UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

Nº d'ordre 612

50376 1976 151

THESE

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE SPÉCIALITÉ

par

Nicole MONNANTEUIL

SPECTRES HAUTE RESOLUTION INFRAROUGE

ET MICROONDE DE LA BANDE V3 DE L'OZONE

Soutenue le 12 octobre 1976 devant la Commission d'examen

Membres du Jury

М.	WER THEIMER	Président
М.	BELLET	Rapporteur
MM.	JOUVE	Examinateurs
	BARBE	
	FONTANELLA	

U.E.R. DE PHYSIQUE FONDAMENTALE

Ce travail a été effectué à l'U. E. R. de Physique de l'Université des Sciences et Techniques de Lille, dans le Laboratoire de Spectroscopie Hertzienne, Laboratoire Associé au C. N. R. S., dirígé par Monsieur le Professeur WERTHEIMER qui a bien voulu me faire l'honneur de présider le Jury. Qu'il trouve ici l'expression de ma plus profonde gratitude.

J'exprime toute ma reconnaissance à Monsieur le Professeur BELLET qui a dirigé ce travail et en a suivi les différentes phases avec intérêt.

Je remercie particulièrement Monsieur le Professeur JOUVE et Monsieur BARBE pour l'honneur qu'ils me font en acceptant de juger ce travail.

Mes vifs remerciements vont également à Monsieur FONTANELLA qui a bien voulu se joindre au Jury.

Que toute ma sympathie soit acquise aux membres du Laboratoire, et en particulier à B. DUTERAGE et à J. C. DEPANNEMAECKER, pour l'amitié qu'ils m'ont témoignée.

Je ne saurais oublier ceux qui ont contribué à la réalisation matérielle de ce mémoire et particulièrement Mademoiselle DHOLLANDE qui s'est chargée avec gentillesse de la frappe du manuscrit et Monsieur RAFFAUD qui a reproduit avec compétence les figures et les courbes.

INTRODUCTION

L'absorption du rayonnement électromagnétique par l'atmosphère terrestre est due, entre autres, à des molécules de type toupie asymétrique légère telles que H_2O et O_3 . Il est donc important d'en étudier les spectres, en laboratoire, pour obtenir des données précises sur la valeur des niveaux d'énergie et sur l'intensité des raies de vibration-rotation.

Les spectromètres infrarouges actuels permettent d'enregistrer les bandes vibrorotationnelles de ces molécules avec une résolution inférieure à 0.02 cm⁻¹. Toutefois, la densité et la complexité de tels spectres nécessitent souvent une étude microonde préalable, permettant d'accéder aux constantes de rotation des différents états vibrationnels. L'identification des spectres infrarouges est alors possible à partir d'un calcul systématique des fréquences et des intensités des transitions vibrorotationnelles. Nous avons déjà utilisé cette méthode pour l'étude des bandes $v_1 + v_3$ et $(v_1 + v_2 + v_3) - v_2$ de l'anhydride sulfureux [26].

Dans ce travail, nous nous intéressons à la bande v_3 de l'ozone, présentant une forte absorption dans la fenêtre atmosphérique à 10 µm. L'étude de cette bande est délicate en raison de la résonance de Coriolis liant les deux états $v_1 = 1$ et $v_3 = 1$. Nous exposerons alors les bases théoriques nécessaires à la construction d'un modèle adapté à ce problème. Puis, après avoir tracé les grandes lignes de sa mise en forme numérique, nous exploiterons nos méthodes de calcul à l'identification et à l'analyse d'un spectre haute résolution de cette bande.

PARTIE I

ETUDE THEORIQUE

A - CALCUL DES NIVEAUX D'ÉNERGIE

En utilisant l'approximation de BORN-OPPENHEIMER, l'étude d'un système moléculaire, constitué de noyaux et d'électrons, se ramène au problème d'un ensemble de noyaux qui se déplacent dans un champ de forces dérivant d'un potentiel V.

Dans le cadre de l'approximation adiabatique, les mouvements des noyaux se décomposent en mouvements d'ensemble qui n'altèrent pas la configuration électronique d'équilibre et en petits mouvements autour de cette position d'équilibre. Le mouvement de translation d'ensemble des noyaux ne contribuant pas aux phénomènes étudiés en spectroscopie, on l'élimine en rapportant le mouvement de la molécule à un repère galiléen GXYX, dont l'origine est au centre de gravité G de l'ensemble des noyaux. Les coordonnées de rotations sont définies par le choix d'un système d'axes orthonormés Gxyz, liés à la molécule. L'utilisation d'axes mobiles répondant aux conditions d'ECKART permet la séparation approximative de la vibration et de la rotation. D'autre part, il est d'usage, dans l'étude des petits mouvements autour d'une position d'équilibre stable, d'utiliser les coordonnées normales qui diagonalisent la partie quadratique du potentiel.

En résumé, nous devons résoudre l'équation

 $H\Psi = (T + V) \Psi = E\Psi$

T est l'opérateur associé à l'énergie cinétique des noyaux dans le repère GXYZ.

E est la valeur propre du hamiltonien H associée à l'état propre Ψ . Cette énergie correspond uniquement aux mouvements de vibration des noyaux et aux mouvements de rotation d'ensemble de ces noyaux. La partie vibrationnelle de cette énergie est en général beaucoup plus grande que la partie rotationnelle.

- 1 -

1. HAMILTONIEN DE VIBRATION-ROTATION

a) HAMILTONIEN DE DARLING ET DENNISON

Le hamiltonien utilisé pour cette étude est celui proposé par DARLING et DENNISON [1]:

$$H = \frac{1}{2} \sum_{\alpha,\beta} \mu^{1A} (P_{\alpha} - p_{\alpha}) \mu_{\alpha\beta} \mu^{-1/2} (P_{\beta} - p_{\beta}) \mu^{1A} + \frac{1}{2} \sum_{k} \mu^{1A} p_{k} \mu^{-1/2} p_{k} \mu^{1A} + V$$

WATSON a montré qu'il était possible de simplifier cette expression et d'écrire le hamiltonien sous la forme : [2]

$$H = \frac{1}{2} \sum_{\alpha,\beta} (P_{\alpha} - p_{\alpha}) \mu_{\alpha\beta} (P_{\beta} - p_{\beta}) + \frac{1}{2} \sum_{k} \Pi^{2}_{k} - \frac{1}{8} \hbar^{2} \sum_{\alpha} \mu_{\alpha\alpha} + V$$

avec α , β prennant les valeurs x, y, z caractérisant les axes du trièdre mobile lié à la molécule

k, l représentant les modes normaux de vibration

- P_{α} composantes sur les axes x, y, z du moment angulaire total P_{α} composantes sur les axes x, y, z du moment angulaire interne En l'absence de spin
 - $p_{\alpha} = \sum_{k1} \zeta^{\alpha}_{k1} \Theta_{k} \Pi_{1}$

les ζ^{α}_{kl} étant les coefficients de couplage de Coriolis.

 $\mu_{\alpha\beta}$ composantes de l'inverse du tenseur d'inertie instantané et μ , le déterminant de la matrice associée.

Π_k V moments conjugués des coordonnées normales de vibration Θ_k. la fonction potentiel.

Les noyaux de la molécule effectuant de petites oscillations autour de la configuration d'équilibre, choisie comme référence, il est possible de développer en série le tenseur de composantes $\mu_{\alpha\beta}$, en fonction des coordonnées normales :

$$\mu_{\alpha\beta} = \mu^{\circ}_{\alpha\beta} + \sum_{k} \left(\frac{\partial \mu_{\alpha\beta}}{\partial \Theta_{k}} \right)_{\circ} \Theta_{k} + \frac{1}{2} \sum_{k,1} \left(\frac{\partial^{2} \mu_{\alpha\beta}}{\partial \Theta_{k} \partial \Theta_{1}} \right)_{\circ} \Theta_{k} \Theta_{1} + \dots$$

- 2 -

Et le hamiltonien s'écrit sous la forme : [3]

$$H = H_0 + H_1 + H_2 + \dots$$

avec :

$$H_{0} = \frac{1}{2} \sum_{\alpha,\beta} \mu^{\circ}_{\alpha\beta} P_{\alpha} P_{\beta} + \frac{1}{2} \sum_{k} (\Pi^{2}_{k} + \omega^{2}_{k} \Theta^{2}_{k})$$

$$H_{1} = \frac{1}{2} \sum_{\alpha,\beta} \sum_{k} (\frac{\partial \mu_{\alpha\beta}}{\partial \Theta_{k}}) \circ \Theta_{k} P_{\alpha} P_{\beta} - \sum_{\alpha,\beta} \mu^{\circ}_{\alpha\beta} P_{\alpha} P_{\beta}$$

$$+ \sum_{k,1,m} K_{k} I_{m} \Theta_{k} \Theta_{1} \Theta_{m}$$

$$H_{2} = \frac{1}{2} \sum_{\alpha,\beta} \sum_{k,1} \frac{1}{2} (\frac{\partial^{2} \mu_{\alpha\beta}}{\partial \Theta_{k} \partial \Theta_{1}}) \circ \Theta_{k} \Theta_{1} P_{\alpha} P_{\beta}$$

$$- \frac{1}{2} \sum_{\alpha,\beta} \sum_{k} (\frac{\partial \mu_{\alpha\beta}}{\partial \Theta_{k}}) \circ (p_{\alpha} \Theta_{k} + \Theta_{k} p_{\alpha}) P_{\beta}$$

$$+ \frac{1}{2} \sum_{\alpha,\beta} \mu^{\circ}_{\alpha\beta} P_{\alpha} P_{\beta} - \frac{\hbar^{2}}{8} \sum_{\alpha} \mu^{\circ}_{\alpha\alpha} + \sum_{k,1,m,n} K_{k} I_{mn} \Theta_{k} \Theta_{1} \Theta_{m} \Theta_{n}$$

 H_0 est le hamiltonien d'un rotateur rigide de tenseur d'inertie $(\mu^{\circ}_{\alpha\beta})^{-1}$.

b) TRAITEMENT DU HAMILTONIEN

Le développement du hamiltonien sous la forme $H = H_0 + H_1 + H_2$... correspond en fait à un groupement des termes par ordre de grandeur. Il est alors possible de considérer les termes H_1 , H_2 ... comme termes de perturbation du hamiltonien d'ordre zéro H_0 .

Toutefois, un tel développement nécessite l'examen des dégénérescences.

Pour les toupies asymétriques, H_0 est uniquement affecté de la dégénérescence M, liée à l'isotropie de l'espace. Son influence peut être écartée en adjoignant P_Z à H_0 pour définir la base des vecteurs d'état du problème non perturbé. Pour que le développement de la théorie des perturbations soit justifié, il faut aussi que les corrections apportées à l'énergie d'ordre zéro ne soient pas trop importantes. C'est-à-dire que si l'on considère un opérateur de perturbation O_I couplant deux états $|E_1 > et |E_2 >$, la quantité

$$|\frac{\langle \mathbf{E}_1 | \mathbf{o}_1 | \mathbf{E}_2 \rangle}{\mathbf{E}^{\circ}_1 - \mathbf{E}^{\circ}_2}|$$

doit être petite devant l'unité.

Comme H est la somme de deux termes indépendants : $\frac{1}{2} \alpha_{,\beta}^{\Sigma} \mu^{\circ}_{\alpha\beta} P_{\alpha} P_{\beta}$ qui n'agit que dans l'espace des rotations et $\frac{1}{2} \frac{\Sigma}{k} \pi^{2}_{k} + \omega^{2}_{k} \Theta^{2}_{k}$ qui n'agit que dans l'espace des vibrations, les états $|E_{1} > et |E_{2} > peuvent s'écrire |E_{R} > \otimes |E_{v} > où |E_{R} > représente un état de l'espace de rotation et |E_{v} > un état de$ l'espace de vibration.

Les opérateurs de perturbation se mettent tous sous la forme $O_R \cdot O_V$ où O_R est un opérateur agissant dans l'espace de rotation et O_V un opérateur agissant dans l'espace de vibration. Leurs éléments de matrice dans la base des vecteurs propres du hamiltonien d'ordre zéro s'écrivent :

$$< {\rm E_{R}}|{\rm O_{R}}|{\rm E_{R}}, > < {\rm E_{v}}|{\rm O_{v}}|{\rm E_{v}}, >$$

Bien que non dégénérées, les valeurs propres $E_1^\circ et E_2^\circ$ de H₀, peuvent être telles que $|E_1^\circ - E_2^\circ|$ cesse d'être grand par rapport à $\langle E_R | O_R | E_R^\circ \rangle \langle E_V | O_V | E_V^\circ \rangle$. On se trouve alors dans un cas de quasi-dégénérescence et il faut isoler de l'espace dans lequel agissent H₀ et l'opérateur de perturbation, le sous-espace correspondant à ces valeurs propres quasi-dégénérées.

Ceci se produit notamment pour les états de rotation d'un même niveau de vibration $(E_v^{o} = E_v^{o})$ qui doivent être considérés comme s'ils appartenaient à un sous-espace d'états quasi-dégénérés de ce niveau de vibration.

- 4 -

De même, lorsque $E_v \simeq E_v'$, il faut isoler le sous-espace des états de rotation des deux niveaux de vibration. C'est le cas des niveaux de rotation couplés par résonance de Coriolis.

Ce raisonnement peut aussi s'étendre aux cas de polyades d'états vibrationnels interagissants [4].

Ceci veut dire, qu'à un ordre d'approximation choisi, nous éliminons dans le hamiltonien, tous les opérateurs qui couplent les différents groupes de niveaux considérés comme sous-espaces d'états quasi-dégénérés, pour obtenir une matrice du hamiltonien, qui se décompose en blocs suivant le schéma de résonance de la molécule.

Cette décomposition s'opère par la méthode des transformations de contact [5]. Cette méthode consiste à faire subir au hamiltonien une suite de transformations unitaires T de la manière suivante :

le hamiltonien une fois transformé $H^{(1)} = T^{(1)} H (T^{(1)})^{-1}$ se réarrange sous la forme $H^{(1)} = H_0^{(1)} + H_1^{(1)} + H_2^{(1)} + ...$ et on choisit $T^{(1)}$ de manière à ce que $H_0^{(1)} = H_0$. La matrice de $H_1^{(1)}$ se factorise en blocs suivant le schéma de résonance de la molécule.

Après N transformations de ce type, le hamiltonien s'écrit :

$$H^{(N)} = H_0 + H_1^{(1)} + \dots H_i^{(i)} + \dots H_N^{(N)} + H_{N+1}^{(N)} + \dots$$

Pour calculer l'énergie à l'ordre 2N, il suffit donc de diagonaliser la matrice du hamiltonien transformé :

$$H^{T} = H_{0} + H_{1}^{(1)} + \dots H_{i}^{(i)} + \dots H_{N}^{(N)} + \text{diag}(H_{N+1}^{(N)} + \dots H_{2N}^{(N)})$$

où diag(h) signifie que seuls sont à prendre en compte, les opérateurs

de h ayant des éléments matriciels non nuls dans les blocs d'états vibrationnels non résonnants et dans les blocs de résonance.

2, HAMILTONIEN ROTATIONNEL POUR LES ÉTATS NON RÉSONNANTS

Nous venons de montrer qu'il est possible, pour calculer les niveaux d'énergie, de diagonaliser partiellement la matrice du hamiltonien.

Nous nous intéressons tout d'abord à la restriction de cette matrice à un bloc constitué par un seul état vibrationnel non résonnant |v>.

Dans cet état, nous pouvons écrire le hamiltonien transformé H^T sous la forme : $E_v \& + H^v_{rot}$ où E_v est l'énergie vibrationnelle de l'état |v|& est l'opérateur, identité et

 H^{v}_{rot} est le hamiltonien rotationnel de l'état |v>.

a) FORME DU HAMILTONIEN H^V rot

Comme le montre WATSON [6], le hamiltonien de rotation s'écrit sous la forme standard :

 $H^{\mathbf{v}}_{\mathbf{rot}} = \sum_{\substack{\mathbf{p}, \mathbf{q}, \mathbf{r} \\ \mathbf{p} + \mathbf{q} + \mathbf{r} \text{ pair}}} h^{\mathbf{v}}_{\mathbf{p}, \mathbf{q}, \mathbf{r}} (P_{\mathbf{x}}^{\mathbf{p}} P_{\mathbf{y}}^{\mathbf{q}} P_{\mathbf{z}}^{\mathbf{r}} + P_{\mathbf{z}}^{\mathbf{r}} P_{\mathbf{y}}^{\mathbf{q}} P_{\mathbf{x}}^{\mathbf{p}})$

Ce hamiltonien soumis à une transformation unitaire judicieusement choisie s'écrit alors sous une forme réduite

$$H^{v}_{red} = \sum_{\substack{p,q,r \\ p+q+r \text{ pair}}} \stackrel{\sim}{\overset{\sim}{\overset{}}_{h}} \left(P^{p}_{x} P^{q}_{y} P^{r}_{z} + P^{r}_{z} P^{q}_{y} P^{p}_{x} \right)$$

où n'apparaît qu'un nombre minimum de coefficients non nuls et ce nombre est le nombre maximum de coefficients déterminables à partir de résultats expérimentaux.

- 6 -

Dans la repré**sentat**ion I^r, ce hamiltonien réduit se développe sous la forme [7] :

$$H_{red}^{v} = \frac{A+C}{2} P^{2} - \Delta_{J} P^{4} + H_{J} P^{6} + \frac{A-C}{2} (\frac{\kappa-1}{2} P^{2} + \frac{3-\kappa}{2} P_{z}^{2})$$

$$- \Delta_{JK} P^{2} P_{z}^{2} - \Delta_{K} P_{z}^{4} + H_{JK} P^{4} P_{z}^{2} + H_{KJ} P^{2} P_{z}^{4} + H_{K} P_{z}^{6}$$

$$+ \frac{A-C}{2} \cdot \frac{1+\kappa}{2} (P_{x}^{2} - P_{y}^{2}) - 2\delta_{J} P^{2} (P_{x}^{2} - P_{y}^{2}) - \delta_{K} Z(2)$$

$$+ 2h_{J} P^{4} (P_{x}^{2} - P_{y}^{2}) + h_{JK} P^{2} Z(2) + h_{K} Z(4)$$
avec $Z(i) = (P_{x}^{2} - P_{y}^{2}) P_{z}^{i} + P_{z}^{i} (P_{x}^{2} - P_{y}^{2})$

b) CHOIX DE LA BASE-SYMETRIE DE LA MATRICE ENERGIE

Le Hamiltonien réduit proposé par WATSON possède les propriétés suivantes.:

• il est totalement symétrique pour les opérations de symétrie du groupe **D**₂.

• les éléments de matrice dans la base de la toupie symétrique sont du type $\Delta K = 0, \pm 2$.

Les vecteurs de base de la toupie symétrique n'appartiennent pas au groupe \mathbf{D}_2 , mais comme l'a montré MULLIKEN [8], il existe des combinaisons linéaires de ces vecteurs qui appartiennent à ce groupe de symétrie.

Le passage de l'ancienne base à la nouvelle base se fait par l'intermédiaire d'une matrice de WANG [9]. Les vecteurs de cette nouvelle base s'écrivent :

 $2^{-1/2}$ []J, K, M > + (-1)^{\gamma}]J, -K, M >]

Après réarrangement de l'ordre de ces vecteurs, la matrice énergie se scinde en quatre sous-matrices correspondant chacune à une représentation irréductible du groupe de symétrie D₂ : [10]

	K	Ŷ
_ E ⁺	e	e
E	е	o
0*	o	e
o ⁻	0	o

Conformément à la notation de MULLIKEN, les niveaux rotationnels sont repérés par les valeurs de J, K_a, K_c de la manière suivante :

dans la représentation I^r

•	J I K _a	air ^K c	J in K _a	npair ^K c
E ⁺	е	е	e	o
E	е	0	е	e
o +	о	e	0	o
0	ο	0	ο	e

3. HAMILTONIEN DANS LE CAS DE DEUX ETATS COUPLES PAR RÉSONANCE DE CORIOLIS

a) **GENERALITES**

La résonance de Coriolis est une résonance couplant les états de rotation d'états vibrationnels de symétrie différente. Nous avons déjà noté (1-b) qu'une condition nécessaire pour qu'il y ait couplage entre deux niveaux est qu'ils aient des énergies de valeurs voisines.

D'autre part, il faut que les vecteurs d'état vibrorotationnels associés à ces niveaux soient du même type de symétrie. En effet, le hamiltonien étant invariant pour les opérations du groupe de symétrie de la molécule, il faut que les vecteurs d'état $|E_1>$ et $|E_2>$ soient du même type de symétrie, pour que les éléments de matrice $< E_1|_H |E_2>$ soient non nuls.

Enfin, comme le hamiltonien commute avec P², le carré du moment angulaire total, les niveaux couplés doivent avoir même valeur de J.

b) OPERATEURS D'INTERACTION

Dans le développement du hamiltonien donné en (1-a), nous remarquons qu'il existe des opérateurs, qui, ayant une dépendance rotationnelle, peuvent avoir des éléments de matrice non nuls entre vecteurs d'états vibrorotationnels appartenant à des états de vibration différents.

Citons par exemple le terme

$$\alpha^{\Sigma}_{,\beta}$$
 $\mu^{\circ}_{\alpha\beta} P_{\alpha}^{P}_{\beta}$ de H_{1}

et le terme

$$\sum_{\alpha,\beta} \sum_{k,1} \frac{1}{2} \left(\frac{\partial^2 \mu_{\alpha\beta}}{\partial \Theta_k \partial \Theta_1} \right), \quad \Theta_k \quad \Theta_1 \quad P_\alpha \quad P_\beta \quad de \quad H_2$$

qui contribuent au couplage entre états vibrationnels résonnants. Après une transformation de contact vibrationnelle comme indiqué en (1-b), ces opérateurs subsistent dans le développement du hamiltonien transformé : dans $H_1^{(1)}$ et dans diag $(H_2^{(1)})$.

L'utilisation des propriétés de symétrie de la molécule,

- 9 -

permet de connaître les opérateurs ayant des éléments de matrice non nuls dans la restriction de la matrice du hamiltonien au bloc de résonance considéré.

c) FORME DU HAMILTONIEN

Nous avons montré qu'il est possible pour calculer les niveaux d'énergie affectés de résonance de Coriolis, de diagonaliser partiellement la matrice du hamiltonien. Nous nous intéressons alors à la restriction de cette matrice à un bloc constitué de deux états vibrationnels $|v\rangle$ et $|v'\rangle$.

Les opérateurs agissant dans ce sous-espace sont de deux types :

- les opérateurs ayant des éléments de matrice diagonaux par rapport au nombre quantique v, nous les regroupons dans la notation H^{VV}.

- les opérateurs d'interaction, n'ayant que des éléments de matrice non diagonaux en v. Ils sont désignés par H^{VV}.

* Opérateur HVV

Cet opérateur n'agit que sur les vecteurs d'un même état vibrationnel. Il est alors possible d'écrire H^{VV} sous la forme $E_v \& + H^v_{rot}$

où E_v est l'énergie vibrationnelle de l'état $|v\rangle$ si celui-ci n'est pas affecté d'une résonance vibrationnelle

& est l'opérateur identité et

 H^{v}_{rot} est le hamiltonien de rotation de l'état vibrationnel |v>

L'application d'une transformation de contact rotationnelle permet d'écrire ce hamiltonien H^V_{rot} sous la forme réduite H^V_{red}, proposée par WATSON. Ceci s'applique aux deux opérateurs de type H^{VV} agissant sur les vecteurs de chacun des deux états vibrationnels |v>et |v'>:

- pour les vecteurs de l'état vibrationnel |v> : $H^v_{red} = e^{is^v} H^v_{rot} e^{-is^v}$

- pour les vecteurs de l'état vibrationnel |v' >: H^{v'}red = e^{is^{v'}} H^{v'}rot e^{-is^{v'}}

* Opérateurs HVU'

Un opérateur H^{vv'} se transforme alors en $\mathcal{H}^{vv'}$ de la manière suivante :

$$\mathcal{H}^{\mathbf{vv'}} = e^{\mathbf{is^v}} \mathbf{H}^{\mathbf{vv'}} e^{-\mathbf{is^v'}}$$

sous la forme la plus générale, le hamiltonien d'interaction H^{VV} 's'écrit :

$$H^{vv'} = \sum_{p,q,r} h^{vv'}_{p,q,r} (P^p_x P^q_y P^r_z + P^r_z P^q_y P^p_x)$$

et le hamiltonien transformé se développe sous la forme :

$$\mathcal{H}^{\mathbf{vv'}} = \sum_{p,q,r} \stackrel{\mathcal{V}\mathbf{vv'}}{\underset{p,q,r}{\overset{\mathcal{V}\mathbf{v}}{\overset{\mathcal{V}}}{\overset{\mathcal{V}}{\overset{\mathcal{V}}{\overset{\mathcal{V}}{\overset{\mathcal{V}}}{\overset{\mathcal{V}}}{\overset{\mathcal{V}}{\overset{\mathcal{V}}}{\overset{\mathcal{V}}{\overset{\mathcal{V}}}{\overset{\mathcal{V}}{\overset{\mathcal{V}}}}}{\overset{\mathcal{V}}$$

Nous limitons le développement aux valeurs de p + q + rinférieures ou égales à 2. Il faut alors rappeler que la symétrie du problème impose le nombre des termes ayant des éléments de matrice non nuls dans la restriction de la matrice énergie au bloc de résonance.

d) STRUCTURE DE LA MATRICE DU HAMILTONIEN

Il est possible de visualiser les transformations subies par le hamiltonien, en examinant l'évolution de la matrice énergie : Matrice du hamiltonien de DARLING et DENNISSON.

Transformations de contact vibrationnelles.

Matrice du hamiltonien transformé. Matrice diagonale en blocs correspondants aux polyades d'états vibrationnels interagissants.

Restriction à un bloc de résonance.

éléments de ... matrice de H^{VV}

> élément*s* de matrice de H^{VV}

Matrice du hamiltonien associé à deux états vibrationnels quasi dégénérés.

Nous nous intéressons alors à cette dernière matrice, restriction correspondant à deux états vibrationnels $|v\rangle$ et $|v'\rangle$.

L'espace des états de rotation est rapporté à la base de la toupie symétrique dont les vecteurs sont notés |J, K, M>.

Comme le hamiltonien commute avec le carré du moment angulaire total, les éléments de la matrice sont diagonaux en J.

Par réarrangement des lignes et des colonnes, cette matrice se factorise en blocs correspondants chacun à une valeur de J.

Après les transformations de contact rotationnelles e^{is^V}, les parties hachurées représentent les éléments de matrice du hamiltonien rotationnel de type WATSON ; quant aux parties **po**intillées, ce sont les éléments de matrice des opérateurs $\mathcal{H}^{VV'}$.

Les valeurs propres de cette matrice donnent directement les énergies des niveaux vibrorotationnels. Il est toutefois utile de choisir une base adaptée à la symétrie de la molécule pour diagonaliser des matrices d'ordre minimum.

4. APPLICATION A LA MOLECULE D'OZONE

L'ozone est une molécule non linéaire formée de trois atomes d'oxygène. C'est une toupie asymétrique légère.

La configuration d'équilibre de cette molécule appartient au groupe de symétrie C_{2v} . Elle est représentée sur la figure I. L'axe de symétrie est l'axe de moyenne inertie, l'axe de plus grande inertie est perpendiculaire au plan de la molécule. La représentation I^r :

$$\begin{array}{ccc} x & \rightarrow & b \\ y & \rightarrow & c \\ z & \rightarrow & a \end{array}$$

est, en raison de la valeur de κ ($\kappa \approx -0.97$), adaptée à l'étude d'une telle molécule.

Les trois modes de vibration associées aux coordonnées normales Θ_1 , Θ_2 , Θ_3 sont schématisés sur la figure II.

La table I rappelle la table de caractères du groupe C_{2v} , groupe de recouvrement de la molécule. Les types de symétrie des coordonnées normales y figurent ainsi que les types de symétrie des composantes sur les axes mobiles du moment angulaire total P.

Le calcul des niveaux d'énergie de cette molécule nécessite le choix d'un schéma de résonance. Nous nous limitons à l'étude des niveaux d'énergie des états vibrationnels fondamentaux.

 Θ_1 coordonnée associée à la vibration d'élongation symétrique v_1 .

 Θ_2 coordonnée associée à la vibration de déformation angulaire v_2 .

8415 11111

 Θ_3 coordonnée associée à la vibration d'élongation antisymétrique v_3 .

FIGURE II

C _{2v}	E	σ xy	σ xz	C(x) 2	Moment angulaire total	Coordo nnées normales
Al	1	1	1	1		Θ ₁ , Θ ₂ Π ₁ , Π ₂
A ₂	1	-1	-1	1	P _x	
B1	1	-1	1	-1	Py	Θ ₃ Π ₃
B ₂	1	1	-1	-1	Pz	

Table de caractères du groupe C_{2v} .

TABLE I

(v ₁	v 2	v3)	Energies en cm ⁻¹	Références
(0	Ó	0)	0	
(0	1	0)	700.93	[11]
(0	0	1)	1042.096	[12]
(1	Q	0)	1103.15	∫ [12]

Energies des vibrations fondamentales de l'ozone

TABLE II

Les énergies de vibration de ces états sont connues expérimentalement et leurs valeurs sont reportées dans la Table II. Le schéma de résonance peut alors s'établir comme suit :

- le niveau (0 0 0)

- le niveau (0 1 0)

tous deux isolés dans l'échelle des énergies

- l'ensemble des deux niveaux $\{(0 \ 0 \ 1), (1 \ 0 \ 0)\}$ qui ne sont distants que de 61 cm⁻¹ et sont isolés de tout autre état vibrationnel.

a) ETUDE DES ETATS (0 0 0) et (0 1 0)

Ces deux états sont considérés comme indépendants entre eux et indépendants de tout autre état vibrationnel.

Les énergies des niveaux rotationnels de chacun de ces états peuvent donc être déterminées par la méthode décrite en A-2.

La matrice du hamiltonien rotationnel de WATSON est écrite dans la base de WANG. Les valeurs énergétiques sont obtenues par diagonalisation des sous-matrices E^+ , E^- , 0^+ , 0^- , pour chaque valeur de J.

Toutefois, il faut remarquer que, compte tenu de l'absence de spin et de la symétrie du vecteur d'état de vibration, seuls les niveaux rotationnels caractérisés par des K_a et K_c de même parité sont possibles. Nous n'avons alors en fait que deux sous-matrices possibles par valeur de J.

K _a K _c	Jpa	air	J im _l	pair
	sous matrice	Ordre	sous matrice	Ordre
e e	E+	$\frac{1}{2}(J+2)$	E	$\frac{1}{2}(J-1)$
0 0	0	$\frac{1}{2}$ J	o ⁺	$\frac{1}{2}(J+1)$

Comme nous l'avons montré en A-1-b, il faut considérer globalement tous les niveaux de rotation des deux états de vibration.

Ces états étant de symétries différentes $(A_1 \text{ pour } (1 \ 0 \ 0), B_1 \text{ pour } (0 \ 0 \ 1))$, ils ne peuvent présenter de résonance vibrationnelle de type Fermi ou Darling-Dennison. Par contre ils sont affectés de résonance de Coriolis.

L'étude des niveaux vibrorotationnels correspondants est donc justiciable de la méthode indiquée en A-3.

* Détermination des opérateurs de couplage

Les opérateurs présentant des éléments de matrice non diagonaux en v dans la restriction de la matrice du hamiltonien au bloc de résonance sont de deux types :

> • $h_1 = -\sum_{\alpha,\beta} \mu^{\circ}_{\alpha\beta} p_{\alpha} P_{\beta}$ • $h_2 = \frac{1}{2} \sum_{\alpha,\beta} \sum_{k,1} \frac{1}{2} (\frac{\partial^2 \mu_{\alpha\beta}}{\partial \Theta_k \partial \Theta_1}) \cdot \Theta_k \Theta_1 P_{\alpha} P_{\beta}$

Comme le hamiltonien doit rester invariant pour chacune des opérations de recouvrement de la molécule, l'examen de la table de caractères du groupe C_{2v} permet de déterminer les termes de ces sommes qui ont des éléments de matrice non nuls.

- Termes $h_1 = -\sum_{\alpha,\beta} \mu^{\circ}_{\alpha\beta} p_{\alpha} P_{\beta}$

Dans le cas des vibrations v_1 et v_3 , p_{α} s'écrit :

$$\mathbf{P}_{\alpha} = \sum_{1,3} \boldsymbol{\zeta}_{k,1}^{\alpha} \boldsymbol{\Theta}_{k} \boldsymbol{\Pi}_{1}$$

où 1 caractérise la vibration v_1 et 3 la vibration v_3 .

Il faut examiner les propriétés de symétrie d'opérateurs

du type $\theta_k \Pi_1 P_{\beta}$. La Table I indique que seuls les termes $\theta_1 \Pi_3 P_y$ et $\theta_3 \Pi_1 P_y$ restent inchangés pour les opérations du groupe de recouvrement de la molécule.

Les axes x, y, z étant en coïncidence avec les axes principaux d'inertie, les seuls éléments de matrice non nuls correspondent au terme :

$$\mathbf{h}_1 = - \mu^{\circ}_{\mathbf{y}\mathbf{y}} \begin{bmatrix} \boldsymbol{\zeta}_{13}^{\mathbf{y}} \Theta_1 & \boldsymbol{\Pi}_3 + \boldsymbol{\zeta}_{31}^{\mathbf{y}} & \Theta_3 & \boldsymbol{\Pi}_1 \end{bmatrix} \mathbf{P}_{\mathbf{y}}$$

qui s'écrit encore

$$h_1 = -\mu_{yy}^{\circ} \zeta_{13}^{y} (\Theta_1 \Pi_3 - \Theta_3 \Pi_1) P_y$$

puisque $\vec{\zeta}_{13} = -\vec{\zeta}_{31}$

- Termes
$$h_2 = \frac{1}{2} \sum_{\alpha,\beta} \sum_{k,1} \frac{1}{2} (\frac{\partial^2 \mu_{\alpha\beta}}{\partial \Theta_k \partial \Theta_1}) \circ \Theta_k \Theta_1 P_{\alpha} P_{\beta}$$

Nous devons cette fois examiner les propriétés de symétrie d'opérateurs du type $\Theta_1 \ \Theta_3 \ P_{\alpha} \ P_{\beta}$.

Les seuls éléments de matrice non nuls correspondent, d'après la Table I, au terme :

$$h_{2} = \frac{1}{2} \left[\frac{1}{2} \left(\frac{\partial^{2} \mu \mathbf{x}_{z}}{\partial \Theta_{1} \partial \Theta_{3}} \right) \circ \Theta_{1} \Theta_{3} P_{\mathbf{x}} P_{z} + \frac{1}{2} \left(\frac{\partial^{2} \mu \mathbf{x}_{z}}{\partial \Theta_{3} \partial \Theta_{1}} \right) \circ \Theta_{3} \Theta_{1} P_{\mathbf{x}} P_{z} \right]$$
$$+ \frac{1}{2} \left(\frac{\partial^{2} \mu_{z\mathbf{x}}}{\partial \Theta_{1} \partial \Theta_{3}} \right) \circ \Theta_{1} \Theta_{3} P_{z} P_{\mathbf{x}} + \frac{1}{2} \left(\frac{\partial^{2} \mu_{z\mathbf{x}}}{\partial \Theta_{3} \partial \Theta_{1}} \right) \circ \Theta_{3} \Theta_{1} P_{z} P_{\mathbf{x}} \right]$$

qui se simplifie sous la forme :

$$h_{2} = \frac{1}{2} \left[\frac{1}{2} \left(\frac{\partial^{2} \mu_{ZX}}{\partial \Theta_{1} \partial \Theta_{3}} \right) \circ + \frac{1}{2} \left(\frac{\partial^{2} \mu_{ZX}}{\partial \Theta_{3} \partial \Theta_{1}} \right) \right] \quad \Theta_{1} \quad \Theta_{3} \left(\mathbf{P}_{X} \quad \mathbf{P}_{z} \quad + \quad \mathbf{P}_{z} \quad \mathbf{P}_{x} \right)$$

compte tenu des règles de commutation :

$$\begin{bmatrix} \Theta_{i}, \Theta_{j} \end{bmatrix} = 0 \text{ et } \begin{bmatrix} \Theta_{i}, P_{g} \end{bmatrix} = 0$$

et de la symétrie du tenseur $\stackrel{2}{\mu}: (\frac{\partial^{2}\mu_{XZ}}{\partial\Theta_{3}\partial\Theta_{3}})_{\circ} = (\frac{\partial^{2}\mu_{ZX}}{\partial\Theta_{1}\partial\Theta_{3}})_{\circ}$

* Hamiltonien d'interaction Hv'

Nous faisons le changement de variables habituel :

$$q = \left(\frac{\omega}{\hbar}\right)^{1/2} \Theta$$
 et $p = \left(\frac{\hbar}{\omega}\right)^{1/2} \Pi$

Les éléments de matrice de p et q s'écrivent :

$$< \mathbf{v} |\mathbf{q}| \mathbf{v} \pm 1 > = \frac{1}{2} [2\mathbf{v} + 1 \pm 1]^{1/2}$$

 $< \mathbf{v} |\mathbf{p}| \mathbf{v} \pm 1 > = \mp i\frac{\hbar}{2} [2\mathbf{v} + 1 \pm 1]^{1/2}$

et les éléments de matrice de q q' et p p' s'en déduisent immédiatement : < v, v' | q q' | v ± 1, v' ∓ 1> = $\frac{1}{4}$ { (2v + 1 ± 1) (2v' + 1 ∓ 1)}^{1/2}

< v, v' | q p' | v ± 1, v' ∓ 1>=±
$$i\frac{\hbar}{4}$$
 { (2v + 1 ± 1) (2v' + 1 ∓ 1)}^{1/2}

L'état (1 0 0) est caractérisé par $v_1 = 1$ et $v_3 = 0$ c'est-à-dire par le vecteur |1, 0>, l'état (0 0 1) par $v_1 = 0$ et $v_3 = 1$, c'est-à-dire par le vecteur |0, 1>.

Les éléments de matrice dont nous avons besoin s'écrivent :

<0,
$$1|q_1 q_3|1$$
, $0 > = \frac{1}{2}$ et < 0, $1|q_1 p_3|1$, $0 > = i\frac{\hbar}{2}$

- Eléments correspondant à hi

Après le changement de variables de Θ en q et de ${\rm I\!I}$ en p, h1 s'écrit :

$$h_{1} = -\mu^{\circ}_{yy} \zeta_{13}^{y} \{ (\frac{\omega_{3}}{\omega_{1}})^{1/2} q_{1} p_{3} - (\frac{\omega_{1}}{\omega_{3}})^{1/2} q_{3} p_{1} \} P_{y}$$

Nous avons alors :

<0,
$$1|h_1|1$$
, $0 > = -i\frac{\hbar}{2} u^{\circ}_{yy} \zeta_{13}^{y} \{ (\frac{\omega_3}{\omega_1})^{1/2} + (\frac{\omega_1}{\omega_3})^{1/2} \} P_{y}$

qu'il est possible de simplifier en introduisant :

$$G_{c} = \frac{\hbar^{2}}{2} \zeta_{13}^{y} \mu^{\circ}_{yy} \left\{ \left(\frac{\omega_{3}}{\omega_{1}} \right)^{1/2} + \left(\frac{\omega_{1}}{\omega_{3}} \right)^{1/2} \right\}$$

$$< 0, \ 1 | h_{1} | 1, \ 0 > = -\frac{i}{\hbar} G_{c} P_{c}.$$

$$- \frac{Elements \ correspondant \ \tilde{a} \ h_{2}}{2}$$

h₂ s'écrit après le changement de variables :

$$h_2 = \frac{1}{2} \left[\left(\frac{\partial^2 \mu_{\mathbf{Z}\mathbf{X}}}{\partial q_1 \partial q_3} \right) \circ + \left(\frac{\partial^2 \mu_{\mathbf{Z}\mathbf{X}}}{\partial q_3 \partial q_1} \right) \right] q_1 q_3 \left(\mathbf{P}_{\mathbf{Z}} \mathbf{P}_{\mathbf{X}} + \mathbf{P}_{\mathbf{X}} \mathbf{P}_{\mathbf{Z}} \right)$$

En posant

$$\mathbf{F}_{ab} = \frac{\hbar^2}{8} \left[\left(\frac{\partial^2 \mu_{ZX}}{\partial q_1 \partial q_3} \right) + \left(\frac{\partial^2 \mu_{ZX}}{\partial q_3 \partial q_1} \right) \right]$$

les éléments de matrice de h₂ se mettent sous la forme :

< 0,
$$1|h_2|1$$
, $0 > = \frac{F_{ab}}{h_2} (P_x P_z + P_z P_x)$

Si les composantes P_x , P_y , P_z du moment angulaire total sont exprimées dans un système d'unités où $\hbar = 1$, les termes de couplage se regroupent sous l'expression

$$H^{vv'} = F_{ab}(P_x P_z + P_z P_x) - iG_c P_y$$

qui est le développement de la forme standard du hamiltonien d'interaction limité aux valeurs de $p + q + r \le 2$.

De la même manière que $H^{VV'}$, le développement de la forme réduite $\mathcal{H}^{VV'}$ de ce hamiltonien ne peut comprendre que des opérateurs rotationnels de type B_1 .

Nous écrivons alors :

$$\mathcal{H}^{\mathbf{vv'}} = \mathbf{F}_{ab}(\mathbf{P}_{x} \mathbf{P}_{z} + \mathbf{P}_{z} \mathbf{P}_{x}) - \mathbf{i}\mathbf{G}_{c} \mathbf{P}_{y}$$

* Ecriture de la matrice du hamiltonien pour le bloc de résonance {{0.0.1}, {1.0.0}}

A chaque sous bloc diagonal en v, est associé un hamiltonien de type WATSON :

$$H_{rot}^{V} = \frac{A+C}{2} P^{2} - \Delta_{J} P^{4} + H_{J} P^{6} + \frac{A-C}{2} (\frac{\kappa-1}{2} P^{2} + \frac{3-\kappa}{2} P_{z}^{2})$$

$$- \Delta_{JK} P^{2} P_{z}^{2} - \Delta_{K} P_{z}^{4} + H_{JK} P^{4} P_{z}^{2} + H_{KJ} P^{2} P_{z}^{4}$$

$$+ H_{K} P_{z}^{6} + \frac{A-C}{2} \cdot \frac{1+\kappa}{2} (P_{x}^{2} - P_{y}^{2}) - 2\delta_{J} P^{2} (P_{x}^{2} - P_{y}^{2})$$

$$- \delta_{K} Z(2) + 2h_{J} P^{4} (P_{x}^{2} - P_{y}^{2}) + h_{JK} P^{2} Z(2)$$

$$+ h_{K} Z(4)$$

 $P_{x}^{2} = (P_{x}^{2} - P_{y}^{2}) P_{z}^{i} + P_{z}^{i}(P_{x}^{2} - P_{y}^{2})$

A chaque sous-bloc non diagonal en v, est associé le hamiltonien :

$$\mathcal{H}^{\mathbf{vv'}} = \mathbf{F}_{ab}(\mathbf{P}_{z} \mathbf{P}_{x} + \mathbf{P}_{x} \mathbf{P}_{z}) - \mathbf{i}\mathbf{G}_{c} \mathbf{P}_{y}$$

Les énergies des niveaux vibrorotationnels sont alors caractérisés par 34 paramètres :

- 15 paramètres rotationnels pour chaque état :

 $A_1 B_1 C_1 \dots pour (1 0 0)$ $A_3 B_3 C_3 \dots pour (0 0 1)$

- les énergies vibrationnelles

 E_1 pour (1 0 0) E_3 pour (0 0 1)

- les 2 paramètres de couplage : F_{ab} et G_c.

La matrice du hamiltonien étant écrite dans la base du cas limite de la toupie symétrique, il faut calculer les éléments de matrice :

< J, K, M|H^v_{rot}|J', K', M'>et < J, K, M|
$$\mathcal{H}^{VV}$$
'|J', K', M'>

Le facteur de phase arbitraire qui intervient dans la détermination des vecteurs d'état est choisi de manière à ce que les éléments de matrice de P_x soient réels et ceux de P_y purement imaginaires.

- Eléments de matrice de H^vrot

Pour chacun des blocs diagonaux définis par une valeur de J, la matrice du hamiltonien H^{v}_{rot} peut s'écrire s& + H où & est la matrice unité d'ordre 2J + 1 et H, une matrice dont les éléments non nuls correspondent à $\Delta K = 0, \pm 2$.

Les éléments de matrice de H^V_{rot} sont alors :

$$\begin{cases} s_{0} = \frac{A+C}{2} J(J+1) \\ s_{1} = s_{0} - \Delta_{J} J^{2}(J+1)^{2} \\ s_{2} = s_{1} + H_{J} J^{3}(J+1)^{3} \end{cases}$$

$$\begin{cases} H_{K,K}^{(0)} = \frac{A-C}{2} [K^{2} + \frac{\kappa-1}{2} (J(J+1) - K^{2})] \\ H_{K,K}^{(1)} = H_{K,K}^{(0)} - K^{2}[\Delta_{JK} J(J+1) + \Delta_{K} K^{2}] \\ H_{K,K}^{(2)} = H_{K,K}^{(1)} + K^{2}[H_{JK} J^{2}(J+1)^{2} + H_{KJ} J(J+1) K^{2} + H_{K} K^{4}] \end{cases}$$

$$\begin{cases} H_{K,K+2}^{(0)} = g(J,K+1) \frac{A-C}{2} \frac{\kappa+1}{2} \\ H_{K,K+2}^{(1)} = H_{K,K+2}^{(0)} - g(J,K+1) [2\delta_{J} J(J+1) + \delta_{K} K_{2}] \\ H_{K,K+2}^{(2)} = H_{K,K+2}^{(1)} + g(J,K+1) [2h_{J} J^{2}(J+1)^{2} + h_{JK} J(J+1) K_{2} + h_{K} K_{4}] \end{cases}$$

avec
$$g(J,K) = \frac{1}{2} \sqrt{[J(J+1) - K^2]^2 - K^2}$$

et $K_{2n} = K^{2n} + (K + 2)^{2n}$.

- Eléments de matrice de
$$\mathcal{H}^{\mathcal{W}}$$

Les opérateurs intervenant dans $\mathcal{H}^{vv'}$ ont pour éléments de matrice non nuls :

$$< J, K, M | P_x P_z + P_z P_x | J, K \pm 1, M > = \frac{1}{2} (2K \pm 1) [J(J+1) - K(K \pm 1)]^{1/2}$$
 $et < J, K, M | iP_y | J, K \pm 1, M > = \pm \frac{1}{2} [J(J+1) - K(K \pm 1)]^{1/2}$

Pour chacun des blocs diagonaux définis par une valeur de J, les termes de couplage sont du type :

$$\mathcal{K}_{K,K\pm 1}^{VV'} = \frac{1}{2} \left[F_{ab} (2K \pm 1) \pm G_{c} \right] \left[J(J+1) - K(K \pm 1) \right]^{1/2}$$

* Factorisation de la matrice

Chaque bloc diagonal en J a pour dimension 2x (2J+1). Il est intéressant de réduire la taille des matrices à diagonaliser en tenant compte des propriétés de symétrie de la molécule.

L'espace des états peut se décomposer en représentations irréductibles du groupe C_{2v}. Cette décomposition s'opère en 2 étapes :

- changement des vecteurs de base par l'intermédiaire d'une matrice du type

puis groupement de ces nouveaux vecteurs suivant la parité de K.

La correspondance entre ces vecteurs désignés par $2^{-1/2}[|J, K, M> + (-1)^{\gamma}|J, -K, M>]$ et les représentations irréductibles du groupe C_{2v} est indiquée dans la Table III.

La matrice du hamiltonien écrite dans cette nouvelle base, se scinde en quatre sous-matrices correspondant aux quatre représentations irréductibles du groupe C_{2v}.

La Table IV donne le classement des états propres du hamiltonien, suivant ces représentations irréductibles, en fonction des nombres quantiques vibrationnels et rotationnels.

Sur ces tables, nous remarquons que, compte tenu du principe de PAULI et de l'absence de spin, les seuls niveaux rotationnels permis sont

- les niveaux ee et oo de l'état (1 0 0)

- les niveaux eo et oe de l'état (0 0 1).

Nous n'avons alors que deux sous-matrices possibles par valeur de J :

Etat vibrationnel	K _a K _c	J pair		Jimp	pair
		sous matrice	ordre	sous matrice	ordre
(1 0 0) (0 0 1)	e e o e	{ ^E +} 0+	J + 1	{ ^E -}	J
(1 0 0) (0 0 1)	0 0 e 0	{ ⁰ _} E_}	J	$\{ {}^{O_+}_{E_+} \}$	J + 1

J	Etat vibrationnel	Al	A2	B ₁	B ₂
pair	(1 0 0)	E ₊ (p+1)	0_(p)	0 ₊ (p)	E_(p)
$p \ge 0$	(0 0 1)	0 ₊ (p)	E_(p)	E ₊ (p+1)	0_(p)
impair	(100)	E_(p-1)	0 ₊ (p)	0_(p)	E ₊ (p)
$p \ge 1$	(0 0 1)	0_(p)	E ₊ (p)	E_(p-1)	0 ₊ (p)

Nouveaux vecteurs de base :

$$2^{-1/2}$$
 []J, K, M> + (-1)^Y]J, -K, M>]

3	K	γ
E+	e	е
E_	е	0
0 ₊	ο	е
0_	0	о

 $E_+(p+1)$ signifie qu'il existe p + 1 vecteurs du type E_+ (même notation pour E_- , 0+, 0_).

TABLE III

Etat vibrat	ionnel	K_	K	Représentations
		a	c	ITTEQUCTIDIES
$(1 \ 0 \ 0)$ $(0 \ 0 \ 1)$		e o	e e	Al
$(1 \ 0 \ 0)$ $(0 \ 0 \ 1)$		o e	0 0	A 2
		0	е	Bl
(0 0 1)		е	е	
(1 0 0)		e	0	Bo
(0 0 1)		0	0	2
	1]	

TABLE IV

.

B - INTENSITÉ DES RAIES D'ABSORPTION

L'absorption moléculaire d'un rayonnement électromagnétique est caractérisée par deux grandeurs mesurables :

- la fréquence des raies d'absorption et
- leur intensité.

De même que la fréquence des raies peut être prévue par un calcul ab initio des niveaux vibrorotationnels, il est possible de précalculer théoriquement l'intensité de ces raies d'absorption.

1. EXPRESSION DE L'INTENSITÉ D'ABSORPTION

L'intensité d'absorption pour une transition d'un état n à un état n' est exprimée en cm molécule ⁻¹ par [13]

$$I_{n,n'} = \frac{8\pi^3 N}{3hc} \frac{\nu}{Z} g_n e^{-\frac{E_n}{kT}} (1 - e^{-\frac{h\nu}{kT}}) < \nu > 2$$

où n représente l'ensemble des nombres quantiques de l'état considéré.

E_n est l'énergie du niveau le plus bas

g_n son poids statistique

N est la concentration moléculaire

la fréquence de la transition

Z est la fonction de partition des états de rotation.

Pour les molécules de type toupie asymétrique, une expression approchée de cette fonction est donnée par GORDON [14]:

 $Z = \left(\frac{\Pi (kT)^3}{ABC (ch)^3}\right)^{1/2}$ où A, B, C sont les constantes de rotation de la molécule (en cm⁻¹).

< µ > est l'élément de matrice du moment dipolaire (en Debye).

Dans le cas où les mouvements des noyaux ont des amplitudes assez faibles pour être justiciables de la théorie des petits mouvements, il est possible de développer en série le moment dipolaire en fonction des coordonnées normales.

Ainsi en désignant par g = a, b, c, les directions des axes principaux d'inertie de la molécule et par F = X, Y, Z, les directions du repère galiléen, les composantes du moment dipolaire se présentent sous la forme :

$$\mu_{g} = (\mu_{g})_{o} + \sum_{k} (\frac{\partial \mu_{g}}{\partial Q_{k}})_{Q_{k}=0} \quad Q_{k} + \dots$$

et $\mu_{F} = \sum_{g} \phi_{Fg} \mu_{g}$

Q_k désigne la k^{ième} coordonnée normale.

\$\overline{Fg}\$ les cosinus directeurs du repère galiléen, par rapport au repère lié à la molécule.

Les éléments de matrice du moment dipolaire ont ainsi la forme :

$$< \mathbf{V}' | \mathbf{0} < \mathbf{R}' | \mathbf{\mu}_{\mathbf{p}} | \mathbf{R} > \mathbf{0} | \mathbf{V} >$$

et au premier ordre, l'intensité d'absorption est proportionnelle à

$$\sum_{\mathbf{g}} (\mu_{\mathbf{g}})^{2}_{\mathbf{o}} | < \mathbf{R}' | \phi_{\mathbf{F}\mathbf{g}} | \mathbf{R} > |^{2}$$

dans le cas d'une transition de rotation pure due au dipole permanent $\vec{\mu}_{\circ}$ de la molécule et à

$$\sum_{\mathbf{g}} | < \mathbf{v} \cdot | \sum_{\mathbf{k}} \frac{\partial \mu_{\mathbf{g}}}{\partial \mathbf{Q}_{\mathbf{k}}} | \mathbf{q}_{\mathbf{k}} | \mathbf{v} > |^{2} | < \mathbf{R} \cdot | \phi_{\mathbf{Fg}} | \mathbf{R} > |^{2}$$

dans le cas d'une transition de vibration rotation, due à la variation du moment dipolaire entre les deux états de vibration entre lesquels s'effectue la transition. L'expression de l'intensité montre que n'apparaissent évidemment que les raies pour lesquelles $\langle \mu \rangle \neq 0$. C'est-à-dire que les règles de sélection sont directement déduites des éléments

$$< R' |\phi_{Fg}|R > et [< V' |\Sigma_k \frac{\partial \mu_g}{\partial Q_k} Q_k |V' > ou (\mu_g)]$$

D'autre part, le développement du moment dipolaire montre qu'il est nécessaire de connaître la représentation matricielle des cosinus directeurs dans la base qui diagonalise la matrice du hamiltonien pour calculer l'intensité d'une raie d'absorption.

2. Règles de sélection

a) REGLES DE SELECTION DE VIBRATION

Dans l'approximation des petits mouvements, les transitions pour lesquelles v' \neq v correspondent à des règles de sélection du type $\Delta v_k = \pm 1$ quelle que soit la vibration normale k considérée.

b) REGLES DE SELECTION DE ROTATION

Une transition entre deux états de rotation |R > et $|R' > n'est possible que si < R' | \phi_{Fg} | R > est différent de zéro.$

En posant

 $|\mathbf{R}\rangle = |\mathbf{J}_{\mathbf{K}_{a}\mathbf{K}_{c}}, \mathbf{M}\rangle$ et

$$\begin{split} |{\bf R'}> &= |{\bf J'}_{K_a'K_c'}, \; {\bf M'}> \; {\rm cet}\; {\rm \acute{e}l\acute{e}ment}\; {\rm de}\; {\rm matrice}\; {\rm s'\acute{e}crit}: \\ &< {\bf J'}_{K'_aK'_c} || \; \phi_{Fg} || \; {\bf J}_{K_aK_c}> < {\bf J'}, \; {\bf M'} | {\bf U}_F | {\bf J}, \; {\bf M}> \end{split}$$

Les termes du type < J', M' $|U_F|$ J, M> sont communs à tous les éléments de matrice des cosinus directeurs et ne sont non nuls que si

F = Z $\Delta J = 0, \pm 1$ $\Delta M = 0$ F = X ou Y $\Delta J = 0, \pm 1$ $\Delta M = \pm 1$

Les règles de sélection dépendant des facteurs $\langle J'_{K'_{a}K_{c}} || \phi_{Fg} || J_{K_{a}K_{c}} \rangle$ sont alors obtenues par de simples considérations de symétrie. Seuls sont non nuls les termes de type totalement symétrique pour le groupe D_{2} .

Composantes du moment dipolaire	Transitions permises		
a	ee ⇔ eo oe ⇔ oo		
Ъ	ee ↔ o o o e ↔ e o		
, C	ee ⇔ oe eo ⇔ oo		

* Transitions de vibration-rotation

Les transitions sont dues à la variation du moment dipolaire entre les deux états de vibration considérés, c'est-à-dire à

$$< \mathbf{v} | \sum_{\mathbf{k}} \frac{\partial \mu \mathbf{g}}{\partial \mathbf{Q}_{\mathbf{k}}} \mathbf{Q}_{\mathbf{k}} | \mathbf{v} >$$

La molécule étant caractérisée par son groupe de symétrie, l'élément considéré doit appartenir à la représentation totalement symétrique de ce groupe.

Ainsi dans le cas de la molécule d'ozone, de symétrie C_{2v} , les transitions permises pour les bandes $(0 \ 0 \ 0) \rightarrow (1 \ 0 \ 0)$ et $(0 \ 0 \ 0) \rightarrow (0 \ 1 \ 0)$ sont e e \Leftrightarrow o o, c'est-à-dire de type b, alors que pour, la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$, les transitions

permises sont

e e → e o o o → o e c'est-à-dire de type a.

3. ELÉMENTS DE MATRICE DES COSINUS DIRECTEURS POUR UNE TOUPIE ASYMÉTRIQUE

Les éléments de matrice des cosinus directeurs Φ_{Fg} écrits dans la base de la toupie symétrique se présentent sous la forme d'un produit de trois facteurs :

 $\phi_{Fg}(J K M, J' K' M') = \phi_{Fg}(J, J') \phi_{Fg}(J K, J' K') \phi_{Fg}(J M, J' M')$

La valeur de ces termes est rappelée dans la Table V. La convention de phase choisie pour les vecteurs de base est telle que P_x ait des éléments de matrice purement réels et P_y des éléments de matrice purement imaginaires.

Pour calculer les énergies des niveaux vibrorotationnels, nous avons été amenés à utiliser non pas la base de la toupie symétrique mais une base adaptée à la symétrie du problème.

Dans le cas d'un état vibrationnel non résonnant, l'utilisation de la base de WANG permet de scinder la matrice énergie en quatre sous-matrices correspondant aux représentations irréductibles du groupe D_2 . Ici, de la même manière, un changement de base analogue permet de décomposer la matrice énergie des deux états résonnants de l'ozone {(0 0 1), (1 0 0)} suivant les quatre représentations irréductibles du groupe C_{2v} .

Suivant la méthode développée par SCHWENDEMAN [15], il suffit, pour obtenir les éléments de matrice des cosinus directeurs dans la base des vecteurs propres du hamiltonien, d'opérer les mêmes transformations sur la matrice des cosinus directeurs que sur la matrice énergie.
ELEMENTS DE MATRICE DES COSINUS DIRECTEURS

		Valeurs de J'	
	- + F	ſ	- I T
φ _{Fg} (J, J')	$[4(J+1) \sqrt{(2J+1)(2J+3)}]^{-1}$	[4J(J+1)] ⁻¹	[4J <u>/4J2 - 1</u>] -1
$\phi_{F_{Z}}(J, K, J'K)$	2/(J+K+1)(J-K+1)	2K	2 /32 - K2
$\phi_{F_{X}}(JK, J'K \pm 1) = \pm i \phi_{F_{g}}(JK, J'K \pm 1)$	∓ √(J ± K+1)(J ± K+2)	/(J ∓ K)(J ± K+1)	∓ √(<u>J ∓ K)(J ∓ K-I)</u>
ф _{Zg} (JM, J'M)	$2\sqrt{(J+1)^2 - M^2}$	ZM	2/ <u>J² - M²</u>
<pre>\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>	∓ √(J ± M+1)(J ± M+2)	/(<u>] ∓ M)(] ∓ M+1)</u>	∓ √(<u>J ∓ W)(J ∓ W-I)</u>

TABLE V

a) <u>MATRICE DES COSINUS DIRECTEURS DANS LE CAS D'UNE</u> TRANSITION DE VIBRATION-ROTATION ENTRE ETATS VIBRATIONNELS NON RESONNANTS

La méthode de calcul utilisée se schématise comme suit :

changement de base par la matrice de WANG X :

$$\phi_{Fg}^{W} = X^{-1} \phi_{Fg} X$$

puis $\phi_{Fg}^{A} = \mathbf{T}_{I}^{-1} \phi_{Fg}^{W} \mathbf{T}_{F}$

 $o\tilde{u} \phi_{Fg}^{A}$ représente la matrice des cosinus directeurs dans la base des vecteurs propres du hamitonien, T_{I} et T_{F} étant les matrices de passage permettant de diagonaliser les matrices énergie des niveaux initial et final.

Puisque la matrice de WANG est diagonale en J et M, seul le facteur $\phi_{Fg}(JK, J'K')$ est modifié par la transformation.

Ecrites dans la base de WANG $|J,|K|,M,\gamma>$ les matrices ϕ_{Fg}^W ($J|K|\gamma$, $J'|K'|\gamma'$) ont la même forme quel que soit F et se décomposent en blocs T_{ij} comme le montrent les figures III et IV.

Compte tenu des règles de sélection, chaque bloc contient des éléments correspondant à une seule valeur de g.

Le calcul de ces éléments est développé dans la thèse de B. MAILLARD [16].

Les propriétés et la forme des différents blocs T_{ij} sont rappelées dans les Tables VI et VII.

Les matrices $\mathbf{T}_{\mathbf{I}}$ et $\mathbf{T}_{\mathbf{F}}$ sont aussi diagonales en J et M et se décomposent en quatre blocs $\mathbf{T}_{\mathbf{J},\mathbf{E}_{\perp}}$; $\mathbf{T}_{\mathbf{J},\mathbf{E}_{\perp}}$; $\mathbf{T}_{\mathbf{J},\mathbf{O}_{\perp}}$; $\mathbf{T}_{\mathbf{J},\mathbf{O}_{\perp}}$; $\mathbf{T}_{\mathbf{J},\mathbf{O}_{\perp}}$; $\mathbf{T}_{\mathbf{J},\mathbf{O}_{\perp}}$; $\mathbf{T}_{\mathbf{J},\mathbf{O}_{\perp}}$

J, E+ J, E_ J, 0+ J, O_ g = c g = a g = b J, E+ 0 T1,1 T_{2,1} T_{2,1} g = b g = c J, E_ 0 T2,2 T_{2,2} g = a J, 0+ 0 T1,2 J, 0_ 0

- g - représente la direction des axes liés à la molécule en représentation I^r.

Portion de la matrice ϕ_{Fg}^W (J|K| γ , J|K| γ ') intervenant dans les transitions de type Q.

FIGURE III

	J+1, E ₊	J+1, E_	J+1, 0+	J+1, 0_
J, E4	g = a	0	g = b	g = c
	T3,1		T4,1	T4,1
J, E_	0	g ≖ a	g = c	g = b
		T3,1	T4,2	T4,2
J, 0 ₊	g = b	g = c	g = a	0
	T _{5,1}	T 5,2	T _{3,1}	
J, 0_	g = c	g = b	0	g = a
	T5,1	T5,2		T _{3,1}

- g - représente les directions des axes mobiles en représentation I^r.

Portion de la matrice ϕ_{Fg}^W $(J|K|\gamma, J'|K'|\gamma')$ intervenant dans les transitions de type R (inversion des lignes et des colonnes pour les transitions de type P).

FIGURE IV

 $\mathbf{T}_{31} = \begin{bmatrix} 2 \left[(J+1)^2 - r^2 \right]^{1/2} & 0 \\ 0 & 2 \left[(J+1)^2 - (r+2)^2 \right]^{1/2} & 0 \\ 0 & 0 & 2 \left[(J+1)^2 - (r+4)^2 \right]^{1/2} \end{bmatrix} & \frac{1 \text{ ere valeur de } r & \text{niveau initial}}{2} \\ \frac{0 & E_+}{2} & E_- \\ 1 & 0_+ \\ 1 & 0_-$

FORME DE T₄₁ ET T₄₂

 $T_{4,1} = \begin{bmatrix} B \left[2 \left(J+1 \right) \left(J+2 \right) \right]^{1/2} & 0 \\ \left[J \left(J-1 \right) \right]^{1/2} & B \left[\left(J+3 \right) \left(J+4 \right) \right]^{1/2} & 0 \\ \dots & \dots & \dots & \dots \end{bmatrix}$

Porme générale :
$$[(J+l\pm q) (J+l\pm (q+1)]^{1/2}$$

 $q = 0, ... J - 1 \text{ ou } J$

Même forme pour $T_{4,2}$ en supprimant la lère ligne.

FORME DE T₅₁ ET T₅₂

Même forme pour T52 en supprimant la lère colonne.

ELEMENTS DE MATRICE DES Tij

TABLE VI

g	J, σ	J', σ'	T _{ij}	В	Mult.	Nombre de lignes de T _{ij}	Nombre de colonnes de T _{ij}
a	J, E+	J, E.	T1,1	-	1	1/2 (J+2)	1/2 J
a	J, 0+	J, 0_	T1,2	-	1	1/2(J+1)	1/2(J+1)
ъ	J, E+	J, 0-	T _{2,1}	- 1	1	1/2(J+2)	1/2(J+1)
ъ	J, E_	J, 0+	T2,2	- 1	1	1/2 J	1/2(J+1)
c	J, E ₊	J, 0+	T2,1	+ 1	i	1/2(J+2)	1/2 (J+1)
c	J, E_	J, 0_	T _{2,2}	+ 1	i	1/2 J	1/2(J+1)
a	J, E ₊	J+1, E+	T3,1	-	1	1/2(J+2)	1/2(J+3)
a	J, 0+	J+1, 0+	T3,1	-	1	1/2(J+1)	1/2(J+2)
a	J, 0_	J+1, 0_	T _{3,1}	-	1	1/2(J+1)	1/2 (J+2)
a	J, E_	J+1, E_	T3,1	- [.]	1	1/2 J	1/2 (J+1)
Ъ	J, E ₊	J+1, 0+	T4,1	+ 1	1	1/2(J+2)	1/2(J+2)
Ъ	J, E.	J+1, 0_	T4,2	+ 1	1	1/2 J	1/2(J+2)
b	J, 0+	J+1, E4	T5,1	+ 1	1	1/2(J+1)	1/2 (J+3)
Ъ	J, 0_	J+1, E_	T5,2	+ 1	1	1/2(J+1)	1/2 (J+1)
c	J, E+	J+1, 0	T4,1	- 1	-i	1/2(J+2)	1/2 (J+2)
c	J, E_	J+1, 0+	T4,2	- 1	-i	1/2 J	1/2(J+2)
· c	J, 0+	J+1, E.	T5,2	- 1	-i	1/2(J+1)	1/2 (J+1)
с	J, 0_	J+1, E+	T5,1	- 1	-i	1/2 (J+1)	1/2(J+3)

g = direction des axes liés à la molécule (représentation I^r).

J, σ = caractéristiques du niveau inférieur ; σ = E₊, E₋, O₊ ou O₋ (représentation I^r).

J', σ' = caractéristiques du niveau supérieur.

B = paramètre déterminant le signe de certains éléments de matrice

Mult. = les éléments de T_{ij} sont tous réels ou tous purement imaginaires. Les éléments donnés dans la Table VIdoivent donc être multipliés par les valeurs données dans cette colonne.

Propriétés des blocs T_{ij} de la matrice $\phi_{Fg}^{W}(J|K|\gamma, J'|K'|\gamma')$.

TABLE VII

La dernière transformation, qui s'opère numériquement s'écrit alors :

 $\phi_{Fg}^{A} (J_{KaKc}, J'_{K'aK'c}) = \mathbf{T}_{I_{J,\sigma}}^{-1} \phi_{Fg}^{-W} (J|K|\gamma, J'|K'|\gamma') \mathbf{T}_{F_{J',\sigma}},$

où σ et σ' prennent les valeurs E₊, E₋, O₊ et O₋.

b) <u>MATRICE DES COSINUS DIRECTEURS DANS LE CAS D'UNE</u> TRANSITION DES BANDES (0 0 0) \rightarrow (1 0 0) ET (0 0 0) \rightarrow (0 0 1) DE L'OZONE.

Pour calculer les énergies des niveaux rotationnels des états (1 0 0) et (0 0 1), nous avons été amenés à considérer la restriction de la matrice du hamiltonien correspondant à ces deux états vibrationnels. De la même manière, nous devons étudier globalement les transitions des deux bandes (0 0 0) \rightarrow (1 0 0) et (0 0 0) \rightarrow (0 0 1).

La première étape du calcul consiste à écrire la matrice des cosinus directeurs dans une base adaptée à la symétrie du problème.

$$\phi_{Fg}^{W} = X^{-1} \phi_{Fg} X$$

X est la matrice de WANG qui permet de décomposer la matrice énergie du niveau fondamental en quatre sous-matrices.

XX est la matrice :

qui permet de scinder la matrice énergie des deux états vibrationnels (1 0 0) et (0 0 1) en quatre sous-matrices correspondant aux représentations irréductibles du groupe C_{2w} .

Les matrices X et XX étant diagonales en J et M, seul le facteur $\phi_{Fg}(JK, J'K')$ est modifié par les changements de bases.

Dans ces nouvelles bases $|J, |K|, M, \gamma > \text{et } |J', |K'|, M', \gamma' > \text{les matrices } \phi_{Fg}^W (J|K|\gamma, J'|K'|\gamma') qui ont la même forme quel que soit$ F, se décomposent comme l'indiquent les figures V et VI. Compte tenudes règles de sélection, les éléments non nuls de ces matrices $correspondent à g = b pour les transitions de la bande (0 0 0) <math>\rightarrow$ (1 0 0) et à g = a pour les transitions de (0 0 0) \rightarrow (0 0 1). Les différents blocs T_{ij} intervenant dans ces matrices sont les mêmes que ceux des Tables V et VI.

La matrice \mathbf{T}_{I} diagonalisant la matrice énergie du niveau fondamental est diagonale en J et M et se décompose en quatre blocs \mathbf{T}_{IJE^+} , \mathbf{T}_{IJE^-} , \mathbf{T}_{IJO^+} , \mathbf{T}_{IJO^-} . De la même manière, la matrice \mathbf{T}_{F} diagonalisant la matrice énergie des états (1 0 0) et (0 0 1) contient quatre blocs par valeur de J = $\mathbf{T}_{FJ\sigma}$ avec $\sigma = (E_+^1, O_+^3)$, (O_-^1, E_-^3) , (O_+^1, E_+^3) , (E_-^1, O_-^3) ; les indices 1 et 3 faisant référence respectivement aux états (1 0 0) et (0 0 1).

La dernière transformation à opérer sur la matrice des cosinus directeurs s'écrit alors :

- pour les transitions de la bande (0 0 0) \rightarrow (1 0 0) ϕ_{Fb}^{A} (J_{KaKc}, J'_{K'aK'c}) = $\mathbf{T}_{IJ,\sigma}^{-1}$ ϕ_{Fb}^{W} (J|K| γ , J'|K'| γ ') $\mathbf{T}_{FJ',\sigma_{1}'}$ avec σ = E₊, E₋, 0₊, 0₋ et σ'_{1} = 0¹₋, 0¹₊, E¹₋, E¹₊

- pour les transitions de la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$ $\phi_{Fa}^{A} (J_{KaKc}, J'_{K'aK'c}) = \mathbf{T}_{IJ,\sigma}^{-1} \phi_{Fa}^{W} (J|K|\gamma, J'|K'|\gamma') \mathbf{T}_{FJ',\sigma'_{3}}$ $\sigma = E_{+}, E_{-}, 0_{+}, 0_{-}$ $\sigma_{3}^{\prime} = E_{-}^{3}, E_{+}^{3}, 0_{-}^{3}, 0_{+}^{3}.$

	J, E ¹ +	J, 0 ³ +	J, 0 ¹ _	J, E ³ _	J, 0 ¹ +	J, E ³ +	J, E ¹ _	J, 0 ³ _
J, E,	o	0	g = b T2,1	g = a T _{1.1}	ο	0	0	0
J, E_	0	0	0	0	g = b T _{2,2}	g = a T _{1,1}	0	0
J, 0+	0	0	0	0	0	o	g = b T _{2,2}	g = a T _{1,2}
J, 0_	g = b T _{2,1}	g ≈ a T _{1,2}	0	0	0	0	0	0

- g - représente les directions des axes mobiles (représentation I^r). Les indices 1 et 3 se rapportant à E₊, E₋, O₊, O₋ correspondent respectivement aux états de vibration (1 0 0) et (0 0 1).

Portion de la matrice ϕ^W_{Fg} (JK , J'K' γ ') intervenant dans les transitions de type Q.

FIGURE V

	J+1, E ^{\$} +	J+1, 0 ² +	J+1, 0 ¹ _	J+1, E ³ _	J+1, 0 ¹ +	J+1, E ³ +	J+1, E ¹ _	J+1, 0 ³ _
J, E ₊	0	0	o	0	g = b	g ≈ a To y	o	0
					-4,1	-3,1		
J, E	0	o	g = .b	g≖a	0	о	. 0	0
			T4,2	T3,1				
J, 0+	g = b	g = a	0	0	0	ο	0	0
	Ť5,1	T3,1						
J, O_	0	0	0	0	0	0	g = b	g = a
							T5,2	T _{3,1}

- g - représente les directions des axes mobiles (représentation I^r). Les indices 1 et 3 se rapportant à E_+ , E_- , O_+ , O_- correspondent respectivement aux états de vibration (1 0 0) et (0 0 1).

Portion de la matrice ϕ_{Fg}^W (J|K|Y, J'|K'|Y') intervenant dans les transitions de type R. (même forme pour les transitions de type P).

FIGURE VI

4. INTENSITÉ RELATIVE

Pour permettre l'identification d'un spectre infrarouge, il n'est pas nécessaire d'effectuer complètement le calcul de l'intensité absolue des transitions. Il suffit de caractériser les transitions par une intensité relative définie par :

 $I_r = S \left[e^{-\frac{W}{kT}} - e^{-\frac{W'}{kT}} \right]$

avec W énergie du niveau inférieur

W'énergie du niveau supérieur et S "line strength" de la transition.

La grandeur S est définie par KING, HAINER et CROSS sous la forme : [13].

$$S = \sum_{F,M,M'} \phi_{Fg}(J_{KaKc}, M)|^{2} = 3 |\phi_{Zg}(J, J')|^{2} x$$
$$|\phi_{Zg}^{A}(J_{KaKc}, J'_{K'aK'c})|^{2} x \sum_{MM'} |\phi_{Zg}(J, M, J' M')|^{2}$$

2

Le "line strength" est donc directement calculable à partir des résultats précédents. On peut écrire :

$$S = C \cdot |\phi_{Zg}^{A}(J_{KaKc}, J'_{K'aK'c})$$

avec $C = \frac{1}{4(J+1)}$ si J' = J + 1
 $C = \frac{2J + 1}{4J(J+1)}$ si J' = J
 $C = \frac{1}{4J}$ si J' = J - 1.

PARTIE II

ETUDE NUMERIQUE

A - Méthodes de calcul

Le modèle numérique que nous nous proposons de construire doit permettre le calcul systématique des niveaux d'énergie et du spectre de vibration-rotation d'une molécule telle que l'ozone dans ses états vibrationnels fondamentaux.

Pour cela nous devons, tout d'abord, traiter deux types d'informations :

- des informations sur le spectre de rotation pure, obtenues par des mesures microondes.

- des informations sur le spectre de vibration-rotation, obtenues par l'identification de spectres infrarouges.

1. PRINCIPES DE CALCUL

Les méthodes exposées ici s'appliquent plus particulièrement à l'étude de deux états vibrationnels couplés par résonance de Coriolis, tels que les états (1 0 0) et (0 0 1) de l'ozone. Toutefois, l'étude d'états non résonnants peut s'effectuer par ces méthodes. Il suffit pour cela d'annuler les paramètres concernant l'un des états ainsi que les paramètres de couplage.

Dans la suite, nous ferons toujours référence aux états vibrationnels (1 0 0) et (0 0 1) de l'ozone, mais les méthodes peuvent s'appliquer à d'autres états de l'ozone ou d'une molécule présentant les mêmes caractéristiques.

a) CALCUL DES NIVEAUX D'ENERGIE

Un niveau de rotation est caractérisé par les valeurs de J, Ka, Kc et d'un indice NV défini par : NV = 1 si le niveau appartient à l'état (1 0 0) NV = 3 si le niveau appartient à l'état (0 0 1).

Nous choisissons de poser NV = 1 si le niveau appartient à un état non résonnant, ceci pour retrouver les notations utilisées ailleurs [16].

L'énergie de ce niveau est donnée par une valeur propre d'une des quatre sous-matrices repérées par un indice G, comme l'indique le Tableau I. La dimension de ces sous-matrices est appelée M où M = J+1 pour G = 1 et 3 alors que M = J pour G = 2 ou 4.

Parmi les M valeurs propres d'une sous-matrice, L valeurs correspondent à des niveaux appartenant à l'état (1 0 0) pour G = 1 ou 2, et à des niveaux appartenant à l'état (0 0 1) pour G = 3 ou 4 avec L = J/2 pour G = 2 ou 4, L = J/2 + 1 pour G = 1 ou 3.

Les éléments des sous-matrices G = 1, 2, 3 et 4, écrites dans la base de WANG, sont rappelés dans le Tableau II.

La diagonalisation de ces sous-matrices est effectuée par la méthode de Jacobi [17], cette méthode de calcul permet de connaître la matrice de changement de base .

 $\begin{pmatrix} c_{i,1}^{1} & c_{i,j}^{1} & c_{1,M}^{1} \\ c_{L,1}^{1} & \cdots & c_{L,M}^{1} \\ c_{L+1,1}^{3} & \cdots & c_{L,M}^{3} \\ c_{M,1}^{3} & \cdots & c_{M,M}^{3} \end{pmatrix}$

Comme parmi les M valeurs propres d'une sous-matrice, nous devons identifier les valeurs correspondant aux niveaux de l'état (1 0 0) et celles correspondant aux niveaux de l'état (0 0 1), il est utile de calculer les coefficients de mixage des niveaux, MI X 1 et MI X 3, définis de la manière suivante :

	Jpa K _a	air K _C	J im _j K _a	pair ^K c	NV		G
E ⁺ 1 O ⁺ 3	e o	e e	e o	0 0	1 3	}	1
E ⁻ 1 0 ⁻ 3	e ,	0 0	e o	e e	1 3	}	2
0^+1 E ⁺ 3	o e	e e	o e	0 0	1 3	}	3
0-1 E-3	o e	0 0	o e	e e	1 3	}	4

TABLEAU I

TABLEAU II

 $FK(K) = [J(J+1) - K(K+1)]^{1/2}$

BHS

	Position des éléments	- - 5	G = 2	6 = 3	C = 4	Valeurs de K
I = I	1, I	H ¹ 0,0 + E1	$H^{3}_{1,1} - H^{3}_{-1,1} + E_{3}$	H ³ 0,0 + E ₃	$H^{1}_{1,1} - H^{1}_{-1,1} + E_{1}$	
I = 2	I, I	$H^{3}_{1,1} + H^{3}_{-1,1} + E_{3}$		H^{1} 1,1 + H^{1} -1,1 + E_{1}		
I = K + PAR (G)	I, I	$H^{I}K,K + E_{I}$	H ¹ K,K + E1	H ³ K + E3	H ³ K,K + E ₃	2, 4, J ou J - 1
	I, I + 2	12 H ¹ 0,2	H ³ 1,3	√2 Н ³ 0,2	H ³ 1,3	
I = K + PAR (G)	I, I + 2	и ¹ к, к+2	н ¹ к, к+2	H ³ K,K+2	H ³ K,K+2	2, 4, J ou J - 1
I = K - PAR (G)	I, I	$H^{3}_{K,K} + E_{3}$	H^3 K, K + E ₃	H^{I} K, K + E ₁	$H^{1}K, K + E_{1}$	3, 5, J ou J - l
I - K - PAR (G)	I, I + 2	H ³ K,K+2	H ³ K, K+2	H ¹ K,K+2	H ¹ K, K+2	3, 5, J ou J - 1
I = 4 - PAR (G)	I, I + 1	+ $(G_c - (2xK+1) F_{ab})$	$= (G_{c} - (2K+1) P_{ab})$	$-(G_{c} + (2K+1) F_{ab})$	$(G_{c} - (2K+1) F_{ab})$	2. 4 J ou J - I
		x FAIN	x <u>FA(K)</u> /2	$\times \frac{FK(K)}{\sqrt{2}}$	$\times \frac{FK(K)}{\sqrt{2}}$	
- 1	I, I + 1	$(G_{c} - F_{ab}) \times \sqrt{J(J+1)}$		$(G_{c} + F_{ab}) \times \sqrt{J(J+1)}$		
		$(G_{c} + (2K-1) F_{ab})$	$-(G_{c} + (2K-1) P_{ab})$	$-(G_{c} - (2K-1) F_{ab})$	$(G_{c} - (2K-1) F_{ab})$	
I = I + PAR (G)	I, I + 1	x <u>FK(K-1)</u> 72	$\times \frac{FK(K-1)}{\sqrt{2}}$	x <u>FK(K-1)</u> <u>√2</u>	<u>FK (K-1)</u>	2, 4, J ou J - l

PAR (G) = 0 si G est pair et l si G est impair.

H_{K,K} et H_{K,K+2} sont les éléments de matrice du hamiltonien de WATSON, donnés page 23. Les indices 1 et 3 indiquent que les paramètres A, B, C ... utilisés sont ceux de l'état (1 0 0) ou de 1'état (0 0 1).

MI X 1 (I) =
$$\sum_{k} (C_{k,i}^{1})^{2}$$

MI X 3 (I) = $\sum_{k} (C_{k,i}^{3})^{2}$

Si le coefficient MI X 1 (I) est supérieur à 0.50, le niveau I est attribué à l'état (1 0 0) et inversement.

Ces coefficients permettent d'autre part de détecter facilement les niveaux affectés par la résonance de Coriolis.

b) CALCUL DES FREQUENCES ET DES INTENSITES RELATIVES

Une transition de rotation ou de vibration-rotation s'effectue entre deux niveaux caractérisés chacun par J, Ka, Kc et NV.

Après diagonalisation des sous-matrices correspondantes à (J, G) pour le niveau inférieur et à (JP, GP) pour le niveau supérieur, les fréquences de toutes les transitions du même type sont obtenues par simple différence des valeurs propres.

Le calcul de l'intensité de ces transitions nécessite la construction de la matrice des cosinus directeurs écrite dans la base de WANG. La forme de cette matrice a été étudiée en I - B - 3 et toute transition peut se ramener à l'un des cas étudiés par une permutation des valeurs de (J, G, NV) et (JP, GP, NVP) caractérisant les niveaux.

Les séquences de calcul conduisant à la mise en forme de la matrice sont exposées dans la thèse de B. MAILLARD [16].

L'organigramme qui les schématise est rappelé dans le Tableau III. Les affectations des grandeurs GG et GGP figurant dans ce tableau se font de la manière suivante :

> GG [P] = G [P] - (NV [P] - 1) si G [P] > 2 $GG [P] = G [P] + (NV [P] - 1) si G [P] \le 2.$

- 48 -

Enfin, la matrice des cosinus directeurs dans la base des vecteurs propres du hamiltonien s'obtient par simple produit de la matrice des cosinus directeurs dans la base de WANG et des matrices de changement de base T_I et T_F des niveaux initial et final. Le carré de ces éléments de matrice multiplié par le facteur C défini en I-B-4 donne directement le "line strength" des transitions.

c) DETERMINATION DES PARAMETRES MOLECULAIRES

Les bases théoriques rappelées dans la première partie de cette étude permettent d'exprimer les fréquences des transitions en fonction d'un ensemble de p paramètres $Z = \{Z(1) \dots Z(k) \dots Z(p)\}$. Dans le cas de transitions de rotation pure, l'ensemble Z se réduit aux paramètres de l'état vibrationnel considéré, alors que pour une transition de vibration-rotation, Z comprend l'ensemble des paramètres décrivant les deux états vibrationnels entre lesquels s'effectue la transition.

Disposant d'un système de n fréquences mesurées $(n > p) F_{mes} = \{f_{1mes} \dots f_{nmes} \}$ la détermination des paramètres Z(k) se ramène à la résolution du système surabondant de n équations :

$$f_i(Z(1) \dots Z(p)) = f_{imes}$$
 à p inconnues.

Ce système n'a pas de solution au sens strict. Disposant d'une solution approchée $Z^{\circ} = \{Z^{\circ}(1), \ldots, Z^{\circ}(k), \ldots, Z^{\circ}(p)\}$ nous cherchons à en déterminer une meilleure approximation $Z = \{Z(1), \ldots, Z(k), \ldots, Z(p)\}$ telle que $Z(k) = Z^{\circ}(k) + dZ(k)$. Comme les $Z^{\circ}(k)$ correspondent aux équations :

$$f_i(Z^{\circ}(1)) \dots Z^{\circ}(p)) + \sum_{k=1}^{p} (\frac{\partial f_i}{\partial Z(k)}) Z(k) = Z^{\circ}(k) dZ(k) = f_{imes},$$

les dZ(k) sont obtenus par la résolution du système linéaire :

$$\left[\frac{dF}{dZ}\right]_{Z=Z^{\circ}} dZ = F_{mes} - F_{Z=Z^{\circ}} = V$$

La méthode choisie pour résoudre ce système est la méthode des moindres carrés qui consiste à rechercher des solutions telles que la somme des carrés des résidus $R = V - \left[\frac{dF}{dZ}\right]_{=Z} dZ$ soit minimale.

Comme les fréquences f_i s'écrivent $f_i = \lambda_{i_2} - \lambda_{i_1}$ où λ_{i_2} et λ_{i_1} sont des valeurs propres des matrices énergies $H_1(Z)$ et $H_2(Z)$, les éléments de la matrice $[\frac{\partial F}{\partial Z}]$ se présentent sous la forme :

$$\frac{\partial f_{i}}{\partial Z(k)} = Z^{\circ}(k) = Z^{\circ}(k) = \frac{\partial \lambda i_{2}}{\partial Z(k)} = Z^{\circ}(k) = Z^{\circ}(k) = Z^{\circ}(k)$$

La mise en forme de la matrice $\left[\frac{\partial F}{\partial Z}\right]_{Z=Z^{\circ}}$ nécessite la construction des jacobiens correspondant aux matrices H₁ et H₂.

De manière générale, on peut développer H(Z) par

$$H(Z) = H(Z^{\circ}) + dH$$

avec dH =
$$\sum_{k=1}^{p} \left(\frac{\partial H}{\partial Z(k)}\right)_{Z=Z^{\circ}} dZ(k)$$

En considérant H(Z°) comme la matrice d'ordre zéro et dH comme un terme de perturbation, la méthode des perturbations stationnaires permet d'écrire au premier ordre :

 $\lambda = \lambda_0 + V_0^{t} dH V_0$

 λ_0 étant une valeur propre de H(Z°). V_0 le vecteur propre correspondant et V_0^t son transposé. λ est alors la valeur propre de H(Z) approchée par λ_0 .

De même, le développement de TAYLOR, au ler ordre, de cette valeur propre λ s'écrit :

$$\lambda = \lambda_0 + \sum_{k=1}^{p} \left(\frac{\partial \lambda}{\partial Z(k)}\right)_{Z(k)=Z^{\circ}(k)} dZ(k)$$

$$\sum_{k=1}^{\mathbf{P}} \left(\frac{\partial \lambda}{\partial Z(k)}\right)_{Z(k)=Z^{\circ}(k)} dZ(k) = \sum_{k=1}^{\mathbf{P}} V_{0}^{t} \left(\frac{\partial H}{\partial Z(k)}\right)_{Z=Z^{\circ}} V_{0} dZ(k)$$

Les éléments du jacobien prennent la forme simple suivante :

$$\left(\frac{\partial \lambda}{\partial Z(\mathbf{k})}\right)_{Z=Z^{\circ}} = V_{0}^{t} \left(\frac{\partial H}{\partial Z(\mathbf{k})}\right)_{Z(\mathbf{k})=Z^{\circ}(\mathbf{k})} V_{0}$$

La matrice H n'a pour éléments non nuls que les éléments H(I, I), H(I, I+1), H(I, I+2) et leurs symétriques. Les matrices $\frac{\partial H}{\partial Z(k)}$ ont alors la forme :

1	D(1)	ND(1)	DND(1)	0		
	ND(1)	D(2)	ND(2)	DND(2)	0	
1	DND(1)	ND(2)	D(3)	ND(3)	DND(3)	0

Si M est l'ordre de la matrice H, les éléments du jacobien s'écrivent :

$$\frac{\partial \lambda}{\partial Z(\mathbf{k})} = \sum_{\mathbf{I}=1}^{\mathbf{M}} \mathbf{v}_0^2(\mathbf{I}) \ \mathbf{D}(\mathbf{I}) + 2 \sum_{\mathbf{I}=1}^{\mathbf{M}-1} \mathbf{v}_0(\mathbf{I}) \ \mathbf{v}_0(\mathbf{I}+1) \ \mathbf{ND}(\mathbf{I})$$
$$+ 2 \sum_{\mathbf{I}=1}^{\mathbf{M}-2} \mathbf{v}_0(\mathbf{I}) \ \mathbf{v}_0(\mathbf{I}+2) \ \mathbf{DND}(\mathbf{I})$$
$$\mathbf{I}=1$$

Connaissant les éléments D(I), ND(I), DND(I) et les vecteurs propres V correspondant aux matrices H_1 et H_2 , la mise en forme numérique de la matrice $(\frac{\partial F}{\partial Z})$ ne présente pas de difficultés.

Il faut toutefois remarquer que, dans le cas des transitions entre l'état fondamental et un état excité de l'ozone la matrice $(\frac{\partial F}{\partial Z})$ peut se réduire à $(\frac{\partial \lambda_2}{\partial Z_2})$ où λ_2 désigne $Z_2=Z^\circ$ l'énergie du niveau de l'état excité et Z_2 les paramètres décrivant cet état. En effet, les études microondes de l'état fondamental fournissent un jeu de paramètres permettant le calcul des niveaux de cet état avec une précision comparable à la précision des mesures. Les fréquences des transitions de vibration rotation donnent alors accès par simple addition des énergies des niveaux de l'état fondamental aux énergies des niveaux de l'état excité.

2. PROGRAMMES DE CALCUL

Nous disposons de quatre programmes de calcul construits à partir des méthodes que nous venons d'exposer :

- un programme d'exploitation des données microondes,

- un programme d'exploitation des données infrarouges,

- un calcul systématique de niveaux d'énergie,

- un calcul systématique des fréquences et des intensités relatives des transitions de vibration-rotation.

Ces programmes sont écrits en langage FORTRAN IV étendu CII et sont exploités sur l'ordinateur 10 070 CII du centre interuniversitaire de traitement de l'information de l'Université de Lille I.

Ces différents programmes sont décrits en Annexe I. On peut ainsi trouver, pour chacun d'eux, la liste des données nécessaires au calcul. De plus, la présentation des résultats est indiquée. Enfin, les organigrammes simplifiés des programmes sont donnés.

B - APPLICATION DU MODÈLE À L'IDENTIFICATION

DE LA BANDE $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$ DE L'OZONE

L'ozone est l'un des plus importants constituants mineurs de l'atmosphère. La plus forte absorption du rayonnement infrarouge par cette molécule est due à la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$ [18]. De plus, en fréquence, cette bande se trouve en dehors des limites de l'absorption atmosphérique saturée. On comprend alors l'intérêt d'une table présentant les fréquences et les intensités des transitions de la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$.

Comme nous l'avons déjà remarqué (I-A-4), les niveaux de l'état vibrationnel (0 0 1) sont fortement couplés, par interaction de Coriolis, aux niveaux de l'état (1 0 0). Il apparaît alors nécessaire d'étudier simultanément les deux état (1 0 0) et (0 0 1). Toutefois, si l'étude microonde s'avère possible pour ces deux états, le spectre infrarouge de la bande (0 0 0) \rightarrow (1 0 0) n'a pu encore être enregistré en raison de sa faible intensité.

En dépit de cette difficulté, nous proposons une identification de la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$, avec une valeur moyenne des écarts fréquence mesurée-fréquence calculée de l'ordre de 0.002 cm⁻¹. Enfin, les paramètres utilisés pour cette identification permettent une approche des phénomènes de résonance, par le calcul des coefficients de mixage des niveaux de l'état (0 0 1).

1. ETUDE MICROONDE

a) ETAT FONDAMENTAL

Les récentes études de J. C. DEPANNEMAECKER sur l'état fondamental de l'ozone conduisent à la détermination de seize constantes caractérisant cet état [19]. Les valeurs de ces constantes sont reportées dans la Table VIII. Elles sont le résultat de l'analyse de 107 transitions faisant intervenir des niveaux de $J \le 56$ et de Ka ≤ 8 . Pour ces transitions, la valeur moyenne des écarts fréquence mesurée-fréquence calculée à partir des valeurs de la Table VIII est de l'ordre de 0.025 MHz. On peut alors considérer que les niveaux de l'état fondamental de $J \le 56$ et de Ka ≤ 8 sont calculés avec une précision comparable à la précision expérimentale. Ainsi, lors d'études infrarouges de bandes telles que la bande (0 0 0) + (0 0 1) les niveaux de l'état fondamental sont connus avec une précision suffisante pour que les fréquences des transitions donnent directement les énergies des niveaux de l'état vibrationnel, par simple addition des énergies de l'état (0 0 0).

b) ETATS $(1 \ 0 \ 0)$ et $(0 \ 0 \ 1)$

Une première étude des états $(1 \ 0 \ 0)$ et $(0 \ 0 \ 1)$ est proposée par T. TANAKA et Y. MORINO [13]. Vingt-six transitions (treize pour chaque état) sont identifiées. Elles font intervenir des niveaux de J \leq 20 et de Ka \leq 3.

Le modèle utilisé pour analyser ces transitions est le suivant :

- un hamiltonien rotationnel de type KIVELSON et WILSON pour chaque état,

- un hamiltonien d'interaction H_{13} : $H_{13} = iDPy + F(P_x P_y + P_y P_x)$ où D est proportionnel à ζ_{13}^y

L'analyse des 26 transitions mesurées conduit à la détermination des constantes rotationnelles des deux états et des paramètres F et ζ_{13}^{y} . Les valeurs de ces paramètres sont reportées dans la Table IX.

D'autre part, deux raies sont affectées à des transitions intervibrationnelles, ce qui permet de déterminer la différence $\Delta = v_1 - v_3$, des énergies vibrationnelles des deux états.

· ·	valeur en MHz ×	10k	<u> </u>
	constantes	σ	k
	106526 226		
A	106536.236	0.004	0
В	13349.2548	0.0007	0
C	11834.3613	0.0006	0
	$\kappa = -0.96800711 \pm$	4 10 ⁻⁸	
۵ _J	1.3618	0.0002	2
Δ _{JK}	- 5.534	0.004	2
Δ _K	634.54	0.03	2
δ _J	0.20924	0.00002	2
δ _K	9.692	0.003	2
H	0.011	0.002	6
H _{.TK}	-0.18	0.07	6
H _{K.T}	- 55.1	0.5	6
H _K	1178.	7.	6
h _J	0.0053	0.0002	6
h _{JK}	-0.18	0.06	6
h _K	67.	4.	6
g _K	0.021	0.003	6

Paramètres de l'état (0 0 0).

TABLE VIII

MHz	Etat (1 0 0)	Etat	(0 0 1)
A	106 625.59	104	943.79
В	13 272.68	13	229.59
С	11 764.82	11	726.05
Δ	1 830 :	380,00	
ζ ⁴ 13		0.60	
F	- :	312.00	

Paramètres des états (1 0 0) et (0 0 1) proposés par T. TANAKA et Y. MORINÓ (les τ sont fixés aux valeurs de l'état fondamental proposées par L. PIERCE [20]).

TABLE IX

Cette étude est reprise par J. C. DEPANNEMAECKER [21]. Utilisant un spectromètre à effet Stark, il explore systématiquement le domaine de fréquences 15 GHz - 80 GHz. De nouvelles **raies** sont ainsi identifiées portant le nombre total des transitions mesurées à 40, pour les deux états. Ces transitions font intervenir des niveaux de J \leq 31 et de Ka \leq 5. La précision expérimentale est de l'ordre de 0.1 MHz.

Ces mesures, ainsi que les valeurs de départ des paramètres de T. TANAKA et Y. MORINO permettent, à l'aide de la méthode décrite en II-A-1-c et II-A-2-a, de déterminer de nouvelles valeurs décrivant les états (0 0 0) et (0 0 1). (Table X). Ces valeurs conduisent au calcul des fréquences des transitions observées avec une valeur moyenne des écarts fréquence mesurée-fréquence calculée de l'ordre de 0.24 MHz. (Tables XI et XII).

2. ETUDE INFRAROUGE

L'étude la plus élaborée de l'absorption de l'ozone, dans la région des 9µ est celle de S. A. CLOUGH et F. X. KNEIZYS [12].

Les spectres des bandes $(0 \ 0 \ 0) \rightarrow (1 \ 0 \ 0)$ et $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$ sont enregistrés sur un spectromètre de résolution 0.08 cm⁻¹. La précision de pointé des raies est meilleure que 0.01 cm⁻¹.

L'analyse de ces spectres permet, à partir des constantes de l'état fondamental proposées par E. K. GORA [22], de déterminer les centres de bande, les constantes rotationnelles des deux états et deux paramètres de couplage. Le modèle théorique utilisé par S. A. CLOUGH et K. X. KNEIZYS est un hamiltonien rotationnel de type KIVELSON et WILSON pour les deux états et un hamiltonien d'interaction :

 $H_{13} = i \{Y_{13} P_{y} + X_{13} [i(P_{x} P_{z} + P_{z} P_{x})]\}$

pour traduire le couplage de Coriolis.

MHz	Etat (1 0 0)	Etat (0 0 1)
A	106 626.384	104 944.252
В	13 272.924	13 229.875
с	11 764.584	11 726.140
$\Delta_{\mathbf{J}}$.1331 E-01	.1445 E-01
∆ _{JK}	7623 E-01	3641 E-01
۵ _K	6.5337	6.1714
δJ	.199 E-02	.229 E-02
^δ κ	. 1088	.8722_E-01
H _J HJK H _K J H _K hJ hJK h _K	paramètres bl valeurs de l' damental. (Ta	oqués aux état fon- ble VIII).
Δ.	1 830 19	2.772
Gc	-14 36	3.077
F _{ab}	-31	2.440

Paramètres des états (1 0 0) et (0 0 1) obtenus après moindres carrés sur 39 transitions mesurées.

TABLE X

r inf	niv ér:	eau ieur	su	niv pér	eau ieur	fréquence calc. (MHz)	fréquence Obs. (MHz)
J	ĸ	a K _c	J	K	a K _c		
1	1	1	2	0	2	43059.674	43059.910
4	0	4	3	1	3	10518.195	10518.320
6	0	6	5	1	5	66332.847	66333.070
7	2	6	8	1	7	56322.535	56322.620
10	2	8	11	1	11	60569.033	60569.120
12	2	10	13	1	13	36254.758	36254.790
14	2	12	15	1	15	19215.805	19215.910
15	3	13	16	2	14	36281.384	36281.440
16	2	14	17	1	17	10272.456	10272.310
16	3	13	17	2	16	60127.209	60127.340
18	3	15	19	2	18	20308.969	20309.340
18	2	16	17	3	15	29143.551	29143.300
18	2	16	19	1	19	9669.776	9669.570
22	4	18	. 23	3	21	77996.535	77996.306
29	5	25	30	4	26	69900.455	69901.401
25	2	24	24	3	21	69297.245	692 96.89 0
12	1	11	11	2	10	71611.790	71611.625
23	2	22	22	3	19	45505.101	45504.288
29	3	27	28	4	24	60198.237	60198.452
30	5	25	31	4	28	54788.390	54788.333

3

23786.275

29889.336

Transitions rotationnelles de $^{16}O_3$ dans l'état (1 0 0).

TABLE XI

23786.015

29888.538

- 59 -

23 4 20

24 4 20

24 3 21

25 3 23

niveau inférieur			niveau supérieur			fréquence calc. (MHz)	fréqu ence Obs. (MHz)	
J	Ka	ĸ _c	J	Ka	Kc			
2	1	2	3	0	3	15664.591	15664	.570
5	0	5	4	1	4	39099.335	39099	.200
8	2	7	9	1	8	18673.215	18673	.010
11	1	10	10	2	9	46687.931	46688	.170
11	2	9	12	1	12	59371.426	59371	.480
13	2	11	14	1	14	45388.259	45388	.270
14	3	12	15	2	13	56314.345	56313	.970
15	2	13	16	1	16	40733.576	40733	.370
17	2	15	16	3	14	10705.554	10705	.730
17	2	15	18	1	18	4 59 90.313	45989	.990
17	3	14	18	2	17	45322.044	45321	.930
19	2	17	20	1	20	61286.619	61286	.730
19	3	16	20	2	19	12594.171	12593	.910
29	5	24	30	4	27	71318.362	71317	.57 2
23	4	19	24	3	22	51441.035	51441	.095
25	3	22	24	4	21	28460.893	28460	.788
30	3	28	29	4	25	70678.174	70677	.947
30	5	26	31	4	27	21292.446	21 292	.100

(BIIS) ULLE A partir de ces constantes, S. A. CLOUGH et K. X. KNEIZYS proposent un calcul des fréquences et des intensités absolues (à une température de 238° K) des transitions des bandes $(0 \ 0 \ 0) \rightarrow (1 \ 0 \ 0)$ et $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$ jusque J = 50 et Ka = 10 pour les niveaux de l'état fondamental [23]. Cette limitation en Ka est due à la moyenne résolution du spectromètre qui ne permet pas d'observer de raies isolées ni de raies correspondant à de hautes valeurs des nombres quantiques.

a) SPECTRE A HAUTE RESOLUTION

A. BARBE et C. SECROUN reprennent cette étude en enregistrant le spectre de la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$ sur un spectromètre de type SISAM, au laboratoire d'infrarouge d'Orsay [21]. Ce spectromètre n'étant pas sous vide, la bande $(0 \ 0 \ 0) \rightarrow (1 \ 0 \ 0)$, très peu intense, ne peut être enregistrée actuellement. Cet appareil présente une résolution expérimentale de 0.012 cm⁻¹ pour un bon rapport signal/bruit. La précision de pointé des raies est estimée à 0.001 cm⁻¹ pour les plus intenses et à 0.003 cm⁻¹ pour les autres.

Ces conditions expérimentales permettent d'observer et de mesurer plus de 1 200 raies.

b) ANALYSE DU SPECTRE

Un premier calcul systématique des fréquences et des intensités relatives des transitions de la bande $(0\ 0\ 0) \rightarrow (0\ 0\ 1)$ est effectué à partir des valeurs microondes des paramètres de l'état fondamental et des états $(1\ 0\ 0)$ et $(0\ 0\ 1)$. La valeur du centre de la bande utilisée est celle déterminée par S. A. CLOUGH et K. X. KNEIZYS. Leur travail et ce calcul conduisent à l'identification de plus de quatre cents transitions. Connaissant les énergies de l'état fondamental, les fréquences mesurées de ces transitions fournissent les énergies de l'état $(0\ 0\ 1)$.

	Etat * fondamental	ν1	ν ₃		
		1103.157 ± 0.015	1042.096 ± 0.014		
А	3.55368	3.5569 ± 0.0008	3.5004 ± 0.0006		
В	0.445281	0.44272 ± 0.00004	0.44125 ± 0.00002		
С	0.394757	0.39262 ± 0.00007	0.39097 ± 0.00008		
^t xxxx	-2.5443 10 ⁻⁶	fixés aux valeurs de l'état fondamental.			
τzzzz	-7.7176 10-4				
^T xxzz	1.5318 10 ⁻⁵				
^t xzxz	-1.0043 10 ⁻⁵)			
	,	$Y_{13} = -0.4663 \pm 0.005$			
		$X_{13} = -9.8 \pm 0.5 \times 10^{-3}$			

* Valeurs proposés par GORA [22].

Constantes utilisées par S. A. CLOUGH et K. X. KNEIZYS pour le calcul des transitions des bandes $(0 \ 0 \ 0) \rightarrow (1 \ 0 \ 0)$ et $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$.

r - Aller and Later of the second se

TABLE XIII

•

Parmi ces mesures, les énergies de 181 niveaux de $J \le 30$ et Ka ≤ 7 sont retenues et les valeurs des paramètres de l'état (0 0 1) et des paramètres de couplage sont améliorées, suivant la méthode décrite en II-A-1-c et II-A-2-b. Pour tous les calculs de ce type, les paramètres de l'état (1 0 0) et la différence $\Delta = v_1 - v_3$ sont fixés aux valeurs microondes. De même, les constantes de distorsion centrifuge H et h de l'état (0 0 1) restent bloquées aux valeurs du fondamental.

Un nouveau calcul systématique est entrepris à partir de ce nouveau jeu de paramètres. Ceci permet de nouvelles identifications et la localisation de la résonance de Coriolis.

En effet, le calcul des coefficients de mixage montrent un maximum de mélange des niveaux de $(0 \ 0 \ 1)$ et $(1 \ 0 \ 0)$ pour Ka = 12.

Les nouvelles identifications portent à 270 le nombre de niveaux observés de J \leq 31 et de Ka \leq 13. Ceci permet une nouvelle amélioration des paramètres de l'état (0 0 1) et des paramètres de couplage.

Cette procédure d'analyse est répétée.

Ainsi, un calcul de moindres carrés sur 379 niveaux de J \leq 50 et de Ka \leq 17 conduit à un dernier jeu de paramètres permettant l'identification de presque toutes les raies du spectre. Le spectre résiduel, de faible intensité, peut être attribué en partie à la bande chaude (0 1 0) \rightarrow (0 1 1).

3. Résultats

a) TABLE DES FREQUENCES ET DES INTENSITES DES TRANSITIONS DE LA BANDE $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$

Les dernières valeurs des paramètres de l'état (0 0 1)

et des constantes de couplage, obtenues par l'analyse du spectre à haute résolution de la bande $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1)$, sont reportées dans la Table XIV. Sur cette table, sont aussi rappelés les paramètres du fondamental, ceux de l'état (1 0 0) et la différence $\Delta = v_1 - v_3$. Les erreurs statistiques sur toutes ces constantes sont indiquées.

Ces valeurs conduisent à un calcul systématique des fréquences et des intensités relatives (à la température T = 300° K) des transitions de la bande (0 0 0) \rightarrow (0 0 1) jusque J et Ka ≤ 55 pour les niveaux de l'état fondamental. Afin de permettre une exploitation directe pour les problèmes de l'atmosphère, les intensités sont normalisées à la valeur, mesurée par C. YOUNG et K. H. L. BUNNER [24], de l'intensité absolue de la transition 1192 \leftarrow 1293 située à 1017.383 cm⁻¹, soit de 3.68 10⁻²¹ cm molécule⁻¹.

La totalité du listing de ces transitions n'est pas reportée ici. Deux limitations sont introduites dans le calcul :

- une limitation en fréquence. Seules sont reportées les transitions dont les nombres d'onde se trouvent dans le domaine 1 007 cm⁻¹ 1 072 cm⁻¹. Le spectre expérimental ne peut plus être interprété sans ambiguïté au-delà de ces limites.

- une limitation en intensité. Les transitions d'intensité inférieure à 0.30 10⁻²¹ cm molécule⁻¹ présentent un rapport signal/bruit trop faible pour être observées sur le spectre. Ceci revient pratiquement à une limitation sur Ka, à la valeur Ka = 18.

Les fréquences des raies observées sont reportées sur le listing des transitions répondant à ces conditions (Annexe II). On peut ainsi remarquer le bon accord entre le spectre calculé et le spectre expérimental : l'écart entre fréquence observée-fréquence calculée dépasse rarement 0.003 cm⁻¹, c'est-à-dire l'erreur expérimentale. Toutefois, cet écart atteint parfois 0.020 cm⁻¹ pour les transitions faisant intervenir des niveaux fortement affectés par la résonance.

	000 Constantes	σ	l O O Constantes	σ	001 Constantes	a
A B C [△] JK [△] JK [△] K ^Å J ⁶ K ^H JK ^H K ^h J ^h JK ^h K	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.55667 0.442737 0.392424 4.44 10 ⁻⁷ - 2.5 10 ⁻⁶ 2.18 10 ⁻⁴ 6.63 10 ⁻⁸ 3.63 10 ⁻⁶ 3.8 10 ⁻¹³ - 6. 10 ⁻¹² - 1.84 10 ⁻⁹ 3.93 10 ⁻⁸ 1.77 10 ⁻¹³ - 6. 10 ⁻¹² 2.2 10 ⁻⁹	$1.4 10^{-5}$ $1.8 10^{-6}$ $6.3 10^{-6}$ $7.8 10^{-9}$ $1.9 10^{-7}$ $1.3 10^{-6}$ $5.1 10^{-10}$ $2.6 10^{-8}$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	$\begin{array}{c} 3.50055\\ 0.441299\\ 0.391186\\ 4.618& 10^{-7}\\ -1.84& 10^{-6}\\ 2.0833& 10^{-4}\\ 7.42& 10^{-8}\\ 2.84& 10^{-6}\\ 3.8& 10^{-13}\\ -6.& 10^{-12}\\ -1.84& 10^{-9}\\ 3.93& 10^{-8}\\ 1.77& 10^{-13}\\ -6.& 10^{-12}\\ 2.2& 10^{-9}\\ \end{array}$	$1.0 \ 10^{-5}$ $2.0 \ 10^{-6}$ $2.3 \ 10^{-6}$ $5.1 \ 10^{-10}$ $1.2 \ 10^{-8}$ $3.4 \ 10^{-8}$ $4.9 \ 10^{-10}$ $9.1 \ 10^{-8}$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$
Centres Constant	de bande : :	∨ ₁ = ∨ ₃ = G _c = F _{AB} =	$1103.1332 \text{ cm}^{-1}$ $1042.0846 \text{ cm}^{-1}$ $- 0.48199 \text{ cm}^{-1}$ $- 0.010356 \text{ cm}^{-1}$	c	$\sigma = 0.00043$ cm ⁻ $\sigma = 0.000078$ cm ⁻ $\sigma = 0.0000052$ cm ⁻	• 1 1

Paramètres utilisés pour le calcul de la bande (0 0 0) \rightarrow (0 0 1).

TABLE XIV

Enfin, il faut noter que les intensités calculées correspondent bien aux intensités observées. Le calcul d'intensité permet alors d'expliquer les difficultés rencontrées par GOLDMAN et al, lors de l'interprétation de l'absorption atmosphérique de l'ozone, à partir des données de CLOUGH et KNEIZYS [25]. Ainsi, si la différence entre l'absorption observée et calculée peut s'expliquer en partie par celle due aux bandes chaudes et aux isotopes de l'ozone, le présent calcul montre que cette différence provient surtout des transitions caractérisées par des valeurs de Ka supérieures ou égales à 11, jamais prises en compte jusqu'à présent. La contribution de ces transitions à l'absorption de la bande s'élève à près de 4 %.

b) ETUDE DE LA RESONANCE DE CORIOLIS

Comme nous l'avons déjà remarqué, la résonance semble affecter particulièrement les niveaux de l'état (0 0 1) caractérisés par Ka = 12. Les études microondes jusqu'alors entreprises ne peuvent donner accès à ces niveaux. Le travail de S. A. CLOUGH et K. X. KNEIZYS ne permet pas non plus une approche de ces phénomènes de résonance.

Nous disposons maintenant d'un jeu de paramètres (Table XIV) décrivant à quelques 10^{-3} cm⁻¹ près, les niveaux de $J \le 55$ et de Ka ≤ 18 de l'état (0 0 1). Il apparaît alors possible de détecter, parmi ceux-ci, les niveaux fortement affectés par la résonance.

Ainsi, le calcul des coefficients de mixage, définis en II-A-1-a conduit à l'étude systématique du mélange des niveaux de l'état (0 0 1) avec ceux de l'état (1 0 0). Les valeurs de ces coefficients sont reportées sur le listing de l'Annexe II, et les figures III, IV, V, VI et VII montrent la variation de ce mélange, en fonction de J et pour différentes valeurs de Ka.

Les courbes mettent en évidence deux types de résonance :

- une résonance pour des valeurs ponctuelles de J et Ka. C'est le cas pour J = 33 et Ka = 4, J = 18 et Ka = 5, J = 44 et 46, Ka = 6.

- une résonance peu aigue, pour Ka = 12 et 13. Les coefficients de mixage des niveaux J = 27 et Ka = 12, J = 46 et Ka = 13 atteignent quand même des valeurs très élevées, proches de 50 %.

L'examen des coefficients de mixage correspondant, cette fois, aux niveaux de l'état (1 0 0) montrent que le premier type de résonance correspond à un couplage des niveaux Ka de (0 0 1) avec les niveaux Ka - 3 de (1 0 0), alors que l'autre type correspond à un couplage des niveaux Ka de (0 0 1) avec les niveaux Ka - 1 de (1 0 0).

La résonance correspondant à Δ Ka = - 3 entre les niveaux de (0 0 1) et ceux de (1 0 0) apparaît comme "accidentelle". C'est ce que montre la figure VIII comparée à la figure IX. Ces courbes représentent la variation du coefficient de mixage des niveaux de (0 0 1) en fonction de Ka pour deux valeurs de J, J = 27 et J = 33. Les courbes correspondant à J = 18, 44 et 46 ne sont pas reportées ici, mais elles présentent les mêmes caractéristiques que la courbe correspondant à J = 33.

Afin d'étudier ces phénomènes, nous imaginons deux états vibrationnels fictifs, distants de 61 cm⁻¹, ayant les mêmes énergies vibrationnelles, les mêmes paramètres de rotation et de distorsion centrifuge que les états (0 0 1) et (1 0 0) de l'ozone, mais ne présentant pas d'interaction de Coriolis ($G_c = F_{ab} = 0$). La comparaison des énergies rotationnelles de ces états fictifs avec les énergies des états (0 0 1) et (1 0 0) permet de chiffrer la contribution des termes en G_c et F_{ab} , c'est-à-dire d'estimer la contribution du couplage de Coriolis aux valeurs énergétiques des niveaux. Pour les niveaux de l'état (0 0 1), la variation de cette contribution en fonction de Ka est représentée sur la figure X pour J = 27 et sur la figure XI pour J = 33. Ces courbes ont
sensiblement la même allure. Elles présentent une discontinuité pour la valeur de Ka correspondant au maximum de la résonance $\Delta Ka = -1$, alors qu'aucune particularité ne signale les valeurs de Ka, correspondant à la résonance $\Delta Ka = -3$. Ces remarques peuvent aussi être faites au sujet des courbes de J = 18, 44 et 46 qui ne sont pas reportées ici. Il semble donc que la résonance $\Delta Ka = -3$ correspond au couplage de niveaux de (0 0 1) et (1 0 0) exceptionnellement proches, même sans interaction de Coriolis, alors que la résonance $\Delta Ka = -1$ traduit le rapprochement des niveaux de (0 0 1) et (1 0 0) caractérisés par des valeurs de Ka plus élevées.

- 72 -

FIGURE VII

*

•

(811S) (1111E)

CONCLUSION

Le modèle proposé permet donc l'identification du spectre haute résolution de la bande v_3 de l'ozone, à partir des études microondes de l'état fondamental et des états excités $v_1 = 1$ et $v_3 = 1$.

L'analyse de ce spectre conduit à la détermination du centre de la bande et d'un système de paramètres donnant un accord satisfaisant entre spectre calculé et spectre expérimental.

D'autre part, l'identification de transitions correspondant à des niveaux de Ka élevé (? 11) montre que ces transitions contribuent, de manière non négligeable, à l'absorption totale de la bande.

Enfin, le calcul des niveaux d'énergie de l'état $v_3 = 1$ et des fonctions d'onde correspondantes permet une présentation des phénomènes de résonance de Coriolis entre les états $v_1 = 1$ et $v_3 = 1$.

Il faut toutefois remarquer que, si l'accord entre les niveaux calculés et les niveaux déduits du spectre expérimental est satisfaisant dans l'ensemble, il subsiste quelques écarts de l'ordre de 0.02 cm⁻¹ pour les niveaux fortement affectés par la résonance. Il semble donc que le modèle utilisé n'est pas suffisamment développé quant aux termes de couplage. Actuellement, nous disposons de données en nombre insuffisant pour tester de nouvelles méthodes de calcul. Ainsi, nous n'avons pas d'information expérimentale sur les niveaux de l'état $v_1 = 1$ fortement affectés par la résonance.

Si les transitions entre ces niveaux présentent une intensité beaucoup trop faible pour être observées en spectroscopie hertzienne, nous pouvons espérer obtenir de nouvelles informations sur la résonance à la suite de l'identification d'un spectre infrarouge haute résolution de la bande v_1 .

BIBLIOGRAPHIE

- [1] B. T. DARLING D. M. DENNISON. Physical Review <u>57</u>, 128 (1940).
- [2] J. K. G. WATSON. Molecular Physics 15, 479 (1968).
- [3] M. GOLDSMITH G. AMAT H. NIELSEN.
 J. Chem. Phys. 24, 1178 (1956).

[4] C. CAMY-PEYRET, J. M. FLAUD Thèses. Université Pierre et Marie Curie, Paris (1975).

[5] R. G. HERMAN - W. H. SHAFFER.
 J. Chem. Phys. <u>46</u>, 453 (1948).

E. B. WILSON Jr - et J. B. HOWARD. J. Chem. Phys. <u>4</u>, 262 (1936).

[6] J. K. G. WATSON. J. Chem. Phys. <u>46</u>, 1967)

J. K. G. WATSON.
J. Chem. Phys. <u>48</u>, 181 (1968).

J. K. G. WATSON.
J. Chem. Phys. <u>48</u>, 4517 (1968).

[7] G. STEENBECKELIERS.

Ann. Soc. Scient. Bruxelles 82, III (1968).

[8] R. S. MULLIKEN. Phys. Rev. <u>59</u>, 873 (1941). [9] S. C. WANG.

Phys. Rev. 34, 243 (1929).

- [10] G. W. KING, R. M. HAINER, P. C. CROSS. J. Chem. Phys. <u>11</u>, 27 (1943).
- [11] T. TANAKA, Y. MORINO. J. Mol. Spectrosc. 33, 538 (1970).

[12] S. A. CLOUGH, F. X. KNEIZYS. J. Chem. Phys. 44, 1855 (1966).

[13] P. C. CROSS, R. M. HAINER, G. W. KING. J. Chem. Phys. <u>12</u>, 210 (1944).

[14] A. R. GORDON.

J. Chem. Phys. 2, 65 (1934).

[15] R. H. SCHWENDEMAN. J. Mol. Spectrosc. 7, 280 (1961).

- [16] B. MAILLARD. Thèse 3e cycle. Université des Sciences et Techniques de Lille (1972).
- [17] E. DURAND. Solutions numériques des équations algébriques. Masson (1961).

[18] D. J. Mc CAA, J. H. SHAW. J. Mol. Spectrosc. 25, 374 (1968).

[19] J. C. DEPANNEMAECKER, B. DUTERAGE, J. BELLET. J. Q. S. R. T. à paraître.

[20] L. PIERCE.

J. Chem. Phys. 24, 139 (1956).

[21] A. BARBE, C. SECROUN, P. JOUVE, N. MONNANTEUIL,
 J. C. DEPANNEMAECKER, B. DUTERAGE, J. BELLET, P. PINSON.
 J. Mol. Spectrosc. à paraître.

[22] E. K. GORA.

J. Mol. Spectrosc. 3, 78 (1959).

[23] S. A. CLOUGH, F. X. KMEIZYS. Rapport A. F. C. R. L. (1965)

[24] C. YOUNG, R. H. L. BUNNER. Ap. Optics 13, 1438 (1974).

[25] A. GOLDMANN, T. G. KYLE, D. G. MURCRAY, F. H. MURCRAY, W. J. WILLIAMS. Ap. Optics, 9, 565 (1970).

[26] A. BARBE, C. SECROUN, P. JOUVE, B. DUTERAGE, N. MONNANTEUIL, J. BELLET, G. STEENBECKELIERS.

J. Mol. Spectrosc. 55, 319 (1975).

N. MONNANTEUIL.

Rapport de D. E. A., Université des Sciences et Techniques de Lille (1974).

INTRODUCTION

PARTIE I : ETUDE THEORIQUE

A - CALCUL DES NIVEAUX D'ENERGIE

1. Hamiltonien de vibration-rotation

а	-	Hamiltonien de	e DARLING et	DENNISON	2
Ъ	-	Traitement du	hamiltonien		3

2. Hamiltonien rotationnel pour les états non résonnants

ą	-	Forme	du	han	iltoni	ien H ^v rot.					6
Ъ	-	Choix	de	1a	base.	Symétrie	de	la	matrice	énergie	7

3. <u>Hamiltonien dans le cas de deux états couplés par</u> résonance de Coriolis

a	-	Généralités	8
Ъ	-	Opérateurs d'intéraction	9
c	-	Forme du hamiltonien	10
d	-	Structure de la matrice du hamiltonien	11

4. Application à la molécule d'ozone

a	-	Etude	des	états	(0 0	O)	et	(0	1	0)	17
Ъ	-	Etude	des	états	(0 0	1)	et	(1	0	0)	18

B - INTENSITE DES RAIES D'ABSORPTION

1. Expression de l'intensité d'absorption

2. Règles de sélection

а	-	Règles	de	sélection	de	vibration	30
Ъ	-	Règles	de	sélection	de	rotation	30

3. <u>Eléments de matrice des cosinus directeurs pour</u> une toupie asymétrique

4. Intensité relative

PARTIE 2 : ETUDE NUMERIQUE

A - METHODES DE CALCUL

.

1. Principes de calcul

a	-	Calcul	des	niveaux d'énergie	43
Ъ	-	Calcul	des	fréquences et des intensités relatives	47
с	_	Détermi	inati	on des paramètres moléculaires	49

2. Programme de calcul

 $B - \underline{APPLICATION DU MODELE A L'IDENTIFICATION DE LA BANDE}$ $(0 \ 0 \ 0) \rightarrow (0 \ 0 \ 1) DE L'OZONE$

1. Etude microonde

a	-	Etat fondamental	• • • • • • • • • •	53
b	-	Etats (1 0 0) et (0 0 1)	• • • • • • • • • •	54

2. Etude infrarouge

a		Spectre	haute résolution	61
Ъ	-	Analyse	du spectre	61

3. <u>Résultats</u>

а	-	Table des fréquences et des intensités des transitions de	
		la bande (0 0 0) \rightarrow (0 0 1)	63
Ъ	-	Etude de la résonance de Coriolis,	66

CONCLUSION

-

ANNEXE	1	Description de	s pr	cogi	amme s	de	Сa	alcu	11			
ANNEXE I	I	Identification	de	la	bande	(0	0	0)	→	(0	0	1)
		de l'ozone.										

ANNEXE I

Description des programmes de calcul.

1. EXPLOITATION DES DONNÉES MICROONDES

Les données nécessaires au calcul sont les suivantes : NMC : nombre d'itérations de la procédure de moindres carrés. K = O si les paramètres de l'état (1 O O) sont exprimés sous la forme A, B, C.

= 1 s'ils sont sous la forme $\frac{A+C}{2}$, $\frac{A-C}{2}$, K.

 $K_2 = 0$ ou 1 même chose que K pour l'état (0 0 1).

- Z(I), I = 1 à 3 constantes de rotation de l'état (1 0 0) exprimées en MHz.
- Z(I), I = 4 à 15 constantes de distorsion centrifuge de l'état (1 0 0) (en MHz).

Z(16) : énergie vibrationnelle de l'état (1 0 0) (en MHz).

Z(I), I = 17 a 19: constantes de rotation de l'état (0 0 1) (en MHz).

Z(I), I = 20 à 31 : constantes de distorsion centrifuge de l'état (0 0 1) en MHz.

Z(32) : énergie vibrationnelle de l'état (0 0 1) (en MHz).

Z(33) et Z(34) : paramètres de couplage, G_c et F_{ab} (en MHz).

BT(I), I = 1 à 34 : tableau de valeurs logiques
BT(I) = F si le lème paramètre doit être amélioré par la méthode des moindres carrés. (= T sinon).

NT : nombre de transitions entrées

J KA KC NV JI KAI KCI NVI FM : les transitions.

- 1 -

J, KA, KC, NV caractérisent le niveau supérieur et JI, KAI, KCI, NVI le niveau inférieur.

FM est la fréquence mesurée.

L'ensemble de ces données (J, KA, KC, NV, JI, KAI, KCI, NVI, FM) doit apparaître NT fois.

En sortie, ce programme fournit :

- la table des transitions avec les fréquences mesurées, les fréquences calculées avec leurs erreurs statistiques et les écarts entre fréquences calculées et mesurées.

- la valeur moyenne des écarts et l'écart-type correspondant.

- les nouvelles valeurs des paramètres ainsi que leurs erreurs statistiques.

Les différentes notations utilisées dans l'organigramme qui suit sont :

V(34) tableau de 34 positions contenant les dérivées de l'énergie d'un niveau par rapport aux paramètres Z.

W : énergie d'un niveau. Les indices 1 et 2 se réfèrent aux niveaux inférieur et supérieur des transitions.

FC(NT) tableau de NT positions dont les éléments sont les fréquences calculées des transitions.

DT(NT, 34) tableau bidimensionnel contenant les dérivées des NT fréquences par rapport aux paramètres.

EF(NT) tableau à NT positions dont les éléments représentent les erreurs statistiques sur les fréquences.

VM : valeur moyenne des écarts fréquence calculée-fréquence mesurée.

SIGMA : écart-type correspondant

DZ(34) : tableau des corrections à apporter aux paramètres.

EZ(34) : erreurs statistiques sur les paramètres.

MOINDRCAR (D, FM-FC, DZ, VR, NT, 34-NPB) sous-programme permettant la résolution du système D·DZ = FM-FC par la méthode des moindres carrés. Le tableau VR(34,34) représente le produit matriciel $D^{t} \cdot D$ (D^{t} est la matrice transposée de D).

NIVEAU (J, G, V, W) sous-programme qui construit la matrice énergie (J, G), la diagonalise et recherche l'énergie W du niveau J, KA, KC, NV parmi ses valeurs propres. Ce sous-programme calcule aussi le tableau V(34) correspondant à ce niveau.

CODAGE (J, KA, KC, NV, NF(T)) sous-programme permettant de garder les valeurs de J, KA, KC, NV sous la forme d'un seul élément de tableau NF(T).

DECODAGE (J, KA, KC, NV, NF(T)) sous-programme permettant le calcul de J, KA, KC, NV à partir de l'élément de tableau NF(T).

2. Exploitation des données infrarouges

Le schéma de ce programme est très proche de celui du programme précédent. Toutefois la procédure de moindres carrés ne s'effectue plus sur des fréquences mais directement sur les énergies des niveaux des états excités.

D'autre part, le nombre des données dont nous disposons étant très important, il est utile de minimiser le temps de calcul. Pour cela, nous regroupons les niveaux dont les énergies sont les valeurs propres d'une même matrice, pour ne construire qu'une fois cette matrice et le jacobien correspondant.

Ainsi l'entrée des données se fait de la manière suivante : NMC, K, K2, Z(I) avec I = 1 à 34, BT(I) avec I = 1 à 34 ces grandeurs étant définies comme précédemment (les paramètres doivent être exprimés en cm⁻¹).

Puis :

NG : nombre de matrices à construire et diagonaliser.

J, G, NN J et G caractérisent une de ces matrices. NN est le nombre de niveaux dont les énergies sont valeurs propres de la matrice J, G et sont connues expérimentalement.

NI, FM NI est un codage de niveau :

 $NI = K \times 10 + NV$

NV est défini comme précédemment

K indique la position de l'énergie du niveau dans le tableau des valeurs propres de la matrice (J, G), classées par ordre décroissant. (Les énergies sont des fonctions croissantes de Ka) FM est la valeur expérimentale de l'énergie du niveau exprimée en cm⁻¹. Le couple de domnées (NI, FM) est à répéter NN fois. L'ensemble des données (J, G, NN) et (NI, FM) doit apparaître NG fois.

En sortie, la table des niveaux se présente de la manière suivante :

JKaKcNV FC ER **FM** FM-FC

FC est l'énergie du niveau J, K_a, K_c, NV FM sa valeur expérimentale ER l'erreur statistique sur cette énergie.

A la suite de c**ette** table, la valeur moyenne des écarts FM-FC et l'écart-type correspondant sont donnés ainsi que les nouvelles valeurs d**es** paramètres et leurs erreurs statistiques.

3. CALCUL SYSTÉMATIQUE DES NIVEAUX D'ÉNERGIE

Les données nécessaires au calcul sont les suivantes :

K, K2 définis comme précédemment

Z(I), I = 1 à 34 les paramètres des états (1 0 0) et (0 0 1) et les paramètres de couplage, en MHz.

J } les valeurs limites de J. JMAX

Les résultats de ce programme sont à la fois listés et reportés sur fichiers disque.

Le listing présente les résultats de la manière suivante :

pour chaque valeur de J, sont indiquées les identifications J, Ka, Kc, NV de tous les niveaux des états (1 0 0) et (0 0 1) ainsi que leurs énergies en cm⁻¹ et MHz ; et les coefficients de mixage MIX1 et MIX3 correspondants.

Ces résultats sont reportés sur quatre fichiers repérés par les numéros d'unité logique, UL = 10, 11, 30, 31 qui correspondent respectivement aux niveaux e e de (1 0 0), o o de (1 0 0), o e de (0 0 1) et e o de (0 0 1). Sur ces fichiers figurent aussi les composantes des vecteurs propres des différentes matrices (J, G) utilisées pour le calcul.

Les différentes notations apparaissant dans l'organigramme qui suit, ont pour signification :

PAR (I) : fonction entière prenant la valeur 0 si l'entier I est pair, l s'il est impair.

CODAGE (J, KA, KC, NV) fonction entière définie par CODAGE (J, KA, KC

(J, KA, KC, NV) = 100 000 x J + 1 000 x KA + 10 x KC + NV

- JACOBI (M, H, VA) sous-programme de diagonalisation de la matrice H de dimension (M, M). Les valeurs propres sont rangées dans le tableau VA. Les vecteurs propres sont reportés en colonnes dans le tableau H.
- DRANG (N, X, IND) sous-programme permettant le classement par ordre décroissant des N premiers éléments du tableau X. IND(N) est un tableau d'indices représentant les positions des éléments de X avant le classement.

4. CALCUL SYSTÉMATIQUE DES FRÉQUENCES ET DES INTENSITÉS RELATIVES DES TRANSITIONS DE VIBRATION-ROTATION.

L'entrée des données se fait de la manière suivante : TKELVIN : température en degrés KELVIN FI } fréquences initiale et finale du spectre étudié. FS WZERO : fréquence en cm⁻¹ du niveau 0 0 0 de l'état supérieur. AP = O si les paramètres sont sous la forme A, B, C. 1 s'ils sont sous la forme $\frac{A+C}{2}$, $\frac{A-C}{2}$, K IMAX limite inférieure de l'intensité. Z(I), I = 1 à 15 constantes en cm^{-1} de l'état vibrationnel inférieur. JINF limites des valeurs de J, pour les niveaux de l'état inférieur. JMAX } TYPE (I), I = 1 à 3 100 pour des transitions de type a 0 2 0 de type b 0 0 3 de type c NPI } = 0 si tous les niveaux sont permis NPF l si seuls e e et o o le sont 2 pour e o et o e permis. NV = 1 pour un état supérieur tel que l'état (1 0 0) de l'ozone 3 pour un état du type (0 0 1).

Les ordres de sortie donnent successivement pour chaque transition, les niveaux initial et final, J Ka Kc, J' K'a K'c, la fréquence, l'énergie du niveau inférieur, le facteur d'intensité et les coefficients de mixage du niveau supérieur.

Les transitions se présentent suivant les valeurs croissantes de J. Avant d'être stockés sur bande magnétique, les résultats sont classés suivant les fréquences décroissantes.

Les notations utilisées dans l'organigramme sont les suivantes :

- J, G, M caractérisent les matrices permettant le calcul des niveaux d'énergie de l'état vibrationnel inférieur.
- JP, GP, MP se rapportent aux niveaux de l'état vibrationnel supérieur.
- NIVEAU (J, M, G, Z, H, D) sous-programme permettant le calcul des énergies de l'état inférieur. Les M valeurs propres de la matrice caractérisée par J, M, G sont données par les éléments du tableau D. Les vecteurs propres sont rangés en colonnes dans le tableau H.
- CNS (JP, GP, MP, UL, ET) sous-programme de lecture sur disque des diverses caractéristiques des niveaux d'énergie de l'état supérieur. Les identifications, les énergies, les coefficients de mixage et les vecteurs propres correspondant aux MP niveaux (JP, GP) sont lus sur le fichier repéré par le numéro d'unité logique UL, à partir de la position ET.
- CD (J, G, M, JP, GP, MP, TYPE(I)) ce sous-programme calcule les fréquences et les intensités relatives des transitions possibles suivant le type TYPE(I), entre les M niveaux (J, G) et les MP niveaux (JP, GP).

ANNEXE II

Identification de la bande (000)-(001)

								Ground	Abs.	
								sta te	int.	
U	Jppe:	r	Gr	oun	Ŀ	Observed	Calc.	energy	10 ⁻²¹ cm	Mix.
state			st	ate:		1	-1	- ¹	10 Cm	coeff.
						Cin	Cm	СЩ	mol.'	
33	t	32	34	1	33	1007 1247	1007.1425	505,5064	9.39	.036
33	2	31	34	2	32	1007.1445	11007.1548	522 . 1991	8.81	.020
28	13	16	29	13	17		1007.1777	889 • 1711	•85	• 9
31	7	24	32	7	25	.2409	1007.2422	596.8097	5.42	•041
26	14	13	27	14	14	*	1007.2666	923.9484	•72	•052
33	0	33	34	0	34	.2646	1007.2667	482.1910	10.37	•050
32	-5	28	33	5	29	.3119	1007.3161	550+3133	7.25	•030
27		16	28	11	17	.5552	1007.5643	717.2268	1.96	•205
30	8	23	31	8	24	.612 9	1007.6165	616.4602	4.64	•050
24	15	10	25	15	11		1007.7579	967.8929	• 4 9	•017
32	4	29	33	4	30	.7719	1007.7751	522.5939	8.38	•027
29	9	20	30	9	21	.8449	1007.8460	643.1249	3.79	•066
28	10	19	29	10	20	.8782	1007.8812	676•7339	2.90	.103
31	6	25	32	6	26	.9258	1007+9273	556.5029	6.72	•033
32	3	30	33	3	31	1008.0925	1008.0955	499•7901	9.39	•028
27	13	14	28	13	15		1008.1543	864.8218	•93	•175
25	14	11	26	14	12		1008.2937	901 • 2747	•76	•047
32	2	31	33	2	32	.3010	1008.3033	478.4389	10,36	•036
30	7	24	31	7	25	.4188	1008+4201	569.9098	5.97	•039
32	-1	32	33	1	33	. 4958	1008.4928	455.0391	11.49	.047
31	5	26	32	5	27		(1008.5052	522.5576	8.03	•029
26	11	16	27	11	17	.7233	1008.7299	693.7133	2.09	•204
29	8	21	30	8	22	.7891	1008 • 7893	590.4151	5.08	•048
23	15	_8	24	15	9		1008.7954	946.8950	• 50	•015
31	4	27	32	4	28	.9833	1008.9846	495.5173	9.28	•023
28	9	20	29	9	21	1009.0134	1009.0151	617.9273	4 •	•064
27	10	17	28	10	18	.0478	1009.0488	652.3795	3.12	•100
30	6	25	31	6	26	.1006	1009.1016	529,5765	7.40	•032
25	13	14	27	13	15	*	1009.1278	841.3102	1.00	• [59
24	14	11	25	14	12		1009.3149	879 • 4391	•79	•041
31	3	23	32	3	29	.3712	1009.3711	477.1234	10.31	•014
31	2	29	32	2	.30	.5258	1009.5287	464.9994	10.94	•016
31	ł	30	32	1	31	.5653	1009.5657	450.1176	11.58	+031
29	7	22	30	7	23	.5879	1009.5888	543.8512	6.53	•037
30	5	26	31	5	27	.6661	1009.6681	495.5437	8.85	• 028
31	0	31	32	0	32	.7123	1009.7133	428.5804	12.69	•045
22	15	8	23	15	9	_	1009.8252	926.7354	•50	.012
25	11	14	26	11	15	.8847	1009.8889	671.0381	2.21	•202

				Ground	Abs.	
				state	int.	
Upper	Ground	Observed	Calc.	energy	-21	Mix.
state	state	-1	-1	-1	10 cm	coeff.
		CM	cm	CM	$mol.^{-1}$	
28 8 21	29 8 22	1009.9525	1009.9529	565.2097	5.52	•045
25 13 12	26 13 13	1010.0973	1010.0982	818.6366	1.07	. 44
30 4 27	31 4 28	.1253	1010.1263	467.7872	10.25	.024
27 9 18	28 9 1 9	.1746	1010.1752	593.5686	4.44	• 06 1
26 10 17	27 10 18	2051	1010.2081	628.8637	3.35	•097
29 6 23	30 6 24	. 2659	1010.2667	503.4969	8.10	.030
23 14 9	24 14 10	.3 28 9	1010.3299	858.4416	•81	•036
30 3 28	31 3 29	.4605	1010.4616	445.3078	11.48	.025
30 2 29	31 2 30	.6 960	1010.6975	424.9517	12.63	.032
28 7 22	29 7 23	.74 73	1010.7481	518.6337	7.11	.035
29 5 24	30 5 25	.8 358	1010.8362	469.4562	9.70	.027
21 15 6	22 15 7		1010.8473	977.4144	.49	.010
30 1 30	31 1 31	.9139	1010.2150	403.0193	13.93	.042
24 11 14	25 11 15	1011.0345	1011.0412	649.2014	2.33	.200
24 13 12	25 13 13	.0625	1011.0652	796.8010	1.13	.130
27 8 19	28 8 20	.1039	1011.1072	540.8442	5.97	.043
29 4 25	30 4 26	.2959	1011.2995	442.1124	11.24	.021
26 9 18	27 9 12	.3232	1011.3261	570.0490	4.77	.058
22 14 2	23 14 10	*	1011.3387	838.2825	.82	.031
25 10 15	26 10 16	.3579	1011.3588	606.1865	3.56	.093
28 6 23	29 6 24	. 4202	1011.4225	478.2585	8.83	.029
29 3 26	30 3 27	.6636	1011.6665	423.0033	12.53	.014
29 2 27	30 2 28	.8484	1011.8519	411.0550	13.32	.013
20 15 6	21 15 7	*	1011.8616	888.9320	• 47	.009
27 7 20	23 7 21	.8958	1011.8930	494.2573	7.70	.033
29 1 28	30 1 29	.9337	1011.9369	397.8282	14.03	.026
28 5 24	29 5 25	.9794	1011.9835	444.1588	10.59	.025
26 12 15	27 12 16	*	1011.9932	764.5466	•92	.488
23 13 10	24 13 11	1012.0253	1012.0287	775.8037	1.18	.116
29 0 29	30 0 30	.1080	1012.1120	378.1063	15.23	.040
23 11 12	24 11 13	.1823	1012.1869	628.2034	2.43	.197
26 8 19	27 3 20	.2511	1012.2519	517.3186	6.42	.041
21 14 7	22 14 8	. 3436	1012.3410	818.9620	.81	.026
28 4 25	29 4 25	. 4380	1012.4388	416.3526	12.27	.022
25 9 16	26 9 17	4660	1012.4677	547.3685	5.08	.055
24 10 15	25 10 16	. 4973	1012.5009	584.3482	3.77	.089
27 6 21	28 6 22	.5672	1012.5689	453.8646	9.57	.027
28 3 25	29 3 27	.7810	1012.7836	394.1161	13.76	.022
25 12 13	26 12 14	.8452	1012.8643	741.8725	1.00	. 472
19 15 4	20 15 5	*	1012.8680	871.2885	.43	.007
22 13 10	23 13 11	9879	1012.9885	755.6449	1.22	.102
26 7 20	27 7 21		(1013.0384	470.7220	8.29	.031
28 2 27	29 2 28	1013.03 9 2	1013.0434	374.6535	15.10	.027
27 5 22	28 5 23	. 1278	1013-1313	419.7494	11.48	.024
28 1 28	29 1 29	2868	1013.2890	354.1465	16.55	.037
22 11 12	23 11 13	3190	1013.3261	608.0441	2.51	194
20 14 7	21 14 8	*	1013.3367	800.4802	•80	.022
25 R 17	25 8 8	3848	1013.3871	494.6328	6.86	.038
27 4 23	28 4 24	5812	1013.5834	392.1783	13.32	.019
24 9 16	25 9 17	5955	1013.5999	525.5274	5.39	.052
23 10 13	24 10 14	.6320	1013.6343	563.3488	3.95	.085
=						

3US LICLE
	CC L 9C	6 61 06	23 6 17	20 10 11	24 4 21			ר מ ה- מ ה- ה	19 11 8	25 24	24 5 20	23 7 16	25 2 23	2 2 2	17 L C2		21 2 20	2 10 10 10 10 10 10 10 10 10 10 10 10 10	22 9 14	25 4 21	23 8 15	26 1 26	20 11 10	22 12 11	25 5 20	26 2 25	и V I 8 I Х I - 7 - 7 - 7 - 7 - 7 - 7 - 7		8 21 02 8	25 6 19	22 10 13	23 9 14	FC 4 40	24 8 17	27 0 27	21 11 10	19 14 5	26 J 22	x			27 3 24	18 15 4	24 12 13	26 6 21	state	Uppor		
	27 7 77 27 7 77	21 12 10	24 6 18	21 01 12	22 4 22	<u> </u>		23 8 16	0 11 9	26 25	25 5 21	24 7 17	26 2 24	0 6 6 6				20 13 7	23 9 15	26 4 22	24 8 16	72 79	11 11 16	27 12 12	26 5 21	27 2 26	y vi ci		5 E 1 C	05 9 90	23 10 14	21 6 7 <i>C</i>	71 71 72	27 12 13	28 0 28	22 11 11	20 14 6		20 I 27	0 - F 7 - F	6 51 62	28 3 25	19 15 5	25 12 14	27 6 22	ទីក្រសួ	Ground		
	2073	.1425	1017.0564	.9772	.9434	*	./002	.7335	.7033	.5170	.4995	.3998	.3583	.2920		2014 JUIA	.0/01	0101 *	• *	.8329	.6222	.6127	.5800	, 4394	.3869	.3400	. 2070	1012.02701 120.02101	1015 0501 5068°	.8307	.7558	* •	.7140	51UZ	.4589	*	.3278	.2554	. 1661	1014.1255	*	.9280		*	.7035	cm	Ubserved	•	
	1017.2520	1017.1462	1017.0579	0086.9101	1016.9482	5856 9101 6707 0101		1016-7337	1016.7048	1016.5188	1016.5009	1016-4007	1016.3611	1016.3000	1016.2836			1015.8443	1015.8354	1015.8339	1015+6282	1015.6137	1015.5849	1015.4486	1015.3890	1015-3410	1015.3081 8682.6101		1014.8965	1014 • 8330	1014.7587	1014.7225	1014-3921	1014.5126	1014.4616	1014.4537	1014.3258	1014.2614	014.10500	1014 1281	1013.9445	1013.9304	1013.3665	1013.7306	1013.7058	cm	Calc.	1	
	301.6700	641.0793	364.7143	505.3854	323 6207	465.0404	607 7004	431.6153	552.6005	302.5836	351.5364	405.1617	313.1200	659.5604	750.0690		001001000	709.2011	484.3632	345.6928	451.7812	308.4246	570.2426	678.8804	373 . 4311	327.5579	766-0336	040.2019	717.8435	407.6043	543.1885	504 • 5256	2600-892 2600-669	472.7870	330.7686	588.7238	782.8373		440.0270	100.413/	736.3248	372.4103	854 • 484	720.0366	430.3128	cm .	energy _1	state	Ground
	- 0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	1.32	12.44	4.34	16.47	5 v		50.8 50.8	2.63	19.37	14.16	56.6	18.54	• 28	- 7 - 7 -		4 • 20	- 22	16.5	15.44	7.67	19.28	2.62	1.22	13.28	17.68	× 4 2	10.14	1.24	11.04	4.12	5.67		7.28	17.93	2.58	.76	00.01	- 0 - 00	0 07	1.24	14.89	8 C •	1.07	10.31	mol1	10 ⁻²¹ cm	1nt.	Abs.
- -	- 008	.375	.021	.070	.017	.042	• 0 • 0	.03-	.178	.017	.020	.026	600.	.397			0 - C - C - C - C - C - C - C - C - C -	• 065	.046	•018	.034	£ 50 °	• 184	• 4 8	• 02	• 023	- 0 - A	• • • • •	.077	.024	.080	• 04 9	. 4 5 /	-036	.035	• 189	• 0 8	. 0 2 2		• • • • •	680.	·013	• 00 5	• 4 5 5	.026	1	coeff.		

ULLE BUS

				Ground	Abs.	
				state	int.	
Upper	Ground	Observed	Calc.	energy	10 ⁻²¹ cm	Mix.
state	state	cm ⁻¹	cm^{-1}	cm^{-1}	$mo1.^{-1}$	COGII.
22 7 16	23 7 17	1017.5040	1017.5015	384.9900	10.44	.024
24 2 23	25 2 24	.5952	1017.5907	283.6793	20.26	.020
23 5 18	24 5 19	.6098	1017.6031	330.4965	15.00	.018
17 13 4	18 13 5	.7311	1017.7270	667.4339	1.09	•043
18 11 8	19 11 9	.8124	1017.8184	535.7977	2.61	.170
21 8 13	22 8 14	.8304	1017.8292	412.2895	8.34	.029
24 1 24	25 25	.8893	1017.8885	265.8579	22.00	.028
12 12 7	20 12 8	.9873	1017.9870	623.4372	1.36	.351
20 3 12	21 9 13	1018.0315	1018.0312	446.5571	6.28	.039
23 4 19	24 4 20	.0486	1018.0484	302.6369	17.48	.016
19 10 9	20 10 10	0770	1018.0765	487.7429	4.39	.065
22 6 17	23 6 18	1572	1018.1554	344.5327	13.08	.020
15 14 1	16 14 2	.2110	1018-2134	720.6582	.38	.005
23 3 20	24 3 21	3691	1018.3675	281.8329	19.65	.012
23 2 21	24 2 22	5562	1018.5544	269.2148	21.14	.008
21 7 14	22 7 15	5950	1018.5921	365+6591	10.87	•022
16 13 4	17 13 5	6661	1018.6615	652.3093	.97	.033
22 5 18	23 5 19	7046	1018.7009	310.2947	15.79	.017
23 1 22	24 1 23	7329	1018.7298	259.6697	22.05	.013
18 12 7	19 12 8	8260	1018.8222	606.6343	1.37	.324
20 8 13	21 3 4	· 0187	1018.9143	393.8037	8.59	.026
	10 11 7	*	1018.9259	519.8344	2.5/	. 161
27 () 27	24 0 24	1019.0110	1019.0082	245.4983	23.36	• 191
19 9 10	20 9 11	.1149	1019.1138	428.9135	6.39	.035
22 4 10	23 4 20	.1452	1019.1443	282.3289	18.43	.015
18 10 0		.1587	1019.1633	470.9399	4.39	.059
21 6 15	22 6 16	.2432	1019.2427	325.1933	13.65	.018
22 3 20	27 7 21	4939	1012.4930	260.4468	20.76	.014
15 13 2		- 5928	1019.5913	638.02/3	.81	.024
17 12 5	10 12 6	.6537	1019.6517	590.6708	1.35	.295
20 7 14	21 7 15	.6726	1019.6723	347.1690	11.24	.020
20 7 14	21 1 13		(1019.7876	290.9415	16.53	.016
22 2 21	23 2 22	.7918	1019.7928	243.0332	22.71	.017
	20 8 12	.9889	1019.9890	376.1580	8.77	.024
	17 11 7	1020.0258	1020.0273	504.7106	2.43	.149
22 1 22	23 1 23	. 1119	1020.1126	226.4518	24.55	.024
18 9 10	10 9 11	1872	1020.1860	412.1096	6.42	.032
21 4 17	22 4 18	. 2236	1020.2249	262.9950	19.31	.013
	18 10 8	.2341	1020.2400	454.9765	4.32	.053
20 6 15	21 6 6	3191	1020.3197	306.6958	14.15	.017
16 12 5	17 12 6	.4778	1020.4751	575.5467	1.29	.262
14 13 2	15 17 3	5180	1020.5162	624.5790	.60	.015
21 3 19	22 3 19	.5376	1020.5389	241.8317	21.78	.011
21 2 19	22 2 20	.7114	1020.7111	228.7341	23.53	•007
19 7 12	20 7 13	7445	1020.7421	329.5197	11.52	.018
20 5 16	21 5 17	.8600	1020.3604	272.4295	17.15	.016
21 1 20	22 1 21	.8909	1020.8905	219.9383	24.54	.010
18 8 11	19 R 12	1021.0528	1021.0532	359.3525	8.86	.022
15 11 /	16 11 5	. 1217	1021.1230	490.4265	2.25	136 (BUS
21 0 21	22 0 22	2020	1021.2024	207,5623	25.80	.021 UILLE
17 9 8	18 9 9	.2465	1021.2475	396.1456	6.37	.029
		• • • • • • • •	,			

				Ground	Abs.	
1.1	Concerned.	Ohenmund	Cale	state	1nt. 01	115.4
Upper	Ground	UDServea	GalC.	energy 1	10 ⁻² 'cm	nilX.
state	state	cm	cm	cm	$mol.^{-1}$	coerr.
15 12 3	16 12 4	*	1021-2923	561.2622	1.19	•226
20 4 17	21 4 18	1021.3016	1021.3006	244.4202	20.10	.013
16 10 7	17 10 8	*	1021.3065	439.8527	4 • 1 7	•047
12 6 13	20 5 14	.3856	1021.3863	289.0401	14.56	.015
13 13 0	14 13 1		1021.4361	611.9734	•33	•007
20 3 18	21 3 19	.6438	1021+6459	222.5716	22.71	•012
8 7 12	19 7 13	.8007	1021.8014	312.7111	11.71	•017
19 5 14	20 5 15	• 925 <i>3</i>	1021.9265	254.7628	17.71	•013
20 2 19	21 2 20	.9438	1021.9481	205+6353	24.85	•014
14 12 3	15 12 4	1022. *	1022+1027	547.8174	1.04	•183
17 8 9		.1054	1022+1008	242+2870	0.00	•019
20 1 20		.2114	1022+2129	470.9021	2.01	•119
16 9 9	17 9 9	-2000	102212033	381.0214	6.23	• 020
10 / 15	20 4 16	.2900 3614	1022.3615	226.7540	20.70	•025
15 10 5		• 501 4	1022.3625	425.5687	3.95	• 0 1 1
18 6 13	19 6 14	4406	1022.4424	272.2260	14.85	.014
19 3 16	20 3 17	6751	1022.6752	205.3285	23.52	.009
19 2 17	20 2 18	.8323	1022.8335	191.7092	25.53	.006
17 7 10	18 7 11	.8473	1022.8499	296.7431	11.78	.015
13 12 1	14 12 2	.9117	1022.9059	535.2124	•80	.134
18 5 14	19 5 15	.9895	1022.9911	237.9384	15.55	.151
19 18	20 1 19	1023.0002	1023.0042	183.4307	26.64	.008
16 8 9	17 8 10	.,1470	1023.1491	328+2618	8.75	.017
13 11 2	14 11 3	.2941	1023.2976	464.3775	1.69	.099
15 9 6	16 9 7	*	1023.3380	366.7371	5.99	.022
19 0 19	20 0 20	.3402	1023.3423	172.7568	27.83	.017
14 10 5	15 10 6	*	1023.4077	412.1245	3.62	• 034
18 4 15	19 4 16	.4146	1023.4161	209.8936	21.33	.010
17 6 11	18 6 2	.4874	1023 • 4878	256 • 2534	15.02	.012
12 12 1	13 12 2	.7021	1023.7012	523.4473	• 47	•074
18 3 16	9 3 7	.7572	1023.7576	188.0547	24.19	•010
16 7 10	17 7 11	.8878	1023.8877	281.6157	11.73	•013
17 5 12	18 5 13	1024.0222	1024.0238	221.9576	18.41	•011
18 2 17	19 2 18	.0565	1024+0573	1/1+5015	26.50	• 011
		.1804	1024.1807	212+9767	8.52	•015
14 9 6	15 9 7	.3680	1024+2565	353+2928	5.62	•018
		*	1024 0772	452.0129	1.427	• 0 / 4
		.4054	1024 4009	300 5202	20+46	010
		* ////////////////////////////////////	1024+4410	103 0070	2.14	.027
17 4 15	13 4 14	•TUT	1024+4370	241,1222	21+75	+009
17 3 1	10 7 15	• 5 2 5 7 1 7	1024+5220	172.2974	24.69	.008
20 18 3	20 18 2	• / / = /	1024 7982	1170.9260	.37	•008
15 7 8	16 7 9		(1024.9145	267.3290	11.53	.011
17 2 15	18 2 16	.9194	1024.9232	158.1653	26.94	.005
19 18 i	19 18 2	.9802	1024.9838	1154.1195	.43	.001
16 5 12	17 5 13	1025.0568	1025.0568	206.8192	18.53	.010
17 1 16	18 1 17	.0733	1025.0744	150.1900	28.17	.006
18 18 1	18 18 0		1025 • 1602	1138.1522	•48	.000
14 8 7	15 8 8	.2018	1025+2011	300.5318	8 • 1 5	.013

811°

Upper state	Ground state	Observed cm ⁻¹	Calc. cm ⁻¹	Ground state energy cm ⁻¹	Abs. int. 10 ⁻²¹ cm mol. ⁻¹	Mix. coeff.
13 9 4	1/1 9 5	1025.3829	1025.3836	340.6885	5.17	.015
17 0 17	18 0 18	. 4242	1025.4269	141.0820	29.27	.013
11 11 0		*	1025.4524	441.6882	.70	•010
12 10 3		4637	1025-4641	397.7550	2.67	1042
16 4 13	17 4 14	4884	1025.4899	178.7460	2.00	•020 009
15 6 0	16 6 10	5446	1025.5464	226.0323	21+75	•000
16 3 14	17 3 15	8253	1025-8278	156.0077	25.02	•009
23 17 6	23 17 7	.0299	1025.8353	1120.8461	- 37	.000
14 7 9	15 7 0	. 0280	1025-0303	253.9929	11.17	010
22 17 6	22 17 5	1026 0420	1025+9555	1101.5237	. 42	010
15 5 10		0776	1026.0786	101.5257	19,40	•002
16 2 15	17 2 16	1101	1026.1211	140.6471	27.49	.000
13 8 5	1/ 8 6	2085	1026.2102	297.0271	7.60	010
21 17 4	21 17 5	.2009	1026.2642	1083.0400	.49	.003
12 9 4	17 0 5	2970	1026.3891	328.9243	4.40	.012
20 17 4	20 17 3	. 5070	1026-4352	1065.3951	- 55	.002
	12 10 2	• • • • • • •	1026.4747	376,8315	1.93	.013
16 1 16	17 1 17	4756	1026.4769	127.2630	29.49	.017
15 4 11	16 4 12	5004	1026.5102	164-4437	21.09	.007
14 6 9	15 6 10	5582	1026.5593	213.3836	14.59	.007
19 17 2	10 17 3	6100	1026.6172	1048.5893	.63	.001
25 16 11	26 16 10	7544	1026.7611	1083.9390	.34	.011
19 17 2	18 17 1	7863	1026 • 7902	1032.6226	.72	.001
15 3 12	16 3 13	8280	1026.8302	142.7128	25.14	.007
13 7 6	14 7 7	29333	1026.9349	241.2771	10.64	.008
17 17 0	17 17 1	*	1026.9541	1017.4954	.82	.000
15 2 13	16 2 14	.9786	1026 • 9803	128.1196	27.59	.004
25 16 9	25 15 10	*	1026,9890	1062.1025	. 40	.010
14 5 10	15 5 11	1027.0904	1027.0897	179.0698	18.22	.007
15 1 14	16 1 15	.1019	1027.1043	120.2571	28.94	.004
12 3 5	13 8 6	,2092	1027.2079	276.1627	6.92	.008
24 16 9	24 16 8	*	1027.2034	1041.1041	• 46	.008
11 9 2	12 9 3	.3807	1027.3828	318.0001	3.68	.008
23 16 7	23 16 8		1027.4193	1020.9439	• 5 3	.007
15 0 15	16 0 16	.4555	1027.4566	112.5424	29.94	.010
10 10 1	11 10 2	*	1027.4730	366.7473	1.06	.007
14 4 1 1	15 4 12	.5186	1027.5211	150.9772	21.80	.007
13 6 7	14 6 8	.5597	1027.5612	200.7759	14.08	.007
22 16 7	22 16 6	.5203	1027.6216	1001.6222	•60	.006
21 16 5	21 16 6	.8132	1027.8154	983+1391	•69	.005
14 3 12	15 3 13	.8549	1027.8562	129.1220	25.03	.006
28 15 14	28 15 13	•	1027.8820	1035.9144	.35	•028
12 7 6	13 7 7	.9273	1027.9283	229.5120	9.91	.007
20 16 5	20 16 4	.9994	1028.0005	965.4950	•79	•004
29 12 17	29 12 18		1028.0763	812.4089	• 34	• 468
13 5 8	14 5 9	1028.0874	1028+0899	166.4582	17.75	•006
27 15 12	27 15 13		1028.1119	1012.4028	• 40	•025
14 2 13	15 2 14	.1390	1028 • 1403	113.0870	27.63	•007
19 16 .3	19 16 4	.1730	1028 1770	948.6898	•90	.003
11 8 3	12 8 4	.1931	1028.1941	265.2385	6.03	•006
26 15 12	26 IS II		1028.3342	989.7289	• 47	.022

BUS

Upper state	Ground state	Observed cm ⁻¹	Calc. cm ⁻¹	Ground state energy cm ⁻¹	Abs. int. 10 ⁻²¹ cm mol. ⁻¹	Mix. coeff.
18 16 3	13 16 2	1028.3412	1028.3449	932.7239	1.02	.002
10 9 2	11 9 3	.3641	1028.3645	307.9162	2.68	.005
28 12 17	28 12 16	• • • • • •	1028.3843	788.0588	.39	• 481
14 1 14	15 1 15	.4944	1028.4957	100.5723	29.64	.010
17 16 1	17 16 2	*	1028.5040	917.5973	1.17	•001
13 4 9	14 4 10	.5173	1028+5201	138.3591	21.39	•006
25 15 10	25 15 11	*	1023+5498	967 8929	• 5 4	•019
12 6 7	13 6 3	.5502	1028.5512	189.0092	13.35	•006
16 16 1	16 16 0	.6545	1028.6544	903.3103	1.32	•001
27 12 15	27 12 16		1028.6849	764.5466	• 4 4	• 496
24 15 10	24 15 9	.7552	1028 7558	946 • 8950	•63	•017
		.8423	1023.8439	116+5520	24.69	•005
11 / 4		.9080	1028+9103	218.5873	8.97	•005
23,15 K	23 13 9	1020 0000	1023+9549	920+7354	27.30	•015
12 5 0	14 2 12	0787	1029.0000	101+3791	27.05	.004
12 - 1 - 12	14 1 13	.0785	1029.0963	93.6687	28.77	.003
22 15 R	22 15 7	.1465	1029.1463	907.4144	.83	.012
10 8 3	11 8 4	.1668	1029.1686	255.1546	4.93	.005
21 15 6	21 15 7		1029.3297	888,9320	•95	.010
9 9 N	10 2 1	.3303	(1029.3341	298.6725	1.47	.003
32 11 22	32 11 21		1029.3367	819.6608	•38	.206
29 14 15	29 14 16		1029.3370	971.8088	•38	.073
13 0 13	14 0 14	.4318	1029.4334	87.1499	29.68	•007
20.15 6	20 15 5	′ *	1029.5051	871,2885	1.08	•009
12 4 9	13 4 10	.5068	1029.5087	126.5818	20.74	•005
11 6 5	12 6 6	.5299	1029.5314	178.0834	12.39	.005
28 14 15	28 4 4	(71)	1029+5438	947.4598	• 4 4	•066
19 15 4	19 15 5	.0/12	1029.6725	854.4841	1.24	•007
31 11 20	31 11 21	.0979	1029.6990	792.7956	• 4 4	•207
		علد	1029+7450	923+9484	+ 2 2	+039
		8393	1029.0017	104.7131	24.09	+005
	1 7 5	.8786	1029+0417	208.5031	7.70	.004
26 14 13	26 14 12	.9358	1029.9402	901.2747	• 6 0	•052
17 15 2	17 15 3	.9813	1029.9329	823.3730	1.61	.004
30 11 20	30 11 19	*	1030.0542	766.7681	•52	.207
11 5 6	12 5 7	1030.0555	1030.0570	143.7601	16.10	•004
34 10 25	34 10 24		1030.0877	811.0788	• 3 4	•118
12 2 11	13 2 12	.1158	1030.1155	88.8347	26.79	.005
16 15 2	16 15 1	*	1030+1259	809+1067	1.83	•002
25 14 11	25 14 12	*	1030.1294	879 • 439	•70	•047
0 8 1	10 8 2	.1252	1030-1313	245.9110	3.59	•003
15 15 0	15 15 1	.2600	1030.2607	795.6600	2.08	.001
24 14 11	24 14 10	.31/4	1030.3124	858.4416	•81	•041
29 11 18	29 11 19	. 3901	1030.4023	741.5784	•60	•206
12 12	13 13	.4028	1030.4637	77.0825	28.79	•007
53 10 23	33 10 24	LQEI	1030-4639	182+5339	• 40	•116
11 4 7	12 4 8	• 40) *	1020+4859	110+6488 839.090E	19+82	• 004
$\frac{2}{10}$ $\frac{10}{6}$ $\frac{6}{6}$		4962	1030+4090	167.0007	• 74	.000
10 0 0	11 0 0	• 1002	「ロンロ・ヨラフロ	10117703	11417	•004

				- Ground	Abs.	
				state	int.	
Unner	Ground	Observed	Calc.	enerav		Mix.
opper	ototo	_1	-1	1	10 °cm	coeff.
state	S 64 69	cm	cm	cm	-1 -1	
					mo r •	
22 14 9	22 14 8	1030.6577	1030.6592	818,9620	1.08	.031
28 11 18	28 11 17	.7414	1030+7435	7 7 + 2268	•70	•206
11 3 8	12 3 9	.8130	1030.9129	93.7963	23.23	•004
21 14 7	21 14 8	*	1030.9228	800.4802	1.24	.026
32 10 23	32 10 22	*	1030.8361	754.8268	. 47	.114
979	10 7 3	8376	1030.8399	199.2593	6.35	.003
		•0570		700 0377		•000
20 14 7	211 14 0	*	1030.9796	182+8515	1.42	•022
11 2 9	12 2 10	. 9863	1886+0561	78.5386	25.95	.003
10 5 6	11 5 7	.0221	1031.0238	133.6731	4.88	•003
11 1 10	12	.0500	1031.0517	70.4557	27.55	.002
27 11 16	27 11 17	*	1031.0778	693.7133	• 8 1	•205
<u> 8</u> 8 1	9 8 2	.0815	1031.0821	237.5076	1.96	.001
19 14 5	19 14 6	.1314	1031.1296	766.0336	1.63	.018
31 10 21	31 10 22	1987	1031.1982	727.9577	.56	. 1 1 1
30 13 18	30 13 17	11507	1031.2402	914.3578	• 35	.224
36 0 26	36 0 25		1031.2603	752.3033	. 30	.079
		0701	1031.2727	750 0600	1 92	1070
		.2/24	1031+2727	/30.0090		•014
	12 0 12	.3607	1021+2004	64.9257	28.38	.005
29 13 16	29 13 17		1031.3851	889.1711	• 4 1	•207
26 11 16	26 11 15	*	1031+4051	671.0381	•94	•204
17 14 3	17 14 4	.4074	1031.4088	734.9438	2.12	.011
10 4 7	11 4 8		(1031.4521	105.5576	18.63	.003
963	10 6 4	.4535	1031.4565	158.7539	9.68	.003
28 13 16	29 13 15	*	1031.5270	864.8218	. 49	. 191
16 14 3	16 14 2	- 5395	1031.5377	720.6582	2.42	.008
30 10 21	70 10 20	• / / / //	1031 5520	701 0060	2 • 4 2 6 E	1000
30 10 21	30 10 20			701.9200	•05	•109
33 9 27	55 9 45	CCOL	1031+6343	722.7508	• 45	•076
15 14 1	15 14 2	.0594	1031.0594	/0/•2122	2.75	•005
27 13 14	27 13 15	*	1031.6659	841.3102	• 5 8	•175
25 11 14	25 11 15	.7229	1031.7256	649.2014	1.09	•202
4 4 1	14 14 0	*	1031.7739	694.6060	3.14	.002
10 3 3	11 3 9	. 7840	1031.7842	83.6770	22.08	.003
8 7 2	0 7 3	*	1031.7873	190.8559	4.62	.002
26 13 14	26 13 13	*	1031.8015	818.6366	• 6 9	.159
35 9 27	35 9 28	8638	1031.8615	729.0375	. 3 3	.060
20 0 27		8087	1031.8980	676 7030	.76	106
29 13 19		.0907	1031.0300		• / 0	•100
25 15 12	. 25 13 13	.9282	1021.9227	796.8010	•81	• 144
954	10 5 5	.9/80	1031.9793	124.4274	12+28	.003
32 9 24	32 9 23		031 • 9997	696+0368	• 5 3	.074
24 11 14	24 11 13	*	1032.0392	628.2034	1.26	•200
10 2 9	11 2 10	1032.0465	1032.0472	67.9028	24.86	.003
24 13 12	24 13 11	*	1032.0624	775.8037	•94	.130
23 13 10	23 13 11	.1830	1032.1875	755.6449	1.10	.116
28 10 19	28 10 13	2360	1032.2355	652.3795	.89	.103
34 9 27	34 9 26	• 2) (((1032.2392	699.6338	.30	.058
00 17 10		* 2077	1072 2084	776.3910	1.20	100
66 I) IU		·)U//		400 0448	1 • 4 0	107
22 11 12	23 14 13	.34/1	1032+3452	005.044	1+45	• 197
51 3 22	31 9 23	*	1032.3565	069.1615	•62	•072
10 1 10		.3800	1032.3812	56.8050	26.85	.005
8 6 3	7 6 4	*	1032.4018	150.3502	7.88	.002
9 4 5	10 4 6	.4044	1032.4070	96.3089	17+15	.003_

(RUS) Unit

Upper state	Ground state	Observed cm ⁻¹	Calc. cm ⁻¹	Ground state energy cm ⁻¹	Abs. int. 10 ⁻²¹ cm mol. ⁻¹	Mix. coeff.
21 13 8	21 13 9	*	1032.4258	717.8435	1.49	.089
20 13 8	20 13 7	1032.5400	1032.5388	700.2011	1.72	.077
27 10 17	27 10 19	.5623	1032.5646	628.8637	1.04	.100
33 8 25	33 8 26	.6070	1032.6031	671.0696	• 47	.056
22 11 12	22 11 11	6470	{1032.6464	588+7238	1.67	• 94
19 13 6	19 13 7	•0470	1032.6476	683.3979	1.99	.065
30 9 22	30 9 21		1032.7045	643.1249	•73	•069
770	871	*	1032.7230	183.2930	2.53	•001
9 3 6	10 3 7	./355	1032 • 7362	74.4314	20.64	•003
18 13 6	18 13 5	*	1032 • 7519	667+4339 652-3003	2.63	.054
		.0042 8843	1032.8852	606.1865	1.21	.045
9 5 4	26 10 16	.00+)	(1032.9234	116.0227	11.57	.002
9 2 7	10 2 3	.9260	1032.9302	58.9810	23.47	.002
21 11 10	21 11 11	01.1.0	(1032.9400	570.2426	1.92	.189
16 13 4	16 13 3	.9448	1032.9465	638.0243	3.02	.033
32 8 25	32 9 24		1032.9682	643.3450	• 5 5	•054
9 1 8	10 1 9	.9693	1032.9716	50.6432	25.19	.001
15 13 2	15 13 3	1033.0376	1033.0366	624.5790	3.46	.024
29 9 20	29 9 21	*	1033.0436	617.9273	•86	• 066
34 7 28	34 7 27	.0759	1033.0791	652.1332	84+ FOF	• 0 4 6
14 13 2		.1206	1033+1218	594.3492	1.40	• 010 • 007
25 10 15	25 10 16	1990	1033-1971	600.2077	4.55	•090
20 1 10		*	1033.2270	552.6005	2.21	.184
3 0 0		.2423	1033.2440	45.9008	25.96	. 203
31 8 23	31 8 24		1033.3194	616.4602	.65	.052
7 6 1	8 6 2	*	1033.3356	142.7870	5.73	.001
8 4 5	9 4 5	.3479	1033.3506	87.9019	15.36	•005
28 9 20	28 9 19		1033.3738	593.5686	1.00	.064
33 7 26	33 7 27		1033.4418	624.5507	.45	•044
24 10 15	24 10 14	.4994	1033.5003	563+3488	1.62	•089
19 11 8	19 11 9		(1033.5075	535+7977	2.54	•178
30 9 23	30 3 22	6810	1033.6821	66.0127	18.90	.002
27 9 18	27 9 19	.0810	1033.6948	570.0470	1.16	.061
18 11 8	18 11 7	.7770	1033.7817	519.8344	2.92	.170
23 10 13	23 10 14	.7921	1033.7946	543.1885	1.87	.085
32 7 26	32 7 25	*	1033.7962	596.8097	• 5 3	.042
34 6 29	34 6 28		1033.8021	612.8845	• 3 4	•038
7 5 2	3 5 3	.8570	1033-8561	108.4589	9.40	•001
8 2 7	9 2 8	.9350	1033.9355	50.3021	21.79	•002
29 8 21	29 8 22	*	1033.9946	565+2097	•89	•048
26 9 18	26 9 17	1034.0053	1034.0005	504.7104	1.35	• 0 5 8
		.04/0	1024.049/	523-8673	2.15	.080
31 7 34	77 10 12	.0/00	1034.1421	569.9098	.62	.041
33 6 27	37 6 29	.1677	1034.1679	584.2684	• 40	.036
8 1 8	9 1 9	.2511	1034.2489	39.7506	23.79	.003
6 6 I	7 6 2	*	1034.2579	136.0644	3.14	.000
7 4 3	9 4 4	.2786	1034.2828	80.3366	13.24	.001

Upper state	Ground state	Observed cm ⁻¹	Calc. cm ⁻¹	Ground state energy cm ⁻¹	Abs. int. 10 ⁻²¹ cm	Mix. coeff.
	÷				mol.	
25 9 16	25 9 1 2	1034.3070	1034.3089	525.5274	1.57	•055
16 11 6	16 11 5		(1034.3115	490.4265	3.86	•149
28 8 21	29 8 20	*	1034.3184	540.8442	1.04	.045
21 10 11	21 10 12	.3541	1034.3559	505.3854	2 • 48	.075
30 7 24	30 7 23	.4793	1034.4787	543.8512	•73	•039
32 6 2.7	32 6 26	.5107	1034.5096	556.5029	• 47	.035
15 11 4	15 11 5	.5640	1034.5674	476.9821	4.45	•136
24 9 16	24 9 15	*	1034.6017	504.5256	1.81	.052
7 3 4	8 3 5	.6106	1034.6133	58.4464	16.85	.002
20 10 11	20 10 10	*	1034.6225	487.7429	2.84	.070
12 12 1	12 12 0	.6220	1034.6264	512.5222	5.94	.074
27 8 19	27 8 20	*	1034.6328	517.3186	1.21	•043
26 12 15	26 12 14		1034.6673	741.8725	• 5 (.488
13 12 1	13 12 2	.6740	1034.6711	523.4473	4.88	.134
25 12 13	25 12 14	*	1034.7001	720.0366	•61	.472
14 12 3	14 12 2	.7080	1034.7077	535.2124	4.05	.183
24 12 13	24 12 12	*	1034+7280	699.0392	•73	.455
15 12 3	15 12 4	.7381	1034.7371	547.8174	3.38	.226
23 12 11	23 12 12	*	1034.7509	678.8804	•86	.437
16 12 5	16 12 4	.7593	1034.7596	561.2622	2.84	•262
22 12 11	22 12 10	*	1034.7687	659.5604	1.02	•418
17 12 5	17 12 6	*	1034.7758	575.5467	2.39	.295
6 5 2	7 5 3	.7783	1034.7774	101.7359	6.83	.001
21 12 9	21 12 10	*	1034.7811	641.0793	1.21	.397
18 12 7	13 12 5	, *	1034.7857	590.6708	2.01	.324
20 12 9	20 12 8	*	1034.7883	623.4372	1.43	.375
19 12 7	19 12 8	*	1034.7898	606.6343	1.70	.351
29 7 22	29 7 23	*	1034.8063	518.6337	•86	.037
14 11 4	14 11 3	*	1034.8175	464.3775	5.16	.119
7 2 5	R 2 6	.8205	1034.8250	42.8809	19.82	.001
31 6 25	31 6 26		1034.8536	529.5765	• 56	.033
7 6	8 1 7	.8538	1034.8563	34.2510	21.69	.001
19 10 9	19 10 10	0705	1034.8795	470.9399	3.26	.065
23 9 14	23 9 15	.8/85	1034.8849	494.3632	2.09	.049
26 8 19	26 8 18	.9356	1034.9377	494.6328	I•40	.041
13 11 2	13 11 3	1035.0620	1035.0622	452-6129	6.00	.099
32 5 28	32 5 27		1035.0719	522.5576	•38	.030
7 0 7	8 D 8	.0855	1035.0870	30.1119	22.44	.002
28 7 22	28 7 21	*	1035.1245	494.2573	1.00	.035
18 10 9	18 10 8	.1259	1035.1267	454.9765	3.73	.059
22 9 14	22 9 13	.1570	1035+1582	465.0404	2.40	.046
30 6 25	30 6 24		1035 • 18 2	503.4969	•65	.032
6 4 3	7 4 4	.2025	1035-2035	73.6125	10.75	.001
25 8 17	25 8 18	.2310	1035.2329	472.7870	1.6?	.038
12 11 2	12 11 1	. 3011	1035.3019	441.6882	7.02	.074
17 10 7	17 10 9	.3622	1035.3638	439.8527	4.27	.053
21 9 12	21 9 13	. 4240	1035.4216	446.5571	2.75	.042
27 7 20	27 7 21	*	1035-4334	470.7220	1.16	.033
29 6 23	29 6 24		1035.5051	478.2585	.77	.030
24 8 17	24 8 16	*	1035.5184	451.7812	1.87	.036
31 5 26	31 5 27		1035-5191	495.5437	• 4 5	.029
			and the second		-	

31) Ur (

Upper state	Ground state	Observed cm ⁻¹	Calc. cm ⁻¹	Ground state energy cm ⁻¹	Abs. int. 10 ⁻²¹ cm mol. ⁻¹	Mix. coeff.
6 3 4 11 11 0 16 10 7 20 9 12 5 5 0 26 7 20	7 3 5 11 11 1 16 10 6 20 9 11 6 5 1 26 7 19	1035.5340 .5876 .6839 .7307	{1035.5349 1035.5369 1035.5906 {1035.6748 1035.6871 1035.7327	51.7179 431.6036 425.5687 428.9135 95.8535 448.0276	4.47 8.29 4.88 3.15 3.76 1.35	• 001 • 042 • 047 • 039 • 000 • 031
30 5 26 6 2 5 23 8 15 30 4 27 15 10 5 28 6 23 20 2 10	30 5 25 7 2 6 23 8 16 30 4 26 15 10 6 28 6 22 20 2 18	•7785 * •8033 *	1035.7556 1035.7807 1035.7940 1035.8010 1035.8067 1035.8164	469.4562 36.0419 431.6153 442.1124 412.1245 453.8646	.53 17.55 2.16 .37 5.58 .89	•028 •001 •034 •024 •041 •029
12 9 10 26 3 24 14 10 5 25 7 18 22 8 15 6 1 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9152 1036.0127 * * .0654	1035.9177 1035.9398 1036.0120 1036.0224 1036.0596 1036.0669	412.1096 325.3544 399.5202 426.1742 412.2895 25.9294	3.61 .40 6.38 1.56 2.48 19.64	.035 .019 .034 .030 .031 .002
5 4 1 27 6 21 29 5 24 18 9 10 13 10 3 24 7 18 21 8 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1133 * .1497 .2050 *	1036 • 1128 1036 • 1208 1036 • 1337 1036 • 1500 1036 • 2060 1036 • 3023	67.7294 430.3128 444.1588 396.1456 387.7558 405.1617 393.8037	7.82 1.04 .62 4.12 7.30 1.80 2.84	•001 •027 •027 •032 •027 •028 •028
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3146 * .3884 * .4130 .4420 .5601	1036.3717 1036.3884 1036.3928 1036.4143 1036.4439 1036.5589	381.0214 376.8315 419.7494 407.6043 45.8336 366.7473	4.70 8.37 .73 1.21 11.73 9.62	• 029 • 020 • 025 • 026 • 001 • 013
20 9 13 23 7 16 16 9 8 28 4 25 5 2 3 25 6 19	20 8 12 23 7 17 16 9 7 28 4 24 6 2 4 25 6 20	* * .5783 .6112 .6683 *	1036.5600 1036.5723 1036.5825 1036.6130 1036.6691 1036.6993	376.1580 384.9900 366.7371 392.1783 30.2095 385.7380	3 • 25 2 • 08 5 • 36 • 51 14 • 98 1 • 40	.026 .026 .025 .022 .022 .001
5 4 10 0 27 5 22 15 9 6 19 8 22 7 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.7016 .7151 ** .7810 .7907 .8313	1036.7057 1036.7170 1036.7237 1036.7823 1036.7946 1036.8323	21.2944 357.5033 396.1570 353.2928 359.3525 365.6591	17.11 11.10 .85 6.11 3.71 2.39	.000 .007 .024 .022 .024 .024
14 9 6 24 6 19 26 5 22 4 4 1 18 8 11 29 4 25	14 9 5 24 6 18 26 5 21 5 4 2 18 8 10 29 4 26	.0915 .9713 * * 1037.0136 .0581	1036.9708 1036.9741 1036.9873 (1037.0106 1037.0186 1037.0594	340.6885 364.7143 373.4311 62.6872 343.3870 416.3526	6.96 1.61 .98 4.33 4.24 .43	•018 •023 •022 •000 •022 •021

									Ground	Abs.	
									state	int.	
Up	per		1	Gro	ound		Observed	Calc.	energy	10-21	Mix.
st	ate			sta	ite		1	1	1	10 Cm	coeff.
							Cin	Cill	Cin	mol.	
21	7	14	2	1	7	15	1037.0808	1037.0821	347.1690	2.74	.022
12	I	12	1	2	1	11		1037.0904	70.4557	•38	.007
24	3	22	2	4	3	21	*	1037.1365	281.8329	•55	.016
13	9	4	1	3	Q	5	.1455	1037.1478	328.9243	7.94	.015
17	8	9	1	7	8	10	.2337	1037.2318	328.2618	4.83	.019
23	6	17	2	3	6	18	*	1037.2395	344.5327	1.86	.021
25	5	20	2	5	5	21	·2852	1037.2837	351.5364	1.14	.021
12	9	4	1	2	9	3	.3149	1037.3132	318.0001	9.07	.012
26	4	23	2	6	4	22	*	1037.3158	345.6928	•70	.019
20	7	14	2	0	7	13	*	1037.3217	329.5197	3.13	.020
4	3	2		5	3	3	.3381	1037.3419	40.7900	8.55	.000
18	?	17	I	8	2	16	.3896	1037.3935	158.1653	• 5 7	.011
16	B	9	1	6	8	8	.4344	1037 . 4342	313.9767	5.50	.017
27	4	23	2	7	4	24	*	1037.4660	368.2958	.60	.019
11	9	2	1	1	9	3	.4660	1037.4667	307.9162	10.39	.008
22	6	17	2	2	6	16	4910	1037.4948	325.1933	2.14	.020
24	5	20	2	4	5	19	*	1037.5408	330.4965	1.32	.020
19	7	12	1	9	7	13	- 5456	1037.5508	312.7111	3.58	.018
4	2	3		r;	2	4	- 5809	1037.5825	25.1297	12.09	.001
10	9	2	1	n	9	I	.6086	1037.6083	298.6725	11.93	.005
15	8	7	1	5	8	ß	.6235	1037.6256	300.5318	6.26	.015
9	9	'n	•	à	9	Í	7370	1037.7376	290.2689	13.78	.003
21	6	15	2	۰í	6	16	•//// •	1037.7402	306.6958	2.45	.018
18	7	12	۱	R	7	11	7696	1037.7694	296.7431	4.08	.017
14	ß	7		4	Ŕ	5	8038	1037.8057	287.9271	7.13	.013
23	5	18	2	3	5	19	*	1037.8099	310.2947	1.52	.018
4	1	4		5	1	5	8338	1037 . 8354	15.3506	14.48	.001
25	4	21	2	, ,	4	22	9057	1037.9060	323.6207	.82	.018
24	4	21	2	4	4	20	0346	1037.9320	302.6369	•95	.017
13	3	5	1	3	8	6	• 5540	(1037.9746	276.1627	8.12	.010
20	6	15	2	n.	6	14	0740	1037.9754	289.0401	2.80	.017
17	7	In		7	7	11	• 57 40	1037.9773	281.6157	4.64	.015
22	Ę	18	2	, ,	5	17	1038 0524	1038-0541	290.9415	1.74	.017
22	्र	20		, <u>,</u>	-	10	10,0.0,24	1038.1081	2/1.8317	. 75	.014
12	ด์	5	Í	2	ล์	. 4	1314	1038.1321	265.2385	9.26	.008
16	7	10		6	7	9	1724	1038,1745	267, 290	5.29	.013
19	6	13		9	6	14	1002	1038.2004	272.2260	3.20	.015
3	3	n		6	3	1	2267	1038+2281	36.5878	4.77	.000
11	ล์	7	I	1	ค	4	·2207 2771	1038.2780	255.1546	10.59	.006
21	5	16	2	, ,	5	17	ا / / ک • علد	1038.2997	272.4295	2.00	016
23	4	10	2	, T	Ĺ	20	*	1038.3565	282.3288	1.09	.016
15	7	. , р	, 1	5	7	- °	7604	1038.3607	253.8828	6.01	.011
10	ģ	-7 -7	י 1	'n	ິດ	Ś	. 2004	1038.4122	245.9110	12.15	.005
18	6	17	, 1	8	6	12	۰۳۱∠∪ س	1038.4149	256.2534	3.65	.014
3	2	í			2	2	* heob	1038.4614	20.9402	8.82	.000
22	h.	10	2	12	r L	19	•4034 *	1038-4781	262.9950	1.26	.015
3	Ĩ	2		. e. h	1	- 3		1038.5195	11.7846	11.51	.000
20	, 5	16	2	 •∩	5	15	•2415	1038.5270	254.7628	2.20	.016
Q	Â	t t	ζ.	0	2	· 5 ?	- 本 モママ1	1038.5346	237.5074	14.01	.003
ÍÁ	7	ו ג	;	4	7	7	ا د د د .	1038.5359	241.2771	6.84	1000
10	1	10	، ۱	n	1	, ,	*	1038-5430	50.6432	. 49	.005
	•	, . ,	1	• •	•	,		,	00,047L		

								Ground	Abs.	
								state	int.	
Ur	nor		Gro	und		Observed	Calc.	energy	-21	Mix.
0r			eta	to		-1	-1	-1	10 cm	coeff.
50	ace		3.00			cm	cm	cm	mol.	
						1070 (105				
17	6 1	1	17	6	12	1038.6195	1038.6190	241.1222	4 • 15	.012
8	8	1	Q	8	C	.6448	1038.6452	229.9446	16.28	•001
16	2 1	5	16	2	14	*	1038.6487	128.1196	• 7 7	•009
3	0	3	4	0	4	.6593	1038+6622	8.3910	12.48	.000
13	7	6	13	7	7	.6982	1038.7001	229.5120	7.79	•008
19	5 1	4	19	5	15	.7487	1038.7510	237.9384	2.62	.013
21	4 1	7	21	4	18	*	1038.7997	244.4202	1.45	.013
16	6 1	1	16	6	10	.8090	1038.8124	226.8323	4.72	.011
12	7	6	12	7	5	.8498	1038.8530	218.5873	8.88	.007
20	२ 1	8	20	7	17	.8877	1038.8891	205.3285	1.00	.012
20	4 1	7	20	6	16	••••	(1038.9659	226.7549	1.66	.013
19	5 1		10	Ę	13	.9675	1038.9710	221.0576	2.57	151
10		cs	10	7	5		(1030-0045		10 15	• 1 3 1
11	1	4	11	~	10	.9933	1028.9945	200.5051	IU+15	•005
10	0	9	15	0	10	1070 1000	[1028.992]	213+3836	5.37	•009
10	7	4	10	7	3	1039.1222	1039.1246	199.2593	11.64	.004
17	51	?	17	5	13	.1612	1039.1622	206.8192	3.40	•011
4	5	9	4	6	8		(1039.1670	200.7759	6.11	•008
19	4 1	5	19	4	16	.2212	1039+2228	209.8936	1.90	•011
9	7	2	9	7	3	.2420	1039.2432	190.8559	13.42	•003
13	6	7	13	6	8	.3311	1039.3279	189.0092	6.96	•007
2	2	1	3	2	2	*	1039.3406	17.5714	4 • 98	.000
8	7	2	8	7	1	.3479	1039.3502	183.2930	15.58	•002
16	5 1	2	16	5	11	, *	1039.3526	192.5234	3.87	.010
18	4 1	5	18	4	4	.4001	1039.4027	193.9070	2.18	.010
7	7	n	7	7	1	.4458	1039.4456	176.5704	18.27	.001
12	6	7	12	6	6	4779	1039.4778	178.0834	7.93	.006
18	ن ت	6	1.8	3	15	-5172	1039.5150	172.2974	1.33	.010
15	5	0	15	5	11	5320	1039.5322	179.0698	4.40	.008
2	1	2	1.) -7	ן. ו	، ، حر	5520	1039-5541	8.0217	8.34	•000 •000
~ ~	1	-	,	1		• 5 5 2 7		1/7 0007	0,24	.000
11	<u> </u>	5		6	6	.0100	1029+0105	167.9983	9.06	•005
17	4 1	3	17	4	14	*	1039+6171	1/8 • 7469	2.48	.009
14	2 1	3	1.4	2	12	.64/1	1039.6482	101.5791	1.03	•007
14	5 1	n	14	5	ò	. 6996	1039.7013	156.4582	5.01	•007
10	6	5	10	6	4	.7452	1039.7440	158+7539	10.39	•004
8	Ŧ	Ŗ	R	ł	7	*	1039.7484	34.2510	•65	•003
23	3 2	Û,	23	3	21	*	1039.7536	260.4468	•64	.012
16	4 1	3	16	4	12	.7949	1039.7931	164.4437	2.83	•008
21	3 1	Ω	21	3	17	*	1039.7990	222.5716	•86	.011
25	3 2	2	25	3	23		1039+8476	301.6709	.46	.012
13	5	8	13	5	· 9	*	1039.8597	154.6883	5.70	.006
9	6	7	9	6	4	.8578	1039.8602	150.3502	11.97	.003
10	3 1	6	10	3	17	*	1039.9489	188.0547	1.15	.009
þ	6	न '	· c	6	2	9680	1030.9650	1/2.7870	13.90	.002
15	<u> </u>	í	15	6	12	*	1039.9766	150.9772	3.22	.007
12	5	, д	12			1040 0085	1040-0073	1/3-7601	6.40	.005
14	, -, ,	с 7	10	-7	1 72	1070.00000	1040 0184	142 7120	1.74	+000
10	.)	4	1.1	ر ر	ر ا م	* ^ - 0 -		144+/128	1 + / 4	+008
~ ~	6	1	/	6	2	.0587	1040.0583	120.0544	10+20	• 001
21	3 2	4	27	-5	25		1040+1087	246.2319	• 53	•013
4	4 1	I	17	4	10		1040.1391	138.3591	3.66	•007
6	6	L	6	ϵ	Û	.1440)1040.1401	130.1822	19.39	•000
11	5	6	<u>†</u> 1	5	7		1040.1439	133.6731	7.42	•004

								Ground	Abs.	
								state	int.	
Un	DOT		Gr	ound	1	Observed	Calc.	energy	10-21	Mix.
et	ate		st	ate		-1	-1	-1		coeff.
30	a					cm	cm	Cm	mol. ⁻¹	
17	3	1.6	17	3	15	*	1040.1673	156.9033	1.52	.008
10	5	. 6	10	5	5	1040.2700	1040.2695	124.4274	8.51	•007
1	Ĩ	n	<u></u>	ĩ	1		(1040.2969	5.7203	4.74	.000
, ,	1	0	, 7	1	10	.2980	11040 2075	106 6010	4 • 7 4	0000
21	4		1)	4	10		$(1040 \cdot 2975)$	120.0818	4 • 1 /	• 005
9	,	4	9	2	2	.3874	1040.3840	116.0227	A•RQ	•003
	0	1	2	0	2		(1040+3938	2.5195	6.42	•000
12	2		12	2	10	*	1040.4117	78.5386	1.37	.005
15	3	12	15	3	13	1.077	1040.4210	129.1220	1.98	.007
14	3	12	14	3	11	.4257	11040.4262	116,5520	2.27	.006
12		0	10	-	μ	4414	1040.4417	115.6499	4.75	005
ι. Ω	5		1 /	4 5	7	4872	1040+4477	100 4500	4,7,7	•000
•••	2	4			2	. 7072	1040+4072	100.4389	11+28	•002
	4	7	11	4	¥	本 「 ゴ へゴ	1040+5771	105+5576	5.43	•004
7	5	2	7	5	3	.5/9/	1040+5792	101.7359	13.34	•001
6	5	2	6	- 5	1	.6610	1040.6598	95+8535	15.87	•00+
13	3	10	13	- 3	11	*	1040.6828	104.7131	2.59	.005
10	4	7	10	4	6	.7005	1940.7008	96.3089	6.23	.003
6	ī	6	Ē.	1	5	*	1040.7019	21.2964	.91	.002
5	5	0	5	5	Ĩ	7299	10/0.7090	00.8116	10.27	.000
10		10	,		0	7571	104017290	2010110	2 0 4	1000 00c
12	>	10	12	· ·	9	•/5/4	1040+7500	92.7963	2:98	•005
9	4	-5	9	-4	6	.8115	1040+8140	87.9019	/•18	•003
8	4	5	୍ୟ	4	4	.9188	1040.9159	80.3366	8.33	•00S
11	3	R	11	- 3	9	.9314	1040.9322	83.6770	3.38	.004
10	2	9	10	2	я	.9696	1040.9690	58,9810	1.83	.003
7	4	3	7	4	4	1041.0088	1041.0069	73.6125	9.77	.001
10	7	Ω	10	7	7	0278	10/1.0298	76.6316	7,88	.003
۲Ŭ		7	10	2	, ,	0270	1041 0250	(7 700)	11 60	,000
0	4	د م	5	-4	4	.0072	1041+0000	0/ 1/294	11.02	+001
9	5	6	9	3	/	*	1041+1549	66+1127	4 • 48	•005
5	4	1	r ,	4	2	.1560	1041.1551	62.6872	14.11	•001
L	4	1	4	4	n	.2150	1041.2122	58.4856	17.67	.000
8	3	6	R	3	5	.2500	1041.2484	58.4464	5.20	.002
7	3	Ĺ.	7	3	5	.3446	1041.3418	51.7179	6.10	.002
8	2	7	R	2	6	. 3567	1041.3568	42.8809	2.47	.002
ĥ		, ,	· /	1	7	*	1041.4014	11.7846	1.38	.001
6	7			יי	7	4167	1041 4192	15 0772	7 20	.001
0 r	ر -	4		ر. م	-,	.4107	1041+4192	43.8338	7 • 2 6	• 001
5	3	2	5	د	- 5	.4857	1041+4878	40*7900	8.81	•001
4	3	2	Ŀ	3	1	.5461	1041.5441	36.678	11.04	•000
3	3	0	3	3	1	.5902	1041.5895	33.2264	14.55	•000
9	2	"	9	2	8	6000	1041.6091	50.3021	2.12	.002
6	2	5	6	2	4	.0000	1041.6131	30,2095	3.47	• 001
11	2	ō	11	, ,	10	*	10/1.6238	67.0029	1.58	.003
7	<i>с</i> 0	5		'n	6	6638	1041+6640	36 0410	2 01	000
1 -7	2		· · · ·	<i>.</i> .	10	.0000		20+0419	2.9	•001
13	2	11	13	2	12	*	1041 • 7475	88.8347	1 • 1 8	•004
5	2	-3	_ 5	?	4	./488	1041.7489	25 • 1297	4.21	.001
4	2	3	4	- 2	2	.7707	1041.7720	20.9402	5.28	+001
3	?	ł	٦	2	2	.8339	1041.8302	17.5714	6.97	•000
2	1	?	?	1	1	*	1041.8464	5.7293	2.63	.000
2	2	1	, ว	, ,	'n	.8562	1041.8601	15.0520	10.08	,000
15	· ?	17	te	0	14	1042 0117	1042-0120	113.0870	2220	- 0000 - 00A
1.0	.			, ,	. 4	072.01() 0770	1040 0720	1 1 J + CO / () X 0 / 0 A	• U () / " ()	*004
1	1	U	1	1	1	.07/9	1042.0700	2+9482	4 • 7 35	•000
3	1	2	-3	1	3	.2847	1042.2824	8.0217	1.82	.000
17	2	15	17	2	16	.4401	1042.4413	140.6471	.66	.005

,

							Ground	Abs.	
						<i>.</i> • •	state		
Uppe	r	Gre	ound		Observed	Galc.	energy	10 ⁻²¹ cm	coeff.
stat	e	sta	at <u>e</u>		cm	cm	cm	$mol.^{-1}$	
5 1	4	r,	1	5	1042.6482	1042.6496	15.3506	1.11	.000
1 0) (0	0	0	.9138	1042.9133	.0000	3.25	.000
19 2	2 17	19	2	18	1043.0477	1043.0412	171.5015	• 4 9	.006
7 1	6	7	1	7	.1761	1043 • 1780	25.9294	.77	.001
2 1	?	1	1	f	.6265	1043.6275	3.9482	4.78	.000
21 2	> 19	21	2	20	.8081	1043.8099	205.6353	• 36	•007
9 1	Я	ŋ	1	9	.8612	1043.8643	39.7506	•57	.001
3 2	? 1	2	2	С	1044.3496	1044.3497	15.0520	5.04	•000
3 0	3	2	0	2	.5329	1044+5338	2.5195	9.63	.000
3 1	2	2	1	1	.5719	1044.5748	5 • 7293	8.43	•000
11 1	10	11	1		.6990	1044.7025	56.8050	• 4 4	.005
4 17	5 2	13	13	1		1044.8875	600.2077	+ 3.5	•015
4 7	2	3	3	1	.9035	1044.9055	33.2264	4.85	•000
18 15	4	17	15	3	.9637	1044.9576	823.3930	• 3 4	•005
16 17	- 3	15	14	2	.9787	1044.9837	707.2122	• 4	•008
4 3	2 3	3	2	2	1045.1393	1045.1408	17.5714	8.96	.001
4 1	4	٦	1	3	.1596	1045.1643	8.0217	11.72	.001
5 4	i I	Li	4	0	.3551	1045.3567	58.4856	4.42	•001
12 11	2	11	E I	1	.3825	1045.3864	431.6036	•73	.074
13 15	2 1	12	12	0		1045.5962	512+5222	• 46	•134
0 1	; 4	18	15	3	6378	[1045.6377	838.5189	• 4	•007
15 13	5 2	1.6	13	1	.0070	(1045.6422	611.9734	•63	•024
13 1	12	13	1	13	,	1045.6825	77,0825	• 3 4	.003
5 7	5 2	4	3	1	.6920	1045.6897	36.5878	8.72	•001
17 12	i 3	16	14	2		1045.6944	720.6582	• 5 5	•011
6 5	5 2	5	5	l	*	1045.7017	90.8116	3.85	•001
11 10)	10	10	0	.8017	1045.8029	357.5033	1.10	•013
5 2	2 3	4	2	2	.9380	1045.9384	20.9402	12.34	•001
7 6	5 1	6	6	0	*	1045.9405	130.1822	3.23	•001
13 11	2	12	11	1	.9867	1045.9869	441.6882	1.30	•099
10 0	2 2	9	9	1	1046.0113	1046.0118	290.2689	1.53	.005
8 7	, j	7	7	1	.0760	1046.0728	176.5704	2.61	•002
о р	3 1	8	8	0	*	1046.0977	229.9446	2.03	•003
ę r	1 5	4	0	4	.0990	1046.0992	8.3910	15.59	.001
6 4	4 3	5	4	2	.1263	1046 • 1288	62.6872	8.01	•001
5 1	4	h	1	3	.2147	1046-2156	11.7846	4.74	•000
20 15	5 6	19	15	5	.3111	1046.3095	854.4841	• 47	•009
16 13	5 4	15	13	- 3	3949	(1046.3919	624.5790	•85	•033
18 14	4 5	17	14	4		(1046.3979	734.9438	•67	•014
7 5	2	6	5	1	.4640	1046.4616	95+8535	7.03	•001
6	5 <u>ú</u>	5	3	3	• • • • •	(1046+4628	49.7900	12.02	.001
12 10	ד נ	11	[0]	2	*	1046-4726	366.7473	2.01	•020
14 12	2 3	13	15	2	*	1046.4729	523.4473	•80	• 183
14 1	4	13	11	ر	.5796	1046.5822	452+6129	1+/0	•119
r i	6	5	1	5	.6455	1046+6457	13.3506	1/108	•002
9 (,	5 3	7	6	2	*	1046.68/6	130.0044	2.71	•002
- E - ;	2 5	5	2	4	.6910	1046+6928	25+1297	12+25	•001
11 0	· ?	10	9	۱	./054	1046+/105	290.0725	2.80	+008 007
9	/ 2	8	1		.8102	1046-8062	183+2930	4 • 78	• UU 3
10) 71	s 3	9		2	0000	1040+0100	231+30/6	2+12	.000
1	4 5	6	4	2	.8892	1040.0099	0/ • 1294	11+06	•001

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Upper stateGround stateObserved cm^{-1} Calc. cm^{-1} stateint. cm^{-1} 21156201551046.9749 1047.09551046.9731 1047.0942871.2885 750.069051001.21156201551046.9749 1047.09551047.0942 1047.0942750.0690 750.0690.76001.2115181441047.09551047.0942 1047.0955750.0690 1047.0942.750.0690 750.0690.76001.1713416133*1047.1303 1047.1306376.8315 638.02432.75.001.1511414113.1697 1047.12103101.7359 1047.22609.71.003.0273463.22401047.42103 1047.42213101.7359 101.73599.71.004.021512314122.34501047.3421 1047.423314.278708.17.004.021512314122.34501047.4233142.78708.17.0047.5216 1047.5216245.91105.15.0047.52161074973.52351047.601617.5973 1047.6286888.9320 888.9320.53.0047.6126113108.77661047.7763387.75583.35.0047.7834141051310.77661047.7763387.	
Upper stateGround stateObserved cm^{-1} Calc. cm^{-1} energy cm^{-1} 10^{-21} cm mol.Mi cost21156201551046.97491046.9731871.2885.51.617145181441047.09551047.0942750.0690.76.61310312102.13261047.1303376.83152.75.61713416133*1047.1366638.02431.03.61511414113.16971047.1719464.37752.10.1254753.21141047.226045.833614.89.61512314122.34501047.3421535.21241.04.216733.662.42211047.4233142.78708.17.61512314122.34501047.3971307.91623.85.61673862.42211047.4233142.78708.17.61074973.5235 $\left\{ 1047.5216 \right\}$ 245.91105.15.61074973.5235 $\left\{ 1047.6266 \right\}$ 888.9320.533.6217766.59951047.60161	
statestate -1 <th< td=""><td>lix.</td></th<>	lix.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	peff.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	910
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	003
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	001
7 7	005
22 15 8 21 15 7 1047.6286 888.9320 53 6370 8 4 5 7 4 $.6370$ 1047.6286 888.9320 $.53$ 67 15 11 6 15 11 5 $.7540$ 1047.6400 73.6125 13.67 67 14 10 5 13 10 4 $.7766$ 1047.7759 476.9821 2.37 11 14 10 5 13 10 4 $.7766$ 1047.7763 387.7558 3.35 67 20 14 7 19 14 6 $*$ 1047.7834 766.0336 $.82$ 67 20 14 7 19 14 6 $*$ 1047.8129 21.2944 20.11 67 20 14 7 13 5 $.8781$ 1047.8764 652.3093 1.16 67 20 3 6 17 13 5 $.8781$ 1047.9769 51.7179 17.40 67 23 3 6 7 3 5 $.9731$ 1047.9769 51.7179 17.40 67 3 1 8 7 1 7 1048.0676 1048.0701 25.9294 22.53 67	004
R 4 5 7 4 4 6370 $1047\cdot 62.00$ $038\cdot 792.0$ 133 $1037\cdot 6125$ 16 15 11 6370 $1047\cdot 6400$ $73\cdot 6125$ $13\cdot 67$ $0047\cdot 7559$ 16 15 11 5 13 10 4 $.7766$ $1047\cdot 7559$ $476\cdot 9821$ $2\cdot 37$ 114 10 5 13 10 4 $.7766$ $1047\cdot 7763$ $387\cdot 7558$ $3\cdot 35$ $0047\cdot 7763$ 20 14 7 19 14 6 $*$ $1047\cdot 7834$ $766\cdot 0336$ 82 $0047\cdot 7834$ 20 14 7 19 14 6 $*$ $1047\cdot 8129$ $21\cdot 2944$ $20\cdot 11$ $0047\cdot 7834$ 21 6 6 15 $.8115$ $1047\cdot 8764$ $652\cdot 3093$ $1\cdot 16$ $0047\cdot 79764$ $108\cdot 4589$ $11\cdot 99$ $0047\cdot 9478$ 18 13 6 17 13 5 $.9731$ $1047\cdot 9769$ $51\cdot 7179$ $17\cdot 40$ $0047\cdot 9769$ 3 18 7 1 7 $1048\cdot 0676$ $1048\cdot 0701$ $25\cdot 9294$ $22\cdot 53$ $0047\cdot 9169$	002
15 11 6 15 11 5 .7540 1047.7559 476.9821 2.37 1 14 10 5 13 10 4 .7766 1047.7559 476.9821 2.37 1 14 10 5 13 10 4 .7766 1047.7763 387.7558 3.35 .0 20 14 7 19 14 6 * 1047.7834 766.0336 .82 .0 7 1 6 6 1 5 .8115 1047.8129 21.2944 20.11 .0 18 13 6 17 13 5 .8781 1047.8764 652.3093 1.16 .0 9 5 4 8 5 3 .9452 1047.9478 108.4589 11.99 .0 3 5 7 3 .9731 1047.9769 51.7179 17.40 .0 3 1 8 7 1 7 1048.0676 1048.0701 25.9294 <td< td=""><td>012</td></td<>	012
14 17 5 13 10 4 $.7766$ $1047 \cdot 7763$ $387 \cdot 7558$ 3.35 $.62$ 20 14 7 19 14 6 * $1047 \cdot 7763$ $387 \cdot 7558$ 3.35 $.62$ 20 14 7 19 14 6 * $1047 \cdot 7834$ $766 \cdot 0336$ $.82$ $.62$ 7 1.6 6.1 5 $.8115$ $1047 \cdot 8129$ $21 \cdot 2944$ $20 \cdot 11$ $.62$ 18 13 6 17 13 5 $.8781$ $1047 \cdot 8764$ $652 \cdot 3093$ $1 \cdot 16$ $.62$ 7 5 4 8.5 3 $.9452$ $1047 \cdot 9764$ $108 \cdot 4589$ $11 \cdot 99$ $.62$ 3 3.6 7 3.5 $.9731$ $1047 \cdot 9769$ $51 \cdot 7179$ $17 \cdot 40$ $.62$ 3 1 8 7 1 7 $1048 \cdot 0676$ $1048 \cdot 0701$ $25 \cdot 9294$ $22 \cdot 53$ $.62$ 13 9 6 12 9 3 $*$ $10468 \cdot 07218$ 318 00004 6 72	140
20 14 7 19 14 6 * 1047.7834 766.0336 .82 .6 7 1 6 6 1 5 .8115 1047.8129 21.2944 20.11 .6 18 13 6 17 13 5 .8781 1047.8764 652.3093 1.16 .6 9 5 4 8 5 3 .9452 1047.9478 108.4589 11.99 .6 3 3 5 7 3 5 .9731 1047.9769 51.7179 17.40 .6 3 1 8 7 1 7 1048.0676 1048.0701 25.9294 22.53 .6 13 9 4 12 9 3 * 1048.0676 1048.0701 25.9294 22.53 .6	034
7 1 6 6 1 5 .8115 1047.8129 21.2944 20.11 .0 18 13 6 17 13 5 .8781 1047.8764 652.3093 1.16 .0 2 5 4 8 5 3 .9452 1047.9478 108.4589 11.99 .0 3 3 5 7 3 .9731 1047.9769 51.7179 17.40 .0 3 1 8 7 1 7 1048.0676 1048.0701 25.9294 22.53 .0 13 9 4 12 9 3 .4 .0 .7 .7 .0	023
18 13 6 17 13 5 .8781 1047.8764 652.3093 1.16 .6 9 5 4 8 5 3 .9452 1047.9478 108.4589 11.99 .6 3 3 5 7 3 5 .9731 1047.9769 51.7179 17.40 .6 3 1 8 7 1 7 1048.0676 1048.0701 25.9294 22.53 .6 13 9 4 12 9 3	
9 5 4 8 5 3 .9452 1047.9478 108.4589 11.99 .0 8 3 6 7 3 5 .9731 1047.9769 51.7179 17.40 .0 3 1 8 7 1 7 1048.0676 1048.0701 25.9294 22.53 .0 13 9 4 12 9 3	054
3 3 5 7 3 5 .9731 1047.9769 51.7179 17.40 .0 3 1 8 7 1 7 1048.0676 1048.0701 .25.9294 22.53 .0 13 9 4 12 9 3	1003
3 1 8 7 1 7 1048.0676 1048.0701 25.9294 22.53 C	002
	003
	015
10 6 5 9 6 4 .1451 1048.1477 150.3502 10.08 .0	004
8 2 7 7 2 6 .1920 1048.1958 36.0419 20.46 .0	002
16 12 5 15 12 4 * 1048.2044 547.8174 1.21 .2	262
12 3 5 11 8 4 .2100 1048.2160 255.1546 6.32 .0	800
11 7 4 10 7 3 .2365 1048.2383 199.2593 8.14 .0	005
23 15 8 22 15 7 .2722 1048.2760 907.4144 .55 .0	015
17 11 6 16 11 5 .3298 1048.3338 490.4265 2.57 .1	161
9 4 5 8 4 4 .3775 1048.3793 80.3366 15.93 .C	003
15 10 5 14 10 4 .4107 1048.4110 399.5202 3.83 .0	041
21 14 7 20 14 6 .4667 1048.4656 782.8373 .86 .0	026
19 13 6 18 13 5 .6138 1043.6115 667.4339 1.25 .0	065
1056971048.6742116.022713.93.0	003
3 6 R 3 5 .7198 1048 · 7212 58 · 4464 19 · 60 · C	003
14 7 6 13 9 5 .7331 1048.7350 328.9243 5.41 .0	018
11 6 5 10 6 4 .8606 1048.8609 158.7539 11.68 .C	005
13 8 5 12 9 4 .9015 1048+8988 265+2385 7+28 C	010
18 11 8 17 11 7 * 1048-9055 504-7106 2-70 -1	170
	017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002
יי א איי א איי א איי א גער א גער גער גער גער גער גער גער גער גער גער גער	003
$\frac{17}{19} = 5 + 16 + 10 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 $	205
$\frac{10}{10} 47 0 46 = \frac{10}{10} 10$	270
22 4 2 21 4 3 1366 1049 1410 800 4802 80 10	000
20 13 8 19 13 7 .3405 1049.3421 683.3979 1.31 .0	077

-

295 (995 (994)

				Ground	Abs.	
				state	int.	
Upper	Ground	Observed	Calc.	energy	10^{-21} cm	Mix.
state	state	1 cm1	cm ⁻¹	cm	$mol.^{-1}$	COGLIP
7 B	8 1 7	1049 3600	1049.3638	34.2510	24.48	
15 2 6	14 7 5	*	1049.3866	340.6885	5.96	.022
11 5 6	10 5 5	3847	1049.3897	124.4274	15.55	.004
10 1 10	9 9		1049.4357	39.7506	26.45	.005
10 3 8	9 3 7	.4396	1049.4485	66.0127	21.48	.003
19 11 8	18 11 7	.*	1049.4709	519.8344	2.79	.178
25 15 10	24 15 9		1049.5467	946.8950	• 5 4	.019
12 6 7	11 6 6		(1049.5628	167.9983	13.00	.006
14 8 7	13 8 6	.5643	1049.5702	276.1627	8.05	.013
13 7 6	12 7 5	.6233	1049.5247	218.5873	10.43	.008
17 10 7	16 10 6	<u> </u>	(1049.6478	425.5687	4.44	.053
10 2 9	9 2 8	.6445	1049.6479	50.3021	24.43	.003
23 14 9	22 14 8		1049.8096	818.9620	.89	.036
11 4 7	10 4 6	.8253	1049.8258	96.3089	19.47	.004
19 12 7	17 12 6	.9101	1049.9098	575.5467	1.39	.324
16 0 8	15 9 7	1050.0269	1050.0268	353.2928	6.37	.025
20 11 10	19 11 9	*	1050+0297	535.7977	2.83	.184
21 13 8	20 13 7	.0701	1050.0682	700.2011	1.33	.089
12 5 8	11 5 7	.0948	1050.0942	133.6731	16.89	.005
26 15 12	25 15 11	-	1050+1702	967.8929	.53	.022
11 3 8	10 3 7	.1751	1050.1779	74.4314	23.07	.004
15 3 7	14 9 6	.2331	1050+2302	287+9271	8.64	•015
18 10 9	17 10 9	*	1050-2505	439.8527	4.62	.059
13 6 7	12 6 6	.2498	1050+2538	178.0834	14.06	.007
14 7 8	13 7 7	.3019	1050.3011	229.5120	11.24	.010
11 0 11	10 0 10	.3858	1050-3859	45.9008	28.48	.005
24 14 11	23 14 10	.4705	1050 • 4715	838.2825	• 8 •	•.041
12 4 7	11 4 3	F 7 0 F	1050.5329	105.5576	20.80	.005
2 9	10 2 3	• 5 5 7 5	1050.5456	58.9810	25.95	.003
21 11 10	20 11 9	.5720	1050+5820	552.6005	2.83	• 189
17 0 8	16 9 7	.6554	1050.6560	366.7371	6.65	•029
12 1 12		.7415	1050.7412	56.8050	29.27	•007
19 12 7	18 12 6	*	1050.7534	590.6708	1.42	.351
27 15 12	26 15 11		1050+7858	989+7289	• 5 1	•025
13 5 8	12 5 7	.7878	1050.7830	143.7501	17.96	•006
22 13 10	21 13 9	*	1050.7900	717.8435	1.34	.102
19 10 9	18 10 8	.8429	1959.3430	454.9765	4.71	.065
0	10 1 9	.8725	{1050+8642	50.6432	27.75	.002
12 3 10	11 3 9	•0729	(1050.8780	83.6770	24.37	.005
16 8 9	15 8 8	*	1050.8791	300.5318	9.07	•017
14 6 9	13 6 8	.9325	1050.9337	189.0092	14.88	•008
15 7 8	14 7 7	.9646	1050+9664	241.2771	11.86	•011
13 3 11	11 2 10	1051.0462	1051.0475	67.9028	27.25	•005
25 14 11	24 14 10	*	1051.1269	858.4416	•87	•047
22 11 12	21 11 11	.1220	1051.1276	570.2426	2.81	.194
13 4 9	2 4 8	.2287	1051.2304	115.6488	21.85	•006
18 7 10	17 9 9	.2/22	1051+2/43	381.0214	0.83	•032
27 12 15	26 12 14	. 3362	1051+3590	/41.8725		• 496
28 15 14	27 15 13	.3902	1051+3936	1012.4028	• 4 9	•028
20 10 11	19 10 10	.4249	1051-4255	470.9399	4.74	• 070
14 5 10	13 5 9	.4683	1051+4/12	154.6883	18.17	•097

BIIS

				, Ground	Abs.	
				state	int.	114.4
Upper	Ground	Observed	Calc.	energy	10 ⁻²¹ cm	coeff.
state	state	cm ⁻¹	cm	cm	$mol.^{-1}$	
23 13 10	22 13 2	*	1051.5076	736.3248	1.32	.116
17 3 9	16 8 8	1051.5145	1051.5169	313.9767	9.36	.019
50 15 0	19 12 8	*	1051.5911	606.6343	1.42	.375
13 3 10	12 3 9	5981	{1051.5996	93.7963	25.38	.005
15 6 9	14 6 3	• 5 30 1	1051.6028	200.7759	15.49	.009
16 7 10	15 7 9	.6170	1051.6206	253.8828	12.28	.013
13 0 13	12 0 12	.6532	1051.6575	64.9257	30.63	.007
23 11 12	22 11 11	*	1051.5665	588.7238	2.75	. 197
25 14 13	25 14 12	•//51	1051.7759	879.4391	•84	.052
19 - 9 + 0	18 9 9	.8800	1051 85517	296 • 1456	5.91	•035
	17 12 10		1051.0165	104+3400	• 9 5	• 451
	13 1 13	9862	1051+910.)	77.0825	30.94	•007
29 15 14	28 15 13	• 3002	1051.9937	1035.9144	.47	.070
21 10 11	20 10 10	*	1051.9984	487.7429	4.70	.075
13 2 11	12 2 10	1052.0423	1052.0436	78.5386	28.17	.004
15 5 10	14 5 9	1/00	11052.1438	166.4582	19.35	.008
18 R 11	17 8 10	. 1425	1052.1439	328.2618	9.52	.022
24 11 14	23 11 13	.1930	1052-1985	608.0441	2.67	.200
24 13 12	23 13 11	.2167	1052.2212	755.6449	1.28	•130
16 6 11	15 6 10		1052.2612	213.3836	15.89	•011
17 7 10	16 7 9	.2637	(1052.264)	267.3290	12.55	.015
14 5 2		7005	(1052+265)	104 • / 131	26.11	•006
13 1 12 14 2 13		.3085	1052-3095	11+4007 98-8347	27.80	• 007
27 14 13	26 14 12	• 2929	1052.4186	901.2747	20.92	.059
21 12 9	20 12 8	*	1052.4232	623.4372	1.39	.397
29 12 17	28 12 16	*	1052 • 4264	788+0588	•94	.468
20 9 12	10 0 11	.4763	1052 • 4787	412.1096	6.90	.039
22 10 13	21 10 12	.5596	1052.5618	505.3854	4.62	.080
30 15 16	29 15 15	*	1052-5863	1060.2635	• 4 4	.034
15 4 11	14 4 10	.5911	1052-5947	138.3591	23.15	.007
25 11 14	24 EE 13	.7163	1052.7236	628.2034	2.57	•202
19 8 11	18 8 10	.7585	1052.7600	343.3870	9.55	• 024
16 5 12	15 5 11	.8054	1052.8062	179.0698	19.69	•010
15 0 15		.84/1	1052+8491	8/* 499	31.66	•010
18 7 12		.9035	1052+8967	281.0137	12.05	•017
25 13 12	24 13 11	J	1052.9009	775.8037	1.23	.144
30 13 12 30 12 10	20 12 18	*	1052.9487	812.4080	.90	. 455
15 3 12	14 3 11	9897	1052.9910	116.5520	26.57	.007
28 14 15	27 14 14	*	1053.0552	923.9484	.76	.066
21 9 12	20 2 11	1053.0628	1053.0652	428.9135	6.82	.042
23 10 13	22 10 12	.1133	1053-1158	523.8673	4.50	•085
16 1 16	15 1 15	.1675	1053.1685	100.5723	31.55	.013
31 15 16	30 15 15		1053+1713	1085.4497	• 4 1	•038
26 11 16	25 11 15	.23 57	1053.2418	649.2014	2.45	•204
22 12 11	21 12 10	*	1053-2498	641.0793	1.35	•418
16 4 13	15 4 12	.2567	1053.2595	150.9772	23.44	•008
20 8 13	19 8 12	.3654	1053.3656	359.3525	9.49	.026
1/ 5 12	16 5 11	.4580	1055+4580	192+5234	19.84	.011
				,		aner

Upper state	Ground state	Observed cm ⁻¹	Calc. cm ⁻¹	Ground .state energy cm ⁻¹	Abs. int. 10 ⁻²¹ cm	Mix. coeff.
31 12 19	30 12 18	*	1053.4633	837.5967	.86	. 442
19 7 12	13 7 11	*	1053.5188	296.7431	12.63	.018
15 2 13	14 2 12	1053.5209	1053.5208	101.5791	29.25	•004
18 6 13	17 6 12	.5456	1053+5461	241.1222	16.14	•014
16 3 14	15 3 13	.6096	1053.6092	129.1220	26.80	•008
26 13 14	25 13 13	* Ch10	1053.6371	796.8010	1.17	•159
24 10 15	21 9 13	.0410	1053+6415	446.5571	6.67	• 046
16 2 15	15 2 14	.0003	(1053.6813	113-0870	29.50	.089
29 14 15	28 14 14	.6882	1053-6859	947.4598	.71	+0073
15 1 14	14 1 13		1053.6927	93.6687	30.81	.004
32 15 18	31 15 17		1053.7490	1111.4729	.38	.041
27 11 16	26 LL 15	.7452	1053.7529	671.0381	2.33	.205
17 4 13	16 4 2	.9183	1053.9203	164.4437	23.50	•009
21 8 13	20 8 12	*	1053.9606	376.1580	9.33	•029
17 0 17		.9620	1053.9664	112.5424	31.66	• 013
32 12 21	31 12 20	105/ 0590	1053-9702	863.6220	+81	• 430
	17 5 13	1034.0580	1054+0710	206 8192	1+29	• 4 3 7
20 7 14	19 7 13	.1287	1054.1303	312.7111	12.48	• 1 3 1
19 6 13	IR 6 12	.1712	1054.1729	256.2534	16.02	•015
25 10 15	24 10 14	0077	1054.1965	563.3488	4.15	.093
23 9 14	22 9 13	.2033	1054.2078	465.0404	6.47	.049
28 11 1A	27 11 17	.2525	1054.2570	693.7133	2.19	•206
18 18	17 1 17	.2918	1054 • 2901	127.2639	31.15	.016
30 [4 [7	29 14 16	*	1054.3109	971.8088	•66	• 080
55 IS IR	72 15 17		1054-3194	1138.3328	•35	•046
27 13 14	26 13 13	* 7 5 0 0	1054.3395	818.6366	1.10	• 175
33 12 21	32 12 20	• 5502 4450	1054-2570	800.4846	20+70	•008
22 8 15	21 8 14	. 5456	1054.5453	393.8037	9.09	.031
18 4 15	17 4 14	.5604	1054.5628	178.7469	23.35	.010
26 10 17	25 10 16	*	1054 . 7235	584.3482	3.94	.097
21 7 14	20 7 13	7207	1054.7315	329.5197	12.22	.022
19 5 14	18 5 13	•7295	1054.7317	221.9576	19.57	.013
29 11 18	28 11 17	*	1054.7540	717.2268	2.05	• 206
24 9 16	23 9 15	.7630	1054.7641	484.3632	6.23	•052
20 6 15	19 6 14	.7900	1054 • 7895	272+2260	15.77	•017
24 12 13	23 12 12	.8/65	1054+8868	578.8804	1+23	• 455
10 2 15	17 2 16	.9133	1054.9090	156+9033	20+53	•010
31 16 17	30 14 16		1054.9302	996.0951	22+10	+011
34 12 23	33 12 22	*	1054.9604	918.1842	.70	• 407
17 2 15	16 2 14	.9688	1054 • 9689	128.1196	29.28	.005
17 1 16	16 1 15	1055 0175	1055.0073	120.2571	30.70	.006
10 0 10	18 0 18	1022-0122	1055.0171	141.0820	30.75	.017
28 13 16	27 13 15	*	1055.0386	841.3102	1.02	.191
23 8 15	22 8 14	.1200	1055.1198	412.2895	8.79	.034
19 4 15	18 4 14	.2100	1055-2095	193.9070	23.01	•011
27 10 17	26 10 16	.2390	1055-2417	606+1865	3.72	•100
50°) I 20	24 11 14		(1005+2409	741+0784	1+71	• 201
						/ 88SN
						- Line)

				Ground	Abs.	
				state	int.	
Upper	Ground	Observed	Calc.	energy	10^{-21} cm	Mix.
state	state	cm ⁻¹	cm ⁻¹	cm ⁻¹	mol -1	COGIL
25 0 14	24 0 15		1055 3107	FOL FOF	E 0/	055
22 7 16	21 7 15	* 1055 7107	1055-3224	347 1600	5.94	• 0 3 5
20 1 20	10 1 10	1055.519/	(1055.3509	157.1471	29.80	.020
20 5 16	10 5 15	.3514	1055.3515	277.039/	19.16	020
21 6 15	20 6 4	2060	1055.3959	289.0401	15.39	.018
35 12 23	34 12 22	•2300	1055.4438	946.7208	.64	.396
32 14 19	31 14 18	*	1055.5442	1023.0185	.56	.097
24 8 17	23 8 16	6075	1055.6843	431.6153	8.43	.036
25 12 13	26 12 12	.00))	1055+6976	699.0392	1.15	. 472
19 3 16	18 3 15	* 7070	1055.7063	172.2974	26.07	.009
31 11 20	30 11 19	•/0/0	1055.7265	766.7681	1.76	•207
29 13 16	28 13 15	*	1055.7343	864.8218	.9%	.207
28 10 19	27 10 18	* 7107	1055.7513	628.8637	3.49	.103
20 4 17	19 4 16	./+9/	1055 . 8272	209.8936	22.51	.013
26 2 18	25 9 17	.0274 8454	1055 - 8477	525.5274	5.63	.058
23 7 16	22 7 15	0025	1055.9032	365.6591	11.44	.026
36 12 25	35 12 24	. 3023	1055.9192	976.0940	.59	.386
21 5 16	20 5 15	9651	1055+9663	254.7628	18.67	.016
22 6 17	21 6 16	9027	1055 . 9923	306.6958	14.91	.020
21 0 21	20 0 20	1056 0075	1056.0080	172.7568	29.08	.021
20 2 19	19 2 18	0817	1056.0819	171.5015	27.87	.014
33 14 19	32 14 18	.0017	1056 • 1530	1049.8787	•51	.106
20 3 18	19 3 17	1634	1056 1628	188.0547	25.47	.012
32 11 22	31 11 21	1981	1056.2019	792.7956	1.62	.206
25 8 17	24 8 16	* *	1056.2388	451.7812	8.03	.038
19 1 18	IR 117	2460	1056.2449	150 • 1900	29.66	.008
29 10 19	28 10 18	*	1056-2524	652.3795	3.25	.106
22 1 22	21 1 21	3512	1056.3519	190.2125	27.96	•024
27 9 18	26 9 17	*	1056.3752	547.3685	5.30	•061
19 2 17	18 2 16	. 3766	1056.3775	158.1653	28.39	•006
37 12 25	36 12 24	*	1056.3866	1006.3035	• 5 3	.376
30 13 19	29 13 17		1056.4269	889.1711	•86	.224
21 4 17	20 4 16	.4684	1056.4650	226.7549	21.86	.013
24 7 18	23 7 17	*	1056.4740	384.9900	10.95	.028
26 12 15	25 12 14		1056+5032	720.0366	1.07	• 488
22 5 18	21 5 17	571.0	(1056.5662	272,4295	18.04	.017
23 6 17	22 6 16	•5742	1056.5789	325.1933	14.34	.021
33 11 22	32 11 21	.6650	1056.6700	819.6608	1.48	•206
30 10 21	29 10 20	.7421	1056.7450	676.7339	3.01	.109
34 14 21	33 14 29		1056 • 7567	1077 • 5756	• 46	•115
26 8 19	25 8 13	.7846	1056.7835	472.7870	7.60	•041
38 12 27	37 12 26		1056 • 3460	1037.3492	• 48	•367
28 9 20	27 9 19	.8949	1056+8934	570.0490	4.96	•064
23 0 23	22 0 22	.9449	1056.9442	207.5623	26.85	.025
25 7 18	24 7 17	*	1057.0350	405.1617	10.41	.030
21 3 18	20 3 17	1057 0427	1057.0421	205-3285	24.66	•011
27 4 19	21 4 13	· · · / · · · · / / /	(1057.0529	244.4202	21.09	•015
31 13 18	30 13 17		1057.1165	914.3578	•78	.241
34 11 24	33 11 23	.1278	1057.1308	847.3633	1.35	•205
24 6 19	23 6 18	1597	1057.1557	344.5327	13.69	.023
23 5 18	22 5 17	• • • • • • • • • • • • • • • • • • • •	(1057-1631	293.9415	17.32	.018

			Ground	Abs.	
Union Crown			state	int.	
state state	UDServed	Galc.	energy	10 ⁻²¹ cm	Mix.
	cm ⁻	cm	cm ⁻¹	mo11	coeff.
22 2 21 21 2	20 1057.1860	1057.1907	205+6353	25.99	.017
31 10 21 - 50 10	20 .2258	1057.2293	701.9266	2.77	•
24 1 26 23 1	.2951	1057.2946	226.4518	25.53	•028
39 12 27 38 12	26	1057.2973	1069-2308	• 43	•357
27 8 9 26 8	18 .3183	1057.3186	494.6329	7 • 1 4	•043
35 14 21 34 14	20	1057.3558	1106.1087	• 4]	.126
22 3 20 21 3	.3685	1057+3632	222.5716	23.78	•014
21 1 20 20 1	.3985	1057+398;	183.4307	27.87	•010
29 9 20 38 9 75 11 07 51 11	19 *	1057 4023	593.5686	4.61	•065
25 11 24 34 11 26 7 89		1057+5843	875.9032	1.22	•204
26 7 20 75 7	.5859	1057+5862	426+1742	9.83	• 0 3 1
23 <u>11</u> 22 <u>4</u> 72 10 07 71 10	18 .0905	1057+6905	262.9950	20.20	•016
25 (10 23 31 10	ເເ # 10 ພ		727+9377	2.53	• 1 1 4
$23 \ 519 \ 24 \ 0$		1057.7250	101.7000	26.75	• 0 2 4
	28 7374	1057.7405	101.9691	.39	.340
24 5 20 23 5	19	1057.7426	310,2947	16.51	• 020
32 13 20 31 13	19	1057.8032	940.3819	.71	.259
25 0 25 24 0	24 .8293	1057.8289	245.4983	24.22	.030
28 8 21 27 8	20 *	1057+8441	517.3186	6.67	.045
30 9 22 29 9	21 .9020	1057.9022	617.9273	4.26	.069
36 14 23 35 14	.9398	1057.9503	1135.4780	. 37	.136
36 1 26 35 11	25 1058.0260	1058.0303	905.2801	1.10	.203
27 7 20 26 7	19 .1277	1058 - 1278	448.0276	9.23	.033
33 10 23 32 10	22 *	1058 • 1730	754.8268	2.30	.116
41 12 29 40 12	29 *	1058.1756	1135.5007	•34	.340
26 26 25	25 .1790	1058.1804	265.8579	22.79	.033
24 2 23 23 2	22 2383	1058.2368	243.0332	23.65	•020
24 4 21 23 4	20	1058.2401	282.3288	19.23	•017
26 6 21 25 6	20 .2797	1058+2806	385.7380	12.25	.026
25 5 20 24 5	19 .3231	1058.3236	330.4965	15.64	•021
22 8 21 28 8	20 *	1058.3601	540.8442	6.20	•048
23 3 20 22 3	19 .3649	1058.3688	241.8317	22.71	.012
31 9 22 30 9	21 .3934	1058-3930	643.1249	3.92	•072
23 22 22	21 .460/	1058+4612	219.9383	25.53	•013
37 11 26 36 11	25 *	1058+4690	935.4938	•98	•202
33 13 20 32 13	19 *	1058+4871	957+2429	• 6 3	• 276
24 5 22 23 3	.5210	1058+5226	260+4468	21.04	•015
37 14 23 36 14	2/ 6300	1058.5405		رد. م م	• 1 4 /
54 10 25 53 10 29 7 20 07 7	24 .0500	1058+0520	(782+5259	2.09	• 1 1 8
$\frac{78}{27}$ 0 27 27 7	26 6622	1058+6599	296 5661	21.30	•035
27 6 21 26 6	20 .0022	1050 0007	407 6047	21+20	•0000 0 07
	20 .0205	(1058-8669	565.2007	5.70	.050
30 0 23 79 8 32 0 24 31 0	22 .8752	1058.8750	669.1615	3.58	.030
26 5 20 25 5	21	(1059.8920	351.5364	14.73	.022
25 4 21 24 4	20 .8875	1058-8898	302.6369	18.19	.018
38 11 28 37 11	27 *	1058.9202	966.5442	•87	.201
28 28 27	27 1059.0110	1059.0109	378.4246	19.92	.037
23 2 21 22 2	20 .0336	1059.0351	228.7341	24.54	.008
35 10 25 34 10	24 .0841	1059.0840	811.0788	1.88	.119

				Ground	Abs.	
				s ta te	int.	
Upper	Ground	Observed	Calc.	energy	·	Mix.
state	state	-1	-1	-1	10 cm	coeff.
		cm	cm	cm	mol. ⁻¹	
					110 2 1	
34 13 22	33 13 21		1059.1683	994.9408	•56	•294
29 7 22	28 7 21	1059.1830	1059 • 1827	494.2573	7.98	.037
26 2 25	25 2 24	.2202	1059.2196	283.6793	21.02	.023
39 11 28	78 11 27	.3220	1059.3239	998.4310	.78	.199
33 9 24	32 9 23	.3460	1059.3483	696.0368	3.25	.076
31 9 23	30 8 22	*	1059.3645	590.4151	5.25	.052
23 6 23	27 6 22	3647	1050.3682	430 3130	10 70	020
26 6 23	25 4 22	3851	1059.3880	303.6007	10.10	•029
25 1 27	0 / 1 23	4303	1050 6307	250 (607	22 82	017
			1039.4327	239+669/	22.04	•017
27 5 22	26 5 21	.4469	1059.4495	373+43[]	13.79	•024
79 (1 29	23 0 28	5000	(1059+4497	550.7686	18.49	•040
36 10 27	35 10 26	.5280	1059.5275	840.4613	1.68	•121
26 3 24	25 3 23	.6230	1059.6234	301.6709	19.23	• 0 9
25 3 22	24 3 21	.6877	1059+6856	281.8329	20.39	•012
30 7 24	29 7 23	*	1059.6962	518.6337	7.36	.039
40 11 30	30 11 20	.7331	1059.7401	1031.1539	•68	.198
30 1 30	29 1 29	.7868	1059.7879	354.1465	17.05	.042
34 9 26	33 9 25	.8116	1059.8128	723.7508	2.94	.078
35 13 22	34 13 21		1059.8469	1023.4753	.50	.312
32 8 25	31 8 24	.8537	1059.8530	616.4602	4.79	.054
20 6 23	28 6 22	8978	1059.8989	453.8646	9.92	.030
7 10 27	26 10 26	9637	1059.9629	870.6813	1.50	.122
28 5 24	07 5 23	0860	1050.0852	306 1570	12.84	0.25
	01 1 20	1060 0672	1059+1052	3/5 4000	12.04	•025
		1704.0072	1060.0090	243+5928	15.00	•019
28 2 27	27 2 46	.1504	1060+1390	327+5579	18.28	•027
41 11 30	40 11 22		1060+1488	1064+7128	•60	• 196
31 0 31	30 0 30	.1930	{1060.1874	378.1063	15.67	•045
31 7 24	30 7 23		(1060.2007	543.8512	6.75	•041
* 25 2 23	24 2 22	.2 658	1060+2663	269.2148	21.96	•009
35 9 26	34 0 25	*	1060+2687	752.3033	2.65	.080
27 1 26	26 25	.3155	1060.3162	302.5836	19.98	• 021
33 R 25	32 8 24	.3285	1060.3326	643.3450	4.35	.056
38 10 29	37 10 28	.3933	1060.3903	901.7386	1.33	.124
30 6 25	29 6 24	.4181	1060.4196	478.2585	9.14	.032
28 4 25	27 4 24	.4992	1060.4955	368.2958	14.89	.022
32 1 72	31 1 31	.5111	1960.5126	403.0193	14.32	.047
36 13 24	35 13 23		1060.5230	1052.8460	• 4 4	. 329
29 5 24	28 5 23	5429	1060.5430	419.7494	11.88	.027
42 11 32	41 11 31		1060.5098	1099.1074	. 52	. 195
28 7 22	07 7 25	6667	1060.6679	346 2310	16 70	022
70 7 720	71 7 25	.0007	1060-6961	560 0000	6 1 5	• 0 2 2
34 7 26	31 7 23	.6948	1000.0901	309.9098	0.10	+042
74 0 07	33 9 27	./143	1060+7162	/81+0943	2.5/	•082
54 8 27	33 4 26	.8035	1000.8033	0/1.0696	3.93	•058
39 10 29	38 10 28	*	1060.8098	933+6329	1.18	125
55 9 33	32 0 32	.8767	1060.8773	428.5804	13.03	•050
31 6 25	30 6 24	.9335	1060.9332	503.4969	8.37	.033
43 11 32	42 11 31		1060.9433	1134.3375	• 46	.193
27 3 24	26 3 23	0007	\$1060.9363	325.3544	17.89	.013
30 2 29	20 2 28	. 9897	1060.9957	374.6535	15.57	.032
30 5 26	29 5 25	1061.0517	1061.0531	444.1588	10.94	•028
29 1 28	28 1 27	.1205	1061.1201	348.6450	17.13	.026
				- +	-	Alle
		-				(uu)

Upper	Ground	Observed	Calc.	Ground state energy	Abs. int. 10 ⁻²¹ cm	Mix.
state	state	cm	cm	cm	-1	coerr.
					mo 1.	
37 7 28	TG 0 27	1061.1573	1061 • 1552	811.9236	2.11	•084
32 / 26	ביבייקר דידו ומיד	*	1061 1828	290+8097	D • D 9	• 0 4 4
77 17 24	כל ו גנ	.1854	1061.1069	400+0091	11+79	•055 • • •
		بلد	1061.2214	966.3662	• 28	• 126
29 4 25	28 4 24	~ ^ 7 202	1061.2336	392.1783	13.75	•120
35 3 27	34 8 26	2659	1061-2653	699.6338	3.53	.060
44 11 34	43 11 33	•2000	1061.3292	1170.4028	.39	.191
27 2 25	26 2 24	.4265	1061.4217	313.1200	19.18	.011
32 6 27	31 6 26	*	1061.4359	529.5765	7.63	•035
35 0 35	34 0 34	.5196	1061.5199	482.1910	10.63	•055
30 4 27	29 4 26	.5599	1061+5609	416.3526	12.67	.024
38 0 30	32 0 29	*	1061.5859	842.9910	1.87	•086
31 5 26	30 5 25	.6076	1061.6065	469.4562	10.02	•029
41 10 31	40 10 30	*	1061.6251	999.9322	•90	• 126
30 3 28	29 3 27	.6542	1051+6553	394.1161	14.20	•025
	55 7 47	*	1061.7074	624+3507	5.US 7.4	•046
36 9 20	35 9 29	7100	1061.7074	729.0375	• J4 3 - 16	• 190
32 2 31	31 2 30	7918	1061.7906	424.9517	12.99	.036
36 1 36	35 1 35	.8112	1061.8116	510.2025	9.53	.058
31 1.30	30 1 29	.8543	1061.8550	397.8282	14.39	.031
38 13 26	37 13 25		1061.8682	1114.0954	.33	•365
33 6 27	32 6 26	.9334	1061.9335	556,5029	6.92	•036
39 9 30	38 9 29	1062.0126	1062.0082	874.8966	1.65	•087
42 10 33	1110 32	*	1062.0210	1034.3367	.79	.127
32 5 28	3 5 27	.0851	1062.0858	495.5437	9.12	•030
37 0 37	36 0 36	.1189	1062.1159	538.9374	8.51	•060
->> 7 28 - 77 - 28	34 1 61	*	1062+1300	750 2802	4.53	• 0 4 7
00 7 04	00 7 0 E	.1646	1062 1033	739+2809	2.00	•050
- ZY - 3 - ZA - 38 - 1 - 38	28 3 23	.2585	(1062.2393	568.5063	7.56	•014
31 . 27	30 4 26	.3895	1062.3895	442.1124	11.56	.023
43 10 33	42 10 32	*	1062.4090	1069.5775	.68	.128
34 6 29	33 5 23	.4195	1052.4181	584.2684	6.24	.038
40 9 32	39 9 31	*	1062 • 4224	907.6400	1.44	•089
29 2 27	28 2 26	.4920	1062 • 4932	360-4137	16.39	.013
34 2 33	33 2 32	.5276	1062.5252	478.4389	10.63	•041
33 32	32 3		(1062.5313	450.1176	11.86	•036
32 3 30	31 3 29	.5813	{1062.5778	445.3078	11.82	•028
3Z 4 29	$\frac{5}{7}$ $\frac{4}{7}$ $\frac{28}{70}$	علد	(1062+5818	467+7872	10.05	•027
וני סנ ודי סנ	יביי רר בי מיני דיד	*	1052+5990	002+JJ08 700-7677	2.40	1049
33 5 28	32 5 27	.6435	1062.6433	522.5576	8.27	.031
39 0 39	38 0 39	.6649	1062.6657	598.8187	6.69	.066
44 10 35	43 10 34		1062.7893	1105.6544	•59	.128
41 9 32	40 9 31	.8302	1062.3284	941.2213	1.26	.090
35 6 29	34 6 28	.9042	1052+9011	612.8845	5.60	.039
40 40	39 1 39	.9174	1062.9180	629.9475	5+90	•068
32 3 31	39 9 30	1063.0201	1063.0278	822.2860	2.19	•06 6
37 7 30	36 7 29	.0387	1063.0432	712.8222	3.60	•050

				Ground	Abs.	
				state	int.	
Unver	Ground	Observed	Calc.	energy	-21	Mix.
etato	state	-1	-1	-1	10 cm	coeff.
3 50 65	5 0 0 0 0 0	сmі́	cm	cm	$mol.^{-1}$	
34 5 30	77 5 20	1063 0825	1063.0834	550.3133	7.45	.033
75 1 74	7/ 1 37	1542	1063.1568	505.5064	9.60	.041
	14 10 34	• • • • • • • • •	1063-1517	1142.5672	.50	.128
45 10 25	44 10 24	16/15	1067 1702	661 0770	5 17	071
41 9 41		.1045	1003.1702		0 5/	•0/1
36 2 35	35 2 34	.2005	1063.2014	555.1051	0,54	• 04 5
42 9 34	41 9 33	.2249	1053.2204	975.8402		•091
36 6 31	35 6 50	• 5050	1053.2572	542.3356	5.01	• 04 1
42 42	4 4	.4057	1053.4019	694.5235	4,52	• 0 7 4
34 3 32	33 3 31	.4403	1053.4396	499.7901	9.64	•032
40 8 33	39 8 32	*	1063.4474	855.0476	1.92	•068
31 2 2 2	30 2 2 5	.4735	1063.4730	411.0550	13.70	•016
38 7 32	37 7 31	*	1063 • 4868	743+9285	3.19	.052
31 3 28	30 7 27	.4852	1063.4912	423.0033	12,88	•014
46 10 37	45 10 36		1063.5263	1180.3156	.43	•129
34 4 31	33 4 30	.5535	1063.5554	522.5939	8.61	.030
33 4 29	32 4 28	.5795	1063.5986	495.5173	6.23	•348
43 9 34	42 9 33		1063.6163	1010.8966	•95	.093
43 7 43	42 0 42	.6287	1063.6300	727.9791	3.93	•076
35 5 30	34 5 29	.6545	1063.6574	579,0612	6.69	.033
7 1 36	36 35	.7355	1063.7368	563+9939	7.63	.046
38 2 37	37 2 36	.8221	1063.8213	594.9333	6.73	•050
37 6 31	36 6 30	0771	(1063.8376	672.6441	4.45	.042
44 44	43 43	.03/1	1063.8410	762.2312	3.40	•079
41 R 33	40 3 32	.8550	1063.8590	888.6487	1.68	•069
47 10 37	46 10 36		1063.8832	1218.8995	.37	.129
39 7 32	38 7 31	.9232	1063.9234	775 • 8773	2.81	.053
44 9 36	43 9 35	1064.0037	1063.9982	1046.9903	•82	.094
56 5 32	35 5 31	0/1/17	1064.0453	608.4686	5.97	•035
45 0 45	44 0 44	.0445	1064.0460	797.2542	2.93	.082
46 46	45 45	2765	[1064.236]	833.0681	2.52	•084
36 3 34	35 3 33	.2909	(1064.2374	557.5451	7.71	.036
42 8 35	41 8 34	*	064.2624	923.0889	1.46	•071
39 38	38 1 37	0750	1064.2743	625.5827	5.95	.052
38 6 33	37 6 32	.2750	1064.2847	703.7795	3.93	.043
40 7 34	30 7 33	*	1064.3504	808+6663	2.46	•055
33 2 31	32 2 30	.3525	1064.3545	464.9994	11.21	.020
45 9 36	44 9 35		1064.3722	1083.9212	.70	•095
40 2 39	39 2 38	.3860	1064.3869	657.9202	5.21	•055
47 0 47	46 0 46	.4191	1064.4188	869.6561	2.15	•087
36 4 33	35 4 32	.4764	1064.4786	580.7642	6.88	.032
48 1 48	47 1 47	.5878	1064.5881	907.0312	1.83	•090
37 5 32	36 5 31	*	1064 . 6536	638.9769	5.30	.035
43 R 35	42 8 34	*	1064.6579	958,3685	1.26	.072
33 3 30	32 3 29	.6612	1064.6669	477.1234	10.58	.015
35 4 31	34 4 30	.6980	1064.6997	552.4174	7.70	•024
46 9 38	45 9 37		1064.7383	1121.6892	•60	•095
39 6 33	38 6 32	.7451	1064.7451	735.7846	3.46	• 0 4 4
49 0 49	48 (1 48	*	1064.7492	945.1822	1.55	.092
41 40	40 1 39	.7695	1064.7703	690.2764	4.56	•057
41 7 34	60 7 33	*	1064.7717	842.2991	2.14	.056
50 1 50	49 1 49	*	1064.8980	984.1175	1.31	:005
						(. BUS)
						URLE

				Ground	Abs.	
4 1	e de la companya de l			state	int.	
Upper	Ground	Observed	Calc.	energy	10^{-21} cm	Mix.
state	state	1 cm	cm ⁻¹	cm^{-1}	mol1 c	oeft.
42 2 41	61 2 60	1064 0000	1064 0003	724 0554	3.04	040
38 5 34	41 2 40 37 5 33	1064.9002	(1064.0705	670 0000	J.70 .	
78 7 7c	37 3 35	.9669	1064.0707	670+0092	4.00	0.00
51 0 51	50 0 50		(1065-0370	1013 8200	0.000	040
44 8 37	43 9 36	1065.0410	1065.0451	022+0290	1.08	073
47 9 38	46 9 37	x	1065-0966	1160.29/1	.51	072
35 2 33	34 9 30	1314	1065.1336	522.1991	8.99	024
52 52	51 1 51	*	1965.1664	1054.3242	.92	100
40 6 35	39 6 34		(1065,1719	768.6016	3.03 .	047
42 7 36	41 7 35	.1741	1065.1820	876.7708	1.86	057
43 1 42	42 1 41	.2252	1065.2254	758.0785	3.44	062
53 0 53	52 0 52		1065+2857	1105.5959	.77 .	103
38 4 35	37 4 34	.3483	1065.3484	642.2874	5.40 .	035
44 2 43	43 2 42	.3601	1065.3636	793.3323	2.96 .	066
54 54	53 1 53	.3958	1065.3941	1147.6480	.64 .	105
45 8 37	44 n 36	.4278	1065 4250	1031.4451	.93 .	075
48 9 40	47 9 39	. 4488	1065.4470	1199.7357	. 43 .	097
55 0 55	54 () 54	.4963	1065.4931	1190.4774	.53 .	108
56 1 56	55 1 55	*	1065.5818	1234.0858	.44 .	110
43 7 36	42 7 35	.5902	1065.5890	912.0884	1.61 .	059
41 6 35	40 6 34	*	1065.6256	802.3095	2.64 .	047
39 5 34	3R 5 33		(1065.6376	702.3167	4.12 .	036
45 44	44 1 43	.6366	1065+6396	828.9916	2.55 .	068
40 3 38	70 7 37		1065-6396	682.7998	4.66 .	044
35 3 32	34 3 31	.7741	1065+7735	534.7491	8.51 .	016 -
46 2 45	45 2 44	*	1065.7785	865.7443	2.18 .	071
49 9 40	48 9 39		1065.7898	1240.0138	.36 .	098
46 8 39	45. 8 38	*	1065.7964	1069.2417	.79 .	076
37 2 35	36 2 34	.8092	1065-8109	582.6058	7.08 .	028
37 4.33	36 4 32	9501	1065-8473	612.8367	6.09 .	024
40 5 36	39 5 35	• • • • • • • • • • • • • • • • • • •	(1065+8572)	734.9337	3.61 .	040
44 7 38	43 . 7 37	- 9850	1065 . 9824	948.2424	1.38 .	060
47 1 46	46 + 45	1066.0090	1066.0127	903.0172	1.86 .	073
42 6 37	41 6 36.	.0311	1066.0338	836.8029	2.29 .	052
48 2 47	47 2 46	*	1066.1466	941.2363	1.57 .	076
47 8 30	46 8 38	*	1066.1609	1107.8779	• 67 •	077
40 4 37	39 4 36	.1623	1066.1614	707.1504	4.15 .	038
42 3 40	41 3 39	.2476	1066-2449	750.2633	3.53	048
49 48	48 1.47	.3463	1066.3448	980.1559	1.33 .	078
45 7 38	44 7 37	* *	1966.3765	985.2460	1.18 .	061
39 2 37	38 2 36	.3929	1066.3925	646.1738	5.47 .	034
50 2 42	49 2 43	.4683	1066 • 4694	1019.9533	1.12 .	081
43 6 37	42 6 36	.4817	1066.4819	872.2231	1.98	049
48 8 4	47 3 49	.5216	1056+5167	114/.2522	• 5 / •	078
41 5 36	41 5.25	.6171	1066+6155	/69.0960	2.14	037
54 - 1 50	50 1 42	.6348	1066+5361	1060.4072	•94 •	084
42 5 38	41 5 27	.7059	1066 7031	803.2389	2+12 •	043
	51 2 54	*	1906+7483	1101.7411	• / 8 •	USO RIC
45 7 40	45 7 39	./526	1066+7522	1023.0817		062
44 3 42	4) 3 41	* *	1000+7578	820+9277 505 8400	2+02 +	
57 5.34	56 5 23	./9/0	1000.0001	242+8445	0.(0.	018

									Ground	Abs.	
									state	int.	
	Up	por		G	тол	nd	Observed	Calc.	energy	10 ⁻²¹ cm	Nix.
	st	ate		s	tate	•	1	-1	-1		coeff:
							Cin	CIII	CIII	mol.	
	40	8	41	4 8	q	40)	1066.3664	1187.6665	• 4 8	•079
	53	1	52	52	• •	5	*	1066 8867	1143.7699	.65	•089
	41	2	39	40) 2	30	1066.8948	1066.8894	712.8635	4.15	•039
	44	5	39	47	í é	3,	3 *	1066.9150	908.3842	1.58	.124
	42	4	39	41	4	3:	.9125	1066.9151	775.3380	3.14	•042
	30	4	35	-3 n	L 4	3/	.9825	1066.9830	676.7956	4.72	.025
	54	2	53	53	5 2	2 57	*	1066.9842	1186.6456	• 5 4	• 0 9 1
	5.5	1	54	54		51	10 67.0972	1067.0969	1230.2422	• 4 4	.094
	47	7	40	46	, 7	3:	.1395	1067.1354	1061.7733	•86	•063
	56	2	55	55	5 7.	5 4	.1762	1067.1783	1274.6628	•36	•096
	51	9	43	49		62	.2107	1067.2066	1228.8130	• 40	•079
	46	, 3	44	4 *	, T	4	.2697	1067.2700	894.7770	1.91	• 0.5.8
	43	2	4	42	2	4() _ 3172	{1067.3153	782.6449	3.10	•045
	45	5	30	44	n é	5 38	3	(1067.3174	945.5309	1.46	•050
	48	7	62	47	7	4	*	1067.4921	1101.2889	•72	• 064
	44	5	40	4	5 5	3	. 5050	1067.5055	874.9196	2.02	•045
	51	ણ	43	5.0) 3	42	<u>}</u> *	1067.5421	1270.8104	• 33	•080
	46	6	41	45	5 2	, 4(,5506	1067.5532	983.3457	1.16	•107
	43	5	38	47	, ,	5 31	.5939	1067.5930	839.3330	2.35	•038
	44	4	4	43	5 <i>1</i> .	4'	.6050	1057.6068	846.8332	2.32	•045
	45	2	43	41	, î	4;	,6870	(1067.6835	855.4987	2 • 27	•051
	48	3	46	47	-	4))	(1067.6939	971.7962	1.37	•063
	30	3	36	35		5 39	.7350	1067.7369	660.3859	5.18	•020
	49	7	42	4 8		4	.8706	1067.8671	1141.6716	•61	.065
	47	2	45	44	5	2 4 4	1068.0046	1068.0047	931.4155	1.64	•057
	50		48	49		5 4	.0616	1068.0615	1051.9723	• 97	•068
È.	4T	4	37	40) /	31	.0906	1058.0920	744.3066	3.59	.025
	47	6	41	47	; ′	41	.1360	1038.1360	1022.2401	1.05	• 0 5 2
	50	7	44	40) 7	4	s .19/9	1058.2023	1182.8644	• 5 1	•066
	46	4	43	4 0	, ···	43	.2348	1068-2347	921.6176	1.69	•049
	46	5	42	4 "	• •	5 4	.2616	1068+2610	949,9687	1.47	-048
	49	2	4.7	713	₹ 2×	4	,2862	1058.2865	1010+3931	1.18	• 06 2
	48	6	43	47	· •	• 47	.3422	1068.3395	1061+6867	•87	• 069
	52	2	50	51	· ·) 4') 4'	.3/39	1068+3751	1135+2921	• 0 /	• 0 7 4
		~	44) (· 4)	• .5346	(1000 6776	1092.4344	• 51	• 0 5 9
	51	7	44	51]	· 4.		1058.5725	1224.9429	• 4 2	•000
	45	5	40	41	1 <u>.</u>))))	· .5/49	1008+0746	700 7157	1 • 7 2	• 0 3 8
	41	د -	28	41) _) , c	(128+2137	2.92	• 0 2 3
	54 67	>	52	5		5 D			1221+7485	• 4 0	• 080
	יכ גר	2	51 4 E	زر' - ر	•	() ()	J ./429	1068 • 7425		+ C +	• U 7 5
	48	4	4.5	4 / C 1	-	1 44 7 7 1	+ ,/909	1060.0933	1267 0007	1 • 2 1	• 0 5 5
	.) 2	<i>′</i>	40	יר די		· 4)	.0004	1068+0000	1207 0000	• 2 5	•007
	35 40	2	•> > / - 7	54	4 / 3 /	2 3	2 .9222	1058+9199	1200+7208	• 28 . 75	.053
	4 .	5	65	41: 2 -	, . , .	5 4. 5 A'	9424 3 0671	1000+7440	119212390	1.05	+055 •051
	40 50	7	44 4 E	6) . e		, 4. с л	·	1060-0649	1143.4054	. 60	- 0.6.5 500
•	000 6 3	1) 	45	40	, (, ,	3 3	+ 1003,0000 1 1555	1059.0548	815.3710	•02 2.68	025 1112
	50	4	ショ	14 / 1. f	·. ·		1000 K <u>4</u>	1060.2948	1080.0755	 	.057
	. T	२	4 O	a \ 2 '	· ·	+ -।' द 'द⊧	, * D Z NKN	1069-3081	739.5210	2.91	+027 +026
	47	5	49	47 147		, , ; ú	· .5000	1062.5608	990.2666	1.24	.038
	50	. / E	47 1. E	. r	, . , ,	5 4	· • • • • • • • • • • • • • • • • • • •	1060-6180	1110-1319	_7/	.054
		1	H ()	·4 ·		, 4	.0210	100340100		• / H	• • • • •

s,

Upper state			Gr st	cour tate	nd 9	Observed cm ⁻¹	Calc. cm ⁻¹	Ground state energy cm ⁻¹	Abs. int. 10^{-21} cm Mix. mol1	
52	4	49	51	4	48	1069.7297	1069.7265	1165.5090	. 59	.062
51	6	45	50	ϵ	44	71.1.1.	{1069.7427	1135.9010	•52	•054
52	5	47	51	6	45	• / ••••	1069.7478	1228 • 4994	• 4 3	.065
45	3	42	44	3	41	.9278	1069.9293	874 • 1609	2.12	.030
54	4	51	53	4	50	1070.0934	1070.0935	1253.2522	• 4 0	•066
45	4	41	44	4	40	.1576	1070-1597	889.9774	1.96	.026
52	5	48	51	5	47	.2140	1070.2125	1195.2185	• 5	.056
47	3	44	46	3	43	.4350	1070.4365	951.9723	1.52	.035
53	5	47	52	6	46	<i></i>	{1070.5422	1272.8782	.36	.054
49	ና	44	43	5	43	.5450	1070.5476	1071.0088	•88	.038
54	5	50	53	5	49	.7455	1070.7467	1283+6223	•34	.060
40	3	46	4 9.	3	45	.8328	1070.8319	1032.9722	1.06	•040
47	4	43	46	4	4?	1071.0847	1071.0845	968.1017	1.41	•027
51	3	43	۲ n	3	47	.1231	1071.1237	1117.1102	•74	•046
53	3	50	52	3	49	.3257	1071.3249	1204.3424	•50	.053
55	- 3	52	54	3	51	.4481	1071.4517	1294.6340	.33	•059
51	5	45	50	5	45	.5285	1071.5244	1155.2946	.61	.037
40	4	45	4 12	4	44		1071.9178	1049.7095	•99	.028

