UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

Nº d'ordre 596

THESE

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE SPÉCIALITÉS

par

Colette COQUANT

Contribution à l'étude des spectres des composés diatomiques de l'or avec le calcium et le silicium

Soutenue le 26 juin 1976 devant la Commission d'examen

Membres du Jury

М.	BECART	Pre
М.	HOUDART	Ra
M.	SCHILTZ	Ex
М.	BELLET	Exa

Président Rapporteur Examinateur Examinateur

U.E.R. DE PHYSIQUE FONDAMENTALE

Ce travail a été réalisé à l'U. E. R. de Physique Fondamentale de l'Université des Sciences et Techniques de Lille, dans le laboratoire de Spectroscopie des Molécules diatomiques, équipe de Recherche associée au C. N. R. S.

Je suis très heureuse de pouvoir exprimer à M. le Professeur SCHILTZ mes sentiments de vive gratitude pour le soutien et l'intérêt qu'il a accordés à mon travail depuis mon entrée dans son service.

Je suis très reconnaissante à M. le Professeur BECART de m'avoir fait l'honneur de présider le Jury de cette thèse et M. le Professeur BELLET d'avoir accepté d'y participer.

Je remercie tout particulièrement M. René HOUDART pour l'aide efficace qu'il m'a apporté lors de la réalisation de ce travail.

Que toute l'équipe du laboratoire trouve ici l'expression de ma reconnaissance amicale, en particulier M. Jean-Louis BOCQUET et M. Bernard PINCHEMEL dont la collaboration m'a été très précieuse.

Je remercie également tous ceux qui ont contribué à l'élaboration matérielle de ce mémoire, en particulier Melle DHOLLANDE et M. RAFFAUD.

SOMMAIRE

INTRODUCTION

1

PARTIE I : LES DISPOSITIFS EXPÉRIMENTAUX..... 2

La source et ses accessoires. Les spectrographes. Méthode de recherche.

PARTIE II : ÉTUDE DU SPECTRE DE LA MOLÉCULE AU CA

CHAPITRE I : ANALYSE VIBRATIONNELLE...... 10

Description d'ensemble du spectre. Description et analyse de vibration du système B. Description et analyse de vibration du système A. Description du système C. Interprétation qualitative des spectres dans le cadre de l'approximation des orbitales moléculaires. Etude de la dissociation.

Rappels théoriques.

Analyse des structures de rotation des séquences $\Delta v = 0$ et $\Delta v = -1$ du système B. Analyse des structures de rotation des séquences $\Delta v = 0$ et $\Delta v = -1$ du système A. Etude des courbes de potentiel. Conclusion. PARTIE III : ÉTUDE DU SPECTRE DE LA MOLÉCULE AU SI

CHAPITRE	Ι:	ANALYSE VIBRATIONNELLE	57
		Description et analyse de vibration du système B.	
		Description du système A.	
		Détermination de la structure électronique de la molécule par la méthode des orbitales moléculaires.	
		Etude de la dissociation.	
CHAPITRE	II :	ANALYSE ROTATIONNELLE	72
		Rappels théoriques	
		Analyse de la structure de rotation de la séquence $\Delta v = 0$ du système B.	
		Etude des courbes de potentiel.	
		Conclusion.	

CONCLUSION.

٢

INTRODUCTION

Les spectres visibles des molécules Au Ca et Au Si ont été étudiés précédemment par J. SCHILTZ et R. HOUDART mais les moyens techniques dont ils disposaient alors ne leur permirent pas d'en faire une étude détaillée. La possibilité d'utiliser un spectrographe à réseau, construit depuis au laboratoire, possédant une plus grande dispersion et un pouvoir de résolution plus élevé, nous a amené à reprendre l'étude de ces spectres très riches.

C'est en utilisant un four de King que nous avons mis en évidence les spectres des deux molécules. Dans la première partie seront décrits les dispositifs expérimentaux utilisés. La suite portera sur l'analyse vibrationnelle et rotationnelle des différents systèmes. Les spectres de chacune des molécules étudiées se composent de deux systèmes situés dans l'infrarouge photographique. Un troisième système, appartenant au spectre de Au Ca, a été observé dans la région spectrale s'étendant de 5 000 Å à 6 150 Å (à faible dispersion apparaissent également, entre 3 600 Å et 3 700 Å, deux bandes dégradées vers le rouge qui semblent appartenir à un système complémentaire de Au Ca, bandes trop peu contrastées pour être observées à grande dispersion).

Bien que les deux composés diatomiques de l'or présentent certaines analogies, nous les étudierons indépendamment l'un de l'autre en commençant par la molécule Au Ca. Pour chacun d'eux, nous consacrerons un chapitre à l'analyse de la vibration des différents systèmes. Nous les terminerons par la détermination de la structure électronique de la molécule, étudiée selon la méthode des orbitales moléculaires. Nous établirons alors quels peuvent être les états électroniques les plus bas ainsi que les produits de dissociations théoriques du composé considéré.

Dans le chapitre suivant, nous analyserons la structure de rotation des quelques bandes que nous avons pu dépouiller. Cette étude nous permettra de préciser les constantes de rotation et les distances intermoléculaires relatives aux molécules étudiées et de tracer les courbes de potentiel.

--- PARTIE I ----

LES DISPOSITIFS EXPERIMENTAUX

LES DISPOSITIFS EXPERIMENTAUX *

I - LA SOURCE ET SES ACCESSOIRES

a) LE FOUR DE KING

La source utilisée est un four de King à enceinte étanche (figure 1) construit par J. RUAMPS (5) et amélioré par J. SCHILTZ (1) et J. LUTS (4). La figure 2 représente le schéma du circuit d'alimentation électrique du four des puissances variant de 0 à 10 kw sans déséquilibrer le secteur triphasé.

b) LE DISPOSITIF DE POMPAGE ET DE BALAYAGE

Si l'on veut diminuer l'élargissement des raies dû aux chocs afin d'obtenir des raies fines et de faire apparaître plus nettes certaines structures de rotation, il faut que la pression à l'intérieur du four soit faible. Il est également nécessaire d'amener la vapeur étudiée vers l'avant du four, c'est-à-dire vers la région du four la plus chaude où elle sera plus émissive. Le dispositif de pompage permet le balayage lent des vapeurs par de l'argon sous des pressions de l'ordre de quelques centimètres de mercure.

- 2 -

Figure 1 : Le four de King.

A - circuit de refroidissement

T - joints toriques

B - tube en carbone

D - embouts

- C électrodes d'amenée de courant
 - V vers la pompe à vide

Figure 2 : Schéma du montage de Giroz pour l'alimentation du four.

Il faut remarquer que la présence d'impuretés dans le carbone constituant les fours nécessite un nettoyage prolongé, sous vide et à haute température. Le nettoyage se termine par quelques balayages lents d'argon.

c) CONTROLE DE TEMPERATURE DANS LE FOUR

Les températures en différents points du four sont mesurées à l'aide d'un pyromètre optique.

II - LES SPECTROGRAPHES

L'étude des spectres se fait en deux parties.

a) ETUDE A FAIBLE DISPERSION

Une étude préliminaire est réalisée à l'aide du spectrographe à prisme de quartz Jobin Yvon, du type Z₃. Il permet, pour une longueur de film de 54 cm, d'étudier des spectres s'étendant de 2020 Å à 9000 Å. Sa dispersion dans le visible et le proche infrarouge (figure 4) est suffisante pour une première étude. La grande clarté de cet appareil permet de déterminer rapidement les différentes conditions d'obtention des spectres grâce à des temps de pose courts.

b) ETUDE A HAUTE DISPERSION

L'étude à haute dispersion est destinée à mettre en évidence la structure de vibration et si possible, la structure de rotation.

Le spectrographe utilisé est un spectrographe à réseau

Figure 3 : Schéma du spectrographe Z₃.

Figure 4 : Courbe de dispersion du spectrographe Z₃.

construit par J. BROCHARD et modifié par P. NIAY et J. THIBAUT (6). Le réseau a échelettes BAUCH et LOMB conporte 1200 traits par mm, son angle de blaze est de 36° 52' et sa résolvance théorique de cinq cent mille dans le deuxième ordre. Le miroir aluminé de 4 mètres de distance focale donne une dispersion sur la plaque photographique d'environ 1 Å/mm à 5 000 Å dans cet ordre.

L'éclairage de la fente du spectrographe est réalisé par le dispositif représenté par la figure 5. La lentille L_1 , solidaire de l'enceinte du four de King, fait l'image de l'arrière du tube de carbone sur le diaphragme à iris (D) porté par la lentille L_2 . Celle-ci donne de l'extrémité avant du four une image qui se forme sur la fente du spectrographe. L'image du diaphragme (D) par la lentille L_3 est localisée sur le réseau R. Cette image doit couvrir aussi exactement que possible le réseau pour ne perdre, ni clarté, ni résolution. Les diaphragmes et la fente éliminent la lumière parasité émise par les parois du four et par le globule que forme les alliages or-calcium et or-silicium.

c) DISPOSITIF D'ETALONNAGE DES SPECTRES

De part et d'autre du spectre de band**es** étudié est photographié le spectre de référence. La lampe à vapeur de thorium a été choisie en raison de sa richesse spectrale. Pour le calcul de longueurs d'onde inconnues des raies du spectre, on peut alors se contenter d'une simple interpolation linéaire sur le film photographique.

III - Méthode de recherche

a) OBTENTION DU SPECTRE DE LA MOLECULE Au Ca

L'or est utilisé sous forme de feuille dans laquelle on enveloppe un petit morceau de calcium pur non oxydé. On élève

- 6 -

progressivement la température à l'intérieur du four pour éviter l'explosion du globule.

Le spectre est obtenu pour une température de l'ordre de 2 000° C, sous une pression de quelques centimètres de mercure. Il disparaît très rapidement lorsque la température augmente.

b) OBTENTION DU SPECTRE DE LA MOLECULE Au Si

Après avoir enveloppé la poudre de silicium dans une feuille d'or, les deux corps sont introduits dans le four. Le chauffage de ce dernier n'est commencé qu'après plusieurs rinçages à l'argon. Vers 2 200° C, on observe une teinte rouge sombre, il y a formation d'un alliage qui se rassemble au fond du four.

c) AGRANDISSEMENTS ET ENREGISTREMENTS

Les spectres obtenus avec le spectrographe à réseau étant très serrés, les tirages sur papier sont agrandis au maximum. Le grain du film devient alors génant, on l'élimine en translatant parallèlement aux raies le papier photographique durant l'exposition. Cette méthode a aussi l'avantage d'augmenter le contraste et la finesse des spectres et permet de tirer partie de toute l'information contenue sur une hauteur de raie égale à la translation.

Enfin, chaque portion de spectre à dépouiller est enregistrée à l'aide d'un microphotomètre. Dans certains cas, les courbes obtenues apportent des informations supplémentaires : comparaison des intensités relatives des raies de rotation, étude du profil des têtes non résolues.

- 8 -

ETUDE DU SPECTRE DE LA MOLECULE Au Ca

ANALYSE DE VIBRATION DU SPECTRE VISIBLE

DE LA MOLECULE Au Ca

I - DESCRIPTION D'ENSEMBLE DU SPECTRE

*

Vers 1 700° C apparaît un spectre de bandes qui n'existe que lorsque l'or et le calcium sont mis en présence et que nous attribuons à la molécule Au Ca.

Le spectre à faible dispersion montre très nettement trois systèmes : deux systèmes A et B, dégradés vers le violet, imbriqués l'un dans l'autre, dans le domaine spectral 6 300-8 000 Å (figure 6) et un système C, plus confus, s'étendant de 5 000 Å à 6 150 Å (figure 7). Ce dernier apparaît plus difficilement ; il se produit parfois un phénomène d'autoabsorption par les vapeurs froides situées à l'avant du four.

On observe quatorze séquences pour le système A et huit pour le système B.

- 10 -

÷

4

6

MOLECULE Au Ca

- 11 -

II - DESCRIPTION DU SYSTÈME B

L'étude à grande dispersion du système B montre deux séquences bien contrastées et de même aspect. Elles sont dégradées vers le violet et présentent toutes deux des têtes de bandes doubles : têtes P et Q très intenses. La séquence la plus contrastée correspond à $\Delta v = 0$ (figure 8), la seconde étant la séquence $\Delta v = -1$ (figure 9) Les structures de rotation de ces deux séquences seront étudiées dans le chapitre suivant.

Les autres séquences, que l'on distingue nettement sur les tirages effectués par contact apparaissent floues dès l'agrandissement des clichés. Le pointé des têtes est alors incertain d'autant plus que se superposent à elles des raies de rotation intenses du système A.

L'analyse de la vibration n'a pu être faite de façon très précise. Elle a été complétée après l'étude des structures de rotation des séquences $\Delta v = 0$ et $\Delta v = -1$

III - ANALYSE DE VIBRATION DU SYSTÈME B

Pour dresser le tableau de DESLANDRES correspondant au système étudié, il serait souhaitable de mesurer la position de la raie zéro de chaque bande afin d'éliminer l'influence de la rotation. Cette raie n'est pas visible, mais la position de la tête Q peut être prise avec une assez bonne précision (0,4 cm⁻¹) comme raie zéro de la bande (7).

Sur les spectres obtenus, il a été possible de mettre en évidence un certain nombre de têtes ; les plus intenses appartiennent aux branches Q. Nous les avons classées dans le tableau (I) les deux têtes très intenses à 15 024,05 cm⁻¹ et 14 804,27 cm⁻¹ permettant d'amorcer ce classement.

- 13 -

Les formules relatives à la structure de vibration peuvent se mettre sous la forme

$$\begin{split} \dot{v}_{v'v''t} &= v_e + \left[\omega'_e (v' + \frac{1}{2}) - \omega'_e x'_e (v' + \frac{1}{2})^2 \right] \\ &- \left[\omega''_e \left[(v'' + \frac{1}{2}) - \omega''_e x''_e (v'' + \frac{1}{2})^2 \right] \end{split}$$
(1)

où $v_{v'v''t}$ est le nombre d'onde de la tête de bande v'v".

Au classement proposé, on peut faire correspondre la formule suivante :

$$v_{\mathbf{v}'\mathbf{v}''\mathbf{t}} = 15\ 024,5 + [\ 219,9(\mathbf{v}' + \frac{1}{2}) - 0,45(\mathbf{v}' + \frac{1}{2})^2]$$
$$- [\ 220,9(\mathbf{v}'' + \frac{1}{2}) - 0,55(\mathbf{v}'' + \frac{1}{2})^2] \qquad (2)$$

La formule (2) se vérifie à mieux de 0,5 cm⁻¹ près pour les premières bandes des différentes séquences observées. Seules deux ou trois têtes se classent plus difficilement.

Ce résultat est satisfaisant car la position des têtes est souvent incertaine : manque de netteté dû à l'absence de contraste et présence d'une structure de rotation complexe. De plus, ces têtes se trouvent à quelques dixièmes de cm⁻¹ des raies zéros ce qui explique aussi les écarts entre les valeurs mesurées des nombres d'ondes et les valeurs calculées à l'aide de (2).

Ce classement rend compte de l'aspect des spectres observés. En utilisant la formule précédente, on trouve que la première tête de la séquence $\Delta v = + 1$ devrait être à 15 243 cm⁻¹. Pour cette séquence les premières têtes sont situées dans une région du spectre d'intensité élevée et peuvent être masquées par les raies de rotation des têtes suivantes. De ce fait, la première tête n'est pas observée et la seconde, dont le pointé est imprécis, est située à près d'un cm⁻¹ de la valeur calculée.

- 14 -

TABLEAU I ----

NOMBRES D'ONDES DES TÊTES Q DU SYSTÈME B DE LA MOLÉCULE

Au Ca

s

,

Séquenc	$e \Delta v = v' - v'' = + 1$	Séquence $\Delta v = v'$.
2 - 1	15 240,5	0 - 2 14 584,9
3 - 2	15 239,9	1 - 3 14 586,5
4 - 3	15 238,6	2 - 4 14 589,0
5 - 4	15 237,4	3 - 5 14 591,5
		4 - 6 14 594,0

2 - 1	15 240,5		0 - 2	14	584,9
3 - 2	15 239,9		1 - 3	14	586,5
4 - 3	15 238,6		2 - 4	14	589,0
5 - 4	15 237,4		3 - 5	14	591,5
			4 - 6	14	594,0
Séquence	$\Delta \mathbf{v} = \mathbf{v}' - \mathbf{v}$	$v^{ii} = 0$			
· · · · · · · · · · · · · · · · · · ·		<u></u>	Séquence	$\Delta \mathbf{v}$	= v' - v'' = -3
0 - 0	15 024,05		<u></u>		
			0 - 3	14	368,0
Séquence	$\Delta \mathbf{v} = \mathbf{v}^{\dagger} - \mathbf{v}$	v'' = -1	1 - 4	14	370,0
			2 - 5	14	374,0
0 - 1	14 804,27		3 - 6	14	376,8
		Séquence $\Delta v =$	$\mathbf{v}^{\dagger} - \mathbf{v}^{\prime\prime} = -4$		
			· · · · · · · · · · · · · · · · · · ·		

4 - 8 14 167,5 14 172,0 5 - 9

Les nombres d'ondes sont exprimés en cm⁻¹

v' - v'' = -2

- 16 -

Des deux séquences $\Delta v = 0$ et $\Delta v = -1$, nous ne donnons que les nombres d'ondes des têtes (0-0) et (0-1). Les suivantes sont difficilement observables car dans la région voisine de ces premières têtes, la structure de rotation est très riche et très intense. Le calcul de leurs nombres d'ondes le confirme (les têtes pour lesquelles v' est supérieur à zéro sont situées quelques dixièmes de cm⁻¹ des premières).

Les trois dernières séquences $\Delta v = -2$, $\Delta v = -3$ et $\Delta v = -4$ présentent des têtes plus ou moins floues, se superposant aux structures de rotation intenses des séquences $\Delta v = +1$, 0, -1du système A. La détermination des nombres d'ondes de ces têtes se fait à 0,2 cm⁻¹ près pour les cas les meilleurs et à 1 cm⁻¹ pour les têtes (3-5) et (4-6) qui sont très floues. Les écarts entre les mesures et les valeurs calculées sont du même ordre que ces incertitudes.

Seule, une tête pointée à 14 168,9 cm⁻¹, qui semble être une tête de la séquence $\Delta v = -4$, n'a pu être classée correctement.

IV - STRUCTURE DE VIBRATION

a) CONSTANTES DE VIBRATION

Les constantes de vibration déduites du classement proposé et qui semblent les plus probables, sont les suivantes :

> $v_e = 15\ 024,5\ cm^{-1}$ $\omega''_e = 219,9\ cm^{-1}$ $\omega''_e = 220,9\ cm^{-1}$ $\omega''_e = 220,9\ cm^{-1}$ $\omega''_e = 0,45\ cm^{-1}$ $\omega''_e = 0,55\ cm^{-1}$

Le tableau de DESLANDRES est trop incomplet et les mesures trop peu précises pour introduire un terme du troisième degré dans l'expression (1).

b) BANDE DE RETOUR

Nous n'avons pas observé de bande de retour ce qui n'est pas en contradiction avec les déductions faites à partir des structures de vibration établies précédemment.

En effet, remplaçons dans l'expression (l) v' par v' = v" + Δv et dérivons $v = f(v", \Delta v)$ par rapport à v". L'entier le plus proche de

$$\mathbf{v''}_{t} = \frac{1}{2} \quad \frac{\omega'_{e} - \omega''_{e} - 2\omega'_{e} \mathbf{x'}_{e} (\Delta \mathbf{v} + \frac{1}{2}) + \omega''_{e} \mathbf{x''}_{e}}{\omega'_{e} \mathbf{x'}_{e} - \omega''_{e} \mathbf{x''}_{e}}$$

nous donne le nombre quantique de la tête des têtes pour la séquence Δv . Nous avons trouvé :

$\Delta \mathbf{v} = + 1$	$v''_{t} = 0$
$\Delta \mathbf{v} = 0$	$v''_t = 4,5$
$\Delta v = -1$	$v''_t = 9$
$\Delta \mathbf{v} = -2$	$v''_t = 13,5$
$\Delta \mathbf{v} = -3$	$v''_{t} = 18$
$\Delta \mathbf{v} = -4$	$v''_{+} = 22,5$

La tête (1 - 0) correspondrait à la tête des têtes. Il n'est malheureusement pas possible d'affirmer ou d'infirmer ce résultat, la première tête de la séquence $\Delta v = + 1$ se trouvant noyée dans une structure de rotation intense.

C'est aussi le cas des têtes (4 - 4) et (5 - 5) au voisinage desquelles s'effectuerait le retournement pour la séquence $\Delta v = 0$ Pour les séquences suivantes, le retournement se produirait de plus en plus loin de la première tête et ne pourrait donc être visible.

V - IDENTIFICATION DES TÊTES P

Tous les nombres d'ondes des têtes observées et que nous avons pu mesurer ne figurent pas dans le tableau de DESLANDRES réalisé à partir des têtes Q. Ces têtes appartiennent à la branche P. Nous les identifierons après avoir fait l'étude des structures de rotation des bandes (0 - 0) et (0 - 1)

En effet, à la suite de cette étude, nous connaissons les constantes de rotation des différents niveaux de vibration. L'écart entre les têtes Q et P d'une même bande est donnée en fonction de ces constantes par la relation :

$$Q_{T} - P_{T} = \frac{2B_{v} B_{v'}}{B_{v'} - B_{v''}}$$

Il est donc possible d'identifier les têtes de la branche P quand sont connues les têtes Q. Les écarts entre les valeurs calculées et les valeurs mesurées des nombres d'ondes des têtes P sont du même ordre de grandeur que l'incertitude sur ces mesures sauf pour la tête (0 - 2) où il vaut 0,8 cm⁻¹. Ainsi toutes les têtes observées ont pu être identifiées. (Tableau II).

VI - DESCRIPTION DU SYSTÈME A

A faible dispersion, le système A comporte quatorze séquences dégradées vers le violet. L'étude à haute dispersion n'a permis d'en mettre en évidence que dix. Elle montre un ensemble

TABLEAU II

v' v"	(Q _T - P _T) calculé	P _T calculé	P _T mesuré	Ecarts
2 - 1	3,2	15 237,3	tête Q ₅₄	
3 - 2	3,0	15 236,9	tête Q ₅₄	
4 - 3	2,8	15 235,8	15 236,2	0,4
5 - 4	2,6	15 234,8	15 235,1	0,3
0 - Û	3,4	15 020,7	15 020,8	0,1
0 - 1	3,1	14 801,2	14 801,2	0
0 - 2	2,8	14 582,1	14 582,9	0,8
1 - 3	2,6	14 583,9	14 584,1	0,2
2 - 4	2,5	14 586,5	tête Q ₁₋₃	
3 - 5	2,3	14 589,2	tête Q ₂₋₄	
4 - 6	2,2	14 591,8	tête Q ₃₋₅	
0 - 3	2,6	14 365,4	non observée	
1 - 4	2,4	14 367,6	tête Q ₀₋₃	
2 - 5	2,3	14 371,7	14 371,4	0,3
3 - 6	2,2	14 374,6	voisine tête Q ₂₅	
4 - 8	1,9	14 165,6	non observée	
5 - 9	1,8	14 170,2	14 170,3	0,1

,

BU

Les nombres d'ondes sont exprimés en cm⁻¹

6

de têtes simples, non contrastées, aucune n'apparaissant aussi nettement que les têtes (0 - 0) et (0 - 1) du système B. Quelques séquences sont faciles à suivre, pour d'autres l'identification des têtes est plus délicate.

VII - ANALYSE DE LA VIBRATION DU SYSTÈME A

Les pointés des têtes sont incertains du fait du manque de netteté des séquences, manque de netteté qui augmente lorsqu'on s'éloigne vers le rouge. Les mesures sont donc peu précises : de l'ordre de 0,1 à 0,2 cm⁻¹ pour les séquences $\Delta v = +1$, 0, -1 et de l'ordre de 0,5 à 1 cm⁻¹ pour les suivantes. L'incertitude est d'autant plus importante pour les dernières séquences que cette région du spectre du proche infrarouge est d'une observation plus difficile.

La mesure des intervalles séparant les groupes de têtes successifs, nous a permis de repérer la séquence principale et de classer les autres séquences par rapport à elle. Nous avons réparti les nombres d'ondes des têtes dans deux tableaux (III et IV) analogues à ceux obtenus pour le système B.

Du tableau (III) réalisé à partir des têtes Q, on déduit la relation :

$$v_{\mathbf{v}'\mathbf{v}''} = 14\ 512, 4 + \left[\ 213, 5\left(\mathbf{v}' + \frac{1}{2}\right) - 0, 45\left(\mathbf{v}' + \frac{1}{2}\right)^2\right]$$

- $\left[\ 220, 1\left(\mathbf{v}' + \frac{1}{2}\right) - 0, 55\left(\mathbf{v}' + \frac{1}{2}\right)^2\right]$ (3)

La formule (3) se vérifie à mieux de 0,5 cm⁻¹. Les écarts n'excédent pas les incertitudes de mesure sur les nombres d'ondes sauf pour la tête (0 - 5) qui se trouve à un cm⁻¹ de la valeur mesurée.

Il peut paraître surprenant qu'aucune tête du système A

TABLEAU III

ă.

۰.

٩

÷

ین کے دور کر دور سے بینے کے

NOMBRES D'ONDES DES TÊTES Q DU SYSTÈME À DE LA MOLÉCULE AU CA

v(cm ⁻¹)	Remarques	v' - v"	$v(cm^{-1})$	Remarques
16 026 7	nou wigitle	0 - 3	12 955 6	£10.00
14 924,7	peu visible	0 - 3	13 833,0	Tioue
14 917,8	peu visible	1 - 4	13 852,5	floue
		2 - 5	13 850,0	nette
14 721,5	peu visible	3 - 6	13 846,4	floue
14 714,9			-	
14 707,5	peu vi s ible	0 - 4	13 640,0	floue
-		1 - 5	13 637,7	floue
14 508,90		2 - 6	13 635,7	
		3 - 7	13 634,2	
14 290.06			,	
14 284,73		0 - 5	13 426.1	
14 279,7	moins nette	1 - 6	13 423,7	
14 072,1	peu visible	1 - 7	13 211,8	floue
14 067.6		9 - 8	13 212.8	floue
14 064,4	peu visible			
	v(cm ⁻¹) 14 924,7 14 917,8 14 721,5 14 714,9 14 707,5 14 508,90 14 290,06 14 284,73 14 279,7 14 072,1 14 067,6 14 064,4	v(cm ⁻¹) Remarques 14 924,7 peu visible 14 917,8 peu visible 14 721,5 peu visible 14 721,5 peu visible 14 721,5 peu visible 14 707,5 peu visible 14 508,90 14 290,06 14 290,06 14 279,7 14 072,1 peu visible 14 067,6 peu visible 14 064,4 peu visible	$v(cm^{-1})$ Remarques $v' - v''$ 14 924,7peu visible $0 - 3$ 14 917,8peu visible $1 - 4$ 2 - 5 $1 - 4$ $2 - 5$ 14 721,5peu visible $3 - 6$ 14 707,5peu visible $0 - 4$ 14 707,5peu visible $0 - 4$ 14 508,90 $2 - 6$ $3 - 7$ 14 290,06 $0 - 5$ $1 - 6$ 14 279,7moins nette $1 - 7$ 14 072,1peu visible $1 - 7$ 14 067,6peu visible $1 - 7$ 14 064,4peu visible $1 - 7$	$v(cm^{-1})$ Remarques $v' - v''$ $v(cm^{-1})$ 14 924,7 14 917,8peu visible $0 - 3$ 13 855,614 917,8peu visible $1 - 4$ 13 852,514 721,5 14 707,5peu visible $3 - 6$ 13 846,414 707,5peu visible $0 - 4$ 13 640,014 508,90 $2 - 6$ 13 637,714 508,90 $2 - 6$ 13 634,214 290,06 $0 - 5$ 13 426,114 279,7moins nette $1 - 7$ 14 072,1 14 067,6peu visible $1 - 7$ 14 064,4peu visible $1 - 7$ 14 064,4peu visible $1 - 7$ 14 064,4peu visible

Les nombres d'ondes sont exprimés en cm⁻¹

- 21 -

TABLEAU IV

nombres d'ondes des têtes P du système A de la molécule Au Ca

Séquence	Δv	= v' - v'' = + 2	Séquence	Δv	= v' - v'' = -2
2 - 0	14	929,6	0 - 2	14	069,9
3 - 1	14	921,6	1 - 3	14	065,6
			2 - 4	14	062,5
Séquence	Δv	$= v^{\dagger} - v^{\prime \prime} = + 1$			
			Séquence	Δv	= v' - v'' = -3
1 - 0	14	718,9	میں بی میں ایک اور ایک		
2 - 1	14	711,2	0 - 3	13	853,5
			1 - 4	13	850,5
Séquence	Δv	= v' - v'' = 0	2 - 5	13	847,7
0 - 0	14	506,66	Séquence	Δv	= v' - v'' = - 4
Séquence	Δv	= v' - v'' = -1	1 - 5	13	635,7
			2 - 6	13	633,6
0 - 1	14	287,95			
1 - 2	14	282,65			

Séquence $\Delta \mathbf{v} = \mathbf{v'} - \mathbf{v''} = -5$

1 - 6 13 421,7

Les nombres d'ondes sont exprimés en cm⁻¹

- 22 -

n'apparaisse nette et intense. Les résultats du chapitre suivant vont nous permettre de calculer le nombre quantique des têtes observées. C'est ainsi que l'on constate que pour la branche Q_{12} , la tête correspond à des niveaux de rotation très bas (J" = 6). Bien que cette branche soit l'une des plus intenses du système ainsi qu'en témoignent les courbes (figure 12), l'intensité des raies de nombres quantiques voisins de six est faible et la tête sera peu visible. (Elle se trouve néanmoins légèrement renforcée par la tête P_{11} qui s'y superpose). La branche P_{12} forme tête pour des valeurs de J" voisines de 21. Cette branche n'est pas très intense, mais J" étant plus élevé, les têtes pourraient être observées.

C'est ainsi que pour chaque séquence du système A existent des têtes plus ou moins nettes car de faible intensité dont les nombres d'ondes se classent dans deux tableaux semblables (III et IV).

VIII - STRUCTURE DE VIBRATION

De la formule (3), nous déduisons les constantes de vibration suivantes :

 $v_e = 14\ 512, 4\ cm^{-1}$ $\omega'_e = 213, 5\ cm^{-1}$ $\omega'_e x'_e = 0, 45\ cm^{-1}$ $\omega''_e x''_e = 0, 55\ cm^{-1}$

La constante de vibration ω'_e ne coı̈ncide pas exactement avec celle de l'état inférieur du système B, mais l'écart n'est que de 0,8 cm⁻¹. Il est fort probable que cet état inférieur est le même pour les deux systèmes.

TABLEAU V

NOMBRES D'ONDES DES TÊTES DU SYSTÈME C QUI APPARAISSENT ÉGALEMENT EN ÉMISSION ET EN ABSORPTION

342,6	v	faible
351,1	v	faible
359,5	(ruban	faible
359,8	fuban	Tarbie
366,1	Ý V	faible
369,7	v	faible
392.6	v	
402 3	v	
402,5	v	
412,1	v	
415,4	v	
	342,6 351,1 359,5 359,8 366,1 369,7 392,6 402,3 411,1 413,4	342,6 V 351,1 V 359,5 ruban 366,1 V 369,7 V 392,6 V 402,3 V 411,1 V 413,4 V

10	457,5	K j		
16	463,5	v	inter	nse
16	466,9	V	très	intense
16	480,1	ruban	très	intense
16	483,6	V	très	intense
16	501,2	R	très	intense
16	519,6	ruban	+ mà a	intongo
16	520,5	frubali	LIES	incense
16	536,1	R	inter	ise
16	548,1	R	très	intense
16	559,6	R	très	intense
16	561,8	R		
16	570,6	R	très	intense
16	573,5	R	inter	nse
16	582.5	R	inter	ise

16	600,5	V	faible
16	601,4	V	faible
16	603,1	V	faible
16	612,1	V	intense
16	613,3	V	intense
16	618,6	V	intense
16	622 ,9	V	intense
16	625,0	V	très intense

R : bandes dégradées vers le rouge

V : bandes dégradées vers le violet

Ν

NOMBRES D'ONDES DES TÊTES DU SYSTÈME C (SUITE)

16	677,6	v	faible	17	000,0	R	faible
16	737,7	R	faible	17	009,8	V	faible
16	744,6	R	faible	17	014,8	R	faible
16	749,9	R	faible	17	049,4	R	faible
16	753,5	R	faible	17	056,9	V	intense
16	759,6	R	faible	17	062,7	R	intense
16	762,6		faible	17	078,5	R	
16	763,2 ∫	ruban	faible	17	108,7	V	
16	769,8]		faible	17	211,3	R	faible
16	770,9 ∫	ruban	faible	17	223,2	V	
16	773,8	R	faible	17	228,4	R	intense
16	777,5 {	mahan	faible	17	274,7	V	
16	779,5 ∫	ruban	faible	17	277,3	R	
16	782,5	R	faible	17	289,7	R	faible
16	789,3 {	muhan	faible	17	321,7	V	très intense
16	790,3 ∫	ruban	faible	17	325,9	V	très intense
16	823,2	V	faible	17	494,0	R	
16	824,7	v		17	545,2	v	très intense
16	833,2	V		17	54 9, 9	V	
16	836,2	v		17	576,3	V	intense
16	840,1	V	faible	17	618,5	V	
16	852,2	R		17	627,8	R	
16	869,7	R	faible	17	632,2	R	faible
				17	636,1	R	
				17	659,8	R	
				17	662,7	V	
				17	664,4	V	
				17	667,6	v	
				17	670,6	V	faible

R : bandes dégradées vers le rouge

V : bandes dégradées vers le violet

NOMBRES D'ONDES DES TÊTES DU SYSTÈME C (FIN)

17	794,6	V	faible	18	227,6	V	intense
17	799,1	V	faible	18	243,8	V	faible
17	835,0	v	faible	18	246,9	V	faible
17	836,3	V		18	265,4	R	
17	849,7			18	285,7	R	faible
17	850,2	ruban		18	297,7	R	faible
17	851,1	R		18	305,3	V	
17	867,5	v		18	320,5	V	
17	871,3	R		18	324,7	V	
17	878,4	R		18	331,9	V	faible
17	883,6	V		18	342,0	V	
17	913,8	V	faible	18	356,6	R	faible
18	009,3	v	faible	18	362,6	R	faible
18	026,9	V		18	442,6	V	
18	030,2	V		18	446,1	V	
18	069,4	R	faible	18	460,1	R	faible
18	075,0	R	faible	18	479,0	R	faible
18	091,6	v		18	504,7	R	
18	106,4	v		18	540,0	V	
18	127,6	V		18	557,1	V	
18	134,3	V		18	572,6	v	faible
18	224,4	v	intense				

R : bandes dégradées vers le rouge

V : bandes dégradées vers le violet

IX - DESCRIPTION DU SYSTÈME C

Faisant suite du côté violet au système B, on observe un ensemble extrêmement complexe de têtes. La plupart d'entre elles ont un aspect habituel, dégradé vers le rouge ou vers le violet, parfois même il semble y avoir inversion du dégradé. Certaines ont l'apparence de bandes en flamme.

Ce système a été observé dans les mêmes conditions expérimentales, tantôt en émission, tantôt en absorption. L'autoabsorption par les vapeurs froides situées à l'avant du four est très importante (figure 7).

L'ensemble des nombres d'ondes des têtes figurent dans le tableau V.

X - INTERPRÉTATION QUALITATIVE DES SPECTRES DANS LE CADRE DE L'APPROXIMATION DES ORBITALES MOLÉCULAIRES

Dans ce paragraphe, nous essayerons d'interpréter la nature des niveaux observés en leur associant une configuration électronique. Une étude qualitative nous permettra de déterminer les états spectroscopiquement observables du composé Au Ca.

a) DIAGRAMME DE CORRELATION DE LA MOLECULE Au Ca

La détermination des états électroniques d'une molécule diatomique peut être réalisée à l'aide d'un diagramme de corrélation que l'on établit entre les orbitales atomiques de l'atome isoélectronique de la molécule considérée et les orbitales atomiques des deux atomes constituant cette molécule.

Figure 10 : Diagramme de corrélation.

Les valeurs des énergies des orbitales atomiques sont tirées des tables de Froese. Les énergies des orbitales moléculaires sont empiriques.

En fait, le numéro atomique de l'or étant très élevé, l'atome uni de ce composé n'est pas connu. Nous limiterons donc le diagramme au domaine qui s'étend des grandes distances internucléaires aux distances d'équilibre des molécules. Les couches électroniques les plus intenses constituent le coeur de la molécule. Les électrons qui les occupent ne jouent pratiquement aucun rôle dans les transitions électroniques. Seules figureront sur le diagramme de corrélation, les orbitales les plus externes, c'est-à-dire celles qui ont une énergie inférieure à (- 2u.a.).

Les configurations les plus basses de Au Ca sont certainement :

- la configuration $3\delta^4 9\Pi^4 18\sigma_{Au}^2 19\sigma_{Au}^2 20\sigma_{Ca}$ qui correspond à la structure ionique Au⁻Ca⁺ et donne un état ²\Sigma⁺.
- les configurations monoexcitées $3\delta^4 9\Pi^4 18\sigma^2 19\sigma_{Au}^2 10\Pi_{Ca}$ et $3\delta^4 9\Pi^4 18\sigma^2 19\sigma_{Au}^2 21\sigma_{Ca}$ la première étant beaucoup plus stable que la seconde si on admet l'analogie avec des molécules plus légères.

Cette première configuration donne un état doublet \mathbb{N} régulier alors que pour la seconde on obtient un état $^{2}\Sigma^{+}$.

b) ETATS MOLECULAIRES SE DISSOCIANT DANS LES PLUS BAS ETATS ATOMIQUES

Les résultats expérimentaux tirés des tables de C. E. MORRE (8) nous permettent de connaître les énergies des états atomiques de dissociation de Au Ca. Il suffit d'ajouter un niveau d'énergie de Au et un niveau d'énergie de Ca pour obtenir les énergies possibles de dissociation de Au Ca. Nous prenons pour origine des énergies de dissociation, la somme des énergies des états fondamentaux de Au et Ca. Le tableau suivant donne par ordre d'énergie croissante les produits de dissociation.

	Au		Ca	1	Etats possibles	Ener	gie (c	m ⁻¹)
5d ¹⁰	6s	² S _{1/2}	4s ²	ls.	² ∑+		0	
5d ⁹	6s ²	² D ₅ /2	4s ²	lS.	² Σ, ² Π, ² Δ	9	161,2	
5d ¹⁰	6s	² S _{1/2}	4s 4p	³ P。		15	157,9	
				³ P1	² Σ, ⁴ Σ, ² Π, ⁴ Π	15	210,2	
				³ P ₂		15	316,1	

c) INTERPRETATION DES SPECTRES OBTENUS

Pour interpréter qualitativement le spectre énergétique de la molécule Au Ca, nous avons utilisé le modèle des orbitales moléculaires. C'est généralement dans le cadre de cette approximation que l'on calcule quantitativement les niveaux d'énergie des molécules légères.

Pour le composé Au Ca, il n'est pas possible d'effectuer ce calcul théorique mais l'analyse que nous venons de faire, permet d'avoir une idée de l'ordre des niveaux d'énergie des états les plus probables au voisinage de la distance internucléaire d'équilibre. Elle ne tient pas compte des intéractions importantes entre états de même symétrie.

Ces résultats laissent prévoir que le spectre de basse énergie de la molécule Au Ca est formé de l'ensemble de deux transitions ${}^{2}\Pi_{r} - {}^{2}\Sigma^{+}$. Elles correspondent aux systèmes A et B observés.

Le système C peut être interprété comme résultant de l'une des transitions ${}^{2}\Sigma^{+}$ - ${}^{2}\Sigma^{+}$ ou ${}^{2}\Sigma^{+}$ - ${}^{2}\Pi_{r}$

Bien entendu, seule une étude de rotation nous renseignera sur la nature des états de transitions. Cette analyse fera suite à ce chapitre.

XI - ETUDE DE LA DISSOCIATION

Si nous nous reportons à l'étude théorique faite précédemment, la configuration $\sigma^2 \sigma$ donne l'état fondamental ${}^{2}\Sigma^{+}$ et correspond à la structure ionique Au⁻ Ca⁺. C'est en cette même structure ionique Au⁻ Ca⁺ que devraient se dissocier les premiers états excités ${}^{2}\Pi_{r}$ et ${}^{2}\Sigma^{+}$ dont les configurations sont $\sigma^2 \Pi$ et $\sigma^2 \sigma$. Mais du fait de l'intéraction de configurations, les états dont nous venons de parler se dissocieront en états atomiques de composants non ionisés.

La figure (11) représente schématiquement les plus bas produits de dissociation et les états moléculaires qui s'y rattachent. L'état fondamental $^{2\Sigma+}$ se dissocie en états fondamentaux de composants ioniques (Au 2 S + Ca 1 S). Par contre, le premier état excité $^{2}\Pi$ se dissociera en (Au 2 D + Ca 1 S). Les états moléculaires possibles correspondant à cette dissociation sont les deux états excités $^{2}\Pi$ et $^{2}\Sigma$. Il est donc fort probable que cet état $^{2}\Sigma$ se dissociera aussi en (Au 2 D + Ca 1 S).

Figure 11 : Etude de la dissociation.

Dissociation dans l'approximation à une seule configuration sans respect des règles de non croisement.

Dissociation après intéraction de configuration.

- 32 -

ANALYSE ROTATIONNELLE DU SPECTRE INFRAROUGE

DE LA MOLECULE Au Ca

Bien que nous ayons travaillé à une pression inférieure à 100 mm de mercure, il ne nous a pas toujours été possible d'obtenir une structure de rotation nette des bandes des systèmes A et B. Néanmoins, les séquences $\Delta v = 0$ et $\Delta v = -1$ ont été étudiées pour chacun d'eux et l'étendue de leurs structures de rotation nous a permis de déterminer les valeurs probables des constantes de rotation de la molécule.

I - RAPPELS THÉORIQUES

Les états ${}^{2}\Sigma$ et ${}^{2}\Pi$ intervenant dans les transitions observées, nous allons d'abord rappeler les caractéristiques essentielles de la structure fine de ces états. Nous étudierons ensuite la transition ${}^{2}\Pi - {}^{2}\Sigma$.

ETAT 2Σ

L'état 2Σ est un doublet pour lequel la projection sur l'axe internucléaire du moment électronique orbital A est égale

- 33 -

à zéro. Cet état appartient strictement au cas (b) de HUND. Chaque niveau est caractérisé par le nombre quantique de rotation nucléaire N qui s'identifie au moment cinétique sans spin K.

Pour un même K donné, le moment cinétique total est

$$J = K \pm \frac{1}{2}$$

D'après MULLIKEN (10), les termes spectraux de rotation sont donnés par

$$F_{1}(K) = B_{V} K(K + 1) - D_{V} K^{2}(K + 1)^{2} + \frac{1}{2} \gamma K$$

avec K = J - 1/2

$$F_{2}(K) = B_{V} K(K + 1) - D_{V} K^{2}(K + 1)^{2} - \frac{1}{2}\gamma(K + 1)$$

avec K = J + $\frac{1}{2}$

La constante de dédoublement de spin y est petite comparée

ETAT ²II

àВ_v.

L'état ²I se caractérise par un moment angulaire orbital $\Lambda = 1$. Puisque S = 1/2, le moment angulaire résultant $\Omega = \Lambda + \Sigma = 1/2$ ou 3/2. Chaque état ²I se décompose en deux sous états ²II_{1/2} et ²II_{3/2}. La constante de couplage spin-orbite A caractérise l'importance du dédoublement. L'état ²I sera dit régulier si A est positif et inverse dans le cas contraire.

Dans le cas de la molécule Au Ca, le dédoublement spinorbite de l'état ${}^{2}\Pi$ est de 520 Å.Suivant la classification de HUND, il appartient à un cas (a) de couplage, au moins pour de faibles valeurs de J ; S et Λ étant fortement couplés. Lorsque J augmente, ce couplage diminue de plus en plus ; le couplage est de plus en plus serré entre Λ et N moment angulaire de rotation des noyaux, l'état ${}^{2}\Pi$ appartient au cas (b). Lorsque l'état ${}^{2}\Pi$ est un pur cas (a) de HUND, les niveaux d'énergie sont donnés par les formules de MULLIKEN (10).

Niveau
²II_{1/2}

$$\begin{cases}
F_{1c}(J) = -\frac{A}{2} + \frac{a}{2}(J+1) + B_{eff} J(J+1) - D_{v} J^{2}(J+1)^{2} \\
F_{1d}(J) = -\frac{A}{2} - \frac{a}{2}(J+1) + B_{eff} J(J+1) - D_{v} J^{2}(J+1)^{2}
\end{cases}$$

Niveau

$${}^{2}\Pi_{3/2}$$

$$\begin{cases}
F_{2c} \\
= \frac{A}{2} + B_{eff} J(J + 1) - D_{v} J^{2}(J + 1)^{2} \\
F_{2d}
\end{cases}$$

Les constantes effectives $\mathop{\text{B}_{}}_{\text{eff}}$ sont données par la relation

$$B_{eff} = B_v (1 + \frac{B_v}{A\Lambda} + \dots)$$

 B_v étant la constante de rotation du niveau v. La constante a représente le dédoublement Λ du niveau ${}^2\Pi_{1/2}$, les indices c et d donnent la parité des sous-niveaux dus à ce dédoublement. Pour la composante ${}^2\Pi_{3/2}$ le dédoublement Λ peut être négligé.

TRANSITION $2\pi - 2\Sigma$

Si l'état ${}^{2}\Pi$ appartient au cas (a) de HUND, toutes les transitions en accord avec les règles de sélection.

 $\Delta J = 0, \pm 1 \text{ et } + \leftrightarrow - \text{ sont possibles et apparaissent}$ avec des intensités comparables.

En effet, dans le cas (a), la règle de sélection $\Delta K = 0$, ± l n'est plus rigoureuse et les branches correspondant à $\Delta K = \pm 2$ peuvent apparaître.

Si l'on tient compte des dédoublements Λ et γ des deux états, pour chacun des sous systèmes, six branches peuvent être observées que nous noterons de la façon suivante : les lettres P, Q, R indiquent que $\Delta J = -1$, O, + 1 et les indices caractérisent le premier le niveau supérieur et le second le niveau inférieur de la transition considérée.

Dans le cas d'une transition ${}^2\Pi r$ (a) - ${}^2\Sigma$ (b) les différentes branches sont données par les relations suivantes.

$$^{2}\Pi_{1/2} - ^{2}\Sigma$$

$$P_{11}(J'') = v_{01} + F'_{1c}(J - 1) - F''_{1}(J)$$

$$Q_{11}(J'') = v_{01} + F'_{1d}(J) - F''_{1}(J)$$

$$R_{11}(J'') = v_{01} + F'_{1c}(J + 1) - F''_{1}(J)$$

$$P_{12}(J'') = v_{01} + F'_{1d}(J - 1) - F''_{2}(J)$$

$$Q_{12}(J'') = v_{01} + F'_{1c}(J) - F''_{2}(J)$$

$$R_{12}(J'') = v_{01} + F'_{1d}(J + 1) - F''_{2}(J)$$

 $2_{\Pi_{3/2}} - 2_{\Sigma}$

$$P_{22}(J'') = v_{02} + F'_{2c}(J - 1) - F''_{2}(J)$$

$$Q_{22}(J'') = v_{02} + F'_{2d}(J) - F''_{2}(J)$$

$$R_{22}(J'') = v_{02} + F'_{2c}(J + 1) - F''_{2}(J)$$

$$P_{21}(J'') = v_{02} + F'_{2d}(J - 1) - F''_{1}(J)$$

$$Q_{21}(J'') = v_{02} + F'_{2c}(J) - F''_{1}(J)$$

$$R_{21}(J'') = v_{02} + F'_{2d}(J + 1) - F''_{1}(J)$$

En considérant le dédoublement de spin de l'état ${}^{2}\Sigma$ négligeable ce qui se traduit par le fait que F"₂(J - 1) = F"₁(J), on remarque que les branches Q₁₂, R₁₂, P₂₁ et Q₂₁ coïncident respectivement avec les branches P₁₁, Q₁₁, Q₂₂ et R₂₂. Pour chacun des sous-systèmes de la transition ${}^{2}\Pi$ - ${}^{2}\Sigma$, nous serons amenés à déterminer et classer quatre branches distinctes. Pour nous aider, nous utiliserons les courbes d'intensité théoriques calculées à partir des formules de EARLS (9).

- II - Analyse de la structure de rotation de la séquence $\Delta v = o$ du système B

a) DESCRIPTION

La bande (0 - 0) du système B est relativement nette. Elle est dégradée vers le violet et comporte deux têtes P et Q intenses.

Sa structure de rotation est particulière. Les premières raies situées au delà des têtes sont mal résolues. Elles se séparent ensuite et l'on commence à pouvoir suivre deux séries de raies à 12 cm⁻¹ de la tête Q et ceci durant 60 cm⁻¹ environ. Elles apparaissent seules, larges et intenses dans une zone nette de 5 cm⁻¹ due vraisemblablement à la superposition de différentes branches.

Etant donné la loi de distribution des intensités que traduit les courbes de la figure (12), les branches $(Q_{21} + R_{22})$ et $(Q_{22} + P_{21})$ sont les plus intenses. De plus, les nombres quantiques J_Q et J_R des raies Q_{22} et Q_{21} voisines, dans une région donnée, ne diffèrent que de quelques unités (de l'ordre de 25) c'est-à-dire que les intensités de ces deux branches sont comparables. Les deux séries de raies pointées appartiennent sans aucun doute à ces deux branches. Il est difficile de les différencier, aussi avons-nous envisagé successivement les deux possibilités pour conserver l'hypothèse donnant les résultats les plus cohérents dans la suite de cette étude.

b) DETERMINATION DES CONSTANTES DE ROTATION

La mesure des nombres d'ondes des raies a été effectuée à l'aide d'un pointeur de raies. Si la valeur absolue du nombre d'ondes d'une raie est connue avec une incertitude de quelques centièmes de cm⁻¹, cet appareil nous donne une meilleur précision (0,01 cm⁻¹) sur les différences entre les nombres d'ondes. Les résultats

Figure 12 : Distribution théorique des intensités. T = 2000° C,

sont reportés dans les tableaux (VI et VII).

Les nombres d'ondes des raies Q_{22} et Q_{21} de la bande (0 - 0) ont été mis sous la forme de polynômes du quatrième degré en J. Un calcul par la méthode des moindres carrés a donné les résultats suivants :

$$Q_{22}(J'') = 15\ 024,4 - 0,0681\ J + 0,00312\ J^2 + 0,35\ 10^{-6}\ J^3 - 0,31\ 10^{-8}\ J^4$$

 $Q_{21}(J'') = 15\ 024,3 + 0,0738\ J + 0,00312\ J^2 - 0,38\ 10^{-6}\ J^3 - 0,19\ 10^{-8}\ J^4$

Ces relations sont vérifiées à mieux de 0,04 cm⁻¹ près. Les constantes de rotation qui s'en déduisent sont :

> v_{\circ} (0-0) = (15 024,40 ± 0,05) cm⁻¹ B' \circ - B'' \circ = (0,003120 ± 5 10⁻⁶) cm⁻¹ B' \circ = (0,0740 ± 3 10⁻⁴) cm⁻¹ B'' \circ = (0,0710 ± 3 10⁻⁴) cm⁻¹ D' \circ - D'' \circ = (25 ± 6) 10⁻¹⁰ cm⁻¹ D \circ ≈ (19 ± 1) 10⁻⁸ cm⁻¹

A partir de ces valeurs, nous avons calculé les nombres d'ondes des raies des branches R_{21} et P_{22} de la bande (0 - 0). L'écart entre ces valeurs et les nombres d'ondes mesurés est inférieur à $0,1 \text{ cm}^{-1}$. Mais toutes les raies pointées n'ont pas été identifiées et il reste en particulier deux séries de raies un peu moins intenses qui appartiennent aux branches Q_{22} et Q_{21} de la bande (1 - 1). Les relations exprimant les nombres d'ondes de ces raies et que nous avons vérifiées à mieux de $0,1 \text{ cm}^{-1}$ près, nous permettent d'écrire

> $B'_1 - B''_1 = (0,00335 \pm 10^{-5}) \text{ cm}^{-1}$ $B'_1 = 0,0740 \text{ cm}^{-1}$ $B''_1 = 0,0707 \text{ cm}^{-1}$

nombres d'ondes des raies Q_{22} de la bande 0-0 du système B

J	v mesuré	J	ν	mesuré	J	v mesuré
57,5	15 030,694	97, 5	15	047,185	137, 5	15 073,413
58	15 031,008	98	15	047,724	138	15 074,192
59	15 031,265	99	15	048,270	139	15 074,968
60	15 031,572	100	15	048,814	140	15 075,758
61	15 031,891	101	15	049,382	141	15 076,570
62		102	15	049,949	142	15 077,373
63	15 032,521	103			143	15 078,159
64	15 032,847	104			144	15 078,978
65		105	15	051,688	145	15 079,791
66	15 033,535	106	15	052,282	146	15 080,629
67	15 033,870	107	15	052,875	147	15 081,460
68	15 034,220	108	15	053,464	148	15 082,319
69	15 034,589	109	15	054,071	149	15 083,129
70	15 034,992	110	15	054,693	150	15 083,968
71	15 035,328	111	15	055,302	151	15 084,837
72	15 035,705	112	15	055,917	152	15 085,660
73	15 036,082	113	15	056,544	153	15 086,574
74	15 036,459	114	15	057,189	154	15 087,441
75	15 036,881	115	15	057,876	155	15 088,298
76		116	15	058,543	156	15 089,177
77	15 037,680	117	15	059,175	157	15 090,069
78	15 038,108	118	15	059,815	158	
79	15 038,542	119	15	060,472	159	15 091,857
80	15 038,955	120	15	061,138	160	15 092,756
81	15 039,379	121	15	061,829		
82	15 039,820	122	15	062,511		
83	15 040,273	123	15	063,187		
84	15 040,767	124	15	063,886		
85	15 041,180	125	15	064,562		
86	15 041,649	126	15	065,271		
87	15 042,121	127	15	065,975		
88	15 042,592	128	15	066,691	Les nom	bres d'ondes
89	15 043,083	129	15	067,418		,
90	15 043,555	130	15	068,131	sont ex	primés en cm ⁻¹
91	15 044,062	131	15	068,868		
92	15 044,591	132	15	069,619	Le dern	ier chiffre est
93	15 045,070	133	15	070,378		
94	15 045,580	134	15	071,116	donné à	titre indicatif
95	15 046,114	135	15	071,871		
96	15 046,644	136	15	072,634		

TABLEAU VII

nombres d'ondes des raies Q_{21} de la bande 0-0 du système B

J	ν	mesure
121,5	15	077,798
122	15	078,591
123	15	079,466
124	15	080,223
125	15	081,046
126	15	081,905
127	15	082,705
128	15	083,539
129	15	084,381
130	15	085,247
131	15	086,089
132	15	086,952
133	15	087,830
134	15	088,672
135	15	089,543
136	15	090,434

Les nombres d'ondes sont exprimés en cm⁻¹ Le dernier chiffre n'est donné qu'à titre indicatif.

III - Analyse de la structure de rotation de la séquence $\Delta v = -1$ du système B

a) DESCRIPTION

Comme pour la séquence principale, nous observerons encore deux têtes P et Q intenses et bien contrastées, mais les raies de rotation sont ici moins nettes et plus difficiles à classer que précédemment.

Néanmoins, il nous a été possible de suivre deux séries de raies intenses durant 70 cm⁻¹ environ. Elles appartiennent aux branches Q_{22} et Q_{21} .

b) DETERMINATION DES CONSTANTES DE ROTATION

Nous avons procédé de la même façon que pour l'étude des branches Q_{22} et Q_{21} de la séquence $\Delta v = 0$ et avons obtenu un classement de ces deux séries de raies qui se trouve vérifié à 0,06 cm⁻¹ près. Les résultats sont les suivants :

 $Q_{22}(J'') = 14\ 804,3 - 0,0671\ J + 0,00342\ J^2 + 0,2\ 10^{-6}\ J^3 - 0,3\ 10^{-8}\ J^4$ $Q_{21}(J'') = 14\ 804,5 + 0,0735\ J + 0,00342\ J^2 - 0,2\ 10^{-6}\ J^3 - 0,3\ 10^{-8}\ J^4$

desquels nous déduisons les valeurs des constantes de rotation

 $v_0 (0 - 1) = (14 \ 804, 4 \pm 0, 1) \ cm^{-1}$ $B'_0 - B''_1 = (0,003420 \pm 5 \ 10^{-6}) \ cm^{-1}$ $B'_0 = (0,0737 \pm 2 \ 10^{-4}) \ cm^{-1}$ $B''_1 = (0,0703 \pm 2 \ 10^{-5}) \ cm^{-1}$ $D'_0 - D''_1 = 0,3 \ 10^{-3} \ cm^{-1}$ $D \approx 10^{-7} \ cm^{-1}$ 12

10

nombres d'ondes des raies \mathbb{Q}_{22} de la bande 0-1 du système B

J	ν	mesuré	J	V	mesuré	J	ν	mesuré
70,5	14	816,420	110,5	14	838,117	150,5	14	870,380
71	14	816,826	111	14	838,771	151	14	871,331
72	14	817,229	112	14	839,455	152	14	872,276
73	14	817,658	113	14	840,146	153	14	873,235
74	14	818,107	114	14	840,917	154	14	874,162
75	14	818,551	115	14	841,612	155	14	875,131
76	14	818,978	116	14	842,358	156	14	876,145
77	14	819,444	117	14	843,040	157	14	877,060
78	14	819,889	118	14	843,785	158	14	878,041
79	14	820,310	119	14	844,498	159	14	879,037
80	14	820,838	120	14	845,260	160	14	880,020
81	14	821,310	121	14	845,995	161	14	881,005
82	14	821,801	122	14	846,803	162	14	882,005
83	14	822,287	123	14	847,570	163	14	883,022
84	14	822,784	124	14	848,310	164	14	884,039
85	14	823,287	125	14	849,028	165	14	885,048
86	14	823,798	126	14	849,806	166	14	886,141
87	14	824,304	127	14	850,601	167	14	887,125
88	14	824,843	128	14	851,408	168	14	888,183
89	14	825,383	129	14	852,212	169	14	889,207
90	14	825,935	130	14	852,990	170	14	890,250
91	14	826,516	131	14	853,797	171	14	891,304
92	14	827,037	132	14	854,618	172	14	892,359
93	14	827,582	133	14	855,450	173	14	893,417
94	14	828,142	134	14	856,287	174	14	894,475
95	14	828,717	135	14	857,119	175	14	895,554
96	14	829,321	136	14	857,947	176	14	896,619
97	14	829,902	137	14	858,841	177	14	897,698
98	14	830,495	138	14	859,650	178	14	898,819
99	14	831,078	139	14	860,500	179	14	899,931
100	14	831,703	140	14	861,375	180	14	901,032
101	14	832,337	141	14	862,262	181	14	902,136
102	14	832,925	142	14	863,127	182	14	903,259
103	14	833,577	143	14	864,016	183	14	904,419
104	14	834,222	144	14	864,903	184	14	905,511
105	14	834,853	145	14	865,802	185	14	906,643
106	14	835,496	146	14	866,693			
107	14	836,145	147	14	867,604	Les nomb	res	d'ondes
108	14	836,685	148	14	868,539			
109	14	837,455	149	14	869,438	sont exp	orimé	és en cm ⁻¹

Le dernier chiffre est donné à titre indicatif.

- 43 -

TABLEAU IX

Þ

91

nombres d'ondes des raies \mathbb{Q}_{21} de la bande 0-1 du système B

J	v mesuré	J	ν	mesuré	J	v mesuré
50,5	14 816,691	89,5	14	837,836	128, 5	14 868,742
51	14 817,143	90	14	838,512	129	14 869,663
52	14 817,551	91	14	839,197	130	14 870,580
53	14 817,973	92	14	839,877	131	14 871,000
54	14 818,414	93	14	840,578	132	14 872,478
55	14 818,686	94	14	841,273	133	14 873, 393
56	14 819,286	95	14	841,976	134	14 874,328
57	14 819,747	96	14	842,683	135	14 875,280
58	14 820,189	97	14	843,406	136	14 876,242
59	14 820,678	98	14	844,131	137	14 877,220
60	14 821,167	99	14	844,861	138	14 878,170
61	14 821,651	100	14	845,596	139	14 879,142
62	14 822,118	101	14	846,349	140	14 880,149
63	14 822,631	102	14	847,088	141	14 881,116
64	14 823,144	103	14	847,854	142	14 882,111
65	14 823,635	104	14	848,617	143	14 883,122
66	14 824,160	105	14	849,382	144	14 884,115
67	14 824,703	106	14	850,155	145	14 885,113
68	14 825,140	107	14	850,938		
69	14 825,782	1.08	14	851,706		
70	14 826,293	109	14	852,506		
71	14 826,872	110	14	853,299		
72	14 827,381	111	14	854,120		
73	14 827,950	112	14	854,933		
74	14 828,527	113	14	855,840		
75	14 829,174	114	14	856,572		
76	14 829,671	115	14	857,365	Les nom	bres d'ondes
77	14 830,252	116	14	858,233		
78	14 830,839	117	14	859,082	sont exp	rimés en cm ^{−1}
79	14 831,449	118	14	859,931		
80	14 832,047	119	14	860,784	Le derni	er chiffre est
81	14 832,688	120	14	861,653		
82	14 833,309	121	14	862,526	donné à	titre indicatif
83	14 833,920	122	14	863,403		
84	14 834,578	123	14	864,265		
85	14 834,218	124	14	865,156		
86	14 835,840	125	14	866,057		
87	14 836,511	126	14	866,944		
88	14 837,196	127	14	867,860		

IV - RÉCAPITULATION DES RÉSULTATS DU SYSTÈME B

Les résultats de l'étude des structures de rotation des séquences $\Delta v = 0$ et $\Delta v = 1$ conduisent aux constantes de rotation rassemblées dans le tableau suivant :

> $B'_0 - B''_0 = 0,00312 \text{ cm}^{-1}$ $B'_1 - B''_1 = 0,00335 \text{ cm}^{-1}$ $B'_0 - B''_1 = 0,00342 \text{ cm}^{-1}$

B'0 = 0,0739 cm⁻¹ B'₁ = 0,0739 cm⁻¹ B''₁ = 0,0708 cm⁻¹ B''₁ = 0,0704 cm⁻¹

```
D' - D'' \approx 3 \ 10^{-9} \ cm^{-1}
D \approx 10^{-7} \ cm^{-1}
```

Les coefficients B'_v et B''_v sont assez mal connus mais leurs différences sont déterminées avec une meilleure précision. C'est à partir de ces dernières que nous avons calculé les coefficients α'_e et α''_e qui figurent dans l'expression $B_v = B_e - \alpha_e(v + 1/2)$

$$\alpha = 7 \ 10^{-5} \text{cm}^{-1}$$
 $\alpha'' = 3 \ 10^{-4} \ \text{cm}^{-1}$

Les valeurs de ces coefficients étant du même ordre de grandeur que l'incertitude sur les constantes B_v , nous ne pouvons les utiliser pour déterminer les valeurs effectives B'_e et B''_e . En première approximation, nous écrirons :

$$B'_{e} \# B'_{0} = (0,0740 \pm 5 10^{-1}) \text{ cm}^{-1}$$

 $B''_{a} = B''_{0} = (0,0710 \pm 5 10^{-4}) \text{ cm}^{-1}$

Si l'on admet que l'énergie potentielle de la molécule est représentée par la fonction de MORSE, les coefficients α_e sont donnés par la formule de PERKERIS (14)

$$\alpha_{e} = \frac{6\sqrt{\omega_{e} \times e^{B_{e}^{3}}}}{\omega_{e}} - \frac{6B_{e}^{2}}{\omega_{e}}$$

TABLEAU X _____

NOMBRES D'ONDES DES RAIES Q_{12} DE LA BANDE 0-0 DU SYSTÈME A

v mesuré

J	v mesuré	J	v mesuré
65,5	14 526,034	104,5	14 557,256
66	14 526,606	105	14 558,353
67	14 527,214	106	14 559,342
68	14 527,856	107	14 560,365
69	14 528,506	108	14 561,353
70	14 529,117	109	14 562,392
71	14 529,880	110	14 563,434
72	14 530,570	111	14 564,422
73	14 531,291	112	14 565,508
74	14 531,989	113	14 566,587
75	14 532,682	114	14 567,673
76	14 533,413	115	14 568,818
77	14 534,146	1,16	14 569,840
78	14 534,822	117	14 570,933
79	14 535,778	118	14 572,057
80	14 536,439	119	14 573,140
81	14 537,246	120	14 574,327
82	14 537,990	121	14 575,415
83	14 538,789	122	14 576,560
84	14 539,582	123	14 577,691
85	14 540,399	124	14 578,875
86	14 541,184	125	14 580,060
87	14 542,021	126	14 581,231
88	14 542,875	127	14 582,434
89	14 543,648		
90	14 544,527		
91	14 545,350		
92	14 546,224		
93	14 547,097		
94	14 547,980		
95	14 548,878	Les nombres d'on	des sont exprimés en cm ⁻¹
96	14 549,794		
97	14 550,682	Le dernier chiff	re n'est donné qu'à titre
98	14 551,613		
99	14 552,562	indicatif.	
100	14 553,519	•	
101	14 554,482		
102	14 555,446		
103	14 556,436		

TABLEAU XI

NOMBRES D'ONDES DES RAIES Q_{11} de la bande 0-0 du système A

J	ν	mesuré
95 5	14	561 883
96	14	562 013
90	14	562,915
97	14	563,968
98	14	565,020
99	14	566,107
100	14	567,173
101	14	568,261
102	14	569,356
103	14	570,452
104	14	571,570
105	14	572,696
106	14	573,831
107	14	574,967
108	14	576,117
109	14	577,269
110	14	578,437
111	14	579,614
112	14	580,808
113	14	581,997

Les nombres d'ondes sont exprimés en cm⁻¹ Le dernier chiffre n'est donné qu'à titre indicatif.

- 48 -

$$\alpha'_{e} = 2,2 \ 10^{-4} \ cm^{-1}$$
 $\alpha''_{e} = 2,5 \ 10^{-4} \ cm^{-1}$

Ces valeurs sont du même ordre de grandeur que les résultats expérimentaux. Nous ne pouvons espérer mieux, compte tenu de la précision avec laquelle sont connues les constantes ω_e , $\omega_e \propto_e$ et B₂.

Un calcul classique conduit à la valeur de la distance internucléaire à l'équilibre.

$$r'_{e} = (2,62 \pm 0,05) \text{ Å}$$

 $r''_{e} = (2,67 \pm 0,05) \text{ Å}$

Leur différence peut se calculer directement à partir de $(B'_e - B''_e)$

$$r''_{a} - r'_{a} = 0,05 \text{ Å}$$

V - Etude de la structure de rotation de la séquence $\Delta v = 0$ du système A

a) DESCRIPTION

La séquence $\Delta v = 0$ du système A possède une structure de rotation très riche dont les têtes peu intenses sont mal résolues. Nous avons suivi deux branches intenses durant 55 cm⁻¹. En se référant aux courbes d'intensité (figure 12) on peut affirmer que les branches Q₁₁ et Q₁₂ sont les plus intenses. Elles correspondent aux deux séries de raies pointées. Nous avons considéré successivement les deux hypothèses possibles. Une seule a été retenue qui conduit à des résultats cohérents.

b) DETERMINATION DES CONSTANTES DE ROTATION

Les nombres d'ondes des raies de rotation des branches Q_{11} et Q_{12} de la bande (0-0) ont été mis sous la forme de polynômes du quatrième degré en J. Un calcul de moindres carrés a donné les résultats suivants :

 $Q_{12}(J'') = 14\ 508,9 - 0,0656\ J + 0,00511\ J^2 + 0,35\ 10^{-6}\ J^3 - 0,4\ 10^{-8}\ J^4$ $Q_{11}(J'') = 14\ 508,9 + 0,0761\ J + 0,00511\ J^2 - 0,2\ 10^{-6}\ J^3 - 0,25\ 10^{-8}\ J^4$

Les écarts entre les valeurs expérimentales et les valeurs calculées sont inférieures à 0,25 cm⁻¹.

Les constantes de rotation qui s'en déduisent sont :

$$v_{\circ}$$
 (0-0) = 14 508,95 cm⁻¹

-1 -11	$B'_{\circ} = (0,0760 \pm 2 10^{-4}) \text{ cm}^{-2}$
$B'_{\circ} - B''_{\circ} = 0,00511 \text{ cm}^{-1}$	$B''_{\circ} = (0,0709 \pm 2 \ 10^{-4}) \ cm^{-3}$
$D'_{\circ} - D''_{\circ} \approx 3 \ 10^{-9} \ cm^{-1}$	$D_{\circ} \sim 15 \ 10^{-8} \ cm^{-1}$

VI - Etude de la structure de rotation de la séquence $\Delta v = -1$ du système A

a) DESCRIPTION

La structure de rotation de cette séquence est analogue à celle de la séquence $\Delta v = 0$. Nous avons suivi deux séries de raies durant 75 cm⁻¹ qui appartiennent très probablement aux branches Q_{12} et Q_{11} .

- 49 -

Tableau XII

linde works tablis dampt desce wheth

nombres d'ondes des raies \mathbb{Q}_{12} de la bande 0-1 du système A

J	ν	mesure	J	ν	mesure	J	ν	mesure
40,5	14	296,307	80,5	14	319,664	120, 5	14	359,631
41	14	296,660	81	14	320,471	121	14	360,839
42	14	297,051	82	14	321,279	122	14	362,049
43	14	297,447	83	14	322,099	123	14	363,253
44	14	297,834	84	14	322,925	124	14	364,481
45	14	298,270	85	14	323,787	125	14	365,704
46	14	298,687	86	14	324,624	126	14	366,956
47	14	299,133	87	14	325,488	127		
48			88	14	326,365	128	14	369,568
49	14	300,040	89	14	327,247	129	14	370,749
50	14	300,581	90	14	328,155			
51			91	14	329,051			
52	14	301,499	92	14	329,949			
53	14	301,986	93	14	330,915			
54	14	302,509	94	14	331,833			
55	14	303,034	95	14	332,784			
56	14	303,583	96					
57	14	304,108	97	14	334,691			
58	14	304,671	98	14	335,676			
59	14	305,268	99	14	336,651			
60	14	305,826	100	14	337,629			
61	14	306,412	101	14	338,652			
62			102					
63	14	307,621	103	14	340,696			
64	14	308,259	104	14	341,740	Les nomb	res	d'ondes
65	14	308,897	105	14	342,758			
66	14	309,526	106	14	343,843	sont expr	imé	s en cm ⁻¹
67	14	310,207	107	14	344,881	Te lende		:
68	14	310,844	108	14	345,974	Le dernie	rci	niffre est
69	14	311,535	109	14	347,039	donné à t	itre	e indicatif
70	14	312,187	110	14	348,136			
71	14	312,910	111	14	349,247			
72	14	313,620	112	14	350,365			
73	14	314,332	113	14	351,491			
74	14	315,053	114	14	352,619			
75	14	315,800	115	14	353,759			
76	14	316,574	116	14	354,928			
77	14	317,321	117	14	356,099			
78			118	14	357,260			
79	14	318,874	119	14	358,430			

- 50 -

TABLEAU XIII

۲

nombres d'ondes des raies Q_{11} de la bande 0-1 du système A

J	V	mesure	J	ν	mesuré	J	v mesure
29,5	14	296,368	68,5	14	319,145	107, 5	14 357,882
30	14	296,741	69	14	319,932	108	14 359,084
31	14	297,148	70	14	320,742	109	14 360,271
32	14	297,552	71	14	321,573	110	14 361,512
33	14	297,961	72	14	322,410	111	14 362,724
34	14	298,385	73	14	323,246	112	14 363,929
35	14	298,826	74	14	324,093	113	14 365,186
36	14	299,238	75	14	324,945	114	
37	14	299,685	76	14	325,820	115	14 367,708
38	14	300,152	77	14	326,706	116	14 368,959
39			78			117	14 370,229
40	14	301,131	79	14	328,506		
41	14	301,625	80	14	329,407		
42	14	302,140	81	14	330,345		
43	14	302,647	82	14	331,266		
44	14	303,196	83	14	332,206		
45	14	303,726	84	14	333,164		
46	14	304,266	85	14	334,126		
47	14	304,836	86	14	335,106		
48	14	305,415	87	14	336,092		
49	14	306,000	88	14	337,076		
50	14	306,572	89	14	338,079		
51	14	307,199	90	14	339,102		
52	14	307,832	91	14	340,136	Les nombr	es d'ondes
53	14	308,497	92	14	341,161		,
54			93	14	342,227	sont expri	més en cm ⁻¹
55	·		94	14	343,259		
56	14	310,395	95	14	344,332	Le dernier	chiffre est
57	14	311,055	96	14	345,396		
58	14	311,735	97	14	346,473	donné à ti	tre indicatif
59	14	312,498	98	14	347,567		
60	14	313,127	99	14	348,673		
61	14	313,856	100	14	349,781		
62	14	314,585	101	14	350,911		
63	14	315,313	102				
64	14	316,033	103	14	353,215		
65			104	14	354,352		
66	14	317,575	105	14	355,513		
67	14	318,359	106	14	356,689		

b) DETERMINATION DES CONSTANTES DE ROTATION

Les nombres d'ondes des raies de rotation observées ont été mis sous la forme suivante :

 $Q_{12}(J'') = 14\ 290, 2 - 0,0653\ J + 0,00541\ J^2 + 1,1\ 10^{-6}\ J^3 - 1,2\ 10^{-8}\ J^4$ $Q_{11}(J'') = 14\ 290, 1 + 0,0761\ J + 0,00541\ J^2 - 1,1\ 10^{-6}\ J^3 - 1,2\ 10^{-8}\ J^{-4}$

Ces relations se vérifient à quelques centièmes près pour Q_{12} et quelques dizièmes pour Q_{11} . Nous en déduisons les valeurs des constantes.

> $v_0 = 14290, 25 \text{ cm}^{-1}$ $B'_0 - B''_1 = (0,00541 \pm 10^{-5}) \text{ cm}^{-1}$ $B'_0 = 0,0761 \text{ cm}^{-1}$ $B''_1 = 0,0707 \text{ cm}^{-1}$ $D' - D'' = 1,2 \ 10^{-8} \text{ cm}^{-1}$ $D \approx 5 \ 10^{-7} \text{ cm}^{-1}$

VII - RÉCAPITULATION DES RÉSULTATS DU SYSTÈME A

Les résultats de l'étude des structures de rotation des bandes (0-0) et (0-1) du système A conduisent aux constantes de rotation suivantes :

 $B'_{e} = 0,0760 \text{ cm}^{-1}$ $B''_{e} = 0,0710 \text{ cm}^{-1}$ $\alpha''_{e} = 3 \ 10^{-4} \text{ cm}^{-1}$ $r'_{e} = 2,6 \text{ Å}$ $r''_{e} = 2,7 \text{ Å}$ $r''_{e} - r'_{e} = 0,09 \text{ Å}$

 D_e de l'ordre de quelques 10^{-7} cm⁻¹ (D'_e - D"_e) de l'ordre de quelques 10^{-9} cm⁻¹ Pour connaître l'ordre de grandeur des coefficients α_e , nous les calculons à l'aide de la formule de PERKERIS (14). Nous obtenons :

$$\alpha'_{P} = 2,3 \ 10^{-4} \ cm^{-1} \ \alpha''_{P} = 2,5 \ 10^{-4} \ cm^{-1}$$

VIII - ETUDE DES COURBES DE POTENTIEL

La fonction la plus utilisée pour représenter l'énergie potentielle de la molécule est celle proposée par MORSE (11)

$$U = D_{e}(1 - e^{-\beta X})^{2}$$
(4)

où x = $(r - r_e)$, r_e étant la distance internucléaire à l'équilibre

 $D_{e} = \frac{\omega_{e}^{2}}{4\omega_{e} x_{e}} \text{ est 1'énergie de dissociation exprimée en cm.}$ $\beta = \sqrt{\frac{2\pi^{2}c\mu}{D_{e} h}} \omega_{e} = 1,2177 \ 10^{+7} \omega_{e} \sqrt{\frac{\mu a}{D_{e}}}, \mu_{a} \text{ étant la masse réduite}$

exprimée en unité Aston.

HILBURT et HIRSCHFELDER (12) ont modifié cette expression en tenant compte de la valeur des constantes de rotation de la molécule.

$$U(\mathbf{x}) = D_{e}[(1 - e^{-\beta \mathbf{x}})^{2} + c\beta^{3} \mathbf{x}^{3} e^{-2\beta \mathbf{x}}(1 + b\beta \mathbf{x})]$$
(5)

où β et x ont les mêmes valeurs que dans le cas de la fonction de MORSE et où c et d sont des constantes :

$$c = 1 - \frac{1}{\beta r_e} \left(1 + \frac{\alpha e \omega e}{6B_e^2}\right)$$

$$b = 2 + \frac{1}{c} \left[\frac{7}{12} - \frac{1}{\beta^2 r_e^2} \left(\frac{5}{4} + \frac{5\alpha_e \omega_e}{12 B_e^2} + \frac{5\alpha_e^2 \omega_e^2}{144 B_e^4} - \frac{2\omega_e x_e}{3 B_e} \right) \right]$$

Pour tracer les courbes qui représentent l'énergie potentielle de la molécule telle que l'ont défini HILBURT et HIRSCHFELDER, il faut calculer les facteurs b et c pour les deux états $^{2}\Sigma$ et $^{2}\Pi$ de la molécule Au Ca.

> Etat ${}^{2}\Sigma^{+}$ b = 4,28 c = 0,18 Etat ${}^{2}\Pi$ b = 4,21 c = 0,19

Les courbes correspondantes sont données par la figure (13).

IX - CONCLUSION

Les résultats que nous venons d'obtenir dans cette étude des structures de rotation des bandes (0 - 0) et (0 - 1) des systèmes A et B confirment ce que nous avons supposé, c'est-à-dire que ces deux systèmes de la molécule Au Ca ont le même état fondamental ${}^{2}\Sigma$, l'état supérieur étant un état doublet Π .

> Etat fondamental ² Σ B_e = 0,0710 cm⁻¹ r_e = 2,67 Å Etats supérieurs ² $\Pi_{1/2}$ B_e = 0,0740 cm⁻¹ r_e = 2,62 Å ² $\Pi_{3/2}$ B_e = 0,0760 cm⁻¹ r_e = 2,6 Å

Figure 13 : Courbes de potentiel des états connus de la molécule Au Ca.

- 55 -

---- PARTIE III -----

ETUDE DU SPECTRE DE LA MOLECULE Au Si

ANALYSE DE VIBRATION DU SPECTRE INFRAROUGE

DE LA MOLECULE Au Si

Pour une température de l'ordre de 2 200° C, on observe dans l'infrarouge proche un spectre de bandes qui appartient à la molécule Au Si.

Le spectre à faible dispersion se compose de deux systèmes. Le système le plus rouge, appelé A, situé vers 7 950 Å, apparaît comme une raie très large. Le second, nommé B, s'étend de 7 000 Å à 7 600 Å. On y distingue trois séquences dégradées vers le rouge (figure 14).

I - DESCRIPTION DU SYSTÈME B

A haute dispersion le système B comporte trois séquences bien séparées dont les bandes sont dégradées vers le rouge. Les têtes sont doubles et très serrées.

La séquence la plus contrastée, correspondant à $\Delta v = 0$, ne montre que peu de têtes. Les trois premières sont doubles, nettes et intenses ; les suivantes sont floues et la présence de la structure de rotation des premières têtes gêne les pointés (figure 15).

Figure 14 : Enregistrement du spectre de la molécule Au Si.

MOLECULE Au Si

- 59 -

Les deux autres séquences $\Delta v = -1$ et $\Delta v = +1$ présentent de nombreuses têtes doubles, mais moins intenses que celles de la séquence principale. Elles apparaissent également parmi une structure de rotation ce qui rend le dépouillement délicat.

II - ANALYSE DE VIBRATION DU SYSTÈME B

En présence des têtes R et Q, nous ne pouvons déterminer l'origine de la bande. Le classement sera fait à partir des têtes Q qui figurent dans le tableau (XIV). A l'aide de celui-ci, nous avons écrit les nombres d'ondes des têtes de bandes sous la forme classique de polynômes du second degré en v' et v".

$$v_{\mathbf{v}'\mathbf{v}''} = 13\ 632,4 + [\ 390,4(\mathbf{v}' + \frac{1}{2}) - 2,2(\mathbf{v}' + \frac{1}{2})^2]$$

- [\ 392,2(\mathbf{v}'' + \frac{1}{2}) - 1,45(\mathbf{v}'' + \frac{1}{2})^2] (5)

La formule (5) est vérifiée à 0,3 cm⁻¹ près, pour les têtes de la séquence principale et les quatre premières têtes des deux autres séquences et à 0,5 cm⁻¹ près pour les suivantes.

Les constantes de vibration déduites du classement proposé sont les suivantes :

> $v_e = 13\ 632,4\ cm^{-1}$ $\omega'_e = 390,4\ cm^{-1}$ $\omega''_e = 392,2\ cm^{-1}$ $\omega''_e = 1,45\ cm^{-1}$

III - DESCRIPTION DU SYSTÈME A

Lors d'une première observation, le système A apparaît formé d'une zone très intense où les bandes sont dégradées vers le

- 60 -

TABLEAU XIV

NOMBRES D'ONDES DES TÊTES Q DU SYSTÈME B DE LA MOLÉCULE

Séquence	$\Delta \mathbf{v} = + 1$	Séquence $\Delta v = 0$				
v' v''		v' v''				
1 - 0	14 017,32	0 - 0	13 631,30			
2 - 1	14 009,64	1 - 1	13 627 ,9 8			
3 - 2	14 000,4	2 - 2	13 623,2			
4 - 3	13 989,9	3 - 3	13 616,7			
		4 - 4	13 609,1			

Séquence $\Delta v = -1$

v' v''

0	-	1	13	242,3
1	-	2	13	241,7
2	-	3	13	239,67
3	-	4	13	236,12
4	-	5	13	230,9
5	-	6	13	224,7

Les nombres d'ondes sont donnés en cm⁻¹

TABLEAU XV

nombres d'ondes des têtes R du système B de la molécule Au Si

÷

			Séquence $\Delta v = +$	1			
v' v	v"		v '	v"			
1 - (0 14	020,11	6 -	5	13	965,9	
2 - 1	1 14	012,16	7 -	6	13	948,5	
3 - 2	2 14	002,88	8 -	7	13	931,7	
4 - 3	3 13	991,82	9 -	8	13	913,3	
5 – 2	4 13	977,57	10 -	9	13	893,3	floue
			Séquence ∆v = 0				
v' v	v ¹¹		v '	v"			
<u>c</u> - c	D 13	635,20	3 -	3	13	619,77	
1 - 1	1 13	631,54	4 -	4	13	611,5	
2 - 2	2 13	626,41	5 -	5	13	699,6	
			Séquence ∆v = -	1			
v' v	v''		v '	v"			
0 - 2	1 13	248,31	5 -	6	13	223,7	
1 - 2	2 13	247,16	6 -	7	13	212,1	
2 - 3	3 13	244,49	7 -	8	13	200,1	
3 - 4	4 13	240,35	8 -	9	13	188,0	
4 - 9	5 13	234,30	9 -	10	13	173,2	

Les nombres d'ondes sont exprimés en cm⁻¹

rouge ou le violet. Nous y voyons tout d'abord, en nous déplaçant vers les nombres d'ondes croissants, trois têtes de bandes dégradées vers le violet (dont deux très intenses) suivies de bandes dégradées vers le rouge et d'une bande en forme de ruban. On croit voir également des renversements de dégradés entre ces différentes têtes de bandes, mais cette zone est trop intense pour que des phénomènes d'intensité moyenne apparaissent nettement. La photographie (figure 16) et l'enregistrement (figure 17) nous montrent cette partie du système A.

Au delà de cette région et jusqu'aux raies du potassium à 7 698,979 Å et 7 664,907 Å, nous observons une série de têtes de bandes doubles dégradée vers le rouge, les têtes Q étant légèrement plus intenses que les têtes R. L'écart entre les différents groupes de têtes est important et à peu près constant (de l'ordre de 40 cm⁻¹) ce qui nous laisse penser qu'elles correspondent à de hauts niveaux de vibration.

Trois autres séries de têtes doubles sont visibles sur des films très posés devant chacune des séquences du système B. Elles sont semblables aux précédentes : dégradé des bandes vers le rouge, écart des têtes doubles diminuant lorsque l'on s'éloigne vers le rouge et écart entre les différentes têtes de bandes relativement grand et variant peu à l'intérieur d'une même séquence (comprise entre 30 et 50 cm⁻¹). Les distances entre ces différentes séquences correspondent aux distances entre les niveaux de vibration successifs mesurés lors de l'étude du système B. Malheureusement ces séquences sont trop peu contrastées pour apparaître sur un tirage photographique et par conséquent aucune mesure précise de nombres d'ondes n'est possible. Nous n'avons pû les classer.

Les nombres d'ondes des têtes les plus intenses du système A figurent dans le tableau XVI.

- 63 -

TABLEAU XVI

NOMBRES D'ONDES DES TÊTES LES PLUS INTENSES DU SYSTÈME À

Têtes doubles dégradées

vers le rouge

 $\begin{array}{c}
12 & 948.6 \\
12 & 942.7 \\
\end{array}$ $\begin{array}{c}
12 & 908.9 \\
12 & 905.4 \\
\end{array}$ $\begin{array}{c}
12 & 869.0 \\
12 & 866.2 \\
\end{array}$ $\begin{array}{c}
12 & 828.4 \\
12 & 826.6 \\
\end{array}$ $\begin{array}{c}
12 & 786.9 \\
12 & 785.9 \\
\end{array}$ $\begin{array}{c}
12 & 744.7 \\
12 & 743.9 \\
\end{array}$

Têtes simples moins intenses

12 853,3 12 849,1 12 820,8 12 776,4 12 749,9 12 737,0 12 713,0

Zone	tr	ès	intens	se où	se pr	oduit	-	
	1'	in	version	n du d	égrad	lé		
		<u> </u>						
		12	606,8	R				
		12	605,1	R				
		12 12	602,0 600,9	} rub	an			
		12	595.9	Ŕ				
		12	590.4	R				
		12	585.0	R				
		12	578 6	R				
		12	571 9	R				
		12	561 8	v				
		12	556 7	v 17				
		12	5/6 0	V				
		12	540,0	v 17				
		12	545,0	V				
		12	536,0	v				
		12	532,1	v				
	R	:	bandes	dégra	dées	vers	le	rouge
	v	:	bandes	dégra	dées	vers	le	violet

- 65 -

IV - DÉTERMINATION DE LA STRUCTURE ÉLECTRONIQUE DE LA MOLÉCULE AU SI PAR LA MÉTHODE DES ORBITALES MOLÉCULAIRES

Bien que la théorie des orbitales moléculaires ne soit qu'une approximation, nous l'utiliserons pour obtenir une interprétation générale de la structure électronique de la molécule Au Si.

a) TERMES SPECTRAUX ET LIMITES DE DISSOCIATION

Le tableau suivant rassemble les énergies des états atomiques de dissociation de Au Si.

Au	Si	Etats possibles	Energie (cm ⁻¹)
5d ¹⁰ 6s ² S _{1/2}	3s ² 3p ² ³ P。) ² _{Π1/2}	0
	³ P ₁	$2_{\Pi_{3/2}}, 2_{\Sigma}, 4_{\Sigma_{1/2}}$	77,15
	³ P ₂	$\int {}^{4}\Sigma_{3/2} , {}^{4}\Pi$	223,31
	$3s^2 3p^2 D_2$	$2_{\Delta_{5/2}}, 2_{\Pi_{3/2}}, 2_{\Sigma_{1/2}}$	6 298,81
5d ⁹ 6s ^{2 2} Ds/2	3s ² 3p ² ³ P _o		9 161,2
	³ P ₁	$2, 4\Sigma, 2, 4_{\Pi}, 2, 4_{\Delta}, 2, 4_{\phi}$	9 238,35
	³ P ₂		9 384,51

b) DIAGRAMME DE CORRELATION

Nous avons tracé le diagramme de corrélation du composé Au Si en procédant de la même façon que pour la molécule Au Ca. Nous le reproduisons à la figure 18.

R. HOUDART et J. SCHAMPS [3] ont montré que des deux orbitales moléculaires σpSi et NpSi qui se rattachent au niveau atomique 3p pour une distance internucléaire infinie, l'orbitale σp Si était la plus stable.

- 66 -

Figure 18 : Diagramme de corrélation.

Les valeurs des énergies des orbitales atomiques sont tirées des tables de Froese pour les orbitales d'un état fondamental. Les énergies des orbitales moléculaires sont arbitraires.
Les configurations électroniques les plus basses de Au Si sont donc :

- la configuration $3\delta^4$ $9\Pi^4$ $17\sigma^2_{Au}$ $18\sigma^2_{Si}$ $10\Pi_{Si}$ correspondant à la structure ionique Au⁺ Si⁻et donnant un état ²I régulier.

- les configurations obtenues par excitation d'un ou deux électrons σ_{Si} et auxquelles correspondent les états suivants :

3δ ⁴ 9П ⁴	17σ ² 18σ 10Π ²	$2\Sigma^+$, $2\Sigma^-$, $4\Sigma^-$, 2Δ
3δ ⁴ 9Π ⁴	17σ ² 10Π ³	2 ₁₁
3δ ⁴ 9π ⁴	17σ ² 18σ ² 19σ	2Σ
3δ ⁴ 9π ⁴	17σ ² 18σ 10Π 19σ	² Π, ⁴ Π
3δ ⁴ 9Π ⁴	17σ 18σ ² 10Π ²	$^{2}, ^{4}\Sigma, ^{2}, ^{4}\Delta$

Sur la figure (19 a) nous avons représenté un diagramme qualitatif indiquant la position approximative des termes électroniques issus de ces configurations. La figure (19 b) donne leur position après des considérations élémentaires (13) d'intéractions de configuration.

La figure 20 représente schématiquement les plus bas produits de dissociations et les états moléculaires qui s'y attachent. Les énergies de dissociation obtenues à partir de la formule approchée

$$D_e = \frac{\omega_e^2}{4\omega_e x_e}$$
 sont les suivantes :

 $D''_e \sim 26\ 500\ cm^{-1}^*$ pour l'état fondamental $^2\Pi$ $D'_e \sim 17\ 000\ cm^{-1}$ pour le premier état excité $^2\Sigma^+$

* Ce résultat est proche de la détermination de l'énergie de dissociation obtenue en spectroscopie de masse (3). L'état fondamental ${}^{2}\Pi$ se dissocie, après intéraction de configuration, en états fondamentaux de composants atomiques (Au ${}^{2}S_{1/2}$ + Si ${}^{3}P$). Les résultats expérimentaux montrent que pour le premier état excité ${}^{2}\Sigma^{+}$ nous obtenons les mêmes produits de dissociation.

et après intéractions de configurations (b).

- 69 -

c) INTERPRETATION DE L'ASPECT DES SPECTRES OBTENUS

L'état fondamental de la molécule Au Si est un état doublet II régulier. Le spectre de basse énergie est certainement formé de l'ensemble des deux transitions ${}^{2}\Sigma^{+} - {}^{2}II_{r}$. C'est bien ainsi que se présentent les spectres observés.

L'étude des structures de rotation faite au chapitre suivant confirmera ces résultats.

V - ETUDE DE LA DISSOCIATION

Nous avons écrit précédemment la configuration électronique de l'état fondamental ${}^{2}\Pi$ sous la forme $\sigma^{2}\Pi$. D'après le diagramme de corrélation (figure 18) cette configuration se dissocie en états atomiques ionisés Au⁺(5d¹⁰) + Si⁻(3p³).

De même, le premier état excité ${}^{2}\Sigma^{+}$ de configuration o Π^{2} se dissocie en Au⁺ et Si⁻. Cette limite de dissociation est très élevée. Elle est située à plus de 60 000 cm⁻¹ au dessus de la somme des énergies des états fondamentaux des atomes non ionisés.

En fait, l'intéraction de configurations, d'où dérivent les règles de non croissement de Von Newmann et Wigner, va amener les courbes d'énergie potentielle des états étudiés à se dissocier en états atomiques de composants non ionisés. ANALYSE ROTATIONNELLE

I - RAPPELS THÉORIQUES

La discussion sur les états électroniques du composé Au Si laisse prévoir que le spectre de basse énergie est formé par l'ensemble des deux transitions ${}^{2}\Sigma^{+} - {}^{2}\Pi_{32}$ et ${}^{2}\Sigma^{+} - {}^{2}\Pi_{12}$. L'état supérieur est un état ${}^{2}\Sigma^{+}$; il appartient toujours au cas (b) de HUND. La molécule totalisant un grand nombre d'électrons et le dédoublement électronique étant de l 070 Å, l'état fondamental ${}^{2}\Pi$ appartient au cas (a) de HUND.

Les caractéristiques des états ${}^{2}\Sigma$ et ${}^{2}\Pi$ ont été rappelées précédemment lors de l'étude du spectre de la molécule Au Ca. Elles nous permettent de déterminer les différentes branches de la transition ${}^{2}\Sigma - {}^{2}\Pi$

 $^{2}\Sigma - ^{2}\Pi_{1/2}$

 $P_{11}(J'') = v_{01} + F'_1(J - 1) - F''_{1c}(J)$ $Q_{11}(J'') = v_{01} + F'_1(J) - F''_{1d}(J)$ $R_{11}(J'') = v_{01} + F'_1(J + 1) - F''_{1c}(J)$ $P_{21}(J'') = v_{01} + F'_2(J - 1) - F''_{1d}(J)$

$$Q_{21}(J'') = v_{01} + F'_{2}(J) - F''_{1c}(J)$$

$$R_{21}(J'') = v_{01} + F'_{2}(J + 1) - F''_{1d}(J)$$

 $2\Sigma - 2_{\Pi_{3/2}}$

 $P_{22}(J'') = v_{02} + F'_{2}(J - 1) - F''_{2}(J)$ $Q_{22}(J'') = v_{02} + F'_{2}(J) - F''_{2}(J)$ $R_{22}(J'') = v_{02} + F'_{2}(J + 1) - F''_{2}(J)$ $P_{12}(J'') = v_{02} + F'_{1}(J - 1) - F''_{2}(J)$ $Q_{12}(J'') = v_{02} + F'_{1}(J) - F''_{2}(J)$ $R_{12}(J'') = v_{02} + F'_{1}(J + 1) - F''_{2}(J)$

Si le dédoublement de spin de l'état ${}^{2}\Sigma$ peut être négligé les branches P₂₁, Q₂₁, Q₁₂ et R₁₂ coïncident avec les branches Q₁₁, R₁₁, P₂₂ et Q₂₂. Nous observerons quatre branches distinctes pour chacun des sous-systèmes. Pour nous permettre de comparer les intensités relatives de ces différentes branches, nous avons tracé les courbes d'intensité théoriques calculées à partir des formules de EARLS (9) (Figure 21).

II - ANALYSE ROTATIONNELLE DE LA SÉQUENCE $\Delta v = 0$ du système B.

Dans les meilleures conditions de température 2 200° C et de pression 200 mm de mercure, nous avons obtenu une structure de rotation relativement nette et étendue des bandes de la séquence principale du système B (figure 15). Par contre, dans les séquences $\Delta v = -1$ et $\Delta v = +1$, les raies de rotation sont floues et ne permettent pas de mesures précises.

Figure 21 : Distribution théorique des intensités. T = 2 200° C.

a) DESCRIPTION GENERALE

Le système B correspond à la transition ${}^{2}\Sigma - {}^{2}\Pi_{1/2}$. D'après l'étude précédente, nous ne devrions observer que quatre branches distinctes pour chacune des bandes de la séquence principale. Mais ces différentes bandes se superposent et c'est une structure de rotation très complexe que nous sommes amenés à étudier. De plus, la présence de nombreuses têtes de bandes gêne le pointé des raies de rotation.

En effet, nous observons des têtes doubles qui appartiennent aux branches R_{21} , Q_{21} et R_{11} ; ces deux dernières étant confondues. Entre les deux têtes de la bande (0 - 0) une vingtaine de raies intenses apparaissent seules. Leurs nombres d'ondes sont alors connus avec une bonne précision ce qui permet une première détermination des constantes de rotation. Cette branche R_{21} nous la suivons encore après la tête Q_{21} dont les premières raies sont trop faibles pour être observées nettement d'autant plus qu'en cette région du spectre se situent les premières raies R_{21} de la bande (1 - 1). Ces dernières sont intenses ce qui nous a permis de relever leur nombre d'ondes

Vers 13 605 cm⁻¹ et durant 50 cm⁻¹, on peut suivre plusieurs séries de raies. La figure (21) montre que les raies des branches Q_{21} et Q_{11} sont les plus intenses. Nous les observons pour les bandes (0 - 0) et (1 - 1).

b) DETERMINATION DES CONSTANTES DE ROTATION

La mesure des nombres d'ondes des raies effectuée à l'aide du pointeur de raies nous donne une précision sur ces valeurs de l'ordre de 0,01 cm⁻¹. Les nombres d'ondes des raies des branches R_{21} et Q_{21} des bandes (0 - 0) et (1 - 1) ont été mis sous la forme de polynômes du quatrième degré en J. Le classement de ces séries se trouve vérifié à 0,02 cm⁻¹ près pour les branches R et à 0,05 cm⁻¹ près pour les branches Q. Nous en déduisons les constantes de rotation : $v_0(0-0) = 13\ 630,81 \pm 0,01\ cm^{-1}$ $B''_0 - B'_0 = 0,001991 \pm 10^{-6}\ cm^{-1}$ $B'_0 = 0,06133 \pm 2\ 10^{-5}\ cm^{-1}$ $B''_0 = 0,06332 \pm 2\ 10^{-5}\ cm^{-1}$ $B''_1 - B'_1 = 0,002085 \pm 5\ 10^{-6}\ cm^{-1}$ $B''_1 = 0,06051 \pm 5\ 10^{-5}\ cm^{-1}$ $B''_1 = 0,06258 \pm 5\ 10^{-5}\ cm^{-1}$ $D'' - D'\ de\ 1' ordre\ de\ 5\ 10^{-9}\ cm^{-1}$.

Les coefficients B_0 et B_1 ne sont pas connus avec suffisamment de précision pour que l'on puisse en déduire la valeur exacte des coefficients αe . Mais l'observation de têtes doubles R et Q, dont la différence des nombres d'ondes est donnée par la formule :

$$v_{R_{T}} - v_{Q_{T}} = \frac{2B_{v'}}{B_{v''}} - B_{v'}$$

nous permet une meilleure approche de la valeur de ces coefficients grâce à la détermination des différences $(B_{v''} - B_{v'})$. Nous obtenons

$$\alpha'_{e} = 8 \ 10^{-4} \ \mathrm{cm}^{-1}$$
 $\alpha''_{e} = 7 \ 10^{-4} \ \mathrm{cm}^{-1}$

d'où les valeurs effectives

$$B'_{o} = 0.0617 \text{ cm}^{-1}$$
 $B''_{o} = 0.06365 \text{ cm}^{-1}$

Un calcul classique conduit à la valeur de la distance internucléaire à l'équilibre

$$r'_{e} = 3,34 \text{ Å}$$

 $r'_{e} = 3,29 \text{ Å}$
 $r'_{e} = 0,052 \text{ Å}$

TABLEAU XVII

nombres d'ondes des raies R_{21} de la bande 0-0 du système B

J	v mesuré	J	v mesuré
68.5	13 634,213	91.5	
69	13 634,123	92	13 630,948
70	13 634,021	93	13 630,758
71	13 633,922	94	13 630,571
72	13 633,827	95	13 630,369
73	13 633,710	96	13 630,170
74	13 633,609	97	13 629,960
75	13 633,492	98	13 629,748
76	13 633,370	99	13 629,568
77		100	13 629,330
78		101	13 629,144
79	13 632,992	102	13 628,889
80	13 632,858	103	
81	13 632,721	104	13 628,436
82	13 632,579	105	13 627,975
83	13 632,436	106	
84	13 632,284	107	13 627,755
85	13 632,130	108	13 627,482
86	13 631,969	109	13 627,225
87	13 631,798	110	13 626,983
88		111	13 626,756
89		112	
90		113	13 626,199

Les nombres d'ondes sont exprimés en cm⁻¹ Le dernier chiffre n'est donné qu'à titre indicatif.

TABLEAU XVIII

NOMBRES D'ONDES DES RAIES R_{21} de la bande 1-1 du système B

J	ν	mesuré		J		ν	mesuré
69,5	13	630,047		93	5	13	626,199
70	13	629,960		94		13	625,967
71	13	629,813		95		13	625,773
72		-		96		13	625,555
73	13	629,568		97		13	625,305
74	13	629,459		98		13	625,101
75	13	629,330		99		13	624,840
76			1	00		13	624,639
77	13	629,027	1	01			,
78	13	628,889	1	02		13	624,134
79	13	628,722	1	03		13	623,873
80	13	628,599	1	04		13	623,632
81	13	628,436	1	05		13	623,354
82	13	628,254	1	06			
83	13	628,108	1	07		13	622,815
84			1	08		13	622,597
85	13	627,755	1	09		13	622,282
86	13	627,616	. 1	10		13	621,984
87	13	627,399	1	11		13	621,696
88	13	627,135	1	12		13	621,445
89	13	626,983	1	13		13	621,116
9 0			- 1	14		13	620,806
91	13	626,575	1	15		13	620,555
92			· 1	16		13	620,288

Les nombres d'ondes sont exprimés en cm⁻¹ Le dernier chiffre n'est donné qu'à titre indicatif.

Figure 22 : Courbes de potentiel des états connus de la molécule Au Si.

- 79 -

III - ETUDE DES COURBES DE POTENTIEL

A partir des constantes de vibration et de rotation déterminées précédemment, il a été facile de calculer les valeurs b et c figurant dans l'expression de l'énergie potentielle de HILBURT et HIRSCHFELDER (12) rappelée précédemment (4). Pour les deux états ${}^{2}\Pi$ et ${}^{2}\Sigma$ de la molécule Au Si nous obtenons :

> état ${}^{2}\Pi$ b = -10,26 c = 5,4 10⁻⁵ état ${}^{2}\Sigma$ b = 4,96 c = -3 10⁻⁴

Avec ces données, nous avons effectué le calcul du potentiel de HILBURT et HIRSCHFELDER pour x variant de (- ! Å) à 4 Å et tracé les courbes de potentiel correspondantes (figure 22).

IV - CONCLUSION

Cette étude de la structure de rotation de la séquence $\Delta v = 0$ du système B nous a permis de confirmer nos hypothèses de départ : l'état fondamental est un état doublet II et le premier état excité un état doublet Σ .

> Etat fondamental ${}^{2}\Pi_{1/2}$ $B_{e} = 0,06365 \text{ cm}^{-1}$ $r_{e} = 3,29 \text{ cm}^{-1}$ Etat excité ${}^{2}\Sigma$ $B_{e} = 0,0617 \text{ cm}^{-1}$ $r_{e} = 3,34 \text{ Å}$

L'étude du système A n'ayant pu être menée à bien, nous ne connaissons pas les constantes relatives à la seconde composante de l'état ${}^{2}\Pi$.

CONCLUSION

L'essentiel de notre travail a consisté en l'analyse vibrationnelle et rotationnelle des spectres du proche infrar uge des molécules Au Ca et Au Si. Grâce à la haute résolution du spectrographe utilisé, une étude plus détaillée et plus complète que celle de nos prédécesseurs a été possible. En particulier, nous avons obtenu des résultats plus précis concernant les états ${}^{2}\Sigma$ et ${}^{2}\Pi$ de la molécule Au Ca et des résultats nouveaux concernant la transition ${}^{2}\Sigma - {}^{2}\Pi_{1/2}$ de la molécule Au Si.

Néanmoins, beaucoup de questions restent obscures ; les molécules étudiées sont des molécules lourdes dont les structures de rotation très riches sont incomplètement résolues avec les moyens dont nous disposons.

Pour améliorer ces résultats, il serait souhaitable de disposer d'un plus grand pouvoir de résolution. Mais lors de l'étude de ces spectres, nous avons observé trop de superpositions entre branches d'une même bande, bandes d'une même séquence et séquences de différents systèmes pour que cela soit suffisant. Il serait surtout nécessaire de réaliser une excitation des molécules à des températures plus basses que celles obtenues avec le four de King pour atteindre les premiers niveaux de rotation.

- 81 -

BIBLIOGRAPHIE

- (1) J. SCHILTZ, Thèse de doctorat ès sciences, Lille 1962.
- (2) R. HOUDART, Thèse de doctorat ès sciences, Lille 1970.
- (3) R. HOUDART et J. SCHAMPS, J. Phys. B 1973 6 2478.
- (4) J. LUTS, D. E. A. Lille 1967.
- (5) J. RUAMPS, Annales Phys. 1959 4 1111.
- (6) P. NIAY et J. THIBAUT, D. E. A. Lille 1968.
- (7) G. HERZBERG, Spectra of diatomic molecules. Van Nostrand 1950.
- (8) C. E. MOORE, Atomic energy levels N. B. S. 467 Vol. I 1949.
- (9) L. T. EARLS, Phys. Rev. 1935 48 423
- (10) R. S. MULLIKEN, Rev. Modern Phys. 1931 3 129.
- (11) P. M. MORSE, Phys. Rev. 1929 34 57.
- (12) H. M. HILBURT et J. O. HIRSCHFELDER, J. Chem. Phys. 1941 9 61
- (13) R. DAUDEL, R. LEFEVRE et C. MOSER, Quantum Chemistry Inter. Publ. Inc. N. Y. 1959.
- (14) C. L. PEKERIS, Phys. Rev. 1934 45 98.
- (15) R. ZALUBAS, New Description of Thorium spectra N. B. S. 1960.
- (16) NESMEYANOV, Vapor pressure of chemicals elements Elsevier, 1963.

Vol. II 1952.