N° d'ordre : 641

50376 1977 100

THESE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE TROISIÈME CYCLE

(Spectrochimie et méthodes d'analyse)

par

Pierre **BISSON**

CONTRIBUTION A L'ETUDE D'UNE MICROSONDE A EFFET RAMAN

Soutenue le 4 Juillet 1977, devant la COMMISSION D'EXAMEN

MM. M. DELHAYE

- M. BRIDOUX
- B. ESCAIG
- J.P. BONNELLE
- P. DHAMELINCOURT
- H.J. SCHUBNEL

Président et Rapporteur

Examinateurs

Membres invités

DOYENS HONORAIRES de l'Ancienne Faculté des Sciences

MM. R. DEFRETIN, H. LEFEBVRE, M. PARREAU.

PROFESSEURS HONORAIRES des Anciennes Facultés de Droit

et Sciences Economiques, des Sciences et des Lettres

M. ARNOULT, Mme BEAUJEU, MM. BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P. GERMAIN, GLACET, HEIM DE BALSAC, HOCQUETTE KAMPE DE FERIET, KOUGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, NM. LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARO, WATERLOT, WIEMAN, ZAMANSKI.

PRESIDENTS HONORAIRES DE L'UNIVERSITE

DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. M. MIGEON.

PROFESSEURS TITULAIRES

M. BACCHUS Pierre M. BEAUFILS Jean-Pierre BECART Maurice Μ. BILLARD Jean Μ. M. BIAYS Pierre M. BONNEMAN Pierre M. BONNOT Ernest M. SONTE Antoine BOUGHON Pierre Μ. M. BOURIQUET Robert M. CELET Paul M. COEURE Gérard M. CONSTANT Eugène M. DEBOURSE Jean-Pierre M. DELATTRE Charles M. DELHAYE Michel M. DERCOURT Jean M. DURCHON Maurice M. FAURE Robert FOURET René Μ. M. GABILLARD Robert M. GONTIER Gérard M. GRANELLE Jean-Jacques M. GRUSON Laurent M. GUILLAUME Jean M. HEUSEL Joseph M. LABLACHE-COMBIER Alain M. LACOSTE Louis M. LANSRAUX GUY M. LAVEINE Jean-Pierre LEBRUN André м. Μ. LEHMANN Daniel

Astronomie Chimie Physique Physique Atomique et Moléculaire Physique du Solide Géographie Chimie Appliquée Biologie Végétale Géologie Appliqué Algèbre Biologie Végétale Géologie Générale Analyse Electronique Gestion des Entreprises Géologie Générale Chimie Physique Géologie Générale Biologie Expérimentale Mécanique Physique du Solide Electronique Mécanique Sciences Economiques Algèbre Microbiologie Chimie Minérale Chimie Organique Biologie Végétale -Physique Atomique et Moléculaire Paléontologie Electronique Géométrie

Mme	LENOBLE Jacqueline
Μ.	LINDER Robert
Μ.	LOMBARD Jacques
Μ.	LOUCHEUX Claude
М	LUCCUIN Michel
Μ.	MAILLET Pierre
Μ.	MONTARIOL Frédéric
Μ.	MONTREUIL Jean
Μ.	PARREAU Michel
M	POUZET Pierre
Μ.	PROUVOST Jean
M	SALMER Georges
Μ.	SCHILTZ René
Mine	SCHWARTZ Marie-Helene
М.	SEGUIER Guy
М.	TILLIEU Jacques .
Μ.	TRIDOT Gabriel
М.	VIDAL Pierre
Μ.	VIVIER Emile .
M	WERTHEIMER Raymond
Μ.	ZEYTOUNIAN Radyadour

Physique Atomicue et Moléculaime Biologie et Physiologie Végétales Sociologie Chimie Physicue Chimie Physique Sciences Economiques Chimie Appliquée Biochimie Analyse Analyse numérique Minéralogie Electronique Physique Atomique et Moléculaire Géométrie Electrotechnique Physique Théorique Chimie Appliquée Automatique Biolocie Cellulaire Physique Atomique et Moléculaire Mécanique

PROFESSEURS SANS CHAIRE

	and the second secon	
Μ.	BELLET Jean	
Μ.	BKOUCHE Rudolphe	
Μ.	BODARD Marcel	
M.	BOILLET Pierre	
М.	BOILLY Benoni	
М.	PPIDOUX Michel	
M	CAPURON Alfred	
M	CURTOIS Jean	
Мте	CACHARRY Monique	
M	DEPREZ Gilbert	
M	DEVRAINNE Pierre	
Mme	EVRARD Micheline	
Μ.	GOSSELIN Gabriel	
M	GOUCMAND Pierre	
M.	GUILBAULT Pierre	
M	HERMAN Maunice	
Mme	LEHMANN Josiane	
M	LENTACKER Firmin	
M.	LERCY Jean-Marie	
M	LOUAGE Francis	
M	MAIZIERES Christia	n
Mle	MARQUET Simone	
· .	MIGEON Michel	
M . 1	MONTEL Marc	
M	MONTUELLE Bernard	
Μ.	NICOLE Jacques	
м	PAGUET Jacques	
. M	PACZY Ladislas	
Μ.	RCUSSEAU Jean-Paul	
М.	S_IWA Henri	
Μ.	WATEFLOT Michel	

Physique Atomique et Moléculaire Algèbre. Biologie Végétale Physique Atomique et Moléculaire Biologie Animale Chimie Physicue Biologie Animale Physique Nucléaire et Corpusculaire. Géographie Physique Théorique Chimie Minérale Chimie Appliquée Sociologie Chimie Physique Physiologie Animale Physique Spatiale Analyse Géographie Chimie Appliquée Electronique Automatique Probabilités Chimie Physique -Physique du Solide Biologie Appliquée Chimie Appliquée Géologie Générale Electronique Physiologie Animale Chimie Organique Géologie Générale

MAITRES DE CONFERENCES (Et Chargés d'Enseignement)

M. ADAM Michel M. ANTOINE Philippe M. BART André She BATTIAU Yvonne Sciences Economicues Analyse Eiologie Animale Géographie

BEGUIN Paul Μ. **BONNELLE Jean-Pierre** Μ. М. BOSCQ Denis BREZINSKI Claude М. M. BRUYELLE Pierre Μ. CARREZ Christian COQUERY Jean-Marie Μ. CORDONNIER Vincent Μ. Μ. COUTURIER Daniel Μ. CRAMPON Norbert Μ. CROSNIER Yves M. DEBRABANT Pierre DEGAUQUE Pierre Μ. Μ. DELORME Pierre Μ. DE PARIS Jean-Claude Μ. DHAINAUT André Μ. DELAUNAY Jean-Claude Μ. DERIEUX Jean-Claude Μ. DOUKHAN Jean-Claude Μ. DUBOIS Henri Μ. DUEE Gérard Μ. DYMENT Arthur Μ. ESCAIG Bertrand M. FAKIR Sabah FLAMME Jean-Marie Μ. FOCT Jacques Μ. M. FONTAINE Hubert M. FONTAINE Jacques FOURNET Bernard Μ. GAMBLIN André Μ. **GERVAIS Michel** Μ. GOBLOT Rémi Μ. Μ. HECTOR Joseph Μ. JACOB Gérard Μ. JOURNEL Gérard KREMBEL Jean LAURENT François Μ. Μ. M1e LEGRAND Denise Mle LEGRAND Solange LEROY Yves Μ. LHENAFF René Μ. Μ. LOCQUENEUX Robert Μ. MACKE Bruno Μ. MAHIEU Jean-Marie Μ. **MESSELYN** Jean MIGNOT Fulbert Μ. N'GUYEN VAN CHI Régine Μ. NOTELET Francis Μ. Μ. NUSSEMBAUM Maurice Μ. PARSY Fernand PAUPARDIN Colette Μ. PECQUE Marcel Μ. M. PERROT Pierre Μ. PERTUZON Emile Μ. PETIT Francis Μ. **PONSOLLE Louis** M. POVY Lucien Μ. RICHARD Alain Μ. ROGALSKI Marc Μ. ROY Jean-Claude Μ. SIMON Michel Μ. SOMME Jean

Mécanique Chimie Probabilités Analyse Numérique Géographie Informatique Psycho-Physiologie Informatique Chimie Organique Géologie Electronique Géologie Appliquée Electronique Physiologie Animale Mathématiques Biologie Animale Sciences Economiques **Microbiologie** Physique du Solide Physique Géologie Mécanique Physique du Solide Algèbre Technologie de Construction Génie Mécanique Physique Electronique Biochimie Géographie Gestion des Entreprises Algèbre Géométrie Informatique Physique Atomique et Moléculaire Biochimie Automatique Algèbre Algèbre Electronique Géographie Physique théorique Physiaue Physique Atomique et Moléculaire Physique Atomique et Moléculaire Analyse Numérique Géographie Electrotechnique Sciences Economiques Mécanique Biologie Physiologie Végétales Chimie Physique Chimie Appliquée Physiologie Animale Chimie Organique Chimie Physique Automatique Biologie Analyse Psycho-Physiologie Sociologie Géographie

- 4 -

Mle SPIK Geneviève M. STANKIEWICZ François M. STERBOUL François M. TAILLEZ Roger M. THERY Pierre M. TOP Gérard M. TOULOTTE Jean-Marc M. TREANTON Jean-René M. VANDORPE Bernard M. VILLETTE Michel M. WALLART Francis M. WERNER Georges Mme ZIN-JUSTIN Nicole Biochimie Sciences Economiques Informatique Biologie Electronique Sciences Economiques Automatique Sociologie Chimie Minérale Mécanique Chimie Informatique Algèbre Ce travail a été effectué à l'U.E.R. de Chimie de l'Université des Sciences et Techniques de Lille dans le laboratoire de Spectrochimie Infrarouge et Raman dirigé par Monsieur le Professeur DELHAYE.

Qu'il me soit permis de lui exprimer ici ma profonde gratitude pour m'avoir orienté vers ce sujet de recherches.

Monsieur le Professeur BRIDOUX, Monsieur ESCAIG et Monsieur BONNELLE ont accepté d'examiner ce travail. Je les prie d'accepter mes sincères et respectueux remerciements.

Monsieur SCHUBNEL, Directeur du Bulletin de l'Association Française de Gemmologie me fait l'honneur de se joindre au jury. Je l'en remercie vivement.

En m'ayant fait bénéficier de sa compétence et de son aide constante, Monsieur DHAMELINCOURT a contribué pour une large part à la réalisation de ce travail. Qu'il veuille bien trouver ici, l'expression de ma reconnaissance et le témoignage de mon amitié.

Je remercie enfin tous les chercheurs et techniciens du laboratoire, et en particulier Madame DESCAMPS qui a effectué la frappe de ce mémoire.

. -00000-

SOMMAIRE	
	Page
- INTRODUCTION	ł
- CHAPITRE I : PRINCIPE DE LA MICROSONDE À EFFET RAMAN	3
1 : TECHNIQUES DE MICROANALYSE	3
II : PRINCIPE DE LA MICROSONDE RAMAN	4
111 : FONCTIONNEMENT DU MICROSCOPE RAMAN	5
- CHAPITRE II : ETUDE DE L'APPAREIL	S
I : SCHEMA OPTIQUE DU MICROSCOPE RAMAN	8
11 : LE MICROSCOPE	9
III : ILLUMINATION DE L'ECHANTILLON	10
IV : LE FILTRE OPTIQUE	14
V : CALCUL DE L'OPTIQUE DE TRANSFERT	16
VI : DETECTION ET OBSERVATION DES IMAGES	21
- CHAPITRE III : UTILISATION DE LA MICROSONDE RAMAN	23
I : CHOIX DE L'OUVERTURE DES FENTES	23
11 : TESTS	27
111 : OBSERVATIONSEN MICROSCOPIE RAMAN	29
- CONCLUSION	37
- ANNEXE : CARACTERISTIQUES DE QUELQUES RÉSEAUX HOLOGRAPHIQUES CONC	AVES ^{DG}
- BIBLIOGRAPHIE	4.55

INTRODUCTION

Depuis 25 ans, de nombreuses méthodes de microanalyse ont été créées en couplant le microscope, optique ou électronique, aux différents systèmes d'analyse par spectrométrie.

M. DELHAYE et P. DHAMELINCOURT ont étudié une Microsonde utilisant l'effet Raman, capable de localiser et d'identifier les différentes espèces chimiques d'un échantillon hétérogène.

L'avantage fondamental de cet appareil sur ceux existants, est de permettre l'étude d'un échantillon à l'air libre, sous atmosphère contrôlée, ou même à l'intérieur de milieux transparents.

La Microsonde à effet Raman a fait l'objet de deux brevets A.N.V.A.R. (1), l'étude de faisabilité dans le domaine biomédical a été entreprise sous contrat I.N.S.E.R.M. (2).

Notre travail, effectué en étroite collaboration avec P. DHAMELINCOURT, a consisté à étudier cet appareil au point de vue instrumental et à effectuer diverses observations en microscopie Raman pour définir quelques domaines d'applications où cette nouvelle technique pourrait se révéler intéressante.

La Microsonde Raman, mise au point au laboratoire, a permis la réalisation d'un appareil actuellement commercialisé par la Société LIRINORD. Certains exemples d'applications que nous présentons ici ont été obtenus à l'aide de cet appareil. Au premier chapitre de ce mémoire, nous situons cette technique de microanalyse parmi celles existantes et nous expliquent le principe de la Microsonde à effet Raman.

Le deuxième chapitre est consacré à l'étude des éléments qui constituent l'appareil.

Au troisième chapitre, après avoir défini quelques conditions d'utilisations, nous donnons quelques exemples d'observations en microscopie Raman.

Enfin en annexe, nous rappelons quelques points de théoriegéométrique des réseaux holographiques concaves qui sont les éléments de base de l'instrument que nous décrivons ici.

-00000-

CHAPITRE I

PRINCIPE DE LA MICROSONDE À Effet Raman

I - TECHNIQUES DE MICROANALYSE

Les techniques de microanalyse par spectrométrie utilisent le principe suivant :

- Le bombardement d'un échantillon par un faisceau de particules ou de radiations (électrons, ions, photons) est susceptible de donner lieu à une émission secondaire de particules ou de radiations caractéristiques de l'échantillon.

La microanalyse utilise cette propriété pour déterminer la nature, la concentration, et la localisation des différents constituants d'un échantillon microscopique. L'analyse du rayonnement émis est réalisé par spectrométrie de masse, électronique, dans le domaine X, visible ou infrarouge. De plus, après filtrage du rayonnement secondaire, il est possible dans certains cas, d'obtenir différentes images de l'échantillon, chacune étant une carte qui précise la localisation d'un des éléments présent dans la zone analysée. Afin de situer la microsonde Raman parmi ces techniques de microanalyse, nous les avons classées dans le tableau I, suivant le mode d'excitation, les types de spectrométrie et de microscopie (3). Il est à noter que :

- L'analyse par émission ionique est destructive. Elle consiste en effet à bombarder un échantillon solide par une source excitatrice d'ions primaires dont le but est d'arracher au niveau de la surface des atomes, ou groupements d'atomés ionisés, qui constituent ainsi l'émission ionique secondaire.
- L'analyse par rayon laser (4-5) est destructive ; un faisceau laser vaporise localement une zone de l'échantillon. Les substances vaporisées sont alors excitées soit par arc électrique et la lumière émise est analysée par spectrométrie visible, soit par un faisceau laser, le plasma est alors analysé par spectrométrie de masse.

Les microsondes à source d'excitation par électrons bénéficient de la très haute résolution spatiale du microscope électronique ; l'échantillon cependant, doit être placé sous vide et nécessite un traitement de surface approprié (métallisation).

11 - PRINCIPE DE LA MICROSONDE RAMAN

Les microsondes précédentes exploitent une propriété atomique caractéristique des éléments. M. DELHAYE et P. DHAMELINCOURT ont pensé exploiter une propriété moléculaire (le spectre Raman de vibration) caractéristique de molécules ou d'ions polyatomiques pour identifier et localiser les différents constituants d'un échantillon hétérogène.

La figure 1 montre la similarité des principes de base des microsondes de CASTAING, de SLODZIAN et de la microsonde Raman.

- 4.

Excitation	signal analysé	spectrométrie	microscopie	obtention d´image	échantillon sous vide
Electrons	rayons X	X	optique - électronique	ουί	
	perte d'énergie des électrons	- électronique	électronique	oui	oui
	electrons Auger			non	
	cathodo — Iuminescence	optique	optique	oul	
Ions	ions secondaire	masse	optique ionique	oui	oui
Photon s (Laser)	photons second aprés réexcitation	aire I optique	optique	non	non
	ions	masse	opiique - ionique	non	oui
	photons Émission Raman	optique	optique	oui	non

Tableau 1

Ions electrons photons ions secondaires fluorescence hỳ₀ Rayleigh électrons positifs ou negatifs cathodo hý) secondaire luminescence $h(v_0 \pm v_i)$ Ramon rayons X Microsonde ionique Microsonde électronique Microsonde Raman BUS (SLODZIAN) (CASTAING) Fig:1

- Microsonde électronique de Castaing (6) :

Un faisceau d'électrons bombarde la surface de l'échantillon, provoquant une émission secondaire d'électrons, un phénomène de cathodoluminescence ainsi que l'émission de rayons X.

- Microanalyseur ionique de Slodzian (7) :

Un faisceau d'ions incidents crée une émission d'ions secondaires qui sont discriminés èt identifiés par un spectromètre de masse. Ces ions secondaires sont caractéristiques des atomes ou groupements d'atomes contenus dans l'échantillon.

- Microsonde Raman (8) :

Un faisceau de photons issus d'un laser provoque l'émission de raies Raman. Ces raies, filtrées par un spectromètre optique, sont utilisées pour caractériser chacune des espèces chimiques contenues dans l'échantillon et en obtenir la répartition sous forme d'une image.

La figure 2 illustre ce principe : Soit un échantillon contenant deux espèces chimiques A et B, visibles mais indiscernables en microscopie classique. En utilisant un faisceau laser monochromatique excitateur, le spectre Raman de l'échantillon présente les raies caractéristiques des deux espèces présentes. Par filtrage optique, il est possible d'isoler une bande étroite du spectre, centrée sur une raie. Dès lors, si l'on sélectionne une raie émise par l'espèce A par exemple, à l'aide d'une optique appropriée, il est possible de réformer une image caractéristique de l'espèce A. L'image obtenue est donc une image sélective dans laquelle seule l'espèce A est visible. Par ce procédé, il est donc en principe possible d'obtenir autant d'images sélectives qu'il y a d'espèces chimiques présentes dans l'échantillon pourvu qu'elles présentent des vibrations actives en diffusion Raman.

III - FONCTIONNEMENT DU MICROSCOPE RAMAN

Le schéma de principe de l'appareil est indiqué sur la figure 3. Un dispositif d'éclairage annulaire focalise le faisceau laser sur la surface

de l'échantillon. La lumière diffusée, recueillie par l'objectif d'un microscope optique, est séparée en deux faisceaux par une lamé semi-transparente. L'un des faisceaux sert à la formation de l'image classique qui apparait sur un écran de contrôle. L'autre faisceau est envoyé à travers la fente d'entrée d'un filtre à réseau de diffraction.

L'image de l'échantillon, donnée par l'objectif, est reprise par une optique de transfert et réformée au niveau du réseau. A l'aide d'une lentille, une image du'réseau (et donc de la préparation) est projetée sur la photocathode d'un tube intensificateur d'images suivi d'une caméra pour bas niveaux et rendue visible sur un moniteur T.V.

Supposons que l'échantillon hétérogène contienne deux constituants de natures chimiques différentes A et B.

En calant convenablement le réseau et en fermant suffisamment la fente de sortie, seul une raie Raman, de A par exemple, sortira du filtre. L'image du réseau (et de l'échantillon) sera donc vue à partir de la raie isolée λ_A , et seuls les constituants de nature A seront visibles sur le moniteur. Cette image Raman constitue alors la carte chimique de répartition de l'espèce A présente dans la zone analysée.

Utilisé en spectrographe ou spectromètre multicanal, cet appareil donnera également le spectre Raman de toute la zone éclairée de la préparation.

L'avantage de la Microsonde Raman est de permettre l'analyse d'échantillons dans les mêmes conditions qu'en microscopie classique : la préparation ne subit aucun traitement de surface particulier, son étude est faite à l'air libre ou sous atmosphère contrôlée. L'échantillon peut être immergé dans un liquide transparent ou placé dans une enceinte régulée en température.

Les limitations de cette technique proviennent principalement : - de l'échantillon A cause de ses dimensions ou de sa nature, le spectre Raman de l'espèce chimique choisie, peut être trop peu intense pour être détecté. Ou bien, le spectre Raman est superposé à une bande de fluorescence (on obtient alors l'image de l'échantillon en microscopie de fluorescence, mais la caractérisation est moins précise).

- du filtre optique

La diffusion Rayleigh doit être complètement filtrée pour permettre l'énorme amplification du signal Raman nécessaire à la formation d'images caractéristiques. En effet, en prenant pour unité l'intensité de la diffusion Rayleigh, l'intensité des raies Raman est de l'ordre de 10^{-6} à 10^{-10} . Le filtre optique doit alors pouvoir isoler une raie Raman située à quelques dizaines d'Angstroms de la raie laser, en masquant suffisamment la diffusion Rayleigh pour permettre l'amplification nécessaire à la visualisation de cette raie.

Le schéma de l'appareil précédent correspond au prototype, étudié par P. DHAMELINCOURT, qui permit d'obtenir les premiers essais concluants (8-9).

Cependant le filtre optique de cet appareil étant un simple monothromateur, l'étude des échantillons dont le spectre Raman se situe dans le domaine des basses fréquences, s'avérait impossible.

Aussi, pour permettre l'exploitation de ce domaine, un second prototype muni d'un double monochromateur a été réalisé au laboratoire.

-00000-

CHAPITRE II

ETUDE DE L'APPAREIL

La formation d'images à partir d'un phénomène aussi faible que l'effet Raman, exige que les différentes parties de l'installation soient très performantes. Après une brève description des éléments constitutifs du microscope à effet Raman, nous montrerons comment ces éléments ont été étudiés pour répondre aux problèmes d'éclairement de l'échantillon, du transfert d'images, du filtrage et de l'amplification des images obtenues à partir d'une raie Raman.

I - SCHEMA OPTIQUE DU MICROSCOPE A EFFET RAMAN

Le microscope à effet Raman se compose d'un microscope, d'un filtre optique accordable à bande étroite et d'un détecteur multicanal (tube intensificateur d'images et caméra pour bas niveaux) (Fig. 4).

Un condenseur annulaire focalise le faisceau laser excitateur sur la surface S de l'échantillon. Seule la lumière diffusée est reprise par l'objectif qui forme une image S' de l'échantillon. Un système optique

constitué de deux lentilles convergentes permet le transfert de la lumière collectée par l'objectif, sur la fente 0_1 du spectrographe et la formation d'une image agrandie de la surface de l'échantillon au niveau du premier réseau (S₂).

Une lentille convergente placée au niveau de la fente intermédiaire 0_2 , réforme une image de l'échantillon sur le second réseau (S_3) . Une lentille convergente placée au niveau de la fente de sortie 0_3 , projette cette image sur la photocathode d'un tube intensificateur d'images (S_4) . Enfin, pour obtenir le spectre de l'échantillon, une lentille mobile peut être interposée de façon à former l'image de la fente de sortie sur la photo-cathode du tube intensificateur.

II - LE MICROSCOPE

Nous utilisons un microscope optique classique Wild, modèle M.12, muni d'un système d'éclairage épiscopique annulaire pour fond noir. La figure 5 montre le chemin optique suivi par le faisceau dans les deux modes d'observation possibles :

- en fond clair : c'est l'objectif qui focalise le faisceau. Le faisceau réfléchi suit le même trajet que le faisceau incident, le long du corps central de l'objectif.
- en fond noir : après réflexion sur un miroir, le faisceau est focalisé par un condenseur annulaire. Contrairement à l'éclairage fond clair, seule la lumière diffusée est recueillie par l'objectif. Ce mode d'éclairement est donc parfaitement adapté à l'observation d'images Raman.

La lumière diffusée reprise par l'objectif est divisée en deux faisceaux par une lame séparatrice. Un des faisceaux traverse un oculaire qui forme alors l'image de la surface de l'échantillon sur un écran de contrôle (verre dépoli). L'autre faisceau est envoyé vers le filtre. Un jeu de lames séparatrices permet de choisir le rapport des intensités des

des deux faisceaux dans les proportions 0/1, 0,25/0,75, 1/0.

Sur la tourelle du microscope sont montés 4 objectifs Epi-achromatiques (épiscopique, corrigé des aberrations de chromaticité) à champ plan.

- x 4 ouverture numérique 0,1
- x 10 ouverture numérique 0,25
- x 20 ouverture numérique 0,45
- x 40 ouverture numérique 0,65

Les accessoires montés sur le microscope (boîte à lumière, répartiteur de faisceaux) multiplient par un facteur 1,75 les grandissements des différents objectifs.

Rappelons que le pouvoir séparateur est la qualité essentielle du microscope et qu'un oculaire ou tout autre système de visualisation ne peut permettre l'observation de détails qui ne sont pas séparés dans l'image de l'échantillon donnée par l'objectif. La limite de résolution d'un objectif optiquement parfait, fixée par les phénomènes de diffraction est :

 $\Delta x = \frac{0.6 \lambda_{\circ}}{0_{n}} \qquad (0_{n} = \text{ouverture numérique})$

Ainsi par exemple, pour $\lambda_{\circ} = 0,5145 \mu$ et pour les ouvertures numériques 0,25, 0,45 et 0,65, on obtient $\Delta x = 1,2, 0,7$ et 0,5 u

Un filtre coloré escamotable peut être placé après l'objectif. Il coupe alors le rayonnement diffusé sans changement de longueur d'onde et permet l'observation visuelle directe au travers d'un oculaire, de l'échantillon en microscopie de fluorescence.

III. - ILLUMINATION DE L'ECHANTILLON

1 - Eclairement global de la surface de l'échantillon

La détectivité de la microsonde dépendra beaucoup de l'éclairement de l'échantillon et il est impératif de minimiser les pertes de lumière. En fond noir, l'optique d'éclairement adaptée à l'ouverture numérique d'un objectif, est le condenseur annulaire qui lui est associé. Cependant, on ne peut envoyer le faisceau laser directement sur le miroir d'entrée du système d'éclairement (Fig. 6). En effet, la section du faisceau étant trop petite pour couvrir ce miroir, seule une fraction très réduite du champ vu par l'objectif-serait éclàirée.

Sur la figure 6, l'optique annulaire (miroir percé en son centre suivi du condenseur) est schématisée par une lentille dont le centre est masqué. Sont également représentés les faisceaux qui traversent le condenseur ; le plan P_2 est celui de la surface de l'échantillon. Le système d'éclairement episcopique fond noir conçu par le constructeur a les caractéristiques suivantes :

- 1) Le condenseur annulaire admet un faisceau divergent en forme de manchon conique.
- 2) Au champ vu par l'objectif de microscope, correspond une zone optiquement conjuguée, située dans un plan P_1 . La distribution d'intensité au niveau de l'échantillon sera alors identique à celle de la zone située dans le plan P_1 .

De ceci, il résulte qu'il faut modifier la géométrie du faisceau laser pour que, d'une part la zone analysée de l'échantillon soit correctement éclairée et que d'autre part, il n'y ait pas de perte de lumière au niveau du condenseur annulaire.

Tout d'abord, on voit qu'il est impossible d'utiliser une simple expansion de faisceau obtenue à l'aide d'une ou plusieurs lentilles (Fig. 7). En effet, la partie centrale du faisceau est occultée et la lumière correspondante ne peut parvenir sur l'échantillon. De plus, l'intensité émise par un laser ayant une distribution gaussienne, l'échantillon ne reçoit qu'une fraction minime de la lumière initiale et est éclairé de façon inhomogène.

Il existe cependant un système spécialement conçu pour transformer un faisceau cylindrique en un manchon conique : c'est le Reflaxicon (axiconic reflector) (10). Ce dispositif est constitué de deux miroirs

- 11.

Fig: 6

Fig: 7 Expansion du faisceau

Fig: 8

Fig: 9

coniques coaxiaux (Fig. 8). Après deux réflexions, le faisceau est convergent. Après le point de convergence, la section du faisceau obtenue a la forme d'un anneau qui serait susceptible de couvrir parfaitement l'optique annulaire du microscope sans aucune perte de lumière. Un calcul montre que dans le plan Q qui contient le point de focalisation A, on retrouve une distribution gaussienne de l'intensité. La meilleure configuration du système serait celle où le plan Q est conjugué du plan P_2 qui contient l'échantillon. Ce dispositif pourrait alors conduire à un éclairement de la zone observée avec une distribution gaussienne de l'intensité.

Cependant, le reflaxicon est peu commode d'emploi : les angles des cônes étant fixes, il faudrait calculer la géométrie particulière du reflaxicon le mieux adapté à l'optique annulaire du microscope sans possibilité d'ajustements ultérieurs.

P. DHAMELINCOURT a envisagé une autre solution plus simple consistant à faire dévier le faisceau laser par un montage à deux miroirs plans réglables fixés sur un même support (Fig. 9). Par rotation du support autour d'un axe parallèle à la direction du faisceau incident, on obtient un faisceau tournant qui s'appuie sur un cône de même axe que le faisceau incident. Quand les miroirs ont décrit un tour, la zone observée de l'échantillon a été entièrement balayée par le faisceau. Chacun des miroirs est monté sur un support point-trait-plan ; il est donc possible de régler la déviation du faisceau pour que l'optique annulaire soit parfaitement parcourue par le faisceau. La surface de l'échantillon est éclairée de façon satisfaisante.

De plus, ce système d'éclairage mobile a, sur le système statique précédent, l'avantage de supprimer le phénomène de granularité laser "speckle noise", dû à la cohérence du faisceau, sur les images qui apparaissent sur l'écran. En lumière monochromatique cohérente, chaque défaut de planéité de la surface éclairée est la cause d'interférences localisées dont les franges donnent à la surface un aspect granuleux. Si l'éclairage est mobile, au niveau de ces défauts, la cohérence spatiale du faisceau est en moyenne nulle et la granularité n'apparait plus.

- 12.

2 - Eclairement ponctuel de la surface de l'échantillon

Malgré l'énorme amplification apporté par le tube intensificateur d'images et la caméra électropique, l'étude de certains échantillons s'avère difficile avec le système d'éclairage précédent. Il s'agit, soit des échantillons très petits (de l'ordre du micron), soit des échantillons très peu diffusants pour lesquels les raies Raman sont trop faibles pour permettre l'obtention d'une image. Pour augmenter la sensibilité de l'appareil (sans jouer sur la partie détection), il suffit d'augmenter la densité de photons au niveau de l'échantillon.

En utilisant l'éclairage fond clair, l'objectif du microscope permet de focaliser le faisceau laser en un spot d'environ l y de diamètre sur la surface de l'échantillon selon le principe suivant :

L'objectif du microscope (Fig. 10) donne, de la surface de la préparation (plan P), une image située dans un plan Q. En focalisant le faisceau laser à l'aide d'une lentille, dans ce plan (point P_1), le faisceau reconverge au niveau de l'échantillon, au point P_2 , optiquement conjugué de P_1 .

A ce type d'éclairement, on peut associer :

- une détection monocanale : un photomultiplicateur suivi d'un amplificateur de courant continu, et d'un enregistreur à plume. L'appareil fonctionne alors en microspectrophotomètre.
- une détection multicanale : un tube intensificateur d'images muni d'une caméra électronique pour bas niveaux. L'appareil fonctionne alors en spectrographe.

Remarque :

Avec cet éclairement, pour certains échantillons particulièrement absorbants ou fragiles, il y a un risque de destruction par échauffement. Il faut alors rechercher les meilleures conditions d'analyse : puissance et longueur d'onde du faisceau laser, choix de la matrice susceptible d'atténuer l'échauffement, enceinte régulée en température, jet de gaz froid, etc...

Fig: 10

IV. - LE FILTRE OPTIQUE

Les caractéristiques essentielles du filtre optique doivent être :

- une bonne résolution spectrale

- un taux de lumière parasite très bas.

Depuis quelques années, un nouveau type de réseau est apparu : le réseau holographique. Contrairement aux réseaux classiques, ces réseaux ne sont pas gravés sur machine mais résultent de l'enregistrement sur une couche photosensible d'un système d'interférences créées par deux points sources cohérents.

Le premier avantage de ce procédé est d'abord d'éliminer complètement les "ghosts", images fantômes dues aux défauts de périodicité du pas du réseau, ainsi qu'une bonne partie de la lumière parasite due aux défauts aléatoires de gravure. Les seuls défauts restants sont des micro-imperfections au niveau de la surface du réseau, ce qui explique que le taux de lumière parasite est très nettement inférieur à celui donné par les réseaux gravés.

La souplesse du procédé permet alors d'obtenir des réseaux de grandes surfaces et à grand nombre de traits. D'autre part, par enregistrement des franges sur un support sphérique, on engendre des réseaux concaves. Leur utilisation dans un monochromateur permet de supprimer les optiques collimatrices, sources importantes de lumière parasite.

L'efficacité de ces réseaux en lumière naturelle ou polarisée est comparable à celle des réseaux gravés quand le pas a du réseau est tel que 0,8 < λ/a < 1,7.

De plus, dans le cas des réseaux concaves le choix de la position des points sources qui donnent le système d'interférences, permet d'obtenir une grande variété de distributionsnon uniformesdes traits du réseau. Dès lors il est possible de réduire les aberrations du spectre et d'obtenir certaines propriétés de stigmatisme inconnues pour les réseaux concaves classiques. Pour une meilleure compréhension de ces phénomènes, nous donnons en annexe quelques éléments de théorie géométrique des réseaux holographiques concaves.

Pour permettre l'exploitation du domaine des basses fréquences, domaine particulièrement important pour l'étude des solides, l'atténuation suffisante de la diffusion Rayleigh qui masque les raies Raman situées dans son voisinage, n'est possible que par un filtre comportant au moins deux étages monochromateurs. Pour constituer ce double monochromateur à réseaux identiques, deux montages sont possibles :

1° Le montage additif

Le premier réseau disperse la lumière, le second disperse à nouveau la bande spectrale que laisse passer la fente intermédiaire. Le filtre peut alors fonctionner aussi bien en spectromètre qu'en spectrographe à bande passante étroite.

Ce montage est intéressant en microscopie Raman. En effet, en spectrographe, la visualisation de tout un domaine spectral est immédiate. En calant le filtre dans le domaine des fréquences attendues, on peut alors trouver rapidement la zone de l'échantillon qui contient une ou plusieurs espèces chimiques données. De plus, la spectroscopie multicanale permet de suivre dans le temps l'évolution d'une large bande du spectre Raman sons la perte de résolution temporelle caractéristique de l'analyse monocanale. Enfin, pour obtenir des images de bonne qualité, nous verrons qu'il est nécessaire d'utiliser des fentes relativement larges. Un montage additif permet alors de conserver une résolution spectrale suffisante.

2° Le montage soustractif

Le premier réseau disperse la lumière, le second recombine la bande spectrale que laisse passer la fente intermédiaire. Ce montage se révèle moins intéressant. En effet, ce montage n'est pas directement utilisable en spectrographe. De plus, la séparation de deux espèces chimiques nécessite l'emploi d'une fente intermédiaire étroite. Or, une telle fente entraînerait une dégradation des images.

Le filtre est donc constitué par deux monochromateurs identiques couplés en montage additif. Chaque monochromateur comporte un réseau holographique concave de 2000 traits/mm, de focale 1 m, ouvert à f/10 et utilisé en montage Littrow. Les caractéristiques de ces réseaux sont données en annexe. La dispersion réciproque calculée pour l'ensemble est alors de 8 cm⁻¹/mm pour $\lambda = 5145$ Å. La rotation des réseaux se fait à l'aide d'une barre cosécante. Un codeur électromécanique permet un affichage direct des nombres d'ondes Raman. Des vis micrométriques permettent de régler l'ouverture des fentes de façon continue jusque 20 mm.

V. - CALCUL DE L'OPTIQUE DE TRANSFERT

Son rôle consiste à former sur le premier réseau une image de la préparation donnée par l'objectif en réduisant au maximum les pertes de flux lumineux par l'adaptation des ouvertures du microscope et du filtre. L'optique de transfert, calculée par P. DHAMELINCOURT, se compuse de deux lentilles, dont l'une travaille en verre de champ et l'autre transfère l'image de la préparation sur le réseau.

La figure 11 résume les éléments de base utilisés pour le calcul de l'optique de transfert.

Nous avons adopté les notations suivantes :

- h : dimension de la préparation
- h : grandeur de l'image de la préparation formée par l'objectif
- h₁ : grandeur de l'image virtuelle de la préparation formée par L₁ (image de h₀ par L₁)
- H : grandeur de l'image de la préparation sur le réseau
- P : diamètre de la pupille d'entrée de l'objectif
- P1 : diamètre de l'image donnée de Popar L1, lentille de champ

- d : distance de la pupille P à l'image de la préparation h
- z : distance entre l'image intermédiaire virtuelle h, et L,
- x : distance séparant la pupille P_0 de L₁
- y : distance de L₁ à la fente d'entrée
- F, f_1 , f_2 : distances focales respectives du réseau de L_1 et L_2 .

Les données dont nous disposons, relatives au microscope et au réseau sont les suivantes :

 $P_{0} : 5 mm, h_{0} = 20 mm$

x : 210 mm (distance de la pupille de l'objectif à l'extrémité du tube, côté filtre)

d : 185 mm, F = 1012 mm

y, f₁ et f₂ sont alors les variables du système.

Pour que L₁ travaille en verre de champ, il faut qu'elle soit placée le plus près possible de l'image de la préparation. Nous l'avons donc fixée à l'extêmité du tube, côté filtre. L₁ forme alors l'image (P_1) de la pupille d'entrée (P_0) de l'objectif sur la fente d'entrée du filtre. Le transfert de l'image s'effectue en deux étapes :

- L₁ forme de h₀ une image virtuelle h₁
- Cette image intermédiaire est reprise par L₂ qui la projette sur le réseau.

 L_2 est placée sur la fente d'entrée car on limite ainsi les aberrations puisque la lentille travaille en son centre (conditions de Gauss). Il nous reste alors à déterminer les valeurs de f₁, f₂ et y conduisant au meilleur couplage possible entre le microscope et le filtre. Pour cela, nous chercherons à exprimer ces valeurs en fonction d'un seul paramètre. Deux conditions essentielles sont à satisfaire :

A) Condition de netteté de l'image (P_1) de la pupille P_0 sur la fente d'entrée du filtre : elle s'exprime par la relation :

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{f_1}$$

B) Transfert de l'image de la préparation sur le réseau

a) Formation d'une image intermédiaire (virtuelle) h_1 de h_0 par la lectille L_1 ; on doit avoir :

$$\frac{1}{x - d} - \frac{1}{z} = \frac{1}{f_1} = \frac{1 + \alpha}{x}$$

$$d'o\tilde{u} \quad z = \frac{x (x - d)}{\alpha (d - x) + d}$$
(3)

la valeur de h₁ est donnée par l'expression :

 $\frac{h_1}{h_0} = \frac{z}{x - d}$

soit en remplaçant z par sa valeur : $h_1 = \frac{h_0 x}{\alpha(d-x) + d}$

b) Formation par L₂ de l'image intermédiaire sur le réseau.

La condition de netteté s'écrit :

$$\frac{1}{y+z} + \frac{1}{F} = \frac{1}{f_2}$$
 (4)

et la grandeur de l'image sur le réseau s'exprime par :

$$\frac{h_1}{y+z} = \frac{H}{F}$$

soit en remplaçant h, et z par leurs valeurs et tenant compte de (1)

$$H = \alpha h_o \frac{F}{d}$$
 (5)

- 18.

F, d, h_o étant imposés, le choix de α détermine donc H ainsi que $\frac{H}{h}$, grandissement de l'optique de transfert.

Avec
$$F = 1012 \text{ mm}$$
, $d = 185 \text{ mm}$, $h_0 = 20 \text{ mm}$

on trouve: $H = 109,4 \alpha (mm)$.

Enfin le choix de α détermine également f₁, y et f₂ par les relations :

$$y = \frac{x}{\alpha}$$
 $f_1 = \frac{x}{1 + \alpha}$

 $f_2 = \frac{F d x}{dx + F \alpha (d-x) + d}$

et

(relationsque 1'on tire des expressions (1), (3) et (4).

Choix de a

 α sera déterminé de façon à réduire au maximum les pertes de flux lors du transfert de la lumière entre le microscope et le filtre.

En négligeant les portes dues au facteur de transmission des lentilles, on peut définir un facteur de transmission du système T, fonction de deux termes.

Au niveau de la fente : un facteur de transmission T.

T₁ = <u>surface éclairée de la fente</u> surface de l'image de la pupille d'entrée (Fig. 12.a)

soit

 $T_{1} = \frac{s(\alpha)}{P_{1}^{2}(\alpha)} \qquad (P_{1} = \frac{P_{0}}{\alpha})$

 $T_2 = \frac{\text{surface effectivement éclairée du réseau}}{\text{surface de l'image au niveau du réseau}}$ (Fig. 12.b&c)

soit
$$T_2 = \frac{S(\alpha)}{\frac{\pi H'^2(\alpha)}{4}}$$

Cependant, à cause de la forme gaussienne de l'intensité du faisceau
laser, le système d'éclairement à miroirs tournants ne permet pas d'éclairer
uniformément au niveau de l'échantillon, tout le champ couvert par l'objectif,

mais environ les 2/3. De ce fait, la partie éclairée de l'image donnée par l'objectif a pour dimension :

$$h'o = 2/3$$
 ho

Au niveau du réseau, la grandeur de l'image effectivement éclairée est alors :

H' (
$$\alpha$$
) = $\frac{2}{3}$ H = $\frac{2}{3}$ x 109,4 α

Le réseau étant incliné, l'intersection du faisceau incident avec le réseau est celle d'un cercle par un rectangle (de dimension 106 x 91 mm pour $\lambda = 5145$ Å). La figure 12.c montre différents cas d'éclairement du réseau en fonction de a.

La transmission totale à l'efficience du réseau près est alors :

$$T = T_1 \times T_2$$

La figure 13 reproduit les variations de T $_1$ et T $_2$ en fonction de α pour une fente de largeur a = 1,2 ou 3 mm et pour une pupille correspondant à l'objectif G x 20 d'utilisation plus courante.

Seul T₁ dépend de la largeur de la fente.

On constate alors que, quelque soit l'ouverture de la fente, on obtient un maximum de transmission pour $\alpha \simeq 1,5$. L'optique de transfert a donc été calculé pour cette valeur.

d'éclairer

A partir de $\alpha = 1,5$, on calcule :

y = 140 mm $f_1 \approx 85 \text{ mm}$ $f_2 \approx 150 \text{ mm}$

et le grandissement de l'optique de transfert :

$$\frac{H}{h_o} = 8.2$$

VI. DETECTION ET OBSERVATION DES IMAGES

a) La détection :

La détection multicanale (11) est assurée par un tube intensificateur d'images à 3 étages. Nous avons utilisé des tubes du type R.C.A. 4549 ou I.T.T. - P.F. 403 KC, dont le gain très élevé en luminance (~ 30 000) permet, pour certains échantillons, l'observation visuelle directe du spectre Raman ainsi que des images obtenues à partir d'une raie Raman. Le principe de fonctionnement du tube intensificateur est le suivant (Fig. 14) :

Chaque étage comporte une photocathode, une optique électronique et un écran fluorescent. L'image optique est transformée en une image électronique par la photocathode. Les électrons, accélérés par un champ électrique, viennent frapper un écran fluorescent qui transforme l'image électronique en une image optique plus intense que celle reçue par la photocathode. Le transfert des images entre la fenêtre d'entrée du tube et la photocathode du ler étage, entre les étages, puis finalement entre l'écran fluorescent du 3ème étage et la fenêtre de sortie, se fait par fibres optiques.

Pour obtenir une bonne sensibilité, on place derrière le tube intensificateur, une caméra électronique pour bas niveau, du type S.E.C. ou S.I.T. (12, 13). L'image Raman ou le spectre est alors rendu visible sur un moniteur T.V.

b) Optique associée au détecteur photoélectrique :

Cette optique permet :

- l'observation de l'image de l'échantillon. On utilise pour cela une lentille L₃ placée sur la fente de sortie (Fig. 15) qui transfère sur la photocathode du tube intensificateur, l'image de la préparation située au niveau du réseau
- l'observation de l'image du spectre Raman de l'échantillon. Pour cela, on intercale une lentille L₄ qui forme sur la photocathode, au rapport l, l'image du plan d'étalement des raies.

c) Choix des lentilles L3 et L4 :

La courbe de la figure 14 montre que la distorsion introduite dans l'image augmente rapidement du centre vers la périphérie de la photocathode. De ce fait, il est nécessaire que l'image formée reste de dimensions inférieures à 20 mm pour une photocathode de diamètre 40 mm. Afin de réduire les aberrations, nous plaçons L_3 au niveau de la fente de sortie (lentille utilisée en son centre). En prenant pour L_3 une lentille identique à L_2 (focale = 150 mm), on obtient une image de la préparation de 19 mm de longueur, centrée sur la photocathode. La distance entre la fente de sortie et la photocathode est alors de 176 mm.

Pour observer le spectre, nous plaçons approximativement à mi-distance entre le plan d'étalement des raies et la photocathode, une lentille L₁ de 40 mm de focale qui forme alors au grandissement 0,9, l'image du spectre sur la photocathode du tube intensificateur d'images.

- 22.

-00000-

CHAPITRE III

UTILISATION DE LA MICROSONDE À EFFET RAMAN

I - CHOIX DE L'OUVERTURE DES FENTES

La limite de résolution du microscope étant de l'ordre du micron, il convient de déterminer les conditions nécessaires à la conservation de cette résolution au cours du transfert des images.

Rappelons que pour un instrument optiquement parfait, c'est-à-dire donnant des images dépourvues d'aberration, le pouvoir séparateur intrinsèque n'est limité que par la diffraction qui provient de la limitation des faisceaux par les pupilles de l'instrument.

Quand l'instrument est associé à un récepteur d'images (plaque photographique, tube intensificateur), le pouvoir séparateur de l'ensemble de l'instrument dépendra également de la limite de résolution permise par la structure du récepteur. D'autre part, si l'objet a une certaine profondeur, le pouvoir séparateur du récepteur déterminera la tolérance de netteté, c'est-à-dire la profondeur du champ. Dans le cas présent, l'instrument est utilisé à la fois en spectrographe et en microscope, il faut donc distinguer une résolution spectrale et une résolution spatiale de l'image. Pour obtenir une résolution de l'image de l'ordre de lµ, il faut s'assurer que :

- cette résolution est conservée au cours du transfert de l'image sur chacun des réseaux
- la résolution du tube intensificateur est suffisante pour ne pas dégrader l'image finale.

1. - Projection de l'image sur le ler réseau :

Considérons l'ensemble constitué par l'objectif du microscope, de l'optique de transfert et du premier réseau. La pupille d'entrée de l'objectif est conjuguée optiquement de la fente d'entrée. La fente est donc la pupille qui diaphragme les faisceaux. La dimension de cette pupille est égale à la largeur de la fente quand celle-ci est inférieure à la dimension de l'image de la pupille d'entrée de l'objectif.

Pour une fente de largeur a, la limite de résolution est donnée par l'interfrange du phénomène de diffraction de Fraunhofer dans le plan de l'image géométrique située au niveau du réseau,

soit:
$$i = \frac{\lambda F}{a}$$

où F est la distance de la fente d'entrée au réseau.

Soit alors ε , l'élément de longueur résolu au niveau de l'échantillon ($\varepsilon \simeq 1\mu$). Il faut alors que cet élément ait sur le réseau une image ε ' telle que ε '> i. En utilisant l'équation 5 du chapitre II ($H = \alpha \frac{h_0}{\sigma} \frac{F}{T}$), on obtient :

$$\varepsilon' = \alpha \varepsilon_0 \frac{F}{d}$$

où ε_0 est l'image de ε donnée par l'objectif de grandissement y et suivi

de l'optique additionnelle de grandissement 1,75 soit :

ε = 1,75 γε

la condition $\epsilon' > i s'écrit alors :$

$$\alpha \times 1,75 \gamma \epsilon \frac{F}{d} > \frac{\lambda F}{a}$$

soit $a > \frac{\lambda d}{1,75 \text{ yea}}$

avec $\lambda = 0,55 \mu$, d = 185 mm, $\varepsilon = 1$, et $\alpha = 1,5$, on obtient :

a > 1,9 mm pour $\gamma = 20$ a > 0,95mm pour $\gamma = 40$

Donc, pour ne pas dégrader l'image on utilisera une fente d'entrée ouverte respectivement au moins à 2 mm et 1 mm pour les objectifs x 20 et x 40.

2. - Transfert de l'image sur le second réseau :

L'image située sur le premier réseau est transférée sur le deuxième réseau par la lentille placée sur la fente intermédiaire. En considérant que les réseaux ne servent que de support réfléchissant dans une direction, et n'interviennent pas dans la formation d'images, on obtient sur le deuxième réseau une image de même dimension. Soit a la largeur de la fente intermédiaire (supposée égale à la largeur de la raie Raman qui est la véritable pupille), l'interfrange de diffraction au niveau du deuxième réseau est alors :

 $i = \frac{\lambda F'}{a}$ (F' = focale du deuxième réseau, F' = F

Puisqu'il n'y a pas de grandissement de l'image, (en effet, les réseaux sont dans les plans anti-principaux de la lentille), l'intervalle résolu au niveau du second réseau est $\varepsilon'' = \varepsilon'$. Le raisonnement du paragraphe l conduit donc ici aux mêmes ouvertures de fentes que précédemment.

- 25.

3. - Projection de l'image sur la photocathode :

Au niveau du second réseau, l'élément $\varepsilon = 1u$ a pour image $\varepsilon'' = \varepsilon' = \alpha \varepsilon_{c}$ F/d. Son image projetée sur la photocathode a pour dimension :

$$e = \frac{l}{F!} \epsilon'$$

avec ℓ = distance de la fente de sortie à la photocathode.

L'interfrange de diffraction au niveau de la photocathode valant i = $\lambda \ell/a$, il faut donc e > i

soit:
$$\frac{\ell}{F}$$
, $\varepsilon' > \frac{\lambda \ell}{a}$

soit : $a > \frac{\lambda F'}{\varepsilon}$ avec $\varepsilon' = \alpha \varepsilon_0 \frac{F}{d}$

donc : $a \frac{\lambda F' d}{\alpha \varepsilon_o F}$ et $\varepsilon_o = 1,75 \gamma \varepsilon$

$$\implies a > \frac{\lambda F' d}{1,75 \gamma \epsilon F \alpha}$$

Puisque F' ~ F on obtient la même condition que précédemment.

D'autre part, la résolution du tube intensificateur est de 1/25 mm(25 paires de lignes à l1 mm du centre de la photocathode), il faut donc avoir e > 1/25 mm

soit :
$$e = \frac{\ell \varepsilon'}{F'} = \frac{\ell}{F'} \alpha \varepsilon_0 \frac{F}{d} \simeq \frac{\ell}{d} \frac{\alpha \varepsilon}{0} > \frac{1}{25} \text{ mm} = 40 \mu$$

avec $\ell = 176 \text{ mm}, d = 185 \text{ mm}, \text{ on obtient :}$
 $e \simeq 50 \mu \text{ pour l'objectif } \gamma = 20$

 $e \simeq 100 \mu$ pour l'objectif $\gamma = 40$

On a donc toujours e > 40µ : la résolution du récepteur est suffisante pour ne pas dégrader l'image donnée de la préparation par l'objectif.

4. - Profondeur de champ :

La netteté de l'image du deuxième réseau sur la photocathode dépend de l'ouverture de la fente de sortie et de la résolution du tube. Considérons les deux points M et N, projections des extrêmités du réseau sur l'axe optique (Fig. 16), la mise au point étant faite pour un plan passant par I centre du réseau, les images M' et N' se trouvent à 1 mm de part et d'autre de la photocathode. Pour que ces points paraissent nets, il faut que le cercle de diffusion (intersection du faisceau avec la surface de la photocathode) ait un diamètre au plus égal à la limite de résolution du tube (1/25 mm).

Soit x, le diamètre du cercle de diffusion et a, l'ouverture de fente. La condition étant :

et puisque $\frac{a}{175} = \frac{x}{1}$

il faut donc $a < 175 x = \frac{175}{25} = 7,5 mm$

L'utilisation d'une telle ouverture de fente est fréquente pour l'exploration du spectre mais pas pour la formation des images. En effet, pour obtenir une image contrastée, il est préférable de limiter l'ouverture de la fente à la largeur de la raie Raman pour éviter la lumière parasite. La profondeur de champ au niveau du réseau est alors toujours largement suffisante.

11 - TESTS

1. - Résolution spatiale de l'image :

Pour s'assurer que le filtre optique peut transmettre des images de bonne qualité, l'image d'une lame micrométrique a été photographiée directe-

Fig: 16

ment à la sortie de l'appareil, le tube intensificateur étant enlevé pour éviter la légère distorsion en croissant qui lui est caractéristique. La lame micrométrique, placée sur la platine du microscope est éclairée en fond noir à l'aide d'une lampe haute pression à vapeur de mercure. Les fentes sont ouvertes à 2,5 mm pour éviter la dégradation de l'image par diffraction. La figure 17 montre la photographie de la lame, obtenue à partir de la raie 5461 Å.

Cette image ne présente aucune distorsion mesurable, de ce fait, la résolution que permet l'objectif utilisé (~1u) ne se trouve pas diminuée. Il faut remarquer que l'image du second réseau apparaît comme un trapèze. Cette anamorphose est due à l'inclinaison importante du réseau (~ 30°). Par contre, l'image de la lame ne présente pas cette anamorphose. En effet, en considérant que les réseaux n'interviennent qu'en tant que support réfléchissant en direction des fentes, il est possible de montrer que quelque soit le type de montage, un filtre optique construit à partir de deux réseaux identiques, n'introduit aucune anamorphose dans l'image finale située au niveau de la photocathode du tube intensificateur.

2. - Images Raman en basses fréquences :

Pour que l'étude d'échantillons, à partir de raies Raman de basses tréquences, soit possible, il faut que le taux de lumière parasite soit réduit à un niveau extrêmement bas. En réglant les fentes au minimum compatible avec la résolution spatiale, il est possible d'envisager de telles études comme le montre la figure 18.

Un échantillon de pentabromure de phosphore, très hygroscopique, est enfermé dans un tube scellé de 6 mm de diamètre. Avec l'objectif x 10 dont la distance frontale de visée est suffisante, on obtient sur l'écran de contrôle une image de l'échantillon à partir du faisceau laser focalisé au niveau de la paroi interne du tube de verre. A cause des multiples réflexions du faisceau laser dans le tube, l'image classique de l'échantillon est très peu discernable et inexploitable.

Fig:17

Par contre, à la sortie du tube intensificateur d'images, le filtre étant calé sur la raie Raman 72 cm⁻¹ caractéristique de l'ion Pbr_4^+ , on obtient une image bien contrastée.

L'image du soufre S_8 a été obtenue à partir des raies Raman situées dans le domaine 27-50 cm⁻¹. A ceniveau, la lumière parasite résiduelle fait apparaitre l'image des poussières déposées sur le réseau.

Les photographies des spectres obtenus avec une fente d'entrée de 0,3 mm montrent que le filtre permet d'observer le spectre Raman dans le domaine de basses fréquences.

III - OBSERVATIONS EN MICROSCOPIE RAMAN

Parmi les nombreuses observations effectuées en microscopie Raman, nous avons sélectionné quelques exemples susceptibles de montrer la diversité des études qui peuvent être envisagées grâce à cette nouvelle technique. Les photographies que nous présentons ont été obtenues à l'aide d'un appareil photographique reflex NIKON. Les films utilisés étaient de sensibilité 400 A.S.A (ILFORD 4.P.4 ou AGFAPAN 400). Tous les échantillens ent été observés dans les conditions ordinaires de microscopie optique classique : à l'air libre, sans préparation spéciale, sans traitement de surface. La radiation excitatrice utilisée est la raie 5145 Å fournie par un laser à Argon ionisé.

1) Manipulation illustrant le principe de **l'identification et de la** localisation des constituants d'un échantillon solide hétérogène

Sur une lamelle, est déposée un mélange de cristaux de trioxyde de Molybdène et de chromate de potassium.

L'échantillon est observé successivement (Fig. 19) : - en lumière blanche à travers une bande spectrale étroite

- à partir d'une raie caractéristique de MoO_3 ($v_1 = 818$ cm⁻¹, élongation symétrique des liaisons Mo-O)

- à partir d'une raie caractéristique de l'ion CrO_4^- ($v_1 = 850 \text{ cm}^{-1}$, élongation symétrique des liaisons Cr-O).

Bien que les raies soient relativement proches, on obtient de bonnes images sélectives de chacun des constituants. Sur la même figure est représenté l'enregistrement microdensitométrique du spectre Raman du chromate de potassium dans la région 850-900 cm⁻¹.

L'utilisation de l'appareil en spectrographe s'avère particulièrement utile pour la reconnaissance quasi immédiate de l'espèce chimique présente dans la zone analysée. En utilisant une caméra S.E.C. ou S.I.T., on peut alors visualiser sur moniteur T.V. le spectre ou l'image Raman de l'échantillon pour la comparer à l'image classique qui apparait sur l'écran de contrôle. Pour tout objet situé dans le champ du microscope, on observe immédiatement une région spectrale choisie ou l'image de la répartition sélective d'un des constituants. On peut alors analyser rapidement toute la préparation par déplacement de l'échantillon sur la platine du microscope.

2) Observation de cristaux mixtes en phase solide

Nous avons observé en phase solide la réaction du chlorure mercurique sur le bromure mercurique: $HgBr_2 + HgCl_2 \rightarrow 2 HgBrCl$.

En utilisant la raie de vibration caractéristique de Br-Hg-Cl, il est possible de visualiser la formation de cristaux mixtes. Le mélange de bromure de mercure et de chlorure de mercure est pastillé pour obtenir d'une part un contact étroit entre les cristaux pour faciliter la réaction, et d'autre part pour obtenir une surface à peu près plane pour l'observation microscopique. Après chauffage modéré de la pastille, l'échantillon est observé à la microsonde (Fig. 20). On peut alors observer l'image de nombreux cristaux mixtes qui apparaissent brillants sur fond sombre en utilisant la raie à

233 cm⁻¹ caractéristique du composé mixte. De façon analogue, il est possible de visualiser les cristaux mixtes dans des systèmes tels que HgBr₂-HgI₂ ou HgCl₂-HgI₂ (14). Sous platine chauffante, la détection multicanale permet de suivre la formation des cristaux en temps réel.

3) Observation d'une réaction photochimique

Des études en infrarouge de la réaction photocatalysée entre l'oxyde de titane et le nitrate d'Argent ont déjà été réalisées (15). Il a été prouvé que le noircissement du mélange AgNO₃-TiO₂ obtenu après irradiation par ultra-violet, est dû à la réduction des ions Ag⁺ en argent métallique. Sous l'irradiation, se produit une desorption d'oxygène à la surface de l'oxyde de titane, augmentant la concentration des électrons à la surface. Cet excédent d'électrons attirerait et extrairait les ions Ag⁺ de leur environnement dans le cristal de nitrate d'Argent. Les ions Ag⁺ réagiraient ensuite avec ces électrons piégés pour donner de l'argent métallique.

Pour observer la réaction, nous avons fait une pastille des deux composés (1g. $AgNO_3$ pour 0,3g. de TiO_2). La figure 21 montre les images d'une zone de l'échantillon avant irradiation, obtenues à partir des raies caractéristiques du nitrate d'Argent ($v_1 = 1045 \text{ cm}^{-1}$, élongation symétrique des liaisons N-O de l'ion NO₃⁻) et de l'oxyde de titane ($v = 142 \text{ cm}^{-1}$). Puis l'échantillon étant soumis à l'irradiation, nous observons à différents temps l'évolution de la réaction dans l'image de l'oxyde de titane. Les photographies montrent l'attaque de l'oxyde par migration des ions Ag⁺. Aucune raie Raman nouvelle n'a pu être détectée. La région qui s'obscurcit correspond vraisemblablement à la formation d'argent métallique qui migre sur l'oxyde de titane.

4) Dégradation thermique du P.V.C. (en collaboration avec C. BASSEZ)

Il est connu que lorsque l'on chauffe du polychlorure de vinyle, il y a élimination d'acide chlorhydrique et formation dans les chaines polymériques de séquences de doubles liaisons conjuguées (16). La bande d'absorption du produit glisse alors vers le domaine visible et il est possible de bénéficier de l'effet Raman de prérésonance en utilisant par exemple comme source excitatrice visible, un laser à Argon ionisé pour mettre en évidence de faibles pourcentages de séquences de doubles liaisons conjuguées dans les chaines polymériques (17). En fin de réaction, le pourcentage en poids d'HCl libéré n'excède pas 10⁻².

Quelques grains de polychlorure de vinyle sont disposés sur une lame de verre. Pour éliminer en grande partie la fluorescence de l'échantillon, il a été préalablement chauffé pendant quelques minutes vers 50° C. Nous avons pris l'image de congrains dans la raie 1430 cm⁻¹ correspondant au mode de déformation des groupements CH₂ (Fig. 22, photographie de gauche). Puis la lame porte objet étant soumise à un gradient de température, nous avons pris une photographie des grains à partir de la raie 1500 cm⁻¹ correspondant au mode d'élongation des doubles liaisons carbone-carbone. On constate que deux grains ont effectivement subi une deshydrohalogénation alors que pour le dernier, elle n'a été que partielle. Une étude de la dégradation du P.V.C. est actuellement en cours (18).

5) Observation d'un échantillon biologique :

Il nous a été possible de mettre en évidence la répartition du β carotène au niveau des cellules dans une coupe de racine de carotte potagère.

Nous avons choisi ce végétal car sa teneur en carotène est très élevée (19): 8,25 mg/100 g. de composé . Le carotène y est présent principalement sous les deux formes isomères :

 β carotène : 11 liaisons conjuguées ; teneur : 7,6 mg/100 g α carotène : 10 liaisons conjuguées ; teneur : 0,65 mg/100 g

- 32.

Image obtenue à partir de la raie Raman 1527cm⁻¹ correspondant aux vibrations ethyléniques du caroténe.

Fig:23

33.

« caroténe

Les substituants sont des groupements méthyl

Ce grand nombre de doubles liaisons conjuguées fait que le spectre d'absorption se situe dans le domaine visible. Les études du spectre Raman du β carotène (20, 21) montrent que l'on bénéficie encore d'un effet Raman de résonance lorsque l'on utilise la raie excitatrice $\lambda = 5145$ Å.

L'échantillon, une fine coupe pratiquée dans la racine, est observé directement à l'air libre, sans aucun traitement préalable. Le spectre de l'échantillon présente deux raies intenses 1158 cm⁻¹ et 1527 cm⁻¹ correspondant respectivement aux vibrations des liaisons C-C et C=C. Nous avons observé l'échantillon à partir de la raie Raman 1527 cm⁻¹ qui est la plus intense. La photographie obtenue est présentée figure 23.

Nous constatons que :

- les zones sombres correspondent aux vacuoles
- les liserets brillants correspondent aux zones cytoplasmiques où se situent les chromoplastes qui recèlent le carotène

Les membranes cellulaires sont de dimension trop petite pour apparaître sur l'image. La photographie montre que la vacuole ne contient pas de carotène l'image Raman confirme donc bien la répartition connue depuis longtemps de ce pigment à l'intérieur de la cellule. Les pigments caroténoïdes étant très répandus en milieu végétal, nous envisageons d'autres observations de ce type. Nous avons également cherché à localiser des pigments chlorophyliens sur des coupes de quelques plantes. Mais le spectre Raman de la chlorophylle, bien que très visible, est toujours accompagné d'une intense fluorescence ce qui ne nous a pas permis d'obtenir d'image significative à partir d'une raie Raman.

Néanmoins, nous avons obtenu des résultats intéressants avec le β carotène malgré les conditions sommaires d'observation de l'échantillon (coupe relativement épaisse, aucun traitement). D'autre part, l'utilisation de molécules colorées ayant fonction de marqueur, pourrait également être envisagée. En effet, même en très faible concentration, ces molécules peuvent être détectées par effet Raman de résonance. Dans les conditions habituelles d'observation d'échantillons biologiques, la microscopie par effet Raman pourrait donc être une méthode intéressante de localisation et d'identification sans destruction, de molécules d'intérêt biologique.

6) Analyse d'un échantillon géologique - Etude d'une inclusion fluide dans un cristal de quartz :

La plupart des minéraux qui constituent les roches terrestres contiennent de petites cavités dont le contenu est très variable tant en phases (liquide, vapeur, solide) qu'en composition chimique. L'intérêt pour ces inclusions fluides, témoins de la genèse des minéraux, s'est vivement accru ces dernières années au cours desquelles les différentes techniques de microanalyse se sont beaucoup améliorées (22).

L'obstacle majeur à leur étude est la faible taille de ces inclusions dont la dimension, parfois de l'ordre de quelques dizaines de microns, atteint le plus souvent quelques microns. Les techniques d'analyse chimique de la composition des inclusions sont la microthermie, la chromatographie et la spectrométrie. Il est cependant difficile d'obtenir une analyse complète sans avoir à endomnager ou détruire l'échantillon. La spectrométrie Raman s'est déjà révélée comme une technique non destructive et très intéressante d'analyse de tels échantillons (23).

La microsonde Raman a été utilisée pour vérifier les résultats d'analyse par microthermométrie et a permis d'identifier sans ambiguité la nature d'une des phases incluses dans le fluide.

L'échantillon est un fragment du grand cristal (73 Kg) de quartz trouvé en 1965 près de Brigue (Valais). Il nous a été proposé par B. POTY (C.R.P.G., Nancy).

Le cristal se présente comme une lame à face parallèle de 1,2 mm d'épaisseur et ayant reçu un poli optique. L'examen du cristal au microscope optique fait apparaître de nombreuses inclusions fluides toutes semblables (Fig. 24). Chaque inclusion se compose de : une bulle de vapeur, une solution, un cristal cubique isotrope (NaCl) et un petit cristal birefringent supposé être de l'anhydrite $CaSO_4$. Les études microthermométriques antérieures (24) ont de plus conclu que la bulle est du gaz carbonique, que la solution est saline.

1) Eclairement ponctuel de l'échantillon

Afin d'effectuer l'analyse spectrométrique de chacune des phases de l'échantillon, nous utilisons l'éclairement ponctuel. La focalisation du faisceau laser et l'extraction de la lumière diffusée sont assurées par un objectif de grandissement 40, utilisé en fond clair par réflexion. Le faisceau est successivement focalisé dans la bulle de gaz, dans la solution saline et dans l'inclusion de nature indéterminée. La puissance du faisceau est de l'ordre de 30 mW au niveau de l'échantillon.

a) Bulle de gaz

L'enregistrement du spectre montre la présence des raies 1286 cm⁻¹ et 1388 cm⁻¹ caractéristiques du CO₂ (Fig. 25), ce qui confirme les résultats antérieurs (formation de l'hydrate CO₂-6H₂O à basse température).

- 35.

77 52 بر400 <mark>ب</mark>ر

Fig:24

BULLE DE GAZ

Fig:26

b) Solution saline

Les bandes de l'eau à 1640, 3200 et 3400 cm⁻¹ sont détectées, de plus, la raie 1388 cm⁻¹ indique la présence de CO_2 dissous (Fig. 26).

c) Inclusion solide

Le spectre obtenu permet d'identifier sans ambiguité la calcite CaCO₃ alors que les études antérieures suggéraient l'anhydrite CaSO₄. Les raies de la matrice de quartz sont également visibles (Fig. 27). En effet, le faisceau laser focalisé sur l'inclusion doit nécessairement traverser une certaine épaisseur de quartz avant d'atteindre l'inclusion.

2) Eclairage mixte

Le faisceau laser éclairant toujours de façon ponctuelle l'échantillon, nous pratiquons un éclairage supplémentaire en lumière blanche de toute l'inclusion (Fig. 28). Si le spot est focalisé par exemple dans l'inclusion de calcite, et le filtre calé sur une de ses raies caractéristiques, sur l'écran du moniteur T.V., on voit alors en surimpression cans l'image classique l'image Raman du spot. Si l'on déplace alors légèrement l'échantillon, le spot lumineux s'éteint dès que la focalisation s'effectue hors de cette inclusion. Par ce procédé de visualisation en Raman du point de focalisation dans l'échantillon, on s'assure que le spectre Raman précédemment obtenu provient bien de l'inclusion éclairée et non d'une zone située à sa proximité. De plus, ce procédé permet une recherche rapide des meilleures conditions d'enregistrement.

3) Eclairage global

Pour préciser la distribution de la calcite dans le fluide, nous éclairons globalement l'inclusion par le faisceau laser. En isolant la raie à 1088 cm⁻¹ (Fig. 29), seule apparait l'inclusion de calcite (Fig. 30). On vérifie ensuite que chacune des raies caractéristiques de la calcite peut être utilisée pour donner la même image.

- 36.

Fig:28 Inclusion lumiére blanche

Fig:29 Raie calcite $v_1 = 1088 \text{ cm}^{-1}$

Fig: 30 Calcite 1088 cm⁻¹

Cette étude a montré qu'en associant un microscope optique classique, un double monochromateur et une détection multicanale ou monocanale, il est possible de résoudre de façon satisfaisante les principaux problèmes que pose l'analyse d'un échantillon hétérogène microscopique.

En effet, cette association permet, par de simples opérations de commutation, d'analyser ponctuellement ou globalement la surface d'un échantillon pour déterminer la nature chimique et la répartition de chacun de ses constituants.

A l'aide d'un éclairement global de l'échantillon et d'un tube intensificateur d'images, il est possible d'obtenir le spectre et la répartition de chacune des espèces, sous forme d'images sélectives.

L'utilisation d'un éclairement ponctuel et d'un photomultiplicateur permet d'identifier, par son spectre, la nature d'un échantillon dont la dimension peut atteindre un micron.

Nous avons montré que l'utilisation de réseaux holographiques concaves a résolu de façon très efficace le problème du filtrage optique. Le taux de rejection de la lumière parasite est suffisant pour qu'il soit possible d'étudier des échantillons dans le domaine des basses fréquences.

Les systèmes optiques utilisés pour les transferts de l'image microscopique réalisent dans de bonnes conditions le couplage du microscope et du filtre. Ce couplage ne dégrade pas de façon sensible les qualités du microscope optique ; en particulier la résolution spatiale qui est de l'ordre du micron.

- 37 .

Les tests que nous avons effectués ont montré que la microscopie Raman est une technique non destructive d'identification et de localisation des constituants d'échantillons tels que : roches, plastiques, matériaux composites, molécules d'intérêt biologique, etc...

Dans les prochaines années, la microscopie par effet Raman devrait s'affirmer en tant que technique complémentaire des autres méthodes de microanalyse.

-00000-

CARACTERISTIQUES DE QUELQUES RÉSEAUX

HOLOGRAPHIQUES CONCAVES

1. - CLASSIFICATION DES RESEAUX HOLOGRAPHIQUES CONCAVES (25)

La méthode de production des réseaux holographiques a été mise au point dans les laboratoires de la Société JOBIN-YVON à partir des travaux effectués par LABEYRIE et FLAMAND.

Deux points sources issus de faisceaux Laser enregistrent un système d'interférence sur une couche photosensible. Après un traitement chimique et une métallisation sous vide de cette surface, on obtient un réseau par réflexion.

Suivant la position des points d'enregistrement, on distingue les réseaux de :

 - <u>Type I</u>: Les points sources sont à l'infini ; deux faisceaux parallèles et symétriques par rapport à la normale au réseau donnent le système d'interférences (Fig. 1). Le réseau obtenu est équivalent aux réseaux gravés classiques.

Fig:1

Fig: 2

- <u>Type II</u> : Les positions des points sources (C et D) sont calculées de façon à corriger certaines aberrations (Fig. 2) ; en particulier, on réduit l'astigmatisme d'un réseau travaillant sur le cercle de Rowland.
- Type III: Un des points sources est en général situé au centre de courbure. La théorie montre alors que le réseau est rigoureusement stigmatique pour trois longueurs d'onde.
- <u>Type IV</u>: Les positions des points d'enregistrement sont calculées de façon à corriger certaines aberrations, selon le type de montage et le domaine spectral intéressant l'utilisateur.

11. - ELEMENTS DE THEORIE DES RESEAUX HOLOGRAPHIQUES CONCAVES (26)

Soient C et D les points sources cohérents qui déterminent le système d'interférence. Les sillons du réseau résultent de l'intersection des surfaces équiphases du volume d'interférence avec la surface sphérique photosensible ; ils ne sont en général ni droits ni équidistants. Soit M un point situé sur le n^{ième} trait en prenant pour origine n = o le trait passant par I, centre du réseau (Fig. 3).

La position du trait n est alors fonction de la variation de différence de marche :

 $n \lambda_{o} = (MC-MD) - (IC-ID)$ (1)

avec λ_{0} , longueur d'onde d'enregistrement.

Le réseau étant réalisé, soit A un point source polychromatique et B son image à la longueur d'onde λ dans l'ordre k. Prenons la longueur IA + IB pour chemin optique de référence, correspondant à la diffraction sur le trait n = o.

Fig: 3

 $OC = \frac{R}{m}$ OH = mR $\sin\eta = m \sin\vartheta$ $\Gamma_{H} = m\Gamma c$

Fig:4

D'après le principe de Fermat appliqué au système diffractant, B est une image parfaite de A si le chemin AM + MB est constant le long du trait n et varie de nk λ entre les n traits séparant les points I et M ; n étant donné par l'équation (1).

En général, il n'y a pas stigmatisme :

 $AM + MB \neq AI + IB + nk\lambda$

On appelle alors Δ (M) la fonction d'écart au stigmatisme :

 Δ (M) = AM + MB - (AI + IB + nk λ)

 Δ (M), fonction des coordonnées (x, y, z) du point M considéré, décrit alors les caractéristiques (positions et distorsions) de l'image B obtenue.

Pour faire apparaître ces caractéristiques, on fait un développement en série des expressions analytiques des chemins optiques composants la fonction Δ et on élimine la coordonnée x à l'aide de $(x-R)^2 + y^2 + z^2 = R^2$ on obtient :

$$\Delta = Fy + \frac{1}{2} Dy^{2} + \frac{1}{2} Az^{2} + \frac{1}{2} C_{1}y^{3} + \frac{1}{2} C_{2}yz^{2} + \dots$$

Chacune des fonctions F, D, A, C₁, C₂ est alors caractéristique de l'image :

- Les fonctions F et D déterminent la position du spectre

F = o conduit à l'équation classique du réseau soit : F = $\left[1 + \left(\frac{z}{r}\right)^2\right]^{-1/2} \sin \alpha + \left[1 + \left(\frac{z'}{r'}\right)^2\right]^{-1/2} \sin \beta - k \frac{\lambda}{a} = o$ a étant le pas du réseau : $a = \frac{\lambda_0}{\sin \gamma - \sin \delta}$ ($\gamma > \delta$)

Les angles étant positifs quand ils sont mesurés du côté y > o (Fig. 3)

Si A est dans le plan de symétrie du réseau, on a : z = z' = o d'où :

$$\sin \alpha + \sin \beta = k \frac{\lambda}{a} \qquad (2)$$

D = o définit la focale tangentielle (lieu du spectre) soit :

$$D = \frac{\cos^2 \alpha}{r} + \frac{\cos^2 \beta}{r'} - \frac{\cos \alpha + \cos \beta}{R} + k \frac{\lambda}{\lambda_o} \left(\frac{\cos^2 \delta}{rd} - \frac{\cos^2 \gamma}{rc} - \frac{\cos \delta - \cos \gamma}{R} \right) = 0 \quad (3)$$

- Les fonctions A, C₁ et C₂ décrivent les défauts des raies spectrales (aberrations du spectre).

L'équation A = o définit la focale sagittale et rend compte de l'astignatisme du réseau, soit :

$$A = \frac{1}{r} + \frac{1}{r}, \quad -\frac{\cos \alpha + \cos \beta}{R} + k \frac{\lambda}{\lambda_0} \left(\frac{1}{rd} - \frac{1}{rc} - \frac{\cos \delta - \cos \gamma}{R}\right) = 0 \quad (4)$$

C₁ et C₂ sont les comas de première et deuxième espèce :

$$C_{1} = \frac{\sin \alpha}{r} \left(\frac{\cos^{2} \alpha}{r} - \frac{\cos \alpha}{R} \right) + \frac{\sin \beta}{r'} \left(\frac{\cos^{2} \beta}{r'} - \frac{\cos \beta}{R} \right) + \frac{k\lambda}{\lambda_{0}} \frac{\sin \delta}{rd} \left(\frac{\cos^{2} \delta}{rd} - \frac{\cos \delta}{R} \right) - \frac{\sin \gamma}{rc} \left(\frac{\cos^{2} \gamma}{rc} - \frac{\cos \gamma}{R} \right)$$
(5)

$$C_{2} = \frac{\sin \alpha}{r} \left(\frac{1}{r} - \frac{\cos \alpha}{R}\right) + \frac{\sin \beta}{r'} \left(\frac{1}{r}, -\frac{\cos \beta}{R}\right) + \frac{\sin \gamma}{rc} \left(\frac{1}{rc} - \frac{\cos \gamma}{R}\right) + \frac{k\lambda}{\lambda_{o}} \frac{\sin \delta}{rd} \left(\frac{1}{rd} - \frac{\cos \delta}{R}\right) + \frac{\sin \gamma}{rc} \left(\frac{1}{rc} - \frac{\cos \gamma}{R}\right)$$
(6)

Les réseaux de type III :

Ce type de réseau est enregistré avec l'un des points au centre de courbure : D (δ = o, rd = R). Le pas du réseau est alors : a = $\lambda_0/\sin \delta$

On montre que la relation de stigmatisme est vérifiée pour trois points alignés D, C et H. C et H étant conjugués harmoniques par repport aux
points P₁ et P₂ situés sur le cercle de rayon R (Fig. 4). On a donc :

$$\frac{MH}{MC} = cste = \frac{rh}{rc} = m et OC.OH = R^2$$

Les points O = D, C et H déterminent le lieu de la focale sagittale ; c'est une droite. Il n'y a stigmatisme en ces points que si la source (fente d'entrée) est placée en l'un d'eux. Le lieu du spectre est alors une courbe en forme de S (équation 3). La figure 5 montre les courbes des focales de ce type de réseau.

L'utilisation conjointe des relations de conjugaison harmonique et de l'équation d'une des fonctions D, A, C₁, C₂... permet de déterminer les longueurs d'onde de stigmatisme. Ces longueurs d'onde sont reportées dans le tableau I.

Il est également possible d'enregistrer le réseau avec un point source placé au centre de courbure (D), l'autre point étant en H. L'utilisation de ces mêmes équations conduit au tableau II. On remarque que l'on peut avoir un point de stigmatisme en autocollimation au point C ($\alpha = \beta$) pour une longueur d'onde variable $\lambda = \frac{2}{km}$ ce qui permettrait d'utiliser un tel réseau pour un montage de spectromètre en configuration Littrow.

III. - ETUDE D'UN RESEAU DE TYPE III

Au laboratoire, certains réseaux de type III, prévus normalement pour fonctionner en spectrographe, ont été utilisés en montage Littrow. A partir des équations des R.H.C., nous avons fait une étude comparative des variations des caractéristiques d'un réseau suivant :

1°) le montage en spectrographe : $\alpha = o$

2°) le montage en spectromètre : $\alpha = \beta$ (Littrow)

- 43.

Fig: 5

 $m < \frac{2000}{N}$

Pt source image	0=D	DC	Н
0 = D	λ=0	<u>λ</u>	$\frac{m\lambda}{k}$
С	$\frac{\lambda o}{k}$	$\frac{2\lambda_0}{k}$	(m+!) <u>λo</u> k
н	<u>m λo</u> k	(m+1) <u>xo</u> k	<u>2mλo</u> k

Tableau: I

Pt source image	0= D	С	н
0 = D	λ=Ο	λο km	$\frac{\lambda o}{k}$
с	<u>λο</u> km	<u>2 λο</u> km	(m+l) λο m k
н	$\frac{\lambda o}{k}$	$\frac{(m+l)}{m}\frac{\lambda o}{k}$	$\frac{2\lambda_0}{k}$

Points d'enregistrement en Det H

Tableàu: II

BUS

La figure 6 donne les courbes des focales du réseau utilisé en spectrographe (fente d'entrée au centre de courbure, angle d'incidence nul).

La figure 7 donne les nouvelles focales correspondant au montage spectromètre où $\alpha = \beta$ et r = R. On constate que :

- la focale sagittale n'est plus une droite mais une hyperbole - la distance réseau fente de sortie varie beaucoup avec λ

Les équations de base du réseau permettent d'étudier les variations des caractéristiques du spectromètre pour différentes distances, fente d'entrée - réseau (r)

> Soit r_T = distance réseau - fente de sortie r_s = distance réseau - focale sagittale

La défocalisation (r_T) est étudiée sur la figure 8 pour différentes valeurs de r en fonction de λ .

L'astigmatisme, mesuré par la hauteur de focale h_T est représenté sur la figure 0, par définition :

 $h_T = \frac{r_T - r_s}{r_s} \ge Z$ (Z = dimension du réseau prise pour valeur unité)

Les comas de première et seconde espèce qui limitent la résolution du spectre sont représentées sur les figures 10 et 11. Les valeurs de C_1 et C_2 correspondants au montage spectrographe sont également représentées.

Il est visible d'après les courses que la correction d'une aberration en accroît une autre, un compromis est donc nécessaire. On demande en général :

1°) une défocalisation réduite

2°) C₁ faible

Fig:7

Le choix de C₁ faible impose r \approx 555 mm (le réseau travaille avec des bras sensiblement égaux autour de λ = 5200 Å). Cependant, quelque soit r choisi, les courbes de défocalisation montrent que ce réseau utilisé en spectromètre ne peut travailler que sur un petit domaine de longueur d'onde.

Remargues :

- Les courbes précédentes sont utilisables en première approximation pour le montage spectrographe tel que $\beta \simeq \alpha = cste$.
- Le montage en autocollimation est obligatoirement un montage "hors plan". Les fentes d'entrée et de sortie sont en général situées symétriquement de part et d'autre du plan de symétrie ; les rayons incidents et diffractés faisant un angle θ ≃ 1 à 3° avec le plan de symétrie (Fig. 12).

L'équation l n'est alors plus rigoureuse ; ce n'est qu'en (bonne) approximation que l'on a 2 sin $\beta = N \ k \ \lambda$. Si l'on considère que l'on a $\frac{Z}{r} \simeq \frac{Z'}{r}$, (Fig. 13), on a alors :

$$\mathbf{l} \sin \beta \left[1 + \left(\frac{z}{r} \right)^2 \right]^{-1/2} = N k \lambda$$

Pour λ donné, en parcourant la fente, Z varie et β ne peut être constant, la raie est inclinée. Un calcul approximatif montre que l'on obtient une inclinaison dont l'angle est de l'ordre de θ . La figure 14 indique le sens de cette inclinaison.

Pour obtenir un spectromètre performant utilisant des R.H.C., il faut alors des réseaux dont on a corrigé les aberrations pour une configuration d'utilisation bien particulière (type IV).

IV. - LES RESEAUX DE TYPE IV DE LA MICROSONDE RAMAN

Le filtre optique de la microsonde Raman est constitué de deux réseaux travaillant en montage additif de Littrow. Ce sont deux réseaux pra-

- 45.

Fig:12

Fig:13

Fig:14

tiquement identiques (2000 traits/mm, un mètre de focale, et ouverts à f/10). Les positions des points d'enregistrement ont été calculés de façon à corriger la coma et à rendre la défocalisation négligeable dans le domaine 5000-6000 Å.

Comment enregistřer un réseau ayant ces qualités ? D'abord, pour réduire la défocalisation, il faut que la focale tangentielle soit localement circulaire autour d'une longueur d'onde fixée d'avance, c'est-à-dire que dans l'équation (3), il faut imposer $\frac{dr'}{d\alpha} = o$ avec r = cste, $\alpha = \beta$.

Le calcul donne alors la relation :

 $\frac{\mathbf{r} \cdot \mathbf{r}'}{\mathbf{r} + \mathbf{r}'} = \frac{\mathbf{R}}{2} \cos \alpha (1 + \sin^2 \alpha)$

Raisonnons sur un type III : en plaçant les points d'enregistrement en D et H (Figure 5), on peut avoir stigmatisme en autocollimation pour $\lambda = \frac{2}{m} \frac{\lambda}{m}$ les bras étant égaux. Donc, dans la relation précédente, on a r = r' = R cos $\alpha \propto$ (1 + sin² α). Cette relation, appliquée aux réseaux de type IV que nous utilisons est très bien vérifiée : les rayons de courbure des réseaux valent :

 $R_1 = 931, 1 \text{ mm et } R_2 = 913, 7 \text{ mm}$

En prenant 5000 < λ < 6000 Å, et à l'aide de l'équation 2 sin α = N λ (N = 2000 traits/mm), on trouve alors : r_1 = 1012 mm et r_2 = 995 mm.

Ces valeurs sont exactement celles données par le constructeur. D'autre part, la propriété de stigmatisme en montage Littrow du type III précédent, fait comprendre que ces types IV seront enregistrés approximativement de la même façon.

A l'aide d'un ordinateur, la Société JOBIN-YVON détermine les meilleurs paramètres d'enregistrement du réseau par le calcul point par point des images des raies diffractées.

A partir des coordonnées des points d'enregistrement fournis par le constructeur, nous avons tracé les courbes des focales de chaque réseau

- 46.

(Figures 15 et 16). De façon plus précise, la figure 17 donne les distances focales en fonction de la longueur d'onde dans le domaine utile en spectrométrie Raman. Nous constatons que :

- la défocalisation est très réduite (< 1 mm sur le domaine utilisé) c'est-à-dire que la focale tangentielle est localement circulaire
- l'astigmatisme est important : l'écart entre les focales est d'environ 50 mm pour λ = 5145 Å. C'est aux environs de λ = 5700 Å soit à 2000 cm⁻¹ de la raie excitatrice 5145 Å que les réseaux sont le moins astigmate .

Le couplage des deux réseaux en montage additif accroît l'astigmatisme. La figure 18 donne l'écart théorique entre les focales, obtenu à l'aide des équations correspondantes. Le réseau de rayon R = 931 mm étant celui du ler étage . Sur la même figure est reportée la courbe expérimentale obtenue par mesure directe près de la fente de sortie du 2ème étage. La translation entre ces deux courbes provient probablement du fait que les réseaux ont été enregistrés selon des paramètres très légèrement différents de ceux que nous avions : une variation inférieure au degré sur la coordonnée angulaire d'un point d'enregistrement fait glisser le point de "stigmatisme" de quelques centaines de cm⁻¹. Le couplage des réseaux a pratiquement doublé l'astigmatisme du premier monochromateur.

Les valeurs de C₁ et C₂ des comas sont indiquées sur la figure 19. La coma classique C₁ s'annule pour la valeur précédente $\lambda \simeq 5700$ Å. Expérimentalement, on constate que c'est vers cette longueur d'onde que le spectre obtenu est le meilleur.

(905 (1115)

Fig: 19

BIBLIOGRAPHIE

1. - Brevets A.N.V.A.R. n° 528 804 et n° 76 21 539 par M. DELHAYE, P. DHAMELINCOURT et Y. MOSCHETTO

2. - Contrat I.N.S.E.R.M. - A.T.P. n° 37 324

3. - Congrès de Microscopie - Créteil 1975

4. - P. DAVIDOVITS et M.D. EGGER Appl. Opt. 10, (1971), 1615

5. - T. SAWATARI

Appl. Opt. 12 (1973) 2668

6. - R. CASTAING

Thèse, PARIS, Pub. O.N.E.R.A. nº 54, (1951)

7. - G. SLODZIAN

Ann. Phys. Franc., 3, 13, (1964)

8. - M. DELHAYE et P. DHAMELINCOURT J. of Raman Spectry, 3 (1975), 33-43

9. - M. LECLERCQ

Thèse, LILLE, (1975)

10. - EDMONDS

Appl. Opt., 12 (1973), 8

11. - M. BRIDOUX

Thèse, LILLE (1966)

12. - A. DEFFONTAINE Thèse, LILLE (1975)

- 13. H. TOURBEZ Thèse, LILLE (1975)
- S. NAKASHIMA, H. MISHIMA, H. TAI
 J. Phys. Solids, 35, (1974), 531
- 15. W.C. CLARCK, A.G. VONDJIDIS
 J. of Catalysis, 4 (1965), 691
- 16. W.C. GEDDES Rubber Chemistry and Technology Rubber Reviews, 40, 1 (1967), 177-216
- 17. G. PEITSCHER, W. HOLTRUP Angewandte Makromolekulare chemie, 47 (1975), 111-128
- 18. C. BASSEZ

Thèse LILLE (à paraître)

- 19. J. NAEF, G. TURIAN Phytochemistry, (G.B), 3, n° 2, (1963), 173
- 20. L. RIMAI, R.G. KILPONEN, D. GILL J. Am. Chem. Soc., 92, 12, (1970)
- 21. M. TASUMI, F. INAGAKI, I. MIYAZAMA Chem. Phys. Lett., 22, (1973), 30

22. - ROEDDER

DATA of Geochemistry, Fith Edition, Chapter JJ Editeur: U.S. Government printing office Washington (1972)

23. - G.J. ROSASCO SCIENCE, 190 (1975), 557-560 311

24. - H.A. STALDER

Bull. Soc. Fr. Mineral Cristallogr. 99, (1976), 80-84

25. - Handbook of diffraction gratings ruled and holographic Publ. JOBIN & YVON

26. – H. NODA, T. NAMIOKA, M. SEYA J. Opt. Soc. Amer. 64, 8, (1974), 1031-1048

-00000-

