N° d'ordre : 239

50376 1979 12121

50376 1979 122

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR INGÉNIEUR

par

Jacques **DEPRET**

"RÉALISATION D'UN LASER INFRA-ROUGE LOINTAIN GUIDÉ, OPTIQUEMENT POMPÉ, ET UTILISATION EN TANT QUE SOURCE SUBMILLIMÉTRIQUE"

Soutenue le 14 novembre 1979, devant la Commission d'Examen Membres du Jury M. Y. LEROY Président E. CONSTANT Rapporteur J. BELLET Examinateur J. CITERNE Examinateur R. ADDE Invité

E. DA SILVA

Invité

TABLE DES MATIÈRES

INTRODUCTION

CHAPITRE I : CONDITIONS D'OSCILLATION

I. La cavité passive	4
II. Le milieu actif	9
III. Cavité milieu actif : conditions d'oscillation	19
IV. Cavité milieu actif : puissance IRL	25
V. Conclusion	27

CHAPITRE II : DESCRIPTION DE L'INSTALLATION

Ι.	Le laser à CO ₂	28
II.	Le système optique	40
III.	La cavité submillimétrique	40
IV.	Protection de l'ensemble contre les vibrations	
	extérieures	46
V.	Conclusion	48

CHAPITRE III : CARACTERISTIQUES ET PERFORMANCES DU LASER SUBMILLIMETRIQUE

I.	Recherche des paramètres influant sur la puissance IRL	49
II.	Influence des paramètres expérimentaux sur la puissance	
	IRL	50
III.	Obtentions des raies submillimétriques	62

IV.	Stabilité du lase	• IRL	6 8
۷.	Conclusion		68

CHAPITRE IV : UTILISATION DE LA SOURCE POUR LA CARACTE-RISATION DE MATERIAUX

I. Méthode de mesure - Diviseur analogique	70
II. Application aux cristaux liquides	73
III. Conclusion	9 2

CONCLUSION

ANNEXE	I	:	ASSERVISSEMENT DU LASER A CO2	94
ANNEXE	ΙI		ORDERED LIST OF OPTICALLY-PUMPED LASER	
		_	LINES WITH FREQUENCIES	99

--

INTRODUCTION

C'est en 1962 qu'ont débuté les premières études concernant les lasers submillimétriques avec la découverte des émissions lasers à 28 µm [1] et 122 µm [2] d'un mélange Hélium-Néon excité par une décharge électrique. Apparaissent ensuite les lasers moléculaires à décharge concernant les molécules d'eau [3] et d'acide cyanhydrique [4]. Il s'est avéré très vite que peu de molécules pouvaient être excitées de cette manière car de nombreux problèmes apparaissaient : dissociation des molécules, temps de relaxation défavorables, ennuis divers liés à la décharge, excitation non sélective des niveaux de rotation-vibration. Il fallut donc trouver un autre système pour pouvoir continuer à développer les lasers submillimétriques avec d'autres molécules et c'est en 1970 qu'apparaissent les premiers lasers submillimétriques optiquement pompés [5] qui offrent de nombreux avantages : [6, 7]

- nombre élevé de raies (figure 0-1)
- suppression des fluctuations associées à la décharge
- pompage sélectif des niveaux

Outre son intérêt en tant qu'instrument de physique fondamentale (spectroscopie) il est à remarquer que c'est actuellement la seule source capable de couvrir toute la région submillimétrique avec un niveau de puissance élevé (supérieur au milliwatt).

- 1 -

En effet, actuellement les seules sources dans ce domaine de fréquences sont :

- le carcinotron
- la diode Impatt
- la lampe à vapeur de mercure

Les deux premiers types, quoi que fournissant une puissance appréciable, ne couvrent pas tout le domaine submillimétrique et de plus ne sont accordables que sur une bande relativement restreinte de fréquence. Quant au troisième type, bien que couvrant tout le domaine submillimétrique, ne fournit qu'une très faible puissance. (figure 0.2)

Le but de notre travail a été de construire un laser optiquement pompé et de l'utiliser en tant que source pour des mesures de caractérisation en infrarouge lointain (IRL).

- 2 -

Après avoir reprécisé dans le premier chapitre le principe de fonctionnement du laser IRL, nous décrirons dans le second chapitre notre installation. Dans le troisième chapitre, nous verrons l'influence des principaux paramètres physiques sur la puissance IRL délivrée, et nous donnerons les performances obtenues. Enfin, des mesures de caractérisation de matériaux effectuées à l'aide de cette source seront présentées dans le dernier chapitre.

BIBLIOGRAPHIE

- [1] R.A. Mc FARLANE and al "Gas maser operation at wavelengths out to 28 µm" Quant. Elect. vol 3. New York - Colombia Press p 573 (1964)
- [2] C.K.P. PATER, W.L. FAUST and al "cw optical maser action up to 133 µm in Neon discharge" Proc. IEEE vol 32. p 713 (June 1964)
- [3] H.A. GEBBIE and al "A stimulate emission source at 0,34 mm wavelength" Nature p 685 (16 May 1964)
- [4] L.E.S. MATHIAS and J.T. PARKER "Stimulated emission in the band spectrum of nitrogene" Appl. Phys. Lett, vol 3, p 16 (1963)
- [5] T.Y. CHANG and T.J. BRIDGES "Laser action at 452, 496 and 541 µm in optically pumped CH₃F" Opt. Comm. vol 1 n° 9 p 423 (April 1970)
- [6] R.J. TEMKIN "An introduction to optically pumped lasers" SPIE vol 105 FIR/Submil. waves (1977)

[7] D.T. HODGES
 "A review of advances in optically pumped FIR lasers"
 Infr. Lasers (1978)

CHAPITRE I

CONDITIONS D'OSCILLATIONS

CONDITIONS D'OSCILLATION

I. La cavité passive

- 1. Description
- 2. Pertes de propagation
- 3. Description des modes de propagation
- 4. Pertes totales.

II. <u>Le milieu actif</u>

- 1. Définition et réalisation d'un milieu actif
 - a) Différents types de transitions radiatives
 - b) propabilité de transition
 - c) Définition du gain et saturation.
- 2. Largeur des raies. Facteur de forme
- 3. Modèle théorique du laser IRL.

III. Cavité-Milieu actif : Conditions d'oscillation

- A. Le régime permanent
 - 1. Conditions d'oscillation laser
 - 2. Condition d'amplitude
 - 3. Condition de phase
- B. Le régime transitoire
 - 1. Evolution du nombre de photons IRL.

IV. Cavité-Milieu actif : Puissance IRL

V. Conclusion.

Un laser est constitué essentiellement de deux parties

- une cavité passive, avec ses modes, son atténuation...
- un milieu actif, composé d'un gaz de molécules créant l'oscillation et l'amplifiant.

Bien que ces deux systèmes interfèrent entre eux, il est nécessaire pour une bonne compréhension, de les étudier séparément dans un premier temps.

Nous pourrons ainsi analyser les différents mécanismes et phénomènes physiques qui interviennent dans le fonctionnement d'un laser IRL (Infra-Rouge-Lointain) et ainsi justifier la relation donnant la puissance de sortie IRL que nous allons utiliser pour l'interprétation des résultats.

I. LA CAVITE PASSIVE

<u>1° DESCRIPTION</u>

La cavité se compose d'un guide d'onde circulaire, fermé à chaque extrêmité par un miroir percé d'un trou en son centre afin de permettre : (figure I.1)

- d'une part, de faire pénètrer le rayonnement IR (Infra-Rouge) de pompe
- d'autre part, de prélever une partie du rayonnement IRL.

Figure I.1 La cavité submillimétrique

2° PERTES DE PROPAGATION

La cavité étant métallique, les modes fondamentaux sont du type TE_{nm} ; ce sont en effet, les seuls ayant un coefficient d'atténuation inférieur à quelques db/m.

Celui-ci étant donné par la relation [1,2,3]

$$\alpha_{\text{TE}_{nm}} = \left(\frac{\pi \varepsilon_{0}^{\nu}}{\sigma a^{2}}\right)^{\frac{1}{2}} \left[\left(\frac{n}{U'_{nm}}\right)^{2} \left(1 - \left(\frac{n}{U'_{nm}}\right)^{2}\right)^{-1} + \left(\frac{CU'_{nm}}{2\pi a\nu}\right)^{2}\right] \quad (I-1)$$

où U'nm est le m^{ième} zero de J'n

- v est la fréquence de la radiation
- σ représente la conductivité du matériau utilisé
- a est le rayon du guide.

Plus particulièrement, les deux modes ayant la plus faible atténuation sont les TE_{01} et TE_{02} .

Dans le cas de la cavité diélectrique, il y a en plus comme mode fondamental, le EH₁₁. Dans ce type de cavité, les pertes par effet joule sont négligeables devant les pertes dans le diélectrique : en effet, l'onde est moins bien guidée que dans le guide métallique et une partie "s'échappe" dans les parois. Dans ce type de guide, l'atténuation est alors donnée par [2,3] :

$$\alpha_{nm} = \frac{h_{nm}^2 \lambda^2}{4\pi^2 a^3} - \begin{cases} (n^2 - 1)^{-1/2} & \text{TE}_{om} \\ n^2 (n^2 - 1)^{-1/2} & \text{TM}_{om} \\ 1/2 (n^2 + 1) (n^2 - 1)^{-1/2} & \text{EH}_{nm} (n \neq 0) \end{cases}$$
(I-2)

où h_{nm} représente le m^{ième} zéro de J_{n-1}

est l'indice de réfraction du diélectrique

 λ est la longueur d'onde de la radiation A titre d'exemple, on obtient, à 119 µm pour a = 12 mm :

- guide métallique (Laiton) :

$$\alpha_{\text{TE}_{01}} \simeq 5.10^{-4} \text{ db/m}$$

 $\alpha_{\text{TE}_{02}} \simeq 1.5.10^{-3} \text{ db/m}$

3° DESCRIPTION DES MODES DE PROPAGATION

Nous venons de voir que les modes fondamentaux sont les TE₀₁, TE₀₂ et EH₁₁, puisque ce sont ceux ayant la plus faible atténuation. Il reste maintenant pour terminer leur description, à exprimer la constante de propagation et à décrire la polarisation ainsi que la répartition énergétique de ces différents modes.

La constante de propagation est donnée par :

$$\beta_{\text{TE}_{nm}}^2 = (2\pi\nu)^2 \epsilon\mu - \frac{U'nm}{a^2} \qquad (I.3)$$

pour le guide métallique (c'est celui que nous avons utilisé)

or, à la fréquence où le laser fonctionne, et comme le diamètre du guide est grand devant la longueur d'onde, le premier terme est beaucoup plus important que le second, par conséquent :

 $\beta \simeq 2\pi v \sqrt{\epsilon \mu} = \beta_0 \qquad (I-4)$

où β_0 est la constante de propagation d'une onde TEM

En ce qui concerne la polarisation du champ électrique, elle est donnée à la figure I.3, pour les trois modes considérés.

<u>Figure I.3</u> : Polarisation du champ électrique des principaux modes (d'après Wood [3])

Enfin, pour la répartition énergétique des modes, il ne faut pas oublier que ceux-ci sont "distordus" par la présence du rayonnement IR de pompe (polarisation, inhomogénéité...), et également par la présence des trous de couplages se trouvant au centre des miroirs comme le montre la figure I.4

Figure I.4 : Répartition spatiale à travers une section perpendiculaire à l'axe du guide des principaux modes (d'après Wood [3])

4° PERTES TOTALES

La cavité submillimétrique se composant d'un guide fermé à chaque extrémité par un miroir, il en résulte en plus des pertes de propagation, d'autres pertes liées au couplage entre chaque miroir et le guide.

En effet, afin de pouvoir régler la longueur de la cavité et l'orientation des miroirs, une solution possible est de placer ces miroirs un peu à l'extérieur du guide, ceci permet alors d'avoir des miroirs dont le diamètre est supérieur à celui du guide, ce qui diminue fortement les pertes par diffraction : mais il en résulte une zone où le rayonnement n'est plus guidé (figure I.5)

Dispositifs possibles des miroirs dans la cavité submillimétrique

Ce couplage miroir - guide se fera d'autant mieux, que le mode se propageant est d'autant plus proche d'un mode TEM, ce qui est le cas pour EH₁₁ et par conséquent il n'y aura aucun problème pour la cavité diélectrique.

Dans le cas de la cavité métallique, c'est à dire pour les modes TE_{om}, ce passage se fait très mal, il en résulte des pertes importantes et il est nécessaire d'utiliser une autre solution c'est à dire de placer les miroirs à l'intérieur du guide comme le montre la figure I.6. Ceci entraîne malgré tout des pertes liées à la discontinuité guide - miroir, mais toutefois moins importantes que les précédentes.

- 8 -

Il en résulte, en ajoutant ces pertes aux pertes de propagation, que ces deux types de cavité donnent des résultats différents :

Aux faibles longueurs d'onde, comme les pertes de propagation sont faibles, ce seront les pertes de couplage qui prédomineront et il en résultera une meilleure efficacité de la cavité diélectrique.

Par contre, pour des longueurs d'onde plus importantes, ce sont les pertes de propagation qui prédomineront et la cavité métallique aura un meilleur rendement.

TT. MILIEUX ACTIF

1° DEFINITION ET REALISATION D'UN MILIEU ACTIF

a) Différents types de transitions radiatives

A l'équilibre thermique les atomes (ou molécules) se répartissent dans les niveaux d'énergie plus bas ; le fait de leur fournir de l'énergie conduit à les répartir sur l'ensemble des niveaux disponibles.

Par conséquent, une raie spectrale déterminée correspond à une transition entre deux niveaux, qui peut s'effectuer de trois manières possibles (figure I.7) :

* <u>Emission spontanée</u> l'atome (ou la molécule descend spontanément du niveau E_j à un niveau inférieur en émettant un photon à la fréquence $v_{ij} = (E_j - E_j)/h$

* <u>Absorption</u> : si des photons de fréquence v_{ij} sont déjà présents dans le milieu, l'atome (ou la molécule) peut en absorber un et se trouver ainsi porté de l'état E_i à l'état E_i .

* <u>Emission induite</u> : c'est le phénomène inverse du précédent. L'un de ces mêmes photons v_{ij} peut en effet induire un atome se trouvant dans l'état E_j à redescendre dans l'état E_i en émettant un second photon non seulement à la fréquence v_{ij} , mais dont toutes les autres caractéristiques (direction, sens, polarisation, phase) sont identiques à celles du photon "inducteur". On voit donc que l'émission induite peut être à l'origine dans certaines conditions d'un phénomène d'amplification cohérente du nombre de photons : l'émission laser. L'une des conditions pour que ceci soit réalisé est qu'il faut que la population du niveau E_j soit supérieure à celle de E_i ; il va donc falloir inverser les populations par un phenomene appelé "pompage" (puisqu'il faudra "pomper" les molécules d'un niveau bas vers un niveau haut par un rayonnement extérieur).

B) probabilité de transition [7,8,9]

Nous venons de voir que l'on pouvait avoir trois types d'intéractions entre deux niveaux donnés. Par conséquent, la probabilité totale pour qu'un système passe, pendant l'unité de temps, d'un niveau 2 à un niveau 1 d'énergie plus basse peut s'écrire :

$$P_{21} = A + Uv B_{21}$$
 (I-5)

où A : probabilité de transition spontanée

- B₂₁ : coefficient de transition stimulée
- U_{v_1} : densité de rayonnement à la fréquence v_{21}

de même, la probabilité totale pour que le système passe de l'état 1 à un état 2 d'énergie plus haute peut s'écrire :

$$P_{12} = Uv B_{12}$$

(I-6)

où B_{12} : coefficient d'absorption.

On peut résumer ceci par la figure suivante :

Figure 1.8 : probabilités de transition entre deux niveaux

De ces deux relations, on en déduit les équations gouvernant l'évolution des populations N_1 et N_2 des niveaux 1 et 2 :

$$\frac{dN_2}{dt}^2 = -N_2 (A + Uv B_{21}) + N_1 Uv B_{12}$$

$$\frac{dN_1}{dt^1} = -\frac{dN_2}{dt^2}$$
(I-7)

Nous supposons dans ces relations que le système est isolé, et par conséquent que $N_1 + N_2$ reste constant. On montre que les coefficients d'absorption et d'émission stimulée sont reliés par la relation :

$$g_2 B_{21} = g_1 B_{12} \tag{1-8}$$

où g $_1$ et g $_2$ sont les dégénérescences des niveaux 1 et 2, la relation (I.7) peut alors s'écrire :

$$\frac{dN_2}{dt}^2 = -AN_2 + Uv B_{12}(N_1 - \frac{g_1}{g_2} N_2)$$
 (I-9)

Remarquons qu'à l'équilibre thermique, le niveau E_2 est très peu peuplé devant E_1 , par conséquent N_2 est négligeable devant N_1 et la relation (I.9) peut s'approximer à :

$$\frac{dN_2}{dt} = -AN_2 + U_V B_{12} N_1$$
 (I-10)

Alors que dans le cas du laser où l'on a réalisé l'inversion de population, le niveau E₂ est plus peuplé que E₁, et l'approximation précédente n'est plus valable.

> <u>c) définition du gain et saturation</u> [7, 9, 10] Le gain d'une transition est généralement défini

par

 $\alpha = \frac{1}{I} \frac{dI}{dz}$ (I-11)

où : I représente l'intensité de la radiation z est l'axe de propagation

Ce gain est proportionnel au nombre de photons IRL, c'est à dire à la décroissance du niveau N₂. Comme dans le cas du laser, l'émission spontanée est négligeable devant les autres mécanismes [21], on peut écrire :

$$\alpha \sim (\frac{g_1}{g_2} N_2 - N_1)$$
 (I-12)

Il apparaît alors que G est d'autant plus important que $(\frac{g_1}{g_2} N_2 - N_1)$ l'est, mais il ne faut pas oublier que la transition peut se saturer, c'est à dire que le terme $(\frac{g_1}{g_2} N_2 - N_1)$ ne peut augmenter indéfiniment, c'est ce que l'on appelle la "saturation du gain"

En général, la saturation dans les lasers est due au fait que les retombées du niveau supérieur E_2 vers le niveau inférieur E_1 (amplification de l'émission) ne sont plus négligeables devant l'inversion de population. Ces transitions tendent alors à réduire l'écart $(\frac{g_1}{g_2} N_2 - N_1)$ et par conséquent, le gain devient inférieur au gain en champ nul.

Dans ce cas on peut en déduire deux gains, l'un à petits signaux que l'on note $\alpha_{non \ saturé}$, l'autre à grands signaux que l'on note $\alpha_{saturé}$. Rigrod [11,12] a montré, que l'expression du gain pouvait alors se mettre sous la forme : $\alpha = \alpha_{\rm S} (1 + 1/I_{\rm S})^{-n}$

où α_{S} est le gain saturé

I est l'intensité de radiation

I_S est le paramètre de saturation égal à l'intensité de saturation quant le gain tombe à $g_0 \times 2^{-n}$

avec n = 1 dans le cas d'un élargissement homogène

n = 1/2 dans le cas d'un élargissement inhomogène On peut remarquer que la transition inhomogène se sature moins vite, ceci est principalement dû au fait que la largeur de la raie inhomogène augmente avec l'intensité de radiation.

On peut également noter que l'utilisation du paramètre de saturation est intéressante car il ne dépend que des paramètres moléculaires [13] et de la pression [14] $(I_{sat} \sim p^2)$ et que le gain IRL est toujours "saturé" en régime permanent.

2° LARGEUR DES RAIES. FACTEUR DE FORME

Nous avons jusqu'à présent considéré la transition laser comme parfaitement monochromatique, ce qui n'est évidemment pas le cas. En fait, plusieurs causes interviennent pour élargir la raie et on peut distinguer deux grands types :

- <u>élargissement homogène ou type "Lorentz"</u> : dans ce cas, la forme de la raie ne dépend que des chocs subits par les molécules.

- <u>élargissement inhomogène ou type "Gaussien"</u> : la fréquence de la transition dépend de la vitesse des molécules et par conséquent le déplacement en fréquence est différent pour chaque "classe de molécules" (Effet Doppler").

Cela veut dire, par conséquent, que tous les paramètres liés aux molécules notamment le coefficient d'amplification ou d'absorption de la transition, va se voir multiplié par un terme dépendant de la fréquence et qui sera appelé "Facteur de forme". C'est ce terme qui traduira le fait que la transition n'est pas parfaitement monochromatique. Par exemple, on écrira pour le gain :

- 13 -

(I.13)

$$\alpha(v) = \alpha(v_a) \times f(v) \qquad (I.14)$$
valeur du gain
pour la fréquence centrale v_a

Ce facteur de forme sera naturellement différent selon que l'élargissement est homogène ou inhomogène et a une forme [8,9] du type "Lorentz" ou "Gauss" (figure I.9), ce qui justifie l'appellation donnée précédemment. On montre en effet que f (v) peut s'écrire :

- 14 -

$$\begin{cases} f(v) = \frac{\Delta v}{2\pi} \times \frac{1}{(v - v_a)^2 + (\Delta v/2)^2} & \text{(Lorentz)} \\ f(v) = \frac{2}{\Delta v} \sqrt{\frac{\text{Log}_2}{\pi}} e^{-\frac{4\text{Log}_2(v - v_a)^2}{\Delta v^2}} & \text{(Gauss)} & \text{(I.15)} \end{cases}$$

où Δv représente la largeur de la transition et, est égale à :

Après avoir reprécisé les différents mécanismes intervenant dans la physique du laser, nous allons développer un modèle particulier au laser IRL qui nous permettra de calculer la puissance délivrée par ce laser en fonction des différents paramètres physiques.

Le modèle proposé par Tucker [13] regroupe :

- les deux niveaux de la transition laser IRL
- le niveau à partir duquel s'effectue la transition de pompage
- le niveau regroupant tous ceux autour de la transition IRL et qui sont influencés par les variations de population de cette transition.

On obtient au total quatre niveaux, ce qui permet d'avoir un modèle relativement simple, bien qu'assez complet. Ce modèle est représenté sur la figure suivante (figure I.10), il regroupe en fait les deux niveaux vibrationnels entre lesquels a lieu la transition de "pompe". Chacun de ces niveaux est composé d'un grand nombre de sous-niveaux rotationnels ; c'est entre deux de ces derniers (pour le niveau vibrationnel excité) qu'à lieu la transition laser IRL.

Voyons un peu plus précisément le processus complet du laser IRL : un rayonnement de pompe "presque - résonnant" produit des transitions de vibration - rotation entre un sous - niveau rotationnel (noté par les nombres quantiques de rotation : J',K) d'un niveau vibrationnel de base et un sous-niveau (J,K) du niveau vibrationnel excité. L'effet Laser se produit entre les sous-niveaux rotationnels (J,K) et (J - 1,K) du niveau vibrationnel excité.

Les collisions entre molécules intervenant avec un taux λ tendent à équilibrer les populations des sous-niveaux rotationnels de chaque niveau vibrationnel selon une distribution de Boltzmann, tandis que la désexcitation entre les deux niveaux s'effectue avec un taux Γ .

Ce modèle montre la faible conversion "photonique" existant dans la cavité laser, qui est de l'ordre de quelques %. en effet, ce faible taux est dû à la combinaison d'un rapide taux de relaxation rotationnel (λ) par rapport à un taux de relaxation vibrationnel (Γ) trop lent des molécules actives.

La faible valeur de r est liée au fait que le retour au sous-niveau (J', K) se fait par l'intermédiaire d'autres sous-niveaux rotationnels du niveau vibrationnel de base. De plus, seules seront pompées les molécules ayant une vitesse comprise dans un étroit domaine ; il faut donc considérer aussi le processus de relaxation dans le profil de vitesse à l'intérieur d'un sousniveau rotationnel donné. (V-TR)

Une façon efficace d'améliorer les performances de ce type de laser est d'augmenter le taux de désexcitation vibrationnelle contre les parois de la cavité (diffusion) en utilisant une cavité guidée. En effet, prenons les valeurs moyennes indiquées à la figure I.10, en considérant que la pression dans la cavité IRL est de l'ordre de 0,1 Torr, on obtient :

$$\begin{split} \lambda &= \tau_{\Delta j}^{-1} \simeq 10^7 \ \Delta^{-1} \\ \Gamma & \begin{cases} \tau_{V-TR} \simeq 10^2 \ \Delta^{-1} & (V-TR : Vibration-Translation \\ Rotation). \end{cases} \\ \tau_{diff} \simeq 5.10^{+4} \ \Delta^{-1} & (avec une cavité de Ø 25 mm). \end{split}$$

Ceci montre que le rapport λ/Γ passe de 10⁵ pour une cavité classique (type Pérot-Fabry) à 2 10² pour une cavité guidée.**

En conséquent, la cavité guidée permet d'améliorer le taux de désexcitation vibrationnelle r aux faibles pressions, ce qui permet d'avoir une valeur du taux de relaxation rotationnelle assez faible.

- * au plus fortes pressions, bien que l'absorption de la pompe augmente, les collisions ($\tau_{\Delta j} \sim \text{pression}$) tendent à rétablir un équilibre des populations entre les sous niveaux rotationnels, et par conséquent à détruire l'inversion de population
- ** Pour une cavité guidée, comme τ_{Diff} est prédominant, on peut considérer que Γ varie comme pd², où p est la pression et d le diamètre du guide

- 17 -

Après avoir analysé l'ensemble du processus, nous allons interpréter de façon plus quantitative ce modèle afin d'en déduire l'expression de la puissance IRL en fonction des différents paramètres, aussi bien physiques que technologiques.

Nous pouvons reprendre 1a figure I.10 en 1a simplifiant (figure I.10.b) afin de pouvoir calculer l'évolution des population des différentes niveaux.^[17]

Figure I.10.b : Diagramme

simplifié des niveaux

IRL optiquement pompés

NIVEAU VIBRATIONMEL DE BASE

Le sous-niveau 3 regroupe tous les sous-niveaux du niveau vibrationnel excité autre que ceux intervenant rotationnels directement dans la transition IRL.

De plus, nous supposerons que le niveau vibrationnel excité est suffisamment loin du niveau vibrationnel de base pour ne pas être peuplé thermiquement.

Les équations régissant les populations N_i de ces sous-niveaux s'écrivent :

$$\begin{cases} \frac{dN_0}{dt} = \Gamma N_3 - Wp N_0 \\ \frac{dN_1}{dt} = B_{2,1} \eta (N_2 - \frac{g_2}{g_1} N_1) - \lambda N_1 \\ \frac{dN_2}{dt} = W_p N_0 - \lambda N_2 - B_{2,1} \eta (N_2 - \frac{g_2}{g_1} N_1) \\ N_+ = N_0 + N_1 + N_2 + N_3 \end{cases}$$
(I.17)

où N₊ : population totale du système

<u> </u>		
B_{21}	:	coefficient d'Einstein pour l'émission stimulée
Г	:	coefficient de relaxation vibrationnelle : $\tau_{v,TR}^{-1} + \tau_{Diff}^{-1}$
λ	:	coefficient de désexcitation rotationnelle = τ_{j}^{-1}
W	:	taux de pompage, il dépend à la fois de la pression et
Р		de la puissance du rayonnement IR de pompe.
n	:	densité de photons IRL

III. CAVITE. MILIEU ACTIF : CONDITIONS D'OSCILLATION

Après avoir vu séparément la cavité passive et le milieu amplificateur, nous allons maintenant montrer comment les deux interagissent pour donner naissance à une émission laser.

A. LE REGIME PERMANENT

1° CONDITIONS D'OSCILLATION LASER [7]

L'oscillation laser prend naissance dans une cavité ce qui implique une condition d'oscillation en régime permanent

 $\sqrt{R_1 R_2} e^{-2\alpha(\nu)L} e^{-2j\beta(\nu)L} = e^{-2jq\Pi}$ (I.18)

où : q est un entier

 R_1 et R_2 sont les coefficient de réflexion en puissance des miroirs 1 et 2.

 $\alpha(v)$; $\beta(v)$ sont les constantes de propagation de l'onde dans dans la cavité où baigne le milieu actif.

- 20 -

Rappelons que le terme β_0 qui apparaît dans la figure I.11 est le coefficient de propagation d'une onde non guidée, puisque nous avons vu au début de ce chapitre que l'approximation était tout à fait justifiée. De plus, les coefficients α (v) et β (v) représentent les constantes de propagation de l'onde (figure I.11) en tenant compte de la cavité passive et du milieu actif.

On montre alors que α et β peuvent s'écrire sous la forme :

 $\begin{cases} \alpha(v) = \alpha_0(v) - m() \\ \beta(v) = \beta_0(v) + \Delta\beta_m(v) \\ cavité \\ passive \\ actif \end{cases}$

(I.19)

l'équation (I.18) peut par conséquent s'écrire :

 $\sqrt{R_1 R_2} e^{2(\alpha_m(\nu) - \alpha_0(\nu))L} e^{-2j(\beta_0(\nu) + \Delta\beta_m(\nu))L} = e^{-2jq\Pi}$

ce qui se décompose en :

$$\begin{cases} \sqrt{R_1 R_2} e^{2(\alpha_m(\nu) - \alpha_0(\nu))L} = 1 \\ e^{-2j(\beta_0(\nu) + \Delta\beta_m(\nu))L} = e^{-2jq\Pi} \end{cases}$$
(I.20)

On obtient donc :

- une condition d'amplitude (20.a)
- une condition de phase (20.b)

Comme nous venons de le voir, celle-ci s'écrit :

$$\sqrt{R_1 R_2} e^{2(\alpha_m(v) - \alpha_0(v))L} = 1$$

ce qui donne :

$$\alpha_{\rm m}(\nu) = \alpha_0(\nu) + \frac{1}{4{\rm L}} \log \frac{1}{{\rm R}_1 {\rm R}_2}$$
 (I.21)

Cette relation traduit le fait qu'il n'yaura émission laser que si Gain = Pertes. Nous pouvons alors définir un coefficient de qualité moléculaire par :

 $Q_m = \frac{\omega \times \acute{e}nergie stock\acute{e} par unité de longueur}{Quant. d'énergie/unité de long. fournie par effet Laser}$ (I.22) comme l'amplitude de l'onde est proportionnelle à exp $(\alpha_m 2)$, la puissance est proportionnelle à exp $(2 \alpha_m 2)$ d'où :

$$dP(z) = 2\alpha_m P(z) dz \qquad (1.23)$$

enfin, l'énergie dans un tronçon de longueur est

$$dW(z) = P(z) \frac{dz}{c} \leftarrow vitesse de la lumière$$
 (I.24)

d'où :

$$Q_{\rm m} = \frac{\omega}{2\alpha_{\rm m}c} \tag{I.25}$$

Nous pouvons donc également définir un coefficient de qualité pour la cavité passive par une relation analogue à (I.22) ce qui donne :

$$Q_{C} = \frac{\omega}{2\alpha_{0}C + \frac{C}{2L} \log \frac{1}{R_{1}R_{2}}} = 2\pi \frac{L}{\lambda} \times \frac{1}{2\alpha_{0}L + \frac{1}{2} \log R_{1}R_{2}}$$
(1.26)

La condition d'oscillation s'écrit alors

$$Q_{\rm C} = Q_{\rm m} \tag{I.27}$$

Soient a₁ et a₂ les pertes desmiroirs et t la transmission du miroir 2 (ce coefficient de transmission sera très utile par la suite puisque c'est par lui que l'on "extrait" l'énergie utile de la cavité). On a donc :

$$\begin{cases} R_1 = 1 - a_1 \\ R_2 = 1 - a_2 - t \end{cases}$$
 (I.28)

Or a_1 , a_2 et t sont très petits devant 1 (pertes et couplages faibles) d'où :

$$Log \frac{1}{R_1 R_2} \simeq a_1 + a_2 + t$$
 (I.29)

de plus, $2\alpha_0$ L représente les pertes en puissance de l'onde sur un "aller" d'où si l'on pose :

$$\mathbf{a} = 4\alpha_{0}\mathbf{L} = \text{pertes sur 1 aller-retour, on obtient :}$$

$$Q_{c} = \frac{2\pi \mathbf{L}}{\lambda} \times \frac{1}{\mathbf{a}/2 + (\mathbf{a}_{1} + \mathbf{a}_{2} + \mathbf{t})/2}$$

$$Q_{c} = \frac{4\pi \mathbf{L}}{\lambda} \times \frac{1}{\mathbf{A} + \mathbf{t}} \qquad (I.30)$$

où A représente les pertes totales de la cavité (guide + miroirs) et t le coefficient de couplage du miroir de sortie.

Enfin, nous pouvons déduire le "temps de vie" de l'onde dans la cavité par :

 $1/\tau_{c} = W/Q_{c} = \frac{c}{L} \times \frac{A+t}{2}$

ou

 $\tau_{c} = \frac{2L}{c(A+t)}$ On peut noter que $\frac{1}{\tau_c}$ représente l'élargissement de l'émission dû à la cavité passive :

$$Q_{\rm C} = \frac{\omega}{\Delta \omega} = \frac{v}{\Delta v}$$

$$\Delta v_{\rm passif} = \frac{\Pi c (A+t)}{L} \qquad (I.32)$$

(I.31)

3° CONDITION DE PHASE

Après avoir exploité la condition d'amplitude, il reste une condition à exploiter, donnée par la relation (I.20.b)

$$e^{-2j(\beta_0(\nu) + \Delta\beta_m(\nu))L} = e^{-2jq\Pi}$$
(I.20,b)

cette relation donne :

$$L(\beta_O(v) + \Delta\beta_m(v)) = 2q\Pi$$

- 23 -

Avec $\beta_0 = \frac{\omega}{c} = \frac{2\Pi\nu}{c}$ constante de propagation de l'onde libre or on montre que :

$$\Delta\beta_{m}(v) = 1/2 \quad \beta_{0} \chi'(v)$$

où χ' (v) est la partie réelle de la susceptibilité du milieu, d'où

$$v \frac{L}{c} + \frac{1}{2} \frac{L}{c} \chi'(v) = q$$
 (1.33)

En absence d'oscillation laser, la fréquence d'accord $\nu_{_{\mbox{C}}}$ est donnée par :

 $v_{c} \frac{L}{c} = q$ $v + \frac{1}{2} v_{\chi}'(v) = v_{c}$ (I.34)

d'où

Ceci montre que si la fréquence de la cavité v n'est pas centrée sur la fréquence de la transition v_a (où χ' (v_a) = 0), il apparaît un phénomène de décalage appelée "Frequency Pulling" qui tend à "tirer" v_c vers v_a comme le montre la figure I.12.

<u>Figure I.12</u> : "Frequency - Pulling" (cas où $v_{a} > v_{c}$)

B. LE REGIME TRANSITOIRE

Après avoir développé les conditions d'oscillation du laser, nous allons établir un certain nombre de relations qui nous permettrons de déterminer la densité de photons dans la cavité.

Cette densité de photons IRL est particulièrement intéressante puisqu'elle va permettre principalement le calcul de la puissance IRL.

1° EVOLUTION DU NOMBRE DE PHOTONS IRL

Nous avons vu au début de ce chapitre, la relation (I.9) donnant l'évolution des populations des niveaux entre lesquels s'effectue la transition IRL

$$\frac{dN_2}{dt} = -AN_2 + U_v B_{12} (N_1 - \frac{g_1}{g_2} N_2)$$
 (I.9)

où AN_2 est le terme lié à l'émisssion spontanée et $U_V B_{12} (N_1 - \frac{g_1}{g_2} N_2)$ celui lié à l'émission stimulée et à l'absorption, donc à l'émission laser.

Or, le nombre de photons IRL est lié à la variation de population du niveau N_2 par la relation

$$\frac{dn}{dt} = -\frac{dN_2}{dt} - (\frac{dn}{dt}) \leftarrow \begin{bmatrix} \text{Amortissement } d\hat{u} \\ \hat{a} \text{ la cavité passive} & (I.36) \end{bmatrix}$$

Comme l'émission spontanée est négligeable devant l'émission stimulée et l'absorption, on peut négliger le terme - AN_2 , de plus $(\frac{dn}{dt})$ est simplement égal à $\frac{n(t)}{\tau_c}$; τ_c étant la "durée de vie" des photons IRL dans la cavité définie au paragraphe (III,A,2), d'où :

$$\frac{dn(t)}{dt} = -U_{\nu}B_{12}(N_1 - \frac{g_1}{g_2}N_2) - \frac{n(t)}{\tau_c}$$
(I.37)

où également puisque U_V représente la densité de photons IRL n (t), et $B_{12} = B_{21} \frac{g_2}{g_1}$: $\frac{dn(t)}{dt} = n(t) B_{21}(N_2(t) - \frac{g_2}{g_1} N_1(t) - \frac{n(t)}{\tau_c} (I.38)$

IV. CAVITE. MILIEU ACTIF : PUISSANCE IRL

Nous avons établi précédemment les équations régissant les populations des différents niveaux (I.17). Nous avons également l'équation ci-dessus donnant l'évolution du nombre de photons IRL

$$\begin{pmatrix}
\frac{dN_{0}}{dt} = \Gamma N_{3} - W_{p} N_{0} \\
\frac{dN_{1}}{dt} = B_{21} n (N_{2} - \frac{g_{2}}{g_{1}} N_{1}) - \lambda N_{1} \\
\frac{dN_{2}}{dt} = W_{p} N_{0} - \lambda N_{2} - B_{21} n (N_{2} - \frac{g_{2}}{g_{1}} N_{1}) \\
N_{t} = N_{0} + N_{1} + N_{2} + N_{3} \\
\frac{dn}{dt} = n B_{21} (N_{2} - \frac{g_{2}}{g_{1}} N_{1}) - \frac{n}{\tau_{c}}$$

Nous n'avons pas tenu compte dans ces relations de l'émission spontanée entre les niveaux 1 et 2 du fait que la durée de vie de celle-ci est beaucoup plus longue que les autres Il suffit alors pour avoir le système à l'équilibre de faire $\frac{d}{dt} = 0$ ce qui donne en résolvant ce système :

$$n = \frac{g_1}{g_1 + g_2} \times \frac{\lambda}{B_{21}} \left[\frac{N_t B_{21} \tau_c W_p}{\lambda (1 + W_p / \Gamma)} - 1 \right]$$
(I.39)

C'est l'équation donnant la densité photonique IRL dans la cavité.

La puissance de sortie IRL peut s'écrire sous la forme [14, 15, 16]

$$P_{IRL} = \frac{1}{2} c \operatorname{Anhv}_{IRL}$$
 (1.40)

où A représente la surface "effective" du trou de couplage, c'est à dire en tenant compte de la répartition de l'énergie sur le miroir de sortie.

Le terme $\frac{1}{2}$ indique que les photons IRL peuvent avoir deux directions longitudinales et que seule l'une d'entre elles est utilisable pour sortir de l'énergie de la cavité. Enfin nhv_{IRL} représente la densité de puissance IRL dans la cavité. D'où en remplaçant n par sa valeur (58) dans la relation (59) on obtient :

$$P_{IRL} = \frac{1}{2} cAh v_{IRL} \times \frac{g_1}{g_1 + g_2} \times \frac{\lambda}{B_{21}} \left[\frac{N_t B_{21} \tau_c W_p}{\lambda (1 + W_p / \Gamma)} - 1 \right] \quad (I.41)$$

- 25 -

Il ne reste plus qu'à exprimer les différents termes intervenant dans cette relation afin de la rendre plus exploitable :

- le coefficient de transmission du miroir de sortie t (défini au paragraphe (III.A.2) peut s'écrire :

$$t = \frac{A}{S} = \frac{A \times L}{V}$$
(I.42)

pour une cavité de section S, de largeur L

par :

- Dans ce même paragraphe, nous avions calculé

$$\tau_{\rm C} = \frac{2\mathrm{L}}{\mathrm{c}\,(\mathrm{a+t})} \tag{I.31}$$

où a représente les pertes totales de la cavité (guide + miroirs) pour un aller - retour.

- soit P_{IR} la puissance de pompe et F_{abs} la fraction qui est effectivement utilisée dans la transition $0 \rightarrow 2$, on peut écrire :

$$F_{abs} P_{IR} = W_p N_0 h v_{IR} V$$
 (I.43)

et en calculant N₀ à l'aide des équations (17) au régime permanent $(\frac{d}{dt} = 0)$, on obtient :

$$F_{abs} P_{IR} = \frac{W_{p} N_{t}}{1 + W_{p}/\Gamma} h v_{IR} V$$
(I.44)

d'où en remplaçant A, τ_c , $\frac{w_p + v_t}{(1 + w_p/\Gamma)}$ par leur expression issue des relations (61), (43) et (63), on obtient :

$$P_{IR} = \frac{1}{2} \operatorname{chv}_{IRL} \frac{g_1}{g_1 + g_2} \frac{\lambda}{B_{21}} \left[\frac{2LB_{21}}{(a+t)} \frac{F_{abs} P_{IR}}{f_{a+t}} - 1 \right] (I.45)$$

Il ne reste plus qu'à faire intervenir un paramètre introduit au paragraphe (II.1.c) qui est l'intensité de saturation I_{sat}. Ce terme est intéressant car il ne dépend que des paramètres moléculaires et de la pression, on montre [11,17] qu'il peut s'écrire :

$$I_{S} = chv_{IRL} \frac{g_{1}}{g_{1}+g_{2}} \frac{\lambda}{21} (vp^{2}) \qquad (I.46)$$

- 26 -

- 27 -

d'où la relation (64) s'écrit finalement":

$$P_{IRL} = \frac{1}{2} tI_{sat} S \left[\frac{2}{a+t} \times \frac{F_{abs} P_{IR}}{S.I_{sat}} \times \frac{v_{IRL}}{v_{IR}} \times \frac{g_1}{g_1 + g_2} - 1\right]$$
(I.47)

REMARQUES :

- On a supposé la répartition de l'énergie de pompe dans la cavité IRL uniforme, ce qui n'est pas tout à fait exact ; par conséquent la relation (47) est un peu optimiste.

- Dans le cas idéal où : • $F_{abs} = 1$ • Les niveaux ne sont pas dégénérés $g_1 = g_2 = 1$ • Les pertes sont nulles : a = 0 = tla relation (47) prend une forme connue :

$$P_{IRL} = \frac{1}{2} \frac{v_{IRL}}{v_{IR}} P_{IR}$$

(I.48)

V. CONCLUSION

Nous avons vu dans ce chapitre le mécanisme de l'effet laser ce qui nous a permis d'en déduire une relation donnant la puissance de sortie en fonction des paramètres tant technologiques (pertes, couplage, pression...) que physique (intensité de saturation...). Cette relation ainsi que tout ce qui a été dit dans ce chapitre sera très utile dans les chapitres suivants surtout afin d'interpréter les résultats que nous avons obtenus.

Toutefois, avant cette interprétation, nous allons décrire, de la façon la plus complète, l'installation que nous avons réalisée: c'est le but du 2ème chapitre.

* Nous avons négligé dans la puissance IRL, afin de simplifier les calculs, la réabsorption du rayonnement IRL par les états excités (due à l'"embouteillage" créé par une relaxation rotationnelle trop rapide devant la relaxation vibrationnelle) [14]

BIBLIOGRAPHIE

- [1] J.A. STRATTON
 "Electromagnetic theory"
 Mc Graw Hill, New York
- [2] MARCATILI and SCHMELTZER Bell. Syst. Tech. Journal, 43, 1783, (1964)
- [3] R.A. WOOD, N. BRIGNALL, C.R. PIDGEON and F. AL-BERKDAR "Mode properties of optically pumped infrared waveguide lasers" Infrared Physics (1976), Vol. 16, pp. 201-205
- [4] M. YAMANAKA
 "Optically pumped waveguide lasers"
 J. Opt. Soc. Amer., Vol. 67, n° 7, (July 1977)
- [5] J.J. DEGNAN, D.R. HALL "Finite aperture waveguide laser resonnators" I.E.E.E. QE-9, n° 9, pp. 901 - 910, (Sept. 1973)
- [6] R.L. ABRAMS
 "Coupling losses in hollow waveguide lasers resonnators"
 I.E.E.E. QE-8, n° 11, pp. 838 843, (Nov. 1972)
- [7] A. E. SIEGMAN
 "An introduction to lasers and masers"
 Mc Graw Hill (1971)
- [8] B.A. LENGYEL
 "Introduction à la physique du laser"
 Editions eyrolles (1968)
- [9] J. LEMAIRE "Cours de D.E.A." Lille I (1977)
- [10] O. SWELTO
 "Principles of lasers"
 Plenum Press, pp. 55 63 (1976)

[11] W.W. RIGROD "Gain saturation and output power of optical masers" Journ. of Applied Physics, Vol. 34, n° 9, pp. 2602 - 2609 (Sept. 1963)

- [12] W.W. RIGROD "Saturation effects in high - gain lasers" Journ. of Applied Physics, Vol. 36, n° 8, pp. 2487 - 2490 (Aug. 1965)
- [13] J.R. TUCKER
 "Theory of an F.I.R. gas laser"
 Intern. Conf. Submil. Waves and their Appl., Atlanta,
 G.A. Conference Digest (1974), 17
- [14] J.M. LOURTIOZ, R. ADDE, D. BOUCHON and J. PONTNEAU "Design and performances of a $C \omega CH_3OH$ waveguide laser" Revue de Phys. Appl., Tome 14, pp. 23 - 30 (Fev. 1979)
- [15] D.T. HODGES
 "A review of advances in optically pumped F.I.R. lasers
 Infrared Physics, Vol. 18, pp. 375 384, (1978)
- [16] J. M. LOURTIOZ, R. ADDE, and J. PONTNEAU "Analysis of optically pumped w F.I.R. laser efficiency" Intern. Conf. Submil. Waves and their applications, Guilford (1978), conference Digest, 188
- [17] J.O. HENNINGSEN and H.G. JENSEN "The optically Pumped F.I.R. Laser : Rate equations and diagnostic experiments" I.E.E.E. Quant. Elec., Vol. QE-11, n° 6, pp. 248 - 252 (June 1975)

- [18] J.J. DEGNAN
 "The waveguide laser : A Review"
 Appl. Phys. 11 (1976), pp. 1-33
- [19] D.T. HOGES, J.R. TUCKER and T.S. HARTWICK
 "Basic Physical mecanisms determining performances of
 the CH₃F laser"
 Infr. Phys., Vol. 16, pp. 175 182, (1976)
- [20] P.D. COLEMAN "Present and future problems concerning lasers in the F.I.R. spectral region" J. Opt. Soc. Amer., Vol. 67, n° 7, pp. 894 - 901, (JulY 1977)
- [21] J.P. SPLINGARD "Réalisation d'un laser moléculaire submillimétrique optiquement pompé" Thèse, Lille, p. 7 (1977)

CHAPITRE II

DESCRIPTION DE L'INSTALLATION

DESCRIPTION DE L'INSTALLATION

I. LE LASER à CO₂

- 1° Rappels théoriques
- 2° Description du tube laser
- 3° Modes de propagation dans la cavité CO₂
- 4° Caractéristiques du laser utilisé
 - a) Performances
 - b) Modifications apportées

II. LE SYSTEME OPTIQUE

111. LA CAVITE SUBMILLIMETRIQUE

IV. PROTECTION DE L'ENSEMBLE CONTRE LES VIBRATIONS EXTERIEURES

V. CONCLUSION

La source se compose d'un laser à CO₂ servant à créer l'inversion de population, d'une cavité IRL afin d'amplifier suffisamment le rayonnement submillimétrique pour qu'il soit exploitable, et d'un système optique permettant d'introduire le rayonnement de pompe dans la cavité IRL (figure II.1)

Figure II.1. : Synoptique de l'installation submillimétrique

Nous allons donc dans ce chapitre analyser séparément les trois parties constituant l'ensemble appelé "source submillimétrique".

I. LE LASER à CO₂ [1, 2, 3, 4]

1° L'EMISSION LASER INFRA-ROUGE

La molécule d'anhydride carbonique de type linéaire possède trois vibrations fondamentales schématisées sur la figure suivante (figure II.2)

VIBRATION ANTI-SYMETRIQUE

Figure II.2 : Vibrations fondamentales du CO2

Chaque niveau d'énergie est noté v_1 , v_2^{ℓ} , v_3 où les v_i sont les nombres quantiques de vibration, et ℓ le nombre quantique du moment cinétique associé à la vibration dégénérée v_2 .

Les transitions laser ont lieu entre des niveaux d'énergie de vibration comme le montre la figure II.3. Pour toutes ces transitions, le mécanisme de base est le même, il consiste à enrichir la population du niveau 00°1.

L'anhydride carbonique peut être excitée directement à l'aide d'une décharge électrique. Cependant avec cette méthode, la puissance de sortie est relativement faible. L'adjonction d'un gaz supplémentaire tel que l'azote, peut considérablement favoriser l'enrichissement du niveau supérieur par chocs. Deux raisons importantes justifient l'emploi de l'azote :

- le niveau V = 1 de l'azote ne diffère que de 18 cm⁻¹ du niveau 00°1 du CO₂

- la durée de vie dans cet état excité est très grande et de plus, l'azote vibrationnellement excité est facilement produit par une décharge électrique.

Le rendement de ce type de laser peut encore être amélioré en ajoutant de l'hélium aux deux précédents gaz. Ceci a un effet considérable sur les performances du laser et on lui attribue généralement une double action :

- réduction du coefficient de diffusion du CO_2 , ce qui atténue ainsi le phénomène de désexcitation des molécules de CO_2 sur les parois.

- réduction de l'impédance du milieu entre les deux électrodes, ce qui permet pour une puissance d'alimentation égale d'obtenir un meilleur rendement.

Chaque niveau de vibration se compose en fait de sous niveaux de rotation caractérisés par le nombre quantique J. Les émissions correspondent donc à des transitions de rotation vibration (figure II.4) et constituent un spectre discret relativement dense compris entre 9 μ m et 11 μ m. La fréquence séparant deux fréquences d'émission successives est d'environ 50 GHz (figure II.5).

Figure II.4 : Transitions de vibration-Rotation du Laser à CO2.

les différentes raies

2° DESCRIPTION DU TUBE LASER

Le milieu amplificateur est placé à l'intérieur d'une cavité Pérot - Fabry de longueur L, dont les fréquences de résonance successives sont espacées de $\frac{C}{2 L}$ (100 MHz pour une cavité de 1,5 m). Plusieurs émissions peuvent avoir lieu simultanément si leur fréquence est un multiple de $\frac{C}{2 L}$: fonctionnement "multi-raies" (figure II.6).

Figure II.6 : Gain en fonction de la longueur d'onde, montrant les résonances de la cavité et les seuils d'émission['] avec ou sans réseau

Le fonctionnement "multi - raies" est toujours accompagné d'un phénomène de compétition constitué par une répartition aléatoire de la puissance entre ces différentes émissions. Une grande instabilité en amplitude caractérise alors ce mode de fonctionnement Afin d'éliminer cet inconvénient, l'un des miroirs est remplacé par un élément dispersif qui dans notre cas est un réseau blasé à 10,6 µm [5]. Celui-ci permet à la fois de créer une sélectivité dans les différentes raies pouvant être émises comme le montre la figure II.6, ce qui entraine par conséquent un fonctionnement mono - raie et également donne une polarisation au rayonnement électromagnétique présent dans la cavité.

D'autre part, la cavité est très longue devant la longueur d'onde, ce qui a pour conséquence d'introduire en plus des modes longitudinaux, des modes transverses. C'est pourquoi, nous avons remplacé le tube d'origine par un tube dont les parois sont dépolies (ce qui entraine des pertes importantes pour les modes transverses).

Le laser que nous avons utilisé est un modèle commercial fournit par la société Advanced Kinetics. Il est de conception classique (figure II.7)

Figure II.7 : Le laser à CO2

L'enceinte contenant le gaz est constituée d'un tube de pyrex de 132 mm de longueur et de 8 mm de diamètre, fermé aux extrémités par deux

- 33 -

lames de séléniur de zinc (ZnSe) placées sous incidence Brewstérienne^{*} pour la longueur d'onde moyenne (10,6 µm). Ce tube est entouré d'une jaquette parcourue par un courant d'eau assurant le refroidissement des parois.

Des ajustages disposés près des extrémités permettent le passage des gaz et l'introduction des électrodes d'excitation de décharge.

Le gaz est constitué d'un mélange CO $_2$ - He - N $_2$ dans les proportions

 $CO_2 = 13$ %; He = 65 % et N₂ = 22 %

à une pression de fonctionnement comprise entre 5 et 25 Torr. Ce mélange est effectué comme l'indique la figure suivante (II.8), la vanne à aiguille servant à régler la pression du gaz dans la cavité laser.

<u>Figure II.8</u> : Système mis en oeuvre pour le mélange $C_{2}^{-H}e^{-N}_{2}$

* Lors d'une réflexion sur une surface, lorsque le plan défini par le rayon lumineux et la normale à la surface de séparation contient également la polarisation du champ électrique, la courbe donnant le coefficient de réflexion en fonction de l'angle d'incidence, passe par un minimum pour une valeur appelé "incidence de Brewster". Celle-ci est, dans le cas de ZnSe à \simeq 10 µm de 57°.

- 34 -

Une pompe à palette assure l'écoulement permanent des gaz constituant le milieu amplificateur. La décharge électrique est produite par une alimentation régulée en courant.

Le miroir de sortie en ZnSe de 10km de rayon de courbure et de 35 % de transmission à 10,6 µm, ainsi que le réseau (150 traits/mm) sont situées à chaque extrêmité, distants l'un de l'autre de 152 cm. Ils sont à l'extérieur du tube et en sont indépendants.

Enfin l'ensemble est maintenu par quatre tiges d'invar assurant une bonne stabilité en longueur de la cavité.

3° MODES DE PROPAGATION DANS LA CAVITE CO2

Le problème des résonateurs ouverts est difficile, mais peut être simplifié à l'aide de quelques hypothèses :

- les dimensions du résonateur sont grandes devant la longueur d'onde (dans notre cas $\frac{\lambda}{\emptyset \text{ cavité}} \approx 10^{-3}$).

- et le champ dans la cavité est essentiellement TEM (cette hypothèse découlant en fait de la première).

Aussi longtemps que ces deux conditions restent valables, la formulation de la diffraction selon la loi de Fresnel - Kirchoff permet d'obtenir une paire d'équations intégrées [6] qui relie les champs sur les miroirs en regard :

> $\gamma_1 E_1(\Delta_1) = \int_{S_2} K_2(\Delta_1, \Delta_2) E_2(\Delta_2) dS_2$ $\gamma_2 E_2(\Delta_2) = \int_{S_1} K_1(\Delta_1, \Delta_2) E_1(\Delta_1) dS_1$ (II.1)

Les intégrations sont faites sur les surfaces respectives S_2 et S_1 des miroirs.

 Δ_1 et Δ_2 représentent les coordonnées transverses sur la surface du miroir $\Delta_1 = (r, \psi)$, E est la distribution relative du champ électrique sur chaque miroir et γ donne l'atténuation et le déphasage subit par l'onde pendant son trajet de l'un à l'autre miroir.

Les fonctions K₁ et K₂ sont complexes et dépendent des miroirs et de la géométrie de la cavité. En fait, ces deux équations (II.1) ne font que traduire le fait qu'une onde partant d'un miroir se retrouve identique à elle même après un aller-retour dans la cavité.

On en déduit des solutions approchées [7] qui sont le produit d'un gaussienne et d'un polynome de Laguerre.

$$\operatorname{TEM}_{lm} \begin{cases} E/E_{0} = \left(\frac{\sqrt{2}}{\omega} r\right)^{l} L_{p}^{l} \left(\frac{2}{\omega^{2}} r^{2}\right) e^{-r^{2}/\omega^{2}} \cos l \Phi \\ \operatorname{avec} \omega^{2} = \omega_{0}^{2} \left(1 + \left(\frac{\lambda z}{\pi \omega_{0}}\right)^{2}\right) \end{cases}$$
(III.2)

Comme le mode fondamental dans notre laser et le TEM_{00} , le terme ω a une grande importance, car il représente la distance par rapport à l'axe de propagation pour laquelle le champ électrique tombe à 1/e de sa valeur maximale et ω_0 a pour valeur :

$$\omega_{0}^{4} = \left(\frac{\lambda}{\pi}\right) - \frac{d(R_{1}-d)(R_{2}-d)(R_{1}+R_{2}-d)}{(R_{1}+R_{2}-2d)^{2}}$$
(II.3)

où R₁ et R₂ sont les rayons de courbure des miroirs d est la distance qu<u>i</u> sépare les deux miroirs.

Ce qui donne pour notre cavité

 $\omega_{0} = 3,4 \text{ mm}$ et $\omega(z = 1,52 \text{ m}) = 3,7 \text{ mm}$

Figure II.9 : Répartition de l'énergie dans la cavité C0,

Nous avons dit que le mode fondamental était le TEM_{00} ; en fait, le laser peut également osciller sur d'autres modes simultanément; toutefois le fonctionnement monomode est préférable si l'on veut avoir la meilleur stabilité en puissance et en fréquence du laser à CO₂ (phénomène de "compétition" entre les modes entrainant des changements aléatoires de modes, d'où instabilité du laser).

4° CARACTERISTIQUES DU LASER UTILISE

a) Performances

Nous avons relevé avec ce laser les principales raies connues (figure II.10)

Figure II.10 : Principales raies C0₂ obtenues. Puissance en fonction de la longueur d'onde

- 37 -

b) Modifications apportées

Ayant eu beaucoup de problèmes d'ordre technologique, nous avons été conduits à effectuer plusieurs modifications sur le laser à CO₂ :

- Remplacement du tube d'origine par un tube dépoli afin de supprimer les modes parasites créés par réflexion sur les parois du tube.

- Utilisation d'un diaphragme sur le miroir de sortie afin de garder un mode unique dans toutes les conditions d'utilisation. En effet, lorsque l'écart entre les transitions de pompage et la fréquence d'émission du laser à CO_2 est important, nous accordons ce laser sur le bord de la courbe de gain, de façon à améliorer le plus possible la coîncidence ; mais dans ce cas le laser a tendance à changer de mode ; le diaphragme sert alors à favoriser le TEM₀₀ (puisque étant placé dans un plan perpendiculaire à l'axe de propagation, centré sur cet axe et à l'intérieur de la cavité juste devant le miroir de sortie).

- Remplacement des "passages" métalliques d'arrivée et de sortie des gaz par des "passages" isolants pour éviter des claquages en tension trop fréquents.

- Modification de l'alimentation (figure II.11) et du procédé de mise en fonctionnement du laser qui s'est revélé trop brutal. C'est ainsi que fut détruit lors d'une mise sous tension le tube de régulation et une partie des éléments de l'alimentation haute tension.

- Modification du système d'ajustage de la longueur de la cavité par les cales prézo-électriques qui s'est avéré peu commode à utiliser, très lent et très peu fiable (figure II.12)

de la cavité du laser à CO2

3° LE SYSTEME OPTIQUE

Il va servir à introduire le faisceau du laser à CO_2 dans la cavité IRL. Il doit permettre à la fois :

- de faire coîncider les axes du laser à CO₂ et de la cavité IRL, d'où la nécessité de deux miroirs de renvoi (figure II.13) en laiton doré et poli

- de focaliser le faisceau de pompe à l'entrée de la cavité IRL et de régler l'ouverture de ce faisceau dans cette cavité (figure II.14), d'où l'utilisation de deux lentilles en ZnSe de 100 mm et 25 mm de focale.

Les miroirs de renvoi sont placés sur des supports permettant l'orientation dans deux directions. Les lentilles de focalisations sont montées sur des supports permettant le déplacement dans les trois directions.

III. LA CAVITE SUBMILLIMETRIQUE

La cavité IRL que nous avons réalisée (figure II.15) est constituée d'un guide en laiton de 1,30 m de long et 25 mm de diamètre, fermé à chaque extrêmité par un miroir en aluminium poli. Ceux ci sont percés en leur centre d'un trou, afin de permettre :

- d'une part, le couplage avec le rayonnement IR de pompe (diamètre du trou de l'ordre de 2 mm)

- d'autre part, de prélever une partie du rayonnement IRL présent dans la cavité (ce trou ayant été optimalisé à un diamètre de l'ordre de 3 mm).

Le trou de couplage IR permet également, par l'intermédiaire

- 41 -

<u>Figure II.14</u> : Système optique complet

d'un miroir à 45°, de prelever un deuxième signal IRL, proportionnel au signal principal (figure II.16).

Le miroir 1 a été aligné au départ avec un laser He-Ne et n'est plus réglable en cours d'expérience. Le miroir 2 peut être orienté à tout instant en jouant sur la compression d'un gros joint torique (figure II.16). De plus, le miroir 1 est monté sur une platine SCHNEEBERGER, permettant le déplacement en longueur, et par conséquent l'accord de la cavité (figure II.17)

Afin de garder l'étanchéîté de la cavité tout en permettant le passage des faisceaux IR et IRL, on trouve à l'entré du couplage IR une fenêtre en ZnSe traitée anti réflexion à 10,6 μ m, et aux sorties IRL des fenêtres en Quartz (coupe X), transparentes entre 100 μ m et 1mm et opaques au rayonnement IR de pompe.

La courbure du guide peut être corrigée par les deux supports réglables placés entre les deux miroirs (figure II.18).

Enfin l'ensemble est maintenu par quatre barres d'Invar donnant ainsi une bonne stabilité en longueur à la cavité IRL.

Photo nº 1

Montage du miroir 1.

Photo nº 2

Montage du miroir 2.

Photo n° 3 : Installation complète de la source.

Figure II.18 : Supports permettant de corriger une éventuelle courbure du guide

IV. PROTECTION DE L'ENSEMBLE CONTRE LES VIBRATIONS EXTERIEURES [8]

Pour s'affranchir des vibrations du bâtiment dans lequel est monté l'expérience, l'ensemble de la source est posé sur une dalle de granit de 600 kg, reposant elle même sur des chambres à air (figure II.19).

jable de Granif

Figure II.19 : Suspension pneumatique de la dalle

Soient : P_0 : pression dans les chambres R : rayon moyen du tore M : masse de la dalle ω_0 : fréquence de résonance des vibrations $\omega_0 = (\frac{g}{Z})^{1/2}$ g : accélération⁰de la pesanteur a : section des chambres à air Z_0 : hauteur moyenne de la dalle ($Z_0 \sim 1,8$ a) N : nombre de chambres utilisées

Ces différents paramètres sont reliés par la formule approchée suivante :

$$M \simeq 4\pi RP_0 aN \left(2 - \frac{g}{a\omega_0^2}\right)^{1/2}$$

qui peut s'énoncer sous une forme simplifiée quand l'écrasement des chambres sous le poids de la dalle modifie le diamètre d'environ 10 % :

$$NP_0aR \simeq 0,18 M$$

 $\omega_0^2 \simeq \frac{g}{1,8a}$

Par exemple, dans notre cas, le marbre pèse 600 kg et repose sur 10 chambres de section a = 3,5 cm et de rayon R = 19 cm; on obtient pour une pression $p_0 = 160$ g cm⁻², une fréquence de résonance: $\omega_0 \approx 1$ Hz. Cette fréquence de résonance très basse

V. CONCLUSION

Nous venons dans ce chapitre de décrire la source submillimétrique que nous avons réalisée. Il reste maintenant à vérifier ses possibilités, ainsi que son aptitude en _{tant} que source.

Le prochain chapitre va par conséquent consister à vérifier le fonctionnement de cette source dans le domaine IRL.

BIBLIOGRAPHIE

- [1] O. SVELTO
 "Principles of lasers"
 Plenum Press (1976)
- [2] J. HOURIEZ
 "Contribution à la réalisation d'un laser à C0₂ de
 grande stabilité"
 Thèse, Lille I (1971)
- [3] C.K.N. PATEL "continious wave laser action on vibrational Rotational transitions of CO₂" Phys. Rev. 136, p. A1187 (30 Nov. 1964)
- [4] T.S. FAHLEN
 "C0₂ laser Design Procedure"
 Appl. Optics, 12, p. 2381 (Oct. 1973)
- [5] P. BOUSQUET
 "Spectroscopie instrumentale"
 Dunod pp. 35 71 (1969)
- [6] A.G. FOX and T. LI "Modes in a maser interferometer with curved and tilted mirrors" Proc. of the I.E.E.E., Vol. 51, p. 80 (Jan. 1963)
- [7] G.D. BOYD and H. KOGELNIK
 "Generalized confocal resonator theory"
 B.S.T.J., Vol. 41, p. 1347 (July 1962)

[8] D. BEYSENS

"Filtrage des vibrations mécaniques" Revue de Phys. appliquée, Tome 8, n° 2, pp. 1978 - 1979 (Juin 1973)

CHAPITRE III

CARACTERISTIQUES ET PERFORMANCES

DU LASER SUBMILLIMETRIQUE

CARACTERISTIQUES ET PERFORMANCES

DU LASER SUBMILLIMÉTRIQUE

I. RECHERCHE DES PARAMETRES INFLUANT SUR LA PUISSANCE IRL

II. INFLUENCE DES PARAMETRES EXPERIMENTAUX SUR LA PUISSANCE IRL

- 1° Influence de la pression P sur P_{IRL}
- 2° Influence de la puissance de pompe P_{IR} sur P_{IRL}
 - a) $P_{IRL} = f (P_{IR})$ à pression constante
 - b) $P_{IRL} = f (P_{IR})$ à pression optimale
- 3° Taux de conversion photonique
- 4° Choix de la cavité
 - a) type de cavité
 - b) longueur et section
- 5° Couplage optimal
- 6° Divergence du faisceau de sortie
- III. OBTENTION DES RAIES SUBMILLIMETRIQUES
 - 1° Recherche des raies
 - 2° Interférogramme de la cavité IRL
 - 3° Raies obtenues

IV. STABILITE DU LASER IRL

V. CONCLUSION

I. RECHERCHE DES PARAMETRES INFLUANT SUR LA PUISSANCE

Nous avons établi à la fin du chapitre I, une relation (47) donnant l'expression de la puissance submillimétrique P_{IPI} en fonction des différents paramètres :

$$P_{IRL} = \frac{1}{2}t I_{sat} S[\frac{2}{a+t} \times \frac{F_{abs} P_{IR}}{S I_{sat}} \times \frac{v_{IRL}}{v_{IR}} \frac{g_1}{g_1+g_2} - 1] \quad (I.47)$$

où : t : couplage de sortie de la cavité IRL

a : pertes totales de la cavité pour un allerretour

S : section du guide

g1, g2 : sont les dégénérescences des niveaux entre lesquels s'effectue la transition laser IRL

v_{IR} et v_{IRI}: représentent les fréquences des rayonnements respectivement de pompe (IR) et submillimétrique (IRL) P_{TR} . est la puissance de pompe F_{abs} P_{IR} : représente la partie de P_{IR} qui est réellement utilisée pour la transition submillimétrique

I_{sat} : est l'insensité de saturation de la transition IRL

Tous ces paramètres, sauf les deux derniers sont, soit des paramètres propres à la molécule utilisée $(g_1, g_2, v_{IR}, v_{IRL})$, soit des paramètres propres à la cavité utilisée (t, a, S). Il faut néanmoins essayer de mieux préciser les deux derniers paramètres (F_{abs}, I_{sat}) afin de voir comment ils varient quand on change les conditions de fonctionnement du laser :

- F_{abs} P_{IR} représente, comme nous l'avons dit précédemment la partie de la puissance IR de pompe qui est réellement utilisée pour la transition submillimétrique. Pour voir quels sont les paramètres physiques dont dépend ce terme, nous allons utiliser la relation (I.44)

$$F_{abs} P_{IR} = \frac{W_p N_t}{(1+W_p/r} h v_{IR} V$$
 (1.44)

où W_p représente le taux de pompage. Il dépend un peu de la pression mais essentiellement de la puissance IR de pompe-

- N_t est le nombre total de molécules
- représente le taux de relaxation vibrationnelle, et est proportionnel à $(pd^2)^{-1}$

49 -

Par conséquent, à faible pression, $F_{abs} P_{IR}$ sera sensiblement proportionnel à $W_p N_t$, donc à la pression et à la puissance IR de pompe. Par contre, plus la pression va augmenter et plus le terme Γ va influer de façon à saturer $F_{abs} P_{IR}$.

 $-I_{sat}$ représente l'intensité de saturation de la transition IRL et, comme nous l'avons vu dans le premier chapitre, est proportionnel à p² [1,2].

II. INFLUENCE DES PARAMETRES EXPERIMENTAUX SUR LA PUISSANCE IRL

Nous pouvons distinguer trois catégories de paramètres influant sur le laser :

- paramètres liés au gaz : pression, addition d'un gaz tampon [4], température [5].

- paramètres liés à la cavité IRL : type de cavité [6] longueur [7], section [8], couplages.

- paramètres liés au rayonnement de pompe : puissance IR, décallage de la fréquence de la raie du laser à CO₂ par rapport à la transition de pompe ("offset"), disposition spatiale de l'onde IR dans la cavité IRL.

Nous allons donc étudier l'influence de certains de ces paramètres (ceux qui nous semblent les plus importants), les autres étant plus difficilement exploitables.

<u>1° INFLUENCE DE LA PRESSION P SUR LA PUISSANCE</u> PIRL

Nous avons relevé la puissance IRL en fonction de la pression du gaz dans la cavité IRL pour différentes puissances de pompe (figures II.1 et II.2).

On peut déjà remarquer (en regard également du "tableau des raies obtenues", à la fin de ce chapitre), que les pressions optimales sont à peu près équivalentes pour toutes les longueurs d'ondes.

Pour interpréter les courbes obtenues, nous allons développer la relation (I.65), ce qui donne :

- 50 -

(BHS UUUE)

 $e_{III.I}$: P_{IRL} en fonction de la pression avec P_{I} constant pour HCOOH (λ = 393,6 µm).

- 52 -

(BUS)

A faible pression, seul le terme $F_{abs} P_{IR}$ va intervenir (N W_p N_t) puisque I_{sat} est du second ordre ; plus la pression va augmenter et plus le terme $F_{abs} P_{IR}$ va se "saturer" tandis que I_{sat} va devenir de plus en plus important, ceci va par conséquent entraîner une pression optimale à partir de laquelle P_{IR} va diminuer.

On peut remarquer également que la pression optimale augmente avec la puissance de pompe, du fait que le terme $W_p N_g$ augmente avec cette puissance.

Enfin, ces courbes montrent l'importance de la pression pour obtenir une puissance IRL maximale.

> 2° INFLUENCE DE LA PUISSANCE DE POMPE (P_{IR}) sur P_{IRL} a) $P_{IRL} = (f_{IR})$ à pression constante

Nous avons relevé la puissance IRL en fonction de la puissance de pompe P_{IR} , pour différentes pressions du gaz dans la cavité submillimétrique (figure II.3). Le relevé a été fait pour la raie à 393,6 µm de l'acide formique (HCOOH), mais les résultats sont similaires pour les autres transitions laser.

L'interprêtation de ces courbes est assez aisée en regard de la relation (I.47)

 $P_{IRL} = \left(\frac{t}{a+t}\right) \frac{v_{IRL}}{v_{IR}} \frac{g_1}{g_1+g_2} F_{abs} P_{IR} - \frac{1}{2} tSI_{sat}$ (I.47)

Lorsque la pression est faible et P_{IR} faible également, le terme F_{abs} P_{IR} qui est égal à :

 $F_{abs} P_{IR} = \frac{Wp}{1+Wp/r} N_t h v_{IR} V \qquad (I.43)$ va être proportionnel à P_{IR} puisque r est proportionnel à $(pd^2)^{-1}$ et comme I_{sat} est faible $(I_{sat} \sim p^2)$ on peut en conclure que pour les pressions faibles P_{IRL} est proportionnel à P_{IR} et à N_t (donc à la pression). Lorsque P_{IR} va devenir important, le terme $F_{abs} P_{IR}$ se sature et par conséquent P_{IRL} va également se saturer d'où la forme obtenue.

<u>Figure III.3</u> : P_{IRL} en fonction de P_{IR} à pression constante pour HCOOH ($\lambda = 393, 6 \ \mu m$).

(885) (885) Lorsque la pression est plus importante, la forme générale des courbes reste la même ; simplement le terme I_{sat} n'est plus négligeable lorsque P_{IR} est faible, il en résulte la présence d'un seuil d'émission dû au fait que dans la relation (I.65), le premier terme doit être supérieur au second terme.

Naturellement ce seuil est d'autant plus important que la pression est forte. De même, le terme F_{abs} P_{IR} se saturera d'autant moins vite que la pression est forte.

b) $P_{IRL} = f(P_{IR})$ à pression optimale

A pression optimale, comme l'on se trouve loin du seuil, le deuxième terme de la relation (I.65) est négligeable devant le premier, par conséquent, cette relation se réduit à

 $(P_{IRL})_{opt} = \left[\frac{t}{t+a} F_{abs} \frac{v_{IRL}}{v_{IR}} \frac{g_1}{g_1+g_2}\right] P_{IR} \quad (III.1)$

or F_{abs} est sensiblement constant, puisque étant proportionnel au nombre de molécules et inversement proportionnel à la pression, ces deux facteurs s'annulant entre eux.

Il en résulte que $(P_{IRL})_{opt}$ est proportionnel à P_{IR} comme le montre la figure 4, sauf lorsque P_{IR} est faible, ceci parce que l'approximation donnant la relation (III.1) n'est plus parfaitement vérifiée.

3° TAUX DE CONVERSION PHOTONIQUE [3,9]

Si l'on considère le cas "théorique" où les pertes sont nulles, l'absorption de la pompe parfaite et si l'on se considère loin du seuil, la relation (I.47) se réduit à :

$$P_{IRL}^{\text{théo}} = \frac{g_1}{g_1 + g_2} \frac{v_{IRL}}{v_{IR}} P_{IR}$$
(III.2)

On peut alors définir un taux de conversion photonique théorique n theo ^{par} :

$$P_{IRL}^{théo} = \eta_{théo} P_{IR}$$
(III.3)

Nous pouvons également, en considérant la relation (III.1), définir

- 55 -

56 -

un taux de conversion expérimental à la pression optimale η_{exp}^{opt}

$$(P_{IRL}^{exp})_{opt} = \eta_{exp}^{opt} P_{IR}$$
(III.4)

d'où, en comparant les relations (III.1), (III.3) et (III.4), on en déduit :

$$\eta_{exp}^{opt} = \eta_{theo} x \frac{t}{t+a} (F_{abs})_{opt}$$
(III.5)

Il faut remarquer que cette relation n'est vérifiée que lorsque l'on se trouve loin du seuil.

En traçant la courbe $\eta_{exp}^{opt}/\eta_{théo}$ en fonction de la puissance de pompe (figure 5), on se rend compte que le faible rendement du laser est essentiellement dû au terme F_{abs} .

Nous avons également représenté (figure 6) le taux de conversion photonique des raies submillimétriques ayant le meilleur rendement [9] entre 40 µm et 1,2 mm

<u>4° CHOIX DE LA CAVITE</u> <u>a) Type de cavité</u> [6]

Nous avons montré dans le chapitre I, que la cavité guidée permettait d'obtenir une désexcitation vibrationnelle plus rapide, et par conséquent un rendement meilleur par rapport à la cavité Pérot - Fabry, ce qui justifie notre choix.

b) Longueur et section

Des études faites [7] sur des cavités de longueurs différentes ont montré comme l'on pouvait s'y attendre, que plus la longueur est grande, meilleure sera la puissance IRL obtenue. Néanmoins, pour des raisons d'infrastructure de l'installation nous avons limité la longueur de la cavité à 1,30 m.

Enfin en ce qui concerne la section de la cavité, un compromis doit être fait pour choisir le diamètre du guide. En effet, lorsque celui-ci augmente, les pertes diminuent mais le taux de relaxation diminue également ($\Gamma \sim (pd^2)^{-1}$). Par conséquent, nous avons choisi une section'intermédiaire, c'est à dire un diamètre de 25 mm.

5° COUPLAGE IRL OPTIMAL

La recherche du couplage optimal paramètre t dans la relation (I.65) se révèle particulièrement importante, car c'est une condition nécessaire à l'obtention d'une puissance de sortie IRL maximale.

En effet, si le diamètre du trou de couplage est trop grand, les pertes (liées à une trop faible réflexion sur le miroir) seront importantes, et par conséquent, la puissance de sortie IRL sera faible. Par contre, si ce diamètre est trop petit, trop peu d'énergie contenue dans la cavité pourra être utilisée. Nous avons relevé la puissance IRL en fonction du diamètre du trou de couplage (figure 7) pour une longueur d'onde moyenne (393,6 μ m), ce qui nous a permis d'optimaliser ce diamètre à 3 mm, correspondant à un coefficient de transmission de quelques pour cent. Cette faible valeur de t_{opt} est dû au fait que le gain de la transition laser est relativement faible.

6° DIVERGENCE DU FAISCEAU DE SORTIE

Le faisceau IRL étant destiné à être utilisé pour des mesures de transmission, nous avons mesuré sa divergence. Il faut tout d'abord rappeler comment sort ce faisceau.

Figure III.8 : Couplage de sortie du Laser IRL.

Comme le montre la figure 8, le faisceau, après passage par le trou de couplage, est guidé sur plusieurs centimètres par un tube de 10 mm de diamètre, nous avons donc mesuré le diamètre à mi-puissance du faisceau IRL à différentes distances d du guide ffigure III.10). La mesure a été effectuée en déplaçant, dans un plan perpendiculaire à l'axe de propagation, un détecteur de petite surface (environ 1 mm de diamètre).

Nous donnons également (figure **I**II.10), la répartition spatiale de l'énergie IRL dans un plan perpendiculaire à l'axe de propagation. Cette courbe montre la dissymétrie du mode due sans doute à des défauts mécaniques du trou de couplage et à la forme du faisceau de pompe dans la cavité IRL (voir également figure I.4).

III. OBTENTION DES RAIES SUMILLIMETRIQUES

1° RECHERCHE DES RAIES

Puisque le laser IRL est optiquement pompé, il est évident que la recherche des raies va se faire en deux parties :

- Recherche de la raie de pompe.

- Accord de la cavité IRL et coîncidence de la "pompe"

a) Recherche de la raie de pompe

A chaque raie submillimétrique correspond une raie de pompe bien déterminée par les spectroscopistes [12, 13]. Il suffit alors, à l'aide d'un analyseur de spectres à CO₂, d'orienter convenablement le réseau, de façon à favoriser la raie de pompe désirée (figure II.6)

b) Accord de la cavité IRL et coincidence de la "pompe"

La recherche de la raie de pompe étant faite, il faut accorder la cavité IRL tout en réglant la longueur de la cavité du laser à CO₂, de façon à faire légèrement varier sa fréquence ; ceci afin d'obtenir la meilleure coîncidence entre

- .62 -

la fréquence du laser à CO₂ et la transition de pompe idéale^{*}. Afin de simplifier cette double - manipulation, on utilise un générateur de signaux BF dont le rôle sera de moduler la longueur du laser à CO₂ (figure III.11)

Figurè III.11 : Modulation de la longueur du laser à CO2

Par conséquent il suffit de régler la longueur de la cavité submillimétrique et, ceci étant fait, de supprimer le générateur BF et de régler manuellement la longueur de la cavité du laser de pompe.

2° INTERFEROGRAMME DE LA CAVITE IRL

En balayant de façon continue la longueur de la cavité IRL et en enregistrant la puissance IRL en fonction de cette longueur, on obtient l'interférogramme de la cavité (figure III.12) Cet enregistrement permet de montrer que le nombre de modes varie beaucoup avec la pression, ceci est sans doute dû au fait

* Bien que la transition de pompe soit toujours voisine de la fréquence d'émission du laser à CO₂, il est rare que l'écart entre les deux ou "offset" soit nul : on cherche alors dans tous les cas à réduire au maximum cet "offset" qu'à faible pression, les chocs étant peu nombreux, beaucoup de modes peuvent se propager ; tandis qu'à haute pression, seul ceux ayant de très faibles pertes le peuvent encore.

De plus, ces enregistrements sont très riches en informations car ils permettent à la fois de vérifier la longueur d'onde du rayonnement IRL (maximums distants de $\lambda/2$), de voir que plusieurs modes peuvent se propager, et également de pouvoir observer les "cascades de raies", (figure III.13). En effet, une raie de pompe IR peut produire plusieurs raies submillimétriques en "cascade" (figure III.13).

Dangoisse [10])

Toutefois, ces cascades sont très difficiles à observer avec une cavité métallique, par le fait que les modes sont très nombreux comme le montre la figure III.12.

3° RAIES OBTENUES

Nous voulions au début de ce travail explorer toute la région submillimétrique, mais les problèmes trop fréquents avec le laser CO₂ nous ont obligés à restreindre cette prospection, et à porter l'accent sur l'utilisation et les expériences qui pouvaient être réalisées (chapitre IV).

Par conséquent, nous n'avons utilisé que l'Acide Formique (HCOOH), et également l'Alcool Méthylique (CH₃OH) pour pouvoir effectuer des mesures à 118 μ m.

Il faut également noter que le tableau ci-dessous est sans doute incomplet par le fait que les cascades sont assez difficiles à observer, et que des mesures plus précises nécessiteront la construction d'un interféromètre submillimétrique.

Enfin les résultats obtenues avec l'Alcool Méthylique sont nettement inférieurs à ceux obtenus avec une cavité diélectrique pour des raisons qui ont été exposés dans le début du chapitre I. Toutefois, une cavité diélectrique a été réalisée dans notre laboratoire [11] et sera essayée très prochainement.

Gaz	Raie de pompe C0 ₂	Longueur d'onde Pression IRL (µm) (mT)		Puissance IRL relative
нсоон	9R18	393,6	200	Forte
	9R22	418,6	250	Forte
	9R20	432,6	150	Moyenne
	9R16	446,9	200	Faible
	9R28	513,0	100	Moyenne
	9R22	580,4	100	Moyenne
	9R30	669,5	200	Faible
	9R24	744,0	100	Moyenne
сн _з он	9P36	118,8	150	Moyenne
	9P36	170,6	100	Moyenne
	9P36	392,1	100	Faible
	9P16	570,6	100	Moyenne
	9P34	699,4	150	Faible

TABLEAU DES RAIES IRL OBTENUES

REMARQUES

- Plusieurs raies en cascade ont sans doute été obtenues mais ne sont pas indiquées du fait qu'elles sont difficilement mesurables (nombre de modes trop important).

- La puissance relative correspond à :

- . Forte : $P_{IRL} > 5 \text{ mW}$
- . Moyenne : 1 mW < P_{IRL} < 5 mW
- . Faible : $P_{IRL} < 1 \text{ mW}$

La stabilité du laser est pour nous l'un des paramètres les plus importants, puisque notre but est d'effectuer des mesures. C'est cependant son point faible. En effet, les causes d'instabilité sont multiples :

- instabilité en longueur du laser à CO_2
- instabilité en longueur du laser IRL (beaucoup moins importante puisque $\lambda_{\rm IRL}$ >> $\lambda_{\rm IR})$
 - retour de l'onde de pompe dans le laser à CO₂
 - échauffement des fenêtres...

Tout ceci entraine une stabilité médiocre qui, pour la raie la plus stable, est de 15 % sur 10 mm (figure 14).

Figure III.14 : Stabilité du laser (pour la raie la plus stable)

Afin de diminuer ces instabilités, nous avons refroidi, (par une circulation d'air) les fenêtres du laser à CO_2 , demandé à notre atelier d'électronique de réaliser un asservissement de la longueur du laser à CO_2 par la puissance IRL (voir annexe I) et enfin, durant les mesures, nous essayons de créer le moins possible de modifications de température dans la salle.

Enfin pour effectuer des mesures correctes, nous avons mis au point un "diviseur analogique" dont l'utilisation est exposée dans le chapitre suivant.

V. CONCLUSION

Nous avons dans ce chapitre, essayé d'exposer l'influence des différents paramètres sur la puissance de sortie du laser submillimétrique, et nous avons pu remarquer que l'optimisation du laser était nécessaire si l'on voulait tirer le maximum de celui-ci.

Nous avons également donné les résultats obtenus (différentes raies); malgré tout, ce travail de recherche est très incomplet du fait des différents problèmes que nous avons eus avec le laser à CO_2 .

Il reste maintenant à effectuer des mesures avec ce laser, puisque tel est son but ; c'est ce que nous allons faire dans ce dernier chapitre.

BIBLIOGRAPHIE

- [1] T.A. DETEMPLE, E.J. DANIELEWICZ I.E.E.E. J. Quant. Elect., QE-12, 40 (1976)
- [2] C.A. KOEPF, K. SMITH "The cw 496 µm Methylfluoride laser : review and theoretical predictions" I.E.E.E. J. Quant. Elect., QE-14, 333 (1978)
- [3] J.M. LOURTIOZ, R. ADDE, D. BOUCHON and J. PONTNEAU
 "Design and performances of a cω CH₃OH waveguide laser" Revue de Phys. Appliquée, Tome 14, Fev. 1979, p. 323 - 330
- [4] T.Y. CHANG, C.J. LIN
 "Effect of buffer gases on an optically pumped CH₃F FIR
 Laser"
 J. Opt. Soc. Am., 66, 362 (1976)
- [5] G. DUXBURY, H. HERMAN Inter. Conf. Submillimeter waves and their applications Guilford. Conference Digest, 175 (1978)
- [6] K. WALZER
 "Comparaison between a Fabry Perot FIR laser and a
 waveguide FIR Laser"
 Infrared Phys., Vol. 17, pp. 537 540 (1977)
- [7] T.A. DETEMPLE, T.K. PLANT P.D. COLEMAN
 "Intense superradiant emission at 496 µm from optically
 pumped methylfluoride"
 Appl. Phys. Lett., Vol. 22, n° 12, 15 (June 1973)

- [8] S. F. DYBKO, L.D. FESENKO and O.I. BASKAKOV "Investigation of submillimeter wave amplification in optically pumped molecular gases" Soviet J. Quant. Elec., Vol. 7, n° 7, pp. 859-862 (July 77)
- [9] J.M. LOURTIOZ, R. ADDE and J. PONTNEAU
 "Analysis of optically pumped cw FIR Laser efficiency"
 Inter. Conf. Submillimeter waves and their applications
 Guilford Conference Digest, 188 (1978)
- [10] D. DANGOISSE, E. WILLEMOT, A. DELDALLE and J. BELLET "Assignment of the HCOOH cω submillimeter laser" Opt. Communications, Vol. 28, n° 1, pp 111-116 (Jan. 1979)
- [11] A.A. ZOUNON
 "utilisation et amélioration d'une source laser IRL"
 D.E.A., Lille (1979)
- [12] R. BECK, W. ENGLISCH and K. GURS "Table of laser lines in Gases and Vapors" Springer Verlag (1976)
- [13] D.J.E. KNIGHT
 "Ordered list of optically pumped laser lines"
 Voir annexe II

CHAPITRE IV

.

UTILISATION DE LA SOURCE POUR

LA CARACTÉRISATION DE MATÉRIAUX

UTILISATION DE LA SOURCE POUR

LA CARACTÉRISATION DE MATÉRIAUX

I. METHODE DE MESURE. DIVISEUR ANALOGIQUE

- 1° Principe de mesure
- 2° Le diviseur Analogique

II. APPLICATIONS AUX CRISTAUX LIQUIDES

- 1° Rappels sur les cristaux liquides
 - a) Généralités
 - b) Le paramètre d'ordre
 - c) Substances étudiées
- 2° Le banc de mesure
- 3° Résultats expérimentaux
- 4° Interprétation des résultats expérimentaux

III. CONCLUSION

Après avoir étudié les performances de la source, nous abordons la dernière partie, qui concerne son utilisation pour la caractérisation de l'absorption présentée par des semiconducteurs ou diélectriques. Nous ne décrirons dans ce mémoire, que les résultats obtenus pour les diélectriques.

I. METHODE DE MESURE. DIVISEUR ANALOGIQUE

<u>1° PRINCIPE DE MESURE</u> Le but de l'opération est de mesurer le coefficient de transmission préenté par une lame diélectrique

Soient P_{IRL} la puissance IRL incidente et P_det celle détectée après la cellule de mesure (figure IV.1)

е.

d'épaisseur

0

Si R est le coefficient de réflexion sur la face d'entrée de la cellule, α le coefficient d'absorption du matériau étudié, et n l'indice de réfraction ; le coefficient de transmission t est donné par [19] :

$$t = \frac{P_{det}}{P_{IRL}} = \frac{(I-R)^2 \exp(-\alpha e)}{I-2R\cos\frac{4\pi ne}{\lambda} \exp(-\alpha e) + R^2 \exp(-2\alpha e)}$$
(IV-1)

Afin d'éviter les réflexions multiples dans ce matériau nous avons travaillé avec une épaisseur e telle que $\alpha e >> 1$. Dans ce cas, la relation (IV.1) se réduit à :

$$t = \frac{P_{det}}{P_{IRL}} = (I-R)^2 e^{-\alpha e}$$

$$u P_{det} = (I-R)^2 P_{IRL} e^{-\alpha e}$$
(IV-2)

Ce principe de mesure, des plus classiques, serait très simple à utiliser si les termes P_{det} et P_{IRL} étaient indépendants du temps. Or ce n'est pas le cas, car la source est instable, comme le montre la figure (III.14).

- 70 -

Pour palier à cet inconvénient, nous avons utilisé la deuxième "sortie" submillimétrique décrite dans le chapitre II, dont la puissance recueillie est proportionnelle à la puissance IRL de la sortie principale ; soit K, ce coefficient de proportionnalité (figure IV.2) :

Il suffit alors de faire le rapport P_{det}/P'_{IRL} pour s'affranchir des instabilités

Pour ceci, un diviseur analogique a été réalisé dans le laboratoire qui, associé à deux détections synchrones, permet d'afficher directement le rapport P_{det}/P'_{IRL} (figure IV.3)

Figure IV.3 : Méthode de mesure utilisant le diviseur analogie gique

$$\frac{P_{det}}{P'_{IRL}} = \frac{(I-R)^2 P_{IRL} e^{-\alpha e}}{K \cdot P_{IRL}}$$

ou

$$\frac{P_{det}}{P'_{IRL}} = \frac{(I-R)^2}{K} e^{-\alpha e} = t'$$
 (IV-4)

On remarque de t' est indépendant du temps, donc des fluctuations. Or, le terme que nous voulons calculer est en fait α , par conséquent nous avons effectué deux séries de mesures avec des épaisseurs e différentes, mais en respectant toujours $\alpha e >> 1$, d'où l'expression de α^* :

$$t_1/t_2 = e^{-\alpha (e_1 - e_2)}$$

ou

$$\alpha = \frac{1}{e_1 - e_2} \operatorname{Log}(t_2/t_1)$$

(IV-5)

II. APPLICATION AUX CRISTAUX LIQUIDES

Afin d'illustrer cette méthode, nous l'avons appliquée à la mesure du coefficient d'absorption de quelques cristaux liquides et tenté d'en déduire des grandeurs caractéristiques de ces substances.

1° RAPPELS SUR LES CRISTAUX LIQUIDES.

a) Généralités

Les cristaux liquides sont des substances organiques [3 à 7] présentant des phases intermédiaires entre l'état solide (parfaitement ordonné) et l'état liquide : elles sont liquides dans leur mobilité et cristallines dans leur propriétés optiques. En 1922, G. Friedel [2] a proposé d'appeler ces corps "substances mésomorphes ou mésomorphogènes" et a également établi une classification permettant de distinguer trois phases principales selon les types d'arrangement moléculaire : (Figure IV. 5)

- les nématiques
- les cholestériques
- les smectiques

Dans les trois cas, les molécules, de forme allongée, tendent à s'aligner parallèlement les uns aux autres (ainsi que le montre la figure IV.5).

Notons que récemment, une nouvelle classe de phase

Les valeurs t₁ et t₂ peuvent être déterminées de façon absolue en faisant au préalable une mesure à vide. Il est par ailleur possible de cette façon, d'estimer l'importance des réflexions sur la fenêtre d'entrée de la cellule (R) Les structures des cristaux liquides.

Fig. 2.A. L'emplement nématique. Les molécules du cristal liquide sont des formes allongées ; on peut les représenter schématiquement par des ellipsoïdes allongés. Leurs centres de gravité se déplacent au hasard comme dans un liquide ordinaire, mais au cours de ces mouvements les grands axes des molécules restent en moyenne parallèles à une direction commune.

Fig. 2B. La spirale cholestérique. Dans une « tranche » de cristal liquide, perpendiculaire à l'axe z de la figure, la disposition des molécules est tout à fait analogue à celle d'un nématique. Mais la direction privilégiée d'orientation des molécules tourne lentement, quand on se déplace suivant l'axe z. Ainsi, les molécules de la tranche III sont perpendiculaires à celles de la tranche I. Il en résulte une structure périodique de période L.

smectique A

smectique C

Fig. 20. La structure en couches des smectiques. Dans cette phase, la plus proche de l'état solide, il subsiste un ordre à une dimension : les molecules sont réparties dans des « couches « qui s'empilent régulièrement les unes au-dessus des autres. A l'intérieur de chaque couche, les molécules gardert une direction privilégiée, Le plus souvent, elles sont parallèles à l'axe d'empilement z (smectiques A). Dans les emectiques C, récemment découverts, elles sont inclinées sur cet axe, suivant un angle qui peut varier avec la température.

Figure IV.5 : Différentes structures des cristaux liquides.

b) Le paramètre d'ordre

En phase nématique, l'arrangement moléculaire est caractérisé par une orientation moyenne du grand axe des molécules: le directeur \vec{n} . A cause de l'agitation thermique, l'orientation propre du grand axe de chaque molécule diffère de celle de \vec{n} ; néanmoins, il subsiste un "ordre moyen" que l'on peut évaluer à l'aide du paramètre d'ordre S défini par [3, 4, 6, 12]

$$S = \frac{1}{2} (3 < \cos^2 \Theta > -1)$$
 (IV-6)

où θ représente l'angle entre l'axe moléculaire et le directeur \vec{n} . En phase isotrope, S est nul ; il est égal à 1 lorsque l'ordre est total.

c) Substances étudiées

Ce sont des produits qui appartiennent à la famille des cyano-biphenyls, commercialisés par la société BDH, la formule développée de ces corps étant :

$$C_n \xrightarrow{H_{2n+1}} \langle \overline{O} \rangle - \langle \overline{O} \rangle - C \equiv N$$

pour n = 5, 6 et 7, il y a apparition d'une phase nématique, pour n = 8, ce corps présente en plus une phase smectique A.

Nous consignons dans le tableau suivant, les températures de transition des mésomorphes étudiées.

Dénomination	Températures de transition en °C			
de la substance	Cristal smectique A	Cristal nématique de smectique A nématique	Nématique-isotrope (t°de clarifica- tion	
$K \ 15 \ (n = 5)$		22,5	35	
K = 18 (n = 6)		13,5	27	
K 21 $(n = 7)$	-	28,5	42	
K 24 (n = 8)	21	32,5	40	

Nous avons également étudié le PCH (S 1115) ou 4-Heptyl 4'-Cyanohexabiphenyl de formule développée

$$C_7 H_{15} - I \longrightarrow I - \langle \overline{\underline{O}} \rangle - C \equiv N$$

qui est une molécule analogue à celle du K21, l'un des noyaux benzéniques étant remplacé par un groupement cyclohexane. (sa température de fusion est de 30°C, et de clarification de 57°C)

2° BANC DE MESURE [1, 14, 17]

Le banc de mesure est représenté à la figure IV.6 Un guide en laiton de 10 mm de diamètre conduit le rayonnement IRL jusqu'à la cellule de mesure et jusqu'au détecteur.

La cellule de mesure est représentée à la figure IV.7 ; c'est une cuve constituée de deux lames de quartz séparées par une cale en téflon d'épaisseur e = 0,4 ou 1 mm.

Afin d'étudier les propriétés anisotropes de la phase nématique, un polarisateur est placé entre la cellule de mesure et la source, et définit l'axe du champ électrique IRL. En outre, la cellule est placée entre les pièces polaires d'un électro-aimant ; le champ magnétique créé permet d'orienter la substance en phase nématique, parallèlement ou perpendiculairement au champ électrique IRL.

La mise en température de la cellule s'effectue à l'aide de résistances chauffantes, et la température est mesurée à l'aide de thermosondes en platine ; elle est régulée à 0,5°C près.

· 3° RESULTATS EXPERIMENTAUX

Les mesures ont été effectuées à 118 μm (raie de $CH_{3}OH)$ et à 394 μm (raie de HCOOH)

Nous avons au préalable étudié (figure IV.8) l'influence du champ magnétique sur l'orientation du K 21 en phase nématique,

- 76 -

Photo n° 4 : Le banc de mesure.

Photo n° 5 : Le système Porte-Cellule.

Figure IV-7 : La cellule de mesure.

Photo n° 6 : La cellule de mesure.

en mesurant le coefficient d'absorption, en fonction de l'intensité du champ magnétique. On remarque qu'en parallèle^{*}, le coefficient d'absorption $\alpha_{\prime\prime}$ augmente avec l'intensité du champ magnétique jusqu'à une valeur limite (saturation) pour laquelle on peut considérer que la substance est parfaitement orientée, parallèlement au champ électrique IRL. Par contre, en perpendiculaire, le champ magnétique n'a qu'une très faible influence sur le coefficient α_{\perp} ce qui tend à montrer que les molécules s'orientent spontanément perpendiculairement par rapport aux fenêtres de quartz de la cellule. Par conséquent, on peut considérer qu'au delà de 2 000 Gauss, la substance est parfaitement orientée.

Nous avons relevé les coefficients d'absorption $\alpha_{/\!/}$ et α_{\perp} du K 15 (figure IV.9), K 18 (figure IV.10), K 21 (figure IV.11), K 24 (figure IV.12) et PCH (figure IV.13) en fonction de la température à 118 µm. Ces courbes sont particulièrement intéressantes par le fait d'une part, que l'on remplit parfaitement la condition énoncée dans le "principe de mesure" (absorption importante [13]); et d'autre part, qu'elles vont permettrent de tirer des informations intéressantes relatives à l'ordre orientationnel (paramètre d'ordre).

Nous avons ensuite mesuré le coefficient d'absorption du K15 (figure IV.14) et K 21 (figure IV.15) en fonction de la température à 394 μ m. Ces courbes montrent une nette différence entre α_{\parallel} et α_{\perp} qui correspond à l'anisotropie orientationnelle de la phase nématique ; ce qui permet de penser que cette anisotropie orientationnelle n'est pas liée à la fréquence du rayonnement incident.

Enfin, pour améliorer la précision aux transitions de phase (smectique - nématique et nématique - isotrope), ces mesures ont été effectuées en dynamique, c'est à dire, en enregistrant la valeur du rapport P_{det}/P'_{IRL} en fonction de la température

* Nous noterons $\alpha_{\prime\prime}$ l'absorption du matériau quand le champ électrique IRL est parallèle au champ magnétique ; c'est à dire au directeur \vec{n} ; et α_{\perp} dans le cas où le champ électrique IRL est perpendiculaire au directeur \vec{n} .

- 82 -

9U)

<u>FIGURE IV-13</u> : Coefficient d'absorption du PCH en fonction de la température (λ = 118,8 µm).

Тс

- 85 -

(°c) T

ceci en faisant varier lentement et progressivement celle-ci dans le temps, et selon le cycle décrit à la figure IV.16

<u>Figure IV.16</u> : Cycle dynamique de la variation de t° pour les mesures d'absorption

4° INTERPRETATION DES RESULTATS EXPERIMENTAUX

Des études récentes [12, 16] menées en spectroscopie IRL ont montré que les mécanismes d'absorption en IRL sont essentiellement d'origine intramoléculaire.

L'absorption à 118,8 µm est très probablement due à un mode intramoléculaire lié aux vibrations internes des noyaux benzéniques [17] ; si l'on assimile ce mode à une vibration perpendiculaire et qu'on applique au domaine IRL une méthode de détermination du paramètre d'ordre utilisée en spectroscopie IR [14, 18], le paramètre d'ordre S est, en première approximation relié au coefficient d'absorption d'une substance orientée parallèlement ou perpendiculairement au champ électrique IRL à l'aide des expressions^{*}

$$S_{\mu} = 1 - \frac{\alpha_{\mu}}{\alpha_{ISO}}$$
(IV-7)

$$S_{\perp} = 2 \left[\frac{\alpha_{\perp}}{\alpha_{\rm ISO}} - 1 \right]$$
(IV-8)
$$S_{\perp} = \frac{1 - \alpha_{\parallel}/\alpha_{\perp}}{1 + \alpha_{\parallel}/2\alpha_{\perp}}$$
(IV-9)

Les paramètre d'ordre obtenus pour le K 15 (figure IV.17), K 21 (figure IV. 18) et K 24 (figure IV.19) sont conformes aux résultats déduits d'autres techniques [8, 9]. Quant au PCH, la courbe du paramètre d'ordre (figure IV.20) est équivalente à tout nématique ; nous ne l'avons pas comparée aux résultats déduits d'autres techniques, aucune autre détermination n'ayant, à notre connaissance, été effectuée. Elle indique, une fois de plus, un ordre au voisinage de la température de clarification plus faible que celui prévu par la théorie de Maier et Saupe [11]. Les écarts entre S $_{/\!\!/}$, S $_{/\!\!/}$ et S $_{|}$ en particulier au voisinage de la température de clarification, pourraient être dus aux imprécisions dans la mesure du coefficient d'absorption : compte tenu de l'écart moins grand entre α_{\perp} et α_{iso} , qu'entre $\alpha_{\prime\prime}$ et α_{iso} ou $\alpha_{\prime\prime}$ et α_{\perp} S devrait être moins précis que S $_{\prime\prime}$ ou S $_{\prime\prime}/|$. Il convient donc, d'affiner encore les mesures du coefficient d'absorption, ce qui fera l'objet d'un travail ultérieur. Il est également possible que des mécanismes d'absorption différents d'une vibration perpendiculaire, par exemple l'absorption dipolaire, viennent entacher d'erreurs et avec des degrés différents, $S_{\prime\prime}$, S_{\mid} et $S_{\prime\prime\prime}$. Une étude expérimentale et théorique plus fine, devrait permettre de préciser ce dernier point.

* chaque courbe α (T) conduit à trois déterminations du paramètre d'ordre, selon que l'on compare $\alpha_{/\!/}$ à α_{iso} , α_{\perp} à α_{iso} ou $\alpha_{/\!/}$ à α_{\perp} . Ces trois déterminations (dont deux sont indépendantes) doivent se vérifier entre elles. Nous noterons $S_{/\!/}$, S_{\perp} et $S_{/\!/}$ selon que l'on fait intervenir $\alpha_{/\!/}$, α_{\parallel} ou $\alpha_{/\!/}$ et α_{\parallel}

- 87 -

)

FIGURE IV-19 : Paramètre d'ordre du K24 en fonction de la température.

- 90 -

FIGURE IV-20 : Paramètre d'ordre du PCH en fonction de la température.

En ce qui concerne la phase smectique A du K 24 (figure IV.19) nous avons déterminé le paramètre d'ordre orientationnel de la même manière qu'en phase nématique ; l'augmentation du coefficient de transmission parallèle à la transition smectique nématique (figure IV.12) est sans doute due à une mauvaise orientation parallèle au champ électrique. Par contre, en perpendiculaire S_ montre un ordre orientationnel plus important en phase smectique A qu'en phase nématique, ce qui est conforme aux résultats obtenus par d'autres auteurs [9], bien que l'augmentation de l'ordre que nous avons observé soit plus accentuée que celle observée par Dunmur [9].

Enfin, nous n'avons pas tenté de tirer le paramètre d'ordre du K 18 car nous avons observé, pour des températures bien inférieures à la température (T_c) de clarification, dans la cellule de mesure, la coexistence de l'état nématique et de l'état liquide isotrope ; ce qui rend peu valable la courbe d'absorption pour ce composé (figure IV.12).

III. CONCLUSION

Nous venons de voir que le laser submillimétrique complété d'un système de mesure d'intensité adéquat (diviseur analogique) permet de déterminer le coefficient d'absorption d'un matériau en IRL avec une précision acceptable.

Il faut néanmoins souligner que :

- les mesures à l'aide du diviseur analogique peuvent être étendues à toutes mesures de transmission pour n'importe quelle substance ou quadripole.

- le principal avantage présenté par l'utilisation d'un laser de ce type réside dans le niveau élevé de la puissance de sortie. Il est ainsi possible d'utiliser le rayonnement IRL à une distance assez importante de la source, sans être obligé de prendre les précautions habituelles (pour éviter l'absroption par la vapeur d'eau par exemple).

- 92 -

BIBLIOGRAPHIE

- [1] J. DEPRET, D. DECOSTER "Sur une méthode de mesure du coefficient d'absorption d'un matériau diélectrique ou semiconducteur utilisant un laser submillimétrique" Colloque J.N.M., Lille (1979)
- [2] G. FRIEDEL Ann. Phys., Paris, 18, 273 (1922)
- [3] J. P. PARNEIX
 "Etude de la dynamique moléculaire de quelques substances mésomorphes
 à partir de leurs propriétés diéelectriques"
 Thèse 3ème Cycle, Lille (1975)
- [4] D. LIPPENS Thèse de 3ème cycle, Lille (1978)
- [5] S. CHANDRASEKHAR
 "Liquid crystals"
 Cambridge, Univ. Press (1977)
- [6] P.G. DE GENNES
 "The physics of liquid crystals"
 Clarendon Press, Oxford (1974)
- [7] L. LIEBERT
 "Liquid crystals"
 Academic Press (1978)
- [8] P.P. KARAT, N.Y. MADHUSADANA
 "Elastic and optical properties of some 4' n Alkyl 4 cyanobiphenyls"
 Molec. Cryst. Liq. Crist., Vol 36, pp. 51 64 (1978)

- [9] D.A. DUNMUR, M.R. MANTERFIELD, W.H. MILLER and J.K. DUNLEAVY "The dielectric and optical properties of the homologous series of cyano - Alkyl - Biphenyl Liquid cristals" Mol. Cryst., Liq. Cryst., vol 45, pp. 127 - 144 (1978)
- [10] W. MAIER, A. SAUPE
 "Eine einfache molekulare theorie des nematischen kristallin flussingen zustandes"
 Z naturforsch, 13 a, 564 (1958)
- [11] M. BOUAMRA "Influence de la structure et de l'environnement moléculaire sur les propriétés spectroscopiques des mésophases en IRL" D.E.A., Lille (1979)
- [12] D. DECOSTER, J. DEPRET "Détermination du paramètre d'ordre de quelques composés nématiques à l'aide d'un laser submillimétrique" Mol. Cryst. Liq. Cryst. (à paraître)
- [13] J.R. FERNANDES, S. VENUGOPALAN
 "Infrared spectroscopic study of orientational order and
 phase tranformations in liquid crystalline CBOOA"
 Mol. Cryst. Liq. Cryst., Vol. 35, pp. 113 134 (1976)
- [14] D. DECOSTER, J. DEPRET "Method of dielectric or semiconductor materials caracterisation with the use of an optically pumped cw FIR Laser" Revue of Scient. Inst. (à paraître)
- [15] G.J. EVANS, M. EVANS "High and low frequency torsional absorption in nematic K 21" J.C.S. Fara II, 73, 285 (1977)

[16] G. HERZBERG

"Infrared and Raman spectra" Van Nostrand Compagny, p. 365 (1966)

[17] A. SAUPE, W. MAIER "Methoden zur bestionnung des ordnungsgrades nematischer kristallinflussiger schichten" Z Naturforsch, 16 a, 816 (1961)

[18] M. VINDEVOGHEL

"Absorption présentée par le silicium dans le domaine des ondes millimétriques et dans l'infrarouge lointain" Thèse Lille, p. 32, (1973)

CONCLUSION

Nous avons réalisé un laser IRL guidé, optiquement pompé par un laser à CO_2 , et nous l'avons utilisé pour des mesures de caractérisation de matériaux diélectriques.

Cette utilisation a nécessité la mise au point d'une méthode de mesure du coefficient d'absorption d'un matériau, qui permet de s'affranchir des instabilités de puissance de la source.

Cette méthode a été illustrée en mesurant le coefficient d'absorption de quelques substances mésogènes en vue d'en déduire leur paramètre d'ordre. C'est à notre connaissance, la première fois qu'une telle source est utilisée pour caractériser des substances orientées.

Néanmoins, la cavité métallique ne donne de bons résultats que dans la partie basse fréquence du domaine submillimétrique, et l'utilisation d'une cavité diélectrique, dont la mise au point est actuellement en cours dans le laboratoire, permettra d'améliorer les performances dans la partie haute fréquence.

Par l'utilisation conjointe des deux cavités, le laboratoire disposera d'une source submillimétrique couvrant tout le domaine entre 50 mm et 2 mm de longueur d'onde et délivrant une puissance bien supérieure à celle des sources plus"classiques" en usage jusqu'à présent.

ANNEXE I

Asservissement du laser a CO2

I. DEFINITION DU PROBLEME

Un asservissement de la longueur du laser à CO_2 a été réalisé en collaboration avec notre laboratoire d'électronique, afin de corriger les dérivés thermiques de la longueur du laser de pompe.

La principale difficulté de cette réalisation provient de la nécessité de conserver l'information relative à la puissance IRL en même temps que l'information concernant le "signal d'erreur" utilisé pour cet asservissement.

En effet, comme le montre la figure A-1, il s'agit d'utiliser simultanément l'asservissement et le système de mesure décrit dans le chapitre IV (Diviseur Analogique) ; la difficulté réside donc dans la séparation des modulations à 12,5 Hz et à 200 Hz, compte tenu du fait que le signal à 200 Hz est d'amplitude beaucoup plus faible que celle à 12,5 Hz.

II. SYNOPTIQUE DU DISPOSITIF REALISE

1° GENERALITES

L'appareil comprend en plus de l'asservissement, une détection synchrone à 12,5 Hz, nécessaire pour l'obtention d'une information relative à la puissance IRL.

Il se décompose en trois parties principales :

- filtre à 200 Hz et Détection synchrone à 200 Hz
- asservissement à 200 Hz
- filtre à 12,5 Hz et Détection synchrone à 12,5 Hz.

La fréquence de 12,5 Hz a été choisie en fonction de la réponse du détecteur pyroélectrique utilisé, tandis que le 200 Hz de l'asservissement a été choisi de façon à s'éloigner le plus possible de la fréquence de 12,5 Hz (afin d'améliorer les filtrages des différentes composantes), tout en restant dans la plage de

(BIIS)

réponse du détecteur pyroélectrique et des cales piézoélectriques.

- 96 -

2° DESCRIPTION (Fig. A-2)

Le signal IRL est injecté dans un filtre passe-bande centré à 200 Hz de façon à supprimer la composante à 12,5 Hz, et est ensuite envoyé dans la détection synchrone DS₁. Le signal résultant passe dans un intégrateur dont la pente a été optimalisée afin d'obtenir la meilleure réponse de l'ensemble. L'amplificateur de gain ± l permet de définir le sens de correction de l'asservissement selon la réponse des cales piézoélectriques et du décalge de phase de l'ensemble de l'installation. Le signal recueilli ne comporte par conséquent qu'une composante continue qui est envoyée sur un sommateur en même temps que la polarisation initiale des cales et que la modulation à 200 Hz. C'est cette somme de trois signaux qui est injectée dans l'amplificateur Haute-Tension, commandant les cales piézoélectriques.

Enfin, le signal IRL est également envoyé dans un filtre passe-bande centré à 12,5 Hz et ensuite dans le détection synchrone DS_2 de façon à obtenir une information relative à la puissance IRL, qui sera utilisée comme signal de référence dans le Diviseur Analogique.

III. UTILISATION

La partie Détection Synchrone à 12,5 Hz est d'utilisation classique.

La partie Asservissement nécessite quelques réglages initiaux :

> le commutateur "constante de temps" de l'intégrateur étant en position "Asservissement déconnecté", on règle la longueur de laser à CO₂ par le potentiomètre "Polar initiale" de façon à obtenir le maximum de signal IRL, et on parfait ce maximum en ajustant le déphasage de la détection synchrone (DSI)

Figure A 2 : Synoptique de l'asservissement

- 97 -

- ceci étant fait, on choisit la constante de temps de l'intégrateur ; deux cas peuvent alors se produire :

* L'asservissement suit et le système est bloqué (la diode LED de "verrouillage" doit alors s'allumer), dans ce cas, la mise au point de l'asservissement est terminée.

* L'asservissement ne suit pas et le système dérive, il suffit de commuter l'inverseur "gain ± 1" et le système de boucle, on se retrouve alors dans le cas précédent.

Les deux voltmètres permettent d'afficher :

- la tension appliquée sur les cales PZT (V1)
- la tension issue des détections synchrones DS1 ou DS2 (V2).

III. CONCLUSION

L'appareil n'a pu être terminé que tardivement, c'est pourquoi seuls des essais qualitatifs ont pu être effectués. Ils ont néanmoins montré que son utilisation est très simple et qu'il répond parfaitement au but recherché.

ANNEXE

ORDERED LIST OF OPTICALLY-PUMPED LASER LINES (CONTINUOUS, $\lambda > 9 \mu$ M) WITH FREQUENCIES

D J E Knight National Physical Laboratory Teddington Middx. U K

ORDERED LIST OF OPTICALLY-PUMPED LASER LINES (continuous. $\lambda > 9 \mu$ m) with frequencies

D J E Knight National Physical Laboratory Teddington Middx. U K

5th issue March 79 - NPL Report no. Qu 45

Changes since 4rd issue: new data from the following references (see pp.iii-iv) on a total of 178 new and 35 amended lines, the number of lines following each reference in parentheses: BL2 (1), DH (4), DA3 (1), DW1 (3), DW2 (21), DW3 (12), DW4 (5), ED (7), GW1 (10), HEN1 (39), HEN2 (34), MO (14), PE2 (69) and ZD (37). Note: the number of reference listings exceeds the number of new entries because of multiple referencing.

Lines are listed in order of wavelength, with references, power level and full pump-line information. The best known measurements of vacuum wavelength (or frequency) are given, with the (70% confidence level) uncertainty, and the appropriately-rounded frequency* is given at right.

The list is intended as a radiation source list rather than a frequencystandards list, so that improvements in accuracy within the Doppler tuning width are not necessarily shown.

* This is rounded to match the uncertainty of the measurement, being calculated from the wavelength, which is exactly taken from the original reference. Original frequency measurements have been converted to wavelength (and back) using c = 299792500 m/s.

SUMMARY OF LINES, WITH CODES FOR ISOTOPES AND OPTICALLY-PUMPED MOLECULES (in alphabetical order of codes) no.of lines code molecule B10T = (B10)(CL)3, boron trichloride with boron-10 isotope. 4 B11T = (B11)(CL)3, boron trichloride with boron-11 isotope. 4 CO2A = C(018)2, CO2 WITH 018 ISOTOPE CO2B = (C13)O2, CO2 WITH C13 ISOTOPE CO2C = (C13)(018)2, CO2 WITH C13 AND 018 ISOTOPES CO2S = CO2 sequence-band line (punp) = C2H2F2, 1,1 DIFLUOROETHYLENE 16 DF DFE = C2H4F2, 1,1 DIFLUOROETHANE 2 = CH2F2, difluormethane 12 DFM = CH3OD, D1-METHYL ALCOHOL 21 DMA 20 = CD3(CL), DEUTERATED METHYL CHLORIDE DMC DME = CD3OD, DEUTERO-METHYL ALCOHOL (D-METHANOL) 9 DMEC = CD2(C1)2, deuterated methylene chloride (dichloromethane) 7 DMI = CD31, DEUTERATED METHYL IODIDE 32 2 DMIA = (13C)D3I, methyl iodide with C-13 isotope 2 D20 = D20. heavy water 1 EA = C2H2OH, ETHYL ALCOHOL = C2H5(CL), ETHYL CHLORIDE 4 EC 16 EF = CH3CH2F, ETHYL FLUORIDE 44 FA = HCOOH, FORMIC ACID = HCOOD, Formic acid isotopic analogue A 64 FAA = DCOOH, Formic acid isotopic analogue B 20 FAB 57 = DCOOD, Formic acid isotopic analogue C FAC 6 FA13 = H(C13)OOH, formic acid with C13 isotope = H2CO, formaldehyde - see also trioxane (TRI) FO = HDCO, formaldehyde isotopic analogue A 2 FOA 5 FOB = D2CO, formaldehyde isotopic analogue B MA 110 = CH3OH, METHYL ALCOHOL, METHANOL 9 MAC = CH3CCH, METHYL ACETYLENE = CD3OH, D3-METHYL ALCOHOL 110 MAD MAD1 = CH2DOH, isotopic species of methyl alcohol 19 MAD2 = CHD2OH, isotopic species of methyl alcohol MAM = CH3NH2, METHYLAMINE 11 7 40 MA13 = (13C)H3OH, methyl alcohol with C-13 isotope 9 MBA = CH3(79Br), methyl bromide with 79Br 7 MBB '= CH3(81Br), methyl bromide with 81Br MBR = CH3Br, methyl bromide with mixed 79Br and 81Br species 20 20 MC = CH3(CL), METHYL CHLORIDE 29 = CH3CN, METHYL CYANIDE (ACETONITRILE) MCY = CH2(CL)2, METHYLENE CHLORIDE 1 MEC MF б = CH3F , METHYL FLUORIDE MF13 = CH3F, METHYL FLUORIDE WITH CARBON-13 ISOTOPE 1 21 MI = CH3I, METHYL IODIDE 7 NH3 = NH3, AMMONIA 3 NH3A = (15N)H3, ammonia with N-15 isotope 29 N2H4 = N2H4. HYDRAZINE 13 TRI = (H2CO)3, trioxane (cyclic trimer of formaldehyde) 45 = C2H3Br, vinyl bromide, with Br79, Br81 mixed 51%, 49% VB = CH2CH(CL), VINYL CHLORIDE 19 VC 19 VCY = CH2CHCN, VINYL CYANIDE

905 TOTAL

(iii)

REFERENCES

BL1 (DMA) = T G Blaney, D J E Knight and E Murray-Lloyd Opt. Commun., 25, No.2, May 78 pp176-178 BL1 NOTE: 295 & 396 micron line powers from KON2; polarizations differ from KON2. BL2 (MA) = T G Blaney, N R Cross, D J E Knight, G J Edwards and P R Pearce Mar 79, in preparation BE1 (DF, DMA) = B L Bean and S Perkowitz Optics Lett. 1, No.6, Dec77 pp202-4 CH2 (MF) = CHANG, BRIDGES, OPTICS COMMUN. 1, NO9, APR70, PP423-6 CH3 (MF, VC, MA) = CHANG ET AL, APP. PHYS. LETT. 17, NO6, 15SEP70, PP249-51 CH4 (NH3) = CHANG ET AL, APP. PHYS.LETT. 17, NO9, 1NOV70, PP357-8 CH5 = CHANG ET AL, APP, PHYS, LETT. 19, NO4, 15AUG71, PP103-5 CH5(NOTE) 150 MICROSEC CHOPPED PUMP -OUTPUT LINES STRONGER THAN 0.1 MILLIWATT TAKEN AS (POTENTIALLY) CW AND LISTED CH6 = CHANG AND MCGEE, IEEE QE-12, NO. 1, JAN76 PP62-65 CH6 (NOTE) 150 MICROSEC CHOPPED PUMP (200W) ALL LINES LISTED. DA1 = D Dangoisse, A Deldalle, J-P Splingard and J Bellet C. R. Acad. Sci. 283B Sep76 pp115-118 (note: where DY8 is a 2nd reference it is also a frequency meast.) DA2 (FOA,FOB,TRI) = D Dangoisse, A Deldalle, J-P Splingard and J Bellet IEEE J. Quant. Electron. QE-13, No.9 Sep77 pp730-1 Notes (i) 9.66P32 pump lines in doubt. (ii) power levels and wavelength accuracy taken as for DE1 DA3 (FA) = D Dangoisse, E Willemot, A Deldalle and J Bellet Opt. Commun. 28, No1, Jan79 pp111-6 (collation of formic acid assignments) DE1 (FA,FA13, (FAA,FAC)) = A Deldalle, D Dangoisse, J-P Splingard and J Bellet Optics Commun. 22, No.3 Sep77 pp333-6 Notes (i) FA13.480 micron line pump line (10.09R46) is in doubt, (ii) these authors assign the 693788.5 MHz line to FA against FAA given by DY8. DH (DME, DMC, DMIA) = G Duxbury and H Herman J. Phys. B 11, No5, 1978 pp935-949 DW1 (NH3A) = E J Danielewicz and C O Weiss IEEE J. Quant. Electron. QE-14, No4, April 78 pp222-3 Note: this isotopic species was used in the natural abundance (0.37%) in research grade NH3. DW2 (MAD) = E J Danielewicz and C O Weiss IEEE J.Quant. Electron. QE-14, No7, Jul 78 pp458-459 DW3 (DFM) = E J Danielewicz and C O Weiss IEEE QE-14, No. 10, Oct78 pp705-7 Note: power levels scaled from DW2, with VS now 10mW since 44mW is given here for the 165.9 line. DW4 (D20,NH3,MF) = E J Danielewicz and C O Weiss Optics. Commun. 27,No1, Oct78 pp98-100 DY1 (DF,VCY,MAM) = DYUBKO ET AL, JETP LETT. 16, NO11, 5DEC72 PP418-9 DY2 = DYUBKO ET AL, SOV. PHYS. TECH. PHYS. 18, NO8, FEB74, P1121 ONLY DY3 (N2H4) = DYUBKO ET AL, ZH. PRIKL. SPEKTROSK(USSR)20.NO4.APR74, P718-9 DY3 TRANSLATION J.APPL.SPECTROSC.(USA)20 NO.4 PP546-5 DY4 (MI,SEE ALSO CH4,GR) = DYUBKO ET AL,OPT,SPECTROSC.37,NO1,JUL74 P118 DY5 (FA) = DYUBKO, SVICH, FESENKO SOV. J. QUANT. ELECTRON. 3. NO5, 1974 P446 (DY5 R-branch pump lines in doubt - see DY8) DY6 = DYUBKO ET AL ZH, PRIKL, SPEKTROSK, (USSR)23NO2 AUG75 317-20 DY6 (NOTE) 2E-6 WAVELENGTHS FROM FREQ., 10 UNITS POWER TAKEN AS APPROX. 1 MILLIWATT.CO2 POWER TAKEN AS 7W (DY5). DY7 (MAD) = Dyubko et al, Izv. Vuz. Radiofiz. (USSR) 18,No10, 1975 pp1434-7 DY8 = S F Dyubko, A V Svich and L D Fesenko Sov. Phys. Tech. Phys. 20, No.11, pp1536-1538. Trans. of:Zh. Tekh. Fiz. 45, Nov 75 pp2458-61 DY8 note: for identification of active transitions see: O I Baskakov et al. Sov. J. Quant. Electron. 7, No.4 Apr77 pp445-9

(iv)

REFERENCES (continued)

DY9 = S F Dyubko, M N Efimenko. V A Svich and L D Fesenko Sov.J Quant. Electron. 6. No.5, May 76 pp600-601. DY8, DY9 NOTE: conventional pump threshold values of "+3+", "2W have been used for all DY results, except for ~4 extreme lines in DY9 given "+3",~1W. DY8,9 NOTE 2: the submillimetre powers are interpolated from the the indications of detector calibration given. ED (MAD) = G J Edwards, (NPL Teddington) private communication 15Aug78 (wavelength checks on 7 lines to 0.05%) FE1 (NH3) = H R Fetterman, H R Schlossberg and C D Parker Appl. Phys. Lett. 23, No. 12 Dec73 pp684-6 Note: the pumped transitions are stark shifted to the pump frequency and the wavelength accuracy is estimated, not given. GR (MI THEORY) = GRANER OPT.COMMUN.14,NO1,MAY75 PP67-9 HO1 = HODGES ET AL, IEEE QE-9, NO12, DEC73, PP1159-60 HE1 (MA) = J Heppner, C O Weiss and P Plainchamp Optics Commun. 23, No.3 Dec77 pp381-4(see footnote p383) Note: sign of pump offset from NPL, lambda accuracy estimated as 0.1% HEN2 (MA13) = J O Henningsen and J C Petersen Infrared Phys. 18, No5+6, Dec78 pp475-479 Notes(i) 13-C was 90% pure (ii) lines given as "particularly strong" taken as 1mW (iii) threshold conventionally taken as 10W.(25W pump) JEN (EA,MC,EC,MEC) = JENNINGS ET AL, IEEE QE-11,NO8,AUG75 P637 KAR = Karlov et al. JETP Lett. 8 July 68 pp12-14 KON (DME) = KON ET AL JAP.J.APPL.PHYS.14,NO5 1975 PP731-2 KON2 = KON ET AL JAP. J. APP. PHYS. 14, NO11, 1975 PP1861,2 KW1 = Kramer and Weiss Appl. Phys. 10 1976 187-188. MO (MBA, MBB, MCY) = M V Moskienko and S F Dyubko Radiofizika 21, No7,1978 pp951-960 PET (MA) = PETERSEN ET AL, IEEE QE-11, NO10, OCT75 PP838-43 PE2 (MA, MA13*, MAD) = F R Petersen, D A Jennings, K M Evenson and J O Henningsen (in preparation:HEN2, also private communication from F R P Nov. 1978 and Mar79.) RA1 = RADFORD, IEEE QE-11, NO5, MAY75 PP213-4 .WAVELENGTHS FROM CH5, WA RA2 = H E Radford, private communication 4 Aug 76. New frequency measurements on 41 lines (waveguide laser):- of these, some (Fabry-Perot) lines of wavelength between 0.1 and 0.7 mm are published in:-H E Radford. F R Petersen. D A Jennings and J A Mucha IEEE J. Quant. Electron. QE-13 Mar77 pp92-94. Power levels are taken from the second reference given, or assumed -2 or -3. TA1 (MA) = TANAKA ET AL, JAP. J. APP. PHYS. 13, NO9, 1974 PP1491-2 TA2 (MA) = TANAKA ET AL, IEEE QE-11, NO10, OCT75, PP853-4 T3 (NH3.MA.MCY) = A Tanaka, A Tanimoto, N Murata, M Yamanaka and H Yoshinaga Opt. Commun. 22, No.1 Jul77 pp17-21 (Appears as 2nd/3rd reference, giving improved cw power out and pump threshold). WA = WAGNER ET AL, OPT. COMMUN. 8, NO1, MAY73 PP46-47 WE1 (MA) = C O Weiss, M Grinda and K Siemsen IEEE J. Quant. Electron. QE-13, No.11 Nov77 p892. Notes: (i) pump lines are CO2 sequence lines (CO2S) see Siemsen and Whitford Opt.Commun. 22, No.1 Jul77 pp11-16, (ii) uncertainty of wavelength not given but estimated at 1 micron or 0.5 %; formal threshold of 2 W assigned. ZD (DMEC, MAD2, MAD1) = G Ziegler and U Durr IEEE J.Quant.Electron. QE-14, No. 10, Oct78 p708 Notes: (i) gas purity about 96% (ii) conventional threshold of 2W assigned.

NOTES ON DATA-RECORD FORMAT

THE PAIR OF 8-CHARACTER WORDS "GAS/POWER", "REFERENCE" ON EACH DATA RECORD CAN CONTAIN INFORMATION AS FOLLOWS-

"GAS/POWER" = (LASING GAS SYMBOL FIRST, 1-4 OR 1-5, C IN 5, OR IN 8 FOR LAMBDA CALCULATED FROM FIT, LOG(POWER/MILLIWATT) IN CHARACTERS 6,7 AND CHARACTER 8 CONTAINS L IF A LAMB DIP OCCURS)

* IN CHARACTER 4 INDICATES OPTICALLY-PUMPED LASER AND BRACKETED POWER,() IN 5,8, INDICATES CASCADE OPERATION

LOG(POWER/MILLIWATT) CONVENTION

E.G.+2- IN 6,7,8 OF "GAS/POWER" OR "gas/thresh.", = DECADE IN 6,7 ("+2" = 100), AND -, BLANK,+ IN 8 COVER THE COEF. RANGES 0.31-0.69, 0.7-1.4, 1.5-3.0, ABOUT THE MEANS 0.5, 1, 2. CHAR.8 IS SOMETIMES NOT SPECIFIED, THE RANGE THEN BEING 0.32-3.1.

"REFERENCE" = (PAPER(S) IN FORM 2/3 LETTERS +1DIGIT FOLLOWED BY A LINE IDENTIFICATION OF 1,2 CHARACTERS AT RIGHT OF FIELD)

OPTICALLY PUMPED LINES -EXTRA INFORMATION IS PROVIDED FOR THE PUMP LINE AS FOLLOWS:- TWO 8-CHARACTER WORDS NAMED "gas/thresh.", "ref.", AND A NUMBER FOR THE PUMP OFFSET "offset" IN MHz .

"gas/thresh." FORMAT IS THE SAME AS FOR GAS/POWER, WITH THRESHOLD LOG(POWER/MILLIWATT) IN LAST 3. The polarization of output with respect to the pump is indicated in character 5 of "gas/thresh." as follows:- P,N or E for parallel, normal or either (none).

"ref." CONTAINS WAVELENGTH (MICROMETRE) IN FIRST 5, AN ASSIGNMENT IN LAST 3, EG FOR CO2, 10.09R48, OR _9.3_R08.

Example lines:-

TOTAL LASER LINES = 905 FREQ.FROM WAVELENGTH (OR V.V.) USING C=2.997925E08 METRE/SEC ORDERED LINE LIST

WAVELENGTH un	certainty	LASER L	INE	pump line	FREQUENCY
λνας. (MICROMETRE)	GI	AS/POWER	REFERENCE	gas/thresh. ref.	offset + MHz MHz
2650.000000	5.0E -3	MBB*	MO	CO2 10.49P10	113100.0
1990.757-100	2.0E -6	DMC [#] 0	DY6 7	CO2 P+3+ 9.50 P14	150592.2
1965.340000	5.0E -5	MBA O	CH6MO 30	CO2 P+4+ 10.67P28	0 152540.0
1099.009540	1.0E -0	VB * 0-	DI9 45	CO2 P+3+ 10.59P20	101194.1
1811 370000	2 8F -5		CHO (CO2 P + H = 10 88P H 6	0 165232.0
1730 833600	1 OE -6	FAA# -1-	011 DY8 40	CO2 P+3+ 10.22R24	173207.0
1720.000000	1.0E -2	EC * -1	JEN 8	CO2 +4 10 R28	174000.0
1614.888050	1.0E -6	VB * -1+	DY9 44	CO2 P+3+ 10.65P26	185642.9
1572,640000	6.0E -5	MBA# 0+	CH6MO 21	CO2 P+4- 10.44P4	0 190630.0
1549.505000	2.0E -6	DMI# -1	DY6 31	CO2 P+3+ 9.33 R10	193476.3
1541.750710	1.0E -6	FAA# -1+	DY8 17	CO2 P+3+ 9.64P30	194449.4
1521.376174	2.5E - 6	EF * -2	RA2RA143	CO2 +4- 9.47P10	197053.5
1440.000000	2.0E -2	EF = -3	RA2	CO2 +3+ 9.46P08	208000.0
1400.000000	1.0E -2		JEN 7	CO2 +4 10 K30	214000.0
1394.002/00	1.0E -0	VB = U-	DI9 43	CO2 P+3+ 10.25R20	215631 5
1303.002310	1.0E =0		CH6 2	CO2 P+3+ 10.03P24 CO2 N+5- 0.27 P20	_15 221780.0
1350 000000	1 OE -2	EC = -2	JEN 6	CO2 + 4 + 10 = R30	222000.0
1310.380000	8.0E -5	MBA# +1-	CH6MO 19	CO2 N+4 10.37 R4	-30 228780.0
1290.000000	5.0E -3	MAD [#] -1	DY7 49	CO2 P+3+ 10.25R20	232000.0
1281.648710	1.0E -6	FAC* -1-	DY8 9	CO2 P+3+ 9.71P38	233911.6
1253.738200	2.0E -6	MI * +1	DY6CH6	CO2 P+4- 10.72P32	+25 239118.9
1247.594120	1.0E -6	VB * - 1+	DY9 41	CO2 P+3+ 10.30R12	240296.5
1239.479800	2.0E -6	DMC* 0	DY6 6	CO2 P+3+ 9.49 P12	241869.6
1237.965870	1.0E -6	FAB# -1-	DY8 7	CO2 P+3+ 10.22R24	242165.4
1223,658340	2.0E -6	MA * -1	RA2TA1 0	CO2 +3+ 9.52P16	244996.9
1221.790000	4.0E -5	MF13 0	CH5RE1	CO2 P+4 9.00P32	-20 2453/2.0
1213.302500		ra = i vov≢ ⊃		CO2 +3+ 9.02F20	247075.0
1174.000000	2.02 -2	MAC# 0	CHE 40	CO2 P+3+ 10.14R30	-15 255 170.0
1164 830000	9 OE -5	MCY# _1_	СНБ 10	CO2 P+4+ 9.47 P10	+45 257370.0
1161.676650	1.0E -6	FAA# -1	DY8 37	CO2 P+3+ 10.25R20	258068.8
1157,500000	2.0E -3	FAC# -2+	DY8 40	CO2 P+3+ 10.48P08	259000.0
1157.318140	1.0E -6	FAA* -1-	DY8 51	CO2 N+3+ 10.14R38	259040.7
1156.000000	2.0E -2	VCY# -4-	RA1 45	CO2 +4- 10.65P26	259000.0
1146.000000	5.0E -3	MAD* - 1	DY7 35	CO2 P+3+ 9.59 P24	262000.0
1100.000000	5.0E -3	MAD# -1+	DY7 26	CO2 P+3+ 9.49 P12	273000.0
1099.544200	2.0E -6	DMI*	DY6 47	CO2 P+3+ 10.61P22	272651.6
1097.110000	9.0E -5	MAC* 0-	CH6 4	CO2 P+4 9.46 P8	-20 273260.0
1086.890000	9.0E -5	MCY* -1+	CH6 17	CO2 N+4 9.73 P40	+40 275830.0
1070.230740	1.05 -0	FAC= -2-	DIO 4	CO2 +3+ 9.49P12	200119.5
1063 200000	2.05 -2	EF = = 3+	CH6 18	CO2 +3+ 9.33010	+5 281950.0
1017 578660	1 08 -6	- FΔR# Ο	0110 10	CO2 N+3+ 10 ROP30	286176 6
1041.000000	2.0E -2	VC * -3+	RA1 61	CO2 + 4 = 10.15 R36	288000.0
1030.378362	1.0E -6	FA13*-1-	DE1 6	CO2 +3+ 9.22R30	290953.8
1020.000000	3.0E -2	DF * -1	HO1 9	CO2 +3 10.53P14	294000.0
1016.330000	1.0E -4	MCY* -1-	CH6 9	CO2 P+4- 9.46 P8	-40 294980.0
1014.890000	1.0E -4	MCY# -2+	СН6 4	CO2 N+4+ 9.31 R14	-20 295390.0
1009.409490	1.0E -6	FAC [#] O	DY8 18	CO2 P+3+ 10.26R18	296997.9
1007.000000	2.0E -3	N2H4 *- 1	DY3 26	CO2 N 10.61P22	297700.0

1005.347700	2.0E -6	DMI#	1	DYG	50	CO2 F	°+3+	10.74P34		298197.8
1005.230144	1.7E -6	EF *	-2	RA2RA1	142	C02	+3+	9.62P28		298232.7
998.514180	1.0E -6	FAC*	-1+	DY8	6	CO2 F	2+3+	9.49P12		300238.6
995.000000	2.0E -2	VC *	-3+	RA 1	60	C02	+3+	10.21R26		301000.0
992.000000	5.0E -3	MF *	0	DW4	5	CO2SN	∛+ 3	9.54P15	+30	302000.0
990.630410	1.0E -6	VB *	-1-	DY9	40	CO2 F	?+3	10.37RO4		302628.0
990.510000	1.0E -4	MBR₩	0	снб	23	CO2 E	2+5-	10.49P10	0	302660.0
990.000000	2.0E -3	DF *	-1	DY 1	9	CO2 H	2	10.61P22		302800.0
989, 190560	1.0E -6	VB *	0-	DY9	39	CO2 1	N+3+	10.55P16		303068.5
986.312680	1.0E -6	FAA*	0-	DY8	46	CO2 1	P+3+	10.17R32		303952.8
985,858920	1.0E -6	VB *	-1	DY9	38	CO2 1	N+3	10.38R02		304092.7
981.709500	2.0E -6	DMI*		DY6	48	C02 I	P+3+	10.61P22		305378.0
971.806530	1.0E -6	FAB*	-1-	dy8	8	CO2 1	P+3+	10.19R28		308489.9
968.000000	5.0E -3	MAD*	-1	DY7	9	CO2 1	P+3+	9.27 R20		310000.0
964.000000	5.0E -3	MI *	-1	DY6	21	CO2 1	P+3+	10.61P22		311000.0
963.487470	1.0E -6	VB *	+1-	DY9	37	C02 1	N+3+	10.49P10		311153.5
958,250000	1.0E -4	MC *	0-	CH6	8	C02	P+4+	9.71 P38	-50	312850.0
953,880100	2.0E -6	DMI*	0	DY6	26	C02	P+3+	9.23 R28		314287.4
948.924852	1.0E -6	TRI*	-1-	DA2	20	C02	+3	9.25R24		315928.6
943.970000	1.1E -4	MC *	+1	CH6JE	N 5	C02	P+3+	9.32 R12	-30	317590.0
940.000000	2.0E -2	VCY*	-4	RA 1	44	C02	+4-	10.68P28		319000.0
936.602480	1.0E -6	FAC*	-1-	DY8	50	C02	P+3+	10.65P26		320085.1
936.159100	1.0E -6	VB *	-1+	DY9	36	C02	N+3+	10.17P32		320236.7
935,009590	1.0E -6	FAC*	0	DY8	8	C02	P+3+	9.52P16		320630.4
935.000000	2.0E -2	VC *	-3-	RA1	59	C02	+3	10.89P46		321000.0
934.223180	1.0E -6	VB 🕷	-1	DY9	35	C02	P+3+	.9.62P28		320900.3
933.000000	2.0E -2	FA *	-3	RA2		C02	+3	10.29R14		321000.0
927.981510	1.0E -6	FAC*	-1	DY8	48	C02	P+3+	10.59P20		323058.7
926.208840	1.0E -6	FAA*	+1	DY8	34	C02	N+3+	10.29R14		323677.0
925,520000	1.1E -4	MBA	+1	CH6MO	8	C02	P+4-	10.09R46	-35	323920.0
925.000000	2.0E -2	FA #	-3	RA2	•••	C02	+3	10.17R32		324000.0
919,935670	1.0E -6	FAA*	+ +1	DY8	45	C02	P+3+	10.17R32		325884.2
918.610200	2.0E -6	DMI	++1	DY6	25	C02	P+3+	9.23 R28		326354.4
910.000000	2.0E -2	VCY*	F _4	RA 1	43	C02	+4	10.30R12		329000.0
900,133970	1.0E -6	VB *	-1	DY9	34	C02	N+3+	10.26R18		333053.2
900.000000	1.0E -2	EC 🕯	1 -1	JEN	5	C02	+4	10 R30		333000.0
895.000000	5.0E -3	DMI	ł	DY6	49	C02	P+3+	10.70P30		335000.0
891.000000	5.0E -3	TRI	-1-	DA2	19	C02	+3	9.27R20		336000.0
890,100000	2.0E -3	DF I	-1	DY 1	8	C02	Ρ	10.61P22		336800.0
890.000000	5.0E -3	TRI	• -1-	DA2	18	C02	+3	9.24R26		337000.0
890.000000	2.0E -3	DF 1	• -1	DY 1	7	C02	Р	10.61P22		336800.0
884.000000	3.0E -2	DF	• 0	HO 1	7	C02	+3	10.51P12		340000.0
883.598200	2.0E -6	DMC	• 0	DY6	11	C02	P+3+	9.68 P34		339286.0
877.548220	1.0E -6	FAC	• 0+	DY8	49	C02	P+3+	10.65P26		341625.1
871.585090	5.0E -7	MAD	* +1	PE2D	27	C02	P+3+	10.26R18		343962.4
870.800000	1.1E -4	MC	0	CH6	11	C02	P+4-	9.86 P52	+30	344270.0
869.000000	5.0E -3	DME	¥. –1	DH	2	C02	+3+	10.26R18	-20	345000.0
854,410000	1.2E -4	MCY	* -1	CH6	11	C02	P+4+	9.52 P16	-10	350880.0
853.438120	1.0E -6	VB	* -1+	DY9	33	C02	N+3+	10.49P10		351276.2
851,900000	1.2E -4	EF	* -3+	RA1/1	AW	C02	+3+	9.64P30		351910.0
843.236970	1.0E -6	FAC	* - 2	DY8	5	C02	P+3+	9.49P12		355525.8
835.000000	2.0E -3	FAC	* -1-	DY8	22	C02	P+3+	10.25R20		359000.0
831.130000	1.2E -4	MBB	* +1-	CH6M	0 31	C02	P+4+	- 10.67P28	+10	360700.0
829.000000	5.0E -3	DME	C * 0-	ZD	7	C02	+3+	- 10.46P06		362000.0
828.000000	2.0E -2	VCY	* _4	RA 1	42	C02	+4-	- 10.26R18		362000.0
828.000000	2.0E -2	VC	* -3+	- RA1	58	C02	+3+	9.59P24		362000.0
826.944440	1.0E -6	٧B	* -2+	DY9	32	C02	N+3+	- 10.61P22		362530.4
825.900000	2.0E -3	FAA	* -1	DY8	10	C02	P+3+	- 9.49P12		363000.0
819.100000	2.0E -3	FAA	* -34	- DY8	65	C02	P+3+	⊦ 10.76P36		366000.0
815.000000	5.0E -3	TRI	* -1-	DA2	17	C02	+3	9.66P32		368000.0
813.757290	1.0E -6	FAA	* -1-	- DY8	9	C02	P+3+	► 9.49P12		368405.3

BUS

812.400000	2.0E -3	FAC# -1+	DY8 37	CO2 P+3+ 10.44P04		369000.0
806.000000	5.0E -3	DMIA * O	DH 4	CO2 +3 10.51P12		372000.0
802.400000	2.0E -3	N2H4 * -1	DY3 25	CO2 P 10.22R24		373600.0
795.200000	2.0E -3	FAC* -2+	DY8 36	CO2 P+3+ 10.44P04		377000.0
795.000000	2.0E -3	N2H4 * -1	DY3 24	CO2 N 10.72P32		377100.0
793.000000	2.0E -2	VCY# -4	RA1 41	CO2 +4- 10.13R40		378000.0
792.000000	5.0E -3	DMC# 0+	DH 1	CO2 +3 9.62P28	-35	379000.0
789.839690	1.0E -6	FA * -1	DY8 20	CO2 P+3+ 9.19R36		379561.2
789.420400	1.0E -6	FAC [#] 0+	DY8 21	CO2 P+3+ 10.25R20		379762.8
788.919327	1.0E -6	FA13 # -1+	DE1 5	CO2 +3+ 9.49P12		380004.0
788.481700	2.0E -6	DMI#	DY6 45	CO2 P+3+ 10.51P12		380214.9
786.942050	1.0E -6	FA # -1+	DY8 18	CO2 P+3+ 9.21R32		380958.8
786.161790	1.0E -6	FA * -1-	DE1RA1	CO2 +3- 9.17R40		381336.9
784.268250	1.0E -6	VB * -1-	DY9 31	CO2 P+3+ 10.63P24		382257.6
780.133070	1.0E -6	VB * -1+	DY9 30	CO2 P+3+ 10.29P14		384283.8
779.874520	1.0E -6	FAC* -1-	DY8 51	CO2 P+3+ 10.65P26		384411.2
775.000000	2.0E -2	VCY¥ -4	RA1 40	CO2 +3+ 10.12R42		387000.0
774.000000	5.0E -3	MAD [#] -2	DY7 38	CO2 P+3+ 9.64 P30		387000.0
767.000000	2.0E -2	DF * - 3	RA2	CO2 +3+ 10.49P10		391000.0
764,100000	5.0E -3	DF * -1+	BE1 1	CO2 N+3+ 10.49P10	۰,	392000.0
761.761800	1.0E -6	FAC [#] -1	DY8 42	CO2 N+3+ 10.49P10		393551.5
761.000000	2.0E -2	FA * -3-	RA1 10	CO2 +3+ 9.25R24		394000.0
760.000000	5.0E -3	MAD# -1	DY7 63	CO2 P+3+ 10.57P18		394000.0
752.748560	1.0E -6	FAB# 0	DY8 10	CO2 P+3+ 10.16R34		398263.8
752.680897	1.0E -6	FOB# -1-	DA2 5	CO2 +3 9.21R32		398299.6
750.000000	5.0E -3	TRI# -1-	DA2 16	CO2 +3 10.57P18		400000.0
750.000000	2.0E -2	MCY# -3	RA2	CO2 +3+ 9.52P16		400000.0
749.360000	1.3E -4	MBA*()	CH6M015A	CO2 N+4 10.29R14	-15	400060.0
749.290000	1.3E -4	MBA* 0+	СН6МО 24	CO2 N+4 10.53P14	+5	400100.0
745.000000	5.0E -3	DMI#	DY6 43	CO2 P+3+ 10.48P8		402000.0
745.000000	5.0E -3	MAD* -1-	DY7 13	CO2 P+3+ 9.24 R26		402000.0
744.050426	2.0E -6	FA * -1+	DA1DY8 9	CO2 P+3 9.25R24		402919.6
742.572357	2.0E -6	FA * 0-	DA1DY8 8	CO2 P+2+ 9.17R40		403721.6
741.620000	1.3E -4	MCY* -1+	СН6 6	CO2 N+4- 9.34 R8	+35	404240.0
741.114990	1.0E -6	VB * -2+	DY9 29	CO2 P+3+ 10.59P20)	404515.5
738.000000	2.0E -2	<u>VCY* -4-</u>	RA1 39	CO2 +4- 10.55P16		406000.0
736.600000	2.0E -3	FAC* -2+	DY8 35	CO2 P+3+ 10.44P04		407000.0
735.129800	2.0E -6	DMC# -1	DY6 4	CO2 N+3+ 9.44 P6		407808.9
734.262500	2.0E -6	DMI# 0	DY6 35	CO2 P+3+ 9.57 P22	•	408290.6
734.161682	1.2E -6	N2H4 *- 2	RA2 26	CO2 +3 10.14R38		408346.7
733.574063	1.0E -6	FOB# -1-	DA2 4	CO2 +3 9.66P32		408673.8
733.000000	2.0E -3	FAA [#] -1	DY8 49	CO2 P+3+ 10.15R36)	409000.0
730.323500	2.0E -6	DMI# 0	DY6 24	CO2 P+3+ 9.23 R28		410492.7
727.949240	1.0E - 6	FAA# -1+	DY8 53	CO2 P+3+ 10.11R42		411831.6
726.920370	1.0E - 6	FAC [#] 0-	DY8 41	CO2 N+3+ 10.49P10)	412414.5
724.139970	1.0E -6	VB * -1+	DY9 28	CO2 P+3+ 10.53P14		413998.0
722.000000	2.0E -2	VCY# -4-	RA1 38	CO2 +4- 10.84P42	2	415000.0
722.000000	5.0E -3	MAD* -1-	DY7 65	CO2 N+3+ 10.59P20)	415000.0
721.000000	2.0E -3	N2H4 * -1	DY3 23	CO2 P 10.51P12	?	415800.0
719,300000	1.4E -4	MI * 0-	СН6 13	CO2 P+4+ 10.61P22	2 +25	416780.0
715.400000	1.4E -4	MBA# 0+	CH6MO 15	CO2 N+4 10.29R14	-15	419060.0
713.720000	7.0E -5	MCY# 0	CH5	CO2 P+4 10.72P32	2 -40	420040.0
713.105730	1.0E -6	FAB* 0+	DY8 9	CO2 P+3+ 10.16R34	ł	420404.0
712.000000	5.0E -3	TRI* -1-	DA2 15	CO2 +3 9.21R32	2	421000.0
712.000000	2.0E -3	VB * -2-	DY9 27	CO2 P+3+ 10.32R10)	421100.0
711.000000	5.0E -3	$MAD^{*} - 1$	DY7 24	CC2 P+3+ 9.46 P8	_	422000.0
710.400000	2.0E -3	FAB* -2	DY8 13	CO2 N+3+ 10.46PO6	5	422000.0
707.221080	1.0E -6	VB # -1-	DY9 26	CO2 P+3+ 10.22R2	1	423902.1
707.000000	2.0E -2	VC * -2	RA1 57	CO2 +4- 9.54P18	5	424000.0
705.400000	2.0E -3	FA * -1	DY8 2	CO2 P+3+ 9.35R06	5	425000.0
704.530000	1.4E -4	MCY * - 1	CH6 1	CO2 P+4 9.20 R3	4 -15	425520.0

.

- 3 -

703,000000	5.0E -3	MAD* 0	DY7 61	CO2 N+3+ 10.15R36		426000.0
702.000000	5.0E -3	MAD* 0-	DY7 34	CO2 P+3+ 9.59 P24		427000.0
699.422690	1.2E -6	MA * -1	PET/CH3	CO2 N 9.68P34		428628.5
699,000000	2.0E -2	VC * -3-	RA1 56	CO2 +4- 9.57P22		429000.0
698.555500	2.0E -6	DMC# 0	DY6 3	CO2 N+3+ 9.44 P6		429160.6
697,455270	1.0E -6	FAB* -1+	DY8 12	CO2 P+3+ 10.15R36		429837.6
696,000000	5.0E -3	TRI# -1-	DA2 14	CO2 +3 9.29R16		431000.0
695 672060	1.0E -6	FAA# 0-	DY8 48	CO2 P+3+ 10, 15R36		430939.4
695 000000	2 OE -3	MA ¥	HEN 1	CO2 P+4 10.27R16	0	431400.0
695 000000	5.0E -3	MAD* 0	DY7 25	CO2 P+3+ 9.47 P10		431000.0
694 170000	3.0E -4	MA *	HEN 1	CO2 P+4 9.59P24	0	431900.0
694 000000	4 OE -3	MA * -2	TA2 4	CO2 + 3 + 10.27 R16		432000.0
693 139730	1.0E -6	VB * 0	DY9 25	CO2 P+3+ 10.27R16		432513.8
692 400000	2.0E -3	FAA# -1-	DY8 32	CO2 N+3+ 10.30R12		433000.0
691 119300	2.0E -6	DMT# -1	DY6 29	CO2 P+3+ 9.27 R20		433778.2
690 000000	5 OE -3	DMTA#+1-	DH 3	CO2 +3 10.49P10		434000.0
680 008230	1 0E -6	FAA# 0+	DY8 42	CO2 P+3+ 10.21R26		434483.0
685 000000	5 0E -3	MAD* -1	DY7 58	CO2 P+3+ 10.16R34		438000.0
680 541540	1 OE -6	VB * 0+	DY9 24	CO2 P+3+ 10.27R16		440520.5
680 000000	5.0E -3	MAD# -2+	DY7 21	CO2 P+3+ 9.44 P6	1.4	441000.0
680 000000	5.0E -3	TRI# -1-	DA2 13	CO2 +3 10.74P34		441000.0
675 290000	1.5E - 4	MAC* 0-	CH6 7	CO2 P+4+ 9.73 P40	0	443950.0
670 990000	1.5E - 4	MT * 0*	CH6 15	CO2 P+4+ 10.67P28	+20	446790.0
670 114400	2 OE -6	DMT#	DY6 42	CO2 P+3+ 10.33R8		447375.1
670 094100	2 OE -6	DMT*	DY6 41	CO2 P+3+ 10.33R8		447388.7
669 530892	1.5E -6	FA #1-	DAIDY8 7	CO2 P+3 9.22R30		447765.0
667 700000	2 OE -3	FAA# -1	DY8 7	CO2 P+3+ 9.17840		449000.0
667 232300	2.05 -6	DMT#	DY6 44	CO2 P+3+ 10.49P10		449307.5
666 200000	2.0E -3	FAC# -1	DY8 53	CO2 P+3+ 10.70P30		450000.0
662 815621	2.05 -5	DF # _1	RA2DY147	CO2 P+3+ 10.63P24		452301.5
660 700000	1 55 -4		CH6 13	CO2 N+4 10.25R20	+25	453750.0
660 582300	2 0E -6	DMT#	DY6 54	CO2 P+3+ 10.88P46		453830.7
660 300000	2.0E -3	FAA# -1-	- DY8 31	CO2 N+3+ 10.30R12		454000.0
660 000000	2.0E -2	EF = -3	RA2	CO2 + 4 - 9.29R16		454000.0
658 530000	1.5E - 4	MBB# +1.	- CH6MO 5	CO2 P+4 9,90P56	0	455250.0
657,400000	2.0E -3	FAA* -1-	- DY8 14	CO2 P+3+ 9.57P22		456000.0
652 680000	1.5E - 4	MCY# -1-	CH6RA115	CO2 P+4+ 9.64 P30	-15	459330.0
649,425550	1.0E -6	VB # 0-	DY9 23	CO2 P+3+ 10.57P18		461627.2
648,000000	5.0E -3	MAD# 0	DY7 43	CO2 P+3+ 10.33R8		463000.0
647,890000	7.7E -5	$MAC^{\pm} + 1$	CH5	CO2 P 10.53P14	0	462720.0
647.348580	1.0E -6	FAB# -2-	DY8 11	CO2 P+3+ 10.18R30		463108.3
646.000000	2.0E -3	VB * -2-	DY9 22	CO2 N+3+ 10.21R26		464100.0
646.000000	5.0E -3	MAD# 0	DY7 60	CO2 N+3+ 10.15R36		464000.0
644,700000	2.0E -3	FAC* -1-	- DY8 26	CO2 X+3+ 10.22R24		465000.0
644.000000	5.0E -3	DMI*	DY6 46	CO2 N+3+ 10.55P16		466000.0
640.000000	5.0E -3	DMI*	DY6 40	CO2 N+3+ 10.26R18		468000.0
639.730000	1.6E -4	MI * -1-	+ CH6 5	CO2 P+4+ 9.44 P6	+20	468620.0
639.128250	1.0E -6	FAB [#] O	DY8 14	CO2 N+3+ 10.48P08		469064.7
638.000000	2.0E -2	VC * -3	+ RA1 55	CO2 +3+ 10.46P06		470000.0
635.354840	1.0E -6	VB * 0	DY9 21	CO2 N+3+ 10.21R26		471850.5
634.471007	2.1E -6	VC * 0	RA2CH337	CO2 P+3- 9.55P20		472507.8
632.000000	1.6E -4	MBR# -2	+ CH6 27	CO2 N+4 10.61P22	0	474360.0
631.930000	1.6E -4	MBR* -3	+ CH6 25	CO2 P+5- 10.55P16	+20	474410.0
631.000000	5.0E -3	DMEC* 0	- ZD 6	CO2 +3+ 10.26R18		475000.0
631.000000	2.0E -2	VCY* -4	RA1 37	CO2 +4- 10.35R06		475000.0
630.166210	1.0E -6	FAA* O	- DY8 29	CO2 N+3+ 10.32R10		475735.6
629.844300	5.0E -7	MA 13*	HEN2PE2	CO2 P+4 9.49P12	+25	475978.7
624.095870	1.0E -6	VB * O	- DY9 20	CO2 P+3+ 10.26R18	-	480362.9
623.000000	2.0E -2	VCY# -4	RA1 36	CO2 +4 10.30R12		481000.0
620.400000	1.6E -4	EF * -3	RA1/WA	CO2 +3+ 9.57P22		483220.0
619.000000	5.0E -3	TRI * -1	- DA2 12	CO2 +3 10.23R22		484000.0

805 LILLE

618,446250	1.0E -6	VB * -1	DY9 19	CO2 P+3+ 10.18R30		484751.1
616 000000	5 OE -3	MAD1* 0+	Z.D 37	CO2 +3+ 9.60P26		487000.0
614 920000	3 OF -4	MA #	HEN1	CO2 P+4 9.59P24	0	487500.0
614 100000	2 05 -6	DMT¥ ±1	DY6 39	CO2 P+3+ 10.23B22		488174.0
602 060000	2.05 -0		HEN1DY2	CO2 P 9 59P24	0	497100.0
601 807260	2.05 -6		RA2RA136	CO2 +3 10 79P38	•	498079.1
500 EN0000	2.06 -0			$CO2 P_{+}2 + 10 23P22$		500029 0
599.549900	2.0E -0		DIO 50	$CO2 P_{12} + 10.27P16$		500000 0
599.000000	5.0E -3		DI/ 40	02 + 3 + 10.21 + 10		501082 8
594.720000	1.0E -0	VB = -!-	DI9 10	CO2 N+3+ 10.72F32		505000 0
593.600000	2.0E -3		DIO 5	02 + 3 + 9.22 + 30		505000.0
593.505838	2.0E -6	EF = -2	RAZRA141	002 +3 9.09930		505121.0
592,500000	2.0E -3	FAC* -1+	DY8 46	CO2 N+3+ 10.57P18		506000.0
591.615820	1.0E -6	FAC# 0	D18 28	CO2 P+3+ 10.21R20		500735.1
590.100000	2.0E -3	FAA = -1	DY8 57	CO2 P+3+ 10.53P14		500000.0
586.600000	2.0E -3	VCY* -1	DY1 10	CO2 P 10.59P20		511000.0
585.720000	1.7E -4	MBB* +1-	CH6MO 4	CO2 P+4- 9.73 P40	+25	511840.0
584.000000	2.0E -3	VCY* -1	DY1 11	CO2 N 10.51P12		513000.0
583.870000	1.7E -4	MI * -1	СН6 3	CO2 P+4- 9.42 P4	0	513460.0
583.770000	1.7E -4	MAC* -2-	СН6 6	CO2 P+4 9.55 P20	-15	513550.0
583.000000	5.0E -3	MAD# 0	DY7 10	CO2 P+3+ 9.26 R22		514000.0
582.553690	1.0E -6	FAA* -1+	DY8 13	CO2 N+3+ 9.54P18		514617.8
580.801080	1.0E -6	FA * 0	DY8 30	CO2 N+3+ 9.71P38		516170.7
580.387297	1.0E -6.	FA * -1-	DE1	CO2 +3+ 9.26R22		516538.7
578.900000	1.7E -4	MI * 0	CH6 8	CO2 P+5- 10.16R34	-30	517870.0
578.000000	2.0E -2	VCY * - 3	RA1 35	CO2 +3+ 10.29R14		520000.0
576.170000	1.7E -4	MI * 0+	CH6 11	CO2 P+ + 10.55P16	-30	520320.0
574.400000	2.0E -3	VCY# -1	DY1 12	CO2 N 10.27R16		522000.0
570.568730	9.6E -7	MA * 0+	PET/CH3	CO2 P 9.52P16		525427.5
569.477400	2.0E -6	DMI#	DY6 52	CO2 P+3+ 10.76P36		526434.0
568.810000	1.8E -4	MC * -2+	CH6 14	CO2 P+5- 10.21R26	+5	527050.0
568.000000	3.0E -2	DF * -1	HO1 10	CO2 +3 10.63P24		530000.0
567.945978	1.9E -6	VC * -2	RA2RA135	CO2 +3 10.55P16		527854.0
567.868410	1.0E -6	FAC* +1-	DY8 27	CO2 P+3+ 10.21R26		527926.0
567,106580	1.0E -6	FAA# 0	DY8 56	CO2 P+3+ 10.53P14		528635.2
566,440000	1.8E -4	MAC* 0-	СН6 5	CO2 P+5- 9.54 P18	+25	529260.0
564,680000	1.8E -4	MBB*()	CH6M032A	CO2 +3+ 10.79P38	-5	530910.0
561.410000	1.8E -4	MCY# -1+	CH6 7	CO2 P+4+ 9.34 R8	+40	534000.0
561,293970	1.0E -6	FAC* 0+	DY8 47	CO2 N+3+ 10.59P20		534109.6
556.875600	2.0E -6	DMI*	DY6 51	CO2 P+3+ 10.76P36		538347.0
554,365310	3.7E -6	DF * 0	RA2DY146	CO2 N+3+ 10.53P14		540785.0
554,000000	5.0E -3	MAD* 0-	DY7 17	CO2 P+3+ 9.21 R32		541000.0
553,696310	1.0E -6	VB #1+	DY9 17	CO2 N+3 10.81P40		541438.5
553,000000	5.0E -3	MAD* 0+	DY7 42	CO2 P+3+ 10.33R8		542000.0
553,000000	5.0E -3	MAD# +1-	DY7 5	CO2 P+3+ 9.31 R14		542000.0
551,000000	5.0E -3	MAD# -1+	DY7 33	CO2 N+3+ 9.57 P22		544000.0
550,000000	2.0E -3	VCY# -1	DY1 13	CO2 P 10.53P14		545000.0
545,390000	1.8E -4	MBR# +1	CH6 10	CO2 P+4- 10.17R32	+20	549680.0
545,210000	1.8E -4	MBB# +1	СНБМО 32	CO2 P+3+ 10.79P38	-5	549870.0
542,990000	1.8E -4	MI # -3+	- CH6 14	CO2 P+4 10.65P26	+10	552110.0
540,000000	5.0E -3	DMT* -1	DY6 32	CO2 N+3+ 9.35 R6		555000.0
538,000000	2.0E -2	VC * -4	RA1 52	CO2 + 4 - 10.37 RO4		560000.0
534.800000	2.0E -3	FA * -1-	- DY5 18	CO2 +3+ 9.2 R24		561000.0
534 500000	2 OF -3	FA # _24	DY5 17	CO2 +3+ 0 5UP18		561000 0
533 700710	1 08 -5	FA # 0	DY8 16	CO2 P+3+ 0 23R28		561724 0
533 678300	1 OF _6			$CO2 P_{+} = 0 F2P16$		561717 5
533 655112	9 OF _6	N2HU# 0	BV3DA33E	CO2 N 10 22208		561772 0
533.000000	3.05 -0	NEF# 4	HO1 10			560000 0
532.000000	2.0E -2					560000.0
532.000000	1 05 1	MAC# -3	ראה סו ראה י	002 +++ 9.52F10	0	561500.0
531.000000	1.95 -4	MPD# . 4		CO2 ETT 9.44 EO	5	56HEAA A
531.000000	7.95 -4 2 AF 2		- UNU - 20	CO2 0.2. 0 72010	-0	504500.0
220.000000	2.0E -3	raa* -24	- DIO - 53	UUZ F+3+ 9./3P40		505000.0

BUS

529,280000	1.9E -4	MI * +1-	CH6 17	CO2 P+4+ 10.76	P36 0	566400.0
528,496600	1.0E -6	VB * -1+	DY9 16	CO2 N+3 10.13	R40	567255.3
527 873029	1.8E -6	N2H4#-2	RA2 24	CO2 +3 9.49	P12	567925.0
527 214660	1 OE -6	FAC* 0+	DY8 56	CO2 P+3+ 10.74	P34	568634.6
526 485720	1 OE -6	FAC* 0+	DY8 55	CO2 P+3+ 10.74	P34	569421.9
525 320000	1 OF -4	MT #1	СН6 4	CO2 P+4- 9.42	P4 -25	570700.0
525.520000	2 05 -6		DY6 53	CO2 P+3+ 10.79	P38	572772.0
523.400200	2.05 -0			CO2 + 4 - 10 55	P16	570000.0
523.000000	2.06 -2				R12	577000 0
520.000000	5.0E -3	DMEC- 0-	2U 5	002 + 3+ 10.30	N12 026	577298 0
519.303300	2.0E -0			$002 + 3 + 9 \cdot 09$		577551 0
519.075281	2.6E -0	EF = -2	RAZRA 140	CU2 + 3 + 9.57	NU4 -	590000 0
519.000000	2.0E -2	VC * -3-	RA1 50	CO2 + 4 - 10.74	P34	500000.0
518.000000	5.0E -3	MAD2* 0-	ZD 18	CO2 +3+ 9.04	P30	579000.0
517.330000	1.9E -4	MI * 0-	CH6 10	CO2 P+5- 10.53	P14 +30	579500.0
517.000000	5.0E -3	MAD* -1	DY7 70	CO2 P+3+ 10.84	P42	580000.0
516.770000	1.9E -4	MAC * -2-	CH6 2	CO2 P+4+ 9.32	R12 +35	580100.0
515.169620	1.0E -6	FA 🕈 O	DY8 24	CO2 N+3+ 9.52	P16	581929.7
514.950780	1.0E -6	FAC [*] O+	DY8 54	CO2 P+3+ 10.74	P34	582177.0
513.015750	1.0E -6	FA * +1-	DY8 15	CO2 P+3+ 9.23	R28	584372.9
513.002316	1.5E -6	FA * 0	DA1DY8 6	CO2 P+3- 9.23	R28	584388.2
512,000000	5.0E -3	TRI# -1-	DA2 11	CO2 +3 10.81	P40	586000.0
511,900000	2.0E -4	MC * -1-	CH6 12	CO2 N+4- 10.07	'R52 0	585600.0
511,500000	5.0E -3	DFM# -2	DW3 1	CO2 N+3+ 9.23	R28	586000.0
510 160000	2.0E -4	$MCY^{(-1)}$	CH6 8A	CO2 N+4- 9.44	P6 -10	. 587600.0
508 791210	1.0E -6	FAC* 0	DY8 39	CO2 N+3+ 10.48	3P08	589225.0
508 480000	2 OE -4	MBR# 0+	СН6 9	CO2 P+4- 10.1	R42 +30	589600.0
508 370000	2 OF _4	MT # +1	СН6 7	CO2 P+4 9.68	P34 0	589700.0
508 10000	2 OF -3	FAC* = 2	DY8 30	CO2 P+3+ 10.19	R28	590000.0
508,100000	E.0E -3		DIC 010	CO2 P+3+ 9 46	P8	590000.0
500.000000	5.0E -5	MC = 0		CO2 N+3+ 10 6'	1922	590626.0
501.504007				$CO2 B_{12} = 10.0$	1228	592000 0
506.000000	2.05 -3		D19 15		12	600000 0
503.000000	2.0E -2	VCI4-	RAI 34			596884 0
502.262415	1.7E -0		RAZRA 139	002 + 3 9.2	7n24 7pili	602000 0
498.000000	2.0E -3	FAA= -I-	DIO 24	002 P+3+ 9.7	544	602000.0
498.000000	2.0E -3	DMA* -1	DI2 32	CU2 P 9.00)r 32 5 poli	602000.0
498.000000	5.0E -3	MAD* -1	DW2 10	CO2 P+3+ 10.11	2R34 = 220 . 111	6012000.0
496.101009	8.0E -7	MF # 0+	KWICH5 6	CO2 N+3- 9.5	5P20 +44	604291.3
496.072000	5.0E -6	MF # 0	CH2,3 2	CO2 N 9.5	5P20 -50	606000 0
495.000000	6.0E -3	MA * -2	TA2 2	C02 + 3 + 10.3	(RU4	606000.0
495.000000	5.0E -3	MAD* 0-	DY7 47	CO2 P+3+ 10.2	5818	606000.0
494.646122	1.6E - 6	MCY* +1-	RA2,1CH6	CO2 N+3 9.4	4P06 -10	606074.7
493.156260	1.0E -6	FAA* -1+	DY8 52	CO2 P+3+ 10.1	3R40	607905.7
491.890660	1.0E -6	FAC [#] O	DY8 38	CO2 N+3+ 10.4	3P08	609469.8
490.391000	2.0E -6	DMI * +1	DY6 28	CO2 P+3+ 9.26	R22	611334.0
490.083010	1.0E -6	VB * .0-	DY9 14	CO2 P+3+ 10.5	5P16	611717.8
489.000000	2.0E -2	VCY# _4_	RA1 33	CO2 +4- 10.4	8p08	610000.0
487.226100	2.0E -6	DMI [#] O	DY6 33	CO2 P+3+ 9.47	P10	615305.0
487.000000	2.0E -2	VC * -4-	RA1 49	CO2 +4- 9.4	7910	620000.0
486,100000	2.0E -3	MA * +1-	WE1 2	CO2S +3+ 9.6	8P31	617000.0
486,000000	2.0E -2	EF * -2-	RA1 19) CO2 +3+ 9.2	5R24	620000.0
483,500000	2.0E -3	N2H4# 0	DY3 2	CO2 P 9.5	5P20	620000.0
483.000000	5.0E -3	MAD2*-1+	ZD 17	CO2 +3+ 9.4	4P06	621000.0
483.000000	5.0E -3	MAD* -1	DY7 68	B CO2 P+3+ 10.6	5P26	621000.0
483.000000	5.0E - 3	MAD* 0-	DY7 1	1 CO2 P+3+ 9.26	R22	621000.0
482 961570	1.0E - 6	VB * -1-	DY9 1	3 CO2 N+3+ 10.6	5P26	620737.8
180 210200	2 08 -6	DMC* 0	DY6 1	CO2 N+3+ 0 60	P36	624164 0
180 010000	2.05 -0	MCY#(_1)	CH6 21	$CO2 N \perp \mu = 0.20$	R16 0	624600 0
	5 05 -7		. DY7 20	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	P16	625000 0
	5.08 -3	EA124		- 002 HTJT 3.92	O RUA	625000.0
	5.0E -3	FRI3=		+ 0.2 $+3+10.0$	2010	625000.0
479.904040	1.0E -0			$0 0 \geq r + 3 + 10.5$	5r 14	624092.0
478,900000	2.08 -3	FAC= -2+	• DIO 10	J CUZ P+3+ 10.5	(KU4	020000.0

(BUS) ULLE

477.870000	2.1E -4	MI * - 2+	СН6 6	CO2 P+5- 9.60 P26	+10	627400.0
477.400000	2.0E -3	FAA* -2+	DY8 11	CO2 P+3+ 9.50P14		628000.0
472.900000	2.0E -3	FAA [#] -1	DY8 6	CO2 N+3+ 9.18R38		634000.0
472,100000	2.0E -3	FAA [#] O	DY8 59	CO2 P+3+ 10.55P16		635000.0
472.000000	5.0E -3	MAD# -2+	DY7 7	CO2 P+3+ 9.29 R16		635000.0
469.200000	2.0E -3	FAC [#] -1	DY8 43	CO2 N+3+ 10.51P12		639000.0
469.023350	7.8E -7	MA # -1+	PET/RA1	CO2 +3 10.14R38		639184.6
469.000000	5.0E -3	$DMEC^*-1+$	ZD 4	CO2 +3+ 10,37R04		639000.0
468.000000	5.0E -3	MAD1# 0-	ZD 36	CO2 + 3 + 9.60P26		641000.0
466.546180	1.0E -6	FAB# 0-	DY8 15	CO2 N+3+ 10.53P14		642578.4
466.250000	2.1E -4	$MCY^{\pm}(0-)$	CH6 3A.	CO2 N+4- 9.29 R16	0	643000.0
464.756800	2.0E -6	$DMC^{+} + 1$	DY6 17	CO2 P+3+ 10.25R20		645052.0
464.300000	2.0E -3	DF * -1	DY1 4	CO2 P 10.25R20		646000.0
461.384800	5.0E -7	MA13* 0+	HEN2PE2	CO2 N+4 9.49P12	-20	649766.7
461.261100	1.0E -6	FAA* +1	DY8 58	CO2 P+3+ 10.55P16		649941.0
461.200000	2.2E -4	MC * -2+	СН6 1	CO2 N+3+ 9.17 R42	-25	650000.0
461.071901	1.5E -6	N2H4#-1	RA2DY323	CO2 N+3 10.55P16		650207.7
460.562000	2.0E -6	DMI# +1	DY6 30	CO2 N+3+ 9.32 R12		650928.0
460.000000	5.0E -3	TRI# -1-	DA2 10	CO2 +3 9.27R22		652000.0
459.180000	2.2E -4	MI * -1+	СН6 9	CO2 N+5- 10.47P8	0	652900.0
458.522975	1.5E -6	FA # 0-	DA1DY8 5	CO2 N+3- 9,18R38	•	653822.2
458.000000	3.0E -2	DFE# -1	HO1 11	CO2 + 3 10.59P20		650000.0
458.000000	2.0E -3	DF # -1	DY1 3	CO2 P 10.70P30		655000.0
457.341050	1.0E -6	FAC* -1+	DY8 52	CO2 P+3+ 10,70P30		. 655511.9
457.250000	2.2E -4	MI *().	CH6 12A	CO2 P+3 10.57P18	0	655600.0
455.000000	5.0E -3	MAD# -1+	DY7 30	CO2 P+3+ 9.54 P18	•	659000.0
453.397496	1.5E -6	MCY# 0	RA2.1CH6	CO2 N+3+ 9.29R16	0	661213.4
452,200000	2.0E -3	FAC [#] -1	DY8 13	CO2 P+3+ 10.32R10	•	663000.0
452.000000	2.0E -2	EF # -3	RA2	CO2 + 3 + 9.26R22		660000.0
450.979970	1.0E -6	FAA# 0-	DY8 55	CO2 N+3+ 10.51P12		664757.9
450,100000	2.0E -3	$FAA^{+} - 1$	DY8 41	CO2 N+3+ 10.21R26		666000.0
449.799800	2.0E -6	DMC# +1	DY6 18	CO2 P+3+ 10.25R20		666502.0
448.533597	1.0E -6	FA13#-1+	DE1 3	CO2 + 3 + 9.26R22		668383.6
447.142200	2.0E -6	MI # +1+	DY6CH6	CO2 P+3 10.57P18	0	670463.0
446.873090	1.0E -6	FA # -1+	DY8 5	CO2 P+3+ 9.29R16	•	670867.2
446.800000	2.0E -3	FAA# -3+	DY8 16	CO2 P+3+ 9.62P28		671000.0
446.505501	7.0E -7	FA # -1	RA2DY5 8	CO2 + 3 + 9.26R22		671419.5
445.899630	1.0E -6	FA # -1+	DY8 10	CO2 P+3+ 9.27 R20		672331.8
445.000000	2.0E -2	VC # -3	RA1 48	CO2 + 4 - 10.26 R18		670000.0
445.000000	2.0E -3	VB # -1+	DY9 12	CO2 N+3+ 10.61P22		674000.0
444.800000	2.0E -3	FA # -1+	DY8 34	CO2 N+3+ 10.53P14		674000.0
444.386300	2.0E -6	DMI# +1	DY6 23	CO2 N+3+ 9.21 R32		674621.0
443.500000	2.0E -3	VB # -1+	DY9 11	CO2 N+3+ 10.63P24		676000.0
443.264600	2.0E -6	DMC# +1	DY6 5	CO2 P+3+ 9.47 P10		676329.0
442.800000	2.0E -3	FAC# -1-	DY8 44	CO2 N+3+ 10.53P14		677000.0
442.167850	1.5E -6	VC # -2	RA2 33	CO2 + 3 10.55P16		678006.0
441,150000	2.3E -4	$MCY^{(-1)}$	CH6 3C	CO2 N+4-9.29 B16	0	679600.0
438,506930	1.0E -6	VB * -1+	DY9 10	CO2 P+3+ 10.67P28	Ŭ	683666 5
437,451100	1.0E -6	FA # -1+	DY8 23	CO2 N+3+ 9.52P16		685316 6
435.771895	7.0E -7	N2H4# 0	RAZDY322	CO2 N+3+ 10 63P24		687957 4
435,000000	5.0E -3	MAD* -3	GW1	CO2 N+3+ 9 62P28		689000 0
433,235360	1.0E - 6	FAB# 0-	DY8 3	CO2 N+3+ 10 29F14		601085 3
433,200000	2.0E -3	FAA# -2+	DY8 36	CO2 P+3+ 10.27R16		602000 0
433,200000	2.0E -3	FAR# _2+	טע גע	CO2 P+2+ 10 KED16		602000.0
433, 103700	2.0E -6	DMT* -1	DY6 37	CO2 P+3+ 0 62 P28		602106 0
433,000000	5.0E -3	TRT# _1_	DA2 0			602000 0
432,666570	1.0E - 6	FA # 0+	DY8 9	CO2 Pi3 10.00144		602805 0
432 631350	3.0E -7	FA * 0+	KWIDYA 1	CO2 P+2 0 27P20		602051
432,400000	5.0E -3	DFM# _1	DW7 12	COS N+3* 0 32808		603000 0
432, 109420	1.0E - 6	FA # O	DASUAS	CU5 252 0 24000		603466 1
430.550000	1.2E _4	MCY# _1	CH5	CO2 P+1 10 57018	_15	606200.4
	· • • • • • • • •		U.1.	005 144 10.01510	-15	090300.0

(BUS)

430.438070	1.0E -6	FAA*	0	DY8 54	CO2 P+3+	10.46P06		696482.3
429,689850	1.0E -6	FAA*	0	DY8 60	CO2 P+3+	10.63P24		697695.1
428.870000	2.3E -4	MAC*	-2	СНб 1	CO2 P+4	9.18 R38	+35	699000.0
427.040000	2.3E -4	MCY*	-2+	CH6 14	CO2 N+4	9.60 P26	+15	702000.0
427.000000	2.0E -3	VB *	-2-	DY9 9	CO2 P+3+	10.22R24		702000.0
426 000000	5.0E -3	MAD2*	0-	ZD 16	CO2 +3+	10.14R38		704000.0
425 200000	2.0E -3	FAC*	0-	DY8 45	CO2 N+3+	10.57P18		705000.0
429,200000	2 OE -2	VC *	-3+	RA1 47	CO2 +4-	10.20R28		710000.0
	2.05 -2	VB #	-1-	8 970	CO2 P+3+	10.59P20		707000.0
122 780000	2 115 -11	MBR#	-2	СН6 12	CO2 P+5-	10.21R26	+50	709100.0
422.100000	5 05 -3	MAD¥	0_	DY7 32	CO2 P+3+	9.55 P20		710000.0
422.000000	5.0E -3	MAD	0-	DY7 55	CO2 N+3+	10 17R32		712000.0
421,000000	5.0E = 5		_1_	21 11d	CO2 P+3+	9.34R08		713127.6
420.391110	1.0E -0		_2.		CO2 P+3+	10 17832		715000.0
419.000000	2.0E - 3	MAD	-2+ +1-	PF2DY7	CO2 N+3+	10 15836		715987.6
410./11000	5.0E -1	FAD*	+1-	DAIDV8 2	CO2 R+3+	0 26R22		716156.8
410.012935		FA ~	0+	CHE 20	CO2 1+J-	10 65P26	+10	716700.0
418.310000	2.46 -4		1		CO2 P+3+	0 25821	+ 10	717000 0
418,100000	2.0E -3		-1 - (0)	010 12		0 60036		717550 0
417.800000	1.2E -4	MA *	(0)		CO2 N	9.09130		710000 0
417.100000	5.05 -3	DMA*	- 1+	BEI 2	CO2 N+3+	0 26822		710000.0
417.000000	2.0E -3	FAA	0	DIS 4	CO2 P+3+	· 9.20122		710000.0
417.000000	5.0E -3	DFM	-2	DW3 9	CO2 P+3+	9.32R12	15	710751 2
416.522400	1.0E -6	MA *	-2	HEN1TA2	CO2 +3	9.50 P14	-15	721000 0
416.000000	2.0E -3	VB =	-1	D19 6	CO2 N+3+	- 10.23R22		722000.0
415.200000	2.0E -3	FAC*	-1	DY8 17	CO2 P+3+	- 10.29214	115	722000.0
414.980000	2.4E -4	MBA*	+1+	СН6МО 20	CO2 P+4	10.30R2	+45	722400.0
414.100000	2.0E -3	FAC*	-1+	DY8 57	CO2 P+3+	- 10.86P44		724000.0
412.000000	5.0E - 3	MAD	-1	DY7 44	CO2 P+3+	- 10.30R12		720000.0
411.200000	2.0E -3	FAA*	- 1	DY8 22	CO2 P+3+	► 9.73P40		729000.0
411.000000	2.0E -3	AB #	-2+	DY9 5	CO2 P+3+	+ 10.21R26		729000.0
410.000000	5.0E -3	MAD*	-1+	DY7 40	CO2 P+3+	9.66 P32		731000.0
409.000000	5.0E - 3	MAD*	-1-	DY7 18	CO2 N+3+	9.20 R34		733000.0
407.720000	2.5E -4	MBR*	-2	СН6 2	CO2 P+5-	- 9.62 P28	-40	735300.0
407.293784	1.4E -6	DF *	-1	RA2H0145	CO2 P+3+	⊢ 10.53P14		736060.0
407.000000	5.0E -3	MAD*	-1+	DY7 20	CO2 P+3-	+ 9.16 R44		737000.0
406.000000	2.0E -2	DME*	OL	KON 5	CO2 N+3	10.30R12		740000.0
405.584846	9.5E -7	FA 🕇	0	RA2DY8 5	CO2 P+3-	- 9.28R18		739161.0
405.504475	1.4E -6	EF 🛎	-2	RA2RA138	CO2 +3	9.22R30		739308.0
405.000000	2.0E -3	FA 🛎	-1+	DY5,8 8	CO2 P+3-	+ 9.60P26		740000.0
404.000000	2.5E -3	EF *	-3-	RA1/WA	CO2 +4-	- 9.68P34		742000.0
404.000000	2.0E -3	FA 🛎	-1+	DY8 33	CO2 N+3	+ 10.11R42		742000.0
398.100000	2.0E -3	FAA¥	-1-	DY8 39) CO2 P+3	+ 10.23R22		753000.0
398.000000	5.0E -3	MAD*	0-	DY7 52	2 CO2 P+3	+ 10.19R28		753000.0
397.100000	2.0E -3	FAC*	0-	DY8 23	3 CO2 P+3	+ 10.23R22		755000.0
396.000000	2.0E -3	FAC#	0	DY8 20) CO2 P+3	+ 10.25R20		757000.0
396.000000	2.0E -3	VB *	-2+	- DY9 1	CO2 P+3	+ 9.68P34		757000.0
396.000000	1.0E -2	EA *	-2	JEN	1 CO2 +4	9 P32		757000.0
396.000000	5.0E -3	MAD1	* _1-	- ZD 35	5 CO2 +3	+ 9.54P18		757000.0
395.712440	1.0E -6	FAA*	04	DY8 30) CO2 N+3	+ 10.30R12		757601.9
395,148830	1.0E -6	FAC*	0	DY8 12	2 CO2 P+3	+ 10.32R10		758682.5
395,000000	2.0E -3	FAA#	-1	DY8 8	3 CO2 P+3	+ 9.47P10		759000.0
395,000000	2.0E -3	FAA*	-1	DY8 12	2 CO2 P+3	+ 9.52P16		759000.0
394,200000	2.0E -3	FA ¥	0-	DY5	7 CO2 +3	+ 9.29R16		761000.0
393 631131	4.0E -7	FA #	0-	- KW1DA1 :	2 CO2 P+3	9.28R18		761607.7
392 000000	2 OF -3	FAA#	-1-	DY8	2 CO2 P+3	+ 9.29R16		763000_0
302 1180000	2.05	MT 4				+ 9 30 R14	+5	763800 0
202 068701	6 KE -7	MA ¥	-2.	- DETCHOT	3 CO2 144		+)	764642 6
201 688700	1 05 -6	FAA #	1* 1		0 CO2 N+2	L 10 11228		765384 6
391.000100	2 KE 1	ГАА" МТ ¥	- 1·	- 010 D		כולם נוצי היי היי	+25	767700 0
390.530000	2.00 -4	MA N	· · · ·		5 CO2C F+4	0 50012 1 0 52012	729	760000
390,100000	2.0E -3				5 0023 + 3) - 3.74513		76000.0
390.000000	J.UE -3	DULL	-2	010 3	$u u \subseteq r+3$)T 7.00 F20	,	103000.0

BUS

389.907030	1.0E -6	FAC [#] O	DY8 14	CO2 P+3+ 10.30R12		768882.0
388.390000	2.6E -4	MCY# -2-	СН6 13	CO2 P+5- 9.57 P22	+30	771900.0
387.800000	2.0E -3	FAA* -1+	DY8 25	CO2 N+3+ 10.37RO4		773000.0
387.310000	2.6E -4	MCY# 0-	CH6RA1 5	CO2 N+4 9.32 R12	+15	774000.0
386.410000	2.6E <u>-</u> 4	MCY* -3+	CH6 18	CO2 P+4+ 9.79 P46	-15,	775800.0
386.200000	3.0E -4	MA *	HEN 1	CO2 N+4 9.50P14	-15	776300.0
386.000000	5.0E -3	MAD* 0-	DY7 28	CO2 N+3+ 9.52 P16		777000.0
385.909273	1.3E -6	VC * 0-	RA2CH332	CO2 N+3 10.61P22		776847.0
385.000000	5.0E -3	MAD* -2	DY7 37	CO2 N+3+ 9.64 P30		779000.0
384.000000	5.0E -3	TRI# -1-	DA2 8	CO2 +3 9.22R30		781000.0
383.284600	2.0E -6 ·	DMC [#] +1	DY6 2	CO2 P+3+ 9.20 R34		782167.0
380.565420	1.0E -6	FAC [#] +1	DY8 15	CO2 P+3+ 10.30R12		787755.5
380.020000	2.6E -4	MBR# +1-	CH6 14	CO2 N+4 10.26R18	+50	788900.0
378.570000	2.6E -4	MC * -1+	СН6 3	CO2 N+4+ 9.29 R16	+50	791900.0
377.450000	2.6E -4	MI * +1-	CH6DY4 1	CO2 P+4 9.29 R16	+5	794300.0
375.544948	1.3E -6	DF # 0	RA2DY144	CO2 P+3+ 10.51P12		798287.0
375.000000	5.0E -3	NH3A * -2	DW1 3	CO2 P+3 10.11R42		799000.0
374.000000	5.0E -3	MAD1* 0-	ZD 34	CO2 +3+ 10.88P46		802000.0
373.800000	2.0E -3	FAA# -2	DY8 18	CO2 P+3+ 9.68P34		802000.0
373.000000	2.0E -3	N2H4 * -1	DY3 18	CO2 N 10.30R12		804000.0
372.870000	1.3E -4	MCY# -1+	RA1CH5T3	CO2 +3 10.59P20	-30	804000.0
372.680000	1.3E -4	MF # +1	CH5	CO2 P+3 9.84P50	-50	804400.0
372.500000	2.0E -3	N2H4#-2	DY3 17	CO2 N 10.57P18		805000.0
372.000000	2.0E -3	FAA* -1-	DY8 47	CO2 N+3+ 10.15R36		. 806000.0
372,000000	2.0E -3	FAA# -1 .	DY8 61	CO2 P+3+ 10.65P26		806000.0
370.000000	2.0E -3	VB * -2	DY9 3	CO2 P+3+ 10.67P28		810000.0
370.000000	5.0E -3	MAD* 0+	DY7 14	CO2 P+3+ 9.24 R26		810000.0
370.000000	5.0E -3	MAD* -1+	DY7 36	CO2 P+3+ 9.62 P28		810000.0
369.967810	1.0E -6	FAA* O	DY8 43	CO2 P+3+ 10.19R28		810320.5
369.113762	6.2E -7	MA * +0+	PET/CH3	CO2 P 9.52P16		812195.4
368.861889	6.2E -6	N2H4#-1	RA2DY321	CO2 N 9.28R18		812750.0
366.900000	2.0E -3	FAC [#] -1	DY8 1	CO2 P+3+ 9.37R04		817000.0
365.200000	2.0E -3	FAB# -2+	DY8 1	CO2 P+3+ 10.30R12		821000.0
363.000000	5.0E -3	MAD2* 0+	ZD 15	CO2 +3+ 10.27R16		826000.0
363.000000	5.0E -3	MAD1#-1+	ZD 33	CO2 +3+ 10.27R16		826000.0
362,100000	2.0E -3	FAB# -1	DY8 18	CO2 P+3+ 10.59P20		828000.0
361.200000	2.0E -3	FAA# 0-	DY8 21	CO2 P+3+ 9.71P38		830000.0
359.900000	2.0E -3	FA * -1	DY8 19	CO2 P+3+ 9.20R34		833000.0
358,920000	3.0E -4	MA13#	HEN2	CO2 N+4 9.73P40	+35	835300.0
358.200000	2.0E -3	FAA* -2-	DY8 35	CO2 P+3+ 10.27R16		837000.0
356.000000	2.0E -3	VB * -1-	DY9 2	CO2 N+3+ 10.25R20		842000.0
356.000000	2.0E -3	FAA* -1+	DY8 63	CO2 P+3+ 10.70P30		842000.0
355.200000	2.0E -3	FAA# -1+	DY8 20	CO2 P+3+ 9.71P38		844000.0
355.000000	5.0E -3	MAD2 # 0-	ZD 14	CO2 +3+ 10.57P18		844000.0
353.100000	2.0E -3	FAA* 0-	DY8 62	CO2 P+3+ 10.67P28		849000.0
353.100000	2.0E -3	FAA [#] 0+	DY8 26	CO2 P+3+ 10.35R06		849000.0
353.000000	5.0E -3	MAD* -1+	DY7 1	CO2 P+3+ 9.35(R6)		849000.0
352.750000	2.8E -4	MBR* 0+	CH6 1	CO2 N+4+ 9.54 P18	+25	849900.0
352.500000	2.0E -3	DMA* -1	DY2 31	CO2 N 9.64P30		850000.0
352.000000	5.0E -3	MAD* O	DY7 4	CO2 P+3+ 9.31 R14		852000.0
352.000000	5.0E -3	MAD [¥] −1	DY7 15	CO2 P+3+ 9.23 R28		852000.0
351.900000	2.0E -3	FAC [#] O	DY8 16	CO2 P+3+ 10.29R14		852000.0
351.900000	2.0E -3	FAA* -1+	DY8 38	CO2 P+3+ 10.23R22		852000.0
351.000000	2.0E -3	FAA* -1	DY8 19	CO2 P+3+ 9.59P36		854000.0
351.000000	5.0E -3	MAD* -1	DY7 54	CO2 N+3+ 10.18R30		854000.0
350.200000	2.0E -3	FAC [#] O	DY8 34	CO2 P+3+ 10.13R40		856000.0
350,000000	5.0E -3	MAD* 0-	DY7 39	CO2 P+3+ 9.66 P32		857000.0
349.340000	2.9E -4	MC * +1	CH6JEN15	CO2 P+3+ 10.26R18	-5	858200.0
347.000000	2.0E -3	FAA* -1	DY8 27	CO2 N+3+ 10.33R08		864000.0
346.500000	2.0E -3	MA * -2+	DY2 21	CO2 P 9.57P22		865000.0
346.320000	2.9E -4	MCY# 0-	CH6 12	CO2 P+4 9.52 P16	- 10	865700.0

(AUS)

346 000000	5 OE -3	MAD* -1	GW1	CO2 P+3+	9.31R14		866000.0
346 000000	5.0E -3	MAD2*-1+	ZD 13	CO2 +3+	9.55P20		866000.0
342 000000	5.0E -3	DMEC* 0-	ZD 3	CO2 +3+	10.55P16		877000.0
341.800000	2.0E -3	FAB* -1	DY8 4	CO2 N+3+	10.27R16		877000.0
330 000000	2 OE -3	FAA* -1+	DY8 15	CO2 P+3+	9.62P28		882000.0
339 000000	2.0E -2	DME* OL	KON 8	CO2 N+3	10.37R04		880000.0
338 963800	5.0E -7	MA 13*	HEN2PE2	CO2 P+4	9.57P22	+15	884438.1
336.700000	3.0E -4	EF * -3+	RA1/WA	CO2 +4-	9.29R16		890400.0
336,300000	2.0E -3	FA * -1+	DY5.8 5	CO2 P+3+	9.31R14		891000.0
336,000000	5.0E -3	MAD* -2+	DY7 16	CO2 N+3+	9.21 R32		892000.0
336,000000	5.0E -3	MAD* -1	DY7 53	CO2 P+3+	10.18R30		892000.0
336.000000	2.0E -3	N2H4#-1	DY3 15	CO2 N	10.63P24		892000.0
335,708770	1.0E -6	FAC [#] 0-	DY8 2	CO2 P+3+	9.34R08		893013.6
333,960000	3.0E -4	MC * +2-	СН6 9	CO2 N+3	9.75 P42	+40	897700.0
333,150000	3.0E -4	MBR * ~2	СНб 22	CO2 P+5-	10.48P8	+35	899900.0
332,860000	3.0E -4	MBR# 0-	СН6 18	CO2 N+4	10.35R6	0	900700.0
332.603430	5.0E -7	MA 13*	PE2	CO2	10.27R16		901351.2
331.669450	1.1E -6	N2H4 # -1	RA2DY320	CO2 N+3+	9.49P12		903889.4
331.500000	2.0E -3	N2H4 *- 2	DY3 13	CO2 P	9.64P30		904000.0
330.000000	5.0E -3	DMA* -1+	BE1 3	CO2 N+3+	9.37 RO4	•	908000.0
328,457040	1.0E -6	FAB [#] O	DY8 19	CO2 P+3+	10.61P22		912729.7
327.000000	2.0E -3	N2H4 # -1	DY3 12	CO2 P	9.26R22		917000.0
326.100000	5.0E -3	DFM* -2	DW3 6	CO2 N+3+	9.31R14		919000.0
325.900000	2.0E -3	FAA [#] -1-	DY8 44	CO2 P+3+	10.18830		920000.0
325,200000	2.0E -3	FAC* -2+	DY8 29	CO2 P+3+	10.19828		922000.0
325.170000	3.0E -4	MA 13	HEN2	CO2 P+4	9.69936	-20	922000.0
324.100000	2.0E -3	FAA= -1-	DI8 28	CO2 P+3+	10.32810		925000.0
323.050000	2.0E -3	FACT 0-	DI8 31	CO2 P+3+	10.10830		920000.0
322.000000	5.0E -3	MAD1= 0-	ZD 32	CO2 +3+	9.49P12		931000.0
321.000000	5.0E -3	MAD* -1-		CO2 N+3+	9.29 110		934000.0
320.000000	2.05 -3		DIZ 30	CO2 P+3+	10 22824		937000.0
319.900000	2.05 -3	$\frac{\mathbf{F}\mathbf{A}^{*}}{\mathbf{D}\mathbf{M}\mathbf{C}^{*}} = 1$	DIO 32	CO2 P+3+	10 19828		943000.0
211 846005	5.08 -5 1 6F -6		RA2RA131	CO2 +3	9.37R04		952185.0
212 000000	5 OE -3	FA13#_1_	DE1 2	CO2 +3+	9.44P06		958000.0
312 000000	2.0E -2	DME*	KON 7	CO2 N+3	10.32R10		960000.0
312,000000	2.0E -3	FAB# -1	DY8 6	CO2 P+3+	10.22R24		961000.0
311,210000	3.2E -4	MBR# 0-	CH6 7	CO2 N+3+	10.08R50	+50	963300.0
311,200000	3.2E -4	MBE# 0	CH6MO 33	CO2 N+4-	10.81P40	+45	963300.0
311.200000	2.0E -3	MA * -1+	DY2 20	CO2 N	9.59P24		963000.0
311.100000	3.2E -4	MBR# 0	CH6 26	CO2 P+4	10.59P20	+10	963700.0
311.074746	1.0E -6	N2H4# 0	RA2DY319	CO2 P+3	9.55P20		963731.4
311.070000	3.2E -4	MBR* -2+	CH6 16	CO2 N+4	10.30R12	+30	963700.0
311.000000	2.0E -3	FA * 0-	DY5,8 4	CO2 P+3+	10.23R22		964000.0
310.000000	2.0E -3	FAC [#] 0+	DY8 25	CO2 P+3+	10.22R24		967000.0
310.000000	5.0E -3	MAD# 0-	DY7 51	CO2 N+3+	10.19R28		967000.0
309.000000	5.0E -3	MAD* -1-	DY7 64	CO2 P+3+	10.59P20		970000.0
308.000000	5.0E -3	MAD1* 0-	ZD 31	CO2 +3+	9.50P14	15	973000.0
307.780000	3.0E -4	MA13* 0-	HEN2PE2	CO2 P+4	9.57222	-15	974000.0
307.650000	3.2E -4	MC * 0-	• CH6 19	CO2 P+3+	- 10.97219	50	974500.0
305.726156	1.0E -7	DMA +1	BL1KON2	CO2 P+3+	· 9.34 RQ		900591.0
304.083210	1.0E -0	FAC* +1-	· DIO 24	CO2 P+3+	0 25 806		905009.1
304.050000	2.0E -3			CO2 P+3+	0 27 POL		900000.0
302.278164	1.08 -0	FA = +1-	URIDIO I	CO2 F+3-	0 E0011	_ 15	002700 1
301.994300	5.0E -7	МА " Моцич о	DADNY340		10 20P14	-15	994109.1 005078 0
301.275438	1.75 -0				201020112		0.00000
301.000000	2 OF 2	יס בייוע ו		002 1+3+	10 22821		1000000
299.000000	5 OF -2			002 PT3T	Q 35 R6		1003000.0
299.000000	208-3	FAC* -1	ר אית - 11 אית	CO2 P+3-	10,35R06		1006000.0
297.000000	5.0E -3	MAD* -1	DY7 8	CO2 N+3+	9.28 R18		1009000.0

297.000000	5.0E -3	MAD# 0-	DY7 57	CO2 P+3+	10.16R34		1009000.0
206 000000	5 05 3		70 20	CO2 . 2.	0 17010		1012000 0
290.000000	5.0E =3	MADA# 0	ZD 30		10 710		1015000.0
295.000000	5.0E -3	MADIT 0+	20 29	602 +3+	10.74834		1016000.0
294.811019	1.0E -7	DMA = +1	BL1KON2	CO2 P+3+	9.34 R8		1010097.2
294.280000	3.4E -4	MBR * O	CH6 11	CO2 P+4+	10.19R28	-40	1018700.0
293.780000	3.0E -4	MA * -2+	HEN1RA1	CO2 +4-	P+4-10.3	2R10	1020500.0
293.648000	2.0E -6	DMC* +1	DYG 9	CO2 N+3+	9.59 P24		1020925.0
292.500000	1.7E -4	MA * -1	CH3 11	CO2 N	9.68P34		1024900.0
202 200000	17E_4	MA #1	CH3 20	CO2 P	0 71238		1026000 0
201 000000	205 2			CO2 8.2.	10 72922		1027000.0
291.900000	2.06 -3		DIO 04	002 F+3+	10.12532	20	1027000.0
291.610000	3.05 -4	MA13*	HEN2	CO2 P+4	9.09130	-20	1020100.0
290.620000	3.0E -4	MA 🕈	HEN 1	CO2 N+4	9.49P12	-5	1031600.0
290.200000	5.0E -3	NH3* -1-	DW4 3	CO2SN+3	9.56P17	-130	1033000.0
290.000000	5.0E -3	MAD [#] -1	DW2 21	CO2 N+3+	10.57P18		1034000.0
288,500000	2.0E -3	DF # -1	DY1 1	CO2 P	10.51P12		1039000.0
288.000000	2.0E -2	MAM# -2	RA1 13	CO2 +3+	9.37R04		1040000.0
288 000000	5 OE -3'	DMC# -1	DY6 8	CO2 P+3+	9 52 P16		1041000 0
288 000000	5 OF -3		DY6 16	CU3 8+3+	10 26 P18		1041000 0
200.000000	J.06 - 3		010 10	CO2 P 2	10.20110		1047000.0
201.301090		$PAD^{-} + (-)$	PEZDI (1043404.0
200.000000	3.55 -4	MCI*(-1)	CHO 19A	CO2 P+3+	9.04 P50	+50	1045000.0
286.790000	3.5E -4	MC * -1+	CH6 13	CO2 N+4+	10.16R34	-35	1045300.0
286.724190	5.0E -7	MAD# 0+	PE2DY7	CO2 P+3+	10.63P24		1045578.0
286.197460	5.0E -7	MAD* -1+	PE2DY7	CO2 P+3+	9.73P40		1047502.3
286.000000	1.0E -2	MA # 0	TA2 9	CO2 +3-	10.09R48		1050000.0
283.100000	2.0E -3	FAC* -1+	DY8 3	CO2 P+3+	9.29R16		1059000.0
283,000000	2.0E -3	VB * -1-	DY9 1	CO2 P+3+	10.25R20		1059000.0
281.980000	3 5E -4	MCY# 0-	СН6 19	CO2 P+3+	9 84 P50	+50	1063200.0
281 670000	3 6E _4	MC *()	снб ЦА	CO2 P+4-	0 31 R14	+45	1064300 0
281 500000	2 OF -3	MA # _1	DY2 19	CO2 P	Q 2 R		1065000 0
281 180000			CU6 16	CO2 NUL	0 68 021	-20	1066200 0
280 060000				CO2 R+4	0 28 9 1 8	-20	1067000.0
200.900000	5.06 -4	MA -		002 244	9.20010	+9	100,000,0
200.239700	5.0E -/	MA 13*	PEZ	02	10.2/810		1009//1.4
200.210300	5.08 -1	MAIJ	PEZ	002	10.27810	-	1009053.4
279.810000	3.68 -4	MBR# -2	CHO O	CO2 P+4	10.07852	. 0	1071400.0
279.400000	2.0E -3	DMA* -1	DY2 29	CO2 N	9.66P32		1073000.0
279.000000	5.0E -3	FOB* -1-	DA2 3	CO2 +3	10.48P08		1075000.0
278.800000	1.8E -4	MA * -1	CH3 21	CO2 P	9.71P38		1075300.0
278.500000	2.0E -3	FA * -1+	DY5,8 2	CO2 P+3+	9.64P30		1076000.0
278.000000	5.0E -3	MAD* -1	DY7 50	CO2 P+3+	10.22R24		1078000.0
277.000000	5.0E -3	MAD [#] -1	DY7 12	CO2 P+3+	9.24 R26		1082000.0
276.715760	5.0E -7	MAD# 0	PE2DY7	CO2 P+3+	10.67P28		1083395.1
276.050000	2.0E -3	FAC* 0-	DY8 7	CO2 P+3+	9.52P16		1086000.0
275.090000	3.6E -4	MC # -1-	CH6 2	CO2 P+4-	9 19 R36	+10	1089800.0
275.000000	3 6E -4	MC * 0+	СН6 4	CO2 P+4-	9 31 R14	+45	1090200.0
274 000000	1 05 -2	MA # _1_	TA2 8	CO2 +4	10 10846		1000000
272 000000	5.08 -2	MAD1# 0	7D 28	002 +4	0 25920		1102000.0
272.000000	2.05 - 3	FAD# 1.	DV8 20		10 70020		1102000.0
272.000000	2.06 -5	FHD= =1+		002 F+3+	10.10230		1102000.0
272.000000	5.05 -3	DMI* -1	DIO 34	CU2 N+3+	9.49 P12		1102000.0
271.500000	2.08 -3	N2H4*-2	DI3 9	CO2 P	10.57118		1104000.0
271.290000	3.7E -4	MC * 0-	CH6 17	CO2 N+4	10.59P20	-35	1105100.0
270.600000	2.0E -3	VCY* -1	DY1 14	CO2 N .	10.63P24		1108000.0
268.572200	5.0E -7	MA13* 0-	HEN2PE2	CO2 P+4	10.27R16	+20	1116245.5
268.000000	5.0E -3	MAD* -1	DY7 27	CO2 P+3+	9.50 P14		1119000.0
267.443200	5.0E -7	MA *	HEN1PE2	CO2 N+4	10.16R34	-10	1120957.6
267.000000	5.0E -3	MAD* -1	DY7 45	CO2 P+3+	10.29R14		1123000.0
266.100000	2.0E -3	FAC* -1+	DY8 32	CO2 P+3+	10.17R32		1127000.0
266.000000	5.0E -3	MAD* -1-	DY7 31	CO2 P+3+	9.55 P20		1127000 0
265,100000	2 OE -3	FAR# -2		COS NT3+	10 25820		1131000 0
265 000000	2 08 -3	N2H∐#_2	2 2 2 2 G	CU3 b	10 10 2020		1121000.0
265 00000	5 05 -3	MAD# 0			10.19020		1121000.0
				002 P+3+	10.10K34		1131000.0
204.0014/4	9.08 -7	N∠H4≖ U	RAZDI317	CO2 P+3	10.25R20		1132141.0

- 11 -

RUS

- 1	2	-
-----	---	---

264.700000	3.8E -4	EF * -2	RA1/WA	CO2 +3+	9.54P18		1132600.0
264.600000	2.0E -4	MA * O	CH3 5	CO2 P	9.68P34		1133000.0
264.050000	3.8E -4	MBA* +1-	CH6MO 17	CO2 P+4+	10.32R10	+10	1135400.0
263,700000	2.0E -4	MA * O	СНЗ 6	CO2 P	9.68P34		1136900.0
263.400000	2.0E -4	NH3* 0-	CH4T3 1	N20 P+2-	10.78P13		1138200.0
262 000000	2.0E -3	N2H4#-2	DY3 6	CO2 N	10.67P28		1144000.0
261 030000	3 8E -4	MC * -1-	СН6 18	CO2 P+4+	10.74P34	-20	1148500.0
260 000000	5 OF -3	MAD2# 0+	7.D 12	C02 + 3 +	10 25R20		1153000.0
260.000000	5 OF -3	FA12#_1_	DF1 1	CO2 +3+	0 52P16		1153000 0
200.000000	5.0E = 5			CO2 P+3+	10 61P22		1160027 8
250.455020	1 OF 2	MECH -1	IEN O	CO2 +3+	10 65 926		1160000 0
250,000000	2 05 2		VON 1	CO2 N+2	10.05120		1180000.0
	2.06 -2	DME- EA # 1.		CO2 N+3	0 55020		1178000.0
	2.0E -3				9.55720		1170800.0
254.100000	2.0E -4			CO2 P	9.00F34		1180000.0
254.000000	5.0E -3	DMEC+	2D 2	CO2 +3+	10.15830		1100000.0
253.719610	5.0E -7	MAD# 0-	PE2DW2	CO2 N+3+	10.15830		1101509.0
253.600000	2.0E -4	MA * 0-	CH3 8	CO2 P	9.00P34	05	1102100.0
251.910000	2.0E -4	MF = -1	CH5	CO2 P+4-	10.16R34	+25	1190100.0
251.500000	2.0E -3	MA * -1	DY2 18	CO2 P	9.2 R	·	1192000.0
251.432420	5.0E -7	MA *	PE2HEN1	CO2 E+4	9.28R18	+5	1192338.3
251.300000	2.0E -3	MAM*	DY1 15	CO2 P	9.59P24		1193000.0
251.139854	4.0E -7	MA * O-	PET/RA1	CO2 +3-	10.14R38		1193727.3
251.000000	1.2E -2	MA * - 2	TA2 7	CO2 +4-	10.11R44		1190000.0
250.781327	4.0E -7	MA * -1+	PET/RA1	CO2 +4-	10.16R34		1195433.9
250.500000	2.0E -3	N2H4 * -1	DY3 5	CO2 P	<u>9.34R08</u>		1197000.0
250.000000	5.0E -3	MAD1 *-1 +	ZD 27	CO2 +3+	10.74P34		1199000.0
249.000000	5.0E -3	DMEC* 0+	ZD 1	CO2 +3+	10.27R16		1204000.0
249.000000	5.0E -3	DMC* -1	DY6 14	CO2 N+3+	9.71 P38		1204000.0
246.500000	2.0E -3	N2H4*-1	DY3 4	CO2 P	10.46P06		1216000.0
246.000000	5.0E -3	DMC* 0	DY6 15	CO2 P+3+	10.29R14		1219000.0
245.040000	4.1E -4	MBR* 0	СН6 3	CO2 P+4	9.62 P28	-40	1223400.0
245.000000	5.0E -3	FOB* -1+	DA2 2	CO2 +3	9.25R24		1224000.0
245.000000	5.0E -3	DMC* 0	DY6 10	CO2 N+3+	9.66 P32		1224000.0
242,500000	2.0E -3	MA * O	DY2 17	CO2 P	9.2 R		1236000.0
242.472720	5.0E -7	MA ¥	PE2	C02	10.16R34		1236396.8
242.472700	5.0E -7	MA ¥	HEN1PE2	CO2 P+4	10.16R34	-10	1236396.9
241.200000	2.0E -3	FAC* -1	DY8 33	CO2 P+3+	10.15R36		1243000.0
240.980000	4.1E -4	MC # 0	CH6 16	CO2 P+4	10.49P10	-30	1244100.0
240 000000	2 OF -3	FAA# -1+	DY8 33	CO2 N+3+	10 29R14	50	1249000.0
238 522700	5.0E -7	MA13* 0+	HEN2PE2	CO2 P+4	9.49P12	-20	1256872.0
238 300000	5 OE -3	MAD# -2	DW2 25	CO2 N+3+	10 63P24		1258000.0
238 000000	5 OF -3		7D 26	CO2 +3+	10 57P18		1260000 0
238 000000	5 OF -3		ZD 20 7D 11	CU5 +3+	10.57P18		1260000.0
237 600000	2 05 -		CH2 0	CO2 P	0 68921		1261800 0
237 522000	5 05 -7	MA 12#	UENODEO			+ 25	1262162 0
231.523000	5.05 -7	MA 10 -	DED	CO2 F+4	9.49112	+20	1267/150 0
230.530330			FEZ	CO2 N 2	9.49110	10	1260000 0
230,250000	4.28 -4	MC 1		CU2 N+3+	9.30 R2	- 10	1209000.0
236.000000	5.0E -3	MAD* -1	GWT DUD 14	CO2 P+3+	9.31R14		1270000.0
235.500000	5.0E -3	DFM* +1	DW3 11	CO2 P+3+	9.35 RU6		1273000.0
234.000000	2.0E -3	N2H4# 0	DY3 2	CO2 P	10.16834		1281000.0
233.915781	8.0E -7	N2H4=1	RA2DY316	CO2 P+2+	10.33R08		1281626.0
233.000000	5.0E -3	FOB# -1-	DA2 1	CO2 +3	9.31814		1287000.0
232.939095	3.9E -7	MA * -1-	PETDY216	CO2 P	9.33R10		1286999.5
232.850000	3.0E -4	MA *	HEN1	CO2 P+4	9.26R22	+15	1287500.0
232.700000	2.0E -3	MA * -1+	DY2 15	CO2 P	9.2 R		1288000.0
232.000000	5.0E -3	MAD* O-	DY7 19	CO2 P+3+	9.20 R34		1292000.0
229.100000	5.0E -3	DMA* O-	BE1 4	CO2 P+3+	9.44PO6		1309000.0
229.000000	2.0E -2	DME*	kon 6	CO2 N+3	10.32R10	•	1310000.0
227.150000	4.4E -4	MC * -1	CH6 10	CO2 P+4-	9.81 P48	+50	1319800.0
225.600000	2.0E -3	MA * -1	DY2 14	CO2 P	9.2 R		1329000.0
224.000000	5.0E -3	DMC* -1	DY6 1	CO2 P+3+	9.23 R28		1338000.0

(BUS)

223,500000	2.5E -4	MA * 0	снз з	CO2 P	9.52P16		1341400.0
223.000000	5.0E -3	MAD* -2	GW1	CO2 N+3+	9.46208		1344000.0
222 000000	5 OE -3	$MAD^{*} = 1$	DY7 22	CO2 P+3+	9 44 P6		1350000.0
210 000000	5 OF -3	MAD# _2		CO2 P+3+	10 26R18		1363000 0
219.900000	2 OF _1		HEN1	CO2 P+J+	0 17910	-20	1273800 0
210.220000	5.05 -7			CO2SN+2	10 78025	-20	1375000.0
218,000000	2.0E -3		DV8 10	CO2 P.2	10.70135		1375000.0
210.000000	2.05 -3		DIO 19 DV1 16	CO2 P+3+	0 50020		1375000.0
210.000000	2.05 -3	MAM ⁺	DII IO	CU2 P	9.59824		13/5000.0
215.3/2492			BL IKUNZ	CO2 P+3+	9.31 R14		1391972.1
215.001200	5.0E -/	MAD=	PEZ	CU2	10.72752		1393050.9
214.800000	2.0E -3	MA = -1	DI2 13		9.57822		1396000.0
214.350000	3.0E -4	MA *	HENI	CO2 P+4	9.47210	-20	1390000.0
211.314790	5.08 -/	MA *	PEZ		9.4912	~	1410/01.0
211.250000	3.0E -4	MA	HENT	CO2 P+4	9.49212	-5	14 19 100.0
211.000000	1.4E -2	MA # U-	TA2 1	CO2 +3+	10.37804		1420000.0
210.000000	2.0E -3	MA = -1	DI2 12	CO2 P	9.2 R		1420000.0
209.890000	3.0E -4	MA =	HEN 1	CO2 P+4	9.31814		1428300.0
208.412100	5.0E -7	MA 13*	HEN2PE2	CO2 E+4	9.47210	+25	1438460.1
207.000000	5.0E -3	MAD1* 0-	ZD 25	CO2 +3+	9.50P14	· · _	1448000.0
206.900000	3.0E -4	MA *	HEN 1	CO2 P+4	9.49P12	-5	1449000.0
203.635800	5.0E -7	MA13* 0+	HEN2PE2	CO2 E+4	10.27R16	+20	1472199.4
202.400000	2.5E -4	MA * 0	CH3 15	CO2 P	9.69P36		1481200.0
201.800000	5.0E -3	DFM# -1	DW3 10	CO2 P+3+	9.35R06		1486000.0
201.000000	5.0E -3	$MAD^{#} -1$	GW1	CO2 P+3+	9.73P40		1492000.0
198.800000	2.5E -4	MA * 0-	CH3 22	CO2 N	9.71P38		1508000.0
198.000000	2.0E -3	MAM#	DY1 17	CO2 P	9.59P24		1514000.0
196.000000	5.0E -3	FOA* -1-	DA2 7	CO2 +3	9.46208		1530000.0
195.000000	5.0E -3	FOA* -1-	DA2 6	CO2 +3	9.24R26		1537000.0
194.010000	3.0E -4	MA 🐐	HEN1	CO2 P+4	9.31R14		1545200.0
193.500000	5.0E -3	DFM# -2	DW3 8	CO2 P+3+	9.32R12		1549000.0
193.200000	2.5E -4	MA * -1	CH3 23	CO2 N	9.71P38		1551700.0
192.907232	1.9E -6	N2H4 # 0	RA2DY315	CO2 N+3-	10.63P24		1554076.0
192.780000	2.6E -4	MF * +1	CH5	CO2 P+4-	10.17R32	0	1555100.0
191.900000	5.0E -3	MAD [#] -1	DW2 14	CO2 P+3+	10.16R34		1562000.0
191.619630	5.0E -7	MA *	PE2HEN1	CO2 P+4	10.32R10	-15	1564518.7
191.500000	2.0E -3	MA 🗕 🗕 1	DY2 11	CO2 P.	9.2 R		1565000.0
190.800000	2.6E -4	MA * -1	CH3 12	CO2 N	9.68P34		1571200.0
188.423930	5.0E -7	MAD#	PE2	C02	10.84P42		1591053.2
186.110000	3.0E -4	MA * -1+	HEN1DY2	CO2 P	9.28R18	+5	1610800.0
185,900000	2.0E -3	MA * -1+	DY2 9	CO2 P	9.2 R		1613000.0
185,500000	2.6E -4	MA # -1	CH3 13	CO2 N	9.68P34		1616100.0
184.000000	2.0E -2	DME# OL	KON 3	CO2 N+3	10.22R24		1630000.0
184,000000	5.0E -3	MAD# -1+	DY7 3	CO2 N+3+	9.34 R8		1629000.0
182,566320	5.0E -7	MAD#	PE2	C02	9.31R14		1642101.9
181.926459	3.0E -7	N2H4#-2	RA2 14	CO2 P+3	10.46P06		1647877.4
180.740540	5.0E -7	MAD# -2	PE2DW2	CO2 N+3+	10.16R34		1658689.9
180.400000	2.0E -3	MA * 0	DY2 8	CO2 N	9.68P34		1662000.0
180,000000	2.0E -2	MAM # -4	RA1 12	CO2 +3+	9.79P46		1670000.0
179.727940	5.0E -7	MA *	PE2	C02	10.37R04		1668035.0
179.000000	5.0E -3	MAD2* 0-	ZD 10	CO2 +3+	10.27R16		1675000.0
179.000000	5.0E -3	MAD# 0-	GW1	CO2 N+3+	9.31R14		1675000.0
179.000000	2.0E -3	DMA* 0-	DY2 28	CO2 N	9.66P32		1675000.0
171.757600	5.0E -7	MA13# 0	HEN2PE2	CO2 N+4	10.26R18	+25	1745439.5
171.300000	5.0E -3	MA * 0-	WE1 2	C02S +3+	9.59P21		1750000 0
171 000000	5.0E -3	MAD1* 0-	ZD 24	CO2 +3+	9.49P12		1753000 0
170.576394	2.8E -7	MA * +1	PETDY2T3	CO2 P+2+	9.69236		1757526 3
168.840000	3.0E -4	MA 13#	HEN2	CO2 P+4	9.73P40	+35	1775600 0
168.100000	2.0E -3	DMA* -1	DY2 27	CO2 N	9,64P30		1783000 0
168.000000	5.0E -3	MAD2* 0-	ZD 9	CO2 +3+	10,14R38		1784000 0
167.587020	5.0E -7	MA *	PE2	C02	10,13840		1788876 6
167.000000	5.0E -3	MAD1 *-1 +	ZD 23	CO2 +3+	9.54P18		1795000.0

- 13 -

(305)

165.900000	5.0E -3	DFM* +2-	DW3 5	CO2 P+3+	9.27R20		1807000.0
165.800000	5.0E -3	DFM * O	DW3 3	CO2 P+3+	9.26R22		1808000.0
165.000000	5.0E -3	MAD2* 0-	ZD 8	C02 + 3+	9.28R18		1817000.0
161 783200	1 05 -6	MA ¥ 1	UFN1DV2	CO2 N+2	0 22810		1810315 0
164.105200			UENADYO		9.55110	0	1910500 0
164.770000	3.08 -4		HEN IDIZ	CUZ N	9.59824	0	1019500.0
164.564230	5.0E -7	MA 🕈	PE2	C02	9.50P14		1821735.5
164.507600	1.0E -6	MA * -1-	HEN1TA2	CO2 +3+	9.50P14		1822363.0
164.300000	3.0E -4	MA * 0	CH3 4	CO2 N	9.52P16		1824700.0
164 000000	5 OF -3	MAD1#_1+	70 22	CO2 +3+	0 28R18		1828000 0
162 022550	2 85 -7			CO2 + J+	10 1/1028		1828820 2
	2.05 -7		FEI/RAI	002 +3-	10.14830		1030039.3
159.400000	2.0E -3	MA * U	DI2 5	CO2 P	9.2 K		1001000.0
159.200000	5.0E -3	MA 🕈 O	WE1 3	CO2S +3+	9.68P31		1883000.0
158.000000	5.0E -3	MAD* 0-	GW1	CO2 P+3+	9.23R28		1897000.0
157.928500	5.0E -7	MA13* 0	HEN2PE2	CO2 P+4	9.49P12	-20	1898279.9
152.075710	5.0E -7	MA 13#	PE2	CO2	10 27R16		1971337.2
151 500000	2 05 -2	MA # 0	ון כעת	CO2 P	0.2 5		1070000 0
151 190000	1 05 3			CO2 1	10 70000	050	1070000.0
151.400000	1.0E -3	NH3- U+	PEI I	02 +4	10.72932	950	1919000.0
151.000000	5.0E -3	MAD1* 0-	ZD 21	CO2 +3+	10.16R34		1985000.0
149.272300	5.0E -7	MA13*-1	HEN2PE2	CO2 N+4	9.57P22	+15	2008360.0
148.590430	5.0E -7	MA 13*	PE2	C02	10.27R16		2017576.0
147.970000	3.0E -4	MA 13#	HEN2	CO2 N+4	9.64230	-25	2026000.0
147 844712	2 OF -7	MAM# 1	RA2DV130	CO2 N+3+	0 50P24		2027752 6
1/16 007/100			UENODEO	CO2 N+J+	0 17010	. 25	2052001 0
140.091400	5.06 -7	MAI3"	nenzrez	CU2 N+4	9.4/1710	+20	2052004.0
145.001732	1.55 -7	DMA = -1	EL1KON2	CO2 P+3+	9.64P30		2058141.8
144.117890	5.0E -7	MAD* -1	PE2DW2	CO2 P+3+	10.57218		2080189.0
136.627230	5.0E - 7	MAD*	PE2	C02	10.29R14		2194237.0
134.700000	1.0E -2	DMA* -1+	BE1 5	CO2 N+3+	9.44P06		2230000.0
133,119600	1 0E -6	MA # 0	HEN1DY2	CO2 P	9 59P24	0	2252054.0
121 562780	5 05 -7	MAD	DED	CO2	10 17022	·	2278703 0
131.302700	5.0E ={	MA X A	F LZ		10.1/152	10	2210103.0
129.549/00	1.0E -0	MA = -1	HEN1KON2	CO2 P+3	10.16834	-10	2314112.0
128,700000	5.0E -3	MAD = -3	DW2 12	CO2 P+3+	10.16R34		2330000.0
128.000000	2.0E -3	DMA* -1+	DY2 26	CO2 N	9.57P22		2342000.0
125.000000	5.0E -3	MAD1* 0+	ZD 20	CO2 +3+	10.74P34		2400000.0
123,260000	3.0E -4	MA 13#	HEN2	CO2 P+4	10.55P16	+40	2432200.0
121 700000	5 OF -3		DW3 2	CO2 N+3+	0 26R22		2460000 0
121 200000	2 05 -1		UEN2	CO2 B.U	10 10828	E	2/172500 0
121.200000	5.0E -4			CO2 F+4	10.19R20	-9	2475500.0
121.000000	2.4E -2	MA * -2	TAZ O	02 +4	10.11R44		2400000.0
118.834107	2.0E -7	MA * +1+	PETDY2T3	CO2 +2+	9.69P36		2522781.6
118.013100	5.0E -7	MA13* 0+	HEN2PE2	CO2 N+4	9.57P22	-15	2540332.0
117.959500	5.0E -7	MA *	HEN1PE2	CO2 P+4	9.50P14	-15	2541487.0
117,227089	1.9E -7	DMA* +1+	RA2DY2 2	CO2 P+3	9.60P26		2557365.4
117 000000	5 OE -3		DW3 L	CO2 N+3+	9 27820		2560000 0
115 822200	5.05 7	MA 12# 0	UENOES	CO3 P-1	10 27 016	. 20	2588262 0
111 00000	5.05 -7	NUDAC O.	DENZICZ	CO2 144	0.27110	210	2500303.0
114.000000	5.0E -2	NH3=C 0+	FEI 3	CU2 +4	9.4912	2400	2600000.0
112.600000	5.0E -3	D20* +1	DW4 1	CO2SN+3	9.32R17	-39	2660000.0
112.300000	5.0E -3	MAD* -3	DW2 11	CO2 N+3+	10.16R34		2670000.0
111.900000	5.0E -3	NH3A*-3+	DW1 1	CO2SN+3	10.73P31		2680000.0
110.432400	5.0E -7	MA13* 0+	HEN2PE2	CO2 E+4	10.26R18	+25	2714715.0
110 000000	1 OE -2	DMA# -2	KON2 1	CO2 N+3	10 11RHH		2730000 0
100,000000	E OF 2		70 10	CO2	0 10012		2750000.0
109.000000	5.0E -5	MAD -	4D 19	002 +3+	9.49112		2750000.0
100.000440	5.0E -1	MAD	PEZ	002	10.49110		2750102.0
105.147200	5.0E -7	MA13 = 0	HEN2PE2	CO2 E+4	10.26R18	+25	2851170.0
103.586300	5.0E -7	MA13*	HEN2PE2	CO2 E+4	10.21R26	+40	2894133.0
103.480800	5.0E -7	MA13* 0	HEN2PE2	CO2 P+4	9.57P22	+15	2897083.0
103,124641	1.7E -7		RA2DY2 1	CO2 N+3-	9 64020		2907088 9
102 60000	5 08 - 2	MAD# _2	DW2 10	CO2 N.2	10 16021		2020000
08 000000				002 N+3+	10.10034		2920000.0
90.000000	5.UE -2	MA = -1-	IAZ 5	002 +4	10,13840	-	300000.0
97.518550	5.0E -7	MA *	PE2HEN1	CO2 N+4	10.13R40	0	3074210.0
96.522408	1.6E -7	MA * +1+	PET/DY2	CO2 P	9.33R10		3105936.8
95.100000	5.0E - <u>3</u>	DFM # - 2	DW3 7	CO2 N+3+	9.32R12		3150000.0
94.500000	5.0E -3	D20* -1	DW4 2	CO2SP+3	9.32R17	-30	3170000 0
	- · · · · · · · · · · · · · · · · · · ·						

92.690000	3.0E -4	MA *	HEN1	CO2 P+4	10.16R34	-10	3234400.0
92.600000	3.0E -4	MA ¥	HEN 1	CO2 P+4	9.59P24	0	3237500.0
88.200000	1.0E -3	NH3# 0+	FE1 2	CO2 +4	10.35R06	200	3399000.0
87.900000	3.0E -4	MA13*	HEN2	CO2 N+4	9.46P08		3411000.0
87.400000	5.0E -3	NH3* 0	DW4 4	CO2SP+3	9.56P17	-130	3430000.0
86.400000	5.0E -3	MAD* -2	DW2 4	CO2 N+3+	10.27R16		3470000.0
86.111800	5.0E -7	MA 13*	HEN2PE2	CO2 P+4	9.47P10	+25	3481433.0
86 000000	2 05 -3	MA # ±1	1 Y2	CO2 E	92 R	•	3486000.0
85 700000	2.05 -1	MA 12#	UENO	CO2 N+1	10 10828	-5	3404000.0
85 600000	5.0E -7	MA N	DECUEN1	CO2 P+H	0.72910	-10	3502210 0
85 217200		MA12# 0	LENODEO	CO2 P+4	9.13140	-16	2512854 0
05.31/300	5.06 -7	MAI3= U	HENZPEZ	CU2 P+4	9.0/122	-15	2575860 0
01.557110	5.0E -7	MAD [#] -1	PE2DW2	CO2 P+3+	10.2/RIO		3075000.0
81.500000	6.0E -4	NH3* +2-	CH4T3 2	N20 N+1+	10.70213		3070000.0
80.600000	5.0E -3	MA = +1	WE1 1	CO2S +3+	9.5921		3720000.0
80.300000	3.0E - 2	MA = -1	HO1 6	CO2 +3	9.68P34		3700000.0
80.000000	2.0E -3	DMA# 0	DY2 23	CO2 N	9.66P32		3747000.0
77.920000	3.0E -4	MA * -1+	HEN1TA2	CO2 P+4-	10.27R16	0	3847000.0
77.489400	5.0E -7	MA13*	HEN2PE2	CO2 P+4	10.21R26	+40	3868819.0
77.405660	5.0E -7	MA 🛎	PE2	C02	9.28R08	· · ·	3873005.0
76.100000	5.0E -3	MAD [#] -1	DW2 27	CO2 P+3+	10.72P32		3940000.0
73.306430	5.0E -7	MA 🕷	PE2HEN1	CO2 P+4	9.73P40	-10	4089580.0
71.000000	5.0E -3	MAD [#] -1	DW2 2	CO2 P+3+	10.33R08		4220000.0
70,511650	2.0E -7	MA # +2-	BL2PE2	CO2 N	9.68P34	+26	4251673.3
69.700000	3.0E -4	MA #	HEN1	CO2 N+4	10.27R16	0	4301000.0
67.495370	5 OE -7	MA #	PE2	CO2	9.28R18		4441675.0
67 479420	5 OF -7	MAD#	PE2	C02	10.18B30		4442725.0
65 60000	3 05 -7	MA # · O	HO1 5	CO2 +3	0 68p34		4600000.0
63 006400	5.0E -7	MA 12#	HENODEO	CUS 877	0 LOP12	+25	4751341.0
61 612210	5.0E -7	MA B	DEJ	CO2 1+4	0 28918	·	4865710 0
60 172280	5.0E -7	MA NA	FEZ	CO2 P+N	0 720110	-10	4009140.0
60 100000	5.05 -1		FEZHEN I	CO2 P+2	0 20221	-10	4902199.0 4088000 0
57.00000	1 05 0		KOND E	CO2 1+3+			5260000.0
57.000000			KUNZ D	CO2 N+3	9.34 10		5200000.0
55.500000	5.UE -4		EU DEQUEN1		9.23020	10	5350000.0
55.370050			PEZAGNI	CU2 N+4	9.15540	-10	5570000 0
53.020000	5.0E -4	MAD# 0	EDGWI	CU2 N+3+	9.20834		5570000.0
49.800000	5.0E -3	MAD= 0	GW1	CO2 N+3+	9.23820		6020000.0
46.700000	1.0E -2	DMA U-	BEIBLI O	CO2 +3+	9.34R00		6420000.0
43.697300	5.0E -7	MAD 0	PE2DW2ED	CO2 P+3+	10.26818		0000004.0
43.470000	3.0E -4	MA *	HEN 1	CO2 P+4	10.16R34	-10	6897000.0
42.310000	1.0E -3	MA 🕈 — 1	HE1HO1 2	CO2 +3	9.68P34	+38	7086000.0
42.159090	5.0E -7	MA 🛎 +1	PE2HEN1	CO2 P+3	9.66P32		7110981.0
41.900000	3.0E -4	MA 13#	HEN2	CO2 N+4	10.55P16	-10	7155000.0
41.400000	5.0E -4	MAD# -1	DW2ED 1	CO2 N+3+	0.33R08		7241000.0
41.354880	5.0E -7	MAD# 0	PE2DW2ED	CO2 N+3+	0.26R18		7249265.0
41.250000	5.0E -4	MAD#	ED	CO2 P+3+	- 10.33R08	L.	7268000.0
41.000000	2.0E -2	DME#	KON 4	CO2 N+3	10.26R18		7300000.0
40.100000	5.0E -3	MAD [#] -1	DW2 23	CO2 N+3+	10.61P22		7480000.0
39.850000	1.0E -3	MA 🗰 O	HE1H01 1	CO2 +3	9.68P34	+38	7523000.0
37.600000	5.0E -3	MAD [#] -1	DW2 9	CO2 P+3+	- 10.16R34		7970000.0
37.500000	3.0E -2	MA # O	H01 2	CO2 +3	9.66P32	2	8000000.0
34.800000	5.0E -3	MAD# -1	DW2 22	CO2 P+3+	- 10,61P22)	8610000.0
34,790000	3.0E -4	MA 13#	HEN2	CO2 P+4	10.23R22		8617000.0
23.000000	5.0E -3	B11T#+2-	KAR 8	CO2 +4		-	13030000.0
22,400000	5 OF -2	B10T#_1_	KAR 7	COS -7			13380000 0
20 600000	5 OF -2	R11T#12	KAR K	CO2 +1			14550000 0
20.200000	5 08 -2	R11T#±2	KAB E	CO2 +1		_	14840000 0
10 100000	5.05 2	B1078-0		CO2 ++	TE UNI	VEN	15150000.0
10 100000	5.05 -5	DIU1*+2*		002 +4	KO		1570000.0
19.100000					E Section	151	15700000.0
10.000000	5.UE -3	D111#+]4	- KAR 2	CU2 +4	(<u>e</u>) _ 49,	· 2	15950000.0
10.300000	5.0E -3	BIOT#+2-	- KAH 1	CO2 +4	1.54 SCIENI	No prosp	16380000.0
ena					1 Ton Star	181	
					Nº LIL		
					5. a. and	, ~	