UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

N^o d'ordre 413

50376

1978

HI

50**376** 1978 41

THESE

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR ES SCIENCES PHYSIQUES

par

Jean - Marcel COLMONT

쑢

SPECTRE DE ROTATION DE LA MOLECULE DE TRIOXANE $(H_2CO)_3$

 Dans différents états vibrationnels excités
 Dans l'état fondamental de vibration de formes isotopiques asymétriques

1100

Soutenue le 31 Mai 1978 devant la Commission d'examen

Membres du Jury

M.R.WERTHEIMERPrésidentM.J.MORET - BAILLYRapporteurMmeG.TARRAGORapporteurM.J.BELLETRapporteurMelleA.BAUERExaminateur

U.E.R. DE PHYSIQUE FONDAMENTALE

à mes Parents

à Martine

à Bertrand

et à tous ceur qui me sont chers

- SOMMAIRE -

* *

INTRODUCTION :	1
CHAPITRE I : RAPPELS THEORIQUES	3
- I : Symétrie de rotation de l'éllipsoïde d'inertie	5
- II : Hamiltonien transformé	6
- III : Eléments matriciels des opérateurs moments angulaires .	7
A - TOUPIE SYMETRIQUE	8
- I : Contribution à l'énergie d'un élément matriciel [H ⁺]	9
- II : Réduction de la matrice [H ⁺]	11
- III : Calcul des niveaux d'énergie	12
B - TOUPIE ASYMETRIQUE	13
- I : Hamiltonien effectif	13
* 1°/ Factorisation de la matrice H ^V	15
* 2°/ Symétrie des niveaux d'énergie	16
* 3°/ Eléments matriciels de H ^V red	17
- II : Dédoublement K	17
C - MOLECULES FAIBLEMENT ASYMETRIQUES	19
- I : Calcul des niveaux d'énergie	19
* 1°/ Rotateur rigide	19
* 2°/ Distorsion centrifuge	20
- II : Levée de dégénérescence	22
D - REGLES DE SELECTION	22
- I : Toupie symétrique	23
- II : Toupie asymétrique	24
E - COEFFICIENT D'ABSORPTION	25
- I : Toupie symétrique	26
- II : Toupie asymétrique	27
- III : Résultats expérimentaux	28

 $h_{1}^{(2)}$

HAPITRE II : ASPECTS EXPERIMENTAUX	31
A - GENERALITES SUR LA MOLECULE DE TRIOXANE	32
B - APPAREILLAGE UTILISE	35
- I : Spectromètre vidéo	35
- II : Spectromètre à effet stark	36
C - RESOLUTION DES SPECTRES	36
HAPITRE III : ETUDE DES FORMES ASYMETRIQUES	42
A - METHODE D'IDENTIFICATION DES SPECTRES DES MOLECULES FAIBLEMENT	
ASYMETRIQUES	43
- I : Etude graphique	44
- II : Détermination du paramètre d'asymétrie	44
B - APPLICATION AUX FORMES ASYMETRIQUES DU TRIOXANE	45
C - CALCUL DEFINITIF DES PARAMETRES MOLECULAIRES	54
- I : Programme de calcul numérique	54
* 1°/ Détermination des paramètres	54
* 2°/ Qualité des résultats	56
- II : Valeurs des paramètres	56
D - APPLICATION AU CALCUL DE LA STRUCTURE MOLECULAIRE DU TRIOXANE.	57
- I : Moments d'inertie principaux d'une molécule	57
- II : Calcul de la constante de rotation B^{ZZ} de la toupie	
symétrique	59
- III : Calcul des distances intératomiques	59
E - SPECTRE RESIDUEL	63
HAPITRE IV : ETUDE DES ETATS VIBRATIONNELS EXCITES DE LA	
FORME SYMETRIQUE	67
- I : Levée de dégénérescence des niveaux d'énergie	68
- II : Règles de sélection	69
- III : Poids statistique de spin	70
A - PREMIERES ETUDES RELATIVES AU TRIOXANE - ETAT FONDAMENTAL -	
ETATS NON DEGENERE ET DEGENERE EXCITES PAR UN QUANTUM :	
$v_7(A_1) - v_{19}(E) - v_{20}(E)$	72

ē

B - ETAT VIBRATIONNEL DEGENERE EXCITE PAR DEUX QUANTUMS : $2v_{20}$ (E).	81
- I : Poids statistique de spin	81
- II : Identification des spectres	82
- III : Détermination des constantes moléculaires	82
C - ETAT NON DEGENERE ET ETAT DEGENERE EXCITES SIMULTANEMENT PAR	
<u>UN QUANTUM : $v_7(A_1) + v_{20}(E)$</u>	86
D - DEUX ETATS DEGENERES EXCITES SIMULTANEMENT PAR UN QUANTUM :	
$v_{19}(E) + v_{20}(E)$	92
- I : Règles de sélection	92
- II : Dégénérescence des niveaux. Poids statistique de spin .	93
- III : Méthode d'identification des spectres	95
* 1°/ Calcul approché des paramètres x _{l.l.} et r ^{tt'}	99
* 2°/ Calcul approché des paramètres	
d_{12}^{tt} et $d_{12}^{t't}$	102
- IV : Diagonalisation numérique de la matrice [H ⁺]	104
* 1°/ Factorisation de $[H^{\dagger}]$	104
* 2°/ Repérage des niveaux	106
- V : Détermination des paramètres	107
* 1°/ Qualité des résultats	113
* 2°/ Mise en évidence du dédoublement Kl _t =-1, L=2	116
E - VARIATION DE LA CONSTANTE ROTATIONNELLE BXX AVEC L'ETAT DE	
VIBRATION EXCITE	117
CONCLUSION	118
	_
3IBLIOGRAPHIE	122
ANNEYES	127
<u></u>	121
ABLEAUX	138

 \mathcal{P}

De nombreuses études traitant du problème d'interaction matière rayonnement en phase gazeuse ont été faites jusqu'à présent et en particulier dans le domaine des ondes hertziennes. Parmi les molécules de type toupie symétrique envisagées, la majorité appartient au groupe de symétrie C_{3V}.

Les plus étudiées d'entre elles, du type toupie symétrique allongée, peuvent être caractérisées par une constante de rotation B^{ZZ} associée à l'axe de symétrie, nettement plus grande que les deux autres (à titre d'exemple pour l'acétonitrile CH₃CN, B^{ZZ} est de l'ordre de 150000 MHz tandis que B^{XX} et B^{YY} valent environ 10000 MHz). Ce paramètre B^{ZZ} est le plus souvent très mal, ou pas du tout, déterminé à partir des spectres rotationnels. Les molécules symétriques de forme aplatie ont quant à elles des constantes rotationnelles dont les valeurs sont généralement proches les unes des autres (ainsi pour la molécule PF₃ B^{ZZ} vaut environ 4800 MHz tandis que B^{XX} et B^{YY} avoisinent 7800 MHz). Mais toutes les molécules de type C_{3v} étudiées jusqu'à présent en micro-onde ont en commun de posséder peu d'atomes, d'avoir une masse molaire relativement faible avec pour conséquence un petit nombre de niveaux fondamentaux de vibration d'énergie inférieure à 1000 cm⁻¹, valeur qui constitue généralement une limite supérieure pour les études de spectroscopie hertzienne. De plus elles ont toutes une forme pyramidale ou une formule chimique que l'on peut schématiser par XY₂Z où le plus souvent X symbolise soit un atome de Carbone soit un atome de Silicium, Y un atome d'hydrogène ou de Fluor, Z pouvant représenter un ou plusieurs atomes tels que F, Br, I, CN etc...

- 1 -

La molécule de TRIOXANE $(H_2CO)_3$ présente par rapport à la grande majorité des molécules de type C_{3v} différentes particularités intéressantes, indépendamment du fait que sa configuration d'équilibre est de forme "chaise". Sa masse molaire relativement lourde (M=90) jointe à un nombre respectable d'atomes a pour conséquence directe, en dehors d'une faible absorption qui exige un appareillage très sensible, une grande densité spectrale liée à un grand nombre d'états de vibration. Une autre particularité de cette molécule, dont le spectre de rotation était pratiquement inconnu au début de ce travail, réside dans le fait que tous ses atomes étant situés en dehors de l'axe de symétrie, toute substitution isotopique donne naissance à une molécule faiblement asymétrique. L'identification de ces formes peut donc permettre d'envisager l'accés à la structure de la forme "mère" avec comme retombée la connaissance précise de la constante B^{ZZ}.

L'objet de ce travail est d'exposer les résultats obtenus lors de l'étude micro-onde de la toupie symétrique et de ses formes substituées.

Après avoir dans un premier chapitre fait quelques rappels théoriques concernant l'établissement et le traitement du hamiltonien associé à une molécule, le second chapitre rend compte des problèmes expérimentaux rencontrés, notamment en ce qui concerne la résolution spectrale. Dans le troisième chapitre nous identifions les spectres des formes légèrement asymétriques à partir d'une expression approchée des fréquences de rotation obtenue en traitant la matrice énergie par une méthode de perturbation. Enfin le dernier chapitre intéresse le phénomène d'intéraction rotation vibration dans une molécule symétrique de type C_{3v} ; de nombreux états dégénérés ou non, excités par un ou plusieurs quantums donnent lieu à une étude systématique au cours de laquelle pour la première fois à notre connaissance l'interprétation des spectres de rotation relatifs à deux états dégénérés excités simultanément par un quantum est envisagée.

17

- 2 -

CHAPITRE I

RAPPELS THEORIQUES

Les énergies de vibration-rotation d'une molécule s'obtiennent en résolvant l'équation de Schrödinger : *

$$\mathcal{H}\Phi = \mathcal{E}\Phi$$

où $\mathcal H$ est le hamiltonien associé à la molécule et Φ la fonction propre associée à la valeur propre &.

Dans le cadre de l'approximation de BORN-OPPENHEIMER qui consiste à séparer les mouvements électroniques et nucléaires, le hamiltonien de vibration-rotation $H_{\bar{V}R}$ a été calculé par DARLING et DENNISON [1]. La résolution rigoureuse de l'équation de Schrödinger étant impossible on est amené, en faisant l'hypothèse que les atomes sont animés de petits mouvements autour de leur position d'équilibre, à chercher des solutions approchées en développant H_{VR} en série sous la forme :

$$H_{vR} = H_0 + H_1 + H_2 + \dots + H_n + \dots$$

où chaque terme H_n peut être considéré comme petit par rapport au terme précédent H_{n-1} et où H₀ est la somme d'un hamiltonien de rotation pure H_{OR} et d'un hamiltonien H_{OV} rendant compte du mouvement de vibration harmonique pur, définis par :

$$\mathbf{H}_{OR} = \frac{1}{2} \sum_{\alpha} \frac{\mathbf{p}^2}{\mathbf{I}_{\alpha}^{e}}$$

$$H_{OV} = \frac{1}{2} \sum_{s\sigma} (p_{s\sigma}^{*2} + \lambda_{s} q_{s\sigma}^{2})$$

avec $\alpha = (a,b,c)$ repère les axes principaux d'inertie de la molécule à l'équilibre $P_{s\sigma}^{*} = moment$ conjugué de la coordonnée normale $Q_{s\sigma}$ relative à la vibration s; σ caractérise la dégénérescence de la vibration s.

 P_{α} = composantes du moment cinétique \vec{P} le long des axes principaux d'inertie I_{α}^{e} = moments d'inertie principaux à l'équilibre λ_{z} = constante de force du potentiel harmonique

Il est fait choix pour les différents développements à venir, d'un référentiel

- 4 -

cartésien direct d'axes x,y,z, mobile, lié à la molécule et dont l'origine est le centre de gravité de la molécule.

Dans la suite de ce travail nous aurons à considérer deux types de molécules :

- a) les molécules toupies asymétriques caractérisées par trois moments principaux d'inertie à l'équilibre différents.
- b) les molécules toupies symétriques caractérisées par deux moments principaux d'inertie à l'équilibre égaux. Les axes x et y sont pris suivant ces axes principaux d'inertie, l'axe z est alors l'axe de symétrie.

Comme H₀ est la somme de deux termes indépendants agissant l'un dans l'espace des rotations, l'autre dans l'espace des vibrations, les vecteurs de base de l'hamiltonien H₀ peuvent s'exprimer sous la forme d'un produit $|V\rangle \oplus |R\rangle$ où $|V\rangle$ caractérise les vecteurs propres d'oscillateurs harmoniques à une ou deux dimensions et $|R\rangle$ représente les vecteurs propres du rotateur rigide.

Dans le cas de la toupie symétrique, H₀ est rigoureusement soluble ce qui permet d'obtenir l'énergie de rotation-vibration sous la forme d'un développement en série : $E_{VR} = E_0 + E_1 + E_2 + \ldots + E_n + \ldots$ où E_0 représente les valeurs propres du hamiltonien d'ordre zéro.

Pour la toupie asymétrique H₀ n'admet pas de solutions exactes. Cependant pour déterminer les énergies on utilise encore les vecteurs propres du rotateur symétrique rigide comme vecteurs de base.

I : SYMETRIE DE ROTATION DE L'ELLIPSOIDE D'INERTIE

L'ensemble des rotations qui conservent l'éllipsoide d'inertie de la molécule et qui commutent avec l'opérateur H_{OR} est un groupe.

Pour la toupie asymétrique, les trois opérations de rotation de π autour des axes principaux d'inertie : B_a, B_b, B_c et l'opération identité constituent les éléments du groupe D_2 .

Pour la toupie symétrique, le groupe des rotations qui laissent invariant l'éllipsoïde d'inertie renferme toute rotation de π autour d'un axe perpendiculaire

- 5 - 1

à l'axe de révolution et toute rotation, d'angle quelconque, autour de cet axe. Le groupe de symétrie correspondant est le groupe D_{∞} qui admet D_2 comme sous groupe.

II : HAMILTONIEN TRANSFORME

Les différents niveaux d'énergie sont obtenus en diagonalisant la matrice $[H_{VR}]$ par rapport à tous les nombres quantiques qui définissent ces niveaux : v_s, v_s, \dots pour la partie vibrationnelle et éventuellement l_s, l_s, \dots (moment angulaire de vibration) pour une molécule symétrique ; J,K,M pour la partie rotationnelle.

Lorsque les niveaux vibrationnels ne sont pas proches les uns des autres, la méthode proposée par VAN-VLECK et développée par différents auteurs dont HERMAN et SCHAFFER [2], GOLDSMITH, AMAT et NIELSEN [3] permet de simplifier le problème. Elle consiste à faire subir au hamiltonien H_{VR} des transformations de contact succéssives qui tout en laissant inchangées les valeurs propres, diagonalisent progressivement H_{VR} par rapport à l'ensemble des nombres quantiques de vibration v_g .

Ainsi, si on applique successivement à H $$_{\rm VR}$$ les deux transformations unitaires T $_1$ et T $_2$ telles que :

$$H' = T_1 H_{VR} (T_1)^{-1} = H_0 + H_1' + H_2' + H_3' + H_4' + \dots$$

$$H^{+} = T_2 H' (T_2)^{-1} = H_0 + H_1' + H_2^{+} + H_3^{+} + H_4^{+} + \dots$$

dans le hamiltonien deux fois transformé H^+ , l'opérateur $H_0 + H_1 + H_2^+$ est diagonal par rapport à l'ensemble des nombres quantiques v_s ; les éléments de H_3^+ et H_4^+ non diagonaux en v_s peuvent être négligés si on se limite à un calcul de l'énergie à l'ordre quatre en vibration.

Cette approximation est en général suffisante pour permettre d'interpréter convenablement les spectres expérimentaux jusqu'à présent relevés, compte tenu de la résolution donnée par les dispositifs techniques utilisés. La méthode précédente qui consiste à obtenir la contribution des éléments non diagonaux en v_s à l'aide d'une méthode de perturbation, ne peut évidemment plus être employée lorsque, par suite de valeurs particulières des fréquences vibrationnelles des niveaux d'énergie ont des valeurs accidentellement proches. Nous sommes alors en présence d'un phénomène de résonances "accidentelles" comme par exemple les résonances de *Fermi* ou de *Coriolis*. En fait dans le présent travail nous n'aurons pas à calculer les énergies de rotation vibration dans le cas des résonances accidentelles.

III : ELEMENTS MATRICIELS DES OPERATEURS MOMENTS ANGULAIRES

On peut montrer que les vecteurs propres simultanés des opérateurs p^2 (carré du moment cinétique \vec{P}), P_Z (composante de \vec{P} suivant l'axe G_Z d'un trièdre galiléen GXYZ) et P_Z (composante de \vec{P} suivant l'axe G_Z du trièdre lié à la molécule) sont définis sans ambiguité par les trois équations :

 $P^{2}|J,K,M\rangle = J(J+1) \hbar |J,K,M\rangle$ $P_{Z}|J,K,M\rangle = M \hbar |J,K,M\rangle$ $P_{z}|J,K,M\rangle = K \hbar |J,K,M\rangle$

où J est un entier positif, K et M des entiers vérifiant $-J \leq \frac{M}{K} \leq J$

En raison du facteur de phase arbitraire qui affecte chaque vecteur |J,K,M > les éléments matriciels des opérateurs P et P ne sont pas définis demanière unique, différents auteurs choisissant généralement des conventionsdifférentes. Pour les toupies symétriques, les éléments matriciels de P et Psont les éléments de KLEIN [4] définis par :

< K | P_x | K ± 1 > = ∓ i < K | P_y | K ± 1 > = $\frac{\hbar}{2}$ [J(J+1) - K(K±1)]^{1/2}

c'est à dire que les éléments de P_x sont réels tandis que ceux de P_y sont imaginaires. KING, HAINER et CROSS [5] adoptent un autre facteur de phase lors de leur étude générale des toupies asymétriques de sorte que les éléments matriciels de P_x sont imaginaires et ceux de P_y réels :

< K | P | K ± 1 > = ∓ i < K | P | K ± 1 > =
$$\frac{1}{2}$$
 [J(J+1) - K(K±1)]^{1/2}

Nous adopterons ces deux conventions suivant le type de molécule abordée.

- 7 -

Compte tenu du fait que les opérateurs H_{VR} , P^2 et P_Z commutent entre eux, il est facile de voir que les termes de H_{VR} sont diagonaux par rapport aux nombres quantiques J et M. De plus en l'absence de champ extérieur les éléments matriciels sont tous indépendants de M.

Dans le cas du rotateur symétrique, on montre que les vecteurs $|J,K,M\rangle$ sont également vecteurs propres du hamiltonien H_{OR}.

Pour un rotateur asymétrique les opérateurs H_{OR} et P_z ne commutent pas, ce qui fait que K n'est pas un bon nombre quantique pouvant servir à la définition des vecteurs propres de H_{OR} . Ces derniers sont des combinaisons linéaires en K des 2J+1 vecteurs $|J,K,M \rangle$ relatifs à un J et à un M donnés. Ceci entraine que pour déterminer les niveaux d'énergie d'une toupie asymétrique il est nécessaire de résoudre une équation séculaire dès l'ordre zéro du développement du hamiltonien.

Pour terminer la diagonalisation de la matrice transformée par rapport à K et éventuellement aux nombres quantiques l_s , nous sommes ainsi amenés à distinguer le cas de la toupie symétrique de celui de la toupie asymétrique.

A - TOUPIE SYMETRIQUE

Comme nous l'avons vu précédemment, écrire le hamiltonien de rotation vibration sous la forme d'un développement en série, suppose une classification à priori des termes qui le composent.^{*} Compte tenu du fait que pour la plupart des molécules rencontrées les constantes rotationnelles B_e^{α} (proportionnelles à l'inverse des moments d'inertie principaux d'équilibre), sont de l'ordre du cm⁻¹ tandis que les fréquences de vibration ω_s sont de l'ordre de 1000 cm⁻¹, AMAT et NIELSEN [6] montrent que dans le développement de H_{VR}, c'est à dire aussi celui de H⁺, le rapport d'un terme au précédent est tel que :

$$\frac{H_{n+1}^{+}}{H_{n}^{+}} = \left(\frac{B_{e}^{\alpha}}{\omega_{s}}\right)^{1/2} \approx \frac{1}{30}$$

Ce groupement correspond au cas où J et K sont de l'ordre de 30. Cependant lors des

* en particulier des termes de H et H dans H .

- 8 -

études des spectres micro-ondes nous sommes amenés à envisager des valeurs de J et K proches de 1. Dans ce cas certains termes apparaissant dans le hamiltonien d'ordre n, H_n^+ ne contribuent effectivement à l'énergie qu'à des ordres supérieurs.

Avant de diagonaliser la matrice $[H^+]$ par rapport à K et aux l_s il est utile de faire une classification de tous les éléments <u>diagonaux</u> et non diagonaux, ce qui permettra d'éliminer à priori tous ceux qui contribuent à l'énergie à un ordre supérieur à 4 (6 pour les termes de rotation dans le cas où J et K sont petits)

I : CONTRIBUTION A L'ENERGIE D'UN ELEMENT MATRICIEL DE [H⁺]

G.AMAT et H.H.NIELSEN envisagent trois cas :

 $J \approx 30 , K \approx 30$ $J \approx 30 , K \approx 1$ $J \approx 1 , K \approx 1$

et introduisent différents indices de façon à déterminer l'ordre de grandeur effectif de la contribution à l'énergie d'un élément de $[H^+]$:

- l'indice de grandeur vrai n d'un élément $\langle \Gamma | 0 | \Gamma' \rangle$ (où Γ symbolise l'ensemble des nombres quantiques J,K,v_s, ℓ_s , ... qui caractérisent un vecteur de base, tandis que Γ' symbolise l'ensemble des nombres J,K+ ΔK ,v_s, $\ell_s + \Delta \ell_s$, ...) est calculé à partir de l'indice m du hamiltonien H_m^+ qui dans le développement de H^+ contient l'opérateur 0. Pour J et K petits (cas qui nous intéressera exclusivement par la suite) l'indice n d'un opérateur qui contient j opérateurs rotationnels P_i vaut m+j.

- l'indice de grandeur p de la différence d'énergie $< \Gamma | H^+ | \Gamma > - < \Gamma' | H^+ | \Gamma' >$ entre les deux niveaux couplés par l'élément matriciel hors diagonal.

- l'indice de grandeur n' de l'élément < $\Gamma | 0' | \Gamma' > qui constitue la partie principale dans le développement de < <math>\Gamma | H^+ | \Gamma' > où figure l'élément 0 considéré < <math>\Gamma | H^+ | \Gamma' > = < \Gamma | 0' + \ldots + 0 + \ldots | \Gamma' > ; nécessairement n' \leq n$

- l'ordre de grandeur effectif k de la contribution à l'énergie d'un élément matriciel.

Pour un élément diagonal k est égal à l'indice de grandeur vrai n. Pour les éléments non diagonaux il nous faut comparer les indices n' et p :

a) si n' > p : k = n+n'-p; la contribution de l'élément matriciel se fait par résonance faible (R.f.) si les niveaux qu'il couple ne sont pas par ailleurs

- 9 -

liés par résonance forte. Une méthode de perturbation peut être utilisée pour calculer la contribution de cet élément.*

b) si n' ≤ p l'élément matriciel contribue à l'énergie par résonance forte ; il est alors nécessaire de résoudre une équation séculaire pour terminer le calcul de l'énergie. L'indice k est égal à n.

Alors que pour les faibles valeurs de v et K l'indice p vaut environ 2, certains cas particuliers peuvent apparaître qui modifient complètement cet ordre de grandeur.

- si l'élément matriciel couple deux niveaux ayant même énergie à l'ordre zéro on a p = ∞. Si on revient aux valeurs des nombres quantiques qui définissent ces **niveaux, ce** cas ne peut avoir lieu que si K + $\Delta K = -K$; $l + \Delta l = -l$; ... soit pour s $\Delta K = -2K$ avec $\Delta l_{e} = -2l_{e}$. Compte tenu du fait que les éléments de [H^T] sont au plus de degré 6 en P_i (puisque nous nous sommes limités aux termes diagonaux de H_{4}^{T}) un tel dédoublement (Ded) ne peut apparaître que pour $|K| \leq 3$.

- si les deux niveaux couplés ont, par suite de valeurs particulières pour les constantes moléculaires, des énergies peu différentes pour certaines valeurs de K, p peut devenir localement très grand et être supérieur à n'. Nous sommes ici en présence d'un phénomène de résonance essentielle accidentellement forte (R.A.F.) et k = n.

- si n' = 2 il y a pour toutes les valeurs de K une résonance forte appelée résonance forte d'ordre 2 (RF2) ; l'indice k a la valeur n.

Le tableau IA1 récapitule les résultats de cette discussion.

Ordre de

Contribution

				$<\Gamma H^{0} L> = = = = =$	Ded
	Résolution d'une		p>n'	<[H ₀ r># <[' H ₀ r'>	
n'	équation séculaire (quasi-dégénérescence)	k=n		n'>2	R.A.F.
			p=n'=2	<[H ⁰ L> # <l, h<sup="">0 L, ></l,>	R.F.2

Phénomène physique

R.f. <L[H⁰]L> * <L, [H⁰]L, > Méthode de perturbation K=n+n'-p des niveaux non dégénérés

0<p<n'

p >

Méthode de Calcul de

1'Energie

Tableau IA1

Les données du tableau IA1 permettent de déterminer l'indice de grandeur et la contribution à l'énergie des divers éléments constituant la matrice $[H^+]$. Pour les molécules à axe de symétrie ternaire, les résultats obtenus restreints au cas J ~ 1, K ~ 1 sont reproduits dans le tableau A1 (les tableaux repérés en premier par la lettre A sont placés en annexe) ; les termes de $[H^+]$ sont écrits sous la forme générale $r^n P_i^m$ où r désigne un opérateur de vibration et P_i un opérateur moment cinétique [7].

En l'absence de résonances accidentellement fortes, les expressions des différentes contributions à la matrice $[H^+]$ exprimée à l'aide des vecteurs propres d'ordre zéro $|0\rangle = |J,K,l_s \dots >$ du hamiltonien H_0 , sont données dans les tableaux A2 et A3. Les coefficients des différents termes comprennent une partie constante, a, et éventuellement des termes correctifs, b,c, qui dépendent seulement des nombres quantiques vibrationnels ; les parties a,b,c apportent une contribution à des ordres de grandeur différents qui sont notés dans les colonnes correspondantes.

II : REDUCTION DE LA MATRICE [H⁺]

A ce stade il est possible de déterminer les niveaux d'énergie d'un état de vibration. Cependant pour simplifier les calculs il y a intérêt à mettre la matrice $[H^+]$ sous une forme réduite. En se servant des propriétés de symétrie des vecteurs propres $|0\rangle$ on décompose la matrice en blocs correspondant chacun à une des représentations irréductibles du groupe de symétrie de la molécule.

Pour une molécule appartenant au groupe C_{3V} , les vecteurs propres $|0\rangle$ ne peuvent servir de base pour les représentations irréductibles, de type A_1 , A_2 et E, de ce groupe. Cependant on montre que les vecteurs symétrisés $|\pm\rangle$ qui sont des combinaisons linéaires des vecteurs $|0\rangle$ possèdent cette propriété :

 $|\pm\rangle = \frac{1}{2} [|J,K,\ell_{t},\ell_{t},\ldots\rangle \pm |J,-K,-\ell_{t},-\ell_{t},\ldots\rangle]$

Si l'on utilise la définition des opérations de symétrie donnée dans la

- 11 -

référence [7], le type de symétrie des vecteurs $|\pm\rangle$ est celui indiqué, suivant la valeur des différents nombres quantiques, dans le tableau IA2.

	κ – Σ _t β		
	J + K + Σ _t β	$K - \sum_{t=1}^{k} \ell_{t} \neq 3p$ pentier	
	PAIR	IMPAIR	
↓ > (ou 0> si K=ℓ _t ==0)	A,	A ₂	E
=>	A ₂	A	

Tableau IA2

III : CALCUL DES NIVEAUX D'ENERGIE

Finalement nous ramenons le problème de la détermination des niveaux d'énergie à la diagonalisation de trois sous matrices dont les dimensions dépendent du nombre J mais aussi de la nature de l'état de vibration envisagée (état excité non dégénéré, état dégénéré excité par un ou plusieurs quantums, deux états dégénérés excités simultanément par un quantum ...) par l'intermédiaire de l_s, l_s' .

<u>B</u> - TOUPIE ASYMETRIQUE

Conventionnellement on note les axes principaux d'inertie à l'équilibre a,b,c de telle sorte que

$$I_a^e \leq I_b^e \leq I_c^e$$

Les 3! possibilités d'associer les axes a,b,c, aux axes x,y,z, liés à la molécule conduisent à six représentations [5] dont deux ont un intérêt évident :

- la représentation I^r qui associe x \longleftrightarrow b, y \longleftrightarrow c, z \longleftrightarrow a dont la toupie symétrique allongée est le cas limite.

- la représentation III^r qui associe $x \leftrightarrow a$, $y \leftrightarrow b$, $z \leftrightarrow c$ dont la toupie symétrique aplatie est le cas limite.

I : HAMILTONIEN EFFECTIF

En l'absence de résonances vibrationnelles fortes, le hamiltonien transformé peut s'écrire sous la forme :

$$E_v I + H^V$$
 où

E, est l'énergie relative à un état vibrationnel dénomé v>

I est l'opérateur identité

H est le hamiltonien rotationnel correspondant à l'état |v>

J.K.G.WATSON [8] montre qu'il est possible de trouver une transformation unitaire telle que le hamiltonien de rotation H^V se mette sous une forme réduite où n'apparaît qu'un nombre minimum de coefficients non nuls, indépendants. G.STENN BECKELIERS [9] l'explicite dans la représentation I^r . Nous en donnons une expression qui permet d'atteindre commodément les deux limites vers lesquelles tend une toupie asymétrique. Développé jusqu'aux termes en P_i^6 , ce hamiltonien réduit s'écrit :

I B 1
$$H_{red}^{V} = \frac{A+C}{2} \cdot P^{2} + \frac{A-C}{2} \left(\frac{\kappa+\varepsilon}{2} \cdot P^{2} - \frac{\kappa+3\varepsilon}{2} \cdot P_{z}^{2} \right)$$

+ $\frac{A-C}{2} \left(\frac{1-\varepsilon\kappa}{2} \right) \left(P_{x}^{2} - P_{y}^{2} \right)$

termes en P_i^2

$$- \Delta_{J}P^{4} - \Delta_{JK}P^{2}P_{z}^{2} - \Delta_{K}P_{z}^{4}$$

$$- 2\delta_{J}P^{2}(P_{x}^{2} - P_{y}^{2}) - \delta_{K}Z(2)$$

$$+ H_{J}P^{6} + H_{JK}P^{4}P_{z}^{2} + H_{KJ}P^{2}P_{z}^{4} + H_{K}P_{z}^{6}$$

$$+ 2h_{J}P^{4}(P_{x}^{2} - P_{y}^{2}) + h_{JK}P^{2}Z(2) + h_{K}Z(4)$$

$$Termes en P_{i}^{6}$$

où • κ est le coefficient d'asymétrie de RAY exprimé à partir des constantes rotationnelles par

$$\kappa = \frac{2B - A - C}{A - C} \quad \text{avec}$$

$$A = \frac{h}{8\pi^2 I_a} \qquad B = \frac{h}{8\pi^2 I_b} \qquad C = \frac{h}{8\pi^2 I_c}$$

 κ ne prend que des valeurs comprises entre -1 qui correspond au cas limite d'une toupie symétrique allongée, et +1 qui correspond au cas d'une toupie symétrique aplatie.

• $Z(i) = (P_x^2 - P_y^2) P_z^i + P_z^i (P_x^2 - P_y^2)$ i étant un entier positif • ε est une quantité qui dépend de la représentation utilisée : pour la

représentation III^r ε =1 tandis que pour la I^r ε =-1 Les opérateurs P_i sont sans dimension ; H^V_{red} est en cm⁻¹.

Compte tenu de l'approximation faite par WATSON sur l'intéraction rotation-vibration, ce hamiltonien réduit possède les propriétés remarquables suivantes :

• il est complètement symétrique pour les opérations de symétrie du groupe D₂, quelle que soit par ailleurs la symétrie de la molécule.

• il contient seulement (n+1) termes indépendants de degré total n dans les composantes du moment angulaire total, pour chaque valeur pair de n.

• ses éléments de matrice non nuls dans une base de toupie symétrique vérifient la relation : $\Delta K = 0, \pm 2$.

Les vecteurs de base $|R\rangle$ de la toupie symétrique appartiennent au groupe de rotation D_{∞} . Cependant comme l'a montré MULLIKEN [10], il existe des combinaisons linéaires de ces vecteurs qui sont des bases pour les représentations irréductibles du groupe D_2 . Le passage de la base de la toupie symétrique à la nouvelle base se fait par l'intermédiaire d'une matrice de WANG [11]. Les vecteurs de la nouvelle base s'expriment sous la forme générale :

$$2^{1/2} [|J,K,M > + (-1)^{\gamma} | J,-K,M >]$$
 si K>0

où y peut prendre une valeur entière paire ou impaire.

En utilisant ces vecteurs de base on peut scinder la matrice énergie en quatre sous matrices notées E^+ , E^- , O^+ , O^- correspondant chacune à une des représentations irréductibles du groupe D_2 . Les symboles E et O sont associés respectivement à la parité pair et impair de K ; les signes + et - dépendent de la parité pair ou impair de γ . Les éléments non nuls des sous matrices occupent les positions données par les Tableaux IB1 où les éléments de H_{red}^V sont notés H_{K}^{K} , K'

Tableaux IB1

 \mathbf{E} se déduit de \mathbf{E}^{\dagger} par suppression de la première ligne et de la première colonne.

2°/ Symétrie des niveaux d'énergie

Un niveau d'énergie de la toupie asymétrique peut être caractérisé par les niveaux vers lesquels il tend lorsque la molécule devient symétrique des deux façons possibles. Pour une valeur de J donnée, si on repère par K_{-1} et K_1 respectivement les niveaux limites de la toupie symétrique allongée (pour laquelle $\kappa=-1$) et aplatie (pour laquelle $\kappa=1$) on caractérise sans ambiguïté le niveau de la molécule asymétrique par l'appellation

 $J_{K_{-1},K_{1}}$ avec comme restriction : $K_{-1} + K_{1} = J$ ou J + 1.

Cette notation introduite par MULLIKEN permet d'accéder immédiatement à la symétrie du niveau d'énergie considéré ; elle est déterminée par la parité des deux indices K_{-1} et K_1 . Ces derniers pouvant prendre une valeur paire (e) ou impaire (ϕ) il existe quatre types de niveaux qui correspondent aux quatre représentations irréductibles du groupe D_2 à savoir :

A = ee $B_a = e\phi \quad B_b = \phi\phi \quad B_c = \phi e$

Si on adopte les conventions de phase de KING, HAINER et CROSS [5] les symétries des niveaux rotationnels sont données, pour la représentation III^r, dans le tableau IB2 en même temps que la dimension des sous matrices. Notons que dans cette représentation le nombre quantique K est identique à K₁.

	Parité de y K		DIMENS	J PAIR		J IMPAIR		
			J PAIR	J IMPAIR	к ₋₁	ĸ	к ₋₁	к ₁
E ⁺	e	0	1/2 (J+2)	1/2(J+1)	е	e	φ.	e
E	е	1	1/2 J	1/2 (J-1)	φ	e	e	е
o ⁺	ø	0	1/2 J	1/2(J+1)	φ	φ	е	ø
0-	φ	1	1/2 J	1/2(J+1)	e	ø	φ	φ

Tableau IB2

Rapportés aux vecteurs $|J,K,M\rangle$ les éléments matriciels de $\overset{V}{\underset{red}{H'}}$ à l'ordre p, désignés par $\underset{K,K'}{\overset{(p)}{\underset{K,K'}{H'}}}$ (ou K = |K| et K' = |K'|) sont donnés par les quantités ci-dessous :

- a/ Eléments_diagonaux
 - $H_{K,K}^{(0)} = \frac{A+C}{2} J(J+1) + \frac{A-C}{2} \left[\frac{\kappa+\varepsilon}{2} f(J,K) \varepsilon K^{2}\right]$

 $\mathbf{H}_{\mathbf{K},\mathbf{K}}^{(1)} = -\Delta_{\mathbf{J}} \mathbf{J}^{2} (\mathbf{J}+1)^{2} - \mathbf{\kappa}^{2} [\Delta_{\mathbf{J}\mathbf{K}} \mathbf{J} (\mathbf{J}+1) + \Delta_{\mathbf{K}} \mathbf{\kappa}^{2}]$

$$H_{K,K}^{(2)} = H_{J}J^{3}(J+1)^{3} + K^{2} [H_{JK}J^{2}(J+1)^{2} + H_{KJ}K^{2}J(J+1) + H_{K}K^{4}]$$

b/ Eléments non diagonaux

$$H_{K,K+2}^{(0)} = -\frac{A-C}{2} \cdot \frac{1-\epsilon\kappa}{2} g (J,K+1)$$

$$H_{K,K+2}^{(1)} = \left[2\delta_{J}J(J+1) + \delta_{K}K_{2} \right] g (J,K+1)$$

$$H_{K,K+2}^{(2)} = - [2h_J J^2 (J+1)^2 + h_{JK} J (J+1) K_2 + h_{K} K_4] g (J,K+1)$$

avec

$$f(J,K) = J(J+1) - K^{2}$$

$$g(J,K) = 1/2 [f^{2}(J,K) - K^{2}]^{1/2}$$

$$K_{n} = K^{n} + (K+2)^{n} \quad n \text{ étant un entier positif}$$

Les éléments matriciels symétrisés de E⁺, E⁻, O⁺, O⁻ sont calculés à partir des éléments ci-dessus et les valeurs propres sont obtenues par diagonalisation de ces sous matrices.

II : DEDOUBLEMENT K

Si on considère les éléments des matrices 0^{\pm} (Tableau IB1) il est facile de voir, sans même avoir besoin de prendre en considération les termes hors diagonale, que les niveaux |K|=1 sont dédoublés, les énergies ayant pour valeur l'une : $H_{1,1} + H_{-1,1}$ l'autre : $H_{1,1} - H_{-1,1}$. Un rapide calcul fait à l'ordre zéro à partir des éléments matriciels donnés par les expressions IB2, montre que l'écart entre ces niveaux d'énergie a pour valeur :

1/4 (A-C) (εK -1) J(J+1)

Si on considère maintenant les matrices E^{\pm} on remarque que les niveaux |K|=2seront également dédoublés, la séparation des niveaux étant plus faible que dans le cas |K|=1 puisque l'origine du dédoublement est cette fois la présence d'éléments matriciels non diagonaux qui contribuent à l'énergie sous la forme :

$$\frac{2 |H_{0,2}|^2}{H_{2,2} - H_{0,0}}$$

Pour les autres valeurs de K (mis à part K=0 dont le niveau correspondant ne présente pas de dégénérescence) il est nécessaire de développer plus avant la détermination des valeurs propres de l'énergie si l'on veut chiffrer la séparation des niveaux. Ainsi, alors que pour un rotateur symétrique les niveaux d'énergie de rotation sont doublement dégénérés en |K|, pour le rotateur asymétrique cette dégénérescence est en totalité ou en partie levée, donnant naissance au phénomène de dédoublement K.

La différence entre les valeurs propres associées à la même valeur |K| (c'est à dire $(O^+)_{K} - (O^-)_{K}$ ou $(E^+)_{K} - (E^-)_{K}$) peut être calculée en utilisant une méthode de perturbation. On écrit le hamiltonien réduit de rotation pure sous la forme :

$$H_{red}^{V} = W_{0} + V$$

où W_0 est le hamiltonien de la toupie symétrique limite et V l'opérateur de perturbation qui rend compte de l'asymétrie de la molécule. Les éléments matriciels non nuls de ces opérateurs se déduisent des relations IB2 :

IB3

$$W_{OK,K} = \frac{A+C}{2} \quad J(J+1) + \frac{A-C}{2} \quad \varepsilon \quad [J(J+1) - 2K^{2}]$$

$$V_{K,K} = \frac{A-C}{2} \quad \frac{K-\varepsilon}{2} \quad f \quad (J,K)$$

$$V_{K,K+2} = \frac{A-C}{2} \quad \frac{\varepsilon \quad K - 1}{2} \quad g(J,K+1)$$

Différents auteurs [12] ont aussi calculé la levée de dégénérescence des niveaux. Pour des molécules faiblement asymétriques WANG [11] a développé une expression approchée donnant l'écart entre les niveaux d'énergie dédoublés à savoir :

$$\Delta E_0 = 1/2 \text{ (A-C) } C_K^{J+K} C_K^J \cdot \kappa^2 \cdot 16 \left(\frac{b}{8}\right)^K \cdot (1-b)^{-1}$$

où • C_m^n est la notation binominale : $C_m^n = \frac{n!}{(n-m)! m!}$

- b est un paramètre d'asymétrie qui dépend de la représentation choisie et qui peut s'exprimer en fonction du paramètre de RAV : b = $\frac{\kappa \varepsilon}{\kappa + 3\varepsilon}$
- K prend la valeur K₁ dans la représentation III^r et K₋₁ dans la représentation I^r.

L'expression ci-dessus issue d'un calcul d'énergie par perturbation est d'autant plus justifiée que la molécule est plus proche d'une toupie symétrique. Elle perd beaucoup de son intérêt dès lors que l'on fait une diagonalisation directe de la matrice énergie.

<u>C - MOLECULES FAIBLEMENT ASYMETRIQUES</u>

Les seules molécules asymétriques que nous aurons à considérer sont toutes proches d'une toupie symétrique aplatie et le paramètre C est du même ordre de grandeur que les deux autres constantes de rotation ; la quantité $\frac{A-C}{2}$ est donc relativement petite. L'influence des termes non diagonaux de l'opérateur V apparaissant dans les formules IB3 est donc relativement faible en général (ceci est d'autant plus vrai que le nombre K a une valeur proche de J) ce qui justifie l'utilisation d'une technique de perturbations pour déterminer une valeur approchée des valeurs propres de V, bien que les valeurs de K soient relativement éloignées de 1 puisque comprises entre 0,84 et 0,92. Cette technique de calcul ne se substitue pas à la diagonalisation directe des matrices de H^V_{red} qui sera faite pour <u>déterminer</u> rigoureusement les paramètres moléculaires ; elle fournit une expression de l'énergie qui facilitera l'identification des spectres expérimentaux.

I : CALCUL DES NIVEAUX D'ENERGIE

1°/ Rotateur rigide

Les éléments non diagonaux de V n'agissant qu'au deuxième ordre d'approximation et puisque nous sommes dans le cas où les niveaux ne sont pas dégénérés, les valeurs propres du hamiltonien de rotation pure sont données par :

2

IC1
$$E_{K} = E_{K}^{0} + \frac{|v_{K,K+2}|^{2}}{E_{K}^{0} - E_{K+2}^{0}} + \frac{|v_{K,K-2}|^{2}}{E_{K}^{0} - E_{K-2}^{0}}$$
 si K >

où E_{K}^{0} est la contribution des éléments diagonaux de la partie rotation pure de H_{red}^{V} : $E_{K}^{0} = \frac{A+C}{2} \quad J(J+1) + \frac{A-C}{2} \quad [\frac{\kappa+\epsilon}{2} \quad J(J+1) - \frac{\kappa+3\epsilon}{2} \quad \kappa^{2}]$

Un simple calcul montre que la contribution à l'énergie des éléments non diagonaux a pour valeur :

IC2
$$E'_{K} = -\frac{A-C}{32} \frac{(\kappa-\epsilon)^{2}}{\kappa+3\epsilon} \left\{ \frac{J^{2}(J+1)^{2}}{\kappa^{2}-1} + 2J(J+1) - 3\kappa^{2} \neq 4 \right\}$$

La présence au dénominateur d'un terme qui théoriquement peut s'annuler n'est pas génante puisque l'expression ci-dessus qui n'envisage pas la levée de dégénérescence des niveaux n'est en fait valable que pour des valeurs de K non voisines de 1.

2°/ Distorsion centrifuge

En fait l'expression IC1 reste valable si on y incorpore les effets de distorsion centrifuge. Cependant pour conserver une expression exploitable par la suite, nous ne conservons que les paramètres du premier ordre dont les termes matriciels contribuent à l'énergie sous forme diagonale soit :

$$\Delta_{J}, \Delta_{JK} \text{ et } \Delta_{K}$$

paramètres qui ont leurs analogues dans la toupie symétrique. Les niveaux d'énergie d'une molécule faiblement asymétrique sont alors donnés par la forme simple :

IC3

$$E_{K} = E_{K}^{'0} + E_{K}^{'}$$

$$E_{K}^{'0} = E_{K}^{0} - \Delta_{J}J^{2}(J+1)^{2} - \Delta_{JK}J(J+1) K^{2} - \Delta_{K}K^{4}$$

C'est cette expression que nous utiliserons lors de l'identification des spectres.

- 20 -

- 21 -

11 & LEVEE DE DEGENERESCENCE

Il est parfois commode d'écrire l'expression des niveaux d'énergie du rotateur rigide sous une forme qui se déduit immédiatement de IB1 :

$$\mathbf{E} = \frac{\mathbf{A}+\mathbf{C}}{2} \quad \mathbf{J}(\mathbf{J}+1) + \frac{\mathbf{A}-\mathbf{C}}{2} \quad \mathbf{\varepsilon} \quad (\mathbf{K})$$

où la quantité $\varepsilon(K)$ est une forme tabulée de K qui dépend de J, $K_{-1}K_1$.

Sur la figure (1) nous avons porté en fonction de J la différence entre les énergies $\varepsilon(\kappa)$ de la toupie asymétrique correspondant à $\kappa = 0,9$ et celles ε_1 de la toupie symétrique limite qui satisfait à $\kappa = 1$. Pour une molécule faiblement asymétrique on vérifie que la dégénérescence des niveaux n'est pratiquement pas levée dès que l'on s'écarte des valeurs de K voisines de 1.

Etant en mesure à présent de calculer les niveaux d'énergie il reste pour déterminer les fréquences d'absorption, qui sont seules atteintes par l'expérience, à définir les sauts autorisés pour chaque nombre quantique. Ils permettront de faire la liaison entre un état d'énergie initial et un état d'énergie final de la molécule.

D - REGLES DE SELECTION

Les transitions entre deux niveaux ro-vibrationnels sont dues à l'interaction entre le champ électromagnétique et le moment dipolaire électrique $\overrightarrow{\mu}$ de la molécule.

Si on désigne par n et par m l'ensemble des nombres quantiques qui définissent un état dénergie initial $|n\rangle$ et un état d'énergie final $|m\rangle$, on montre qu'une transition dipolaire entre ces états n'est possible que si une au moins des trois composantes du moment de transition :

ID1 $< m | \vec{\mu} | n >$ est non nulle.

En fait <u>par</u> la suite nous nous limitons à une polarisation linéaire du champ et nous choisissons un trièdre galiléen tel que son axe Z soit parallèle au champ électrique.

Soit μ_{α} les composantes de $\stackrel{\rightarrow}{\mu}$ rapportées aux axes $\alpha = x, y, z$ du trièdre mobile lié à la molécule. Elles sont liées à la composante μ_z par la relation :

$$\mu_{\mathbf{Z}} = \sum_{\alpha} \Phi_{\mathbf{Z}\alpha} \mu_{\alpha}$$

où $\Phi_{Z\alpha}$ sont les cosinus directeurs des axes Z et α .

Dans l'approximation des petits mouvements, chaque composante μ_{α} peut se limiter à une somme de deux termes :

$$\mu_{\alpha} = \mu_{\alpha}^{\circ} + \sum_{s\sigma} \left(\frac{\partial \mu_{\alpha}}{\partial q_{s\sigma}}\right) q_{s\sigma}$$

où : - le premier provient du moment dipolaire permanent $\vec{\mu}_{\chi}$

- le second est une contribution induite par la vibration moléculaire.

Pour les transitions de rotation pure nous n'avons à considérer que le moment dipolaire permanent. L'intégrale ID1 est différente de zéro si l'intégrant appartient à une représentation totalement symétrique du groupe de symétrie de la molécule.

I : TOUPIE SYMETRIQUE

Les intégrales ID1 sont différentes de zéro si l'intégrant appartient à une représentation totalement symétrique. Pour une molécule de type C_{3V} , la seule composante non nulle μ_Z ayant la symétrie A_2 lorsque les opérations de symétrie conduisent aux résultats du tableau IA2, l'intégrant est invariant si le produit des vecteurs définissant l'état initial et l'état final de la transition contient également à la représentation A_2 . A partir du Tableau IA2 donnant les types de symétrie des vecteurs $|\pm\rangle$, on voit que les seules transitions permises se feront soit entre un niveau A_1 et un niveau A_2 , soit entre deux niveaux E ; d'où les règles de sélection schématisées :

$$A_1 \leftrightarrow A_2 \qquad E \leftrightarrow E$$

- 23 -

Ces conditions sont moins contraignantes que celles obtenues par le calcul effectif de ID1, aussi les règles de sélection seront fournies sans restriction par le calcul des moments dipolaires de transition dans lequel interviennent les cosinus directeurs $\Phi_{Z\alpha}$. Exprimés dans la base des vecteurs propres $|J,K,M\rangle$ de la toupie symétrique, les éléments matriciels des opérateurs $\Phi_{Z\alpha}$ peuvent s'écrire sous la forme d'un produit de trois facteurs :

$$<\mathbf{J},\mathbf{K},\mathbf{M} \mid \mathbf{\Phi}_{\mathbf{Z}\alpha} \mid \mathbf{J}',\mathbf{K}',\mathbf{M}' > = <\mathbf{J} \mid \mathbf{\Phi}_{\mathbf{Z}\alpha} \mid \mathbf{J}' > <\mathbf{J},\mathbf{M} \mid \mathbf{\Phi}_{\mathbf{Z}\alpha} \mid \mathbf{J}',\mathbf{M}' > <\mathbf{J},\mathbf{K} \mid \mathbf{\Phi}_{\mathbf{Z}\alpha} \mid \mathbf{J}',\mathbf{K}' > <\mathbf{J},\mathbf{K} \mid \mathbf{H}_{\mathbf{Z}\alpha} \mid \mathbf{J}',\mathbf{K}' > <\mathbf{J},\mathbf{K}' > <\mathbf{J},\mathbf{K} \mid \mathbf{H}_{\mathbf{Z}\alpha} \mid \mathbf{H}_{\mathbf{Z}\alpha$$

où J,K,M caractérisent l'état final de la molécule et J',K',M' l'état initial. Si on explicite les trois produits ci-dessus on obtient les règles de sélection suivantes [13] si α =z:

ID2 $\Delta J = J - J' = 0, \pm 1$ $\Delta K = K - K' = 0$ $\Delta M = M - M' = 0$

avec la restriction supplémentaire : si K = 0 la transition $\Delta J = 0$ est interdite.

II : TOUPIE ASYMETRIQUE

Comme les éléments matriciels de I D ! restent diagonaux en J et M, les règles de sélection $\Delta J = 0,\pm 1$ et $\Delta M = 0$ de la toupie symétrique sont conservées (à condition qu'il n'y ait pas de champ *Stark* perpendiculaire à la direction de polarisation linéaire de l'onde). Il n'en est plus de même pour K qui n'est plus ici un bon nombre quantique. Comme pour la toupie symétrique nous pouvons déterminer les règles de sélection à partir de considérations de symétrie.

Toute opération de symétrie du groupe D₂ devant laisser invariant l'éllipsoIde d'inertie, elle laisse également inchangé l'intégrant de ID1. On montre, à condition d'associer les axes x,y,z, aux directions a,b,c de l'ellipsoIde d'inertie, que les transitions permises se font, suivant la composante du moment dipolaire mise en cause entre les niveaux d'énergie de symétrie donnée par le tableau ID1.

Composante du moment dipolaire	μ _a	μ _b	μ _c
Transitions permises	$\begin{array}{ccc} \mathbf{A} & \longleftrightarrow & \mathbf{B}_{\mathbf{a}} \\ \mathbf{B}_{\mathbf{b}} & \longleftrightarrow & \mathbf{B}_{\mathbf{c}} \\ \end{array}$	$\begin{array}{c} A & \longleftrightarrow B_{b} \\ B_{a} & \longleftrightarrow B_{c} \end{array}$	$\begin{array}{c} \mathbf{A} & \longleftrightarrow \mathbf{B}_{\mathbf{C}} \\ \mathbf{B}_{\mathbf{a}} & \longleftrightarrow \mathbf{B}_{\mathbf{b}} \end{array}$

Tableau ID1

Ainsi pour la composante du moment dipolaire alignée suivant l'axe de plus grand moment d'inertie, les transitions permises satisfont à la règle :

 $ee \longleftrightarrow \phie$ $\phi\phi \longleftrightarrow e\phi$

On voit en particulier que la parité de K₁ doit rester inchangée.

E - COEFFICIENT D'ABSORPTION

Le coefficient d'absorption γ pour un rayonnement monochromatique de fréquence ν d'une raie dont la fréquence de résonance est ν_0 , est donné par l'expression :

IE1
$$\gamma = \frac{8\pi^3}{3hc} \cdot v \cdot N \cdot p \cdot F_{[v-v_0, \Delta v]} \cdot \mu_{\alpha}^2 \frac{\alpha s}{2\pi + 1} \left(1 - e^{-\frac{hv}{kT}}\right)$$

où h = constante de Planck

c = vitesse de la lumière

N = nombre de molécules absorbantes par unité de volume

$$p = \frac{g_i}{Z} e^{-E_i/kT}$$

Z = fonction de partition

 E_i = énergie stationnaire du niveau initial de la raie

g = poids statistique qui tient compte de l'influence I des spins nucléaires

- 25 -

T = température absolue d'équilibre du milieu

 $F[v-v_0, \Delta v]$ = facteur de forme de raie ; c'est une fonction caractéristique de la variation d'absorption en fonction de l'écart à la résonance $v-v_0$ et du paramètre Δv : demi-largeur de la raie à mi-hauteur.

 μ_{α} = valeur numérique de la composante du moment dipolaire responsable de la raie ; α indiquant l'un des axes principaux d'inertie de la molécule.

 $^{\alpha}S$ = force du moment de transition qui se calcule à partir des éléments matriciels des cosinus directeurs dans la base qui diagonalise la matrice du hamiltonien H₀.

Le facteur numérique $\frac{8\pi^3}{3}$ est celui associé à la Théorie de VAN-VLECK et WEISSKOPF [14]

Si on admet que la raie a une forme dite de LORENTZ, le facteur $F_{[\nu-\nu_{\alpha},\Delta\nu]}$ a pour expression :

$$\mathbf{F}_{[\nu-\nu_{o},\Delta\nu]} = \frac{1}{\pi} \cdot \frac{\Delta\nu}{(\nu-\nu_{o})^{2} + \Delta\nu^{2}} \cdot \frac{\nu}{\nu_{o}}$$

Ceci suppose que l'on ait $\Delta v << v$. Aux fréquences où on travaille et pour la molécule étudiée , cette inégalité est toujours vérifiée.

I : TOUPIE SYMETRIQUE

Pour une transition $J \rightarrow J+1$, $K \rightarrow K$ liée au moment dipolaire aligné suivant l'axe z, la force du moment de transition a pour valeur :

$$^{Z}S = J+1 - \frac{K^{2}}{J+1}$$

Si on explicite la formule IE1, on trouve que le coefficient d'absorption pour $v=v_0$ prend la valeur maximale [15] à la température de 300°K :

$$\gamma_{\max} = 1,23.10^{-20} \sqrt{B^{ZZ}} \pi_{i}(1-e^{-\frac{hW_{i}}{kT}})^{d_{i}} e^{-\frac{W_{v}}{kT}} \cdot I_{(K)} \mu^{2} \left[1 - \frac{\kappa^{2}}{(J+1)^{2}}\right] \cdot \frac{v_{o}^{3}}{\Delta v}$$

 γ_{max} est exprimé en cm⁻¹; ν_{o} en MHz; μ en Debye; $\Delta \nu$ en MHz est calculé pour une pression de 1 Torr.

 W_i = fréquence normale de la vibration i, de degré de dégénérescence d W_i = niveau d'énergie de vibration

$$I_{(K)} = \text{poids statistique du niveau de rotation le plus bas dû aux spins}$$

nucléaires en l'absence de structure hyperfine résolue. Pour un état
vibrationnel dégénéré K doit être remplacé par K - $\Sigma_t \ell_t$.

II : TOUPIE ASYMETRIQUE

Il n'est plus possible de trouver pour la force de raie une expression simple. Le coefficient d'absorption maximum relatif à une transition $m \rightarrow n$ peut toujours être exprimé par [15]

$$\gamma_{\text{max}} = 2,46.10^{-20} \sqrt{\text{ABC}} \quad \pi_{i} \quad (1-e) \quad e \quad I_{m} \quad \mu_{\alpha}^{2} \quad \sigma_{m \rightarrow n}^{2} \quad \frac{\sqrt{2}}{\Delta \nu}$$

où les coefficients α_{s} sont des fonctions tabulées du paramètre d'asymétrie κ . Les unités des différents paramètres sont les mêmes que précédemment.

En fait pour une molécule faiblement asymétrique on se contente généralement de prendre pour coefficient d'absorption l'expression relative à la toupie symétrique. Au besoin pour une meilleure approche on peut utiliser les éléments matriciels des cosinus directeurs calculés par un traitement de perturbation au second ordre, à partir des fonctions d'onde de la toupie symétrique limite.

Pratiquement nous ne nous intérésserons qu'aux intensités des raies, les mesures absolues ayant trait aux transitions de rotation pure étant très difficile à réaliser. Nous aurons à comparer les intensités des raies d'une molécule donnée dans les spectres d'un même état vibrationnel où, pour la toupie symétrique, dans des états de vibrations différents. Comme pour les formes asymétriques on admettra que le moment dipolaire reste dirigé suivant Oz, on peut simplifier les formules précédemment obtenues et ne retenir que la quantité Γ , proportionnelle au coefficient γ_{max} , définie par :

$$\Gamma = I \cdot e^{-\frac{W_V}{kT}} \left[1 - \frac{\kappa^2}{(J+1)^2}\right] \cdot \frac{v_o^3}{\Delta v}$$

III : RESULTATS EXPERIMENTAUX

Lorsque nous avons affaire à des raies simples, bien résolues, la valeur relative de leurs intensités vérifie assez bien l'expression de Γ , compte tenu de la précision que l'on peut escompter sur de telles mesures. L'appréciation de la ligne de zéro de l'absorption est parfois rendue difficile par une différenciation de la raie causée par l'électronique du système de détection ou par une modulation de la valeur de l'énergie de radiation due aux réflexions parasites qui se produisent sur les fenêtres de la cellule d'absorption.

La figure 2.a. montre quelques enregistrements de spectres de rotation où des raies d'états de vibration différents ont des fréquences voisines. Le tableau IE1 permet la comparaison entre le rapport des intensités mesurées à l'aide d'une unité arbitraire u indiquée sur la figure, et le rapport des coefficients Γ . Pour calculer Γ nous avons admis que les valeurs de v_0 et Δv étaient les mêmes à l'intérieur d'un même groupe de comparaison ; les poids statistiques de spin seront déterminés chapitre IV.

Figure 2a : Comparaison des intensités d'absorption de quelques raies d'états de vibration différents. Fréquences exprimées en MHz.

u : unité arbitraire pour les intensités mesurées.

Etat de vibratíon	J → J+1	(*)	$I_{(K-\Sigma_{t_{t_{t_{t}}}})}$	Intensité mesurée	rapport	Г rapport
v ₂₀	12 → 13	6	24	³⁰)	0	2,64
² v20	12 → 13	7	48	13	2,3	1,31
^v 20	13 + 14	2	24	56	2.2	2,64
2v20	13 → 1 4	ł	48	25	2,2	1,4
ν ₁₉ + ν ₂₀	13 → 14	3	40	23	2 F	0,7
v ₁₉	13 → 14	5	24	80)	3,5	1,92
$v_{19} + v_{20}$	13 → 14	4	48	17 🐧	4,/	0,44

Figure 2b : Partie de la transition J = 10 + 11 de la somme d'états $v_{19}(E) + v_{20}(E)$

(*) N° de la raie dans la figure 2a

Pour la composante vibrationnelle $l_t + l_t = 0$ de la combinaison d'état $v_{19}(E) + v_{20}(E)$ les résultats apparaissent sur la figure 2.b et dans le tableau IE2.

K	^l t	l _t	$I(K-\Sigma_{t}l_{t})$	Intensité F	Intensité mesurée
0	í. 1	-1	24	1	1,1
0	-1	1	24	1	0,9
2	1	-1	40	1,7	1,1
2	-1	1	40	1,7	1,8
5	1	-1	40	1,3	1,5
10	1	-1	40	0,3	0,6

Tableau IE2

Nous n'avons considéré que les raies bien résolues, simples. Pour le calcul de Γ nous avons pris pour unité l'intensité des raies K = 0.

Les résultats ci-dessus montrent que le maniement des intensités d'absorption doit être fait avec précaution. Si elles sont une auxiliaire précieuse, les intensités ne permettent cependant pas à elles seules l'identification des spectres, à fortiori lorsque par suite de valeurs particulières des constantes moléculaires, les raies ne sont pas toutes distinctes les unes des autres.

CHAPITRE II

ASPECTS EXPERIMENTAUX

A - GENERALITES SUR LA MOLECULE DE TRIOXANE

La molécule de TRIOXANE, $(H_2CO)_3$, trimère cyclique du Formaldéhyde est une toupie symétrique aplatie appartenant au groupe de symétrie C_{3V} . On la trouve commercialisée sous forme cristalline avec une pureté déclarée de 98%. La tension de vapeur saturante à température ordinaire est de l'ordre de 4 Torr.

Ses vingt états fondamentaux de vibrations se répartissent en :

- 7 vibrations totalement symétriques de type A,
- 3 vibrations de type A₂
- 10 vibrations dégénérées d'ordre 2.

Lorsque l'étude de cette molécule a été entreprise au laboratoire peu d'informations étaient disponibles.

Les rares travaux effectués dans le domaine de l'Infra-Rouge se bornent à donner sans aucune précision, les niveaux d'énergie de vibration et leurs types de symétries [16,17]. Quelques études par diffraction électronique [18,19] ou par rayons X [20] conduisent à une structure plus ou moins précise. Dans le domaine des ondes hertziennes, sont localisées pour $J \leq 3$ les spectres de rotation pure de l'état fondamental de vibration et de quelques états vibrationnels excités [21]. Le moment dipolaire permanent de la molécule, mesuré à partir du premier déplacement *Stark* dans la transition $J = 1 \rightarrow 2$, est estimé à 2,08 ± 0,1 Debye ; mesuré dans une solution de benzène il a pour valeur 2,18 Debye [22].

En spectroscopie hertzienne il est rarement possible d'observer les spectres de rotation de tous les états de vibration d'une molécule car la population des niveaux d'énergie, et par là même, le coefficient d'absorption, décroît très vite avec l'énergie de vibration. La masse relativement lourde du TRIOXANE (M=90) fait que de nombreux états, fondamentaux ou non, ont un niveau de vibration inférieur à 1000 cm⁻¹. Sur la figure (3) nous avons positionné quelques uns de ces états en indiquant leur type de symétrie. Le tableau IIA1 donne une indication de la valeur du coefficient γ_{max} . Compte tenu de la sensibilité de notre appareillage il paraît peu probable de pouvoir observer pour des valeurs "raisonnables" de J, c'est à dire se prétant sans trop de difficultés à une étude théorique, les spectres des états vibrationnels d'énergie supérieure à 1000 cm⁻¹.

VIBRATION	VIBRATION SYMETRIE		FACTEUR DE BOLTZMANN	γ_{max} (b) cm ⁻¹ . 10 ⁻⁶
FONDAMENTAL	A 1	0	1	48
v ₂₀	E	307	0,229	11
7 ^۷ 7	A ₁	467	0,106	5
^v 19	Е	525	0,08	4
² v ₂₀	A + E 1	614	0,052	2,6
^v 6	A ₁	752	0,026	1,3
ν ₇ + ν ₂₀	E	774	0,024	1,2
^v 19 ^{+ v} 20	$A_1 + A_2 + E$	832	0,018	0,9

(a) valeurs obtenues dans la référence [16]

(b) valeur calculée en prenant $\Delta v = 6$ MHz (pression de 1 Torr)

Tableau IIA1

- 33 -

- 34 -

B - APPAREILLAGE UTILISE

Le relevé des spectres a été effectué suivant les nécessités, à l'aide soit d'un spectromètre vidéo, soit d'un spectromètre à effet *Stark* de type HUYGHES et WILSON [23].

Les sources hyperfréquences utilisées sont des klystrons de type reflex qui couvrent continûment la gamme de fréquence 30 - 80 GHz et presque continûment la région 90 - 118 GHz. En dehors de ces zones nous utilisons les harmoniques de rang 2,3 ou 4 des oscillateurs fondamentaux obtenus à l'aide de multiplicateurs de fréquence. A la détection, la séparation de ces harmoniques se fait par l'emplo de filtre passe haut. Nous avons pu ainsi mesurer les raies d'absorption dont les fréquences sont comprises entre 30 et 290 GHz.

Les cellules utilisées, en guide de la bande X, sont surdimensionnées au fréquences de travail de façon à rendre négligeable l'élargissement des raies par collision des molécules contre les parois et de façon à éviter des atténuations prohibitives. Elles ont une longueur appropriée pour garder une bonne sensibilité dans la gamme de fréquences explorée : 3 à 13 mètres en spectrométrie vidéo, 3 mètres en spectrométrie Stark.

I : SPECTROMETRE VIDEO

Il est utilisé chaque fois qu'une bonne résolution spectrale est indispensable ; c'est notamment le cas pour l'observation des raies de la toupie symétrique. Mais il est également employé quand la technique de la spectrométrie par effet *Stark* n'est plus possible en particulier par insuffisance d'énergie.

La sensibilité de cet appareillage étant moins bonne que 10^{-6} cm⁻¹ et les coefficients d'absorption des états de vibration étudiés étant au mieux de cette grandeur, nous avons amélioré la sensibilité en utilisant une méthode d'échantillonnage qui consiste à extraire un signal répétitif d'un bruit aléatoire Nous pouvons ainsi observer les raies ayant une absorption supérieure à 10^{-7} cm⁻¹.

II : SPECTROMETRE A EFFET STARK

D'un emploi moins commode que le précédent mais plus sensible d'un facteur 80 environ, il a permis l'observation des raies des formes asymétriques de la molécule pour les fréquences inférieures à 100 GHz.

Un signal carré, de fréquence 50 kHz et d'amplitude 100 volts, appliqué sur l'électrode centrale de la cellule est en général suffisant pour moduler la raie.

La plupart des relevés ont été fait en stabilisant en phase, par un dispositif à deux étages, la source hyperfréquence sur un signal issu d'un oscillateur étalon. La fréquence de ce dernier, 5 MHz, est connue avec une erreur relative inférieure à 10⁻⁸. Les figures (4 et 5) donnent les schémas synoptiques des montages utilisés.

C - RESOLUTION DES SPECTRES

A la difficulté d'observation des raies liée à une faible absorption dipolaire vient s'ajouter un problème de résolution spectrale en partie dû à un faible coefficient de distorsion centrifuge D_{JK} (il vaut environ -2,05 kHz) qui déplace peu en fréquence les raies de |K| différents.

Si on néglige l'élargissement dû à l'appareillage électrique ou à la saturation lorsque la population des différents niveaux moléculaires n'est plus régie par la statistique de *Boltzmann*, on estime [15] que la largeur d'une raie observée, à mi-hauteur, est donnée par l'expression :

$$2\Delta v = [(2\Delta v_1)^2 + (2\Delta v_2)^2 + (2\Delta v_3)^2]^{1/2}$$

où

 $2\Delta v_1 = \text{largeur Doppler}$ $2\Delta v_2 = \text{largeur due aux chocs des molécules entre elles}$ $2\Delta v_3 = \text{largeur due aux chocs des molécules contre les parois.}$

Le spectromètre de type vidéo utilisé, le choix de la longueur et de la largeur de la cellule d'absorption, l'élimination de tout élargissement causé

t7

.

Figure 4 : SCHEMA SYNOPTIQUE DU MONTAGE EN SPECTROSCOPIE VIDEO

.

-4

.

¢

par l'électronique du système de détection joints au compromis à trouver entre d'une part le rapport signal/bruit et d'autre part la pression de gaz régnant à l'intérieur de la cellule et la vitesse de balayage en fréquence de la source, font qu'il est possible d'observer les raies isolées avec une largeur proche de la largeur Dopplet, à savoir :

$$\Delta v_{\rm D} = 2\Delta v_1 = \frac{2v_0}{C} \sqrt{2k N_0 \log^2} \cdot \sqrt{\frac{T}{M}}$$

où

k = constante de Boltzmann C = célérité de la lumière N_o = nombre d'Avogadro T = température M = masse moléculaire v_o = fréquence de résonance

A température ordinaire, pour la molécule de TRIOXANE on a :

 $\Delta v_{\rm D} # 1,3.10^{-6} v_{\rm O}$

de sorte que la largeur Dopplet d'une raie qui croît avec la fréquence varie entre 0,08 MHz pour la transition $J = 5 \div 6$ et 0,36 MHz pour la transition $J = 26 \div 27$.

La figure 6 montre l'influence de la pression du gaz et de la gamme de fréquence balayée sur la résolution spectrale (le repérage des pressions est éffectué à l'aide d'une jauge de Pirani étalonnée pour l'air). La différence entre les cas (b) et (c) est une amplitude de balayage plus faible pour (c).

Il semble raisonnable d'admettre que deux raies de même intensité, de fréquences voisines v_0 et v'_0 seront effectivement résolues si elles sont distantes d'une quantité au moins égale à $3/2.\Delta v_D$ comme l'indique les schémas ci-dessous. Cette largeur Doppler inhérente à la technique expérimentale classique utilisée est une limite impérative à une meilleure résolution spectrale. L'utilisation d'un spectromètre à jet serait peut-être susceptible de franchir cette barrière.

40

Figure 6 : Partie de la transition $J = 8 \Rightarrow 9$ de la combinaison d'état ν_{19} (E) + ν_{20} (E) correspondant à la composante vibrationnelle $\Sigma_t \ \ell_t = 0$

BUS

Lorsque la raie est résolue'l'erreur expérimentale Δv_{exp} rapportée à la fréquence fondamentale mesurée est de l'ordre de 40 kHz, à l'exclusion des cas particuliers où les intensités d'absorption étant très faibles nous avons dû augmenter la pression du gaz dans la cellule ; c'est le cas pour quelques raies de l'état $v_{19}(E) + v_{20}(E)$. Lorsque la résolution spectrale est incomplète l'erreur de mesure peut atteindre $\Delta v_{exp} + \Delta v_{D}$.

En spectrométrie *Stark* les mesures sont en général données avec une précision meilleure que 0.15 MHz. Cependant pour les raies d'intensité très faible pour lesquelles la détermination du maximum d'absorption est rendue plus difficile par un élargissement résultant d'une pression de gaz de l'ordre de 0,1 Torr, l'erreur de pointé peut parfois atteindre 0.2 MHz.

CHAPITRE III

ETUDE DES FORMES ASYMETRIQUES

Chronologiquement l'étude des formes asymétriques du TRIOXANE, qui auparavant n'avait jamais été abordée, n'a sérieusement été entreprise qu'une fois en possession de renseignements significatifs sur quelques états de vibration de la toupie symétrique dont bien évidemment l'état fondamental [32]. Or ces formes isotopiques permettent, entre autre, de déterminer avec le plus de ' précision la constante rotationnelle B^{ZZ} de la toupie symétrique, quantité qu'il est utile de connaître lors des études des spectres des états vibrationnels excités dégénérés. C'est pourquoi nous traiterons en premier des spectres des molécules faiblement asymétriques.

A - METHODE D'IDENTIFICATION DES SPECTRES DES MOLECULES

FAIBLEMENT ASYMETRIQUES

Les relations développées au paragraphe IC jointes aux règles de sélection rotationnelles bien connues de la toupie symétrique : $J \rightarrow J+1$; K \rightarrow K, conduisent à une forme linéaire de l'expression des fréquences des molécules faiblement asymétriques si K > 2 :

IIIA1 $F(J,K) = \left[A + C + (A-C)\frac{\kappa+\epsilon}{2} - \frac{A-C}{8}\frac{(\kappa-\epsilon)^2}{\kappa+3\epsilon} - 2\Delta_{JK}K^2\right] (J+1)$ $- \left[4\Delta_J + \frac{A-C}{8}\frac{(\kappa-\epsilon)^2}{\kappa+3\epsilon} \cdot \frac{1}{\kappa^2-1}\right] (J+1)^3$

Si $v_{(J,K)}$ est la fréquence "réduite" égale à $F_{(J,K)}/J+1$ on a :

$$v_{(J,K)} = \alpha - \beta - 2\Delta_{JK} \kappa^2 - (4\Delta_J + \frac{\beta}{\kappa^2 - 1}) (J+1)^2$$

en ayant posé :

$$\alpha = A + C + (A-C) \frac{\kappa + \epsilon}{2}$$
$$\beta = \frac{A-C}{8} \frac{(\kappa - \epsilon)^2}{\kappa + 3\epsilon}$$

I : ETUDE GRAPHIQUE

Si on porte $v_{(J,K)}$ en fonction de $(J+1)^2$ on obtient des points qui se placent sur une série de droites correspondant chacune à une valeur particulière de |K|. Chaque droite est caractérisée par sa pente p_{K} et son ordonnée à l'origine a_{r} définis par :

 $p_{K} = - (4\Delta_{J} + \frac{\beta}{\kappa^{2} - 1})$ $a_{K} = \alpha - \beta - 2\Delta_{JK} \cdot \kappa^{2}$

L'étude de p_K et a_K en fonction respectivement des variables $\frac{1}{K^2-1}$ et K^2 mène à une détermination graphique des valeurs de Δ_J et β d'une part, $\frac{1}{K^2-1}$ et ($\alpha-\beta$) d'autre part

Une troisième relation s'impose pour connaître les trois constantes rotationnelles A, B et C intervenant dans α et β ; elle nous est fournie en considérant l'écart entre deux niveaux d'énergie correspondant à la même valeur absolue de K.

II : DETERMINATION DU PARAMETRE D'ASYMETRIE $b = \frac{\kappa - \epsilon}{\kappa + 3\epsilon}$

Soit W_K^{J+1} le niveau d'énergie associé aux nombres quantiques J+1 et K. Si on se place dans le cas où les niveaux J+1, |K| et J+1, -|K| sont effectivement séparés, les fréquences des transitions qui leur sont liées, sont égales à :

$$F_{2(J,K)} = W_{2,K}^{J+1} - W_{2,K}^{J}$$

 $\mathbf{F}_{1(\mathbf{J},\mathbf{K})} = \mathbf{W}_{1,\mathbf{K}}^{\mathbf{J}+1} - \mathbf{W}_{1,\mathbf{K}}^{\mathbf{J}}$

où les indices 1 et 2 repèrent les deux valeurs |K| et -|K|.

L'écart de fréquences entre les deux transitions ci-dessus : $\Delta F_{(K)} = F_2(J,K) - F_1(J,K)$ est encore égal à : $\Delta F_{(K)} = \Delta W_K^{J+1} - \Delta W_K^J$ où ΔW est justement la relation IB4 qui donne l'écart entre les niveaux d'énergie dédoublés.

Un simple calcul conduit à une valeur approchée du paramètre d'asymétrie.

Finalement les constantes de rotation sont données par les quantités :

$$\mathbf{A} = \frac{\alpha}{2} - 2 \frac{\beta}{b}$$
$$\mathbf{B} = \frac{\alpha}{2} + 2 \frac{\beta}{b}$$
$$\mathbf{C} = \frac{\alpha}{2} - 2 \frac{\beta}{b^2}$$

Pour une molécule asymétrique proche de la toupie symétrique aplatie α prend la valeur A+B ; dans le cas contraire α = B+C.

B - APPLICATION AUX FORMES ASYMETRIQUES DU TRIOXANE

La présence d'un atome ¹³C ou ¹⁸O rompt la symétrie de la molécule "mère" et donne naissance à une molécule plus ou moins asymétrique. Les formes isotopiques $(H_2^{13}CO)(H_2^{12}CO)_2$ et $(H_2C^{18}O)(H_2C^{16}O)_2$ sont étudiées dans leur abondance naturelle à savoir : 3,3 % pour la première et 0,6 % pour la seconde.

La représentation III^r est particulièrement bien adaptée à leur étude.

Malgré l'asymétrie le moment dipolaire électrique reste pratiquement dirigé suivant l'axe z de la toupie symétrique. Aussi compte tenu de la sensibilité de notre appareillage et du fait que l'intensité d'absorption dépend de $|\stackrel{\rightarrow}{\mu}|^2$, seules les transitions de type ${}^{C}R_{1,0}$ peuvent être observées.

Les transitions rotationnelles relevées, parfois incomplètes pour les faibles valeurs de K₁₁ et grandes valeurs de J, sont les suivantes :

• pour la molécule $(H_2^{13}CO), (H_2^{12}CO)_2$

 $J = 2 \rightarrow 3, 3 \rightarrow 4, 4 \rightarrow 5, 5 \rightarrow 6, 6 \rightarrow 7, 8 \rightarrow 9, 10 \rightarrow 11, 12 \rightarrow 13,$ 13 \rightarrow 14, 14 \rightarrow 15, 16 \rightarrow 17, 19 \rightarrow 20, 20 \rightarrow 21, 22 \rightarrow 23 et 26 \rightarrow 27, soit environ 210 raies mesurées.

• pour la molécule $(H_2 c^{18} O) (H_2 c^{16} O)_2$

 $J = 4 \rightarrow 5, 5 \rightarrow 6, 6 \rightarrow 7, 8 \rightarrow 9, 10 \rightarrow 11, 12 \rightarrow 13, 13 \rightarrow 14, 14 \rightarrow 15,$ 16 \rightarrow 17, 17 \rightarrow 18, 19 \rightarrow 20, 20 \rightarrow 21, 24 \rightarrow 25 et 25 \rightarrow 26, soit environ 200 raies mesurées.

Les spectres des molécules faiblement asymétriques se présentent sous la forme d'un groupe de raies central avec de part et d'autre les raies de dédoublement K qui s'en écartent d'autant plus qu'elles correspondent à de plus faibles valeurs de K. Un exemple en est donné par la figure (7) pour la transition $J = 5 \rightarrow 6$.

L'application de la méthode décrite conduit aux figures 8 à 11. L'exploitation de ces dernières mène aux résultats rassemblés dans le tableau IIIB1.

PARAMETRES (MHz)	(H2 ¹³ CO) (H2 ¹² CO) 2	(H ₂ c ¹⁸ 0) (H ₂ c ¹⁶ 0) ₂	Parametres (MHz)	(H ₂ CO) ₃
A' B' C'	5176,46 5271,02 2928,60	5079,46 5269,10 2878,40	A B	5273,258 5273,258
^Δ јк	1,31.10 ⁻³ -1,98.10 ⁻³	1,3.10 ⁻³ -1,88.10 ⁻³	р ^д т	1,35.10 ⁻³ -2,03.10 ⁻³

Tableau

u IIIB1

Tableau IIIB2

- 46 -

- 48 -

Figure 9 : DETERMINATION DE QUELQUES CONSTANTES DE LA MOLECULE (H2¹³CO)(H2¹²CO)2

- 50 -

Figure 11 : DETERMINATION DE QUELQUES CONSTANTES DE LA MOLECULE $(H_2 c^{18} O)(H_2 c^{16} O)_2$

Chaque courbe des figures 8 et 10 est identifiée par une valeur de $K_{+1} = |K|$. Lorsqu'il y a levée de dégénérescence on différencie les courbes issues des niveaux d'énergie vérifiant : $K_{-1} + K_{+1} = J+1$ par un signe + affecté à la valeur |K|, de celles provenant des niveaux $K_{-1} + K_{+1} = J$ repérables par un signe -.

Si pour chaque molécule les quantités A+B, β , β_J et β_{JK} sont déterminées sans ambiguité, il n'en va pas de même pour b ; la valeur de cette dernière n'est pas unique et peut varier sensiblement avec les valeurs de J et K qui servent à la calculer, tableaux IIIB3 et IIIB4. Nous vérifions en particulier que pour avoir une bonne connaissance de b il y a avantage à prendre des transitions de faibles valeurs de K et J. Conformément à la condition de validité de l'utilisation de la théorie des perturbations. De plus nous utilisons une expression basée sur la relation de WANG (IB4) qui est elle même une forme approchée. KIVELSON [12] donne pour le dédoublement K une expression plus complète, valable à l'ordre K+2, qui a cependant l'inconvénient de ne pas permettre une détermination aussi facile de la valeur de b :

 $\Delta E = \Delta E_{0} \{ 1 + [c_{1} + c_{2}J(J+1) + c_{3}J^{2}(J+1)^{2}]b^{2} \}$

où ΔE_{c} est la relation (IB4)

 C_1, C_2, C_3 sont des coefficients tabulés, indépendants de J et des paramètres structurels.

ĸ	J+1	$\Delta \mathbf{F}_{(K)}$ (MHz)	$\Delta \mathbf{F}_{(K+1)}$ (MHz)	b	
1	Д	378 52	28 88	0.0203	
	5	470.34	57.17	0.0203	
	5	472.34	57.17	0.0202	
2	5	57.17	1.16	0.0206	
1	6	565.07	98.55	0.02	
2	6	98.55	3.10	0.0209	
1	7	655.87	154.25	0.0196	
2	7	154.25	6.94	0.0213	
1	9 g - ** s	827.15	304.78	0.0184	
2	9	304.78	25.07	0.0228	
3	9	25.07	0.69	0.0206	
4	23	404.41	51.99	0.0256 *	
5	23	51.99	3.44	0.0218	

Tableau

IIIB3 : Molécule $(H_2^{13}CO)(H_2^{12}CO)_2$

- 52 -

к	J+1	ΔF (K)	ΔF _(K+1)	Ъ
2	5	219.25	8.67	0.0402
1	6	1101.86	361.75	0.0375
2	6	361.75	23	0.0423
2	7	535.38	53.64	0.0474
2	9	929.01	183.77	0.0548 *
3	9	183.77	9	0.0367
2	17	1810.38	1650.55	0.0682 *
4	17	696.5	100.36	0.054 *
5	17	100.36	7.04	0.0442

Tableau IIIB4 : Molécule (H2C¹⁸O)(H2C¹⁶O)2. Fréquences exprimées en MHz.

La valeur finalement retenue pour b est la moyenne des différents résultats, calculée en ne tenant pas compte des quantités suivies d'une étoile qui s'écartent trop de cette moyenne, tableau IIIB5

MOLECULE	METHODE DE PERTURBATION	DIAGONALISATION NUMERIQUE
(H ₂ ¹³ co) (H ₂ ¹² co) ₂	0.02063	0.0204
(H ₂ c ¹⁸ 0) (H ₂ c ¹⁶ 0) ₂	0.04138	0.04079

Tableau IIIB5

Après ce travail qui nous a permis d'identifier les spectres sans ambiguité, les niveaux d'énergie du rotateur asymétrique sont calculés par diagonalisation numérique de la matrice énergie. Le formalisme retenu est celui de WATSON, développé aux termes "quartiç" comme indiqué au paragraphe IB.

<u>C</u> - <u>CALCUL</u> <u>DEFINITIF</u> <u>DES</u> <u>PARAMETRES</u> <u>MOLECULAIRES</u>

Les trois constantes rotationnelles ainsi que les cinq coefficients de distorsion centrifuge sont affinés par une méthode de moindres carrés [24].

I : PROGRAMME DE CALCUL NUMERIQUE

1°/ Détermination des paramètres

Disposant d'un système de N mesures fonctions des p paramètres non correlés Z(k) (k = 1,...p), la détermination de ces paramètres se ramène à la résolution du système surabondant :

$$F^{Cal}[Z(1), Z(2), ..., Z(p)] = F^{mes}$$

Ce système n'ayant pas en général de solutions exactes, il reste N résidus r_i = $f_i^{mes} - f_i^{cal}$ ou i = 1, ...N

A partir d'une approche $Z^{\circ} = \{Z^{\circ}_{(1)}, Z^{\circ}_{(2)}, \dots Z^{\circ}_{(p)}\}$ des différents paramètres, nous cherchons à déterminer pour le système ci-dessus une meilleure solution Z, telle que :

$$Z(k) = Z^{O}(k) + dZ(k)$$

Le problème est donc la détermination des divers accroissements dZ(k). La solution qui consiste à imposer à chaque Z(k) un accroissement donné n'a pas été retenue car elle peut conduire à de très mauvais résultats lorsqu'on dispose d'une solution de départ trop éloignée des valeurs réelles. Nous déterminons en fait ces accroissements à partir du système linéaire :

$$\left(\frac{\partial F}{\partial Z}\right)_{Z=Z^{O}} dZ = F^{mes} - (F^{cal})_{Z=Z^{O}}$$

Ce système est résolu à partir de la méthode des moindres carrés qui consiste à rechercher des solutions telles que la somme des carrés des résidus soit minimale. Pour celà il est nécessaire de connaître $\left(\frac{\partial F}{\partial Z}\right)_{Z=Z^{O}}$

Une fréquence d'absorption f_i étant la différence entre deux niveaux d'énergie initial noté 1 et final noté 2, on peut poser : $f_i = \lambda_{i2} - \lambda_{i1}$ où les λ sont les valeurs propres des matrices $H_2(Z)$ et $H_1(Z)$.

Soit λ_0 une valeur propre de $H(Z^\circ)$ et λ une valeur propre de H(Z)où $Z = Z^\circ + dZ$. On peut écrire H sous la forme :

$$H(Z) = H(Z^{O}) + dH$$
 avec $dH = \sum_{k=1}^{D} \left(\frac{\partial H}{\partial Z(k)}\right) dZ_{(k)}$

Si on considère dH comme un terme de perturbation devant $H(Z^{O})$ prise pour matrice d'ordre zéro, on peut calculer λ à partir d'un calcul de perturbations stationnaires.

Au premier ordre d'approximation on a : si V est un vecteur propre associé à la valeur propre λ_{c} :

$$HV = HV + dHV$$

soit encore $\lambda = \lambda_{o} + \tilde{V}_{o} dH V_{o}$ où \tilde{V}_{o} est le vecteur transposé de V_{o} .

Le développement de Taylor au premier ordre, de la valeur propre de λ s'écrit :

$$\lambda = \lambda_{o} + \sum_{k=1}^{p} \left(\frac{\partial \lambda}{\partial Z_{(k)}} \right)_{Z=Z^{O}} dZ_{(k)}$$

En vertu de l'unicité du développement en série nous avons :

$$\sum_{k=1}^{p} \left(\frac{\partial \lambda}{\partial z_{(k)}}\right)_{z^{o}} dz_{(k)} = \sum_{k=1}^{p} \tilde{v}_{o} \left(\frac{\partial H}{\partial z_{(k)}}\right)_{z=z^{o}} v_{o} dz_{(k)}$$

soit

$$\left(\frac{\partial \lambda}{\partial Z_{(k)}}\right)_{Z=Z^{O}} = \tilde{V}_{O}\left(\frac{\partial H}{\partial Z_{(k)}}\right)_{Z=Z^{O}} V_{O}$$

Les éléments matriciels de $\left(\frac{\partial F}{\partial Z}\right)_{Z=ZO}$ sont comme on le voit facilement calculés à partir des jacobiens correspondant aux matrices H₁ et H₂. Les vecteurs propres sont obtenus en diagonalisant les matrices énergie par la méthode de JACOBI.

2°/ Qualité des résultats

L'écart type σ étant défini par :

$$\sigma = \sqrt{\frac{\sum_{i} (f_{i}^{\text{mes}} - f_{i}^{\text{cal}})^{2}}{N - Q}}$$

$$i = 1, N$$

Q = nombre de paramètres à améliorer (Q est au plus égal à p) le critère de convergence généralement utilisé est que σ soit de l'ordre de grandeur de la précision expérimentale de mesure [25].

Si A est la matrice ayant pour éléments $A_{ik} = \frac{\partial f_i^{cal}}{\partial Z_k}$ (i=1,N; k=1,Q) et A sa matrice transposée, on montre qu'il est possible de déduire de l'inverse de la matrice normale A une estimation de la précision ΔZ_k sur les paramètres, appelée déviation standard, obtenue par :

$$\Delta z_{k} = \sigma \sqrt{\left(\hat{A}A\right)^{-1}_{kk}}$$

Nous avons écrit le programme numérique dans le langage ALGOL et l'exploitation, ainsi que celle des autres programmes de calcul dont nous aurons besoin par la suite, en est faite sur l'ordinateur 10070 C.I.I. du Centre Interuniversitaire de traitement de l'Informatique de l'Université de Lille I.

II : VALEURS DES PARAMETRES

Le meilleur jeu de valeurs obtenues, rassemblées en annexe dans le tableau T1, est ensuite testé sur des transitions n'ayant pas servi au calcul : transitions J = $20 \rightarrow 21$ pour la molécule en ¹³C, J = $25 \rightarrow 26$ pour celle en ¹⁸O. Ce tableau contient également l'écart statistique calculé pour chaque paramètre.

Les fréquences calculées sont données dans les tableaux T2 et T3 (tout tableau repéré par une lettre T est placé en annexe) ; nous y avons également porté les écarts : $\Delta F = F_c - F_m$ entre fréquences calculées et fréquences mesurées. A de très rares exceptions près, on vérifie que ces derniers sont toujours inférieurs aux erreurs expérimentales.

Différentes remarques sont à faire à la vue de ces tableaux : - les valeurs des constantes A' et B' sont très sensiblement égales à celles obtenues par traitement de la matrice énergie par méthode de perturbation ; la valeur C' s'en écarte raisonnablement.

- pour la forme asymétrique en ¹³C, les coefficients de distorsion centrifuge Δ_{J} et Δ_{JK} sont sensiblement ceux de la toupie symétrique mère D_{J} et D_{JK} dont les valeurs apparaissent dans le tableau IIIB2. Pour la forme en ¹⁸O les écarts sont peu accentués et rendent compte d'une asymétrie évidemment plus grande que pour la forme en ¹³C.

En résumé les paramètres ainsi déterminés sont en bon accord avec ceux précédemment obtenus par les formules approchées issues du traitement par perturbation de la matrice énergie et justifient pleinement nos hypothèses de départ, base de l'identification des spectres.

Les substitutions isotopiques effectuées sur les atomes d'une molécule prise comme état de référence, conduisent à des changements en particulier au niveau des moments d'inertie principaux. Si les atomes mis en cause ne sont pas localisés au voisinage du centre de gravité de la molécule de départ (ou éventuellement sur l'axe de symétrie) une structure moléculaire peut-être déduite des études des différentes formes substituées.

D - APPLICATION AU CALCUL DE LA STRUCTURE MOLECULAIRE DU TRIOXANE

I : MOMENTS D'INERTIE PRINCIPAUX D'UNE MOLECULE

Le tenseur d'inertie d'une molécule constituée d'atomes de masse m_i repérés par leurs distances \vec{r}_i au centre d'un référentiel G_{xyz} est défini par :

- 57 -

 $I_{\alpha\beta} = \Sigma_{i} m_{i} (|\vec{r}_{i}|^{2} \delta_{\alpha\beta} - \alpha_{i}\beta_{i}) \text{ ou}$ $\alpha,\beta = (x,y,z) \text{ et } \delta_{\alpha\beta} \text{ est le tenseur unité}$

Les valeurs propres de la matrice inertie sont les moments d'inertie principaux associés aux axes principaux de la molécule. Expérimentalement nous accédons aux moments d'inertie principaux par rapport au centre de gravité de la molécule.

Le système d'axes liés à la molécule symétrique (chapitre I) est tel que : l'axe G_z restant orienté suivant l'axe de symétrie, l'axe G_z est perpendiculaire au plan contenant l'axe G_z et l'atome substitué ; c'est à dire que la coordonnée y de cet atome est nulle pour la configuration d'équilibre.

Dans ce référentiel les éléments non nuls du tenseur d'inertie relatif à la molécule substituée s'écrivent :

IIID1

$$I_{xz}' = -\mu xz$$

$$I_{yy}' = I_{y} + \mu (x^{2}+z^{2})$$

$$I_{xx}' = I_{x} + \mu z^{2}$$

$$I_{zz}' = I_{z} + \mu x^{2}$$

où

- I, I et I sont les moments d'inertie principaux de la molécule mère.
 I_X, I_Y, et I_Z, sont ceux de la forme substituée. Les molécules sont considérées dans leurs états d'équilibre.
 - x, y z sont les coordonnées de l'atome échangé. • $\mu = \frac{M(m-m')}{M+m-m'}$ avec M = masse totale de la molécule mère m = masse de l'atome à remplacer m'= masse de l'atome substitué

Les expressions IIID1 supposent que le remplacement d'un atome de masse m par un atome de masse m' ne modifie pas les distances inter-atomiques.

Ecrivant qu'il y a conservation de la trace d'un tenseur lors de la rotation du trièdre de référence et qu'en plus ici $I_x = I_y$, nous obtenons :

 $I_{z} = I_{z} + I_{y} - I_{x}$

IIID2

II : CALCUL DE LA CONSTANTE DE ROTATION B^{ZZ} DE LA TOUPIE SYMETRIQUE

Le premier intérêt de l'étude des substitutions isotopiques réside dans le fait que l'on peut en déduire la constante rotationnelle de la molécule mère associée à l'axe de symétrie z ; constante inacessible par l'étude directe du spectre de rotation de la molécule symétrique.

Appliquant aux deux variétés en 13 C et 18 O la relation IIID2, nous obtenons pour B^{ZZ}:

Variété	en	13 c	:	B ^{ZZ}	=	2933.95	±	0.34	MHz
Variété	en	¹⁸ 0	•	BZZ	=	2931.81	±	0.53	MHz

Ces résultats appellent quelques remarques :

• la précision sur B^{ZZ} dépend de la précision sur les quantités $I_{X'}$, $I_{Y'}$ et $I_{Z'}$ proportionnelles aux inverses des constantes rotationnelles A', B' et C'. Or ces dernières sont d'autant mieux définies que l'on dispose de transitions répondant à des règles de sélections différentes, notamment celles satisfaisant à $\Delta J = 0$. Ce n'est pas le cas ici où seules des raies de type ${}^{C}R_{1,0}$ sont accessibles expérimentalement.

Pour le seul paramètre C', nous avons intérêt à nous placer dans le cas où la contribution à l'énergie du terme dépendant du facteur d'asymétrie est importante, c'est à dire à la fois pour de grandes valeurs de J et de faibles valeurs de K. Ceci est dans l'ensemble bien réalisé pour les molécules en 13 C et 18 O.

• Nous interprétons l'écart entre les deux valeurs de B^{ZZ} par le fait que nous appliquons les relations de KRAITCHMAN, en toute rigueur vraies pour une molécule à l'état d'équilibre, à des constantes d'inertie effectives correspondant à l'état fondamental de vibration qui peut être différent d'une molécule à une autre.

111 : CALCUL DES DISTANCES INTERATOMIQUES

La détermination complète, à partir des constantes d'inertie, de la structure d'une molécule constituée de n atomes exige, en l'absence de toute considération de symétrie, la possibilité d'une substitution isotopique sur (n-1) atomes. Avec des substitutions portant uniquement sur les atomes d'oxygène et de carbone, il n'est pas possible de déterminer entièrement la structure moléculaire du TRIOXANE, aucun renseignement n'étant accessible à propos des atomes d'hydrogène. Mais si nous supposons connues les positions de ces derniers, la structure moléculaire ne dépend plus que de la distance r C-O et des angles /COC et /OCO. Nous admettons que la molécule symétrique a une configuration "chaise" et que les atomes de carbone et d'oxygène se trouvent aux sommets de deux triangles équilatéraux disposés dans deux plans parallèles.

Ecrivant maintenant que le déterminant d'une matrice est invariant lors d'une rotation du système d'axes de référence, nous pouvons déterminer à partir des relations IIID1 les coordonnées d'un atome substitué en fonction des moments d'inertie principaux de la molécule asymétrique et des moments $I_x = I_y$ de la forme mère. Nous obtenons ainsi les relations dites de KRAITCHMAN [26] :

$$\mathbf{x} = \begin{bmatrix} \frac{1}{\mu} & \frac{(\mathbf{I}_{X'} - \mathbf{I}_{Y'}) & (\mathbf{I}_{X'} - \mathbf{I}_{Z'})}{\mathbf{I}_{X'} - \mathbf{I}_{Y'} - \mathbf{I}_{Z'} + \mathbf{I}_{Y}} \end{bmatrix}^{1/2}$$
$$\mathbf{z} = \begin{bmatrix} \frac{1}{\mu} & \frac{(\mathbf{I}_{Y'} - \mathbf{I}_{Y}) & (\mathbf{I}_{Z'} - \mathbf{I}_{Y'})}{\mathbf{I}_{Y'} + \mathbf{I}_{Z'} - \mathbf{I}_{X'} - \mathbf{I}_{Y}} \end{bmatrix}^{1/2}$$

Appliquées aux deux formes substituées on trouve :

distances Å	(H2 ¹³ CO) (H2 ¹² CO) 2	(H ₂ c ¹⁸ 0) (H ₂ c ¹⁶ 0) ₂		
x	1.3289 ₈ ± 0.0001	1.3436 ₂ ± 0.0001		
Z	0.2008 ₁ ± 0.0007	0.2239 ₂ ± 0.0008		

A partir de relations géométriques simples dans différents triangles rectangles (figure 12) nous définissons avec précision la forme "chaise" de la molécule :

- 60 -

Figure 12 : GEOMETRIE DE LA MOLECULE

et l' sont respectivement les centres des deux cercles sur lesquels se trouvent d'une part les trois atomes de Carbone C, C' et C'' et d'autre part les trois atomes d'Oxygene O, O' et O''.

$$[r \ O-C]^{2} = (z_{o} + z_{c})^{2} + (x_{c} \sin 60^{\circ})^{2} + (x_{o} - x_{c} \cos 60^{\circ})^{2}$$
$$\sin \frac{OCO}{2} = \frac{x_{o} \sin 60^{\circ}}{OC}$$
$$\sin \frac{COC}{2} = \frac{x_{c} \sin 60^{\circ}}{OC}$$

où l'indice "o" ou "c" affecté aux distances x et z indique la dépendance vis à vis de la substitution en $\begin{bmatrix} 18 \\ 0 \end{bmatrix}$ ou $\begin{bmatrix} 13 \\ C \end{bmatrix}$.

La structure moléculaire ainsi obtenue qui améliore celle publiée antérieurement [27] apparaît dans le tableau IIID1 et peut être comparée à celles résultant d'études par diffraction électronique (D.E), diffraction par rayons X (R.X) ou micro-onde.

	R.X ref.28	R.X ref.20	D.E ref.18	MICRO-ONDE ref.21	PRESENT TRAVAIL
r C-O Å	1.421 (0.006)	1.429(0.004)	1.411 (0.002)	1.411(0.01)	1,422(0,002)
Ł 000	109.6(0.3)	107.8(0.2)	111.0 (0.7)	108.1(1)	112.2(0.2)
4 coc °	110.4(0.2)	108.0(0.2)	109.2(1.0)	111.1(1)	110.3(0.2)

Tableau IIID1

En particulier il semble que l'on puisse lever le doute quant à la grandeur respective des angles OCO et COC et affirmer que le second est le plus petit. Il faut néanmoins remarquer que l'étude en micro-onde se fait sous forme gazeuse alors que par Rayons X l'étude se fait avec une forme cristalline.

E - SPECTRE RESIDUEL

De nombreuses raies d'intensité très faible, semblant se grouper en paquets, ont pu être observées, notamment aux abords des transitions appartenant à la molécule isotopique en 13 C, où il semble que nous ayons pu localiser un nouvel état de vibration. Notre première idée, basée sur un calcul des constantes de rotation fait à partir de la structure de la molécule, a été d'attribuer ces raies à la forme isotopique en 17 O dont la proportion par rapport à la toupie symétrique est de 0,1% et par rapport à la forme en 13 C de 3%.

Une étude analogue à celle effectuée pour les autres formes asymétriques (figures 13 et 14) conduit à des constantes moléculaires qui ne permettent pas d'interpréter convenablement les spectres expérimentaux, la différence : fréquence mesurée - fréquence calculée restant plusieurs fois supérieure à l'érreur expérimentale. L'appel aux constantes de distorsion centrifuge du second ordre n'apporte aucune amélioration.

Sans doute les résultats expérimentaux ont-ils une part de responsabilité : très incomplets notamment pour les raies de K faibles, et de qualité moindre que ceux des autres formes asymétriques, ils conduisent nécessairement à une moins bonne définition des paramètres. Un meilleur relevé spectral, s'il était possible, conduirait à des résultats plus concluants sans pour autant, à notre avis, être en parfait accord avec la théorie.

L'interprétation des spectres a été faite sans tenir compte de l'effet quadripolaire lié à la présence dans la molécule d'un atome ¹⁷0 de spin 5/2. Avec des valeurs grandes pour J et K il semble cependant que nous soyons en droit de le faire, d'autant qu'une structure quadripolaire n'est à priori pas décelable dans les spectres.

En fait rien ne permet d'affirmer que ces spectres doivent être associés à la molécule en ¹⁷O; on ne peut écarter l'hypothèse qu'ils appartiennent à un état de vibration excité de la forme en ¹³C. Par contre la possibilité de dépendre d'autres formes asymétriques est à exclure, ces dernières donnant naissance à des transitions non observables car d'intensité beaucoup trop faible. Pour la même raison d'autres règles de sélection que celles précédemment vues n'ont pas été retenues.

Figure 13

*

.

Par contre un phénomène de résonance, qui ne saurait mettre en cause l'état fondamental de vibration des molécules en 13 c et 18 ne peut être écarté.

Le tableau T4 donne le meilleur jeu de paramètres moléculaires et le tableau T5 résume les fréquences calculées et les identifications probables des fréquences mesurées relatives soit à $(H_2C^{17}O)(H_2C^{16}O)_2$ soit à un état de vibration excité inconnu de $(H_2^{13}CO)(H_2^{12}CO)_2$.

CHAPITRE IV

ETUDE DES ETATS VIBRATIONNELS EXCITES

DE LA FORME SYMETRIQUE
Précédemment nous nous sommes particulièrement intéressés aux spectres de rotation dans les états de vibration fondamentale des molécules. Lorsque nous abordons l'étude des molécules symétriques nous sommes conduits à envisager ses états vibrationnels excités dégénérés et par là même le phénomène d'interaction rotation vibration. Les résultats du chapitre I doivent être complétés en conséquence.

I : LEVEE DE DEGENERESCENCE DES NIVEAUX D'ENERGIE

Tout mode vibrationnel dégénéré excité crée un moment angulaire de vibration dont la projection sur l'axe moléculaire a pour valeur $\zeta_t \, \ell_t \, \hbar$ (où ζ_t est le coefficient de *Coriolis* vérifiant $|\zeta_t| \leq 1$) qui réagit avec le moment angulaire de rotation. *NIELSEN* et ensuite de *HEER* [29] montrent que ce moment angulaire vibrationnel est susceptible de lever partiellement la dégénérescence en K des niveaux d'énergie où K désigne maintenant la projection sur l'axe de symétrie du moment cinétique total.

Dans le cas où plusieurs états dégénérés sont simultanément excités, les niveaux d'énergie de la molécule, au premier ordre, sont donnés par :

IV1
$$E = B_V^{XX} J(J+1) + (B_V^{ZZ} - B_V^{XX}) \kappa^2 - 2B_e^{ZZ} \Sigma_t \kappa \zeta_t \ell_t$$

Ainsi au premier ordre d'approximation, tout niveau $K \neq 0$ se divise en autant de composantes qu'il y a de valeurs différentes pour $\sum_{t} \zeta_t \ell_t$, chaque composante restant cependant doublement dégénérée par suite de l'invariance de $\sum_{t} \zeta_t K \ell_t$ par changement simultané des signes de K et de tous les ℓ_t .

Si nous nous plaçons à un ordre d'approximation supérieur, outre les éléments diagonaux nous devons considérer les éléments non diagonaux par rapport aux l_+ de la forme :

- < K, $l_t \models K \pm 2$, $l_t \pm 2$ > et < K, $l_t \models K \pm 1$, $l_t \mp 2$ > qui conduisent aux résonances rotationnelles du type l et sont caractérisés respectivement par les coefficients q_T et q_{12}^t .

 $- \langle K, l_t, l_t, | K, l_t \pm 2, l_t, \mp 2 \rangle$ dans le cas où deux états de vibration sont simultanément excités, qui conduisent aux résonances et dédoublement

vibrationnel du type l, caractérisés par le paramètre $r_{eff}^{tt'}$. Dans le cas où les éléments diagonaux qu'il couple sont égaux, le premier de ces termes, dans un état de vibration caractérisé par une valeur impair de v_t , devient un terme de dédoublement dit de type l.

Une dégénérescence ne pouvant être levée que par une perturbation qui a la même symétrie que la fonction d'onde totale de la molécule, seuls les niveaux de type A pourront effectivement voir leur dégénérescence se lever. En fait, le calcul effectif des niveaux à partir des constantes moléculaires montre que seul un très petit nombre d'entre eux peut effectivement donner lieu à une vérification expérimentale.

II : REGLES DE SELECTION

Les règles de sélection ID2, d'origine rotationnelle, sont incomplètes pour une toupie symétrique car elles n'envisagent pas l'existence des états vibrationnels dégénérés. Si on ne s'intéresse qu'à la composante μ_z du moment dipolaire permanent, on complète les relations ID2 en ajoutant la condition :

 $\Delta \ell_{\pm} = 0$, $\Delta \ell_{\pm} = 0$

obtenue en considérant l'invariance du moment de transition

$$< v_{+}, \ldots l_{+} \ldots |\mu_{2}| v_{+}', \ldots l_{+}' \ldots >$$

sous l'action de l'opération de symétrie C_3^z .

Il est possible de relier les règles de sélection vibrationnelles précédentes aux règles de sélection rotationnelles sur K en écrivant qu'une transition n'est possible que si l'intégrant de :

< J+
$$\Delta J$$
, K+ ΔK , $v_{+}+\Delta v_{+}$, $\ell_{+}+\Delta \ell_{+}, \dots |\mu_{z}|J, K, v_{+}, \ell_{+}, \dots >$

est totalement symétrique par rapport à l'opération de symétrie C_3^z . On obtient alors la même relation que celle indiquée par G.AMAT [30] :

$$\Delta \kappa - \Sigma_{\pm} \Delta \ell_{\pm} = 3p$$

- 69 -

où p est un entier. Cette relation permet de déterminer, sans les calculer, les éléments de la matrice $[H^+]$ qui sont nuls pour les sauts quantiques ΔK , Δl_t , Δl_t , ... et par là même de simplifier considérablement l'écriture de cette matrice.

III : POIDS STATISTIQUE DE SPIN

Si l'intensité d'absorption d'une raie est fonction du nombre quantique K, une modulation importante est liée au poids statistique de spin attribué à chaque niveau ro-vibrationnel.

Les approximations faites pour calculer l'énergie de la molécule permettent d'écrire la fonction d'état sous la forme : $\psi^{T} = \psi^{e}$. ψ^{VR} . ψ^{S} où les différentes fonctions représentent respectivement :

- l'état électronique, dans notre cas totalement symétrique

- l'état vibro-rotationnel
- l'état de spin nucléaire

Pour notre molécule seules les permutations des spins des atomes correspondant aux rotations C_3 et C_3^2 sont physiquement acceptables. La fonction $\psi^{\rm T}$, liée à un nombre pair de permutations, est ainsi symétrique.

Les deux ensembles de trois atomes d'hydrogène de spin 1/2 représentent 64 fonctions ψ^{S} ayant la symétrie 24A + 20E. On détermine par la notion de produit direct le nombre de fonction de spin ayant un type de symétrie tel que la fonction ψ^{T} appartienne à la représentation A, tableau IV1.

ψ ^{VR}	\mathbf{A}_1 ou \mathbf{A}_2	E
ψ ^S	24 A + 20 E	24 A + 20 E
ψ ^T	24 A + 20 E	40 A + 44 E

Tout niveau A_1 ou A_2 est affecté d'un poids de spin égal à 24 ; tout niveau E d'un poids égal à 40. Si les niveaux A_1 et A_2 ne sont pas dédoublés le poids du niveau global $A_1 + A_2$ est alors égal à 48. Dans ce cas on obtient l'alternance 48, 40, 40 dans les poids des niveaux $|K - \Sigma_t \ell_t| = 3p$, 3p+1 et 3p-1.

Nous sommes maintenant en mesure d'étudier les différents états de vibration définis sur la figure 3. Nous allons successivement les aborder en commençant bien sur par ceux de plus basse énergie qui sont les plus faciles à observer.

A - PREMIERES ETUDES RELATIVES AU TRIOXANE

ETAT FONDAMENTAL - ETATS NON DEGENERE ET DEGENERE EXCITES PAR UN QUANTUM : $\nu_7(A_1) - \nu_{19}(E) - \nu_{20}(E)$

Les premières études dans le domaine des ondes hertziennes qui, par leur précision ont nécessité l'apport de la distorsion centrifuge au calcul des niveaux d'énergie, ont été faites au Laboratoire par J.LEMAIRE [32]; elles interessaient les spectres de rotation de l'état fondamental de vibration et de l'état excité non dégénéré de plus bas niveau d'énergie noté $v_7(A_1)$. Les spectres expérimentaux, observés par la suite, correspondant à des valeurs de J pouvant atteindre J = 26 ont confirmés les valeurs obtenues pour les paramètres moléculaires rassemblées dans le tableau T6.

Notre premier travail, qui a fait l'objet d'une thèse de 3ème Cycle [33] a porté sur une première interprétation des spectres des deux états excités dégénérés $v_t = 1$ les plus peuplés : $v_{20}(E)$ et $v_{19}(E)$, les valeurs de J atteintes restant alors inférieures ou égales à 15. L'analyse des spectres en utilisant pour expression des fréquences la formule de perturbation de G.AMAT et M.L.GRENIER-BESSON [34] (formule rappelée dans le tableau A4) met en évidence des anomalies : des écarts sensibles entre les fréquences ainsi calculées et fréquences mesurées apparaissent pour les faibles valeurs de K-l_t : dans l'état $v_{20}(E)$ pour J=15; dans l'état $v_{19}(E)$ ces écarts existent dès J=6 et augmentent très vite avec J.

Nous avons alors repris ce travail en étudiant des transitions de J nettement plus élevés, peu couramment atteints pour une molécule symétrique. Ainsi pour J=26 \rightarrow 27 le groupe de raies appartenant à $v_{19}^{(E)}$ ne peut même plus être calculé avec suffisamment de précision par les paramètres moléculaires[35] affinés à partir des raies de J faibles donnés dans le tableau IVA1.

PARAMETRES (MHz)	ΕΤΑΤ ν ₂₀ (Ε)	ΕΤΑΤ ν ₁₉ (Ε)
* B	5268.153	5276. 934
$D_J^V.10^3$	1.35	1.378
D_{JR}^V .10 ³	-2.06	-2.08
ďo	1.945	3.252 ₇
ρ * 10 ³	7.7	55.6
μ 10 ⁶	9	53
ζ	-0.268	-0.6 ₃

Tableau IVA1

Le désaccord atteint 1787 MHz pour les raies $|K-l_t| = 1$ mais le tableau IVA2 montre que toutes les raies sont affectées par ce phénomène et ce d'autant plus qu'elles correspondant à de plus faibles valeurs de $K-l_t$.

Ce désaccord s'interprète finalement bien sans avoir à tenir compte de paramètres supplémentaires dont l'influence croît avec J ou K.

Dans la résolution de l'équation séculaire, une méthode de perturbation est utilisée pour calculer la contribution à l'énergie des éléments matriciels : $\langle K, l_t | K\pm 2, l_t \pm 2 \rangle$ et $\langle K, l_t | K\pm 1, l_t \mp 2 \rangle$. Cette technique n'est valable que si les éléments hors diagonaux ci-dessus sont petits comparés à la différence des éléments matriciels qu'ils couplent ; en fait si les inégalités suivantes sont vérifiées :

IVA1 - a - 1/2
$$|q_J| J (J+1) << |B_V^{XX} - B_V^{ZZ} + B_V^{ZZ} \zeta_t|$$

- b - $|q_1^t| \sqrt{J (J+1)} << |B_V^{XX} - B_V^{ZZ} - 2B_V^{ZZ} \zeta_t|$

К2 _t -1	Préquence mesurée	۵۶۶	۵۶ _D		Kft-1	Fréquence mesurée	ΔF _P	ΔF _D
. 0	285193.85	0.34	-0.10		12	284731.00	10.83	-0.06
0	284498.86	0.59	0.21		-12	992.88	-10.83	0.02
1	284502.50	1787.29	-0.26		13	747.38	7.71	-0.06
-1 '	285189.33	-1787.15	-0.30		-13	982.15	-7.71	0.05
2	284515.70	730.34	c.08		14	762.89	5.46	-0.09
-2	285176.79	-730.20	0.15		-14	972.70	-5.46	0.08
3	284535.21	390.68	-0.03		15	777.71	3.85	-0.10
-3	285158.38	-390.56	-0.40		-15	964.38	-3.89	0.07
4	284558.46	232.32	0.08		16	791.89	2.67	0.15
-4	285136.76	-232.17	0.11		-16	957.07	-2.79	0.03
5 [·]	284584.08	147.25	-0.90		17	805.66	1.86	-0.12
-5	285114.02	-146.75	0.02		+17	950.80	-1.93	0.08
6	284607.92	95.73	0.06	ļ	18	819.04	1.32	-0.06
-6	285091.73	-95.64	-0.02		-18	945.40	-1.29	0.14
7	284631.78	64.32	0.05		19	832.07	0.95	-0.02
-7	285070.85	-64.18	0.03		~19	940.70	-0.93	0.10
8	F				20	844.76	0.62	-0.05
-8	285051.63	-39,19	-0.01		-20	936.72	-0.68	0.07
9	F				21	857.37	0.54	0.08
-9	285034.32	-31.08	0.01		-21	933.43	~0.50	0.05
10	P				22	869.67	0.37	0.06
-10	285018.86	-21.87	0.04	l	-22	930.72	-0.43	. 0
11	P			l	-23	928.50	-0.25	-0.15
-11	285005.07	-5.73	0.02]				

Tableau IVA2 : TRANSITIONS $J = 26 \div 27$ de L'ETAT $\nu_{19}(E)$ (fréquences exprimées en MHz)

 ΔF_{p} = Fréquence mesurée - Fréquence calculée à partir des formules de perturbation.

 ΔF_{D} = Fréquence mesurée - Fréquence calculée par diagonalisation directe de la matrice énergie.

F = indique la présence d'une raie de l'état fondamental.

.

Le tableau IVA3 montre que la première relation devient une égalité dans l'état $v_{19}(E)$ pour J=15. Nous sommes en présence ici d'un phénomène de résonance rotationnelles forte de type "l", lié à l'élément matriciel <K, l₊ |K±2, l₊±2>.

J → J + 1	1/2 q _J J. (J+1)	$B_V^{XX} - B_V^{ZZ} + B_V^{ZZ} \zeta_t$
6 + 7	68	
9 + 10	146	
11 + 12	211	
15 🔮 16	390	396
19 → 20	614	
26 + 27	1132	

Tableau IVA3 : Quantités exprimées en MHz

Nous ne pouvons rien dire au sujet de la seconde inégalité, le paramètre q_{12}^t n'étant pas accéssible pour un état $v_t = 1$.

Nous avons donc été amené à reprendre ce problème en diagonalisant directement la matrice $[H^+]$. Parmi les paramètres qui interviennent dans le hamiltonien, trois se trouvent être corrélés à savoir : B_V^{XX} , n_t^J et q_{12}^t . Ce dernier a été arbitrairement fixé à la valeur du paramètre q_t^t , l'expérience ayant montré comme nous le verrons plus loin que $|q_{12}^t|et|q_0^t|$ sont sensiblement de mêmes valeurs. Dix transitions : $J = 5 \div 6$, $6 \div 7$, $9 \div 10$, $10 \div 11$, $11 \div 12$, $12 \div 13$, $14 \div 15$, $19 \div 20$, $20 \div 21$ et $26 \div 27$ servent à déterminer les paramètres à partir d'une méthode de moindres carrés. Les valeurs obtenues, rassemblées dans le tableau T6 rendent parfaitement compte des fréquences observées, si on exclut les deux raies de la transition $J = 26 \div 27$ correspondant à $K - \ell_t = -3$ et $K - \ell_t = 5$ pour lesquelles un phénomène non encore expliqué semble se produire. L'étude de ces états $v_t=1$ a également permis de mettre en évidence une variation avec J du paramètre q_J intervenant dans le calcul des doublets de type l [36], variation qui, à notre connaissance, n'avait jamais été confirmée expérimentalement. Comme il a déjà été dit, le coefficient q_J caractérise l'élément matriciel <K, $l_t | K\pm 2$, $l_t \pm 2$ >. L'énergie d'un niveau J de l'une des composantes du doublet peut toujours être écrite sous la forme :

$$\mathbf{E}^{\mathbf{J}} = \mathbf{E} + 2 \begin{bmatrix} \mathbf{q}_{\mathsf{eff}}^{\mathsf{t}} + \mathbf{f}_{22}^{\mathsf{tJ}} & \mathbf{J}(\mathbf{J}+1) \end{bmatrix} \quad \mathbf{J}(\mathbf{J}+1)$$

Pour le niveau J+1 on aura de même :

$$\mathbf{E}^{J+1} = \mathbf{E}' + 2 \left[\mathbf{q}_{eff}^{t} + \mathbf{f}_{22}^{tJ} (J+1) (J+2) \right] (J+1) (J+2)$$

Ainsi la fréquence de cette composante a pour valeur :

$$f = E' - E + 4 \left[q_{eff}^{t} + 2 f_{22}^{tJ} (J+1)^{2} \right] (J+1)$$

Si on la compare à celle donnée dans le tableau A4, on voit que la dépendance en J de q_{τ} est de la forme :

$$q_{J} = q_{eff}^{t} + 2 f_{22}^{tJ} (J+1)^{2}$$

Le tableau IVA4 donne les fréquences mesurées des doublets utilisés pour tracer la courbe q_T en fonction de $(J+1)^2$.

On en déduit :
$$q_{eff}^{t} = 3251,6 \pm 1,2 \text{ kHz}$$

 $f_{22}^{tJ} = -0,02 \pm 0,003 \text{ kHz}$

Les différentes remarques faites précédemment s'appliquent également à l'état $v_{20}(E)$ bien que les phénomènes y soient nettement moins marqués comme le montre le tableau IVA5. La variation de q_J , bien que plus faible que dans l'état $v_{19}(E)$ peut néanmoins être mise en évidence ; le tableau IVA6 rassemble les fréquences mesurées des doublets. Les spectres de haute fréquence sont caractérisés par une superposition complexe de transitions appartenant à différents états vibrationnels. C'est la raison pour laquelle dans les cas notés (*), une seule des transitions du doublet a pu être mesurée, l'autre ne pouvant être identifiée de manière certaine.

.

•

,

١

I. 77

-	78	-	

xt _t -1	Fréquence mesurée	۵Fp	ΔF _D	Ktt-1	Fréguence mesurée	ΔFp	۵FD
		 				ļ	
0	284584.08	0.3	-0.14	12	284378.94	-0.13	0
0	164.65	-0.22	-0.07	-12	(284400.96)		
1	231.13	51,38	0.01	13	383.43	-0.09	0.08
-1	517.64	-51,48	-0.02	-13	402.22 *	0.5	0.23
2	286.40	8.35	-0.08	14	387.95	0.06	0.14
-2	463.31	-8.18	0.09	-14	403.60	0.63	
3	313.82	2.28	-0.16	15	392.35	-0.24	0.02
-3	436.81	-2.3	0	-15	405.41	-0.70	-0.22
4	329.87	0.88	-0.04	16	396.86	-0.4	-0.09
-4	422.37 * *	-0.84	0.22	-15	(284407.29)		
5	340.45	0.28	-0.1	17	402.22 *	0.16	0.49
-5	413.72	-0.33	0.24	-17	409.92	0.96	0.2
6	348.47	0.17	0	18	(284406.60)		
-6	408.18	-0.17	-0.22	-18	412.58	0	0.15
7	354.82	0		19	411.68	-0.43	0.05
-7	404.57	-0.17	-0.18	-19	415.62		0.19
8	360.30	-0.03	-0.68	20	416.92		0.08
-8	402.22 *	-0.28	0.08	-20	418.69		0.18
9	365.36	-0.04	0	21	422.37 * *		0.17
-9	(284400.86)			-21	422.37 • •		0.12
10	370.06	-0.04	0.04	22	427.88		0.14
-10	(284400.32)			-22	426.30		0.24
11	374.48	-0.14	-0.04	23	433.32		-0.14
-11	(284400.39)			-23	430.35		0.25

Tableau IVA5 : ETAT VIBRATIONNEL $v_{20}(E)$ - (fréquences exprimées en MHz)

 ΔF = Fréquence mesurée - Fréquence calculée à partir des formules de perturbation

 ΔF_{D} = Fréquence mesurée - Fréquence calculée par diagonalisation directe de la matrice énergie

La présence d'une, ou 2 étoiles, indique que la fréquence mesurée en question est une raie multiple non résolue.

Les fréquences entre parenthèses, non observées, sont calculées par diagonalisation numérique de la matrice énergie.

Fréquences (MHz)	<pre>63263.37 63169.97</pre>	<pre>73806.79 73697.87</pre>	<pre>105435.43 105279.89</pre>	<pre>{ 115977.77 115806.56</pre>	(*) 126519.66	136859.06 137061.23	210527.58 210838.41	221375.80 221049.40	(*)
Transitions	¢ ₹ 2	6 + 7	9 + 10	10 + 11	11 + 12	12 + 13	19 + 20	20 + 21	26 + 17

VARIATION DE q_{J} EN FONCTION DE $(J + 1)^{2}$

Tableau IVA6

BIJS ULLE La différence entre l'unique raie de doublet l et la "fréquence centrale" égale à $2B_V^*$ (J+1) - $4D_V^J$ (J+1)³ est alors utilisée pour le calcul de q_J . La détermination des constantes est naturellement moins précise. Nous sommes conduits aux valeurs

$$q_{eff}^{t} = 1946 \pm 1,2 \text{ kHz}$$

 $f_{22}^{tJ} = -0,005 \pm 0.002 \text{ kHz}$

Les paramètres de l'état $v_{20}(E)$ sont obtenus par une méthode de moindres carrés faite à partir des fréquences mesurées appartenant aux transitions J = 5 + 6, 6 + 7, 9 + 10, 10 + 11, 11 + 12, 12 + 13, 14 + 15, 19 + 20, 20 + 21et 26 + 27. Les valeurs obtenues, rassemblées dans le tableau T6 permettent d'interpréter convenablement les spectres observés, l'écart entre fréquence mesurée et fréquence calculée par diagonalisation numérique de $[H^+]$ étant inférieur à l'erreur expérimentale. Les tables de fréquences pour les états $v_{19}(E)$ et $v_{20}(E)$ sont respectivement numérotées T7 et T8.

B - ETAT VIBRATIONNEL DEGENERE EXCITE PAR DEUX QUANTUMS

$\frac{2}{2} \frac{\nu}{20} (\underline{E})$

Les expressions des fréquences des deux composantes vibrationnelles $l_t = 0$ et $|l_t| = 2$ [37] qui satisfont aux règles de sélection précédemment vues, sont rappelées dans le tableau A5. Il est également nécéssaire de rappeler les conditions de validité de la méthode de perturbation utilisée pour déterminer les niveaux d'énergie de la matrice $[H^+]$.

I : POIDS STATISTIQUE DE SPIN

Appliqués à un état $v_t^{=2}$, les résultats obtenus au début du chapitre IV conduisent aux poids statistiques de spin de chaque niveau rovibrationnel donnés dans le tableau IVB1. Les dédoublements correspondant à l'entier $p \ge 2$ ne sont généralement pas observables par manque de résolution.

COMPOSANTE VIBRATIONNELLE	K-L	Dédoublement A ₁ - A ₂	POIDS STATISTIQUE
	K ≠ 3p		40
$\ell_t = 0$	K = 0		24
	$ \mathbf{K} = 3\mathbf{p} (\mathbf{p} \neq 0)$		48
	$ \kappa - \ell_t \neq 3p$		40
	and 1997	$\int K=2$ $\ell_{+}=2$	24
	$ \mathbf{K} - \mathbf{l}_{t} = 0$	$k = -2$ $l_t = -2$	24
g = 2		$(\int K=1 \qquad \ell_{+}=-2$	24
1~t1 -		$\ell_{K=-1}$ $\ell_{t}=2$	24
	$ \kappa - \ell_t = 3$	$\left\{ \begin{bmatrix} \kappa=5 & \ell_t=2 \\ \kappa=-5 & \ell_t=-2 \end{bmatrix} \right\}$	48
	$ \mathbf{K}-\mathbf{l}_{t} = 3p (p \ge 2)$	pas de dédoublement	48

Tableau IVB1

II : IDENTIFICATION DES SPECTRES

Dans sa thèse de doctorat [38] A.BAUER, pour la première fois a fait l'identification détaillée d'un état $v_t=2$, et ce lors de l'étude des spectres de rotation de la molécule de Cyanure de Méthyle. La méthode graphique qu'elle présente s'applique d'autant mieux que l'on dispose des premières transitions : $J = 0 \rightarrow 1, J = 1 \rightarrow 2, etc..., ce qui n'est malheureusement pas le cas ici.$

Cependant notre problème est grandement facilité par le fait que les spectres relatifs aux deux composantes vibrationnelles sont nettement distincts comme le montre la figure 15 où nous avons porté la fréquence réduite $F(J,K,l_t)/J+1$ en fonction de $(J+1)^2$. A chaque point expérimental se trouve associé un trait horizontal dont la longueur est proportionnelle à l'intensité relative relevée pour une même valeur de J ; il n'est pas tenu compte de la variation des intensités avec J.

Pour une transition $J \rightarrow J+1$ il existe J+1 valeurs différentes de |K|, ce qui donne, J+1 raies associées à la valeur $l_t = 0$ et 2 (J+1) raies associées à $|l_t|=2$ avec les premiers dédoublements A_1A_2 possibles qui correspondent à $K=l_t=\pm 2$ et $K=\pm 1$, $l_t=\mp 2$.

A partir de cette simple remarque nous attribuons sans ambiguité le groupe de raies "B" à $|l_+|=2$ et le groupe "A" à $l_+=0$.

L'identification de ce dernier est bien sûr la plus simple. Elle repose sur le fait que |K| est nécessairement inférieur ou égal à J et que les intensités des raies K-l=3p (p≠0) présentent un renforcement comme indiqué dans le tableau IVB1. De plus il y a décroissance de l'intensité avec la croissance de K. Il est donc possible de relier entre eux les points représentant les transitions de même valeur |K| pour différentes valeurs de J. Ceci permet d'obtenir un réseau de droites ; chaque droite de la figure 15 -A- porte un nombre qui est justement cette valeur de |K|. Pour le groupe B chaque nombre correspond à une valeur $\frac{Kl_t}{|l_t|}$.

III : DETERMINATION DES CONSTANTES MOLECULAIRES

Les valeurs approchées des paramètres B_V^{XX} et $x_{l_tl_t}$ sont obtenues en considérant la droite représentative de K=0 (en fait cette droite passe par des points représentatifs de raies non résolues correspondant aux valeurs K=0,1

Figure 15 : ETAT $\nu_{20}(E)$. FREQUENCE REDUITE EN FONCTION DE $(J + 1)^2$

et même 2 pour J < 10) ; elle satisfait la relation

$$v_{o} = 2B_{V}^{XX} + 16 \frac{(q_{o}^{t})^{2}}{\lambda} - 32 \frac{(q_{12}^{t} - d_{12}^{tt})^{2}}{\lambda} - \left[4D_{V}^{J} + 16 \frac{(q_{o}^{t})^{2}}{\lambda}\right] (J+1)^{2}$$

Si l'on fixe D_V^J et $|q_0^t|$ aux valeurs obtenues dans l'état excité $v_{20}(E)$, la pente de cette droite fournit la valeur de λ et par la même une approche de x_{ltl_t} : x_{ltl_t} # - 22500 MHz. En première approximation l'ordonnée à l'origine donne B_V soit : 5263.41 MHz.

Un spectre calculé à partir des paramètres ainsi déterminés s'accorde mal avec le spectre expérimental, ce qui laisse supposer que la contribution des constantes q_{12}^t et d_{12}^{tt} n'est pas négligeable. Un ordre de grandeur de ces dernières est obtenu en comparant le spectre observé $l_t=0$ à ceux calculés en donnant aux constantes diverses valeurs. L'accord semble se faire pour :

$$q_{12}^t \approx \pm 2 \text{ MHz}$$
 et $d_{12}^{tt} \approx \mp 3 \text{ MHz}$

Dans une première étape les paramètres permettant d'identifier la composante vibrationnelle $l_t=0$ sont déterminés par une procédure de moindres-carrés faite sur des fréquences calculées par diagonalisation numérique de la matrice énergie. Ce premier jeu de constantes sert ensuite à l'analyse de la composante $|l_t|=2$.

Finalement les constantes moléculaires sont optimisées en tenant compte de toutes les raies mesurés $l_t=0$ et $|l_t|=2$ des transitions : $J = 5 \rightarrow 6$, $6 \rightarrow 7$, $10 \rightarrow 11$, $11 \rightarrow 12$, $12 \rightarrow 13$, $13 \rightarrow 14$ et $14 \rightarrow 15$ soit au total environ 130 raies. Les valeurs définitives des paramètres [39] sont rassemblées dans le tableau T9. A quelques rares exceptions près le désaccord entre fréquences calculées et fréquences observées est toujours inférieur à l'erreur expérimentale, tableau T10.

Nous pouvons noter que les conditions de validité des formules de perturbation sont, pour les transitions étudiées limitées à J=14, dans l'ensemble bien vérifiées. Ceci justifie à posteriori leur utilisation pour l'identification des spectres.

Nous remarquons également que le dédoublement A_1A_2 correspondant à $K = \pm 1$, $l_+ = \pm 2$ n'est pas observé. La différence entre les raies de ce doublet

est égale à :

$$\Delta f = 32 \ (J+1) \left[f_{24}^{t} - \frac{(q_{12}^{t} - d_{12}^{tt})^{2}}{\pi} \right]$$

Si pour la transition J = 14 \Rightarrow 16 le pouvoir de résolution limite, égal à une fois et demi la largeur *Doppler*, vaut 0.2 MHz on en déduit que nécessairement $|f_{2,4}^t| < 0.4$ kHz.

C - ETAT NON DEGENERE ET ETAT DEGENERE EXCITES

SIMULTANEMENT PAR UN QUANTUM : $\nu_7(A_1) + \nu_{20}(E)$

La symétrie d'un tel état de vibration étant celle de l'état excité dégénéré, nous analysons le spectre rotationel correspondant à partir de la formule de perturbation de G.AMAT et M.L.GRENIER-BESSON [34].

L'identification peut être faite en utilisant quelques relations qui découlent directement de cette formule à savoir :

- la moyenne arithmétique des fréquences des raies ayant même valeur de $|Kl_1-1|$ est égale à :

IVC1

$$F_{m} = F_{0} - 2 D_{V}^{JK} (J+1) (K \ell_{t} - 1)^{2}$$
$$F_{0} = 2 B_{V}^{*} (J+1) - 4 D_{V}^{J} (J+1)^{3}$$

avec

Si on trace $v_m = F_m/J+1$ en fonction de $(Kl-1)^2$ on obtient une droite de pente égale à : $-2D_V^{JK}$, figure (16a). Les constantes B_V^* et D_V^J sont déterminés à partir de l'analyse de plusieurs transitions $J \rightarrow J+1$, en traçant : $v_0 = F_0/J+1$ en fonction de $(J+1)^2$, figure (16b)

- la différence entre les fréquences de deux transitions de même valeur [KL_-1] différente de zéro [40] s'écrit :

$$(K\ell_t^{-1}) \cdot \Delta F_{(K\ell_t^{-1})} = -4\rho^* (J^{+1}) (K\ell_t^{-1})^2 + 8x (J^{+1})^3$$

 $\Delta F(Kl_{t}-1) = F(Kl_{t}-1) - F(Kl_{t}-1)$

 $\mathbf{x} = \frac{q_{J}^{2}}{B_{TT}^{XX} - B_{TT}^{ZZ} + B_{TT}^{ZZ}} \zeta_{L}$

où

Les valeurs ρ^* et x sont obtenues soit en résolvant un grand nombre de systèmes de deux équations à deux inconnues, soit à partir du tracé de $(Kl_t^{-1}) \cdot \Delta F_{(Kl_t^{-1})}$ en fonction de $(Kl_t^{-1})^2$. Ce dernier devrait donner une droite.

L'expérience conduit en fait à des courbes du type de celles indiquées figure (17). Pour les grandes valeurs de |Kl-1|, comparativement à celle de J, ces courbes tendent asymptotiquement vers une droite dont la pente et l'ordonnée à l'origine conduisent aux valeurs de ρ^* et x; ces dernières exprimées en kHz sont rassemblées dans le tableau (IVC1).

Les premières valeurs ainsi obtenues pour les différents paramètres apparaissant dans l'expression des fréquences sont les suivantes :

 $B_V^* = 5256.245 \pm 0.015 \text{ MHz}$ $D_V^J = 1.278 \pm 0.03 \text{ kHz}$ $D_V^{JK} = -2.06 \pm 0.02 \text{ kHz}$ $\rho^* = 12.55 \pm 0.3 \text{ kHz}$ $x = 2.92 \pm 0.02 \text{ kHz}$

J → J + 1	x	Δ×	ρ *	Δρ*
6 + 7	2 07		12 (1	
$12 \rightarrow 13$	2.90	0.02	11.95	0.3
13 → 14	2.915	0.015	12.50	0.3
14 → 15	2.926		12.50	
20 → 21	2.942		12.63	

Tableau IVC1 : Parametres en kHz

En fait ce procédé d'analyse ne permet pas d'obtenir des solutions compatibles pour des valeurs de J éloignées les unes des autres. Pour les faibles valeurs de $(K\ell_{t}-1)$ l'écart ΔF_{p} entre fréquences calculées à partir des paramètres ainsi obtenus et fréquences mesurées va grandissant avec J, comme le montre le tableau IVC2 pour les cas les plus significatifs.

Fréquence mesurée	220807.30	220622.48	220766.29	220664.17	220749.40	220681.64	
(KL ⁺ -1)	+-1 	1	-2	5	÷.	m	
J + 1	21	21	21	21	21	21	
F							
ÅF ∆F	-0.45	0.50	-0.83	0.84	-1.43	1.44	
Fréquence mesurée	136675.95	136626.48	147191.60	147130.19	157707.58	157632.75	
(KL ⁻¹)	1			~-1	-1		
л + 1	13	13	14	14	15	15	

Tableau IVC2

- 90 -

•

-

-14.83

 $\Delta \mathbf{F}$ \mathbf{P}

14.55

-1.78

1.66

-0.66

0.25

.

-

Nous retrouvons mais en moins prononcé le phénomène de résonance rotationnelle de type "l" rencontré précédemment. Nous pouvons avoir un bon ordre de grandeur pour les inégalités IVA1 en admettant que B_V^{xx} est peu différent de B_V^* ; q_J calculé à partir de x prend la valeur 2.12 MHz et q_{12}^t a été fixé à la valeur qu'il a dans l'état $2v_{20}(E)$. Si l'inégalité (b) est toujours satisfaite pour les valeurs de J que nous atteignons expérimentalement, l'inégalité (a) vérifiée pour les faibles valeurs de J l'est de moins en moins bien au fur et à mesure que J augmente (tableau IVC3 où les différentes quantités sont exprimées en MHz).

Bien que basée sur une formule de perturbation dont les conditions de validité ne sont plus remplies, l'identification des spectres n'est cependant pas remise en cause puisque pour des valeurs opposées de KL-1 les écarts sont symétriques et par conséquent la relation IVC1 reste vérifiée.

Une diagonalisation directe de la matrice [H⁺] conduit à des fréquences calculées qui approchent les fréquences mesurées aux erreurs d'expérience près. Les paramètres définitifs ainsi que les transitions étudiées apparaissent dans les tableaux T9 et T11.

TRANSITION $J \rightarrow J+1$	1/2 q _J J (J+1)	$B_V^{XX} - B_V^{ZZ} + B_V^{ZZ} \zeta_t$
5 → 6	32	
6 → 7	45	
12 → 13	165	
13 → 14	193	1566
14 → 15	223	
20 → 21	445	

Tableau IVC3

- 91 -

D - DEUX ETATS DEGENERES EXCITES SIMULTANEMENT PAR UN

<u>QUANTUM</u> : $\nu_{19}(E) + \nu_{20}(E)$

Pour une valeur de J donnée, la matrice $[H^{\dagger}]$ correspondante dont les éléments dépendent de K, l_{t} et l_{t} , est d'ordre 4(2J+1) ; chaque nombre quantique vibrationnel l_{t} et l_{t} , pouvant prendre indépendamment l'un de l'autre la valeur +1 et -1 et le nombre K vérifiant la double inégalité $-J \leq K \leq J$.

I : REGLES DE SELECTION

Comme nous l'avons déjà indiqué les transitions de rotation obéissent en première approximation aux règles : $\Delta J = 1$, $\Delta K = 0$, $\Delta l_t = 0$, $\Delta l_{t'} = 0$. La figure 18 schématise toutes les transitions issues d'un niveau d'énergie donné J, |K| (la position des niveaux les uns par rapport aux autres est tout à fait arbitraire) [41]

Figure 18

- les raies issues des niveaux J,K, $l_t=1, l_t$,=1 et J,K, $l_t=-1, l_t$,=-1 sont notées $v_{J,Kl}$

- les raies issues des niveaux $J, K, l_t = 1, l_t = -1$ et $J, K, l_t = -1, l_t = 1$ niveaux marqués d'une étoile sont notées $v_{J, |K|}^{\dagger}, |K| v_{J, |K|}^{\dagger}$ et éventuellement $v_{J, |K|}^{\dagger}$ et $v_{J, |K|}^{\dagger}$

Si la résonance vibrationnelle entre les niveaux J (ou J+1), K, $l_t = -1$, $l_t = 1$ et J (ou J+1) K, $l_t = 1$, $l_t = -1$ est très faible, l_t et l_t , restent de bons nombres quantiques et seules les transitions $v_{J, |K|}^+$ et $v_{J, |K|}^-$ sont permises.

Mais si la résonance vibrationnelle devient importante, le mélange entre les niveaux marqués d'une étoile n'est plus négligeable et les raies $v_{J,|K|}^{+}$ et $v_{J,|K|}^{-}$ deviennent observables, tout en ayant généralement une intensité moindre que celles répondant aux règles de sélection de l'approximation la plus basse. Dans ce cas les nombres l_t et l_t , ne sont plus de bons nombres quantiques pour la définition des niveaux ; seul |K| en reste un. Il nous faut alors revenir aux règles générales précédemment vues soit : $A_1 \leftrightarrow A_2$, $E \leftrightarrow E$.

II : DEGENERESCENCE DES NIVEAUX. POIDS STATISTIQUE DE SPIN

L'utilisation des vecteurs symétrisés rend compte immédiatement du phénomène de levée de dégénérescence de certains niveaux d'énergie. La figure 19 est l'application des résultats du tableau IA2 ; les niveaux qui y sont représentés pour les premières valeurs de J et |K| satisfont à l'équation IV1, les paramètres ζ_t et ζ_t , ayant tous deux un signe négatif comme l'a montré l'étude des états $v_{19}(E)$ et $v_{20}(E)$. L'<u>interaction</u> de *Coriolis* calculée au premier ordre donne pour une valeur de K quatre niveaux qui correspondent aux quatre valeurs différentes de la quantité $\Sigma_t \zeta_t K \ell_t$ à savoir :

$$|\dot{K}|$$
 $(\zeta_{+} + \zeta_{+})$, $|K|$ $(\zeta_{+} - \zeta_{+})$, $|K|$ $(-\zeta_{+} + \zeta_{+})$ et $-|K|$ $(\zeta_{+} + \zeta_{+})$

Le type de symétrie de ces niveaux dépend de la valeur de K-L, où pour simplifier l'écriture nous posons L = $\Sigma_{+} l_{\pm}$:

a) K = 3p (p=0). Les niveaux se répartissent en:

- 2 doublets de type E qui restent dégénérés quelque soit par la suite l'ordre d'approximation retenu pour le calcul de l'énergie.

Figure 19 : NIVEAUX D'ENERGIE D'UN ETAT $V_t = V_{t'} = 1$

- 94 -

- 2 doublets de type A qui théoriquement peuvent se séparer chacun en deux niveaux de type A_1 et A_2 . En fait ce dédoublement n'est généralement observé que pour les faibles valeurs de |K|.

- b/ K ≠ 3p. La répartition est la suivante ; avec les remarques précédentes
 trois doublets de type E
 - un doublet de type A

Les poids statistiques des niveaux rovibrationnels calculés à partir du tableau IA2 apparaissent dans le tableau IVD1 ; nous avons seulement explicité les jeux de valeurs des différents nombres quantiques pour lesquels le dédoublement des niveaux A a effectivement été détecté expérimentalement.

III : METHODE D'IDENTIFICATION DES SPECTRES

Les expressions des fréquences d'absorption qui satisfont aux règles classiques de sélection, obtenues en calculant les niveaux d'énergie par une méthode de perturbation sont des fonctions trop compliquées des différents paramètres moléculaires pour pouvoir être directement utilisables Tableau A6.

(COMPOSANTE VIBRATIONNELLE	ĸ-∑ _t l _t	DEDOUBLEMENT A A A	POIDS STATISTIQUE
$\Sigma_{i} \ell_{i} = 0$	K = 0	$\begin{cases} K=0 & \ell_{t}=1 & \ell_{t}=-1 \\ K=0 & \ell_{t}=-1 & \ell_{t}=1 \end{cases}$	24 24
tt	$ K = 3p (p\neq 0)$ $ K \neq 3p$	•	48 4 0
	$ \kappa - \Sigma_t \ell_t = 0$	$\begin{cases} K=2 & \ell_{t}=1 & \ell_{t}=1 \\ K=-2 & \ell_{t}=-1 & \ell_{t}=-1 \end{cases}$	24 24
		$ \begin{pmatrix} K=1 & l_t = -1 & l_t = -1 \\ K=-1 & l_t = 1 & l_t = 1 \end{pmatrix} $	24 24
$\Sigma_{t}\ell_{t} = \pm 2$	$ \mathbf{K}-\boldsymbol{\Sigma}_{t}\boldsymbol{\ell}_{t} = 3$	$\begin{cases} K=5 & l_{t}=1 & l_{t}=1 \\ K=-5 & l_{t}=-1 & l_{t}=-1 \end{cases}$	48
	$\left \mathbf{K} - \boldsymbol{\Sigma}_{t} \boldsymbol{\ell}_{t} \right = 3\mathbf{p} \\ (\mathbf{p} \neq 0, 1)$	pas de dédoublement	48
	$ \kappa - \Sigma_t \ell_t \neq 3p$		40

Tableau IVD1

Figure 20

.

- 97 -

On vérifie néanmoins qu'elles se mettent sous la forme générale :

$$F(J,K,Kl_{+},Kl_{+}) = a (J+1) + b (J+1)^{3}$$

où a et b dépendent des paramètres moléculaires par l'intermédiaire des différents nombres quantiques à l'exclusion de J.

Dans ce cas encore si on porte la fréquence réduite : v = F/J+1 en fonction de $(J+1)^2$, les points représentatifs peuvent être placés sur un réseau de droites. Il s'agit donc pour identifier les spectres expérimentaux d'attribuer à chaque droite une valeur de K, Kl_t et $Kl_{t'}$. En fait les niveaux d'énergie, donc les fréquences ont été repérés à l'aide des quantités K, l_t et l_t . Aucune confusion n'est possible ; comme on le vérifiera par la suite la composante prépondérante des vecteurs propres de la matrice énergie étant à de rares exceptions près toujours supérieure à 0,96, K, l_t et l_t , peuvent être considérés comme de bons nombres quantiques.

Sur les figures 20 a et b nous avons reporté v en fonction de $(J+1)^2$ pour les différentes transitions mesurées, en indiquant pour chaque point expérimental l'intensité d'absorption observée sans toutefois respecter sa dépendance en J. Ce tracé appelle quelques remarques :

- les points se groupent en deux paquets notés A et B que l'on peut raisonnablement supposer devoir correspondre aux deux composantes vibrationnelles L=0 et |L|=2.

- pour une transition $J \rightarrow J+1$, le nombre de raies observées, comparé au nombre théoriquement possible (à savoir : 2J - (2J-1)/3 pour L=0 et 2(J+1) + (2J-1)/3 pour |L|=2*) montre à l'évidence que les spectres relevés sont incomplets, même si on admet que pour certains jeux de valeurs de K, l_t et l_t , les points correspondant ne peuvent apparaître dans le domaine des fréquences de la figure 19. De plus certaines raies d'intensité nettement prépondérante et de largeur nettement supérieure à la largeur *Doppler* pourront faire penser à des raies multiples non résolues.

L'identification des droites qui ne peut se faire qu'en s'aidant de l'intensité relative des raies et du fait que nécessairement $|K| \leq J$, n'est certainement pas facilité par le fait que les spectres correspondant à J < 5 ne sont pas observables dans des conditions telles qu'ils soient exploitables. A priori quelques droites, joignant dans chaque transition des raies occupant des positions similaires et d'intensité comparable, peuvent être tracés sans qu'on

* le symbole / voulant dire division entière

puisse être sûr de l'unicité de la solution.

L'examen de groupe "A" montre que dans chaque transition $J \rightarrow J+1$ deux raies ont une intensité comparable, généralement la plus faible de toutes celles du groupe, et se placent sur deux droites D₁ et D₂ de pentes nettement différentes : l'une a pour valeur -1,32 kHz l'autre vaut 5,82.10⁻² kHz. Une raie de faible intensité peut :

- soit correspondre à une raie de dédoublement A_1A_2 , de poids statistique inférieur,

- soit être affectée d'une valeur |K| "grande" mais de toute façon inférieure ou égale à J. Mais une valeur de |K| "grande" pour la transition $J = 5 \rightarrow 6$ ne peut plus être considérée comme telle pour des transitions de J supérieur en particulier pour $J = 13 \rightarrow 14$. Notre hypothèse de départ consiste donc à attribuer les raies des droites D_1 et D_2 à un dédoublement de type A. Cela peut être :

- soit le dédoublement K=0 L=0

- soit le dédoublement $K\ell_{\pm}=2$ L= ± 2

Il n'y a pas lieu en effet de retenir le dédoublement $Kl_t = -1$, L= ±2 dont les raies se placent sur des droites de même pente.

 $\frac{1/\text{ Calcul approché des paramètres } x_{t}}{\text{Si on pose N} = 2 (B_e^{ZZ} - B_e^{XX}) - 2 B_e^{ZZ} (\zeta_t + \zeta_t), \text{ les pentes des droites}}$ $D_1 \text{ et } D_2 \text{ sont données par les expressions suivantes :}$

- dédoublement K=0 L=0

(a)

$$P_{1}^{+} = -4D_{V}^{J} - 8 \frac{(q_{o}^{t} + q_{o}^{t})^{2}}{N + x_{l_{t}l_{t}'} - 2r_{o}^{tt'}}$$

$$P_{1}^{-} = -4D_{V}^{J} - 8 \frac{(q_{o}^{t} - q_{o}^{t'})^{2}}{N + x_{l_{t}l_{t}'} + 2r_{o}^{tt'}}$$

- dédoublement $K\ell_t = 2$ L= ± 2

- 99 -

(b)
$$\begin{cases} P_{2}^{+} = -4D_{V}^{J} + 8 \frac{(q_{0}^{t} + q_{0}^{t'})^{2}}{N + x_{\ell} t^{\ell} t^{\prime}} \frac{(q_{0}^{t} - q_{0}^{t'})^{2}}{N + x_{\ell} t^{\ell} t^{\prime}}} \frac{(q_{0}^{t} - q_{0}^{t'})^{2}}{N + x_{\ell} t^{\ell} t^{\prime}}}$$

Une valeur approchée de la constante de distorsion centrifuge D_V^J est obtenue à partir de la relation donnant la variation de ce paramètre avec l'état de vibration :

$$D_{V}^{J} = D_{O}^{J} + \Sigma_{S} \beta_{S}^{J} (v_{S} + \frac{d_{S}}{2})$$

A partir des valeurs dans les états $v_{20}(E) = 1$ et $v_{19}(E) = 1$ on en déduit :

Les quantités $|q_0^t|, |q_0^{t'}|$ et N étant fixées aux valeurs obtenues pour les états ci-dessus, les couples d'équations (a) et (b) ne sont plus fonction que de x_{ltlt} et $r_0^{tt'}$. En principe il est possible de déterminer ces deux inconnues avec une précision d'autant plus grande que seront mieux définies les quantités dans lesquelles elles apparaissent.

Si on se réfère à la valeur de x dans l'état $v_{20}(E) = 2$ (≈ -21000 MHz), il est raisonnable de supposer que la quantité N, qui vaut environ : -600 MHz, peut être négligée. Dans ce cas l'attribution des droites D_1 et D_2 à l'état vibrationnel L=0 ou à l'état L=2 revient simplement à changer le signe des paramètres $x_{l_t l_t}$ et $r_0^{tt'}$. Deux possibilités se présentent alors pour affecter les valeurs expérimentales des pentes aux expressions théoriques :

<u>lère hypothèse</u> : on associe P_1^+ à D_1^- , d'une part et P_1^- à D_2^- d'autre part

$$P_1^+ \leftrightarrow D_1 \Rightarrow 1,38.10^{-3} + \frac{54}{x_{l_tl_t}} = 1,32.10^{-3} \text{ MHz}$$

$$P_1 \leftrightarrow D_2 \Rightarrow 1,38.10^{-3} + \frac{3,4}{x_{\ell_{t}}^{\ell_{t}} + 2r_0^{\text{tt}}} = -5,8.10^{-5} \text{ MHz}$$

Ceci conduit aux résultats : $x_{t} \approx -450000 \text{ MHz}$

 $r_o^{tt'} \approx 225000 \text{ MHz}$

Valeurs que l'on peut rejeter.

2ème hypothèse : on associe P_1^+ à D_2 et P_1^- à D_1

$$\mathbf{P}_{1}^{\dagger} \leftrightarrow \mathbf{D}_{2} \Rightarrow 1,38.10^{-3} + \frac{54}{\mathbf{x}_{\ell_{t}\ell_{t}'}} = -5,8.10^{-5} \text{ MHz}$$

$$\mathbf{P}_{1} \leftrightarrow \mathbf{D}_{1} \Rightarrow 1,38.10^{-3} + \frac{3,4}{\mathbf{x}_{l_{f}} \mathbf{l}_{f'}} = 1,32.10^{-3} \text{ MHz}$$

Nous obtenons : $x_{l_t^l t'} \approx -47000 \text{ MHz}$ $r_o^{tt'} \approx 4500 \text{ MHz}$

Ces valeurs plus compatibles avec l'ordre qu'occupe $x_{l_t l_t}$ dans le développement de l'énergie de vibration, sont malgré tout très approximatives comme le montre le tableau ci-dessous car très sensibles aux variations de D_V^J (Nous sommes en effet dans le cas très désavantageux où l'une des pentes a sensiblement la valeur - $4D_V^J$, ce qui fait qu'une des quantités où interviennent $x_{l_t l_t}$, et $r_o^{tt'}$ est connue avec une très mauvaise précision).

$p_V^J \cdot 10^3$	× ^l t ^l t'	ro ^{tt'}
1.35	- 75000	17000
1.38	- 47000	4500
1.41	- 37000	300

L'indétermination signalée plus haut, sur le signe de ces deux paramètres est facilement levée car seule une valeur négative pour le premier rend compte de l'allure générale des droites des groupes "A" et "B". Par conséquent nous sommes amenés à attribuer le groupe "A" à la composante vibrationnelle L=0 et bien sûr le groupe "B" à la composante vibrationnelle |L| =2

2/ Calcul approché des paramètres
$$d_{12}^{tt'}$$
 et $d_{12}^{t't}$

Pour J+1 = 1 les ordonnées des droites de dédoublemen K=0, $\Sigma_t \ell_t = 0$ sont donnés par :

$$v_{1}^{+} = 2B_{V}^{XX} - 4D_{V}^{J} - 8 \frac{(q_{12}^{t} - d_{12}^{tt'} + q_{12}^{t} - d_{12}^{tt'})^{2}}{B_{e}^{ZZ} - B_{e}^{XX} + 2B_{e}^{ZZ} (\zeta_{t}^{+} \zeta_{t}^{-}) + 2x_{\ell_{t}^{\ell} \ell_{t}^{-}} - 4r_{o}^{tt'}}$$

$$v_{1}^{-} = 2B_{V}^{XX} - 4D_{V}^{J} - 8 \frac{\left[q_{12}^{t} - d_{12}^{tt'} - (q_{12}^{t'} - d_{12}^{t't})\right]^{2}}{B_{e}^{ZZ} - B_{e}^{XX} + 2B_{e}^{ZZ} (\zeta_{t} + \zeta_{t'}) + 2x_{\ell_{t}\ell_{t'}} + 4r_{o}^{tt'}}$$

Ces deux expressions dépendant de trois paramètres inconnus à ce stade de l'identification, il est seulement possible de déterminer la relation qui lie $d_{12}^{tt'}$ et $d_{12}^{t't}$ soit :

$$d_{12}^{tt'} = q_{12}^{t} - (v_1^{+} - v_1^{-}) \cdot \frac{x_{\ell}^{\ell} t^{\ell} t'}{16} \cdot \frac{1}{q_{12}^{t'} - d_{12}^{t'}}$$

où $|q_{12}^t|$ et $|q_{12}^{t'}|$ sont obtenus à partir de l'étude des états $v_{19}(E) = 1$ et $v_{20}(E) = 1$. Pour arriver à cette relation nous avons simplifié l'expression des dénominateurs en ne retenant que la quantité $2x_{\ell_{t}\ell_{t}}$ nettement prépondérante.

Sur la figure 21 nous avons porté $d_{12}^{tt'}$ en fonction de q_{12}^{t} , $d_{12}^{t't}$ étant pris pour paramètre et q_{12}^{t} ayant la valeur fixe approchée : +2 MHz. Si on prend pour ce dernier la valeur - 2 MHz, le réseau de courbes que l'on obtient est identique au précédent à condition de changer également le signe des trois autres paramètres.

Figure 21

Différents essais ont été faits en donnant à $d_{12}^{tt'}$ et $d_{12}^{t't}$ des valeurs compatibles ; le meilleur accord entre spectres calculé et mesuré semble se produire aux alentours des valeurs suivantes, exprimées en MHz :

 $\begin{array}{ll} q_{12}^{\texttt{t'}} = \pm 3.25 & q_{12}^{\texttt{t}} = \pm 1.94 & (\text{valeurs fixées par les états } v_{19}(E) = 1 \\ & & \text{et } v_{20}(E) = 1) \\ d_{12}^{\texttt{tt'}} \approx \mp 25 & d_{12}^{\texttt{t't}} \approx \mp 4 \end{array}$

Nous n'atteignons pas le signe de ces paramètres mais nous pouvons dire que les signes de $d_{12}^{tt'}$ et q_{12}^{t} d'une part, de $d_{12}^{t't}$ et q_{12}^{t} d'autre part, sont opposés.

Les formules de perturbation A5 ne sont utilisées que pour l'identification des spectres. Pour avoir de meilleurs paramètres, les niveaux d'énergie sont rigoureusement calculés par diagonalisation numérique de la matrice $[H^+]$. Afin d'éviter de donner à diagonaliser à l'ordinateur unematrice dont la dimension croît très vite avec J, on effectue à la main la factorisation de la matrice énergie exprimée dans la base des vecteurs propres $|J,K,l_t,l_t| > de l'hamiltonien$ H_o .

IV : DIAGONALISATION NUMERIQUE DE LA MATRICE [H⁺]

1/ Factorisation de [H⁺]

Dans le cas où la molécule possède un axe de symétrie d'ordre trois, un simple réarrangement de l'ordre des vecteurs de base permet de scinder la matrice $[H^+]$ en trois sous matrices notées $[A], [E_a]$ et $[E_b]$ telles que :

- [A] contient les vecteurs de base pour lesquels les différents nombres quantiques sont liés entre eux par la relation : K - L = 3p où p est un entier

- $[E_a]$ et $[E_b]$ sont deux sous matrices en général différentes, ayant mêmes valeurs propres. Les nombres quantiques définissant les vecteurs de base de ces sous matrices sont liés entre eux par : K - L \neq 3p. $[E_1]$ pourra être défini par K - L 3p+1 tandis que $[E_2]$ correspondra à K - L = 3p+2. Enfin pour décomposer [A] en deux sous matrices $[A_1]$ et $[A_2]$ il suffit d'utiliser la représentation ayant pour vecteurs de base les vecteurs symétriques et antisymétriques définis au Chapitre I.

Les blocs ci-dessous schématisent le processus qui factorise la matrice de départ [H⁺]

MATRICE [H⁺] ECRITE DANS LA BASE DES VECTEURS PROPRES DE H_o

REARRANGEMENT DES LIGNES ET DES COLONNES

MATRICE [A] ECRITE DANS LA BASE DES VECTEURS SYMETRISES Nous sommes ainsi ramenés à la diagonalisation de trois sous matrices de dimension 2J - 2 (2J-1)/3 pour $[A_1]$ et $[A_2]$ et 2(J+1) + 2(2J-1)/3 pour [E].

Si la valeur de J est supérieure à 4 il est même inutile d'entrer tous les éléments qui interviennent dans les différentes sous matrices. En effet ces dernières apparaissent comme une répétition de motifs analogues le long de la diagonale principale. Si on choisit pour bases des matrices $[A_1]$ et $[A_2]$ les vecteurs $|\pm\rangle = \frac{1}{\sqrt{2}} [|K, l_t, l_t, \rangle \pm |-K, -l_t, -l_t, \rangle]$ de telle sorte que le premier terme $|K, l_t, l_t, \rangle$ corresponde toujours à une valeur positive de K, on réduit au maximum la longueur du motif [42].

Les formes des différentes matrices sont données par les tableaux IVD2 à IVD5 :

- les tableaux IVD2, IVD3 donnent les éléments de [A] et [E] dans la base des vecteurs d'ordre zéro $|J,K,l_+,l_+, >$.

- ceux notés IVD4, IVD5 donnent les éléments de $[A_1]$ et $[A_2]$ dans la base des vecteurs symétrisés $|\pm\rangle$; le type de vecteur utilisé est indiqué en haut de chaque colonne par le sigle $|+\rangle$ ou $|-\rangle$.

Les matrices étant symétriques par rapport à la diagonale principale nous avons seulement indiqué les éléments non nuls au dessus de cette diagonale. Les différentes quantités introduites ainsi que la correspondance entre les notations utilisées et les paramètres moléculaires apparaissant dans le tableau A1, sont explicités au bas des tableaux.

On vérifie que l'on passe d'un élément matriciel du n^{ième} motif, correspondant à la valeur K = K', à son homologue dans le motif (n+1) en augmentant de 3 la quantité K'.

2/ Repérage des niveaux

L'étiquetage des niveaux d'énergie se faitpar les valeurs de K, l_t et l_t . Or après diagonalisation un mélange s'éffectue de sorte qu'aucun vecteur de base ne peut plus en toute rigueur caractériser un niveau. Seule conserve généralement un sens la valeur absolue de K, à condition qu'il n'y ait pas de termes non diagonaux très importants devant la différence des éléments diagonaux qu'ils couplent. Chaque vecteur propre |i> d'une matrice peut être développé en fonction des vecteurs de base sous la forme :

$$|i\rangle = \alpha_{i} |J,K,\ell_{t},\ell_{t},\rangle + \sum_{j \neq i} \alpha_{j} |J,K',\ell'_{t},\ell'_{t}\rangle >$$

où les α_p sont des scalaires vérifiant $|\alpha_p| \leq 1$. S'il existe pour $|i\rangle$ une composante nettement prépondérante, c'est à dire si $\alpha_j << \alpha_i$, on identifie le vecteur propre à cette dernière et le niveau d'énergie correspondant peut être défini par les nombres K, ℓ_t , ℓ_t . Ceci est d'autant plus vrai que le mélange des vecteurs de base est peu prononcé, c'est à dire que les éléments hors diagonale sont plus petits.

Pour les sous matrices $[A_1]$ et $[A_2]$ peut se poser un autre problème : dans la base des vecteurs symétrisés $|\pm\rangle$ il y a un mélange qui fait qu'aucun des vecteurs $|K, l_t, l_t, \rangle$ ou $|-K, -l_t, -l_t|$ ne peut caractériser un niveau. Seul conserve sa valeur le type de symétrie A_1 ou A_2 du niveau ainsi que la valeur absolue de K (avec la même réserve que précédemment). Cependant comme nous le vérifierons par la suite, les composantes prépondérantes des vecteurs propres des différentes sous matrices sont presque toujours supérieures à 0.96, ce qui permet de dire que l'identification des niveaux en $|K|, l_t, l_t$ réalisée à partir des vecteurs propres garde un sens dans notre cas.

V : DETERMINATION DES PARAMETRES

La diagonalisation numérique des matrices se fait par la méthode de Jacobi qui a l'avantage de fournir à la fois les valeurs propres, c'est à dire les niveaux d'énergie, et les composantes des vecteurs propres dans la base des vecteurs $|\pm\rangle$ pour les matrices $[A_1]$ et $[A_2]$, ou $|0\rangle$ pour la matrice [E]. Ce dernier renseignement permet éventuellement de détecter les résonances essentielles ou de laisser supposer des résonances accidentelles entre états vibrationnels différents.

Les constantes moléculaires sont optimisées par une méthode de moindres carrés. Le programme de calcul est écrit dans le langage FORTRAN IV étendu C.I.I.

A l'ordre d'approximation retenu, 17 paramètres sont nécessaires pour exprimer l'énergie de rotation-vibration de la somme d'états $v_t = 1 + v_t' = 1$. Certains sont fixés à la valeur qu'ils possèdent dans d'autres états de vibration ; c'est le cas de $B_e^{ZZ}, \zeta_Z^t, \zeta_Z^t$ et $n_J^{t=20}$. Treize paramètres sont affinés à l'aide d'environ 150 raies appartenant aux transitions $J = 5 \rightarrow 6, 6 \rightarrow 7, 8 \rightarrow 9, 9 \rightarrow 10,$ $10 \rightarrow 11, 12 \rightarrow 13$ et $13 \rightarrow 14$. -5 -1-1 Ρ q' r' r q -2 -1 -1 Ρ r' q' r q. 1 -1 -1 Ρ $\mathbf{r'}$ q' r q 4 -1 -1 Ρ r' q' r q 7 \mathbf{r}^{I} r -1 -1 -6 b G Ρ r q -1 1 -3 -1 1 b G Ρ r. q 0 b G Ρ r q -1 1 3 b G Ρ r -1 1 ą b G 6 r -1 1 -6 Ρ ٢' q' 1-1 -3 1_1 Ρ r^{\prime} q' 0 1-1 Ρ r/ q' 3 1_1 Ρ r' q' 6 1_1 ٢1 -7 1 1 Ρ -4 Ρ 1 1 -1 Ρ 1 1 2 р 1 1 5 1 1

Eléments de la Matrice A (J=7)

notation utilisée r r' q q' d d' b q
$$\rho$$

Paramètre moléculaire $q_{12}^{t} q_{12}^{t'} q_{0}^{t} q_{0}^{t'} d_{12}^{tt'} d_{12}^{t't} r_{0}^{tt'} g_{22}^{tt'J} q_{3}^{t}$
Identification des niveaux d'énergie $\begin{bmatrix} K \\ \ell_{t} \ell_{t'} \end{bmatrix}$

Tableau IVD2

$$(j,K) = \sqrt{J (J + 1) - K (K + 1)}$$

$$(I,K) = \sqrt{J (J + 1) - (K + 2)(K + 3)}$$

$$(J,K) = \sqrt{J (J + 1) - K (K + 1)} \cdot \sqrt{J (J + 1) - (K + 1)(K + 2)}$$

	1) 1	2 6.0) 1 d *+ 120-11 r* 1	2 (j.0) d+ (20-1) r (2 cí (2:0)	2 g (LØ)	(10-3) p (50) (12)	- 1255 Stip Stra Star	
			1 1 -1	4 b+ 4 G J (J +)	2 q J (J+1)	2 (j.1) (- d+ (21+1) r) -	- p J (J+1) ((1))		2 a' (1,1)		(2.1+3) p (J,1) (I,3)
		 , ,,		1]]	2 q ° J (J • 1)	2 (j.1) { - d ' - (21 - 1) r ' }		• p J (J+1) (î.1)	2 q (11)		
					- <u>!</u> -)!	- p J (J -1) (L1)	- 2 (j.1) [d- (21+1) r]	- 2 (j,1) [d '+ (2.1 - 1) r ']			
						2 -] -]					2 q (J2)
			e -				-2 1 -1	4 b+ 4 G J (J -1)		- 2 (j2) { - d`+ (2.2+1) r }	
		-				\sum		-2 -1 1		- 2 (j2) - d+ (22+1) r]	
						2 N			3		2 (j.3) d`+ (23-1) r`
								\sum		-3 1 1	
								1 ^{er} Motif			4
					-						
BIIC											
lue y											

				110 -					
(21+3) p	1	1							
(J,1)					1				
(1.3)									
	- (21+3) p (J,1)								
	(L3)								
2 q	1	(2.2 · 3) p						1	1
(J,2)		(J.2) (J.4)							
	2.0	1	- (22.3).5	1	+	+	+		
	(J.2)		(J.2)						
an a	<u> </u>		(L4)			<u> </u>			
	2 q'			- (2.2+3) p					
		1		(L4)		·			
2 (j.3)					(23+3) p	1	1	1	
(d+ (23+l) r)					(J,3) (J,5)				
	<u> </u>	<u> </u>	12.0.		(1.5)	13.2 3			
			- 4 (J ₊ 3)	(1.3)		- (23+3) p (J3)			
		L		<u></u>	[(1,5)			
46+ 463/1+h		2 (j.4) La di a			2 q 1		(24+3) p		
		(24-br)			(),4)		(1.4) (1.6)		
4		2 (j.4)			29	1	1	(24-3) n	+
-1 1		[-d'+			0.4)			(J,4)	
	_1	1						(1.6)	
			(j1) [d -	- 2 (j.4) d ' -	ļ				- (24+3) p (14)
	-1 -1		(24+1) r j	(24-1) r *)					-16)
\mathbf{N}		5	_		1		2 q	2 q	
	1	-1 -1					0.5	(J.5)	
	1		-3	4 b+		- 2 (j.5)	}	1	2.0
				4GJ(J+1)		• d • •			0.5
			1 -1			(25+1) r '			
		\mathbf{i}		-5		- 2 (j.5) - d+			2 q' (1.5)
				-1 1		(25+Dr)			
			\mathbf{N}		6 .		2 (j.6)	2 (j.6)	
					1 1		[d'•	{ d+	
						6		20-11-1	}
						()			
)		1 1			
				f MOTIF			7	4 6 7 4 G J (J - I)	
<u>. </u>							I _!	ĺ	
								7	1
		•							
						\		<u> </u>	
							\mathbf{i}		-7
	·								-1 -1

1111

				•		
1 7 >	<=;	< 🎝	 ∲ >	==>	i • >	>
2 (j.0) { d'-d+ (20+ 1%r-r') }	2 (q ' - q) (J,0)	p (2.0+ 3) (J.0) (I.2)				
] -] -]		2 q (J,1)	2 q ' (J,1)	p (21+ 3) (J,1) (L3)		
\backslash	2	2 (j,2)	2 (j,2)		p (2.2 + 3)	

j=== >

0

1

•

.

-

Ĺ	- <u>1</u> -1		(J,1)	(J,1)	(J,1) (L3)				
		2	2 (j,2) [d '+ (22+ 1) r ']	2 (j,2) d+ (22+ 1) r		p (2.2 + 3) (J,2) (L,4)			
			3 1 -1	4 b + 4G . J (J + 1)	2 (j,3) [- d+ (2.3+ 1) r]	2 q ' (J,3)	p (2.3 + 3) (J.3) (L5)		
NEW COLONING IN THE	1 ^{er} Motif			3	2 (j,3) { - d ' + (2.3 + 1) r ']	2 q (J,3)		p (2.3 + 3) (J,3) (L5)	
					4 •1 -1		2 q (J,4)	2 q ` (J,4)	p (2.4+ 3) (J,4) (L6)
						5	2 (j.5) { d '+ (25+ 1) r ' }	2 (j,5) { d+ (25+ 1) r }	
					2 ^e Motif		6 1 -1	4 b• -4G . J (J+1)	2 (j.6) [- d+ (2.6+ 1) r]
								6 -1 1	2 (j.6) [-d'+ (2.6+1)r']
									-1 -1

Tableau IVD4

|+>

ł

- 112 -

·	==> 	+ >	== >	wes >	↓ +>	->	∳>	∳ >	
0 -1	$\frac{2 (j,o)}{1 - d - d' +}$ $\frac{1}{(2.0 + 1)(r + r')}$	2 (q+ q ') (J,O)	p (2.0+3) (J.O) (1,2)						
	-1 -1		2 q (J,1)	2 q' (J,1)	p (21 +3) (J,1) (L,3)				
		2 1 1	2 (j,2) [d ' + (22+ 1) r']	2 (j,2) [d+ (22+ 1) r]		p (22+3) (J,2) (I,4)			
			3 1 -]	4 b + 4GJ (J+ 1)	2 (j.3) [-d+ (2.3+1) r]	2 q' (J.3)	p (2.3+ 3) (J,3) (1,5)		
	1 ^{er} MOTIF			3 -1 }	2 (j,3) { - d`+ (2.3 \ 1) r` }	2 q (J,3)		p (2.3 + 3) (J,3) (1,5)	
					4	alaya taka aka katiya kati	2 q (J,4)	2 q' (J,4)	p (2.4+ 3) (J,4) (J,6)
						5	2 (j,5) [d'+ (25+1)r']	2 (j,5) [d+ (25 • 1) r]	
					2 ^e Motif		6 1 -1	4 b + 4G.J(J+1)	2 (j.6) [-d+ (2.6+ 1) r]
								6 -! 1	2 (j,6) [-d'+ (26+1) r']
									-1 -1

Tableau IVD5

Le tableau T9 donne les meilleures valeurs obtenues pour les constantes moléculaires ainsi que leurs précisions chiffrées par un calcul statistique. Nous vérifions que tous les paramètres ont une bonne définition.

Le tableau T11 rassemble pour les transitions étudiées les fréquences calculées ainsi que la différence $\Delta F =$ fréquence calculée - fréquence mesurée.

1/ Qualité des résultats

Une répartition des raies observées peut être faite en fonction de la valeur de ΔF :

• 120 raies ont un AF inférieur à l'erreur expérimentale

• 40 raies ont un ΔF inférieur à 0.15 MHz, ce qui représente un écart d'une fois et demie à deux fois l'erreur expérimentale. Cet écart est peu significatif. Parmi ces raies certaines apparaissent comme faisant partie, ou étant très proches, de raies multiples non résolues. A moins de changer radicalement de technique expérimentale, on ne peut espérer avoir une meilleure séparation des raies. La figure 22 permet la comparaison entre les spectres théorique (partie(a)) calculé avec les paramètres précédemment déterminés et expérimental (partie(b)) relatifs à la composante vibrationnelle $\sum_{t=0}^{t} l_{t=0} de$ la transition $J = 6 \div 7$. Les intensités relatives calculées satisfont à la relation IE1 ; la largeur des raies est la largeur Dopplet c'est à dire 90 kHz.

• Enfin une dizaine de raies ont un AF inférieur à 0.3 MHz ce qui correspond à environ 3 à 4 fois l'erreur de mesure admise. A priori ces raies ne satisfont à aucun critère particulier qui permet de les distinguer des autres.

Le petit nombre de raies mises en défaut par le calcul et surtout le faible écart AF rendent très difficile la recherche de la raison du désaccord et le remède à y apporter. Différentes hypothèses ont cependant été envisagées.

S'il y a résonance entre niveaux d'énergie, elle est d'autant plus forte que les composantes prépondérantes des vecteurs propres s'écartent de la valeur unité. Nous voyons en examinant le tableau IVD6 que les niveaux J,1,-1,1 et J,1,1,-1 sont fortement couplés entre eux (par l'intermédiaire de l'élément <K, ℓ_t , $\ell_$

prépondérantes sont nettement supérieures à 0.96. Enfin on vérifierait que les composantes non prépondérantes ont une valeur ne dépassant pas 0.2. Nous avons refait un calcul de moindres carrés en enlevant ces transitions : l'accord n'est pas amélioré et les nouvelles valeurs des constantes se situent à l'intérieur du domaine d'erreur de celles précédemment obtenues. L'examen du tableau montre encore que les raies pour lesquelles AF est le plus grand ont leur composante prépondérante de vecteur propre très proche de un ; elles ne sont donc pas affectées par un phénomène de résonance rotationnelle important.

L'introduction du nouvel élément <K, ℓ_t , ℓ_t , $|K \pm 3, \ell_t, \ell_t$, dans les matrices énergie, ou du paramètre $g_{22}^{tt'J}$ dans l'élément <K, ℓ_t , ℓ_t , $|K, \ell_t \pm 2, \ell_t, \pm 2$

MATRICE

ы

۴. ۲

MATRICE A2

MATRICE A1

ىلە ك 7 7 7 7 1 ï 7 7 T 1 х 5 ထို -10 7 ω ထု δ 6 10 10 -11-12 -12 -13 11 -11 13 13 0.9998 0.9419 0.9997 0.9508 0.9998 0.8726 0.8724 0.9998 0.9420 0.9997 0.9811 0.9811 0.9994 0.9997 0.9874 0.9870 0.9997 0.9446 εt. 7 7 7 7 7 ٦ 7 7 7 ູ ï ۲ ī ٦ 7 7 ī ï ч 0 7 2 7 2 m Ϋ́ 4 ഹ പ്പ പ്പ ဖ စု 5 d 4 0.99998 0.9999 0.9999 0.9690 0.9690 0.9879 0.9911 0.9950 0.9997 0.9967 0.9997 0666.0 0.9957 0.9970 0.9994 0.9947 0.9973 0.9999 γ^τ ---7 7 7 7 7 ī 7 ī لړ ل 7 7 ٦ 7 ī ٦ ï 7 ы 0 2 Ŷ 'n ۍ ۱ Ŷ 9 5 φ 6 6 -10 7 4 -12 -12 -13 Ę 0.9996 0.9690 0.9690 0.9879 0.9997 0.9997 0.9997 0.9967 0.9911 0.9997 0.9990 0.9950 0.9957 0.9970 0.9947 0.9973 0.9999 0.9994 β^τ, 7 7 7 7 ٦ 1 7 7 7 7 لم لم 7 7 7 7 7 1 7 1 ¥ 0 13 σ 2 12 S 12

13 || la matrice énergie J Composantes prépondérantes des vecteurs propres de .. IVD6 Tableau

BUS

7

7

0.9961

7

0.9954 0.9900 0.9993 0.9878 0.9966 0.9998 0.9998 0.9980 0.9980

٦

0.9933 0.9977 0.9996

- - -

0.9948 0.9926 0.9993

- 115 -

n'apporte aucun changement.

Si la raison n'est pas simplement d'ordre expérimental, la solution peut-elle se trouver du côté d'un phénomène de résonance vibrationnelle entre la somme d'états, d'énergie de vibration située à 832 cm⁻¹ du fondamental, et un autre état voisin ? Deux états pourraient satisfaire à ce critère :

• la combinaison $v_{20}(E) + v_7(A_1)$ dont l'énergie est située à 774 cm⁻¹. L'étude micro-onde précédemment vue, hormis une valeur de D_V^J faible mais en total accord avec la valeur que l'on pouvait attendre, ne révèle aucune anomalie.

• l'état excité non dégénéré $v_6(A_1) = 1$ dont l'énergie se trouve à 752 cm⁻¹ du fondamental. Malheureusement jusqu'à présent cet état n'a pu être localisé.

2/ Mise en évidence du dédoublement Kl $_t$ =-1 , L=2 ?

Comme nous l'avons déjà signalé, les spectres expérimentaux sont incomplets : des raies ne sont pas observées, essentiellement pour la composante vibrationnelle |L|=2. Dans l'ensemble elles correspondent à de grandes valeurs de K, par comparaison à la valeur de J, c'est à dire qu'elles sont affectées d'une intensité généralement faible. Elles apparaissent sur les figures 20a et 20b par des traits en pointillés.

Quelques raies représentées sur ces mêmes figures par des tirets ne sont pas attribuées à la somme d'états $v_{19}=1 + v_{20}=1$. Leur nombre semble augmenter avec J. Ce phénomène n'est pas particulier à la somme d'états. De nombreuses transitions actuellement non identifiées ont été mesurées aux voisinages et mène à l'intérieur des groupements de raies attribuées aux états vibrationnels précédemment étudiés.

Pour les transitions $J = 8 \rightarrow 9, 9 \rightarrow 10$ et $10 \rightarrow 11$ on observe parmi le groupe "B" deux raies, présentement non identifiées, d'intensité comparable, repérés par une étoile ; les points représentatifs s'alignent sur deux droites parallèles. Nous sommes tentés de les identifier aux raies de dédoublement $Kl_t = -1$, |L| = 2. Celà revient à attribuer à la constante $f_{222}^{tt'}$ la valeur : 18 kHz. - 117 -

<u>E</u> - <u>VARIATION</u> <u>DE</u> <u>LA</u> <u>CONSTANTE</u> <u>ROTATIONNELLE</u> B_V^{XX} <u>AVEC</u>

L'ETAT DE VIBRATION EXCITE

La dépendance de la constante B_V^{XX} avec l'état de vibration est donnée par l'expression [4] :

$$B_{V}^{XX} = B_{e}^{XX} - \sum_{s} \alpha_{s}^{X} (v_{s} + \frac{d_{s}}{2}) + \sum_{tt'} \gamma_{tt'} \cdot t_{t'} \cdot t_{t'}$$

où s caractérise une vibration quelconque, dégénérée ou non, tandis que t caractérise une vibration doublement dégénérée.

Si nous explicitons cette relation pour les trois états de vibration : fondamental, $v_{20}(E) = 1$ et $v_{20}(E) = 2$ nous obtenons trois équations à trois inconnues :

$$v = 0$$

$$v_{20} = 1 \ l_{t} = 1$$

$$v_{20} = 2 \ l_{t} = 0$$

$$B_{20}^{XX} = B_{e}^{i} - \alpha_{20}^{i} + \gamma_{20,20}^{i}$$

$$B_{20} = B_{e}^{i} - 2 \ \alpha_{20}^{i} + 4 \ \gamma_{20,20}^{i} + \gamma_{l_{20},l_{20}}^{i}$$

$$B_{20}^{l} = B_{e}^{i} - 3 \ \alpha_{20}^{i} + 9 \ \gamma_{20,20}^{i}$$

où :
$$B'_e = B_e + \sum_{s \le s'} \overline{\gamma}_{ss'} = \frac{d_s}{2} \cdot \frac{d_s'}{2} - \sum_{s \ne 20} \alpha_s \frac{d_s}{2} + \Delta B_e$$

$$\alpha'_{20} = \alpha_{20} - \sum_{s' \neq s} \gamma_{20,s'} \quad \frac{d_{s'}}{2}$$

La résolution de ce système conduit aux valeurs suivantes (exprimées en MHz)

 $B'_{e} = 5278.565$ $\alpha'_{20} = 5.43$ $\gamma_{20,20} = 0.127$ La molécule de TRIOXANE nous a permis d'aborder l'étude dans le domaine des ondes hertziennes de nombreux spectres de rotation appartenant à différents états vibrationnels. Des états excités d'énergie de vibration inférieure à 850 cm⁻¹ ont pu être identifiés ainsi que des états caractérisés par une vibration non dégénérée et une vibration dégénérée excitées chacune par un quantum et surtout pour la première fois dans le cas général des toupies symétriques deux vibrations dégénérées excitées simultanément par un quantum. Pour certains d'entre eux, notamment deux états dégénérés $v_E=1$, un phénomène de résonance essentielle de type l, parfois important a été mis en évidence et a rendu nécessaire la mise au point d'une méthode numérique pour le calcul des niveaux d'énergie et la détermination précise des constantes moléculaires. Cependant les formules de perturbation restent souvent indispensables pour identifier en totalité ou en partie les spectres et obtenir des valeurs approchées des paramètres avant d'avoir recours à la diagonalisation numérique.

Fait assez rare pour une toupie symétrique, la constante rotationnelle B^{ZZ} associée à l'axe de symétrie est déterminée avec une bonne précision par l'analyse des spectres de rotation des formes asymétriques obtenues par substitution dans la molécule "mère" d'un atome ¹³C ou ¹⁸C respectivement à un atome ¹²C ou ¹⁶O. Une structure partielle de la molécule symétrique en est également déduite.

Il semble, en l'état actuel de la technique, que l'on puisse observer pour notre molécule les spectres de rotation d'états vibrationnels situés entre 850 et 1000 cm⁻¹, par exemple des raies de l'état $3v_{20}$ (E) situé vers 921 cm⁻¹ du fondamental ont été localisées pour des transitions de J supérieur à 15. Bien que se heurtant à de grandes difficultés expérimentales et peut être d'analyse, une telle étude micro-onde serait souhaitable si l'on veut identifier les raies laser de longueur d'onde situées entre 384 et 949 μ m qui ont été observées au laboratoire à l'aide d'un laser submillimétrique à trioxane pompé par un laser à CO₂ [43]. Treize raies laser ont été jusqu'à présent repérées et de nouvelles raies pourraient certainement être détectées si l'on pouvait disposer d'un laser à CO₂ plus puissant ou émettant sur une plus large bande.

Les résultats acquis à partir d'un spectre expérimental qui pour des valeurs élevées de J peut devenir complexe (figure 23 ou nous voyons que les domaines des raies de rotation appartenant à des états vibrationnels différents s'enchevètrent) peuvent également servir de point de départ à l'étude, d'ailleurs envisagée, des spectres infra-rouge détectés par diode laser notamment dans la région des 10 µm où des raies d'absorption ont pu être mesurées à l'aide d'un laser à CO_2 [44].

- 121 -

BIBLIOGRAPHIE

- 1 B.T. DARLING, D.M. DENNISON, Phys.Rev., <u>57</u>, 128 (1940) "The Water Vapor Molecule"
- J.H.VAN-VLECK, Phys.Rev., <u>33</u>, 467 (1929)
 "An σ-Type Doubling and Electron Spin in the Spectra of Diatomic Molecules'
 W.H.SHAFFER, H.H.NIELSEN, J.H.THOMAS, Phys.Rev., <u>56</u>, 895 (1939)
 "The Rotation-Vibration Energies of Tetrahedrally Symmetric Pentatomic Molecules".
- M.GOLDSMITH, G.AMAT, H.H.NIELSEN
 "Higher Order Rotation-Vibration Energies of Polyatomic Molecules"
 - I . J.Chem.Phys., 24, 1178 (1956)
 - II . J.Chem.Phys., <u>27</u>, 838 (1957)
 - G.AMAT, H.H.NIELSEN
 - "Higher Order Rotation-Vibration Energies of Polyatomic Molecules"
 - III . J.Chem. Phys., 27, 845 (1957)
 - IV. J.Chem.Phys., 29, 665 (1958)
- 4 O.KLEIN, Zeits.Physik, 58, 730 (1929)
- G.W.KING, R.M.HAINER, P.C.CROSS, J.Chem.Phys., <u>11</u>, 27 (1943)
 "The Asymmetric Rotor. I Calculation and Symmetry Classification of Energy Levels"
- G.AMAT, H.H.NIELSEN
 "Higher Order Rotation-Vibration Energies of Polyatomic Molecules"
 V. J.Chem.Phys., 36, 1859 (1962)
- 7 G.TARRAGO, thèses, Editions de la Revue d'Optique (1965)
- J.K.G.WATSON, J.Chem.Phys., <u>46</u>, 1935 (1967)
 "Determination of Centrifugal Distorsion Coefficients of Asymmetric-Top-Molecules"
- 9 G.STEENBECKELIERS, Ann.Soc.Scient.Bruxelles, <u>82</u>, III, 331 (1968)
 "Traitement au second ordre du rotateur. Spectres hertziens de la molécule s³²o₂¹⁶ "
- 10 R.S.MULLIKEN, Phys.Rev., <u>59</u>, 873 (1941)
 "Species Classification and Rotational Energy level Patterns of Non-Linear Triatomic Molecules"

- 11 S.C.WANG, Phys.Rev., <u>34</u>, 243 (1929)
 "On the Asymmetrical Top in Quantum Mechanics"
- 12 R.KARPLUS, Ph.D.Thesis, Harward University (1949)
 D.KIVELSON, J.Chem.Phys., <u>21</u>, 536 (1953)
 "A(K+2)nd Order Formula for Asymmetry Doublets in Rotational Spectra"
- 13 P.BARCHEWITZ, Spectroscopie Atomique et Moléculaire. Tome II. Masson. 1971.
- J.H.VAN-VLECK, V.F.WEISSKOPF, Rev.Mod.Phys., <u>17</u>, 227 (1945)
 "On the Shape of Collision-Broadened Lines"
- 15 C.H.TOWNES, A.L.SCHALOW, Microwave Spectroscopy, Mc Graw-Hill, 1955.
- 16 A.T.STAIR, J.R.NIELSEN, J.Chem.Phys., <u>27</u>, 402 (1957)
 "Vibrational Spectra of sym-TRIOXANE"
- M.KOBAYASHI, R.IWAMOTO, H.TADOKORO, J.Chem.Phys., <u>44</u>, 922 (1966)
 "Vibrational Spectra of Trioxane and Trioxane-d_c"
- 18 M.KIMURA, K.AOKI, J.Chem.Soc.Jap., Pure Chem.Sec., <u>72</u>, 169 (1951)
- 19 A.H.CLARK, T.G.HEWITT, J.Mol.Structure, <u>9</u>, 33 (1971)
 "An Electron-Diffraction Investigation of Gazeous 1, 3, 5-Trioxan."
- 20 V.BUSETTI, G.CARAZZOLO, M.MAMMI, Gazz.Chim.Ital., <u>92</u>, 1362 (1962) "Sulla Structtura del Triossano"

V.BUSETTI, M.MAMMI, G.CARAZZOLO, Z.Kristallogr., <u>119</u>, 310 (1963) "A three-dimensional Refinement of Crystalline Structure of Trioxane"

- 21 T.OKA, K.TSUCHIVA, S.IWATA, Y.MORINO, Bull.Chem.Soc.Jap., <u>37</u>, 4 (1964) "Microwave Spectrum of s-Trioxane"
- 22 E.AMBLE, Phys.Rev., 83, 210 session H8 (1951)
- 23 R.H.HUGHES, E.B.WILSON Jr, Phys.Rev., <u>71</u>, 562 (1947)
 "A Microwave Spectrograph"
- 24 E.DURAND, Solutions numériques des équations algébriques, Masson (1961)
- 25 W.H.KIRCHHOFF, J.Mol.Spectrosc., <u>41</u>, 333 (1972)

"On the Calculation and Interpretation of Centrifugal Distorsion Constants : A Statistical Basis for Model Testing : the Calculation of the Force Field"

26 - J.KRAITCHMAN, Am.J.Phys., <u>21</u>, 17 (1953)
 "Determination of Molecular Structure from Microwave Spectroscopic Data"

- 27 J.M.COLMONT, J.Mol.Structure, <u>21</u>, 387 (1974)
 "Etude en Ondes Millimétriques des Variétés isotopiques en ¹³C et ¹⁸O
 de la Molécule de Trioxane Structure de la Molécule"
- 28 V.BUSETTI, A.DEL PRA, M.MAMMI, Acta Crystallogr., B25, 1191 (1969) "The Structure of Trioxane at Low Temperature"
- H.H.NIELSEN, Phys.Rev., <u>77</u>, 130 (1950)
 "L-Type Doubling in Polyatomic Molecules and its Application to the Microwave Spectrum of Methyl Cyanide and Methyl Iso-Cyanide"
 - J. DE HEER, Phys.Rev., 83, 741 (1951)
- 30 G.AMAT, C.R.Acad.Sc, 250, 1439 (1960)
 "Sur la forme de l'équation séculaire donnant les niveaux de vibration rotation d'une molécule à symétrie axiale"
- 31 L.LANDAU, E.LIFCHITZ, Mécanique Quantique, Editions Mir 1966
- 32 J.LEMAIRE, Thèse de 3ème Cycle, Faculté des Sciences de Lille. 1967.
- 33 J.M.COLMONT, Thèse de 3ème Cycle, Faculté des Sciences de Lille. 1969.
- 34 M.L.GRENIER-BESSON, G.AMAT, J.Mol.Spectrosc., <u>8</u>, 22 (1962)
 "Rotation Spectrum of Molecules with C_{3V} Symmetry in an Excited
 Vibrational State v₊ = 1"
- J.BELLET, J.M.COLMONT, J.LEMAIRE, J.Mol.Spectrosc., <u>34</u>, 190 (1970)
 "Millimeter Wave Study of the Ground State and Several Excited
 Vibrational States of Trioxane"
- J.BELLET, J.M.COLMONT, J.C.DEPANNEMAECKER, C.R.Acad.Sc., 271, 41 (1970)
 "Etude du comportement des doublets de type l dans les états vibrationnels excités dégénérés de la molécule de Trioxane"
- 37 G.TARRAGO, J.Mol.Spectrosc., <u>34</u>, 23 (1970) "Rotational Spectrum of Molecules with C_{3V} Symmetry in an Excited State $v_t = 2$ "
- 38 A.BAUER, Thèse, Université des Sciences et Techniques de Lille. 1970
- J.M.COLMONT, J.Mol.Spectrosc., <u>58</u>, 220 (1975)
 "Microwave Spectrum of Trioxane in Four Excited Degenerate Vibrational States, Especially in the 2v₂₀(E) State and the Combination State
 v₇(A₁) + v₂₀(E)"

- 40 J.C.DEPANNEMAECKER, DEA Université des Sciences et Techniques de Lille 1970.
- 41 G.AMAT, H.H.NIELSEN, G.TARRAGO, Rotation-Vibration of Polyatomic Molecules - M.DEKKER. 1971
- 42 G.TARRAGO, Communication Privée.
- 43 D.DANGOISSE, A.DELDALLE, J.P.SPLINGARD, J.BELLET, I.E.E.E. J.Quantum Electron Vol.QE-13 N°9 (1977)
 "CW Optically Pumped Laser Action in D₂CO, HDCO, (H₂CO)₃
- 44 M.LYSZYK, thèse de 3ème Cycle, Université des Sciences et Techniques de Lille - 1978.

ANNEXES

<u>A1</u> : <u>CONTRIBUTIONS A LA MATRICE [H⁺]</u>

- (a) contributions non diagonales
- (b) contributions diagonales

			נ≃ו			K ≃	1
	n	n		k			
				Déd	RF ₂	Rf	RAF
r ⁴ lt lt'	⁸ t ^{±2} ¹ t ^{∓2}	2		2	2		
$H_2^+ \left\{ r^2 p^2 \right\} = \int_{K}^{K} t$	K ±1 £ ∓2	4				6	4
LK L	κ ±2 ^g t ±2	4		4		6	4
Lp ⁴ K	K ±3	6	<u> </u>				6
$H_3^+ \begin{cases} r^4 p & K t_{t} \end{cases}$	κ ±1 ε _t ∓2	4	4			6	4
	K ±3	6					6
	£t±6	4		4		6	
6 st tt	tt ^{±2} tt ^{∓2}	4	2	4	4		
t t t	$\mathfrak{L}_{t}^{\pm 2}$ $\mathfrak{L}_{t}^{\pm 4}$	4		4		6	4
	$t_t^{\pm 2}$ $t_t^{\pm 2}$ $t_t^{\pm 2}$	4		4		6	4
K L	$K \pm 1 L \pm 2$	6	4				6
K L	$(k \pm 1) \pm \pm 4$	G			r i i		6
$\begin{bmatrix} 4 \\ r^4 p^2 \end{bmatrix} \stackrel{K}{\overset{I}{\overset{I}{t}}} \stackrel{I}{\overset{L}{t}}$	K ±2 1 ±2	6	4	6			6
H_{A}^{+}	K ±2 ± ±4	6		6			6
K t t	K ±1 1 ± ±2 1 ± + ±2	6					6
K L L	K ±2 1 +2 1 + 2	6		-6			6
	1 t ^{±2} Lt ⁺²	6	2	6	6		
	K ±1 2 ± 72						
	K ±2 2 ± ±2						
LK 1	K ±4 2 ± 72						
6 F							
	K ±6						
	* * * * * * * * * * * * *		<u> </u>				
K L	$K \pm 1 2_{\pm} \pm 2$	6	4				6
$H_5^+ \left\{ r^6 p \right\} \left\{ r^{-\frac{1}{2}} p \right\} \left\{ r^{-1$	$K \pm 1 \ell_{t} \pm 4$	6					6
	K ±1 ½ ±2 ½ ±2	6					6
L ^x t ^x t'	¹ t ² ¹ t ⁷	6	2	6 _.	6		
**********	•••••						

(b)

(a)

 $\frac{A2}{A2}$: CONTRIBUTIÓNS A L'ENERGIE EN L'ABSENCE DE RESONANCES ACCIDENTELLEMENT FORTES J \approx 1, K \approx 1

144

 $\Lambda^{F} = \Lambda^{F}^{*} = J$ $a_{n,JK}^{\pm} = \left[J(J+1) - K(K\pm 1) \right]^{1/2} \times \left[J(J+1) - (K\pm 1) (K\pm 2) \right]^{1/2} \dots \times \left\{ J(J+1) - \left[K \pm (\eta-1) \right] (K\pm \eta) \right\}^{1/2}$ ETATS CONCERNES ر=_ح ۲=^٦∧ 0=^੨∧ 0 2 4 6 U đ CONTRIBUTION ed. υ A 15 4 đ ORDRE DE LA д æ υ م 3 ,Q ri, ø đ j. Contribution Nature de la a l'énergie Dcd, RF₂ Ded, RF2 Diag Diag Diag Diag Diag Ded Ded Ded R£ Rf Rf $b_{2,v_{t}v_{t}}^{\pm} = [(v_{t} + k_{t} + 1 \pm 1)(v_{t} - k_{t} + 1 \mp 1)]^{1/2}$ $d_{12}^{tt} (a_{t}^{t1}) + \sum_{t' \neq t} d_{12}^{tt'} a_{t,l'} a_{1,JK}^{t} b_{2,v_{t}}^{t} b_{t}$ $\left[\left[\left[e^{tt^{1}J}_{22} J(J+1) + e^{tt^{1}K}_{22} K^{2} \right] e^{tt^{1}}_{22} e^{tt^{1}}_{22} e^{tt^{1}}_{22} \right] \right]$ $- D_{e}^{J} J^{2}(J+1) - D_{e}^{JK} J(J+1) K^{2} - D_{e}^{K} K^{4}$ $\Sigma_{t} n_{t}^{J} J(J+1) X_{t} k_{t} + \Sigma_{t} n_{t}^{K} K^{3} k_{t}$ $B_{V}^{XX} J (J+1) + (B_{V}^{ZZ} - B_{V}^{XX}) K^{2}$ q_{12}^{t} (2K±1) $a_{1,JK}^{t}$ $b_{2,v_{t}}^{t}$ f_{222}^{tt} (v_t+1) (v_t+1) J (J+1)
 rtt
 b2
 vtt
 b2
 vtt
 - 2 ½ (ct B²²) Ktt $f_{24}^{t} v_{t} (v_{t}^{+2}) J (J+1)$ q_{eff}^{t} (v_t+1) J(J+1) ^{q°} a[±]2, JK k[±]2, ve^te ELEMENTS MATRICIELS EV/hc < K, & t, & t, |K+2, & t+2, & t, +2 > < $K, k_{\rm t} | K^{\pm}2, k_{\rm t}^{\pm}2 >$ < K, &_t | K±2, k_t 4 > < X, &_t | X±1, &_t *2 >

 $a_{n,JK}^{\pm} = \left[J \left(J + 1 \right) - K \left(K \pm 1 \right) \right]^{1/2} \times \left[J \left(J + 1 \right) - \left(K \pm 1 \right) \left(K \pm 2 \right) \right]^{1/2} \dots \times \left\{ J \left(J + 1 \right) - \left[K \pm \left(n - 1 \right) \right] \left(K \pm n \right) \right\}^{1/2}$ $b_{2}^{\tilde{t}}v_{k}a_{t} = [(v_{t}+a_{t}+1\pm 1)(v_{t}-a_{t}+1\pm 1))]^{1/2}$

้ 8115 นน**ะ**

ø

A3 : COEFFICIENTS ENTRANT DANS LES EXPRESSIONS DE L'ENERGIE

L'indice s caractérise une vibration quelconque ; l'indice t caractérise une vibration doublement dégénérée.

	(a) (b)	$\Sigma_{s} \stackrel{\omega_{s}}{\stackrel{(v_{s} + \frac{d_{s}}{2})}{\underset{s \leq s'}{\Sigma}} \times \sum_{ss'} (v_{s} + \frac{d_{s}}{2}) (v_{s'} + \frac{d_{s'}}{2}) + \sum_{tt'} x_{tt'} \stackrel{\ell_{t}\ell_{t'}}{\underset{t \leq t'}{\Sigma}} \times \sum_{tt'} \frac{\ell_{t}\ell_{t'}}{t} + \frac{\ell_{t'}\ell_{t'}}{t} + $
$rac{\mathbf{E}_{\mathbf{V}}}{\mathbf{hc}}$	(c)	$\sum_{\substack{ss's''\\s \leq s' \leq s''}} Y_{ss's''} (v_{s} + \frac{d_{s}}{2}) (v_{s'} + \frac{d_{s'}}{2}) (v_{s''} + \frac{d_{s''}}{2}) + $
-		$\sum_{\substack{s,t,t'\\t\leq t'}} y_{sl_tl_t} (v_s + \frac{d_s}{2}) l_tl_t, + \sum_{s} \Delta \omega_s (v_s + \frac{d_s}{2}) t_{s} t_{s} (v_s + \frac{d_s}{2})$
	(a)	Be
$ \begin{array}{c} B_{V}^{\text{ii}} \\ i = x, y, z \end{array} $	(b)	$- \sum_{s} \alpha_{s}^{i} \left(v_{s} + \frac{d_{s}}{2} \right)$
	(c)	$\sum_{\substack{\text{ss'}\\\text{ss'}\\\text{ss'}}} \gamma_{\text{ss'}}^{i} (v_{\text{s}} + \frac{d_{\text{s}}}{2}) (v_{\text{s'}} + \frac{d_{\text{s}'}}{2}) + \sum_{\substack{\text{tt'}\\\text{tt'}\\\text{tt'}}} \gamma_{\ell_{\text{t}}\ell_{\text{t}}}^{i} \ell_{\ell_{\text{t}}\ell_{\text{t}}}^{\ell_{\ell_{\text{t}}}} + \Delta B_{e}^{ii}$
D _V	(a)	D _e ⁱ
i = J,JK,K	(b)	$\Sigma_{s} \beta_{s}^{i} (v_{s} + \frac{d_{s}}{2})$
$(\tau B^{\mathbf{Z}\mathbf{Z}})$	(a)	$\zeta_{t}^{z} B_{e}^{zz}$
``t' 'v	(b)	$-1/2 \sum_{s} n_{ts} (v_s + \frac{d_s}{2})$
t g _{off}	(a)	q _o t
-eii	(b)	$\Sigma_{s} f_{22}^{ts} \left(v_{s} + \frac{d_{s}}{2} \right)$
++ '	(a)	r ^{tt'} _o
reff	(b)	$\Sigma_{s} g_{22}^{tt's} (v_{s} + \frac{d_{s}}{2})$

$$2 B^{*} (J+1)$$

$$-4 D_{V}^{J} (J+1)^{3}$$

$$-2 D_{V}^{JK} (J+1) (Kl_{t}-1)^{2}$$

$$+ 2 \rho^{*} (J+1) (Kl_{t}-1)$$

$$Kl_{t} \neq 1$$

$$+ \frac{4 (q_{0}^{t})^{2} (J+1)^{3}}{(Kl_{t}-1) \cdot (B_{e}^{ZZ} - B_{e}^{XX} - B_{e}^{ZZ} \zeta_{t}^{Z})}$$

$$Kl_{t} = 1$$

$$pdedoublement \begin{pmatrix} \psi^{+} \leftrightarrow \psi^{+} \\ \psi^{-} \leftrightarrow \psi^{-} \\ h_{1}A_{2} \end{pmatrix}$$

$$+ 4 q_{eff}^{t} (J+1)$$

$$- 4 q_{eff}^{t} (J+1)$$

$$B^{*} = B_{V}^{XX} - D_{V}^{JK} + \eta_{t}^{J} - \frac{12 (q_{12}^{t})^{2}}{B_{e}^{ZZ} - B_{e}^{XX} + 2 B_{e}^{ZZ} \zeta_{t}^{Z}}$$

$$\rho^{*} = \eta_{t}^{J} - 2 D_{V}^{JK} - \frac{2 (q_{0}^{t})^{2}}{B_{e}^{ZZ} - B_{e}^{XX} - B_{e}^{ZZ} \zeta_{t}^{Z}} - \frac{8 (q_{12}^{t})^{2}}{B_{e}^{ZZ} - B_{e}^{XX} + 2 B_{e}^{ZZ} \zeta_{t}^{Z}}$$

Conditions de validité du traitement par perturbation de la matrice énergie : $\frac{1}{2} |q_{J}| J(J+1) << |B_{e}^{XX} - B_{e}^{ZZ} + B_{e}^{ZZ} \zeta_{t}^{Z}|$ $|q_{12}^{t}| .[J(J+1)]^{1/2} << |B_{e}^{XX} - B_{e}^{ZZ} - 2 B_{e}^{ZZ} \zeta_{t}^{Z}|$ Composante vibrationnelle l_t=0

2
$$B_V^{XX}$$
 (J+1)
- 4 D_V^J (J+1)³
- 2 D_V^{JK} (J+1) K^2
+ $\frac{16 (q_o^t)^2 (J+1) [\lambda (J+1)^2 + (2\mu - \lambda) K^2 - \lambda]}{\mu^2 K^2 - \lambda^2}$

$$+\frac{32 (J+1) \left\{4\kappa^{2} [(q_{12}^{t})^{2} (\pi-2\rho) + 2\rho q_{12}^{t} d_{12}^{tt}] + \pi (q_{12}^{t} - d_{12}^{tt})^{2}\right\}}{4 \rho^{2} \kappa^{2} - \pi^{2}}$$

$$\lambda = B_e^{ZZ} - B_e^{XX} - 2 B_e^{ZZ} \zeta_t^Z + x_{\ell t} t$$

$$\mu = B_e^{ZZ} - B_e^{XX} - B_e^{ZZ} \zeta_t^Z$$

$$\pi = B_e^{ZZ} - B_e^{XX} - 4 B_e^{ZZ} \zeta_t^Z + 4 x_{\ell t} t$$

$$\rho = B_e^{ZZ} - B_e^{XX} + 2 B_e^{ZZ} \zeta_t^Z$$

Conditions de validité du traitement par perturbation de la matrice énergie

$$|q_{0}^{t}| J(J+1) << 4 | \pm |K| \mu - \lambda |$$

$$(|q_{12}^{t}| + |d_{12}^{tt}|)[J(J+1)]^{1/2} << |\pm 2|K| \rho - \pi |$$

2
$$B_V^{XX}$$
 (J+1)
- 4 D_V^J (J+1)³
- 2 D_V^{JK} (J+1) K^2
+ 2 n_{+}^J (J+1) $K\ell_{+}$

Conditions de validité du traitement par perturbation de la matrive energie

$$|q_0^t| J(J+1) << 2 |\mu(K\ell_t-4) + 2\lambda |$$

$$(|q_{12}^t| + |d_{12}^{tt}|)[J(J+1)]^{1/2} << |\rho(K\ell_t+2) - \pi)$$

<u>A6</u> : FREQUENCES ROTATIONNELLES D'UN ETAT $v_t = v_{t'} = 1$

Composante vibrationnelle $l_t + l_t = 0$

$$2 B_{V}^{XX} (J+1)$$

$$- 4 D_{V}^{J} (J+1)^{3}$$

$$- 2 D_{V}^{JK} (J+1) K^{2}$$

$$+ 2 (n_{t}^{J} - n_{t}^{J}) (J+1) K$$

κ≠ 0

$$\pm 2(J+1) \begin{bmatrix} \frac{8 r_{o}^{tt'} q_{22}^{tt'} - \kappa^{2} B_{e}^{zz} (\zeta_{t}^{z} - \zeta_{t}^{z}) (\eta_{t}^{J} - \eta_{t}^{J})}{[(B_{e}^{zz} \zeta_{t}^{z} - B_{e}^{zz} \zeta_{t}^{z})^{2} + 4 (r_{o}^{tt'})^{2}]^{1/2}} \\ \frac{4 \left\{ 4 r_{o}^{tt'} [q_{12}^{t} (2K+1) - d_{12}^{tt'}] + A_{K}^{\pm} [q_{12}^{t'} (2K+1) - d_{12}^{t't}] \right\}^{2}}{C_{K}^{\pm} [16 (r_{o}^{tt'})^{2} + (A_{K}^{\pm})^{2}]} \\ \frac{4 \left\{ 4 r_{o}^{tt'} [q_{12}^{t} (2K-1) + d_{12}^{tt'}] + A_{-K}^{\pm} [q_{12}^{t'} (2K-1) + d_{12}^{t't}] \right\}^{2}}{C_{-K}^{\pm} [16 (r_{o}^{tt'})^{2} + (A_{-K}^{\pm})^{2}]} \end{bmatrix}$$

+ 16(J+1)
$$[(J+1)^{2} - (K-1)^{2}] \frac{(4 r_{o}^{tt'} q_{o}^{t} + A_{K}^{\pm} q_{o}^{t'})^{2}}{B_{K}^{\pm} [16 (r_{o}^{tt'})^{2} + (A_{K}^{\pm})^{2}]}$$

+ 16(J+1)
$$[(J+1)^{2} - (K+1)^{2}] \frac{(4 r_{o}^{tt} q_{o}^{t} + A_{-K}^{\pm} q_{o}^{t'})^{2}}{B_{-K}^{\pm} [16 (r_{o}^{tt'})^{2} + (A_{-K}^{\pm})^{2}]}$$

- 135 -

$$K = 0 \left\{ \psi^{+} \leftrightarrow \psi^{+} \\ \psi^{-} \leftrightarrow \psi^{-} \\ \psi^{-} \leftrightarrow \psi^{-} \\ \psi^{-} \leftrightarrow \psi^{-} \\ \left\{ \begin{array}{l} + 8(J+1) \\ g_{22}^{tt'J} = \frac{(q_{12}^{t} + q_{12}^{t'} - d_{12}^{tt'} - d_{12}^{tt'})^{2}}{B_{e}^{zz} - B_{e}^{xx} + 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + 2x_{k_{t}k_{t}} - 4x_{o}^{tt'})} \\ + \frac{(q_{0}^{t} + q_{0}^{t'})^{2}}{2(B_{e}^{zz} - B_{e}^{xx}) - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + x_{k_{t}k_{t}} - 2x_{o}^{tt'})} \\ - 8(J+1)^{3} \frac{(q_{0}^{t} + q_{0}^{t'})^{2}}{2(B_{e}^{zz} - B_{e}^{xx} - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + x_{k_{t}k_{t}} - 2x_{o}^{tt'})} \\ - 8(J+1) \begin{bmatrix} q_{22}^{tt'J} + \frac{(q_{12}^{t} - q_{12}^{t'} + d_{12}^{t'} - d_{12}^{tt'})^{2}}{2(B_{e}^{zz} - B_{e}^{xx} - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + x_{k_{t}k_{t}} - 2x_{o}^{tt'}} \end{bmatrix} \\ - 8(J+1) \begin{bmatrix} q_{22}^{tt'J} + \frac{(q_{12}^{t} - q_{12}^{t'} + d_{12}^{t'} - d_{12}^{tt'})^{2}}{B_{e}^{zz} - B_{e}^{xx} - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + 2x_{k_{t}k_{t}} + 4x_{o}^{tt'}} \\ - 8(J+1) \begin{bmatrix} q_{22}^{tt'J} + \frac{(q_{12}^{t} - q_{12}^{t'} + d_{12}^{t'} - d_{12}^{tt'})^{2}}{B_{e}^{zz} - B_{e}^{xx} - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + 2x_{k_{t}k_{t}} + 4x_{o}^{tt'}} \\ - \frac{(q_{0}^{t} - q_{0}^{t'})^{2}}{2(B_{e}^{zz} - B_{e}^{xx}) - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + 2x_{k_{t}k_{t}} + 2x_{o}^{tt'}} \end{bmatrix} \\ - 8(J+1)^{3} \frac{(q_{0}^{t} - q_{0}^{t'})^{2}}{2(B_{e}^{zz} - B_{e}^{xx}) - 2B_{e}^{zz}(\zeta_{t}^{z} + \zeta_{t}^{z}) + x_{k_{t}k_{t}} + 2x_{o}^{tt'}} \end{bmatrix}$$

$$A_{K}^{\pm} = 2K B_{e}^{ZZ}(\zeta_{t}^{Z}-\zeta_{t}^{Z}) \pm 2 \sqrt{(B_{e}^{ZZ} \zeta_{t}^{Z}-B_{e}^{ZZ} \zeta_{t}^{Z})^{2} K^{2} + 4 (r_{o}^{tt'})^{2}}$$

$$B_{K}^{\pm} = 4 (B_{e}^{ZZ}-B_{e}^{XX}) (K-1) - 2B_{e}^{ZZ}(\zeta_{t}^{Z}+\zeta_{t}^{Z}) (K-2) - 2x_{l_{t}l_{t}}^{t} \pm 2 \sqrt{(B_{e}^{ZZ} \zeta_{t}^{Z}-B_{e}^{ZZ} \zeta_{t}^{Z})^{2} K^{2} + 4 (r_{o}^{tt'})^{2}}$$

$$C_{K}^{\pm} = -(B_{e}^{ZZ}-B_{e}^{XX}) (2K+1) - 2B_{e}^{ZZ}(\zeta_{t}^{Z}+\zeta_{t}^{Z}) (K+1) - 2x_{l_{t}l_{t}}^{t} \pm 2 \sqrt{(B_{e}^{ZZ} \zeta_{t}^{Z}-B_{e}^{ZZ} \zeta_{t}^{Z})^{2} K^{2} + 4 (r_{o}^{tt'})^{2}}$$

$$(K+1) - 2x_{l_{t}l_{t}}^{t} \pm 2 \sqrt{(B_{e}^{ZZ} \zeta_{t}^{Z}-B_{e}^{ZZ} \zeta_{t}^{Z})^{2} K^{2} + 4 (r_{o}^{tt'})^{2}}$$

$$(K+1) - 2x_{l_{t}l_{t}}^{t} + 2 \sqrt{(B_{e}^{ZZ} \zeta_{t}^{Z}-B_{e}^{ZZ} \zeta_{t}^{Z})^{2} K^{2} + 4 (r_{o}^{tt'})^{2}}$$

2 B_V^{XX} (J+1) $-4 D_{V}^{J} (J+1)^{3}$ $-2 D_{y}^{JK}(J+1) \kappa^{2}$ + 2 $(\eta_t^J + \eta_t^J) K\ell_t$ $\kappa \ell_{t} \neq -1 + 8 (J+1) \sum_{i=+,-} \frac{\left\{ A_{K\ell_{t}+1}^{i} \left[q_{12}^{t'} (2\kappa \ell_{t}+1) + d_{12}^{t't} \right] - 4 r_{o}^{tt'} \left[q_{12}^{t} (2\kappa \ell_{t}+1) + d_{12}^{tt'} \right] \right\}}{B_{K\ell_{t}}^{i} \left[16 (r_{o}^{tt'})^{2} + (A_{K\ell_{t}+1}^{i})^{2} \right]}$ $\kappa \ell_{t} \neq 2 + 16(J+1) [(J+1)^{2} - (\kappa \ell_{t}-1)^{2}] \sum_{i=+,-} \frac{(a_{\kappa \ell_{t}-2}^{i} - q_{o}^{t'} - 4 r_{o}^{tt'} - q_{o}^{t})^{2}}{c_{\kappa \ell_{t}}^{i} [16 (r_{o}^{tt'})^{2} + (a_{\kappa \ell_{t}-2}^{i})^{2}]}$ $\begin{bmatrix} \psi^{+} \leftrightarrow \psi^{+} \\ \psi^{-} \leftrightarrow \psi^{-} \\ \psi^{-} \leftrightarrow \psi^{-} \\ \end{bmatrix} + \frac{8(J+1) [(J+1)^{2}-1] (q_{0}^{t} + q_{0}^{t})^{2}}{2(B_{e}^{zz} - B_{e}^{xx}) - 2 B_{e}^{zz} (\zeta_{t}^{z} + \zeta_{t}^{z}) + x_{\ell} t' - 2 r_{0}^{tt'}} \\ \frac{8(J+1) [(J+1)^{2}-1] (q_{0}^{t} - q_{0}^{t'})^{2}}{2(B_{e}^{zz} - B_{e}^{xx}) - 2 B_{e}^{zz} (\zeta_{t}^{z} + \zeta_{t}^{z}) + x_{\ell} t' + 2 r_{0}^{tt'}} \\ \end{bmatrix}$ $K\ell_t = 2$ Dédouble-("t t' tt' t't'

$$K\ell_{t} = -1$$

$$\psi^{+} \leftrightarrow \psi^{+} + 8 (J+1) \left[f_{222}^{tt'} + \frac{(q_{12}^{-q_{12}^{-d_{12}^{-d_{12}^{+d_{12}^{+}}}})}{g_{e}^{zz} - B_{e}^{xx} + 2B_{e}^{zz} (\zeta_{t}^{z} + \zeta_{t}^{z}) + 2x_{\ell} \ell_{t}^{\ell} + 4r_{o}^{tt'}} \right]$$

$$\psi^{-} \leftrightarrow \psi^{-} - 8 (J+1) \left[f_{222}^{tt'} - \frac{(q_{12}^{t} + q_{12}^{t} - d_{12}^{tt'} - d_{12}^{tt'})^{2}}{g_{e}^{zz} - B_{e}^{xx} + 2B_{e}^{zz} (\zeta_{t}^{z} + \zeta_{t}^{z}) + 2x_{\ell} \ell_{t}^{\ell} \ell_{t}^{-4r_{o}^{tt'}}} \right]$$

- 136 -

Composante vibrationnelle $|l_t + l_t| = 2$
$$\begin{aligned} A_{K\ell_{t}^{\pm}+i}^{\pm} &= 2 \ (K\ell_{t}^{\pm}+i) \ B_{e}^{ZZ} \ (\zeta_{t}^{Z}-\zeta_{t}^{Z},) \ \pm \ 2 \ \sqrt{(B_{e}^{ZZ} \ \zeta_{t}^{Z} - B_{e}^{ZZ} \ \zeta_{t}^{Z},)^{2} \ (K\ell_{t}^{\pm}+i)^{2} + 4 \ (r_{o}^{\pm t^{+}})^{2}} \\ B_{K\ell_{t}}^{\pm} &= - \ (2K\ell_{t}^{\pm}+1) \ (B_{e}^{ZZ} - B_{e}^{XX}) \ - \ 2K\ell_{t} \ B_{e}^{ZZ} \ (\zeta_{t}^{Z}+\zeta_{t}^{Z},) \ + \ 2x_{\ell_{t}^{\ell_{t}}}, \\ &\pm \ 2 \ \sqrt{(B_{e}^{ZZ} \ \zeta_{t}^{Z} - B_{e}^{ZZ} \ \zeta_{t}^{Z},)^{2} \ (K\ell_{t}^{\pm}+1)^{2} + \ 4 \ (r_{o}^{\pm t^{+}})^{2}} \\ C_{K\ell_{t}}^{\pm} &= 4 \ (K\ell_{t}^{-1}) \ (B_{e}^{ZZ} - B_{e}^{XX}) \ - \ 2K\ell_{t} \ B_{e}^{ZZ} \ (\zeta_{t}^{Z}+\zeta_{t}^{Z},) \ + \ 2x_{\ell_{t}^{\ell_{t}}}, \\ &\pm \ 2 \ \sqrt{(B_{e}^{ZZ} \ \zeta_{t}^{Z} - B_{e}^{ZZ} \ \zeta_{t}^{Z},)^{2} \ (K\ell_{t}^{-2})^{2} + \ 4 \ (r_{o}^{\pm t^{+}})^{2}} \end{aligned}$$

2

TABLEAUX

-

	(H2 ¹² CO)	₂ (H ₂ ¹³ CO)	(H ₂ c ¹⁶ 0)	2 ^(H2C¹⁸O)
A	5271.106	± 0.007	5268.091	± 0.013
в	5176.405	± 0.007	5080.355	± 0.013
С	2904.375	± 0.34	2872.728	±.0.5
۵ ₃ .10 ³	1.319	± 0.006	1.208	± 0.02
^۵ _{JK} . 10 ³	-2.00	± 0.03	-1.46	± 0.11
۵ _K .10 ³	0.17	± 0.33	-165.8	± 13
₅ .10 ³	0.014	± 0.003	0.0015	± 0.009
δ _κ .10 ³	-0.008	± 0.005	7.23	± 1.5
с	0.919972	± 0.000008	0.84325	± 0.0072

.

Tableau 1 - CONSTANTES MOLECULAIRES DES FORMES ASYMETRIQUES (MHz)

ETAT FONDAMENTAL DE LA FORME (H2¹³CO)(H2¹²CO)2

TZ

Fréquences exprimées en MHz

•

-

 $\Delta F = Fréquence mesurée - Fréquence calculée$

J+1	к ₋₁	+1 K	+ J	к ₋₁	ĸ	FREQ.CALC.	∆F	J+1 I	<_1+	1 к ₁ ≺	-J 1	^K -1	к ₁	FREQ.CALC.	ΔF
TR	ANSI	TION	J=	3	+ 2			TR	ANS	ITION	J=	4 -	⊢ 3		
Δν	0¥n ⁼	0.2						Δν	orn	=0.2					
	Ср								erp						
3	з	0	2	2	C	31353+97	•12	4	4	c	з	3	C	41818+53	07
3	Э	1	2	2	1	31486+24	-+20	4	٠	1	3	3	້ 1	41984+76	•12
3	Ê	1	2	1	1.	31202+19	••10	4	3	· 1	3	5	1	41606+29	•07
Э	2	2	2	1	2	31342+44	•12	•	3	2	3	2	2	41792+03	•12
3	1	5	2	0	2	31330+86	*+10	4	ê	2	3	1	2	41763+20	•07
								4	5	Э	3	1	3	41784+22	-•01
- TR	ANSI	TION] =	5 ∢	- 4			٩	1	3	3	0	Э	41783+88	•17
Δ٧	exp ⁼	0.1	5												
•								TR	ANS	ITION	J =	6 -	← 5		
5	5	o	4	4	c	52294+07	•15	Δν	;	=0.15					
5.	5	1	4.	4	1	52485+77	+07		exp			1.	•		
5	4	1	4	3	1	52013+45	•04	6	6	0	5	5	0	62782+52	=+ <u>)6</u>
5	4	2	4	3	2	52243+42	•• J7	6	6	1	5	5	1	62989•72	-+07
5	3	2	4	2	2	52186+25	••15	6	Ê	1	5	4	1	62424+63	-+13
5	3	3	4	5	3	52227 • 68		6	5	2	5	4	2	62697•06	=+17
5	ê	3	٠	1	.3	52226+52		6	· 4	2	5	3	2	62598+50	-•17
5	ê	٠	4	1	4	52230+77	- • 17	6	4	3	5	3	Э	62609+71	17
5	1	4	· 4 .	0	4	52230+77	-+17	6	3	3	5	5	3	62666+62	• 38
								6	3	4	5	2	4	62674+46	••16
τĐ	A NOT	TIAN	Τ-		ø			6	2	4	5	1	4	62674+43	-•13
1.	1.00	A 15	2	7 4	- 0			6	2	5	5	i	5	62677+28	0+12
20	exp ⁻	0.15						6	1	5	5	о	5	62677+28	-•12
S	9	C	õ	8	C	94329+23	•07								
9	9	1	8	8	1	94521+58	••08	TR	ANS	ITION	J =	7.	+ 6		
5	8	1	đ	7	1	93694+43	+67	Δν	exp	=0.15					
5	8	2	8	7	2	94075+80	-•10		<i>p</i>						
S	7	2	8	6	2	93771-02	•0•	7	7	с	6	6	0	73284+89	++ 01
5	7	3	8	6	3	93987+75	• 05	7	é	2	. 6	5	2	73153+39	•08
5	6	Э	8	5	3	93962*68	•02	7	5	З	6	4	Э	73110+30	••03
* 5	6	4	8	5	4	93996+79	•01	7	4	3	0	3	3	73103•36	•03.
9	5	4	8	¥.	٠	93996+0 ⁹	•01	7	4	4	6	3	4	73116+82	- •01
- 9	5	5	8	4	5	94005+62	•C8	7	3	4	0	2	4	73116•72	9ن•
9	4	5	8	3	5	94005+61	•09	7	З	5	6	2	5	73121+17	••00
9		6	8	3	6	94010+63	-•08	7	2	5	• •	1	5	73121+17	••00
9	3	6	ð	2	6	94010+63	=>08	7	2	6	6	1	6	73123+65	••02
5	3	7	5	2	7	94013+82	-+02	7	1.	6	• •	0	6	73123+65	-•02
5	2	7	ă	1	7	94013+82	••02	7	5	2	ĉ	4	2	72999•37	••15
9.	ĉ	8	6	1	8	94016+11	* *06	7	6.	1	6	5	1	72840+98	••12
9	1	8	đ	3	8	94016•11	− •C6	7	7	1	5	6	1	73496+91	••01

BUS

J +:	1 1	K_1+1	l к ₁ +	- J	к -1	к ₁	FREQ.CALC.	∆f		J+1	к_+	1 K ₁ +	J	к_1	к_1	FREQ.CALC.	ΔF
1	r/	ANSI	TION	·J =	11	+ 10				TRA	NSIT	TON	J =	13 -	+ 12		
. /	٩٩	exp ⁼	0.08					• •		∆ve	xp ⁼⁰	.08					
1	1	11	G	16	10	. 1	116111.46	• 04		13	. •	12	12	A	12	135799+83	• 77
1	1	11	1	10	10	1	115559+69	••09		13	2	12	12	. J .	12	135799.83	-07
ì	1	10	1	13	9	-	114585+98	••08		13	3	11	12	•	11	135757+21	•02
	1	10	2	10	9	2	115013•77	••07		13	2	11	12	1	11	135797+21	•02
į	1	5	2	13	8	2	114520+85	+05		13	4	10	12	•	1.5	135794+24	••c5
1	1	9	3	15	8	3	114862+53	· • • 03		13	3	10	12	2	10	135794+24	••05
1	1	8	3	10	7	3.	114794•74	• 05		13	5	5	12	4	s	135790•70	••61
1	1	8	4	10	7	4	114869+36	••05		13	4	9	12	3	9	135790+70	••01
1	1	7	4	10	6	4	114866•38	•06		13	6	8	12	5	8	135786+24	••03
1	1	7	5	10	6	5	114884•57	••04		13	5	8	12	4	8	135786+24	*•03
1	1	6	5	10	5	5	114884+50	•03		13	ć	7	12	5	7	135780+18	•03
1	1	6	6	10	5	6	114893+48	-•34		13	7	7	12	ó	7	135780+18	•63
. 1	1	5	6	10	- 4	6	114893+47	••03		13	7	6	12	6	6.	135771+26	•06
i	1	5	7	10	4	7	114899+03	•04		13	é	6	12	5	6	135771+27	•05
1	1	а. ф	7	10	3	7	114899+03	•04		13	s	5	12	8	5	135756+83	•• 13
1	1	- 4	8	10	3	8	114902+88	•65		13	8	5	12	7	5	135756+53	•17
1	1	3	8	10	2	8	114902+88	•:05		13	5	4	12	8	4	130724+15	•05
1	1	3	9	10	s	9	114905+80	*+ċo		15	10	4	12	9	4.	135733+93	••05
- 1	1	2	9	10	1	9	114905+80	co		13	10	- 3	16	9	3	135588.96	=+C8
1	1	2	10	10	1	10	114908+18	••05		13	11	2	12	10	2	135276+72	
1	1	1	10	10	0	10	114908+18	••05		13	11	3	12	10	3	135738+84	•65
							·· . · · ·		-	13	12	2	12	11.	2	135905+74	
1	rr/	ANSI	TION] =	15	+ 14				13	13	1	12	12	1	136609•39	
L	٥ν	exp ⁼	0.08							13	12	1	12	11	1	139528+71	
		•								13	13	C	12	12	0	136508+85	
1	5	15	c	14	14	c	157605+55										
1	5	15	1	14	14	1	157667•82						-				
÷.1	5	14	1	14	13	1	156531+27	10		TRA	NSIT	ION] =	17 -	+ 16		
• 1	5	14	2	14	13	2	156945+13	•07		Δve	$xp^{=0}$	0.12	•				
1	5	13	2	14	12	2	156061•02	•06		17	17	3	10	16	C	173695+65	
- 1	5	12	3	1#	11	3	156339+41	-•06		17	17	1	14	16	1	178731+89	
1	5	13	3	14	12	3	156621+86	•36	•	17	16	1	10	15	1	177589+96	**10
1	5	12	4	14	11	4	156590+90	-•05		17	1,6	5	16	15	2	177939+99	
1	5	11	4	14	10	4	156564+34	••CO		17	15	2	10	1+	2	176888+49	**10
1	5	11	5	. 14	10	5	156621+29	-+04		17	15	Э	10	14	3	177516+78	8ن••
1	5	10	5	1,4	9	5	156620+15	•:3		17	14	3	10	13	3	177052+93	• 24
1	5	10	6	14	9	6	156643+36	•04		17	14	4	10	13	4	1774+2+09	+CD
1	5	9	6	14	8	6	156643+04	•06		17	13	4	10	12	4	177379+82	••36
1	5.	9	7	14	8	7	156656+53	•04		17	13	5	10	12	5	177477.04	•06
1	5	8	7	14	7	7	150656+53	•64	•	17	12	5	10	11	5	177473+46	•:5

BUS

J+1	к_1+1	I К ₁ -	←J	к ~1	к ₁	FREQ.CALC.	ΔF	J+1 1	< +1 -1	l K ₁ ⊀	- J	к_1	^K 1	FREQ.CALC.	ΔF
TRA	NSIT	TON	J =	15	+ 14			TR	NSI	TION] =	17	+ 10	6	
15	8	8	14	7	8	156665+54	••06	17	12	6	16	11	6	177507+92	-•06
15	7	8	14	6	8	156665+54	- +06	17	11	6	10	10	6	177507+81	•35
15	7	9	14	6	9	156672.07	••J6	17	11	7	16	10	7	177527 • 32	-•07
15	6	9	14	5	9	156672.07	= + 06	17	10	7	16	9	7	177527•31	- •û6
15	6	10	14	5	10	156677•13	•04	17	10	8	16	9	8	177540+17	-•05
15	5	10	14	4	10	156677 • 13	•04	17	9	8	16	8	8	177540.17	-•05
15	5	11	1 9	4	11	156681+27	••07	17	5	9	10	8	9	177549•36	• 36
15	4	11	14	3	11	156641 • 27	-•07	17	8	9	16	7	9	177549+36	•06
15	4	12	14	3	12	156684•84	••05	17	8	1.0	10	7	10	177556+36	•0•
15	3	12	14	2	12	156684•84	-•05	17	7	10	16	6	16	177556+36	• 26
15	Э	13	14	2	13	155668+04	•06	17	7	11	16	6	11	177561+99	-•10
15	2	13	14	1	13	156688•04	• 26	17	6	11	10	5	11	177561+99	-+1u
15	2	1,4	14	1	14	156691.00		17	é	12	16	5	12	177566+73	•67
15	1	14	14	о	14	156691.00		17	5	12	16	4	12	177566+73	•07
								17	5	13	10	4	13	177570+91	•06
TP	LNCT3	ETON	T =	20	< 1 [−]	9		17	4	13	10	3	13	177570+91	• 06
1.0	11011	1 1 5	2	20		<i>,</i>		17	4	14	16	3	14	177574+70	-•38
Δν.	exp ⁻¹					1		17	3	14	10	2	14	177574+70	••38
20	20	C	19	19	C	210317+79	12	17	3	15	10	5	15	177578+25	••65
20	5C	1	1,9	19	1	210332+68		17	2	15	10	1	15	177578+25	••05
20	19	1	19	18	1	5095+0+61	•17	17	ĉ	16	16	1	16	177501+0+	•04
50	15	2	19	18	5	209465+22	•18	17	1	16	10	C	16	177581+64	•04
20	18	2	13	17	2	208234+92	•15								
20	18	3	13	17	3	208890+95	•06	ΤΡΑ	NGT	TTON	T -	21	± 20		
20	17	3	19	16	3	208105+29	•09			0 15	5-2	21	~ 20		
20	17	4	19	16	4	200715+65	• 7	Δνε	xp ⁼	0.15					
20	16	4	19	15	. 4	204536+90	••08	21	21	с	20	20	c	22085-56	
, 20	16	5	17	15	5	208743+37	•01	21	21	1	20	sc	1	220866+49	
20	15	5	17	14	5	208727+99	•18	21	2¢	1	, 5¢	19	1	219795+71	
50	15	6	12	14	6	208790+16	- • 4 4	21	20	2	۲Ç	19	5	219980.96	
20	14	6	1>	13	6	208789+42	•30	21	19	5	20	18	2	218716+24	•02
20	14	7	19	13	7	208821+40	•14	21	19	3	ēÇ,	18	3	219359.00	
20	13	7	17	12	7	203821+37	•17	21	18	3	20	17	3	214465+76	•12
20	13	8	19	12	8	208841+97	•17	21	18	4	- 20	17	4	219141+67	•23
20	12	8	15	11	8	208341+96	•18	21	17	4	25	16	4	218900+94	•10
20	12	9	19	11	9	208356+44	•36	21	17	5	20	16	5	219161-00	•14
20	11	9	15	10	9	204856+44	• 36	21	16	5	20	15	5	219137+37	•18
20	11	10	1 2	10	10	200867+27	• 03	21	16	6	50	15	6	219213•11	5 311
20	10	10	19	9	10	203867+27	•03	21	15	ć	20	14	6	219211+85	the

7

7

21 15

21 14

7

7

219249+14

219249+39

23 1.4

2. 13

•12 •17

ለም

17 9 11

SC

10 11

203875+79

• 36

J+1 K_1+1 $K_1 + J$ K_1 FREQ.CALC. ΔF

 $J+1 \underset{-1}{K_1} + 1 \underset{1}{K_1} \neq J \underset{-1}{K_1} K_1$ FREQ.CALC.

8

8.

21 14

21 13

 ΔF

• •06

219272+87

219272.86

TRANSITION J = 23 + 22

 $\Delta v_{exp} = 0.16$

	•						
23	23	c	22	22	Ũ	241927+54	
23	23	1	22	55	1	241933+29	
53	22	1	55	21.	1	240901+14	•33
23	22	2	22	21	2	241020+68	
53	21	2	22	S 0	2	239729+36	•21
23	21	Э	22	50	3	240311+19	•30
23	ac	З	22	19	3	239218+67	•21
23	2¢	4	55	19	4	240000+00	•18
53	19	4	22	:8	4	239595•78	•09
23	19	5	22	18	5	239990+55	•13
23	18	5	22	17	5	239938+61	•17
23	18	6	22	17	6	240051•74	•10
23	17	6	22	16	6	240648+30	•12
53	17	7	55	16	7	240098+59	•01
23	16	7	55	15	7	240098•44	•16
23	16	8	55	15	8	240129+63	•35
23	15	8	22	14	8	240129+02	+31
23	15	9.	22	14	9	240151+23	
23	14	9	22	13	9	240151+23	4€
23	14	15	22	13	10	240167+17	- •34

TOLUCITION	T	_	01		00
IKANSIIIUN	<u> </u>	=	21	+	20

20 13

20 12

8

8

21	13	8		20	12	8	219272+86	+c7
21	13	5		2 ;	12	9	219289+50	•13
21	12	9		20	11	9	219289+50	•13
21	12	10		20	11	10	219301+87	•08
21	11	10		20	10	10	219301+87	•08
21	11	11		20	10	11	219311+57	+04
21	10	11		20	5	11	219311+57	• C 4
21	10	12		25	9	12	219319+51	•11
21	S	12		20	8	12	219319+51	•11
21	5	13	-	20	8	13	219326+27	- +03
21	8	13		2C	7	13	219326+27	••c3
21	8	14		20	7	14	219332+23	•03
21	7	14		20	6	14	219332+23	•03
51	7	15		50	6	15	219337+04	
21	£	15		ΈÇ	5	15	219337+64	-•10
21	6	16		25	5	16	219342+67	**04
21	Ľ,	16		20	4	16	219342+67	# +04
21	5	17		2Ç	4	17	219347+45	* +1ö
51	4	17		20	3	17	219347+45	* *16
21	4	18		6 0	3	18	219352+68	•01
21	3	18		20	5	18	219352+38	•01
21	Э	19		80	2	19	219356+61	•01
21	ĉ	19		55	1	19	219356+61	•01
51	5	20		20	1	20	219361+10	-•16
21	1	2¢ .		2¢	С	20	219361+10	16

J+1 K,+1 K,← J K, K,	FREQ.CALC.	$\Delta \mathbf{F}$	J+1 H	<_1+1	K ₁ ←	Jk	<_1	к,	FREQ.CALC.	$\Delta \mathbf{F}$
-1 1 -1 1				-1	•		-			
TOLMOTTION $T = 02 \times 00$			TD	NOT	TTON	T =	27	+ 26		
$TRANSITION J = 25 \div 22$			110-			- ر	2,	. 20	ж	
23 13 10 22 12 10	243167•17	* ∗64	27	21	6	50	зç	6	281679+21	-•61
23 13 11 22 12 11	240179•54	• 06	27	21	7 ·	20	20	7	281770+53	
23 12 11 22 11 11	240179•54	•06	27	20	7	5¢	19	7	281769+35	
23 12 12 22 11 12	240189.55	•02	27	20	8	50	19	8	281820+61	• 3 3
23 11 12 22 10 12	240189•55	•02	27	15	8	20	18	8	281820+57	•07
23 11 13 22 10 13	240197+98	••03	27	19	9	26	18	9	281855+20	•16
23 10 13 22 9 13	240197+98	••03	27	18	9	50	17	9	281855+19	•17
23 10 14 22 9 14	240205+32	•06	27	18	10	26	17	10	281880+35	
23 9 14 22 8 14	240205+32	•06	27	17	10	56	16	10	281880+35	
23 9 15 22 8 15	240211+89	••05	27	17	11	26	16	11	281899+57	• 07
23 8 15 22 7 15	240211+89	* ∙ე5	27	16	11	26	15	11	281899.57	•07
23 8 16 22 7 16	240217+94	••05	27	ię	12	26	15	12	281914 • 87	•09
23 7 16 22 6 10	240217+94	••05	27	15	12	26	14	12	281914+87	• 39
23 7 <u>1</u> 7 22 6 17	249223•61	••01	27	15	13	26	14	13	281927+50	•05
23 6 17 22 5 17	24-553+61	~ •01	27	14	13	20	13	13	281927+50	•02
23 6 18 cd 5 18	240229+05	-•10	27	14	14	26	13	14	281938+27	••03
23 5 18 cc 4 18	24J229+65	••1c	27	13	14	20	:5	14	281938+27	+ ∙€3
23 5 19 22 4 19	240234+32	•+66	27	13	15	20	15	15	281947+73	•37
23 4 19 22 3 19	240234+32	-•65	27	12	15	26	11	15	281947+73	• :: 7
23 4 20 22 3 20	240239+51	- •25	27	12	16	20	11	16	281956+24	-•00
23 3 20 22 2 20	240239+51 -	••25	27	11	16	20	10	16	281956+24	-•00
23 3 21 22 2 21	2402+4+65	- • 1 1	27	11	17	20	10	17	5 0 +₽a€18S	••00
23 2 21 22 1 21	240244+65	••11	27	10	17	20	9	17	281964+08	••00
23 2 22 22 1 22	240249+79	* •21	27	1 0	18	60	9	18	281971•++	••38
53 7 55 55 0 55	245249+79	••21	27	9	18	50	8	18	281971+++	••09
			27	5	19	20	8	19	281978+47	-•11
TRANSITION J = 27 + 26	•		27	ð	19	56	7	19	281978+47	-•11
$\Delta v_{exp} = 0.16$			27	ê	20	56	7	20	281935+26	- •1ð
•			27	7	20	20	6	20	281985+26	+•13
27 27 0 26 26 0	284358+87		27	7	21	20	6	21	281991+91	••23
27 27 1 20 26 1	28406 C •40		27	6	21	56	5	21	281991+91	••23
27 26 1 26 25 1	283077•28		27	ć	22	26	5	22	281998+48	••2 ₀
27 26 2 26 25 2	283120+06	•62	27	5	55	56	4	22	281998+48	- •20
27 25 2 26 24 2	281908•74	• 4 6	27	5	23	26	. 4	23	282005+02	••22
27 25 3 26 24 3	282277.50	•58	27	4	23	20	Э	23	282005+02	••22
27 24 3 24 23 3	280901+40		27	4	24	26	3	24	282011.56	••20
27 24 4 26 23 4	281759+58	•42	27	3	24	56	2	24	282011+50	••2)
27 23 4 20 22 4	280910+42		27	3	25	59	2	25	282018+15	••27
27 23 5 24 22 5	281636+87		27	2	25	26	1	25	282018+15	••27
27 22 5 20 21 5	281442+54		27	2	26	26	:	26	282024+81	••33
2/ 22 6 20 21 6	201023+00	. ••00	27	1	26	26	Ċ.	26	282024+81	- +33

BUS

ETAT FONDAMENTAL DE LA FORME (H2C180)(H2C160)2

T3

Fréquences exprimées en MHz

 $\Delta F = Fréquence mesurée - Fréquence calculée$

J +1	ĸ	-1+	1 K ₁ +	JK	-1	к ₁	FREQ.CALC.	$\Delta \mathbf{F}$	J+1	. K	1+1	к₁ ←	JI	<_1	ĸ	FREQ.CALC.	ΔF
T	RAI	VSI	TION	J =	5	+ 4				TRA	NSIT	FION] =	9 ∢	- 8		
۵	"ve	xp ⁼⁽	0.15						•	∆νe	xp ⁼⁽	0.15				÷	
5	6	5	0	4	4	G.	51959+08	80••		s	5	0	8	8	o	94070+70	
5	i	5	1	4	4	i	52256+66			9	5	1	ð	8	1	94220+89	
5	j	4	1	4	3	1	51327+28			9	8	1	ð	7	1	92716+07	
5	6	4	2	4	3	2	51767 • 13	•12		9	8	2	8	7	2	93334+55	
ę	5	3	2	4	5	2	51549+79	-•09		9	7	S	.8	6	2	92407+10	••06
5	5	3	З	4	2	3	51706+75	••25		9	7	3	8	6	3	93028+70	••17
Ę	5	2	3	4	1	Э	51697+60	•23		9	6	3	ö	5	3	52844+44	•16
5	\$	2	4	4	1	4	51716+42	0+02		9	• 6	4	ð	5	4	93027+12	-•37
Ę	5	1	4	4	0	4	51716•31	•09		5	5	4	8	4	4	93016+37	
							•			9	5	5	8	4	5	93057•76	8ن•-
7	RAI	NSI ⁻	TION] =	6	~ 5				5	4	5	ć	3	5	93357+47	•21
۵	NV or	r:=(0.15							5	4	6	8	3	6	93076+38	
	U	~p								9	3	6	8	2	6	94076+38	
e	•	6	c	5	5	с	62451+02			9	3	7	5	2	7	93087+65	
e)	6	1	5	5	1	62732+91	-•C8		5	2	7	8	1	7	93307+65	
e	•	5	1	5	4	1	61630+84	•13		5	2	8	8	1	8	93095+10	
6	•	5	5	5	4	2	62141+11	•59		9	1	8	ē	C	g	93095+10	
é	•	4	5	5	3	2	61780-23	ۥ3									
é)	4	3	5	3	3	62038+30	••30		TRA	NSI:	TION	J =	13	~ 12		
6	5	3	3	5	2	Э	62014+14	•71		Δν,	=	0.08					
e)	Э	4	5	2	4	62051+10	••10			ch ji						
ć	•	2	4	5	1	4	62050+60	•40		13	13	Ċ	12	12	C ·	136266+52	
6)	2	5	5	1	5	62061•43	•12		î 3	13	1	12	12	1	136300+65	
6	1	1	5	5	C	5	62361+42	•13		13	12	1	12	11	1	134711•25	
										13	12	2	12	i1	2	135124+64	
٦	RA	NSI	TION	J =	7	+ 6				13	11	2	12	10	2	133517+86	
L	^{lv} e	xp ⁼	0.15							13	11	3	12	10	3	134431+62	•09
		-								13	10	3	12	Э	3	133589+51	
7	,	7	C	6	6	ΰ,	72974+44			13	10	4	12	9	4	13+272+04	•02
7	,	7	1	ė	6	1	73219+47			13	5	4	12	8	4	13+131+83	• 05
7	i	6	1	6	5	1	71959+07			13	S	5	12	8	5	134321+84	ו•27
7	1	6	5	0	5	2	72526+05	• 4 4	•	13	8	5	12	7	5	134312+58	••°7
7	•	5	2	6	4	2	71990•74	•38		13	8	6	12	7	6	134374•78	-+19
7		5	3	6	4	3	72367+80	•08		13	7	6	12	6	6	134374+44	•15
7		4	3	ο,	3	3	72314+28	••03		13	7	7	12	6	7	134408+24	•05
7		4	4	6	3	4	72381+33	••49		13	é	7	12	5	7	134408•23	•03
7		3	4	6	2	4	72379+67			13	٤	8	12	5	8	134429+98	••;9
7		3	5	6	S	5	72397+27	a • 22		13	£	8	12	4	8	134429.98	9(••
7		Ĉ	5	6	1	5	72397+25	••25		13	Ê	9	12	4	9	134445006	++ 01
7		2	6	0	1	Ó	72406+17	-•13		13	4	.9	12	· 3	9	134445•06	••01
7		1	6	¢	0	6	72406+17	••13		13	4	10	12	3	10	134456•12	•09
							•										IUS)

245

.

•

$J+1 K_{-1}+1 K_{1} + J$	к ₋₁ к ₁	FREQ.CALC.	Δ F	J+1 K +1	K ₁ ← J	K1	ĸ	FREQ.CALC.	۵F
TR ANSI TION J (suite)	′ = 13 ← 12			TRANSITIO	ON J 08	= 14	+ 13		
		134154-10		exp	~ · ·			106206067	
13 3 10		134456412	•09 •••• 7	14 14	• •		•	140000-87	
13 3 11	15 4 14	134464-62		14 13	• •	3 43	•	145377.96	
		134474-44	••07	14 13	2 1 2 1	3 12	2	145606.42	
13 2 12		1344/1+41		14 12	د د م	a 14	<u>د</u>	143880-46	
15 1 12		1344/1.41		17 16	2 I 2 I	.5 11 	د م	144912.55	
TOANOTTION T	- 13 / 16			17 14		J 11	3	144012+00	09
INANSITION J	= 17 + 10			17 11	3 1	.5 10	. 3	143/34440	•04
$\Delta v \exp^{=0.12}$				17 11	· · ·	.9 10 .9 a	•	144365-49	•07
47 47	••••	• 7 93 5 • 6 6 - 6 15		19 10	4 1 5 1	.s 7 ./ 0	*	144303+19	•02
1/ 1/ 0		170414•10		14 10	5 I	د در ه د	5	144024404	•02
		170413+03		14 7	⊃ 1 ∕ 1	30	5	144000440	*•03
17 16 1	10 15 1	17556,*66		14 5	د ۲ ۲		•	144000440	••+0
1/ 16 2		17/111-75	••0/	1.4 0		3 7	•	14480/-6/	• 39
1/ 15 2		175301+36	••02	14 0	/ 1 	, s , ,	-	144730+17	••08
	10 14 3	178354•35	+10	· 1 · · · ·	/ 1 D 4	, J O	,	144730+15	
17 14 3	19 13 3	174403+62	-	14 . 7	8 1		8	194/0/*50	••08
	19 13 4	1/354/+00	**20	14 6		.a	ŏ	144/07420	م ې د •
1/ 13 4	10 12 4	174850+26	•04	14 6	9 1 C .	3 5		1447/5+97	•• ∟ 5
1/ 13 5	10 12 5	1/050/•09	*+09	14 5	9 1	3 4	3	1447/5•97	••Ca -
1/ 12 5	19 11 5	1/5406+63	•01				15	144/03+63	••37
1/ 12 6		1/5598+01	**15		, 1 , 1	3 3	• 13	144/03+03	••;;/
1/ 11 6	10 10 6	1/5590+94	•+12	17 7 1	1 1		11	144866407	••06
1/ 11 /	10 10 7	1/56/1•52	••35	14 3 1	1 1	3 2	11	1++800+07	••06
17 10 7	10 9 7	175671+21	-•01	14 3 1	2 1	3 2	12	144808+36	••06
1/ 10 8		175720.00	••09	14 6 1	2 1	a 1 	12	144808•36	*•36
1/ 2 6		1/5/20+00	••09		3 1	a 1	13	144810+13	
		175753+20	••22	14 1 1	3 1	.a ()	13	144912419	
17 8 9		175753•20	••22	TOLLOTT	ай т	. 15	. 11		
1/ 8 10		1/5///•16	•02	IKANSIII		= 15	← 14		
1/ / 10	10 6 10	1/5///•16	•02	$\Delta v \exp^{=0.0}$	08				
1/ / 11	10 6 11	170795+23	*+01						
1/ 6 11	10 5 11	175795+23	-•01 .	15 15	Ç 1	4 14	С	157344+28	
1/ 6 12	10 5 12	175809+38	••03	10 10	1 1	• 14	1	15/358+60	
1/ 5 12 3	10 4 12	1758;9+38	-•03	10 14 •	1 1	4 13	1	155848+51	•04
17 5 13 3	10 4 13	175820+83	•02	15 14	2 1	4 13	2	156099+33.	
1/ 4 13 1	19 3 13	175820+83	• 32	15 13	2 1	* 12	2	104314+3;	
17 4 14 1	10 3 14	175830•36	-•17	15 13	э <u>1</u>	.* 12	3	155209+84	••j3
1/ 3 14	10 2 14	175830+36	* • 17	15 12	з 1	* 11	3	153938+16	
1/ 3 15 1	1° 2 15	175838+51	••09	15 12	4 1	4 11	4	154895•70	-+07
1/ 2 15	19 1 15	175838+51	••09	15' 11	4 1	.4 10	4	154548+64	
1/ 2 16 1	10 1 16	175845+65		15 11	5 1	* 10	5	154922-52	••05 •
1/ 1 16 3	10 0 16	175845•65		15 10	5 1	* 9	5	154380 BUS) .03

1	к ₋₁ +1	к_1	≁J	к ₋₁	к ₁	FREQ.CALC.	∆F	J+1 H	<_1+	1 κ ₁	+ J]	к _{_1}	к ₁	FREQ.CALC.	$\Delta \mathbf{F}$
T	RANSIT	TON	J =	20	+ 19			TRA	MST	TTON	τ	15	. 1/	,	
Δ١	exp ⁼⁰	.12						(sc	ite	.)	<u> </u>	15	+ 14		
2	C 20	c	19	19	0	210010+12		15	10	6	14	9	6	154997*06	-•01
2	c 2C	1	19	19	1	210011.50		15	9	6	14	8	6	154995+33	••07
2	C 19	1	19	18	1	208628 • 77		15	9	7	14	8	7	155048•23	••05
2	0 19	5	19	18	2	208671.05		15	8	7	14	7	7	155048+17	•01
2	0 18	2	19	17	2	207016+73		15	8	8	1 4	7	8	155081+51	-•05
. 2	C 18	3	19	17	3	207437+83		15	7	8	14	6	8	155081+50	-+04
2	0 17	3	19	16	Э	205443+64		15	7	9	14	6	9	155104 • 42	-•01
· 5	0 17	4	19	16	. 4	206620+31	•02	15	• 6	9	14	5	9	155104+42	-•01
5	0 16	. 4	19	15	4	205236+33		15	6	10	14	5	10	155121+08	••05
. 2	C 16	5	19	15	5	206381•25	•02	15	5	10	14	4	10	155121•08	* •05
5	0 15	5	19	14	5	206006+79	•04	15	5	11	14	4	11	155133•74	••03
2	C 15	6	19	14	6	206458+25	- •65	15	4	11	14	3	11	155133•74	€ن••
2	0 14	6.	. 17	13	6	206416+82	••08 	15	4	12	14	3	12	155143•74	•01
2	C 14	7	19	13	7	206569+82	••07	15	3	12	14	2	12	155143+74	•01
2	0 13	,	. 4	12	7	206567+14	••:9	15	3	13	1*	2	13	155151+92	6ن• =
	0 13	с э	12	12	<u>م</u>	200643+08	••11	. 15	2	13	14	1	13	155181•92	••56
2	0.12	c	19	11	9	20042+96	•01	19	ء •	14	14	1	14	155158+81	
2	0 12	, a	14	11	3	205703+24	•06	10	1	14	14	Ĵ	14	105158+81	
2	0 11	10	19	10	10	205741.96	•00	TRA	NSTI	TON	T -	10	. 17	-	
2	c 1C	10	19	9	10	206741+96		A.v.	-/	1 1 9	5-	10 4	- 17		
2	C 1C	11	19	9	11	206770+89	••••3	∆°e.	xp ⁻¹	.12					
2	0 9	11	15	8	11	205770+89	•• 3	18	4 8	¢.	17	17	•	188947.55	
2	C 9	12	19	8	12	205793+31	•• :6	18	18	•	17	17	•	188950444	
21	3 0	12	19	7	12	206793+31		 18	17	•	17	1.5	•	187535+81	
2	в д	13	19	7	13	206811+24	04	18	17	•	17	16	2	187627+66	
20	c 7	13	19	6	13	206811.24	-•34	18	- 16	2	11	15	2	185853+75	
20	7	14	19	6	14	206825+98	• : 19	 18	16	3	1/	15	3	186500+63	•12
20	6	14	19	5	14	206825+93	• 29	18	15	3	17	14	3	184699•76	•••
20	6	15	19	5	15	2ç5838•41	•••3	18	15	4	17	1+	4	185889•75	!!
20	5	15	19	4	15	206838+41	••:j3	18	14	4	17	13		184973•77	••26
20	5	16	19	4	16	206849+12	•_6	18	14	5	17	13	5	185756 • 70	••08
20	3 4	16	19	3	16	200349+12	•06	18	13	5	17	12	5.	185034•40	••10
20	4	17	19	3	17	206358+56	••)5	18	13	6	17	12	6	185890+10	•05
20	3	17	19	2	17	200858+56	5ز.•=	18	12	6	.17	11	6	185876+82	•C4
20) Э	18	1a	2	18	206667.03	•22	18	12	7	17	11	7	185976+13	••03
50	2	18	19	1	13	206867+03	•22	18	11	7	17	13	7	185975+47	••07
50	2	19	19	. 1	19	200874+76		18	11	8	17	10	8	186333•77	•25
20	1	19	19	Ŭ.	19	206374•76		18	10	8	17	9	8	186033+75	•07
								18	10	S	17	3	\$	186073+16	•13
								18	9	9	17	8	9	186073-16	•13
								16	5	10	17	3	13	1851C1+53	115)11

J;+ `;	1 K_	1 ⁺¹	к ₁	J 1	к ₋₁	ĸ	FREQ.CALC.	۵F	J+1 1	K1 ⁺	-1 к ₁ -	⊷ J	к -1	к ₁	FREQ.CALC.	ΔF
	TRA	NSI	TION] =	21	+ 20)		TRA	ANS I	TION	J =	18	+ 17		
	Δνρ	$x n^{=0}$	0.12						(si	ite	2)	-				
	C	~p														
	21	21	С	20	20	C	220540+44		18	ĕ	10	17	7	10	180101+50	•11
	21	21	1	50	20	1,	220541+28		18	8	11	17	7	11	186122.80	•14
	21	2C	1	50	19	1	219168+14		18	7	11	17	6	11	180122+80	• 1 4
	21	20	2	20	19	2	219196+22		18	7	12	17	6	12	186139+41	•24
	21	19	° 2	20	18	2	217603•79		18	ć	12	17	5	12	186139+41	•24
	21	19	3	20	18	3	217925+21	• 38	18	ć	13	17	5	13	186152•79	• 04
	21	18	3	2Ç	17	3	215856+42		18	5	13	17	4	13	186152+79	•04
	21	18	4	50	17	4	217010+92	• 1 0	-18	• 5	14	17	4	14	186163+88	•19
•	21	17 '	4	20	16	4	215405+06		18	4	14	17	3	14	186163+88	•19
	21	17	5	50	16	5	216681+45	5ن•	18	4	15	17	3	15	186173•32	+11
	21	16	5	20	15	5	216:46•73	••18	18	3	15	17	5	15	180173032	•11
	21	16	6	50	15	6	216735+47	* +08	18	3	16	17	5	16	186181+54	0 € •
	21	15	6	50	14	6	216666+20	- +07	15	2	16	17	1	16	186181•54	•30
	21	15	7	50	14	7	216858+40	•09	18	2	17	17	1	17	120108-85	•24
	21	14	7	20	13	7	216853+33	-•04	18	1	17	17	С	17	186188+85	•24
	21	14	8	20	13	8	216950+10	**1 0								
	21	13	8	50	12	8	216949+85	•15	TRA	NST	TION] =	25	÷ 24		
	21	13	9	50	12	9	217_12+95	••:7	Δv	v.,,=(0.16					
	21	12	9	20	11	S	217_12+95	•• 6	e	хp						
	21	12	10	20	11	10	217:57+78	••?0	25	25	C	د ۲	24	Ĵ	262654+25	
	21	11	10	50	10	13	217 ئ57 • 78	••36	25	25	1	24	24	1	262654+36	
	21	11	11	50	10	11	217091+16	+04	25	24	1	24	23	1	261298+07	
	21	10	11	50	9	11	217091+16	•04	25	24	2	24	53	Ż	261303+03	
	21	10	12	20	9	12	217116+96	• () မ	25	23	5	24	35	2	259871•17	
	21	5	12	20	8	12	217116+96	6ن•	25	23	З	24	55	3	259955+83	
	21	5	13	20	δ	13	217137+52	-•01	25	22	3	24	21	3	258130+04	
	21	8	13	20	7	13	217137•52	••01	25	22	4	24	21	4	258746+48	
	21	8	14	sç	7	14	217154+37	•09	25	21	4	24	50	4	256550+92	
~	21	7	14	50	6	14	217154+37	9ن•	25	21	5	24	30	5	257997•93	
•	21	7	15	23	6	15	217168+52	7ن•	25	20	5	24	19	5	256534+23	
	21	6	15	20	5	15	217168+52	••07	25	20	6	24	19	6	257830+39	
•	21	6	16	SÇ	5	16	217180.67	•16	25	19	6	24	<u>†</u> 8	ó	257442•74	
	21	5	16	50	4	16	217180+67	•10	25	15	7	54	18	7	257956+01	
	21	5	17	20	4	17	217191+32	•10	25	18	7	24	17	7	257909+46	\bigcirc
	21	4	17	s¢	3	17	217191+32	•10	25	18	8	24	17	8	258103+67	$\begin{pmatrix} BUS\\ uus \end{pmatrix}$
	21	4	18	20	3	18	217200+84	- ∙05	25	17	8	24	16	8	258100+17	Source of the second
	21	3	18	20	2	15	217200+84	5ن، •	25	17	9	24	16	9	258211+31	••03
	21	3	19	60	2	19	217209+48		25	16	9	24	15	9	258211+12	•16
	21	່ະ	19	50	1	19	217209++8		25	16	10 1	64	15	t e	258237+60	••13
	21	2	2°	20	1	20	217217+46		25	15	10	24	14	10	258287+59	••11
	21	1	20	20	1	.80	217217+46		25	15	11	24	14	11	2583+3•77	••05

25, 14 11 24 13 11 258343+77 ++35

TR	NSI	TION] =	26 -	+ 25			TRAN	ISIT	TON] = ;	25 ∢	- 24		
Δν		0.16						(su	ite)						
26	26	С	25	25	J	273180+82		25	14	12	24	13	12	253386+72	- •08
26	26	1	25	25	1	273180.89		25	13	15	24	12	12	253386+72	~ + C8
26	25	1	25	24	1	271826+12		25	13	13	24	12	13	258420•59	•01
26	25	2	25	24	г	271829+27		25	12	13	24	11	13	258420.59	• 5 1
26	24	2	25	23	2	270417+12		25	12	14	<i>ਦ</i> 4	11	14	258448•04	••00
26	24	з	25	23	з	270475+17		25	11	14	۲4	10	14	258448*04	-•00
26	23	3	25	22	3	263734+10		25	11	15	24	10	15	258470.81	-•01
26	23	4	Sp	55	4	269218+87		25	1 C	15	24	9	15	258470+81	••01
26	22	· 4	25	21	4	266979•30		25	10	16	4 ح	9	16	258490•10	••6
26	22	5	25	21	5	268366•72		25	9	16	24	8	16	253490+10	••96
56	21	5	25	20	5	266657+98		25	9	17	24	8	17	258506+77	••01
26	21	6	25	50	6	263111+46		25	8	17	4 ۴	7	17	253506•77	-•01
26	20	6	25	19	6	267563+33		25	8	18	24	7	18	258521•43	• 05
59	2 C	7	25	19	7	268217+70		25	7	18	24	6	18	258521+43	• 05
26	19	7	25	18	7	268142•46		25	7	19	24	6	19	258534+53	•19
26	19	8	25	38	£	263378+21		25	ć	19	c*	5	,19	258534+53	•14
26	15	8	25	17	8	263371+94		25	6	2 ¢	24	5	20	256546+43	•09
26	18	9	25	17	9	263499+61	••21	25	C.	26	c 4	4	2 O	200540+43	• ; •
26	17	9	25	16	9	268459.17	• 2 4	25	5	51	24	4	51	20000/•30	•13
26	17	10	25	16	10	564282+80	• ¢۵	25	4	21	24	3	21	205507+34	•10
56	16	10	25	15	10	263535•78	•03	25	4	55	24	3	55	50000/+00	
26	16	11	25	15	11	26364 9 •;9	••21	25	3	22	24	2	22	203007+33	
26	15	11	25	14	11	263649+09	••21	25	3	23		2	23	258577+21	
26	15	12	25	14	12	263697+35	••19	25	Z	23	67	1	23	255577721	
54	1	12	25	13	12	268697•35	•+19	25	2	24		1	24	253586+38	
26	1	13	25	13	13	263735+33	••13	20	1	24	27	0	24	200000-00	
20	5 1	5 13	25	12	13	268735+33	••13								
20	5 13	3 14	25	12	14			T	RAN:	SITIC	IN J	= 2	6 -	25	
2	5 1	2 14	25	11	14			(.	sui	te)					
. 5	5 1	ē 15	25	11	15	263791++2	••1*	26			65	4	21	263887•07	• 35
5	6 1	1 15	25	10	15	268751•42	* • 1 4	20			25	4	22	263898•20	•12
- 5	6 1	1 16	25	10	16	263812+38	 ■ • 0 > 0 	26		. 22	25	3	22	263898+20	•12
2	6 1	C 16	25	9	16	268812+83	••38	26		. 22	25		8 23	263908+65	•13
2	6 1	C 17	25		17	266831•30	•] 8	. 26		3 23	25		23	268908+66	•18
2	6	5 17	25	8	17	263831+36	• 33	26	5	3 24	25		24	263918+59	•01
2	6	5 18	25	5 8 	18	20034/*5/	च ∎ुझ ∎_∧अ	26	5	2 24	28	, .	24	268918+59	•01
2	6	8 18	2	57 5 -	18	20004/*5/	05	20	5	2 25	25	5	1 25	268928+10	
2	6	e 19	23	57 57	17	200002*02	•00 • 16	21	6	1 25	2	5	25	268928+10	$\begin{pmatrix} 805\\ 1111 \end{pmatrix}$
2	6	/ 15	2	- 0 	17	264875+02	• 0.4	2.							
2	0	/ 20	C ایر	- 0 5 E	20	268875+08	•04	r							
ž	:• :•	6 20	د م بر ب	5 F	.2:	268887+07	•05								

A	5271.108	±	0.1
В	5166.463	±	0.1
с	2914.506	±	8
۵ _. . 10 ³	1.19	±	0.08
۵ _{JK} . 10 ³	- 1.07	±	0.5
۵ _к	1.754	±	0.9
δ _J .10 ⁶	- 1.3		
δ _K .10 ²	1.45		
κ	0.91081	±	0.0001

Tableau 4 - CONSTANTES MOLECULAIRES DE LA FORME INCONNUE (MHz)

T5

Fréquences exprimées en MHz

.

.

*

.

 $\Delta F = Fréquence mesurée - Fréquence calculée$

	J +1]	к_1 ⁺	1 к ₁	+J)	к -1	к ₁	FREQ.CALC.	. ΔF	J+1 K	^x -1 ⁺	-1 к ₁	€ J	к ₋₁	к ₁	FREQ.CALC	. AF
	τı	ZANS	TTO	N 7 =	= 5	+ 4			TR	ANS	TTTON	1	= 6	≁ 5		
	۲ ۲ ۸ ۲) 1	=0.1	5	5	. ,			Λ.).		=0 15		0.			
	4	'exp	•••				•		40	exp						
	5	5	1	4	4	1	52463+42	4•96	6	6	1	5	5		62964+39	5.37
	5	З	2	4	2	2	52125+08	•52	6	4	2	5	3	Z	62519+90	••90
	5	4	s	4	3	2	52155+05	•14	6	5	2	ร	4	г	62640+12	
	5	1	4	4	ა	. 4	52179+67	•03	6	4	Э	5	3	3	62606+85	•05
	5	2	4	4	1	4	52179•68	•02	6	ĉ	4	5	1	4	62612+56	•27
-	Ťī	2410	7770	. т.	7				6	1	5	Ċ	c	5	62616+15	-•00
	1 1	(ANS		ין א ד	- 7	<i>← 0</i>			ć	2	5	5	1	5	62616+1 5	-+00
	Δ١	'exp	=0.1:	5					ć.	3	4	5	5	4	62612+61	2ن•
	7	1	6	6	0	6	73052+53	••06								
	7	5	6	0	1	6	73052+53	-•06	TRA	NSI	TION	J =	13	+ 12		
	7	ĉ	5	0	1	5	73349+36	•14	۵ve	xp ⁼	0.08					
	7	Э	5	6	2	5	73349+36	•14	13	12	2	12	11	2	135873+63	•07
	7	4	4	6	3	4.	73043+91	•09	13	9	4	12	8	4	135573+04	- •08
	7	4	Э	6	3	З	73026+80	• 3 ú	13	5	5	12	8	5	135614+82	•16
	7	5	3	6	4	З	73336+15	•30	13	7	6	12	ó	6	135632+90	+20
	7	٤	2	6	5	2	73028+48	- •34	13	8	6	12	7	6	135532+90	•20
									13	7	7	12	5	7	135044+22	••:8
	TF	RANS	1T I OI	N J=	= 15	5 + 1	14		13	é	7	12	5	7	135644+22	* •18
	Δ١)	=0.03	8					13	5	8	12	4	8	135652+61	• +19
		exp							13	é	8	12	5	8	135652+01	-+19
	15	£	7	14	7	7	156497+07	••52	13	5	9	12	4	. 9	135657+80	••00
	15	5	7	14	8	7	7ن•156497	••52	13	4	9	12	3	5	135657+80	••00
	15	8	8	14	7	8	156508+62	••12	13	3	10	12	2	1:	135662+40	•56
	15	,	8	14	6	٤	156508+62	••12								
	15	7	9	14	6	9	156517+08	•02	ΤΡΔ	NST	TTON	T	20	<u>ب</u> 10		
	15	6	9	14	5	9	156517+08	2ن•		-	0 12	5-	20			
	15	13	2	14	12	2	155844+41	•01	20°e	xp ⁻	0.12					
	•								50	13	7	19	12	7	208597+92	••03
	TRA	ANSI	TION	J =	21	+ 21)		50	13	8	19	12	8	504654+50	•15
	- ^Δ ν	ะุรุธ=	0.12						20	12	8	12	11	8	208624+20	•15
		,							20	11	ç	15	10	5	208642+91	••11
	21	14	7	20	13	7	219011•78	••00	50	11	10	12	10	10	208657+05	•33
	21	15	· 7	20	14	7	219ر11+35	- ∙₀7	20	10	13	12	9	10	208657+05	•33
	21	14	8	20	13	8	219342+11	•15	20	ć	15	12	5	15	203658+14	05
	21	13	8	20	12	8	219042+11	•15	20	5	15	15	4	;5	203658+14	••55
	21	12	9	20	11	9	219063+60	••03	50	5	16	12	4	16	208703+57	••92
	21	13	9	50	12	9	219063+60	••03	20	18	3	15	17	3	208706+90	••05
	51	11	11	20	10	11	219592+53	* * 27							1000 m	N. K.
	21	10	11	20	9	11	219092+53	- •27							Core 0 ap	and the second s
	51	6	15	20	5	15	219126+21	•25							and the second s	

	ETAT FONDAMENTAL (*)	ETAT NON DEGENERE V7 ^{(A} 1) (*)	etat degenere v ₁₉ ^(E)	etat degenere v ₂₀ (E)
B _V ^{XX}	5273.258 ± 4.10^{-3}	5260.229 ± 8.10^{-3}	5276.9303 ± 10^{-3}	5268.1487
D^{J}	0.00135 ± 1.10^{-5}	0.00127 ± 5.10^{-5}	0.001381 ± 2.10^{-6}	0.001346
DJK	-0.00203 ± 1.10^{-5}	-0.00187 ± 2.10^{-5}	-0.002081 ± 5.10^{-6}	-0.002012
η_t^J			-0.01622 ± 5.10^{-5}	0.00778
$ q_{12}^t $			3.25	1.86
$ q_0^t $			3.249 ± 10^{-3}	1.945
ζ ^z t			-0.668	-0.281
f ^{tJ} 22			$-1.5 \ 10^{-5} \pm 10^{-6}$	-0.4 10 ⁻⁶

Tableau 6 - CONSTANTES MOLECULAIRES (MHz)

(*) déterminées à partir d'un calcul de perturbation

٠

.

1

ETAT VIBRATIONNEL $\nu_{19}(E)$

Τ7

Fréquences exprimées en MHz

 ΔF = Fréquence mesurée - Fréquence calculée

J	K	^l t	FREQ.CALC.	ΔF		J	K	^l t	FREQ.CALC.
T	RANSI	TION	J = 6 ← 5			TI	RANSI	TION	J = 10 + 9
Δ١	, , , , , , , , , , , , , , , , , , ,	0.04	∆vn=0.08			Δ١	v _{ovn} =	0.05	$\Delta v_{D} = 0.13$
5	•1	- 1	03243.56	• •		9	exp 	- 1	105523.26
5	2	- 1	\$3328,10	03		9	~ 4	- 1	105501,54
5.	5	- 1	43322,84	-,02		9	-1	-1	105403.18
5	٩	1	63400.13			9	2	- 1	105565,59
5	4	٩.	63316,43	.01		9	5	- 1	165546.14
5	- 3	- 1	63311,77	.00		9	, a	-1	105538.62
5	` c	- 1	63344.08	04		9	1	٩	163663,23
5	3	- 1	63325,65	01		9	-9	- 1	105531,18
5	•4	٩	63324.03	. C 1		9	- 4	-1	105548,12
5	= 1.	1	63332,52	-,02		9	≈ 3	- 1	105484.79
5	2	4	63300.06	01		9	0	-1	145616.31
5	5	1	63319.23	00		ş	3	-1	105556,36
						9	٤	- 1	165542,99
T	ANCT	TTON	7 ~ 6 > 7			9	9	-1	105537.02
+ r		1100	$J = 0 \neq f$	4.0		9	•7	1	165540.55
Δ.	exp =	0.04	$A \qquad \Delta D = 0.$			9	-4	1	105550.37
6	• • 4	- 9	73865,39	• 0 2		9	• 1	٩	105581.94
6	-1	- 1	73966.30			9	2	1	105450.19
•	2	-1	73885,57	01		9	5	٦	105511.38
6	5	- 1	73877.80	05		9	9	٩	195527.50
6	1	1	73784.13	.05					
6	° 4 .	4	73872.37	.01		TR	ANSIT	ION	J = 12 + 11
6	-3	- 1	73858.44	.04		Δ.	=0.	08	$\Lambda_{-}=0.17$
6	0	-	73909.28	.00		-e	хр		\mathcal{D}
6	3	- 1	73881.90	-,05	1	11	-10	- 1	126632.13
	é	- 1	73876,50	04	•	11	-7	- 1	126615.61
6	~ 4	1	73879,52	05	٩	1	- 4	- 1	126582,32
· 6	•1	1	73892,22	05	· •	11	- 1	- 1	126480.99
ê	Ş	٩	73841,21	.01	· •	1	2	-1	126692.3#
6	5	1	73869,46	.00	•	1	5	-1	126651.84
					٩	1	8	∾1	126649.32
TR	ANSIT	TON	J = 11 ← 10		.1	1	11	- = 1	126643.71
Δν	= (0.08	$\Delta v_{\sigma} = 0.14$		1	1	1	٩	126792.88
	exp				٩	1	- 3	• 1	125627.34
10	-10	- 1	116083.90	,03	T	1	~ 6	- 3	126607.76
٦٢.	-7	• ¶ ·	116070.18	.05	١	1	•3 .	- 1	126559.15
10	• 4	•1	116042.95	.17	١	1	0	• ¶	126756.74
10	- 1	• 1	116228.24	13	1	1	3	~ ¶	126673.08
10	2		115128.40	~.02	1	1	6	- 1	126656.80
10	5	æ ٩	116103.61	••00	1	1	9	-1	126647,34
10	a)	- 1	116094.01	03	1	1	-10	1	126645,33
10	. 1	1	115942.26	.14	1	1	•7	1	126652,90

10 + 9=0.13 5523.26 .01 5501,54 -.01 5403,18 .11 \$565,59 -.01 5546.14 -.Cć 5538,62 -.02 5663,23 -,11 5531,18 .06 \$518,12 . C 4 5484.79 .04 5616.31 -.05 556,36 -.05 542.99 -.03 537.02 -.01 . 540.55 -.02 550.37 -.01 581.94 -.02 450.19 .03 511.38 -.02 527.50 .04 12 + 11.17 632.13 .00 -,09 615.61 582,32 -.CS 480.99 .23 692.38 .00 661.84 .15 649.82 -.12 643.71 -.04 88.297 •,13 \$627.34 .01 607.76 -.00 559.15 .03 756.74 -,09 -.16 90, 876 •.14 656.8c 647,34 •.14

 $\Delta \mathbf{F}$

14

-.09

+.05

J	K	ê	FREQ.CALC.	$\Delta \mathbf{F}$	J	K	² t	FREQ.CALC.	ΔT
ικΑ	NSIT	ION	J = 11 + 10		TR	ANSIT	TON	J = 12 + 11	
lsu	ite)				(si	iite)			
٦O	• 7	- *	114079.39	.03	11	- 4	1	126663,59	~ .05
10	- 6	- 1	116063,77	.09	11	- 1	•	126746,08	04
10	- 3	~ 1	116022,43	.06	14	2	٩	126517,24	~ .C4
10	0	- 1	116186.72	08	11	5	٩	126597.37	,14
0 ר	3	- 1	116116.66	0%	11	ą	٩	126621,95	• 6 5
1 Ç	6	- 1	116099.58	04	11	11	1	126636.51	
10	9	- 1	176092,03	01					
10	~ 1 0	1	116090,44		1 7 - 10 - 1			7 11 10	
10	-7	٩	116096.47	-,02	7R∕	NSIT	ION	J = 14 + 13	
10	- 4	1	116109.01	06	Δν	0= 2Xp	.08	$\Delta v_{D}^{=0.19}$	
10	- 1	1	176148.42	.02	13	- 13	- 1	147761.03	
10	S	1	175783.88	.C4	13	~10	 1	147724.74	.01
10	5	1	116055.30	04	13	-7	- 1	147701.65	-,25
.10	3	1	116075.40	,08	13	- 4	• •	147655.36	×.31
					13	- 1	- 1	147557.27	, 2 2
					13	2	- 1	147823.72	.33
TR	ANSIT	TION	J = 13 + 12		13	5	• 1	147780.64	.15
Δν	exp=(0.08	Δυ ₂ =0.18		13	8	- 1	147762.82	.09
12	•10	- ¶	137179.10	.06	13	11	- 1	147753.55	• 6 5
12	• 7	- 1	137159.46	.05	13	1	•	147920.85	18
12	- 4	~ 1	137199.75	.05	13	-12	- 1	147736.16	02
12	• 1	- 1	137357.10	-,17	13	-9	- 1	147718.15	•.07
12	2	= 1	137257,70	02	13	- 6	- 1	147690,51	21
12	5	- 1	137220,86	04	13	~ 3	- 1	147625.26	34
12	ş	- 1	137206.08	-,04	13	0	- 1	147894.23	. 12
12	11	-1	137198.51	08	13	3	- 1	147804.12	.32
12	1	٩	137019,34	.10	13	6	- 1	147773.22	.13
12	- 12	-1	137183,98	. 52	13	\$	- 1	147759,09	.01
12	• Ç	~ 1	137123.46	.10	13	12	- 1	147751.55	.05
12	-6	- 1	137150.03	. 03	13	-13	٩	147749.92	•.13
12	• 3	a 1	137092.34		13	-10	1	147756.06	.05
12	Ø	- 1	137325.98	0?	13	~ 7	٦	147767.43	.13
12	3	# 1	137240,60	:02	. 13	•4	٩	147790.52	. 24
12	6	- 1	137814.67	00	13	-1	1	147853.27	.36
12	9	a 4	137203.02	.01	13	Z	1	147584.03	
12	12	 1	137195,87	•.13	13	ş	٩	147675.84	31
12	~1 0	1	137200.53	~. C9	13	8	Ą	147710.61	~.11
12	• 7	٩	137209,38	09	13	11	4	147730.68	.03
12	- 4	1	137229.10	08					
12	- 1	ė	137284,50	-,00					Com
12	2	٩	137050.59	.05					UUS
12	5	1	137137.55	.04					
12	8	Ą	137167.05	÷.01					

-

#

-

.

BUS

J	К	٤t	FREQ.CALC.	6.T	J	K	°. t	FREQ.CALC.	$\Delta \mathbf{F}$
TRA	NSIT	I ON	J = 15 + 14		TRA	NSITI	ON	$\mathbf{J} = 26 \rightarrow 27$	
Δve	x1)=0	.08	^{∆v} D ^{=0.21}		^{Δν} e	xp=0.	16	$\Delta v D^{=0.35}$	
14	-13	- 1	158287.94		20	-24	-	284881,85	
14	-10	- 1	158268.96	06	26	-21	~ 1	284844,95	20
14	- 7	- 1	158242,14	•.25	26	- 18	- 1	204805.97	•,31
14	- 4	-1	158189.38	43	2.6	-15	-1	284763.22	-,33
14	-1	- 1	158484,18	• 15	26	-12	-1	284713,97	
14	2	- 1	158390.72	.37	26	- G	- 1	284654,57	
14	5	- 1	158341.24	. ? ?	26	-6	-1	284583.29	.79
14	8	- 1	158320.05	.13	26	- 3	- 1	284545.55	.15
14	11	- 1	158308.93	01	26	C	- 1	285185.78	-,45
14	14	1	158302.25		26	3	- 1	285136.64	.12
14	1	1	158094.75	.16	2.6	ć	-1	285070.66	.19
14	-12	- 1	158282.07	01	2.6	9	- 1	285048,64	.72
٦4	- 9	- 1	158261,34	08	56	12	-1	284981,95	.19
14	-6	- 1	158229.20	22	26	15	- 1	284956,95	. 12
14	- 3	- 1	156157.33	****	26	18	-1	284940.55	.14
14	c	- 1	158461.41	.07	26	21	• 1	284930.73	-,01
14	3	- 1	158368.53	.43	26	24	- 1	284926,17	
14	6	- 1	158332,44	,15	26	•25	,	286925,47	
14	ç	- 1	158315.58	.01	26	- 2 2	1	284928.67	17
14	12	- 1	158306,47	.03	26	-19	٩	284936,62	.10
14	-13	1	158304.46	. 02	26	-16	١	284950.05	.15
14	-10	1	158311.93	01	26	-13	٩	284972.50	.20
14	- 7	٩	158325,55	.21	26	-10	1	285004.88	.19
14	-4	1	158352,81	. 27	26	• 7	٩	285051,46	14
14	-1	٩	158421.98	.32	26	-4	٩	285113.92	.10
14	2	. •	158117,72	•.14	26	- 1	٩	285176,81	02
14	Ş	1	158212.36	-,27	26	2	•	284502.75	•.25
14	8	٩	158252.57	12	. 26	5	٩	284558.48	03
14	11	۱	158275.80	10	26	8	1	284631.99	•.21
14	14	1	158293.53		26	11	•	284695,49	
					ŽÓ	14	•	284747,69	31
T	RÁNST	TTON	1 = 20 + 10)	26	17	1	284792.25	36
٨	v =	= 0 15	· · · · · · · · · · · · · · · · · · ·		26	20	1	284832,25	18
	exp	0.15	$\mathcal{D}^{-0.27}$		26	23	1	284869.72	- .06
15	-19	- 1	211052,12		26	2.6	•	284905,97	
15	-16	- 1	211027.65	• 2 2 •	26	1	1	284498,54	08
.19	-13	- 1	211000,32	-,(2	26	-25	• 1	284893,96	
19	-10	- 1	210966.68	-,09	26	- 2 2	* 4	284857,42	
19	-7	- 1	210919.06		26	-19	-1	284849.28	•,24
19	- 4	- 1	210842.94		26	-16	- 1	284778.03	32
19	-1	- 1	210774.36	.01	26	-13	. • 1	284731,32	32
	, ,	- 1	219224.77	,31	26	-10	• ٩	284875,73	

•

J	K	²t	FPEQ.CALC.	ΔF
TRA	NSIT	ION	J = 20 + 19	
Δν	0= axi	.15	∆v _D =0.27	
19	5	- 1	211153,45	- ,05
19	3	- 1	211113,33	-,03
19	11	- 1	211090.18	-,02
19	14	- 1	211076.33	18
19	17	- 1	211068.35	13
19	1	٩	211292,35	32
19	-18	= 1	211044,16	.11
19	-15	- 1	211018.98	•.02
19	-12	- 1	210950.07	06
19	- 9	- 1	210952.94	.06
19	~é	- 1	210897.62	
19	- 3	- 1	210811,71	• 1
19	c	- 1	211281.59	25
19	3	- 1	211196.88	- .08
19	6	- 1	211137.42	.01
19	9	- 1	211104.23	.10
19	12	- 1	211084,75	٤٦.
19	15	- 1	231073.12	13
19	18	- 1	211066.67	20
19	-19	٩	211065,41	23
19	-16	١	231070.48	30.+
19	-13	1	211080.15	•.04
19	-10	1	211096.60	20
19	-7	1	211124,24	. (4
19	- 4	•	211173,06	02
19	-1	1	211254.02	
19	5	1	210786.65	
19	5	1	210872.28	.13
19	8	1	210937,26	+,13
٦۶	11	1	210978.94	.04
19	14	1	211009.91	.09
19	17	1	211036.02	

TRANSITION $J = 26 \rightarrow 27$ (suite) 26 - 7 204608.09 - 1 -.17 2.6 - 4 284535,26 - 1 .05 285194,22 26 -1 - 1 -.37 285158,88 -.50 26 2 -1 26 5 - 1 285091.62 .11 26 8 - 1 285034.13 ,19 26 11 284992.70 ,18 - 1 224964.20 ,18 56 14 - 1 56 204945.21 .19 17 - 1

26

Ż6

2 C

23

- 1

- 1

204933.36

204927.17

.07

(BIIS)

ETAT VIBRATIONNEL $\nu_{20}(E)$

T8

Fréquences exprimées en MHz

 ΔF = Fréquence mesurée - Fréquence calculée

	JК2 _t	FREQ.CALC.	ΔF		J K l _t	FREQ.CALC.	∆F	-
	TRANSITION	J = 6 + 5			TRANSITION	I] = 10 ↔	9	
-	$\Delta v exp^{=0.04}$	$\Delta v D^{=0.08}$			$\Delta v_{exp} = 0.05$	$\Delta v_{D} = 0.13$		
•	5 •4 •1	03216•4/	-+02		9 •7 •1	1,5358+46	-•05	
	5 -1 -1	¢3169•99	-•02		9 •4 •1	1;5355+22	•00	
	5 2 -1	¢3217+31	- •≎5	•	9 -1 -1	105279+89	•00	
	5 5 •1	63217•32	-•06	•	9 2 •1	105360+86	•C3	
	5 1 1	03263+36	• 01		9 5 •1	105359+81	• 01	•
	5 •3 •1	\$3215+89	+•C1		98-1	105360+57	-•39	•
	5 0 -1	63218+75	•01		9 1 1	105435+48	••35	
	5 3 -1	0321/+21	• 35	•	9 •9 •1	1(5360+33	••15	•
	5 -4 1	03217+22	• 0.4	•	9 •6 •1	105357+52	04	
	5 1 1	03217+05	• 02		9 •3 •1	105353+20	-+01	
	P 2 1	03214+65	-•03		9 0 -1	105367+45	• 06	•
-	5 5 1	03216+92	+ 35		9 3 -1	135363+16	•02	•
					9 6 -1	105359+93	•25	•
	TRANSITION	J = 7 + 6			9 9 •1	105361+06		
	Δv ax = 0.04	Δvn=0.09		ан на селото на селот	9 •7 1	105360+19	-•01	•
	exp	V			5 •4 1	1,5359+36	**:*	•
	6 -4 -1	73751•76	•+02		9 -1 1	1;5362+50	•00	
	6 =1 =1	73806+76	•03		9 2 1	105347+99	••10	
	6 2 •j	73753+35	••19	•	9 5 1	135356+49	••02	
	6 5 •j	73753+20		•	981	105339+38	**Ç6	
	6 1 I	-73697+84	•03					
	6 =6 =1	73752+90	++13		TRANSITION] = 11 +	10	
	6 •3 •1	73750+93	•03		$\Delta v = 0.08$	$\Delta y = 0.14$	••	
	6 0 -1	13755+63	•07		= exp			
	6 3 -1	73753+15	•01	•	10 -10 -1	115895+94		
	6 6 -1	73753+37	••21	•	10 -7 -1	115892+67	01	•
	6 -4 1	73753+11	• \$5	• •	10 -4 -1	115888+73	••01	-
÷	6 -1 1	73753+89	• 35		10 -1 -1	115977+79	* •\$2	
	6 2 1	73749•3	• 21		10 2 -1	115836+50	•01	•
	65 i	73752+36	••02		10 5 -1	115894+93	··C1	•
			•		10 8 -1	115895•64		
	TRANSITION	J = 12 + 3	11		10 1 1	115806+63	•• 37	
	$\Delta v_{axp} = 0.08$	$\Delta v_{D} = 0.16$			10 •9 •1	115894+83	• 29	•
	exp				10 -6 -1	115891+56	••02	
	11 -10 -1	126433+15			10 -3 -1	115386•13	••01	
	41 •7 •1	126426+43	• 02		10 C -1	115905+19	•12	
	11 =4 = <u>1</u>	120421+67	•13		10 3 •1	115395+51	•05	-
	11 •1 -1	126333+53	••02		10 6 -1	115895+01	** 09	· (8115)
	11 2 •1	125431+93	••02		10 9 -1	115895+16		ULLE
	11 5 •1	126429+81	•21	●n n n n	10 -10 1	115396 • 79		
	11 8 -1	126430+43		·	10 -7 1	115395+20		
	11 11 -1	c6432++n			*	117946.000		

JК [%] t	FREQ.CALC. ΔF		JK ² t	FREQ.CALC.	۸F
TRANSITION	1 = 12 + 11		TRANSITION	J = 11 + 1	0
(suite)	2	· · · ·	(suite)		а 1995 — .
•		•			
11 1 1	146519+78 =+34		10 -1 1	117698+65	•••Q3
11 -9 -1	125423+35 ++04		10 2 1	115875+31	++15
11 -6 -1			10 5 1	112230.35	-+G4
11 -3 -1	126413436 ++37		10 8 1	110033+75	**C/
11 3 -1	126430.63		TRANSITION	J = 15 + 1	4
11 9 -1	126430+96	•	$\Delta v_{exp} = 0.08$	$\Delta v p^{=0.21}$	
11 -10 1	126431+68		14 -13 -1	163035+27	
11 -7 1	126430+05 -+03	•	14 =10 =1	158029•75	= * 04
11 -4 1	120450+04 ++02	•	14 -7 -1	152024+47	• 06
11 -1 1	126434+77 ++ 36		14 -4 -1	1\$3216+52	-•05
11 2 1	126409+6712		14 -1 -1	158143.08	
11 5 1	120423+63 •00		14 2 -1	158037+47	-•12 🗸
11 8 1	126427+66 •02		14 5 -1	158032 • 74	-+C+ ÷
11 11 1	126431+45		14 8 -1	158032+85	15 •
			14 11 -1	158034+97	°-•≎7 Δ
TO !!! OT TT A!!	T 1 0 1 0		14 14 -1	158038+56	
TRANSITION	$J = 13 \leftarrow 12$		14 1 1	157909+20	• *
$\Delta v_{exp} = 0.08$	$\Delta v D^{=0.18}$		14 -12 -1	158033+38	. ç9
12 -16 -1	126963+88 -+05		14 •9 •1	158028-05	-•:3
12 -7 -1	136959+67 -+01		14 -6 -1	150022+44	-+03
12 •4 •1	136953+99] ++07		14 •3 •1	152010+47	• 05
12 -1 -1	137061+25 -+35		14 0 -1	152058+65	
12 2 -1	136967+30 ++00		14 3 -1	15803++32	•CB 🛆
12 5 •1	:36964+41 + 33	•	14 6 -1	158032+40	• 22 •
12 8 -1	136964+91 -+02		14 9 -1	158033+37	+10. 🔺
12 11 -1	136366+96 +34		14 12 -1	153936+28	• 35
12 1 1	136859+04	•	14 •13 1	158097+22	•13 🗸 🗸
12 -12 -1	136900 • 84		14 =10 - 1	158034+ 9	-•33
12 -9 -1	136962•48 ••02		14 -7 1	1\$3032+53	•17 •
12 •6 •1	136958+16 ++03		14 -4 1	19333+44	•03 🔺
12 •3 •1	136949•90 ••07		14 =1 1	153042+90	••;5
12 0 -1	136981+41 +09		14 2 1	157954+31	₩ • 3 5
12 3 -1	136965+61 -+05	•	14 5 1	158019+97	• \$2
12 6 -1	136964•36 •08	•	14 8 1	158026+30	• 05
12 9 -1	136965+45 +11	*	14 11 1	158031+56	34
12 12 -1	130967 • 91 • 16		14 14 1	158037+25	•10
12 -10 - 1	136966 • 13 • 12				(Duo)
12 -7 1	136964 • 54				
12 *4 1	136964+78 +11				

•

Same and	
(8008) (8008)	10+
	£0+

	+6+607015	1	21	61
	08++69015	I	₩ [61
10+	27-939012	Ţ	11	61
£0	56+770015	ŗ	8	61
10++	+8+599012	Ţ	ç	61
•15	S10612+31	ĩ	S	61
90•	810781•53	ľ	I.	61
	+E+659012	Ţ	†7 ∞	61
	95.569012	T	٤-	5I
	+++969012	t	01+	61
	*6*659012	ŗ	-13	61
	E4+592012	ţ	91-	61
	29+2:2012	ĩ	51-	61
	20.017015	ι. -	81	61
	S10703++0	T - -	51	61
	E2+869015	Ι-	15	61
	18+209015	ι	6	61
	20.969015	ι	9	61
	810702-86	ι	ε	61
	#6.ESL013	I -	0	61
4۲۰۰	510645-35	τ	۰3	61
93++	12.07015	۲ -	9+	61
10++	29.080012	۲-	6-	61
	91+689012	I -	-15	61
4 	+2+269012	[-	SI-	51
	55.707012	Ţ -	81-	61
	E3+8E8015	Ţ	۲	61
	99• 7 °7°15	ι	L I	61
	95+107C15	ι-	71	61
	96•724015	ι-	11	61
	510635+49	I -	8	61
	92•79645s	Ţ -	9	61
62•	#5.307013	Ţ =	5	61
	29.758015	ι-	Ţ.,	61
90••	03•83901S	I -	7-	61
80	99•449018	ι	6-	61
10	84+684015	ţ-	ាះ	61
90•-	48•189018	ι.	EI-	61
	47.00701S	τ-	91-	61
	50+317115	3-	61-	eī
	£2·0= ^a n⊽	51.0=	ахэ	VΔ
61	→ 0Z = £	NOILI	SNA	TR

 $1 \ \kappa \ \gamma^{\mathsf{F}}$ ЕКЕЎ-СУГС• ∇E

SE + +	51+160002	t	S	81
90•	86+381005	ŗ	1.	81
9 0 •	68.991002	I	4 =	51
41.	S0193+83	Ţ	۷-	81
21.	56++910 02	ţ	01+	81
	C#+891002	ŗ	-13	81
	22+621002	I	91-	81
	71+871005	ī	81	81
	92+12100g	I -	51	81
	20•2•1002	I	15	81
	45•#91003	· I.	6	81
+2·•	12+491002	I =	9	81
۷۱۰	48+691002	I -	ε	81
•51	92++12002	ī -	0	81
16++	54+021002	ι-	Ê•	81
<u>9</u> 1++	#Z+2+1002	τ-	9-	81
II ••	92+191002	τ-	6-	81
-+05	20128+31	I	-15	81
	76+75100S	1-	s1-	81
	82+941005	1 -	81-	81
	81+300055	1	Ţ	81
	93+571003	I -	۲1	81
	86+691002	1-	7 T	81
	98+29100 8	Ş • 1	ττ	81
60.	88+691002	5.0	8	81
9 0 ••	81+891002	t -	S	81
21.	83+571005	r -	г	81
75+-	200300+67	L -	۲.	81
•• 53	86+161002	I -	4 -	81
80	g1+971002	I -	٤-	81
+)•-	SCOTE4+31	t -	01-	81
11+-	96+191002	I -	e1-	81
	SS+07100S	5-	91•	81
	97·0= ^a ∿⊅	51.0=	dxə	۷D
81	→ 61 = 1	NOILI	SNV	ТR
	1392+33	Ţ	11	12
-•05	50 • 1969ET	1	8	15
90	85+996961	Ţ	S	12
60	00.6869 <u>6</u> 1	ĩ	5	12
50 + =	92.0769E1	Ţ	τ.	15
				•
٤١	+ 01 = [NOIL	I SN∀	TR
VF	F'REQ.CAL	٦ _x	к	r
· · · · · ·		~		_

*

J	к	lt	FREQ.CALC	. A F	J	K	lt	FREQ.CALC	. ΔF
TRA	NSIT	TON	J = 19 + 1	8	TR	ANST	TION	$J = 26 \rightarrow 2$	27
(su	ite)				Δν	exp	0.16	$\Delta v_D = 0.35$	
18	5	1	∠00138•38	••1a	26	•25	- 1	28-++39+37	• 53
18	8	1	200149+08	••15	20	-22	- 1	584455+50	• 17
18	11	1	200156+83	••05	26	-19	-1	284406.00	
18	14	-1	200164+62		26	°16	-1	284392•34	•00
18	17	1	200173+19		26	•13	-1	284378+95	-•02
					26	-10	-1	284365+37-	-•31
TRA	NSIT	FION	$J = 20 \rightarrow 2$	1	26	-7	-1	284343*49	S0+~
Δ٧.	= (0.12	Avn=0.29		5.6	- 4	-1	284314+03	21
C	xp		ν. D		50	-1	-1	204584•04	• 0.•
20	•19	-1	221241*34	•23	26	5	-1	289936+77	• 0 *
20	-16	-1	221230+61		26	5	-1	284407+94	• 2 4
20	-13	-1	221221+15	••04	26	8	-1	284400+34	
20	-10	-1	221212+27	••03	26	11	-1	594400+36	-
20	• 7	-1	221202+34	••04	20	14	-1	284403+17	• 24
20	• 4	-1	221184+06	••07	26	17	-1	584415+45	•15
50	•1	-1	221375•80	•00	26	20	-1	Sc##55+52	•12
20	2	-1	221242+73		26	53	-1	284434+41	• 5 3
50	5	-1	221228+91		26	26	- 1	284+48•80	_
63	8	-1	221226+58	,	20	1	1	284164 • 91	25
20	11	-1	221228+31		26	-24	• •	284433•46	-•:4
20	14	-1	22(232+58		26	-21	-1	c = 441 6 + 84	• 05
20	17	-1	251538+88		26	-18	- 1	224401 • 71	• 51
20	60	-1	221247.00		26	-15	-1	284387•81	•13
50	1	1	221049+44		26	•12	-1	204374.53	••05
20	-18	-1	221237+44	•04	26	• 9	- 1	284360.40	-•10
20	•15	-1	221227+38		26	•6	-1	224340.58	••1.4
20	-12	-1	221218•20	••03	26	•3	-1	244286+95	-•15
20	•9	-1	221203+31	**04	26	0	-1	2845(7•54	• 10
20	•6	-1	221193.03	-•11	26	3	-1	284422•12	• 25
20	• 3	-1	221169.07	••18	20	6	-1	284+04+37	• 20
20	0	-1	\$57583°C	•10	26	9	• •	2:24+00*31	
ÊŰ	Э	-1	221235•45	•\$8	26	12	-1	284401.98	•24
20	0	-1	22122/•48		26	15	-1	20++07.28	
20	9	•1	221226+82		26	18	•1	284415•43	• 19
20 20	12	•1	221229+48	7	26	21	-1	284426.05	• 25
	15	- 1	221234+47	•04	20	34	-1	204438+97	
50	18	-1	001011.34		26	•25	1	204443•76	
20	-19	1	221244•10		26	•22	1	254430*11	•24
50	-1ó	1	221236.57		26	•19	1	284418.70	•19
20	•13	1	221230.91		ĉo	-1e	1	284409+70	\$2.
εj	•10	1	22:227.41		2 c	•13	1	284403.40	• 20
2	-7	1	221226 . 77	•03	26	-10	1	5c##00•38	

BUS

TRANSITION $J = 20 \rightarrow 21$ (suite)

20	- 4	1	221001-06	
20	-1	1	221256+86	•04
20	2	1	221132+42	-•18
20	5	1	221192+40	-•10
20	8	1	221205+96	-•05
20	11	1	221215+25	-•01
20	14	1	221224+24	+01
20	17	1	221233+96	* *04
20	20	1	221244 • 78	

TRANSITION $J = 26 \rightarrow 27$ (suite) 26 -7 1 284402+12 •1.5 26 - 4 284413+45 +27 1 26 -1 204463 • 13 1 •15 26 2 284231.23 -+10 1 26 5 284329+94 -+07 1 26 284354+89 8 1 **-**•≎≾ 284370+04 26 11 •02

284383+36

284396+95

284411+64

284427 . 74

284445+47

•07

-+10

• 34

•14

*21

1

1

26 14 1

26 20 1

26 23 1

26 26 1

26 17

	ETAT DEGENERE 2v ₂₀ (E)	COMBINAISON D'ETATS $v_7^{(A_1)} + v_{20}^{(E)}$	COMBINAISON D'ETATS $v_{19}(E) + v_{20}(E)$
× _{l+l+}	-21330 ± 60		
× _ℓ ,ℓ,			-38620 ± 30
BVX	5263.4068 ± 3.10^{-3}	5256.2409 ± 7.10^{-4}	5271.161 ± 0.002
^Y ll ^l t	-0.0565 ± 8.10^{-4}		
Y ^ℓ t ^ℓ t'			-0.2589 ± 0.002
ζ ^z t	-0.266	-0.266	-0.281
ζ ^z t'			-0.665
$\mathbf{p}_{\mathbf{v}}^{\mathbf{J}}$	0.00133 ± 10^{-6}	0.001287 ± 2.10^{-6}	0.0014 ± 10^{-5}
dv ^{jk} v	-0.00205 ± 2.10^{-5}	-0.002071 ± 7.10^{-6}	-0.002067 ± 2.10^{-5}
n_t^J	-0.00909 ± 2.10^{-4}	-0.00455 ± 5.10^{-5}	-0.00778
nt'			-0.0226 ± 0.0004
q _o t	1.8867 ± 10^{-2}	2.1214 ± 4.10^{-4}	1.958 ± 0.02
q _o t'			3.218 ± 0.02
q ₁₂ t	-1.862	-1.862	-1.832 ± 0.02
q ₁₂ t'			-3.248 ± 0.04
d ₁₂ ^{tt'} (*)	2.686 ± 0.3		24.43 ± 0.46
d ^{t't} 12			3.63 ± 0.53
ro ^{tt'}			897.26 ± 15

Tableau 9 - CONSTANTES MOLECULAIRES (MHz)

(*) Paramètre d_{12}^{tt} pour l'état $v_t=2$

ETAT VIBRATIONNEL 2020(E)

T10

Fréquences exprimées en MHz.

 ΔF = Fréquence mesurée · Fréquence calculée

J K L t	FREQ.CALC. ΔF	
TRANSITION	J = 6 + 5	
$\Delta v_{exp} = 0.04$	$\Delta v_{D} = 0.08$	
5 -5 -2	63155+75 ···C2	
5 •2 •2	•3156•62 •C3	
5 1 -2	63156+95	
5 4 -2	63157•93 •05	
5 0 C	63160·31 ·10	

5	3	С	63160+67	•00
5	- 4	•2	63156+00	
5	-1	-2	63156+52	
5	2	-2	63157+19	•05
5	5	-2	63158+42	• 08
5	-5	C	63161+35	• 04
5	•2	С	63160+47	- •06
5	1	3	63160+35	• 06
5	4	ປັ	•3160·95	•04
5	• 3	2	63157+52	•03
5	C	2	63156+70	••05
5	3	2	63156+19	-•07

TR	ANS	ITION	J = 7 + 6	
Δν	exp	=0.04	$\Delta v_{D}^{=0.09}$	
6	•5	•2	73681+12	-+02
6	- 2	•2	73681+38	-• 08
6	1	•2	73682+42	-•14
6	4	•2	73683+56	• 06
6	C	0	73686+78	•10
6	3	2	73687+20	•03
6	6	c	73688+65	• 04
6	- 4	•2	73681+41	-•11
6	-1	•2	73681+99	•08
6	2	-2	73682+75	•06
6	5	•2	73684•11	•07
6	•5	C	73683+02	•36
6	•2	C	73686+97	••15
6	1	o	73636+33	-+01
6	4	C	73637+55	•03
6	•6	2	73684.80	•02
6	•3	2	73633+11	•\$6
6	С	2	73682•20	•08
6	З	2	/3681+63	17
6	6	2	73680 • 67	-•03

TRANSI	TION	J = 12 + 1	11			
Δυρχη=	0.08	∆v _n =0.16				
11 -11	-2	125805+58				
11 -8	-2	126298+75				
11 -5	•2	126303+25	••05			
11 -2	-2	125306+34	••22			
11 1	-2	126304 • 88				
11 4	•2	126306.01	•11			
11 7	-2	126303+04	•15			
11 1C	•2	126311+95	• 4 7			
11 -9	С	126329+29				
11 -6	с	126320 • 94	•06			
11 -3	o 1	126317•91	-+C6			
11 0	С	126317+35	• 35			
11 2	2	126301•95	-•00			
11 -1C	•2	12627+•34				
11 -7	-2	126301+27	-•27			
11 -4	•2	120393+66	-•03			
11 -1	•2	120304+35	*\$3			
11 2	-2	1263 ₀ 5+15	•05			
11 5	•2	126336+57	•09			
11 8	•2	126309+30	•24			
11 11	-2	126315+87				
11 -11	C	126356+89				
11 -8	ċ	126325+32	• \$6			
11 •5	0	126319+61	• 34			
11 -2	ĉ	126317+42				
11 1	а.	126317+14	-+34			
11 4	С	126318+63	• 35			
11 7.	c	126322+75	••36			
11 10	C	126336+63				
11 -9	2	126310+21	• 37			
11 -6	2	126307+24	•12			
11 -3	2	126305+54	• 38			
11 0	2	126304+57	•03			
11 3	2	126303.93	•07			
11 6	2	126302+55	-•11			
11 9	2	126292+99				

BUS

к l

J

FREQ.CALC. ΔF

J	K	. ^l t	FREQ.CALC	. Af			J	K	^l t	FREQ.CALC	. ΔF
T	RANS 1	TION	I I = 13 + 1	12			TR	ANS	ITION	J = 14 +	13
Δ١	, oxp	0.08	$\Delta v_{D} = 0.17$				Δν		=0.08	$\Delta v_n = 0.19$	
12	2 •11	-2	136596+25	•			13	-11	-2	U 147168+99	
12	2 • 8	- 2	136821•66	••82			13	- 8	•2	147344+10	
12	•5	-2	136826+45	-•11			13	-5	-2	147349+17	••12
12	-2	-2	136824+56	** 04			13	-2	-2	147353+52	•
12	2 1	-2	136827+92	-+13	,		13	1	•2	147350+62	
12	2 4	-2	136829+04	• 68			13	4	•2	147351+48	• 06
12	2 7	-2	136833+77	•21			13	7	-2	147352+80	•29
12	10	•2	136833+01	•16	;		13	- 10	•2	147352+88	
12	0	0	136842+57	• 37			13	13	-2	147367+77	
12	3	С	136843•55	. •01			13	٥	0	147367+87	• 61
12	6	٥	136846+98	-•06			13	3	0	147368+97	••c3
12	9	С	136856+42	e 44		:	13	6	۔ ۵	147372+85	-+11
12	12	S	137038+79				13	9.	c	147383+47	•37
12	-10	-2	136795+76				13	12	с	147568+44	-
12	•7	-2	136824+36	••36		- :	3	•13	-2	147390+39	
12	- 4	-2	136826+88	-+06		:	13	-1c	-2	147316+89	
12	-1	•2	136827 • 54	•00		1	3	•7	•2	147346+97	••43
12	2	- 5	136828+26	00		1	3	- 4	•2	147349+59	++05
12	5	-2	136829+54	•10		1	3	-1	-2	147350+20	••02
12	8	•2	136831•49	•35		1	3	2	-2	147350+82	••02
12	11	- 2	136833+29			1	з	5	•2	147351+85	• 38
12	-11	Ĵ	136886+64			1	3	8	-2	1#7353+21	-+42
12	•8	а	136851.*34	• 06		1	3	11	•2	147348+52	
12	•5	0.	136845+47	-•03		1	3 •	-11	Ċ,	147416+35	
12	-2	3	136343.00	•01		1	з	• 8	o	1#7378+44	• 03
12	1	0	136842+67	-+03		1	3	•5	c	147371+15	-+07
12	4	С	136844+36	-+01		1	3	-2	ĉ	147368+35	••03
12	7	C	136849.03	-•05		1	3	1	с	147367+99	-•11
12	10	C	136864+62			1	3	41	С	147369+89	-•05
12	-12	2	136841+37			1	3	7	Û	147375+16	-+10
12	•9	2	136832+27			.1	з	10	C	147392+58	
12	-6	2	136830+12	•12		1	3	13	э	147332+72	
12	•3	2	136528+61	• 39		- 1	3 •	12	5	147398+81	
12	1, 0	г	136827+73	•01		1	3	- 9	2	147353+41	
12	Э	2	136827 • 14	-•04		(1)	3	- 6	2	147352+34	•17
12	6	2	136325+72	-•18		1	3	-3	2	147351+12	•03
12	9	2	136815+50			1:	3	0	2	147350+37	-•04
12	12	2	136886 • 13			13	3	з	5	147349+85	-•97.
						13	3	ó	2	147348+40	••24
						13	3	9	2	147337+56	•
						13		12	2	147413+64	

BUS

J	К	lt	FREQ.CALC.	ΔF
14	c	c	157892+34	•15
14	з	÷.	157894 • 18	** 32
14	6	С	• 197898+53	-•11
14	9	. 0	157910+43	• 32
14	12	С	158071+75	
14	-13	ż	157898 • 13	
14	-10	2	197871+45	+09
14	-7	2	157874 • 07	•04
14	- 4	2	157873-28	•10
14	•1	2	157872+64	•16
14	2	2	157876 • 46	•12
14	5	5	157871+35	-•23
14	8	г	157866*04	
14	11	2	157717+99	
14	14	2	157909+39	
14	•13	-2	157916+14	
14	-10	-2	157837+71	
14	-7	-2	157859+06	••45
14	-4	-2	157871+77	••19
14	-1	-2	157872+31	• 01
14:	2	-2	157872+77	+03
14	5	-2	157873+57	+15 '
14	8	-2	157374 .08	•80
14	11	•2	157861+48	
14	14	•2	157833+57	
14	-14	c	157798+47	
14	-11	C	157946.01	
14	• 8	Ĵ.	15790++80	-•02
14	•5	C	157896+62	••26
14	-2	C	157893+48	34
14	1	C ,	157893.04	* * 34
14	4	C	157395+20	•••00
14	7	C	157901+13	-+13
14	10	ů,	167920.50	
14	13	C	157804+54	
14	-12	2	157958+50	
14	-9	2	157873+56	-•18
14	-6	2	157873+65	•25
14	-3	2	157873*01	•01
14	0	2	157872+43	-+11
14	3	5	157872+01	-•11
14	6	2	157870+55	••3]
14	9	2	1\$7859+15	
14	12	2	157939+44	

TRANSITION $J = 15 \leftarrow 14$ $\Delta v_{exp} = 0.08 \quad \Delta v_{D} = 0.21$

ETAT VIBRATIONNEL $2\nu_{20}(E)$

T10

Fréquences exprimées en MHz

 ΔF = Fréquence mesurée - Fréquence calculée
TABLEAUX DE FREQUENCES

ETAT VIBRATIONNEL $\nu_7(A_1) + \nu_{20}(E)$

T11

Fréquences exprimées en MHz

.

,

 ΔF = Fréquence mesurée - Fréquence calculée

J	к	^l t	FREQ.CALC.	. Af	J	K	l.t.	FREQ.CALC.	$\Delta \mathbf{F}$					
TR	ANST	ITION	$J = 5 \rightarrow 6$		TR	ANSI	TION	$J = 6 \rightarrow 7$						
Δν	exp [‡]	=0.04	∆v _D =0.08		Δν	exp ⁼	0.04	$\Delta v_D = 0.09$						
5	- 4	- 1	63073+70	-•06	6	** 44	• 1	73535+16	01					
5	· •1	-1	63022+97		6	• 1	-1	73645•10						
5	•5	1	63074+28	-*01	6	• 5	i	73586+38	•02					
5	•2	1	63074+49		6	•2	1	73586+79	•03					
5	1	1	03124.77		6	1	1	73526+33						
5	= 3	-1	63073+00	• 01	6	- 6	- 1	73536+52	12					
5	0	-1	63076*28	* C 4	6	•3	- 1	73584+17	•• 07					
5	з	-1	63074•30	••03	¢	0	- 1	73589+59	-•04					
5	≠ 4	1	63074+25	• 02	6	3	-1	73586+48	••08					
5	*1	1	63074+94	• 01	6	6	•1	73586+43	-•23					
5	2	1	63071+51	**01 ···	6	₩ <u>4</u>	1	73586+37	• 🕽 3					
5	5	1	63074•24	•03	6	•1	1	73557++9	* 01					
					6	2	1	/3581+90	• 0 4					
_					6	5	1	73585+83	•00					
TR	ANS I	TION	$J = 12 \rightarrow 1$	3										
Δν	exp ⁼	=0.08	$\Delta v v^{=0.15}$		TR	ANST	ττηκι	$T = 13 \rightarrow 1$	1					
12	•10	~ 1	136655•61	• + Ç7	1 1.57	-	n ne	ر جر را در ۸۰۰ مر ۲	1					
12	• 7	~1	136650+77	• 02	Δν.	exp	0.08	$\Delta v D^{=0.2}$						
12	= ij	- 1	135644+05	• 04	13	•13	-1	197170+75						
12	•1	• 1	136761 • 44		13	-10	-1	147165+14	••01					
12	2	-1	136859+28	••) 7	13	≈7	-1	147159+69	• 32					
12	5	- 1	136055+44	•10	13	- 4	-1	147151+73	01					
12	8	•1	136655+46	•08	13	*1	•1	147042+18						
12	11	•1	136657+15	• 03	13	2	-1	147170.98	••C1					
12	1	1	136540+91		13	5	-1	147166+20	••¢5					
12	•12	-1	196653•94		13	8	-1	147165+96	-•19					
12	•9	-1	136654.01	•02	13	11	-1	147167+67						
12	•6	•1	136643+99	• 35	13	. 1	1	147279+60						
12	•3	-1	136639+21	•05	13	•12	= 1	147168+82						
12	С	- i	146676+03	# • ĴB	13	∘ 9	-1	147163+36	• 01					
12	3	*1	136637+16	* 35	13	•6	- 1	147157+62	+C3					
12	6	•1	196653+20	••03	13	•3	-1	147145+81	•¢5					
12	9	•1	135655+87	•21	13	0	-1	147191*68	-+08					
12	12	-1	196058+01		13	3	•1	147168+42	**09					
12	-10	1	136656+44		13	6	•1	147165+33	••Ço					
12	•7	1	136655+22	••35	13	9	- 1	147166+36	••22					
12	•4	1	136656•04	e () 4	13	12	- 1	147168+56	••23					
12	-1	t	136563+57	- • C +	13	≈13	1 .	147169+60						
12	2	1	136626+40	• 08	13	•10	1	147166+93	•:3					
12	5	1	136646.89	-•00	13	• 7	. 1	147165•73	-•31					
12	8	1	136652+41	+C3	13	= iy	1	147166+98	# + 02					
12	11	1	136657+24	- • 06	13	™1_	1	147176+38	••‡5					

,

.

(BUS ULLE

90 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190		
JKL	FREQ.CALC. ΔF	J K L FREQ.CALC. AF
TRANSIT	ION J = 20 -> 21	TRANSITION I - 19 12
$\Delta v_{exp} = 0$.12 Δυ _D =0.29	(suite)
20 •1		
20 #20	-1 cc0o3≤*30	13 2 1 147130•13 •06
20 +17	1 420747*30 1 2207a2x54	13 5 1 147155•15 •CO
20 -14	1 220733-74	13 8 1 147161+56 -+51
=0 1 ,	1 220755774 **13	13 11 1 147166•95 •C1
20 -8	1 220729:20 :05	
° 20 •5	1 220732+85	$IRANSITION J = 14 \rightarrow 15$
20 -2	1 220749+42	$\Delta v_{exp} = 0.08 \Delta v_{D} = 0.21$
20 1	1 220536+87	
20 4	1 220681+62 .00	14 -13 -1 157680-28
20 7	1 2207 A3+ 68 + 06	14 -10 -1 157674-13 05
20 10	1 2207:9*57 +****	14 •7 •1 157663•01 ••07
ē0 13	1 220724+64 + 06	
20 16	1 220735*09 ••07	
20 19	1 220746+50	1 ^m 2 •1 107682•73 ••06
20 *1 8 *1	1 220742+57	
20 -15 -1	1 220731.52	47 6 41 107678•15 ⊯•05 14 11 •• 1570ma.co
20 -12 -1	220721+29 +05	
50 - 9 -1	220711+06 -+14	14 1 157542.90
20 *6 *1	\$\$0238+03 •09	14 -12 -1 157678+18 +13
20 *3 *1	220664•14 •10	14 -9 -1 157672-15 -03
20 0 °1	22030 7•35 ••1 5	14 •6 •1 157665•63 ••03
20 3 °1	220741*02 •10	14 *3 *1 157651+51 *07
20 6 •1	220730·90 ·10	14 0 •1 157707•66 ••08
20 9 -1	220723+12 •1 3	14 3 •1 157679+43 •37
20 12 •1	220731*04 ••04	14 6 •1 157676•17 -•07
20 15 -1	220735++6	14 9 •1 157676•5 <u>1</u> •15
≤0 18 •1	220741.94	14 12 •1 157678•76
20 -19 1	260744*52	14 •13 1 157679•34 ••29
20 - 16 1	220/37•40 •09	14 •10 1 157677•08
20 13 1	220732*20 ••11	14 -7 1 157676+32 +03
20 •7 •	220729.75	14 •4 1 157677+69
20 •4 1	220735•99	14 -1 1 157689+23 -+37
20 * 1 1	220766.32 .35	14 2 1 157632.65 .10
20 2 1	220922*44 ****	14 5 1 157662•72 •04
20 5 1	220691-42	14 8 1 15767g•13 •01
20 8 1	220707+30 +08	
20 11 1	220 ⁷ 17*95 •• 05	1 1 1 1 1 1 1 5 7 6 8 2 • 4 7
ão 14 1	220728.04 .10	
20 17 i	220738+77 .08	
20 20 I	230 750 •57	

34 JL

TABLEAUX DE FREQUENCES

ETAT VIBRATIONNEL $v_{10}(E) + v_{20}(E)$

T12

Fréquences exprimées en MHz

 ΔF = Fréquence mesurée - Fréquence calculée

J+1	ĸ	lt	^l t'	FREQ.CALC.	ΔF	÷	J+1	K	^l t	l _t	FREQ.CALC.	$\Delta \mathbf{F}$
TR	ANST	TION] = 6	÷ 5			TR	ANSI	TION	J =	7 + 6	
Δν	exp=	0.05	$\Delta v p^{=0}$.08			Δν	0 x 10	0.05	Δvn	=0.09	
6	0	1	1	63248+63	09	*	7	erp 0	1	1	73789+27	•05
6	0	1	-1	63256+11			7	٥	1	-1	73798+31	• 01
6	C	-1	i	63257.55	•03		7	0	~ 1	1	73400+45	•07
6	1	1	•1	63256+36	••02		7	1	1	~ 1	73798+64	•12
6	1	-1	~ <u>1</u>	63248•78			7	1	-1	1	73460+19	•03
6	1	- 1	1	63257.36	•0c		7	1	•1	*1	73789++3	11
6	-1	1	1	63249+15			7	~ 1	1	1	73789.86	
6	~ 1	-1	• 1	63248+33			7	~1	-1	-1	73788+93	
6	5	1	1	63248+53	+01		7	5	1	1	73789+41	••09
6	2	- 1	•1	63249+35			7	2	-1	-1	73790+08	:10
6	~ 2	1	-1	63257+06			7	2۳	1	•1	73799.79	+07
6	-2	-1	1	63256+84	~• 06		7	-5	•1	1	73759.25	•09
6	•2	-1	~ 1	63247+47			7	-2	- 1	•1	73787.70	
6	з	1	1	63247•53			7	3	1	1	73788+02	
6	3	1	- 1	63257•40	∞• 04		7	3	1	•1	73755+95	*•09
6	3	-1	1	63256+84	* *06		7	3	•1	2	73799+50	16
6	- 3	1	1	63249.80			7	•3	1	1	73790.69	
6	4	1	~1	63258+15	00		7	4	1	<u>-1</u>	73800+35	•05
6	4	• <u>*</u>	1	63256.70	•08		7	4	-1	1	73799+32	•02
6	4.	- 1	~1	63250.35			7	4	•1	-1	73791-21	
6	w iq	• 1	-1	63246+57	••04		7	≈ <u>4</u>	-1	-1	73786×90	03
6	5	1	1	63242.96			7	5	1	1	73782+72	
6	5	•1	-1	63251+01			7	5	•1	-1	73791+95	+15
6	•5	1	∞ĺ	63256+62			7	-5	1	•1	73799+22	*12
6	•5	- 1	1	63259.45	•05		7	*5	•1	1	73802+35	+07
							7	6	i	1	73820+42	
TP	MOTT	TON	T = 0	~ 8			7	6	1	*1	73807+04	••21
A.v.	~0	1014	<u> </u>	10			7	6	-1	1	73799+19	•15
<u> </u>	exp ⁻⁰	.05	$\Delta \mathcal{D}^{-\mathcal{D}}$	14			7	• 6	1	1	73792+84	ĩ
5	e	1	1	94869+39	•11					-		
5	C	1	*1	94882+01	*04		TRA	ANSI'	TION	J =	10 + 9	
9	¢	*1	1	94886+21	-•11		Δv	exp ⁼¹	0.1	^{∆∨} D⁼	0.13	
9	1	1	"1	94882+54	•08							
5	1	•1	1	94885+77	-•07		10	C	1	1	105408.77	•03
5	1	- 1	• 1	54869+55	••05		10	٥	1	•1	105423+44	* 34
9.	-1	1	1	94870+11	•20		10	0	• 1	1	105429.07	-•01
S .	"1	- 1	• 1	94868+98	**2¢		10	1	= <u>1</u>	-1	105408.92	51.0
5	2	1	1	94870.35	₩ * () 4	۰	10	1	• 1	1	105428+51	BUS
5	2	-1	-1	94870.35	**04		10	• 1	1	1	105409+54	· 32 (11/15
5	-5	1	~1	94885 • 10	+02		10	-1	-1	-1	105408+34	
5	-2	•1	1 •	94883.50	•01		10	2	1	1	105410.36	•00

J+1	K.	lt	l _t ,	FREQ.CALC.	∆F		J+1	K	l t	l _t '	FREQ.CALC.	ΔF
TR	ANST	TION	IJ.	= 9 + 8			TRA	NSIT	TØN	T =	10 - 9	
(30	uite)						(su	ite)				
S	•2	•1	ې در د	4060+71	•08	٠	10	2	-1	-1	105409.77	-•21
5	з	1	1	94867•87			1 C	•2	1	-1	105427+65	-
5	з	1	~1	94884.52	•11		10	•2	-1	1	103425+28	≈ • Ç S
9	3	°i	1	94884+61	· •ca		10	•2	-1	•1	105408•35	
s	a 3	1	1	94870,95	-•05		10	з	1	1	105407+13	•=05
9	4	1	•1	94885•76	⊷• 06		10	З	1	- 1	105426.50	∞• <u>1</u> ≚
9	4	*1	1	94884+31	•+13		10	3	-1	1	105427+05	*15
s	4	• 1	-1	94871+58			10	· ~3	1	1	105410**1	* • 3≅
9	15 .lj	-1	84 * *	54866+46	•33		10	4	1	~1	105427.94	• 2 ó
5	5	1	1	94861+18			10	4	-1	1	105426+67	•07
9	5	•1	** 1	54872+65	**25		10	4	-1	• 1	105411+18	•36
9	•5	1	•1	94884•14	++01		10	- 4	-1	-1	105405+59	-•)ć
5	•5	•]	1	94887•31	**03		10	5	1	1	105399.78	•02
5	6	1	1	94908*33			10	5	۰ţ	۳ <u>۱</u>	105412.08	≈•0ë
9	6	1	•1	948 93 •80	**15		10	*5	1	- 1	105426+45	• • 1 12 a 9
9	6	¢ •	1	94884+08	•25		10	-5	* 1	1	105430-26	• û0
5	-6	-4 +	1	94873+58			10	6	1	1	105451+53	
5	7	с А	•1	94847+34			10	6	1	~1	105435+92	алан т алан тараатан тараа
9	7	•1	1	94884+12	•01		10	6	• 1	1	105426+36	••04
9	•7	*1	an 1	94878+45			10	~6	1	1	105413+15	••00
9	8	** <u>)</u>	*1	94376+39			10	7	1	• 1	105386+06	
5	° 8	1	-1	94854032	-•15		10	7	•1	1	105426+40	*•08
5	5 °	• 4	1	94878•00			10	7	-1	-1	105414.42	
ΤΡΔΙ	ודדא	ΩN	1 =	11 - 10			10	-7	-1	-1	105418.96	**16
A 51	-0	10		0 17			10	â	1	1	105415+72	
¹ ex	cp ⁻⁰ .	10	$\Delta \mathcal{O} \mathcal{D}^{-}$	0.14			10	8	•1	-1	105415+97	
11	0	1	1	115947062	•23		10	-8	1	-1	105+26+62	•12
11	c	1	-1	115964+55	•03		10	° 8	*1	1	105419.52	•24
11	0	≂ <u>í</u>	1	115971.91	•08		10	9	1	1	105412+84	
11	1	1	*1	115965.37	10		10	9	1	*1	105423+38	+10
11	1	۰ i	1	115971.020			10	9	•1	1	105427.23	•01
11	1	•1	~ 1	115947.75	•10		10	•9	1	1	105418+09	
11	-1	1	1	115943+44	•04							
11	~ 1	n (•1	115947 • 17			TRAI	VSITI	ION	J = 1	13 + 12	
11	2	1	1	115950.00	•10		Δve:	xp=0.	.10	$\Delta v D^{=0}$	0.17	
11	2	34	-1	115948+65	ee17		13	C	1	1	137023.54	••3 ⁵
11	-2	1	*** 1	115970+14	•18		13	C	1	-1	137040.69	••••
11	•2	°° į	1	115966+80	••01		13	0	er 1	1	137057.53	06 (BUS)
11	*2	# 1	*1	115943.33	•10		13	1	1	-1	137046.89	**54 CULL
11	Ģ	1	1	115945-85	•••¢1		13	1	<u>}</u>	1	137056++6	* * * 5

1

,

.

J+1	к	lt	^ℓ t!	FREQ.CALC.	$\Delta \mathbf{F}$	J+1	K	^ℓ t	l _t '	FREQ.CALC.	$\Delta \mathbf{F}$	
TRA	NST1	TON	J =	11 - 10		TR	ANSIT	ION	J =	13 + 12		
Lau	ito)					13	uite}					
11	3	1	-1	115968+24	•01	13	1	- • 1	-1	137023+60	- • 4 A	
11	з	• 1	1	115969 - 38	-•03	13	- 1	í	1	137024+42	• • 3.0	
11	-3	1	1	115949.32	•03	13	-1	- 1	~1	137023.09	*37	
11	4	1	-1	115969+89	••05	13	5	1	1	137028+05	••08	
11	4	~i	1	115968.91	21	13	2	-1	-1	137024+57	• 37	
11	4	•1	-1	115950+10	-+00	13	-2	4	-1	137054+85	ي. 10 مە	
11	₩ <i>ζ</i> ţ	*1	~1	115944+22	•34	13	*2	• ;	1	137048.95	+ 37	
11	5	1	1	115937+90		13	~ 2	- 1	-1	137017.13	- • 21	
11	5	•1		115951.03	* ∗00	13	3	1	1	137021+66	-	
11	*5	1	~1	115968+64	•06	13	3	1.	~1	137050+91		
11	°5	~ 1	1	115972.50		13	Э	* 1	1	137053+73	•02	
11	6	i	1	115994 • 08		13	• 3	1	1	137025+24	••\$¢	
11	6	1	-1	115979+83		13	4	i	-1	137053.05	•15	
11	6	•1	1	115968+52	•18	13	4	-1	1	137053+23	•18	
11	•6	1	1	115952 • 12		13	4	-1	-1	137026+03	*• 0 7	
11	7	1	* 1	115924+72		13	به مو	10 I 14	-1	137019+78	• 32	
11	7	•1.	1	115968.56	•14	13	5	1	1	137012+53	≈≠33	
11	7	•1	•1	115953+37	•05	13	5	-1	-1	137026+95	•14	
11	•7	• j	-1	115958+99		13	•5	1	-1	137052+62	∙Çĕ	
11	8	i	1	115955+43	• () ć	13	•5	~ 1	1	137056.28	•03	
11	8	۹ţ	-1	115954+84	-•52	13	6	1	1	137077.29		
11	*8	í	~1	115968+79	••09	13	6	1	-1	137064.93	•20	
11	- 3	~ 1	1	115960+89	-•01	13	6	•]	1	137053+42	••05	
11	9	1	1	115952+28		13	*6	1	1	137027.92	•¢2	
11	9	1	*1	115965+28	01	13	7	1	-1	137001+66		
11	9	-1	1	115969+46	**11	13	7	•1	1	137052++3	•27	
11	-9	1	1	115956+63		13	7	٥į	-1	137029+09		
11	10	1	•1	115967.36	•09	13	· • 7	*1	•1	137037.39		
11	10	* 1	1	115972+17	•23	13	8	1	1.	137033+20		
11	10	*1	-1	115959+73		13	8	a i	-1	137030.19		
11	-16	° 1	•1	115969.64	•2:	13	ి రే	1	-1	137052.70	•00	
TON	UOTT	T (1) (7	1 4 1 2		13	~ 8	ιι	1	137043+09		
I KAI	NSTI.	LUN) =	14 + 13		13	9	1	1	137029.56	** 04.	
Δve	$xp^{=0}$. 1	$\Delta v D^{=0}$	0.18		13	9	1	-1	137048.65	• 3	
						13	9	™ 1	1	137053+48	•27	
23	0	1	1	147560.50	- *04	13	• 9	1	1	137030+84		
14	Q	1	.	147535.65	∞ •Ç9	13	10	1	~1	137051.73	••Q\$	BUS
24	Û	¥8 € 6	1	147600+30	* •20	13	10	• 1	1	137056+64	•06	ULLE
4 4	0 4	1	-1	147587+05	** Ĵŝ	13	10	• 4	-1	137035.34	•25	
14	1	•• <u>1</u>	1	147599.00	··17	13	-1¢	-1	-1	137050+12		
<u>ત</u> ું હ્યું	ن مد	≪r*_≟	-1	147560+52	••06	13	11	1	1	137039.70		

\$ \$	14	<u>ु</u> -२ क्ष	2.4 45	4	مر با	2.4 3.	2-4 3:	3-9 4	\$ &	\$ \$	4	2 4	• • *	6-6 47)~¶ \$	ي په	14 4	4 4	در و تو	14	مو تە	ي. چو	14	14	**	1 4 4	\$ \$	ميو چ	14	**	14	14	2 4	1 4	14	14	14	14 4	14			сі +	
مىم ھ.ھ	1-0 6	°10 -	هيو ()	ана С	ы О	ŝ	S	Q	so.	8 (3)	а Со	Ô	£0	e 7	7	マ	~	°	ď	0 ,	6	៖ ហ	s CE	G	en	8 4	4	4	\$	e W	ω	543	ω	Ę	8	, e			5		CANS	1 X	I
*	ipan.	3 }**	9 **	e 	۶.	۴.∾	. •	۶.4	**	8 1	⊷	۵ مېر	۰.	# F-4			<u>امم</u>	5	* 1		j≉	8	F. 4:	*	1	۰ مو	10 A-4	8 ••	F -4	şmati	e J			2	3		4	10	5	- 1-			
ې مېز	م ین	5 ھو	» م	8-0	* •	مىر	÷-	8 هېر	j- a	مىۋ	°	9 1-4	5-4	، مو	° 1	م_4	۳ 1	هيو	و	ہ مر	هدر	م ب	* *	*	نسور	7 ~~	5	فعدن	. 4			ą		8		4		ы,	j	5-4 -	<u>ب</u>	, t	
<u>ب</u> ـ	نفسز	junte	<u>م</u> ر		ب م		+-4	10																				•-	•		p			ţ	ه. ر	م بو	مېز		در	4	= 4	rt C	
47589.28	47578.24	47589.52	47557。75	47598.61	47593.79	47566.37	47595+24	47590.11	47567.31	47583-90	47594.40	147566*53	147571.17	147575+68	147565.74	147594.13	147539.84	147564.76	147594014	147607.08	147617.92	147597.78	147594 - 38	147563.79	147548.94	147556.60	147562,92	147554.88	147594 - 22	147562.16	147595.72	147591.79	1A7558.58	147552.62	147589.52	147597+07	147561 • 51	147566.38	147560.07	147561.40	↑ 13	FREQ.CALC.	
		8 \$-4 }-0	• 1 7	* N	*0 *	ه ليا ليا	ć 2 ° •			*0 6	* • •	• 2 1			0 • • •	• ເກ			•24		•	€ 	30 · ·	ະ • ໜ	* • •		5 • 1 1	50°	•16	-•20	*•07	• 0	ء پي		ه د د 1	-12	10	N N	•21	• 0		$\Delta \mathbf{F}$	
																																								•			
																				4	14	24	te te	y.e. di	14	2 *	4 L	14	* *	-		TD		<u>ب</u> ن	1. (J)	ц Ш	<u>н</u> 63	на (д)	1	13		ין + בי	
																				° 13	13	13	13	•1•	14 N	12	12	-11	9 هـ د		Suite	ANCT		=12	12	12	5	5) 4-4 8-4	ت مر مر	11	ANST	X	1
																				8 3-14	<u>*</u>	:			8		t	₹ ⊷	ş	1		TTON		هم	B for star	* *	بە ر	8	şn		TICN	ر ر ۲	,
																				۹ مر	۰ ۱	مو	° 1	مع	- *	و مر	p.4	щ	. .		• ر			و		↓	همو	شو	-	* 1	یں ا	۶t.	,
																				147579-13	147554+13	147590+25	147582.73	\$ \$7583 . 16	52*68241	147610+31	147578+05	147597*36	147576.94			1.8 . 12		137042.76	137047.94	137062-30	137035.56	137054+72	137036.56	137045-04	13 + 12	FREQ.CALC	
			UILE	Bus)																						9	• 1 •							• 0 5			47 ? O		۹ مو		• ΔF	di man

7

•

¥.)

Ce travail a été effectué au Laboratoire de Spectroscopie hertzienne de l'Université de Lille I, Laboratoire associé au C.N.R.S., dirigé par Monsieur le Professeur WERTHEIMER. Je le prie de trouver ici le témoignage de ma profonde gratitude pour m'avoir accueilli dans ce Laboratoire et pour l'attention qu'il a bien voulu porter à cette étude.

2

J'exprime ma reconnaissance à Monsieur le Professeur BELLET qui a toujours suivi les différentes phases de mes recherches avec intérêt.

Je remercie vivement Monsieur HORET-BAILLY, Professeur à l'Université de Dijon, qui m'a fait l'honneur d'accepter de juger ce travail.

Mes plus vifs remerciements vont à Madame TARRAGO dont les conseils et encouragements m'ont été une aide précieuse.

Que Mademoiselle BAUER avec qui j'ai eu d'amicales discussions trouve ici le témoignage de ma gratitude.

Enfin, je ne saurais oublier tous ceux qui ont contribué à la réalisation matérielle de ce présent mémoire ; qu'ils en soient remerciés.