Nº d'ordre 364

1913

50376 1973 15

THESE

présentée

A L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir

LE TITRE DE DOCTEUR DE SPÉCIALITÉ MENTION CHIMIE PHYSIQUE

ETUDE CINETIQUE DE LA COADSORPTION DE CO ET O2 SUR ZnO - ACTIVATIONS THERMIQUE ET PHOTOCHIMIQUE

soutenue le 28 Février 1973, devant la Commission d'examen

MM. J. P. BEAUFILS, Président J. P. BONNELLE GOUDMAND P.

Examinateurs

UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

DOYENS HONORAIRES

de l'Ancienne Faculté des Sciences

MM. H. LEFEBVRE, PARREAU

3

5

PROFESSEURS HONORAIRES

des Anciennes Facultés de Droit et Sciences Economiques, des Sciences et des Lettres

M. ARNOULT, Mme BEAUJEU, MM. BEGHIN, BROCHARD, CAU, CHAPPELON, CHAUDRON, CORDONNIE DEHEUVELS, DEHORNE, DEHORS, FAUVEL, FLEURY, P. GERMAIN, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, NORMANT, PARISELLE, PASCAL, PAUTHENIER, PEREZ, ROIG, ROSEAU, ROUBINE, ROUELLE, WIEMAN, ZAMANSKI.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. DEFRETIN René

Professeur de Biologie Marine, Directeur de l'Institut de Biologie Maritime et Régionale de Wimereux.

PROFESSEURS TITULAIRES

Μ.	BACCHUS Pierre	
М.	BEAUFILS Jean-Pierre	
М.	BECART Maurice	
Μ.	BIAYS Pierre	
Μ.	BLOCH Vincent	
Μ.	BONNEMAN Pierre	
М.	BONTE Antoine	
Μ.	BOUGHON Pierre	
Μ.	BOURIQUET Robert	
Μ.	CAPET Marcel-Francis	
Μ.	CELET Paul	
Μ.	CONSTANT Eugène	
Μ.	CORSIN Pierre	
Μ.	DECUYPER Marcel	
Μ.	DEFRETIN René	
М.	DELATTRE Charles	
Μ.	DURCHON Maurice	

Astronomie Chimie Générale Physique Géographie Psychophysiologie Chimie et Physico-Chimie Industrielle Géologie Appliquée Mathématiques Biologie Végétale Institut de Préparations aux Affaires Géologie Physique Industrielle-Electronique Paléobotanique Mathématiques Générales Biologie Marine Géologie Générale Zoologie Générale et Appliquée

11.	THONE RODELL
M.	FOURET René
Μ.	GABILLARD Robert
М.	GEHU Jean-Marie
М.	GLACET Charles
Μ.	GONTIER Gérard
Μ.	GUILLAUME Jean
М.	HEUBEL Joseph
М.	JOLY Robert
Me.	LENOBLE Jacqueline
M.	LOMBARD Jacques
Μ.	MONTARIOL Frédéric
Μ.	MONTREUIL Jean
Μ.	POUZET Pierre
Me	SCHWARTZ Marie-Hélène
Μ.	TILLIEU Jacques
Μ.	TRIDOT Gabriel
Μ.	VAILLANT Jean
Μ.	VIDAL Pierre
Μ.	VIVIER Emile
Μ.	WERTHEIMER Raymond
Μ.	ZEYTOUNIAN Radyadour

FALIDE D.

M

1

10

Mécanique Physique Radio-Electricité-Electronique Institut Agricole Chimie Organique Mécanique Biologie Végétale Chimie Minérale Biologie (Amiens) Physique Expérimentale Sociologie Chimie Appliquée Chimie Biologique Informatique Analyse Supérieure Physique Théorique Chimie Mathématiques Automatique Biologie Animale Physique Mathématiques

PROFESSEURS A TITRE PERSONNEL

M. BOUISSET Simon
M. DELHAYE Michel
M. FLATRES Pierre
M. LEBRUN André
M. LINDER Robert
M. LUCQUIN Michel
M. PARREAU Michel
M. PRUDHOMME Rémy
M. SCHILTZ René

Physiologie Animale Chimie Géographie Electronique Botanique Chimie Physique Mathématiques Appliquées Droit et Sciences Economiques Physique

PROFESSEUR'S SANS CHAIRE

Μ.	BELLET Jean
М.	BILLARD Jean
Μ.	BODARD Marcel
М.	BOILLET Pierre
Μ.	DERCOURT Jean-Michel
М.	DEVRAINNE Pierre
М.	GOUDMAND Pierre
М.	GRUSON Laurent
М.	GUILBAULT Pierre
М.	LACOSTE Louis
М.	LANDAIS Jean
М.	LEHMANN Daniel
М.	LOUCHEUX Claude
М.	MAES Serge
Mle	MARQUET SImone
М.	MONTEL Marc
М.	PANET Marius
М.	PROUVOST Jean

Physique Physique Botanique Physique Géologie Chimie Minérale Chimie Physique Mathématiques Biologie Biologie Chimie Mathématiques Chimie Physique Mathématiques Physique I.E.E.A. Minéralogie

MAITRE DE CONFERENCES

(et Chargés de Fonctions)

M. ADAM Michel M. ANDRE Charles M. ANGRAND Jean-Pierre M. ANTOINE Philippe M. AUBIN Thierry M. BART André M. BEGUIN Paul M. BKOUCHE Rudolphe M. BOILLY Bénoni M. BONNEMAINJean-Louis M. BONNOT Ernest M. BOSCQ Denis M. BRIDOUX Michel M. BRUYELLE Pierre M. CAPURON Alfred M. CARREZ Christian M. CORDONNIER Vincent M. CORTOIS Jean M. COULON Jean M. DEBOURSE Jean-Pierre M. DEBRABANT Pierre M. DELAUNAY Jean-Claude M. DOUKHAN Jean-Claude M. DRIEUX Baudouin M. DYMENT Arthur M. ESCAIG Bertrand M. FONTAINE Jacques M. FROELICH Daniel M. GAMBLIN André M. GOBLOT Rémi M. GOSSELIN Gabriel M. GRANELLE Jean-Jacques M. GUILLAUME Henri M. HERMAN Maurice M. JOURNEL Gérard Mle KOSMANN Yvette M. KREMBEL Jean M. LABLACHE-COMBIER Alain M. LAURENT François M. LAVAGNE Pierre Mle LEGRAND Denise Mle LEGRAND Solange Me LEHMANN Josiane M. LENTACKER Firmin M. LEROY Yves M. LHENAFF René M. LOCQUENEUX Robert M. LOUÀGE Francis Me MAILLET Monique M. MAIZIERES Christian M. MALAUSSENA Jean-Louis

Economie Politique Sciences Economiques Géographie Mathématiques Mathématiques Biologie Mécanique des Fluides Mathématiques Biologie Biologie Végétale Biologie Végétale Mathématiques Chimie Géographie et Aménagement Spatial Biologie Animale I.E.E.A. Informatique Physique I.E.E.A. Sciences Economiques et Sociales Sciences Appliquées Sciences Economiques et Sociales Physique I.E.E.A. Mathématiques Physique Génie Electrique Sciences Appliquées Géographie Mathématiques Sociologie Sciences Economiques Sciences Economiques et Sociales Physique Sciences Appliquées Mathématiques Chimie Chimie Automatique Sciences Economiques et Sociales Mathématiques Mathématiques Mathématiques Géographie et Aménagement Spatial Electronique Géographie Physique Sciences Appliquées Sciences Economiques I.E.E.A. Sciences Economiques et Sociales

M. MERIAUX Emile M. MESSELYN Jean M. MIGEON Michel M. PAQUET Jacques M. PARSY Fernand M. PECQUE Marcel M. PERROT Pierre M. PERTUZON Emile M. PONSOLLE Louis M. POVY Jean-Claude M. RACZY Ladislas Me RENVERSEZ Françoise M. ROUSSEAU Jean-Paul M. ROY Jean-Claude M. SALMER Georges SEGUIER Guy М. М. SIMON Michel M. SLIWA Henri M. SMET Pierre M. SOMME Jean Mle SPIK Geneviève M. TOULOTTEJean-Marc M. TREANTON Jean-René M. VANDORPE Bernard M. VILETTE Michel M. WATERLOT Michel Me ZINN JUSTIN Nicole

Sciences de la Terre Physique Chimie (Sciences Appliquées) Sciences Appliquées Mathématiques Chimie Chimie Biologie Chimie (Valenciennes) Sciences Appliquées Physique Sciences Economiques et Sociales Physiologie Animale Biologie Radio Electricité Electroniques Electronique Psychologie Chimie Physique Géographie Chimie Biologique Sciences Appliquées Sciences Economiques et Sociales Chimie Physique Génie Mécanique Géologie Mathématiques

-=0000000=-

À MES PARENTS,

À ANNIE.

A Monsieur Jean-Pierre BEAUFILS,

Professeur à l'Université des Sciences et Techniques de Lille, qui a suggéré cette étude.

Qu'il trouve ici l'expression de ma profonde gratitude pour les conseils et les encouragements qu'il m'a prodigués. A Monsieur Jean-Pierre BONNELLE,

Maître Assistant à l'Université des Sciences et Techniques de Lille, qui m'a apporté, en dirigeant ce travail, une aide constante et enthousiaste.

En témoignage de ma grande reconnaissance et de mon estime

sincère.

Ce travail a été effectué au Laboratoire de Catalyse de l'Université des Sciences et Techniques de Lille.

Qu'il me soit permis d'exprimer ma respectueuse reconnaissance à Monsieur le Professeur J.P. BEAUFILS pour m'avoir accueilli dans son laboratoire.

Je remercie particulièrement Monsieur J.P. BONNELLE de sa présence dans le jury de cette thèse.

Je remercie très vivement Monsieur le Professeur P. GOUDMAND qui a bien voulu examiner ce travail.

Que mes camarades de laboratoire trouvent ici l'expression de toute ma sympathie.

SOMMAIRE

-=0000000=-

INTRODUCTION

CHAPITRE I - PARTIE EXPERIMENTALE -

I - LE SOLIDE

A) Préparation

B) Mise de l'oxyde de zinc dans un état de référence

II - LA BALANCE :

- A) Description
- B) Utilisation
- C) Prise d'essai

III - LE SYSTEME D'INTRODUCTION DES GAZ :

A) Description du système :

1° - Circuit de traitement

2° - Circuit de stabilisation

B) Mode opératoire

IV - LE SYSTEME D'IRRADIATION

CHAPITRE II - METHODE DE CALCUL DE LA VITESSE DE LA REACTION D'OXYDATION -

CHAPITRE III - ÉTUDE DE LA RÉACTION THERMIQUE D'OXYDATION -

I - INTRODUCTION

- II RESULTATS EXPERIMENTAUX :
 - A) Etude aux températures de 100, 160 et 275°C pour le ZnOM :
 1° Température de 100°C
 2° Température de 160°C
 - 3° Température de 275°C
 - B) Etude pour le ZnOAC₃ aux températures comprises entre 250° et 300°C :
 - 1° Valeur de l'ordre par rapport à l'oxygène : a
 - 2° Valeur de l'ordre par rapport à l'oxyde de carbone : β
 - 3° Valeur de l'énergie d'activation

III - DISCUSSION

IV - AMELIORATION DU MECANISME PROPOSE DANS LE CAS DE L'OXYDATION THERMIQUE ENTRE 250 ET 300°C

CHAPITRE IV - ÉTUDE DE LA RÉACTION PHOTOCATALYTIQUE -

- I GENERALITES
- II EFFETS POSSIBLES DE L'IRRADIATION POUR DIFFERENTS MECANISMES
 THERMIQUES :
 - A) Cas d'un mécanisme d'oxydation ne faisant pas intervenir les porteurs minoritaires
 - B) Cas du mécanisme thermique proposé
- III RESULTATS EXPERIMENTAUX :
 - A) Température de 100°C
 - B) Température de 160°C
 - C) Température de 275°C
- IV DISCUSSION :
 - A) Températures 100 160°C
 - B) Température 275°C

CONCLUSION

INTRODUCTION

J.P. BEAUFILS et J.P. BONNELLE (1) ont étudié la chimisorption du couple hydrogène-oxygène sur l'oxyde de zinc. Dans le cadre de la théorie électronique de la catalyse (2), ils ont proposé un mécanisme réactionnel faisant intervenir le couplage de deux étapes -l'un acceptrice, l'autre donatrice- par l'intermédiaire de la barrière de potentiel à la surface du solide. Les ordres par rapport aux deux réactifs ont été déterminés grâce à une étude cinétique réalisée par thermogravimétrie. L'accord entre la théorie et les résultats obtenus est satisfaisant avec toutefois un ordre expérimental par rapport à l'hydrogène plus important que celui prévu par la théorie. Ce phénomène est sans doute lié à une dissolution de l'hydrogène dans le solide.

Nous basant sur la similitude des propriétés réductrices de l'hydrogène et de l'oxyde de carbone, nous avons réalisé des expériences de coadsorption avec le couple oxygène-oxyde de carbone, une dissolution de l'oxyde de carbone dans le réseau étant ici exclue.

La comparaison des résultats obtenus par M. GUELTON (3) en résonance paramagnétique électronique et de nos résultats nous conduit à proposer un mécanisme d'oxydation plus détaillé, commun à l'hydrogène et à l'oxyde de carbone, qui fait intervenir les porteurs minoritaires de l'oxyde de zinc -les trous-. Pour confirmer le rôle de ces porteurs dans le mécanisme, nous avons réalisé une étude de l'influence de l'irradiation sur la cinétique de coadsorption.

-=0000000=-

CHAPITRE I

-=0000000=--

PARTIE EXPERIMENTALE

Les manipulations consistent essentiellement en des mesures pondérales de quantités de gaz chimi**q**orbés sur une poudre. La lecture des courbes enregistrées -masse adsorbée en fonction du temps-, ainsi que la pureté des gaz et la précision des valeurs de leurs pressions partielles doivent être soigneusement maîtrisées.

I - LE SOLIDE -

A) Préparation :

La méthode a été mise au point par B. GRAS et J.P. BONNELLE (4). Ils ont opté pour une préparation par décomposition du carbonate de szinc.

A partir de nitrate de zinc (Prolabo pur) et de carbonate d'ammonium (P.R. Prolabo), tous deux dissous séparément à froid dans une quantité minimale d'eau bidistillée, le carbonate est obtenu par coprécipitation. Durant huit jours, le précipité est lavé sur verre fritté à l'extracteur pour l'élimination des ions ammonium. La décomposition thermique se fait en deux étapes :

 1° – A 210°C, décomposition du carbonate sous courant d'oxygène sec pendant trois heures.

2° - Puis chauffage à 270°C pendant quinze heures pour décomposer le nitrate d'ammonium. Le précipité est ensuite lavé douze heures pour éliminer le nitrate de zinc formé pendant cette étape.

Un traitement définitif à 430°C sous courant d'oxygène sec de durée de cinq heures stabilise l'aire spécifique de l'oxyde. Cette méthode présente deux avantages :

- l'élimination totale des réactifs par un traitement thermique modéré

- l'obtention d'un oxyde de zinc d'aire spécifique convenable, 20 $\rm m^2/g$ environ.

Nous avons utilisé trois types d'oxyde de zinc :

Les oxydes de référence AC_{31} et AC_{32} ont été préparés par B. ALLUARD. Ils proviennent du même précipité, mais ont subi séparément le traitement thermique définitif - 430°C sous oxygène-.

L'oxyde de référence M a été préparé par Madame RIGOLE.

B) Mise du solide dans un état de référence :

Dans le but d'obtenir des mesures reproductibles, il est nécessaire de stabiliser le catalyseur par chauffage à 420°C pendant quarante huit heures dans un courant d'azote U + 1% d'oxygène. L'oxyde acquiert ainsi une répartition uniforme de défauts, dans tout le solide, et l'eau est totalement éliminée (5).

II - LA BALANCE -

A) Description : (Fig. 1)

Nous avons utilisé une microbalance électronique sous vide SARTORIUS 4102. Cette balance fonctionne suivant le principe de compensation de poids automatique. Un couple de redressement électromagnétique compense le couple de torsion produit par une différence de poids.

Le fléau est un tube de quartz fixé en son milieu à une bobine à cadre mobile. L'ensemble est maintenu par deux rubans tendeurs servant à l'alimentation en courant du cadre. La bobine oscille dans le champ magnétique d'un aimant permanent. Deux bobines plates sont fixées à ce dernier perpendiculairement au cadre. Elles sont soumises à un courant alternatif H.F.. En position d'équilibre, les tensions induites dans la bobine à cadre mobile s'annulent tandis qu'une tension alternative est produite à ses extrémités lorsque l'équilibre est rompu. Il résulte alors un courant continu induit dans la bobine à cadre mobile qui provoque un couple de compensation. Le fléau reprend sa position d'équilibre. La valeur du courant est directement proportionnelle à la différence de poids des nacelles.

La cage du fléau ainsi que les suspensions sont réalisés en acier inoxydable, de même que les tubulures de raccordement. Le système de pesée est insensible à la température jusqu'à 100°C.

-2-

VUE DE DESSUS

VUE DE GAUCHE

- (A) Vers le regulateur electrique
- B Support
- C Fil de torsion
- D Fléau
- (E) Bobine à cadre mobile

(F) Aimant

G 2 bobines

(H) Support isolé

BALANCE SARTORIUS

B) Utilisation :

La détection de la chimisorption nécessite le chauffage de l'échantillon sous courant gazeux. L'apparition de courants de convection dans les tubes laboratoire de la balance provoque un bruit de fond dans le signal enregistré. Il s'avère donc nécessaire de procéder à un réglage minutieux pour atteindre un fonctionnement correct de l'appareillage :

- Les gaz sont introduits dans les tubes de la balance par le bas afin de ne pas contrarier les courants chauds.

- Le chauffage est symétrique : deux fours électriques identiques -résistance 200- sont montés en série. Leur position en hauteur et leur centrage sont réglés au mieux. Des thermocouples chromel-alumel fixés contre les tubes permettent la régularisation et la lecture de la température qui est identique dans les deux fours.

- Un ventilateur permet le refroidissement des gaz avant leur entrée dans la cage de la balance.

C) Prises d'essai :

Nous évitons les corrections de poussée d'Archimède ; pour cela, dans l'une des nacelles, nous déposons le catalyseur et dans l'autre un mélange d'or et de billes de verre de telle sorte que les masses et les volumes soient très proches :

 $m = m_1 + m_2$ $\frac{m}{d} = \frac{m_1}{d_1} + \frac{m_2}{d_2}$

avec m, m, m, m, les masses d'oxyde, d'or et de verre

d, d1, d2 les densités de l'oxyde, de l'or et du verre.

Le verre et l'or ont été choisis pour leur faible pouvoir adsorbant.

Les prises d'essais ont été de l'ordre de 300 mg et de 30 mg.

Dans ces conditions, le bruit de fond était dans le premier cas de 5 μ g maximum, à la température de traitement et pour une quantité adsorbée d'environ 400 μ g ; dans le deuxième cas, relativement plus important car nous nous trouvions à la limite de la sensibilité de l'appareillage.

III - LE SYSTEME D'INTRODUCTION DES GAZ -

A) Description du système :

Le système comporte deux circuits gazeux indépendants (fig.2).

1° - Le circuit de traitement :

Il est balayé par de l'azote U purifié par passage dans des pièges à garnissage de verre, maintenus à la température du mélange acétone-carboglace -essentiellement piégeage de l'eau résiduelle < 10 v.p.m.-. Deux systèmes de robinets B et C permettent l'injection, dans le courant d'azote, soit de l'oxygène, soit de l'oxyde de carbone, soit des deux à la fois. Ces deux gaz sont purifiés de la même façon que l'azote U. Ils sont introduits à des pressions partielles faibles par rapport à celle de l'azote qui sert de gaz vecteur. Ce dernier est inerte vis-à-vis de la chimisorption. De cette façon la balance travaille toujours dans les mêmes conditions.

- L'oxygène est produit par l'électrolyse d'une solution de soude à 15% dans une cellule à trois électrodes. L'électrode centrale est mise au même potentiel que l'anode pour éviter toute diffusion dans l'oxygène, de l'hydrogène produit.

Un milliampèremètre permet de vérifier le courant d'alimentation des cellules réglé par un potentiomètre -le courant peut varier de 0 à 400 mA.

- L'oxyde de carbone (pureté 99,99%) provient de bouteilles. Son débit est réglé par une microfuite, puis plus finement à l'aide d'un microdébitmètre thermique UGINE U60. Nous les contrôlons sur un enregistreur -le débit est primitivement étalonné-.

2° - Le circuit de stabilisation :

Le circuit est analogue au circuit de traitement. Il peut être balayé par un mélange d'azote U et d'oxygène ou par de l'azote seul. L'oxygène est produit et introduit de la même façon que précédemment.

Les deux circuits : aboutissent à un robinet R de commutation qui met l'un d'eux: en contact avec l'atmosphère, l'autre avec les tubes de la balance. L'échantillon de catalyseur et les circuits sont en permanence sous courant gazeux, l'équilibre des différents mélanges de gaz est ainsi assuré. Les circuits ne comportent pas de volume mort. Le débit total des gaz est réglé à 6 $1.h^{-1}$. Deux rotamètres en permettent la vérification. Tout le montage est réalisé en PYREX et les robinets et rodages sont graissés à l'APIEZON N.

BUS

B) Utilisation :

La standardisation du catalyseur est obtenue à l'aide du circuit 2. Puis nous abaissons la température sans modifier le mélange azote-oxygène. A la température de travail, l'oxygène est éliminé en purgeant la balance sous azote seul. La masse de l'échantillon ne change pas durant cette étape. Nous introduisons alors le mélange de gaz de traitement en commutant le robinet R, le circuit de stabilisation est alors mis à l'atmosphère.

Après avoir obtenu l'enregistrement de la chimisorption (m = f(t)) sur un enregistreur potentiométrique PHILIPS –expérience terminée-, nous inversons les deux circuits : la balance est sous mélange azote U et oxygène, le circuit de traitement est à l'atmosphère. La température est alors élevée jusqu'à 420°C.

Le catalyseur est stabilisé entre chaque expérience. Cette étape dure environ trois heures ; elle permet de retrouver l'état initial du catalyseur.

IV - LE SYSTEME D'IRRADIATION -

Les mesures sont effectuées aux températures de 100°, 160° et 275°C. Nous conservons donc le système des fours.

Un compromis a été réalisé pour permettre une irradiation suffisante du catalyseur et un fonctionnement normal de l'appareillage. Pour cela les tubes laboratoire ont été modifiés (fig. 3), ainsi que les nacelles de telle sorte qu'ils présentent une surface plane, la plus grande possible, aux rayons lumineux.

Le catalyseur 30 mg est déposé dans le fond de la nacelle sous forme d'une couche mince, après broyage dans le tétrachlorure de oarbone. Son épaisseur est de 30μ . La masse de 30 mg d'oxyde de zinc est pour notre appareillage la masse limite au-dessous de laquelle le rapport signal sur bruit est tel que toute mesure devient impossible.

Le tube et la nacelle sont réalisés en quartz.

Comme source d'irradiation, nous avons utilisé une lampe à vapeur de mercure SP 500W PHILIPS. Cette lampe, à rayonnement dirigé, est montée dans un support qui permet son refroidissement par l'eau. Le système optique, également en quartz, est composé de cette lampe placée au foyer d'une première lentille (F = 10 cm) et d'une deuxième lentille (F = 20 cm) qui permet la focalisation du faisceau sur la nacelle. Le système d'irradiation est ajusté suivant l'axe

DISPOSTIF D'IRRADIATION.

du tube laboratoire contenant l'oxyde. La lampe émet des radiations de longueur d'onde comprise entre 230 et 500 mµ avec une intensité relativement élevée aux environs de 385 mµ (6), ce qui correspond à l'énergie de la bande interdite du semiconducteur - 3,2 eV (fig. $\frac{1}{2}$).

Figure 4 - Densitogramme du spectre d'émission de la lampe Philips SP 500W.

L'irradiation du solide est effectuée avant l'introduction des réactifs durant huit minutes. Nous avons vérifié que l'atmosphère-mélange azote et oxygène ou azote seul- n'a pas d'influence notable sur la vitesse de coadsorption. Nos manipulations sont donc menées avec l'irradiation de l'oxyde sous azote seul.

REMARQUES :

 1° - Nous observons, lors du début de l'irradiation, une perte de poids d'environ 15 µg, très rapide -la masse adsorbée totale est de 60 µg-. Ce phénomène est réversible et semble indépendant de la composition du mélange gazeux en présence du catalyseur. Il pourrait donc s'agir d'un effet d'origine mécanique. 2° - Au bout d'un certain nombre d'expériences, l'activité du catalyseur chute de façon irréversible. Toutefois, tous les points concernant une même température sont effectués sur le même échantillon. Des vérifications d'échantillon à échantillon pour un même oxyde de zinc ont montré une bonne reproductibilité.

-=0000000=-

CHAPITRE II

-=0000000=--

METHODE DE CALCUL DE LA VITESSE DE LA REACTION D'OXYDATION

Dans le cas du mélange hydrogène-oxygène, J.P. BONNELLE (1) calculait la vitesse de coadsorption à l'origine -sites non occupés- à l'aide d'une transformée linéaire de la courbe de chimisorption m = f(t) obtenue par enregistrement. En effet, la définition directe de la pente de la courbe d'adsorption à l'origine n'est pas très précise : la mise en équilibre des réactifs est gênée par la diffusivité de l'hydrogène beaucoup plus grande que celle de l'oxygène. Dans notre cas, cette limite n'existe plus : les pressions partielles d'oxygène et d'oxyde de carbone atteignent leurs valeurs prescrites en moins de deux minutes au niveau du catalyseur. Il est donc possible de déterminer la vitesse initiale de coadsorption par mesure directe de la pente de la courbe de chimisorption au bout de deux minutes d'expérience.

De façon générale, la vitesse apparente de coadsorption s'écrit :

$$v = K(m - m) - km$$

avec m_o = masse du composé oxydé adsorbé lorsque tous les sites sont occupés. m = masse du composé oxydé adsorbé au temps t.

Dans le cas du mélange hydrogène-oxygène, la constante de vitesse k est très petite devant la constante de vitesse K : on peut négliger la vitesse de désorption km devant la vitesse de coadsorption $K(m_0 - m)$ jusqu'à un recouvrement de la surface de l'ordre de 90% du recouvrement total. Ceci n'est plus vrai pour le mélange oxyde de carbone-oxygène : la vitesse de désorption du gaz carbonique n'est plus négligeable devant la vitesse de coadsorption pour des recouvrements d'environ 40% à 50% du recouvrement total. Dans ces conditions, la seule possibilité d'obtenir la valeur de K est de mesurer la pente de la courbe de coadsorption à l'origine.

Des essais préliminaires effectués pour une masse de catalyseur de 300 mg ont montré que l'erreur sur la mesure de la pente -en moyenne 5%- donne une incertitude maximale de 5% sur la valeur des ordres. Par contre, pour une masse faible de 30 mg, dans nos conditions de travail, l'erreur sur la valeur des ordres est voisine de 20%.

-=0000000=-

CHAPITRE III

-=0000000=-

ETUDE DE LA REACTION THERMIQUE D'OXYDATION

I - INTRODUCTION -

Les expériences de coadsorption réalisées par J.P. BONNELLE étaient interprétées (1) dans le cadre de la théorie électronique de la catalyse sur les semiconducteurs.

Contrairement à un raisonnement de cinétique classique, nous avons affaire ici à un mécanisme qui fait intervenir un transfert de charge électronique entre le solide et l'adsorbat que nous schématisons :

> (1) $A_{ads} + e^{-} \rightarrow A_{ads}$ Etape acceptrice de vitesse v_A . (2) $D_{ads} \rightarrow D_{ads}^+ + e^{-}$ Etape donatrice de vitesse v_D (3) $A_{ads}^- + D_{ads}^+ \rightarrow AD_{ads}$

Ce transfert d'électrons entre le solide et l'adsorbat nécessite le franchissement d'une barrière de potentiel créée par les charges accumulées à la surface (7). Les étapes de vitesses v_A et v_D produisent respectivement l'accumulation de charges négatives et positives. Un excès de charges positives accroît la constante de vitesse k_A et inversement. Un équilibre est atteint lorsque les deux vitesses v_A et v_D sont identiques. Si nous supposons que la vitesse de l'étape ③ est rapide par rapport aux deux autres, "l'étape déterminante" est alors l'ensemble des deux étapes ④ et ②. Soit pour la vitesse globale de la réaction : $v = v_A = v_D$. Ce schéma appliqué au cas de la coadsorption de l'hydrogène et de l'oxygène amenait J.P. BEAUFILS et J.P. BONNELLE au résultat théorique suivant :

$$v = -\frac{dN}{dt} = k \cdot P_{O_2} P_{H_2} \cdot N$$

où N représente le nombre de sites libres pour l'espèce "H₀O".

Les ordres expérimentaux trouvés par J.P. BONNELLE pour des températures comprises entre 275 et 315°C sont proches de

- 0,32 par rapport à l'oxygène et- 0,90 par rapport à l'hydrogène.

Pour des températures inférieures ou égales à 250°C, les phénomènes observées deviennent plus lents et moins reproductibles.

Nous observons que l'ordre par rapport à l'oxygène correspond à l'ordre théorique, tandis que celui par rapport à l'hydrogène est beaucoup trop fort. Toutefois, le désaccord entre les valeurs expérimentale et théorique de l'ordre par rapport à l'hydrogène peut être dû à une dissolution de celui-ci dans l'oxyde de zinc.

Les propriétés réductrices de l'oxyde de carbone et de l'hydrogène sont très comparables ; par exemple, leur potentiel d'ionisation observé par spectrométrie de masse est respectivement de 15,4 et 14 ev. (8). De plus, un effet de dissolution de l'oxyde de carbone dans l'oxyde de zinc peut être considéré comme exclu. Sur cette base, nous avons entrepris l'étude de la coadsorption de l'oxygène et de l'oxyde de carbone sur l'oxyde de zinc.

Pour le couple hydrogène-oxygène, J.P. BONNELLE a défini la composition de l'adsorbat lors de la coadsorption à l'aide de mesures volumétriques (9). L'hydrogène et l'oxygène sont adsorbés dans les proportions stoechiométriques de la formation d'eau :

$$H_{0} + 1/2 0_{0} + Surface \rightarrow adsorbat "H_{0}"$$

Nous supposerons que ceci est également vrai pour la coadsorption oxygèneoxyde de carbone :

$$CO + 1/2 O_0 + surface \rightarrow adsorbat "CO_0"$$

En fait, nous vérifions expérimentalement qu'une adsorption d'oxyde de carbone seul a lieu ; cette adsorption correspond à une masse d'oxyde de carbone nécessaire pour réagir avec l'oxygène préadsorbé sur l'oxyde de zinc suivant la réaction précédente.

II - RESULTATS EXPERIMENTAUX -

La vitesse initiale de coadsorption -masse adsorbée nulle-, s'écrit d'une façon générale :

$$\left(\frac{dm}{dt}\right)_{m=0} = K \cdot m_{o}$$

où m $_{\rm O}$ correspond à la masse adsorbée lorsque tous les sites disponibles de l'oxy-de de zinc sont occupés par l'adsorbat "CO $_{\rm O}$ ".

Dans notre cas, l'expression de la vitesse devient, en explicitant la constante :

$$\left(\frac{dm}{dt}\right)_{m=0} = A \cdot \exp(-E/RT) \cdot P_{0}^{\alpha} \cdot P_{C0}^{\beta} \cdot m_{0}$$

Cette équation montre que la vitesse dépend du nombre de sites libres pour le composé final "CO₂", soit de l'aire spécifique du catalyseur. En fait, l'aire spécifique est stabilisée au bout de deux à trois manipulations comme le montrent les expériences réalisées par la méthode volumétrique.

A) Etude aux températures de 100, 160 et 275°C pour le ZnOM :

Dans ce cas la masse de l'échantillon de catalyseur est de 30 mg.

1° - Température de 100°C :

Nous observons une vitesse de coadsorption très faible, de l'ordre de $0,20 \ \mu g.mn^{-1}$. Elle est indépendante des pressions d'oxygène et d'oxyde de carbone.

2° - <u>Température de 160°C</u> :

La vitesse de coadsorption est faible et peu reproductible.

Une étude de la variation de la vitesse en fonction des pressions partielles de chacun des deux réactifs présente une dispersion relativement importante. La valeur de la vitesse varie aux alentours du $\mu g.mn^{-1}$.

3° - Température de 275°C :

Les valeurs des ordres sont obtenues graphiquement en portant le logarithme de la vitesse initiale en fonction de la pression partielle du gaz considéré -la pression partielle de l'autre gaz et la température sont maintenues constantes-.

Nous obtenons pour α , ordre par rapport à l'oxygène,0,30 et pour β , ordre par rapport à l'oxyde de carbone,0,65 -cela en fixant respectivement à 11 torr la pression partielle d'oxyde de carbone et celle de l'oxygène à 5,5 torr-. (Fig. 5-6).

B) Etude pour le ZnOAC₃ aux températures comprises entre 250° et 300°C : 1° - Valeur de l'ordre par rapport à l'oxygène = α :

Nous rassemblons, dans deux tableaux, les différentes valeurs obtenues. Les lettres A, B et C contenues dans ces tableaux renvoient aux courbes.

- ZnOAC₃₂ - Fig. 7 :

La température est fixée à 275°C.

Nous avons fait varier le paramètre pression d'oxyde de carbone.

P _{CO} en torr	11 : A	5,5 : B	2,75 : C
: : Valeur de α :	0,31	0,30	0,33

- ZnOAC₃₂ - Fig. 8 :

Le paramètre pression d'oxyde de carbone est fixé : 5,5 torr. Nous avons fait travailler le catalyseur à trois températures différentes : 300°C, 275°C, 250°C.

: Temps en d°C	300 : A	275 : B	250 : C
: : Valeur de α :	0,35	0,30	0,12

 2° - <u>Valeur de l'ordre par rapport à l'oxyde de carbone</u> $\neq \beta$:

Les valeurs obtenues sont rassemblées dans les tableaux suivants :

- ZnOAC₃₁ - Fig. 9 :

La température de travail est fixée à 275°C Le paramètre : pression d'oxygène varie.

:	P _{O2} en torr	:	11 : A	:	5,5 : B	2,75 : C	:
: Va	leur de β	: :	0,74	•	0,75	0,74	:

- $ZnOAC_{32}$ - Fig. 10 :

La pression partielle d'oxygène est fixée à 5,5 torr.

Trois valeurs sont données à la température : 300°C, 275°C, 250°C

: Temps en °C	300 : A	275 : B	250 : C
: : Valeur de β :	0,77	0,75	0,64

3° - Valeur de l'énergie d'activation - Fig. 11 :

Nous déterminons également l'énergie d'activation graphiquement en traçant le logarithme de la vitesse initiale en fonction de $\frac{1}{T}$, où T est la température de travail du catalyseur en degrés absolus.

La pente de la droite expérimentale nous donne à un coefficient près, la valeur de l'énergie d'activation.

Nous avons effectué des mesures sur les deux types d'oxyde de zinc :

 $- ZnOAC_{31}$:

Pour des pressions partielles de 11 torr en oxyde de carbone et 5,5 torr en oxygène -soit à la stoechiométrie-, la valeur de l'énergie d'activation est de 10,9 kcal/mole. -A-

 $- ZnOAC_{32}$:

- Dans les mêmes conditions que précédemment, la valeur de l'énergie d'activation est ici de 9,9 kcal/mole. -B-.

- Pour une pression partielle d'oxyde de carbone de 22 torr et une pression partielle d'oxygène de 5,5 torr, la valeur de l'énergie d'activation est encore de 9,8 kcal/mole -B'-.

III - DISCUSSION -

Nous avons rassemblé dans un tableau les valeurs des ordres et des énergies d'activation que nous avons trouvées expérimentalement :

:	: Valeurs de α			: Valeurs de α : Valeurs de β : :			Valeurs de E _A en kcal/mole	:
:	250°C	275°C	300°C	250°C	275°C	300°C		 : :
: ZnOAC ₃	0,12	0,30	0,35	0,64	: 0,75	0,77	10,9 9,8	: : :
ZnQM		0,30		:	: : 0,65 :			:

J.P. BONNELLE avait obtenu, pour un oxyde de zinc traité de la même façon que ceux utilisés ici, une énergie d'activation de 10,6 kcal/mole -dans les conditions de la stoechiométrie : 7,6 torr et 3,8 torr respectivement pour l'hydrogène et pour l'oxygène-.

Nous constatons que les énergies d'activation des deux réactions d'oxydation sont très proches. Comme précédemment, les phénomènes deviennent plus lents et plus complexes lorsque la température est inférieure ou égale à 250°C.

Les ordres expérimentaux par rapport à l'oxyde de carbone sont ici très proches de l'ordre théorique = 0,66. L'ordre théorique par rapport à l'oxygène 0,33 est aussi vérifié. Nous apportons par là même une confirmation du mécanisme d'oxydation qui était proposé dans le cas de l'hydrogène.

IV - AMELIORATION DU MECANISME PROPOSE DANS LE CAS DE L'OXYDATION THERMIQUE ENTRE 250 et 300°C -

Les résultats que nous obtenons pour l'oxydation de l'oxyde de carbone confirment le mécanisme qui était proposé dans le cas de l'oxydation de l'hydrogène. Toutefois, sur la base de ces résultats et de ceux obtenus par M. GUELTON et par J.P. BONNELLE, respectivement pour des mesures de R.P.E. (3) et de conductivité (10), ce mécanisme a pu être précisé. Les mesures gravimétriques pour la coadsorption hydrogène-oxygène étaient interprétées (1) au moyen de deux vitesses v_A et v_D dont les expressions sont :

$$v_A = k_A \cdot P_0 \cdot exp(-2eVS/kT)$$

 $v_D = k_D \cdot P_{H_2} \cdot exp(eVS/kT)$

où VS est la hauteur de la barrière de potentiel à la surface.

L'étape acceptrice suivante rend compte de $v_{\scriptscriptstyle \Delta}$:

$$\begin{pmatrix}
0_{2(g)} + e^{-5} \Rightarrow 0_{2(ads)} \\
0_{2(ads)} + e^{-5} \Rightarrow 20^{-}_{(ads)}
\end{pmatrix}$$

M. GUELTON ainsi que d'autres auteurs (11) ont montré que les espèces oxygène adsorbées suivent un équilibre :

$$0_2^{-} + e^{-} \stackrel{1}{\leftarrow} 20^{-}$$

équilibre fortement déplacé dans le sens 1 lorsque la température est supérieure à 250°C et dans le sens 2 lorsque la température est inférieure à 150°C.

Il faut noter que nous ne ferons pas le décompte des sites dans le mécanisme, les mesures effectuées nous permettant d'atteindre la vitesse initiale de coadsorption.

L'étape donatrice pour l'hydrogène peut être envisagée selon deux mécanismes :

1	$H_{2(g)} \stackrel{\neq}{\leftarrow} H_{2ads} + e^{-1}$
-	$H_{2ads}^{+} \rightarrow 2H_{(ads)}^{+} + e^{-}$
2	$H_{2(g)} + p^{\dagger} \rightarrow H_{2}^{\dagger}$ (ads

où p[†] représente une vacance d'électrons dans la bande valence.

L'électron effectue donc une transition soit vers la bande de conduction, soit vers la bande de valence.

)

On voit aisément qu'un mécanisme tel que $H_{2(g)} + H_{2(ads)}^{\dagger} + e^{-}$ ne peut rendre compte de l'expression de la vitesse donatrice.

Dans le cas de l'oxyde de carbone, le deuxième mécanisme est plus invraisemblable que le premier qui nécessiterait la présence d'une espèce CO^{++} . En fait, M. GUELTON a montré qu'il était très difficile, sous peine de réduire l'oxyde de zinc, de créer une charge positive à la surface de celui-ci. Dans ces conditions, il est probable que CO^+ et H_2^+ n'existent pas sous cette forme ; l'espèce réductrice réagit donc directement avec l'espèce O^- adsorbée (12) suivant les réactions :

 $CO_{g} + O_{ads}^{-} + p^{+} \rightarrow CO_{2ads}$ $H_{2g} + O_{ads}^{-} + p^{+} \rightarrow H_{2}O_{ads}$

Dans ce cas, la condition $v_A = v_D =$ vitesse de la réaction est équivalente à l'application de l'état stationnaire à l'espèce superficielle 0⁻ :

 $k_2 \cdot (0_2) \cdot (e_S) = k_3 \cdot P_{red} \cdot (0) \cdot (p_S)$

où $(O_2^{-}) = K_1 \cdot P_{O_2} \cdot (e_S)$ P_{red} = pression partielle du gaz réducteur (hydrogène ou oxyde de carbone) $\begin{cases} (e_S) = \text{concentration des électrons libres à la surface} \\ (e_S) = (e_0) \cdot \exp(-eV_S/kT) \end{cases}$ $\begin{cases} (p_S) = \text{concentration des trous libres à la surface} \\ (p_S) = (p_0) \cdot \exp(+eV_S/kT) \end{cases}$

d'après la théorie de la barrière de potentiel (7).

L'équation ① peut s'écrire :

(1)

$$(0^{-}) = q_{S} = \frac{k'_{2}}{k'_{3}} \cdot \frac{P_{O_{2}}}{P_{red}} \cdot exp(- 3eV_{S}/kT)$$

Lors de la chimisorption

- eVs hauteur de la barrière de potentiel
- Ec bas de la bande de conduction
- E_F niveau de FERMI
- ED niveau donneur Zn⁺
- Ev haut de la bande de valence
- EA niveau superficiel accepteur

Fig12

L'intégration de l'équation de Poisson nous donne une relation entre la hauteur de la barrière de potentiel et la charge superficielle :

$$\frac{d^2 V(x)}{dx^2} = -\frac{\rho}{e} \frac{(x)}{e}$$

où $\rho(x)$ est la densité de charge à la distance x de la surface.

Dans le cas de l'oxyde de zinc, certaines approximations sont possibles. La concentration en impuretés donatrices $-atomes^{de}$ zinc intersticiels- est supposée constante et leur ionisation complète -le niveau correspondant à Zn_1/Zn_1^+ est situé à quelques centièmes d'électron-volt sous la bande de conduction-. D'autre part, la charge d'espace est d'appauvrissement et les porteurs minoritaires -les trous- sont en proportion très faible par rapport aux électrons. Dans ces conditions AIGRAIN et DUGAS ont montré que l'on obtient une relation de la forme (7):

$$q_S^2 = \frac{2 \varepsilon D}{e} \cdot V_S$$

Soit $q_S \simeq V_S^{1/2}$.

Nous obtenons alors :

 $V_{\rm S}^{1/2} \cdot \exp(3eV_{\rm S}/kT) = \frac{k'_2}{k'_3} \cdot \frac{P_0}{P_{\rm red}}$

Lorsque V_S varie, la variation de V_S^{1/2} est négligeable devant celle de $exp(3eV_S/kT)$:

$$\exp(eV_S/kT) = C \cdot \left(\frac{P_0}{P_{red}}\right)^{1/3}$$

Nous retrouvons bien pour la vitesse globale de la réaction :

$$v = v_A = \frac{k'_2}{C} \cdot P_{0_2} \cdot (\frac{P_{red}}{P_{0_2}})^{1/3}$$

 $v = k \cdot P_{0_2}^{1/3} \cdot P_{red}^{2/3}$

Les expériences de coadsorption réalisées avec l'oxyde de carbone laissent donc supposer que l'étape donatrice fait intervenir les porteurs minoritaires -les trous-. Le mécanisme proposé rend compte de façon satisfaisante des résultats obtenus par les diverses techniques. Le principal effet obtenu par irradiation d'un semiconducteur de type n, tel ZnO, étant d'accroître la concentration des porteurs minoritaires, il nous a semblé intéressant d'étudier cet effet sur la cinétique de coadsorption et de confirmer ainsi le rôle des trous.

-==00000==-

CHAPITRE IV

-=0000000=--

ETUDE DE LA REACTION PHOTOCATALYTIQUE

I - GENERALITES -

L'irradiation d'un semiconducteur à l'aide d'un rayonnement d'énergie supérieure à celle de sa bande interdite provoque dans celui-ci la création de paires électron-trou. La concentration des porteurs est donc différente pour un solide irradié.

De nombreux auteurs ont étudié les phénomènes photocatalytiques sur les semiconducteurs. Mais le nombre de travaux consacrés à la chimisorption de l'oxygène et de l'oxyde de carbone sur l'oxyde de zinc sous irradiation est relativement restreint (13), (14). En général les travaux montrent une activation importante de la réaction d'oxydation par l'irradiation ; les mécanismes peuvent être différents dans les cas thermique et photochimique. Tôutefois ces études ne permettent pas a priori d'apporter une solution à notre problème :

- soit que les conditions de travail sont très différentes,

- soit que les mesures effectuées présentent un caractère qualitatif.

Dans le cas d'un semiconducteur de type n tel que l'oxyde de zinc, nous sommes dans des conditions où l'irradiation provoque une variation relative de la concentration des électrons, faible devant celle des trous :

$$\frac{\Delta p}{p_0} >> \frac{\Delta n}{n_0}$$

où p_0 et n_0 sont les concentrations des trous et des électrons avant l'irradiation.

Ap et An les variations absolues des trous et des électrons lors de l'irradiation.

-20-

Les trous sont les porteurs minoritaires de l'oxyde de zinc. Ils sont très réactifs : ils ont tendance à disparaître, dès leur création, par l'intermédiaire de réactions donatrices de surface. En fait, des expériences réalisées par R.P.E. (15) montrent qu'une réaction photochimique a lieu : l'irradiation d'un échantillon d'oxyde de zinc sous atmosphère d'oxygène provoque une photodésorption des espèces chimisorbées :

$$0_2^- + p^+ \rightarrow 0_{2g}$$

 $0^- + p^+ \rightarrow 1/2 0_{2g}$

L'importance de ces réactions dépend de la pression d'oxygène et de la température. Un état stationnaire est observé, caractérisé par une certaine concentration d'électrons libres. Lorsqu'on stoppe l'irradiation, le nombre des électrons libres revient rapidement à sa valeur précédente : les électrons en excès permettent une réadsorption de l'oxygène (15).

La réactivité des trous dans l'oxyde de zinc fait que les électrons suffisent à caractériser l'état du semiconducteur. Nous admettrons donc avec DOERFFLER et HAUFFE (14) que le niveau de Fermi ne se scinde pas en deux sousniveaux indépendants E_{p}^{F} et E_{n}^{F} , mais qu'il conserve son sens même sous irradiation.

II - EFFETS POSSIBLES DE L'IRRADIATION POUR DIFFERENTS MECANISMES THERMIQUES -

A) <u>Cas d'un mécanisme thermique d'oxydation ne faisant pas intervenir les</u> porteurs minoritaires :

La présence d'un niveau CO/CO^{\dagger} ayant été exclue (3) (8), la réaction donatrice s'écrirait $CO + O^{-} \rightarrow CO_{2} + e^{-}$. Dans ce cas, le principal effet des trous créés par l'irradiation serait de provoquer une désorption des espèces oxygénées changées. La vitesse d'attaque des O^{-} par l'oxyde de carbone devrait être alors fortement diminuée par rapport à la vitesse observée thermiquement.

B) Cas du mécanisme thermique proposé :

Prenons comme état initial, le régime stationnaire $v_A = v_D$ obtenu lors de la réaction thermique.

Lorsque nous irradions, la vitesse donatrice croît, étant proportionnelle à la concentration des trous à la surface du solide. Dans ces conditions, la charge superficielle (0⁻) décroît et la hauteur de la barrière de potentiel décroît également. Cette variation de la hauteur de la barrière entraîne une variation de la vitesse donatrice inverse de celle due à l'irradiation et une augmentation de la vitesse acceptrice.

Nous obtenons donc un état final, caractérisé par un nouveau régime stationnaire lorsque $v_A^* = v_D^* = v^*$

> avec $v^* > v$ et $n^* > n$

où v^{*} et v sont les vitesses globales des réactions photochimique et thermique et n^{*} et n le nombre d'électrons de conduction observé à l'état stionnaire lors de l'irradiation et sans irradiation.

REMARQUE :

Les trous créés par l'irradiation peuvent également participer à une réaction du type

$$0^{-} + p^{+} \rightarrow 1/2 0_{2}$$

Cette réaction est parallèle à la réaction donatrice.

Nous verrons par la suite que les résultats expérimentaux s'interprètent facilement en supposant que la vitesse de désorption d'oxygène est faible devant celle de la réaction de 0⁻ avec l'oxyde de carbone.

III - RESULTATS EXPERIMENTAUX -

Cette étude est réalisée pour les températures de 100, 160 et 275°C sur un échantillon de ZnOM. Le même procédé de détermination des ordres est utilisé ici

Chaque manipulation a été effectuée au moins deux fois.

A) Température de 100°C -(Fig.13-14) :

La réaction photochimique présente une activité dix fois supérieure à celle de la réaction thermique. Les ordres par rapport à l'oxyde de carbone et à l'oxygène sont respectivement de 0,70 et de 0,30 avec des pressions partielles fixées de 11 torr pour l'oxygène et de 17,2 torr pour l'oxyde de carbone.

B) Température de 160°C - (Fig. 15-16) :

Nous observons ici une **a**ctivité huit fois plus importante que dans le cas de la réaction thermique. Les ordres sont ici de 0,50 et de 0,30 respectivement

Fig 15

par rapport à l'oxyde de carbone et à l'oxygène avec des pressions partielles fixées de 5,5 torr pour l'oxygène et 11 torr pour l'oxyde de carbone.

C) Température de 275°C - (Fig. 17-18) :

Dans ce cas, une activité deux fois plus grande est observée. Nous obtenons des ordres de 0,35 et 0,50 par rapport à l'oxyde de carbone et à l'oxygène respectivement ; les pressions partielles sont fixées à 5,5 torr pour l'oxygène et à 11 torr pour l'oxyde de carbone.

IV - DISCUSSION -

A) Températures 100°C - 160°C :

La vitesse thermique initiale telle que nous la mesurons, peut être considérée comme nulle. L'effet de l'irradiation est alors extrêmement important sur la vitesse de la réaction et on constate, par R.P.E., une augmentation du nombre d'électrons libres. Celui-ci croît jusqu'à des valeurs observées pour le domaine de températures où la réaction thermique a lieu. Il est raisonnable de penser que des conditions semblables à celles de haute température sont créées ici -les ordres expérimentaux étant proches de ceux observés à 275°C-.

Les porteurs minoritaires créés par excitation thermique entre 250 et 300°C permettent la réaction pour ces températures. Dès 250°C, des anomalies sont observées par rapport au mécanisme et la réaction thermique à 160°C est quasi inexistante.

Aux basses températures, l'excitation par les photons permet donc de suppléer à l'excitation thermique pour la création des porteurs minoritaires.

B) Température 275°C :

Le nombre d'électrons de conduction mesuré par R.P.E. est très proche de celui correspondant à une situation de bandes plates à la surface du solide. La charge superficielle apparaît alors comme très peu négative, c'est-à-dire que l'on a une concentration en ions 0⁻ très faible. Les espèces 0⁻ réagissent donc très rapidement avec CO et p⁺ pour donner le produit final CO₂. Ceci est confirmé par la vitesse photochimique importante qui est observée. Dans ce cas, la vitesse d'adsorption de l'oxygène serait la vitesse déterminante. Nous devrions ainsi observer un ordre proche de 0 par rapport à l'oxyde de carbone et proche

de 1 par rapport à l'oxygène. En fait, nous avons dû travailler avec une épaisseur minimale de catalyseur de 30µ environ. Une partie non négligeable du sollde ne reçoit pas le rayonnement et il existe une contribution thermique à la vitesse observée. Nous pensons que ces conditions expérimentales expliquent les valeurs des ordres qui, bien qu'ayant varié dans le bon sens, restent toucertais éloignées des valeurs supposées.

-=0000000=-

$\mathsf{CONCLUSION}$

-=0000000=-

Entre 250 et 300°C, l'étude de la vitesse de coadsorption du couple oxyde de carbone-oxygène sur l'oxyde de zinc nous a permis de préciser le mécanisme qui avait été proposé pour le couple hydrogène-oxygène. Ce nouveau mécanisme commun aux deux réducteurs fait intervenir les porteurs minoritaires du semiconducteur.

Nous avons mis au point un nouveau dispositif expérimental qui nous a permis d'effectuer des mesures de vitesse de coadsorption sur un échantillon irradié. Nous avons ainsi confirmé le rôle des porteurs minoritaires.

Dans les conditions actuelles, ce mécanisme peut servir de modèle pour étudier les propriétés catalytiques d'autres semiconducteurs. Il peut également permettre de préciser les effets d'une modification structurale de l'oxyde de zinc provoquée soit par dopage, soit par la présence de niveaux de surface créés artificiellement.

-=0000000=-

BIBLIOGRAPHIE

(1)	J.P. BEAUFILS
	C.R. Acad. Sc. Paris 1966, <u>263</u> , 7.
	J.P. BEAUFILS et J.P. BONNELLE
	C.R. Acad. Sc. Paris 1965, <u>261</u> , 4389.
(2)	Théorie Electronique de la Catalyse Th. WOLKENSTEIN Masson, Paris 1961.
(3)	M. GUELTON, J.P. BONNELLE et J.P. BEAUFILS
	J. Chim. Phys. 1971, <u>7-8</u> , 1122.
(4)	J.P. BEAUFILS, J.P. BONNELLE et B. GRAS
	J. Chim. Phys. 1965, <u>62</u> , 1005.
(5)	J. GRIMBLOT, B. ALLUARD, J.P. BONNELLE et J.P. BEAUFILS
	Bull. Soc. Chim. F. 1971, <u>10</u> , 3463.
(6)	C. CHACHATY
	Thèse Orsay 1968.
(7)	P. AIGRAIN et C. DUGAS
	Z Electrokem. 1952, <u>56</u> , 363.
(8)	F.H. FIELD et J.L. FRANKLIN
	Electron Impact Phenomene, Academic Press New-York 1957.
(9)	J.P. BONNELLE, J.M. BALOIS et J.P. BEAUFILS
	J. Chim. Phys. 1972, <u>6</u> , 1045.
(10)	J.P. BONNELLE et J.P. BEAUFILS
	J. Chim. Phys. 1972, <u>6</u> , 1041.

(11) H. CHON et J. PAJARES
 J. of Catalysis 1969, <u>14</u>, 257.

4

- (12) H. CHON et C.D. PRATER
 Disc. Faraday Soc. 1966, <u>68</u>, 17.
 K.M. SANCIER
 J. of Catalysis 1967, <u>9</u>, 331.
- (13) T.I. BARRY et F.S. STONE Proc. Roy. Soc. 1960, <u>A 255</u>, 124.
 STONE F.S. Adv. Catal. IX, 270, 1957
 F. ROMERO-ROSSI et F.S. STONE Actes du 2ème Congrès de Catalyse, Paris 1960, Ed. Technip Paris.
 K.I. TANAKA et G. BLYHOLDER Chem. Com. 1971, 1343.
 K.I. TANAKA et G. BLYHOLDER Chem. Com. 1971, 736.
 - T.S. NAGARJUNAN et J.G. CALVERT J. Phys. Chem. 1964, 68, 17.
- (14) W. DOERFFLER et K. HAUFFE
 . of Catalysis 1964, <u>3</u>, 156.

(15) B. ALLUARD

Travaux non publiés.

-=0000000=-

A N N E X E

-=0000000=-

Nº 146. - OXYDATIONS CATALYTIQUES SUR L'OXYDE DE ZINC.

II. — Comparaison des cinétiques de coadsorption de CO — O_2 et $H_2 - O_2$,

par Jean-Pierre BONNELLE, Jean-Marc BALOIS et Jean-Pierre BEAUFILS.

(Laboratoire de Catalyse, Université des Sciences et Techniques de Lille, Boîte Postale 36, 59-Villeneuve d'Ascq, France.) (Manuscrit reçu le 6.1.72.)

SOMMAIRE

Les cinétiques d'adsorption simultanée des couples de gaz: hydrogène-oxygène ou oxyde de carbone-oxygène sur l'oxyde de zinc sont suivies grâce à une thermobalance Sartorius et sont comparées. On met en évidence la similitude des deux mécanismes.

SUMMARY

The kinetics of simultaneous adsorptions of gas couples: hydrogen-oxygen or carbon monoxide-oxygen on zinc oxide are detected by a Sartorius thermobalance and are compared. The similitude of the two mechanisms appears then quite clearly.

I. — Introduction.

On a montré (1) que dans certaines conditions l'oxyde de zinc peut chimisorber simultanément une grande quantité d'oxygène et d'hydrogène, tandis que la chimisorption de l'un de ces gaz en l'absence de l'autre est extrêmement limitée. D'autres auteurs (2) ont décrit des effets de ce type pour lesquels la désorption des produits est faible et où l'adsorption d'un gaz est fortement influencée par la présence de l'autre. Des hypothèses ont été avancées pour rendre compte de ces phénomènes de « coadsorption ». Dans le cas présent, la coadsorption des couples H₂-O₂ ou CO-Ô₂ s'accompagne d'effets électroniques mis en évidence par résonance paramagnétique électronique (3) ainsi que par des mesures de conductivité (4). La similitude de ces effets observés par RPE pour les deux couples, a permis de proposer un mécanisme commun aux deux systèmes. Une étude cinétique comparative a alors été entreprise par thermogravimétrie pour confirmer le mécanisme proposé.

II. — Méthode expérimentale.

Catalyseur.

L'oxyde de zinc est préparé par une décomposition thermique d'un carbonate basique de zinc obtenu par précipitation à partir de nitrate de zinc « pur » Prolabo et de carbonate d'ammonium Prolabo RP (⁵). Avant chaque expérience, le catalyseur est traité sous un courant d'oxygène sec 6 l/h pendant 48 h à 420 °C. Cette « standardisation » est nécessaire pour obtenir la reproductibilité des mesures.

Mesures de chimisorption.

La chimisorption d'hydrogène, oxyde de carbone, oxygène ou des mélanges hydrogène-oxygène, oxyde de carbone-oxygène, est détectée gravimétriquement grâce à une balance « Electrono I Sartorius » complètement symétrique de telle sorte que les effets de poussée d'Archimède, convection thermique, courant gazeux et charges électrostatiques soient les plus faibles possibles.

De chaque côté du fléau, deux nacelles identiques contiennent, l'une l'échantillon, l'autre des billes de verre et des feuilles d'or de faible aire spécifique. La masse et la densité du mélange billes de verre et feuilles d'or sont égales à celles de l'échantillon.

Les précautions décrites par SANDSTETE et ROBENS (⁶) en vue de l'utilisation de la balance SARTORIUS sont prises.

Un courant d'azote peut transporter de faibles quantités d'oxygène, d'hydrogène et d'oxyde de carbone (fig. 1). Le débit total est de 6 l/h.

L'oxygène et l'hydrogène sont produits séparément par électrolyse d'une solution de soude. Leurs débits sont déduits des valeurs des courants d'électrolyse. L'oxyde de carbone provient d'une bouteille et son débit est mesuré grâce à un microdébitmètre Ugine U60. Tous ces gaz sont purifiés par des pièges à la température du mélange carboglace-acétone.

Tout l'appareillage est balayé par le courant gazeux afin que la composition du gaz au niveau de l'échantillon soit bien définie. La composition en volume peut varier dans les limites suivantes :

Oxygène	0,001	1 %	
Hydrogène	0	2 %	
Oxyde de carbone	0	100 %	
Eau	$< 10^{-6}$		

Dans les conditions expérimentales les plus contraignantes, les variations de masse sont enregistrées avec une précision supérieure à 5 µg. La masse adsorbée à saturation dans une expérience typique est de l'ordre de 350 µg. J.-P. BONNELLE, J.-M. BALOIS et J.-P. BEAUFILS

Fig. 1. — Système d'introduction des gaz lors des mesures gravimétriques.

Mesures de la composition de l'adsorbat.

Les mesures gravimétriques n'apportent pas d'information sur la composition de l'adsorbat lors

Fig. 2. — Appareillage utilisé pour les mesures volumétriques. A: Volume contenant l'échantillon,

- B: Petit volume calibré pour l'introduction des gaz dans A,
- C: Jauge de Mac Léod,
- D: Réserve de phtalate de butyle,
- E: Manomètre au phtalate de butyle,
- F: Réserve de gaz,
- G: Pompe à palettes,
- H: Pièges refroidis à la température du mélange carboglaceacétone,
- I: Piège en U également à la température du mélange carboglace-acétone,
- J: Manomètre à mercure.

des expériences de coadsorption. Cette information est obtenue par une méthode volumétrique (fig. 2).

Les mesures sont effectuées dans un appareil conventionnel comprenant un volume principal A et un manomètre, auquel on a adjoint un petit volume calibré B dans lequel une quantité définie de gaz peut être préparée et, lorsque c'est nécessaire, poussée dans A par un piston de mercure. Le volume A contient l'échantillon maintenu à la température de l'expérience et comporte en outre des pièges en U à la température du mélange carboglace-acétone pour empêcher la contamination de l'échantillon par la vapeur de mercure et pour piéger la vapeur d'eau éventuellement désorbée de l'échantillon. Les gradients de température existant dans le volume A obligent à effectuer un étalonnage préalable du système de mesure. On remplace donc l'échantillon par un volume égal de billes de verre de faible aire spécifique et on établit la correspondance entre le nombre de molécules introduites dans A et la pression lue à la jauge de Mac Léod.

III. — Résultats.

Évaluation des vitesses initiales de coadsorption.

a) Cas du mélange $CO - O_2$.

Après la standardisation du catalyseur dans l'oxygène, celui-ci est porté à la température de l'expérience entre 250 et 315 °C. La masse de l'échantillon ne change pas pendant cette étape.

1046

L'oxygene cet ensuite soigneusement éliminé par un courant d'azote pur. Aucune variation de poids n'est enregistrée.

On introduit alors un mélange $CO - O_2$ dans le gaz verieur et on observe un pertoissement rapide de la masse. Un etat stationnaire est atteint au bout de 20 mn environ.

Les pressions partielles de CO et O_2 atteignent la valeur prescrite en moins de deux minutes. Dans ces conditions, on détermine directement la vitesse initiale de coadsorption par mesure de la pente de la courbe : masse adsorbée en fonction du temps [m = f(t)] après 2 mn d'expérience. L'erreur est d'environ 5 % sur la détermination de la pente ce qui donne une erreur maximale de 5 % sur la détermination des ordres par rapport à l'oxygène et à l'oxyde de carbone.

b) Cas du mélange H₂-O₂.

Les expériences sont en tout point similaires à celles faites avec le mélange $CO - O_2$. Par contre, la diffusivité très grande de l'hydrogène par rapport à celle de l'oxygène rend difficile la détermination de la vitesse initiale de coadsorption par mesure directe de la pente, près de l'origine, de la courbe m = f(t).

On a donc recours à une méthode d'extrapolation. On admet que la vitesse d'adsorption ne dépend que de la proportion de sites vacants à la surface par une loi de la forme :

 $r = \frac{dm}{dt} = r_0 \left(\frac{m_0 - m}{m_0}\right)^n$

où

m est la masse absorbée au temps t, m_0 est la masse adsorbée à saturation de la surface, r_0 est la vitesse initiale d'adsorption, n est une constante.

L'intégration de l'équation cinétique donne :

n = 1,
$$y_1 = \text{Log}(m_0 - m) = -\frac{r_0}{m_0}t + \text{Log} m_0$$

 $n \neq 1, \quad y_n = \left(\frac{m_0 - m}{m_0}\right)^{1-n} = (n-1)\frac{r_0}{m_0}t + 1$

 m_0 n'est pas directement accessible par l'expérience car, lorsque le recouvrement devient important, on observe une désorption d'eau à une vitesse appréciable : la pression partielle d'eau passe de 10^{-6} atm. en début d'expérience à $5 \cdot 10^{-5}$ atm. en fin d'expérience. La masse adsorbée ne tend pas vers m_0 et la loi précédente ne peut être valable en fin d'expérience.

Remarquons que, en l'absence d'oxyde de zinc dans la nacelle, la teneur en eau reste invariable : la coadsorption ne peut être due à une réaction catalytique sur certaines parties de l'appareil suivie de l'adsorption sur l'oxyde de zinc du produit formé.

Si on choisit arbitrairement n, on peut, par une méthode d'essais et d'erreurs, trouver une valeur de m_0 telle que y_n porté en fonction de t soit une droite.

On a vérifié que, pour chaque expérience, on peut

aisément obtenir par ce moyen, une droite et une valeur de m_0 avec une incertitude de 2 à 3 %. Toutefois, ceci est possible pour un choix de *n* compris dans l'intervalle 1 < n < 2 (fig. 3 et 4).

Fig. 4. — $y_{1,5}$ en fonction du temps pour $P_{H_2} = 7.6$ torr et $P_{0_2} = 3.8$ torr à T = 250 °C.

Nous concluons donc qu'une loi cinétique ne peut pas être établie sur la base de ces résultats. La méthode est cependant valable pour déterminer la vitesse initiale et nous montrerons également que la valeur de m_0 obtenue a un sens.

Effet des pressions partielles des réactifs et de la température.

La vitesse initiale de prise de poids suit la loi suivante pour les deux systèmes $CO - O_2$ et $H_2 - O_2$:

$$\begin{split} r_0 &= \mathbf{A} \exp{(--\mathbf{E}/\mathbf{RT})} \mathbf{P}^{\alpha}{}_{\mathbf{O}_2} \mathbf{P}^{\beta}{}_{\mathrm{red}} m_0 \\ \mathbf{P}_{\mathrm{red}} &= \mathbf{P}_{\mathrm{H}_2} \text{ ou } \mathbf{P}_{c_0} \end{split}$$

dans l'intervalle de température 250-320 °C (fig. 5, 6, 7, 8).

Quand la température est égale ou inférieure à 250 °C, des anomalies sont constatées. Pour des températures supérieures à 320 °C, des expériences séparées montrent que la réduction de l'oxyde de zinc par l'hydrogène ou par l'oxyde de carbone commence à intervenir.

Les valeurs numériques obtenues pour E, α , β sont rassemblées dans les tableaux I, II et III.

Dans le cas du mélange $H_2 - O_2$, on a vérifié que la méthode de calcul de la vitesse initiale était correcte en montrant que les valeurs E, α , β obtenues étaient les mêmes quelle que soit la valeur de *n* choisie entre 1 et 2.

1048

a

OXYDATIONS CATALYTIQUES SUR L'OXYDE DE ZINC

 TABLEAU I

 Paramètres cinétiques pour la coadsorption $H_2 - O_2$.

 E = 10,6 Kcal.

T∶°C	α	β
315 290 275 250	0,35 0,325 0,32	0,87 0,92 0,93 0,66

TABLEAU II Paramètres cinétiques pour la coadsorption CO — O_2 . E = 10,3 Kcal.

T∶⁰C	α	β
300	0,35	0,80
275	0,30	0,75
250	0.12	0.64

TABLEAU III

Paramètres cinétiques pour la coadsorption CO — O_2 à 275 °C. E = 10,3 Kcal.

P _{co} (torr)	α.	P _{O2} (torr)	β
11	0,31	11	0,74
5,5	0,30	5,5	0,75
2,75	0,33	2,75	0,74

Composition de l'adsorbat lors de la coadsorption $H_2 - O_2$.

L'état de la surface portant m_1 grammes d'adsorbat semble le même que ces m_1 grammes aient été apportés par coadsorption ou par adsorption directe de vapeur d'eau. En effet, les courbes de variation de la masse en fonction du temps par coadsorption au-delà de m_1 sont les mêmes.

Ceci ne suffit pas à prouver qu'oxygène et hydrogène sont, à tout recouvrement, adsorbés dans les proportions stœchiométriques de la formation d'eau. Les expériences suivantes, réalisées avec le montage volumétrique, l'établissent.

Après standardisation, l'échantillon est laissé dans le volume A en présence de P_0 molécules d'oxygène en quantité suffisante pour recouvrir entièrement l'échantillon. Un petit nombre p de molécules d'hydrogène est introduit. Quand l'équilibre est atteint, il apparaît que p_1 molécules de gaz restent dans le volume A, $p_1 < P_0$. L'expérience est repétée n fois. Les résultats sont présentés dans la figure 9 en portant le nombre total de molécules de gaz P_n restant dans le volume A en fonction du nombre total de molécules d'hydrogène introduites dans A.

Fig. 9. — Nombre de molécules d'oxygène restantes dans le volume A en fonction du nombre de molécules d'hydrogène introduites.

On obtient une droite de pente -1/2. On a effectué des expériences similaires en inversant les rôles joués par l'oxygène et l'hydrogène, on obtient une droite de pente -2. Si pour chaque série d'expérience, on suppose que le gaz minoritaire est totalement adsorbé de telle sorte que dans le volume A il reste uniquement le gaz en excès, ces résultats sont bien compatibles avec l'équation :

$$H_2 + \frac{1}{2}O_2 + surface \rightarrow adsorbat " H_2O "$$

Après une coadsorption, la surface peut être « nettoyée » en la traitant à 400 °C sous courant d'oxygène. La masse de l'échantillon est alors la même que celle avant l'expérience. Une seconde coadsorption peut être réalisée et il apparaît que dans des conditions identiques $\frac{r_0}{m_0} = K$ est le même. Cependant, on observe une décroissance de la masse adsorbée à saturation, m_0 , celle-ci devenant constante après 3 ou 4 coadsorptions. Ce phénomène est dû à une baisse de l'aire spécifique S de l'échantillon ce qui a été vérifié en mesurant S avec le même appareillage selon la méthode BET. On obtient une bonne proportionnalité entre m_0 et S, figure 10.

polation utilisée pour le déterminer. Le traitement à 420 °C sous courant d'oxygène pendant 48 h n'est pas suffisant pour stabiliser le catalyseur, mais ceci n'empêche pas de déterminer la vitesse initiale par unité de surface proportionnelle à $\frac{r_0}{r_0}$.

Ceci confirme que m_0 a un sens en dépit de l'extra-

• dans le cas d'une loi cinétique : n = 1,5.

Diffusion.

Les vitesses obtenues n'ont de sens que si les pressions partielles en présence de l'échantillon sont effectivement égales à celles que l'on mesure. Elles seraient plus petites si la diffusion limitait le transport des gaz vers la surface du catalyseur. Des essais effectués sur des échantillons de masse variant de 0,1 à 0,5 g ainsi que dans des nacelles de forme très différente permettent de vérifier que la vitesse initiale spécifique est la même dans tous les cas, indépendante de l'épaisseur de la couche de catalyseur.

IV. - Discussion.

On a mis en évidence par mesure de RPE (³) et de conductivité électrique (⁴) le couplage par l'intermédiaire de la hauteur de barrière de potentiel entre les deux étapes de la coadsorption :

— étape acceptrice de vitesse v_A (adsorption d'oxygène),

— étape donatrice de vitesse v_D (adsorption d'hydrogène ou d'oxyde de carbone).

L'état stationnaire est atteint lorsque ces deux vitesses sont égales, elles correspondent donc à la vitesse globale de coadsorption.

L'espèce O- étant dominante dans le domaine de température considéré (⁷), l'étape acceptrice se résume par les deux réactions:

 $O_2 + e \xrightarrow{k_1} O_2^ O_2^- + e \xrightarrow{k_2} 2 O^-$

 $v_{\mathrm{A}} = \mathrm{K}_{1}k_{2}\mathrm{P}_{\mathrm{O}_{2}}\{e\}_{\mathrm{S}}^{2},$

 $\{e\}_{s}$: concentration des électrons libres à la surface du solide.

Les mesures gravimétriques effectuées permettant d'obtenir la vitesse initiale de coadsorption, c'està-dire à recouvrement nul, il n'est pas nécessaire de faire le décompte des sites dans le mécanisme que nous proposons.

Les mesures de conductivité des échantillons utilisés dans le travail (4) ont permis d'établir la relation suivante :

$$\sigma \simeq \{e\}_{\mathrm{S}} \simeq \mathrm{K}_{3} \left(\frac{\mathrm{P}_{\mathrm{H}_{9}}}{\mathrm{P}_{\mathrm{O}_{9}}}\right)^{1/5}$$

ce qui donne :

$$v = v_{A} = K_{1}k_{2}K_{3}^{2}P_{0_{2}}\left(\frac{P_{H_{2}}}{P_{O_{2}}}\right)^{2/3} = KP_{O_{2}}^{-1/3}P_{H_{2}}^{-2/3}$$

et

soit

 $v' = \mathrm{K'P_{O_2}}^{1/3} \mathrm{P_{CO}}^{2/3}$ pour le couple CO — O₂.

Les tableaux IV et V permettent la comparaison

3

des valeurs expérimentales des ordres par rapport V. -- Conclusion. à Po., PH, et Pco et des valeurs théoriques.

TABLEAU IV

Couple $H_2 - O_2$.

Ordre par	Ordre par	Ordre par	Ordre par
rapport à P _{Oe}	rapport à P ₀ ,	rapport à P _H	rapport à P _{II2}
(expérimental)	(théorique)	(expérimental)	(théorique)
0,34	0,33	0,9	0,66

TABLEAU V

Couple CO $- O_2$.

Ordre par	Ordre par	Ordre par rapport à P_{CO} (expérimental)	Ordre par
rapport à P _O ,	rapport à P _O ,		rapport à P _{CO}
(expérimental)	(théorique)		(théorique)
0,32	0,33	0,75	0,66

Remarques.

2

- Nous avons reporté la valeur moyenne des ordres trouvés expérimentalement entre 275 et 315 °C.

- Nous excluons les valeurs obtenues à 250 °C car, comme nous l'avons déjà signalé, les phénomènes deviennent plus lents et moins reproductibles à T < 250 °C.

Ces résultats montrent un bon accord entre l'expérience et la théorie pour le couple CO O,. Dans le cas du couple $H_2 - O_2$, l'ordre trouvé par rapport à l'hydrogène est trop grand. Ce désaccord n'est peut-être pas surprenant car d'autres phénomènes, tel que la diffusion d'hydrogène dans le solide, peuvent intervenir.

L'égalité des énergies d'activation pour les coadsorptions H2-O2 et CO-O2 confirment également la similitude de deux mécanismes.

En outre la désorption d'eau observée lorsque la surface est presque saturée montre qu'on a déjà une réaction catalytique à laquelle ce mécanisme s'applique.

BIBLIOGRAPHIE

- J.-P. BEAUFILS et J.-P. BONNELLE. C.R. Acad. Sci., Paris, 1965, 261, 4389.
 a) K. TAMARU. Actes Congrès International Catalyse
 - (Éditions techniq., Paris 1961), p. 325. b) K. TAMARU. Trans. Faraday Soc., 1963, 61, 979.
 - c) T. S. NAGARJUNAN et J.-C. JURIACOSE. J. of Catalysis, 1963, 2, 223.

 - 1965, 2, 223.
 d) J.-C. KIRIACOSE, C. DANIEM et R. SWANINATHAN. J. of Catalysis, 1968, 12, 19.
 e) D. W. MCKEE. J. of Catalysis, 1967, 8, 240.
 f) J. H. SINGLETON. J. Vac. Sci. Technol., 1968, 5, 109.
 g) Susumu TSUCHIYA et Tadao SHIBA. Bull. Chem. Soc. Jap., 1968, 41, 573.
- (3) M. GUELTON, J.-P. BONNELLE et J.-P. BEAUFILS. -J. Chim. phys., 1971, 151, 1122. (4) J.-P. BONNELLE et J.-P. BEAUFILS. — J. Chim. phys.,
- 1972, p. 000.
- (5) J. P. BEAUFILS, J. P. BONNELLE et B. GRAS. J. Chim. (b) G. SANDSTETE et E. ROBENS. — Chem. Ingr. Tech.,
- 1960, 32, 413.
- (7) H. CHON et J. PAJARES. J. of Catalysis, 1969, 14, 257.

