

Nº d'ordre : 363

50376 1976 108

THESE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR ES SCIENCES PHYSIQUES.

par

Pierre BARBIER

DERIVES DES ACIDES DE LEWIS ETUDES CHIMIQUE ET STRUCTURALE DU CHLOROALUMINATE DE NITROSYLE

Soutenue le 9 Octobre 1976, devant la COMMISSION D'EXAMEN

Membres du Jury :

M. J. HEUBEL
M. P. HAGENMULLER
M. M. DELHAYE
M. D. THOMAS
M. G. SEGUIER
M. F. BAERT

Président Rapporteur Rapporteur Rapporteur Examinateur Examinateur

NIVERSITE DES SCIENCES T TECHNIQUES DE LILLE

01.02.1976

.../...

DOYENS HONORAIRES de l'Ancienne Faculté des Sciences

MM. R. DEFRETIN, H. LEFEBVRE, M. PARREAU.

PROFESSEURS HONORAIRES des Anciennes Facultés de Droit

et Sciences Economiques, des Sciences et des Lettres

M. ARNOULT, Mme BEAUJEU, MM. BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P. GERMAIN, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOUGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, MM. LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, NORMANT, PEREZ, ROIG, ROSEAU, ROUBINE, ROUELLE, SAVART, WATERLOT, WIEMAN, ZAMANSKI.

PRESIDENTS HONORAIRES DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. J. LOMBARD.

PROFESSEURS TITULAIRES

Μ.	BACCHUS Pierre	Astronomie
Μ.	BEAUFILS Jean-Pierre	Chimie Physique
Μ.	BECART Maurice	Physique Atomique et Moléculaire
Μ.	BILLARD Jean	Physique du Solide
Μ.	BIAYS Pierre	Géographie
Μ.	BONNEMAN Pierre	Chimie Appliquée
Μ.	BONNOT Ernest	Biologie Végétale
Μ.	BONTE Antoine	Géologie Appliquée
Μ.	BOUGHON Pierre	Algèbre
Μ.	BOURIQUET Robert	Biologie Végétale
Μ.	CELET Paul	Géologie Générale
Μ.	CONSTANT Eugène	Electronique
M	DECUYPER Marcel	Géométrie
Μ.	DELATTRE Charles	Géologie Générale
Μ.	DELHAYE Michel	Chimie Physique
Μ.	DERCOURT Michel	Géologie Générale
М.	DURCHON Maurice	Biologie Expérimentale
Μ.	FAURE Robert	Mécanique
Μ.	FOURET Rebé	Physique du Solide
М.	GABILLARD Robert	Electronique
м	GLACET Charles	Chimie Organique
Μ.	GONTIER Gérard	Mécanique
М.	GRUSON Laurent	Algèbre
Μ.	GUILLAUME Jean	Microbiologie
Μ.	HEUBEL Joseph	Chimie Minérale
Μ.	LABLACHE-COMBIER Alain	Chimie Organique
Μ.	LANSRAUX Guy	Physique Atomique et Moléculaire
Μ.	LAVEINE Jean-Pierre	paléontologie
М.	LEBRUN André	Electronique
И.	LEHMANN Daniel	Cométai
		Geometrie

Mme	LENOBLE Jacqueline
Μ.	LINDER Robert
Μ.	LOMBARD Jacques
Μ.	LOUCHEUX Claude
Μ.	LUCQUIN Michel
Μ.	MAILLET Pierre
Μ.	MONTARIOL Frédéric
Μ.	MONTREUIL Jean
Μ.	PARREAU Michel
Μ.	POUZET Pierre
Μ.	PROUVOST Jean
Μ.	SALMER Georges
Μ.	SCHILTZ René
Mme	SCHWARTZ Marie-Hélène
Μ.	SEGUIER Guy
Μ.	TILLIEU Jacques
Μ.	TRIDOT Gabriel
Μ.	VIDAL Pierre
Μ.	VIVIER Emile

- M. WERTHEIMER Raymond
- M. ZEYTOUNIAN Radyadour

Μ.	BELLET Jean
Μ.	BODARD Marcel
Μ.	BOILLET Pierre
Μ.	BOILLY Bénoni
Μ.	BRIDOUX Michel
Μ.	CAPURON Alfred
Μ.	CORTOIS Jean
Μ.	DEBOURSE Jean-Pierre
Μ.	DEPREZ Gilbert
Μ.	DEVRAINNE Pierre
Μ.	GOUDMAND Pierre
Μ.	GUILBAULT Pierre
Μ.	LACOSTE Louis
Mme	LEHMANN Josiane
Μ.	LENTACKER Firmin
Μ.	LOUAGE Francis
Mle	MARQUET Simone
Μ.	MIGEON Michel
Μ.	MONTEL Marc
Μ.	PANET Marius
Μ.	RACZY Ladislas
Μ.	ROUSSEAU Jean-Paul
М	SI IWA Henri

Biologie et Physiologie Végétales Sociologie Chimie Physique Chimie Physique Sciences Economiques Chimie Appliquée Biochimie Analyse Analyse Numérique Minéralogie Electronique Physique Atomique et Moléculaire Géométrie Electrotechnique Physique Théorique Chimie Appliquée Automatique Biologie Cellulaire Physique Atomique et Moléculaire

Physique Atomique et Moléculaire

PROFESSEURS SANS CHAIRE

Mécanique

Physique Atomique et Moléculaire Biologie Végétale Physique Atomique et Moléculaire Biologie Animale Chimie Physique Biologie Animale Physique Nucléaire et Corpusculaire Gestion des entreprises Physique Théorique Chimie Minérale Chimie Physique Physiologie Animale Biologie Végétale Analyse Géographie Electronique **Probabilités** Chimie Physique Physique du Solide Electrotechnique Electronique Physiologie Animale Chimie Organique

···/...

MAITRES DE CONFERENCES (et chargés d'Enseignement)

	,
Μ.	ADAM Michel
Μ.	ANTOINE Philippe
Μ.	BART André
Μ.	BEGUIN Paul
Μ.	BKOUCHE Rudolphe
Μ.	BONNELLE Jean-Pierre
Μ.	BONNEMAIN Jean-Louis
Μ.	BOSCQ Denis
11.	BREZINSKI Claude
M	BRHYFLLF Pierre

Sciences Economiques Analyse Biologie Animale Mécanique Algebre Chimie Biologie Végétale Probabilités Analyse Numérique Géographie

- 2 -

M. CARREZ Christian M. CORDONNIER Vincent M. COQUERY Jean-Marie Mle DACHARRY Monique M. DEBENEST Jean M. DEBRABANT Pierre M. DE PARIS Jean-Claude M. DHAINAUT André M. DELAUNAY Jean-Claude M. DERIEUX Jean-Claude M. DOUKHAN Jean-Claude M. DUBOIS Henri M. DYMENT Arthur M. ESCAIG Bertrand Me EVRARD Micheline M. FONTAINE Jacques-Marie M. FOURNET Bernard M. FORELICH Daniel M. GAMBLIN André M. GOBLOT Rémi M. GOSSELIN Gabriel M. GRANELLE Jean-Jacques M. GUILLAUME Henri M. HECTOR Joseph M. HERMAN Maurice M. JOURNEL Gérard Mle KOSMAN Yvette M. KREMBEL Jean M. LAURENT François Mle LEGRAND Denise Mle LEGRAND Solange M. LEROY Jean-Marie M. LEROY Yves M. LHENAFF René M. LOCOUENEUX Robert M. LOUCHET Pierre M. MACKE Bruno M. MAHIEU Jean-Marie Me N'GUYEN VAN CHI Régine M. MAIZIERES Christian M. MALAUSSENA Jean-Louis M. MESSELYN Jean M. MONTUELLE Bernard M. NICOLE Jacques M. PAQUET Jacques M. PARSY Fernand M. PECQUE Marcel M. PERROT Pierre M. PERTUZON Emile M. PONSOLLE Louis M. POVY Lucien M. RICHARD Alain M. ROGALSKI Marc M. ROY Jean-Claude M. SIMON Michel M. SOMME Jean Mle SPIK Geneviève M. STANKIEWICZ François M. STEEN Jean-Pierre

- 3 -

Informatique Informatique Psycho-Physiologie Géographie Sciences Economiques Géologie Appliquée Mathématiques Biologie Animale Sciences Economiques Microbiologie Physique du Solide Physique Mécanique Physique du Solide Chimie Appliquée Electronique Biochimie Chimie Physique Géographie Algèbre Sociologie Sciences Economiques Sciences Economiques Géométrie Physique Spatiale Physique Atomique et Moléculaire Géométrie Biochimie Automatique Algèbre Algèbre Chimie Appliquée Electronique Géographie Physique Théorique Sciences de l'Education Physique Physique Atomique et Moléculaire Géographie Automatique Sciences Economiques Physique Atomique et Moléculaire Biologique Appliquée Chimie Appliquée Géologie Générale Mécanique Chimie Physique Chimie Appliquée Physiologie Animale Chimie Physique Automatique Biologie Analyse Psycho-Physiologie Sociologie Géographie Biochimie Sciences Economiques Informatique

.../...

Μ.	THERY Pierre
Μ.	TOULOTTE Jean-Marc
Μ.	TREANTON Jean-René
Μ.	VANDORPE Bernard
Μ.	VILLETTE Michel
Μ.	WALLART Francis
Μ.	WERNIER Georges
Μ.	WATERLOT Michel
Mme	ZINN-JUSTIN Nicole

Electronique Automatique Sociologie Chimie Minérale Mécanique Chimie Informatique Géologie Générale Algèbre

- 4 -

Ce travail a été effectué dans le laboratoire de Chimie Minérale I de l'Université des Sciences & Techniques de LILLE, sous la Direction de Monsieur le Professeur HEUBEL. Je tiens à le remercier de la confiance qu'il n'a cessé de me témoigner et des encouragements qu'il m'a prodigués.

J'exprime ma profonde reconnaissance à Monsieur le Professeur HAGENMULLER qui m'a fait l'honneur de juger ce mémoire.

Une partie importante du travail a été réalisée en collaboration avec le service de Spectroscopie Raman. Je suis trés reconnaissant à Monsieur DELHAYE d'avoir constamment encouragé une fructueuse collaboration entre notre équipe de recherche et celle de Monsieur WALLART.

Je tiens à remercier également Monsieur le Professeur THOMAS dont les conseils en matière de cristallographie m'ont été toujours précieux.

Monsieur BAERT, Docteur es-Sciences m'a initié aux déterminations des structures cristallines, et m'a fait profiter de sa compétence. Je l'en remercie vivement.

Monsieur le Professeur SEGUIER a été mon Directeur à l'I.U.T. de BETHUNE durant cinq années, qu'il me soit permis de lui témoigner aujourd'hui ma gratitude.

Que les chercheurs du laboratoire de Chimie Minérale I en particulier G. MAIRESSE et J.D. WIGNACOURT ainsi que A. RUBBENS et F. WALLART du service de Spectroscopie Raman trouvent mention ici du plaisir que j'éprouve à travailler avec eux. Ma reconnaissance va aussi, aux personnes qui, par leur aide technique ont facilité mon travail.

L'impression de ce mémoire a été réalisée par Mademoiselle TALPAERT et le tirage par Monsieur RAVAUX. Je les remercie du soin apporté à leur travail.

A mon Maître, Monsieur J. HEUBEL Professeur à l'Université des Sciences & Techniques de LILLE. A la mémoire de ma Mère,

A ma femme,

A mes enfants.

TABLE DES MATIERES

INTRODUCTION

PREMIERE PARTIE : SYNTHESE CARACTERES PHYSIQUES ET CHIMIQUES

CHAPITRE I.I

- A SYNTHESE DU CHLOROALUMINATE DE NITROSYLE	
I.I.1 Réactifs utilisés	4
I.I.2 Réactions de préparation	6
I.I.2.1 Réaction dans l'anhydride sulfureux	
I.I.2.2 Réaction dans le chlorure de thionyle	
I.I.3 Préparation de monocristaux	8

- B CARACTERES PHYSIQUES DU CHLOROALUMINATE DE NITROSYLE

I.I.4	Stabilité à l'état fondu	10
I.I.5	Purification du sel	10
I.I.6	Température de fusion	11
I.I.7	Densité	11
I.I.8	Solubilité dans le chlorure de thionyle	12

- C ESSAI DE SYNTHESE DU CHLOROALUMINATE DE NITRYLE I.I.9 Action directe de NO_2Cl sur $AlCl_3$ 13 I.I.10 Action de NO_2Cl sur $AlCl_3$ en présence de $SO_2.16$ CHAPITRE I.II.

CARACTERES CHIMIQUES DU CHLOROALUMINATE DE NITROSYLE

	I.II.1 Comportement thermique 18	
	I.II.2 Réaction d'échange de cation : action des chlorures alcalins 22	
	I.II.3 Réaction de substitution nucléophile : action de l'acide sulfurique 23	
	I.II.3.1 Action directe	
	I.II.3.2 Réaction dans le chlorure de nitrosyle	
	1.11.4 Réaction d'échange de cation et de substitution nucléophile 28	
	I.II.4.1 Réaction de MAICl ₄ + 4 NaF	
	I.II.4.2 Réaction de MAlCl ₄ + 6 NaF	
	I.II.4.3 Action de l'ammoniac 30	
	I.II.4.3.1 Ammonolyse du chloroaluminate de nitrosyle	
	I.II.4.3.2 Ammonolyse du chloroaluminate de sodium	
	τττ	
CHAFILLE	1.111.	
	- A CARACTERISATION DU SULFATE DOUBLE D'ALUMINIUM & DE NITROSYLE	
	I.III.1 Comportement thermique 34	
	I.III.2 Réaction d'échange de cation	•
	I.III.3 Etude radiocristallographique	,
	I.III.4 Etude Infrarouge 37	
	I.III.5 Etude Raman 39	i

- B ESSAI D'INTERPRETATION DES REACTIONS CHIMIQUES de NOAICI₂ et AlCI₂

 DEUXIEME PARTIE : STRUCTURE DU CHLOROALUMINATE DE NITROSYLE

CHAPITRE II.I

STRUCTURE DU CHLOROALUMINATE DE NITROSYLE

II.I.1'	Rappels bibliographiques 4	6
II.I.2	Données cristallographiques et enregistrement des intensités 4	7
II.I.3	Détermination et affinement de la structure 4	8
II.I.4	Description de la structure 5	8
II.I.4	4.1 Disposition relative des ions	
II.I.4	4.2 Environnement du cation nitrosyle	
II.I.4	4.3 Géométrie des ions NO^+ et AlCl ⁻ ₄	

II.I.5.1	Généralités
II.I.5.2	Distance N - O
II.I.5.3	Disposition relative du cation NO ⁺ et des atomes de chlore

CHAPITRE II.II

ETUDE SPECTROSCOPIQUE

II.II.1 R	Rappel des résultats de l'étude antérieure	66
II.II.2 B	Buts de l'étude Raman envisagée	67
II.II.3 D	Données structurales	68
II.II.4 M	lodes internes de vibration	69
I I.II.4 II.II.4	4.1 Etude théorique 4.2 Etude expérimentale	
II.II.5 E	Stude des modes externes	80
II.II.5	5.1 Etude théorique	
II.II.5	5.2 Etude expérimentale	
II.II.6 C	Conclusions	82

CHAPITRE II.III

CONCLUSIONS DE L'ETUDE STRUCTURALE

TROISIEME PARTIE : CHLOROGALLATE ET CHLOROINDATE DE NITROSYLE

CHAPITRE III.I CHLOROGALLATE DE NITROSYLE

- A SYNTHESE ET CARACTERES PHYSIQUES

III.I.1	Préparations	91
III.I.2	Caractères physiques	93
III.I.3	Etude structurale	95

III.I.3.1 Radiocristallographie

III.I.3.2 Spectrométrie Raman

- B CARACTERES CHIMIQUES

III.I.4 Acti	on des chlorures	alcalins	• • • • • • • • • • • • • •	100
III.I.5 Subs	titution nucléop	hile : action de	l'acide	
sulf	urique			101

- C CARACTERISATION DE NOGa (SO₄)₂

III.I.6 Comportement thermique	103
III.I.7 Etude radiocristallographique	103
III.I.8 Réaction avec les chlorures alcalins	104

CHAPITRE III.2 CHLOROINDATE DE NITROSYLE

RESUME & CONCLUSIONS 108

INTRODUCTION

Le présent travail est le point de départ d'une étude physicochimique des halogénométallates du groupe III B ; et plus particulièrement des chloroaluminates, chlorogallates et chloroindates : $M_{I}(M_{III}X_{3})X$. Le choix de cette orientation a été guidé par les travaux antérieurs entrepris au laboratoire, portant sur les halogénosulfates $M_{I}(SO_{3})X$. Il a donc consisté à remplacer l'acide de Lewis SO₃ par un autre acide : MCL₃(M = Al,Ga,In) et plus particulièrement AlCl₂.

Le choix du trichlorure d'aluminium peut également s'expliquer par l'intérêt croissant que l'on porte aux chloroaluminates, en particulier en tant que milieux fondus grâce spécialement à leur point de fusion relativement bas et leur stabilité thermique.

L'intérêt des chercheurs s'est porté essentiellement sur les mesures de solubilité et les réactions d'échange de la particule Cl⁻(1).

Enfin, et plus récemment on a envisagé de les utiliser à l'état fondu comme milieux de synthèse de composés organiques et minéraux. (2) Malheureusement, tout comme les halogénosulfates, leur hygroscopicité a quelque peu retardé leur utilisation dans ce domaine. Cette sensibilité à l'humidité peut encore expliquer l'absence quasi totale de données bibliographiques concernant les caractères physiques et totale en ce qui concerne les caractères chimiques de ces dérivés. Cette lacune constituait une raison supplémentaire de notre choix.

L'étude a porté plus particulièrement sur le sel de nitrosyle NOAlCl.

En effet, l'expérience acquise au laboratoire nous a montré que les sels de nitrosyle pouvaient être d'excellents agents de synthèse en raison de la volatilité des espèces NOX susceptibles de se former par double décomposition.

Les quelques travaux parus depuis la synthèse originale de ce sel, synthèse réalisée par WEBER (3) en 1863 avaient pour seul but de mettre en évidence la présence de l'ion NO⁺ à partir de mesures physiques. Depuis 1954, aucun mémoire ne mentionne plus ce dérivé.

L'ensemble des résultats obtenus est présenté dans trois parties distinctes :

Ière partie : synthèse, caractères physiques et chimiques

Le chapitre I.1 décrit la synthèse du chloroaluminate de nitrosyle par des techniques faisant appel à d'autres solvants que le chlorure de nitrosyle, le seul utilisé précédemment. Ceci nous a permis de maîtriser la cristallisation et d'obtenir des monocristaux de tailles parfaitement adaptées aux diverses études structurales envisagées. La détermination de quelques caractères physiques : stabilité thermique à l'état fondu, purification du sel par zone fondue, solubilité dans le chlorure de thionyle et température de fusion complète ces données.

Par analogie, nous avons tenté de faire la synthèse du chloroaluminate de nitryle suivant la réaction

NO2CI + AICI3 NO2 AICI4

cette association étant considérée comme agent nitrant (4,5).

Les résultats que nous avons tenté d'interpréter n'ont pas été conformes à notre attente.

Le chapitre I.2 est consacré à l'étude des caractères chimiques de NOALCI₄. Nous y décrivons successivement le comportement thermique, l'action des chlorures alcalins, de l'acide sulfurique, des fluorures alcalins et enfin de l'ammoniac gaz. Certains essais ont été étendus au sel de sodium pour les raisons que nous exposerons (cas de l'action de NaF et NH₃ par exemple).

- 2 -

Le chapitre I.3 concerne l'étude du sulfate mixte d'aluminium et de nitrosyle $NOAl(SO_4)_2$; composé original obtenu par action de l'acide sulfurique sur le chloroaluminate de nitrosyle. La deuxième partie du chapitre constitue un essai d'interprétation des réactions chimiques à l'aide de la théorie de SANDERSON.

Ilème partie : étude structurale

Le chapitre II.1 décrit la structure cristalline de NOALCI₄. L'utilisation des méthodes directes a permis de mener à bien cette étude compliquée, comme nous le verrons par le fait que l'ion nitrosyle occupe une position désordonnée dans la maille cristalline.

L'étude spectroscopique qui fait l'objet du chapitre II.2 a porté sur le sel fondu dans un premier temps, puis sur le solide. Dans ce cas, nous avons opéré sur des échantillons mono ou polycristallins, pour des températures comprises entre l'ambiante et 77 K.

Nous examinons au chapitre II.3 les problèmes de l'ionicité du chloroaluminate à l'état solide, et de la distance azote-oxygène dans l'ion nitrosyle, en nous appuyant sur des travaux plus ou moins récents concernant ce sujet.

IIIème partie : chlorogallate et chloroindate de nitrosyle

Nous avons rassemblé dans cette dernière partie, par souci de clarté·les résultats de l'étude physicochimique et chimique du sel de gallium: NOGaCl₄, étude menée parallèlement à celle de NOAlCl₄. Elle se termine par un aperçu sur le chloroindate de nitrosyle qui constitue l'amorce de nos recherches ultérieures.

En fin de mémoire, les résultats essentiels sont résumés en même temps qu'en sont présentées quelques extensions qui nous paraissent souhaitables.

- 3 -

Première Partie

SYNTHESE CARACTERES PHYSIQUES

ET CHIMIQUES

CHAPITRE II

A - SYNTHESE DU CHLOROALUMINATE DE NITROSYLE

Les méthodes de préparation utilisées jusqu'à ce jour étaient basées sur l'action directe du chlorure de nitrosyle soit sur le trichlorure d'aluminium, soit sur l'aluminium métallique. Les seules variantes rencontrées concernent les conditions opératoires : température et pression. On peut citer par exemple les techniques expérimentales décrites par RHEINBOLDT & WASSERFUHR (6), GALL & MENGDEHL (7), PARTINGHTON & WHYNES (8), SUDBOROUGH (9) etc ... Nous retiendrons celle utilisée par HOUTGRAAF (10) qui élimine pratiquement tout risque d'hydrolyse.

Nous avons adapté cette méthode particulièrement longue et délicate à mettre en oeuvre, de manière à la rendre plus souple. Par la suite, nous avons fait appel à un solvant autre que le chlorure de nitrosyle, comme milieu réactionnel.

I.1.1. Réactifs utilisés

Le chlorure d'aluminium est toujours plus ou moins souillé de fer, comme'l'indique sa coloration jaune, et partiellement hydrolysé, quelle que soit sa provenance. La purification, indispensable, est réalisée suivant la méthode décrite dans "Handbook of préparative inorganic chemistry" (11). Le trichlorure impur est mélangé avec environ 10 % de son poids en poudre d'aluminium, et l'ensemble, maintenu à 150° C est traversé par un courant de chlorure d'hydrogène sec. Nous avons conçu un réacteur entièrement en verre, constitué schématiquement de deux tubes verticaux A et B portant à la base

- 4 -

une pastille de verre fritté, reliés par un passage C (Figure I).

Figure 1

Deux ouvertures permettent l'introduction (D) et la récupération du produit purifié (E). Les branches A et C sont chauffées de façon homogène, grâce à une résistance enroulée directement sur les parois du réacteur, et B est refroidi par un bain d'acétone, ce qui permet l'obtention de cristaux très fins. Le produit obtenu est pulvérulent, et parfaitement blanc ; son titre est au moins égal à 99 % (tableau I). Généralement, une deuxième sublimation précède immédiatement l'utilisation du sel.

Trichlorure d'aluminium	Prise initiale mg	Al x 10 ³ Théor Exp		Cl x 10 ³ Théor Exp		C1/ A1	Bilan pondéral
Avant purification	1000	7.49	7.55	22 ,4 7	21,85	2.89	979
Après purification	1000	7,49	7,35	22,47	22,32	3,03	991

Tableau I

Le chlorure de nitrosyle est obtenu par synthèse directe : 2 NO + Cl₂ $\xrightarrow{150^{\circ}}$ 2 NOCl

Le monoxyde d'azote résulte de l'action d'une solution aqueuse saturée de nitrite de sodium sur une solution sulfurique de sulfate ferrique. Le chlore provenant d'une bombe est séché, liquéfié et redistillé. I.1.2. Réactions de préparation

Si l'action directe du chlorure de nitrosyle sur le trichlorure d'aluminium a été retenue dans la plupart des préparations anciennes, elle ne nous a pas permis par contre d'isoler des cristaux adaptés à l'étude structurale. Ceci nous a conduits à utiliser d'autres solvants. Dans tous les cas, la réaction mise en jeu est la même :

AlCl₃ + NOCl (solv) NOAlCl₄

I.1.2.1. Réaction dans l'anhydride sulfureux

L'anhydride sulfureux nous est apparu comme un milieu réactionnel intéressant en raison de la très grande solubilité des réactifs. Le trichlorure d'aluminium purifié est introduit en boîte sèche dans le ballon (b) (figure II) que l'on raccorde au réfrigérant (r) par (p) muni d'un robinet de téflon (t).

Figure 11

Cet ensemble permet de manipuler le trichlorure à l'abri de l'humidité. Après avoir soigneusement purgé l'appareillage et porté le réfrigérant à - 60° C, on condense la quantité d'anhydride sulfureux nécessaire à la dissolution totale du trichlorure. Celle-ci est facilitée par agitation magnétique. On condense ensuite le chlorure de nitrosyle qui se dissout dans le film d'anhydride sulfureux liquide du réfrigérant, et s'écoule en (b). Un excès de réactif, par rapport à la stoechiométrie colore la solution en rouge. On coupe alors l'arrivée de NOCl et, après quelques heures de contact, le réfrigérant est déconnecté du cryostat permettant ainsi l'évaporation du solvant et de l'excès de NOCl. Au cours de cette évaporation un solide jaune pâle précipite. Celui-ci est séché sous pression réduite vers 40° C, et broyé en boîte sèche.

Le chloroaluminate de nitrosyle ainsi obtenu est de pureté comparable à celle que permet d'atteindre la synthèse directe (tableau II). Mais l'évaporation trop rapide du solvant – contrairement au cas des chloroaluminates alcalins – ne permet pas d'obtenir des cristaux de qualité suffisante pour une étude structurale.

Notre choix s'est alors porté sur un autre solvant à point d'ébullition plus élevé : le chlorure de thionyle.

I.1.2.2. Réaction dans le chlorure de thionyle

Le choix du chlorure de thionyle peut s'expliquer par les propriétés assez exceptionnelles de ce composé.

- C'est un excellent solvant de tous les chloroaluminates et chlorogallates alcalins et alcalino-te**n**eux, à l'exception toutefois des sels de potassium (12) et d'ammonium (13).

- Il présente l'avantage d'assurer un milieu réactionnel parfaitement anhydre, à l'inverse de bon nombre de solvants. Cette propriété est extrêmement intéressante dans notre cas, en raison de l'hygroscopicité des sels étudiés.

- Son point d'ébullition étant supérieur à la température ambiante $(78,8^{\circ} \pm I^{\circ} C)$ à l'inverse de NOCl (- 5° C) ou de SO₂ (- 10° C), la cristallisation peut être conduite plus aisément par refroidissement lent d'une solution saturée, plutôt que par évaporation.

- 7 -

Analyse et cliché X permettent de considérer que cette méthode donne du chloroaluminate de nitrosyle pur. Il est légèrement coloré, mais beaucoup moins que les échantillons obtenus à partir de NOCl ou SO₂.

Solvant de synthèse	Prise initiale mg	Al theor	x10 ³ Exp	Clx10 theor	3 Exp	Nx10 theor	3 Exp	C1/A1	C1/N	bilan pondéral	Ecart %
	1000	5.025	5.07	20.10	20.21	5.025	5.01	3.99	4.02	999.6	0.06
NOC1	1000	5.025	4.99	20.10	20.28	5.025	4.94	4.06	4.1	1003.2	0.03
	1000	5.025	5006	20.10	19.88	5.025	4.97	3.97	4.0	991.7	റ.8
⁵⁰ 2	1000	5.025	5.03	20.10	19.98	5.025	5.00	3.97	3.99	995.6	0.5
soc1 ₂	1000	5.025	4.96	20.10	20.30	5.025	4.975	4.09	4.08	1004.1	0.4

Tableau II

I.1.3. Préparation de monocristaux

Nous avons en fait utilisé deux techniques de cristallisation suivant l'usage auquel étaient destinés les monocristaux. Pour l'étude radiocristallographique qui nécessite des monocristaux de très petites dimensions (quelques dizièmes de mm seulement) de manière à minimiser les effets d'absorption, l'abaissement contrôlé de température d'un ϵ solution saturée dans le chlorure de thionyle donne les meilleurs résultats. Pour la spectrométrie Raman, où par contre il faut des cristaux de taille plus grande, nous avons ajouté à une solution saturée de chloroaluminate de ritrosyle dans le chlorure de thionyle en équilibre avec un excès de sel, ce l'anhydride sulfureux jusqu'à dissolution totale. En maintenant cette solution à + 10°C on observe l'apparition lente de cristaux translucides, dont certains atteignent plusieurs centimètres de longueur, avec une section de cuelques mm².

Ces méthodes de préparation ont été étendues avec succès aux chloroaluminates et chlorogallates alcalins et alcalino-temeux (12). L'extension aux sels d'indium s'est par contre soldée par un échec, en raison de l'insolubilité du trichlorure InCl₃, et vraisemblablement des chloroindates dans ce solvant. Divers travaux, tous plus ou moins anciens, ont été consacrés à l'étude de quelques caractères physiques du chloroaluminate de nitrosyle. BURG et CAMPBELL (14) ont montré que l'ion nitrosyle peut être fortement solvaté et que cette propriété doit entraîner une solubilité non négligeable d'un certain nombre de dérivés nitrosylés - dont en particulier le chloroaluminate - dans le chlorure de nitrosyle. Les au**teurs** vérifient que ce sel se comporte effectivement comme un électrolyte fort, dans ce solvant, et qu'il peut ainsi être formulé $N0^+AlCl_4^-$. Cette solvatation selon les auteurs serait due à l'existence des structures résonnantes :

$$[0 = N - CI - N = 0]$$
, $[0 = N - CI]$ $N = 0$, $0 = N'$ $[CI - N = 0]$

alors que GUTMANN (15) considère en ce qui le concerne que la forme la plus stable est celle correspondant à l'existence d'un pont azote-oxygène au lieu d'un pont azote-chlore.

L'examen des isothermes pression composition (16) révèle d'autre part l'existence d'un solvate de formule NOAlCl₄, NOCl, ce qui est confirmé par l'étude du diagramme binaire NOCl-AlCl₃ (10). HOUTGRAAF & GERDING semblent être les seuls à avoir abordé une étude structurale de ce composé par spectrométrie Raman. Ils comparent les spectres de NOAlCl et NaAlCl₄ et concluent que le composé nitrosylé est intermédiaire entre un composé hétéropolaire pur et un composé homopolaire pur, avec prédominance du premier caractère.

Référence (15)

Nous avons repris l'étude des caractères physiques de NOAlCl₄ dans un double but : d'une part, nous avons essayé d'expliquer les divergences relevées dans la littérature en ce qui concerne le point de fusion et la stabilité thermique du sel à l'état fondu et d'autre part, nous avons cherché à compléter les quelques études réalisées antérieurement.

I.1.4. Stabilité à l'état fondu

On relève dans la littérature de nombreuses divergences en ce qui concerne la stabilité thermique du sel à l'état fondu. Certains auteurs (6,8) signalent en effet une décomposition dès la fusion, alors que d'autres, tel HOUTGRAAF (10) ne l'observent pas même après plusieurs jours à 180° C. En ce qui nous concerne, nous avons fondu à plusieurs reprises des échantillons que ce soit pour la détermination du point de fusion ou pour l'étude Raman, et nous n'avons jamais observé ce phénomène.

I.1.5. Purification du sel

Ayant obtenu des cristaux pratiquement incolores à partir d'une solution dans le chlorure de thionyle, il nous est apparu que la légère coloration des produits de synthèse dans NOCl et SO₂ pouvait être due à la présence de traces de chlorure de nitrosyle excédentaire, difficilement décelables à l'analyse, plutôt qu'à une coloration naturelle du produit. Nous avons donc essayé de purifier le chloroaluminate de nitrosyle compte tenu des remarques précédentes (§ I.1.4) par fusion de zone. Celle-ci a été conduite avec un appareillage HERMANN-MORITZ à quatre fours, qui est muni d'un dispositif de descente lente et de remontée rapide du four, avec comptage du nombre de passages. Un changement de vitesse à plusieurs rapports permet de sélectionner une vitesse de descente comprise entre 1 et 24 cm/h. Les fours ont un diamètre minimum de 3 mm et maximum de 27.

La puissance de chauffe a été ajustée de manière à obtenir avec une vitesse de 1 cm/h, une zone fondue de 1 cm de hauteur.

Après une dizaine de passages, on peut déjà observer la séparation du contenu du tube en trois zones de colorations bien distinctes.

- la première située en tête du tube est parfaitement translucide, et pratiquement incolore.

- la deuxième zone a une teinte correspondant sensiblement à celle du produit de départ, tout en étant plus translucide.

- la dernière enfin, est très colorée. Cet ensemble d'observations

permet de dire que l'on est en présence d'un système pour lequel le coefficient de distribution K est inférieur à 1.

Cette technique a été étendue avec succès au chloroaluminate d'ammonium qui présentait un phénomène de fluorescence intense (13) empêchant ainsi l'observation des raies Raman de faible intensité.

I.1.6. Température de fusion

Les valeurs des températures de fusion relevées dans la littérature sont nombreuses et variables. On peut en effet noter un écart entre valeurs extrêmes voisin de 70° C. La dernière mesure réalisée à notre connaissance est celle de HOUTGRAAF (10) qui trouve 178° C. Cet écart très important ne peut être imputé à notre avis uniquement à la présence d'impuretés. LEWIS & ADDISON (17) essayent de l'interpréter en émettant l'hypothèse de l'existence de deux formes allotropiques, dont l'une métastable, correspondrait au point de fusion le plus bas. Nous n'avons jamais, en ce qui nous concerne observé deux spectres X différents, ni relevé de discontinuité dans l'étude du spectre Raman en fonction de la température ; ce qui semble infirmer cette hypothèse.

Nous avons pour notre part, déterminé le point de fusion directement sur la fraction de tête d'un tube de fusion de zone – sans ouvrir le tube – après au moins dix passages. La température lue est 176° C, donc sensiblement égale à celle obtenue par HOUTGRAAF ; les deux valeurs ayant été déterminées avec un thermomètre.

Signalons cependant qu'en opérant avec un produit non purifié et sorti du tube, l'analyse thermique différentielle nous a donné un pic net vers 158° C. Cet écart entre les deux mesures, attribuable au moins en partie à l'extrême hygroscopicité de NOAlCl₄, peut expliquer les divergences relevées dans la littérature.

I.1.7 Densité

La densité a été déterminée par pycnométrie. Le liquide **d**ispersif est le tétrachlorure de carbone séché sur chlorure de calcium. La valeur trouvée : $d_{exp} = 1,85$ g/cm³ est en bon accord avec la valeur théorique déduite des résultats de l'analyse radiocristallographique ($d_{calc} = 1,89$ g/cm³). I.1.8. Solubilité dans le chlorure de thionyle

La solubilité, dont la connaissance est intéressante pour un contrôle de la cristallisation (§ I.1.3.) a été déterminée par conductimétrie à 20° C. Pour cela, nous avons ajouté à une masse de sel voisine de 1 gr. des volumes croissants de solvant. La conductance garde une valeur constante $(1,5 \ 10^{-4} \ \Omega^{-1})$ tant que la solution est en équilibre avec le solide. Une cassure nette indique la concentration de saturation (Figure III) soit 14,3 g/l.

- 12 -

C- ESSAL DE SYNTHESE DU CHLOROALUMINATE DE NITRYLE

Les analogies étroites de comportement entre AlCl₃ et SbCl₅ d'une part, la facilité de la réaction de synthèse $NO_2Cl + SbCl_5$ $NO_2SbCl_6(18)$ d'autre part nous ont incités à étudier la même réaction avec AlCl₃ d'autant plus que les mélanges AlCl₃ + NO_2Cl sont bien connus pour leurs propriétés nitrantes (4,5).

I.1.9. Action directe de NO₂Cl sur AlCl₃

Le chlorure de nitryle, préparé suivant la méthode décrite par VILLE (19) est condensé sur du chlorure d'aluminium en poudre, et l'ensemble est soumis à une agitation. Un réfrigérant surmontant le réacteur condense les vapeurs de NO_2CI . Le mélange réactionnel est maintenu à la température d'ébullition de NO_2CI (- 15,9° C) puis l'excès de réactif est éliminé. On recueille un solide jaune, très volumineux constitué principalement de chloroaluminate de nitrosyle et d'oxychlorure d'aluminium. AlOCl obtenu à des températures aussi basses est amorphe.

Le cliché de diffraction X révèle donc seulement la présence de NOAlCl₄. Après élimination de ce dernier par traitement thermique vers 250°C le résidu a été recuit à 300° C pendant plusieurs jours. Son spectre de diffraction X est celui de AlOCl sans aucune ambiguité. D'ailleurs, la courbe thermogravimétrique de l'échantillon après élimination de NOALCl₄ est exactement superposable à celle de AlOCl, comme le montre la figure IV. Nous y avons reporté la courbe du résidu (I) et celles relatives à NOALCl₄ (II) et AlOCl (III). La similitude des courbes (I) et (II + III) pour les températures supérieures à 200° C confirme la présence des deux espèces. On remarque toutefois une perte de masse dès la température ambiante, qui pourrait être due à la présence d'une petite quantité de NO₂AlCl₄ instable.

Nos résultats sont tout à fait comparables à ceux obtenus par SEEL (19) pour NO_2SbCl_6 . En effet, lorsque SEEL porte le chloroantimoniate de nitryle dans un tube scellé à 100° C il observe la sublimation sur les parties froides d'un solide qui est $NOSbCl_6$, alors qu'il reste un résidu blanc caractérisé comme étant SbOCl. L'auteur signale que la thermolyse s'accompagne de l'élimination de Cl_2 , N_2O_4 et NOCl sans donner de schéma réactionnel ni préciser de mécanisme. La différence entre NO_2AlCl_4 et NO_2SbCl_6 est donc une différence de stabilité thermique. Comme le but principal de notre travail était l'étude des chlorométallates de nitrosyle, nous avons abandonné cette réaction non sans l'avoir essayée dans un solvant : SO_2 liquide. On trouvera le détail de ces manipulations ci-dessous. Une remarque nous semble cependant intéressante : les propriétés nitrantes de tels mélanges nous laissent penser que l'on forme du NO_2AlCl_4 suivant la réaction équilibrée :

$$\operatorname{NO_2Cl} + \operatorname{AlCl}_3 \xrightarrow{(I)} \operatorname{NO_2AlCl}_4 (1)$$

Cependant, l'expérience acquise au laboratoire (20) montre que lorsque NO₂Cl réagit avec une espèce dans laquelle le chlore porte une charge négative, on observe l'élimination de chlore. On peut donc, pour expliquer la formation de AlOCl, imaginer un deuxième type de réaction concurrentiel de (I) suivant :

$$NO_2^- Cl^+ + AlCl_2^+ Cl^- \rightarrow AlCl_2^- O - NO_1^+ Cl_2^- (2)$$

Cette réaction ayant pour effet de déplacer l'équilibre (1) dans le sens (\mathbf{I}) peut être suivie à son tour de

$$Alcl_{2} - 0 - NO \longrightarrow Alocl + Nocl (3)$$

et NOCl libéré réagit avec AlCl₃ pour donner le chloroaluminate de nitrosyle. Ce schéma simple conduirait à une réaction globale

$$2 \text{ AlCl}_3 + \text{NO}_2 \text{Cl} \longrightarrow \text{ AlOCl} + \text{NOAlCl}_4 + \text{Cl}_2$$

Dans ce cas le résidu à 200° correspondrait à un mélange équimoléculaire de AlOCl et NOAlCl₄. Le rapport des pertes au delà de cette température infirme cette hypothèse, car il correspond en fait à un rapport AlOCl/NOALCl₄ **plus proche de** 2 que de 1.

Nous avons pensé alors que la réaction (2) pouvait se reproduire :

$$Alcl_3 + 2NO_2Cl \longrightarrow Alcl (ONO)_2 + 2 Cl_2 (4)$$

et

Alcl (ONO)₂
$$\rightarrow$$
 Alocl + N₂O₃ (5)

ce qui conduirait à la réaction globale : $3 \operatorname{NO}_2\operatorname{AlCl}_4 \xrightarrow{\longrightarrow} 3 \operatorname{AlCl}_3 + 3 \operatorname{NO}_2\operatorname{Cl} \xrightarrow{\longrightarrow} 3 \operatorname{Cl}_2 + 2 \operatorname{AlOCl} + \operatorname{NOAlCl}_4 + \operatorname{N}_2\operatorname{O}_3(6)$

Ce mode d'écriture permet de retrouver la même phase gazeuse que SEEL $(N_2O_3 + 1/2 O_2 \longrightarrow N_2O_4)$. Par ailleurs, en faisant le calcul à rebours on voit que la perte entre 20° et 200° C ne représente qu'une faible partie de la perte totale attendue pour la réaction :

 $3 \operatorname{NO}_2 \operatorname{AlCl}_4 \longrightarrow 2 \operatorname{AlOCl} + \operatorname{NOAlCl}_4 + \operatorname{N}_2 \operatorname{O}_3 + 3 \operatorname{Cl}_2 (7)$

- environ 16 % dans le cas de figure ; ce qui justifie la formation d'une quantité importante de NOAlCl $_{\Delta}$ dès l'ambiante.

I.A.10. Action de NO₂Cl sur AlCl₂ en présence de SO₂

Nous espérions aboutir à NO_2AlCl_4 en utilisant un solvant des deux réactifs par analogie avec la réaction $AlCl_3 + NOCl$ dans ce même solvant. D'ailleurs SEEL (18) avait réalisé une synthèse analogue avec SbCl₅ dans l'anhydride sulfureux, et formé NO_2SbCl_6 , qui précise-t-il est stable assez longtemps en solution si toutefois on maintient la température assez basse.

La réaction est conduite exactement de la même façon que pour NOALCI₄. On part d'une solution de ALCI₃ dans SO₂. Dans un premier temps, l'introduction de NO₂Cl n'entraîne qu'une très légère coloration de la solution. Il apparaît ensuite un précipité blanc que l'on sépare du milieu réactionnel par filtration. Ce précipité est lavé plusieurs fois avec SO₂, puis séché sous pression réduite. Les pastilles frittées se colmatant très rapidement, nous avons dû utiliser pour ces opérations de filtration une toile de téflon.

L'analyse chimique du précipité (tableau III) montre l'absence totale d'azote, mais par contre la présence de S^{VI}, provenant donc d'une oxydation du solvant. Les rapports entre les éléments $Cl/Al/S^{VI}$ sont très peu différents de 6/2/5, et le bilan pondéral est excellent si l'on compte le S^{VI} sous forme de SO₃. Ces résultats analytiques conduisent à la formulation Al_2Cl_6 , 5 SO₃ globalement.

Prise initiale mg	Alx10 ³	Clx10 ³	s ^{VI} x10 ³	N×10 ³	Cl/S	S/Al	C1/A1	Bilan pondéral	écart %
1000	2.98	8.93	7.39	traces	1.20	2.47	2.99	984 , 5	1,5
1000	2.9888	9.07	7.50	traces	1.21	2.53	3.03	1003.	0,3

Tableau III

Il est difficile de savoir s'il s'agit d'un composé défini, ou d'un mélange équimæléculaire des chlorosulfates $AlCl_3$, $3 SO_3$ et $AlCl_3$, $2 SO_3$ tous deux signalés dans la littérature (21) (22). L'étude qui sortait du cadre de ce travail est rendue complexe du fait que ces composés sont amorphes, et que leur comportement thermique est très comparable. Dans le cas présent,

la thermolyse conduit au sulfate d'aluminium, vraisemblablement suivant :

$$Al_2Cl_6$$
, 5 so₃ \rightarrow $Al_2(so_4)_3$ + socl₂ + so₂Cl₂ + Cl₂

Il est connu que l'on peut oxyder l'anhydride sulfureux en soufre au degré d'oxydation VI + par le chlorure de nitryle dans un intervalle de temps de plusieurs jours (18). En présence de trichlorure d'aluminium cependant, cette oxydation est instantanée à - 10° C. Cette réaction remarquable ne peut s'expliquer que par la formation au moins partielle de NO_2^+ et $AlCl_4^-$ due au caractère acide de Lewis de $AlCl_3$, et au pouvoir dissociant de SO_2 . Les étapes sont donc :

AlCl ₃ + NO ₂ Cl		NO2 ⁺ AICI4 ⁻
NO2+AIC14	>	$NO_2^+ + Alcl_4^-$
s0 ₂ + N0 ₂ +		so ₃ + No ⁺
SO ₂ + AlCl ₃ + NO ₂ Cl	>	$Alcl_4 + so_3 + NO^+$

et SO₃ réagit avec l'excès de AlCl₃

 $2 \operatorname{AlCl}_3 + 5 \operatorname{SO}_3 \longrightarrow \operatorname{Al}_2 \operatorname{Cl}_6, 5 \operatorname{SO}_3$

CHAPITRE 1-11

CARACTERES CHIMIQUES DU CHLOROALUMINATE DE NITROSYLE

Aucun travail concernant les caractères chimiques des chloroaluminates et en particulier du sel de nitrosyle n'avait été publié à notre connaissance lorsque nous avons abordé cette étude. A l'heure actuelle on ne peut citer qu'un seul mémoire, paru en décembre 1975 (23) et consacré aux réactions de Na Al Cl₄ fondu - en réalité de l'eutectique AlCl₃-Na AlCl₄ (à 63 % de trichlorure) - avec quelques oxoanions.

Les réactions - qui sont essentiellement d'oxydo-réduction - n'ont guère de point commun, sinon l'ion chloroaluminate avec celles examinées ci-dessous ; et rejoignent celles étudiées par LEROY et TREMILLON (24) Nous nous sommes principalement intéressés :

- d'une part aux réactions d'échange de cation : NOAlCl_A + MX ----- NOX + M AlCl_A
- de l'autre aux réactions de substitution nucléophile NOAlCl₄ + 4 MY ------ NOAlY₄ + 4 MCl

Le choix des réactifs a été guidé par ce type de prévisions exclusivement, en nous limitant volontairement, dans le cadre de ce mémoire aux quelques exemples qui nous paraissaient plus simples.

I.II.1. Comportement thermique

La plupart des réactions chimiques envisagées mettent en jeu des réactifs solides : halogénures, sulfates etc... et sont donc du type solidesolide. Les températures de réaction pour cette raison doivent être relativement élevées, en relation vraisemblablement avec la fusion de l'un des réactifs ou d'un entectique. Il nous a donc paru indispensable de connaître au préalable le comportement thermique de NOAlCl_A.

- 18 -

La thermolyse a d'abord été réalisée en régime dynamique entre l'ambiante et 800° C, avec une vitesse de chauffe de $150^{\circ}/h$.

La courbe obtenue est représentée sur la Figure V. Elle présente trois pertes de masse successives dont les amplitudes sont dans des rapports voisins de 40/3/1. La première perte a lieu entre 200 et 280° C, la deuxième entre 300 et 330°C et la troisième au delà de cette température. En fin d'essai, nous récupé rons un résidu très mal cristallisé, dont la masse correspond sensiblement à 5 % de la masse initiale de sel.

Nous avons essayé d'interpréter cette courbe, et ceci nous a conduits à reprendre la thermolyse en enceinte étanche.

BOO BOO BOO BOO BOO BOO BOO $P \cdot E = 0,8125 \cdot 10^{-3} mole$ BOO BOOBO

Figure 🗴

Le chloroaluminate de nitrosyle est intro**du**it dans le réacteur, préalablement séché sous pression réduite, figure VI puis rempli d'azote sec. La quantité de sel est déduite de deux pesées successives : après scellement, la partie A est placée dans un four programmé avec une vitesse de chauffe

Figure VI

de 150°/h, alors que B est maintenue à - 110° C pendant toute l'expérience.

Aucune transformation n'est visible jusqu'à 300° C environ. A cette température, le sel est fondu, et l'on peut observer sur les parois du réacteur situées dans le four des gouttelettes colorées en jaune.

Au delà de 400° C un solide jaune pâle vient se déposer sur la partie de A située en dehors du four (A') ainsi que dans le tube latéral (a). Un léger chauffage de l'enveloppe de verre suffit d'ailleurs pour refondre ce solide qui de toute évidence est NOAlCl₄. Il se forme simultanément un anneau jaune pâle, sur les parois de B au contact du bain réfrigérant. Là encore, le simple fait de sortir le tube du bain entraîne la fusion du solide en un liquide rouge, caractéristique de NOCL. On peut déduire de ces observations qu'une partie du sel distille, ce qui explique la présence de gouttelettes colorées sur les parois du tube A, tandis qu'une autre fraction se décompose suivant la réaction inverse de la synthèse, comme le montre la présence de chlorure de nitrosyle libre. S'il est difficile de déterminer dans quel rapport ont lieu ces deux mécanismes : distillation et décomposition, il est certain que le premier est de loin le plus important. Cependant, toute estimation même semi-quantitative peut être entâchée d'erreur, en raison de la recombinaison toujours possible des produits de la décomposition suivant le mécanisme inverse :

NOC1 + AlCl , --- NOAlCl

Il est donc évident que la première perte de masse observée sur le thermogramme à des températures inférieures à 300° C est due essentiellement à la distillation du composé, accompagnée d'une légère décomposition.

La deuxième perte de masse se situant entre 300° C et 330° C devient alors difficilement explicable, et ne peut résulter, à notre avis que d'une hydrolyse partielle du produit, hydrolyse inévitable dans les conditions opératoires. Nous avons, pour vérifier cette hypothèse, repris la thermolyse sous des pressions partielles de vapeur d'eau croissantes. Nous utilisons pour cela un courant d'azote vecteur plongeant dans un saturateur à acide sulfurique plus ou moins dilué suivant la tension désirée. La figure VII représente deux thermogrammes réalisés avec des valeurs différentes de P_{H20} . On observe bien une augmentation sensible de la deuxième perte lorsque P_{H20} augmente. (Cette perte pondérale passe par exemple de

- 20 -

19 mg à 46 mg par millimole de sel lorsque la pression partielle varie de 0,3 à 3,9 Torrs).

D'autres essais réalisés avec des pressions partielles différentes confirment ces résultats.

Figure V11

Il est dès lors évident que les deux dernières pertes sont dues à la thermolyse d'une espèce résultant d'une hydrolyse partielle inévitable dans un montage thermogravimétrique classique. On peut donc dire que le chloroaluminate de nitrosyle, en l'absence d'humidité, distille au delà de 400° C, cette distillation s'accompagnant d'une décomposition en trichlorure d'aluminium et en chlorure de nitrosyle.

I.II.2. Réaction d'échange de cation : action des chlorures alcalins

Des études réalisées antérieurement au laboratoire dont (25) en particulier ont montré que l'on pouvait passer facilement d'un sel de nitrosyle NO A au sel alcalin correspondant M_1A par action d'un halogénure alcalin. Cette réaction :

qui est un simple échange de cation, devait être possible dans le cas présent en raison du caractère ionique du chloroaluminate de nitrosyle (voir IIème:partie), et facilitée par la volatilité du chlorure de nitrosyle.

Les essais ont été réalisés par thermogravimétrie. Dans les conditions opératoires (150°/h) le chloroaluminate de nitrosyle commence à réagir entre 60 et 100° C. La vitesse de réaction est relativement lente et très comparable pour les sels de lithium et de potassium. Par contre, elle est nettement plus grande pour le sel de sodium (Figure VIII). Suivant les cas, la réaction se termine

Figure VIII

131 Am

m g

100

entre 150 et 280° C et la perte de masse correspond sensiblement à une millimole de NOCl par millimole de produit. On caractérise d'ailleurs très facilement la phase gaz par spectrométrie infrarouge.

Le résidu obtenu au palier est exempt d'azote, et les dosages (tableau IV) donnent des rapports Cl/Al très voisins de 4. Par ailleurs, le cliché de diffraction X et le comportement thermique du résidu aux températures supérieures à ce palier sont ceux des chloroaluminates correspondants.

Sels	Prise initiale (mg)	Alx10 ³	Clx10 ³	Mx10 ³	Nx10 ³	bilan pondéral
Li	176	1	4.05	1	traces	177.7
Na	192	1.01	3.96	1.01	traces	193,5
ĸ	208	0.997	3.92	0.99	traces	204,2

Tableau IV

Un excès de chlorure alcalin ne modifie pas la vitesse de la réaction, en accord avec le fait qu'elle a lieu en milieu fondu. Nous avons vérifié avec un montage identique à celui de la figure VI et pour un mélange NOALCL₄ + LiCl stroechiométrique, que la fusion débute vers 155° C et que l'on ne condense la phase volatile que si la température dépasse 180° C. Par ailleurs, on ne constate aucune sublimation de ALCL₂.

En conclusion, l'action des chlorures alcalins sur le chloroaluminate de nitrosyle conduit aux chloroaluminates correspondants : MAlCl₄. L'étude réalisée en réacteur étanche permet de confirmer d'une part la vitesse relativement lente de la réaction avec le sel de lithium, et d'autre part, les observations faites lors de la détermination du point de fusion.

I.II.3. Réaction de substitution nucléophile : action de l'acide sulfurique

Le but recherché en faisant agir l'acide sulfurique sur le chloroaluminate de nitrosyle était de remplacer les atomes de chlore de l'anion $AlCl_{4}^{-}$ par des groupements sulfate suivant :

 $NOALCI_4 + 2 H_2 SO_4 \rightarrow 4 HCI + NOAL (SO_4)_2$
la formation d'une phase volatile facilitant la réaction.

I.II.3.1. Action directe

Lorsque l'on veut réaliser la réaction avec les quantités stoéchiométriques, c'est à dire un rapport $NOAlCl_4/H_2SO_4 = 1/2$, le volume d'acide correspondant à la masse de chloroaluminate est extrêmement faible, et le contact entre les réactifs mauvais. Ceci conduit à une réaction incomplète, et à un résidu hétérogène. Nous avons donc été contraints d'opérer en présence de la quantité d'acide la plus petite possible, compatible avec une homogénéisation correcte. Ceci correspond approximativement à un rapport $NOAlCl_4/H_2SO_4 = 1/3$.

Le mélange réactionnel est porté à 50° C pendant plusieurs jours, et régulièrement homogénéisé. L'ensemble est parcouru par un courant d'azote sec, et la phase gaz formée au cours de la réaction est piégée à - 110°C. Celle-ci n'est constituée que de chlorure d'hydrogène comme le confirme la spectroscopie Infrarouge. Divers essais ont été réalisés en faisant varier le rapport $H_2SO_4/NOAlCl_4$. Le résidu est pratiquement exempt de chlore, et le rapport Al/N très peu différent de 1 (tableau V). Ce résultat analytique confirme bien le fait que la phase volatile recueillie n'est constituée que de chlorure d'hydrogène, à l'exclusion de chlorure de nitrosyle. Par ailleurs, on retrouve le rapport S^{VI}/Al de départ (tableau VI).

RESULTATS D'ANALYSE					COMPOSITION du SOLIDE APRES REACTION			BILAN	
Prise d'essai mg	Alx10 ³	Nx10 ³	s ^{VI} x10 ³	Clx10 ³	NOAL(S04)2	^H 2 ^{SO} 4	NOALCL	Bilan Pondéral	Ecart. %
1000	2,84	2,69	8,27	0,55	2,69	2.88	0,14	982	1,8
1000	1,14	i, 16	9,53 ₉	0,28	1,14	7.25	0,06	1006	0,6

Tableau V

H ₂ SO ₄ utilisé pour la réaction (mg)	NOAlCl ₄ utilisé (mg)	H ₂ S0 ₄ x10 ³ (moles)	NOAlCl ₄ x10 ³ (moles)	H2 ^{S0} 4 NOALCI4	S ^{VI} déduit de Al l'analyse
5118	3580	52 , 22	17.99	2,903	2,913

Tableau VI

L'interprétation la plus conforme aux résultats d'analyse consiste à admettre la formation de NOAl $(SO_4)_2$, l'excès d'acide introduit initialement se retrouvant en fin de réaction et ne jouant qu'un rôle de diluant. Le produit de la réaction soumis à la thermolyse conduit entre 170 et 310°C à l'élimination de l'acide excédentaire. A ce stade, le résidu est du sulfate double d'aluminium et de nitrosyle comme l'indiquent l'analyse (tableau VII) et le comportement thermique aux températures supérieures. Le cliché de diffraction X relativement simple, ne correspond d'ailleurs à aucune phase connue. L'étude Raman confirme ces résultats : seuls H_2SO_4 et NOAl $(SO_4)_2$ sont présents.

Prise init ia le	Alx	10 ³	S ^{VI}	x10 ³	Nx1	0 ³	Bilan	Ecart
(mg)	Theor	Exp	Theor	Exp	Théor	Exp	pondéral	%
1000	4.016	4.07	8.03	8.12	4.016	3.95	1007.9	< 1 %

Tableau VII

Pour éviter l'utilisation d'un excès d'acide, nous avons fait appel à un solvant. Le chlorure de nitrosyle nous a paru parfaitement adapté puisqu'on peut éviter la séparation préalable du chloroaluminate de nitrosyle, et que l'acide sulfurique est sans action sur NOCL (24).

I.II.3.2. Réaction dans le chlorure de nitrosyle

Nous opérons directement sur des solutions de trichlorure d'aluminium dans le chlorure de nitrosyle. La solution est maintenue à - 10° C, et l'acide y est introduit par petites fractions. On observe au contact des réactifs la formation d'un précipité apparemment gélatineux. Après quelques heures de contact, ce dernier est séparé de la solution par filtration. On élimine ainsi NOALCL₄ n'ayant pas réagi, comme le montrent l'analyse, le diffractogramme X et le thermogramme du résidu obtenu après élimination du solvant. Le solide retenu sur la plaque de verre fritté est lavé plusieurs fois avec NOCL, et séché sous pression réduite. Il apparaît pâteux. L'analyse (tableau VIII) montre qu'il ne contient plus de chlore si ce n'est à l'état de traces, et donne des rapports S^{VI}/Al toujours supérieurs à 3, et N/Al toujours supérieurs à 1. Ces rapports varient d'ailleurs d'un essai à l'autre. A la thermolyse de ce résidu, on observe une perte de masse entre 100 et 310° C qui laisse un résidu de NOAl $(SO_4)_2$ pur. L'inflexion vers 100°C est caractéristique du passage :

 $2 \text{ NOHSO}_4 \longrightarrow (\text{NO})_2 \text{S}_2 \text{O}_7 + \text{H}_2 \text{O}$

Nous en avons déduit que le solide résiduel était un mélange de NOAl(SO₄)₂, NOHSO₄ et H₂SO₄ en excès. Le spectre Raman confirme cette déduction. Il correspond à la superposition des spectres des trois espèces à l'état pur. Ceci nous permet d'interpréter les résultats analytiques reportés dans le tableau VIII, en répartissant les éléments sur les trois espèces. Ces résultats correspondent à une proportion initiale H_2SO_4 /AlCl₃ voisine de 2, mais à des temps de réaction différents. (Les lignes 1 et 2 correspondent à des temps sensiblement égaux et la 3 à un temps dix fois supérieur).

Prise initiale (mg)	Alx10 ³	Clx10 ³	s ^{VI} x10 ³	N×10 ³	^{NO} A1 (SO ₄) ₂	NO _H SO ₄	^H 2 _{S0} 4	H ₂ SO ₄ NOA1(SO ₄) ₂	Bilan pondéral	Ecart %
1000	1.382	0.124	8.79	3.35	1.382	1.97	4.05	2.935	992	0,8
1000	1.461	0.149	8.67	3.117	1.461	1.656	4,228	2.89	988	1,2
1000	2.183	0.28	8.19	4.24	2.11	2.135	1.836	0.87	991	0,9

Tableau VIII

On constate par ailleurs que la perte par thermolyse coîncide dans tous les cas à la somme $\text{NOHSO}_4 + \text{H}_2\text{SO}_4$. Nous aurions souhaité compléter ce travail par une identification radiocristallographique. Celle-ci est impossible en général, le caractère pâteux du solide interdit l'échantillonnage en tubes de Lindemann, par ailleurs NOHSO_4 et H_2SO_4 sont trop hygroscopiques pour pouvoir utiliser une chambre Guinier de Wolf. La présence d'acide sulfurique libre s'explique par le fait que H_2SO_4 100 % introduit dans NOCl liquide à -10°C prend en masse, et conduit à un type de réaction hétérogène, ce qui explique l'importance du facteur temps. (Diminution avec le temps du rapport S^{VI}/Al du précipité). Pour des essais ayant duré plusieurs jours, on voit (tableau VIII ligne 3) que le rapport acide libre/NOAl $(SO_4)_2$ diminue fortement. La présence d'hydrogéno-sulfate de nitrosyle s'explique simplement par le caractère acide de AlCl qui, attirant le doublet du chlore de NOCl, rend NO positif, de même que les acides de Lewis favorisent l'ionisation de NO₂Cl en lui conférant des propriétés nitrantes. Il s'agit donc d'une réaction d'échange de cations ou encore d'une réaction acide-base de Bronsted :

1	NO ⁺ AlCl ₄	+ H ₂ S	° ₄ -	-> NOH	:so ₄ +	HAIC1 A
ļ	HAICI4		HCl + Al	C1 ₃		
1	NOCl + AlC	¹ 3 →	NOALCL	4		
NOC	Cl + H_SO		NOHSO	+ HCl		

le trichlorure d'aluminium se recombinant à l 'excès de NOCL. Nous avons donc ici un exemple de concurrence de deux types de réactions envisagées car la substitution nucléophile

NOALC1₄ + $2H_2SO_4$ \longrightarrow NOAL $(SO_4)_2 + _4HC1$ continue à se faire.

En résumé, la réaction conduit bien là encore au sulfate double attendu. Cependant, il n'est pas possible d'obtenir directement le composé pur ni avec un excès d'acide sulfurique (action directe), ni en solution dans NOC1. Il faut dans tous les cas opérer un traitement thermique.

Un troisième type d'essais est à l'étude, et les premiers résultats laissent entrevoir la possibilité de surmonter cette difficulté.

I.II.4. Réaction d'échange de cation et de substitution nucléophile

Avec le fluorure de sodium on pouvait s'attendre d'une part à un échange de cation comme avec NaCl, de l'autre à une substitution nucléophile de Cl par F avec formation de liaisons Al-F plus polaires.

Les résultats expérimentaux sont en très bon accord avec cette prévision. Comme le fluor est suffisamment petit pour conduire à l'hexa coordinence de l'aluminium on pouvait s'attendre aussi à la formation de l'ion AlF_6^{3-} pour peu que le rapport des réactifs de départ corresponde à cette stoechiométrie.

Deux types de réactions ont été envisagés :

D'une part AlCl_ANO + 4 NaF et d'autre part AlCl_ANO + 6 NaF

Pour compléter notre expérimentation et isoler la substitution nucléophile les mêmes essais ont été faits en partant du chloroaluminate de sodium. Ceux-ci nous ont d'ailleurs permis de montrer que l'excédent de perte de masse observé lorsqu'on utilise NOAlCl₄ est du à une réaction d'hydrolyse.

I.II.4.1 Réaction de M AlCl_A + 4 NaF (avec M = NO et Na)

Le mélange NOAlCl₄ + 4 NaF réalisé en boîte sèche est chauffé à raison de 150n Dès la température ordinaire on observe une légère perte de masse. Celle-ci devient importante à 150° - 160° c'est à dire vers la fusion du chloroaluminate pour aboutir à un palier vers 210° - 220°. Elle s'accompagne du départ d'une phase volatile rouge et correspond sensiblement à 1 NOCl par millimole de chloroaluminate.

En réalité cette perte est toujours supérieure à la valeur théorique que laisse prévoir :

 $AlCl_ANO + 4 NaF \longrightarrow AlF_ANa + NOCl + 3 NaCl (1)$

Nous l'attribuons à l'hydrolyse inévitable de AlCl₄NO responsable aussi de la perte de masse avant fusion, mais aussi à une distillation partielle de AlCl₄NO.

En effet NaF représente un très gros volume de sel comparé à celui de NOAlCl₄ ce qui rend l'homogénéisation parfaite douteuse.

Cette réaction incomplète est prouvée par la présence de faibles quantités de NaF détectables par radiocristallographie au dessus de 210° C. NaF et NaCl sont d'ailleurs les seules phases cristallisées ce qui indique que le tétrafluoroaluminate formé est amorphe.

Si l'on réalise la thermolyse d'un mélange NaAlCl₄ + 4 NaF dans les mêmes conditions on met en évidence une faible perte de masse entre l'ambiante et 200° C. Celle-ci ne peut être attribuée qu'à des réactions d'hydrolyse, de type-Al - Cl + $H_2O \longrightarrow HCl + -Al - OH$

Par ailleurs une deuxième perte également faible est décelable vers 500°, qui disparaît si on ajoute au résidu un excès de NaF. Ceci permet d'attribuer cette 2ème perte à la décomposition thermique de la fraction de NaAlCl₄ n'ayant pas réagi du fait de la mauvaise homogénéisation lorsque Fn'est pas en **net e**xcès et justifie la perte trop forte dans le cas de NOAlCl₄, celui-ci se décomposant dans la plage de température où a lieu la réaction (1).

Si l'excès de NaF est de 2 moles/mole NaAlCl₄ on caractérise dans le résidu à 1000° C Na₃AlF₆.

I.II.4.2. Réaction de M.AlCl_A + 6 NaF (avec M = NO et Na)

Avec I NOAlCl₄ + 6 NaF le début de la courbe thermogravimétrique jusqu'à 200°-est superposable à son équivalent dans le cas I NOAlCl₄+ 4 NaF. Si l'on fait abstraction de l'hydrolyse la première étape peut encore être représentée par la réaction (1). Au delà de 200° C et jusqu'à 1000° on n'observe plus de variation de masse. Le résidu final est bien cristallisé, difficile à broyer. Le cliché de ce fait est ponctué mais permet de caractériser Na₃AlF₆ sans ambiguité.

Lorsqu'on prélève l'échantillon au dessus de 200° C on peut voir sur le cliché X les raies de AlF₆Na₃ de NaCl et NaF. Ceci indique que le passage du tétrafluoroaluminate (qui rappelons le est amorphe) à l'hexafluoroaluminate se fait partiellement dès la fusion du mélange.

Le résidu solide correspondant, mis en suspension dans l'eau y est partiellement insoluble. La fraction soluble contient NaCl et NaF.

Après thermolyse à 1000° NaF disparaît totalement du cliché X où seuls restent visibles Na_3AlF_6 et NaCl.

Dans la plage 200 - 1000° on a donc essentiellement :

 $NaAlF_4 + 2 NaF \longrightarrow AlF_6 Na_3(2)$

- 29 -

Avec NaAlCl₄ + 6 NaF la seule perte visible est celle du début que nous attribuons à l'hydrolyse partielle; puis on constate une constance de masse, les 2 réactions (1) avec M = Na et (2) ne donnant lieu à aucune perte de masse.

L'hydrolyse du début, observable à la thermobalance se trouve confirmée par les résultats analytiques **a**u dessus de 200° C.

Le tableau IX montre que le chlore dosé est toujours inférieur au chlore théorique sauf dans le cas où,travaillant avec NaAlCl₄ moins hygroscopique et dans un montage étanche, on retrouve le chlore théorique. Les réactions du tétrachloroaluminate de nitrosyle se trouvent donc bien représentées par les schémas (1) et (2) qui peuvent d'ailleurs constituer une méthode de synthèse de cryolithes artificielles.

Réaction	Prise initiale	Perte	Perte	Masse de	Cl x	: 10 ³
testée	de NAICI ₄ (mg)	théorique	enregistrée	résidu hydrolysé	Theor	Exp
NOAlCl+4 NaF thermogravim.	1000	329	386	1462,4	15,070	12,04
NOAlCl ₄ +6 NaF thermogravim.	1000	329	373	1891,3	15,07	13,18
NaAlCl ₄ +4 NaF _thermogravim.	1000	_	87,3	1799	20,83	17,4
NaAlCl ₄ +4 NaF réacteur étanche	1000	_	-	1906	10,92	10,52
NaAlCl ₄ +6 NaF thermogravim.	1000	-	62,74	2251,6	20,84	18,22

Tableau IX

I.II.4.3. Action de l'ammoniac

Nous pensions, en faisant réagir l'ammoniac sur le chloroaluminate de nitrosyle atteindre par substitution nucléophile la famille des amidoaluminates MAl $(NH_2)_4$ par la réaction générale :

 $AlCl_4^2 + 8 NH_3 \longrightarrow Al (NH_2)_4^2 + 4 NH_4 Cl$

- 30 -

L'existence de ces composés a été signalée par BERGSTRON (26, 27) et l'étude structurale en a été réalisée par ROUXEL et ses collaborateurs (28, 29). Il était cependant à craindre que NO⁺ ne soit trop réactif pour que l'on puisse espérer ne substituer que les chlores sans former de nitrosamide et ses produits de décomposition.

I.II.4.3.1. Ammonolyse du chloroaluminate de nitrosyle

Lorsque le chloroaluminate de nitrosyle est placé dans une atmosphère d'ammoniac même dilué, on observe assez rapidement une déflagration. Ceci suggère la formation de nitrosamide instable NONH₂. On peut admettre dans un premier temps que la réaction a lieu suivant :

$$NOAlCl_4 + 2 NH_3 \longrightarrow NONH_2 + NH_4AlCl_4 (1)$$

analogue à (17):
$$NONH_2 + NH_4AlCl_4 (1)$$

$$NONH_2 + H_2O$$

 $\text{NOHSO}_4 + 3 \text{ NH}_3 \longrightarrow (\text{NH}_4)_2 \text{SO}_4 + \text{N}_2 + \text{H}_2 \text{O}_4$

L'eau ainsi libérée hydrolyse immédiatement le chloroaluminate. Pour ne pas dévier de l'objectif que nous nous étions fixé, nous avons effectué l'ammonolyse d'un chloroaluminate alcalin : en l'occurence le sel de sodium dont l'amidoaluminate est bien connu (30). Après l'achèvement de ce travail nous avons eu connaissance d'un mémoire très récent de LAUGHLIN et GREGORY (31) qui traite aussi de ce problème. Les auteurs se sont limités en fait à l'étude de l'équilibre.

$$NH_{3(g)} + NaAlCl_{4(1)} \rightarrow NH_{3}AlCl_{3(g)} + NaCl (s)$$

- 31 -

I.II.4.3.2. Ammonolyse du chloroaluminate de sodium

- 32 -

Le chloroaluminate est introduit en boîte sèche dans un réacteur (Figure IX) muni d'une plaque de verre fritté. Un agitateur de verre permet d'homogénéiser le solide, et éventuellement de le broyer, sans risques de perte de produit, ni d'entrée d'humidité.

Figure 1X

Ce réacteur peut être isolé du reste du montage, par deux robinets à vide placés en amont et en aval de l'échantillon. Les variations pondérales sont suivies par pesées successives,œlles-ci correspondant à des durées de passage de gaz de une à deux heures environ.

L'ammoniac est séché par passage sur colonnes de sodium et dilué par de l'azote sec. La courbe prise de masse en fonction du temps ne présente aucune inflexion : elle correspond sensiblement à la fixation de six moles d'ammoniac par mole de sel (tableau 10)

	Prise initiale mg	NaAlCl ₄ (AlCl ₃) moles x 10 ³	Prise de masse (mg)	NH ₃ :molesx10 ³	NH _{3/NaAlCl} (AlCl ₃) ⁴
14	1000	5.20	538.7	31.65	6.07
IaAlC	1000	5.20	549	32.25	6.20
4	1000	5,20	531	31.20	6.00
AlC1	1000	7.48	7.80	45.88	6.12

Tableau X

Le cliché de diffraction X du solide indique la présence de chlorure de sodium, à côté de raies non attribuées. Nous avons pensé que ces résultats pouvaient être compatibles avec la réaction :

 $NaAlCl_4 + 6 NH_3 \rightarrow NaCl + AlCl_3 6 NH_3 (1)$

Afin de vérifier ce mécanisme, nous avons réalisé l'ammonolyse du trichlorure d'aluminium. On observe également la fixation de six moles d'ammoniac, par mole de trichlorure (tableau 10 ligne 4) et le cliché de diffraction X de l'ammoniacate est exactement superposable à celui obtenu par ammonolyse du tétrachloroaluminate de sodium (moins les raies du chlorure de sodium).

La réaction (1) rend donc bien compte de la réalité expérimentale. Les résultats obtenus par MAIRESSE (32) pour les chloroaluminates alcalinoterreux sont tout à fait comparables. Ils mettent en évidence la formation simultanée de AlCl₃, 6 NH₃ et du chlorure (ou de l'ammoniacate correspondant lorsque celui-ci existe).

 $\begin{array}{c} Ca\\ sr\\ Ba \end{array} \right\} (AlCl_4)_2 + \begin{array}{c} 20\\ 12 \end{array} \right\} \text{ NH}_3 \longrightarrow 2 \text{ AlCl}_3, 6 \text{ NH}_3 + \left\{ \begin{array}{c} CaCl_2, 8\text{NH}_3\\ srCl_2, 8\text{NH}_3\\ BaCl_2 \end{array} \right\}$

MAIRESSE a d'ailleurs observé que si l'on ne modérait pas suffisamment la réaction par dilution de l'ammoniac et refroidissement du réacteur, du chlorure d'ammonium apparaissait dans le cliché X, ce qui implique la substitution du chlore par NH₂.

N'ayant pas observé la formation de chlorure d'ammonium dans nos essais de basse température (20° C) nous avons réalisé l'ammonolyse en maintena t le réacteur à 60° C. Dans ce cas, le cliché X du résidu ne révèle que NaCl et NH_4 Cl comme phases cristallisées. Ce dernier se forme en quantité importante comme le montre le thermogramme correspondant.

Dès que la température s'élève donc, un autre mécanisme intervient conduisant à la formation possible d'amidoaluminate ou de chloroamidoaluminate amorphe. Par contre, en évitant toute élévation de température seuls se forment NaCl et AlCl₂, 6 NH₃

- 33 -

CHAPITRE 1.111

A- CARACTERISATION DU SULFATE DOUBLE

34 -

D'ALUMINIUM ET DE NITROSYLE

Le sulfate double d'aluminium et de nitrosyle étant un composé nouveau, nous en avons étudié quelques propriétés. En ce qui concerne les caractères chimiques nous avons examiné le comportement thermique, ainsi que la réaction d'échange de cation avec un chlorure alcalin. L'étude structurale:radiocristallographie, spectrométrie Infrarouge et Raman a porté sur des échantillons polycristallins, faute de pouvoir synthétiser des monocristaux.

I.III.1 Comportement thermique

En régime dynamique de chauffe de 150°/h le sulfate double d'aluminium et de nitrosyle est stable jusque 360°. Cette stabilité est supérieure à celle des sels de nitrosyle connus ; la plupart d'entre eux se décomposant à des températures nettement inférieures (70°, 95° et 210° **C**respectivement pour NOHSO₄,-

NOSO₃Cl et (NO)₂S₂O₇ par exemple).

Entre 360° et 500°C (Figure X) on observe une perte pondérale de 78 mg/mmole Le résidu stable à cette température correspond au sulfate d'aluminium. La transformation est complète, comme le confirment l'analyse chimique, le cliché de diffraction X et le comportement thermique aux températures supérieures à 500°C.

- 35 -

Entre 800 et 900° C on observe la transformation sulfate-oxyde d'aluminium classique.

 $2 \text{ NOAl } (\text{SO}_4)_2 \longrightarrow (\text{NO})_2 \text{SO}_4 + \text{Al}_2 (\text{SO}_4)_3$ $\downarrow \text{SO}_3 + \text{NO} + \text{NO}_2$ $\text{Al}_2 (\text{SO}_4)_3 \longrightarrow \text{Al}_2 \text{O}_3 + 3 \text{SO}_3 (g)$

I.III.2. Réaction d'échange de cation

Il était intéressant de voir si l'action d'un chlorure alcalin sur le sulfate double d'aluminium et de nitrosyle conduirait au sulfate mixte correspondant MAl $(SO_4)_2$. Nous avons retenu le chlorure de potassium, le sulfate double correspondant étant bien connu, en particulier par son hydrate : l'alum K_2SO_4 , Al $_2(SO_4)_3$, 24H2O

En régime dynamique de chauffe de 150°/h la réaction débute vers 200° C, et la perte de masse au palier correspond sensiblement au départ d'une millimole de chlorure de nitrosyle par millimole de sel. L'analyse du résidu de la réaction montre l'absence quasi totale de chlore et d'azote (tableau XII) et donne un rapport S^{VI}/Al #2. On peut interpréter ces résultats en admettant la formation du composé KAl(SO₄)₂, ce que confirment le cliché de diffraction X et le comportement thermique aux températures supérieures à 500° C du produit de la réaction. On a donc un échange de cations suivant :

 $NOAl(so_4)_2 + KCl \longrightarrow KAl(so_4)_2 + NOCl(1)$

Le cliché Debye-Scherrer comporte quelques raies non attribuables à $KAI(SO_4)_2$. Nous avons pensé que de faibles quantités de sulfate d'aluminium provenant d'une décomposition partielle de $NOAI(SO_4)_2$ en étaient responsables. Cette décomposition est en effet possible, car la température de réaction est relativement élevée. Néanmoins, la phase KAI $(SO_4)_2$ est largement prépondérante et (1) constitue la réaction principale.

Prise initiale (mg)	Alx1 théor	0 ³ Exp	S ^{VI} Théor	x10 ³ Exp	Nx10 ³	Clx10 ³	Bilan pondéral
466,7	1,81	1,815	3,62	3,62	0.06	0.15	467

Tableau XII

puis

I.III.3. Etude cristallographique

L'étude radiocristallographique des sulfates doubles $M_{I}M_{III}(SO_{4})_{2}$ $(M_{I} = alcalin ; M_{III} = Al, Ga, Fe ...)$ a fait l'objet de plusieurs mémoires. Tous (à l'exception de K.Ga $(SO_{4})_{2}$ et KFe $(SO_{4})_{2}$) cristallisent dans le système hexagonal avec Z = 1 et appartiennent au groupe spatial P321. Selon FRANKE et HENNING (33) le sulfate double de gallium et de potassium ne peut être indexé dans le système hexagonal, mais nous n'avons aucune autre donnée bibliographique concernant son système cristallin. Par ailleurs, **C**.O. HUTTON (34) a montré que le sulfate double de fer et de potassium cristallisait dans le système monoclinique avec Z = 2. D'après cet auteur, il subsiste une ambiguité quant au choix du groupe d'espace. Il nous a paru intéressant de voir si le sulfate double d'aluminium et de nitrosyle - seul sulfate double de nitrosyle connu - se comportait comme la plupart des sels, ou s'il faisait également exception.

Ne disposant pas de monocristaux, nous avons comparé dans un premier temps le spectre de poudre avec celui de KAl $(SO_4)_2$. Les clichés sont parfaitement superposables, ce qui traduit une isotypie entre les deux sels. On peut donc, par analogie, indexer les différentes raies appartenant au sulfate double NOAl $(SO_4)_2$ et dire que les paramètres sont très voisins de 4,71 Å (a et b) et 8.01 Å (c) valeurs trouvées par (35) et (36).

Nous avons représenté Figure XI le schéma de la maille cristalline déduite de celle du dérivé potassé. L'ion NO⁺y est représenté par une sphère, faute de renseignements supplémentaires en ce qui le concerne. La structure est constituée de plans d'ions aluminium et de plans d'ions nitrosyle alternés, liés entre eux par des ions sulfate.

Il serait intéressant par la suite de déterminer la structure comm plète de ce composé sur monocristal afin de préciser la position des atomes d'azote et d'oxygène, et de voir si l'ion NO⁺ occupe une position désordonnée comme dans NOALCl₄. Cette étude est envisagée, et nous nous proposons d'opérer – pour l'obtention des monocristaux – par refroidissement lent d'une solution saturée dans l'acide sulfurique. Ce procédé présente l'avantage d'éviter d'isoler le sel en réalisant l'attaque directe du chloroaluminate de nitrosyle par une quantité d'acide nettement supérieure à celle requise pour la réaction :

 $\text{NOAlCl}_4 + 2\text{H}_2\text{SO}_4 \longrightarrow \text{NOAl} (\text{SO}_4)_2 + 4 \text{ HCl}$

Figure X1

I.III.4. Etude infrarouge

Cette étude était susceptible de confirmer les résultats de l'étude par diffraction X car, suivant les caractéristiques de la maille cristalline du sulfate double, les spectres d'absorption infrarouge sont différents. Dans le cas des composés à maille hexagonale, ceux-ci font apparaître (37) :

- une bande (\mathbf{y}_2) forte, dans le dom**aine** allant de 440 à 480 cm⁻¹
- deux bandes (v_4) espacées d'environ 80 cm⁻¹, situées de part et d'autre de 631 cm^{-1} , valeur de cette fréquence pour l'ion SO₄⁼ en milieu isotrope
- deux bandes (γ_3) distantes de 140 cm⁻¹

alors que pour le sulfate de fer et de potassium KFe $(SO_4)_2$ à maille monoclinique, le spectre présente :

- deux bandes (V_2) à 448 et 470 cm⁻¹
- quatre bandes (v_4) à 587, 621, 655 et 685 cm⁻¹ deux massifs correspondant à la v_3 situés entre 1025 et 1085 cm⁻¹ d'une part et vers 1250 cm⁻¹ d'autre part.

Nous avons enregistré le spectre de NOAl (SO4) ainsi que celui de KAl(SO4)2 afin de les comparer. Les enregistrements ont été effectués sur un spectromètre PERKIN ELMER 457 à partir de suspensions dans le nujol et des faces en chlorure d'argent. Les spectres obtenus sont strictement

identiques comme le montre la figure XII. (La bande à 725 cm⁻¹ que l'on retrouve sur les deux enregistrements est une raie parasite). Chaque spectre présente bien trois bandes fines à 470, 605 et 685 cm⁻¹, et deux massifs assez mal définis pour NOAL $(SO_4)_2$ centrés sur 1135 et 1270 cm⁻¹. Le tableau XIII compare les valeurs des fréquences de NOAl $(SO_4)_2$ avec respectivement celles de TIFe $(SO_4)_2$ hexagonal et KFe $(SO_4)_2$ monoclinique

F	i	gure	Х	1	1
	-	5 6		-	

	Tl Fe(S04) ² (b)	KFe(S0 ₄) ₂ (b)	K,NOAl (SO ₄) ₂ (a)
2	473	448 470	470
4	(608 (693	(587 (621 (655 (685	(605 (685
3	(1130 (1265	(1025 (1085	(1135 (1270

Tableau XIII

(a) nos résultats(b) référence (37)

L'excellente correspondance observée entre les spectres de K et $NOAl(SO_4)_2$ se retrouve avec $TlFe(SO_4)_2$.

L'ensemble des résultats précédents (comportement thermique et échange de cation) montre que $NOAl(SO_4)_2$ est bien un sulfate double, et qu'il appartient - d'après l'étude structurale - à la famille majoritaire des sulfates mixtes à maille hexagonale.

I.III.5. Etude Raman

Faute de pouvoir nous servir de la diffraction X pour identifier le mélange NOAl $(SO_A)_2$ + NOHSO_A + H₂SO_A nous avons utilisé la spectrométrie Raman. Cette identification est difficile en raison de la présence simultanée de trois espèces chimiques contenant toutes l'ion SO_{1}^{-} . Nous avons donc comparé le spectre de diffusion Raman des produits purs, à celui du mélange réactionnel. Les écarts entre les valeurs des fréquences de vibration de l'ion $SO_A^{=}$ dans les différents composés sont suffisamment grands pour nous permettre d'indexer chaque raie et de l'attribuer à une espèce. On peut remarquer (tableau XIV) une excellente correspondance entre les valeurs des fréquences relevées pour le mélange ternaire et pour chacun des composés. Nous avons cependant éprouvé quelques difficultés pour mettre en évidence la fréquence de vibration d'espèce A1 relative à l'ion SO₄= dans l'acide sulfurique (échantillons à faible teneur en acide libre, et raie peu intense même pour l'acide pur). Seule une étude affinée du domaine 850 - 950 cm⁻¹ a permis de la mettre en évidence sans ambiguité. La même difficulté a été rencontrée et surmontée en ce qui concerne la raie à 1285 $\rm cm^{-1}$ attribuée à NOHSO₄. Signalons enfin que nous obtenons pour le mélange ternaire une raie intense à 2271 cm⁻¹, présentant un profil dissymétrique. Ceci résulte de la superposition des raies dues aux vibrations de l'ion NO⁺ contenu dans NOAl(SO₄)₂ et NOHSO₄.

En conclusion, la spectrométrie Raman a permis de caractériser sans ambiguité la présence des trois constituants du mélange réactionnel, ce qui vérifiait l'hypothèse déduite des seuls résultats analytiques et confirmait l'étude thermogravimétrique.

Il apparaît clairement par ailleurs, que la réaction en l'absence de solvant, conduit bien au mélange NOAl $(SO_4)_2$ + H $_2SO_4$ à l'exclusion de NOHSO $_4$.

- 39 -

^H 2 ^{SO} 4	NOHSO4	NOAL (SO4)2	mélange réactionnel
	2273	2279	2273
	1284	1284	1284
	1172		1170
1118		Ċ.	1118
		1072	1072
	1028		1028
911			906
	872		872
		653	653
		610	608
	598		596
	578		578 (?)
	570		569
560			560
		483	484
	438		440
	413		412
		320	316
	244	261	large 250
	210		206
		194	194 (?)
	128		128
	90 ép.	100	98
	84		84
	57		56
		1	

Tableau XIV

B_ ESSAI D'INTERPRETATION DES REACTIONS CHIMIQUES

DE NOAICIA ET AICIA

Un essai d'interprétation rigoureux d'une réaction est un problème très complexe qui nécessite à la fois la connaissance des fonctions thermodynamiques et des facteurs cinétiques. Un tel travail qui demande une expérimentation très importante surtout lorsqu'il s'agit de composés originaux ou mal connus ne pourrait venir qu'en prolongement d'une étude telle que la nôtre dont l'objectif était à la fois plus étendu - réactivité, structure - et plus restreint puisque nous avons renoncé pour l'instant à examiner les réactions individuelles des deux points de vue que nécessiterait une interprétation complète. Or, jusqu'à présent, il nous est apparu que des méthodes plus simples et - partant - plus approximatives, permettraient parfois une interprétation qualitative et pouvaient même constituer un élément de prévision. Nous faisons en particulier allusion aux travaux de SANDERSON (38) qui font appel à la notion d'électronégativité. Ayant utilisé ces types de raisonnements, la définition quantitative de l'électronégativité ne pouvait être que celle préconisée par cet auteur sous le nom de rapport de stabilité S.R.

D'après SANDERSON, en effet l'électronégativité d'un élément peut être chiffrée à partir des données atomiques :

$$SR = \frac{D}{Di}$$

où D est la densité électronique moyenne d'un élément soit $\frac{362}{4\pi r}$ avec Z numéro atomique et r rayon covalent.

Di est la densité électronique d'un élément hypothétique – le gaz rare isoélectronique – qui résulte de l'interpolation de D sur la droite D = f(Z)joignant les densités électroniques des deux gaz rares situés de part et d'autre de l'élément de numéro Z.

En admettant de plus le principe de l'égalisation des électronégativités des éléments dans une combinaison, SANDERSON calcule les charges partielles sur chacun d'eux, qu'ils soient partie constitutive d'un ion ou d'une molécule. Il propose même un procédé de calcul permettant de déterminer la distance moyenne des atomes dans une molécule. Compte tenu des hypothèses simplifica**trices fa**ites les conclusions ne peuvent être qu'approximatives, mais elles apportent parfois d'excellents résultats comme le montre l'auteur dans un article de synthèse paru en 1964 (39).

Partant de la notion d'enthalpie libre SANDERSON énonce les principes suivants : les facteurs favorisant une réaction spontanée sont d'une part l'excédent d'énergie de liaisons dans les produits par rapport aux réactifs, de l'autre l'augmentation d'entropie en cours de réaction. Ces deux forces motrices sont exprimées dans les deux termes ΔH et T ΔS de ΔG et leurs influences respectives peuvent se compenser. Explicitant le premier facteur, SANDERSON énonce le principe connu suivant lequel l'énergie de liaison augmente avec la polarité de la liaison. En ce qui concerne le deuxième, il admet que la formation d'un gaz ou d'un solide amorphe, facteurs augmentant l'entropie favorisent la réaction.

Nous avons considéré nos résultats expérimentaux sous cet angle, en admettant que si deux espèces réagissent, celle dont l'électronégativité est la plus élevée joue le rôle d'accepteur par l'atome le plus positif de la molécule ou de l'ion complexe, l'espèce d'électronégativité moyenne plus faible jouant le rôle de donneur par son atome le plus négatif. La liaison résultante est plus polaire. La réaction de plus est favorisée lorsque la formation d'une espèce moins ordonnée (gaz, solide amorphe) agit dans le sens d'une augmentation d'entropie.

Si l'accepteur possède des orbitales "d" libres, et que le donneur est suffisamment petit, on peut s'attendre à une augmentation du nombre de liaisons, qui peuvent être individuellement moins polaires pourvu que l'énergie totale de liaison des produits dépasse celle des réactifs.

Appliquons ce raisonnement aux divers cas rencontrés.

I.III.6. Réaction de double décomposition

I.III.6.1. Réaction NOAlCl₄ + H₂SO₄

L'acide sulfurique à 100 % est dissocié suivant l'équilibre : $2H_2SO_4 \longrightarrow H_3SO_4^+ + HSO_4^-$

- 42 -

La réaction mettra donc en jeu l'ion hydrogénesulfate HSO_4^- , dont l'électronégativité égale à 3,95 lui confère un rôle de donneur - par son oxygène vis à vis de NOALCl₄. Le chloroaluminate de nitrosyle quant à lui jouera le rôle d'accepteur (SR = 4.29) par l'atome d'aluminium.

La réaction est : NOAlCl₄ + 2HSO₄ \longrightarrow NOAl(SO₄)₂ + 2HCl + 2Cl⁻ Le mécanisme réactionnel peut s'écrire :

suivi du remplacement de deux autres atomes de chlore par un deuxième groupement $SO_{A}^{=}$ suivant le même mécanisme.

On a bien coupure d'une liaison Al - Cl et remplacement par une liaison Al - O plus polaire ($\delta^{+} - \delta^{-}$ dans NOAlCl₄ = 0,96 alors que Al Cl $\delta_{Al}^{+} - \delta_{0}^{-}$ = 1.02 dans NOAl (SO₄)₂)

La formation de HCl gaz est un facteur favorable supplémentaire.

I.III.6.2. Réaction Na AlCl₄ + 4 NaF

Aucune phase gaz n'étant libérée, la réaction ne peut s'expliquer que par une augmentation des forces totales de liaison. Dans ce cas F^- joue le rôle de donneur, et les liaisons Al - Cl sont remplacées par des liaisons Al - F ($\delta_{Al}^+ - \delta_{Cl}^- = 0.80$ dans AlCl₄ et $\delta_{Al}^+ - \delta_{F}^- = 1.00$ dans AlF₄)

I.III.6.3. Réaction NOAlCl, + NaCl

Dans ce cas c'est indiscutablement la formation du gaz NOCl,

c'est à dire l'augmentation d'entropie qui est responsable de la formation du chloroeluminate de sodium, puisque les quatre liaisons Al - Cl sont conservées intactes au cours de la réaction.

On aurait pu s'attendre à une réaction analogue avec NaF soit

NO AlCl_A + NaF \rightarrow NOF + Na AlCl_A

Il n'en est rien puisque l'on forme NOCl dans ce cas.

Ceci montre bien que le donneur F⁻ agit sur l'atome le plus positif donc le plus accepteur soit Al. Il est clair du même coup que NOAlCl₄ ne se comporte pas dans ses réactions comme un composé purement ionique comme le laisserait prévoir sa structure à l'état solide. Une observation tout à fait analogue avait déjà été faite à propos de NOSO₃Cl, ionique par sa structure, à l'état solide mais dont les réactions sont celles d'une espèce essentiellement covalente (40).

> Dans ces conditions, force est d'écrire la réaction : $NOAlCl_4 + 4 NaF \longrightarrow NOAlF_4 + 4 NaCl$ $NOAlF_4 + NaCl \longrightarrow NOCl + NaAlF_4$

I.III.7. Réaction de coordination

Lorsque l'on calcule les charges partielles de AlF_6^{3-} on constate que la différence $\delta_{Al}^{+} - \delta_F^{-}$ est moins grande que dans AlF_4^{-} (0,89 au lieu de 1,00) mais on remplace quatre liaisons par six de sorte que l'énergie totale est supérieure à celle des liaisons dans AlF_A^{-} .

Lorsque l'on passe de AlCl₄ à Al $(NH_3)_6^{3+}$ la polarité de plus, augmente légèrement (0,81 au lieu de 0,80) ainsi que le nombre de liaisons; ce qui est un facteur doublement favorable. Que la possibilité de substitution de Cl⁻ par NH₂ existe lorsqu'on élève la température - ce qui est attesté par la présence de chlorure d'ammonium -, peut se justifier par le fait que la polarité de la liaison Al - N dans Al (NH_2) n'est que légèrement plus faible que celle de la liaison Al - Cl dans AlCl₄ mais que par ailleurs le composé formé, qui peut être à la **limit**e Al $(NH_2)_4$ est amorphe, ce qui correspond à une augmentation d'entropie. Ces résultats peuvent être représentés schématiquement sur une abaque, sur laquelle on reporte les valeurs de SR en fonction de la charge partielle δ d'après la relation de SANDERSON

$$(SR)_{E.C} = (S.R)_{E} + 2.08 (SR)_{E}^{1/2} \times \delta$$

avec
$$\delta$$
 = charge partielle
E = élément
E.c = élément combiné

On obtient un faisceau de droites convergentes, (Figure XIII).

En calculant SR_{EC} pour les diverses combinaisons, une horizontale menée à l'ordonnée correspondante donne les charges partielles de tous les atomes. On voit que lorsque la coordinence 4 est conservée : - NO Al $(SO)_{42}$, AlF₄la différence de charge entre l'aluminium et l'élément directement lié croît et la polarité augmente.

Lorsque la coordinence augmente $\left[Al(NH_3)_6\right]^{3+}$ la différence de charge reste à peu près la même ou décroît, mais le nombre de liaisons augmente, et compense l'abaissement de polarité.

Ce schéma est également applicable aux sels de gallium.

CHAPITRE 11.1

- 46 -

STRUCTURE DU CHLOROALUMINATE DE NITROSYLE

L'étude stucturale complète du chloroaluminate de nitrosyle (radiocristallographie, diffusion Raman et absorption infrarouge) a été réalisée chronologiquement dans l'ordre suivant :

- . détermination du groupe d'espace sur monocristal
- . Etude Raman sur monocristal, en fonction de la température
- . Etude infrarouge sur échantillon polycristallin entre 4000 et 250 cm^{-1} puis entre 400 et 30 cm^{-1} . Cette étude a également été réalisée en fonction de la température.
- . Détermination de la structure cristalline par diffraction X

Pour la clarté de l'exposé, nous traiterons séparément et successivement la partie radiocristallographie et la partie spectroscopie.

II.I.1. Rappels bibliographiques

La première structure cristalline d'un chloroaluminate a été déterminée en 1951 par BAENZIGER (41). Cette étude a confirmé la présence dans le sel de sodium de cations Na⁺ et d'anions $AlCl_4^-$. Une telle constitution avait été avancée dès 1940 par NORRIS & KLEMKA (42) en raison des propriétés catalytiques bien connues de ce composé (catalyseur de la réaction de FRIEDEL & CRAFTS). IBERS en 1962 (43) prépare le chloroaluminate de cobalt $Co(AlCl_4)_2$ par fusion directe du mélange des chlorures Al Cl_3 et Co Cl_2. Il montre que le cation Co⁺⁺ est octaédriquement coordiné et trouve pour l'anion des dimensions comparables à celles du sel de sodium.

Par la suite et plus récemment, des cations polyatomiques plus ou moins complexes ont été associés à l'ion $AlCl_4^-$. Les composés étudiés sont mis en évidence la plupart du temps au cours de l'étude d'un diagramme binaire solide-liquide. C'est tout d'abord CORBETT et ses collaborateurs (44) (45) qui synthétisent les chloroaluminates de cations tels que Se_g⁺⁺ et Te₄⁺⁺. Ils montrent que leur structure consiste en tétraèdres AlCl₄⁻ peu déformés, et en ions cycliques Se₈⁺⁺ et Te₄⁺⁺. En 1971, LE CARPENTIER & WEISS (46) déterminent la structure de l'ion méthyloxocarbonium CH₃CO⁺ dans trois complexes dont CH₃ CO⁺ (AlCl₄)⁻. Les résultats confirment l'ionicité de l'édifice cristallin, et montrent que l'ion AlCl₄⁻ est très peu déformé.

Enfin, en 1972, (47) ELLISON, LEVY & FUNG déterminent la structure du composé Hg_3 (AlCl₄)₂ dans le but d'établir la configuration du groupement Hg_3^{++} . Les auteurs préparent également ce composé en milieu fondu. Ils montrent l'existence dans le cristal du squelette (- Cl - Hg - Hg --Cl-) reliant deux tétraèdres voisins.

Notre travail s'insérant dans une étude structurale systématique des chlorométallates du groupe III_B , il nous a semblé intéressant de voir quelle pouvait être l'influence du cation nitrosyle sur la symétrie de l'anion chloroaluminate. D'autre part, la quasi totalité des connaissances structurales concernant l'ion nitrosyle sont déduites de données spectroscopiques. En effet, la seule étude radiocristallographique à notre connaissance est celle du composé NOSO₃Cl réalisée par HOHLE (48) en 1969. Notre étude était donc susceptible d'apporter des renseignements complémentaires en ce qui concerne cet ion.

II.I.2. Données cristallographiques et enregistrement des intensités

Etant donnée l'extrême hygroscopicité du composé, les cristaux obtenus à partir d'une solution de chlorure de thionyle sont transvasés dans une solution de tétrachlorure de carbone desséché sur CaCl₂ Ils sont ensuite immérgés dans le nujol désséché sur sodium avant d'être introduits dans des capillaires de quartz de 0,3 mm de diamètre. Dans ces conditions, le produit reste stable au moins pendant la durée de l'étude.

La détermination du groupe d'espace a été réalisée à partir de clichés de LAUE et de WEISSENBERG. Les extinctions systématiques relevées sont du type k + 1 = 2n + 1 pour Okl, et h = 2n + 1 pour hkO. Elles laissent comme possiblités de groupes d'espace Pnma ou P_{na2} dans le système orthorhombique.

Le cristal utilisé pour l'enregistrement des intensités avait les

- 47 -

dimensions approximatives suivantes : $0,2 \times 0,3 \times 0,7$ mm.

Les mesures ont été réalisées sur un diffractomètre automatique à quatre cercles PHILIPS PW 1100 ^(*) utilisant la radiation K_a du molybdène $(\alpha = 0,71707 \text{ Å})$ avec monochromateur de graphite. Les paramètres de la maille cristalline ont été déterminés à partir de 25 reflexions indépendantes, choisies par le calculateur du diffractomètre. Les valeurs obtenues sont $a = 10,411^{+}$ 0008, $b = 7,055^{+}$ 0,003, $c = 9,461^{+}$ 0,005 et $v = 695 \text{ Å}^{-3}$. La densité mesurée : $d_{mes} = 1,85$, conduit à Z = 4 (^d calc = 1.89 g.cm⁻³). La technique de comptage utilisée était le balayage en ω avec une vitesse de 0.05° S⁻¹ et une largeur de balayage de 1°25. Le fond continu a été mesuré durant 25 secondes de part et d'autre de chaque réflexion.

La stabilité des mesures a été contrôlée à l'aide de trois taches de référence $(\overline{2} \ 1 \ 1, \ \overline{2} \ 1 \ \overline{1} \ \text{et} \ 1 \ 1 \ \overline{2})$ mesurées toutes les 65 réflexions. Nous avons retenu pour l'étude structurale 595 réflexions indépendantes mesurées dans l'octant h k l, et répondant au critère I > 3 $\sigma(I)$.

Le coefficient d'absorption linéaire μ ayant pour valeur 16 cm⁻¹, nous n'avons pas'effectué de correction d'absorption. Nous avons d'ailleurs vérifié expérimentalement à l'aide du diffractomètre que ce phénomène n'intervenait pas de façon significative.

II.I.3. Détermination et affinement de la structure

La détermination de la structure a été réalisée par l'utilisation des méthodes directes ; à l'aide du programme MULTAN de GERMAIN, MAIN & WOOFLSON (49) utilisant la technique des multisolutions. Les facteurs de structure ont été calculés à partir des facteurs de diffusion atomique de CROMER & WABER (50) en fonction de $\sin \Theta/\lambda$. Nous n'avons pas tenu compte de la diffusion ano male, négligeable dans le cas d'éléments légers pour la radiation Mok α .

Les intensités diffractées par le cristal ont été corrigées des facteurs de LORENTZ et de Polarisation. Elles permettent de calculer les facteurs de structure observés : Fo

> Lp = finateur de Lorentz polarisationFo = facteur de structure observé $I_{int} = intensité intégrée_{I} |F_{o}|^{2} = I_{o} = \frac{int}{Lp}$

Ces mesures ont pu être réalisées grâce à l'obligeance du Docteur KEULEN de la Société PHILIPS (Almelo)

Les facteurs de structure observés contiennent encore les effets de l'agitation thermique et sont exprimés de plus dans une échelle arbitraire. On peut les écrire

$$\left|F_{o}\right|^{2} = K^{2} \left|F_{(T)}\right|^{2}$$

K est appelé facteur d'échelle.

F (T) est le facteur de structure englobant les effets d'agitation thermique.

$$\left| F(T) \right|^{2} = T^{2} \left| F \right|^{2}$$
F = facteur de structure théorique
T = exp (- B Sin² θ/λ^{2})
donc :

donc :

$$|\mathbf{F}_0|^2 = \mathbf{K}^2 \cdot \mathbf{T}^2 |\mathbf{F}|^2$$

Les méthodes directes font appel aux facteurs de structure normalisés Eplutôt qu'aux valeurs de F. E est relié au facteur de structure par la relation :

$$\left| \mathbf{E} \right|^{2} = \frac{|\mathbf{F}|^{2}}{\alpha \sum_{j \in \mathbf{f}_{j}}^{2}}$$

dans laquelle α est un terme tenant compte de l'effet de la symétrie du groupe spatial sur la valeur de $|\mathbf{F}|^2$ et fj le facteur de diffusion de l'atome j.

Donc la connaissance de $|F|^2$ permettra de calculer les $|E|^2$

$$|\mathbf{E}|^{2} = \frac{|\mathbf{F}_{0}|^{2}}{\mathbf{K}^{2} \cdot \mathbf{T}^{2} \alpha \sum_{j} \mathbf{f}_{j}^{2}}$$

La détermination des paramètres K et T permettant de calculer les valeurs de E ² est réalisée à l'aide de la méthode statistique de WILSON

$$= K^{2} T^{2} \sum_{j \neq j} f_{j}^{2} = K^{2} | Exp(-B \sin^{2} \theta / \lambda | \sum_{j \neq j} f_{j}^{2}$$
$$Y = Log \frac{}{\sum_{j \neq j} f_{j}^{2}} = Log K^{2} - 2B \left(\frac{Sin\theta}{\lambda}\right)^{2}$$

En pratique, on divise le réseau réciproque en couches sphériques concentriques, centrées sur l'origine. Chaque couche contient un certain nombre (aussi constant que possible) de noeuds, et à chaque couche

correspondent des expressions moyennes $\langle \sum_j f_j^2 \rangle$ et $\langle \sin^2 \theta / x^2 \rangle$. On fait la moyenne des intensités des réflexions appartenant à une même couche et on porte en graphique :

$$Log < \frac{\langle i_{o} \rangle}{\sum_{j} f_{j}^{2} \rangle} = f (\langle sin^{2}\Theta/\lambda^{2} \rangle)$$

La pente donne 2 B et l'ordonnée à l'origine log K^2

La courbe obtenue est représentée sur la figure XIV. Les valeurs de K et 2 B sont respectivement égales à : 0,0153 et 8,6630. Une fois ces valeurs déterminées, les facteurs de structure normalisés peuvent être calculés à partir des facteurs de structure observés.

Le programme calcule ensuite les valeurs de E^2 , $E^2 - 1$ et E, qu'il compare aux valeurs théoriques attendues dans le cas d'un système centré et d'un système non centré.

Figure XIV

	Résultats expérimentaux	Résultats the	éoriques
			Cas d'une distri- bution non centrée
< E ² - 1 >	1.0432	0.908	0.736
< E ² >	0.9999	1.00	1.00
< E >	0.7668	0.798	0.886
% E) 1	30.7	31.7	36.8
% E > 2	4.9	4.6	1.8
% E > 3	0.4	0.3	ο

Les valeurs obtenues sont reportées dans le tableau XV

Tableau XV

Il semble au vu de ces résultats que l'on soit en présence d'une distribution centrée. Ce résultat avait d'ailleurs été préssenti au cours de l'étude par spectroscopie Raman sur monocristal (ch. II.II). Pour la suite de l'étude, nous avons conservé les 100 plus grandes valeurs de E.

Une fois les valeurs de E calculées, l'étape suivante consiste à rechercher le motif de la structure. Ceci est réalisé grâce au programme MULTAN basé sur la détermination des phases par la formule de la tangente de KARLE & HAUPTMAN (51). Ce programme est composé en fait de trois sous programmes SIGMA 2, CONVERGE & FASTAN, que nous allons décrire très succinctement.

SIGMA 2

Le programme \sum_{2} classe tout d'abord les réflexions par ordre décroissant du facteur de structure normalisé E.

Il établit ensuite les relations de phase de la forme :

 $\Phi (H) = \Phi (H') + \Phi (H - H')$

qu'il affecte d'un poids K_{HH},

Chaque réflexion est ainsi impliquée dans un ensemble de relations appelées relations Σ_{2} ou "interactions".

- 52 -

Le programme calcule dans un premier temps - à l'aide de la formule appropriée au groupe d'espace - le signe et la probabilité des réflexions qui sont des semi-invariants structuraux, c'est à dire, dans le cas du groupe d'espace Pnma, celles du type (2h, 2k, 2l)

La formule Σ_1 s'écrit :

 $S(\mathbf{E}_{2h\ 2k\ 2l}) = S(|\mathbf{E}_{(h,\ k,\ l)}|^{2} - 1)$ ou S est le signe de la réflexion considérée

Le programme détermine ensuite les meilleures réflexions définissant l'origine, et trouve quelques réflexions supplémentaires-liées par un grand nombre de relations de phases du type Σ_2 à d'autres réflexions – qui apparaissent pouvoir fournir un excellent point de départ pour la détermination des phases à l'aide de la formule de la tangente.

Remarque :

L'ordre dans lequel a lieu le processus de convergence peut être considéré comme l'ordre inverse du processus de détermination des phases. En effet, en partant de la fin de la carte de convergence et en remontant, chaque phase peut être calculée à partir des relations qui l'accompagnent puisque ces relations n'utilisent que les réflexions de la série de départ et des phases déjà déterminées.

A la fin du programme, on dispose donc :

- de la liste des phases connues, déduites de l'application de Σ_1 , ayant une probabilité >0,9 dans le cas présent. Elles sont au nombre de 12. (tableau XVI)

CODE	6	7	11	27	32	34	36	54	151	154	155	165
h	0	6	. 6	8	0	6	0	0	8	10	6	` 0
k	4	4	4	0	4	0	0	8	0	4	0	8
1	8	8	0	2	0	8	8	. O	0	0	0	2
phi	180	360	360	360	360	360	180	360	180	180	180	180
100x W t	99	98	95	99	100	99	100	100	99	90	99	84

CODE h k 1 phi 3 3 2 4 360 4 9 1 4 360 19 4 4 1 360

- des réflexions définissant l'origine (ou nombre de 3) (tableau XVII)

Tableau XVII

- des reflexions suppléme**n**taires (4 ont été demandé**e**s) (tableau XVIII)

CODE	h	k	l
1	8	- 4	6
5	9	3	4
25	11	2	2
53	1	2	3

Tableau XVIII

- FASTAN

Cette troisième partie du programme génère chaque série de "phases de départ" en attribuant les valeurs 0 ou π aux phases des quatre réflexions choisies par converge comme "base de départ". Ceci conduit donc à 2⁴ soit 16 séries de départ. La formule de la tangente pondérée (49) permet de calculer pour chacune, l'ensemble des phases des 100 réflexions retenues. A chaque série de phases le programme associe quatre "figures de mérite" qui permettent de guider le choix de la bonne "série" à utiliser pour le calcul de la carte des valeurs de E par transformée de Fourier.

> Ces quatre figures de mérite sont : ABS FOM, PSI ZERO, RESID et COMBINED FOM

PSI ZERO et RESID doivent en principe être minimum et ABSFOM et COMBINED FOM maximum.

Le tableau suivant (XIX) résume les valeurs des figures de mérite pour chacune des seize solutions.

N° de série	ABS FOM	PSI ZERO	RESID	COMBINED FOM
2	1 0978	0 9768 E 03	41 20	1 9469
4	1 0978	0 9768 E 03	41 20	1 9469
6	1 0978	0 9768 E 03	41 20	1 9469
8	1 0978	0 9768 E 03	41 20	1 9469
14	1 0978	0 9768 E 03	41 20	1 9469
16	1 0978	0 9768 E 03	41 20	1 9469
1	1 0978	0 9768 E 03	41 20	1 9469
3	0 8478	0 7989 E 03	<u>51</u> 52	0 9987
5	0 8478	0 7989 E 03	51 52	0 9987
10	0 8478	0 7989 E 03	51 52	0 9987
12	1 0988	0 8351 E 03	40 52	2 4242
11	1 0988	0 8351 E 03	40 52	2 4242
13	0 7529	0 6951 E 03	53 98	0 8492
7	0 8007	0 8226 E 03	53 65	0 6352
9	0 8488	0 6429 E 03	50 82	1 5206
15	0 7527	0 6967 E 03	54 13	0 8386

Tableau XIX

On remarque en fait que les 16 solutions se réduisent à 7 distinctes (2,4,6,8,14,16); (1,3,5); (10,12); (11,13); 7,9 et 15. Les N° 2 et 10 présentant des valeurs maximum de ABSFOM et COMBINED FOM et des valeurs minimum de RESID semblaient les solutions les plus probables. Pour chacune des deux séries de phases correspondantes, la synthèse de FOURIER a permis de localiser les atomes du groupement Al Cl_4^- . Les deux

- 54 -

solutions obtenues ne diffèrent que par une simple translation de coordonnées atomiques de 1/2z. Les atomes d'azote et d'oxygène n'ont pas été révélés.

Afin de localiser ces deux atomes nous avons affiné le motif AlCl₄ en utilisant les 400 valeurs de FOBS les plus grandes et en attribuant à chacun des atomes des facteurs de température isotrope puis anisotrope de la forme :

exp [- ($\beta_{11} h^2 + \beta_{22} k^2 + \beta_{33} l^2 + 2\beta_{12} hk + 2\beta_{13} hl + 2\beta_{23} kl)$] Ceci nous a conduits à un indice de reliabilité R = 0,20 (isotrope) et R = 0,147 (anisotrope).

Une série différence de la densité électronique suivant des sections perpendiculaires à l'axe b révèle alors la contribution électronique de l'ion NO^+ . Il est toutefois impossible d'y distinguer deux atomes. Des séries différence réalisées suivant des sections perpendiculaires aux deux autres axes n'apportent pas de renseignements supplémentaires. Le nuage électronique de l'ensemble de l'ion nitrosyle apparaît grossièrement sphérique, avec un maximum de densité au centre, celui-ci se situant dans le miroir c**r**istallographique y = 1/4.

Nous avons néanmoins poursuivi l'affinement en introduisant la contribution de l'ion nitrosyle. D'après les résultats de l'étude du cristal de NO SO Cl par HOHLE (48), nous avons fixé initialement la distance azote oxygène à 1 A et orienté l'ion de façon arbitraire, parallèlement à l'axe a, dans le plan miroir. L'affinement a été effectué en utilisant les facteurs de diffusion des atomes d'azote et d'oxygène avec les deux dispositions possibles N - O et O - N. Avec des facteurs de température isotrope, ceci conduit à des indices de reliabilité respectifs de 0,094 et 0,100. L'utilisation de facteurs d'agitation thermique anisotrope amène ces indices à 0,049 et 0,052. Néanmoins dans chacun des deux cas, la distance inter atomique trouvée est anormalement courte (de l'ordre de 0,7 Å) et les facteurs d'agitation thermique isotrope des atomes d'azote et d'oxygène anormalement élevés (de l'ordre de 12 Å²) Ceci semble indiquer une répartition désordonnée de l'ion nitrosyle. L'examen des composantes metaij des tenseurs d'agitation thermique anisotrope (tableau XX) révèle que ce sont les valeurs des β_{22} qui sont anormalement élevées pour ces atomes. Ceci nous a laissé penser que NO pouvait occuper tout au moins partiellement une position perpendiculaire

- 55 -

au miroir y = 1/4. La position symétrique par rapport à ce miroir des atomes d'azote et d'oxygène du cation NO^+ peut s'expliquer soit par une répartition statistique du cation dans le cristal, les positions des atomes d'azote et d'oxygène s'échangeant d'une maille à l'autre, soit par un désordre dynamique du cation.

Combinaison	Coeffi cie nts de tem- pérature anisotropes	Atome d'azote	Atome d'oxygène				
0 - N R = 0.052	Béta1,1 Béta2,2 Béta3,3	0.0077364 0.1523025 0.0287070	0.0133274 0.0815002 0.0566221				
N - 0 R = 0.049	Béta1,1 Béta2,2 Béta3,3	0.0129973 0.0760 895 0.0226855	0.0154365 0.1446286 0.0204281				
Tableau XX							

Le problème consistait donc à déterminer le nombre de positions de l'ion NO⁺ et leurs taux d'occupation respectifs. Le principe de la méthode que nous avons utilisée a été d'essayer d'associer à une position perpendiculaire au plan y = 1/4 que nous désignerons par NO_L dont l'existence nous paraissait très vraisemblable, une ou plusieurs autres positions situées dans ce plan que nous désignerons par NO_N. Pour ce faire, nous avons utilisé une version modifiée par F. BAERT du programme ORION (52) qui permet de maintenir la distance azote-oxygène constante lors de l'affinement.

Dans un premier temps, nous avons fixé les coefficients d'agitation thermique isotrope de ces atomes, à une valeur légèrement supérieure au facteur de température global soit 5 \AA^2 et attribué à chaque atome le coefficient de diffusion atomique de l'azote. Les paramètres d'affinement étaient :

- pour NO parallèle la translation et la rotation dans le plan y = 1/4
- pour NO perpendiculaire la translation suivant OX et CZ
- pour l'ensemble des motifs les taux d'occupation respectifs.

Lorsqu'il y avait convergence, la validité physique de la solution était testée en libérant les atomes N et O. Nous avons ainsi constaté que dans la majorité des combinaisons essayées, la distance inter atomique de NO

- 56 -

perpendiculaire restait pratiquement égale à 1 Å, ce qui confirme l'existence de ce site. Nous avons alors réalisé une série différence de la densité électronique en enlevant la contribution des groupements $AlCl_4$ et NO perpendiculaire.

Les sections perpendiculaires à l'axe OY ont mis en évidence dans le miroir y = 1/4 l'existence de deux atomes distincts séparés de 1 Å environ, la liaison entre ces atomes étant sensiblement parallèle à l'axeOz. Les taux d'occupation respectifs pour NO perpendiculaire et NO parallèle ont été trouvés égaux à 60 % et 40 %. En ce qui concerne cette dernière position, la contribution à la densité électronique de l'ún des atomes s'avérant légèrement supérieure à celle de l'autre, nous avons donc assimilé cet atome à l'oxygène.

Tous les atomes étant positionnés, et les taux d'occupation des deux positions du groupement nitrosyle déterminés, l'affinement est alors poursuivi en introduisant successivement des facteurs d'agitation thermique isotropes puis anisotropes pour tous les atomes libérés. L'indice de reliabilité portant sur l'ensemble des reflexions est égal à 0.040. Mais on constate que la distance azote - oxygène dans NO_L est de 0.996 Å alors qu'elle est de 1,103 Å pour l'autre groupement. Un écart aussi important entre ces distances pour le même ion ne nous paraît pas compatible avec les résultats spectroscopiques obtenus sur un monocristal. En effet, nous devrions observer dans ce cas deux raies de vibration à des fréquences nettement distinctes, \mathbf{v} NO étant apparemment très sensible aux variations des distances inter atomiques. Or nous n'observons qu'une seule raie en diffusion Raman, à 2233 cm⁻¹. Cette raie est cependant large, contrairement à ce que l'on observe habituellement, ce qui résulte de l'orientation désordonnée du cation. L'interprétation complète des observations sera donnée au chapitre II.II.

L'affinement a alors été repris en maintenant les distances N - 0 égales à 0.997 Å pour les deux positions de NO. On obtient dans ces conditions un R de 0.042.

L'affinement réalisé avec les atomes du groupement NO⁺// soit libérés, soit en "bloc rigide" conduit donc à des résultats sensiblement identiquès au point de vue facteur de reliabilité. Bien que la valeur de R soit très légèrement supérieure dans le 2ème cas, ce sont les résultats

- 57 -

correspondants à cet affinement qui seront donnés pour les raisons indiquées précédemment.

Nous avons regroupé dans le tableau XXI les valeurs finales des coordonnées atomiques et des facteurs d'agitation thermique anisotrope. Les écarts type sur les différents paramètres sont indiqués entre parenthèses. Les coefficients β_{eq} sont les facteurs d'agitation thermique isotrope équivalents, calculés à partir des coefficients β_{ij} et d'après la relation :

$$\beta_{eq} = 4/3 \sum_{i} \sum_{j} \beta_{ij}$$
 ai. aj.

Les valeurs des facteurs de structure observés et calculés pour l'ensemble des réflexions h k 1 sont données en annexe.

	x		У	Z	Beq	β 11	\$ 22	\$ 33	β ₁₂	β 13	β 23
Al	06152 (1	8).	25000	81418(18)	3,29	073(2)	161(4)	098(2)	000	- 005(3)	000
ClI	23156 (1	8)	25000	93770(23)	6 , 07	108(3)	376(7)	169(4)	000	- 061(3)	000
ClII	- 10380 (20	0)	25000	94207(23)	6 , 79	127(3)	434(9)	174(4)	000	060(3)	000
ClIII	06259 (1	3)	00504(16)	68356(13)	5 , 14	120(1)	207(3)	170(2)	012(3)	- 011(2)	-061(2)
(N,O)	19409 (7:	2)	1 7 9.42 (107)	27782(80)	8,20	122(10)	481(39)	272(14)	071 (14)	089(11)	142(24)
N //	17715 (6	3)	25000	22648(60)	11,00	404(51)	412(59)	203(33)	000	175(35)	000
°//	17909 (9	3)	25000	33185(61)	7,24	077(14)	424(63)	278(32)	000	- 012(19)	000

Coordonnées atomiques (x10⁵) facteurs d'agitation thermique isotrope et anisotrope (x10⁴)

Tableau XXI

II.I.4. Description de la structure

II.I.4.1 Disposition relative des ions

Le chloroaluminate de nitrosyle possède une structure ionique de type Ba SO₄ déjà rencontrée pour Cs⁺ Ga Cl⁻₄, Cs⁺ Al Cl⁻₄ (53) et CH₃CO⁺AlCl⁻₄ (46). Cette structure est la plus symétrique de celles rencontrées pour les tétrachloroaluminates.

La disposition des ions dans la maille cristalline se repésente de façon particulièrement claire en considérant la projection dans le plan (010) La structure peut ainsi facilement être décrite comme une succession de
tétrèdres et d'ions NO^+ dans la direction 100 , avec alternance dans les directions [010] et [001] (figure XV).

L'atome d'aluminium et deux atomes de chlore sont contenus dans le miroir cristallographique y = 1/4 ainsi que les atomes d'azote et d'oxygène de NO//. Ce miroir est plan de symétrie pour les deux autres atomes de chlore du tétraèdre et les atomes du groupement NO/.

Figure XV

II.I.4.2. Environnement du cation nitrosyle

Nous avons rassemblé dans les tableaux (XXII, XXIII) les contacts de VAN DER WAALS et les contacts interioniques correspondant aux deux positions du cation nitrosyle.

	Position*	Distance (en Å)
N // •••••••• CI I	1/001	2,790 (6)
Cl III	1/001	3,192 (6)
Cl III	3/001)	
CT III	2/001	3,278 (6)
Cl III	4/001	
Cl II	1/001	3,974 (7)
Cl II	ī/011	3,946 (3)
Cl II	2/001	3,877 (6)
D _{//} Cl II	2/001	3,112 (8)
Cl III	ī/001 (3 097 (8)
Cl III	3/001	3,097 (0)
Cl III Cl III	2/001 4/001	3,527 (8)
Cl I	1/00ī	3,769 (6)
Cl I	2/001	3,783 (3)
Cl III	1/000	
Cl III	3/000	3,941 (6)

Les atomes $N_{//}$ et $0_{//}$ sont en position x, y, z. Les autres atomes occupent la position équivalente indiquée par le premier chiffre du symbole position; les trois autres chiffres correspondant aux translations effectuées suivant a, b, c.

Codification des positions équivalentes : (1) : x, y, z (2): 1/2 + x, 1/2-y, 1/2-z; (3): \bar{x} , 1/2+y, \bar{z} ; (4): 1/2-x, \bar{y} , 1/2+z; ($\bar{1}$) : \bar{x} , \bar{y} , \bar{z} ; ($\bar{2}$): 1/2-x, 1/2+y, 1/2+z; ($\bar{3}$) : x, 1/2-y, z; ($\bar{4}$) : 1/2+x, y, 1/2-z

Tableau XXII

	Environnement des atomes dans le site NO								
	Position	Distance (en Å) à N <u>1</u> 1	Distance (en Å) ^{à N} 上 3						
Cl I	1/001	3,279 (8)	3,279 (8)						
Cl I	2/010	3,474 (8)	3,474 (8)						
Cl II	ī/001	3,793 (8)	3,793 (8)						
Cl II	2/001	3,420 (8)	3,420 (8)						
Cl III	ī/001	2,995 (8)	3,543 (8)						
Cl III	2/001	3,534 (8)	2,984 (8)						
Cl III	3/011	3,543 (8)	2,995 (8)						
Cl III	4/001	2,984 (8)	3,534 (8)						

La même codification que dans le tableau XXII a été utilisée en ce qui concerne les numérotations et les positions équivalentes occupées par les atomes. Les deux atomes du groupement NO_⊥ sont aussi désignés par $N_{\pm 1}$ (atome N en position x, y, z) et $N_{\pm 3}$ (atome N en position x, 1/2-y,z)

Tableau XXIII

a) NO // (Figure XVI)

En ce qui concerne le groupement NO₁ dont l'orientation est pratiquement parallèle à la direction [O01] le contact intérionique le plus court s'établit entre l'azote et le Cl₁ (2,790 Å). On note également quatre contacts azote-chlore inférieurs à la somme des rayons de VAN DER WAALS de ces deux atomes, se répartissant en deux paires symétriques par rapport au miroir cristallographique y = 1/4. Ces distances valent 3,192 et 3,278 Å. Ceci semble indiquer une certaine intéraction entre l'azote et l'un des atomes de chlore de l'anion.

En ce qui concerne l'oxygène, trois contacts oxygène chlore pratiquement identiques s'établissent :

0 - Cl _{II} =	3,112 Å		
0 - Cl _{III} =	3,097 Å	$\left(\begin{array}{c} \hline \hline$	\bigcirc
0 - Cl _{III} =	3,097 Å	$(C 3_{\overline{2}}C 3_{\overline{3}})$ $(C 3_{\overline{3}})$	\bigcirc N
et sont légèrement inférieurs à la	Y (С
somme des rayons de VAN DER WAALS	Z		\bigcirc
(3,2 Ă)		N - Cl1 Cl3	2790 (6) 3192 (6)

Figure XVI

b) NO_{1} (Figure XVII)

En ce qui concerne le groupement nitrosyle perpendiculaire au plan, étant donné le site qu'il occupe, les deux atomes sont symétriques par rapport au miroir y = 1/4. Les contacts les plus courts s'établissent avec les Cl_{III} situés du même côté du miroir que l'atome considéré. Ces distances valent respectivement 2,995 et 2,984 Å.

Figure XVII

II.I.4.3. Géométrie des ions NO^+ et $AlCl_A^-$

Les valeurs des distances Al - Cl et des angles Cl - Al - Cl sont reportées dans le tableau XXIV. Elles indiquent que l'anion $AlCl_4^-$ s'écarte très légèrement de la symétrie tétraédrique idéale. La longueur moyenne de la liaison Al - Cl est de 2.118 Å et la valeur de l'angle moyen 109° 88. En ce qui concerne l'ion nitrosyle, la distance interatomique est de 0.996 Å.

Al	- Cl I	2,121	(3)	Cl	I - CLII	3.492 (3)
Al	- Cl II	2,104	(3)	Cl	I - Cl III	3,444 (2)
Al	- Cl III	2,125	(2)	Cl	II - Cl III	3,460 (2)
N _{i-1}	- N ₁₃	0,996	(1 1)	Cl	$III_1 - Cl III_2$	3,456 (2)
NII	- 0 *	0,997	(8)		1 5	
		Cl I	- Al -	Cl II	111,46 (9)	
		Cl I	- Al -	Cl III	108,43 (8)	
		Cl II	- Al -	Cl III	109,80 (9)	
		Cl III ₁	- Al -	Cl III 3	108,86 (8)	

Tableau XXIV

II.I.5. Discussion de la structure

II.I.5.1 Généralités

Dans ce type de structure ionique, plus le cation est volumineux, plus l'anion se rapproche de la symétrie tétraèdrique idéale comme cela a été montré par exemple avec les sels alcalins des amido aluminates M $Al(NH_2)_4^{(29)}$ Les structures des chloroaluminates de cations aussi volumineux que Hg_{3}^{++} , Se_{8}^{++} , Te_{4}^{++} et CH_{3} CO⁺ ne présentent également que très peu de déformations en ce qui concerne le tétraèdre AlCl_{4}^{-} , en dépit de la grande diversité des arrangements spatiaux rencontrés (tableau XXV)

a second s							
Composé	NaAlCl ₄ ref (41)	Co(AlCl ₄) ₂ ref (43)	$se_8(AlCl_4)_2$ ref (44)	Te(AlCl ₄) ₂ ref (45)	CH ₃ COAlCl ₄ ref (46)	H g₃(AlCl₄) 2 ref (47)	NOALCI4
Caractéristique de la maille DI ST ANCE	P 222 111 a=10.36 b= 9.92 c= 6.11 Z= 4	I $2/c$ a=12.81 b= 7.75 c=11.50 β = 92°20 Z= 4	Pca 2 ₁ a=14.92 b=10.67 c=13.22 Z= 4	Pbca a=10.746 b=14.112 c=11.845 Z= 4	Pnma a=11.158 b= 7.108 c=10.796 Z= 4	P ${}^{2}\mathbf{f}/C$ a=7.1321 b=15.0468 c=14.1771 β =99°50 Z= 4	Pnma a=10.411 b= 7.055 c= 9.461 Z= 4
5 Al-	2.16	2.105 <u>+</u> 0.019	2.12(3)	2.093(6)	2,127(2)	2,113(6)	2.121(3)
5 0	2.11	2.151-0.016	2.07(2)	2.110(7)	2.128(2)	2.131(6)	2.104(3)
۹°	2.13	2.183 [±] 0.014	2.14(2)	2.149(6)	2.120(2)	2.185(5)	2.125(3)
	2.12	2.188-0.018	2.17(3)	2.130(6)	2.127(2)	2.124(6)	2.121
<d<sub>Al - Cl ></d<sub>	2.13	2.174	2.125	2.120	2.125	2.12	2.117
ANGLES C1-A1-C1			112(1) 108(1) 109(1) 111(1) 112(1) 105(1)	108,2(3) 109,2() 107.1() 107,0(3)	108,94(0,12) 108,28(0,12) 110,19(0,12) 110,89(0,12)	113,1(3) 108,8(2) 110,8(2) 105,8(2) 113,3(2) 104,5(2)	111,46(9) 108,43(8) 109,8 (9) 108,86(8)
< Cl - Al - Cl >			109(5)	108	109,6	109,5(3)	109,6

Tableau XXV

Dans les familles des chloroaluminates alcalins, l'édifice le plus symétrique est celui du sel de césium. Le fait que NO Al Cl_4 soit isostructural de Cs Al Cl_4 indique donc que du point de vue encombrement, l'ion NO⁺ est comparable à C[‡]. Les études actuellement en cours au laboratoire indiquent qu'il en est de même pour le sel d'ammonium NH_4^+ et que l'abaissement de symétrie apparait pour le cation potassium ($R_1 = 1,35 \text{ Å}$).

Les structures de Na Al Cl_4 et $Co(AlCl_4)_2$ qui sont les seules relatives à des cations de petites dimensions (Ri = 0,95 Å et 0,78 Å respectivement) sont de détermination trop ancienne pour que les déformations constatées puissent ne pas être attribuées à l'imprécision des méthodes expérimentales.

II.I.5.2. Distance azote - oxygène

La distance azote - oxygène trouvée pour **le** cation nitrosyle apparaît relativement courte, puisque très légèrement inférieure à 1 Å (0,996). Elle est néanmoins comparable à celle trouvée par HOHLE (**48**) dans le composé NO SO₂Cl (0,94 Å).

Si la détermination des paramètres cristallographiques du cation NO^+ s'est avérée délicate à cause de la position désordonnée qu'il occupe dans le cristal à température ambiante, la distance trouvée pour NO_{\perp} nous semble néanmoins correcte étant donné qu'elle est fonction des coordonnées atomiques d'un seul atome en position générale et que le taux d'occupation est relativement élevé (60 %). Les difficultés rencontrées avec NO dans le plan (d = 1,10 Å avec les atomes libérés) sont dues à notre avis au faible taux d'occupation de cette position, et à la proximité relative de NO \perp . De plus, la distance mesurée résulte de la détermination des coordonnées atomiques des deux atomes.

Nous discuterons plus en détail de la distance azote-oxygène dans NO⁺ au chapitre II.III

II.I.5.3. Disposition relative du cation NO⁺ et des atomes de chlore.

La disposition relative du cation NO^+ et des atomes de chlore dans l'anion Al Cl_4^- appelle également quelques commentaires. Les distances azotechlore et oxygène-chlore reportées dans le tableau (XXII) sont comme nous l'avons signalé relatives aux coordonnées atomiques obtenues lors de l'affinement en bloc rigide, avec la distance azote-oxygène maintenue à 0,997 Å. Il est toutefois intéressant de signaler les résultats obtenus avec les coordonnées atomiques résultant de l'affinement avec les atom**es** libérés (d=1,10Å). On constate qu'il y a toujours une distance azote-chlore **nettement** inférieure aux autres (2.085 Å), ce qui semble indiquer qu'il n'y a pas de distribution

- 64 -

désordonnée de l'ion nitrosyle dans le plan.

Dans le cas contraire, on devrait observer des distances azotechlore et oxygène-chlore sensiblement identiques.

L'atome d'azote possède vraisemblablement un caractère positif vis à vis de l'oxygène comme nous l'avons vu au chapitre I.III.6 : $(^{\delta}N \not= 0 et ^{\delta}0 \not= 0,2)$. Il en résulte qu'il doit être plus proche d'un des centres négatifs que sont les atomes de chlore du groupement AlCl₄, c'est ce que nous constatons effectivement en examinant l'environnement de NO_{//}.

Cependant, les réserves que nous avons émises précédemment en raison du désordre font que ces conclusions devraient être confirmées par une étude structurale à basse température afin de s'affranchir de l'agitation thermique.

- 65 -

CHAPITRE 11.11

ETUDE SPECTROSCOPIQUE

II.II.1. Rappel des résultats de l'étude antérieure

L'étude du spectre de diffusion Raman du chloroaluminate de nitrosyle a été entreprise par HOUTGRAAF en 1954 (10). Les résultats obtenus peuvent être résumés ainsi :

- Le spectre du solide présente un fond continu intense, causé par la fluorescence, qui s'étend sur l'ensemble du spectre. Ce phénomène est particulièrement gênant pour l'observation des raies de faible intensité. Les valeurs des fréquences des raies observées dans ces conditions sont :

132, 167, 356, 460-479 et 549 cm⁻¹

Une sixième fréquence correspondant à la raie la plus intense du spectre est relevée vers 2236 cm⁻¹.

- Le composé à l'état fondu conduit à l'observation de cinq raies aux fréquences suivantes :

136, 182, 349, 450-539 cm⁻¹

HOUTGRAAF suppose que la bande s'étendant de 450 à 539 cm⁻¹ est due à la superposition de deux larges raies, dont les sommets se situeraient vers 461 et 523 cm⁻¹. Il n'observe pas par ailleurs la raie visible sur le solide à 2236 cm⁻¹. La mesure du taux de dépolarisation réalisée sur le sel fondu indique que la raie intense à 349 cm⁻¹ est "fortement polarisée", et que la bande large est dépolarisée ; la valeur du taux étant voisine de 6/7. HOUTGRAAF conclut en disant que le chloroaluminate de nitrosyle est un composé intermédiaire entre un composé moléculaire et un composé ionique avec prédominance de ce deuxième caractère. Ces conclusions sont déduites des observations fondamentales suivantes :

- 66 -

- La raie la plus intense dans le domaine des basses fréquences (à l'état fondu) est fortement polarisée. On la repère à une valeur très voisine de celle de son homologue dans le sel de sodium Na AlCl₄. L'accord est moinsbon cependant en ce qui concerne les valeurs des autres fréquences relatives aux vibrations de l'anion (146, 180 et 575 cm⁻¹ pour NaAlCl_A contre 136, 182 et 450-539 cm⁻¹ pour NOAlCl_d). Malgré ce désaccord "difficilement explicable" l'auteur conclut à la présence de l'ion chloroaluminate dans NOAlCl_A. Cette dernière conclusion est renforcée par le fait que le spectre du solide présente une raie Raman intense vers 2236 cm^{-1} . Une telle valeur ne peut s'expliquer raisonnablement que par la présence d'un groupement NO, ou d'un ion NO⁺. A titre de comparaison, les valeurs relevées pour cette même fréquence dans le cas des composés NOHSO_{A} et NOClO_{A} -dont le caractère ionique est bien connu - sont respectivement de 2340 et 2313 cm⁻¹ (en ce qui concerne l'azote, isostère de NO⁺ la valeur de la fréquence est 2330 cm $^{-1}$). Un autre argument en faveur de cette hypothèse est apporté par le calcul de la constante de force F (NO) ainsi que de la distance interatomique r(NO).

II.II.2. Buts de l'étude Raman envisagée

Nous avons repris cette étude pour diverses raisons :

Le travail d'HOUTGRAAF a été réalisé à une époque où la spectrométrie Raman était limitée technologiquement. La mise au point récente de sources laser puissantes et stables, ainsi que de spectromètres performants (à double et triple monochrom**a**teurs) devait nous permettre d'apporter des renseignements supplémentaires.

On pouvait par étude de l'évolution du spectre en fonction de l'abaissement de température, mettre en évidence plusieurs formes cristallines dont ADDISON et LEVIS (17) avaient suggéré l'existence, en se basant sur les écarts importants des températures de fusion relevées dans la littérature. Cette même étude pouvait également confirmer l'existence de désordre en ce qui concerne l'ion nitrosyle et préciser une éventuelle orientation préférentielle de l'ion en dessous d'une certaine température. Enfin, ce travail s'insérant dans une étude beaucoup plus générale des halogénométallates du groupe III.B, il pouvait contribuer à l'observation de règles régissant l'évolution de la structure en fonction des cations M_I et M_{III} (M_I = alcalin ou pseudoalcalin et M_{III} = Al,Ga, In) et permettre d'établir un essai de relation réactivité-structure.

II.II.3. Données structurales

Lorsque cette étude a été abordée, nous disposions des résultats de l'analyse radiocristallographique que nous avions limitée à l'époque – faute de disposer de cristaux de qualité satisfaisante – à la simple détermination du groupe d'espace. Nous nous trouvions alors en présence de deux solutions possibles à savoir les groupes Pnma $\begin{pmatrix} 0 & 16 \\ 2h \end{pmatrix}$ et P_{na2_1} $\begin{pmatrix} 0 & 9 \\ 2v \end{pmatrix}$. Nous verrons comment l'examen du profil de la raie relative à la vibration

 $\sqrt{100}$ NO⁺à basse température nous a permis de lever cette indétermination.

Par souci de clarté, nous exposerons donc les résultats en ne considérant que l'hypothèse du groupe centré, puisque – comme nous l'avons vu au chapitre II.II – l'étude structurale a confirmé ce résultat.

Les données utiles à l'étude spectroscopiques envisagée sont les suivantes :

- système orthorhombique

- groupe d'espace Pnma

- nombre d'édifices par maille : 4

Les atomes d'aluminium occupent des sites de symétrie C_S , de multiplicité 4, de même que huit atomes de chlore (appelés Cl_I). Les huit autres chlores (Cl_II) sont en position générale - (symétrie C_1 , multiplicité 8) -. Les groupements nitrosyles occupent quant à eux des sites C_S et C_1 . L'ensemble de ces renseignements est reporté dans le tableau XXVI.

A partir de ces renseignements il est possible d'établir les corrélations entre groupe moléculaire et groupe de site ; ainsi que groupe de site et groupe facteur.

Les modes normaux de vibration dans le cristal se décomposant en modes internes et externes, nous effectuerons successivement leur dénombrement.

Sites	Nombre d'atomes	symétrie	multipli cité
٦٦	4	Cs	4
	4	° ₁	8
.°	4.	c ₁	8
N//	4.	Cs	4
0//	ų.	Cs	4
Cl ^I	* 8	C _s	4
Cl ^{II}	8	C ₁	8

Tableau XXVI

II.II.4. Modes internes de vibration

II.II.4.1. Etude théorique

Nous avons retenu la méthode de HALFORD plutôt que celle de BHAGAVANTHAM et VENKATARAYUDU. Elle présente l'avantage de relier les résultats obtenus à l'état fondu avec ceux de l'état solide. De plus, elle ne nécessite que la connaissance des sites occupés par les atomes centraux, ce qui présente un réel avantage lorsque la structure complète n'est pas connue.

II.II.4.1.1. Anion Alcl

Parmi les différents sites de multiplicité 4 possibles (sites C_s et C_1) seuls ceux du premier type sont compatibles avec la symétrie moléculaire tétraédrique de l'ion AlCl₄; ce que confirme l'étude radiocristallographique. Les tableaux de corrélation sont les suivants : (pour distinguer les modes attribués aux différents ions, nous adoptons la convention $\sqrt{\begin{array}{c} + \\ i \end{array}}$ pour les cations et $\sqrt{\begin{array}{c} - \\ j \end{array}}$ pour les anions).

II.II.4.1.2. Cations
$$NO_{\mu}^{+}$$
 et NO_{μ}^{+}

 $NO_{//}^{+}$: On considère, dans ce cas, le groupement nitrosyle, comme un groupement ponctuel, ne pouvant occuper que des sites Cs. La corrélation est la suivante :

 NO_{\perp}^{+} : Dans ce cas, le groupement nitrosyle ne peut occuper que des sites C_{1} de symétrie plus basse, dont la multiplicité est alors de 8. L'existence de cette position peut s'expliquer par le désordre dynamique ou statistique existant au niveau de cet ion (§ II.I) Le tableau de corrélation s'établit de la façon suivante :

II.II.4.1.3. Bilan des modes attendus ; et modes actifs en diffusion Raman

Le dénombrement des modes internes relatifs à chaque ion est en résumé :

 $\Gamma_{v}^{AlCl_{4}^{-}} = 6 \text{ Ag } + 3 \text{ B}_{1g} + 6 \text{ B}_{2g} + 3 \text{ B}_{3g} + 3 \text{ Au } + 6 \text{ B}_{1u}^{+} 6 \text{ B}_{2u}^{+} 6 \text{ B}_{3u}^{+}$ $\Gamma_{v}^{NO_{v}^{+}} = 1 \text{ Ag } + 1 \text{ B}_{2g}^{-} + 1 \text{ B}_{1u}^{-} + 1 \text{ B}_{3u}^{-}$ $\Gamma_{v}^{NO_{u}^{+}} = 1 \text{ Ag } + 1 \text{ B}_{1g}^{-} + 1 \text{ B}_{2g}^{-} + 1 \text{ B}_{3g}^{-} + 1 \text{ Au } + 1 \text{ B}_{1u}^{+} + 1 \text{ B}_{2u}^{-} + 1 \text{ B}_{3u}^{-}$

En ce qui concerne le groupe facteur 22h, les modes "gerade" sont les seuls actifs en diffusion Raman, en raison du principe de mutuelle exclusion. On doit donc attendre :

- dans le domaine de fréquences inférieures à 600 cm⁻¹, correspondant à l'ion $AlCl_{4}^{-}$

 $6 \text{ Ag} + 3 \text{ B}_{1g} + 6 \text{ B}_{2g} + 3 \text{ B}_{3g}$

II.II.4.2. Etude expérimentale

II.II.4.2.1. Etat fondu

Avant d'étudier l'évolution du spectre de diffusion Raman en fonction de la temperature sur un échantillon polycristallin, il nous a paru nécessaire de reprendre celui du composé à l'état fondu ; de manière à situer avec précision les domaines de fréquences des différents modes internes. Cette étude a été realisée à l'aide d'un spectromètre à double monochromateur équipé d'un laser à argon ionisé ($\lambda = 5145$ Å).

Le spectre présente quatre raies dans le domaine des basses fréquences aux valeurs suivantes : 124, 181, 345, et 478 cm⁻¹(figure XVIII a) ainsi qu'une cinquième à 2223 cm⁻¹(figure XVIII b). La mesure du taux de dépolarisation indique que les raies à 345 et 2223 cm⁻¹ sont attribuables à des modes totalement symétriques ; et celles à 124, 181 et 478 cm⁻¹ aux modes d'espèce E pour la première et F_2 pour les deux autres. Le nombre de modes observés en ce qui concerne l'anion est bien celui attendu pour un tétraèdre. Ces résultats sont donc en accord avec la présence des espèces AlCl₄ et NO⁺.

II.II.4.2.2. Etat solide sur poudre

II.II.4.2.2.1. Température ambiante

Nous avons opéré à partir d'échantillons purifiés par zone fondue. Nous avons, pour ce faire, utilisé directement les tubes soumis à la purirication, de manière à éliminer toute manipulation du produit - donc toute contamination.

Les spectres enregistrés pour différentes longueurs d'onde (4480, 5145, 5682 et 6471 Å) ne présentent pas de phénomène de fluorescence, ce qui laisse penser que celle observée par HOUTGRAAF est vraisemblablement due à la présence d'impuretés. Nous pouvons observer à température ambiante (figure XIX a) et sur l'ensemble du spectre :

Figure XVIII a

 E_{\perp}

*** MAN E // V/H/W

 $2100 \quad 2200 \quad 2300 \quad \Delta V \text{cm}^{-1}$

Figure XVIII b

SIIS LILLE - trois raies : l'une située à 353 cm⁻¹, fine et intense, attribuée à la vibration $\sqrt{\frac{1}{1}}$ (A₁) ; une autre plus large vers 128 cm⁻¹correspondant à la $\sqrt{\frac{1}{2}}$ (E) et enfin une troisième intense à 2233 cm⁻¹ ($\sqrt{\frac{1}{1}}^+$).(Σ^+)

> - un massif centré sur 470 cm⁻¹, que l'on attribue à la $\sqrt[4]{3}$ (F₂) - une bande très large vers 220 cm⁻¹ correspondant à la $\sqrt[4]{4}$ (F₂)

L'observation de ces bandes de diffusion à des fréquences voisines de celles du sel fondu montre que l'anion conserve une symétrie proche du tétraèdre à l'état cristallin. Quant à la raie attribuable à l'ion nitrosyle elle est dissymétrique et présente un épaulement à 2246 cm⁻¹ (figure XIX b)

Figure XIX b

Ces raies, à l'exception de celle correspondant au mode $\sqrt[4]{1}$, sont relativement larges, ce qui prouve l'existence d'une structure fine non résolue. Afin d'atteindre celle-ci, nous avons étudié l'effet d'un abaissement de température.

II.II.4.2.2.2. Etude au cours du refroidissement

L'étude du spectre a été suivie entre la température ambiante et celle de l'azote liquide (figure XX). L'effet est peu sensible jusque 200 K environ. Pour des températures plus basses, un éclatement en trois composantes est observable pour chaque bande correspondant aux modes de vibration d'espèce F_2 . Le tableau de corrélations nous autorise à interpréter ce phénomène comme étant dû à un effet de site. Nous avons par ailleurs remarqué une augmentation sensible de l'intensité de la bande à 470 cm⁻¹.

Dans le domaine spectral de la bande $\sqrt[7]{4}$, une raie apparaît à partir de 150 K, et cette dernière glisse de façon importante vers les hautes fréquences au cours du refroidissement de l'échantillon. Nous l'attribuons pour cette raison à un mode de libration.

Si, vers 77 K chacune des trois bandes correspondant au mode $\sqrt[7]{3}$ eclate en deux composantes par effet de couplage intermoléculaire, nous n'observons pas ce phénomène en ce qui concerne le mode $\sqrt[7]{4}$.

Entre la température ambiante et 175 K, la bande relative au mode $\sqrt[7]{2}$ d'espèce E demeure non résolue. Vers 153 K un épaulement apparaît très distinctement vers les basses fréquences, dû vraisemblablement à un effet de site. C'est seulement au voisinage de la température de l'azote liquide que l'effet dû au couplage intermoléculaire est observé.

Quant à la raie se situant à 353 cm⁻¹ son profil n'évolue pas quelle que soit la température. Elle reste très fine et symétrique. Seule son intensité augmente de façon sensible.

En ce qui concerne la vibration \bigvee_{1}^{+} de l'ion nitrosyle, la bande correspondante voit son profil évoluer de façon notable au cours du refroidissement. On peut observer vers 250 K deux épaulements situés de part et d'autre de la raie, le plus distinct se situant du côté des hautes fréquences. Au fur et à mesure que la température décroit, ce dernier disparaît progressivement, alors que l'autre augmente en intensité. A 77 K, on n'observe plus que deux raies relativement bien résolues (figure XXI).

BIR

Figure XX

Figure XXI

Nous avons rassemblé dans le tableau (XXVII) le nombre de raies observées pour chaque mode, comparé aux nombres attendus dans les hypothèses des groupes Pnma et Pna2₁.

Modes de vibration	Nombre de raies atten- dues dans l'hypothèse Pnma	Nombre de raies atten- dues dans l'hypothèse ^{Pna} 21	Nombre de raies obser- vé es à 77 K
A	2	4	1
Е	4	8	4
F ₂	6	12	6
F ₂	6	12	3
+	2	4	2
Total :	20	40	16

Tableau XXVII

Les résultats de cette étude sont en excellent accord avec ceux de l'analyse radiocristallographique. Cependant, l'examen du profil de la raie correspondant au mode de vibration du cation nitrosyle et son évolution au cours de l'abaissement de température (figure XXII) appellent quelques commentaires. Le fait que le profil laisse entrevoir deux épaulements – en plus de la raie – pour des températures supérieures à 210 K est tout à fait compatible avec l'existence de deux types de groupements nitrosyles occupant des sites différents (NO⁺ et NO⁺₁). En effet, dans cette hypothèse, on prévoit six composantes (4 + 2) alors que l'on ne doit en observer que deux dans le cas où tous les ions NO⁺ sont situés dans les miroirs cristallographiques (seule position possible en l'absence de désordre).

Le fait que deux composantes subsistent en dessous de 223 K laisse penser que le groupement nitrosyle se fige dans la position NO dès cette température. La présence de deux composantes seulement nous avait d'ailleurs permis de retenir le groupe d'espace Pnma.

A 77 K seize des vingt modes internes attendus sont donc visibles. Si l'on admet que l'observation des deux composantes d'espèces Ag et B_{2g} de

Figure XXII

la fréquence $\sqrt[7]{1}$ n'est généralement pas possible dans ce type de structure seul l'effet de couplage intermoléculaire portant sur la fréquence $\sqrt[7]{4}$ n'est pas observé.

II.II.4.2.3. Attribution des modes de vibration : étude du cristal

L'observation de cette structure fine nous a incités à étudier le spectre Raman du monocristal, de manière à pouvoir attribuer les modes normaux de vibration, par mesure du taux de dépolarisation. Ceci nécessite tout d'abord le repère des axes cristallographiques.

Les études préliminaires ont montré que les arêtes des faces naturelles du cristal sont parallèles aux axes cristallographiques, et que ce dernier se développe au cours de la croissance suivant l'axe b. Nous disposons donc l'une des faces du cristal sensiblement perpendiculairement à la direction du faisceau laser incident, et nous affinons l'orientation par mesure du taux de dépolarisation d'une raie totalement symétrique. Dans le cas du groupe facteur 2_{h} , il s'agit du mode Ag ; ce qui nous conduit à utiliser la raie intense située à 353 cm⁻¹. Nous plaçons pour ce faire une lame demi-onde sur le faisceau incident, et un analyseur sur le faisceau diffusé. Polariseur et analyseur orientés préalablement au microscope polarisant nous permettent d'obtenir les composantes du vecteur champ électrique perpendiculaire et parallèle aux fentes du spectromètre. L'axe b étant connu la seule ambiguité réside dans le choix des axes a et c.

Le cristal est donc disposé de telle manière que l'axe de croissance coïncide avec l'axe du faisceau laser incident, ce qui entraîne deux cas possibles (figure XXIII). La mesure du taux de dépolarisation de la composante B_{2g} du mode $\sqrt{\frac{1}{1}}$, réalisée en utilisant la convention préconisée par PORTO (54) nous autorise ainsi à fixer la position des axes.

Figure XXIII

Dans l'hypothèse A, c'est la combinaison X (ZX)Y qui doit garder inchangée l'intensité de la composante B_{2g} , ce qui correspond à $E_{\perp} E_{\perp}$

Dans l'hypothèse B, c'est la combinaison Y(XZ)Xsoit $E//E_{\perp}$. L'interprétation des spectres de diffusion Raman est à présent possible.

Mode V _ d'espèce A,

La bande $\sqrt[7]{1}$ comprend, dans le cristal deux composantes actives en diffusion Raman, d'espèces Ag et B_{2g}. Dans la combinaison Y (XZ) X l'intensité de la raie à 353 cm⁻¹ n'étant pas affectée, nous l'attribuons au mode Ag. Des trois autres combinaisons Y (XY)X, Y (ZY)X et Y (ZZ)X, la dernière correspond à une bande d'intensité minimum. Les deux autres, par contre, sont beaucoup moins intenses que suivant Y (XZ)X. Ces résultats permettent de dire que la seconde composante de $\sqrt[\gamma]{}_1$, attribuable au mode B_{2g} se situe à une valeur de fréquence très voisine de celle de la Ag. Ce fait est en accord avec les observations concernant les vibrations d'élongation totalement symétrique d'un grand nombre de composés tétraédriques.

Mode $\sqrt{\frac{2}{2}}$ d'espèce E

Le spectre de diffusion révèle à 77 K la présence des quatre composantes attendues à 140, 145, 153 et 162 cm⁻¹. La mesure du taux de dépolarisation suivant les différentes combinaisons, ainsi que l'évolution du spectre au cours du refroidissement **on**t permis de les attribuer de la façon suivante :

Mode $\sqrt{\frac{1}{3}}$ d'espèce F_2

Les écarts entre les trois composantes apparaissant en dessous de 200 K, et résultant de l'effet de site sont de l'ordre de 20 cm⁻¹. A la température de l'azote liquide, celle située à 524 cm⁻¹ se dédouble en deux raies distantes de 9 cm⁻¹. Par contre, la raie à 503 cm⁻¹ ne présente qu'un profil dissymétrique, et l'écart peut être chiffré à 3 cm⁻¹. En ce qui concerne la première, elle éclate en deux, l'écart étant de 5 cm⁻¹.

Ce spectre à haute résolution présente donc cinq raies et un épaulement à 480, 485, 501, 504, et 518 cm⁻¹. L'attribution que nous proposons est la suivante :

Mode $\sqrt{\frac{1}{4}}$ d'espèce F_2

Ce mode de vibration ne présente à basse température que les trois composantes dues aux effets de site, ce qui signifie que les couplages intermoléculaires ne sont pas visibles. Nous avons attribué les deux couples de composantes Ag et B_{2g} à 218 et 233 cm⁻¹, la fréquence à 210 cm⁻¹ correspondant aux moles B_{1g} et B_{3g}

Les résultats de l'attribution complète sont reportés dans le tableau (XXVIII)

Fréquences	350	140 145 1	53 162	210	218	233	480 48	35 501 50	4 519 528	2235	2238
Attribution	\overline{V}_1^-	$\sqrt{\frac{1}{2}}$, ,	V - 4			$\sqrt{\frac{1}{3}}$		1, 1	
molécule isolée	A ₁	B			F2			F2		Σ	•
effet de site couplage inter moléculaire	A' /\ ^{Ag B} 2g	A" ↓↓ ^B 1g ^B 3g ^A	A' ↓↓ ^{Ag B} 2g	A" ∮∖ ^B 1g ^B 3g	A' /\ AgB _{2g}	A' /\ Ag B _{2g}	A' ↓↓ ^{AgB} 2g	A' ↓↓ Ag B _{2g}	A" ↓↓ ^B 1g ^B 3g	A' / ^B 2g	₹ ₽g

Tableau XXVIII

II.II.5. Etude des modes externes

II.II.5.1. Etude théorique

Etant donné que le spectre le mieux résolu est celui obtenu à 77 ..., nous n'étudierons que les translations et les librations de NO⁺ puisqu'il semble que ce soit la seule position existante à cette température.

II.II.5.1.1. Anion $AlCl_4^-$ et cation $NO_{//}^+$

Le tableau de corrélations est évidemment le même, puisque l'atome central de l'anion (atome d'aluminium) et le groupement nitrosyle (considéré comme ponctuel) occupent tous deux des sites Cs. En ce qui concerne ce dernier il faut exclure la libration autour de l'axe de la liaison azote-oxygène.

II.II.5.1.2. Bilan des modes attendus et modes actifs en diffusion Raman

$$\Gamma \frac{\text{NO}^{+}}{\text{Trans}} = \Gamma \frac{\text{AlCl}^{-}}{\text{Trans}} = 2 \text{ Ag} + 2\text{B}_{2g} + 2\text{B}_{1u} + 2\text{B}_{2g} + 1\text{B}_{1g} + 1\text{B}_{3g} + 1\text{Au} + 1\text{B}_{2u}$$

$$\Gamma \frac{\text{AlCl}^{-}}{\text{libr}} = 1\text{Ag} + 1\text{B}_{2g} + 1\text{B}_{1u} + 1\text{B}_{3u} + 2\text{B}_{1g} + 2\text{B}_{3g} + 2\text{Au} + 1\text{B}_{2u}$$

$$\Gamma \frac{\text{NO}^{+}}{\text{libr}} = 1\text{Ag} + 1\text{B}_{2g} + 1\text{B}_{1u} + 1\text{B}_{3u} + 1\text{B}_{1g} + 1\text{B}_{3g} + 1\text{Au} + 1\text{E}_{2u}$$

Pour la même raison que précédemment (§ II.II.4.1.3), seuls les modes gerade sont actifs : ceci conduit à :

 $4Ag + 4B_{2g} + 2Bdg + 2B_{3g}$ pour les translations $2Ag + 2B_{2g} + 3Bdg + 3B_{3g}$ pour les librations

II.II.5.2. Etude expérimentale

Cette partie du travail a été réalisée sur un spectromètre à triple monochromateur dont la focale est 800 mm. Les réseaux plans possèdent 1800 traits par mm. Cet appareil présente un taux de lumière p**aras**ite très faible dans le domaine des basses fréquences. Cet avantage est particulièrement intéressant dans le cas présent, les modes externes de vibration se situant très près de l'excitatrice ($\sqrt[7]{<50}$ cm⁻¹).

Parmi ces modes externes, nous avons pu sans difficulté assigner ceux correspondant à l'ion NO^+ , en comparant le spectre de $NOAlCl_4$ à celui de $NOGaCl_4$ (voir chapitre III.I). Pour distinguer les modes de translation de ceux de libration, nous avons étudié l'évolution du spectre avec l'abaissement de température. Les fréquences de libration en effet, sont sensibles à la température, ce qui se traduit par une augmentation de leurs valeurs lorsque celle-ci décroît. Ce phénomène peut s'expliquer par une contraction de la maille, qui limite les pivotements autour des axes d'inertie. Le tableau (XXIX) résume les attributions des modes observés.

fréquences	37-41	48-52	58-62	64-68	76	81–85	98	104–108	118-122	179	2ó4
attribution $A = N0^{+}$ $B = AlCl_{4}^{-}$	Т _А	^R B∃	R _A	RA	Т _В	Т _А	т _А	TA	т _в	Т _В	R _B

Tableau XXIX

Sur les vingt deux modes attendus dix-huit seulement sont donc observés.

- 81 -

II.II.6. Conclusions

L'utilisation d'un matériel très performant - sources laser puissantes et stables, et spectromètres à double et triple monochrom**a**teurs - nous a permis de mettre en évidence les effets de site ainsi que les couplages intermoléculaires. La possibilite d'opérer sur un monocristal jusque 173 K nous autorise par ailleurs à proposer une attribution des modes normaux de vibration. L'examen du profil de la raie relative à l'ion NO⁺ nous avait permis initialement de lever l'ambiguité sur le choix du groupe d'espace ; ce que confirma l'étude radiocristallographique ultérieure.

L'absence de discontinuité dans l'évolution du spectre de basses fréquences au cours de l'abaissement de température semble infirmer l'hypothèse de l'existence de deux formes allotropiques, dont une basse temperature.

La position désordonnée de l'ion NO⁺ a également pu être mise en évidence, à température ambiante. En effet, trois composantes sont observées dans ces conditions, au lieu des deux attendues dans le cas d'un ion figé dans le plan y = 1/4. Nous avons pu, par la même occasion déterminer la température à partir de laquelle l'ion nitrosyle semble se figer dans les miroirs cristallographiques ($\theta \leq 223$ K) ainsi que celle à laquelle le cristal se clive ($\theta \leq 170$ K). Ce dernier phénomène reproductible, est vraisemblablement dû à une contraction anisotrope de la maille cristalline. Ces données sont extrêmement intéressantes car nous projetons de reprendre la détermination de la structure à basse température, de manière à supprimer le désordre.

Le dernier renseignement que nous espérions déduire de cette étude, à savoir l'influence du cation M_I sur la structure de ce type de composé nous paraît difficilement accessible en raison de l'élargissement des raies à l'état fondu ; et en particulier celles relatives à V_3^- et V_4^-

Enfin, l'observation d'un profil dissymétrique de la raie correspondant à la vibration de l'ion nitrosyle sur le sel à l'état fondu - l'écart entre les valeurs des fréquences composantes étant voisin de 60 cm⁻¹ - nous laisse penser qu'il existerait déjà un couplage intermoléculaire.

- 82 -

Le chloroaluminate de nitrosyle ayant pour groupe d'espace Pnma (\mathfrak{D}^{16}) il était intéressant de réaliser une étude par spectrométrie Infrarouge. Cette technique est en effet complémentaire de la diffusion Raman, lorsqu'il existe un centre de symétrie dans le groupe d'espace considéré.

Les spectres d'absorption ont été enregistrés sur un interferomètre Polytec pour la gamme $30 - 500 \text{ cm}^{-1}$ et sur un spectromètre Perkin-Elmer 180 entre 200 et 4000 cm⁻¹. Ils présentent des bandes larges, mal résolues à basse température, n'apportant donc aucun résultat complémentaire.

CHAPITRE 11.111

CONCLUSIONS DE L'ETUDE STRUCTURALE

Au terme de cette étude structurale, deux questions se posent à savoir : d'une part le chloroaluminate de nitrosyle est-il réellement un composé ionique et d'autre part quelle peut être la valeur exacte de la distance entre les atomes d'azote et d'oxygène du groupement nitrosyle. Il semble à la lecture des mémoires traitant ce type de problèmes que répondre à de telles questions n'est pas chose aisée. Nous allons essayer de faire le point sur chacun des deux sujets :

II.III.1 Ionicité du chloroaluminate de nitrosyle

Il semble que la première étude de l'action du chlorure de nitrosyle sur un chlorure métallique remonte à 1863, date à laquelle WEBER (3) étudiait l'action "des vapeurs soigneusement séchées libérées de l'eau régale "sur divers chlorures" dont, comme nous l'avons vu celui de l'aluminium. Les composés formés étaient alors appelés "composés d'addition", faute de pouvoir préciser la nature des liaisons. C'est seulement à partir de 1927 que GALL et MENGDEHL (7) ont envisagé l'existence d'une liaison entre l'atome de chlore de NOCl et l'atome métallique, tandis que d'autres auteurs proposaient une liaison métal-oxygène. En 1954 HOUTGRAAF entreprend la première étude structurale du chloroaluminate de nitrosyle par spectrométrie Raman. L'auteur conclut en disant que NOAlCl₄ est intermédiaire entre "un composé hétéropolaire pur et un composé homopolaire, avec prédominance du premier caractère".

Les études tendant à mettre en évidence la présence de l'ion nitrosyle se sont multipliées depuis, avec le développement des techniques spectroscopiques. Certains auteurs ont même discuté divers critères permettant de conclure ou non à la présence de cet ion dans ce type de composés. Selon

- 84 -

ADDISON et LEWIS(17), la nature de la liaison entre le groupement nitrosyle et l'anion dans un complexe peut être déduite d'un certain nombre d'études physicochimiques : spectrométrie X et moléculaire, conductibilité dans le chlorure de nitrosyle et mesures de susceptibilité magnétique. Plus récemment SHARP et THORLEY (55) ont étudié un certain nombre de composés nitrosylés par spectrométrie infrarouge. Ils observent la présence d'une bande d'absorption située, dans tous les cas, dans le domaine 2150 - 2400 cm⁻¹. Les auteurs essayent de relier les variations de la valeur de la fréquence de vibration $\sqrt{\frac{1}{1}}$ de l'ion NO⁺ au caractère covalent de la liaison, et aux effets de charges électrostatiques dans le cristal. En 1971, Mac CORDYCK (56) conclut son étude des complexes nitrosylés des éléments des groupes V et VI ainsi que des actinides en disant que la plupart des composés formés possèdent un caractère ionique prédominant à l'état solide. Cependant, l'étude spectroscopique montre - pour certains complexes que l'anion est plus ou moins déformé (cas de Nb, Ta). Cette déformation est vraisemblablement due à une polarisation de l'anion sous l'effet du cation nitrosyle, et conduit à la formation d'un lien partiellement covalent.

En ce qui concerne le chloroaluminate de nitrosyle, on peut dire que la liaison entre l'anion et le cation est vraisemblablement à caractère ionique prédominant. Cette conclusion s'appuie sur :

> la solubilité du sel dans le chlorure de nitrosyle, que l'on peut interpréter comme une solvatation de l'ion NO⁺ par NOCL suivant :

 $NO^+ AlCl_{\underline{A}}^- + NOCl \longrightarrow (NO, NOCl)^+ + AlCl_{\underline{A}}^-$

- la caractérisation indiscutable dans le spectre de diffusion Raman des ions $AlCl_{A}^{-}$ et NO^{+}
- les mesures de susceptibilité magnétique réalisées par ASMUSSEN (57).

L'étude radiocristallographique a montré d'autre part que le tétraèdre est très peu déformé, ce qui semble indiquer une faible interaction entre le cation nitrosyle et l'anion $AlCl_4^-$. Ce résultat permet de confirmer le caractère ionique prépondérant de la liaison NO - $AlCl_4^-$. Il devient dès lors difficile d'expliquer certains caractères physiques du sel tels que point de fusion relativement bas et stabilité thermique médiocre. Cette

incompatibilité ne fait cependant pas exception, car d'autres sels présentent ce même phénomène.NOSO₃Cl par exemple est très peu stable thermiquement et se comporte d'un point de vue caractères chimiques comme un composé essentiellement covalent alors que sa structure cristalline plaide en faveur d'un édifice ionique. (48)

A titre indicatif nous avons relevé la valeur de la fréquence de vibration de l'ion nitrosyle dans les différents composés rencontrés au cours de notre travail : $NOM_{III}Cl_4$ (M_{III} = B, Al, Ga, Tl) ; 2 NOCl, InCl₃ ; $NOM_{III}(SO_4)_2$ (M_{III} = Al, Ga) et NOHSO₄. Les figures (24,25) rendent compte des résultats obtenus.

Figure XXIV

On remarque l'existence de deux groupes distincts : le premier situé du côté des grands nombres d'onde est relatif aux composés contenant les ions sulfate et hydrogénosulfate. Les valeurs de $\sqrt[4]{NO}$ pour les deux sulfates doubles NOAl(SO₄)₂ et NOGa (SO₄)₂ sont quasiment identiques. Ceci n'est pas étonnant car ces composés ne diffèrent que par la nature du cation trivalent Or Al³⁺et Ga³⁺ont des caractéristiques (rayon ionique,électronégativité...) très comparables, ce qui doit se traduire par des intéractions anion-cation M_{III} pratiquement identiques. Pour l'hydrogénosulfate de nitrosyle la faible valeur de la fréquence comparée à celles des sulfates doubles s'explique par la différence des interactions entre les ions SO₄H⁻ et SO₄⁼.

Le deuxième groupe est constitué des chlorométallates NOM_{III}Cl₄ ($M_{III} = B$, Al, Ga, Tl) dont l'anion a une structure tétraédrique. L'écart de fréquences entre les valeurs extrêmes est nettement supérieur à celui du premier groupe (40 cm⁻¹). Si on ne tient pas compte de NOBCl₄,étant donnée la position particulière qu'occupe le bore dans la colonne III B, on constate que la valeur de la fréquence $\sqrt[4]{NO}$ diminue lorsque le numéro atomique de l'atome central augmente. Ceci peut s'expliquer par une augmentation de la dimension de l'anion M_{III} Cl⁴ donc de sa polarisabilité. L'interaction anion-cation devient alors maximum avec le sel de thallium.

Le comportement particulier du sel d'indium s'explique par le fait que l'anion associé à NO⁺ est vraisemblablement $InCl_5^-$ au lieu du groupement tétraèdrique $InCl_4^-$. L'interaction anion - cation est dès lors d'un type différent.

Il semble permis de déduire de ces observations des renseignements en ce qui concerne la nature de la liaison entre NO et $M_{III}Cl_4$. Il est en effet vraisemblable que l'abaissement de la valeur de la fréquence de vibration lorsque l'on passe de Al Cl_4 à Tl Cl_4 doit correspondre à une augmentation du caractère covalent de la liaison (du à la polarisabilité croissante de l'anion.) Dans cette hypothèse, le sel d'aluminium serait le plus ionique et cela se traduit par une valeur de V_{NO} maximum.

Le fait que l'on note des valeurs de fréquences plus élevées dans le cas des sulfates doubles laisse penser que ces composés sont plus ioniques que les chlorométallates. Le dérivé de l'indium 2NOC1, InCl₃ serait, quant à lui, le plus covalent.

II.III.2. Distance azote-oxygène dans l'ion nitrosyle

Les coordonnées atomiques déduites de la détermination de la structure cristalline d'un composé représentent en fait le maximum ou centroïde des distributions de densité électronique et la valeur de la

- 87 -

distance entre deux atomes est évidemment calculée à partir de ces coordonnées. Or la position de ces maxim**um** est influencée par l'agitation thermique à laquelle sont soumis les atomes, et des mesures précises ont montré que les calculs de distances interatomiques ne sont valables que si les déplacements dus aux effets thermiques sont négligeables. CRUICKSHANK (58, 59) a discuté en détails les effets de l'oscillation d'une molécule rigide sur la position des maxima de densité et par conséquent sur l'estimation de la longueur de liaison.

BUSING et LEVY (60) plus récemment ont proposé une méthode permettant de calculer la distance moyenne entre deux atomes, utilisant les facteurs de température isotropes et anisotropes. Celle-ci diffère par le principe de celle de CRUICKSHANK.

L'application de cette méthode au chloroaluminate de nitrosyle conduit à une distance :

1,015 Å < d_{NO} < 1,45 Å

alors que HOHLE donne pour NOSO3Cl

d > 1,03 Å

sans préciser la valeur de la borne supérieure.

La marge d'incertitude sur l'estimation de la distance est très grande $(0,435 \text{ \AA})$ ce qui prouve que l'agitation thermique est trop importante pour pouvoir appliquer cette méthode de correction.

CHOI, PRASK et PRINCE (61) ont montré en effet,que dans le cas d'amplitudes très importantes des mouvements d'agitation thermique, les approximations quadratriques conventionnelles permettant d'en décrire les effets ne sont plus adaptées. Les mouvements décrits par les édifices sont alors mieux représentés à l'aide d'un modèle de bloc rigide soumis aux mouvements de libration et de translation décrits par les tenseurs associés TLS de SCHOEMAKER et TRUEBLOOD (62). Ne disposant pas à l'heure actuelle du programme d'affinement correspondant, nous n'avons pas pu appliquer cette méthode.

La spectroscopie de vibration permet également d'apporter des informations précieuses sur les distances interatomiques. C'est grâce à la valeur obtenue à partir de mesures spectroscopiques que COX, CRUICKSHANK et SMITH (63) ont pu montrer par exemple que la distance anormale obtenue pour la liaison C-C dans le benzène, par diffraction X,était due à un mouvement important de la molécule autour de l'axe d'ordre 6.

- 88 --

Les distances dans ce cas peuvent être évaluées à partir des valeurs des fréquences de vibration observées et des constantes de force qui s'en déduisent par utilisation de formules plus ou moins empiriques. L'une des relations est due à BADGER (64). Elle s'exprime sous la forme :

avec :

re = $a_{ij} - b_{ij} \log_{10} F_2$ $F_2 = 4 \pi^2 C^2 \cdot \sqrt{1 \cdot \mu}$ $F_2 = 4 \pi^2 C^2 \cdot \sqrt{1 \cdot \mu}$ re = distance interatomique $<math>F_2 = constante de force$ $\sqrt{1 - \mu}$ $\mu = masse réduite$

Cette formule appliquée au chloroaluminate de nitrosyle pour lequel $\sqrt{1}$ =2233cm⁻¹ conduit à une distance assez différente de celle obtenue précédemment après correction :

$$re = 1, 12 Å$$

La même correction appliquée au chlorure de nitrosyle (\vec{v} = 1800 cm⁻¹) donne une distance de 1,12 Å au lieu de 1,14 Å par diffraction électronique (65). Il semble donc que le résultat soit plus fiable ; bien que l'absence quasi totale dedonnées relatives au calcul de cette distance pour d'autres composés nous interdise de généraliser. Cette restriction nous paraît d'autant plus vraisemblable, que les facteurs gouvernant la valeur de la fréquence de l'ion nitrosyle – qui est la seule variable dans l'équation de re et qui influence donc directement son calcul – sont complexes.

Selon SHARP et THORLEY (55), l'interaction entre l'ion NO^+ et les halogènes ou le métal central de l'anion, ainsi que les effets de charges électrostatiques de la maille cristalline sur l' ion nitrosyle doivent être deux des facteurs les plus importants dans l'abaissement de la valeur de la fréquence de vibration $\sqrt[6]{NO}$. Les auteurs sont conduits à admettre que la seule généralisation qu'il est possible de faire, en ce qui concerne les variations des fréquences de vibration d'élongation de NO^+ , est que les sels de complexes fluorés donnent les valeurs de fréquences les plus élevées, suivis des sels d'oxoacides et des complexes chloroacides. Il semble d'autre part que les sels contenant les anions les plus volumineux donnent des valeurs de fréquences plus basses que ceux contenant des anions plus petits ; ce que nous avons vérifié. Si l'absence totale d'informations concernant la structure X des dérivés nitrosylés ne permet pas de relier la fréquence de vibration à la longueur de la liaison azote-oxygène, par contre, les données concernant NO ligand dans des complexes de Ru, Ir, Co, Fe, Mn etc ... sont extrêmement nombreuses. Une tentative de classification a été faite par IBERS et ses collaborateurs (66), s'appuyant sur plusieurs centaines de composés nitrosylés. Bien que le rôle joué par NO ne soit pas le même qu'en ce qui nous concerne, l'azote étant lié par covalence à l'atome métallique central, on pouvait espérer au cas où une corrélation existerait pour NO ligand, l'extrapoler à l'ion NO⁺. En fait, les valeurs de la fréquence de vibration de NO

dans ces complexes nitrosylés couvrent un domaine de 500 cm $^{-1}$ (de 1450 à 1950 cm⁻¹). Le problème est rendu complexe d'autre part, par le fait qu'il existe deux types de ligands - ceux pour lesquels la liaison M - N - O est linéaire, et d'autres pour lesquels la liaison est angulaire (120° environ). Il existe de plus un domaine très large de recouvrement des intervalles de fréquences relatifs à ces deux types de composés entre 1600 et 1720 cm⁻¹. Il ne semble donc pas exister de relation simple là encore entre la distance azote oxygène et la fréquence de vibration de NO. Il est à remarquer néanmoins que toutes les distances azote-oxygène dans ces diverses structures sont supérieures à 1,13 Å. Il est donc impossible de s'appuyer sur la seule valeur de la fréquence de vibration $\gamma_{_{
m NO}}$ pour en déduire la distance entre les atomes liés. Avec les composés du type $MX_n^- NO^+$ ayant un domaine de fréquences situé entre 2150 cm⁻¹ et 2400 cm⁻¹ il est logique de penser que la distance azote-oxygène doit être plus courte que dans les composés où NO joue le rôle de ligand, sans qu'il soit possible actuellement de chiffrer cette différence. Seule une étude structurale de toute une série de composés nitrosylés pourra éclaircir ce point.

Troisieme Partie

CHLOROGALLATE et CHLOROINDAT E

de NITROSYLE

CHAPITRE 111.1

CHLOROGALLATE DE NITROSYLE

- 91 -

A_SYNTHESE ET CARACTERES PHYSIQUES

L'extension de l'étude du chloroaluminate de nitrosyle au chlorogallate NOGaCl - ainsi qu'aux dérivés alcalins correspondants - était susceptible de mettre en évidence une évolution des caractères physiques et chimiques de ces dérivés lorsque l'on parcourt la colonne III.B du bore au thallium. La plupart des essais réalisés avec le sel d'aluminium ont ainsi été étendus au chlorogallate.

III.I.1. Préparation

III.I.1.1. Préparation de GaCl,

Le trichlorure de gallium a été obtenu par chloruration directe du métal, suivant la méthode de COUTURIER et CHRETIEN (67), en modifiant légèrement le réacteur de manière à conduire la préparation en une seule opération. On diminue ainsi au maximum les risques d'hydrolyse (Figure XXVI) (GaCl₃ est beaucoup plus hygroscopique encore que AlCl₃). L'ensemble du montage est séché très soigneusement à la flamme d'un bec bunsen, sous courant d'azote sec, puis le gallium ^(*) est introduit dans le ballon (1) sous forme de granules de 1 mm. de diamètre. La synthèse est conduite en trois étapes : chloruration, purification et distillation.

* Nous remercions la Société Péchiney qui nous a généreusement fourni le métal de pureté égale à 99,9 %.

Figure XXVI

La chloruration réalisée dans le ballon (1) est suivie de deux distillations successives de 1 en 2 puis de 2 en 3, sous courant de chlore. Le trichlorure est ensuite distillé lentement de 3 en 4, puis de 4 en 5 sous courant d'azote sec.

Enfin, une dernière distillation sous pression réduite de 5 en 6 conduit à un solide blanc, parfaitement cristallisé. Le ballon contenant le trichlorure est alors séparé par scellement sous vide (en a et b), du reste du montage, ce qui permet de stocker le sel à l'abri de l'humidité pour un fractionnement ultérieur en boîte sèche. Le rendement de l'opération est de l'ordre de 98 %, et la pureté du sel ainsi obtenu est excellente. (tableauXXX)

<pre>masse initiale (mg)</pre>	Gax theor	Gax10 ³ Clx10 ³ heor exp theor exp		x10 ³ exp	Cl/Ga	Bilan pondéral	Ecart. %
1000	5.66	5.61	16,98	16 ,91	3.01	994.5	0.6 %
1000	5.66	5.64	16 , 98	17,03	3.01	998.3	0.2 %
			,	·····	······································		

- 92 -

Tableau XXX

III.I.1.2. Préparation de NOGaCl

La réaction de synthèse : (solv) NOCl + GaCl \rightarrow NOGaCl₄ (1)

est analogue à celle du chloroaluminate de nitrosyle, et les solvants NOCl, SO₂, ou SOCl₂ peuvent être utilisés indifféremment.

Quel que soit le solvant utilisé, le produit obtenu est de qualité comparable, comme l'indiquent les résultats de l'analyse. Nous avons reporté dans le tableau (XXXI) les résultats relatifs à la réaction (1), comparés à ceux de la chloruration directe du métal suivant :

		1		1			<u> </u>			
keaction de synthèse	mg	Gax	:10 ³	Clx1	0 ³	Nx1	o ³	CI/Ga	Bilan pondéral	Ecart. %
NOCl+GaCl ₃ dans NOCl	1000	4,14	4,12	16,56	16,43	4,14	4,04	3,99	991	0.9
NOC1+GaC1 dans SO2	1000	4,14	4,11	16,56	16 , 456	4,14	4,00	4.00	990	1,0
NOC1+GaC1 dans SOC1 ³ 2	1000	4.14	4.08	16,56	16,70	4,14	3.955	4.03	991	0,9
NOC1+Ga	1000	4.14	4.09	16,56	16,51	4,14	4.07	4.09	993.6	0,6

 $Ga + 4 \text{ NOCl} \rightarrow \text{NOGaCl}_4 + 3\text{NO}$

Tableau XXXI

III.I.2. Caractères physiques :

Il n'existe aucune donnée concernant les caractères physiques de ce sel. A l'état fondu, il apparaît stable, comme le confirment les mesures du point de fusion et l'étude Raman. On a pu de ce fait obtenir ici encore un produit extrêmement pur, par fusion de zone. La fusion apparaît vers $158^{\circ}-2^{\circ}C$ lorsqu'elle est mesurée par analyse thermique différentielle, avec manipula tion du sel. Par contre, une simple étude thermométrique conduit à $165^{\circ}-2^{\circ}C$.

Bien que nous n'ayons pas déterminé avec précision la solubilité de ce sel dans le chlorure de thionyle, nous pouvons estimer compte tenu des essais de synthèse dans ce **sol**vant qu'elle est du même ordre de grandeur que celle de NOAlCl₄. Ce renseignement nous suffit très largement pour conduire à bien une éventuelle cristallisation.

- 94 -

Les deux chlorométallates de nitrosyle NOAlCl₄ et NOGaCl₄ étant isostructuraux, il était intéressant de voir s'ils formaient ou non une solution solide continue comme le couple CsAlCl₄ - CsGaCl₄ étudié récemment par GEARHART (53). Nous avons donc entrepris le tracé du diagramme binaire correspondant. Le liquidus a été déterminé par analyse thermique différentielle. Dans ce cas, le programme de chauffe utilisé est de 150°/h et le thermocouple du chromel alumel. Les mélanges ont été préparés en boîte sèche en raison de l'extrême hygroscopicité des produits, et les essais réalisés en tubes scellés. Dans les deux cas, la précision peut être estimée égale à $\stackrel{+}{2}$ °C. Chaque mesure a été effectuée au moins trois fois.

La courbe obtenue est représentée figure (XXVII). Elle indique clairement que les chlorométallates de nitrosyle forment une solution solide avec maximum.

III.I.3. Etude structurale

III.I.3.1. Radiocristallographie

NO Ga Cl₄ cristallise relativement facilement. Nous avons d'ailleurs pu obtenir des cristaux par évaporation isotherme d'une solution saturée dans le chlorure de nitrosyle à 25° C. Lorsque l'on compare le diagramme DEBYE-SCHERRER de ce sel à celui de NOAlCl₄, on observe une correspondance parfaite entre les valeurs des distances interréticulaires.

Les deux sels sont donc isostructuraux ; et ce résultat s'applique également aux sels alcalins $M_{\tau}Al Cl_A$ et M_{τ} Ga Cl_A . (68)

Le chloroaluminate de nitrosyle cristallise donc dans le système orthorhombique, le groupe d'espace étant Pnma. Les valeurs des paramètres sont très sensiblement les mêmes que celles de NO Al Cl₄

a # 10,4 Å b # 7,06 Å et c # 9,45 Å

Le fait de remplacer un atome d'aluminium par un atome de gallium n a donc aucun effet sensible sur les dimensions et la symétrie de la maille.

Une étude structurale par la méthode des films multiples avait été entreprise en même temps que celle du chloroaluminate de nitrosyle, mais n'a pu être menée à terme en raison de la médiocre qualité du cristal. Cette étude n'a pas été reprise par la suite car la détermination de la structure de NO Al Cl_A réalisée entre temps nous avait apporté les renseignements attendus.

III.I.3.2. Spectrométrie Raman

La connaissance du spectre de diffusion Raman du tétrachlorogallate de nitrosyle nous a permis d'assigner les modes externes de vibration correspondant à l'ion NO^+ , par comparaison avec le spectre Raman de NO Al Cl_A .

Cette étude devait nous permettre d'autre part :

- de montrer l'influence de l'atome métallique central M_{III} sur les fréquences de vibration de l'anion $M_{III}Cl_4$. En effet, si le fait de substituer un atome de gallium à un atome d'aluminium ne modifie pas les caractéristiques de la maille cristalline on doit s'attendre par contre à observer des glissements de fréquences sensibles dans les spectres de diffusion Raman.

- d'apporter des renseignements complémentaires en ce qui concerne l'ion NO⁺

- de compléter l'étude déjà ancienne de GERDING et DUINKER (69).

III.I.3.2.1. Etat fondu :

Le spectre Raman de basses fréquences présente à l'état fondu quatre raies, dont une polarisée, ce qui indique que l'ion Ga Cl_4^- possède bien la symétrie tétraédrique. On observe également vers 2211 cm⁻¹ une cinquième raie polarisée, que l'on peut attribuer à l'ion NO⁺ sans ambiguité.

Le tableau (XXXII) rend compte des valeurs des fréquences observées, comparées aux résultats les plus récents concernant l'anion Ga Cl_{4}^{-} . Il existe un écart considérable entre les valeurs des fréquences relatives à V_{4}^{-} , que nous ne pouvons expliquer.

		Réf. (70)	Réf. (71)	Nos résultats
	V_1^- (A ₁)	343	346	342 (P)
$ \begin{array}{c} GaC1_{4}^{-} & \checkmark \\ V \end{array} $	$\sqrt{\frac{1}{2}}$ (E)	120	115	115 (dP)
	$\sqrt{\frac{1}{3}}$ (F ₂)	370	386	365 (dP)
	V_4^- (F ₂)	153	153	2 15- 265 (dP)
NO ⁺	$\mathbf{\dot{V}}^{+}$ 1 ($\mathbf{\Sigma}^{+}$)			2211 (P)

Tableau XXXII

III.I.3.2.2. Etat solide : évolution du spectre avec la température

III.I.3.2.2.1 Modes internes de vibration :

La vibration $\sqrt[7]{1}$ d'espèce A₁ est intense et garde un profil inchangé quelle que soit la température. La raie correspondante se situe à 350 cm⁻¹ à température ambiante, et glisse légèrement vers les basses fréquences. On la repère à 346 cm⁻¹ à la température de l'azote liquide (figure XXVIII).

Dès la solidification, la vibration $\sqrt{\frac{2}{2}}$ d'espèce E éclate en deux composantes, l'une d'entre elles étant beaucoup plus intense que l'autre. Elles se situent respectivement à 122 et 151 cm⁻¹ à 293 K.

BIIS

Vers 100 K la dissymétrie du profil des deux raies due au couplage intermoléculaire s'accentue.

La raie correspondant à la vibration $\sqrt[7]{3}$ d'espèce F_2 peu intense est située dans le pied de la $\sqrt[7]{1}$ du côté des fréquences élevées. Lorsque la température décroît, l'intensité de cette raie augmente et la bande initialement large éclate en trois massifs. L'un de ces massifs se dédouble à son tour vers 80 K.

A la température ambiante, la raie relative à la vibration $\sqrt[4]{4}$ d'espèce F_2 a une largeur à mi-hauteur voisine de 25 cm⁻¹. Son intensité augmente au cours du refroidissement en présentant un profil dissymétrique vers les fréquences élevées. Ceci est dû à la présence d'une libration attribuable à l'édifice Ga Cl₄. La vibration éclate en deux composantes vers 160 k et à 80 K la composante à 212 cm⁻¹ se dédouble à son tour.

En ce qui concerne le mode γ_1^+ , la raie correspondante présente le même profil que dans le cas du sel d'aluminium, traduisant ainsi vraisemblablement le même phénomène de désordre.A 77 K deux composantes très distinctes apparaissent à 2226 et 2231 cm⁻¹. Nous avons reporté dans le tableau (XXXIII) les valeurs des fréquences observées à température ambiente, pour chacun des chlorométallates.

Attribution	$\sqrt{\frac{1}{1}}$ (A ₁)	\dot{V}_2^- (E)	γ_3^- (F ₂)	$\sqrt{\frac{1}{4}}$ (F ₂)	$\mathbf{\gamma}_{1}^{+}$ ($\mathbf{\Sigma}^{+}$)
NO Ga Cl ₄	350	122	385	228	2242 f [*] 2222 F
NO AL CL4	353	128	470	220	2246 f 2233 F

* f : faible F : forte

Tableau XXXIII

La comparaison de ces résultats montre que l'augmentation de masse de l'atome métallique se traduit par un abaissement important (85 cm⁻¹) de la valeur de la fréquence $\sqrt{\frac{2}{3}}$; les autres demeurant pratiquement inchangées. La figure (XXIX) montre bien que le mode de vibration $\sqrt[7]{3}$ correspondant est le plus affecté par la nature de l'atome central. Le tableau (XXXIV) résume les valeurs des fréquences des modes internes comparés à ceux de NOALCL à la température de l'azote liquide.

Fig. II-11. Normal modes of vibration of tetrahedral XY₄ molecules.

Figure XXIX

Fréquences		Attribution	Molécule isolée	effet de site	Couplage intermoléculaire
NUGau 4	MUAICI 4				
3 46	350	√ 1	А ₁	A'	Ag ^B 2g
127-134	140-145			A"	B1g
140-155	153-162	Y - 2	E	Α'	Ag ^B 2g
197	210			A"	B _{1g} B
205-213	218	\bigvee_{4}^{-}	F 2	A۱	B 2g
227	233			A۲	Ag B _{2g}
363-369	480-485	1		Α'	Ag ^B 2g
379-386	501-504	γ_{3}^{-}	F ₂	Α'	Ag Ba
39 6	519-528			An	^B 2g ^B 1g ^B 3g
226 - 2231	2235-2238	√ 1 ⁺	Σ+	Α'	Ag B _{2g}
	·	······································		<u> </u>	

Tableau XXXIV

III.I.3.2.2.2. Modes externes de vibration

L'étude radiocristallographique montre que le composé cristallise dans le groupe d'espace **Pnma** avec quatre motifs par maille. Les corrélations entre groupe facteur-groupe de site sont donc les mêmes que celles établies pour le sel d'aluminium.

D'après ces corrélations on prévoit onze bandes de vibration externes qui doivent se dédoubler par couplage intermoléculaire. Cinq sont attribuables à des modes de libration et six à des modes de translation.

L'étude à haute résolution a également été réalisée pour différentes températures à l'aide d'un spectromètre à triple monochromateur et d'un laser à argon ionisé "spectra physics". Les résultats obtenus nous permettent de proposer pour la totalité des modes, les attributions reportées dans le tableau (XXXV).

Fréquences		* Attributions	Fréqu	ences	Attributions*
NOGaC14	NOA1C14		NOGaC14	NOA1C14	
31	37-41	Т _А	87	98	R _B
37-40	48-52	R _B	94	104-108	T _A
42	58–62	RA	106-112	118-122	T _B
53-58	6468	RA	171	179	T _B
64	76	T _B	261	264	R _B
69	81–85	T _A			

* $A = NO^+$ $B = M_{III}Cl_4$

Tableau XXXV

En conclusion :

Les études radiocristallographique et Raman indiquent clairement que le chlorogallate de nitrosyle est isotype du chloroaluminate correspondant. Ces propriétés communes se retrouvent éga**lement** en ce qui concerne les caractères physiques : température de fusion, stabilité thermique à l'état fondu ou solubilité d**ans** les divers solvants NOC1, SO₂ et SOC1₂.

B_CARACTERES CHIMIQUES

Les données structurales concernant ce sel nous permettent de prévoir des réactions propres à NO^+ et d'autres caractéristiques de $GaCl_4^-$. On pouvait donc envisager des réactions d'échange de cation et par analogie avec $AlCl_4^-$ de substitution nucléophile. Notre étude s'est volontairement limitée à l'action des halogénures alcalins et de l'acide sulfurique qui, comme nous l'avons vu (chap. I.III) représentent deux des principaux types de réactions possibles.

III.I.4. Action des chlorures alcalins

L'ensemble des observations est très comparable à celles relatives à l'action des chlorures sur le sel d'aluminium. Là encore la cinétique de la réaction est beaucoup plus rapide pour le sel de sodium. Le résidu obtenu après élimination de NOCl est fondu et parfaitement limpide. Il ne contient plus d'azote si ce n'est à l'état de traces, et les rapports entre les divers éléments Cl/Ga/M sont très voisins de 4/1/1. Le diffractogramme X ainsi que le comportement thermique aux températures supérieures sont bien ceux des chlorogallates M Ga Cl₄. Nous avons reporté dans le tableau (XXXVI) les résultats relatifs à la réaction NOGaCl₄+ NaCl

Prise d'essai mg	Gax10 ³	Clx10 ³	Nax10 ³	Cl/Ga	Bilan po ndéra l	Ecart %
399,3	1,70	6,77	1,77	3,98	399	1 %
650,6	2,75	10,97	2,80	3,98	649	1 %

Tableau XXXVI

- 100 -

Le mécanisme réactionnel proposé pour NOAlCl₄ s'applique donc au chlorogallate.

 $NOGaCl_4 + MCl \rightarrow NOCl + MGaCl_4$

III.I.5. Substitutionnucléophile : action de l'acide sulfurique

III.I.5.1. Réaction de NOGaCl_A avec H_2SO_A sans solvant

Comme dans le cas du sel d'aluminium, la réaction de NO Ga Cl_4 n'est totale que pour un rapport H_2SO_4/NO Ga Cl_4 voisin de 3 (pour des proportions d'acide supérieures, le résidu est pâteux) et conduit aux mêmes observations.

La réaction s'écrit :

NO Ga Cl₄ + (2 + x) H_2SO_4 \rightarrow NO Ga $(SO_4)_2$ + 4H Cl + x H_2SO_4

La thermolyse du produit conduit dans un premier temps entre 150 et 290° C à l'élimination de l'acide non combiné, laissant NO Ga $(SO_A)_2$ pur.

III.I.5.2. Réaction dans le solvant NO Cl

Là encore nous opérons directement sur des solutions de GaCl₃. Nous observons strictement les mêmes phénomènes que pour le sel d'aluminium. L'acide prend en masse dès son contact avec la solution et la réaction est du type solide-liquide.

Les résultats d'analyse donnent des rapports $\frac{S^{VI}}{Ga}$ toujours supérieurs à 3 et N/Ga supérieurs à 1. Par contre, il n'y a plus de chlore si ce n'est à l'état de traces, après l'élimination de l'excès de chlorogallate par lavages à NOC1. Le tableau (XXXVII) résume les résultats obtenus pour deux essais différents.

Prise d'essai en mg	Gax10 ³	Nx10 ³	s ^{VI} x10 ³	Clx10 ³	s ^{VI} /Ga	N/Ga	BP
1000	2.10	3.84	7.64	0	3.64	1.83	1005
1000.0	1,696	3.21	8.08	0.06	4,74	1.895	991 , 0

Tableau XXXVII

Le produit de la réaction soumis à la thermolyse perd du poids (figure XXX) entre 130° et 290° C, et laisse un résidu dont l'analyse donne entre les constituants des rapports S^{VI}/Ga/N très voisins de 2/1/1(tableau XXXVII) correspondant à NO Ga $(SO_4)_2$

Masse de résidu en mg	Gax10 ³	s ^{VI} x10 ³	Nx10 ³	S ^{VI} /Ga	s ^{VI} /N	BP
291,8	1.00	2.04	0.97	2.04	2.05	294
291,8	0,99	1,99	0.97	2,01	2,055	289,6

Tableau XXXVIII

On peut encore observer sur le thermogramme une très légère perte vers 130°C, caractéristique de la décomposition de l'hydrogénosulfate de nitrosyle en $(NO)_{2}S_{2}O_{7}$.

La réaction se passe donc exactement de la même façon qu'avec le sel d'aluminium, comme l'on pouvait s'y attendre.

Nous avons essayé, sans y parvenir encore à l'heure actuelle, de séparer NO Ga $(SO_4)_2$ des autres constituants. Cependant, et bien que cela soit moins pratique à priori, NO Ga $(SO_4)_2$ préparé dans H_2SO_4 ou NOCl peut être obtenu à l'état relativement pur par simple traitement thermique comme nous l'avons signalé, tout comme NO Al $(SO_4)_2$ d'ailleurs. Une étude complémentaire est également envisagée par la suite.

C _ CARACTERISATION DE NOGa(SO₄)₂

III.I.6. Comportement thermique

En régime dynamique de chauffe, avec un programme de 150°/h, NO $Ga(SO_4)_2$ est stable jusque 325° C, comme le montre la figure (XXX). Cette stabilité nettement supérieure à celle de la plupart des dérivés nytrosylés est comparable à celle de NO Al $(SO_4)_2$.

Entre 330° et 400° C, on observe une perte pondérale de 78 mg/m.mde. Le résidu stable à cette température est le sulfate de gallium $Ga_2(SO_4)_3$ comme le confirment l'analyse chimique, le diffractogramme X et le comportement thermique aux températures supérieures.

Les schémas de décomposition s'écrivent :

2 NO $Ga(SO_4)_2 \longrightarrow Ga_2(SO_4)_3 + (NO)_2SO_4$ (décomposé) $Ga_2(SO_4)_3 \longrightarrow Ga_2O_3 + 3SO_3$

III.I.7. Etude radiocristallographique

Les sels d'aluminium et de gallium étant généralement isotypes, il était intéressant de comparer les diagrammes DEEYE SCHERRER de $NOGa(SO_4)_2$ et NOAl $(SO_4)_2$. L'examen des clichés ne nous autorise pas à conclure à l'isotypie des deux composés. Une étude plus complète s'impose donc dans le cas présent. Nous donnons à titre indicatif la valeur des distances interréticulaires (tableau XXXIX) comparées à celles de $NOAl(SO_4)_2$.

- 103 -

NOAl (SO4)2	NO Ga(S	NO Ga(SO4)2			
° d(Å)	I/SO	d(Å)	I/SO			
8,11	85	8,11	85			
		4,036	25			
3,66	100	_				
		3,39	100			
2,88	25					
2,70	20					
		2,69	15			
		2,64	20			
		2,437	20			
2,36	40	2,36	40			
2 , 26	10					
		2,09	10			
		2,04	15			
2,03	10					
1,98	10					
		1,938	10			
		1,88	10			
1,82	10					
		1,77	10			
		1,696	10			
1,62	10					
1,537	10	1,537	10			
1,516	10					
		1,499	10			
1,44	10	4 077	10			
1 000	10	1,3//	10			
 , 364 	10	1,304	10			
1 00	10	1,340	10			
1,33	10	1,33				

Tableau XXXIX

III I.8 Réaction avec les chlorures alcalins

On observe sur le thermogramme une perte de masse voisine de 65,5 mg par millimole de produit. Cette perte a lieu entre 280 et 370° C pour le sel de sodium et entre 310 et 390° C pour Li.

Si l'analyse du résidu est en accord avec le départ de 1 mole de NOCl,son diffractogramme X par contre est celui du sulfate de gallium, quel que soit M(Li, Na). Le sulfate alcalin qui doit se former simultanément est donc mal cristallisé puisqu'il n'apparaît pas sur le diffractogramme.

La réaction conduit au mélange des sulfates suivant :

2 NOGa $(SO_4)_2$ + 2 MCl \rightarrow 2 NOCl + M_2SO_4 + $Ga_2(SO_4)_2$

En conclusion :

La similitude de comportement physique des deux chlorométallates se retrouve également en ce qui concerne leurs caractères chimiques. L'action des halogénures alcalins conduit aux chlorométallates correspondants, $M_{I}M_{III}Cl_4$ alors que l'acide sulfurique donne les sulfates doubles $NOM_{III}(SO_4)_2$. La seule différence réside dans le fait que ces sulfates doubles ne sont pas apparemment isostructuraux. Une étude ultérieure devra permettre de confirmer ce résultat.

CHAPITRE 111.11

CHLOROINDATE DE NITROSYLE

NOINCl₄ a été obtenu pour la première fois par PARTINGTON et WHYNES (8) par action de NOCl sur InCl_n (n = 1 à 3) en tube scellé à 20° C. BRINKMANN (73) n'obtient ce composé qu'à partir d'un mélange équimoléculaire (NOCl + InCl₃) porté à 50° C. Par ailleurs, faisant réagir un excès de chlorure de nitrosyle sur l'indium à 50° C en tube scellé, BRINKMANN obtient un solide de formule 2 NOCl, InCl₃ stable sous pression de NOCl uniquement, résultat en contradiction avec celui de PARTINGTON et WHYNES qui constatent en ce qui les concerne et dans les mêmes conditions opératoires une réaction incomplète même à 100° C.

Nous avons repris ces synthèses à partir les divers chlorures InCl_n, et par action de NOCl.

 $InCl_3$ est préparé par chloruration directe de l'indium, dans un réacteur de quartz identique à celui de la synthèse de GaCl₃. La réaction débute vers 160° C, à la fusion du métal. La formation intermédiaire d'InCl nécessite l'emploi de chlore comme gaz vecteur lors d'une première sublimation à 500° C. Les deux sublimations suivantes sont effectuées sous courant d'azote et conduisent au sel pur.Comme pour AlCl₃et GaCl₃ on condense un excès de NOCl sur InCl₃. L'ensemble est maintenu à la température d'ébullition de NOCl sous une atmosphère. Après plusieurs jours de contact on élimine l'excès de NOCl en déconnectant le réfrigérant ascendant qui surmonte le réacteur. On recueille un solide jaune présentant une forte tension de vapeur. Un exemple de dosage est donné dans le tableau (XL ligne 1)

Il correspond à la formulation InCl₂, 2 NOCl

Les mêmes essais ont été faits avec $InCl_2$ et InCl obtenus respectivement par les réactions :

2 InC	13	+	In		3	InCl ₂
InCl ₃	+	2	In	>	3	InCl

Les résultats des dosages des phases résiduelles (tableau XL, lignes 2 et 3) s'interprètent en admettant là aussi la formation de 2 NOCl, InCl₃ suivant les réactions respectives :

InCl ₂	+	3 ^{NOC1}		2	NOC1,	InCl ₃	+	NO
InCl	+	4 ^{NOC1}	>	2	NOC1,	InCl_3	+	2 ^{NC}

Chlorure de départ	Prise d'essai (mg)	Nx10 ³	Inx10 ³	Clx10 ³	<u>Cl</u> In	N In	B.P.	%
InCl	1000	5.957	2.69	13.88	5.15	2.21	981.6	1,8
InCl ₂	1000	5.42	2.779	14.09	5.07	1.95	982,2	1,77
InCl	1000	5.71	2.70	13.99	5.17	2.10	979	2,1

Tableau XL

Le solide correspondant est bien cristallisé et les clichés Xqui ne présentent plus les raies caractéristiques de $InCl_n$ -superposables quelle qu'en soit l'origine.

Nous avons pensé d'abord être en présence d'un solvate NOI_nCl_4 , NOCl par analogie aux chloroaluminate et chlorogallate (16). Mais la thermolyse (150°/h) ne caractérise qu'une perte unique dès l'ambiante, sur un très faible intervalle de températures sans qu'aucune inflexion ne permette de distinguer les 2 NOCl. Le résidu est InCl₃ pur. Les isothermes à 20° C n'ont pas permis davantage de distinguer les deux NOCl (tableau XLI)

Prise d'essai pour thermolyse	Perte (m théor.	de masse J Obs.	Masse de résidu hydrolysé	Inx10 ³	Clx10 ³	Nx10 ³	Cl/In	Bilan pondéral
1035,7	393	410	625 ,7	2,685	8,15	traces	3,03	598
713,4	288	274,5	425,2	1,91	5,65	traces	3,03	420

Tableau XLI

Il semble donc que la thermolyse doive s'écrire :

2 NOC1, $InCl_3 \rightarrow InCl_3 + 2 NOC1$

Le spectre de diffusion Raman de $InCl_3$, 2 NOCl a été réalisé. Les enregistrements obtenus mettent en évidence la présence d'une raie intense à 2271 cm¹ correspondant à la fréquence de vibration de l'ion NO⁺. On n'observe pas par ailleurs de bande de diffusion dans le domaine voisin de 1800 cm⁻¹, ce qui exclut la présence de NOCl libre ou faiblement lié. Il semble donc que l'on soit en présence d'ions NO⁺ et par conséquent d'anions $InCl_m$ (m = 4 ou 5). Si l'on examine le domaine de fréquences correspondant aux vibrations In - Cl, on ne retrouve pas les raies caractéristiques d'un tétraèdre($InCl_4^-$) et plus particulièrement la plus intense que l'on note à 310 cm⁻¹(dans NH₄InCl₄ par exemple). Si on peut, au vu de ces résultats exclure la présence de l'ion $InCl_4^-$, il n'est pas possible cependant de préciser sans ambiguité la symétrie du groupement $InCl_m^{(m-3)}$ ($InCl_5^-$, $In_2Cl_{10}^-$ etc...) On n'observe pas d'autre part de raie intenseà 274 cm⁻¹ caractéristique de $InCl_3$, ni celles relatives au pont $In - Cl_{1}^{Cl_{1}}$ In correspondant à la dimérisation de $InCl_2$ à l'état solide.

Il semble donc que le composé obtenu réponde bien à la formulation $InCl_5 (NO)_2$ sans que l'on puisse pour autant apporter des renseignements certains sur la symétrie de l'ion $InCl_5^{=}$.

BRINKMANN a étudié le dérivé répondant à la formule NOC1, $InCl_3$ par spectrométrie moléculaire. Il n'observe pas la présence d'une bande de diffusion Raman dans le domaine 2100 - 2200 cm⁻¹ correspondant à l'ion NO⁺ et les valeurs des fréquences des autres raies enregistrées indiquent clairement la présence de $InCl_3$. D'autre part, le spectre d'absorption infrarouge pris à - 60° C révèle la présence d'une raie intense vers 1815 cm⁻¹, caractéristique de NOC1. L'auteur conclut en disant qu'il n'y a pas de preuves en faveur de l'existence du composé défini $InCl_3$, NOC1 et que la structure NO⁺InCl₄ doit être exclue avec certitude.

On peut dire en conclusion que le composé que nous avons synthétisé ne présente aucun point commun avec celui obtenu par PARTINGTON et WHYNES et vraisemblablement par BRINKMANN. Il est très instable thermiquement, cristallisé et présente la raie Raman caractéristique de $N0^+$, ainsi que celles d'un édifice plus complexe que $InCl_4^-$, en dehors de $InCl_3^-$. Signalons d'autre part que la valeur anormalement faible de la fréquence de vibration de l'ion nitrosyle permet d'apporter une preuve supplémentaire de la composition du sel.

RESUME

ΕT

CONCL USIONS

Dans le cadre d'une étude générale des dérivés des halogénures de métaux III B, l'objet de ce travail a été l'étude du tétrachloroaluminate de nitrosyle et de façon plus restreinte, en raison des analogies observées des tétrachlorogallate et tétrachloroindate de nitrosyle.

Cette étude constitue en même temps le pendant de celle effectuée au laboratoire sur NOSO₂Cl.

Contrairement à ce dernier cas où une étude structurale avait été faite à peu près simultanément par un autre laboratoire, la structure de NOALCL₄ n'était pas connue. Notre travail a donc porté à la fois sur les caractères chimiques et sur la structure, l'accent étant mis plutôt sur cette dernière partie.

La conception même du travail a donc dirigé les premières recherches qui visaient essentiellement à améliorer la seule préparation connue-l'action directe de AlCl₃sur NOCl - de façon à obtenir des monocristaux de qualité suffisante et pour la diffraction X et pour la spectrométrie Raman.

Les solvants SO₂ et SOCl₂ utilisés soit purs, soit à l'état de mélanges nous ont donné toute satisfaction.

La stabilité thermique de NOAlCl₄ s'est révélée assez importante pour nous permettre d'utiliser en plus la technique de fusion de zone et parvenir ainsi à des échantillons très purs.

La réaction acide base AlCl₃+ NOCl a été étendue à NO_2 Cl mais, en raison de la très faible stabilité de NO_2 AlCl₄ il nous a été impossible de

l'obtenir pur. Sa formation transitoire nous paraît cependant certaine, comme en témoignent les propriétés nitrantes connues des mélanges $AlCl_3 + NO_2Cl$ et d'autre part une réaction d'oxydation assez remarquable de SO_2 à basse température qui peut constituer une extension intéressante de notre travail. Le chloroaluminate de nitrosyle est stable, en régime dynamique (150°/h) jusque vers 380° C. Au dessus de cette température le sel distille avec décomposition partielle suivant NOAlCl₄ \rightarrow AlCl₃+ NOCl. La réaction étant réversible il a été impossible de déterminer exactement la fraction dissociée. En présence de traces d'eau on enregistre des réactions parasites d'hydrolyse.

Les sels de nitrosyle sont, de façon générale des agents de synthèse intéressants en raison de la volatilité des halogénures. On passe ainsi facilement par action des chlorures alcalins sur NOAlCl₄ aux tétrachloroaluminates correspondants MAlCl₄.

Par ailleurs les liaisons AlCl peuvent être substituées par des liaisons plus polaires par exemple Al-O ou Al-F avec des donneurs plus effectifs. Par action de l'acide sulfurique nous avons pu synthétiser ainsi le composé original NOAl(SO₄)₂ dont nous avons examiné un certain nombre de propriétés. Celles-ci permettent de le classer dans la catégorie des sulfates mixtes de type $MAl(SO₄)_2$.

En faisant réagir le fluorure de sodium $(4F^{-}/Al^{3+})$ on obtient le tétrafluoroaluminate de sodium dont cette réaction constitue une voie d'accès intéressante, facile et probablement économique.

Un excès de fluorure alcalin permet d'obtenir tout aussi facilement la cryolithe. L'aluminium passe ainsi à la coordinence 6 en raison de la faible taille du fluor.

Un autre exemple de passage à la coordinence 6 est fourni par l'action de l'ammoniac gaz. En fait la réaction n'a pu être étudiée avec NOALCl₄. La formation transitoire de nitrosamide donne lieu dans ce cas à des déflagrations avec décomposition en N₂ et H₂₀ et conduit donc à des réactions parasites d'hydrolyse très gênantes.Par contre, avec NaALCl₄ NH₃ réagit quantitativement suivant

 $AlCl_4^- + 6 NH_3 \longrightarrow (Al (NH_3)_6) Cl_3 + Cl_4^-$

En élevant la température on constate de plus la formation de chlorure d'ammonium ce qui implique un remplacement au moins partiel des

- 109 -

chlores par des groupements NH2.

Cette dernière réaction n'a pas été examinée en détail. Elle peut faire l'objet de développements ultérieurs, intéressants dans la mesure où elle permettrait de trouver un passage des tétrachloroaluminates aux tétraamidoaluminates connus. Un essai d'interprétation de cet ensemble de réactions, basé sur des raisonnements semi quantitatifs développés par Sanderson a été proposé. Il donne des résultats cohérents et peut servir d'outil de prévision.

La deuxième partie de ce travail est consacrée à la structure de NOAlCl₄. Celle-ci a été étudiée par radiocristallographie, spectrométrie Raman et spectrométrie IR. Les mesures en résonnance quadrupolaire nucléaire ne nous ont pas donné les résultats que nous en espérions pour des raisons techniques.

NOAlCl₄ possède une structure ionique, de type $BaSO_4$, que l'on rencontre également pour $(CH_3CO)^+$ $(AlCl_4)^-$ et Cs⁺ $(AlCl_4^-)$. C'est la structure la plus symétrique de celles rencontrées pour les tétrachloroaluminates. Elle peut être décrite comme une succession de tétraèdres $AlCl_4^-$ et d'ions NO⁺ dans la direction (IOO) avec alternance dans les directions (OIO et OOI).

L'atome d'aluminium et deux atomes de chlore sont contenus dans le miroir cristallographique y = 1/4, ainsi que les atomes d'azote et d'oxygène de NO parallèle. Ce miroir est plan de symétrie pour les deux autres atomes de chlore du tétraèdre et les atomes du groupement NO perpendiculaire. La distance azote-oxygène trouvée pour le cation NO⁺ apparaît relativement courte, puisque très légèrement inférieure à 1 Å. Elle est comparable à celle obtenue par HÖHLE dans NOSO₃Cl (0,94 Å). Ceci peut s'expliquer par l'agitation thermique importante responsable de la position désordonnée du cation dans la maille.

Des essais de correction de l'agitation thermique suivant la méthode de BUSING et LEVY conduisent à une valeur légèrement supérieure $(1,015 \text{ \AA})$ alors que l'application de la règle de BADCER laisse entrevoir une distance de 1,14 Å.

Si l'étude Raman sur monocristal en fonction de la température a permis d'attribuer les modes observés, elle a également permis d'infirmer entre autres choses l'existence de plusieurs formes allotropiques. L'étude du profil de la raie $\sqrt{NO^+}$ permet de mettre en évidence la position désor-

donnée de l'ion nitrosyle pour des températures comprises entre l'ambiante et 210 K environ, ainsi que la destruction du monocristalvers 160° K. Ces observations sont extrêmement intéressantes car elles permettent de définir les conditions de l'étude X basse température envisagée ultérieurement.

Le sel de gallium présente de remarquables analogies avec NOAlCl₄, tant au point de vue propriétés physiques que chimiques ou structurales.

Par action de NOCl sur $InCl_x$ (x = 1 à 3) on obtient le composé de formule brute $InCl_3$, 2 NOCl, déjà signalé par BRINKMANN, au lieu du chloroindate NOInCl₄ attendu. InCl₃, 2NOCl est extrêmement instable ce qui interdit toute étude physicochimique sérieuse.(Seules deux études, l'une par diffusion Raman et l'autre radiocristallographique sur poudre ont pu être réalisées grâce aux techniques particulières d'échantillonnages permises) Le travail a donc été poursuivi pour cette raison avec les sels alcalins. Signalons enfin que l'application de la technique de purification par zone fondu aux sels d'aluminium et de gallium conduit à des échantillons très purs. Cette possibilité jointe à leur bas point de fusion permet d'envisager leur utilisation comme solvants et milieux réactionnels.

Les extensions prioritaires de ce travail, actuellement prévisibles sont donc :

- une extension des déterminations structurales facilitée dorénavant par l'accès au diffractomètre automatique portant plus particulièrement sur les dérivés nitrosylés mal connus.

- une étude chimique plus poussée de NOAlCl₄, compte tenu des prévisions que permet la méthode de Sanderson et de l'expérience acquise.

- un effort dans le sens d'une caractérisation plus nette de NO₂AlCl₄ facilitée par l'utilisation courante à l'heure actuelle des techniques permettant de travailler à basse température.

- l'utilisation éventuelle de NOAlCl₄ comme solvant, et milieu réactionnel.

- 111 -

BIBLIOGRAPHIE

1863	(3) R	R. WEBER Pogg. Ann. Phys. 118, 471 (1863)
1891	(9) J	J. SUDBOROUGH J. Chem. Soc. London, 59, 661, (1891)
1923	(26) F	F.W. BERGSTROM J. Amer. Chem. Soc. 45, 2788, (1923)
19 26	(27) F	F.W. BERGSTROM J. Amer. Chem. Soc. 48, 2848, (1926)
1927	(6) H	A. RHEINBOLD R. WASSERFUHR, Ber 60. 736 (1927)
	(7) H	A. GALL, H. MENGDEHL, Ber. 60 B. 86 (1927)
1929	(35) I	. VEGARD, A. MAURSTAD, Z. Krist Dtsch. 69, 519 (1929)
1934	(64) R	R.M. BADGER J. Chem. Phys. 2,128 (1934)
1935	(64) R	R.M. BADGER J. Chem. Phys. 3,710 (1935)
		Phys Rev 48, 284 (1935)
1939	(57) R	R.W. ASMUSSEN Z. Anorg. Chem. 243, 127 (1939)
1940	(42) J	J.F. NORRIS, A.J. KLEMKA, J. Am. Chem. Soc. 62, 1432 (1940)
1943	(65) J	J.A.A. KETELAAR. Rec. Trav. Chim. 62, 289 (1943)
1948	(8) J	.R. PARTINGTON, A.L. WHYNES J. Chem. Soc. 1955 (1948)
	(14) A	A.B. BURG, G.W. CAMPBELL Jr. J. Am. Chem. Soc. 70, 1964 (1948)
1950	(64) J	J. WASER. L. PAULING. J. Chem. Phys. 18, 618 (1950)
1951	(41) N	N.C. BAENZIGER Acta Cryst. 4.216 (1951)
1952	(16) D	D.E., Mc. KENZIE, A.B. BURG, J. Am. Chem. Soc. 74, 3143 (1952)
	(18) F	S. SEEL, J. NOGRADI, R. POSSE, Z. Anorg. Allg. Chemie 269, 197 (1952)
1953	(4) C	Ch. C. PRICE, C.A. SEARS, J. Am. Chem. Soc. 75, 3276 (1953)
1954	(10) H	I. HOUTGRAAF. Thèse Amsterdam (1954)
1955	(19) V	/ILLE. Mém. Poudres, 37, 342 (1955)
	(63) E	G.G. COX ; D.W.J. CRUICKSHANK, J.A.S. SMITH. Nature London 175,766 (1955)
1956	(51) J	J. KARLE, H. HAUPTMANN. Acta Cryst. 9. 635 (1956)
	(58) D	D.W.J. CRUICKSHANCK Acta Cryst. 9, 757 (1956)
	(71) I	.A. WOODWARD, G. CARTON, H.L. ROBERTS. J. Chem. Soc.3723 (1956)

1958 (17) J. LEWIS, C.C ADDISON Quarterly Review 9,115 (1958) (63) E.G. COX, D.W.J. CRUICKSHANK, J.A.S SMITH, Proc. Roy. Soc. A 247 (1) (1958) 1959 (15) V. GUTMANN J. Phys. Chem. 63, 380 (1959) (34) C.O. HUTTON, Am. Min. 44 - 1104 - (1959) (38) R.T. SANDERSON, REINHOLD Chemical Periodicity Reinhold 1960 Publishing Corporation New York (1960) 1961 (54) S.J. KUHN; G.A. OLAH. J. Am. Chem. Soc. 83, 4565, (1961) (59) D.W.J. CRUICKSHANCK Acta. Cryst. 14 - 896 - (1961) (43) J.A. IBERS. Acta. Cryst. 15,967 1962 (1962) 1963 (21) H.G. WEINREICH Bul. Soc. Chim. 2823 (1963) (24) G. CHARLOT, B. TREMILLON : "Les réactions chimiques dans les solvants et les sels fondus" G. VILLARS (1963) (55) D.W.A. SHARP, J. THORLEY J. Chem. Soc. 3557 (1963) 1964 (39) R.T. SANDERSON J. Chem. Educ. 41, 1 (1964) (60) W.R. BUSING, H.A. LEVY Acta Cryst. 17,142 (1964) 1965 (2) W. SUNDERMEYER. Angew. Chem. 77 - 244 (1965) (traduction anglaise : Angew. Chem. Int. Edit. 4 : 222.(1965) (33) W. FRANKE, G. HENNING. Acta Cryst. 19, 870 (1965) (50) DON. T. CROMER., J.T WABER Acta Cryst. 18, 104 (1965) (67) A. CHRETIEN, J.C COUTURIER. Rev. Chim. Miner. 2(3) 487 (1965) 1966 (69) H. GERDING, J.C. DUINKER Rev. Chim. Miner. 3 (4) 821 (1966) 1967 (30) R. BREC, J. ROUXEL. C.R. Acad. Sc. Paris 264, 512 (1967) (54) S.P. PORTO, P.A FLEURY, T.C DAMEN Phys. Rev. 154, 522 (1967) (1) G. LETISSE, B. TREMILLON, J. Electroanal. Chem. 17. 371 (1968) 1968 17. 384 (1968) (62) V. SCHOMAKER, K.N. TRUEBLOOD Acta. Cryst. B - 24.63 (1968) 1969 (48) Th. HOHLE Thèse Amsterdam (1969)

- 1969 (52) D.W.J. CRUICKSHANCK Crystallographic Computing Proceeding of the 1969 International summer school Munksgaard
- 1970 (20) S. NOEL Thèse Lille 1970
 (36) J.M MANOLI, P. HERPIN, G. PANNETIER Bul. Soc. Chim. 98 (1970)
 (37) P. COUCHOT, R. MERCIER Bul. Soc. Chim. 10, 3433 (1970)
 (45) R.K. Mc MULLAN, D.J. PRINCE, J.D. CORBETT In. Chem. 10(8),1749 (1970)

(28) R. BREC Thèse NANTES 1970

- 1971 (12) P. BARBIER, G. MAIRESSE C.R. Acad. Sc. Paris 272, 66 (1971)
 (49) G. GERMAIN, P. MAIN, M. WOOLFSON Acta Cryst. A. 27 368 (1971)
 (56) J. MAC CORDYCK Thèse Strasbourg (1971)
 (72) F. BRINKMANN Thèse Amsterdam (1971)
- 1972 (29) P. PALVADEAU Thèse Nantes (1972)
 (44) T.W. COUCH, D.A. LOKKEN, J.D. CORBETT, In. Chem. 11 (2) 357 (1972)
 (46) J.M. le CARPENTIER, R. WEISS, Acta Cryst., B 28 1421 (1972)
 (47) R.D. ELLISON, H.A. LEVY, K.W. FUNG, In. Chem. 11 (4) 833 (1972)
 (53) R.C. GEARHART Jr. PH.D University of Delaware Chemistry Physical (1972)

(70) H.A. OYES, W. BUES, Inorg. Nucl. Chem. Lett. 8. 31 (1972)

- 1973 (40); (25) R. DE JAEGER. Thèse Lille (1973) (32) G. MAIRESSE - Thèse 3ème cycle Lille (1973)
- 1974 (61) C.S. CHOI, H.J. PRASK, E. PRINCE J. Chem. Phys. 61 (9) 3523 (1974)
 1975 (23) K.W. FUNG, D.A. AIKENS. Inorg. Nucl. Chem. Lett. 11 (10) 669 (1975)
 (31) W.C. LAUGHLIN ; N.N. GREGORY. In. Chem. 14 (12) 2903 (1975)
 (66) J.A. IBERS, B.L. HAYMORE In. Chem. 14 (12) 3060 (1975)

1976 (13) A. RUBBENS - Thèse 3ème cycle Lille (1976)

(22) P.T. PARKER U.S. 3 242. 177

- (68) Résultats non encore publiés
- (11) Handbook of preparative inorganic chemistry BRAUER -

I	¥	ب	145F9VF	ころしていりに	م		-	372 RDA	246 211	11	v		000 52	787.25
						, -	-	106 688	50K A19	0	×		101 50	14.040
ب	c	ċ	758 800	-772 593	4.	-	-	22 100	0110	~	, v	-	111 000	110 258
ď	c	C	386, 800	- 287 477	`. ``	-	-	117 777	- 2 3 9 5 4 5	ف ا		, , 	36 500	776 66
10.	, C	c	138 400	-131,822	ý			178 200	112 742-		<		26 400	626.22
12.		c	139.000	139,902	~ ~	•		55 50V	-53 000				109 400	113,835
10	•	.0	38 300	35.117	°	-		005 10	-92 RAD		¥		74 800	-17 250
ç.	•	c	A12.800	-590.366	10.	•	-	102 201	-00 279	. ~ ~	, x		95 RON	100 126
4.		•••	297 200	249.154	11.	-	•	01 400	82.862		ۍ ۲		198 500	-202 434
۶.	•		229.400	- 203.713	13.	.		30.300	40.01R	° C	۲.		R2.800	-86.775
	.2.	0	615 700	-585.973	11.	~ `	-	A1 700	58 855	÷.	۲.	٦.	002 27	221.02
2.	<u>م</u> .		R45.000	R63.718	10.	ۍ ح		58 500	-61 953	~	٦.		000 71	-29.214
۲. ۲	2.	c	32.000	-38.310	° .	<u>م</u>	-	30.000	-41.437	s.	٦.		A 8 500	23 409
÷.	<u>,</u>	••	VU7 22	671 62	7.	~	-	315.200	215.224	Q	۲.	٦.	002 72	32.987
∞	2.	د	211 800	-201.773	م	۲.	~	96 100	240.00	°.	٦.		32.800	24.594
10.	<u>ح</u> .	•	88,900	-85.466	\$.	<u>۲</u>	-	234 900	233 79R	¥	α	•	84. 200	92.352
ۍ. ک	<u>ب</u>	-	354, ANN	340.102	4.	2.	-	260 800	252.469	. a	۳. ۲		144.600	146.010
4.	~	°.	104 000	-98 176	~	۲.		38 400	29.987	~	«		25.400	-19.049
~	, 1	с.	27.400	24.836	۲.	~ ~	-	425 900	502,360	~ ~	ď.		118 900	118.493
12.	M	•	105.400	-104.930	-	م	-	A31 200	- RAR 849	C	c	2.	598.200	-589.005
æ		. 0	22.800	8 335	0.	, F	-	321 RUN	-220 452	-	Ċ	~ `~	82 300	92.118
0	4.	ۍ ۲	1223 300	1234.920	-		-	158 400	147 524	~	c	~	655 600	- 477 488
~ ~	4.	0.	361.300	747.169	2.	~	-	132.700	-140.795	~	c	~ ~	002 776	276 076-
4.	. 2	с С	32.100	240-85	~	~	-	278.000	-270,881		c	2.	23.000	20 018
ę.	4.	с.	472.400	-451.160	۴.		• •	14.200	-25.727	່. ແ	c	`~`	425.400	433 300
æ	4.		231 700	-227.636	ۍ		-	240-400	266, 896	່ວ	c	`~	77.000	81.591
10	4.	c	123 200	-117.375	, ¢		-	192 600	190 761	10.	c	`~	143 100	151 800
10.	5.	.0	27 000	31.309	۲.		-	39.000	41.327	11	, c	`~	76 600	270-52-
ç	. 2	.0	186.100	-195,029	«	~	•••	33 800	30.577	12.	-	2.	79.300	35,025
4.	5.		104.400	-100.947	`°	M		50 400	47.277	11.	•	~ ~	45.600	-45.721
۲.	<u>ہ</u>	0	101.800	-104.806	10.		•••	68.400	68.822	10.	•	~.	111 900	-127 27A
2.	÷.	°.	144.100	148.828	11.	M	-	72.700	-69.210	.0	•	`~	51.200	42 314
4.	ج	c	23.500	-12.174	11.	4.	-	23.700	-17 696	7.	•	2.	204.300	252.200-
ж.	ک .	.0	76.600	-79.334	10.	4.	.	112 100	-108.440	Ч	•	2.	56.000	400°05-
¢.	7.	0.	42.300	67.411	°.	4.	-	105 400	112.487	. ч		2.	293.500	784.447
4.	7.	°.	005 72	20.839	۲.	4.	-	002 72	15 250	.	+	2 .	195 500	-186.175
	œ,	••	236.400	127.749	.	4.	-	100 1221	728.789	<u>م</u> .	+	~.	600.200	580.727
~ .	، م		110 400	120.809		4.		522 200	518 339		•	`	245 200	528 002
		c	108 100	-105.377	÷.,		•	172 900	-130 540	0	۶.	~	145.900	-715.416
2		-	198 800	-196.425		ę.		403 000 22	100.770	•	<u>~</u>	2.	533 200	-522.616
	•	• ·	107.25	-34.199				000.56	44.850	~ `	2.	~	149.400	-165,034
•	c :		162.291	-135.057				000.025	205.215		~ ~	~ `	205 400	-205.718
> r			005.812	225.525			-	107.54	-55.427	<i>.</i>	<u>ہ</u>	~	664.400	- 449 573
		-	A3.400	-78.175	. ~ i			109 300	105 686	بې	2.	~`	111 200	117.906
c.		•	478 500 () 100	476.196	~ .			154 600	155.436		۰ ۲	, . ,	166.200	-164.415
	c :	•	UDS 26	411 76-	^ ·	• •	•	00V 20	-100	x	, ~	2.	10 400	
۲۱	.	•	1048 500	1136.669	•		-	136 300	-141 447	°.	, ~	2.	47 000	42 798
, ,		-	141.500	- 3 2 5 . 7 6 0		~	-	1 700	-19 520	-	~ .	` .	176 000	168 762
~ ~	с. С	-	518 900	502 205			-	72 300	-75 548	11	M	2 .	38.100	35.401
	•	-	000 277	414.674	.	م	-	70 100	- 33 419	10.	•	~. ~	71 100	79.165
•	- -	 - ,	177.500	-167,558	10,	5		41 500	521 07-	. ~	F	~.	100 200	190 108
		Bi												
	.18	IS I												
	Ĵ	4												

007 63	77 840	176 011	-76,720	-181 261	279.672	55.185	227 82			74.411	- 13 - 51- 	-12.419	-4.5.7		748.885	45.585	-76.758	184.273	- 728.520	101-11-	13.325	-121.059	267.824	1016.737	30.586	332.268	28.909	149-004	74.644	-172.885	-49.554	-78.419	18 44R	172-191-	-62,022	34.080	-14.896	181.065 11.065	4/./.	17.554	11×17×17	-65 x11	198.352	26.544	26.297	25.577	-43.255	-30.427	101.848	14.121			
57 700	101 600	174 400	A7 800	177 700	371 700	57.100	000 52	007.00		56 200	UUX SA	000.22	CO	005.03	244 900	29-400	R3.200	175 000	225.300	40.300	21.400	118.300	264.200	1002-500	11-500	232.700	29.600	151 400	81.700	176.000	18 700	72.500	73.200	187.300	71.600	24.600	25.100	176-400	44.400	×1.700	00/-511	59.700	195.700	27.300	37.500	000 76	001.94	26.800	94 400	22.800			
м		. <i>•</i> ,		· •	4.	4.	• 7			•		•	•	• •	•	. 4	. 4		۰ ۲	. 4	4.	4.	4.	4.	4.	4.	4.	4.	4.	4.	4.	¢ •	4.	. 4	۰,	• •	. 4	4	• •	•	• •	•	. 4	4.	4.	4.	4.	4.	4.	4.			
a	Ċ	Ċ	c	c	ċ	ċ	ċ	ċ	c :	c .	c.	ċ		-	.	-	-	-	•	-	•	2	<u>~</u>	م	۲.	۲	~	م	~	~	م	2.	~	*		ř		•	•	M .		4 .	4.	4	4.	4.	. 1	Υ.	v.	ŗ.			
-			. ~		5.	, S		x' c		- 0-		12.	- 71	.01	• ।		· 2		~ `	2.	-	0	-	, ¥	4.	۲	۰. ب	7.	8.	9.	10.	11.	10.	۰ ٥	2	<i>.</i> ۹			. 2		• !		. .		с	10.	11.	10.	6	7.			
			- 72 0.27	62 069	- 64.948	-30 141	- 310, 781	-255.466	-269.046	- 262.997	165.173	200 877	63.861	488_235	-338.021	-33.409	275.531	-432.736	-25.690	-179.108	117.749	-150.040	54.380	- 19 - 297	70 800	A2 386	-136 926	227 27-	-258 345	-236.066	775 647	153.960	-78 467	138 948	20.128	58.RRK	-74.576	አ ጸ. አ ጸጸ	-125.240	-140.454	-56,066	89 . 431	135.086	284.805	-46.477	64.487	122.55-	-83 673	-63.124	-52.318			
0 1 0 1			76.400	64. 300	70.200	104 22	105 900	255.700	263.100	267.900	142.600	447.000	51.600	702 100	118 900	35 100	269 300	002 977	25.600	179.100	113 400	160 400	48.600	32,000	70.500	42 400	144.700	60 100	258.400	225.200	274.700	152.000	80,200	150 200	26.300	602.03	75.600	66.100	125. RON	134.500	58.500	91.600	116.000	271 300	41.000	62.R00	136.700	83 000	45 400	55 100			
•	•	• r. #	• •	• •	~	~	۳.	M	۳.	~	~ ~	۳.	r	M	~	۳ ۲	۰.	.	M	M	M.	~	~	M		. M			н , С М	• •		- M	~	~ ~	•	r.		٠ •	M		M	•	~	M	~	۳.	~	~	~ ~	M			
		, - •	•	- ^	 	~	ۍ . ۲	<u>~</u>	<u>،</u>	<u>ې</u> .	<u>~</u>	\$.	۶.	~.	M	M	۲	۳	~	~	M	M	~				. 7			. 7					٠ ۲	s.	<u>،</u>	<u>ب</u>	¥	\$	¢	6.	~	ç.	7.	7.	٦.	٦.	۲	or [,]			
o							° °	7.	\$	5.	4°.	ч.	2.	-	с.	•	2.	÷.	4.	<i>.</i> .	ų. د	Х	۰ ٥	0			~		- 4			C	~	97	4.	5.	6.	æ.	. 6	7.	۶.		٠. ۲		-	۲.	Υ.	\$.	¢ ,	~ ~			
			836 69	-287 250	-421.106	420 876-	- 197.915	- 360.467	88.242	229,592	50.47R	108.116	-51.471	-54.431	1 R.O. 27 R	134.015	114.441	-189.776	-135.007	-22.112	-156.962	-226.943	71.167	-58.652	17.086	71.371	43.899	-77.124	-21.851	-50.155	+127.491	-108.010	-103.080	-53.645	-20.013	78 278	-21.738	-285.933	154.463	-45.975	-432.308	-65.656	- 276.501	AR7.4R4	829.127	-49.944	-642.774	541.210	154.044	-169,701			
				007	001	000	001	700	C C C	000	400	000	000	C C C V	C C C F	100	200	200	500	800	500	600	000	000	100	200	4 0 U	100	000	000	600	200	500	200	500	100	100	000	c 000	A 0 0	200	007	000	800	000	200	×00	000	400	600			
ſ		840		255	431	242	80¥	240	-	227	50.0	102	56	⊂ v v	۲ ۲	132	113	761	141.	26.	158.	217	75	53.	25.	24	8	75.	24	51.5	121	108	98.0	48.	2.	74	23	278	152	44	441	÷ 2;	382	200	847	70.	277	541	155.	168			
ŗ	•••	. ~		~	~	2.	2.		~ ~	<u>`</u> .	~ .	2.		2.	~.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	. ~	2.	2.	~. ~	~ ~	2.	~.	2.		.	M	~	•	.		•	•	•	3.	ي .	~.	ч.	٠.	۶.	() 41	15	
•	• •					4.	4.	4.	r ,	4 -	4.	4.		.	\$	۰.	s.	٠. ۲	ć.	6.	6.	ę.	ę.		¢.		7.		۲.	٠.	۲.	ۍ ۲		ъ.	0	, c				ċ	ċ	0		, c	-					•			
7				~		о. С	2.	~	ح		0	10.	10.	۲.	4.	2.	-		-	2 .	•	s.	ę.	٦.	ж.	7.	5.		M	.2	-	.0	~ ~		12.	10.	œ.		¢.	· ·	4.	•	2.	•	0		2.	P 1	*	÷,			-

-39.307	126 308	22 920	K7.4RN	41.218	105.018		246 428	-156.430	-17.900	-66.456	-188.051	-90.558	- 38.86.8		-119.941	-136.341		201.20	707 28-	-116 665	-1.0 1.87	- 38.800	-22.936	- 39 322	- 84. 141	21.608	257.026	77.77	228.114	92.122	764.650	171.1X1	71.005	103.285	-119.501	157.673	-125.929	-108.572	38.428	-51.507	31.698	-64.662	-60 014	145.944	740 20-	100.955	178.237				
34.700	124.200	25 100	UU2 74	44.300	98 700		002 276	170.200	22 300	74.700	195 100	06.500	007 57	000 25	116 300	124 400		001 72		112 900	41 500	37.500	20.000	41 700	87.200	28.000	247 n00	P1 400	238.000	88.100	261-700	000 . 78		104 000	119.300	167.500	123.700	105.201	41.000	57.000	37.100	52.300	70.400	160 200	000 76	102 201	168.700				
ч	ч. . У	ч	ч. <i>к</i> .	3. 6.		•••	• • •	4. 6.	4. 6.	4. h.	4. 6.	s. 6.	5. 6.	· · ·	s. ć.			 	•				7. 6.	0. 7.	0. 7.	0. 7.	0. 7.	0. 7.	0. 7.	0. 7.	0. 7.				1. 7.	1. 7.	1. 7.	1. 7.	1. 7.	2. 7.	2. 7.	2. 7.	2. 7.	2. 7.	2. 7.	2. 7.	2. 7.				
0		. S	4.	3.	· ·				4	۰ ب	8.	7.	÷.		4.	· `	•		- pr	v		. ~	-	10.	.0	7.	۰,	5.	4.	. ·		- 0			×.	5.	۶.	α	ò	10.	ò	2.	5.	4.	3.	<u>`</u> `	-				
000		266 95	002 226-	-101 415	-129.516	-166.655	-152.521-	-46 085	74.532	128,904	-50.118	55.705	-90.546	-225.980	-79.430	45.547	276.75	34.025	147.41	000 100	010-101	CC5 721	- 234 4.80	-23.465	12.635	-98.467	32.407	020 202-	- 43 476	26 787	59.766	-207 124	-189 401	262 82-	-107.548	287.782	332 200	-178.738	-20.100	-49.179	-766.674	-145.178	-116.420	58.251	500 62-	505 205	-14.210				
40 100	25 400	27 300	246.200	200 800	122 900	144.400	176-400	002 57	70 300	131.300	41 400	71.500	006 70	234.300	72 500	58.500	25.000	101.75		007 201		43.8 100	322 400	24.600	24.100	89 100	32.400	202 202	48 300	28.800	40.200	109 800	000 22 *	20 200	198.100	271 000	225 200-	174.600	21.800	43.500	266.300	151.000	111.400	A7 100	27.500	57 900	24 200				
s	•	. 5	5.	5.	s.	<i>.</i>	. v			5.	۶.	s.	s.	5	<u>،</u>	5				• •	• •		Ś	· · ·	ę.	\$	۰.	۶.	۶.	. 9	••				\$	÷,	۰.	٤.	۰.	۰,	. 9	· ~	۰,	۰.	ę.	٠. ۲	÷				
1		4	4	4.	4.	r i	r'u		5	÷.	÷.	÷.	÷.	÷.						ċ	: <	c	c	ċ	ċ	ċ	c	Ċ	c	-	-	÷.					2.	2.	2.	~~	2.	2.	2.	2.	۶.	~	*				
		5	4	~		~ '	v. v		¢	~	Ŷ	5	m	-	0	m I				- c	-	- ^		4	2	\$	7	ec.	10		0 1					-	0	-	~	M		×	~	œ			10				
1 00	75 450	-99 476	61.100	-27.457	89.84	11.145	in the the	206 27-	19.28	-34.587	54.187	32.182	75.167	24.95	130.867	-13.519	29.701	38.579		- 445.75		CUC 78C	-209 631	22-178-	-147.063	-66.829	147.177	33.541	65.56	32.49	211.400	24.031	140.046	20 276	70.100	-245.551	43.167	-502-03-	-300.11	108 573	239.111	29.497	121.874	51.758	-50 041	- 30 40	- 39.381				
000 20	007 28	P.6. 200	70.000	37.100	00 . KON	000 171	101 211	006.27	24.500	26.700	VU2 U7	23.700	74 100	25.200	119.400	20.100	54.800	39.200		004 223		000 526	000 000	344 800	138.300	58.800	143.860	35.300	44.300	33.700	219.200	76.800	266.300	002 976	62 700	257 900	50.800	503.600	287.000	111.400	235.200	21 600	125.700	52 500	43.300	100 22	005 11 800	US			
7	. 7	. ,	4.	4.	4.			. 7	4	4.	4.	4.	4.	5	5.	د	5			•••	บ	, v	• •		5		5.	5.	۶.	5.	5		. v	n v		5	5.	5	۶.	5	5.	5.	5.	۶.	5.	5.	5.	193 S			
v				5	÷	ċ	ċ		. ~	7.	7.	7.	7.	ċ	ċ	ċ	ċ	ċ				• •		-	-		. 1			2.	2.	~	~ ~				2.	2.	-	~	~	~	m		m		*				
×	. 7	~	~	-	- 1		, .	- ~		5	~	2.	-	11.	10.	0		÷.		4 0	•••			im		~	ос		10.	11.	6	oc 1			. 4	~	2.	-	0	2.	м.	5.	۰,	7.	ж.	•	10.				
-61 460	×4 100	K7.557	10 0-	68 281	114 985	005 72-	4/5.5/-		75 405	2002		764 27	200002	201 72	21.102				20 8 0 C -						-42.245	64.415																									
----------	-----------	-----------------------	-----------------------	---------	---------	---------------	------------	----------	---------	----------	---------	-------------	----------	---------	------------	----------	----------	---------	--------------	------------	--------	----------	---------	--------------	----------	------------------	----------	----------	---------	---------------	--------	----------	---------------	-------------	--------------	----------	--------------	---------	---------	---	---------------	---------	---------	---------	----------	----------	-------------	------------------	---------	----	-------
27 27	A1 200	67 300	26.600	75.200	142 400	007 22	78,000			000 XX									000 YA	000 JA			007 28	80.200	00x - 57	59.300																									
1. 10.	2. JP.	2. 10.	7. 10.	2. 10.	2. 10.	2. 10.	3. 10.	· · · ·		. 10.		· · · · · ·											7. 11.	2. 11.	м. 11.	3. 11.																									
~~	G	.	~	3.	۲	× 1	. .		· 、	-				• •		- ·			~ r				. ~	- ·	2.	~																									
-112 7RN	205 76-	-31 367	628 271	27.961	13.353	70 000	720 22	39.637	-31,607	072-27-	40.619	-113,199	-196.320	52.466	-119.374	-74.51R	-118 887	102.95	-88.378	667.02	55.85R	30.425	-11.664	-106.613	-47.069	-34.210	141 341	105.031	-43.306	33.363	13.976	-84.151	-56.022	+28,309	75.914	-139.580	21 938			5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 P P C C C C	86.670	C 70 07	162 24-	11. 724	24 / 2C)/= CX1		
110 22V	30 800	110 22	155 200	30.300	44 300	71 800	000 77	100	28.600	51 500	27.500	115 400	196 100	56.300	115.000	25 400	110 100	28.400	002 06	25 400	42 000	11.500	28 200	106 800	50.400	35 000	166 300	102 500	44.700	102 22	22.400	R9.000	101 201	27.000	74 000	145 200	27 000		002.25	20 2 2 0 0 2 2 2 2 0			20 900	000 97	000 10	000 000		101.C/ 33 EDA	507 × 4		
۸. P.	4. R.	4. 8.	<i>4</i> .8.	4. 8.	4. R.	۶. ۲.	۶. ۳.	×. 30.	5. 8.	۶. ۲.	с.	ч.	о.	• • •	• • • •	۰. ۲.		1. 9.	1. . 9.		1.	1. 9.	1. 9.	2. 0.	7. 9.	> . 9.	2. 9.	. o.	3. 9.	3 . 9.	3. 9.	3.9.	х. 9 .	3. 9.	4. 9.	4.9.	4 . 9							10					· · ·		
۰.	. ~	۲	, .	7.	م	, ¢	. 4	~	-	2.		. 9	. 4	'n.		-	.0	-	, , ,	~ ·	6.	۲.	ۍ د	7.	5.	~ ~	-	0.	-	۲.		5.	6 .	۲.	÷.		r" (: (م	~			• •	* ^		
-167,080	- 38, 129	-64.216	134, 970	-75,506	R3,196	62.088	200 02-	-46.401	158 410	19.804	190 202	55.735	170.961	153 319	11.247	R2 170	93.275	-79.912	-14.329	54.804	42.224	72.012	-29.153	45.145	-534.440	-26.193	-151-425	- 39.133	469.200	249.078	45.320	75.462	-45,29R	158.248	10.158	41.534	25.634	57770L				070 62-	70 024	44 171	-117 445	- 70 T1V					
175 200	31 200	48 400	131 300	R3 100	87 200	50 300	107 52	700 2700	158 300	27.200	100 800	45.900	168.500	145 100	001.04	R3 500	98.400	83.400	25.200	60.200	50.100	65.500	44.600	002 07	535.700	100 22	141 800	36.400	79.300	249.600	40.600	70.900	3.8.900	158 300	54 000	41.700	50.100	100 201	003 511	007 20	105 CZ	002 72	80 400	42 700	120 100	20 000	24 100			81	S
7. 7.	3. 7.	T . 7 .	T . 7 .	3. 7.	x. 7.	* . 7.	۲. ۲.	4. 7.	4. 7.	4. 7.			4. /.	 		·5 7.	5. 7.	5. 7.	6. 7.	· •	6. 7.	6. 7.	7. 7.	7. 7.	n. 8.	n. 8.	n. 8.	n. 8.	0.8.	0. 8.	0. 8.	ŋ. 8.	. 8.	1. . 30.	• 00 • 10	.	× •			. a				0		; oc	• • •				1.6.7
о	-	2.	, ,		÷.	~	°	.	¢	<u>.</u>	41	M 1	~			∼`		ç	. 		~	-		, ,	.0	-	ح.		s.	•	۲.	.	~	-	~ ;								- oc	~		. 4			- je		