UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

Nº d'ordre 400 50376 1973 94-2

50376 1973 **94-2**

THESE

présentée à

L'UNIVERSITÉ DES SCIENCES ET DES TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE SPÉCIALITÉ

par

Michel DOMON

CONTRIBUTION A L'ETUDE

DES DIAGRAMMES DE PHASE

DES MELANGES MESOMORPHES

Section

de SCIENCES

1115

TOME II

Figures et Annexes

Soutenue le 4 juillet 1973

devant la Commission d'examen

Membres du Jury

¥

*

M.	J. TILLIEU	Président
М.	J. BILLARD	Rapporteur
М.	P. SMET	Examinateur
М.	J. JACQUES	Membre invit

Figure »1a - : Solubilité à une température donnée, en fonction des caractéristiques de transition.

Figure 2 : les six formes de fuseau possibles (d'après Van Laar) [20]

Figure - 3 - : Variations des formes des fuseaux d'équilibre avec les caractéristiques des transitions, d'après Reisman [69]

Figure - 4 - : Diagramme de phase de deux corps possédant la même phase mésomorphe, et qui ne forment ni composé intermédiaire, ni solution solide.

Figure - 6 - : Diagramme de phase de deux corps qui possèdent la même phase mésomorphe, et qui ne la présentent pas dans certains de leurs mélanges.

Figure - 7 - : Intersection des courbes de solubilité $\alpha\beta$ et $\alpha\gamma$.

A

Figure - 8 - : Diagramme de phase hypothétique des corps A et B.

Figure - 9 - : Diagramme de phase de deux corps qui forment un (a) ou plusieurs (b) composés intermédiaires à fusion congruente.

A_k B_l

Figure - 13 - : Diagramme d'équilibre de deux corps qui fondent en se décomposant et en donnant les mêmes corps.

A_i Bj

b : Diagramme de phase de deux corps qui forment une solution solide et un composé intermédiaire.

,

Figure - 17 - : Diagramme hypomésomorphogène.

Corps sans phase M stable

Corps avec phase M stable

Figure - 20 - : Ordre des transitions, suivant leur nature.

۹

Figure - 21 - : Enthalpie libre des phases stables et métastables d'un corps pur.

Figure - 22 - : Diagramme hypermésomorphogène à deux domaines de stabilité disjoints en concentration et en température.

Figure - 23 - : Intersections du fuseau d'équilibre mésomorphe - liquide avec les courbes de setubilité des cristaux du corps A dans les phases mésomorphe et liquide.

Figure - 24 - : a) Diagramme hypomésomorphogène à deux domaines disjoints, b) Cas limite.

	CN	NL	CL	NL
т	91	11 3	79	65
	5,40	0,40	9,9	2,4
	A		В	

Figure - 25a - : Détermination graphique des températures remarquables d'un diagramme hypomésomorphogène à deux domaines disjoints.

Figure - 25b - : Diagramme hypomésomésomorphogène à deux domaines disjoints correspondant aux données de la figure 25a.

2,5-bis-(4-n-hexylphényl)-pyrazine

(d'après Sackmann et al.) [51]

Figure - 27 - : Exemple de diagramme expérimental où la phase smectique S_c existe dans deux domaines disjoints.

(d'après Sackmann et al.) [51]

Figure - 27 bis - : Exemple de diagramme expérimental où l'équilibre smectique C ≠ smectique A présente un écart à l'idéalité.

Figure - 28 a - : Equilibre de tois solutions parfaites ($T_A^{CM} > T_B^{CM}$).

a) le diagramme est hypermésomorphogène $(1^{er} type)$ pour M_1

- b) le diagramme est hypomésomorphogène pour M₁
 c) le diagramme est hypermésomorphogène (2^{ème} type) pour M₁.

803 1111

d'aprés Demus et àl

BUS

Figure - 31 - : Exemple de diagramme de phase des mélanges d'un corps qui possède deux phases mésomorphes avec un corps qui ne les présente pas.

.

Figure - 32 - : Diagramme de phase de deux corps qui possèdent une phase mésomorphe différente, une de ces phases existant dans deux domaines disjoints.

BUS

.

.

BUŠ

Figure - 33 - : Diagrammes de phase de deux corps qui possèdent une phase mésomorphe différente et forment une solution solide parfaite, quand l'équilibre entre les phases mésomorphes intervient.

Figure - 35 - : Dingrammes de phase de deux corps qui possèdent une phase mésomorphe différente, quand l'équilibre entre ces phases n'intervient pas :

a) les deux équilibres sont hypomésomorphogènes,

b) l'un des deux est hypermésomorphogène.

.

BUS

Figure - 36 - : Diagramme de phase de deux corps qui possèdent une phase mésomorphe différente, où l'équilibre entre les phases mésomorphes n'intervient pas, quand une des phases existe dans deux domaines disjoints.

Figure - 37 - : Diagrammes de phase de deux corps qui possèdent une phase mésomorphe différente et forment une solution solide, quand l'équilibre entre phases mésomorphes n'intervient pas.

Ethyl-4-éthylmercaptobenzylidèneaminocinnamate

> (d'après Sackmann et al.) [51]

Figure - 38 - : Diagramme expérimental pouvant s'expliquer par juxtaposition d'un diagramme hypomésomorphogène et du cas 37 b.

Figure - 39 - : Disgramme de plasse de deux corps qui, à l'état pur, ne présentent pas de phase mésonnorphe stable, et en présentent une dans leur mélange.

Figure - 40 - : Diagramme de phase de deux corps qui présentent une phase mésomorphe intermédiaire. Cas où le fuseau d'équilibre mésomorphe - liquide possède un point d'inflexion.

Figure - 41 - : Diagramme de phase de deux corps qui présentent une phase mésomorphe intermédiaire dans deux domaines disjoints. (Le fuseau d'équilibre mésomorphe - liquide possède un point d'inflexion).

Figure - 42 - : Diagramme de phase de deux corps qui présentent une phase mésomorphe intermédiaire. Le fuseau d'équilibre mésomorphe - liquide possède un point d'inflexion, et son intersection T₂ avec la courbe de solubilité du corps D est située au-dessus de son intersection T₄ avec la courbe de solubilité du corps B.

Figure - 43 - : Forme simplifiée du diagramme de la figure 39.

Bijs

Figure - 44 - : Diagramme de phase de deux corps qui forment une solution solide et présentent une phase mésomorphe intermédiaire.

.

Figure - 45 - : Exemple de diagramme expérimental, où deux corps qui ne possèdent pas, à l'état pur, de phase nématique, en présentent une dans leur mélange (d'après Demus et al. [42]).

BUS

BUS BUS

.

BUS

Figure - 54 - : Températures remarquables du diagramme de phase des mélanges du méthylnonyloxytolane (I) avec le butylméthoxytolane (III), prévues par la méthode graphique.

Figure - 55 - : Diagramme de phase (calculé) des mélanges du méthylnonyloxytolane (I) avec le butylméthoxytolane (III). Existence d'une phase nématique intermédiaire stable.

8ij

n ^o	R	R'	T ^{CN} _{ou T} CL ^o C	∆H ^{CN} _{ou ∆H} CL <u>k-cal</u> mol	TNL °C	∆H ^{NL} <u>k cal</u> mol
1	с н _з	n C ₉ H ₁₉ 0	72,5	11,2		
\mathbf{H}^{+}	С Н ₃ 0	n C ₃ H ₇	66	5,0	[61]	[0,15]
111	С Н30	n C ₄ H ₉	47,5	4,10		
IV	С Н30	n C ₅ H ₁₁	43	4,2	55	0,14
v	С Н ₃ 0	n C ₆ H ₃	39	6,2	42	0,11
VI	С Н ₃ 0	n C ₇ H ₅	39	5,1	54	0,12
VII	С Н30	n Cg H ₁₉	41	7,45	53,5	0,21
VIII	C ₂ H ₅	n C ₈ H ₁₇ 0	76	9,9	[65]	[0,16]
іх	C ₂ H ₅ 0	n C ₃ H ₇	90	4,9	98,5	0,27
x	С ₂ Н ₅ 0	n C ₈ H ₁₇	47,5	4,1	73,5	0,22
XI	n C ₃ H ₇	n C ₆ H ₁₈ 0	59,5	5,6	75,5	0,25
XII	n C ₃ H ₇	n C ₇ H ₁₅ 0	48	5,6	70,5	0,22
XIII	n C ₃ H ₇ 0	n C ₇ H ₁₅	41	5,4	63	0,22
XIV	n C ₄ H ₉ O	n C ₆ H ₁₃	46,5	3,7	69,5	0,18
XV	n C ₅ H ₁₁	n C ₅ H ₁₁ 0	48,5	3,8	68,5	0,19
XVI	^{n C} 5 ^H 11	iso C ₅ H ₁₁ 0	58,5	5,3	[49]	[0,18]
					}	

TABLEAU I : Transitions des p-alcoyle-p'-alcoxy-tolanes de formule :

 $\mathbf{R} \longrightarrow \mathbf{R}'$

(d'après Malthète et al. [18])

(Les transitions conduisant à une phase métastable sont indiquées entre crochets).

Tolane non nématique	Tolane nématique	T ₁ ℃	∆т ₁ °с	т ₂ °с	Δτ ₂ °c
Ŧ	VI	33,7	1	57,9	0,6
1	X	38,3	0,6	64	0,2
Ш	VII	20,5	0.5	42,2	0,2
	ХП	20,4	1	43,5	0,6

a) mesures (methode de Kolle	er)	1
------------------------------	------	---

	ΔH ^{NL}	,	AHCN		TNL		TCN	
Préparation		k cal mole		k cal mole		°C		°C
T 1 177		+1,8		+0,01		+0,8		+3,3
I + VI	0,31	- 0,01	10,89	- 1,8	59,5	- 2,0	72,9	- 0,1
		+0,7		+ 0,01		+2,4		+ 0,7
I + X	0,34		10,86		60,9		72,9	
		- 0,01		- 0,7		- 0,1		- 0,1
		+0,4		+0,01		+1		+0,4
	0,17		3,93		40,7	• •	47,8	
		- 0,01		- 0,4	· · · · · · · · · · · · · · · · · · ·	- 0,1		- 0,1
		+0,3		+ 0,01		+ 1,6		+0,6
ш + XII	0,16	- 0,01	3,94	- 0,3	40 — 0,1	- 0,1	47,8	- 0,1

b) Caractéristiques des transitions virtuelles

TABLEAU II : Détermination des caractéristiques des transitions virtuelles duméthylnonyloxytolane (I) et du butylméthoxytolane (III).

ANNEXE I

ETUDE DES COURBES DE SOLUBILITE :

Les variations de la solubilité du corps I pur à l'état a dans une phase ß parfaite, en fonction de la température, sont représentées par exp $(\lambda_T^{\alpha\beta}$ (T)), avec :

$$\lambda_{I}^{\alpha\beta}$$
 (T) = $\frac{\Delta H_{I}^{\alpha\beta}}{R} \left(\frac{1}{T_{I}^{\alpha\beta}} - \frac{1}{T} \right)$

où :

- $\Delta H_{\tau}^{\alpha\beta}$: enthalpie de transition de l'état α à l'état β du corps I pur, à la pression atmosphérique
 - R : constante des gaz parfaits

 $T^{\alpha\beta}_{\tau}$: température de transition de l'état α à l'état β du corps I pur.

La fonction exp $(\lambda_{T}^{\alpha\beta}$ (T)) est une fonction monotone croissante de T dans l'intervalle |0, +∞|. Elle est bornée inférieurement par 0, supérieurement par $l = \exp \left(\Delta H_{I}^{\alpha\beta} / RT_{I}^{\alpha\beta}\right) > 1$, et présente un point d'inflexion pour $T = \Delta H_{I}^{\alpha\beta}/2R$, (figure A.I.). Son allure est donnée pour $T_T^{\alpha\beta} = 350^{\circ}$ K et pour différentes valeurs de $\Delta H_T^{\alpha\beta}$ (figure A.I.2).

	X _{prévu}	T prévue	T mesure
1	0,17	38,4 ⁰ C	38,3 ⁰ C
2	0,09	43,2 ⁰ C	43 ⁰ C
3	0,31	48,6 ⁰ C	45,3 ⁰ C

(X = fraction molaire de butylméthoxytolane)

TABLEAU III : limites d'existence de la phase mésomorphe dans le mélange butylméthoxytolane-méthylnonyloxytolane (cf figure - 55 -)

Tolane	Tolane	τ ₁ (°C)		T ₂ (°C)		
non nématique	nématique	prévue	mesurée	prévue	mesurée	
ш	IV	14,3	22	41,6	41,9	
I	· VII	34,7	35,5	57,6	54,3	
ш	x	16,0	16,8	43,0	43,2	
I	XII	40,3	37,8	65,6	64,3	
I	хш	33,5	33,0	61,5	62,2	
Ш	XIII	12,6	16 ± 5	43,4	42,7	

TABLEAU IV : Vérification de la validité de la méthode de prévision,

dans le cas des diagrammes hypermésomorphogènes.

-.-.-.

ETUDE DES COURBES DE SOLUBILITE RELATIVE

A la température T, la solubilité relative du corps I à l'état α dans des solutions γ et β parfaites est donnée par la quantité :

$$\psi_{I}^{\alpha\beta\gamma} (T) = \frac{1 - \exp(\lambda_{I}^{\alpha\gamma} (T))}{1 - \exp(\lambda_{I}^{\alpha\beta} (T))}$$

 1°) : $T_{I}^{\alpha\gamma} > T_{I}^{\alpha\beta}$

Tableau de variations :

т	0	$T_{I}^{\alpha\beta}$	$T_{I}^{\alpha\gamma}$ $T_{I}^{\beta\gamma}$ + ∞
$\psi_{I}^{\alpha\beta\gamma}$ (T)	1 +	+ ∞ - ∞	- 0 + 1 + L

La courbe correspondante est donnée sur les figures (A.II.la) a pour 0° K < T < 1000° K, et (A.II.lb) pour 270° K < T < 470° K. Dans les deux cas, les valeurs utilisées pour le tracé sont : $T_{I}^{\alpha\beta} = 375^{\circ}$ K, $\Delta H^{\alpha\beta} = 5,97$ kcal/mole ; $T_{I}^{\beta\gamma} = 385^{\circ}$ K, $\Delta H_{I}^{\beta\gamma} = 0,41$ kcal/mole. Elles correspondent aux transitions C \neq N et N \neq L du 4-n-butoxy-4'-n-hexyloxytolane, qui présente une phase nématique stable à l'état pur.

2°) : $T_{I}^{\alpha\gamma} < T_{I}^{\alpha\beta}$

Tableau de variations :

т	0		$T_{I}^{\beta\gamma}$		$T_{I}^{\alpha\gamma}$	τ ^{αβ} Ι	+∞
$\psi_{I}^{\alpha\beta\gamma}$ (T)	1	+	1	+	0 -	- ∞	+∞ + L

D'après le théorème de ROLLE, il existe un extremum entre T = 0 et $T = T_{I}^{\beta\gamma}$. Une étude mathématique rigoureuse, non reproduite ici, montre qu'il s'agit d'un maximum dont la valeur est inférieure à $(\Delta H_{I}^{\alpha\gamma}/\Delta H_{I}^{\alpha\beta})$, et qu'il existe, pour $T > T_{I}^{\alpha\beta}$, un minimum dont la valeur est supérieure à $(\Delta H_{I}^{\alpha\gamma}/\Delta H_{I}^{\alpha\beta})$. La courbe $\psi_{I}^{\alpha\beta\gamma}$ (T) a l'allure des figures (A.II.2a) (0° K < T < 1000° K) et (A.II.2b) (313° K < T < 393° K). Les valeurs utilisées pour le tracé sont : $T_{I}^{\alpha\gamma} = 364^{\circ}$ K, $\Delta H_{I}^{\alpha\gamma} = 13,3$ kcal/mole ; $T_{I}^{\beta\gamma} = 358^{\circ}$ K, $\Delta H_{I}^{\beta\gamma} = 0,87$ kcal/mole. Elles correspondent aux transitions C \neq L et N \neq L du 4-méthoxy-4'-undécyloxy-tolane, qui présente une phase nématique métastable à l'état pur.

Dans les deux cas qui viennent d'être étudiés, la valeur limite L de $\psi_{T}^{\alpha\beta\gamma}$ (T) est :

$$1 < L = \frac{1 - \exp(\Delta H_{I}^{\alpha\gamma}/RT_{I}^{\alpha\gamma})}{1 - \exp(\Delta H_{I}^{\alpha\beta}/RT_{I}^{\alpha\beta})} < \frac{\Delta H_{I}^{\alpha\gamma}}{\Delta H_{I}^{\alpha\beta}} \times \frac{T_{I}^{\alpha\beta}}{T_{I}^{\alpha\gamma}}$$

Sur les figures (A.II.2a et b), la valeur correspondante est hors des limites de l'épure.

BÜS

BUS

ANNEXE III

RECHERCHE GRAPHIQUE DES TEMPERATURES D'EQUILIBRE DES CRISTAUX D'UN CORPS PUR AVEC DEUX SOLUTIONS PARFAITES

Ces températures d'équilibre sont solutions de l'équation :

$$\psi_{\mathbf{I}}^{\alpha\beta\gamma}$$
 (T) = exp ($\lambda_{\mathbf{J}}^{\beta\gamma}$ (T))

où l'indice α représente la phase solide. Les solutions de cette équation n'ont a priori de sens physique que si elles appartiennent à l'intervalle $\begin{bmatrix} T_J^{\beta\gamma}, T_I^{\beta\gamma} \end{bmatrix}$.

1°) $T_J^{\beta\gamma} < T_I^{\alpha\beta} < T_I^{\beta\gamma}$:

Les solutions, quand elles existent, sont au nombre de deux (figure A.III.1). Elles vérifient :

$$T_{J}^{\beta\gamma} < T_{i} < T_{j} < T_{I}^{\alpha\beta}$$
2°) $T_{I}^{\beta\gamma} < T_{I}^{\alpha\beta}$

a) $T_{I}^{\beta\gamma} < T_{J}^{\beta\gamma}$ (figure A.III.2a)

Il existe toujours une solution T_i et une seule, telle que :

$$T_{I}^{\alpha\beta} < T_{i} < T_{J}^{\beta\gamma}$$

b) $T_{J}^{\beta\gamma} < T_{I}^{\beta\gamma}$

En général, il existe une solution unique T_i, et :

$$T_J^{\beta\gamma} < T_j < T_I^{\beta\gamma}$$
 (figure A.III.2b)

Si le maximum de la courbe de solubilité relative est très prononcé, il peut exister trois solutions (figure A.III.3).

ANNEXE IV

-,-,-,-,-,

RECHERCHE GRAPHIQUE DES TEMPERATURES D'EQUILIBRE

DE TROIS SOLUTIONS PARFAITES

Quand deux corps I et J forment, à une température donnée, trois solutions parfaites α , β et γ en équilibre, leurs solubilités relatives sont égales :

$$\psi_{I}^{\alpha\beta\gamma}$$
 (T) = $\psi_{J}^{\alpha\beta\gamma}$ (T)

Les solutions de cette équation qui ont un sens physique appartiennent à l'intervalle :

$$\begin{bmatrix} T_{I}^{\alpha\beta}, T_{J}^{\alpha\beta} \end{bmatrix} \cap \begin{bmatrix} T_{I}^{\alpha\gamma}, T_{J}^{\alpha\gamma} \end{bmatrix} \cap \begin{bmatrix} T_{I}^{\beta\gamma}, T_{J}^{\beta\gamma} \end{bmatrix}$$

$$I : T_{I}^{\alpha\beta} < T_{I}^{\alpha\gamma} < T_{I}^{\beta\gamma} ; T_{J}^{\alpha\beta} < T_{J}^{\alpha\gamma} < T_{J}^{\beta\gamma} :$$

Les corps I et J jouent des rôles symétriques ; soit arbitrairrement : $T_I^{\alpha\beta} < T_J^{\alpha\beta}$. Il ne peut y avoir de solution que si $T_J^{\alpha\beta} > T_I^{\beta\gamma}$. Comme aucune des deux courbes de solubilité relative ne présente d'extremum dans ce cas, les solutions, quand elles existent, sont au nombre de deux et vérifient :

 $T_{I}^{\beta\gamma} < T_{i} < T_{j} < T_{J}^{\alpha\beta} \quad (figure A.IV.1)$ II: $T_{T}^{\alpha\beta} > T_{T}^{\alpha\gamma} > T_{T}^{\beta\gamma}$; $T_{J}^{\alpha\beta} > T_{J}^{\alpha\gamma} > T_{J}^{\beta\gamma}$

Les rôles joués par les corps I et J sont symétriques ; arbitrairement, soit $T_{I}^{\alpha\beta} < T_{J}^{\alpha\beta}$. Il ne peut y avoir de solution que si $T_{J}^{\beta\gamma} < T_{I}^{\alpha\beta}$. Une condition nécessaire, mais non suffisante, pour que les courbes de solubilité relative aient des intersections dans l'intervalle défini plus haut, est que la valeur du minimum de $\psi_{I}^{\alpha\beta\gamma}$ (T) soit inférieure à la valeur du maximum de $\psi_{J}^{\alpha\beta\gamma}$ (T). Il n'y aura donc pas a priori de solution si :

Quand il existe des solutions, elles sont au nombre de deux, et vérifient :

$$T_{I}^{\alpha\beta} < T_{i} < T_{j} < T_{J}^{\beta\gamma} \qquad (figure A.IV.2)$$

$$III : T_{I}^{\alpha\beta} < T_{I}^{\alpha\gamma} < T_{I}^{\beta\gamma} ; T_{J}^{\alpha\beta} > T_{J}^{\alpha\gamma} > T_{J}^{\beta\gamma}$$

$$1^{\circ}) T_{I}^{\alpha\beta} > T_{J}^{\alpha\beta} :$$

Il existe toujours au moins une solution T. telle que : $\psi^{\alpha\beta\gamma}$ (T.) > l et que :

$$T_J^{\alpha\beta} < T_i < T_I^{\alpha\beta}$$
 (figure A.IV.3)

Il peut en exister trois (figure A.IV.4).

2°)
$$T_{I}^{\alpha\beta} < T_{J}^{\alpha\beta}$$
:
a) $T_{J}^{\alpha\gamma} < T_{I}^{\alpha\gamma}$: (figure A.IV.5)

il existe toujours une solution unique T telle que $\psi^{\alpha\beta\gamma}$ (T,) < 0 et que :

$$T_{J}^{\alpha\gamma} < T_{i} < T_{I}^{\alpha\gamma}$$

b) $T_{I}^{\alpha\gamma} < T_{J}^{\alpha\gamma}$: l°) $T_{J}^{\beta\gamma} < T_{I}^{\beta\gamma}$: (figure A.IV.6)

il existe toujours une solution T_i et une seule, qui est telle que : $0 < \psi(T_i) < 1$ et que :

$$T_{J}^{\beta\gamma} < T_{i} < T_{I}^{\beta\gamma}$$
2°)
$$T_{I}^{\beta\gamma} < T_{J}^{\beta\gamma} :$$

il existe toujours au moins une solution T_i, telle que ψ (T_i) > 1, et que :

 $T_{I}^{\beta\gamma} < T_{i} < T_{J}^{\beta\gamma}$ (figure A.IV.7)

il peut également y avoir 3 solutions dans cet intervalle, (figure A.IV.8).

Figure A IV 1 : Températures d'équilibre de trois solutions binaires parfaites α , β et γ , quand les phases β des corps purs I et J sont stables.

Figure A IV 2 : Températures d'équilibre de trois solutions binaires parfaites α , β et γ , quand les phases α et γ des corps purs I et J sont stables.

ANNEXE V

FORME THEORIQUE DES PICS D'ANALYSE ENTHALPIQUE DIFFERENTIELLE

D'UN MELANGE DE DEUX CORPS DONT LE DIAGRAMME

DE PHASE EST UN DIAGRAMME A EUTECTIQUE

1°) Rappels :

Si deux corps ne forment pas de solution solide et forment, à l'état liquide (ou mésomorphe) une solution parfaite, leur diagramme de phase est un diagramme à eutectique (figure A.V.1), (cf. Chapitre II). Les branches ae et be du diagramme sont des courbes de SCHRÖDER VAN LAAR :

$$\widehat{ae} : \overline{x}_{A} = \exp \lambda_{A}^{*} (T) \qquad (A.V.1)$$

$$\widehat{be} : \overline{x}_{B} = \exp \lambda_{B}^{*} (T) \qquad (A.V.2)$$

 \bar{x}_A et \bar{x}_B sont les solubilités respectives des corps A et B dans la solution parfaite à la température T. Le point e a pour coordonnées T_E et E tels que :

$$\exp \lambda_{A}^{*}(T_{E}) + \exp \lambda_{B}^{*}(T_{E}) = 1$$
 (A.V.3)

$$\exp \lambda_{A}^{*} (T_{E}) = E \qquad (A.V.4)$$

2°) Forme des pics :

Soit, à T < T_E , un mélange de cristaux de A et B, de composition C telle que :

$$C = \frac{n_A}{n_A + n_B} = \frac{n_A}{n}$$
 (A.V.5)

où : n_A = nombre de moles de A n_B = nombre de moles de A (A.V.5) peut aussi s'écrire :

 $n_A = n C$; $n_B = n (1 - C)$

A T = T_E , il y a fusion d'un mélange de composition E ; si C > E, le corps A est en excès, et il y a alors dans la phase liquide :

 $\begin{cases} n_{B} \text{ moles de B} \\ n_{B} \frac{E}{1-E} \text{ moles de A} \end{cases}$

Il reste donc à l'état solide :

 $n_A = n_B \frac{E}{1 - E}$ moles de A

Dans un analyseur enthalpique différentiel, le signal transmis à l'enregistreur est la différence entre la puissance de chauffage à fournir à l'échantillon étudié et celle fournie à la référence pour les maintenir à la même température, qui varie linéairement dans le temps. Aux températures supérieures à T_E , le signal transmis est donc proportionnel au nombre de moles de A qui passent de l'état solide à l'état liquide par unité de temps :

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{\mathrm{d}n'_{\mathrm{A}}}{\mathrm{d}t} \Delta H_{\mathrm{A}}^{*}$$

 $\frac{dQ}{dt} = \frac{dQ}{dT} \frac{dT}{dt} = \text{cste } x \frac{dQ}{dT}$

or :

et: $\frac{dQ}{dT} = \frac{dn'A}{dT} \Delta H_A^*$

où n', est le nombre de moles de A dans la phase liquide.

Soit n' le nombre total de moles de la phase liquide :

 $n' = n'_{A} + n_{B}$ $\tilde{x}_{A} = \frac{n'_{A}}{n'} = \frac{n'_{A}}{n'_{A} + n_{B}}$

$$n'_{A} = n_{B} \frac{\overline{x}_{A}}{1 - \overline{x}_{A}} = n (1 - C) \frac{\overline{x}_{A}}{1 - \overline{x}_{A}}$$

$$\frac{\mathrm{dn'}_{\mathrm{A}}}{\mathrm{dT}} = n (1 - C) \frac{\Delta H_{\mathrm{A}}^{*}}{\mathrm{RT}^{2}} \frac{\bar{\mathbf{x}}_{\mathrm{A}}}{(1 - \bar{\mathbf{x}}_{\mathrm{A}})^{2}}$$

or :

et :

d'où

Le signal transmis à l'enregistreur est donc proportionnel

 $\frac{dQ}{dT} = \frac{(\Delta H_A^*)^2}{RT^2} n (1 - C) \frac{\bar{x}_A}{(1 - \bar{x}_A)^2}$ (A.V.6)

La valeur initiale du signal, pour $T = T_E$, est :

$$\left(\frac{dQ}{dT}\right)_{T_{E}} = n (1 - C) \frac{(\Delta H_{A}^{*})^{2}}{RT_{E}^{2}} \frac{E}{(1 - E)^{2}}$$
(A.V.7)

Puisque 0 < C < 1, cette valeur initiale est positive ; elle varie avec C, ce qui explique, par exemple, l'allure des pics d'analyse enthalpique différentielle observés pour les mélanges d'a-méthyl-méthoxy-4-désoxybenzoïne dextrogyre et racémique [91]. La valeur initiale est d'autant plus faible que la composition se rapproche de A pur.

La valeur finale du signal correspond à la fusion totale du corps A, donc à $\bar{x}_A = C$. La température correspondante est T_F telle que :

$$\exp \lambda_{A}^{*} (T_{F}) = C$$

d'où :

$$\left(\frac{dQ}{dT}\right)_{T_{F}} = n \frac{\Delta H_{A}^{*}}{RT_{F}^{2}} \frac{C}{1 - C} > 0 \qquad (A.V.8)$$

Le sens de variation du signal est donné par sa dérivée :

$$\frac{d^2 Q}{dT^2} = \frac{(\Delta H_A^*)^2}{RT^3} \frac{2\bar{x}_A}{(1 - \bar{x}_A)^2} n (1 - C) \left(\frac{\Delta H_A^*}{RT} \frac{\bar{x}_A}{1 - \bar{x}_A} - 1 \right)$$

Le signe de cette dérivée est le même que celui de :

$$D = \frac{\Delta H_{A}^{*}}{RT} \frac{\bar{x}_{A}}{1 - \bar{x}_{A}} - 1$$

La valeur de D est positive pour T_E et T_F ; la courbe dQ/dT est donc une fonction monotone croissante de la température, sauf si

à:

l'équation :

$$\frac{\Delta H_{A}^{*}}{RT} \frac{\bar{x}_{A}}{1 - \bar{x}_{A}} = 1 \qquad (A.V.9)$$

a au moins un zéro entre $T_{\rm E}$ et $T_{\rm F}$.

Les formes de pics ont été tracées pour le cas du diagramme à eutectique correspondant à l'équilibre $C \nearrow N$ des mélanges du p-azoxyanisole (B) avec le p-azoxyphénétole (A), où : $T_A^* = 409,6^\circ$ K, $\Delta H_A^* = 6,42$ kcal/mole ; $T_B^* = 390,5^\circ$ K, $\Delta H_B^* = 6,80$ kcal/mole ; $T_E = 368^\circ$ K, E = 0,584. Dans ce cas, la dérivée est positive et les pics ne présentent pas d'extremum (figure A.V.2).

p-azoxyphénétole (A) avec le p-azoxyanisole (B).