

THESE

50376 1975 35

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE TROISIÈME CYCLE

(CHIMIE STRUCTURALE)

par

Bernard SOMBRET

CONTRIBUTION A L'ETUDE DE DIFFERENTS BROMATES

PAR SPECTROMETRIE RAMAN LASER

Soutenue le 14 mars 1975, devant la COMMISSION D'EXAMEN

MM.	M. BRIDOUX	Président
	M. DELHAYE	Rapporteur
	J. HEUBEL	Examinateur
	F. WALLART	Examinateur
	M. DE BACKER	Membre invité

DOYENS HONORAIRES de l'ancienne Faculté des Sciences

MM. H. LEFEBVRE, R. DEFRETIN

PROFESSEURS HONORAIRES des Anciennes Facultés de Droit et Sciences Economiques, des Sciences et des Lettres

M. ARNOULT, Mme BEAUJEU, MM. BROCHARD, CAU, CHAPPELON, CHAUDRON, CORDONNIER, DEHEUVELS, DEHORNE, DEHORS, FAUVEL, FLEURY, P. GERMAIN, HEIM DE BALZAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LELONG, Mme LELONG, LIEBART, MARTINOT-LAGARDE, MAZET, MICHEL, NORMANT, PEREZ, ROIG, ROSEAU, ROUBINE, ROUELLE, WIEMAN, ZAMANSKI.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. PARREAU

Professeur

PROFESSEURS TITULAIRES

M. BACCHUS Pierre M. BEAUFILS Jean Pierre M. BECART Maurice M. BIAYS Pierre M. BONNEMAN Pierre M. BONTE Antoine M. BOUGHON Pierre M. BOURIQUET Robert M. CELET Paul M. CONSTANT Eugène M. CORSIN Pierre M. DECUYPER Marcel M. DELATTRE Charles M. DURCHON Maurice M. FAURE Robert M. FOURET René M. GABILIA RD Robert M. GLACET Charles M. GONTIER Gérard M. GUSON Laurent M. GUILLAUME Jean M. HEUBEL Joseph M. LANSRAUX Guy Mme LENOBLE Jacqueline M. LOMBARD Jacques

Astronomie Chimie Générale Physique Géographie Chimie et Physico-Chimie Industrielle Géologie Appliquée Mathématiques Biologie Végétale Géologie Physique Industrielle-Electronique Paléobotanique Mathématiques Générales Géologie Générale Zoologie Générale et Appliquée Mécanique Physique Radio-Electricité-Electronique Chimie Organique Mécanique Mathématiques Biologie Végétale Chimie Minérale Physique Physique Expérimentale Sociologie

M. MAILLET Pierre
M. MONTARIOL Frédéric
M. MONTREUIL Jean
M. POUZET Pierre
M. PROUVOST Jean
Mme SCHWARTZ Marie-Hélène
M. TILLIEU Jacques
M. TRIDOT Gabriel
M. VAILLANT Jean
M. VIDAL Pierre
M. VIVIER Emile
M. WERTHEIMER Raymond
M. ZEYTOUNIAN Radyadour

Sciences Economiques et Sociales Chimie Appliquée Chimie Biologique Informatique (Lille) Géologie Minéralogie Analyse Supérieure Physique Théorique Chimie Mathématiques Automatique Biologie Animale Physique Mathématiques

PROFESSEURS A TITRE PERSONNEL

М.	BOUISSET Simon
Μ.	DELHAYE Michel
Μ.	DERCOURT Jean-Michel
Μ.	LEBRUN André
Μ.	LEHMANN Daniel
Μ.	LINDER Robert
Μ.	LUCQUIN Michel
Μ.	PARREAU Michel
Μ.	SCHILTZ René

Physiologie Animale Chimie Sciences de la Terre Electronique (Lille) Mathématiques Botanique Chimie Physique Mathématiques Appliquées Physique

PROFESSEUR SANS CHAIRE

Μ.	BELLET Jean
Μ.	BILLARD Jean
Μ.	BODARD Marcel
Μ.	BOILET Pierre
Μ.	BONNOT Ernest
Μ.	BRIDOUX Michel
Μ.	CAPURON Alfred
Μ.	DEPREZ Gilbert
Μ.	DEVRAINNE Pierre
Μ.	GOUDMAND Pierre
Μ.	GUILBAUT Pierre
Μ.	LABLACHE-COMBIER Alain
Μ.	LACOSTE Louis
Mme	e LEHMANN Josiane
Μ.	LOUCHEUX Claude
Μ.	MAES Serge
M1.)	e MARQUET Simone
Μ.	MIGEON Michel
Μ.	MONTEL Marc
Μ.	PANET Marius
Μ.	RACZY Ladislas
Μ.	ROUSSEAU Jean Paul
Μ.	SALMER Georges
M.	SEGUIER Guy

Physique Physique Botanique Physique Biologie I.U.T. Béthune Chimie Minérale I.U.T. Lille Chimie Minérale Chimie Physique Biologie Chimie Biologie Mathématiques Chimie Physique Mathématiques Chimie Physique I.E.E.A. Physique Physiologie Animale I.E.E.A. I.U.T. Béthune

MAITRES DE CONFERENCES (et chargés de fonctions)

M. ADAM Michel M. ANDRE Charles M. ANGRAND Jean-Pierre M. ANTOINE Philippe M. BART André M. BEGUIN Paul M. BROUCHE Rudolphe M. BOILLY Bénonni M. BONNEMAIN Jean-Louis M. BOSCQ Denis M. BREZINSKI Claude M. BRUYELLE Pierre M. CARREZ Christian M. CORDONNIER Vincent M. CORTOIS Jean M. COQUERY Jean-Louis M. COULON Jean M. CROSNIER Yves M. COUTURIER Daniel Mle DACCHARI Monique M. DEBOURSE Jean-Pierre M. DEBRABANT Pierre M. DHAINAUT André M. DELAUNAY Jean-Claude M. DERIEUX Jean-Claude M. DOUKHAN Jean-Claude M. DRIEUX Baudouin M. DUEE Gérard M. DYMENT Arthur M. ESCAIG Bertrand Mme EVRARD Micheline M. FONTAINE Jacques-Marie M. FOURNET Bernard M. FROELICH Daniel M. GAMBLIN André M. GOBLOT Rémi M. GOSSELIN Gabriel M. GRANELLE Jean-Jacques M. GUILLAUME Henri M. HECTOR Joseph M. HERMAN Maurice M. HUARD DE LA MARRE Pierre M. JOURNEL Gérard Mle KOSMANN Yvette M. KREMBEL Jean M. LAURENT François Mle LEGRAND Denise Mle LEGRAND Solange M. LENTACKER Firmin M. LEROY Jean-Marie M. LEROY Yves M. LHENAFF René M. LOCQUENEUX Robert M. LOUAGE Francis

Economie Politique Sciences Economiques Géographie Mathématiques Biologie Mécanique des Fluides Mathématiques Biologie Biologie Végétale Mathématiques I.E.E.A. Géographie et Aménagement Spatial I.E.E.A. Informatique Physique Biologie I.E.E.A. E.U.D.I.L. Chimie Géographie et Aménagement Spatial Sciences Economiques et Sociales Sciences Appliquées Biologie Sciences Economiques et Sociales Biologie (I.U.T) Physique I.E.E.A. Sciences de la Terre Mathématiques Physique Chimie (I.U.T.) I.U.T. Lille I.U.T. Lille Sciences Appliquées Géographie Mathématiques Sociologie Sciences Economiques Sciences Economiques et Sociales S.E.N. Calais Physique I.E.E.A. Sciences Appliquées Mathématiques Chimie Automatique Mathématiques Mathématiques Géographie et Aménagement Spatial E.N.S.C.L. Electronique (Lille) Géographie Physique Sciences Appliquées

M. LOUCHET Pierre M. MAHIEU Jean-Marie Mme N'Guyen Van Chi Régine M. MAIZIERES Christian M. MALAUSSENA Jean-Louis M. MESSELYN Jean M. MOTZKIN Joseph M. MONTUELLE Bernard M. NICOLE Jacques M. PAQUET Jacques M. PARSY Fernand M. PECQUE Marcel M. PERROT Pierre M. PERTUZON Emile M. PONSOLLE Louis M. POVY Jean-Claude M. ROGALSKI Marc M. ROY Jean-Claude M. SIMON Michel M. SLIWA Henri M. SOMME Jean Mle SPIK Geneviève M. THERY Pierre M. TOULOTTE Jean-Marc M. TREANTON Jean-René M. VANDORPE Bernard M. VILETTE Michel M. WERNER Georges M. WATERLOT Michel Mme ZINN JUSTIN Nicole

I.U.T. Lille Physique (I.U.T. Lille) Géographie et Aménagement Spatial I.E.E.A. Sciences Economiques et Sociales Physique Mathématiques I.U.T. Lille Chimie (E.N.S.C.L.) Sciences Appliquées Mathématiques Chimie (Béthune) Chimie Biologie Chimie (Valenciennes) Sciences Appliquées Mathématiques Biologie Psychologie Chimie Géographie Chimie Biologique Calais Sciences Appliquées Sciences Economiques et Sociales Chimie Physique Génie Mécanique (Béthune) Informatique (I.U.T. Lille) Géologie Mathématiques

Ce travail a été effectué à l'U.E.R. de Chimie de l'Université des Sciences et Techniques de Lille dans le laboratoire de Spectroscopie Raman dirigé par Monsieur le Professeur DELHAYE.

Qu'il me soit permis de lui exprimer ma sincère gratitude pour m'avoir accueilli dans son laboratoire.

Monsieur le Professeur BRIDOUX accepte aujourd'hui la Présidence du Jury de cette thèse. Je lui en suis particulièrement reconnaissant.

Je suis sensible à l'honneur que me fait Monsieur le Professeur HEUBEL en acceptant de juger ce mémoire.

Monsieur F. WALLART, Docteur és Sciences, a dirigé ce travail. Je le prie de trouver ici l'expression de ma plus vive reconnaissance pour les précieux conseils qu'il m'a donnés.

Je remercie également Monsieur DE BACKER, attaché de Recherches au C.N.R.S., qui a bien voulu se joindre au Jury.

Je remercie enfin tous les chercheurs et techniciens du laboratoire, et en particulier Madame DESCAMPS qui a bien voulu se charger de l'impression du présent mémoire.

-00000-

- . INTRODUCTION . -

Le travail que nous avons entrepris au laboratoire a largement bénéficié des progrès techniques qui y ont été réalisés.

La spectrométrie Raman Laser Rapide (1), dont le principal avantage est l'exploration rapide du domaine spectral, nous a permis de suivre la préparation chimique ou électrochimique de certains de nos échantillons.

Le triple monochromateur (2), à faible taux de lumière parasite, même au voisinage de la raie Rayleigh, s'est révélé indispensable pour enregistrer les spectres de basse fréquence des produits polycristallins.

Grâce à tous ces perfectionnements apportés aux techniques de la spectroscopie Raman, nous avons pu entreprendre une étude sur différents bromates, et compléter certains travaux antérieurs.

Le premier chapitre est consacré aux différentes méthodes de préparation de nos échantillons. Dans le cas du bromate de sodium, nous avons suivi, par Spectroscopie Raman Laser Rapide, toutes les étapes de sa préparation chimique ainsi que

- 1.

de sa synthèse par voie électrochimique.

Dans le second chapitre, après avoir rappelé les résultats récents publiés par deux auteurs pour le bromate de sodium, nous proposons une attribution complète du spectre Raman de ce composé.

- 2.

Une étude spectroscopique des bromates monohydratés et plus particulièrement du bromate de baryum constitue le troisième chapitre. Nous attribuons le spectre Raman de ces composés ainsi que celui du produit deshydraté. L'étude du bromate de strontium termine cette partie.

Enfin, le dernier chapitre est consacré aux bromates hexahydratés. Une attribution des spectres Raman des bromates de zinc et magnésium y est proposée.

-00000-

CHAPITRE 1

PREPARATION DES BROMATES

- INTRODUCTION.

I.1 - PREPARATION PAR VOIE CHIMIQUE.

- I.1.1a Préparation et dismutation de l'hypobromite de sodium.
- I.1.1b Préparation du bromate de sodium.

I.2 - Préparation par substitution de cation.

- a) Préparation du bromate de baryum monohydraté.
- b) Préparation des bromates de Zinc et Magnésium.

1.2 - PREPARATION PAR VOIE ELECTROCHIMIQUE.

- I.2.1 Choix des cellules.
- I.2.2 Conditions opératoires.
- I.2.3 Préparation.

-00000-

- . CHAPITRE I . -

PREPARATION DES BROMATES

INTRODUCTION :

Tous les bromates étudiés ont été préparés au laboratoire. Nous décrivons dans ce chapitre les différents types de synthèse utilisés. Toutefois, les préparations de type électrochimique et la préparation chimique du bromate de sodium s'accompagnent d'une étude spectroscopique simultanée. Nous avons voulu ainsi démontrer que la spectrométrie Raman Laser Rapide peut trouver de nombreuses applications à l'étude de réactions chimiques et électrochimiques bien adaptées. En particulier, cette technique devrait être la base de nouvelles études électrochimiques, où sans perturber le milieu, l'état d'avancement de la réaction pourrait être suivi à différents niveaux de la cellule d'électrolyse. Dans le même ordre d'idées, les études au voisinage des électrodes devraient aboutir à de nouveaux résultats. 1-1 - PREPARATION PAR VOIE CHIMIQUE.

I-1 - 1.a - Préparation et dismutation de l'hypobromite de sodium :

La préparation la plus courante consiste à faire réagir du brome sur une solution de soude très concentrée à une température de 10°C. En ajoutant 90 % de la quantité calculée de brome à une solution 10 N de soude agitée et maintenue à 10°C, on obtient une solution sursaturée en hypobromite :

 $Br_2 + 2 NaOH \longrightarrow Na Br0 + Na Br + H_20$

Pour éviter la dismutation de l'hypobromite, on ne peut pas dépasser ce pourcentage en brome.

Il est possible d'utiliser à la place de la base, un sel d'acide faible tel que carbonate, acétate de sodium. R. SCHLOLDER et K. KRAUS (3) proposent une autre préparation des solutions aqueuses d'hypobromite de sodium par action du brome sur la soude à -5°C. Le rendement est plus élevé qu'avec la préparation précédente. Deux hydrates cristallisent sous forme d'aiguilles, l'un à 5 H_2^0 vers -3°C, l'autre à 7 H_2^0 au dessous de -7°C.

Les solutions d'hypobromite de sodium sont très instables ; elles se décomposent plus ou moins rapidement suivant la température, la concentration, l'alcalinité.

- Dismutation de l'hypobromite de sodium.

L'hypobromite de sodium instable se dismute facilement en solution fortement alcaline. La décomposition en bromate et bro-

mure s'accélère si l'on élève la température ou si l'on diminue le pH. Plusieurs auteurs ont étudié les mécanismes de décomposition (4, 5, 6, 7, 8).

La réaction globale s'écrit :

$$Br_2 + 2 \text{ OH}^- \longrightarrow Br0^- + Br^- + H_20$$

3 Br0^- $\longrightarrow Br0_3^- + 2 Br^-$

Suivant les schémas réactionnels proposés par les différents auteurs, on doit toujours observer transitoirement la formation intermédiaire de bromite. Si l'on travaille en présence de catalyseurs tels que les sels de (Cu^{2+} Ni²⁺ Fe³⁺), on peut avoir également un dégagement d'oxygène (9) suivant la réaction :

2 Br0 _____ 0₂ + 2 Br

1-1 - 1.b - Préparation du bromate de sodium :

En tenant compte de toutes les conditions qui permettent d'étudier le mécanisme de dismutation, nous avons suivi ce phénomène (10) en utilisant une cellule spécialement conçue pour l'étude Raman comme le montre la figure 1.

Dans un barboteur contenant du brome, est envoyé un courant d'azote sec ; les vapeurs de brome entraînées par l'azote sont injectées par le capillaire dans le réacteur où se trouve la solution aqueuse de soude 10 N maintenue à 0°C.

En utilisant ce dispositif, nous pouvons suivre l'état d'avancement de la réaction par spectroscopie Raman Rapide. Les spectres Raman des dérivés oxygénés du brome sont bien connus ; ainsi il est facile de caractériser les espèces ioniques en présence. Nous résumons dans le tableau I.1 les données spec-

troscopiques sur les espèces que nous sommes susceptibles de rencontrer.

La figure 2 montre l'évolution du spectre Raman durant la préparation et la dismutation de l'hypobromite de sodium. Au début de la réaction, nous n'observons aucune raie. Après un temps variant entre 1 et 2 heures suivant le débit d'azote, une raie apparaît à 620 cm⁻¹ caractéristique de l'ion hypobromite. Si le barbotage du brome est arrêté, l'intensité de la raie se stabilise.

	Nombres d'on	de $\bar{\nu}$ (cm ⁻	1)	
Solution	aqueuse	•	Solution aq	ueuse
Br0 ⁻	620 v ₁	Br0	805 A ₁ +	E ν ₁ ν ₃
Br0 ⁻ 2	709 v ₁	•	418 A ₁	^v 2
	680 v ₃	•	358 E	^V 4
	324 v ₂	•		
	170	•		
^{(Br} 2)n ^{Br}	250	:		

Tableau I.1

Même si l'on introduit à nouveau une légère quantité de brome, le spectre évolue rapidement car on fait apparaître les produits de dismutation.

L'intensité de la raie à 620 cm^{-1} diminue alors qu'apparaissent deux raies, l'une à 710 cm^{-1} attribuable à l'ion

- 7.

bromite et une autre plus large centrée sur 450 cm⁻¹. (Nous avons vérifié que ce massif à 450 cm⁻¹ correspond à l'exaltation d'une bande de libration de l'eau provoquée par l'apparition d'ions bromure). L'intensité des raies à 710 et 450 cm⁻¹ passe par un maximum, puis diminue comme celle de la raie à 620 cm⁻¹ tandis qu'émergent une raie de l'ion bromate à 805 cm⁻¹ et un massif dans le domaine 150-250 cm⁻¹. En fin de réaction, le spectre est composé uniquement des raies de l'ion bromate et du massif 150-250 cm⁻¹ dû aux formes associées du brome (11).

A partir des spectres obtenus en balayage rapide, nous pouvons tracer le diagramme des intensités relatives des raies 620 cm⁻¹ (BrO⁻), 710 (BrO⁻₂), 805 (BrO⁻₃) en fonction du temps. Figures 3-4.

En fin de dismutation, nous obtenons une solution saturée en bromate. Lorsque la réaction est terminée, un précipité blanc de bromate de sodium se forme dans le réacteur alors que la phase aqueuse est colorée en jaune paille. L'ensemble est récupéré en solution aqueuse. Le précipité de bromate de sodium est repris par l'eau jusqu'à dissolution totale. On laisse évaporer à température ambiante cette solution. Celle-ci se décolore progressivement libérant le brome en excès. En fin d'évaporation, on obtient des monocristaux de taille variable, pouvant atteindre 1 cm.

Ces monocristaux, incolores et bien transparents, n'absorbent pratiquement pas le faisceau Laser.

1-1-2. Préparation par substitution des cations :

Le bromate de baryum est utilisé pour la préparation des bromates des autres éléments par réaction avec le sulfate ou le carbonate correspondant, méthode que préconisent PEARCE et RUSSELL pour le préparer en quantité suffisante. Pour réaliser une étude spectroscopique complète, il s'avère nécessaire d'obtenir de bons monocristaux et de connaître certaines données cristallographiques.

a) Préparation du bromate de baryum monohydraté.

La synthèse du bromate de baryum monohydraté a été décrite en détail par PEARCE et RUSSELL (12). La synthèse est faite en mélangeant des solutions saturées bouillantes de chlorure de baryum et de bromate de potassium suivant la réaction :

2 K Br0₃ + BaC1₂, 2 H₂0 \longrightarrow Ba (Br0₃)₂, H₂0 + 2 KC1 + H₂0

L'existence du sel double Ba $(BrO_3)_2$, BaCl₂, 2 H₂O étant certaine entre 10 et 45°C, pour préparer le bromate de baryum, on peut aussi utiliser comme produit de base le bromate de potassium et l'acétate de baryum.

Les cristaux obtenus par refroidissement de la solution sont prélevés et lavés plusieurs fois avec de l'eau froide pour éliminer le chlorure de baryum. Pour les purifier totalement, nous les avons fait recristalliser plusieurs fois. Le produit ainsi synthétisé est une poudre fine non colorée. Le contrôle de la pureté des produits polycristallins obtenus est fait par dosage du baryum. Ce dosage est nécessaire pour deux raisons :

- Il faut savoir si le bromate de baryum obtenu est hydraté ou non, car il est possible d'obtenir ce bromate anhydre sans le décomposer par simple chauffage.

- 9.

- Il faut vérifier, dans le cas de la préparation où l'on utilise $BaCl_2$, 2 H_2O , que le sel double a été totalement éliminé.

Pour réaliser une étude complète en spectroscopie Raman, le produit polycristallin ne suffit pas, car les mesures du taux de dépolarisation des raies ne sont possibles qu'avec des monocristaux.

Pour cette préparation, nous optons pour la technique d'évaporation lente de la solution saturée à 80°C, méthode déjà utilisée par BERTIE, HEYNS et OEHLER pour le chlorate de baryum (11).

Ce choix se justifie car la solubilité du bromate de baryum dans l'eau est très faible à température ambiante (0,652 g pour 100 g. d'eau) alors qu'elle croît rapidement en élevant la température (7 à 10 fois supérieure entre 70° et 100°C).

Le montage schématisé par la figure 5 se compose d'un réacteur cylindrique sur lequel est bobiné un fil chauffant ; l'ensemble est placé dans un vase DEWAR transparent. La solution contenue dans le réacteur est portée à 80°C, puis saturée en bromate de baryum.

Pour obtenir une bonne cristallisation, il faut une évaporation très lente et un gradient thermique relativement faible. Un germe fin fixé à l'extrémité d'un capillaire est maintenu au milieu de la solution aqueuse pour permettre au cristal de pousser dans toutes les directions. Les monocristaux obtenus sont de bonne qualité et de taille suffisante pour une étude spectroscopique.

Pour le bromate de baryum monohydraté, l'étude Raman des vibrations propres de la molécule d'eau, particulièrement dans le domaine des basses fréquences où se situent les modes

Fig:5

de libration, oblige à préparer le produit deutéré. La deutération est faite sur le bromate de baryum anhydre, obtenu par simple chauffage du bromate de baryum hydraté, la perte de l'eau d'hydratation se faisant entre 120 et 170°C.

b) Préparation des bromates de Zinc et Magnésium.

Pour préparer ces deux bromates, on utilise la méthode dite "d'échange de cations". Cette préparation est possible parce que la différence de solubilité dans l'eau à 20°C entre le bromate de baryum et les bromates de zinc et magnésium est importante :

bromate de baryum : 0,652 g. pour 100 g. d'eau solubilité du bromate de zinc : 59 g pour 100 g. d'eau bromate de magnésium : 42 g. pour 100 g. d'eau

Le mode opératoire est très simple. A une solution saturée chaude de bromate de baryum, on ajoute une solution chaude de sulfate de zinc ou de magnésium. Le mélange résultant est refroidi.

On élimine le sulfate de baryum par filtration ainsi que l'excès de bromate de baryum qui n'a pas réagi.

Le bromate de zinc ou magnésium est récupéré du filtrat par évaporation à température ambiante sous vide. La purification des échantillons est faite par recristallisations successives en milieu aqueux.

L'obtention de monocristaux est plus difficile que dans le cas du bromate de baryum car la solubilité à température ambiante est très forte.

- 00000 -

I-2 - PREPARATION PAR VOIE ELECTROCHIMIQUE.

L'intérêt primordial de la méthode électrochimique ne réside pas dans la préparation des différents bromates mais dans l'observation des produits primaires de l'électrolyse qui se forment aux deux électrodes et dans l'exploration d'une zone déterminée de l'électrolyte par Spectroscopie Raman.

On peut suivre ainsi une électrolyse de sa phase initiale à sa phase finale à condition de concevoir des cellules électrochimiques adaptées à la Spectrométrie Raman.

1-2 - 1 - Choix des cellules.

La géométrie des cellules est choisie en fonction de différents critères dont le principal est de correspondre aux conditions les plus favorables à une étude spectroscopique. La forme cylindrique est celle qui est la mieux adaptée pour éclairer correctement la solution avec une source Laser et donner une image de bonne qualité de la trace du faisceau Laser sur la fente d'entrée du spectromètre. Cette géométrie rend possible l'exploration de la solution à différents niveaux sans entraîner de modifications dans les règlages optiques (Fig. 6).

Pour atténuer les perturbations provoquées par les dégagements gazeux possibles au niveau des électrodes, la position de celles-ci est également importante ; nous avons donc réalisé trois corps de cellules de formes différentes schématisés par la figure 7. Le premier possède une électrode verticale non centrée par rapport au corps de la cellule et rend possible l'observation spectroscopique entre les électrodes sans être gênée par les dégagements gazeux. Le second qui diffère par la position horizontale de l'électrode est utilisée principalement pour l'observation au niveau de l'électrode.

- 12.

Fig: 6

Dispositif expérimental : Cellule d'electrolyse dans son support.

Enfin, le dernier possède en plus, un tube capillaire qui piège les dégagements gazeux de l'électrode en position verticale. Bien que la solution électrolytique ne soit pas perturbée, cette cellule à deux inconvénients :

- elle nécessite une tension de travail plus élevée ;

- elle ralentit la diffusion des produits primaires formés aux électrodes.

L'électrode supérieure scellée à l'extrémité d'un tube de 6 mm est conçue pour s'adapter sur ces trois corps de cellule à l'aide d'un rodage. Une goutte de mercure placée dans ce tube réalise le contact électrique en courant continu, entre l'électrode et le fil de l'alimentation (Fig. 7.d).

Les électrodes :

Les matériaux les plus couramment utilisés pour la fabrication des électrodes sont : le cuivre, l'acier inoxydable, le graphite, le platine et le bioxyde de plomb déposé électrolytiquement sur fil d'acier inox ou sur barre de graphite. Pour notre part, nous avons utilisé des cellules munies d'électrodes de graphite et de platine.

Le graphite se révèle d'un emploi délicat et précaire. Pour nettoyer les électrodes, il est nécessaire au préalable de réaliser dans la cellule, une électrolyse de soude en solution concentrée. De plus, les anodes de graphite ont l'inconvénient d'être fortement attaquées durant l'électrolyse. Ce phénomène particulièrement prononcé à la surface de l'électrolyte entraîne la rupture de l'électrode et peut provoquer un courtcircuit. Le mécanisme a été étudié par METCALF (14) qui suggère pour le limiter d'imprégner le graphite de paraffine ou d'huile de lin.

BUS

Schéma des différents corps de cellule d'electrolyse utilisés. Les électrodes en platine sont moins fragiles et plus commodes d'emploi. Elles ont le désavantage d'être de prix élevé et surtout de ne se sceller que sur du verre ordinaire. Comme le corps de la cellule d'électrolyse est en pyrex, il faut réaliser un passage pyrex-verre ordinaire pour monter les électrodes.

1-2 - 2 - Conditions opératoires.

La préparation de certains bromates par voie électrochimique et l'observation simultanée par Spectroscopie Raman nécessitent certaines conditions. En effet, l'observation par Spectroscopie Raman ne sera correcte que si l'on peut adapter la tension aux bornes de la cellule suivant les phénomènes étudiés. Comme cette différence de potentiel est fonction de la densité de courant, de la distance inter-électrodes et de la température de l'électrolyte, il est préférable de fixer le maximum de paramètres pour obtenir des conditions opératoires acceptables. La distance inter-électrodes que nous avons fixée à 5 cm représente un excellent compromis entre la résistance électrique du circuit et la possibilité de faire suffisamment de mesures spectroscopiques entre l'anode et la cathode. Durant toute l'électrolyse, l'intensité du courant est régulée Elle a une valeur déterminée en fonction de deux phénomènes importants :

- Le débit de l'électrolyse doit être tel que le dégagement d'hydrogène à la cathode ne perturbe pas de façon trop importante la solution.

- L'élévation de la température qui favorise la formation de bromate ne doit pas dépasser une certaine valeur pour éviter une perte trop grande d'eau par évaporation. La température maximale limite se situe vers 70°C. L'électrolyse est maintenue jusqu'à ce qu'un taux de conversion raisonnable de bromure en bromate soit atteint. Il n'est pas souhaitable d'obtenir une oxydation anodique de tout le bromure présent car une sévère attaque de l'anode en platine a lieu quand la concentration en bromure descend endessous de 1 %. Comme l'attaque devient négligeable vers 2 %, on maintient par sécurité dans toutes les expériences, la concentration en bromure supérieure à 5 %. Le mécanisme de cette attaque n'est que partiellement expliqué par BULYGIN (15) qui constate un dégagement d'ozone à l'anode.

1-2 - 3 - Préparation.

- Le bromate de sodium

A cause de sa solubilité dans l'eau relativement élevée, le bromate de sodium n'est pas préparé facilement par voie chimique. L'électrolyse de la solution saturée de bromure de sodium est poursuivie jusqu'à ce qu'une concentration de bromate de sodium soit atteinte, de telle façon qu'en refroidissant l'électrolyte à 5°C, une proportion raisonnable de ce sel est obtenue.

On introduit dans la cellule une solution aqueuse saturée de bromure de sodium. L'intensité du courant traversant la cellule est maintenue à 300 mA. Ce procédé implique l'oxydation anodique du bromure en bromate. Il se forme tout d'abord du brome à l'anode et l'hydroxyde du métal alcalin à la cathode. Ces produits primaires diffusent à travers la solution et forment l'hypobromite. En même temps, comme la température de l'électrolyte s'accroît, l'hypobromite se dismute et donne lieu à la formation du bromate. La diffusion est favorisée par l'agitation causée par le dégagement d'hydrogène à la cathode et peut être améliorée en agitant l'électrolyte. Balayage rapide

Observation au niveau de la cathode

Balayage rapide Observation au niveau de l'anode

Nous avons suivi par spectroscopie Raman Laser Rapide la formation du bromate de sodium. Les figures8, 9 montrent'l'évolution du spectre Raman pris à différents niveaux de la cellule. On remarque que la concentration en bromate formé est maximale pour une zone se situant près de l'anode au-dessus de la nappe de brome. La coloration d'un jaune plus foncé est une indication de ce phénomène.

Nous avons donc choisi d'observer cette zone durant toute l'électrolyse et de tracer les courbes représentant l'intensité de crête des raies des différentes espèces ioniques en présence, en fonction du temps (Fig. 10, 11, 12).

A partir de ces courbes, nous pouvons faire quelques remarques :

- la concentration en hypobromite croît jusqu'à une certaine valeur puis reste constante jusqu'en fin de réaction ;

- le bromite, espèce intermédiaire, à une concentration quasiment constante et faible pendant toute l'électrolyse ;

- la concentration en bromate croît régulièrement et si l'électrolyse est poursuivie suffisamment, on peut observer la précipitation du bromate en fin de réaction (Fig. 11).

Si on adopte une intensité de courant plus forte pour effectuer l'électrolyse, celle-ci est beaucoup plus rapide et on atteint la zone de précipitation du bromate plus vite (Fig. 12). Cependant, l'observation spectroscopique est difficile à cause des perturbations à l'intérieur de la solution.

BUS

Le bromate de strontium :

La préparation est identique à celle du bromate de sodium. On utilise une solution aqueuse de bromure de strontium saturée. Cependant, il est nécessaire de travailler avec une tension plus élevée pour réaliser une bonne électrolyse. Comme l'hydroxyde se formant à la cathode précipite, la solution devient louche et empêche l'observation spectrométrique en cours de réaction.

Le bromate de calcium :

Déjà étudié par SARGHEL (16), l'électrolyse d'une solution de bromure de calcium donne lieu à la formation en fin de réaction de bromate de calcium. Cependant, la méthode électrolytique est ici mal adaptée. En effet, dans toutes les expériences, des complications apparaissent à cause du dépôt d'hydroxyde de calcium sur la cathode ; l'électrolyse est alors pratiquement arrêtée. Nous n'avons jamais pu préparer de façon satisfaisante le bromate de cette manière.

- 00000 -

CHAPITRE II

LE BROMATE DE SODIUM : ETUDE COMPARATIVE

- INTRODUCTION.

II.1 - ETUDE THEORIQUE : DENOMBREMENT.

II.1.1 - Caractéristiques structurales du bromate de sodium.

II.1.2 - Prévisions théoriques par spectroscopie Raman.

a) Etude de l'ion isolé.

b) Etude du monocristal.

II.2 - RESULTATS OBTENUS PAR LES DIFFERENTS AUTEURS.

II.2.1 - Modes internes.

II.2.2 - Modes externes.

II.3 - NOS RESULTATS.

II.3.1 - Modes internes. II.3.2 - Modes externes.

-00000-
- . CHAPITRE II . -

LE BROMATE DE SODIUM : ETUDE COMPARATIVE.

INTRODUCTION :

Le bromate de sodium est un cristal comportant dans sa structure des ions polyatomiques, pour lequel certains modes normaux de vibration du réseau sont à la fois actifs en Raman et en Infrarouge. C'est un composé intéressant pour une étude structurale par les techniques de spectroscopie vibrationnelle d'autant plus que l'on sait en faire des monocristaux de bonne qualité. C'est pourquoi il a fait l'objet de plusieurs études Raman et Infrarouge (17-24) tant à l'état liquide qu'à l'état solide et cristallin. Plus récemment, il a été étudié en parallèle avec le chlorate de sodium qui a la même structure cristalline et dont le spectre Raman est connu (25, 26). Pourtant, tous ces résultats restent incomplets car le spectre Raman du cristal de bromate de sodium n'y est pas entièrement interprété. Deux études Raman et Infrarouge utilisant les techniques les plus récentes sont parues ces deux dernières années (27, 28) et une interprétation complète des spectres y est proposée. Cependant, certaines divergences peuvent être mises en évidence et nous avons donc repris et poursuivi ce sujet pour essayer de préciser toutes les attributions.

Dans ce chapitre, nous rappelons en premier lieu le dénombrement des modes normaux attendus pour $NaBrO_3$ en spectroscopie vibrationnelle. Nous comparons ensuite les résultats obtenus par D'ENDREA (27) et BERENBLUT (28) sur le monocristal de $NaBrO_3$ en mettant en évidence les différences d'attributions. Enfin, à partir de nos résultats, et des leurs, nous proposons une attribution complète.

-00000-

II-1 - ETUDE THEORIQUE : Dénombrement des modes normaux de vibration :

II-1-1 - Caractéristiques structurales de $NaBrO_3$:

A l'état isolé, l'ion BrO_3^- comme tous les ions halates a une structure pyramidale triangulaire où l'angle $0^{/\text{Br}}$ o est de l'ordre de 110°; l'hybridation est de type Sp_3 . La distance Br-O varie suivant la nature du cation avec lequel le bromate est lié. Dans le cas du sodium, la distance Br-O est égale à 1,78 Å.

Les données cristallographiques indiquent que le bromate de sodium cristallise dans le groupe d'espace cubique (T_4, P_{2_13}) avec 4 molécules par maille (29).

Cette structure est comparable à celle de NaCl, déformée pour y inclure les groupements polyatomiques BrO_3^- de telle façon que la symétrie reste cubique.

II-1-2 - Prévisions théoriques des modes normaux :

a) Etude de l'ion isolé :

Comme nous connaissons la structure de l'ion bromate, nous pouvons décrire les vibrations fondamentales de cet ion, qui possède la symétrie C_{3v} par la représentation totalement réduite :

$$r_{vib} = 2 A_1 + 2 E$$

Ces 4 raies sont toutes actives en Raman ; deux d'entreelles sont polarisées.

Nous avons enregistré le spectre du bromate de sodium en solution aqueuse et comme GARDINER (30), nous n'observons que 3 raies (Fig. 13) dont les fréquences sont :

> - 358 cm⁻¹ dépolarisée - 418 cm⁻¹ polarisée - 805 cm⁻¹ polarisée

Il est à remarquer que la raie à 805 cm⁻¹ résulte du recouvrement des deux raies d'espèce A_1 et E $(\nu_1$ + $\nu_3)$ déjà signalé par GARDINER.

Les mesures de taux de dépolarisation ainsi que les profils de raies montrent que la raie d'espèce E est masquée par la raie d'espèce A_1 beaucoup plus intense. Le spectre Raman obtenu est en bon accord avec les prévisions faites en tenant compte de la structure de l'ion bromate.

b) Etude du monocristal :

Dans le cristal, on considère que les ions $Br0_3^-$ conservent la symétrie qu'ils ont à l'état libre et qu'ils y occupent des sites C_3 comme les atomes de sodium.

- 21.

Par analyse du groupe facteur, on obtient le nombre total de modes normaux :

$$\Gamma_{\text{Tot}} = 5 \text{ A} (\text{R}) + 5 \text{ E} (\text{R}) + 15 \text{ F} (\text{R}, \text{I.R})$$

dans lequel est inclus le mode acoustique de type F. Toutes les espèces sont actives en Raman et celles de type F le sont également en Infrarouge.

Dans les cristaux, comme le signale LOUDON (31), certains modes de vibration, actifs à la fois en Infrarouge et Raman, peuvent donner lieu à 2 composantes différentes. Pour les cristaux cubiques les fréquences sont déterminées à l'aide d'une relation dérivée de la méthode L S T (32). Dans notre cas, nous attendons donc un dédoublement des modes F en 2 composantes F (TO) et F (LO) de fréquences très peu différentes surtout en spectroscopie Raman.

Modes internes :

En utilisant la méthode du site de HALFORD et sachant que l'ion BrO_3^- de symétrie C_{3v}^- occupe des sites C_3^- dans le cristal, on peut tracer le diagramme de corrélation :

TABLEAU DE CORRELATION 11.1.

Groupe moléculaire

Groupe de site Groupe d'espace

- 22.

D'après ce tableau, on remarque que les raies v_1 et v_2 éclatent pour donner A + F. De même que les raies v_3 et v_4 éclatent pour donner E + 2 F soit au total 2 A + 2 E + 6 F.

Modes externes :

On considère à la fois les groupements monoatomiques et les groupements polyatomiques, c'est-à-dire Na⁺ et BrO_3^- . Comme ces groupements sont tous dans les sites C_3 , on peut tracer le diagramme de corrélation :

TABLEAU DE CORRELATION 11.2.

Groupe de site

Groupe d'espace

Ce qui permet de prévoir les modes suivants :

- Translations : . les 4 Na⁺ occupent des sites C_3 : $T_x \rightarrow E + 2 F$ $T_y \rightarrow E + 2 F$ soit au total : A + E + 3 F. $T_z \rightarrow A + F$

Le mode acoustique F donné par la table de caractères du groupe T_4 doit être retranché ; ce qui donne au total pour les translations :

- 2 A + 2 E + 5 F
- Librations : seuls les ions polyatomiques interviennent
 . les ions Br0₃ occupent des sites C₃ :
 - $R_z \longrightarrow A + F$ soit au total : A + E + 3 F $R_x + R_y \longrightarrow E + 2 F$

On attend donc comme modes externes :

Tous les résultats pour le monocristal sont résumés dans le tableau ci-dessous :

	Nbre Total	Externes transRot		Acoustiques	Internes
А	5	2	1 :	0	2
E	5	2	1 :	0	2
F	15	5	3:	1	6

11-2 - RESULTATS OBTENUS PAR LES AUTRES AUTEURS :

Parmi les travaux déjà effectués sur le bromate de sodium, nous retiendrons ceux D'ENDREA et de BERENBLUT qui seuls, proposent des interprétations complètes des spectres Raman obtenus. Il est intéressant de comparer ces deux publications et dans les figures 14 et 15, nous avons fait la synthèse des résultats des deux auteurs, respectivement pour les modes internes et externes à 300 K. Pour chaque raie portée sur ce diagramme, on trouve la fréquence ainsi que l'espèce qui lui a été attribuée. On peut ainsi mettre en évidence les différences entre les attributions faites par chaque auteur. Nous comparons successivement les modes internes et externes.

Modes internes :

Pour certains de ces modes, l'attribution proposée par les deux auteurs est très différente. On remarque que celle avancée par d'ENDREA est incomplète car des raies d'espèce $v_4 \ F_{(TO)}$, $v_4 \ F_{(LO)}$ $v_3 \ F_{(TO)}$, $v_3 \ F_{(LO)}$ qui doivent apparaître par couplage intermoléculaire ne sont pas indiquées. Il n'est pas étonnant que ce soient des modes de type $F_{(TO)}$ et $F_{(LO)}$ qui manquent, car l'éclatement TO LO donne lieu en spectroscopie Raman à des raies de fréquences très proches en général.

Les autres anomalies sont des écarts en fréquence qui, pour deux raies, correspondent à des attributions erronées.

Nous les avons reportées dans le tableau suivant :

- 25.

<u>,</u> ОШХОКША ФШ⊄Ш∠Ф_)>⊢

TABLEAU II - 3

Espèce	D'ENDREA	BERENBLUT			
$v_{A} F_{(TO)}$	374	373			
* v ₂ A	439	457			
ν2 ^F (L0)	457	458			
* ν ₃ Ε	790	844			
v_1 A	798	796			
∿3 ^F (TO)	822	820			

Pour les raies $v_4 F_{(TO)} - v_2 F_{(LO)} - v_1 A \text{ et } v_3 F_{(TO)}$, existent des écarts en fréquences faibles d'un ou deux cm⁻¹ de l'ordre de la précision sur la mesure de la fréquence d'une raie.

Par contre, pour les raies $\ast v_2$ A et $\ast v_3$ E, les écarts sont respectivement de 18 et 54 cm⁻¹. Il ne peut s'agir que de mauvaises attributions de la part de l'un ou l'autre des auteurs. Ainsi, avons-nous essayé de lever l'ambiguîté sur les attributions.

Modes externes :

Pour les modes externes, nous ferons la distinction entre deux régions. La première, comprise entre 60 et 180 cm⁻¹ où les seules différences portent sur des écarts de pointé de raie très faible. La deuxième région, entre 180 et 230 cm⁻¹, où se situe une bande large qui comporte plusieurs raies, dont les fréquences sont reportées dans le tableau suivant :

Espèce	D'ENDREA	BERENBLUT
^F (то)	182	180
F(LO)	192	193
F _(ТО) F _(LO)	203 207	199 201
^F (то)	217	212
F(LO)	223	223

TABLEAU II - 4

Dans ce cas, les difficultés rencontrées pour l'attribution et les écarts enregistrés sur les mesures de fréquence des raies de cette bande, qui ne peuvent se faire qu'à basse température, nécessitent une étude particulière. Dans notre travail, nous reprendrons l'étude de cette bande large en utilisant au maximum toutes les techniques d'enregistrement développées au laboratoire.

11-3 - NOS RESULTATS :

Les monocristaux de bromate de sodium dont nous disposons, ont été préparés par voie chimique ou électrochimique. Il s'avère que ceux provenant d'une électrolyse sont de meilleure qualité pour une étude spectroscopique. Les spectres Raman sont obtenus à température ambiante avec un double monochromateur CODERG PH 11 et à basse température avec un triple monochromateur CODERG T. 800. Les figures 16, 17, montrent les spectres Raman des modes internes et externes du bromate de sodium à température ordinaire. Les conditions d'obtention sont précisées ainsi que les différentes combinaisons de polarisation utilisées. On peut, à partir de ces spectres, déterminer l'espèce des raies de vibration. L'orientation Z (XX) Y du monocristal rend actifs tous les modes d'espèce A et E, et celle X (YX) Z les espèces $F_{(TO)}$ et $F_{(LO)}$ (PORTO - 33). Dans les mêmes conditions, on réalise les spectres à basse température. Nos résultats (attributions et fréquences) sont reportés dans le tableau suivant (II. 5).

TABLEAU	11	-	5
---------	----	---	---

	P	1	E		F _(T0) ou (L0)				
	300 K	77 K	300 K	77 K	300 K	77 K			
E X T E R N E S	85 148 194	87 155 197	63 135 180	67 144 190	76 80 98 113 128 131 	79 83 103 117 136 140 165 182 203 207 217 220			

	A	Ê	F(TO) ou (LO)
I	300 K 77 K	300 K 77 K	300 K 77 K
N T R N E S	442 ? 446 ? 795 796	358 360 788 ?	374 376 442 446 456 459 794 795 796 796 818 820 841 844

TABLEAU II - 5

Nous commenterons ces résultats pour les modes internes, puis pour les modes externes, en nous attachant particulièrement aux attributions différentes de celles faites par D'ENDREA et BERENBLUT.

Modes internes :

Dans la région des modes internes, la raie la plus intense de fréquence 795 cm⁻¹ est d'espèce A. Sa fréquence est pratiquement identique à celle d'une raie aussi intense d'espèce F qui apparaît dans une autre combinaison de polarisation. Les deux raies $F_{(T0)}$ et $F_{(L0)}$ sont très difficiles à mettre en évidence dans ce domaine. Pourtant, pour une combinaison de polariseurs, où la raie d'espèce A est pratiquement éteinte, une dissymétrie dans son profil laisse prévoir la présence d'une autre raie d'espèce $F_{(T0)}$ ou $F_{(L0)}$ (Fig. 18.a). L'écart entre ces raies est très faible et l'étude en fonction de la température n'apporte aucune amélioration pour séparer les composantes.

⁽suite)

Comme Jes deux raies à 820 et 844 cm⁻¹ sont toujours visibles dans les deux combinaisons Z (YZ) Y (rendant actifs les modes $F_{(TO)}$) et Z (YX) Z (rendant actifs les modes $F_{(LO)}$, ceci nous conduit à avancer qu'elles correspondent à deux vibrations de même fréquence d'espèces $F_{(TO)}$ et $F_{(LO)}$.

Il semble cependant exclu que la raie à 844 cm⁻¹ puisse être d'espèce E comme l'indique BERENBLUT car dans l'orientation X (YY) Z où les modes de type E sont actifs, la raie de fréquence 844 cm⁻¹ est pratiquement éteinte. Pourtant, dans le monocristal, le dénombrement prévoit un mode de vibration d'espèce E dû au couplage intermoléculaire dans le cristal, correspondant à la fréquence $\nu_{\textbf{3}}$ de l'ion libre. Or, comme D'ENDREA, nous observons à 788 cm⁻¹ une raie en épaulement de la fréquence ν_1 (A) (Fig. 18.b). La faible intensité de cette raie vers les basses fréquences de la vibration v_1 pourrait laisser penser à un effet isotopique de l'oxygène 18 sur cette fréquence. L'écart calculé entre les deux composantes isotopiques par la règle de TELLER et REDLICH nous donne une valeur de l'ordre de 13 cm^{-1} , le rapport des intensités de crête des deux premières composantes est voisin de 6 x 10^{-3} . Or, on peut rejeter cette hypothèse car l'étude de l'état de polarisation de cette raie montre qu'elle n'est visible et bien résolue à basse température que dans les conditions où les espèces de vibrations de type E sont actives. Nous l'attribuons obligatoirement au mode E dû à la vibration v_2 attendue dans ce domaine spectral. Pour la région située entre 350 et 500 cm⁻¹, les spectres obtenus avec le double monochromateur à température ordinaire sont suffisants pour attribuer sans doute possible quatre raies :

Le dédoublement LO TO n'est visible ici que pour un seul mode F. Pour les autres, l'écart est trop faible pour être observé. Dans ce domaine, la raie d'espèce A est difficile à identifier, car nous n'observons, dans les conditions d'activité des modes A, qu'une raie à 442 cm⁻¹ dont la mesure du taux de dépolarisation est rendue délicate par sa très faible intensité et par la présence d'une raie de type $F_{(TO)}$ à la même fréquence.

Pour les modes internes, nous résumons les résultats obtenus en rendant compte des éclatements dûs aux couplages intermoléculaires, dans le tableau suivant :

Modes externes :

Les vibrations externes du monocristal de bromate de sodium donnent lieu à un spectre de basse fréquence facilement attribuable à l'exception d'une bande large qui nécessite une étude particulière. A température ambiante, comme nous l'avons déjà montré sur la figure 17, deux combinaisons de polariseurs permettent de distinguer les modes d'espèce A et E de ceux de type $F_{(TO)}$ ou $F_{(LO)}$. On peut ainsi attribuer la majeure partie des raies comme suit :

85, 148 et 194 cm⁻¹ espèce A

- 32.

63, 135 et 180 cm⁻¹ espèce E 76, 80, 98, 113, 128 et 131 cm⁻¹ espèce $F_{(TO)}$ ou $F_{(LO)}$

L'étude de la bande large à 300 K nous laisse prévoir, en plus des deux raies à 180 cm⁻¹ (E) et 194 cm⁻¹ (A), plusieurs raies de type F (Fig. 19). Mais, seule une étude à basse température doit permettre, par affinement des raies et glissements en fréquence, d'identifier toutes les raies du massif.

Nous avons enregistré le spectre de basse fréquence à l'aide d'un triple monochromateur équipé de son cryostat. L'orientation précise du monocristal est plus délicate, ce qui explique que nous n'obtenions que des extinctions partielles des raies. Comme le montre la figure 20, on retrouve :

> 3 raies d'espèce A à 87, 155 et 197 cm⁻¹ 3 raies d'espèce E à 67, 144 et 190 cm⁻¹

6 raies d'espèce F à 79, 83, 102, 117, 136 et 140 cm⁻¹

Parmi les raies de type F, on ne voit pas pour les modes à 102 et 117 cm^{-1} le dédoublement par effet TO-LO.

Par contre, pour deux autres modes, un écart de 4 cm^{-1} est observé :

 $F_{(TO)} = 79 \text{ cm}^{-1}, F_{(LO)} = 83 \text{ cm}^{-1}, F_{(TO)} = 136 \text{ cm}^{-1} \text{ et}$ $F_{(LO)} = 140 \text{ cm}^{-1}.$ - 33.

. . . .

Le dénombrement théorique des modes externes prévoit 4 modes de type F en plus de ceux déjà identifiés. Nous pouvons les observer partiellement à très basse température dans le domaine 150-230 cm⁻¹ aux valeurs suivantes :

182, 207 et 217 cm⁻¹ $F_{(TO)}$ 165, 203 et 220 cm⁻¹ $F_{(LO)}$

-00000-

CONCLUSION :

Mise à part la difficulté rencontrée pour la zone spectrale 150-230 cm⁻¹, l'étude spectroscopique du bromate de sodium nous permet de confirmer sa structure cristalline, ainsi que de préciser certains points obscurs relevés dans les travaux spectroscopiques antérieurs.

-00000-

CHAPITRE III

LES BROMATES MONOHYDRATES

- INTRODUCTION.

III.1 - LE BROMATE DE BARYUM MONOHYDRATE.

- III.1.1 Caractéristiques structurales du bromate de baryum monohydraté.
- III.1.2 Dénombrement des modes normaux de vibration.
- III.1.3 Spectre Raman du bromate de baryum hydraté et deutérié.

III.2 - LE BROMATE DE BARYUM ANHYDRE.

- III.2.1 Etude par spectrométrie Raman Laser Rapide de la déshydratation.
- III.2.2 Spectre Raman du bromate de baryum anhydre.

III.3 - LE BROMATE DE STRONTIUM MONOHYDRATE.

- III.3.1 Spectre Raman du bromate de strontium.
- III.3.2 Modes de vibration de la molécule d'eau.

- . CHAPITRE III . -

LES BROMATES MONOHYDRATES

INTRODUCTION :

Les bromates de baryum, calcium et strontium sont des monohydrates de structures cristallines identiques. L'étude spectroscopique entreprise est surtout consacrée au bromate de baryum, composé utilisé dans la plupart de nos synthèses qui donne des monocristaux de bonne qualité. Dans ce chapitre, nous proposons une attribution des spectres de diffusion Raman du bromate de baryum monohydraté. Puis, nous étudions la déshydratation de ce produit par spectrométrie Raman Laser Rapide et nous essayons d'expliquer le spectre du bromate anhydre. Enfin, nous terminons par l'étude du bromate de strontium, dont nous pouvons expliquer le spectre par analogie avec celui du bromate de baryum monohydraté. III.1 - LE BROMATE DE BARYUM MONOHYDRATE.

III.1.1 - Caractéristiques structurales de $Ba(BrO_3)_2, H_2O$:

La structure cristalline du bromate de baryum monohydraté a été étudiée par GOPMATH et KARTHA (34). Ce composé est isomorphe du chlorate de baryum, et appartient au groupe d'espace monoclinique C_{2h}^{6} avec l'orientation axiale $I_{2/C}$. Il cristallise avec 4 molécules par maille dont les paramètres sont :

 $a_{\circ} = 9,06 \text{ Å}$ $b_{\circ} = 7,92 \text{ Å}$ $c_{\circ} = 9,66 \text{ Å}$ $B' = 93^{\circ} 30^{\circ}$

La position des éléments dans la maille est :

pour Ba^{++} et H_2^0 \longrightarrow 4e ce qui correspond à un site C_2 pour Br et 0 \longrightarrow 8f ce qui correspond à un site C_1

III.1.2 - Dénombrement des Modes Normaux de vibration :

Comme nous l'avons déjà vu pour le bromate de sodium, à l'état isolé,l'ion bromate est pyramidal et appartient au groupe de symétrie C_{3v} . Sa représentation totalement réduite s'écrit :

$$\Gamma_{v} = 2 A_{1} + 2E$$

Nous effectuons le dénombrement des modes normaux dans le cristal, par analyse du groupe facteur selon la méthode du site de HALFORD pour en déterminer les modes actifs en diffusion Raman.

Modes internes :

Comme dans le cristal, les ions BrO_3^- occupent des sites C_1 , pour dénombrer les modes internes, la corrélation à utiliser est la suivante :

Les modes internes attendus en diffusion Raman sont :

Modes externes :

Les ions $Br0_3^-$ occupant des sites de symétrie C_1^- dans le cristal, les ions baryum des sites de symétrie C_2^- , le dénombrement des modes externes nécessite l'utilisation des deux tableaux de corrélation suivants :

Translations :

 Ba^{++} occupe des sites C_2

$$Tx \longrightarrow B_{g} + B_{u}$$

$$Ty \longrightarrow B_{g} + B_{u}$$

$$Tz \longrightarrow A_{g} + A_{u}$$

soit au total : $A_g + 2B_g + A_u + 2B_u$

 $Br0_{\overline{3}}^{-}$ occupe des sites C_{1}

$$Tx \longrightarrow A_{g} + B_{g} + A_{u} + B_{u}$$

$$Ty \longrightarrow A_{g} + B_{g} + A_{u} + B_{u} \quad \text{soit} : 3A_{g} + 3B_{g} + 3A_{u} + 3B_{u}$$

$$Tz \longrightarrow A_{g} + B_{g} + A_{u} + B_{u}$$

Les modes acoustiques $A_1 + 2 B_1$ donnés par la table de caractères du groupe C_{2h} doivent être retranchés, ce qui donne au total pour les translations :

$$4 A_{a} + 5 B_{a} + 3 A_{\mu} + 3 B_{\mu}$$

Librations :

Seuls les groupements polyatomiques BrO_3^- interviennent (site C₁)

> $Rx \longrightarrow A_q + B_q + A_u + B_u$ Ry \longrightarrow A_g + B_g + A_u + B_U soit au total : $3A_g + 3B_g + 3A_u + 3B_u$ $Rz \longrightarrow A_q + B_q + A_u + B_u$

Les modes externes attendus en diffusion Raman sont :

III.1.3 - Spectre Raman du bromate de baryum hydraté et deutérié :

Les cristaux de bromate de baryum hydraté obtenus par la méthode d'évaporation lente de la solution saturée à 80°C sont incolores mais non transparents. La mauvaise qualité optique de ces cristaux rend indispensable d'effectuer toute l'étude spectroscopique au moyen du triple monochromateur décrit par R. DEMOL (2).

Ce monochromateur à faible taux de lumière parasite, même au voisinage de la raie RAYLEIGH, permet d'enregistrer dans de bonnes conditions les spectres de basse fréquence de ce composé.

Le tableau III.1 résume les résultats obtenus pour le bromate de baryum hydraté et deutérié. Les fréquences des raies, leur symétrie et les attributions en spectroscopie Raman y sont reportées.

	$Ba(BrO_3)_2, H_2O$		Ba(B	$(D_{3})_{2}, D_{2}O$	Attributions				
	300 K	77K	300K	(77K					
	44 64	40 65 73	43 62	39 63	translations Ba ⁺⁺				
	74 102	77 104	72	71	translations de BrO3				
E R	107 121	109 122 129?	107 124	109 124	translation Ba ⁺⁺				
N E S		137 151 159 169 180	 148 152 175	134 150 157 168 180	librations de BrO3				
	220 235	225 244 H ₂ O	229	$ \begin{bmatrix} 215\\235 \end{bmatrix} D_2 O $	translations				
IN	- 368 379	365 370 383	370 380	370 384	Ag Ag Bg Bg BrO3				
T E	426	429		431	Ag, Bg v_2 déformation symétrique Br O_3^2				
	768	768	770	770	$Bg V_1$ valence				
E	782	783	782	783	Ag symétrique Br.O				
S	816	818	816	798 820	Ag, Bg				
	_	828		020	Ag? Jasymetrique Br_O				
	1586 3443 3509		2550 2599		Ag & H-O-H Ag Bg } V O-H				

Tableau: 🎹 1

- 41.

Nous allons d'abord attribuer les modes internes et les modes externes de l'édifice Ba $(BrO_3)_2$ puis les modes de vibration de la molécule d'eau liée au cation.

Modes internes :

A l'état isolé, l'ion BrO_3^- appartient au groupe de point C_{3v}^- et l'on peut classer comme suit ses différents modes de vibration :

Espèce	: Type de vibration	: : Domaine spectral cm ⁻¹
v ₁ (A ₁) v ₃ (E)	: Vibrations de valence :	: 750 - 850 :
ν ₂ (Α ₁)	: : Vibration de déforma- : tion symétrique	: 410 - 440 :
ν ₄ (Ε)	: : Vibration de déforma- : tion asymétrique :	350 - 400 :

Dans le cristal, les ions Br03 sont en positions générales; chaque vibration de type A_1 donne naissance à 4 vibrations A_g , B_g , A_u et B_u par effet de couplage intermoléculaire et 8 vibrations (2 A_q + 2 B_q + 2 A_u + 2 B_u) pour chacune des espèces E.

Pour le monocristal, nous attendons en diffusion Raman :

				750	-	850	cm^{-1}	3	Ag	et	3	Bg
Dans	les	domaines	:	410	-	440	cm^{-1}		Ag	et		Bg
				350	-	400	cm^{-1}	2	Aa	et	2	Ba

Sur la figure 21 sont représentés les spectres Raman des vibrations internes de Ba $(BrO_3)_2$, H_2O pour deux combinaisons de polariseurs analyseurs. A partir des mesures des taux de dépolarisation des raies, nous attribuons :

modes internes

- la raie la plus intense à 782 cm⁻¹ à la composante A_g du mode de valence symétrique de Br-0, v_1 . La composante B_g de ce mode à 768 cm⁻¹.

- Les raies à 796 et 828 cm⁻¹ (la raie à 828 cm⁻¹ n'est visible qu'à basse température (Fig. 22) aux composantes A_g du mode de valence asymétrique v_3 . Les raies à 796 et 816 aux composantes B_g de ce mode.

- La raie à 426 cm⁻¹ aux composantes A_g et B_g du mode de déformation symétrique de $Br0_3^-$, v_2 .

- Les raies à 368 et 379 cm⁻¹ aux composantes A_g et B_g du mode de déformation asymétrique de $Br0_3^-$, v_4^- .

A basse température, on met aussi en évidence une raie à 365 cm^{-1} (Fig. 22) qui est certainement la composante A_g ou B_g ou les composantes A_gB_g de ce mode.

Modes externes :

Le dénombrement des modes externes dûs aux vibrations de réseau des ions Ba^{++} et $Br0_3^-$ donne 7 A_g + 7 A_u + 8 B_g + 8 B_u dont les modes acoustiques A_u + 2 B_u . On attend donc en diffusion Raman seulement les 7 A_g + 8 B_g . Les spectres Raman de basse fréquence du bromate de baryum hydraté et deutérié à 300 K et 77 K sont complexes (Fig. 23 et 24) car le nombre des raies dans ce domaine est important.

Cependant, on peut, à partir des mesures de taux de dépolarisation, des glissements de fréquence et des modifications de profil des raies en fonction de l'abaissement de température, proposer certaines attributions.

- 43.

En général, les fréquences des raies de diffusion Raman dues aux vibrations moléculaires dépendent de la température : elles augmentent lorsque la température diminue ; tandis que les vibrations de translation sont faiblement affectées par la température (35). On explique qualitativement ce phénomène par le fait que les molécules se rapprochent les unes des autres lorsque la température diminue. Les constantes de rappel des librations deviennent plus importantes donc leurs fréquences augmentent.

De plus, si l'on se reporte aux tableaux de corrélation utilisés pour le dénombrement des modes externes, on remarque que les translations et librations de l'ion BrO_3^- donnent lieu à 6 massifs composés de 2 composantes d'espèce différente A_g et B_g . Les translations de l'ion Ba⁺⁺ donnent pour leur part 3 raies simples ($A_g + 2 B_g$).

Nous attribuons, en tenant compte de ce qui précède :

	- 129	ΛR
	137	^A g' ^D g
	- 151	ΛR
•	157	ſġ, ġ
	- 169	ΛΡ
	180	^A g' ^b g
	f - 65	

Librations de $Br0_3^-$

Translations de $Br0_{2}$

- 44.

-	- 73 77	^A g, ^B g ^A g, ^B g
•	- 104 109	Ag, B _g
+ 4	- 40 122	Ag + 2
		-

2 B_a

Translations de Ba⁺⁺

MODES DE VIBRATION DE LA MOLECULE D'EAU :

A l'état condensé , ou dans un solide hydraté, la molécule d'eau fait partie d'un ensemble plus ou moins rigide. Dans ce cas, outre les vibrations internes de la molécule, on prévoit trois oscillations de translations et trois oscillations correspondant aux torsions autour des trois axes d'inertie.

Modes internes :

Sur la figure 25, est représenté le spectre des modes internes de la molécule d'eau. On observe :

	3509	Bg
V - UH	3443	Ag
δ Н-0- Н	1586	cm^{-1}

On retrouve les vibrations de valence dans le produit deutéré à :

> 2599 cm^{-1} 2550 cm^{-1} v^{-0-D}

Modes de librations :

En spectroscopie Raman les modes de libration de l'eau apparaissent dans le domaine $300-900 \text{ cm}^{-1}$ et donnent lieu en général à des bandes larges d'intensité très faible. Dans notre cas, nous n'observons pas de mode de libration de l'eau pour le bromate de baryum. Les raies très faibles de libration sont peut-être masquées par les modes internes beaucoup plus intenses de l'ion bromate.

Modes de translations :

Dans le domaine 0-250 cm⁻¹, se situent tous les modes de réseau. Les fréquences intéressantes sont 244 et 225 cm⁻¹ (Fi. 24) que

l'on retrouve à 235 et 215 cm⁻¹ dans le produit deutéré et qui ne figurent pas dans le spectre du bromate de baryum anhydre. Le faible déplacement isotopique $\frac{\nu H}{\nu D}$ = 1,06 montre qu'il s'agit des translations de la molécule d'eau. Deux raies dans le même domaine ont reçu une attribution identique dans le cas du chlorate de baryum monohydraté (13).

III.2 - LE BROMATE DE BARYUM ANHYDRE.

Le bromate de baryum peut être deshydraté facilement. Il perd son eau à 170°C et ne commence à se décomposer que vers 260°C. La réaction principale de la décomposition donne la formation de bromure du métal et un dégagement d'oxygène (36). Un peu de brome est aussi perdu par une réaction secondaire.

La préparation du produit anhydre est effectué à partir du bromate de baryum hydraté que l'on place dans une étuve maintenue à 120°C durant une journée. On obtient un produit pulvérulent, blanc, dont la pureté est contrôlée par un dosage sur le baryum.

III.2.1 - Etude par spectrométrie Raman Laser Rapide de la deshydratation :

Nous avons suivi la deshydratation du bromate de baryum par spectrométrie Raman Laser Rapide. La figure 26 montre les spectres obtenus avec l'enregistreur à déroulement rapide de papier, lorsque l'on chauffe le produit. Le domaine spectral balayé se situe entre 700 et 900 cm^{-1%}qui correspond aux modes internes les plus intenses du bromate de baryum.

De la température ambiante à 120° C le spectre reste identique. Entre 120° C et 170° C, on observe des modifications importantes. On retrouve entre 170° C et 250° C le spectre du produit fondu avec une raie intense à 800 cm^{-1} et une autre plus faible vers 830 cm^{-1} . Au dessus de 250° C le produit se décompose, violemment parfois.

Fig:27

Ba(BrO₃)₂ Etude en température

Bť

Une étude similaire effectuée avec le produit anhydre (Fig. 27) montre que le spectre ne subit aucune modification jusqu'à 160°C. Entre 165°C et 250°C, on retrouve le spectre du produit fondu, qui se décompose si l'on continue à élever la température. La perte de la molécule d'eau semble donc modifier fortement le spectre Raman du bromate de baryum et il est intéressant d'effectuer une étude par spectrométrie Raman du produit anhydre.

III.2.2 - Spectre Raman du bromate de baryum anhydre.

L'interprétation du spectre Raman de $Ba(BrO_3)_2$ est délicate car nous ne disposons que du produit polycristallin dont nous ne connaissons pas la structure cristalline. Cependant, ces spectres sont de très bonne qualité et toutes les raies bien résolues (Fig. 28, 29, 30).

Si la structure cristalline du bromate de baryum anhydre est différente de celle du produit monohydraté, nous ne pouvons pas proposer de dénombrement car les groupes facteur possibles sont trop nombreux dans les systèmes cristallins compatibles de type rhomboédrique, hexagonal et cubique.

Comme le groupe moléculaire de l'ion BrO_3^- est C_{3v}^- les seuls sites possibles pour les atomes de brome sont :

$$C_{3v}$$
, C_{3} , C_{s} et C_{1}

Or, si l'on admet que la deshydratation ne change pas le système cristallin du composé, les sites compatibles sont C_s et C_1 pour les groupes d'espace.

 c^{1}_{2h} c^{2}_{2h} c^{3}_{2h} c^{1}_{S} et c^{3}_{S}

et uniquement ${\rm C}_1$ pour les autres groupes d'espace de ce système cristallin.

- 47.

BUS

L'éclatement en deux composantes principales distantes de 10 cm^{-1} en moyenne de certaines raies correspondant à des modes internes non dégénérés de l'ion isolé ne peut être expliqué par un effet de site ou de couplage intermoléculaire. L'explication que l'on peut avancer est que les ions BrO_3^- occupent des sites de symétrie différente. En effet, l'environnement des ions soumis au champ cristallin, étant propre à chaque site, provoque des glissements de fréquence différents. Comme les intensités relatives observées des composantes principales de chaque doublet sont du même ordre de grandeur, nous admettons que la répartition est identique dans deux sites. Si le nombre de molécules par maille est conservé, les ions BrO_3^- occupent alors deux sites de multiplicités ne sont pas compatibles, et les groupes d'espace qui ne possèdent pas à la fois les sites C_s et C₁.

Nous examinons successivement le cas où nous conservons le groupe facteur $\rm C_{2h}$ et celui où il est différent.

- Dans le premier cas, nous avons reporté sur le tableau III.2 le dénombrement des modes internes obtenu en plaçant les ions BrO_3^- dans des sites C_1 et C_S . Chaque vibration de type A_1 de l'ion isolé éclate en trois composantes : (2 $A_g + B_g$). Chaque vibration de type E de l'ion isolé éclate en six composantes : (3 $A_g + 3 B_g$).

Dans le domaine des vibrations de valence nous attendons donc au total neuf composantes (5 A_g + 4 B_g); dans celui des vibrations de déformation symétrique, trois composantes (2 A_g + B_g) et dans celui des vibrations de déformation asymétrique six composantes (3 A_g + 3 B_g).

Ce dénombrement est compatible avec le nombre de raies observées.

- L'hypothèse d'un changement d'un groupe facteur dans le même système cristallin n'est possible qu'avec les groupes d'espace

- 48.

Tableau III.3

$$A_1 \longrightarrow A'$$
$$E \longrightarrow A' + A''$$

A₁→ 2 A' + A" E ----> 3 A' + 3 A"

$$A_1 \longrightarrow A' + A''$$
$$E \longrightarrow 2 A' + 2 A''$$

 C_{S}^{1} et C_{S}^{2} . Dans ce cas, le dénombrement des modes internes que nous avons illustré sur le tableau III.3 donne :

- . pour chaque vibration de type A₁ de l'ion isolé :
 3 composantes (2 A' + A").
- . pour chaque vibration de type E de l'ion isolé : 6 composantes (3 A' + 3 A").

On prévoit donc 9 composantes (5 A' + 4 A") dans le domaine des vibrations de valence, 3 composantes (2 A' + A") dans le domaine des vibrations de déformation; symétrique de $Br0_3^-$ et 6 composantes (3 A' + 3 A") dans le domaine des vibrations de déformation asymétrique.

Nous aboutissons à un résultat similaire à celui du premier cas.

 Nous avons rassemblé dans le tableau III.4 les résultats obtenus pour le bromate de baryum anhydre. Les fréquences des raies à 300 et 77 K y sont reportées.

Le spectre des modes externes présente certaines analogies avec celui du bromate de baryum monohydraté.

On observe trois massifs de deux composantes (127 131, 152 157, 181 189 cm⁻¹) qui glissent fortement avec la température et dont les fréquences sont proches de celles des librations de BrO_3^- que nous avons attribuées pour le bromate monohydraté. Par contre, pour les modes de translation de BrO_3^- on n'obtient pas de massifs dédoublés mais des raies simples à des fréquences pratiquement identiques (65, 73, 110 cm⁻¹).

Ces remarques tendent à confirmer notre hypothèse que la structure cristalline du bromate de baryum anhydre est monoclinique comme celle du produit hydraté.

:	Ba (BrO ₃) ₂		: : Attributions	
: : 300 К		77 K		
:	62	65		
E :	72 :	73	: :	
x	91	93		
т :	108	110	:	
· ·	126	127		
E :	••••	131	:	
R	148	152	•	
N :	151 :	157	• •	
•	• • •	171	:	
E :	183	181	:	
S :	• • •	189		
:	365	366	<u>)</u>	
:	372 :	373	Déformation	
:	386	387	v_A asymétrique Br0 ₃	
т :	396	397		
1 :		•••		
N	426 ? :	428 ?	: Déformation	
ті	437	440	$\frac{1}{2}$ v ₂ symétrique Br0 $\frac{1}{3}$	
E	452	454		
R		766		
N	775	775		
•		782		
E :	790	791	: v_1 Vibrations	
s :	798	798	+ de	
:	805	806	: v ₃ Valence Br-0	
•	808	809		
•	817	821	:	
•	· · · ·	~	J	

- 51.

Tableau 111.4

111.3 - LE BROMATE DE STRONTIUM MONOHYDRATE.

Le bromate de strontium est isomorphe du bromate de baryum. Il cristallise de sa solution aqueuse en cristaux monochimiques monohydratés. Les paramètres cristallographiques sont :

a = 1,1612
b = 1
c = 1,2356

Il est donc très intéressant de comparer son spectre Raman avec celui déjà étudié du bromate de baryum.

Le produit utilisé pour les études spectroscopiques est une poudre obtenue par électrolyse d'une solution de bromure de strontium purifiée par recristallisations successives en milieu aqueux.

III.3.1 - Spectre Raman du bromate de strontium :

Les spectres Raman du bromate de strontium présentent de grandes similitudes avec ceux du bromate de baryum (Fig. 31, 32). On observe le même nombre de modes internes et les seules différences sont des écarts en fréquence. Le spectre des modes externes est de moins bonne qualité mais les analogies avec le bromate de baryum sont nombreuses.

Modes internes :

Dans le domaine 750-850 cm⁻¹, nous attendons les modes de vibration de valence de BrO. Par analogie avec le bromate de baryum, nous attribuons :

- la raie la plus intense à 778 $\rm cm^{-1}$ à la composante A du mode de valence symétrique, v_1 ;

- la composante B_{d} de ce mode à 754 cm⁻¹;

- 52.

- les raies à 797 et 840 $\rm cm^{-1}$ aux composantes $\rm A_g$ du mode de valence asymétrique, ν_3 ;

- les raies à 797 et 829 cm⁻¹ aux composantes B_q de ce mode.

Dans le domaine 350-450 $\rm cm^{-1}$ se situent les modes de déformation de $\rm Br0_3^-,$ nous attribuons :

- la raie à 434 cm $^{-1}$ aux composantes A_g et B_g du mode de déformation symétrique de Br03, ν_2 ;

- les raies à 368 et 389 cm⁻¹ aux composantes A_g et B_g du mode de déformation asymétrique de $Br0_3^-$, v_4^- .

Modes externes :

Les raies qui composent le spectre de basse fréquence du bromate de strontium sont moins intenses que dans le cas du bromate de baryum. Cependant, en tenant compte des glissements des raies en fonction de la température et de l'attribution déjà faite pour le bromate de baryum, nous proposons :

Librations Br0 ₃	$ \left\{\begin{array}{c} 160 \text{ cm}^{-1} \\ 180 \text{ cm}^{-1} \\ 193 \text{ cm}^{-1} \\ 205 \text{ cm}^{-1} \end{array}\right. $
Translations Br0 ₃	$\begin{cases} 73 \text{ cm}^{-1} \\ 76 \text{ cm}^{-1} \\ 89 \text{ cm}^{-1} \\ 110 \text{ cm}^{-1} \\ 118 \text{ cm}^{-1} \end{cases}$
Translations Sr ²⁺	$\begin{cases} 37 \text{ cm}^{-1} \\ 139 \text{ cm}^{-1} \end{cases}$

111.3.2 - Modes de vibration de la molécule d'eau :

Dans la région 1500 cm⁻¹ - 3600 cm⁻¹ se trouvent les modes internes de la molécule d'eau.

Les deux raies à 3374 et 3436 cm⁻¹ correspondent aux deux composantes de la vibration de valence v-OH et la raie à 1643 cm⁻¹ à la vibration de déformation δ -OH.

Dans le domaine des basses fréquneces, on retrouve comme pour le bromate de baryum deux raies faibles à 220 et 238 $\rm cm^{-1}$ que nous attribuons à des modes de translation de l'eau.

De plus, dans le domaine 300-900 cm⁻¹, on observe surtout à basse température des bandes larges à 350 cm⁻¹, 490 cm⁻¹ et 670 cm⁻¹ qui peuvent correspondre à des rotations génées de la molécule d'eau.

Ceci pourrait laisser penser que l'eau est moins liée que dans le cas du bromate de baryum.

Tous les résultats pour le bromate de stontium sont résumés dans le tableau III.5.

-00000-

	Sr (BrO ₃ 300 K	3) _{2,} H ₂ Ο 77Κ	Attributions
EXTERNES	40 71 87 107 115 137 153 167 195	37 73 76 89 110 118 139 160 180 193 205	translation Sr ⁺⁺ translations de BrO ₃ translation Sr ⁺⁺ librations de BrO ₃
	222	225 238	translations H ₂ O
Н N T	368 389 434 754	368 391 435 751	Ag, Bg Ag, Bg A
E R N E	778 797 829 840	778 797 833 845	Ag Ag Ag Bg Ag Ag Ag Ag Ag Ag Ag Ag Ag A
S	1643 3374 3436		Ag & H-O-H Ag Bg → O-H Bg

Tableau III 5

- 55.

CHAPITRE IV

LES BROMATES HEXAHYDRATES

- INTRODUCTION.

IV.1 - LE BROMATE DE ZINC HEXAHYDRATE.

IV.I.1 - Caractéristiques structurales du bromate de zinc hexahydraté.

IV.I.2 - Dénombrement des modes normaux de vibration.

IV.I.3 - Spectre Raman du bromate de zinc hexahydraté.

IV.2 - LE BROMATE DE MAGNESIUM HEXAHYDRATE.

-00000-

- . CHAPITRE IV . -

LES BROMATES HEXAHYDRATES

INTRODUCTION :

Ce dernier chapitre est consacré aux bromates hexahydratés. Dans ces composés, l'anion est pyramidal et le cation entouré par les 6 molécules d'eau octaédrique.

Nous étudions plus particulièrement les bromates de zinc et magnésium qui ont la même structure cristalline, c'est-à-dire cubique. Ces produits ont été préparés par la méthode dite "d'échange de cations" à partir du bromate de baryum. Bien que ne disposant que des échantillons polycristallins, nous proposons une attribution de leur spectre Raman car comme nous le montrons dans le début de ce chapitre, le dénombrement des modes normaux de vibration laisse prévoir un faible nombre de modes internes et un spectre de basse fréquence peu complexe. Cependant, ce travail ne sera complet que lorsque nous pourrons obtenir des monocristaux permettant d'effectuer une étude spectroscopique complémentaire.

IV.I - LE BROMATE DE ZINC HEXAHYDRATE.

IV.I.1 - Caractéristiques structurales de $Zn_{BrO_3}_{2,-6}H_2O$:

Le bromate de zinc hexahydraté cristallise dans le groupe d'espace cubique T_h^6 (P a 3) avec 4 molécules par maille (37). Le côté de la maille est :

$$a_{0} = 10,316 \text{ \AA}$$

Les éléments occupent les positions suivantes :

Zn \longrightarrow 4 a ce qui correspond à un site S₆ Br \longrightarrow 8 c ce qui correspond à un site C₃ 0 et H₂0 \longrightarrow 24 d ce qui correspond à un site C₁

Cette structure correspond à des groupements Zn $(H_2^0)_6^{++}$ octaédriques et des pyramides trigonales pour $Br0_3^-$.

Les principales distances entre éléments de la maille sont :

 $Zn - H_20$ 2,11 Å0 - 02,44 ÅBr - 01,54 Å $0 - H_20$ 2,722,74 Å

IV.I.2 - Dénombrement des modes normaux de vibration :

A l'état isolé, l'ion bromate est pyramidal et appartient au groupe de symétrie C_{3v} . Sa représentation totalement réduite s'écrit :

$$\Gamma_{v} = 2 A_{1} + 2 E$$

Nous effectuons le dénombrement des modes normaux de vibration dans le cristal, par analyse du groupe facteur selon la méthode du site de HALFORD.

Modes internes :

Les ions $Br0_3^-$ occupent des sites C_3^- dans le cristal. Il faut, pour dénombrer les modes internes utiliser la corrélation :

Modes externes :

Dans le cristal, les ions $Br0_3^-$ occupent des sites C_3^- et les ions Zn $(H_2^-0)_6^{++}$ des sites S_6^- .

Nous utilisons, pour dénombrer les modes externes, les 2 tableaux de corrélation suivants :

 $\frac{Translations}{2n (H_2^0)_6^{++} \text{ occupe des sites } S_6}$ $T_x + T_y \longrightarrow E_u + F_u \text{ soit au total } : A_u + E_u + 2 F_u$ $T_z \longrightarrow A_u + F_u$

 $Br0_3^-$ occupe des sites C_3

$$T_{x} + T_{y} \longrightarrow E_{g} + F_{g} + E_{u} + F_{u} \quad \text{soit au total :}$$

$$T_{z} \longrightarrow A_{g} + F_{g} + A_{u} + F_{u} \qquad A_{g} + E_{g} + 2F_{g} + A_{u} + E_{u} + 2F_{u}$$

Le mode acoustique F_u donné par la table de caractères du groupe facteur T_h doit être retranché, ce qui donne au total pour les translations :

Ag	+ E _g	+ 2 F _g	+ 2 A _u	+ 2 E _u	+ 3 F _u
(R)	(R)	(R)	(IR)	(IR)	(IR)

Librations :

Zn $(H_20)_6^{++}$ occupe des sites S_6 $R_x + R_y \longrightarrow E_g + F_g$ soit au total : $A_g + E_g + 2 F_g$ $R_z \longrightarrow A_g + F_g$ Br 0_3^- occupe des sites C_3 $R_x + R_y \longrightarrow E_g + F_g + E_u + F_u$ soit au total : $R_z \longrightarrow A_g + F_g + A_u + F_u A_g + E_g + 2F_g + A_u + E_u + 2F_u$

Pour les librations, on a donc :

$$2 A_{g} + 2 E_{g} + 4 F_{g} + A_{u} + E_{u} + 2 F_{u}$$

En résumé, le spectre de diffusion Raman des modes externes du bromate de zinc doit comporter 12 raies :

parmi lesquels 4 modes $(A_g + E_g + 2 F_g)$ sont des librations du groupement Zn $(H_2^0)_6^{++}$.

IV.1.3 - Spectre Raman du bromate de zinc hexahydraté :

Une étude I.R. de bromates anhydres et hydratés a été publiée par C. ROCCHICCIOLI (22). L'étude des bandes de l'eau dans les bromates de zinc et magnésium hexahydratés et partiellement deshydratés, y est présentée, ainsi que leur spectre I.R. entre 300 et 4000 cm⁻¹. Pour notre part, nous avons réalisé le spectre Raman du bromate de zinc hexahydraté en utilisant le triple monochromateur afin d'obtenir le spectre de basse fréquence pour cet échantillon polycristallin. Nous discuterons successivement des modes internes et externes de Zn $(BrO_3)_2$, 6 H₂O, puis des modes de vibration de l'eau.

Modes internes :

A partir du dénombrement effectué au début de ce chapitre, nous avons vu que chaque vibration de type A_1 de l'ion isolé donne 2 composantes ($A_g + F_g$) dans le cristal, et chaque vibration de type E, 2 composantes ($E_a + F_g$).

Pour le cristal, nous attendons :

- dans le domaine des vibrations de valence 750-850 cm⁻¹, 4 raies ($A_q + E_q + 2 F_q$);
- dans le domaine de la vibration de déformation symétrique 410-400 cm⁻¹, 2 raies $A_a + F_a$;
- dans le domaine de la vibration de déformation asymétrique 350-400 cm⁻¹, 2 raies $E_a + F_a$.

Sur les figures 33, 34, sont représentés les spectres des modes internes de -Zn $(BrO_3)_2$, 6 H₂O à température ambiante et à 77 K. Nous attribuons :

- la raie la plus intense à 795 $\rm cm^{-1}$ à la composante A du mode de valence symétrique, $\nu_1.$

La raie à 817 cm⁻¹ a une composante du mode de valence asy-métrique, v_3 .

Dans ce domaine, on observe également 3 raies très faibles à 768, 776 et 783 cm⁻¹ que nous ne pouvons attribuer avec certitude (Fig. 34).

- la raie à 427 cm $^{-1}$ aux composantes ${\rm A}_g$ et ${\rm F}_g$ du mode de déformation symétrique, ${\rm v}_2$;
- la raie à 369 cm⁻¹ aux composantes E_g et F_g du mode de déformation asymétrique, v_A .

Modes externes :

Le spectre des modes externes est composé des modes de libration de $Br0_3^-$ (2 massifs de 2 composantes), des modes de translations de $Br0_3^-$ (2 doublets) et des modes de librations de Zn^{++} , 6 H₂0 (2 doublets).

A partir des spectres obtenus à température ambiante et basse température, nous attribuons les raies les plus intenses à 134 et 137 cm⁻¹ aux librations de BrO_3^- ainsi que la raie à 118 cm⁻¹ (Fig. 35, 36).

Les raies à 62, 79, qui glissent peu avec la température, aux translations de BrO_3^- .

Enfin, la raie simple à 163 cm⁻¹ qui donne 4 composantes à basse température (169, 174, 180, 187 cm⁻¹) (Fig. 36) est attribuée aux librations du groupement Zn^{++} , 6 H₂0.

	: : Zn (Br0 ₃) ₂ , 6 H ₂ 0		: Attributions
	300 K	77 K	
	58	62	Translations
_	. 74	: 79	
E	83	• • •	: 3
Х	:	• •	
Т	••••	118	: librations
~	: 127	: 134	Br0
£	:	137	
R	•	- • •	
N	163	169	
F	:	: 174	: Librations
, ک		180	Zn ⁺⁺ , 6 H ₂ 0
S	:	: 187	:
	•		
	: 222	229	: Translations
	258	265	H ₂ 0
	·	·	Déformation
T	: 369	: 375	asymétrique Br0_
1	:		Défeumation
N	: 427	434	
Т	:		: J symetrique bro ₃
F	: 769	. 768	
-	•	776	:
R	. 783	. 783	· · · · · · · Valanca
N	795	796	$\begin{bmatrix} v_1 + v_3 \text{ varence} \\ Bn \Theta \end{bmatrix}$
F			י עיַ וע י
-	817	820	
S			:
	3250		: : v -0H
	: 3415		
			:

Tableau IV.1

Modes de vibrations de la molécule d'eau :

Dans le domaine des modes internes, on observe une bande large avec un maximum à 3250 cm^{-1} attribuable à la vibration de valence ν - OH -

De plus, dans le domaine des basses fréquences, 2 raies à 229 et 265 cm⁻¹ plus intenses que dans le cas de Ba $(BrO_3)_2$, H₂O, peuvent être les translations de la molécule d'eau (Fig. 34).

Toutes ces attributions pour le bromate de zinc sont résumées dans le tableau IV.1.

IV.2 - LE BROMATE DE MAGNESIUM.

Ce composé est isomorphe du bromate de zinc et cristallise dans le système cubique. Les spectres Raman de ce produit sont très semblables à ceux du bromate de zinc, ce qui confirme l'identité des structures cristallines (Fig. 37, 38).

Nous pouvons faire une attribution basée sur les mêmes critères que précédemment et nous la résumons dans le tableau IV.2.

Nous pouvons cependant faire quelques remarques :

- A basse température, les raies correspondant aux composantes des modes de déformation de BrO_3^- se dédoublent en deux composantes 429 - 435 cm⁻¹ et 371 - 376 cm⁻¹ (Fig. 37), ce que le dénombrement théorique prévoit ;

- en basse fréquence, les 2 raies les plus intenses attribuables aux librations de $Br0_3^-$ sont mieux séparées (Fig. 38), ainsi que les 2 autres composantes à 116 et 124 cm⁻¹;

۵_\cm⁻¹ 821 768 775 783 796 Mg (BrO₃)₂ , 6H₂O 77K modes internes Ş 435 Fig:37 361 371 376 BUS ł

	Mg (Br0 ₃) ₂ , 6 H ₂ 0		
: : 	300 K	77 K	Attributions
	56	61	Translations
	69	76	Br0
Ε	79	85	:]
X		116	Ϋ́Υ
т		124	: librations
	: 127	132	Br0-
E		137	: 3
R		:	
N	162	160	
-		171	
Ł		185	Mg (6 H ₂ 0)
S			:
	221	229	: Translations
	260	267	H ₂ 0
	· · · ·	361	
	369	371	V4 Deformation
т		376	asymetrique Bru ₃
1	•		
N	430	429	ν_{2} Déformation
Т		435	: symétrique Br0 ₂
F	•		· · · · · · · · · · · · · · · · · · ·
L	769	768	
R	776	775	Valence
N	782	783	$\begin{array}{c c} & \text{varence} \\ \vdots \\ y_{1} + y_{2} + Rr_{-} \\ \end{array}$
F	796	796	
-	816	821	J
2	3280		
	· 3470		v - OH

Tableau IV.2

- les librations du groupement Mg^{++} , 6 H_2^0 , donnent à basse température, 2 composantes principales plus intenses que dans le cas du bromate de zinc.

On retrouve également les 2 raies à 229 et 267 $\rm cm^{-1}$ que nous avons attribuées aux translations de l'eau.

-00000-

- . CONCLUSION . -

Dans le premier chapitre, nous avons montré qu'il est possible de suivre la préparation de nos échantillons par spectométrie Raman Laser Rapide. Cette technique permet de mettre en évidence les différentes étapes d'une réaction chimique évolutive, et en concevant des cellules adaptées, de suivre une réaction électrochimique.

L'étude spectroscopique nous a permis de préciser certaines attributions pour le bromate de sodium.

Nous avons ensuite étudié le bromate de baryum monohydraté et interprété son spectre Raman. La deshydratation de ce produit a été suivie par spectroscopie Raman Laser Rapide et nous avons essayé, à partir du spectre Raman du bromate de baryum anhydre, de proposer une structure cristalline. Par analogie avec le bromate de baryum hydraté, nous avons attribué le spectre Raman du bromate de strontium qui possède la même structure cristalline.

Enfin, nous proposons une attribution pour les spectres Raman de deux bromates hexahydratés.

A partir de ces premiers résultats, on peut prévoir une extension dans différentes directions :

- Dans le cas des bromates hexahydratés, l'étude spectroscopique ne sera complète que lorsque nous disposerons des monocristaux de bonne qualité. De plus, comme ces composés peuvent se deshydrater partiellement, sans se décomposer, pour donner les dihydrates correspondants, l'étude des différents stades de cette deshydratation par spectroscopie Raman Laser Rapide, que nous avons commencée à entreprendre, doit être intéressante ;

- une étude complémentaire par spectroscopie Infrarouge devrait nous permettre de compléter les travaux entrepris sur différents bromates ;

- enfin, l'emploi de la spectrométrie Raman pour l'étude de réactions électrochimiques, ouvre une voie nouvelle car cette technique d'analyse semble particulièrement bien adaptée à ce type d'études. Sans perturber le milieu, les espèces en présence dans le milieu réactionnel peuvent être déterminées à tout moment. C'est surtout au niveau des électrodes que l'on peut espérer obtenir de nouveaux renseignements.

-00000-

- . BIBLIOGRAPHIE . -

- F. WALLART Thèse d'Etat, Lille 1970.
- 2) R. DEMOL D.E.S., Lille 1974.
- R. SCHOLDER, K. KRAUS
 Z.Anorg.Chem. 268, 279, 1952.
- R.M. CHAPIN
 J.Amer.Chem.Soc., 56, 2211, 1934.
- 5) H.A. KIEBHAFSKY, B. MAKOWER J.Phys.Chem., 37, 1037, 1933.
- 6) C.F. PRUTTON, S.H. MARON J.Amer.Chem.Soc., 57, 1652, 1935.
- 7) A. SKRABAL
 Z. Electrochemie, 40, 232, 1934 48, 314, 1942.
- P. ENGEL, A. OPLATKA, B. PERLMUTTER-HAYMAN J.Amer.Chem.Soc., 76, 2010, 1954.
- 9) G. FLEURY
 C.R.Acad.Sc.Paris, 171, 957, 1920.
- B. SOMBRET, F. WALLART
 C.R.Acad.Sc.Paris, 277, 663, 1973.

- M. DELHAYE, P. DHAMELINCOURT, J.C. MERLIN, F. WALLART C.R.Acad.Sc.Paris, 272 B, 1003, 1971.
- 12) D.W. PEARCE, R.G. RUSSELL Inorg. Synth. 2, 20, 1946.
- J.E. BERTIE, A.M. HEYNS, O. OEHLER Can. J. Chem., 51, 2775, 1973.
- 14) G.J. METCALFHawker Siddeley Technical Journal, 1959.
- B.M. BULYGIN
 Zhurn Prikl Khim., 31, 1832, 1958.
- 16) SARGHELZ. Electrochemie, 6, 149, 1899.
- 17) S.T. SHEN, Y.T. YAO, T.Y. WUPhys. Rev., 51, 235, 1937.
- 18) M. ROLLA Gazz. Chim. Ital., 69, 779, 1939.
- 19) A. ROUSSET, J. LAVAL, R. LOCHET C.R.Acad.Sc.Paris, 216, 886, 1943.
- 20) L. COUTURE, J.P. MATHIEU Ann. Phys., 12, 521, 1948.
- 21) H. POULET Ann. Phys., 10, 908, 1955.

- 22) R. ROCCHICCIOLI C.R.Acad.Sc.Paris, 249, 236, 1959.
- 23) M. GALTIER, J. BARCELO, C. DELOUPY C.R.Acad.Sc.Paris, 265 B, 1322, 1967.
- 24) A. MONTANER, R. DUVERNEY, M. GALTIER J. Mol. Struct, 4, 326, 1969.
- 25) G.M. HARTWIG, D.L. ROUSSEAU, S.P. PORTO Phys. Rev., 188, 1328, 1969.
- 26) P.J. MILLER, R.K. KHANNA Spectrochim. Acta, 27 A, 929, 1971.
- 27) A. D'ENDREA, B. FORNARI, G. MATTEI, M. PAGANNONE, M. SCROCCO Phys. Stat. Sol. (B), 53, 577, 1972.
- 28) B.J. BERENBLUT, B. DAWSON, P. MORSE, G.R. WILKINSON J. Ram. Spec., 1, 523, 1973.
- 29) R.W. WYKOFF Crystal Structures, 2 chap. 7, 381, 1957.
- 30) B.J. GARDINER, R.B. GIRLING, R.E. MESTER J. Mol. Struct., 13, 105, 1972.
- 31) LOUDON The Raman effect in crystals. Adv. Phys. 13, 423 (1964).
- 32) R.H. LYDDANE, R.G. SACHS, E. TELLER Phys. Rev., 59, 673, 1941.
- 33) S.P. PORTO, G.J.A. CORDMAINE, T.C. DAMIEN Phys. Rev., 147, 608, 1966.

- 34) GOPINATH, G. KARTHAProc.Ind.Acad.Sci.Sect. A, 38, 1, 1953.
- 35) G. DUMAS Spect. Acta., 30 A, 1623, 1973.
- 36) HACKSPILL, WINTERER
 C.R.Acad.Sc.Paris, 191, 663, 1930.
- 37) R.W.G. WYKOFF Crystal Structures, 3, 1957.

-00000-

