UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

Nº d'ordre 613

50376

53

50376 1976 153

THESE

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE SPÉCIALITÉ

par

Brigitte POUILLY

CONTRIBUTION A L'ANALYSE SPECTROSCOPIQUE

ET A L'INTERPRETATION

DE LA STRUCTURE ENECTRONIQUE DE FEF

Soutenue le 18 octobre 1976 devant la Commission d'examen

Membres du Jury

M.	BECART	Président		
М.	SCHAMPS	Rapporteur		
М.	SCHILTZ	Examinateur		
М.	WERTHEIMER	Examinateur		
М.	BARROW	Membre invite		

U.E.R. DE PHYSIQUE FONDAMENTALE

INTRODUCTION

L'abondance du fer dans la nature et son utilisation dans de nombreux secteurs économiques en font le plus important de tous les métaux.

En spectroscopie, les raies de l'atome de fer et de ses ions, nombreuses et faciles à obtenir, servent fréquemment de longueurs d'onde standard de référence. Par contre, on dispose de très peu d'informations spectroscopiques sur les molécules comprenant du fer. C'est ainsi que quatre composés diatomiques seulement ont été observés (1), Fe O, Fe F, Fe Cl, Fe Br, et que pour aucun d'entre eux, on a pu jusqu'ici identifier avec certitude la nature de l'état fondamental. Sans doute, fautil attribuer ce manque de renseignements aux difficultés d'analyse liées aux hautes multiplicités des états électroniques rencontrés.

Nous avons choisi de commencer l'étude des composés diatomiques du fer par celle du fluorure Fe F. Cette molécule présente, en effet, l'avantage d'être relativement légère, ce qui doit permettre une interprétation théorique approfondie. De plus, des spectres préliminaires nous ont montré que plusieurs bandes de Fe F présentent une structure suffisamment claire pour que leur analyse de rotation soit envisageable. Ces bandes ont été observées pour la première fois par BARROW et CARROLL (1) en absorption dans un four en graphite contenant Fe + Al F₃ à 1750°C, puis par BARROW et SENIOR (1) en émission dans une lampe à cathode creuse. Aucune analyse de ces bandes n'avait été faite jusqu'à présent.

La première partie de ce travail a donc consisté en une étude expérimentale des bandes de FeF dégradées vers le violet et situées à 3236,4 Å, 3305,5 Å et 3378,7 Å. La bande à 3318 Å degradée vers le rouge n'a pas été incluse dans cette étude car elle appartient manifestement à un autre système électronique. Après un bref exposé des conditions expérimentales à'obtention des spectres, nous présenterons l'analyse spectroscopique proprement dite : une analyse de rotation des principales bandes suivie d'un classement des têtes de vibration.

La seconde partie est une étude théorique de la structure électronique de FeF fondée sur la méthode SCF-CI (champ auto-cohérent avec interaction de configurations). Elle a pour but d'identifier les états mis en jeu dans les systèmes observés et d'interpréter la nature et la structure fine des transitions correspondantes. - PREMIERE PARTIE -

ETUDE EXPERIMENTALE

Chapitre |

DISPOSITIFS EXPERIMENTAUX

A. LA SOURCE

Les spectres de la molécule FeF ont été obtenus à l'aide d'une décharge en courant continu dans une lampe à cathode creuse refroidie à l'azote liquide. Cette source dérive de modèles initialement développés dans notre laboratoire par M.BECART (2), J.M.MAHIEU (3), D.JACQUINOT (4).

La lampe comporte une anode et une cathode cylindriques réalisées en aluminium. La cathode est percée d'un trou dans lequel on tasse un mélange de fluorure ferrique FeF₃ et de cuivre en poudre. C'est la technique des parois composites développée par BACIS (5). La présence d'un métal conducteur (le cuivre) est indispensable du fait de la faible conductibilité de la poudre de FeF₃.

La plupart des spectres ont été réalisés dans les conditions suivantes :

- intensité débitée dans la lampe : environ 200 mA.
- différence de potentiel aux bornes de la lampe : de l'ordre de 1200 volts.
- Pression d'argon dans la lampe : 0,5 Torr.

Toutefois, une faible intensité de fonctionnement de la lampe permet d'éliminer, dans les différentes branches, les raies correspondant à des valeurs de J élevées et les spectres réalisés dans ces conditions nous ont permis d'obtenir des bandes dont les têtes secondaires sont plus contrastées. Nous avons pu ainsi étudier la structure de vibration et la structure spin-orbite.

B. LES SPECTROGRAPHES

Pour les spectres à faible dispersion, nous avons utilisé un spectrographe à prisme de quartz permettant de couvrir un large domaine spectral (2000 Å à 9000 Å), et dont la dispersion inverse est de 8 Å/mm vers 3300 Å. L'utilisation de ce spectrographe nous a permis de mettre en évidence le spectre de bandes de FeF, (voir fig. 1) et de déterminer les meilleures conditions d'obtention de ces spectres grâce à des temps de pose courts.

Pour les spectres à grande dispersion, nous avons utilisé un spectrographe à réseau à montage Littrow. Le réseau à échelettes "Bausch et Lomb" comporte 1200 traits par millimètre. Son angle de blaze est de 36°52. La distance focale du miroir concave est de 4 m. La dispersion sur la plaque photographique est d'environ 0,5 Å/mm dans le troisième ordre et 0,3 Å/mm dans le quatrième. Le champ photographique est de 250 mm. Les films tirés dans les 3^{ème} et 4^{ème} ordres nous ont permis de mettre en évidence les structures de rotation, de vibration et spin orbite de FeF.

C. ETALONNAGE DES SPECTRES

Nous avons effectué les mesures des nombres d'onde des raies à l'aide d'un pointeur de raies réalisé au laboratoire et permettant d'obtenir une précision de mesure sur chaque pointé de l'ordre de 1μ ce qui donne une précision sur les nombres d'onde d'environ 5 10^{-3} cm⁻¹ dans la région de 3300 Å pour des films obtenus dans le troisième ordre.

Cependant, le pouvoir séparateur de l'appareil utilisé qui ne permet pas de tirer pleinement parti des qualités de résolution du spectrographe, la largeur de certaines raies et le léger décalage qui peut parfois exister entre le spectre de référence et le spectre étudié nous ont conduits à estimer la précision sur le nombre d'onde de chaque raie à environ 5 10^{-2} cm⁻¹.

Le spectre de référence utilisé est celui d'une lampe à vapeur de Thorium (6).

. 4 .

SPECTRE DE FeF A FAIBLE DISPERSION

ELEMENTS DE BASE DE L'ANALYSE SPECTROSCOPIQUE

Avant d'entrer dans les détails de l'analyse spectroscopique, il convient dès maintenant de préciser brièvement par quels raisonnements nous avons abouti au classement que nous proposons dans les chapitres suivants.

Dans la documentation publiée par ROSEN (1), BARROW émet l'hypothèse que les têtes de bandes de FeF qu'il a observées dans l'ultra-violet obéissent au classement de vibration suivant :

7'	= 1	-	٧"	= 0	:	3236,4	Å
	0			0	:	3305,5	Å
	0			1	:	3378,7	Å

Cependant, en approfondissant les conséquences de ce classement, pourtant apparemment le plus logique, nous nous sommes heurtés à deux incohérences qui nous ont conduits à l'abandonner. Ces deux incohérences sont les suivantes :

a) Avec les écarts de vibration $\Delta G'_{1/2} = 646 \text{ cm}^{-1}$ et $\Delta G''_{1/2} = 655 \text{ cm}^{-1}$ qui se déduisent du classement proposé par BARROW, les têtes de bandes de la séquence $\Delta v = 0$ (1-1, 2-2, etc) se trouveraient situées plus vers le rouge que la bande 0-0, dans une zone très claire du spectre où nous ne pourrions manquer de les repérer. Or, aucune tête n'est visible dans cette zone. Au contraire, vers le violet par rapport à la tête 0-0, c'est-à-dire dans le dégradé de cette bande, apparaissent de nombreuses têtes dont certaines appartiennent sans doute à ces autres bandes de la séquence $\Delta v = 0$; une analyse ultérieure (chap. V) le confirmera.

b) La bande 3305 Å est la plus intense du spectre et, suivant en cela BARROW, nous considèrerons comme acquis qu'elle est la bande 0-0.

Par conséquent, si la bande 3226 Å appartient bien au même système électronique que la bande 0-0 (3305 Å), elle doit obligatoirement faire partie de la séquence $\Delta v = +1$. Ceci admis, l'analyse de rotation que nous présentons au paragraphe (IV-E) indique sans ambiguité que la constante de rotation B" dans la bande 3236 Å est différente de celle de la bande 3305 Å, ce qui implique que les deux bandes ne peuvent avoir le même niveau inférieur et que, par conséquent, la bande 3236 Å ne peut pas être la bande 1-0. Elle ne peut d'ailleurs être aucune autre bande de la séquence $\Delta v = +1$ car la constante $B_v^{"}$ (3236 Å) est plus grande que la constante $B_0^{"}$ (3305 Å), ce qui est contraire à la règle générale de la décroissance de B lorsque v augmente. D'où :

<u>CONCLUSION n°1</u> : Le classement proposé par Barrow doit être modifié ; la bande 3236 Å appartient à un autre système électronique que les deux autres bandes et nous laissons provisoirement son étude de côté.

Si les bandes 3305 Å et 3378 Å sont respectivement les bandes 0-0 et 0-1 d'une même système comme le propose BARROW, il doit être possible de leur associer d'autres têtes moins intenses pour construire un tableau de Deslandres cohérent. Nous n'y sommes par parvenus^{*} et cela n'est pas étonnant : l'analyse de rotation montre en effet que la bande 3378 Å et la bande 0-0 (3305 Å) n'ont pas de niveau de vibration commun car leurs constantes de rotation sont assez nettement différentes. En particulier, la bande 3378 Å ne peut pas être la bande 0-1. Par contre, on verra (chap. V) que les valeurs des constantes suggèrent :

<u>CONCLUSION n°2</u> : La tête de bande située à 3378 Å est celle de la transition $v' = 1 \rightarrow v'' = 2$. On peut la classer dans le même système électronique que la tête 0-0 à 3305 Å

^{*} La plus satisfaisante de ces associations était de considérer que la tête observée à 3303,0Å correspondait à la tête 1-1 ; on en déduisait que la tête 1-0 se situait à 3233,0Å où elle aurait été masquée par une raie atomique intense du fer. Cependant, nous n'avons pas retenu cette hypothèse car elle ne permettait pas d'étendre valablement le tableau de Deslandres au delà de v'=1 et v"=1.

Afin de déterminer la nature de ce système électronique, nous ferons trois remarques qui découlent d'un examen direct des spectres :

a) La branche R de ces bandes est beaucoup moins intense que les branches P et Q. Le système est donc du type $\Delta \Lambda = \Lambda' - \Lambda'' = -1$.

b) La banche P (tout comme la branche Q) commence à partir de $J = \frac{9}{2}$. Le "zéro-gap" correspondant est nettement visible. Les bandes 3305 Å et 3378 Å sont donc des transitions $\Omega' = \frac{7}{2} \rightarrow \Omega'' = \frac{9}{2}$, par exemple

 ${}^{2}\Phi_{7/2} - {}^{2}\Gamma_{9/2}$, ${}^{4}\Delta_{7/2} - {}^{4}\Phi_{9/2}$, ${}^{6}\Pi_{7/2} - {}^{6}\Delta_{9/2}$, ou ${}^{8}\Sigma_{7/2} - {}^{8}\Pi_{9/2}$.

c) L'observation du spectre "basse excitation" de la séquence $\Delta v = 0$ révèle une structure sextuplet-sextuplet imbriquée dans la structure de vibration. D'où :

CONCLUSION n°3 : La transition étudiée est une transition ${}^{6}\Pi$ – ${}^{6}\vartriangle$

ETUDE THEORIQUE D'UNE TRANSITION ${}^{6}\Pi(a) - {}^{6}\Delta(a)$

A. ETUDE GENERALE DE LA STRUCTURE D'UN ETAT 6_{Δ}

A.I.1. Définition du hamiltonien et de la base.

Le hamiltonien total se décompose de la façon suivante :

 $H = H_{ev} + H_R + H_{SO} + H_{SS} + H_{SR} + H_D$

^H ev	=	hamiltonien	vibro-électronique
^H R	a	FF 11	de rotation
^H SO	=	11 II	spin-orbite
^H SS	=	11 11	spin-spin
^H SR	=	10 11	spin-rotation
H _D	=	13 \$1	de distorsion centrifuge.

La matrice du hamiltonien ainsi défini est construite dans la base formée par les vecteurs du cas (a) de HUND. Ces vecteurs s'écrivent : $|\Lambda S\Sigma$; $\Omega JM >$, avec les notations habituelles pour les moments angulaires rappelées dans le tableau suivant.

Timos do momento	Onóratouro	Nombres quantiques				
angulaires	operaceurs	Total	Projection sur un a xe galiléen	Projection sur l'axe internucléaire		
Orbital électronique	$\overrightarrow{\mathbf{L}}$	L	ML	. Δ		
Spin électronique	s	S	M _S	Σ		
de rotation	R	R	M _R	nulle		
total sans spin	$\vec{N} = \vec{R} + \vec{L}$	N	M _N	Λ		
total	$\vec{J} = \vec{R} + \vec{L} + \vec{S}$	J	М	$\Omega = \Lambda + \Sigma$		

- 9 -

Pour J donné, dans le cas d'un état ⁶ Δ , les vecteurs de base du cas (a) peuvent être notés sans ambiguité sous la forme $|\Sigma; \Omega > \text{ avec } \Omega = \Lambda + \Sigma$ et $\Lambda = \pm 2$, Σ variant de $-\frac{5}{2}$ à $+\frac{5}{2}$. En effectuant sur ces vecteurs une transformation de Kronig, nous obtenons une nouvelle base de douze vecteurs $|\Sigma; \Omega, \pm \rangle$

$$\begin{vmatrix} -\frac{5}{2}; & -\frac{1}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} -\frac{5}{2}; & -\frac{1}{2} \rangle \pm & |\frac{5}{2}; & \frac{1}{2} \rangle \end{vmatrix}$$
$$\begin{vmatrix} -\frac{3}{2}; & \frac{1}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} -\frac{3}{2}; & \frac{1}{2} \rangle \pm & |\frac{3}{2}; & -\frac{1}{2} \rangle \end{vmatrix}$$
$$\begin{vmatrix} -\frac{3}{2}; & \frac{1}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} -\frac{3}{2}; & \frac{1}{2} \rangle \pm & |\frac{3}{2}; & -\frac{1}{2} \rangle \end{vmatrix}$$
$$\begin{vmatrix} -\frac{1}{2}; & \frac{3}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} -\frac{1}{2}; & \frac{3}{2} \rangle \pm & |\frac{1}{2}; & -\frac{3}{2} \rangle \end{vmatrix}$$
$$\begin{vmatrix} \frac{1}{2}; & \frac{5}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} \frac{1}{2}; & \frac{5}{2} \rangle \pm & |-\frac{1}{2}; & -\frac{5}{2} \rangle \end{vmatrix}$$
$$\begin{vmatrix} \frac{3}{2}; & \frac{7}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} \frac{3}{2}; & \frac{7}{2} \rangle \pm & |-\frac{3}{2}; & -\frac{7}{2} \rangle \end{vmatrix}$$
$$\begin{vmatrix} \frac{5}{2}; & \frac{9}{2}, \pm \rangle = \frac{1}{\sqrt{2}} \quad \begin{vmatrix} \frac{5}{2}; & \frac{9}{2} \rangle \pm & |-\frac{5}{2}; & -\frac{9}{2} \rangle \end{vmatrix}$$

C'est cette nouvelle base symétrisée que nous utiliserons dans la suite de notre étude.

A.I.2. Action de l'opérateur de symétrie $\hat{\sigma}_v$ sur les vecteurs de base des différents états.

 $\hat{\sigma}_{\mathbf{v}}$ est l'opérateur de symétrie par rapport à un plan passant par les noyaux (7). D'après la notation de KOPP et HOUGEN (8), il convient d'affecter les niveaux d'un indice de symétrie e ou f suivant leur parité ; cette notation est ainsi définie :

	Niveau e	Niveau f
Etats de multiplicité paire	J-1/2 parité (-1)	parité - (-1; J-1/2
Etats de multiplicité impaire	parité (-1) ^J	parité -(-1) ^J

Comme nous le montrerons ultérieurement, seuls les états Δ , Π et Φ peuvent interagir avec l'état $^{6}\Delta$; nous nous sommes limités, dans ce chapitre, à l'action de $\hat{\sigma}_{V}$ sur ces états et nous avons représenté, dans le tableau suivant, la symétrie des différents niveaux pour des spins demi-entiers

	Vecteurs de base du type : Σ ; Ω , + >			Vecto du type	eurs de $z : \Sigma;$	base Ω, - >
	Etats			Etats		
	П	Δ	Φ	п	Δ	Φ
$S = 2k + \frac{1}{2}$		е			f	
$S = 2k - \frac{1}{2}$		£			e	

La phase des vecteurs est ici définie de telle sorte que

 $\hat{\sigma}_{v} | \mathbf{A} \mathbf{S} \Sigma; \Omega \mathbf{J} \mathbf{M} \rangle = (-1)^{-1} + \mathbf{S} - \Sigma - \Omega + \mathbf{J} - \Delta \mathbf{S} - \Sigma; -\Omega \mathbf{J} \mathbf{M} \rangle$

A.I.3. Calculs des éléments de matrice du hamiltonien H_R.

Au premier ordre, le hamiltonien de rotation est celui d'un rotateur rigide. Il s'écrit :

$$H_{R} = B[\vec{R}]^{2} = B\left[(J^{2} - J_{Z}^{2}) + (L^{2} - L_{Z}^{2}) + (S^{2} - S_{Z}^{2}) + (L^{+}S^{-} + L^{-}S^{+}) - (J^{+}L^{-} + J^{-}L^{+}) - (J^{+}S^{-} + J^{-}S^{+})\right]$$

Une représentation particulière de la matrice de H_R permet une décomposition en deux sous-matrices 6×6 (Table I), l'une relative aux combinaisons e des vecteurs de base, l'autre relative aux combinaisons f.

- 11 -

ETAT ⁶△ ISOLE MATRICE DU HAMILTONIEN DE ROTATION

-5, -1, +> $\left|-\frac{3}{2},\frac{1}{2},\pm\right>$ $\left| -\frac{1}{2}, \frac{3}{2}, \pm \right\rangle$ 212, # > $\frac{3}{2}, \frac{7}{2}, \pm >$ 2, 2, 4 > $-B\sqrt{5}\left[J(J+1) - \frac{63}{4}\right]^{1/2}$ 2, 2, + > $-B\sqrt{5}\left[J(J+1) - \frac{63}{4}\right]^{1/2} = B\left[J(J+1) - \frac{71}{4}\right]$ $-2/2 B \left[J(J+1) - \frac{35}{4} \right]^{1/2}$ $\left| \frac{2\sqrt{2} B \left[J(J+1) - \frac{35}{4} \right]^{1/2}}{B \left[J(J+1) - \frac{23}{4} \right]} \right| = \left| \frac{1}{2} \left[J(J+1) - \frac{23}{4} \right] \right|$ $\frac{3}{2}, \frac{7}{2}, \pm >$ $\left[-3B\left[J\left(J+1\right) -\frac{15}{4}\right] ^{1/2}$ 2, 2, + > $B\left[J\left(J+1\right)+\frac{9}{4}\right]$ $-2\sqrt{2} B \left[J(J+1) - \frac{3}{4} \right]^{1/2}$ $-3B\left[J(J+1) - \frac{15}{4}\right]^{1/2}$ $-\frac{1}{2}, \frac{3}{2}, \pm >$ $-2\sqrt{2} B \left[J (J+1) - \frac{3}{4} \right]^{1/2} \left[B \left[J (J+1) + \frac{25}{4} \right] \right]$ $-\sqrt{5} B \left[J (J+1) + \frac{1}{4} \right]^{1/2}$ -3, 1, + > $\left| -\sqrt{5} B \left[J (J+1) + \frac{1}{4} \right]^{1/2} \left| B \left[J (J+1) + \frac{25}{4} \right] \right|$ -21 -1, ± > $\frac{1}{8}\left[J(J+1) + \frac{9}{4}\right]$ 8115 ULU

- 12 -

TABLE

A.I.4. Action des opérateurs H_{SO}, H_{SS}, H_{SR}, H_D.

a) Interaction spin-orbite.

On peut, avec une bonne approximation, écrire le hamiltonien spin-orbite sous la forme d'une somme de hamiltonien monoélectronique $H_{SO} = \sum_{i} a_{i} \vec{\ell}_{i} \vec{s}_{i}$, c'est-à-dire en utilisant les opérateurs échelle

$$H_{SO} = \sum_{i} a_{i} \ell_{iZ} s_{iZ} + \frac{1}{2} \sum_{i} a_{i} \left(\ell_{i}^{+} s_{i}^{-} + \ell_{i}^{-} s_{i}^{+} \right)$$

avec Z l'axe internucléaire.

Dans chaque bloc matriciel correspondant à un état électronique donné, H_{SO} est diagonal et admet comme valeurs propres :

$$< \Lambda S \Sigma; \Omega J M, \pm | \Sigma a_i \ell_{iZ} s_{iZ} | \Lambda S \Sigma; \Omega J M, \pm > = A \Lambda \Sigma$$

b) Interaction spin-spin.

D'après HEISENBERG et JORDAN (9), le hamiltonien H_{SS} s'écrit :

$$\mathbf{H}_{SS} = \varepsilon \left[3S_{Z}^{2} - |\vec{s}|^{2} \right]$$

 ε est la constante d'interaction spin-spin. Dans la base choisie, seuls les éléments diagonaux sont non nuls, ils valent :

$$< \Sigma; \Omega, \pm |H_{SS}|\Sigma; \Omega, \pm > = \varepsilon \left[3 \Sigma^2 - S(S+1) \right]$$

c) Interaction spin-rotation.

VAN VLECK (10) a montré que l'opérateur d'interaction spin-rotation est égal à :

$$H_{SR} = \gamma_{N}' \left[\vec{J} \cdot \vec{S} - |\vec{S}|^{2} \right]$$

à un terme près qui peut être considéré comme inclus dans H_{SO}.

$$H_{SR} = \gamma_N^{\dagger} \left[J_Z S_Z - S^2 \right] + \frac{\gamma_N^{\dagger}}{2} \left[J^{\dagger} S^{-} + J^{-} S^{+} \right]$$

Ses éléments de matrice sont de la forme

- pour les éléments diagonaux :

$$<\Sigma; \Omega, \pm |\gamma'_{N}(J_{Z}S_{Z}-S^{2})|\Sigma; \Omega, \pm > = \gamma'_{N} \left[\Omega\Sigma - S(S+1)\right]$$

- pour les éléments non diagonaux :

$$<\Sigma; \ \Omega \ \left|\frac{\gamma_{N}'}{2} \left(J^{\pm}S^{\mp}\right) \right|\Sigma\pm1; \Omega\pm1> = \frac{\gamma_{N}'}{2} \left[J \left(J+1\right) - \Omega \left(\Omega\mp1\right)\right]^{1/2} \left[S \left(S+1\right) - \Sigma \left(\Sigma\mp1\right)\right]^{1/2}$$

d) Distorsion centrifuge.

D'après KOVACS (11), les éléments de matrice du hamiltonien de distorsion centrifuge sont :

$$\langle \Sigma; \Omega | H_{\rm D} | \Sigma; \Omega \rangle = -D \left\{ \begin{bmatrix} J (J+1) - \Omega^2 + S (S+1) - \Sigma^2 \end{bmatrix}^2 + 2 \begin{bmatrix} J (J+1) - \Omega^2 \end{bmatrix} \\ \begin{bmatrix} S (S+1) - \Sigma^2 \end{bmatrix} + 2\Omega \Sigma \right\}$$

$$\langle \Sigma; \Omega | H_{\rm D} | \Sigma \pm 1; \Omega \pm 1 \rangle = -2D \begin{bmatrix} J (J+1) - \Omega (\Omega \pm 1) + S (S+1) - \Sigma (\Sigma \pm 1) - 1 \end{bmatrix} \\ \begin{bmatrix} S (S+1) - \Sigma (\Sigma \pm 1) \end{bmatrix}^{1/2} \begin{bmatrix} J (J+1) - \Omega (\Omega \pm 1) \end{bmatrix}^{1/2}$$

$$\langle \Sigma; \Omega | H_{\rm D} | \Sigma \pm 2; \Omega \pm 2 \rangle = -D \left\{ \begin{bmatrix} S (S+1) - \Sigma (\Sigma \pm 1) \end{bmatrix} \begin{bmatrix} S (S+1) - (\Sigma \pm 1) (\Sigma \pm 2) \end{bmatrix} \\ \begin{bmatrix} J (J+1) - \Omega (\Omega \pm 1) \end{bmatrix} \begin{bmatrix} J (J+1) - (\Omega \pm 1) (\Omega \pm 2) \end{bmatrix} \right\}^{1/2}$$

La matrice d'énergie d'un état ${}^{6}\Delta$ isolé dans la base $|\Sigma; \Omega \pm \rangle$ est donnée dans la table II.

A.II. Interactions entre les états électroniques voisins et l'état $^{6}\Delta$.

Nous avons jusqu'à présent considéré l'état $^{6}\Delta$ comme indépendant des autres états; nous allons maintenant voir comment les éléments de matrice du hamiltonien sont modifiés quand on introduit les interactions entre l'état $^{6}\Delta$ et les états électroniques voisins.

			~ ••• ••• ••• •••	∧			13 2. F >	210 210 210 210
		21 10 10 10 10 10 10 10 10 10 10 10 10 10				$-2/10 \text{ b} \left[\left[J(J+1) - \frac{35}{4} \right]^{1/2} \left[J(J+1) - \frac{35}{4} \right]^{1/2} \right]$	$-\sqrt{5} \left[\mathbf{B} - \frac{\gamma_{\rm M}}{2} \right] \left[J_{1}(3+1) - \frac{63}{4} \right]^{1/2}$ $-2\sqrt{5} \mathbf{D} \left[\left[J_{1}(3+1) - \frac{47}{4} \right] \right]$ $\left[J_{1}(3+1) - \frac{63}{4} \right]^{1/2} \right]$	$ \begin{bmatrix} \mathbb{Z}_{0V} + \mathbb{B}\left[J(J+1) - \frac{71}{4}\right] \\ + \mathbb{S}_{n} + 10\varepsilon + \frac{5}{2}\gamma_{n}' \\ - b\left\{\left[J(J+1) - \frac{71}{4}\right] \\ + 5\left[J(J+1) - \frac{71}{4}\right] + \frac{45}{2}\right\} $
ETAT 6/0 ISOLE MATDICE DII HAMILTONIEN TOTAL		3, 3, 6 >			$-6\sqrt{2} \operatorname{D}\left[\left[J(3+1) - \frac{15}{4}\right]^{1/2} \left[J(3+1) - \frac{35}{4}\right]^{1/2}\right]$	$-\sqrt{2} \left[\mathbf{B} - \frac{\gamma_{\mathbf{A}}^{\mathbf{A}}}{2} \right] \left[J_{1}(J+1) - \frac{12}{4} \right]^{1/2}$ $-4\sqrt{2} \mathbf{D} \left[\left[J_{1}(J+1) - \frac{2}{4} \right] \\ \left[J_{1}(J+1) - \frac{3}{4} \right]^{1/2} \right]$	$\begin{aligned} \mathbb{E}_{0,v} + \mathbb{E} \left[J (J+1) - \frac{23}{4} \right] \\ + 3A - 2e + \frac{7}{2} \gamma_{i}^{k} \\ - D \left[\left[J (J+1) - \frac{43}{4} \right]^{2} \\ + 13 \left[J (J+1) - \frac{49}{4} \right] + \frac{21}{2} \right] \end{aligned}$	$-\sqrt{5}\left[B - \frac{1}{2}\right]\left[J\left(J+1\right) - \frac{63}{4}\right]^{1/2}$ $-2\sqrt{5} D\left[\left[J\left(J+1\right) - \frac{47}{4}\right]\right]$ $\left[J\left(J+1\right) - \frac{47}{4}\right]$
	ILTONIEN TOTAL	1 2 · 2 · e > .		$-6\sqrt{2} D\left[\left[J(J+1) - \frac{3}{4} \right]^{1/2} \right]$ $\left[J(J+1) - \frac{15}{4} \right]^{1/2}$	$\begin{bmatrix} -3\left[\mathbf{B} - \frac{\gamma_{\rm h}}{2}\right] \left[J_{1}(3+1) - \frac{15}{4} \right]^{1/2} \\ -60\left[\left[J_{1}(3+1) + \frac{17}{4} \right] \\ \left[J_{1}(3+1) - \frac{15}{4} \right]^{1/2} \end{bmatrix}$	$ \mathbf{E}_{\mathbf{e}_{\mathbf{v}}} + \mathbf{B} \left[J \left(J + 1 \right) + \frac{9}{4} \right] \\ + \mathbf{A} - \mathbf{B} \mathbf{c} + \frac{15}{2} \mathbf{v}_{\mathbf{N}}^{\mathbf{v}} \\ - \mathbf{D} \left\{ \left[J \left(J + 1 \right) + \frac{9}{4} \right]^{2} \\ + 17 \left\{ J \left(J \left(J + 1 \right) \right\} - \frac{25}{4} \right\} + \frac{5}{2} \right\} $	$-\sqrt{2} \left[B - \frac{\gamma \dot{H}}{2} \right] \left[J \left(J + 1 \right) - \frac{1}{4} \right]^{1/2}$ $-4\sqrt{2} D \left[\left[J \left(J + 1 \right) - \frac{\gamma}{4} \right] \\ \left[J \left(J + 1 \right) - \frac{\gamma}{4} \right]^{1/2} \right]^{1/2}$	$-2/\overline{10} D\left[\left[J(3+1) - \frac{35}{4} \right]^{1/2} \right]$ $\left[J(3+1) - \frac{63}{4} \right]^{1/2}$
	MATRICE DU HAM	-11 3. 2>	$-2\sqrt{10} p \left[\left[J(3+1) + \frac{1}{4} \right]^{1/2} \right]$ $\left[J(3+1) - \frac{3}{4} \right]^{1/2}$	$-2\sqrt{2} \left[B - \frac{\gamma_{0}^{1}}{2} \right] \left[J \left(J + 1 \right) - \frac{3}{4} \right]^{1/2}$ $-4\sqrt{2} D \left[\left[J \left(J + 1 \right) + \frac{25}{4} \right]$ $\left[J \left(J + 1 \right) - \frac{3}{4} \right]^{1/2} \right]$	$ \mathbb{E}_{0,\mathbf{V}} + \mathbb{E}\left[J(J+1) + \frac{25}{4}\right] \\ -\mathbf{A} - 8\varepsilon - \frac{19}{2}\gamma_{\mathbf{N}}^{\mathbf{N}} \\ -\mathbf{D}\left\{\left[J(J+1) + \frac{25}{4}\right]^{2} \\ +17\left[J(J+1) - \frac{21}{4}\right] - \frac{3}{2}\right\} $	$\begin{bmatrix} \sum_{r=1}^{r} \left[\frac{\mathbf{p}}{r} - (1+\Gamma) \mathbf{c} \right] \\ \left[\frac{\mathbf{p}}{r} + (1+\Gamma) \mathbf{c} \right] \end{bmatrix} \mathbf{q} \mathbf{q} \mathbf{c} - \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}$	ورا و المحافظ ا المحافظ المحافظ	
		- <u>3</u> , <u>1</u> , <u>8</u> >	$-\sqrt{5}\left(B - \frac{\gamma_{1}^{N}}{2}\right)\left[J_{2}(J+1) + \frac{1}{4}\right]^{1/2}$ $-2\sqrt{5} D\left[\left[J_{2}(J+1) + \frac{17}{4}\right]\right]$ $\left[J_{1}(J+1) + \frac{1}{4}\right]^{1/2}$	$B_{ev} + B \left[J (J+1) + \frac{25}{4} \right]$ -3A - 2c - $\frac{19}{2} Y_{i}^{V}$ -D $\left\{ J (J+1) + \frac{25}{4} \right\}^{2}$ +13 $\left[J (J+1) - \frac{1}{4} \right] - \frac{3}{2} \right\}$	$-2\sqrt{2}\left(B - \frac{\sqrt{4}}{2}\right)\left[J(J+1) - \frac{3}{4}\right]^{1/2}$ $-4\sqrt{2} D\left[\left[J(J+1) + \frac{25}{4}\right]$ $\left[J(J+1) - \frac{3}{4}\right]^{1/2}\right]$	$-6\sqrt{2} D\left[\left[J(3+1) - \frac{3}{4} \right]^{1/2} \left[J(3+1) - \frac{15}{4} \right]^{1/2} \right]$		
		- <u>5</u> , - <u>7</u> , ₹>	$ \begin{bmatrix} & B_{ev} + B\left[J(J+1) + \frac{9}{4} \right] \\ -5A + 10c - \frac{13}{2} \gamma_{h}^{1} \\ -D\left\{ \left[J(J+1) + \frac{9}{4} \right]^{2} \\ +5\left[J(J+1) + \frac{1}{4} \right] \end{bmatrix} $	$-\sqrt{5} \left[\mathbf{B} - \frac{\gamma_{\mathbf{N}}^{\mathbf{N}}}{2} \right] \left[\mathbf{J} \left(\mathbf{J} + 1 \right) + \frac{1}{4} \right]^{1/2}$ $-2\sqrt{5} \mathbf{D} \left[\left[\mathbf{J} \left(\mathbf{J} + 1 \right) + \frac{1}{4} \right] \right]$ $\left[\mathbf{J} \left(\mathbf{J} + 1 \right) + \frac{1}{4} \right]^{1/2} \right]$	$-2^{1}\overline{10} D\left[\left[J(3+1) + \frac{1}{4} \right]^{1/2} - \frac{1}{2} \left[J(3+1) - \frac{3}{4} \right]^{1/2} \right]$			

TABLE II.

BIIS

- 15 -

A.II.1. Interactions dues au hamiltonien de rotation.

Ce hamiltonien fait intervenir les opérateurs $L^+S^- + L^-S^+$, $J^+S^- + J^-S^+$, $J^+L^- + J^-L^+$ auxquels correspondent respectivement les règles de sélection :

$$\begin{cases} \Delta S = 0 \\ \Delta \Sigma = \pm 1 \\ \Delta \Omega = 0 \\ \Delta \Lambda = \pm 1 \end{cases}$$

$$\begin{cases} \Delta S = 0 \\ \Delta \Sigma = \pm 1 \\ \Delta \Omega = \pm 1 \\ \Delta \Lambda = 0 \end{cases}$$

$$\begin{cases} \Delta S = 0 \\ \Delta \Sigma = 0 \\ \Delta \Omega = \pm 1 \\ \Delta \Lambda = \pm 1 \end{cases}$$

$$\begin{cases} \Delta S = 0 \\ \Delta \Sigma = 0 \\ \Delta \Omega = \pm 1 \\ \Delta \Lambda = \pm 1 \end{cases}$$

A.II.2. Interactions dues au hamiltonien spin-orbite.

En utilisant l'expression du hamiltonien spin-orbite du paragraphe A.I.4, on constate que les seuls éléments de matrice non nuls sont de la forme :

$$< \Lambda S \Sigma; \Omega J M, \pm |a_{i} l_{iZ} s_{iZ}| \Lambda S \pm 1 \Sigma; \Omega J M, \pm >$$

$$< \Lambda S \Sigma; \Omega J M, \pm |a_{i} l_{i}^{\pm} s_{i}^{\mp}| \Lambda \mp 1 S \Sigma \pm 1; \Omega J M, \pm >$$

$$< \Lambda S \Sigma; \Omega J M, \pm |a_{i} l_{i}^{\pm} s_{i}^{\mp}| \Lambda \mp 1 S + 1 \Sigma \pm 1; \Omega J M, \pm >$$

$$< \Lambda S \Sigma; \Omega J M, \pm |a_{i} l_{i}^{\pm} s_{i}^{\mp}| \Lambda \mp 1 S - 1 \Sigma \pm 1; \Omega J M, \pm >$$

Il en résulte que les interactions dues au hamiltonien spinorbite obéissent à la règle générale $\Delta\Omega = 0$, avec :

soit $\Delta \Sigma = \Delta \Lambda = 0$ et $\Delta S = 0, \pm 1$ soit $\Delta \Lambda = \pm 1, \quad \Delta \Sigma = \mp 1$ et $\Delta S = 0, \pm 1$.

A.II.3. Calcul des éléments de matrice de couplage.

Les règles de sélection énoncées précédemment montrent que les états interagissant avec l'état $^{6}\Delta$ se partagent en deux groupes :

a) Le premier groupe rassemble les états de multiplicité différente de celle de l'état ${}^{6}\Delta$: ${}^{4}\Pi$ ${}^{4}\Delta$ ${}^{4}\Phi$ ${}^{8}\Pi$ ${}^{8}\Delta$ ${}^{8}\Phi$. Ces états

n'interagissent avec l'état ⁶A que par couplage spin-orbite ; les éléments

de matrice
$$< {}^{6}\Delta_{\Omega}^{e}$$
, $v|_{H_{SO}}|^{2S+1}\Lambda_{\Omega}^{e}$, $v' > \text{seront notés} \xi_{2S+1}^{e}$

b) Le second groupe comprend les états de même multiplicité que l'état ${}^{6}\Delta$: ${}^{6}\Pi$, ${}^{6}\Delta$, ${}^{6}\Phi$: Ces états interagissent avec l'état ${}^{6}\Delta$ à la fois par couplage spin-orbite et par l'intermédiaire du hamiltonien de rotation.

* Interactions ${}^{6}\Delta - {}^{6}\Pi_{i}$ et ${}^{6}\Delta - {}^{6}\Phi_{i}$

Les éléments matriciels de couplage $\Delta \Lambda = \pm 1$ relatifs au hamiltonien de rotation peuvent se mettre sous la forme :

$$A \left| < \Lambda \Sigma; \Omega \right| L^{+} \left| \Lambda - 1 \Sigma; \Omega > \pm < -\Lambda - \Sigma; \Omega \right| L^{-} \left| -\Lambda + 1 - \Sigma; -\Omega > \right|$$

où A caractérise l'action des opérateurs J^{\pm} , S^{\mp}

Par exemple, dans le cas du couplage ${}^{6}\Delta_{e} - {}^{6}\Pi_{e}$ nous obtenons : ou ${}^{6}\Delta_{f} - {}^{6}\Pi_{f}$

$$\mathbf{A} \left| < 2\Sigma; \Omega \left| \mathbf{L}^{+} \right| 1\Sigma; \Omega > + < -2 -\Sigma; -\Omega \left| \mathbf{L}^{-} \right| -1 -\Sigma, -\Omega > \right|$$

Pour le calcul des éléments de matrice, des simplifications sont apportées en faisant agir l'opérateur de symétrie $\hat{\sigma}_{v}$ sur chaque terme de l'élément. En effet, la valeur d'un élément de matrice reste inchangé lorsque les deux fonctions d'onde et l'opérateur qui le composent sont soumis à l'opération de symétrie $\hat{\sigma}_{v}$, ce qui se traduit par :

$$< 2\Sigma; \ \Omega | L^{+} | 1\Sigma; \ \Omega > = < \hat{\sigma}_{v} < 2\Sigma; \ \Omega | \left| \hat{\sigma}_{v} L^{+} \right| \hat{\sigma}_{v} | 1\Sigma; \ \Omega >>$$

Le moment cinétique étant un vecteur axial, on a :

$$\hat{\sigma}_{\mathbf{V}} \mathbf{L}^{\pm} = -\mathbf{L}^{\mp}$$

D'autre part :

$$\hat{\sigma}_{\mathbf{v}} | 2 \Sigma; \ \Omega > = (-1)^{\mathbf{J} - 1/2} | -2 -\Sigma; -\Omega >$$

$$\hat{\sigma}_{\mathbf{v}} | 1 \Sigma; \Omega > = -(-1)^{\mathbf{J} - 1/2} | -1 -\Sigma; -\Omega >$$

 $<2\Sigma; \Omega | L^{+} | 1\Sigma; \Omega > = <-2 -\Sigma; -\Omega | L^{-} | -1 -\Sigma; -\Omega >$

. On vérifie bien qu'il n'existe de couplages qu'entre vecteurs de même symétrie : une interaction e-f ou f-e ferait en effet apparaitre une différence de termes en L⁻ qui annulerait l'élément de matrice correspondant. Ce raisonnement reste valable pour les autres couplages. Quelle que soit l'interaction considérée, nous appliquerons donc le résultat précédent, à savoir qu'il n'existe d'interaction qu'entre vecteurs de même symétrie e ou f. D'autre part, tous les éléments de matrice du type $< \Lambda \Sigma$; $\Omega | L^+ | \Lambda - 1 \Sigma$, $\Omega >$ sont égaux entre eux puisqu'ils ne diffèrent que par les nombres quantiques Σ et Ω sur lesquels L⁺ n'agit pas. Dans la suite, ces éléments seront notés n et les coefficients $< \frac{6\Phi}{6\Pi}$, $\mathbf{v}' | \mathbf{B} | ^6 \Delta$, $\mathbf{v} >$: $\mathbf{B}_{vv'}$

* Interactions ${}^{6}\Delta - {}^{6}\Delta_{i}$

Le hamiltonien spin-orbite impose la règle de sélection $\Delta\Omega = 0$ qui, dans le cas présent s'écrit : $\Delta\Sigma = 0$. Nous pouvons en déduire que les éléments du hamiltonien spin orbite dans la matrice d'interaction sont diagonaux.

La contribution du hamiltonien de rotation au couplage se traduit par des éléments de matrice du type :

 $< {}^{6}\Delta; \Sigma; \Omega, \pm |H_r| {}^{6}\Delta_i; \Sigma; \Omega, \pm >$

Ces termes ont exactement la même forme que les éléments matriciels du hamiltonien de rotation de l'état ⁶ Δ isolé (Table I). La seule différence provient de la modification des paramètres B et ξ .

Toutes les matrices d'interaction entre l'état $^{6}\Delta$ et les états électroniques voisins sont données en annexe I.

A.II.4. Effets de l'interaction entre les états électroniques voisins de l'état $^{6}\Delta$.

Nous utiliserons la méthode des perturbations du second ordre appelée transformation canonique de VAN VLECK (12) afin de déterminer les éléments de la matrice perturbée. a) Corrections à apporter aux éléments de matrice par l'interaction ${}^{6}\Delta - {}^{6}\Delta_{i}$

Les coefficients $< {}^{6}\Delta_{, v|B|}{}^{6}\Delta_{i}, v' > et$ $< {}^{6}\Delta_{\Omega, v|H}{}_{SO}{}^{| 6}\Delta_{i_{\Omega, v}} v' > seront notés respectivement <math>B_{vv'}$ et $\zeta_{vv'\Omega}$. De plus, nous ferons abstraction du dénominateur qui, dans le cas du couplage ${}^{6}\Delta - {}^{6}\Delta_{i}$ considéré reste égal à $E({}^{6}\Delta, v) - E({}^{6}\Delta_{i}, v')$. Nous donnons ici à titre d'exemple la correction à apporter à l'élément de matrice H_{11} par l'interaction ${}^{6}\Delta_{i} - {}^{6}\Delta$:

 $B_{vv}^{2}, \left\{ \left[J(J+1) + \frac{9}{4} \right]^{2} + 5 \left[J(J+1) + \frac{1}{4} \right] \right\} + \xi_{vv', -1/2}^{2} + 2B_{vv'}, \xi_{vv', -1/2} \left[J(J+1) + \frac{9}{4} \right]$

Les autres éléments subissent des corrections du même genre.

En comparant les résultats obtenus aux éléments matriciels de l'état $^{6}\Delta$ isolé (table II), nous constatons qu'il est possible d'y inclure tous les termes calculés par la transformation de VAN VLECK en ne modifiant que les paramètres D, B et A qui deviennent des paramètres effectifs.

Nous verrons dans la suite de notre étude que les interactions avec les états autres que l'état ${}^{6}\Delta_{i}$ n'entrainent pas de correction sur D ; nous convenons donc dès à présent de remplacer D par :

$$D_{eff} = D \pm \sum_{i,v'} \frac{|\langle {}^{6}\Delta, v|B| {}^{6}\Delta_{i}, v' \rangle|^{2}}{E({}^{6}\Delta, v) - E({}^{6}\Delta_{i}, v')}$$

avec le signe - dans les éléments diagonaux et le signe + dans les éléments non diagonaux.

b) Forme générale de la matrice d'un état $^{6}\Delta$.

Les paragraphes précédents ont eu pour but d'établir les matrices des différents couplages possibles. Nous sommes à présent en mesure de calculer les éléments de matrice d'un état $^{6}\Delta$ en tenant compte de toutes les interactions. Nous donnons en annexe I, à titre d'exemple, le calcul de l'élément H_{11}^{e} de la matrice après transformation de VAN VLECK.

Dans les éléments diagonaux, nous convenons de regrouper tous les termes indépendants de J en un seul paramètre noté A_{Σ} afin de rappeler qu'il provient en majeure partie de l'interaction spinorbite diagonale; il contient en outre, les interactions spin-spin et spin-rotation diagonales, les termes indépendants de J provenant du hamiltonien de rotation et du hamiltonien de distorsion centrifuge, et des contributions spin-orbite d'ordre supérieur.

Cette simplification permet, par exemple, de mettre l'élément $\mathbf{H}_{11}^{,e}$ sous la forme :

$$H_{11}^{P} = E_{ev} + B_{eff} \left[J (J+1) \right] - D_{eff}^{-} \left[J (J+1) \right] \left[J (J+1) + \frac{19}{2} \right] - 5A_{-5/2}$$

avec $B_{eff} = B + \sum_{i,v'} \left\{ 2 \frac{\langle 6\Delta, v | B | 6\Delta_{i}, v' \rangle \langle 6\Delta_{-1/2}, v | H_{SO} | 6\Delta_{i,=1/2}, v' \rangle}{E(6\Delta, v) - E(6\Delta_{i}, v')} + \frac{\left| \langle 6\Delta, v | BL^{+} | 6\Pi_{i}, v' \rangle \right|^{2}}{E(6\Delta, v) - E(6\Delta_{i}, v')} + \frac{\left| \langle 6\Phi_{i}, v' | BL^{+} | 6\Delta, v \rangle \right|^{2}}{E(6\Delta, v) - E(6\Phi_{i}, v')} \right\}$

Les autres éléments de matrice s'obtiennent de la même façon ; notons d'ailleurs que tous les éléments de la sous-matrice e sont égaux aux éléments correspondants de la sous-matrice f.

Il est donc possible de donner à la matrice générale d'un état $^{6}\Delta$ une forme simple (Table III) comprenant un nombre réduit de paramètres effectifs, à savoir :

- un paramètre de rotation B_{eff}, le même pour tous les éléments diagonaux.

- cinq paramètres B non diagonaux légèrement différents du B unique des éléments diagonaux, car ils contiennent une part d'interaction spin-rotation et ne sont pas modifiés de la même façon par les interactions du second ordre.

-<u>5</u>, -<u>1</u>, 5 > -2, 2, 6 > -1.3.6 > 21.0 3, 7, 6 > $-D_{eff}^{-1}\left[J\left(J+1\right)\right]\left[J\left(J+1\right)-\frac{61}{2}\right]\left[\left|\frac{5}{2}, \frac{9}{2}, \frac{6}{4}\right|\right]$ $\left[J_{1}(J+1) - \frac{63}{4}\right]^{1/2}$ $-2\sqrt{5} D_{eff}^{+} \left[J_{1}(J+1) - \frac{47}{4} \right]$ $-B_{56}\sqrt{5}\left[J(J+1)-\frac{63}{4}\right]^{1/2}$ $\mathbf{B}_{ev} + \mathbf{B}_{eff} \left[\mathbf{J} (\mathbf{J}+\mathbf{I}) \right]$ 10 10 10 +5A5/2 $\left[J(J+1) - \frac{35}{4} \right]^{1/2}$ $\left[J(J+1) - \frac{63}{4} \right]^{1/2}$ $-D_{eff}^{-1}\left[J\left(J+1\right)\right]\left[J\left(J+1\right)+\frac{3}{2}\right]$ $-2\sqrt{2} B_{4,5} \left[J(J+1) - \frac{35}{4} \right]^{1/2}$ $-2\sqrt{5} D_{eff}^{+} \left[J(J+1) - \frac{47}{4} \right]$ $-4\sqrt{2} D_{eff}^{+} \left[\left[J(J+1) - \frac{7}{4} \right] \right]$ $-B_{56}\sqrt{5}\left[J(J+1)-\frac{63}{4}\right]^{1/2}$ 212, 5> +3A3/2 E + B f [J(J+1)] $-D_{eff}^{-1}\left[J\left(J+1\right)\right]\left[J\left(J+1\right)+\frac{43}{2}\right]$ $\left[3(3+1) - \frac{35}{4} \right]^{1/2}$ $\left[3(3+1) - \frac{15}{4} \right]^{1/2}$ $-2\sqrt{2} B_{4} S \left[J (J+1) - \frac{35}{4} \right]^{1/2}$ $-\tilde{\mathbf{D}}_{\mathbf{eff}}^{\mathsf{T}}\left[J\left(J+1\right)\right]\left[J\left(J+1\right)+\frac{59}{2}\right] - \tilde{\mathbf{D}}_{\mathbf{eff}}^{\mathsf{T}}\left[\left[J\left(J+1\right)+\frac{17}{4}\right]\right]$ $-4\sqrt{2} \ D_{eff}^{+} \left[\left[J (3+1) - \frac{7}{4} \right] \right]$ $-3B_{34}\left[J(J+1)-\frac{15}{4}\right]^{1/2}$ 21 21 $E_{ev} + B_{eff} \left[J \left(J+1 \right) \right]$ +A1/2 $\left[J\left(J+1\right) -\frac{3}{4}\right]^{1/2} \right]$ $\left[J\left(J+1\right) - \frac{15}{4}\right]^{1/2}$ $-2\sqrt{2} B_{23} \left[J(J+1) - \frac{3}{4} \right]^{1/2}$ $-4\sqrt{2} \ D_{eff}^{+}\left[\left[J\left(J+1\right) +\frac{25}{4}\right] \right]$ $\mathbb{E}_{ev} + \mathbb{B}_{eff} \left[J(J+1) \right]$ $-3B_{34}\left[J(J+1) - \frac{15}{4}\right]^{1/2}$ -1, 3, 6 > $-6 D_{eff}^{\dagger} \left[\left[J (J+1) + \frac{17}{4} \right] \right]$ -A-1/2 $\left[J\left(J+1\right) +\frac{1}{4}\right]^{1/2}$ $-D_{eff}^{-1}\left[J\left(J+1\right)\right]\left[J\left(J+1\right)+\frac{51}{2}\right]$ $-4\sqrt{2} D_{eff}^{+} \left[\left[J(3+1) + \frac{25}{4} \right] \right]$ $\left[J(3+1) - \frac{3}{4} \right]^{1/2} \right]$ $-\bar{\mathbf{D}}_{\mathbf{f}f}^{-1}\left[J(3+1)\right]\left[J(3+1)+\frac{19}{2}\right] -2\sqrt{5} \, \bar{\mathbf{D}}_{\mathbf{f}f}^{+1}\left[\left[J(3+1)+\frac{17}{4}\right]\right]$ $-\sqrt{5}$ B₁₂ $\left[J(J+1) + \frac{1}{4} \right]^{1/2}$ $-2\sqrt{2} B_{23} \left[J(J+1) - \frac{3}{4} \right]^{1/2}$ -2, 2, 6 > --3A.- 3/2 $\mathbf{E}_{\mathbf{v}} + \mathbf{B}_{\mathbf{eff}} \left[J \left(J + 1 \right) \right]$ $\left[J(J+1) + \frac{1}{4} \right]^{1/2}$ $-2\sqrt{5} D_{eff}^{+} \left[\left[J(J+1) + \frac{17}{4} \right] \right]$ $-\sqrt{5} B_{12} \left[J(J+1) + \frac{1}{4} \right]^{1/2}$ $\mathbb{E}_{ev} + \mathbb{B}_{eff} \left[J(J+1) \right]$ -5A-5/2 - 51 - 12. 4 > FILLE BILZ

MATRICE GENERALE D'UN ETAT δ_{Δ}

- 21 -

TABLE III.

- deux paramètres de distorsion centrifuge, un pour les termes diagonaux, un pour les termes non-diagonaux.

- six paramètres d'interaction spin-orbite A_{Σ} qui sont, en fait, des paramètres effectifs définis de telle sorte que l'énergie du niveau fictif J = 0 de la composante de projection de spin égale à Σ soit donnée par A_{Σ} $\Lambda \Sigma$, c'est-à-dire ici par $2A_{\Sigma} \Sigma$. Nous avons déjà remarqué précédemment qu'en plus de l'apport propre du hamiltonien spin-orbite (qui, considéré comme seul, conduirait à des constantes A_{Σ} égales pour toutes les composantes), les paramètres A_{Σ} contiennent tous les termes indépendants de J dans les éléments diagonaux.

B. ETUDE GENERALE DE LA STRUCTURE D'UN ETAT 6Π .

Nous avons effectué, pour un état ⁶II une étude analogue à celle décrite pour l'état ⁶ Δ dans le paragraphe A.

B.I. Forme générale de la matrice d'un état $^{6}\Pi$.

Nous présentons, dans l'annexe II, toutes les matrices relatives à l'état ${}^{6}\Pi$ dans la base de vecteurs du cas a de HUND sur lesquels nous avons effectué une transformation de Kronig afin d'obtenir la séparation des états pairs (e) et impairs (f).

On constate que si on ne considère que le bloc ${}^{6}\Pi$ isolé, la sous-matrice e est égale à la sous-matrice f comme dans le cas de l'état ${}^{6}\Delta$.

Au contraire, si on considère la matrice complète comportant non seulement l'état ⁶II, mais aussi les états électroniques voisins, on obtient une matrice légèrement différente pour les états pairs et pour les états impairs (Table IV). C'est cette différence qui explique le dédoublement Λ dans la composante $\Omega = \frac{1}{2}$ des états ⁶II.

B.II. DEDOUBLEMENT Λ DANS UN ETAT ⁶II.

Les matrices d'interaction données en annexe II montrent que le seul terme donnant un effet dissymétrique par perturbation du

		۲ ۳ ۳ ۳ ۳ ۳	^ 		۸ ۳۹ ۳۹	010 010	
3, 7, 2>	•		•		$-\sqrt{5} B_{56} \left[J(J+1) - \frac{35}{4} \right]^{1/2}$ $-2\sqrt{5} D_{6}^{+} g f \left[J(J+1) - \frac{39}{4} \right]$ $\left[J(J+1) - \frac{35}{4} \right]^{1/2}$	$ \begin{bmatrix} & \mathbf{E}_{\mathbf{e}\mathbf{v}} + \mathbf{B}_{\mathbf{e}\mathbf{f}\mathbf{f}} \begin{bmatrix} \mathbf{J}(\mathbf{J}+\mathbf{I}) \end{bmatrix} \\ & -\mathbf{D}_{\mathbf{e}\mathbf{f}}^{T} \begin{bmatrix} \mathbf{J}(\mathbf{J}+\mathbf{I}) \end{bmatrix} \begin{bmatrix} \mathbf{J}(\mathbf{J}+\mathbf{I}) - \frac{29}{2} \end{bmatrix} \\ & + \frac{5}{2} \mathbf{A} \mathbf{y} \mathbf{z} $	
<u>3</u> , <u>5</u> , 2 >				$-\sqrt{2} B_{4,5} \left[J (J+1) - \frac{15}{4} \right]^{1/2}$ $-4\sqrt{2} D_{0}^{+} f f \left[J (J+1) + \frac{13}{4} \right]$ $\left[J (J+1) - \frac{15}{4} \right]^{1/2}$	$B_{ev} + B_{eff} \left[J (J+1) \right]$ $- D_{eff} \left[J (J+1) \right] \left[J (J+1) + \frac{27}{2} \right]$ $+ \frac{1}{2} A_{y2}$	$-\sqrt{5} B_{56} \left[J(J+1) - \frac{35}{4} \right]^{1/2}$ $-2\sqrt{5} D_{6ff}^{+} \left[\left[J(J+1) - \frac{39}{4} \right]^{1/2} \right]$ $\left[J(J+1) - \frac{39}{4} \right]^{1/2} \right]$	
2, 3, 2 >			$-3\left[\left[B_{3},\pm q-(3+\frac{1}{2})\right]^{1/2}\right]$ $\left[J(3+1)-\frac{3}{4}\right]^{1/2}\right]$ $-p_{eff}^{+}\left[\left[J(3+1)+\frac{29}{4}\right]^{1/2}\right]$ $\left[J(3+1)+\frac{29}{4}\right]$	$E_{ev} + B_{eff} \left[J(J+1) \right]$ $- D_{eff} \left[J(J+1) \right] \left[J(J+1) + \frac{59}{2} \right]$ $+ \frac{1}{2} A_{1/2}$	$-\sqrt{2} B_{4,5} \left[2J \left(J + 1 \right) - \frac{15}{4} \right]^{1/2}$ $-4\sqrt{2} D_{0}^{+} E E \left[\left[J \left(J + 1 \right) + \frac{15}{4} \right]^{1/2} \right]$ $\left[J \left(J + 1 \right) - \frac{15}{4} \right]^{1/2} \right]$	-	2
-2, 2, 6 >		$-\sqrt{2} \ B_{2,3} \left[J + \frac{1}{2} \right] \pm 0$ $-4\sqrt{2} \ D_{\phi}^{+} g g \left[\left[J \left(J + 1 \right) + \frac{29}{4} \right]$ $\left[J + \frac{1}{2} \right] \right]$	$E_{ev} + B_{eff} \left[J(J+1) \right] \pm \frac{1}{2} P J$ $- D_{eff} \left[J(J+1) \right] \left[J(J+1) + \frac{67}{2} \right]$ $- \frac{1}{2} A_{eff}^{f} I/2$	$-3\left[\left[B_{34} \pm q (3 + \frac{1}{2})\right] \\ \left[J_{3}(3+1) - \frac{3}{4}\right]^{1/2} \\ -D_{6} \epsilon E\left[\left[J_{3}(3+1) + \frac{3}{4}\right]^{1/2}\right] \\ \left[J_{3}(3+1) - \frac{3}{4}\right]^{1/2} \right]$		·	TABI
- <u>3</u> , - <u>1</u> , 2 >	$-\sqrt{5} \ \mathbf{D}_{12} \left[\mathbf{J} \left(\mathbf{J} + 1 \right) - \frac{3}{4} \right]^{1/2}$ $-2\sqrt{5} \ \mathbf{D}_{0}^{+} \mathbf{f} \mathbf{f} \left[\left[\mathbf{J} \left(\mathbf{J} + 1 \right) + \frac{13}{4} \right] \right]$ $\left[\mathbf{J} \left(\mathbf{J} + 1 \right) - \frac{3}{4} \right]^{1/2} \right]$		$-\sqrt{2} B_{23} \left[J + \frac{1}{2} \right] \pm 0$ -4/2 $D_{eff}^{+} \left[\left[J (3+1) + \frac{29}{4} \right]$ $\left[J + \frac{1}{2} \right] \right]$				
- 2, -3, 4 >	$\mathbf{E}_{0} + \mathbf{E}_{0} \mathbf{f} \mathbf{f} \left[\mathbf{J} (3+1) \right]$ $-\mathbf{D}_{0}^{-} \mathbf{f} \mathbf{f} \left[\mathbf{J} (3+1) \right] \left[\mathbf{J} (3+1) + \frac{11}{2} \right],$ $-\frac{5}{2} \mathbf{A}_{-} \mathbf{y} 2$	$-\sqrt{5} B_{12} \left[J(3+1) - \frac{3}{4} \right]^{1/2}$ $-2\sqrt{5} D_{eff}^{+} \left[\left[J(3+1) + \frac{13}{4} \right] \right]$ $\left[J(3+1) - \frac{3}{4} \right]^{1/2} \right]$					BUS Unit

MATRICE GENERALE D'UN ETAT ⁶II

- 23 -

TABLE IV.

second ordre sur les sous-niveaux e et f d'un état ${}^{6}\Pi$ apparait dans la matrice d'interaction.

$${}^{6}\Sigma^{\pm} - {}^{6}\Pi$$
 pour l'élément $< {}^{6}\Pi_{1/2} \stackrel{e}{f} |H| {}^{6}\Sigma_{1/2} \stackrel{e}{f} >$

(Les couplages ${}^{6}\Sigma^{\pm} - {}^{6}\Pi$, ${}^{4}\Sigma^{\pm} - {}^{6}\Pi$, ${}^{8}\Sigma^{\pm} - {}^{6}\Pi$ introduisent aussi des effets dissymétriques mais sur les éléments non-diagonaux H₂₃, H₃₄, ce qui conduit à des effets de troisième ordre dont nous ne tiendrons pas compte).

Si les états ${}^{6}\Sigma^{\pm}$ sont suffisamment éloignés de l'état ${}^{6}\Pi$, on peut écrire que les corrections à apporter aux niveaux ${}^{6}\Pi^{e}_{1/2}$ et ${}^{6}\Pi^{f}_{1/2}$ sont :

pour le niveau
$${}^{6}\Pi_{1/2}^{e}$$
: Σ
i,v' $\frac{\left[\pm \xi_{6\Sigma_{1/2}^{\pm}} \pm 3B_{vv}, n - B_{vv}, n\left(J + \frac{1}{2}\right)\right]^{2}}{E({}^{6}\Pi, v) - E({}^{6}\Sigma_{1}^{\pm}, v')}$

pour le niveau
$${}^{6}\Pi_{1/2}^{f}$$
: Σ
i,v' $\frac{\left[\mp \xi_{6\Sigma^{\pm}} \mp 3B_{vv'}, n - B_{vv'}, n \left(J + \frac{1}{2}\right) \right]^{2}}{E({}^{6}\Pi, v) - E({}^{6}\Sigma^{\pm}_{i}, v')}$

Le dédoublement A s'écrit comme la différence : ${}^{6}\Pi_{1/2}^{e} - {}^{6}\Pi_{1/2}^{f}$, c'est-àdire, dans le cas présent :

$$\Delta v_{ef} = \sum_{i,v'} \overline{\tau} \frac{4B_{vv'} \eta \left[J + \frac{1}{2}\right] \left[\xi_{6\Sigma^{\pm}} + 3B_{vv'} \eta\right]}{E(^{6}\Pi, v) - E(^{6\Sigma^{\pm}}_{i}, v')}$$

On constate que le dédoublement Λ dans le niveau ${}^{6}\Pi_{1/2}$ est proportionnel à $J + \frac{1}{2}$. Il n'existe pas de dédoublement Λ dans les autres composantes (du moins lorsqu'on se limite aux effets du second ordre).

Dans la matrice générale d'un état ${}^{6}\Pi$, nous avons utilisé les notations [inspirées de (13)] :

$$\mathbf{p} = \sum_{\mathbf{i},\mathbf{v}'} \frac{\mp 2 \left[\boldsymbol{\xi}_{6\Sigma^{\pm}} + 3\mathbf{B}_{\mathbf{v}\mathbf{v}'} \,^{\eta} \right] \mathbf{B}_{\mathbf{v}\mathbf{v}'} \,^{\eta}}{\mathbf{E} (^{6}\Pi, \mathbf{v}) - \mathbf{E} (^{6}\Sigma^{\pm}_{\mathbf{i}}, \mathbf{v}')}$$

$$o = \sum_{i,v'} \pm \left\{ \frac{\left\{ \xi_{4\Sigma_{i,-1/2}}^{\pm} : \xi_{4\Sigma_{i,1/2}}^{\pm} + \frac{\xi_{8\Sigma_{i,-1/2}}^{\pm} : \xi_{8\Sigma_{i,-1/2}}^{\pm} \right\}}{E^{(6\Pi, v) - E^{(4\Sigma_{i,v'})}} + \frac{\left[\xi_{6\Sigma_{i,-1/2}}^{\pm} : \xi_{8\Sigma_{i,-1/2}}^{\pm} : \xi_{8\Sigma_{i,-1/2}}^{\pm} \right]}{E^{(6\Pi, v) - E^{(8\Sigma_{i,v'})}}} \right\} + \frac{\left[\xi_{6\Sigma_{i,-1/2}}^{\pm} : + 2\sqrt{2} : B_{vv'} : n \right] \left[\xi_{6\Sigma_{i,-1/2}}^{\pm} : + 3B_{vv'} : n \right]}{E^{(6\Pi, v) - E^{(6\Sigma_{i,v'})}}} \right\}$$

$$q = \sum_{i,v'} \pm \frac{B_{vv'}^2 n^2}{E(^{6}\Pi, v) - E(^{6}\Sigma_i^{\pm}, v')}$$

Dans l'élément diagonal H_{33} , la correction indépendante de J due au couplage ${}^{6}\Pi - {}^{6}\Sigma^{\pm}$ est introduite dans le terme $A_{-1/2}$.

C. TRANSITION $^{6}\Pi(a) - ^{6}\Delta(a)$

Il résulte de la règle de sélection $\Delta \Sigma = 0$ caractérisant une transition entre deux états appartenant au cas (a) de HUND qu'il existe pour chaque séquence v'-v" d'une transition ${}^{6}\Pi - {}^{6}\Delta$ six sous-bandes :

$${}^{6}\Pi_{7/2} - {}^{6}\Delta_{9/2}$$
, ${}^{6}\Pi_{5/2} - {}^{6}\Delta_{7/2}$, ${}^{6}\Pi_{3/2} - {}^{6}\Delta_{5/2}$, ${}^{6}\Pi_{1/2} - {}^{6}\Delta_{3/2}$,
 ${}^{6}\Pi_{-1/2} - {}^{6}\Delta_{1/2}$, ${}^{6}\Pi_{-3/2} - {}^{6}\Delta_{-1/2}$.

D'autre part, l'ensemble des branches relatives à chacune des transitions ${}^{6\Pi}_{\Omega',v'} - {}^{6}\Delta_{\Omega'',v''}$ s'obtient à l'aide des règles de

- 25 -

sélection (14) :

 $\Delta J = 0, \pm 1, + \leftrightarrow -$

Rappelons que pour des états de multiplicité paire, les niveaux de symétrie e et les niveaux de symétrie f correspondent respectivement aux parités : $(-1)^{J-1/2}$ et $-(-1)^{J-1/2}$ (cf. paragraphe III.A.I.2). Nous pouvons en déduire qu'un niveau e est :

- pair (noté +) pour $J = 2k + \frac{1}{2}$ (le niveau f est alors impair) - impair (noté -) pour $J = 2k - \frac{1}{2}$ (le niveau f est alors pair)

Compte tenu des règles de sélection énoncées précédemment, il existe pour une transition ${}^{6}\Pi - {}^{6}\Delta$ 36 branches (6 pour chaque sousbande, voir fig. 2) notées selon l'usage P_{i} , Q_{i} , R_{i} , suivant que $\Delta J = J' - J''$ est égal à -1, 0 ou +1. L'indice i précise la numérotation des termes spectraux. Dans la notation habituelle, l'indice le plus faible correspond à la composante Σ de plus basse énergie. Enfin, en exposant, nous notons la symétrie (e ou f) du niveau supérieur et du niveau inférieur de la transition.

Il ressort de notre étude sur la structure générale des états ${}^{6}\Delta$ et ${}^{6}\Pi$ (§ III-A et § III-B) que pour chaque composante Σ d'un état isolé les niveaux d'énergie correspondant à une valeur de J donnée sont dégénérés (dégénérescence d'ordre 2 : un niveau + et un niveau -). Or la levée de dégénérescence qui apparaît lorsqu'on tient compte de l'interaction avec les états électroniques voisins n'existe (cf. § III-B) que pour la composante ${}^{6}\Pi_{1/2}$. Par conséquent, nous obtenons, dans chaque sous-bande d'une transition ${}^{6}\Pi - {}^{6}\Delta$, trois branches dont les nombres d'onde sont donnés par :

$$R_{i}(J) = v_{0} + F_{i}'(J+1) - F_{i}''(J)$$

$$Q_{i}(J) = v_{0} + F_{i}'(J) - F_{i}''(J)$$

$$P_{i}(J) = v_{0} + F_{i}'(J-1) - F_{i}''(J)$$

Dans la transition ${}^{6}\Pi_{1/2} - {}^{6}\Delta_{3/2}$ chaque raie des branches R₄, Q₄, et P₄ est dédoublée et l'écart entre les deux composantes augmente avec J puisqu'il est proportionnel à J + $\frac{1}{2}$ (cf. § III-B-II).

- 27 -

A. GENERALITES

Nous avons pu analyser quatre bandes de FeF.

(1)	bande	3378,7	Å	:	⁶ П _{7/2} ,	v' = 1>	$^{6}\Delta_{9/2}$, $v^{H} = 2$
(2)	banđe	3305,5	Å	:	⁶ П7/2 ,	v' = 0	$^{6}\Delta_{9}i_{2}$, v" = 0
(3)	bande	3303	Å	:	⁶ П ₅₇₂ ,	$\mathbf{v}^* = 0 \longrightarrow$	$^{6}\Delta_{7/2}$, v ["] = 0
(4)	bande	3236,4	Å	:	$^{6}\Phi_{1/2}$,	$\mathbf{v}' = 0 \longrightarrow$	$^{6}\Delta_{-1/2}$, v" = 0

L'attribution des bandes (1) et (2) a été justifiée antérieurement (cf. ch.II). Celle de la bande (3) provient de sa proximité et de sa ressemblance avec la bande (2) avec, en plus, l'observation d'une première raie P correspondant à $J = \frac{7}{2}$. Enfin, l'attribution de la bande (4) sera justifiée dans la partie théorique (cf. 2^{ème} partie).

Ces bandes sont dégradées vers le violet, ce qui indique que B' est plus grand que B". Les têtes observées sont donc des têtes P. Les bandes présentent une branche Q bien développée. Dans les bandes (1), (2) et (3), la branche R est très peu intense. Au contraire, dans la bande (4), c'est la branche P qui semble moins intense que la branche R ; cette observation est en accord avec notre attribution de cette bande à une transition $\Delta \Lambda = \Lambda' - \Lambda'' = +1$.

Dans une molécule aussi lourde que FeF et pour des états $\Lambda \neq 0$, on peut s'attendre à un effet spin-orbite important et à des constantes de rotation faibles. Nous avons donc adopté comme hypothèse de travail que les états des transitions étudiées appartiennent au cas (a) de Hund. Cette hypothèse est bien en accord avec l'aspect du spectre. Cependant, pour des niveaux de rotation assez élevés (J de

l'ordre de 50), l'effet du découplage du spin par la rotation doit commencer à se faire sentir en même temps qu'augmente la distorsion centrifuge. Nous n'avons pas eu à prendre en compte ces deux effets car les portions exploitables de nos bandes se limitent à des J assez faibles. Par conséquent, nous supposerons que, pour chaque composante spin-orbite, les niveaux de rotation d'un état vibronique donné obéissent à une relation :

$$E_{rot}^{eff}(J) = B_{v,\Omega}^{o} J^{(J+1)}$$

Dans ces conditions, les nombres d'onde des raies des différentes branches sont donnés par :

> branche P : $v = v_0 - (B' + B'')J + (B' - B'')J^2$ branche Q : $v = v_0 + (B' - B'')J(J+1)$ branche R : $v = v_0 + 2B' + (3B' - B'')J + (B' - B'')J^2$

Les paramètres expérimentaux v_0 et (B'-B'') ont été déterminés par une méthode de moindres carrés appliquée aux raies des branches Q. L'écart type sur les paramètres ainsi obtenus est très sensible à la numérotation choisie. Il permet donc de fixer cette numérotation sans ambiguité. Nous avons utilisé une méthode analogue pour déterminer en plus (B'+B'') à partir des nombres d'onde des raies des branches P. Nous avons ensuite comparé les résultats obtenus à ceux déduits des relations de combinaison entre branche P et branche Q. Ces relations de combinaison qui permettent d'obtenir la numérotation des raies P et de connaître individuellement B' et B'' pour en déduire ainsi (B'+B'') et (B'-B''), sont, en négligeant la distorsion centrifuge :

> Q(J) - P(J) = 2B'JQ(J) - P(J+1) = 2B''(J+1)

De plus, dans les bandes (2) et (4), nous avons pu utiliser les relations de combinaison qui mettent en jeu la branche R. $R(J_{j}^{*} - P(J) = 4B' (J + \frac{1}{2})$ $R(J-1) - P(J+1) = 4B'' (J + \frac{1}{2})$ R(J) - Q(J+1) = 2B'' (J+1) R(J) - Q(J) = 2B' (J+1) $R(J) + P(J) = 2v_{0} + 2B' + 2(B' - B'') J (J+1)$

ce qui nous a permis de vérifier la numérotation choisie et de confirmer les valeurs trouvées pour les différentes constantes.

Bien que l'incertitude absolue sur les nombres d'onde des raies soit de quelques cm⁻¹ comme nous l'avons vu au chapitre I, on peut néanmoins obtenir une précision meilleure sur les différences entre les nombres d'onde des raies d'un même spectre puisque ces différences éliminent les erreurs systématiques.

Notons encore qu'en général la précision sur les nombres d'onde des raies d'une branche Q est meilleure que celle que l'on peut atteindre pour les raies d'une branche P dans laquelle le retour de la branche cause souvent la formation de doublets (pas toujours résolus) avec les premières raies.

L'incertitude sur les paramètres expérimentaux sera précisée lors de l'étude de rotation de chacune des bandes du spectre de Fe F. Nous remarquerons seulement que la basse température de la source limite le nombre de raies observables et par suite la précision obtenue sur les paramètres.

B. ANALYSE DE LA STRUCTURE DE ROTATION DE LA BANDE $\lambda = 3305, 5$ Å ${}^{6}\Pi_{7/2}, v' = 0 \longrightarrow {}^{6}\Delta_{9/2}, v'' = 0.$

La bande ${}^{6}\Pi_{7/2}$, $v' = 0 \longrightarrow {}^{6}\Delta_{9/2}$, v'' = 0 est comme nous l'avons déjà précisé la bande la plus intense des systèmes ultra-violets de FeF. Les spectres à grande dispersion ont été obtenus à l'aide du spectrographe à réseau, dans le quatrième ordre ou dans le troisième ordre selon l'intensité de fonctionnement de la lampe. La dispersion inverse aux environs de 3300 Å est alors de :

- 0,3 Å/mm dans le quatrième ordre.
- 0,5 Å/mm dans le troisième ordre.

Un spectre obtenu à forte intensité (de l'ordre de 200 mA) de fonctionnement de la lampe (fig. 3A) révèle, dans la branche P, la présence de doublets bien résolus dans le quatrième ordre.

Une faible intensité (de l'ordre de 50 mA) permet d'éliminer les raies correspondant à des valeurs de J élevées ; la comparaison du spectre obtenu dans ces conditions (fig. 3B) et de celui réalisé à forte intensité (fig. 3A) permet d'identifier dans chaque doublet la raie de J faible et la raie de J élevé puisque cette dernière n'apparaît plus dans le spectre à faible intensité.

Les nombres d'onde des raies figurent dans la table V.

La numérotation des raies des différentes branches est donnée sur la figure 3A. On constate que la première raie P correspond bien à $J = \frac{9}{2}$. De la branche R très peu intense, nous n'avons pu repérer que quelques raies.

PARAMETRES	MOINDRES CARRES	RELATIONS DE COMBINAISON
$B'_{(6\Pi_{7/2},v'=0)} - B''_{(6\Delta_{9/2},v''=0)}$	$(0,01535 \pm 2 10^{-5})$ cm ⁻¹	$(0,015_4 \pm 0,002)$ cm ⁻¹
$B'_{(6H_{7/2},v'=0)} - B''_{(6\Delta_{9/2},v''=0)}$	$(0,759_7 \pm 0,002)$ cm ⁻¹	$(0,760 \pm 0,002) \text{ cm}^{-1}$
ν _o	(30252,857± 0,01) cm ⁻¹	
$B'_{6\Pi_{7/2},v'=0}$	(0,387 ₅ ± 0,001) cm ⁻¹	$(0,387_5 \pm 0,001)$ cm ⁻¹
$B_{(6\Delta_{9/2},v^{n}=0)}^{m}$	(0,372 ₂ ± 0,001) cm ⁻¹	$(0,372_1 \pm 0,001) \text{ cm}^{-1}$

- 31 -

ፈ

NOMBRES D'ONDE DES RAIES DE LA BANDE ⁶ $\Pi_{7/2}$, $\nu' = 0 \rightarrow {}^{6}\Delta_{9/2}$, $\nu'' = 0$

BRANCHE Q1

BRANCHE P1

BRANCHE R1

J	vmesuré	vcalculé	J	v mesuré	vcalculé	J	vmesuré	^v calculé
4,5	30253,23	30253,24	4,5	30249,72	30 249,75	4,5	30257,55	30257, 50
5,5	253,41	253,41	5,5	249,01		5,5	258,39	258,44
6,5	253,60	253,61	6,5	248,55	248,57	6,5	259,45	259,42
7,5 [.]	253,81	253,84	7,5	248,00	248,02	7,5	260,44	260,42
8,5	254,13	254,10	8,5	247,48	247,51	8,5	261,38	26 1,46
9,5	254,38	254,39	9,5	246,99	247,03	9,5	262,58	262,53
10,5	254,70	254,71	10,5	246,57	246,57	10,5	263,73	26 3,62
11,5	255,06	255,06	11,5	246,14	246,15	11,5		264,75
12,5	255,46	255,45	12,5	245,76	245,76	12,5	265,95	265,91
13,5	255,88	255,86						
14,5	256,30	256,31						
15,5	256,79	256,78	24,5	243,5	243,46			
16,5	257,29	257,29						
17,5	257,82	257,83						
18,5	258,39	258,39	36,5	245,80	245,58			
19,5	259,00	258,99	37,5	246,21	245,95			
20,5	259,63	259,62	38,5	246,63	246,36			
21,5	260,28	260,28	39,5		246,80			
22,5	260,96	260,97	40,5	247,60	247,27			
23,5		261,69	41,5	248,09	247,77			
24,5	262,43	262,44	42,5	248,65	248,30			
25,5	263,24	263,23	43,5	249,28	248,86			
26,5	264,05	264,04	44,5	249,88	249,45			
27,5	264,89	264,89	45,5	250,54	250,07			
28,5	265,77	265,76	46,5	251,20	250,72			
29,5	266,66	266,67	47,5	251,93	251,40			
30,5	267,59	267,60	48,5	252,64	252,12			
31,5	268,59	268,57	49,5	253,41	252,86			
32,5	269,63	269,57	50,5	254,20	253,64			
33,5	270,51	270,60	51,5	255,06	254,44			
34,5	271,58	271,66	52,5	255,88	255,28			
35,5	272,67	272,75	53,5	256,79	256,15			
36,5	273,76	273,87	54,5		257,05			
37,5	274,90	275,02	55,5	258,69	257,98			
38,5	276,06	276,20						
39,5	277,25	277,41						
40,5		278,66						
41,5	279,71	279,93						
42,5	280,98	281,24						BUS
43,5	282,28	282,57						Luna

On constate en examinant le tableau ci-dessus que les résultats obtenus par la méthode des moindrés carrés, sont en accord avec ceux déduits des relations de combinaison et que si le paramètre (B' - B'') est connu avec une excellente précision grâce aux mesures de la branche Q, les constantes B' et B'' ne sont déterminées qu'au millième de cm⁻¹ étant donnée la grande incertitude sur (B' + B'').

La détermination des constantes a été faite à partir des raies jusqu'à J de l'ordre de 30. Les raies de J plus élevées ont alors pu être repérées en calculant leur position par extrapolation (Table V). Cependant, pour ces dernières raies, il existe un décalage entre les valeurs des nombres d'onde mesurés et calculés. Ce décalage est dû à la distorsion centrifuge. Nous n'avions toutefois pas assez de raies pour en déduire valablement les paramètres D' et D" car leur détermination exacte nécessite l'observation de raies de J encore plus élevés. Nous ne donnons donc ici qu'une estimation de l'ordre de grandeur des paramètres associés : D' + D" $\simeq 3.10^{-6}$ cm⁻¹; D' - D" $\simeq 6.10^{-8}$ cm⁻¹.

C. ANALYSE DE LA STRUCTURE DE ROTATION DE LA BANDE $\lambda = 3378, 7$ Å ${}^{6}\Pi_{7/2}$, $\mathbf{v'} = 1 \longrightarrow {}^{6}\Delta_{9/2}$, $\mathbf{v''} = 2$

Le spectre de la bande ${}^{6}\Pi_{7/2}$, $v'=1 \rightarrow {}^{6}\Delta_{9/2}$, v''=2 a été obtenu à l'aide du spectrographe à réseau dans le troisième ordre pour une intensité de fonctionnement de la lampe de 200 mA et pour une différence de potentiel de l'ordre de 1200 volts (fig. 4).

La faible intensité de cette bande comparée à celle de la bande (2) ne nous a pas permis de réaliser un spectre à faible intensité qui aurait nécessité un temps de pose trop long.

La numérotation des raies est donnée sur la figure 4. Nous n'avons pu, sur cette bande, repérer la branche R trop peu intense. L'examen du spectre nous fait constater qu'ici encore la première raie observée dans chaque branche correspond à $J = \frac{9}{2}$. Les nombres d'onde des raies figurent dans la table VI et les constantes de rotation sont

1

- 35 -

NOMBRES D'ONDE DES RAIES DE LA BANDE ${}^{6}\Pi_{7/2}$, $\nu' = 1 \rightarrow {}^{6}\Delta_{9/2}$, $\nu'' = 2$

BRANCHE Q1

BRANCHE P1

J	vmesuré	[√] calculé	J	vmesuré	Vcalculé
4,5	29596,85	29596,82	4,5	29593,38	29593,38
5,5		597,02`	5,5	592,86	592,81
6,5	597,26	597,25	6,5	592,29	592,28
7,5	597,53	597,52	7,5	591,81	591,78
8,5	597,75	597,82	8,5	591,31	591,31
9,5	598,26	598,16	9,5	590,94	590,89
10,5	598,54	598,54	10,5	590,51	590,50
11,5	598,94	598,95	11,5	590,15	590,14
12,5	599,36	599,39	12,5	589,83	589,82
13,5	599,89	599,87			
14,5	600,38	600,38	20,5	tête à	588,54
15,5	600,96	600,94	21,5	29588,50	588,54
16,5	601,52	601,53			
17,5	602,15	602,15	32,5	590,94	590,89
18,5	602,84	602,81	33,5	591,31	591,31
19,5	603,49	603,50	34,5	591,81	591,78
20,5	604,26	604,24	35,5	592,29	592,28
21,5	605,00	605,00	36,5	592,86	592,81
22,5	605,80	605,80	37,5	593,38	593,38
23,5	606,65	606,64	38,5	594,02	593,99
24,5	607,48	607,51	39,5	594,66	594,63
25,5		608,42	40,5		595,30
26,5		608,36	41,5	596,18	596,02
27,5	610,33	610,34	42,5	596,85	596,76
28,5	611,37	611,36	43,5	597,53	597,55
29,5		612,41			
30,5		613,43			
31,5	614,68	614,62			
32,5	615,76	615,78			
33,5	616,97	616,97			

TABLE VI.

rassemblées dans le tableau suivant :

PARAMETRES	MOINDRES CARRES	RELATIONS DE COMBINAISON
$B'_{6\Pi_{7/2}}, v'=1) = B''_{6\Delta_{3/2}}, v''=2)$	$(0,01781 \pm 510^{-5})$ cm ⁻¹	$(0,017_{\rm h} \pm 0,002) {\rm cm}^{-1}$
$B'_{6\Pi_{7/2}}, v'=1) = B''_{6\Delta_{3/2}}, v''=2)$	$(0,748 \pm 0,002) \text{ cm}^{-1}$	$(0,747 \pm 0,002)$ cm ⁻¹
νο	$(29596, 38_5 \pm 0, 01)$ cm ⁻¹	1997 - 1 997 - 1997 -
$B'_{6\Pi_{7/2}}, v'=1)$	$(0,382_9 \pm 0,001) \text{ cm}^{-1}$	$(0,382_2 \pm 0,001) \text{ cm}^{-1}$
^B " ⁶ ∆ _{3/2} , v ⁿ = 2)	$(0,365_1 \pm 0,001)$ cm ⁻¹	$(0,364_8 \pm 0,001)$ cm ⁻¹

Il apparait un bon accord entre les valeurs des paramètres déterminées par une méthode de moindres carrés et celles obtenues par les relations de combinaison.

D. ANALYSE DE LA STRUCTURE DE ROTATION DE LA BANDE $\lambda = 3303$ Å ${}^{6}\Pi_{5/2}, v'=0 \longrightarrow {}^{6}\Delta_{7/2}, v''=0.$

Nous nous proposons tout d'abord d'expliquer les raisons de l'attribution de cette bande à une transition ${}^{6}\Pi_{5/2}$, v'= 0 $\longrightarrow {}^{6}\Delta_{7/2}$, v"= 0

La bande que nous étudions ici est située à proximité de celle observée à 3305 Å. Elle ne peut donc correspondre qu'à une transition entre niveaux de vibration différents ou entre composantes spinorbite différentes des états mis en jeu dans la transition étudiée au paragraphe B (c'est-à-dire la bande (2) ${}^{6}\Pi_{7/2}$, v'= 0 \longrightarrow ${}^{6}\Delta_{9/2}$, v"= 0). En d'autres termes, la bande située à 3303 Å ne peut être due qu'à l'une des deux transitions suivantes :

$$- {}^{6}\Pi_{5/2}, \mathbf{v'} = 0 \longrightarrow {}^{6}\Delta_{7/2}, \mathbf{v''} = 0$$
$$- {}^{6}\Pi_{7/2}, \mathbf{v'} = 1 \longrightarrow {}^{6}\Delta_{9/2}, \mathbf{v''} = 1$$

Nous n'avons pas retenu la deuxième hypothèse, d'une part parce qu'elle ne nous permettait pas de construire un tableau de Deslandres cohérent, d'autre part parce que nous avons observé, dans le spectre de la bande considérée ici, (fig.3) l'existence d'une première raie correspondant à $J = \frac{7}{2}$, observation qui confirme la première hypothèse.

Les nombres d'onde des raies sont donnés dans la table VII, leur numérotation est portée sur la figure 3 et le tableau suivant rassemble les résultats obtenus pour les paramètres expérimentaux:

Parametres	MOINDRES CARRES	RELATIONS DE COMBINAISON
$B^{*}_{(6\Pi_{5/2},v'=0)} - B^{*}_{(6\Delta_{7/2},v'=0)}$	$(0,01459 \pm 510^{-5})$ cm ⁻¹	$(0,015_6 \pm 0,004) \text{ cm}^{-1}$
$B'_{(6\Pi_{5/2},v'=0)} - B''_{(6\Delta_{7/2},v'=0)}$	$(0,760 \pm 0,002)$ cm ⁻¹	$(0,758 \pm 0,004) \text{ cm}^{-1}$
ν _o	$(30276,86 \pm 0,05)$ cm ⁻¹	
$B'_{6}G_{5/2}, v' = 0)$	$(0,387_2 \pm 0,001)$ cm ⁻¹	(0,386 ₈ ± 0,002) cm ⁻¹
$B_{(6\Delta_{7/2},v^{*}=0)}^{*}$	$(0,372_8 \pm 0,001)$ cm ⁻¹	$(0,371_4 \pm 0,002)$ cm ⁻¹

On peut remarquer que la présence, dans cette région du spectre, de nombreuses raies étrangères à la bande étudiée ici nous a gênés pour obtenir une précision sur nos pointés comparable à celle obtenue sur les raies des autres bandes. Le tableau ci-dessus montre qu'on obtient néanmoins des résultats très voisins par moindres carrés et par relations de combinaison.

E. ANALYSE DE LA STRUCTURE DE ROTATION DE LA BANDE $\lambda = 3236, 4$ Å ${}^{6}\Phi_{1/2}, v'=0 \longrightarrow {}^{6}\Delta_{-1/2}, v''=0$

Nous avons vu, au chapitre II, que cette bande n'appartient pas au même système électronique que les bandes étudiées dans les paragraphes (B-C-D).

- 38 -

NOMBRES D'ONDE DES RAIES DE LA BANDE ${}^{6}\Pi_{5/2}, \nu'=0 \rightarrow {}^{6}\Delta_{7/2}, \nu''=0$

BRANCHE Q1

BRANCHE P1

J	vmesuré	^v calculé	J	^v mesuré	vcalculé
3,5	30277,08	30277,09 `	3,5	30274.34	30274 38
4,5	277,25	277,22	4.5	273.76	273 74
5,5		277,38	5.5	273.09	273,74
6,5		277,57	6.5	272 55	273,12 273 EA
7,5		277.79	7.5	272,55	272,34
8,5	278,00	278,04	8.5	. 271 45	271,90
9,5	278,31	278.31	9.5	271,35	271,45
10,5	278,59	278.62	10.5	270,50	270,96
11,5	278,96	278.96	10,5	270,51	270,49
12,5	279.32	279.32	12.5	260 62	270,05
13,5	279.71	279.71	16,5	209,03	269,64
14,5	280.13	280 14	24 E		
15.5	280.61	280 59	24,3		267,00
16.5	280 98	200,59	25,5	tête floue à	266,97
17.5	200,50	201,07	26,5	30267,00	266,97
19 6	201,01	281,58	27,5		267,00
10,5	282,12	282,12			
19,5	282,71	282,69	40,5	270,51	270,01
20,5	282,39	283,29	41,5	270,96	270,45
21,5	283,92	283,92	42,5	271,45	270,91
22,5	284,61	284,57	43,5	271,88	271,41
23,5	285,21	285,26	44,5	272,43	271.93
24,5	285,96	285,97	45,5	272,95	272,48
25,5	286,62	286,71	45,5	273.56	273.07
26,5	287,39	287,49	47.5	274.16	273.68
27,5	288,41	288.40			273,00

TABLE VII.

¢.

L'attribution de cette bande à une transition ${}^{6}\Phi - {}^{6}\Lambda$ sera justifiée ultérieurement dans la partie théorique (2^{ème} partie). De plus, en examinant le spectre (fig.5), nous remarquons que cette bande présente un "zero-gap" beaucoup plus faible que celui des bandes situées à 3305 Å et 3378 Å. Notre analyse de rotation, et en particulier la détermination de la numérotation des raies par les relations de combinaison entre branches P, Q et R, montre que la première raie observée correspond à $J = \frac{1}{2}$. Par conséquent, la transition correspondante est du type :

$$^{6}\Phi_{1/2}, \mathbf{v'} = 0 \rightarrow ^{6}\Delta_{-1/2}, \mathbf{v''} = 0$$

On constate, en outre, la présence d'une branche R plus intense que dans les autres bandes, ce qui confirme notre hypothèse d'une transition $\Delta \Lambda = \Lambda' - \Lambda'' = +1$.

Les nombres d'onde des raies figurent dans la table VIII et les paramètres expérimentaux sont donnés dans le tableau suivant :

PARAMETRES	MOINDRES CARRES	RELATIONS DE COMBINAISON
$B'_{(6\Phi_{1/2},v'=0)} - B''_{(6\Delta_{-1/2},v''=0)}$	$(0,01845 \pm 510^{-5})$ cm ⁻¹	$(0,018_2 \pm 0,002) \text{ cm}^{-1}$
$B'_{6\Phi_{1/2},v'=0} - B''_{6\Delta_{-1/2},v''=0}$	$(0,773 \pm 0,002)$ cm ⁻¹	$(0,773 \pm 0,001) \text{ cm}^{-1}$
ν _o	$(30897,23 \pm 0,01)$ cm ⁻¹	
$B'_{6\Phi_{1/2},v'=0}$	$(0,395_7 \pm 0,001) \text{ cm}^{-1}$	(0,3954 ± 0,001) cm ⁻¹
$B_{(6\Delta-1/2)}^{n}$, $v^{n} = 0$)	$(0,377_3 \pm 0,001) \text{ cm}^{-1}$	$(0,377_2 \pm 0,001) \text{ cm}^{-1}$

- 41 -

BRANCHE Q6		Qé	BRANCHE P6			BRANCHE R ₆		
J	Vnesure	Vcalcula	• J	Vmesuré	vcalculé	J	v mesure	vcalculé
0 E		30897-25	0.5	30896,88	30896,85			
1 5	30897,28	897.30	1.5	896,15	896,11	12,5	30910,99	30911,03
2.5	897.39	897,39	2,5	895,45	895,41	13,5		912,32
3.5	897.51	897,52	3,5	894,80	894,75	14,5	913,77	913,64
4.5	897.70	897.69	4,5	894,15	894,13	15,5	915,24	915,00
5.5		897,89	5,5	893,56	893,54	16,5	916,43	916,41
6.5		898,13	6,5	893,03	892,98	17,5	917,85	917,84
7.5		898,41	7,5	892,51	892,47	18,5	919,43	919,32
8.5		898,72				19,5	920,81	920,83
9.5	899.06	899,07						
10.5	899,45	899,46	20,5	889,15	889,14			
11.5	899.92	899,88				23,5	927,29	927,24
12.5	900,30	900,34				24,5	928,95	928,94
13.5	900,88	900,84	34,5	892,51	892,52	25,5	930,71	930,67
14.5	901,36	901,38	35,5	893,03	893,04			
15,5	902,02	901,95	36,5	893,56	893,59			
16,5	902,58	902,56	37,5	894,15	894,19			
17,5	903,21	903,20	38,5	894,80	894,81			
18.5	903,87	903,89	39,5	895,45	895,48			
19,5	904,60	904,61	40,5	896,15	896,19			
20,5	905,36	905,36	41,5	896,88	896,93			
21,5		906,16			*			
22,5		906,99						
23,5	907,80	907,85						
24,5	908,76	908,76						
25,5	909,76	909,70						
26,5	910,74	910,66						
27,5	911,70	911,69						
28,5		912,74						
29,5	913,77	913,83						
30,5	915,04	914,96						
31,5	916,18	916,12						
32,5	5 917,31	917,32						
33,5	5 918,56	918,55						
34,5	5 919,79	919,83						

NOMBRES D'ONDE DES RAIES DE LA BANDE ${}^{6}\Phi_{1/2}$, $\nu' = 0 \rightarrow {}^{6}\Delta_{-1/2}$, $\nu'' = 0$

TABLE VIII.

- 42 -

(BIIS)

Chapitre V

STRUCTURE SPIN ORBITE ET STRUCTURE DE VIBRATION

DU SYSTEME ${}^{6}\Pi - {}^{6}\Delta$

A. CLASSEMENT DES TETES DE BANDES.

L'examen des spectres indique que les trois groupes de bandes étudiés dans le chapitre précédent sont des séquences (v' - v'' = constante) présentant de nombreuses têtes.

Toutes ces têtes, pourtant, doivent être attribuées à des branches P puisque l'observation des bandes analysées (chap. IV) montre que les branches Q ne forment pas de tête par suite de leur développement rapide.

Le grand nombre de têtes observées s'explique par la haute multiplicité des états mis en jeu dans les transitions. Chaque bande de vibration comporte en effet six sous-têtes P dont beaucoup, d'ailleurs, sont larges.

Le problème qui se pose est de leur attribuer une numérotation $(v', \Omega') - (v'', \Omega'')$.

Plus encore que la possibilité de construire un tableau de Deslandres cohérent (chap. II), les valeurs de B rassemblées dans la Table IX ont été un élément déterminant pour effectuer cette numérotation des bandes. C'est pour cette raison que, contrairement aux usages, nous avons présenté l'analyse de rotation avant l'analyse de vibration. Ainsi, nous avons trouvé que la bande située à 3378,7 Å ne peut pas être la bande 0-1 de la transition ${}^{6}\Pi_{7/2} - {}^{6}\Delta_{9/2}$, car la constante B' n'est pas la même que dans la bande 0-0. L'attribution de cette bande à la transition v' = 1 - v'' = 2 de ce même système électronique est plus cohérente : elle est en accord avec la décroissance de B lorsque le nombre quantique de vibration v augmente selon la relation (14) $B_v = B_e - \alpha_e \left(v + \frac{1}{2}\right).$

Pour un état électronique donné, l'écart entre les constantes de rotation de deux niveaux de vibration différents d'une même composante spin-orbite conduit à la détermination du paramètre α_e :

$$\alpha_{e}(^{6}\Delta_{9/2}) = 0,003_{5} \text{ cm}^{-1} \pm 0,001 \text{ cm}^{-1}$$
$$\alpha_{e}(^{6}\Pi_{7/2}) = 0,004_{0} \text{ cm}^{-1} \pm 0,002 \text{ cm}^{-1}$$

Les valeurs de ces paramètres confirment notre attribution de la bande située à 3303 Å à une transition ${}^{6}\Pi_{5/2}, v'=0 - {}^{6}\Delta_{7/2}, v''=0$. En effet, la seule autre possibilité serait que cette bande corresponde à la transition ${}^{6}\Pi_{7/2}, v'=1 - {}^{6}\Delta_{9/2}, v''=1$ mais nous ne pouvons retenir cette hypothèse car elle conduit à des paramètres B nettement différents et situés en dehors du domaine d'incertitude. Cette bande v'=1 - v''=1est alors la bande immédiatement voisine située à 3302,6 Å.

Etats V	$^{6}\Delta\left(\Omega=\frac{9}{2}\right)$	$6\Delta\left(\Omega=\frac{7}{2}\right)$	$^{6}\Delta\left(\Omega=-\frac{1}{2}\right)$	$6\Pi\left(\Omega=\frac{7}{2}\right)$	${}^{6}\Pi\left(\Omega=\frac{5}{2}\right)$	$^{6}\Phi\left(\Omega=\frac{1}{2}\right)$
0	0,372	0,373 [*]	0,377	0,387	0,387*	0,396
. 1			. ·	0,383	•	
2	0,365					

Table IX

* l'incertitude sur ces paramètres est de 0,002 cm⁻¹, celle sur les autres paramètres est de 0,001 cm⁻¹ Nous donnons dans le tableau ci-dessous les nombres d'onde des têtes de bandes observées dans le spectre ultra-violet de FeF et que nous avons attribuées aux différentes séquences de la transition $6_{\Pi} - 6_{\Delta}$.

v' V"	0	1	2	3.
0	$30243,5 (\Sigma = \frac{5}{2})$ $30267 (\frac{3}{2})$ $30291 (\frac{1}{2})$ $30321 (-\frac{1}{2})$ $30343 (-\frac{3}{2})$ $30368 (-\frac{5}{2})$		-	
	$30956 \left(\frac{5}{2}\right)$	$30270,3 \left(\frac{5}{2}\right)$ $36293 \left(\frac{3}{2}\right)$	$29588,5\left(\frac{5}{2}\right)$ $29512,2\left(\frac{3}{2}\right)$	· ·
1	3	$\begin{array}{c} 30335 & \left(\frac{1}{2}\right) \\ 30315 & \left(\frac{1}{2}\right) \\ 30348 & \left(-\frac{1}{2}\right) \\ - \\ - \\ - \end{array}$	29633,9 $\left(\frac{1}{2}\right)$ 29654,7 $\left(-\frac{1}{2}\right)$ 29676,8 $\left(-\frac{3}{2}\right)$	
2		30981 (⁵ / ₂)	30296,2 $\left(\frac{5}{2}\right)$ 30318 $\left(\frac{3}{2}\right)$ - -	29621,6 $\left(\frac{5}{2}\right)$ 29645 $\left(\frac{3}{2}\right)$ - 29686,6 $\left(-\frac{1}{2}\right)$ 29707,9 $\left(-\frac{3}{2}\right)$
3			$30989 \left\{\frac{5}{2}\right\}$	$ \begin{array}{r} 30321 \left(\frac{5}{2}\right) \\ 30343 \left(\frac{3}{2}\right) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$

- 45 -

La tête située à 3236 Å n'apparaît pas dans ce tableau puisque nous l'avons attribuée à un autre système électronique dont elle est probablement la tête $P_6({}^{6}\Phi_{1/2}, v'=0) \rightarrow {}^{6}\Delta_{-1/2}, v''=0)$.

C'est aussi à ce système qu'il faut rattacher les têtes situées à :

- 3233 Å qui serait la tête P₅ $({}^{6}\Phi_{3/2}, \mathbf{v'}=0 - {}^{6}\Delta_{1/2}, \mathbf{v''}=0)$ - 3229,6 Å qui serait la tête P₄ $({}^{6}\Phi_{5/2}, \mathbf{v'}=0 - {}^{6}\Delta_{3/2}, \mathbf{v''}=0)$

Nous ne pouvons actuellement aller plus loin dans l'étude de ce système.

B. DETERMINATION DES CONSTANTES DE VIBRATION DES ETATS ⁶ Π et ⁶ Δ .

Nous savons que l'équation relative aux origines des bandes v° et qui représente les transitions possibles entre les différents niveaux de vibration de deux états électroniques s'écrit, au second ordre en $\left(\mathbf{v}+\frac{1}{2}\right)$:

$$v_{\mathbf{vv'}}^{\circ} = \mathbf{T}_{\mathbf{e}}^{\prime} + \left[\omega_{\mathbf{e}}^{\prime} \left(\mathbf{v'} + \frac{1}{2} \right) - \omega_{\mathbf{e}}^{\prime} \mathbf{x}_{\mathbf{e}}^{\prime} \left(\mathbf{v'} + \frac{1}{2} \right)^{2} \right] - \left[\omega_{\mathbf{e}}^{\prime\prime} \left(\mathbf{v''} + \frac{1}{2} \right) - \omega_{\mathbf{e}}^{\prime\prime} \mathbf{x}_{\mathbf{e}}^{\prime\prime} \left(\mathbf{v''} + \frac{1}{2} \right) \right]^{2}$$
(1)

avec, comme origine des énergies, le minimum de la courbe de potentiel de l'état inférieur de la transition.

Or, nous ne connaissons que les nombres d'onde v^t des têtes de bandes et non les nombres d'ondes v° des raies nulles sauf pour les quelques bandes dont nous avons effectué l'analyse de rotation (chap. IV).

Cependant, la connaissance du coefficient α_e des états ${}^{6}\Delta_{9/2}$ et ${}^{6}\Pi_{7/2}$ et par suite la détermination par extrapolation des constantes de rotation B des différents niveaux de vibration de ces deux états nous ont permis de connaître approximativement les différences $v^{t} - v_{o}^{e}$ par la formule (14)

$$v^{t} - v^{\circ} = - \frac{(B' + B'')^{2}}{4(B' - B'')}$$

et d'en déduire v° pour chaque bande avec une incertitude que nous évaluons à 2 cm⁻¹ au maximum.

- 46 -

Nous disposons alors de suffisamment de bandes dans la transition ${}^{6}\Pi_{7/2} - {}^{6}\Delta_{9/2}$ pour déterminer, à partir de la relation (1), les constantes de vibration ω'_{e} , ω''_{e} , ω''_{e} , ω''_{e} , ω''_{e} ainsi que le terme T'_e. Pour effectuer ce calcul, nous avons choisi cinq de ces bandes dont nous donnons les origines v° :

 $v_{00}^{\circ} = 30252,8 \text{ cm}^{-1}$ $v_{11}^{\circ} = 30280 \text{ cm}^{-1} \pm 2 \text{ cm}^{-1}$ $v_{22}^{\circ} = 30306 \text{ cm}^{-1} \pm 2 \text{ cm}^{-1}$ $v_{12}^{\circ} = 29596,4 \text{ cm}^{-1}$ $v_{23}^{\circ} = 29630 \text{ cm}^{-1} \pm 2 \text{ cm}^{-1}$

Nous en avons déduit :

 $T_{e}^{*} = 30239 \text{ cm}^{-1}$ $\omega_{e}^{*} = 724,2 \text{ cm}^{-1}$ $\omega_{e}^{*} = 696,8 \text{ cm}^{-1}$ $\omega_{e}^{*} \times_{e}^{*} = 3,65 \text{ cm}^{-1}$ $\omega_{e}^{*} \times_{e}^{*} = 3,4 \text{ cm}^{-1}$

A partir de ces constantes, nous avons calculé la position des autres têtes de bandes afin de vérifier nos hypothèses d'attribution. Ainsi, nous avons pu localiser les têtes (fig.6) 0-1, 3-3, 1-0, 2-1, 3-2.

> $v_{33}^{t} = 30321 \text{ cm}^{-1} \quad (\text{mesurée à } 30320,7 \text{ cm}^{-1})$ $v_{10}^{t} = 30957 \text{ cm}^{-1} \quad (\text{mesurée à } 30956,4 \text{ cm}^{-1})$ $v_{21}^{t} = 30976 \text{ cm}^{-1} \quad (\text{mesurée à } 30980,6 \text{ cm}^{-1})$ $v_{32}^{t} = 30994 \text{ cm}^{-1} \quad (\text{mesurée à } 30999,2 \text{ cm}^{-1})$ $t_{01} = 29555 \text{ cm}^{-1} \quad (\text{en coincidence avec la raie large de FeI}$ $a 29556 \text{ cm}^{-1})$

La très faible intensité de cette bande 0-1, comparée à celle des autres bandes de la séquence $\Delta v = -1$, peut provenir du fait qu'elle se situe en dehors de la parabole de FRANCK-CONDON. En effet, celle-ci doit être très peu ouverte étant donné la proximité des distances d'équilibre r'_e et r''_e des deux états électroniques ⁶II et ⁶ Δ .

Les écarts entre les nombres d'onde des têtes mesurés et calculés proviennent, d'une part de l'incertitude (de l'ordre du cm⁻¹) sur les pointés de certaines têtes larges et d'autre part de l'évaluation à partir des constantes de rotation de la distance $v^{t} - v^{0}$.

C. CALCUL APPROCHE DES PARAMETRES α_e et D_e A PARTIR DES CONSTANTES DE VIBRATION.

Nous avons utilisé les valeurs des constantes de vibration calculées précédemment afin d'évaluer le paramètre α_e dans l'approximation d'un potentiel de MORSE (15) et d'en déduire un ordre de grandeur de la constante de distorsion centrifuge D_e de chacun des deux états $^{6}\Delta_{9/2}$ et $^{6}\Pi_{7/2}$ à l'aide des relations (14)

$$\alpha_{e} = \frac{6\left(\omega_{e} \times_{e} B_{e}^{3}\right)^{1/2}}{\omega_{e}} - \frac{6B_{e}^{2}}{\omega_{e}}$$
$$D_{e} = \frac{4B_{e}^{3}}{\omega_{e}^{2}}$$

On en déduit :

 $\alpha_{e}(^{6}\Delta_{9/2}) = 0,0031 \text{ cm}^{-1}$

$$\alpha_{e} (^{6}\Pi_{7/2}) = 0,0034 \text{ cm}^{-1}$$

$$D_{e} (^{6}\Lambda_{9/2}) = \frac{4 \left[B_{0} (^{6}\Lambda_{9/2}) - \frac{\alpha_{e} (^{6}\Lambda_{9/2})}{2} \right]^{3}}{\omega_{e}^{2} (^{6}\Lambda_{9/2})} = 4,210^{-7} \text{ cm}^{-1}$$

ini

$$D_{e} \begin{pmatrix} 6\Pi_{7/2} \end{pmatrix} = \frac{4 \left[B_{o} \begin{pmatrix} 6\Pi_{7/2} \end{pmatrix} - \frac{\alpha_{e} \begin{pmatrix} 6\Pi_{7/2} \end{pmatrix}}{2} \right]^{3}}{\omega_{e}^{2} \begin{pmatrix} 6\Pi_{7/2} \end{pmatrix}} = 4,4 \ 10^{-7} \ \text{cm}^{-1}$$

Les valeurs de, α_e calculées ici sont en assez bon accord avec celles déduites de l'analyse expérimentale (§ V-A). Par contre, les valeurs calculées de D_e sont près de quatre fois plus petites que les valeurs expérimentales correspondantes, peu précises, il est vrai. (§ IV-B).

D. DETERMINATION DES CONSTANTES SPIN-ORBITE.

Il ressort de notre étude sur la structure générale des états ${}^{6}\Delta$ et ${}^{6}\Pi$ (voir tables III et IV, chapitre III) que les constantes A_Σ qui caractérisent l'interaction spin-orbite peuvent être légèrement différentes pour chaque composante Σ d'un état donné. Or, l'absence d'extra-bandes $\Delta\Sigma = \pm 1$ dans le spectre de Fe F ne permet pas de déterminer avec précision ces paramètres A_Σ. Nous ne donnons donc ici qu'un ordre de grandeur de la constante d'interaction spin-orbite pour chaque état en supposant qu'elle est la même pour toutes les composantes.

Compte-tenu des résultats expérimentaux dont nous disposons, nous pouvons utiliser deux méthodes pour déterminer les constantes A des états $^{6}\Delta$ et $^{6}\Pi$. Ces deux méthodes reposent sur l'hypothèse que les constantes de rotation suivent la loi du cas (a) de HUND (14) :

$$B_{\Sigma} = B \left(1 + \frac{2B\Sigma}{A\Lambda} \right)$$
(2)

Première méthode.

Elle consiste à déduire directement A de l'évolution de la constante B en fonction de Σ (table IX). Dans notre cas, cette méthode n'est envisageable que pour l'état ${}^{6}\Lambda$ car, pour l'état ${}^{6}\Pi$, la précision médiocre sur les valeurs de B ne permet pas de mettre en évidence cette évolution. Ainsi, nous tirons de la formule (2) et de la table (IX) :

- 50 -

$$B^{"}({}^{6}\Delta_{9/2}, \mathbf{v} = 0) - B^{"}({}^{6}\Delta_{-1/2}, \mathbf{v} = 0) = \frac{5B^{"2}}{A^{"}} = -0,005 \text{ cm}^{-1} \pm 0,002 \text{ cm}^{-1}$$

d'où $A^{(6)} = -140 \text{ cm}^{-1} \pm 60 \text{ cm}^{-1}$

Deuxième méthode.

On peut aussi calculer les constantes d'interaction spinorbite à partir des différences (B' - B") déterminées expérimentalement et de l'écart spin-orbite observé entre les sous-bandes de la transition ${}^{6}\Pi - {}^{6}\Delta$. Compte tenu de la formule (2), on obtient :

$$\begin{pmatrix} \mathbf{B}_{\Sigma}^{*} & - & \mathbf{B}_{\Sigma}^{*} \\ \Sigma &= 5/2 \end{pmatrix} - \begin{pmatrix} \mathbf{B}_{\Sigma}^{*} & - & \mathbf{B}_{\Sigma}^{*} \\ \Sigma &= 3/2 \end{pmatrix} = \frac{2\mathbf{B}^{*2}}{\mathbf{A}^{*}} - \frac{2\mathbf{B}^{*2}}{2\mathbf{A}^{*}}$$
(3)

Posons $A^{*} = 2A^{**} - \Delta A$ (4)

Puisque B" croît lorsque Σ diminue (table IX), A" doit être négatif. D'autre part, la disposition des têtes de bandes des composantes spin-orbite du classement qui précède impose :

$$\Delta A = +24 \text{ cm}^{-1}$$

A' est donc également négatif.

Grâce à (4), l'égalité (3) devient une équation du second degré en A'

$$\begin{pmatrix} \mathbf{B}'_{\Sigma} = 5/2 & -\mathbf{B}''_{\Sigma} = 5/2 \end{pmatrix} - \begin{pmatrix} \mathbf{B}'_{\Sigma} = 3/2 & -\mathbf{B}''_{\Sigma} = 3/2 \end{pmatrix} = \frac{2 (\mathbf{B}' - \mathbf{B}'') (\mathbf{B}' + \mathbf{B}'') \mathbf{A}' + 2\mathbf{B}'^2 \Delta \mathbf{A}}{\mathbf{A}' (\mathbf{A}' + \Delta \mathbf{A})}$$

où, par extrapolation des résultats expérimentaux des composantes $\Sigma = \frac{5}{2}$ et $\Sigma = \frac{3}{2}$, nous prendrons :

$$B'-B'' = 0,01345 \text{ cm}^{-1}$$

 $B'+B'' = 0,761 \text{ cm}^{-1}$

Il ne faut retenir que la racine négative de cette équation

 $A' = -99 \text{ cm}^{-1} \pm 20 \text{ cm}^{-1}$

qui conduit à :

 $2A'' = -75 \text{ cm}^{-1} \pm 20 \text{ cm}^{-1}$

$$A'(^{6}\Pi) = -99 \text{ cm}^{-1} \pm 20 \text{ cm}^{-1}$$
 $A''(^{6}\Delta) = -37,5 \text{ cm}^{-1} \pm 10 \text{ cm}^{-1}$

Les deux méthodes de calcul de A donnent des résultats nettement différents. Les domaines d'incertitude, pourtant larges, ne se recouvrent pas. L'imprécision sur nos mesures nous semble insuffisante pour expliquer un tel désaccord. Puisque les deux raisonnements reposent sur la formule (2), il faut plutôt mettre en doute la validité de l'application de cette formule dans le cas étudié ici. Ceci pourrait, par exemple, être lié à l'existence d'interactions fortes de l'un des états de la transition avec un autre état électronique proche qui influeraient sur les valeurs de constantes B_{Σ} , mais nous manquons d'éléments pour expliquer ce phénomène.

- 52 -

- DEUXIEME PARTIE -

ETUDE THEORIQUE

Chapitre VI.

CALCULS SCF ET INTERACTION DE CONFIGURATIONS

A. GENERALITES

A.I. Approximation des orbitales moléculaires.

Dans l'approximation de BORN-OPPENHEIMER non relativiste, le hamiltonien d'une molécule diatomique isolée s'écrit :

$$H_{e} = \sum_{i=1}^{n} - \left| \frac{\Delta_{i}}{2} + \frac{Z_{A}}{r_{iA}} + \frac{Z_{B}}{r_{iB}} \right| + \frac{1}{2} \sum_{i,j}^{n} \frac{1}{r_{ij}} + \frac{Z_{A}Z_{B}}{R}$$

 r_{iA} et r_{iB} sont les distances qui séparent chaque électron i des deux noyaux A et B de charges respectives Z_A et Z_B .

 r_{ij} est la distance entre les électrons i et j, R la distance internucléaire, et n le nombre total d'électrons.

En première approximation, ce hamiltonien peut être remplacé par un hamiltonien à particules indépendantes (16). Chaque électron est soumis à un potentiel à symétrie axiale créé par les noyaux et le terme d'interaction entre électrons $\sum_{i,j} \frac{1}{r_{ij}}$ est remplacé par un effet d'écran i,j r_{ij} moyen agissant sur chaque électron et dû aux autres électrons. On appelle spin-orbitales les vecteurs propres monoélectroniques définis dans cette approximation ; ces spin-orbitales sont le produit d'une orbitale $|n, |\lambda|, R >$ (notée Φ_i) solution de l'équation de SCHRODINGER monoélectronique, par un vecteur propre de spin.

Les fonctions d'onde moléculaires s'écrivent alors sous la forme de combinaisons linéaires de déterminants de SLATER antisymétriques par rapport aux permutations des électrons. Chaque déterminant est repéré par la donnée des spin-orbitales occupées des couches externes.

A.II. Fonction d'onde HARTREE-FOCK : calculs SCF.

La première étape de nos calculs a consisté à obtenir pour chaque état une fonction d'onde dans l'approximation à une seule configuration. Si on accepte cette représentation qui, à chaque état moléculaire, fait correspondre une configuration unique, on ne peut obtenir pour chaque état que l'énergie HARTREE-FOCK qui diffère de l'énergie électronique expérimentale par la somme de l'énergie relativiste et de l'énergie de corrélation entre électrons. C'est précisément l'énergie HARTREE-FOCK qui est calculée par la méthode SCF - LCAO - MO.

Dans l'approximation LCAO - MO, chaque orbitale moléculaire Φ_i est décrite sous la forme d'une combinaison linéaire d'orbitales atomiques χ_p de même symétrie que Φ_i .

$$\Phi_{i} = \sum_{p} c_{ip} \chi_{p}$$

C_{ip} est le coefficient de l'orbitale p dans l'orbitale moléculaire i.

Les orbitales atomiques que nous utiliserons sont du type orbitales de SLATER(17) centrées sur l'un ou l'autre des atomes.

$$\chi_{p}(n, \ell, m) = (2\xi)^{n+1/2} \left\{ (2n)! \right\}^{-\frac{1}{2}} r^{n-1} e^{-\xi} r^{m} \chi_{\theta}^{m}(\theta, \varphi)$$

La méthode du champ autocohérent (SCF) (18) dans l'approximation LCAO - MO consiste à faire varier les coefficients C_{ip} de manière à minimiser l'énergie

$$E = \frac{\int \Psi^* H \Psi \, d\tau}{\int \Psi^* \Psi \, d\tau} \quad \text{où } \Psi = \det |\Phi_i|$$

A.III. CALCULS D'INTERACTION DE CONFIGURATIONS.

On tient compte de l'énergie de corrélation entre les électrons par une interaction de configurations mettant en jeu les couplages entre états de même symétrie. On sait en effet qu'un état électronique moléculaire réel ne correspond jamais à une seule configuration mais à une combinaison linéaire d'une infinité de configurations qui contribuent pour une part plus ou moins importante à la fonction d'onde. Le calcul d'interaction de configurations (CI) permet de déterminer cette combinaison linéaire et la prise en considération de la CI dans les fonctions d'onde améliore généralement les résultats obtenus par les calculs SCF.

Pour atteindre l'énergie électronique expérimentale, il faudrait encore tenir compte de l'énergie relativiste, mais il est raisonnable de penser que celle-ci n'est importante que pour les couches internes qui n'interviennent pas lors du passage d'un état moléculaire à un autre. Nous conviendrons donc de la négliger.

A.IV. Moyens de calculs.

Nous avons effectué nos calculs SCF - CI au C.I.R.C.E à l'aide du programme ALCHEMY de BAGUS, YOSHIMINE, Mc LEAN et LIU du groupe de chimie théorique des laboratoires de recherche IBM.

B. CALCULS SCF DANS FeF.

B.I. Choix de la base atomique.

Le choix de la base d'orbitales atomiques de SLATER X_p (STO) sur laquelle seront construites les orbitales moléculaires Φ_i est très important car certaines des quantités dont nous voulons rendre compte en dépendent fortement.

Outre la nécessité pratique d'être limitée à un nombre raisonnable d'orbitales STO afin d'éviter les calculs longs et coûteux, une bonne base atomique doit être :

- flexible, c'est-à-dire qu'elle doit être adaptée à une bonne représentation des orbitales lors du processus SCF ; puisque nous ne nous intéressons pas ici à l'énergie totale mais plutôt à des différences d'énergie et à des paramètres caractérisant les états de valence, nous avons rendu la base flexible sur les orbitales de valence en leur associant au moins deux orbitales STO. - équilibrée, c'est-à-dire que la base choisie doit permettre la même flexibilité donc un même degré de précision de représentation pour toutes les orbitales de valence ; CLAYDON et CARLSON (19) ont ainsi conseillé, pour rendre compte des différences d'énergie HARTREE-FOCK dans les composés d'éléments de transition, d'utiliser trois STO de type 3d et seulement deux STO de type 4s, la flexibilité étant alors complétée par les autres STO 1s, 2s et 3s.

En ce qui concerne nos calculs sur FeF, le problème du choix de la base ne se pose en fait que pour l'atome de fer. En effet, il a été constaté lors de calculs antérieurs sur les fluorures (20) qu'une base double-zéta donne une bonne représentation des orbitales de valence du fluor ionisé ou non. Pour la détermination de la base atomique du fer, notre critère a été de bien représenter les différences d'énergie HARTREE-FOCK entre les états $(3d^74s^0)^4F$, $(3d^64s)^6D$ et $(3d^54s^2)^6S$ de l'ion Fe⁺. Nous avons choisi l'ion Fe⁺ plutôt que l'atome neutre car il faut s'attendre dans FeF à une structure ionique Fe⁺F⁻ par suite de l'électronégativité du fluor. Les trois états choisis sont les plus bas représentants des trois possibilités de configurations $(3d^m4s^n)$ de Fe⁺(21).

Dans la base minimale du fer déterminée par CLEMENTI et ROETTI (20), nous avons remplacé, par étapes successives, chaque orbitale de valence par une représentation double-zéta plus flexible. Comme recommandé par CLAYDON et CARLSON (19), il a été nécessaire d'utiliser trois orbitales 3d pour équilibrer la base. La table X rassemble les résultats des calculs atomiques dans les principales bases. A cette base du fer de 18 orbitales, nous avons ajouté deux orbitales 4po et 2 orbitales 4p π afin de rendre compte éventuellement des premiers états de RYDBERG de Fe F.

La base utilisée dans nos calculs de FeF comporte au total 29 orbitales répertoriées dans la table XI.

B.II. ETATS RETENUS POUR LE CALCUL SCF.

Ce paragraphe est destiné à déterminer les configurations des états susceptibles de participer aux transitions observables dans

- 56 -

RESULTATS DES CALCULS ATOMIQUES DANS LES PRINCIPALES BASES.

-

.

TABLE X.

- (1) CLAYDON et CARLSON (19)
- (2) CLEMENTI (26)

ORBITALES	STO	DE	LA	BASE	DES	CALCULS	SCF.

.

•

	Orbitales	Zéta		Orbitales	Zéta
Fe :	lso	25,3810	F :	lsσ	8,6501
	2so	9,2995		2s σ	1,9333
	3sσ	4,5587		2s σ	3,1202
	4s ₀	11,3310		2 pg	1,8470
	4s σ	2,0826		2pg	4,1746
	$2\mathbf{p}_{\sigma}$	11,0444		Ĩ	
	$3\mathbf{\tilde{p}}_{\sigma}$	4,2593		$2p\pi$	<i>.</i> 1,8470
	4p ₀	0,9000		2pπ	4,1746
	4po	1,7000		- .	
	3đσ	8,2505			
	3dσ	4,1200			
	$3d_\sigma$	1,8034			
	2p π	11,0444			
	$3p\pi$	4,2593			
	$4 p \pi$	0,9000			
	$4\bar{p}\pi$	1,7000	- -		
	3d <i>π</i>	8,2505			
	$3d \pi$	4,1200			
	3d <i>π</i>	1,8094			
	3 d §	8,2505			
	3đδ	4,1200		x -	
	3đδ	1,8094			

-58 le spectre de FeF. Dans ce but, nous avons tracé le diagramme de corrélation (fig. 7) qui représente l'évolution des orbitales moléculaires depuis l'atome uni (R=0, brome) jusqu'aux atomes séparés (R $\rightarrow \infty$) en respectant les règles de non croisement entre orbitales de même symétrie.

Le diagramme de corrélation de Fe F permet de déterminer avec précision la localisation atomique des orbitales internes mais il existe quelques difficultés pour déterminer celle des orbitales externes. On sait en effet que dans le cas des atomes mettant en jeu une couche d ouverte, le remplissage de cette couche d ne suit pas des lois toujours régulières (22). Bien que les calculs HARTREE-FOCK de FROESE (23) relatifs aux énergies des états fondamentaux des atomes neutres à couche d ouverte donnent toujours une énergie plus basse pour l'orbitale 3d que pour l'orbitale 4s, on constate que pour l'atome de fer neutre la couche 4s tend à se remplir avant la couche 3d. Notons cependant que dans l'ion Fe⁺, la structure la plus stable correspond à la configuration $3d^64s$, les deux couches en compétition étant toutes deux incomplètes.

Le diagramme de corrélation permet d'affirmer que 22 des 35 électrons de Fe F sont situés dans des couches complètes (1 σ à 7 σ , 1 π à 2 π) dont la profondeur interdit qu'elles puissent participer aux transitions de spectroscopie optique.

Les treize électrons restants se répartissent dans les orbitales de valence 8σ , 9σ , 10σ , 3π , 4π et 1δ et éventuellement dans des orbitales plus élevées en ce qui concerne les états excités. Des calculs préliminaires ont montré que, comme dans le cas de la molécule voisine MnO (24), les configurations des états de FeF de basse énergie, les seules qui nous intéressent, possèdent toutes des orbitales 8σ et 3π complètes ; on trouve alors que ces orbitales sont concentrées sur la couche 2p du Fluor^{*}. Les sept derniers électrons de FeF, les plus externes ne peuvent dès lors plus être que dans les orbitales de valence de Fe⁺.

^{*}L'état ${}^{6}\Sigma^{+}$ fait cependant exception à cette remarque (cf. table XV) ; dans cet état l'orbitale 8 σ est une orbitale liante (2p_F + 3d_{Fe}).

- 59 -

Les tables de MOORE (21), dont nous avons extrait, dans la table XII, les plus intéressantes configurations, nous indiquent que deux types de structure limites de Fe⁺ **sont à retenir comme candidates** à la formation de l'état fondamental de FeF:

 $(3d^{6}4s)^{6}D$ donnant dans la molécule trois états ${}^{6}\Delta$, ${}^{6}\Pi$ et ${}^{6}\Sigma^{+}$ $(3d^{7})$ F⁴ donnant dans la molécule quatre états ${}^{4}\Phi$, ${}^{4}\Delta$, ${}^{4}\Pi$, ${}^{4}\Sigma^{-}$

C'est pourquoi nous avons décidé d'effectuer des calculs SCF sur les états moléculaires suivants :

8 ₀ 2	3π ⁴	$4\pi^{2}$	1δ ³ 9σ 10σ	67
$8\sigma^2$	$3\pi^{4}$	$4\pi^{3}$	1δ ² 9σ 10σ	6П
8σ ²	$3\pi^4$	$4\pi^{2}$	1δ ² 9σ ² 10σ	6Σ+
8σ ²	3π ⁴	$4\pi^3$	1δ ³ 9σ	$^{4}\Phi$
8σ ²	$3\pi^{4}$	$4\pi^{2}$	1δ ³ 9σ ²	4Δ

Les autres états moléculaires quadruplets de la configuration de type (d⁷) n'ont pas été retenus. En effet, leur décomposition en représentations atomiques contient, outre l'état ⁴F, un état ⁴P beaucoup plus élevé. Leur énergie sera donc plus grande que celle des états moléculaires ⁴ Φ et ⁴ Δ qui correspondent exclusivement à l'état atomique ⁴F.

B.III. Résultats des calculs SCF.

Les calculs SCF ont été effectués pour cinq distances internucléaires régulièrement espacées entre 3,2 Bohrs et 4,0 Bohrs, région où doivent se trouver les minimums de leurs courbes de potentiel.

Les résultats sont donnés dans la table XIII pour les énergies et dans la table XIV pour les constantes spectroscopiques. Les orbitales moléculaires pour R = 3,4 Bohrs (séparation internucléaire voisine des minimums de potentiel) sont données en annexe III.

L'analyse de population atomique de ces orbitales dans les divers états HARTREE-FOCK calculés nous renseigne sur leur nature. Les orbitales moléculaires de valence sont fortement localisées sur les

- 61 -

Etats	Fe ⁺		Fer neutre	
correspondants dans FeF	Etats	Energie (cm ⁻¹)	Etats	Energie (cm ⁻¹)
⁶ Δ, ⁶ Π, ⁶ Σ ⁺	3d ⁶ 4s a ⁶ D a ⁴ D	0 7791	3d ⁶ 4s ² a ⁵ D	
⁴ Φ, ⁴ Δ, ⁴ Π, ⁴ Σ ⁻	3d ⁷ a ⁴ F	2030	3d ⁷ 4s a ⁵ F	7068
	3d ⁵ 4s ² a ⁶ S	22917		
⁶ Δ, ⁶ Π, ⁶ Σ ⁻	3d ⁶ 4p z ⁶ D	38342	3d ⁶ 4s 4p z ⁷ D	1 926 3
$^{6}\Phi$	z ⁶ F	42175	$z^7 F$	22524
	z ⁶ P	42321	z ⁷ p	23669
4 △	z ^l D	44247	z ⁵ D	25785
	z ⁴ G	60423	z ⁵ G	34577
	3d ⁵ 4s 4p ⁶ P	78895	3d ⁵ 4s ² 4p ⁵ P	45862

ET DU FER NEUTRE

TABLE XII

ENERGIES SCF (en HARTREES) DES PLUS BAS ETATS ELECTRONIQUES DE Fe F.

R (Bohrs) ETATS	3,2	3,4	з, б	3,8	4 ,0
(4π ² 1δ ³ 9σ 10σ) ⁶ Δ	-1360, 23380	-1360,24238	-1360,23913	-1360,22924	-1360,21535
(4π ³ 1δ ³ 9σ) ⁴ Φ	-1360, 12724	-1360, 13979	-1360, 14114	-1360, 13578	-1360, 12659
(4π ³ 1δ ² 9σ 10σ) ⁶ Π	-1360, 20875	-1360,22106	-1360, 22058	-1360, 21263	-1360, 20049
$(4\pi^2 \ 16^3 \ 9\sigma^2) \ \frac{4}{\Delta}$	-1360, 12924	-1360, 13864	-1360, 13831	-1360, 13224	
(4π ² 1δ ² 9σ ² 10σ) ⁶ Σ ⁺	-1360, 19838	-1360, 21145	-1 36 0, 2120	-1360, 20515	-1360, 19409

TABLE XIII

- 63 -

CONSTANTES SPECTROSCOPIQUES (SCF) DES PLUS BAS ETATS ELECTRONIQUES DE Fe F.

.

	(4π ² 1δ ³ 9σ10σ) ⁶ Δ	(4π ³ 1δ ³ 9α) ⁴ Φ 	(4 ^{n³} 18 ² 9 ₀ 10 ₀) ⁶ _{II}	$(4\pi^2 1\delta^3 9\sigma^2) \frac{4}{\Delta}$	(4π ² 1δ ² 9σ ² 10σ) ⁶ Σ ⁺
Distance d'équilibre (Å)	1,82	1,87	1,84	1,85	1,86
T_{e} (cm ⁻¹)	0	22135	4478	22617	6481
^ω e (cm ⁻¹)	716,5	623,9	699,4	610,2	675,4
wexe (cm ¹)	4,91	6,40	5,68	5,52	6,06
B _e (cm ⁻¹)	0,360	0,341	0,349	0,349	0,345
$\alpha_{e} (cm^{-1})$	0,0018	0,0024	0,0020	0,0023	0,0020

TABLE XIV.

BILS

atomes (Table XV). Il en résulte que la molécule FeF se présente comme une simple juxtaposition des ions F_e^+ et F⁻ unis par une liaison purement ionique et que les configurations moléculaires peuvent s'exprimer en termes d'orbitales atomiques (indicées F et Fe) ; par exemple pour les états calculés ici :

 ${}^{6}\Delta : 2p\sigma_{F}^{2} \qquad 2p\pi_{F}^{4} \qquad 3d\sigma_{Fe} \qquad 3d\pi_{Fe}^{2} \qquad 3d\delta_{Fe}^{3} \qquad 4s\sigma_{Fe}$ ${}^{6}\Pi : 2p\sigma_{F}^{2} \qquad 2p\pi_{F}^{4} \qquad 3d\sigma_{Fe} \qquad 3d\pi_{Fe}^{3} \qquad 3d\delta_{Fe}^{2} \qquad 4s\sigma_{Fe}$ ${}^{6}\Sigma^{+} : (2p_{F} + 3d_{Fe})\sigma^{2} \qquad 2p\pi_{F}^{4} \qquad (2p_{F} - 3d_{Fe})\sigma^{2} \qquad 3d\pi_{Fe}^{2} \qquad 3d\delta_{Fe}^{2} \qquad 4s\sigma_{Fe}$ ${}^{4}\Phi : 2p\sigma_{F}^{2} \qquad 2p\pi_{F}^{4} \qquad 3d\sigma_{Fe} \qquad 3d\pi_{Fe}^{3} \qquad 3d\delta_{Fe}^{3}$ ${}^{4}\Delta : 2p\sigma^{2} \qquad 2p\pi_{F}^{4} \qquad 3d\sigma_{Fe}^{2} \qquad 3d\pi_{Fe}^{2} \qquad 3d\delta_{Fe}^{3}$

C. CALCULS D'INTERACTION DE CONFIGURATIONS.

C.I. Configurations de base des calculs CI.

Nous avons choisi les configurations de base à introduire dans la CI (dont le nombre pour des raisons pratiques évidentes doit être limité) en nous basant sur les principes suivants :

- Les éléments de couplage entre les configurations introduites et l'état que l'on cherche à représenter (en principe les deux ou trois plus bas états de chaque symétrie), doivent être suffisamment grands. Puisque le hamiltonien est la somme d'un terme monoélectronique et d'un terme biélectronique, nous ne retiendrons que les configurations monoexcitées et les configurations diexcitées par rapport à la configuration fondamentale de chaque état moléculaire.

- Les configurations introduites doivent avoir une énergie suffisamment proche de celle de l'état que l'on cherche à représenter. Nous ne considérerons donc que les excitations qui mettent en jeu les orbitales voisines des orbitales de valence, c'est-à-dire les excitations concernant les électrons occupant les orbitales 8σ à 11σ , 3π à 5π et 1δ . POPULATION ATOMIQUE (%) DES ORBITALES EXTERNES DE Fe E.

(R = 3,4 Bohrs)

		(4π ² 1δ ³	9σ 10σ) ⁶ Δ	(4π ³ 1δ	³ 9σ) ^μ Φ	(4n ³ 18 ²	9σ 10σ) ⁶ Π	(4π ² 1δ ³	9 ₀ ²) ⁴ ∆	(4π ² 1δ ² 9 ₀	¹² 10σ) 6Σ ⁺
		ڻ تب	Ē4	ъ В	٤	ъe	Ĺų	ि मि	1 [II-4	Э.	
8 σ	ß	3,5	1,5	3,5	÷	4	H	÷	÷1	Ĩ	7
	с Сч	m	88,5	2,5	90,5	Ś	89	1,5	76	0,5	38,5
	Q	3,5	1	2,5		£	I	20,5	1	59	1
9 σ	ß	1	1	9	1	7	1	17,5	I	10	ł
	Сı	7	2		~~	1	2	1,5	14	ß	50,5
	Q	94	ł	92	1	95	3	67	1	34,5	ł
	_										
10σ	ß	77	ſ			78	1			74	I
	ሲ	22				21	7			21	2
	Q	ł	1		<u>.</u>	I	1		<u></u>	m	i
									<u></u>		
Зπ	д,	5	96	2	96,5	2	96	2	96,5	7	96
	Q	7	ł	1,5	 I	2	[1,5	ł	2	I
											
4 1	Д	1	~ 1	1	0,5	I		1	7	1	Ļ
BUS	Q	66	ſ	98,5	5	66	t	86	J	66	₹-1
)											

- 66 -

Nous avons introduit dans chaque calcul un nombre l'états compris entre 100 et 250 ; ces états figurent dans les tables 2 VI, XVII, XVIII.

C.II. Résultats de l'interaction de configurations.

Il est remarquable de corstater, d'après nos calculs d'interaction de configurations, que tous les plus bas états sextuplets et quadruplets de FeF sont très purs, c'est-à-dire parfaitement bien représentés par une configuration unique (à plus de (9%) pour les valeurs pour lesquelles les calculs ont été effectués. Ceci est non seulement valable pour l'état le plus bas, mais aussi pour la plupart des premiers états excités de chaque symétrie.

Comme en témoigne la comparaison des tables XIX et XIII, l'abaissement d'énergie produit par notre calcul d'interaction de configurations limité est extrêmement faible (environ 0,002 u.a. et ne doit représenter qu'une infime partie de l'énergie de corrélation totale.

Les constantes spectroscopiques sont données dans la table XV.

6∕∆

OCCUP	ATION I	des or	BITA	Les		Nombre d'états			00	CUPA	CION D	es or	BITA	LES		Nombre d'états
8o 3a 9	σ 10σ	4π	18	11 σ	5#		Φ	8σ	3π	9σ	10σ	4 z	18	11 σ	5π	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 2 1 1 2 1 <	4 2 3 3 3 2 2 2 2 1 1 3 2 2 2 1 3 3 2 2 2 2	16 32233322332333433442233223334331122123223333343334	11o	5 r	1 1 1 1 2 1 1 9 9 2 2 7 2 2 1 1 1 2 2 7 1 1 6 1 2 2 1 1 1 2 2 7 1 1 6 1 2 2 1 1 1 2 2 7 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 7 2 1 1 2 2 7 2 1 1 2 2 7 2 1 1 2 2 7 2 2 1 1 2 2 7 2 1 1 2 2 7 1 1 2 2 7 1 1 2 2 7 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 5 1 2 2 1 2 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 1 5 1 2 2 2 1 5 1 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 5 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2		8 2 2 2 2 2 2 2 2 2 2 2 2 2	***************************************	9σ 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	10g	4 34332244322443332433243321143323333443334433344	16 33323322344334223233431123312233333344333343333	110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 # 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 7 5 5 1 1 2 1 1 1 1 1 1 1 5 5 5 1 1 2 4 4 1 1 1 5 5 5 1 1 2 4 4 4 1 1 1 5 5 5 1 1 2 1 1 1 2 1 1 1 1 5 5 1 1 1 2 1 1 1 1
1 3 1 3	2 1 L 2	3	3			2 2										

TABLE XVI

- 68 -

CONFIGURATIONS INCLUSES DANS LES CALCULS D'INTERACTION DE CONFIGURATIONS.

.

		oc	CUPAT	ION DE	s ori	BITAL	ės		Nombre d'états				CUPAT	ION D	es or	BITAL	es		Nombre d'états
π ⁶	8σ	3#	9 0	100	4#	18	11σ	5 π		6Σ+	8σ	3π	90	10σ	4 π	18	11σ	5#	
	2222221112222222222221111111111111222222	433333444333333333333444444444444444444	1221112112112 1111 1 212112 1111 1 212112 1111 1 212112 1111 1 21112 1112 1112 1112 112 1112 112	$\begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\$	3222423333224433324443333224433224433224433221132221332233433343	22332422311221222322331122122232233112221222			1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1	4 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3 4 4 4 4	2121122222122122122112112 111 222222222	1 2 1 2 2 2 1 1 2 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 1 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1	2 2 3 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 1 1 3 2 2 2 1 3 3 2 1 1 3 2 2 2 1 3 3 2 3 2	2 2 2 3 2 1 2 1 2 2 3 2 2 3 3 2 1 2 2 3 2 2 3 2 2 1 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2 2 1 1	2 2 3 3	2 1 1 2	1 2 1 1 2	3 3 4 4	3 3 4 2 2			1 1 1 1 1 1 1 1									(BHS

XVII
CONFIGURATIONS INCLUSES DANS LES CALCULS D'INTERACTION DE CONFIGURATIONS.

٠

		000	UPATI	ON DE	s ore	BITAL	ES		Nombres d'états				oçc	UPATI	on de	s ore	ITALE	S		Nombre d'états
4∆	8σ	3π	9σ	10 σ	4π	18	11σ	5π	ن	⁴∆	(suite)	8 0	3#+	9 0	10σ	4π	18	11 σ	5π	•
	2	4	2		2	3			1			1	۵	1		2	4	1		1
	2	3	2		3	3			2			î	4	1	1	2	1	•		1
	2	3	2		3	2	1		5			2	2	2	•	Ā	3			. 1
	2	3	2	1	3	2	-		5			2	วิ	1		2	J A			1
	2	3	2	-	a 2	3		1	11			1	л Л	1		л Л	3			1
	2	3	2		1	4	1	-	1			2	4	2	2	2	. J 1			1
	2	3	2	1	1	4	-		1			2	2	2	2	2	2			1
	2	4	1	-	3	2		1	5			2	4	4	2	2	, ,			4
	1	4	2		3	2		1	Š			4	4	2	2	2	2			1
	2	4	1		2	3	1	-	4			1	м Л		2	2	2			I A
	2	4	1	1	2	3	-		4			2	3	2	2	1	3			
	1	4	2	-	2	3	1		4			2	Л	- 1	2	- 1	2			-
	1.	4	2	1	2	3	-		4			1	Ā	2	2	4	2			4
	2	4	1	-	1	4		1	1			•		-	4	4	4			x
	1	4	2		1	4		1	1											
	2	4	2		3	1		1	2											
	2	4	2		2	2	1	-	1											
	2	4	2	1	2	2	-		1											
	2	4	2	_	1	3		1	2											
	2	2	2		3	3		1	11											
	2	2	2		2	4	1		2											
	2	2	2	1	2	4	-		- 2											
	2	3.	1	-	3	3	1		8											
	2	3	1	1	3	3	-	•	8											
	1	3	2	-	3	3	1		8											
	1	3	2	1	3	3	-		8											
	2	3	1	-	2	4		1	6											
	1	3	2.		2	4		1	ĥ											
	2	4	-	3	3			1	2											
	-	4	2	~	3	3		1	2											
	1	4	1		3	7		1	4 8											
	-	-	•		5	5		•	0											

- 70

ENERGIES CI (en HARTREES) DES PLUS BAS ETATS ELECTRONIQUES DE FeF.

				3,2 Bohrs	3,4 Bohrs	3,6 Bohrs	3,8 Bohrs	4,0 Bohrs
(4π ²	16 ³	9σ 10σ)) 6∆	-1360,23611	-1360,24429	-1360,24080	-1360,23079	-1360,21695
(4n ³	152	9a 5m)	6∆	-1360,05258	-1360,06314	-1360,06154	-1360,05370	-1360,04125
(4n ³	16 ²	9σ 10σ)	Ш9 (-1360,21089	-1360,22292	-1360,22229	-1360,21427	-1360,20228
(4 ^{π2}	16 ³	9σ 5π)	119	-1360,07445	-1360,08090	-1360,07622	-1360,06518	-1360,05285
(4π ²	1 δ ²	9σ ² 5π)	11 ₉ (-1360,04355	-1360,05581	-1360,05588	-1360,04879	-1380,03629
(4π ³	16 ³	θ α)	Φ_{\dagger}	-1360,12982	-1360,14156	-1360,14245	-1360,13683	-1360,12750
			Φ_{\dagger}	-1360,02629	-1360,02665	-1360,01924	-1360,00723	-1360,99691
(4π ²	1 δ ³	9σ ²)	4 A	-1360,13182	-1360,14041	-1360,13962	-1360,13329	
(4π ²	1 δ ²	9σ ² 10ς	₃) 6Σ ⁺	-1360,20150	-1360,21385	-1360,21400	-1360,20696	-1360,19587
			${}^{6}\Sigma_{1}^{+}$	-1360,06551	-1360,07311	-1360,06930	-1360,05902	-1360,04548
			$6\Sigma_{II}^+$	-1360,03986	-1360,04822	-1360,04463	-1360,03457	-1360,02208

XIX. TABLE

:

BRZ

CONSTANTES SPECTROSCOPIQUES (C I) DES PLUS BAS ETATS ELECTRONIQUES DE FeF.

				Distance d'équilibre	те	e a	we x e	в ,	ອ ອ
				(Å)	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm ⁻¹)	(cm^{-1})
(4π ²	1 ð ³	9a 10a)	6Δ	1,81	0	716,0	4,85	0,362	0,0018
(4n ³	1 8 ^{.2}	9σ 5π)	6Δ	1,83	39665	693,6	7,27	0,354	0,0025
(4π ³	182	9σ 10σ)	Пэ	1,84	4499	698,4	5,61	0,350	0,0020
(4π ²	1 8 ³	9a 5m)	Щ	1,80	35878	719,1	4,09	0,367	0,0016
(4π ²	18 ²	9σ ² 5π)	еп	1,85	41115	674,1	5,80	0,347	, 0,0021
(4π ³	1.6 3	9α)	Φ_{\dagger}	1,86	22224	622,7	6,02	0,343	0,0023
			$^{\mathrm{I}}\Phi^{_{\dagger}}$	1,75	47569	657,5	2,57	0,389	0,0012
(4π ²	1ô ³	90 ²)	$^{H}\Delta$	1,84	22688	608,2	5,18	0,351	0,0022
(4π ²	182	$9\sigma^2$ 10σ	.) 62 ⁺	1,85	6419	673,3	5,87	0,347	0,0021
			$^{6}\Sigma_{I}^{+}$	1,81	37580	714,1	4,51	0,363	0,0017
			$6\Sigma_{II}^+$	1,81	43035	724,4	5,24	0,362	0,0019

TABLE XX.

BIIS

- 72 -

INTERPRETATION DES TRANSITIONS OBSERVEES

A. DIAGRAMME DES NIVEAUX D'ENERGIE.

Les résultats théoriques précédents ont servi de point de départ à la construction du diagramme d'énergie présenté sur la figure 8. En présentant ce diagramme, notre but est de fournir une base de discussion pour l'identification des états mis en jeu dans les transitions analysées et de prédire l'existence et la nature d'autres transitions encore non observées ou non étudiées. C'est pourquoi nous avons essayé de le faire ressembler le plus possible à la situation expérimentale, d'où la nécessité de compléter et de corriger les résultats théoriques par des considérations semi-empiriques.

La plus importante de ces modifications concerne les états quadruplets. Il est probable que si on pouvait calculer l'énergie de corrélation totale pour les différents états, on trouverait que, comme dans l'ion Fe⁺, les quadruplets ont une énergie de corrélation plus forte que les sextuplets : ainsi, dans Fe⁺, la différence d'énergie de corrélation a⁴F - a⁶D est donnée par l'écart (environ 10000 cm⁻¹) entre la différence d'énergie Hartree-Fock et la différence d'énergie expérimentale (on néglige toujours la différence d'énergie relativiste). On devrait retrouver approximativement entre les états moléculaires ⁴Φ et ⁶Δ cette différence d'énergie de 10000 cm⁻¹ puisque ces états conservent un caractère atomique marqué ; ceci donnerait l'état ⁴Φ expérimental environ 12000 cm⁻¹ au dessus de l'état ($3d\sigma_{Fe}$ $3d\pi_{Fe}^2$ $3d\delta_{Fe}^3$ $4s\sigma_{Fe}$)⁶Δ. (Cette correction semi-empirique a été faite pour tous les états quadruplets dans le diagramme des niveaux d'énergie).

En ne retenant que les états calculés précédemment, la figure 8 est bien sûr incomplète. Ainsi, elle ne fait apparaître que quelques états quadruplets alors que, par comparaison avec Fe⁺, on

peut s'attendre à obtenir plusieurs autres états ${}^{4}\Delta$, ${}^{4}\Pi$, ${}^{4}\Sigma$, dans la zone 8000 - 15000 cm⁻¹. De même, les plus bas états doublets devraient se situer à partir de 20000 cm⁻¹.

Pour ne pas alourdir la figure, nous n'avons fait que rappeler en marge la présence de tels états.

B. IDENTIFICATION DES ETATS MIS EN JEU DANS LES TRANSITIONS OBSERVEES.

D'après le diagramme des niveaux d'énergie (fig. 8), l'état fondamental de FeF est l'état $(3d\sigma \ 3d\pi^2 \ 3d\delta^3 \ 4s\sigma)^6\Delta$. Cette conclusion théorique est en accord avec les résultats de notre analyse expérimentale : les deux systèmes étudiés ont un état inférieur ⁶ Δ qui doit bien être l'état fondamental puisque BARROW et CARROLL (1) ont observé ces bandes en absorption.

L'état supérieur ⁶II des bandes 3305 Å et 3378 Å ne peut être le plus bas état ⁶II car celui-ci, d'une part ne se trouve, d'après nos calculs,que 4000 cm⁻¹ au dessus de X⁶A et d'autre part ne diffère de cet état X⁶A que par une excitation $3d\delta \longrightarrow 3d\pi$ correspondant à une transition $\Delta \ell = 0$ interdite à la limite atomique ; il est donc probable que ce plus bas état ⁶II de FeF est un état métastable, comme d'ailleurs le plus bas état ⁶ Σ . En réalité, il faut admettre que l'état supérieur des bandes 3305 Å et 3378 Å est le second état ⁶II, état que nos calculs situent à 35878 cm⁻¹ (au lieu des 30230 cm⁻¹ donnés par l'expérience) donc avec une bonne précision, compte tenu du poids moléculaire élevé de FeF. La configuration de cet état ne diffère de celle de l'état fondamental que par une excitation $4s\sigma \longrightarrow 4p\pi$, tout à fait favorable à l'observation d'une transition, puisqu'elle correspond à l'une des deux raies les plus intenses du **spectre atomique du fer.**

Il reste à identifier la nature de la transition donnant la bande 3236 Å. Puisqu'elle a été également observée en absorption, cette bande met en jeu l'état fondamental $X^6\Delta$; d'autre part, la présence d'une branche R beaucoup plus intense que dans les autres bandes nous

- 75 -

amène à considérer qu'il s'agit d'une transition $\Delta \Lambda = +1$ donc d'une transition ${}^{6}\Phi - X^{6}\Delta$. Il est facile d'identifier cet état ${}^{6}\Phi$: il doit s'agir de l'autre sextuplet de la configuration (3d σ 3d π^{2} 3d δ^{3} 4p π) à laquelle appartient déjà l'état supérieur ${}^{6}\Pi$ des autres bandes étudiées. En effet, à l'approximation HARTREE-FOCK, les deux états ont pour fonctions d'onde les déterminants de SLATER :

$${}^{6}\Pi_{7/2} : \left| \sigma \pi^{+} \pi^{-} \delta^{+} \overline{\delta^{+}} \delta^{-} \pi^{+} \right|$$

$${}^{6}\Phi_{11/2} : \left| \sigma \pi^{+} \pi^{-} \delta^{+} \overline{\delta^{+}} \delta^{-} \pi^{+} \right|$$

qui se déduisent l'un de l'autre par l'échange $4p \pi'^{+} \leftrightarrow 4p \pi'^{-}$; c'està-dire qu'en utilisant les mêmes orbitales pour les deux états, ceux-ci ont exactement même énergie HARTREE-FOCK, ce qui est en accord avec l'écart extrêmement faible (600 cm⁻¹) observé expérimentalement entre **bes deux** systèmes.

C. STRUCTURE SPIN-ORBITE.

L'énergie spin-orbite pour chaque composante d'un état moléculaire est donnée par :

$$E_{SO} = A \Lambda \Sigma$$

Deux composantes consécutives sont donc séparées par une énergie $\Delta E_{SO} = E_{\Sigma+1} - E_{\Sigma} = A\Lambda$. Nous allons évaluer cet écart pour chacun des états ${}^{6}\Delta$, ${}^{6}\Pi$, ${}^{6}\Phi$ définis au paragraphe précédent, en utilisant la méthode semi-empirique de ISHIGURO et KOBORI (25). Ceux-ci ont remarqué que la partie de l'opérateur d'interaction spin-orbite moléculaire donnant des termes diagonaux peut être remplacée par les opérateurs atomiques correspondants sur chaque centre. Ceci est justifié par le fait que l'opérateur spin-orbite est proportionnel à r_1^{-3} (où r_1 représente la distance de l'électron à l'un ou l'autre des atomes), ce qui signifie que les effets spin-orbite ne sont importants qu'au voisinage de chaque atome donc dans des zones où la présence de l'autre atome est très peu sensible. Les constantes d'interaction spin-orbite moléculaires A peuvent être reliées aux paramètres monoélectroniques a_i (issus de la formule $H_{SO}^{mol} = \sum_{i} a_i \stackrel{\rightarrow}{\ell_i} \cdot s_i$) dès que l'on connaît la configuration de l'état électronique. Ainsi, pour les trois états sextuplets de Fe F rencontrés dans notre étude expérimentale, on obtient la séparation ΔE_{SO} entre composantes voisines

$$(9_{\sigma} \ 10_{\sigma} \ 4\pi^{2} \ 1\delta \) \ ^{6}\Delta \ : \ \Delta E_{SO}(^{6}\Delta) \ = \ 2A(^{6}\Delta) \ = \ -\frac{2}{5} \ a_{1\delta}$$

$$(9_{\sigma} \ 4\pi^{2} \ 1\delta^{3} \ 5\pi) \ ^{6}\Pi \ : \ \Delta E_{SO}(^{6}\Pi) \ = \ A(^{6}\Pi) \ = \ -\frac{2}{5} \ a_{1\delta} \ -\frac{1}{5} \ a_{5\pi}$$

$$(1)$$

$$(9_{\sigma} \ 4\pi^{2} \ 1\delta^{3} \ 5\pi) \ ^{6}\Phi \ : \ \Delta E_{SO}(^{6}\Phi) \ = \ 3A(^{6}\Phi) \ = \ -\frac{2}{5} \ a_{1\delta} \ +\frac{1}{5} \ a_{5\pi}$$

De ces relations, découlent deux conséquences :

1°) Les états électroniques des transitions observées étant tous inversés et les séquences observées étant dégradées vers le violet, la première tête de chaque séquence, c'est-à-dire celle située vers les plus grandes longueurs d'onde, correspondra à la bande des plus grands Ω ($\Omega^{*} = \frac{7}{2} \rightarrow \Omega^{*} = \frac{9}{2}$) dans le système ${}^{6}\Pi - {}^{6}\Delta$, et à la bande des plus petits Ω ($\Omega^{*} = \frac{1}{2} \rightarrow \Omega^{*} = -\frac{1}{2}$) dans le système ${}^{6}\Phi - {}^{6}\Delta$. Cette constatation correspond bien à nos observations expérimentales relatives aux premières raies P.

2°) D'après les relations (1), l'écart entre sous-bandes spin-orbite voisines doit être identique, en valeur absolue, dans les deux systèmes électroniques puisqu'il vaut $+\frac{1}{5}a_{5\pi}$ dans le système ${}^{6}\Pi - {}^{6}\Delta$ et $-\frac{1}{5}a_{5\pi}$ dans le système ${}^{6}\Phi - {}^{6}\Delta$. Effectivement, d'après notre classement des spectres (chapitre V), cet écart est à peu près le même dans les deux systèmes (24 cm⁻¹ dans le système ${}^{6}\Pi - {}^{6}\Delta$, et 33 cm⁻¹ dans le système ${}^{6}\Phi - {}^{6}\Delta$).

On peut d'ailleurs obtenir un ordre de grandeur de ces écarts entre sous-bandes. En effet, les coefficients $a_{1\delta}$ et $a_{5\pi}$ peuvent être reliés aux paramètres monoélectroniques atomiques correspondants ξ_i (issus de la formule $H_{SO}^{at} = \sum_{i} \xi_i \overset{\rightarrow}{\ell}_i \cdot \vec{s}_i$) au moyen de l'analyse de

- 77 -

population atomique des orbitales moléculaires (cf. table XV) : l'orbitale 1 δ est concentrée sur l'orbitale atomique 3d du fer, tandis que l'orbitale 5 π est à 95 % sur l'orbitale 4p(Fe), 4 % sur 2p(F) et 1 % sur 3d(Fe). Il en résulte :

$$a_{1\delta} = \xi_{3d(Fe)}$$

 $a_{5\pi} = 0.95 \xi_{4p(Fe)} + 0.04 \xi_{2p(F)} + 0.01 _{3d(Fe)}$

Nous avons déduit les paramètres atomiques ξ des données expérimentales des tables de MOORE (21).

Le coefficient $\xi_{3d(Fe)}$ a été calculé à partir de l'état fondamental $(3d^{6}4s)^{6}D$ de Fe⁺ (voir Annexe IV) et trouvé égal à 400 cm⁻¹; le coefficient $\xi_{4p(Fe)}$ a été déduit de l'état $(3d^{6}4p)^{6}F$ de Fe⁺ (Annexe IV) et vaut aussi 400 cm⁻¹; enfin, le coefficient $\xi_{2p(F)}$, déjà calculé par ISHIGURO et KOBORI (25) est égal à 270 cm⁻¹. Il en résulte

> $a_{1\delta} = 400 \text{ cm}^{-1}$ $a_{5\pi} = 394 \text{ cm}^{-1}$

Avec ces valeurs semi-empiriques, l'écart entre deux sousbandes spin-orbite voisines d'une bande de vibration (v' - v") serait égal à 79 cm⁻¹ dans les deux systèmes électroniques, ce qui est beaucoup plus que les écarts expérimentaux : 24 cm⁻¹ dans la transition ${}^{6}\Pi$ - ${}^{6}\Delta$ et 33 cm⁻¹ dans la transition ${}^{6}\Phi$ - ${}^{6}\Delta$.

Cette différence entre le calcul semi-empirique et les résultats expérimentaux pourrait être due au fait qu'on surestime le coefficient moléculaire $a_{5\pi}$ en le prenant pratiquement égal au coefficient atomique $\xi_{4p(Fe)}$; en effet, l'orbitale 5π est plus diffuse que l'orbitale atomique correspondante 4p du fer puisque les résultats SCF indiquent que l'orbitale 5π est concentrée sur l'orbitale de SLATER $4p\pi$ correspondant au plus petit des deux coefficients ξ_{4p} introduits dans la base atomique.

En conclusion, nous dirons que, excepté ce désaccord sur le plan quantitatif, notre interprétation théorique s'accorde bien avec les résultats de notre analyse expérimentale.

C O N C L U S I O N

La structure électronique de FeF est marquée par une forte localisation des orbitales moléculaires sur les atomes constituants, ce qui nous a permis de dégager une interprétation simple des résultats obtenus.

L'état fondamental de FeF est un état ⁶ Δ de configuration 3d σ_{Fe} 3d π_{Fe}^2 3d δ_{Fe}^3 4s σ_{Fe} correspondant à une structure Fe⁺(a⁶D) - (F⁻(¹S), structure implicitement prévue par CHEETHAM et BARROW (27) dans un article **de** synthèse sur les molécules diatomiques contenant un élément de transition.

Grâce à notre analyse de rotation et de vibration du spectre ultra-violet de FeF, nous avons pu localiser deux états excités : un état ⁶II à Te = 35878 cm⁻¹ et un état ⁶ Φ à environ 36500 cm⁻¹, tous deux de configuration $3d\sigma_{Fe} 3d\pi_{Fe}^2 3d\delta_{Fe}^3 4p\pi_{Fe}$.

Les transitions observées sont donc dues à des desexcitations $4p \rightarrow 4s$.

Si notre analyse expérimentale et notre étude théorique sont cohérentes et complémentaires, certaines anomalies relatives aux intensités restent néanmoins à expliquer. C'est le cas, par exemple, de la très grande différence d'intensité observée entre branche P et branche R de la transition ${}^{6}\Pi - {}^{6}\Delta$ qui rappelle des situations caractéristiques du cas (d) de HUND. Une explication plausible serait l'existence d'un complexe 4p. Dans cette hypothèse, l'état ${}^{6}\Pi$ observé est très proche d'autres états de ce complexe et leur forte interaction conduit alors à des niveaux se rapprochant effectivement d'un cas (d) de HUND. C'est, bien sûr, une hypothèse assez exceptionnelle mais qui mérite d'être considérée, surtout si nous disposons d'éléments nouveaux.

. Dans ce but, nous envisageons d'analyser d'autres bandes de FeF, en particulier celle située à 3118 Å. Nous nous proposons également d'obtenir le spectre de FeF à l'aide de sources plus chaudes que la cathode creuse, par exemple, l'arc électrique ou le four de KING, ce qui pourrait fournir des indications complémentaires sur d'autres séquences.

308 UUE

₽,

 $\nabla \phi = \delta \Delta$ $\nabla \phi - \phi \phi$

ANNEXE I (2)

9.935 UUE

MATRICES D'INTERACTION $\Phi q = \delta \Phi$ $\delta_{\Delta} - \delta_{\Pi}$

BILS

ANNEXE I (3)

 $\Phi g = \nabla g$ $\Psi = \delta \Pi$

112 [10 - (1+C) C] r 'w'⁸⁻ $\left[J(3+1) - \frac{63}{4}\right]^{1/2}$ 3 9.3.2 +15 Bw. n 1 2 2 2 2 2 2 2 2 2 ۳ · ۰۰۰ - ۳ $\left[J(3+1) - \frac{35}{2} \right]^{1/2}$ +2/2 Bw. 9 $\left|-\frac{5}{2}, \frac{1}{2}, \frac{5}{2} > \right| -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} > \left|-\frac{1}{2}, \frac{5}{2}, \frac{5}{2} > \right| \frac{1}{2}, \frac{7}{2}, \frac{5}{2} >$ | 5° -Bvv. ^B ዏ $\left[J(3+1) - \frac{15}{4} \right]^{1/2}$ +38~, n ž, ч. . А. [3(3+1) - 3]^{1/2} +2/2 Bw. 1 5 50 M2 ۳ 'we- $\left|-\frac{5}{2}t - \frac{1}{2}, \frac{7}{2} > \right| \left[\frac{1}{3} (3+t) + \frac{1}{4} \right]^{1/2}$ -8 • v^9 - 3 - 5 - 5 - $\left[\frac{1}{3} (3+1) - \frac{63}{4} \right] \frac{1}{2} \frac{1}{$ 2 2 2 4 > 2 2 2 6 > <u>|</u>5 , 7 , € > ξ₆₁₁₇₂. $\left[\frac{3}{3} (3+1) - \frac{35}{4} \right]^{1/2} \left| +\sqrt{5} B_{W^4} \Pi \right|^{1/2}$ ۳. ۳. 2 1 2, 2 > ξ² 56_{Π 52} ч, м^{а-} [3(3+1) - 15]^{3/2} -²w, n $\xi_{n_{3/2}}^{t}$ н. ...⁸⁻ μ ξ⁸ 5611/2 +2/2 8w. n [3(3+1) + 1]^{1/2} ک^و 1924ء م L 144 [3(2+1) - 3] 1/2 ч. ч. -----2

\$

ANNEXE I (4)

ille Elle

CALCUL DE L'ELEMENT
$$H_{11}^{e}$$
 DE LA MATRICE
DE L'ETAT ⁶ CONTAMINE PAR LES AUTRES ETATS

$$H_{11}^{ie} = H_{11}^{e} + \sum_{i,v'} \left\{ \frac{|\langle 6_{\Delta_{-1/2}}, v|H_{SO}|^{6_{\Delta_{i,-1/2}}}, v' \rangle|^{2}}{E(^{6}\Delta_{,v)} - E(^{6}\Delta_{i}, v')} \right\}$$

$$+ 2 \frac{ (^{6}\Delta, v|B|^{6}\Delta_{i}, v' > (^{6}\Delta_{1/2}, v|H_{SO}|^{6}\Delta_{i-1/2}, v' > }{E(^{6}\Delta, v) - E(^{6}\Delta_{i}, v')} \left[J(J+1) + \frac{9}{4} \right]$$

+
$$\frac{|\langle 6\Delta, v|BL^{+}|6\Pi_{1}, v'\rangle|^{2}}{E(6\Delta, v) - E(6\Pi_{1}, v')} \left[J(J+1) + \frac{17}{4}\right]$$

+
$$\frac{|\langle {}^{6}\Delta_{1/2}, v | H_{SO} | {}^{6}\Pi_{1,-1/2}, v' \rangle|^{2}}{E({}^{6}\Delta, v) - E({}^{6}\Pi_{1}, v')}$$

$$+ 2\sqrt{5} - \frac{(^{6}\Delta, v) BL^{\dagger} 6\Pi_{i}, v' > (^{6}\Delta_{-1/2}, v) H_{SO} 6\Pi_{i,-1/2}, v' >}{E(^{6}\Delta, v) - E(^{6}\Pi_{i}, v')}$$

+
$$\frac{|\langle {}^{6}\Phi_{i}, v'|BL^{+}|{}^{6}\Delta, v \rangle|^{2}}{E({}^{6}\Delta, v) - E({}^{6}\Phi_{i}, v')} \left[J(J+1) + \frac{1}{4}\right]$$

٠

+
$$\frac{|\langle {}^{6}\Delta_{-1/2}, v|H_{SO}|^{4}\Pi_{1,-1/2}, v' \rangle|^{2}}{E({}^{6}\Delta, v) - E({}^{4}\Pi_{1}, v')} + \frac{|\langle {}^{6}\Delta_{-1/2}, v|H_{SO}|^{8}\Pi_{1,-1/2}, v' \rangle|^{2}}{E({}^{6}\Delta, v) - E({}^{8}\Pi_{1}, v)}$$

		_	
		2 2 4	
		۲ ۲ ۲ ۲ ۲ ۲ ۲	
ISOLE	TONIEN DE ROTATION	11, 3, E >	
ETAT ⁶ II	MATRICE DU HAMILI	$ -\frac{1}{2}, \frac{1}{2}, \frac{1}{2} >$	
			$\left[J(J+1) - \frac{3}{4} \right]^{1/2}$

	- <u>5</u> ,- <u>3</u> ,e>	[- ³ / ₂ , - ¹ / ₂ , f >	-2, 2, 6 >	212.6	3, 5, f >	2, 7, e>
2, 2, 4					$-\sqrt{5}B\left[J(J+1) - \frac{35}{4}\right]^{1/2}$	$B\left[J\left(J+1\right) - \frac{39}{4}\right]$
2121 £				$-2\sqrt{2} \operatorname{B} \left[J(J+1) - \frac{15}{4} \right]^{1/2}$	B [J (J+1) + 1]	$-\sqrt{5} B \left[J (J+1) - \frac{35}{4} \right]^{1/2}$
21 Z + E ~			$-3B\left[J\left(J+1\right)-\frac{3}{4}\right]^{1/2}$	$B\left[J\left(J+1\right) - \frac{25}{4}\right]$	$-2\sqrt{2}B\left[J(J+1) - \frac{15}{4}\right]^{1/2}$	
-2: 2· F>	-	$-2/\overline{2}B\left[J(J+1) + \frac{1}{4}\right]^{1/2}$	$B\left[J(J+1) + \frac{33}{4}\right]$	$-3B\left[J(J+1) - \frac{3}{4}\right]^{1/2}$		
	$-\sqrt{5} \mathbb{E} \left[J \left(J + 1 \right) - \frac{3}{4} \right]^{1/2}$	$B\left[J(J+1) + \frac{25}{4}\right]$	$-2\sqrt{2}B\left[J(3+1) + \frac{1}{4}\right]^{1/2}$			
-2:-2: E>	B [J (J+1) + <u>1</u>]	$-\sqrt{5}B\left[J(J+1) - \frac{3}{4}\right]^{1/2}$				

ANNEXE II (1)

JL

	- 2 - 2 - 4	- 21 - 2 - 6 >	-3, 1, 4 >		210 V	12. 2. e>
5, 2, 2 >				-2/10 b{[3(3+1) - <u>15</u>] [3(3+1) - <u>4</u>]}	$-\sqrt{5} \left(\mathbf{B} - \frac{\gamma_{1}^{N}}{2} \right) \left[J_{1}(J+1) - \frac{35}{4} \right]^{1/2}$ $-2D\sqrt{5} \left[\left[J_{1}(J+1) - \frac{19}{4} \right] \right]$ $\left[J_{1}(J+1) - \frac{35}{4} \right]^{1/2} \right]$	$ \begin{aligned} \mathbb{E}_{\mathbf{v},\mathbf{v}} + \mathbb{B}\left[J(J+1) - \frac{39}{4}\right] \\ &+ \frac{5A}{2} + 10c \\ -D\left\{\left[J(J+1) - \frac{39}{4}\right]^2 + 5\left[J(J+1) - \frac{39}{4}\right]\right\} \end{aligned} $
3, 2, 4 >			$-6/2 D\left\{ \left[J\left(J+1\right) -\frac{3}{4} \right] \right\}^{1/2}$ $\left[J\left(J+1\right) -\frac{15}{4} \right]^{1/2}$	$-\sqrt{2} \left(2B - \gamma_{ii}^{1} \right) \left[J \left(J + 1 \right) - \frac{15}{4} \right]^{1/2}$ $-4\sqrt{2} D \left[\left[J \left(J + 1 \right) + \frac{13}{4} \right] \right]$ $\left[J \left(J + 1 \right) - \frac{15}{4} \right]^{1/2} \right]$	$\mathbf{E}_{\mathbf{w}} + \mathbf{B} \left[J \left(J + 1 \right) + \frac{1}{4} \right]$ + $\frac{3A}{2} - 2c - 5\gamma_{\mathbf{N}}^{*}$ - $\mathbf{D} \left\{ \left[J \left(J + 1 \right) + \frac{1}{4} \right]^{2}$ + $1 3 \left[J \left(J + 1 \right) - \frac{25}{4} \right] + \frac{15}{2} \right\}$	$-\sqrt{5}\left(B - \frac{\gamma_{11}^{N}}{2}\right)\left[J\left(J+1\right) - \frac{35}{4}\right]^{1/2}$ $-2\sqrt{5} D\left[\left[J\left(J+1\right) - \frac{19}{4}\right]\right]$ $\left[J\left(J+1\right) - \frac{35}{4}\right]^{1/2}$
1. 3. ? >		$-60\sqrt{2}\left\{ \left[J\left(J+1\right) +\frac{1}{4}\right] \\ \left[J\left(J+1\right) -\frac{1}{4}\right] \right\}^{1/2}$	$-3\left[B - \frac{\gamma_{N}}{2}\right]\left[J\left(3+1\right) - \frac{3}{4}\right]^{1/2}$ $-6b\left[\left[J\left(3+1\right) + \frac{29}{4}\right]$ $\left[J\left(3+1\right) - \frac{29}{4}\right]^{1/2}\right]$	$\mathbf{E}_{\mathbf{q},\mathbf{v}} + \mathbf{B}\left[\mathbf{J}\left(\mathbf{J}+\mathbf{I}\right) + \frac{\mathbf{Z}\mathbf{S}}{\mathbf{q}}\right]$ + $\frac{\mathbf{A}}{\mathbf{Z}} - \mathbf{B}\mathbf{C} - \mathbf{B}\mathbf{Y}_{\mathbf{v}}^{\mathbf{u}}$ - $\mathbf{D}\left\{\left[\mathbf{J}\left(\mathbf{J}+\mathbf{I}\right) + \frac{\mathbf{Z}\mathbf{S}}{\mathbf{q}}\right]^{2}$ + $\mathbf{I}\mathbf{T}\left[\mathbf{J}\left(\mathbf{J}+\mathbf{I}\right) - \frac{\mathbf{Q}}{\mathbf{q}}\right] + \frac{\mathbf{Z}}{\mathbf{q}}\right\}$	$-\sqrt{2} \left[2B - \gamma_{\rm H}^{+} \right] \left[J \left(J + 1 \right) - \frac{12}{4} \right]^{1/2}$ $-4\sqrt{2} D \left[\left[J \left(J + 1 \right) + \frac{13}{4} \right]$ $\left[J \left(J + 1 \right) - \frac{12}{4} \right]^{1/2} \right]$	$-2\sqrt{10} D\left\{ \left[3(3+1) - \frac{15}{4} \right] \right\}^{1/2}$
$\left -\frac{1}{2},\frac{1}{2},\frac{1}{2}\right $	$-2\sqrt{10} D\left\{ \left[J(J+1) - \frac{3}{4} \right] \right\}^{1/2} \left[J(J+1) + \frac{1}{4} \right] \right\}^{1/2}$	$-\sqrt{2} \left(2B - \gamma_{N}^{*} \right) \left[J \left(J + 1 \right) + \frac{1}{4} \right]^{1/2}$ $-4\sqrt{2} D \left[\left[J \left(J + 1 \right) + \frac{29}{4} \right] \right]$ $\left[J \left(J + 1 \right) + \frac{1}{4} \right]^{1/2} \right]$	$ \mathbf{E}_{\mathbf{q}V} + \mathbf{B} \left[J \left(J + 1 \right) + \frac{33}{4} \right] \\ - \frac{\Lambda}{2} - 8c - 9r_{\rm N}^{\rm N} \\ - D \left\{ \left[J \left(J + 1 \right) + \frac{33}{4} \right]^2 \\ + 17 \left[J \left(J + 1 \right) - \frac{1}{4} \right] - \frac{1}{2} \right\} $	$-3\left[B - \frac{\gamma_{\rm N}}{2}\right]\left[J\left(J+1\right) - \frac{3}{4}\right]^{1/2}$ $-6D\left[\left[J\left(J+1\right) + \frac{29}{4}\right]\right]$ $\left[J\left(J+1\right) - \frac{3}{4}\right]^{1/2}$	$-6\sqrt{2} \operatorname{D}\left\{ \left[J(3+1) - \frac{3}{4} \right] \right\}^{1/2}$ $\left[J(3+1) - \frac{15}{4} \right]^{1/2}$	÷
- <u>3</u> , - <u>1</u> , <u>7</u> >	$-\sqrt{5} \left(\mathbf{B} - \frac{\gamma_{1}^{N}}{2} \right) \left[\left[J \left(J + 1 \right) - \frac{3}{4} \right]^{1/2} - 2\sqrt{5} D \left[\left[J \left(J + 1 \right) + \frac{1.3}{4} \right] \right] \left[J \left(J + 1 \right) - \frac{3}{4} \right]^{1/2} \right]$	$ \mathbb{E}_{\Theta_V} + \mathbb{B} \left[J \left(J + 1 \right) + \frac{25}{4} \right] \\ - \frac{3}{2} A - 2c - 8\gamma_N^4 \\ - D \left\{ \left[J \left(J + 1 \right) + \frac{25}{4} \right]^2 \\ + 13 \left[J \left(J + 1 \right) - \frac{1}{4} \right] + \frac{3}{2} \right\} $	$-\sqrt{2} \left[2B - \gamma_{N}^{1} \right] \left[J \left(J + 1 \right) + \frac{1}{4} \right]^{1/2}$ $-4\sqrt{2} D \left[\left[J \left(J + 1 \right) + \frac{29}{4} \right] \right]$ $\left[J \left(J + 1 \right) + \frac{1}{4} \right]^{1/2} \right]$	$-6D \ \sqrt{2} \left\{ \left[J \ (J+1) \ + \frac{1}{4} \right] -6D \ \sqrt{2} \left\{ \left[J \ (J+1) \ - \frac{1}{4} \right] \right\}^{\frac{1}{2}} \right\}$		
$\left -\frac{5}{2} \right -\frac{3}{2}, \frac{6}{2} >$	$ \begin{bmatrix} & E_{w} + B \left[J(3+1) + \frac{1}{4} \right] \\ & -\frac{5}{2}A + 10c - 5Y_{W}^{1} \\ & -b \left\{ \left[J(3+1) + \frac{1}{4} \right]^{2} \\ & +5 \left[J(3+1) + \frac{1}{4} \right]^{2} \end{bmatrix} $	$-\sqrt{5}\left[n - \sqrt{3}\right]\left[J\left(1+1\right) - \frac{3}{2}\right]^{1/2}$ $-2\sqrt{5} \left[D\left[J\left(1+1\right) + \frac{13}{4}\right]\right]$ $\left[J\left(1+1\right) - \frac{3}{4}\right]^{1/2}$	$-2\sqrt{10} \operatorname{D}\left\{\left[J\left(1+1\right) - \frac{3}{4}\right]\right\}^{1/2} \left[J\left(1+1\right) + \frac{1}{4}\right]$			BUS Unite

ETAT ⁶II ISOLE MATRICE DU HAMILTONIEN TOTAL ANNEXE II (2)

ANNEXE II (3)

TIS X

ANNEXE II (3)

311 111

 $\Pi^{\delta} - \Pi^{\delta}$ 0⁴ – 4

 $\left| -\frac{7}{2}; -\frac{5}{2}, \frac{6}{4} > \left| -\frac{5}{2}; -\frac{3}{2}, \frac{6}{4} > \right| -\frac{3}{2}; -\frac{1}{2}, \frac{1}{4} > \left| -\frac{1}{2}; \frac{1}{2}, \frac{1}{4} > \right| \frac{3}{2}; \frac{5}{4}, \frac{5}{4} > \left| \frac{7}{2}; \frac{9}{2}, \frac{6}{4} > \right| \frac{9}{2}; \frac{5}{2}, \frac{7}{4} > \left| \frac{9}{2}; \frac{9}{2}, \frac{1}{4} > \right| \frac{9}{4} > \frac{1}{4} > \frac{1}{4$ ۲^۴ ۱۹۳۷ **ج ڈ** ۱_{5/2} **د ا** ᆗ **R**⁶⁶¹1/2 **S**⁶^{11,2} ۲ ال ال -2:-3.6> $-\frac{3}{2}; -\frac{1}{2}, \frac{e}{5} >$ -1:1.6> 1: 3 E > 3 5 e> 2: 7. E> ξ^τ_{π 5/2} $\frac{4\pi}{|-\frac{3}{2},\frac{1}{2},\frac{6}{2}>|-\frac{1}{2},\frac{1}{2},\frac{6}{2}>|\frac{1}{2},\frac{3}{2},\frac{5}{2},\frac{6}{2}>|\frac{3}{2},\frac{5}{2},\frac{6}{2}>|$ ξ^f 4π_{3/2}] ξ^f^m¹² ,E

Ч,

ANNEXE II (4)

QUE U.S. MATRICES D'INTERACTION $6_{\Pi} - 8_{\Delta} \qquad 6_{\Pi} - 8_{\Sigma}^{+} \qquad 6_{\Pi} - 8_{\Sigma}^{-}$

۲ ۳

۳'

2

			F.		
	ξ ^ε ^{82-1/2}	تر ا الا الم			
بر الا ¹			تر گ ^{ور} تو		
•				* \$ ^f ^f ^{sz} ²	
					⁺\$ [€] *5 ^{°2″}
-2:-3.6	-3 6 >	-1; 1 e >	2:2.f>	3; 5, e >	2; 7.e>
	$\xi^{\tilde{f}}_{{}^{\theta}\Sigma^{+}_{-1/2}}$	$\pm \xi^{f}_{\theta_{\Sigma^{+}_{1/2}}}$			
گر ت ^{عت}			± گ ^ر _{82,3/2}		
				* 5 ⁶ ***	
					±۲ ^۴ [±] ۲ ⁸²⁺
-2;-3,6>	<u>-</u> 3;-1,€>	-1:1.e>	2:2.6>	3 5 e >	2: 7.6>
	1				
-					
					۴ ^۴ گ ⁸ ۵,712
				ξ ^ε δ ^{8Δ} 5/2	۴ ⁶ 88. م
			ξ ^ε 8 _{6 312}	ξ ^f δ ^{a Δ 5/2}	ج ^و 86 م
		ξ ^f ξ _{θΔ12}	\$ ^e ^b asin	الله الله الله الله الله الله الله الله	
	ξ ⁶ Sa _{bat2}	ξ ^ξ ξ _{θδ12}	ξ ⁶ Δ _{8Δ312}	ξ ^ε δ ^{8Δ} 522	
	$\left \frac{5}{-2}; -\frac{3}{2}, \frac{6}{5} \right = \left \frac{5}{-2}; -\frac{3}{2}; \frac{6}{5} \right = \left \frac{5}{-2}; -\frac{5}{2}; -\frac{5}{2$	$\left \frac{-5}{2}; -\frac{3}{2}, \frac{6}{5} \right\rangle = \left \frac{5}{2}; -\frac{3}{2}, \frac{6}{5} \right\rangle = \left \frac{-5}{2}; -\frac{3}{2}, \frac{6}{5} \right\rangle = \left \frac{5}{2}; -\frac{1}{2}, \frac{6}{5} \right\rangle$	$ \left \frac{5}{7}; -\frac{3}{2}, \xi > \left \frac{\xi}{7}; -\frac{3}{2}, \xi > \right -\frac{\xi}{12}; -\frac{3}{2}, \xi > \left -\frac{5}{2}; -\frac{3}{2}, \xi > \right -\frac{\xi}{12}; -\frac{1}{2}, \xi > \left -\frac{\xi}{12}; -\frac{1}{2}, \xi > \right -\frac{\xi}{12}; -\frac{1}{2}, \xi > \left -\frac{\xi}{12}; -\frac{1}{2}, \xi > \right -\frac{\xi}{12}; -\frac{1}{2}, \xi > \left -\frac{\xi}{12}; -\frac{1}{2}, \xi > \right -\frac{\xi}{12}; -\frac{\xi}{12}, \xi > \left -\frac{\xi}{12}; -\frac{1}{2}, \xi > \right -\frac{\xi}{12}; -\frac{\xi}{12}, \xi > \left -\frac{\xi}{12}; -\frac{\xi}{12}, \xi > \right -\frac{\xi}{12}; $	$\begin{vmatrix} -\frac{5}{2} & -\frac{3}{2} & \varepsilon \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \varepsilon \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \varepsilon \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -$	$\begin{vmatrix} -\frac{5}{2} : -\frac{3}{2} : \varepsilon \\ -\frac{5}{2} : \varepsilon \\ -\frac{1}{2} : -\frac{3}{2} : -\frac{5}{2} : -\frac{5}{2}$

ج م ۲

å ط

FONCTION D'ONDE SCF DE L'ETAT ⁶ Δ (9 σ 10 σ 4 π^2 1 δ^3) ET ENERGIE ϵ (en HARTREES) DES ORBITALES, R = 3,4 Bohrs.

.

		1-SIG	2-SIG	3-SIG	4-SIG	5-SIG	6-SIG	7-SIG	8-SIG	9-SIG	10-51G
orbitales de base	ε	-261,468824	-31,639023	-27, 405290	-26, 143408	-4,113743	-2,780133	-1,430535	-0,579780	-0,711357	-0,290273
Fe	lso	0,998628	0,350371	0,000177	-0,000005	0,138681	0,000458	-0,005285	0,012488	0,007257	0, 025481
	250	0,004292	-1,076285	-0,000477	0,000071	-0,501933	-0,001672	0,017804	-0,043236	-0,025906	-0,094661
	380	~0,000956	0,042815	-0,000265	0,000072	1,105092	0,003369	-0,052250	0,124155	0,009/85	0,231905
	450	-0,000157	-0 019742	0,001092	0,001534	-0,012219	0,002340	-0,010357	-0,0110/1	-0,00/0/2	-0,017323
	450 2ng	0.0000382	0.000514	-0.984200	0.000067	0.001680	-0.344842	0,022356	-0,032337	-0.016955	0,038926
	300	-0.000007	0.000383	-0.050505	-0.000025	-0,005024	1.021889	-0.072231	0, 108655	0,056224	-0, 128116
	4pà	-0.000014	0,000703	-0,006979	0.000978	-0.000192	-0.025249	-0.011467	0.040988	0,015686	0, 216991
	4pg	0,000073	-0,003382	0,017822	0,002593	0,001410	0,077301	0,007848	-0, 113538	-0,075553	0, 283446
	3do	0,000019	-0,001086	0,000878	0,000322	-0,001085	-0,000319	0,003147	-0,017104	0,134671	-0,007469
	3do	-0,000039	0,001855	-0,002075	-0,000932	-0,000533	-0,006781	0,019396	-0,066831	0,633059	-0, 026680
	3do	0,000059	-0,002459	0,003805	0,001998	-0,004173	0,000431	0,014719	-0,089833	0, 394987	-0, 031603
F	lsσ	-0,000006	0,000250	-0,000346	0, 9931 96	-0,001006	-0,005817	-0,253356	-0, 031833	.0,009092	-0, 012331
	2so	-0,000110	0,004852	-0,008027	-0,017711	0,000156	-0,003839	0,543527	0,115552	-0, 083523	0,047721
	2 5 0	0,000051	-0,002174	0,002895	0,028550	0,001634	0,011442	0, 512788	0,069864	-0, 012199	0,027872
	2po	0,000105	-0,004804	0,005073	0,002714	-0,000753	-0,005024	-0,071676	0,677120	0, 153492	-0, 103259
	2po	-0,000045	0,0C2010	-0,001741	-0,001989	-0,001837	-0,005638	-0,015437	0, 305265	0,045119	-0, 042095

		1-PI	2- PI	3-PI	4-PI
orbitales de base	ε	-27, 389385	-2,771768	-0,548314	-0,724097
Fe	2р т	0,984226	-0,345265	0,013502	-0,005324
	3р я	0,050394	1,022204	-0,044406	0,017326
	4p #	0,006662	-0,028543	0,034943	-0,010621
	4pπ	-0,013553	0,079395	0,063136	-0,027995
	3d.π	-0,000137	-0,000240	0,011114	0,134821
	, 3d.π	0,000172	-0,002509	0,028409	0,643922
	3d #	-0,000300	-0,000881	0,071839	0,389154
F	2р #	0,001137	-0,001892	0,728373	-0,124298
	2p#	-0,000501	0,001855	0,313452	-0,038724

ANNEXE III (1)

FON	CTION	D'ONDE SC	F DE L'ET	AT ⁶ II /90	<i>10</i> σ 4π ³ 1δ ²) ET ENERG	ilE ¢ (en H	ARTREES	DES ORBITA	LES, R = 3,4	Bohrs.
		1-SIG	2-SIG	3-SIG	4-SIG	5-SIG	9-SIG	51S-7	8-SIG	9-SIG	10-SIG
de base	ω	-261,469932	-31,640643	-27,388858	-26,127412	-4,117036	-2,768543	-1,415341	-0,563394	-0,682082	-0,288314
Fe ls	D	0,998628	0,350367	0,000359	-0,00006	0,138762	0,000552	-0,005192	0.012645	0.007296	0.025423
28	D	0,004292	-1,076267	-0,001041	0,000071	-0,502219	-0,001997	0,017479	-0,043816	-0.026088	-0.094502
35	D	-0,000956	0,042771	-0,000251	0,000072	1,105858	0,004391	-0,051425	0,125742	0,070064	0.231203
48	D	-0,000158	0,007874	0,001089	0,001536	-0,012356	0,002640	-0,009429	-0,015847	-0,014159	-0.623902
40	ğ	0,000381	-0,018684	0,002344	0,001531	0,045231	0,001402	0,018008	-0,136149	-0,098895	-0,384355
27 D	Þ	-0,000001	0,001037	-0,984106	0,000071	0,001757	-0,344718	0,022156	-0,032664	-0,016599	0,038435
đr.	b	-0,000006	0,000393	-0,050783	-0,000026	-0,005211	1,020561	-0,071542	0,109659	0,055044	-0,126413
46	D	-0,000014	0,000702	-0,006960	0,000982	-0,000033	-0,026611	-0,010618	0,040735	0,013345	0,211739
4 b	p	0,000072	-0,003344	0,017749	0,002582	0,000916	0,082755	0,007115	-0,114573	-0,074503	0,270563
R :	D	0,000010	-0,000046	0,000940	0,000321	0,000611	-0,000149	0,002922	-0,016029	0,134276	-0,009122
	D	-0,000031	0,001206	-0,002086	-0,000930	-0,004714	-0,007442	0,019090	-0,063912	0,623983	-0,044298
ק, ו	D	0,000057	-0,002578	0,003770	0,001989	0,001387	0,002057	0,012851	-0,082654	0,406855	-0,022576
F. 18	D	-0,00006	0,000244	-0,000339	0,993195	-0,000893	-0,005863	-0,253283	-0,030355	0,008971	-0,012970
72	D	-0,000107	0,004853	-0,007961	-0,017701	-0,001372	-0,007285	0,545053	0,115008	0,082527	0,055127
57	D	0,000050	-0,002151	0,002867	0,028551	0,001612	0,012452	0,511938	0,065675	-0,012514	0,028368
4 .	p	0,000104	-0,004860	0,005027	0,002693	0,001145	-0,002856	-0,068070	0,678250	0,146239	-0,111753
d7	Q	-0,000045	0,001984	-0,001725	-0,001951	-0,001463	-0,006161	-0,014390	0,304900	0,041170	-0,045506

.

1-DEL	-0,744174	0,133942	0.635458	0.402021						
	ω/	30.6	3d 6	30 6						
	orbitales de base	Fe								
4-PI	-0,625826	-0,006093	0,019892	-0,016265	-0,032135	0,134099	0,619072	0,419463	-0,128722	-0,040773
3-PI	-0,537426	0,013675	-0,045013	0,039173	0,065974	0,011778	0,032275	0,070588	0,727612	0,312412
2-PI	-2,781621	-0,345336	1,022874	-0,027825	0,077282	-0,000296	-0,002912	-0,001260	-0,001839	0,001605
I-II	-27, 399839	0,984269	0,050266	0,006672	-0,013582	-0,000213	0,000192	-0,000314	0,001148	-0,000510
	3	2p #	3p #	4p π.	4p π	3d π	3d ≖	, 3d ∎	2p #	2p #
/	orbitales de base	Fe							£4	

BILZ

FONCTION D'ONDE SCF DE L'ETAT ${}^{4}\Phi$ (90 4 π^{3} 1 δ^{3}) ET ENERGIE ϵ (en HARTREES) DES ORBITALES, R = 3,4 Bohrs.

\searrow		1-SIG	2-SIG	3-sig	4-SIG	5-SIG	6-SIG	7-sig	8-SIG	9-sig
orbitales de base	E	-26 1,217562	-31,374113	-27,135997	-26,056970	-3,870309	-2,546263	-1,340206	-0,481521	-0,428042
Fe	150 250 350 450 450 200 300 300 300 300 300 300	0,998631 0,004283 -0,000951 -0,000157 0,000380 -0,000012 -0,000012 -0,000014 0,000072 0,000016 -0,000036	0,350360 -1,076273 0,042803 0,007908 -0,018841 0,003190 0,000636 0,000730 -0,003464 -0,000714 0,001600 -0,002530 0,000250	0,001145 -0,003493 -0,000042 0,001081 0,002273 -0,984109 -0,050761 -0,006977 0,017816 0,001189 -0,002071 0,003780	-0,000005 0,000074 0,001534 0,001503 0,000074 -0,000023 0,000996 0,002541 0,000316 -0,000920 0,001962	0,138108 -0,499802 1,099652 -0,015665 0,058976 0,007221 -0,021124 0,000844 -0,000829 -0,000170 0,000536 -0,001917	0,002880 -0,010476 0,023510 0,004382 -0,002752 -0,343173 1,015615 -0,032189 0,096234 -0,000887 -0,015201 -0,001359	-0,005085 0,017117 -0,049902 -0,005849 0,011146 0,022595 -0,072426 -0,007145 -0,000673 0,002341 0,017320 0,009709	0,012369 -0,042635 0,122577 -0,039446 -0,108830 -0,031782 0,106545 0,044163 -0,091293 -0,013541 -0,053404 -0,073935	0,011129 -0,040454 0,104669 -0,101944 -0,160759 -0,018727 0,061239 0,009529 -0,076711 0,126619 0,559697 0,459869
F	250 250 250 250 250	-0,000008 0,000050 0,000104 -0,000045	0,004916 -0,002189 -0,004881 0,002016	-0,007977 0,002875 0,005032 -0,001731	-0,017647 0,028518 0,002612 -0,001801	-0,001058 -0,001367 0,002113 0,001113 -0,002026	-0,005883 -0,005974 0,014214 -0,003976 -0,006768	0,253631 0,550014 0,511674 -0,054385 -0,010179	0,023155 0,097718 0,048058 0,692901 0,306690	-0,054166 -0,012522 0,115056 0,027754

\searrow		1-PI	2-PI	3-PI	4- PI
orbitales de base	ε	-27,130190	-2,540243	-0,464922	-0,398508
Fe	2р π	0,984208	-0,343639	0,012917	-0,013980
	3р л (0,050447	1,016626	-0,042246	0,045217
	4p π	0,006668	-0,034861	0,056172	-0,039434
	4p #	-0,013525	0,096567	0,048964	-0,071742
	3d #	-0,000503	0,000746	0,008862	0,129940
	3d #	0,000222	-0,008305	0,021345	0,565447
•	3d #	-0,000360	-0,005764	0,057612	0,481938
F	2р #	0,001151	-0,001865	0,732289	-0,107558
	2p #	-0,000509	0,001883	0,312088	-0,034151

ANNEXE III (3)

FONCTION D'ONDE SCF DE L'ETAT ${}^{4}\Delta$ (9 σ^{2} 4 π^{2} 1 δ^{3}) ET ENERGIE ϵ (en HARTREES) DES ORBITALES, R = 3,4 Bohrs.

	· .	1-SIG	2-SIG	3-SIG	4-SIG	5-SIG	6-SIG	7-SIG	8-SIG	9-51G
orbitales de base	ε	-261,267473	-31,427211	-27,182411	-26,078841	-3,916726	-2,590634	-1,357116	-0,513962	-0,335853
Fe	lso	0,998630	0,350363	0,001134	-0,000005	0,138292	0,003196	-0,004990	0,008229	0,016478
	2so	0,004285	-1,076277	-0,003464	0,000070	-0,500487	-0,011650	0,016774	-0,027685	-0,059473
	3so l	-0,000952	0,042809	-0,000028	0,000071	1,101477	0,026150	-0,049008	0,082916.	0,156825
	4so	-0,000157	0,007924	0,001104	0,001533	-0,015260	0,003556	-0,007283	0,002968	-0,212942
	4so	0,000380	-0,018792	0,002314	0,001521	0,054911	-0,005351	0,010146	-0,048415	-0,227329
	2po	-0,000012	0,003158	-0,984087	0,000074	0,007654	-0,344005	0,022113	-0,025254	-0,022183
	3po	-0,000004	0,000633	-0,050828	-0,000024	-0,022306	1,018227	-0,070968	0,085004	0,073777
	4pg	-0,000014	0,000728	-0,006990	0,000988	0,001120	-0,030445	-0,007821	0,034792	0,028534
	4pg	0,000071	-0,003432	0,017941	0,002561	-0,001746	0,087328	-0,000309	-0,067499	-0,086748
	3do	0,000015	-0,000342	0,001247	0,000317	0,001347	0,000031	0,004239	-0,052453	0,109516
	3đơ	-0,000035	0,001379	-0,002201	-0,000930	0,005222	-0,009742	0,025969	-0,221739	0,467197
	3đơ l	0,000058	-0,002566	0,003818	0,001967	0,000951	-0,000901	0,015676	-0,217560	0,422734
F	lsσ	-0,000006	0,000247	-0,000345	0,993206	-0,001005	-0,006471	-0,253930	-0,026110	-0,000568
	2sσ	-0,000108	0,004891	-0,008106	-0,017658	-0,001446	-0,001791	0,546048	· 0,112574	-0,001815
	25σ	0,000050	-0,002172	0,002940	0,028500	0,001981	0,012100	0,514133	0,054976	0,000400
	200	0,000104	-0,004880	0,005102	0,002649	0,001371	-0,005919	-0,054566	0,621415	0,304894
	2pg	-0,000045	0,002004	-0,001770	-0,001868	-0,001728	-0,005567	-0,010195	0,283560	0,114531

		Ì-PI	2-PI	3-PI	4-PI
orbital de bas	es E	-27, 185665	-2, 582597	-0, 480381	-0, 504110
Fe	2р π	0,984239	-0,343777	0,012845	-0,012957
	3pπ	0,050352	1,017356	-0,042088	0,041813
	4pπ	0,006660	-0,033543	0,049135	-0,019941
	4р π	-0,013499	0,094190	0,051035	-0,063202
	3d #	-0,000459	-0,000882	0,008759	0,131392
	. 3d #	0,000183	-0,009880	0,020147	0,594891
	, 3d.#	-0,000336	-0,005229	0,059646	0,449596
F	2р т	0,001137	-0,002084	0,731365	-0,109585
	2p #	-0,000499	0,002071	0,314038	-0,033687

		1-DEL
orbitales de base	ε	-0, 448471
Fe	3d δ 3d δ 3d δ	0,131296 0,573800 0,476401

FONCTION D'ONDE SCF DE L'ETAT $^{6}\Sigma^{+}$ (9 σ^{2} 4 π^{2} 1 δ^{2} 10 σ) ET ENERGIE ϵ (en HARTREES) DES ORBITALES, R = 3,4 Bohrs.

orbitales de base	Ľ	1-SIG -261,483195	2-SIG -31,656152	3-SIG -27, 396320	4-SIG -26,134820	5-SIG -4, 128064	6-SIG -2,776189	7-SIG -1,421026	8-SIG -0,636448	9-SIG -0, 491315	10-SIG -0, 304881
Fe	lso	0, 998627	0, 350376	0,000624	-0,000006	0,138737	0,000809	-0,005016	0,002251	0, 016996	0,026053
	250	0,004294	-1,076298	-0,001862	0,000073	-0,502130	-0,002947	0,016841	-0,006656	-0,060318 .	-0,097035
	350	-0,000957	0,042849	-0.000253	0,000069	1,105704	0,006565	-0,049768	0,025489	0,164968	0,237432
	450	~0,000158	0,007752	0,001128	0.001536	-0,010287	0,002205	-0,009991	0,035591	-0,085872	-0,581144
	450	0,000381	-0,018//4	0,002406	0,001535	0,045021	-0,000357	0,015837	0,000758	-0,213132	-0,412596
	2po	-0,000004	0,001804	-0,984072	0,000078	0,002126	-0,345210	0,021837	-0,016760	-0,029547	0,041222
	3po 🛛	-0,000006	0,000426	-0,050881	-0,000029	-0,006305	1,021923	-0,070499	0,056014	0,099488	-0,136070
	4po	-0,000014	0,000752	-0,006978	0,000981	-0,000505	-0,025786	-0,010215	0,014038	0,039066	0,186852
	4po	0,000072	-0,003295	0,017343	0,002582	0,000178	0,078025	0,006441	-0,049459	-0,113820	0,294812
	3do	0,000007	0,000446	0,001122	0,000319	0,001014	0,000864	0,005733	-0,099615	0.086538	-0.025322
	3đa	-0,000029	0,001088	-0,002232	-0,000945	-0,006433	-0.001634	0.032141	-0.441457	0. 389385	-0.120488
	3da	0,000056	-0.002508	0,003839	0.001979	0.000981	0.002690	0.019797	-0. 342851	0.274647	-0.067799
P	lsa	-0.000006	0.000240	-0.000343	0.993199	-0.000849	-0.005548	-0.253222	-0.031464	-0.011597	-0 014348
. •	250	-0.000107	0.004832	-0 008007	-0 017692	-0,000043	-0,003540	0 642106	0 141256	-0,011507	-0,014340
	200	0,000107	0,000032	-0,000097	-0,017032	-0,001341	-0,004341	0, 542100	0,141330	0,021040	0,062263
	290	0,000049	-0,002133	0,002940	0,028534	0,001492	0,010/90	0,512/12	0,064145	0,028610	0,031051
	zpa	0,000104	-0,004864	0,005101	0,002684	0,001173	-0,003641	-0,066840	0,419438	0,545659	-0,140852
	2po	-0,000044	0,001970	-0,001769	-0,001936	-0,001250	0,004974	-0,014453	0,205691	0,228070	-0,056254

		1-PI	2-PI	3-PI	4- PI
orbitales de base	ε	-27,418674	-2,791845	-0,539663	-0,718638
Fe	2p #	0,984299	-0,345316	0,013877	-0,006803
	3p#	0,050176	1,023074	-0,045688	0,022377
	4p #	0,006667	-0,027318	0,037356	-0,013211
	4p *	-0,013564	0,076609	0,068188	-0,039484
	3ā #	-0,000280	-0,000368	0,011015	0,134753
	3d #	0,000177	-0,004020	0,027427	0,637740
	'3d #	-0,000306	-0,000319	0,071724	0,396270
F	2p #	0,001139	-0,002120	0,727699	-0,121856
	2p #	-0,000500	0,001883	0,312407	-0,037589

		1-DEL
de base	ε	-0,768308
Fe	3d 8	0,134838
	3d 8	0,641993
	30.8	0,393317

ANNEXE III (5)

CALCUL DU COEFFICIENT $\xi_{3d(Fe)}$ A PARTIR DE L'ETAT (3d⁶ 4s) DE Fe⁺

L'énergie spin-orbite est donnée par

$$E_{SO} = \frac{1}{2} A \left[J (J+1) - S (S+1) - L (L+1) \right]$$
(1)

$$\Delta E_{SO} \begin{pmatrix} 6D_{9/2} - 6D_{7/2} \end{pmatrix} = \frac{9}{2} A \begin{pmatrix} 6D \end{pmatrix} = -384, 8 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6D_{7/2} - 6D_{5/2} \end{pmatrix} = \frac{7}{2} A \begin{pmatrix} 6D \end{pmatrix} = -282, 9 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6D_{5/2} - 6D_{9/2} \end{pmatrix} = \frac{5}{2} A \begin{pmatrix} 6D \end{pmatrix} = -195, 0 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6D_{3/2} - 6D_{9/2} \end{pmatrix} = \frac{3}{2} A \begin{pmatrix} 6D \end{pmatrix} = -114, 4 \text{ cm}^{-1}$$

on en déduit

$$A(^{6}D) = 80 \text{ cm}^{-1}$$

moyen

D'autre part, $H_{SO} = \sum_{i} \xi_{i} \ell_{i} \vec{s_{i}}$. On obtient donc pour l'état ${}^{6}D_{9/2}$ $E_{SO}({}^{6}D_{9/2}) = \langle \Psi({}^{6}D_{9/2}) | H_{SO} | \Psi({}^{6}D_{9/2}) \rangle$ $= \langle |\sigma \pi^{+} \pi^{-} \delta^{+} \overline{\delta^{+}} \delta^{-} \sigma'| | \sum_{i} a_{i} \ell_{iz} s_{iz} | |\sigma \pi^{+} \pi^{-} \delta^{+} \overline{\delta^{+}} \delta^{-} \sigma'| \rangle$ $= -\xi_{3d(Fe)}$

D'autre part, d'après (1) :

$$E_{SO}(^{6}D_{92}) = 5A(^{6}D)$$

D'où

$$5_{3d(Fe)} = 400 \text{ cm}^{-1}$$

CALCUL DU COEFFICIENT
$$\xi_{4p(Fe)}$$
 A PARTIR DE L'ETAT $(3d^3 4p)^6 F$ DE Fe^+
 $E_{SO}({}^{6}F_{11/2}) = \langle \Psi({}^{6}F_{11/2}) | H_{SO} | \Psi({}^{6}F_{11/2}) \rangle$
 $\cdot = \langle |\sigma \pi^* \pi^- \delta^* \overline{\delta^*} \delta^- \pi^{**} | \sum_{i = 1}^{n} a_{iz} s_{iz} | |\sigma \pi^* \pi^- \delta^* \overline{\delta^*} \delta^- \pi^{**} | \rangle$
 $= -\xi_{3d(Fe)} + \frac{1}{2}\xi_{4p(Fe)}$

D'autre part, d'après (1) :

$$E_{SO}(^{6}F_{11/2}) = \frac{15}{2}A(^{6}F)$$

et :

$$\Delta E_{SO} \begin{pmatrix} 6F_{11/2} & -6F_{9/2} \end{pmatrix} = \frac{11}{2} A \begin{pmatrix} 6F \end{pmatrix} = -146,7 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6F_{9/2} & -6F_{7/2} \end{pmatrix} = \frac{9}{2} A \begin{pmatrix} 6F \end{pmatrix} = -122,3 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6F_{7/2} & -6F_{5/2} \end{pmatrix} = \frac{7}{2} A \begin{pmatrix} 6F \end{pmatrix} = -97,8 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6F_{5/2} & -6F_{3/2} \end{pmatrix} = \frac{5}{2} A \begin{pmatrix} 6F \end{pmatrix} = -66,5 \text{ cm}^{-1}$$
$$\Delta E_{SO} \begin{pmatrix} 6F_{3/2} & -6F_{3/2} \end{pmatrix} = \frac{3}{2} A \begin{pmatrix} 6F \end{pmatrix} = -38,6 \text{ cm}^{-1}$$

D'où

$$A(^{6}F)$$
 = -26,8 cm⁻¹

On en déduit

$$\xi_{3d(Fe)} - \frac{1}{2} \xi_{4p(Fe)} = 200 \text{ cm}^{-1}$$

Or

$$\xi_{3d(Fe)} = 400 \text{ cm}^{-1}$$

đ'où

$$\xi_{4p(Fe)} = 400 \text{ cm}^{-1}$$

SOMMAIRE

INTRODUCTION	1
* PREMIERE PARTIE : ETUDE EXPERIMENTALE	
CHAPITRE I Dispositifs expérimentaux	3
A - Sa source	3
B - Les spectrographes	4
C - Etalonnage des spectres	4
CHAPITRE II Eléments de base de l'analyse spectroscopique	6
CHAPITRE III Etude théorique d'une transition $6\Pi(a) - 6\Delta(a)$	9
A. Etude générale de la structure d'un état ⁶ 6	9
A.I. Matrice d'énergie d'un état ⁶ A isolé	9
A.I.1. Définition du hamiltonien et de la base	9
A.I.2. Action de l'opérateur de symétrie $\hat{\sigma}_v$ sur les vecteurs de base des différents états	10
A.I.3. Calcul des éléments de matrice du hamil- tonien Hp	11
A.I.4. Action des opérateurs Hog Hog Hog Hog H	13
a) Interaction spin-orbite	13
b) Interaction spin-spin	13
c) Interaction spin-rotation	13
d) Distorsion centrifuge	14
A.II. Interaction entre les états électroniques voisins et l'état ${}^{6}\Lambda$	14
A.II.1. Interactions dues au hamiltonien de rotation	16
A.II.2. Interactions dues au hamiltonien spin-orbite	16
A.II.3. Calculs des éléments de matrice de couplage	16
a) états ⁴ Π, ⁴ Δ, ⁴ Φ, ⁸ Π, ⁸ Δ, ⁶ Φ	16
b) $\delta tats {}^{6}\Pi, {}^{6}\Delta, {}^{6}\Phi$	17
* interactions ${}^{6}\Delta - {}^{6}\Pi_{4}$ et ${}^{6}\Delta - {}^{6}\Phi_{4}$	17
* interaction ${}^{6}\Delta - {}^{6}\Delta_{1}$	18
A.II.4. Effets de l'interaction entre les états électroniques voisins de l'état ⁶ 4	18
a) corrections à apporter aux éléments de matrice par l'interaction ${}^{6}\Delta - {}^{6}\Delta_{i}$	19
b) Forme générale de la matrice d'un état ⁶ A	19
B. Etude générale de la structure d'un état ⁶ N	22
B.I. Forme générale de la matrice d'un état ⁶ N	22
B.II. Dédoublement Λ dans un état ⁶ N	22
C. Transition ${}^{6}\Pi(a) - {}^{6}\Delta(a)$	25

CHAPITRE IV - Analyse de rotation	28
A - Généralités	28
B - Analyse de la structure de rotation de la bande	
$\lambda = 3305, 5$ Å, $6\pi_{7/2}, v' = 0$ – $6\Delta_{9/2}, v'' = 0$ · · · · · · · · · · · · · · · · · ·	30
C - Analyse de la structure de rotation de la bande	
$\lambda = 3378, 7 \text{ Å}, 6 \Pi_{7/2}, \pi = 1 - 6 \Delta_{9/2}, \pi = 2 \cdot \cdot$	34
D - Analyse de la structure de rotation de la bande	
$\lambda = 3303$ Å, $6\Pi_{5/2}$ with $0 = 6\Delta_{7/2}$ when $0 = 0$	37
E - Analyse de la structure de rotation de la bande	
$\lambda = 3236, 4$ Å, ${}^{6}\Phi_{1/2}$ $\psi' = 0 - {}^{6}\Delta_{-1/2}$ $\psi'' = 0$	38
CHAPITRE V - Structure spin-orbite et structure de vibration du système $^{6}\Pi$ - $^{6}\Delta$	43
A - Classement des têtes de bandes	43
B - Détermination des constantes de vibration des états $^{6}\Pi$ et $^{6}\Lambda$	46
C - Calcul approché des paramètres _e et D _e à partir des cons- tantes de vibration	49
D - Détermination des constantes spin-orbite	50
DEUXIEME PARTIE : ETUDE THEORIQUE.	
CHAPITRE VI - Calculs SCF et interaction de configurations	53
A - Généralités	53
A.I. Approximation des orbitales moléculaires	53
A.II. Fonction d'onde HARTREE-FOCK : Calculs SCF	54
A.III. Calculs d'interaction de configurations	54
A.IV. Moyens de calculs	55
B - Calculs SCE dans Ve F	55
$\mathbf{B} = \mathbf{Catcurs} \mathbf{b} = \mathbf{Catcurs} \mathbf{b} = \mathbf{Catcurs} \mathbf{c} = \mathbf{c} + c$	55
	55
B.II. Etats fetenus pour les carcuis str	50
D.III. Resultats Str	
C - Calculs d'interaction de configurations	65
C.I. Configurations de base des calculs C.I	65
C.II. Résultats de l'interaction de configurations	67
CHAPITRE VI - Interprétation des transitions observées	73
A - Diagramme des niveaux d'énergie	77
B - Identification des états mis en jou dans les transitions	<i>,</i> ,
	75
C - Structure spin-orbite	76

CONCLUSION.

*

BIBLIOGRAPHIE

(1)	B. ROSEN, données spectroscopiques relatives aux molécules diatomiques.
	aracomrades.
(2)	M. BECART, thèse de Doctorat, Université de LILLE I. (1960).
(3)	J.M. MAHIEU, thèse de Doctorat, Université de LILLE I. (1971).
(4)	D. JACQUINOT, thèse de 3 ^{ème} Cycle, Université de LILLE I. (1970).
(5)	R. BACIS, thèse de Doctorat, Université de LYON I. (1974).
(6)	A. GIACCHETTI, R.W. STANLEY, R. ZALUBAS, J. Opt. Soc. Amer, 60, 4 (1970).
(7)	J.T. HOUGEN, "The calculation of rotational energy levels and rotational line intensities in diatomic molecules". National Bureau of STANDARDS, Monographic 115 (1970).
(8)	I. KOPP and J.T. HOUGEN, Can. J. Phys., <u>51</u> , 125 (1973).
(9)	W. HEISENBERG et P. JORDAN, Z. Phys., <u>37</u> , 268 (1926).
(10)	J.H. VAN VLECK, Rev. Mod. Phys., 23, 213 (1951).
(11)	I. KOVACS, Rotational structure in the Spectra of Diatomic molecules. A. HILGER, London (1969).
(12)	J.H. VAN VLECK, Phys. Rev., 33, 467 (1969).
(13)	J.M. BROWN, J.T. HOUGEN, K.P. HUBER, J.W.C. JOHNS, I.KOPP, H. LEFEBVRE-BRION, A.J. MERER, D.A. RAMSAY, J. ROSTAS, and R.N. ZARE, J. Mol. Spectry, <u>55</u> (1975).

- (14) G. HERZBERG, Spectra of Diatomic Molecules, VAN NOSTRAND, New York (1950).
- (15) P.M. MORSE, Physic. Rev., <u>34</u>, 57 (1929).
- (16) F. HUND et R.S. MULLIKEN, Phys. Rev., 32, 186 (1928).
- (17) J.S. SLATER, Quantum Theory of Atomic Structures. Mc GRAW-HILL, New-York (1960).
- (18) R. DAUDEL, R. LEFEBVRE, C.M. MOSER, Quantum Chemistry. Interscience Publishers Inc. New York (1959).
- (19) C.R. CLAYDON et K.D. CARLSON, J. Chem. Phys., 49, 1331 (1968).
- (20) E. CLEMENTI et C. ROETTI, Atomic Data and Nuclear Data Tables, Academic Press, 14 (1974).
- (21) C.E. MOORE, Atomic Energy Levels. National Bureau of Standards (1952).
- (22) L. LANDAU et E. LIFCHITZ, Mécanique Quantique. Editions MIR. MOSCOU (1967).
- (23) C. FROESE FISCHER, Calculs Hartree-Fock pour les atomes. Dept of Mathematics, University of British Columbia, Vancouver (1968).
- (24) B. PINCHEMEL et J. SCHAMPS, Chem. Phys. (à paraître 1976).
- (25) E. ISHIGORO et M. KOBORI, J. Phys. Soc. (Japan), 22, 263 (1967).
- (26) E. CLEMENTI, Tables of Atomic Functions. Supp. I.B.M.J. Research. Dev., <u>9</u>, 2 (1965).
- (27) C.J. CHEETHAM et R.F. BARROW, Adv. High Temp. Chem. U.S.A. 1, 7 (1967).

REMERCIEMENTS

Ce travail a été effectué à l'U.E.R. de Physique fondamentale de l'Université des Sciences et Techniques de Lille, dans le Laboratoire de Spectroscopie des Molécules Diatomiques, Equipe de recherche associée au C.N.R.S.

Que Monsieur le Professeur BECART trouve ici l'expression de ma reconnaissance pour le soutien constant qu'il m'a accordé depuis mon entrée dans son service et pour avoir accepté de présider le Jury.

Je remercie Monsieur le Professeur SCHILTZ ainsi que Monsieur le Professeur WERTHEIMER qui ont accepté d'être membres du Jury.

Je remercie Monsieur le Professeur BARROW de l'Université d'Oxford qui a accepté de juger ce travail et a bien voulu se joindre au Jury.

Je tiens à remercier tout particulièrement Monsieur J. SCHAMPS pour l'intérêt constant qu'il a accordé à ce travail et l'aide efficace qu'il m'a apportée.

J'adresse également mes remerciements à mes collègues du Laboratoire.

Enfin, je remercie tous ceux qui ont contribué à l'élaboration matérielle de ce mémoire, en particulier Madame FOULON et Messieurs CAREY, RAFFAUD et VILAIN.