda} = \frac{1.5 \cdot 10^{-2}}{\lambda} \qquad \text{Å}^{-1}$$

$$D_1 D_2 \text{ déplacement dû au balayage } -= 5.2 \cdot 10^{-2} \qquad \frac{\sin\theta}{\lambda} \qquad \text{Å}^{-1}$$

$$H = 14.10^{-2} \qquad \text{Å}^{-1}$$

d) INTENSITE DIFFUSEE PAR L'AGITATION THERMIQUE [3]

Comme nous l'avons vu au chapitre I, seule $< I_1 >$ intervient comme correction appréciable dans le calcul de l'intensité

$$<\mathbf{I}_{1} > = \frac{4\pi^{2} X^{2} N' \epsilon^{2}}{\mu} \sum_{\mathbf{r}=1}^{9} \left| \sum_{j} \mathbf{f}'_{j} \xi^{j} (\vec{\mathbf{S}}, \mathbf{r}) e^{i 2\pi \vec{\mathbf{M}} \cdot \vec{\mathbf{j}}} \right|^{2} \frac{\mathbf{E} (\vec{\mathbf{S}}, \mathbf{r})}{\omega^{2} (\vec{\mathbf{S}}, \mathbf{r})}$$

Cette correction peut être décomposé en deux

<I'₁> correction due aux ondes acoustiques qui sont dans notre cas au nombre de trois.

<I"₁> correction due aux ondes optiques au nombre de six.

De plus, nous devons la calculer au voisinage d'un nœud du réseau réciproque, et compte tenu des courbes de dispersion ω (S) [fig. (12) et (13)] le long de l'axe d'ordre 2 et perpendiculairement à l'axe d'ordre 2 nous pouvons faire les approximations suivantes:

1) Pour les Acoustiques

a)
$$E(\vec{S}, r) = \left\{ \hbar \omega \left\{ \frac{1}{2} + \frac{1}{e^{\frac{1}{\omega/kT}}} \right\} \right\} \xrightarrow{\omega \to 0} kT$$

b) Nous pouvons remplacer la branche correspondante par une droite

$$\omega = V \sigma = 2\pi |S| V$$

c) Nous savons par ailleurs que pour les ondes acoustiques, tous les atomes vibrent en phase dans la même direction

D'où nous pouvons écrire:

$$\langle I'_1 \rangle = \frac{\chi^2 N' e^2 k T}{S^2 \mu} \sum_{\substack{r=1 \\ r=1}}^{S} \left| \sum_{j} f'_j \xi^{j}(\vec{S}, r) e^{j 2\pi M j} \right|^2 \frac{1}{V_r^2}$$

Puisque nous travaillons au voisinage d'un nœud, on peut considérer $\sum_{j} f'_{j} e^{-i 2\pi M} \frac{j}{j} = Cste = F^{2}$

FIGURE: 13

et

$$<\mathbf{i'}_{1} > = \frac{\mathbf{X}^{2}\mathbf{N}'\epsilon^{2}\mathbf{k}\mathbf{T}\mathbf{F}^{2}}{\mathbf{S}^{2}\mu} \frac{3}{\mathbf{r}=1} \begin{vmatrix} \Sigma & \frac{\mathbf{X}_{\alpha}}{\alpha} & |\vec{\mathbf{X}}| & \xi_{\alpha} & (\vec{\mathbf{S}},\mathbf{r}) \end{vmatrix}^{2} = \frac{1}{\mathbf{V}_{r}^{2}}$$

$$= \frac{\mathbf{X}^{2}\mathbf{N}'\epsilon^{2}\mathbf{k}\mathbf{T}\mathbf{F}^{2}}{\mathbf{S}^{2}\mu} \frac{3}{1} \frac{\cos^{2}(\vec{\mathbf{X}},\vec{\mathbf{U}}_{r})}{\mathbf{V}_{r}^{2}}$$

 $\overrightarrow{X}, \overrightarrow{U}_{r}$) étant l'angle de la direction de vibration \overrightarrow{U}_{r} avec le vecteur de diffusion \overrightarrow{X}

2) Pour les Optiques

Le tracé des courbes de dispersion ω (S) permettent l'approximation suivante. Pour chaque branche r = 1 à 6 nous prenons ω_r #Cste au voisinage du nœud. Donc E_r = Cste pour tout S

$$et <|''_1> = \frac{4\pi^2 X^2 N'\epsilon^2}{\mu} \quad \stackrel{6}{r=1} \quad \frac{E_r}{\omega_r^2} \quad \left| \begin{array}{c} \Sigma & f'_j \xi^j (S,r) \\ j \end{array} \right|^2$$

d'où

$$<\mathbf{I}''_{1}> = \frac{4\pi^{2} X^{2} N' \epsilon^{2} F^{2}}{\mu} \sum_{\mathbf{r}=1}^{6} \frac{\mathbf{E}_{\mathbf{r}}}{\omega^{2}_{\mathbf{r}}} \left(\sum_{\alpha} \frac{\mathbf{X}_{\alpha}}{|\mathbf{X}|} \xi_{\alpha}^{j}(\mathbf{r})\right)^{2}$$

Ce terme peut être négligé par rapport à <l'_1> car au voisinage d'un nœud ω_{opt} (S,r) tend vers une Cste \neq o tandis que ω_{ac} (S, r) tend vers o.

D'où notre calcul de la correction $<|_1>$

En chaque point du domaine de divergence, nous calculerons la quantité $\frac{1}{S^2} = \frac{3}{r=1} \frac{\cos^2(\vec{X}, \vec{U}_r)}{V_r^2}$

et nous sommerons sur tous les points du domaine.

Les équations du mouvement pour les ondes acoustiques sont donnés dans la théorie de l'élasticité par

$$\rho \, \mathsf{V}^2 \, \mathsf{U}_{\alpha} - \sum_{\beta} \mathsf{A'}_{\alpha\beta} \, \mathsf{U}_{\beta} = 0 \qquad \alpha \, \beta = 1, 2, 3$$

masse spécifique du milieu $\rho =$

v = Vitesse de l'onde

 $U_{\alpha} =$ Composante α de la vibration

$$A'_{\alpha\beta} = \sum_{\gamma\delta} C_{\alpha\gamma,\beta\delta} q_{\gamma} q_{\delta} \gamma^{\delta} = 1, 2, 3$$

 q_{γ}, q_{δ} composantes du vecteur unitaire q donnant la direction du vecteur de l'onde $C_{\alpha \gamma, \beta \delta} =$ Constantes élastiques

Compte tenu de la matrice des coefficients élastiques pour le système rhomboédrique | 15 | nous obtenons.

$$A'_{\alpha\beta} = \begin{vmatrix} c_{11} & 0 & 0 \\ 0 & \frac{c_{11}-c_{12}}{2} & c_{14} \\ 0 & c_{14} & c_{44} \end{vmatrix} \qquad a_{1}^{2} + \begin{vmatrix} \frac{c_{11}-c_{12}}{2} & 0 & 0 \\ 0 & c_{11} & -c_{14} \\ 0 & -c_{14} & c_{44} \end{vmatrix} \qquad a'_{2} + \begin{vmatrix} c_{44} & 0 & 0 \\ 0 & c_{44} & 0 \\ 0 & 0 & c_{33} \end{vmatrix} \qquad a_{3}^{2}$$

$$+ \begin{vmatrix} 0 & \frac{c_{11}+c_{12}}{2} & 2c_{14} \\ \frac{c_{11}+c_{12}}{2} & 0 & 0 \\ \frac{c_{11}+c_{12}}{2} & 0 & 0 \\ 2c_{14} & 0 & 0 \end{vmatrix} \qquad a_{1}a_{2}^{2} + \begin{vmatrix} 2c_{14} & 0 & 0 \\ 0 & -c_{14} & c_{44} \end{vmatrix} \qquad a_{2}a_{3}^{2} + \begin{vmatrix} 0 & 2c_{14} & c_{44}+c_{13} \\ 2c_{14} & 0 & 0 \\ \frac{c_{11}+c_{12}}{2} & 0 & 0 \\ \frac{c_{11}+c_{13}}{2} & 0 & 0 \\ \frac{c_{11}+$$

Les constantes élastiques utilisées ont pour valeur [16]

$$\begin{array}{rcl} C_{11} = & (3,76-1,65\ 10^{-3}\ \text{T})\ 10^{11}\ \text{C.G.S.} \\ C_{12} = & (0,924-0,23\ 10^{-3}\ \text{T})\ 10^{11}\ \text{C.G.S.} \\ C_{14} = & (1,43-0,645\ 10^{-3}\ \text{T})\ 10^{11}\ \text{C.G.S.} \\ C_{33} = & (7,85-2,10\ 10^{-3}\ \text{T})\ 10^{11}\ \text{C.G.S.} \\ C_{44} = & (3,55-1,43,\ 10^{-3}\ \text{T})\ 10^{11}\ \text{C.G.S.} \\ C_{13} = & (2,88-1,29\ 10^{-3}\ \text{T})\ 10^{11}\ \text{C.G.S.} \end{array}$$

Les valeurs propres et les vecteurs propres de la matrice $A'_{\alpha\beta}$ permettent de calculer l'expression $\frac{1}{S^2} = \frac{3}{\sum_{r=1}^{\infty}} \frac{\cos^2}{\left(\frac{X}{V_r}\right)} \frac{1}{V_r^2}$ pour les points d'un découpage particulier du domaine de divergence calculé précédemment.

Le domaine est divisé en 8.000 volumes élémentaires, au centre desquels on calcule $<1_1>$. Le calcul est répété pour chaque valeur de η . On obtient ainsi 1_1 .

Le calcul a été fait pour une longueur d'onde $\lambda_{k\alpha 1}$. Nous supposerons que le faisceau incident monochromaté contient $\lambda_{k\alpha 1}$ et $\lambda_{k\alpha 2}$ dans la proportion 2 pour 1, l'écart $\Delta \theta = \theta_2 - \theta_1$ étant trouvé par le calcul. Le pouvoir diffusant P₁ est alors considéré comme la superposition de 2 courbes proportionnelles à 2 et 1 et décalées de $\Delta \theta$. Pour trouver le facteur d'échelle qui nous permettra de faire correspondre les courbes d'Intensités intégrés et de P₁, nous nous appuyerons sur le fait suivant. En un point éloigné du nœud (pied du pic), l'intensité d'ordre zéro est négligeable et ce que nous observons est l'intensité due à la diffusion $< l_1 >_T$

Nous en déduisons l'intensité intégrée corrigée du P

$$I_{D} = I_{mes} - \Delta I$$

$$I_{D} = I_{mes} \left(1 - \frac{\Delta I}{I_{mes}}\right) \left[\text{ tableau 7 } \right]$$

Remarque:

Nous avons tracé la courbe $\Delta I/I_{mes}$ en fonction X². Nous remarquons que P₁ augmente avec X² d'abord d'une manière linéaire jusqu'en X² #2,5 et ensuite beaucoup plus rapidement. Ce résultat n'est pas étonnant car nous savons que P₁ augmente avec X et qu'en général l'intensité diminue avec X (fig.14)

5) RESULTATS

RESULTATS EXPERIMENTAUX

Les mesures d'intensités intégrées ont été faites sur deux cristaux. Le premier est un cristal dont la face qui contient l'axe d'ordre 3, est perpendiculaire à l'axe d'ordre 2: Nous l'avons étudié dans 2 cas:

a) l'axe d'ordre 3 est vertical par rapport à la platine du goniomètre. Dans cette position, nous pouvons mesurer les intensités produites par les nœuds de la forme (h, k, o)

b) l'axe d'ordre 3 et l'axe d'ordre 2 forment un plan parallèle à la platine du goniomètre. Les intensités mesurées sont celles produites par les nœuds de la forme h, h, ℓ).

Le second cristal est un cristal dont la face contient un axe d'ordre 2 . Nous mesurons les intensités des nœuds (h, o, o).

La géomètrie du réseau et la longueur d'onde de la radiation incidente nous limitent le nombre de réflexions. (fig. 15, 16, 17)

Pour les deux cristaux nous obtenons des réflexions dues à des nœuds identiques (7.0.0.) (8.0.0.). Ceci nous permet de vérifier la stabilité de notre intensité incidente.

LULLE

	4	1				
hĸĺ	l mesure	F.L.P.	Correction absorption	Correction dispersion	I Mes− ∆I	Corrigée
1.1.0	22.679.810		1	0,976	22.611.770	· · · · · · · · · · · · · · · · · · ·
2.2.0	1.058.477	1,362	1	0,965	1.026.772	894,92
3.3.0	266.163	0,782	1	0,950	247.531	670,25
4.4.0	129.807	0,538	1	0,934	111.634	672,71
5.5.0	32.684	0,566	1	0,910	23.205	186,09
1.3.0	1.300.423	1,294	1,822	0,963	1.261.410	674,29
1.4.0	150.793	0,935	1,746	0,955	142.499	154,63
1.5.0	908.132	0,708	1,646	0,947	840.022	1.686,95
1.6.0	81.102	0,569	1,546	0,938	70.964	243,10
1.7.0	21.938	0,512	1,449	0,928	17.879	87,66
2.3.0	1.821.890	1,004	1,264	0,958	1.730.795	2.225,24
2.4.0	162.987	0,761	1,346	0,950	151.578	321,82
2.5.0	155.506	0,604	1,353	0,941	139.178	473,11
2.6.0	51.355	0,522	1,325	0,933	42.367	212,11
2.7.0	28.686	0,524	1,281	0,921	21.801	134,11
3.4.0	145.822	0,626	1,122	0,942	131.294	501,27
3.5.0	16.394	0,534	1,172	0,933	13.935	73,67
3.6.0	54.692	0,514	1,180	0,924	42.659	277,26
3.3.1	424.012	0,773	1,228	0,949	394.331	896,04
3.3.2	449.478	0,748	1,443	0,949	415.767	854,16
3.3.3	309.872	0,710	1,643	0,947	285.082	570,76
3.3.4	386.488	0,666	1,793	0,944	352.636	735,28
3.3.5	276.555	0,619	1,918	0,941	250.282	568,10
4.4.1	18.080	0,537	1,113	0,934	15.484	84,59
4.4.2	16.634	0,531	1,147	0,933	14.138	77,13
4.4.3	136.745	0,523	1,319	0,931	114.182	567.15
4.4.4	19.295	0,516	1,405	0,931	15.918	78,09
4.4.5	10.900	0.511	1,474	0,928	8.720	42,88
4.4.6	91.807	0,515	1,526	0,924	71.609	360,05
4.4.7	14.073	0,531	1,558	0,920	10.554	53,79
4,4.8	5.035	0,567	1,570	0,916	3.574	18,22
4.4.0	44.001	0.626	1 550	0.010	20,142	149.06
4.4.9.	44.991	0.761	1,559	0,912	30.143	148,00
4.4.10	6.819	U,761	1,523	0,906	4.225	19,68
1	1			ļ		BUS

h k l	l _{mesure}	F.L.P.	Correction absorption	Correction dispersion	^I mes. ∆I	l _{corrigée}
0.2.0	2.970.865	2,591	1	0,976	2.941.156	784,56
0.3.0	2.284.920	1,627	1	0,968	2.239.221	1.376,41
0.4.0	2.582.358	1,128	1	0,961	2.479.063	3.112,
0.5.0	8684	0,826	1	0,952	8.076	19,40
0.6.0	22.319	0,637	1	0,943	20.310	82,80
0.7.0	73.745	0,534	1	0,934	62.683	383,65
0.8.0	41121	0,516	1	0,924	32.074	249,84

--- TABLEAU 7---

AXE D'ORDRE 3 HORIZONTAL

De ces valeurs mesurées, nous pouvons facilement calculer le facteur de structure et de Debye-Waller [FM]².

$$|FM|^2 = A = \frac{I_{mes}}{f_{\Omega}^2 (F.L.P.) C.B.}$$

A étant le facteur de l'échelle

B la correction d'absorption

C la correction de dispersion

F.L.P. le facteur de Lorentz Polarisation

Résultat dans le tableau 8

Pour chacune de ces réflexions nous avons calculé théoriquement le focteur de structure et de Debye-Waller en fonction de u = p/a, B₁₁, B₂₂, B₂₃, B₃₃ éléments du tenseur de Debye-Waller [chap. 1].

En appliquant une procédure minimum au système de 38 équations obtenues par nos différentes mesures d'intensités, à 6 inconnues nommées ci-dessus, nous obtenons les valeurs qui s'adaptent le mieux à ce système.

Le raffinement converge rapidement, et après une dizaine de cycles, le coefficient de résultié $R = \frac{\sum_{n=1}^{\infty} ||FM| - |FC||}{\sum_{n=1}^{\infty} |FM|} \text{ tend vers } 2\%$

Les éléments du tenseur de Dabye-Waller donnés dans le tableau 9 sont déduits des mesures faites à la température ambiante. Ils sont donnés en \mathbb{A}^2

RESULTAT DU CALCUL THEORIQUE

Nous avons vu dans le chapitre l que

$$B^{j}_{\alpha\beta} = \frac{\Pi^{2}}{N'\mu_{j}} \sum_{\vec{S},r} \left(\frac{\xi^{j}}{\beta} (S,r) \xi^{j}_{\alpha} (S,r) + \frac{\xi^{j}}{\alpha} (S,r) \xi^{j}_{\beta} (S,r) \right) \frac{\Xi(\vec{S},r)}{\omega^{2}(\vec{S},r)}$$

A partir de cette formule More [3] a calculé les coefficients B^1 relatifs à l'atome 1.

Le calcul numérique des fréquences et des vecteurs propres pour un découpage de la première zone de Brillouin en 540 volumes a permis d'obtenir les valeurs suivantes:

h	k	R	F.M.	F.C	h	•••••	¢ ُ ل	F.M.	F.C.	
0.	2.	0	32,53	33,4	3.	3	. 1	19,96	19,86	1
0.	3.	0.	35,96	38,16	3.	3.	2	19,22	18,86	
0.	4.	0	45,61	-	3	3	3	15,31	15,19	
0.	5.	0	3,05	2,97	3	3	4	16,89	16,40	
0.	6.	0	5,54	5,33	3	3	5	14,27	14,06	
0.	7.	0	10,72	10,87	3	4	0	13,44	13,30	
0.	8.	0	7,87	8,22	3	5	0	4,66	4,50	
1.	3.	0	22,47	23,13	3	6	0	8,31	8,22	
1.	4.	0	9,11	9,14	4	4	0	14,20	14,16	
1.	5.	0	26,31	26,24	4	4	1	5,02	4,97	
1.	6.	0	8,84	9,00	4	4	2	4,76	4,51	
1.	7.	0	4,86	5,07	4	4	3	12,71	12,73	
2.	2.	0	26,66	26,90	4	4	4	4,64	4,43	
2.	3.	0	36,00	36,21	4	4	5	3,37	3,32	
2.	4.	0	11,90	11,76	4	4	6	9,47	9,35	
2.	5	0	12,85	12,81	4	4	8	1,99	2,01	
2.	6.	0	7,77	7,86	4	4	9	5,50	5,66	
2.	7.	0	5,65	5,88	4.	4.	10	1,91	1,91	
3.	3.	0	17,41	17,28	5	5	о	6,38	6,63	

Facteur de Structure et de Debye-Waller mesuré et observé

- TABLEAU 8 -

- 53 -

	Intensité non corrigée du P ₁	Intensité corrigée du P ₁	Valeurs Cherin–Unger
B ₁₁	0,363	0,405	0,407 584
^B 22	0,334	0,365	0, 38 5 550
^B 33	0,281	0,317	-
^B 23	0,03	0,025	
p ^r /a	0,2635	0,2632	0,2633
Coefficient			
	2,5 %	2 %	5 %

- TABLEAU 9 --

Nous remarquons que les valeurs de B¹₁₁ et B¹₂₂ calculées diffèrent avec les valeurs expérimentales. Pour essayer d'expliquer cette anomalie, nous avons repris les courbes de fréquences le long de l'axe d'ordre 2 (figure 12 et 13).

Nous constatons que :

a) au centre de la zone de Brillouin les trois fréquences acoustiques tendent vers zéro.b) A la limite de la zone l'une des fréquences acoustiques tend elle aussi vers zéro.

Or $B^{j}_{\alpha\beta}$ est proportionnelle à : $A^{j}_{\alpha\beta} = \overline{\xi^{j}_{\beta}}$ $(\vec{S}, r) \xi^{j}_{\alpha} (\vec{S}, r) + \overline{\xi^{j}_{\alpha}} (\vec{S}, r) \xi^{j}_{\beta} (\vec{S}, r) / \omega^{2}$ $\xi^{j}_{\rho\nu} (\vec{S}, r)$ étant les composantes du vecteur propre relatif à la valeur propre ω

Nous constatons pour l'atome 1 que si ω tend vers o A₁₁ tend vers 0 tandis que A₂₂ reste pratiquement constant. Pour une meilleure détermination de ces composantes, nous avons intérêt à prendre des volumes beaucoup plus petits au voisinage des points où ω tend vers zéro.

Nous avons donc repris les calculs en apportant progressivement différentes modifications. Compte tenu de la capacité limitée du calculateur dont nous disposons, nous avons d'abord effectué un découpage plus fin au centre de la zone.

Nous avons divisé la zone de Brillouin en 3 régions (fig. 18)

La première région (1) égale au 1/64 du volume initial a été divisé en 192 volumes élémentaires.

La deuxième région (2) égale au 29/192 du volume initial a été divisé en 192 volumes . Chacun de ces volumes est 8 fois plus grand que le volume élémentaire de la région (1).

La troisième région (3) égale au 160/192 du volume initial a été divisé en 160 volumes. Chacun de ces volumes est 64 fois plus grand que le volume élémentaire de la région (1).

Nous avons obtenu avec les résultats suivants:

	0,330	0	0
$B_{\alpha\beta}$	0	0,558	0,122
	0	0,122	0,277

Nous voyons que l'écart entre B₁₁ et B₂₂ diminue ce qui montre qu'il est nécessaire d'effectuer un découpage fin.

Nous avons donc poursuivi notre découpage fin aux extrêmités des axes d'ordre 2. Le calcul étant très long nous l'avons effectué que sur le volume C.C'.L.Z. (fig.18), volume situé à l'extrêmité d'un axe d'ordre 2.

Nous avons donc effectué sur ce volume un découpage en 384 volumes. Ces volumes sont égaux aux volumes élémentaires -pris dans la région (1), située au centre de la zone de Brillouin.

Nous constatons que la contribution à B_{11} ne change pas tandis que la contribution à B_{22} diminue de 0,005 et celle de B_{33} de 0,0025. Or ce volume qui est situé à l'extrêmité de la zone de Brillouin dans la direction de l'axe d'ordre 2 est l'un de ceux qui amène le plus de désaccord entre B_{11} et B_{22} . Si nous supposons que cette correction est identique pour les douze volumes situés aux extrêmités des axes d'ordre 2 ceci ramènerait au maximum une correction de 0,066 sur B_{22} et de 0,030 sur B_{33} . Ceci n'est pas suffisant pour expliquer entièrement l'écart existant entre B_{11} et B_{22} .

Le calcul précédent avait été effectué en prenant comme valeur des constantes de Forces celles qui étaient données par Hulin [2]. Marion [17] a recalculé ces constantes de Forces à partir des constantes élastiques et des fréquences principales obtenues par le spectre Raman. Elles diffèrent de celles de Hulin.

Constantes de Forces obtenues par HULIN :
$$A = 0.446 \quad 10^{26} \text{ Å}^{-2} \text{sec}^{-2}$$

 $B = 0.066 \quad 10^{26} \text{ Å}^{-2} \text{sec}^{-2}$
MARION : $A = 0.389 \quad 10^{26} \text{ Å}^{-2} \text{sec}^{-2}$
 $B = 0.064 \quad 10^{26} \text{ Å}^{-2} \text{sec}^{-2}$

A étant la Constante de forces pour les premiers voisins de la même chaîne B étant la Constante de forces pour les premiers voisins de chaînes différentes.

A partir de ces nouvelles valeurs nous avons refait les calculs précédents. Les résultats sont consignés dans les [tableaux 10 et 11].

Les valeurs de B₁₁ et de B₃₃ semblent donner un accord satisfaisant (5 % d'écart pour B₃₃). Mais le désaccord pour B₂₂ subsiste, bien que moindre que précédemment.

		B ₁₁	^B 22	в ₃₃	^B 23
Cons tante. de Forces de	Résultat découpage MORE	0,258	0,589	0,295	0,11
	Vol. 1 découpage fin	0.048	0,043	0,030	0,002
	Vol.2	0,068	0,080	0,049	0,009
Hulin	Volume 3	0,214	0,435	0,198	0,121
	TOTAL	0,330	0,558	0,277	0,122
	Volume 1	0,050	0,042	0,030	0,002
Cons-					
de Forces de Marion	Volume 2	0,097	0,107	0,073	0,010
	volume 3	0,253	0,438	0,226	0,098
	TOTAL	0,400	0,587	0,329	0,110
	Résultats expérimentaux	0,405	0,367	0,317	0,025

TABLEAU 10

Etude de $B_{\alpha\alpha}$ à l'extrêmité de la zone de Brillouin pour X suivant l'axe d'ordre deux.

		Constante de Force de Hulin	Constante de Force de Marion	Contribution à B $_{lphaeta}$ dans le 2e cas
Découpage	^B 11	8,2	12,5	0,006
lache	^B 22	35,7	42	0,021
6 volumes	B ₃₃	19,6	26	0,0125
Découpage	^B 11	517,5	780	0,006
fin	^B 22	1774	2008	0,0155
384 volumes	^B 33	1037	1205	0,010

Valeurs des composantes $B_{\alpha\alpha}$ après la correction due à un découpage plus fin aux extrêmités de l'axe d'ordre 2

TABLEAU 11

CONCLUSION

La mesure des Intensités intégrées suivant l'axe d'ordre 2 et perpendiculairement à celui-ci nous a permis d'évaluer les composantes B_{11} , B_{22} , B_{33} , B_{23} ainsi que ρ rayon de giration à la température ambiante. Ces intensités avaient été corrigées du pouvoir diffusant d'origine thermique qui est assez important pour les raies de grands indices.

Les coefficients du tenseur de Debye-Waller ont été calculés à partir du modèle de Hulin. Un désaccord subsiste pour la composante B₂₂. Nous avons essayé de voir la cause qui amenait ce désaccord.

Tout d'abord un découpage fin de la zone de Brillouin pour le calcul des éléments du Tenseur de Debye-Waller est nécessaire, aussi bien au centre qu'à l'extrêmité de la zone à cause des fréquences acoustiques tendant vers 0.

Nous avons constaté que l'emploi d'un modèle dynamique plus proche de la réalité comme celui obtenu par Marion, améliore l'accord entre les résultats expérimentaux et les résultats calculés. Pour un meilleur accord, il serait sans doute nécessaire d'utiliser un modèle rendant compte au mieux des courbes de dispersion de fréquences déterminées par Powell aux neutrons. La connaissance toute récente de ces courbes ne nous ont pas permis de réaliser un tel modèle.

\$

- BIBLIOGRAPHIE -

[1]	M. MORE
	Thèse Lille 1967 Faculté des Sciences – Lille
[2]	M. HULIN
	Annales de Physique 13 ^{eme} série Tome 8 (1963)
	Contribution à l'étude théorique des énergies électroniques et des
[2]	
[3]	CHERIN-UNGER
1 1	MARION C
[4]	Thèse Lille 1971 Université des Sciences et Techniques - Lille
[5]	G_LUSSIEZ
[0]	Thèse Lille 1967 Faculté des Sciences – Lille
[6]	GUINIER A.
	Théorie Technique de la Radiocristailographie Dunod (1964)
[7]	R.W. JAMES
	The optical principles, of the Diffraction of X - rays (1962)
	Bell and Sons
[8]	DARWIN
	Phil. Mag. <u>27</u> , 315, 675
[9]	DARWIN
_	Phil. Mag. <u>43</u> 800
[10]	HAVIGHURST
	Phys. Rev. 23 p.869 1927
[11]	KING and WASSIMILLET Adv. in X Bay Analysis 6 142 (1962)
[12]	D SIMON at D KEDN
[12]	Bull, Soc. Frse. 1962 85 394-406
[13]	FIELD et MERCHANT
[10]	Journal of Appli. Phys. 20 741 (1949)
[14]	Tables Internationales de cristallographie vol 3 Kynoch-Press Birmingham
[]	
[15]	HUNTINGTON
[16]	J.L. MALGRANGE, G. QUENTIN, J.M. THUILLIER
	C.R.A.S. (1963) 2030
	Phys. Stat. Solid (1964) <u>4</u> 139