50376 1979 74

50376 1979 74

#### THESE PRESENTEE

А

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

POUR OBTENIR LE TITRE

DE

DOCTEUR 3ème CYCLE EN MECANIQUE

PAR

DHUIQUE - MAYER Jean-Paul



MODELISATION DE L'INFLUENCE DES SUPPORTS D'UN RESERVOIR HORIZONTAL A VIROLE CYLINDRIQUE

--000---

SOUTENUE LE 22 MARS 1979

MEMBRES DU JURY :

| Président   | : | Monsieur | ZEYTOUNIAN, Professeur,LILLE I         |
|-------------|---|----------|----------------------------------------|
| Rapporteur  | : | Monsieur | FLAMME, Maître de Conférences, LILLE I |
| Examinateur | : | Monsieur | PARSY, Maître de Conférences, LILLE I  |
| Invité      | : | Monsieur | HAGE, Professeur E.N.T.I.M.D.          |

Je remercie Monsieur ZEYTOUNIAN de me faire l'honneur d'accepter la présidence de ce Jury, ainsi que Monsieur PARSY qui a bien voulu en faire partie.

Je tiens également à remercier Monsieur FLAMME de m'avoir proposé ce sujet et de m'avoir constamment suivi et encouragé de ses conseils.

Je suis reconnaissant à Monsieur HAGE de l'aide précieuse qu'il m'a apportée pour ce travail ainsi qu'à Monsieur MARTI de m'avoir initié à la programmation et à Mesdames DUPONT et VEGA d'avoir exécuté la frappe de cette thèse.

| Table | des | matières |
|-------|-----|----------|
|       |     |          |

| I. FLEXION DES COQUES CYLINDRIQUES                                                      | 4          |
|-----------------------------------------------------------------------------------------|------------|
| I.1. Définitions et Notations.                                                          |            |
| I.1.1. Présentation du problème                                                         | 4          |
| I.1.2. Equations générales                                                              | Ц          |
| I.1.3. Conventions de signes                                                            | 6          |
| I.1.4. Conditions aux limites                                                           | 7          |
|                                                                                         | I          |
| I.2. Théorie linéarisée de la flexion des coques cylindriques.                          | 7          |
| I.2.1. Solution du problème                                                             | 9          |
| I.2.2. Equations et résolution à l'ordre $\epsilon^{\circ}$                             | <b>1</b> 0 |
| I.2.3. Equations et résolution à l'ordre $\epsilon^1$                                   | 11         |
| I.2.4. Equations et résolution à l'ordre $\varepsilon^2$                                | <b>1</b> 2 |
| I.2.5. Vérification des équations de compatibilité                                      | <b>1</b> 4 |
| 1.2.6. Comparaison avec la théorie classique                                            | 16         |
| I.2.7. Conclusion                                                                       | <b>1</b> 8 |
| I.3. Théorie classique de la flexion des coques cylindriques                            | 10         |
|                                                                                         | 19         |
| I.3.1. Résultantes et moments agissant sur un élément                                   | 19         |
| de coque                                                                                |            |
| I.3.2. Equations d'équilibre en fonction des contraintes<br>et moments intégrés         | 21         |
| I.3.3. Expressions des allongements relatifs $\epsilon_{ij}$                            | 23         |
| I.3.4. Expression des composantes du tenseur contrainte                                 | 24         |
| I.3.5. Expression des quantités intégrées en fonction des<br>déplacements du plan moyen | 24         |
| I.3.6. Equations d'équilibre en fonction des déplacements<br>du plan moyen              | 25         |
| I.3.7. Conclusion                                                                       | 26         |
| II. INFLUENCE DES SUPPORTS SUR UN RESERVOIR CYLINDRIGUE HORIZONTAL                      | 20         |
| II.1. Présentation du problème                                                          | 30         |
| II.1.1. Etude statique                                                                  | 30         |
| II.1.2. Résolution du problème                                                          | 32         |
| II.2. Solutions particulières.                                                          | 32         |
| II.2.1. Méthode employée                                                                | 32         |
| II.2.2. Calcul de D <sub>mn</sub> sur quelques formes de supports                       | 35         |
| II.2.3. Exemple numérique quand la répartition de pression<br>aux appuis est constante  | 38         |
| II.2.4. Remarque sur les déplacements.                                                  | Ш२         |
| +                                                                                       |            |

#### 43

## II.3. Solutions sans 2ème membre

II.3.1. Recherche d'une solution45II.3.2. Détermination des coefficients  $A_{1m}, A_{2m}, \dots, A_{3m}$ .47II.3.3. Solution complète en exponentielle de  $\alpha_1$ 49II.3.4. Solution complète en exponentielle de  $\alpha_2$ 50II.3.5. Calcul des contraintes  $\sigma_{ij}$ 51II.3.6. Exemple numérique53

## II.4. Solution générale

II.4.1. Exemple numérique 55

CONCLUSION

BIBLIOGRAPHIE

58

57

### 45

Le code de construction S.N.C.T (Syndicat National de la Chaudronnerie et de la Tolerie) pour le calcul de l'influence des supports d'un réservoir horizontal à virole cylindrique se base sur les travaux de ZICK (1951). Celui-ci traite le problème en assimilant l'appareil à une poutre reposant sur 2 (ou plusieurs) appuis. Il doit introduire ainsi divers constantes empiriques et obtient des résultats qui peuvent être fort différents des valeurs réelles.

Notre but ne sera pas d'établir de nouvelles normes de construction mais de proposer un modèle de calcul qui tienne davantage compte de la géométrie du système.

Nous allons isoler les 2 fonds de la virole. Le comportement de celle-ci, qui est une coque cylindrique, est donné, en fonction des charges extérieures par un système différentiel linéaire dont :

- Le premier membre est une somme des dérivées des déplacements du plan moyen.
- Le second membre est la donnée de ces charges extérieures  $p_r$ ,  $p_A$ ,  $p_x$  en coordonnées cylindriques.
- Les conditions aux limites devront tenir compte du comportement des fonds.

La solution de ce système sera la somme d'une solution particulière et d'une solution sans second membre. Puis, nous devrons chercher un comportement acceptable des fonds.

Dans un premier chapitre nous allons établir les bases théoriques de notre étude en cherchant une solution à partir de la théorie de l'élasticité, car les différents auteurs que nous citons en bibliographie arrivent à des formules différentes d'un point de vue littéral.

Nous avons donc établi 2 sortes de résultats :

- L'expression des composantes σ. du tenseur contrainte en fonction des déplacements du plan moyen de la coque.
- Les relations entre ces déplacements du plan moyen et les charges extérieures.

Enfin l'appareil que nous décrivons comme exemple numérique est actuellement en construction au Laboratoire de Mécanique de l'Ecole des Mines de Douai. L'étude des valeurs expérimentales obtenues pourra être la suite de ce travail.



- I.1. Définitions et notations.
- Dans un système de coordonnées cylindriques (r, θ, x) traçons sur la surface (∑), définie par r = R, une courbe fermée (Γ).
- La constante positive R sera le rayon de la coque cylindrique.
- Nous appelons plan moyen l'ensemble des points P intérieurs à ( $\Gamma$ ) et situés sur ( $\Sigma$ ).

- Une coque cylindrique d'épaisseur constante 2h sera alors définie par le domaine (D) des points M tels que :

$$\overrightarrow{PM} = z \overrightarrow{e_n}$$
, avec  $-h \leq z < +h$ 

Notons, au passage, que nous ne ferons pas d'hypothèses particulières sur la courbe  $(\Gamma)$ . La raison en sera donnée plus loin.

#### I.1.1. Présentation du problème

Hypothèse 1 : Le domaine ( ) est constitué d'un milieu continu, homogène isotrope, élastique, et non pesant.

- Supposons que l'on soumette  $(\mathfrak{A})$  à une répartition d'efforts extérieurs {  $\mathcal{T}$  } sur sa frontière. Notre but sera de déterminer, en chaque point M de  $(\mathfrak{A})$ , les champs de déplacements et de contraintes  $\vec{u}(M)$  et  $\hat{\mathcal{T}}(M)$  lorsque h tend vers O.

#### I.1.2. Equations générales

Nous allons écrire en coordonnées cylindriques :

- les équations d'équilibre (1), (2), (3)
- les relations contraintes déplacements (4) à (9)
- les équations de compatilibité (10) à (15)

Nous noterons par :

• u, v, w les déplacements d'un point M dans les directions de  $\overrightarrow{e_r}, \overrightarrow{e_{\theta}}, \overrightarrow{e_x}$ 

•  $\sigma_{11}$ ,  $\sigma_{12}$ ,  $\sigma_{13}$ ,  $\sigma_{23}$ ,  $\sigma_{33}$ ,  $\sigma_{22}$  les composantes du tenseur des contraintes en ce point, en choisissant les indices 1 pour r, 2 pour  $\theta$ , 3 pour x.

$$\left( 1 \right) \frac{\partial \sigma}{\partial r} \frac{1}{1} + \frac{1}{r} - \frac{\partial \sigma}{\partial \theta} \frac{12}{r} + \frac{\partial \sigma}{\partial x} + \frac{\partial \sigma}{\partial r} \frac{1}{r} - \frac{\sigma}{22} = 0$$

$$\left( 2 \right) \frac{\partial \sigma}{\partial r} \frac{12}{r} + \frac{1}{r} - \frac{\partial \sigma}{\partial \theta} + \frac{\partial \sigma}{\partial x} + 2 - \frac{\sigma}{12} = 0$$

$$\left( 3 \right) \frac{\partial \sigma}{\partial r} \frac{13}{r} + \frac{1}{r} - \frac{\partial \sigma}{\partial \theta} + \frac{\partial \sigma}{\partial x} + 2 - \frac{\sigma}{12} = 0$$

$$\left( 3 \right) \frac{\partial \sigma}{\partial r} \frac{13}{r} + \frac{1}{r} - \frac{\partial \sigma}{\partial \theta} + \frac{\partial \sigma}{\partial x} + \frac{\sigma}{\partial r} \frac{13}{r} = 0$$

$$\left( 7 \right) E \frac{\partial u}{\partial r} = \sigma_{11} - v(\sigma_{22} + \sigma_{33}) \quad (4) \quad \sigma_{12} = \frac{E}{2(1+v)} - \left[ \frac{\partial v}{\partial r} - \frac{v}{r} + \frac{1}{r} \frac{\partial u}{\partial \theta} \right]$$

$$\left( 8 \right) E \frac{\partial u}{\partial x} = \sigma_{33} - v(\sigma_{11} + \sigma_{22}) \quad (5) \quad \sigma_{13} = \frac{E}{2(1+v)} - \left[ \frac{\partial u}{\partial x} + \frac{\partial u}{\partial r} \right]$$

$$\left( 9 \right) E \left( \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{u}{r} \right) = \sigma_{22} - v(\sigma_{11} + \sigma_{33}) \quad (6) \quad \sigma_{23} = \frac{E}{2(1+v)} - \left[ \frac{1}{r} \frac{\partial w}{\partial \theta} + \frac{\partial v}{\partial x} \right]$$

$$\left( 1 \right) \quad \Delta \sigma_{11} - \frac{2}{r^{2}} \left( 2 - \frac{\partial \sigma}{\partial \theta} + \sigma_{11} - \sigma_{22} \right) + \frac{1}{1+v} - \frac{\partial^{2} \sigma}{\partial r^{2}} = 0$$

$$\left( 1 \right) \quad \Delta \sigma_{12} + \frac{2}{r^{2}} \left( 2 - \frac{\partial \sigma}{\partial \theta} + \sigma_{11} - \sigma_{22} \right) + \frac{1}{1+v} \left[ \frac{1}{r^{2}} - \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r} - \frac{\partial}{\partial r} \right] \sigma_{1} = 0$$

$$\left( 3 \right) \quad \Delta \sigma_{12} + \frac{2}{r^{2}} \left( - \frac{\partial \sigma}{\partial \theta} - \frac{\partial^{2} \sigma}{\partial \theta} - 2 \sigma_{12} \right) + \frac{1}{1+v} \left[ \frac{1}{r} - \frac{\partial^{2}}{\partial \theta} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{\partial^{2} \sigma}{r^{2}} \right] \sigma_{1} = 0$$

$$\left( 4 \right) \quad \Delta \sigma_{12} + \frac{2}{r^{2}} \left( - \frac{\partial \sigma}{\partial \theta} - \frac{\partial \sigma}{\partial \theta} - \frac{\partial \sigma}{\partial \theta} - 2 \sigma_{12} \right) + \frac{1}{1+v} \left[ \frac{1}{r} - \frac{\partial^{2}}{\partial \theta} - \frac{1}{r^{2}} - \frac{1}{2} - \frac{\partial}{\partial \theta} - \frac{1}{r^{2}} - \frac{1}{2} - \frac{\partial}{\partial \theta} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{1}{r^{2}} - \frac{\partial^{2} \sigma}{\partial \theta} - \frac{\partial}{r^{2}} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{\partial}{r^{2}} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{\partial}{r^{2}} - \frac{1}{r^{2}} - \frac{\partial}{\partial \theta} - \frac{\partial}{r^{2}} - \frac{1}{r^{2}} - \frac{1}{r^{2}} - \frac{1}{r^{2}} - \frac{1}{r^{2}} - \frac{1}{r^{2}} - \frac{1}{r^{2}} -$$

4) 
$$\Delta \sigma_{13} - \frac{1}{r^2} \left( 2 - \frac{\partial \sigma_{23}}{\partial \theta} + \sigma_{13} \right) + \frac{1}{1 + \nu} - \frac{\partial^2 \sigma_{I}}{\partial x \partial r} = C$$

5) 
$$\Delta \sigma_{23} + \frac{1}{r^2} \left( 2 - \frac{\partial \sigma_{13}}{\partial \theta} - \sigma_{23} \right) + \frac{1}{1+\nu} - \frac{1}{r} \frac{\partial^2 \sigma_{I}}{\partial \theta \partial x} = 0$$

Avec les notations :

$$E = Module d'Young \qquad r = R + z$$

$$v = \text{coefficient de Poisson} \qquad \Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \quad \frac{\partial}{\partial r} + \frac{1}{r^2} \quad \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial x^2}$$

$$\sigma_I = \sigma_{11} + \sigma_{22} + \sigma_{33}$$

#### I.1.3. Conventions de signes

Avec les notations définies précédemment, nous considérerons comme positifs les contraintes et déplacements dans le sens indiqué ci dessous :



Contraintes exercées par la partie  $\theta > \theta_0$  sur la partie  $\theta < \theta_0$ 

$$\overrightarrow{\sigma} \left( \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) = \left( \begin{array}{c} \sigma_{12} \\ \sigma_{22} \\ \sigma_{23} \end{array} \right)$$



Ainsi le signe d'une contrainte nous permettra de préciser l'état de compression ou de traction d'un point de la coque. I.1.4. Conditions aux limites

Nous supposerons que la coque est soumise à des contraintes extérieures

- sur les 2 faces z = -h et z = +h

- sur les bords, le long de la courbe (T). Dans l'immédiat, nous allons ignorer cette condition aux limites.

Adoptons les notations suivantes :

Sur la face "extérieure" de la coque  $\overrightarrow{T}^{+} = \begin{pmatrix} p_r \\ p_{\theta}^{+} \\ p_{\tau}^{+} \end{pmatrix}$ 

Sur la face "intérieure" de la coque  $\vec{T}^- = \begin{pmatrix} p_r^- \\ p_{\theta}^- \\ p_{-} \end{pmatrix}$ 



#### I.2. Théorie linéarisée de la flexion des coques cylindriques

Nous allons tout d'abord écrire les équations générales en variables non-dimensionnées avec les notations suivantes :

 $r = R + z \quad \overline{\sigma}_{ij} = \frac{\sigma_{ij}}{\sigma} \quad \overline{x} = \frac{x}{L} \quad \overline{u}, \, \overline{v}, \, \overline{w} = \frac{u, v, w}{WL}$   $z = h \xi \quad \sigma = E \frac{k}{R} \quad \alpha = \frac{R}{L} \quad \varepsilon = \frac{h}{R}$   $\overline{\sigma}_{I} = \overline{\sigma}_{11} + \overline{\sigma}_{22} + \overline{\sigma}_{33}$ 

 $\xi$ : est une nouvelle variable qui reste bornée quand h tend vers 0,  $\alpha$  et  $\epsilon$  sont des paramètres de forme

- L : longueur de la coque parallèlement à l'axe
- l : déplacement caractéristique (par exemple prenons l = w flèche radiale maximale).



) 
$$(1 + \xi \epsilon) \frac{\partial \overline{\sigma_{11}}}{\partial \xi} + \epsilon \frac{\partial \overline{\sigma_{12}}}{\partial \theta} + (\epsilon + \epsilon^2 \xi) \alpha \frac{\partial \overline{\sigma_{13}}}{\partial x} + \epsilon (\overline{\sigma_{11}} - \overline{\sigma_{22}}) = 0$$
  
)  $(1 + \xi \epsilon) \frac{\partial \overline{\sigma_{12}}}{\partial \xi} + \epsilon \frac{\partial \overline{\sigma_{22}}}{\partial \theta} + (\epsilon + \epsilon^2 \xi) \alpha \frac{\partial \overline{\sigma_{23}}}{\partial x} + 2 \epsilon \overline{\sigma_{12}} = 0$   
)  $(1 + \xi \epsilon) \frac{\partial \overline{\sigma_{13}}}{\partial \xi} + \epsilon \frac{\partial \overline{\sigma_{23}}}{\partial \theta} + (\epsilon + \epsilon^2 \xi) \alpha \frac{\partial \overline{\sigma_{33}}}{\partial x} + \epsilon \overline{\sigma_{13}} = 0$ 

$$\frac{\partial \overline{u}}{\partial \xi} = \varepsilon \left[ \overline{\sigma_{11}} - v \left( \overline{\sigma_{22}} + \overline{\sigma_{33}} \right) \right] (19) \quad \frac{\partial \overline{v}}{\partial \theta} + \overline{u} = (1 + \varepsilon \xi) \left[ \overline{\sigma_{22}} - v \left( \overline{\sigma_{11}} + \overline{\sigma_{33}} \right) \right] (21)$$

$$\alpha \frac{\partial \overline{w}}{\partial \overline{x}} = \overline{\sigma_{33}} - \nu(\overline{\sigma_{11}} + \overline{\sigma_{22}})$$

$$(\varepsilon + \varepsilon^2 \xi) \overline{\sigma_{12}} = \frac{1}{2(1+\nu)} \prod (1 + \varepsilon \xi) \frac{\partial \overline{v}}{\partial \xi} - \varepsilon (\overline{v} - \frac{\partial \overline{u}}{\partial \theta}) \prod$$

3) 
$$\varepsilon \quad \overline{\sigma_{13}} = \frac{1}{2(1+\nu)} \left[ \alpha \varepsilon \frac{\partial \overline{u}}{\partial \overline{x}} + \frac{\partial \overline{w}}{\partial \xi} \right]$$

4) 
$$(1 + \varepsilon \xi) \overline{\sigma_{23}} = \frac{1}{2(1+\nu)} \left[ \frac{\partial \overline{w}}{\partial \theta} + \alpha \left( (1 + \varepsilon \xi) \frac{\partial v}{\partial \overline{x}} \right] \right]$$

5) 
$$(1+2\xi \varepsilon + \varepsilon^2 \xi^2) \frac{\overline{\partial^2 \sigma_{11}}}{\partial \xi^2} + (\varepsilon + \varepsilon^2 \xi) \frac{\partial \sigma_{11}}{\partial \xi} + \alpha^2 (\varepsilon^2 + 2\varepsilon^3 \xi + \xi^2 \varepsilon^4) \frac{\partial^2 \sigma_{11}}{\partial \overline{x}^2}$$

$$+ \epsilon^{2} \frac{\overline{\partial^{2} \sigma_{1}}}{\partial \theta^{2}} - 2 \epsilon^{2} \left(2 \frac{\overline{\partial \sigma_{12}}}{\partial \theta} + \overline{\sigma_{11}} - \overline{\sigma_{22}}\right) + \frac{1 + 2 \xi \epsilon + \xi^{2} \epsilon^{2}}{1 + \nu} \frac{\overline{\partial^{2} \sigma_{1}}}{\partial \xi^{2}} = 0$$

$$26) \quad (1+2\xi\varepsilon+\varepsilon^{2}\xi^{2}) \quad \frac{\partial^{2}\sigma_{22}}{\partial\xi^{2}} + (\varepsilon+\varepsilon^{2}\xi) \quad \frac{\partial\sigma_{22}}{\partial\xi} + \varepsilon^{2} \quad \frac{\partial^{2}\sigma_{22}}{\partial\theta^{2}} + \alpha^{2}(\varepsilon^{2}+2\varepsilon^{3}\xi+\xi^{2}\varepsilon^{4}) \quad \frac{\partial^{2}\sigma_{22}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{3}\xi+\xi^{2}\varepsilon^{4}) \quad \frac{\partial^{2}\sigma_{22}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{3}\xi+\xi^{2}\varepsilon^{4}) \quad \frac{\partial^{2}\sigma_{22}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{3}\xi+\xi^{2}\varepsilon^{4}) \quad \frac{\partial^{2}\sigma_{22}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}) \quad \frac{\partial^{2}\sigma_{22}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}) \quad \frac{\partial^{2}\sigma_{2}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}) \quad \frac{\partial^{2}\sigma_{2}}{\partial\overline{x^{2}}} + 2\varepsilon^{2}\varepsilon^{2}(\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^{2}+2\varepsilon^$$

2

27) 
$$(1 + 2\xi\epsilon + \epsilon^{2}\xi^{2}) = \frac{\partial^{2}\overline{\sigma_{12}}}{\partial\xi^{2}} + (\epsilon + \epsilon^{2}\xi) = \frac{\partial\overline{\sigma_{12}}}{\partial\xi} + \epsilon^{2} = \frac{\partial^{2}\overline{\sigma_{12}}}{\partial\theta^{2}} + \alpha^{2}(\epsilon^{2} + 2\epsilon^{3}\xi + \epsilon^{4}\xi^{2}) = \frac{\partial^{2}\overline{\sigma_{12}}}{\partial\overline{x}^{2}}$$

$$+ 2 \varepsilon^{2} \left( \frac{\partial \overline{\sigma_{11}}}{\partial \theta} - \frac{\partial \overline{\sigma_{22}}}{\partial \theta} - 2 \overline{\sigma_{12}} \right) + \frac{1}{1+\nu} \left[ \left( \varepsilon + \varepsilon^{2} \xi \right) \frac{\partial \overline{\sigma_{I}}}{\partial \theta \partial \xi} - \varepsilon^{2} \frac{\partial \overline{\sigma_{I}}}{\partial \theta} \right] = 0$$

28) 
$$(1 + 2\xi\epsilon + \epsilon^2\xi^2) \frac{\partial^2 \overline{\sigma_{33}}}{\partial \xi^2} + (\epsilon + \epsilon^2\xi) \frac{\partial \overline{\sigma_{33}}}{\partial \xi} + \epsilon^2 \frac{\partial^2 \overline{\sigma_{33}}}{\partial \theta^2} + \alpha^2 (\epsilon^2 + 2\epsilon^3\xi + \epsilon^4\xi^2) \frac{\partial^2 \overline{\sigma_{33}}}{\partial \overline{x}^2}$$

+ 
$$\alpha^2 \frac{\varepsilon^2 + 2\varepsilon^3\xi + \varepsilon^4\xi^2}{1 + \nu} \frac{\partial^2 \sigma_{I}}{\partial \bar{x}^2} = 0$$

29)  $(1 + 2\xi\varepsilon + \varepsilon^{2}\xi^{2}) - \frac{\partial^{2}\sigma_{13}}{\partial\xi^{2}} + (\varepsilon + \varepsilon^{2}\xi) - \frac{\partial\overline{\sigma_{13}}}{\partial\xi} + \varepsilon^{2} - \frac{\partial^{2}\overline{\sigma_{13}}}{\partial\theta^{2}} + \alpha^{2}(\varepsilon^{2} + 2\varepsilon^{3}\xi + \varepsilon^{4}\xi^{2}) - \frac{\partial^{2}\overline{\sigma_{13}}}{\partial\overline{x}^{2}}$ 

$$- \varepsilon^{2} \left(2 \frac{\partial \overline{\sigma_{23}}}{\partial \theta} + \overline{\sigma_{13}}\right) + \frac{\alpha(\varepsilon + 2\varepsilon^{2}\xi + \varepsilon^{3}\xi^{2})}{1 + \nu} \frac{\partial^{2}\sigma_{I}}{\partial \bar{x}\partial \xi} = 0$$

$$30) (1 + 2\xi\epsilon + \epsilon^{2}\xi^{2}) \frac{\partial^{2}\overline{\sigma_{23}}}{\partial\xi^{2}} + (\epsilon + \epsilon^{2}\xi) - \frac{\partial\overline{\sigma_{23}}}{\partial\xi} + \epsilon^{2} - \frac{\partial\overline{\sigma_{23}}}{\partial\theta^{2}} + \alpha^{2}(\epsilon^{2} + 2\epsilon^{3}\xi + \epsilon^{4}\xi^{2}) - \frac{\partial^{2}\overline{\sigma_{23}}}{\partial\overline{x}^{2}} + \epsilon^{2} - \frac{\partial\overline{\sigma_{23}}}{\partial\theta^{2}} + \alpha^{2}(\epsilon^{2} + 2\epsilon^{3}\xi + \epsilon^{4}\xi^{2}) - \frac{\partial^{2}\overline{\sigma_{23}}}{\partial\overline{x}^{2}} + \epsilon^{2} - \frac{\partial\overline{\sigma_{23}}}{\partial\overline{x}^{2}} + \epsilon^$$

avec pour conditions aux limites Si l'on note  $\bar{p} = \frac{P}{\sigma}$ 

$$\overline{\sigma_{11}}(\xi = 1) = \overline{p_r} + \qquad \overline{\sigma_{11}}(\xi = -1) = -\overline{p_r} - \overline{\sigma_{12}}(\xi = 1) = \overline{p_{\theta}} + \qquad \overline{\sigma_{12}}(\xi = -1) = -\overline{p_{\theta}} - \overline{\sigma_{13}}(\xi = 1) = \overline{p_x} + \qquad \overline{\sigma_{13}}(\xi = -1) = -\overline{p_x} - \overline{\sigma_{13}}(\xi = -1) = -\overline{p_x} -$$

#### I.2.1. Solution du problème

Hypothèse 2 : Les solutions de ce système d'équation se mettent sous la forme :

$$\overline{u}(\xi,\overline{x},\theta,\varepsilon) = \overline{u}^{(0)}(\xi,\theta,\overline{x}) + \varepsilon \overline{u}^{(1)}(\xi,\theta,\overline{x}) + \varepsilon^2 \quad \overline{u}^{(2)}(\xi,\theta,\overline{x}) + \cdots$$

$$\overline{v}(\xi,\overline{x},\theta,\varepsilon) = \overline{v}^{(0)}(\xi,\theta,\overline{x}) + \varepsilon \overline{v}^{(1)}(\xi,\theta,\overline{x}) + \cdots$$

$$\overline{w}(\xi,\overline{x},\theta,\varepsilon) = \overline{w}^{(0)}(\xi,\theta,\overline{x}) + \varepsilon \overline{w}^{(1)}(\xi,\theta,\overline{x}) + \cdots$$

$$\frac{\overline{\sigma_{11}}}{\sigma_{12}} \left\{ (\xi, \bar{x}, \theta, \varepsilon) = \varepsilon \left\{ \begin{array}{c} \overline{\sigma_{11}}^{(1)} \\ \overline{\sigma_{12}}^{(1)} \\ \overline{\sigma_{13}}^{(1)} \end{array} \right\} + \varepsilon^2 \left\{ \begin{array}{c} \overline{\sigma_{11}}^{(2)} \\ \overline{\sigma_{12}}^{(2)} \\ \overline{\sigma_{13}}^{(2)} \\ \overline{\sigma_{13}}^{(2)} \end{array} \right\} + \ldots \right\}$$

$$\frac{\overline{\sigma_{22}}}{\overline{\sigma_{33}}} \left\{ (\xi, \bar{x}, \theta, \varepsilon) = \begin{cases} \overline{\sigma_{22}}(\circ) \\ \vdots \\ \overline{\sigma_{33}}(\circ) & (\xi, \theta, \bar{x}) + \varepsilon \end{cases} \left\{ \begin{array}{c} \overline{\sigma_{22}}(1) \\ \overline{\sigma_{33}}(1) & (\xi, \theta, \bar{x}) + \varepsilon^2 \\ \overline{\sigma_{33}}(1) & (\xi, \theta, \bar{x}) + \varepsilon^2 \\ \overline{\sigma_{33}}(2) & (\xi, \theta, \bar{x}) + \ldots \\ \overline{\sigma_{23}}(2) & \overline{\sigma_{23}}(2) \\ \overline{\sigma_{23}}(2) & \overline{\sigma_{23}}(2) \\ \end{array} \right\}$$

Nous allons calculer séparément les termes à l'ordre  $\varepsilon^{0}$ ,  $\varepsilon^{1}$  et  $\varepsilon^{2}$ . Pour cela nous n'utiliserons que les équations d'équilibre (16) à (18) et les relations contraintes-déplacements (19) à (24).

Dans ce cas, nous remarquons que les équations (16) à (18) sont du 1er ordre en  $\xi$ pour  $\overline{\sigma_{11}}$   $\overline{\sigma_{12}}$   $\overline{\sigma_{13}}$  alors qu'il existe pour ces 3 quantités 2 conditions aux limites (pour  $\xi = -1$  et  $\xi = +1$ ). Nous allons remplacer ces 2 conditions par d'autres en  $\xi = 0$ .

<u>Hypothèse 3</u> : En  $\xi = 0$ , nous avons :

| $\bar{u} = \bar{u}^{(o)}$     | $\overline{\sigma_{22}} = \overline{\sigma_{22}}(\circ)$ | $\overline{\sigma_{11}} = 0$ |
|-------------------------------|----------------------------------------------------------|------------------------------|
| $\bar{v} = \bar{v}^{(\circ)}$ | $\overline{\sigma_{33}} = \overline{\sigma_{33}}(\circ)$ | $\sigma_{12} = 0$            |
| $\bar{w} = \bar{w}^{(o)}$     |                                                          | $\overline{\sigma_{13}} = 0$ |

Par la suite nous donnerons une interprétation de cette hypothèse 3.

## I.2.2. Equations et résolution à l'ordre $\varepsilon^{\circ}$

- Reportons les développements de l'hypothèse 2 dans les équations (16) à (24) et retenons les termes facteurs de  $\varepsilon^{\circ}$ .

$$(19) \implies \frac{\partial \overline{u}^{(0)}}{\partial \xi} = 0 \qquad (23) \implies \frac{\partial \overline{w}^{(0)}}{\partial \xi} = 0 \qquad (22) \implies \frac{\partial \overline{v}^{(0)}}{\partial \xi} = 0$$

$$(21) \implies \frac{\partial \overline{v}^{(0)}}{\partial \theta} + \overline{u}^{(0)} = \overline{\sigma_{22}}(0) - v \overline{\sigma_{33}}(0)$$

$$(21) \implies \frac{\partial \overline{v}^{(0)}}{\partial \theta} + \overline{u}^{(0)} = \overline{\sigma_{22}}(0) - v \overline{\sigma_{33}}(0)$$

(20)  $\implies \alpha \frac{\partial \overline{w}(0)}{\partial x} = \overline{\sigma_{33}}(0) - \nu \overline{\sigma_{22}}(0)$ 

$$(24) \implies \overline{\sigma_{23}}(\circ) = \frac{1}{2(1+\nu)} \left[ \frac{\partial \overline{w}(\circ)}{\partial \theta} + \alpha \frac{\partial \overline{v}(\circ)}{\partial \overline{x}} \right]$$

- Résolution :

| $\frac{\overline{u}^{(\circ)}}{\overline{v}^{(\circ)}} = \overline{V}(\mathbf{x}, \theta)$ | $\overline{\sigma_{22}}^{(\circ)} = \frac{1}{1 - v^2} \left[ \frac{\partial \overline{v}^{(\circ)}}{\partial \theta} + \overline{u}^{(\circ)} + \alpha v \right]$           | $\frac{1}{2} \frac{\overline{w}^{(\circ)}}{\overline{x}}$                                                   |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $\overline{w}^{(\circ)} = W(x,\theta)$                                                     | $\overline{\sigma_{33}}(\circ) = \frac{1}{1 - \nu^2} \left[ \nu \left( \frac{\partial \overline{v}(\circ)}{\partial \theta} + \overline{u}(\circ) \right) + \alpha \right]$ | $\begin{bmatrix} 0 & \overline{\mathbf{x}} \\ \overline{\mathbf{x}} \\ \overline{\mathbf{x}} \end{bmatrix}$ |

## I.2.3. Equations et résolution à l'ordre $\varepsilon^1$ .

•

- Procédons de même en retenant les termes facteurs de  $arepsilon^1$ 

$$\begin{array}{c} \text{Eq. d& friv& fe} \\ \text{de } (24) \implies \\ \hline \overline{\sigma_{23}}(1) = \frac{\xi}{2(1+\nu)} & \left( \alpha \frac{\partial \overline{v}(0)}{\partial \overline{x}} - 2 \alpha \frac{\partial^2 \overline{u}(0)}{\partial \theta \partial \overline{x}} - \frac{\partial \overline{v}(0)}{\partial \theta} \right) \\ \hline \overline{\sigma_{22}}(1) = -\frac{\xi}{1-\nu^2} & \left( \alpha \nu \frac{\partial \overline{v}(0)}{\partial \overline{x}} + \overline{u}(0) \frac{\partial^2 \overline{u}(0)}{\partial \theta^2} + \nu \alpha^2 \frac{\partial^2 \overline{u}(0)}{\partial \overline{x}^2} \right) \\ \hline \overline{\sigma_{22}}(1) = -\frac{\xi}{1-\nu^2} & \left( \alpha^2 \frac{\partial^2 \overline{u}(0)}{\partial \overline{x}^2} + \nu \frac{\partial^2 \overline{u}(0)}{\partial \theta^2} + \nu \alpha^2 \frac{\partial^2 \overline{u}(0)}{\partial \overline{x}^2} \right) \\ \hline \overline{\sigma_{33}}(1) = -\frac{\xi}{1-\nu^2} & \left( \alpha^2 \frac{\partial^2 \overline{u}(0)}{\partial \overline{x}^2} + \nu \frac{\partial^2 \overline{u}(0)}{\partial \theta^2} - \nu - \frac{\partial \overline{v}(0)}{\partial \theta} \right) \\ \hline \end{array}$$

$$\begin{array}{c} \text{Eq. d& friv& fe} \\ \text{de } (20) \text{ et} \\ (21) \implies \\ \hline \overline{\sigma_{33}}(1) = -\alpha \xi - \frac{\partial \overline{u}(0)}{\partial \overline{x}} \\ \hline \overline{\sigma_{33}}(1) = -\alpha \xi - \frac{\partial \overline{u}(0)}{\partial \overline{x}} \\ \hline \end{array} \\ \hline \end{array}$$

$$\begin{array}{c} \text{Eq. d& friv& fe} \\ \text{de } (23) \implies \\ \hline \end{array} \\ \hline \end{array}$$

$$\begin{array}{c} \hline \\ \text{I.2.4. Equations et resolution & 1 \ \text{'ordre } e^2. \\ - \text{ Nous obtenons de m& feme :} \\ (16) \implies & \frac{\partial \overline{\sigma_{11}}(2)}{\partial \xi} + \xi - \frac{\partial \overline{\sigma_{11}}(1)}{\partial \xi} + \frac{\partial \overline{\sigma_{12}}(1)}{\partial \theta} + \alpha - \frac{\partial \overline{\sigma_{13}}(1)}{\partial \overline{x}} + \overline{\sigma_{11}}(1) - \overline{\sigma_{22}}(1) = 0 \\ (17) \implies & \frac{\partial \overline{\sigma_{12}}(2)}{\partial \xi} + \xi + \frac{\partial \overline{\sigma_{12}}(1)}{\partial \xi} + \frac{\partial \overline{\sigma_{22}}(1)}{\partial \theta} + \alpha - \frac{\partial \overline{\sigma_{23}}(1)}{\partial \overline{x}} + \alpha \xi - \frac{\partial \overline{\sigma_{23}}(1)}{\partial \overline{x}} + 2 \overline{\sigma_{12}}(1)_{=0}, \end{array}$$

$$(18) \implies \frac{\partial \overline{\sigma}_{13}(2)}{\partial \xi} + \xi \frac{\partial \overline{\sigma}_{13}(1)}{\partial \xi} + \frac{\partial \overline{\sigma}_{23}(1)}{\partial \theta} + \alpha \frac{\partial \overline{\sigma}_{33}(1)}{\partial \overline{x}} + \alpha \xi \frac{\partial \overline{\sigma}_{33}(0)}{\partial \overline{x}} + \overline{\sigma}_{13}(1) = 0$$

$$(19) \implies \frac{\partial \overline{u}^{(2)}}{\partial \xi} = \overline{\sigma}_{11}(1) - \nu (\overline{\sigma}_{22}(1) + \overline{\sigma}_{33}(1))$$

$$(20) \implies \alpha \frac{\partial \overline{w}^{(2)}}{\partial \overline{x}} = \overline{\sigma}_{33}(2) - \nu (\overline{\sigma}_{11}(2) + \overline{\sigma}_{22}(2))$$

(19) 
$$\implies \frac{\partial u^{(2)}}{\partial \xi} = \overline{\sigma}_{11}(1) - \nu (\overline{\sigma}_{22}(1) + \overline{\sigma}_{33}(1))$$

$$(20) \implies \alpha \frac{\partial \overline{w}^{(2)}}{\partial \overline{x}} = \overline{\sigma}_{33}(2) - \nu(\overline{\sigma}_{11}(2) + \overline{\sigma}_{22}(2))$$

$$(20) \implies \alpha \frac{\partial \overline{w}^{(2)}}{\partial \overline{x}} = \overline{\sigma}_{33}(2) - \nu(\overline{\sigma}_{11}(2) + \overline{\sigma}_{22}(2))$$

$$(21) \implies \frac{\partial \overline{v}^{(2)}}{\partial \theta} + \overline{u}^{(2)} = \overline{\sigma}_{22}(2) - \nu(\overline{\sigma}_{11}(2) + \overline{\sigma}_{33}(2)) + \xi [\overline{\sigma}_{22}(1) - \nu(\overline{\sigma}_{11}(1) + \overline{\sigma}_{33}(1)])$$

$$(22) \implies \overline{z} = \overline{z} = (1) - \frac{1}{2} \left( -\frac{\partial \overline{v}^{(2)}}{\partial \overline{v}} + \xi - \frac{\partial \overline{v}^{(1)}}{\partial \overline{v}} + \frac{\partial \overline{u}^{(1)}}{\partial \overline{v}} - \overline{v}^{(1)} \right)$$

$$(22) \implies \overline{\sigma}_{12}(1) = \frac{1}{2(1+\nu)} \left( \frac{\partial \overline{v}^{(2)}}{\partial \xi} + \xi \frac{\partial \overline{v}^{(1)}}{\partial \xi} + \frac{\partial \overline{u}^{(1)}}{\partial \theta} - \overline{v}^{(1)} \right)$$

$$(23) \Longrightarrow \overline{\sigma}_{13}(1) = \frac{1}{2(1+\nu)} \left(\alpha \frac{\partial \overline{u}^{(1)}}{\partial \overline{x}} + \frac{\partial \overline{w}^{(2)}}{\partial \xi}\right)$$

$$(24) \Longrightarrow \overline{\sigma}_{23}(2) + \xi \sigma_{23}(1) = \frac{1}{2(1+\nu)} \left[\frac{\partial \overline{w}^{(2)}}{\partial \theta} + \alpha \frac{\partial \overline{v}^{(2)}}{\partial \overline{x}} + \alpha \xi \frac{\partial \overline{v}^{(1)}}{\partial \overline{x}}\right]$$

- Résolution en tenant compte de l'hypothèse 3.

$$\overline{\sigma}_{33}(2) = -\frac{\xi^2}{2(1-\nu^2)} \left[ \nu \alpha^2 \frac{\partial^2 \overline{u}(0)}{\partial \overline{x}^2} + 2 \alpha^3 \frac{\partial^3 \overline{w}(0)}{\partial \overline{x}^3} + \alpha \frac{\partial^3 \overline{w}(0)}{\partial \theta^2 \partial \overline{x}} + \alpha^2 (1+\nu) \frac{\partial^3 \overline{v}(0)}{\partial \theta \partial \overline{x}^2} \right] \\ + \nu \frac{\partial^3 \overline{v}(0)}{\partial \theta^3} + \nu \frac{\partial \overline{v}(0)}{\partial \theta}$$

### I.2.5. Vérification des équations de comptabilité.

Introduisons les expressions de  $\overline{\sigma_{11}}, \overline{\sigma_{12}}, \overline{\sigma_{13}}, \overline{\sigma_{22}}, \overline{\sigma_{23}}, \overline{\sigma_{33}}$ , limités aux termes en  $\epsilon^2$ , dans les équations (25) à (30) et retenons les relations facteurs de  $\epsilon^{\circ}, \epsilon^{1}$  et  $\epsilon^{2}$ :

Equation (25) :  
• Ordre 
$$\varepsilon^{\circ}$$
 :  $\frac{\partial^{2}\overline{\sigma}_{I}(\circ)}{\partial \xi^{2}} = 0$   
• Ordre  $\varepsilon^{1}$  :  $\frac{\partial^{2}\overline{\sigma}_{11}(1)}{\partial \xi^{2}} + \frac{1}{1+\nu} \left[ -\frac{\partial^{2}\overline{\sigma}_{I}(1)}{\partial \xi^{2}} + 2\xi \frac{\partial^{2}\overline{\sigma}_{I}(\circ)}{\partial \xi^{2}} \right] = 0$   
• Ordre  $\varepsilon^{2}$  :  $\frac{\partial^{2}\overline{\sigma}_{11}(2)}{\partial \xi^{2}} + 2\xi \frac{\partial^{2}\overline{\sigma}_{11}(1)}{\partial \xi^{2}} + 2\overline{\sigma}_{22}(\circ) + \frac{\partial\overline{\sigma}_{11}(1)}{\partial \xi} + \frac{1}{1+\nu} \left[ -\frac{\partial^{2}\overline{\sigma}_{I}(2)}{\partial \xi^{2}} + 2\xi \frac{\partial^{2}\overline{\sigma}_{I}(1)}{\partial \xi^{2}} + \xi^{2} \frac{\partial^{2}\overline{\sigma}_{I}(\circ)}{\partial \xi^{2}} \right] = 0$   
Equation (26) :  
• Ordre  $\varepsilon^{\circ}$  :  $\frac{\partial^{2}\sigma_{22}(\circ)}{\partial \xi^{2}} = 0$ 

• Ordre 
$$\varepsilon^1$$
:  $\frac{\partial^2 \bar{\sigma}_{22}(1)}{\partial \xi^2} + 2\xi \frac{\partial^2 \bar{\sigma}_{22}(0)}{\partial \xi^2} + \frac{\partial \bar{\sigma}_{22}(0)}{\partial \xi} + \frac{1}{1+\nu} \frac{\partial \bar{\sigma}_{1}(0)}{\partial \xi} = 0$   
 $\partial^2 \bar{\sigma}_{22}(2) + \partial \xi \frac{\partial^2 \bar{\sigma}_{22}(1)}{\partial \xi} + \frac{\partial^2 \bar{\sigma}_{22}(0)}{\partial \xi} + \frac{\partial \bar{\sigma}_{22}(0)}{\partial \xi} + \frac{\partial \bar{\sigma}_{22}(0)}{\partial \xi} = 0$ 

• Ordre  $\epsilon^2$ 

$$+ \frac{\partial^2 \overline{\sigma}_{22}(o)}{\partial \theta^2} + \alpha^2 \frac{\partial^2 \overline{\sigma}_{22}(o)}{\partial \overline{x}^2} - 2 \overline{\sigma}_{22}(o) + \frac{1}{1+\nu} \left[ \frac{\partial^2 \overline{\sigma}_{I}(o)}{\partial \theta^2} + \frac{\partial \overline{\sigma}_{I}(1)}{\partial \overline{\xi}} + \frac{\partial \overline{\sigma}_{I}(0)}{\partial \overline{\xi}} + \frac{\partial \overline{\sigma}_{I}(0)}{\partial \overline{\xi}} \right] = 0$$

#### Equation (27) :

• Ordre  $\epsilon^{\circ}$  : Identiquement vérifiée

• Ordre 
$$\varepsilon^1$$
 :  $\frac{\partial^2 \sigma_{12}(1)}{\partial \xi^2} + \frac{1}{1+\nu} \frac{\partial^2 \sigma_{1}(0)}{\partial \theta \partial \xi} = 0$ 

• Ordre 
$$\varepsilon^2$$
:  $\frac{\partial \overline{\sigma}_{12}(2)}{\partial \xi^2} + 2\xi \frac{\partial^2 \overline{\sigma}_{12}(1)}{\partial \xi^2} + \frac{\partial \overline{\sigma}_{12}(1)}{\partial \xi} - 2 \frac{\partial \overline{\sigma}_{22}(0)}{\partial \theta} + \frac{1}{1+\nu} \left[ \frac{\partial^2 \overline{\sigma}_{1}(1)}{\partial \theta \partial \xi} + \xi \frac{\partial^2 \overline{\sigma}_{12}(0)}{\partial \theta \partial \xi} - \frac{\partial^2 \overline{\sigma}_{12}(0)}{\partial \theta^2} \right] = 0$ 

$$\begin{split} & \underline{\text{Equation}} \quad (28) : \\ & \cdot \text{ Ordre } e^{\circ} : \frac{\frac{\partial^2 \bar{\sigma}_{33}(0)}{\partial \xi^2} = 0 \\ & \cdot \text{ Ordre } e^{1} : \frac{\partial^2 \bar{\sigma}_{33}(1)}{\partial \xi^2} + 2 \xi \frac{\partial^2 \bar{\sigma}_{33}(0)}{\partial \xi^2} + \frac{\partial \bar{\sigma}_{33}(0)}{\partial \xi^2} + \frac{\partial \bar{\sigma}_{33}(0)}{\partial \xi^2} = 0 \\ & \cdot \text{ Ordre } e^{1} : \frac{\partial^2 \bar{\sigma}_{33}(0)}{\partial \xi^2} + 2 \xi \frac{\partial \bar{\sigma}_{33}(1)}{\partial \xi^2} + \xi^2 \frac{\partial^2 \bar{\sigma}_{33}(0)}{\partial \xi^2} + \frac{\partial \bar{\sigma}_{33}(1)}{\partial \xi} + \xi \frac{\partial \bar{\sigma}_{33}(1)}{\partial \xi} + \xi \frac{\partial \bar{\sigma}_{33}(0)}{\partial \xi} + 2\xi \frac{\partial \bar{\sigma}_{33}$$

$$+ \frac{\alpha^2}{1+\nu} \frac{\partial^2 \sigma_{I}(0)}{\partial \bar{x} \partial \theta} = 0$$

Il reste alors à remplacer  $\overline{\sigma}_{ij}(0)$ ,  $\overline{\sigma}_{ij}(1)$  et  $\overline{\sigma}_{ij}(2)$  par leurs expressions en fonction de  $\overline{u}^{(0)}$ ,  $\overline{v}^{(0)}$ ,  $\overline{w}^{(0)}$  et l'on pourra constater que les équations de comptabilité sont vérifiées. Nous ne détaillerons pas le calcul ici, qui a peut d'intérêt.

I.2.6. Comparaison avec la théorie classique.

1) Résumé :

Reprenons les expressions de  $\overline{\sigma}_{ij}$ ,  $\overline{u}$ ,  $\overline{v}$ ,  $\overline{w}$  obtenus jusqu'à l'ordre  $\varepsilon^2$ , mais écrites en variables dimensionnées.

Nous noterons  $u_0, v_0, w_0$  les déformations du plan moyen (c.a.d à la cote z = 0)

$$u = u_{0} - \frac{z \cdot v}{1 - v} \left[ \frac{1}{R} \left( \frac{\partial v}{\partial \theta} + u_{0} \right) + \frac{\partial w}{\partial x} \right] + \frac{z^{2}}{2(1 - v)} \left[ \frac{u_{0}}{R^{2}} + \frac{v}{R} \frac{\partial w}{\partial x} + \frac{1 - v}{R^{2}} \frac{\partial v_{0}}{\partial \theta} + \frac{v}{\partial \theta} \right]$$
$$+ v \left( \frac{1}{R^{2}} \frac{\partial^{2} u_{0}}{\partial \theta^{2}} + \frac{\partial^{2} u}{\partial x^{2}} \right) \right]$$
$$v = v_{0} + z \left[ \frac{v_{0}}{R} - \frac{1}{R} \frac{\partial u_{0}}{\partial \theta} \right] + \frac{z^{2}}{2} \left[ \frac{2 - v}{(v - 1)R^{2}} \left( \frac{\partial^{2} v_{0}}{\partial \theta^{2}} + \frac{\partial u_{0}}{\partial \theta} \right) - \frac{\partial^{2} v_{0}}{\partial x^{2}} - \frac{1}{1 - v} \frac{1}{R} \frac{\partial^{2} w_{0}}{\partial \theta \partial x} \right]$$

$$w = w_{0} - z \frac{u_{0}}{x} - \frac{z^{2}}{2} \left[ \frac{v}{1-v} \frac{1}{R} \frac{\partial u_{0}}{\partial x} + \frac{2-v}{1-v} \frac{\partial^{2}w_{0}}{\partial x^{2}} + \frac{1}{R^{2}} \frac{\partial^{2}w_{0}}{\partial \theta^{2}} + \frac{1}{1-v} \frac{1}{R} \frac{\partial^{2}v_{0}}{\partial \theta \partial x} \right]$$
  
$$\sigma_{11} = \frac{E}{1-v^{2}} \left[ \frac{1}{R^{2}} \left( \frac{\partial v_{0}}{\partial \theta} + u_{0} \right) + \frac{v}{R} \frac{\partial w_{0}}{\partial x} \right] + \frac{E}{2(1-v^{2})} \left[ \frac{\partial^{3}v_{0}}{\partial \theta^{3}} \frac{1}{R^{3}} + \frac{\partial^{3}w_{0}}{\partial x^{3}} + \frac{1}{R} \frac{\partial^{3}v_{0}}{\partial \theta \partial x^{2}} - \frac{2}{R^{3}} \frac{\partial v_{0}}{\partial \theta} + \frac{1}{R^{2}} \frac{\partial^{3}w_{0}}{\partial x \partial \theta^{2}} - \frac{3}{R^{3}} u_{0} - \frac{3v}{R^{2}} \frac{\partial w_{0}}{\partial x} \right]$$

$$\sigma_{12} = \frac{-E}{1-\nu^2} \left[ \frac{1}{R^2} \frac{\partial^2 v_0}{\partial \theta^2} + \frac{1}{R^2} \frac{\partial u_0}{\partial \theta} + \frac{1-\nu}{2} \frac{\partial^2 v_0}{\partial x^2} + \frac{\nu+1}{2R} \frac{\partial^2 w_0}{\partial x^{2\theta}} \right] + \frac{E}{2(1-\nu^2)} \left[ \frac{3}{R^3} \frac{\partial^2 v_0}{\partial \theta^2} + \frac{1}{R^3} \frac{\partial^2 v_0}{\partial \theta^2} + \frac{1}{R^3} \frac{\partial^3 u_0}{\partial \theta^3} + \frac{1}{R^2} \frac{5\nu+3}{2} \frac{\partial^2 w_0}{\partial \theta \partial x} + \frac{1}{R} \frac{\partial^3 u_0}{\partial x^2 \partial \theta} + \frac{1-\nu}{2R} \frac{\partial^2 v_0}{\partial x^2} \right]$$

$$\sigma_{13} = \frac{-E}{1-\nu^2} \begin{bmatrix} \frac{\nu}{R} \frac{\partial u_{\vec{0}}}{\partial x} + \frac{\partial^2 w_{\vec{0}}}{\partial x^2} + \frac{1-\nu}{2R^2} \frac{\partial^2 w_{\vec{0}}}{\partial \theta^2} + \frac{\nu+1}{2R} \frac{\partial^2 v_{\vec{0}}}{\partial x \partial \theta} \end{bmatrix} + \frac{E}{2R} \frac{z^2}{2(1-\nu^2)} \begin{bmatrix} \frac{\nu}{R} \frac{\partial u_{\vec{0}}}{\partial x} \\ \frac{\nu}{R^2} \frac{\partial u_{\vec{0}}}{\partial x} \end{bmatrix} + \frac{1}{R} \frac{\partial^2 w_{\vec{0}}}{\partial x^2} + \frac{1-\nu}{2R^2} \frac{\partial^2 w_{\vec{0}}}{\partial \theta^2} + \frac{1-\nu}{2R^2} \frac{\partial^2 v_{\vec{0}}}{\partial x \partial \theta} \end{bmatrix} + \frac{1}{R^2} \frac{\partial^3 u_{\vec{0}}}{\partial \theta^2 \partial x} \end{bmatrix}$$

$$\sigma_{22} = \frac{E}{1-v^2} \left[ \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + v \frac{\partial w_0}{\partial x} \right] - \frac{E}{1-v^2} \left[ \frac{v}{R} - \frac{\partial w_0}{\partial x} + \frac{u_0}{R^2} + \frac{1}{R} \frac{\partial^2 u_0}{\partial \theta^2} + v \frac{\partial^2 u_0}{\partial x^2} \right] \\ \frac{E}{2(1-v^2)} \left[ \frac{v}{R} \frac{\partial^2 u_0}{\partial x^2} - v \frac{\partial^3 w_0}{\partial x^3} - \frac{(1+v)}{R^2} \frac{\partial^3 w_0}{\partial^2 \theta \partial x} - \frac{2}{R^3} \frac{\partial^3 v_0}{\partial \theta^3} + \frac{3v}{R^2} \frac{\partial w_0}{\partial x} + \frac{1}{R^3} \frac{\partial v_0}{\partial \theta} \right]$$

$$\sigma_{33} = \frac{E}{1-v^2} \left[ \frac{v}{R} \left( \frac{\partial v}{\partial \theta} + u_0 \right) + \frac{\partial w_0}{\partial x} \right] - \frac{E}{1-v^2} \left[ \frac{\partial^2 u}{\partial x^2} + \frac{v}{R^2} \left( \frac{\partial^2 u}{\partial \theta^2} - \frac{\partial v}{\partial \theta} \right) \right]$$

$$= \frac{E}{2(1-\nu^{2})} \left[ \frac{\nu}{R} \frac{\partial^{2}u}{\partial x^{2}} + \frac{\nu}{R^{3}} \frac{\partial^{v}o}{\partial \theta} + 2 \frac{\partial^{3}w}{\partial x^{3}} + \frac{1}{R^{2}} \frac{\partial^{3}w}{\partial \theta^{2}\partial x} + \frac{(1+\nu)}{R} \frac{\partial^{3}v}{\partial \theta\partial x^{2}} \frac{\nu}{R^{3}} \frac{\partial^{3}v}{\partial \theta^{3}} \right]$$

$$= \frac{E}{2(1+\nu)} \left[ \frac{1}{R} \frac{\partial^{w}o}{\partial \theta} + \frac{\partial^{v}o}{\partial x} \right] + \frac{E}{2(1+\nu)} \left[ \frac{1}{R} \frac{\partial^{v}o}{\partial x} - \frac{2}{R} \frac{\partial^{2}u}{\partial \theta\partial x} - \frac{1}{R^{2}} \frac{\partial^{w}o}{\partial \theta} \right] - \frac{E}{4(1+\nu)} \left[ \frac{2\nu}{1-\nu} \frac{1}{R^{2}} \frac{\partial^{2}u}{\partial \theta\partial x} + \frac{3-\nu}{1-\nu} \left( \frac{1}{R} \frac{\partial^{3}w}{\partial x^{2}\partial \theta} + \frac{1}{R^{2}} \frac{\partial^{3}v}{\partial \theta^{2}\partial x} \right) - \frac{2}{R^{3}} \frac{\partial^{w}o}{\partial \theta} + \frac{\partial^{3}v}{\partial x^{3}} + \frac{1}{R^{3}} \frac{\partial^{3}w}{\partial \theta^{3}} \right]$$

2) <u>Résultats obtenus à l'ordre</u>  $e^{\circ}$ : Nous avions :  $\sigma_{11} = 0$   $\sigma_{22} = \frac{E}{1-v^2} \left[ \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + v \frac{\partial w_0}{\partial x} \right]$   $\sigma_{12} = 0$   $\sigma_{23} = \frac{E}{2(1+v)} \left[ \frac{1}{R} - \frac{\partial w_0}{\partial \theta} + \frac{\partial v_0}{\partial x} \right]$  $\sigma_{13} = 0$   $\sigma_{33} = \frac{E}{1-v^2} \left[ \frac{v}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + \frac{\partial w_0}{\partial x} \right]$ 

Nous remarquons que ces résultats sont obtenus lorsque  $\varepsilon$  tend vers zéro (c'est à dire quand  $h \rightarrow o$ ) dans les équations (16) à (24). Ils correspondent donc à une coque très fine, c'est à dire une membrane.

D'autre part, ces mêmes résultats correspondent aux conditions de l'hypothèse 3 pour  $\xi$  = 0. C'est à dire que nous avons supposé que le plan moyen (z = o) d'une coque se comporte comme une membrane.

## 3) Résultats obtenus jusqu'à l'ordre $\varepsilon^1$ :

Ces résultats sont les plus proches de ce que l'on obtient en R.D.M. classique. Ainsi nous avons :

$$\sigma_{22} = \frac{E}{1-\nu^{2}} \left[ \frac{1}{R} \left( \frac{\partial v_{o}}{\partial \theta} + u_{o} \right) + \nu \frac{\partial w_{o}}{\partial x} \right] - \frac{Ez}{1-\nu^{2}} \left[ \frac{\nu}{R} \frac{\partial w_{o}}{\partial x} + \frac{u_{o}}{R^{2}} + \frac{1}{R^{2}} \frac{\partial^{2}u_{o}}{\partial \theta^{2}} + \nu \frac{\partial^{2}u_{o}}{\partial x} \right]$$

$$\sigma_{33} = \frac{E}{1-\nu^{2}} \left[ \frac{\nu}{R} \left( \frac{\partial v_{o}}{\partial \theta} + u_{o} \right) + \frac{\partial w_{o}}{\partial x} \right] - \frac{Ez}{1-\nu^{2}} \left[ \frac{\partial^{2}u_{o}}{\partial x^{2}} + \frac{\nu}{R} \left( \frac{\partial^{2}u_{o}}{\partial \theta^{2}} - \frac{\partial v_{o}}{\partial \theta} \right) \right]$$

$$\sigma_{23} = \frac{E}{1-\nu^{2}} \left[ \frac{1}{R} \frac{\partial w_{o}}{\partial \theta} + \frac{\partial v_{o}}{\partial x} \right] + \frac{Ez}{2(1+\nu)} \left[ \frac{1}{R} \frac{\partial v_{o}}{\partial x} - \frac{2}{R} \frac{\partial^{2}u_{o}}{\partial \theta \partial x} - \frac{1}{R^{2}} \frac{\partial w_{o}}{\partial \theta} \right]$$

Transformons le 2ème membre de  $\sigma_{22}$  et  $\sigma_{23}$ . Nous garderons  $\sigma_{33}$  tel qu'il est.

$$\sigma_{22} = \frac{E}{1 - \nu^2} \left[ \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + \nu \frac{\partial w_0}{\partial x} \right] - \frac{z}{R} \frac{E}{1 - \nu^2} \left[ \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + \nu \frac{\partial w_0}{\partial x} \right]$$

$$-\frac{Ez}{1-v^2} \left[ v \frac{\partial^2 u}{\partial x^2} + \frac{1}{R^2} \left( \frac{\partial u}{\partial \theta^2} - \frac{\partial v}{\partial \theta} \right) \right]$$

$$\sigma_{23} = \frac{E}{2(1+v)} \left[ \frac{1}{R} \frac{\partial w}{\partial \theta} + \frac{\partial v}{\partial x} \right] - \frac{z}{R} \frac{E}{2(1+v)} \left[ \frac{1}{R} \frac{\partial w}{\partial \theta} + \frac{\partial v}{\partial x} \right] + \frac{Ez}{2(1+v)} \left[ \frac{2}{R} \frac{\partial v}{\partial x} - \frac{2}{R^2} \frac{\partial^2 u}{\partial \theta \partial x} \right]$$

Les 2ème membres de  $\sigma_{22}$  et  $\sigma_{23}$  de ces dernières relations diffèrent des 1er membres par le terme  $\frac{z}{R}$ , qui est au plus égal à  $\frac{h}{R} << 1$ . Nous négligerons donc ces 2ème membres. D'où finalement :

$$\sigma_{22} = \frac{E}{1-v^2} \left[ \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + v \frac{\partial w_0}{\partial x} \right] - \frac{Ez}{1-v^2} \left[ v \frac{\partial^2 u_0}{\partial x^2} + \frac{1}{R^2} \left( \frac{\partial^2 u_0}{\partial \theta^2} - \frac{\partial v_0}{\partial \theta} \right) \right]$$
  
$$\sigma_{33} = \frac{E}{1-v^2} \left[ \frac{v}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + \frac{\partial w_0}{\partial x} \right] - \frac{Ez}{1-v^2} \left[ \frac{\partial^2 u_0}{\partial x^2} + \frac{v}{R^2} \left( \frac{\partial^2 u_0}{\partial \theta^2} - \frac{\partial v_0}{\partial \theta} \right) \right]$$
  
$$\sigma_{23} = \frac{E}{2(1+v)} \left[ \frac{1}{R} \frac{\partial w_0}{\partial \theta} + \frac{\partial v_0}{\partial x} \right] + \frac{Ez}{2(1+v)} \left[ \frac{2}{R} \frac{\partial v_0}{\partial x} - \frac{2}{R^2} \frac{\partial^2 u_0}{\partial \theta \partial x} \right]$$

Ces 3 relations sont identiques à celles obtenues en R.D.M. par des considérations géométriques et physiques  $\begin{bmatrix} 6 \end{bmatrix}$ 

De plus, la théorie linéarisée permet de donner une expression de u ,v ,w ,<sup>o</sup><sub>11</sub>, <sup>o</sup><sub>12</sub>, <sup>o</sup><sub>13</sub> que ne donne pas la théorie classique.

## 4) Résultats obtenus jusqu'à l'ordre $\varepsilon^2$ :

Ces résultats pourront être utilisés lorsque le terme en  $\varepsilon^2$  ne sera plus négligeable devant les autres, c'est à dire pour une coque plus épaisse. Il faudra donc vérifier, par le calcul, l'ordre respectif des termes en  $\varepsilon^0, \varepsilon^1, \varepsilon^2$ .

#### I.2.7. Conclusion.

- La théorie linéarisée que nous venons d'exposer donne, de manière simple, des résultats plus précis que ceux de la théorie classique en Résistance des Matériaux. En outre, elle permet l'étude des coques cylindriques d'épaisseur quelconques. En effet, on aurait pu continuer les calculs à l'ordre  $\varepsilon^3$ ,  $\varepsilon^4$ ...etc il est vraisemblable que les équations de comptabilité auraient été aussi vérifiées.

- Par contre, cette méthode à l'inconvénient de n'être valable que loin des bords. Ceci provient notamment du fait que l'on a pris des conditions aux limites pour la seule variable  $\xi$  (ou z) et non pour  $\theta$  et x. Il faudrait donc compléter cette théorie, comme cela a été fait pour les plaques planes, par un développement asymptotique raccordé (voir bibliographie).

#### 1.3. Théorie classique de la flexion des coques cylindriques.

Nous allons donner brièvement les résultats issus de la Résistance des Matériaux, en notant les points de divergence avec la méthode de linéarisation chaque fois que cela apparaîtra.

#### 1.3.1. Résultantes et moments agissant sur un élément de coque.

Considérons un élément de coque A.B.C.D.

· · · ·

Qa Qx Ma Мөх Vex Nace θ



Nous allons définir les contraintes et moments intégrés de la façon suivante :

Soit

- Qx, N x $\theta$ , N x les forces résultantes, par unité de longueur de circonférence moyenne sur AB, et agissant de l'élément de coque sur l'extérieur.

- Q θ, N θ, N θ x les forces résultantes, par unité de longueur de génératrice sur B C, et agissant de l'élément de coque sur l'extérieur.

|                                                                             | 20)                                                                             |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $R  d\theta  Qx = \int_{R-h}^{R+h} \sigma_{13} r \ d\theta \ dr$            | $d\mathbf{x}  Q\theta = \int_{R-h}^{R+h} \sigma_{12}  d\mathbf{x}  d\mathbf{r}$ |
| $R  d\theta  Nx\theta = \int_{R-h}^{R+h} \sigma_{23} r \ d\theta \ dr$      | $dx  N\theta = \int_{R-h}^{R+h} \sigma_{22} dx dr$                              |
| $\overline{R  d\theta  Nx} = \int_{R-h}^{R+h} \sigma_{33} r \ d\theta \ dr$ | $dx \ N\theta x = \int_{R-h}^{R+h} \sigma_{23} \ dx \ dr$                       |

De même

- Mx et M0x sont les moments de flexion et de torsion par unité de longueur de circonférence moyenne et par rapport à cette circonférence, agissant de l'élément sur l'extérieur.
- M0 et M0x : même définition par unité de longueur de génératrice

| $R d\theta Mx = - \int_{R-h}^{R+h} \sigma_{33} r(r-R) d\theta dr$     | $dx M\theta x = - \int_{R-h}^{R+h} \sigma_{32}(r-R) dr dx$ |
|-----------------------------------------------------------------------|------------------------------------------------------------|
| $R d\theta Mx\theta = \int_{R-h}^{R+h} \sigma_{23} r(r-R) d\theta dr$ | $dx M\theta = \int_{R-h}^{R+h} \sigma_{22}(r-R) dr dx$     |

Nous allons réecrire ces quantités intégrées en faisant le changement de variable : r = R + zavec  $-h \leq z \leq + h$ 





| $Q\theta = \int_{-h}^{+h} \sigma_{12} dz$   |
|---------------------------------------------|
| $N\theta = \int_{-h}^{+h} \sigma_{22} dz$   |
| $N\theta x = \int_{-h}^{+h} \sigma_{23} dz$ |



\* Dans la théorie classique, on néglige les termes en  $\frac{z}{R}$  devant 1 dans les expressions ci-dessus.

Nous allons montrer que cette hypothèse ne convient pas avec la méthode de linéarisation.

Prenons comme exemple le calcul de Mx, nous avons vu que  $\sigma^{}_{33}\,$  se met sous la forme :

 $\sigma_{33}(z, \theta, x, ) = \Sigma_{33}^{(0)}(\theta, x) + z \Sigma_{33}^{(1)} \quad (\theta, x) + z^2 \Sigma_{33}^{(2)} \quad (\theta, x) + \dots$ 

- Si on considère que  $\frac{z}{R} << 1$ , alors :  $Mx = -\frac{2}{3}h^3 \Sigma_{33}^{(1)} + h^5 \quad [\dots]$ 

- Mais si on garde  $\frac{z}{R}$ ; alors :

$$M_{x} = -\frac{2}{3}h^{3}(\Sigma_{33}^{(1)} + \frac{\Sigma_{33}^{(0)}}{R}) + h^{5}[...]$$

Donc il apparait un terme  $\frac{\Sigma^{\sim\prime}}{R}$  qui est peut-être faible, mais que l'on va garder pour les équations finales.

#### 1.3.2. Equations d'équilibre en fonction des contraintes et moments intégrés.

Nous allons exprimer l'équilibre de l'élément de coque A.B.C.D. Dans la théorie classique on obtient 3 relations par des considérations géométriques du phénomène.

Il est possible d'obtenir plus simplement ces relations en portant des équations d'équilibre en coordonnées cylindriques données au I.1.2. (Equations générales.)

Multiplions chaque équations d'équilibre par r dr et intégrons sur [R - h, R + h]

 $(1) \implies \int_{R-h}^{R+h} (\sigma_{11} dr + r d \sigma_{11}) + \frac{\partial}{\partial \theta} \int_{R-h}^{R+h} \sigma_{12} dr + \frac{\partial}{\partial x} \int_{R-h}^{R+h} \sigma_{13} r dr - \int_{R-h}^{R+h} \sigma_{22} dr = 0$ 

Nous avons toujours les conditions aux limites :

| $\sigma_{11}(R+h) = p_r^+$          | $\sigma_{11}(R-h) = P_r$                          |
|-------------------------------------|---------------------------------------------------|
| $\sigma_{12}(R+h) = p_{\theta}^{+}$ | $\sigma_{12}(R-h) = \mathbf{p}_{\mathbf{\theta}}$ |
| $\sigma_{13}(R+h) = p_{x}^{+}$      | $\sigma_{12}(R-h) = p_{12}$                       |

Donc la relation précédente devient :

| $0 = (p_{r^+} + p_{r^-}) + \frac{h}{R}$ | $(p_{r}^{+} - p_{r}^{-}) + \frac{1}{R}$ | $\frac{\partial Q_{\theta}}{\partial \theta} + \frac{\partial Q_{x}}{\partial x} - \frac{N_{\theta}}{R}$ |
|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|
|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|

De même  
(2) 
$$\Longrightarrow$$
  $0 = (p_{\theta}^{+} + p_{\theta}^{-}) + \frac{h}{R} (p_{\theta}^{+} - p_{\theta}^{-}) + \frac{1}{R} \frac{\partial N\theta}{\partial \theta} + \frac{\partial Nx\theta}{\partial x} + \frac{Q\theta}{R}$   
(3)  $\Longrightarrow$   $0 = (p_{x}^{+} + p_{x}^{-}) + \frac{h}{R} (p_{x}^{+} - p_{x}^{-}) + \frac{1}{R} \frac{\partial N\theta x}{\partial \theta} + \frac{\partial Nx}{\partial x}$ 

\* Cette méthode fait apparaître les termes  $\frac{h}{R}(p_r^+ - p_r^-), \frac{h}{R}(p_{\theta}^+ - p_{\theta}^-), \frac{h}{R}(p_{\theta}^- -$ 

Pour retrouver les résultats de cette théorie classique, nous poserons  $p^+ + p^- = p$  et nous négligerons les termes en  $\frac{h}{R}$ 

$$(31) \frac{\partial Q\theta}{\partial \theta} + R \frac{\partial Qx}{\partial x} - N_{\theta} + R p_{r} = 0$$

$$(32) \frac{\partial N\theta}{\partial \theta} + R \frac{\partial Nx\theta}{\partial x} + Q_{\theta} + Rp_{\theta} = 0$$

$$(33) \frac{\partial N\theta x}{\partial \theta} + R \frac{\partial Nx}{\partial x} + R p_{r} = 0$$

Pour exprimer l'équilibre des moments, les équations (2) et (3) sont multipliées par  $r^2$  dr et intégrées sur [R - h, R + h]

| p  | , <b>-</b>   | F | 2 | <u>h</u><br>R | $(p_{\theta}^{+})$ | - | $p_{\theta}^{-}$ | )        | +   | $\frac{h^2}{R^2}$ | Ρ <sub>θ</sub> | +      | $\frac{1}{R^2}$  | <u>a</u> | <u>1 0</u><br>9 | + $\frac{1}{R}$    | <u> 20</u> | <del>)</del> +  | $\frac{1}{R}$ $\frac{2}{3}$ | ) <u>Mx</u> | <u>9</u> | + $\frac{\partial N x}{\partial x}$                            | <u>)</u>      | = 0              |     | (34) |
|----|--------------|---|---|---------------|--------------------|---|------------------|----------|-----|-------------------|----------------|--------|------------------|----------|-----------------|--------------------|------------|-----------------|-----------------------------|-------------|----------|----------------------------------------------------------------|---------------|------------------|-----|------|
| p, | <del>-</del> | ł | 2 | <u>h</u><br>R | (p+<br>x           | - | - p,             | - )<br>c | ) - | $+\frac{h^2}{R}$  | 2<br>- p,      | -<br>c | + <u>Qx</u><br>R | +        | <u>1</u><br>R   | <u> 2N0x</u><br>20 |            | $\frac{1}{R^2}$ | <u>9M6</u><br>96            | <u>)x</u>   | +        | $\frac{\partial \mathbf{N} \mathbf{x}}{\partial \mathbf{x}} -$ | $\frac{1}{R}$ | <u>əMx</u><br>əx | = 0 | (35) |

L'équation (1), multipliée par  $r^2$  dr et intégrée de la même façon, ne fait apparaître aucune résultante caractéristique. Cependant, en partant des définitions de M0x, N0x, Nx0 on constate l'identité :

$$M\theta \mathbf{x} = \mathbb{R}(N\theta \mathbf{x} - N\mathbf{x}\theta)$$
(36)

En utilisant les équations (32) et (33), les équations des moments deviennent :

| 2 | <u>h</u><br>R | $(p_{\theta}^{+})$            | $- p_{\theta}^{-}$ ) $+ \frac{h^2}{R^2} p_{\theta}^{-}$ | + $\frac{1}{R^2}$ | $\frac{\partial M \theta}{\partial \theta} + \frac{1}{R}$                      | <u> ƏMx</u> θ<br>Əx                                         | _ <u>Qθ</u><br>R | = 0 |
|---|---------------|-------------------------------|---------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-----|
| 2 | <u>h</u><br>R | ( p <sup>+</sup> <sub>x</sub> | $- p_x^-$ ) + $\frac{h^2}{R^2} p_x$                     | $-\frac{1}{R}$    | $\frac{\partial Mx}{\partial x} - \frac{1}{R^2} \frac{\partial R}{\partial x}$ | $\frac{\partial M\Theta x}{\partial \Theta} - \frac{Qx}{R}$ | = 0              |     |

D'où en négligeant les termes en  $\frac{h}{R}$  et  $\frac{h^2}{R^2}$ 

| ЭМӨ |   | - ∂Mxθ | <u>-</u> |        | <br>$(27) \qquad \qquad$ | (38) |
|-----|---|--------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 90  | + | R      |          | к Q0 = | <br>$(37) \qquad \qquad$ | (30) |

\* Nous remarquons également que la théorie classique (c'est à dire les relations (37) et (38) ) ne mentionnent pas les termes en  $\frac{h}{R}$  et  $\frac{h^2}{R^2}$ 

Des équations (37) et (38) nous pouvons tirer  $Q_{\theta}$  et Qx et reporter ces valeurs dans les équations (31) et (32)

L'équation (33) est conservée sans modification.

Nous obtenons :

(39) 
$$\frac{1}{R} \frac{\partial^2 M \theta}{\partial \theta^2} + \frac{\partial^2 M x \theta}{\partial x \partial \theta} - R \frac{\partial^2 M x}{\partial x^2} - \frac{\partial^2 M \theta x}{\partial \theta \partial x} - N\theta + R p_r = 0$$
  
(40) 
$$\frac{\partial N \theta}{\partial \theta} + R \frac{\partial N x \theta}{\partial x} + \frac{1}{R} \frac{\partial M \theta}{\partial x} + \frac{\partial M x \theta}{\partial x} + R p_{\theta} = 0$$
  
(41) 
$$\frac{\partial N \theta x}{\partial \theta} + R \frac{\partial N x}{\partial x} + R p_{x} = 0$$

## I.3.3. Expression des allongements relatifs ε.

Il existe 2 méthodes pour calculer les composantes  $\varepsilon_{ij}$  du tenseur déformation, les unes étant basées sur des considérations géométriques (Flügge, Timoshenko, voir[6][8])d'autres s'appuient sur la théorie des surfaces (Love, Novozhilov, voir[10][11])Dansles 2 cas la démarche est identique : on détermine d'abord les quantités  $\varepsilon_{33}$ ,  $\varepsilon_{22}$ ,  $\varepsilon_{23}$  relatives à la surface moyenne de la coque, que l'on note  $\varepsilon_3$ ,  $\varepsilon_2$  et  $\gamma$ .

Nous pouvons alors déduire pour chaque point M à la cote z, les valeurs de  $\varepsilon_{ij}$ . Nous donnerons pour la suite la référence des résultats. Il apparait que  $\varepsilon_{ij}$  est une fonction polynomiale de z et que ces valeurs sont obtenues avec toute la précision souhaitée.

Généralement on se limite au 1er ordre en z. Dans le cas d'une coque cylindrique et avec les notations que nous avions utilisées, nous obtenons :

 $\begin{aligned} \varepsilon_{22} &= \varepsilon_2 + \chi_2 z & \text{Mais } \varepsilon_{11}, \varepsilon_{21}, \varepsilon_{31} & \text{restent indéterminés} \\ \varepsilon_{33} &= \varepsilon_3 + \chi_3 z & \\ \varepsilon_{23} &= \gamma + 2 \chi_{23} z & \end{aligned}$ 

 $\epsilon_2$ ,  $\epsilon_3$  = allongements relatifs de la surface moyenne  $\chi_2, \chi_3$  = variations de rayon de courbure de la surface moyenne  $\gamma$  = distorsion de la surface moyenne  $\chi_{23}$  = torsion de la surface moyenne.

I.3.4. Expression des composantes du tenseur contrainte.

\* En théorie classique on suppose que  $\sigma_{11} = 0$ , on va donc.perdre le rôle de cette quantité. A partir des relations contraintes-déformations, nous en déduisons que :\_\_\_\_\_

 $\sigma_{22} = \frac{E}{1 - v^2} \begin{bmatrix} (\varepsilon_2 + v \varepsilon_3) + z (x_2 + v x_3) \end{bmatrix}$   $\sigma_{33} = \frac{E}{1 - v^2} \begin{bmatrix} (\varepsilon_3 + v \varepsilon_2) + z (x_3 + v x_2) \end{bmatrix}$  $\sigma_{23} = \frac{E}{2(1 + v)} \begin{bmatrix} \gamma + 2 \chi_{23} \cdot z \end{bmatrix}$ 

\* Mais nous ne connaissons pas  $\sigma_{12}$  et  $\sigma_{13}$ . Nous pouvons en déduire les quantités intégrées suivantes en négligeant  $\frac{h}{R}$  devant 1 dans les expressions des moments et contraintes intégrés.

| $Nx\theta = N \theta x = \frac{\gamma (2h)E}{2(1+\nu)}$                        | $N\theta = \frac{E(2h)}{1-v^2} \left[ \varepsilon_2 + v \varepsilon_3 \right]$ |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $Mx = \frac{-E(2h)^{3}}{12(1-v^{2})} \left[ \chi_{3} + v \chi_{2} \right]$     | $Nx = \frac{E(2h)}{1-v^2} \left[ \varepsilon_3 + v \varepsilon_2 \right]$      |
| $M\theta = \frac{E(2h)^{3}}{12(1-v^{2})} \left[ \chi_{2} + v \chi_{3} \right]$ | $M_{x\theta} = -M_{\theta x} = \frac{E(2h)^3}{12(1+v)} \chi_{23}$              |

En examinant ces relations nous pouvons remarquer que  $\sigma_{13}$  et  $\sigma_{12}$ sont indéterminés mais on peut connaître Q $\theta$  et Qx à partir des relations (37) et (38).

# I.3.5. Expressions des quantités intégrées en fonction des déplacements du plan moyen.

Il s'agit de calculer  $\varepsilon_3$ ,  $\varepsilon_2$ ,  $\chi_3$ ,  $\chi_2$ ,  $\chi_{23}$ ,  $\gamma$  en fonction de  $u_0, v_0, w_0$ , déplacements du plan moyen.

Les 2 méthodes, dont nous avons fait allusion au paragraphe I.3.3. expressions des  $\varepsilon_{i,j}$ , nous donne ces valeurs, qui sont les suivantes :

D'où l'on en déduit :  $Nx\theta = N\theta x = \frac{(2h)E}{2(1+v)} \left[\frac{\partial v}{\partial x} + \frac{1}{R}\frac{\partial w}{\partial \theta}\right]$ 

$$N\theta = \frac{E(2h)}{1-v^2} \left[ \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + v \frac{\partial w_0}{\partial x} \right] \qquad Mx = \frac{-E(2h)^3}{12(1-v^2)} \left[ -\frac{\partial^2 u_0}{\partial x^2} + \frac{v}{R^2} \left( \frac{\partial v_0}{\partial \theta} - \frac{\partial^2 u_0}{\partial \theta^2} \right) \right]$$
$$Nx = \frac{E(2h)}{1-v^2} \left[ \frac{v}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) + \frac{\partial w_0}{\partial x} \right] \qquad M\theta = \frac{E(2h)^3}{12(1-v^2)} \left[ \frac{1}{R^2} \left( \frac{\partial v_0}{\partial \theta} - \frac{\partial^2 u_0}{\partial \theta^2} \right) - v \frac{\partial^2 u_0}{\partial x^2} \right]$$
$$Mx\theta = -M\theta x = \frac{E(2h)^3}{12(1+v)} \left[ \frac{1}{R} \frac{\partial v_0}{\partial x} - \frac{1}{R} \frac{\partial^2 u_0}{\partial \theta \partial x} \right]$$

#### I.3.6. Equations d'équilibre en fonction des déplacements du plan moyen.

Reportons les valeurs de Nx0, N0x, N0, Nx, Mx, M0, M0x dans les 3 équations (39) (40) (41)

$$\frac{\partial^{2} w}{\partial x^{2}} + \frac{1-\nu}{2R^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} + \frac{1+\nu}{2R} \frac{\partial^{2} v}{\partial x \partial \theta} + \frac{\nu}{R} \frac{\partial u}{\partial x} + \frac{p}{K} = 0$$

$$\frac{1+\nu}{2R} - \frac{\partial^{2} w}{\partial x \partial \theta} + \frac{1-\nu}{2} - \frac{\partial^{2} v}{\partial x^{2}} + \frac{1}{R^{2}} - \frac{\partial^{2} v}{\partial \theta^{2}} + \frac{1}{R^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} + \frac{1}{R^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} + \frac{1}{R^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} - \frac{(2h)^{2}}{12R} \left[ (1-\nu) \frac{\partial^{2} v}{\partial x^{2}} + \frac{1}{R^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} \right] + \frac{P}{H} = 0$$

$$\frac{1+\nu}{2R} - \frac{(2h)^{2}}{12R} \left( \frac{\partial^{3} u}{\partial x^{2} \partial \theta} + \frac{1}{R^{2}} \frac{\partial^{3} u}{\partial \theta^{3}} \right) + \frac{(2h)^{2}}{12R} \left[ (1-\nu) \frac{\partial^{2} v}{\partial x^{2}} + \frac{1}{R^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} \right] + \frac{P}{K} = 0$$

$$\frac{1+\nu}{2R} - \frac{\partial^{4} u}{\partial x^{2} \partial \theta} + \frac{1}{R} + \frac{(2h)^{2}}{12R} \left( R \frac{\partial^{4} u}{\partial x^{4}} + \frac{2}{R} \frac{\partial^{4} u}{\partial \theta^{2} \partial x^{2}} + \frac{1}{R^{3}} \frac{\partial^{4} u}{\partial \theta^{4}} \right)$$

$$- \frac{(2h)^{2}}{12} \left( \frac{2-\nu}{R} - \frac{\partial^{3} v}{\partial x^{2} \partial \theta} + \frac{1}{R^{3}} \frac{\partial^{3} v}{\partial \theta^{3}} - \frac{P}{K} = 0$$

avec  $K = \frac{E(2h)}{1 - v^2}$ 

)

)

<u>Transformation de ces 3 équations dans le cas où</u>  $p_x = p_\theta = 0$ Remarquons tout d'abord que nous pouvons négliger l'avant-dernier terme de (43) par rapport au 2ième et 3ième terme de cette même équation. 1) Dérivons (42) par  $\frac{\partial}{\partial x^2}$  puis  $\frac{\partial}{\partial \theta^2}$ , nous en tirons les expressions de  $\frac{\partial^4 v_0}{\partial \theta \partial x^3}$  et  $\frac{\partial^4 v_0}{\partial \theta^3 \partial x}$ . Reportons celles-ci dans (43) dérivée par rapport à  $\frac{\partial}{\partial x \partial \theta}$ . Nous obtenons :

$$(5) \quad \left| \mathbf{R} \ \Delta^2 \ \mathbf{w}_0 + \nu \ \frac{\partial^3 \mathbf{u}_0}{\partial \mathbf{x}^3} - \frac{1}{\mathbf{R}^2} \ \frac{\partial^3 \mathbf{u}_0}{\partial \theta^2 \partial \mathbf{x}} + \frac{1+\nu}{1-\nu} \ \frac{(2\mathbf{h})^2}{12\mathbf{R}^2} \ \left[ \begin{array}{c} \frac{\partial^3 \mathbf{u}_0}{\partial \mathbf{x}^3 \partial \theta^2} + \frac{1}{\mathbf{R}^2} \ \frac{\partial^3 \mathbf{u}_0}{\partial \mathbf{x} \partial \theta^4} \end{array} \right] = 0$$

Avec 
$$\Delta = -\frac{\partial}{\partial x^2} + \frac{1}{R^2} \frac{\partial}{\partial \theta^2}$$
 et  $\Delta^2 = \Delta(\Delta)$ 

2) Dérivons (43) par  $\frac{\partial}{\partial x^2}$  et  $\frac{\partial}{\partial \theta^2}$ , nous en tirons les expressions de  $\frac{\partial^4 w_o}{\partial x^3 \partial \theta}$   $\frac{\partial^4 w_o}{\partial x \partial \theta^3}$ . Reportons celles-ci dans (42) dérivée par rapport à  $\frac{\partial^2}{\partial x \partial \theta}$ 

Nous obtenons :

6) 
$$\mathbb{R} \Delta^{2} \mathbf{v}_{0} + \frac{(2+\nu)}{\mathbb{R}} \frac{\partial^{3} \mathbf{u}_{0}}{\partial \mathbf{x}^{2} \partial \theta} + \frac{1}{\mathbb{R}^{3}} \frac{\partial^{3} \mathbf{u}_{0}}{\partial \theta^{3}} - \frac{(2\mathbf{h})^{2}}{12} \left[ \frac{2}{\mathbb{R}} \frac{1}{1-\nu} \frac{\partial^{5} \mathbf{u}_{0}}{\partial \mathbf{x}^{4} \partial \theta} + \frac{3-\nu}{1-\nu} \frac{\partial^{5} \mathbf{u}_{0}}{\partial \mathbf{x}^{2} \partial \theta} \frac{1}{3\mathbb{R}^{3}} + \frac{1}{\mathbb{R}^{5}} \frac{\partial^{5} \mathbf{u}_{0}}{\partial \theta^{5}} \right] = 0$$

3) Dérivons (45) par  $\frac{\partial}{\partial x}$  et (46) par  $\frac{\partial}{\partial \theta}$ . Reportons les expressions obtenues de  $\frac{\partial \Delta^2 w_0}{\partial \theta}$  et  $\frac{\partial \Delta^2 v_0}{\partial x}$  dans l'équation (44) à laquelle on applique l'opérateur  $\Delta^2$ 

47) 
$$\Delta^{4} u_{0} + \frac{12(1-\nu^{2})}{R^{2}(2h)^{2}} - \frac{\partial^{4}u_{0}}{\partial x^{4}} + \frac{1}{R^{2}}\left(\frac{2}{R^{6}} - \frac{\partial^{6}u_{0}}{\partial \theta^{6}} + \frac{(6+\nu-\nu^{2})}{R^{2}} - \frac{\partial^{6}u_{0}}{\partial x^{4}\partial \theta^{2}} + \frac{(7+\nu)}{R^{4}} - \frac{\partial^{6}u_{0}}{\partial x^{2}\partial \theta^{4}}\right) - \frac{\Delta^{2}p_{r}}{D} = 0$$

Avec 
$$\Delta^4 = \Delta^2(\Delta^2)$$
  $D = \frac{(2h)^3 E}{12(1-v^2)}$ 

#### I.3.7. Conclusion:

Nous avons noté par un \* les approximations faites dans la théorie classique. La méthode de linéarisation ignore ces approximations de nature physique, notamment l'hypothèse o<sub>11</sub> = 0 qui est très forte.

Les résultats que nous avons donnés ici sont ceux obtenus par Timoshenko (voir [6]) Cependant d'autres auteurs(cités en [7] [8] [9]) obtiennent, par d'autres approximations, des résultats légèrement différents. Nous ne donnerons pas le détail

des calculs mais exposons ici quelques-uns de ces résultats sous forme de contraintes et moments intégrés.

 $\frac{\text{R.S. Jenkins.}}{\text{Nx} = \frac{\text{E}(2\text{h})}{1 - v^2}} \begin{bmatrix} \frac{\partial w_0}{\partial x} + \frac{v}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) \end{bmatrix} - \frac{\text{E}(2\text{h})^3}{12(1 - v^2)} \frac{1}{R} - \frac{\partial^2 u_0}{\partial x^2} \\ \text{N}\theta = \frac{\text{E}(2\text{h})}{1 - v^2} \begin{bmatrix} v \frac{\partial w_0}{\partial x} + \frac{1}{R} \left( \frac{\partial v_0}{\partial \theta} + u_0 \right) \end{bmatrix} + \frac{\text{E}(2\text{h})^3}{12(1 - v^2)} \frac{1}{R^3} \frac{\partial^2 u_0}{\partial \theta^2} \\ \text{Nx}\theta = \frac{\text{E}(2\text{h})}{2(1 + v)} \begin{bmatrix} \frac{1}{R} - \frac{\partial w_0}{\partial \theta} + \frac{\partial v_0}{\partial x} \end{bmatrix} + \frac{\text{E}(2\text{h})^3}{2^4(1 + v)} \frac{1}{R^2} \begin{bmatrix} \frac{\partial v_0}{\partial x} - \frac{\partial^2 u_0}{\partial \theta x} \end{bmatrix} \\ \text{N\thetax} = \frac{\text{E}(2\text{h})}{2(1 + v)} \begin{bmatrix} \frac{1}{R} - \frac{\partial w_0}{\partial \theta} + \frac{\partial v_0}{\partial x} \end{bmatrix} + \frac{\text{E}(2\text{h})^3}{2^4(1 + v)} \frac{1}{R^2} \begin{bmatrix} \frac{1}{R} - \frac{\partial w_0}{\partial \theta x} - \frac{\partial^2 u_0}{\partial \theta \partial x} \end{bmatrix} \\ \text{N\thetax} = \frac{\text{E}(2\text{h})}{12(1 - v^2)} \begin{bmatrix} \frac{\partial^2 u_0}{\partial x^2} + \frac{v}{R^2} \left( -\frac{\partial^2 u_0}{\partial \theta^2} + u_0 \right) \end{bmatrix} \\ \text{Mx} = \frac{+\text{E}(2\text{h})^3}{12(1 - v^2)} \begin{bmatrix} v \frac{\partial^2 u_0}{\partial x^2} + \frac{1}{R^2} \left( -\frac{\partial^2 u_0}{\partial \theta^2} + u_0 \right) \end{bmatrix} \\ \text{Mx}\theta = -\text{M}\thetax} = \frac{\text{E}(2\text{h})^3}{2^4(1 + v)} \frac{1}{R} \begin{bmatrix} -\frac{\partial v_0}{\partial \theta^2} - \frac{1}{R} - \frac{\partial w_0}{\partial \theta^2} - 2 - \frac{\partial^2 u_0}{\partial \theta \partial x} \end{bmatrix} \end{bmatrix}$ 

$$\frac{\text{Donnell}}{\text{Nx}} = \frac{\text{E}(2\text{h})}{1-v^2} \left[ -\frac{\partial w_0}{\partial x} + \frac{v}{R} \left( -\frac{\partial v_0}{\partial \theta} + u_0 \right) \right] \quad \text{Nx}\theta = \text{N}\theta \text{x} = \frac{\text{E}(2\text{h})}{2(1+v)} \left[ -\frac{1}{R} -\frac{\partial w_0}{\partial \theta} + -\frac{\partial v_0}{\partial x} \right] \\ \text{N}\theta = \frac{\text{E}(2\text{h})}{1-v^2} \left[ v -\frac{\partial w_0}{\partial x} + \frac{1}{R} \left( -\frac{\partial v_0}{\partial \theta} + u_0 \right) \right] \\ \text{Mx} = \frac{\text{E}(2\text{h})^3}{12(1-v^2)} \left[ -\frac{\partial^2 u_0}{\partial x^2} + \frac{v}{R^2} -\frac{\partial^2 u_0}{\partial \theta^2} \right] \qquad \text{Mx}\theta = -M\theta \text{x} = -\frac{\text{E}(2\text{h})^3}{12(1+v)} -\frac{1}{R} -\frac{\partial^2 u}{\partial x^{2\theta}} \\ \text{M}\theta = -\frac{\text{E}(2\text{h})^3}{12(1-v^2)} \left[ v -\frac{\partial^2 u_0}{\partial x^2} + \frac{1}{R^2} -\frac{\partial^2 u_0}{\partial \theta^2} \right]$$

$$\frac{FIUgge}{1-v^2} \begin{bmatrix} \frac{\partial w}{\partial x} + \frac{v}{R} \left( \frac{\partial v}{\partial \theta} + u_0 \right) \end{bmatrix} - \frac{E(2h)^3}{12(1-v^2)} \frac{1}{R} \frac{\partial^2 u_0}{\partial x^2}$$

$$N\theta = \frac{E(2h)}{1-v^2} \begin{bmatrix} v - \frac{\partial w}{\partial x} + \frac{1}{R} \left( \frac{\partial v}{\partial \theta} + u_0 \right) \end{bmatrix} + \frac{E(2h)^3}{12(1-v^2)} \frac{1}{R^3} \begin{bmatrix} u_0 + \frac{\partial^2 u_0}{\partial \theta^2} \end{bmatrix}$$

$$Nx\theta = \frac{E(2h)}{2(1+v)} \begin{bmatrix} -\frac{\partial v}{\partial x} + \frac{1}{R} - \frac{\partial w}{\partial \theta} \end{bmatrix} - \frac{E(2h)^3}{24(1+v)} \frac{1}{R^2} \begin{bmatrix} -\frac{\partial^2 u}{\partial x \partial \theta} - \frac{\partial v}{\partial x} \end{bmatrix}$$

$$N\theta x = \frac{E(2h)}{2(1+v)} \begin{bmatrix} \frac{\partial v}{\partial x} + \frac{1}{R} - \frac{\partial w}{\partial \theta} \end{bmatrix} + \frac{E(2h)^3}{24(1+v)} \frac{1}{R^2} \begin{bmatrix} -\frac{\partial^2 u}{\partial x \partial \theta} - \frac{\partial v}{\partial x} \end{bmatrix}$$

$$Mx = \frac{E(2h)^{3}}{12(1-v^{2})} \left[ \frac{\partial^{2}u_{0}}{\partial x^{2}} + \frac{v}{R^{2}}\left(\frac{\partial^{2}u_{0}}{\partial \theta^{2}} - \frac{\partial v_{0}}{\partial \theta}\right) + \frac{1}{R}\frac{\partial w_{0}}{\partial x} \right]$$

$$M\theta = \frac{E(2h)^{3}}{12(1-v^{2})} \frac{1}{R} \left[ + \frac{v}{R}\frac{\partial^{2}u_{0}}{\partial x^{2}} + \frac{1}{R}\left(\frac{\partial^{2}u_{0}}{\partial \theta^{2}} + u_{0}\right) \right]$$

$$M\theta x = \frac{E(2h)^{3}}{12(1+v)} \frac{1}{R} \left[ -\frac{\partial^{2}u_{0}}{\partial x\partial \theta} - \frac{1}{R} - \frac{\partial v_{0}}{\partial x} + \frac{1}{2R} - \frac{\partial w_{0}}{\partial \theta} \right]$$

$$Mx\theta = -\frac{E(2h)^{3}}{12(1+v)} \frac{1}{R} \left[ -\frac{\partial^{2}u_{0}}{\partial \theta\partial x} - \frac{\partial v_{0}}{\partial x} \right]$$

C'est en examinant ces résultats différents les uns des autres que nous avons essayé, par le biais d'une méthode de linéarisation, de chercher une supperposition de tous ces cas.

Toutes ces expressions pourront peut-être se simplifier en comparant l'ordre de grandeur relatif des dérivées des déplacements  $u_0, v_0, w_0$  entre-elles. <u>Résultats obtenus par la méthode de linéarisation</u>.

$$\begin{split} \mathsf{N}_{\theta} &= \frac{(2\mathbf{h})\mathbf{E}}{1 - \mathbf{v}^{2}} \left[ \frac{1}{\mathbf{R}} \left( \frac{\partial \mathbf{v}}{\partial \theta} + \mathbf{u}_{0} \right) + \mathbf{v} \frac{\partial \mathbf{w}_{0}}{\partial \mathbf{x}} \right] + \frac{(2\mathbf{h})^{3}\mathbf{E}}{12(1 - \mathbf{v}^{2})} \left[ \frac{\mathbf{v}}{2\mathbf{R}} \frac{\partial^{2}\mathbf{u}_{0}}{\partial \mathbf{x}^{2}} + \frac{3\mathbf{v}}{2\mathbf{R}^{2}} \frac{\partial \mathbf{w}_{0}}{\partial \mathbf{x}} + \frac{1}{2\mathbf{R}^{3}} \frac{\partial \mathbf{v}_{0}}{\partial \mathbf{x}} \right] \\ &+ \frac{3\mathbf{u}_{0}}{2\mathbf{R}^{3}} - \frac{1}{2\mathbf{R}} \frac{\partial^{3}\mathbf{v}_{0}}{\partial \theta \partial \mathbf{x}^{2}} - \frac{\mathbf{v}}{2} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \mathbf{x}^{3}} - \frac{1 + \mathbf{v}}{2\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{2} \partial \mathbf{x}} - \frac{1}{\mathbf{R}^{3}} \frac{\partial^{3}\mathbf{v}_{0}}{\partial \theta^{3} \partial \mathbf{x}} \right] \\ \mathsf{N}_{x} &= \frac{(2\mathbf{h})\mathbf{E}}{1 - \mathbf{v}^{2}} \left[ \frac{\mathbf{v}}{\mathbf{R}} \left( \frac{\partial \mathbf{v}}{\partial \theta} + \mathbf{u}_{0} \right) + \frac{\partial \mathbf{w}_{0}}{\partial \mathbf{x}} \right] - \frac{(2\mathbf{h})^{3}\mathbf{E}}{12(1 - \mathbf{v}^{2})} \left[ \frac{2 + \mathbf{v}}{2\mathbf{R}} - \frac{\partial^{2}\mathbf{u}}{\partial \mathbf{x}^{2}} - \frac{\mathbf{v}}{2\mathbf{R}^{3}} \frac{\partial \mathbf{v}_{0}}{\partial \theta} + \frac{\partial^{3}\mathbf{v}_{0}}{\partial \mathbf{x}^{2}} \right] \\ &+ \frac{\mathbf{v}}{2\mathbf{R}^{3}} \frac{\partial^{3}\mathbf{v}_{0}}{\partial \theta^{3}} + \frac{1}{2\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \mathbf{x}^{2}} + \frac{1}{2\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \mathbf{x}^{2}} + \frac{1}{2\mathbf{R}^{3}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{3}\mathbf{x}^{2}} \right] \\ \mathsf{N}_{x} &= \frac{(2\mathbf{h})\mathbf{E}}{2(1 + \mathbf{v})} \left[ \frac{1}{\mathbf{R}} \frac{\partial \mathbf{w}_{0}}{\partial \theta} + \frac{\partial \mathbf{v}_{0}}{\partial \mathbf{x}} \right] - \frac{(2\mathbf{h})^{3}\mathbf{E}}{2\mathbf{u}(1 + \mathbf{v})} \left[ \frac{\mathbf{v}}{1 - \mathbf{v}} - \frac{1}{\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{2}\mathbf{x}} + \frac{1}{\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{2}\mathbf{x}} + \frac{1}{2\mathbf{R}^{3}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{3}\mathbf{x}^{2}} \right] \\ \mathsf{N}_{x\theta} &= \frac{(2\mathbf{h})\mathbf{E}}{2(1 + \mathbf{v})} \left[ \frac{1}{\mathbf{R}} \frac{\partial \mathbf{w}_{0}}{\partial \theta} + \frac{\partial \mathbf{v}_{0}}{\partial \mathbf{x}} \right] + \frac{(2\mathbf{h})^{3}\mathbf{E}}{2\mathbf{u}(1 + \mathbf{v})} \left[ \frac{1}{\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{2}\mathbf{x}} + \frac{1}{\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{2}\partial \mathbf{x}} \right] + \frac{1}{2} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{3}\mathbf{x}^{3}} + \frac{1}{2\mathbf{R}^{3}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{3}\mathbf{x}^{3}} \right] \\ \mathsf{N}_{x\theta} &= \frac{(2\mathbf{h})\mathbf{E}}{2(1 + \mathbf{v})} \left[ \frac{1}{\mathbf{R}} \frac{\partial \mathbf{w}_{0}}{\partial \theta \mathbf{x}} + \frac{\partial^{3}\mathbf{w}_{0}}{\partial \mathbf{x}^{3}} + \frac{1}{\mathbf{R}^{2}} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{2}\partial \mathbf{x}} \right] + \frac{1}{2} \frac{\partial^{3}\mathbf{w}_{0}}{\partial \theta^{3}\mathbf{x}^{3}} + \frac{1}{2\mathbf{R}^{3}} \frac{\partial^{3}\mathbf{w}_{0}$$

$$M_{\theta} = \frac{-(2h)^{3} E}{12(1-v^{2})} \left[ v(\frac{1}{R} \frac{\partial w_{o}}{\partial x} + \frac{\partial^{2}u_{o}}{\partial x^{2}}) + \frac{1}{R^{2}}(u_{o} + \frac{\partial^{2}u_{o}}{\partial \theta^{2}}) \right]$$
$$M_{\theta x} = \frac{-(2h)^{3} E}{24(1+v)} \left[ \frac{1}{R} \frac{\partial v_{o}}{\partial x} - \frac{1}{R^{2}} \frac{\partial w_{o}}{\partial \theta} - \frac{2}{R} \frac{\partial^{2}u_{o}}{\partial \theta \partial x} \right]$$
$$M_{x\theta} = \frac{(2h)^{3} E}{24(1+v)} \left[ \frac{2}{R} \frac{\partial v_{o}}{\partial \theta} - \frac{2}{R} \frac{\partial^{2}u_{o}}{\partial \theta \partial x} \right]$$

#### CYLINDRIQUE HORIZONTAL

#### .1 - Présentation du problème

Nous allons étudier l'action des supports (S) agissant sur la virole d'un servoir cylindrique horizontal. Sur ce réservoir, sont soudés 2 fonds (F) et (F') nériques ou elliptiques.



La forme de (S) sera précisée par la suite. Ce réservoir sera rempli d'un quide de masse volumique p.

#### II.1.1. Etude statique

Isolons la coque du réservoir et faisons le bilan des forces agissant sur lle-ci. Les conventions utilisées seront les mêmes que précédemment.



- Les actions extérieures agissant sur la surface ( $\sum$ ) définie ci-dessus sont es suivantes :

. L'action  $\overline{P}^{*}_{(x,\theta)}$  des supports agissant sur la surface cylindrique ( $\sum'$ )

de coordonnées  $(p_r^+ \quad p_\theta^+ \quad p_\chi^+)$ 

. L'action  $\overrightarrow{p}(\theta, \mathbf{x})$  de la pression hydrostatique du fluide intérieur de coordonnées  $\begin{pmatrix} \overrightarrow{pr} \\ 0 \end{pmatrix}$  sur  $(\sum)$ , et  $p(\theta, \mathbf{x})\overrightarrow{n}$  sur les fonds.

. L'action de la pesanteur due au poids du métal  $\overline{Q^2}$ 

- Pour simplifier les sommations qui vont suivre, nous considérons que la surface ( $\sum$ ), sur laquelle sont appliquées les actions extérieures, est confondue avec la surface moyenne de la coque.

Les équations d'équilibre des résultantes et moments s'écrivent :

$$\iint_{\substack{\substack{n \neq n \\ (n \neq 1) \\$$

- La somme  $\iint_{\sum_{i=1}^{n}} \overrightarrow{p}$  dS représente le poids du fluide contenu, si l'on appelle  $\overrightarrow{Q}$  le poids total de l'appareil alors :

$$\overrightarrow{Q} = \iint (\overrightarrow{D})^{\text{p}} dS + \overrightarrow{Q}^{\text{p}}$$

De plus, nous donnerons aux supports une symétrie :

- . par rapport à un plan vertical passant par l'axe du cylindre,
- . par rapport à un plan passant par la section médiane du cylindre

Done 
$$\iint_{(\sum_{i=1}^{n})} \overline{OM}^{A} \overline{p}^{+} Rd\theta dx = 0$$

De même  $\iint_{(\sum)} \xrightarrow{OM} \Lambda \xrightarrow{p} dS = O$ 

D'où les relations :

(48)  

$$\iint (p_{\mathbf{r}}^{+} \cos\theta - p_{\theta}^{+} \sin\theta) \operatorname{Rd}\theta \, d\mathbf{x} + \mathbf{Q} = 0$$
(49)  

$$\iint (p_{\mathbf{r}}^{+} \sin\theta + p_{\theta}^{+} \cos\theta) \operatorname{Rd}\theta \, d\mathbf{x} = 0$$
(50)  

$$\iint p_{\mathbf{x}}^{+} \operatorname{Rd}\theta \, d\mathbf{x} = 0$$

| Mais | $p_x^+: pair en \theta$ , impair en x             |              |                        |
|------|---------------------------------------------------|--------------|------------------------|
|      | $p_{\theta}^{+}$ : impair en $\theta$ , pair en x | (49) et (50) | sont identiquement vé- |
|      | $p_r^+: pair en \theta$ , pair en x               | rifiées.     |                        |

De cette étude statique, nous garderons l'équation d'équilibre (48) qui est la seule non nulle.

#### II.1.2. Résolution du problème

La solution de ce problème sera la donnée des composantes  $\sigma_{ij}$  de la contrainte en chaque point de la coque et du déplacement u<sub>o</sub>, v<sub>o</sub>, w<sub>o</sub> de la surface moyenne.

1 - Pour travailler uniquement en coordonnées cylindriques, nous allons isoler la virole de ses fonds.



Bur cette virole, les relations entre  $u_0$ ,  $v_0$ ,  $w_0$  et  $p_r$ ,  $p_{\theta}$  et  $p_x$  seront celles données par (42) (43) et (44) ainsi que les équations transformées (45) (46) et (47).

2 - Les conditions aux limites associées à ce système permettant de tenir compte du raccordement de la virole avec les fonds (F) et (F').

3 - Nous avons 3 équations liant 6 quantités  $p_r$ ,  $p_\theta$ ,  $p_x$ ,  $u_o$ ,  $v_o$ ,  $w_o$ , il faulra donc faire des hypothèses supplémentaires. Le problème aurait pu être complètement léterminé si l'on connaissait  $p_r^+$ ,  $p_\theta^+$ ,  $p_x^+$  qui caractérisent le comportement des supports.

4 - La solution générale de (42) (43) (44) sera donnée par la somme d'une <u>so</u>ution particulière et d'une <u>solution sans 2ème membre</u>.

#### 1.2 - Solutions particulières

#### II.2.1. Méthode employée

Nous supposerons, dans tout ce qui va suivre, que les supports exercent sur la irole une réaction normale à celle-ci, c'est-à-dire  $p_{\theta}^+ = p_x^+ = 0$ 

1 - Cherchons une solution particulière de la forme suivante pour  $p_r^{(\theta,x)}$ 

(51) 
$$p_r = \sum_{mn} D_{mn} \cos m\theta \sin \frac{n\pi x}{L}$$

Un examen des équations (45) (46) (47) nous donne la forme que devront prendre  $u_0, v_0, w_0$ :

(52) 
$$u_{0} = \sum A_{mn} \cos m\theta \sin \frac{n\pi x}{L}$$
  
(53)  $v_{0} = \sum B_{mn} \sin m\theta \sin \frac{n\pi x}{L}$  n, m entiers  
(54)  $w_{0} = \sum C_{mn} \cos m\theta \cos \frac{n\pi x}{L}$ 

## 2 - Interprétation de la solution donnée par (51) (52) (53) (54).

La charge radiale décrite par (51) est celle agissant sur un tube cylindrique infiniment long et ayant la forme suivante :



Il est alors facile d'interpréter les "conditions aux limites" sur les bords de la virole en x = 0 et x = L, c'est-à-dire :

$$u_{o} = v_{o} = 0$$
$$\frac{\partial w_{o}}{\partial x} = 0$$

Si l'on représente la déformée en pointillé :



Les sections terminales en x = 0 et x = L restent circulaires.

$$3 - \underline{\text{Calcul des coefficients }}_{mn}^{A}, B_{mn}^{B}, C_{mn}^{B}$$
Reportons (51) et (52) dans (47) :  

$$\sum \left[ \left\{ \frac{n^{2} \pi^{2} R^{2}}{L^{2}} + m^{2} \right)^{4} + \frac{12(1-\nu^{2})}{R^{2}(2h)^{2}} \left( \frac{n^{2} \pi^{2}}{L^{2}} \right)^{4} + \frac{1}{R^{2}} \left( -\frac{2m^{6}}{R^{6}} - (6+\nu-\nu^{2}) \frac{m^{2}}{R^{2}} \frac{n^{4} \pi}{L^{4}} - (7+\nu) \frac{m^{4}}{R^{4}} \frac{n^{2} \pi^{2}}{L^{2}} \right) \right] A_{mn}^{A} - \frac{\left( \frac{\pi^{2} n^{2} R^{2}}{L^{2}} + m^{2} \right)^{2}}{R^{4} D} D_{mn}^{A} \right] \cos m\theta \sin \frac{n\pi x}{L} = 0$$

d'où  
(55) 
$$A_{mn} = \frac{L^{4}}{D} \frac{\left(\frac{m^{2}L^{2}}{R^{2}} + n^{2}\pi^{2}\right)^{2}}{\left(\frac{m^{2}L^{2}}{R^{2}} + n^{2}\pi^{2}\right)^{4} + 12(1-\nu^{2})\frac{n^{4}\pi^{4}L^{4}}{R^{2}(2h)^{2}} - m^{2}\frac{R^{4}}{L^{4}}\left[2m^{4}\frac{R^{4}}{L^{4}} + (6+\nu-\nu^{2})n^{4}\pi^{4} + (7+\nu)\frac{m^{2}n^{2}\pi^{2}\pi^{2}L^{2}}{R^{2}}\right]}{R^{2}}$$

(56) 
$$B_{mn} = \frac{-m}{\left(\frac{n^2 \pi^2 R^2}{L^2} + m^2\right)^2} \left[ \frac{(2+\nu)n^2 \pi^2 R^2}{L^2} + m^2 + \frac{h^2}{12R^2} \left(\frac{2}{1-\nu} \frac{R^4 n^4 \pi^4}{L^4} + \frac{3-\nu}{1-\nu} \frac{n^2 m^2 \pi^2 R^2}{L^2} + m^4\right) \right] A_{mn}$$

(57) 
$$C_{mn} = \frac{\frac{n\pi R}{L}}{\left(\frac{n^2\pi^2R^2}{L^2} + m^2\right)^2} \left[ \frac{\nu n^2\pi^2R^2}{L^2} - m^2 - \frac{h^2}{12R^2} \frac{1+\nu}{1-\nu} m^2 \left(\frac{n^2\pi^2R^2}{L^2} + m^2\right) \right] A_{mn}$$

## 4 - <u>Calcul des composantes</u> σ.;

Ecrivons  $A_{mn}$ ,  $B_{mn}$  et  $C_{mn}$  sous la forme suivante :  $A_{mn} = \phi_{mn} D_{mn}$   $B_{mn} = b_{mn} A_{mn} = b_{mn} \phi_{mn} D_{mn}$  $C_{mn} = c_{mn} A_{mn} = c_{mn} \phi_{mn} D_{mn}$ 

Puis écrivons  $\sigma_{22}, \sigma_{23}, \sigma_{33}$  en l'onction de D<sub>mn</sub>, ces 3 quantités étant prépondérantes devant  $\sigma_{13}, \sigma_{12}, \sigma_{11}$ .

$$(58) \quad \left[ \begin{array}{c} \sigma_{22} = \frac{E}{1 - \nu^2} \sum \left[ \left\{ \frac{m b_{mn}^{+1}}{R} - \frac{\nu n \pi}{L} e_{mn} \right\} + z \left\{ \frac{\nu n^2 \pi^2}{L^2} + \frac{m^2 + m b_{mn}}{R^2} \right\} \right] \phi_{mn} D_{mn} \cos m\theta \sin \frac{n \pi x}{L} \\ (59) \quad \left[ \sigma_{33} = \frac{E}{1 - \nu^2} \sum \left[ \left\{ \nu \frac{m b_{m+1}^{+1}}{R} - \frac{n \pi}{L} e_{mn} \right\} + z \left\{ \frac{n^2 \pi^2}{L^2} + \nu \left( \frac{m^2 + m b_{mn}}{R^2} \right) \right\} \right] \phi_{mn} D_{mn} \cos m\theta \sin \frac{n \pi x}{L} \\ (60) \quad \left[ \sigma_{23} = \frac{E}{2(1 + \nu)} \sum \left[ \left\{ \frac{n \pi b_{mn}}{L} - \frac{m c_{mn}}{R} \right\} + z \left\{ \frac{2n \pi b_{mn}}{RL} + \frac{2m \pi}{R^2 L} \right\} \right] \phi_{mn} D_{mn} \sin m\theta \cos \frac{n \pi x}{L} \\ \end{array} \right]$$

II.2.2. Calcul de D sur quelques formes de supports

1 - Cas d'une charge hydrostatique

Supposons que le réservoir soit complètement rempli d'un liquide de densité p.



La pression au point M est donnée par :

 $p_r(x,\theta) = \rho g R(1 + \cos\theta)$ 

Ou, en tenant compte des extrémités en x = 0 et x = L:  $p_r(x,\theta) = \rho g R(1 + \cos\theta) \sum_{\substack{n \pi \\ n=1,3,5,\dots}} \frac{4}{n\pi} \sin \frac{n\pi x}{L}$ 

D'où l'expression de D<sub>mn</sub> analogue à (51) :  $D_{mn} = \begin{vmatrix} \frac{4\rho g R}{\pi n} & m = 0,1 \\ 0 & m = 2,3,4,5,... \end{vmatrix}$ n = 1, 3, 5,...

2 - <u>Cas d'une charge rectangulaire de densité constante</u>



La charge globale supportée par le rectangle est donnée par :

$$Q = p_r.2\beta R.2b$$

p peut se décomposer en double série de Fourier sous la forme :  

$$p(x,\theta) = \frac{\mu}{\pi} q(\theta) \sum_{n=1,3,5}^{\infty} \frac{1}{n} \sin \frac{n\pi b}{L} \sin \frac{n\pi}{2} \sin \frac{n\pi x}{L}$$

$$q(\theta) = \frac{p\beta}{\pi} + 2p_r \sum_{m=1,2,3}^{\infty} \frac{1}{m} \sin m\beta \cos m\theta$$

c'est-à-dire, en écrivant que sin  $\frac{n\pi}{2} = (-1)\frac{n-1}{2}$  pour n = 1,3,5,...

(61) 
$$D_{mn} = \begin{vmatrix} -\frac{n-1}{2} & \frac{4\beta}{\pi^2 n} & \frac{n\pi b}{L} & (m = 0; n = 1,3,5,...) \\ -\frac{n-1}{2} & \frac{p_r}{\pi^2 m n} \sin m\beta \sin \frac{n\pi b}{L} & (m = 1,2,3,...; n = 1,3,5,...) \end{vmatrix}$$

3 - <u>Cas de 4 appuis en "poteaux</u>".

Considérons le cas d'un réservoir sur 4 appuis selon la figure suivante :





Représentons un éclatement de la surface latérale, vue de l'extérieur et super-



posons les 4 solutions suivantes :

- Densité +p<sub>r</sub> sur ABCD
- Densité -p<sub>r</sub> sur A<sub>3</sub>B<sub>3</sub>C<sub>3</sub>D<sub>3</sub>
- Densité  $-p_r$  sur  $A_1B_1C_1D_1$
- Densité + $p_r$  sur  $A_2B_2C_2D_2$

Nous aurons alors l'équivalent d'une densité constante  $+p_r$  sur les 4 rectangles seuls A A<sub>1</sub>A<sub>2</sub>A<sub>3</sub>, B B<sub>1</sub>B<sub>2</sub>B<sub>3</sub>, C C<sub>1</sub>C<sub>2</sub>C<sub>3</sub>, D D<sub>1</sub>D<sub>2</sub>D<sub>3</sub>.

Dans ce cas

$$D_{mn} = D_{mn} (A A_1 A_2 A_3) + D(B B_1 B_2 B_3) + D(C C_1 C_2 C_3) + D(D D_1 D_2 D_3)$$

D'où, en ajoutant, l'effet de la pression hydrostatique :

$$D_{mn} = \frac{\mu_{\rho gR}}{n\pi} - (-1)^{\frac{n-1}{2}} \frac{16p_{r}}{\pi^{2}n} \left(\frac{\alpha-\beta}{2}\right) \sin \frac{n\pi}{L} \left(\frac{b-a}{2}\right) \cos \frac{n\pi}{L} \left(\frac{b+a}{2}\right) \\ m = 0 ; n = 1,3,5,... \\ D_{mn} = \frac{\mu_{\rho gR}}{n\pi} - (-1)^{\frac{n-1}{2}} \frac{32p_{r}}{\pi^{2}mn} \sin m \left(\frac{\alpha-\beta}{2}\right) \cos m \left(\frac{\alpha+\beta}{2}\right) \sin \frac{n\pi}{L} \left(\frac{b-a}{2}\right) \cos \frac{n\pi}{L} \left(\frac{b+a}{2}\right) \\ m = 1 \quad n = 1,3,5,... \\ D_{mn} = - (-1)^{\frac{n-1}{2}} \frac{32p_{r}}{\pi^{2}mn} \sin m \left(\frac{\alpha-\beta}{2}\right) \cos m \left(\frac{\alpha+\beta}{2}\right) \sin \frac{n\pi}{L} \left(\frac{b-a}{2}\right) \cos \frac{n\pi}{L} \left(\frac{b+a}{2}\right) \\ \end{array}$$

Nous avons les 2 cas particuliers suivants qui se déduisent du cas ci-dessus 3 - <u>Cas de 2 appuis en cerceau</u>



Alors :  

$$D_{mn} = \frac{\mu_{\rho g R}}{n\pi} - (-1)^{\frac{n-1}{2}} \frac{8\beta p_r}{\pi^2 n} \sin \frac{n\pi}{L} \left(\frac{b-a}{2}\right) \cos \frac{n\pi}{L} \left(\frac{b+a}{2}\right) m = 0 \qquad n = 1,3,5,...$$
(63)  

$$D_{mn} = \frac{\mu_{\rho g R}}{n\pi} - (-1)^{\frac{n-1}{2}} \frac{16p_r}{\pi^2 m n} \sin m\beta \sin \frac{\pi n}{L} \left(\frac{b-a}{2}\right) \cos \frac{n\pi}{L} \left(\frac{b+a}{2}\right) m = 1 \qquad n = 1,3,5,...$$

$$D_{mn} = -(-1)^{\frac{n-1}{2}} \frac{16p_r}{\pi^2 m n} \sin m\beta \sin \frac{n\pi}{L} \left(\frac{b-a}{2}\right) \cos \frac{n\pi}{L} \left(\frac{b+a}{2}\right) m \ge 2 \qquad m = 1,3,5,...$$





(64)  $D_{mn} = \frac{\mu_{\rho gR}}{n\pi} - (-1)^{\frac{n-1}{2}} \frac{16p_{r}}{\pi^{2}mn} \sin m \frac{(\alpha - \beta)}{2} \cos m \frac{(\alpha + \beta)}{2} \sin \frac{n\pi b}{L} \qquad m = 1, 3, 5, ...$   $D_{mn} = -(-1)^{\frac{n-1}{2}} \frac{16p_{r}}{\pi^{2}mn} \sin m \frac{(\alpha - \beta)}{2} \cos m \frac{(\alpha + \beta)}{2} \sin \frac{n\pi b}{L} \qquad m \ge 2, ...$ 

## II.2.3. <u>Exemple numérique quand la répartition de pression aux appuis est</u> <u>constante</u>.

Nous prendrons l'exemple d'un appareil ayant les dimensions ci-dessous, avec appuis en berceau. Cet appareil, actuellement en construction, nous donnera par la suite des valeurs expérimentales qu'il sera possible de comparer à nos valeurs théoriques, ceci pour vérifier le bien-fondé de l'hypothèse d'une pression constante sous appuis.



| L = 6,4 m  | $2h = 5, 10^{-3} m$            | $E = 2, 10^{11}  \text{N/m}^2$ |
|------------|--------------------------------|--------------------------------|
| H = 0,23 m | β = 60 <sup>°</sup>            | v = 0,3                        |
| Y = 2,2 m  | R = 0,6 m                      | Q = 87700 N                    |
| 2X = 0,2 m | $p_{m} = 210900 \text{ N/m}^2$ |                                |

La valeur de la pression constante p<sub>r</sub> nous est donnée par la formule (48)

$$\iint_{\Gamma_{\mathbf{r}}} p_{\mathbf{r}} \cos \theta \operatorname{Rd} \theta \, d\mathbf{x} + Q = 0 \implies p_{\mathbf{r}} = \frac{-Q}{4R \sin \beta(2X)}$$

Dans ce cas particulier, nous pouvons calculer les quantités  $\sigma_{22}, \sigma_{33}, \sigma_{23}$  par s formules (63) ainsi que (58) (59) (60).

Les indices de sommation choisis sont les suivants :

 $m = 0, 1, 2, 3, \dots, 20$  $n = 1, 3, 5, 7, \dots, 49$ 

Un essai avec des indices plus élevés (m = 0,..,40 et n = 1,3,...,61) ne nne pas de résultats sensiblement différents.

Nous donnerons ici les valeurs obtenues pour les sections suivantes x = 0 m; 0, 4 m; 0, 8 m; 1 m; 1, 2 m; 1, 6 m; 2 m; 2, 4 m; 2, 8 m;

3,2 m

l'origine étant prise au bord de la virole.

Nous remarquons alors l'action très localisée des appuis sur la coque. Notament les courbes de  $\sigma_{22}$  et  $\sigma_{33}$  ont pour x = 1 m un ordre de grandeur double au niveau es appuis, par rapport à leur valeur en x = 0,8 et x = 1,2 m.

On peut noter également la valeur nulle de la composante de cisaillement  $\sigma_{23}$ a niveau de l'appui.

Il apparaît aussi que, pour les dimensions de l'appareil, le signe positif de  $_{33}$  en x = 3,2 m indique une traction entre  $\theta$  = 40° et  $\theta$  = 140° alors que l'on devrait l'attendre à une traction entre  $\theta$  = 0° et  $\theta$  = 90°. Seule l'expérience pourra confirmer l démentir cette tendance.



x = 1,2 m.

-2]

BIIS





II.2.4. Remarque sur les déplacements

- Nous venons d'étudier le cas simple d'une réaction des supports normaux à ceux-ci, et de densité constante.

Cette répartition des efforts sous appuis est tout à fait arbitraire, et nous allons chercher un critère qui puisse vérifier cette hypothèse.

- Supposons le support infiniment rigide, c'est-à-dire, qu'il y aura simplement translation de la coque sous appuis, avec de plus,  $w_0 = 0$ 



Nous avons représenté en pointillé la nouvelle position de l'appui après chargement. L'arc de cercle AB vient se placer en A'B'.

Calculons les déplacements u et v d'un point de la coque sans appus en fonction de  $x_0$ , translation du centre du cercle.



Traçons les courbes  $u_0$  et  $v_0$  en fonction de  $\theta$  que nous comparerons avec les formules (65) et (66) en prenant  $x_0 = u_0$  ( $\theta = 0$ ).



Nous constatons que la courbe de v<sub>o</sub> coîncide avec celle de v<sub>o</sub>' = x<sub>o</sub> sin  $\theta$ pour un angle inférieur à 30<sup>°</sup>, c'est-à-dire pour la moitié de l'appui. Par contre, la courbe de u<sub>o</sub> s'éloigne considérablement de celle de u<sub>o</sub>', cependant ces courbes ont un point commun voisin de  $\theta = 60^{\circ}$ , point limite du support.

Le remède que l'on peut envisager serait de donner une autre répartition de pression sous appuis en fonction de l'angle θ en paramétrant éventuellement ces courbes. La condition d'équilibre (48) devant être impérativement vérifiée.

#### 11.3. Solution sans 2ème membre

Nous allons chercher une solution aux équations (42) (43) (44) sans 2ème memre, c'est-à-dire  $p_r = 0$ . Ces 3 équations peuvent se simplifier de la façon suivante, en négligeant les termes en  $h^2$ , selon la méthode de Hoff (voir [15]). Nous obtenons dors :

$$\frac{\partial^2 w}{\partial x^2} + \frac{1 - v}{2R^2} \frac{\partial^2 w}{\partial \theta^2} + \frac{1 + v}{2R} \frac{\partial^2 v}{\partial x \partial \theta} + \frac{v}{R} \frac{\partial w}{\partial x} = 0$$

$$\frac{1 + v}{2R} \frac{\partial^2 w}{\partial x \partial \theta} + \frac{1 - v}{2} \frac{\partial^2 v}{\partial x^2} + \frac{1}{R^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{1}{R^2} \frac{\partial u}{\partial \theta} = 0$$

$$\frac{v \partial w}{\partial x} + \frac{1}{R} \frac{\partial v}{\partial \theta} + \frac{u}{R} + \frac{h^2}{12} \left| R \frac{\partial^4 u}{\partial x^4} + \frac{2}{R} \frac{\partial^4 u}{\partial x^2 \partial \theta^2} + \frac{1}{R^3} \frac{\partial^4 u}{\partial \theta^4} \right| = 0$$

D'où l'on tire les 3 équations suivantes par le même procédé que précédemment :  $\Delta^{4}u_{o} + 4k^{4} R^{4} \frac{\partial^{4}u}{\partial x^{4}} = 0 \qquad (67)$   $\Delta^{2}v_{o} + (2+v)R^{2} \frac{\partial^{2}u_{o}}{\partial x^{2} \partial \theta} + \frac{\partial^{3}u_{o}}{\partial \theta^{3}} = 0 \qquad (68)$   $\Delta^{2}w_{o} + vR^{3} \frac{\partial^{3}u_{o}}{\partial x^{3}} - R \frac{\partial^{3}u_{o}}{\partial x \partial \theta^{2}} = 0 \qquad (69)$   $4k^{4} = 12(1-v^{2}) \frac{R^{2}}{(2h)^{2}} \qquad \Delta = R^{2} \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial \theta^{2}}$ 

Naturellement, il faudra vérifier l'ordre de grandeur des termes que l'on a upposé nuls.

II.3.1. Recherche d'une solution

Cherchons une solution de la forme :

(70)  $u_0 = A e^{px} \cos m\theta$ 

(71) 
$$\mathbf{v} = B e^{\mathbf{p}\mathbf{x}} \sin \mathbf{m}\theta$$

(72) 
$$w_0 = C e^{px} \cos m\theta$$

A étant réel ; B,C,p complexes.

Peportons (70) dans (58), nous obtenons alors :

$$(p^{2} - m^{2})^{4} + 4 k^{4} p^{4} = 0$$

Cette Equation a 8 solutions en p que nous noterons

 $p_1 = \alpha_1 + i\beta_1 \qquad p_5 = \alpha_2 + i\beta_2$  $i_{c2} = \alpha_1 - i\beta_1 \qquad p_6 = \alpha_2 - i\beta_2$ 

$$p_{3} = -\alpha_{1} + i\beta_{1}$$

$$p_{7} = -\alpha_{2} - i\beta_{2}$$

$$p_{4} = -\alpha_{1} - i\beta_{1}$$

$$p_{8} = -\alpha_{2} - i\beta_{2}$$

$$p_{8} = -\alpha_{2} - i\beta_{2}$$

$$\beta_{1} = \frac{\alpha - k - \frac{m^{2}}{\alpha_{2}}}{2}$$

$$\beta_{1} = \frac{\alpha - k - \frac{m^{2}}{\alpha_{2}}}{2}$$

$$\beta_{2} = \frac{\alpha + k - \frac{m^{2}}{\alpha_{2}}}{2}$$

$$\beta_{3} = \sqrt{\frac{-k}{2} + \sqrt{\frac{k^{4}}{4} + m^{4}}}$$
Reportons (71) dans (68) :

$$\implies B = -\frac{vp^{2} + m^{2}}{(p^{2} - m^{2})^{2}} p A$$
  
Puis (72), dans (69)

$$=> C = \frac{(2+v) p^2 - m^2}{(p^2 - m^2)^2} m A$$

Nous pouvons alors former 3 combinaisons linéaires pour  $u_0, v_0, w_0$  en affecant à p une valeur complexe. Puis regroupons les termes pour ne faire apparaître que es quantités réelles, nous obtenons finalement :

$$M_{2} = m^{2} \frac{\alpha_{2}^{2} - \beta_{2}^{2}}{(\alpha_{2}^{2} + \beta_{2}^{2})^{2}} - (2 + \nu) \qquad M_{2}^{!} = m^{2} \frac{2 \alpha_{2} \beta_{2}}{(\alpha_{2}^{2} + \beta_{2}^{2})^{2}}$$

$$N_{1} = \alpha_{1} \left[ \frac{m^{2}}{\alpha_{1}^{2} + \beta_{1}^{2}} + \nu \right] \qquad N_{1}^{!} = \beta_{1} \left[ \frac{m^{2}}{\alpha_{1}^{2} + \beta_{1}^{2}} - \nu \right]$$

$$N_{2} = \alpha_{2} \left[ \frac{m^{2}}{\alpha_{2}^{2} + \beta_{2}^{2}} + \nu \right] \qquad N_{2}^{!} = \beta_{2} \left[ \frac{m^{2}}{\alpha_{2}^{2} + \beta_{2}^{2}} - \nu \right]$$

Nous pouvons, à nouveau, former une solution combinaison linéaire des formes élémentaires de  $u_0$ ,  $v_0$ ,  $w_0$  données en (73) (74) (75) en affectant à chaque terme une valeur de m.

C'est à dire :

$$\frac{\mathbf{u}_{0}}{\mathbf{R}} = -\sum_{\mathbf{m}} \left[ e^{-\alpha_{1}\frac{\mathbf{x}}{\mathbf{R}}} \left( \mathbf{A}_{1_{\mathbf{m}}} \cos\beta_{1} \frac{\mathbf{x}}{\mathbf{R}} + \mathbf{A}_{2_{\mathbf{m}}} \sin\beta_{1}\frac{\mathbf{x}}{\mathbf{R}} \right) + e^{-\alpha_{2}\frac{\mathbf{x}}{\mathbf{R}}} \left( \mathbf{A}_{3_{\mathbf{m}}} \cos\beta_{2}\frac{\mathbf{x}}{\mathbf{R}} + \mathbf{A}_{4_{\mathbf{m}}} \sin\beta_{2}\frac{\mathbf{x}}{\mathbf{R}} \right) \right) \right]$$

$$(76) + e^{+\alpha_{1}\frac{\mathbf{x}}{\mathbf{R}}} \left( \mathbf{A}_{5_{\mathbf{m}}} \cos\beta_{1}\frac{\mathbf{x}}{\mathbf{R}} + \mathbf{A}_{6_{\mathbf{m}}} \sin\beta_{1}\frac{\mathbf{x}}{\mathbf{R}} \right) + e^{\alpha_{2}\frac{\mathbf{x}}{\mathbf{R}}} \left( \mathbf{A}_{7_{\mathbf{m}}} \cos\beta_{2}\frac{\mathbf{x}}{\mathbf{R}} + \mathbf{A}_{8_{\mathbf{m}}} \sin\beta_{2}\frac{\mathbf{x}}{\mathbf{R}} \right) \right] \cos\theta_{1}$$

$$\frac{\mathbf{v}}{\mathbf{R}} = \frac{1}{2\mathbf{K}^2} \sum_{\mathbf{m}} \left[ \mathbf{m} \ \mathbf{e}^{-\alpha_1 \frac{\mathbf{x}}{\mathbf{R}}} \left\{ \mathbf{A}_{1\mathbf{m}} (\mathbf{M}_1' \ \cos \beta_1 \frac{\mathbf{x}}{\mathbf{R}} + \mathbf{M}_1 \ \sin \beta_1 \ \frac{\mathbf{x}}{\mathbf{R}} - \mathbf{A}_{2\mathbf{m}} (\mathbf{M}_1 \ \cos \beta_1 \frac{\mathbf{x}}{\mathbf{R}} - \mathbf{M}_1' \ \sin \beta_1 \ \frac{\mathbf{x}}{\mathbf{R}}) \right\}$$

$$(77) + \text{etc...} \quad \int \sin m\theta$$

$$\frac{w_{0}}{R} = \frac{1}{2K^{2}} \quad \sum_{m} \quad \left[ e^{-\alpha_{1}\frac{X}{R}} \left\{ -A_{1m}(N_{1}^{*} \cos \beta_{1}\frac{X}{R} + N_{1} \sin \beta_{1}\frac{X}{R}) + A_{2m}(N_{1} \cos \beta_{1}\frac{X}{R} - N_{1}^{*} \sin \beta_{1}\frac{X}{R}) \right\}$$

$$(78) \quad + \text{etc...} \quad \int \cos m\theta$$

II.3.2. Détermination des coefficients  $A_{1m}, A_{2m}, \dots, A_{8m}$ 

Appelons  $U(x,\theta)$ ,  $V(x,\theta)$ ,  $W(x,\theta)$  les solutions sans 2ème membre du système défini ci-dessus et  $u_0$ ,  $v_0$ ,  $w_0$  ses solutions générales. Alors :

(79) 
$$u_{o}(\theta, \mathbf{x}) = U(\mathbf{x}, \theta) + \Sigma \Sigma A_{mn} \cos m\theta \sin \frac{n \pi \mathbf{x}}{L}$$

(80) 
$$v_{o}(\theta, x) = V(x, \theta) + \Sigma \Sigma B_{mn} \sin m\theta \sin \frac{n \pi x}{L}$$

(81) 
$$W_{O}(\theta, x) = W(x, \theta) + \Sigma \Sigma C_{mn} \cos m\theta \cos \frac{n \Pi x}{L}$$

#### Conditions aux limites :

Nous supposerons que les fonds soudés à la virole sont assimilables à des solides rigides, non pesant, dans lesquels sont encastrés les bords de la partie cylindrique.



Nous supposerons aussi que l'action des fonds diminue lorsque l'on s'éloigne des bords, c'est à dire

 $\lim_{X \to +\infty} U, V, W = 0$ 

Dans ce cas nous ne garderons que les termes en exponentielle négative. (Nous avons vérifié que  $\alpha_1$  et  $\alpha_2$  ont des valeurs positives pour m = 0, 1, ..., 20).

Il reste 2 possibilités à étudier :  
a) - les termes facteurs de 
$$e = \frac{-\alpha_1 \mathbf{x}}{R}$$
  
b) - les termes facteurs de  $e^{-\alpha_2^2} \frac{\mathbf{x}}{R}$ 

Chaque cas a) ou b) ne contient que 2 constantes à déterminer aussi nous n'allons vérifier que 2 conditions aux limites :

$$x = 0 \begin{cases} \frac{\partial u}{\partial x} = 0 & (bord encastré (82)) \\ v_0 = 0 & (rigidité du fond) (83) \end{cases}$$

D'où :

(79) et (82) 
$$\implies \frac{\partial U}{\partial x} (x = 0, \theta) = -\Sigma \Sigma \frac{n \Pi}{L} A_{mn} \cos m\theta$$

(80) et (83)  $\implies$   $V(x = 0, \theta) = 0$ 

Cette dernière condition ne sera réalisée que si la sommation en m dans la solution sans 2ème membre, a le même nombre d'indices que pour la solution particulière, c'est à dire m = 0, 1, 2, ..., 20 dans les 2 cas.

$$= A_{2m} = \frac{\Pi}{L} \frac{\sum_{n=1}^{n} A_{mn}}{\beta_1 - \alpha_1 \frac{M_1}{M_1}} = \frac{\Pi}{L} \frac{M_1 \sum_{n=1}^{n} A_{mn}}{\beta_1 M_1 - \alpha_1 M_1}$$
$$A_{1m} = \frac{\pi}{L} \frac{\sum_{n=1}^{n} A_{mn}}{\frac{M_1}{M_1} - \alpha_1} = \frac{\Pi}{L} \frac{M_1 \sum_{n=1}^{n} A_{mn}}{\beta_1 M_1 - \alpha_1 M_1}$$

D'où finalement :

$$U = -\frac{R\Pi}{L} \Sigma \Sigma \frac{n A_{mn}}{\beta_1 M'_1 - \alpha_1 M_1} e^{-\alpha_1 \frac{X}{R}} (M_1 \cos \beta_1 \frac{X}{R} + M'_1 \sin \beta_1 \frac{X}{R}) \cos m\theta$$
(84)

$$V = \frac{R \Pi}{2 L K^{2}} \Sigma \Sigma \frac{\text{mn } A_{\text{mn}}}{\beta_{1}M_{1}^{1} - \alpha_{1}M_{1}} e^{-\alpha_{1}\frac{X}{R}} (M_{1}^{2} + M_{1}^{\prime 2}) \sin \beta_{1} \frac{X}{R} \sin m\theta$$

$$W = \frac{R \Pi}{2 L K^{2}} \Sigma \Sigma \frac{n A_{\text{mn}}}{\beta_{1} M_{1}^{\prime} - \alpha_{1}M_{1}} e^{-\alpha_{1}\frac{X}{R}} \left\{ (M_{1}^{\prime}N_{1} - M_{1}N_{1}^{\prime}) \cos \beta_{1} \frac{X}{R} - (M_{1}^{\prime}N_{1}^{\prime} + M_{1}N_{1}) \sin \beta_{1} \frac{X}{R} \cos m\theta \right\}$$

$$(86)$$

## II.3.4. Solution complète en exponentielle de $\alpha_2$

Nous obtenons, par la même méthode, avec les conditions aux limites :

$$V(\mathbf{x} = 0, \theta) = 0$$

$$\frac{\partial U}{\partial \mathbf{x}} (\mathbf{x} = 0, \theta) = -\Sigma \Sigma \frac{\Pi \mathbf{n}}{L} A_{mn} \cos m\theta$$

$$U = -\frac{\Pi}{L} \Sigma \Sigma \frac{\mathbf{n} A_{mn}}{M_2^{\prime} \beta_2 - \alpha_2 M_2} \qquad e^{-\alpha_2 \frac{\mathbf{x}}{R}} (M_2 \cos \beta_2 \frac{\mathbf{x}}{R} + M_2^{\prime} \sin \beta_2 \frac{\mathbf{x}}{R}) \cos m\theta$$

$$V = \frac{R}{2LK^2} \Sigma \Sigma \frac{m\mathbf{n} A_{mn}}{M_2^{\prime} \beta_2 - \alpha_2 M_2} \qquad e^{-\alpha_2 \frac{\mathbf{x}}{R}} (M_2^2 + M_2^{\prime 2}) \sin \beta_2 \frac{\mathbf{x}}{R} \sin m\theta$$

$$W = \frac{R}{2LK^2} \Sigma \Sigma \frac{\mathbf{n} A_{mn}}{M_2^{\prime} \beta_2 - \alpha_2 M_2} \qquad e^{-\alpha_2 \frac{\mathbf{x}}{R}} \{(M_2^{\prime} N_2 - M_2 N_2^{\prime}) \cos \beta_2 \frac{\mathbf{x}}{R} - (M_2^{\prime} N_2^{\prime} + M_2 N_2) \sin \beta_2 \frac{\mathbf{x}}{R} \} \cos m\theta$$

Pour m = 0 ces 3 expressions sont indéterminées. Cherchons donc un équivalent pour  $\alpha_2$ ,  $\beta_2$ ,  $M_2$ ,  $N_2$ ,  $M_2^i$ ,  $N_2^i$ Pour m  $\rightarrow 0$   $\begin{pmatrix} \alpha_2 = \frac{m^2}{2K} & \beta_2 = \frac{m^2}{2K} \\ M_1 = -\gamma & N_2 = K \end{pmatrix}$ 

$$\begin{cases} M_2 = -5, & N_2 = K \\ M_2^* = \frac{2K^2}{m^2}, & N_2^* = K \end{cases}$$

$$=> \begin{cases} M_{2}^{1} \ \beta_{2} \ -\alpha_{2}M_{2} = K \\ M_{2}^{1} \ \sin \ \beta_{2}\frac{x}{R} = K \frac{x}{R} \\ m(M_{2}^{12} + M_{2}^{2}) \ \sin \ \beta_{2}\frac{x}{R} \ \sin \ m\theta = 2 \ K^{3} \frac{x}{R} \ \theta \\ M_{2}^{1} \ N_{2} - M_{2}N_{2}^{1} = \frac{2K^{3}}{m^{2}} + \nu \ K \\ M_{2}^{1} \ N_{2}^{1} + M_{2}N_{2} = \frac{2K^{3}}{m^{2}} - \nu \ K \end{cases}$$

Dans ce cas.

Pour 
$$m \rightarrow 0$$
  $U = -\frac{\Pi R}{L} \sum_{n} \frac{n A_{mn}}{K} (-\nu + \frac{Kx}{R})$ 

$$V = \frac{\Pi R}{2LK^2} \sum_{n} \frac{n A_{mn}}{K} 2 K^3 \theta \frac{x}{R}$$
$$W = \frac{\Pi R}{2LK^2} \sum_{n} \frac{n A_{mn}}{K} (\frac{2K^3}{m^2} + \nu K - \frac{xK^2}{R})$$

L'expression de W est alors infinie pour m = 0. Cette solution en expotielle de  $\alpha_2$  n'est donc valable que dans le cas restreint où la sommation en m s l'expression de  $A_{mn}$  ne commence pas par 0.

## 3.5. Calcul des contraintes $\sigma_{ij}$

Reprenons les expressions de  $\sigma_{22}, \sigma_{33}, \sigma_{23}$  du paragraphe I.2.6. dans lesquelles s reportons (84) (85) (86), avec les termes en exponentielle de -  $\alpha_1$   $(z=\alpha) = \frac{E\Pi}{L} \Sigma \Sigma \frac{n A_{mn}}{\beta_1 M_1^i - \alpha_1 M_1} e^{-\alpha_1 \frac{X}{R}} \left[ \cos \beta_1 \frac{x}{R} \left( \frac{M_1^i R_1^i}{2K} - M_1^i S_1^i \right) + \sin \beta_1 \frac{x}{R} (M_1^i S_1^i + \frac{M_1 R_1^i}{2K}) \right] \cos m\theta$   $(z=\alpha) = -\frac{\Pi}{2LK^2} \Sigma \Sigma \frac{m^2 n A_{mn}}{\beta_1 M_1^i - \alpha_1 M_1} e^{-\alpha_1 \frac{X}{R}} \left[ M_1^i \sin \beta_1 \frac{x}{R} - M_1 \cos \beta_1 \frac{x}{R} \right] \cos m\theta$   $(z=\alpha) = -\frac{\Pi}{2LK^2} \Sigma \Sigma \Sigma \frac{n A_{mn}}{\beta_1 M_1^i - \alpha_1 M_1} e^{-\alpha_1 \frac{X}{R}} \left[ \cos \beta_1 \frac{x}{R} (M_1^i \beta_1 - M_1 \alpha_1) - \sin \beta_1 \frac{x}{R} (\alpha_1 M_1^i + \beta_1 M_1) \right] sin m\theta$   $(z=\alpha) = -\frac{\Pi}{2LK^2} \Sigma \Sigma \frac{n A_{mn}}{\beta_1 M_1^i - \alpha_1 M_1} e^{-\alpha_1 \frac{X}{R}} \left[ \cos \beta_1 \frac{x}{R} (M_1^i \beta_1 - M_1 \alpha_1) - \sin \beta_1 \frac{x}{R} (\alpha_1 M_1^i + \beta_1 M_1) \right] sin m\theta$  $(z) - \sigma_{22}(\alpha) = -\frac{E z}{1 - \nu^2} \frac{\Pi}{LR} \Sigma \Sigma \frac{n A_{mn}}{\beta_1 M_1^i - \alpha_1 M_1} e^{-\alpha_1 \frac{X}{R}} \cos m\theta \left[ \nu (T_1 \cos \beta_1 \frac{x}{R} - T_1^i \sin \beta_1 \frac{x}{R}) \right]$ 

$$+ m^{2} (M_{1} \cos \beta_{1} \frac{x}{R} + M_{1}' \sin \beta_{1} \frac{x}{R}) - m^{2} \frac{(M_{1}^{2} + M_{1}'^{2})}{R} \sin \beta_{1} \frac{x}{R} \right]$$

$$(z) - \sigma_{33}(o) = - \frac{E}{1 - v^{2}} \frac{\Pi}{LR} \sum \sum \frac{n A_{mn}}{\beta_{1} M_{1}' - \alpha_{1} M_{1}} e^{-\alpha_{1} \frac{x}{R}} \cos m\theta \left[ (T_{1} \cos \beta_{1} \frac{x}{R} - T_{1}' \sin \beta_{1} \frac{x}{R}) \right]$$

$$+ \nu m^{2}(M_{1} \cos \beta_{1} \frac{x}{R} + M_{1}' \sin \beta_{1} \frac{x}{R}) - \nu m^{2} \frac{(M_{1}^{2} + M_{1}'^{2})}{R} \sin \beta_{1} \frac{x}{R} \right]$$

$$z) - \sigma_{23}(o) = \frac{E z}{2(1+\nu)} \frac{2\Pi}{LR} \sum \sum \frac{mn A_{mn}}{\beta_{1}M_{1}' - \alpha_{1}M_{1}} e^{-\alpha_{1}\frac{x}{R}} \sin m\theta \left[ (\beta_{1}\cos \beta_{1} \frac{x}{R} - \alpha_{1} \sin \beta_{1} \frac{x}{R})(\frac{M_{1}^{2} + M_{1}'^{2}}{2K^{2}}) + M_{1}'^{2} +$$

$$+ \{ \cos \beta_1 \frac{\mathbf{x}}{\mathbf{R}} (\mathbf{M}_1' \beta_1 - \alpha_1 \mathbf{M}_1) - \sin \beta_1 \frac{\mathbf{x}}{\mathbf{R}} (\mathbf{M}_1 \beta_1 + \mathbf{M}_1' \alpha_1) \} \right]$$
$$= \mathbf{k} + \frac{\mathbf{m}^2}{\Omega} \qquad \mathbf{T}_1 = \alpha_1 (\mathbf{M}_1' \beta_1 - \alpha_1 \mathbf{M}_1) + \beta_1 (\mathbf{M}_1 \beta_1 + \mathbf{M}_1' \alpha_1)$$

$$= \frac{1}{2k} - \frac{1}{2k^2} \qquad T'_1 = \alpha_1 \left( M_1 \beta_1 + M'_1 \alpha_1 \right) - \beta_1 \left( M'_1 \beta_1 - \alpha_1 M_1 \right)$$



#### II.3.6. Exemple numérique.

Calculons les expressions obtenues précédemment pour le réservoir décrit au paragraphe (II.2.3).

Les indices de sommation seront naturellement les mêmes que ceux utilisés pour la solution particulière en double série de Fourier.

Les résultats sont donnés ici sous forme de courbes pour les sections suivantes :  $x = o_m$ ; x = 0.05 m; x = 0.1 mAu delà, les valeurs s'attenuent très rapidement ; pour x = 0.2 m elles sont, en moyenne, 1/10ième plus faible et pour x = 0.3 m de 1/100 ième plus faibles que celles obtenues en x = 0.1 m. Cependant il existe un maximum sensible des valeurs pour x = 0.05 m.

Nous pouvons noter aussi que la composante de cisaillement  $\sigma_{23}$  s'attenue beaucoup plus vite que  $\sigma_{22}$  et  $\sigma_{33}$  d'une section à l'autre.

#### II.4. Solution générale

Additionnons les solutions particulières et sans 2ème membre pour  $v_0, v_0, w_0$  et  $\sigma_{22}, \sigma_{33}, \sigma_{23}$ 

(87) 
$$u_{0} = \Sigma \Sigma - \frac{R\Pi}{L} \left[ \frac{n e}{\beta_{1}M_{1}^{\prime} - \alpha_{1}M_{1}} \left( M_{1} \cos \beta_{1} \frac{x}{R} + M_{1}^{\prime} \sin \beta_{1} \frac{x}{R} \right) + \sin \frac{n\Pi x}{L} \right] A_{mn} \cos m\theta$$

(88) 
$$\mathbf{v}_{o} = \Sigma \Sigma \left[ \frac{\mathbf{R} \Pi}{2\mathbf{L}\mathbf{K}^{2}} \frac{\mathbf{m} \mathbf{n} \mathbf{e}}{\boldsymbol{\beta}_{1} \mathbf{M}_{1}^{2} - \boldsymbol{\alpha}_{1} \mathbf{M}} \left(\mathbf{M}_{1}^{2} + \mathbf{M}_{1}^{*2}\right) \sin \boldsymbol{\beta}_{1} \frac{\mathbf{x}}{\mathbf{R}} + \sin \frac{\mathbf{n} \Pi \mathbf{x}}{\mathbf{L}} \right] \mathbf{A}_{mn} \sin \boldsymbol{m}\boldsymbol{\theta}$$

(89) 
$$w_{o} = \Sigma \Sigma \left[ \frac{R\Pi}{2LK^{2}} \frac{n e}{\beta_{1}M' - \alpha_{1}M_{1}} \left\{ (M_{1}'N_{1} - M_{1}N_{1}') \cos \beta_{1} \frac{x}{R} - (M_{1}'N_{1}' + M_{1}N_{1}) \sin \beta_{1} \frac{x}{R} \right\} \right]$$
$$A_{mn} + C_{mn} \cos \frac{n\Pi x}{L} \cos m\theta$$

(90) 
$$\sigma_{22}(z=0) = \Sigma\Sigma \frac{E\Pi}{L} \left[ \frac{n}{\beta_1 M_1^{\prime} - \alpha_1 M_1} \left\{ \cos \beta_1 \frac{x}{R} \left( \frac{M_1^{\prime} R_1^{\prime}}{2K} - M_1^{\prime} S_1^{\prime} \right) + \sin \beta_1 \frac{x}{R} \left( \frac{M_1^{\prime} S_1^{\prime} + \dots + \frac{M_1 R_1^{\prime}}{2K} \right) \right\} + \frac{E}{1 - \nu^2} \left\{ \frac{m}{R} \frac{b_{mn}}{R} + \frac{1}{2} - \nu \frac{n\Pi}{L} C_{mn} \right\} \sin \frac{n\Pi x}{L} \left[ A_{mn} \cos m\theta + \frac{1}{2} + \frac{1}{2}$$

$$(91) \quad \sigma_{33}(z=0) = \chi \sum \left[ -\frac{E\Pi}{2K^2L} \frac{m}{8_1} \frac{m}{n} \frac{e^{-\alpha_1 \frac{K}{R}}}{R} \left\{ M_1^{*} \sin \beta_1 \frac{K}{R} - M_1 \cos \beta_1 \frac{K}{R} \right\} + \frac{\pi}{R} \left\{ \sqrt{n} \frac{m}{8n} \frac{m}{n} \frac{e^{-\alpha_1 \frac{K}{R}}}{R} + \frac{m}{L} \frac{m}{2n} \frac{m}{2n} \frac{m}{R} \frac{m}{L} \right\} + \frac{\pi}{R} \frac{e^{-\alpha_1 \frac{K}{R}}}{R} \left\{ (M_1^{*} \beta_1 - M_1 \alpha_1) - \sin \beta_1 \frac{K}{R} \right\} + \frac{\pi}{R} \frac{e^{-\alpha_1 \frac{K}{R}}}{R} \left\{ (m_1^{*} M_1^{*} + \beta_1 M_1^{*}) \right\} + \frac{E}{2(1+\nu)} \left\{ \frac{m}{n} \frac{m}{L} - \frac{m}{R} \frac{m}{2n} - \frac{m}{R} \frac{m}{2n} \right\} \cos \frac{m\pi}{L} A_{mn} \sin m^2$$

$$(93) \quad \sigma_{22}(z) - \sigma_{22}(\alpha) = \frac{E}{1-\nu^2} \sum \sum \left[ -\frac{\pi}{LR} - \frac{m}{\beta_1 M_1^{*}} - \alpha_1 M_1 - \alpha_1 \beta_1 \frac{K}{R} - \frac{m}{R} \frac{m}{2n} \right] \cos \frac{m\pi}{L} A_{mn} \sin m^2$$

$$(93) \quad \sigma_{22}(z) - \sigma_{22}(\alpha) = \frac{E}{1-\nu^2} \sum \sum \left[ -\frac{\pi}{LR} - \frac{m}{\beta_1 M_1^{*}} - \alpha_1 M_1 - \alpha_1 \beta_1 \frac{K}{R} + \frac{m}{R} \frac{m}{2n} - \frac{m^2 m}{R} \right] \cos \frac{m\pi}{L} A_{mn} \sin m^2$$

$$(93) \quad \sigma_{22}(z) - \sigma_{22}(\alpha) = \frac{E}{1-\nu^2} \sum \sum \left[ -\frac{\pi}{LR} - \frac{m}{\beta_1 M_1^{*}} - \alpha_1 M_1 - \alpha_1 \beta_1 \frac{K}{R} + \frac{m^2 m}{R} - \frac{m}{R} \frac{m}$$

- celles de  $R'_1$ ,  $S'_1$ ,  $T_1$ ,  $T'_1$  en (II.3.5) - celles de  $\phi_{mn}$ ,  $b_{mn}$ ,  $c_{mn}$  en (II.2.1) 4) calcul des composantes  $\sigma_{ij}$ , 54)

BUS

- A est donné par la formule (55) et dépend du facteur D mn,
 celui-ci dépend de la géométrie des supports et de la répartition de pression sous-appuis que l'on peut choisir. Quelques exemples en sont calculés en (II.2.2) pour une répartition de pression constante.

Nous n'avons pas donné les expressions de  $\sigma_{12}$ ,  $\sigma_{13}$ ,  $\sigma_{11}$ , car nous savons que leur ordre de grandeur est de  $\frac{h}{R}$  par rapport à  $\sigma_{22}$ ,  $\sigma_{33}$ ,  $\sigma_{23}$ , donc faible par rapport à celles-ci. D'autre part leurs valeurs seront proches de  $p_r$ ,  $p_{\theta}$ ,  $p_{\chi}$  car :

$$\sigma_{11}(z = + h) = p_r^+ \qquad \sigma_{12}(z = + h) = p_{\theta}^+ \qquad \sigma_{13}(z = + h) = p_2^+ \\ \sigma_{11}(z = - h) = -p_r^- \qquad \sigma_{12}(z = + h) = -p_{\theta}^- \qquad \sigma_{13}(z = + h) = -p_x^-$$

#### II.4.1. Exemple numérique.

- Nous donnons ici les courbes définitives de cette étude. Nous n'avons fait figurer que les sections x = 0m; x = 0,05 m; x = 0,1 m x = 0,2 m. Au delà les résultats sont naturellement identiques à ceux des donnés par la solution particulière.

- Les résultats obtenus pour cette zone de x = 0 m à x = 0,2 m sont difficiles à interpréter et devront être confrontés à l'expérience.



Le modèle pour l'étude de l'influenxe des supports que nous venons de proposer nous a introduit 3 nouveaux problèmes annexes.

Le premier de ceux-ci concerne l'étude de la flexion des coques cylindriques. La méthode que nous avons exposée nous permet de retrouver et même d'établir de nouveaux résultats. Cependant ces résultats n'étant valables que loin des bords, il serait intéressant de pouvoir tenir compte des conditions aux limites sur ses bords. D'autre part, nous avons fait le même travail qu 'au chapitre I, sur des coques sphériques, les résultats que l'on trouve sont identiques à ceux de la Résistance des Matériaux classique. Il doit donc être possible, à priori, par cette méthode de linéarisation, d'étudier la flexion des coques épaisses (ou minces) de forme quelconque.

Le deuxième problème que nous avons rencontré est celui de la répartition de la pression sous appuis. Il doit être possible, en se donnant à l'avance diverses répartitions paramétrées d'améliorer le modèle choisi.Cependant une étude expérimentale approfondie sera tout de même nécessaire.

Enfin le troisième problème est celui du comportement des fonds, qui sont généralement elliptiques ou sphériques, et leurs liaison ici n'affecte la solution particulière que dans une zone restreinte, ce qui est peut être le cas dans la réalité.

A partir de ces quelques considérations, nous en concluons qu'il sera nécessaire, voir indispensable, de faire une étude expérimentale aussi complète que possible.

Les valeurs numériques que nous avons obtenues doivent être prises avec précaution et nous permettre seulement de prévoir la tendance en chaque point de l'appareil réel.

#### BIBLIOGRAPHIE

Théorie diverses de linéarisation en élasticité.

1) Flexion des plaques planes :

- [1] FRIEDRICHS K.O. et DRESSLER R.F. A Boundary layer theory for elastic plates. Communications of Pures and Applied Mathematics. Vol.14. N°1. 1961.
- [2] GOL'DENVEIZR A.L. et KOLOS A.V. Derivation of an approximate theory of vending of a plate by the method of asymptotic integration of the equations of the theory of elasticity. P.M.M. Vol. 26. N°4. 1962.Traduit du russe.
- [3] GOL'DENVEIZER A.L. et KOLOS A.V. On the derivation of two dimentional equations in the theory of thin elastic plates. P.M.M. Vol. 29 N°1. 1965. Traduit du russe.
- [4] REISS E.L et LOCKE S. On the theory of plane stress. Quartely of Applied Mathematics. Vol. 19. N°3. 1961

Dans ces articles, on y étudie la flexion des plaques par divers développements asymptotiques raccordés. On y considère toujours 2 domaines :

- Le domaine intérieur, ensemble des points "suffisamment éloignés" des bords, où l'on retrouve les résultats classiques de la R.D.M. pour σ<sub>ij</sub> en fonction de u<sub>o</sub>, v<sub>o</sub>, w<sub>o</sub>.
- Le domaine extérieur, près des bords, où l'on retrouve les conditions aux limites (dites conditions de Kicchhoff) pour les plaques minces, avec en plus d'autres conditions pour les plaques épaisses.

#### 2) Flexion des coques cylindriques :

[5]

[6]

REISS E.L. A theory of the small rotationnally symetric deformations of cylindrical shells. Communications of Pures and Applied Mathematics, Vol.13 1960.

> Comme pour le cas des plaques planes, on étudie les conditions aux limites sur les bords.

NAGHDI P.M. On the theory of thin elastic shells. Quartely of Applied Mathematics. Vol. 14. 1957.

On établit la forme des contraintes intégrées pour une coque de forme quelconque repérée par ses coordonnées cuvilignes orthogonales.

#### Théories générales des coques cylindriques.

- [6] TIMOSHENKO et WOINOWSKY KRIEGER S. Théorie des plaques et coques. Dunod. 1961. (p. 427-568).
- [7] JENKINS R.S. Theory and Design of cylindrical shell structures Arup Group of consulting Engineering London. 1947
- [8] FLUGGE W. Statik und Dynamik der Shalen. Springer Berlin. 1934.
- [9] DONNELL L.H. Stability of Thin Walled tubes under Torsion. Rep. NACA. N°479. 1933.

Nous avons cité ces auteurs au paragraphe I.3.7. sur quelques résultats obtenus par des considérations géométriques et physiques de la flexion des coques.

- [10] LOVE A.E.H. A treatise on the mathematical theory of the elasticity. New-York Dover Publications. 1926 (p.499 - 552).
- [11] NOVOZHILOV V.V. The theory of thin shells. Noordhoff L.D.T. Gronin gen. The Netherlands. 1959. (p.1 - 90) et (p. 182 - 254). Ces 2 derniers ouvrages traitent de la flexion des coques dans le domaine élastique. On y donne une résolution analytique des équations, c'est à dire en évitant toute hypothèse physique. Love y donne une expression de  $\sigma_{11}$  mais dans le cas où  $p_r^+ = p_r^- = 0.$
- [ 12 ] MOE J. On the theory of cylindrical shells ; explicit solution of the characteristic equation and discution of the accuracy of various shell theories. Publication interior of Association Bridge Structure Engineering. 1953, N° 13. (p. 283).
- [13] HOFF N.J. The accuracy of Donnell's equations. Journal of Applied Mechanics 1955. N°22. (p. 329)

Ces 2 auteurs étudient les cas dnas lesquels les différentes théories peuvent être appliquées. Par exemple, Hoff conclue que les équations de Donnell sont valables si le cylindre est court.

#### Charges locales sur une coque cylindrique.

[14] BIJLAARD P.P. et ITHACA N.Y. Stresses from local loading in cylindrical pressure vessels. Journal of Applied Mechanics. Nº17. 1955.

- 59**)** 

[15] HOFF H.J. Boundary value problems of the thin - wolled circular cylinder. Journal of Applied Mechanics. Nº76. 1954.

> L'article [14] donne des résultats que nous avons utilisé pour solution particulière et [15] nous a inspiré la solution sans 2ème membre de notre système d'équations.

[16] CHEFET J. VENON M. et ESCATHA Y. Prise en compte des poids dans le calcul d'un réservoir cylindrique horizontal à gaz léquéfié reposant sur 4 appuis. Chaudronnerie - Tôlerie.

> Le but de ce travail est l'étude de l'influenxe du poids du métal du réservoir quand la masse volumique du liquide intérieur est faible. Cette étude se base sur un programme aux éléments finis.

[17] GILL S.S. The stress analysis of pressure vessels an vessel components Internaliosal Series of Monographs in Mechanical Engineering. Pergamon Press. 1970.

> Cet ouvrage, très interessant par son abondante bibliographie, traite des problèmes que pose la construction des réservoirs de fluide liquides et gazeux.

[18] YUAN S.W. Shin cylindrical shells subjected to concentrated loads Quartely of Applied Mathematics. N°4. 1946.

Dans cet article, on étudie le comportement d'un tube cylindrique, de longueur fini, soumis à 2 charges concentrées et diamétralement opposées. L'intérêt est qu'il suggère une solution particulière qui pourrait servir dans notre étude. Ainsi la charge  $p_r^+$  serait le produit d'une série de Fourier en  $\Theta$  et d'une transformée de Fourier en x.

 $p_r^+(x,\theta) = (\sum_{n=1}^{\infty} A_n \cos n\theta) \int_{-\infty}^{+\infty} f(\lambda) \cos \lambda \frac{x}{R} d\lambda$ 

[19] ZICK L.P. "Stresses in large horizontal cylindrical vessels on two saddle supports. Welding Journal. Research supplement Septembre 1951.