50376 1980 196 50376 1980 196

THESE présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

POUR OBTENIR LE GRADE DE DOCTEUR ES SCIENCES PHYSIQUES PAR

J. DÜRR

Ingénieur ENSM

CONTRIBUTION DE METHODES SPECTROMETRIQUES A L'ETUDE DE MATERIAUX MAGNETIQUES

SOUTENUE LE 31 OCTOBRE 1980

MM. F. CLAISSE Professeur (Québec) Président J.P. BONNELLE Professeur
M. LENGLET Professeur (Rouen)
J.M. LEROY Professeur
A. MICHEL Professeur honoraire
B. VANDORPE Professeur
J.M. YOLIN Directeur E.N.S.T.I.M.D. UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

15 Septembre 1979

.../...

DOYENS HONORAIRES De l'Ancienne Faculté des Sciences

MM. R.DEFRETIN, H.LEFEBVRE, M.PARREAU.

PROFESSEURS HONORAIRES des Anciennes Facultés de Droit

et Sciences Economiques, des Sciences et des Lettres

MM. ARNOULT, Mme BEAUJEU, BONTE, BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P.GERMAIN, GLACET, GONTIER, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOUGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARO, SCHILTZ, WATERLOT, WIEMAN, ZAMANSKI.

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU, J. LOMBARD.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. M.MIGEON.

PROFESSEURS - lère Classe

Μ.	BACCHUS Pierre	Astronomie
Μ.	BEAUFILS Jean-Pierre	Chimie Physique
Μ.	BECART Maurice	Physique Atomique et Moléculaire
Μ.	BILLARD Jean	Physique du Solide
Μ.	BIAYS Pierre	Géographie
Μ.	BONNOT Ernest	Biologie Végétale
Μ.	BOUGHON Pierre	Algèbre
Μ.	BOURIQUET Robert	Biologie Végétale
Μ.	CELET Paul	Géologie Générale
Μ.	COEURE Gérard	Analyse
Μ.	CONSTANT Fugène	Flectronique
Μ.	CORDONNIER Vincent	Informatique
M	DEBOURSE Jean-Pierre	Gestion des Entreprises
M	DELATTRE Charles	Géologie Générale
M.	DEL HAYE Michel	Chimie Physique
M.	DERCOURT Jean	Génlogia Générale
M	DURCHON Maurice	Biologia Expérimentale
M	ESCAIG Bortrand	Physique du Selide
M	FAURE Pohert	Mácanique
M	FOUDET Doná	Physicus du Solido
M	CARTLLARD Rehent	Flysique du Solide
M.	CRANELLE JORD JACOURS	
1"I. M	CRUSON Louisant	Sciences Economiques
M.		Algebre
ич. м	UTILLAUME JEAN	microdiologie
171. M		Geometrie
М.	HEUBEL JOSEPH	Unimie Minerale

Μ.	LABLACHE-COMBIER Alain
Μ.	LACOSTE Louis
Μ.	LANSRAUX Guy
Μ.	LAVEINE Jean-Pierre
Μ.	LEBRUN André
Μ.	LEHMANN Daniel
Mme	LENOBLE Jacqueline
Μ.	LHOMME Jean
Μ.	LOMBARD Jacques
Μ.	LOUCHEUX Claude
Μ.	LUCQUIN Michel
Μ.	MAILLET Pierre
Μ.	MONTREUIL Jean
Μ.	PARREAU Michel
Μ.	PAQUET Jacques
Μ.	POUZET Pierre
Μ.	PROUVOST Jean
Μ.	SALMER Georges
Mme	SCHWARTZ Marie-Hélène
Μ.	SEGUIER Guy
Μ.	STANKIEWICZ François
Μ.	TILLIEU Jacques
Μ.	TRIDOT Gabriel
Μ.	VIDAL Pierre
Μ.	VIVIER Emile
Μ.	WERTHEIMER Raymond
Μ.	ZEYTOUNIAN Radyadour

Chimie Organique Biologie Végétale Physique Atomique et Moléculaire Paléontologie Electronique Géométrie Physique Atomique et Moléculaire Chimie Sociologie Chimie Physique Chimie Physique Sciences Economiques Biochimie Analyse Géologie Générale Analyse Numérique Minéralogie Electronique Géométrie Electrotechnique Sciences Economiques Physique Théorique Chimie Appliquée Automatique Biologie Cellulaire Physique Atomique et Moléculaire Mécanique

PROFESSEURS - 2ème Classe

Μ. AL FAKIR Sabah ANTOINE Philippe Μ. BART André Μ. Mme BATTIAU Yvonne Μ. **BEGUIN Paul** Μ. **BELLET** Jean M. BKOUCHE Rudolphe BOBE Bernard Μ. BODARD Marcel Μ. BOILLY Bénoni Μ. BOIVIN Jean-Claude Μ. Μ. BONNELLE Jean-Pierre BOSCQ Denis Μ. Μ. BREZINSKI Claude BRIDOUX Michel Μ. BRUYELLE Pierre Μ. Μ. CAPURON Alfred CARREZ Christian Μ. Μ. CHAMLEY Hervé M. CHAPOTON Alain COQUERY Jean-Marie Μ. Mme CORSIN Paule M. CORTOIS Jean COURBIS Bernard М. COUTURIER Daniel Μ. Μ. CRAMPON Norbert **CROSNIER** Yves Μ. Mme DACHARRY Monique M. DEBRABANT Pierre Μ. DEGAUOUE Pierre M. DELORME Pierre

Algèbre Analyse Biologie Animale Géographie Mécanique Physique Atomique et Moléculaire Algèbre Sciences Economiques Biologie Végétale Biologie Animale Chimie Minérale Chimie Probabilités Analyse Numérique Chimie Physique Géographie **Biologie Animale** Informatique Géotechnique Electronique Psychophysiologie Sciences de la Terre Physique Nucléaire et Corpusculaire Sciences Economiques Chimie Organique Sciences de la Terre Electronique Géographie Géologie Appliquée Electronique Physiologie Animale

æ

.../...

M. DE PARIS Jean-Claude Μ. DEPREZ Gilbert Μ. DERIEUX Jean-Claude Μ. **DEVRAINNE** Pierre DHAINAUT André Μ. Μ. DOUKHAN Jean-Claude Μ. DUBOIS Henri Μ. DUBRULLE Alain Μ. DUEE Gérard Μ. DYMENT Arthur Mme EVRARD Micheline Μ. FLAMME Jean-Marie Μ. FOCT Jacques Μ. FONTAINE Hubert Μ. FONTAINE Jacques Μ. FOURNET Bernard GOBLOT Rémi Μ. Μ. GOSSELIN Gabriel Μ. GOUDMAND Pierre **GREVET Patrick** Μ. Μ. GUILBAULT Pierre Μ. HERMAN Maurice Μ. HOUDART René Μ. JACOB Gérard Μ. JOURNEL Gérard Μ. **KREMBEL** Jean LAURENT Francois Μ. Mle LEGRAND Denise Mle LEGRAND Solange LEMAIRE Jean Μ. Μ. LENTACKER Firmin LEROY Jean-Marie Μ. Μ. LEROY Yves Μ. LEVASSEUR Michel Μ. LHENAFF René Μ. LOCQUENEUX Robert Μ. LOSFELD Joseph Μ. LOUAGE Francis Μ. MACKE Bruno Μ. MAHIEU Jean-Marie Μ. MAIZIERES Christian MIe MARQUET Simone Μ. MESSELYN Jean MIGEON Michel Μ. Μ. MIGNOT Fulbert Μ. MONTEL Marc Μ. MONTUELLE Bernard Mme N'GUYEN VAN CHI Régine Μ. NICOLE Jacques NOTELET Francis Μ. Μ. **PARSY Fernand** Mle PAUPARDIN Colette PECQUE Marcel Μ. Μ. PERROT Pierre PERTUZON Emile Μ. М. PETIT Francis Μ. **PONSOLLE Louis** Μ. PORCHET Maurice Μ. POVY Lucien Μ. RACZY Ladislas Μ. RICHARD Alain

Mathématiques Physique du Solide et Cristallographie Microbiologie Chimie Minérale **Biologie** Animale Physique du Solide Physique Physique Géologie Mécanique Chimie Appliquée Technologie de Construction Génie Mécanique Physique Electronique, Electrotechnique, Automatique **Biochimie Structurale** Algèbre Sociologie Chimie Physique Sciences Economiques Physiologie Animale Physique Spatiale Mathématiques Informatique Physique Atomique et Moléculaire Biochimie Automatique Algèbre Algèbre Physique Géographie Méthodologie Electronique, Electrotechnique, Automatique Sciences Economiques Géographie Physique Théorique Informatique Electronique Physique Physique Atomique et Moléculaire Automatique Probabilités Physique Atomique et Moléculaire Chimie Physique Analyse Numérique Physique du Solide Biologie et Biochimie Appliquée Géographie Chimie Analytique Electronique, Electrotechnique, Automatique Mécanique Biologie Physiologie Végétales Chimie Organique Chimie Appliquée Physiologie Animale Chimie Organique, Minérale et Analytique Chimie Physique **Biologie** Automatique Electronique Biologie

. . . / . . .

Μ.	RIETSCH François
Μ.	ROGALSKI Marc
Μ.	ROUSSEAU Jean-Paul
Μ	ROY Jean-Claude
Μ.	SALAMA Pierre
Mme	SCHWARZBACH Yvette
Μ.	SCHAMPS Joël
Μ.	SIMON Michel
Μ.	SLIWA Henri
Μ.	SOMME Jean
M1e	SPIK Geneviève
Μ.	STERBOUL François
Μ.	TAILLIEZ Roger
Μ.	THERY Pierre
Μ.	TOULOTTE Jean-Marc
Μ.	VANDORPE Bernard
Μ.	VILETTE Michel
Μ.	WALLART Francis
Μ.	WATERLOT Michel
Μ.	WERNER Georges
Mme	7INN-JUSTIN Nicole

Chimie Analyse Physiologie Animale Psychophysiologie Sciences Economiques Mathématiques Physique Sociologie Chimie Organique Géographie Biochimie Informatique Biologie Electronique, Electrotechnique, Automatique Automatique Chimie Minérale Résistance des Matériaux Chimie Géologie Générale Informatique Fondamentale Appliquée Algèbre

à mes parents.....

à ma femme.....

à mon fils.

Ce travail a été réalisé dans le cadre du laboratoire de Chimie Minérale et Méthodologie Analytique de l'Université de LILLE sous la direction de Monsieur le Professeur VANDORPE. Je lui adresse mes sincères remerciements pour l'accueil qu'il m'a réservé au sein de son équipe, pour les encouragements et conseils qu'il n'a cessé de me prodiguer pendant ces années de collaboration.

Je remercie Monsieur YOLIN, Directeur de l'ECOLE NATIONALE SUPERIEURE DES TECHNIQUES INDUSTRIELLES ET DES MINES DE DOUAI, de m'avoir laissé toute latitude de gestion du Laboratoire d'Analyse Physique.

Monsieur le Professeur CLAISSE, Chef du Département Mines et Métallurgie à l'UNIVERSITE LAVAL de QUEBEC, qui a toujours suivi avec intérêt mes travaux, me fait l'honneur de présider le Jury de Thèse. Je le prie de bien vouloir accepter l'expression de ma déférente gratitude.

Je témoigne ma profonde reconnaissance à Monsieur le Professeur MICHEL qui me fait le grand honneur de participer au jury.

Ma reconnaissance s'adresse également à Monsieur le Professeur LENGLET qui a assumé amicalement la direction scientifique de la partie de ce mémoire consacrée à la caractérisation du fer dans les ferrites.

Je tiens à remercier Monsieur le Professeur BONNELLE d'avoir bien voulu examiner ce mémoire et contribuer à une meilleure compréhension des phénomènes par les études complémentaires en E.S.C.A. conduites au Laboratoire de Catalyse Homogène et Hétérogène de LILLE.

Je remercie très vivement Monsieur le Professeur LEROY d'avoir bien voulu examiner ce travail et participer au jury de thèse.

La préparation et la caractérisation des échantillons de ferrites proviennent du Laboratoire de Chimie Minérale de l'INSCIR du Professeur LENGLET. Que toute son équipe et plus particulièrement Monsieur J.C. TELLIER, Docteur ès Sciences, trouve ici mes plus vifs remerciements.

Je n'oublierai pas non plus Monsieur BEQUIGNAT pour sa patiente collaboration dans l'exécution des séries de mesures, Madame JOUANGUY et ma femme qui ont assumé la dactylographie de ce mémoire avec rapidité et bonne humeur.

SOMMAIRE

		Pages
INTRODUCTION		1
CHAPITRE I :	LE PERMALLOY 4/79, PROPRIETES MAGNETIOUES INFLUEN-	·.
	CE DU MAGNESIUM	3
	I.1 - Le permalloy et ses propriétés magnétiques	4
	I.2 - Elaboration des echantillons	7
	I.2.1 - Elaboration à l'air : permalloy 4/79	
	de caractéristiques moyennes	7
	I.2.2 Elaboration sous vide : permalloy à	
	caractéristiques élevées	8
	I.2.3 - Elaboration des standards à base nickel	10
	I.3 - Techniques instrumentales	12
	I.3.1 - Analyse par fluorescence X	12
	I.3.1.1 - Spectrométrie séquentielle.	12
	I.3.1.2 - Spectrométrie X à monochro-	
	mateur de Johansonn	12
	I.3.2 - Analyse par spectrométrie UV - visi -	
	ble	17
	I.3.2.1 - Source " Etincelle "	17
	I.3.2.2 - Décharge luminescente	17

	I.3.3 - Conclusion	19
	I.4 - Relation entre la teneur en magnésium et	
	les propriétés magnétiques	20
	I.4.1 - Corrélation reliant la perméabili- té maximale du permalloy à sa te -	
	neur en magnésium	20
	I.4.2 - Etude micrographique des échantil- lons	23
	I.4.2.1 - Etude de la matrice I.4.2.2 - Etude d'une inclusion	27 27
	I.5 - Conclusion	30
CHAPITRE I	- ANNEXE I : DOSAGE DU MAGNESIUM DANS LE NICKEL PAR FLUORESCENCE X SEQUENTIELLE	32
CHAPITRE I	- ANNEXE II : COMPARAISON DES DEUX SOURCES D'EXCI - TATION UV - VISIBLE : ETINCELLE ET DECHARGE LU- MINESCENTE	37
CHAPITRE I	I - APPLICATION DE LA SPECTROMETRIE D'EMISSION X A LA DETERMINATION DU DEGRE D'OXYDATION DU FER	
	DANS DIFFERENTS OXYDES MIXTES	41
	II.1 - Principe de la méthode	42
	II.1.1 - Aspect instrumental	42
	II.1.1.1 - Appareillage II.1.1.2 - Conditions expérimen-	42
	tales II.1.1.3 - Dépouillement des spec-	57
	tres	57

			Annexe au § II . 1 . : Programme de dépouillement des spectres	67
			II.1.2 - Caractérisation des échantillons de réfé-	71
••				
× : *			II.1.2.1 - Etude structurale	71
			Ke du fer dans ces composés	81
		II.2	- Analyse du spectre d'émission K β du cuivre	85
	:	II.3	 Application de la spectrométrie d'émission X à la détermination du degré d'oxydation du fer dans 	
			les différents oxydes mixtes	90
			II.3.1 - Mise en évidence du fer II dans le fer-	
			rite Cu _{0,5} Fe _{2,5} 0 ₄	92
			II.3.2 -Etude de la solution solide $Cu_{1-x}Fe_{2+x}O_4$	
			(0 < x ≤ 0,5)	107
		II.4	- Etude de la non stoechiométrie de ferrites issus	
		•	du diagramme Li _{0,5} Fe _{2,5} 0 ₄ - Zn Fe ₂ 0 ₄	121
			II.4.1 -Stabilité thermique des ferrites mixtes	
			issus du système Li ₀₅ Fe ₂₅ 0_4 - Cu Fe ₂ 0_4 -	
•	•		Zn Fe ₂ 0 ₄	121
			II.4.2 -Etablissement du mécanisme de décomposition	
			du ferrite $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ recuit sous N_2	134
CONCLU	SION	• • • • •	• • • • • • • • • • • • • • • • • • • •	151
BIBLIC)GRAPH1	E	· · · · · · · · · · · · · · · · · · ·	154

ľ

£

SOMMAIRE

2

		Pages
INTRODUCTION.		1
CHAPITRE I :	LE PERMALLOY 4/79. PROPRIETES MAGNETIQUES. INFLUEN- CE DU MAGNESIUM	3
	I.1 - Le permalloy et ses propriétés magnétiques I.2 - Elaboration des echantillons	4 7
	I.2.1 - Elaboration à l'air : permalloy 4/79 de caractéristiques moyennes	7
	I.2.2 Elaboration sous vide : permalloy à caractéristiques élevées	8
	I.2.3 - Elaboration des standards à base nickel	10
	I.3 - Techniques instrumentales	12
	I.3.1 - Analyse par fluorescence X	12
	I.3.1.1 - Spectrométrie séquentielle.	12
	I.3.1.2 - Spectrométrie X à monochro- mateur de Johansonn	12
	I.3.2 - Analyse par spectrométrie UV - visi - ble	17
	I.3.2.1 - Source " Etincelle "	17 17

		I.3.3 - Conclusion	19
	I.4 -	Relation entre la teneur en magnésium et	
		les propriétés magnétiques	20
		I.4.1 - Corrélation reliant la perméabili- té maximale du permalloy à sa te -	
		neur en magnésium	20
		I.4.2 - Etude micrographique des échantil- lons	23
		I.4.2.1 - Etude de la matrice	27
		I.4.2.2 - Etude d'une inclusion	27
	I.5 -	Conclusion	30
CHAPITRE I	- ANNEXE FLUORE	I : DOSAGE DU MAGNESIUM DANS LE NICKEL PAR SCENCE X SEQUENTIELLE	32
CHAPITRE I	- ANNEXE TATION	II : COMPARAISON DES DEUX SOURCES D'EXCI -	
	MINESC	ENTE	37
CHAPITRE I	I - APPLI LA DE	CATION DE LA SPECTROMETRIE D'EMISSION X A	
	DANS	DIFFERENTS OXYDES MIXTES	41
	II.1	- Principe de la méthode	42
		II.1.1 - Aspect instrumental	42
		II.1.1.1 - Appareillage II.1.1.2 - Conditions expérimen-	42
•		tales II.1.1.3 - Dépouillement des spec-	57
		tres	57

BIBLIOGRAPH	IIE		154
CONCLUSION.		• • • • • • • • • • • • • • • • • • • •	151
		II.4.2 -Etablissement du mécanisme de décomposition du ferrite Li _{0,25} Cu _{0,5} Fe _{2,25} O ₄ recuit sous N ₂	134
· · · ·		II.4.1 -Stabilité thermique des ferrites mixtes issus du système Li _{0,5} Fe _{2,5} 0 ₄ - Cu Fe ₂ 0 ₄ - Zn Fe ₂ 0 ₄	121
	II.4	- Etude de la non stoechiométrie de ferrites issus du diagramme Li _{0,5} Fe _{2,5} 0 ₄ - Zn Fe ₂ 0 ₄	121
	• •	(0 < x ≤ 0,5)	107
		II.3.2 -Etude de la solution solide $Cu_{1-x}Fe_{2+x}O_4$	
		II.3.1 - Mise en évidence du fer II dans le fer- rite Cu _{0,5} Fe _{2,5} 0 ₄	92
		les différents oxydes mixtes	90
	II.3	- Application de la spectrométrie d'émission X à la détermination du degré d'oxydation du fer dans	
	II.2	- Analyse du spectre d'émission Kβ du cuivre	85
		<pre>II.1.2.1 - Etude structurale II.1.2.2 - Analyse du spectre d'émission</pre>	71
		II.1.2 - Caractérisation des échantillons de réfé- rence	71
		Annexe au § II . 1 . : Programme de dépouillement des spectres	67

ſ

¢

INTRODUCTION.

- 1 -

Cette étude analytique de matériaux magnétiques par des méthodes spectroscopiques se divise en deux thèmes consacrés, d'une part , à l'établissement des corrélations entre les propriétés magnétiques du Permalloy 4/79 et la teneur en magnésium , d'autre part, à l'application de la spectrométrie d'émission X à la détermination du degré d'oxydation du fer dans différents ferrites de cuivre.

L'étude du Permalloy 4/79 a nécessité la mise au point du dosage de traces de magnésium dans les alliages magnétiques doux à teneur très élevée en nickel. Différentes méthodes d'analyse physique ont été mises en oeuvre parmi lesquelles la spectrométrie de rayons X et la spectrométrie UV -visible avec différentes sources d'excitation (conventionnelles : arc, étincelle ou décharge luminescente). L'examen à la microsonde électronique révèle dans la matrice austénitique l'existence d'inclusions dispersées où sont associés le soufre et le magnésium; ce qui explique , d'une part , le rôle bénéfique du magnésium sur la forgeabilité du Permalloy, d'autre part, le durcissement magnétique.

La partie du mémoire, consacrée aux ferrites, a trait à la caractérisation du fer II dans les ferrites de cuivre stoechiométriques ou non. L'impossibilité de déterminer au moyen de l'analyse physico-chimique conventionnelle les états d'oxydation du fer et du cuivre dans des matériaux tels $Cu_{0,5}$ $Fe_{2,5}$ 0_4 et les difficultés rencontrées dans l'interprétation des spectres Mössbauer de ferrites mixtes à teneur en fer II relativement faible, nous a incités à envisager l'emploi de méthodes spectrométriques telle la spectrométrie d'émission X. Bien que l'influence de la liaison chimique sur les spectres des raies d'émission n'a jamais été réalisée à des fins analytiques dans la recherche des degrés d'oxydation de métaux de transition tels le fer et le cuivre dans les ferrites.

Les bandes les plus sensibles à la liaison chimique sont les bandes $L_{II,III}$ et $K\beta_5$. Ne disposant que d'un spectromètre séquentiel, nous avons limité l'étude à l'analyse des spectres d'émission Kß du fer et du cuivre.

La mise au point de cette méthode a nécessité de définir le plus précisément possible l'influence de différents paramètres physico-chimiques tels l'indice de coordination et la nature de l'ion M^{2+} sur le déplacement de la bande K β_s caractéristique du fer III dans les spinelles M Fe₂ 0₄.

Une étude similaire a été consacrée à l'analyse du spectre d'émission K β du cuivre dans les spinelles 3-2 .

Les conclusions de ces études préliminaires justifient l'application de la spectrométrie d'émission X à la détermination du degré d'oxydation du fer dans différents ferrites stoechiométriques tels $Cu_{0,5}$ $Fe_{2,5}$ 0_4 et les composés cubiques de la solution solide Cu_{1-x} Fe_{2+x} 0_4 (0 < x < 0,5) ou non stoechiométriques.

- 2 -

CHAPITREI

LE PERMALLOY 4 / 79 .

PROPRIETES MAGNETIQUES - INFLUENCE DU MAGNESIUM.

LE PERMALLOY 4 / 79 : PROPRIETES MAGNETIQUES - INFLUENCE

DU MAGNESIUM .

I.1 - LE PERMALLOY ET SES PROPRIETES MAGNETIQUES.

Le permalloy 4/79 est un alliage magnétique doux appartenant à la classe des alliages fer-nickel , et caractérisé principalement par une perméabilité maximale très élevée et de faibles pertes. En ce sens la résistivité des fer-nickel à faible magnétostriction peut être relevée par une addition de molybdène. La figure 1 (1) présente la variation de ρ des alliages fer-nickel à 78,5% de nickel en fonction de l'addition de molybdène. Le coefficient de magnétostriction et la constante d'anisotropie magnétocristalline, entre autres , doivent être voisins de zéro .

Dans les fer-nickel simples, le coefficient de magnétostriction passe d'une valeur positive élevée pour les fer-nickel à 60 %, à une valeur négative pour le nickel pur. La figure 2 (1) donne la variation du coefficient de magnétostriction de ces alliages en fonction de la teneur en nickel.

La courbe (a) du diagramme ternaire fer - nickel - molybdène présenté à la figure 3 (2), précise la composition des alliages ternai--res fer - nickel - molybdène à magnétostriction nulle. La courbe (b) correspond à la composition des alliages dont les constantes d'anisotropie sont voisines de zéro. L'intersection des courbes (a) et (b) de la figure 3 correspond en principe à la "composition idéale" de l'alliage permalloy. En fait , un chauffage plus ou moins prolongé à des températures de 450 / 500°, développe dans les alliages voisins de Ni₃Fe, une structure ordonnée à courte distance qui entraine un léger déplacement des courbes (a) et (b) de la figure 3 respectivement vers les fortes teneurs en molybdène et les faibles teneurs en nickel.

(1) R.M. BOZORTH , 6° édition, Van Nostram, New York.
(2) F. PFEIFER , Z Metallkunde, vol. 57 (1966), 295.

fig. 1

Effet d'additions de molybdène sur la résistivité des alliages fer - nickel à 78,5 % de nickel.

ftg. 2

Variation du coefficient de magnétostriction de monocristaux d'alliages fer - nickel en fonction de la teneur en nickel.

(BUS)

5 -

- 6 -

fig. 3 Diagramme ternaire fer-nickel-molybdène. Courbe (a): alliages à coefficient de magnétostriction nulle. Courbe (b) : alliages à constantes d'anisotropie voisines de zéro. Les courbes (a) et (b) correspondent à l'état désordonné, l'établissement d'un ordre à courte distance déplace les courbes en (a') et (b') dans le sens des flèches.

De ce fait la zone hachurée sur la figure 3 correspond à un domaine de compositions d'alliages possédant des caractéristiques magnétiques élevées, à la condition d'avoir subi un traitement thermique final bien adapté à la composition.

Pour faciliter les transformations mécaniques à chaud, les aciéristes introduisent fréquemment dans ces alliages des petites quantités d'éléments désoxydants ou désulfurants tels le magnésium (3) ajouté à des concentrations

(3) J. HESLOP et A.R. KNOTT. Metals and Materials, Fev 1971, 59-62.

avoisinant 700 à 1000 p.p.m. Les additions d'éléments désulfurants peuvent être sensiblement réduites, voir même supprimées dans les alliages élaborés sous vide à partir de métaux purs , la teneur en soufre est alors inférieure à 30 p.p.m.

Dans le cadre de cette étude nous nous sommes intéressés au Permalloy 4/79 qui contient 79,7 % de nickel , 4,5 % de molybdène , un certain nombre d'additions notamment 700 à 1000 p.p.m. de magnésium , 500 à 1000 p.p.m. de manganèse , 200 à 400 p.p.m. de silicium et le fer en complément.

L'élaboration du Permalloy nécessite certains contrôles de composition: -doser les éléments majeurs constituant la matrice. Ce problème est déjà résolu par les méthodes d'analyses spectrométriques classiques, notamment par la fluorescence X.

-doser rapidement, d'une manière fiable la teneur en soufre et en magnésium de l'alliage afin de définir les besoins en addition désulfurante finale. En effet le temps maximum disponible pour effectuer l'analyse est de l'ordre de 3 à 4 minutes. En pratique le dosage du soufre est opéré au moyen des appareils de type "LECO" ou autres appareils équivalents. Le dosage rapide du magnésium non résolu jusqu'à présent a retenu notre attention. Par ailleurs, il serait souhaitable de pouvoir doser tous les éléments intéressants (majeurs et impuretés) au moyen d'un spectromètre unique.

I.2 - ELABORATION DES ECHANTILLONS.

Trois familles d'échantillons ont été élaborées pour les besoins de cette étude. Deux sont des Permalloy 4/79 élaborés soit à l'air, soit sous vide. La troisième famille constitue une série de standards utilisés pour les besoins d'analyse, les standards nécessaires aux contrôles n'existant pas à l'état d'étalons certifiés. Il s'agit d'échantillons à base nickel.

I.2.1 -ELABORATION A L'AIR: PERMALLOY 4/79 DE CARACTERISTIQUES MOYENNES.

Cette élaboration à l'air produit des matériaux à caractéristiques magnétiques moyennes. Les opérations d'élaboration ont été conduites selon le schéma suivant: I.2.1.1 - Fusion dans un four à haute fréquence à l'air, de la charge d'entrée qui comprend:

- le ferro-molybdène qui apporte une partie du fer constituant l'alliage et la totalité du molybdène. Il introduit également dans l'alliage environ 250 p.p.m. de soufre.

- le complément du fer.

- la majeure partie du nickel est introduite sous la forme de nickel " MOND " en billes ne contenant commeimpuretés qu'un peu de carbone et environ 20 p.p.m. de soufre. Le solde du nickel est apporté par de l'oxyde de nickel qui introduit environ 2 % d'oxygène dans le bain.

I.2.1.2 - Dégazage du bain.

L'introduction de graphite dans le bain oxydé provoque la formation de CO. L'azote et l'hydrogène éventuellement présents se mélangent à CO et conduisent à des bulles à faible pression partielle d'azote et d'hydrogène. Ces bulles montent à la surface du bain et provoquent la désoxydation du métal et le dégazage du bain.

I.2.1.3 - En fin d'élaboration, une addition de magnésium est opérée dans le four.

La série d'échantillons a été élaborée dans ces conditions en partant d'un lot de matières premières homogènes.

I.2.2 - ELABORATION SOUS VIDE : PERMALLOY A CARACTERISTIQUES ELEVEES.

Cette technique d'élaboration , opérée dans un four à induction sous vide poussé, conduit à des matériaux à hautes performances. Les matières premières employées sont uniquement des métaux purs, ce qui permet de garantir une teneur en soufre de l'alliage inférieure à 25 p.p.m.

La désoxydation du bain est basée sur la réaction d'équilibre:

 $C + 0 \xrightarrow{1}{4} C0$

qui est déplacée dans le sens 1 par l'élimination de CO sous vide. L'opération est réalisée au moyen du groupe de pompage (9, 16, et 18) (fig. 4).

Au début de cette phase, la réaction de désoxydation, parfois très violente, doit être contrôlée. Ceci est obtenu par ralentissement du pompage.Lorsque la pression, dans la chambre du four, atteint 20 torrs, un prélèvement de la phase gazeuse est effectué au moyen de la pompe collectrice à mercure(21)et (25) sur la figure 4. Les réactions de désoxydation et de dégazage sont alors contrôlées par chromatographie sur le prélèvement ainsi obtenu. Nous avons déjà décrit, en détail, la méthode dans une publication relative au controle de l'atmosphère d'un four de fusion sous vide (4). Aucune addition de magnésium n'a été opérée en fin d'élaboration, cependant le matériau ainsi coulé possède une ductilité à chaud suffisante pour permettre les transformations thermomécaniques (forgeage et laminage).

- 17. Piquage de gaz pour analyse Le vide Nº 169. — Janvier-Février 1974
- fig.4 Schéma du four à induction sous vide.

32. Vanne d'arrêt du by pass de la pompe a mercure (21)

(4) H. FEICHTINGER et J. DURR , Le Vide 1974, 169 , 283.

- 9 -

1.2.3 - ELABORATION DES STANDARDS A BASE NICKEL.

L'absence sur le marché, d'échantillons standards certifiés à base de nickel , nécessaires pour tester et étalonner les procédures d'analyse du Permalloy nous a obligé à les réaliser.

L'introduction de métaux oxydables , dans la matrice de nickel, nous a fait préférer l'atmosphère du four sous vide à celle d'un four à l'air. Les métaux purs sont introduits dans le bain de nickel préalablement désoxydé sous vide et contenant 400 à 600 p.p.m. de carbone résiduel.

Les hétérogénéités de composition résultant des ségrégations inévitables , lors de la solidificationdes lingots, sont effacées par un corroyage à chaud. Les lingots sont écroutés en lopins de 130 mm de diamètre, puis filés à chaud en barres de 40 mm de diamètre.

L'homogénéité des barres découpées en tronçons repérés est controlée par fluorescence X et par spectrométrie d'étincelles. Les échantillons issus des barres homogènes sont analysés par les voies chimiques classiques, principalement par absorption atomique.

Les éléments introduits dans cette série de standards, lors de l'élaboration, sont: le magnésium, le molybdène, le fer, le cobalt, le cuivre, le chrome, le silicium, l'aluminium et le manganèse.L'introduction de soufre en quantité importante dans les échantillons les aurait rendus inaptes à subir les opérations de filage à chaud. Elle n'a pas été opérée malgré l'intérêt qui est accordé au soufre. Pour tous les échantillons la teneur en soufre est inférieure à 50 p.p.m.

La composition des échantillons est donnée au tableau I.

TABLEAU I.

BUS

Composition des echantillons standards

F												-
	Mn. p.p.m.	Al. p.p.m.	Si. p.p.m.	Cr. p.p.m.	Cu. p.p.m.	Co. p.p.m.	Fe. p.p.m.	Mo. p.p.m.	Mg. p.p.m.			ELEMENT
	520	750	4900	400	4555	5260	760	290	410			
	780	1010	2450	770	2450	2760	960	460	_610		~	
	1030	1160	066	970	1010	1140	1150	660	1780		ω	Numéro d
	2520	2900	860	2600	760	890	2880	1110	3330	-	4	'échantil
	4940	5560	560	5200	500	580	5600	2490	I		J	lon
-	^ 57	210	160	^ 22	^ 5	< 10	280	۸° ت	7		6	
	^ 5	•	40	6	10	70	30	۸ ت	7		7	
	280	I	1	70	260		•	270	ť		8	
	10	12 40	4	1	70	120	130	I	30		9	
	70	12 40	100	70	20	70	90	1	210		10	
	30	l≥ 40	1	20	130	10700	90	1	150		11	

1

I.3 - TECHNIQUES INSTRUMENTALES.

Pour réaliser l'analyse globale de l'échantillon nous avons mis en oeuvre différentes chaines d'analyse physique:

- spectrométrie de rayons X faisant appel tant aux spectromètres séquentiels classiques à cristaux plans qu'aux spectromètres multicanaux à monochromateurs de Johansonn.

- spectrométrie UV - Visible mettant en oeuvre des sources d'excitation conventionnelles (arc ou étincelle) ou la décharge luminescente.

I.3.1 - ANALYSE PAR FLUORESCENCE X.

I.3.1.1 - Spectrométrie séguentielle.

Le dosage de traces de magnésium contenues dans une base nickel n'a pas pu être convenablement résolu avec un spectromètre séquentiel à cristal plan. L'insuffisance de résolution et le manque de sensibilité du S.R.S. SIEMENS et des autres appareils séquentiels sur lesquels nous avons tenté d'effectuer les mesures conduisent à un seuil de dosage de 650 p.p.m.Ce seuil est de l'ordre de grandeur de la concentration de l'addition de magnésium. Il faut, en outre, pouvoir tenir compte des pertes lors de l'introduction du magnésium à l'air, dans le bain liquide.

La discussion expliquant les limitations du matériel séquentiel S.R.S. a été reportée à l'annexe I de ce chapitre.

Cet équipement ayant été largement utilisé avec succès cette fois, pour les travaux relatifs à la détermination des degrés d'oxydation du fer et du cuivre dans des ferrites. Les détails le concernant sont donnés au paragraphe II.1.1 " aspect instrumental" du chapitre II réservé à ces matériaux.

I.3.1.2 - Spectrométrie X à monochromateur de Johansonn.

Bien que s'agissant de la même méthode d'analyse par fluorescence X, les possibilités offertes par une chaine spécialement conçue pour le dosage du magnésium ont permis d'effectuer les analyses nécessaires. Cette chaine a été introduite dans un appareil multicanal "A.R.L. 72 000 S." Le rayonnement excitateur est produit par un tube à rayons X du type "Macklet" à antichatode de rhodium travaillant sous 50 K.V. et débitant une intensité de 40 m.A.

Le temps d'intégration est controlé par un standard externe en titane afin de compenser les petites fluctuations de l'alimentation du tube à rayons X.

La chaine employée pour le dosage du magnésium comprend:

- un cristal courbe en A.D.P. règlé sur la raie Mg $K \alpha_{\gamma_2}$.

- un détecteur scellé du type "Exatron" rempli de néon et muni d'une fenêtre d'entrée du rayonnement en aluminium. Il est optimisé pour la détection des photons Mg K α et possède un faible rendement pour les photons X à plus forte énergie.

Les comptages effectués sur trois échantillons de fer pur, d'alliage fer-nickel 50/50 sans magnésium et de nickel pur, dont les teneurs en nickel varient de 0 % à 100 %, sont respectivement de 673-671 et 654 photons. Ils sont parfaitement comparables entre eux, ce qui démontre l'absence d'interférence de la raie Ni K α sur la ligne de dosage du magnésium.

Les résultats des comptages obtenus avec les échantillons standards sont donnés au tableau II. La courbe d'étalonnage présentée à la figure 5, obtenue à partir de nos échantillons standards est parfaitement linéaire. Son équation est :

y photons = 6 555 x % Mg + 665 photons. la dispersion des points est faible, ce qui démontre simultanément la validité de la méthode de dosage et la qualité des standards que nous avons réalisés.

Divers essais de reproductibilité des comptages ont été effectués. Nous donnons à titre d'exemple les résultats obtenus sur les échantillons correspondants aux extrêmes de la gamme, les échantillons N° 4 et N° 6 respectivement à teneur élevée en magnésium (0,33 % Mg) et à basse teneur en magnésium (7 p.p.m. Mg). Ces résultats sont consignés au tableau III. La reproductibilité des comptages est très bonne puisque la population constituée par les comptages obéit parfaitement aux lois

Tableau II.

Etalonnage du spectromètre multicanal A.R.L. 72 000.S. à partir des comptages de 60s environ sur nos échantillons standards.

N° d'échantillon	Mg p.p.m. A.A.	Taux de comptage photons / min.
1	410	962
2	610	1042
3	1780	1776
4	3330	2886
6	7	696
7	7	697
9	30	731
10	210	784
11	150	793

de la statistique d'une part et que la dispersion des résultats, caractérisée par un écart-type relatif $\sigma_{relatif}$ de 4 % au niveau du bruit de fond et de 2 % pour le point à teneur élevée en magnésium (0,33 %), est faible. La limite de dosage du magnésium est dans ces conditions de 120 p.p.m.

Le problème de la discrimination d'impulsions provenant des photons Mg K $\alpha_{1,2}$ ($\lambda = 9,889$ A°) et Ni K α_1 ($\lambda = 6 \times 1,657 = 9,947$ A°), non résolu avec un spectromètre séquentiel, est traité ici dans de bonnes conditions.

j

- 15 -

T	a	b	1	e	a	u	I	I	I	•	
_		_		-	-	-	_				

Essais de reproductibilité des dosages.

	ECHANTILLON N° 6.		ECHANTILLON N° 4 .	
-	Nb de photons Mg K α_{12} .	Temps d'inté- gration (s).	Nb de photons Mg K α_{12} .	Temps d'inté- gration (s).
· ·	700	60,29	2915	60,22
	695	60,28	2847	60,20
	687	60,29	2933	60,23
	672	60,28	2925	60,21
	703	60,28	2867	60,20
	654	60,17	2912	60,22
	711	60,17	2856	60,29
	716	60,28	2947	60,29
	742	60,28	2775	60,20
	723	60,20	28,25	60?29
	650	60,20	2949	60,20
Moy.	696	60,25	2886	60,23
σ	26	-	54	-
M +3σ	.775	-	3047	-
M -3σ	617	-	2725	-

-949 LILL

- 16 -

I.3.2 - ANALYSE PAR SPECTROMETRIE UV - VISIBLE.

Les spectromètres multicanaux couplés aux différentes sources lumineuses sont des appareils " A.R.L. 31 000 C " de 1m de distance focale, optimisés pour tirer le meilleur parti des sources auxquelles ils sont associés.

I.3.2.1 - Source " Etincelle ".

La source " étincelle " utilisée , une UNISOURCE A.R.L. type M.K.II.", est classique.

I.3.2.2 - Décharge luminescente.

Cette technique étant d'application récente nous donnons quelques détails à son propos. La décharge luminescente est produite dans une lampe de " GRIMM " (5) schématisée à la figure (6). L'échantillon sert de cathode et est porté à un potentiel négatif de l'ordre de 1 000 à 1 500 V.

Figure . 6 : schéma de la lampe à décharge luminescente.

(5) W. GRIMM, Spectrochim. Acta, 23 B, 443 (1968).

- 17 -

L'espace annulaire entre l'anode et la cathode est ajusté à 0,2 mm.; la puissance de 170 W. dépensée dans la lampe est ajustée par action sur la pression d'injection de l'argon à l'intérieur de l'anode. Les paramètres d'alimentation de la lampe correspondent au fonctionnement en décharge entravée (6) .

Nous présentons à la figure 7 , les courbes d'étalonnage relatives au dosage du magnésium dans le nickel par spectrométrie d'étincelle et par décharge luminescente.

Figure. 7 . Dosage du magnésium: courbes d'étalonnage des spectromètres "étincelle" courbe (a) et " décharge luminescente" courbe (b).

(6) P.W.J.M. BOUMANS, Anal.Chem. 44,1219 (1972).

La décharge luminescente conduit à une courbe d'étalonnage linéaire alors que cette courbe est du second degré pour l'étincelle qui en outre présente l'inconvénient d'une dispersion des résultats bien plus importante. Les limites de dosage accessibles avec les deux sources : 1 p.p.m. pour l'étincelle et 2 p.p.m. pour la décharge luminescente , sont du même ordre de grandeur.

Pour abaisser le seuil de dosage du magnésium en dessous de 120 p.p.m. (seuil du spectromètre de fluorescence X multicanal), il pourra être fait appel à la décharge luminescente qui nous semble le mieux adaptée au dosage du magnésium dans le nickel ou dans le Permalloy, comme l'a montré l'étude comparative des sources que nous avons effectuée (7) et (8) . Afin de ne pas nous écarter de l'intérêt de la discussion relative au Permalloy, les résultats de l'étude comparative portant à la fois sur d'autres éléments et sur d'autres matrices est reportée à l'annexe II de ce chapitre.

I.3.3 - CONCLUSION.

Le problème du dosage rapide du magnésium dans le Permalloy a été abordé au moyen de différentes techniques d'analyse physique et conduit aux conclusions suivantes.

- La fluorescence X séquentielle n'est pas applicable avec sécurité.

- Le spectromètre de fluorescence X multicanal " A.R.L. 72 000 S." apporte une solution valable au problème qui nous était posé à propos des Permalloy contenant quelques centaines de p.p.m. de magnésium,ce qui permet la poursuite du travail. Cependant, sa limite de dosage (L.D.= 120 p.p.m.) est pratiquement dix fois trop grande pour que le problème du dosage du magnésium dans les Permalloy puisse être considéré comme parfaitement résolu.

- Le spectromètre d'étincelle permet d'accéder aux limites de dosage les plus basses, cependant, il conduit à une dispersion des résultats parfois gènante.

(7)J. DURR et B. VANDORPE , 21^{ème} C.S.I. , <u>345</u>, Cambridge (1979).
(8)J. DURR et B. VANDORPE ,Spectrochim Acta, B (1980),à paraître.

- La décharge luminescente répond plus parfaitement au problème purement analytique. Les dosages sont rapides, (moins d'une minute), fiables et la limite de dosage de 2 p.p.m. est suffisamment basse.

I.4 RELATION ENTRE LA TENEUR EN MAGNESIUM ET LES PROPRIETES MAGNETIQUES.

La qualité magnétique des échantillons de Permalloy a été appréciée par la mesure de la perméabilité maximale " μ_{MCC} " mesurée en régime statique.

Les dosages de magnésium ont été opérés avec le spectromètre de fluorescence X multicanal.

Nous avons établi l'existence d'une corrélation entre la perméabilité maximale du Permalloy et sa teneur en magnésium.

I.4.1 - CORRELATION RELIANT LA PERMEABILITE MAXIMALE DU PERMALLOY A SA TENEUR EN MAGNESIUM.

La teneur en magnésium et la perméabilité magnétique de chacun des échantillons de Permalloy 4 / 79 précédemment élaborés à l'air , à partir de matières premières homogènes, sont consignées au tableau IV. La corrélation reliant " μ_{MCC} " et la concentration en magnésium apparait sur la figure 8 ; elle correspond à une droite déterminée par une régression linéaire. Son équation est :

 $\mu_{MCC} = -1,5 \times 10^2 \times Mg \text{ p.p.m.} + 280\ 000\ \text{Gauss/Ge}$

Même si certains points figuratifs de la figure 8 paraissent à priori, relativement éloignés de la droite, cette relation est très significative. Etabli sur une population de 22 échantillons, le coefficient de corrélation $\rho_c = 0,77$ est supérieur à la valeur limite $\rho_s = 0,65$ du coefficient de corrélation calculé avec un risque d'erreur de 1 % pour une population de 22 couples de valeurs (20 degrés de liberté). La corrélation reliant μ_{MCC} à la teneur en magnésium est donc établie avec un risque d'erreur inférieur à 1 %.

Figure. 8. Corrélation reliant la perméabilité magnétique à la teneur en magnésium de l'échantillon.

TABLEAU IV.

Corrélation entre teneur en magnésium et perméabilité magnétique.

N° d'échantillon.	Teneur en Mg. p.p.m.	Perméabilité magnétique. x 10 ³ Gauss/Oersted.	
1	100	275	
2	200	263	
3	180	265	
4	310	265	
5	260	250	
6	340	246	
7	300	225	
8	290	203	
9	260	170	
10	470	183	
11	490	204	
12	810	132	
13	900	160	
14	830	172	
15	650	150	
16	740	196	
17	220	275	
18	510	167	
19	600	180	
20	560	131	
21	460	170	
22	460	238	

Le coefficient régatif montre que l'addition de magnésium doit être minimisée autant que faire se peut, sans pour autant aller à l'encontre des exigences des opérations de forgeage et de laminage à chaud.

Cette action nocive du magnésium , sur la perméabilité magnétique du Permalloy , donne à penser que cet élément peut générer des composés insolubles dans la matrice ternaire fer - nickel - molybdène . Nous avons donc entrepris l'étude micrographique de ces échantillons.(9).

I.4.2 - ETUDE MICROGRAPHIQUE DES ECHANTILLONS.

Des rubans minces de Permalloy 4 / 79 , appartenant aux deux familles d'échantillons précédentes,ont été rompus par simple traction , à la température ambiante .

Les surfaces de rupture ont été examinées au microscope électronique à balayage " CAMEBAX " équipé d'une diode Silicium / Lithium " TRACOR " travaillant en microsonde.

Toutes les surfaces de ruptures examinées au microscope à balayage présentent le caractère des ruptures ductiles . Cependant , la présence de traces de magnésium joue un rôle déterminant sur les mécanismes de rupture. Pour confirmer ce fait nous détaillerons les observations faites lors de l'étude micrographique sur un échantillon de Permalloy 4 / 79 élaboré sous vide , sans addition de magnésium , mais à basse teneur en soufre (30 p.p.m.). Les micrographies des figures : 9a (G = 800) et 9b (G = 5 000) montrent des ruptures ductiles en cisaillement pur. En revanche , pour les échantillons élaborés à l'air avec addition de magnésium , les surfaces de rupture présentent toujours un caractère " ductile " , mais moins marqué que pour les échantillons précédents . Les ruptures sont toujours sous la forme de cupules bien ductiles comme le montre la figure 10 a (G = 5 000), relative à un échantillon qui ne contient que 150 p.p.m. de magnésium et environ 250 p.p.m. de soufre. Nous avons généralement observé au fond des cupules , de petites inclusions sphériques d'environ 0,5 μ à 1 μ de diamètre : figure 10 b

(9) J.DURR, B.VANDORPE et M.LENGLET, ANN. Chim. Fr. 1980,

Figure. 9 (a) . Echantillon de Permalloy sans magnésium : rupture en cisaillement (G= 800)

Figure. 9 (b) . Même échantillon : mise en évidence des lignes de glissement (G = 5 000).

faisceau de la micro-sonde.

Figure. 10 (a) .Echantillon de Permalloy à 150 p.p.m. de magnésium. Rupture ductile en cupules. Mise en évidence d'inclusions au fond des cupules. ($G = 5\ 000$).

Figure. 10 (b) . Même échantillon (G = 10 000). Inclusion sphérique au fond d'une cupule.

(G = 10 000). Ce type de rupture apparait dès que l'échantillon contient les plus petites traces de magnésium qui ont rendu possible les opérations de " forgeage ".

Les inclusions sphériques visibles sur les micrographies de la figure 10 ou analogues et provenant des différents échantillons ont été analysées à l'aide de la diode Silicium / Lithium . La figure 11 courbes (1) et (2) donne les spectres enregistrés au moyen de la microsonde.

Figure. 11. Analyse par microsonde d'un échantillon à 150 p.p.m. de magnésium: courbe (1) matrice, et courbe (2) inclusion.

I.4.2.1 - Etude de la matrice.

Lorsque le faisceau de la sonde est centré sur la matrice exempte d'inclusion { courbe (1) de la figure 11 et zone (a) de la figure 10 (a) }, le spectre met en évidence les éléments constitutifs de la matrice par les raies suivantes:

- Ni Lα et Ni Kα (le Ni Kβ sort du spectre exploré)
- Fe K α et Fe K β (le Fe L α est à peine visible au pied du Ni L α)
- Mn K α et Mn K β (ce dernier pic interfère avec le pied de la raie Fe K α)
- Mo Lα non séparé du pic correspondant au S Kα.
- Si K α dont le pic est à peine visible au dessus du fond continu; ce qui est normal compte tenu de la faible teneur en silicium de l'alliage (environ 0,1 %) .

Sur le spectre il apparait en plus la raie Al K α due au support sur lequel l'échantillon a été placé pour l'irradiation. En effet les échantillons sont minces (10 /100 mm.) de sorte que le faisceau électronique de la sonde, ou les électrons secondaires et rétrodiffusés, induisent la fluorescence du support d'échantillon en aluminium.

I.4.2.2 - Etude d'une inclusion.

Lorsque le faisceau de la sonde est centré sur l'inclusion sphérique d'environ 0,5 µ de diamètre { courbe (2) de la figure 11 et zone (b) de la figure 10 (a) }. le diamètre du faisceau de la sonde étant supérieur à celui de l'inclusion analysée, le spectre enregistré au moyen de la diode Silicium/Lithium comprend la somme des éléments constitutifs de la matrice, précédemment repérés, auxquels viennent s'ajouter les éléments constituant l'inclusion. Ces derniers sont:

- le magnésium mis en évidence par le pic Mg K α (λ = 9;89A°), non séparé du pic Mg K β (λ = 9,60 A°) de faible intensité.

- le soufre dont le pic K α (λ =5,37 A°) est en interférence parfaite avec le pic Mo L α (λ = 5,40 A°). Cependant le pic représentant la somme S K α + Mo L α est beaucoup plus intense sur l'inclusion que dans la matrice. Le spectre présenté à la figure 12 est enregistré sur la matrice de l'échantillon de Permalloy élaboré sous vide sans magnésium, la teneur en soufre n'est que de 30 p.p.m.Ce spectre ne diffère de la courbe 1 de la figure 11 que par l'abscence du pic Si K α , élément qui n'a pas été ajouté dans le métal élaboré sous vide.

La comparaison entre ces deux spectres confirme l'interprétation que nous avons donnée à propos des pics Mo $L\alpha$ et S $K\alpha$ en interférence sur la courbe 2 de la figure 11.

Figure. 12 . Spectre enregistré à la diode Si / Li sur un échantillon de Permalloy élaboré sous vide sans magnésium.

- 28 -

La figure 13 associant l'image électronique obtenue au microscope à balayage et le profil de la concentration en magnésium le long de A B , déterminé au moyen de la microsonde,illustre l'évolution de la concentration en magnésium au niveau d'une inclusion.

Figure. 13 . (G = 5 000) . Echantillon à 130 p.p.m. de magnésium, répartition du magnésium le long de A B .

L'étude micrographique met en évidence l'association du soufre et du magnésium dans des inclusions présentes dans le Permalloy élaboré à l'air avec des additions de magnésium. La présence de magnésium et de soufre dans ces inclusions explique d'une part le rôle bénéfique des additions de magnésium sur la forgeabilité du Permalloy contenant un peu de soufre; d'autre part le durcissement magnétique de l'alliage contenant des quantités notables de magnésium. En effet, les inclusions constituent une"phase non magnétique" dispersée dans la matrice austénitique du Permalloy 4 / 79 que l'on voudrait obtenir à l'état monophasé et homogène. En effet , conformément à la théorie de Néel (10) les inclusions dispersées dans un alliage magnétique doux provoquent un effet d'ancrage des parois des domaines de WEISS qui deviennent

(10) L. NEEL Ferromagnetism Bozorth, 6°edition, Van Nostram, New York, 488.

moins aisément mobiles. La corrélation linéaire:

 $\mu_{MCC} = -1,5 \times 10^{-2} \text{ Mg p.p.m.} + 280 000 \text{ Gauss/Ge}$ se trouve ainsi expliquée et justifiée.

I.5 CONCLUSION .

Les conclusions que nous pouvons faire à l'issue du travail portent sur les différents points suivants :

- L'application de la fluorescence X multicanale et des diverses méthodes spectrométriques, à l'analyse de la matrice du Permelloy, a permis de déterminer la teneur résiduelle en magnésium d'échantillons de Permalloy élaborés à l'air.

- La teneur en magnésium de la matrice "Permalloy" peut être suivie, au cours des élaborations au moyen d'un spectromètre multicanal de fluorescence X .

- L'association du soufre et du magnésium, sous la forme de fines inclusions sphériques, justifie le rôle bénéfique des additions de magnésium sur la forgeabilité du Permalloy. Le soufre combiné au magnésium, sous la forme d'inclusions stables ne peut plus alors donner naissance à des composés fragilisants de la matrice nickel.

- Les inclusions mises en évidence jouent un rôle déterminant sur la ductilité, à la température ambiante, de l'alliage. La rupture en cisaillement pur de l'alliage, exempt de soufre et de magnésium, devient une rupture ductile en cupules pour les alliages contenant du soufre neutralisé par le magnésium.

- Nous avons pu dégager l'influence quantitative des additions de magnésium en établissant la corrélation linéaire:

 $\mu_{MCC} = -1,5 \times 10^{2} \text{ Mg p.p.m.} + 280 000 \text{ Gauss/Qe}$

- Si ces additions de magnésium sont indispensables à l'obtention de lingots forgeables , il importe de les limiter à la valeur minimale, juste suffisante.

CHAPITRE I. ANNEXE I.

DOSAGE DU MAGNESIUM DANS LE NICKEL PAR FLUORESCENCE X SEQUENTIELLE.

La courbe d'étalonnage présentée à la figure (A) , correspond à la limite des performances obtenues avec tous les réglages de l'appareil S.R.S. opérés dans les conditions optimales , et non à une condition d'utilisation courante. Le magnésium situe , du côté des éléments légers , la frontière du champ d'application de la fluorescence X séquentielle à l'analyse des échantillons de nickel ou à base de nickel. Ces limites particulières à la matrice nickel sont dues:

- aux problèmes afférents à la séparation des deux radiations Mg K α_{12} (λ = 9,89 A°) et du sixième ordre de la raie principale Ni K α_1 (λ = 1,6579 x 6 = 9,947 A°).

Après diffraction sur le cristal K.A.P., équipant normalement les spectromètres séquentiels, ($2d = 26,632 A^{\circ}$), l'intensité maximale de ces deux radiations doit être détectée aux angles de BRAGG " 2θ " respectifs de 43,60 et 43,86. Leur écart angulaire, 0,26 °, est inférieur à la résolution du spectromètre équipé du collimateur large, seul utilisable compte tenu de la faible intensité des signaux. Les fentes de Soller employées sont caractérisées par un défaut de collimation de 0,4°. Notons que nous n'avons même pas tenu compte, dans le calcul ci-dessus, de l'élargissement d'une raie diffractant avec un ordre élevé (ordre six dans le cas présent). Il y a donc interférence, pratiquement parfaite, entre les deux radiations Ni K α_1 à l'ordre 6 et Mg K α_{12} à l'ordre 1.

La séparation des impulsions électriques de tension V₁ et V₂, induites par les photons X d'énergie très différentes ($\lambda_1 \approx 10 \text{ A}^\circ$ et $\lambda_2 \approx 1,7 \text{ A}^\circ$) n'est qu'imparfaitement opérée par la discrimination d'impulsions.

- 33 -

d'une fenêtre d'entrée de 2 μ en Makrofol.

- au mauvais rendement de comptage du compteur à flux-gazeux. Le compteur à flux-gazeux "Argon à 10 % de méthane" est mieux adapté à la détection des photons Ni K α_1 qu'à celle des photons Mg K α_{12} . Le rendement du compteur étant respectivement de 70 % et de 50 % pour ces deux radiations. Cette mauvaise performance du compteur à flux-gazeux est liée aux deux phénomènes physiques suivants:

a) L'énergie de la radiation Mg K α_{12} (1,253 Kev.) est inférieure à l'énergie d'ionisation de l'argon (3,202 Kev.). La situation est inversée pour les photons Ni K α_1 (7,477 Kev.). b) La fenêtre d'entrée du compteur n'est pas assez perméable. Les fenêtres en Hostaphan de 6 μ sont inutilisables dans ce domaine. Equipé de fenêtres de 2 μ en Makrofol, le compteur à flux-gazeux permet d'atteindre les performances présentées à la figure A. L'emploi de fenêtres plus minces, moins absorbantes, mais aussi plus fragiles, de 1 μ de polypropylène , n'apporte pas un gain de performances très appréciable , comme on peut le voir sur les spectres du magnésium présentés aux figures B.1. et B.2. enregistrés à partir du même échantillon de nickel contenant 0;3 % de magnésium.

- à la faible épaisseur d'échantillon participant effectivement à l'émission du rayonnement caractéristique du magnésium Mg K α_{12} .

L'épaisseur de demi-absorption de ce rayonnement , par le nickel vaut 0,2 μ alors qu'elle atteint 5 μ dans une matrice d'aluminium. Ces différences d'absorption justifient l'écart des hauteurs effectives des pics caractéristiques du magnésium enregistrés dans les mêmes conditions , à partir d'échantillons de nickel à 0,33 % de magnésium et d'aluminium contenant 0,43 % de magnésium. Les spectres enregistrés sont présentés aux figures C1 et C2 respectivement.

On notera également les niveaux et les allures des bruits de fond des deux spectres. L'échantillon d'aluminium induit , au niveau du pic Mg K α_{12} , un bruit de fond de l'ordre de 100 photons par seconde. L'intensité de ce bruit de fond décroit normalement quand la longueur d'onde du rayonnement croit ; il est bien l'image simple du spectre de freinage émis par le tube excitateur , puis diffusé par l'échantillon. Dans le

Figures. B1 et B2. Spectres du Mg K α_{12} émis par l'échantillon de nickel à 0,33 % de Mg . Le compteur à flux gazeux étant muni d'une fenêtre en Makrofol de 2 μ (Fig. B 1) ou d'une fenêtre de 1 μ de polypropylène (Fig. B 2). Le gain de sensibilité apporté par la fenêtre en polypropylène est minime.

cas du nickel , à coefficient de diffusion plus faible que l'aluminium ,le bruit de fond atteint un niveau plus élevé (140 photons/s au lieu de 100 photons /s) . Il provient en partie de la diffusion , par le nickel, du spectre de freinage du tube, mais aussi des photons Ni K α_1 d'ordre 6 dont les impulsions électriques n'ont pas été éliminées par la discrimination d'impulsions. On justifie ainsi le relèvement du niveau , et la modification de la forme du fond continu.

- 35 -

Figures : C1 et C2 . Spectres du Mg K α_{12} : influence du coefficient d'absorption de la matrice sur l'intensité des pics de fluorescence. Figure C.1: échantillon de nickel à 0,33 % de Mg. Figure C.2: échantillon d'aluminium à 0,43 % de Mg.

(BUS) ULUE - 36 -

CHAPITRE I ANNEXE II.

COMPARAISON DES DEUX SOURCES D'EXCITATION UV - VISIBLE : ETINCELLE

ET DECHARGE LUMINESCENTE.

Le choix de la longueur d'onde caractéristique d'un élément , la plus favorable à son dosage , n'est pas toujours le même , pour les deux sources lumineuses . Les raies que nous avons choisies pour les différents éléments sont consignées au tableau A .

Les essais comparatifs des deux sources d'excitation ont porté sur deux matrices différentes.

- Nos échantillons standards en nickel ont permis de tester la réponse des deux sources pour tous les éléments majeurs ou traces contenus dans le Permalloy. Le soufre excepté, puisque cet élément fragilisant n'a pas pu être introduit dans nos standards.

- Par ailleurs nous avons aussi testé les deux sources d'excitation à l'aide d'étalons officiels d'aciers : les étalons B.A.S. N° 401 à 410 et les B.A.S. N° 451 à 460. Ces deux séries d'étalons B.A.S. de structures différentes , et à teneurs en soufre variées, permettent de mettre en évidence l'influence de la microstructure de l'échantillon sur l'intensité lumineuse caractéristique du soufre lors de l'excitation par étincelle.On voit à la figure (D) que cet effet disparait lors de l'excitation avec la lampe à décharge luminescente.

La source étincelle conduit parfois à des courbes d'étalonnage, soit rectilignes, soit du second degré , tracées au milieu de points assez dispersés (cas de l'aluminium : figure E.). Les courbes d'étalonnage résultant de la lampe à décharge luminescente sont toujours des droites et la dispersion des points est plus faible qu'avec l'étincelle.

<u>Figure. D</u>. Dosage du soufre dans la matrice acier. L'excitation est réalisée au moyen de l' "étincelle" (courbes a) ou avec la " décharge luminescente" (courbe b).Les échantillons employés sont les étalons B.A.S. N° 401 à 410 : et B.A.S. N° 451 à 460 :

<u>Figure. E</u>. Dosage de l'aluminium dans la matrice nickel: (a) source étincelle (b) décharge luminescente.

TABLEAU A.

Elément.	Décharge luminescente. (λ Α°)	Etincelle. (λ A°)
Magnésium	2852	2852
Aluminium	3961	3 9 61
Chrome	2677	2677
Cuivre	3274	2136
Manganèse	2576	2933
Silicium	2881	2124
Molybdène	3864	2816
Fer	3020	3720
Cobalt	3453	2286

Choix des raies caractéristiques les plus favorables au dosage des éléments du Permalloy.

Les résultats obtenus par chacune des deux méthodes d'excitation, avec la matrice nickel , sont consignés au tableau B.

Les résultats obtenus avec la lampe à décharge luminescente , même si elle ne permet pas toujours d'atteindre des limites de détection aussi basses que celles atteintes avec l'étincelle (cas du silicium, du manganèse et du cobalt) , se caractérisent par une faible dispersion des résultats et la linéarisation systématique des courbes d'étalonnage. Ces deux éléments constituent un avantage très net en faveur de la lampe à décharge luminescente.

TABLEAU B.

Application des deux sources lumineuses à la matrice nickel: comparaison des résultats obtenus.

Elément.	Limite de dosa	age (p.p.m.)	Forme des	courbes.
	Etincelle.	Decharge.	Ltincelle.	Decharge.
Magnésium	1	2	Courbe	Droite
Aluminium	40	30	18	11
Silicium	5	10	11	11
Chrome	. 7	6	11	U
Manganèse	2	8	Droite	11
Fer	105	20	11	H
Cobalt	25	55	Courbe	I
Cuivre	8	4	H	П
Molybdène	5	5	Droite	II

CHAPITRE II

APPLICATION DE LA SPECTROMETRIE D'EMISSION X A LA DETERMINATION DU DEGRE D'OXYDATION DU FER DANS DIFFERENTS OXYDES MIXTES APPLICATION DE LA SPECTROMETRIE D'EMISSION X A LA DETERMINATION DU DEGRE D'OXYDATION DU FER DANS DIFFERENTS OXYDES MIXTES

II.1 - PRINCIPE DE LA METHODE

II.1.1 - Aspect instrumental

II.1.1.1 - Appareillage

Les spectres d'émission X K β du fer et du cuivre dans différents oxydes mixtes ont été réalisés au moyen d'un appareil de fluorescence X séquentiel conventionnel SIEMENS.

Des études semblables ont fait l'objet de plusieurs publications mais diffèrent fondamentalement du présent travail par l'aspect instrumental : la plupart des auteurs ayant employé une microsonde électronique.

Notre étude a été effectuée sur un ensemble de fluorescence X SIEMENS type S.R.S. sous vide comprenant :

- un générateur haute tension CRISTALLOFLEX IV (60 KV et 80 mA) dont la stabilisation est de 0,03 %.

- le spectromètre séquentiel SIEMENS S.R.S. sous vide équipé d'un goniomètre à quatre cristaux.

- une baie de comptage transistorisée SIEMENS type "T" munie d'un dispositif d'enregistrement des spectres et d'une chaîne de comptage.

Le rayonnement excitateur est fourni par un tube à rayons X SIEMENS type Ag.Cr 61 de 3 kW à anticathode de chrome (50 KV, 60 mA).

Signalons que le tube AgCr 61 employé, modèle le plus couramment rencontré sur les spectromètres séquentiels, est à polarité normale (anode à la masse) et à sortie latérale. Un tube à rayons X, à polarité inversée et à fenêtre frontale, aurait été plus avantageux pour l'excitation de l'échantillon.

Les discontinuités d'absorption des éléments analysés : fer et cuivre, étant de plus courte longueur d'onde que les raies caractéristiques de l'anticathode, seul le spectre de fond continu participe à l'excitation de l'échantillon.

Les conditions expérimentales retenues se justifient par l'obtention d'un bon compromis entre l'efficacité de l'excitation d'une part et l'amélioration du rapport pic absolu/fond continu (fig. 1a, 1b, 1c) d'autre part.

- Figure 1a : tube sous 20 KV I variable.

- Figure 1b : tube sous 35 KV I variable.
- Figure 1c : tube sous 50 KV I variable.

La figure 2 représente le schéma du spectromètre séquentiel SIEMENS S.R.S. sous vide.

L'échantillon pulvérulent est disposé au centre de la fenêtre en mylar d'une cassette prévue pour l'analyse des échantillons liquides. La rotation de l'échantillon sur lui-même, couramment employée pour compenser les hétérogénéitésdes échantillons solides, est arrêtée dans le but de présenter l'échantillon de poudre sous un angle solide constant pendant toute la durée d'une détermination de longueur d'onde.

en fonction de I mA.

(BUS

- 44 -

BUS

- 45 -

en fonction de I mA.

Figure 2 : schéma du spectromètre

- 47 -

- 1 : tube à R X
- 2 : diaphragme filtre
- 3 : échantillon
- 4 : collimateur
- 5 : cristal analyseur
- 6 : détecteur (flux gazeux)

- 7 : détecteur à scintillations
- 8 : préamplificateur
- 9 : ampli sinusoïdal
- 10 : discriminateur d'impulsions

BUS

- 11 : enregistreur
- 12 : baie de comptage.

Le montage est caractérisé par un angle d'émergence du rayonnement caractéristique de fluorescence, ψ de 45° défini par la position du collimateur primaire. Les fentes de Soller utilisées présentent un défaut de collimation de 0,15°. Une valeur inférieure du défaut de collimation (0,05°) n'a pas pu être employée en raison de la perte d'énergie correspondante.

Le laboratoire dispose de cinq cristaux plans dont les caractéristiques sont consignées dans le tableau I.

Nature du cristal	2 d (A°)	taille
Fluorure de lithium	1,801	(4.2.0.)
Fluorure de lithium	4,028	(1.0.0.)
Penta erythritol (P.E.T.)	8,742	(0.0.2.)
Graphite	6,708	(0.0.2.)
Phthalate acide de potassium	26,4	(0.0.1.)

Tableau I

Pour ce travail, nous avons été amenés à employer le cristal LiF 1.0.0. et le cristal LiF 4.2.0. en fonction de la nature de l'élément analysé (tableau II).

Tableau II

Elément	Кβ _{1,3}	Кв ₅	Po Li	sitions a F 1.0.0	ngulaires LiF 4.2.0.	Détecteur utilisé
	A°		ler ordre	2e ordre	ler ordre	
Cu Fe	1,39222 1,75661	1,38109 1,74420	40,45 51,70	87,48 121,48	101,20 -	Scintillateur Flux gazeux

Le cristal LiF 4.2.0. n'est pas standard en fluorescence X, la taille "4.2.0." permet de réduire le "2d" utilisable et en conséquence, d'accroître sensiblement le pouvoir dispersif. Ce gain en dispersion est obtenu au prix d'une réduction relativement importante du pouvoir réflecteur du cristal, ce qui doit être compensé par un allongement sensible des temps de comptage. L'emploi de ce cristal est limité aux raies K β du cuivre amenées à des angles de l'ordre de 100° compatibles avec l'usage du compteur à scintillations dont le domaine d'exploration est limité à 117°.

Le cristal analyseur LiF 1.0.0. permet d'amener les raies K β du fer au voisinage de 2 θ = 120° pour le deuxième ordre (d'où une amélioration de la dispersion). Ce domaine angulaire impose l'usage du compteur à flux gazeux, à balayage d'argon contenant 10 % de méthane dont la pression interne est maintenue constante à une valeur voisine de la pression atmosphérique normale. Le fait de travailler dans le deuxième ordre a entraîné des temps de comptage relativement longs.

Chaîne de comptage

Le dispositif de comptage est constitué de :

- un amplificateur sinusoïdal SIEMENS type C 71392-A114.
- un adaptateur d'impédance SIEMENS type T M 34012-B.
- deux générateurs H.T de 3 KV (un pour chaque compteur)
 SIEMENS type C 72249-A 68-A1.
- un discriminateur d'impulsions SIEMENS type C 72249-A90-A1.
- une horloge de comptage SIEMENS type R équipée d'une base de temps pilotée par un quartz de fréquence 1MHz. Cette horloge de comptage peut au choix : soit mesurer le temps nécessaire à l'acquisition d'un nombre présélectionné de photons, soit, comme nous l'avons pratiqué, compter le nombre de photons détectés dans un intervalle de temps prédéterminé.
- un enregistreur potentiométrique SIEMENS type KOMPENSOGRAPH III.

- Le goniomètre, équipé du cristal LiF 4.2.0, est calé à la position angulaire $2\theta = 101$,280 correspondant à la raie CuK_B1,3
- La tension des impulsions correspondant aux photons d'ordre 1 est comprise entre 0,5 V et 3,2 V.

- Le goniomètre, équipé du cristal LiF 1.0.0., est calé à 121,60 sur la raie FeKβ_{1.3}.

Les tensions de seuil et de fenêtre de la discrimination d'impulsions sont définies à partir des "spectres d'énergie" des deux compteurs, présentés aux figures 3a (compteur à scintillations) et 3b (compteur à flux gazeux).

La stabilité pratique de la chaîne de mesure dépend, en fait, de deux éléments principaux : les appareils électriques ou électroniques d'une part, et les montages mécaniques d'autre part. La stabilité de ces éléments a été testée de la manière suivante.

Stabilité électrique et électronique

Tous les éléments mécaniques tels que : sas d'introduction des échantillons, fentes de Soller, support du cristal analyseur (LiF 4.2.0.) sont figés ainsi que le goniomètre qui est calé sur la raie Pt $L\alpha_1$ à 93,59 (l'échantillon utilisé pour ce test de stabilité est une pastille de platine dont la surface est inaltérable sous des irradiations très prolongées de plusieurs jours).

Le taux de comptage, de l'ordre de 9000 photons/s, est juste inférieur au taux de comptage ($\sim 10^4$ photons) qui peut provoquer une saturation de la discrimination d'impulsions.

Une série de comptages de 100 s est effectuée sur une période continue d'environ 12 heures ; les comptages seront regroupés par série de 20 pour établir une statistique des comptages dans des domaines où la précision peut être élevée.

Nous donnons dans le tableau III a, pour chaque ensemble de 20 comptages successifs de 100 s :

- les comptages effectués en 2 000 s (C 2000)
- la cadence moyenne de comptage en 100 s ($M_{100.20}$) établie sur une période effective de 2 000 s.
- la valeur moyenne de ces cadences de comptage soit $\overline{M}_{100.20}$ et l'écart type pratique caractérisant $\overline{M}_{100.20}$ soit $\sigma_{p\overline{M} \ 100.20} = 352$ photons.

Tableau III a

Comptages effectués sur la raie Pt $L\alpha_1$ pendant 12 heures

C 2 000 Comptage sur 2 000 s en photons	M _{100.20} Moyenne de 20 comptages successifs de 100 s
18 397 912	919 896
18 403 274	920 164
18 393 574	919 679
18 396 010	919 800
18 404 940	920 247
18 388 029	919 402
18 388 621	919 431
18 390 006	919 500
18 383 981	919 199
18 392 890	919 645
18 397 046	919 952
18 390 853	919 543
18 391 360	919 568
18 393 616	919 681
18 385 674	919 283
18 388 714	919 436
18 382 745	919 137
18 382 619	919 131
18 377 405	918 870
18 395 720	919 786

 $\overline{M}_{100.20}$ = 919.567 $\sigma_{pM_{100.20}}$ = 352 photons

BUS

La variance de notre matériel obéit aux lois de composition des variances; ainsi, dans les conditions précisées ci-dessous :

la variance pratique = variance électronique + variance théorique de la statistique de comptage

$$\sigma_{p_{100.20}}^{2} = \sigma_{t_{100.20}}^{2} + \sigma_{t_{100.20}}^{2}$$
L'estimation de $\sigma_{t_{100.20}}^{2} = \sqrt{\frac{\overline{M}_{100.20}}{\sqrt{20}}} = \sqrt{\frac{919.567}{20}} = 214 \text{ photons}$

d'où l'on tire $\sigma e_{100.20}^2 = 352^2 - 214^2 \rightarrow \frac{\sigma e_{100.20}}{100.20} = 280 \text{ photons.}$

L'électronique est ainsi caractérisée par une variance relative de

$$\sigma_{e_{rel}} = \frac{\sigma_{e_{100.20}}}{\overline{M}_{100.20}} \sim \frac{280}{920\ 000} \simeq 0,03\%$$

sur des périodes d'une durée moyenne de 12 heures. Elle correspond en fait, à la caractéristique "catalogue" annoncée par le constructeur.

Stabilité mécanique

Le même échantillon de platine a servi à effectuer 16 séries de 20 comptages de 100 s ; mais entre chaque série de comptage, on a fait jouer les différents éléments constituant le sas d'introduction des échantillons.

Les valeurs moyennes de ces cadences de comptage \overline{C}_{mec} sont données dans le tableau III b. Elles sont caractérisées par un nouvel écart type pratique $\sigma_{p_{mec}} = 2$ 196 photons.

D'où l'on déduit la variance, liée à la mécanique, en utilisant toujours la loi de composition des variances, et en admettant que la variance électronique a été définie précédemment.

<u>Tableau III b</u>

Estimation de la variance mécanique

	926 016
	922 354
	918 626
	922 711
	918 432
	921 102
	921 988
	918 592
	920 678
	918 624
	918 620
	918 569
	918 501
	919 818
	922 354
	919 495
=	920 405

 $\sigma_{\text{pmec}} = 2 \, 196$

M

$$\sigma_{p_{mec}} = \sqrt{\sigma_t^2 + \sigma_e^2 + \sigma_{mec}^2}$$

d'où l'on tire σ_{mec} = 2 168 photons.

La variance relative de la mécanique est dans ces conditions:

$$\sigma_{\text{mec}} = \frac{2 \ 168}{920 \ 000} \sim 0,2 \%.$$

Notre spectromètre a conservé , après 7 ans de service continu , une stabilité électronique de 0,03 % équivalente à celle d'un matériel neuf. En revanche, la stabilité "mécanique" du sas d'introduction d'échantillon, entraine maintenant une variance relative de 0,2 % dans les mesures ; variance qui est très largement prépondérante par rapport à la variance électronique.

Dans la pratique courante des analyses par fluorescence X à 0,5 % ou 1 % relatif près, les différentes instabilités du matériel (y compris l'instabilité mécanique) peuvent être négligées.En revanche,pour les mesures servant de base au présent travail, nous devrons prendre les précautions suivantes pour minimiser l'influence perturbatrice des éléments mécaniques:

- ne pas faire tourner l'échantillon sur lui même comme on le fait généralement pour essayer de compenser les hétérogénéités des échantillons en présentant l'échantillon sous divers angles.

- le sas d'introduction des échantillons ne devra être manoeuvré sous aucun prétexte, au cours d'une détermination de la longueur d'onde d'un élément. La fenêtre en mylar supportant l'échantillon en poudre devra avoir une durée de vie, sous irradiation, au moins égale à la durée d'une série de mesures.

Ce point introduit une limitation du temps de comptage qui ne peut dépasser 1 000 s par pas angulaire.

II.1.1.2 - Conditions expérimentales

Les spectres K β du fer et du cuivre sont enregistrés point par point avec un pas de balayage de 0,01° en 20. Les pointés du goniomètre sont assurés à moins de 0,001°. Le temps de comptage durant chaque pas du balayage est sélectionné de telle sorte que l'écart type caractérisant le comptage soit toujours inférieur à 1 % du comptage (tableau IV). Il est pratiquement impossible de dépasser la précision atteinte dans le cas des composés à faible teneur en cuivre, en raison de la destruction de la fenêtre en mylar par le rayonnement excitateur primaire.

II.1.1.3 - Dépouillement des spectres

Les figures 4 a et 4 b présentent les spectres caractéristiques du fer et du cuivre dans les oxydes Fe_2O_3 et CuO pris comme substances de référence. Les raies $K\beta_{1,3}$ et $K\beta_5$ des mêmes éléments dans Fe_3O_4 et $CuFe_2O_4$ (figures 5 a et 5 b) ont le même profil global mais les décalages angulaires sont trop faibles pour être interprétés directement sur les enregistrements avec l'appareil utilisé.

Nous avons retenu la méthode préconisée par KOSTER et RIECK (1) pour les dépouillements et l'analyse des spectres du fer. La matrice des données relatives aux comptages correspondant aux différents pointés en 20, pour chaque raie (15 à 20 pointés pour la raie $K\beta_{1,3}$ et 25 à 30 pointés pour la bande $K\beta_5$) est introduite dans un ordinateur PHILIPS P.880. associé à une table traçante BENSON 230. Le calculateur ne prend en considération, pour chaque raie, que les points expérimentaux situés au-dessus de l'horizontale tracée à 90 % du comptage maximal. Il s'est avéré, en accord avec les auteurs précédemment cités, que la représentation de la partie supérieure du pic des différentes raies, par une parabole à axe vertical est un modèle satisfaisant (figures 6 a et 6 b). La table traçante couplée à l'ordinateur donne simultanément la figuration des points expérimentaux, le tracé de la parabole, son axe et l'abscisse du maximum.

(1) A.S. KOSTER et G.D. RIECK, J. Phys. Chem. Solids, 1970, 31, 2505.

TABLEAU IV

<pre>KB1,3 KB1,3</pre>	20 s 100 s 20 s 100 s 20 s 400 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s	200.000 20.000 20.000 24.000 16.000 9.000 150.000 20.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	448 141 448 155 126 95 387 141 158 110 387 141 173 141 173 114 425 141	0,2 % 0,7 % 0,2 % 0,6 % 0,8 % 0,8 % 0,3 % 0,7 % 0,6 % 0,3 % 0,7 % 0,6 % 0,9 % 0,7 %
Kβ1,3 Kβ5 Kβ5 Kβ5 Kβ5 Kβ5 <	100 s 20 s 100 s 20 s 400 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s	20.000 200.000 24.000 16.000 9.000 150.000 20.000 25.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	141 448 155 126 95 387 141 158 110 387 141 173 114 425 141	0,7 % 0,2 % 0,6 % 0,8 % 0,3 % 0,3 % 0,7 % 0,6 % 0,9 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>KB1,3 KB5 KB1,3 KB</pre>	20 s 100 s 20 s 400 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s 100 s 20 s 100 s	200.000 24.000 16.000 9.000 150.000 20.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	448 155 126 95 387 141 158 110 387 141 173 114 425 141	0,2 % 0,6 % 0,8 % 1 % 0,3 % 0,7 % 0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>Kβ₅</pre> Kβ ₁ ,3 Kβ ₅ Kβ ₁ ,3 Kβ ₁	100 s 20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s	24.000 16.000 9.000 150.000 20.000 25.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	155 126 95 387 141 158 110 387 141 173 114 425 141	0,6 % 0,8 % 1 % 0,3 % 0,7 % 0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,2 % 0,7 %
<pre>KB1,3 KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB1,3 KB5 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB5 KB1,3</pre>	20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s	16.000 9.000 150.000 20.000 25.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	126 95 387 141 158 110 387 141 173 114 425 141	0,8 % № 1 % 0,3 % 0,7 % 0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB1,3 KB5 KB1,3 KB1,3</pre>	400 s 20 s 100 s 20 s 400 s 20 s 100 s 20 s 100 s 20 s	9.000 150.000 20.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	95 387 141 158 110 387 141 173 114 425 141	<pre> 1 % 0,3 % 0,7 % 0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 % </pre>
<pre>KB1,3 KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB1,3 KB5 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB1,3 KB3 KB3 KB3 KB1,3 KB3 KB3 KB1,3 KB3 KB3 KB3 KB3 KB1,3 KB3 KB3 KB3 KB3 KB3 KB3 KB3 KB3 KB3 KB</pre>	20 s 100 s 20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s	150.000 20.000 25.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	387 141 158 110 387 141 173 114 425 141	0,3 % 0,7 % 0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>KB₅ KB₁,3 KB₅ KB₁,3 KB₅ KB₁,3 KB₁,3 KB₁,3 KB₁,3 KB₁,3</pre>	100 s 20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s	20.000 25.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	141 158 110 387 141 173 114 425 141	0,7 % 0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>KB1,3 KB5 KB1,3 KB5 KB1,3 KB5 KB1,3 KB1,3 KB1,3 KB1,3</pre>	20 s 400 s 20 s 100 s 20 s 400 s 20 s 100 s	25.000 12.000 150.000 20.000 30.000 13.000 180.000 20.000	158 110 387 141 173 114 425 141	0,6 % 0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3</pre>	400 s 20 s 100 s 20 s 400 s 20 s 100 s	12.000 150.000 20.000 30.000 13.000 180.000 20.000	110 387 141 173 114 425 141	0,9 % 0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ1,3</pre>	20 s 100 s 20 s 400 s 20 s 100 s	150.000 20.000 30.000 13.000 180.000 20.000	387 141 173 114 425 141	0,3 % 0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>Kβ₅ Kβ_{1,3} Kβ₅ Kβ_{1,3} Kβ₅ Kβ_{1,3}</pre>	100 s 20 s 400 s 20 s 100 s	20.000 30.000 13.000 180.000 20.000	141 173 114 425 141	0,7 % 0,6 % 0,9 % 0,2 % 0,7 %
<pre>Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3</pre>	20 s 400 s 20 s 100 s	30.000 13.000 180.000 20.000	173 114 425 141	0,6 % 0,9 % 0,2 % 0,7 %
<pre>K_{β5} K_{β1,3} K_{β5} K_{β1,3}</pre>	400 s 20 s 100 s	13.000 180.000 20.000	114 425 141	0,9 % 0,2 % 0,7 %
<pre>Kβ1,3 Kβ5 Kβ1,3</pre>	20 s 100 s	180.000 20.000	425 141	0,2 %
^{Kβ} 5 Kβ _{1,3}	100 s	20.000	141	0,7 %
кβ1,3	20 6			
	20 3	27.000	164	0,6 %
кβ ₅	400 s	13.000	114	0,9 %
кβ1,3	20 s	150.000	387	0,3 %
κ _{β5}	100 s	20.000	141	0,7 %
кβ1,3	20 s	36.000	190	0,5 %
κβ5	400 s	16.000	126	0,8 %
Кβ1,3	20 s	128.000	358	0,3 %
κ _{β5}	100 s	20.000	141	0,7 %
кβ1,3	20 s	96.000	310	0,3 %
κ _{β5}	100 s	13.000	114	0,9 %
кβ1,3	20 s	20.000	141	0,7 %
κβ5	400 s	10.000	100	1 %
Kβ1,3	20 s	150.000	387	0,3 %
κβ ₅	100 s	20.000	141	0,7 %
κβ	1000 s	27.000	164	0,6 %
	<pre>Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ1,3 Kβ5 Kβ5 Kβ5</pre>	$\begin{array}{c c} \kappa \beta_{1,3} & 20 \ s \\ \kappa \beta_{5} & 100 \ s \\ \kappa \beta_{5} & 400 \ s \\ \kappa \beta_{5} & 400 \ s \\ \kappa \beta_{5} & 100 \ s \\ \kappa \beta_{5} & 100 \ s \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 58 -

Figure 4 a. Spectre Kβ du fer dans Fe₂ 0₃.

BUS

BUS

Figure 6 a.

Figure 6 b.

Nous apprécions la reproductibilité sur la mesure angulaire du sommet de la parabole, respectivement pour $K\beta_{1,3} \ge 0,002^\circ$ et pour $K\beta_5 \ge 0,0025^\circ$ en 20 comme le montrent les séries de valeurs présentées dans le tableau V a.

TABL	EAU	. V	a
------	-----	-----	---

Mesures angulaires effectuées sur Fe ₂ 0 ₃ pris comme substance de référence							
Raie Kß _{1,3} Raie Kß ₅							
121,569 121,569 121,568 121,565 121,565 121,564 121,567	120,209 120,213 120,210 120,212 120,210 120,212 120,212 120,212						
121,566 121,569 121,568	120,211 120,213 120,208						

Les positions angulaires de référence pour chaque raie sur le spectre de Fe₂0₃ sont : Fe K $\beta_{1,3}$: 121,567° et Fe K β_5 : 120,211°.

Les spectres du cuivre ont été traités de la même façon, une étude identique à celle que nous venons de présenter pour le fer conduit aux résultats suivants : (tableau V b). Les positions de référence des raies du cuivre sont définies sur CuO ; elles valent : Cu K $\beta_{1,3}$: 101,283° ± 0,001° et Cu K β_5 : 100,187° ± 0,0025°.

TABLEAU V b

Mesures angulaires effectuées sur CuO pris comme substance de référence						
Raie K _{β1,3}	Raie K _{ß5}					
101,283	100,187					
101,282	100,187					
101,283	100,184					
101,282	100,188					
101,284	100,185					
101,282	100,189					
101,284	100,187					
101,283	100,190					
101,283	100,186					
101,282	100,188					

Le programme de dépouillement des spectres est présenté en annexe du § II . 1. consacré à l'exposé de la méthodologie.

- 66 -

Annexe au § II . 1. : Programme de dépouillement des spectres.

#:JUB DURR, PARAHOLE F0=999 #**** CLOCK= 07 /08 /79 AT 19H=12M=16S= #***JCP***REL**11 00 76/06/10 "#:FRT LIST=SOUR #**** CLOCK= 07 /08 /79 AT 19H=12M=16S=

FORTRAN COMPILER (16-03-76) RELEASE 11

LNR	STNR	SOURCE	
0	1	SUBROUTINE SYLEG(A.A.X.	N, NDA)
1		C SUBROUTINE CHOLE (A, B, X)	N.NDA.KRES
Ż	2	DIMENSIUN A(NDA, NDA), U(DA) X (NDA)
3	3	KRES=1	
4	4	IF(A(1,1),LE,0,) GO TO	1
5	5	A(1,1)=SURT(A(1,1))	
6	6	DU 5 1=2,N	
7	7	5 A(1,1)=A(1,1)/ A(1,1)	
8	8	DO 6 J=2,N	
9	9	JimJei	
10	10	S=0	
11	11	DO 7 I=1, J1	
15	12	7 S=S+A(J+I)*A(J,I)	
-13	13	S=A(J,J)~S	
14	14	1F(S.LF.0.) GO TO 1	
15	15	A(J,J)=50RT(S)	
10	10	J2#J+1	
17	17	IF(J2.GT.N) GO TO 6	
10	18	DD 8 1=J2 N	
19	19	SEO.	
20	20	UU 9 KH1, J1	
21	. 51	9 SESTA(I/K)*A(J/K)	
22	24		
23	23	0 A(1,J)=5/A(J,J)	
24	24	6 CUNTINUE	
23	50	DU 10 1=1,N	
20	20		
28	21	1880. 15/11 50 01 50 13	
20	20		
70	20	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	
71		12 2012	
12	72	$\frac{16}{10} = \frac{16}{10} = 16$	
22	22	DO 15 KEL N	
24	14	I=NA1=X	
15	15	TYEO	
76	76	TELLER NY GO TO 15	
37	37		
18	38	DU 14 KK=T1.N	
19	39	JEN+T1=KK	
40	40	14 TX=TX+A(J+T)+X(J)	
41	41	$15 \times (1) = (0(1) - 1 \times) / A(1 - 1)$	
42	42	RETURN	
43	43	1 KRES=2	*
44	44	RETURN	
45	45	END	

PROGRAM LENGTH 102F4 EXIT CODE=0000 #1FRT LIS1=SOUR #**** CLOCK= 07 /08 /79 AT 19H+12H=315=

FORTRAN COMPILER (16-03-76) RELEASE 11

- 67 -

PROGRAM LENGTH :0344 EXIT CODE=0000 #1FRT LIST=SOUR #**** CLOCK= 07 /08 /79 AT 19H=12H=47S= FORTRAN COMPILER (16-03-76) RELEASE 11

0	1	SUBROUTINE ANCAR(C, N, NP, PA, PB, NDIH, A, 8, 2) DIMENSION ACSO SOLUCEOL CONTRACTOR
2	3	DIMENSION PACING AND THE CONFICT OF THE STATE
3	-	CARABANA CIESTILIABIFAU DES COEFFICIENTS DU POLYNOME ORDONNE
4		C EN COMMENCANT PAR LE MONOME DE PLUS HAUT DEGRE
5		C**** N LE HOMBRE DE POINTS DEFINISSANT LA COURBE
6		CA*** NP LE DEGRE CHOIST POUR LE POLYNOME INFERIEUR DU EGAL A 14
7		C*##** PA LE TABLEAU DES ABSCISSES
8		C***** 30 VALEURS MAXI EN ABSCISSES ET ORDONNEES
9		C##### PB LE TABLEAU DES ORDONNEES
0		C IF (N+30) 1789, 1789, 1790
1	4	IF(N=50)1789,1789,1790
5	-	C1789 IF (NP+14)1788,1788,1790
5	5	1789 IF (NP-50) 1788, 1788, 1790
4	0	1790 WRITE (4,1791)
2	1	1791 FURMATCHIL, TROP DE POINTS OU DEGRE DEMANDE TRUP FORT, VOIR AMCAR
7	· • •	I EL SUS LIMITES D' UTILISATION')
A	0	
0	40	
ó	11	
i	12	A(T, 1)=0
2	13	DO 1 J=1.N
3	14	NEX=2+VP+1+I
4	15	1 A(I,1)=A(I,1)+PA(J)+*NEX
5	16	DO 2 I=1, HP1
6	17	A(I,NP1)=0
27	18	N 1=1, N
8	19	NEX=NP1=I
9	20	IF (NEX)3,4,3
0	21	3 A(I,NP1)=A(I,NP1)+PA(J)**NEX
1	22	
ב ז	23	A ALIJNYIJEALIJNYIJE
2 A	27	C CUNTINDE Da C tel ND1
5	25	
6	27	
7	28	NEX=NP1=I
B	29	IF (NEX)0,7.6
2	30	7 B(I) = B(I) + PB(J)
0	31	GOTO S
l i	35	6 B(I)=B(I)+PB(J)*PA(J)**NEX
2	- 33	5 CONTINUE
3	34	DU 8 1=2,NP1
9 	35	JJ=I
5	36	
5	37	
/ 8	50	
0 0 .	57	
7 A	40	
ĩ	A2	DO 9 TEL.NP
2	43	JJJ¤NP1
3	44	JJ#I
4	45	NM#NM#1
5	46	DU 9 J=1,NM
6	47	JJ=JJ+1
7	48	JJJ=JJJ-1
8	49	9 A(JJ,JJ)=A(I,NP1)
7	50	CALL SYLED(A, B, C, NP1, NDIM)
0	51	1000 RETURN
1	52	END

SOURCE

STNR

LNR

FORTRAN COMPILER (16=03=76) RELEASE 11

#:FRT LIST=SOUR #**** CLUCK= 07 /08 /79 AT 19H-13H- 55+

PRUGRAM LENGTH 12458 EXIT CODE=0000

DIMENSION A(100), B(100), X(50), Y(50) DIMENSION U(50,50), V(50), W(50), C(50) DIMENSION IBUF (392) DIMENSION LIBEL(30) S 1 FURMAT(2F10,0) LLC=3 1000 J=0 BMIN==1.E30 READ(LEC, 2000, END=999)LIBEL 2000 FURHAT(30A2,20X) READ(LEC, 20)N1,N2 20 FORMAT(211) E1=10.**N1 E2=10. + +N2 5 READ(LEC, 1, END=100) X1, X2 I=I+1 A(I)=X1 B(I)=X2 IF(B(I),GT,BMIN) BMIN=B(I) GUTO 5 100 N#I BV=0.90*BHIN J=0 DU 2 1=1,N 1F(B(1),LT,BY) GOTO 2 J=J+1 X(J) = A(I)Y(J) = B(I)2 CONTINUE IF (J.LT.3) STOP PARAB CALL PLUTS (IBUF, 392,6) XMIN=X(1) DO 3 I=1,J 3 X(I)=(X(I)=XHIN)*E1 YMIN=Y(1) DO 4 1=1,J 4 Y(I)=(Y(I)+YMIN)/E2 CALL STEP(2) CALL PLOT(20.,0,,2) CALL PLUT(0,,0,,3) CALL PLUT(0,,25,,2) CALL PLOT(0,,0,,3) 00 6 1=1,J 6 CALL CRUIX(X(I),Y(I)) CALL PLOT(0,,0,,3) CALL STEP(1) CALL SYMBOL(0,,=2,,0,3,LIBEL,0,,60) CALL AMCAR(C,J,2,X,Y,50,U,Y,H) ABSC1=-C(2)/2,/C(1) ABS=ABSCI VALEABS/E1 +XMIN CALL STEP(2) CALL PLOT (ABS, 0,,3) CALL STEP(1) CALL NUMBER (ABS, +1., 0, 3, VAL, 0,, 3) CALL STEP(2) CALL PLOT (ABS, 0, , 3) CALL PLOT (ABS, 25.,2) CALL PLUT(0++0+3) CALL STEP(1) M=10, *X(J)+1 J=3 DU 10 1=1,M SS=(1-1)/10. TT=C(1)*S5+SS+C(2)+S5+C(3) CALL PLUT(SS, TT, J) 10 J=2 CALL STEP(2) CALL PLOT(\$\$+5.,0,,3) CALL STEP(1) CALL PLUT(SS+5.,0,,999) GUTO 1000 999 STOP BUS END ULLE

STNR

LNR

7

q

\$1

SOURCE

ERRORS

12345

67

LNR

Û

123456

.

SOURCE

SUBROUTINE CROIX(X,Y) CALL PLOT(X,Y+0.15,3) CALL PLOT(X,Y=0.15,2) CALL PLOT(X=0.15,Y,3) CALL PLOT(X=0.15,Y,2) RETURN END

PROGRAH LENGTH :00C5 EXIT CODE=0000 #:LKE CATL=DURPA UNIT=D999 #**** CLOCK= 07 /08 /79 AT 19H-13H-10S+ *** LKE RELEASE : 11 (75,08,08)

*** PROGRAM LENGTH: 4457

*** NUMBER OF TRACKS USED FOR PROGRAM: 000D HEX EXIT CODE=0000 #:EOF

II.1.2 - Caractérisation des échantillons de référence

II.1.2.1 - Etude structurale

L'extrême difficulté, voire la quasi-impossibilité de déterminer par l'analyse physicochimique conventionnelle les états d'oxydation du fer et du cuivre dans des matériaux tels $Cu_{0,5}Fe_{2,5}O_4$ et les ferrites non-stoechiométriques, nous a conduit à envisager l'emploi de méthodes physiques et plus précisément de méthodes spectrométriques (analyse du spectre d'émission X, ESCA, spectrométrie MÖSSBAUER).

Le seul travail consacré à l'étude de l'influence de la coordination et du degré d'oxydation du fer sur le spectre Kß est dû à KOSTER et RIECK (1). Ces auteurs concluent que la position de la bande K β_5 est essentiellement déterminée par le degré d'oxydation et que la bande K β_{1-3} est également influencée par la coordination.

Nous avons donc été amenés à vérifier ces résultats en analysant le spectre Kβ de différents ferrites.

Les échantillons de référence employés comme étalons appartiennent au diagramme triangulaire $CuFe_2O_4 - Li_{0,5}Fe_{2,5}O_4 - ZnFe_2O_4$. Nous rappellerons brièvement les résultats essentiels de l'étude structurale (2).

Nous notons sur le diagramme (fig. 7) :

- la présence d'une solution solide étendue de structure spinelle (Fd3m)
- une zone restreinte proche de $Li_{0,5}Fe_{2,5}O_4$ où les composés présentent la structure cubique simple(P4₃32) du ferrite de lithium, ordonné 1/3 en sites octaédriques.
- un domaine quadratique dans lequel les composés sont isomorphes de $CuFe_2O_4$ (I4₁/amd).
- (2) B. LEREBOURS, J.C. TELLIER, M. LENSEN et M. LENGLET, C.R. Acad. Sc. PARIS, 1978, t. 286, 481.

Fig. 7 : Diagramme de phases du système $CuFe_20_4-Li_{0.5}Fe_{2.5}0_4-ZnFe_20_4$ (2).

L'introduction de zinc limite sensiblement les domaines liés aux transformations cristallographiques du système $CuFe_2O_4-Li_{0,5}Fe_{2,5}O_4$ (tableau VI). Le domaine biphasé qui accompagne la transition ordre-désordre n'a pu être mis en évidence ni par l'analyse paramétrique des composés refroidis lentement (10°C/h), ni au moyen de la diffraction X en température.

L'évolution du spectre infrarouge dans les systèmes Li_{0,5}Fe_{2,5}0₄ - $ZnFe_20_4$ et Li_{0,5}Fe_{2,5}0₄ - Cu_{0,5}Zn_{0,5}Fe₂0₄ au niveau de la transformation P4₃32 \rightarrow Fd3m est différente de celle très progressive observée dans l'étude

TAB	LEAU	VI

- 73 -

Transformation quadratique → cub	ique			
Systèmes 1-x $CuFe_2O_4$ - x MFe_2O_4	Structure	cristallog	raphique	Ref.
	I4 ₁ /amd	Domaine biphasé	Fd3m	
$M^{2+} = 0,5 (Li^+ + Fe^{3+})$	x < 0,45	0,45-0,47	x ≥ 0,47	(3)
M ²⁺ = 0,25(Li ⁺ + Fe ³⁺)+0,5Zn ²⁺	x ≼ 0,13	0,13-0,16	x > 0,16	(2)
$M^{2+} = Zn^{2+}$	x ≼ 0,09	0,09-0,11	x > 0,11	(2)
Transition ordre-désordre	-			
Système 1-x' Lin 5Fe2 504-x'MFe2	ρ_4 Structur	e cristallo	graphique	
0,0 2,0 4 2	P4332*		Fd3m	
$M^{2+} = Cu^{2+}$	x'≤ 0,30		x'> 0,30	(3)
$M^{2+} = Zn^{2+}$	x'< 0,15		x'≥ 0,15	(2)
★ Les valeurs de x' mentionnées raies de surstructure les plus biphasé n'étant pas décelable.	corresponde intenses (nt à la dis 210) et (21	parition de 1), le doma	ine

des ferrites de lithium et de cuivre (fig. 8 a) (3) : l'altération des bandes les plus affectées par la destruction de l'ordre (470, 440, 335, 250, 225 et 200 cm⁻¹) coïncide avec la disparition des raies de surstructure sur les diagrammes de diffraction X.

Les spectres des composés $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ et $CuFe_2O_4$ (fig. 8 b et 8 c) sont caractéristiques de spinelles inverses (4).

(3) J. LOPITAUX, Thèse de docteur-ingénieur, ROUEN, 1973.

(4) J. PREUDHOMME, Thèse de doctorat es sciences physiques, LIEGE, 1970.

- 74 -

Etablissement des distributions ioniques

L'utilisation simultanée de l'analyse radiocristallographique, de la spectrométrie d'absorption dans le proche infrarouge $(0,8 - 2,5\mu)$ et de la mesure du moment magnétique à saturation permet de préciser les distributions cationiques : le lithium reste en B, le zinc en A.

Les données de l'analyse magnétique (analyse thermomagnétique et mesures du moment magnétique moléculaire effectuées à 80 K et dans un champ de 20 kOe) sont présentées sur les figures 9 et 10.

En complément des données générales relatives à l'ensemble du diagramme (fig. 10), nous présentons dans le tableau VII les valeurs expérimentales des moments magnétiques moléculaires de mixtes situés sur les hauteurs du diagramme.

Tableau VII

X	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
		Systè	me Cu ₁ .	-x ^{(Li} 0	,25 ^{Fe} 0	,25 ^{Zn} 0	,5) _x F	e ₂ 0 ₄		<u></u>	- <u></u>
m(µ _B)	1,36	1,88	2,38	2,90	3,33	3,76	4,21	4,55	4,72	4,56	4,17
		Systè	me (Li ₍),5 ^{Fe} 0	,5 ⁾ 1-x	^{(Cu} 0,	5 ^{Zn} 0,5) _x Fe ₂	⁰ 4		
	2,6	2,87	3,16	3,46	3,75	4,04	4,29	4,52	4,71	4,84	4,96
		Systè	me Zn ₁ -	.x(Li ₀	,25 ^{Fe} 0	,25 ^{Cu} 0	,5 ⁾ x F	e2 ⁰ 4		•	
					3,85	4,63	4,67	4,16	3,44	2,68	1,94

L'allure générale des courbes m = f(x) relatives aux différents systèmes étudiés est conforme aux résultats mentionnés dans la bibliographie, compte-tenu de la dilution des ions magnétiques du sous-réseau A (passage ferri-antiferromagnétisme) (5), (6) et illustre le modèle théorique publié récemment par HUBSCH (7).

(5) E.W. GORTER, C.R. Acad. Sc. PARIS, 1950, <u>t. 230</u>, 192.
(6) J.W. YOUNG et J. SMIT, J. appl. Phys., 1971, <u>42</u>, 2344.
(7) J. HUBSCH, G. GAVOILLE et J. BOLFA, J. Appl. Phys., 1978, <u>49</u>, 1363.

Lignes isomoments magnétiques d'après ref (2).

L'étude de l'absorption dans le visible et le proche infrarouge est particulièrement adaptée à la mise en évidence de la coordination tétraédrique des ions de métaux de transition. Les premières études relatives aux propriétés optiques de l'ion Cu²⁺ sont consacrées aux solutions solides CuO-ZnO (8) et CuO-MgO (9).

Si l'ion cuivrique possède la véritable symétrie octaédrique, le spectre d'absorption ne doit présenter qu'une seule bande correspondant à la transition ${}^{2}\text{Eg} \rightarrow {}^{2}\text{T}_{2g}$; STONE (9) la situe à 11 000 cm⁻¹. Le diagramme d'énergie de Cu²⁺ en site tétraédrique est inversé : sur le spectre ne doit apparaître qu'une bande simple de paramètre de champ cristallin Dq inférieur à celui caractéristique de la coordination octaédrique. L'analyse du spectre des solutions solides Cu0-Zn0 révèle une bande intense vers 6 500 cm⁻¹.

L'absorption dans le proche infrarouge permet donc de déceler l'environnement tétraédrique du cuivre II par le développement d'une bande vers 6 000 cm⁻¹ (fig. 11) ; l'absorption due au fer III (10 500 cm⁻¹ dans $Li_{0,5}Fe_{2,5}O_4$, fig. 11 f) vient se superposer à celle de $[Cu^{2+}]_6$. Sur les spectres 11 a et 11 b, l'étalement prononcé de l'absorption dans le domaine 7 500 - 12 500 cm⁻¹ est dû au dédoublement du niveau provoqué par l'effet Jahn-Teller de l'ion Cu²⁺ en coordination octaédrique.

La figure 12 présente les spectres d'absorption de composés de référence employés comme étalons dans l'analyse du spectre d'émission X du fer.

(8) F.S. STONE, Bull. Soc. chim. Fr., 1966, 819.

(9) F.H. CHAPPLE et F.S. STONE, Proc. Brit. Ceram. Soc., 1964, 1, 45.

Fig. 11 : Spectre de Cu²⁺ dans différents composés quadratiques (a/ : CuFe₂0₄, b/ : Li_{0,1}Cu_{0,8}Fe_{2,1}0₄, c/ : Li_{0,2}Cu_{0,6}Fe_{2,2}0₄) ou cubiques (d/ : Li_{0,3}Cu_{0,4}Fe_{2,3}0₄ ; e/ : Li_{0,4}Cu_{0,2}Fe_{2,4}0₄) du système CuFe₂0₄-Li_{0,5}Fe_{2,5}0₄. f/ : spectre de Fe³⁺ dans Li_{0,5}Fe_{2,5}0₄.

L'absorption observée vers 6 000 cm⁻¹ sur le spectre du composé $Li_{0,125}Cu_{0,5}Zn_{0,25}Fe_{2,125}O_4$ est compatible avec la présence d'une très faible quantité de cuivre II en sites A. Rappelons qu'aux faibles teneurs

- 78 -

BUS

en cuivre tétraédrique (pourcentage des sites A occupés par les ions $Cu^{2+} < 20 \%$), ARSENE (10), (11) a établi, dans l'étude du système $Li_{0,5}Ga_{2,5}O_4$ -CuGa₂O₄, l'existence d'une relation linéaire entre l'intensité de la bande caractéristique et la concentration de cuivre II dans l'environnement Td.

Le tableau VIII regroupe les formules développées des échantillons dont le spectre d'émission X du fer a été étudié en vue de mettre en évidence l'influence de la coordination et de la nature des autres cations sur la position des raies $K\beta_5$ et $K\beta_{1-3}$.

lableau VI	1.	Ł
------------	----	---

	$m_{exp} (\mu_B)$	Sites A	Sites B
CuFe ₂ 0 ₄	1,36	Cu _{0,05} Fe _{0,95}	Cu _{0,95} Fe _{1,05}
Li _{0,5} Fe _{2,5} 04	2,6	Fe ₁	Li _{0,5} Fe _{1,5}
ZnFe ₂ 0 ₄	-	Zn	Fe ₂
Li _{0,25} Cu _{0,5} Fe _{2,25} 0 ₄	1,94	^{Cu} 0,025 ^{Fe} 0,975	Li ₀₂₅ Cu ₀₄₇₅ Fe ₁₂₇₅
Li _{0,125} Cu _{0,5} Zn _{0,25} Fe _{2,125} O ₄	3,76	Cu ₀₀₁₅ Zn ₀₂₅ Fe ₀₇₃₅	Li0125 ^{CU0485^{Fe}139}
Li _{0,125} Cu _{0,25} Zn _{0,5} Fe _{2,125} O ₄	4,63	Zn _{0,5} Fe _{0,5}	Li0125 ^{Cu} 025 ^{Fe} 1625

- (10) J. ARSENE, J.C. TELLIER, M. PERRIN et M. LENGLET, Matérials Chemistry, 1979, <u>4</u>, 689.
- (11) J. ARSENE, Thèse de Doctorat es sciences physiques, ROUEN, 1979.

II.1.2.2 - Analyse du spectre d'émission Kβ du fer dans ces composés

L'influence de la liaison chimique sur le spectre d'émission X est connue depuis longtemps. De nombreux travaux expérimentaux concernent les déplacements des raies d'émission des éléments légers. D'une manière générale, l'énergie d'une raie d'émission est d'autant plus élevée que :

- 81 -

- le degré d'oxydation de l'ion émissif est plus grand.
- l'indice de coordination de l'atome émissif est plus élevé .
- l'électronégativité de l'atome associé augmente.

Les déplacements chimiques sont faibles, de l'ordre de quelques dizièmes d'eV.

Dans cette étude expérimentale, nous avons tenté de définir le plus précisément possible l'influence de différents paramètres physicochimiques sur la position de la bande $K\beta_5$ du fer dans le spectre d'émission X de cet élément associé à l'oxygène dans le réseau cubique à faces centrées des spinelles.

En effet, différents auteurs (12), (13) admettent que le déplacement chimique de cette bande liée à des transitions électroniques entre les niveaux $M_{IV, V}$ et K ne dépend que du degré d'oxydation du fer. Ainsi, analysant les oxydes FeO, Fe₃O₄, α Fe₂O₃ et BaFeO₃, NEMNONOV et col. (13) ont montré que le déplacement du maximum de la bande KB₅ vers les grandes énergies est proportionnel à la valence du fer dans ces composés.

La seule étude consacrée à l'analyse du spectre d'émission Kß du fer dans les ferrites est celle déjà citée de KOSTER et RIECK (1). Ces auteurs concluent que la bande K β_5 du fer n'est pas affectée par la

(12) A.S. KOSTER et H. MENDEL, J. Phys. Chem. Solids, 1970, 31, 2511.

(13) K.M. KOLOBOVA, S.A. MEMNONOV, et A.V. AGAPOVA, Soviet Physics Solid state, 1968, 10, 571. structure physicochimique du spinelle MF_2O_4 (coordination et nature de l'ion M^{2+}). Ceci devait être vérifié dans la mesure où nous envisagions l'emploi de cette méthode d'analyse physique pour déceler le degré d'oxy-dation du fer dans différents ferrites de cuivre parmi lesquels $Cu_{0,5}Fe_{2,5}O_4$ dont la structure n'est pas déterminée à ce jour de façon indiscutable. Le tableau IX présente les déplacements chimiques observés sur les spectres d'émission X du fer relatifs aux ferrites dont la structure a été établie antérieurement. Les déplacements relatifs sont exprimés en 20 et en eV par rapport à Fe_2O_3 .

Echantillon	∆Kβ ₅ =FeKβ ₅ - ech	Fe ^{Kβ} 5Fe ₂ 03	∆Kβ ₁₋₃ -Fek	$\begin{array}{c} {}^{\text{KB}}1-3 \overset{-\text{FeKB}}{}^{\text{FeKB}}1-3}\\ \text{ech} & {}^{\text{Fe}2}\overline{0}_3^3 \end{array}$			
	(20)	(eV)	(2 0)	(eV)			
Fe ₂ 03	0	0	0	0			
CuFe ₂ 0 ₄	- 0,001	+ 0,05	0	0			
$Li_{0.5}Fe_{2.5}0_4$ *	0	0					
Li _{0.25} Cu _{0.5} Fe _{2.25} 0 ₄	- 0,001	+ 0,05	- 0,001	+ 0,035			
Li _{0.125} Cu _{0.5} Zn _{0.25} Fe _{2.125} O ₄	- 0,003	+ 0,1	- 0,003	+ 0,10			
Li _{0.125} Cu _{0.25} Zn _{0.5} Fe _{2.125} O ₄	- 0,010	+ 0,4	- 0,007	+ 0,25			
ZnFe ₂ 0 ₄	- 0,016	+ 0,6	- 0,010	+ 0,35			
Erreur	± 0,0025	<u>+</u> 0,1	<u>+</u> 0,002	<u>+</u> 0,07			
★ d'après (1) A.S. KOSTER et G.D. RIECK, J. Phys. Chem. Solids., 1970, <u>31</u> , 2505.							
Les positions des maxima de Fe 120°211 et 121°567.	KB_5 et $FeKB_1$	-3 pour Fe ₂	0 ₃ sont res	spectivement :			

Tableau IX

- 82 -

La figure 13 montre que la variation de $K\beta_{1-3}$ est pratiquement linéaire. Ce résultat est conforme aux données de la bibliographie. La bande $K\beta_5$ conserve la même position sur les spectres des spinelles inverses cubiques : Li_{0,5}Fe_{2,5}0₄ et Li_{0,25}Cu_{0,5}Fe_{2,25}0₄ ou quadratique CuFe₂0₄. Cependant, la présence de zinc déplace Fek β_5 dans le sens d'une augmentation de l'énergie (fig. 14).

Fig. 14 : Influence de la concentration en Zn^{2+} sur la position de FeK β_5 .

Contrairement aux conclusions de KOSTER et RIECK, il apparaît que la bande FeK $_5$ caractéristique du fer III dans les spinelles MFe $_2^{0}$ 4 dépend de la nature de l'ion bivalent M²⁺.

S.raxA.

Nous avons ensuite étudié le déplacement que présentent par rapport à Fe_2O_3 les pics $K\beta_{1-3}$ et $K\beta_5$ de la magnétite Fe_3O_4 (tableau X). Nos résultats sont en bon accord avec ceux de NEMNONOV et col. (13).

Référence	ΔΚβ ₁₋₃		ΔΚβ	5
	20	eV	20	eV
(13)	101 90, 70, 125.	- 0,1		- 0,8
(1)	+ 0,0035	- 0,12	+ 0,010	- 0,4
cette étude	+ 0,007	- 0,25	+ 0,028	1 - 21 midus

Tableau X

En conclusion de cette étude, il s'avère que la spectrométrie d'émission X doit permettre la détermination du fer II dans un ferrite dès que la teneur en fer II par rapport au fer total dépasse 3 %. II.2 - ANALYSE DU SPECTRE D'EMISSION Kβ DU CUIVRE

- 85 -

Influence_de_la_coordination_de_l'ion_Cu²⁺_sur_la_position_de_la bande_Kβ₅_

A notre connaissance, aucune étude n'a été consacrée à l'analyse du spectre d'émission K β du cuivre dans les spinelles 3-2. Or, l'ion Cu²⁺ de structure 3d⁹ présente la particularité de pouvoir occuper dans ces composés les sites A ou B en fonction de l'énergie préférentielle de site caractérisant l'ion trivalent qui lui est associé (14), (15), (16). Un taux d'occupation élevé des sites octaédriques ou tétraédriques par les ions Cu²⁺ entraîne la déformation quadratique caractéristique de l'effet Jahn-Teller. D'après DUNITZ et ORGEL (17), la présence simultanée des ions distordants Cu²⁺ dans les deux types de sites peut entraîner un phénomène de compensation, d'où l'apparition de la symétrie cubique dans des composés tels CuGa₂0₄ présentant néanmoins un taux d'occupation important des sites B par le cuivre.

Le tableau XI regroupe les caractéristiques cristallographiques et les distributions ioniques des spinelles.

- (14) A. MILLER, J. appl. Phys., 1959, 30, 24S.
- (15), (16) A. NAVROTSKY et O.J. KLEPPA, J. inorg. nucl. Chem., 1967, 29, 2701; 1968, <u>30</u>, 4795.
- (17) J.D. DUNITZ et L.E. ORGEL, J. Phys. Chem. Solids, 1957, 3, 20.

-	86	-

Tableau XI

	Etude cristallographique				Distrib	ution		
Composés	Structure cristalline		Paramètre (Å)		des ions Cu ²⁺		établie par	Ref.
	C(Fd3m)	Q(I4 ₁ amd)	a	C	Sites A	Sites B		
CuFe ₂ 0 ₄		Q	8,2 <u>2</u>	8,71	0,05	0,95	m.magnétiques	(2)
Li0,25 ^{Cu} 0,5 ^{Fe} 225 ⁰ 4	С		8,354		0,015	0,485	m.magnétiques +	(2)
							diffraction X	
Li _{0,2} Cu _{0,6} A1 _{2,2} 0 ₄	С		7,99		0,43	0,17	diffraction de neutrons	(10)
CuGa ₂ 0 ₄	C		8,298		0,21	0,79	E	(18) (19)
CuCr ₂ 0 ₄		Q	8,53	7,785	0,90	0,10	11	(11)
Cu _{0,25} Zn _{0,75} Cr ₂ 0 ₄	С		8,28		0,22	0,03	B B B B B B B B B B B B B B B B B B B	(11)

Les figures 15, 16, 17 présentent le dépouillement par ordinateur de la bande $CuK\beta_5$ et le spectre Kß du cuivre dans trois spinelles 3-2. Les enregistrements des spectres sont obtenus dans les conditions suivantes :

Raie CuK _{β1-3}	sensibilité : 2.10 ³ impulsions pleine échelle
	(Cte de temps 10s).
Bande K _{B5}	sensibilité : 10 ² impulsions pleine échelle
-	(Cte de temps 20s).

Ces composés illustrent parfaitement le comportement de l'ion Cu^{2+} . En coordination tétraédrique ($CuCr_2O_4$) ou octaédrique ($CuFe_2O_4$) il induit la déformation quadratique du réseau cristallin. La comparaison

(18) J. LOPITAUX et M. LENGLET, J. inorg. Nucl. Chem., 1975, <u>37</u>, 334.
(19) J. LOPITAUX et M. LENGLET, fiche ASTM.

- **S**

CU FE204 CU HOS LE 4 1 80

Fig. 15

100.172

Fig. 16

Spectre Kß du cuivre(a) et dépouillement par ordinateur des bandes Cu Kß_(b) et Cu Kß_{1.3} dans Cu Ga_2 0_4 (c) .

Spectre Kß du cuivre (a) et dépouillement par ordinateur de la bande Cu Kß $_5$ dans Cu Cr $_2$ $0_4.$

des spectres CuK^β de ces composés cristallographiquement différents montre d'une part, que les bandes K^β₅ paraissent indépendantes de la structure cristallographique ; d'autre part, que l'approximation parabolique est également applicable dans ce cas. Une observation identique est faite par ROMAND (20), (21) dans l'étude des bandes L_{II, III} du chrome et du vanadium dans des nitrures.

Le tableau XII indique les déplacements observés de la bande CuKB₅ dans différents oxydes de structure spinelle cubique ou quadratique.

Les déplacements sont exprimés en 2θ et en eV par rapport à l'oxyde CuO.

	$\Delta K\beta_5 = C_1$	ͷΚβ ₅ -ϹͷϏβ ₅	$\Delta K\beta_{1-3} = CuK\beta_{1-3} - CuK\beta_{1-3}$	
Echantillons		ech CuO	e	ch CuO
	20	e۷	20	,
CuO	. 0	0	0	
CuFe ₂ 0 ₄	- 0,015	1	+ 0,001	
Li _{0.25} Cu _{0.5} Fe _{2.25} O ₄	- 0,014	+ 0,95		
CuGa ₂ 0 ₄	- 0,008	+ 0,5	0	
$Li_{0.2}Cu_{0.6}A1_{2.2}O_4$	- 0,018	+ 1,20	0	
Cu _{0.25} Zn _{0.75} Cr ₂ 0 ₄	- 0,028	+ 1,90		
CuCr ₂ 0 ₄	- 0,024	+ 1,60		
Les positions des max	kima de CuKβ ₅	et CuKβ ₁₋₃ po	ur CuO sont resp	ective-

Tableau XII

Les positions des maxima de $CuK\beta_5$ et $CuK\beta_{1-3}$ pour CuO sont respectivement : 100,187_101,283 .

(20) M. ROMAND, J.S. SOLOMON, W.L. BAUN, X-ray Spectrometry, 1972, <u>1</u>, 147.
(21) M. ROMAND, M. ROUBIN, Colloque SIEMENS Rayons X et Matière, Monaco, mai 1973, 269. L'analyse de ces résultats expérimentaux conduit aux conclusions suivantes :

> - La raie $CuK\beta_{1-3}$ est insensible à la coordination de l'ion Cu^{2+} . - Le déplacement de la bande $CuK\beta_5$ dépend de l'environnement de l'ion Cu^{2+} et de la nature de l'ion trivalent auquel il est associé, ce qui rend très aléatoire l'exploitation du spectre d'émission X du cuivre à des fins analytiques. Cependant, l'environnement tétraédrique implique un accroissement du déplacement de la bande $K\beta_5$.

- 92 -

II.3 - APPLICATION DE LA SPECTROMETRIE D'EMISSION X A LA DETERMINATION DU DEGRE D'OXYDATION DU FER DANS DIFFERENTS OXYDES MIXTES

II.3.1 - Mise en évidence du fer II dans le ferrite Cu_{0.5}Fe_{2.5}O₄₋

Le tableau XIII regroupe les données essentielles dans l'étude bibliographique de ce composé.

L'analyse des résultats présentés dans le tableau XIII indique que les conditions de préparation n'influent pas de façon sensible sur les propriétés magnétiques et électriques de ce matériau. Cependant, s'il est plausible d'admettre la présence de cuivre en sites tétraédriques et octaédriques, les degrés d'oxydation du fer et du cuivre restent encore indéterminés actuellement.

Le § II.3.1 est une publication présentée en Juin 1980 à la revue Physica Status Solidi dans laquelle sont communiqués les résultats de l'analyse par méthodes spectrométriques (analyse du spectre d'émission X du fer et du spectre E.S.C.A. de cuivre) du ferrite de cuivre -Cu_{0,5} Fe_{2,5} 0₄ préparé par recuit sous vide à 1150°C de mélanges: Cu₂ 0 + 5 Fe₂ 0₃.

Ref.	Conditions de préparation	Paramètres magnétiques $\theta_{C}(\circ_{C}) m(\mu_{B})$	Techniques d'étude physicochimique dominante	Structure
(22)				Ces auteurs signalent l'existence du composé $Cu_{0,5}Fe_{2,5}0_4$ dans l'étude du diagramme Cu-Fe-0.
(23)		390 4,1	analyse magnétique	$Cu_{0,5}^{+}Fe_{2,5}^{3+}O_{4}$.
(24)	1200°C	4,1	analyse magnétique diffraction X	$Cu_{0,5}Fe_{2,5}O_4$ est une solution solide entre le ferrite cuivrique $CuFe_2O_4$ et la magnétite Fe_3O_4 .
(25)				Le cuivre et le fer peuvent être dans leurs deux états d'oxydation possibles.
(26)	1200°C atmosphère oxydante	344	analyse thermomagné- tique-diffraction X	^{Cu} ⁺ _{0,5} ^{Fe} ³⁺ _{2,5} ⁰ ₄ .
(27)			Etude des équilibres dans le système fer-cuivre-oxygène	$Cu_{0,5}^{2+}Fe_{0,5}^{3+}Fe_{2}^{3+}0_{4}$.
(28)	1200-1350°C air	variab. variab. de 350 'de 4,05 à 300°C' à 5,4 avec la ; températ. du recuit		$Cu_x^+Fe_{1-x}^{3+}[Cu_{0,5-x}^+Fe_{1,5+x}^{3+}]_4$ x varie de 0,15 à 0,3 quand la température de recuit passe de 1200 à 1350°C
(29)	(*)	355	analyse thermomagné- tique & mesures élec- triques	Le cuivre est essentiellement monovalent. Semiconducteur de type n (coefficient de Seebeck : = $185\mu V.°C^{-1}$).

(*) Préparation de la solution solide Cu_{1-x} Fe_{2+x} 0 par calcination à l'air de mélanges d'oxydes à des températures variables avec x (x = 0,2,T = 1380°C).

Tableau XIII

- 93

.

Ref.	Conditions de préparation	Paramètres magnétiques θ_{c} (°C) m(μ_{B})	Techniques d'étude phy- sicochimique dominante	Structure
(30)			t close	$Cu_{0,5}^{2+}Fe_{0,5}^{2+}Fe_{2}^{3+}0_{4}$
(31)	1150-1200°C atmosphère oxydante	340 4,25	spectrométrie Mössbauer	Spinelle statistiquement désordonné dans lequel le cuivre est mono- valent.
(32)	1300; air	10000 Bindera		verie de 0.15 é 0.3 quend le conférence de riguid prope de 1200 é 50°C
(33) (34)	1300; air	357 4,7	analyse magnétique diffraction X	$Cu_{0,5}^{+}Fe_{0,5}^{3+}[Fe_{2}^{3+}]0_{4}$
(35)	1250°C, atmosphère contenant 2% d'oxygène	4,6	mesures électriques	Formule déduite du moment magnétique expérimental $Cu_{0,27}^{2+}$ Fe $_{0,73}^{3+}$ $[Cu_{0,25}^{2+}$ Fe $_{0,48}^{2+}$ Fe $_{1,27}^{3+}]$ 0 ₄ semiconducteur de type n: θ =-140 µV.°C ⁻¹ .
(36)	1250°C, at- mosphère de composition variable : de 1 à 100 % d'oxygène		mesures électriques	$Cu_{0,246-Y/2}^{+}$ Fe $_{0,754+Y/2}^{3+}$ Cu $_{0,274+Y/2}^{2+}$ Fe $_{0,234-3Y/2}^{3+}$ Fe $_{1,492+Y}^{3+}$ θ_{0} variable de - 140 à - 220 µV.°C qd le % θ_{2} passe de 1 à 100 %.
(37)	1250°C (10% 0	2 4,85	diffraction X - ana- lyse magnétique	$Cu_{0,24}^{+}Fe_{0,76}^{3+}[Cu_{0,28}^{2+}Fe_{0,21}^{2+}Fe_{1,51}^{3+}]_{4,015}^{0}$
(38)	se reporter à la référence (36)		analyse magnétique	Allogentera Contrato.

Tableau XIII (suite)

* *

.

-16

.

.

-94-

Ref.	Conditions de préparation	Paramètres magnétiques θ_{c} (°C) m(μ_{B})	Techniques d'étude physicochimique dominante	Structure
. (39)	recuit à 1200, 1250, 1300 et 1350°C. La na- ture de l'at- mosphère n'est pas précisée	350 4,74	Analyse magnétique Spectrométrie Mössbauer	$cu_{0,224}^{+}Fe_{0,776}^{3+}[cu_{0,276}^{+}Fe_{1,724}^{3+}]_{4}$
(40)	1250°C, (10% 0 ₂)	4,72	Diffraction de neutrons	$Cu_{0,19}^{+}Fe_{0,71}^{3+}Fe_{0,10}^{2+}[Cu_{0,29}^{2+}Cu_{0,02}^{+}Fe_{1,59}^{3+}Fe_{0,10}^{2+}]_{4}^{0}$ (distribution proposée sans aucune justification).
(41)			Etablissement d'un modèle rendant compte des propriétés électriques de ^{Cu} 0,5 ^{Fe} 2,5 ⁰ 4	Distribution ionique de SIMSA (35)

.

<u>Tableau XIII (fin)</u>

- 95 -

Sne
- 96 -REFERENCES DU TABLEAU XIII

(22) N.A. TOPOPOV, A. BORISENKO, Dok. Akad. Nauk. SSSR, 1950, 71, 69. E. KORDES, E. ROTTIG, Z. anorg. allgem. Chem., 1951, 264, 34. (23) (24) F. BERTAUT, C. DELORME, C.R. Acad. Sci., 1953, 236, 74 E.W. GORTER, Adv. in Phys., 1957, 6, 386. (25) J. THERY, R. COLLONGUES, C.R. Acad. Sci., 1962, 254, 685. (26) (27) N.G. SCHMAHL, F. MULLER, Arch. Eisenhuettenw., 1964, 35, 527. (28) S. MIYAHARA, Y. KINO, Jap. J. Appl. Phys., 1965, 4, 310. (29) C.F. JEFFERSON, J. Appl. Phys., 1965, 36, 1165. K. OHBAYASHI, S. IIDA, J. Phys. Soc. Japan, 1967, 23, 776. (30) M. LENGLET, Rev. Chim. min., 1968, 5, 1169. (31) A. BERGSTEIN, Mat. Res. Bull., 1968, 3, 787. (32) (33) (34)) J. MEXMAIN, Thèse PARIS, 1968 et Ann. Chim., 1971, <u>6</u>, 297. (35) E. KITZINGER, Z. SIMSA, Czech. J. Phys., 1968, B.18, 955. Z. SIMSA, IEEE Transactions magnetics, 1969, 3, 592. (36) L. CERVINKA, Z. SIMSA, Czech. J. Phys., 1970, B 20, 470. (37) (38) Z. SIMSA, V. HOUDEK, Czech. J. Phys., 1970, B.20, 301. (39) A. NAGARAJAN, A.H. AGAJANIAN, J. Appl. Phys., 1970, 41 1642. (40) S. TSITSENOVSKAYA, Latv. PSR Zinat. Akad Vestis, Fiz. Tech. Zinat. Ser., 1972, 3, 64.

(41) N.M. ANDREEV, Bulg. J. Phys., 1975, <u>3</u>, 215.

- 97 -

Mémoire soumis à la revue PHYSICA STATUS SOLIDI

Subject classification : 18.3 and 22.8.2 ; 20.1

Laboratoire de Chimie Analytique, I.N.S.C.I.R. - Faculté des Sciences et Techniques, Mont-Saint-Aignan 1) (a), E.N.S.T.I.M.D., Laboratoire de Chimie Minérale et Méthodologie Analytique 2) (b) et Laboratoire de Catalyse et Physicochimie des Surfaces, Villencuve d'Ascq 3) (c).

Etude structurale et mise en évidence des états d'oxydation du fer et du cuivre dans le ferrite Cu_{0.5}Fe_{2.5} 0_4 par analyse spectrométrique (RX, Y, ESCA).

par

B. LEREBOURS (a), J. DURR (b), A. D'HUISSER (c), J.P. BONNELLE (c) et M. LENGLET (a)

 $Cu_{0,5}Fe_{2,5}O_4$ est préparé à 1150°C par réaction à l'état solide entre les oxydes αFe_2O_3 et Cu_2O introduits sous vide en ampoule de silice. Avant d'être portés à 1150°C, les mélanges sont calcinés à 900°C. A l'issue du recuit final, l'échantillon subit une trempe à l'eau ou à l'azote liquide.

L'examen radiocristallographique du composé obtenu par trempe dans un état métastable révèle l'existence d'une phase spinelle pure (a = 8,420 Å \pm 0,002 Å) L'analyse thermomagnétique permet d'attribuer à ce ferrite une température de Curie : θ_c = 345°C \pm 2°C.

Etude structurale

Analyse cristallographique

En dépit de conditions de préparation souvent différentes, les auteurs admettent pour $Cu_{0,5}Fe_{2,5}O_4$ la répartition du cuivre sur les deux types de sites.

La méconnaissance actuelle des états d'oxydation du fer et du cuivre dans ce matériau rend inexploitables, sur le plan quantitatif, les données de l'analyse magnétique.

1) B.P. 8, 76130 Mont-Saint-Aignan, France.

2) et 3) 59655 Villeneuve d'Ascq Cedex, France.

<u>Remarque</u> : Le chapitre II de ce mémoire est essentiellement consacré à la détermination du degré d'oxydation du fer dans différents oxydes mixtes de structure spinelle au moyen de la spectrométrie d'émission X. Cette étude s'insère dans le cadre plus général de l'application de méthodes physiques (spectrométrie Mössbauer, ESCA, détermination des seuïls d'absorption X...) ou physicochimiques (électrochimie du solide en milieu organique) à la caractérisation de la liaison ionique dans ces matériaux. Les premiers résultats expérimentaux ont fait l'objet de publications regroupant les différents laboratoires engagés dans ce travail. Ces publications sont communiquées in-extenso. Afin de conserver l'homogénéité nécessaire à la présentation des résultats expérimentaux dans un mémoire de thèse, nous avons adopté le principe d'une double numérotation des figures et tableaux des publications. (*)

Nous avons apprécié le rapport $[Fe]_B / [Fe]_A (\frac{1,5+x}{1-x})$ en admettant la formule développée $Cu_x Fe_{1-x} [Cu_{0,5-x} Fe_{1,5+x}] 0_4$ au moyen des analyses par diffraction X et spectrométrie Mössbauer sous champ.

- 2 -

Les diffractogrammes ont été obtenus à l'aide d'un diffractomètre CGR dans les conditions expérimentales suivantes : rayonnement Co KG monochromatisé, montage en réflexion sur échantillon en poudre plan. L'emploi d'une anticathode au cobalt améliore sensiblement l'écart entre les facteurs de diffusion du fer et du cuivre en raison de l'importance de la correction de Hoeln qui affecte .. le fer. La comparaison des valeurs observées et calculées de rapports d'intensité de deux plans choisis de telle façon que leur intensité varie notablement avec x conduit à retenir pour le taux d'inversion la valeur moyenne : $0,30 \pm 0,05$ (les deux plans comparés dans un rapport donné sont proches afin de minimiser l'influence de la fonction de température et se répartissent dans tout le spectre de diffraction : (400), (800)). Le paramètre d'oxygène est estimé à $0,385 \pm 0,003$.

Analyse magnétique et spectrométrie Mössbauer.

La courbe de première aimantation à 4,2 K indique que la saturation est atteinte dès 10 kOe (moment moléculaire à saturation : $5,06\mu_{\rm R}$).

La quasi-disparition des pics caractéristiques de la transition $\Delta m = 0$ sur les spectres Mössbauer effectués sous champ (fig. 1 b) corrobore la validité du modèle ferrimagnétique colinéaire.

Les résultats essentiels de l'étude Mössbauer conduite au C.E.N. de Grenoble sont les suivants :

en champ nul (fig. 1 a)

Le spectre présente à 4,2 K des raies larges non symétriques indiquant la superposition de plusieurs sextuplets. Les paramètres moyens déduits d'un dépouillement ne prenant en compte qu'un sextuplet sont : H = 495 kOe, IS = 0,306 mm/s (référence fer).

en champ appliqué (fig. 1 b)

Les expériences ont été faites avec des champs de 10, 20 et 50 kOe. Un champ inférieur à 10 kOe aligne les moments magnétiques. Sous 50 kOe, deux sextuplets A et B relatifs au fer en coordination tétraédrique et octaédrique apparaissent très nettement différenciés ($H_A = 541 \pm 2$ kOe, $H_B = 448 \pm 2$ kOe); le rapport des aires correspondant à chaque sextuplet S_B/S_A est égal à 2,9. L'accord avec la valeur déduite de l'analyse cristallographique (x = 0,30 ± 0,05, $[Fe]_B/[Fe]_A = 2,6 \pm 0,25$) est satisfaisant.

3 -

BUS Hile

(*) Fig. 18.

Mise en évidence des états d'oxydation du fer et du cuivre

Analyse par spectrométrie d'émission X

Dans un travail récent /1/, nous signalons que la mesure du déplacement de la bande Fe K β_5 vers les faibles énergies sur les spectres d'émission X du fer dans les ferrites (l'oxyde Fe₂0₃ α étant pris comme substance de référence) permet de déceler dans ces composés des teneurs en fer II par rapport au fer total supérieures à 3 %. Nous avons donc analysé le spectre d'émission K β du fer dans Fe₂0₃ α , CuFe₂0₄, Fe₃0₄ et Cu_{0,5}Fe_{2,5}0₄. Les résultats expérimentaux et les conditions de l'analyse sont consignés dans le tableau I.

chantillon	2005 2005	ech ⁵ Fe2 ⁰ 3	1-3	-3ech $1-3$ Fe ₂ 0
	20	eV	20	eV
² 2 ⁰ 3	0	. 0	0	0
Fe ₂ 0 ₄	- 0,001	+ 0,035	0	0
• 3 ⁰ 4	+ 0,028	- 1	+ 0,007	- 0,25
$_{0.5}^{Fe} = 5_{0.4}^{O}$	+ 0,007	- 0,25	- 0,001	+ 0,035
reur	+ 0,0025	+ 0,1	+ 0,002	<u>+</u> 0,07

Tableau I

120;226 et 121;582. (^ ^) Conditions expérimentales : spectromètre séquentiel SIEMENS SRS sous vide ; générateur stabilisé à moins de 0,03 %, tube à anticathode de chrome (50 kV et 40 mA), cristal analyseur LiF (100) dans le 2^e ordre, pas angulaire 0,01 + 0,001, compteur à flux gazeux.

Le déplacement de la bande $FeK\beta_5$ dans $Cu_{0,5}Fe_{2,5}O_4$ et Fe_3O_4 vers les énergies les plus faibles conforme à la règle générale selon laquelle l'énergie d'une raie d'émission est d'autant plus élevée que le degré d'oxydation de l'ion émissif est plus grand, traduit la présence de fer II dans ces composés. Ce résultat confirme les conclusions de SIMSA et col. /2/, /3/ déduites de l'étude des propriétés électriques de Cu_{0.5}Fe_{2.5}O₄.

Analyse par spectroscopie de photoélectrons induits par rayons X (ESCA)

Tous les spectres ont été enregistrés sur un spectromètre A.E.I. ES 200 B équipé d'une anticathode à l'aluminium produisant une radiation KG de 1486,6 eV sous un vide 10^{-8} à 10^{-9} torr. Aucun effet de charge notable n'a été décelé et tous les pics ont été référencés par rapport au carbone de contamination. L'énergie de liaison du niveau 1s de ce carbone est prise à 285 eV lorsque le niveau $4f_{7/2}$ de l'or est référencé à 84 eV par rapport au niveau de Fermi.

(* *) Ces valeurs sont décalées par rapport à celles figurant dans les tableaux Va et IX en raison de nouveaux règlages intervenus entre les deux séries de mesures.

(*) Tableau XIV

L'étude de la raie $2p_{3/2}$ du cuivre a été entreprise car elle est susceptible de modifications importantes suivant le degré d'oxydation et l'environnement /4/ de cet élément dans les spinelles ferrites de cuivre. La profondeur d'éjection des photoélectrons est de l'ordre de 8 Å.

- 5'-

Le tableau II donne les caractéristiques de la raie $2p_{3/2}$ du cuivre pour des composés référence dont les spectres ont été pris exactement dans les mêmes conditions que pour le spinelle $Cu_{0,5}Fe_{2,5}O_4$ (le composé $CuFeO_2$ présente quelques ions Cu^{2+} en surface et le composé $CuCr_2O_4$ a tendance à se réduire très lentement dans le spectromètre pour donner des ions Cu^+ ou Cu° superficiels, muis les caractéristiques de la raie principale sont très facilement obtenues). On constate, en particulier, l'absence de raie satellite pour les ions Cu^+ diamagnétiques /5/.

Fig. 2 : spectre de photoélectrons du niveau $Cu^{2}p^{\frac{3}{2}}$ dans le composé $Cu_{0,5}^{Fe}r^{2,5}q^{4}$ (a) ----- enregistrement à - 50°C (b) ----- enregistrement à + 50°C.

Tableau II

6 -

Composé	Etat du cuivre	Energie de liai- son en eV	Largeur à mi-hauteur	$\frac{I_{SAT}}{I_{pp}}$ (2)
CuFe204	Cu ⁺⁺ 0	934,0 <u>+</u> 0,2	2,9 ± 0,1	0,55 ± 0,05
cuCr ₂ 0 ₄	Cu _T ++	935,2 <u>+</u> 0 ,2	2,9 ± 0,1	0,85 ± 0,05
CuFe02	Cu ⁺	932,8 ± 0,2	1,5 ± 0,1	o
^{Cu} 0,5 ^{Fe} 2,5 ⁰ 4			6,1 <u>+</u> 0,1	0,42 + 0,05

(1) : 0 = environnement octaédrique

T = environnement tétraédrique

(2) : Intensité du pic satellite/Intensité du pic principal

Le spectre du composé $Cu_{0,5}Fe_{2,5}O_4$ évolue considérablement à la température ordinaire pour se stabiliser au bout de 4 à 5 heures, figure 2 b. Par contre, à - 50°C, le spectre reste tout à fait stable, figure 2 a.

L'évolution constatée à la température ordinaire n'est effective que lorsque l'échantillon est irradié dans le spectromètre. Elle est attribuée à un passage d'ions Cu^{2+} à l'état d'ions Cu^{+} par déplacement de l'équilibre dans le sens 1 : Cu^{2+} + Fe^{2+} $\frac{1}{2}$ Cu^{+} + Fe^{3+} ; on observe en effet une diminution de la raie satellite du cuivre et un affinement de la raie principale vers les faibles énergies de liaison.

A basse température, la stabilité du spectre permet de penser qu'il est représentatif de l'état du solide avant son introduction dans le spectromètre. On observe donc une raie principale très large attestant de la présence de nombreuses espèces cuivre et une raie satellite d'intensité moyenne $(I_{SAT}/I_{pp} = 0.42$, valeur inférieure à celles obtenues pour les ions Cu_0^{2+} et Cu_m^{2+}),

(*) Tableau. XV

prouvant la coexistence d'ions Cu^{2+} et Cu^{+} avec toutefois une certaine prédominance d'ions Cu^{2+} . Ces ions Cu^{2+} , compte tenu de la largeur de la raie principale sont très probablement dans les deux environnements octaédrique et tétraédrique.

- 7 -

A la suite de cette étude, nous pouvons conclure que $Cu_{0,5}^{Fe}e_{2,5}^{0}a_{4}$ préparé par recuit sous vide à 1150°C de mélanges $Cu_{2}^{0} + 5 Fe_{2}^{0}a_{3}$ est un matériau ferrimagnétique colinéaire du type de Néel dans lequel le cuivre et le fer sont dans leurs deux états d'oxydation possibles ; le fer II est décelé au moyen de la spectrométrie X, le cuivre I en ESCA.

Les auteurs tiennent à exprimer tous leurs remerciements à Monsieur J. CHAPPERT, Laboratoire de spectroscopie, Mössbauer (C.E.N. Grenoble).

Bibliographie

/1/ B. LEREBOURS, J. DURR et M. LENGLET, Mat. Res. Bull., à paraître.
/2/ E. KITZINGER et Z. ŠIMŠA, Czech. J. Phys. <u>B</u> 18, 955, (1968).
/3/ Z. ŠIMŠA, I.E.E.E. Transactions on Magnetics <u>vol. MAG-5</u>, 592, (1969).
/4/ D.C. FROST, A. ISHITANI et C.A. Mc DOWELL, Mol. Phys., <u>24</u>, 861, (1972).
/5/ A. ROSENCWAIG et G.K. WERTHEIM, J. Electron. Spectrosc. Relat. Phenom., 1, 493, (1972/1973).

Les mesures magnétiques et le dépouillement des spectres d'émission X FeKB et CuKB sont présentés en annexe 1 et 2 à la suite de cette publication.

- 104 -

ANNEXE 1.

Analyse magnétique de Cu_{0.5}Fe_{2.5}04

La mesure de l'aimantation à saturation I_0^{∞} résulte de l'étude sur un appareil du type foner de la variation de I en fonction de l'inverse du champ, ce qui permet l'extrapolation à champ infini des valeurs mesurées à 4,2 K (moment magnétique moléculaire à saturation : 5,06 μ_B). La variation linéaire de I en fonction de 1/H confirme la validité du couplage antiparallèle.

Tableau XVI

ЕСН	:	0.15379 POIDS Cu. 5Fe2.504	MOL.: NoS4 T=4.;	235.390 2(K) 45/3	COPREC:	6.88899
U s	Asgu	т (к)	H (Oe)	N (emu/g)	MCBorh	Hagn. Mole)
		T (K) 1 4.2 1	H (0e) 20 50 109 100 200 200 400 200 400 200 200 3000 2000 3000 2000 3000 2000 3000 2000 2000 3000 2000	N (emu/g) 1.18018 1.85713 5.09162 5.10703 5.11099 12.12302 12.12302 12.15074 44.65452 92.2216 106.07327 92.2216 106.07327 114.22719 92.22316 106.07327 114.22719 115.50316 116.242933 116.242933 116.24293 117.62143 117.62443 117.62443 117.62443 117.62443 117.62443 118.14163 118.4477 118.55666 118.7693 118.7593 118.85666 118.7693 118.4017 117.4783 117.4783 117.4783 117.4783 118.4417 117.4783 118.4017 117.4783 118.4477 117.4783 118.4017 117.4783 118.4257 118.4147 117.4783 118.4017 117.4783 117.4785 117.4783 117.4785 11	N(Borh 0,07145 0,07145 0,07145 0,21150 0,21150 0,21150 0,519357 1,09372 1,0937	Hagn. / Hoie) 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1
1	.41	61 4.2 61 4.2 61 4.2	2000 1000 500 200	93.5626 63.2336 36.6714 16.5550	5 3.943 5 2.667 4 1.545 4 8.697	137 18 558 774
į.	.41	4.2	100	9,4232	4 0.397	16

CUD-5 FE 2-5 04 CU HB5

100.176

II.3.2 - Etude_de_la_solution_solide_ $Cu_{1-x}Fe_{2+x}O_{4-}(0 \le x \le 0.5)$

La solution solide $Cu_{1-x}Fe_{2+x}O_4$ a été étudiée par JEFFERSON (29) et MEXMAIN (34). Ce dernier auteur a en particulier précisé dans une étude thermogravimétrique très complète les limites de température entre lesquelles les recuits des mélanges d'oxydes 1 CuO + m Fe₂O₃ doivent être effectués pour obtenir des phases spinelles pures. Le tableau XVII établit la correspondance entre m et le taux de substitution x et présente pour chaque composition le domaine de température dans lequel la perte expérimentale observée sur la courbe d'analyse thermogravimétrique correspond à la perte théorique.

m X	1,25 0,14	1,5 0,25	1,75 0,34	2 0,4	2,5 0,5
domaine de température dans lequel le recuit doit être effectué pour obtenir la phase spinelle stoechiomé- trique	1025-1050	1100-1150	1140-1180	1200-1250	1280-1300
∆p/p exp.	0,45	0,82	1,10	1,32	1,68
∆p/p théor.	0,47	0,83	1,11	1,34	1,67

Tableau XVII

107 -

Les courbes d'ATG de mélanges 2,5 $Fe_2O_3 + 1$ CuO (fig. 23 a) et 1,5 $Fe_2O_3 + 1$ CuFe₂O₄ (fig. 23 b) montrent que le ferrite Cu_{0.5}Fe_{2.5}O₄ peut être obtenu stoechiométrique par trempe à l'issue d'un recuit a 1300°C à l'air.

Courbe I dans l'air. — La perte de poids commence à 700° C; elle croît régulièrement avec la température jusque vers 1.280° C. Entre 1.280° C et 1.310° C, la perte de poids se stabilise autour de la perte théorique soit 1.67 p. 100. Au-dessus de 1.310° C, la perte de poids augmente à nouveau. Lors du retour vers la température ordinaire, il y a une reprise de poids qui dépend beaucoup de la vitesse de refroidissement. Le frittage du produit s'oppose à une récxydation totale.

d'après MEXMAIN, Ann. Chim., 1971, 6, 297.

Thermogravimetric diagram of an oxide • mixture 1 CuFe₂O₄ + 1.5 Fe₂O₃ in air. Heating rate 5°C/min.; ΔW - weight loss, T - temperature, 1 - two phase region spinel - α Fe₂O₃, 2 - single phase homogeneous spinel phase, 3 - two phase region spinel - delafossite.

D'après A. BERGSTIEN, Mat. Res. Bull., 1968, 3, 787. Sur la base de ces travaux, nous avons préparé $Cu_{0,5}Fe_{2,5}O_4$ et différents termes de la solution solide à partir de mélanges d'oxydes $CuO + Fe_2O_3$ préalablement calcinés à l'air à 850°C pendant 72 heures. Ces mélanges sont ensuite portés à une température correspondant au palier défini par l'analyse thermogravimétrique (tableau XVII). A l'issue de ce dernier recuit, les échantillons sont trempés à l'eau ou à l'azote liquide. Dans ce dernier cas, la chute directe de l'échantillon placé dans un creuset de silice ou de platine dans du méthyl-2 butane, refroidi à la température de l'azote liquide, accroît la vitesse de trempe. Par rapport à la trempe classique à l'azote liquide, la formation autour du creuset d'une gaine gazeuse qui nuit aux échanges thermiques, est évitée ; le milieu de trempe étant un liquide pâteux. Broyés immédiatement, les échantillons sont ensuite scellés sous vide en ampoule de pyrex. L'analyse thermomagnétique est effectuée sous vide pour éviter toute oxydation.

Les contrôles usuels (détermination du paramètre de la maille cristalline et de la température du point de Curie) conduisent à des résultats en excellent accord avec ceux de JEFFERSON (29) et de MEXMAIN (34) (fig. 28).

L'étude cristallographique des composés $Cu_{0,75}Fe_{2,25}O_4$, $Cu_{0,6}Fe_{2,4}O_4$ et $Cu_{0,5}Fe_{2,5}O_4$ révèle une teneur en cuivre tétraédrique pratiquement constante que nous estimons de l'ordre de 0,20 + 0,05 (42).

Interprétation de l'évolution en fonction de x des spectres d'émission X FeKß et CuKß dans les composés de la solution solide Cu_{1-x}Fe_{2+x} 0_4 ($0 \le x \le 0,5$).

Les planches 24 à 27 présentent le dépouillement par ordinateur de la raie $FeKB_{1-3}$ et des bandes $FeKB_5$ et $CuKB_5$ de $CuFe_2O_4$, $Cu_{0,75}Fe_{2,25}O_4$, $Cu_{0,6}Fe_{2,4}O_4$ et $Cu_{0,5}Fe_{2,5}O_4$. (Les réglages correspondent à l'étalonnage

(42) J. DURR, A. D'HUISSER, B. LEREBOURS, J.C. TELLIER, J.P. BONNELLE etM. LENGLET, à paraître.

Dépouillement de la bande CuK_{β}_5

présenté en figure 21). Les tableaux XVIII et XIX regroupent l'ensemble des résultats expérimentaux correspondant aux spectres d'émission X du fer et du cuivre.

Tableau XVIII

Dépouillement des spectres d'émission X du fer

Echantillon	Structure cristal-	[Cu] _A	ΔКβ	5	ΔK	^β 1-3
	line		20	eV	2 0	eV
Fe ₂ 03 *			0	0	0	0
CuFe ₂ 0 ₄	I4 ₁ /amd	0,05	- 0,001	+ 0,05	0	0
Cu _{0.86} Fe _{2.14} 0 ₄	Fd3m		+ 0,0025	- 0,10		
Cu _{0.75} Fe _{2.25} 0 ₄	Fd3m	0,20	+ 0,005	- 0,20	+ 0,003	- 0,10
Cu _{0.66} Fe _{2.34} 0 ₄	Fd3m		+ 0,007	- 0,25	+ 0,002	- 0,07
$Cu_{0.6}Fe_{2.4}O_4$	Fd3m	0,20	+ 0,012	- 0,45	+ 0,003	- 0,10
Cu _{0.5} Fe _{2.5} 0 ₄	Fd3m	0,20	+ 0,019	- 0,70	+ 0,004	- 0,15
Erreur			± 0,0025	<u>+</u> 0,10	<u>+</u> 0,002	<u>+</u> 0,07

Positions des maxima de $FeKB_5$ et $FeKB_{1-3}$ pour Fe_2O_3 : 120,226 et 121,582 (Ces valeurs sont décalées par rapport à celles figurant dans le tableau IX et dans la publication : "Spectrometric (γ , X-ray, UV-vis-IR) and electrochemical studies of non stoechiometric lithium-copper ferrites" en raison des nouveaux réglages intervenus entre les deux séries de mesures).

- 114 -

Tableau XIX

Echantillons	Position angulaire	e du maximum des bandes
	20 Кв ₅	20 KB1-3
CuO	100,187	101,2825
CuFe ₂ 0 ₄	100,172	101,284
Cu _{0 86} Fe _{2 14} 0 ₄	100,171	101,281
$Cu_{0.75}Fe_{2.5}O_{A}$	100,173	101,281
$Cu_{0.66}Fe_{2.34}O_{4}$	100,175	101,283
$Cu_{0,6}Fe_{2,4}O_{4}$	100,171	101,2825
$Cu_{05}Fe_{25}0_{4}$	100,169	101,283
Erreur	$\pm 0,002_{5}$	± 0,001

Dépouillement des spectres d'émission X du cuivre

Afin d'interpréter la variation du déplacement de la bande $CuK\beta_5$ en fonction de x (tableau XIX), nous avons enregistré le spectre d'émission $CuK\beta$ dans Cu_20 et $CuFe0_2$.

Les positions angulaires des deux pics sont :

	2θΚβ ₅	^{2θ Kβ} 1-3
Cu ₂ 0	100,199	101,2825
CuFe0,	100,189	

Le déplacement de $CuK\beta_5$ vers les énergies plus faibles dans ces composés contenant du cuivre I est conforme à la règle générale selon laquelle l'énergie d'une raie d'émission est d'autant plus élevée que le degré d'oxydation de l'ion émissif est plus grand.

La figure 28 présente la variation en fonction du taux de substitution x de :

a)	$\Delta K\beta_5 = FeK\beta_5 - FeK\beta_5 $ (en degré 20) ech Fe ₂ O ₃	:	courbe	1
b)	CuK _{β5} (en degré 20)	:	courbe	2
c /)	a (Å) paramètre de la maille cristalline	:	courbe	3
d)	θ _c (°C) température de Curie	:	courbe	4
e)	m(µ _B) moment magnétique moléculaire à satu- ration d'après MEXMAIN (33)	:	courbe	5
f)	θ(μV.°C ⁻¹) coefficient de Seebeck d'après JEFFERSON (29)	:	courbe	6

La solution solide $Cu_{1-x}Fe_{2+x}O_4$ peut conduire :

- à des composés dans lesquels le fer est trivalent et le cuivre dans les deux degrés d'oxydation I et II si $Cu_{0,5}Fe_{2,5}0_4$ est un ferrite cuivreux identique à $Li_{0,5}^+Fe_{2,5}^{3+}0_4$: $Cu_{1-2x}^{2+}Cu_x^+Fe_x^{3+}Fe_2^{3+}0_4$.

- à des composés dans lesquels le cuivre est bivalent et le fer dans les deux degrés d'oxydation II et III si $Cu_{0,5}Fe_{2,5}O_4$ est une solution solide entre la magnétite et le ferrite cuivrique : $Cu_{1-x}^{2+}Fe_x^{3+}O_4$.

- à des composés dans lesquels le cuivre et le fer sont dans leurs deux états d'oxydation possibles.

Les deux premières solutions correspondent respectivement aux réactions 1 et 2 de l'équilibre $Cu^{2+}+Fe^{2+\frac{1}{2^{2}}}Cu^{+}+Fe^{3+}$.

Fig. 28.

- pour les valeurs de x inférieures à 0,3 la double migration du cuivre vers les sites tétraédriques et du fer vers les sites octaédriques s'accompagne du déplacement de l'équilibre $Cu^{2+} + Fe^{2+\frac{1}{2}}$ $Cu^+ + Fe^{3+}$ dans le sens 1.

- pour les valeurs de x supérieures à 0,3, les phénomènes s'inversent : l'équilibre redox se déplace dans le sens 2. La teneur en cuivre I décroît et celle en fer II augmente très rapidement.

En effet, la teneur en cuivre tétraédrique dans les composés de symétrie cubique étant pratiquement constante, la variation de la position de la bande $CuK\beta_5$ en fonction de x est révélatrice du degré d'oxydation du cuivre dans ces matériaux. Pour x = 0,30 - 0,35, la position angulaire de cette bande passe par un maximum (courbe 2, figure 28). Nous pouvons en conclure que la concentration en cuivre monovalent doit être la plus élevée au voisinage de cette valeur du taux de substitution. Nous devons, cependant, rappeler que les conclusions issues de l'étude des spectres d'émission du cuivre (§II.2) restent très limitées en raison de l'état actuel des connaissances des oxydes mixtes de structure spinelle dans lesquels le cuivre est monovalent.

Dans le domaine $0 < x \le 0,3$, la présence d'ions Cu⁺ se situant essentiellement en coordination tétraédrique rend compte de l'augmentation du moment magnétique moléculaire à saturation et de l'abaissement régulier de la température de Curie identique à celui observé dans la solution solide Cu_{1-x}Zn_xFe₂O₄. Rappelons que la température de Curie de CuFe₂O₄ cubique est 480°C et que la transformation quadratique-cubique entraîne la migration d'environ 15 % des ions Cu²⁺ en A (43).

(43) J. LOPITAUX, Thèse ROUEN, 1973.

Le déplacement progressif de la bande $FeK\beta_5$ vers les faibles énergies (x = 0,25 $\Delta K\beta_5$ = - 0,20 eV) indique à ce niveau de la solution solide la présence d'une certaine quantité de fer II que nous avons mis en évidence en étudiant le comportement électrochimique de ce matériau dans l'électrode à pâte de graphite (44).

Pour les valeurs de x comprises entre 0,35 et 0,5, la variation de $\Delta K\beta_5 = FeK\beta_5 - FeK\beta_{5Fe203}$ devient très rapide. Il s'ensuit une augmentation de la ech concentration des ions Fe²⁺ (probablement localisés en sites octaédriques) et, par voie de conséquence, un déplacement important de l'équilibre Cu²⁺ + Fe²⁺ $\frac{1}{2}$ Cu⁺ + Fe³⁺ dans le sens 2. Ceci explique que la température de Curie passe par un minimum pour x = 0,35 et croît ensuite très lentement. JEFFERSON (29) observe ce minimum vers x = 0,4 et une élévation régulière de la température du point de Curie jusque 575°C au fur et à mesure que x tend vers 1. Plus révélatrice encore est la modification du mécanisme de conductivité observé vers x = 0,25 : ces matériaux deviennent des semiconducteurs de type n comme la magnétite.

Mise en évidence de l'influence des conditions de préparation sur la structure physicochimique du ferrite $Cu_{0.5}Fe_{2.5}O_4$

Dans le tableau XX, nous avons réuni les données issues du dépouillement des spectres d'émission K β du fer et du cuivre dans $Cu_{0,5}Fe_{2,5}O_4$ préparé par calcination sous vide à 1150°C de mélanges 0,5 Cu_2O + 2,5 Fe_2O_3 (N°1) et par recuit à 1300°C à l'air de mélanges CuO + 2,5 Fe_2O_3 portés préalablement à 850°C (N°2).

(44) P. FOULATIER et M. LENGLET, C.R. Acad. Sci., 1979, 289, 125.

- 120 -Tableau XX

Echantillon	[Cu]	ΔΚβ	(Fe)	Δ ^{Kβ} 1-3	(Fe)	20 _{Cu} K _{B5}	ΔΚβ5	(Cu)
	A	2 0	e۷	20	e۷		20	eV
Cu _{0,5} Fe _{2,5} 04 (1)	0,3	+ 0,007	- 0,25	- 0,001	+ 0,03	100,177	- 0,010	+ 0,70
Cu _{0,5} Fe _{2,5} 0 ₄ (2)	0,2	+ 0,019	- 0,70	+ 0,004	- 0,13	100,169	- 0 ,01 8	+ 1,20

Position des maxima des bandes $K\beta_5$ dans les composés de référence $Fe_2^{0}0_3$: 120,226 ; Cu0 : 100,187.

Sans rendre cette technique d'analyse quantitative, nous constatons la corrélation qui existe entre les déplacements des bandes $FeKB_5$ et $CuKB_5$ dans ces deux composés. Préparé à température plus élevée et à l'air $Cu_{0,5}Fe_{2,5}O_4$ contient une quantité plus élevée de Fe II sans toutefois être une solution solide entre le ferrite cuivrique et la magnétite. L'ESCA et l'électrochimie du solide en milieu organique confirment la présence de cuivre I dans ce matériau.

En conclusion de cette étude, il apparaît que les paires $Cu_A^+ + Fe_A^{3+}$ et $Cu_B^{2+} + Fe_B^{2+}$ s'avèrent les plus stables et que la proximité des potentiels redox des couples Cu^{2+}/Cu^+ et Fe^{3+}/Fe^{2+} fait que tout matériau de la solution solide $Cu_{1-x}Fe_{2+x}O_4$ (0 < x < 0,5) préparé par voie céramique, contient le cuivre et le fer dans leurs deux états d'oxydation en proportions variables suivant la valeur de x et les conditions de préparation. Le dernier chapitre de ce mémoire se divise en deux parties consacrées pour la première, à la définition de la stabilité thermique de ces ferrites mixtes ; pour la seconde, à l'établissement du mécanisme de décomposition du ferrite $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}\text{O}_4$ recuit en atmosphère d'azote. Ces travaux publiés ou en cours de parution sont présentés in-extenso sous les rubriques II.4.1 et II.4.2 avec des documents annexes qui explicitent certains points traités trop rapidement dans les publications.

II.4.1 - Stabilité thermique des ferrites mixtes issues du système Li0.5Fe2.504-CuFe204-ZnFe204-

Tiré à part de:

Reprint from .

ANNALES DE CHIMIE

science des matériaux

STABILITÉ THERMIQUE DE FERRITES MIXTES

ISSUES DU SYSTÈME

 $Li_{0.5}Fe_{2,5}O_4 - CuFe_2O_4 - ZnFe_2O_4$.

B. Lerebours, J. Durr, J.C. Tellier, M. Lenglet

Composés solides minéraux

Ann. chim. Fr., 1979, 4, pp. 257-268

STABILITE THERMIQUE DE FERRITES MIXTES ISSUS DU SYSTEME

$$Li_{0,5}Fe_{2,5}O_4 - CuFe_2O_4 - ZnFe_2O_4$$

B. LEREBOURS^{*}, J. DURR^{**}, J.C. TELLIER^{***}, M. LENGLET^{*}.

- Laboratoire de Chimie Minérale, INSCIR, Faculté des Sciences et Techniques Adresse postale : INSCIR, B.P. 08 76130 MONT SAINT AIGNAN, France.
- Laboratoire d'Analyse Physique, Ecole Nationale des Mines de Douai 941, Rue C. Bourseul 59508 DOUAI, France.
- *** Laboratoire de Travaux Pratiques de Chimie Minérale, C 3, Bât. F, Université Pierre et Marie Curie, 4 Place Jussieu 75230 PARIS CEDEX 05.

<u>Résumé</u> : Les ferrites mixtes à teneur élevée en cuivre présentent un schéma de décomposition identique à celui de $CuFe_20_4$. Le remplacement dans le ferrite cuivrique de 30 % du cuivre par le lithium et le zinc confère à ces matériaux une bonne stabilité thermique à l'air jusque 1100°C. L'introduction de cuivre ou de zinc dans Li_{0,5}Fe_{2,5}04 retarde le départ du lithium. Les résultats observés en analyse thermomagnétique et spectrométrie Mössbauer dans l'étude du mixte Li_{0,25}Cu_{0,5}Fe_{2,25}04 indiquent des mécanismes de décomposition différents selon la nature des traitements thermiques.

Summary : Thermal stability of mixed ferrites issued from Li_C, 5Ee, $504 - CuFe_204$ ZnFe₂0₄ system.-The CuFe₂04 isomorphous ferrites dissociate according to the same procedure as the ferrite. The compounds Cu_{1-x-y}(Li₀, 5Fe₀, 5)_x ZnyFe₂04 corresponding to x+y > 0.3 are rather stable in air up to 1100°C. Lithium is stabilized by introduction of copper or zinc in Li₀, 5Fe₂, 504. Thermomagnetic analysis and Mössbauer spectrometry reveale for Li₀, 25Cu₀, 5Fe₂, 2504 different mechanismes of decomposition with the nature of heat-treatment.

1. INTRODUCTION

Nous avons publié récemment l'étude structurale des ferrites de lithium, cuivre et zinc issus du système Li_{0,5}Fe_{2,5}04 - CuFe₂04 - ZnFe₂04 [1] et destinés à remplacer les ferrites de nickel-zinc dans certaines applications de l'industrie électronique [2,3]. Ce mémoire présente l'influence de la non-stoechiométrie de ces matériaux sur leurs caractéristiques cristallographiques et magnétiques.

Nous rappellerons tout d'abord les travaux consacrés aux ferrites simples. L'analyse thermogravimétrique de $\text{Li}_{0,5}\text{Fe}_{2,5}0_4$ en atmosphère oxydante décèle une perte de masse dès 900°C [4 à 6]. RIDGLEY et col. [4] précisent l'incidence du départ de Li_{20} sur les propriétés magnétiques et cristallographiques. Les produits

Tirés à part : B. LEREBOURS, INSCIR, B.P. 08, 76130 MONT SAINT AIGNAN, France.

B. Lerebours, J. Durr, J.C. Tellier, M. Lenglet

de décomposition seraient, suivant les traitements thermiques, des solutions solides entre le ferrite de lithium et Fe_30_4 ou des solutions solides entre $Li_{0,5}Fe_{2,5}0_4$ et Fe_20_3 'accompagnées de Fe_20_3 aprécipité. AMENIYA [5] propose deux mécanismes de décomposition de $Li_{0,5}Fe_{2,5}0_4$ pour expliquer la sublimation du lithium et de l'oxygène en fonction de la nature de l'atmosphère (LiFe 0_2 n'apparaît qu'en atmosphère d'azote).

La perte d'oxygène observée lors de la décomposition du ferrite cuivrique s'accompagne de la formation de Cu⁺ dès 700°C [8 à 13] ou même à partir de températures inférieures [14, 15]. La formation de solutions solides entre CuFe₂04. et Cu_{0,5}Fe_{2,5}04 entraîne l'abaissement de la température de la transformation quadratique + cubique et du taux de déformation quadratique.

2. METHODES EXPERIMENTALES

Tous les échantillons ont été préparés par méthode céramique à des températures n'excédant pas 850°C. La stoechiométrie est assurée au moyen d'un recuit final sous oxygène suivi d'un refroidissement lent.

Le principe des méthodes expérimentales a déjà été exposé [15]. Les paramètres sont déterminés à 0,001 A près, la température du point de Curie à + 2°C, les moments magnétiques moléculaires à + 0,02µ. En raison de l'importance des paramètres expérimentaux en analyse thermo-

En raison de l'importance des paramètres "expérimentaux en analyse thermogravimétrique (A.T.G.), nous rappelons les conditions expérimentales. Les essais sont réalisés au moyen d'une balance B 70 Ugine-Eyraud à forte sensibilité (déviation sur le papier d'enregistrement d'environ 10 mm par mg). L'échantillon (masse approximative : 0,5 à 1 g) est introduit sans tassement dans un creuset cylindrique en platine (\emptyset = 8 mm, h = 10 mm). Les analyses d'A.T.G. dynamique sont conduites à des vitesses de l'ordre de 300°C/h. Les atmosphères les plus courantes sont l'air et l'oxygène, dans certains cas l'azote.

Le contrôle des pertes est réalisé au moyen de l'analyse chimique d'échantillons d'A.T.G. ou trempés selon une méthode déjà décrite [16]. Nous avons dosé le zinc, le cuivre et le lithium par absorption atomique selon la méthode LEVINE [17] (le lithium a été également dosé par spectrométrie d'émission). Les prises d'essai sont calculées de façon à ce que les solutions ne contiennent pas plus de 50 ppm de Fe. Le pH est ajusté à 2,5 par addition d'acide chlorhydrique ou au moyen d'un tampon (solution de citrate d'ammonium 1M + acide citrique 1M) qui présente l'avantage de complexer le fer. La précision sur le dosage de chaque élément est celle donnée par LEVINE : ± 3 %.

Les spectres Mössbauer ont été réalisés au laboratoire de Métallurgie de l'Ecole Nationale des Mines et de l'Industrie de Nancy à l'aide d'un appareil ELRON (source : ⁵⁷Co dans une matrice de rhodium, étalonnage par référence au fer métal).

3. RESULTATS EXPERIMENTAUX

3.1. Analyse thermogravimétrique

L'analyse thermogravimétrique de nombreux échantillons des solutions solides $Cu_{1-x}(Li_{0,25}Fe_{0,25}Zn_{0,5})_xFe_204$, $(Li_{0,5}Fe_{0,5})_{1-x}(Cu_{0,5}Zn_{0,5})_xFe_204$ [représentées par les hauteurs issues respectivement de CuFe₂04 et Li_{0,5}Fe_{2,5}04 dans le diagramme triangulaire CuFe₂04 - Li_{0,5}Fe_{2,5}04 - ZnFe₂04] et Cu_{1-x}Zn_xFe₂04 permet de séparer les courbes en deux catégories selon la teneur en cuivre. Nous avons choisi de présenter la famille de courbes correspondant au premier système (fig. 1).

B. Lerebours, J. Durr, J.C. Tellier, M. Lengiet

(*) Fig. 29.

259

Fig. 1 : Analyse thermogravimétrique de composés du système $Cu_{1-x} (Li_{0,25}Fe_{0,25}Zn_{0,5}) \times Fe_2^0 4$

> a : à l'air ; b : sous 0_2 (1:x=0, CuFe $_20_4$; 2:x=0,1 ; 3:x=0,3 ; 4:x=0,5 ; 5:x=0,667 ; 6:x=1, Li $_{0,25}^{2n}0,5^{Fe}2,25^{0}4$).

Les courbes relatives aux ferrites riches en cuivre ($0 \le x \le 0.5$) s'apparentent nettement à celle de CuFe₂O₄. Jusqu'à 1050°C, la perte reste inférieure à 0,25 % puis s'accentue rapidement aux températures supérieures. Les composés Li_{0,25}Cu_{0,5}Fe_{2,25}O₄ et Cu_{0,5}Zn_{0,5}Fe₂O₄ présentent en A.T.G. dynamique un comportement identique (<u>Fig. 2</u> et <u>Fig. 3</u>).

Les échantillons riches en lithium ou en zinc sont caractérisés par une perte régulière et moins importante débutant en général au dessus de 700°C. Ceci se vérifie dans l'étude du système $(Li_{0,5}Fe_{0,5})_{1-x}$ $(Cu_{0,5}Zn_{0,5})_x$ Fe₂O₄ où seuls les échantillons correspondant à $x \ge 0.75$ se décomposent entre 550 et 600°C. Nous avons tenté de préciser le mécanisme de décomposition en procédant à l'identification des phases cristallines de différents termes de la solution solide Cu_{1-x} $(Li_{0,25}Fe_{0,25}Zn_{0,5})_x$ Fe₂O₄ ayant subi des trempes étagées après maintien à l'air (Tableau 1).

B. Lerebours, J. Durr, J.C. Tellier, M. Lenglet

Formules	x	Tempér	atures de	e trempe	(°C)	1
		900	1000	1100	1200	
cuFe ₂ 0 ₄ *	0	+ 0	+ 0	+ 0		
Li _{0,025} ^{Cu} 0,9 ^{Zn} 0,05 ^{Fe} 2,025 ⁰ 4	0,1	+ 0	+ •	+ •	+ •	.*.
Li _{0,05} Cu _{0,8} Zn _{0,1} Fe _{2,05} 04	0,2	+	+ •		+_0	(^) Tableau XXI.
Li _{0,075} ^{Cu} 0,7 ^{Zn} 0,15 ^{Fe} 2,075 ⁰ 4	0,3	+	+	+ 🛦	+ 🛦	
Li _{0,125} Cu _{0,5} Zn _{0,25} Fe _{2,125} 0 ₄	0,5	+	+	+	+ 🛦	
^{Li} 0,167 ^{Cu} 0,333 ^{Zn} 0,333 ^{Fe} 0,167 ⁰ 4	0,667	+	+	÷ +	+	
+ phase spinelle 0 Cu0	Cu ₂ 0	•	CuFe02		• <u>•</u> ••••••••••••••••••••••••••••••••••	-

TABLEAU	1	-	Analyse :	radiocristal	lographique	d'écha	ntillons	trempés
			(système	1-xCuFe204	- XLi0.25 ^{Zn}	0.5 ^{Fe} 2.	$25^{0}a^{1}$	

La décomposition des mixtes proches de CuFe204 s'effectue selon le mécanisme publié par MEXMAIN dans l'étude du ferrite cuivrique [13] : formation de solutions solides entre CuFe₂04 et Cu_{0,5}Fe_{2,5}04 s'accompagnant de la "ségré-gation de Cu0" [18] ; apparition vers 1000°C de CuFe0₂, puis de Cu₂0 résultant de la décomposition du ferrite cuivreux rhomboédrique [19] aux températures supérieures à 1100°C. L'évolution de la température du point de Curie des échan-

tillons trempés semble confirmer ce mécanisme (fig. 4 et § 3.3). Le ferrite CuFeO₂ n'est pas observé lors de la décomposition des mixtes correspondant à x=0,3 et 0,5. Le paramètre de la phase spinelle augmente rapidement dès qu'une phase supplémentaire apparaît entraînant un accroissement de la concentration en Cu0,5^{Fe}2,5⁰4

TABLEAU 2 - Evolution des paramètres a(A) en fonction de la température de trempe

]				
- Composes	900	1000	1100	1200	1300	(*)T
^{Li} 0,075 ^{Cu} 0,7 ^{Zn} 0,15 ^{Fe} 2,075 ⁰ 4	8,389	8,390	8,393	8,397	8,403	() ladieau XXII
Li _{0,125} Cu _{0,5} Zn _{0,25} Fe _{2,125} O ₄	8,391	8,393	8,394	8,399	8,404	
Li _{0,167} Cu _{0,333} Zn _{0,333} Fe _{2,167} ⁰ 4	8,390	8,392	8,394	8,397	8,399	

Les figures 2 et 3 présentent les courbes d'analyse thermogravimétrique dynamique et isotherme des composés Li $_{0,25}$ ^{Cu} $_{0,5}$ ^{Fe} $_{2,25}$ ^O $_{4}$ et Cu $_{0,5}$ ^{Zn} $_{0,5}$ ^{Fe} $_{2}$ ^O $_{4}$.

260

- 126 -

Fig. 2 - Analyse thermogravimétrique de Li_{0,25}^{Cu}0,5^{Fe}2,25⁰4[.]

Fig. 3 - Analyse thermogravimétrique de $Cu_{0,5}^{Zn}_{0,5}^{Fe}_{2}^{0}_{4}^{0}$ TABLEAU 3 - Identification des phases cristallines des échantillons analysés

en	A	.Т.	G	

(*) Echantillons Traitement Tableau XXIII. Li_{0,25}Cu_{0,5}Fe_{2,25}O₄ ^{Cu}0,5^{Zn}0,5^{Fe}2⁰4 A.T.G. isotherme Perte Phases Perte Phases (2h 1200°C) résiduelle cristallines résiduelle cristallines refroidissement 8 à 600°C/h 8 à l'air * 0,55 $Sp + CuFe0_2$ $Sp + CuFe0_2$ 0,3 $+ Cu_20$ sous 02 0,13 Sp. 0,1 Sp. A.T.G. isotherme (2h 1000°C) dans l'azote $Sp + CuFe0_2$ $Sp + CuFe0_{2}$

* L'apparition de la phase CuFeO₂ est due à la décomposition de la phase spinelle non stoechiométrique en cours de refroidissement.

(BUS)

Les ferrites $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}0_4$ et $\text{Cu}_{0,5}\text{Zn}_{0,5}\text{Fe}_{2}0_4$ présentent à l'air et sous oxygène des pertes comparables en A.T.G. dynamique. En atmosphère d'azote, le composé au lithium est plus affecté en raison de la sublimation importante de cet élément [5] (fig. 2a et 3a). La dissociation de l'oxyde Cu0 en atmosphère d'azote débute vers 900°C et s'achève à 1010°C [20]. L'accentuation sensible de la perte de masse observée vers 920°C sur les courbes d'analyse thermogravimétrique de ferrites mixtes Li_{0,25}Cu_{0,5}Fe_{2,25}O4 et Cu_{0,5}Zn_{0,5}Fe₂O₄ effectuée sous azote est due au développement du processus de décomposition de l'oxyde cuivrique.

En A.T.G. isotherme, tant à l'air qu'en atmosphère d'azote, le ferrite $Cu_{0,5}Zn_{0,5}Fe_{2}0_{4}$ se dégrade nettement moins que $Li_{0,25}Cu_{0,5}Fe_{2,25}0_{4}$. Cela nous a incité à étudier le comportement de mixtes de la solution solide $Cu_{0,5}(Li_{0,5}Fe_{0,5})_{x}$ $Zn_{0,5-x}Fe_{2}0_{4}$. Les courbes d'A.T.G. dynamique (temp. max. : 1200°C, air) sont identiques. L'introduction de lithium dans $Cu_{0,5}Zn_{0,5}Fe_{2}0_{4}$ entraîne le développement des pertes en A.T.G. isotherme (1200°C, air) :

х		0	0,125	0,25	0,5
Δm	(%)	0,04	0,065	0,20	0,18

De manière générale, les échantillons contenant une proportion relativement importante de cuivre ne se réoxydent pas totalement au refroidissement en raison de leur densification.

Nous avons étudié leur réoxydation en atmosphère d'oxygène après broyage. Le Tableau 4 indique les températures de début de reprise de masse.

TABLEAU 4 - Etude de la réoxydation

Tompérature de réoxydation (°C) A.T.G. isotherme	^{Cu} 0,5 ^{Zn} 0,5 Fe ₂ ⁰ 4	$Li_{0,25}Cu_{0,5}$ $Fe_{2,25}^{0}4$	^{Li} 0,167 ^{Cu} 0,333 ^{Zn} 0,333 ^{Fe} 2,167 ⁰ 4	Li _{0,25} ^{Zn} 0,5 Fe _{2,25} ⁰ 4	(*) Tableau . XXIV .
à l'air, 1200°C dans l'azote 1000°C	340 (0) 300-325	340-350 (< 0,10) 325 (< 0,10)	* 375 (0)	* 425-450	

* Ces échantillons reprennent intégralement leur masse au cours du refroidissement lent qui suit l'analyse thermogravimétrique isotherme.

()perte résiduelle en % observée après réoxydation (à 800°C sous 0₂) de l'échantillon broyé.

Le début de la réoxydation des composés contenant du cuivre intervient dans le domaine 325-375°C. Ce résultat est en accord avec les conclusions de MEXMAIN [13] relatives à l'étude de la stabilité dans l'air de Cu_{0,5}Fe_{2,5}0₄ trempé : la réoxydation s'amorce vers 360°C et conduit à un mélange de CuFe₂0₄ et de Fe₂0₃.

3.2. Détermination des pertes en fonction des traitements thermiques

De nombreuses analyses chimiques ont été réalisées afin de contrôler les résultats d'A.T.G. (<u>tableau 5</u>) et de déterminer le comportement du lithium et du cuivre qui s'avèrent être les deux éléments de substitution les moins stables.

TABLEAU 5 - Analyse chimique

h						
Traitement A.T.G. isotherme	$L^{i}_{0,25}$, $5^{Fe}_{2,25}$, 4		^{Cu} 0,5 ^{Zn} 0,5 ^{Fe} 2 ⁰ 4			
	Li*	Cu*	Cu *	Zn [‡]	(^) Tableau.XXV.	
2h , 1200°C , 0 ₂	100	> 99	100	100		
2h , 1200°C , air	100	97	99	100		
2h , 1000°C , N ₂	100	100	96	99		

- 129 -

* Les résultats sont exprimés en % par rapport aux valeurs théoriques correspondant au dosage des éléments dans les composés stoechiométriques.

Des pertes importantes en cuivre se produisent lors de traitements thermiques à 1200°C sous N_2 .

3.2.1. Détermination des pertes en lithium dans différents ferrites mixtes

TABLEAU 6 - Pertesen lithium %

Traitement A.T.G. isotherme	L ⁱ 0,25 ^{Cu} 0,5 F ^e 2,25 ⁰ 4	Li _{0,25} ²ⁿ 0,5 ^{Fe} 2,25 ⁰ 4	Li _{0,125} Cu _{0,5} Zh _{0,25} Fe _{2,125} O ₄	^{Li} 0,167 ^{Cu} 0,333 ^{Zn} 0,333 ^{Fe} 2,167 ⁰ 4	(
2h , 1200°C , air	0	<1	4	0	
2h , 1200°C , 0 ₂	0	0	<2		
2h , 1200°C , N ₂	10	4			

*) Tableau. XXVI.

Les résultats présentés dans le <u>tableau 6</u> indiquent que le lithium est beaucoup plus stable dans les ferrites mixtes que dans $Li_{0,5}Fc_{2,5}0_4$. Les études consacrés à la non-stoechiométrie de ce composé mentionnent le départ du lithium dès 1000°C en atmosphère d'oxygène (à 1200°C, les pertes en lithium sont de l'ordre de 15 %) [4, 5]. Nous avons tenté de déterminer sur un composé à teneur élevée en lithium - $Li_{0,35}Cu_{0,15}Zn_{0,15}Fe_{2,35}0_4$ - le seuil de température à partir duquel se produit la perte.

 Traitement : A.T.G. isotherme (2h à l'air) à 800°C
 900°C
 1000°C
 1200°C

 pertes en lithium (%)
 0
 <1</td>
 <1</td>
 3

La remarque faite ultérieurement quant à la stabilisation du lithium par l'intermédiaire de l'adjonction d'autres éléments de substitution dans Li_{0,5}Fe_{2,5}⁰ se trouve vérifiée dans ce cas.

3.2.2. Comportement du cuivre

Le tableau 7 indique l'évolution des pertes en cuivre en fonction de la température de trempe présentées par différents termes de la solution solide Cu_{1-x} (Li_{0,25}^{Zn}0,5^{Fe}0,25) x Fe₂0₄.

264

B. Lerebours, J. Durr, J.C. Tellier, M. Lenglet

TABLEAU 7 - Pertes en cuivre %

Températures de trempe (°C)	$Cu_{1-x}(Li_{0,25}zn_{0,5}Fe_{2,25})xFe_{2}^{0}$				
	x = 0,1	0,3	0,5	0,667	
900	0	0	0	0	
1000	< 1	· < 1	0	o	
1100	4	6	0	< 1	
1200	8	9	4	1	

(*) Tableau. XXVII.

Aucune perte significative en zinc n'a été observée lors des différents essais à l'air ou sous oxygène ni à 1000°C en atmosphère d'azote.

3.3. Influence de la non stoechiométrie sur les paramètres magnétiques et le spectre Mössbauer.

Les mixtes à teneur élevée en cuivre sont les plus sensibles à la non-stoechiométrie sur le plan magnétique. La trempe à l'azote liquide après recuits à l'air provoque un abaissement important de la température de Curie (<u>fig. 4</u>) et une augmentation du moment magnétique moléculaire à saturation (<u>tableau 8</u>) en relation avec la formation de solutions solides avec $Cu_{0,5}Fe_{2,5}O_4$, donc avec l'occupation de sites tétraédriques par des ions Cu [11, 12, 13].

Fig. 4 - Evolution de la température de Curie de termes de la solution solide $C^{U}_{1-x}(Li_{0,25}^{Zn}_{0,5}Fe_{0,25})xFe_{2}^{0}_{4}$ en fonction de la température de trempe.

265

(*) Tableau. XXVIII.

B. Lerebours, J. Durr, J.C. Tellier, M. Lenglet

Composés	Moment magnétique expérimental µ _B					
	refroidisse- ment lent maintien à l'azote liquide après maintien à l'air de 10 mn (1)					
	1000°C		1100°C	1200°C		
Li _{0,075} ^{Cu} 0,7 ^{Zn} 0,15 ^{Fe} 2,075 ⁰ 4	2,92	(1) (2) 3,56 3,52	(1) (2) 3,74 3,76	(1) (2)		
Li _{0,125} Cu _{0,5} Zn _{0,25} Fe _{2,125} 4	3,84	4,17 4,30	4,28 4,40	4,51 4,52		
Li _{0,167} Cu _{0,333} Zn _{0,333} Fe _{2,167} ⁰ 4	4,44	4,68 4,65	4,63 4,70	4,68 4,80		
Li _{0,35} ^{Cu} 0,15 ^{Zn} 0,15 ^{Fe} 2,35 ⁰ 4	3,76	3,95 4,03	3,96 3,94	4,02 4,06		
Li _{0,5} Fe _{2,5} ⁰ 4	2,6	2,72 2,71	2,76 2,77	2,81 2,83		

TABLEAU 8 - Influence du traitement thermique sur le moment magnétique

(*) Fig. 33.

ſ
B. Lerebours, J. Durr, J.C. Tellier, M. Lenglet

Les figures 5 et 6 illustrent l'influence sur le spectre Mössbauer de la nature de l'atmosphère dans laquelle sont effectués les traitements thermiques. Les échantillons Li_{0,25}Cu_{0,5}Fe_{2,25}O₄ et Li_{0,167}Cu_{0,333}Zn_{0,333}Fe_{2,167}O₄ trempés à l'azote liquide à l'issue de recuits à l'air à 1200°C possèdent des spectres pratiquement identiques à ceux des produits refroidis lentement. Par contre, le spectre Mössbauer de ces mêmes composés, maintenus à 1000°C en atmosphère d'azote, présentent un doublet central caractéristique de CuFeO₂ (paramètres hyperfins à 300° K : Is = 0,39 ± 0,02 mm/s et ε = 0,31 ± 0,02 mm/s [21]). De plus, le spectre de Li_{0,25}Cu_{0,5}Fe_{2,25}O₄ traité sous courant d'azote (fig. 5c) est caractérisé par la présence d'un épaulement sur deux des raies externes du sextuplet. Le déplacement isomérique relatif à ce nouveau sous-spectre est supérieur à ceux couramment observés pour le fer trivalent, ce qui pourrait indiquer l'existence de fer II. L'évolution des températures de Curie n'exclut pas une telle éventualité :

T raite ment	Refroidissement	Trempe après	recuit :	A.T.G. isotherme
	lent	(1200°C, air)	(1100°C, vid	e) (1000°C, N ₂)
θ <u>΄</u> (°C)	536	500	535	550

Signalons que la diffraction X ne permet pas de déceler pour ce composé de faibles quantités de $CuFeO_2$: la raie 012 la plus intense se superpose à la raie principale de la phase spinelle.

Cette première analyse extrêmement sommaire des spectres Mössbauer semble indiquer que la décomposition des ferrites mixtes contenant du cuivre s'effectue par des mécanismes différents selon la nature de l'atmosphère.

B. Lerebours, J. Durr, J.C. Teilier, M. Lenglet

4. CONCLUSIONS

L'analyse thermogravimétrique des ferrites de lithium, cuivre et zinc révèle pour les mixtes à teneur élevée en cuivre un comportement identique à celui du ferrite CuFe₂04. Le remplacement de 30 % du cuivre par le lithium et le zinc leur confère une bonne stabilité thermique à l'air jusqu'à 1100°C. En atmosphère oxydante, le départ d'oxygène affecte le cuivre et entraîne la formation de solutions solides avec Cu_{0,5}Fe_{2,5}04 et, par suite, l'abaissement des températures de Curie et l'élévation des moments magnétiques à saturation présentés par les échantillons trempés.

- 133 -

L'introduction d'éléments de substitution, tels le cuivre et le zinc, dans le ferrite de lithium stabilise le lithium jusqu'à 1100°C.

L'étude des mécanismes de décomposition est en cours de développement au moyen de méthodes physiques (spectrométries électronique et Mössbauer, analyse magnétique).

5. BIBLIOGRAPHIE

M

- [1] LEREBOURS (B.), TELLIER (J.C.), LENSEN (M.), LENGLET (M.), C. R. Acad. sci., Paris, 1978, 286, 481.
- [2] RITZEN (J.M.), PELOSCHEK (H.P.), Brevet français, 71.234.61, 1972.
- [3] ESTIVAL (G.), Brevet français, 74.060.90, 1974.
- [4] RIDGLEY (D.H.), LESSOF (H.), CHILDRESS (J.D.), J. Amer. Ceram. Soc., 1970, 53, 304.
- [5] AMEMIYA (H.), J. inorg. nucl. chim., 1972, 34, 3405.
 [6] BANDYOPADHYAY (G.), FULRATH (R.M.), J. Amer. Ceram. Soc., 1974, 57, 483.
 [7] STRICKLER (D.W.), ROY (R.), J. Amer. Ceram. Soc., 1961, 44, 225.
- [8] BERGSTEIN (A.), CERVINKA (L.), Czech. J. Phys., 1961, 11,
 [9] YUND (R.A.), KULLERUD (G.), Am. Mineral., 1964, 49, 689.
- YUND (R.A.), KULLERUD (G.), Am. Mineral., 1964, 49, 689.
- [10] O'BRYAN (H.M.), LEVINSTEIN (H.J.), SHERWOOD (R.C.), J. Appl. Phys., 1966, 37, 1438.
- [11] OHBAYASHI (K.), IIDA (S.), J. Phys. Soc. Japan, 1966, 21, 2740.

- 12 SAHARA (S.), YAMAGUCHI (T.), J. Appl. Phys., 1966, 37, 3324.
 13 MEXMAIN (J.), Thèse, Paris, 1968.
 14 OBI (Y.), Phys. Stat. sol. (a), 1974, 16, 293.
 15 LOPITAUX (J.), Thèse de doctorat d'état, Rouen, 1977.
- [16] LOPITAUX (J.), LENGLET (M.), TELLIER (J.C.), LENSEN (M.), C. R. Acad. Sci., Paris, 1974, 278, 1491.
- [17] LEVINE (S.L.), Anal. Chim., 1968, 40, 1370.
 [18] WEIL (L.), BERTAUT (F.), BOCHIROL (L.), J. Phys. Radium, 1950, 11, 208.
- [19] THERY (J.), COLLONGUES (R.), C. R. Acad. Sci., Paris, 1962, 254, 685.
- 20] GOREAUD (M.), WALTER-LEVY (L.), Bull. Soc. Chim., Fr., 1973, 830.
- [21] MUIR (A.H.), WIEDERSICH (Jr. et H.), J. Phys. Chem. Solids, 1967, 28, 65.

(Remis à l'éditeur le 27 avril 1979)

© Masson, Paris, 1979

II.4.2 - Etablissement du mécanisme de décomposition du ferrite Li_{0.25}Cu_{0.5}Fe_{2.25}O₄-recuit sous N₂-

(Mémoire soumis à la revue Materials Research Bulletin)

SPECTROMETRIC (Y, X-ray, UV-vis IR) AND ELECTROCHEMICAL STUDIES OF NON-STOICHIOMETRIC LITHIUM-COPPER FERRITES

B. LEREBOURS^{*}, J. DURR^{**} and M. LENGLET^{*}

 * INSCIR, Faculté des Sciences et Techniques, B.P. N° 8, 76130 Mont-Saint-Aignan, France
 ** ENTIMD, 59508 Douai Cedex & Laboratoire de Chimie Minérale et Méthodologie analytique 59655 Villeneuve d'Ascq Cedex, France

ABSTRACT

In the heat-treatment under nitrogen of spinel type lithium-copper ferrite $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}0_4$, the oxygen loss involves the precipitation of CuFeO_2 and the formation of a non-stoichicmetric ferrimagnetic phase. Fe²⁺ ions are revealed in this spinel phase by different spectrometric analyses (Y, X, UV-vis IR). This result is corroborated by the electrochemical behaviour of these materials studied in DMSO by means of a carbon paste electrode.

I - Introduction

The effects of oxygen loss on the crystallographic and magnetic properties of $\text{Li}_{0.5}\text{Fe}_{2.5}0_4$ and CuFe_20_4 ferrites have been studied by many authors. Yet, the evolution of iron and copper oxidation states in mixed oxides as a function of sintering temperature and oxygen partial pressure has not been surely established. So, in the present work, we investigate the thermal decomposition of a mixed ferrite in nitrogen by means of non destructive mathods like X-ray fluorescence, electronic and Mössbauer spectroscopy. The detection of ferrous ions in non-stoichiometric spinel phases allows the interpretation of the electrochemical behaviour of the compounds analysed with a carbon paste electrode.

II - Materials preparation and heat-treatments

 $Li_{0,25}Cu_{C,5}Fe_{2,25}O_4$ samples were prepared from reagent-grade Li_2CO_3 , Fe₂O₃ and Cu₀. The mixtures were sintered in air at 850°C for a week. The powder willed in an agate mortar was recalcined under O_2 for 4 h and slowly cooled. Samples were characterized by X-ray-diffraction and thermomagnetic analysis.

Heat-treatment was performed in N_2 at various temperatures (750, 800, 850 and 900°C) for 2 h and ended by slow cooling in the furnace.

<u>III - Weight loss behaviour of Lio 25Cu 5Fc</u> 25-4 <u>ferrite heat-treated in nitrogen atmosphere</u>

2

III.1 - Experimental results

We have verified that the heat-treatments in N₂ did not involve any lithium or copper deficiency. Chemical analysis revealed no significant loss. It is worth noting that lithium is stabilized in $Li_{0.5}Fe_{2.5}04$ by the adjunction of substitutive elements (1). Table I includes experimental data relative to thermomagnetic analysis and X-ray diffraction measurements.

TABLE I

(*) Tableau. XXIX.

Heat-treatment	Weight-loss	Curie tempera-	lattice cons-	crystalline
2 h, in N ₂	∆m (%)	ture θ _c (°C)	tant a (Å)	phases + : spinel ; 0 : CuFeO ₂ (f)
at 750°C 800°C 850°C 900°C	0,11 0,60 0,90 1,38	539 <u>+</u> 2 534 535 536	8,359 ± 0001 8,359 8,362 8,364	+ + 0 (5,7) + 0 (8,4) + 0 (13,5)
(f) [*] Amount of in this pl	CuFeO ₂ in giv hase in relati	en by means of t on to total iron	the weight perc	entage of iron

 $CuFeO_2$ phase is identified by medium-sized diffraction lines corresponding to the planes (006) and (101). The most intense lines of $CuFeO_2$ (012) and spinel phase (311) coincide accurately. Amount of $CuFeO_2$ (f) was determined by measuring the intensity ratio of the two nearest diffraction lines ((006) for $CuFeO_2$ and (220) for the spinel phase). Standardization was obtained by $CuFeO_2$ and $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ mixtures in suitable proportions.

X-ray powder diffraction patterns recorded on a PHILIPS diffractometer associated with a MRC camera show the disappearance of $CuFeO_2$ phase above 1050°C. The weight change occurs essentially when samples are fired at constant temperature. Indeed, during a dynamic thermogravimetric analysis under nitrogen we have found that, at 900°C, the weight-loss remains inferior to Q20 % and, then, accelerates strongly. The mechanism of decomposition involves the formation of a non stoichiometric spinel phase and the precipitation of copper I ferrite $CuFeO_2$ above 750°C. The Curie temperature of samples heat-treat in N₂ remains equal to that of the slowly cooled ferrite : 536°C. Yet, a sample sintered in air at 1200°C and then quenched is characterized by a lower Curie temperature : 500°C. From this fact, we can conclude that the mechanismes of decomposition obviously depend on oxygen partial pressure.

III.2 - Spectrophotometrical investigations

IR $(200 - 1000 \text{ cm}^{-1})$

Infrared spectrum of slowly cooled $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ ferrite is in agreement with these of the disordered inverse spinels reported in literature (2) : it shows two broad and intense absorption bands round 400 and 600 cm⁻¹. The spectra of samples heat-treated in N₂ and more precisely of those fired at higher temperatures reveal over the vibrational absorption

* L'évolution en fonction de la température des diffractogrammes effectués sous hélium est présentée en annexe I.

- 135 -

a continuous absorption typical of compounds containing mobile electrons such as Fe_3O_4 and various copper manganites (3).

3

We have found the same evolution in the study of Li_{0,5}Fe_{2,5}O₄ tempering. Samples quenched in water from 1000-1200°C (i.e. from a temperature range above the order-disorder transition) exhibit complex vibrational spectra pointing out, on the one band, a large number of sharp bands in harmony with a partial order and, on the other hand, the extension of a continuous absorption in the whole frequencies range analysed, related to the formation of Fe²⁺ ions.

Electronic spectra (4000 - 50.000 cm^{-1})

The diffuse reflectance spectra of powder samples were determined at room temperature on a BECKMAN M IV spectrophotometer equipped with the integrating sphere for total reflectance measurements. All samples were analysed in reflection by KBr pellet technique.

FIG. 1 a Electronic spectrum of Fe³⁺ ion octahedrally coordinated in CuFe0₂

FIG. 1 b

Spectra of $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}0_4$. I : slowly cooled in 0_2 ; II, III, IV: heat-treated in N₂ at 750, 850, 900°C ; V:refired in 0_2 after the heat-treatment in N₂ at 900°C.

 $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ is an inverse spinel. Indeed, the 6500 cm⁻¹ band corresponding to $E \Rightarrow T_2$ transition of Cu^{2+} tetrahedrally coordinated does not appear on the electronic spectrum of stoichiometric ferrite (curves I and

L'annexe IV.a présente les spectres à plus grande échelle.

- 136 -

V, fig. 1 b). Absorption round 11000 cm⁻¹ arises from the superposition of two bands relative to Fe³⁺ and Cu²⁺ ions in Oh symetry. Beyond 12500 cm⁻¹, the absorption proceeds from other Fe³⁺ bands and copper charge transfer bands. We ascribe the progressive absorption observed under 10000 cm⁻¹ on curves II, III, IV to ferrous ions in host lattice. A reheating in oxidizing atmosphere causes the absorption to disappear (curve V). It is difficult to explain such spectra. SCHMITZ-DUMONT and all. (4) have reported remission spectra of Fe²⁺ ions in tetrahedral and octahedral coordination of oxygen lattice. While the tetrahedral spectra (Fe²⁺ in ZnO, MgCr₂O₄) show just one band around 5000 cm⁻¹ (⁵E(e³t²₂) + ⁵T₂(e²t⁴₂)), the spectra of octahedrally coordinated Fe²⁺ ions (in inverse 2-4 spinels, e.g. Zn₁,9Fe_{0,1}TiO₄) exhibit the double-band in the region between 7 and 15.10³ cm⁻¹ as the consequence of a Jahn-Teller distorsion of the ⁵Eg state. So, if Fe²⁺ occupies octahedral as well as tetrahedral sites in the spinel lattice, spectra show octahedral and tetrahedral bands clearly separated from each other.

4

Nevertheless, the spectra of Fe_3O_4 and various lithium or zinc substitued magnetites are characterized at 300 K by a continuous and very large absorption from 4000 to 30000 cm⁻¹. This phenomenon could be connected to the presence of ferrous ions in a tetrahedral environment or to the fast electronic hopping occuring between the nearest B neighbours Fe^{2+} and Fe^{3+} .

Iron X-ray fluorescence emission spectrum

Several authors have shown that for the transition metals of the iron group the shift of the $K\beta_5$ peak is in first approximation determined by the valence of the metal ion while the smaller shift of $K\beta_{1-3}$ is also subordinate to the coordination of the anions (5), (6), (7).

The iron spectra were recorded on a vacuum SRS sequential spectrometer Siemens by step scanning with intervals of $0.01^{\circ}20$. The experimental conditions were : LiF (100) analysing crystal in the second order, flow-counter with peak high discrimination, X-ray tube with a chromium anode (50 kV, 40 mA).

In table II are given the $\Delta K\beta$ shifts of the $K\beta_{1-3}$ and $K\beta_5$ lines with respect to α -Fe₂O₃ expressed in degrees 20 and eV.

The position of the Fe $K\beta_5$ peak is essentially determined by the valence of the iron present in oxidic compounds characterized by the same structure. Li_{0,25}Cu_{0,5}Fe_{2,25}O₄ slowly cooled in O₂ is an inverse spinel : Fe³⁺[Li_{0,25}Cu_{0,5}Fe_{1,25}]O₄ like Li_{0,5}Fe_{2,5}O₄ and M₃Fe₂O₄ studied by KOSTER and RIECK (5). For these compounds the Fe K β_5 peak position is the same as in Fe₂O₃. For Fe₃O₄ where Fe²⁺ is present in octahedral coordination, we observe a shift larger than that given by KOSTER (5).

Annexe IV.b : Spectres de l'ion Fe^{2+} en coordination Td et Oh.

(*) Tableau.	XXX
--------------	-----

TABLE II

5

:	Δκβ ₅		Δκβ	1-3
Compound	(20)	(eV)	(20)	(eV)
Fe ₂ 0 ₃ (1)	0	0	0	0
Fe ₃ 0 ₄ (2)	+ 0,028	- 1	+ 0,007	- 0,25
$2n \operatorname{Fe}_2^0_4$ (3)	- 0,016	+ 0,6	- 0,010	+ 0,35
$Li_{0,125}Cu_{0,5}Zn_{0,25}Fe_{2,125}q^{(4)}$	- 0,003	+ 0,1	- 0,003	+ 0,11
$L_{0,25}^{Cu}_{0,5}^{Fe}_{2,25}^{O}_{4}$ (5)				
(cooled in 0 ₂)	- 0,001	+ 0,05	- 0,001	+ 0,035
$Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ (6)			1	
(2 h in N ₂ , at 900°C)	+ 0,003	- 0,1	+ 0,002	- 0,07
$L_{0,25}^{cu}_{0,5}^{Fe}_{2,25}^{0}_{4}$ (7)				
(2 h in N ₂ , at 1000°C)	+ 0,005	- 0,2	+ 0,002	- 0,07
Error	<u>+</u> 0,0025	± 0,1	<u>+</u> 0,002	<u>+</u> 0,007
Peak positions for $Fe_2^{0}_3 : K\beta_1$	-3 ^{121,°567}		κβ ₅ 120,°	211

The oxygen coordination and the valence of iron have an effect upon the Fe K β_{1-3} shifts. According to KOSTER's method, the parameters characterizing the two oxidation states of iron in ferrites are deduced from the experimental values of $\Delta K\beta_{1-3}$ shifts for the stoichiometric inverse (2), (5) and direct (3) spinels (table II).

	octahedral Fe ²⁺	tetrahedral Fe ³⁺	octahedral Fe ³⁺
degrees 20	+ 0,007	+ 0,005	- 0,005
eV	- 0,25	- 0,20	+ 0,20

Mössbauer effect

Spectra of non-stoichiometric compounds (fig. 2 b, 2 c and 2 d) exhibit a paramagnetic doublet due to $CuFeO_2$ and shoulders on peaks 1 and 2 characteristic of solid solutions with Fe_3O_4 . Amount of $CuFeO_2$ in $LiO_{,25}Cu_{0,5}Fe_{2,25}O_4$ samples sintered in N_2 is deduced from area ratio of lines corresponding to the paramagnetic and magnetically hyperfine split compoments on spectra :

Heat-treatment : 2 h in N_2 at	800°C	850°C	900°C
% CuFe0 ₂ expressed as in table I	4,25	8,5	11,25

Room temperature spectra of $\text{Li}_{0,25}^{\text{Cu}}_{0,5}^{\text{Fe}}_{2,25}^{0}_{4}$: (a) slowly cooled; (b), (c), (d) fired for 2 h under 1 atm. N₂ at 800, 850 and 900°C.

Profile of the peak 1 : for $\text{Li}_{0,5}\text{Fe}_{2,5}^{0}_{4}$ stoichiometric (a), quenched from 1400°C (b) ; for $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}^{0}_{4}$ slowly cooled in 0_{2} (c), heat treated in nitrogen at 800 and 900°C (d), (e) (Δ : Fc³⁺, Δ : Fe²⁺).

Problem of the electronic charge distribution in mixed iron ferrites is complicated. Numerous papers are devoted to Fe_30_4 and systems issued from this ferrite. However, detection of Fe^{2+} in non-stoichiometric ferrites by Mössbauer effect has not been attempted : this study requires exact knowledge about the magnetic structure, cation distribution and mechanism of decomposition. In such ferrites where ferrous and ferric ions are present in octahedral sites, there is a fast electronic hopping with the nearest B neighbours Fe^{2+} and Fe^{3+} ; so, the oxidation state of a Fe ion at a given B site fluctuates in time between + 3 and + 2 states.

The detection of Fe II in non-stoichiometric phases issued from $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ has required a preliminary study of similar compounds in which the presence of iron in + 2 oxidation state could not be called in question. We have selected two $Li_{0,5}Fe_{2,5}O_4$ samples quenched in water from 1150 and 1400°C. The computer-fitted values for the spectral parameters of $Li_{0,5}Fe_{2,5}O_4$ are listed in table III.

Sample Li _{0,5} ^{Fe} 2,5 ⁰ 4	H _A (k0e)	H _B (k0e)	$\delta_{\mathbf{A}}$ (mm.s ⁻¹)	δ _B (mm.s ⁻¹)
slowled cooled ·	501	513	0,32	0,38
guenched from 1150°C	499	512	0,28	0,33
1400°C	510 499	486 453	0,36 0,30	0,44 0,65

TABLE III

(*) Tableau. XXXI.

The Mössbauer data for $\text{Li}_{0,5}\text{Fe}_{2,5}0_4$ quenched from 1400°C obviously disclose the presence of Fe²⁺ in this sample (fig. 3 b). The increasing number of B subspectra corresponding to different values of the hyperfine field is characteristic of solid solutions with Fe₃0₄.

A similar behaviour is observed by FRANKE and ROSENBERG (8) for the $Fe_{3-x}Co_xO_4$ compositional series. The position and shape of the A line in these substitued magnetites are not much influenced by the gradual change of the Fe^{2+} concentration on the B sites. Therefore, the different subspectra belong to the B-sites Fe ions. The values of the corresponding hyperfine fields and the compositional dependance of the B lines can be explained as a result of the random distribution over the B sites and of a fast electron transfer between neighbouring Fe^{2+} and Fe^{3+} ions.

The room temperature spectrum of $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}\text{O}_4$ slowly cooled consists of two patterns : A (H_{A} = 491 kOe, δ_{A} = 0,27 mm.s⁻¹) and B (H_{B} = 512 kOe, δ_{B} = 0,37 mm.s⁻¹). Heat-treatments in nitrogen at increasing temperatures involve a progressive and asymetric broadening of the B pattern outer lines due to the formation of a subspectrum with an hyperfine field of 485 kOe (fig. 3 d and 3 e). Increasing of sintering temperatures emphasizes this phenomenon proving the occurence of a fast electron hopping $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ in the samples : a compound sintered in N₂ at 1000°C shows a deformation of the peaks 1 and 2 corresponding to an evolution of the hyperfine field of iron on B sites from 512 to 460 kOe.

III.3 - Reaction occuring during heat-treatment

The various experiments performed on $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}0_4$ samples sintered in nitrogen atmosphere lead us to the conclusion that oxygen deficiency induces the precipitation of CuFe0_2 phase and the formation of a non-stoichiometric ferrimagnetic spinel. Two cases can be considered according to the presence of ferrous or cuprous ions in the spinel phase. Corresponding reactions are expressed as :

$Li_{0,25}^{+}Cu_{0,5}^{2+}Fe_{2,25}^{3+}O_{4} \rightarrow xCuFeO_{2}^{+}Li_{0,25}^{+}Cu_{0,5-x-2y}^{2+}Cu_{2y}^{+}Fe_{2,25-x}^{3+}O_{4-\frac{5}{2}x-y}^{-}+(\frac{2y+x}{4})O_{2}^{-}$	(I)
$\mathrm{Li}_{0,25}^{+}\mathrm{Cu}_{0,5}^{2+}\mathrm{Fe}_{2,25}^{3+}\mathrm{O}_{4} \rightarrow \mathrm{xCuFe0}_{2}^{+}\mathrm{Li}_{0,25}^{+}\mathrm{Cu}_{0,5-x}^{2+}\mathrm{Fe}_{2y}^{2+}\mathrm{Fe}_{2,25-x-2y}^{3+}\mathrm{O}_{4-\frac{5}{2}x-y}^{+}\mathrm{O}_{2}^{+}\mathrm$	(11)

x is determined by X-ray and Mössbauer analyses. The two values obtained (§ III.1, table 1 and § III.2) are in good agreement. Nevertheless, we think that the results obtained by the second method are more accurate. X-ray diffraction become relatively imprecise if the cation distribution of tetrahedral sites changes (the structure factor of the (220) line is equal to the sum of the atomic factors of ions located on A sites). For a mole $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$, x is given by : 2,25.10⁻².f. Thus, y can be numerically obtained from x and the experimental value of Δm (table IV).

∆m (%)	x	1	У	
0,11	. - .		-	1
0,60	0,10	~	0,03	ŀ
0,90	0,19		0,033	
1,38	0,25	~	0,053	
	Δm(%) 0,11 0,60 0,90 1,38	Δm(%) x 0,11 - 0,60 0,10 0,90 0,19 1,38 0,25	∆m(%) x 0,11 - 0,60 0,10 0,90 0,19 1,38 0,25	$\Delta m(%)$ xy0,110,600,10 \sim 0,030,900,19 \sim 0,031,380,25 \sim 0,05

TABLE IV (*) Tableau. XXXII.

Reaction II seems preponderant. The analyses of Mössbauer and X-ray fluorescence iron K β spectra distinctly reveal Fe²⁺ increasing with rising sintering temperature. So, the ferrimagnetic spinel phases formed during heat-treatments in nitrogen atmosphere are mainly equivalent to solid solutions of lithium and copper ferrites with Fe₃O₄. However, we cannot exclude the presence of a small amount of Cu⁺ on A sites in spinel phase.

IV - Electrochemical behaviour

First, let us report the essential conclusions of a survey on electrochemical behaviour in dimethylsulfoxide of some oxides such as CuO, Cu₂O, FeO, Fe₂O₃, CuFe₂O₄ and CuFeO₂ dissolved in a carbon-paste electrode (9). Current-potential curves obtained with copper oxides in the potential range investigated + 0,2 - + 1 V show two anodic A₁ and cathodic C₁ peaks due to the system Cu²⁺/Cu⁺ (1) characterized by $\frac{1}{2}$ (E_{ox1} + E_{red1}) = 0,70 + 0,02 V (E_{ox1} and E_{red1} are respectively potential values of A₁ and C₁ peaks). For Fc³⁺/Fc²⁺ : $\frac{1}{2}$ (E_{ox2} + E_{red2}) = 0,50 + 0,02 V.

Identical analysis of mixed oxides $CuFe_20_4$ and $CuFe0_2$ gives the following results : if the first sweep is anodic (+ 0,2 \rightarrow + 1 V), the two separate peaks A_2 and A_1 corresponding to the oxidation of Fe²⁺ and Cu⁺ are present on voltammogram ; cathodic peaks appear when the sweep is inversed.

When the first anodic sweep is started from + 0,4 V, the curve relative to the copper II ferrite $CuFe_20_4$ exhibits none of the anodic peaks ; the starting potential of the first anodic sweep + 0,4 V is located just before the peak due to the oxidation of ferrous ions. The anodic curve obtained with the copper I ferrite $CuFe0_2$ shows only the peak A₁ in the range + 0,4 - + 1 V.

The presence of A_2 and A_1 peaks in the first experiment can be explained by the previous reduction of ferric and cupric ions in the potential range + 0,2 - 0,4 V.

We can conclude that the redox behaviour of non-stoichiometric copper ferrites dissolved in a carbon-paste electrode may be a qualitative method for the detection of Fe(II) and Cu(I) in these materials.

Consequently, we have investigated the electrochemical behaviour of non-stoichiometric ferrites issued from $\text{Li}_{0,5}\text{Fe}_{2,5}0_4$ and $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}0_4$ in which we have disclosed Fe(II) by means of Mössbauer spectrometry.

The study has been performed in a carbon-paste electrode similar in type to that described by VALLOT (10). Paste was prepared by homogenizing in an agate mortar a mixture of graphite (200 mg) and electroactive substance (0,5 mg) wetted with a binder (DMSO + LiCl IM + HCl 10^{-1} M).

Cyclic voltammograms of $\text{Li}_{0,5}\text{Fe}_{2,5}0_4$ samples at 0,25 mV.s⁻¹ : slowly cooled in 0_2 (a), quenched from 1150 and 1400°C (b), (c).

(*) Fig. 38.

The investigation of these curves confirms :

- the absence of the peak Λ_2 on the first anodic sweep obtained with Li0,5Fe2,504 slowly cooled in O₂ (fig. 4 a)
- a correlation of peak current with ferrous ions content in non-stoichiometric samples (fig. 4 b and 4 c).

All current-potential curves show the same establishment mode : i.e., the weak peak A_2 observed on the first anodic sweep becomes progressively larger on further cyclic voltammograms (potential peak shifts do not exceed 0,05 V).

Cyclic voltammograms of $\text{Li}_{0,25}\text{Cu}_{0,5}\text{Fe}_{2,25}^{0}$ at 0,25 mV.s⁻¹ : a, slowly cooled in 0_2 , b, c, d, c, heat treated in N_2 at 750, 800, 850 and 900°C.

(^{*}) Fig. 39.

The electrochemical study of these non-stoichiometric lithium-copper ferrites corroborates conclusions drawn from Mössbauer spectrometry analysis : presence of Fc(II) in spinel ferrimagnetic phase and of Cu(I) mainly in CuFeO₂. Indeed, we can observe on all the first oxidation curves of voltammograms, A_2 and A_1 respectively located at + 0,52 V and 0,71 ± 0,02 V (fig. 5 b to 5 e). The intensity of the A_1 peak current increases with the amount of CuFcO₂ paramagnetic phase. Moreover, A_2 peak relative to samples sintered at 800 and 850°C (fig. 5 c and 5 d) has a similar intensity and then increases (fig. 5 e). Indeed, Mössbauer spectrometry and X-ray fluorescence analyses indicate a slight increasing of ferrous ions content when we rise sintering temperature from 850°C to 900°C.

At present, the electrochemical study of such materials containing both iron and copper in their two oxidation states is confined to the investigation of the first anodic sweep started just before the Fe(II) oxidation peak. Nevertheless, this merely qualitative analytical method is a new approach to the determination of copper and iron oxidation states in copper ferrites such as $Cu_{0,5}Fe_{2,5}0_4$. According to the study of the electrochemical behaviour of this compound which is stated by numerous authors to be a copper I-ferrite $Cu_{0,5}^+Fe_{2,5}^{-1}0_4$, we can now conclude that, in this ferrite, a large amount of iron is in + 2 oxidation state (the sample was prepared as follows : a mixture of cupric and ferric oxides are prefired at 900°C for 24 h ; after grinding it was sintered in air at 1300°C for 2 h and quenched into liquid nitrogen).

It is indispensable to insist upon the fact that one must be cautious of drawing hasty conclusions from an interpretation of these curves. Indeed, many points must be studied thoroughly :

- the effect of the material preparation and heat-treatments.
- the influence of the potential range investigated upon the intensity of peaks observed on successive voltammograms for a given electroactive substance.
- the possible influence of copper II on ferrous ions (we have observed different electrochemical behaviours for samples prepared by the ceramic method or in the wet way).
- the evolution of current-potential curves in terms of copper content.

We are therefore developing this study further into that direction by analysing stoichiometric and non-stoichiometric ferrites of the $Li_{0,5}Fe_{2,5}O_4$ -CuFe₂O₄ solid solution, and some terms of the system CuFe₂O₄-Fe₃O₄. Mössbauer spectra of these compounds are easily interpretable. A complementary analysis of samples structure must imperatively support electrochemical study as we have endeavoured to do it in this article.

Acknowledgements

The authors would like to express their cordial thanks to Pr. VARRET (University of LE MANS) for this assistance in the Mössbauer study and to Mr. BEQUIGNAT for X-ray measurements.

References

- B. LEREBOURS, J. DURR, J.C. TELLIER and M. LENGLET, Ann. Chim. Fr. <u>4</u>, 347 (1979).
- 2. J. PREUDHOMME, Thèse LIEGE, (1970).
- 3. J. JARRIGE, Thèse LIMOGES, (1979).
- 4. H. BROKOPF, D. REINEN and O. SCHMITZ-DUMONT, Z. physik. Chem. Neue Folge 228, 68 (1969).

5. A.S. KOSTER and G.D. RIECK, J. Phys. Chem. Solids 31, 2505 (1970).

- 6. A.S. KOSTER and H. MENDEL, J. Phys. Chem. Solids 31, 2511 (1970).
- K.M. KOLOBOVA, S.A. MEMNONOV and E.V. AGAPOVA, Fiz. tverd Tela <u>10</u>, 729 (1968).
- 8. H. FRANKE and M. ROSENBERG, J. Magn. Magn. Mat. 4, 186 (1977).
- 9. P. FOULATIER and M. LENGLET, C.R. Acad. Sci. (to press), (1979).
- R. VALLOT, J. GAL, R. MESSINA and L.T. YU, International Society of Electrochemistry (25 th. Meeting, Brigton, England, 22-27-9-1974, p. 454-457).

Evolution du spectre infrarouge de Li_{0,25}Cu_{0,5}Fe_{2,25}0₄ en fonction de la température de recuit en atmosphère d'azote. a) refroidi lentement sous oxygène, b) recuit sous N₂ à 750°C, c) 800°C, d) 850°C, e) 900°C.

(BUS)

ANNEXE III

а

a

b

С

<u>ANNEXE IV.a</u> : Evolution du spectre de réflectance diffuse de $Li_{0,25}Cu_{0,5}Fe_{2,25}O_4$ en fonction du traitement thermique : a) refroidissement lent sous oxygène, b) recuit en atmosphère d'azote à 900°C, c) recuit sous 0_2

- 149 -

Abb.5. Remissionsspektren des Fe^{2+} -Ions in tetraedrischer Snuerstoff-Keordination: 1., 11. $(Fe_x Mg_{1-x})^{(4)} (Cr_x)^{(6)} O_4 (x = 0.05; 0.01)^{\bullet}$ [Spinell]; III. $(Fe_{0.01} Zn_{0.90})^{(4)} O$ [Wurtzit] (77°K)

Abb.4. Remissionsspektren des Fe^{2+} -Ions in einer oktaedrischen Sauerstoffumgebung: I. $(Zn)^{(0)}(Fe_{0,05}Zn_{0,95}T_i)^{(0)}O_i$; II., III. $(Zn)^{(0)}(Fe_{0,1}Zn_{0,9}T_i)^{(0)}O_4$ (295° und 77°K) (inverse 2,4-Spinello); IV. $(Fe_{0,1}Mg_{0,9}T_i)^{(0)}O_3$ (Ilmenit); V. $(Fe_{0,24}Mg_{1,75})^{(0)}(Si)^{(0)}O_4$ (natürl. Olivin)

Abb. 6. Remissionsspektren des Fe^{2+} -Ions in oxidischen Spinellen: I. $Fe_{0,1}Zn_{0,9}$ - Al_2O_4 (77°K); II. $Fe_{0,1}Mg_{0,9}Al_2O_4$ (77°K); III. $Fe_{0,6}Mg_{0,4}Al_2O_4$ (295°K); IV., V. $Fe_{0,1}Mg_{0,9}Ga_2O_4$ (77° und 295°K); VI. $Fe_{0,1}Mg_{1,9}SnO_4$ (77°K) – die zweite Oktaederbande geht in einem für das Wirtsgitter churakteristischen UV-Anstieg unter

D4APR7S H. BROKOPF, D. REINEN et O. SMITZ-DUMONT, Z. physik. Chem. Neue Folge , 228 , 68 , (1969) .

CONCLUSIONS.

Ce mémoire présente deux aspects différents de l'application des méthodes spectroscopiques dans l'étude du solide inorganique:

L'utilisation conventionnelle de la fluorescence X et de la microsonde
 (cas de l'étude du Permalloy) .

- L'application particulière de la fluorescence X à la détermination du degré d'oxydation d'un ion émissif par la mesure du déplacement de ses bandes d'émission K $_{\beta}$.

L'interprétation de l'influence du magnésium introduit dans le Permalloy 4-79 en tant qu'addition désulfurante sur la perméabilité magnétique impliquait la mise au point d'une méthode de dosage rapide de cet élément.

Abordée au moyen de différentes techniques d'analyse physique, l'étude conduit aux conclusions suivantes:

- La fluorescence X séquentielle s'avère inadaptée.

- La fluorescence X multicanale peut convenir pour doser le magnésium à des teneurs supérieures à 120 p.p.m.

- La spectrométrie UV - visible avec excitation par décharge luminescente conduit aux meilleurs résultats avec une limite de détection de 2 p.p.m. et des courbes d'étalonnage linéaires.

- La spectrométrie d'étincelle présente l'inconvénient d'une dispersion des résultats plus importante.

La relation entre perméabilité maximale du Permalloy et teneur en magnésium a été déterminée: $\mu_{M} = -1,5 \times 10^2$ Mg p.p.m. + 280 000. Elle correspond à la formation, au sein de la matrice austénitique de ces alliages, d'inclusions où sont combinés le soufre et le magnésium. Ces inclusions provoquent un effet d'ancrage des parois des domaines de WEISS et justifient la dégradation des propriétés magnétiques en relation avec les additions de magnésium.

La combinaison du soufre et du magnésium explique l'effet bénéfique des additions de magnésium sur la forgeabilité des alliages à base de nickel contenant du soufre, puisque ce dernier élément n'est plus libre pour donner naissance à des composés fragilisants.

- 151 -

L'étude du spectre d'émission Fe K β dans différents oxydes de structure spinelle M Fe₂ O₄ a permis, d'une part, de préciser l'influence des paramètres physicochimiques : indice de coordination et degré d'oxydation de l'ion émissif, nature de l'ion M²⁺ sur le déplacement des bandes K β_{13} et K β_{5} , d'autre part, de mettre au point une méthode d'analyse qualitative du fer II dans les ferrites.

Les déplacements chimiques sont faibles , de l'ordre de quelques dixièmes d'électron - volt , impliquent l'emploi d'un matériel hautement stabilisé et la définition de conditions expérimentales sévères.

Les conditions retenues assurent la mesure du déplacement des bandes K $_{\beta}$ et K $_{\beta}$ l-3 du fer et du cuivre avec une précision minimale de 0,1 e.V.

La validation de la méthode nécessite une bonne connaissance de l'environnement de l'ion émissif et , dans ces conditions , il s'avère possible de déceler dans un ferrite une teneur en fer II de l'ordre de 3% (exprimée par rapport au fer total).

Les résultats relatifs au spectre Cu Kß certes trop fragmentaires (en raison de l'état actuel de la connaissance des oxydes mixtes dans lesquels le cuivre est monovalent) ne permettent pas d'envisager le développement de cette méthode pour la détermination du degré d'oxydation du cuivre. L ' E.S.C.A. s'avère une technique beaucoup mieux adaptée et beaucoup plus fructueuse.

L'application de la spectrométrie d'émission X à la détermination du degré d'oxydation du fer dans différents ferrites de cuivre stoechoimétriques tels $Cu_{0,5} Fe_{2,5} O_4$ et les composés cubiques de la solution solide $Cu_{1-x} Fe_{2+x} O_4$ ($0 < x \le 0,5$) ou non stoechoimétriques conduit aux résultats suivants:

Le ferrite Cu_{0,5} Fe_{2,5} 0₄ longtemps considéré comme un ferrite cuivreux ou une solution solide entre le ferrite cuivrique et la magnétite est un ferrite dans lequel le fer et le cuivre sont dans leurs deux états d'oxydation possibles. La spectrométrie X Dans ce cas a permis de déceler la présence de cuivre I confirmée au moyen de l'E.S.C.A.

- La modification des propriétés physiques (évolution de la température de Curie et changement du mécanisme de conductivité) observée vers x = 0,25 - 0,3 dans la solution solide $1-x \operatorname{CuFe}_2 O_4 - x \operatorname{Fe}_3 O_4$ peut être interprétée par des déplacements de l'équilibre $\operatorname{Cu}^{2+} + \operatorname{Fe}^{2+} \stackrel{1}{\xrightarrow{+}} \operatorname{Cu}^{+} + \operatorname{Fe}^{3+}$:

pour les valeurs de x inférieures à 0,3 , la double migration du cuivre vers les sites tétraèdriques et du fer vers les sites octaèdriques s'accompagne du déplacement de l'équilibre rédox dans le sens 1 ; pour les valeurs de x croissantes à partir de 0,3 - 0,35 , les phénomènes s'inversent : l'équilibre rédox se déplace dans le sens " 2 " (la teneur en cuivre I décroit et celle en fer II augmente très rapidement) .

Dans tous ces composés (préparés à l'air) le fer et le cuivre sont également dans leurs deux états d'oxydation possible.

La décomposition des ferrites mixtes contenant du cuivre s'effectue suivant des mécanismes différents selon la nature de l'atmosphère. Sous une pression partielle d'oxygène extrèmement faible , la décomposition du ferrite $\text{Li}_{0,25}$ $\text{Cu}_{0,5}$ $\text{Fe}_{2,25}$ 0 entraine l'apparition du fer II dans la phase ferrimagnétique et celle du cuivre I dans CuFe0₂ .

BIBLIOGRAPHIE DU CHAPITRE I

(I) R.M. BOZORTH , 6° édition, Van Nostram, New York.

(2) F. PFEIFER, Z Metallkunde, vol. 57 (1966), 295.

(3) J. HESLOP et A.R. KNOTT. Metals and Materials, Fev. 1971, 59 - 62.

(4) H. FEICHTINGER et J. DURR , Le Vide 1974, 169, 283.

(5) W. GRIMM, Spectrochim. Acta, 23 B, 443 (1968).

(6) P.W.J.M. BOUMANS, Anal. Chem. 44, 1219 (1972).

(7) J. DURR et B. VANDORPE , 21^{ème}C.S.I. , 345, Cambridge (1979).

(8) J. DURR et B. VANDORPE, Spectrochim Acta, B (1980), à paraitre.

(9) J. DURR, B. VANDORPE et M. LENGLET, Ann. Chim. Fr. 1980 -

(10) L. NEEL Ferromagnetism Bozorth, 6° edition, Van Nostram, New York, 488.

BIBLIOGRAPHIE DU CHAPITRE II

(1)	A.S. KOSTER et G.D. RIECK, J. Phys. Chem. Solids, 1970, 31, 2505.
(2)	PARIS, 1978, <u>t. 286</u> , 481.
(3)	J. LOPITAUX, Thèse de docteur-ingénieur, ROUEN, 1973.
(4)	J. PREUDHOMME, Thèse de doctorat es sciences physiques, LIEGE, 1970.
(5)	E.W. GORTER, C.R. Acad. Sc. PARIS, 1950, <u>t. 230</u> , 192.
(6)	J.W. YOUNG et J. SMIT, J. appl. Phys., 1971, <u>42</u> , 2344.
(7)	J. HUBSCH, G. GAVOILLE et J. BOLFA, J. Appl. Phys., 1978, 49, 1363.
(8)	F.S. STONE, Bull. SOC. chim. Fr., 1966, 819.
(9)	F.H. CHAPPLE et F.S. STONE, Proc. Brit. Ceram. Soc., 1964, 1, 45.
(10)	J.ARSENE, J.C. TELLIER, M. PERRIN et M. LENGLET, Materials Chemistry,
	1979, 4, 689.
(11)	J. ARSENE, Thèse de Doctorat es sciences physiques, ROUEN, 1979.
(12)	A.S. KOSTER et H. MENDEL, J. Phys. Chem. Solids, 1970, <u>31</u> , 2511.
(13)	K.M. KOLOBOVA, S.A. MEMNONOV, et A.V. AGAPOVA, Soviet Physics Solid
	state, 1968, <u>10</u> , 571.
(14)	A.MILLER, J. appl. Phys., 1959, <u>30</u> , 24S.
(15)	(16) A. NAVROTSKY et O.J. KLEPPA, J. inorg.nuc. Chem., 1967, <u>29</u> , 2701; 1968, <u>30</u> , 4795.
(17)	J.D. DUNITZ et L.E. ORGEL, J. Phys. Chem. Solids, 1957, 3, 20.
(18)	J. LOPITAUX et M. LENGLET, J. inorg. Nucl. Chem., 1975, <u>37</u> , 334.
(19)	J. LOPITAUX et M. LENGLET , fiche ASTM.
(20)	M. ROMAND, J.S. SOLOMON, W.L. BAUN, X-ray Spectrometry, 1972, 1, 147.
(21)	M. ROMAND, M. ROUBIN, Colloque SIEMENS Rayons X et Matière, Monaco, mai
(1973, 269.
(22)	N.A. TOPOPOV, A. BORISENKO, Dok. Akad. Nauk. SSSR, 1950, 71, 69.
(23)	E. KORDES, E.ROTTIG, Z. anorg. allgem. Chem., 1951, <u>264</u> , 34.
(24)	F. BERTAUT, C. DELORME, C.R. Acad. Sci., 1953, 236, 74.
(25)	E.W. GURTER, Adv. in Phys., 1957, 6, 386.
(20)	J. THERY, R. CULLONGUES, C.R. Acad. Sci., 1962, 254, 685.
(2/)	N.S. SUHMAHL, F. MULLER, Arch. Eisenhuettenw., 1964, <u>35</u> , 527.
(20)	5. MITAHAKA, Y. KINU, Jab. J. Appl. Phys., 1965, <u>4</u> , 310.
(29)	U.F. JEFFERSUN, J. ADDI. PNYS., 1965, <u>36</u> , 1165.

(30) K. OHBAYASHI, S. IIDA, J. Phys. Soc. Japan, 1967, 23, 776.

(31) M.LENGLET, Rev. Chim. Min., 1968, 5, 1169.

(32) A. BERGSTEIN, Mat. Res. Bull., 1968, 3, 787.

(33) J. MEXMAIN , Thèse PARIS, 1968 et Ann. Chim., 1971, <u>6</u>, 297. (34)

(35) E. KITZINGER, Z. SIMSA, Czech. J. Phys., 1968, B.18,955.

(36) Z. SIMSA, IEEE Transactions magnetics, 1969, 3, 592.

(37) L. CERVINKA, Z. SIMSA, Czech. J. Phys., 1970, B 20, 470.-

(38) Z. SIMSA, V. HOUDEK, Czech. J. Phys., 1970, B.20, 301.

- (39) A. NAGARAJAN, A.H. AGAJANIAN, J. Appl. Phys., 1970, 41, 1642.
- (40) S. TSITSENOVSKAYA, Latv. PSR Zinat. Akad Vestis, Fiz. Tech. Zinat. Ser., 1972, 3, 64.
- (41) N.M. ANDREEV, Bulg. J. Phys., 1975, 3, 215.
- (42) J. DURR, A. D'HUISSER, B. LEREBOURS, J.C. TELLIER, J.P. BONNELLE etM. LENGLET , à paraitre.
- (43) J. LOPITAUX, Thèse ROUEN, 1973.
- (44) P. FOULATIER et M. LENGLET, C.R. Acad. Sci., 1979, 289, 125.

