N° d'ordre : 454 50376 1979 36

# THÈSE

50376

1979

36

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE (U. E. R. DE PHYSIQUE FONDAMENTALE)

> pour obtenir le grade de DOCTEUR ES SCIENCES PHYSIQUES

> > par

Marcel BOGEY

# SPECTROSCOPIE MICROONDE DES ÉTATS EXCITÉS DE VIBRATION PEUPLÉS PAR TRANSFERT D'ÉNERGIE ET APPLICATION A L'ÉTUDE DE LA CINÉTIQUE DU SYSTÈME N<sup>\*</sup><sub>2</sub> - OCS



Soutenue le 22 Mai 1979 devant la Commission d'examen :

| Professeur, Université de Lille 1                                                   | Président                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chargée de Recherche, Université de Lille 1                                         |                                                                                                                                                                                                                                                                                                                                                                    |
| Docteur es Sciences, Université de Paris Sud                                        |                                                                                                                                                                                                                                                                                                                                                                    |
| Chef de Travaux chargé d'Enseignement,<br>Université de Louvain-la-Neuve (Belgique) | Rapporteurs                                                                                                                                                                                                                                                                                                                                                        |
| Directeur de Recherche, Université de Paris Sud                                     |                                                                                                                                                                                                                                                                                                                                                                    |
| Professeur, Université de Paris Nord                                                | <b>F</b>                                                                                                                                                                                                                                                                                                                                                           |
| Maître de Conférences, Université de Lille 1                                        | Examinateurs                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                     | Professeur, Université de Lille 1<br>Chargée de Recherche, Université de Lille 1<br>Docteur es Sciences, Université de Paris Sud<br>Chef de Travaux chargé d'Enseignement,<br>Université de Louvain-la-Neuve (Belgique)<br>Directeur de Recherche, Université de Paris Sud<br>Professeur, Université de Paris Nord<br>Maître de Conférences, Université de Lille 1 |

Je tiens tout d'abord à rendre hommage à Monsieur le Professeur Serge Maes qui a été l'intigateur de ce travail et qui l'a dirigé jusqu'à sa brutale disparition.

Que Monsieur le Professeur Raymond Wertheimer, qui m'a accueilli au Laboratoire de Spectroscopie Hertzienne et qui a toujours suivi avec attention la progression de ce travail, trouve ici l'expression de ma reconnaissance.

Mademoiselle Agnès Bauer, Chargée de recherche au CNRS, qui m'a initié à la recherche, a assuré la direction de notre équipe après le décès de Monsieur Maes Je la remercie vivement pour l'aide qu'elle m'a continuellement apportée dans la réalisation de ce travail.

Monsieur François Legay, Directeur de recherche, mon parrain au CNRS, ainsi que tous les membres de son équipe, et en particulier Monsieur Philippe Bréchignac, ont accepté de distraire une partie de leur temps pour s'intéresser à cette étude lors de fructueuses discussions. Qu'ils trouvent ici l'expression de ma sincère gratitude.

Monsieur André Fayt, Chef de Travaux Chargé d'enseignement, a, par l'intérêt qu'il a toujours porté aux résultats obtenus, contribué efficacement à leur amélioration et je lui en suis très reconnaissant.

Je remercie également Monsieur le Professeur Bernard Decomps d'avoir accepté de se joindre au Jury pour examiner ce travail.

Monsieur Jean Lemaire, Maître de Conférences, m'a apporté une aide précieuse par sa collaboration amicale et critique lors de nombreuses discussions et je lui exprime ici ma reconnaissance.

Mes remerciements vont également à mes camarades du Laboratoire et en particulier à Jean-Luc Destombes et Claire Demuynck-Marlière dont les encouragements amicaux et la constante bonne humeur m'ont permis de surmonter bien des difficultés.

Je voudrais que l'ensemble des techniciens du Laboratoire et de l'UER de Physique Fondamentale trouvent ici l'expression de mes remerciements et de ma sympathie pour leur contribution à la réalisation de ce travail.

Madame Nguyen, avec beaucoup de compétence, a apporté le plus grand soin à la dactylographie de ce mémoire ; Monsieur Raffaud s'est chargé de l'illustrer et le personnel du service de polycopie de l'UER en a assuré la reproduction. C'est avec plaisir que je leur adresse un amical remerciement.

# TABLE DES MATIERES

## Introduction

1

1

# Chapitre 1 : Spectroscopie microonde moléculaire : Cas des états excités de vibration

| A - Rappels de quelques notions de spectroscopie microonde            | 5  |
|-----------------------------------------------------------------------|----|
| I – Intensité des transitions                                         | 5  |
| II – Elargissement des transitions                                    | 13 |
| B - Spectroscopie des molécules vibrationnellement excitées           | 23 |
| I — Cas de l'équilibre thermodynamique                                | 23 |
| a) détermination du coefficient d'absorption                          | 23 |
| b) influence de la température                                        | 32 |
| II — Perturbation de l'équilibre thermodynamique                      | 36 |
| a) perturbation par laser                                             | 37 |
| b) décharge électrique continue «in situ»                             | 39 |
| c) le transfert d'énergie                                             | 41 |
| I <b>l</b> I — Etude du transfert d'énergie vibrationnelle            | 43 |
| a) notations et principes                                             | 43 |
| b) distribution vibrationnelle                                        | 48 |
| c) étude des techniques expérimentales utilisables pour la            |    |
| spectroscopie à haute résolution                                      | 53 |
| d) l'azote activé                                                     | 55 |
| C - Application à la conception d'un spectromètre microonde destiné à |    |
| l'étude des transferts V-V à partir de NŽ                             | 60 |
| I — Dispositif à utiliser                                             | 61 |
| II – Etude de la propagation de $N_2(v_1)$ dans le tube d'entrée      | 63 |
| III - Etude de la concentration des espèces excitées dans la cellule  |    |
| d'observation                                                         | 69 |
| IV – Conclusion                                                       | 76 |

# Chapitre II : Etude spectroscopique de N20 et OCS dans des états de vibration

## peuplés par transfert d'énergie à partir d'azote activé

| A - | Choix des molécules                                     | 79 |
|-----|---------------------------------------------------------|----|
|     | I – Influence de la pression en spectroscopie microonde | 79 |
|     | II — Données bibliographiques                           | 80 |
|     | III — Expériences préliminaires                         | 83 |
| Β.  | Description des spectromètres utilisés                  | 86 |
|     | I — La cellule d'absorption                             | 87 |
|     | II – Production de l'azote activé                       | 90 |

| a) excitation continue                                           | 90  |
|------------------------------------------------------------------|-----|
| b) modulation de l'excitation                                    | 92  |
| c) protection des parois                                         | 95  |
| III – Sources hyperfréquences et dispositifs de stabilisation    | 97  |
| IV — Détection et traitement du signal                           | 100 |
| a) spectromètre vidéo                                            | 100 |
| b) spectromètre à double modulation de source                    | 100 |
| c) spectromètre à «double détection synchrone»                   | 102 |
| d) interféromètre plan-sphérique                                 | 103 |
| V – Spectromètre à bombardement électronique                     | 110 |
| C - Résultats spectroscopiques sur N <sub>2</sub> O et OCS       | 112 |
| I – Energies des niveaux de vibration-rotation et fréquences des |     |
| transitions rotationnelles                                       | 112 |
| II – Résultats expérimentaux                                     | 124 |
| a) protoxyde d'azote N20                                         | 124 |
| b) oxysulfure de carbone OCS                                     | 126 |
| c) conclusion                                                    | 136 |

Chapitre III : Etude de la cinétique du transfert d'énergie vibrationnelle - Cas du

# système N<sub>2</sub> – OCS

| A – Techniques expérimentales d'étude des transferts d'énergie      |     |
|---------------------------------------------------------------------|-----|
| vibrationnelle                                                      | 140 |
| I – Absorption et dispersion d'ondes ultrasonores                   | 140 |
| II – Ondes de chocs                                                 | 140 |
| III – Excitation chimique                                           | 141 |
| IV – Excitation optique                                             | 142 |
| V – Excitation par transfert d'énergie de l'azote activé            | 144 |
| B – Etude expérimentale – Cas du système N2–0CS                     | 146 |
| I – Principe des expériences                                        | 146 |
| II – Résultats obtenus pour le système N2 – OCS                     | 150 |
| a) étude de la distribution des populations vibrationnelles en      |     |
| présence d'azote activé                                             | 150 |
| b) étude des relaxations vibrationnelles du système N2–0CS          | 156 |
| C – Interprétation théorique des résultats expérimentaux            | 169 |
| I – Description du modèle utilisé                                   | 169 |
| a) hypothèse fondamentale                                           | 169 |
| b) choix du modèle moléculaire                                      | 170 |
| c) hypothèse relative à la propagation des molécules                | 173 |
| II – Relation entre le signal observé et la variation de population |     |
| vibrationnelle                                                      | 173 |
| III – Détermination théorique du signal                             | 175 |
| a) équations décrivant l'évolution du système                       | 175 |
| b) conditions initiales et conditions aux limites                   | 179 |
| c) calcul de $x(t,z)$                                               | 183 |

| d) calcul du signal S(t)                                                                  | 184 |
|-------------------------------------------------------------------------------------------|-----|
| IV – Résultats et critiques du modèle                                                     | 188 |
| D – Calcul théorique de la constante de vitesse du transfert d'énergie                    |     |
| vibrationnelle entre $N_2(v = 1)$ et OCS (00°1)                                           | 195 |
| I – Choix du potentiel intermoléculaire                                                   | 195 |
| a) forces répulsives à court rayon d'action                                               | 195 |
| b) forces attractives à long rayon d'action                                               | 196 |
| II – Calcul de K <sub>e</sub> pour le transfert entre N <sub>2</sub> (v = 1) et OCS(00°1) |     |
| par la théorie de SSH                                                                     | 196 |
|                                                                                           |     |

| Conclusion |  |  | 209 |
|------------|--|--|-----|
| Appendices |  |  | 211 |
|            |  |  |     |

Bibliographie

#### Introduction

Le développement des études expérimentales de spectroscopie moléculaire des états excités de vibration s'est effectué conjointement avec celui des études théoriques des niveaux d'énergie de vibration-rotation des molécules. C'èst en effet un exemple type d'une forte interaction entre recherche expérimentale et théorique : l'interprétation des spectres observés nécessite fréquemment l'élaboration d'une théorie plus précise qui permet alors une meilleure détermination des structures moléculaires.

La spectroscopie microonde a constitué, longtemps seule, de par sa résolution et la précision de ses mesures, un outil de choix pour de telles études. Cependant, les faibles valeurs des coefficients d'absorption dans les états excités ont restreint pendant longtemps son application aux molécules possédant des spectres intenses et des niveaux de vibration de faible énergie. L'élaboration des spectromètres à haute température a apporté une amélioration importante, en particulier pour l'observation des spectres des molécules très peu volatiles.

Ce n'est que récemment et grâce au développement des lasers moléculaires que la spectroscopie microonde des états excités a pris un nouvel essor par l'utilisation de méthodes de double résonance infrarougemicroonde. Il faut également souligner l'importance des nouveaux types de spectromètres mis au point par R.C. WOODS et ses collaborateurs [1973] qui ont permis, pour la première fois, l'observation en laboratoire de spectres microonde d'ions moléculaires. La technique que nous avons développée, sous l'impulsion initiale de S. MAES brutalement disparu en 1975, pour augmenter les coéfficients d'absorption des niveaux excités consiste à appliquer, dans les conditions expérimentales de la spectroscopie microonde caractérisées par l'utilisation de faibles pressions, les propriétés des transferts d'énergie vibrationnelle essentiellement étudiés jusqu'alors dans des gammes de pression beaucoup plus élevées par détection de la fluorescence infrarouge.

En nous référant aux travaux de F. LEGAY et de ses collaborateurs sur les transferts d'énergie à partir de l'azote activé, nous avons mis au point un spectromètre fonctionnant sur ce principe qui nous a permis d'obtenir des résultats spectroscopiques nouveaux sur N2O et OCS.

L'amélioration de la sensibilité de notre appareillage nous a conduit à mettre au point une technique de modulation de l'excitation de l'azote. Nous avons pu alors entreprendre, au moyen de la spectroscopie microonde, l'étude de la cinétique des transferts vibrationnels dans le mélange N<sub>2</sub> - OCS.

# CHAPITRE I

and the second secon

Spectroscopie microonde moléculaire : cas des états excités de vibration



A --

Rappei de quelques notions de

spectroscopie microonde

Ce chapitre sera consacré au rappel de quelques notions approchées qui ont un rôle fondamental dans l'analyse des signaux obtenus en spectroscopie microonde linéaire.

### I - INTENSITE DES TRANSITIONS

Considérons deux états non dégénérés  $|1\rangle$  et  $|2\rangle$ d'une molécule entre lesquels une transition microonde est permise. Ces deux états sont caractérisés par leursénergies  $E_1$  et  $E_2$ 



Si on soumet un gaz de ces molécules à une radiation électromagnétique isotrope dont la densité d'énergie au voisinage de  $v_{12}$ est notée  $\rho(v_{12})$ , on peut écrire les probabilités de transition  $p_{12}$  de  $|1\rangle$  vers  $|2\rangle$  et  $p_{21}$  de  $|2\rangle$  vers  $|1\rangle$  sous la forme suivante :

$$p_{12} = \rho(v_{12}) B_{12}$$
$$p_{21} = \rho(v_{12}) B_{21} + A_{21}$$

où  $B_{12}$ ,  $B_{21}$  et  $A_{21}$  sont les coefficients introduits par Einstein caractérisant respectivement l'absorption et l'émission induites par le rayonnement, et l'émission spontanée.

Si  $N_1$  et  $N_2$  représentent le nombre de molécules dans l'état  $|1\rangle$  et dans l'état  $|2\rangle$  par unité de volume, on peut écrire :

$$dN_{1} = N_{2} [\rho(v_{12}) B_{21} + A_{21}] dt - N_{1}\rho(v_{12}) B_{12} dt$$

$$dN_2 = -dN_1$$

Si le gaz est à l'équilibre thermodynamique,  $N_1$  et  $N_2$  doivent être stationnaires et la distribution de population suit la loi de Boltzmann :

$$N_{2} = N_{1} e^{-\frac{h \upsilon_{12}}{kT}}$$
  
Donc, si  $\frac{dN_{1}}{dt} = \frac{dN_{2}}{dt} = 0$ , on a :  
$$e^{-\frac{h \upsilon_{12}}{kT}} [\rho(\upsilon_{12}) B_{21} + A_{21}] = \rho(\upsilon_{12}) B_{12}$$

La densité d'énergie  $\rho(\upsilon)$  est donnée par la loi de Planck si le rayonnement est thermique :

$$\rho(\upsilon) = \frac{8\pi h \upsilon^3}{c^3} \frac{1}{\frac{h\upsilon}{e^{kT} - 1}}$$

Or, nous avons :

$$\rho(v_{12}) = \frac{A_{21}}{B_{12} e^{\frac{h v_{12}}{kT} - B_{21}}}$$

Par identification, nous en déduisons :

$$\frac{A_{21}}{B} = \frac{8 \pi h \upsilon^3}{c^3}$$

Dans le cas d'une interaction matière rayonnement du type dipolaire électrique, le traitement quantique de l'interaction [HEITLER, 1966] permet d'obtenir la probabilité d'absorption d'un photon d'énergie hu<sub>12</sub> par une molécule dans l'état |1> :

$$\frac{p_{12}}{3h^2(4\pi\epsilon_o)} = \frac{8\pi^3}{3h^2(4\pi\epsilon_o)} |<1| \downarrow |2>|^2 \rho(\upsilon_{12}) \quad (A-1)$$

(dans le Système International)

où  $\vec{\mu} = \sum_{i} q_{i} \vec{r}_{i}$  représente le dipôle électrique de la molécule. Cette nouvelle expression de la probabilité d'absorption permet de déterminer les coefficients d'Einstein et on obtient

$$B = \frac{8 \pi^3}{3h^2(4\pi\epsilon_0)} | <1 | \stackrel{\rightarrow}{\mu} | 2> |^2$$
 (A-2)

$$A_{21} = \frac{64 \pi^4 \upsilon_{12}^3}{3 h c^3 (4 \pi \epsilon_o)} | <1 | \overrightarrow{\mu} | 2> |^2$$
 (A-3)

Considérons maintenant une expérience de spectroscopie en laboratoire : le rayonnement qui irradie un volume V de gaz contenant N molécules par unité de volume est un rayonnement monochromatique de fréquence centrée sur  $v_{12}$ , de densité spectrale  $\rho(v_{12})$  et de puissance  $I(v_{12})$ ; nous supposons en outre que ce rayonnement n'est pas polarisé. La variation de la puissance du rayonnement due à l'interaction avec le volume V est égale à la différence entre la puissance absorbée par la transition |1 > --- > |2 > et la puissance émise par la transition |2 > --> |1 >.

Soit  $\triangle I$  la puissance absorbée résultante :

$$\Delta I = V(N_1 - N_2) B \rho(v_{12}) h v_{12} - V N_2 A_{21} h v_{12}$$

En fait, dans le domaine microonde, la contribution de l'émission spontanée est négligeable devant l'émission induite (par exemple pour  $v_{12} = 100 \text{ GHz}$ ,  $\frac{A_{21}}{B} = 6.10^{-25} \text{ J.s m}^{-3}$ , soit

$$A_{21} = B \frac{h v_{12}}{100}$$

c'est à dire que l'émission spontanée correspond à l'émission

- 8 -

induite par une onde ayant une densité spectrale de un centième de photon par mètre cube).

Nous écrirons donc :

$$\Delta I = V(N_1 - N_2) B \rho(v_{12}) hv_{12}$$

Dans les conditions habituelles de la spectroscopie microonde, la relaxation thermique (par collisions) des molécules est très rapide et la puissance du champ électromagnétique est faible. On peut alors considérer que l'ensemble des molécules reste à l'équilibre thermodynamique et appliquer la loi de Boltzmann :

$$N_2 = N_1 e^{-\frac{h \upsilon_{12}}{kT}}$$

On observera donc toujours dans ce cas une transition en absorption, la puissance absorbée par le gaz étant :

$$\Delta I = V N_1 (1 - e^{-\frac{h \upsilon_{12}}{kT}}) B \rho(\upsilon_{12}) h \upsilon_{12} \qquad (A-4)$$

La notion de puissance absorbée dépendant du volume de l'échantillon de gaz n'est pas très intéressante pour le spectroscopiste. Par contre, la notion de coefficient d'absorption permet de définir une grandeur qui ne dépend que de la molécule considérée :

$$\alpha = -\frac{1}{I} \left( \frac{\Delta I}{\Delta x} \right)$$

le signe moins traduisant l'absorption (  $\Delta I$  correspond à une diminution de la puissance incidente).

Si  $I_{\circ}(v)$  représente la puissance à l'entrée de la cellule d'interaction, on peut écrire de façon équivalente

$$I(v) = I_{\circ}(v) e^{-\alpha x}$$
 (A-5)

La densité d'énergie  $\rho(v)$  peut s'exprimer en fonction de la puissance incidente :

$$\rho(\upsilon) = \frac{I}{cS}$$

avec

c =

agen an i

S = section de la cellule.

On peut alors substituer à la relation A-4 définissant la puissance absorbée, la détermination du coefficient d'absorption :

$$\alpha_{12} = \frac{N_1}{c} (1 - e^{-\frac{h \upsilon_{12}}{kT}}) B h \upsilon_{12}$$

soit

$$\alpha_{12} = \frac{NF_1}{c} (1 - e^{-\frac{h \upsilon_{12}}{kT}}) Bh \upsilon_{12}$$
 (A-6)

F<sub>1</sub> étant la fraction de molécules dans l'état |1> par unité de volume.

Dans le domaine microonde, à température ordinaire, on a  $h\cup$  < kT et on peut écrire :

$$\alpha_{12} = \frac{NF_1}{c} \frac{(h \cup 12)^2}{kT} B$$

Nous avons admis, pour déterminer la puissance électromagnétique absorbée par un ensemble de molécules, que les transitions moléculaires étaient infiniment fines, c'est à dire que toutes les molécules absorbaient à la même fréquence  $v_{12}$ . Les molécules étant en mouvement au sein du champ hyperfréquence et n'étant pas isolées, plusieurs effets (comme l'effet Doppler, les interactions moléculaires ...) qui seront détaillés au chapitre suivant causent un élargissement de la transition moléculaire lié à une répartition des absorptions moléculaires autour de la fréquence centrale  $v_{12} = v_0$ .

Le coefficient d'absorption doit être une fonction de la fréquence u, cette fonction S(u) appelée forme de raie étant normée à l'unité :

$$\int_{-\infty}^{+\infty} S(\upsilon) d\upsilon = 1$$

On obtient alors pour le coefficient d'absorption en remplaçant B par sa valeur :

$$\alpha(\upsilon) = NF_1 \frac{8\pi^3 \upsilon o^2}{3ckT(4\pi\varepsilon o)} S(\upsilon) | <1 | \overrightarrow{\mu} | 2 > |^2 \qquad (A-7)$$

En spectroscopie microonde, la forme de raie est en général bien représentée par une forme de Lorentz :

$$S(\upsilon) = \frac{1}{\pi} \frac{\Delta \upsilon}{(\upsilon - \upsilon_o)^2 + (\Delta \upsilon)^2}$$
(A-8)

Du étant la demi-largeur à mi-hauteur de la transition.

- 11 -

L'intégration de  $\alpha(v)$  sur la fréquence conduit au coefficient d'absorption intégré qui est une quantité intéressante car elle ne dépend plus de la largeur de la raie :

$$\alpha_{int.} = NF_1 \frac{8 \pi^3 \upsilon_{\sigma}^2}{3 \varepsilon k T (4 \pi \varepsilon_{o})} | <1 | \downarrow | 2> |^2$$

Une autre quantité très importante en microonde car c'est la plus facilement accessible est le coefficient d'absorption maximale, c'est à dire le coefficient d'absorption à la fréquence centrale v. de la raie :

$$\alpha_{max} = \alpha(\upsilon_o) = NF_1 \frac{8\pi^3 \upsilon_o^2}{3ckT(4\pi\varepsilon_o)} S(\upsilon_o) | <1 | \mu | 2> |^2$$

Dans le cas d'une forme de Lorentz, on obtient :

$$\alpha_{max} = NF_1 - \frac{8 \pi^2 \upsilon_o^2}{3 c k T (\Delta \upsilon) (4 \pi \varepsilon_o)} | <1 | \overrightarrow{\mu} | 2> |^2 (A-9)$$

### II – ELARGISSEMENT DES TRANSITIONS

Dans ce paragraphe, nous passerons en revue les différentes causes d'élargissement et donnerons quelques résultats sur les largeurs et formes de raie qui nous seront utiles par la suite.

#### 1. Largeur naturelle

Elle est liée à la probabilité d'émission spontanée qui limite la durée de vie  $\Delta t$  d'une molécule dans l'état |2> même si la molécule est considérée comme parfaitement isolée et immobile. Si l'état |1> est un état fondamental, on a :

$$\Delta t = \frac{1}{A_{21}} = \frac{3hc^3 (4\pi\varepsilon_0)}{64\pi^4 \upsilon_{12}^3 | <1 | \overrightarrow{\mu} | 2> |^2}$$

Comme d'après le principe de Heisenberg,  $\Delta t \cdot \Delta E \ge \frac{\hbar}{2}$ , on définit une incertitude moyenne de l'énergie E<sub>2</sub> telle que :

$$\Delta E_2 \cdot \Delta t \simeq \overline{h}$$
 ou  $\Delta v \cdot \Delta t \simeq \frac{1}{2\pi}$ 

donc

$$(\Delta \upsilon)_{\text{nat.}} = \frac{32 \pi^3 \upsilon_{12}^3}{3 \text{ hc}^3 (4\pi\epsilon_{\circ})} |<1| \overrightarrow{\mu} |2\rangle |^2 \quad (A-10)$$

Cet élargissement est en général négligeable (par exemple à 60 GHz pour un élément de matrice du moment dipolaire de 1 debye =  $3,33.10^{-30}$ C.m, on obtient ( $\Delta v$ )  $\simeq 10^{-6}$  Hz). Il faut cependant noter que généralement l'état |1> n'est pas un état fondamental et l'état |2> peut relaxer par émission spontanée vers plusieurs états inférieurs. On a alors :

$$(\Delta \upsilon)_{nat} \approx \frac{1}{2\pi} \sum_{i} A_{2i}$$

C'est le cas notamment quand les états |1> et |2> sont des sousniveaux rotationnels d'un état de vibration ou électronique. Un calcul approché effectué pour les sous-niveaux rotationnels du niveau vibrationnel (00°1) de OCS à 2062 cm<sup>-1</sup> montre que la largeur naturelle reste toujours négligeable devant les autres causes d'élargissement.

#### 2. Effet Doppler

Dans un gaz en équilibre thermodynamique, la vitesse moyenne des molécules est nulle mais chacune d'entre elles est animée d'une certaine vitesse dont la composante  $v_x$  sur la direction de propagation de l'onde électromagnétique peut être différente de zéro. On a donc un décalage Doppler de la fréquence d'absorption

$$\upsilon = \upsilon_{\circ} \left( 1 + \frac{v_{\mathbf{X}}}{c} \right)$$

si c est la vitesse de propagation de l'onde. La loi de distribution des vitesses de Maxwell-Boltzmann permet de calculer le nombre de molécules  $dn_x$  dont la composante de vitesse v<sub>x</sub> est comprise entre v<sub>x</sub> et v<sub>x</sub> + dv<sub>x</sub> :

$$dn_{\rm X} = \sqrt{\frac{m}{2\pi kT}} e^{-\frac{mv_{\rm X}^2}{2kT}} dv_{\rm X}$$

qui peut s'écrire compte-tenu de la relation entre la fréquence d'absorption  $\upsilon$  et  $v_x$  :

$$dn_{x} = \sqrt{\frac{m}{2\pi kT}} \frac{c}{\upsilon_{o}} e^{-\frac{m}{2kT}c^{2}\frac{(\upsilon - \upsilon_{o})^{2}}{\upsilon_{o}^{2}}} d\upsilon$$

On en déduit la forme de raie normée à l'unité due à l'effet Doppler

$$S_{D}(\upsilon) = \frac{c}{\upsilon_{o}} \sqrt{\frac{m}{2\pi kT}} e^{-\frac{mc^{2}}{2kT} \left(\frac{\upsilon - \upsilon_{o}}{\upsilon_{o}}\right)^{2}}$$
(A-11)

Dans cette formule

c est la vitesse de la lumière
m est la masse moléculaire
k est la constante de Boltzmann
T est la température absolue.

La demi-largeur à mi-hauteur de la transition est donc égale à :

$$\Delta v_{\rm D} = \frac{v_{\rm o}}{c} \sqrt{2 \ \text{R Log } 2} \sqrt{\frac{\text{T}}{\text{M}}} \qquad (\text{A-12})$$

R étant la constante des gaz parfaits et M étant la masse molaire. La largeur Doppler est donc proportionnelle à la fréquence de la transition et devient donc très importante pour les fréquences élevées (en submillimétrique ou infrarouge, par exemple).

Pour donner un ordre de grandeur, la largeur Doppler de OCS calculée à 60 GHz est :

$$\Delta v_{\rm D} = 47 \text{ kHz}$$

En exprimant  $S_D(v)$  en fonction de  $\Delta v_D$  on trouve pour le coefficient d'absorption dans le cas de l'élargissement Doppler :

$$\alpha(\upsilon) = NF_1 \frac{8 \pi^3 \upsilon_o^2}{3ckT (4 \pi \varepsilon_o)} \sqrt{\pi} \sqrt{Log 2} e^{-\left(\frac{\upsilon - \upsilon_o}{\Delta \upsilon_D}\right)^2 Log 2} |<1| \downarrow |2>|2$$
(A-13)

Dans cette expression la pression du gaz n'intervient que par N, nombre de molécules par unité de volume, qui lui est proportionnel.

Par conséquent, quand l'élargissement Doppler est prépondérant, le coefficient d'absorption est proportionnel à la pression (et en particulier le coefficient d'absorption maximale).

#### 3. Collisions moléculaires

Aux pressions de travail habituelles en spectroscopie microonde,  $10^{-3}$  mm de Hg  $\leq P \leq 1$  mm de Hg, les collisions moléculaires sont les principales causes d'élargissement des transitions [TOWNES et SCHAWLOW, 1955]. La théorie des collisions fortes développée par VAN-VLECK et WEISSKOPF [1945], dans laquelle les molécules sont supposées totalement isolées entre les collisions, introduit la notion de temps moyen entre deux chocs  $\tau$ :

$$\tau = \frac{1}{2\pi\Delta\upsilon}$$

et conduit au coefficient d'absorption :

$$\alpha(\upsilon) = NF_1 \frac{8\pi^2 \upsilon^2}{3ckT(4\pi\varepsilon \circ)} |<1| \downarrow |2> |^2 \left[ \frac{\Delta \upsilon}{(\upsilon - \upsilon \circ)^2 + \Delta \upsilon^2} + \frac{\Delta \upsilon}{(\upsilon + \upsilon \circ)^2 + \Delta \upsilon^2} \right]$$

$$(A - 14)$$

Dans le cas où  $\Delta \upsilon \ll \upsilon_o$  (c'est le cas en particulier à basse pression),  $\alpha(\upsilon)$  s'écrit :

$$\alpha(\upsilon) = NF_1 \frac{8\pi^2 \upsilon_o^2}{3ckT(4\pi\varepsilon_o)} |<1| \overrightarrow{\mu} |2> |^2 \frac{\Delta_U}{(\upsilon-\upsilon_o)^2 + \Delta\upsilon^2} \quad (A-15)$$

et la forme de raie se réduit alors à une lorentzienne.

Expérimentalement, cette expression est bien vérifiée à basse pression (N faible), donc, en général, en spectroscopie microonde.

Dans nos conditions de travail ( $P \approx 20$  mtorr), le temps moyen entre 2 chocs est inversement proportionnel à la pression [HIRSCHFELDER et al., 1954]. On peut donc écrire :

$$\Delta v = a \cdot p \qquad (A-16)$$

Dans le cas d'un mélange gazeux nous écrirons, pour le constituant i :

$$\Delta v_{i} = \Sigma \quad a_{ij} \quad P_{j}$$

P. étant la pression partielle de chaque constituant.

Le coefficient d'absorption maximale qui est proportionnel à  $\frac{N}{\Delta \upsilon}$ devient indépendant de la pression. Le coefficient a qui est un paramètre caractéristique de la molécule pour chaque transition s'exprime en MHz / torr. Pour OCS, sa valeur déterminée expérimentalement est de l'ordre de 6 MHz par torr [BATTAGLIA et al., 1969] ce qui donne pour une pression de 20 m torr :

$$\Delta v_c \simeq 120 \text{ kHz}$$

Les théories plus récentes développées initialement par ANDERSON (1949), TSAO et CURNUTTE (1962), basées sur l'approximation des trajectoires moléculaires classiques, tiennent compte des interactions moléculaires à long rayon d'action (du type multipolaire en particulier) et supposent donc que la molécule n'est jamais isolée. Elles permettent de relier la largeur de raie à certains paramètres moléculaires (moment dipolaire, quadripolaire,...) et prévoient en outre un décalage en fréquence de l'absorption maximale en fonction de la pression.

#### 4 - Elargissement dû à l'expérimentation

#### a) collisions avec les parois

La contribution des chocs molécules-parois à l'élargissement des transitions devient importante lorsque le libre parcours moyen est du même ordre de grandeur que les dimensions de la cellule, c'est à dire lorsque la pression est très faible ou lorsque les dimensions de la cellule sont très petites.

On peut, dans ces conditions, calculer l'élargissement dû aux collisions avec les parois à l'aide de la formule

$$\Delta \upsilon = \frac{1}{2\pi\tau}$$

où τ représente le temps moyen entre les collisions molécule-paroi. La théorie cinétique des gaz permet de déterminer

$$\Delta v_{\rm p} = \frac{1}{2\pi} \frac{\rm S}{\rm V} \sqrt{\frac{\rm RT}{2\pi \rm M}} \qquad (A-16)$$

où

S

est la surface totale de la cellule

- V est le volume de la cellule
- R est la constante des gaz parfaits.

Cette expression prend diverses formes selon la géométrie de la cellule.

Pour une cellule cylindrique et une pression de 20 m torr, la contribution des chocs molécules-paroi à la largeur de raie sera négligeable dès que le rayon sera de l'ordre du centimètre.

#### b) influence de la puissance électromagnétique

Cet effet communément appelé effet de saturation est lié à la modification de l'équilibre thermodynamique par une puissance électromagnétique élevée (N<sub>1</sub> et N<sub>2</sub> ne sont plus en équilibre de Boltzmann). Il est parfois utilisé dans certains spectromètres spéciaux : spectrométrie par modulation de saturation [TÖRRING, 1973 -TIEMANN et al., 1974] et spectrométrie sans effet Doppler par saturation [COSTAIN, 1969].

Par contre, en spectroscopie linéaire, il donne naissance à un élargissement des transitions qui dépend de la puissance hyperfréquence, de l'élément de matrice du moment dipolaire et de la pression du gaz.

On obtient [VUYLSTEKE, 1960]

$$\Delta \upsilon_{\rm S} = \frac{1}{2\pi} \sqrt{\frac{1}{\tau^2} + {\rm x}^2}$$

:

avec  $x^2 = \frac{4}{\hbar^2} |<1| \stackrel{\rightarrow}{\mu} |2\rangle |^2 E^2$  où E est l'amplitude du champ électrique et  $\tau$  le temps de relaxation des états. Cette expression peut encore s'écrire  $\Delta v_S = \Delta v \sqrt{1 + x^2 \tau^2}$  où  $\Delta v$  est la demi-largeur à mi-hauteur en l'absence de saturation.

Dans une cellule de grande section et avec les puissances habituelles délivrées par un klystron, cet effet est presque toujours négligeable. Il devient par contre très important dans le cas d'une cellule interférométrique et il est alors nécessaire de travailler à très faible puissance de source.

#### c) influence de la modulation

Les dispositifs de modulation (Stark ou Zeeman) permettent d'accroître la sensibilité des spectromètres mais augmentent la largeur apparente des transitions et peuvent les déformer. Lorsque l'effet Stark de la molécule étudiée est faible ou lorsqu'on ne peut introduire de plateaux Stark dans la cellule, on peut utiliser une modulation de fréquence de la source. Un tel dispositif porte le nom consacré par l'usage de "double modulation" (modulation rapide de la fréquence de source superposée à la dent de scie de balayage).

Dans ce cas, pour une modulation sinusoïdale de faible amplitude devant la largeur de la transition, on obtient différentes formes de raies selon la fréquence d'accord  $v_d$  du détecteur synchrone par rapport à la fréquence  $v_m$  de la modulation :

• Si  $v_d = v_m$  on obtient une forme analogue à la première dérivée de la forme naturelle de la raie ;

° Si  $v_{d} = 2v_{m}$  on obtient la dérivée seconde et ainsi de suite. La figure A-l donne la forme des signaux obtenus.

21 -



Le cas  $\underline{v}_d = \underline{v}_m$  est fréquemment utilisé pour effectuer des mesures de largeur de raie car on peut mesurer avec précision l'écart de fréquence (2 $\Delta v$ ) entre les deux pics, grandeur qui est liée à la demilargeur de la raie  $\Delta v_o$  par la formule

$$2\Delta \upsilon = \frac{2}{\sqrt{3}} \Delta \upsilon_{\circ} \left[1 + \frac{3}{4} \left(\frac{\delta \upsilon}{\Delta \upsilon_{\circ}}\right)^{2} + \frac{1}{2} \left(\frac{\upsilon}{\Delta \upsilon_{\circ}}\right)^{2}\right] \quad (A-17)$$

dans le cas d'une modulation sinusoïdale : □ υ<sub>m</sub> est la fréquence de modulation □ δυ est l'excursion maximale de la fréquence de source.

[RINEHART et al., 1960 - LEGAN et al., 1965 -NETTERFIELD et al., 1972].

Figure A-I : Formes de raie obtenues en "double modulation" pour  $v_d = v_m$  et  $v_d = 2v_m$ (la forme vraie est supposée lorentzienne)

(d'après GORDY et COOK, 1970)

Spectroscopie des molécules vibracionnellement excitées

Le coefficient d'absorption que nous avons déterminé au chapitre précédent dépend, dans le cas de niveaux en équilibre thermodynamique, du nombre de molécules par unité de volume N<sub>1</sub> dans l'état inférieur de la transition. Nous avons noté

$$N_1 = NF_1$$

avec

8 -

nombre de molécules par unité de volume,

 $F_1$  fraction des molécules dans le niveau d'énergie  $E_1$ .

#### I - CAS DE L'EQUILIBRE THERMODYNAMIQUE

Ν

#### a) détermination du coefficient d'absorption

Considérons un ensemble de molécules réparties sur des niveaux d'énergie  $E_n$  et notons  $E_o$  le niveau le plus bas.

Si les molécules sont en équilibre thermodynamique, la population des différents niveaux est déterminée par la loi de Boltzmann et on peut écrire :

$$N = N_o \sum_{i} g_i e^{-\frac{\Sigma_i}{kT}}$$

g; étant la dégénérescence de E;

23 -

еt

$$N_n = N_o g_n e^{-\frac{E_n}{kT}}$$

La fraction de molécules dans le niveau d'énergie  $E_n$  est alors donnée par :

$$F_{n} = \frac{N_{n}}{N} = \frac{g_{n} e}{\frac{g_{n} e}{kT}}$$
(B-1)

La quantité figurant au dénominateur :

$$Q = \sum_{i} g_{i} e^{-\frac{E_{i}}{kT}}$$

est appelée fonction de partition. Elle est définie par la connaissance des énergies des niveaux et de leur dégénérescence.

Pour une molécule dans l'état électronique fondamental et sans spin nucléaire, on peut écrire :

$$Q = Q_{r} \cdot Q_{r}$$

Si l'on néglige l'anharmonicité des niveaux de vibration, la fonction de partition vibrationnelle s'écrit :

$$Q_{v} = \sum_{\substack{v_{1}v_{2}\cdots v_{n}}} g(v_{1},v_{2},\ldots,v_{n}) e^{-\frac{h(v_{1}v_{1}+v_{2}v_{2}+\ldots+v_{n}v_{n})}{kT}}$$

soit

$$Q_{v} = \sum_{v_{1}}^{v} g(v_{1}) e^{-\frac{hv_{1}v_{1}}{kT}} \sum_{v_{2}}^{v} g(v_{2}) e^{-\frac{hv_{2}v_{2}}{kT}} \dots \sum_{v}^{v} g(v_{n}) e^{-\frac{hv_{n}v_{n}}{kT}}$$

Si l'on note  $d_i$  le degré de dégénérescence de la vibration  $v_i$ , g(v<sub>i</sub>) vaut respectivement 1,  $v_i$ +1 ou  $\frac{1}{2}(v_i$ +1)( $v_i$ +2) selon que  $d_i$  vaut 1, 2 ou 3. On obtient alors :

$$Q_v = \pi_i (1 - e^{-\frac{h v_i}{kT}})^{-d_i}$$
 (B-2)

A titre d'exemple, nous poursuivrons le calcul de la détermination de Q et de a dans le cas des molécules linéaires qui nous sera utile dans la suite de l'exposé. Le principe du calcul peut s'étendre au cas des molécules du type toupie symétrique ou asymétrique .

L'énergie des niveaux rotationnels d'une molécule linéaire dans l'état fondamental de vibration est donnée en première approximation (cas du rotateur rigide) par :

$$E_{J} = h B J (J + 1)$$
 (B-3)

avec

= constante de rotation

J = nombre quantique de rotation.

La fonction de partition rotationnelle s'écrit alors :  $Q_{r} = \sum_{J} (2J+1) e^{\frac{h B J(J+1)}{kT}}$ 

В

- 25 -

Dans cette formule 2J+1 représente la dégénérescence du niveau J associée au nombre quantique M en l'absence de champ statique extérieur. En général, les niveaux de rotation sont très proches les uns des autres (par rapport à kT) et on peut remplacer la série précédente par l'intégrale suivante :

$$Q_r \simeq \int_{0}^{\infty} (2 J + 1) e^{-\frac{hBJ(J+1)}{kT}} dJ$$

On obtient alors :

$$Q_r = \frac{kT}{hB}$$
(B-4)

La connaissance de  $Q_r$  et  $Q_v$  permet de déterminer le coefficient d'absorption d'une transition rotationnelle  $J \rightarrow J+1$  dans un état vibrationnel  $|v\rangle = |v_1 v_2 \dots \rangle$  pour une molécule linéaire. Il suffit pour cela de reprendre l'expression (A-8) en remplaçant F<sub>1</sub> par sa valeur. On a donc, en négligeant l'anharmonicité vibrationnelle :

$$\alpha(\upsilon) = N d_{v} (2J+1) \cdot e^{-\frac{h \left[\sum_{i} v_{i} \upsilon_{i} + B_{v} J(J+1)\right]}{kT}} \cdot \left[\pi_{i} (1-e^{-\frac{h \upsilon_{i}}{kT}})^{d_{i}}\right]$$

$$\times \frac{8 \pi^3 \gamma_0^2 h B_{\mathbf{v}}}{3 c k^2 T^2 (4 \pi \varepsilon_0)} \frac{S(\upsilon)}{2J+1} \sum_{\mathbf{M}} |\langle \mathbf{J}, \mathbf{M} | \vec{\mu} \rangle | \mathbf{J}+1, \mathbf{M} \rangle |^2 \qquad (B-5)$$

où  $B_v$  est la constante de rotation dans l'état de vibration considéré et  $\frac{1}{2J+1} \sum_{M} |\langle J, M | \overrightarrow{\mu} | J+1, M \rangle |^2$  est donné pour une molécule linéaire en présence d'un rayonnement non polarisé par [TOWNES et SCHAWLOW, 1955]:

$$\frac{1}{2J+1} \sum_{\mathbf{M}} |\langle \mathbf{J}, \mathbf{M} | \stackrel{\rightarrow}{\mu} | \mathbf{J}+1, \mathbf{M} \rangle |^2 = \mu^2 \frac{\mathbf{J}+1}{2\mathbf{J}+1}$$
(B-6)

Compte-tenu de cette relation et de la valeur de la fréquence de la transition  $v_o$  déduite de l'expression de l'énergie (B-3) :

$$v_{\circ} \approx \partial B_{v} (J+1)$$

$$\alpha(\upsilon) = N \cdot d\upsilon \cdot \left[ \pi_{i} (1 - e^{-\frac{h \upsilon_{i}}{kT}}) d_{i} \right] \cdot e^{-\frac{h \left[\sum_{i} \upsilon_{i} \upsilon_{i} + B_{\upsilon} J (J+1)\right]}{kT}} \cdot \frac{4\pi^{3} h \upsilon_{o}^{3} \mu^{2}}{3ck^{2} T^{2} (4\mu\varepsilon_{o})} \cdot S(\upsilon)$$
(B-7)

Le coefficient d'absorption maximale s'obtient en faisant  $v = v_e$ dans S(v), ce qui donne pour une forme de raie lorentzieune :

$$\alpha_{\max} = N \cdot d_{v} \cdot \left[ \pi_{i} \left( 1 - e^{-\frac{h \upsilon_{i}}{kT}} \right)^{d_{i}} \right] \cdot e^{-\frac{h \left[ \sum_{i} \upsilon_{i} \upsilon_{i} + B_{v} \cdot i \left( (i+1) \right) \right]}{kT}} \cdot \frac{4\pi^{2} h \upsilon_{o}^{3} \mu^{2}}{3ck^{2} T^{2} \left( \Delta \upsilon \right) \left( 4 \pi \varepsilon_{o} \right)}$$
(B-8)

Conformément à la théorie donnée au paragraphe A-II-3, dans le cas où l'élargissement des transitions est principalement dû aux chocs moléculaires, le coefficient d'absorption maximal ne dépend pas de la pression du gaz car les seuls termes qui en dépendent sont N (concentration moléculaire) et  $\Delta v$  (demi -largeur de raie) mais, le rapport  $\frac{N}{\Delta v}$  est constant pour une température donnée. Les différentes grandeurs dont dépend la valeur du coefficient d'absorption sont donc d'après (B-8) : des grandeurs liées à la molécule comme le moment dipolaire électrique, l'énergie de vibration, le nombre quantique J et une grandeur liée à l'expérience comme la température.

 $\diamond$  Le moment dipolaire intervient par un terme multiplicatif en  $\mu^2$ ; l'absorption sera donc d'autant plus importante que la molécule aura un fort moment dipolaire.

A titre d'exemple, comparons les absorptions maximales calculées dans l'état fondamental de N<sub>2</sub>O et OCS pour une longueur d'onde voisine de 6 mm :

$$\mu_{N_{2}0} \simeq 0,16 \text{ debye} \qquad \mu_{OCS} \simeq 0,7 \text{ debye}$$

 $\alpha^{N_2O}_{max} = 3, 1.10^{-5} \text{ cm}^{-1} \qquad \alpha^{OCS}_{max} \simeq 4, 4.10^{-4} \text{ cm}^{-1}$ 

◊ Influence de l'énergie de vibration

$$-\frac{h}{\frac{i}{kT}} \frac{\sum v_i v_i}{kT}$$

L'énergie de vibration intervient par le terme e Pour fixer des ordres de grandeur, nous avons calculé  $\alpha_{max}$  pour divers états vibrationnels de la molécule linéaire triatomique OCS (oxysulfure de carbone).

La molécule de OCS présente trois vibrations fondamentales dont une est doublement dégénérée [MAKI et al., 1962 - FAYT, 1972]

$$|10^{\circ}0\rangle : \upsilon_{1} = 859 \text{ cm}^{-1} \qquad (d_{1} = 1)$$
  
$$|01^{1}0\rangle : \upsilon_{2} = 520 \text{ cm}^{-1} \qquad (d_{2} = 2)$$
  
$$|00^{\circ}1\rangle : \upsilon_{3} = 2.062 \text{ cm}^{-1} \qquad (d_{3} = 1)$$

La fonction de partition vibrationnelle se déduit immédiatement de ces données. On trouve pour  $T = 295^{\circ}K$  :

$$Q_v = 0,835$$

Le moment dipolaire vaut sensiblement 0,7 debye (REINABTZ et al, 1974) (en négligeant les variations dues à l'état de vibrarion), soit :

$$v = 2,33 \, 10^{-30}$$
 C.m.

En prenant P = 20 m torr et en adoptant pour  $\Delta v$  la valour donnée précédemment :

$$\Delta v = 120 \text{ KHz}$$

on obtient, à la température ordinaire (T = 295° K) :

$$\alpha_{\text{max}} = d_{y} \cdot e^{\frac{h\left[\sum_{i}^{\Sigma} v_{i} v_{i}^{+} B_{y} J(J+1)\right]}{kT}} \cdot 3,89 \, 10^{-34} \, v_{s}^{3} \, (S.L.) \quad (2-9)$$

Le terme en  $B_V J(J+1)$  est toujours négligeable devant l'énergie de vibration (pour les niveaux de J faible). Il n'intervient que pour l'état fondamental pour lequel on a :

$$B_{\circ} \approx 0.2 \text{ cm}^{-1}$$

Les résultats concernant les transitions  $J \rightarrow J + J$ caractérisées par J=1 et J=4 sont rassemblés dans le tableau 8-1, le coefficient d'absorption maximal étant exprimé en Neper/en. (la formule B-9 permettant d'effectuer le calcul pour n'importe quelle transition de fréquence  $v_{0}$ ).

| • v>                                                  | 00°0>                 | 01 <sup>1</sup> 0>    | 10°0>                 | 00°1>                 | 00°2>                  | 00°3>                    |
|-------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|--------------------------|
| Ev<br>(cm <sup>-1</sup> )                             | 0                     | 520                   | 859                   | 2 062                 | 4 101                  | 6 118                    |
| $J=1 \rightarrow 2$<br>a max<br>(N.cm <sup>-1</sup> ) | 5,59.10 <sup>-5</sup> | 8,91.10 <sup>-6</sup> | 8,41.10 <sup>-7</sup> | 2,36.10 <sup>-9</sup> | 1,11.10 <sup>-13</sup> | 5,82 . D <sup>-18</sup>  |
| $J=4 \Rightarrow 5$<br>$\alpha \max(N \cdot cm^{-1})$ | 8,58.10-4-            | 1,39.10 <sup>-4</sup> | 1,30.10 <sup>-5</sup> | 3,70.10 <sup>-8</sup> | 1,7.10 <sup>-12</sup>  | 9, 11. 10 <sup>-17</sup> |

ableau B-I : Coefficient d'absorption de OCS calculés pour différents étate de vibration (T=295°K) Si on admet qu'un spectromètre classique bien étudié peut avoir, à la température ordinaire, une sensibilité de  $10^{-10}$  cm<sup>-1</sup> [TOWNES, 1955], la plupart des spectromètres usuels ont une sensibilité maximum de l'ordre de  $10^{-8}$  cm<sup>-1</sup>. En outre, lorsqu'on travaille à la limite de sensibilité, les précisions de mesure sont très faibles car le rapport signal sur bruit est trop près de l'unité.

Dans ces conditions, on constate sur le tableau B-I que si les transitions dans le niveau fondamental de vibration ( $\frac{\Delta P}{P} > 8$  % pour J = 4  $\Rightarrow$  5 dans une cellule de 1 m) seront aisément détectables à température ordinaire, il n'en sera pas de même pour les transitions dans les états excités  $|00^\circ| > a = 2062 \text{ cm}^{-1}$  ou au-delà.

#### ◊ Influence de J

Le coefficient d'absorption maximale est proportionnel au cube de la fréquence de transition et dépend donc de J par un terme de la forme :

 $(J+1)^3 e^{-\frac{hB_V J(J+1)}{kT}}$  [cf GORDY et COOK, 1970]

La courbe de la figure B-I donne la variation de  $\alpha_{max}$  en fonction du nombre quantique J pour l'état fondamental de OCS à 295° K.



**Figure B-I**: Variation de a<sub>max</sub> en fonction **de J pour** OCS dans l'état fondamental.

Dans les états excités de vibration, les variations de  $\alpha_{max}$  avec J seront les mêmes (aux variations de B<sub>v</sub> près). On peut donc s'attendre aux coefficients d'absorptions maximaux pour des J voisins de 38 mais ceci conduit à des fréquences de transition comprises entre 400 et 500 GHz difficilement accessibles avec les sources havituellement utilisées en microonde.

Cette ëtude du coefficient d'absorption montre que la spectroscopie microonde des états excités de vibration ne peut être développée à température ordinaire que pour des molécules à fort moment dipolaire et présentant un ou plusieurs états de vibration d'énergie faible, ceci permettant l'observation de plusieurs niveaux v = 1, 2, 3, 4.... [BAUER et al., 1976-1977].

31 -

÷
### b) influence de la température

Pour un gaz donné à l'équilibre thermodynamique, la température est la seule grandeur sur laquelle l'expérimentateur peut jouer pour modifier le coefficient d'absorption. La dépendance en température est liée (d'après B-8) au terme :

$$\frac{N}{\Delta \upsilon} \cdot \left[ \pi_{i}(1-e^{-\frac{h\upsilon_{i}}{kT}})^{d} t \right] \cdot e^{-\frac{h\left[\sum_{i} \upsilon_{i} \upsilon_{i} + B_{v}J(J+1)\right]}{kT}} \cdot \frac{1}{T^{2}}$$

Rappelons que cette expression est valable pour une molécule linéaire (dans le cas d'une molécule du type toupie symétrique ou asymétrique, le terme T<sup>-2</sup> serait remplacé par T $\frac{5}{2}$ ).

Nous avons vu précédemment que la demi-largeur de la raie  $\Delta v$ pouvait s'exprimer en fonction de la pression par

$$\Delta v = a \cdot P$$

Des études expérimentales et théoriques [FROST, 1976 - LUIJENDIJK, 1977] montrent que :

$$a = \frac{\Delta \upsilon}{P} \simeq \frac{C}{T^X}$$

avec

$$x = 0,8$$
 pour OCS.

Dans ces conditions, le rapprot  $\frac{N}{\Delta \upsilon}$  s'écrit :

$$\frac{N}{\Delta v} = \frac{1}{k \cdot C \cdot T^{1-x}}$$

## k étant la constante de Boltzmann.

Afin de simplifier les calculs, nous prendrons x = 1, ce qui a pour effet de majorer légèrement le coefficient d'absorption. Dans ces conditions, le rapport  $\frac{N}{\Delta v}$  est indépendant de T et la dépendance en température de  $\alpha_{max}$  se réduit à :

$$\alpha_{\max} \propto T^{-2} \cdot Q(T) \cdot e^{-\frac{h\left[\sum_{i} v_{i} v_{i} + B_{v} J(J+1)\right]}{kT}} (B-10)$$

Les courbes de la figure B-II représentent les variations en fonction de la température du coefficient d'absorption maximale de OCS pour différents états de vibration.

Dans les états excités de vibration, ces courbes comportent un maximum qui est atteint pour des températures d'autant plus élevées que l'énergie de vibration est grande.

Pour l'état |10°0> à 859 cm<sup>-1</sup>, ce maximum se situe vers 400° K alors que pour l'état |00°1> à 2062 cm<sup>-1</sup> il se situe vers 800° K. Il est donc intéressant pour la spectroscopie microonde de conceveir un spectromètre qui puisse être porté à haute température. En fait, les élévations de température réalisables pratiquement sont limitées à quelques centaines de degrés car d'une part, des températures élevées entrainent souvent une décomposition de la plupart des molécules et d'autre part, les difficultés techniques conduisent à opter pour un compromis entre la température et les qualités propres du spectromètre.

Les différents types de spectromètres à haute température qui ont été développés peuvent se classer en deux catégories en fonction des températures d'utilisation :

## ♦ Température voisine de 200° C

Ces spectromètres sont destinés à l'étude de molécules présentant une tension de vapeur élevée à température ordinaire, le choix d'une

- 33 -



température modérée permettant d'éviter au maximum les problèmes de décomposition. Ce sont des spectromètres classiques à modulation Stark, auxquels on adjoint un dispositif de chauffage de la cellule [OKA et al., 1964 - MORINO et al., 1967] .

Avec un tel dispositif, MORINO et MATSUMURA (1967) ont pu mesurer des transitions rotationnelles de OCS dans des niveaux excités jusqu'à 2 600 cm<sup>-1</sup>.

◊ Température comprise entre 500 et 1000°C.

Ce type de spectromètre a été conçu pour l'étude de molécules ne présentant une tension de vapeur suffisante pour l'étude spectroscopique qu'à des températures très élevées.

Les cellules utilisées qui sont placées dans un four à température réglable sont en général du type développé par LIDE [1965] (figure B-III) pour la spectroscopie par effet Stark ou par PEARSON et GORDY [1969] pour la spectroscopie vidéo.



Elles sont parfois remplacées par . des cellules à guide d'onde en nickel dans lequel l'électrode centrale est maintenue par des cales de céramique. [LIDE et al., 1964].

Cellule développée par LIDE [1965].

Cette technique a permis le développement des études de l'état fondamental et de nombreux niveaux excités (jusqu'à plus de 2000 cm<sup>-1</sup>)

- 35 -

dans les hydroxides d'alcalino-terreux [LIDE et al., 1967 -MATSUMURA et al., 1969 - PEARSON et al., 1976 - KUIJPERS et al., 1976 ] ainsi que dans les halogénures alcalins [LIDE et al., 1964 -PEARSON et al., 1969] et les halogénures de métaux comme par exemple dans  $C_{uI}$  pour lequel on a observé des états jusque v = 11 ( $v \approx 11 \times 265 \text{ cm}^{-1}$ ) [ MANSON et al., 1975] ou A&I (v = 14) [WYSE et al., 1972].

Cette étude du coefficient d'absorption dans les conditions de l'équilibre thermodynamique montre donc la nécessité de l'utilisation d'un spectromètre à haute température pour observer des transitions de rotation dans les états de vibration d'énergie élevée, les possibilités de cette technique étant en fait limitées, essentiellement par la décomposition thermique des molécules.

#### II - PERTURBATION DE L'EQUILIBRE THERMODYNAMIQUE

Jusqu'à présent, nous avons considéré un ensemble de molécules en équilibre thermodynamique et nous avons étudié l'influence des différents facteurs intervenant dans le coefficient d'absorption. On peut également envisager de perturber cet équilibre afin d'augmenter sélectivement la population de certains niveaux d'énergie élevée.

Dans ce paragraphe, nous nous intéressons à différentes techniques de perturbation de l'équilibre thermodynamique qui rendent possible des études de spectroscopie microonde dans des états fortement excités.

- 36 -

#### a) perturbation par laser

Lorsque l'on irradie un gaz avec un faisceau laser infrarouge de forte puissance, il est possible, si la fréquence de la raie laser coïncide avec une transition rovibrationnelle de la molécule  $(|vJ\rangle \rightarrow |v'J'\rangle)$ , de saturer cette dernière et d'augmenter fortement la population de l'état supérieur  $|v'J'\rangle$ . On peut alors observer des transitions microondes dans l'état excité  $|v'\rangle$ entre niveaux rotationnels peuplés soit directement par le pompage laser, soit par relaxation collisionnelle [JONES, à paraître -SHIMODA, 1976].

Ces expériences de double résonance infrarouge-microende peuvent être regroupées en deux types :

la puissance microonde utilisée est faible et on détecte ses variations induites par le pompage laser,

la puissance microonde est élevée et on détecte son influence sur le signal infrarouge.

Cette deuxième technique est la plus sensible car les photons détectés sont d'énergie élevée. Elle a été utilisée pour les premières études de ce type effectuées sur le formaldéhyde deutéré H D C O (état  $v_2$  à 2121 cm<sup>-1</sup>) [TAKAMI et al., 1973] à l'aide d'un laser He-Xe. Des expériences analogues ont permis l'observation de 19 transitions microondes dans l'état  $v_2$  (centre de bande à 2943 cm<sup>-1</sup>) de l'acide formique [TAKAMI et al., 1974] par pompage avec un laser He-Ne. Les mesures effectuées par CURL et OKA dans l'état  $v_3$  du méthane [CURL et al., 1973] montrert la puissance de cette technique cos ile détectent des transitions rotationnelles, liées au moment dipolaire induit par la vibration, dont le coefficient d'absorption vaut  $6.10^{-15}$  cm<sup>-1</sup>.

La première technique est généralement utilisée à l'aide d'un pompage infrarouge par un laser à CO<sub>2</sub> ou N<sub>2</sub>O. Dans ces conditions, on peuple généralement des états d'énergie voisine de 1000 cm<sup>-1</sup> comme par exemple les états  $v_6$  des halogénures de méthyle CH<sub>3</sub>Cl [FRENKEL et al., 1971] et CH<sub>3</sub>B<sub>r</sub> [HERLEMONT, 1974 - HERLEMONT et al., 1976]ou l'état  $v_1$  de CF<sub>3</sub>I [JONES et al., 1975]. Le pompage laser peut également se faire sur une bande chaude : c'est le cas de la molécule de CF<sub>3</sub><sup>79</sup>B<sub>r</sub> [JONES et al., 1976] pour laquelle le pompage s'éffectue entre les états  $v_6$  et  $v_1 + v_6$ .

Nous n'avons considéré jusqu'à présent que des pompages infrarouges mais la même technique peut être étendue à des domaines de fréquence beaucoup plus élevée. C'est le cas de la spectroscopie par double résonance microonde-optique, la détection se faisant alors toujours sur la fréquence la plus élevée. C'est ainsi que des transitions rotationnelles ont été mesurées dans les états de vibration jusque v = 7 de l'état électronique excité  $A^{1}\Sigma$  (énergie supérieure à 20 000 cm<sup>-1</sup>) de  $B_{a}O$  [FIELD et al., 1972 et 1973] par pompage à l'aide de la raie à 496,5 nm d'un laser à argon ionisé ou à l'aide d'un

laser à colorant continu. Dans ce cas la concentration stationnaire dans l'état excité a été évaluée à  $10^7$  molécules / cm<sup>3</sup>, ce qui donne un ordre de grandeur de la sensibilité obtenue sur le plan de la spectroscopie microonde.

Il apparaît donc que cette technique de double résonance laser-microonde est très sensible pour effectuer des études microondes dans des états fortement excités. Pour être mise en oeuvre, ille nécessite cependant des conditions très précises qui en limite l'utilisation :

- Ia pression du gaz doit être faible (< 100 m.torr) pour permettre la saturation,
- la fréquence de la raie laser doit se situer à l'intérieur du profil Doppler de la transition pompée,
- les transitions microondes à étudier doivent avoir un niveau
   commun (ou être couplées par des transitions induites par
   collisions) avec la transition infrarouge (ou visible).

b) décharge électrique continue «in situ»

Lorsqu'une différence de potentiel élevée est établie entre deux électrodes au sein d'un gaz ou d'un mélange de gaz, une décharge électrique s'amorce pour certaines conditions de pression et de distance entre les électrodes. Les effets de la décharge dépendent de la molécule et de l'intensité du courant qui traverse le gaz : certaines molécules peuvent être détruites pour donner naissance à des molécules plus simples ou à des radicaux libres, d'autres peuvent acquérir une énergie suffisante pour être excitées dans des niveaux vibrationnels ou électroniques. Les possibilités d'études en spectroscopie microonde des composés obtenus au sein de ces décharges dépendent de la densité des plasmas ainsi réalisés.

Les premières expériences de ce type ont été effectuées au début de la spectroscopie microonde des radicaux libres [LOW et al., 1955] pour créer des espèces instables directement dans la cellule d'observation. Ce n'est que très récemment qu'elles ont été reprises et développées par WOODS et al. [1973] pour l'étude de molécules excitées, de radicaux libres et d'espèces ionisées. La figure B-IV donne le schéma simplifié du dispositif utilisé : une décharge entre deux électrodes distantes de 3 m. est réalisée dans une cellule à propagation libre en pyrex, l'intensité du courant de décharge pouvant varier entre 2 et 400 mA.



Figure B-IV: Cellule à décharge électrique (d'après WOODS, 1977)

- 40 -

C'est ainsi que la transition  $J = 0 \rightarrow 1$  de CO a pu être observée dans les états de vibration v = 1 (à 2143 cm<sup>-1</sup>) et v = 2[DIXON, 1975].

En effectuant une décharge électrique dans un mélange He + CO, la cellule étant refroidie à l'azote liquide, WOODS [1976] a pu observer des transitions microondes de rotation dans plusieurs niveaux de vibration de l'état électronique métastable  $a^3 \pi$  de CO et des substitués isotopiques en  ${}^{13}C$  et  ${}^{18}O$ , d'énergie sapérieure à 48 000 cm<sup>-1</sup>.

Les résultats les plus spectaculaires de cette technique sont les observations de spectre microonde d'ions moléculaires (qui peuveux être considérés comme des espèces fortement excitées) comme GO<sup>+</sup> ou HCO<sup>+</sup> [ DIXON et al., 1975 - WOODS et al., 1975].

### c) le transfert d'énergie

Dans certaines conditions que nous développerons au paragraphe suivant, deux molécules A et B peuvent échanger de l'énergie vibrationnelle ou électronique au cours d'une collision.

En 1962, KARL et POLANYI [1963] ont réussi à observer la fluorescence vibrationnelle de l'oxyde de carbone excité par un transfert de l'énergie électronique du mercure. Cette même méthode d'excitation a été ensuite appliquée à NO [KARL et al., 1967] et à HF [HEYDTMANN, 1971].

CALLEAR [1962] est le premier à suggérer la possibilité d'un transfert vibrationnel pour justifier ses observations de la fluorescence de NO en présence de CO. HOOKER et MILLIKAN [1963] reprennent la même hypothèse lors d'études par onde de choc du mélange CO-N<sub>2</sub>. En utilisant la possibilité d'excitation de l'azote à l'aide d'une décharge haute fréquence, LEGAY et ses collaborateurs ont mis en évidence l'existence d'un transfert d'énergie vibrationnelle direct entre l'azote activé d'une part et les molécules de CO2, N<sub>2</sub>O et CO d'autre part [LEGAY et al., 1963 a - 1963b] en observant la luminescence infrarouge de ces molécules lorsqu'elles sont mélangées à de l'azote activé. Dans le cas de CO, la température vibrationnelle a été évaluée à 4600° K alors que la température rotationnelle était de 430° K [LEGAY-SOMMAIRE et al., 1964] : les molécules ne sont donc pas en équilibre thermodynamique. JOECKLE et PEYRON [1955] ont montré la présence de molécules de CO excitées jusqu'au niveau v = 28 dans une expérience analogue.

Bien que ces premières études infrarouges aient été faites à des pressions de quelques torrs, nous avons appliqué avec succès cette technique de transfert d'énergie vibrationnelle à la spectroscopie microonde des états excités, en la réalisant à basse pression (pression totale de l'ordre de 20 m.torr) [BOGEY et al., 1974].

Une expérience analogue basée sur le transfert d'énergie électronique avait rendu possible l'observation de la transition microonde J = 2  $\rightarrow$  3 du radical SO dans l'état excité <sup>1</sup> $\Delta$ 

- 42 -

[SAITO, 1970] : la formation du radical est réalisée par action de l'oxygène atomique sur OCS, le peuplement de l'état  $^{1}\Delta$  étant interprété par un transfert entre des molécules d'oxygène dans l'état  $^{1}\Delta$  et les molécules de SO dans l'état fondamental [CARRINGTON, 1966].

Comme nous le verrons dans le prochain paragraphe, l'avantage de cette technique est lié au fait qu'elle ne nécessite pas une résonance parfaite entre les états qui échangent de l'énergie et permet de ce fait le peuplement d'un niveau de vibration donné et même des niveaux harmoniques.

## **III** - ETUDE DU TRANSFERT D'ENERGIE VIBRATIONNELLE

Après avoir dégagé les principes de base d'un tel mécanisme réactionnel et déterminé les répartitions de population auxquelles il conduit, nous rappellerons les principaux résultats spectroscopiques obtenus en infrarouge par cette méthode et montrerons l'intérêt de l'azote activé pour de telles expériences.

#### a) notations et principe

Lors d'une collision, le potentiel intermoléculaire induit une interaction entre les molécules et peut provoquer une modification de leurs états quantiques avec une certaine probabilité élémentaire p. Cette probabilité dépend des états initiaux et finals, de la vitesse relative des deux particules et du paramètre d'impact b de la collision. Pour obtenir la section efficace totale σ définie pour une molécule et un changement d'état donné, il est nécessaire de sommer la probabilité élémentaire sur tous les paramètres d'impact b et de la moyenner sur la distribution des vitesses moléculaires :

$$\sigma = \int_{0}^{\infty} 2\pi b \frac{\int_{0}^{0} pv^{3} \exp\left(-\frac{\mu v^{2}}{2kT}\right) dv}{\int_{0}^{\infty} v^{3} \exp\left(-\frac{\mu v^{2}}{2kT}\right) dv} db$$
$$= 2\left(\frac{\mu}{2kT}\right)^{2} \int_{0}^{\infty} 2\pi b \int_{0}^{\infty} p v^{3} \exp\left(-\frac{\mu v^{2}}{2kT}\right) dv db$$

où μ représente la masse réduite des deux particules. Une quantité très intéressante expérimentalement est la constante de vitesse qui est reliée à la section efficace par la relation :

$$K = \sigma \overline{v} = 2 \sigma / \frac{2kT}{\pi \mu}$$

Dans le système CGS, elle s'exprime en cm<sup>3</sup> molécule<sup>-1</sup>. s<sup>-1</sup>. Certains auteurs utilisent également la notion de probabilité par collision définie par le rapport  $\frac{\sigma}{\sigma_0}$ ,  $\sigma_0$  étant la section efficace type "sphère rigide" reliée au diamètre de collision de la molécule. Ajoutons que la constante de vitesse K peut également s'exprimer en fonction de la pression, l'unité la plus utilisée étant la seconde<sup>-1</sup> torr<sup>-1</sup>. La correspondance entre les deux systèmes est :

 $K_{cm}^{3}$  molécule<sup>-1</sup> s<sup>-1</sup> = 1,035 . 10<sup>-19</sup> . T . K s<sup>-1</sup> torr<sup>-1</sup> (B-11) où T est la température en degrés K. La réaction de transfert vibrationnel la plus générale entre deux molécules A et B peut s'écrire :

$$A(v_A^i) \neq B(v_B^i) \xleftarrow{K_{if}}{K_{fi}} A(v_A^f) + B(v_B^f) + \Delta E$$

Dans cette équation,  $v_j^i$  désigne l'état de vibration de la molécule j avant le choc et  $v_j^f$  l'état après le choc. En fait, plus généralement,  $v_j$  peut caractériser un état quantique quelconque de la molécule mais nous nous limitons aux états de vibration en négligeant l'influence des niveaux de rotation, ceux-ci étant, à l'état stationnaire, en équilibre de Boltzmann à la tempérarere de translation du gaz (LEGAY-SONMAIRE et al., 1964).

La conservation de l'énergie totale du système des deux molécules impose que la quantité

$$\Delta E = [E(v_A^{i}) - E(v_A^{f})] - [E(v_B^{f}) - E(v_B^{i})]$$

soit convertie en énergie de translation si la réaction est exothermique (et réciproquement si elle est endothermique). On conçoit dès lors que la probabilité de transfert (évaluée dans le sens exothermique) sera d'autant plus grande que l'excès d'énergie de la réaction sera faible (figure B-V). Les constantes de vitesse Kif et K<sub>fi</sub> de l'équilibre ne sont pas indépendantes : elles doivent vérifier la relation du bilan détaillé :

$$\frac{K_{if}}{K_{fi}} = e^{\frac{\Delta E}{kT}}$$
(B-12)



Figure B-V : Constantes de vitesse du transfert entre  $CO_2(00^\circ 1)$  et d'autres molécules en fonction de l'excès d'énergie de la réaction. (d'après STEPHENSON, WOOD et MOORE [ 1968 ] ). On peut distinguer plusieurs types de transfert vibrationnel selon la nature de la molécule B et les valeurs de  $v_A^f$  et  $v_B^{\sharp}$ (MOORE, 1969) :

transfert vibration - vibration intermoléculaire  $\text{comme } N_2(v=1) + OCS(00^\circ 0) \xrightarrow{} N_2(v=0) + OCS(00^\circ 1) + 270 \text{ cm}^{-1}$   $N_2(v=1) + CO(v=0) \xrightarrow{} N_2(v=0) + CO(v=1) + 188 \text{ cm}^{-1}$ 

$$OCS(00^{\circ}1) + OCS(00^{\circ}0) \longrightarrow OCS(00^{\circ}0) + OCS(04^{\circ}0) - 42 \text{ cm}^{-1}$$

transfert V-V intramoléculaire

comme  $OCS(00^{\circ}1) + M$ 

 $OCS(04^{\circ}0) + M - 42 \text{ cm}^{-1}$ 

e partage 
$$\forall - \forall$$
 intermoléculaire  
comme  $CO_2(00^\circ 1) + CO_2(00^\circ 0) \longrightarrow CO_2(10^\circ 0) + CO_2(01^{10}) + 294 \text{ cm}^{-1}$ 

\* transfert vibration - translation (V - T)comme OCS(00°1) + M  $\longrightarrow$  OCS(00°0) + M + 2062 cm<sup>-1</sup>

M pouvant être une particule ou une paroi

désexcitation radiative

 $OCS(00^{\circ}1)$   $\rightarrow$  hu +  $OCS(00^{\circ}0)$ 

Notre but étant d'augmenter la population d'un niveau vibrationnel, il est donc nécessaire d'utiliser le transfert  $V \rightarrow V$ intermoléculaire comme technique d'excitation. Les autres transferts  $V \rightarrow V$  jouent un rôle important car ils permettent une diffusion de l'énergie apportée préférentiellement à un niveau de vibration sur des niveaux différents. Le transfert  $V \rightarrow T$  constitue une perte d'énergie qui reste en général faible car, comme les  $\Delta E$  sont élevés, sa probábilité est très petite. La désexcitation radiative négligeable devant les autres processus de relaxation en haute pression peut jouer un rôle très important en basse pression ; remarquons que c'est par son intermédiaire que des spectres d'émission ont pu être observés dans les études infrarouges.

En présence d'une excitation vibrationnelle, ces différents mécanismes de transfert vont permettre l'établissement d'un nouvel état stationnaire, différent de l'équilibre de Boltzmann, comme nous allons le voir brièvement.

- 47 -

## b) distribution vibrationnelle

Nous nous limiterons dans ce paragraphe au cas d'un mélange de deux espèces moléculaires diatomiques pour ne pas trop alourdir les notations et les calculs. La méthode est générale et peut s'étendre au cas des molécules ayant plusieurs modes de vibration mais il est alors nécessaire de connaître les ordres de grandeurs d'un grand nombre de probabilités de transition pour pouvoir simplifier le calcul.

TREANOR et ses collaborateurs [1968] sont les premiers à s'être penchés sur le problème de la relaxation d'un ensemble d'oscillateurs anharmoniques : leur traitement est développé pour une seule espèce moléculaire, la généralisation à deux espèces en interaction étant brièvement évoquée en appendice. FISHER et KUMMLER [1968 a et b] ont traité le même problème par la même méthode en développant d'une façon beaucoup plus détaillée le cas de deux oscillateurs différents. Un très bon article de synthèse réalisé par GORDIETS et ses collaborateurs [1973] traite de nombreuses conditions de relaxation.

Soient A et B deux molécules diatomiques dont les concentrations dans le n<sup>ième</sup> état de vibration sont notées  $x_n$ et  $y_n$ , les concentrations totales étant x et y. On peut écrire les équations cinétiques décrivant l'évolution de  $x_n$ (ou  $y_n$ ) sous la forme suivante :

$$\frac{dx_{n}}{dt} = \sum_{\substack{m \neq n}} \begin{bmatrix} A_{K_{mn} x_{m}} - A_{K_{mm} x_{n}} \end{bmatrix} x$$

$$+ \sum_{\substack{m \neq n}} \begin{bmatrix} B_{K_{mn} x_{m}} - B_{K_{nm} x_{n}} \end{bmatrix} y$$

$$+ \sum_{\substack{i,j,m\neq n}} \begin{bmatrix} A_{K_{mn}^{ij} x_{m} x_{i}} - A_{K_{nm}^{ji} x_{n} x_{j}} \end{bmatrix}$$

$$+ \sum_{\substack{i,j,m\neq n}} \begin{bmatrix} B_{K_{mn}^{ij} x_{m} y_{i}} - B_{K_{nm}^{ji} x_{n} y_{j}} \end{bmatrix}$$

$$+ \begin{bmatrix} \sum_{\substack{n > n}} K_{mn} x_{m} - \sum_{\substack{m < n}} K_{nm} x_{n} \end{bmatrix}$$

$$+ \begin{bmatrix} \sum_{\substack{n > n}} K_{mn} x_{m} - \sum_{\substack{m < n}} K_{nm} x_{n} \end{bmatrix}$$

On peut écrire de même le système décrivant les états de la molécule B. Dans l'équation ci-dessus :

(B-13)

 $\oplus$  les deux premiers crochets décrivent les transferts V - T par collision A - A ou A - B caractérisés par les constantes de vitesse <sup>A</sup>K<sub>mn</sub> et <sup>B</sup>K<sub>mn</sub>

⊕ le troisième crochet décrit les transferts V - V par
 collision A - A dont les constantes de vitesse sont <sup>A</sup>K<sup>ij</sup><sub>mn</sub>

⊕ le quatrième crochet est lié également aux transferts V - V
 mais par échange entre A et B. Dans ce cas, les constantes de
 vitesse sont notées <sup>B</sup>K<sup>ij</sup><sub>mn</sub>

le cinquième crochet traduit les désexcitations radiatives
 entre états m et n de probabilité <sup>r</sup>K<sub>mn</sub>

 $_{\oplus}$  le dernier terme tient compte de la présence d'une source (de flux S<sub>n</sub>) ou d'une désexcitation par collisions avec les parois de vitesse K<sub>n</sub>.

Dans la plupart des cas, il est impossible de résoudre directement le système B-13, mais compte-tenu des ordres de grandeur relatifs des différentes vitesses de transfert on peut émettre des hypothèses simplificatrices.

Celles formulées par TREANOR et ses collaborateurs sont les suivantes :

les transferts à un seul quantum de vibration sont les plus
 probables

 es transferts V - T sont beaucoup moins rapides que les transferts V - V et peuvent être négligés en première approximation, ceci n'étant vrai que pour les bas niveaux de vibration.

• la désexcitation radiative est négligeable

Le système B-13 s'écrit alors, en l'absence de source et dans le cas où l'influence des parois et de la désexcitation radiative sont négligeables :

$$\frac{dx_{n}}{dt} = \sum_{i} A_{K_{n+1,n}^{i,i+1}} \left[ x_{n+1} x_{i} - x_{n} x_{i+1} e^{-\frac{E_{n+1} + E_{i} - E_{n} - E_{i+1}}{kT}} \right]$$

$$- \sum_{i} A_{K_{n,n-1}^{i-1,i}} \left[ x_{n} x_{i-1} - x_{n-1} x_{i} e^{-\frac{E_{n} + E_{i-1} - E_{n-1} - E_{i}}{kT}} \right]$$

$$+ \sum_{i} B_{K_{n+1,n}^{i,i+1}} \left[ x_{n+1} y_{i} - x_{n} y_{i+1} e^{-\frac{E_{n+1} + F_{i} - E_{n} - F_{i+1}}{kT}} \right]$$

$$- \sum_{i} B_{K_{n,n-1}^{i-1,i}} \left[ x_{n} y_{i-1} - x_{n-1} y_{i} e^{-\frac{E_{n} + F_{i-1} - E_{n-1} - F_{i}}{kT}} \right]$$

$$(B-14)$$

Dans cette expression, nous avons tenu compte de la relation du bilan détaillé (B-12) en notant  $E_j$  et  $F_j$  les énergies de vibration des niveaux j des molécules A et B.

La solution générale de ce système s'écrit alors :

$$x_{n} = x_{o} e^{-\frac{nE_{1}}{k\theta^{2}} + \frac{nE_{1} - E_{n}}{kT}}$$

$$y_{n} = y_{o} e^{-\frac{nF_{1}}{k\phi^{2}} + \frac{nF_{1} - F_{n}}{kT}}$$
(B-15)

où

T est la température de translation

 $\theta_1^{\dot{r}}$  et  $\Phi_1^{\dot{r}}$  sont des paramètres vibrationnels indépendants de n liés par la relation :  $\frac{F_1}{\Phi_1^{\dot{r}}} - \frac{E_1}{\theta_1^{\dot{r}}} = \frac{F_1 - E_1}{T}$ .

Si les oscillateurs A ou B sont harmoniques, nous obtenons une distribution de Boltzmann à la température  $\theta_1^{\alpha}$  ou  $\Phi_1^{\alpha}$  qui représente dans ce cas la température vibrationnelle. Dans le cas où les oscillateurs sont anharmoniques, la répartition obtenue [figure B-VI] est communément appelée répartition de TREANOR et  $\theta_1^{\alpha}$  ( $\Phi_1^{\alpha}$ ) représente la température vibrationnelle associée à une répartition de Boltzmann tangente en n = 0 aux courbes (B-15).



Distribution des populations vibrationnelles pour un oscillateur anharmonique avec  $T = 800^{\circ} K$ ,  $\theta_{1}^{\star} = 3000^{\circ} K$ ,  $D_{i}$  est l'énergie de dissociation. ..... distribution de Boltzmann (T= 3000° K) ----- distribution de Treanor ----- distribution de Boltzmann (T= 800° K) d'après BRAY [1970]

Figure B-VI

En fait, comme nous l'avons déjà signalé, cette distribution n'est valable que pour les bas niveaux de vibration (car nous avons négligé les transferts V - T). Si l'on tient compte de cette désexcitation V - T, une analyse numérique des équations de relaxation [BRAY, 1968-1970] montre que lorsque n augmente, la distribution réelle s'écarte de celle de TREANOR pour tendre vers une distribution de Boltzmann à la température de translation [Figure B-VI].

Ce bref rappel de la théorie de TREANOR montre que l'on peut s'attendre à des écarts par rapport à une loi de Boltzmann dans le cas d'un oscillateur anharmonique. Ils ont pu être mis en évidence lors d'études de la fluorescence infrarouge induite par un transfert vibrationnel [ LEGAY-SOMMAIRE, 1970 - PICARD, 1975 et 1976 ]. Les mesures d'intensité de raie étant très délicates en spectroscopie microonde, nous ne pouvons, dans nos expériences, déterminer la distribution de population mais la notion de température vibrationnelle nous sera très utile pour rendre compte de l'efficacité du transfert.

# c) étude des techniques expérimentales utilisables pour la

#### spectroscopie à haute résolution

Nous présentons dans ce paragraphe les deux principales techniques d'étude des transferts V - V qui peuvent être utilisées pour réaliser de la spectroscopie à haute résolution dans des états excités de vibration.

• Utilisation de l'azote activé

Chronologiquement, c'est cette technique qui a été utilisée la première [LEGAY, 1963 a]. Lorsque l'on fait passer de l'azote dans une décharge microonde, on obtient ce qu'il est convenu d'apoeler de l'azote activé que l'on note  $N_2^{\pm}$ . Comme nous le verrons plus loin, ce dernier contient une grande proportion de molécules d'azote excitées dans le premier niveau vibrationnel ( $v = 2.331 \text{ cm}^{-1}$ ). Ce niveau étant métastable, il est caractérisé par sa grande durée de vie : il constitue donc une très bonne source d'énergie de vibration. Nous ne rappelons pas les premières expériences déjà citées de mise en évidence de transferts V - V à partir de  $N_2^{\pm}$  sur des molécules telles que CO, CO<sub>2</sub> ou N<sub>2</sub>O mais nous allons montrer les possibilités offertes par cette technique.

Il est tout d'abord intéressant de noter que l'efficacité de ces transferts a permis l'obtention d'effets lasers sur les molécules ainsi excitées [LEGAY et al., 1964 - LEGAY-SOMMAIRE et al., 1965 -PATEL, 1964 - PATEL, 1965 ].

Des études de spectres d'émission à haute résolution ont pu être réalisées à partir de cette technique en excitant l'azote soit à l'extérieur de la cellule d'observation par décharge haute

53 -

fréquence soit à l'intérieur par décharge électrique. C'est ainsi que Mc CUBBIN et al. [1967] et VAL [1968-1973] ont pu observer les spectres d'émission de  $CO_2$  pour de nombreuses transitions infrarouges. La figure [B-VII] montre le schéma de principe du montage à excitation externe de l'azote.



Principe du spectromètre à excitation externe de N<sub>2</sub> d'après J.L. VAL (1968)

#### Figure B-VII

Des expériences analogues ont été effectuées sur CO [LEGAY-SOMMAIRE, 1970] et sur  $N_20$  [FARRENQ et al., 1974 - PICARD, 1976]. Dans ce dernier cas, les constantes moléculaires de vibration et de rotation ont pu être déterminées pour 23 niveaux vibrationnels. Dans toutes ces études, des écarts par rapport à la distribution de Boltzmann ont pu être mis en évidence conformément à la théorie de Treanor et les probabilités de transfert ont été mesurées.

L'azote activé apparait donc comme une excellente source d'énergie vibrationnelle, la probabilité du transfert étant d'autant plus grande que l'énergie fournie ou empruntée à la translation sera faible ( $\Delta E \simeq -18 \text{ cm}^{-1}$  pour CO<sub>2</sub>, 108 cm<sup>-1</sup> pour N<sub>2</sub>O et 188 cm<sup>-1</sup> pour CO). • Fluorescence induite par laser

Dans cette technique, l'excitation vibrationnelle est réalisée par un pompage laser sur l'une des espèces moléculaires et se transmet à l'autre par transfert V - V : on peut alors observer la fluorescence infrarouge de l'une ou l'autre espèce.

En fait, ces expériences décrites par MOORE dans différentes revues [1967, 1969, 1973] ont toujours été effectuées dans le seul but d'étudier les mécanismes de transfert ou de désexcitation vibrationnels. En effet, on conçoit bien que, sur le plan spectroscopique, une telle méthode présente peu d'intérêt par rapport à la double résonance infrarouge-microonde.

Il apparait donc clairement qu'une technique très intéressante pour la spectroscopie est celle utilisant l'azote activé dont nous allons voir maintenant les principales propriétés.

## d) l'azote activé

On appelle azote activé toute forme excitée de l'azote, atomique ou moléculaire, de durée de vie suffisante pour être extraite de la région de formation. On peut l'obtenir, par exemple, par décharge électrique entre électrodes ou par décharge microonde en cavité.

Ainsi défini, l'azote activé comporte un nombre limité d'espèces excitées qui caractérisent ses propriétés et qui sont principalement des atomes d'azote dans l'état fondamental, des molécules électroniquement excitées pouvant résulter des recombinaisons atomiques et des molécules vibrationnellement excitées dans l'état électronique fondamental.

Nous ne nous proposons pas de faire une bibliographie complète sur l'ensemble du sujet déjà effectuée dans l'excellente monographie de WRIGHT et WINKLER [1968] (1529 références) mais nous nous limitons à la mise en évidence des molécules vibrationnellement excitées  $N_2^{a}$ qui sont les seules importantes lors des transferts d'énergie V - V.

Quand on excite l'azote par décharge, on observe, si la pression est suffisante, une post-luminescence jaune ou luminescence de Lewis-Rayleigh de longue durée de vie, et, si le gaz est suffisamment pur, une luminescence rose de courte durée de vie. Elles caractérisent la présence de transitions d'émissions électroniques moléculaires ou ioniques  $(N_2^+)$ .

En 1956, EVANS et WINKLER ont entrepris de faire une synthèse des observations expérimentales sur l'azote activé. Leur conclusion est que, si les espèces les plus réactives sont bien des atomes d'azote, il est tout à fait improbable que des espèces telles que des molécules électroniquement excitées, des atomes métastables, des ions ou des radicaux triatomiques aient une contribution importante à la réactivité. Cependant, comme il doit exister plus d'une espèce active, ils émettent l'hypothèse de la présence de molécules vibrationnellement excitées.

En 1958, KAUFMAN et KELSO consolident cette hypothèse par des études de réaction entre  $N_2^{ir}$  et N<sub>2</sub>O (ou CO<sub>2</sub>). Ils évaluent d'ailleurs la durée de demi-vie de l'azote vibrationnellement excité à 50 ms dans un tube de Vycor de 20 mm. de diamètre.

- 56 -

La première confirmation spectroscopique de la validité de cette hypothèse a été obtenue par DRESSLER [1959] : il a identifié la présence de molécules N<sub>2</sub> dans l'état v = 1 (v = 2331 cm<sup>-1</sup>) de l'état électronique fondamental par l'observation du spectre d'absorption U.V. de la transition ( $a^{1}\pi_{g} \leftarrow X^{1}\Sigma_{g}^{+}$ ). En présence d'azote activé, le spectre comporte, en plus des bandes issues de l'état fondamental v" = 1, les quatres bandes (2,1), (6,1), (7.1) et (8,1). De plus, en comparant les intensités des bandes, il estime la proportion moyenne dans sa cellule de N<sub>2</sub>(v=1) à 10 %.

Les expériences de MORGAN et SCHIFF [1963] réalisées à l'aide d'une sonde calorimétrique isothermique ont montré que l'azote activé contenait 6,03 K cal/mole d'énergie de vibration et que sa désexcitation vibrationnelle n'était due qu'aux collisions sur les parois de la cellule en pyrex avec une efficacité  $\gamma$  de 4,5.10<sup>-4</sup>,  $\gamma$  représentant la probabilité qu'a une molécule atteignant la surface d'être desexcitée par collision sur celle-ci.

Les premières expériences de transfert vibrationnel réalisées par LEGAY et son équipe [LEGAY et al., 1963 a - 1963 b -LEGAY-SOMMAIRE et al., 1964 - LEGAY, 1964 ] montrent que les niveaux supérieurs à v = 1 de l'azote sont également peuplés et conduisent à un coefficient de désexcitation  $\gamma$  sur le pyrex de 6.10<sup>-4</sup>.

BASS [1964], OGAWA et al., [1964] et TANAKA et al., [1965], par l'étude des spectres d'absorption dans l'U.V. lointain de l'azote activé, ont montré que les niveaux de vibration de l'état électronique fondamental étaient peuplés jusque  $\mathbf{v} = 29$ .

. 57 -

Plus récemment, des expériences de photoionisation [COOK, 1972 - McNEAL, 1972]ont permis d'évaluer une température vibrationnelle de l'ordre de 2500° K pour l'azote activé. Ce résultat est en bon accord avec ceux de BARRET et HARVEY [1975] obtenus par observation de l'effet Raman à l'aide d'un interferomètre de Fabry-Perot et de LEGAY-SOMMAIRE [1970] obtenus par l'étude des populations vibrationnelles du système  $N_2^{\alpha}$ -CO. Notons également que ANKETELL et BROCKLEHURST [1974] ont pu montrer que les niveaux de vibration de  $N_2^{\alpha}$ , après une décharge microonde, étaient peuplés selon une répartition de Treanor.

Tous ces résultats, obtenus par des méthodes très diverses, montrent donc que l'azote activé contient une forte proportion de molécules vibrationnellement excitées dans l'état fondamental électronique. Cependant, le mécanisme d'excitation de ces molécules reste mal connu et on peut difficilement évaluer à priori leur concentration dans des conditions expérimentales données. Ces états de vibration étant métastables, ils ne peuvent se dépeupler que par collision molécules-molécules ou molécules-parois. Nous avons vu que la probabilité de désexcitation du niveau v = 1 était essentiellement due aux chocs sur les parois et nous donnons pour conclure dans le tableau B-II les valeurs du coefficient  $\gamma$  de désexcitation, pour diverses surfaces, mesurées par BLACK et al., [1974] ; ces valeurs dépendent de la nature de l'excitation et également de la durée de fonctionnement dans le cas d'une excitation microonde.

- 58 -

Tableau B - II : Coefficient de désexcitation de N<sub>2</sub>(v = 1) pour diverses surfaces et diverses sources [d'après BLACK et al., 1974]

|                                | coefficient de désexcitation y |                         |                            |
|--------------------------------|--------------------------------|-------------------------|----------------------------|
| Surface                        | Source thermique               | Source microonde        |                            |
|                                |                                | Initial                 | Après 24 h                 |
| Pyrex                          | $6 \pm 1.10^{-4}$              | $1 \pm 0, 2.10^{-3}$    | $2,3 \pm 0,5.10^{-4}$      |
| Quartz                         | $7 \pm 1.10^{-4}$              |                         | 1,8 ± 0,5.10 <sup>-4</sup> |
| Acier inoxydable               | $1,2 \pm 0,3.10^{-3}$          |                         | $3 \pm 0, 6.10^{-3}$       |
| Dural                          | 1,8 ± 0,3.10 <sup>-3</sup>     |                         | $5 \pm 1 \cdot 10^{-3}$    |
| Teflon                         | $6 \pm 1 \cdot 10^{-4}$        | $2 \pm 0, 4.10^{-3}$    | $2 \pm 0, 4.10^{-3}$       |
| Cuivre                         | $1,1 \pm 0,3.10^{-3}$          | $4 \pm 1 \cdot 10^{-3}$ |                            |
| <sup>Al</sup> 2 <sup>0</sup> 3 | $1,1 \pm 0,3.10^{-3}$          |                         | $1,4 \pm 0,3.10^{-3}$      |

L'azote activé constitue donc une excellente source d'énergie vibrationnelle de longue durée de vie, les quantums d'énergie valant 2331 cm<sup>-1</sup> pour les molécules sur le niveau v = 1. Application à la conception d'un spectromètre microonde destiné à l'étude des transferts V-V à partir de N<sup>4</sup><sub>2</sub>

C

Une molécule excitée sur un niveau de vibration donné doit être considéré comme une espèce instable car sa durée de vie est limitée par les différents processus de relaxation collisionnels ou radiatifs. Dans le cas de  $N_2(v = 1)$ , le niveau étant métastable, seules les désexcitations par chocs avec d'autres molécules ou avec les parois vont jouer un rôle : dans ce cas, nous sommes en présence d'un transfert V - T et sa probabilité sera faible ; par contre une molécule de OCS excitée sur le niveau (00°1) peut se désexciter en transférant son énergie à d'autres niveaux ou en émettant un photon : sa durée de vie sera alors très courte, la radiative étant voisine de 2ms. [HANCOCK et al., 1974] .

Dans ces conditions, il est évident que, pour étudier de telles molécules, on ne peut pas utiliser un spectromètre usuel : il faut en effet d'une part minimiser le plus possible les effets de désexcitation et d'autre part compenser ces effets par un apport continuel de molécules excitées ceci impliquant une concentration non homogène dans la cellule. Il sera donc nécessaire pour évaluer la concentration en chaque point de tenir compte, en plus des réactions d'excitation ou de désexcitation, des phénomènes de transfert comme le pompage et la diffusion.

Après avoir déterminé un schéma général du spectromètre à utiliser, nous évaluerons, pour chacune des parties qui le composent,

60 -

les concentrations stationnaires en espèces excitées afin de pouvoir optimiser les différents paramètres. Il faut signaler, à ce propos, l'excellent travail de synthèse réalisé par DESTOMBES [1978] , dans le cas d'espèces instables constituées par des radicaux libres, auquel nous nous réfèrons fréquemment.

## I - DISPOSITIF A UTILISER

Nous nous proposons donc de réaliser un spectromètre microonde destiné à l'étude de molécules vibrationnellement excitées par transfert d'énergie avec l'azote activé. Pour simplifier l'exposé, nous nous placerons dans le cas où la molécule à étudier est OCS dans l'état de vibration (00°1) à 2062 cm<sup>-1</sup>, cela ne génant pas la généralité des résultats.

La réaction de transfert peut alors s'écrire :

 $N_2(v = 1) + OCS(00^{\circ}0) \longrightarrow N_2(v = 0) + OCS(00^{\circ}1) + 269 \text{ cm}^{-1}$ Le spectromètre doit donc comprendre une source d'azote activé, une zone de mélange avec OCS et une zone d'observation de l'absorption hyperfréquence.

Compte-tenu de la courte durée de vie de OCS (OO°1), il est nécessaire de réaliser la réaction de transfert au sein de la zone d'observation afin d'obtenir la concentration maximale de molécules excitées dans la région utile à l'interaction hyperfréquence, cette zone devant être de grande section pour limiter la désexcitation de OCS sur les parois [DOYENNETTE et al., 1967 - MARGOTTIN-MACLOU et al., 1971 -DESTOMBES, 1978].

- 61 -

L'azote excité pourrait également être créé dans la même zone, par décharge électrique par exemple, mais on se heurterait alors au problème, lié à la décharge "in situ", de la destruction des molécules de OCS. En fait, comme la durée de vie de  $N_2(v = 1)$  est élevée [KAUFMAN et al., 1958], il peut être créé à l'extérieur de la cellule d'observation par décharge microonde ou électrique ou simplement par chauffage [WISNIEWSKI et al., 1968].

Comme le montre la figure C-I, le spectromètre doit donc comporter une cellule de mélange et d'observation alimentée en azote activé par un tube de plus faible diamètre (pour éviter la rétrodiffusion de OCS vers la zone de décharge) et pompée en permanence.



Figure C - I : Schéma du spectromètre à utiliser

Ce dispositif est très voisin de celui utilisé pour les études infrarouges (figure B - VII). Compte-tenu des valeurs de  $\gamma$  (coefficient de désexcitation sur les parois) données dans le tableau B-II pour  $N_2(v = 1)$  il parait raisonnable de réaliser les différents éléments en pyrex ou en quartz.

Avant d'évaluer la concentration des espèces excitées dans la cellule d'observation, et en particulier pour déterminer les conditions initiales, il est nécessaire d'étudier d'abord la propagation de  $N_2(v = 1)$  dans le tube d'entrée

# II - ETUDE DE LA PROPAGATION DE $N_2(v=1)$ DANS LE TUBE D'ENTREE \*

Comme nous l'avons déjà vu, les seuls mécanismes possibles de désexcitation de  $N_2(v = 1)$  sont des processus collisionnels :

> $N_2(v = 1) + N_2 \xrightarrow{K_c} N_2(v = 0) + N_2 + 2331 \text{ cm}^{-1}$  $N_2(v = 1) + \text{paroi} \xrightarrow{K_p} N_2(v = 0) + 2331 \text{ cm}^{-1}$

La concentration  $[N_2(v = 1)]$  de  $N_2$  dans l'état v = 1 est donc à tout instant régie par :

$$\frac{d[N_2(v = 1)]}{dt} = -K_c[N_2(v = 1)][N_2] - K_p[N_2(v = 1)]$$

Soit

$$\frac{d[N_2(v = 1)]}{dt} = -K_{N_2} [N_2(v = 1)]$$

en posant :  $K_{N_2} = K_p + K_c [N_2]$ 

Lorsque l'on écrit les équations de la cinétique sous cette forme, les constantes de vitesse sont implicitement exprimées en (unité de volume), x (molécule)<sup>-1</sup> x (unité de temps)<sup>-1</sup>. En fait, nous utiliserons toujours le système d'unité défini par la relation (B-11) en écrivant les équations de la cinétique pour les pressions partielles (exprimées en torr) :

où

$$\frac{dy}{dt} = -K_{N_2} y$$

$$y = P_{N_2}(v = 1) = \text{pression partialle de } N_2(v = 1).$$

Comme le spectromètre fonctionne en flux permanent, il est nécessaire de faire intervenir les phénomènes de transport. REED et RABINOVITCH [1955] ont établi l'équation de diffusion qui détermine la pression partielle (ou la concentration) d'une espèce instable en tout point (z, r) d'un tube cylindrique en fonction du temps :

$$\frac{\partial [A]}{\partial t} = D_A \qquad \nabla^2 [A] - v \frac{\partial [A]}{\partial z} + R_A \qquad (C-1)$$

où

v est la vitesse moyenne du flux gazeux, supposée indépendante de r

- $D_A$  est le coefficient de diffusion de A dans le mélange, supposé indépendant de z et r
- R<sub>A</sub> symbolise les réactions de destruction ou de formation de A.

Notre but étant de fixer des ordres de grandeurs, nous supposerons, pour effectuer les calculs, que la concentration est constante dans une section droite du tube. WISE et ABLOW [1958] ont montré en étudiant les effets de la diffusion radiale que cette approximation est valable, dans le cas d'un cylindre pouvant être considéré comme infini (L/R >> 1), si la relation suivante est vérifiée :

$$\frac{4D}{\gamma \ \overline{c} \ R} >> 1 \qquad (C-2)$$

Dans cette relation, D est le coefficient de diffusion,  $\overline{c}$  la vitesse thermique moyenne, R le rayon du tube et  $\gamma$  le coefficient de désexcitation.

Ils obtiennent alors la relation classique entre  $K_p$  et  $\gamma$  [MORGAN et al., 1963 - TER MEULEN, 1970] :

$$K_{\rm p} = \frac{\gamma \overline{c}}{2R}$$
 (C-3)

Dans le tube d'entrée, la relation (C-2) sera toujours vérifiée,  $\gamma$  étant de l'ordre de 10<sup>-4</sup> pour N<sub>2</sub>(v = 1).

Dans ces conditions, l'équation (C-1) s'écrit, pour l'état stationnaire :

$$D_{N_{2}} = \frac{d^{2}y}{dz^{2}} - v \frac{dy}{dz} - K_{N_{2}} y = 0 \qquad (C-4)$$

Comme l'azote est le seul constituant,  $D_{N_2}$  représente son coefficient de diffusion intrinsèque que nous noterons D et dont la valeur en cm<sup>2</sup>.s<sup>-1</sup> est donnée par :

$$D = 1,9973 \frac{T^3 / M}{P \sigma^2 \Omega^{(1,1)}} \quad (C-5)$$

[HIRSCHFELDER et al., 1954]

où

М

P

la pression en torr

T la température en degré K

σ le diamètre de collision en angström

est la masse molaire en gramme

 $\Omega^{(1,1)}$  est une intégrale d'interaction, tabulée par HIRSCHFELDER et al. [1954], dont la valeur est voisine de l.

La solution analytique de l'équation de diffusion s'écrit, en notant

 $y_c$  la pression partielle de N<sub>2</sub>(v = 1) créée par l'excitation, sous la forme suivante :

$$y = y_{c} \exp \left[ \frac{v_{z}}{2D} \left( 1 - \sqrt{1 + \frac{4K_{N2}D}{v^{2}}} \right) \right]$$
 (C-6)

Pour poursuivre le calcul, il est nécessaire de déterminer la pression et la vitesse des molécules dans le tube d'entrée. Comme ce tube est de faible diamètre par rapport à la cellule d'observation, il existe un gradient élevé de pression et de vitesse du gaz. Compte-tenu des conditions expérimentales (débit-pression), l'écoulement doit être laminaire et en admettant une continuité de la pression à l'entrée de la cellule d'observation, on obtient [DESTOMBES, 1978] :

$$P_{(z)} = P_{\circ} / 1 + \frac{256 \mu Q(\ell - z)}{\pi P_{\circ} d^{4}}$$
 (C.G.S.) (C-7)

où

l est la distance entre l'excitation et l'entrée dans la cellule d'observation

- P. la pression dans la cellule d'observation
- Q le débit volumique mesuré à la pression P.
- d le diamètre du tube
- µ le coefficient de viscosité dynamique

En déterminant la valeur du débit au point z, on obtient la vitesse :

$$v(z) = \frac{4 P_0 0}{\pi d^2} \frac{1}{P(z)}$$
 (C-8)

En adoptant pour  $\mu$  la valeur de 175.10<sup>-6</sup> poise correspondant à l'azote [HANLEY et al., 1974], la figure C.II représente les variations de P(z) et v(z) pour  $\ell$  = 24 cm, Q = 18860 cm<sup>3</sup>/s et Po = 12,2 mtorr. On constate immédiatement que l'hypothèse du régime laminaire avec continuité de la pression en z = 24 cm conduit à une vitesse anormalement grande en ce point. En fait, au voisinage de l'entrée dans la cellule d'observation, le régime ne doit plus être laminaire mais moléculaire, la diffusion jouant alors un rôle important. Il est commode, pour simpliffer les calculs, de définir une vitesse et une pression moyenne dans la canne d'entrée :

$$\overline{v} = \frac{1}{\ell} \int_{0}^{\infty} v(z) dz = \frac{1536\mu Q^{2}\ell}{\pi^{2}d^{6} P_{o}} \frac{1}{\left[1 + \frac{256\mu Q^{2}\ell}{\pi P_{o} d^{4}}\right]^{3/2} - 1}$$

Soit 
$$\overline{v} \approx \frac{3}{8} / \frac{P_o Q}{\pi \mu l}$$
 (C-9)  
 $\overline{P} = \frac{1}{2} \int_{\sigma}^{l} P(z) dz = \frac{\pi P_o^2 d^4}{384 \mu Q l} \left[ (1 + \frac{256 \mu Q l}{\pi P_o d^4})^3 - 1 \right]$ 

Soit

0

$$\overline{P} \simeq \frac{32}{3d^2} \sqrt{\frac{P_{\circ} \mu Q \ell}{\pi}}$$
(C-10)

On peut, à l'aide de ces valeurs de  $\overline{P}$  et  $\overline{v}$ , résoudre l'équation de propagation complète (C-1) dans le tube d'entrée : la solution obtenue respecte le temps de transit des molécules entre la source et la celluie d'observation mais conduit à une discontinuité de pression et de vitesse à l'entrée de celle-ci ; elle nous sera très utile lors de **l'étude** des phénomènes transitoires.


Figure C - II : Arrivée de gaz (régime laminaire) ▲ pression d'azote • vitesse du flux d'azote.

Comme la pression et la vitesse dépendent du débit Q de la pompe, il est intéressant de déterminer la pression partielle d'azote excité à l'extrémité du tube d'arrivée de gaz en fonction de Q pour différentes valeurs de  $K_{N_2}$ . Les résultats, déterminés à partir de (C-6) pour  $v = \overline{v}$  et  $P = \overline{P}$ , sont rassemblés sur la figure C-III et montrent que l'on a intérêt à utiliser un débit de pompage élevé pour obtenir une concentration initiale maximum dans la cellule d'observation.





Figure C - III : Valeur relative de la pression partielle de N<sub>2</sub>(v = 1) à l'extrémité du tube d'arrivée de gaz (l = 24 cm) en fonction du débit et pour différentes constantes de désexcitation.

# III – ETUDE DE LA CONCENTRATION DES ESPECES EXCITEES DANS LA CELLULE D'OBSERVATION

Comme dans le tube d'entrée, nous supposons que la concentration des différentes espèces est constante dans une section droite et nous devons écrire les équations de propagation du type (C-4) pour chaque constituant. Pour cela, il faut déterminer les coefficients de diffusion de chaque espèce dans le mélange et connaitre les diverses réactions de formation ou de destruction.

69

Le calcul du coefficient de diffusion  $D_A$  d'une espèce A dans un mélange s'effectue à partir de la relation [PACEY et POLANYI, 1971] :

$$\frac{1}{D_{A}} = \frac{1}{1 - \frac{[A]M_{A}}{\sum [j]M_{j}}} \sum_{\substack{j \neq A \\ j \neq j}} \frac{x_{j}}{D_{Aj}} (C-11)$$

oũ

j désigne les différentes espèces du mélange
(j)et Mj respectivement leur concentration en cm<sup>-3</sup> et leur masse molaire en g

x, leur fraction molaire

 $D_{Aj}$  est le coefficient de diffusion binaire de A dans j  $D_{A}$  est exprimé en centimètre<sup>2</sup> s<sup>-1</sup>

 $D_{Aj}$  se calcule à partir d'une relation analogue à (C-5)

$$D_{Aj} = 1,9973 \frac{T^{3} (M_{A} + M_{j}) / 2M_{A}M_{j}}{P \cdot \sigma_{Aj}^{2} \cdot \Omega_{Aj}^{(1,1)}} (cm^{2} s^{-1})$$

Dans cette expression :

P est la pression totale exprimée (torr)
 σ<sub>Aj</sub> est le diamètre de collision (Å)
 Ω<sup>(1,1)</sup><sub>Aj</sub> est une intégrale d'interaction dont la valeur est voisine de 1 [HIRSCHFELDER et al., 1954].

Dans le cas du mélange N<sub>2</sub> + OCS nous pouvons écrire les différents processus de transfert sous la forme simplifiée suivante : Transfert V - V :

$$N_2(v=1) + OCS(00^{\circ}O) \xrightarrow{K_e} N_2(v=0) + OCS(00^{\circ}1) + \Delta E = 269 \text{ cm}^{-1}$$
  
K'e

désexcitation de OCS (radiative ou par collisions) :

$$OCS(00^{\circ}1) \xrightarrow{K_{OCS}} OCS(00^{\circ}0) + 2062 \text{ cm}^{-1} + hu$$

désexcitation de N2 (par collisions) :

$$N_2(v=1) \xrightarrow{K_{N_2}} N_2(v=0) + 2.331 \text{ cm}^{-1}$$

Comme nous nous proposons de déterminer des ordres de grandeur des différentes pressions partielles et du signal d'absorption microonde nous pouvons faire les hypothèses simplificatrices suivantes :

- d'après le principe du bilan détaillé et compte-tenu de la vàleur de ΔE, nous pouvons négliger l'influence de K'e
- la durée de vie de OCS(00°1) étant très faible (τ<sub>rad</sub> ~ 2 ms)
   nous négligeons en première approximation la propagation des molécules
   dans cet état
- les états excités étant peu peuplés, nous supposerons que les concentrations des états fondamentaux sont égales aux concentrations totales.

Dans ces conditions, l'état stationnaire est décrit par le système d'équations suivant :

$$D_{N_2} \frac{d^2 y}{dz^2} - v \frac{dy}{dz} - K_{N_2} y - K_e x_o y = 0$$
(C-12)
$$K_e x_o y - K_{OCS} x = 0$$

Les répartitions stationnaires sont alors données par :

$$\begin{cases} y = y(0) \exp \left[ \frac{v}{2DN_2} z \left( 1 - \sqrt{1 + \frac{4DN_2}{v^2}} (K_{N_2} + K_e x_o) \right) \right] \\ x = \frac{K_e x_o}{K_{OCS}} y \end{cases}$$
(C-13)

où y(0) est la pression partielle de  $N_2(v=1)$  en z = 0, c'est à dire à l'extrémité du tube d'arrivée de gaz.

La figure (C-IV) représente la variation de y (ou x, car x est proportionnel à y) en fonction de z pour différentes valeurs de K<sub>e</sub> dans les conditions suivantes :

• 
$$P = 20 \text{ mtorr}$$
,  $P_{N_2} = 12,2 \text{ mtorr}$ , d'où  $D_{N_2} = 7919 \text{ cm}^2 \text{ s}^{-1}$   
•  $Q \simeq 18860 \text{ cm}^3 \text{ s}^{-1}$ , soit  $v \simeq 150 \text{ cm} \text{ s}^{-1}$  pour un tube de 12 cm de diamètre

 $\bullet$  K<sub>N2</sub> = 5 s<sup>-1</sup>

and the second sec



Figure C-IV : Valeur relative de la pression partielle de  $N_2(v=1)$  en fonction de la distance dans la cellule d'observation pour différentes valeurs de  $K_e(s^{-1} torr^{-1})$ 

L'expression de x(z) nous permet alors d'évaluer le signal microonde stationnaire en calculant la puissance absorbée à la fréquence centrale v. d'une transition de OCS(00°1). La définition du coefficient d'absorption nous permet d'écrire :

$$\frac{dI}{I} = -\alpha(z) dz$$

D'après l'expression (A-9), on a  $\alpha_{max} = C \cdot \frac{x(z)}{\Delta \upsilon(z)}$ 

Nous avons vu au paragraphe A-II-3 que dans un mélange, Δυ<sub>i</sub> = Σ aij Pj. Comme, d'une part, les coefficients aij varient j très peu avec l'état de vibration de la molécule i [CRESWELL et al., 1976] et que d'autre part, la concentration dans l'état excité reste faible, on peut admettre que  $\Delta v$  est indépendant de z et écrire :

$$\frac{\mathrm{dI}}{\mathrm{I}} = -\mathrm{C}^* \cdot \mathrm{x}(z) \cdot \mathrm{d}z$$

Soit pour une cellule de longueur 2 :

$$\mathbf{I} = \mathbf{I}_{\circ} \exp \left(-C' \int_{\circ}^{\ell} \mathbf{x}(z) dz\right) \simeq \mathbf{I}_{\circ} \left(\mathbf{I} - C' \int_{\circ}^{\ell} \mathbf{x}(z) dz\right)$$

La puissance absorbée maximale est donc :

$$\Delta I = I_{o} C' \int_{0}^{x} x(z) dz$$

Dans nos conditions expérimentales, la détection est linéaire par rapport au champ électrique E, mais comme le coefficient d'absorption en champ est identique au coefficient d'absorption en puissance divisé par deux,

$$\Delta E = E_{o} C'' \int_{o}^{x} x(z) dz$$

Le signal observé peut donc s'écrire :

on a :

$$S = F \int_{0}^{l} x(z) dz \qquad (C-14)$$

Compte-tenu de l'expression de x(z) donnée par (C-13), on obtient :

$$S = F \frac{K_{e} x_{o} y(0)}{K_{OCS}} \frac{1}{\frac{v}{2D_{N_{2}}} \left(1 - \sqrt{1 + \frac{4D_{N_{2}}}{v^{2}} (K_{N_{2}} + K_{e} x_{o})}\right)} \left[ exp \left[\frac{v}{2D_{N_{2}}} \ell(1 - \sqrt{1 + \frac{4D_{N_{2}}}{v^{2}} (K_{N_{2}} + K_{e} x_{o})}\right] - 1 \right]$$
(C-15)

Soit, en appelant  $S_{max}$  la valeur prise par le signal quand  $\ell \, \rightarrow \, \infty$  :

$$S = S_{max} \left[ 1 - \exp\left[\frac{v}{2D_{N_2}} \& (1 - \sqrt{1 + \frac{4D_{N_2}}{v^2}} (K_{N_2} + K_e x_o)\right] \right]$$
(C-16)

Il faut noter que le signal est proportionnel à  $y(\underline{0})$ , concentration en  $N_2(v=1)$  à l'extrémité du tube d'arrivée de gaz. La figure (C-V) donne l'évolution du rapport  $\frac{S}{S_{max}}$  en fonction de  $\ell$ ,

dans les mêmes conditions expérimentales que pour la figure (C-IV).





#### IV - CONCLUSION

Dans les paragraphes précédents, neus avons pu, moyennant un certain nombre d'approximations, obtenir des expressions relativement simples qui permettent d'évaluer l'influence des divers paramètres expérimentaux sur la concentration des espèces excitées et sur le signal d'absorption microonde. Ces résultats conduisent aux conclusions suivantes quant à la conception du spectromètre :

le tube d'arrivée de gaz et la cellule d'observation doivent
 être constitués d'un matériau présentant un faible coefficient de
 désexcitation γ. Etant donné les résultats du tableau B-II, notre choix
 s'est porté sur le pyrex ou le quartz.

• compte-tenu de la proportionalité du signal d'absorption à la concentration initiale en azote excité (C-15) et de l'influence du débit sur celle-ci (figure C-II), le pompage doit être le plus efficace possible. En outre, l'expression (C-6) donnant la répartition en N<sub>2</sub>(v=1) dans le tube d'entrée montre que la distance entre la zone d'excitation et la cellule d'absorption doit être la plus courte possible.

 la cellule d'observation doit avoir d'une part, une section importante pour limiter les désexcitations sur les parois et d'autre part, une longueur suffisante pour que le signal d'absorption soit voisin du maximum (figure C-V).

L'ensemble de ces remarques nous conduira, compte-tenu des exigences spécifiques de la spectrométrie microonde, à l'élaboration de divers spectromètres qui seront décrits dans le prochain chapitre. CHAPITRE II Etude spectroscopique de N<sub>2</sub>O et OCS dans des états de vibration peuplés par transfert d'énergie à partir d'azote activé



A -

#### Choix des molécules

Si les transferts d'énergie vibrationnelle entre l'azote activé et d'autres molécules ont déjà été abondamment étudiés en infrarouge, comme nous l'avons vu au chapitre précédent, ils l'ont toujours été dans des conditions de pression trop élevée pour la spectroscopie microonde. Nos expériences étant les premières de ce type, il était important de choisir judicieusement les molécules test, tant sur le plan du transfert que sur celui de la spectroscopie microonde pure.

Comme nous allons le voir, notre choix s'est déterminé à partir de connaissances bibliographiques et des résultats de quelques expériences préliminaires simples.

# I - INFLUENCE DE LA PRESSION EN SPECTROSCOPIE MICROONDE

Nous avons vu que, dans un gaz pur,  $\alpha_{max}$  est indépendant de la pression dans la mesure où l'élargissement collisionnel est prépondérant. Comme on admet qu'il est possible de distinguer deux raies voisines si leur différence de fréquence est supérieure à leur largeur à mi-hauteur, le meilleur compromis résolution-sensibilité sera obtenu pour la pression minimale à partir de laquelle  $\alpha_{max}$ devient pratiquement constant.

Dans un mélange de deux espèces A et B, on peut écrire, si l'on

s'intéresse au spectre de rotation des molécules A<sup>‡</sup> excitées vibrationnellement :

$$\alpha_{\max} = C \cdot \frac{P_{A^{\pm}}}{\Delta v_{A^{\pm}}}$$

où  $P_A^{a}$  est la pression partielle de  $A^{a}$ 

et 
$$\Delta \upsilon_{A^{\pm}} = \Delta \upsilon_{A} = a_{AA} P_{A} + a_{AB} P_{B}$$

en considérant que le paramètre d'élargissement varie très peu avec l'état de vibration de la molécule (cf. paragraphe I-C-3). On obtient donc :

$$\alpha_{\max} = C \frac{P_{A^{\ddagger}}}{a_{AA} P_A + a_{AB} P_B}$$

Il est donc nécessaire de choisir  $P_B$  (B représentant en fait  $N_2$ ) la plus petite possible tout en conservant  $P_{A^{r_r}}$  la plus grande possible, la pression totale devant être de l'ordre de quelques dizaines de millitorrs. Ces conditions sont donc très différentes de celles utilisées dans les études infrarouges où la pression totale est généralement voisine de quelques torrs.

# II - DONNEES BIBLIOGRAPHIQUES

Au paragraphe I-B-3 nous avons vu que les transferts d'énergie de vibration de l'azote activé ont été essentiellement effectués sur trois molécules :  $CO_2$ ,  $N_2O$  et CO. Le coefficient d'absorption microonde étant proportionnel au moment dipolaire permanent de la molécule, seules  $N_2O$  et CO sont à envisager pour notre étude.

Notre choix s'est porté sur le protoxyde d'azote N20 pour une raison

de commodité expérimentale : la constante de rotation de N<sub>2</sub>O étant moins élevée que celle de CO, les transitions de J faible se trouvent dans les bandes fondamentales d'émission des klystrons usuels.

L'inconvénient que présente cette molécule (comme CO d'ailleurs) pour la spectroscopie microonde est lié à la faible valeur de son moment dipolaire :

 $\mu_{N_20} = 0, 1608$  debye [SCHARPEN et al., 1970]

C'est pourquoi, nous avons envisagé simultanément l'étude de l'oxysulfure de carbone OCS dont le moment dipolaire vaut :

> $\mu_{OCS} = 0,7152$  debye [MUENTER, 1968 - REINARTZ et al., 1974]

Ces deux molécules sont très voisines par leur structure et leurs modes de vibration :

⊕ ce sont des molécules triatomiques linéaires qui appartiennent au groupe de symétrie C<sub>∞v</sub>

e leurs trois vibrations fondamentales sont de même type :

- v, associée à la vibration longitudinale symétrique
- U<sub>2</sub> associée à la vibration transversale est doublement dégénérée
- U<sub>3</sub> associée à la vibration longitudinale antisymétrique.

La figure A-I donne le schéma de ces vibrations et les notations employées pour les caractériser.

 La figure A-II montre la répartition énergétique des niveaux de vibration pour les deux molécules. On constate que les niveaux (00°1) sont voisins :



Figure A-I : Vibrations fondamentales de N<sub>2</sub>0 et OCS



Figure A-II : Niveaux d'énergie de N20 et OCS

889 ULL - 82 -

 $v_3 = 2223 \text{ cm}^{-1} \text{ pour } N_2^0$  $v_3 = 2062 \text{ cm}^{-1} \text{ pour } 0CS$ 

On peut donc envisager l'hypothèse d'un transfert entre  $N_2(v=1)$ ( $v = 2.331 \text{ cm}^{-1}$ ) et OCS(00°1) dont la constante de vitesse sera probablement plus faible que pour le système  $N_2-N_20$  étant donnée la valeur de l'écart d'énergie.

On peut remarquer, en faveur de cette hypothèse, que des transferts d'énergie vibrationnelle entre CO(v=1) et OCS(00°1) ont déjà été mis en évidence en infrarouge [ DEUTSCH, 1966 - LEV.ON et al., 1972 -HANCOCK et al., 1974 ], ainsi que entre CO(v=1) et N<sub>2</sub>O (00°1) [ HANCOCK et al., 1974 - STARR et al., 1975 ].

# **III – EXPERIENCES PRELIMINAIRES**

Il était important de savoir, avant de commencer les études microondes, si d'une part l'excitation de l'azote et d'autre part le transfert proprement dit étaient encore efficaces en basse pression. Nous avons donc entrepris une étude sommaire en infrarouge à l'aide du montage de la figure A-III .

Après avoir été excité par une décharge microonde à 2450 MHz dans une cavité du type n° 5 décrit par FEHSENFELD, EVENSON et BROIDA [1965], l'azote est mélangé à  $N_20$  ou OCS dans une cellule de pyrex de 14 cm de longueur et de 4 cm de diamètre interne.



Figure A-III : Cellule d'observation infrarouge

Un miroir sphérique permet de faire l'image de la zone de mélange sur un détecteur Ge-Au refroidi à l'azote liquide. Le signal d'émission est modulé à l'aide d'un modulateur mécanique. L'amplification et la détection sont réalisées à l'aide d'un préamplificateur à large bande et d'un amplificateur à détection synchrone PAR 121.

Ce montage très simple nous a permis de mettre en évidence le phénomène de transfert entre N2 et OCS et également le maintien d'un faible signal d'émission de fluorescence en basse pression. Les résultats obtenus pour une pression partielle de N2O ou OCS de 50 m.torr et pour différentes pressions de N2 sont rassemblés dans le tableau A-I.

- 84 -

|                                        | Intensité relative du signal observé |        |
|----------------------------------------|--------------------------------------|--------|
| Pression de N <sub>2</sub><br>(m.torr) | N <sub>2</sub> 0                     | OCS    |
| 500                                    | 14                                   | 9      |
| 200                                    | 3,2                                  | 1,8    |
| 100                                    | ∿ 1,5                                | ∿ 0,75 |
| 50                                     | ∿ 1                                  | ∿ 0,5  |
|                                        |                                      |        |

Tableau A-1 : Signaux de fluorescence de N20 et OCS en présence de  $N_2^{a}$ 

Bien qu'étant très imprécis, ces résultats montrent qu'effectivement le transfert est plus important sur N<sub>2</sub>O, d'autant plus que dans les conditions normales l'intensité de la bande  $u_3$  est plus faible pour N<sub>2</sub>O que pour OCS [YAMADA et al., 1966].

Compte-tenu de ces observations préliminaires, nous avons entrepris des études en spectroscopie microonde dans les niveaux de vibration de ces molécules peuplés par transfert d'énergie à partir de l'azote activé. Description des spectromètres utilisé:

B ---

Les éléments fondamentaux des spectromètres utilisés sont représentés sur le schéma synoptique de la figure B-I. Il s'agit de :

la cellule d'absorption où s'effectue le mélange des gaz.

 le dispositif de création de l'azote activé auquel peut être adjoint un système de modulation

les sources hyperfréquences ainsi que leur dispositif de stabilisation
 de phase et de balayage de fréquence complété dans certains cas par un
 système de modulation de fréquence



la chaine de détection et de traitement du signal.

Figure B-I : schéma synoptique des spectromètres

- 86 -

## I - LA CELLULE D'ABSORPTION

Les cellules utilisées sont du type dit à "propagation libre" développé initialement par COSTAIN [1957] qui a montré qu'un tube de pyrex se comporte comme un guide d'onde diélectrique ; il a déterminé expérimentalement le diamètre optimum pour la transmission : il est donné par  $D = \sqrt{1,2 \ \lambda \ L}$  où  $\lambda$  est la longueur d'onde à propager et L la longueur du tube.

Nous avons utilisé, selon les expériences, des tubes de pyrex de 12 cm de diamètre et de longueurs variables entre 25 et 100 cm. La section a été choisie volontairement surdimensionnée par rapport à la valeur donnée par COSTAIN pour  $\lambda \leq 6$  mm afin de limiter les désexcitations sur les parois.

Les études purement spectroscopiques ont été effectuées soit avec la cellule la plus longue (1 m) pour obtenir le signal d'absorption maximum conformément aux résultats obtenus au paragraphe I-C-3, soit avec une cellule interférométrique que nous décrirons au paragraphe 4. Le tube de pyrex est fermé à ses deux extrémités par deux fenêtres de PTFE de 15 mm d'épaisseur, transparentes aux ondes hyperfréquences et très peu désexcitantes pour l'azote [LEGAY-SOMMAIRE, 1970] . L'étanchéité est assurée par deux joints toriques en viton s'appliquant sur deux rodages plans (figure B-II).

Les couplages d'entrée et de sortie de l'énergie hyperfréquence sont assurés par des cornets commerciaux. L'optimisation de la transmission par alignement et modification de la figure d'ondes stationnaires est assurée par le déplacement, à l'aide de platines Micro-Control, de la source et du détecteur.

- 87 -

La cellule est équipée d'un certain nombre d'entrées de 2,5 ou 5 cm de diamètre. Elles permettent l'entrée des gaz, la mesure de la pression et le pompage, ce dernier se faisant toujours par un orifice de grand diamètre (5 cm). La figure B-III indique les différentes dispositions essayées qui conduisent toutes sensiblement au même signal stationnaire.

Le groupe de pompage, connecté à la cellule par une vanne Edwards 2", est constitué par une pompe à diffusion d'huile Alcatel - type 6150de débit 900 l/s à  $10^{-4}$  torr, suivie d'une pompe primaire à deux étages Alcatel - type 2030 pouvant débiter 32 m<sup>3</sup>/h. Pour éviter la rétrodiffusion de la vapeur d'huile, la pompe secondaire est surmontée d'un baffle opaque à chevrons de diamètre 150 mm refroidi par circulation d'eau.

La pression est en général repérée à l'aide d'une jauge de Pirani LKB Autovac type 3 294 B. Lorsque les expériences nécessitent des mesures précises, elles sont effectuées à l'aide d'un dispositif indépendant de la nature du gaz constitué par un manomètre absolu Barocel - Datametrics modèle 1 173 équipé d'un capteur capacitif 570A-10T prévu pour l'étude de composés corrosifs. Pour éviter les fluctuations d'origine thermique, on adjoint au capteur une base chauffante qui le maintient à une température constante et qui permet également d'accélérer son dégazage. Les dosages des pressions partielles des gaz sont réalisés à l'aide de vannes à aiguille Hoke de la série Micromite. Nous pouvons également mesurer les débits de gaz à l'aide d'un débitmètre massique à fil chaud qui est le modèle 800-LM de Datametrics équipé du capteur type 1000 - 100 C (débits inférieurs à 100 cm<sup>3</sup>/mn). Cet instrument, dont les indications sont indépendantes de la pression (entre 150 torrs et 20 atmosphères) et de la température (entre -50° C et 150° C) est

- 88 -



Figure B-II : Schema d'une cellule d'absorption







pompage des gaz

gradué directement en cm<sup>3</sup>/mn à 760 mm de Hg et 15° C.

# **II - PRODUCTION DE L'AZOTE EXCITE**

Toutes nos expériences ont été effectuées au moyen d'une excitation microonde. Des essais effectués à l'aide d'une décharge continue entre électrodes dans le tube d'arrivée de gaz ont donné également de bons résultats.

#### a) excitation continue

Nous utilisons deux types de cavité microonde :

cavité type Fehsenfeld - Evenson - Broida n° 5 [FEHSENFELD et al., 1965],
 soit commerciale, soit fabriquée au laboratoire

cavité type Dupret [DUPRET et al., 1970] , fabriquée au laboratoire.

Dans nos conditions expérimentales, nous n'avons pas mis en évidence de différence sensible entre ces deux types de cavité en fonctionnement continu. Par contre, lorsque le fonctionnement est pulsé, la cavité Felsenfeld qui rayonne une partie non négligeable de l'énergie électromagnétique vers l'extérieur, introduit, à la commutation, d'importants signaux parasites transitoires sur le signal d'absorption hyperfréquence malgré l'utilisation de nombreuses protections (absorbant microonde). Pour ce type de fonctionnement, la cavité Dupret, qui est beaucoup plus fermée, et que l'on peut modifier par adjonction d'un tube métallique de 16 mm de diamètre et de 6,1 cm de longueur ( =  $\lambda/2$ ) constituant un guide sans coupure [Mc CARROL, 1970] donne de meilleurs résultats. L'énergie microonde est fournie par un générateur équipé d'un magnétron de 200 W émettant à la fréquence de 2450 MHz. Pour l'utilisation en émission continue, nous avons utilisé soit un générateur commercial (Microtron 200) soit un générateur construit au laboratoire. Ce dernier a été réalisé pour permettre également une modulation de la puissance microonde par tout ou rien. Les deux générateurs sont équipés d'une mesure de la puissance réfléchie très utilé pour l'optimisation des réglages de la cavité.

Pour que la concentration de  $N_2(v=1)$  soit maximum à l'entrée de la cellule d'absorption, la cavité doit être placée le plus près possible de celle-ci: compte-tenu de l'encombrement, la distance varie entre 15 et 25 cm.

Les tubes d'arrivée de gaz qui traversent la cavité sont réalisés en quartz ou en pyrex et ont un diamètre moyen de 8 à 10 mm. Différents types d'injecteurs ont été réalisés (figure B-IV) et donnent des résultats équivalents.



Figure B-IV : Types d'injecteurs utilisés

- 91 -

# b) modulation de l'excitation

Afin d'améliorer la sensibilité du spectromètre et pour effectuer des études de dynamique de transfert, nous avons été conduits à utiliser une modulation de l'énergie microonde fournie par le magnétron.

Le schéma synoptique du montage utilisé est représenté sur la figure B-V. La source est constituée par un magnétron 7090 Radiotechnique de 200 W de puissance maximale.



Figure B-V : Schéma synoptique de l'alimentation du magnétron

En régime continu, le générateur de commande fournit à la base du transitor T un courant suffisant pour le saturer ; la résistance R' est de ce fait court-circuitée. La résistance de charge Rp de 2,5 kû permet le réglage de La et donc de la puissance émise par modification de la tension d'alimentation (figure B-VI). Le dispositif comporte également différents systèmes de sécurité :

temporisation de 4 minutes du préchauffage du filament

réduction de la tension de chauffage du filament pour les courants anodiques supérieurs à 120 m A.

disjonction pour des puissances incidentes supérieures à 200 W
 et réfléchies supérieures soit à 50 W soit à 150 W.

En régime pulsé, le générateur de commande fournit un courant rectangulaire qui bloque et débloque successivement le transistor T, lequel se comporte alors comme un interrupteur rapide. La résistance de charge passe successivement de  $R_{\ell}$  (2,5 k  $\Omega$ ) à  $R_{\ell}$  + R' (160 k  $\Omega$ ) et le point de fonctionnement du magnétron passe de P<sub>1</sub> à P<sub>2</sub> (figure VI).



Figure B-VI : Diagrammes de fonctionnement du magnétron

En P<sub>2</sub>, le magnétron n'est pas complétement bloqué mais la valeur résiduelle de la puissance émise est suffisamment faible pour permettre l'extinction de la cavité. L'excitation de l'azote est alors modulée pratiquement à 100 %, les variations de la puissance de crête étant assurées par le réglage de l'alimentation haute-tension. Le transistor T, qui supporte pendant la conduction un courant maximum de 200 mA et pendant le temps de blocage une tension directe inférieure à 900 V, est du type BUY 71.

Pour commander ce transistor, un générateur TBF fournit un courant rectangulaire de fréquence réglable entre 0,16 et 330 Hz avec un rapport cyclique égal à 1 ou réglable entre 1/12 et 10/12. Des signaux synchrones en carré et en dent de scie sont accessibles et peuvent être utilisés comme référence pour d'autres fonctions ou comme tension de balayage pour un oscilloscope. La résistance r permet la mesure de l'intensité et l'observation de la forme du courant anodique Ia qui est proportionnel à la puissance émise. Les temps de montée et de descente sont inférieurs à 10 µs. Quand l'énergie microonde émise par le magnétron est modulée, l'allumage périodique de la décharge est obtenu à l'aide d'une haute tension d'amorçage fournie par un générateur Philips GM 4188 à résistance interne élevée, et appliquée entre deux électrodes, en contact avec le gaz, de part et d'autre de la cavité (figure B-VII). Cette tension maintient une faible ionisation du gaz avec une production négligeable de N<sub>2</sub>(v=1).



Figure B-VII : Tube à électrodes pour l'excitation modulée de l'azote

## c) protection des parois

Conformément à une observation faite par TAIEB et LEGAY [1969] relative à l'effet de certains composés soufrés sur le fonctionnement du laser à CO-N<sub>2</sub>, nous avons constaté une nette amélioration du signal d'absorption hyperfréquence lorsque l'on dépose du soufre sur les parois du tube d'arrivée de  $N_2^{*}$ . Pour réaliser ce dépôt deux techniques ont été utilisées :

chauffage du tube après y avoir introduit de la fleur de soufre

cracking de OCS (ou CS2, SF6) par la décharge microonde.

Dans les deux cas, on obtient un dépôt jaune qui devient rapidement brunâtre avec une irisation bleu-vert au contact de l'azote activé. Ses propriétés protectrices s'altèrent au cours du temps et il est alors nécessaire de redéposer une couche de soufre. Lorsqu'il est récent, le dépôt pollué peut être détruit par action de l'oxygène atomique (obtenu par décharge dans 02).

Certains auteurs ont étudié l'action de l'azote activé sur les composés soufrés : STRUTT [1913] et plus récemment WESTBURY et WINKLER [1960] ont obtenu un polymère de NS par action des atomes d'azote sur H<sub>2</sub>S ; BETT et WINKLER [1964] en étudiant la disparition des atomes d'azote en fonction de la concentration en soufre ont observé la formation d'un dépot de N4S<sub>4</sub>, d'un polymère bleu de NS et peut-être de N<sub>2</sub>S<sub>5</sub>.

Nos expériences confirment l'hyptohèse de TAIEB [1969] selon laquelle certains produits de réaction de l'azote activé avec le soufre ont la propriété "d'empoisonner" les parois du tube en empêchant la désexcitation des molécules d'azote vibrationnellement excitées. En utilisant un long tube d'entrée sur lequel peut se déplacer la cavité microonde, nous avons mesuré le signal d'absorption induit par le transfett d'énergie pour une transition de OCS(00°1) en fonction de la distance cavité-cellule, soit en présence d'un dépôt de soufre sur toute la longueur de la canne, soit avec un dépôt uniquement à proximité de la cellule (figure B-VIII). Le signal observé étant en première approximation proportionnel à la concentration en N<sub>2</sub>(v=1) à l'entrée, nous en avons déduit que, en présence de soufre, la durée de vie de N<sub>2</sub>(v=1) était multipliée par un facteur voisin de 4.



Figure B-VIII : variation du signal d'absorption pour une transition de OCS(00°1) en fonction de la position de la cavité

- dépôt de soufre à l'extrémité
- ▲ dépôt de soufre sur toute la longueur

# II - SOURCES HYPERFREQUENCES ET DISPOSITIFS DE STABILISATION

Les sources hyperfréquences utilisées sont des klystrons permettant de couvrir, dans leur mode fondamental, les fréquences inférieures à 80 GHz. Les fréquences plus élevées sont obtenues par doublage à l'aide de multiplicateurs à pointes Custom Microvave. Lorsque la fréquence du klystron est balayée lentement, il est nécessaire d'utiliser un dispositif de stabilisation pour éviter les dérives au cours du temps.

Le procédé utilisé au laboratoire est l'asservissement en phase déjà décrit par de nombreux auteurs [JOURNEL, 1969- DUBRULLE, 1972 - BURIE et al., 1976] : une partie du signal de la source à stabiliser de fréquence  $v_o$  est mélangé à un signal obtenu par multiplication de la fréquence v issue d'un oscillateur étalon. Le battement, de fréquence  $|v_o - nv|$  voisine de 30 MHz, est appliqué à l'entrée d'un synchriminateur SCHOMANDL FDS30 qui délivre une tension de correction transmise à l'électrode de commande de la source hyperfréquence (figure B-IX).

Les fréquences des sources employées étant supérieures à 40 GHz, il est nécessaire d'utiliser un dispositif de stabilisation à deux étages dans lequel une première source étalon fournit une fréquence v synthétisée de valeur inférieure à 12 GHz.

Différentes chaines de stabilisation, réalisées au laboratoire, ont été utilisées. Elles différent par la nature du premier étage (figure B-IX) :

• un klystron Varian X 13 (8 GHz  $\leq \upsilon \leq$  12 GHz) est synchronisé sur un quartz étalon de fréquence voisine de 15 MHz par l'intermédiaire

- 97 -

d'un oscillateur de référence MOS de Microwave Systems. Le balayage de la source peut s'effectuer par variation soit de la fréquence du quartz, soit de la fréquence de référence (10 MHz)du synchriminateur Schomandl à l'aide d'un oscillateur à fréquence variable 9-11 MHz.

• un klystron Férisol 2-4,3 GHz.est stabilisé à l'aide d'un synchroniseur Dymec 2650 A sur la fréquence issue d'un synthétiseur XUC Rhode et Schwartz piloté par le quartz étalon General Radio 1115 B du laboratoire. Le balayage peut alors être obtenu en wobulant soit la fréquence d'interpolation du synthétiseur, soit la fréquence de référence du synchroniseur ou du synchriminateur.

 un carcinotron 8-12 GHz est stabilisé en phase à l'aide d'un synchriminateur Schomandl FDS30 sur le signal issu d'un synthétiseur Adret 110 MHz. Toute la gamme de cette source peut être décrite à l'aide d'un dispositif de programmation pilotant à la fois le synthétiseur et l'alimentation du Carcinotron [ROSSEELS et al., 1975 -BURIE et al., 1976]. On peut obtenir des balayages de faible amplitude en appliquant une tension en dent de scie comprise entre ± 5V à l'interpolateur du synthétiseur Adret.

 une source solide CTI 4,8 - 5,33 GHz pilotée par un synthétiseur
 Adret 600 MHz permet de stabiliser continûment les klystrons de fréquences supérieures à 48 GHz.

Dans tous les cas, les fréquences des transitions observées sont obtenues à l'aide d'un marquage par levée de plume sur l'enregistrement ou par visualisation à l'oscilloscope d'un ensemble de marqueurs.

- 98 -



Figure 8 1, -XI • Schēma des dispositifs de stabilisation

# **IV** – DETECTION ET TRAITEMENT DU SIGNAL

L'énergie électromagnétique comportant une faible modification due à l'absorption des molécules est détectée à l'aide de cristaux, montés en cartouche, du type 1N53 pour les fréquences comprises entre 50 et 80 GHz, ou de détecteur à pointe Custom Microwave pour les fréquences plus élevées.

Le traitement du signal dépend du type de spectromètre utilisé : vidéo, à double modulation de source, à double détection synchrone et interféromètre.

#### a) spectromètre vidéo

C'est avec un tel dispositif que les premières observations sur OCS (00°1) ont été faites [BOGEY et al., 1974] . Avec ce type de spectromètre, on utilise des vitesses de balayage élevées et l'amplification du signal est réalisée à l'aide d'un amplificateur accordé à la fréquence de balayage. On peut améliorer le rapport signal sur bruit en utilisant un échantillonneur multicanaux (de type PAR TDH9 par exemple).

#### b) spectromètre à double modulation de source

Cette technique permet d'améliorer considérablement la sensibilité du spectromètre tout en ne nécessitant pas l'introduction d'électrodes métalliques en contact avec le gaz comme pour la modulation Stark.

On superpose au balayage lent de la fréquence du klystron une modulation sinusoïdale à 50 KHz de faible amplitude (figure B-IX).

- 100 -

Le signal détecté est appliqué à l'entrée d'un amplificateur à bande étroite puis traité à l'aide d'un démodulateur synchrone PAR 121. On observe alors un signal proportionnel, en première approximation, à la dérivée de la forme de raie [RINEHART et al., 1960 -NETTERFIELD et al., 1972].

L'inconvénient de cette méthode est lié au fait que toute variation de l'énergie hyperfréquence donne lieu à un signal détecté, comme par exemple une inclinaison de la ligne de base due à la figure d'onde stationnaire ou des fluctuations basse fréquence liées à des phénomènes microphoniques qui empèchent l'augmentation de la constante de temps de détection et limitent donc la sensibilité (voir figure B-XI).

La modification de la figure d'onde stationnaire obtenue par le é déplacement du détecteur permet dans certains cas d'atténuer la pente de la ligne de base.

Nous avons également utilisé une modulation carrée bidirectionnelle





de fréquence 5KHz (figure B-X) qui permet , par une détection à la fréquence 2 f , d'obtenir une figure analogue à la dérivée seconde de la forme de raie et donc d'observer le signal sur une ligne de base horizontale [ VERDIECK et al., 1961 ]. Pour éliminer les inconvénients liés aux fluctuations basses fréquences, nous avons dû compléter ce spectromètre avec

une modulation d'amplitude agissant sur

les molécules elles-même.

# c) spectromètre à «double détection synchrone»

Dans ce type de spectromètre, on adjoint à la modulation de fréquence du klystron une modulation de l'excitation de l'azote et donc de celle de OCS. Celle-ci est obtenue grâce à la possibilité de fonctionnement pulsé du magnétron précédemment décrit. La fréquence de cette modulation est choisie suffisamment basse (2 à 3 Hz) pour permettre l'établissement du régime stationnaire.

Le signal d'absorption hyperfréquence est alors traité par deux détecteurs synchrones : le premier (PAR 121), centré sur la fréquence de modulation du klystron, fonctionne avec une faible constante de temps  $\tau_1$  alors que le second (PAR 186), centré sur la fréquence de modulation du magnétron, est utilisé avec une constante de temps élevée ( $\tau_2 = 3$  à 10 s).

Cette technique permet de s'affranchir des inconvénients de la doublemodulation de source en éliminant les signaux dus à des perturbations de l'énergie hyperfréquence autres que l'absorption du gaz. Elle rend donc possible l'utilisation de constantes de temps de détection élevées (figure B-XI).

Il faut noter qu'avec un tel dispositif, on n'observe que les signaux induits par l'azote activé et cela sera très utile lors de l'étude de l'influence du transfert sur tous les niveaux de vibration de OCS.

L'utilisation d'une constante de temps élevée dans la chaine de détection impose l'emploi d'une vitesse de balayage très lente de la fréquence du klystron : l'enregistrement d'une raie nécessite alors de 30 à 45 minutes et cette durée peut être considérée comme un inconvénient pour ce type de spectromètre.



Figure B-XI : Transition  $J = 4 \rightarrow 5$  de OCS(00°2) a - double modulation seule ( $\tau = 1$  s) b - double détection synchrone ( $\tau_1 = 3$  ms,  $\tau_2 = 10$  s)

> Dans ce spectromètre, on laisse subsister la modulation de fréquence du klystron pour éviter les perturbations dues aux "fuites" résiduelles de rayonnement à 2450 MHz de la cavité : en effet, si ce rayonnement est détecté par le cristal détecteur, il ne perturbe pas le signal de sortie car il ne subit pas la modulation de fréquence du klystron.

> Les difficultés majeures liées à cette technique sont dues aux parasites transitoires émis lors de la commutation de la cavité : leur influence peut être éliminée par une disposition soigneuse mais relativement empirique de l'ensemble de l'appareillage.

> > d) interféromètre plan - sphérique

Afin d'éliminer les inconvénients liés au dispositif précédent et pour améliorer la sensibilité, nous avons réalisé un interféromètre
plan-sphérique de conception simple mais dont le système de détection est relativement élaboré.

Description

La cellule de base est un tube de pyrex de diamètre 15 cm et de longueur 25 cm. La flasque d'entrée réalisée en laiton constitue le miroir plan ; elle est traversée par deux guides RG 98/u, l'un au centre, servant au couplage d'entrée de l'énergie hyperfréquence, et l'autre à 2 cm du centre utilisé pour le couplage de sortie. Ces deux guides affleurent la surface réfléchissante. La deuxième flasque d'étanchéité supporte par l'intermédiaire d'une platine mobile un miroir sphérique en dural, de diamètre 11 cm. Les commandes de déplacement longitudinal et d'orientation du miroir sphérique sont effectuées de l'extérieur à l'aide de trois vis micrométriques à passage étanche (figure B-XII).



KOGELNIK et LI [1966] ont montré que dans le cas d'un système optique à large ouverture (les pertes d'énergie par diffraction dues aux dimensions des miroirs sont alors négligeables), le champ électromagnétique à l'intérieur de la cavité est distribué suivant un faisceau gaussien. La demi-largeur w de ce faisceau (définie pour une amplitude égale à l'amplitude maximale divisée par e) et le rayon de courbure R du front d'onde sont donnés par :

$$w^{2}(z) = w_{o}^{2} \left[ 1 + \left( \frac{\lambda z}{\pi w_{o}^{2}} \right)^{2} \right]$$
$$R(z) = z \left[ 1 + \left( \frac{\pi w_{o}^{2}}{\lambda z} \right)^{2} \right]$$

Le plan z = 0 est défini par la position du front d'onde plan, où la largeur du faisceau 2 w. est minimale.

Si l'on tient compte des dimensions finies des miroirs, ces expressions sont approchées et sont d'autant moins valables que les pertes par diffraction augmentent.

Compte-tenu des dimensions des miroirs et pour limiter ces pertes d'énergie, nous nous sommes fixés  $w_o \approx 2$  cm pour une longueur d'onde de 5 mm, ce qui conduit à un rayon de courbure du miroir sphérique de 60 cm pour une distance entre miroirs de 15 cm.

Dans ces conditions, la courbe de réponse de l'interféromètre peut être décrite par balayage de la fréquence de la source autour de la fréquence de résonance. Le coefficient de qualité Q est alors défini par :

$$Q = \frac{\upsilon}{2 \Delta \upsilon}$$

où v est la fréquence de résonance de l'interféromètre

Δυ la demi-largeur de la courbe de réponse.

Nous avons obtenu une valeur de 15000 pour une fréquence de résonance de 60 GHz, ce qui correspond à une longueur équivalente en absorption pour une cellule à ondes progressives :

$$\ell = \frac{Q\lambda}{2\pi}$$
 soit  $\ell \simeq 12 \text{ m}$  [TOWNES et SCHAWLOW, 1955]

Cette valeur de Q est suffisante pour améliorer la sensibilité du spectromètre tout en permettant l'observation d'une raie sans modification de la longueur de l'interféromètre (figure B-XIII).



Figure B-XIII : Courbe de réponse du résonateur en présence de la transition  $J = 4 \rightarrow 5$ . de OCS (00°1)

#### 

Dans un dispositif résonnant comme celui décrit ci-dessus, il est nécessaire d'atténuer fortement l'énergie hyperfréquence incidente afin d'éviter la saturation des transitions. Dans ces conditions, les cristaux détecteurs habituellement utilisés en microonde introduisent une grande perte de conversion. On lève cette difficulté en utilisant une détection superhétérodyne [TOWNES et SCHAWLOW, 1955] : le point de fonctionnement du détecteur est alors déterminé par la puissance plus élevée fournie par un oscillateur local. Si la fréquence du klystron source est  $f_s$  et celle du klystron local  $f_1$ , le signal à observer est alors porté par une onde à la fréquence intermédiaire  $f_i = |f_s - f_1|$  qui vaut dans notre cas 600 MHz. L'amplification et la détection du signal continu se font à cette fréquence à l'aide d'un appareillage réalisé au Laboratoire [BURIE et al., 1976] qui délivre en outre, après une transposition de fréquence, un signal à 30 MHz qui permet la stabilisation de phase de l'oscillateur local par l'intermédiaire d'un synchriminateur Schomandl FDS 30.

Lorsque l'on veut détecter des raies de faible intensité au sommet de la courbe de réponse du résonateur, le signal est masqué par l'amplitude de cette dernière quand on balaye la fréquence du klystron source (et du klystron local). Une solution simple consiste à utiliser un moyenneur numérique qui réalise les fonctions plus et moins (Schlumberger MN2V 256) : on accumule le signal obtenu en présence de la raie puis on retranche le signal accumulé pendant la même durée en l'absence de raie (en enlevant le gaz ou, dans notre cas, en coupant l'excitation de N<sub>2</sub>). L'utilisation de cette technique suppose que la longueur de l'interféromètre ne subisse aucune variation au cours de la durée de l'expérience pour que la courbe de réponse ne fluctue pas en fréquence : ceci n'étant pas réalisé dans notre montage simple, nous avons contourné la difficulté en utilisant la possibilité que nous avions de supprimer les raies périodiquement par l'intermédiaire de la modulation de l'excitation de l'azote.

Le schéma synoptique du montage utilisé est représenté sur

la figure B-XIV, et la figure B-XV montre la forme des différents signaux de commande.





Figure B-XV : Forme des différents signaux de commande

មិញ្ញ បារដ

La cavité d'excitation de l'azote est modulée à une cadence encore plus lente que précédemment (période T de 3s) pour que le signal stationnaire puisse s'établir dans la cellule en un temps inférieur à T/4 (signal 1). La tension carrée synchrone délivrée par le modulateur est appliquée à un générateur d'impulsions qui délivre un signal de durée réglable avec un retard également réglable à chaque discontinuité de la tension d'entrée (signal 2). Le retard permet de s'affranchir des parasites liés à l'allumage et à l'extinction de la cavité. Ces impulsions sont utilisées pour déclencher le moyenneur numérique (Schlumberger MN2V.256) qui délivre alors une rampe de durée réglable (signal 3) servant à balayer la fréquence du klystron source ; la durée de cette rampe est choisie inférieure à la durée entre deux impulsions pour éviter les commutations brutales dans les amplificateurs et dans les chaines de stabilisation de fréquences des klystrons. Le générateur d'impulsions délivre également une tension de commande de la fonction plus ou moins du moyenneur. Le signal observé après détection (signal 4) est alors accumulé alternativement en plus ou en moins, la raie se présentant toujours sur une ligne de base horizontale.

Nous utilisons en plus une modulation de fréquence du klystron source à 5 KHz (modulation carrée bidirectionnelle) afin d'éviter les perturbations liées au rayonnement émis par la cavité (comme nous l'avons précédemment signalé). Avant d'être accumulé dans le moyenneur, le signal est donc traité par une détection synchrone à faible constante de temps.

- 109 -

#### 1

### - SPECTROMETRE A BOMBARDEMENT ELECTRONIQUE

Le bombardement de molécules stables par des électrons possédant une énergie de quelques centaines d'électron-volts peut donner naissance, comme la décharge continue "in situ", à des espèces instables ou excitées.

Un canon à électrons dérivé de celui utilisé par HORANI [1967] et adaptable sur nos cellules d'absorption a été réalisé par DESTOMBES [1978] (figure B-XVI) pour la production de radicaux libres.



La cathode est constituée par un fil de tungstène de 0,16 mm de diamètre et d'une longueur de 10 cm, chauffé sous environ 20 V, 3 A.

L'anode est réalisée à l'aide d'un fil de cuivre bobiné sur un diamètre de 8 cm avec un pas voisin de 1 cm, cette structure permettant de réduire la surface des parties métalliques en contact avec le gaz. La pression de travail est limitée à quelques millitorrs car la destruction du filament est rapide aux pressions élevées, notamment en présence de molécules contenant de l'oxygène.

En bombardant un gaz constitué uniquement de OCS, nous avons constaté une destruction importante de ces molécules ( $\sim 80$  %) pour des courants de 900 m A. En outre, nous avons mis en évidence une forte proportion de molécules excitées dans l'état ( $00^{\circ}1$ ) [DESTOMBES et BOGEY, 1973]. Ces observations peuvent s'interpréter en faisant intervenir un transfert d'énergie entre les molécules de CO excitées (obtenues par destruction de OCS) et les molécules de OCS non détruites.

Cette technique reste cependant d'un emploi difficile car dans certaines conditions, l'ionisation du gaz perturbe le fonctionmement du spectromètre. De plus, on peut difficilèment connaitre la nature de toutes les molécules obtenues lors du bombardement et l'interprétation des résultats est très délicate.

- 111 -

Résultats spectroscopiques sur N<sub>2</sub>O et OCS

Avant de présenter nos résultats expérimentaux, nous rappellerons brièvement les expressions des niveaux d'énergie et des fréquences des transitions rotationnelles pour une molécule linéaire dans un état de vibration non dégénéré ou dégénéré et excité par un, deux ou trois quantums. Nos observations expérimentales nous amènerons à déterminer suivant le même formalisme les expressions analogues pour un état de vibration dégénéré excité par quatre ou cinq quantums.

## I - ENERGIES DES NIVEAUX DE VIBRATION - ROTATION ET FREQUENCES DES TRANSITIONS ROTATIONNELLES

Nous reprenons dans ce chapitre les résultats obtenus par KUPECEK [1970] et présentés dans la monographie de AMAT, NIELSEN et TARRAGO [1971] en utilisant le formalisme développé par AMAT, NIELSEN, GOLDSMITH et GRENIER-BESSON [GOLDSMITH et al., 1956 - AMAT et al., 1957 - AMAT et al., 1957-1958-1962 - GRENIER-BESSON et al., 1962] .

Dans ce formalisme, le hamiltonien  $H^+$  obtenu après deux transformations de contact successives est diagonal en v en l'absence de résonance vibrationnelle et les éléments diagonaux sont de la forme suivante pour une molécule linéaire triatomique :

$$W_{vlj} = E_{vl} + B_{vl} \left[ J(J+1) - l^2 \right] - D_{v} \left[ J(J+1) - l^2 \right]^2 + H_{v} \left[ J(J+1) - l^2 \right]^3$$
(C-1)

- 112 -

- $E_{v\ell}$  = énergie de vibration
- $B_{v_{\ell}} = \text{constante de rotation de l'état } |v\rangle = |nm^{\ell}p\rangle$   $\ell = \text{moment angulaire de vibration (vibration dégénérée)}$  $(\ell = v, v-2, \dots, -v \text{ et } \ell \leq J).$

 $D_v$ ,  $H_v = constantes$  de distorsion centrifuge.

Nous négligerons dans la suite de l'exposé le terme  $H_v$  dont la contribution n'est significative que pour les niveaux de J élevé.

Les coefficients intervenant dans W peuvent être développés en série en fonction des nombres quantiques vibrationnels :

$$E_{vl} = \sum_{s} \omega_{s} (v_{s} + \frac{d_{s}}{2}) + \sum_{ss'} x_{ss'} (v_{s} + \frac{d_{s}}{2}) (v_{s'} + \frac{d_{s'}}{2}) + x l^{2}$$

+  $\Sigma$   $y_{ss's''}$   $(v_s + \frac{d_s}{2})(v_{s'} + \frac{d_{s''}}{2})(v_{s''} + \frac{d_{s''}}{2}) + \Sigma$   $y_s \ell^2(v_s + \frac{d_s}{2})$  $s \leq s' \leq s''$ 

+ 
$$\Sigma \Delta \omega_{\rm s} \left( v_{\rm s} + \frac{d_{\rm s}}{2} \right)$$
 (C-2)

$$B_{v\ell} = B_e - \sum_{s} \alpha_s \left( v_s + \frac{d_s}{2} \right) + \sum_{ss'} \gamma_{ss'} \left( v_s + \frac{d_s}{2} \right) \left( v_{s'} + \frac{d_{s'}}{2} \right) + \gamma \ell^2$$
(C-3)  
$$s \leq s'$$

 $D_{v} = D_{e} + \sum_{s} \beta_{s} \left(v_{s} + \frac{d_{s}}{2}\right) \qquad (C-4)$ 

avec

 $ω_s =$ fréquence de l'oscillateur harmonique pour la vibration normale s  $d_s =$ degré de dégénérescence de la vibration normale s  $x_{ss'}$ , x,  $y_{ss's''}$ ,  $y_s$ ,  $Δω_s =$ constantes d'anharmonicité (x est noté

par certains auteurs g)

 $B_e$ ,  $D_e$  = constantes de rotation et de distorsion centrifuge à l'équilibre

 $\alpha_{s}, \gamma_{ss'}, \gamma, \beta_{s} = constantes d'interaction rotation-vibration$ 

Les seuls éléments non diagonaux du hamiltonien sont du type  $< l | l \pm 2 >$  dont l'expression en fonction des différents nombres quantiques est la suivante :

< v, 
$$\ell \mid H^+ \mid v, \ell \pm 2 \rangle = q_{eff}^v \left\{ \left[ J(J+1) - \ell(\ell \pm 1) \right] \left[ J(J+1) - (\ell \pm 1)(\ell \pm 2) \right] (v \pm \ell + 2) (v \pm \ell) \right\}$$
(C-5)

avec  $q_{eff}^{v} = q_{o} + f_{22}^{J} J(J+1) + \sum_{s} f_{22}^{s} (v_{s} + \frac{d_{s}}{2})$ 

MAKI et LIDE [1967] ont introduit un terme supplémentaire du type  $< l | l \pm 4 >$  pour rendre compte de leurs observations expérimentales sur HCN, terme repris par M. et B.P. WINNEWISSER [1972] dans l'étude de HCNO.

Pour l'état fondamental de vibration ou pour des états de vibration non dégénérée, le hamiltonien est diagonal et l'énergie des niveaux de vibration-rotation est donnée par :

$$E_{VP} = E_{V} + B_{V} J(J+1) - D_{V} J^{2}(J+1)^{2}$$
(C-6)

Dans le cas d'un état de vibration dégénérée, il est nécessaire de calculer les valeurs propres du hamiltonien pour obtenir les niveaux d'énergie. Ce calcul peut s'effectuer par perturbation [KUPECEK, 1970 ]ou par diagonalisation directe [WINNEWISSER et al,1972]. Nous utilisons la première méthode qui conduit à des expressions permettant un accès plus direct aux diverses constantes. La figure C-I montre la forme de la matrice obtenue pour  $v_2 = 1, 2, 3, 4$  et 5 (l'indice 2 correspondant à la vibration doublement dégénérée  $v_2$  dans le cas d'une molécule linéaire triatomique). Les expressions des éléments W et w sont déterminées à partir des relations C-1 et C-5 et données dans l'appendice I. Ces matrices peuvent être factorisées par une transformation analogue à celle de WANG (figure C-I) et les valeurs propres sont obtenues par un calcul de perturbation au premier ordre :

cas 
$$v_2 = 1$$
  

$$\begin{cases}
E_{VR}^+ = W_{11} + W_{11} \\
E_{VR}^- = W_{11} - W_{11}
\end{cases}$$

cas

cas 
$$v_2 = 2$$
  
 $\ell = 0$ 
 $E_{VR} = W_{20} + \frac{2w_{22}^2}{W_{20} - W_{22}}$   
 $|\ell| = 2$ 
 $\begin{bmatrix} E_{VR}^+ = W_{22} - 2w_{22}^2 / (W_{20} - W_{22}) \\ E_{VR}^- = W_{22} \end{bmatrix}$ 

$$v_{2} = 3$$

$$|\mathfrak{L}| = 1$$

$$\begin{cases} E_{VR}^{+} = W_{31} + W_{31} + W_{33}^{2} / (W_{31} - W_{33}) \\ E_{VR}^{-} = W_{31} - W_{31} + W_{33}^{2} / (W_{31} - W_{33}) \\ |\mathfrak{L}| = 3 \qquad \qquad E_{VR} = W_{33} - W_{33}^{2} / (W_{31} - W_{33}) \end{cases}$$

- 115 -

- 116 -



Figure C-I : Forme de la matrice de  $H^+$  pour  $v_2 = 1, 2, 3, 4$  et 5

BUS

$$v_{2} = 3$$

$$|\ell| = 1 \qquad \begin{cases} E_{VR}^{+} = W_{31} + w_{31} + w_{33}^{2} / (W_{31} - W_{33}) \\ E_{VR}^{-} = W_{31} - w_{31} + w_{33}^{2} / (W_{31} - W_{33}) \end{cases}$$

$$|\ell| = 3 \qquad E_{VR} = W_{22} - w_{22}^{2} / (W_{23} - W_{23})$$

 $|\ell| = 3$   $E_{VR} = W_{33} - W_{33}^2 / (W_{31} - W_{33})$ 

cas  $v_2 = 4$ 

cas

$$\begin{aligned} \mathfrak{L} &= 0 \qquad \mathbf{E}_{\mathrm{VR}} = \mathbf{W}_{40} - 2\mathbf{w}_{42}^2 / (\mathbf{W}_{42} - \mathbf{W}_{40}) \\ |\mathfrak{L}| &= 2 \qquad \begin{cases} \mathbf{E}_{\mathrm{VR}}^+ = \mathbf{W}_{42} - \mathbf{w}_{44}^2 / (\mathbf{W}_{44} - \mathbf{W}_{42}) + 2\mathbf{w}_{42}^2 / (\mathbf{W}_{42} - \mathbf{W}_{40}) \\ \mathbf{W}_{\mathrm{R}}^- = \mathbf{W}_{42} - \mathbf{w}_{44}^2 / (\mathbf{W}_{44} - \mathbf{W}_{42}) \\ \mathbf{W}_{\mathrm{R}}^- = \mathbf{W}_{42} - \mathbf{w}_{44}^2 / (\mathbf{W}_{44} - \mathbf{W}_{42}) \\ |\mathfrak{L}| &= 4 \qquad \mathbf{E}_{\mathrm{VR}}^- = \mathbf{W}_{44}^2 + \mathbf{w}_{44}^2 / (\mathbf{W}_{44}^- - \mathbf{W}_{42}) \end{aligned}$$

cas 
$$v_2 = 5$$
  
 $|\ell| = 1$ 
 $\begin{cases} E_{VR}^+ \doteq W_{51} + W_{51} - W_{53}^2 / (W_{53} - W_{51}) \\ E_{VR}^- = W_{51} - W_{51} - W_{53}^2 / (W_{53} - W_{51}) \end{cases}$   
 $|\ell| = 3$ 
 $E_{VR} = W_{53} - W_{55}^2 / (W_{55} - W_{53}) + W_{53}^2 / (W_{53} - W_{51})$   
 $|\ell| = 5$ 
 $E_{VR} = W_{55} + W_{55}^2 / (W_{55} - W_{53})$ 

Compte-tenu des règles de sélection pour les transitions d'absorption dipolaire électrique des molécules du groupe  $C_{\infty} v$ (rotation et rotation-vibration) rappelées dans le tableau C-I, on peut obtenir les fréquences des transitions permises par différence des énergies des niveaux concernés.

| Baudas natallàlas                | Branches R et P<br>$\Delta J = \pm 1$ | + <              |
|----------------------------------|---------------------------------------|------------------|
| $\Delta   l = 0$                 | Branches Q<br>& ≠ 0                   | + <              |
| Bandes perpendiculaires          | Branches Q<br>$\Delta J = 0$          | + <> -           |
| $\Delta   \mathcal{L}   = \pm 1$ | Branches R et P<br>∆ J = ± 1          | + <              |
| Transitions rotationnelles       | ∆ J = + 1                             | + <> +<br>- <> - |
| $\Delta   \mathfrak{L}   = 0$    | $\Delta J = 0$                        | + <> -           |

Tableau C-I : Règles de sélection pour les transitionsd'absorption dipolaire électrique

Nous nous limiterons au calcul des transitions rotationnelles du type  $\Delta J = + 1$ , qui sont les seules à entrer dans le cadre de notre travail. Pour l'état fondamental ou pour un état excité de vibration non dégénérée, les fréquences des transitions sont données par :

 $v_{J} = 2 B_{v} (J+1) - 4 D_{v} (J+1)^{3}$ 

Les fréquences des transitions  $J \rightarrow J + 1$  pour les états  $v_2 = 1, 2, 3, 4$  et 5 sont données dans les tableaux C-II, C-III, C-IV, C-V et C-VI pour les différentes valeurs de  $\ell$  (les termes sont indicés v $\ell$  ou v, v remplaçant la notation (v1, v2, v3))

$$\frac{\text{TABLEAU C-II : } v_2 = 1}{v_J = 2(J+1) \ B_{v1} - 4\{(J+1)^3 - (J+1)\} \ D_v}{\pm 4 \ q_{eff}^v (J+1)}}$$

$$\frac{\text{TABLEAU C-III : } v_Z = 2}{2}$$

$$\frac{v_J = 2(J+1) \ B_{v0} - 4(J+1)^3 \ D_v - \frac{64\left[q_{eff}^v\right]^2 [(J+1)^3 - (J+1)]}{w_{22} - w_{20}}}{\left[z\} = 2 \qquad v_J = 2(J+1) \ B_{v2} - 4\{(J+1)^3 - 4(J+1)\} \ Dv} + 0$$

$$ou \qquad + \frac{64\left[q_{eff}^v\right]^2 [(J+1)^3 - (J+1)]}{w_{22} - w_{20}}$$

$$\frac{\text{TABLEAU C-IV : } v_Z = 3}{\left[z\} = 1 \qquad v_J = 2(J+1) \ B_{v1} - 4[(J+1)^3 - (J+1)] \ D_v - \frac{48\left[q_{eff}^v\right]^2 [(J+1)^3 - 4(J+1)]}{w_{33} - w_{31}}}{\frac{1}{w_{33}} - \frac{1}{w_{31}}}$$

- 119 -

(BUS ULLE

$$\frac{\text{TABLEAU } C \cdot V : v_2 = 4}{|k| = 2}$$

$$k = 0 \quad v_J = 2(J+1) \quad B_{VO} = 4(J+1)^3 \quad D_V = \frac{192(\frac{v}{\text{deff}})^2 \left[ (J+1)^3 - (J+1) \right]}{W_{42} - W_{40}}$$

$$|k| = 2 \quad v_J = 2(J+1) \quad B_{V2} = 4 \left[ (J+1)^3 - 4(J+1) \right] \quad D_V = \frac{64 \cdot \left(\frac{v}{\text{deff}}\right)^2 \left[ (J+1)^3 - 9(J+1) \right]}{W_{44} - W_{42}}$$

$$= 0 \quad v_J = 2(J+1) \quad B_{V2} = 4 \left[ (J+1)^3 - (J+1) \right]$$

$$|k| = 4 \quad v_J = 2(J+1) \quad B_{V4} = 4 \left[ (J+1)^3 - 16(J+1) \right] \quad D_V = \frac{64 \cdot \left(\frac{v}{\text{deff}}\right)^2 \left[ (J+1)^3 - 9(J+1) \right]}{W_{44} - W_{42}}$$

$$= \frac{148 \text{LEAU } C \cdot VI : v_2 = 5}{W_{44} - W_{42}}$$

$$= 1 \quad v_J = 2(J+1) \quad B_{V1} = 4 \left[ (J+1)^3 - (J+1) \right] \quad D_V = \frac{128 \left(\frac{v}{\text{deff}}\right)^2 \left[ (J+1)^3 - 4(J+1) \right]}{W_{53} - W_{51}}$$

$$= 12 \quad q_{eff}^V \quad (J+1)$$

$$= 12 \quad q_{eff}^V \quad (J+1)$$

$$= \frac{80(\frac{v}{\text{deff}}\right)^2 \left[ (J+1)^3 - 16(J+1) \right]}{W_{55} - W_{53}}$$

$$|k| = 5 \quad v_J = 2(J+1) \quad B_{V5} = 4 \left\{ (J+1)^3 - 25(J+1) \right] \quad D_V = \frac{80(\frac{v}{\text{deff}}\right)^2 \left[ (J+1)^3 - 16(J+1) \right]}{W_{55} - W_{53}}$$

Dans leurs formulations, KUPECEK [1970] et AMAT, NIELSEN, TARRAGO [1971] donnent les expressions de  $W_{V_{\ell_1}} - W_{V_{\ell_2}}$ , dans lesquelles le terme prépondérant est de la forme  $(\ell_1^2 - \ell_2^2)$  (x - B)

Pour établir les formules donnant les fréquences des transitions nous avons supposé qu'il n'existait aucune résonance vibrationnelle pour pouvoir effectuer les deux transformations de contact successives du hamiltonien. En fait, et c'est souvent le cas pour les molécules linéaires triatomiques, il existe des résonances accidentelles dues à la proximité de deux niveaux d'énergie de vibration et liées aux termes anharmoniques du potentiel : ce sont les résonances de Fermi. Dans ce cas, NIELSEN [1959] a montré que l'on pouvait effectuer une transformation de contact qui laisse inchangée les éléments non diagonaux couplant les niveaux en résonance ; la sous-matrice correspondante peut alors être traitée par diagonalisation directe. Il faut noter que dans le cas où une vibration dégénérée est impliquée dans une résonance de Fermi, seuls les niveaux correspondant à une même valeur du nombre quantique l sont couplés d'après les propriétés de symétrie du potentiel. Dans le cas de la molécule de OCS, pour laquelle nous avons pu observer des transitions dans un grand nombre d'états excités, MORINO et NAKAGAWA [1968] introduisent deux résonances anharmoniques du premier ordre entre les états  $(v_1, v_2^{\ell}, v_3) - (v_1 - 1, (v_2 + 2)^{\ell}, v_3)$  et  $(v_1, v_2^{\ell}, v_3) - (v_1, (v_2 + 2)^{\ell}, v_3 - 1)$ liés au terme k<sub>122</sub> et k<sub>223</sub> du développement du potentiel (cf. l'expression du développement du potentiel en fonction des coordonnées normales de vibration dans l'appendice 2). Dans un développement très complet des résonances anharmoniques de OCS, FAYT [1972] traite explicitement les résonances du premier ordre liées aux termes k<sub>122</sub> et k<sub>113</sub> car les niveaux d'énergie couplés sont plus proches dans ce cas. Il introduit en outre la résonance anharmonique du 3e ordre entre les états  $(v_1, v_2^{\ell}, v_3) - (v_1, (v_2+4)^{\ell}, v_3 - 1)$ , liée au

- 121 -

terme  $k_{22223}$  du potentiel, pour justifier le comportement anormal du niveau (20°1) [TRIAILLE et al., 1965 - FAYT, 1968 - FAYT, 1970]. De plus, compte-tenu de la structure de la matrice énergie, il tient également compte du couplage entre les niveaux  $(v_1, v_2^{\ell}, v_3)$  - $(v_1 - 1, (v_2 - 2)^{\ell}, v_3 + 1)$  par le terme anharmonique du second ordre  $k_{1223}$ . La figure C-II montre la matrice énergie qu'il utilise pour les états  $\Sigma(\ell=0)$  ainsi que celles concernant les états  $\pi(|\ell| = 1)$  et  $\Delta(|\ell| = 2)$  dans lesquels nous avons observé des transitions : dans ces matrices les termes W non diagonaux sont indicés par référence aux termes anharmoniques du potentiel dont ils sont fonction (ils dépendent également des nombres quantiques de vibration des niveaux couplés). Dans le cas des états  $\pi$  et  $\Delta$ , il faut également tenir compte des termes non diagonaux en  $\ell$  que nous n'avons pas fait figurer dans ces matrices [NIELSEN et al., 1957 - FAYT, 1968]

Compte-tenu du nombre limité des transitions que nous avons observées, il n'était pas possible d'envisager un tel traitement numérique : celui-ci ne peut être effectué que si l'on dispose d'un grand nombre de mesures autant infrarouges que microondes, la connaissance de quelques rares transitions microondes dans les états de vibration excités étant très utiles pour la détermination précise des paramètres moléculaires et pour la justification à posteriori de la méthode d'analyse [ FAYT, 1972] .

Dans le cadre de notre travail, nous avons analysé nos mesures à partir des fréquences déterminées précédemment. Dans ces conditions les paramètres moléculaires rotationnels auxquels nous avons accès sont des paramètres "perturbés" car ils sont liés à des états de vibration perturbés par les résonances de Fermi. Ils ne peuvent donc être utilisés pour la détermination des constantes d'interaction

|                   | _                 |                   | <u>.</u>          |                   |                      | - 123             | <u>-</u>          |                   |                   |                                        |                     |
|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------|---------------------|
| 10 <sup>0</sup> 0 | w <sub>122</sub>  |                   |                   |                   |                      |                   |                   |                   |                   |                                        |                     |
|                   | 02 <sup>0</sup> 0 |                   |                   |                   | ( W <sub>223</sub> ) |                   |                   |                   |                   | n Mineria da<br>Alexandre<br>Alexandre | 1                   |
|                   |                   | 20 <sup>0</sup> 0 | W <sub>122</sub>  |                   | w <sub>113</sub>     |                   |                   |                   |                   |                                        |                     |
|                   |                   |                   | 12 <sup>0</sup> 0 | w <sub>122</sub>  | w <sub>1223</sub>    |                   |                   |                   |                   | (W <sub>223</sub> )                    |                     |
|                   |                   |                   |                   | 04 <sup>0</sup> 0 | w <sub>22223</sub>   |                   |                   |                   |                   |                                        | (w <sub>223</sub> ) |
|                   |                   |                   |                   |                   | 00 <sup>0</sup> 1    |                   |                   |                   |                   |                                        |                     |
|                   |                   |                   |                   |                   |                      | 30 <sup>0</sup> 0 | w <sub>122</sub>  |                   |                   | w <sub>113</sub>                       |                     |
|                   |                   |                   |                   |                   |                      |                   | 22 <sup>0</sup> 0 | W <sub>122</sub>  |                   | w <sub>1223</sub>                      | w <sub>113</sub>    |
|                   |                   |                   |                   |                   |                      |                   |                   | 14 <sup>0</sup> 0 | W <sub>122</sub>  | w <sub>22223</sub>                     | w <sub>1223</sub>   |
|                   | Etal              | ts Σ              |                   |                   |                      |                   |                   |                   | 06 <sup>0</sup> 0 |                                        | w <sub>22223</sub>  |
|                   |                   |                   |                   |                   |                      |                   |                   |                   |                   | 10 <sup>0</sup> 1                      | W <sub>122</sub>    |
|                   |                   |                   |                   |                   |                      |                   |                   |                   |                   |                                        | 02 <sup>0</sup> 1   |

| 11 <sup>1</sup> 0 | w <sub>122</sub>          |                   |                  |                   |                     |                     |                   | · .               |                   |                     |                     |
|-------------------|---------------------------|-------------------|------------------|-------------------|---------------------|---------------------|-------------------|-------------------|-------------------|---------------------|---------------------|
|                   | 03 <sup>1</sup> 0         | <u> </u>          |                  |                   | (w <sub>223</sub> ) |                     |                   |                   |                   | 1                   | 1                   |
|                   |                           | 21 <sup>1</sup> 0 | w <sub>122</sub> |                   | w <sub>113</sub>    |                     |                   |                   |                   |                     |                     |
|                   |                           |                   | 1310             | W <sub>122</sub>  | W <sub>1223</sub>   |                     |                   |                   |                   | (W <sub>223</sub> ) |                     |
|                   |                           |                   |                  | 05 <sup>1</sup> 0 | w <sub>22223</sub>  |                     |                   |                   |                   |                     | (w <sub>223</sub> ) |
|                   |                           |                   |                  |                   | 01 <sup>1</sup> 1   |                     |                   |                   |                   |                     |                     |
|                   |                           |                   |                  |                   |                     | . 31 <sup>1</sup> 0 | w <sub>122</sub>  |                   |                   | w <sub>113</sub>    |                     |
|                   |                           |                   |                  |                   |                     |                     | 23 <sup>1</sup> 0 | w <sub>122</sub>  |                   | W <sub>1223</sub>   | W <sub>113</sub>    |
|                   | <b>—</b> . <sup>1</sup> . | _                 |                  |                   |                     |                     |                   | 15 <sup>1</sup> 0 | w <sub>122</sub>  | W22223              | W <sub>1223</sub>   |
|                   | Etat                      | s IT              |                  |                   |                     |                     |                   |                   | 07 <sup>1</sup> 0 |                     | W <sub>22223</sub>  |
|                   |                           |                   |                  |                   |                     |                     |                   |                   |                   | 1111                | w <sub>122</sub>    |
|                   |                           |                   |                  |                   |                     |                     |                   |                   |                   |                     | 03 <sup>1</sup> 1   |

12<sup>2</sup>0 W<sub>122</sub> 04<sup>2</sup>0

\_ Etats Δ

Figure C-II : Matrices de l'énergie vibrationnelle (états  $\Sigma$ ,  $\pi$ ,  $\Delta$ )

์ อิปร ุ่มนะ

vibration-rotation 
$$\alpha_s$$
,  $\beta_s$ ,  $\gamma_{ss'}$ ,  $\gamma$  et  $f_{22}^s$ .

#### I I – RESULTATS EXPERIMENTAUX

#### a) protoxyde d'azote N<sub>2</sub>O

Bien que cette molécule ait un faible moment dipolaire (µ= 0,1608 debye), nous avons pu à l'aide du transfert de l'énergie vibrationnelle de l'azote activé :

$$N_2^{*}(v=1) + N_2^{0}(00^{\circ}1) \longrightarrow N_2^{0}(v=0) + N_2^{0}(00^{\circ}1) + 108 \text{ cm}^{-1}$$

réalisé à basse pression, (5mtorrs de N<sub>2</sub>O + 15mtorrs de N<sub>2</sub>) peupler suffisamment l'état (OO°1) à 2223 cm<sup>-1</sup> pour observer les transitions rotationnelles J  $\rightarrow$  J+1 dans cet état [BOGEY, 1975].

La constante de rotation  $B_v$  de cette molécule étant relativement grande ( $B_v \approx 12500$  MHz), peu de transitions sont accessibles à l'aide des klystrons usuels et grâce à l'utilisation d'un doubleur de fréquence nous avons pu, à l'aide du spectromètre à double modulation de source, mesurer les fréquences des transitions  $J \rightarrow J+1$  pour J = 1, 2, 3 et 4 (TABLEAU C-VII).

| $J \rightarrow J+1$                                                     | ∪ <sub>m</sub> (MHz)      | υ <sub>c</sub> (MHz)      | υ <sub>m</sub> - υ <sub>c</sub> |
|-------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------------|
| 1 + 2                                                                   | 49832,523                 | 49832,517                 | 0,006                           |
| 2 → 3                                                                   | 74 748,471                | 74 748,464                | 0,007                           |
| 3 → 4                                                                   | 99 664,025                | 99 664,040                | - 0,015                         |
| 4 → 5                                                                   | 124 579,124               | 124 579,118               | 0,006                           |
| $\begin{array}{rrr} 3 & \rightarrow 4 \\ 4 & \rightarrow 5 \end{array}$ | 99 664,025<br>124 579,124 | 99 664,040<br>124 579,118 | - 0,015<br>0,006                |

Tableau C-VII : fréquences mesurées et calculées pour les transitions  $J \rightarrow J + 1$  de l'état (00°1)

- 124 -

Les constantes de couplage quadripolaire liées aux deux noyaux d'azote étant faibles (eq Q = -0,792 et -0,238 MHz d'après SANCHO et al., [1966]), la structure hyperfine n'a pu être observée compte-tenu de la résolution de notre spectromètre. Les erreurs de mesure sont inférieures à 50 KHz lorsque le klystron est utilisé dans le mode fondamental (J=1 et 2) et à 100 KHz lorsque l'on utilise l'harmonique 2.

Le niveau de vibration (00°1) étant non dégénéré, le spectre de rotation est analysé à l'aide de la formule :

$$v = 2 B_{(00^{\circ}1)} (J+1) - 4 (J+1)^{3} D_{(00^{\circ}1)}$$

Par un calcul de moindres carrés, nous obtenons les constantes de rotation suivantes pour l'état (00°1) de  $N_2O$  :

 $B_{(00^{\circ}1)} = 12458,170 \pm 0,003$  MHz  $D_{(00^{\circ}1)} = 5,17 \pm 0,06$  KHz

Dans le tableau C-VIII, nous comparons ces valeurs à celles obtenues récemment par d'autres auteurs soit par spectroscopie infrarouge soit par mesure des fréquences des raies laser de  $N_2O$ .

| 4                        | Nos résultats | SOKOLOFF et al.,<br>[1972] | FARRENQ et al.<br>[1974] 🖌 | <pre>()HITFORD et al., [1975]</pre> | VALENTIN<br>et al.,<br>[ 1976 ]* |
|--------------------------|---------------|----------------------------|----------------------------|-------------------------------------|----------------------------------|
| B(00°1)<br>(MHz)         | 12458,170     | 12458,20                   | 12458,133                  | 12458,1588                          | 12458,070                        |
| <b>D</b> (00°1)<br>(KHz) | 5,17          | 5,42                       | 5,255                      | 5,2536                              | 5,21                             |

Tableau C-VIII : Comparaison des constantes rotationnelles de N20(00°1) obtenues par différentes techniques

nous avons utilisé c = 2,997924562.10<sup>8</sup> m s<sup>-1</sup> [EVENSON et al.,1972]

- 125 -

Un calcul de fréquence effectué à partir des différents jeux de constantes montre que ce sont celles obtenues par WHITFORD et al., [1975] qui sont le plus en accord avec nos résultats expérimentaux.

#### b) oxysulfure de carbone OCS

Nous avons réalisé un transfert d'énergie vibrationnelle entre  $N_2^{\ddagger}$  et OCS selon la réaction :

 $N_2(v=1) + OCS(00^{\circ}0) \implies N_2(v=0) + OCS(00^{\circ}1) + 269 \text{ cm}^{-1}$ 

qui permet une augmentation notable de la population de l'état (00°1) à 2062 cm<sup>-1</sup> malgré l'importance de l'écart d'énergie entre les niveaux concernés.

Cette technique rend possible l'observation des transitions rotationnelles dans l'état (00°1) et nous avons pu mesurer les fréquences de 10 raies comprises entre 48 et 160 GHz.

Dans la cellule d'observation longue de 1 m précédemment décrite, nous avons constaté que les transitions de l'état (00°1) pouvaient être aussi intenses que celles de l'état (10°0) à 859 cm<sup>-1</sup> [BOGEY et al., 1974].

Lorsque l'on remplace N2 par OCS dans la décharge microonde nous observons également les transitions de l'état (00°1) mais avec une intensité nettement inférieure. En mesurant la variation d'intensité d'une raie de l'état fondamental, on peut constater une destruction de 99 % de OCS dans la décharge. Nous avons donc interprété l'excitation de OCS (00°1) par un transfert d'énergie vibrationnelle entre CO<sup>\*</sup> et OCS, le CO excité étant obtenu par la destruction de OCS dans la décharge [DEUTSCH , 1966] :

$$\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Bien que la constante de vitesse de ce transfert soit très élevée  $(K_e = 2,57.10^5 \text{ s}^{-1} \text{ torr}^{-1} \text{ d'après HANCOCK et al., [1974] })$ , le signal observé est faible car d'une part la durée de vie de CO(v=1) n'est que de 33 ms [MILLIKAN, 1963 ] et d'autre part une désexcitation importante doit se produire dans le tube d'entrée par collision avec les parois et les autres produits de décomposition.

Nous avons également réalisé une excitation directe de CO pur dans la décharge : dans ces conditions le signal est identique à celui obtenu dans le cas précédent mais diminue très rapidement au cours du temps car un épais dépôt de carbone se forme sur les parois du tube d'entrée. Notons que, comme pour l'azote excité, nous avons constaté une amélioration du signal en présence d'un dépôt de soufre.

 Observations réalisées à l'aide du spectromètre à double modulation de source

Les mesures des fréquences des transitions  $J \rightarrow J+1$  de l'état (00°1) effectuées à l'aide de ce dispositif sont rassemblées dans le tableau C-IX.

| J  | → <u></u> | J+1 | υ <sub>m</sub> (MHz) | υ <sub>c</sub> (MHz) | υm - υ <sub>c</sub><br>(MHz) |
|----|-----------|-----|----------------------|----------------------|------------------------------|
| 3  | +         | 4   | 48 360,195(40)       | 48'360,163           | 0,032                        |
| 4  | ÷         | 5   | 60 449,952(20)       | 60 44 9 <b>, 967</b> | - 0,015                      |
| 5  | ÷         | 6   | 72 539,599(30)       | 72 539,615           | - 0,016                      |
| 7  | ÷         | 8   | 96718,268(40)        | 96718,312            | - 0,044                      |
| 9  | ÷         | 10  | 120896,077(80)       | 120896,003           | 0,074                        |
| 10 | ÷         | 11  | 132 984,422(80)      | 132 984,392          | 0,030                        |
| 11 | <b>→</b>  | 12  | 145 072,349(80)      | 145 072,435          | - 0,086                      |
| 12 | <b>→</b>  | 13  | 157 160,129(80)      | 157 160,101          | 0,028                        |
|    |           |     |                      |                      |                              |

Tableau C-IX : Fréquences mesurées et calculées pour l'état (00°1) (les chiffres entre parenthèses donnant les erreurs de mesure estimées)

Un traitement numérique par moindres carrés conduit aux constantes rotationnelles suivantes :

 $B_{(00^{\circ}1)} = 6045,062 \pm 0,003 \text{ MHz}$  $D_{(00^{\circ}1)} = 1,31 \pm 0,01 \text{ KHz}$ 

Les fréquences calculées à partir de ces constantes sont données dans le tableau C-IX. La valeur de B obtenue est voisine de celle déterminée par MORINO et MATSUMURA [1967] à partir de la mesure de la transition  $J = 1 \rightarrow J = 2$  à l'aide d'un spectromètre à effet Stark porté à haute température :  $B_{(00^\circ1)} = 6.045,051$  MHz. La figure C-III montre un exemple d'enregistrement effectué pour la transition  $J : 7 \rightarrow 8$  avec un spectromètre à double modulation de source.



 Observations réalisées à l'aide du spectromètre à "double détection synchrone"

Cette technique nous a permis d'observer les transitions des états (00°1) des substitués isotopiques en  $^{34}$ S et  $^{13}$ C en abondance naturelle.

Nous avons pu également mettre en évidence l'influence du transfert sur les niveaux de vibration  $(01^{1}1)$  à 2575 cm<sup>-1</sup>,  $(10^{\circ}1)$  à 2918 cm<sup>-1</sup> et  $(00^{\circ}2)$  à 4101 cm<sup>-1</sup>.

Ces états peuvent en effet être peuplés par les réactions de transfert suivantes :

 $N_{2}(v=1) + OCS(v_{1}v_{2}^{\ell}v_{3}) \stackrel{\neq}{\neq} N_{2}(v=0) + OCS(v_{1}v_{2}^{\ell}v_{3}+1) + \Delta E$   $OCS(00^{\circ}1) + OCS(v_{1}v_{2}^{\ell}v_{3}) \stackrel{\neq}{\neq} OCS(00^{\circ}0) + OCS(v_{1}v_{2}^{\ell}v_{3}+1) + \Delta E'$  $N_{2}(v=2) + OCS(00^{\circ}0) \stackrel{\neq}{\neq} N_{2}(v=0) + OCS(00^{\circ}2) + 530 \text{ cm}^{-1}$  Les augmentations de population produites par ces transferts sont cependant beaucoup plus faibles que celle produite sur l'état (00°1) car les fréquences de collision sont moins importantes, et en outre, pour la dernière réaction, l'écart en énergie des niveaux concernés est très élevé.

L'amélioration de la sensibilité due à la modulation de l'excitation de l'azote a rendu possible l'observation de transitions dans ces niveaux d'énergie élevée. La figure C-IV montre un enregistrement de la transition  $J = 4 \rightarrow 5$  de l'état (00°2) obtenu avec un balayage de 22,5 KHz/mn. et des constantes de temps des détecteurs synchrones de 1 ms et 3 s.

mumm mar when when

120 KHz

Figure C-IV : Transition  $J = 4 \rightarrow 5$  de l'état (00°2)  $\tau_1 = 1$  ms ,  $\tau_2 = 3$  s

Les fréquences mesurées sont rassemblées dans le tableau C-X. Il faut noter que la transition  $J = 7 \rightarrow 8$  a été en fait mesurée à l'aide de l'interféromètre et que toutes les transitions  $J = 4 \rightarrow 5$ ont été mesurées par les deux méthodes.

| <b>Etats</b><br>vibrationnels | E <sub>U</sub> - Eo<br>(cm <sup>-1</sup> ) | 4 → 5<br>MHz   | 5 → 6<br>MHz     | 7 → 8<br>MHz   |
|-------------------------------|--------------------------------------------|----------------|------------------|----------------|
| (00°1) <sup>34</sup> s        | 2 061                                      | 58 973,390(30) | 70767,755(30)    |                |
| (00°1) <sup>13</sup> C        | 2 009                                      | 60 275,785(30) | 72 330,596(30)   |                |
| (01 <sup>1</sup> 1)           | 2 57 5                                     | 60 594,384(20) | 72 712,901 (30)  | 96 949,309(50) |
|                               |                                            | 60 529,737(20) | 72 635, 337 (30) | 96845,893(50)  |
| (10°1)                        | 2 918                                      | 60 288,469(30) | 72 345,739(30)   |                |
| (00°2)                        | 4 101                                      | 60 088,026(30) | 72 105,292(30)   |                |
|                               |                                            |                |                  | x<br>,         |

Tableau C-X : Fréquences mesurées pour l'état  $(00^{\circ}1)$  des substitués isotopiques en <sup>34</sup>S et <sup>13</sup>C et les états  $(01^{1}1)$ ,  $(10^{\circ}1)$  et  $(00^{\circ}2)$  de  $16012C^{32}S$ 

Les valeurs des constantes rotationnelles obtenues à partir de ces mesures sont imprécises du fait du nombre limité de transitions. Nous les avons cependant comparées dans le tableau C-XI aux valeurs obtenues, pour les niveaux d'énergie inférieure à 2600 cm<sup>-1</sup>, par d'autres auteurs à la suite de mesures en microonde (avec un nombre au moins aussi limité de transitions).

Il est bon de rappeler que toutes les constantes rotationnelles que nous déterminons sont des constantes perturbées par les résonances anharmoniques : elles ne vérifient donc pas les relations C-3 et C-4.

| Etats<br>vibrationnels   | Nos valeurs <sub>(MHz)</sub>                                     | Valeurs obtenues par d'autres<br>auteurs (MHz) (transitions<br>J→J+1 mesurées) |  |  |
|--------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| (00°1) <sup>34</sup> s   | $B_{(00^{\circ}1)} = 5897,398$ (15)                              | 5897,390(20) (a)                                                               |  |  |
|                          | $D_{(00^{\circ}1)} = 0,00119(25)$                                | (1 → 2)                                                                        |  |  |
| (00°1) <sup>13</sup> c   | $B_{(00^{\circ}1)} = 6027,644$ (15)                              | 6027,649(19) (b)                                                               |  |  |
|                          | $D_{(00^{\circ}1)} = 0,00131(25)$                                | $(1 \rightarrow 2 \text{ et } 2 \rightarrow 3)$                                |  |  |
|                          | $B_{(0111)} = 6056,273$ (5)                                      | 6056,259(30) (a)                                                               |  |  |
| <b>(01<sup>1</sup>1)</b> | $D_{(01,1)} = 0,001.36(7)$                                       | $(2 \rightarrow 3 \text{ et } 4 \rightarrow 5)$                                |  |  |
|                          | $\begin{vmatrix} q^{(01^{1}1)} \\ eff \end{vmatrix} = 1,616 (1)$ | 1,612(5) (a)                                                                   |  |  |
| (10°1)                   | $B_{(10^{\circ}1)} = 6028,927$ (15)                              |                                                                                |  |  |
|                          | $D_{(10^{\circ}1)} = 0,001.60(25)$                               |                                                                                |  |  |
| (00°2)                   | $B_{(00^{\circ}2)} = 6008,867$ (15)                              |                                                                                |  |  |
|                          | $D_{(00^{\circ}2)} = 0,001 28 (25)$                              |                                                                                |  |  |

Tableau C-XI : Constantes moléculaires obtenues pour l'état (00°1) des substitués isotopiques en <sup>34</sup>S et <sup>13</sup>C et pour les états

- $(01^{1}1), (10^{\circ}1) \text{ et } (00^{\circ}2)$
- (a) : MORINO et al [1967]
- (b) : MAKI et al [1973]

Observations réalisées à l'aide de l'interféromètre plan-sphérique

Le fonctionnement de l'interféromètre nécessitant, pour obtenir une bonne sensibilité, une détection superhétérodyne, il est nécessaire de disposer de deux sources microondes dans la même bande de fréquence. C'est pourquoi notre travail s'est limité, pour l'instant, à l'étude d'une seule transition  $(J=4 \rightarrow 5)$ .

Comme nous l'avons déjà signalé, nous avons pu remesurer avec un

meilleur rapport signal sur bruit les transitions déjà observées avec un autre appareillage. Nous avons également pu mesurer les transitions rotationnelles des niveaux (21<sup>1</sup>0), (04<sup>k</sup>0) et (05<sup>k</sup>0) ainsi que (03<sup>k</sup>0). Ces trois derniers états sont probablement peuplés par transfert entre les états (00°1) et (04°0) accompagné d'une répartition rapide de l'énergie sur tous les niveaux (0v<sup>k</sup><sub>2</sub>0) [SIEBERT et FLYNN, 1976]. Pour l'état (21<sup>1</sup>0), il est possible que l'augmentation de population soit liée à un transfert direct de N<sub>2</sub>(v=1) ( $\Delta$ E = 113 cm<sup>-1</sup>), de probabilité faible car le nombre de quantums échangés est grand. La figure C-V montre des photographies d'oscillogrammes obtenus soit sans accumulation"plus ou moins"pour l'état (00°1), soit avec pour les états (00°2) et (04<sup>4</sup>0).

Les fréquences mesurées sont données dans le tableau C-XII. La raie de l'état (04°0) n'a pu être observée car elle est très proche de la raie haute fréquence du doublet & de (03<sup>1</sup>0) beaucoup plus intense.

| Etats<br>vibrationnels | $E_v - E_o (cm^{-1})$ | Fréquences mesurées<br>(MHz) | Fréquences calculées <sub>(MHz)</sub> |
|------------------------|-----------------------|------------------------------|---------------------------------------|
| (03 <sup>3</sup> 0)    | 1 562                 | 61 128,918 (30)              | 61 128,891                            |
| (03 <sup>1</sup> 0)    | 1 573                 | 61 024,056 (30)              | 61 024,036                            |
|                        |                       | 61 147,813 (30)              | 61 147,805                            |
| (04 <sup>4</sup> 0)    | 2 083                 | 61 231,774 (40)              | 61 231,824                            |
| (04 <sup>2</sup> 0)    | 2 099                 | 61 172,235 (40)              | 61 172,347                            |
|                        |                       | 61 172,722 (40)              | 61 172,683                            |
| (21 <sup>1</sup> 0)    | 2 2 1 8               | 60 548,148 (60)              | 60 548,160                            |
|                        |                       | 60 621,540 (60)              | 60 621,470                            |
| (05 <sup>3</sup> 0)    | 2 625                 | 61 260,630 (60)              | 61 260,645                            |
| (05 <sup>1</sup> 0)    | 2 635                 | 61 125,981 (60)              | 61 125,978                            |
|                        |                       | 61 307,603 (60)              | 61 307,528                            |

Tableau C-XII : Fréquences mesurées et calculées pour les états  $(03^{2}0)$ ,  $(04^{2}0)$ ,  $(05^{2}0)$ et (2110)



Figure C-V : raies (J = 4→5) observées à l'aide de l'interféromètre pour différents états de vibration (l'intervalle de fréquence entre deux marqueurs consécutifs est de 60 KHz)

Les fréquences calculées qui figurent dans le tableau C-XII ont été obtenues par FAYT et al [1979] en prenant en compte nos mesures microondes dans leur traitement numérique très complet de l'ensemble des données spectroscopiques de OCS : ce traitement est effectué à partir d'une diagonalisation directe des résonances anharmoniques et de type l.

Les seules constantes rotationnnelles que l'on puisse déterminer à partir de ces mesures sont les constantes  $\left|q_{eff}^{v}\right|$  du dédoublement de type  $\ell$  ( $\left|\ell\right| = 1$ ). Elles figurent, ainsi que les valeurs données par d'autres auteurs, dans le tableau C-XIII.

| q <sub>eff</sub> <sup>(0v10)</sup>                      | (01 <sup>1</sup> 0)                                                    | (03 <sup>1</sup> 0)        | (05 <sup>1</sup> 0)        | (21 <sup>1</sup> 0)        |
|---------------------------------------------------------|------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| Nos valeurs <sub>(MHz)</sub>                            |                                                                        | 1,547(1)                   | 1,514(1)                   | 1,835(3)                   |
| Autres auteurs (MHz)<br>(transitions J→J+1<br>mesurées) | 1,590 353 18(41)<br>- 1,068 0 (45)<br>x 10 <sup>-6</sup> J(J+1) (b, c) | 1,546(5)<br>(1 → 2)<br>(a) | 1,514(7)<br>(2 + 3)<br>(a) | 1,821(5)<br>(1 + 2)<br>(a) |

Tableau C-XIII : Constantes du dédoublement de type &

- (a) : MORINO et al. [1967]
- (b) : REINARTZ et al. [1972]
- (c) : MAKI [1967]

D'après le formalisme développé au paragraphe II-C-1 la constante  $q_{eff}^{(0v^{1}0)}$  devrait dépendre linéairement de v. En fait, ceci n'est vrai qu'en l'absence de résonances de Fermi. Dans le cas contraire ces résonances modifient l'écart entre les deux niveaux de dédoublement et il est nécessaire d'éliminer la contribution anharmonique pour retrouver la linéarité [AMAT et al., 1956 - NAKAGAWA et al., 1969 -FAYT, 1972 ].

#### Conclusion

La technique du transfert de l'énergie vibrationnelle de l'azote activé est donc une méthode efficace pour permettre l'observation des spectres de rotation dans des états de vibrations élevés d'une molécule présentant un niveau vibrationnel voisin de celui de l'azote. Les résultats obtenus montrent qu'il est possible d'accéder à des états excités élevés (jusque 4 100 cm<sup>-1</sup>) encore non connus et d'améliorer ainsi la détermination des constantes moléculaires. En particulier pour OCS, les nouvelles données peuvent être intégrées au traitement numérique très complet effectué par FAYT et al. [1979] afin de mieux caractériser certaines constantes.

Il faut également signaler qu'à la suite de nos premières expériences, des observations analogues ont été réalisées par CAZZOLI, FAVERO et DEGLI ESPOSTI [1977-1978] sur les molécules linéaires BrCN, C&CN et ICN qui ont toutes leur état de vibration (00°1) voisin de 2 200 cm<sup>-1</sup> et qui ont l'avantage d'avoir un moment dipolaire élevé ( $\mu \approx 2,94$  debyes pour BrCN).

On peut <u>aussi</u> envisager d'appliquer cette technique à une molécule constituée d'un plus grand nombre d'atomes : la toupie symétrique CH<sub>3</sub>CN ayant une vibration  $v_2$  à 2267 cm<sup>-1</sup> (élongation -C=N) se présente comme un cas favorable mais il est nécessaire pour entreprendre une telle étude de disposer d'une estimation de la constante B<sub>v2</sub>.

- 136 -

# CHAPITRE III Etude de la cinétique du transfert d'énergie vibrationnelle \_ Cas du système N<sub>2</sub>-OCS



Les expériences de spectroscopie microonde que nous avions entreprises sur le transfert d'énergie vibrationnelle entre N<sup>\*</sup>2 et OCS, et en particulier les possibilités de modulation de l'excitation de l'azote que nous avons mises en oeuvre, nous ont conduits à envisager l'étude de la dynamique de ce transfert.

En effet, bien que la relaxation vibrationnelle ait été étudiée depuis très longtemps par différentes techniques et pour de nombreux systèmes moléculaires, aucune donnée bibliographique n'existe pour ce système particulier en phase gazeuse. Comme la détermination des probabilités de transfert présente un grand intérêt en particulier pour le développement des analyses théoriques et pour la compréhension du fonctionnement des lasers moléculaires, nous avons entrepris l'étude du transfert  $N_2^*$  – OCS par une technique originale.

Après un bref rappel des différentes méthodes expérimentales employées pour l'étude de la relaxation vibrationnelle, nous décrirons la technique que nous avons utilisée ainsi que les résultats expérimentaux obtenus. L'interprétation de ces résultats nous permettra ensuite de déterminer la constante de vitesse du transfert  $N_2(v-1) - OCS(00^{\circ}1)$ que nous comparerons à celle obtenue théoriquement en utilisant les hypothèses de SCHWARTZ, SLAWSKY et HERZFELD [1952] et de HERZFELD et LITO VITZ [1959].
A — Techniques expérimentales d'étude des transferts d'énergie vibrationnelle

L'objet de ce chapitre étant de rappeler quelques techniques générales utilisées pour étudier les transferts d'énergie vibrationnelle, de types V-T ou V-V, nous les distinguerons par les mécanismes d'excitation qui les caractérisent ainsi que par les différents moyens de détection qu'elles offrent. Dans chaque cas, nous ferons apparaître plus particulièrement les expériences effectuées avec OCS.

### I - ABSORPTION ET DISPERSION D'ONDES ULTRASONORES

Les mesures d'absorption ou de vitesse de propagation des ondes ultrasonores au sein d'un gaz permettent de déterminer essentiellement les temps de relaxation V-T [HERZFELD et LITOVITZ, 1959 - COTTRELL et McCOUBREY, 1961, -STRETTON, 1969]. Différentes techniques, décrites dans les ouvrages précédents, ont été utilisées (interféromètre accoustique, tube de Kundt, chambre de réverbération, etc...). FRICKE [1940] ainsi que EUCKEN et AYBAR [1940] ont mesuré, par cette méthode, la constante de temps des transferts V-T dans OCS.

## **II – ONDES DE CHOCS**

Lorsqu'une onde de choc se propage au sein d'un gaz, elle entraine une variation brutale des propriétés du gaz au

- 140 -

- 141 -

niveau du front d'onde. En particulier, l'énergie de translation augmente soudainement pour s'équilibrer ensuite avec l'énergie interne de vibration. Il suffit alors d'observer un paramètre lié à cette relaxation pour pouvoir la mesurer. Un des avantages lié à l'utilisation d'un tube de choc est la commodité avec laquelle on peut varier la température de translation du gaz : il suffit, en effet, de varier la vitesse de l'onde incidente. On peut alors obtenir les variations des constantes de transfert en fonction de la température. De nombreuses méthodes expérimentales ont été développées [BORRELL, 1969] et nous ne citerons que celle basée sur l'observation de la fluorescence infrarouge induite par l'onde de choc qui a permis à BORRELL et MILLWARD [1972] de mesurer, pour des températures comprises entre l 200 et 2000° K les constantes de vitesse des transferts intramoléculaires de OCS  $(v_3 \rightarrow v_1, v_2)$  en présence de CO.

## **III – EXCITATION CHIMIQUE**

Une réaction chimique peut produire des composés dans des niveaux de vibration excités et on peut alors, en observant l'émission infrarouge de ces composés, étudier leur relaxation vibrationnelle en présence ou non d'autre molécule. C'est ainsi que PACEY et POLANYI [1971] ont pu décrire très précisément la réaction

$$H + C\ell_2 \xrightarrow{K_V'} H C\ell_{V'} + C\ell$$

dans une configuration expérimentale donnée et déterminer l'ensemble des constantes de vitesse des réactions d'excitation et de désexcitation. En produisant de l'oxyde de carbone vibrationnellement excité par action de l'oxygène atomique sur CS<sub>2</sub>, HANCOCK et SMITH [1971 a, 1971 b] ont mesuré les constantes de vitesse de désexcitation de CO ( $4 \le v \le 13$ ) par différents gaz et en particulier par OCS. VON HOYERMANN et POSS[1971] ont observé de façon analogue le transfert entre CO(v=5) et OCS, l'oxyde de carbone excité étant produit par action des atomes d'oxygène sur C<sub>2</sub>H<sub>2</sub>.

## IV - EXCITATION OPTIQUE

#### a) sans laser

Un rayonnement infrarouge absorbé par des molécules se transforme en énergie de vibration. Il se produit ensuite une conversion de cette énergie de vibration, d'une part par émission de photons (c'est la désexcitation radiative), d'autre part en énergie de translation par collisions moléculaires.

Si la durée de vie radiative est comparable à la durée de vie collisionnelle, on peut, en observant la fluorescence, déterminer la relaxation vibrationnelle due aux collisions moléculaires avec une autre espèce [MILLIKAN, 1963]. LEV-ON et al. [1972] ont utilisé cette technique pour mesurer la constante de vitesse du transfert entre CO(v=1) et OCS(OO°1).

Une autre possibilité d'observation de la relaxation consiste à utiliser une méthode opto-acoustique à l'aide d'un spectrophone [READ, 1967] : lorsque l'énergie de translation d'un gaz varie, cela se traduit par une variation de pression que l'on peut observer à l'aide d'un microphone en modulant l'excitation infrarouge. C'est ainsi que COTTRELL et al. [1966] ont pu mesurer la constante de temps de la relaxation V-T de OCS (00°1). Après avoir été longtemps mal comprises, les expériences effectuées à l'aide d'un spectrophone peuvent maintenant être correctement interprétées grâce aux travaux de HUETZ-AUBERT et al. [1971, 1974].

#### b) avec laser

Le principe de cette méthode consiste à créer une perturbation au sein d'un gaz en pompant une transition rovibrationnelle à l'aide d'une raie laser [ MOORE, 1967 - 1973]. L'utilisation de lasers de forte puissance permet d'atteindre des déséquilibres importants. Les limitations d'une telle méthode sont liées à la nécessité de disposer de coïncidences entre raies lasers et transitions vibrationnelles de la molécule à étudier.

Pour observer la cinétique des relaxations, deux techniques principales ont été utilisées : la fluorescence induite par laser et la double résonance infrarouge-infrarouge. Dans cette dernière technique, l'évolution des populations vibrationnelles est suivie à l'aide d'un laser de sonde [ RHODES et al., 1968 - BRECHIGNAC et al., 1975-BRECHIGNAC , 1976] ; il est important de signaler que ce type d'expérience permet également d'atteindre la relaxation rotationnelle [ BRECHIGNAC , 1976 ].

Dans les expériences de fluorescence induite par laser, on observe l'émission de fluorescence d'un ou plusieurs niveaux vibrationnels consécutivement à l'excitation par le laser de pompe. Dans cette catégorie se rangent les mesures effectuées sur OCS(OO°1) peuplé par transfert à partir de HBr et HCL(v=1) [HOPKINS et al., 1973] ou de  $CO_2(OO°1)$  [STEPHENSON et al., 1972]. HANCOCK et al. [1974] ont étudié le mélange CO-OCS dans lequel CO est excité sur le niveau v=1 par un laser à CO<sub>2</sub> dont la fréquence est doublée. SIEBERT et FLYNN [1976] ont observé la fluorescence de tous les modes de OCS après une excitation (OO°0)  $\rightarrow$  (O2°0) à l'aide d'un laser CO<sub>2</sub> et en déduisent les constantes de vitesse des transferts entre différents niveaux de OCS.

Dans le cadre des excitations par laser, il faut également signaler les effets de focalisation thermique étudiés en temps résolu par SIEBERT et al. [1974], en particulier sur OCS, à l'aide d'un laser de sonde He-Ne. Ces expériences permettent d'accéder aux relaxations  $V \rightarrow T$ .

## V - EXCITATION PAR TRANSFERT DE L'ENERGIE DE L'AZOTE ACTIVE

#### a) détection de la luminescence infrarouge

Lorsqu'une molécule est excitée par transfert d'énergie vibrationnelle de l'azote activé, on peut observer l'émission infrarouge des niveaux peuplés. On peut atteindre par cette méthode les phénomènes de relaxation en étudiant l'intensité de cette émission en fonction de la distance entre la zone de mélange et la zone d'observation, ce qui revient à une étude en fonction du temps [LEGAY-SOMMAIRE, 1970 - VAL, 1973 - PICARD, 1976]. Ce type d'expérience a été effectué pour les molécules de CO, CO<sub>2</sub> et N<sub>2</sub>O.

## b) détection des transitions microondes

Cette technique, que nous avons développéepour l'étude spectroscopique des niveaux de vibration excités, permet également grâce à la possibilité de modulation de la production de l'azote activé que nous avons mise au point, d'accéder à la dynamique du transfert. Le principe des expériences et les résultats obtenus pour le système N<sub>2</sub>-OCS font l'objet du prochain chapitre.

- 145 -

#### I - PRINCIPE DES EXPERIENCES

Leimontage expérimental utilisé est identique à celui décrit précédemment dans la partie concernant les études spectroscopiques. Nous préciserons cependant, pour chaque type d'expérience, quelle cellule d'observation et quel dispositif d'injection des gaz nous avons employés.

La modulation de l'excitation de l'azote permet la réalisation de deux types d'expériences :

• étude de la modification d'intensité stationnaire des raies microondes dans les différents niveaux de vibration

• étude de la variation des signaux induits par le transfert au cours du temps.

Le principe du premier type a déjà été décrit car il repose sur le fonctionnement du spectromètre dit "à double détection synchrone". En effet, comme nous l'avons signalé au paragraphe II-B-4-c nous n'observons avec ce spectromètre que les modifications d'absorption induites par le transfert. On peut donc, pour les transitions observables en l'absence d'azote excité, déterminer la variation relative de l'absorption due au transfert. La relaxation rotationnelle étant très rapide, on peut admettre dans nos expériences que les niveaux de rotation sont en équilibre de Boltzmann à la température de translation du gaz. Dans ces conditions, le coefficient d'absorption évaluer la variation de cette population induite par le transfert. Ces expériences ont été réalisées dans deux cellules d'observation de différentes longueurs : l'une étant celle de un mètre décrite précédemment et l'autre une cellule de 25 cm qui permet d'observer plus précisément les effets obtenus au voisinage immédiat de l'entrée des gaz.

L'étude des variations temporelles des signaux induits par le transfert, c'est à dire des relaxations vibrationnelles, s'effectue en maintenant la fréquence d'émission du klystron fixée à la valeur correspondant à l'intensité maximale d'une transition. En effet, si on module alors l'excitation de l'azote, on observera, conformément au schéma de la figure B-I, les variations du signal d'absorption maximale, liées aux modifications transitoires de la concentration en azote activé. Il faut noter que nous avons toujours réalisé ces expériences avec une modulation de fréquence du klystron afin de nous affranchir des signaux liés aux "fuites" microondes de la cavité ; dans ces conditions, la constante de temps minimale de la chaîne de détection est de l'ordre de l ms et limite donc les possibilités de résolution temporelle.

Si la modulation utilisée est du type bidirectionnel précédemment décrit, l'amplitude du signal observé est proportionnelle à la dérivée seconde de la forme de raie donc à  $(\Delta v)^{-3}$  pour la fréquence centrale de la raie dans le cas d'une forme lorentzienne,  $\Delta v$  étant la demi-largeur de la raie.

Comme nous le verrons lors de l'interprétation théorique des résultats, les courbes obtenues peuvent s'analyser à partir des phénomènes de transfert et de relaxation auxquels s'ajoutent les phénomènes de propagation.

- 147 -



Figure B-I : Schéma de principe de l'étude des relaxations vibrationnelles

Ces expériences ont été éffectuées à l'aide des cellules d'observation d'un mètre et de 25 cm de longueur avec pour la plus longue, différents dispositifs d'injection des gaz ( $N_2$  à une extrémité, OCS à l'autre et pompage au centre –  $N_2$  et OCS au centre, pompage aux deux extrémités –  $N_2$  et OCS à une extrémité, pompage à l'autre). Dans chaque cas, la chaîne de traitement du signal se compose d'un détecteur synchrone (PAR121) dont la référence est fournie par le modulateur de fréquence de la source, suivi par un moyenneur numérique MN2V 256 SCHLUMBERGER utilisé avec une seule voie de 512 canaux et déclenché par un signal de commande délivré par le modulateur du magnétron (figure B-II). La fréquence de la modulation de l'excitation de l'azote est choisie suffisamment basse pour permettre l'établissement du signal stationnaire entre chaque commutation.



Figure B-II : Schéma au dispositif utilisé pour l'étude che relavations vibrationnelles.

- 149 -

## II - RESULTATS OBTENUS POUR LE SYSTEME N2-OCS

Les expériences précédemment décrites ont été appliquées à l'étude de la relaxation du système N<sub>2</sub>+OCS lorsque l'énergie est fournie par l'azote activé. Nous donnons sur la figure B-III la répartition des niveaux vibrationnels de OCS dont l'énergie est inférieure à 2700 cm<sup>-1</sup>, en repérant les niveaux pour lesquels un signal induit par le transfert a été observé.

## a) étude de la distribution des populations vibrationnelles en présence d'azote activé

En spectroscopie microonde, les mesures absolues de l'intensité des transitions sont très délicates car, d'une part la détection n'est en général pas linéaire par rapport à la puissance totale reçue, et d'autre part la présence d'ondes stationnaires rend difficile la détermination de la longueur effective de la cellule. Pour contourner cette difficulté, nous ne mesurons que la variation relative de l'absorption en présence de  $N_2^{\dot{\alpha}}$ , mais une mesure précise de celle-ci ne peut être effectuée que pour les états dont les transitions rotationnelles sont observables en l'absence de  $N_2^{\dot{\alpha}}$ .

Nous rappelons donc tout d'abord les états que nous n'avons observés qu'en présence du transfert : il s'agit des états (00°1), (01<sup>1</sup>1), (10°1), (00°2), (21<sup>1</sup>0), (04<sup>l</sup>0) et (05<sup>l</sup>0).

Les mesures des variations relatives d'intensité ont été réalisées pour les transitions  $J: 4 \rightarrow 5$  et  $J: 5 \rightarrow 6$  et ont tout d'abord été effectuées dans une cellule longue de un mètre. Les résultats obtenus sont rapportés dans le tableau B-I.





$$\frac{(0 \ 3^{1} 0)}{(0 \ 3^{3} \ 0)}$$

<u>(11<sup>1</sup> O)</u>

1000\_ 
$$(0 2^{\circ} 0)$$

<u>(10° 0)</u>





|  | 1 | 52 | ~ |
|--|---|----|---|
|--|---|----|---|

| Etats<br>vibrationnels | (00°0)  | (01 <sup>1</sup> 0) | (02°0) | (03 <sup>3</sup> 0) | (10°0) | (11 <sup>1</sup> 0) |
|------------------------|---------|---------------------|--------|---------------------|--------|---------------------|
| $\frac{\Delta S}{S}$   | - 0,5 % | 0,6 %               | 1,5 %  | 5 %                 | 0,2%   | 1 %                 |

Tableau B-1 : Variation relative de l'intensité des transitions microondesmesurées dans la cellule de 1 m pour différents états de vibration

Sur la figure B-IV, nous avons reporté les signaux induits par le transfert pour la transition  $J: 5 \rightarrow 6$  dans différents états de vibration (les amplitudes de ces signaux ne sont pas comparables car elles correspondent à des enregistrements faits dans des conditions de sensibilité différentes).



Figure B-IV : Modification d'absorption induite par le transfert pour différence états vibrationnels (constantes de temps des détecteurs synchrones :  $\tau_1 = 1 \text{ ms}, \quad \tau_2 = 3 \text{ ms}$ )

Au paragraphe I-C-3, nous avons montré que la concentration stationnaire en aspèces excitées dans la cellule d'observation varie des la longueur de la cellule. Les mesures effectuées correspondant à une intégration sur toute la longueur représentent donc une variation moyenne de l'intensité. Pour déterminer la zone de la cellule sur laquelle le transfert est le plus efficace, nous avons tenté d'observer, dans la direction perpendiculaire à l'axe de la cellule, une transition de l'état (00°1) de OCS : cette observation n'est réalisable que lorsque la distance au point d'injection de  $N_2^{4}$  est inférieure à 30 cm. Ceci justifie les faibles valeurs mesurées pour les variations relatives d'absorption car plus de la moitié des molécules contribuent au signal observé en l'absence de  $N_2^{r}$ (c'est à dire à S) en ne contribuant que très faiblement aux processus de transfert et donc à la valeur de AS. Les mesures faites ne peuvent donc être utilisées pour déterminer la distribution de population induite par l'azote activé. On peut cependant dégager quelques remarques importantes concernant cette nouvelle distribution :

• la population de tous les états observés augmente sauf celle de l'état fondamental

la population des états (10°0) et (11<sup>1</sup>0) est beaucoup moins
affectée par le transfert que celle respectivement des états (02°0) et
(03<sup>1</sup>0)

• pour les états (On<sup>2</sup>0), la variation relative d'intensité est d'autant plus grande que n est grand.

Pour préciser les effets du transfert au voisinage de l'injection des gaz, nous avons effectué les mêmes mesures dans une cellule d'observation de longueur 25 cm, ce qui correspond sensiblement à la longueur efficace déterminée précédemment.

Les résultats obtenus dans ces conditions et qui sont rassemblés

dans le tableau B-II nous permettent de déterminer la température vibrationnelle  $\theta_2^{\star}$  des états (On<sup>L</sup>O) définie pour une répartition de TREANOR [1968] :

$$N_{(0n^{\ell}0)}^{\dagger} = N_{(00^{\circ}0)}^{\dagger} e^{-\frac{nE(01^{l}0)}{k\theta_{2}^{\dagger}} + \frac{nE(01^{l}0) - E(0n^{\ell}0)}{kT}}$$

(l'astérisque caractérise les grandeurs en présence d'azote activé).

Rappelons en effet que  $\theta_2^{\star}$  correspond à la température vibrationnelle associée à une répartition de Boltzmann tangente en n=0 à la répartition de Treanor. En fait, lorsque n est faible, les deux distributions sont semblables si  $\theta_2^{\star}$  et l'anharmonicité ne sont pas trop élevées.

| Etats<br>vibrationnels | (00°0)             | (01 <sup>1</sup> 0) | (02°0)          | (0310)  | (10°0)                  |
|------------------------|--------------------|---------------------|-----------------|---------|-------------------------|
| <u>ΔS</u><br>S         | - 9,8 %<br>± 0,5 % | 18 %<br>± 1,5 %     | 100 %<br>± 20 % | > 100 % | ∆S<br>non<br>observable |

Tableau B-II : Variation relative de l'intensité des transitions microondesmesurées dans la cellule de 25 cm pour différents états de vibration

Si l'on admet que la distribution vibrationnelle est identique en tout point de la cellule, on peut écrire comme nous l'avons déjà montré (paragraphe I-C-3) :

$$S(0n^{\ell}0) = C(0n^{\ell}0) \cdot N(0n^{\ell}0)$$

et

$$S_{(0n0)}^{\dagger} = C_{(0n0)} \cdot N_{(0n0)}^{\dagger}$$

soit

$$\left(\frac{\Delta S}{S}\right)_{(0n^{\ell}0)} = \frac{N^{r}(0n^{\ell}0) - N(0n^{\ell}0)}{N(0n^{\ell}0)}$$

Ceci conduit, en prenant T = 295° K (car on n'observe pas d'échauffement

du gaz), aux valeurs suivantes de  $\theta_2^{\star}$  :

$$\theta_2^{\star} = 330 \pm 3^{\circ} \text{ K pour l'état (0110)}$$

et

$$\theta_2^{H} = 350 \pm 8^{\circ}$$
 K pour l'état (02°0)

L'écart entre ces deux valeurs ne pouvant être imputé aux erreurs de mesure peut se justifier par deux raisons :

• d'une part la distribution n'est pas homogène dans la cellule

• d'autre part, et c'est la raison principale, on ne peut négliger les mécanismes de désexcitation pour les états (On<sup>2</sup>O) donc la répartition n'est pas du type Treanor.

Conformément au résultat obtenu dans la cellule de 1 m, on constate que la population de l'état (10°0) est très peu perturbée par la présence de l'azote activé car aucune variation n'est détectée. Il est très difficile d'évaluer la température vibrationnelle  $\theta_3^{\dot{\pi}}$ de l'état (00°1) car comme les raies ne sont pas observables en l'absence de N<sup> $\dot{\pi}$ </sup>, on ne peut dans ce cas utiliser la notion de variation relative d'intensité. Une estimation de cette température peut cependant être faite par comparaison des intensités des transitions des états (00°1) et (10°0) ; on obtient dans la cellule de 25 cm, S(00°1)  $\approx$  3 S(10°0) ce qui implique :

 $\theta_3^{\ddagger} \simeq 960 \pm 100 \,^{\circ} \mathrm{K}$ 

Pour conclure cette étude, nous en dégagerons les deux faits principaux :

• Le transfert de l'énergie vibrationnelle de  $N_2(v=1)$  s'effectue principalement sur le niveau (00°1).

• La relaxation vibrationnelle du niveau  $(00^{\circ}1)$  s'effectue en partie par les niveaux  $(0n^{2}0)$  et entraine une augmentation de leurs populations.

- 155 -

b) étude des relaxations vibrationnelles du système N2-OCS

L'ensemble de cette étude a été réalisé à partir de l'enregistrement des variations d'intensité temporelles des raies de la transition J : 4 + 5 de OCS dans différents états de vibration lorsque l'on module l'excitation de l'azote. Comme nous l'avons signalé précédemment, ces expériences ont été réalisées à la fois dans la cellule de un mètre et dans celle de 25 cm. En effet, dans la cellule longue, les observations sont limitées à l'état (00°1), car la présence d'une absorption permanente importante sur les autres états ( (00°0), (01<sup>1</sup>0) et (02°0) ) et l'utilisation d'une constante de temps de détection très faible ( $\tau \leq 1$  ms) limitent la sensibilité de l'appareillage et empêchent l'observation des variations temporelles des signaux pour ces états. Dans la cellule courte, cette observation est possible mais ne permet qu'une analyse qualitative des résultats obtenus car, dans ce cas, la complexité des phénomènes de propagation limite les possibilités d'analyse théorique.

Etude qualitative des phénomènes avec la cellule de 25 cm

Nous appellerons courbes d'excitation celles représentant les variations transitoires d'intensité des signaux observées à l'allumage de la cavité (injection d'azote excité) et courbes de désexcitation, celles obtenues à l'extinction de la cavité (injection d'azote non excité).

Nous avons enregistré les courbes de désexcitation obtenues pour les états (00°1), (01<sup>1</sup>0) et (02°0) dans les conditions suivantes :

• la période de la modulation du magnétron  $T_M$  est supérieure ou égale à 512 ms

• la pression totale est de 20 mtorr avec  $P_{OCS} = 7,8$  mtorr et  $P_{N_2} = 12,2$  mtorr



(02°0)



- l'analyse est effectuée pendant 256 ms
- la durée du moyennage est variable.

Ces courbes sont représentées sur la figure B-V et on constate que les relaxations sont analogues pour les trois niveaux, ce qui laisse supposer une interaction rapide entre eux. Cette hypothèse est confirmée par les résultats obtenus par SIEBERT et FLYNN [1976] qui ont observé la fluorescence de tous les modes fondamentaux de OCS après une excitation  $0 \rightarrow 2 v_2$ à l'aide d'une impulsion laser : la vitesse du transfert entre les états nv<sub>2</sub> est trop rapide pour être mesurable et la constante de vitesse du transfert entre  $4v_2$  et  $v_3$  vaut  $54.10^3 \text{ s}^{-1} \text{ torr}^{-1}$ , ce qui donne dans nos conditions de pression une constante de temps de 2,4 ms. Compte-tenu de la résolution en temps de nos expériences, on peut donc admettre que les désexcitations des niveaux (00°1) et (0n<sup>4</sup>0) se font à la même vitesse. Sur la courbe de la figure B-VI, qui représente la variation du signal de l'état fondamental obtenue dans les conditions précédentes, on remarque que l'on n'atteint pas un état stationnaire en 256 ms.



Figure B-VI : Variation du signal d'absorption de l'état fondamental à l'extinction de la cavité

Ceci nous a conduit à analyser les phénomènes pendant une durée plus

longue (1024 ms) en utilisant une période de modulation du magnétron de durée double. Les résultats obtenus pour les états (00°0) et (01<sup>1</sup>0) (figure B-VII) montrent l'existence d'un phénomène lent correspondant à une augmentation de l'absorption pour ces deux niveaux lorsque la cavité est éteinte. Ce phénomène s'interprète par la destruction d'une fraction des molécules de OCS pendant la phase d'allumage de la cavité. En effet, l'augmentation lente du signal d'absorption dans les états (00°0) et (01<sup>1</sup>0) observée en fin de phase d'extinction correspond alors au remplacement des molécules détruites, ceci par le seul fait du flux gazeux engendré par le pompage permanent. Pour vérifier cette hypothèse, nous avons déterminé l'influence du pompage en observant les variations du signal de l'état fondamental induites par la modulation d'une décharge dans OCS pur (figure B-VIII). Les courbes obtenues peuvent s'analyser sur la base d'une seule exponentielle de constante de temps :  $\tau = 140$  ms.

Cette constante de temps est analogue à celle que l'on obtient en effectuant la même analyse pour les relaxations lentes observées précédemment, ce qui confirme notre interprétation. Nous avons évalué, à partir de cette analyse et compte-tenu de l'intensité du signal permanent, à moins de 1 % le pourcentage de molécules détruites dans la cellule courte pour une puissance microonde fournie par le magnétron voisine de 80 W, ce pourcentage augmentant avec la puissance. Cette destruction peut être imputée soit à une rétrodiffusion de OCS dans le tube d'entrée de l'azote, soit à l'action des atomes d'azote créés par la décharge [WESTBURY et al., 1960 - TAIEB et al., 1970].



Figure B-VII : Analyse des variations des signaux d'absorption à l'extinction de la cavité pendant 1024 ms pour les états (00°0) et (01<sup>1</sup>0)



Figure B-VIII : Mise en évidence de l'influence du pompage -Signal observé pour l'état fondamental et report sur échelle semi-logarithmique

D'autre part, en observant les variations du signal d'absorption pour l'état (00°1) pendant la phase d'excitation, nous avons constaté que l'allure de la courbe d'excitation dépendait de la valeur  $P_M$  de la puissance microonde fournie par le magnétron à la cavité (figure B-IX), contrairement à celle de la courbe de désexcitation qui ne varie pas : on obtient une montée rapide pour  $P_M$  faible puis lente et régulière pour  $P_M$  élevée, en passant par une montée qui présente ces deux caractéristiques pour  $P_M$  intermédiaire. Nous avons également remarqué que l'allure des courbes dépendait de l'état du dépôt de soufre sur les parois du tube d'entrée de l'azote : lorsque le dépôt est très récent, la montée rapide se maintient avec des puissances plus élevées que lorsqu'il est ancien. La figure B-X montre les résultats obtenus pour une puissance moyenne consécutivement à un dépôt de soufre (courbe a) et après 30 minutes de fonctionnement (courbe b).



Figure B-IX : Comparaison des courbes d'excitation de (00°1) obtenues pour différentes puissances du magnétron (durée de l'analyse = 256 ms)



Figure B-X : Influence du dépôt de soufre sur la forme de la courbe d'excitation
a courbe obtenue immédiatement après un dépôt de soufre
(b) courbe obtenue après 30 minutes de fonctionnement

Lorsque l'on augmente la distance entre la cavité et la cellule d'observation, le même phénomène apparait en présence d'un dépôt de soufre récent, sinon il est moins important et les courbes obtenues pour les faibles puissances correspondent aux courbes précédemment obtenues pour les puissances moyennes. Pour justifier ces observations, nous avions émis l'hypothèse d'une excitation partielle de OCS par transfert avec CO(v=1), ce dernier étant créé **lors** de la destruction d'une faible proportion de OCS par rétrodiffusion dans le tube d'entrée de l'azote. En effet, la constante de vitesse de ce transfert est très élevée  $(K = 257.10^3 s^{-1} torr^{-1})$  [HANCOCK et al., 1974] et entraîne une croissance très répide du signal d'absorption pour l'état (00°1) comme le montre l'enregistrement de la figure B-XI obtenue pour la réaction entre CO excité dans la décharge et OCS.



Figure B-XI : Variation du signal d'absorption de l'état (00°1) induite par transfert avec CO excité

> En fait, cette hypothèse ne peut être retenue pour les deux raisons suivantes :

• Les observations effectuées sur l'état fondamental et sur l'état  $(01^{1}0)$  ont montré que la quantité de OCS détruite (donc de  $CO^{*}$ formée) était d'autant moins importante que la puissance du magnétron était plus faible ; par conséquent, l'influence du transfert  $CO^{*}$  - OCS devrait augmenter avec P<sub>M</sub> et non diminuer.

• Nous avons signalé au paragraphe II-C-2-b que le signal stationnaire obtenu pour l'état (00°1) était toujours nettement inférieur lorsque l'on remplace N<sub>2</sub> par OCS dans la décharge ; la contribution de  $CO^{*}$  à l'excitation de OCS(00°1) ne peut donc en aucun cas être prépondérante comme le laisserait penser la forme des signaux obtenus pour P<sub>M</sub> faible. En l'absence d'une interprétation correcte des courbes d'excitation, nous limiterons notre analyse théorique aux courbes de désexcitation.

Résultats obtenus avec la cellule de un mètre

A l'aide de cette cellule, nous avons observé les courbes de relaxation de l'état (00°1) de OCS dans le mélange OCS-N<sub>2</sub> pour différentes pressions partielles  $P_{OCS}$  et  $P_{N_2}$  des deux constituants, la pression totale  $P_T$  étant maintenue à 20 millitorrs. Ces observations ont été réalisées en utilisant diverses dispositions des injections de gaz et du pompage et pour une puissance microonde délivrée par le magnétron voisine de 80 watts. Les figures B-XII et B-XIII montrent les courbes de désexcitation obtenues pour deux valeurs différentes de la pression partielle de OCS et pour deux dispositions de l'injection des gaz, le pompage étant effectué au centre :

Plusieurs résultats qualitatifs importants peuvent être déduits de l'observation de ces courbes :

• La décroissance du signal est d'autant plus rapide que la pression partielle de OCS est élevée, ce qui montre l'influence du transfert  $N_2^{*}$  - OCS sur la courbe de désexcitation compte-tenu de la faible durée de vie de OCS(00°1).

• Pour un mélange donné, la décroissance est plus rapide lorsque l'injection des deux composants se fait au même point et ceci est d'autant plus net que la pression partielle de OCS est faible. Ce résultat montre l'influence des phénomènes de propagation tels que diffusion et pompage.





• Il existe un retard entre l'instant de la commutation de l'excitation de l'azote et le début de la décroissance du signal qui est imputable au temps de transit de l'azote excité entre la cavité et la cellule d'observation.

Compte-tenu de ces premières observations qualitatives, nous avons envisagé l'interprétation théorique des courbes obtenues dans les conditions expérimentales suivantes :

• les gaz sont injectés à une extrémité d'une cellule de 1 m et pompés à l'autre extrémité

• la pression totale est fixée à 20 millitorrs mais la composition du mélange varie (1,4 m torrs  $\leq P_{OCS} \leq 7,8$  m torrs)

• la période de la modulation de l'excitation est voisine de 2048 ms et l'analyse du signal est faite dans chaque cas soit durant toute la phase d'extinction (1024 ms), soit durant les 256 premières millisecondes.

Les figures B-XIV et B-XV montrent les courbes obtenues pour les deux valeurs extrémales de  $P_{OCS}$ , 7,8 et 1,4 m torrs. L'étude comparative des observations en 1024 ms et 256 ms permet de fixer pour ces dernières la position de l'asymptote, c'est à dire l'origine des ordonnées (valeur nulle du signal).

Dans la suite, nous proposerons un modèle théorique permettant l'analyse des résultats expérimentaux obtenus.

- 167 -



- 168 -

Interprétation théorique des résultats expérimentaux

Dans cette partie, après avoir précisé les hypothèses qui nous permettront de définir un modèle analytique pour rendre compte des courbes de relaxation obtenues pour le niveau (00°1) dans les conditions expérimentales indiquées précédemment (cellule longue, injection des gaz à une extrémité, pompage à l'autre), nous déterminerons le signal théorique. La comparaison des résultats numériques ainsi obtenus avec les résultats expérimentaux nous permettra d'évaluer les valeurs des constantes de vitesse des transferts vibrationnels pris en compte dans le modèle théorique.

### I - DESCRIPTION DU MODELE UTILISE

**C** --

Avant de décrire et justifier les différentes hypothèses prises en compte pour la définition du modèle, rappelons brièvement le principe des expériences : nous observons la décroissance temporelle du signal d'absorption maximale de la transition rotationnelle J :  $4 \rightarrow 5$ de l'état (00°1) de OCS en présence d'azote excité, cette décroissance étant liée à l'arrêt de la production d'azote excité.

#### a) hypothèse fondamentale

Au premier chapitre, nous avons vu que le coefficient d'absorption pour une telle transition est proportionnel à la différence des populations des niveaux rovibrationnels. Comme la relaxation rotationnelle est très rapide (quelques microsecondes) et comme notre résolution temporelle est de l'ordre de une milliseconde, on peut considérer que, à chaque instant de nos expériences, les niveaux de rotation sont en

- 169 -

équilibre de Boltzmann pour une température égale à la température de translation du gaz [LEGAY-SOMMAIRE et al., 1970]. Dans ces conditions, la variation temporelle du coefficient d'absorption caractérise la relaxation de la population du niveau vibrationnel.

#### b) choix du modèle moléculaire

La deuxième hypothèse consiste à simplifier le modèle moléculaire pour le ramener à un modèle à quatre niveaux :

○ l'état fondamental de N2

 $\circ$  le niveau v = 1 de N<sub>2</sub>

○ l'état fondamental de OCS

◦ le niveau (00°1) de OCS

En ce qui concerne l'azote, cette hypothèse semble raisonnable car les niveaux supérieurs sont beaucoup moins peuplés que le niveau v = 1.

Pour OCS, l'hypothèse est raisonnable eu égard aux conclusions des observations qualitatives décrites précédemment :

• Le niveau (00°1) est le plus peuplé par le transfert et l'influence des niveaux (01<sup>1</sup>1), (10°1) et (00°2) sur le signal de relaxation observé pour (00°1) peut être considérée comme négligeable car leurs populations sont très inférieures à celle de (00°1) (quelques % de cette dernière au plus).

• Nous avons montré que la population des niveaux (On<sup>2</sup>O) augmente également en présence de l'azote activé et que cette augmentation est d'autant plus faible que n est grand. Nous avons en outre remarqué que les courbes de relaxation observées pour ces niveaux étaient pratiquement identiques à celles observées pour l'état (00°1). Ces observations confirmées par celles de SIEBERT et FLYNN [1976] (cf III-B-2) montrent que le transfert quasi-résonnant entre (00°1) et (04 $^{\circ}$ 0) est suivi d'une propagation immédiate de l'excitation sur l'ensemble des niveaux (0n $^{\circ}$ 0) par des réactions du type :

$$0CS(04^{\circ}0) + 0CS(00^{\circ}0) \stackrel{2}{\leftarrow} 0CS(03^{1}0) + 0CS(01^{1}0) + 11 \text{ cm}^{-1}$$
$$\stackrel{2}{\leftarrow} 2 0CS(02^{\circ}0) + 11 \text{ cm}^{-1}$$

 $OCS(03^{1}0) + OCS(00^{\circ}0) \stackrel{2}{\leftarrow} OCS(02^{\circ}0) + OCS(01^{1}0) - 6 \text{ cm}^{-1}$ etc...

Les auteurs précédents ne peuvent mesurer ces vitesses de transfert compte-tenu d'un temps de réponse de détection de 5 µs et estiment une probabilité par collision supérieure à 0,1. Ceci justifie les faibles signaux d'absorption que nous avons observés pour les niveaux correspondant à 402. Compte-tenu de la similitude entre les courbes de relaxation des niveaux (00°1) et (0n<sup> $\ell$ </sup>0), leurs vitesses de désexcitation doivent être voisines. Dans leurs conditions expérimentales, SIEBERT et FLYNN constatent que la désexcitation correspond au transfert V-T suivant :

 $OCS(01^{1}0) + M \xrightarrow{K_{V-T}} OCS(00^{\circ}0) + M + 520 \text{ cm}^{-1}$ avec  $K_{V-T} = 1000 \text{ s}^{-1} \text{ torr}^{-1}$ 

Dans nos expériences réalisées à très basse pression (20 m torrs), c'est la désexcitation radiative qui est la plus rapide pour le niveau (00°1) :  $\tau_{(00°1)} \approx 2$  ms. Comme d'une part la durée de vie radiative de l'état (04°0) est voisine de 100 ms [LEV-ON et al., 1973] et comme d'autre part le transfert inverse (04<sup>2</sup>0)  $\rightarrow$  (00°1) est très peu efficace comptetenu des faibles populations obtenues pour les niveaux (04<sup>2</sup>0) , nous devons admettre que la vitesse de désexcitation V-T de  $(01^{1}0)$  est supérieure à la valeur précédente à cause notamment de l'influence des parois. En fait, nous verrons qu'il est difficile à partir de nos expériences d'attribuer une valeur précise à cette constante car nous montrerons que la vitesse de désexcitation influe très peu sur la forme des courbes de relaxation dès qu'elle est nettement supérieure à la vitesse du transfert  $N_2^{\dot{P}}$ -OCS.

Notre modèle est donc parfaitement justifié car on peut considérer que l'influence des niveaux  $(On^{l}O)$  sur la relaxation du niveau  $(OO^{\circ}I)$  se limite à une augmentation de la vitesse de désexcitation.

## Remarque

Nous négligeons également dans notre modèle l'influence des impuretés telles que les molécules de CO qui peuvent être formées par la destruction d'une très faible fraction des molécules de OCS et ceci pour deux raisons :

• D'une part, le pourcentage de OCS détruit dans la cellule longue doit être inférieur à 0,25 % d'après nos observations effectuées dans la cellule de 25 cm.

• D'autre part, le transfert entre CO(v=1) et  $OCS(00^{\circ}1)$  est très rapide (k =  $260.10^3 \text{ s}^{-1} \text{ torr}^{-1}$  d'après HANCOCK et al., [1974] ) alors que la désexcitation de CO est très lente ( $K_{V-T} = 1, 9.10^{-3} \text{ s}^{-1} \text{ torr}^{-1}$ d'après KOVACS et MACK [1972] et Tradiatif = 33 ms d'après MILLIKAN [1963] ). Dans ces conditions, la relaxation prépondérante du niveau ( $00^{\circ}1$ ) est radiative.

#### c) hypothèse relative à la propagation des molécules

Au chapitre I-C nous avons montré la nécessité de faire intervenir les phénomènes de transport tels que le pompage et la diffusion pour rendre compte des observations expérimentales, nécessité confirmée comme nous l'avons vu par les résultats expérimentaux. Conformément aux résultats obtenus par WISE et ABLOW [1958] et rappelés dans ce précédent chapitre, nous considérons que les concentrations en molécules excitées sont constantes dans un plan de section droite de la cellule. Dans ces conditions, seules la diffusion longitudinale et la vitesse de pompage des molécules sont prises en compte, ce qui rend le calcul analytique abordable. Notons que dans ce cas, nous ne pourrons tenir compte de l'influence des parois sur la désexcitation que par l'intermédiaire d'une constante de vitesse globale et non par une condition aux limites comme le font PACEY et POLANYI [1971] dans leur analyse très complète de la réaction  $H + Cl_2 \rightarrow H Cl_{(y)} + 1/2 Cl_2$ .

Nous effectuerons la mise en équation en caractérisant un plan de section droite par son abscisse z sur l'axe de propagation des molécules c'est à dire l'axe de la cellule, l'origine étant déterminée par le plan d'injection des molécules. La distance entre la section d'injection et la section de pompage sera notée l.

# II - RELATION ENTRE LE SIGNAL OBSERVE ET LA VARIATION DE POPULATION VIBRATIONNELLE

Dans nos expériences, le coefficient d'absorption maximale doit être considéré comme une fonction de z et de t, soit en notant I la puissance hyperfréquence :

$$\frac{dI}{I} = -(\alpha_{max}(t,z) + A) dz$$

où A est le coefficient d'atténuation de la cellule.

Soit :

$$I(t) = I_{\circ} \exp(-A\ell) \exp\left[-\int_{0}^{\ell} \alpha_{\max}(t,z) dz\right]$$

où  $\ell$  est la longueur de la cellule et I<sub>o</sub> la puissance incidente. La variation de la puissance hyperfréquence due au gaz d'écrit donc :

$$\Delta I(t) = I_{\circ} \exp(-A\ell) \left[ 1 - \exp(-\int_{0}^{\ell} \alpha_{\max}(t,z) dz) \right]$$

Comme on s'intéresse à des absorptions moléculaires faibles, on obtient :

$$\Delta I(t) = I_{\circ} \exp(-A\ell) \int_{0}^{\ell} \alpha_{\max}(t,z) dz$$

Dans nos conditions expérimentales, la détection est linéaire par rapport au champ électrique E et conformément à ce que nous avons vu au **para**graphe I-C-3, nous pouvons écrire :

$$S(t) = C' \cdot \int_{0}^{l} \alpha_{max}(t,z) dz$$

Compte-tenu de l'hypothèse fondamentale que nous avons formulée et de ce que nous avons vu au chapitre I,  $\alpha_{max}(t,z)$  s'écrit :

$$\alpha_{\max}(t,z) = C \cdot \frac{N_{(00^{\circ}1)}(t,z)}{\Delta \upsilon}$$

 $\Delta v$  étant la demi-largeur à mi-hauteur de la raie, et  $N_{(00^\circ)}$  la concentration des molécules excitées sur le niveau (00°1).

En fait, dans nos expériences, l'amplitude du signal observé est proportionnelle à la dérivée seconde de la forme de raie (modulation de fréquence "bidirectionnelle" de la source) et nous avons :

$$S(t) = C'_{1} \cdot \int_{0}^{\ell} \frac{N_{(00^{\circ}1)}(t,z)}{\Delta v^{3}} dz$$

pour une forme de raie lorentzienne.

Au chapitre I-C-3, nous avons montré que la largeur de raie peut être considérée comme indépendante de la concentration en molécules excitées donc indépendante de z et de t. Nous l'avons vérifié expérimentalement en observant également l'évolution temporelle du signal d'absorption lorsque son amplitude est proportionnelle à la dérivée première de la forme de raie (modulation de fréquence sinusoïdale et détection synchrone à la fréquence de la modulation) : nous obtenons des courbes de relaxation identiques bien que dans ce cas

$$S(t) = C'_{2} \cdot \int_{0}^{\chi} \frac{N_{(00^{\circ}1)}(t,z)}{\Delta v^{2}} dz$$

On peut donc écrire :

$$S(t) = C''_1 \cdot \int_0^x N_{(00^\circ 1)} (t,z) dz$$

soit en faisant intervenir la pression partielle `x de OCS (00°1)

$$S(t) = C''_2 \cdot \int_0^t x(t,z) dz$$

où  $C_1''$  et  $C_2''$  sont proportionnels à  $\Delta v^{-3}$ .

Dans la suite de l'exposé, nous omettrons les constantes  $C'_1$  ou  $C'_2$ .

## III - DETERMINATION THEORIQUE DU SIGNAL

a) équations décrivant l'évolution du système

Compte-tenu du modèle choisi précédemment, les seules réactions
de transfert qui contribuent à la forme du signal observé sont les suivantes :

- transfert V-V :  $N_2(v=1) + OCS(00^{\circ}0) \xrightarrow{K_e}{K'_e} N_2(v=0) + OCS(00^{\circ}1) + 269 \text{ cm}^{-1}$
- ° désexcitation radiative de OCS(00°1) : OCS(00°1)  $\xrightarrow{K_r}$  OCS(00°0) + h∪
- ° désexcitation de OCS(00°1) par transfert V-V : OCS(00°1) + OCS(00°0)  $\frac{K_{v}}{V}$  → OCS(00°0) + OCS(04°0) - 42 cm<sup>-1</sup>
- ° désexcitation collisionnelle de N<sub>2</sub>(v=1) : N<sub>2</sub>(v=1)  $\xrightarrow{K_{N_2}}$  N<sub>2</sub>(v=0) + 2 331 cm<sup>-1</sup>

Le phénomène de réabsorption consécutif à la désexcitation radiative est tout à fait négligeable dans la gamme de pression utilisée  $(P_{OCS} < 8 \text{ m torrs}).$ 

L'hypothèse relative à la propagation des molécules nous permet d'écrire les équations de diffusion [REED et al., 1955] que doivent vérifier les pressions partielles de  $N_2(v=1)$  et OCS(00°1) sous la forme du système différentiel suivant :

$$\frac{\partial y}{\partial t} = D_{N_2} \frac{\partial^2 y}{\partial z^2} - v \frac{\partial y}{\partial z} - (K_{N_2} + K_e x_o) y + K'_e y_o x$$

$$(C-1)$$

$$\frac{\partial x}{\partial t} = D_{OCS} \frac{\partial^2 x}{\partial z^2} - v \frac{\partial x}{\partial z} + K_e x_o y - (K_{OCS} + K'_e y_o) x$$

avec :

y = pression partielle de N<sub>2</sub>(v=1) (torr) y<sub>o</sub> = pression partielle de N<sub>2</sub>(v=0) (torr) x = pression partielle de OCS(00°1)(torr) x<sub>o</sub> = pression partielle de OCS(00°0)(torr) y<sub>o</sub> = vitesse d'entrainement des molécules (cm s<sup>-1</sup>)  $D_{N_2}$ ,  $D_{OCS}$  = coefficient de diffusion de N<sub>2</sub> et OCS dans le mélange (cm<sup>2</sup> s<sup>-1</sup>)

 $K_e$  et  $K'_e$  = constantes de vitesse des transferts (s<sup>-1</sup> torr<sup>-1</sup>)  $K_{N_2}$  et  $K_{OCS}$  = constantes de vitesse de désexcitation (s<sup>-1</sup>)

 $(K_{OCS} = K_r + K_v \cdot x_o)$ 

La vitesse d'entrainement v est déterminée expérimentalement par la mesure du débit. Pour une pression totale dans la cellule de 20 mtorrs, nous avons :

$$v \simeq 150 \text{ cm s}^{-1}$$

Les coefficients de diffusion se calculent à partir de la formule C-11 du chapitre I en utilisant les diamètres de collision donnés par HIRSCHFELDER et al., [1954]. Les valeurs obtenues pour les différents mélanges étudiés sont rassemblées dans le tableau C-1.

| Pressions<br>partielles<br>(m torrs)            | P <sub>N2</sub> = 12,2<br><sup>P</sup> OCS = 7,8 | $P_{N_2} = 15,5$<br>$P_{0CS} = 4,5$ | P <sub>N2</sub> = 17,7<br>P <sub>OCS</sub> = 2,3 | P <sub>N2</sub> = 18,6<br>P <sub>OCS</sub> = 1,4 |
|-------------------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------------|
| $(\text{cm}^2 \text{ s}^{-1})$                  | 7 919                                            | 9 107                               | 10 1 1 9                                         | 10 60 1                                          |
| $D_{OCS}$<br>(cm <sup>2</sup> s <sup>-1</sup> ) | 3 696                                            | 4 250                               | 4 722                                            | 4 947                                            |

Tableau C-1 : Valeurs calculées des coefficients de diffusion de N<sub>2</sub> et OCS dans différents mélanges.  $(\sigma_{N_2} = 3,7 \text{ \AA} \text{ et } \sigma_{OCS} = 4,13 \text{ \AA})$ 

Pour résoudre le système différentiel, nous ferons l'approximation suivante :

y. = pression partielle de N<sub>2</sub>

 $x_{\circ}$  = pression partielle de OCS

qui consiste à négliger les variations de population des états

fondamentaux. Cette hypothèse est justifiée car d'une part, ces variations

sont faibles et d'autre part, elles n'interviennent que par des termes du second degré dans les équations.

Pour pouvoir déterminer une solution analytique du système C-1, nous prendrons pour  $D_{N_2}$  et  $D_{OCS}$  des valeurs égales à la demi-somme des deux, car en fait, si les valeurs des coefficients de diffusion jouent un rôle important sur la répartition stationnaire des espèces excitées dans la cellule d'observation, elles influent très peu, comme nous le verrons, sur l'évolution temporelle du signal d'absorption calculé. Pour résoudre alors le système différentiel C-1, il suffit de l'écrire sous forme matricielle et d'effectuer le changement de base qui diagonalise la matrice M :

$$M = \begin{vmatrix} K_1 & -K'_e y_o \\ -K_e x_o & K_2 \end{vmatrix}$$

où  $K_1 = K_{N_2} + K_e x_o$  représente la constante de désexcitation totale de  $N_2(v=1)$ 

et  $K_2 = K_{OCS} + K'_e y_\circ$  celle de OCS(00°1).

Nous obtenons alors le système équivalent suivant :

$$\begin{cases} \frac{\partial Y}{\partial t} = D \frac{\partial^2 Y}{\partial z^2} - v \frac{\partial Y}{\partial z} - R_1 Y \\ \frac{\partial X}{\partial t} = D \frac{\partial^2 X}{\partial z^2} - v \frac{\partial X}{\partial z} - R_2 X \end{cases}$$
en notant  $D = \frac{D_{N_2} + D_{OCS}}{2}$ 

avec

$$R_{2}^{1} = 1/2 \left\{ K_{1} + K_{2} \pm \sqrt{(K_{1} - K_{2})^{2} + 4 K_{e} K_{e}^{*} x_{o} y_{o}} \right\}$$
  
et
$$\begin{cases} y = K_{e}^{*} y_{o} Y + (K_{2} - R_{2}) X \\ x = (K_{1} - R_{1}) Y + K_{e} x_{o} X \end{cases}$$
(C-3)

- 178 -

Si l'on effectue les changements de fonctions :

$$\begin{cases} Y(t,z) = U(t,z) e^{-(\frac{v^2}{4D} + R_1)t} & \frac{v}{2D}z \\ Y(t,z) = U(t,z) e^{-(\frac{v^2}{4D} + R_2)t} & e^{-(\frac{v}{2D}z)}z \end{cases}$$
(C-4)

Le système (C-2) prend la forme simplifiée suivante :

$$\frac{\partial U}{\partial t} = D \frac{\partial^2 U}{\partial z^2}$$

$$\frac{\partial V}{\partial t} = D \frac{\partial^2 V}{\partial z^2}$$
(C-5)

Ces équations de diffusion [CRANK, 1957] se présentent sous une forme analogue à l'équation de propagation linéaire de la chaleur dont la résolution est décrite par CARSLAW et JAEGER [1959]. Pour déterminer les solutions de chacune de ces équations, il est nécessaire de connaître les conditions initiales et aux limites qu'elles doivent satisfaire, c'est à dire, d'une part U(z) et V(z) pour t = 0 et d'autre part U(t) et V(t) en z = 0.

# b) conditions initiales et conditions aux limites

Pour connaitre les conditions initiales U(t=0,z) et
V(t=0,z), il est nécessaire de déterminer l'état stationnaire
initial défini par le système (C-1) en présence d'excitation, c'est à
dire dans les conditions suivantes :

$$\frac{\partial y}{\partial t} = \frac{\partial x}{\partial t} = 0$$
$$y(z=0) = y_i$$
$$x(z=0) = x_i$$

Comme les fonctions X et Y sont des combinaisons linéaires de x et y, il est équivalent de rechercher la solution stationnaire du système C-2. On obtient :

$$\begin{cases} Y(o,z) = \frac{K_{e} \times v_{i} - (K_{2} - R_{2}) \times v_{i}}{K_{e} \times v_{e} \times v_{o} + (K_{2} - R_{2})^{2}} e^{z \frac{v}{2D} (1 - \sqrt{1 + \frac{4D}{v^{2}} R_{1}}) \\ (C-6) \end{cases}$$

$$X(o,z) = \frac{K_{e}' \times v_{o} \times v_{o} + (K_{2} - R_{2}) \times v_{i}}{K_{e} \times v_{e}' \times v_{o} + (K_{2} - R_{2})^{2}} e^{z \frac{v}{2D} (1 - \sqrt{1 + \frac{4D}{v^{2}} R_{2}}) \end{cases}$$

Les valeurs de  $x_i$  et  $y_i$  qui représentent les pressions partielles stationnaires de N<sub>2</sub>(v=1) et OCS(00°1) dans le plan z = 0en présence d'excitation ne sont pas indépendantes. Compte-tenu du dispositif expérimental (figure B-II, chapitre II), N<sub>2</sub> et OCS se mélangent avant de pénétrer dans la zone irradiée par la source hyperfréquence et on peut admettre que la relation suivante est vérifiée dans le plan d'injection :

$$K_e x_o y(t,0) = K_2 x(t,0)$$
 (C-7)

soit

$$x_i = \frac{K_e \times y_i}{K_2}$$

Cette relation qui suppose que, dans le plan z = 0, x est toujours en équilibre avec y, nous a paru raisonnable et permet d'éviter l'introduction d'un paramètre inconnu dans les conditions aux limites.

Les expressions de Y(o,z) et X(o,z) s'écrivent alors :

- 181 -

$$Y(o, z) = \frac{R_2}{K_2} \frac{K_e x_o}{A} \quad y_i e^{z \frac{v}{2D} (1 - v_1 + \frac{4D}{v^2} R_1)}$$

$$X(o, z) = \frac{R_1}{K_2} \frac{K_2 - R_2}{A} \quad y_i e^{z \frac{v}{2D} (1 - v_1 + \frac{4D}{v^2} R_2)}$$
(C-8)

en posant A = 
$$K_e K'_e x_o y_o + (K_2 - R_2)^2$$

• La détermination des conditions aux limites U(t,z=0) et V(t,z=0) soient y(t) et x(t) en z = 0, nécessite l'étude de la propagation de l'azote excité dans le tube d'entrée. Nous l'avons effectuée dans le cadre de l'approximation définie au chapitre I-C-2 à partir de l'hypothèse du régime laminaire, nous définissons des valeurs moyennes des pressions, vitesses et coefficient de diffusion intrinsèque de l'azote dans le tube d'entrée qui nous permettent de résoudre l'équation de propagation

$$\frac{\partial y}{\partial t} = \overline{D} \frac{\partial^2 y}{\partial z^2} - \overline{v} \frac{\partial y}{\partial z} - K_p y \qquad (C-9)$$

où

y = pression partielle de  $N_2(v=1)$ 

1

- $K_p$  = constante de désexcitation de N<sub>2</sub>(v=1) par chocs sur les parois
- z = axe du tube d'entrée, l'origine étant prise au centre de la cavité.

L'équation (C-9) permet de calculer  $y_i$  en fonction de  $y_c$ ,  $y_c$ étant la pression partielle de N<sub>2</sub>(v=1) dans la cavité :

$$y_{i} = y_{c} e^{\ell \frac{\overline{v}}{2D}(1 - \sqrt{1 + \frac{4\overline{D}}{\overline{v^{2}}} K_{p})}$$
(C-10)

l étant la distance entre la cavité est la cellule d'observation.

En effectuant les mêmes changements de fonction que précédemment :

$$y(t,z) = U(t,z) e^{-(\frac{\overline{v}^2}{4\overline{D}} + K_p)t} e^{\frac{\overline{v}}{2\overline{D}}z}$$

l'équation (C-9) s'écrit sous la forme simplifiée :

$$\frac{\partial u}{\partial t} = \overline{D} \quad \frac{\partial^2 u}{\partial z^2}$$

Compte-tenu de la condition initiale vérifiée par u :  $-z \frac{\overline{v}}{2\overline{D}} \sqrt{1 + \frac{4\overline{D}}{\overline{v}^2}} K_p$  pour  $z \ge 0$ 

et de la condition à la limite y(t,0) = 0, la solution de cette équation est [CARSLAW et al., 1959] :

$$u(t,z) = \frac{y_c}{2\sqrt{\pi \overline{D}t}} \int_{0}^{\infty} e^{-z' \frac{\overline{v}}{2\overline{D}}} \sqrt{1 + \frac{4\overline{D}}{\overline{v}^2}} K_p = \frac{(z-z')^2}{4\overline{D}t} dz'$$

Soit:  

$$y(t,l) = y_{e}(t) = \frac{y_{c}}{2} e^{\frac{\overline{v}}{2\overline{D}} l(1 - \sqrt{1 + \frac{4\overline{D}}{\overline{v}^{2}} K_{p}})} \left[ 1 - \operatorname{erf} \frac{-l + \overline{v}t \sqrt{1 + \frac{4\overline{D}}{\overline{v}^{2}} K_{p}}}{2\sqrt{\overline{D} t}} \right] \quad (C-11)$$

que nous noterons :

$$y_{e}(t) = a y_{c} \left[ 1 - erf \frac{-b + ct}{d \sqrt{t}} \right]$$
 (C-12)

La fonction erf(x) est la fonction d'erreur définie par :

$$\operatorname{erf}(\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-\mathbf{x}^{\prime} 2} d\mathbf{x}^{\prime}$$

La relation (C-7) nous permet de déterminer  $x_e(t)$  et nous disposons ainsi des conditions aux limites que doivent vérifier x et y dans la cellule d'observation en z = 0 :

 $y(t,0) = y_e(t)$  et  $x(t,0) = x_e(t)$ 

# c) calcul de x(t,z)

La connaissance des conditions aux limites que doivent vérifier U et V nous permet d'obtenir les solutions des équations (C-9)

$$U(t,z) = \frac{1}{2\sqrt{\pi Dt}} \int_{0}^{\infty} U(0,z') \left[ e^{-\frac{(z-z')^{2}}{4Dt}} - e^{-\frac{(z+z')^{2}}{4Dt}} \right] dz'$$

$$+ \frac{z}{2\sqrt{\pi D}} \int_{0}^{t} U(t',0) \frac{e^{-\frac{z^{2}}{4D(t-t')}}}{(t-t')^{3/2}} dt' \qquad (C-13)$$

$$V(t,z) = \frac{1}{2\sqrt{\pi Dt}} \int_{0}^{\infty} V(0,z') \left[ e^{-\frac{(z-z')^{2}}{4Dt}} - e^{-\frac{(z+z')^{2}}{4Dt}} \right] dz' + \frac{z}{2\sqrt{\pi D}} \int_{0}^{t} V(t',0) \frac{e^{-\frac{z^{2}}{4D(t-t')}}}{(t-t')^{3/2}} dt$$

$$(C-14)$$

Compte-tenu des changements de fonctions (C-4), on obtient pour Y et X :

$$\begin{cases} Y(t,z) = 2a y_{c} \frac{R_{2}}{K_{2}} \frac{K_{e}x_{o}}{A} (Y_{1} - Y_{2} + Y_{3}) \\ X(t,z) = 2a y_{c} \frac{R_{1}}{K_{2}} \frac{K_{2} - R_{2}}{A} (X_{1} - X_{2} + X_{3}) \end{cases}$$
(C-15)

avec :

$$\begin{bmatrix} Y_1 &= \frac{1}{2} e^{\frac{v}{2D}} z (1 - \sqrt{C_1}) \\ 1 &= erf \frac{-z + vt \sqrt{C_1}}{2 \sqrt{Dt}} \end{bmatrix}$$

$$Y_2 &= \frac{1}{2} e^{\frac{v}{2D}} z (1 + \sqrt{C_1}) \\ 1 &= erf \frac{z + vt \sqrt{C_1}}{2 \sqrt{Dt}} \end{bmatrix}$$

$$(C-16)$$

$$Y_3 &= \frac{z}{4 \sqrt{\pi D}} e^{\frac{v}{2D}} z \int_{0}^{t} e^{-(\frac{v^2}{4D} + R_1)(t-t')} \frac{e^{-\frac{z^2}{4D(t-t')}}}{(t-t')^{3/2}} \begin{bmatrix} 1 + erf \frac{b-ct'}{d \sqrt{t'}} \end{bmatrix} dt'$$

Les expressions de  $X_1$ ,  $X_2$  et  $X_3$  s'obtiennent par substitution de  $R_1$  et  $C_1$  par  $R_2$  et  $C_2$ .

Nous avons posé :  $C_1 = 1 + \frac{4D}{v^2} = R_1$ 

L'une des relations (C-3) permet de calculer x(t,z) :

$$\mathbf{x(t,z)} = 2a \ y_{c} \ \frac{K_{e} \mathbf{x}_{\circ} (K_{2} - R_{2})}{K_{2} A} \left[ -R_{2} (Y_{1} - Y_{2} + Y_{3}) + R_{1} (X_{1} - X_{2} + X_{3}) \right]$$
(C-17)

d) calcul du signal S(t)

Comme nous l'avons vu précédemment, S(t) s'écrit sous la forme :

$$S(t) = \int_0^{\chi} x(t,z) dz$$

si l'on omet le coefficient de proportionnalité.

On a donc :

$$S(t) = 2a \ y_{c} \frac{K_{e} x_{o} (K_{2} - R_{2})}{K_{2}A} \left[ -R_{2} (S_{1} - S_{2} + S_{3}) + R_{1} (S_{4} - S_{5} + S_{6}) \right] \quad (C-18)$$

$$avec \qquad s_{i} = \int_{0}^{k} Y_{i} (t, z) \ dz$$

$$et \qquad S_{i+3} = \int_{0}^{k} X_{i} (t, z) \ dz \quad pour \quad i = 1, 2, 3$$

Il suffit donc d'évaluer  $S_1$ ,  $S_2$  et  $S_3$  car  $S_4$ ,  $S_5$  et  $S_6$  s'en déduisent par substitution de  $R_1$  et  $C_1$  par  $R_2$  et  $C_2$ .

Pour calculer S<sub>1</sub> et S<sub>2</sub>, il suffit de transformer l'intégrale par intégration par parties et changement de vaniable pour se ramener à l'intégration de fonctions exponentielles. On obtient :

$$S_{1}(t) = \frac{1}{2} \frac{2D}{v(1-\sqrt{C_{1}})} \begin{cases} e^{\frac{v\ell}{2D}(1-\sqrt{C_{1}})} & (1-erf \frac{-\ell+vt\sqrt{C_{1}}}{2\sqrt{Dt}}) - 1 + erf \frac{v}{2}\sqrt{\frac{C_{1}t}{D}} \end{cases}$$

$$+ e^{-R_{1}t} \left[ erf \frac{-\ell+vt}{2\sqrt{Dt}} - erf \frac{v}{2} \sqrt{\frac{t}{D}} \right]$$

$$S_{2}(t) = \frac{1}{2} \frac{2D}{v(1+\sqrt{C_{1}})} \left\{ e^{\frac{v\ell}{2D}(1+\sqrt{\Delta 1})} (1 - erf \frac{\ell+vt\sqrt{C_{1}}}{2\sqrt{Dt}}) - 1 + erf \frac{v}{2} \sqrt{\frac{C_{1}t}{D}} + e^{-R_{1}t} \left[ erf \frac{\ell-vt}{2\sqrt{Dt}} + erf \frac{v}{2} \sqrt{\frac{t}{D}} \right] \right\}$$
(C-20)

En effectuant d'abord l'intégration sur z, nous pouvons écrire <sub>S3</sub> sous la forme suivante :

$$S_{3} = \frac{\sqrt{D}}{2\sqrt{\pi}} \int_{0}^{t} \frac{1}{\sqrt{t-t'}} e^{-(\frac{v^{2}}{4D} + R_{1})(t-t') \cdot \left\{1 - e^{\frac{v^{2}}{2D} - \frac{v^{2}}{4D(t-t')}} + \frac{v}{2}\sqrt{\frac{\pi(t-t')}{D}} e^{\frac{v^{2}}{4D}(t-t')} + \frac{v}{2}\sqrt{\frac{\pi(t-t')}{D}} e^{\frac{v^{2}}{4D}(t-t')}\right\}} \times \left[ erf\left(\frac{v}{2\sqrt{D(t-t')}} - \frac{v}{2}\sqrt{\frac{t-t'}{D}}\right) + erf\left(\frac{v}{2}\sqrt{\frac{t-t'}{D}}\right) \right] \left[1 + erf\left(\frac{b-ct'}{d\sqrt{t'}}\right) dt'\right]$$

Cette expression se décompose en une somme de deux intégrales que nous notons simplement, après avoir effectué le changement de variable t-t'=s

$$S_{3} = \frac{\sqrt{D}}{2\sqrt{\pi}} \left[ \int_{0}^{t} dw + \int_{0}^{t} u dw \right] \text{ avec } u = \operatorname{erf} \frac{b - c(t - s)}{d\sqrt{t - s}}$$

soit, en intégrant par parties le deuxième terme :

$$\underline{S}_{3} = \frac{\sqrt{D}}{2\sqrt{\pi}} \left[ 2w(t) - w(0) \left( 1 + \operatorname{erf} \frac{b - ct}{d\sqrt{t}} \right) - \int_{0}^{t} w \, du \right] \quad (C-21)$$

Le calcul de w s'effectue en tenant compte des valeurs des intégrales particulières données dans l'appendice <u>3</u> et on obtient :

$$v(t') = \sqrt{\frac{\pi}{D}} \begin{cases} \frac{v\sqrt{C_1}}{2R_1} & \text{erf} \frac{v}{2} \sqrt{\frac{C_1 t'}{D}} & -\frac{D}{v(1+\sqrt{C_1})} & e^{\frac{v\ell}{2D}(1+\sqrt{C_1})} \\ e^{\frac{v\ell}{2D}(1+\sqrt{C_1})} & e^{\frac{\ell}{2} \frac{\ell}{2} \frac{v(1+\sqrt{C_1})}{2\sqrt{Dt'}}} \end{cases}$$

$$+ \frac{D}{\mathbf{v}(1-\sqrt{C_1})} e^{\frac{\mathbf{v}\mathbf{\ell}}{2D}(1-\sqrt{C_1})} \operatorname{erf} \frac{-\mathbf{\ell}+\mathbf{vt}'\sqrt{C_1}}{2\sqrt{Dt'}} - \frac{\mathbf{v}}{2R_1} e^{-R_1t'} \left[\operatorname{erf} \frac{\mathbf{\ell}-\mathbf{vt}'}{2\sqrt{Dt'}} + \operatorname{erf} \frac{\mathbf{v}}{2}\sqrt{\frac{t'}{D}}\right] \right\}$$

$$(C-22)$$

La relation (C-21) permet alors de calculer  $S_3(t)$  :

$$2S_{3}(t) = \frac{v\sqrt{C_{1}}}{R_{1}} \operatorname{erf} \frac{v}{2} \sqrt{\frac{C_{1}t}{D}} - \frac{2D}{v(1+\sqrt{C_{1}})} \operatorname{e}^{\frac{v\ell}{2D}(1+\sqrt{C_{1}})} \operatorname{erf} \frac{\ell+vt\sqrt{C_{1}}}{2\sqrt{Dt}}$$

$$+ \frac{2D}{v(1-\sqrt{C_1})} e^{\frac{v\ell}{2D}(1-\sqrt{C_1})} \operatorname{erf} \frac{-\ell+vt\sqrt{C_1}}{2\sqrt{Dt}} - \frac{v}{R_1} e^{-R_1t'} \left[ \operatorname{erf} \frac{\ell-vt}{2\sqrt{Dt}} + \operatorname{erf} \frac{v}{2} \sqrt{\frac{t}{D}} \right]$$

$$+ \left(1 + \operatorname{erf} \frac{b-ct}{d\sqrt{t}}\right) \left[\frac{v}{2R_{1}} + \frac{D}{v(1+\sqrt{C_{1}})} e^{\frac{v\ell}{2D}(1+\sqrt{C_{1}})} + \frac{D}{v(1-\sqrt{C_{1}})} e^{\frac{v\ell}{2D}(1-\sqrt{C_{1}})}\right] \\ - \frac{1}{\sqrt{\pi}} \int_{0}^{t} e^{-\left[\frac{b-c(t-s)}{d\sqrt{t-s}}\right]^{2}} \left[\frac{b}{d(t-s)^{3/2}} + \frac{c}{d\sqrt{t-s}}\right] \left\{\frac{v\sqrt{C_{1}}}{2R_{1}} \operatorname{erf} \frac{v}{2} \sqrt{\frac{C_{1}s}{D}}\right]$$

$$-\frac{D}{v(1+\sqrt{C_1})} e^{\frac{v\ell}{2D}(1+\sqrt{C_1})} \operatorname{erf} \frac{\ell+vs\sqrt{C_1}}{2\sqrt{Ds}} + \frac{D}{v(1-\sqrt{C_1})} e^{\frac{v\ell}{2D}(1-\sqrt{C_1})} \operatorname{erf} \frac{-\ell+vs\sqrt{C_1}}{2\sqrt{Ds}}$$

$$-\frac{v}{2R_{1}}e^{-R_{1}s}\left[erf\frac{\ell-vs}{2\sqrt{Ds}}+erf\frac{v}{2}\sqrt{\frac{s}{D}}\right]ds \qquad (C-23)$$

$$S(t) = a y_{C} \frac{K_{C} x_{o} (K_{2} - R_{2})}{K_{2}A} \left\{ -R_{2} \left[ \frac{v}{2R_{1}} (1 + 2\sqrt{C_{1}}) + \frac{3D}{v(1 - \sqrt{C_{1}})} e^{\frac{v^{2}}{2D}(1 - \sqrt{C_{1}})} - \frac{v^{\frac{v}{2}}}{v(1 - \sqrt{C_{1}})} e^{\frac{v^{\frac{v}{2}}}{2D}(1 + \sqrt{C_{1}})} + erf \frac{b - ct}{d\sqrt{t}} \left[ \frac{D}{v(1 + \sqrt{C_{1}})} e^{\frac{v^{\frac{v}{2}}}{2D}(1 + \sqrt{C_{1}})} + \frac{D}{v(1 - \sqrt{C_{1}})} \right] \right] \\ \times e^{\frac{v^{\frac{v}{2}}}{2D}(1 - \sqrt{C_{1}})} + \frac{v}{2R_{1}} - I_{1}(t) + R_{1} \left[ \frac{v}{2R_{2}} (1 + 2\sqrt{C_{2}}) + \frac{3D}{v(1 - \sqrt{C_{2}})} e^{\frac{v^{\frac{v}{2}}}{2D}(1 - \sqrt{C_{2}})} - \frac{D}{v(1 + \sqrt{C_{2}})} e^{\frac{v^{\frac{v}{2}}}{2D}(1 - \sqrt{C_{2}})} + erf \frac{b - ct}{d\sqrt{t}} \left[ \frac{D}{v(1 + \sqrt{C_{2}})} e^{\frac{v^{\frac{v}{2}}}{2D}(1 + \sqrt{C_{2}})} + \frac{D}{v(1 - \sqrt{C_{2}})} e^{\frac{v^{\frac{v}{2}}}{2D}(1 - \sqrt{C_{2}})} + \frac{v}{2R_{2}} \right] - I_{2}(t) + \frac{v}{2R_{2}} - I_{2}(t) + \frac{v}{2R_{2}} + \frac{v}{2R_{2}}$$

Si l'on considère les termes

$$\frac{D}{v(1-\sqrt{C_1})} e^{\frac{v\ell}{2D}(1-\sqrt{C_1})} e^{t} e^{\frac{v\ell}{2D}(1+\sqrt{C_1})} e^{t}$$

leurs ordres de grandeur sont respectivement de  $10^{-9}$  et  $10^{10}$  si l'on adopte pour R<sub>1</sub> une valeur de 500 s<sup>-1</sup>, alors que leurs coefficients respectifs sont voisins de 1 et de  $10^{-25}$  : on peut donc les négliger devant les autres termes sous réserve d'une vérification à posteriori

- 187 -

et simplifier l'expression de S(t). C'est cette expression, donnée dans le tableau C-2, qui est évaluée numériquement pour différentes valeurs de t comprises entre 0 et 256 ms. L'étude de l'évolution de S(t) en fonction des valeurs données aux différentes constantes de vitesse ( $K_e$ ,  $K_{OCS}$  et  $K_{N_2}$ ) et l'étude comparative avec les résultats expérimentaux permettent de déterminer, pour un mélange de composition donnée, les valeurs de  $K_1$  et  $K_2$ , constantes de désexcitation totale de  $N_2(v=1)$  et OCS(00°1); en effet, la forme du signal calculé ne dépend que de  $K_1$  et  $K_2$ , conformément au modèle moléculaire proposé. La constante de transfert  $K_2$  n'intervient seule que dans le terme multiplicatif et n'influe que sur l'amplitude absolue du signal donc sur la valeur du signal stationnaire (t=0) :

$$S_{sta} = a y_{c} \frac{K_{e} x_{o} (K_{2} - R_{2})}{K_{2} \cdot A} \left\{ -R_{2} \frac{v}{R_{1}} (1 + \sqrt{C_{1}}) + R_{1} \left[ \frac{v}{R_{2}} (1 + \sqrt{C_{2}}) + \frac{4D}{v(1 - \sqrt{C_{2}})} e^{\frac{v \ell}{2D} (1 - \sqrt{C_{2}})} \right] \right\}$$

$$Remarque$$
(C-21)

Pour la programmation du calcul de S(t), nous avons fait apparaitre la fonction complémentaire de la fonction d'erreur ( $\operatorname{erfc}(x)=1-\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty} e^{-x^2} \frac{dx'}{dx'}$  afin d'éviter les problèmes liés au nombre de chiffres significatifs pris en compte lorsque x devient grand.

## IV - RESULTATS ET CRITIQUES DU MODELE

## a) influence des constantes de vitesse sur le signal calculé

 En accord avec le modèle proposé, c'est la constante K<sub>1</sub> qui détermine la vitesse de décroissance du signal : en effet, compte-tenu de la rapidité de désexcitation de OCS(00°1) (K<sub>OCS</sub> > K<sub>radiatif</sub>),
 le signal observé caractérise la relaxation de N<sub>2</sub>(v=1) dans le mélange.

$$\begin{split} \overline{S(t)} &= a \ y_e \ \frac{K_e x_e (K_2 - R_2)}{K_e K_e^* x_e y_e + (K_2 - R_2)^2} \left\{ -R_2 \left[ \frac{v}{2R_1} \left( 1 + 2/\overline{C_1} \right) + \frac{v}{2R_1} \operatorname{erf} \frac{b-c t}{d/\overline{t}} \right] \\ &- \frac{1}{\sqrt{\pi}} \int_{0}^{t} e^{-\left[ \frac{b-c (t-s)}{d/\overline{t-s}} \right]^2} \left[ \frac{b}{d(t-s)^{3/2}} + \frac{c}{d\sqrt{t-s}} \right] \left\{ \frac{v/\overline{C_1}}{2R_1} \operatorname{erf} \frac{v}{2} \sqrt{\frac{C_1 s}{D}} - \frac{v}{2R_1} e^{-R_1 s} \right] \\ &\times \left[ \operatorname{erf} \frac{k-vs}{2\sqrt{Ds}} + \operatorname{erf} \frac{v}{2} \sqrt{\frac{s}{D}} \right] ds + R_1 \left[ \frac{v}{2R_2} \left( 1 + 2/\overline{C_2} \right) + \frac{3D}{v(1 + \sqrt{C_2})} e^{\frac{vt}{2D} \left( 1 - \sqrt{C_2} \right)} \right] \\ &- \frac{D}{v(1 + \sqrt{C_2})} e^{\frac{vt}{2D} \left( 1 + \sqrt{C_2} \right)} + \operatorname{erf} \frac{b-ct}{d\sqrt{t}} \left[ \frac{v}{2R_2} + \frac{D}{v(1 + \sqrt{C_2})} e^{\frac{vt}{2D} \left( 1 + \sqrt{C_2} \right)} + \frac{D}{v(1 - \sqrt{C_2})} \right] \\ &\times \left[ e^{\frac{vt}{2D} \left( 1 - \sqrt{C_2} \right)} + e^{\frac{t}{D} \left( 1 + \sqrt{C_2} \right)} + e^{\frac{t}{D} \left( \frac{b}{d\sqrt{t-s}} \right)} \right]^2 \left[ \frac{b}{d(t-s)^{3/2}} + \frac{c}{d\sqrt{t-s}} \right] \left\{ \frac{v/\overline{C_2}}{2R_2} \operatorname{erf} \frac{v}{2} \sqrt{\frac{C_2 s}{D}} \right] \\ &- \frac{D}{v(1 + \sqrt{C_2})} e^{\frac{vt}{2D} \left( 1 + \sqrt{C_2} \right)} e^{\frac{t}{D} \left( 1 + \sqrt{C_2} \right)} e^{\frac{t}{D} \left( 1 + \sqrt{C_2} \right)} \\ &= \frac{v}{v(1 + \sqrt{C_2})} e^{\frac{vt}{2D} \left( 1 + \sqrt{C_2} \right)} e^{\frac{t}{D} \left( 1 + \sqrt{C_2} \right)} e^{\frac{t}{D} \left( 1 + \sqrt{C_2} \right)} e^{\frac{vt}{2D} \left( 1 - \sqrt{C_2} \right)} \\ &- \frac{D}{v(1 + \sqrt{C_2})} e^{\frac{vt}{2D} \left( 1 + \sqrt{C_2} \right)} e^{\frac{t}{2} \left( 1 + \sqrt{C_2} \right)} e^{\frac{t}{2} \left( 1 + \sqrt{C_2} \right)} e^{\frac{vt}{2} \left( 1 - \sqrt{C_2} \right)} e^{\frac{vt}{2}$$

Tableau C-2 :

Expression obtenue pour S(t)

- 189 -

• De ce fait, la détermination précise de la constante  $K_{OCS} \simeq K_2$ est très difficile car son influence s'exerce essentiellement sur l'amplitude du signal stationnaire donc sur l'amplitude maximale du signal transitoire et non sur la forme de la courbe de décroissance de ce signal.

• Les valeurs respectives de K<sub>e</sub> et K<sub>N2</sub> sont obtenues à partir des études des signaux obtenus pour diverses compositions de mélange et de la comparaison des résultats théoriques et expérimentaux.

#### b) résultats

Les courbes expérimentales obtenues avec diverses compositions de mélange ainsi que les courbes calculées optimales sont présentées sur les figures C-1 et C-2. Il faut noter que l'erreur expérimentale représentée sur les figures par le bruit qui entache le signal doit être augmentée de l'incertitude sur la position de l'asymptote.

Les courbes théoriques proposées sont obtenues avec les constantes de vitesse suivantes :

 $K_{e} = 940 \text{ s}^{-1} \text{ torr}^{-1} \quad (K_{e}' = 250 \text{ s}^{-1} \text{ torr}^{-1})$   $K_{N_{2}} = 7,8 \text{ s}^{-1}$   $K_{v} = 54.10^{3} \text{ s}^{-1} \text{ torr}^{-1} \quad [\text{SIEBERT et al., 1976}]$   $K_{r} = 390 \text{ s}^{-1}$ 

La constante  $K_r$  est obtenue à partir de la mesure de l'intensité absolue de la bande  $v_3$  de OCS [YAMADA et al., 1966] . Compte-tenu de l'évolution de la variation de la forme du signal théorique en fonction des valeurs de  $K_1$ , il nous semble raisonnable d'adopter pour  $K_e$  et  $K_{N_2}$ les valeurs suivantes :

 $K_e = 1000 \pm 200 \text{ s}^{-1} \text{ torr}^{-1}$ 

- 190 -

$$K_{N_2} = 7,5 \pm 0,5 \text{ s}^{-1}$$

Comme d'une part, l'écart à la résonance est important pour le transfert  $N_2(v=1) \rightarrow OCS(00°1)$  et comme d'autre part  $N_2$  ne possède pas de moment dipolaire, le résultat obtenu pour K<sub>e</sub> parait acceptable eu égard aux constantes de transfert données pour  $CO(v=1) \rightarrow OCS(00°1)$ et  $CO_2(00°1) \rightarrow OCS(00°1)$  :

 $K_{CO} - OCS = 2,57.10^5 \text{ s}^{-1} \text{ torr}^{-1}$  [HANCOCK et al., 1974]  $K_{CO_2} - OCS = 2,4.10^3 \text{ s}^{-1} \text{ torr}^{-1}$  [STEPHENSON et al., 1972] La valeur obtenue pour la constante de désexcitation de l'azote est peu différente de la constante de désexcitation sur les parois que l'on peut estimer à partir de la formule C-3 du chapitre I et de la valeur du coefficient de désexcitation  $\gamma \approx 10^{-3}$  donnée par BLACK et al. [1974] :

 $K_{\rm P} \simeq 4 \, {\rm s}^{-1}$ 

Conformément à ce que nous avons dit précédemment sur l'indétermination de la constante de désexcitation de OCS, nous avons fixé  $K_r$  à 390 s<sup>-1</sup> (valeur calculée) et  $K_v$  à 54.10<sup>3</sup> s<sup>-1</sup> torr<sup>-1</sup> (valeur mesurée par SIEBERT et FLYNN).

# c) critiques du modèle et conclusion

Signalons tout d'abord que conformément à l'hypothèse faite en début de calcul, les valeurs de D influent très peu sur la courbe de décroissance du signal calculé : nous reproduisons dans le tableau C-3 les valeurs de S(t) obtenues pour  $D = DN_2$ ,  $D = \frac{DN_2 + D_{OCS}}{2}$  et  $D = D_{OCS}$  pour  $P_{OCS} = 7,8$  m torrs.



Figure C-1 : Courbes de désexcitation expérimentales et calculées obtenues pour OCS(00°1) (POCS = 7,8 et 4,5 m.torrs) \_\_\_\_\_\_ courbes calculées



Figure C-2 : Courbes de désexcitation expérimentales et calculées obtenues pour OCS(00°1) (P<sub>OCS</sub> = 2,3 et 1,4 m.torrs) ------ courbes calculées

| t ms                             | 0   | 12   | 15   | 20           | 30   | 50   | 100  | 150 | 200 | 250 |
|----------------------------------|-----|------|------|--------------|------|------|------|-----|-----|-----|
| D=D <sub>N2</sub>                | 100 | 96,6 | 85,6 | 69,5         | 52   | 32,3 | 10,9 | 3,8 | 1,4 | 0,5 |
| $D = \frac{D_{N2} + D_{OCS}}{2}$ | 100 | 96,8 | 86,3 | 70 <b>,7</b> | 53,6 | 34,2 | 12,4 | 4,6 | 1,7 | 0,6 |
| D=D <sub>OCS</sub>               | 100 | 97   | 87,1 | 72,4         | 55,8 | 36,6 | 14,4 | 5,7 | 2,3 | 0,9 |

Tableau C-3 :

Valeurs calculées de S(t) pour différentes valeurs de D

Sur les figures C-1 et C-2, on constate que le décalage entre la courbe théorique et la courbe expérimentale observé pour les faibles valeurs de t est d'autant plus important que la pression partielle de N<sub>2</sub> est élevée. Cela est probablement dû à l'imprécision de la détermination de la condition à la limite en z = 0 : en effet, l'influence de l'azote activé se trouvant dans le tube d'entrée à l'extinction de la décharge est d'autant plus grande que la pression d'azote est élevée.

Le modèle théorique que nous avons proposé et qui résulte de l'étude expérimentale permet cependant de rendre compte des observations faites et donc d'obtenir une détermination de la constante de vitesse du transfert entre  $N_2(v=1)$  et OCS(00°1). D --

Calcul théorique de la constante de vitesse du transfert d'énergie vibrationnelle entre N<sub>2</sub>(v:1) et OCS(00°1)

Le but de ce paragraphe n'est pas de présenter toutes les théories existantes mais seulement de dégager les principes des deux les plus utilisées, et de donner le processus du calcul de la constante de vitesse du transfert entre  $N_2(v=1)$  et OCS(00°1) à partir de celle qui parait la mieux adaptée aux conditions de cette réaction.

# I - CHOIX DU POTENTIEL INTERMOLECULAIRE

Les deux principales théories sur les transferts collisionnels diffèrent par la nature des forces prises en compte lors de l'interaction.

#### a) forces répulsives à court rayon d'action

Les premiers calculs de relaxation vibrationnelle dans les gaz ont été effectués par LANDAU et TELLER [1936] . Ces auteurs considèrent le cas de molécules diatomiques assimilées à des oscillateurs harmoniques. Le principe d'adiabaticité les conduit à admettre que la probabilité de transfert V-T est une fonction décroissante du rapport du temps d'interaction à la période de vibration ; ils en concluent que seules lesforces à court rayon d'action sont efficaces : ce sont celles qui correspondent à la partie répulsive du potentiel d'interaction.

Cette théorie a été développée par SCHWARTZ, SLAWSKY et HERZFELD (SSH) [1952], puis reprise par HERZFELD et LITOVITZ [1959] et COTTRELL et McCOUBREY [1961]. Le calcul de la probabilité de transfert V-T s'effectue en considérant le flux de particules incidentes sur la molécule diffusante comme une onde plane ; l'onde diffusée est la superposition d'une onde plane de même fréquence (diffusion élastique) et d'une onde plane de fréquence différente (diffusion inélastique correspondant au transfert V-T).

Ce calcul s'étend au cas des échanges V-V : l'écart à la résonance  $\Delta E$  joue alors le rôle du quantum de vibration hu.

#### b) forces attractives à long rayon d'action

C'est MAHAN [1967] qui fut le premier à considérer la partie attractive du potentiel sous la forme d'un développement multipolaire. SHARMA et BRAU (SB) [1969] ont développé cette théorie dans le cas des transferts V-V quasi-résonnants en prenant en compte l'influence des niveaux de rotation. Le principe du calcul de SB consiste à déterminer une loi de probabilité en fonction de l'écart d'énergie  $\Delta E$ , puis à évaluer les probabilités correspondant à chaque état rotationnel initial et pour chaque transition possible ; la probabilité d'échange V-V s'obtient alors en effectuant les sommes et les moyennes convenables. Ce calcul est semi-classique et nécessite la connaissance de la trajectoire relative des deux particules : SB se placent dans l'approximation du paramètre d'impact avec une trajectoire rectiligne décrite à vitesse relative constante. Cette hypothèse restreínt la validité de cette théorie au cas des transferts à faible écart d'énergie pour lesquels elle donne de très bons résultats.

# I – CALCUL DE K<sub>e</sub> POUR LE TRANSFERT ENTRE N<sub>2</sub>(v = 1) et 0CS(00°1) PAR LA THEORIE DE SSH

Comme l'écart à la résonance est important pour cette réaction de transfert ( $\Delta E = 269 \text{ cm}^{-1}$ ) nous utilisons la théorie de SSH pour évaluer la constante de vitesse. La présentation détaillée de cette théorie se trouve dans les différents ouvrages déjà cités ainsi que dans la thèse de LEGAY-SOMMAIRE [1970] et par conséquent, nous n'exposerons que les principales étapes du calcul et donnerons les différents résultats obtenus.

# a) transfert V - T pour une molécule diatomique

SSH considèrent le cas d'un choc en B entre une particule A et une molécule vibrante BC, la collision étant colinéaire (la translation de A s'effectue selon l'axe interatomique BC) et ils se placent dans le repère lié à la molécule BC. Nous noterons  $m_A$ ,  $m_B$  et  $m_C$  les masses de A, B, C et respectivement  $M_A$ ,  $M_B$ ,  $M_C$  leurs masses molaires. Les masses réduites de la molécule BC et des deux particules en collision seront notées  $\mu_{BC}$  et  $\mu_{A-BC}$ . Nous appelerons x la distance entre les centres de masse de A et BC, X la coordonnée de vibration de la molécule BC et  $\upsilon$  sa fréquence de vibration.

L'équation de Schrödinger totale s'écrit :

$$[H^{\circ} - \frac{h^{2}}{8\pi^{2}\mu_{A-BC}} \frac{d^{2}}{dx^{2}} + H'(x,X)] \psi(x,X) = W \psi(x,X) \quad (D-1)$$

où H° est l'hamiltonien de vibration de la molécule BC et H'(x,X) est l'hamiltonien d'interaction.

La fonction d'onde  $\psi(\mathbf{x}, \mathbf{X})$  peut être écrite sous forme d'un développement de produits des fonctions d'ondes de l'oscillateur harmonique  $\Phi_n(\mathbf{X})$  et des fonctions d'ondes intermoléculaires  $\varphi_n(\mathbf{x})$  :

$$\psi(\mathbf{x},\mathbf{X}) = \sum_{n} \varphi_n(\mathbf{x}) \Phi_n(\mathbf{X})$$

Si l'on note p la quantité de mouvement de la particule A et si

e et f caractérisent respectivement l'état initial et l'état final après échange d'énergie, l'onde incidente et l'onde réfléchie élastiquement s'écrivent :

$$\varphi_{\mathbf{e}}(\mathbf{x}) = \exp\left(-\frac{2i\pi}{h}p_{\mathbf{e}}\mathbf{x}\right) + E_{\mathbf{e}} \exp\left(\frac{2i\pi}{h}p_{\mathbf{e}}\mathbf{x}\right)$$

alors que l'onde diffusée inélastiquement s'écrit :

$$\varphi_{f}(x) = E_{f} \exp(\frac{2i\pi}{h} p_{f}x)$$

avec

La probabilité de la transition induite par collision  $e \rightarrow f$  est :

$$q_{ef} = \frac{p_f}{p_e} |E_f|^2$$

 $p_{f}^{2} - p_{e}^{2} = 2 \mu_{A-BC} h \upsilon (e-f)$ 

Pour l'évaluer, il est donc nécessaire de calculer l'amplitude de l'onde diffusée inélastiquement  $E_f$ . L'expression obtenue qui dépendra de la vitesse initiale relative  $v_e$  des particules incidentes devra être moyennée sur toutes les vitesses en supposant une distribution de Maxwell à une dimension.

Si l'on utilise un potentiel intermoléculaire exponentiel répulsif, l'hamiltonien d'interaction s'écrit :

$$H'(x,X) = H'_{o} \exp \left[-\frac{1}{\ell} \left(x - \frac{m_{C}}{m_{B} + m_{C}} X\right)\right]$$

où l est une longueur qui caractérise le rayon d'action des forces intermoléculaires.

Si l'amplitude de vibration est faible devant la distance intermoléculaire, on peut développer l'exponentielle :

$$H'(x, X) = H'(x) + \frac{1}{\ell} \frac{m_C}{m_B + m_C} H'(x) X$$

avec

$$H'(x) = H'_{o} \exp\left(-\frac{x}{\ell}\right)$$

Dans cette expression, seul le deuxième terme qui dépend à la fois de x et X peut provoquer une transition vibrationnelle. Compte-tenu de ceci et en effectuant une résolution approchée de l'équation de Schrödinger (D-1), analogue à celle de JACKSON et MOTT[1932], on montre que la probabilité de transition s'exprime sous forme d'un produit de deux termes liés l'un à la contribution vibrationnelle du hamiltonien d'interaction et l'autre à la contribution translationnelle. Si l'on considère la transition d'un quantum de vibration, 0 + 1, on obtient :

$$q_{01} = \left[H, \text{vib}_{01}\right]^{2} \left[\frac{4\pi \ \mu_{A-BC}}{h \ \sqrt{p_{0} \ p_{1}}} H, \text{ur}_{01}\right]^{2}$$
$$\left[H, \text{vib}_{01}\right]^{2} = \frac{1}{\ell^{2}} \left[\frac{m_{C}}{m_{B} + m_{C}}\right]^{2} \frac{h}{8\pi^{2} \ \mu_{BC} \ U}$$

avec :

et

 $= \left[ \frac{4\pi \mu_{A-BC}}{h \sqrt{p_0 p_1}} H'^{tr} \right]^2 = \left( \frac{16\pi^3 \mu_{A-BC} \ell^2 \upsilon}{h} \right)^2 \exp \left( -\frac{4\pi^2 \ell \upsilon}{v_o} \mp \frac{4\pi^2 \ell \upsilon}{2\mu_{A-BC} v_o^3} h \upsilon \right)$ 

(les signes - ou + correspondent respectivement à  $H'_{01}^{tr}$  et  $H'_{10}^{tr}$ ) En moyennant le terme lié à la contribution translationnelle sur la distribution de vitesse, on obtient :

- 199 -

$$Q_{10} = \frac{1}{Z_0} \frac{1}{z^{vib}} \frac{1}{z_{10}^{tr}}$$
 (D-2)

où

<sup>⊕</sup> Z<sub>0</sub> est un facteur géométrique introduit par HERZFELD [1959] et qu'il estime égal à 3 pour les collisions A-BC

et compte-tenu des notations de Herzfeld :

$$\theta = \frac{h\upsilon}{k}$$
 et  $= \frac{16\pi^4 \mu_{A-BC} \ell^2 \upsilon^2}{k}$ 

(où k est la constante de Boltzmann)

æ

$$\frac{1}{z^{vib}} = \pi^2 \frac{\theta}{\theta} \frac{M_A(M_B^2 + M_C^2)}{M_B M_C(M_A + M_B + M_C)}$$

en tenant compte du fait que les collisions A-BC sont aussi probables que les collisions A-CB

$$\frac{1}{Z_{10}^{tr}} = \frac{1}{\pi^2} \sqrt{\frac{2\pi}{3}} \left(\frac{\theta'}{\theta}\right)^2 \left(\frac{\theta'}{T}\right)^{1/6} \exp\left[-\frac{3}{2} \left(\frac{\theta'}{T}\right)^{1/3} + \frac{\theta}{2T}\right]$$

où T est la température de translation du gaz  $(1/Z_{01}^{tr} s')$  obtient en changeant le signe + en - devant  $\theta/2T$ 

Cette expression de la probabilité de transition collisionnelle a été obtenue en utilisant un potentiel intermoléculaire exponentiel répulsif. Cependant, de nombreux calculs théoriques de cinétique des gaz [HIRSCHFELDER et al., 1954] ont été effectués à partir d'un potentiel de Lennard-Jones qui comporte une partie répulsive et une partie attractive :

$$\mathbf{V} = 4 \, \boldsymbol{\varepsilon} \left[ \left( \frac{\sigma}{\mathbf{r}} \right)^{12} - \left( \frac{\sigma}{\mathbf{r}} \right)^{6} \right]$$

dont la courbe est représentée figure D-1 (r représente la distance

- 200 -

intermoléculaire dans un espace à trois dimensions).

Comme on ne peut résoudre l'équation de Schrödinger avec un tel potentiel, SSH utilisent un potentiel exponentiel répulsif en déterminant ses constantes par rapport à celui de Lennard-Jones ; Herzfeld prend en compte la partie attractive avec une expression de la forme :

$$V = V_0 e^{-\frac{r}{\ell}} - \epsilon$$

Deux méthodes ont été proposées pour déterminer les constantes  $V_0$  et  $\ell$ : la première (A), due à SSH, consiste à rendre tangentes les deux courbes au point d'approche minimum d'abscisse  $r_c$  et d'ordonnée 1/2  $\mu_{A-BC} v_e^2$ ; la seconde (B) due à DE WETTE et SLAWSKY [1954], que nous utiliserons car elle a permis pour de nombreuses molécules une meilleure interprétation des résultats expérimentaux, consiste à utiliser deux points communs aux deux courbes d'abscisse  $r_c$  et  $\sigma$  (figure D-1).



Figure D-1 : Comparaison des potentiels intermoléculaires

----- potentiel de Lennard-Jones -----  $V=V_0 \exp\{-\frac{r}{2}\} - \epsilon$ (méthodes A et B) HERZFELD [1959] a montré que l'introduction du terme (-  $\varepsilon$ ) dans l'énergie d'interaction revenait à multiplier Z<sup>tr</sup> par exp(- $\varepsilon/kT$ ).

SCHWARTZ et HERZFELD [1954] ont également effectué un traitement à trois dimensions des collisions A-BC qui introduit des termes correctifs modifiant légèrement le résultat de la relation D-2.

# b) transfert V-V entre des molécules diatomiques

HERZFELD et LITOVITZ [1959] ont étendu le calcul au cas des échanges V-V entre deux molécules diatomiques 1 et 2 (de fréquences de vibration  $\upsilon_1$  et  $\upsilon_2$ ) en effectuant un développement au second ordre du hamiltonien d'interaction par rapport aux coordonnées de vibration  $X_1$  et  $X_2$ . Ils obtienment pour la probabilité de transfert  $Q_{01}^{10}$ (en supposant que les indices du bas se réfèrent à la transition  $0 \neq 1$ de la molécule 1 et ceux du haut à la transition  $1 \neq 0$  de la molécule 2 avec  $\upsilon_1 < \upsilon_2$ ) une expression analogue à D-2 :

$$Q_{01}^{10} = \frac{1}{Z_0^{12}} - \frac{1}{Z_{12}^{vib}} - \frac{1}{Z_{12}^{tr}}$$
 (D-3)

où

 $z_0^{12} = z_0^1 - z_0^2$ 

 $\theta'_{12} = \frac{16 \pi^4 \mu_{12} \ell^2 (\upsilon_1 - \upsilon_2)^2}{k}$ 

$$Z_{12}^{\text{vib}} = \left(Z_{1}^{\text{vib}}\right) \left(Z_{2}^{\text{vib}}\right)$$

$$Z_{12}^{\text{tr}} = \pi^{2} \sqrt{\frac{3}{2\pi}} \left(\frac{T}{\frac{1}{\theta_{12}}}\right)^{\frac{1}{6}} \left(\frac{\theta_{1}-\theta_{2}}{\frac{1}{\theta_{12}}}\right)^{2} \exp\left[\frac{3}{2} \left(\frac{\theta_{12}}{T}\right)^{\frac{1}{3}} - \frac{\theta_{2}-\theta_{1}}{2T} - \frac{\varepsilon}{kT}\right]$$

avec

Notons que dans  $Z_{12}^{tr}$  c'est la quantité  $v_1 - v_2$  qui intervient à la place de v: elle caractérise l'énergie qui passe à la translation lors de l'échange d'un quantum de vibration. Si la résonance est parfaite ( $v_1 = v_2$ ), cette expression n'est plus valable et il faut reprendre le calcul.

#### c) transfert entre molécules polyatomiques

Dans le cas plus général de collisions entre molécules quelconques avec possibilités d'échanges de plusieurs quantums, SSH, TANCZOS [1956], STRETTON [1965-1969] expriment l'hamiltonien d'interaction en fonction de la distance intermoléculaire et des coordonnées normales de vibration  $S_n$ .

On obtient alors, en utilisant les éléments de matrice des coordonnées normales pour l'oscillateur harmonique [WILSON et al., 1955] et pour la transition  $v_n + v_n \pm 1$ :

$$\frac{1}{z^{\text{vib}}} = \frac{A_n^2}{\ell^2} + \frac{v_n + \frac{1}{2} \pm \frac{1}{2}}{8\pi^2 v_n}$$
(D-4)

soit, pour les transitions  $0 \rightarrow 1$  de la vibration n de la molécule 1 et  $1 \rightarrow 0$  de la vibration m de la molécule 2 :

$$\frac{1}{z_1^{\text{vib}}} = \frac{A_n^2 h}{8\ell^2 \pi^2 \upsilon_n} \quad \text{et} \quad \frac{1}{z_2^{\text{vib}}} = \frac{A_m^2 h}{8\ell^2 \pi^2 \upsilon_m}$$

Le coefficient  $A_n^2$  est lié au déplacement moyen des atomes, exprimé en coordonnées cartésiennes, par unité de coordonnée normale  $S_n$ [STRETTON, 1965]. Il s'exprime en (unité de masse)<sup>-1</sup>. Les déplacements de chaque atome s'obtiennent à partir de l'analyse en coordonnées normales des vibrations moléculaires décrite par WILSON, DECIUS et CROSS [1955] .

La contribution translationnelle à la probabilité de transfert est identique à celle donnée par la relation D-3.

Le facteur géométrique Z<sub>0</sub> a été introduit par HERZFELD[1959] pour tenir compte du fait que les molécules font un certain angle avec l'axe de collision, alors que les calculs sont faits pour des collisions colinéaires. COTTRELL [1961] ne tient pas compte de ce terme. Dans une évaluation plus détaillée de ce facteur, pour des molécules linéaires, HERZFELD [1963] tient compte d'une dépendance angulaire dans l'intéraction entre les molécules qui couple les transitions rotationnelles et vibrationnelles ; il obtient alors

$$\frac{1}{Z_0} = 1 - \frac{2l}{r_e}$$
 (D-5)

pour les vibrations longitudinales, r<sub>e</sub> est la longueur à l'équilibre de la molécule.

d) calcul de la constante de vitesse du transfert V-V entre N2 et 0CS(00°1)

Compte-tenu de la notation que nous avons introduite, la probabilité  $Q_{01}^{10}$  correspond aux transitions  $v = 1 \rightarrow v = 0$ pour N<sub>2</sub> et (00°0)  $\rightarrow$  (00°1) pour OCS( $v_1 = v_3$ (OCS) = 2062 cm<sup>-1</sup> et  $v_2 = v(N_2) = 2331$  cm<sup>-1</sup>).

La constante de vitesse de la réaction de transfert  $K_e = K_{01}^{10}$ , exprimée en s<sup>-1</sup> torr<sup>-1</sup>, s'écrit :

$$K_{e} = Q_{01}^{10} Z_{12}$$
 (D-6)

où  $Z_{12}$  représente le nombre de collisions par seconde entre les molécules OCS et  $N_2$  pour une pression de l torr.

La théorie cinétique des gaz permet d'obtenir :

$$Z_{12} = \frac{N P (\sigma_1 + \sigma_2)^2}{RT} / \frac{\pi kT}{2\mu_{12}}$$

N étant le nombre d'Avogadro, R la constante des gaz parfaits, P la pression (1 torr) et T la température.

Pour effectuer le calcul de  $Q_{01}^{10}$ , nous utilisons les données suivantes [HIRSCHFELDER et al., 1954] :

|                | σ (Å) | ε/k (°K) |
|----------------|-------|----------|
| OCS            | 4,13  | 335      |
| N <sub>2</sub> | 3,68  | 91,5     |

La longueur l a été déterminée par la méthode B en utilisant une méthode itérative proposée par HERZFELD [1967]. On obtient :

$$\ell = 0,190 \text{ Å}$$

 ◆ Calcul de Z<sup>vib</sup> 12

Ce calcul s'effectue à partir de l'expression D-4 et nécessite la détermination de  $A_n^2$ . Pour une molécule diatomique BC, on a :

$$A^{2} = \frac{1}{2} \quad \frac{m_{B}^{2} + m_{C}^{2}}{m_{B}^{m} c (m_{B} + m_{C})}$$

soit pour une molécule homonucléaire :  $A^2 = 1/2 m_B$ Pour N<sub>2</sub>, on a donc  $A^2 = 0,0357 \text{ um a}^{-1}$ . SIEBERT et FLYNN [1976] ont effectué le calcul des  $A^2$  pour OCS et obtiennent pour la vibration  $v_3$ :  $A_3^2 = 0,0091$  u m a<sup>-1</sup>. Compte-tenu de ces valeurs, on a :

$$z_{OCS-N_2}^{vib} = 67840$$

◆ Calcul de Z<sup>tr</sup><sub>12</sub>

D'après l'expression donnée en D-3 et avec la valeur de  $\theta'_{12}$ :

$$\theta' = 84015 \ ^{\circ}K$$

on obtient :

 $Z_{12}^{tr} = 0,316$  pour T = 293 °K

♦ Calcul de K<sub>e</sub>

A partir des relations D-3 et D-6, on obtient les résultats suivants selon que l'on utilise  $Z_0^{12} = 1$  ou  $Z_0^{12} = 1,8$  (valeur obtenue d'après D-5) :

 $\Box$  si  $Z_0^{12} = 1$  :  $Q_{01}^{10} = 4,66.10^{-5}$ ,  $K_e = 420 \text{ s}^{-1} \text{ torr}^{-1}$ 

 $\Box$  si  $Z_0^{12} = 1,8$  :  $Q_{01}^{10} = 2,59.10^{-5}$ ,  $K_e = 235 \text{ s}^{-1} \text{ torr}^{-1}$ 

On constate donc que si l'ordre de grandeur des valeurs théoriques obtenues pour K<sub>e</sub> correspond effectivement à celui de la détermination expérimentale, celles-ci sont cependant inférieures à la valeur mesurée. Un meilleur accord serait d'ailleurs fortuit étant données les approximations utilisées dans la théorie de SSH.





## Conclusion

Notre travail nous a permis de montrer les applications, pour la spectroscopie microonde, des transferts d'énergie vibrationnelle et en particulier de ceux effectués à partir de l'azote activé. A l'aide d'un spectromètre à propagation libre, bien adapté aux problèmes spécifiques liés à l'étude des espèces excitées, nous avons pu obtenir des augmentations importantes de population dans les niveaux de vibration de molécules telles que N<sub>2</sub>0 et OCS dont la fréquence <u>d'une</u> vibration fondamentale est voisine de celle de l'azote.

Nous avons pu ainsi observer les spectres de rotation de ces molécules dans l'état (00°1).

La mise au point d'une technique de modulation de l'excitation de l'azote et l'utilisation d'un résonateur microonde plan-sphérique nous a permis d'augmenter considérablement la sensibilité de notre spectromètre. Elles ont rendu possible l'observation de transitions rotationnelles dans des niveaux excités de OCS dont l'énergie peut être aussi élevée que  $4\,101$  cm<sup>-1</sup>, certains de ces niveaux étant peuplés par transfert avec l'azote et d'autres par transfert entre molécules de OCS comme ceux associés à  $4_{U2}$  et  $5_{U2}$ . Si les résultats obtenus sont encore incomplets pour permettre la détermination précise des constantes moléculaires dans tous les niveaux de vibration observés ils apportent cependant des informations importantes dans le cadre d'un traitement numérique de l'ensemble des données spectroscopiques infrarouge et microonde comme celui développé par A. FAYT et ses collaborateurs pour la molécule OCS.

L'intérêt de la méthode proposée pour l'observation des spectres de rotation des états excités de vibration est confirmé par l'utilisation qui en a été faite par P.G. FAVERO et ses collaborateurs pour l'étude de molécules telles que BrCN, C &CN et ICN dont les vibrations  $\upsilon_{a}$  sont en quasi-résonance avec celle de N<sub>2</sub>.

Nous pensons que les possibilités de cette technique sont encore loin d'être épuisées et qu'elle doit pouvoir également s'appliquer à des molécules composées d'un plus grand nombre d'atomes si elles présentent un niveau de vibration voisin de celui de l'azote. Cependant, compte-tenu de la durée des mesures, il est nécessaire de disposer au départ d'une estimation des fréquences des transitions microondes. La technique de modulation de l'excitation de l'azote a également rendu possible l'observation des variations transitoires des absorptions moléculaires induites par le transfert d'énergie. Une étude qualitative des relaxations observées dans les différents niveaux de vibration à l'aide d'une cellule de faible longueur nous a conduit à définir un modèle moléculaire simplifié qui nous a permis d'entreprendre l'interprétation des signaux transitoires obtenus pour le niveau (00°1) dans une cellule de un mètre et avec diverses compositions de mélange. Le calcul théorique du signal d'absorption que nous avons développé analytiquement moyennant certaines hypothèses simplificatrices permet de rendre compte assez correctement des observations expérimentales.

Il conduit à une détermination de la constante de vitesse du transfert d'énergie vibrationnelle entre  $N_2(v = 1)$  et OCS (00°1) qui n'avait jusqu'alors été mesurée qu'en phase liquide [ BRUECK et al., 1978 ].

Cette nouvelle méthode d'étude de la cinétique des transferts suppose des conditions expérimentales très différentes de celles généralement utilisées dans les autres types d'expériences. L'emploi des microondes implique de faible pression, des volumes de cellules assez important et conduit à un signal qui est une moyenne macroscopique, ce qui exclut donc une bonne résolution spatiale. Nous avons pu montrer que dans ces conditions, un modèle simple rend compte des résultats expérimentaux d'une façon acceptable et qu'il permet d'en déduire aisément une bonne approximation de la constante de vitesse du transfert.




#### Appendice I

$$W_{11} = E_{11} + B_{11} [J(J+1) - 1] - D_{1} [J(J+1) - 1]^{2}$$

$$W_{20} = E_{20} + B_{20} J(J+1) - D_{2} J^{2}(J+1)^{2}$$

$$W_{22} = E_{22} + B_{22} [J(J+1) - 4] - D_{2} [J(J+1) - 4]^{2}$$

$$W_{31} = E_{31} + B_{31} [J(J+1) - 1] - D_{3} [J(J+1) - 1]^{2}$$

$$W_{33} = E_{33} + B_{33} [J(J+1) - 9] - D_{3} [J(J+1) - 9]^{2}$$

$$W_{40} = E_{40} + B_{40} J(J+1) - D_{4} J^{2}(J+1)^{2}$$

$$W_{42} = E_{42} + B_{42} [J(J+1) - 4] - D_{4} [J(J+1) - 4]^{2}$$

$$W_{44} = E_{44} + B_{44} [J(J+1) - 16] - D_{4} [J(J+1) - 16]^{2}$$

$$W_{51} = E_{51} + B_{51} [J(J+1) - 1] - D_{5} [J(J+1) - 1]^{2}$$

$$W_{53} = E_{53} + B_{53} [J(J+1) - 9] - D_{5} [J(J+1) - 9]^{2}$$

$$W_{55} = E_{55} + B_{55} [J(J+1) - 25] - D_{5} [J(J+1) - 25]^{2}$$

.

$$w_{11} = q_{eff}^{1} 2 J(J+1)$$

$$w_{22} = q_{eff}^{2} 2 \sqrt{2} \sqrt{J(J+1)} [J(J+1) - 2]$$

$$w_{31} = q_{eff}^{3} 4 J(J+1)$$

$$w_{33} = q_{eff}^{3} 2 \sqrt{3} \sqrt{[J(J+1) - 2] [J(J+1) - 6]}$$

$$w_{42} = q_{eff}^{4} 2 \sqrt{6} \sqrt{J(J+1)} [J(J+1) - 2]$$

$$w_{44} = q_{eff}^{4} 4 \sqrt{[J(J+1) - 6] [J(J+1) - 12]}$$

$$w_{51} = q_{eff}^{5} 6 J(J+1)$$

$$w_{53} = q_{eff}^{5} 4 \sqrt{2} \sqrt{[J(J+1) - 2] [J(J+1) - 6]}$$

$$w_{55} = q_{eff}^{5} 2 \sqrt{5} \sqrt{[J(J+1) - 12] [J(J+1) - 20]}$$

### Appendice II

Expression du potentiel pour une molécule linéaire triatomique en fonction des coordonnées normales :

$$\frac{V}{hc} = \frac{1}{2} \omega_1 q_1^2 + \frac{1}{2} \omega_2 q_1^2 + \frac{1}{2} \omega_3 q_3^2 \longrightarrow \text{termes harmoniques}$$

$$\frac{\text{termes}}{anharmoniques} \longrightarrow + k_{111}q_1^3 + k_{113}q_1^2q_3 + k_{122}q_1q_2^2 + k_{133}q_1q_3^2 + k_{223}q_2^2q_3 + k_{333}q_3^3$$

$$du \ 2e \ degre \longrightarrow + k_{1111}q_1^4 + k_{1113}q_1^3q_3 + k_{1122}q_1^2q_2^2 + k_{1133}q_1^2q_3^2 + k_{1223}q_1q_2^2q_3$$

$$+ k_{1333}q_1q_3^3 + k_{2222}q_2^4 + k_{2233}q_2^2q_3^2 + k_{3333}q_3^4$$

$$du \ 3e \ degre \longrightarrow + k_{22223}q_2^4q_3 + \dots$$

# Appendice III

×

ť

•

$$\int_{0}^{t} e^{-a^{2}(t-t^{\prime})} \frac{1}{\sqrt{t-t^{\prime}}} dt^{\prime} = \frac{\sqrt{\pi}}{a} \operatorname{erf} a \sqrt{t}$$

$$\int_{0}^{t} e^{-a^{2}(t-t^{\prime})} - \frac{b^{2}}{t-t^{\prime}} \frac{1}{\sqrt{t-t^{\prime}}} dt^{\prime} = \frac{\sqrt{\pi}}{2a} \left\{ e^{2ab} \left[ \operatorname{erf} \left( a\sqrt{t} + \frac{b}{\sqrt{t}} \right) - 1 \right] + e^{-2ab} \left[ \operatorname{erf} \left( a\sqrt{t} - \frac{b}{\sqrt{t}} \right) + 1 \right] \right\}$$

$$\int_{0}^{t} e^{-a^{2}(t-t^{\prime})} - \frac{b^{2}}{t-t^{\prime}} \frac{1}{(t-t^{\prime})^{3/2}} dt^{\prime} = \frac{\sqrt{\pi}}{2b} \left\{ e^{2ab} \left[ 1 - \operatorname{erf} \left( a\sqrt{t} + \frac{b}{\sqrt{t}} \right) \right] + e^{-2ab} \left[ 1 + \operatorname{erf} \left( a\sqrt{t} - \frac{b}{\sqrt{t}} \right) \right] \right\}$$

.







A AMAT C., GOLDSMITH M., NIELSEN H.H. (1956) J. Chem. Phys. 24 p. 44 Molecule linéaire. Résonance de Fermi AMAT G., GOLDSMITH M., NIELSEN H.H. (1957) J. Chem. Phys. 27 p. 838 Hamiltonien moléculaire AMAT G., NIELSEN H.H. (1957) J. Chem. Phys. 27 p. 845 Hamiltonien moléculaire AMAT G., NIELSEN H.H. (1958) J. Chem. Phys. 29 p. 665 Hamiltonien moléculaire AMAT G., NIELSEN H.H. (1962) J. Chem. Phys. 36 p. 1859 Hamiltonien moléculaire AMAT G., NIELSEN H.H., TARRAGO G. (1971) "Rotation vibration of polyatomic molecules". M. Dekker INC. New York ANDERSON P.W. (1949) Phys. Rev. 76 p 647 Largeur de raie-théorie ANKETELL J., BROCKLEHURST B. (1974) J. Phys. B-7 p. 1937 N<sub>2</sub> distribution de Treanor R No Raman Mesure de Tu BARRETT J.J., HARVEY A.B. (1975) J. Opt. Soc. Am. 65 p. 392 N, Spectre UV BASS A.M. (1964) J. Chem. Phys. 40 p. 695 BATTAGLIA A., CATTANI M., TARRINI O. (1969) Nuovo Cimento 61 B p. 193 Largeur de raie OCS BAUER A., GODON M., MAES S. (1976) J. Mol. Spectrosc. 59 p. 421 CH3NC état excité 30g BAUER A., GODON M. (1977) J. Mol. Spectrosc. 66 p.237  $CH_3NC$  - état excité  $4v_8$ Réactions de  $N_2^{rh}$  sur le soufre BETT J.A.S., WINKLER C.A. (1964) J. Phys. Chem. 68 p. 2501 BLACK G., WISE H., SCHECHTER S., SHARPLESS R.L. (1974) J. Chem. Phys. 60 Désexcitation de N2(v=1) sur parois p. 3526 BOGEY M., BAUER A., MAES S. (1974) Chem. Phys. Lett. 24 p. 516 Spectre microonde de OCS(00°1) par transfert N2-OCS BOGEY M. (1975) J. Phys. B. 8 p. 1934 Spectres microondes de N20 et OCS -

BORRELL P. (1969) dans "Transfer and Storage of Energy by Molecules" (G.M. BURNETT, A.M. NORTH) Wiley Interscience London Vol 2 p. 180 BORRELL P., MILLWARD G.E. (1972) J. Chem. Phys. 57 p. 462

BRAY K.N.C. (1968) J. Phys. B ser. 2-1 - p. 705

BRAY K.N.C. (1970) J. Phys. B 3 - p. 1515

BRECHIGNAC P., TAIEB G., LEGAY F. (1975) Chem. Phys. Lett. 36 p. 242 BRECHIGNAC P., (1976) Thèse Paris Sud (Orsay) BRUECK S.R.J., OSGOOD Jr R.M. (1978) J. Chem. Phys. 68 p. 4941 BURIE J., BOUCHER D., DEMAISON J., DUBRULLE A. (1976) Mol. Phys. 32 p. 289 Spectrométric microonde BURIE J., BOUCHER D., DEMAISON J., DUBRULLE A. (1976) non publié

Г CALLEAR A.B. (1962) Disc. Faraday Soc. 33 p. 28 Transfert NO-CO CARRINGTON A., LEVY D.H., MILLER T.A. (1966) Trans. Faraday Soc. 62 p. 2994 Transfert électronique 02-50 CARSLAW J.S., JAEGER J.C. (1959) "Conduction of Heat in Solids"

Clarendon Press - Oxford

CAZZOLI G., FAVERO P.G., DEGLI ESPOSTI C. (1977) Chem. Phys. Lett. 50 p.336 Transferts NJ-CtCN et NJ-BrCN -

Etude microopde

état (00°1)

anharmoniques

anharmoniques

Transfert V-V dans CO

Détection superhétérodyne

Relaxations de CO

choc

Transferts CO-CO2, N2O, OCS. ondes de

Relaxation vibrationnelle d'oscillateurs

Relaxation vibrationnelle d'oscillateurs

Transfert N2-OCS en phase liquide

CAZZOLI G., DEGLI ESPOSTI C., FAVERO P.G. (1978) J. Mol. Struct. 48 p 1 COOK G.R., Mc NEAL R.J. (1972) J. Chem. Phys. 56 p. 1388 COSTAIN C.C. (1957) Can. J. Phys. 35 p. 241 COSTAIN C.C. (1969) Can. J. Phys. 47 p. 2431 COTTRELL T.L., Mc COUBREY J.C. (1961) Molecular Energy Transfer in gases Butterworths - London

COTTRELL T.L., Mc FARLANE I.M., READ A.W., YOUNG A.H. (1966) Trans. Faraday Soc. 62 p. 2655

CRANK J. (1957) "The Mathematics of Diffusion" Clarendon Press - Oxford CRESWELL R.A., BROWN S.R., SCHWENDEMAN R.H. (1976) J. Chem. Phys. 64 p. 1820 CURL Jr. R.F., OKA T. (1973) J. Chem. Phys. 58 p. 4908

 $\left( \right)$ DESTOMBES (1978) Thèse - Lille DESTOMBES J.L., BOGEY M. (1973) non publié DEUTSCH T.F. (1966) Appl. Phys. Lett. 8 p. 334 DEWETTE F.W., SLAWSKY Z.I. (1954) Physica. 20 p. 1169

DIXON T.A., WOODS R.C. (1975) 30th Symp. Mol. Struct. and Mol. Spect. Ohio State University DIXON T.A., WOODS R.C. (1975) Phys. Rev. Lett. 34 p. 61 DOYENNETTE L., MARGOTTIN-MACLOU M., HENRY L. (1967) J. de Chimie Physique Relaxation vibrationnelle de CO 1 p. 33 DRESSLER K. (1959) J. Chem. Phys. 30 p. 1621

DUBRULLE A. (1972) Thèse - Lille DUPRET C., VIDAL B., GOUDMAND P. (1970) Rev. Phys. Appl. 5 p. 337

EUCKEN A., AYBAR S. (1940) Z. Phys. Chem. 46 B p. 195 EVANS H.G.V., WINKLER C.A. (1956) Can. J. of Chem. 34 p. 1217 EVENSON K.M., WELLS J.S., PERTERSEN F.R., DANIELSON B.L., DAY G.W., BARGER R.L., HALL J.L. (1972) Phys. Rev. Lett. 29 p. 1346

F FARRENQ R., DUPRE-MAQUAIRE J. (1974) J. Mol. Spectrosc. 49 p. 268

FAYT A. (1968) Ann. Soc. Sci. Bruxelles 82 p. 101

p. 294

FAYT A. (1970) Ann. Soc. Sci. Bruxelles 84 p. 69 FAYT A. (1972) Ann. Soc. Sci. Bruxelles 86 p. 61 FAYT A., VANDENHAUTE R. (1979) Communication privée FEHSENFELD F.C., EVENSON K.M., BROIDA H.P. (1965) Rev. Sci. Instr. 36

FIELD R.W., BRADFORD R.S., HARRIS D.O., BROIDA H.P. (1972) J. Chem. Phys. Double résonance optique-microonde : BaO 56 p. 4712

Transfert  $N_2^{*}$ -ICN - spectre microonde Azote activé - photoionisation Cellule à propagation libre Spectroscopie sans effet.Doppler par saturation

Spectrophone - OCS

Largeur de raie - OCS

Double resonance IR-MO : CH4

Radical OH Excitation par impact électronique Laser à OCS Théorie des relaxations vibrationnelles dans les gaz Décharge élastique, CO : v=1 et 2

Spectre MO de CO<sup>+</sup>

Azote activé - Spectre UV Spectrométrie MO Cavité microonde

Absorption ultrasonore (OCS) Azote activé Mesure de c

Spectroscopie IR de N20 (décharge électri que Résonance anharmonique du 3e ordre dans ocs Spectres IR de OCS Constantes moléculaires de OCS

Cavités microondes à 2450 MHz

57 p. 2209 FIELD R.W., ENGLISH A.D., TANAKA T., HARRIS D.O., JENNINGS D.A. (1973) Double résonance - Ball J. Chem. Phys. 59 p. 2191 FISHER E.R., KUMMLER R.H. (1968) a J. Chem. Phys. 49 p. 1075 Relaxation par processus V-V FISHER E.R., KUMMLER R.H. (1968)b J. Chem. Phys. 49 p. 1085 Relaxation par processus V-V FRENKEL L., MARANTZ H., SULLIVAN T. (1971) Phys. Rev. A 3 p. 1640 Double résonance IR-MO : CH3Cl FRICKE E.F. (1940) J. Acoust. Soc. Amer. 12 p. 245 Absorption ultrasonore (00%) FROST B.S. (1976) J. Phys. B. 9 p. 1001

FIELD R.W., BRADFORD R.S., BROIDA H.P., HARRIS D.O. (1972) J. Chem. Phys. Double "Esonance optique-microonde : Ba0

h GOLDSMITH M., AMAT G., NIELSEN H.H. (1956) J. Chem. Phys. 24 p. 1178 GORDIETS B. F., OSIPOV A.I., STUPOCHENKO E.V., SHELEPIN L.A. (1973) Sov. Phys. Usp. 15 p. 759

GORDY W., COOK R.L. (1970) "Microwave Molecular Spectra" Interscience Publishers J. Wiley - New York

GRENIER-BESSON M.L., AMAT G., NIELSEN H.H. (1962) J. Chem. Phys. 36 p. 3454 Hamiltonien moleculaire

Η HANCOCK G., SMITH I.W.M. (1971)a Chem. Phys. Lett. 8 p. 41 HANCOCK G., SMITH I.W.M. (1971) b Appl. Opt. 10 p. 1827 HANCOCK G., STARR D.F., GREEN W.H. (1974) J. Chem. Phys. 61 p. 3017 HANLEY H.J.M., Mc CARTY R.D., HAYNES W.M. (1974) J. Phys. Chem. Ref. Data Coefficient de viscosité de N2 3 p. 979

HEITLER W. (1954) "The quantum theory of radiation" Oxford University Press HERLEMONT F. (1974) Thèse DE 3e Cycle - Lille HERLEMONT F., THIBAULT J., LEMAIRE J. (1976) Chem. Phys. Lett. 41 p. 466 Double résonnance IR-MO : CH3Br HERZFELD K.F., LITOVITZ T.A. (1959) "Absorption and Dispersion of

Ultrasonic Waves" Academic Press - New York HERZFELD K.F. (1963) dans "Dispersion and Absorption of Sound by Molecular Processes" (DE SETTE) Academic Press, New-York p. 272

HERZFELD K.F. (1967) J. Chem. Phys. 47 p. 743

HEYDTMANN H., POLANYI J.C., TAGUCHI R.T. (1971) Appl. Opt. 10 p. 1755 HIRSCHFELDER J.O., CURTISS C.F., BIRD R.B. (1954) "Molecular Theory of

Gases and Liquids" Wiley and Sons. Inc. New York HOOKER W.J., MILLIKAN R.C. (1963) J. Chem. Phys. 38 p. 214 HOPKINS B.M., BARONAVSKI A., CHEN H.L. (1973) J. Chem. Phys. 59 p. 836 HORANI M. (1967) J. Chim. Physique 64 p. 331 HUETZ-AUBERT M., TRIPODI R., (1971) J. Chem. Phys. 55 p. 5724 HUETZ-AUBERT M., LEPOUTRE F. (1974) Physica 78 p. 435

JACKSON J.M., MOTT N.F. (1932) Proc. Roy. Soc. A 137 - p. 703 JOECKLE R., PEYRON M. (1965) C.R. Acad. Sci. Paris 261 B p. 1819 JONES H. (à paraître) dans "Modern Aspects of Microwave Spectroscopy" (G.W. CHANTRY) Academic Press Inc. London Ldt.

.1

Desexcitation vibrationnelle avec résonance de Fermi Transfert Hg - HF

Transfert CO-No Relaxation vibrationnelle de OCS (HBr, HCł Canon à électrons Spectrophone Spectrophone (CO2)

Relaxations vibrationnelles Trnasfert N2-CO

Largeur de raie - Influence de T

Hamiltonien moleculaire Relaxation vibrationnelle - théorie

Relaxation de CO (v  $\leq 13$ ) Relaxation de CO(4  $\leq v \leq 13$ ) Transferts CO-OCS, N<sub>2</sub>O, CS<sub>2</sub>,C<sub>2</sub>N<sub>2</sub>

Double résonance IR-MO : CH<sub>3</sub>Br

## JONES H., KOHLER F. (1975) J. Mol Spectrosc. 58 p. 125 JONES H., KOHLER F., RUDOLPH H.D. (1976) J. Mol. Spectrosc. 63 p. 205 JOURNEL G. (1969) Thèse - Lille

K KARL G., POLANYI J.C. (1963) J. Chem. Phys. 38 p. 271 KARL G., KRUSS P., POLANYI J.C., SMITH 1.W.M. (1967) J. Chem. Phys. 46 D. 244

KAUFMAN F., KELSO J.R. (1958) J. Chem. Phys. 28 p. 510 KOGELNIK H., LI T. (1966) Proc. IEEE 54 p. 1312 KOVACS M.A., MACK M.E. (1972) Appl. Phys. Lett. 20 p. 487 KUIJPERS P., TORRING T., DYMANUS A. (1976) Chem. Phys. 15 p. 457 KUPECEK P. (1970) Thèse - Paris

## L

LANDAU L., TELLER E. (1936) Phys. Z. Soweytunion 10 p. 34 LEGAN R.L., ROBERTS J.A. (1965) J. Chem. Phys. 43 p. 4337 LEGAY F., BARCHEVITZ P. (1963)a C.R. Acad. Sci. Paris 256 p. 5305 LEGAY F., LEGAY-SOMMAIRE N. (1963)b C.R. Acad. Sci. Paris 257 p. 2644 LEGAY F., LEGAY-SOMMAIRE N. (1964) C.R. Acad. Sci. Paris 259 p. 99 LEGAY F. (1964) J. Phys (Paris) 25 p. 999 LEGAY-SOMMAIRE N., LEGAY F. (1964) J. Physique (Paris) 25 p. 917 LEGAY-SOMMAIRE N., HENRY L., LEGAY F. (1965) C.R. Acad. Sci. Paris 260 p. 3339

LEGAY-SOMMAIRE (1970) Thèse - Paris

LEGAY-SOMMAIRE N., LEGAY F. (1970) Can. J. Phys. 48 p. 1966

LEV-ON M., RICHMAN D.C., MILLER D.J., MILLIKAN R.C. (1972) J. Chem. Phys. 57 p. 3575

LEV-ON M., PALKE W.E., MILLIKAN R.C. (1973) Int. J. Chem. Kinetics 5 p. 753 Transfert d'énergie vibrationnelle LIDE Jr D.R., CAHILL P., GOLD L.P. (1964) J. Chem. Phys. 40 p. 156 LIDE Jr D.R. (1965) J. Chem. Phys. 42 p. 1013 LIDE Jr D.R., KUCZKOWSKI R.L. (1967) J. Chem. Phys. 46 p. 4768 LOW N., RAMBERG Y. (1955) Bull. Res. Counc. Israël 5A p. 40

LUIJENDIJK S.C.M. (1977) J. Phys. B. 10 p. 1741

## Μ

Mc CARROLL B. (1970) Rev. Sci. Instr. 41 p. 279 Mc CUBBIN Jr T.K., HAHN Y. H. (1967) J. Opt. Soc. Am. 57 p. 1373 Mc NEAL R.J., WHITSON Jr M. E., COOK G.R. (1972) J. Chem. Phys. 57 p. 4752 MAHAN B.H. (1967) J. Chem. Phys. 46 - p. 98 MAKI A.G., PLYLER E.K., TIDWELL E.D. (1962) J. Reas. NBS A 66A p. 163 MAKI A.G. (1967) J. Mol. Spectrosc. 23 p. 110 MAKI A.G., LIDE D.R. (1967) J. Chem. Phys. 47 p. 3206 MAKI A.G., JOHNSON D.R. (1973) J. Mol. Spectrosc. 47 p. 226

Double résonance IR-MO : CF<sub>3</sub>I Double résonance IR-MO : CF<sub>1</sub>Br Spectrométrie MO

Transfert Hg-CO Transfert Hg-NO

Azote activé Résonateurs Relaxation de CO Spectrométrie à haute température (NaOH) Molécules C4v et linéaires

Relaxation vibrationnelle dans les gaz Largeur de raie - double modulation Transfert N2-CO2 et N2-N20 Transfert N2~CO Laser  $N_2^{+}$ -CO<sub>2</sub>, N<sub>2</sub>O, CO Transfert N2-CO2 Transfert N2-CO Laser  $N_2^{*}$ -CO<sub>2</sub>, N<sub>2</sub>O, CO

Système N2-CO Système N2-CO Transfert CO-OCS

Spectromètre à haute température Spectromètre à haute température Spectromètrie à haute température (CsOH) Spectromètre à décharge électrique "in situ"

Largeur de raie : influence de T

Cavité microonde Spectre d'émission  $N_2^{+}+CO_2$ ,  $N_2^{+}+CO_2+He$ Photoionisation-transferts N2-CO2, N20

Transfert d'énergie vibrationnelle Bandes rovibrationnelles de OCS Transitions de dédoublement & - OCS Spectre HCN, DCN Spectre MO substitués isotopiques de OCS

#### - 222 -

MANSON E.L., DE LUCIA F.C., CORDY W. (1975) J. Chem. Phys. 62 p. 4796 MARCOTTIN-MACLOU M., DOYENNETTE L., HENRY L. (1971) Appl. Opt. 10 p. 1768

MATSUMURA C., LIDE Jr D.R. (1969) J. Chem. Phys. 50 p. 71 MILLIKAN R.C. (1963) J. Chem. Phys. 38 p. 2855 MOORE C.B. (1967) dans "Fluorescence" (G.G. GUILBAUT) M. Dekker Inc -New York p. 133 MOORE C.B. (1969) Acc. Chem. Research 2 p. 103 MOORE C.B. (1973) dans "Advances in Chemical Physics" (I. PRIGOGINE, S.A. RICE) J. Wiley and Sons. Vol. 23 p. 41 MORGAN J.E., SCHIFF H.I. (1963) Can. J. Chem. 41 p. 903 MORINO Y., MATSUMURA C. (1967) Bull. Chem. Soc. Japan 40 p. 1095 MORINO Y., NAKAGAWA T. (1968) J. Mol. Spectrosc. 26 p. 496 MUENTER J.S. (1968) J. Chem. Phys. 48 - p. 4544

Ν NAKAGAWA T., MORINO Y. (1969) J. Mol. Spectrosc. 31 p. 208 NETTERFIELD R.P., PARSONS R. W., ROBERTS J.A. (1972) J. Phys. B 5 p. 146

NIELSEN H.H., AMAT G., GOLDSMITH M. (1957) J. Chem. Phys. 26 p. 1060 NIELSEN H.H., (1959) Handbuch der Physik vol XXXVII/1 - Springer-Verlag-Berlin

П OGAWA M., TANAKA Y., JURSA A.S. (1964) J. Chem. Phys. 41 p. 3351 OKA T., TARAGI K., MORINO Y. (1964) J. Mol. Spectrosc. 14 p. 27

P PACEY P.D., POLANYI J.C. (1971) Appl. Opt. 10 p. 1725 PATEL C.K.N. (1964) Phys. Rev. Lett. 13 p. 617 PATEL C.K.N. (1965) Appl. Phys. Lett. 6 p. 12 PEARSON E.F., GORDY W. (1969) Phys. Rev. A 177 p. 52

PEARSON E.F., WINNEWISSER B.P., TRUBLOODE M.B. (1976) Z. Naturforsch 31 a - p. 1259 PICARD-BERSELLINI A., ROSSETTI C. (1975) Chem. Phys. Lett. 36 p. 647 PICARD A. (1976) Thèse - Paris XI

K READ A.W. (1967-1968) Adv. Mol. Relax. Proc. 1 p. 257 REED J.F., RABINOVITCH B.S. (1955) J. Phys. Chem. 59 p. 261 REINARTZ J.M.L.J., MEERTS W.L., DYMANUS A. (1972) Chem. Phys. Lett. 16 p. 576 Etude de OCS(01<sup>1</sup>0) REINARTZ J.M.L.J., DYMANUS A. (1974) Chem. Phys. Lett. 24 p. 346 RHODES C.K., KELLY M.J., JAVAN A. (1968) J. Chem. Phys. 48 p. 5730 RINEHART E.A., KLEEN R.H., LIN C.C. (1960) J. Mol. Spectrosc. 5 p. 458

Spectromètre à haute température Cul Relaxation vibrationnelle (CO, HCL, CO2, N20) Spectrométrie à haute température (RbOH) Relaxation vibrationnelle de CO

Etude par laser des Transferts V-V Transferts V-V

Azote activé - sonde calorimétrique OCS : spectroscopie MO à haute température Constantes de la fonction potentiel de CCS Moment dipolaire de OCS

Dédoublement & dans H&N, OCS Largeur de raie - double modulation

Molécules linéaires - théorie Energie de vibration rotation des molécules

Azote activé - spectre UV Spectroscopie à haute température (H2C0,D2C0)

Cinétique chimique de H+Cl<sub>2</sub> - diffusion Laser  $N_2^{\ddagger} + CO_2$ Laser  $N_2^{*} + N_2^{0}$ Spectromètre à haute température (LiF, Lict) Spectrométrie à haute température (KOH)

Système N2-N20 Système N2-N20

Effet opto-acoustique Cinétique Chimique - diffusion Constantes moléculaires de OCS Relaxation de CO2 Largeur de raie - double modulation

ROSSEELS P., LESECQ B. (1975) non publié

SAITO S. (1970) J. Chem. Phys. 53 p. 2544

1651 ·d

S

Stabilisation programmable

N20 : moment dipolaire

- Spectroscopie MO - transfert électronique N<sub>2</sub>O : constantes de couplage quadripolaire

Théorie : relaxation vibrationnelle dans les gaz

Relaxation vibrationnelle Transfert d'énergie dans les collisions Spectroscopie OM par double résonance IR-MO

Relaxation vibrationnelle par effet de focalisation thermique SOO de definition vibrationnelle de OCS

Relaxation vibrationnelle de OCS Mesure des fréquences, laser à N20 Désexcitation de N20 par N20, CO ou Ar Transfert V-V avec CO2(00°1) Transfert CO2-OCS Itansfert CO2-OCS Itansfert Sartion vibrationnelle dans les gaz STRETTON J.L. (1969) dans "Transfer and Storage of Energy by Molecules" (G.M. BURNETT, A.M. NORTH) Wiley Interscience-London vol 2 p 1 et

STEPHENSON J.C., WOOD R.E., MOORE C.B. (1972) J. Chem. Phys. 56-p. 4813

STEPHENSON J.C., WOOD R.E., MOORE C.B. (1968) J. Chem. Phys. 48 p. 4790

SIEBERT D.R., GRABINER F.R., FLYNN G.W. (1974) J. Chem. Phys. 60 p. 1564

SCHWARTZ R.N., SLAWSKY Z.I., HERZFELD K.F. (1952) J. Chem. Phys. 20

SCHARPEN L.H., MUENTER J.S., LAURIE V.W. (1970) J. Chem. Phys. 53 p. 2513

- 224 -

STRETTON J.L. (1965) Trans. Faraday Soc. 61 p. 1053

STARR D.F., HANCOCK J.K. (1975) J. Chem. Phys. 62 p. 3747

SOKOLOFF D.R., JAVAN A. (1972) J. Chem. Phys. 56 p. 4028

SIEBERT D.R., FLYNN G.W. (1976) J. Chem. Phys. 64 p. 4973

Set . (1976) Sov. J. Quant. Electron. 6 p. 392

SHARTZ R.W., HERZFELD K. (1954) J. Chem. Phys. 22 p. 767 SCHARTZ R.D., BRAU C.A. (1969) J. Chem. Phys. 50 p. 924

SANCHO M., HARMONY M.D. (1966) J. Chem. Phys. 45 p. 1812

р. 58 TRUTT R.J. (1913) Proc. Roy. Soc. London A 88 p. 539 ТАТЕВ G., LEGAY F. (1969) С.R. Acad. Sci. Paris В 269 p. 371 TATEB G., LEGAY F. (1970) Сап. J. Phys. 48 p. 1956

ТАГЕВ С., LEGAY F. (1970) Сап. J. Phys. 48 p. 1956
ТАКАМІ М., SHIMODA K. (1973) Japan J. Appl. Phys. 12 p. 603
ТАКАМІ М., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TAKAMI M., SHIMODA K. (1974) Japan J. Appl. Phys. 13 p. 1699
TRANCZOS F.I. (1956) J. Chem. Phys. 25 p. 439
TRANCZOS F.I. (1976) J. Chem. Phys. 25 p. 439
TRANCZOS F.I. (1976) J. Chem. Phys. 25 p. 439
TRANCZOS F.I. (1976) J. Chem. Phys. 25 p. 439
TRANCZOS F.I. (1976) J. SANTER SERVAES CH., TÖRRING T. (1974)
TER MEULEN J.J. (1970) QUARTERIJY REPORTE n° 28 – Université de Nimégue

Z. Naturforsch. 29 a p. 1692

TORRING T. (1973) J. Mol. Spectrosc. 48 p. 148

TOWNES C.H., SCHAWLOW A.L. (1955) "Microwave Spectroscopy" Mc Graw-Hill

Иеч-Тогк ТREANOR С.Е., RICH J.W., REHM R.G. (1968) J. Chem. Phys. 48 p. 1798

**TRIAILLE A.E., COURTOY C.P. (1965) J. Mol. Spectrosc. 18 p. 118 1965** 

TSAO C.J., CURNUTTE B. (1962) J.Q.S.R.T. 2 p. 41

anharmoniques Spectre infrarouge de OCS Théorie : Largeur de raie

Modulation par saturation

Modulation par saturation

Double résonance IR-MO : HCOOH Azote activé : spectre UV

Mécanisme du laser N2-C0

Double résonance IR-MO : HDCO

Réactions de N2 avec le soufre

Action du soufre sur le laser CO-N2

Théorie : relaxation vibrationnelle Radical OH - cinétique chimique

Relaxation vibrationnelle d'oscillateurs

|                                                                         | V                                                                          |                                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                         | VAN VLECK J.H., WEISSKOPF V.F. (1945) Rev. Mod. Phys. 17 p. 227            | Théorie : Largeur de raie                               |
|                                                                         | VAL J. L. (1968) C.R. Acad. Sci. Paris 266 B p. 408                        | Emission de $CO_2 + N_2^{*}$                            |
|                                                                         | VAL J.L. (1973) Thèse Paris VI                                             | Transfert $CO_2 + N_2^{\frac{1}{2}}$                    |
|                                                                         | VALENTIN A., LE MOAL M.F., CARDINET P., BOISSY J.P. (1976) J. Mol.         | Spectroscopie IR de N <sub>2</sub> O                    |
|                                                                         | Spectrosc. 59 p. 96                                                        |                                                         |
|                                                                         | VERDIECK J.F., CORNWELL C.D. (1961) Rev. Sci. Instr. 32 p. 1383            | Double modulation de source                             |
|                                                                         | VON HOYERMANN K., POSS R. (1971) Ber. Bunsenges. Physik. Chem. 75 p. 1294  | Transfert CO(v=5) - OCS                                 |
| •                                                                       | VUYLSTEKE A.A. (1960) "Elements of Maser Theory" - Van Nostrand Company-   |                                                         |
|                                                                         | Princeton, New Jersey                                                      |                                                         |
|                                                                         | 117 '                                                                      |                                                         |
|                                                                         | WESTBURY R.A., WINKLER C.A. (1960) Can. J. Chem. 38 p. 334                 | Transfert $N_2^{\pm}$ +H <sub>2</sub> S,CS <sub>2</sub> |
|                                                                         | WHITFORD B.G., SIEMSEN K.J., RICCIUS H.D., G.R. HANES (1975) Optics Comm.  | Fréquences du laser à N <sub>2</sub> 0                  |
|                                                                         | 14 p. 70                                                                   |                                                         |
|                                                                         | WILSON Jr E.B., DECIUS J.C., CROSS P.C. (1955) "Molecular vibrations"      |                                                         |
|                                                                         | Mc Graw-Hill New-York                                                      |                                                         |
|                                                                         | WINNEWISSER M., WINNEWISSER B.P. (1972) J. Mol. Spectrosc. 41 p. 143       | Spectre de rotation de HCNO                             |
|                                                                         | WISE H., ABLOW C.M. (1958) J. Chem. Phys. 29 p. 634                        | Diffusion et réaction sur parois                        |
|                                                                         | WISNIEWSKI E.E., FEIN M.E., VERDEYEN J.T., CHERRINGTON B.E. (1968) Appl.   | Excitation thermique de N <sub>2</sub>                  |
|                                                                         | Phys. Lett. 12 p. 257                                                      |                                                         |
|                                                                         | WOODS R.C. (1973) Rev. Sci. Instr. 44 p. 282                               | Spectromètre à décharge électrique "in                  |
|                                                                         |                                                                            | situ"                                                   |
|                                                                         | WOODS R.C., DIXON T.A., SAYKALLY R.J., SZANTO P.G. (1975) Phys. Rev. Lett. | Spectre microonde HCO <sup>+</sup>                      |
|                                                                         | <b>35</b> p. 1269                                                          |                                                         |
|                                                                         | WOODS R.C., SAYKALLY R.J., DIXON T.A., ANDERSON T.G., ELLSWORTH R.L.,      | Décharge électrique - CO a <sup>3</sup> π               |
| ANDERSON P.G. (1976) 31 <sup>th</sup> Symp. Mol. Spectroscopy Ohio Star |                                                                            | r-                                                      |
|                                                                         | sity                                                                       |                                                         |
|                                                                         | WOODS R.C. (1977) 5e Colloque sur la spectroscopie mol. haute résol. Tours | Molécules instables et ions : spectre MO                |
|                                                                         | (France)                                                                   |                                                         |
|                                                                         | WRIGHT A.N., WINKLER C.A. (1968) "Active Nítrogen" Academic Press New-York |                                                         |
|                                                                         | WYSE F.C., GORDY W. (1972) J. Chem. Phys. 56 p. 2130                       | Spectroscopie haute température (ALCL,                  |
|                                                                         |                                                                            | A&Br, A&I)                                              |
|                                                                         | V                                                                          |                                                         |
|                                                                         |                                                                            |                                                         |

A YAMADA H., PERSON W.B. (1966) J. Chem. Phys. 45 p. 1861

Intensité IR de  $N_20$ , OCS, CS<sub>2</sub>

