Nº d'ordre: 919 50376 1981 166

50376 1981 166

THÈSE

présentée à

L'UNIVERSITÉ DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR DE TROISIEME CYCLE

Spécialité : Spectrochimie et Méthodes d'Analyse

par

Brigitte MUTEL

CONTRIBUTION A L'ETUDE DES MECANISMES REACTIONNELS DANS L'AZOTE ACTIVE : ETUDE SPECTROCINETIQUE D'UN EFFET DE LONG CONTACT ENTRE L'AZOTE ACTIVE ET CO.

Soutenue le 5 Octobre 1981 devant la Commission d'Examen

Membres du Jury

Président Rapporteur Examinateur Examinateurs invités P. GOUDMAND

- **O. DESSAUX**
- **M. DELHAYE**

R. BEN AIM

R. SINN

P. GODINEAU

.../...

DOYENS HONORAIRES De l'Ancienne Faculté des Sciences

MM. R.DEFRETIN, H.LEFEBVRE, M.PARREAU.

PROFESSEURS HONORAIRES des Anciennes Facultés de Droit

et Sciences Economiques, des Sciences et des Lettres

MM. ARNOULT, Mme BEAUJEU, BONTE, BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P.GERMAIN, GLACET, GONTIER, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARD, SCHILTZ, WATERLOT, WIEMAN, ZAMANSKI.

PROFESSEUR EMERITE

M. A.LEBRUN.

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R.DEFRETIN, M.PARREAU, J.LOMBARD.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. M.MIGEON.

PROFESSEURS - CLASSE EXCEPTIONNELLE

Μ.	DURCHON Maurice
Μ.	GABILLARD Robert
Μ.	HEUBEL Joseph
Μ.	MONTREUIL Jean
Μ.	PARREAU Michel
Mme	SCHWARTZ Marie-Hélène
М.	TRIDOT Gabriel
Μ.	VIVIER Emile
"М.	WERTHEIMER Raymond

Biologie Expérimentale Electronique Chimie Minérale Biochimie Analyse Géométrie Chimie Appliquée Biologie Cellulaire Physique Atomique et Moléculaire

PROFESSEURS - lère Classe

М. М.	BACCHUS Pierre BEAUFILS Jean-Pierre	Astronomie Chimie Physique
Μ.	BECART Maurice	Physique Atomique et Moléculaire
Μ.	BIAYS Pierre	Géographie
Μ.	BILLARD Jean	Physique du Solide
Μ.	BONNOT Ernest	Biologie Végétale

Μ. **BOUGHON Pierre** BOURIQUET Robert Μ. Μ. CELET Paul COEURE Gérard Μ. CONSTANT Eugène Μ. CORDONNIER Vincent Μ. DEBOURSE Jean-Pierre DELATTRE Charles Μ. Μ. ESCAIG Bertrand Μ. Μ. FAURE Robert Μ. FOCT Jacques FOURET René Μ. **GRANELLE** Jean-Jacques Μ. **GRUSON** Laurent Μ. Μ. GUILLAUME Jean HECTOR Joseph Μ. LABLACHE-COMBIER Alain Μ. Μ. LACOSTE Louis Μ. LANSRAUX Guy LAVEINE Jean-Pierre Μ. LEHMANN Daniel Μ. Mme LENOBLE Jacqueline LHOMME Jean Μ. M. LOMBARD Jacques M. LOUCHEUX Claude Μ. LUCOUIN Michel Μ. MAILLET Pierre **PAQUET** Jacques Μ. POUZET Pierre Μ. Μ. PROUVOST Jean SALMER Georges Μ. SEGUIER Guy Μ. STANKIEWICZ Francois Μ. Μ. TILLIEU Jacques Μ. **VIDAL** Pierre ZEYTOUNIAN Radyadour Μ.

Algèbre Biologie Végétale Géologie Générale Analyse Electronique Informatique Gestion des Entreprises Géologie Générale Physique du Solide Mécanique Génie Mécanique Physique du Solide Sciences Economiques Algèbre Microbiologie Géométrie Chimie Organique Biologie Végétale Physique Atomique et Moléculaire Paléontologie Géométrie Physique Atomique et Moléculaire Chimie Organique Biologique Sociologie Chimie Physique Chimie Physique Sciences Economiques Géologie Générale Analyse Numérique Minéralogie Electronique Electrotechnique Sciences Economiques Physique Théorique Automatique Mécanique

PROFESSEURS - 2ème Classe

AL FAKIR Sabah Μ. ANTOINE Philippe Μ. Μ. BART André Mme BATTIAU Yvonne Μ. BEGUIN Paul Μ. **BELLET** Jean **BKOUCHE Rudolphe** Μ. BOBE Bernard Μ. Μ. BODARD Marcel BOILLY Bénoni Μ. Μ. **BOIVIN Jean-Claude BONNELLE Jean-Pierre** Μ. BOSCQ Denis Μ. Μ. BREZINSKI Claude BRIDOUX Michel Μ. Μ. BRUYELLE Pierre Μ. CAPURON Alfred CARREZ Christian Μ. Μ. CHAMLEY Hervé Μ. CHAPOTON Alain

Algèbre Analyse **Biologie Animale** Géographie Mécanique Physique Atomique et Moléculaire Algèbre Sciences Economiques Biologie Végétale Biologie Animale Chimie Minérale Catalyse **Probabilités** Analyse Numérique Chimie Physique Géographie **Biologie** Animale Informatique Géotechnique Electronique

COQUERY Jean-Marie Μ. Mme CORSIN Paule Μ. CORTOIS Jean Μ. COUTURIER Daniel CRAMPON Norbert Μ. Μ. **CROSNIER** Yves Mle DACHARRY Monique DEBRABANT Pierre Μ. DEGAUOUE Pierre Μ. DELORME Pierre Μ. DEMUNTER Paul Μ. DE PARIS Jean-Claude Μ. DEPREZ Gilbert Μ. DERIEUX Jean-Claude Μ. Mle DESSAUX Odile M. DEVRAINNE Pierre DHAINAUT André М. Mme DHAINAUT Nicole Μ. DORMARD Serge Μ. DOUKHAN Jean-Claude Μ. DUBOIS Henri Μ. DUBRULLE Alain DUEE Gérard Μ. Μ. DYMENT Arthur Mme EVRARD Micheline M. FLAMME Jean-Marie FONTAINE Hubert Μ. FONTAINE Jacques Μ. FOURNET Bernard Μ. Μ. GERVAIS Michel GLORIEUX Pierre Μ. GOBLOT Rémi М. Μ. GOSSELIN Gabriel Μ. GOUDMAND Pierre **GREVET Patrick** Μ. GUILBAULT Pierre Μ. HENRY Jean-Pierre М. HERMAN Maurice Μ. HOUDART René Μ. JACOB Gérard Μ. JACOB Pierre Μ. Μ. JACQUILLAT Bertrand Μ. JOURNEL Gérard Μ. **KREMBEL** Jean М. LAURENT François Mme LECLERCQ Ginette Mle LEGRAND Denise Mle LEGRAND Solange Mme LEHMANN Josiane M. LEMAIRE Jean M. LENTACKER Firmin Μ. LEROY Jean-Marie LEROY Yves Μ. Μ. LEVASSEUR Michel Μ. LHENAFF René LOCQUENEUX Robert Μ. Μ. LOSFELD Joseph LOUAGE Francis Μ. MACKE Bruno Μ.

Psychophysiologie Paléontologie Physique Nucléaire et Corpusculaire Chimie Organique Hydrogéologie et Environnement Electronique Géographie Géologie Appliquée Electronique Physiologie Animale Socioloģie Analyse Physique du Solide et Cristallographie Microbiologie Spectroscopie de la Réactivité Chimique Chimie Minérale **Biologie** Animale Biologie Animale Sciences Economiques Physique du Solide Spectroscopie Hertzienne Spectroscopie Hertzienne Géologie Mécanique Chimie Appliquée Technologie de Construction Dynamique des Cristaux Electronique, Electrotechnique, Automatique Biochimie Structurale Gestion Physique Moléculaire et Rayonnements Atmosphériques Algèbre Sociologie Chimie Physique Sciences Economiques Physiologie Animale Génie Mécanique Physique Spatiale Physique Atomique et Moléculaire Informatique Probabilités et Statistiques Gestion Spectroscopie Hertzienne Biochimie Automatique Catalyse Algèbre Algèbre Analyse Spectroscopie Hertzienne Géographie Méthodologie Electronique, Electrotechnique, Automatique Sciences Economiques Géographie Physique Théorique Informatique Electronique Physique Moléculaire et Rayonnements Atmosphériques

.../...

MAHIEU Jean-Marie Μ. M. MAIZIERES Christian Mle MARQUET Simone M. MESSELYN Jean M. MIGEON Michel M. MIGNOT Fulbert M. MONTEL Marc MONTUELLE Bernard Μ. Mme N'GUYEN VAN CHI Régine Μ. NICOLE Jacques NOTELET Francis Μ. Μ. PARSY Fernand M1e PAUPARDIN Colette M. PECQUE Marcel Μ. PERROT Pierre Μ. PERTUZON Emile Μ. PETIT Francis М. PONSOLLE Louis PORCHET Maurice Μ. М. POVY Lucien Μ. RACZY Ladislas Μ. RAOULT Jean-Francois RICHARD Alain Μ. RIETSCH François Μ. Μ. ROGALSKI Marc Μ. ROUSSEAU Jean-Paul ROY Jean-Claude М. SALAMA Pierre Μ. Mme SCHWARZBACH Yvette Μ. SCHAMPS Joël M. SIMON Michel Μ. SLIWA Henri M. SOMME Jean Mle SPIK Geneviève Μ. STERBOUL Francois TAILLIEZ Roger Μ. Μ. THERY Pierre TOULOTTE Jean-Marc Μ. Μ. VANDORPE Bernard VERBERT André Μ. VILETTE Michel М. М. WALLART Francis M. WATERLOT Michel M. WERNER Georges Mme ZINN-JUSTIN Nicole

Physique Atomique et Moléculaire Automatique Probabilités Physique Atomique et Moléculaire Chimie Physique Analyse Numérique Physique du Solide Biologie et Biochimie Appliquées Géographie Chimie Analytique Electronique, Electrotechnique, Automatique Mécanique Biologie Physiologie Végétales Chimie Organique Chimie Appliquée Physiologie Animale Chimie Organique, Minérale et Analytique Chimie Physique **Biologie** Animale Automatique Electronique Géologie Structurale **Biologie Animale** Physique des Polymères Analyse Physiologie Animale Psychophysiologie Sciences Economiques Géométrie Spectroscopie Moléculaire Sociologie Chimie Organique Géographie Biochimie Informatique Génie Alimentaire Electronique, Electrotechnique, Automatique Automatique Chimie Minérale Biochimie Résistance des Matériaux Spectrochimie Infrarouge et Raman Géologie Générale Informatique Fondamentale Appliquée Algèbre

A Mademoiselle Odile DESSAUX

Professeur à l'Université des Sciences et Techniques de LILLE

Hommage de respectueuse

reconnaissance

A MES PARENTS

Témoignage d'affection

et de reconnaissance

Ce travail a été effectué à l'Université des Sciences et Techniques de Lille, dans le laboratoire de Spectroscopie de la réactivité chimique.

Je prie Monsieur le Professeur P. GOUDMAND de trouver ici l'expression de ma sincère gratitude pour l'intérêt constant qu'il a manifesté pour mon travail.

Je suis très reconnaissante à Mademoiselle O. DESSAUX, Professeur à l'Université de LILLE qui, par ses conseil quotidiens et ses observations minutieuses, m'a donné la possibilité d'effectuer cette étude. Je la remercie très sincèrement.

Je remercie très vivement Monsieur R. BEN AIM, Professeur à l'Université Pierre et Marie Curie de PARIS et Monsieur M. DELHAYE, Directeur d'Institut de recherches du C.N.R.S. qui ont accepté de juger ce travail.

J'adresse mes remerciements à Monsieur R. SINN, Directeur du Centre de recherches APC de CDF Chimie TOULOUSE et à Monsieur P. GODINEAU, Ingénieur à CDF Chimie MAZINGARBE, pour m'avoir fait l'honneur de s'intéresser aux résultats de mes recherches et d'avoir accepté de faire partie de mon Jury de thèse.

Je sais gré à Madame G. CALONNE d'avoir mené avec soin la dactylographie de ce mémoire.

Mes remerciements vont également à mes camarades de laboratoire pour la sympathie qu'ils m'ont témoignée et au personnel technique pour l'aide qu'il n'a cessé de m'accorder. TABLE DES MATIERES

TABLE DES MATIÈRES

		pages
INTRODUCTION GENERALE		1
CHAPITRE I : ETAT ACTUEL DES CONNAISSANCES	SUR L'AZOTE ACTIVE	4
A - GENERALITES SUR L'AZOTE ACTIVE : N_2^{\bullet}		4
B - LES DIFFERENTES ESPECES PRESENTES DANS	L'AZOTE ACTIVE	5
B.I - Atomes N(⁴ S)		5
B.II - Molécules d'azote à l'état fond	amental vibration-	
nellement excité : $N_2(X^1\Sigma_{\alpha}^+)_{\gamma}$		5
B.III - Etats électroniques excités		7
B.IV - Autres espèces présentes		7
C - DONNEES QUANTITATIVES DU MECANISME DE R	ECOMBINAISON DES ATOMES	7
C I - Megure de k		10
$\begin{array}{c} \mathbf{C} \mathbf{I} \\ \mathbf{C} \mathbf{I} \\ \mathbf{T} $		10
C III \sim Mesure de k_2		11
$C_{111} = \text{Mesure de } x_3$	entre les noreis	11
C.IV - Probabilité de récombinaison co	nucie les parois	13
C.V - Comparaison de l'efficacité des	revelements de parois	
D - MECANISME DE POPULATION DES ETATS EXCIT	ES DE L'AZOTE DANS LA	13
LUMINESCENCE DE LEWIS RAYLEIGH		
D.I - $N_2({}^{5}\Sigma^{+})$ précurseur de $N_2({}^{8}\pi)$ D.I.1) Prédissociation inverse	'= 12,9 à 2 corps	13
D.I.2) Mécanisme de recombinais	son à 3 corps	
a) population des états	$N_{a}(B^{3}\pi_{a})_{yl} = 12 10$	
b) population préférenti	ielle de $N_2 (B^3 \pi_g)_{v'} = 12$	
D.I.3) Discussion		
D.II - $N_2(A^3 \frac{+}{u})$ précurseur de $N_2(B^3 \pi_q)$	v' = 12, 9	17
D.II.1) Mécanisme de Campbell e	et Trush	
D.II.2) Discussion		
D.III - Mécanisme de Young		18
D.III.1) Mécanisme indépendant	de la pression	
D.III.2) Mécanisme dépendant de	e la pression	

E - INFLUENCE DE L'ADJONCTION DE GAZ ETRANGER A L'AZOTE ACTIVE 20

E.I - Influence de la présence de traces d'impuretés

- E.II Influence de l'adjonction de gaz étranger sur
 - l'intensité de la luminescence de LEWIS RAYLEIGH
 - E.II.1) Addition de NH3
 - E.II.2) Addition de N₂ et de N₂O
 - E.II.3) Addition de CO_2 et de CH_A
 - E.II.4) Addition d'atomes d'oxygène, d'hydrogène et de deutérium
 - E.II.5) Addition de gaz rares
- E.III Adjonction de CO à l'azote activé

E.III.1) Autres émissions

- a) émissions dues à CN
- b) émissions dues à CO
 - b.1) systèmes triplet de CO
 - b.2) émissions I.R. dues à $CO(X^{T}\Sigma^{+})_{u}$
- E.III.2) Mécanisme de la désactivation des molécules vibrationnellement excitées et du transfert

vibrationnel

CHAPITRE II - RESULTATS EXPERIMENTAUX

1ère partie : ETUDE PRELIMINAIRE

- A CONDITIONS D'ETUDE DE L'EVOLUTION DES CONCENTRATIONS DE $N_2(B^3\pi_g)$, $N(^4s)$, $CN(B^2\Sigma^+)$ et CO $(d^3\Delta)$ PAR ADDITION DE CO A L'AZOTE ACTIVE 31
 - A.I Etude de la variation de concentration de N₂ ($B^{3}\pi_{g}$) 31 par addition de CO à l'azote activé
 - A.II Etude de la variation de la concentration de l'azote atomique N(⁴S) par adjonction de CO à l'azote activé
 - A.III Etude de la variation de la concentration de CO($d^3\Delta$) par adjonction de CO à l'azote activé
 - A.IV Etude de la variation de la concentration de CN ($B^{2}\Sigma^{+}$) par adjonction de CO à l'azote activé
- B RECHERCHE D'UNE AMELIORATION DES CONDITIONS EXPERIMENTALES 33
 B.I Influence de la géométrie des canalisations

véhiculant le mélange N $_2^*$ - CO

24

21

22

30

30

31

33

B.II - Influence de la longueur et de la géométrie des cana-35 lisations entre la décharge et l'arrivée de CO B.II.1) Influence de la distance décharge.arrivée de CO B.II.2) Influence de la géométrie des canalisations entre la décharge et l'arrivée de CO 36 B.III - Conclusion 37 C - ETUDE CINETIQUE - Evolution des concentrations de N₂ ($B^3\pi_{\alpha}$), N(4 S),CO($d^3\Delta$) C.I et CN ($B^{2}\Sigma^{+}$) en fonction de la pression partielle de CO 37 ajouté C.II - Evolution des concentrations de N₂ ($B^{3}\pi_{g}$), N(⁴S), CO($d^{3}\Delta$) et CN($B^{2}\Sigma^{+}$) en fonction du temps de contact 37 38 D - CONCLUSION 2ème partie : ETUDE DE L'EFFET DE LONG CONTACT ENTRE L'AZOTE ACTIVE 42 ET LE MONOXYDE DE CARBONE 43 A - INFLUENCE DES DIFFERENTS PARAMETRES 43 A.I - Définition des paramètres A.II - Influence de la distance décharge-zone de mélange sur 44 l'évolution de l'intensité de la luminescence de Lewis Rayleigh par addition de CO à l'azote activé A.III - Influence de la puissance du générateur microonde (W) à pression d'azote activé constante sur la concentration 45 en atomes d'azote et sur la concentration en $N_{2}(B^{3}\pi_{2})$ A.IV - Etude du débit d'azote activé : $Q_{N_2}^*$ 46 A.IV.1) Evaluation du débit par la mesure du volume gazeux évacué a) influence de la longueur des canalisations b) influence du diamètre des canalisations c) influence de la géométrie des canalisations d) fiabilité des résultats e) conclusion A.IV.2) Evaluation du débit par la mesure de la vitesse de propagation de la luminescence de Lewis Rayleigh A.IV.3) Mesure du débit avec un rotamètre à flotteur

	A.V	-	Evaluation du temps de contact en fonction du diamètre	
			des canalisations, de la pression et du débit d'azote	
			activé	50
	A.VI	-	Influence de la valeur du débit d'azote sur l'évalua-	
			tion du temps de contact	50
	A.VII	-	Influence de la pression partielle de CO : P_{CO}	51
	A.VIII	-	Influence de l'état des parois	
	A.IX	-	COnditions expérimentales de l'étude de la réaction	
			$N_2^4 - CO$	53
	A.X	-	Influence de la pression d'azote activé : $P_{N_2}^*$	54
в –	ETUDE S	511	MULTANEE DES CONCENTRATIONS EN N ₂ ($B^3 \pi_g$) et en N(⁴ s)	54
	B.I	-	Relation entre l'intensité de la luminescence de	
			Lewis Rayleigh et la concentration en azote atomique	59
			lors de l'addition de gaz étrangers à l'azote activé	
	B.II	-	Interprétation et conclusion	64
c -	INFLUEN	ICE	SUR L'INTENSITE DE LA LUMINESCENCE DE LEWIS RAYLEIGH	
	DE L'AI	JC	DNCTION DE GAZ ETRANGERS A N_2^* , EN FONCTION DU DIAMETRE	
	INTERNE	EI	DES CANALISATIONS Φ , DU TEMPS DE CONTACT τ ET DE	<u>/ E</u>
	l'etat	DE	ES PAROIS	05
	C.I	-	Influence sur l'intensité de la luminescence de Lewis	
			Rayleigh, de l'adjonction de CO à N_2^*	66
			C.I.1) Canalisation de Φ = 50mm (1 < τ < 6)s	
			C.I.2) Canalisation de Φ = 26mm (0,25 < τ < 3,73)s	
			C.I.3) Canalisation de Φ = 16mm (O,1 < τ < 1,5)s	
			C.I.4) Canalisation de Φ = 10mm, coudée (O < τ < 1,6)s	
			C.I.5) Canalisation de Φ = 10mm, linéaire (O < τ < 0,5	5)s
			C.I.6) Conclusion	
	C.II	-	Influence sur l'intensité de la luminescence de Lewis	
			Rayleigh, de l'adjonction de N ₂ à N ₂	75
			C.II.1) Canalisation de Φ = 10mm (1 < τ < 6)s	
			C.II.2) Canalisation de Φ = 26mm (0,25 < τ < 3,73)s	
			C.II.3) Canalisation de Φ = 16mm (0,1 < τ < 1,5)s	
			C.II.4) Canalisation de Φ = 10mm,coudée (O < τ < 1,6)s	I.
			C.II.5) Canalisation de Φ = 10mm,linéaire (O < τ < 0,55)s
			C.II.6) Conclusion	
	C.III -	· I	nfluence sur l'intensité de la luminescence de Lewis	
		F	Rayleigh, de l'adjonction de gaz rares, d'oxygène et	70
		đ	'hexafluorure de soufre à N_2^*	17

С

C.III.1) Adjonction de gaz rares

C.III.2) Adjonction d'oxygène et d'hexafluorure de soufre

- C.IV Evolution comparée de la variation de l'intensité de la luminescence de Lewis Rayleigh par adjonction de CO et par adjonction de N₂ à N₂⁺ 80
- D INFLUENCE DU REVETEMENT DES PAROIS 80
 - D.I- Parois totalement recouvertes80D.II- Parois partiellement recouvertes90D.III Conclusion91
- E INFLUENCE D'UNE DESACTIVATION DE L'AZOTE VIBRATIONNELLEMENT
 EXCITE A L'ETAT ELECTRONIQUE FONDAMENTAL SUR L'INTENSITE DE LA
 LUMINESCENCE DE LEWIS RAYLEIGH DANS UN MELANGE N^{*}₂ CO
 E.I Influence de l'addition de CO₂ ou de N₂O
 P3
 E.II Influence de la laine de verre

CHAPITRE III : MECANISMES DE L'EFFET DE LONG CONTACT ENTRE L'AZOTE ACTIVE ET LE MONOXYDE DE CARBONE 96

- A ADJONCTION DE GAZ NON REACTIFS (AZOTE OU GAZ RARES) A L'AZOTE 96 ACTIVE
- B ADJONCTION DE CO A L'AZOTE ACTIVE
 - B.I Mise en évidence de l'intervention de réactions en phase
 homogène et en phase hétérogène

- B.II Mise en évidence de l'intervention de l'azote vibrationnellement excité à l'état électronique fondamental dans les mécanismes réactionnels impliqués au cours de la réaction 98 N_2^* - CO
- C IMPORTANCE RELATIVE DES MECANISMES EN PHASES HOMOGENE ET HETE-ROGENE 99
 - C.I Description du modèle réactionnel 99
 - C.II Application du modèle réactionnel aux systèmes étudiés 100 C.II.1) Canalisation de 50mm de diamètre interne : $(1 < \tau < 3)$ s, canalisation dont le diamètre interne est inférieur ou égal à 26mm : $\tau < 0,45$ s

C.II.2) Canalisations de 16 et 26mm de diamètre interne $\tau > 0,45$ s

D	-	MECANISMES REACTIONNELS IMPLIQUES DANS LA REACTION N_2^{*} - CO	101
		D.I - Réactions en phase homogène	101
		D.II - Réactions en phase hétérogène	104

<u>CHA</u>	$\underline{PITRE IV}$: DESCRIPTION DES PRINCIPAUX DISPOSITIFS EXPERIMENTAUX	107
A -	DISPOSITIF D'EXCITATION DE L'AZOTE	107
в -	DISPOSITIF D'ECOULEMENT DU FLUX GAZEUX	107
с -	DISPOSITIFS ANNEXES	108
D -	DISPOSITIF POUR L'EVALUATION DU DEBIT PAR LA MESURE DU VOLUME GAZEUX EVACUE PAR LA POMPE	109
Е –	DISPOSITIF POUR LA MESURE DE LA FRACTION MOLAIRE DES GAZ AJOUTES AU GAZ ACTIVE	; 109
F -	DISPOSITIF PERMETTANT DE RECOUVRIR LES PAROIS	110
	F.I - Parois totalement recouvertes	110
	F.II - Parois partiellement recouvertes	111
G -	PRODUITS CHIMIQUES	111
н –	DISPOSITIFS DE DETECTION	112
	 H.1 - Dispositif utilisé pour l'étude spectrophotomètrique H.I.1) Caractéristiques des appareils H.I.2) Etalonnage des monochromateurs 	112
	H.II - Dispositif utilisé pour l'étude en résonance paramagné- tique électronique (R.P.E.)	114
	H.III - Dispositif utilisé pour l'étude simultanée des intensité	s
	de la luminescence de Lewis Rayleigh et du signal R.P.E.	
	de l'azote atomique	115
CON	CLUSION GENERALE	118

<u>ANNEXE</u> : METHODE DE DETECTION DE L'AZOTE ATOMIQUE $N(^{4}S_{3/2})$	121
A - RAPPELS SUR LA RESONANCE PARAMAGNETIQUE ELECTRONIQUE	122
A.I - Théorie R.P.E.	122

A.I.1) Effet Zeeman

A.I.2) Condition de résonance pour l'atome N(⁴S 3/2) A.II-Structure hyperfine

B - CONDITIONS EXPERIMENTALES DE MESURE DE LA CONCENTRATION EN 123 N(⁴S) PAR R.P.E.

BIBLIOGRAPHIE

INTRODUCTION GENERALE

INTRODUCTION GENERALE

1

Depuis sa mise en évidence expérimentalement, l'azote activé par une décharge électrique a été l'objet d'un nombre considérable de recherches et de publications. Il est apparu très rapidement que les atomes d'azote à l'état fondamental $N({}^4S)$ jouent un rôle essentiel dans ce gaz de très grande réactivité chimique et présentant une chimiluminescence jaune tout à fait caractéristique. Toutefois, un certain nombre de points relatifs aux mécanismes réactionnels de l'azote activé restent ouverts à discussion :

a) Un mécanisme complet interprétant clairement la persistance dans le temps des propriétés de ce gaz activé et la durée de vie apparente très longue, supérieure à 10 s, des atomes d'azote $N({}^{4}S)$ n'a pas été établi. Par contre, les données globales quantitatives relatives à la recombinaison de ces atomes sont maintenant bien connues.

b) Un bilan complet des espèces moléculaires ou atomiques présentes n'existe pas. En particulier, la présence et l'importance des espèces électroniquement ou vibrationnellement excitées à l'origine de transitions radiatives interdites ne sont pas toujours bien connues, or ce sont ces espèces qui, grâce à leur durée de vie relativement longue, possèdent uneréactivitéchimique appréciable. Il s'agit essentiellement :

- de l'azote moléculaire à l'état électronique fondamental vibrationnellement excité. La connaissance des niveaux de vibration devrait contribuer à acquérir une meilleure maitrise de la réactivité de cette molécule,

- de l'azote à l'état triplet $N_2^{}\,(A^3\Sigma_u^+)$ vibrationnellement excité ou non.

c) La réactivité sélective des espèces actives atomiques ou moléculaires reste mal définie : alors que les réactions chimiques globales de l'azote activé sont très bien connues, le rôle de chacune des espèces activées n'est établi que d'une manière très fragmentaire ; cet état de fait est la conséquence du nombre important de constituants de ce gaz réactif possédant souvent une énergie globale équivalente. D'un autre point de vue, la chimie de l'azote activé se complique par le fait que ces réactions sont la résultante de réactions en phase homogène et en phase hétérogène sur les parois du réacteur.

Malgré leurs complexités, les études à partir de l'azote activé restent très attractives tant d'un point de vue fondamental qu'appliqué : la forte énergie de dissociation de l'azote confère aux espèces activées un caractère de vecteur d'énergie important. "L'énergie potentielle de réaction" est de 5 eV pour un atome d'azote et de 6 eV pour une molécule d'azote à l'état triplet, celle d'une molécule à l'état électronique fondamental vibrationnellement excité pouvant varier entre 1 et 9 eV.

Par ailleurs, les études entreprises sont directement liées au problème de la physicochimie de la haute atmosphère où les espèces de l'azote activé ont un rôle prépondérant et aux problèmes industriels de la fixation de l'azote.

Nous nous sommes fixés comme objectif de préciser la réactivité de l'azote activé par des méthodes tant cinétique que spectroscopique. A cet effet, nous avons développé des études dans une voie nouvelle, faisant jouer un rôle important à la notion de <u>temps de contact</u> entre l'azote activé et le réactif. Il s'agit du temps qui sépare la mise en contact des réactifs de l'observation soit chimique soit spectrochimique de la réaction. La plupart des résultats connus sont relatifs à des temps de contact très courts, de l'ordre de quelques millisecondes, et nous nous sommes attachés à suivre l'évolution des réactions pour des temps de contact beaucoup plus longs.

Le modèle choisi est la molécule CO pour les raisons suivantes :

- Son caractère isoélectronique de N₂ permet de la considérer dans une certaine mesure comme une molécule d'azote "marquée" et l'étude de ses réactions permet de tirer des conclusions importantes quant au mécanisme propre à l'azote activé.

- Le transfert de l'énergie de $N_2(A^3\Sigma_u^+)$ à CO permet d'obtenir des molécules de CO à l'état triplet et d'envisager la fixation de CO, parallèlement à celle de N_2 .

- L'existence d'un nombre considérable de travaux sur la réactivité de N_2 ou de CO permet de disposer de très bonnes bases pour entreprendre cette étude.

Notre travail se présente sous la forme suivante :

- Un premier chapitre résume l'état actuel des connaissances sur l'azote activé, avec une référence particulière à la réactivité de CO.

- Un second chapitre est consacré à des résultats expérimentaux relatifs aux différents paramètres de la réaction N_2^{\bigstar} - CO.

- Le troisième chapitre a trait à l'étude de l'effet de long contact dans cette même réaction ainsi qu'à la différentiation de cet effet entre les réactions en phases homogène et hétérogène. Ce chapitre présente les conclusions théoriques qui peuvent être tirées de notre étude et démontre le rôle fondamental joué par $N_2(X^{1}\Sigma_{g}^{+})_{V}$ dans cette réaction. Il présente également une extension de ces conclusions au mécanisme de l'azote activé.

-Afin de ne pas alourdir notre texte, nous avons regroupé dans un quatrième chapitre la description des principaux dispositifs expérimentaux utilisés : dispositifs de spectroscopie visible et de R.P.E.. Les études cinétiques ont été menées grâce à des mesures d'intensité d'émission lumineuse et à une dosimètrie des atomes d'azote N(⁴S).

CHAPITRE 1

ETAT ACTUEL DES CONNAISSANCES SUR L'AZOTE ACTIVE

/CHAPITRE I /

ETAT ACTUEL DES CONNAISSANCES SUR L'AZOTE ACTIVE

A - GENERALITES SUR L'AZOTE ACTIVE

Depuis sa mise en évidence par Lewis Rayleigh, l'azote activé, que l'on notera désormais N_2^{2} , a fait l'objet de nombreux travaux (1).

Un flux d'azote soumis à une décharge présente une luminescence jaune, très intense. On la désigne sous le nom de luminescence de Lewis Rayleigh (dénommée L.R. dans la suite du travail). Elle s'étend dans les canalisations de l'appareil sans diminution appréciable d'intensité, indiquant ainsi une désactivation de cinétique très lente.

Dans le visible, seul le premier système positif de N₂ : $B^{3}\pi_{g} - A^{3}\Sigma_{u}^{+}$ est observé. Les bandes les plus intenses sont émises par les niveaux vibrationnels v' = 12, 11, 10 de l'état $B^{3}\pi_{\alpha}$ (2).

Dans l'ultraviolet du vide, l'émission du système de Lyman-Birge-Hopfield a¹ π_g - x¹ Σ_g^+ de N₂ (3) est détectable. Aucune bande de niveau vibrationnel de l'état excité a¹ π_g supérieur à 6 n'est décelée. Dans ce même domaine spectral, le système ultraviolet de Wilkinson-Mulliken : a^{'1} Σ_u^- - x¹ Σ_a^+ (4) est également mis en évidence.

Le système rouge $B'^{3}\Sigma_{u} - B^{3}\pi_{g}$ de N₂ (5) est émis par les seuls niveaux vibrationnels v' = 8, 7, 6 de l'état $B'^{3}\Sigma_{u}$.

Lorsque l'azote n'est pas soigneusement deshydraté, les bandes des systèmes β et γ de NO sont apparentes.

La luminescence jaune est très sensible au degré de pureté de l'azote. Avec de l'azote suffisamment purifié, on observe une luminescence rose "pink afterglow", dont le spectre comprend les premier et deuxième systèmes positifs de l'azote $(B^{3}\pi_{g} - A^{3}\Sigma_{u}^{+} \text{ et } C^{3}\pi_{u} - B^{3}\pi_{g})$ et le premier système négatif de l'azote ionisé $(N_{2}^{+}: B^{2}\Sigma_{u}^{+} - X^{2}\Sigma_{g}^{+})$ (6). Le temps d'induction ainsi que la durée de cette luminescence sont de l'ordre de quelques ms.

Lewis Rayleigh attribue la luminescence de longue durée à la recombinaison d'atomes d'azote à l'état fondamental ⁴S. En effet, lors de collisionsavec les parois (en pyrex ou en quartz), moins d'une sur 10^4 conduit à une recombinaison (7). D'autre part, en phase gazeuse, la recombinaison des atomes s'effectue par collisionsà 3 corps. Pour une pression d'environ 1 Torr, de telles recombinaisons sont 10^6 fois plus lentes que celles s'effectuant par collision binaire des atomes (7). Mais, jusqu'en 1956, l'attribution de cette luminescence de longue durée à la recombinaison des atomes N(⁴S) n'est pas unanimement acceptée et, actuellement les mécanismes responsables de la population de l'état B³m restent très discutés.

Après avoir énuméré les différentes espèces présentes dans l'azote activé, nous exposerons brièvement les principaux mécanismes actuellement proposés dans la littérature, pour la recombinaison des atomes d'azote et la population de l'état $B^3 \pi_{\alpha}$ de N₂.

B - <u>LES DIFFERENTES ESPECES PRESENTES DANS L'AZOTE ACTIVE</u> B.I - Atomes $N({}^{4}S)$

Il est maintenant établi que la luminescence de L.R. est due à la recombinaison des atomes d'azote à l'état fondamental $N({}^4S)$.

B.II - Molécule d'azote à l'état fondamental vibrationnellement excité : $N_2 (x^1 \Sigma^+) y^*$

La formation de N₂ $(x^{1}\Sigma_{q}^{+})_{v^{*}}$ pourrait trouver son origine :

- dans les collisions d'électrons avec l'azote moléculaire dans la décharge (8) (9). Dans cette hypothèse N₂ (x¹Σ⁺) se formerait uniquement dans cette dernière . Par ailleurs, il faut noter une diminution de population des niveaux vibrationnels élevés après la luminescence rose.
- au cours de réaction d'association d'atomes N(⁴S) dans la luminescence (10) (11).

Young (12) a également suggéré que N $_2(x^1\Sigma_g^+)$ peut être formé dans la luminescence de L.R. au cours de la réaction :

$$N(^{4}s) + N_{2}(A^{3}\Sigma_{u}^{+})_{v=0} \rightarrow N_{2}(x^{1}\Sigma_{g}^{+})_{v=25} + N(^{4}s).$$

La présence de $N_2(x^1\Sigma_g^+)_{v^*}$ dans la luminescence de L.R. est illustrée par sa réactivité. On peut principalement citer le transfert de l'énergie vibrationnelle de $N_2(x^1\Sigma_g^+)_{v^*}$ à d'autres particules (atomes ou molécules) (1). Les molécules actives dans l'I.R. (CO₂, N₂O, CO) peuvent recevoir une énergie qui les excite vibrationnellement et provoque une luminescence I.R.. L'étude de ces luminescences I.R. permet de comprendre les processus d'échange énergétique entre les molécules (13 à 17). Les inversions de population susceptibles de se produire dans les mélanges N_2^* - CO ou CO₂ sont à l'origine des effets laser bien connus (18)(19).

Les molécules $N_2(X^{1}\Sigma_{q}^{+})$ présentes dans les différentes zones de la postluminescence peuvent également être détectées par spectroscopie d'absorption dans l'U.V. du vide, (20à24). Les bandes a absorption observées dans la luminescence rose révèlent la présence dans N $_2^{\,\sharp}$ de molécules à l'état fondamental vibrationnellement excitées dans de très hauts niveaux (21). Des mesures calorimétriques permettent également une évaluation de l'énergie vibrationnelle de l'azote activé. Par une telle méthode, Morgan et Schiff indiquent que 30% de la chaleur dégagée par la réaction N + NO \rightarrow N₂ + O provient de l'énergie vibrationnelle (25). Une mesure de la chaleur dégagée par cette même réaction, réalisée en spectroscopie Raman par Black , Sharpless et Slanger (26) confirment la validité de la méthode calorimétrique. La détection de $N_2(X^{\dagger}\Sigma_{q}^{\dagger})$ v par spectroscopie Raman permet en outre une étude aisée des transferts d'énergie vibrationnelle et des cinétiques en phase gazeuse (27à30). Le CARS (Coherent Antistokes Raman Spectroscopy) permet la caractérisation directe des populations vibrationnelles de tous les niveaux (31).

La durée de vie de $N_2(x^1 \Sigma_{gV}^+)$ est très sensible aux conditions expérimentales et varie avec le niveau d'excitation vibrationnelle. Pour des pressions d'azote comprises entre 1 et 3 Torr, Kaufman et Kelso (32) évaluent la durée de vie de cette espèce à 0,05 s. Pour des pressions plus élevées, cette dernière pourrait être inférieure (24). La valeur la plus faible compatible avec l'observation des bandes est d'environ 0,01 s (24).

B.III - Etats électroniquement excités

Les différents états électroniquement excités et leur durée de vie radiative figurent dans le tableau I (33 à 43). Leur courbe d'énergie potentielle est représentée sur la figure 1. La position de l'état quasi répulsif ${}^{5}\Sigma^{+}_{g}$ est déduite de faibles prédissociations de B ${}^{3}\pi_{c}$.

B.IV - Autres espèces présentes

Les atomes d'azote métastables $N(^{2}D)$ et $N(^{2}P)$ sont en concentration considérablement plus faible que les atomes $N(^{4}S)$ (44). Les espèces ioniques N_{2}^{+} , é, sont en très faible concentration, et il est maintenant unanimement reconnu qu'elles jouent un rôle négligeable dans la production des états moléculaires à l'origine de la luminescence de L.R.

C - DONNEES QUANTITATIVES DU MECANISME DE RECOMBINAISON DES ATOMES D'AZOTE

La mesure des coefficients de recombinaison des atomes d'azote est importante pour une meilleure connaissance des mécanismes réactionnels, mais de nombreux désaccords demeurent au sujet de leur valeur.

La disparition des atomes $N({}^4S)$ s'effectue suivant les réactions ci-dessous :

$$N + N + M \xrightarrow{k_1} N_2 + M \qquad (1)$$

$$N + N + \text{parois} \xrightarrow{k_2} N_2 + \text{parois} \qquad (2)$$

N + parois
$$\xrightarrow{3}$$
 $\frac{1}{2}$ N₂ + parois (3)

(N₂ représente la molécule d'azote dans un état électronique excité où à l'état électronique fondamental vibrationnellement excité).

La vitesse de recombinaison des atomes d'azote est régie par l'équation différentielle :

Etat	: Transition :	durée de vie en s.	référ. biblio.	Niveau de vibrations observées
a ³ Σ ⁺ u	$ \stackrel{:}{\underset{a}{\overset{a}{}}} a^{3} \Sigma_{u}^{+} - x^{1} \Sigma_{g}^{+} $	2,0	34 - 35	0-1
^{B³π} g	$B^{3}\pi_{g} - A^{3}\Sigma^{+}_{u}$	$8,0.10^{-6} (v' = 0)$ à 4,4.10 ⁻⁶ (v' = 10)	36	0-13
$a'^{1}\Sigma_{u}^{-}$	$a'^{1}\Sigma_{u}^{-} - x^{1}\Sigma_{g}^{+}$	∿ 0,7	37 - 38	ο
a ¹ mg	$a^{1}\pi_{g} - x^{1}\Sigma_{g}^{+}$	1,7.10 ⁻⁴ 1,4.10 ⁻⁴ 1,15.10 ⁻⁴	39 40 41	0~6
Β' ³ Σ _u	$B'^{3}\Sigma_{u}^{-} - B^{3}\pi_{g}$ $B'^{3}\Sigma_{u}^{-} - X^{1}\Sigma_{g}^{+}$	$\sim 4.10^{-6}$ $\sim 10^{-2}$	42	4-8
w ³ 4 _u	$w^{3}\Delta_{u} - x^{1}\Sigma_{g}^{+}$ $w^{3}\Delta_{u} - B^{3}\pi_{g}$	≃ 10 ⁻³	43	0-6

Tableau I : Durée de vie radiative des états excités de $N_2^{(33)}$

fig I Courbes d'énergie potentielle de N₂

$$-\frac{d(N)}{dt} = (k_1(M) + k_2) (N)^2 + k_3(N)$$

k₁ est le coefficient de recombinaison à 3 corps en phase homogène conduisant aux 3 états liants qui corrèlent avec les atomes N(⁴S) : N₂(${}^{5}\Sigma_{g}^{+}$), N₂($A^{3}\Sigma_{u}^{+}$) et N₂($X^{I}\Sigma_{g}^{+}$)(cf fig. 1)

k₂ est la somme d'une constante de recombinaison radiative à 2 corps en phase homogène (très faible) et d'une hypothétique constante de recombinaison à 2 corps contre les parois

 k_3 est le coefficient de recombinaison hétérogène du ler ordre, à partir duquel on peut calculer le taux γ de recombinaison contre les parois.

C.I - Mesure de k_1

A partir des valeurs de k₁ calculées au cours de très nombreux travaux, on peut considérer qu'à température ambiante,

$$(10^{-32} > k_1 > 4.10^{-33}) \text{ cm}^6 \text{ mole}^2 \text{ sec}^{-1}$$
 (45)

les résultats obtenus par Campbell et Trush (46), Clyne et Stedman (47), Brennen et Shane (48), Brown et Winkler (49), Yamashita (45) et Emel'kin et Marusin (50) sont en bon accord. Contraitement à Yamashita (45), Evenson et Burch (51) mettent en évidence une apparente dépendance entre k_1 et le temps, qu'ils attribuent à l'existence d'un processus au cours duquel des atomes seraient produits dès les premières secondes de l'apparition de la luminescence.

C.II - Mesure de k2

La nature et la valeur du coefficient du 2ème ordre k_2 ne sont pas encore très bien élucidées. Selon Campbell et Trush (46), k_2 serait un coefficient de recombinaison du 2ème ordre contre les parois. Cette hypothèse est reprise par Clyne et Stedman (47) ; lorsqu'ils opèrent avec des canalisations dont les parois sont recouvertes d'H₃PO₄, la mesure de k_2 conduit à une valeur bien inférieure à celle qui est obtenue avec des parois dénommées "propres" par les auteurs. Compte tenu des incertitudes expérimentales, ils assimilent k_2 à zéro pour des parois recouvertes d'H₃PO₄. Par contre, pour des parois "propres" (traitées à HNO₃ fumant et à HF 10%), Brennen et Shane (48) obtiennent une valeur de k_2 quatre fois plus faible que celle de Campbell et Trush (46). D'autre part, en utilisant des parois recouvertes de $H_3^{PO}_4$, ils n'observent pas, à la différence de Clyne et Stedman (47) une diminution de la valeur de k_2 . Compte tenu de l'imprécision des mesures, ils assimilent k_2 à zéro. Les travaux de Yamashita (45) conduisent aux mêmes résultats.

C.III - Mesure de k_3

 k_3 , coefficient de recombinaison contre les parois, devrait être indépendant de la pression totale, or Brennen et Shane (48) (52) observent que k_3 croît avec celle-ci. k_3 serait donc dû d'une part à la recombinaison contre les parois, et d'autre part à un processus homogène du ler ordre mettant en jeu des impuretés. Dans N_2^{4} pur, l'addition de 0,07 % de O₂ après la décharge augmente la pente de la courbe $k_3 = f(M)$ $k_3 = k'_3 + k''_3$ (M).

Emel'kin et Marusin (50) attribuent également l'augmentation de la valeur de k₃, observée au cours de certaines mesures, à la présence d'une impureté. Ils émettent en outre l'hypothèse d'un accroissement de l'efficacité de la surface du réacteur par des espèces de courte durée de vie produites dans la décharge. L'instabilité de la propriété de surface du réacteur, même au cours d'une simple expérience, est mise en évidence.

Yamashita (45) observe une diminution de k₃ au cours du temps (pour une variation de t de O à 6s, k₃ diminue de 2,5.10⁻² à 2,1.10⁻² sec⁻¹) et l'attribue à une évolution de l'état des parois, ou à la conséquence de la réaction N + O + N₂ \rightarrow NO + N₂ due aux traces d'oxygène atomique contenu dans l'azote. (48) (53).

C.IV - Probabilité de recombinaison contre les parois

La mesure de k_3 (que l'on suppose entièrement dû au mécanisme de recombinaison hétérogène) conduit au calcul de γ (probabilité de recombinaison contre les parois). Les valeurs de γ dans la littérature sont très divergentes, et il est très probable que certaines d'entre elles soient en fait une mesure de l'impureté des gaz, plutôt que des caractéristiques de surface : (des traces de graisse pourraient détuire les atomes).

D'autre part, des parois exposées aux vapeurs de pompe (ou à toute trace d'huile) voient leur activité catalytique diminuer par rapport à celles

qui restent sous vide ou à l'écart de toute contamination (54). Une très petite partie de surface active peut également jouer en faveur d'un coefficient de recombinaison du 1er ordre, attribué, dans les calculs, à la surface interne du réacteur dans son ensemble : il est probable que γ soit nul pour des parois propres. Les plus faibles valeurs de γ pour des parois de pyrex non traitées ont été obtenues par Brennen et Shane (48), puis par Yamashita (45).

Un contrôle rigoureux de l'évolution des parois étant impossible, l'utilisation d'un paramètre constant pour caractériser le processus hétérogène est hasardeuse. Il semble plus adapté d'abandonner γ au profit de l'application du mécanisme de Langmuir-Rideal (55) (56).

Dans l'hypothèse d'un tel mécanisme, la recombinaison des atomes d'azote peut être décrite par les réactions ci-dessous :

$$N_{(g)} + E \xrightarrow{k_1} F$$

$$N_{(g)} + F \xrightarrow{k_2} N_{2(g)} + E$$

On suppose l'existence de "centres actifs" sur la paroi interne du réacteur. E désigne un centre actif vide, et F un centre actif sur lequel un atome d'azote est adsorbé.

La cinétique de cette réaction est régie par les équations différentielles :

$$\frac{d(N)}{dt} = k_1(N)(E) - (F)(k'_1 - k_2(N))$$
$$\frac{d(F)}{dt} = k_1(N)(E) - (F)(k'_1 + k_2(N))$$

V et A désignent respectivement le volume et la surface interne du réacteur.

(F) et (E) sont des concentrations de surface (nombre de centres par cm^2). (N) est la concentration en azote atomique dans la phase gazeuse.

Une étude récente de la recombinaison hétérogène des atomes d'azote par un tel mécanisme conduit Brennen et Shuman (56) à conclure qu'une augmentation de l'activité de la surface, qui se reflète par une décroissance plus rapide de la concentration en atomes d'azote est due à un nombre de centres actifs beaucoup plus important.

C.V - Comparaison de l'efficacité de revêtement des parois

L'utilisation de canalisations dont les parois sont recouvertes permet d'inhiber la recombinaison des atomes d'azote contre cellesci. Les acides, et en particulier les oxyacides tels que H_3PO_4 , H_2SO_4 et $HClO_4$ sont très efficaces pour réduire les recombinaisons contre les surfaces ((57)p. 6)). Anderson et coll. (58) mettent en évidence que k_3 peut être considérablement diminué lorsque l'on chauffe les surfaces sous vide à 450°K et pendant plusieurs jours. Cette méthode est beaucoup plus efficace que le seul rinçage avec H_3PO_4 . A cause de leur nature inerte ; les revêtements de teflon ont une efficacité supérieure à celle des oxyacides dans de nombreux cas, et en particulier lorsque des atomes d'halogène sont en jeu (59). Par contre, ils ne réduisent pas la recombinaison des radicaux OH contre les parois. Selon Clyne et Holt (60) l'efficacité du teflon est inférieure à celle de H_3PO_4 .

D - MECANISME DE POPULATION DES ETATS EXCITES DE L'AZOTE DANS LA LUMI-NESCENCE DE L.R.

Différents mécanismes sont proposés pour rendre compte de l'excitation de chacun des 3 groupes de niveaux de vibration de l'état $B^{3}\pi_{g}$ à l'origine de l'émission du 1er système positif de N₂ : $B^{3}\pi_{g} - A^{3}\Sigma_{u}^{+}$ v' = 9 à 12, v' = 5 à 8, v' < 5.

Notre travail ayant porté uniquement sur les bandes issues de $N_2 (B^3 \pi_g)_{v'} = 9$, 10, 11, 12, nous exposons plus particulièrement les mécanismes responsables de la population de ces niveaux.

Les états ${}^{5}\Sigma_{g}^{+}$ et $A^{3}\Sigma_{u}^{+}$ peuvent être formés directement par recombinaison des atomes d'azote, mécanisme à l'origine de l'émission du 1er système positif de N₂.

La courbe d'énergie potentielle de la molécule $N_2({}^5\Sigma_g^+)$ sans minimum marqué, recoupe (cf. fig. 1) celle de la molécule $N_2(B^3\pi_g)$ entre le 12ème et le 13ème niveau vibrationnel, juste au-dessous de la limite de dissociation. Celle de l'état $(A^3\Sigma_u^+)$ est située près de celle de l'état $(B^3\pi_g)$, à proximité de la limite de dissociation. Aussi, les deux principaux mécanismes de populations des états v' = 9, 10, 11, 12 de $N_2(B^3\pi_g)$ proposés dans la littérature invoquent-ils, l'un $N_2({}^5\Sigma_g^+)$, l'autre $N_2(A^3\Sigma_u^+)$ comme précurseurs de $N_2(B^3\pi_g)$.

D.I - $N_2 \begin{pmatrix} 5\Sigma_g^+ \end{pmatrix}$ précurseur de $N_2 \begin{pmatrix} B^3\pi \\ g \end{pmatrix} v' = 12, 9$

Deux hypothèses sont formulées quant à l'intervention de

 $N_2({}^5\Sigma_g^+)$ en tant que précurseur de $N_2({}^B{}^3\pi_g)v' = 12, 9.$

D.I.1) Prédissociation inverse à 2 corps

Gaydon (61) puis Cario et Reinecke (62) suggèrent que l'émission issue des niveaux v' = 12, 11, 10 résulte d'un processus de prédissociation inverse à 2 corps mettant en jeu deux atomes d'azote N(⁴S) qui entreraient en collision sur la courbe de potentiel $\sum_{g}^{5} t^{+}$ et formeraient N₂($B^{3}\pi_{g}$) dans un état vibrationnel proche de celui de l'intersection des 2 courbes (cf. fig. 1).

Ce mécanisme schématisé sur la fig.2 (63) peut être représenté par les réactions suivantes :

$$N({}^{4}S) + N({}^{4}S) \xrightarrow{\Sigma_{g}} N_{2}({}^{B}{}^{3}\pi_{g})v' = 12, 11, 10$$

 $N_{2}({}^{B}{}^{3}\pi_{g})v' = 11 \xrightarrow{N_{2}(A}{}^{3}\Sigma_{u}^{+})v' = 7 + hv$

Dans le cadre de ce mécanisme, Benson (64) suggère que cette prédissociation inverse peuple $N_2 (B^3 \pi_g)_{V'} = 12$ dans des niveaux rotationnels élevés et que cette dernière molécule est susceptible de subir par collision : - une relaxation rotationnelle vers les faibles niveaux rotationnels de v' = 12

- une relaxation vibrationnelle vers v' = 11, 10.

Plus récemment (65), des émissions issues du niveau v' = 13 situé 480 cm⁻¹ (5,7 kJ.mol.⁻¹) au-dessus de la limite de dissociation en atomes, ont été caractérisées. Il semble donc que le mécanisme de prédissociation inverse conduise en réalité au niveau v' = 13 de l'état $B^3 \pi_g$. Le mécanisme proposé devient alors :

$$N(^{4}s) + N(^{4}s) \neq N_{2}(B^{3}\pi_{g})v' = 13$$

$$N_{2}(A^{3}\Sigma_{u}^{+}) + hv$$
(I)

D.I.2) <u>Mécanisme de recombinaison à 3 corps</u> a) Population des états $N_2(B^3\pi_g)_{\nu'=12, 10}$

En 1956, Berkowitz, Chupka et Kistiakowsky (66) modifient le mécanisme précédent en suggérant que les atomes N(⁴S) sont d'abord stabilisés dans l'état (${}^{5}\Sigma_{g}^{+}$) par une collision à 3 corps avec une molécule d'azote. Puis, une transition sans radiation induite par collision près de l'interaction des deux courbes transfère les molécules de l'état (${}^{5}\Sigma_{g}^{+}$) vers l'état (${}^{8}\pi_{g}$) v'= 12, 10 (cf. fig.3) suivant les réactions :

$$N(^{4}S) + N(^{4}S) \stackrel{M}{\longleftrightarrow} N_{2}(^{5}\Sigma_{g}^{+}) + M$$
 (II)
 $M \stackrel{M}{\longrightarrow} N_{2}(^{B}\pi_{g})_{v'} = 12, 10 + M$

Repris par Bayès et Kistiakowsky (67), ce mécanisme a été plus récemment confirmé par Becker et coll. (65): ilexiste une population stationnaire de l'état $N_2 {5 \atop g} {v = 0}$ à partir duquel seraient peuplés les niveaux v' = 9, 12 de ($B^3 \pi_g$). La distribution vibrationnelle de $N_2 {B^3 \pi_g}$ dépend principalement de la nature des collisions entre $N_2 {5 \atop g} {v = 0}$ et M, et donc de la nature de M et de la température.

b) Population préférentielle de $N_2(B^3\pi_q)_{v'=12}$

Brennen et Shane (48) et Anketell et Nicholls (63) considèrent que la population directe des niveaux v'< 12 à partir de $({}^{5}\Sigma_{g}^{+})_{v=0}^{v}$ est peu probable, à cause de la différence énergétique. Seul le niveau v' = 12 sera peuplé efficacement (cf. fig. 4)

D.I.3) Discussion

Le mécanisme de prédissociation inverse serait responsable de la seule formation de N₂ ($B^3\pi$), Il semble maintenant établi que le processus de recombinaison des atomes dans l'état ($B^3\pi$), requiert g'v' = 12

la présence d'un 3ème corps suivant le mécanisme II. L'intervention de l'état ${}^{5}\Sigma_{g}^{+}$ rend bien compte de la population élevée des niveaux v' = 10, 12 de l'état $B^{3}\pi_{g}$ dans la luminescence de L.R.. Mais on peut faire une critique sérieuse à cette théorie : il semble que $N_{2}(B^{3}\pi_{g})$ soit rapidement désactivé par collision. Dans ces conditions, on conçoit mal que la population stationnaire de l'état peu liant (${}^{5}\Sigma_{g}^{+}$) puisse être suffisante pour expliquer le taux élevé de population de ($B^{3}\pi_{g}$) dont témoigne l'intensité d'émission du 1er système positif de N_{2} . Cette faille a conduit Campbell et Trush (46) à suggérer que le précurseur de l'état $B^{3}\pi_{g}$ pourrait être l'état $A^{3}\Sigma_{u}^{+}$.

D.II -
$$N_2(A^3\Sigma_u^+)$$
 précurseur de $N_2(B^3\pi_g)v' = 12, 9$
D.II.1) Mécanisme de Campbell et Trush

Les atomes N(⁴S) entrant en collision se stabilisent dans l'état attractif N₂($A^{3}\Sigma_{u}^{+}$). Des transitions sans rayonnement, induites par collisions, sont possibles entre des niveaux d'énergie très voisine des états ($A^{3}\Sigma_{u}^{+}$) et ($B^{3}\pi_{g}$). Les niveaux vibrationnels de l'état ($A^{3}\Sigma_{u}^{+}$) près de la limite de dissociation sont très rapprochés, de telle sorte que parmi ces niveaux, certains d'entre eux sont très proches des niveaux v' = 9, 10, 11, 12 de l'état $B^{3}\pi_{g}$.

D.II.2) Discussion

Ce mécanisme présente également une faille : les processus dominants sont la formation par collision de N₂ (B³π_g) à partir de N₂ (A³Σ⁺_u), et la désactivation par collision de N₂ (B³π_g) en N₂ (A³Σ⁺_u). Un équilibre doit alors s'établir impliquant qu'une désactivation quelconque d'un des états entraîne une désactivation de l'autre. Des mesures effectuées sur les constantes de désactivation ont montré que celle de

 $N_2(B^3\pi_g)$ était bien supérieure à celle de $N_2(A^3\Sigma_u^+)$.

D.III - Mécanisme de Young

Il est maintenant bien établi que la cinétique de l'intensité du 1er système positif de N_2 est régie par la relation :

$$I = \frac{(N)^2 (M)}{(N) + cste}$$

Cette expression est en accord avec la formation de $N_2(B^3\pi_g)$ par un mécanisme de recombinaison à 3 corps des atomes N(S), et avec la disparition de cet émetteur par radiation et par désactivation par collision :

$$N(^{4}S) + N(^{4}S) \xrightarrow{M}_{k_{f}} N_{2}(B^{3}\pi) + M$$

 $N_{2}(x^{1}\Sigma_{g}^{+}) + M$ $N_{2}(A^{3}\Sigma_{u}^{+}) + hv$ II

Les lois cinétiques appliquées à cette réaction conduisent à l'expression :

$$k_{f}(N)^{2}(M) = k_{d}(M)(N_{2}(B^{3}\pi_{g})) + k_{r}(N_{2}(B^{3}\pi_{g}))$$
$$N_{2}(B^{3}\pi_{g}) = \frac{k_{f}(N)^{2}(M)}{k_{d}(M) + k_{r}}$$

donc: (1

L'intensité de la luminescence est proportionnelle à la concentration de l'émetteur :

$$I = k_{r} (N_{2} (B^{3} \pi_{g})) = \frac{k_{r} k_{f} (N)^{2} (M)}{k_{d} (M) + k_{r}} = \frac{K(N)^{2} (M)}{(M) + K'}$$

Le mécanisme II rend compte de l'influence de la pression sur l'intensité du premier système positif de N_2 :

- à faible pression (P < 1 Torr), cette intensité est proportionnelle à $(N)^{2}(M)$

- à pression plus élevée (1 < P < 10) Torr, la disparition de N₂ $(B^{3}\pi)$ par désactivation par collision devient prépondérante, et l'intensité est proportionnelle à (N)² et indépendante de la pression totale.

A basse pression (P < 0,05 Torr), la majeure partie de l'émission du ler système positif de N $_2$ est issue des niveaux v' < 7.
Les deux théories précédentes ne rendent pas compte du mécanisme de peuplement de ces niveaux qui sont bien en dessous de celui qui correspond à l'association des atomes d'azote. La relaxation ou le transfert par collisions, négligeable à basse pression, ne peut être invoqué.

Young (68) retenant les avantages des 2 mécanismes précédents, a récemment proposé deux nouveaux processus d'excitation des bandes du ler système positif. L'un est indépendant de la pression, l'autre en dépend linéairement, dans le domaine de 1-10 Torr.

D.III.1) Mécanisme indépendant de la pression

Le transfert par collision de $N_2(A^3\Sigma_u^+)_v \ge N_2(B^3\pi_g)_v$, produit ce dernier avec une énergie rotationnelle élevée. La relaxation vibrationnelle, est en fait contrôlée par une relaxation rotationnelle :

$$N(^{4}s) + N(^{4}s) \stackrel{M}{\longleftrightarrow} N_{2}(A^{3} \stackrel{t}{u})_{v} \stackrel{M}{\longrightarrow} N_{2}(B^{3}\pi_{g})_{v'}, J \text{ élevé}$$

$$N_{2}(B^{3}\pi_{g})_{v'}, J \text{ élevé} \stackrel{M}{\longrightarrow} N_{2}(B^{3}\pi_{g})_{v'}, J \text{ élevé}$$

$$M_{2}(A^{3}\Sigma_{u}^{+})_{v-1}, J \text{ élevé}$$

$$N_{2}(A^{3}\Sigma_{u}^{+})_{v-1}, J \text{ feible}$$

D.III.2) Mécanisme dépendant de la pression

Les niveaux v' élevés sont peuplés directement à partir de l'état N₂ $({}^{5}\Sigma_{g}^{+})_{v = 0}$, tandis que les niveaux v' faibles sont peuplés indirectement à partir de l'état N₂ $(W^{3}\Delta_{u})$ (cf. fig.1)

$$N_{2} \stackrel{(A}{\overset{3}{M}} \stackrel{\Sigma_{u}^{+}}{\overset{W}{\downarrow}} v \text{ élevé} \xrightarrow{M} N_{2} \stackrel{(B}{\overset{3}{M}} \stackrel{\pi}{g} v \cdot < 12$$

$$N_{2} \stackrel{(A}{\overset{3}{\Sigma}} \stackrel{L}{\overset{U}{\iota}} v \text{ faible} \qquad N_{2} \stackrel{(5}{\overset{5}{\Sigma}} \stackrel{H}{\overset{G}{g}} v = 0 \xrightarrow{M} N_{2} \stackrel{(B}{\overset{3}{M}} \stackrel{\pi}{g} v \cdot < 12$$

$$N_{2} \stackrel{(V}{\overset{W}{}} \stackrel{M}{\overset{U}{\iota}} v = 0 \xrightarrow{M} N_{2} \stackrel{(B}{\overset{M}{}} \stackrel{\pi}{g} v \cdot < 12$$

$$N_{2} \stackrel{(W}{\overset{W}{}} \stackrel{M}{\overset{U}{\iota}} v \text{ élevé} \xrightarrow{N} N_{2} \stackrel{(B}{\overset{M}{}} \stackrel{\pi}{g} v \cdot < 7$$

Pour des dispositifs d'écoulement gazeux habituels de faible dimension,

les désactivations à la surface de N₂ $\binom{5}{g} \binom{5}{g} v = 0$ rendent ce processus réactionnel impossible. Mais, à faible pression, ou dans des systèmes de grande dimension la plupart des bandes du premier système de l'azote sont excitées par l'intermédiaire des états : $\binom{5}{g} \binom{5}{g} et W^{3} \Delta_{u}$ et leur intensité est dépendante de la pression.

E - INFLUENCE DE L'ADJONCTION DE GAZ ETRANGERS A N $_2^*$

A l'état naturel, l'azote est une molécule très difficilement réactive. Cela tient tant à sa structure électronique qu'à sa très grande énergie de dissociation de l'ordre de 9,8 eV (1). Cette molécule, tout à fait symétrique, ne peut réagir que dans des cas très rares (fixation sur un complexe). Il est possible de la rendre réactive en soumettant un flux d'azote à une décharge. La molécule possédant le minimum d'énergie est à l'état triplet $A^{3}\Sigma_{u}^{+}$. Cette espèce possède une énergie de 6 eV (69). Cette valeur détermine le minimum d'énergie à fournir à une molécule d'azote pour la fixer.

D'un autre point de vue, l'énergie de dissocation

 $N_{2} \rightarrow N(^{4}S) + N(^{4}S) \qquad \Delta H = -9,8 \text{ eV}$

prouve sans ambiguité que le minimum d'énergie à fournir pour fixer un atome d'azotepeut être évalué à 5 eV.

Parmi les très nombreux exemples de réactivité de l'azote activé, citons l'adjonction de molécules organiques qui s'accompagne toujours d'une intense émission du spectre de CN. Les hydrocarbures donnent à la fois le système violet et le système rouge de CN, alors que les dérivés halogénés favorisent fortement le dernier. Des complexes sont également susceptibles de se former par collisions entre des molécules organiques et les atomes d'azote (70).

L'adjonction de certaines substances non réactives avec N_2^* provoque une modification de l'intensité globale de la luminescence de L.R. ou de la distribution de la population vibrationnelle de l'état $B^3 \pi_g$ de N_2 . L'étude de ce phénomène permet une meilleure compréhension des mécanismes réactionnels de l'azote activé. Après un bref résumé bibliogra-

phique relatif à cet effet, nous ferons une étude plus détaillée de l'adjonction de CO qui a fait l'objet de ce présent travail. La fraction molaire de gaz ajouté est de quelques centièmes.

Dans la plupart des cas, l'observation s'effectue à quelques millisecondes de la zone de mélange des deux gaz. Les études relatives à l'influence de l'adjonction d'un gaz étranger en fonction du temps de contact (τ) sont très peu nombreuses, et les valeurs des τ considérés sont toujours très faibles ($\tau < 0,1$ s) (71).(13) (14).

E.I - Influence de la présence de traces d'impuretés

Il est maintenant bien établi que des traces d'impuretés présentes dans un flux d'azote traversant une décharge augmente le taux de dissociation des molécules. L'augmentation du rendement de dissociation par addition de traces d'oxygène est reconnu depuis de nombreuses années (72). Des résultats similaires sont obtenus avec des traces d'autres gaz tels que CH₄ et H₂ (1).Selon Berkowitz, Chupka et Kistiakowsky (73) en présence de traces de O₂ dans le système, la relation de proportionnalité entre l'intensité de la luminescence de L.R. (notée I_{L.R.}) et le carré de la concentration en atomes d'azote demeure vérifiée.

Young, Sharpless et Stringhan (74) observent également une augmentation de la concentration en atomes d'azote lorsque des traces de NO, O_2 ou SF₆ sont ajoutés à l'azote avant la décharge. L'adjonction de NO ou de O_2 après la décharge, mais avant la luminescence rose, provoque le même effet : le catalyseur peut donc agir en dehors de la décharge pour augmenter la dissociation.

Selon Herron (75), l'effet résultant de l'adjonction de traces d'impuretés avant ou après la décharge est fonction de la pureté initiale de l'azote ; il est d'autant moins marqué que la purification de l'azote est moins poussée. Avec de l'azote non purifié, aucune modification significative n'est observée. D'autre part, l'adjonction de catalyseurs de dissociation avant la décharge est beaucoup plus efficace que l'adjonction de ces mêmes catalyseurs à l'azote activé.

De nombreux auteurs s'accordent pour suggérer que ces phénomènes ne sont pas dûs à un mécanisme en phase homogène. L'adsorption des "catalyseurs" sur les canalisations inhibent la destruction contre les parois d'un précurseur de l'afterglow(72)(1).L'existence d'un mécanisme hétérogène confirme d'ailleurs une étude de Lewis Rayleigh (76) qui détecte la "luminescence" qui porte son nom plus de 5 heures après l'extinction de la décharge dans un réacteur efficacement traité contre la recombinaison des atomes par un revêtement d'acide phosphorique ou d'acide sulfurique concentrés. Il est également connu (77) que la luminescence de L.R. n'apparaît pas dans des canalisations dont les parois sont chauffées. L'élévation de température détectée sur des tubes véhiculant un flux d'azote activé est un argument en faveur d'un mécanisme de recombinaison contre les parois (75).

A l'issue de l'étude de l'effet catalytique d'un grand nombre de gaz sur la dissociation de N₂, Baker, Jacob et Winkler (72) proposent un mécanisme de catalyse complexe basé sur le ralentissement des électrons libres et l'absorption par le catalyseur des électrons lents.

E.II - Influence de l'adjonction de gaz étrangers sur l'intensité de la luminescence de L.R.

E.II.1) Addition de NH3

Il est unanimement reconnu que NH₃ est un inhibiteur très efficace de l'émission de la luminescence de L.R. : (78) (79) (75). L'intensité des bandes issues des niveaux vibrationnels v' < 8 est plus fortement diminuée que celle des niveaux supérieurs (v' = 11, 12) (79). La concentration en atomes d'azote, évaluée par spectrométrie de masse, n'est pas affectée (78). La diminution de la concentration en N₂(B³m_g) est attribuée à un transfert d'énergie électronique entre des molécules d'azote excitées précurseurs de N₂(B³m_g) (en particulier N₂(⁵E⁺_g)) et NH₂. (79).

Wright et Winkler (71) étudient l'influence de la fraction molaire de NH_3 (x_{NH_3}) ajoutée à N_2^4 pour des temps de contact entre les deux gaz variant de 2,5 à 94 ms. Dans un système, dénommé "propre" par les auteurs, il semble que deux effets se superposent :

- une augmentation de l'I avec τ (x_{NH3} = cte) qu'ils attribuent à l'aptitude de NH₃ à "empoisonner" les parois du tube contre la recombi-

naison des atomes d'azote. Cette interprétation est suggérée par l'augmentation de la concentration en atomes d'azote (titration $\operatorname{par} C_2H_4$) observée par adjonction de NH₃ (78). Remarquons toutefois que la méthode de titration de N(⁴S) par C_2H_4 est très contestée (1) (81), - une diminution de I_{L.R.} qui, à τ donné, est d'autant plus marquée que \mathbf{x}_{NH_3} est élevé. Wright et Winkler, en accord avec Volpi de Kistiakowsky (79) l'attribuent à une désactivation de l'état ${}^5\Sigma_g^+$ de N₂. Dans des systèmes dont les parois sont "empoisonnées" contre les recombinaisons, seul ce dernier effet est observé.

E.II.2) Addition de H2 et de N2O

 H_2 et N_2O ne modifient pas la répartition vibrationnelle de la transition $B^3\pi_g - A^3\Sigma_u^+$ de N_2 et l'intensité de cette dernière n'est pas réduite de façon sensible (79) (80).

E.II.3) Addition de CO₂ et de CH₄

Bayes et Kistiakowsky (80)constatent que CO_2 et CH_4 ont un effet inférieur à celui de NH_3 , mais cependant significatif. Il existe une valeur de la fraction molaire de gaz ajouté au-delà de laquelle I est constante.

E.II.4) Addition d'atomes d'oxygène, d'hydrogène et de deutérium

Oldman et Broida (82) ont étudié l'influence des atomes d'oxygène, d'hydrogène et de deutérium sur la population vibrationnelle de $N_2(B^3\pi_g)$ pour (0,01 < $P_{N_2^*}$ < 2) Torr . A $P_{N_2^*}$ = 0,1 Torr, ces atomes provoquent préférentiellement une population des niveaux vibrationnels les plus bas. L'intensité de l'émission du 1er système positif est multipliée par un facteur 60 par addition d'atomes d'oxygène avec un maximum pour l'émission issue du niveau v=6. Les atomes d'hydrogène et de deutérium diminuent la population des haut^{\$\$} niveaux vibrationnels.

E.II.5) Addition de gaz rares

Par adjonction d'argon et d'hélium, l'intensité du 1er système positif de l'azote augmente (46). Le maximum est déplacé du niveau 11 vers le niveau 8. Les émissions issues de v' = 12 sont essentiellement absentes. Cette dernière observation est confirmée par Young (68). Il suppose que l'azote ne désactive pas fortement le niveau v'= 12, ou favo-

rise plus sa formation que sa destruction.

E.III - Adjonction de CO à l'azote activé

L'influence sur les émissions du premier système positif de N_2 de l'adjonction de CO à l'azote activé n'a fait l'objet d'études que pour des temps de contact N_2^* - CO inférieurs ou égaux à 40 ms. Dans ces conditions, une diminution de l'I_{L.R.} est toujours caractérisée (13) (14) (83).

Par addition d'environ 20% de CO à N_2^{4} , Kistiakowsky et Volpi (79) signalent une légère diminution de $I_{L.R.}$ qu'ils expliquent par un effet dilution.

Brunetti, Liuti et Schippa (83) attribuent la désactivation des plus hauts niveaux vibrationnels de N₂($B^{3}\pi_{g}$) observée par adjonction de CO à une efficacité du mécanisme I supérieure à celle du mécanisme II, et à un transfert d'énergie de N₂($B^{3}\pi_{g}$) vers CO($x^{1}\Sigma^{+}$).

$$N + N + N_{2} (x^{1} \Sigma_{g}^{+}) \rightarrow N_{2} (B^{3} \pi_{g}) + N_{2} (x^{1} \Sigma_{g}^{+})$$

$$N + N + CO (x^{1} \Sigma^{+}) \rightarrow N_{2} (B^{3} \pi_{g}) + CO (x^{1} \Sigma^{+})$$
II

E.III.1) Autres émissions

Par addition de CO à l'azote activé, des émissions caractéristiques de CO, CN (et parfois NO) sont mises en évidence. Jenning et Linnett (84) suggèrent que ces dernières proviennent de la présence de traces d'O₂ dans l'azote plutôt que d'une réaction chimique de CO avec N_2^* . Les résultats signalés dans la littérature concernant les émissions de CO et de CN donnent lieu à de nombreuses observations contradictoires qui peuvent trouver leur origine dans la diversité des conditions expérimentales.

a) Emissionsdues à CN

La présence d'émissions caractéristiques de CN dans la réaction de CO avec N_2^{4} est très discutée : Legay et Legay-Sommaire (15) étudient

l'influence sur ces dernières du degré de pureté de CO et de la distance "d" séparant la décharge de la zone de mélange. L'intensité des émissions de CN est rendue maximale par une faible valeur de "d" et par l'utilisation de CO d'un haut degré de pureté. L'influence de la valeur de "d" est sans doute à l'origine des résultats divergents obtenus par adjonction de CO purifié à N_2^{\bigstar} : Brunetti, Liuti et Schippa (33) détectent le système violet de CN, alors que Kistiakowsky et Volpi (79) signalent son absence par addition de CO purifié à l'azote activé. Ils attribuent l'observation par Reinecke (85)etBroīda (86), des systèmes violet et rouge de CN à des impuretés présentes dans le CO ajouté. Stair, Kennealy et Murphy (87) observent l'évolution des émissions de CN en fonction du temps de contact entre CO et l'azote activé. Pour $\tau \not= 40$ ms, seul le système violet $(B^2 \Sigma^+ - \chi^2 \Sigma^+)$ de CN est émis. CN $(B^2 \Sigma^+)$ trouverait son origine dans la réaction :

$$N_2(B^3\pi_g) + CO(x^1\Sigma^+)_{v^*} \rightarrow CN(B^2\Sigma^+) + NO(x^2\pi)$$

Cette dernière peut être responsable de la diminution d'intensité de la luminescence de L.R. notée par addition de CO. Pour $\tau \not\# 400 \text{ ms}$, les systèmes violet ($B^2\Sigma^+ - x^2\Sigma^+$) et rouge ($A^2\pi - x^2\Sigma^+$) de CN sont présents. Des collisions avec les parois semblent responsables de la formation de CN ($A^2\pi$).

Joeckle et Peyron (13) (14) caractérisent également la présence de $CN(B^2\Sigma^+)$ et $CN(A^2\pi)$. Selon ces auteurs, CN n'est pas responsable de la désexcitation des niveaux de vibration de CO dépeuplés par rapport à la distribution de Boltzmann (cf E.III.1 b.2).

Plus récemment, Young et Morrow (88) suggèrent que CN est formé par des processus mettant en jeu les états électroniques de $N_2(B^3\pi)_{g'v'\leq 3}$ et $N_2(W^3\Delta_u)_{v=0'}$ et est excité par transfert d'énergie à partir de $N_2(\Sigma_q^{+})$:

$$N_{2}(B^{3}\pi_{g} \text{ ou } W^{3}\Delta_{u}) + CO(X^{1}\Sigma^{+})_{v} \rightarrow CN(X^{2}\Sigma^{+}) + NO(X^{2}\pi)$$

$$N_2({}^5\Sigma_g^+) + CN(X^2\Sigma^+) \rightarrow N_2(X^1\Sigma_g^+) + CN(B^2\Sigma^+)$$

b) Emissions dues à CO

b.1) Systèmes triplet de CO

Golde et Trush (89) observent un comportement général identique pour les deux émissions de CO triplet : leur intensité est fonction du carré

de la concentration en atomes d'azote. Cette relation est en accord avec une excitation de CO triplet à partir des hauts niveaux vibrationnels de $N_2(B^3\pi_{\alpha})$

$$N_{2}(B^{3}\pi_{g})_{v \text{ élevé}} + CO(x^{1}\Sigma^{+}) \rightarrow CO(d^{3}\Delta, 3\Sigma) + N_{2}(x^{1}\Sigma^{+})_{g}$$

La variation linéaire de l'intensité de l'émission de $CO(d^3 \Delta)$ avec $(N)^2$ est confirmée par Brunetti, Liuti et Schippa (83). Selon ces auteurs, l'état $(d^3 \Delta)$ de CO est peuplé par un mécanisme de transfert énergétique suivant immédiatement la recombinaison à 3 corps des atomes d'azote.

b.2) Emissions I.R dues à $CO(X^{1}\Sigma^{+})_{V^{*}}$

Le mélange N_2^* - CO produit une chimiluminescence IR attribuée aux molécules de CO vibrationnellement excitées. Elles sont portées à des niveaux de vibration élevés par des échanges d'énergie lors de collisions avec des molécules vibrationnellement excitées :

$$N_2(x^1\Sigma_g^+)_{v^*} + co = N_2 + co(x^1\Sigma_v^+)_{v^*}$$

Par adjonction de CO à N_2^* , Legay-Sommaire et Legay (15) étudient l'influence du paramètre d (E.III.1 a) sur les émissions de CO, τ ayant une faible valeur et étant maintenu constant. Une augmentation de d est accompagnée d'une diminution de l'intensité globale, mais quel que soit d, une répartition de Boltzmann des niveaux vibrationnels excités de CO est toujours observée, et la température vibrationnelle demeure inchangée et égale à 4600°K. (elle est aussi indépendante de la pression de CO). Selon ces auteurs, il est également très probable que les molécules de N, se répartissent suivant un équilibre de Boltzmann ; ce dernier est atteint en un temps < 10²s. La désexcitation vibrationnelle par collisions des molécules entre elles ne joue aucun rôle. Ces résultats concernant l'influence de la pression partielle de CO et du paramètre d sont en contradiction avec ceux de Kennealy, Stair et Bruce (90) : ces derniers signalent une diminution de la température vibrationnelle de CO lorsque la pression partielle de CO augmente ou quand d augmente. Cette dernière observation est interprétée par une relaxation de N₂ sur les parois préalablement à son mélange avec CO. Notons que l'addition de CO à l'azote activé s'effectue toujours après la luminescence rose.

Abouaf et Legay (91) étudient l'influence de la pression et du temps de contact ($\tau < 0.05$ s). Ils proposent un mécanisme réactionnel mettant en jeu des transferts vibrationnels intermoléculaires ainsi qu'une désexcitation vibrationnelle contre les parois. Les lois cinétiques régissant leur schéma réactionnel ne sont pas verifiées pour les faibles pressions ($P_{N_2}^* < 5$ Torr). Pour de telles pressions, il se pourrait que l'équilibre de Boltzmann ne soit pas atteint, ou qu'un mécanisme autre que le transfert vibrationnel entre en jeu.

Kennealy, Stair et Bruce (90) envisagent également l'influence de τ sur la température vibrationnelle de CO et observent qu'elle augmente en même temps que τ . Les niveaux vibrationnels sur lesquels porte cette étude sont inférieurs à 10 et les températures vibrationnelles mesurées sont inférieures à 5000°K.

Joeckle et Peyron caractérisent des niveaux vibrationnellement excités de CO jusqu'à v = 28 (14b) et étudient le mélange N_2^* - CO en fonction de τ (13).CO est ajouté dans la luminescence rose, la distance décharge-zone d'observation est maintenue constante, aussi une augmentation de τ entraîne une diminution de d et les observations de ces auteurs correspondent à la superposition de ces deux effets. Pour de faibles valeurs de τ , conformément aux observations précédentes, la distribution de CO est boltzmannienne, et il est vraisemblable que celle de l'azote le soit aussi. Elles le restent tant que la relaxation du système n'est pas trop importante et que le processus prédominant est l'excitation vibrationnelle de CO. Par augmentation du temps de contact ou de P_{CO} , ils observent un dépeuplement des niveaux intermédiaires de CO (E.III.1 a) : une température vibrationnelle caractérise les bas niveaux, et une autre les hauts niveaux. Lorsque τ (ou P_{CO}) augmente, la première décroît et la dernière croît. En résumé, la population de niveaux vibrationnels élevés de CO requiert un certain temps de réaction entre CO et l'azote activé. Pour $\tau = 46 \text{ ms}$, $P_{N_0} = 3 \text{ Torr et } P_{CO} = 0,19 \text{ Torr}$, la température locale de vibration est máximale vers v' = 16 et est voisine de 20.000°K. De telles température locales de vibration donnent lieu à un effet laser résultant d'inversions partielles de population.

E.III.2) Mécanismes de la désactivation des molécules vibrationnellement excitées et du transfert vibrationnel Les molécules vibrationnellement excitées sont désactivées par différents processus :

- au cours de collisions intermoléculaires, et leur énergie peut être transformée directement en énergie cinétique. Le taux de molécules désactivées dépend alors de la fréquence des collisions, c'est-à-dire de la pression et de la température du gaz.

- les molécules excitées peuvent diffuser vers les parois et perdre leur énergie vibrationnelle au cours de collisions avec ces dernières. Ce phénomène, fonction de la pression, de la température et de la vitesse du flux gazeux, ainsi que de la géométrie du réacteur, est prédominant pour la molécule d'azote vibrationnellement excité à l'état fondamental.

- des transitions radiatives peuvent apparaître par émission spontanée, et le taux de désactivation des molécules est alors donné par le coefficient d'Einstein.

Une approche de la mesure des constantes de désexcitation conduit Abouaf et Legay (91) à supposer que le dépot carboné observé sur les parois du tube par suite de la réaction des atomes d'azote sur CO augmente l'efficacité de la désexcitation sur les parois des molécules vibrationnelement excitées. La constante de transfert vibrationnel intermoléculaire est bien inférieure à celle qui est obtenue pour N₂O (et pour CO₂). Cette observation est en bon accord avec le fait que le mode v_3 de CO₂ (et de N₂O) est en meilleure coïncidence avec les niveaux vibrationnels de l'azote que celui de CO.

La désexcitation vibrationnelle de CO par collision moléculaire est négligeable, même à pression atmosphérique, ainsi qu'en témoigne la très faible valeur de la constante de désexcitation calculée pour ces types de réaction.

Hunter (92) met en évidence l'existence de deux processus : le transfert énergétique des molécules adsorbées sur les parois du réacteur serait rapide, alors qu'il serait lent lorsque les molécules sont réfléchies sur les surfaces.

Kovacs et al (93) qui obtiennent la même probabilité de désactivation de CO₂ avec quatre surfaces différentes ont suggéré que les mo-

lécules excitées entraient en collision avec d'autres molécules adsorbées à la surface. Il est difficile de savoir si un transfert d'énergie a lieu au cours de telles collisions, ou si les molécules excitées perdent leur énergie uniquement après les collisions.

Egorov, Gershenzon, Rozenshtein et Umanskii (94) étudient la probabilité ε de désactivation vibrationnelle de CO contre les parois, dans un domaine de température compris entre 282 et 603°K, et pour différentes pressions. Ils mettent en jeu deux mécanismes complémentaires de relaxation vibrationnelle hétérogène. L'un d'eux, intervenant pour des températures T < 420°K est indépendant de P et basé sur un processus d'adsorption physique. L'autre, intervenant pour les températures plus élevées, est dépendant de P, et met en jeu un mécanisme de chimisorption.

CHAPITRE 2

.

RESULTATS EXPERIMENTAUX

/ CHAPITRE II /

RESULTATS EXPERIMENTAUX

1ère partie : ETUDE PRELIMINAIRE

Des mesures de l'intensité de la luminescence de L.R. (notée I_{L.R.}) par une adjonction de CO à N_2^* au niveau de la zone d'observation (95) ont confirmé les résultats de Brunetti, Liuti et Schippa (83) : l'intensité des bandes issues des niveaux v' compris entre 6 et 9 de l'état $B^3 \pi_g$ de N_2 n'est pas sensiblement modifiée. Celle des niveaux v' = 10, 11 subit une diminution importante. Le niveau v' = 12 est peu affecté.

Pour une observation à quelques ms en aval du point de mélange, l'intensité des bandes issues des hauts niveaux vibrationnels de l'état $B^{3}\pi_{g}$ augmente. Cette exaltation se produit à partir des niveaux vibrationnels v' = 6 à 12, et est particulièrement marquée pour v' = 12. Les émissions de CO et de CN sont également observées avec une intensité beaucoup plus importante que pour des temps de contact courts. Il faut noter qu'au cours de cette étude, la distance décharge-zone d'observation reste constante et égale à 3,65m. Seule varie la distance décharge-arrivée de CO.

La divergence des résultats signalés dans la littérature nous semble devoir être attribuée au fait que les observations sont effectuées pour des temps de transit du mélange gazeux très différents – on dénomme temps de contact (τ) la durée de transit des gaz entre le point de mélange et la zone d'observation. Nous nous proposons d'étudier l'évolution de la concentration des différentes espèces réactives citées précédemment en fonction de ce paramètre. Les mesures relatives de concentration en atomes N(⁴S) sont effectuées par R.P.E.. L'évolution de la population de chacune des espèces $N_2(B^3\pi_g)$, CN($B^2\Sigma^+$) et CO($d^3\Delta$) est suivie par une méthode spectrophotométrique, dont le dispositif expérimental est décrit dans le chapitre IV P 113.

- A <u>CONDITIONS D'ETUDE DE L'EVOLUTION DES CONCENTRATIONS DE N</u>₂ (B³ π _g), N(⁴s) <u>CN(B² Σ ⁺) ET CO(d³ Δ) PAR ADDITION DE CO A L'AZOTE ACTIVE</u>
 - A.I Etude de la variation de concentration de N₂ ($B^3\pi_g$) par addition de CO à l'azote activé

Le dispositif de détection photoélectrique du 1er système positif de l'azote est décrit dans le chapitre IV p12. Les émissions des bandes 12-8, 11-7 et 10-6 du 1er système positif de l'azote $B^3\pi_g \rightarrow A^3\Sigma_u^+$ apparaissent aux longueurs d'ondes respectives : 675,5 , 580,4 et 585,4 nm. La variation de la concentration de N₂($B^3\pi_g$) par addition de CO à N₂⁴ est suivie sur l'évolution d'intensité de la bande 11-7, que l'on note $I_{L,R}$ ($N_2^4 + CO$).

L'intensité de cette bande dans la luminescence de l'azote activé, en absence de CO, est prise comme référence et notée I $_{L.R.}(N_2^{\bullet})$. Pour un τ donné, la variation relative de l'intensité du 1er système positif de l'azote par adjonction de CO à N_2^{\bullet} est définie par le rapport a :

$$a = \frac{I_{L.R.} (N_2^{*} + CO) - I_{L.R.} (N_2^{*})}{I_{L.R.} (N_2^{*})}$$

CO est ajouté sous une pression partielle notée P_{CO} , pour laquelle l'exaltation de l'intensité de la luminescence de L.R. est maximale (cf p 51).

A.II - Etude de la variation de la concentration de l'azote atomique $N({}^{4}S)$ par adjonction de CO à l'azote activé

Parmi les nombreuses méthodes de mesure de la concentration en atomesd'azote nous portons notre choix sur la Résonance Paramagnétique Electronique (R.P.E.). Avant toute mesure, on s'assure que les conditions de détection sont correctes : (cf chapitre l p 21).

- vérification de la non-saturation des signaux : l'amplitude du signal

R.P.E. varie comme la racine carrée de la puissance microonde incidente que l'on peut modifier à l'aide d'un atténuateur variable. Une variation de l'atténuation de x db entraîne une diminution de la puissance d'un facteur $10^{0,1}$ x. Le rapport des intensités de deux signaux R.P.E., enregistrés avec une différence d'atténuation de x db, doit donc suivre la relation : $\frac{I_2}{I_1} = 10^{0,05x}$;

- vérification de la relaxation de spin : l'azote activé que nous utilisons (qualité U) contient des traces d'impuretés (O_2) qui diminuent le temps de relaxation de spin des atomes d'azote. Nous nous assurons que cette relaxation est suffisante par adjonction de traces de O_2 à l'azote activé. (On observe une diminution du signal R.P.E. des atomes d'azote).

Pour un τ donné, la variation de la concentration en azote atomique par adjonction de CO à l'azote activé est définie par le rapport a' :

$$a' = \frac{I_{R.P.E.} (N_{2}^{*} + CO) - I_{R.P.E.} (N_{2}^{*})}{I_{R.P.E.} (N_{2}^{*})}$$

I (N_2^*) et I $(N_2^* + CO)$ désignent respectivement l'intensité du signal R.P.E. de N(⁴S) dans l'azote seul et dans le mélange $N_2^* + CO$. CO est ajouté sous une pression partielle pourlaquelle a' est maximum (cf p 31).

A.III - Etude de la variation de la concentration de $CO(d^3 \Delta)$ par adjonction de CO à l'azote activé

Lorsque l'on enregistre le spectre de l'azote activé entre 470 et 516 nm, on observe à 505,36 et 503,08 nm les bandes des transitions 11-5 et 12-6 du 1er système positif de N₂. Par adjonction de CO, on voit apparaître 6 bandes du système triplet de CO : $d^3\Delta - a^{3\pi}$.

La variation de la concentration de $CO(d^3 \Delta)$ est suivie sur l'évolution d'intensité de la tête de la bande 10-1, située vers le rouge (476,48 nm). On s'affranchit ainsi de l'émission éventuelle des bandes 2-16 et 3-17 du système β de NO. Le dispositif de détection photoélectrique utilisé pour cette étude est décrit dans le chapitre IV p 112. CO ajouté sous une pression partielle pour laquelle a (a') est maximum. (cf p34 de cette partie).

A.IV - Etude de la variation de la concentration de $CN(B^2\Sigma^+)$ par adjonction de CO à l'azote activé

Le spectre de l'azote activé réalisé entre 384,0 et 389,0 nm ne présente aucune bande. Par addition de CO, il apparaît dans cette zone une émission intense due au système violet de CN : $B^2\Sigma^+ - X^2\Sigma^+$. La variation de la concentration de CN($B^2\Sigma^+$) est suivie sur l'évolution de la bande O-O qui est la plus intense du système.

CO est ajouté sous une pression partielle pour laquelle a(a') est maximum. (cf p 34).

B - RECHERCHE D'UNE AMELIORATION DES CONDITIONS EXPERIMENTALES

```
B.I - Influence de la géométrie des canalisations véhiculant le 
<u>mélange</u> N_2^* - CO
```

Avant de réaliser l'étude cinétique, nous nous sommes attachés à déterminer les conditions expérimentales pour lesquelles a et a' tendent vers des valeurs maximales. Un premier travail effectué en R.P.E. nous permet d'étudier l'influence de la géométrie de l'appareillage en faisant varier le nombre de coudes des canalisations véhiculant le mélange N_2^* - CO.

La distance zone de mélange-zone d'observation notée l est égale à 3,8m pour chaque montage.

Le conduit d'arrivée de CO, situé en aval de deux coudes destinés à éliminer la lumière parasite due à la décharge, est à 0,40 m de la cavité microonde. La distance décharge-zone de mélange est notée d.

Les canalisations, avant leur première utilisation, sont traitées une fois à l'acide fluorhydrique dilué à 50%.

Le tableau ci-dessous indique les valeurs obtenues pour a', selon le montage utilisé.

P _N * 2 en Torr	e : : 	3 coudes	:	4 coudes	:	8 coudes	::	12 coudes
5	:	0,04	:	0,10	: : :	0,16	::	0,14
6	:		: :	0,11	:	0,173	:	0,155

D'après ces résultats, il semble qu'un nombre de coudes minimum (8 dans nos conditions expérimentales) soit nécessaire pour obtenir un mélange efficace.

Nous utilisons à nouveau les deux derniers montages pour évaluer a. On remarque que a et a' sont maxima par adjonction d'une même pression partielle de CO

montage P _{N2} en Torr	: : 8 coudes :	: : 12 coudes :
4	0,225	: 0,23 :
6,1	: 0,275	: 0,24
7,9	: 0,302	: 0,25 :
	:	:

En comparant les deux tableaux précédents, on constate que a et a' sont maxima pour la même géométrie d'appareillage : le montage à 8 coudes.

Dans le but d'améliorer encore nos conditions de travail, nous effectuons les mêmes mesures, en remplaçant le dispositif à 8 coudes par un mélangeur à spirale.

	: montage : PN2 : en Torr	Spirale	: : 8 coudes :
a	: : 6 :	0,17	: : 0,275 :
a'	: : 5 :	0,12	: : 0,23 :

Les résultats obtenus révèlent une efficacité supérieure du dispositif à 8 coudes.

B.II - Influence de la longueur et de la géométrie des canalisations entre la décharge et l'arrivée de CO

B.II.1) Influence de la distance décharge-arrivée de CO

La distance entre la décharge et l'arrivée de CO est au minimum égale à 0,40m. Cette contrainte est imposée par l'existence de 2 coudes, juste après la cavité, destinés à éliminer la lumière parasite.

Une étude de a en fonction de d montre que a décroît linéairement quand d augmente.

Pour l = 2,60m et ${\tt P_{N_2}^{\bullet}}$ = 6 Torr, les résultats sont résumés dans le tableau suivant :

d en m.	0,40	0,80	1,20	1,60
a	0,23	0,12	0,00	-0,09

On observe que pour d supérieur à 1,20m. l'addition de CO provoque une diminution de l'intensité des bandes du ler système positif de N $_2$ (a < O)

B.II:2) Influence de la géométrie des canalisations entre la décharge et l'arrivée de CO

Lorsque CO est admis dans le prolongement du tube traversant la cavité, a diminue fortement.

Cette étude, faite avec un dispositif à 8 coudes dont 1 = 2,60m donne les résultats suivants :

d en m.	:	a	: P _N	* 2
0,40	:	0,01	: : 6 :	
0,40	::	0,02	: : 8 :	
0,60	: ,, :	0,05	: : 6 :	
0,60	::	0,03	: : 8 :	

Une augmentation de d provoque cette fois une très légère augmentation de a. Mais ces résultats ne sont pas compétitifs avec ceux obtenus lorsque l'arrivée de CO n'est pas dans le prolongement de la décharge :

> avec d = 0,40 m a = 1,23 pour $P_{N_2}^* = 6$ Torr a = 1,30 pour $P_{N_2}^* = 8$ Torr

B.IIL3) Conclusion

Le dispositif permettant d'observer une exaltation maximale de I et de I par adjonction de CO à l'azote activé est représenté L.R. par le schéma suivant :

Il nécessite l'existence d'un tube coudé entre la décharge et le conduit d'arrivée de CO et de nombreux coudes entre la zone de mélange N_2^{\bullet} CO et la zone d'observation. Il semble que ces conditions soient liées à des considérations d'écoulement du flux gazeux.

C - ETUDE CINETIQUE

L'évolution de la concentration des espèces N₂ ($B^3\pi_g$), N(⁴s), Co(d³ Δ), CN($B^2\Sigma^+$) est suivie, pour plusieurs pressions d'azote activé ($P_{N_2^*}$) :

- en fonction de la pression partielle de CO

- en fonction de la distance zone de mélange-zone d'observation (l). τ étant directement proportionnel à l, ce travail est une étude cinétique de l'évolution de la concentration de chacune des espèces ci-dessus citées.

C.I - Evolution des concentrations de N₂($B^{3}\pi_{g}$), N(^{4}S), Co($d^{3}\Delta$) et CN($B^{2}\Sigma^{+}$) en fonction de la pression partielle de CO ajoutée

Pour chaque valeur de τ , l'évolution de la concentration de chacune des espèces est suivie en fonction de la quantité de CO ajoutée (notée P_{CO}).

Nous faisons les observations suivantes :

- a et a' sont maxima pour une même pression partielle de CO, quels que soient τ et (4 $\leq P_{N_2}^{*} \leq 6$) Torr.

- la concentration en Co $(d^3 \Delta)$ est maximum par adjonction d'une pression partielle de CO bien supérieure (d'environ un facteur 10) à celle pour laquelle a et a' sont maxima. Pour de telles pressions :

 $\mathbf{I}_{\mathbf{L}.\mathbf{R}.} (\mathbf{N}_{2}^{*} + \mathbf{CO}) < \mathbf{I}_{\mathbf{L}.\mathbf{R}.} (\mathbf{N}_{2}^{*}) \text{ et } \mathbf{I}_{\mathbf{R}.\mathbf{P}.\mathbf{E}.} (\mathbf{N}_{2}^{*} + \mathbf{CO}) < \mathbf{I}_{\mathbf{R}.\mathbf{P}.\mathbf{E}.} (\mathbf{N}_{2}^{*}).$

Les résultats obtenus pour CN (B $^{2}\Sigma^{+}$) sont identiques à ceux de CO (d $^{3}\Delta$).

C.II - Evolution des concentrations de
$$N_2(B^3\pi)$$
, $N(4S)$, $Co(d^3\Delta)$ et
 $CN(B^2\Sigma^+)$ en fonction du temps de contact τ

L'évolution de la concentration de chaque espèce par adjonction de CO est étudiée en fonction de τ , pour différentes pressions d'azote.

CO est ajouté sous la pression partielle pour laquelle a et a' sont maxima.

L'étude des courbes obtenues (cf courbes n°1 à 4) conduit aux observations suivantes :

- pour (4 $\leq P_{N_2}^{*} \leq 6$) Torr et (0,26 $\leq_{\tau\leq0}$,92)s, a croît avec τ jusqu'à un maximum pour $\tau=0,47s$, puis décroît. Pour $\tau>0,75s$, a < 0 : la concentration en $N_2(B^3\pi_g)$ dans des niveaux vibrationnels élevés est inférieure à celle existant dans l'azote activé (courbe n°1).

- pour (4 $\mathbb{P}_{N_2^*} \leq 6$) Torr et (0,26 $\leq \tau \leq 0.72$)s, a croît avec τ . Aucune mesure n'a été effectuée pour $\tau > 0.72$ s (courbe n°2).

- pour $(4 \leq P_{N_2}^{\bullet} \leq 8)$ Torr et $(0, 26 < \tau < 0, 77)$ s , la concentration en CO $(d^3 \Delta)$ décroît quand τ croît (courbe n°3).

- pour $P_{N_2}^{\bullet} = 4$ Torr et $(0,31 \le \tau \le 0,92)$ s , la concentration en $CN(B^2\Sigma^+)$ est constante. Pour $(6 \le P_{N_2}^{\bullet} \le 8)$ Torr, et $(0,26 \le \tau \le 0,77)$ s , cette dernière décroît pour $\tau > 0,35$ s, avec un maximum marqué à $\tau = 0,35$ s (courbe n°4).

L'étude de l'évolution en fonction de $l(\tau)$ de la concentration en $CO(d^3 \Delta)$ et en $CN(B^2\Sigma^+)$ lorsque CO est ajouté sous la pression partielle pour laquelle la concentration de ces deux espèces est maximale, conduit à des résultats identiques.

D - CONCLUSION

L'étude de la variation de population des niveaux vibrationnels élevés de $N_2(B^3\pi)$ en fonction de τ a permis de mettre en évidence deux processus réactionnels :

- l'un, observé pour de faibles t,est caractérisé par une diminution de population des niveaux vibrationnels élevés de la molécule d'azote dans l'état $B^3\pi_g$. Cet effet a déjà été constaté par de nombreux auteurs (83), - l'autre, apparaissant pour des τ élevés, se manifeste par une augmentation de la population des hauts niveaux vibrationnels (essentiellement v' = 12) (95), de N₂ ($B^3\pi_g$). Ce comportement révèle l'existence d'un mécanisme de formation de cet état dont une des étapes est de cinétique lente. Cette dernière pourrait être l'excitation de CO dans des niveaux vibrationnels élevés par des échanges d'énergie lors de collisions avec N₂ ($X^1\Sigma_g^+$)_v⁴. Le processus responsable de l'exaltation de l'intensité de la luminescence de L.R. mettrait en jeu la réaction de CO($X^1\Sigma^+$)_v⁴ avec une espèce de longue durée de vie et hautement énergétique. Il pourrait s'agir de N₂ ($A^3\Sigma_u^+$). (96) (97)

<u>2ème partie</u> : ETUDE DE L'EFFET DE LONG CONTACT ENTRE L'AZOTE ACTIVE ET LE MONOXYDE DE CARBONE

Les résultats précédemment exposés constituent une première approche de la compréhension des mécanismes des réactions de l'azote activé avec le monoxyde de carbone. Des études complémentaires sont indispensables pour une meilleure maitrise des phénomènes.

- L'augmentation de la population des niveaux vibrationnels élevés de $N_2(B^3\pi_g)$ (et de la concentration en atomes d'azote) semble liée à des conditions d'écoulement du flux gazeux ou à l'influence des parois. Des renseignements complémentaires sont nécessaires pour préciser les facteurs responsables de cette exaltation. Une modification de l'état des parois permet de préciser l'intervention éventuelle de réactions en phase hétérogène. L'observation sélective des réactions en phase homogène est possible par revêtement des parois avec une substance les rendant inactives.

- Une étude <u>simultanée</u> de l'influence de l'addition de CO à l'azote activé sur la concentration des atomes d'azote d'une part, et d'autre part sur celle de $N_2(B^3\pi_g)$ est indispensable pour appréhender les mécanismes des réactions mises en jeu. En particulier, il convient de vérifier si la relation de proportionnalité entre $I_{L.R.}$ et le carré de la concentration en atomes d'azote satisfaite dans l'azote activé, l'est encore en présence de CO quel que soit le temps de contact. Par adjonction de CO à l'azote activé, Brunetti et coll. observent, au niveau de la zone de mélange, une diminution de la répartition de population des hauts niveaux vibrationnels de $N_2(B^3\pi_g)$ qu'ils attribuent à une efficacité du mécanisme I supérieure à celle du mécanisme II (83) :

$$N + N + N_2 (x^1 \Sigma_g^+) \rightarrow N_2 (B^3 \pi_g) + N_2 (x^1 \Sigma_g^+)$$

Ι

II

$$N + N + CO(X^{T}\Sigma^{+}) \rightarrow N_{2}(B^{T}\pi_{g}) + CO(X^{T}\Sigma)^{+}$$

Les constantes de désactivation de $N_2 \begin{pmatrix} B^3 \pi \\ g \end{pmatrix} v$ élevé par N_2 et CO ont des

valeurs voisines.

Dans le cadre de cette hypothèse, une diminution de I L.R. entraînerait conjointement une augmentation de la concentration en azote atomique $N({}^{4}S)$. Selon Wright et Winkler, l'addition de NH_{3} à l'azote activé provoque une augmentation de la concentration en atomes d'azote et une diminution de I (cf chapitre I p22).(71)

- Une évaluation précise des valeurs absolues du temps de contact est nécessaire pour une étude cinétique correcte. Elle implique la mesure du flux gazeux véhiculé dans les canalisations.

A - INFLUENCE DES DIFFERENTS PARAMETRES

L'influence de l'adjonction de CO à l'azote activé, que nous étudions en régime dynamique, met en jeu de nombreux paramètres. Seule, une parfaite maitrise du rôle de chacun d'eux peut conduire à une amélioration de la compréhension des phénomènes observés. Dans ce but, nous étudions leurs influences et leurs interférences sur le système.

dénomination	: définition
d	: distance décharge-zone de mélange :
L	: distance décharge-zone d'observation
1	: distance zone de mélange-zone d'observation
W	: puissance du générateur
Q	: débit du flux gazeux
P _N *	: pression d'azote activé
P _i ²	pression partielle du gaz i ajouté
τ	: temps de contact
Φ	diamètre interne des canalisations
n	nombre de traitements des canalisations à HF 50%
revêtement des parois	revêtement des parois (partiel ou total) avec du phtalate de dibutyle ou de l'acide phosphorique
géométrie des	: tubes en ligne droite ou tubes coudés (8 fois)
canalisations a	$a = \frac{I_{LR}(N_2^{\bullet} + CO) - I_{LR}(N_2^{\bullet})}{I_{LR}(N_2^{\bullet})} = $ variation de I par adjonction de LR CO à N_2^{\bullet}
a'	$a' = \frac{I_{RPE}(N_2^* + CO) - I_{RPE}(N_2^*)}{I_{RPE}(N_2^*)} = \frac{\text{variation de } I_{RPE} \text{ par}}{\text{adjonction de CO à } N_2^*}$

A.I - Définitions des paramètres

Le dispositif de détection photoélectrique du premier système positif de l'azote est décrit dans le chapitre IVp114. La dispersion du monochromateur utilisé ne permet pas de séparer les émissions des bandes 12-8, 11-7 et 10-6 de ce système. La variation de la concentration en $N_2(B^3\pi_g)_v$ élevé par addition de CO à N_2^{\bullet} est suivie sur l'évolution de la somme des intensités de ces 3 bandes dénommées $I_{L.R.}(N_2^{\bullet} + CO)$. La somme de leurs intensités dans N_2^{\bullet} seul est prise comme référence et est notée $I_{L.R.}(N_2^{\bullet})$.

A.II - Influence de la distance décharge-zone de mélange sur l'évolution de l'intensité de la luminescence de Lewis Rayleigh par addition de CO à l'azote activé

Le montage utilisé pour cette étude est représenté par le schéma ci-dessous :

Les canalisations, en pyrex, ont un diamètre interne Φ = 10mm. En aval de l'arrivée de CO, le dispositif est linéaire. Au cours de l'étude, l reste constant et égal à 1,20m - d et L varient simultanément et dans le même sens.

Pour deux pressions d'azote et différentes valeurs de d ; nous calculons les valeurs de a correspondantes :

	P _N • en To d en m	r. :	4	:	6
$a = f(P_{N_2}, d)$	0,20	:	0,30	:	0,25
$\tau = cste$	0,40	:	0,20	:	0,15
	0,95	:	0,15	:	0,10

Le résultat de l'étude de l'évolution de a en fonction de 1 réalisée à d = $\frac{\text{cste}}{0,40\text{m}}$ (cf partie I § C.II) nous permet d'établir que pour une pression d'azote activé comprise entre 4 et 8 Torr, a croît quand l croît (si L = d + l < 4,10m). Cependant cette augmentation de a peut être attribuée soit à l, soit à L. L'étude de la variation de a en fonction de d, réalisée à l = cste, permet d'élucider ce point : a diminue quand d croît (L = d + l < 4,10m). Donc l'augmentation de a observée dans le cas précédent est bien due à celle de l.

Par addition de CO à l'azote activé, I est donc très sensible à la distance entre la décharge et le point de mélange des deux gaz. Dans toute la suite du travail, cette distance reste constante et égale à 0,40m.

A.III - Influence de la puissance du générateur microonde (W) à pression d'azote activé constante sur la concentration en atomes d'azote et sur la concentration en $N_2(B^3\pi_q)$

Les deux études qui suivent sont réalisées avec le montage décrit dans le paragraphe précédent. L'observation s'effectue à 2,20m du point de mélange des deux gaz : l = 2,20m. Pour une pression d'azote activé $P_{N_2}^*$ = 6T, on fait varier W entre 20 et 100 W.

W(en watt)	20	40	60	80	100
$I_{RPE}(N_2^{\bullet})$	67	76	79	80	82
I _{RPE} (N ⁺ +CO)	88	105	111	115	117
: a' : :	0,31	0,38	: : 0,40 :	: 0,44 : 0,44	0,43
$I_{LR}^{(N^{\bullet}_{2})}$:	233	326	: : 360 :	: 368 : 368	379
I _{LR} (N ₂ ⁺ +CO):	295	512	: : 579 :	: 610 : 610	630
a : :	0,27	0,57	: : 0,61 :	: : 0,66 :	0,66

a = f(W) a' = f(W)

D'après les résultats rassemblés dans le tableau précédent, on constate que à τ donné et $P_{N_2}^{~~}$ = cste :

- pour W > 40 watt, la concentration en azote atomique N(${}^{4}S$) et en N₂(B³ π_{α}) est indépendante de W

- a et a' augmentent quand $(N_2(B^3\pi_q))$ et $(N(^4S))$ augmentent.

A.IV - Etude du débit d'azote activé : $Q_N \bullet$

Les résultats exposés dans la lère partie de ce chapitre (§ B et C) conduisent à conclure que a est très sensible d'une part à la géométrie des canalisations, et, d'autre part au temps de contact entre N_2^* et CO :

- pour l donné, les valeurs de a obtenues avec des tubes coudés sont supérieures à celles obtenues avec des tubes linéaires((4 $\leq P_{N_2}^* \leq 8$)Torr d = 0,40m),

- pour un montage donné, a croît avec l (donc avec τ) jusqu'à un maximum (l \simeq 3,70m), puis décroît quand l(τ) augmente.

Afin d'élucider le rôle de ces paramètres, nous nous assurons, dans leur domaine de variation et dans la limite de précision des mesures, qu'une modification de la longueur, du diamètre ou de la géométrie des canalisations n'entraîne pas une variation du débit, donc de τ.

A.IV.1) Evaluation du débit par la mesure du volume gazeux évacué

Pour évaluer le débit par la mesure du volume gazeux évacué, on utilise le dispositif décrit dans le chapitre IV p 109.

a) Influence de la longueur des canalisations

Cette étude est réalisée avec un dispositif linéaire. Les canalisations ont un diamètre intérieur de 10mm, et leur longueur varie entre 1,80m et 3,65m.

Le débit du gaz véhiculé à l'intérieur de ces canalisations est mesuré pour trois valeurs de $P_{N_2}^{\bullet} = 3 - 6$ et 8 Torr.

1 en m $P_{N_2}^* \text{ en } T$: : :	1,80	:	2,70	:	3,65	: : % :	écart
3	:	1,3	:	1,4	:	1,4	:	0-4
6	: : :	1,9	:	1,8	::	1,9	: : :	0-3
8	:	2,2	:	2,2	:	2,3	:	0-3

 $Q_{N_2}^*$ (en m³/h) = f(P_{N_2}^*, 1) Φ = 10 mm

Le débit varie avec la pression, mais est indépendant de la longueur des canalisations.

b) Influence de diamètre des canalisations

Le dispositif choisi est linéaire. Les canalisations utilisées ont une longueur constante égale à 1,80m, mais leur diamètre intérieur varie : Φ = 10mm et 25mm.

¢ en mi	n : :	10	:	25	: : % écart :
PN2 en T	<u>\:</u>		:		:
_	:		:		:
3	:	1,3	:	1,4	: 4
			:		
6	:	1,9	:	2,1	: : 5
			:		
_	:		:		:
8	:	2,2	:	2,2	: 0
	:		:		:

$$Q_N^{(en m^3/h)} = f(P_{N_2}^{(en m^3/h)}, \phi)$$

 $1 = cste$
Le débit est indépendant

du diamètre des canalisations.

c) Influence de la géométrie des canalisations

- Utilisation d'un montage coudé (8 coudes)

Nous avons comparé les résultats obtenus pour un montage coudé et un montage linéaire. $Q_{N_2}^{\bullet}$ (en m³/h) = f(P_{N_2}^{\bullet}, géométrie des canalisations)

		6		<u> </u>	
$\begin{array}{c} \text{montage} \\ P_{N_2} \\ \end{array} en T \\ \end{array}$:	linéaire	:	8 coudes	: : % écart :
3	:	1,4	:	1,3	: 4
6	:	1,9	:	2	: 3
8	:	2,3	:	2,3	: 0

montage P _{N2} en T	: linéaire	: colonne : vigreux :	: : % écart :
3	1,4	: 1,3	: 4 :
6	2,1	: 2,0	3
8	2,2	: 2,3	3

- Influence de la géométrie interne des parois

 $Q_{N_2}^{\bullet}$ (en m³/h) = f(P_{N_2}^{\bullet}, géométrie interne des canalisations) L'utilisation successive d'une canne de pyrex ordinaire et d'une colonne vigreux nous permet de modifier la géométrie interne des canalisations. Celles-ci ont un diamètre intérieur de 25mm et une longueur de 1,80m. Le débit est indépendant de la géométrie des canalisations.

d) Fiabilité des résultats

Le travail expérimental s'étant déroulé au cours de plusieurs mois, nous avons vérifié que le régime de la pompe ne varie pas au cours du temps ainsi qu'en témoigne le tableau ci-dessous :

$P_{N_2}^4$ en T	: : Janvier 80 :	:	Octobre 80	::	% écart
6	: : 1,8 :	::	1,8	::	0
8	: 2,3 :	:	2,2	::	3

Etude de la variation du débit de la pompe au cours du temps. Les mesures sont effectuées avec des canalisations linéaires de 10mm de diamètre et de 2,70m de long.

e) Conclusion

Pour une $P_{N_2}^*$ donnée, le débit est indépendant de la longueur, du diamètre et de la géométrie des canalisations, dans la limite de précision des mesures.

On mesure le temps mis par la luminescence pour parcourir une distance connue.

Pour la fiabilité des mesures, nous utilisons des tubes dont le diamètre est égal à 50mm et la longueur à 1,40m.

Les débits (Q' $_N^{\star}$) ainsi obtenus sont comparés à ceux (Q $_N^{\bullet}$) obtenus par la méthode A.IV.1

P _N * en T	:	temps en s	: : :	Q' _{N2} m ³ /h	::	Q _N [*] m ³ /h	:	% écart
3	: : :	7,8	::	1,3	::	1,4	::	4
6	::	5,5	::	1,8	:	2,1	: : :	8
8	:	5	:	2	::	2,3	:	7

Dans la limite de précision des mesures, les résultats obtenus par chacune des deux méthodes sont en bon accord.

A.IV.3) Mesure du débit avec un rotamètre à flotteur

Un rotamètre ROTA L16/640, dont les courbes d'étalonnage sont fournies par le constructeur est placé avant la pompe. Les débits $Q_{N^*}^{"}$ ainsi obtenus sont comparés à ceux $Q_{N^*}^{"}$ obtenus par la méthode A.IV.1, pour des canalisations de 10mm de diamètre et de 1,80m de long.

P∳ en Torr N2	: :Q" _{N2}	en m ³ /h	: :Q _N	en m ³ /h	:	% écart
3	:	1,4	: : :	1,3	::	4
6	:	1,7	:	1,9	::	6
8	:	2	: :	2,2	::	5

Dans la limite de précision des mesures, l'évaluation du débit est reproductible, quelle que soit la méthode employée.

A.V - Evaluation du temps de contact en fonction du diamètre et de la longueur des canalisations, de la pression et du débit d'azote activé

Nous avons précédemment défini le temps de contact entre deux gaz, par la durée de transit de ces gaz entre le point de mélange et la zone d'observation. Dans un système caractérisé par $1, \Phi$ et $P_{N_2}^{\bullet}$ $(Q_{N_2}^{\bullet})$, le temps de contact τ , est donné par la formule :

$$\tau = \frac{\pi \left(\frac{\Phi}{2}\right)^2 1}{\frac{Q_N}{N_2}}$$

La modification du débit provoquée par adjonction de CO est négligeable. Pour des P_N^{\bullet} variant entre 2 et 10 Torr, et des canalisations de 10, 16, 26 et 50mm de diamètre intérieur, τ est calculé à partir du débit évalué par la méthode A.IV.1.

Q_{N2}* τens pression en m^3/h en Torr $\Phi = 16 \text{mm}$ Φ=26mm ∮=50mm $\Phi = 10 \text{mm}$: : : : : 2 0,68 0,413 1 1,058 1 2,794 1 10,39 1 : 3 1,37 0,207 1 0,529 1 1,397 1 5,16 1 : 0,415 1 4 1,74 0,162 1 1,096 1 4,06 1 : 5 0,369 1 0,975 1 1,96 0,144 1 3,61 1 : 0,135 1 0,346 1 0,914 1 3,38 1 6 2,09 : 7 2,21 0,128 1 0,327 1 0,863 1 3,20 1 : 2,28 0,124 1 0,317 1 0,838 1 3,10 1 8 : 9 0,310 1 3,03 1 2,33 0,121 1 0,820 1 : 10 0,305 1 0,806 1 2,98 1 2,37 0,119 1

Le tableau suivant donne $\tau = f(P_{N_2}^{\bullet}, \Phi, 1)$.

A.VI - Influence de la valeur du débit d'azote sur l'évaluation du temps de contact

La mesure du débit par les trois méthodes précédemment décrites nous permet d'obtenir, pour chaque pression d'azote, un couple de valeur encadrant l'estimation de $Q_{N_n^4}$

- à 6 Torr
$$(1,7 \le Q_N^* \le 2,1) \text{ m}^3/\text{h}$$

- à 8 Torr $(2 \le Q_N^* \le 2,3) \text{ m}^3/\text{h}$

A partir de ces valeurs, nous déduisons l'erreur sur l'évolution du temps de contact.

Les résultats sont rassemblés dans le tableau ci-après (p 52).

Pour chaque diamètre de canalisation, $\mathbb{P}_{N_{2}}^{\bullet} = 6$ et 8 Torr et plusieurs valeurs de l (l = 0,50m, 1m, 3m), les valeurs limites du temps de contact et le pourcentage d'écart par rapport à la valeur moyenne sont calculés.

L'erreur sur τ est d'autant plus importante que Φ est petit: - pour Φ = 10mm et (0,06 $\leq \tau \leq 0,5$)s , (6 $\leq \frac{\Delta \tau}{\tau} \leq 13$)% - pour Φ supérieurs et (0,13 $\leq \tau \leq 12,5$)s, (7 $\leq \frac{\Delta \tau}{\tau} \leq 11$)%

A.VII - Influence de la pression partielle de CO : P_{CO}

Le dispositif expérimental relatif à cette étude est décrit dans le chapitre IV p 109.

Pour chaque temps de contact, l'évolution de la concentration de N₂($B^3\pi_g$) et de N(⁴S) est suivie en fonction de la quantité de CO ajoutée. Les courbes représentatives de cette étude présentent toutes un maximum.

D'autre part, la concentration de chacune de ces espèces est maximale : (a et a' sont maxima) :

- à t donné, pour une même pression partielle de CO : P_{CO} (ce résultat n'est pas inattendu compte tenu de la loi de proportionnalité, bien connue entre I_{L.R.} et la concentration en azote atomique (cf p 18). - quel que soit τ , pour la même fraction molaire de CO = x_{CO} . ($x_{CO} = \frac{P_{CO}}{P_{totale}}$). On constate d'autre part que x_{CO} est très faible devant $x_{N_2}^*$ (fraction molaire d'azote activé dans le mélange $x_{N_2}^* = 1 - x_{CO}$).

τ(s)	0,32	0,35	0,39	0,43	0,83	0,90
× _{co}	0,023±0,008	0,030±0,01	0,023±0,008	0,028±0,01	0,020±0,007	0,025±0,009

	ω	1,580 J 1,760	7	3 , 070	3,530	7	9,220 J	10,600	7
50	 9	1,680 , 2,080	11	3,360	4,160	<u>0</u>	10,100 L	12,470	10
26	ω	0,415 1 0,475	7	0,830	0,950	7	2,490		7
	9	0,455 l 0,560	10	0,910	1,120	10	2,730 L	3,370	10
16	œ	0,155 J 0,180	7	0,310 J	0,360	ω	0,940 L	1,080	2
	9	0,130 0,210	10,5	0,340 J	0,420	10	1,030 ,	1,280	10
	ω	0,070 \$ 0,085	12,5	0,140 J	0,170	10	0,370	0,420	Q
10	و	0,065 € 0,085	13	0,130	0,170	13	0,400	0,500	=
¢ en mm	P _N ⁺ en Torr	en d en d	% écart	F-	en`s	% écart	ч	ens	% écart
L en m		0,50					 M	•	

Estimation expérimentale de la précision du temps de contact.

BUS

Dans la suite du travail, quelles que soient les conditions expérimentales, la pression partielle de CO ajoutée (P_{CO}) est celle pour laquelle a et a' sont maximum (cf p 51).

A.VIII - Influence de l'état des parois

D'après les résultats obtenus au cours de l'étude préliminaire, il semble que la géométrie des canalisations véhiculant le mélange N_2^* - CO joue un rôle important (cf partie I § B) : pour des pressions d'azote activé, comprises entre 4 et 8 Torr et pour d = 0,40m, il apparaît qu'un nombre de coudes minimum soit nécessaire pour obtenir les valeurs maximales de a et a': ces coudes pouvant favoriser le mélange des gaz.

Des mesures de a réalisées avec des canalisations linéaires ayant subi de très nombreux traitements à HF 50% conduisent à des valeurs supérieures à celles précédemment obtenues avec le dispositif coudé. Cette observation inattendue implique qu'un facteur autre que l'efficacité du mélange est responsable de la variation d'exaltation de I L.R. Il pourrait s'agir d'une modification du nombre de centres actifs des parois, celui-ci étant d'autant plus élevé que le nombre de traitement des canalisations à HF 50% augmente. Ce nouveau paramètre nous conduit à supposer l'existence d'un mécanisme réactionnel se déroulant en phase hétérogène. Dès lors, il semble que des mesures réalisées avec des parois recouvertes de substances inhibitrices de la recombinaison des atomes d'azote puissent nous permettre d'étudier les mécanismes spécifiques à la phase homogène.

Le dispositif décrit dans le chapitre IVp110permet d'obtenir un revêtement uniforme. Pour tout nouveau montage, on procède à un dégazage soigné. Avant chaque série de mesuresréalisée pour des parois "non-recouvertes", les canalisations sont systématiquement traitées à HF dilué à 50%, rincées à l'eau distillée, au méthanol puis à l'éther.

A.IX - Conditions expérimentales de l'étude de la réaction N_2^{+} - CO

Pour une pression d'azote activé donnée et un diamètre de canalisation donné, a et a' sont étudiés en fonction du temps de contact. Cette étude est réalisée pour différentes pressions d'azote activé, différents diamètres de canalisations et différents états de parois.
Afin de s'affranchir d'éventuelles perturbations consécutives à la faible augmentation de pression provoquée par l'adjonction de CO après la décharge, nous étudions, parallèlement, l'influence de l'addition de N₂ (ainsi que de gaz rares, de O₂ et de SF₆).

La pression partielle du gaz ajouté est toujours égale à P_{CO}.

Les évolutions de I $_{L.R.}$ et de la concentration en atomes d'azote N(⁴S) par adjonction de N₂ sont respectivement suivies sur la variation des rapports b et b'

$$b = \frac{I_{L.R.} (N_2^{*} + N_2) - I_{L.R.} (N_2^{*})}{I_{L.R.} (N_2^{*})} ; b' = \frac{I_{RPE} (N_2^{*} + N_2) - I_{RPE} (N_2^{*})}{I_{RPE} (N_2^{*})}$$

 $I_{L.R.} (N_2^* + N_2) et I_{RPE} (N_2^* + N_2) désignent respectivement l'intensité de la luminescence de L.R. et l'intensité du signal RPE par adjonction d'azote à l'azote activé.$

A.X - Influence de la pression d'azote activé : $\mathtt{P}_{N_2}^{~~ \bigstar}$

On étudie, pour plusieurs pressions d'azote activé $P_{N_2}^{*}$, et un diamètre Φ donné, la variation en fonction du temps de contact, de l'I_{L.R.} par addition de CO à l'azote activé (courbes n°5 et 6), et par addition de N₂ à l'azote activé (courbes n°7 et 8).

A τ donné et Φ donné, a et b sont indépendants de $P_{N_2}^{\bullet}$ pour $(4 \leq P_{N_2}^{\bullet} \leq 8)$ Torr. Pour $P_{N_2}^{\bullet} = 2$ torr,l'adjonction de CO ou de N_2 à l'azote activé provoque un effet moins marqué que celui qui est observé aux pressions supérieures.

B - ETUDE SIMULTANEE DES CONCENTRATIONS EN $N_2(B^{3}\pi_g)$ ET EN $N(^{4}S)$:

Cette étude est réalisée à l'aide du dispositif décrit dans le chapitreIV p 116.

Les conditions de mesure en R.P.E. sont indiquées dans la partie I § AII de ce chapitre.

B.I - Relation entre l'intensité de la luminescence de Lewis Rayleigh et la concentration en azote atomique lors de l'addition de gaz étrangers à l'azote activé

Dans l'azote activé seul, pour $(1 \leq P_N^* \leq 10)$ Torr, I est proportionnelle au carré de la concentration en atomes d'azote (cf p 18).

On effectue une étude comparative de la relation existant entre $I_{L.R.}$ et $(N({}^{4}S))$ dans les trois cas suivants : - azote activé seul - azote activé + CO

- azote activé + N₂

Pour chaque montage et plusieurs pressions d'azote activé, on mesure simultanément $I_{L.R.} \begin{pmatrix} N_2^* \end{pmatrix}$ et $I_{R.P.E.} \begin{pmatrix} N_2^* \end{pmatrix}$, $I_{L.R.} \begin{pmatrix} N_2^* + CO \end{pmatrix}$ et $I_{R.P.E.} \begin{pmatrix} N_2^* + CO \end{pmatrix}$, $I_{L.R.} \begin{pmatrix} N_2^* + N_2 \end{pmatrix}$ et $I_{R.P.E.} \begin{pmatrix} N_2^* + N_2 \end{pmatrix}$.

Une modification de la pression d'azote activé et l'utilisation de dispositifs de longueurs différentes conduisent à des temps de contact variant entre 0,4 et 3 s. Les canalisations sont coudées, et $\Phi = 10$ mm.

Pour chaque montage et chaque $P_{N_2}^{\bullet}$, nous calculons les rapports $\frac{I_{LR}}{(I_{RPE})^2}$ dans chacun des trois cas d'études ci-dessus cités. On désigne respectivement par α , β , γ ce rapport pour N_2^{\bullet} seul, pour N_2^{\bullet} + CO et pour N_2^{\bullet} + N_2 . Pour un montage donné, et pour une pression d'azote activé i donnée, $\langle \alpha_i \rangle$, $\langle \beta_i \rangle$, $\langle \gamma_i \rangle$ représentent une moyenne de trois mesures effectuées dans des conditions de détection de $I_{L.R.}$ et $I_{R.P.E.}$ identiques et pour un même état de parois (ces mesures sont effectuées les unes à la suite des autres).

Chaque valeur α_{m} , β_{m} , γ_{m} représente la moyenne des rapports $\langle \alpha_{i} \rangle$, $\langle \beta_{i} \rangle$, $\langle \gamma_{i} \rangle$, obtenus pour les trois pressions de travail, dans des conditions identiques d'état de parois et de détection de I_{L.R.} et I_{R.P.E.} Pour chacune d'entre'elles, on calcule le pourcentage d'écart par rapport à la valeur moyenne.

P_i en Torr	1 ^e mes.	: 2 ^e mes. :	3 ^e mes.	$\frac{1}{2} \frac{10^2}{10^2}$: α : α : m	Δα _m α _m
2	2,15	: : 2,14 :	2,15	: : 2,15 :	: :	
6	2,26	: : 2,24 :	2,27	: : 2,26 :	:2,23.10 ⁻² :	3,5 %
8	2,27	: 2,27 :	: 2,28 :	: : 2,27 :	: : : : : :	

Etude de α , β , γ en fonction de $P_{N_2}^*$ pour le montage n°1 (0,4 < τ < 1,2)s

Etude de $\alpha = \frac{I_{L.R.}}{(I_{R.P.E})^2}$ pour N_2^{\star} en fonction de $P_{N_2}^{\star}$ et de τ

P_i en Torr	le mes.	2e mes.	3e mes.	< _{βi} >10 ²	: β _m : : β	Δ _m β _m
2	1,99	2	: 1,99	: : 1,99 :	: :	
6 :	2,20	2,10	2,10	: 2,10 :	2,04.10 ⁻²	3 %
8 :	2,03	2,04	2,01	: 2,03 :	: : : :	

Etude de $\beta = \frac{I_{L.R.}}{(I_{R.P.E})^2}$ pour N_2^* + CO en fonction de $P_{N_2}^*$ et de τ

P_i , 10^2 en Torr	le mes.	2e mes.	3e mes.	<γ _i >10 ²	: : : Y _m : : :	$\frac{\Delta \gamma_m}{\gamma_m}$
2	2,22	2,21	2,20	: : 2,21 :	: : : :	
6	2,38	2,39	2,36	: : 2,38 :	2,27.10 ⁻²	5 %
8	2,20	: 2,21	2,21	: : 2,21 :	· · · · · ·	
	IL.I	R.	* . N	fonstion	d= D * at 3	(BUS LULE)

Etude de $\gamma = \frac{L.R.}{(I_{R.P.E})^2}$ pour $N_2^* + N_2$ en fonction de $P_{N_2}^*$ et de τ

Tableau II

Etude de α , β , γ en fonction de $P_{N_2^*}$ pour le montage n°6 (0,95 < τ < 3,1)s

P_i en Torr	2:	1e mes	:	2e mes.	3e mes.	$\frac{1}{2} \frac{1}{2} \frac{1}$: : a _m	$\frac{\Delta \alpha_{\rm m}}{\alpha_{\rm m}}$
2	::	2,80	:	2,82	2,82	: : 2,82 :	: :	:
6	: : :	2,81	:	2,83	2,83	: : 2,83 :	: :2,83.10 ⁻²	0,5 %
8	: : :	2,83	:	2,84	2,83	: 2,83 :	: :	

Etude de $\alpha = \frac{I_{L.R.}}{(I_{R.P.E})^2}$ pour N_2^* seul en fonction de $P_{N_2}^*$

$P_{i} \beta_{i} \cdot 10^{21}$ en Torr	le mes.	: 2e mes. :	3e mes.	: :<β _i >10 ⁻² :	β m	$\frac{\Delta \beta_{m}}{\beta_{m}}$
2	2,55	: : 2,57 :	2,55	: : 2,56 :	: :	
6	2,58	: : 2,58 :	2,57 :	: : 2,58 :	: :2,59.10 ⁻² :	1,5 %
8	2,64	: : 2,64 :	2,62	: : 2,63 :	: : : :	

Etude de $\beta = \frac{I_{L.R.}}{(I_{R.P.E})^2}$ pour N_2^* + CO en fonction de $P_{N_2}^*$

P_i en Torr	ie mes.	2e mes.	3e mes.	: :< _{Yi} >10 ⁻² :	Υ _m	$\frac{\Delta \gamma_m}{\gamma_m}$
2	: : 5,50 :	: : 5,40 :	: : 5,52 :	: : 5,47 :	: :	
6	: : 3,64 :	: : 3,61 :	: 3,60	: : 3,62 :	4,2.10 ⁻²	30 %
8	: : 3,51 :	: : 3,51 :	: : 3,52 :	: : 3,51 :	: :	
	I LR.		•			ULLE

Etude de $\gamma = \frac{IR.}{(I_{R,P,E})^2}$ pour $N_2^* + N_2$ en fonction de $P_{N_2}^*$

Tableau III

Etude de α , β et γ en fonction de τ

·								
N° de montage et domaine de τ en s	α _m	$\frac{\Delta \alpha_{\rm m}}{\alpha_{\rm m}}$	β _m	$\frac{\Delta \beta_{m}}{\beta_{m}}$	Υ _m	$\frac{\Delta \gamma_{m}}{\gamma_{m}}$	$M = \frac{\frac{\alpha + \beta + \gamma}{m}}{3}$	<u>Δ Μ</u> - <u>Μ</u>
1	1,44.10 ⁻²	2%	1,30.10 ⁻²	2%	1,36.10 ⁻²	78	1,37.10 ⁻²	5%
0467612	2,23.10 ⁻²	3,5%	2,04.10 ⁻²	3%	2,27.10 ⁻²	5%	2,18.10 ⁻²	4%
0,4 & t & 1,2	2,87.10 ⁻²	8\$	2,68.10 ⁻²	48	2,79.10 ⁻²	48	2,78.10 ⁻²	3%
	3,00.10 ⁻²	3%	2,72.10 ⁻²	2,5%	2,78.10 ⁻²	3%	2,83.10 ⁻²	6%
2	1,35.10 ⁻²	6%	1,33.10 ⁻²	10%	1,42.10 ⁻²	8%	1,37.10 ⁻²	48
0,45 < τ < 1, 5	3,91.10 ⁻²	2,5%	3,75.10 ⁻²	2%	3,85.10 ⁻²	6%	3,84.10 ⁻²	2%
	3,95.10 ⁻²	0,5%	3,75.10 ⁻² :	1,5%	3,72.10 ⁻²	6%	3,75.10 ⁻²	6%
3 0,6 < τ < 2	3,96.10 ⁻²	0,2%	3,74.10 ⁻²	2%	3,73.10 ⁻²	6%	3,81.10 ⁻²	4%
4	4,41.10 ⁻²	0,5%	4,40.10 ⁻²	48	6,13.10 ⁻²	22%	4,98.10 ⁻²	23%
0,7 ≤ τ < 2,4	6,91.10 ⁻² :	0,5%	6,45.10 ⁻² : :	4%	7,45.10 ⁻² :	13%	6,93.10 ⁻² : :	8%
5 Ο,8 < τ < 2,7	1,55.10 ⁻²	4,5%	1,62.10 ⁻² :	3%	1,42.10 ⁻² :	8%	1,53.10 ⁻² :	8%
6 D,95 < τ < 3,1	2,83.10 ⁻² :	0,5%	2,59.10-2:	1,5%	4,2.10 ⁻² :	30%	3,21.10 ⁻² :	31%

N° de montage et domaine de τ en s	a'm	$\frac{\Delta \alpha_{m}}{\alpha_{m}}$	β' m	Δβ _m β _m ,	Υ <mark>'</mark> m	$\frac{\Delta \gamma_{m}}{\gamma_{m}},$	$M = \frac{\alpha' + \beta' + \gamma'}{3}$	<u>ΔΜ</u> ' Μ
4	4,42.10 ⁻²	0,5%	4,40.10 ⁻²	4%	4,81.10 ⁻²	1%	4,54.10 ⁻²	6%
Ο ,7 < τ ≤ 2	6,92.10 ⁻²	0%	6,68.10 ⁻²	3%	6,95.10 ⁻²	2%	6,85.10 ⁻²	2,6%
5 0,9 < τ < 2,7	1,57.10 ⁻²	2,5%	1,59.10 ⁻²	0,5%	1,47.10 ⁻²	0,5%	1,55.10 ⁻²	4,5%
6 1,03 < τ < 3,1	2,83.10 ⁻²	0%	2,60.10 ⁻²	18	3,56.10 ⁻²	1,5%	3.10 ⁻²	19%

Etude de α' , β' , γ' en fonction de τ

Tableau IV

Les tableaux I et II présentent la totalité des mesures effectuées pour 2 montages (n°1 et n°6). Les résultats de l'étude de α_m , β_m et γ_m en fonction de τ pour l'ensemble des 6 montages sont consignés dans le tableau III.

Pour les dispositifs n°1, 2 et 4, nous avons rapporté les résultats obtenus pour plusieurs séries de mesures effectuées dans des conditions différentes de parois et de détection de I_{L.R.} et de I_{R.P.E.}

Pour $P_{N_2}^{*} = 2,4$ et 8 Torr (cf tableau III), on constate que dans des conditions identiques de parois et de détection de I_{L.R.} et I_{R.P.E.}

- pour $(0,4 \le \tau \le 3,1)$ s : $\alpha_m = \beta_m = \text{cste}$ (à 5% près) - pour $(0,4 \le \tau \le 2)$ s : $\alpha_m = \beta_m = \gamma_m = \text{cste}$ (à 6% près) - pour $(2 \le \tau \le 3,1)$ s : γ_m n'est pas constant.

La divergence des résultats observés pour de longs temps de contact nous a conduit à reprendre les résultats des montages 4, 5 et 6 en otant les mesures obtenues à 2T : la valeur de $\langle \gamma_2 \rangle$ est seule responsable de l'écart à la loi de proportionnalité entre I et $(I_{R,P,E})^2$ (cf tableaux II et III). On désigne par α'_{m} , β'_{m} et γ'_{m} la moyenne des rapports $\langle \alpha_{i} \rangle$, $\langle \beta_{i} \rangle$, $\langle \gamma_{i} \rangle$ obtenus pour des pressions d'azote activé égales à 4 et 8 forr , dans des conditions identiques d'état de parois et de détection de LR. et de R. R.P.E.

Pour $P_{N_2}^{4} = 4$ et 8 Torr (voir tableau IV), on constate que : - pour $\tau < 2,7s$, $\alpha'_m = \beta'_m = \gamma'_m = \text{constante}$ (à 4,5% près) - pour $\tau > 2,7s$, $\alpha'_m = \beta'_m = \text{constante}$ (à 4% près) $\gamma'_m = \text{constante} \neq \alpha'$ et β'

En conclusion, on remarque que :

pour $(2 < P_{N_2} < 8)$ Torr et $(0, 4 < \tau < 2)$ s, $I_{L.R.} = k(N)^2$ pour N_2^* seul, $N_2^* + CO$ et $N_2^* + N_2$ et k a la même valeur dans chacun des trois cas.

B.II - Interprétation et conclusion

Nous allons exprimer le rapport β (ou γ) en considérant que le schéma réactionnel ci-dessous, qui rend compte de la concentration en N₂(B³π_q) pour M = N₂ est également valable pour M = CO

 $N + N + M \xrightarrow{k_{f_{M}}} N_{2} (B^{3}_{\pi}) + M$ $k_{d_{M}} M$ $desactivation \qquad N_{2}(A) + hv$

 $M = N_2$ ou CO

Pour la réaction N_2^{\bullet} + CO, la vitesse de formation de $N_2(B^3\pi_{\alpha})$ s'exprime pour :

$$v_{f} = k_{f_{N_2}} (N)^2 (N_2) + k_{f_{CO}} (N)^2 (CO)$$

La vitesse de destruction de N $_2(B^3\pi_q)$ est donnée par la relation :

$$v_{d} = k_{d_{N_2}} (N_2(B)) (N_2) + k_{d_{CO}} (N_2(B))(CO)$$

L'équilibre de Bodenstein appliqué aux lois cinétiques permet d'écrire Vf = Vd.

$$k_{\mathbf{f}_{N_2}}(\mathbf{N})^2(\mathbf{N}_2) + k_{\mathbf{f}_{CO}}(\mathbf{N})^2(\mathbf{CO}) = k_{\mathbf{d}_{N_2}}(\mathbf{N}_2(\mathbf{B}))(\mathbf{N}_2) + k_{\mathbf{d}_{CO}}(\mathbf{N}_2(\mathbf{B}))(\mathbf{CO})$$

$$(N)^{2}(k_{f_{N_{2}}}(N_{2}) + k_{f_{CO}}(CO)) = N_{2}(B) (k_{d_{N_{2}}}(N_{2}) + k_{d_{CO}}(CO))$$

donc :

$$\frac{(N_2(B))}{(N)^2} = \frac{k_{f_{N_2}}(N_2) + k_{f_{CO}}(CO)}{k_{d_{N_2}}(N_2) + k_{d_{CO}}(CO)}$$

Dans le milieu réactionnel, $x_{CO} = 0,025$ (cf p 51) aussi, dans l'hypothèse où $\frac{kf_{N_2}}{kf_{CO}} >> 0,025$ et $\frac{kd_{N_2}}{kd_{CO}} >> 0,025$ (selon Brunetti et coll (83): $\frac{kf_N}{kf_{CO}} > 1$ et $\frac{kd_{N_2}}{kd_{CO}} \approx 1$), l'équation I devient :

$$\frac{{(N_2(B))}}{{(N)}^2} = \frac{k_{\rm f}}{k_{\rm d_{N_2}}}$$

Donc, le rapport $\frac{\binom{N_2(B)}{2}}{\binom{N^2}{2}}$ a même valeur dans N_2^* seul et dans le mélange $\binom{N^*}{2} + CO$. On peut appliquer le même raisonnement au mélange $N_2^* + N_2$ dans l'hypothèse ou le mécanisme ci-dessus est le seul mis en jeu.

C - INFLUENCE, SUR L'INTENSITE DE LA LUMINESCENCE DE LEWIS RAYLEIGH, DE L'ADJONCTION DE GAZ ETRANGERS A N_2^* , EN FONCTION DU DIAMETRE INTERNE DES CANALISATIONS Φ , DU TEMPS DE CONTACT τ ET DE L'ETAT DES PAROIS

Les dispositifs décrits (cf p108) permettent de réaliser cette étude.

Les variations de I_{L.R.} en fonction de ^T, lors de l'addition de CO ou de N₂ sont illustrées respectivement par les évolutions des $a = \frac{I_{L.R.} (N_2^* + CO) - I_{L.R.} (N_2^*)}{I_{L.R.} (N_2^*)} (cf p 43) \qquad b = \frac{I_{L.R.} (N_2^* + N_2) - I_{L.R.} (N_2^*)}{I_{L.R.} (N_2^*)} (cf p 54)$

Des valeurs et a et b positives indiquent une exaltation de $I_{L.R.'}$ alors que des valeurs négatives de ces rapports mettent en évidence une diminution de $I_{L.R.}$ (quenching). Rappelons que $P_{CO} = P_{N_2}$ (cf p 54)

a et b sont très sensibles à l'état des parois (cf p 53). Pour plusieurs diamètres de canalisations (ϕ = 26, 16 et 10mm) nous étudions l'influence du nombre n de traitements à HF 50%. Le caractère aléatoire de ce paramètre n'autorise qu'une comparaison relative de son effet, pour un diamètre ϕ donné.

C.I - Influence sur I $_{L.R.}$, de l'adjonction de CO à N₂*

C.I.1) Canalisation de Φ = 50mm (1 < $\tau \le 6$)s - courbe n°9 -

Ces canalisations ont subi peu de traitements à HF : n=2 a > O pour (1 < τ < 2,7)s a croît avec τ , passe par un maximum pour 1,4 s puis diminue quand τ

augmente.

C.I.2) Canalisations de $\Phi = 26$ mm (0,25 $\leq \tau \leq 3,73$)s - courbe n°10

Le nombre de traitements à HF (n) est faible. Deux séries de mesures sont réalisées, mais pour des états de parois peu différents : $n_1 < n_2$ et $(n_2 - n_1)$ faible ($\simeq 4$).

Dans le domaine de τ considéré :

- a est toujours supérieur à O

- pour n donné, a croît avec τ , d'abord lentement, jusque 1,2s, puis plus rapidement

- les résultats sont sensiblement identiques pour n₁ et n₂.

C.I.3) <u>Canalisation</u>: de $\Phi = 16$ mm (0,1 $\leq \tau \leq 1,5$)s - courbe n°11 Deux séries de mesures sont effectuées, avec n₁ << n₂. Dans le domaine de τ considéré :

- pour n donné : a est toujours supérieur à O

a croît avec τ jusque 0,6s, puis reste sensiblement constant quand τ augmente.

Quel que soit l'état des parois, a garde le même comportement général, mais augmente quand n augmente. C.I.4) Canalisation de $\phi = 10mm \text{ coudée } (0 < \tau < 1,6)s - courbe n°12$

Deux séries de mesures réalisées avec ce type de canalisation sont réalisées pour des états de parois très différents : n_1 faible (courbe A) ; $n_2 \gg n_1$ (courbe B).

2 1

Dans le domaine de τ considéré :

- pour n donné : a augmente avec τ , passe par un maximum pour 0,5 s, puis diminue

a a le même comportement quel que soit n, mais augmente quand n augmente.

Cet effet est d'autant plus marqué que τ est élevé.

pour n a < 0 pour τ < 0,1s et τ > 0,8s pour n a > 0 pour τ > 0,05s

C.I.5) Canalisation de $\Phi = 10mm$ linéaire ($0 \le \tau \le 0.55$)s courbe n°13

Comme dans le cas précédent, on étudie deux états de parois très différents : $n_2 >> n_1$.

Dans le domaine de τ considéré :

- quel que soit n, a \geq 0 pour $\tau > 0.04$ s

et a, croit avec τ

 a garde le même comportement général quel que soit n, mais augmente quand n augmente.

Cet effet est d'autant plus marqué que τ est élevé.

C.I.6) Conclusion

- pour les faibles temps de contact, a croît avec τ.

- l'observation de l'exaltation maximale de I (a max.) nécessite un certain temps de contact : τ_{max} .

 τ_{max} > 0,5 s pour ϕ = 10mm (canalisation linéaire) τ_{max} = 0,5 s pour ϕ = 10mm (canalisation coudée) et ϕ = 16mm τ_{max} > 4 s pour ϕ = 26mm τ_{max} = 1,4 s pour ϕ = 50mm

courbe n°10

Pour Φ = 10mm (canalisation coudée ` et Φ = 50mm, l'évolution de a avec τ présente un comportement identique : pour de faibles temps de contact, a croît avec τ , passe par un maximum pour τ = τ_{max} , puis décroît quand τ augmente pour $\tau > \tau_{max}$.

- quel que soit τ , et quel que soit Φ a augmente lorsque n augmente.

Remarque : nous avons vérifié que a est maximum pour la même pression partielle de CO ajoutée, quel que soit n.

C.II - Influence sur I de l'adjonction de N à N $_2$ à N $_2$

Rappelons que l'étude des variations de $I_{L.R.} (N_2^* + N_2)$ a pour objectif d'éliminer les éventuelles perturbations de pression dues à l'adjonction d'un gaz après la décharge. Dans ce cas, l'addition de N_2 est faite immédiatement après celle de CO, donc pour un même état de parois.

C.II.1) Canalisation de $\Phi = 50$ mm (1 $\leq \tau \leq 6$)s - courbe n°14

Dans le domaine de τ considéré, b \simeq 0 pour τ < 1,4 s puis diminue quand τ augmente.

C.II.2) Canalisation de $\Phi = 26$ mm (0,25 $\leq \tau \leq 3,73$) s courbe n°15

Dans le domaine de τ considéré :

- b est toujours négatif

- b croit avec τ (0,2 \leq $\tau \leq$ 0,4)s, passe par un maximum, puis décroit quand τ augmente pour $\tau > 1$ s
- b est peu affecté par n, mais rappelons que pour ce montage, $n_2 \neq n_2 (n_2 - n_1 \approx 4)$.

C.II.3) Canalisation de $\phi = 16mm (0, 1 \le \tau \le 1, 4)s$ - courbe n°16 Dans le domaine de τ considéré :

- quel que soit n, b croît avec τ , passe par un maximum pour $\tau = 0.5$ s, puis diminue

- b augmente avec n :

pour n_1 b > 0 pour $(0, 1 < \tau < 1)$ s pour $n_2 >> n_1$ b > 0 pour $\tau > 0, 1$ s.

C.II.4) Canalisation de $\Phi = 10$ mm, coudée (O $< \tau < 1,6$)s courbe n° 17

- pour n donné : b > 0 pour $(0,1 \leq \tau < 0,65)$ s

b augmente avec τ , passe par un maximum pour $\tau = 0.5$ s, puis décroit quand τ croît.

C.II.5) Canalisation de $\Phi = 10$ mm,linéaire ($0 \le \tau \le 0.5$)s courbe n°18

Dans le domaine de τ considéré :

- b augmente avec τ et est supérieur à O pour τ > 0,05 s
- b croît avec n, et d'autant plus que t est élevé.

C.II.6) Conclusion

- pour $\phi = 10$, 16, 26mm les évolutions de b enfonctionnement de τ sont similaires ; b augmente avec τ jusqu'à $\tau \simeq 0.45$ s, passe par un maximum, puis décroît (l'étude reste à faire pour $\tau > 0.50$ s et $\phi = 10$ mm canalisations linéaires)
- pour Φ = 50mm, les observations n'ont porté que sur $\tau \ge 1$ s: b décroît quand τ croît pour $\tau \ge 1,4$ s
- quel que soit τ et quel que soit ϕ , b augmente avec n.

C.III - Influence sur I de l'adjonction de gaz rares,
d'oxygène et d'hexafluorure de soufre à
$$N_2$$

Cette étude a été réalisée avec des canalisations de 16mm de diamètre, pour n donné. Les gaz sont ajoutés sous une pression partielle $P_i = P_{CO}$.

C.III.1) Adjonction de gaz rares

Les résultats obtenus par adjonction d'argon ou d'hélium de qualité U sont identiques à ceux obtenus par adjonction d'azote N 48 :

$$\frac{I_{L.R.} (N_{2}^{*} + Ar) - I_{L.R.} (N_{2}^{*})}{I_{L.R.} (N_{2}^{*})} = \frac{I_{L.R.} (N_{2}^{*} + He) - I_{L.R.} (N_{2}^{*})}{I_{L.R.} (N_{2}^{*})} = \frac{I_{L.R.} (N_{2}^{*} + N_{2}) - I_{LR} (N_{2}^{*})}{I_{L.R.} (N_{2}^{*})}$$

 $I_{L.R.} (N_2^* + Ar)$ et $I_{L.R.} (N_2^* + He)$ désignent respectivement la somme d'intensité des bandes étudiées, par adjonction d'argon ou d'hélium. L'ad-

jonction d'hélium N 60, réalisée avec un montage dont les canalisations sont "fraichement" traitées à HF 50%, et dont les tuyaux de caoutchouc sont neufs et dégazés, ne provoque pas d'effet. Après une adjonction de CO, toute nouvelle adjonction d'He(N 60) entraîne l'observation d'une augmentation de I_{L.R.}. Cette exaltation est approximativement égale à celle qui est observée par addition de N₂(N48), d'Ar(U) et d'He(U)

C.III.2) Adjonction d'oxygène et d'hexafluorure de soufre

L'adjonction d'oxygène ou d'hexafluorure de soufre sous des pressions telles que $P_{O_2} = P_{SF_6} = P_{CO}$, provoque l'extinction de la luminescence de L.R..

C.IV - Evolution comparée de la variation de l'intensité de la luminescence de L.R. par adjonction de CO ou de N $_2$ $\stackrel{a}{=}$ N $_2^*$

Pour chaque diamètre de canalisation, les variations de a et b en fonction de τ sont représentées sur la même échelle (cf courbes n°19 à 23). Pour un diamètre donné, a et b sont tracés pour la même valeur de n.

A l'exception des résultats obtenus pour des canalisations de 26mm de diamètre, on constate que a et b ont des comportements similaires. Quand τ croît, a et b augmentent, passent par un maximum, puis diminuent. Pour $\Phi=10$ et 16mm a croît toujours plus rapidement que b ou décroît moins rapidement que b.

Pour Φ = 50mm, a semble être obtenu par translation de b vers des valeurs supérieures.

D - INFLUENCE DU REVETEMENT DES PAROIS

D.I - Parois totalement recouvertes

Les phénomènes étudiés sont très sensibles au nombre de traitement à HF 50%; donc à l'état des parois. Pour une meilleure maitrise de ce paramètre, les études précédentes (variation de a et b en fonction de τ) sont réalisées avec des canalisations dont les parois sont recouvertes de phtalate de dibutyle ou d'acide phosphorique deshydraté par P_2O_5 . Pour de tels dispositifs, les recombinaisons contre les parois sont inhibées (cf p 13). Il est ainsi possible d'étudier l'évolution des mécanismes réactionnels en phase homogène à l'exclusion des mécanismes en phase hétérogène.

 Φ = 10mm, géométrie coudée

Pour un revêtement donné, l'étude effectuée avec trois diamètres de canalisation (Φ = 16, 26 et 50mm) conduit à des résultats identiques pour chacun d'eux et dans les domaines de temps de contact suivants :

Φ	=	16mm	(0,1	≼	τ	≼	1,7)s
Φ	=	26mm	(0, 5	≼	τ	≼	3,5)s
Φ	=	50mm	(1,2	≼	τ	≼	5)s

Avec un revêtement de phtalate de dibutyle :

- l'adjonction de $N_2 \stackrel{a}{=} N_2^*$ est sans effet, quel que soit τ : b = 0 - l'adjonction de CO $\stackrel{a}{=} N_2^*$ provoque une exaltation de I quel que soit τ > 0,2s : a = 0,25 (courbe n°24)

Il faut noter que ce type de revêtement est très difficile à éliminer : pour des canalisations antérieurement recouvertes de phtalate de dibutyle, a = 0,25 et b = 0 quel que soit τ , même après plusieurs traitements à HF 50%.

On remarque que pour $\Phi = 16 \text{mm}$, diamètre de canalisation pour lequel l'étude a pu être effectuée pour les plus faibles valeurs de temps de contact ($\tau = 0,1 \text{ s}$), la valeur constante de a ($\sim 0,25$) n'est atteinte qu'après une certaine période d'induction :

 τ > 0,2s pour Φ = 16mm

(cf courbe n°24).

Avec un revêtement d'acide phosphorique deshydraté $par(P_2O_5)$ courbe n°25) : - l'adjonction de N₂ à N₂^{*} provoque une légère diminution de l'intensité de la luminescence de L.R. (b ~ - 0,13), constante quel que soit τ

- l'adjonction de CO à N_2^{*} provoque une exaltation de I_{L.R.}, qui est constante quel que soit τ , mais inférieure à celle qui est observée avec un revêtement de phtalate de dibutyle a $\simeq 0.13$ ($\tau > 0.25$ s).

Le dispositif décrit p.110 permet d'obtenir un revêtement uniforme. Il a été utilisé uniquement pour le phtalate de dibutyle. Le revêtement des parois avec l'acide phosphorique a été réalisé par rinçage des canalisations avec un mélange de $H_3PO_4 - P_2O_5$.

courbe n°24

Canalisations dont les parois sont recouvertes de Phtalate de dibutyle

D.II - Parois "partiellement recouvertes" (courbe n°26)

Une étude de la variation de a en fonction de τ, réalisée avec des parois "partiellement" recouvertes, donne une meilleure illustration de l'importance du paramètre "état de parois".

Trois études successives sont effectuées avec des canalisations linéaires de 10mm de diamètre, non recouvertes (montage n°1), puis "partiellement recouvertes" (montages n°2 et 3) :

parois (traitées à HF 50%) non recouvertes
parois recouvertes de phtalate de dibutyle

Pour chacun de ces trois montages, nous avons tracé $a = f(\tau)$ (courbe n°26).

Montage nº1 - courbe nº26 A

Conformément aux observations précédentes (C.I.5), a augmente avec τ . Ces canalisations ont subi $n_3 = n_2 + 1$ traitement à HF 50%. On remarque que la courbe obtenue est identique à celle obtenue pour $n = n_2$ (cf courbe n°I3). L'étude de l'influence de n nécessité $\Delta n > 1$.

Montage n°2 - courbe n°26 B

a augmente avec τ jusqu'à 0,3 s. Cette valeur de τ correspond au temps mis

par le flux gazeux pour parcourir la partie de canalisation non recouverte. A $\tau = 0.3$ s, a = 0.35. Lorsque $\tau > 0.3$ s(pour de tels τ , les parois sont recouvertes) a = cste = 0.35.

Montage n°3 - courbe n°26 C

Pour les τ les plus faibles (0,03 $\leq \tau \leq 0,1$)s, a croît avec τ . Pour des τ supérieurs (0,12 $\leq \tau \leq 0,33$)s, a = cste = 0,23. Pour $\tau < 0,33$ s les parois sont recouvertes.

Pour $\tau > 0,33$ s, (pour de tels τ les parois ne sont pas recouvertes) a augmente avec τ .

D.III - Conclusion

Les résultats obtenus avec des parois recouvertes sont attribuables au seul mécanisme en phase homogène. On remarque que la valeur constante de a qui le caractérise dépend de la nature du revêtement. Pour les deux types de revêtements utilisés, la valeur de a obtenue pour des parois totalement recouvertes est :

- indépendante de τ

- indépendante de Φ

Cette observation montre qu'elle caractérise bien un mécanisme en phase homogène et que l'empoisonnement des parois a été efficace.

D'autre part, pour les deux types de revêtement : $a_{hom} - b_{hom} \approx 0,25$.

Les conditions opératoires (cf p 86) entraînent un revêtement de $H_3PO_4 - P_2O_5$ moins uniforme que celui de phtalate de dibutyle. On remarque une perturbation du débit du flux gazeux par la présence de dépôts d'acide cristallisé . Cette observation peut expliquer la divergence des résultats obtenus avec les deux types de revêtement. Seuls les revêtements obtenus avec le phtalate de dibutyle seront pris en considération.

Compte tenu des conditions expérimentales de l'étude effectuée avec des parois partiellement recouvertes, deux domaines de temps de contact sont à considérer :

- le domaine I $(0 \le \tau < 0,3)$ s

- le domaine II (0,3<τ₹ 0,6) s

La non coincidence dans le domaine I des courbes A et B, relatives à des parois non recouvertes, peut trouver son origine dans une légère diffusion du phtalate de dibutyle de B vers A (cf montage n°2). Une explication de même nature est valable dans le cas du montage n°3 (légère diffusion de B vers C).

L'étude de a en fonction de τ pour des parois recouvertes et de faibles temps de contact confirme l'existence d'une certaine période d'induction pour la réaction en phase homogène déjà mise en évidence lors de l'étude avec des canalisations de ϕ = 16mm totalement recouvertes (cf p 86).

Lorsque les parois ne sont recouvertes que pour des valeurs de τ supérieures à une valeur donnée τ^* , à laquelle correspond une valeur de a dénommée a^{*}, pour toute valeur de $\tau > \tau$, a = a^{*}. Cette valeur a^{*} est supérieure à la valeur de a = 0,25 qui est observée pour des parois totalement recouvertes. On remarque que pour des parois recouvertes dans le domaine I, la valeur constante de a est la même que pour des parois totalement recouvertes.

L'ensemble des résultats de cette étude conduit à penser que deux mécanismes réactionnels différents sont impliqués :

- un mécanisme en phase homogène, indépendant de τ

- un mécanisme en phase hétérogène qui varie avec τ .

E - INFLUENCE D'UNE DESACTIVATION DE L'AZOTE VIBRATIONNELLEMENT EXCITE DANS L'ETAT ELECTRONIQUE FONDAMENTAL SUR L'INTENSITE DE LA LUMINESCENCE DE LEWIS RAYLEIGH DANS UN MELANGE N_2^{\star} - CO.

Une étude sélective du rôle des différentes espèces réactives du mélange N_2^* - CO est nécessaire pour améliorer la connaissance des mécanismes réactionnels impliqués, ou confirmer les mécanismes invoqués.

L'adjonction à l'azote activé de CO_2 ou de N_2O , désactive très rapidement l'azote vibrationnellement excité à l'état fondamental (13a). De la laine de verre placée sur le trajet du flux gazeux provoque le même effet (25).

E.I - Influence de l'addition de CO_2 ou de N_2O

L'addition à N_2^{4} de CO₂ ou de N_2^{0} (dans des conditions de temps égal à 0,30 s) entraîne une diminution de l'intensité de la luminescence de L.R. (cf fig. 6) conformément aux observations faites par d'autres auteurs (98). L'addition conjointe de CO diminue encore cette intensité témoignant ainsi que la présence de $N_2(x^1\Sigma_g^+)_v$ est nécessaire pour observer l'effet d'augmentation de population de $N_2^{(B^3\pi_g)}v$ élevé

E.II - Influence de la laine de verre

Pour trois valeurs de P_{N_2} (6, 8, 20 T), et une distance l donnée, a et b sont mesurés pour des canalisations de 10mm fraîchement traitées à HF 50%, puis pour ces mêmes canalisations lorsque de la laine de verre est placée près de la décharge ou près de l'arrivée de CO (cf schéma). Les trois études sont réalisées les unes à la suite des autres. Au cours des deux dernières, c'est la même quantité de laine de verre qui est utilisée.

Canalisations traitées à HF 50% <u>Montage Nº2</u> Laine de verre près de la décharge - <u>Montage Nº 3</u> Laine de verre près de CO

Les résultats obtenus pour chaque montage et chaque ${\tt P_N_2^{\bullet}}$ sont consignés dans le tableau suivant :

n° de montage	a			b		
P _{N2} en Torr	1	2	3	1	: 2	: 3 :
6	0,20	0,15	0,04	0,01	: •	: : :
8	0,70	0,13	0,05	0,06	0	: 0
20	0,90	0,50	0,00			· · · · · · · · · · · · · · · · · · ·

d

a Mu

<u>Fig. 6</u> : Intensité de la luminescence de Lewis Rayleigh enregistrée dans les conditions suivantes : a) N_2^{\bullet} seul $P_{N_2}^{\bullet} = 6$ Torr

a)
$$N_2$$
 seul $P_{N_2} = 6$ T
 $T = 0.3 \text{ s}$
 $P_{CO_2} = P_{CO}$
d) $N_2 + CO_2 + CO$

On constate que :

- lorsque la laine de verre est près de la décharge (montage n°2), l'adjonction de CO provoque une exaltation de $I_{L.R.}$ qui est cependant plus faible qu'en absence de laine de verre.

La laine de verre est sans effet sur I dans le mélange $N_2^{*} + N_2$.

CHAPITRE 3

MECANISMES DE L'EFFET DE LONG CONTACT ENTRE L'AZOTE ACTIVE ET LE MONOXYDE DE CARBONE

/ CHAPITRE III /

MECANISMES DE L'EFFET DE LONG CONTACT ENTRE L'AZOTE ACTIVE ET LE MONOXYDE DE CARBONE.

A - ADJONCTION DE GAZ NON REACTIFS (AZOTE OU GAZ RARES) A L'AZOTE ACTIVE

L'adjonction de He(N6O) (exempt de CO) à N_2^* , à l'aide d'un dispositif n'ayant pas servi au préalable à l'addition de CO ou d'un gaz étranger, n'entraîne aucun effet. La variation de I_{L.R.} observée par addition de He(N6O) faisant suite à une adjonction de CO doit donc être attribuée à la présence de traces de CO adsorbées sur les parois des canalisations d'admission du gaz étranger. Les modifications de I_{L.R.} mises en évidence par addition de N₂(N48), d'Ar(U) ou d'He(U) ont la même origine (en outre, ces gaz contiennent de faibles traces de CO), ce qui justifie que la valeur de b soit la même quelle que soit la nature du gaz étranger ajouté.

Dans un système dont les canalisations véhiculant le mélange (N₂⁴ + gaz étranger) sont recouvertes, l'adjonction de gaz rare ou d'azote à l'azote activé ne provoque aucune modification de I L.R. - b ne peut être attribué à une augmentation de la pression - l'effet de traces de CO est une réaction en phase hétérogène : b = b het. et b hom. = 0

L'efficacité de ce mécanisme en phase hétérogène doit être peu sensible à la teneur en CO, lorsque tous les centres actifs sont saturés en CO. Dans ces conditions, b qui est caractéristique d'une réaction en phase hétérogène, doit dépendre du nombre de centres actifs sur les parois et du diamètre des canalisations : on constate effectivement que b dépend de τ, n et Φ.

L'étude de b en fonction de τ présente toujours le même comportement : pour de faibles valeurs de τ , b augmente, passe par un maximum, puis décroît quand τ croît.

A τ donné, b peut caractériser soit une diminution, soit une exaltation de I lorsque n augmente. A n donné, lorsque τ augmente, on peut observer successivement une diminution, une exaltation, puis une diminution de I (cf courbes 14 à 18).

B - ADJONCTION DE CO A L'AZOTE ACTIVE

B.I - <u>Mise en évidence de l'intervention de réactions en phase homogène</u> et en phase hétérogène

Par adjonction de CO à N_2^* , on caractérise :

- un mécanisme en phase hétérogène, dû à des traces de CO et étudié dans le paragraphe précédent.
- L'existence d'une réaction en phase hétérogène dépendant de la teneur en CO n'est pas exclue.
- un mécanisme en phase homogène. C'est le seul qui soit observé lorsque les parois des canalisations sont recouvertes (on a alors a = a hom.). Il se traduit toujours par une exaltation (a > 0). Après une certaine période d'induction (cf courbe n°24) , le taux d'exaltation de I L.R. atteint une valeur stationnaire, indépendante de τ , de Φ , mais sensible à la teneur en CO (en présence de traces de CO, ce mécanisme n'est pas observé : b = 0).

Les résultats obtenus avec le système dont les parois sont "partiellement" recouvertes indiquent que la valeur stationnaire de a_{hom}. dépend de l'existence ou de l'absence de réaction en phase hétérogène, préalablement à la zone d'observation. La présence de ces dernières augmente la valeur de a_{hom}.

Le phénomène en phase homogène est indépendant de τ , aussi peut-on s'attendre à ce que la valeur pour laquelle a est maximum ne dépende que des réactions en phase hétérogène, lesquelles sont indépendantes de x_{CO} (effet de traces) : on observe en effet que a et b sont maxima pour la même valeur de $\tau = \tau$ max.

L'effet observé par adjonction de CO à N_2^* est la contribution des deux phénomènes cités ci-dessus.

B.II - Mise en évidence de l'intervention de l'azote vibrationnel-
lement excité à l'état électronique fondamental dans les
mécanismes réactionnels impliqués au cours de la réaction
$$N_2^*$$
 - CO

L'introduction, dans le mélange N_2^{\bullet} - CO, de substances capables de désactiver $N_2(x^1\Sigma_g^+)_{v^{\bullet}}$ (N_2O , CO_2 , laine de verre), provoque une diminution de a. Cette observation, faite à $\tau = \tau_{max}$, témoigne que la présence de $N_2(x^1\Sigma_g^+)_{v^{\bullet}}$ est nécessaire pour observer l'effet d'augmentation de population de $N_2(B^3\pi_g)_{v^{\bullet}}$ en présence de CO. L'intervention de $N_2(x^1\Sigma_g^+)_{v^{\bullet}}$ explique la diminution de a lorsque d'augmente (cf p 44). $N_2(x^1\Sigma_g^+)_{v^{\bullet}}$ est formé dans la décharge, et la valeur de a est en conséquence très sensible à celle de d.

Lorsque la laine de verre est placée près de la décharge (position 1) : a diminue (b initialement nul n'est pas affecté). Lorsque la laine de verre est placée juste au niveau de la zone d'admission de CO (position 2) la diminution de a est plus importante (b reste nul) (cf p 93).

La diminution de a lorsque la laine de verre est placée près de la décharge est due à la désactivation de $N_2(X^1\Sigma_g^+)_{V^*}$ formé dans la décharge. L'observation d'une valeur de a, la laine de verre étant en position 1, supérieure à celle obtenue lorsque la laine de verre est en position 2 implique que $N_2(X^1\Sigma_g^+)_{V^*}$ se reforme dans la luminescence de L.R..

L'étude de la réaction N_2^* - CO dans un système dont les parois sont recouvertes a permis de mettre en évidence que l'exaltation stationnaire de a n'était obtenue qu'après une certaine période d'induction ($\tau \approx 0,1$ s). Celle-ci correspond au temps nécessaire pour observer, en présence de CO, une valeur stationnaire de a. La suppression de $N_2(X^1\Sigma_g^+)_{V^*}$ formé dans la décharge peut avoir pour effet de déplacer le maximum d'exaltation vers des temps de contact supérieurs à τ_{max} , entraînant une diminution de a à $\tau = \tau_{max}$.

C - IMPORTANCE RELATIVE DES MECANISMES EN PHASES HOMOGENE ET HETEROGENE

C.I - Description du modèle réactionnel

D'après les résultats précédemment exposés, il est établi que :

a) le phénomène décrit par b

est un phénomène hétérogène : $b = b_{het}$. Selon les conditions expérimentales ($b = f(\tau)$ à n donné et b = f(n) à τ donné), b caractérise soit une diminution, soit une exaltation de $I_{L.R.}$: b serait dû à la superposition de deux mécanismes en phase hétérogène dénommés 1 et 2. On suppose une dépendance de ces derniers

> $b = b_{het.} = b < + b >$ $1 2 b < = diminution de I_{L.R.}$ $b_{hom.} = 0 b > 2 = exaltation de I_{L.R.}$

80'

 $\begin{vmatrix} b & < \\ 1 & 2 \end{vmatrix}$ et b > augmenteraient en fonction de τ . Le schéma ci-dessous montre un modèle possible d'évolution de b <, b > et 1 2 bhet.

est la superposition d'un mécanisme en phase hétérogène (a) et d'un mécanisme en phase homogène (a) hom.

$$a = a + a_{hom}$$
. het.

 α) Dans une première approximation, qui consiste à considérer ces deux mécanismes indépendants, on peut écrire :

$$a_{het.} = b_{het.} = b$$

 $a - b = a_{hom.} = 0,25$

 β) On peut s'attendre à une influence mutuelle des mécanismes en phase homogène et hétérogène. On a alors :

$$a < + a > \neq b$$

 $1 2$ het. $a < =$ diminution de I
 $L.R.$ $a = a$
hom. $+ a < + a >$
 $1 2$ $a > =$ exaltation de I
 $L.R.$

La valeur de a dans un système dont les parois ne sont pas recouvertes est supérieure à celle de a dans un système dont les parois sont recouvertes (a > 0,25) (cf p.92).

C.II - Application du modèle réactionnel aux systèmes étudiés

C.II.1) Canalisation de 50mm de diamètre interne $(1 \le \tau \le 5)$ s et canalisation de 16mm de diamètre interne avec $\tau < 0.45$ s (courbes n°27 et 29).

Avec des canalisations de 50mm de diamètre, dans tous le domaine de temps de contact étudié, et avec les canalisations de I6mm de diamètre, pour des temps de contact inférieurs à τ_{max} = 0,45 s, on remarque que : a - a_{hom}. = a_{het}. = b_{het}. = b (cf courbes n°27 et 29).

Dans de telles conditions, on a :

$$a - b = a_{hom} = 0,25$$
 (cf C.I.b.a)

b étant négatif, en phase hétérogène la réaction 1 (diminution de I) L.R. est prédominante sur la réaction 2 (exaltation de I) I_{L-R}

C.II.2) Canalisation. de 16 et 26mm de diamètre interne et $\tau > 0,45$ s (cf courbes n°28 et 29)

Dans de telles conditions expérimentales, a - b > 0,25 il y a influence mutuelle des mécanismes en phases homogène et hétérogène (C.I.b. β)

t en s 1 a = $f(\tau)$ $a_{hom} = f(\tau)$ $a_{-a_{hom}} = f(\tau)$ $b_{het} = f(\tau)$ courbe n°27 2 ₫ **=** 50mm BUS - 0,1 0,4 - 0,5 -0'0-0,3 - 0,4 0,2 - 0,2 - 0,3 5 0

a et b résultent chacun de la superposition d'un mécanisme de het. het. diminution et d'un mécanisme d'exaltation de I

$$a - a_{hom}$$
, $= a_{het}$, $= a < + a > 2$
 $b = b_{het}$, $= b < + b > 2$

Avec des canalisations de diamètre = 26mm et pour des temps de contact supérieurs à 0,45s, a caractérise un phénomène pour lequel l'exaltation de $I_{L.R.}$ devient plus important quand τ augmente, et $b_{het.}$ un phénomène pour lequel la diminution de $I_{L.R.}$ est d'autant plus prédominante que τ croît. La réaction dont l'importance croît quand τ augmente n'est pas la même dans les deux cas décrits par a et b.

D - MECANISMES REACTIONNELS IMPLIQUES DANS LA REACTION N_2^* - CO

Rappelons que les mécanismes réactionnels proposés doivent rendre compte d'une évolution parallèle des concentrations en atomes d'azote et en $N_2(B^3\pi_g)_v$ élevé : les rapports

$$\frac{(N_2^{(B)})_{N_2^*}}{(N_{N_2^*}^2)_{N_2^*}} \text{ et } \frac{(N_2^{(B)})_{N_2^*} + co}{(N_{N_2^*}^2 + co)}$$

ont des valeurs identiques (cf p 65). Cette observation conduit à penser que la formation de $N_2(B)$ à partir des atomes $N({}^4S)$ dans N_2^{\bullet} et dans N_2^{\bullet} + CO est régie par le même mécanisme, avec des caractéristiques cinétiques sensiblement identiques.

L'augmentation de concentration en atomes d'azote observée par addition de CO doit être attribuable à un mécanisme impliquant $N_2(X^1\Sigma_g^+)_v^*$ dont l'intervention a été démontrée (cf p 93) et conduisant à la dissociation de cette molécule.

D.I - Réactions en phase homogène

Selon la littérature, l'étude des réactions en phase homogène de gaz étrangers avec N_2^{*} n'a été effectuée que pour de faibles temps de contact (71). Elles se caractérisent toujours par une diminution de I L.R. (71). L'étude de la réaction N_2^{*} + CO dans un large domaine de temps de contact nous permet la mise en évidence d'un effet original : l'addition de CO à N_2^* se traduit par une augmentation conjointe des concentrations en $N_2(B^3\pi_g)_v$ et $N({}^4S)$. Par rapport aux concentrations de ces espèces dans N_2^* seul, cette augmentation est stationnaire pour $\tau > 0,1$ s.

La surprenante observation de l'augmentation de population de $N_2(B^3\pi_g)v$ flevé pour $\tau > 0,1$ s implique nécessairement l'existence d'un mécanisme additionnel aboutissant à la formation de $N_2(B^3\pi_g)v$ flevé et dont une des étapes est nécessairement lente. Cette étape lente ne peut être celle de la formation de $N_2(B^3\pi_g)v$ flevé lui-même ; en effet, il est bien connu que $N_2(B^3\pi_g)$ est désactivé très rapidement par N_2 ou CO (une collision sur 20 ou 100, cO et N_2 ayant des efficacités très voisines). Aussi l'étape lente est-elle antérieure à la formation de $N_2(B^3\pi_g)$.

Nous avons rappelé (cf p 26) que l'addition de CO à l'azote activé donne lieu à l'émission d'une intense luminescence infrarouge due à CO qui est porté à des niveaux vibrationnels élevés par des échanges d'énergie lors de collision avec $N_2(x^1\Sigma_g^+)_{v^*}$ Alors que les bas niveaux vibrationnels de CO sont peuplés pour des temps de contact très courts, la population des niveaux vibrationnels élevés nécessite un certain temps de contact. C'est en outre un processus très sensible à la distance décharge-zone de mélange (13).

Ces constatations nous conduisent à supposer que la formation de $CO(x^1 \Sigma^+)_{v^4}$ par transfert d'énergie vibrationnelle à partir de $N_2(x^1 \Sigma_g^+)_{v^4}$ constitue l'étape lente du processus réactionnel responsable de la surintensité du premier système positif de l'azote. En effet, l'intervention de $N_2(x^1 \Sigma_g^+)_{v^4}$ comme entité responsable de a est établie (cf p 93).

Dans le cadre de cette hypothèse, le processus additionnel de la formation de N₂ (B³π_g) responsable de l'exaltation de I_{L.R.} mettrait en jeu la réaction de CO($x^{1}\Sigma^{+}$) v^{*}élevé avec une entité X susceptible de satisfaire à deux critères , l'un cinétique, l'autre thermodynamique :

- durée de vie suffisamment élevée pour exister en concentration appréciable au niveau de la zone d'observation
- libérer une énergie (600 kJ/mole), de telle sorte que la réaction suivante(I) soit thermodynamiquement possible :

$$CO(X^{1}\Sigma^{+})_{v} + X \rightarrow N(^{4}S) + N(^{4}S) + CO(X^{1}\Sigma^{+})$$
(I)
350 kJ/mole 600 kJ/mole 950 kJ/mole

Dans ces conditions les attributions possibles de X nous semblent être les suivantes :

a) $N_2 (x^1 \Sigma_g^+) v^*$ b) N + Nc) $N_2 (A^3 \Sigma_1^+)$

Envisageons successivement ces trois hypothèses :

a)
$$N_2(x^1\Sigma_g^+)v^*$$

La libération d'une quantité d'énergie de 600 kJ par mole de $N_2(X^1\Sigma_g^+)_v^*$ supposerait que v > 30. L'existence en concentration appréciable au niveau de la zone d'observation d'azote excité dans des niveaux vibrationnels aussi élevés est très improbable.

Certains auteurs (99) (32) suggèrent que l'addition de NO à N (^{4}S) entraînent la formation d'azote vibrationnellement excité : l'addition conjointe de CO₂ ou N₀ produit une intense émission infrarouge de ces derniers. Aussi, avons-nous ajouté NO à l'azote activé jusqu'à extinction de la luminescence de L.R. (pour $\tau = 0,45$ s). L'addition conjointe de CO n'entraîne pas l'apparition de cette luminescence.

b) N + N

Cette hypothèse revient à considérer que $CO(X^1\Sigma^+)_{V^*}$ peut jouer le rôle de 3ème corps M dans la réaction de recombinaison à 3 corps des atomes d'azote suivant :

$$N(^{4}s) + N(^{4}s) + M \stackrel{2}{\leftarrow} N_{2}(A^{3}\Sigma_{u}^{+}) + M$$

Brunetti, Liuti et Schippa (83) attribuent la diminution de l'intensité de la luminescence de L.R. par addition de CO à l'azote activé à une efficacité de N₂ plus grande que celle de CO dans cette réaction. Mais il semble peu probable que CO($x^{1}\Sigma^{+}$)_v, intervienne comme 3ème corps dans cette réaction de recombinaison, étant donné la faible concentration de ce dernier par rapport à N₂ ou CO. En outre, cette hypothèse nous semble devoir être écartée pour la raison suivante : une modification de l'efficacité de la réaction par remplacement de N₂ par CO en tant que 3ème corps dans la recombinaison des atomes d'azote devrait entraîner une évolution en sens contraire des concentrations en N(⁴S) et en N₂(B³ π _g), ce qui est en contradiction avec les observations effectuées.

c) $N_2 (A^3 \Sigma_u^+)$

La réaction II est thermodynamiquement possible : N $(A^{3}\Sigma_{u}^{+})_{v=0}$ correspond à une énergie d'environ 600 kJ/mole.

 $CO(x^{1}\Sigma^{+})_{v^{*}} + N_{2}(A^{3}\Sigma_{u}^{+}) \rightarrow N(^{4}S) + N(^{4}S) + CO(x^{1}\Sigma^{+})$ (II) $N_{2}(A^{3}\Sigma_{u}^{+}) \text{ peut être vibrationnellement excitée ou non.}$

Dans l'azote activé seul, la réaction de production des atomes d'azote selon le schéma :

$$N_{2}(x^{1}\Sigma_{g}^{+})_{v^{\bullet}} + N_{2}(A^{3}\Sigma_{u}^{+}) \rightarrow N(^{4}S) + N(^{4}S) + N_{2}(x^{1}\Sigma_{g}^{+})$$
(III)

serait à l'origine de la longue durée de vie de la luminescence de L.R.. La réaction (II) étant plus efficace que la réaction (III), la molécule de CO sert de "traceur" pour mettre en évidence ce mécanisme de redissociation de l'azote dans l'azote activé dont l'existence a d'ailleurs déjà été postulée par Evenson et Burch (100).

Les schémas réactionnels (p 105) résument les mécanismes en phase homogène mis en jeu dans N_2^* seul et dans N_2^* + CO.

D.II - Réactions en phase hétérogène

Les études antérieures des réactions hétérogènes de traces de gaz étrangers (O_2, NH_3) avec N_2^{\clubsuit} conduisent toujours à une augmentation de L.R. dans le domaine des faibles temps de contact qui seuls ont fait l'objet de ces travaux (cf p 21).

Notre étude de l'effet de long contact entre N_2^* et CO met en évidence l'intervention de deux mécanismes en phase hétérogène ; l'un conduisant à une diminution de I_{L.R.} (réaction 1), l'autre à une exaltation de I_{L.R.} Mécanismes réactionnels en phase homogène.

Dans le mélange N_2^{\bullet} + CO, la molécule M mise en jeu dans les réactions 2 et 2' est la molécule $CO(X^1 \Sigma^+)$ formée selon les réactions:

Dans l'azote activé seul, la molécule M mise en jeu dans les réactions 2 et 2' est la molécule $N_2(x^1\Sigma_g^+)_v^*$ (réaction 2). La réaction (1) doit faire intervenir une augmentation du taux de destruction sur les parois en présence de CO adsorbé d'un précurseur de $N_2(B^3\pi)_g$, accompagnée d'une diminution de la concentration en $N(^4S)$. Il ne peut s'agir que d'une augmentation de l'efficacité de la réaction :

 $N + N + parois \rightarrow N_2(X) + CO(X)$ CO ads.

La réaction (2) se traduit, comme la réaction en phase homogène, par une augmentation conjointe de la concentration de $N_2(B^3\pi_g)v$ élevé et de $N({}^4S)$. La mise en évidence d'une influence réciproque des réactions s'effectuant en phase homogène et hétérogène incite à penser que la réaction (2) met en jeu la formation de $CO(x^1\Sigma^+)_{v}$ par un mécanisme en phase hétérogène parallèlement à celui en phase homogène.

Le tableau ci-après résume les différents mécanismes réactionnels invoqués au cours de la réaction N_2^{ϕ} - CO.

phase hétérogène) 1 $Précurseur CO_{ads.}$ N + N + Parois $\longrightarrow N_2(X) + CO(X)$ de $N_2^{(3)}$ élevé	$\begin{bmatrix} N_2(X) v^*_{ads} + c_0 ds \\ 2 & N_2(X) v^*_{ads} + c_0(X) & \searrow \\ N_2(X) v^*_{ads} + c_0 ds \end{bmatrix} \xrightarrow{N_2(X)} N_2(X) + c_0(X) v^*_{v}$
phase homogène	$N_{2}(X) U_{2}(X) CO(X) CO(X) V_{4} + N_{2}(X)$ CO(X) $ V_{2}(A) N + N + CO(X)$	
relation entre a et b	$a - a_{hom} = a_1^{\checkmark} + a_2^{\checkmark}$ $b = b_{het} = b_1^{\checkmark} + b_2^{\checkmark}$	

Pour les diamètres élevés,quelque soit le temps de contact, et pour les faibles diamètres aux temps de contact faibles, les mécanismes en phases homogène et hétérogène peuvent être considerés comme indépendants:

a - b = 0,25.

Dans tous les autres cas il y a influence mutuelle des mécanismes en phases homogène et hétérogène:

a - b> 0,25 .

••

Quelque soit Φ , quelque soit τ

BUS

CHAPITRE 4

DESCRIPTION DES PRINCIPAUX DISPOSITIFS EXPERIMENTAUX

CHAPITRE IV /

DESCRIPTION DES PRINCIPAUX DISPOSITIFS EXPERIMENTAUX

A - DISPOSITIF D'EXCITATION DE L'AZOTE

L'azote activé est obtenu par passage de l'azote moléculaire dans un champ excitateur :le flux d'azote moléculaire véhiculé par un tube de pyrex de 10mm de diamètre traverse une cavité résonnante reliée à un générateur d'ondescentimétriquesdont le magnétron fonctionne dans la bande légale autorisée par les conventions nationales : 2450 ± 50 MHz.

Deus types de dispositif sont utilisés :

- une cavité résonnante de type Dupret-Vidal (101) (102) reliée à un générateur d'ondes centimétriques "Radarmed Deutsche Elektronik" (cf chapitre II partie I)

- une cavité résonnante de type "Broida" (103) reliée à un générateur d'ondes centimétriques "Microtron 200" (chapitre II partie II).

La puissance des générateurs est réglable de O à 200 W.

L'utilisation d'une cavité résonnante a l'avantage de fournir des décharges non contaminées par des électrodes métalliques, ainsi qu'un rendement supérieur en atomes ou en radicaux libres.

B - DISPOSITIF D'ECOULEMENT DU FLUX GAZEUX

Toutes les canalisations utilisées sont en pyrex. Le dispositif est conçu de façon à permettre une modification aisée de la longueur du montage ainsi que sa géométrie. Le tube traversant la cavité a un diamètre intérieur (noté Φ) de 10mm. Il est coudé, deux fois à angle droit, en aval de la décharge de manière à éliminer toute lumière parasite due à cette dernière. Pour un montage donné, la section des tubes est constante. Nous avons utilisé successivement :

- des tubes linéaires dont Φ = 50, 25, 16 et 10mm,

- des tubes coudés (8 coudes) dont ϕ = 10mm.

L'adjonction de gaz étrangers au gaz activé est effectuée grâce à un conduit (Φ = 8mm), perpendiculaire à la canalisation principale et placé à 0,40m de la cavité résonnante.

C - DISPOSITIFS ANNEXES

L'évacuation des gaz se fait par l'intermédiaire d'une pompe SOGEV AL 30. C'est une pompe à palettes d'un étage qui réalise un vide primaire dans l'installation.

La pression est mesurée au moyen d'un capteur PIRANI LKB relié à un boitier de jauge LKB "autovac jauge" du type 3294 B.

Le débit des gaz ajoutés au gaz activé est contrôlé au moyen de débitmètres à flotteurs ROTA, spécialement étalonnés par le fournisseur.

On place un piège à azote liquide avant la pompe, afin de protéger cette dernière des espèces activées dans la décharge.

D - DISPOSITIF POUR L'EVALUATION DU DEBIT PAR LA MESURE DU VOLUME GAZEUX EVACUE PAR LA POMPE

La méthode consiste à mesurer, à pression constante, le volume gazeux évacué par la pompe.

Nous avons utilisé le montage suivant :

E - DISPOSITIF POUR LA MESURE DE LA FRACTION MOLAIRE DES GAZ ETRANGERS AJOUTES AU GAZ ACTIVE

L'utilisation d'un manomètre à huile permet d'effectuer des mesures précises de la pression pour évaluer la fraction molaire de chacun des constituants du mélange gazeux. La possibilité de déplacer le manomètre le long des canalisations permet de contrôler la fiabilité des résultats.

La densité de l'huile utilisée, évaluée par pesée, est de 0,8916.

F - DISPOSITIF PERMETTANT DE RECOUVRIR LES PAROIS

F.I - Parois totalement recouvertes

Les parois sont recouvertes soit de phtalate de dibutyle, soit d'acide phosphorique deshydraté par de l'anhydride phosphorique, par l'intermédiaire du dispositif suivant :

Le phtalate de dibutyle ou l'acide phosphorique est introduit dans un ballon (B). Ce dernier, placé avant le conduit d'arrivée de gaz étrangers (C), est muni d'un robinet (R) qui permet son isolement du reste des canalisations. La pompe étant en fonctionnement, on laisse le ballon en communication avec le reste du dispositif pendant environ 24 heures. Cette méthode permet d'obtenir un revêtement uniforme des parois.

F.II - Parois partiellement recouvertes

Le dispositif expérimental est illustré par le schéma ci-dessous :

L'objectif recherché consiste en ce que les canalisations ne soient recouvertes que sur une partie de leur longueur : de A à B ou de B à C.

La méthode ci-dessus décrite permet de recouvrir la partie BC. Pour recouvrir les parois en amont du ballon, on permute les canalisations AB et BC. Dans ces conditions, il n'est pas exclu qu'il y ait une légère diffusion vers les parois "non recouvertes".

G - PRODUITS CHIMIQUES

Les gaz utilisés sont des gaz commerciaux "AIR LIQUIDE". Ils ont tous été employés sans purification préalable. Le tableau ci-après en présente les caractéristiques essentielles.

Gaz	: Qualité :	: % pureté :
N ₂	: : :	·
N ₂	: N 48 :	: > 99,998 :
со	: N 45 :	: > 99,995 :
NO	: N 20 :	: > 99 :
^{SF} 6	: N 25	: > 99,85 :
Ar	: U :	: > 99,995 :
°2	: R :	: > 99,5 :
He	: U	:
	: N 60	: > 99,9999 :

Le gaz activé est l'azote de qualité "U".

Les canalisations sont traitées avec des produits PROLABO : phtalate de dibutyle, acide phosphorique, anhydride phosphorique, acide fluorhydrique.

Le manomètre à huile est rempli avec de l'huile pour pompe BEAUDOUIN de type VP_1 .

H - DISPOSITIF DE DETECTION

H.I - Dispositif utilisé pour l'étude spectrophotométrique

Deux dispositifs ont été utilisés pour l'enregistrement des luminescences (cf fig a et b).

H.I.1) Caractéristiques des appareils

a) montage n° 1 (cf fig. a) (partie I de ce travail)

- monochromateur CODERG type MSV comprenant un réseau de 1221 traits par mm, blazé à 250 nm dans le 1er ordre. Celui-ci est couplé à une alimentation CODERG type MAIS possédant 5 vitesses de rotation du réseau, la largeur de fente est réglable de 0,1 à 2,5mm.

fig b : Dispositif utilisé dans la partie II de ce travail

(aus)

Dispositifs expérimentaux pour l'étude spectrophotométrique

- photomultiplicateur du type HAMAMATSU R 160 UH pouvant travailler entre 200 et 500 nm, et présentant deux maxima de réponse à 250 et 350 nm. Son alimentation Philips PE 4839 délivre 15 mA à 1000 V.

- enregistreur potentiométrique SERVOTRACE type PE.

Pour obtenir un signal ayant une intensité maximum, on utilise une lentille Hilger 958 en quartz, de distance focale 12 cm.

b) montage n°2 (cf fig. b) (partie II de ce travail)

- monochromateur à réseau BAUSCH et LOMB, équipé d'un réseau de 1350 traits par mm blazé à 500 nm. La fente d'entrée a une largeur de 1,5mm.

- photomultiplicateur 1P28 dont le maximum de réponse se situe à 410 nm. avec son alimentation Philips PE 4839.
- enregistreur potentiométrique SERVOTRACE type PE.

- adaptateur d'impédance, conçu et réalisé au laboratoire, permettant de faire varier la résistance de charge de l'enregistreur potentiométrique.

H.I.2) Etalonnage des monochromateurs

Le repérage des longueurs d'onde s'effectue, soit à l'aide de lampes spectrales (Zn-Cd-Hg, Ar, Cd), soit grâce à un arc au fer produit par un courant continu de 80 V à l'amorçage appliqué entre deux électrodes.

H.II - Dispositif utilisé pour l'étude en résonance paramagnétique électronique (R.P.E.)

Les études en R.P.E. ont été effectuées sur un spectromètre VARIAN E 272 B constitué par les éléments suivants :

- un tube klystron, source de radiation microonde maintenue à une fréquence choisie, et de puissance variable (max = 200 mW),
- un guide d'onde, pourvu d'un attenuateur de puissance variant entre
 0 et 50 db et d'un coupleur unidirectionnel,
- une cavité résonnante contenant l'échantillon et agissant comme un circuit L.C.,

fig c : Spectromètre R.P.E VARIAN E 272 B

(BUS)

- un électroaimant produisant un champ magnétique variable et couplé avec un contrôleur de champ qui règle sa valeur et sa largeur,
- un détecteur de microonde E 102 permettant au klystron d'être accordé en fréquence avec la cavité et relié à un amplificateur de signal.
 L'accord peut être fait visuellement grâce à un oscilloscoque.

- une table traçante.

La figure C présente la relation entre les différents éléments du spectromètre R.P.E..

H.III - <u>Dispositif utilisé pour l'étude simultanée des intensités</u> de la luminescence de Lewis Rayleigh et du signal R.P.E. de l'azote atomique

Cette étude a été réalisée avec des canalisations coudées dont Φ = 10 mm.

Le dispositif de détection spectrophotométrique est placé devant l'entrefer de l'électroaimant. La cavité résonnante du spectromètre R.P.E., traversée par un tube en quartz véhiculant le mélange gazeux est munie d'une fenêtre d'observation. La luminescence est focalisée sur la fente d'entrée du monochromateur grâce à une lentille Hilger 958 en quartz dont la distance focale est de 12 cm.

On fait varier le temps de réàction entre l'azote activé et le gaz étranger en modifiant la longueur de la partie linéaire située après les coudes. Il est donc nécessaire de démonter le dispositif entre chaque montage. Cette contrainte ne nous a pas permi de comparer les résultats obtenus pour les différents temps de contact. CONCLUSION GENERALE

CONCLUSION GENERALE

Ce travail a comme origine la mise en évidence d'un phénomène tout à fait nouveau, que nous avons nommé "effet de long contact", dans l'interaction entre l'azote activé et la molécule CO qui est isoélectronique de N₂ et peu réactive, du point de vue de la transformation chimique, vis à vis de cet azote activé. Il est apparu, pour le mener à bien, l'opportunité de procéder à un grand nombre d'expériences qu'il a fallu interpréter simultanément. Dans un but de clarification, nous résumons l'essentiel des acquisitions nouvelles auxquelles nous avons été conduits.

Deux types de conclusions se dégagent : les unes concernent les mécanismes à l'origine de ce nouvel effet, les autres sont relatives au mécanisme de l'azote activé.

A) 1) Les caractéristiques cinétiques et spectroscopiques de cet effet de long contact sont mesurées et l'importance des différents paramètres physiques sur son existence et son intensité est précisée. L'essentiel de ces mesures conduit à conclure que cet effet est très sensible à la nature des parois du réacteur, et en particulier à l'existence de "centres actifs" et indépendant d'autres paramètres physiques. Par ailleurs, cet effet est spécifique à la molécule CO ; on démontre que des observations analogues obtenues avec d'autres molécules sont en réalité dues à des trâces de CO dans les gaz utilisés.

 L'évolution cinétique de cet effet de long contact montre qu'il résulte en réalité de la superposition de deux mécanismes qui peuvent, en première approximation, être envisagés séparément :
α) un mécanisme homogène proportionnel à la teneur du mélange réactif en CO qui consiste en une exaltation de la concentration d'atomes N(⁴S) et de molécules N₂(B³π_g) et qui est indépendant du temps de contact. Du point de vue mécanistique, nous sommes amenés à proposer, après avoir mis en relief le rôle de N₂(X¹Σ⁺_g) dans ce type de réaction, le schéma suivant :

$$N_{2} (x^{1} \Sigma_{g}^{+})_{v^{*}} + CO (x^{1} \Sigma^{+}) \rightarrow CO (x^{1} \Sigma^{+})_{v^{*}} + N_{2} (x^{1} \Sigma_{g}^{+})$$

$$CO (x^{1} \Sigma^{+})_{v^{*}} + N_{2} (A^{3} \Sigma_{u}^{+}) \rightarrow N (A^{3} S) + N (A^{3} S) + CO (x^{1} \Sigma^{+})$$

 β) un mécanisme hétérogène dû à des traces de CO et dont le facteur déterminant est l'état de paroi du réacteur caractérisé par des centres actifs capables de fixer CO, N₂ et ces molécules vibrationnellement excitées. Deux mécanismes de cinétiques très différentes sont alors en concurrence :

1)
$$N(^{4}s) + N(^{4}s) + co_{ads} \rightarrow co(x^{1}\Sigma^{+}) + N_{2}(x^{1}\Sigma^{+})$$

réaction rapide grâce à laquelle on peut expliquer les phénomènes de diminution d'intensité de I caractérisés par addition de CO à l'azote activé qui ont fait l'objet de nombreux travaux antérieurs.

2)
$$N_2(x^1\Sigma_g^+)_{v^*} + CO(x^1\Sigma_g^+) \rightarrow N_2(x^1\Sigma_g^+) + CO(x^1\Sigma_g^+)_{v^*}$$

libre ou ads

qui est à l'origine d'une réaction identique à celle observée en phase homogène.

B) Le caractère isoélectronique de N_2 et CO ainsi que la constance du rapport $\frac{(N_2(B))}{(N)^2}$ qui témoigne que CO agit comme cocatalyseur dans le mécanisme de l'azote activé, conduisent à proposer le même type de réaction dans l'azote activé seul. Ainsi le schéma réactionnel suggéré par Young devrait être complété par la prise en considération de l'interaction entre $N_2(x^1\Sigma_g^+)_{v^*}$ et $N_2(A^3\Sigma_u^+)$ qui serait à l'origine de la redissociation de N_2 en atomes. Cette hypothèse interprète de façon satisfaisante la longue durée de vie apparente de l'azote activé, alors que les réactions de recombinaison du mécanisme de Young sont théoriquement permises et donc de cinétique rapide, ce qui est contraire aux observations expérimentales.

Notre travail nous a conduit à insister sur l'intérêt du caractère hétérogène de la réactivité de l'azote activé. Il apparaît maintenant utile d'envisager d'une manière plus systématique l'influence des parois considérées comme catalyseur, en particulier des parois cons-tituées par des métaux de transition et parallèlement à la cinétique de l'azote activé dans de tels réacteurs, il serait opportun d'étudier la fixation des différents constituants de l'azote activé $(N({}^{4}S), N_{2}(X^{1}\Sigma_{g}^{+})_{v}, N_{2}(A^{3}\Sigma_{u}^{+}))$ sur ces parois.

120

ANNEXE

METHODE DE DETECTION DE L'AZOTE ATOMIQUE N $(^{4}S_{3/2})$

ANNEXE

METHODES DE DETECTION DE L'AZOTE ATOMIQUE $N(^{4}S_{3/2})$

Les atomes d'azote $N({}^{4}S)$ furent initialement détectés, dans la luminescence de L.R. par spectrométrie de masse (104) et par spectrométrie R.P.E. (105). Leur concentration relative peut être mesurée par ces méthodes, ou par la réaction bien connue de titration par NO (1).

Des études comparatives des résultats obtenus par R.P.E. et par la titration par NO démontrent qu'il existe des divergences importantes portant sur la fiabilité de ces méthodes.

D'après Young et Sharpless (106) des espèces excitées de l'azote activé telles que celles contribuant au "pink" de la luminescence de L.R. peuvent détruire NO, et donc conduire à une fausse évaluation de N(4 S) par la titration par NO. De même, Von Weyssenhoff et M. Patapoff (107) suggèrent que la méthode de titration par NO n'est valable que si la distance entre la décharge et le point de titration est suffisamment longue pour permettre la désactivation d'espèces excitées pouvant avoir une influence sur la titration. Par ailleurs, ils démontrent que la R.P.E. est assujettie à des erreurs systématiques telles que la saturation du signal ou une relaxation du spin de N(4 S) incomplète. Ils estiment que la précision des différentes mesures de concentration en atomes d'azote est approximativement de 5% pour les deux méthodes.

La mesure de la concentration en N(⁴S) par R.P.E. présente l'avantage de ne pas perturber le milieu réactionnel. La titration par NO n'est pas utilisable lors de l'étude de l'influence de l'adjonction d'autres gaz à l'azote activé. Nous avons donc porté notre choix sur la R.P.E. qui se révèle être une technique plus largement applicable.

A - RAPPELS SUR LA RESONANCE PARAMAGNETIQUE ELECTRONIQUE (R.P.E.)

La R.P.E. met en jeu des niveaux d'énergie correspondant à différentes orientations des spins électroniques dans un champ magnétique. On observe la transition entre deux niveaux issus d'une levée de dégénérescence induite sous l'action d'un champ magnétique. La R.P.E. ne peut s'appliquer qu'aux composés paramagnétiques. Elle permet de détecter l'atome $N({}^{4}S_{3/2})$ qui possède trois électrons célibataires.

A.I - <u>Théorie R.P.E.</u> A.I.1) <u>Effet Zeeman</u>

Cet effet correspond à l'intéraction d'un vecteur champ magnétique avec un vecteur moment magnétique M_J :

$$\vec{M}_{J} = \vec{M}_{L} + \vec{M}_{S}$$

$$\begin{cases} \vec{M}_{L} = \text{vecteur moment magnétique orbital} \\ \vec{M}_{S} = \text{vecteur moment magnétique de spin} \end{cases}$$

Dans le cas général où l'on a un couplage \overrightarrow{L} , \overrightarrow{S} , l'énergie de perturbation créée par le champ magnétique est donnée par :

$$E = g_{i} \beta M_{j} H_{O}$$
(I)

g = facteur de Landais faisant intervenir les couplages entre moment j orbitaux et de spin :

$$g_{j} = 1 + \frac{J(J + 1) - L(L + 1) + S(S + 1)}{2J(J + 1)}$$

$$\beta = \text{magnéton de Bohr}$$

$$M_{J} = \text{nombre quantique magnétique}$$

$$H_{O} = \text{valeur du champ magnétique appliqué}$$

Dans le champ magnétique, il faut respecter la règle de sélection $\Delta M_{T} = \pm 1$

A.I.2) Conditions de résonance pour l'atome $N({}^{4}S_{3/2})$

Dans le cas de l'atome d'azote à l'état ${}^4s_{3/2}$, le moment orbital étant nul, on a :

$$E = 2 \beta M_{J} H_{O}$$
, $M_{J} = M_{S} = -3/2, -1/2, +1/2, +3/2$

D'après la relation (I), on peut représenter les variations de E en fonction du champ magnétique appliqué (cf. courbe n°1) nous voyons que l'on peut induire des transitions entre les niveaux d'énergie créés, par l'intermédiaire d'une radiation électromagnétique telle que $h\nu = \Delta E = 2 \beta H_{o}$, la règle de sélection étant $\Delta M_{c} = \pm 1$.

A.II - Structure hyperfine

S'il existe dans le composé paramagnétique un noyau possédant un moment angulaire propre, il pourra lui aussi interagir avec le champ magnétique H_O. Pour un spin nucléaire I, il y aura formation de 2I + 1 sous niveaux.

Le spin nucléaire de l'azote étant 1, chacun des 4 niveaux $M_T(3/2, 1/2, -1/2, -3/2)$ est subdivisé en 3 sous niveaux $M_T(-1,0, +1)$.

En vertu des deux règles de sélection : $\Delta M_J = \pm 1$ et $\Delta M_I = 0$, le spectre observé consiste en 3 raies triplement dégénérées d'égale intensité (cf. courbe n°2).

1ère raie : $M_I = 1$ $M_J = +3/2 + 1/2, +1/2 - 1/2, -1/2 - 3/2$ 2ème raie : $M_I = 0$ $M_J = +3/2 + 1/2, +1/2 - 1/2, -1/2 - 3/2$ 3ème raie : $M_I = -1$ $M_J = +3/2 + 1/2, +1/2 - 1/2, -1/2 - 3/2$

La séparation de ces raies est une mesure de la constante magnétique d'intéraction hyperfine A : $E = h \land M_T \land M_T$.

B - CONDITIONS EXPERIMENTALES DE MESURE DE LA CONCENTRATION EN N(⁴S) PAR R.P.E.

La mesure des concentrations relatives de $N({}^{4}S)$ par R.P.E. nécessite certaines précautions. Deux des plus importantes, mentionnées dans la littérature (108) (109) ont trait à la vérification d'une part de la non-saturation du signal R.P.E. et, d'autre part de la relaxation de spin de $N({}^{4}S)$.

- vérification de la "non-saturation" du signal R.P.E. : l'amplitude du signal R.P.E. doit être proportionnelle à la racine carrée de la puissance microonde incidente.

- vérification de la relaxation de spin : de récentes études en R.P.E. ont montré que l'addition de traces de NO (109) ou de O_2 (110) à l'azote activé

(l'azote passant dans la décharge ayant été préalablement purifié) augmente l'intensité du signe R.P.E. des atomes d'azote. Brown et Brennen (109) interprètent cette exaltation par le fait que les atomes d'azote, possèdant un long temps de relaxation de spin, arrivent dans la cavité R.P.E. avant d'avoir atteint leur équilibre magnètique. C.J. Ultee (110) suggère que l'addition de ces gaz à l'azote activé diminue le temps de relaxation de spin des atomes d'azote et permet au signal R.P.E. d'approcher son amplitude maximum non saturée. BIBLIOGRAPHIE

BIBLIOGRAPHIE

- (1) A.N. WRIGHT, C.A. WINKLER
 "Active Nitrogen"
 Ed. par E.M. LOEBL, Academic Press New York 1968
- L. BERKOWITZ, N.A. CHUPKA, G.B. KISTIAKOWSKYJ. Chem. Phys. 25, 457, 1956
- (3) M.F. GOLDE, B.A. THRUSH Proc. R. Soc. London, A 330, 79, 1972
- P.G. WILKINSON, R.S. MULLIKENJ. Chem. Phys., 31, 674, 1969
- (5) a) F.J. LE BLANC, Y. TANAKA, A. JURSAJ. Chem. Phys., 29, 949, 1958
 - b) P.K. CARROLL, H.E. RUBACLAYA Proc. Phys. Soc. 76, 337, 1960
- (6) A. LOFTHUS, P.H. KRUPENIEJ. Phys. and Chem. ref. data 6,113, 1977
- M.F. GOLDE, B.A. TRUSH
 Rep. Prog. Phys. 26, 1285, 1973
- (8) J.C.Y. CHENJ. Chem. Phys. 45, 2710, 1966
- (9) G.J. SCHULZ
 Phys. Rev. 116, 1141, 1959; 125, 229, 1962; A 988, 135, 1964
- (10) J.C. POLANYI
 J. Chem. Phys. 31, 1338, 1959
- (11) S.W. BENSON, T. FUENOJ. Chem. Phys. 36, 1597, 1962
- (12) R.A. YOUNG Can. J. Chem. 44, 1171, 1966
- (13) R. JOECKLE
 thèse LYON 1969 N°CNRS AO 3598
- (14) R. JOECKLE, M. PEYRONa) J. Chim. Phys. 67, 1175, 1970
 - b) C.R. Acad. Sc. Paris 261, 1819, 1965
- (15) N. LEGAY-SOMMAIRE et F. LEGAY
 J. Phys. 25, 59, 1964
- (16) F. LEGAYJ. Chim. Phys. 64, 9, 1967

- (17) J.P. KENNEALY, A.T. STAIR Jr, M.H. BRUCEJ. Chem. Phys. 64, 43, 1967
- (18) F. LEGAY
 C.R. Acad. Sc. B 266, 554, 1968
- (19) F. LEGAY, N. LEGAY-SOMMAIRE, G. TAIEB C.R. Acad. Sc. B 266, 855, 1968
- (20) J.P. APPLETON, M. STEINBERGa) Bull. Am. Phys. Soc. 11, 746, 1966

b) J. Chem. Phys. 46, 1521, 1967

- (21) Y. TANAKA, F.R. INNES, A.S. JURSA, N. NAKAMURAJ. Chem. Phys. 42, 1183, 1965
- (22) A.M. BASS
 J. Chem. Phys. 40, 695, 1964
- (23) R.E. HUFFMAN, J.C. LARRABEE, Y. TANAKA J. Chem. Phys. 45, 3205, 1966
- (24) K. DRESSLER
 J. Chem. Phys. 30, 1621, 1959
- (25) I.E. MORGAN, H.I. SCHIFF Can. J. Chem. 41, 903, 1963
- (26) G. BLACK, R.L. SHARPLESS, T.G. SLANGER J. Chem. Phys. 58, 4792, 1973
- (27) G. BLACK, H. WISE, S. SCHECHTER, R.L. SHARPLESS J. Chem.Phys. 60, 3526, 1974
- (28) V.B. PODOBEDOV, A.M. PYNDYK, Kh. E.STERIN Op. Spektrosk. 43, 853, 1977
- (29) V.N. DENISOV, V.B. PODOBEDV, A.M.PYNDYK, Kh. E. STERIN Pis'ma Zh. Eksp. Teor. Fiz. 27, 681, 1978
- (30) L.Y. NELSON, A.W. SAUNDERS Jr., A.B. HARVEY, G.O. NEELY J. Chem. Phys. 55, 5127, 1971
- (31) W.M. SHAUB, J.W. NIBLER, A.B. HARVEYJ. Chem. Phys. 67, 1883, 1977
- (32) F. KAUFMAN, J.R. KELSOJ. Chem. Phys. 28, 510, 1958
- (33) M.F. GOLDE, B.A. TRUSH Rep. Prog. Phys. 36, 1285, 1973
- (34) D.E. SHEMANSKY, N.P. CARLETONJ. Chem. Phys. 51, 682, 1969

- (35) D.E. SHEMANSKYJ. Chem. Phys. 51, 689, 1969
- (36) M. JEUNEHOMMEJ. Chem. Phys. 45, 1805, 1966
- (37) M.G. WILKINSON, R.S. MULLIKENJ. Chem. Phys. 31, 674, 1959
- (38) S.G. TILFORD, P.G. WILKINSON, J.F. VANDERSLICE Astrophys. J. 141, 427, 1965
- (39) W. LICHTEN
 J. Chem. Phys. 26, 306, 1957
- (40) D.E. SHEMANSKYJ. Chem. Phys. 51, 5487, 1969
- (41) W.L. BORST, E.C. ZIPF Phys. Rev. A 3, 979, 1971
- (42) M.F. GOLDE, B.A. TRUSH Proc. R. Soc. A 330, 121, 1972
- (43) K.A. SAUM, W.H. BENESCH Phys. Rev. 2, 1655, 1970
- Y. TANAKA, A.S. JURSA, F. LEBLANC
 The threshold of space
 Ed. M. Zehkoff. Pergamon Press. 1957, New York
- (45) T. YAMASHITAJ. Chem.Phys. 70, 4248, 1979
- (46) I.M. CAMPBELL, B.A. TRUSHProc. R. Soc. London, Ser. A 295, 201, 1967
- (47) M.A.A. CLYNE, D.H. STEDMANJ. Phys. Chem. 71, 3071, 1967
- (48) W. BRENNEN, E.C. SHANEJ. Phys. Chem. 75, 1552, 1971
- (49) G.R. BROWN, C.A. WINKLERJ. Chem. Ed. 54, 185, 1977
- (50) V.A. EMEL'KIN, V.V. MARUSIN
 Kinetics and catalysis, 19, 1118, 1978
- (51) K.M. EVENSON, D.S. BURCHJ. Chem. Phys. 45, 2450, 1967
- (52) E.C. SHANE, W. BRENNEN Chem. Phys. Letters, 4, 31, 1969

- (53) I.M. CAMPBELL, B.A. TRUSHProc. R. Soc. London Ser. A 296, 222, 1967
- (54) M.E. SHUMAN, W. BRENNENJ. Chem. Phys. 68, 4077, 1978
- (55) W. BRENNEN, M.E. SHUMANJ. Phys. Chem. 82, 2715, 1978
- (56) M.E. SHUMAN, W. BRENNENJ. Phys. Chem. 83, 492, 1979
- (57) M.A.A. CLYNE, W.S. NIP "Reactive intermediates in the gas phase generation and monitoring" Edited by D.W. SETSER, Academic Press
- (58) I.G. ANDERSON, J.J. MARGITAN, F. KAUFMAN J. Chem. Phys. 60, 3310, 1974
- (59) P.E. DEBELY Rev. Sci. Instrum. 41, 1290, 1970
- (60) M.A.A. CLYNE, P.M. HOLTa) J. Chem. Soc. Faraday Trans. 75, 569, 1979
 - b) J. Chem. Soc. Faraday Trans. 75, 582, 1979
- (61) A.G. GAYDON
 "Dissociation energie"
 1st edn (London Chapman and Hall) 156, 1947
- (62) G. GARIO, L.H. REINECKE Abh. Braunschev. Wiss. Ges. 1,8, 1949
- (63) J. ANKETELL, R.W. NICHOLLS Rep. Prog. Phys. 33, 269, 1970
- (64) S. BENSON
 J. Chem. Phys. 48, 1765, 1968
- (65) K.H. BECKER, E.H. FINK, W. GROTH, W. JUD, D. KLEY Faraday Disc. Chem. Soc. 53, 35, 1972
- J. BERKOWITZ, W.A. CHUPKA, G.B. KISTIAKOWSKYJ. Chem. Phys. 25, 457, 1956
- (67) K.D. BAYES, G.B. KISTIAKOWSKYJ. Chem. Phys. 32, 992, 1960
- (68) R.A. YOUNG
 J. Chem. Phys. 60, 5050, 1974
- (69) O. DESSAUX
 J. Chem. Phys. 67, 1137, 1970
- (70) H.G.V. EVANS, G.R. FREEMAN, C.A. WINKLER Can. J. Chem. 34, 1271, 1956

- (71) A.N. WRIGHT, C.A. WINKLERJ. Phys. Chem. 67, 172, 1962
- (72) R.R. BAKER, A. JACOB, C.A. WINKLER Can. J. Chem. 49, 1671, 1971
- (73) J. BERKOWITZ, W.A. CHUPKA, G.B. KITIAKOWSKY
- (74) R.A. YOUNG, R.L. SHARPLESS, R. STRINGHAMJ. Chem. Phys. 40, 117, 1964
- (75) J.T. HERRONJ. Res. 69 A, 287, 1965
- (76) L. RAYLEIGH Proc. Roy. Soc. A 151, 508, 1935
- (77) L. RAYLEIGH F.R.S. Proc. Roy. Soc. A 180, 123, 1942
- (78) A.N. WRIGHT, R.L. NELSON, C.A. WINKLER Can. J. Chem. 40, 1032, 1962
- (79) G.B.KISTIAKOWSKY, G.G. VOLPIJ. Chem. Phys. 28, 665, 1958
- (80) K.D. BAYES, G.B. KISTIAKOWSKYJ. Chem. Phys. 32, 992, 1960
- (81) J.V. MICHAEL Chem. Phys. Letters, 76, 129, 1980
- (82) R.J. OLDMAN, H.P. BROIDAJ. Chem. Phys. 51, 2254, 1969
- (83) B.G. BRUNETTI, G. LIUTI, B. SCHIPPAGazz. Chim. Ital. 105, 521, 1975
- (84) K.R. JENNINGS, J.W. LINETT Trans. Faraday. Soc. 58, 1737, 1960
- (85) L.H. REINECKE
 Z. Physik. 135, 361, 1953
- (86) H.P. BROIDA, D.F. HEATHJ. Chem. Phys. 26, 1352, 1957
- (87) A.T. STAIR, J.P. KENNEALY, R.E. MURPHYJ. Chem. Phys. 64, 52, 1967
- (88) R.A. YOUNG, W. MORROW
 J. Chem. Phys. 60, 1005, 1974
- (89) M.F. GOLDE, B.A. TRUSHProc. R. Soc. London A 330, 97, 1972

- (90) J.P. KENNEALY, A.T. STAIR, M.H. BURCE J. Chem. Phys. 64, 43, 1967
- (91) R. ABOUAF, F. LEGAYJ. Chem. Phys. 1393, 1966
- (92) T.F. HUNTER
 J. Chem. Phys. 51, 2641, 1969
- (93) H. KOVACS, D. RAMACHANDRA RAO, A. JAVANJ. Chem. Phys. 48, 3339, 1968
- (94) V.I. EGOROV, Yu. M. GERSHENZON, V.B. ROZENSHTEIN, S. Ya. UMANSKII Chem.Phys. Lett. 20, 77, 1973
- (95) M. BRIDOUX, F. GRASE, E. DARTUS, O. DESSAUX, P. GOUDMAND Chem. Phys. Lett. 65, 65, 1979
- (96) E. DARTUS thèse LILLE 1979, n°780
- (97) B. MUTELDEA Spectroscopie et méthodes d'analyses, LILLE, 1979
- (98) R.A. YOUNG, G. BLOCK, T.G. SLANGERJ. Chem. Phys. 50, 303, 1969
- (99) E.L. MILNE, M. STEINBERG Bull. Am. Phys. Soc. 9, 720, 1964
- (100) K.M. EVENSON, D.S. BURCH
 J. Chem. Phys. 45, 2450, 1966
- (101) B. VIDAL thèse LILLE 1973, n°266
- (102) C. DUPRET, B. VIDAL, P. GOUDMAND Rev. Phys. Appl. 337, 1970
- (103) H.P. BROIDA, F.G. FEHSENFELD, K.M. EVENSON N.B.S. Report 8701, 1964
- (104) D.S. JACKSON, H.I. SCHIFF
 J. Chem. Phys. 21, 2233, 1953
- (105) M.A. HEALD, R. BERINGER
 Phys. Rev. 96, 645, 1954
- (106) R.A. YOUNG, R.L. SHARPLESS Disc. Faraday Soc. 33, 228, 1962
- (107) H. VON WEYSSENHOFF, M. PATAPOFFJ. Phys. Chem. 69, 1756, 1965

- (108) R.A. YOUNG, R.L.SHARPLESS, R. STRINGHAM
 J. Chem. Phys. 40, 117, 1964
- (109) R.L. BROWN, W.BRENNEN J. Chem. Phys. 47, 4697, 1967
- (110) C.J. ULTEE J. Chem. Phys. 64, 1873, 1960

