50376 1976 179

DIPLOME D'ETUDES APPROFONDIES

DE

SCIENCES PHYSIQUES

MENTION : ELECTRONIQUE

CONTRIBUTION A L'ETUDE THEORIQUE DE L'OSCILLATEUR DIPOLE

REALISATION D'UNE CONDUCTANCE PARABOLIQUE.

PAR

FRANCIS WATTIAU

PRÉSENTÉ À L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE LE 9 JUILLET 1976

Le travail que nous présentons dans ce rapport a été effectué dans le Laboratoire de Mesures Automatiques de l'Unité I.E.E.A., de l'Université des Sciences et Techniques de Lille, avec l'aide du Professeur LEBRUN et de Monsieur DELECROIX. Il s'est déroulé à temps partiel dans le cadre d'un Diplôme d'Etudes Approfondies en Sciences Physiques.

SOMMAIRE

-:-:-:-:-:-:-:-

INTRODUCTION

Chapitre I - ETUDE ET REALISATION D'UNE CONDUCTANCE PARABOLIQUE

I-1- Expression de la conductance

- I-2- Caractéristiques demandées
- I-3- Obtention de la conductance

I-4- Générateur de courant

- I-5- Elaboration de la quantité analogique $(v_{v} \cdot v_{v})$
- 1-6- Réalisation pratique
- I-7- Caractéristiques de la conductance parabolique réalisée

Chapitre II - ETUDE DE L'ASSOCIATION PARALLELE DE LA CONDUCTANCE PARABOLIQUE ET D'UN RESONATEUR A CONDUCTANCE NEGATIVE

II-1- Résultats de l'étude théorique à vérifier expérimentalement

- a) La fréquence d'oscillation
- b) L'amplitude d'oscillation
- c) Le temps d'établissement

II-2- Vérifications expérimentales

II-2-1- Amplitude limite d'oscillation

II-2-2- Fréquence d'oscillation

II-2-3- Amplitude d'oscillation v(t) Temps d'établissement t_e

CONCLUSION

INTRODUCTION

Le Laboratoire de Mesures Automatiques étudie depuis plusieurs années l'oscillateur "dipôle" réalisé par association en parallèle d'un résonateur, d'une conductance négative et d'une conductance positive non linéaire stabilisant l'oscillation.

Le résonateur est en général formé d'une bobine et d'une cellule de mesure capacitive contenant un produit dont on veut déterminer la constante diélectrique $\varepsilon = \varepsilon' - j \varepsilon''$.

La partie réelle ɛ' est liée à la capacité de la cellule et par conséquent à la fréquence d'oscillation ; la partie imaginaire ɛ' introduit une conductance de perte et agit donc sur l'amplitude du signal.

La connaissance de l'amplitude et de la fréquence d'oscillation permet de déduire ɛ' et ɛ" dans la mesure où sont connueş les relations liant ces grandeurs entre elles. Une étude théorique est actuellement en cours au Laboratoire de Mesures Automatiques tendant à préciser ces relations pour différents types de non linéarités introduites dans l'oscillateur ; celle-ci conjugue des méthodes analytiques et numériques de résolution des équations différentielles pseudo-sinusoïdales dont la précision demande à être vérifiée expérimentalement.

Notre travail consiste en la réalisation d'une conductance positive non linéaire parabolique et à la vérification expérimentale des relations liant l'amplitude, la fréquence et le temps de mise en oscillation pour différents éléments du résonateur.

Dans une première partie nous décrivons la conception et la réalisation d'une conductance parabolique variable à l'aide de circuits "multiplieurs". Nous donnons quelques mesures originales qui ont permis de préciser la qualité de cette conductance.

Dans une seconde partie, nous utilisons la conductance parabolique pour vérifier expérimentalement les lois théoriques liant l'amplitude et la fréquence d'oscillation aux éléments du résonateur. Nous montrons que ces lois sont vérifiées expérimentalement avec une excellente précision et nous avons orienté plus particulièrement nos mesures vers l'amélioration des "G.B. mètres". Dans ces appareils, une variation de ε ' du produit se traduit par une variation de la fréquence tandis qu'une variation de ε " agit sur l'amplitude du signal ; or, les relations théoriques montrent une interdépendance d'une part entre la fréquence et la conductance de pertes, et d'autre part entre l'amplitude et la capacité. La vérification expérimentale de ces lois permettra à l'avenir de minimiser ces phénomènes parasites.

Dans une troisième partie, nous analysons les mesures de temps de mise en oscillation en vue de préciser les temps de commutation nécessaires aux G.B. mètres à bobine ou conductances programmables numériquement.

I - ETUDE ET REALISATION D'UNE CONDUCTANCE PARABOLIQUE

I-I- EXPRESSION DE LA CONDUCTANCE

La valeur G de la conductance doit varier, suivant une loi parabolique, en fonction de la valeur instantanée v de la tension appliquée à ses bornes telle que :

Le courant traversant la conductance est : $i(v) = k v^3 + G_0 v$

I-2- CARACTERISTIQUES DEMANDEES

a) La conductance parabolique doit être placée aux bornes: d'un résonateur à conductance négative. Afin de mesurer la fréquence d'oscillation avec une précision de l'ordre de 1/10.000, il est nécessaire que celle-ci soit de l'ordre de 10 kHz. On s'impose donc une fréquence limite minimale de 10 à 20 kHz pour la conductance parabolique.

b) La conductance G_0 et l'ouverture k de la parabole doivent être ajustables avec possibilité d'annulation.

c) La conductance parabolique réalisée doit vérifier la relation :

 $G(v) = k v^{n} + G_{0}$ avec $n = 2 \ \tilde{a} \ l \ \% pr \tilde{c}s$

I-3- OBTENTION DE G(v)

a) On utilise un générateur de courant commandé tel que :

 $i(v) = k_i v_i(v)$ avec $v_i(v) = k_2 v^3 + k_3 v$

b) Pour élaborer la tension de commande v_i(v) du générateur de courant, nous utilisons une méthode analogique, à l'aide de circuits "multiplieurs", seule méthode qui, actuellement, permet de travailler à des fréquences de l'ordre de 10 kHz.

-2-

c) Schéma fonctionnel de la conductance G(v)

Figure 2

Ce schéma conduit à l'équation suivante :

 $i(v) = k_{i} v_{i}(v) = (V_{a_{0}} k_{i} k_{o}^{3}) v^{3} + (k_{o} k_{i} VG_{o}) v$ soit k = Va_o k' avec k' = k_i k_o³ G_o = VG_o k'' avec k'' = k_i k_o

Cette méthode offre l'avantage d'ajuster ou de faire varier k et G_0 à l'aide de tensions continues Va₀ et VG₀.

1-4- GENERATEUR DE COURANT

Un générateur de courant à grande impédance interne et à large bande de fréquence a été étudié antérieurement⁽²⁾. Ce type de générateur, très satisfaisant pour notre étude a été choisi.

La valeur de k_i reste constante, 30,5% près, pour une résistance de charge RL ne dépassant pas 30 k Ω et pour des fréquences inférieures à 40 kHz .

-3-

I-5- ELABORATION DE LA QUANTITE ANALOGIQUE : $(v_x v_y)$

Pour une première réalisation de conductance parabolique nous employons des circuits multiplieurs de performances moyennes : MC 1595 Motorola, dont la linéarité est de 0,5 % pour des fréquences d'utilisation inférieures à 100 kHz.

-4-

Le schéma du montage, donnant la quantité $v_x v_y$ (figure 4, page 5), est mis sous une forme synoptique (figure 4bis, page 5) pour simplifier l'étude.

Les potentiomètres P_x et P_y permettent le réglage des tensions d'offset V_{X_0} et V_{y_0} des entrées X et Y.

La tension continue V_{z_0} règle la tension de décalage V_{s_0} en sortie du montage, soit par l'intermédiaire d'un potentiomètre P_z , soit directement à l'aide d'une alimentation extérieure.

L'expression de la tension de sortie peut se mettre sous la forme : $v_s = k_0 (v_x + V_{x_0}) (v_y + V_{y_0}) + k_1 V_{z_0} + V_{s_0}$

On obtient : théoriquement avec les valeurs des résistances du schéma : $k_0 = 0,30$ et $k_1 = 1,001$

et expérimentalement, en régime continu : $k_0 = 0,296 a 0,1 \%$ près et $k_1 = 1 a 0,1 \%$ près.

I-6- REALISATION DE LA CONDUCTANCE PARABOLIQUE G(v)

Le schéma du montage de la conductance G(v) est donné figure 5 page⁵ L'influence et le réglage des différentes tensions de décalage (V_{Xo}, V_{yo}, V_{so}) font l'objet d'une notice technique.

Un étage "suiveur" permet d'obtenir une impédance d'entrée élevée, et d'attaquer correctement les étages "multiplieurs".

Etage X_1 : les potentiomètres P_{x_1} , P_{y_1} , P_{z_1} sont réglés pour obtenir : $v_1(v) = k_0 (v_{x_1} v_{y_1}) = k_0 v^2$

Etage X_2 : Les potentiomètres P_{x_2} , P_{y_1} sont réglés pour obtenir : $v_2(v) = k_0^2 V_{a_0} v^2 + k_1 V_{G_0} + V_{s_{20}}$ avec $V_{G_0} < 0$

Etage X_3 : G₀ peut prendre des valeurs positives, nulle ou négatives, il est cependant préférable de conserver la tension VG₀ toujours de même signe. C'est pourquoi nous nous servirons ici de la tension d'offset V_{XO3} réglable par le potentiomètre P_{X3}.

~ (Vz. .ou Pz)

DE LA CONDUCTANCE SCHEMA

Les potentiomètres P_{y_3} et P_{z_3} sont réglés pour obtenir :

 $v_i(v) = k_0 (v_{y3}) (v_{x3} + V_{x03})$

soit $v_i(v) = k_0 v \left[V_{a_0} k_0^2 v^2 + k_1 V_0^2 + V_{s_{20}} + V_{x_{03}} \right]$

en posant : $V_{s_{20}} + V_{x_{03}} = V_o$ on obtient :

$$i(v) = k_i v_i(v) = V_{a_0} k_i k_0^3 v^3 + (k_i k_0 k_1 VG_0 + k_i k_0 V_0) v$$

Le réglage de V_o est fait expérimentalement afin d'obtenir une variation de G_0 maximale en fonction de VG₀ sans saturer les amplificateurs et multiplieurs.

On en déduit numériquement :

 $k = 2,075. 10^{-6} V_{a_0} s/v^2$ avec $k' = 2,075 \mu s/v^2 V_c$ $G_0 = 23,68. 10^{-6} (V_0 + VG_0)$ avec $k'' = 23,68 \mu s/V_c$

Stabilité des alimentations

a) Les tensions V_{a_0} et VG_0 sont stables à 0,05 %. Néanmoins pour $V_0 \neq VG_0$ l'instabilité de V_0 et de VG_0 n'est pas négligeable ; les fluctuations sont inférieures à 0,1 mV dans une gamme de température comprise entre 15°C et 25°C ce qui entraîne une fluctuation ΔG_0 de ± 0,0025 µs.

Il faut donc choisir $|G_0|$ supérieure à 0,25 µs pour obtenir une précision de 1 % sur la mesure.

b) Les alimentations (+B) et (-B) doivent être stables à 0,1 % pour obtenir une précision de 0,5 % sur la linéarité du produit $v_x v_y$.

I-7- CARACTERISTIQUES DE LA CONDUCTANCE REALISEE

L'influence des tensions et courants d'offset, qui font l'objet d'une notice technique, montre que le courant i(v) traversant la conductance, et la tension v à ses bornes sont liés par la relation générale :

 $i(v) = k v^{3} + \delta' k v^{2} + G_{0} v + i_{0}$

avec k fonction de la tension $(V_{a_0} + V_{y_{02}})$

- δ fonction de ($V_{x01} + V_{y01} + V_{y03}$)
- G_0 fonction de $(V_0 + VG_0 + \delta'' V_{a_0})$
- i_o (courant de décalage d'entrée de la conductance parabolique), fonction :
 - . des tensions de décalages des multiplieurs
 - . de V_{ao} et de VG_o

. des courants de décalages du suiveur et du générateur de courant

 δ' et i_o sont des termes parasites que l'on s'efforce de réduire par réglage des tensions d'offset.

a) Influence du courant i

Après réglage, le courant i_o ne dépasse pas 50 μ A, il engendre une tension continue aux bornes des résonateurs négligeable (inférieure à 50 μ V pour des résistances de bobines inférieures à 1000 Ω).

b) Influence du terme δ^{\dagger}

En posant G(v) = k vⁿ + G_o, le terme δ ' introduit une erreur sur k et sur n tel que :

pour v > 0
$$G(v^+) = (k^+) v^{(n^+)} + G_0$$

v < 0 $G(v^-) = (k^-) v^{(n^-)} + G_0$

I-7-1- Mesures

Deux méthodes de mesures ont été retenues :

a) Relever la fonction i(v) à l'aide d'une table traçante avec comme paramètres Va_0 et VG_.

b) Mesurer G(v), $\frac{d_i(v)}{d_v}$, en fonction de la fréquence par une méthode de pont avec comme paramètres Va_o et VG_o.

I-7-1-1- Relevés à la table traçante

Figure 6

Les impédances d'entrée de la table mesurées (sur les calibres choisis) sont :

$$R_X$$
 (table) = 1,010 M Ω et R_Y (table) = 0,998 M Ω

à 0,5 % près, ces valeurs sont indépendantes du niveau.

-7-

a) Relevé de $i_1(v) = f(VG_0)$ pour $V_{a_0} = 0$

Le réseau de courbes est donné page ⁹, graphe 2 Pour Va_o = 0 , on peut écrire :

 $i_1(v) = k''(v_0 + VG_0) + Gy_T v \text{ avec } G_0 = k''(v_0 + VG_0)$ On déduit par une étude statistique^(*):

> $k'' = 23,7 \mu s/V_c$ $V_o = 810 \text{ mV}$

La précision obtenue est de l % sur les deux termes : celle-ci est liée à la précision sur G_{y_T} et à celle des relevés sur papier millimétré.

La mesure de VG est faite à ± 0,5 mV près

b) Relevé de $i_1(v) = f(Va_0)$ à VG₀ constant

Les réseaux de courbes donnés page ⁹, graphes 3-4, donnent une idée des résultats obtenus, mais chaque courbe a été relevée séparément pour des valeurs de $|G_0|$ compris entre 0,5 µs et 18 µs et pour des valeurs de Va₀ compris entre 0 et + 5 V.

On peut écrire que : $i_1(v) = k v^{n+1} + G_0 v + Gy_T v$ soit $G(v) - G_m = k v^n$ avec $G_m = G_0 + Gy_T$

 $\begin{array}{l} G_{m} \mbox{ peut être connue à 0,5 \% pour Va_{0} = 0 \\ \mbox{ La mesure de Va}_{0} \mbox{ est faite à 0,2 \% pour Va}_{0} \geqslant 100 \mbox{ mV} \\ \mbox{ On déduit par une méthode statistique (*) que : } \\ \mbox{ Pour v > 0 : k' = 2,05 $\mu \mbox{ statistique (*) que : } \\ \mbox{ Pour v > 0 : k' = 2,05 $\mu \mbox{ statistique (*) que : } \\ \mbox{ Pour v < 0 : k' = 2,07 $\mu \mbox{ statistique (*) que : } \\ \mbox{ Pour v < 0 : k' = 2,07 $\mu \mbox{ statistique (*) que : } \\ \mbox{ Remarque : 1'influence de Va}_{0} \mbox{ sur G}_{0} \mbox{ n'est pas visible à la table traçante. } \end{array}$

(*) Par la méthode des moindres carrés, le calculateur HP 25, donne

. les constantes a et b d'une équation de la forme y = ax + b

. les constantes c et n d'une équation de la forme $y = cx^n$

. les constantes d'et e d'une équation de la forme y = d + e Log x,

en introduisant les couples de données (x_i , y_i).

Un coefficient (donné par le calculateur) mesure le degré de perfection de l'ajustement de la courbe de régression.

-8-

6.19

-9-

c) Conclusion

Avec une précision de ± 1 % sur les différents termes, on peut admettre qu'aux basses fréquences :

 $G(v) = 2,06.10^{-6} Va_0 v^2 + 23,7.10^{-6} (V_0 + VG_0)$

I-7-1-2- Relevés par méthode de pont

Le principe de mesure est le suivant : la conductance Go pouvant être négative, on associe une conductance positive idéale à la conductance parabolique que l'on veut mesurer.

Deux équilibres peuvent être obtenus :

- un équilibre en continu $G_3 = G_4$ Dans ces conditions, on mesure G(v) pour $v = V_{P_o}$ V_{P_O} étant variable par l'intermédiaire de B_O
- un équilibre en alternatif avec polarisation de la parabole (V_{P_o})

avec $Y_3 = G_3 + j B_3$ et $Y_4 = G_4 + j B_4$ $Y_3 = Y_4$

$$G_4 = Gad + \frac{d_i}{d_v} (v_{P_o})$$

 $B_{L} = B_{p}$ terme imaginaire équivalent ramené par la conductance parabolique

or
$$\frac{d_i(v)}{d_v(v_{P_0})} = 3 k V_{P_0}^2 + G_o$$

d'où $G_3 - Gad = G_o + 3 k V_{P_0}^2$
et $B_3 = B_p$

Remarque : Un examen à l'oscilloscope cathodique de la fonction i(v) montre qu'au delà de 45 kHz, une distorsion apparaît suivant la figure 10, page 12. L'étude en fréquence sera donc limitée à 40 kHz.

Influences des différents paramètres sur G(v)

a) Influence de Va_o sur G_o avec (V_{p_o} = 0)

Pour Va_o compris entre 0 et 5 V, dans une gamme de fréquences de 200 Hz à 40 kHz la variation ΔG_o (VA_o) observée est inférieure à 0,01 µs.

- b) Etude de G(V) en fonction de la fréquence avec $V_{p_0} = 0$ et $V_{a_0} = 0$
 - Pour $V_{p_0} = 0$ et $Va_0 = 0$ on a $G(V) = G_0 = k'' (V_0 + VG_0)$

Pour différentes valeurs de VG_o on relève G_o = f(ω). On remarque que le terme $\left|\frac{\Delta G_o}{G_o}\right|_{(\omega)}$ est indépendant de la valeur de G_o

L'évolution de $\left|\frac{\Delta G_0}{G_0}\right|$ avec la fréquence est donnée graphe 6, page 12, avec k'' = 23,8 µs/V_c à 0,2 % pour une fréquence de 10 kHz.

c) Etude du terme imaginaire équivalent

Le terme imaginaire ramené par la conductance parabolique se comporte comme une capacité dont l'évolution en fonction de la fréquence est donnée graphe 7, page 12

La valeur de cette capacité à fréquence fixe est indépendante à ± 1 pF de V_{p_0} , Va₀ et VG₀.

d) Etude du terme "3k $V_{p_0}^2 + G_o$ "

- A l'équilibre (en alternatif) G_3 - Gad = G_0 + 3 k $V_{p_0}^n$

On vérifie suivant la méthode (*) voir page 8, que n = 2 à 1,5 % près jusqu'à une fréquence de 40 kHz

- Dans la même gamme de fréquence on observe que :

 $3 k (+ V_{p_0})^2 = 3 k (-V_{p_0})^2 a 1 % près$

- L'évolution de k' en fonction de la fréquence est donnée graphe 8, page 12, $(k = k' V_{a_0}).$

I-7-3- Conclusion

Dans une gamme de fréquence de 200 Hz à 40 kHz, on peut représenter la conductance parabolique par le schéma équivalent suivant :

Figure 9

Avec, à une fréquence de 10 kHz Pour 0,5 V < Va_o < + 5V $-10 \mu s < G_o < + 10 \mu s \text{ et } |G_o| \ge 0,5 \mu s$ 0 < v < 5V $\cdot k = 2,05,10^{-6} V_{a_0} s/_{v_2} V_c$ à 1% près $\cdot G_o = 23,8.10^{-6} (V_o+VG_o) s/_{V_c}$ à 1% près $\cdot C_p = 10 \text{ pF}$

II - ETUDE DE L'ASSOCIATION PARALLELE DE LA CONDUCTANCE PARABOLIQUE ET D'UN RESONATEUR À CONDUCTANCE NEGATIVE

11-1- RESULTATS DE L'ETUDE THEORIQUE A VERIFIER EXPERIMENTALEMENT

Le résonateur est formé de l'association en parallèle : d'une bobine l, r d'une condensateur c d'une conductance négative fixe G_{n_0} d'une conductance positive G_{p_0} ajustable d'une conductance non linéaire parabolique $G(V) = kv^2$

Figure 11

La mise en équation de ce circuit conduit à l'équation dite de Vander Pol-Duffing:

 $v'' - \varepsilon (1 - \beta v^{2}) v' + \omega_{1}^{2} v + p v^{3} = 0$ (1) avec $\varepsilon = -\left[\frac{r}{r} + \frac{\Sigma G}{\varepsilon}\right]$; $\Sigma G = Gp_{0} - Gn_{0}$; Gp_{0} et $Gn_{0} > 0$ $\beta = \frac{3k}{c \varepsilon}$; $p = r k \omega_{0}^{2}$; $\omega_{0}^{2} = 1/fc$ $\omega_{1}^{2} = \omega_{0}^{2} (1 + r, \Sigma G)$

L'équation (1) est résolue par des méthodes de linéarisation ou de perturbations. On détermine :

a) la fréquence d'oscillation:
fosc =
$$f_1(1 - \frac{\alpha^2}{16} + \frac{3p VL_0^2}{8 \omega_1^2} + \frac{9p^2 VL_0^4}{256 \omega_1^4} + -----)$$
 (2)

avec $\alpha = \frac{\varepsilon}{\omega_1}$ et V_{L_0} : amplitude limite d'oscillation

b) <u>l'amplitude d'oscillation</u>

$$v(t) = \frac{2}{\sqrt{\beta - (\beta - \frac{4}{v_{i_0}^2}) e^{-\epsilon t}}} \quad \text{avec} \quad V_{i_0}: \text{ amplitude initiale}$$

v(t) tend vers l'amplitude limite $V_{L_0} = \frac{2}{\sqrt{\beta}}$ c) <u>le temps d'établissement</u>

De la formule précédente on définit le temps d'établissement t_e comme étant celui mis par l'oscillateur pour passer de l'amplitude V_{i_0} à l'amplitude δV_{L_0} , ($\delta < 1$) soit :

-13-

$$t_e = \frac{1}{\varepsilon} \operatorname{Log} \frac{\left(\frac{V_{L_o}}{V_{i_o}} \right)^2 - 1}{\frac{1}{\delta^2} - 1}$$

II-2- VERIFICATIONS EXPERIMENTALES

Afin de vérifier les résultats théoriques présentés au paragraphe II-1, il est nécessaire de caractériser le plus parfaitement possible les résonateurs utilisés.

Une méthode de pont, semblable à celle présentée page **10**, nous permet de mesurer les éléments l, r, c , G_{n_0} , et le terme $\Sigma G + \frac{rc}{l}$, avec la précision souhaitée pour nos calculs.

Nous donnons en annexe les valeurs mesurées de ces éléments pour les résonateurs utilisés.

$$V_{L_0} = \frac{2}{\sqrt{\beta}}$$
 avec $\beta = \frac{-3 k}{\Sigma_G + \frac{r_C}{2}}$

On choisit le résonateur n°l qui donne la meilleure précision sur l'étude de VL_O <u>Influence des différents paramètres sur VL_O</u>

a) Influence du terme $\Sigma G + \frac{rc}{\underline{P}}$ avec $\frac{rc}{\underline{P}}$ constant, (Rad = 0) Nous présentons page 15 deux relevés :

- * $VL_o = f\left[\Sigma G + \frac{rc}{P}\right]$, graphe 9, " $\left[\Sigma G + \frac{rc}{P}\right]$ mesuré au pont"; ce qui permet de vérifier la relation (3)
- * $VL_0 = f(V_{G_0})$, graphe 10, " $\left[\Sigma G + \frac{rc}{2}\right]$ déduit de la relation (4) Annexe II"; ce qui permet de confirmer les résultats expérimentaux relevés pour G(V) chapitre I.
 - b) Influence de l'ouverture k de la parabole (Rad = 0)

Le graphe 11, page 15, nous donne l'évolution de $V_{L_0} = f(k)$ pour différentes valeurs de ΣG .

c) Influence de la résistance r

Pour observer l'influence de r, on se propose de faire varier c à l'aide d'une capacité variable énalon C_V (voir annexe) et de faire varier r en ajoutant une résistance étalon(Rad) en série avec la bobine.

(3)

En posant $c = C_0 + C_V$ d'après la relation (2), on peut écrire :

$$VL_{o_{1}} = \frac{2}{\sqrt{3k}} \left[\Sigma G + \frac{R_{s} + Rad}{L_{s}} (C_{o} + C_{V_{1}}) \right]^{0,5}$$
(5)
$$VL_{o_{2}} = \frac{2}{\sqrt{2k}} \left[\Sigma G + \frac{R_{s} + Rad}{L_{c}} (C_{o} + C_{V_{2}}) \right]^{0,5}$$
(6)

et

et

Quelque soit la valeur de Rad, pour
$$C_{V_1} = 100 \text{ pF}$$
, on ajuste la valeur de

Des relations (5) et (6) on déduit :

par l'intermédiaire de V_{G_0} pour obtenir $V_{L_{01}} = 1$ volt

$$(VL_{02})^2 = 1 - \frac{4}{3k} - \frac{R_s + R_{ad}}{L_s} \Delta C \quad avec \quad \Delta C = C_{V_2} - C_{V_1}$$
 (7)

Le graphe 12, page 15, donne l'évolution de $V_{L_{02}} = f(\Delta C)$ pour le résonateur n°l pour lequel L_s et R_s restent constant à 0,2 % pour les variations ΔC utilisées.

Conclusion

Nous avons utilisé une étude statistique (*) page 8 , pour étudier l'influence des différents paramètres sur V_{L_0} .

Cette étude permet de conclure que la formule reliant $V_{\mathrm{L}_{\Omega}}$

à ΣG et k est vérifiée expérimentalement à 2 % près à r ou $\frac{rc}{r}$ à 5% près.

II-2-2- Fréquence d'oscillation - (fosc)

D'après la formule (2) page 13, on peut écrire que : fosc = $f_1 \left(1 - \frac{\alpha^2}{16} + \frac{3p VL_o^2}{8 \omega_1^2} \right)$ à 1.10⁻⁶ près(pour les résonateurs utilisés) (8)

II-2-2-1- <u>Mesure de for Evaluation de f</u>1

On rappelle que : $f_1 = f_0 \sqrt{1 + r \Sigma G}$ avec $f_0 = \frac{1}{2\pi \sqrt{2} c}$

Avec les conditions suivantes :

*
$$r \Sigma G \leq 10^{-5}$$
 (f₁ = f à mieux que 1.10⁻⁰)
* $\frac{\alpha^2}{16} \leq 10^{-5}$ et $\frac{3p V L_0^2}{8 \omega_1^2} < 10^{-5}$ (VL_o faible : 200 mV)

On a fosc = f_0 à mieux que 1.10⁻⁴ près. Nous déterminons ensuite f_1 par calcul connaissant expérimentalement (r ΣG).

-16-

ΣG

II-2-2-2- Influence de l'ouverture k de la parabole sur fosc

On a :
$$\frac{\alpha^2}{16} = \frac{\epsilon^2}{16 \omega_1^2} = -\frac{1}{16} \frac{\mathbf{p}}{\mathbf{c}} \frac{(\Sigma G + \Gamma c/\mathbf{p})^2}{(1 + \Gamma \cdot \Sigma G)}$$
 (9)

et :
$$\frac{3p VL_0^2}{8 \omega_1^2} = \frac{r \varepsilon}{2(1+r.\Sigma G)} = \frac{r(\Sigma G + rc/2)}{2(1+r.\Sigma G)}$$
(10)

d'où théoriquement fosc est indépendant de k.

Expérimentalement (pour les 5 résonateurs utilisés), avec la précision de la mesure sur la fréquence, nous observons que fosc est constantequelque soit k à 1.10^{-4} près.

II-2-2-3- Influence de ΣG sur fosc (Rad = 0)

Le graphe 13, page 18 donne l'évolution de fosc en fonction ∑G pour les 5 résonateurs utilisés.

Appelons ΣG_1 le valeur de ΣG pour laquelle la variation de fréquence Δ fosc est observable ($\Delta \operatorname{fosc/f_0} \simeq 5.10^{-4}$)

Pour $|\Sigma G| > |\Sigma G_1|$ on a pour les résonateurs (3-4-5-) : * $\frac{\alpha^2}{16} >> \frac{3p VL_o^2}{16}$ soit $-\Sigma G >> \frac{9 rc}{2}$

* et $f_0 = f_1 a 5.10^{-4} près.$

On peut donc écrire d'après les relations (8) (9) et (10) que :

$$\frac{fosc}{f_o} - 1 = \frac{\Sigma G^2}{16} \frac{f}{c} = a \quad 5. \ 10^{-4} \text{ prè}$$

$$II-2-2-4- \text{ Influence du terme} \quad \frac{3p \ VL_o^2}{8 \ \omega_1^2}$$

Le graphe 14 nous donne l'évolution de fosc (relevée expérimentalement) et de f_1'' (calculé d'après f_0) en fonction de $\Sigma G''$ pour Rad = 0 et Rad = 500 r (résonateur n° 2 utilisé).

Remarque : théoriquement pour - $\Sigma G = \frac{9rc}{1}$ on a fosc = f_1 pour - $\Sigma G < \frac{9rc}{1}$ on a $f_1 < fosc$ pour - $\Sigma G > \frac{9rc}{1}$ on a $f_1 > fosc$

L'utilisation du résonateur n° 2 permet d'observer et de vérifier ces propriétés particulières de fosc déduites de la relation (8).

-17-

-18-

Conclusion

Nous avons vérifié expérimentalement à 5 % près la relation (8) liant fosc à fo , Σ G, r,c, **2**.

$$v(t) = \frac{2}{\sqrt{\beta - (\beta - \frac{4}{V_{i_o}^2}) e^{-\epsilon t}}} \quad \text{avec } V_{i_o} = v(t_o) \quad (11)$$

$$t_e = \frac{1}{\epsilon} \log \frac{\left(\frac{V_{L_o}}{V_{i_o}}\right)^2 - 1}{\frac{1}{\delta^2} - 1} \quad \text{avec } \delta V_{L_o} = v(t_o + t_e) \quad (12)$$

et $V_{L_0} = \frac{2}{\sqrt{\beta}}$ (amplitude limite)

II-2-3-1- Relevés de $v(t_0+t_0) = f(t_0)$ avec comme paramètre k

Le graphe 15 donne l'évolution de v $(t_0+t_e) = f(t_e)$ pour différentes valeurs de k, ε constant et Vi_o constant

$$\varepsilon = 3044$$
 $\varepsilon = \frac{-(\Sigma G + \frac{1C}{1})}{c}$

Ces relevés permettent d'étudier v(t) en fonction de β et de t.

II-2-3-2- Relevés de v(t_o + t_e) = $f(t_e)$ avec comme paramètre ε

La variation de ε peut être obtenue pour le résonateur utilisé (n°1) en faisant varier la valeur de la capacité c. Cette solution permet de conserver VL_o constant.

Le graphe 16 donne l'évolution de $v(t_0+t_e) = f(t_e)$ pour différentes valeurs de cet k constant (résonateur n° 1 avec Rad = 100 Ω).

Conclusion

A l'aide d'une étude statistique ^(*), page 8, nous avons vérifié expérimentalement les formules (11) et (12) à 5% près pour v(t) compris entre V_{i_0} et δ V_{L_0} .

CONCLUSION

La réalisation et l'utilisation d'une conductance non linéaire (parabolique) a permis de vérifier expérimentalement avec une bonne précision de 2 % à 5 % les relations liant la fréquence d'oscillation, l'amplitude d'oscillation et le temps d'établissement d'un résonateur en fonction de ces différents éléments : bobine, capacité, conductance négative, conductance positive.

De cette étude nous pouvons conclure :

. qu'une variation de conductance entraîne une variation de l'amplitude d'oscillation, mais également une variation de la fréquence d'oscillation, lorsque l'influence de la résistance série r de la bobine n'est pas négligée.

. qu'une variation de capacité entraîne en plus de la variation de fréquence une variation de l'amplitude d'oscillation.

Nous pouvons espérer, dans un avenir proche, pouvoir améliorer la précision des ponts automatiques à résonateur (GB mètre) en dénombrant l'influence de ces phénomènes qui sont des effets du deuxième ordre.

BIBLIOGRAPHIE

(1)	P. DELECROIX	Etude non linéaire de l'oscillateur dipôle				
		Doctorat d'Etat - Lille (à paraître)				
(2)	F. SALOME	- Contribution à l'étude d'un générateur de courant à				
		grande impédance interne et à large bande de fréquences				
		D.E.A., Lille, Juillet 1973				
(3)	J. BAYARD	- Contribution à l'étude de la stabilité des conductances				
		négatives fonctionnant à large bande de fréquences				
		D.E.A., Lille, Juillet 1972.				

ANNEXE I

Afin d'observer, avec une bonne précision, l'influence de r, sur l'amplitude, la fréquence d'oscillation et le temps d'établissement d'un oscillateur dipôle, nous sommes amenés à introduire une résistance étalon(Rad)en série avec la bobine.

Ceci nous oblige à considérer plusieurs schémas équivalents de la bobine.

1) Le schéma représentant le plus fidèlement une bobine est :

Figure 13

avec y : capacité répartie rs: pertes dans la bobine gp: conductance parasite $q = \frac{I_{S.\omega}}{r_S}$ coefficient de qualité propre de la bobine

2) On transforme généralement à une fréquence donnée le schéma ci-dessus en :

Figure 15

et

p
$$1+l^{2}_{p} \gamma \omega^{2}$$
 GB(1 + 0)

$$Q_{\rm B} = \frac{L_{\rm S} \ \omega}{R_{\rm S}} = \frac{1}{L_{\rm p} \ \omega} G_{\rm B}^{\rm C}$$

Figure 14

A une fréquence donnée, on peut montrer que $L_{p} \ge f_{p} \ge f_{s}$, $R_{s} \ge r_{s}$, $q \ge Q_{R}$

Les résonateurs utilisés ont un coefficient de qualité Q_B supérieure à 80 d'où $f_p = f_s$, $L_s = L_p$, à 0,02 % près $R_{s} = \frac{r_{s}(1+q^{2})}{\left(1+\frac{q^{2}}{1-r_{s}\gamma\omega^{2}}\right)} \quad \text{pour gp négligeable}$ En annexe II nous précisons le schéma équivalent choisi pour la bobine et le

résonateur, suivant que la résistance Rad est introduite ou non.

Schéma du résonateur

On rappelle que : $G_0(\mu S) = 23,8 (V_0 + V_{G_0})$ (chapitre I)

d'où : $\Sigma G + \frac{rc}{R} = -G_{n_0} + G_0 + G_f + (g_c + G_B) \text{ avec } G_B = \frac{rc}{R} + g_R$ (4)

Pour Rad = 0, le schéma équivalent choisi pour la bobine est donné figure 13 annexe I. Dans ces conditions, nous avons :

 $\mathbf{I} = \mathbf{I}_{s}$, $r = r_{s}$, $c = \gamma + C_{n} + C_{p} + C_{ad} + C_{v}$

Pour Rad \neq 0, le schéma équivalent choisi pour la bobine est donné figure ₁₆ annexe I. Dans ces conditions, nous avons :

 $f = L_s$, $r = R_s + R_{ad}$, $c = C_n + C_p + C_{ad} + C_v$

Caractéristiques mesurées des résonateurs utilisés

 $G_{n_0} = 166, 2 \ \mu S \ a \pm 0, 1 \ \mu S$

	e.s	rs	X a±1pF	GB+gc à 80	fo pour Rad=o et CV=0	Ls à fo	Rs à fo	C pour Rad=o et CV=0
mº 1	39,8mH (1%)	15,3x (1%)	49 _P F	2,0575 (0,5%)	11 548 Hz	40,2mH (1%)	15,3.R (1%)	4,77 n F (± 5pF)
n°2	199mH (190)	30 r (1%)	36 p F	0,15NS (1 %)	11054 Hz	200mH (-1%)	30 r (1%)	1,03 n F (±5pF)
~3	1,085H (2%)	80 R (5%)	54pF	24 8010	-15545 Hz		< 800 r	96 pF (±2pF)
m°4	2H (2%)	180.R (10%)	40pF	0,06 05	11752 HZ		<1200 r	90pfi (±2pF)
w°5	5,14H (2%)	210.r. (20%)	61pF	010345 (10%)	6668 Hz		21300ء	110月 (土 89F)