Nº d'ordre: 914

50376

1981

116

50376 1981 116

THÈSE

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE TROISIEME CYCLE

Spécialité : Electronique

Mention Microonde

par

Abou Arimyaou ZOUNON

CONTRIBUTION A LA REALISATION D'UN LASER SUBMILLIMETRIQUE APPLICATION A LA CARACTERISATION DE QUELQUES SUBSTANCES MESOMORPHES

Soutenue le 10 juillet 1981 devant la Commission d'Examen

Membres du Jury

M. BRIDOUXM. CONSTANTM. CHAPOTONM. DANGOISSEM. DECOSTER

Président Rapporteur Examinateur Examinateur Examinateur

ERRATA

Page 18	Ligne 16	Lire	Seleniure
Page 23	Ligne 7, 14, 18, 2	5 "	- Interférogramme
Page 24	Ligne 22		
Page 36			
Page 23	Ligne 3, 27, 28, 2	29 "	
Page 24	Ligne 1		Interféromètre
Page 60	Ligne 6	11	Mésophase
Page 64	Ligne 20	Ti	Smectique
Page 65	Ligne 22		the second smootigue
	coefficients d'ab	sorption a	et a en phases smeetique
	(CB ₈) et nématique	e (CB ₅ , CB ₇	, CB ₈ , PCH ₇) ainsi que

А

à INES à LYNDA à PAULINE

٠

-3

.

.

à mes Parents

Ce travail a été effectué au centre hyperfrèquence semi-conducteur (CHS) de l'université des Sciences et Techniques de LILLE.

J'exprime toute ma reconnaissance à Monsieur le Professeur CONSTANT qui m'a accueilli dans son laboratoire et qui m'a proposé ce sujet de recherche.

J'exprime aussi ma reconnaissance à Monsieur le Professeur CONSTANT pour l'appui logistique qu'il m'a apporté à différents moments et qui m'a été d'une aide très précieuse.

. Qu'il trouve à travers ces quelques lignes l'expression de ma plus profonde gratitude.

Je suis heureux de pouvoir exprimer toute ma reconnaissance à Monsieur le professeur BRIDOUX pour l'honneur qu'il a bien voulu me faire en présidant le jury.

Je remercie Monsieur DANGOISSE pour l'intérêt qu'il porte à mon travail et d'avoir accepté de se joindre au jury.

Je remercie également Monsieur CHAPOTON qui a bien voulu accepter de se joindre au jury.

J'exprime toute ma reconnaissance à Messieurs LEMAIRE et HERLEMONT pour l'aide précieuse qu'ils m'ont apportée durant ce travail.

Mes remerciements vont également aux membres du laboratoire, de l'équipe diélectrique, en particulier à Messieurs Bernard POURPRIX, J.P. PARNEIX, DECOSTER Didier et BOUAMRA Hamid pour l'aide qu'ils m'ont apporté**a**durant mon travail. Je voudrais également exprimer toute ma reconnaissance à Messieurs JENNEKIN, ANDRIES et AICHON du service de mécanique pour l'aide très précieuse qu'ils m'ont apportée durant mon travail.

Je remercie très vivement Messieurs DEHORTER et PLUQUET qui ont assuré la reproduction de ce manuscrit.

TABLE DES MATIERES

Introduction

.

<u>CHAPITRE I</u>	Principe de fonctionnement des lasers infra rouge lointain ^s o Ptiquement pompés.			
I)	Le modèle moléculaire et les mécanismes fonda-			
	mentaux.			
(A)	Lescription du modèle			
a):	Transfert radiatif,			
b)	transferts non radiatifs			
B)	Equations d'évolution des populations			
II)	La puissance IRL			
III)	Influence des paramètres expérimentaux			
I):	les paramètres liés au faisceau de pompe			
2)	les paramètres liés à la cavité IRL			
3)	Le couplage de sortie			
4)	: les paramètres liés au gaz moléculaire.			
CHAPITRE II	: Dispositif expérimental			
I)	: Le laser de pompe : le laser à CO ₂			
II)	: Le système optique			
III)	: La cavité IRL			
I)	: type de cavité			
2)	: alignement et collimation du faisceau IR dans			
	la cavité			
a)	alignement			

b): collimation du faisceau IR dans la cavité

IV)	:	Détermination de la longueur d'onde de la
-		rale IRL
1) :	les rales du laser de pompe
2)) :	les raies submillimetriques
a) :	mesure de la longueur d'onde de la raie IRL
b) :	stabilisation du laser à CO ₂
I) :	principe de l'asservissement
2) :	Description de l'asservissement
31) :	utilisation
CHAPITRE II	<u>:</u>	Performancesde la source
I)	:	les raies obtenues
II)	:	l'influence de la pression sur la puissance IRL
III)	:	l'influence de la puissance de pompe sur la
		puissance IRL .
I) :	PIRL = f (PIR) à pression constante
2) :	PIRL = f (PIR) à pression optimale
IV)	:	l'influence du trou de couplage sur la puissance
		IRL
(V	:	L'interferogramme de la cavité diélectrique
CHAPITRE IV	:	Application à la caractérisation de quelques
		substances mésomophes
I)	:	Méthode de mesure
. I) :	Principe de la mesure
2):	banc de mesure
3):	vérification de la validité de la méthode
· II)	:	Application de la méthode à la caractérisation
		des cristaux liquides
I) :	généralités
2	: (le paramètre d'ordre
3) :	les corps étudiés

.

III)

- : les résultats expérimentaux
- I) : Influence du champ magnétique
- 2) : Spectres IRL en phases nématique et smectique A orientés
- 3) : Etude de l'anisotropie d'absorption IRL en fonction de la température
- 4) : Anisotropie d'absorption et paramètre d'ordre
- 5) : conclusion

Conclusion générale

Bibliographie.

INTRODUCTION

Le laser submillimétrique est une source dont l'intérêt croit sans cesse car il peut être utilisé dans divers domaines, notamment dans

- La mesure de densité électronique du plasma (22)
- L'obtention de sources accordables en fréquence (23)
- La spectroscopie (23)
- La métrologie des fréquences
- L'étude de double résonnance infra rouge submillimétrique (24)
- La séparation isotopique
- L'utilisation comme oscillateur local en radio astronomie
- Les techniques Radar
- La caractérisation en infra rouge lointain des matériaux (25)

Les premières études sur les lasers submillimétriques à décharge électrique datent de 1962 (HCN, H₂₀, ... etc) (I, 2, 3, 4). Mais peu de molécules peuvent être excitées de cette manière car apparaissent de nombreux problèmes liés à la dissociation des molécules, au temps de relaxation, à l'excitation non sélective des niveaux de vibration - rotation.

En 1970, les premiers lasers submillimétriques optiquement pompés (5), firent leur apparition. Ils présentent de nombreux avantages, comparés aux précédents (nombre élevé de raies, suppression des fluctuations associées à la décharge, pompage sélectif des niveaux, Etc ...).

Ces lasers sont à l'origine de plusieurs milliers d'émissions avec des puissances variant du microwatt à quelques milliwatts en continu, ou de l'ordre de quelques dizaines de kilowatts en pulsé.

Une source submillimétrique à cavité métallique a été

récemment mise au point dans notre laboratoire par Depret (6). Si cette source donne de bons résultats dans la gamme basses fréquences du domaine submillimétrique ($\lambda >$ 300 um), en haute fréquences de ce domaine ses performances sont médiocres.

Nous avons eu pour tâche de remédier à de tels inconvénients, d'étendre le domaine d'utilisation de la source aux hautes fréquences, afin de caractériser quelques substances mésomorphes dans tout le domaine submillimétrique.

Le premier chapitre rappelle les mécanismes fondamentaux pouvant expliquer le fonctionnement des lasers submillimétriques optiquement pompés.

Dans le deuxième chapître, nous décrirons la cavité diélectrique que nous avons été amené**e**à construire pour améliorer les performances du laser dans la partie haute fréquence. du domaine submillimétrique.

Nous décrirons également les améliorations apportées au dispositif expérimental.

Dans le troisième chapître, nous analyserons les performances de la source submillimétrique ainsi améliorée.

Le quatrième chapître sera consacré à l'utilisation de cette source pour la caractérisation de substances mésomorphes, quelques cyanobiphényls et dérivés cyclohexanes, en phases smectique A et nématique. 2

CHAPITRE I

Principe de fonctionnement des lasers infra rouge lointains

optiquement pompés

PREMIER CHAPITRE

C'est vers I970 que les premiers lasers submillimétriques optiquement pompés firent leur apparition (5). Depuis lors, de nombreuses raies donnant une puissance de sortie stable de quelques milliwatts ont été découvertes; leur domaine spectrale s'étend de 40 µm à 2 mm environ.

Un laser infra rouge lointain optiquement pompé se compose de deux parties :

- <u>Le laser de pompe infra rouge</u> : Le pompage optique est réalisé par un laser à CO₂ dont le faisceau est introduit dans la cavité laser infra rouge lointain contenant le gaz moléculaire.

- <u>la cavité résonnante infra rouge lointain de type guide d'onde</u> est formée d'un tube cylindrique ayant à chaque extrémité un miroir percé d'un trou en son centre, l'un permettant l'introduction de faisceau de pompe dans la cavité, l'autre transmettant vers l'extérieur une partie de l'intensité de l'infra rouge lointain contenue dans cette cavité.

Dans ce chapitre nous décrirons le modèle moléculaire et les mécanismes fondamentaux de relaxation, puis nous discuterons de l'évolution en fonction des paramètres moléculaires des populations des niveaux d'énergie et de la puissance infra rouge lointain, enfin nous aborderons le problème des paramètres expérimentaux.

I - Le modèle moléculaire et les mécanismes fondamentaux.

A) Description du modèle

Le modèle que nous décrirons est dû à Tucker (7)

Celui-ci peut être décrit à partir de la figure I.4 qui illustre le diagramme énergétique d'une molécule de type toupie symétrique et le processus de base conduisant à l'inversion de population et l'émission laser en infra rouge lointain (7, 8).

Chacun des états vibrationnels est constitué de sousniveaux rotationnels que nous repérons par les nombres quantiques (J, K). La séparation énergétique des sous-niveaux rotationnels est faible et est généralement inférieur à KT.

a) Transfert radiatif

A l'équilibre thermique, les populations suivent la loi de Maxwell - Boltzmann.

Le peuplement sélectif d'un sous-niveau rotationnel particulier dans un état vibrationnel excité résulte de la coïncidence entre une raie d'absorption de rotation vibration d'une molécule polaire et la raie d'émission du laser de pompe infra rouge et peut conduire à une inversion de population.

Si le gain du milieu est supérieur aux pertes du laser, une oscillation dans le domaine submillimétrique s'établit dans la cavité.

b) Transferts non radiatifs

1) Les mécanismes de relaxation vibrationnelle

La désexcitation collisionnelle des molécules vers le niveau vibrationnel fondamental s'éffectue par des mécanismes qui peuvent se ranger en deux catégories :

- les collisions entre molécules

Les collisions intermoléculaires donnent lieu à des transferts d'énergie vibration - translation et vibration rotation. Elles sont caractérisées par le taux de relaxation $\Gamma_{V-T/R}$ · Il est proportionnel à la pression ($\Gamma_{V-T/R} \sim P$) Son ordre de grandeur de $40^3 Mc^{-1}$ Torr (9)

- les collisions avec les parois de la cavité

Les molécules peuvent se désexciter sur les parois de la cavité et l'énergie de vibration est diffusée vers l'éxtérieur. Ce mécanisme est caractérisé par le taux de diffusion Γ_D . Il est inversement proportionnel à la pression et est fonction du diamètre de la cavité ($\Gamma_D \sim \frac{\Lambda}{Pa}$). Son ordre de grandeur pour une cavité de 2,5 cm de diamètre est de $IO^3 \sec^{-I} Torr^I cm^2$.

Le taux de désexcitation vibrationnelle Γ_v est égal soit au taux de vibration-translation et vibration-rotation soit au taux de diffusion .

Lorsqu'il a une valeur élevée, son effet est favorable sur le rendement du pompage optique; en effet, cette désexcitation limite le stockage des molécules dans le niveau vibrationnel excité.

Lorsque sa valeur est trop faible, il apparait un phénomène d'engorgement du niveau vibrationnel excité "Bottleneck effect" qui limite l'efficacité du pompage optique (7). On assiste à la saturation de l'absorption du faisceau infra rouge et à la réabsorption du faisceau infra rouge lointain par les molécules dans l'état excité (J-I,K)

2) Mécanismes de relaxation rotationnelle

Au moment des collisions, les molécules peuvent changer d'état de rotation à l'intérieur d'un même état vibrationnel. Ce phénomène est favorable pour le niveau vibrationnel fondamental puisqu'il repeuple le niveau de départ de la transition d'absorption. Ce mécanisme est caractérisé par le taux de changement d'état rotationnel par collision : \checkmark . Il dépend de chaque transition et de chaque molécule et est proportionnel à la pression ($\checkmark\sim P$). Son ordre de grandeur est de IO⁸ sec^I Torr.

Les mécanismes de relaxation rotationnelle ont un effet négatif sur la transition infra rouge lointain. En effet, il diminuent l'inversion de population en thermalisant la population entre les divers sous-niveaux rotationnels dans chaque état vibrationnel.

L'analyse théorique et expérimentale de l'influence

des mécanismes de relaxation sur l'inversion de population et sur l'efficacité du pompage optique montrent que la pression de fonctionnement du laser I.R.L. optiquement pompé est relativement faible. Elle se situe généralement entre 20 et 300 m Torrs.

3) <u>L'élargissement des raies</u> (I7,I8)

Les mécanismes de relaxation outre leur influence sur le pompage optique et l'inversion de population ont pour conséquence l'élargissement homogène et / ou inhomogène des raies.

a) - Nous parlerons d'<u>élargissement homogène</u> lorsque la fréquence centrale de la transition est la même pour toutes les molécules.

- La largeur naturelle

Elle est liée à la probabilité d'émission spontanée qui limite la durée de vie des molécules (40). Elle est négligée car l'émission spontanée est négligeable devant l'émission stimulée et l'absorption aux fréquences submillimétriques.

- L'élargissement dû aux collisions

Cet élargissement est dû aux chocs subits par les molécules.

Il est du type de Lorentz.

Les transitions élargies par collisions ont une forme de raie donnée par l'expression $f(v) = \frac{\Delta v}{\pi \left[(v - v_0)^2 + \Delta v^2 \right]}$

avec $\Delta = \frac{\Lambda}{2\pi c}$: demi-largeur à mi-hauteur.

où て : temps moyen entre deux chocs consécutifs S₀: fréquence centrale de la transition

b) - Nous dirons que l'<u>élargissement est inhomogène</u> ou du type Doppler lorsqu'il est dû à des effets qui n'affectent pas les différentes molécules de la même manière.

Les transitions sont élargies par effet Doppler à cause de distribution maxwellienne des vitesses moléculaires. Considérons une molécule de vitesse V et un rayonnement de fréquence 🔹

Appelons No la fréquence centrale de la transition.

Chaque molécule est en mouvement et un rayonnement de fréquence ϑ interagit avec les molécules de vitesse V suivant la direction du rayonnement. On peut écrire $\vartheta = \vartheta_0 (4 - \frac{V}{C})$

avec C : vitesse de la lumière.

A l'équilibre thermodynamique, la probabilité pour une molécule d'avoir sa composante de vitesse V comprise entre V et V + dV est donnée par $f(x) dV = \frac{1}{\sqrt{\pi} x} e^{\sqrt{2}/x^2}$

avec	$x = \sqrt{\frac{2RT}{M}}$:	vitesse la plus probable
où		R	:	constante des gaz parfaits
		Т	:	température (K)
		М	:	masse molaire

Fig. I.2. Comparaison de deux types de courbes de Gauss et de Lorentz ayant la même largeur

B) - Equations d'évolution des populations (7,9, I9, 20, 2I)

Après l'analyse des processus, nous wous proposons dans ce paragraphe d'étudier l'évolution des populations des sous-niveaux rotationnels.

Nous regroupons tous les Vniveaux de rotation de l'état vibrationnel excité n'entrant pas directement dans l'effet laser en un niveau que nous appelerons niveau 3.

Les équations régissant l'évolution dans le temps des populations Ni (i = 0,I, 2, 3) de ces sous-niveaux s'écrivent :

$$\begin{cases} \frac{dN_{0}}{dt} = \int_{V} N_{3} - w_{p} N_{0} + w_{p} N_{2} \\ \frac{dN_{A}}{dt} = B_{21} n \left(N_{2} - \frac{g_{1}}{g_{1}} N_{4} \right) - \sqrt[3]{N_{A}} \\ \frac{dN_{2}}{dt} = w_{p} N_{0} - \sqrt[3]{N_{2}} - B_{21} n \left(N_{2} - \frac{g_{1}}{g_{1}} N_{4} \right) \\ \frac{dn}{dt} = B_{21} n \left(N_{2} - \frac{g_{2}}{g_{4}} N_{4} \right) - \frac{n}{T_{c}} \\ N = N_{0} + N_{4} + N_{2} + N_{3} \end{cases}$$

avec N : nombre total de molécules par unité de volume

- Ni : nombre de molécules des sous-niveaux par unité de volume
- n : nombre de photons IRL par unité de volume
- Gi (i = I, 2) : dégénérescence des niveaux I et 2
- C : taux de désexcitation vibrationnelle
- 🗙 : taux de relaxation rotationnelle
- B₂₁: coefficient d'Einstein pour l'émission stimulée
- Wp: taux de pompage entre le niveau o de l'état vibrationnel fondamental et le niveau 2 de l'état vibrationnel excité.

$$\omega_{\mathrm{P}}(v) = \frac{c^{2} \operatorname{JIR} A_{o2} \Delta v_{\mathrm{H}}}{8\pi^{2} h (v_{o})^{2} \left[\Delta v_{\mathrm{H}}^{2} + v_{\mathrm{JR}} - v_{o} \left(1 - \frac{v}{c} \right)^{2} \right]}$$

avec Vin : fréquence du rayonnement de pompe

- $\mathcal{P}_{\mathbf{v}}$: fréquence centrale de la raie d'absorption
- Δν_H: élargissement homogène de la transition (demilargeur à demi-hauteur)
- $l_{1,e}(\hat{v})$: intensité de rayonnement incident (\tilde{wm}^2)
 - C : vitesse de la lumière
- WP : dépend à la fois de la pression et de l'intensité de rayonnement
- τ_c : durée de vie des photons IRL dans la cavité se définit comme suit :

 $\frac{1}{T_c} = \frac{w}{Q_c}$ Avec Qc = $\frac{4\pi L}{\lambda(a+t)}$: coefficient de qualité de la cavité

où L = longueur de la cavité

- a : perte totale de la cavité (guide + miroir)
- t : transmission du miroir de sortie
- $t = \underline{A} = \underline{A \times L}$
- S : section de la cavité
- V : volume de la cavité
- **\:** longueur d'onde :

Remarques

Dans l'équation d'évolution des populations, nous n'avons pas tenu compte des termes de l'émission spontanée. En effet, l'émission spontanée est négligeable devant l'émission stimulée et l'absorption car la durée de vie des molécules dans un état vibrationnel donné aux fréquences IRL est de l'ordre de la seconde.

II - La puissance I.R.L. (9, II)

Nous nous intéressons au laser fonctionnant en régime continu, c'est dans cette condition que l'on résoud le système d'équation d'évolution de population en fonction du temps précédemment obtenues $(\frac{d}{dt}=0)$.

En faisant l'hypothèse que la transitiono-> 2 n'est pas saturée, ce qui conduit à négliger le terme +wpN, dans le système d'équation, nous déduisons l'expression de la densité de photons IRL dans la cavité.

$$n = \frac{g_1}{g_{1+g_2}} \frac{\gamma}{B_{24}} \left[\frac{N B_{24} W_P T_C}{Y \left(1 + \frac{W_P}{F_c}\right)} - 1 \right]$$

La puissance IRL émise par le laser IRL est donnée par l'expression

avec

n : densité de photons IRL

- A : surface du trou de couplage
- 1 : indique que chacune des deux ondes IRL se propageant dans la cavité n'interagit plus qu'avec une seule des deux classes de vitesse de molécules pompées.

En remplaçant n par sa valeur dans l'expression de la puissance IRL, on obtient :

$$P_{IRL} = \frac{1}{2} CAh \nabla_{IRL} \frac{g_1}{g_1 + g_L} \frac{\chi}{B_{21}} \left[\frac{N B_{21} W_P T_C}{\chi(1 + \frac{W_P}{T_1})} - 1 \right] (I.a)$$

Désignons par Isar= Ch $v_{IRL} \frac{94}{2i+72} \frac{Y}{B_2} (\sim p^2)$:l'intensité de saturation

 $F_{abs} = \frac{\omega_{P} N_{o} h \nabla_{IR} V}{P_{IR}} = \frac{\omega_{P} N}{P_{IR} \left(1 + \frac{\omega_{P}}{P_{V}}\right)} h \nabla_{IR} V : \text{la fraction}$ de puissance de pompe effectivement utilisée dans la transition o-2

 $\eta_{III} = \frac{g_{1}}{g_{1}+g_{1}} \xrightarrow{v_{JRL}} v \xrightarrow{I} \xrightarrow{v_{JRL}} si J >>$: rendement théorique de conversion photonique.

En portant ces différents termes dans la relation (La) nous

obtenons l'expression de la puissance IRL :

$$P_{IRL} = \frac{1}{2} St I_{Sar} \left[\frac{2}{q+t} \times \frac{P_{IR}}{S} \times \eta_{Hh} \times F_{abs} \times \frac{1}{J_{Sar}} - 1 \right] (I.b)$$

En la développant nous avons

lorsque la pression est faible

- [v~1] devient grand et Fabs devient proportionnel à (wpN) - Isar N P² devient petit et dès lors

Lorsque la pression est forte, c'est le second terme de (I.b) bis qui devient important.

III - Influence des paramètres expérimentaux

Les principaux paramètres des lasers IRL optiquement pompés se rangent en trois groupes :

I) Les paramètres liés au faisceau de pompe

Les paramètres importants liés au faisceau de pompe sont la puissance infra rouge et l'écart à la résonnance entre les fréquence centrales de la raie de pompe et de la transition moléculaire.

Désignons par ∇_0 la fréquence centrale de la transition d'absorption et ∇_{TR} la fréquence du laser de pompe.

Pour avoir un bon pompage et pour optimiser la puissance IRL, il est nécessaire que l'écart entre ces deux fréquences centrales soit faible; il est en général inférieur à 60 MHZ . Cette condition est liée aux possibilités limitées d'accord en fréquence du laser à CO_2 (en général de l'ordre de 50 MHZ). Mais l'utilisation des lasers "guide d'onde" permettent les possibilités d'accord très limitées dans le cas du laser à CO_2 classique jusqu'à 800 MHZ. Les puissances de sortie obtenues restent encore malheureusement assez faibles et sont au maximum de quelques watts.

2) Les paramètres liés à la cavité IRL

Le premier paramètre concerne la longueur de la cavité. La pression de fonctionnement des lasers en régime continu faible étant relativement V (entre 20 et 300 m T), il faut donc que le trajet du faisceau de pompe dans le milieu laser soit suffisamment grand (I à 3 m) pour augmenter la fraction d'énergie absorbée.

Le second paramètre est le choix du type de cavité.

Le type de cavité influe aussi sur la puissance de sortie du laser.

Le choix entre la cavité Perot - Fabry et la cavité guidée a pour but de rendre plus efficace la désexcitation des molécules vers les parois de l'enceinte, celle-ci étant favorisée par la faible section de la cavité (I3).

En outre la cavité guidée présente une structure plus compacte.

C'est la cavité guidée que nous avons utilisée dans notre travail.

Il existe deux types de cavités guidées : les cavités métalliques et diélectriques

- <u>Les cavités métalliques</u> présentent de nombreux modes (transverse électrique (TE), transverse magnétique (TM)). Les modes TEmn présentent un coefficient d'atténuation inférieur à quelques db/m. Mais ce sont les modes TEom qui présentent les plus faibles pertes en particulier les modes fondamentaux TE_{OI} et TE_{O2} . Ces modes polarisés circulairement se couplent mal aux modesT E M. Nous verrons plus tard que ceci a une influence sur la disposition des miroirs de la cavité. De plus le faisceau de pompe est rapidement dépolarisé par réflexion sur les parois de l'enceinte et le faisceau infra rouge lointain ne présente pas une polarisation préférentielle (I4); la polarisation du champest essentiellement déterminée par les caractéristiques du guide.

De tels guides d'onde sont intéressants aux grandes longueurs d'onde.

- <u>Les cavités diélectriques</u> ont une sélectivité de modes plus importantes car elles présentent des pertes élevées pour les modes d'ordre supérieur. Les modes TEom présentent un coefficient d'atténuation assez faible, mais c'est le mode nybride EH_{II} qui présente le plus faible coefficient d'atténuation et est considéré comme fondamental dans de telles cavités. Ils sont polarisés linéairement et se couplent assez bien aux modes TEM.

3) Le couplage de sortie

L'expression de la puissance de sortie IRL montre qu'elle dépend du couplage de sortie par le terme t : coefficient de transmission du miroir de sortie.

L'optimalisation de la puissance dépend du couplage optimum qui est déterminé par $\frac{d}{dt}$ france (t: défini ci-dessus). Les efforts des chercheurs ces dernières années se sont portés sur cette partie afin d'améliorer la puissance IRL (I2)

4) Les paramètres liés au gaz moléculaire

Les paramètres liés au gaz sont la pression, l'addition de gaz tampon et la température.

La pression est le paramètre auquel nous nous sommes intéressés dans notre travail.

Nous verrons plus tard son influence sur la puissance de sortie IRL.

Les gaz moléculaires utilisés doivent avoir une certaine disposition des niveaux d'énergie; en effet, le niveau de départ du pompage devant avoir une probabilité d'occupation non négligeable, il faut qu'il appartienne à l'état fondamental et qu'il corresponde à une faible valeur du nombre quantique J. La molécule doit donc avoir une bande fondamentale active qui recouvre les bandes d'émissions du laser à CO_2 (IO)

La figure I.3 représente les bandes d'absorption de l'acide formique et les raies de pompe du laser à CO₂ (IO)

fig.1.3 Branche du Laserãcoz et la bande d'absorption du HCooH

BUS

16

CHAPITRE II

Dispositif expérimental

DEUXIEME CHAPITRE

La source submillimétrique dont nous disposons au laboratoire est représentée à la figure I^I. **4**

Elle se compose d'un laser de pompe : le laser à CO₂, d'un système optique et enfin d'une cavité infra rouge lointain.

19 - Le laser de pompe : le laser à CO₂

Le laser à CO₂ est un laser commercial classique ADKIN.

Il se compose d'un tube en pyrex dépoli de I32 cm de long et de 8 mm de diamètre. Ce tube est entouré d'une enveloppe permettant la circulation d'eau dont le but est le refroidissement des parois. Il comporte à chaque extrémité une fenètre en Séléniure de zinc (ZnSe) placée sous incidence de Brewster en vue de minimiser les pertes par réflexion sur celle-ci et de donner une polarisation déterminée au faisceau infra rouge.

La cavité des laser à CO₂ est de I52 cm de long. Elle comporte à une extrémité un miroir en Séléniure de zinc (ZnSe) de IO m de rayon et assure 35% de transmission; à l'autre extrémité se trouve un réseau de diffraction de I50 traits/mm. L'a.justement angulaire du réseau est assuré par un système de vis micrométrique permettant le fonctionnement sur une seule transition (monoraie). L'ajustement en longueur de la cavité est assuré par un piézocéramique

Le mélange gazeux composé du gaz carbonique (CO_2) , de l'hélium (He) et de l'azote (N2) dans les proportions respectives de I3%, 65% et 22% arrive par une extrémité. La circulation du mélange est assurée par une pompe primaire à grand débit.

La puissance du laser pour les raies les plus fortes est de 15 à 20 Watts. Dans ces conditions la pression du mélange gazeux est de 20 Torrs (comprise entre 5 et 25 Torrs) pour I8 A sous-I3 KV.

Le laser à CO₂ est monté sur un marbre qui est posé sur des chambres à air dont le rôle est d'amortir les vibrations mécaniques. La stabilité thermique est assurée par quatre barres INVAR.

Les principales raies obtenues par ce laser sont illustrées par la figure II-2

<u>II</u>) - <u>Le système optique</u>

Le système optique est composé de deux miroirs de renvoi et de deux lentilles.

- <u>Les miroirs de renvoi</u> (figure II.3) sont montés suivant le système de cardan ce qui leur permet d'être mobiles dans deux directions (horizontale et verticale).

Ils sont en laiton poli et dorés. Ils permettent de faire coïncider l'axe du laser à CO₂ avec l'axe de la cavité IRL.

- <u>Les lentilles</u> sont en Soléniure de zinc (ZnSe), de distance focale de IOOmm et 25 mm (la plus proche de la cavité IRL). Elles sont montées sur des supports pouvant se déplacer dans trois directions. Elles permettent d'une part la focalisation du faisceau IR dans la cavité IRL et, d'autre part, l'ouverture de ce faisceau.

11) - La cavité IRL

Il existe deux types de cavité : métallique et diélectrique.

1 - Types de cavité.

Notre laboratoire disposait d'une cavité métallique (6), ne donnant de bons résultats que dans la partie basse fréquence du domaine submillimétrique. Une partie de notre travail est consacrée à la construction et à la mise au point d'une cavité diélectrique IRL afin d'améliorer les performances de la <u>source</u> <u>dans la partie haute fréquence</u>. Dans ce paragraphe nous décrirons ces deux cavités.

a - Cavité métallique

La cavité IRL est constituée d'un guide d'onde en laiton de I,30 m de long et de 25 mm de diamètre, comportant à chaque extrémité un miroir en aluminium; percé en son centre d'un trou. Un miroir à 45° à l'entrée permet de prélever un signal IRL proportionnel au signal principal qui est recueilli à la sortie.

Le miroir d'entrée est légèrement mobile grâce à un gros joint torrique sur lequel on peut agir par pression, ce qui permet de le rendre parallèle au miroir de sortie (perpendiculaire à l'axe de la cavité) (fig. II.4)

Le miroir de sortie est seulement mobile dans le sens. longitudinal grâce à un dispositif de table glissante et permet ainsi l'accord de la cavité. Ce miroir est placé à l'intérieur de la cavité et a un diamètre le plus près possible du diamètre de la cavité, car les modes TEom polarisés circulairement se couplent très mal aux modes TEM.

Notons que le miroir d'entrée permet d'introduire le faisceau de pompe dans la cavité et le miroir de sortie permet de recueillir la puissance IRL à la sortie.

b - Cavité diélectrique

Elle est constituée d'un guide d'onde en pyrex de I,30m de long et de 25 mm de diamètre intérieur et comporte à chaque extrémité un miroir en laiton doré, percé en son centre d'un trou. Elle a aussi un miroir à l'entrée, un miroir disposé à 45°.

La disposition du miroir d'entrée est identique à celle de la cavité métallique.

Nous avons utilisé deux dispositifs différents pour

maintenir le miroir de sortie. Dans les deux cas, le miroir de sortie est placé à l'extérieur de la cavité, et a un diamètre (40 mm) plus grand que le diamètre de la cavité, car les modes fondamentaux EH_{II}, polarisés linéairement se couplent assez bien aux modes TEM.

Le ler dispositif est identique à celui utilisé dans le cas des cavités métalliques.

Le 2ème dispositif est un système de cardan (fig**15**), ce qui permet un déplacement horizontal, vertical, de plus il est mobile en translation grâce à la table de translation. Ce dernier déplacement permet d'accorder la cavité IRL lors de la rechercne de la raie submillimétrique, la position du miroir est repérée à l'aide d'un comparateur; les deux premiers permettent de bien régler le parallélisme des deux miroirs.

L'expérience montre que la disposition du miroir mobile dans les trois directions est intéressante car elle permet de corriger tout défaut de parallélisme des miroirs.

Dans les deux types de cavité (métallique et diélectrique), nous avons mis des soufflets en laiton ou en acier inoxydable pour assurer d'une part l'étanchéité et, d'autre part, permettre au guide de se dilater sans affecter la position des miroirs. De même, des joints torriques assurent l'étanchéité.

Pour maintenir le gaz dans la cavité, celle-ci est fermée à chaque extrémité par une fenètre faite d'un matériau qui permet l'introduction du faisceau de pompe et la transmission de la puissance submillimétrique à l'extérieur. Ainsi nous avons à l'entrée une fenètre en ZnSe traitée anti-reflet sur les deux faces, à la sortie nous mettons une fenètre dont le domaine de transmission correspond à la longueur d'onde submillimétrique que nous cherchons. Ainsi, nous utilisons le quartz pour toutes les raies de longueur d'onde supérieur à IOO & m car il atténue les longueurs d'onde en dessus de cette limite, et, pour les dernières, nous utilisons soit le téflon, soit du polythène.

20

La figure II.6 représente la courbe d'absorption du quartz et du polythène, et la figure II.7 la courbe de transmission du téflon.

Les deux cavités sont supportées par quatre blocs en aluminium fixés sur le marbre.

La stabilité en longueur est assurée par quatre barres INVAR.

2) - <u>Alignement et collimation du faisceau IR dans la cavité</u> I - <u>Alignement</u> (Cf. fig. 14)

L'alignement s'effectue à l'aide du laser He-Ne.

L'axe de l'ensemble de la source est déterminé à partir de l'axe de la cavité IRL. A cet effet, le laser He-Ne est placé à la sortie de cette cavité.

Pour éviter l'effet de réflexion, les tubes de la cavité du laser à CO₂ et de la cavité IRL sont enlevés.

. Ensuite nous remontons le tube du laser à CO₂ et nous réglons le réseau et le parallélisme du miroir de sortie du laser à CO₂.

. Enfin, nous réglons les positions des deux lentilles en plaçant le laser He-Ne à l'entrée de la cavité IRL et nous remontons le tube de cette cavité.

2 - Collimation du faisceau dans la cavité (cf. f.g. 15)

L'alignement des deux lentilles convergentes en ZnSe est faite de manière à diminuer les pertes infra rouge dans les parois de la cavité IRL.

Nous avons réglé les lentilles de manière que le faisceau IR ne soit pas trop divergent et qu'il puisse faire plusieurs aller-retour avant de toucher les parois.

Le diamètre du trou du miroir étant de 3 mm, nous

avons réglé les deux lentilles de manière que le diamètre du faisceau soit inférieur au diamètre du trou. (La focalisation se fait avant le trou du miroir). Cette procédure nous a permi d'introduire dans la cavité près de 70 % de la puissance du CO₂, le reste étant perdu dans le système optique (miroirs et lentilles).

Lorsque cette opération est faite à l'aide du laser He-Ne, nous mettons en marche le laser à CO₂ et nous vérifions le parcours du faisceau IR à l'aide des plaques destinées à cet effet en réajustant légèrement le réglage des lentilles. A la fin de cette opération nous remontons le tube de la cavité IRL.

La figure II.8 donne le parcours du faisceau IR dans la cavité IRL.

Détermination de la longueur d'onde de la raie IRL.

I) - <u>Les raies du laser de pompe</u> sont obtenues en orientant convenablement le réseau de diffraction (I50 traits/mm, angle de Blaze : 49° 30). Elles sont repérées à l'aide d'un analyseur de spectre à CO₂.

Les fréquences de ces émissions ont été mesurées par les spectroscopistes (26,27), la présision est de l'ordre de $1\overline{0}^8$ environ.

2) - Les raies submillimétriques résultent du pompage optique.

Après la recherche de la raie de pompe, on module la fréquence du laser à CO₂, puis on accorde la cavité IRL de façon à favoriser l'oscillation.

La variation de la fréquence du laser de pompe est effectuée en appliquant au piezocéramique une tension en dents de scie.

a) Mesure de la longueur d'onde de la raie IRL

Dans ce paragraphe nous abordons la description des

méthodes que nous utilisons dans notre laboratoire pour déterminer la longueur d'onde de la raie IRL. Notons que plusieurs auteurs utilisent l'interferromètre de Perot-Fabry pour déterminer cette longueur d'onde à la sortie du laser. (29,29,30,34,32)

Dans notre laboratoire nous utilisons deux méthodes :

- La méthode de l'interferrogramme de la cavité

Cette méthode est la plus directe et la plus couramment utilisée.

Le principe consiste à translater le miroir de sortie à l'aide d'un moteur.

Le comparateur est réglé à zéro au départ. Le déplacement du miroir et du comparateur sont ainsi liés.

L'interferrogramme de la cavité est obtenue sur table traçante.

Le comparateur nous permet de savoir la distance parcourue.

A partir de cet interferrogramme, nous déterminons la longueur d'onde.

Lorsque la cavité résonne sur une longueur d'onde, l'enregistrement se répète identiquement à chaque période, la période étant $\frac{\lambda}{2}$.

que Mais dans le cas de la cavité diélectrique, nous avons construite, les modes d'ordre élevés étant peu nombreux (λ > 300 um), la détermination de la longueur d'onde à partir de l'interferrogramme de la cavité est plus aisée.

La précision de la mesure est de l'ordre de I à 2 μ m.

- La méthode par l'interferromètre de Michelson

1.) Description de l'interferromètre de Michelson

L'interferromètre de Michelson est du type classique.

La figure II.9 donne le schéma de l'interferromètre.

Il comprend deux miroirs en laiton polis et dorés.

Les miroirs sont liés à deux vis micrométriques au micron(um), ce qui permet de les déplacer en translation.

La séparatrice que nous utilisons est en mylar.

2) Principe de fonctionnement

La séparatrice est placée à 45°

Le faisceau incident IRL est envoyé sur la séparatrice. Une partie est réfléchie sur le miroir M_2 et une partie arrive sur le miroir M_I . On ajuste le miroir M_I pour avoir le maximum du signal IRL au détecteur.

On affine le réglage avec le miroir pour améliorer le signal obtenu au détecteur.

La différence de marche est égale à $\underline{\lambda}$. Cette différence est donnée par la différence des lectures sur²les vis micrométriques.

3) - Mesure de la longueur d'onde de la raie IRL

C'est le principe de fonctionnement qui est utilisé pour la mesure de la longueur d'onde IRL.

Nous avons utilisé plusieurs épaisseurs de mylar, ceci afin d'améliorer la transmission et, par conséquent, l'amplitude du signal obtenu au détecteur.

Pour tracer l'interferrogramme de ce dispositif, nous translatons à l'aide d'un moteur le miroir M_I et, connaissant la distance parcourue par le miroir, on peut déterminer la longueur d'onde IRL en considérant un grand nombre de minima, ou de maxima.

La différence entre deux minima est égale à $\frac{\lambda}{2}$. (fig.II.IO)

4) - avantage de cette mesure

Cette mesure de la longueur à l'avantage d'être indépendante de la cavité IRL, car le déplacement du miroir M_I est indépendant du déplacement du miroir de sortie de la cavité IRL.

La précision de cette mesure est de l'ordre du I um.

b) Stabilisation du laser CO2

Pour éviter que les fluctuations de fréquence et donc de puissance du laser à CO_2 ne conduisent à une variation de puissance du laser IRL, il est nécessaire de stabiliser la fréquence du laser à CO_2 .

Or, la source submillimétrique que nous avons construite est utilisée pour la caractérisation des matériaux et, pour ce fait, il est nécessaire que l'amplitude de sortie du signal IRL soit stable.

Ainsi, une stabilisation en amplitude est réalisée en collaboration avec notre laboratoire d'électronique. Le schéma synoptique de l'asservissement est donné à la figure II.11

1) - Principe de l'assivissement

Le principe consiste à détecter une fraction du faisceau IRL à l'aide d'un détecteur pyroélectrique qui, après détection de synchrone est envoyée sur le piezocéramiqueVla cavité du laser à CO₂ et qui permet une légère modulation de la longueur de cette cavité. Ainsi l'amplitude du signal IRL est stabilisée et cela a une conséquence favorable sur la stabilité du signal IRL étant donné que l'instabilité du laser IRL est dû en partie à celle du laser de pompe.

2) - Description de l'asservissement

Le dispositif construit par le laboratoire d'électronique comprend :

- un asservissement à 200 HZ
- un filtre et une détection synchrone à 200 HZ
- un filtre et une détection synchrone à I2,5 HZ.
Le signal IRL est injecté dans un filtre passe-bande centré à 200 HZ de façon à supprimer la composante à I2,5 HZ. Il est envoyé dans la détection synchrone DS_I.Le signal résultant passe par un intégrateur dont la pente a été optimalisée pour obtenir la meilleure réponse de l'ensemble. L'amplificateur de gain <u>+</u> I permet de définir le sens de correction de l'asservissement selon la réponse des cales piezoélectriques et du décalage de phase de l'ensemble de l'installation. Le signal recueilli ne comporte par conséquent qu'une composante continue qui est envoyée sur un sommateur en même temps que la polarisation initiale des cales et la modulation à 200 HZ. C'est cette somme de trois signaux qui est injectée dans l'amplificateur hautetension, commandant les cales piezoélectriques.

On notera que la fréquence de I2,5 HZ est choisie en fonction de la réponse du détecteur pyroélectrique utilisé, la fréquence de 200 HZ de l'asservissement est choisie de façon à s'éloigner le plus vite possible de la fréquence de I2,5 HZ et permet d'améliorer les filtrages des différentes composantes, tout en restant dans la plage de la réponse du détecteur pyroélectrique et des cales piezoélectriques.

Le signal IRL est injecté dans un autre filtre passebande centré à I2,5 HZ et, ensuite, dans la détection synchrone DS₂ de façon à obtenir une information relative à la puissance IRL, qui sera utilisée comme signal de référence dans le diviseur analogique que nous utiliserons dans la caractérisation des matériaux et qui sera décrit dans le chapitre IV.

3) - Utilisation de l'asservissement

Nous décrirons le réglage de l'asservissement.

Le signal IRL est obtenu.

L'asservissement est en position déconnectée.. On règle la longueur de la cavité du laser à CO₂ en appliquant une tension continue au piezocéramique afin

d'optimiser la puissance de sortie du laser IRL.

Le dispositif d'asservissement est ensuite connecté.

Deux cas peuvent se présenter :

- l'asservissement suit,
- l'asservissement ne suit pas, il convient alors de corriger le sens de l'asservissement en agissant sur le gain de l'amplificateur (gain <u>+</u> I).

La figure II.I2 illustre l'instabilité du signal IRL et la figure II.I3 le même signal stabilisé en amplitude. fig I. 1 SYNOPTIQUE DE LA SOURCE SUBMILLIMETRIQUE

28

Laser à coz

BUS

fenètre à quartz fig. 11.5 viinni Montage du miroir de niroir souffler Sortie : systeme de Cardan cavité, GAZ BUS

<u>32</u>

(RUS LULIE)

(Séparatrice d'épaisseur 100,41m)

BUS

Réglage des lentilles : Collimation du faisceau IR dans la CeviteIRL

CHAPITRE III

٤

j.

Performances de la source .

TROISIEME CHAPITRE

Dans le chapitre précédent, nous avons décrit le dispositif expérimental que nous avons construit; nous reportons dans ce présent chapitre les performances observées.

I) - Les raies obtenues

Les corps utilisés pour ce présent travail sont l'acide formique et l'alcool méthylique.

Les différentes raies IRL obtenues sont résumées dans le tableau de la figure III.I

Comme nous avons dit, le but de notre travail est d'étendre la performance de notre source laser vers les petites longueurs d'onde; c'est pourquoi nous avons utilisé surtout l'alcool méthylique, corps qui donne de plus grand nombre de raies dans ce domaine.

Le détecteur pyroélectrique que nous avons utilisé n'étant pas calibré, nous ne pouvons parler que de l'amplitude du signal détecté, c'est pourquoi nous nous sommes cantonnés à caractériser les puissances de sortie par les adjectifs fortes, très fortes, ... etc

En comparant nos résultats à ceux obtenus par Depret, nous estimons que pour les émissions :

-	très fortes	Pirl	>	5	mw	r
~	fortes	Pirl	>	Ι	mw	r
-	moyennes	Firl	>	ο,	5	mW
-	faibles	$^{\rm P}$ irl	<	0,	5	mw

12) - L'influence de la pression sur la puissance IRL

Le signal IRL détecté par le détecteur pyroélectrique

après détection synchrone.

La pression est mesurée avec une jauge de Pirani dont le domaine d'utilisation varie de $I\overline{0}^4$ Torr à la pression atmosphérique.

Nous avons relevé aussi les courbes de la puissance IRL en fonction de la pression pour différentes puissances de pompe (figure III 2, 3, 4)

Les courbes obtenues présentent un maximum pour une pression qui croit avec la puissance de pompe.

Les courbes de la puissance IRL en fonction de la pression $(P_{IFL} = f(P))$ présentent deux parties :

- <u>aux faibles pressions</u>, la puissance IRL croît avec la pression du gaz car il y a une absorption croissante du faisceau de pompe et donc à l'augmentation du terme Fabs et, dès lors, le premier terme de l'expression de la puissance IRL est supérieur au second terme.

Ainsi, l'augmentation de la puissance de sortie avec la pression correspond à l'augmentation de l'absorption du faisceau de pompe.

- <u>aux fortes pressions</u>, c'est le second terme qui est plus intéressant.

L'intensité de saturation est dominant et le terme Fabs tend vers sa valeur limite car d'importantes molécules sont pompées, il y a une thermalisation dans l'état excité, on a alors une diminution de la puissance de sortie.

) - L'influence de la puissance de pompe sur la puissance IRL

I) - $\frac{P_{irl}}{P_{irl}} = f(P_{ir}) \dot{a}$ pression constante

Les figures III. 5 et III 6 représentent la puissance IRL en fonction de la puissance de pompe pour différentes valeurs de la pression du gaz. Ces courbes sont relatives à la raie $\lambda = 405,6 \,\mu$ m et $\lambda = II8,8 \,\mu$ m respectivement de l'acide formique et de l'alcool méthylique.

Les courbes obtenues ne sont pas caractéristiques d'une transition, des résultats analogues ont été obtenus avec d'autres transitions.

Lorsque la puissance de pompe est faible, de même que la pression, l'analyse de l'expression de PIRL et de celle de Fabs montrent que le second terme de PIRL est négligeable (I₅₀₇ est faible) et donc est proportionnel à PIR étant donné que Fabs est proportionnel à (wpN).

Lorsque la puissance de pompe augmente, le second terme de l'expression de puissance IRL devient important et ainsi va se saturer.

Lorsque la pression augmente, la forme de la courbe ne change pas. Dans l'expression de la puissance IRL, le second terme n'est plus négligeable, mais est inférieur au premier.

Ces courbes montrent que pour les pressions du gaz inférieures à 60 mT, il apparait un phénomène de saturation pour une puissance de IOW environ.

2) $\frac{P_{irl} = f(P_{IR})}{2}$ à pression optimale.

La figure III.7 donne les courbes de la puissance IRL en fonction de la puissance de pompe à une pression optimale.

Lorsqu'on est à la pression optimale on est loin du seuil, de ce fait, l'expression de la puissance IRL se réduit à :

Fabs est constant, en effet, il est proportionnel à (Nwp) et inversement proportionnel à la pression.

La puissance IRL dépend explicitement de PIR et croît alors en fonction de la puissance de pompe.

Lorsque la puissance de pompe est faible, le gain du laser est proche du gain du seuil et ainsi la puissance IRL augmente lentement.

4) - L'influence du trou de couplage sur la puissance IRL

L'optimalisation du couplage (paramètre t) est importante pour l'obtention d'une puissance IRL maximale (de l'IRL=0; t: transmission du miroir de sortie).

Nous avons employé plusieurs miroirs de différents trous de couplage et, pour chacun, nous avons relevé la puissance IRL à la sortie.

Pour les trous de diamètre assez petit (I mm), la puissance transmise est très petite, et lorsque le trou est trop grand (6 mm), cette puissance est aussi petite.

Nous pensons que dans le dernier cas, les pertes liées à la réflexion de l'infra rouge sur le miroir sont importantes, car une partie importante du faisceau IR sort de la cavité et ne se réfléchit pas.

La figure III.8 représente la puissance IRL en fonction du diamètre du trou du miroir de sortie.

Le diamètre optimum de trou est de 4 mm environ.

Cette valeur est assez proche de celle trouvée pour la cavité métallique (~ 3 mm).

La figure III.9 représente les résultats obtenus pour la cavité métallique.

5) - Interferrogramme de la cavité diélectrique

En balayant la longueur de la cavité IRL de façon continue à l'aide d'un moteur qui fait translater le miroir de sortie, et en enregistrant l'amplitude du signal IRL en fonction de cette longueur, on obtient l'interferogramme de la cavité IRL (figure III.IOA).

Cet enregistrement nous permet de calculer la longueur d'onde du rayonnement IRL (distance entre 2 maximums sur est égale à λ). De plus, il nous renseignevies "cascades";(33 en effet, une raie de pompe IR peut produire plusieurs raies submillimétriques. Enfin, il nous indique que le laser submillimétrique en cavité diélectrique fonctionne en monomode, ce qui est un avantage considérable sur la cavité métallique dont l'interferogramme est donné pour la même raie IR 9R₁₈ (figure III. IO.B)

)

·	С 113 о н					•	÷	HCoo H							Gaz		
9 P _{3 6}			ઝ કિં			9810	3 R 28	9 R ₂₂			9 R.w .		9 R * 8		La raie de pompe		
202, ¥	1,041	8'815		5 % 7	510t	5,36	513	4 18,6	2ch	6.29	6'547	432,6	405,6	393,6	1 RC (WW)	La longueur d'onde	
1 150	۶۵ کړ	720		001	001	100	150	120		1 50	150	A 50	450	150	Pression du gaz (mT)		
Felore .	Moyanne	ELGS TALIC		Fals	forte.	tres Forte	Moyenne		Carta	forte	Faible	Forte	Forte	Forie			3

fig II. 4. Tableau d

Tableau des raies obtenues

BUS

Blis

P(mT)

CHAPITRE IV

Application à la caractérisation de quelques substances mésomorphes

QUATRIEME CHAPITRE

Nous venons d'étudier les caractéristiques de la source laser submillimétrique mise au point dans notre laboratoire, en particulier l'accent est mis sur ses nouvelles performances notamment les raies obtenues avec leur puissance.

Dans ce chapître nous décrirons l'utilisation de cette source pour caractériser quelques matériaux diélectriques et plus particulièrement quelques composés mésogènes dans le domaine submillimétrique.

Ces composés mésogènes ont la propriété d'être orientés soit par les parois de la cellule de mesure, soit par un champ électrique ou magnétique extérieur.

Nous caractériserons l'anisotropie d'absorption de ceux-ci en mesurant leur coefficient d'absorption suivant la configuration perpendiculaire et parallèle (champ électrique IRL parallèle ou perpendiculaire au champ magnétique extérieur); et nous en déduirons leur ordre orientationnel qui sera évalué par le paramètre d'ordre.

Dans ce but, nous exposerons la méthode de mesure utilisée pour la détermination de ce coefficient d'absorption, ensuite nous parlerons de l'application de cette méthode à la caractérisation des cristaux liquides et les résultats expérimentaux obtenus. I) - Méthode de mesure du coefficient d'absorption

I) Principe de la mesure

Le principe de la mesure consiste à mesurer le coefficient de transmission présenté par une lame diélectrique d'épaisseur e.

Le coefficient de transmission est donné par l'expression

$$t = \frac{P_{t}}{P_{I}} = \frac{(1-R)^{2}}{1-2R\cos\frac{4\pi ne}{2}} e^{\pi e} + R^{2} e^{2\pi e}$$

avec

R : coefficient de réflexion sur la face d'entrée de la cellule

q: Coefficient d'absorption du matériau utilisé

Si l'épaisseur e de l'échantillon est suffisante pour que la condition $\forall e \gg 1$ soit vérifiée, l'expression ci-dessus devient

$$t_2 = \frac{R}{r_2} = (1 - R)^2 e^{2R}$$

La condition $\langle e \rangle \rangle 4$ correspond au cas où les réflexions multiples deviennent négligeables. C'est dans cette condition que nous nous sommes placés dans notre travail. Afin d'éliminer l'influence du coefficient de réflexion sur la face d'entrée, nous avons comparé les coefficients de transmission obtenus pour deux échantillons d'épaisseur[®] différentes, et nous en avons déduit le coefficient d'absorption

$$d = \frac{1}{e_2 - e_4} \ln \left(\frac{F_2}{t_4} \right)$$
 on Neper/cm

2) - Banc de mesure

Le banc de mesure est représenté à la figure IV.4

Outre la source laser, il comprend :

- un guide en laiton de IO mm de diamètre qui conduit le rayonnement IRL jusqu'à la cellule de mesure et jusqu'au détecteur pyroélectrique.

- Un polariseur placé entre la source et la cellule définit l'axe du champ électrique IRL.

- La cellule contenant le corps à étudier est une cuve constituée de deux lames de quartz séparées par une cale en téflon d'épaisseur e = 0,3 à I mm. la mise en température de la cellule s'effectue à l'aide de résistances chauffantes et la température est mesurée à l'aide de thermosondes en platine; elle est régulée à 0,2°C environ.

Pour la caractérisation de composés en phases nématique. ou smectique A , la substance est orientée à l'aide d'un électroaimant.

Dans le chapitre II nous avons décrit l'asservissement que nous utilisons pour stabiliser le laser à CO₂. Mais ce dispositif n'a pas totalement éliminé toute l'instabilité de la source laser (cf figure IV.2)

Nous inspirant de la spectroscopie à double faisceau,

nous avons entrepris de comparer le signal servant à la mesure à un signal de référence, lequel est proportionnel au signal principal issu de la source et utilisé pour la mesure. Pour cette comparaison, nous utilisons un diviseur analogique qui effectue le rapport des deux signaux (signal principal / signal de référence). L'utilisation de ce diviseur analogique permet de s'affranchir des instabilités d'amplitude inhérentes à la conception de cette source laser, ainsi que le montre la figure IV.3

3) - Vérification de la validité de la méthode.

Nous avons testé la méthode de mesure du coefficient d'absorption avec des corps connus.

Nous présentons quelques résultats obtenus avec le 111 trichloroéthane (cH_3ccl_3) et le tétrachlorure de carbone (ccl_4) en phase liquide à température ambiante. Nous donnons le coefficient de transmission pour différentes épaisseurs de la cellule remplie de C H_3ccl_3 et de ccl_4 , tracé en échelle logarithmique pour la longueur d'onde $\lambda = 393,6 \,\mu\text{m}$ (cf figure IV.4,5)

Nous pouvons constater que pour une épaisseur suffisante (e>1) pour le cH_3ccl_3 et (e>0) pour le ccl_4 ; la variation du logarithme du coefficient de transmission en fonction de l'épaisseur devient linéaire, ce qui traduit une variation exponentielle du coefficient de transmission et montre la possibilité d'appliquer la formule $t = \frac{P_L}{P_T} = (1-R)^L \tilde{e}^{\propto L}$

Dans ces conditions nous avons obtenu **4**25 Neper/cm pour le CH₃ccl₃ et **4** 2 Neper/cm pour ccl₄, valeurs en total accord avec des résultats déduits de la littérature (**34**), les écarts maximumsétant de l'ordre de 3%.

II) - <u>Application de la méthode à la caractérisation des cristaux</u> <u>liquides</u>
I) - <u>Généralités</u>

Certains corps ne passent pas directement de l'état solide à l'état liquide isotrope, mais passent par un état condensé dont les propriétés structurales sont intermédiaires entre celles d'un solide et celle d'un liquide; ils présentent une mésophrase et sont communément appelés cristaux liquides : à une température donnée, il subissent une transformation de la phase solide vers un état trouble qui est à la fois birefringeant et fluide; à une température supérieure, la température de clarification, il se produit une autre transformation au cours de laquelle ces corps passent à l'état de liquide isotrope.

En 1922, Friedel (**35**) proposa de les appeler mésomorphes, et donna la clarification des trois phases principales selon les types d'arrangement moléculaire qui sont :

- La phase nématique,
- la phase smectique,
- la phase cholesterique.

Dans les trois cas, les molécules de forme allongées s'orientent parallèlement les unes aux autres selon leur grand axe sur des grandes distances vis-à-vis des dimensions moléculaires.

La figure IV.6 rappelle l'arrangement moléculaire caractéristique de ces trois phases.

Dans le cadre de notre travail, nous ne considérons que les phases nématiques et smectique A.

En phase nématique, les molécules sont mobiles dans les trois directions, mais s'orientent dans une direction privilégiée commune qui est représentée par le vecteur directeur \vec{n} . En phase smectique, les molécules sont empilées par couches ; pour un smectique A, le grand axe des molécules coïncide avec l'axe optique et est perpendiculaire au plan des couches.

2) - Le paramètre d'ordre

L'ordre orientationnel des composés nématiques et smectiques A est à la base de toutes les propriétés spécifiques de ces substances. Il est caractérisé par le paramètre d'ordre d'expression:

5= < B ((10) > = 1 < 3 co 2 - 1>

où 9 est l'angle entre l'axe moléculaire et le directeur.

La théorie statisque de Maier et Saupe (31) permet de rendre compte des variations du paramètre d'ordre des nématiques en fonction de la température T, et elle est caractérisée par une courbe universelle S = f (T/Tc) représentée à la figure IV.7

Au point de clarification, le paramètre d'ordre S vaut 0,44

fig 7 Courbe universelle

3) - Les corps étudiés

Ils appartiennent à la famille des cyano-biphényls dont la formule développée est

ainsi qu'un dérivé cyclohexane : le PCH de formule développée

Leurs températures de transition sont résumées dans le tableau suivant :

Dénomination		Température de	transition en °C		
	Formule	Cristal - Smectique A	Cristal-néma- tique ou smectique A Nématique	Nématique Isotrope (f o de cla- rification)	
K ₁₅ (n=5)		-	22,5	35	
K _{2I} (n=7)		-	28,5	42	
K ₂₄ (n=8)		21	32,5	40	
PCH ₇		-	30	57	

Ces corps, dont l'utilisation dans les affichages à

cristaux liquides est devenue courante, sont chimiquement stables et présentent une liaison **CEN** qui leur confère une forte activité en IRL

III) - Les résultats expérimentaux

Des premiers résultats relatifs à ces substances en phases nématique et smectique A non orientées ont été obtenus à l'aide de spectromètres classiques, soit à réseaux (37,40), soit à transformée de Fourier (49). De plus, quelques mesures d'anisotropie d'absorption IRL avaient déjà été effectuées par Depret (6), pour des longueurs d'onde supérieures ou égales à II8,8 um. Profitant des nouvelles possibilités de la source, nous avons étendu ces mesures d'anisotropie aux longueurs d'onde inférieures à IOO µm, permettant ainsi l'étude des phases orientées dans tout le domaine IRL (50 µm - 500 µm)

4) - Influence du champ magnétique

Nous avons tout d'abord étudié l'influence du champ magnétique sur l'orientation du CB₅, CB₇, CB₈, et PCH₇ en phase nématique.

Dans ce but, nous avons mesuré le coefficient d'absorption présenté par ces substances à une longueur d'onde donnée ($\lambda = 432$ um) en fonction de l'intensité du champ magnétique; au cours de l'expérience, la température a été maintenue constante. Deux configurations ont été adoptées, l'une avec la direction du champ magnétique parallèle à l'axe du champ électrique IRL, l'autre avec la direction du champ magnétique perpendiculaire à l'axe du champ électrique IRL.

On remarque (cf. figure IV.8,9,10,41) que pour la configuration "parallèle", le coefficient d'absorption $\boldsymbol{x}_{\parallel}$ diminue quand l'intensité du champ magnétique augmente jusqu'à atteindre une valeur limite (saturation); pour la configuration perpendiculaire le phénomène est analogue, mais cette fois le coefficient d'absorption « augmente en même temps que l'intensité du champ magnétique.

Ces résultats mettent en évidence un phénomène d'anisotropie qui est une conséquence de l'anisotropie orientationnelle de la phase nématique. Sans champ magnétique, l'orientation des molécules est alors essentiellement due aux effets de surface qui se produisent entre les molécules et les fenètres de la cellule. Lorsqu'on applique un champ magnétique, les molécules tendent à s'orienter de manière à ce que leur grand axe coïncide avec la direction du champ.

Il en résulte que cette orientation contrecarre l'orientation spontanée et pour une valeur du champ suffisante (de l'ordre de 3 KG), on peut considérer que la substance est orientée selon la direction du champe.

2) - Spectres IRL en phases nématique et smectique A orientées

Afin d'être sûr de l'orientation des substances en phase nématique, nous avons appliqué un champ magnétique de l'ordre de IO KG.

Smétique Pour obtenir une orientation correcte en plase A (CB₈), nous avons refroidi la substance depuis la phase nématique jusqu'à la phase smectique A tout en appliquant un champ magnétique de IO KG; cette méthode avait déjà été appliquée en relaxation diélectrique par d'autres auteurs ().

Nous avons mesuré le coefficient d'absorption du CB_5 , CB_7 , CB_8 , et PCH₇ en phases isotropes, nématique et smectique A orientées pour les longueurs d'ondes $\lambda = 432$ um de l'acide formique, et $\lambda = II8,8$ um et 70 um de l'alcool méthylique. En phase nématique et smectique A, les deux configurations parallèle et perpendiculaire conduisant à

 \forall_{11} et \forall_{12} ont été étudiées. En phase isotrope, il ne subsiste qu'une seule valeur du coefficient d'absorption, puisque l'ordre orientationnel à longue distance est détruit.

Nous avons tracé les spectres d'absorption correspondant à la figure IV.12,43,44,45 Nous avons également tracé les spectres d'absorption en phase isotrope mesurés au spectromètre à réseaux caméca par M. Bouamra (37).

Nous pouvons constater le bon accord entre les résultats obtenus au caméca et au laser IRL. Nous pouvons également constater que l'anisotropie d'absorption existe dans tout le domaine submillimétrique.

L'interprétation de ces spectres en termes de mouvements moléculaires est largement développée dans le cadre de la thèse de M. Bouamra (37).

Nous en rappelons ici les principaux résultats : l'absorption IRL des composés étudiés est essentiellement d'origine intramoléculaire, et l'intense raie d'absorption située dans le domaine 40 - 80 um est probablement due à une vibration y CEN.

3) - <u>Etude de l'anisotropie d'absorption IRL en fonction de</u> la température.

Nous avons mesuré les coefficients d'absorption $\forall_{||} e^{t} q_{\perp}$ ainsi que le coefficient d'absorption \forall Iso en phase isotrope, en fonction de la température pour la longueur d'onde $\lambda = 70$ um.

Nous pouvons constater (cf. Figure IV.16,17,18,19):

- une diminution de l'anisotropie d'absorption quand la température augmente et s'approche du point de clarification,
- Une variation très faible de l'anisotropie d'absorption à la transition smectique A - nématique pour le CB₈.

4) - Anisotropie d'absorption et paramètre d'ordre.

Pour des matériaux diélectriques, l'absorption électromagnétique est reliée à la fonction de corrélation du moment dipolaire macroscopique M (t) par fransformée de Fourier (**38**)

$$\alpha(\omega) = \frac{\omega \epsilon''}{nc} = \frac{\omega}{\kappa \tau v \epsilon_v} \times \frac{1}{nc} \times \frac{E_m(\omega)}{E(\omega)} \int \langle \vec{M}(t) \rangle \sin \omega t dt$$

où n : représente l'indice du milieu à la pulsation w

k : la constan**ce** de Boltzmann

T : la température du matériau

V : le volume du matériau

€. la permitivité du vide

c : la vitesse de la lumière

E m (w):le champ électrique local à la pulsation w

E (w): le champ électrique appliqué

M(r) = Z/M(r): moment dipolaire macroscopique

, moment microscopique de la l^{ème} molécule.

Si l'on admet qu'à 70 um l'absorption IRL est essentiellement due à la contribution de la vibration $\forall C \ge N$, le moment dipolaire microscopique est assimilable au moment de transition vibrationnel

$$\mathcal{M}^{a}(r) = \left(\frac{\partial \mathcal{M}^{a}(r)}{\partial q}\right) q^{a} = 0$$

perpendiculaire à l'axe moléculaire et l'on obtient en utilisant une correction du champ interne classique en IRL (39,40,41) :

$$\frac{\alpha_{\parallel}}{\alpha_{\perp}} = \frac{n_{\perp}}{n_{\parallel}} \left(\frac{n_{\parallel}^2 + 2}{n_{\perp}^2 + 2} \right)^2 \frac{1-5}{1+\frac{5}{2}}$$

Nous en avons déduit les variations des paramètres d'ordre S en phase smectique A (CB₈) et nématique (CB₅, CB₇, CB₈, PCH₇), en fonction de la température.

Les valeurs des indices η_{\parallel} et η_{\perp} ont été tirées de la littérature (42,43).

Les résultats sont donnée à la figure IV.20,24,22,23.

L'allure générale est conforme aux prévisions théoriques de Maier - Saupe. Il faut noter la quasi continuité du paramètre d'ordre à la transition smectique A - nématique du CB_8 , ce qui est en accord avec des mesures de $\langle R \rangle$ effectuées en diffusion Raman (44).

Cependant, les valeurs de $\langle P_2 \rangle$ déterminées en IRL sont plus faibles que celles obtenues par d'autres méthodes (45,46,47,48)

Plusieurs raisons pourraient être à l'origine de cet écart :

- d'un point de vue expérimental, la longueur d'onde de 70 um correspond aux limites hautes fréquences d'utilisation du polariseur, et l'anisotropie mesurée pourrait être inférieure de guelgues % à l'anisotropie réelle.

- d'un point de vue mécanisme microscopique à l'origine de l'absorption IRL à 70 um, il est possible que le mode prédominant **(CEN** ne soit pas entièrement pur; d'autres modes par exemple de type librationnel ou torsionnel, pourraient apporter une contribution non négligeable.

- Remarque importante

Le laser permet l'utilisation commode d'un électroaimant pour orienter la substance, cetque ne permettent les appareils classiques tel le spectromètre à réseau caméca; Le champ magnétique nous assure d'une bonne orientation du cristal liquide (50)

CONCLUSION

Si l'obtention du paramètre d'ordre $\langle \vec{R} \rangle$ à partir de mesure IRL demande à connaître au préalable la nature des modes à l'origine de l'absorption IRL, dans tous les cas, les mesures de dichroïsme IRL contiennent des informations relatives à l'ordre orientationnel, et peuvent être considérées comme complémentaires à d'autres méthodes de détermination du paramètre d'ordre $\langle \vec{R} \rangle$ des composés nématique et smectique A.

АЦ Ц**і** Е

fg 1 dais scheme syneptique de la source pour le determination de «

.

fys. 4 Synopeique du bane de mesure

fig. I.2.

Stabilisation seule

Les structures des cristaux liquides.

Fig. 2.A. L'emplement nématique. Les molécules du cristal liquide sont des formes allongées : on peut les représenter schematiquement par des ellipsoides allongés. Leurs centres de gravité se déplacent au hasard comme dans un liquide ordinaire, mais au cours de ces mouvements les grands axes des molecules restent en moyenne paralleles à une direction commune.

Fig. 2B. La spirale cholestérique. Dans une « tranche » de cristal liquide, perpendiculaire à l'axe z de la figure, la disposition des molécules est tout à fait analogue à celle d'un nématique. Mais la direction privilégiée d'orientation des molécules tourne lentement, quand on se déplace suivant l'axe z. Ainsi, les molécules de la tranche ill sont perpendiculaires à celles de la tranche i. Il en résulte une structure périodique de période L.

smechque 4

Fig. 2C. La structure en couches des smectiques. Dans cette phase, la plus prache de l'état solide, il subsiste un ordre à une dimension : les molicules sont reparties dans des « couches « qui s'empitent regulierement les unes au-dussus des autrus. A l'intérieur de chaque couche, les molécules gardent une direction privilégiée. Le plus souvent, elles sont paralièles à l'axe d'empitement z (smectiques A). Dans les smectiques C, récemment découverts, elles sont inclinées sur cet axe, suivant un angle qui peut varier avec la température.

Figure IV.6 : Différentes structures des cristaux liquides.

BUS

CONCLUSION GENERALE.

La source laser submillimétrique dont on disposait au laboratoire utilisait une cavité métallique.

Si l'utilisation de ce type de cavité donne de bons résultats dans la partie basses fréquences du domaine submillimétrique (λ > 300 um), les performances sont médiocres dans la partie hautes fréquences. C'est la raison pour laquelle nous avons réalisé et mis au point une cavité diélectrique dont l'utilisation a nettement amélioré les performances en nautes fréquences de la source, puisqu'elle nous a permis d'obtenir des raies de grandes longueurs d'onde, mais aussi de courtes longueurs d'onde par exemple, les raies 42 μ m et 70 μ m de l'alcool méthylique puissantes (\gtrsim 4mW) et stables; en outre avec cette cavité, le fonctionnement du laser s'est avéré monomode.

Grâce à l'amélioration des performances de cette source, nous avons pu mesurer le coefficient d'absorption de quelques substances mesogènes en phases smectique A et nématique orientées dans tout le domaine submillimétrique (500 um - 40 um).

C'est à notre connaissance, la première fois qu'une telle caractérisation a pu être effectuée; les premières caractérisations de substances orientées en IRL étant limitées aux grandes longueurs d'onde.

Le laboratoire dispos ant d'une source submillimétrique capable de délivrer des raies puissances dans tout le domaine entre 40 um et I mm, il devrait être possible de développer des études relatives à d'autres composés mésogènes en phases smectique et nématique, ou même à d'autres mésophases récemment synthétisées telles que les discotiques. Il serait également intéressant de profiter des nouvelles possibilités de la source pour étendre ces caractérisations aux matériaux semi-conducteurs ou semi-isolants.

BIBLIOGRAPH1 ^L

- I) Gas maser opération at wavelengths out to 28 microns
 R.A. Hc Farlane and al Q.E. vol.3 p.573 1964
- 2) Cw optical maser action up to I33 um in né on discharge
 C.KN Patel, W.L. Faust and al
 IEEE Vol. 32 page 713 Juin 1964
- 3) A stimilate émission source at 0,34 millimeter wavelength H.A. Gebbie and al Nature page 685 I6.5.1964
- 4) Stimulated émission in the band spectrum of nitrogène
 L.E.S. Mathias, J.T. Parker
 Appl. Phys. letters vol. 3 page 15 1963
- 5) Laser action at 452; 496 and 54I um in optically pumped CH₃F T. Y chang, T.J. Bridges Opt. Commun. Vol. I nº 9 page 423 April 19**50**
- 6) Réalisation d'un laser infra rouge lointain guidé, optiquement pompé et utilisation en tant que source submillimétrique.
 Depret Thèse de Docteur Ingénieur 1979
- 7) "Théory of an FIR laser" <u>conférence Digest</u> international conf on submillimeter waves and their applications Atlanta, June 1974 J.R. Tucker

- 8) T.A De Temple et EJ Danielewicz IEEE J. quant. électro. QE I2 page 40 1976
- 9 J.O. Henningsen and H.G. Jensen
 "The optically pumped FIR laser, Rate équations and diagnostic expériments"
 IEEE Quant. Electron. Vol. 11 Nº 6 pages 248 252 (1975)
- IO) Thèse d'état Dangosse 1980
- II) Lourtioz J.M., R. ADDe, D. Bouchon et J. Pontnau Revue de Phys. appl. nº I4 pages 323 - 330 - 1979
- I2) D.T. Hodges " A review of Advances in optically pomped FIR laser Proceeding third international conf. on submillimeter wave and their application
- I3) D.T. Hodges " Proce ding of the Society of photo optical instrumentation Engéneers Vol. IO5 Far infared / Submillimeter wave pages 6 - IO (1977)
- I4) D.T. Hodges, F.B. Foote, R.D. Reel, IEEE Q. E.I3 Nº 6 page 9I (1977)
- 15) S.F. Dynbko, A.V. Swich et L.D. Fresenko Sov. phys. tech. phys. Nº 20 page 1536 (1976)
- I6) V.Z. Williams, J... Chem. Phys. Nº I5 Page 232 (1947)
- I7) B.A. Lengyel "introduction à la physique du laser " éditions Eyrolls (1968)
- I8) J. Lemaire Cours de DEA "LILLE I" I979

- I9) J.J.Degnan
 "The Wave guide laser : A review"
 appl. Phys. Nº 41 pages I 33 (1976)
- 20) D.T. Hodges J.R. Tucker and T.S. Hartwick
 "Banc. Physical mécanisme détermining Performances of the CH₃F laser " Infr.: phys. Vol. 16 Pages 175 - 182 (1976)
- 2I) P.D. Coleman "Présent and futures problems concerning lasers in the FIR spectral region J. opt soc. amer. Vol. 67 nº 7 page 894 - 901 (1977)
- 22) S.W. Wolfe, K.J. Button, J. Waldam et D.R. Cohn Appl. Opt. 15 nº II · page 2645 (1976)
- 23) D. Bicanic, PhD Nimègue (1978)
- 24) W.A.A. Blumberg, H.R. Fettermann et D.D. Peek Appl. phys. lett. 35 № 8 page 582 (1979)
- 25) J.C. Deroche J. Mol. Spectrosc. Nº 69 page 19 (1978)
- 26) R. Beek, W. Englisch et K. Gurs "table of laser lines in gases and vapors" Springer Verlag (1976)

27) - D.J.E. Knight
 "Ordered list of optically pumped laser lines"

28) - J.Y. Chang et J.D. MC Gee IEEE, J Quant. Electron. Vol I2 nº I page 62 (1976)

29) - R.J. Wagner, A.J. Zelano et L.H. Ngai Opt. Commun, vol. 8 nº I Page 46 (1973)

- 30) T. Y. Chang et J.D. Mc Gee Appl. phys. lett vol. 19 nº 4 page 103 (1971)
- 31) A Tanaka, M. Yamanaka et H. Yoshinaga IEEE J. Quant. electron. vol. II nº IO page 853 (1975)
- 32) G. ZIEGLER et V.DUR IEEE J. Quant. electron. Vol. 14 nº 10 page 708 (1978)
- 33) D. Dangoisse E. Hillemor, A. Deldalle and J. Bellet "Assignment of the HcooH cw submillimétrique laser " Opt. commun. vol. 28 nº I page III - II6 (1979)
- 34) Thèse d'état de Y. Leroy
- 35) G. Friedel Ann phys. Paris, 18, page 273 (1922)
- 36) M. Bouamra Influence de la structure et de l'environnement moléculaire sur les propriétés spectroscopiques des mesophases en IRL DEA LILLE (1979)
- 37) M. Bouamra thèse de 3ème cycle
- 38) R. Kubo Lecturs in theoritical phys (Interscience Pub, NewYord 1959) I, page 120
- 39) A. Saupe et W. Maier Z Naturforschg I6 a, 816 (1979)
- 40) D. Decoster et M. Bouamra "Liquide crystal of one and two dimensional order and their application" Springer Verlag - Berlin 1980

- 4I) Gerschel, I. Darmont et C. Brot Molec. Phys. 23 page 317 (1972)
- 42) P.P. Karat et R.V. Hadhusudana Hol. Cryst. liq. cryst. 36 page 51 (1976)
- 43) D.A. Dunmur, H.R. Manlufield et H.M. Miller, J.K. Dunleavy 45, 127 (1978)
- 44) M. Constant et D. Decoster Phys. Rev Lett. (à paraître)
- 45) P.L. Shenerell et D.A. Crellin J. Phys. Coll C₃ supp. Nº 4 40 C₃ page 2II (1979)
- 46) K. Migano, J. Chem. Phys. 69 4807 (1978)
- 47) H. Schad, G. Bouret G. Maier J. Chem. Phys. 71 3174 (1979)
- 48) M. Constant et D. Decoster Phys. Rev. lett. (à paraître)
- 49) C.J. Reid et M.W. Evans, Mol. Phys, 40, 1523 (1980)

50) - P.G. de Gennes : The phys. of liquid crystal clareudon Press - Oxford

ANNEXE

ORDERED LIST OF OPTICALLY-PUMPED LASER LINES (CONTINUOUS, $\lambda > 9 \mu$ M) WITH FREQUENCIES

D J E Knight National Physical Laboratory Teddington Middx. U K

ORDERED LIST OF OPTICALLY-PUMPED LASER LINES (continuous. $\lambda > 9 \mu$ m) with frequencies

D J E Knight National Physical Laboratory Teddington Middx. U K

5th issue March 79 - NPL Report no. Qu 45

Changes since 4rd issue: new data from the following references (see pp.iii-iv) on a total of 178 new and 35 amended lines, the number of lines following each reference in parentheses: BL2 (1), DH (4), DA3 (1), DW1 (3), DW2 (21), DW3 (12), DW4 (5), ED (7), GW1 (10), HEN1 (39), HEN2 (34), MO (14), PE2 (69) and ZD (37). Note: the number of reference listings exceeds the number of new entries because of multiple referencing.

Lines are listed in order of wavelength, with references, power level and full pump-line information. The best known measurements of vacuum wavelength (or frequency) are given, with the (70% confidence level) uncertainty, and the appropriately-rounded frequency[®] is given at right.

The list is intended as a radiation source list rather than a frequencystandards list, so that improvements in accuracy within the Doppler tuning width are not necessarily shown.

* This is rounded to match the uncertainty of the measurement, being calculated from the wavelength, which is exactly taken from the original reference. Original frequency measurements have been converted to wavelength (and back) using c = 299792500 m/s. SUMMARY OF LINES, WITH CODES FOR ISOTOPES AND OPTICALLY-PUMPED MOLECULES (in alphabetical order of codes)

no.of lines	code	molecule
त त	B10T = B11T = C02A = C02B = C02C =	(B10)(CL)3, boron trichloride with boron-10 isotope. (B11)(CL)3, boron trichloride with boron-11 isotope. C(018)2, CO2 WITH 018 ISOTOPE (C13)02, CO2 WITH C13 ISOTOPE (C13)(018)2, CO2 WITH C13 AND 018 ISOTOPES
16 2 21 20 9 7 32 2 1 4	CO2S = DF = DFE = DFM = DMA = DMC = DME = DME = DMI = DMI = DMIA = DMIA = DMIA = C = EA = EC =	CO2 sequence-band line (punp) C2H2F2, 1,1 DIFLUOROETHYLENE C2H4F2, 1,1 DIFLUOROETHANE CH2F2, difluormethane CH3OD, D1-METHYL ALCOHOL CD3(CL), DEUTERATED METHYL CHLORIDE CD3OD, DEUTERO-METHYL ALCOHOL (D-METHANOL) CD2(C1)2, deuterated methylene chloride (dichloromethane) CD3I, DEUTERATED METHYL IODIDE (13C)D3I, methyl iodide with C-13 isotope D20, heavy water C2H2OH, ETHYL ALCOHOL C2H5(CL), ETHYL CHLORIDE
1б 11	EF =	E CH3CH2F, ETHYL FLUORIDE HCOOH, FORMIC ACID
64	FAA :	= HCOOD, Formic acid isotopic analogue A
20	FAB =	DCOOH, Formic acid isotopic analogue B
51	FA13	H(C13)00H, formic acid with C13 isotope
2 5 110	FO FOA FOB MA	H2CO, formaldehyde - see also trioxane (TRI) HDCO, formaldehyde isotopic analogue A D2CO, formaldehyde isotopic analogue B CH3OH, METHYL ALCOHOL, METHANOL
110	MAC :	= CH3CCH, METHIL ACCHILENE = CD3OH, D3-METHYL ALCOHOL
19	MAD1	= CH2DOH, isotopic species of methyl alcohol
11	MAD2	= CHD2OH, isotopic species of methyl alcohol
7	MAM	= CH3NH2, METHYLAMINE - (12C)H2OH methyl alcohol with C-13 isotope
40 Q	MBA	= CH3(79Br). methyl bromide with 79Br
7	MBB '	= CH3(81Br), methyl bromide with 81Br
20	MBR	= CH3Br, methyl bromide with mixed 79Br and 81Br species
20	MC	= CH3(CL), METHYL CHLORIDE
29	MEC	- CH2(CL)2 METHYLENE CHLORIDE
6	MF	= CH3F , METHYL FLUORIDE
1	MF13	= CH3F, METHYL FLUORIDE WITH CARBON-13 ISOTOPE
21	MI	= CH3I, METHYL IODIDE
7	NH3	= NH3, AMMONIA = (15N)H2 prmonin with N-15 isotope
20	ND SA N2H4	= (150)HS, Ammonia with N=15 13000pe = N2H4. HYDRAZINE
13	TRI	= (H2CO)3, trioxane (cyclic trimer of formaldehyde)
45	VB	= C2H3Br, vinyl bromide, with Br79, Br81 mixed 51%, 49%
19	VC	= CH2CH(CL), VINYL CHLORIDE
19	VCY	= CH2CHCN, VINYL CYANIDE
905	TOTAL	

(iii)

REFERENCES

BL1 (DMA) = T G Blaney, D J E Knight and E Murray-Lloyd Opt. Commun., 25, No.2, May 78 pp176-178 BL1 NOTE: 295 & 396 micron line powers from KON2; polarizations differ from KON2. BL2 (MA) = T G Blaney, N R Cross, D J E Knight, G J Edwards and P R Pearce Mar 79, in preparation BE1 (DF, DMA) = B L Bean and S Perkowitz Optics Lett. 1, No.6, Dec77 pp202-4 CH2 (MF) = CHANG, BRIDGES, OPTICS COMMUN. 1, NO9, APR70, PP423-6 CH3 (MF.VC.MA) = CHANG ET AL.APP.PHYS.LETT.17.NO6.15SEP70.PP249-51 CH4 (NH3) = CHANG ET AL, APP. PHYS. LETT. 17, NO9, 1NOV70, PP357-8 CH5 = CHANG ET AL, APP. PHYS. LETT. 19, NO4, 15AUG71, PP103-5 CH5(NOTE) 150 MICROSEC CHOPPED PUMP -OUTPUT LINES STRONGER THAN 0.1 MILLIWATT TAKEN AS (POTENTIALLY) CW AND LISTED CH6 = CHANG AND MCGEE, IEEE QE-12, NO. 1, JAN76 PP62-65 CH6 (NOTE) 150 MICROSEC CHOPPED PUMP (200W) ALL LINES LISTED. DA1 = D Dangoisse, A Deldalle, J-P Splingard and J Bellet C. R. Acad. Sci. 283B Sep76 pp115-118 (note: where DY8 is a 2nd reference it is also a frequency meast.) DA2 (FOA, FOB, TRI) = D Dangoisse, A Deldalle, J-P Splingard and J Bellet IEEE J. Quant. Electron. QE-13, No.9 Sep77 pp730-1 Notes (i) 9.66P32 pump lines in doubt, (ii) power levels and wavelength accuracy taken as for DE1 DA3 (FA) = D Dangoisse. E Willemot. A Deldalle and J Bellet Opt. Commun. 28, No1, Jan79 pp111-6 (collation of formic acid assignments) DE1 (FA,FA13, (FAA,FAC)) = A Deldalle, D Dangoisse, J-P Splingard and J Bellet Optics Commun. 22. No.3 Sep77 pp333-6 Notes (i) FA13.480 micron line pump line (10.09R46) is in doubt, (ii) these authors assign the 693788.5 MHz line to FA against FAA given by DY8. DH (DME, DMC, DMIA) = G Duxbury and H Herman J. Phys.B 11, No5, 1978 pp935-949 DW1 (NH3A) = E J Danielewicz and C O Weiss IEEE J. Quant. Electron. QE-14, No4, April 78 pp222-3 Note: this isotopic species was used in the natural abundance .(0.37%) in research grade NH3. DW2 (MAD) = E J Danielewicz and C O Weiss IEEE J.Quant. Electron. QE-14, No7, Jul 78 pp458-459 DW3 (DFM) = E J Danielewicz and C O Weiss IEEE QE-14, No. 10, Oct78 pp705-7 Note: power levels scaled from DW2, with VS now 10mW since 44mW is given here for the 165.9 line. DW4 (D20,NH3,MF) = E J Danielewicz and C O Weiss Optics. Commun. 27,No1, Oct78 pp98-100 DY1 (DF,VCY,MAM) = DYUBKO ET AL, JETP LETT. 16, NO11, 5DEC72 PP418-9 DY2 = DYUBKO ET AL, SOV. PHYS. TECH. PHYS. 18, NO8, FEB74, P1121 ONLY DY3 (N2H4) = DYUBKO ET AL.ZH.PRIKL.SPEKTROSK(USSR)20.NO4.APR74.P718-9 DY3 TRANSLATION J.APPL.SPECTROSC.(USA)20 NO.4 PP546-5 DY4 (MI,SEE ALSO CH4,GR) = DYUBKO ET AL.OPT,SPECTROSC.37,NO1.JUL74 P118 DY5 (FA) = DYUBKO, SVICH, FESENKO SOV. J. QUANT. ELECTRON. 3, NO5, 1974 P446 (DY5 R-branch pump lines in doubt - see DY8) DY6 = DYUBKO ET AL ZH, PRIKL, SPEKTROSK, (USSR)23NO2 AUG75 317-20 DY6 (NOTE) 2E-6 WAVELENGTHS FROM FREQ., 10 UNITS POWER TAKEN AS APPROX. 1 MILLIWATT.CO2 POWER TAKEN AS 7W (DY5). DY7 (MAD) = Dyubko et al, Izv. Vuz. Radiofiz. (USSR) 18,No10, 1975 pp1434-7 DY8 = S F Dyubko, A V Svich and L D Fesenko Sov. Phys. Tech. Phys. 20, No.11, pp1536-1538. Trans. of:Zh. Tekh. Fiz. 45, Nov 75 pp2458-61 DY8 note: for identification of active transitions see: O I Baskakov et al. Sov. J. Quant. Electron. 7, No.4 Apr77 pp445-9

REFERENCES (continued)

DY9 = S F Dyubko, M N Efimenko, V A Svich and L D Fesenko Sov.J Quant. Electron. 6, No.5, May 76 pp600-601. DY8, DY9 NOTE: conventional pump threshold values of "+3+", "2W have been used for all DY results, except for ~4 extreme lines in DY9 given "+3", "1W. DY8,9 NOTE 2: the submillimetre powers are interpolated from the the indications of detector calibration given. ED (MAD) = G J Edwards, (NPL Teddington) private communication 15Aug78 (wavelength checks on 7 lines to 0.05%) FE1 (NH3) = H R Fetterman, H R Schlossberg and C D Parker Appl. Phys. Lett. 23.No.12 Dec73 pp684-6 Note: the pumped transitions are stark shifted to the pump frequency and the wavelength accuracy is estimated, not given. GR (MI THEORY) = GRANER OPT. COMMUN. 14, NO 1, MAY75 PP67-9 HO1 = HODGES ET AL, IEEE QE-9, NO12, DEC73, PP1159-60 HE1 (MA) = J Heppner. C O Weiss and P Plainchamp Optics Commun. 23, No.3 Dec77 pp381-4(see footnote p383) Note: sign of pump offset from NPL, lambda accuracy estimated as 0.1% HEN2 (MA13) = J O Henningsen and J C Petersen Infrared Phys. 18, No5+6, Dec78 pp475-479 Notes(i) 13-C was 90% pure (ii) lines given as "particularly strong" taken as 1mW (iii) threshold conventionally taken as 10W.(25W pump) JEN (EA.MC.EC.MEC) = JENNINGS ET AL, IEEE QE-11, NO8, AUG75 P637 KAR = Karlov et al. JETP Lett. 8 July 68 pp12-14 KON (DME) = KON ET AL JAP.J.APPL.PHYS. 14, NO5 1975 PP731-2 KON2 = KON ET AL JAP.J, APP. PHYS. 14, NO11, 1975 PP1861.2 KW1 = Kramer and Weiss Appl. Phys. 10 1976 187-188. MO (MBA, MBB, MCY) = M V Moskienko and S F Dyubko Radiofizika 21. No7, 1978 pp951-960 PET (MA) = PETERSEN ET AL, IEEE QE-11, NO 10, OCT75 PP838-43 PE2 (MA,MA13*,MAD) = F R Petersen, D A Jennings, K M Evenson and J O Henningsen (in preparation: HEN2, also private communication from F R P Nov. 1978 and Mar79.) RA1 = RADFORD, IEEE QE-11, NO5, MAY75 PP213-4 .WAVELENGTHS FROM CH5, WA RA2 = H E Radford, private communication 4 Aug 76. New frequency measurements on 41 lines (waveguide laser):- of these, some (Fabry-Perot) lines of wavelength between 0.1 and 0.7 mm are published in:-H E Radford, F R Petersen, D A Jennings and J A Mucha IEEE J. Quant. Electron. QE-13 Mar77 pp92-94. Power levels are taken from the second reference given, or assumed -2 or -3. TA1 (MA) = TANAKA ET AL, JAP. J. APP. PHYS. 13, NO9, 1974 PP1491-2 TA2 (MA) = TANAKA ET AL. IEEE QE-11, NO 10, OCT75, PP853-4 T3 (NH3,MA,MCY) = A Tanaka, A Tanimoto, N Murata, M Yamanaka and H Yoshinaga Opt. Commun. 22, No.1 Jul77 pp17-21 (Appears as 2nd/3rd reference, giving improved cw power out and pump threshold). WA = WAGNER ET AL. OPT. COMMUN. 8, NO1. MAY73 PP46-47 WE1 (MA) = C O Weiss, M Grinda and K Siemsen IEEE J. Quant. Electron. QE-13, No.11 Nov77 p892. Notes: (i) pump lines are CO2 sequence lines (CO2S) see Siemsen and Whitford Opt.Commun. 22. No.1 Jul77 pp11-16, (ii) uncertainty of wavelength not given but estimated at 1 micron or 0.5 %; formal threshold of 2 W assigned. ZD (DMEC, MAD2, MAD1) = G Ziegler and U Durr IEEE J.Quant.Electron. QE-14.No.10,Oct78 p708 Notes: (i) gas purity about 96% (ii) conventional threshold of 2W assigned.

(iv)

THE PAIR OF 8-CHARACTER WORDS "GAS/POWER", "REFERENCE" ON EACH DATA RECORD CAN CONTAIN INFORMATION AS FOLLOWS-

"GAS/POWER" = (LASING GAS SYMBOL FIRST, 1-4 OR 1-5, C IN 5, OR IN 8 FOR LAMBDA CALCULATED FROM FIT, LOG(POWER/MILLIWATT) IN CHARACTERS 6,7 AND CHARACTER 8 CONTAINS L IF A LAMB DIP OCCURS) * IN CHARACTER 4 INDICATES OPTICALLY-PUMPED LASER

AND BRACKETED POWER, () IN 5,8, INDICATES CASCADE OPERATION

LOG(POWER/MILLIWATT) CONVENTION E.G.+2- IN 6,7,8 OF "GAS/POWER" OR "gas/thresh.", = DECADE IN 6,7 ("+2" = 100), AND -, BLANK,+ IN 8 COVER THE COEF. RANGES 0.31-0.69, 0.7-1.4, 1.5-3.0, ABOUT THE MEANS 0.5, 1, 2. CHAR.8 IS SOMETIMES NOT SPECIFIED, THE RANGE THEN BEING 0.32-3.1.

"REFERENCE" = (PAPER(S) IN FORM 2/3 LETTERS +1DIGIT FOLLOWED BY A LINE IDENTIFICATION OF 1,2 CHARACTERS AT RIGHT OF FIELD)

OPTICALLY PUMPED LINES -EXTRA INFORMATION IS PROVIDED FOR THE PUMP LINE AS FOLLOWS:- TWO 8-CHARACTER WORDS NAMED "gas/thresh.", "ref.", AND A NUMBER FOR THE PUMP OFFSET "offset" IN MHz .

"gas/thresh." FORMAT IS THE SAME AS FOR GAS/POWER, WITH THRESHOLD LOG(POWER/MILLIWATT) IN LAST 3. The polarization of output with respect to the pump is indicated in character 5 of "gas/thresh." as follows:- P,N or E for parallel, normal or either (none).

"ref." CONTAINS WAVELENGTH (MICROMETRE) IN FIRST 5, AN ASSIGNMENT IN LAST 3, EG FOR CO2, 10.09R48, OR _9.3_R08.

Example lines:-

TOTAL LASER LINES = 905 FREQ.FROM WAVELENGTH (OR V.V.) USING C=2.997925E08 METRE/SEC ORDERED LINE LIST

WAVELENGTH uncertainty LAS	SER I	LINE			pump	line	 I	REQUENCY
Avec GAS/POL			NCF	~~~ /	three	sh raf	offeet	f
(MICROMETRE)	HEN.	ALF EAI	SNOE	gas/	CIII CZ		MHz	MHz

2050.000000 5.0E -3 MBB*	0	MU DV6	7	CO2	D. D .	10.49P10		113100.0
1955 300000 5 0F -5 MB/#	0	CHEMO	20	C02	7+3+ 7+11+	9.50 FT4	0	152540 0
1800 880540 1 OF -6 VB *	0_	DYQ	<u>л</u> г.	C02	P+3+	10 59P20	U	157794.7
1886_870000 5.0E -5 MC *	0+	CH6	7	C02	N+4	9.60 P26	+20	158883.0
1814.370000 2.8E -5 MCY*	0	CH5	1	C02	P+4	10.88P46	0	165232.0
1730.833600 1.0E -6 FAA*	-1+	DY8	40	C02	P+3+	10.22R24		173207.0
1720.000000 1.0E -2 EC #	-1	JEN	8	C02	+4	10 R28		174000.0
1614.888050 1.0E -6 VB #	-1+	DY9	44	C02	P+3+	10.65P26		185642.9
1572.640000 6.0E -5 MBA*	0+	сн6мо	21	C02	P+4-	10.44P4	0	190630.0
1549.505000 2.0E -6 DMI#	-1	DY6	31	C02	P+3+	9.33 R10	• •	193476.3
1541.750710 1.0E -6 FAA#	-1+	dy8	17	C02	P+3+	9.64P30		194449.4
1521.376174 2.5E -6 EF	-2	RA2RA	143	C02	+4-	9.47P10		197053.5
1440.000000 2.0E -2 EF *	-3	RA2	_	C02	+3+	9.46P08		208000.0
1400.000000 1.0E -2 EC *	•	JEN	7	C02	+4	10 R38		214000.0
1394.002760 1.0E -6 VB *	0-	DIY	43	CO2	1+3+	10.25R20		215049.5
1303.002310 1.0E -0 VB *	-1+	DIY	42	002	2+3+	10.03224	15	210031.5
1351./00000 0.0E -5 MCI"	-2+	TEN	6	002	N+)-	9.21 R20	-12	221100.0
1350,000000 1.0E =2 EC =	-2	CUEN	10	002	+++ M_JI	10 7781		222000.0
1290 00000 5 0F -3 MAD#	-1	DY7	19	C02	D-3-	10.57.59	-20	232000.0
1290.000000 J.0E -5 FAC*	-1-	DY8	0	C02	5+3+	9 71238		233911.6
1253.738200 2.0E -6 MT *	+1	DY6CH	6	C02	P+4-	10.72P32	+25	239118.9
1247.594120 1.0E -6 VB *	-1+	DY9	41	C02	P+3+	10.30R12		240296.5
1239.479800 2.0E -6 DMC*	0	DY6	6	C02	P+3+	9.49 P12		241869.6
1237.965870 1.0E -6 FAB*	-1-	DY8	7	C02	P+3+	10.22R24		242165.4
1223.658340 2.0E -6 MA *	-1 1	RA2TA	10	C02	+3+	9.52P16		244996.9
1221.790000 4.0E -5 MF13	# 0	CH5RE	1	C02	P+4	9.66P32	-26	245372.0
1213.362500 1.0E -6 FA #	-1	DY8	28	C02	P+3+	9.62P28		247075.8
1184.000000 2.0E -2 VCY*	-3-	RA1	46	C02	_+3+	10.14R38		253000.0
1174.870000 4.3E -5 MAC*	0	CH5	•••	C02	P+3+	10.86P44	-15	255170.0
1164.830000 9.0E -5 MCX*	-]-	CHD	10	C02	2+4+	9.47 P10	+45	25/3/0.0
1101.0/0050 P.UE -0 FAA*	-1	DIG	51	002	r+3+	10.25120		250000.0
1157 31810 1 OF _6 FAA#	-2+	DYS	40 E 1	C02	1+2+	10.40200		259000.0
1156 00000 2 DF -2 VCV	_1_	DIO RA1	ו כ 11 בו	C02	- 11- - 11-	10.14830		259090.7
1146 000000 5 OE -3 MADE	· _1	DY7	35	002	P+3+	9 59 P24		262000.0
1100.00000 5.0E -3 MAD#	- 1-	DY7	26	C02	P+3+	9.49 P12		273000.0
1099.544200 2.0E -6 DMI*		DY6	47	C02	P+3+	10.61P22		272651.6
1097.110000 9.0E -5 MAC*	0-	CH6	4	C02	P+4	9.46 P8	-20	273260.0
1086.890000 9.0E -5 MCY*	-1+	CH6	17	C02	N+4	9.73 P40	+40	275830.0
1070.230740 1.0E -6 FAC*	-2-	DY8	4	C02	P+3+	9.49P12		280119.5
1069.000000 2,0E -2 EF *	-3+	RA 1	26	C02	+3+	9.33R10		280000.0
1063.290000 9.0E -5 MI *	+1-	CH6	18	C02	P+4+	10.78P38	+5	281950.0
1047.578660 1.0E -6 FAB*	0-	DY8	2	C02	N+3+	10.30R12		286176.6
1041.000000 2.0E -2 VC *	-3+	RA1	61	C02	+4-	10.15R36		288000.0
1030.378362 1.0E -6 FA13	*-1-	DE1	6	C02	+3+	9.22R30		290953.8
1020.000000 3.0E -2 DF *	-1	HUT	9	CO2	<u>+3</u>	10.53P14		294000.0
1010-330000 1.0E -4 MCY*	-1-	CHO	9	002	244m	9.40 PC	-40	294900.0
1000 HOOHOO 1 OF 6 PACE	-2+		4 1 0	CÚ2	N+4+	30 36 D14	-20	293590.0
1007 00000 2 OF 2 PAC	U 1	DX3	26	002	r+3+ N	10 61222	•	297700 0

- 2 -

	1005.347700	2.0E -6	DMI#	DY6 50	CO2 P+3+ 10.74P34		298197.8
	1005.230144	1.7E -6	EF 🝍 -2	RA2RA142	CO2 +3+ 9.62P28		298232.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	998.514180	1.0E -6	FAC# -1+	DY8 6	CO2 P+3+ 9,49P12		300238.6
	995.000000	2.0E -2	VC * -3+	RA1 60	CO2 +3+ 10,21R26		301000.0
	992.000000	5.0E -3	MF * 0	DW4 5	CO2SN+3 9.54P15	+30	302000.0
	990.630410	1.0E -6	VB * -1-	DY9 40	CO2 P+3 10.37R04	-	302628.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	990.510000	1.0E -4	MBR * 0	CH6 23	CO2 P+5- 10,49P10	0	302660.0
	990.000000	2.0E -3	DF # -1	DY1 9	CO2 P 10.61P22		302800.0
100010001000010000010000001000000000000000000000000000000000000	989, 190560	1.0E -6	VB * 0-	DY9 39	CO2 N+3+ 10.55P16		303068.5
BB920 1.0E -6 VE * 10 38 CC2 N+3 10.38R02 304092.T 09500 2.0E -6 DME* DV6 48 CC2 P+3+ 10.61P22 305378.0 00000 5.0E -3 MAP* -1 DY6 CC2 P+3+ 9.27 R20 310000.0 00000 5.0E -3 MI<*	986.312680	1.0E -6	FAA# 0-	DY8 46	CO2 P+3+ 10.17R32		303952 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	985 858920	1 0E -6	VB * -1	DY9 38	CO2 N+3 10 38B02		304092 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	981 709500	2 OF -6	T MT #	DY6 48	CO2 P+3+ 10.61P22		305378 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	971 806530	1 OE -6	FAR# _1_	DY8 8	CO2 P+3+ 10.01722		308180 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	968 000000	5 OF -3		DY7 0	CO2 P+3+ 0 27 B20		310000 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	960,000000	5 OF -3	MT # _1	DY6 21	CD2 P+3+ 10 61P22		311000 0
	962 187170	1.0E = 5	VB # +1-	DY0 27	CO2 N+3+ 10 HOP10		211152 5
$ \begin{array}{c} 00000 & 1.0E & -4 & \text{NC}^{+} 00 & \text{Ch}^{+} 00 & \text{Ch}^{+} 00 & \text{Ch}^{+} 9.23 & \text{R4}^{+} 9.23 & \text{R4}^{+} 315928. \\ 315928.6 & 315928.6 & 315928.6 \\ 70000 & 1.1E & -4 & \text{MC}^{+} +1 & \text{Ch}^{-} \text{Ch}^{-} \text{S0} & \text{CO2} & P+3 + 9.23 & \text{R2}^{-} 30 & 317590. \\ 00000 & 2.0E & -2 & \text{VC}^{+} -4 & \text{RA}^{+} & 44 & \text{CO2} & +4 - 10.68728 & 319000.6 \\ 02480 & 1.0E & -6 & \text{FAC}^{+} & -1 & \text{DY8} & 50 & \text{CO2} & P+3 + 10.65726 & 320085.1 \\ 59100 & 1.0E & -6 & \text{FAC}^{+} & -1 & \text{DY9} & 36 & \text{CO2} & P+3 + 9.52716 & 320630.4 \\ 00000 & 2.0E & -2 & \text{VC}^{+} & -3 & \text{RA}^{-} & 59 & \text{CO2} & P+3 + 9.52716 & 320630.4 \\ 00000 & 2.0E & -2 & \text{VC}^{+} & -3 & \text{RA}^{-} & 50 & \text{CO2} & P+3 + 9.62728 & 320900.6 \\ 00000 & 2.0E & -2 & \text{R}^{+} & -3 & \text{RA}^{-} & \text{CO2} & +3 & 10.59720 & 323058.7 \\ 08840 & 1.0E & -6 & \text{FAC}^{+} & -1 & \text{DY8} & 48 & \text{CO2} & P+3 + 10.29814 & 321000.0 \\ 00000 & 2.0E & -2 & \text{FA}^{+} & -3 & \text{RA}^{-} & \text{CO2} & +3 & 10.17832 & 324000.0 \\ 35670 & 1.0E & -6 & \text{FAA}^{+} & +1 & \text{DY8} & 44 & \text{CO2} & N+3 + 10.29814 & 323677.0 \\ 00000 & 2.0E & -2 & \text{FA}^{+} & -3 & \text{RA}^{-} & \text{CO2} & +3 & 10.17832 & 324000.0 \\ 35670 & 1.0E & -6 & \text{FAA}^{+} & +1 & \text{DY8} & 45 & \text{CO2} & P+3 + 10.17782 & 325884.2 \\ 00000 & 2.0E & -2 & \text{VCY}^{+} & -4 & \text{RA}^{+} & 43 & \text{CO2} & N+3 + 10.26818 & 333003.0 \\ 00000 & 2.0E & -2 & \text{VCY}^{+} & -4 & \text{RA}^{+} & 43 & \text{CO2} & N+3 + 10.26818 & 333000.0 \\ 00000 & 2.0E & -3 & \text{DMI}^{+} & \text{DY6} & 49 & \text{CO2} & P+3 + 10.70F30 & 335000.0 \\ 00000 & 5.0E & -3 & \text{DMI}^{+} & \text{DY6} & 49 & \text{CO2} & P+3 + 10.70F30 & 335000.0 \\ 00000 & 2.0E & -3 & \text{DF}^{+} -1 & \text{DY1} & 7 & \text{CO2} & P+3 + 10.26818 & 343962.4 \\ 300000 & 2.0E & -3 & \text{DR}^{+} & -1 & \text{DY1} & 7 & \text{CO2} & P+3 + 10.26818 & 3439286.0 \\ 000000 & 2.0E & -3 & \text{DR}^{+} & -1 & \text{DY1} & 7 & \text{CO2} & P+3 + 10.26818 & 3439264.0 \\ 000000 & 2.0E & -3 & \text{DR}^{+} & -1 & \text{DY1} & 7 & \text{CO2} & P+3 + 10.26818 & 3439264.0 \\ 000000 & 2.0E & -3 & \text{DM}^{+} & -1 & \text{DY1} & 7 & \text{CO2} & +3 + 10.26818 & 3439264.0 \\ 000000 & 2.0E & -3$	903.401410 058 250000	1.05 -1	MC # 0	CHE 8	CO2 R+3+ 10,75110	50	212850 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	950.250000	2 05 6	DMT# 0		CO2 P + 3 + 9 + 11 F = 200	-90	211/287 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	953.000100	2.0E -0	DMI- U	D10 20	CO2 +3+ 9.23 R20		314201.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	940,924052				CU2 +3 9.25R24	20	315920.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	943.970000	1.12 -4		CHOJEN 5	CU2 P+3+ 9.32 RI2	-30	31/590.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	940.000000	2.0E -2	VCI* -4	RAI 44			319000.0
	936.602480	1.0E -6	FAC= -1-	DIO 50	CU2 P+3+ 10.05P20		320005.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	936.159100	1.0E -0	VB = -1+	DI9 36	CO2 N+3+ 10.17P32		320236.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	935.009590	1.0E -6	FAC ⁼ 0	DIR 8	CO2 P+3+ 9.52P16		320630.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	935.000000	2.0E -2	VC = -3-	RA1 59	CO2 +3 10.89P46		321000.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	934.223180	1.0E -6	VB = -1	DY9 35	CO2 P+3+ 9.62P28		320900.3
815101.0E-6FAC*-1DY848CO2P+3+10.59P20323058.70088401.0E-6FAA*+1DY834CO2N+3+10.29R14323677.0200001.1E-4MEA*+1CH6MO8CO2P+4-10.09R46-35323920.03556701.0E-6FAA*+1DY845CO2P+3+10.17R32325884.2355701.0E-6FAA*+1DY625CO2P+3+10.17R32325884.2300002.0E-2VC*-4RA143CO2+410.30R12329000.033701.0E-6VE*-1DY934CO2N-3+10.26R18333053.2000001.0E-2EC*-1JEN5CO2+410R30335000.0000005.0E-3DMI*DY649CO2P+3+10.70P30335000.0000005.0E-3TRI*-1-DA218CO2P10.61P22336800.0000002.0E-3DF*-1DY17CO2P10.61P22336800.0000002.0E-3DF*-1DY17CO2P10.61P22336800.0000002.0E-3DF*-1DY17CO2P10.61P22336800.0092002.0E-6DMC*0 <td>933.000000</td> <td>2.0E -2</td> <td>FA = -3</td> <td>RA2</td> <td>CO2 +3 10.29R14</td> <td></td> <td>321000.0</td>	933.000000	2.0E -2	FA = -3	RA2	CO2 +3 10.29R14		321000.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	927.981510	1.0E -6	FAC* -1	DY8 48	CO2 P+3+ 10.59P20		323058.7
200001.1E-4MBA* +1CH6MO8CO2P+4-10.09R46-35323920.0000002.0E-2FA * -3RA2CO2+310.17R32324000.0356701.0E-6FAA* +1DY845CO2P+3+10.17R32325884.2102002.0E-6DMT* +1DY625CO2P+3+9.23R28326354.4000002.0E-2VCY* -4RA143CO2+410.30R12329000.0339701.0E-6V5 * -1DY934CO2N+3+10.26R18333005.2000001.0E-2EC * -1JEN5CO2+410R30335000.0000005.0E-3DMI*DY649CO2P+3+10.70P30335000.0000005.0E-3TRI*-1-DA218CO2+39.27R20336800.0000002.0E-3DF * -1DY18CO2P10.61P22336800.0000002.0E-3DF * -1DY17CO2P10.61P22336800.0000002.0E-3DF * 0DY1TCO2+310.25R18343962.4000002.0E-6DMC*0DY611CO2P+3+10.65F26341625.1850905.0E-7MAD*+1-PE2DY7CO2P+3+10.26R18-2034396	926.208840	1.0E -6	$FAA^{\#} + 1$	DY8 34	CO2 N+3+ 10.29R14		323677.0
000002.0E-2FAFA-3RA2CO2+310.17R32324000.0356701.0E-6FAA* +1DY845CO2P+3+10.17R32325884.2102002.0E-6DMI*+1DY625CO2P+3+9.23R28326354.4000002.0E-2VCY*-4RA143CO2+410.30R12329000.0339701.0E-6VB*-1DY934CO2N+3+10.26R18333053.2000001.0E-2EC*-1JEN5CO2+410R30333000.0000005.0E-3DMI*DY649CO2P+3+10.70P30335000.0000002.0E-3DF*-1DY18CO2P10.61P22336800.0000002.0E-3DF*-1DY17CO2P10.61P22336800.0000002.0E-3DF*-1DY17CO2P10.61P22336800.0000003.0E-2DF*0HO17CO2P10.61P22336800.0000003.0E-2DF*0HO17CO2P10.61P22336800.0000003.0E-2DF*0DY611CO2P+3+10.65P26341625.1182001.0E-6DMC*0DY611C	925.520000	1.1E -4	MBA# +1	сн6мо 8	CO2 P+4- 10.09R46	-35	323920.0
35670 $1.0E - 6$ $FAA^{\#} + 1$ $DY8$ 45 $CO2$ $P+3+$ $10.17R32$ 325884.2 10200 $2.0E - 6$ $DMI^{\#} + 1$ $DY6$ 25 $CO2$ $P+3+$ 9.23 $R28$ 326354.4 00000 $2.0E - 2$ $VCY^{\#} - 4$ $RA1$ 43 $CO2$ $P+3+$ $10.30R12$ 329000.0 33970 $1.0E - 6$ $VB^{\#} - 1$ $DY9$ 34 $CO2$ $P+3+$ $10.26R18$ 333053.2 00000 $1.0E - 2$ $EC^{\#} - 1$ $DY6$ 49 $CO2$ $P+3+$ $10.70P30$ 335000.0 00000 $5.0E - 3$ $DRI^{\#} - 1 DA2$ 19 $CO2$ $P+3+$ $10.70P30$ 336000.0 00000 $5.0E - 3$ $DRF^{\#} - 1 DA2$ 19 $CO2$ $P+3+$ $10.70P30$ 336000.0 00000 $2.0E - 3$ $DF^{\#} - 1 DY1$ R $CO2$ $P + 3$ $9.24R26$ 337000.0 00000 $3.0E - 2$ $DF^{\#} - 1 DY1$ R $CO2$ $P + 3$ $9.24R26$ 337000.0 00000 $3.0E - 2$ $DF^{\#} - 1 DY1$ R $CO2$ $P + 3$ $9.24R26$ 337000.0 00000 $3.0E - 2$ $DF^{\#} - 1 DY1$ R $CO2$ $P + 3$ $9.24R26$ 337000.0 00000 $3.0E - 2$ $DF^{\#} - 1 DY1$ T $CO2$ $P + 3$ $9.24R26$ 340000.0 $3.0E - 2$ $DF^{\#} - 1 DY6$ 11 $CO2$ $P + 3 + 9.68P34$	925.000000	2.0E -2	FA 🐐 -3	RA2	CO2 +3 10.17R32		324000.0
102002.0E-6DMI* +1DY625C02P+3+9.23R28326354.4000002.0E-2VCY*-4RA143C02+410.30R12329000.0339701.0E-6VE*-1DY934C02N+3+10.26R18333005.2000001.0E-2EC*-1JEN5C02+410R30333000.0000005.0E-3DMI*DY649C02P+3+9.27R20336000.0000005.0E-3TRI*-1-DA218C02+39.27R20336000.0000002.0E-3DF*-1DY18C02P10.61P22336800.00000002.0E-3DF*-1DY17C02P10.61P22336800.00000003.0E-2DF*-1DY17C02P10.61P22336800.00000003.0E-2DF*0H017C02P10.61P22336800.00982002.0E-6DMC*0DY611C02P+3+10.26R1834962.40000001.1E-4MC*0CH611C02P+3+10.26R18343962.40000001.2E-4MC*0CH611C02P+3+10.26R18-20345000.01000001.2E-4EF*-3+R	919.935670	1.0E -6	FAA* +1	DY8 45	CO2 P+3+ 10.17R32		325884.2
000002.0E-2VCY*-4RA143CO2+410.30R12329000.0339701.0E-6VE*-1DY934CO2N+3+10.26R18333053.2000001.0E-2EC*-1JEN5CO2+410R30333000.0000005.0E-3DMI*DY649CO2+39.27R20336000.0000005.0E-3TRI*-1-DA219CO2+39.24R26337000.0000002.0E-3DF*-1DY18CO2+39.24R26337000.00000002.0E-3DF*-1DY17CO2P10.61P22336800.00000003.0E-2DF*0H017CO2+310.51P12340000.00982002.0E-6DMC*0DY611CO2P+3+10.65P26341625.13850905.0E-7MAD*+1PE2DY7CO2P+3+10.26R18343962.4000001.2E-4MC*0CH611CO2P+3+10.26R18343600.01000001.2E-4MCY*-1CH611CO2P+3+10.26R18344270.01000001.2E-4MCY*-1DH2CO2+3+9.64P30351910.0381201.0E-6VB*-1+DY83<	918.610200	2.0E -6	DMI# +1	DY6 25	CO2 P+3+ 9.23 R28		326354.4
339701.0E-6VE* -1DY934CO2N+3+10.26R18333053.2000001.0E-2EC* -1JEN5CO2+410R30333000.0000005.0E-3DMI*DY649CO2P+3+10.70P30335000.0000005.0E-3DRI*-1-DA219CO2+39.27R20336000.0000002.0E-3DF* -1DY18CO2P10.61P22336800.00000002.0E-3DF* -1DY17CO2+39.24R26337000.00000003.0E-2DF* -1DY17CO2P10.61P22336800.00000003.0E-2DF* -1DY17CO2+310.51P12340000.00982002.0E-6DMC*0DY611CO2P+3+10.65P26341625.13850905.0E-7MAD*+1-PE2DY7CO2P+3+10.26R18343962.40000001.1E-4MC0CH611CO2P+4+9.86P52+30344270.01000001.2E-4MCY*-1CH611CO2P+3+10.26R18-2035080.01000001.2E-4MC*-1DY93CO2N+3+10.4P910351276.21000001.2E-4	910.000000	2.0E -2	VCY# -4	RA1 43	CO2 +4 10.30R12		329000.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	900.133970	1.0E -6	VB * -1	DY9 34	CO2 N+3+ 10.26R18		333053.2
00000 $5.0E -3$ DMI^* $DY6$ 49 $CO2$ $P+3+$ $10.70P30$ 335000.0 00000 $5.0E -3$ $TRI^* -1 DA2$ 19 $CO2 +3$ $9.27R20$ 336000.0 00000 $2.0E -3$ $DF^* -1$ $DY1$ 8 $CO2 P$ $10.61P22$ 336800.0 000000 $2.0E -3$ $DF^* -1$ $DY1$ 7 $CO2 P$ $10.61P22$ 336800.0 000000 $2.0E -3$ $DF^* -1$ $DY1$ 7 $CO2 P$ $10.61P22$ 336800.0 000000 $3.0E -2$ $DF^* -1$ $DY1$ 7 $CO2 P$ $10.61P22$ 336800.0 000000 $3.0E -2$ $DF^* -1$ $DY1$ 7 $CO2 P$ $310.51P12$ 340000.0 98200 $2.0E -6$ $DMC^* O$ $DY6$ 11 $CO2 P+3+ 9.68 P34$ 339286.0 148220 $1.0E -6$ $FAC^* O+ DY8$ 49 $CO2 P+3+ 10.65P26$ 341625.1 85090 $5.0E -7$ $MAD^* +1 PE2DY7$ $CO2 P+3+ 10.26R18$ 343962.4 900000 $1.1E -4$ $MC^* -1$ $CH6$ 11 $CO2 P+4+ 9.52 P16$ -10 350880.0 100000 $1.2E -4$ $MCY^* -1$ $CH6$ 11 $CO2 P+3+ 9.64P30$ 351910.0 356970 $1.0E -6$ $FAC^* -2$ $DY8$ 5 $CO2 P+3+ 9.49P12$ 355525.8 900000 $2.0E -3$ $FAC^* -1- DY8$ 22 $CO2 P+3+ 9.49P12$ 35000.0 30000 $1.2E -4$ $MBB^* +1- CH6M0$ $CO2 P+3+ 9.49P12$ <td< td=""><td>900.000000</td><td>1.0E -2</td><td>EC * -1</td><td>JEN 5</td><td>CO2 +4 10 R30</td><td></td><td>333000.0</td></td<>	900.000000	1.0E -2	EC * -1	JEN 5	CO2 +4 10 R30		333000.0
000000 $5.0E -3$ $TRI^{\bullet} -1 DA2$ 19 $CO2 +3$ $9.27R20$ 336000.0 00000 $2.0E -3$ $DF^{\bullet} -1$ $DY1$ 8 $CO2$ P $10.61P22$ 336800.0 000000 $5.0E -3$ $TRI^{\bullet} -1 DA2$ 18 $CO2 +3$ $9.24R26$ 337000.0 000000 $2.0E -3$ $DF^{\bullet} -1$ $DY1$ 7 $CO2$ P $10.61P22$ 336800.0 000000 $3.0E -2$ $DF^{\bullet} -1$ $DY1$ 7 $CO2 +3$ $10.51P12$ 340000.0 98200 $2.0E -6$ DMC^{\bullet} 0 $DY6$ 11 $CO2 +3 + 9.68$ $P34$ 339286.0 98200 $2.0E -6$ DMC^{\bullet} 0 $DY6$ 11 $CO2 +3 + 9.68$ $P34$ 339286.0 98200 $2.0E -6$ PAC^{\bullet} 0 $DY6$ 11 $CO2 +3 + 10.26R18$ 344902.4 800000 $1.1E -4$ MC^{\bullet} 0 $CH6$ 11 $CO2 +4 + 9.86$ $P52 + 30$ 344270.0 100000 $1.2E -4$ $MC^{\bullet} -1$ DH 2 $CO2 +3 + 10.26R18$ 245000.0 38120 $1.0E -6$ $VB^{\bullet} -1 + DY9$ 33 $CO2 +4 + 9.52$ $P16 -10$ 350880.0 369700 $1.2E -4$ $MC^{\bullet} -1 + DY8$ 2 $CO2 +3 + 9.49P10$ 351276.2 390000 $1.2E -4$ $EF^{\bullet} -3 + RA1/WA$ $CO2 + 3 + 9.49P12$ 355525.8 900000 $2.0E -3$ $FAC^{\bullet} -1 - DY8$ 2 $CO2 +3 + 10.26R18$ 362000.0 39	895.000000	5.0E -3	DMI#	DY6 49	- CO2 P+3+ 10.70P30		335000.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	891.000000	5.0E -3	TRI# -1-	DA2 19	CO2 +3 9.27R20		336000.0
000000° 5.0E-3TRI*-1-DA218CO2+39.24R26337000.0 000000° 2.0E-3DF*-1DY17CO2P10.61P22336800.0 000000° 3.0E-2DF*0HO17CO2+310.51P12340000.0 000000° 3.0E-2DF*0HO17CO2+310.51P1234000.0 000000° 2.0E-6DMC*0DY611CO2P+3+9.68P34339286.0 00000° 5.0E-7MAD*+1-PE2DY7CO2P+3+10.65F26341625.1 00000° 5.0E-7MAD*+1-PE2DY7CO2P+3+10.26R18343962.4 00000° 5.0E-3DME*-1DH2CO2+3+10.26R18-20345000.0 10000° 5.0E-3DME*-1CH611CO2P+4+9.52P16-10350880.0 38120° 1.0E-6VB*-1+DY933CO2N+3+10.49P10351276.2 30000° 1.2E-4EF*-3+RA1/WACO2+3+9.64P30351910.0 30000° 1.2E-4MBB*+1-CH6M031CO2P+3+9.49P12360700.0 30000° 1.2E-4MBB*+1-CH6MO<	890,100000	2.0E -3	DF = -1	DY1 8	CO2 P 10.61P22		336800.0
000000 $2.0E = 3$ $DF * -1$ $DY1$ 7 $CO2$ P $10.61P22$ 336800.0 000000 $3.0E = 2$ $DF *$ 0 $HO1$ 7 $CO2 + 3$ $10.51P12$ 340000.0 098200 $2.0E = 6$ $DMC *$ 0 $DY6$ 11 $CO2 + 3 + 9.68$ $P34$ 339286.0 098200 $2.0E = 6$ $DMC *$ 0 $DY6$ 11 $CO2 + 3 + 9.68$ $P34$ 339286.0 098200 $1.0E = 6$ $FAC *$ $0 + DY8$ 49 $CO2 + 3 + 10.65F26$ 341625.1 085090 $5.0E = 7$ $MAD * +1 PE2DY7$ $CO2 + 3 + 10.26R18$ 343962.4 000000 $1.1E = -4$ $MC *$ 0 $CH6$ 11 $CO2 + 3 + 10.26R18$ 343962.4 000000 $5.0E = -3$ $DME * -1$ DH 2 $CO2 + 3 + 10.26R18$ -20 345000.0 10000 $1.2E -4$ $MCY * -1$ $CH6$ 11 $CO2 + 3 + 9.52$ $P16$ -10 350880.0 38120 $1.0E -6$ $VB * -1 + DY9$ 33 $CO2 + 3 + 9.59P10$ 351910.0 356970 36970 $1.0E -6$ $FAC * -2$ $DY8$ 5 $CO2 + 3 + 9.49P12$ 355525.8 000000 $2.0E -3$ $FAC * 0 - ZD$ 7 $CO2 + 3 + 10.26R18$ 362000.0 30000 $1.2E -4$ $MBB * +1 - CH6MO$ 31 $CO2 + 3 + 10.26R18$ 362000.0 30000 $1.2E -4$ $MBB * +1 - CH6MO$ 31 $CO2 + 4 - 10.26R18$ 362000.0 30000	890,000000	5.0E -3	TRI* -1-	DA2 18	CO2 +3 9.24R26		337000.0
000000 $3.0E -2$ $DF *$ 0 $HO1$ 7 $CO2 +3$ $10.51P12$ 340000.0 98200 $2.0E -6$ $DMC*$ 0 $DY6$ 11 $CO2 P+3+ 9.68 P34$ 339286.0 948220 $1.0E -6$ $FAC*$ $0+$ $DY8$ 49 $CO2 P+3+ 10.65F26$ 341625.1 85090 $5.0E -7$ $MAD* +1 PE2DY7$ $CO2 P+3+ 10.26R18$ 343962.4 800000 $1.1E -4$ $MC *$ 0 $CH6$ 11 $CO2 P+3+ 10.26R18$ 343962.4 800000 $5.0E -3$ $DME* -1$ DH 2 $CO2 +3+ 10.26R18$ -20 345000.0 10000 $5.0E -3$ $DME* -1$ DH 2 $CO2 +3+ 10.26R18$ -20 345000.0 10000 $5.0E -3$ $DME* -1$ DH 2 $CO2 +3+ 10.26R18$ -20 345000.0 10000 $1.2E -4$ $MCY* -1$ $CH6$ 11 $CO2 P+3+ 9.52 P16$ -10 350880.0 38120 $1.0E -6$ $VB * -1+ DY9$ 33 $CO2 N+3+ 10.49P10$ 351276.2 900000 $1.2E -4$ $EF * -3+ RA1/WA$ $CO2 +3+ 9.49P12$ 355525.8 900000 $2.0E -3$ $FAC* -1- DY8$ 22 $CO2 P+3+ 10.25R20$ 359000.0 39000 $1.2E -4$ $MBB* +1- CH6MO 31$ $CO2 P+3+ 10.26R18$ 362000.0 900000 $2.0E -3$ $DMEC^* 0- ZD$ 7 $CO2 +3+ 10.26R18$ 362000.0 900000 $2.0E -2$ $VC * -3+ RA1$ 42 $CO2 +3+ 9.59P24$ 362000.0	890,000000	2.0E -3	DF = -1	DY1 7	CO2 P 10.61P22		336800.0
998200 $2.0E = 6$ DMC* 0 DY6 11 CO2 $P+3+$ 9.68 P34 339286.0 948220 $1.0E = 6$ FAC* $0+$ DY8 49 CO2 $P+3+$ $10.65F26$ 341625.1 85090 $5.0E = 7$ MAD* $+1-$ PE2DY7CO2 $P+3+$ $10.26R18$ 343962.4 800000 $1.1E = -4$ MC * 0 CH6 11 CO2 $P+4 9.86$ P52 $+30$ 344270.0 100000 $5.0E = -3$ DME* -1 DH 2 CO2 $+3+$ $10.26R18$ -20 345000.0 10000 $1.2E = -4$ MCY* -1 CH6 11 CO2 $P+4+$ 9.52 P16 -10 350880.0 38120 $1.0E = -6$ VB * $-1+$ DY9 33 CO2 $N+3+$ $10.49P10$ 351276.2 30000 $1.2E = -4$ EF * $-3+$ RA1/WACO2 $+3+$ $9.64P30$ 351910.0 356970 $1.0E = -6$ FAC* -2 DY8 5 CO2 $P+3+$ $9.49P12$ 355525.8 30000 $1.2E = -4$ MBB* $+1-$ CH6MO 31 CO2 $P+3+$ $10.25R20$ 359000.0 39000 $1.2E = -4$ MBB* $+1-$ CH6MO 31 CO2 $P+3+$ $10.46P06$ 362000.0 39000 $1.2E = -4$ MBB* $+1-$ CH6MO 31 CO2 $+3+$ $10.46P06$ 362000.0 39000 $2.0E = -3$ DMEC*<	884,000000	3.0E -2	DF # 0	HO1 7	CO2 +3 10.51P12		340000.0
3482201.0E-6FAC*0+DY849C02P+3+10.65F26341625.1 85090 5.0E-7MAD*+1-PE2DY7C02P+3+10.26R18343962.4 800000 1.1E-4MC *0CH611C02P+4-9.86P52+30344270.0 800000 5.0E-3DME*-1DH2C02+3+10.26R18-20345000.0 10000 1.2E-4MCY*-1CH611C02P+4+9.52P16-10350880.0 38120 1.0E-6VB *-1+DY933C02N+3+10.49P10351276.2 800000 1.2E-4EF *-3+RA1/WAC02+3+9.64P30351910.0 36970 1.0E-6FAC*-2DY85C02P+3+10.25R20359000.0 30000 1.2E-4MBB*+1-CH6MO31C02P+4+10.67P28+10362000.0 30000 1.2E-4MBB*+1-CH6MO31C02P+4+10.26R18362000.0 30000 1.2E-4MBB*+1-CH6MO31C02P+4+10.26R18362000.0 30000 2.0E-3DMEC*0-ZD7C02+3+10.46P06362000.0 30000 2.0E-2VC *-3+RA142C02+3+9.	883,598200	2.0E -6	DMC# 0	DY6 11	CO2 P+3+ 9.68 P34		339286.0
885090 $5.0E -7$ MAD* +1-PE2DY7CO2 $P+3+$ $10.26R18$ 343962.4 800000 $1.1E -4$ MC * 0CH6 11 CO2 $P+4 9.86$ $P52$ $+30$ 344270.0 800000 $5.0E -3$ DME* -1DH 2 CO2 $+3+$ $10.26R18$ -20 345000.0 10000 $1.2E -4$ MCY* -1CH6 11 CO2 $P+4+$ 9.52 P16 -10 350880.0 38120 $1.0E -6$ VB * $-1+$ DY9 33 CO2 $N+3+$ $10.49P10$ 351276.2 800000 $1.2E -4$ EF * $-3+$ RA1/WACO2 $+3+$ $9.64P30$ 351910.0 36970 $1.0E -6$ FAC* -2 DY8 5 CO2 $P+3+$ $9.49P12$ 355525.8 800000 $2.0E -3$ FAC* $-1-$ DY8 22 CO2 $P+3+$ $10.25R20$ 359000.0 30000 $1.2E -4$ MBB* $+1-$ CH6MO 31 CO2 $P+4+$ $10.67P28$ $+10$ 30000 $1.2E -4$ MBB* $+1-$ CH6MO 31 CO2 $P+4+$ $10.26R18$ 362000.0 30000 $2.0E -3$ DMEC* $0-$ ZD 7 CO2 $+3+$ $9.59P24$ 362000.0 30000 $2.0E -2$ VC * $-3+$ RA1 42 CO2 $+3+$ $9.59P24$ 362000.0 30000 $2.0E -2$ VC * $-3+$ RA1 58 CO2 $+3+$ $9.59P24$ 362000.0 300000 $2.0E -3$ <td>877.548220</td> <td>1.0E -6</td> <td>FAC# 0+</td> <td>DY8 49</td> <td>CO2 P+3+ .10 65F26</td> <td></td> <td>341625.1</td>	877.548220	1.0E -6	FAC# 0+	DY8 49	CO2 P+3+ .10 65F26		341625.1
3000001.1E-4MC*0CH611CO2P+4-9.86P52+30344270.0 300000 5.0E-3DME*-1DH2CO2+3+10.26R18-20345000.0 10000 1.2E-4MCY*-1CH611CO2P+4+9.52P16-10350880.0 38120 1.0E-6VB*-1+DY933CO2N+3+10.49P10351276.2 30000 1.2E-4EF*-3+RA1/WACO2+3+9.64P30351910.0 36970 1.0E-6FAC*-2DY85CO2P+3+9.49P12355525.8 30000 2.0E-3FAC*-1-DY822CO2P+3+10.25R20359000.0 30000 1.2E-4MBB*+1-CH6MO31CO2P+3+10.46P06362000.0 30000 1.2E-4MBB*+1-CH6MO31CO2+3+10.46P06362000.0 30000 2.0E-3DMEC*0-ZD7CO2+3+10.26R18362000.0 30000 2.0E-2VC *-3+RA158CO2+3+10.26R18362000.0 30000 2.0E-3DAEC*0-ZD7CO2+3+10.26R18362000.0 30000 2.0E-3FAA*-1DY810CO2P+3+	871,585090	5.0E -7	MAD# +1-	PE2DY7	CO2 P+3+ 10.26R18		343962.4
000000 $5.0E -3$ $DME = -1$ DH 2 $CO2 + 3 + 10.26R18$ -20 345000.0 10000 $1.2E -4$ $MCY = -1$ $CH6$ 11 $CO2 + 4 + 9.52$ $P16 - 10$ 350880.0 38120 $1.0E -6$ $VB = -1 + DY9$ 33 $CO2 + 3 + 9.52$ $P16 - 10$ 350880.0 38120 $1.0E -6$ $VB = -1 + DY9$ 33 $CO2 + 3 + 9.64P30$ 351276.2 100000 $1.2E -4$ $EF = -3 + RA1/WA$ $CO2 + 3 + 9.64P30$ 351910.0 236970 $1.0E -6$ $FAC = -2$ $DY8$ 5 $CO2 + 3 + 9.49P12$ 355525.8 200000 $2.0E -3$ $FAC = -1 - DY8$ 22 $CO2 + 3 + 10.25R20$ 359000.0 30000 $1.2E -4$ $MBB + 1 - CH6MO$ 31 $CO2 + 4 + 10.25R20$ 359000.0 30000 $1.2E -4$ $MBB + 1 - CH6MO$ 31 $CO2 + 4 + 10.46P06$ 362000.0 30000 $5.0E -3$ $DMEC = 0 - ZD$ 7 $CO2 + 4 - 10.26R18$ 362000.0 30000 $2.0E -2$ $VCY = -4$ $RA1$ 42 $CO2 + 4 - 10.26R18$ 362000.0 30000 $2.0E -2$ $VCY = -4$ $RA1$ 58 $CO2 + 3 + 9.59P24$ 362000.0 30000 $2.0E -2$ $VC = -3 + RA1$ 58 $CO2 + 3 + 9.49P12$ 363000.0 300000 $2.0E -3$ $FAA = -1$ $DY8$ 10 $CO2 + 3 + 9.49P12$ 363000.0 300000 $2.0E -3$ $FAA = -1$ $DY8$ 65 $CO2 + 3 + 10.76P36$ 366000.0	870 800000	1 1E -4	MC # 0	СН6 11	CO2 P+4= 9.86 P52	+30	344270.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	860 000000	5 05 -3	DMF# _1	2 40	CO2 + 3 + 10 26 R18	-20	345000 0
(38120) $1.0E$ -6 VB $*$ $-1+$ $DY9$ 33 $CO2$ $P+4+$ 9.52 $P10$ 351276.2 (38120) $1.0E$ -6 VB $*$ $-1+$ $DY9$ 33 $CO2$ $N+3+$ $10.49P10$ 351276.2 (200000) $1.2E$ -4 EF $*$ $-3+$ $RA1/WA$ $CO2$ $+3+$ $9.64P30$ 351910.0 (36970) $1.0E$ -6 FAC^* -2 $DY8$ 5 $CO2$ $P+3+$ $9.49P12$ 355525.8 (200000) $2.0E$ -3 FAC^* $-1 DY8$ 22 $CO2$ $P+3+$ $10.25R20$ 359000.0 (30000) $1.2E$ -4 MBB^* $+1 CH6MO$ 31 $CO2$ $P+3+$ $10.46P06$ 362000.0 (30000) $5.0E$ -3 $DMEC^*$ $0 ZD$ 7 $CO2$ $+3+$ $10.46P06$ 362000.0 (00000) $2.0E$ -2 VCY^* -4 $RA1$ 42 $CO2$ $+4 10.26R18$ 362000.0 (00000) $2.0E$ -2 VC $*$ $-3+$ $RA1$ 58 $CO2$ $+3+$ $9.59P24$ 362000.0 (44440) $1.0E$ -6 VB $*$ $-2+$ $DY9$ 32 $CO2$ $N+3+$ $10.61P22$ 362530.4 (00000) $2.0E$ -3 FAA^* -1 $DY8$ 10 $CO2$ $P+3+$ $9.49P12$ 363000.0 (00000) $2.0E$ <	851 110000	1 2F -4				-10	350880.0
35120 $1.0E$ -0 $1.0E$ -1 $D19$ 35 $C02$ $N+3+$ 10.49110 351210.2 200000 $1.2E$ -4 EF $-3+$ $RA1/WA$ $C02$ $+3+$ $9.64P30$ 351910.0 236970 $1.0E$ -6 FAC^* -2 $DY8$ 5 $C02$ $P+3+$ $9.49P12$ 355525.8 200000 $2.0E$ -3 FAC^* $-1 DY8$ 22 $C02$ $P+3+$ $10.25R20$ 359000.0 30000 $1.2E$ -4 MBB^* $+1 CH6MO$ 31 $C02$ $P+4+$ $10.67P28$ $+10$ 360700.0 30000 $5.0E$ -3 $DMEC^*$ $0 ZD$ 7 $C02$ $+3+$ $10.46P06$ 362000.0 000000 $2.0E$ -2 VCY^* -4 $RA1$ 42 $C02$ $+4 10.26R18$ 362000.0 000000 $2.0E$ -2 VC $*$ $-3+$ $RA1$ 58 $C02$ $+3+$ $9.59P24$ 362000.0 044440 $1.0E$ -6 VB $*$ $-2+$ $DY9$ 32 $C02$ $N+3+$ $10.61P22$ 362530.4 000000 $2.0E$ -3 FAA^* -1 $DY8$ 10 $C02$ $P+3+$ $9.49P12$ 363000.0 000000 $2.0E$ -3 FAA^* $-3+$ $DY8$ 65 $C02$ $P+3+$ $10.76P36$ 366000.0	852 228120	1.08 -6	VB # _1.		$CO2 N_{12}$ 10 40210	- 10	251276 2
(200000 + 1.22 + 4) $(27 + 3 + 4)$ $(202 + 3 - 4)$ $(202 +$	951 000000		VD 1+	D19 33	CO2 N+3+ 10.49F10		351210.2
309701.0E -0 FAC* -2 D18 5 $C02$ $P+3+$ $9.49P12$ 35525.0 30000 $2.0E$ -3 FAC* $-1-$ DY8 22 $C02$ $P+3+$ $10.25R20$ 359000.0 30000 $1.2E$ -4 MBB* $+1-$ CH6MO 31 $C02$ $P+4+$ $10.67P28$ $+10$ 360700.0 30000 $5.0E$ -3 DMEC* $0-$ ZD 7 $C02$ $+3+$ $10.46P06$ 362000.0 300000 $2.0E$ -2 VCY* -4 RA1 42 $C02$ $+4 10.26R18$ 362000.0 300000 $2.0E$ -2 VC * $-3+$ RA1 58 $C02$ $+3+$ $9.59P24$ 362000.0 300000 $2.0E$ -2 VC * $-3+$ RA1 58 $C02$ $+3+$ $9.59P24$ 362000.0 300000 $2.0E$ -3 FAA* -1 DY8 10 $C02$ $P+3+$ $9.49P12$ 363000.0 300000 $2.0E$ -3 FAA* $-3+$ DY8 65 $C02$ $P+3+$ $10.76P36$ 366000.0	051.900000 8112.006070	1,25 -4	Er * -3+	RAI/WA	CO2 +3+ 9.04F30		351910.0
300000 $2.0E -3$ $FAC^{*} -1 - D18$ 22 $CO2 P+3+$ $10.25R20$ 359000.0 30000 $1.2E -4$ MBB* +1 - CH6MO 31 $CO2 P+4+$ $10.67P28$ $+10$ 360700.0 30000 $5.0E -3$ DMEC* 0 - ZD 7 $CO2 +3+$ $10.46P06$ 362000.0 300000 $2.0E -2$ VCY* -4RA1 42 $CO2 +4 10.26R18$ 362000.0 300000 $2.0E -2$ VC* -3+RA1 58 $CO2 +3+$ $9.59P24$ 362000.0 300000 $2.0E -2$ VC * -3+RA1 58 $CO2 +3+$ $9.59P24$ 362000.0 300000 $2.0E -6$ VB * -2+DY9 32 $CO2 N+3+$ $10.61P22$ 362530.4 300000 $2.0E -3$ $FAA* -1$ DY8 10 $CO2 P+3+$ $9.49P12$ 363000.0 300000 $2.0E -3$ $FAA* -3+$ DY8 65 $CO2 P+3+$ $10.76P36$ 366000.0	043.230970	1.0E -0	FAC* -2	DIO 5	CU2 P+3+ 9.49P12		355525.0
30000 $1.2E$ -4 MBB* +1-CH6MO 31 CO2 $P+4+$ $10.67P28$ $+10$ 360700.0 000000 $5.0E$ -3 DMEC* $0-$ ZD 7 CO2 $+3+$ $10.46P06$ 362000.0 000000 $2.0E$ -2 VCY* -4 RA1 42 CO2 $+4 10.26R18$ 362000.0 000000 $2.0E$ -2 VC * $-3+$ RA1 58 CO2 $+3+$ $9.59P24$ 362000.0 000000 $2.0E$ -6 VB * $-2+$ DY9 32 CO2 $N+3+$ $10.61P22$ 362530.4 000000 $2.0E$ -3 FAA* -1 DY8 10 CO2 $P+3+$ $9.49P12$ 363000.0 000000 $2.0E$ -3 FAA* $-3+$ DY8 65 CO2 $P+3+$ $10.76P36$ 366000.0	835.000000	2.0E = 3	FAC= -1-	DI8 22	CU2 P+3+ 10.25 K20		359000.0
000000 $5.0E -3$ DMEC* 0- ZD 7 $CO2 + 3 + 10.46P06$ 362000.0 000000 $2.0E -2$ $VCY* -4$ RA1 42 $CO2 + 4 - 10.26R18$ 362000.0 000000 $2.0E -2$ $VC* -3 + RA1$ 58 $CO2 + 3 + 9.59P24$ 362000.0 000000 $2.0E -2$ $VC* -3 + RA1$ 58 $CO2 + 3 + 9.59P24$ 362000.0 000000 $2.0E -6$ $VB* -2 + DY9$ 32 $CO2 N+3 + 10.61P22$ 362530.4 000000 $2.0E -3$ $FAA* -1$ $DY8$ 10 $CO2 P+3 + 9.49P12$ 363000.0 000000 $2.0E -3$ $FAA* -3 + DY8$ 65 $CO2 P+3 + 10.76P36$ 366000.0	831,130000	1.2E -4	MBB* +1-	сньмо 31	CO2 P+4+ 10.67P28	+10	360700.0
000000 $2.0E -2$ $VCY* -4$ $RA1$ 42 $CO2 + 4 - 10.26R18$ 362000.0 000000 $2.0E -2$ $VC * -3 + RA1$ 58 $CO2 + 3 + 9.59P24$ 362000.0 044440 $1.0E -6$ $VB * -2 + DY9$ 32 $CO2 N + 3 + 10.61P22$ 362530.4 000000 $2.0E -3$ $FAA* -1$ $DY8$ 10 $CO2 P + 3 + 9.49P12$ 363000.0 000000 $2.0E -3$ $FAA* -3 + DY8$ 65 $CO2 P + 3 + 10.76P36$ 366000.0	829.000000	5.0E -3	DMEC 0-	ZD 7	CO2 +3+ 10,46P06		362000.0
000000 2.0E -2 VC # -3+ RA1 58 CO2 +3+ 9.59P24 362000.0 344440 1.0E -6 VB # -2+ DY9 32 CO2 N+3+ 10.61P22 362530.4 3000000 2.0E -3 FAA* -1 DY8 10 CO2 P+3+ 9.49P12 363000.0 100000 2.0E -3 FAA* -3+ DY8 65 CO2 P+3+ 10.76P36 366000.0	828,000000	2.0E -2	VCY* -4	RA1 42	CO2 +4- 10.26R18		362000.0
944440 1.0E -6 VB * -2+ DY9 32 CO2 N+3+ 10.61P22 362530.4 900000 2.0E -3 FAA* -1 DY8 10 CO2 P+3+ 9.49P12 363000.0 900000 2.0E -3 FAA* -3+ DY8 65 CO2 P+3+ 10.76P36 366000.0	828.000000	2.0E -2	VC * -3+	RA1 58	CO2 +3+ 9.59P24		362000.0
PO0000 2.0E -3 FAA* -1 DY8 10 CO2 P+3+ 9.49P12 363000.0 100000 2.0E -3 FAA* -3+ DY8 65 CO2 P+3+ 10.76P36 366000.0	826.944440	1.0E -6	VB * - 2+	DY9 32	CO2 N+3+ 10.61P22		362530.4
100000 2.0E -3 FAA* -3+ DY8 65 CO2 P+3+ 10.76P36 366000.0	825.900000	2.0E -3	$FAA^{+} - 1$	DY8 10	CO2 P+3+ 9.49P12		363000.0
	819.100000	2.0E -3	FAA* -3+	DY8 65	CO2 P+3+ 10.76P36		366000.0
DO0000 5.0E -3 TRI* -1- DA2 17 CO2 +3 9.66P32 368000.0	815.000000	5.0E -3	TRI# -1-	DA2 17	CO2 +3 9.66P32		368000.0
157290 1.0E -6 FAA# -1- DY8 9 CO2 P+3+ 9.49P12 368405.3	813.757290	1.0E -6	FAA* -1-	DY8 9	CO2 P+3+ 9.49P12		368405.3
000000 5.0E -3 TRI* -1- DA2 17 CO2 +3 9.66P32 368000	825.900000 819.100000 815.000000	2.0E -3 2.0E -3 5.0E -3	FAA* -1 FAA* -3+ TRI* -1-	D19 32 D18 10 D18 65 DA2 17	CO2 P+3+ 10.06P22 CO2 P+3+ 9.49P12 CO2 P+3+ 10.76P36 CO2 +3 9.66P32		363000 366000 368000

BUS
812.400000	2.0E -3	FAC# -1+	DY8 37	CO2 P+3+	10.44P04		369000.0
806.000000	5.0E -3	DMIA# 0	DH 4	CO2 +3	10.51P12		372000.0
802.400000	2.0E -3	N2H4*-1	DY3 25	CO2 P	10.22R24		373600.0
795.200000	2.0E -3	FAC* -2+	DY8 36	CO2 P+3+	10.44P04		377000.0
795.000000	2.0E -3	N2H4#-1	DY3 24	CO2 N	10.72P32		377100.0
793.000000	2.0E -2	VCY* -4	RA1 41	CO2 +4-	10.13640		378000.0
792.000000	5.0E -3	DMC* 0+	DH 1	CO2 +3	9 62P28	-35	379000 0
789.839690	1 OE -6	FA # _1	DY8 20	CO2 P+3+	0 10836		379561 2
789 420400	1 OE -6	FAC# 0+	DY8 21	CO2 P+3+	10 25R20		370762 8
788,919327	1.0E -6	FA13#-1+	DE1 5	CO2 + 3 +	9 40P12		380004 0
788.481700	2.0E =6	DMT#	DY6 45	CO2 P+3+	10 51P12		380214.9
786.942050	1 OE -6	FA # _1_	DY8 18	CO2 P+3+	0 21R32		380958 8
786, 16 17 90	1 OE -6	$FA \neq -1$	DEIRAI	CO2 +3-	9 17 RUO		381336 9
784,268250	1 OE -6	VB * -1-	DY9 31	CO2 P+3+	10 63224		382257 6
780, 133070	1 OE -6	VB # =1+	DY9 30	CO2 P+3+	10 20P14		384283.8
779.874520	1 OE -6	FAC* -1-	DY8 51	CO2 P+3+	10 65226		384411 2
775.000000	2 OE -2	VCY# _4	RA1 40	CO2 +3+	10 12842		387000 0
774,000000	5 OE -3		DY7 38	CO2 P+3+	0 64 P30		387000 0
767.000000	2 OE -2	DF #	RA2	CD2 +3+	10 40210		391000 0
764 100000	5 OF -3	DF 4 -1+	BE1 1	CO2 N+3+	10 40010	· •	392000 0
761 761800	1 OE -6	E^{+}	ים 24 אית	CO2 N+3+	10 49110		303551 5
761,000000	2 OE -2	FA # _3_	RA1 10	CO2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	Q 25824		394000.0
760 000000	5 OE -3	MAD# _1	DY7 63	CO2 P+3+	10 57P18		394000 0
752 748560	1 OF -6		DY8 10	CO5 5+3+	10 16834		398263 8
752 680897	1 DE -6	FOB# _1_	DA2 5	CO2 +3	9 21832		398299.6
750 000000	5 OE -3	TRT# _1_	DA2 16	CD2 +3	10 57218		400000 0
750 000000	2 OF -2	MCY# _3	BA2	CO2 +3+	9 52P16		400000 0
749.360000	1 3E _4	MBA#()	CH6M015A	CO2 N+4	10 20814	-15	400060.0
749,290000	1.3E -4	MBA# 0+	CH6M0 24	CO2 N+4	10.53P14	+5	400100.0
745.000000	5.0E -3	DMT*	DY6 43	CD2 P+3+	10.48P8		402000.0
745.000000	5.0E -3	MAD* -1-	DY7 13	CO2 P+3+	9.24 B26		402000.0
744.050426	2.0E -6	FA # -1+	DA1DY8 9	CO2 P+3	9.25824		402919.6
742.572357	2.0E -6	FA # 0-	DA1DY8 8	CO2 P+2+	9 17R40		403721.6
741.620000	1.3E -4	MCY# -1+	CH6 6	CO2 N+4-	9.34 R8	+35	404240.0
741.114990	1.0E -6	VB # -2+	DY9 29	CO2 P+3+	10.59P20		404515.5
738.000000	2.0E -2	VCY# -4-	RA1 39	CO2 +4-	10.55P16		406000.0
736.600000	2.0E -3	FAC# -2+	DY8 35	CO2 P+3+	10.44P04		407000.0
735.129800	2.0E -6	DMC# -1	DY6 4	CO2 N+3+	9.44 P6		407808.9
734.262500	2.0E -6	DMI# 0	DY6 35	CO2 P+3+	9.57 P22		408290.6
734.161682	1.2E -6	N2H4*-2	RA2 26	CO2 +3	10.14R38		408346.7
733.574063	1.0E -6	FOB# -1-	DA2 4	CO2 +3	9.66P32		408673.8
733.000000	2.0E -3	FAA# -1	DY8 49	CO2 P+3+	10.15R36		409000.0
730.323500	2.0E -6	DMI# 0	DY6 24	CO2 P+3+	9.23 R28		410492.7
727.949240	1.0E -6	FAA* -1+	DY8 53	CO2 P+3+	10.11R42		411831.6
726,920370	1.0E -6	FAC [#] 0-	DY8 41	CO2 N+3+	10.49P10		412414.5
724.139970	1.0E -6	VB # -1+	DY9 28	CO2 P+3+	10.53P14		413998.0
722,000000	2.0E -2	VCY# -4-	RA1 38	CO2 +4-	10.84P42		415000.0
722.000000	5.0E -3	MAD# -1-	DY7 65	CO2 N+3+	10.59P20		415000.0
721,000000	2.0E -3	N2H4#-1	DY3 23	CO2 P	10.51P12		415800.0
719.300000	1.4E -4	MI * 0-	CH6 13	CO2 P+4+	10.61P22	+25	416780.0
715.400000	1.4E -4	MBA# 0+	CH6M0 15	CO2 N+4	10.29R14	- 15	419060.0
713.720000	7.0E -5	MCY# 0	CH5	CO2 P+4	10.72P32	-40	420040.0
713.105730	1.0E -6	FAB# 0+	DY8 9	CO2 P+3+	10.16R34		420404.0
712.000000	5.0E -3	TRI# -1-	DA2 15	CO2 +3	9.21R32		421000.0
712.00000	2.0E -3	VB * -2-	DY9 27	CO2 P+3+	10.32R10		421100.0
711.000000	5.0E -3	MAD [#] −1	DY7 24	CO2 P+3+	9.46 P8		422000.0
710.400000	2.0E -3	FAB * -2	DY8 13	CO2 N+3+	10.46P06		422000.0
707.221080	1.0E -6	VB * -1-	DY9 26	CO2 P+3+	10.22R24		423902.1
707.000000	2.0E -2	VC * -2	RA1 57	CO2 +4-	9.54P18		424000.0
705.400000	2.0E -3	FA 🛎 -1	DY8 2	CO2 P+3+	9.35R06	,	425000.0
704.530000	1.4E -4	MCY* -1	СН6 1	CO2 P+4	9.20 R34	-15	425520.0

4

- 3 -

(BUS

703.000000	5.0E -3	MAD* O	DY7 61	CO2 N+3+ 10.15R36		426000.0
702.000000	5.0E -3	MAD* 0-	DY7 34	CO2 P+3+ 9.59 P24		427000.0
699.422690	1.2E -6	MA 🕇 -1	PET/CH3	CO2 N 9.68P34		428628.5
699.000000	2.0E -2	VC * -3-	RA1 56	CO2 +4- 9.57P22		429000.0
698.555500	2.0E -6	DMC* 0	DY6 3	CO2 N+3+ 9.44 P6		429160.6
697.455270	1.0E -6	FAB# -1+	DY8 12	CO2 P+3+ 10.15R36		429837.6
696.000000	5.0E -3	TRI# -1-	DA2 14	CO2 +3 9.29R16		431000.0
695 672060	1.0E -6	FAA# 0-	DY8 48	CO2 P+3+ 10.15R36		430939.4
	2.0E -3	MA ¥	HEN 1	CO2 P+4 10.27R16	0	431400.0
	5 OE -3	MAD# 0	DY7 25	CO2 P+3+ 9.47 P10		431000.0
60 170000	3 05 -1	MA #	HEN1	CO2 P+4 9.59P24	0	431900.0
60% 000000	1 OF -3	MA # _2	TA2 4	CO2 + 3 + 10 27 R16	•	432000.0
694.000000	1 OF -5		DYQ 25	CO2 P+3+ 10 27R16		432513.8
693.139130	1.0E -0		DI9 29	CO2 N+3+ 10 30R12		#33000.0
692.400000	2.0E -5	- FAA* -1-	DV6 20	CO2 P+3+ 9 27 P20		433778.2
691.119300	2.0E -0		DI0 29	CO2 +3+ 9.21 M20		131000 0
690.000000	5.0E -3	DMIA=+I-	• <u>D</u> D <u>5</u>			1211182 0
689.998230	1.0E -6	FAA* 0-	- DIO 42	CU2 P+3+ 10.21R20		128000 0
685.000000	5.0E -3	MAD= -1	DI7 50	CU2 P+3+ 10.10R34		430000.0
680.541540	1.0E -6	VB = 0-	- DIY 24	CU2 P+3+ 10.27R10		- 440520.5
680,000000	5.0E -3	MAD# -2-	DY7 21	CU2 P+3+ 9.44 PO		441000.0
680.000000	5.0E -3	TRI# -1-	DA2 13	CO2 + 3 + 10.74P34	•	441000.0
675.290000	1.5E -4	MAC ⁺ 0-	- CH6 7	CO2 P+4+ 9.73 P40	0	443950.0
670.990000	1.5E -4	MI # 0	CH6 15	CO2 P+4+ 10.67P28	+20	446790.0
670.114400	2.0E -6	DMI#	DY6 42	CO2 P+3+ 10.33R8		447375.1
670.094100	2.0E -6	DMI#	DY6 41	CO2 P+3+ 10.33R8		447388.7
669.530892	1.5E -6	FA * -1-	DA1DY8 7	CO2 P+3 9.22R30		447765.0
667.700000	2.0E -3	FAA [#] -1	DY8 7	CO2 P+3+ 9.17R40		449000.0
667.232300	2.0E -6	DMI#	DY6 44	CO2 P+3+ 10.49P10		449307.5
666.200000	2.0E -3	FAC [#] -1	DY8 53	CO2 P+3+ 10.70P30		450000.0
662.815621	2.2E -6	DF * -1	RA2DY147	CO2 P+3+ 10.63P24		452301.5
660.700000	1.5E -4	MBR# +1	+ CH6 '13	CO2 N+4 10.25R20	+25	453750.0
660 582300	2.0E -6	DMI#	DY6 54	CO2 P+3+ 10.88P46		453830.7
660.300000	2.0E -3	FAA# -1	- DY8 31	CO2 N+3+ 10.30R12		454000.0
660 000000	2 OE -2	EF # -3	RA2	CO2 +4- 9.29R16		454000.0
658 530000	1 5E -4	MBB* +1	- CH6MO 5	CO2 P+4 9,90P56	0	455250.0
657 400000	2 OF -3	FAA# -1	- DY8 14	CO2 P+3+ 9.57P22		456000.0
652 680000	1 58 -4	MCY# -1	+ CH6RA115	CO2 P+4+ 9.64 P30	-15	459330.0
610 125550 .	1 05 -6	VB # 0	+ DYQ 23	CO2 P+3+ 10.57P18		461627.2
649.425550 -	F OF -3	- 40 - 0 - MAD# 0	- DIJ 23	CO2 P+3+ 10 33B8		463000.0
640.000000 647.800000	7 75 -5		CHE	CO2 P 10.53P14	0	462720.0
647.090000	1.15 -5	FARM - 2	. DV8 11	CO2 P+3+ 10 18P30	•	463108.3
641.340500	1.02 -0	TRD2	- DIO 77	CO2 N+3+ 10.100000		464100.0
646.000000	2.05 -3		+ DIJ 22	CO2 N+3+ 10 15836		464000.0
646.000000	5.0E -3	MRD- U	D17 00	CO2 X + 3 + 10 + 10 + 10 = 000		465000 0
644.700000	2.UE -3	FAU= -1	- DIO 20	CO2 X+3+ 10.22124		466000 0
644.000000	5.0E -3	DM1*	DIO 40	CO2 N+3+ 10.99F10		468000.0
640.000000	5.0E -3	DMI .	D10 40	CO2 R+3+ 10.20R10		468620 0
639.730000	1.6E -4	M1 = -1	+ CHO 5	CU2 P+4+ 9.44 PO	+20	400020.0
639.128250	1.0E -6	FAB C	DY8 14	CU2 N+3+ 10.40P00		409004.1
638.000000	2.0E -2	VC = -3	+ KA1 55	CU2 + 3 + 10.40P00		470000.0
635.354840	1.0E -6	VB • C	DY9 21	CO2 N+3+ 10.21R26)	471050.5
634.471007	2.1E -6	VC * C	RA2CH337	CO2 P+3- 9.55P20)	472507.0
632.000000	1.6E -4	MBR* -2	+ CH6 27	CO2 N+4 10.61P22	2 0	474360.0
631.930000	1.6E -4	MBR* -3	+ CH6 25	CO2 P+5- 10.55P16	+20	474410.0
631.000000	5.0E -3	DMEC* (– ZD 6	CO2 +3+ 10.26R18	3	475000.0
631.000000	2.0E -2	VCY* _1	RA1 37	CO2 +4- 10.35R06	>	475000.0
630, 166210	1.0E -6	FAA* (- DY8 29	CO2 N+3+ 10.32R10)	475735.6
629 844300	5.0E -7	MA 13*	HEN2PE2	CO2 P+4 9.49P12	2 +25	475978.7
624,095870	1.0E -6	VB * (- DY9 20	CO2 P+3+ 10.26R18	3	480362.9
623,000000	2.0E -2	VCY* -1	RA1 36	CO2 +4 10.30R12	2	481000.0
620 400000	1 6E -4	EF # _3	RA1/WA	CO2 +3+ 9.57P22	2	483220.0
619,000000	5.0F -3	TRT* -	- DA2 12	CO2 +3 10.23R22	2	484000.0

- 4 -

618.446250	1.0E -6	VB * -1	DY9 19	CO2 P+3+ 10.18R30		484751.1
616.000000	5.0E -3	MAD1* 0+	ZD 37	CO2 +3+ 9.60P26		487000.0
614.920000	3.0E -4	MA *	HEN 1	CO2 P+4 9.59P24	0	487500.0
614.109900	2.0E -6	DMI* +1	DY6 39	CO2 P+3+ 10.23R22		488174.0
603.060000	3.0E -4	MA 🗮 — 1	HEN1DY2	CO2 P 9.59P24	0	497100.0
601.897369	2.0E -6	VC * -2+	RA2RA136	CO2 +3 10.79P38		498079.1
599.549900	2.0E -6	DMI * +1	DY6 38	CO2 P+3+ 10.23R22		500029.0
599.000000	5.0E -3	MAD* -1	DY7 46	CO2 P+3+ 10.27R16		500000.0
594.728680	1.0E -6	VB * -1-	DY9 18	CO2 N+3+ 10.72P32		504082.8
593.600000	2.0E -3	FAA [#] -1	DY8 5	CO2 N+3+ 9.22R30		505000.0
593.505838	2.0E -6	EF * - 2	RA2RA141	CO2 +3 9.69P36		505121.0
592.500000	2.0E -3	FAC# -1+	DY8 46	CO2 N+3+ 10.57P18		506000.0
591.615820	1.0E -6	FAC [#] 0	DY8 28	CO2 P+3+ 10.21R26		506735.1
590,100000	2.0E -3	FAA [#] -1	DY8 57	CO2 P+3+ 10.53P14		508000.0
586,600000	2.0E -3	VCY# -1	DY1 10	CO2 P 10.59P20		511000.0
585.720000	1.7E -4	MBB* +1-	СН6МО 4	CO2 P+4- 9.73 P40	+25	511840.0
584.000000	2.0E -3	VCY# -1	DY1 11	CO2 N 10.51P12		513000.0
583.870000	1.7E -4	MI * -1	СН6 3	CO2 P+4- 9.42 P4	0	513460.0
583.770000	1.7E -4	MAC* -2-	СН6 6	CO2 P+4 9.55 P20	-15	513550.0
583.000000	5.0E -3	MAD* 0	DY7 10	CO2 P+3+ 9.26 R22		514000.0
582,553690	1.0E -6	FAA# -1+	DY8 13	CO2 N+3+ 9.54P18		514617.8
580,801080	1.0E -6	FA * 0	DY8 30	CO2 N+3+ 9.71P38		516170.7
580.387297	1.0E -6'	FA * -1-	DE1	CO2 +3+ 9.26R22		516538.7
578,900000	1.7E -4	MI * O	СН6 8	CO2 P+5- 10.16R34	-30	517870.0
578,000000	2.0E -2	VCY# -3	RA1 35	CO2 +3+ 10.29R14	-	520000.0
576.170000	1.7E -4	MI # 0+	CH6 11	CO2 P + + 10.55P16	-30	520320.0
574,400000	2.0E -3	VCY# -1	DY1 12	CO2 N 10.27R16		522000.0
570.568730	9.6E -7	MA * 0+	PET/CH3	CO2 P 9.52P16		525427.5
569.477400	2.0E -6	DMI#	DY6 52	CO2 P+3+ 10.76P36		526434.0
568.810000	1.8E -4	MC * -2+	СН6 14	CO2 P+5- 10.21R26	+5	527050.0
568.000000	3.0E -2	DF # -1	HO1 10	CO2 +3 10.63P24		530000.0
567.945978	1.9E -6	VC * -2	RA2RA135	CO2 +3 10.55P16		527854.0
567.868410	1.0E -6	FAC# +1-	DY8 27	CD2 P+3+ 10.21R26		527926.0
567.106580	1.0E -6	FAA# 0	DY8 56	CO2 P+3+ 10.53P14		528635.2
566.440000	1.8E -4	MAC# 0-	СН6 5	CO2 P+5- 9.54 P18	+25	529260.0
564,680000	1.8E -4	MBB#()	CH6M032A	CO2 +3+ 10.79P38	-5	530910.0
561,410000	1.8E -4	MCY# -1+	CH6 7	CO2 P+4+ 9.34 R8	+40	534000.0
561.293970	1.0E -6	FAC# 0+	DY8 47	CO2 N+3+ 10.59P20		534109.6
556.875600	· 2.0E -6	DMI#	DY6 51	-CO2 P+3+ 10.76P36		538347.0
554.365310	3.7E -6	DF * 0	RA2DY146	CO2 N+3+ 10.53P14		540785.0
554.000000	5.0E -3	MAD* 0-	DY7 17	CO2 P+3+ 9.21 R32		541000.0
553.696310	1.0E -6	VB * -1+	DY9 17	CO2 N+3 10.81P40		541438.5
553.000000	5.0E -3	MAD* 0+	DY7 42	CO2 P+3+ 10.33R8		542000.0
553.000000	5.0E -3	MAD* +1-	DY7 5	CO2 P+3+ 9.31 R14		542000.0
551.000000	5.0E -3	MAD# -1+	DY7 33	CO2 N+3+ 9.57 P22		544000.0
550.000000	2.0E -3	VCY * -1	DY1 13	CO2 P 10.53P14		545000.0
545.390000	1.8E -4	MBR* +1	CH6 10	CO2 P+4- 10.17R32	+20	549680.0
545.210000	1.8E -4	MBB [≇] +1	CH6MO 32	CO2 P+3+ 10.79P38	5	549870.0
542,990000	1.8E -4	MI * -3+	CH6 14.	CO2 P+4 10.65P26	+10	552110.0
540,000000	5.0E -3	DMI [#] -1	DY6 32	CO2 N+3+ 9.35 R6		555000.0
538.000000	2.0E -2	VC 🐐 -4	RA1 52	CO2 +4- 10.37R04		560000.0
534.800000	2.0E -3	FA * -1+	DY5 18	CO2 +3+ 9.2 R24		561000.0
534,500000	2.0E -3	FA # -2+	DY5 17	CO2 +3+ 9.54P18		561000.0
533.700710.	1.0E -6	FA # O	DY8 16	CO2 P+3+ 9.23R28		561724.0
533.678390	1.0E -6	FA * 0	DY8 25	CO2 P+3+ 9.52P16		561747.5
533.655113	9.0E -6	N2H4 * 0	RA2DY325	CO2 N 10.33R08		561772.0
533,000000	3.0E -2	DFE [#] -1	HO1 12	CO2 +3 10.59P20		560000.0
532.000000	2.0E -2	VC * -3	RA1 51	CO2 +4- 9.52P16		560000.0
531.080000	1.9E -4	MAC* -2-	СН6 3	CO2 P+4 9.44 P6	0	564500.0
531.060000	1.9E -4	MBR* +1-	CH6 28	CO2 P+4+ 10.63P24	-5	564500.0
530.600000	2.0E -3	FAA* -2+	DY8 23	CO2 P+3+ 9.73P40		565000.0

529,280000	1.9E -4	MI * +1-	СН6 17	CO2 P+4+	10.76P36	0	566400.0
528 496600	1.0E -6	VB # -1+	DY9 16	CO2 N+3	10.13R40		567255.3
527 873029	1.8E -6	N2H4#-2	RA2 21	CO2 +3	9.49P12		567925.0
527 214660	1.0E -6	FAC* 0+	DY8 56	5 CO2 P+3+	10.74P34		568634.6
526 485720	1.0E -6	FAC# 0+	DY8 55	5 CO2 P+3+	10.74P34		569421.9
525 320000	1.9E -4	MI * -1	СН6	4 CO2 P+4-	9.42 P4	-25	570700.0
523 406200	2.0E -6	DMI#	DY6 53	3 CO2 P+3+	10.79P38		572772.0
523 000000	2.0E -2	DF * -2	RA1	8 CO2 +4-	10.55P16		570000.0
520 000000	5.0E -3	DMEC* 0-	ZD 5	5 CO2 +3+	- 10.30R12		577000.0
519 303300	2.0E -6	DMC* 0	DY6 1	3 CO2 P+3+	9.69 P36		577298.0
519.075281	2.6E -6	EF * -2	RA2RA14	0 CO2 +3+	9.37R04		577551.0
519.000000	2.0E -2	VC * -3-	RA1 5	0 CO2 +4-	- 10.74P34		580000.0
518,000000	5.0E -3	MAD2* 0-	ZD 1	8 CO2 +3+	9.64P30		579000.0
517.330000	1.9E -4	MI * 0-	CH6 1	0 CO2 P+5-	- 10.53P14	+30	579500.0
517.000000	5.0E -3	MAD* -1	DY7 7	0 CO2 P+3+	- 10.84P42		580000.0
516.770000	1.9E -4	MAC* -2-	CH6	2 CO2 P+4+	9.32 R12	+35	580100.0
515,169620	1.0E -6	FA 🕈 O	DY8 2	4 CO2 N+3+	9.52P16		581929.7
514,950780	1.0E -6	FAC* 0+	DY8 5	4 CO2 P+3-	- 10.74P34		582177.0
513.015750	1.0E -6	FA * +1-	DY8 1	5 CO2 P+3-	9.23R28	· .	584372.9
513.002316	1.5E -6	FA * 0	DA 1DY8	6 CO2 P+3-	- 9.23R28		584388.2
512.000000	5.0E -3	TRI* -1-	DA2 1	1 CO2 +3	10.81P40	-	586000.0
511.900000	2.0E -4	MC * -1-	CH6 1	2 CO2 N+4-	- 10.07R52	0	585600.0
511,500000	5.0E -3	DFM# -2	DW3	1 CO2 N+3-	+ 9.23R28		586000.0
510.160000	2.0E -4	$MCY^{\pm}(-1)$	CH6 8	A CO2 N+4	- 9.44 P6	-10	. 587600.0
508.791210	1.0E -6	FAC [#] 0	DY8 3	9 CO2 N+3	+ 10.48908	~~	509225.0
508.480000	2.0E -4	MBR [#] 0+	CH6	9 CO2 P+4	-10.11842	+30	509000.0
508.370000	2.0E -4	MI + 1	CH6	7 CO2 P+4	9.00 P34	0	509700.0
508.100000	2.0E -3	FAC ⁺ -2	DIS 3	0 CO2 P+3	+ 10.19820		590000.0
508.000000	5.0E -3	MAD [#] -1	DI7 2	$3 CO2 \ P+3$	+ 9.40 PO		500626 0
507.584067	1.7E -0		RAZCH33	4 CU2 N+3	+ 10.01722		592000 0
506.000000	2.08 -3			5 CO2 F+3	0 22812		600000.0
503.000000	2.0E -2	VCI4-		$14 \ CO2 \ +3$	9.32R72		596884.0
502.202415	2 OF -3		DY8 2	19 CO2 $^{+3}$	+ 9.77P44		602000.0
498.000000 No8.000000	2.0E -3		DY2	2 CO2 P	9.66P32		602000.0
498.000000	5 OE -3	MAD# -1	DW2	6 CO2 P+3	+ 10.16R34		602000.0
496 101009	8.0E -7	MF # 0+	KW1CH5	6 CO2 N+3	- 9.55P20	+44	604297.3
496.072000	5.0E -6	MF # 0	CH2.3	2 CO2 N	9.55P20	-50	604333.0
495,000000	6.0E -3	MA * -2	TA2 2	2 CO2 +3	+ 10.37R04		606000.0
495.000000	5.0E -3	MAD# 0-	DY7 1	47 CO2 P+3	+ 10.26R18		606000.0
494.646122	1.6E -6	MCY# +1-	RA2,1CH	16 CO2 N+3	9.44906	-10	606074.7
493.156260	1.0E -6	FAA# -1+	DY8	52 CO2 P+3	+ 10.13R40		607905.7
491.890660	1.0E -6	FAC [#] O	DY8	38 CO2 N+3	+ 10.48P08		609469.8
490.391000	2.0E -6	DMI* +1	DY6 2	28 CO2 P+3	+ 9.26 R22		611334.0
490.083010	1.0E -6	VB * 0-	DY9	14 CO2 P+3	+ 10.55P16		611717.8
489.000000	2.0E -2	VCY* -4-	RA1	33 CO2 +4	- 10.48P08		610000.0
487.226100	2.0E -6	DMI# 0	DY6	33 CO2 P+3	+ 9.47 P10		615305.0
487.000000	2.0E -2	VC = -4-	RAI	49 CO2 +4	- 9.47P10		620000.0
486.100000	2.0E -3	MA * +1-	- WEI	4 CO2S + 4	+ 9.00P31		620000.0
486,000000	2.0E -2		- RAI	$19 \ CO2 \ +3$	0 55 200		620000.0
483.500000	2.0E -3	NZH4= U	DI3 (21 CO2 F	9.99F20		621000.0
483.000000	5.05 -3	MADE 1		68 CO2 P+3	$3 \pm 10.65 P26$		621000.0
463.000000	5.0E = 3	MAD# O	-DY7	11 CO2 P + 3	3+9.26 B22		621000.0
405.000000	1 05 -6	VR # _1.	+ DY9	13 CO2 N+3	3+ 10.65P26		620737.8
180 210200	2 05 -6	DMC* 0	DY6	12 CO2 N+	3+ 9.69 P36		624164.0
480 010000	2.1E -4	MCY*(-1) CH6	3B CO2 N+1	4- 9.29 R16	0	624600.0
480,00000	5.0E -3	MAD* -2	+ DY7	29 CO2 N+	3+ 9.52 P16		625000.0
480.000000	5.0E -3	FA13*-1	- DE1	4 CO2 +	3+ 10.09R46	1	625000.0
479.904040	1.0E -6	FAE# 0	DY8	16 . CO2 P+	3+ 10.53P14	ł	624692.6
478,900000	2.0E -3	FAC# -2	+ DY8	10 CO2 P+	3+ 10.37R04	ł	626000.0

- 6 -

		WT # 0.	0116 K	CO2 P.E.	0 60 P26	+10	627400.0
477.870000	2.15 -4	MI2+		CO2 F+J-	0 500120	+10	628000 0
477.400000	2.0E -3	FAA* -2+	DIO 11	CU2 P+3+	9.50114		620000.0
472.900000	2.0E -3	FAA* -1	DY8 6	CO2 N+3+	9.18838		634000.0
472.100000	2.0E -3	FAA [#] O	DY8 59	CO2 P+3+	10.55P16		635000.0
472.000000	5.0E -3	MAD* -2+	DY7 7	CO2 P+3+	9.29 R16		635000.0
469 200000	2.0E -3	FAC# -1	DY8 43	CO2 N+3+	10.51P12		639000.0
160 022250	7 8F _7	MA # _1_	PET/RA1	CO2 +3	10.14R38		639184.6
409.023330	1.0E -1			CO2 +3+	10 37 804		639000.0
469.000000	5.05 -3		20 4 70 25		0.50026		641000 0
468.000000	5.0E -3	MADI U-	ZD 30	CU2 +3+	9.00F20		610578 1
466.546180	1.0E -6	FAB* 0-	DY8 15	CO2 N+3+	10.53P14	•	642010.4
466.250000	2.1E -4	MCY=(0-)	СНб ЗА-	CO2 N+4-	9.29 816	0	643000.0
464.756800	2.0E -6	DMC* +1	DY6 17	CO2 P+3+	10.25R20		645052.0
464.300000	2.0E -3	DF 🕈 1	DY1 4	CO2 P	10.25R20		646000.0
461,384800	5.0E -7	MA13* 0+	HEN2PE2	CO2 N+4	9.49P12	-20	649766.7
461 261100	1 OE -6	FAA# +1	DY8 58	CO2 P+3+	10.55P16		649941.0
161 200000	2 28 -4	MC # -2+	СН6 1	CO2 N+3+	9.17 R42	-25	650000.0
161 071001	1 55 -6	N2H1#-1	RADV323	CO2 N+3	10 55P16		650207.7
401.011901		DMT# 1	NACDIJEJ NV6 20	CO2 N+2+	0 32 812		650928.0
460.502000	2.0E -0		D10 50		0 27922		652000 0
460.000000	5.0E -3	1R1=			9.2/M22	•	652000.0
459.180000	2.2E - 4	MI = -1+	СНО 9	CU2 N+5-	10.4/20	0	652900.0
458.522975	1.5E -6	FA * 0-	DA1DY8 5	CO2 N+3-	9.18838		003022.2
458.000000	3.0E -2	DFE# -1	HO1 11	CO2 +3	10.59P20		650000.0
458.000000	2.0E -3	DF # -1	DY1 3	CO2 P	10.70P30		655000.0
457.341050	1.0E -6	FAC# -1+	DY8 52	CO2 P+3+	10.70P30		. 655511.9
457.250000	2.2E -4	MI *().	CH6 12A	CO2 P+3	10.57P18	0	655600.0
455 000000	5 OF -3	MAD# -1+	DY7 30	CO2 P+3+	9.54 P18		659000.0
152 207106	1 5F -6	MCY# 0	RA2 1CH6	CD2 N+3+	9.29R16	0	661213.4
152.200000	2 05 -3		DY8 13	CO2 P+3+	10 32810	-	663000.0
452.200000	2.05 -3	FF # _2	DIO (J	005 +3+	0 26822		660000.0
452.000000	2.0E -2	553	DYO EE	CO2 +3+	10 51012		664757 9
450.979970	1.0E -0	FAA U-	DIO 55	CO2 N+3+	10.01006		666000 0
450.100000	2.0E -3	FAA* -1	DIO 41	CU2 N+3+	10.21R20		666502.0
449.799800	2.0E -6	DMC* +1	DI6 18	CO2 P+3+	10.25R20		
448.533597	1.0E -6	FA13*-1+	DE1 3	CO2 +3+	9.20H22	•	600303.0
447.142200	2.0E -6	MI * +1+	DY6CH6	CO2 P+3	10.57218	0	6/0463.0
446.873090	1.0E -6	FA # -1+	DY8 5	CO2 P+3+	9.29R16		670867.2
446.800000	2.0E -3	FAA# -3+	DY8 16	CO2 P+3+	9.62P28		671000.0
446.505501	7.0E -7	FA 🕈 -1	RA2DY5 8	CO2 +3+	9.26R22		671419.5
445.899630	1.0E -6	FA # -1+	DY8 10	CO2 P+3+	9.27R20		672331.8
445,000000	2.0E -2	VC # -3	RA1 48	CO2 +4-	10.26R18		670000.0
445 000000	2 OE -3	VB # -1-	DY9 12	CO2 N+3+	10.61P22	•	674000.0
1111 800000	5 UE -3	R5 # _1_	DY8 34	CO2 N+3+	10.53P14		674000.0
144.000000	2.02 -5		- D10 - J1	CO2 N+3+	0 21 B32		674621.0
444.300300	2.05 -0		DIO 25	602 N+3+	10 62024		676000 0
443.500000	2.05 -3	YD14			0.00027		676220 0
443.264600	2.0E -0	DMC* +1	DID 5	CU2 P+3+	9.47 210		677000 0
442.800000	2.0E -3	FAC -1-	DI8 44	CO2 N+3+	10.53214		679006.0
442.167850	1.5E -6	VC * -2	RA2 33	CO2 +3	10.55210		6/0000.0
441.150000	2.3E -4	MCY#(-1)	снб 3С	CO2 N+4-	9.29 R16	0	679600.0
438,506930	1.0E -6	VB * -1-	DY9 10	CO2 P+3+	10.67P28		683666.5
437.451100	1.0E -6	FA # -1-	DY8 23	CO2 N+3+	9.52P16		685316.6
435.771895	7.0E -7	N2H4* 0	RA2DY322	CO2 N+3+	10.63P24		687957.4
#35 000000	5 OE -3	MAD# -3	GW1	CO2 N+3+	9.62P28		689000.0
122 225260	1 05 -6	FAR# 0.	- DY8 3	CO2 N+3+	10.29B14		691985.3
433.233300	2.05.2	FAD U-	- D10 J	CO2 P+3+	10 27 B 16		692000.0
455.200000	2.05 -3	FAR" -2"	- DIO 20	002 1+3+	10 55016		602000 0
433.200000	2.0E -3	FAB* -2-	- DIG 17	002 1+3+	0 62 22210		602106 0
433.103700	2.0E -0		DIO 37	002 P+3+	· y.uz rzo		600000
433,000000	5.0E -3	TRI# -1-	- DA2 9	002 +3	10.00244		
432.666570	1.0E -6	FA = 0-	+ DY8 9	CO2 P+3+	9.27R20		092095.0
432.631350	3.0E -7	FA 🗕 0-	+ KW1DY8 1	CO2 P+3	9.27R20		692951.4
432.400000	5.0E -3	DFM* -1	DW3 12	CO2 N+3+	9.35R06		693000.0
432.109420	1.0E -6	FA # 0	DA3DY8	CO2 P+3+	9.26R22		693788.4
430.550000	1.2E -4	MCY# -1	CH5	CO2 P+4	10.57P18	-15	696300.0

30 438070	1.0E -6	FAA*	0	DY8	54	C02	P+3+	10.46P06		696482.3
	1.0E - 6	FAA#	0 0	DY8	60	C02	P+3+	10.63P24		697695.1
29.009090	2 35 -4	MAC* -	2	сн6	1	CO2	P+4	9.18 R38	+35	699000.0
20.010000	2.35 -4	MCY# _	2	СНК	14	CO2	N+4	9.60 P26	+15	702000.0
127 000000	2.35		2-	nyo	à	C02	P+3+	10 22R24		702000.0
127.000000	2.06 -3		2-	70	16	C02	+3+	10 14R38		704000.0
126.000000	5.0E -3	MAD2-	0-	20 DV9	10	CO2	+3+	10 57218		705000 0
125.200000	2.0E -3	FAC.	0-	DIO	40	002	N+3+	10.97110		710000.0
424.000000	2.0E -2	VC = -	3+	KA 1	47	002	+4-	10.20820		710000.0
424.000000	2.0E -3	VB * -	1+	DY9	8	CO2	2+3+	10.59920	50	707000.0
422.780000	2.4E -4	MBR# -	2	CH6	12	C02	P+5-	10.21826	+50	709100.0
422.000000	5.0E -3	MAD¥	0-	DY7	32	C02	P+3+	9.55 P20		710000.0
421.000000	5.0E -3	MAD*	0÷	DY7	55	C02	N+3+	10.17R32		712000.0
420.391110	1.0E -6	FA 🕈 -	1+	dy8	3	C02	P+3+	9.34R08		713127.6
419.000000	2.0E -3	VB * -	-2+	DY9	7	C02	P+3+	10.17R32		715000.0
418.711860	5.0E -7	MAD* +	-1-	PE2DY	7	C02	N+3+	10.15R36		715987.6
418.612935	1.0E -6	FA *	0+	DA 1DY	83	C02	P+3-	9.26R22		716156.8
418.310000	2.4E -4	MBR¥	0-	CH6	29	C02	P+4+	10.65P26	+10	716700.0
<u>418 100000</u>	2 DE -3	FA # -	-1-	DY8	12	C02	P+3+	9.25R24		717000.0
117 800000	1 28 -1	MA # (ίο.	CH3	17	CO2	N	9.69P36		717550.0
117 100000	5 OF -3		1.	BE1	2	C02	N+3+	9.44P06		719000.0
417.100000	5.02 - 3	EAA¥	0	DY 8	1	C02	P+3+	9 26 R22		719000.0
417.000000	2.0E -5	FAR"	2	כשם	· 0	C02	P+3+	0 32R12		719000.0
417.000000	5.0E -5		-2	UEN17		002		0 50 P14	-15	710751 2
416.522400	1.0E -0	MA	-2	DYO	. A Z	002	+) N.2.	10 22222	-15	721000 0
416.000000	2.0E -3	VD	- 1	D19	17	002	N+3+	10.25M22		722000 0
415.200000	2.0E -3	FAC* ·	- 1	DIO	11	C02	r+j+	10.29514	+ 115 -	722400 0
414.980000	2.4E -4	MBA* ·	+1+	CHOMU	20	002	P+4	10.30K2	440	721000.0
414.100000	2.0E -3	FAC	-1+	DIS	57	002	P+3+	10.00144		728000.0
412.000000	5.0E -3	MAD	-1	DY7	44	002	P+3+	10.30412		720000.0
411.200000	2.0E -3	FAA*	-1	DY8	22	C02	2+3+	9.73240		729000.0
411.000000	2.0E -3	VB *	-2+	DY9	5	C02	P+3+	10.21820		[29000.0
410.000000	5.0E -3	MAD#	-1+	DY7	40	C02	P+3+	9.00 P32		731000.0
409.000000	5.0E -3	MAD#	-1-	DY7	18	C02	N+3+	9.20 R34		733000.0
407.720000	2.5E -4	MBR¥	-2	CH6	2	C02	P+5-	9.62 P28	-40	735300.0
407.293784	1.4E -6	DF 🕈 .	-1	RA2H0	0145	C02	P+3+	10.53P14		736060.0
407.000000	5.0E -3	MAD*	-1+	DY7	20	C02	P+3+	9.16 R44		737000.0
406,000000	2.0E -2	DME*	OL	KON	5	C02	N+3	10.30R12		740000.0
405.584846	9.5E -7	FA ¥	0	RA2D	Y8 5	C02	P+3-	9.28R18		739161.0
405.504475	1.4E -6	EF 🛎	-2	RA2R/	A138	C0 2	+3	9.22R30		739308.0
405.000000	2.0E -3	FA #	-1+	DY5.	8 8	C02	P+3+	9.60P26		740000.0
404 000000	2.5E -3	EF #	-3-	RA1/	WA	C02	+4-	9.68P34		742000.0
404 000000	2.0E -3	FA #	-1+	DY8	33	CO2	N+3+	10.11R42		742000.0
208 100000	2 DF -3	FAA#	-1-	DY8	20	CO2	P+34	10.23R22		753000.0
208 000000	5 08 -3	MADĦ	0-	DY7	52	CO2	P+3-	10.19R28		753000.0
207 100000	2 OF -3	FAC	0-	DY8	23	coz	P+3-	10.23R22		755000.0
391,100000	2.05 -3	FAC	0-	DY8	20	002	> P+3	10 25R20		757000.0
390.000000	2.05 -3	UD #	2.	DYO	20		> P+3	0 68234		757000.0
398.000000	2.02 -3		-2+	151	4	002	- 1 - 1	0 232		757000 0
396.000000	1.0E -2		-2		25	002		. 0 51018		757000 0
396.000000	5.0E -3	MAD I *	-1-	- <u>2</u> 0	32			10 20012		757601 0
395.712440	1.0E -0	FAA=	0+	DIO DVO	30		2 14-3-	- 10.30A12		758680 5
395.148830	1.0E6	FAC	0	DY8	12	002	2 2+3-	+ 10.32R10		750002.5
395.000000	2.0E -3	FAAT	-1	DY8	8	C02	2 2+3-	+ 9.47210		759000.0
395.000000	2.0E -3	FAA*	-1	DY 8	12	COS	2 2+3-	+ 9.52216		759000.0
394.200000	2.0E -3	FA 🎽	0+	DY5	7	C02	2 +3-	+ 9.29R16		761000.0
393.631131	4.0E -7	FA *	0+	- KW1D	A1 2	C02	2 P+3	9.28R18		761607.7
392,900000	2.0E -3	FAA#	-14	- DY8	2	CO	2 P+3	+ 9.29R16		763000.0
392.480000	2.5E -4	MI *	-24	- CH6	2	CO	2 P+4	+ 9.30 R14	+5	763800.0
392.068791	6.6E -7	MA 🛎	+1-	- PETC	H3T3	CO	2 N+2	+ 9.69P36		764642.6
391.688700	1.0E -6	FAA*	-1-	DY8	50	CO	2 N+3	+ 10.14R38		765384.6
390.530000	2.6E -4	MI #	0-	- CH6	19	CO	2 P+4	10.84P42	+25	767700.0
390.100000	2.0E -3	MA ¥	0-	- WE1	5	CO	2S +3	+ 9.52P13		769000.0
390.000000	5.0E -3	DMI¥	-2	DY6	36	CO	2 P+3	+ 9.60 P26		769000.0
			_				-	-		

304.0 700.0 000.0

389.907030	1.0E -6	FAC# 0	DY8 14	CO2 P+3+	10.30R12		768882.0
388.390000	2.6E -4	MCY# -2-	СН6 13	CO2 P+5-	9.57 P22	+30	771900.0
387.800000	2.0E -3	FAA* -1+	DY8 25	CO2 N+3+	10.37R04		773000.0
387.310000	2.6E -4	MCY# 0-	CH6RA1 5	CO2 N+4	9.32 R12	+15	774000.0
386,410000	2.6E -4	MCY# -3+	СН6 18	CO2 P+4+	9.79 P46	-15,	775800.0
386,200000	3.0E -4	MA #	HEN 1	CO2 N+4	9.50P14	-15	776300.0
386.000000	5.0E -3	MAD# 0-	DY7 28	CO2 N+3+	9.52 P16		777000.0
385,909273	1.3E -6	VC * 0-	RA2CH332	CO2 N+3	10.61P22		776847.0
385.000000	5.0E -3	MAD* -2	DY7 37	CO2 N+3+	9.64 P30		779000.0
384,000000	5.0E -3	TRI# -1-	DA2 8	CO2 +3	9.22R30		781000.0
383,284600	2.0E -6 .	DMC# +1	DY6 2	CO2 P+3+	9.20 R34		782167.0
380.565420	1.0E -6	FAC [#] +1	DY8 15	CO2 P+3+	10.30R12		787755.5
380.020000	2.6E -4	MBR# +1-	CH6 14	CO2 N+4	10.26R18	+50	788900.0
378,570000	2.6E -4	MC # -1+	СН6 3	CO2 N+4+	9.29 R16	+50	791900.0
377,450000	2.6E -4	MI * +1-	CH6DY4 1	CO2 P+4	9.29 R16	+5	794300.0
375,544948	1.3E -6	DF # O	RA2DY144	CO2 P+3+	10.51P12		798287.0
375,000000	5.0E -3	NH3A#-2	DW1 3	CO2 P+3	10.11R42		799000.0
374,000000	5.0E -3	MAD1# 0-	ZD 34	CO2 +3+	10.88P46		802000.0
373,800000	2.0E -3	FAA# -2	DY8 18	CO2 P+3+	9.68P34		802000.0
373,000000	2.0E -3	N2H4#-1	DY3 18	CO2 N	10.30R12		804000.0
372,870000	1.3E -4	MCY# -1+	RAICH5T3	CO2 +3	10.59P20	-30	804000.0
372,680000	1.3E -4	MF # +1	CH5	CO2 P+3	9.84250	-50	804400.0
372,500000	2.0E -3	N2H4#-2	DY3 17	CO2 N	10.57P18		805000.0
372,000000	2.0E -3	FAA* -1-	DY8 47	CO2 N+3+	10.15R36		. 806000.0
372.000000	2.0E -3	FAA# -1	DY8 61	CO2 P+3+	10.65P26		806000.0
370,000000	2.0E -3	VB # -2	DY9 3	CO2 P+3+	10.67 P28		810000.0
370,000000	5.0E -3	MAD# 0+	DY7 14	CO2 P+3+	9.24 R26		810000.0
370,000000	5.0E -3	MAD# -1+	DY7 36	CO2 P+3+	9.62 P28		810000.0
369,967810	1.0E -6	FAA# O	DY8 43	CO2 P+3+	10.19R28		810320.5
369,113762	6.2E -7	MA # +0+	PET/CH3	CO2 P	9.52P16		812195.4
368.861889	6.2E -6	N2H4#-1	RA2DY321	CO2 N	9.28R18		812750.0
366,900000	2.0E -3	FAC# -1	DY8 1	CO2 P+3+	9.37 RO4		817000.0
365,200000	2.0E -3	FAB* -2+	DY8 1	CO2 P+3+	10.30R12		821000.0
363,000000	5.0E -3	MAD2# 0+	ZD 15	CO2 +3+	10.27R16		826000.0
363.000000	5.0E -3	MAD1#-1+	ZD 33	CO2 +3+	10.27R16		826000.0
362.100000	2.0E -3	FAB# -1	DY8 18	CO2 P+3+	10.59P20		828000.0
361.200000	2.0E -3	FAA# 0-	DY8 21	CO2 P+3+	9.71P38		830000.0
359,900000	2.0E -3	FA 🕈 🗝 1	DY8 19	CO2 P+3+	9.20R34		833000.0
358,920000	3.0E -4	MA 13#	HEN2	CO2 N+4	9.73P40	+35	835300.0
358,200000	2.0E -3	FAA# -2-	DY8 35	CO2 P+3+	10.27R16		837000.0
356,000000	2.0E -3	VB # -1-	DY9 2	CO2 N+3+	10.25R20	•	842000.0
356,000000	2.0E -3	FAA# -1+	DY8 63	CO2 P+3+	10.70P30		842000.0
355.200000	2.0E -3	FAA* -1+	DY8 20	CO2 P+3+	9.71P38		844000.0
355.000000	5.0E -3	MAD2 # 0-	ZD 14	CO2 +3+	10.57P18		844000.0
353.100000	2.0E -3	FAA* O-	DY8 62	CO2 P+3+	10.67 P28		849000.0
353,100000	2.0E -3	FAA* O+	DY8 26	5 CO2 P+3+	10.35R06		849000.0
353.000000	5.0E -3	MAD* -1+	- DY7 1	CO2 P+3+	9.35(R6)		849000.0
352.750000	2.8E -4	MBR* 0+	- CH6 -	I CO2 N+4+	9.54.P18	+25	849900.0
352,500000	2.0E -3	DMA# -1	DY2 3'	I CO2 N	9.64P30		850000.0
352.000000	5.0E -3	MAD* O	DY7 1	+ CO2 P+3+	9.31 R14		852000.0
352,000000	5.0E -3	MAD* -1	DY7 15	5 CO2 P+3+	9.23 R28		852000.0
351.900000	2.0E -3	FAC# O	DY8 16	5 CO2 P+3+	- 10.29R14		852000.0
351.900000	2.0E -3	FAA* -1-	F DY8 38	B CO2 P+3+	10.23R22		852000.0
351.000000	2.0E -3	FAA* -1	DY8 19	9 CO2 P+3+	9.59P36		854000.0
351.000000	5.0E -3	MAD* -1	DY7 5	4 CO2 N+3+	10.18R30		854000.0
350.200000	2.0E -3	FAC# O	DY8 31	4 CO2 P+3+	10.13R40		856000.0
350.000000	5.0E -3	MAD# 0-	- DY7 39	9 CO2 P+3+	9.66 P32	_	857000.0
349.340000	2.9E -4	MC # +1	CH6JEN 1	5 CO2 P+3+	- 10.26R18	-5	858200.0
347.000000	2.0E -3	FAA * -1	DY8 2'	7 CO2 N+3+	- 10.33R08		864000.0
346.500000	2.0E -3	MA 🛎 -2-	+ DY2 2	1 CO2 P	9.57P22		865000.0
346.320000	2.9E -4	MCY# 0-	- CH6 1	2 CO2 P+4	9.52 P16	-10	865700.0

346,000000	5.0E -3	MAD* -1	GW1	CO2 P+3+	9.31R14		866000.0
346.000000	5.0E -3	MAD2*-1+	ZD 13	CO2 +3+	9.55P20		866000.0
342.000000	5.0E -3	DMEC# 0-	ZD 3	CO2 +3+ 1	0.55P16		877000.0
341.800000	2.0E -3	FAB [#] -1	DY8 4	CO2 N+3+ 1	0.27R16		877000.0
339.900000	2.0E -3	FAA* -1+	DY8 15	CO2 P+3+	9.62P28		882000.0
339.000000	2.0E -2	DME# OL	kon 8	CO2 N+3 1	0.37RO4		880000.0
338.963800	5.0E -7	MA 13*	HEN2PE2	CO2 P+4	9.57P22	+15	884438.1
336.700000	3.0E -4	EF * - 3+	RA1/WA	CO2 +4-	9.29R16		890400.0
336.300000	2.0E -3	FA * -1+	DY5,8 5	CO2 P+3+	9.31R14		891000.0
336.000000	5.0E -3	MAD* -2+	DY7 16	CO2 N+3+ 9	.21 R32		892000.0
336.000000	5.0E -3	MAD [#] -1	DY7 53	CO2 P+3+ 1	0.18R30		892000.0
336.000000	2.0E -3	N2H4#-1	DY3 15	CO2 N 1	0.63P24		892000.0
335.708770	1.0E -6	FAC* 0-	DY8 2	CO2 P+3+	9.34R08		893013.6
333.960000	3.0E -4	MC * +2-	CH6 9	CO2 N+3 9	.75 P42	+40	897700.0
333.150000	3.0E -4	MBR# -2	CH6 22	CO2 P+5- 1	0.48P8	+35	899900.0
332.860000	3.0E -4	MBR* 0-	CH6 18	CO2 N+4 1	0.35R6	0	900700.0
332,603430	5.0E -7	MA 13*	PE2	CO2 1	0.27R16	•	901351.2
331,669450	1.1E -6	N2H4#-1	RA2DY320	CO2 N+3+	9.49P12		903889.4
331,500000	2.0E -3	N2H4*-2	DY3 13	CO2 P	9.64230		904000.0
330,000000	5.0E -3	$DMA^* = 1 +$	BE1 3	CO2 N+3+	9.37R04		908000.0
328,457040	1 OE -6	FAB# 0	DY8 19	CO2 P+3+ 1	0.61P22		912729 7
327 000000	2 OE -3	N2H4#_1	DY3 12	CO2 P	9 26 B22		917000.0
326 100000	5 OF -3	DEM# -2	א בעת	CUS N+3+	9 31R14		919000 0
325 900000	2 05 -3		ру <u>8</u> иц	CO2 R+3+ 1	0 18820		979000.0
325 200000	2.05 -3	FAC# -2+	010 8Va	CO2 P+3+ 1	0 10828		920000.0
225 170000	2.05 -3	VA 12	UIU 29		0 60826	20	922000.0
323.170000	2 052	FIR ()~	NENZ 28	CO2 P+4	9.09130	-20	922000.0
324.100000	2.05 -3	FAR1-	DIO 20	002 r+3+1	0.32110		925000.0
323.050000	2.0E -3		70 31	CO2 P+3+ 1	0.10830		926000.0
322.000000	5.0E -3	MADI - U-	20 32 DV7 6	002 + 3+	9.49912		931000.0
321,000000	5.0E -3	MAD= -1-		CO2 N+3+ 9	.29 R10		934000.0
320,000000	2.0E -3	DMA* -1	DI2 30	CU2 P	9.64230		937000.0
319.900000	2.0E -3	FA = -2+	DIG 32	CO2 P+3+1	0.22824		937000.0
318.000000	5.0E -3	DMC* -1	DIP 19	CO2 P+3+1	0.19828		943000.0
314.848905	1.02 -0	MAM* -2+	RAZRAIJI	CO2 +3	9.37804		952185.0
313.000000	5.0E -3	FA13=-1-	DE1 2	CO2 +3+	9.44P06		958000.0
312.000000	2.0E -2	DME	KUN 7	CO2 N+3 1	0.32810		960000.0
312.000000	2.0E -3	FAB* -1	DIS 6	CO2 P+3+1	0.22824		961000.0
311,210000	3.2E -4	MBR* 0~	СНБ 7	CO2 N+3+ 1	0.08850	+50	963300.0
311.200000	3.2E -4	MBE* 0	СН6МО 33	CO2 N+4- 1	0.81P40	+45	963300.0
311.200000	2.0E -3	MA = -1+	DY2 20	CO2 N	9.59P24		963000.0
311.100000	3.2E -4	MBR* O	CH6 26	CO2 P+4 1	0.59P20	+10	963700.0
311.074746	1.0E -6	N2H4* 0	RA2DY319	CO2 P+3	9.55P20		963731.4
311.070000	3.2E -4	MBR* -2+	СН6 16	CO2 N+4 1	0.30R12	+30	963700.0
311.000000	2.0E -3	FA * 0-	DY5,8 4	CO2 P+3+ 1	0.23R22		964000.0
310.000000	2.0E -3	FAC [#] O+	DY8 25	CO2 P+3+ 1	0.22R24		967000.0
310.000000	5.0E -3	MAD* O-	DY7 51	CO2 N+3+ 1	0.19R28		967000.0
309.000000	5.0E -3	$MAD^{*} - 1 -$	DY7 64	CO2 P+3+ 1	0.59P20		970000.0
308.000000	5.0E -3	MAD1* O-	ZD 31	CO2 +3+	9.50P14		973000.0
307.780000	3.0E -4	MA13* 0-	HEN2PE2	CO2 P+4	9.57P22	-15	974000.0
307.650000	3.2E -4	MC * 0-	CH6 19	CO2 P+3+ 1	0.97P19	-50	974500.0
305.726156	1.0E -7	DMA = +1	BL 1KON2	CO2 P+3+ 9	.34 R8		980591.6
304.083210	1.0E -6	FAC* +1-	DY8 24	CO2 P+3+ 1	0.22R24		985889.7
304.050000	2.0E -3	FAA* -1-	DY8 1	CO2 P+3+	9.35R06		986000.0
302.278164	1.0E -6	FA * +1-	DA1DY8 1	CO2 P+3-	9.37R04		991776.9
301.994300	5.0E -7	MA 🛎	HEN 1PE2	CO2 +4	9.50P14	-15	992709.1
301.275438	1.5E -6	N2H4* 0	RA2DY318	CO2 P+3 1	0.30R12		995078.0
301.000000	5.0E -3	DMI# 0	DY6 27	CO2 P+3+ 9	.24 R26		996000.0
299.000000	2.0E -2	DME* OL	KON 2	CO2 N+3 1	0.22824		1000000.0
299.000000	5.0E -3	MAD* -2+	DY7 2	CO2 P+3+ 9	35 R6		1003000 0
298.000000	2.0E -3	FAC* -1+	DY8 11	CO2 P+3+ 1	0.35R06		1006000 0
297.000000	5.0E -3	MAD* -1	DY7 8	CO2 N+3+ 9	28 R18		1009000.01

297.000000	5.0E -3	MAD* 0-	DY7 57	CO2 P+3+	10.16R34		1009000.0
296.000000	5.0E -3	MAD1# 0-	ZD 30	CO2 +3+	9.47P10		1013000.0
295.000000	5.0E -3	MAD1* 0+	ZD 29	CO2 +3+	10.74R34		1016000.0
294.811019	1.0E -7	DMA* +1	BL1KON2	CO2 P+3+	9.34 R8		1016897.2
294.280000	3.4E -4	MBR* O	CH6 11	CO2 P+4+	10.19R28	-40	1018700.0
293.780000	3.0E -4	MA * -2+	HEN1RA1	CO2 +4-	P+4-10.3	2R10	1020500.0
293.648000	2.0E -6	DMC* +1	DY6 9	CO2 N+3+	9.59 P24		1020925.0
292.500000	1.7E <u>-</u> 4	MA * -1	CH3 11	CO2 N	9.68P34		1024900.0
292.200000	1.7E -4	MA = -1	CH3 20	CO2 P	9.71P38		1026000.0
291.900000	2.0E -3	FAA* 0-	DY8 64	CO2 P+3+	10.72P32		1027000.0
291.610000	3.0E -4	MA 13*	HEN2	CO2 P+4	9.69P36	-20	1028100.0
290.620000	3.0E -4	MA *	HEN 1	CO2 N+4	9.49P12	-5	1031600.0
290.200000	5.0E -3	NH3* -1-	DW4 3	C02SN+3	9.56P17	-130	1033000.0
290.000000	5.0E -3	$MAD^* - 1$	DW2 21	CO2 N+3+	10.57P18		1034000.0
288,500000	2.0E -3	DF * -1	DY1 1	CO2 P	10.51P12		1039000.0
288.000000	2.0E -2	MAM* -2	RA1 13	CO2 +3+	9.37R04		1040000.0
288.000000	5.0E -3	DMC* -1	DY6 8	CO2 P+3+	9.52 P16		1041000.0
288.000000	5.0E -3	DMC= -1	DIO 16	CO2 P+3+	10.26R18		1041000.0
287.307690	5.0E -7	MAD* +1-	PE2DI7	CO2 P+3+	10.57918	50	1043454.5
200.000000	3.55 -4	MCI*(-1)	CHO 19A	CO2 P+3+	9.84 P50	+50	1045000.0
200.790000	3.56 -4	MC = -1+		CU2 N+4+	10.16834	-35	1045300.0
200.124190	5.05 -7	MAD= 0+	PE2DI /	CO2 P+3+	0.03224		10455/0.0
286 00000	J.UE =/		TL2 0	CO2 P+3+	9./3240		104/502.3
283 100000	2 OF -3	$\mathbf{H}\mathbf{A} = 0$		CO2 = +3	0 20816		1050000.0
283 000000	2.05 -3	VB = -1	נ סיע	CO2 P+3+	10 25820		1059000.0
281 980000	2.05 -J		CH6 19	CO2 P+3+	0 84 950	+50	1063200.0
281 670000	3 6E -4	MC #()	снб Ца	CO2 P+4-	9.04 F90	+115	1062200.0
281 500000	2 05 -3	MA # _1	DY2 10	CO2 P	9.51 1.14	++)	1065000 0
281,180000	3.5E -4	MCY* -2+	CH6 16	CO2 N+4	9 68 P34	-20	1066200 0
280,960000	3.0E -4	MA *	HEN 1	CO2 P+4	9.28R18	+5	1067000.0
280.239780	5.0E -7	MA 13#	PE2	C02	10.27R16		1069771.4
280,218300	5.0E -7	MA 13*	PE2	C02	10.27R16		1069853.4
279.810000	3.6E -4	MBR# -2	СН6 6	CO2 P+4	10.07R52	0	1071400.0
279.400000	2.0E -3	DMA# -1	DY2 29	CO2 N	9.66P32	-	1073000.0
279,000000	5.0E -3	FOB* -1-	DA2 3	CO2 +3	10.48P08		1075000.0
278,800000	1.8E -4	MA * -1	CH3 21	CO2 P	9.71P38		1075300.0
278.500000	2.0E -3	FA * -1+	DY5.8 2	CO2 P+3+	9.64P30		1076000.0
278.000000	5.0E -3	MAD* -1	DY7 50	CO2 P+3+	10.22R24		1078000.0
277.000000	5.0E -3	MAD [#] -1	DY7 12	CO2 P+3+	9.24 R26		1082000.0
276.715760	5.0E -7	MAD# 0	PE2DY7	CO2 P+3+	10.67928		1083395.1
276.050000	2.0E -3	FAC* 0-	DY8 7	CO2 P+3+	9.52P16		1086000.0
275.090000	3.6E -4	MC # -1-	СНб 2	CO2 P+4-	9.19 R36	+10	1089800.0
275.000000	3.6E -4	MC * 0+	СН6 4	CO2 P+4-	9.31 R14	+45	1090200.0
274.000000	1.0E -2	MA * -1-	TA2 B	CO2 +4	10.10R46		1090000.0
272.000000	5.0E -3	MAD1* 0-	ZD 28	CO2 +3+	9.25R24		1102000.0
272.000000	2.0E -3	FAB* -1+	DY8 20	CO2 P+3+	10.70P30		1102000.0
272.000000	5.0E -3	DMI [#] -1	DY6 34	CO2 N+3+	9.49 P12		1102000.0
271.500000	2.0E -3	N2H4 *- 2	DY3 9	CO2 P	10.57P18		1104000.0
271.290000	3.7E -4	MC * 0-	CH6 17	CO2 N+4	10.59P20	-35	1105100.0
270.600000	2.0E -3	VCY# -1	DY1 14	CO2 N .	10.63P24		1108000.0
268.572200	5.0E -7	MA13* 0-	HEN2PE2	CO2 P+4	10.27R16	+20	1116245.5
268.000000	5.0E -3	$MAD^{*} - 1$	DY7 27	CO2 P+3+	9.50 P14		1119000.0
267.443200	5.0E -7	MA *	HEN 1PE2	CO2 N+4	10.16R34	-10	1120957.6
207.000000	5.0E -3	MAD* -1	DY7 45	CO2 P+3+	10.29R14		1123000.0
200.100000	2.0E -3	FAC= -1+	DIG 32	CO2 P+3+	10.17R32		1127000.0
200.000000	5.0E -3	MAD* -1+	DY7 31	CO2 P+3+	9.55 P20		1127000.0
205.100000	2.0E -3	FAB* -2	DIN 5	CO2 N+3+	10.25R20		1131000.0

8

56

RA2DY317

CO2 P

10.19R28

CO2 P+3+ 10.16R34 CO2 P+3 10.25R20

DY3

265.000000

265.000000

264.801474

2.0E -3

5.0E -3 9.0E -7 N2H4*-2

N2H4* 0

MAD* 0- DY7

- 11 -

BUS

1131000.0

1131000.0

1132141.0

	- 0- 1	* -					
264,700000	3.8E -4	EF = -2	RA1/WA	CO2 +3+	9.54218		1132600.0
264,600000	2.0E -4	MA * O	CH3 5	CO2 P	9.68P34		1133000.0
264 050000	2 85 1	MRA¥ 1.	CH6M0 17	CO2 Pully	10 22810	. 10	1125400 0
204.050000	3.06 -4			002 1444	10.52110	+10	1135400.0
263.700000	2.0E -4	MA = 0	CH3 6	CO2 P	9.68234		1136900.0
263,400000	2.0E -4	NH3* 0-	CH4T3 1	N20 P+2-	10.78P13		1138200.0
262 000000	2 06 -3	N2H1#_2	DY3 6	CO2 N	10 67228		1144000 0
202.000000					10.01120	~~	1144000.0
261.030000	3.0E -4	MC * -1-	CHO 10	CU2 P+4+	10.74234	-20	1140500.0
260.000000	5.0E - 3	MAD2* 0+	ZD 12	CO2 +3+	10.25R20		1153000.0
260 000000	5 05 -3	FA13#_1_	DF1 1	CO2 +3+	0 52P16		1153000 0
			000000		10 61000		115000.0
250.435020	5.0E -1	MAD U	PEZDI	602 P+3+	10.01722		1100021.0
258,000000	1.0E -2	MEC ^a -1	JEN 9	CO2 +4	10.65P26		1160000.0
255,000000	2.0E -2	DME*	KON 1	CO2 N+3	10.15R36		1180000.0
254 500000	2 OF -3	FA # _1+	DY5 8 1	CO2 P+3+	0 55 20		1178000 0
				002 1404	0. (900)		1170000.0
254.100000	2.0E -4	MA = 0	CH3 7	CU2 P	9.00134		11/9000.0
254.000000	5.0E -3	DMEC*-1+	ZD 2	CO2 +3+	10.15R36		1180000.0
253.719610	5.0E -7	MAD* 0-	PE2DW2	CO2 N+3+	10.15R36		1181589.8
252 600000	2 05 -4	MA \$ 0	CH2 8	CO2 P	0 68021		1182100 0
253.000000	2.00 -4				9.00134		1102100.0
251.910000	2.0E -4	MF = -1	CH5	CO2 P+4-	10.10834	+25	1190100.0
251,500000	2.0E -3	MA * -1	DY2 18	CO2 P	9.2 R		1192000.0
251,432420	5.0E -7	MA ¥	PE2HEN1	CO2 E+4	9.28R18	+5	1192338.3
251 200000	2 05 .2	MAM#	DV1 15	CO2 P	0 50221		1102000 0
	2.05 -3	MARA O			9.09124		1193000.0
251.139854	4.0E -7	MA = 0-	PET/RA1	CO2 +3~	10.14838		1193727.3
251,000000	1.2E -2	MA * -2	TA2 '7	CO2 +4-	10.11R44		1190000.0
250.781327	4.0E -7	MA # -1+	PET/RA1	CO2 +4-	10.16R34		1195433.9
250 500000	2 05 -3	NOHU#_1	DY2 5	CO2 P	0 311808		1107000 0
				002 1	9. J4100		1191000.0
250.000000	5.0E -3	MAD 1*-1+	2D 21	CU2 + 3 +	10.14234		1199000.0
249.000000	5.0E -3	DMEC* 0+	ZD 1	CO2 +3+	10.27R16		1204000.0
249.000000	5.0E -3	DMC* -1	DY6 14	CO2 N+3+	9.71 P38		1204000.0
246 500000	2 OF -3	NOHL#_1	ע בצת	CO2 P	10 46206		1216000 0
216,000000			DV6 15	CO2 P/3.	10.20010		1210000.0
240.000000	5.05 -5		010 15	602 P+3+	10.29114		1219000.0
245.040000	4.1E -4	MBR* 0	CH6 3	CO2 P+4	9.62 P28	-40	1223400.0
245.000000	5.0E -3	FOB# -1+	DA2 2	CO2 +3	9.25R24		1224000.0
245 000000	5 08 -3	DMC* 0	DY6 10	CO2 N+3+	9 66 P32		1224000 0
213.500000	2 OF 2		DIO 10	CO2 0			1226000.0
242.500000	2.05 -3				9.2 R		1230000.0
242,472720	5.0E -7	MA *	PE2	C02	10.16R34		1236396.8
242.472700	5.0E -7	MA 🕈	HEN1PE2	CO2 P+4	10.16R34	-10	1236396.9
241,200000	2.0E -3	FAC [#] -1	DY8 33	CO2 P+3+	10.15836		1243000.0
210,080000	b 15 b		CU6 16	CO2 D.J.	10 10 0 0 0 0	20	121/20010
240.900000	4,10,-4			CU2 P+4	10.49P10	-30	1244100.0
240.000000	2.0E -3	FAA* -1+	DY8 33	CO2 N+3+	10.29R14		1249000.0
238.522700	5.0E -7	MA13* 0+	HEN2PE2	CO2 P+4	9.49P12	-20	1256872.0
238 300000	5 OE -3	MAD# -2	DW2 25	CO2 N+3+	10 63P24		1258000 0
238 000000	5 05 3		70 26	002	10.000121		1260000.0
230.000000	5.05 -5	MADI- 0-	20 20	002 +3+	10.57710		1200000.0
238.000000	5.0E -3	MAD2 0+	ZD 11	CO2 +3+	10.57218		1260000.0
237.600000	2.0E -4	MA 🛎 O-	CH3 9	CO2 P	9.68P34		1261800.0
237.523000	5.0E -7	MAIR#	HEN2PE2	CO2 P+4	9.49P12	+25	1262162.0
226 520220	5 05 7	MA 12#	000	002 1	0 10010		1267/150 0
230.930330	5.05 -1	MA 15-	FGZ	002	9.49210		1201459.0
236,250000	4.2E -4	MC = -1	CH6 6	CO2 N+3+	9.38 R2	- 10	1269000.0
236.000000	5.0E -3	MAD* -1	GW1	CO2 P+3+	9.31R14		1270000.0
235,500000	5.0E -3	DFM# +1	DW3 11	CO2 P+3+	9.35R06		1273000.0
234 000000	2 05 -3	N2HL# D	DY3 2	CO2 P	10 16824		1281000 0
					10.101.34		1201000.0
233.915/01	0.UL -/	N2H4=1	RAZDIJIO	CO2 P+2+	10.33R08		1281020.0
233.000000	5.0E -3	FOB* -1-	DA2 1	CO2 +3	9.31R14		1287000.0
232.939095	3.9E -7	MA * -1-	PETDY216	CO2 P	9.33R10		1286999.5
232 850000	3 OF -4	MA ¥	HEN1	CO2 P+4	9 26R22	+15	1287500 0
222 700000	2.05	MA # 4.	DV0 15	002 1 7 7		* ()	1288000 0
232.100000	2.06 -3	- PIA * + 1+	012 10		9.2 π		1200000.0
232.000000	5.0E -3	MAD* 0-	DY7 19	CO2 P+3+	9.20 R34		1292000.0
229.100000	5.0E -3	DMA* 0-	BE1 4	CO2 P+3+	9.44P06		1309000.0
229.000000	2.0E -2	DME*	KON 6	CO2 N+3	10.32R10		1310000.0
227 150000	<u>h</u> <u>h</u> rh	MC # _1	CH6 10	CU5 PTP	0 81 0 18	+E0 '	1210800 0
	7.75 44			002 144-	J.UI E40	+90	1319000.0
225.000000	2.05 -3	MA = -1	D12 14	CO2 P	9.2 R		1329000.0

1 CO2 P+3+ 9.23 R28

224,000000

5.0E -3 DMC* -1 DY6

8US ULLE

1338000.0

223,500000	2.5E -4	MA * 0	СНЗ З	CO2 P 9.52P16	j	1341400.0
223.000000	5.0E -3	MAD [*] -2	GW1	CO2 N+3+ 9.46P08	3	1344000.0
222.000000	5.0E -3	$MAD^* - 1$	DY7 22	CO2 P+3+ 9.44 P6		1350000.0
219.900000	5.0E -3	MAD* -2	DW2 7	CO2 P+3+ 10.26R18	3	1363000.0
218.220000	3.0E -4	MA ¥	HEN1	CO2 P+4 9.47P10) -20	1373800.0
218.000000	5.0E -3	NH3A*-3+	DW1 2	CO2SN+3 10.78P35	5	1375000.0
218.000000	2.0E -3	FAC* +1-	DY8 19	CO2 P+3+ 10.25R20)	1375000.0
218.000000	2.0E -3	MAM*	DY1 16	CO2 P 9.59P24	ŧ	1375000.0
215.372492	1.5E -7	DMA* -1	BL 1KON2	CO2 P+3+ 9.31 R14	l i	1391972.1
215.081260	5.0E -7	MAD#	PE2	CO2 10.72P52	2	1393856.9
214.800000	2.0E -3	MA * -1	DY2 13	CO2 P 9.57P22	2	1396000.0
214.350000	3.0E -4	MA *	HEN 1	CO2 P+4 9.47P10	-20	1398600.0
211.314790	5.0E -7	MA #	PE2	CO2 9,49P12	2	1418701.0
211.250000	3.0E -4	MA *	HEN1	CO2 P+4 9.49P12	-5	1419100.0
211.000000	1.4E -2	MA * 0-	TA2 1	CO2 +3+ 10.37 ROL	ļ	1420000.0
210.000000	2.0E -3	MA * -1	DY2 12	CO2 P 9.2 R		1428000.0
209.890000	3.0E -4	MA *	HEN 1	CO2 P+4 9.31R14	ŧ	1428300.0
208.412100	5.0E -7	MA 13*	HEN2PE2	CO2 E+4 9.47P10	+25	1438460.1
207.000000	5.0E -3	MAD1# 0-	ZD 25	CO2 +3+ 9.50P1	4	1448000.0
206.900000	3.0E -4	MA #	HEN 1	CO2 P+4 9,49P12	-5	1449000.0
203.635800	5.0E -7	MA13# 0+	HEN2PE2	CO2 E+4 10.27R16	5 +20	1472199.4
202.400000	2.5E -4	MA # 0	CH3 15	CO2 P 9.69P36	5	1481200.0
201.800000	5.0E -3	DFM# -1	DW3 10	CO2 P+3+ 9.35R06	5	1486000.0
201.000000	5.0E -3	MAD# -1	GW1	CO2 P+3+ 9.73P40)	1492000.0
198.800000	2.5E -4	MA * .0-	CH3 22	CO2 N 9.71P38	\$	1508000.0
198.000000	2.0E -3	MAM	DY1 17	CO2 P 9.59P24	1	1514000.0
196.000000	5.0E -3	FOA# -1-	DA2 7	CO2 +3 9.46P08	3	1530000.0
195.000000	5.0E -3	FOA* -1-	DA2 6	CO2 +3 9.24R26	5	1537000.0
194.010000	3.0E -4	MA *	HEN 1	CO2 P+4 9.31R14	1	1545200.0
193,500000	5.0E -3	DFM# -2	DW3 8	CO2 P+3+ 9.32R12	2	1549000.0
193.200000	2.5E -4	MA * -1	CH3 23	CO2 N 9.71P3	3	1551700.0
192.907232	1.9E -6	N2H4* 0	RA2DY315	CO2 N+3- 10.63P2	4	1554076.0
192.780000	2.6E -4	MF * +1	CH5	CO2 P+4- 10.17R3	2 0	1555100.0
191.900000	5.0E -3	MAD* -1	DW2 14	CO2 P+3+ 10, 16R34	4	1562000.0
191.619630	5.0E -7	MA *	PE2HEN1	CO2 P+4 10.32R10) -15	1564518.7
191,500000	2.0E -3	MA * -1	DY2 11	CO2 P 9.2 R		1565000.0
190.800000	2.6E -4	MA * -1	CH3 12	CO2 N 9.68P3	4	1571200.0
188.423930	5.0E -7	MAD*	PE2	CO2 10.84P42	2	1591053.2
186.110000	3.0E -4	MA * -1+	HEN1DY2	CO2 P 9.28R18	8 +5	1610800.0
185.900000	2.0E -3	MA * -1+	DY2 9	CO2 P 9.2 R	-	1613000.0
185.500000	2.6E -4	MA * -1	CH3 13	CO2 N 9.68P3	4	1616100.0
184.000000	2.0E -2	DME* OL	KON 3	CO2 N+3 10.22R2	4	1630000.0
184.000000	5.0E -3	MAD# -1+	DY7 3	CO2 N+3+ 9.34 R8		1629000.0
182.566320	5.0E -7	MAD#	PE2	CO2 9.31R1	4	1642101.9
181.926459	3.0E -7	N2H4#-2	RA2 14	CO2 P+3 10.46P00	5	1647877.4
180.740540	5.0E -7	MAD # - 2	PE2DW2	CO2 N+3+ 10.16R3	4	1658689.9
180.400000	2.0E -3	MA * 0	DY2 8	CO2 N 9.68P3	4 .	1662000.0
180.000000	2.0E -2	MAM # _4	RA1 12	CO2 +3+ 9.79P40	5	1670000.0
179.727940	5.0E -7	MA 🛎	PE2	CO2 10.37 ROJ	4	1668035.0
179.000000	5.0E -3	MAD2* 0-	ZD 10	- CO2 +3+ 10.27R10	5	1675000.0
179.000000	5.0E -3	MAD* 0-	GW 1	CO2 N+3+ 9.31R14	4	1675000.0
179.000000	2.0E -3	DMA* 0-	DY2 28	CO2 N 9.66P3	2	1675000.0
171.757600	5.0E -7	MA13* 0	HEN2PE2	CO2 N+4 10.26R18	3 +25	1745439.5
171.300000	5.0E -3	MA * 0-	WE1 2	CO2S +3+ 9.59P2	1	1750000.0
171.000000	5.0E -3	MAD1* 0-	ZD 24	CO2 +3+ 9.49P12	2	1753000.0
170.576394	2.8E -7	MA * +1	PETDY2T3	CO2 P+2+ 9.69P3	5	1757526.3
168.840000	3.0E -4	MA 13*	HEN2	CO2 P+4 9.73P40) +35	1775600.0
168.100000	2.0E -3	DMA* -1	DY2 27	CO2 N 9.64P30	D	1783000.0
168.000000	5.0E -3	MAD2* 0-	ZD 9	CO2 +3+ 10.14R3	В	1784000.0
167.587020	5.0E -7	MA *	PE2	CO2 10.13R40	D	1788876.6
167.000000	5.0E -3	MAD1*-1+	ZD 23	CO2 +3+ 9.54P1	8	1795000.0

165,900000	5.0E -3	DFM# +2-	DW3 5	CO2 P+3+	9.27R20		1807000.0
165.800000	5.0E -3	DFM# 0	DW3 3	CO2 P+3+	9.26R22		1808000.0
165.000000	5.0E -3	MAD2# 0-	ZD 8	CO2 +3+	9.28R18		1817000.0
164.783200	1.0E -6	MA # +1	HEN1DY2	CO2 N+3	9.33R10		1819315.0
164.770000	3.0E -4	MA * -1	HEN1DY2	CO2 N	9.59P24	0	1819500.0
164.564230	5.0E -7	MA #	PE2	C02	9.50P14		1821735.5
164.507600	1.0E - 6	MA * -1-	HEN1TA2	C02 + 3+	9.50P14		1822363.0
164 300000	3 DE _4	MA # O	снз Ц	CO2 N	9 52P16		1824700.0
164,000000	5.05		201 22	CO2 +2+	0 28818		1828000 0
162 022550	2.85 -7		DET/DA1	C02 + 3+	10 14838		1838830 3
150 100000	2.05 -7		DV2 E		0.2 8		1881000 0
159.400000				CO2 F.	0 68021		1882000 0
159.200000	5.05 -5		NEI 3	$CO2 P_{1}2$	9.00131		1807000 0
150.000000	5.02 -5	MA12# 0	UENODEO	CO2 P+3+	9.23120	20	1808270 0
157.920500	5.05 -7	MA13" U	DENZIEZ	CO2 P+4	9.49F12	-20	1090219.9
152.075/10	5.0E -1	MA (3=	PCZ	CO2 P	0.27810		19/1001.2
151.500000	2.06 -3		012 4	CU2 P	9.2 R	050	1979000.0
151.480000	1.02 -3	NH3* U+	FEI I	CU2 +4	10. (2732	950	1979000.0
151.000000	5.08 -3	MADI# 0-	ZD 21	CO2 +3+	10, 10834	45	1905000.0
149.272300	5.0E -7	MA13*-1	HEN2PE2	CU2 N+4	9.57822	+ 10	2000300.0
148.590430	5.0E -7	MA13*	PE2	CO2	10.27816		2017570.0
147.970000	3.0E -4	MA13*	HENZ	CO2 N+4	9.64230	-25	2026000.0
147.844712	2.0E -7	MAM# +1	RA2DY130	CO2 N+3+	9.59224	05	2027752.0
146.097400	5.0E -7	MA 13*	HEN2PE2	CD2 N+4	9.47210	+25	2052004.0
145.661732	1.5E -7	DMA ⁺ -1	BL1KON2	CO2 P+3+	9.64P30		2058141.8
144.117890	5.0E -7	MAD* -1	PE2DW2	CO2 P+3+	10.57P18		2080189.0
136.627230	5.0E -7	MAD	PE2	CO2	10.29R14		2194237.0
134.700000	1.0E -2	DMA# -1+	BE1 5	CO2 N+3+	9.44906		2230000.0
133.119600	1.0E -6	MA 🕈 O	HEN 1DY2	CO2 P	9.59P24	0	2252054.0
131.562780	5.0E -7	MAD	PE2	CO2	10.17832		2278703.0
129.549700	1.0E -6	MA 🛎 — 1	HEN1KON2	CO2 P+3	10.16R34	-10	2314112.0
128.700000	5.0E -3	MAD* -3	DW2 12	CO2 P+3+	10.16R34		2330000.0
128.000000	2.0E -3	DMA [#] −1+	DY2 26	CO2 N	9.57P22		2342000.0
125.000000	5.0E -3	MAD1# 0+	ZD 20	CO2 +3+	10.74P34		2400000.0
123.260000	3.0E -4	MA 13#	HEN2	CO2 P+4	10.55P16	+40	2432200.0
121.700000	5.0E -3	DFM# +1	DW3 2	CO2 N+3+	9.26R22		2460000.0
121,200000	3.0E -4	MA 13*	HEN2	CO2 P+4	10.19R28	-5	2473500.0
121.000000	2.4E -2	MA 🕈 -2	TAZ 6	CO2 +4	10.11R44		2480000.0
118.834107	2.0E -7	MA # +1+	PETDY2T3	CO2 +2+	9.69P36		2522781.6
118.013100	5.0E -7	MA13* 0+	HEN2PE2	CO2 N+4	9.57P22	-15	2540332.0
117,959500	5.0E -7	MA #	HEN1PE2	CO2 P+4	9.50P14	-15	2541487.0
117.227089	1.9E -7	DMA* +1+	RA2DY2 2	CO2 P+3	9.60P26		2557365.4
117.000000	5.0E -3	DFM# +1	DW3 4	CO2 N+3+	9.27R20		2560000.0
115.823200	5.0E -7	MA13* 0	HEN2PE2	CO2 P+4	10.27R16	+20	2588363.0
114.000000	5.0E -2	NH3*C O+	FE1 3	CO2 +4	9.49P12	2480	2600000.0
112,600000	5.0E -3	D20# +1	DW4 1	CO2SN+3	9.32R17	-39	2660000.0
112,300000	5.0E -3	MAD# -3	DW2 11	CO2 N+3+	10.16R34		2670000.0
111,900000	5.0E -3	NH3A#-3+	DW1 1	CO2SN+3	10.73P31		2680000.0
110,432400	5.0E -7	MA13* 0+	HEN2PE2	CO2 E+4	10.26R18	+25	2714715.0
110.000000	1.0E -2	DMA# -2	KON2 1	CO2 N+3	10.11R44		2730000.0
109.000000	5.0E -3	MAD1* 0-	ZD 19	CO2 +3+	9.49P12		2750000.0
108.668440	5.0E -7	MAD*	PE2	CO2	10.49P10		2758782.0
105 147200	5 OE -7	MA13# 0	HEN2PE2	CO2 E+4	10.26R18	+25	2851170.0
103 586300	5 OF -7	MAIR	HEN2PE2	C02 F+4	10,21826	+40	2894133 0
103 480800	5 OF -7	MA13# 0	HEN2PE2	CO2 P+4	Q 57P22	+ 15	2897083 0
103 100600	178 -7		RAZNY2 1	CO2 N+2-	9 64P20		2907088 0
102 600000	5 08 -7		10 בעת	CU5 NT5	10 16821		2020000 0
02.000000	2.05 -3			CO2 .1	10.10134		3060000.0
07 E18550	5.05 -2	- <u>1114</u> − − 1 −− MA #	166 J	002 +4	10,13040	^	2071210 0
91.01000U		MA H	FECHENI DET (DYO	CO2 R+4	10.13840	U	JU/4210.0
YD. 522408	-1.0E -7	MA = +1+	PU2 7		9.33810		3103930.0
95,100000	5.0E -3	DFM# -2	ע אע 7	CU2 N+3+	9.32812		3150000.0
94.500000	5.0E -3	D20≖ -1	DW4 2	CU2SP+3	9.32R17	-39	3170000.0

92 690000	3.0E -4	MA ¥	HEN 1	CO2 P+4	10.16R34 -10	3234400.0
	3 OE -4	MA #	HEN 1	CO2 P+4	9.59P24 0	3237500.0
92.000000	1 05 -3	NH3# 0+	FE1 2	C02 + 4	10.35R06 200	3399000.0
87 00000	7.0E -3	MA12#	HEN2	CO2 N+4	9.46P08	3411000.0
87.900000	5.05	היים אנים		C025P+3	9.56P17 -130	3430000.0
87.400000	5.06 -5		ר דודע וו	CO2 N+3+	10 27R16	3470000.0
86.400000	5.UE -3	MAD" -2		CO2 R-J+	0 U7P10 +25	3481433.0
86,111800	5.0E -1	MA 13	HENZPEZ	CO2 F+4	0.2 P	3486000.0
86.000000	2.0E -3	MA = +1	DI2 1		9.2 n 10 10 228 -5	3707000.0
85.790000	3.0E -4	MA13*	HEN2	CU2 N+4	10,19R20 -9	2502210 0
85.600940	5.0E -7	MA •	PE2HEN1	CU2 P+4	9./3240 -10	2512851 0
85.317300	5.0E -7	MA13* 0	HEN2PE2	CO2 P+4	9.5/122 -15	3515054.0
81.557110	5.0E -7	MAD [#] -1	PE2DW2	CO2 P+3+	10.27810	3013000.0
81.500000	6.0E -4	NH3# +2-	CH4T3 2	N20 N+1+	10.78213	30,0000.0
80.600000	5.0E -3	MA 🗕 +1	WE1 1	CO2S +3+	9.59P21	3720000.0
80.300000	3.0E -2	MA 🗮 — 1	HO1 6	CO2 +3	9.68P34	3700000.0
80.000000	2.0E -3	DMA# 0	DY2 23	CO2 N	9.66P32	3747000.0
77 920000	3.0E -4	MA * -1+	HEN1TA2	CO2 P+4-	10.27R16 0	3847000.0
77 180100	5 OE -7	MA 13#	HEN2PE2	CO2 P+4	10.21R26 +40	3868819.0
77 405660	5 OE -7	MA #	PE2	C02	9.28R08	3873005.0
76 100000	5 OF -3	MAD# -1	DW2 27	CO2 P+3+	10.72P32	3940000.0
73 206/20	5.0E -7		PE2HEN1	CO2 P+4	9.73P40 -10	4089580.0
73.300430	5.05 -1		DW2 2	CO2 P+3+	10.33R08	4220000.0
71.000000	5.0E -3	MAD = -1	ביסבים	CO2 N	9 68P34 +26	4251673.3
70.511050	2.0E -1	MA - +2-	UDN1	CO2 N+1	10 27816 0	4301000.0
69.700000	3.0E -4	MA ·	DEO I	CO2 M++	0 28R18	4441675.0
67.495370	5.0E -/	MA .	rtz DRO	002	10 18820	4442725.0
67.479420	5.0E -7	MAD=	PEZ	CO2 . 3	0 68234	4600000.0
65.600000	3.0E -2	MA = U	HUI 5		0 101 12 125	4751341 0
63.096400	5.0E -7	MA13*	HEN2PE2	CU2 P+4	0.08918	4865710 0
61.613310	5.0E -7	MA *	PE2	CU2	9.20010 0.73000 10	1082153 0
60.173280	5.0E -7	MA =	PE2HEN1	CO2 P+4	9.73240 -10	4902155.0
60.100000	5.0E -4	MAD* 0	EDGW1	CO2 P+3+	- 9.20K34	4900000.0 5060000 0
57.000000	1.0E -2	DMA# 0	KON2 5	CO2 N+3	9.34 KO	5200000.0
55.560000	5.0E -4	MAD#	ED	CO2 N+3+	9.23R28	5390000.0
55.370050	5.0E -7	-MA 🗮	PE2HEN1	CO2 N+4	9.73240 -10	5414544.0
53.820000	5.0E -4	MAD# 0	EDGW1	CO2 N+34	+ 9.20R34	5570000.0
49.800000	5.0E -3	MAD# 0	GW1	CO2 N+34	+ 9.23R26	6020000.0
46.700000	1.0E -2	DMA# 0-	- BE1BL1 6	CO2 +3-	+ 9.34R08	6420000,0
43,697300	5.0E -7	MAD# 0	PE2DW2ED	CO2 P+3-	+ 10.26R18	6860664.0
43,470000	3.0E -4	MA *	HEN1	CO2 P+4	10.16R34 -10	6897000.0
42.310000	1.0E -3	MA 🕈 -1	HE1H01 2	CO2 +3	9.68P34 +38	7086000.0
42 159090	5.0E -7	MA 🍨 +1	PE2HEN1	CO2 P+3	9.66P32	7110981.0
<u>41 900000</u>	3.0E -4	MA 13#	HEN2	CO2 N+4	10.55P16 -10	7155000.0
41. JOOCOO	5 OE -4	MAD# -1	DW2ED 1	CO2 N+3-	+ 10.33R08	7241000.0
11 254880	5 OE -7	MAD# 0	PE2DW2ED	CO2 N+3	+ 10.26R18	7249265.0
11 250000	5 OF -1	MAD#	ED	CO2 P+3	+ 10.33R08	7268000.0
41.250000	2 05 -2	DMF#	KON 4	CO2 N+3	10.26R18	7300000.0
41,000000	E OF 2		23 כשח	CO2 N+3	+ 10.61P22	7480000.0
40.100000	5.05 -3	$M\lambda = 0$	HE1H01 1	CO2 +3	9.68P34 +38	7523000.0
39.650000	1.02 -3		י הפונים מי באת	CU5 b+3	+ 10 16R34	7970000.0
37.600000	5.06 -3		UR2 3	002 +3	9 66P32	8000000.0
37.500000	3.08 -2		חטו 2 הער מעת	002 P+3	+ 10.61P22	8610000.0
34.800000	5.0E -3	S MAD - I	UR2 20		10.01122	8617000.0
34.790000	3.05 -4	MAIJ*	TENZ			13030000.0
23.000000	5.0E -3	5 B11T*+2	- KAR C		IT IININ	13380000 0
22.400000	5.0E -3	B10T#+1	+ KAH 7	- LUZ +4	AN THE AND	14550000.0
20.600000	5.0E -3	B11T*+2	KAR C) 002 +4	B carlin SA	11820000.0
20,200000	5.0E -3	3 B11T*+2	KAR	002 +4	19 Je 12	15150000.0
19.400000	5.0E -3	3 B10T#+2	2- KAR L	CO2 +4	Ist crimes ist	15450000.0
19.100000	5.0E -3	3 B10T#+2	- KAR	3 CO2 +4	1.	15/00000.0
18.800000	5.0E -	3 B11T#+'	+ KAR 2	2 CO2 +4	1 TILLER	15950000.0
18.300000	5.0E -	B B10T*+2	- KAR	I CO2 +4		16380000.0

end