

50376 1982 27

THESE

présentée à

1'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE I

pour obtenir le titre de

Docteur de 3ème cycle

en

SUR LA DETERMINATION DE LA SOLUTION DU PROBLEME DE L'EQUILIBRE D'UNE COQUE CYLINDRIQUE ELASTIQUE.

Soutenue le 27 Mai 1982

devant la Commission d'examen

Membres du Jury :

Président: M. ZEYTOUNIAN, Professeur, Université de Lille IRapporteur: M. PARSY, Professeur, Université de Lille IMembres: M. HENRY, Professeur, Université de Lille I (EUDIL)M. OUDIN, Professeur, Université de ValenciennesInvité: M. LECOINTE, Directeur des Recherches, ENSTIM Douai

à la mémoire de ma mère.

Monsieur le Professeur F.PARSY, m'a initié à la théorie des coques et plaques, il a guidé mon travail sans discontinuer, ses remarques et ses conseils sont à la base de l'élaboration de ce mémoire. Qu'il me soit permis de lui exprimer ma profonde gratitude pour sa direction sûre et efficace.

Je remercie Monsieur le Professeur ZEYTOUNIAN d'avoir accepté de présider la soutenance et Messieurs les Professeurs HENRY et OUDIN d'avoir consenti à juger mon travail, à participer au jury. Qu'ils trouvent ici l'expression de toute ma gratitude.

Monsieur Y. LECOINTE, Directeur de Recherches m'a accueilli au Département Mécanique de l'ECOLE NATIONALE SUPERIEURE DES TECHNIQUES INDUSTRIELLES ET DES MINES DE DOUAI, qu'il trouve ici l'expression de ma sincère reconnaissance pour l'intérêt qu'il a toujours porté à mon travail.

Madame Françoise PETIAUX a dactylographié ce travail avec soin, je l'en remercie sincèrement ainsi que les services de l'imprimerie de l'UER de Mathématiques de LILLE I.

INTRODUCTION

CHAPITRE I - RAPPEL DES EQUATIONS REGISSANT UNE COQUE EN COORDONNEES CURVILIGNES ORTHOGONALES

I-1.1.	Notations et définitions • • • • • • • • • • • • • • • • • • •	1
I-1.2.	Coordonnées curvilignes - Repère local · · · · · · · · · · · · · · · · · · ·	L
I-2.1.	Opérateur gradient en coordonnées curvilignes orthogonales · · ·	3
I-2.2.	Etude de la déformation • • • • • • • • • • • • • • • • • • •	5
I-2.2.1	. Equations d'équilibre • • • • • • • • • • • • • • • • • • •)
I-2.3.	Loi de comportement · · · · · · · · · · · · · · · · · · ·	2
I-2.4.	Conditions de compatibilité • • • • • • • • • • • • • • • • • • •	3
CHAPITR	E II – ETUDE D'UNE COQUE CYLINDRIQUE · · · · · · · · · · · · · · · · · · ·	7
II-1.1.	Tenseur Grad _x u en coordonnées cylindriques • • • • • • • • • • • • • • • • • • •	3
II-1.2.	Composantes du tenseur de déformation •••••••••••••	3
II-1.3.	Relations contraintes - déplacements •••••••••••••••••	Э
II-1.4.	Equations d'équilibre ••••••••••••••••••••••••••••••••••••	1
II - 1.6.	Conditions aux limites sur les faces $z=\pm h$ · · · · · · · · · · · · · · · · · ·	1
II-1.7.	Comparaison des divers petits paramètres ••••••••• 22	2
	1) - Introduction $\cdot \cdot \cdot$	2
	2) - Variables adimensionnelles · · · · · · · · · · · · · · · · · · ·	3
	3) - Relation entre les paramètres η et \mathcal{E} · · · · · · · · · · · · · · · · · · ·	б
	I I I I I I I I I I I I I I I I I I I	

CHAPITH	E III - RESOLUTION DU PROBLEME EN COORDONNEES ADIMENSIONNELLES ·
III-1.1.	Equations d'équilibre
III-1.2.	Relations contraintes-déformations • • • • • • • • • • • • • • • • • • •
III-1.3.	Equations de compatibilité · · · · · · · · · · · · · · · · · · ·
III-2.1.	Problème linéarisé
III-2.2.	Relations contraintes-déformations • • • • • • • • • • • • • • • • • • •
III-2.3.	Equations de compatibilité • • • • • • • • • • • • • • • • • • •

Pages

CHAPITE	RE IV - RESOLUTION DU PROBLEME LINEARISE · · · · · · · · · · · · · · · · · · ·	43
TV-1 1	Résolution à l'ordre zéro en \mathcal{E}	43
TV-1 2	Resolution à l'ordre un en \mathcal{C} · · · · · · · · · · · · · · · · · · ·	44
TV-1 3	Resolution à l'ordre deux en ε	47
TV = 1 A	Resolution à l'ordre n quelconque >2 · · · · · · · · · · · · · · · · · · ·	51
TV-1 5	Conditions aux limites sur les faces $z=+h$ · · · · · · · · · · · ·	57
10 1.5.	conditions due rimites sur les ruces 2-in	
IV-2.1.	Résultats en variables réelles dimensionnelles · · · · · · · ·	59
CUADIME		
	$\frac{1}{100} = \sqrt{-1} = \frac{1}{100} \frac{1}$	61
	AVEC LES AUTRES THEORIES	6 7
	V-2- NOUVELLE FORMULATION DES EQUATIONS D'EQUILIBRE · · ·	67
		70
CHAPITE	RE VI - ETUDE DES COQUES CYLINDRIQUES MINCES	12
		70
VI-1.1.	Hypothèse des coques minces • • • • • • • • • • • • • • • • • • •	72
VI-1.2.	Equations d'équilibre dans l'hypothèse H1 · · · · · · · · · · · · · · · · · ·	74
VI-1.3.	Conditions aux limites sur les faces • • • • • • • • • • • • • • • • • • •	76
VI-1.4.	Résolution du système (1), (3), (5) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots$	79
VI-1.5.	Résultat pour n=o •••••••••••••••••••••••••••••••••••	84
VI-1.6.	Résolution pour $n \ge 1 \cdots \cdots$	86
VI-1.7.	Détermination des déplacements "de membrane" • • • • • • • • • • • •	89
VI-1.8.	Calcul des contraintes · · · · · · · · · · · · · · · · · · ·	95
VI-1.9.	Calcul des déplacements ••••••••••••••••••••••••••••••••••••	97
VI-2.1.	Conditions aux limites sur les bords • • • • • • • • • • • • • • • • • • •	99
CHAPITH	RE VII - ETUDE DES COQUES "MOYENNEMENT EPAISSES · · · · · ·	104
		104
vii-1.1.	Application aux coques "moyennement epaisses" · · · · · · · ·	108
VII-1.2.	Equations d'equilibre	110
VII-1.3.	Conditions aux limites pour z=±h · · · · · · · · · · · · · · · · · · ·	111
VII-1.4.	Résolution des équations d'équilibre • • • • • • • • • • • • • • • • • • •	111

VIII - REMARQUES SUR LA RECHERCHE DES SOLUTIONS EN DOUBLE SERIE DE FOURIER. 121

INTRODUCTION

L'objet de ce travail est l'étude du comportement d'une coque cylindrique élastique.

Le but essentiel est de ne pas faire a priori d'hypothèse du type LOVE-KIRCHOFF et aussi d'introduire les conditions sur les forces extrêmes pour déterminer la solution sans avoir recours à des techniques de couche limite.

Dans le premier chapitre on rappelle les équations générales régissant la déformation d'une coque quelconque en coordonnées curvilignes orthogonales; on établit, au Chapitre II, les équations correspondant à une coque cylindrique élastique.

Le passage du tenseur non linéaire des déformations au tenseur linéarisé, en coordonnées adimensionnelles, fait apparaître deux infiniments petits $\boldsymbol{\epsilon}$ et $\boldsymbol{\gamma}$ liés à la coque :

$$\mathbf{E} = \frac{\mathbf{h}}{\mathbf{R}} = \frac{\text{demi-épaisseur}}{\text{rayon moyen}}$$

 y = borne supérieure (sur la coque) de la norme du gradient du vecteur déplacement .

Si l'on pose $\vec{u}(x,\theta,g) = \vec{U} \cdot \vec{u}(x,\theta,g,g)$, $\vec{u} = \vec{u} \cdot \vec{e} \cdot (\vec{u} \cdot \vec{u},\vec{s},\vec{s})$ où \vec{U} est un déplacement caractéristique et $\vec{x} = \vec{E}$ (Llongueur de la coque), $\vec{g} = \vec{E} = \frac{r-R}{h}$, on voit dans le deuxième Chapitre que le fait, en Elasticité linéaire, de négliger les termes d'ordre au moins 2 en \vec{m} amène à comparer \vec{U} , \vec{E} et \vec{m} et à faire 2 types d'hypothèses :

La lère (utilisée par RAILLON cf. Bibliographie) est $\mathcal{E}=\mathcal{Y}(\mathcal{O}\ll\langle \mathcal{A}\rangle)$ et la <u>seconde **qui**sera adoptée dans ce travail</u> à savoir :

 ε indépendant de γ et $U=O(\varepsilon)$

Ι

De plus la dépendance polynomiale de U en ϵ amène à rechercher les \overline{u} ; sous la forme :

(1)
$$\overline{\mathbf{u}}_{i}(\theta, \overline{\mathbf{x}}, \overline{\mathbf{s}}, \epsilon) = \sum_{n=0}^{\infty} \varepsilon^{n} \overline{\mathbf{u}}_{i}^{(n)}(\theta, \overline{\mathbf{x}}, \overline{\mathbf{s}}).$$

Comme on étudie le problème de l'équilibre élastique en termes de contraintes et de déplacement on pose par analogie : ($\sigma_3 = \xi \sigma_3$)

(1)
$$\overline{O_{ij}}(\theta, \overline{x}, \overline{z}, \varepsilon) = \sum_{n=0}^{\infty} \varepsilon^n \overline{O_{ij}}(\theta, \overline{x}, \overline{z})$$

Dans les Chapitres III et IV la substitution de ces développements dans les équations du problème linéaire montre que nécessairement on a :

$$\overline{u}_{i}^{(n)}(\theta,\overline{x},\overline{s}) = \sum_{m=0}^{n} \frac{\overline{s}^{m}}{\overline{m}!} \overline{a}_{im}^{(n)}(\theta,\overline{x})$$

(2)

$$\widehat{\sigma}_{ij}^{(n)}(\theta_{j}\overline{x},\overline{s}) = \sum_{m=0}^{m} \frac{\overline{s}^{m}}{m!} \widehat{F}_{ijm}^{(n)}(\theta_{j}\overline{x}).$$

et l'on obtient des relations de récurrence entre les $\overline{f_{ijm}}^{(n)}$ et $\overline{a_{im}}^{(n)}$. On a établi les relations qui donnent les $\overline{f_{ijn}}^{(n)}(0,\overline{x}), \overline{a_{in}}^{(n)}(0,\overline{x})$ en fonction des $\overline{a_{io}}^{(0)}(0,\overline{x})$ qui sont les "déplacements de membrane" classiques correspondant à h=0 (contrairement aux déplacements de la surface moyenne $\sum_{n=0}^{\infty} \varepsilon^n \overline{a_{io}}^{(n)}(0,\overline{x})$ qui dépendent de h). De plus à l'aide des équations d'équilibre, des relations de compatibilité et de la loi de comportement, on obtient des relations aux dérivées partielles définissant les $\overline{f_{ijn}}^{(n)}$ et $\overline{a_{in}}^{(n+n)}$ en fonction des $\overline{f_{ijn}}^{(n)}$ et $\overline{a_{ip}}^{(n)} \circ \leq q < m$. Dans le cinquième Chapitre afin de pouvoir comparer les résultats avec la théorie classique des coques, on détermine les forces et moments habituellement définis sur la surface moyenne et on rétablit les équations d'équilibre pour ces quantités.

Au Chapitre VI on étudie les coques cylindriques "minces" c'est-àdire que dans les développements des $(\frac{h}{R})^{\ell} (\frac{2}{R})^{\ell}$ et $(\frac{h}{R})^{\ell} (\frac{2}{R})^{\ell}$ tels que $(\frac{h}{R})^{\ell} (\frac{2}{R})^{\ell}$

en série de Fourier à coefficients fonction de \approx) on déduit des équations d'équilibre un système différentiel linéaire qui permet de déterminer les coefficients de **cos n \theta** et **son n \theta** comme solution générale de ce système (qui dépend de **r**).

On prend alors en considération les conditions (en contraintes) sur les forces $z=\pm h$ et à l'aide des relations de récurrence établies au Chapitre IV on détermine les $f_{ijm}^{(m)}(\theta, x)$ et les $a_{im}^{(n)}(\theta, x)$ à des constantes d'intégration près.

En tenant compte des conditions sur les faces $\mathbf{x=0}$ et $\mathbf{x=L}$ on montre que l'on obtient autant d'équations linéaires que de constantes d'intégration ce qui, en général, assure leur détermination et la convergence des séries de FOURIER compte tenu de leur dépendance en \mathbf{n} .

Si l'on réfléchit à la démarche suivie on a déterminé un champ de contraintes statiquement admissible et **u**n champ de déplacement associé cinématiquement admissible, c'est-à-dire la solution du problème élastique posé.

Au Chapitre VII, on aborde le cas des coques "moyennement épaisses" (﴿+(◊≥3)) que l'on peut traiter par une méthode analogue qui donne la solution du problème posé comme dans VI, le système différentiel en ≈ étant d'ordre plus élevé que celui de VI.

Les relations de récurrence assurent que cette technique peut être étendue aux cas $4+0 \ge P$, P entier ≥ 4 au prix de la complexité des calculs.

A vrai dire, au début, ce résultat nous a un peu effrayé car il semblait dire que tous les calculs qui tenaient compte des effets dits "de couche limite" pouvaient être évités : en fait, une lecture attentive des divers ouvrages traitant des coques nous a montré que, par exemple, on y cherchait $\vec{\boldsymbol{w}}$ sous la forme :

$$u_i(x, 0, 3) = \sum_{n=0}^{\infty} 3^n u_i^{(n)}(0, 2)$$

où le terme $u_i^{(\bullet)}(\theta, z)$ est le déplacement de membrane (h=o=3). Autrement dit, on suppose dans ces modèles que la surface moyenne se déforme indépendamment de l'épaisseur de la coque.

De notre côté, le déplacement de la surface moyenne s'écrit d'après (1) et (2)

$$u_{i}(x,\theta,0) = \sum_{m=0}^{\infty} \left(\frac{h}{R}\right)^{m} a_{i0}^{(m)}(\theta, x)$$

qui, lui, dépend de l'épaisseur de la coque. Evidemment notre méthode introduit plus de coefficients inconnus que la méthode habituelle mais ces coefficients permettent de tenir compte de *toutes* les conditions aux limites.

IV

CHAPITRE I

RAPPEL DES EQUATIONS REGISSANT UNE COQUE EN COORDONNEES CURVILIGNES ORTHOGONALES

I.1. NOTATIONS ET DEFINITIONS.

Soit \mathcal{E}_3 l'espace affine euclidien de dimension 3, rapporté au repère orthonormé $\mathcal{O}(\mathcal{O}; \mathcal{E}_i)$, de coordonnées carthésiennes \mathcal{F}_i , et soit \mathcal{E}_3 l'espace vectoriel associé.

C, le domaine occupé par la coque à l'instant t, de point générique X et de frontière **36**.

2 h(X) est l'épaisseur de la coque au point X.

S la surface moyenne de 🖑 .

E, **E**, **E**, représentent respectivement la coque, sa frontière et sa surface moyenne à l'état "initial **t=0** " (ou l'état non déformé).

I.1.2. COORDONNEES CURVILIGNES - REPERE LOCAL.

Le point **P** de **E** étant repéré par ses coordonnées cartésiennes **%**;) on appelle coordonnées curvilignes sur **E** toute application **Y** de **R**³ dans **R**³ telle que :

 $(\underline{z}_{j}) \xrightarrow{\Psi} (x_{i}) = \Psi(\underline{z}_{j})$

(.) est définie, bijective et deux fois continûment dérivable sur .
(..) Les lignes coordonnées x; = olte ne sont pas toutes des droites.

Ainsi, tout point de la coque est aussi bien déterminé par ses coordonnées **X**: que par ses coordonnées **X**: : c'est l'intersection de trois et seulement trois lignes coordonnées.

Les vecteurs $\vec{g}_i = \underbrace{\vec{g}_i}_{\vec{k}_i}$ tangents aux lignes coordonnées, forment une base de l'espace vectoriel \vec{E}_3 .

Si de plus les **s** sont deux à deux orthogonaux, les coordonnées curvilignes sont dites orthogonales, et on associe à la base (**s**), le repère local au point considéré, dont la base est formée des vecteurs unitaires des **s**.

Soit ই l'un de ces vecteurs et h: so module, on a alors :

$$\vec{g}_i = h_i \vec{c}_i = \vec{P}_i$$
 pour $i = 1, 2, 3$

et tout vecteur ⊽ d'origine 🍸 s'écrit :

$$\vec{\mathbf{v}} = \mathbf{h}_{1}\mathbf{v}_{1}\vec{\mathbf{c}}_{1} + \mathbf{h}_{2}\mathbf{v}_{2}\vec{\mathbf{c}}_{2} + \mathbf{h}_{3}\mathbf{v}_{3}\vec{\mathbf{c}}_{3}$$

Pour traiter les problèmes d'analyse tensorielle en coordonnées curvilignes orthogonales, il nous faudra calculer les dérivées des vecteurs **c** et les exprimer par rapport au repère local **R(P; c;)**.

On pose :
$$(\vec{c}_{ijk})_{ij} = \Gamma_{ijk} = \vec{c}_{ijk} \cdot \vec{c}_{jj}$$

où les Γ_{ijk} sont les symboles de Christoffel de première espèce et à partir du fait que $\vec{c}_i \cdot \vec{s}_j = \delta_{ij}$ et $\vec{F}_{ij} = \vec{F}_{ji}$ on obtient les relations suivantes :

Fisk =- Lick (1.1-1) Fizz = 0 et Fizz = 0 si (i,j,k) est une permutation de (1,2,3) $\Gamma_{ijj} = -\Gamma_{jij} = \frac{h_{ji}}{L_i}$ (pas de sommation sur les indices repeters). I.2. OPERATEUR GRADIENT EN COORDONNEES CURVILIGNES ORTHOGONALES

Pour un champ de tenseur donné $\vec{t}(\vec{P})$, le tenseur \vec{grat} obtenu par dérivation, est l'être mathématique invariant dont on tire par de simples opérations d'algèbre tensorielle, tous les autres êtres invariants de l'analyse tensorielle.

Par rapport au repère cartésien **R(0; etc)**, le tenseur grad **t** s'exprime par le produit tensoriel : Pour pouvoir l'exprimer dans **R(P; c:**), on utilise d'une part es= akjek , et d'autre part, que l'on a : que : $\vec{e_3} = \vec{\partial P} = \vec{\partial P} \cdot \vec{\partial x_k} = h \vec{c_k} \vec{\partial x_k}$ (pas de sommation sur $\vec{e_3} = \vec{\partial x_k} = \vec{\partial x_k} \cdot \vec{\partial x_k} = h \vec{c_k} \vec{\partial x_k}$ (pas de sommation sur $\vec{e_3} = \vec{\partial x_k} = \vec{\partial x_k} \cdot \vec{\partial x_k}$ (pas de sommation sur). d'où on tire que $3x_k = \frac{a_k}{b_k}$ (pas de sommation) etSi de plus **E** est un tenseur du second ordre, (i.e. **F= t**; **c**; **G**;): grad $\vec{t} = \frac{1}{h_1} \begin{bmatrix} t_{ij} \vec{c_i} \otimes \vec{c_j} \end{bmatrix}_{ik} \otimes \vec{c_k}$ = $\frac{1}{h_1} \left[t_{ijk} + t_{ej} \Gamma_{eik} + t_{ie} \Gamma_{ejk} \right] \vec{c_i} \vec{o_j} \vec{o_k}$

soit :

(I.1-2) grad
$$\vec{t} = \frac{1}{h_k} \left[\frac{\partial t_{ik}}{\partial x_k} + t_{ej} \int_{e_{ik}} t_{ie} \int_{e_{jk}} t_{ejk} \right]$$

(pas de sommation sur l'indice souligne k).

a) Gradient d'un vecteur

Soit \vec{u} un vecteur de E_3 , donné par ses composantes u_i dans la base $\vec{c_i}$.

On a :

grad
$$\vec{u} = \frac{1}{h_j} \left[\frac{\partial u_i}{\partial z_j} + u_j \left[\frac{\partial u_i}{\partial z_j} \right] = \nabla_{ij} (\vec{u})$$

avec :

$$\nabla_{H}(\vec{u}) = \frac{u_{4,1}}{h_{1}} + \frac{h_{1,2}u_{2}}{h_{4}h_{2}} + \frac{h_{4,3}u_{3}}{h_{4}h_{3}}$$
(I.1-3)
$$\nabla_{H2}(\vec{u}) = \frac{u_{4,2}}{h_{2}} - \frac{h_{2,4}}{h_{4}h_{2}}u_{2}$$

$$\nabla_{H3}(\vec{u}) = \frac{u_{4,3}}{h_{3}} - \frac{h_{3,1}}{h_{4}h_{3}}u_{3}$$

Les 6 autres composantes de grade s'obtiennent facilement par permutations des indices 1, 2, 3 dans les expressions précédentes.

b) Divergence d'un tenseur du second ordre

Le tenseur divergence est obtenu par contraction de l'indice de dérivation avec l'un des indices du tenseur, dans l'opérateur gradient.

En général, on contracte par rapport au dernier indice du tenseur et dans le cas d'un tenseur du second ordre, les trois composantes de , se mettent sous la forme :

$$(I.1-4) \operatorname{div}_{i} = \frac{1}{h_{j}} \left[t_{ij,j} + t_{ej} \Gamma_{eij} + t_{i} \Gamma_{ejj} \right].$$

c) Rotationnel d'un vecteur

Le vecteur rotationnel de \vec{u} résulte de la double contraction du pseudo tenseur de Ricci $\vec{\epsilon}$ pour le tenseur grad \vec{u}

(I.1-5)
$$\operatorname{rot}_{i} \overline{u} = \frac{1}{h_{j}} \varepsilon_{ijk} \left(u_{k,j} + u_{e} \Gamma_{ekj} \right).$$

d) Laplacien d'un tenseur du second ordre

Le Laplacien s'obtient par une double contraction par rapport aux indices de dérivation dans le tenseur $grad(grad \vec{E})$.

On développera les calculs explicites pour les équations de compatibilité.

I.2.2. ETUDE DE LA DEFORMATION

Sous l'action, d'une part des forces : (+) de densité surfacique $\vec{F_s}$ appliquées partout ou en partie à $\vec{C_s}$ (++) de densité volumique $\vec{\rho} \vec{F}$ appliquée à $\vec{C_s}$ et d'autre part, d'un champ de déplacement $\vec{u_s}$, imposé, partout ou en partie à $\vec{C_s}$.

la coque 💪 subit une déformation caractérisée par une application Φ de $\mathbf{k} \times \mathbf{R}^+$ dans \mathbf{R}^3 , telle que : $\Phi: \mathfrak{E}_{\times} \mathbb{R}^{\dagger} \longrightarrow \mathbb{R}^{3}$ $(x, t) \longrightarrow \overline{\Phi}(x,t) = X$ et $\overline{\Phi}(\partial \xi) = \partial \xi$. $X = x + \overline{u}(x,t)$

on a :x=(x1, x2, x3) et t sont les variables de LAGRANGE et **b** sont les variables d'EULER. $X = (X_{1}, X_{2}, X_{3})$

L'hypothèse que la coque est constituée d'un milieu continu, implique que **u** est une fonction de classe **e**² de **x**.

Le principe de non interpénétrabilité de la matière, postulé en mécanique des solides, nécessite que 🖣 soit un difféomorphisme global de 😪 sur **\$(E.,t)** et que **\$** préserve l'orientation.

$$e: \overrightarrow{G_{i}}(x) = \frac{\partial \overline{\Phi}(x_{j}t)}{\partial x_{i}} = \frac{\partial \overline{\Phi}_{i}}{\partial x_{i}} \overrightarrow{e_{j}}$$

D'après les hypothèses faites sur $\frac{1}{2}$, les trois vecteurs $\overline{G_{i}}$ sont linéairement indépendants.

En plus, le fait que **क** préserve l'orientation implique que :

$$J_{(x)} = \operatorname{Det}\left(\frac{\partial \Phi_{i}}{\partial x_{i}}\right) > 0 \quad \forall x \in \mathcal{C}_{o}$$

d:la matrice de composantes est inversible. On pose Gig(x)= G. G

On pos

 $\left(\begin{array}{c} 2\Phi_{i}\\ \hline \partial z_{i}\end{array}\right)$ pour $1\leq ij\leq \leq 3$ et l'on a

 $G = Det(G_{ij}) = J(z).$

a) Conservation de la masse

Soit dv(x) l'élément de volume au point x dans E, , et dV(x) l'élément de volume déformé au point x.

On a:

$$dV = \left| \vec{G_1} \cdot \left(\vec{G_2} \wedge \vec{G_3} \right) \right| dr = \left| \text{Det} \left(\frac{\partial \vec{\Phi}_3}{\partial z_1} \right) \right| dv$$

= J(x) dv = VG(x) dv.

Soit $\beta(x)$ la masse volumique au point x de ℓ_0 , et p(x,t) la masse volumique au point $X = \Phi(x,t)$.

La conservation de la masse d'un élément de volume arbitraire **V** de **C**, s'écrit, en variable de Lagrange, sous la forme :

$$\forall v_{c} \in \mathcal{C}, \quad \int \rho(z) dv(z) = \int \rho(z,t) dV(z) = \int \rho(z,t) \sqrt{G(z,t)} dv(z)$$

$$\Phi(v_{o,t}) = \int \rho(z,t) \sqrt{G(z,t)} dv(z)$$

d'où, ponctuellement :

(1.1-6)
$$p(x,t)\sqrt{G(x,t)} = p(x) = J(x,t) \cdot p(x,t)$$
.

En variables d'EULER, la loi de conservation de la masse s'écrit

$$\forall \mathbf{v} \in \mathcal{C} \quad \frac{d}{dt} \int p(\mathbf{X}, t) d\mathbf{V}(\mathbf{X}) = 0 = \frac{d}{dt} \int \left[p(\mathbf{x}, t); t) J(\mathbf{x}, t) d\mathbf{w}(\mathbf{x}) \right]$$

Avec

$$\frac{d}{dt} J(x_j t) = J(x_j t) \operatorname{div}_X \overline{u}(x_j t)$$

En repportant dans l'intégrale on obtient :

$$O = \int \left[\frac{\partial P}{\partial t} + \frac{\partial P}{\partial z_{1}} U_{i}(z_{1},t) + P(z_{1},t) dw_{x}(ut) \right] J(z_{1},t) dw(z)$$

$$= \int \left[\frac{\partial P}{\partial t} + div_{x}(P\overline{U}) \right] dV(x) ,$$

d'où ponctuellement :

(I.1-7) $\frac{\partial p}{\partial t} + dw_{\chi}(p\vec{U}) = 0$

b) <u>Tenseur des déformations</u>

La déformation de
$$\xi$$
 en $\mathbf{f}(\xi)$ se traduit par le fait que la distance
de deux points \mathbf{P} , \mathbf{Q} infiniment voisins dans ξ , est différente de celle
de leurs images $\mathbf{f}(\mathbf{P})$ et $\mathbf{f}(\mathbf{Q})$ dans $\mathbf{f}(\xi)$.
Soient :
 $d\ell_o = d(\mathbf{P},\mathbf{Q}) = \sqrt{dx_i dx_i}$
 $d\ell = d(\mathbf{f}(\mathbf{P}),\mathbf{f}(\mathbf{Q})) = \sqrt{dx_i dx_i}$.
D'après les définitions de \mathbf{f} , \mathbf{u} et \mathbf{grad} \mathbf{u} :
 $dx_i = dx_i + du_i = dx_i + \mathbf{Grad}_{ik}(\mathbf{u}) dx_k$
d'où $d\ell^2 = dx_i dx_i + \begin{bmatrix} \mathbf{Grad}_{ik}(\mathbf{u}) + \mathbf{Grad}_{ki}(\mathbf{u}) \end{bmatrix} dx_i dx_k + \dots$
 \dots + $\mathbf{Grad}_{ik}(\mathbf{u})$ $\mathbf{Grad}_{ki}(\mathbf{u}) dx_k$

qu'on pose sous la forme

$$dl^2 = dl_0^2 + \partial \chi_{ik}(\bar{u}) dx_i dx_k$$

les $V_{ik}(\vec{u})$ sont les composantes d'un tenseur symétrique du second ordre $\vec{v}(\vec{u})$: c'est le <u>tenseur des déformations</u>

avec

$$\begin{split} \mathbf{\tilde{y}}_{14}(\vec{u}) &= \nabla_{11}(\vec{u}) + \frac{1}{2} \left(\nabla_{14}^{2}(\vec{u}) + \nabla_{12}^{2}(\vec{u}) + \nabla_{13}^{2}(\vec{u}) \right) \\ (\text{I.1-8}) \quad \nabla_{12}(\vec{u}) &= \frac{1}{2} \left[\nabla_{12}(\vec{u}) + \nabla_{24}(\vec{u}) + \nabla_{14}(\vec{u}) \nabla_{24}^{(\vec{u})} + \nabla_{22}(\vec{u}) \cdot \nabla_{12}(\vec{u}) + \nabla_{23}^{(\vec{u})} \cdot \nabla_{13}^{(\vec{u})} \right] \\ \text{Les autres composantes de } \mathbf{\tilde{v}}(\vec{u}) \text{, se déduisent des formules précédentes} \end{split}$$

par des permuations circulaires des indices 1, 2, 3.

2.2. EQUATIONS D'EQUILIBRE

Soit V un élément de volume arbitraire de la coque E, de surface extérieure régulière V et soit V^c sont complémentaire par rapport à E. V est en équilibre sous l'action des forces exercées par V^c son V et des forces de volumes appliquées à V.

Le principe fondamental de la dynamique appliqué à ${m v}$ donne :

 $\iiint p(x) f_i(x) e_i^* dV(x) + \iint \overline{T}(x, n) dS(x) = \frac{d}{dt} \iiint p(x) \overline{V}(x, t) dV(x)$ (A) $\iiint \vec{x} \wedge p(x) \vec{f}(x) dV(x) + \iint \vec{X} \wedge \vec{T}(x, \vec{n}) dS(x) = \frac{d}{dt} \iiint \vec{X} \wedge p(x) \vec{V}(x, t) dV(x)$ $\overline{T}(X, n) = \sum_{i,j} (X) n_j(X) e_i$ avec

où $\sum_{ij} (X)$ sont les composantes du tenseur de CAUCHY \sum . Par la suite on se place dans le cadre de l'étude statique des déformations des coques, i.e. $\overrightarrow{V}(X,F) = \overrightarrow{o}$, $\forall X \in \Theta$.

Le système (A) donne localement :

sur C

sur 7°C.

(I.1-9)

$$\sum_{ij} (X) = \sum_{j} (X)$$

 $(I, 1-10) \qquad \sum_{x', x'} (x) n_{x'}(x) = g_{v'}(x)$

Le système I.1-9, représente les équations d'équilibre écrites dans la configuration \mathfrak{E} . On se propose de les ramener dans la configuration \mathfrak{E} , qui est supposée connue. Pour cela on fait l'hypothèse des charges mortes à savoir : $\mathfrak{f}(\mathfrak{F}(\mathfrak{a})) = \mathfrak{f}_{\mathfrak{c}}(\mathfrak{a}), \forall \mathfrak{x} \in \mathfrak{E}$.

La première équation du système I.1-9 se transforme de la façon suivante :

$$\frac{\partial x_{k}}{\partial x_{j}} \cdot \frac{\partial \overline{\sum}_{ij}(x)}{\partial x_{k}} + \frac{P_{\delta}(z)}{\overline{J}(z)}(f_{ia} \Phi)(z) = 0$$

équation qu'on peut mettre sous la forme :

$$\frac{\partial}{\partial z_{k}} \left[J_{(z)} \frac{\partial z_{k}}{\partial X_{j}} \sum_{ij} (\overline{\Phi}_{(z)}) \right] + \rho_{0} f_{i}(z) = 0$$

en effet, on a :

$$\frac{\partial}{\partial z_{k}} \left[J_{(z)} \frac{\partial z_{k}}{\partial x_{j}} \right] = \frac{\partial}{\partial z_{k}} \left[\vec{G}_{1} \cdot (\vec{G}_{2} \wedge \vec{G}_{3}) \cdot (\vec{G}^{k} \cdot \vec{e}_{j}) \right]$$

$$= \left(\vec{G}^{k} \cdot \vec{e}_{j} \right) \cdot \left[\frac{\partial \vec{G}_{1}}{\partial x_{k}} \cdot (\vec{G}_{2} \wedge \vec{G}_{3}) + \vec{G}_{1} \cdot (\frac{\partial \vec{G}_{2}}{\partial x_{k}} \wedge \vec{G}_{3}) + \vec{G}_{1} \cdot (\vec{G}_{2} \wedge \frac{\partial \vec{G}_{3}}{\partial x_{k}}) \right]$$

$$+ J(z) \cdot \left(\frac{\partial \vec{G}^{k}}{\partial x_{k}} \cdot \vec{e}_{j} \right) j$$

avec $\overrightarrow{\partial G} = \Gamma_{k}^{i} \overline{G}$, $\overrightarrow{\partial G} = -\Gamma_{k}^{i} \overline{G}$ $d'où = \overline{J(x)} \xrightarrow{\partial x_k} = \Gamma'_k \cdot \overline{J(x)} \overline{G} \cdot \overline{e_j} - \overline{J(x)} \Gamma'_k \overline{G} \cdot \overline{e_j} = 0.$ On introduit ainsi <u>le premier tenseur de PIDLA-KIRCHOFF</u>, **S**, qui a pour composantes : $S_{ik} = J_{(x)} \frac{\partial x_k}{\partial X_i} \cdot \sum_{ij} (\Phi_{(x)})$ Les équations d'équilibre s'écrivent alors, avec 5: 35ik + Pofi=0 où S est un tenseur non symétrique. Si l'on désigne par F la matrice de composantes S vérifie : $\vec{S}.F = J_{(2)}.\vec{\Sigma} = J_{(2)}.\vec{\Sigma}; \vec{S} = J_{(2)}.\vec{\Sigma}; \vec{S} = J_{(2)}.\vec{\Sigma}$ On introduit <u>le second tenseur</u> **(a)** de PIOLA-KIRCHOFF afin d'obtenir dans les équations d'équilibre dans 😪 , un tenseur symétrique. Pour cela on prend $\vec{\sigma}$ de la forme : $\sigma(x) = J(x) \cdot (\vec{F}') \cdot \vec{\Sigma}(x) \cdot (\vec{F}') = \vec{F} \cdot \vec{S}(x)$ qui vérifie bien **5 = 5** , et les équations d'équilibre deviennent :

=== (Fig ogk) + pofi=0

Ois = Oio

avec

, on retrouve bien les équations

Remarques : (1) dans le cas d'équilibre classiques.

(2) Les conditions

$$\Sigma_{ij}(X) N_{j}(X) = g_{i}(X)$$

sur 36

dans C_

deviennent $F_{ij}(x) = g_i(x)$

dans l'hypothèse des charges mortes $g_i(X) d\Gamma(X) = g_i(x) dV(x)$ où $d\Gamma(X), N(X)$ et $dV(x), \overline{n}(x)$ désignent respectivement les éléments des surfaces et le vecteur normal en X à ∂C et en z à ∂C .

2.3. LOI DE COMPORTEMENT

Pour résoudre le problème d'équilibre des coques en mécanique du solide déformable, on dispose jusqu'ici de trois équations d'équilibre et des conditions limites, pour neuf inconnues qui sont les six composantes du tenseur contraintes et les trois composantes du vecteur déplacement.

Fiz = Siz

Les six autres équations supplémentaires qu'on va introduire permettent de distinguer, par leurs propriétés mécaniques particulières, les différents matériaux qui entrent en jeu dans la construction des coques.

On utilise la loi de Hooke; pour cela on fait les deux hypothèses suivantes :

<u>H 1</u> : le matériau qui constitue la coque est élastique, homogène et isotrope, i.e. il existe une relation linéaire biunivoque entre le tenseur des contraintes et celui des déformations.

<u>H 2</u> : Il existe un état dit "naturel", ou non déformé, pour lequel les déformations sont nulles et qui servira comme configuration initiale pour mesurer les déplacements (Etat qu'on a appelé $\mathfrak{E}_{\mathbf{o}}$).

Avec **c**es hypothèses, la loi de Hooke s'écrit :

$$\sigma_{ij} = \partial_{\mu} \delta_{ij} + \lambda (\delta_{kk}) \delta_{ij}$$

I.2-6

$$\delta_{ij} = \frac{1}{2\mu} \sigma_{ij} - \frac{2}{E} (\sigma_{kk}) \delta_{ij} = \frac{1}{E} \sigma_{ij} - \frac{2}{E} (\sigma_{kk}) \delta_{ij}$$

avec

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} = module d'Young$$

et (λ et μ) coefficients de Lamé.

$$v = \frac{1}{2(\lambda + \mu)}$$
 = coefficient de Poisson.

I.2.4. CONDITIONS DE COMPATIBILITE

En se donnant un champ de vecteur déplacement $\vec{u} = u_i \vec{e_i}$ avec $u_i = u_i (z)$ fonctions continues de classe \vec{e}^2 dans $\vec{e} \vec{\nu} \vec{e} \vec{e}$ on en déduit les neufs composantes du tenseur **Grad** et par les relations II.2.1. on tire les composantes du tenseur \vec{e} des taux de déformation. Le plus souvent, c'est le problème réciproque qui se pose, à savoir : peut-on se donner arbitrairement les six composantes $\mathcal{T}_{cj}(\vec{u})$ et **e**'en déduire les composantes \boldsymbol{u}_{c} du vecteur déplacement ?

La réponse est négative, c'est-à-dire que l'on doit vérifier certaines conditions sur **c**. : les conditions de compatibilité.

Le champ de tenseur symétrique $\tilde{\sigma}$ étant donné, par exemple, il est évident que ce champ ne peut être arbitraire car les six équations entre les composantes de \tilde{c} et $\tilde{\sigma}$ ne comportent que les trois inconnues \mathcal{U}_{c} (du vecteur déplacement) et par conséquent ne sont pas compatibles en général.

Soit \mathbf{e} le pseudo tenseur de Ricci de composantes \mathbf{e}_{ij} $\mathbf{v}_{ij} = \frac{1}{2} \left[\mathbf{u}_{ij} + \mathbf{u}_{j'i'} + \mathbf{u}_{ijk} \mathbf{u}_{j'k'} \right]$.

Effectuons le double produit contracté de E par grad T

$$\varepsilon_{\lambda i a} \quad \forall_{i j j a} = \frac{1}{2} \left[\varepsilon_{\lambda i a} \, u_{i j j a} + \varepsilon_{\lambda i a} \, u_{j j i a} + \left(\varepsilon_{\lambda i a} \, u_{i j k} \right)_{j a} \right].$$

Comme $\mathcal{E}_{\lambda i q}$ est antisymétrique par rapport à i et q et que $u_{j,iq}$ est symétrique par rapport à ces mêmes indices on a :

d'où

$$\varepsilon_{\lambda i q} = \frac{1}{2} \left[\varepsilon_{\lambda i q} u_{i j j q} + \varepsilon_{\lambda i q} (u_{i j k} u_{j k})_{j q} \right].$$

Une nouvelle opération analogue à la précédente donne :

$$\mathcal{E}_{\lambda i 4} \mathcal{E}_{\mu i \beta} \mathcal{V}_{i j, \alpha \beta} = \frac{1}{2} \left[\mathcal{E}_{\lambda i \alpha} \mathcal{E}_{\mu j \beta} \left[u_{i j j \alpha \beta} + (u_{i j k} u_{j j k}) \right] \mathcal{E}_{\lambda i \alpha} \mathcal{E}_{\mu j \beta} \right]$$

De même, comme $\mathcal{E}_{\mu,j}$ est antisymétrique par rapport à \dot{j} et β et que $\mathcal{U}_{i,j}$ est symétrique par rapport aux mêmes indices on a :

d'où :

$$\varepsilon_{\lambda i q} \varepsilon_{\mu j \beta} \nabla_{\nu j q \beta} = \frac{1}{2} \varepsilon_{\lambda i q} \varepsilon_{\mu j \beta} (u_{i j k} u_{j k})_{j q \beta}$$

relations qu'on mettra sous la forme :

I.2-7
$$\mathcal{E}_{\lambda i} \mathcal{E}_{\mu j m} \left[\mathcal{I}_{i j} \mathcal{E}_{m} - \frac{1}{2} (u_{i j k} u_{j j k}) \mathcal{E}_{m} \right] = 0$$
.

Ce sont les conditions de compatibilité.

Le système I.2-7 est symétrique par rapport à λ et μ , donc correspond à six équations pour λ et μ prenant les valeurs 1, 2, 3.

Cas linéaire

Dans le cas de la théorie de l'élasticité linéaire, c'est-à-dire sous l'hypothèse que **Grad** \tilde{u} est uniformément borné sur \mathcal{EUDE} par un réel \mathcal{I} très petit, et qu'on néglige les termes d'ordre \mathcal{I} , k>1

$$\vec{E}(\vec{u}) = \frac{1}{2} \begin{bmatrix} Grad_{x} \vec{u} + Frad_{x} \vec{u} \end{bmatrix}$$

$$\vec{E}_{ij}(\vec{u}) = \frac{1}{2} \begin{bmatrix} u_{ij} + u_{ij} \end{bmatrix}$$

avec

Les équations de compatibilité, deviennent :

1.2-8
$$\varepsilon_{\lambda i} \varepsilon_{\mu j m} \varepsilon_{i j} \varepsilon_{m} = 0$$

et En développant, ces équations se mettent sous la forme

1.2-9 Lap
$$\vec{\epsilon}$$
 + Grad (grad ϵ_{I}) = Grad (div $\vec{\epsilon}$) + Grad (div $\vec{\epsilon}$)

avec

$$E_{I} = Trace(\vec{E}).$$

En remplaçant le tenseur $\tilde{\boldsymbol{\varepsilon}}$ par le tenseur des contraintes, tiré de la loi de comportement, les conditions de compatibilité en contraintes s'écrivent sous la forme :

$$Lap \vec{\sigma} - Grad(div \vec{\sigma}) - Grad(div \vec{\sigma})$$
1.2-10
$$-\frac{\lambda}{3\lambda + 2\mu} \vec{g} Lap(\sigma_{I}) + 2\frac{(\lambda + \mu)}{3\lambda + 2\mu} Grad(grad \sigma_{I}) = 0$$

Les relations I.2-9 et I.2-10, sont des égalités, compte tenu des équations d'équilibre, entre tenseurs symétriques du second ordre, donc elles se réduisent à 6 équations indépendantes.

CHAPITRE II

ETUDE D'UNE COQUE CYLINDRIQUE

Dans cette partie, on étudie le comportement élastique, d'une coque cylindrique \mathcal{C} , à surface moyenne \mathcal{S} de rayon \mathcal{R} et de longueur L.

On utilise les coordonnées cylindriques (π, θ, \varkappa) auxquelles on associe respectivement les indices 1, 2, 3.

Les vecteurs du repère local seront notés :

 \vec{e}_n = vecteur normal à la surface moyenne dirigé vers l'extérieur. \vec{e}_v = vecteur tangent aux parallèles (lignes : $n = \frac{1}{2}$ et $z = \frac{1}{2}$). \vec{e}_x = vecteur tangent à la génératrice.

$$X_{1} = r\cos\theta \qquad r = (X_{1}^{2} + X_{2}^{2})^{4/2}$$

$$X_{2} = r\sin\theta \qquad ou \qquad \theta = \operatorname{Anctor} \frac{X_{2}}{X_{A}}$$

$$X_{3} = x \qquad \qquad X_{3} = x$$

$$\frac{\partial OH}{\partial r} = \overline{e_{1}} \cos\theta + \overline{e_{2}} \sin\theta = \overline{e_{r}} = h_{r} \overline{e_{r}}$$

$$\frac{\partial OH}{\partial r} = -r\sin\theta \overline{e_{1}} + r\cos\theta \overline{e_{2}} = r\overline{e_{0}} = h_{0} \overline{e_{0}}$$

$$\frac{\partial OH}{\partial \theta} = -r\sin\theta \overline{e_{1}} + r\cos\theta \overline{e_{2}} = r\overline{e_{0}} = h_{0} \overline{e_{0}}$$

$$\frac{\partial OH}{\partial \theta} = -r\sin\theta \overline{e_{1}} + r\cos\theta \overline{e_{2}} = r\overline{e_{0}} = h_{0} \overline{e_{0}}$$

d'où
$$h_1 = h_2 = 1$$
; $h_2 = h_3 = n$; $h_3 = h_x = 1$
(II. 1-1)

II.1.1. <u>TENSEUR</u> **GRAD**, \vec{u} <u>EN COORDONNES CYLINDRIQUES</u>. Soit $\vec{u} = u; \vec{e};$ le vecteur déplacement en coordonnées cylindriques avec u; = u; (x, g, r) de classe \vec{e}^{2} (au moins). D'après les relations I.1-2 le tenseur **Grod**, \vec{u} a pour

composantes :

II.1.2. COMPOSANTES DU TENSEUR **T** DE DEFORMATION.

D'après la définition I.2-5 les composantes de **X**(**C**), en coordonnées cylindriques se mettent sous la forme :

(II.1-3)

$$\delta_{44}(\vec{u}) = \frac{\partial u_4}{\partial r} + \frac{1}{2} \left[\left(\frac{\partial u_4}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial u_4}{\partial u_4} - u_2 \right)^2 + \left(\frac{\partial u_4}{\partial x} \right)^2 \right]$$

 $\delta_{12}(\overline{u}) = \frac{1}{2} \left[\frac{\partial u_2}{\partial r} + \frac{1}{r} \frac{\partial u_3}{\partial \theta} - \frac{u_2}{r} \right] + \frac{1}{2} \left[\frac{\partial u_2}{\partial r} \cdot \frac{\partial u_4}{\partial r} + \frac{1}{r^2} \left(\frac{\partial u_2}{\partial \theta} + u_3 \right) \left(\frac{\partial u_4}{\partial \theta} - u_2 \right) + \frac{\partial u_2}{\partial z} \frac{\partial u_4}{\partial z} \right]$

 $\mathcal{Y}_{13}(\vec{u}) = \frac{1}{2} \left[\frac{\partial u_1}{\partial z} + \frac{\partial u_3}{\partial r} \right] + \frac{1}{2} \left[\frac{\partial u_3}{\partial z} \frac{\partial u_4}{\partial r} + \frac{1}{r^2} \frac{\partial u_3}{\partial \theta} \left(\frac{\partial u_4}{\partial \theta} - u_2 \right) + \frac{\partial u_3}{\partial x} \frac{\partial u_4}{\partial z} \right]$

$$\mathcal{L}_{22}(\mathbf{u}) = \frac{1}{r} \left[\frac{\partial \mathbf{u}_{2}}{\partial \theta} + \mathbf{u}_{1} \right] + \frac{1}{2} \left[\left(\frac{\partial \mathbf{u}_{2}}{\partial r} \right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial \mathbf{u}_{2}}{\partial \theta} + \mathbf{u}_{1} \right)^{2} + \left(\frac{\partial \mathbf{u}_{2}}{\partial x} \right)^{2} \right]$$

 $\delta_{23}(u) = \frac{1}{2} \left[\frac{\partial u_2}{\partial x} + \frac{1}{r} \frac{\partial u_3}{\partial \theta} \right] + \frac{1}{2} \left[\frac{\partial u_3}{\partial r} \cdot \frac{\partial u_2}{\partial r} + \frac{1}{r^2} \frac{\partial u_3}{\partial \theta} \left(\frac{\partial \theta}{\partial \theta} + u_4 \right) + \frac{\partial u_3}{\partial x} \cdot \frac{\partial u_2}{\partial x} \right]$

$$\mathcal{Q}_{33}(\underline{n}) = \frac{3n}{3n} + \frac{3}{4} \left[\left(\frac{3n}{3n} \right)_{5}^{2} + \frac{1}{4} \left(\frac{3n}{3n} \right)_{5}^{2} + \left(\frac{3n}{3n} \right)_{5}^{2} \right]$$

avec

II.1.3. RELATIONS CONTRAINTES-DEPLACEMENTS

Les relations I.2-6 écrites en coordonnées cylindriques, donnent les composantes du tenseur des contraintes **2** en fonction des **u**; et leurs dérivées.

$$\begin{split} & \prod_{i=1}^{(11,1-1)} \sum_{i=1}^{(11,1-1)} \sum_{j=1}^{(11,1-1)} \sum_{j=1}^{(11,1-1)} \sum_{i=1}^{(11,1-1)} \sum_{j=1}^{(11,1-1)} \sum_{j=1}$$

II.1.4. EQUATIONS D'EQUILIBRE

Les relations I.2-2 en coordonnées cylindriques donnent : (II.1-5)

$$\frac{\partial \Sigma}{\partial r} + \frac{1}{r} \frac{\partial \Sigma}{\partial \theta} + \frac{\partial \Sigma}{\partial x} + \frac{\partial \Sigma}{\partial x} + \frac{\Sigma}{r} + \frac{\Sigma}{r} + \frac{1}{r} + \frac{1}{r} \frac{\partial \Sigma}{\partial \theta} + \frac{\partial \Sigma}{\partial x} + \frac{1}{r} + \frac{1}{r} + \frac{1}{r} \frac{\partial \Sigma}{\partial \theta} + \frac{\partial \Sigma}{\partial x} + \frac{1}{r} + \frac{1}{r}$$

En remplaçant les \sum_{ij} par leur expression tirée de II.1-4, on obtient les équations que doivent vérifier les u_i et leurs dérivées pour avoir l'équilibre de la coque.

II.1.6. CONDITIONS AUX LIMITES SUR LES FACES 3=±h.

On note $\overrightarrow{P(\theta, x, 3 = r-R=h)} = (\overrightarrow{P_r}, \overrightarrow{P_{\theta}}, \overrightarrow{P_{x}})$ le vecteur force de surface, appliquée à la face extérieure de la coque.

Cette face a pour normale extérieure $\vec{\pi}(1,0,0)$, et le vecteur contrainte en un point M de cette face s'écrit sous la forme :

 $\overline{T}(M,\overline{n}) = \Sigma_{11}(x,\theta,R+h)\overline{e_r} + \Sigma_{12}(x,\theta,R+h)\overline{e_\theta} + \Sigma_{13}(x,\theta,R+h)\overline{e_s}$

d'où les conditions aux limites sur cette face :

 $\sum_{i=1}^{n} (z, \theta, R+h) = P_r^+ (z, \theta)$ (II. 1-7) $\sum_{12} (x, \theta, R+h) = P_{\theta}^{*} (x, \theta)$ $\sum_{a}(x,\theta,R+h)=P_{x}^{+}(x,\theta)$

De même, si on pose $\vec{P}(\theta, z, R-h) = (\vec{P_r}, \vec{P_{\theta}}, \vec{P_z})$ le vecteur force de surface appliquée à la face intérieure, de normale $\vec{R}(-1, 0, 0)$. A la limite quand $\vec{z} \rightarrow -h$ on obtient sur cette face :

$$\sum_{n}(x,\theta,R-h)=-p_{r}^{-}(x,\theta)$$

(II. 1-8)
$$\sum_{\eta \geq 2} (x, \theta, R-h) = -P_{\theta}(x, \theta)$$

$$\sum_{13}(x,\theta,R-h) = -P_{x}(x,\theta)$$

II.1.7. COMPARAISON DES DIFFERENTS PETITS PARAMETRES

1) INTRODUCTION

Dans la théorie des coques, ces dernières sont définies comme domaines matériels continus tridimensionnels de \mathscr{E}_3 , dont une dimension, l'épaisseur est petite devant les deux autres et devant les rayons de courbure de surface moyenne de la coque. Ceci introduit deux petits paramètres adimensionnels, liés à la géométrie de la coque.

Par la suite, nous appellerons ces deux petits paramètres <u>paramètres</u> géométriques de la coque, qu'on note : $\mathcal{E} = \frac{1}{\mathcal{R}}$ = rapport de la demi-épaisseur au rayon de courbure minimal.

$$S = \frac{h}{L}$$
 = rapport de la demi-épaisseur à une dimension principale L.

La théorie des coques fait des approximations qui s'expriment sous formes d'hypothèses cinématiques, dynamiques, géométriques ou énergétiques, ce qui a donné naissance à de nombreuses controverses sur la nature des hypothèses introduites et sur l'évaluation des approximations faites dans chaque cas par rapport à la théorie tridimensionnelle non linéaire considérée comme exacte.

Une des premières difficultés, est de donner les ordres de grandeur des erreurs commises sur certaines quantités en fonction des petits paramètres $\boldsymbol{\$}$ et $\boldsymbol{\imath}$, ainsi que l'ordre en $\boldsymbol{\imath}$ (ou $\boldsymbol{\$}$) à partir duquel on doit arrêter la linéarisation, tout en gardant au problème sa globalité en équations d'équilibre et de compatibilité.

En plus, l'élasticité linéaire classique introduit un autre petit paramètre "mécanique" $\mathcal{D} = \begin{array}{c} SUP & Max \left(\nabla_{ij}(\vec{u}(k))\right) \\ x \in \mathcal{C} \\ ii \end{array}$

d'où la nécessité d'étudier les corrélations existantes entre ces trois petits paramètres, avant de passer à la théorie linéaire des coques; ceci fera l'objet des paragraphes 2, 3 et 4 suivants.

2) VARIABLES ADIMENSIONNELLES

Afin de faire apparaître dans les équations les deux infiniment petits géométriques, on introduit les variables sans dimension de la façon suivante, en coordonnées cylindriques :

Soient

L = Longueur caractéristique de la coque

R = Rayon de la surface moyenne.

U = Déplacement caractéristique de la coque.

2h = L'épaisseur.

 σ = Contrainte caractéristique (on pose $\sigma = \frac{EV}{R}$). et on introduit les variables sans dimensions suivantes :

$$\overline{x} = \frac{2}{L} \int \overline{s} = \frac{1}{h} \overline{x} \frac{r-R}{h} \int \overline{u}_{i} = \frac{u_{i}}{U} \int \overline{v}_{i} = \frac{u_{i}}{C}.$$

Par la suite on écrira le problème en variables, en variables addimensionnelles, ce qui fait apparaître les deux infiniments petits géométriques $\mathcal{E} = \frac{h}{R}$ et $\mathcal{S} = \frac{h}{L}$. Comme \mathcal{E} et \mathcal{S} sont de même nature, il existe $\mathcal{G} \in \mathbb{R}^+_{*}$ tel que $\mathcal{S} = \mathcal{E}^{\mathcal{O}}$, où le coefficient \mathcal{G} permettra de classifier les coques selon le rapport du rayon moyen à la longueur caractéristique au point considéré.

Remarque:

Contrairement aux coques quelconques pour les coques cylindriques le paramètre $\varepsilon = \frac{h}{2}$ est un paramètre global.

On peut donner une classification des coques (en général) suivant les valeurs de 🖗 :

1) correspond au "solide déformable",

2) correspond aux coques infiniment longues,

3) correspond aux plaques,

4) (E= S et b=1) correspond aux coques de mêmes longueur et rayon moyen,

5) correspond aux coques cylindriques couramment étudiées,

6) (3 <1: coques peu profondes.

- I) domaine limité par les droites $\boldsymbol{\varepsilon} = \boldsymbol{\alpha}$ avec $\boldsymbol{\alpha}$ très petit, correspond aux membranes,
- II) compris entre E=a et E=b avec b<0,5 correspond aux coques
 "moyennement" épaisses ou épaisses,

III) compris entre E=b et E=1 correspond aux coques très épaisses.

Dans le cas des coques cylindriques a rayon moyen constant et

d'épaisseur constante, si on prend L = longueur totale de la coque, on a :

$$S = \frac{h}{L} = \frac{h}{R} \cdot \frac{R}{L}$$

on pose $\frac{R}{L} = k$ = constante caractéristique de la coque.

Ainsi on obtient que S=k.E ,

avec **k** = constante finie.

3) RELATION ENTRE LES PARAMETRES & ET 🄈

En élasticité linéaire, on définit la tenseur $\mathbf{\tilde{E}}$ linéarisé des déformations, en négligeant les termes d'ordre deux en $\mathbf{\gamma}$ dans le tenseur $\mathbf{\tilde{v}}_{\mathbf{x}}(\mathbf{\tilde{c}})$ avec

$$(II. 1-9a) \quad \mathcal{P} = SUP \left\{ \left| \nabla_{ij} \left(\vec{u} \right) \right| \right\}, \forall s \in \mathcal{S} \right\}$$

Donc on pose que :

$$\left(\frac{\partial u_{1}}{\partial r}\right)^{2} + \frac{1}{r^{2}}\left(\frac{\partial u_{4}}{\partial \theta} - u_{2}\right)^{2} + \left(\frac{\partial u_{4}}{\partial r}\right)^{2} = O(\eta^{2})$$

$$\left|\frac{\partial u_{2}}{\partial r}\right|^{2} + \frac{1}{r^{2}}\left|\frac{\partial u_{2}}{\partial \theta} - u_{2}\right| + \left|\frac{\partial u_{2}}{\partial r}\right| + \frac{\partial u_{2}}{\partial r}\right| = O(\eta^{2})$$

$$\left|\frac{\partial u_{2}}{\partial r}\right| + \frac{1}{r^{2}}\left|\frac{\partial u_{3}}{\partial \theta} - u_{2}\right| + \left|\frac{\partial u_{3}}{\partial r}\right| + \left|\frac{\partial u_{3}}{\partial r}\right| = O(\eta^{2})$$

$$\frac{1}{r^{2}}\left(\frac{\partial u_{2}}{\partial \theta} + u_{4}\right)^{2} + \frac{1}{r^{2}}\left|\frac{\partial u_{3}}{\partial \theta}\right| + \left|\frac{\partial u_{3}}{\partial r}\right| + \left|\frac{\partial u_{2}}{\partial r}\right| = O(\eta^{2})$$

$$\left|\frac{\partial u_{2}}{\partial r}\right| \cdot \left|\frac{\partial u_{2}}{\partial r}\right| + \frac{1}{r^{2}}\left|\frac{\partial u_{3}}{\partial \theta}\right| \cdot \left|\frac{\partial u_{3}}{\partial \theta}\right| + u_{4}\left|\frac{\partial u_{3}}{\partial r^{2}}\right| = O(\eta^{2})$$

$$\left(\frac{\partial u_{3}}{\partial r}\right)^{2} + \frac{1}{r^{2}}\left(\frac{\partial u_{3}}{\partial r}\right)^{2} + \left(\frac{\partial u_{3}}{\partial r}\right)^{2} = O(\eta^{2})$$

D'où en variables adimensionnelles :

$$\frac{\mathrm{u}^{\ell}}{\mathrm{R}^{2}} \left[\frac{1}{\varepsilon^{2}} \left(\frac{\Im \overline{\mathrm{u}}_{1}}{\Im \overline{\mathrm{s}}} \right)^{2} + \frac{1}{(1+\varepsilon_{\overline{\mathrm{s}}})^{2}} \left(\frac{\Im \overline{\mathrm{u}}_{1}}{\Im} - \overline{\mathrm{u}}_{2} \right)^{2} + \frac{S^{2}}{\varepsilon^{2}} \left(\frac{\Im \overline{\mathrm{u}}_{1}}{\Im \mathrm{s}} \right)^{2} \right] = O\left(\gamma^{2}\right)$$

$$\frac{\mathrm{u}^{2}}{\mathrm{R}^{2}} \left[\frac{1}{\varepsilon^{2}} \left[\frac{\Im \overline{\mathrm{u}}_{2}}{\varepsilon^{2}} \right] \cdot \left[\frac{\Im \overline{\mathrm{u}}_{1}}{\Im \overline{\mathrm{s}}} \right] + \frac{1}{(1+\varepsilon_{\overline{\mathrm{s}}})^{2}} \left[\frac{\Im \overline{\mathrm{u}}_{2}}{\Im \mathrm{s}} + \overline{\mathrm{u}}_{4} \right] \cdot \left[\frac{\Im \overline{\mathrm{u}}_{1}}{\Im} - \overline{\mathrm{u}}_{2} \right]$$

$$+ \frac{S^{2}}{\varepsilon^{2}} \left[\frac{\Im \overline{\mathrm{u}}_{2}}{\varepsilon_{\overline{\mathrm{s}}}} \right] \cdot \left[\frac{\Im \overline{\mathrm{u}}_{1}}{\Im \overline{\mathrm{s}}} \right] = O\left(\gamma^{2}\right)$$

(II.1-9)

$$\frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right| \left| \frac{2\overline{u}_1}{2\overline{s}} \right| + \frac{4}{(4+\varepsilon_{\overline{s}})^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right| \left| \frac{2\overline{u}_1}{2\overline{s}} - \overline{u}_{-2} \right| \right. \\ \left. + \frac{S^2}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right| \left| \frac{2\overline{u}_1}{2\overline{s}} \right| \right\} = o\left(\eta^e \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_2}{2\overline{s}} \right|^2 + \frac{4}{(4+\varepsilon_{\overline{s}})^2} \left| \frac{2\overline{u}_2}{2\overline{s}} + \overline{u}_1 \right|^2 + \frac{S^2}{\varepsilon^2} \left| \frac{2\overline{u}_2}{2\overline{s}} \right|^2 \right\} = o\left(\theta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 + \frac{4}{(4+\varepsilon_{\overline{s}})^2} \left| \frac{2\overline{u}_3}{2\overline{t}} + \overline{u}_1 \right|^2 + \frac{S^2}{\varepsilon^2} \left| \frac{2\overline{u}_2}{2\overline{s}} \right|^2 \right\} = o\left(\theta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 + \frac{4}{(4+\varepsilon_{\overline{s}})^2} \left| \frac{2\overline{u}_3}{2\overline{t}} \right| \frac{2\overline{u}_2}{2\overline{t}} + \frac{1}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right| \left| \frac{2\overline{u}_2}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 + \frac{4}{(4+\varepsilon_{\overline{s}})^2} \left| \frac{2\overline{u}_3}{2\overline{t}} \right|^2 + \frac{S^2}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 + \frac{4}{(4+\varepsilon_{\overline{s}})^2} \left| \frac{2\overline{u}_3}{2\overline{t}} \right|^2 + \frac{S^2}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{t}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} = o\left(\eta^2 \right) \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2\overline{s}} \right|^2 \right\} \\ \frac{U^2}{R^2} \left\{ \frac{4}{\varepsilon^2} \left| \frac{2\overline{u}_3}{2$$

On pose :

$$\begin{split}
\tilde{\eta} &= \sup_{\substack{M \in K \\ i \leq 1, 2, 3}} \left\{ \left| \frac{1}{R} \frac{\overline{\mathcal{M}_{i'}}}{2\overline{z}} \right|_{j} \left| \frac{1}{R} \frac{\overline{\mathcal{M}_{i'}}}{2\overline{x}} \right|_{j} \left| \frac{1}{R} \left(\frac{\overline{\mathcal{M}_{i}}}{2\overline{y}} + \overline{u}_{1} \right) \right|_{j} \left| \frac{1}{R} \left(\frac{\overline{\mathcal{M}_{i'}}}{2\overline{y}} - \overline{u}_{2} \right) \right|_{j} \left| \frac{1}{R} \frac{\overline{\mathcal{M}_{i}}}{2\overline{y}} \right|_{j} \right|_{k} \\
&= 1, 2, 3 \\
(II - 1 - 9b)
\end{split}$$

$$K =]0, 1[*]0, 2\Pi[*]-1, 4[.$$

Les expressions II.1-9 sont alors majorées par :

 $U^{2}\left[\frac{1}{\varepsilon^{2}}+\frac{1}{(\lambda-\varepsilon)^{2}}+\frac{S^{2}}{\varepsilon^{2}}\right]\overline{\eta}^{2}$

qui doit être de l'ordre de η^z

608 1111

ce

qui nécessite
A ce niveau, pour avoir l'ordre de U en \mathcal{E} et η , on peut faire deux hypothèses différentes :

lère hypothèse :

avec

et

H 1) On suppose que **\overline{n** et **\overline{n** sont du même ordre.

Ceci se justifie par le fait que $\bar{\eta}$ n'est autre chose que η écrite en variables sans dimension, et ainsi représente les variations des

$$\overline{u}_i$$
 dans $(\vartheta, \overline{x}, \overline{z})$

Avec II.1-10 on obtient :

$$U = O\left[\frac{\mathcal{E}(1-\mathcal{E})}{[1-2\mathcal{E}A(\mathcal{E})]^{1/2}}\right]$$

$$A(\mathcal{E}) = 1 - \mathcal{E}(1+\frac{k^2}{2}) + k^2 \mathcal{E}^2 - \frac{k^2}{2} \mathcal{E}^5 \text{ et } \mathcal{E} \cdot A(\mathcal{E}) \longrightarrow \text{ o avec } \mathcal{E}$$

$$S = k \cdot \mathcal{E} \cdot$$

Ce qui justifie le fait, prendre un développement polynomial en $\boldsymbol{\xi}$, des composantes du vecteur déplacement, sans être en contradiction avec la théorie de l'élasticité linéaire.

On écrira :

$$U_i = U \tilde{u}_i = \sum_{n=1}^{\infty} \varepsilon^n \cdot A^{(n)}$$

qu'on mettra sous la forme :

$$\overline{u}_{i} = \frac{u_{i}}{u} = \sum_{n \in \mathbb{N}} \mathcal{E}^{n}. \ \overline{u}_{i}^{(n)}(\theta_{i}\overline{x}_{i}\overline{z})$$

de même la loi de comportement entraine que les $\overline{\sigma}_{i,j}(v,\bar{x},\bar{y},\epsilon) = \frac{\sigma_{i,j}}{\sigma_{i,j}}$ se mette sous la forme :

$$\overline{\sigma_{i'_{\delta}}}(\theta_{i}\overline{x},\overline{3},\epsilon) = \sum_{n \in \mathbb{N}} \epsilon^{n} \overline{\sigma_{i'_{\delta}}}(\theta_{i}\overline{x},\overline{3})$$

Deuxième hypothèse : H 2

Dans les expressions II.1-9 on pose que $\mathbf{R} \cdot \mathbf{\eta} = \mathbf{0}(\mathbf{1})$ ce qui donne avec II.1-10 que

 $U = 0 \left[\mathcal{E} \eta \left(A - \mathcal{E} \right) \left(A + \mathcal{E} A (\mathcal{E}) \right) \right] + o \left(\mathcal{E}^{Z} \eta^{Z} A^{Z} (\mathcal{E}) \right)$ si on pose $\eta^{d} = \mathcal{E}$ on aboutit à $U \equiv 0 (\eta^{d+1})$ et comme on néglige les termes en η^{2} , on doit avoir :

$$d+1<2$$
 et $d>0$

 $\eta^{d} = \varepsilon$ avec $o \ge \alpha < 1$.

d'où

avec

C'est l'hypothèse qu'utilise Y. RAILLON dans sa thèse, on se contentera de rappeler ses conclusions à la fin de ce travail, et de ne prendre que l'hypothèse H 1 qui devient à observer que $\overline{\eta}$ est indépendant de \mathcal{E} (et \mathcal{S}) seules les quantités $\frac{U}{\mathcal{R}(\Lambda-\mathcal{E})}$, $\frac{U}{\mathcal{R}\mathcal{E}}$, en dépendant.

Si l'on suppose que ces quantités sont $O(\eta)$ on est amené à faire l'hypothèse H 2.

En conclusion on pose : $\eta = \bar{\eta} \times \bar{\eta}'$

où η et $\overline{\eta}$ sont définis par (II.1-9a) et (II.1-9b) où $\overline{\eta}$ est indépendant de \mathcal{E} et \mathcal{S} . On a donc :

$$\overline{\eta} = O(\eta^{A})$$
; $\overline{\eta}' = O(\eta^{B})$ $d+B = 1$, $d \neq B \ge 0$

H 1) coincide avec $\alpha = 1$, $\beta = 0$ et on montre que $\overline{\eta}' = O(\varepsilon)$ H 2) " " $\alpha = 0$, $\beta = 1$ et on montre que $\overline{\eta} = O(\varepsilon^{1/\alpha})$; $o < \alpha < 1$.

CHAPITRE III

RESOLUTION DU PROBLEME EN COORDONNEES ADIMENSIONNELLES

Dans ce chapitre on se place dans le cadre de l'hypothèse H 1.

III.1.1. EQUATIONS D'EQUILIBRE

Dans ce chapitre on se place dans le cadre de l'élasticité linéaire, avec les hypothèses II.1-10 et II.1-11 du chapitre précédent.

Ainsi les équations d'équilibre, dans les coordonnées (\overline{X} , ϑ , \overline{z}) donnent :

La première équation se transforme comme suit :

$$\frac{EU}{R}\left[\frac{1}{\frac{1}{R}}\frac{\partial\overline{\sigma_{11}}}{\partial\overline{z}}+\frac{1}{R\left(1+\varepsilon_{\overline{z}}\right)}\frac{\partial\overline{\sigma_{12}}}{\partial\overline{z}}+\frac{1}{L}\frac{\partial\overline{\sigma_{13}}}{\partial\overline{x}}+\frac{1}{R\left(1+\varepsilon_{\overline{z}}\right)}\left(\overline{\sigma_{11}}-\overline{\sigma_{22}}\right)\right]+eF_{1}=0$$

On multiplie et on divise les deux termes p**an**r R ce qui donne

$$\frac{\mathcal{E} \sqcup}{R^2} \left[\frac{1}{\mathcal{E}} \frac{\partial \overline{\mathcal{T}}_{11}}{\partial \overline{z}} + \frac{1}{\lambda + \mathcal{E} \overline{z}} \frac{\partial \overline{\mathcal{T}}_{12}}{\partial \mathcal{P}} + \frac{S}{\mathcal{E}} \frac{\partial \overline{\mathcal{T}}_{13}}{\partial \overline{x}} + \frac{1}{\lambda + \mathcal{E} \overline{z}} \left(\overline{\mathcal{T}}_{11} - \overline{\mathcal{T}}_{22} \right) + \mathcal{E} \overline{F}_{1} = 0$$

et en multipliant les deux termes par $\mathcal{E} \left(\lambda + \mathcal{E} \overline{z} \right) \frac{R^2}{\mathcal{E} \sqcup}$

$$(1 + \varepsilon_{\overline{3}}) \frac{\partial \overline{\sigma_{11}}}{\partial \overline{3}} + \varepsilon \frac{\partial \overline{\sigma_{12}}}{\partial \overline{7}} + k \varepsilon (1 + \varepsilon_{\overline{3}}) \frac{\partial \overline{\sigma_{13}}}{\partial \overline{x}} + \varepsilon (\overline{\sigma_{11}} - \overline{\sigma_{22}}) + \varepsilon (1 + \varepsilon_{\overline{3}}) \frac{eR^2}{EU} F_1 = 0$$

On pose
$$\underbrace{e \ R^2 \ F_i}_{E \ U} = F_i$$
 pour $i = 1,2,3$,
avec la même démarche pour les deux autres équations d'équilibre on aboutit
au système d'équations suivant :

$$(III. 1-1)$$

$$(1 + \varepsilon_{3}) \frac{\partial \overline{\sigma}_{11}}{\partial \overline{s}} + \varepsilon \frac{\partial \overline{\sigma}_{12}}{\partial \overline{p}} + k \varepsilon (1 + \varepsilon_{3}) \frac{\partial \overline{\sigma}_{13}}{\partial \overline{x}} + \varepsilon (\overline{\sigma}_{11} - \overline{\sigma}_{22}) + \varepsilon (1 + \varepsilon_{3}) \overline{F}_{1} = 0$$

$$(III. 1-2)$$

$$(1 + \varepsilon_{3}) \frac{\partial \overline{\sigma}_{12}}{\partial \overline{s}} + \varepsilon \frac{\partial \overline{\sigma}_{22}}{\partial \overline{p}} + k \varepsilon (1 + \varepsilon_{3}) \frac{\partial \overline{\sigma}_{23}}{\partial \overline{x}} + \varepsilon \varepsilon \overline{\sigma}_{12} + \varepsilon (1 + \varepsilon_{3}) \overline{F}_{2} = 0$$

$$(III. 1-3)$$

$$(1 + \varepsilon_{3}) \frac{\partial \overline{\sigma}_{13}}{\partial \overline{s}} + \varepsilon \frac{\partial \overline{\sigma}_{23}}{\partial \overline{p}} + k \varepsilon (1 + \varepsilon_{3}) \frac{\partial \overline{\sigma}_{33}}{\partial \overline{x}} + \varepsilon \overline{\sigma}_{13} + \varepsilon (1 + \varepsilon_{3}) \overline{F}_{3} = 0$$

$$III. 1-3)$$

$$III. 1-3)$$

$$III. 1-3.$$

$$III. 1-4.$$

$$IIII. 1-4.$$

$$IIII. 1-4.$$

$$III. 1-4.$$

$$III. 1-4.$$

$$IIII. 1-4.$$

$$IIII.$$

$$(III.1^{-4}) \frac{1}{n} \left[\frac{\partial u_e}{\partial t} + u_1 \right] = \frac{1}{E} \left[\nabla_{22} - \nu \left(\sigma_{11} + \sigma_{33} \right) \right]; \quad \frac{\partial u_1}{\partial x} + \frac{\partial u_3}{\partial n} = \frac{2(1+\nu)}{E} \sigma_{13}$$
$$\frac{\partial u_3}{\partial x} = \frac{1}{E} \left[\nabla_{33} - \nu \left(\sigma_{22} + \sigma_{11} \right) \right]; \quad \frac{\partial u_e}{\partial x} + \frac{1}{n} \frac{\partial u_3}{\partial \theta} = \frac{2(1+\nu)}{E} \sigma_{23}$$

En variables adimensionnelles, s'écrivent :

$$\frac{\partial \overline{u}_{1}}{\partial \overline{z}} = \varepsilon \left[\overline{\sigma}_{11} - \nu \left(\overline{\sigma}_{22} + \overline{\sigma}_{33} \right) \right] ; \quad \varepsilon \left(1 + \varepsilon \overline{z} \right) \overline{\sigma}_{12} = \frac{1}{\varepsilon \left(1 + \nu \right)} \left[\left(1 + \varepsilon \overline{z} \right) \frac{\partial \overline{u}_{2}}{\partial \overline{z}} + \varepsilon \left(\frac{\partial \overline{u}_{1}}{\partial \overline{p}} - \overline{u}_{2} \right) \right]$$

$$\frac{\partial \overline{u}_{2}}{\partial \overline{z}} + \overline{u}_{1} = \left(1 + \varepsilon \overline{z} \right) \left[\overline{\sigma}_{22} - \nu \overline{\sigma}_{11} - \nu \overline{\sigma}_{33} \right] ; \quad \overline{k} \in \frac{\partial \overline{u}_{1}}{\partial \overline{z}} + \frac{\partial \overline{u}_{3}}{\partial \overline{z}} = \varepsilon \left(1 + \nu \right) \varepsilon \overline{\sigma}_{13}$$

$$\frac{\partial \overline{u}_{2}}{\partial \overline{z}} + \overline{u}_{1} = \varepsilon \left(\overline{\sigma}_{33} - \nu \overline{\sigma}_{22} - \nu \overline{\sigma}_{11} \right) ; \quad \overline{k} \varepsilon \left(1 + \varepsilon \overline{z} \right) \frac{\partial \overline{u}_{2}}{\partial \overline{z}} + \varepsilon \frac{\partial \overline{u}_{3}}{\partial \overline{z}} = \varepsilon \left(1 + \nu \right) \varepsilon \overline{\sigma}_{23}$$

$$\frac{\partial \overline{u}_{2}}{\partial \overline{z}} = \varepsilon \left(\overline{\sigma}_{33} - \nu \overline{\sigma}_{22} - \nu \overline{\sigma}_{11} \right) ; \quad \overline{k} \varepsilon \left(1 + \varepsilon \overline{z} \right) \frac{\partial \overline{u}_{2}}{\partial \overline{z}} + \varepsilon \frac{\partial \overline{u}_{3}}{\partial \overline{z}} = \varepsilon \left(1 + \nu \right) (\varepsilon^{2} \overline{z} + \varepsilon) \overline{\sigma}_{23}$$

711-1

III.1.3. EQUATIONS DE COMPATIBILITE

En coordonnées cylindriques, les équations de compatibilité en contraintes, s'écrivent sous la forme :

$$\Delta \quad \nabla_{i_{1}} + \frac{\lambda}{\lambda + \nu} \quad \frac{\partial^{2} \sigma}{\partial \pi^{2}} + \frac{2}{\pi^{2}} \left(\nabla_{22} - \nabla_{i_{1}} - \frac{2}{\sigma} \frac{\partial \nabla_{i_{2}}}{\partial \mu} \right) = -\frac{2439}{4+\nu} \left(\frac{\partial F_{i}}{\partial \pi} - \frac{\partial F_{i}}{\partial \mu} + \frac{1}{\pi^{2}} \right)$$

$$(III. 1-1)$$

$$\Delta \quad \nabla_{22} + \frac{\lambda}{\lambda + \nu} \left(\frac{1}{\pi^{2}} \frac{\partial^{2}}{\partial \mu^{2}} + \frac{1}{\pi} \frac{\partial}{\partial \pi} \right) \left(\sigma \right) + \frac{2}{\pi^{2}} \left(\frac{2}{\sigma} \frac{\partial \nabla_{i_{2}}}{\partial \mu} + \sigma_{i_{1}} - \sigma_{22} \right)$$

$$= -\frac{2+39}{\lambda + \nu} \left(\frac{1}{\pi} \frac{\partial F_{2}}{\partial \mu} + \frac{F_{i}}{\pi} \right) - \frac{\nu}{\lambda + \nu} \left(\frac{\partial F_{3}}{\partial \pi} + \frac{\partial F_{i}}{\partial \pi} \right)$$

(III.1-2)

$$\Delta \sigma_{33} + \frac{1}{1+\nu} \frac{\partial^2 \sigma}{\partial x^2} = -\frac{2+3\nu}{1+\nu} e \frac{\partial F_3}{\partial x} - \frac{\nu}{1+\nu} e \left(\frac{1}{\pi} \frac{\partial F_2}{\partial \theta} + \frac{F_1}{\pi} + \frac{\partial F_1}{\partial \pi}\right)$$

(III.1-3)

$$\Delta \overline{\sigma_{i2}} + \frac{4}{\Lambda + \nu} \left(\frac{4}{\pi} \frac{\partial^2}{\partial \pi \partial \theta} - \frac{4}{\pi^2} \frac{\partial}{\partial \theta} \right) \left[\overline{\sigma} \right] + \frac{2}{\pi^2} \left(\frac{\partial \overline{\sigma_{i1}}}{\partial \theta} - \frac{\partial \overline{\sigma_{22}}}{\partial \theta} - 2 \overline{\sigma_{i2}} \right) = -\frac{e}{2} \left[\frac{4}{\pi} \frac{\partial \overline{F_i}}{\partial \theta} + \frac{\partial \overline{F_2}}{\partial \theta} - \frac{\overline{F_2}}{\pi} \right]$$
(III. 1-4)

$$\Delta \overline{\sigma_{i3}} + \frac{4}{\Lambda + \nu} \frac{\partial^2 \overline{\sigma}}{\partial x \overline{m}} - \frac{4}{\pi^2} \left(2 \frac{\partial \overline{\sigma_{23}}}{\partial \theta} + \overline{\sigma_{i3}} \right) = -e \left(\frac{\partial \overline{F_3}}{\partial \pi} + \frac{\partial \overline{F_3}}{\partial x} \right)$$

L

(III.1-5)

$$\Delta \sigma_{23} + \frac{1}{2^2} \left[\vartheta \frac{\partial \sigma_{13}}{\partial \theta} - \sigma_{23} \right] + \frac{1}{1+v} \frac{1}{2^2} \frac{\partial^2 \sigma}{\partial x \partial \theta} = - e \left[\frac{\partial F_2}{\partial x} + \frac{1}{2^2} \frac{\partial F_3}{\partial \theta} \right]$$

avec :

$$\Delta = \frac{\partial^2}{\partial \pi^2} + \frac{4}{\pi} \frac{\partial}{\partial \pi} + \frac{4}{\pi^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial x^2}$$

$$\nabla = \sigma_{11} + \sigma_{22} + \sigma_{33}$$

En variables adimensionnelles, ces équations deviennent :

L'équation II.1-1, en remplaçant $\overline{U}_{ij} par \underbrace{EU}_{R} \overline{U}_{ij} et$ $\left(F_{i} \operatorname{Par} \underbrace{EU}_{R^{2}} F_{i}, \operatorname{puis} \times \operatorname{par} \operatorname{L} \overline{X} et 3 \operatorname{par} \operatorname{h} \overline{3} \operatorname{devient} :$

$$\frac{\lambda}{\varepsilon^2} \frac{\partial^2 \overline{\mathcal{O}_{11}}}{\partial \overline{s}^2} + \frac{\lambda}{\varepsilon(1+\varepsilon_{\overline{s}})} \frac{\partial \overline{\mathcal{O}_{11}}}{\partial \overline{s}} + \frac{\lambda}{(1+\varepsilon_{\overline{s}})^2} \frac{\partial^2 \overline{\mathcal{O}_{11}}}{\partial \varepsilon^2} + \frac{\kappa^2}{\overline{\delta}^2} \frac{\partial^2 \overline{\mathcal{O}_{11}}}{\partial \overline{x}^2}$$

$$+\frac{\lambda}{\lambda+\nu}\frac{1}{\epsilon^{2}}\frac{\partial^{2}\overline{U}}{\partial\overline{z}^{2}}+\frac{2}{(\lambda+\epsilon\overline{z})^{2}}\left(\overline{U}_{22}-\overline{U}_{11}-2\frac{\partial\overline{U}_{12}}{\partial\overline{v}}\right)=-\frac{2+3\nu}{\lambda+\nu}\frac{1}{\epsilon}\frac{\partial\overline{F}_{1}}{\partial\overline{z}}$$

$$+ \frac{-\nu}{1+\nu} \left[\frac{R}{2} \frac{\partial \overline{F_3}}{\partial \overline{x}} + \frac{1}{1+\varepsilon_3} \left(\frac{\partial \overline{F_9}}{\partial \overline{P}} + \overline{F_1} \right) \right]$$

et en multipliant les deux membres par $\mathcal{E}^{2}(1+\mathcal{E}\overline{z})^{2}$ on obtient :

$$(1+\varepsilon_{\overline{z}})^2 \frac{\partial^2 \overline{\sigma_{i1}}}{\partial \overline{z}^2} + \varepsilon(1+\varepsilon_{\overline{z}}) \frac{\partial \overline{\sigma_{i1}}}{\partial \overline{z}} + \varepsilon^2 \frac{\partial^2 \overline{\sigma_{i1}}}{\partial \theta^2} + \frac{4}{\kappa^2} \varepsilon^2 (1+\varepsilon_{\overline{z}})^2 \frac{\partial^2 \overline{\sigma_{i1}}}{\partial \overline{x}^2} + \varepsilon$$

$$+ \frac{4}{\Lambda + \nu} \left(1 + \varepsilon_{\overline{\lambda}}^{2}\right)^{2} \frac{\partial^{2}\overline{O}}{\partial \overline{z}^{2}} + 2\varepsilon^{2} \left(\overline{O}_{22} - \overline{O}_{11} - 2\frac{\partial\overline{O}_{12}}{\partial \overline{v}}\right) = -\frac{2 + 3\nu}{\Lambda + \nu} \varepsilon \left(\Lambda + \varepsilon_{\overline{\lambda}}^{2}\right)^{2} \frac{\partial\overline{F}_{4}}{\partial \overline{z}_{3}} - \frac{\nu}{\Lambda + \nu} \left[\frac{k}{k} \varepsilon^{2} \left(\Lambda + \varepsilon_{\overline{\lambda}}^{2}\right)^{2} \frac{\partial\overline{F}_{3}}{\partial \overline{x}} + \varepsilon^{2} \left(\Lambda + \varepsilon_{\overline{\lambda}}^{2}\right) \left(\frac{\partial\overline{F}_{2}}{\partial \overline{v}} + \overline{F}_{4}\right)\right] (III.1-7)$$

La même démarche, avec les autres équations de compatibilité donne :

$$(II.1-8) \begin{pmatrix} A + \mathcal{E}_{\overline{3}} \end{pmatrix}^{2} \frac{\partial^{2} \overline{\sigma}_{zz}}{\partial \overline{z}^{2}} + \mathcal{E} (A + \mathcal{E}_{\overline{3}}) \frac{\partial \overline{\sigma}_{zz}}{\partial \overline{z}^{2}} + \mathcal{E}^{2} \frac{\partial^{2} \overline{\sigma}_{zz}}{\partial \mathcal{P}^{z}} + \mathcal{R}^{2} \mathcal{E}^{2} (I + \mathcal{E}_{\overline{3}})^{2} \frac{\partial^{2} \overline{\sigma}_{zz}}{\partial \overline{z}^{z}} \\ + \frac{4}{A + v} \left[\mathcal{E}^{2} \frac{\partial^{2} \overline{\sigma}}{\partial \mathcal{P}^{z}} + \mathcal{E} (I + \mathcal{E}_{\overline{3}}) \frac{\partial \overline{\sigma}}{\partial \overline{z}} \right] + \mathcal{E}^{2} \left[\mathcal{E} \frac{\partial \overline{\sigma}_{Iz}}{\partial \mathcal{P}} + \overline{\sigma}_{II} - \overline{\sigma}_{I2} \right] \\ = - \frac{2 + 3v}{A + v} \mathcal{E}^{2} \left(A + \mathcal{E}_{\overline{3}} \right) \left(\frac{\partial \overline{F}_{z}}{\partial \mathcal{P}} + \overline{F}_{A} \right) - \frac{v}{A + v} \left[\mathcal{E}^{2} \mathcal{R} \left(A + \mathcal{E}_{\overline{3}} \right)^{2} \frac{\partial \overline{F}_{3}}{\partial \overline{X}} \right] \\ - \frac{v}{A + v} \left[\mathcal{E} \left(A + \mathcal{E}_{\overline{3}} \right)^{2} \frac{\partial \overline{F}_{4}}{\partial \overline{Z}} \right]$$

$$\left(\begin{array}{c} \left(\lambda+\varepsilon_{\overline{\zeta}}\right)^{2} & \frac{\gamma^{2}\overline{\sigma_{33}}}{\overline{\sigma_{\overline{\zeta}}^{2}}} + \varepsilon\left(1+\varepsilon_{\overline{\zeta}}\right) & \frac{\overline{\sigma}\overline{\sigma_{33}}}{\overline{\sigma_{\overline{\zeta}}^{2}}} + \varepsilon^{2} & \frac{\overline{\sigma}^{2}\overline{\sigma_{33}}}{\overline{\sigma_{\overline{\zeta}}^{2}}} + \varepsilon^{2}\varepsilon\left(1+\varepsilon_{\overline{\zeta}}\right)^{2} & \frac{\gamma^{2}\overline{\sigma_{33}}}{\overline{\sigma_{\overline{\zeta}}^{2}}} \\ + & \frac{k^{2}\varepsilon^{2}\left(\lambda+\varepsilon_{\overline{\zeta}}\right)^{2}}{\overline{\lambda+\nu}} & \frac{\overline{\sigma}^{2}\overline{\sigma}}{\overline{\sigma_{\overline{\zeta}}^{2}}} = - & \frac{2+3\nu}{\overline{\lambda+\nu}} & k\varepsilon^{2}\left(1+\varepsilon_{\overline{\zeta}}\right)^{2} & \frac{\overline{\sigma}\overline{F_{3}}}{\overline{\sigma_{\overline{\zeta}}^{2}}} \\ - & \frac{\nu}{\overline{\lambda+\nu}} & \left[\varepsilon^{2}\left(\lambda+\varepsilon_{\overline{\zeta}}\right)\left(\frac{\overline{\sigma}\overline{F_{2}}}{\overline{\sigma_{\overline{\zeta}}^{2}}} + \overline{F_{4}}\right) + \varepsilon\left(\lambda+\varepsilon_{\overline{\zeta}}\right)^{2} & \frac{\overline{\sigma}\overline{F_{4}}}{\overline{\overline{\sigma_{\overline{\zeta}}^{2}}}} \right] \right]$$

(II.1-9)

$$(II. 1-10) = \begin{pmatrix} (1+\varepsilon_{\overline{3}})^{2} & \frac{\partial^{2} \overline{\sigma}_{12}}{\partial \overline{3}^{2}} + \varepsilon(1+\varepsilon_{\overline{3}}) & \frac{\partial \overline{\sigma}_{12}}{\partial \overline{3}^{2}} + \varepsilon^{2} & \frac{\partial^{2} \overline{\sigma}_{12}}{\partial \overline{9}^{2}} + \frac{k^{2} \varepsilon^{2} (1+\varepsilon_{\overline{3}})^{2}}{\partial \overline{9}^{2}} & \frac{\partial^{2} \overline{\sigma}_{12}}{\partial \overline{7}^{2}} \\ + & \frac{4}{4+\nu} \left[\varepsilon(1+\varepsilon_{\overline{3}}) & \frac{\partial^{2} \overline{\sigma}}{\partial \overline{5}\partial \overline{9}} - \varepsilon^{2} & \frac{\partial \overline{\sigma}}{\partial \overline{9}} \right] + 2\varepsilon^{2} \left[\frac{\partial \overline{\sigma}_{11}}{\partial \overline{9}} - \frac{\partial \overline{\sigma}_{22}}{\partial \overline{9}} - \frac{2}{\overline{\sigma}} \overline{\sigma}_{12} \right] \\ = & -\varepsilon^{2} \left(4+\varepsilon_{\overline{3}} \right) \left(\frac{\partial \overline{F}_{A}}{\partial \overline{9}} - \overline{F}_{2} \right) - \varepsilon \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{F}_{2}}{\partial \overline{3}} \\ \left(11.1-11 \right) - \varepsilon^{2} \left(\frac{2}{\sqrt{2}} & \frac{\partial \overline{\sigma}_{23}}{\partial \overline{5}} + \varepsilon \left(1+\varepsilon_{\overline{3}} \right) & \frac{k}{2} \varepsilon^{2} & \frac{\partial^{2} \overline{\sigma}_{13}}{\partial \overline{5}} + \varepsilon^{2} & \frac{\partial^{2} \overline{\sigma}_{13}}{\partial \overline{7}^{2}} + \frac{k^{2} \varepsilon^{2} (1+\varepsilon_{\overline{3}})^{2} & \frac{\partial^{2} \overline{\sigma}_{13}}{\partial \overline{7}^{2}} \\ - & \varepsilon^{2} \left(\frac{2}{\sqrt{2}} & \frac{\partial \overline{\sigma}_{23}}{\partial \overline{9}} + \overline{\sigma}_{13} \right) + \frac{k}{\kappa} \frac{k} \varepsilon \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial^{2} \overline{\sigma}_{2}}{\partial \overline{7}} \\ - & \kappa^{2} \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{F}_{1}}{\partial \overline{7}} \\ - & k^{2} \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{F}_{1}}{\partial \overline{7}^{2}} \\ + & \frac{k^{2} \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}^{2}} + \varepsilon^{2} \left(2 & \frac{\partial \overline{\sigma}_{13}}{\partial \overline{7}} - \overline{\sigma}_{32} \right) + \frac{k^{2} \varepsilon^{2} \left((1+\varepsilon_{\overline{3}})}{\partial \overline{7}} & \frac{\partial^{2} \overline{\sigma}_{\overline{7}}}{\partial \overline{7}} \\ - & - & k \varepsilon^{2} \left((1+\varepsilon_{\overline{3}})^{2} & \frac{\partial \overline{F}_{2}}{\partial \overline{7}} \\ - & - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{F}_{2}}{\partial \overline{7}} \\ - & - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{7}} \\ - & \varepsilon^{2} \left(1+\varepsilon_{\overline{3}} \right)^{2} & \frac{\partial \overline{T}_{23}}{\partial \overline{$$

III.2.1. PROBLEME LINEARISE

On substitue, dans les équations d'équilibre, les développements suivants :

$$\overline{\sigma}_{c_{j}}(\theta,\overline{x}_{1}\overline{s}_{1}\varepsilon) = \sum_{n \in \mathbb{N}} \varepsilon^{n} \overline{\sigma}_{c_{j}}^{(n)}(\theta,\overline{x},\overline{s})$$

$$\overline{u}_{i}(\theta,\overline{x}_{1}\overline{s}_{1}\varepsilon) = \sum_{n \in \mathbb{N}} \varepsilon^{n} \overline{u}_{i}^{(n)}(\theta,\overline{x},\overline{s})$$

L'équation III.1.1. devient :

$$\sum_{n \in \mathbb{N}} \left\{ \mathcal{E}^{n} \frac{\partial \overline{\sigma}_{11}^{(n)}}{\partial \overline{z}} + \mathcal{E}^{n+1} \left(\overline{z} \frac{\partial \overline{\sigma}_{11}^{(n)}}{\partial \overline{z}} + \frac{\partial \overline{\sigma}_{12}^{(n)}}{\partial P} + \overline{\sigma}_{11}^{(n)} - \overline{\sigma}_{22}^{(n)} \right) + \frac{\partial \overline{\sigma}_{12}^{(n)}}{\partial P} + \overline{\sigma}_{11}^{(n)} - \overline{\sigma}_{22}^{(n)} \right\}$$

On transforme cette équation de la façon suivante prenant le terme $\sum_{n \in N} \varepsilon^{n+p} \cdot \overline{\overline{\mathcal{T}}}_{i,j}^{(n)}$ et faisant le changement de variable $\mathfrak{M} = n + p$, ce qui le transforme en :

$$\sum_{m=p}^{\infty} \mathcal{E}^{m} \cdot \overline{\nabla}_{i_{j}}^{(m-p)} (\theta_{1} \overline{x}_{1} \overline{z})$$
puis en posant $\overline{\nabla}_{i_{j}}^{(k)} (\theta_{1} \overline{x}_{1} \overline{z}) = \circ$ pour $\hat{E} < \circ$ on peut encore l'écrire sous la forme :

$$\sum_{n=0}^{p} \mathcal{E}^{n} \cdot \overline{\mathcal{T}}_{c_{i}}^{(n-p)}(\theta_{1}\overline{x},\overline{z})$$
Avec cette convention, l'équation II.1-1 devient :
$$\left[\sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{\mathcal{T}}_{11}^{(n)}}{\partial \overline{z}} + \overline{z} \cdot \frac{\partial \overline{\mathcal{T}}_{11}^{(n-1)}}{\partial \overline{z}} + \frac{\partial \overline{\mathcal{T}}_{12}^{(n-1)}}{\partial \overline{z}} + \overline{\mathcal{T}}_{11}^{(n-1)} + \overline{\mathcal{T}}_{11}^{(n-1)} \right] - \mathcal{T}_{gg}^{(n-1)} + k \cdot \frac{\partial \overline{\mathcal{T}}_{12}^{(n-1)}}{\partial \overline{x}} + k \cdot \frac{\partial \overline{\mathcal{T}}_{12}^{(n-1)}}{\partial \overline{x}} \right] + \mathcal{E}(1 + \varepsilon_{\overline{x}}) \overline{F}_{1} = 0$$

En procédant de la même façon, les deux autres équations d'équilibre deviennent :

$$(III.2-2) \qquad \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{\sigma}_{12}^{(n)}}{\partial \overline{z}_{3}} + \overline{z} \frac{\partial \overline{\sigma}_{12}^{(n-1)}}{\partial \overline{z}_{3}} + \frac{\partial \overline{\sigma}_{22}^{(n-1)}}{\partial \overline{y}} + \mathcal{E}\overline{\sigma}_{12}^{(n-1)} \right. \\ + \frac{k}{k} \left(\frac{\partial \overline{\sigma}_{23}^{(n-1)}}{\partial \overline{x}} \right) + \frac{z}{2} \frac{k}{k} \frac{\partial \overline{\sigma}_{23}^{(n-2)}}{\partial \overline{y}} \right\} + \mathcal{E}(I+\mathcal{E}_{\overline{z}}) \overline{F}_{2} = 0$$

$$(III.2-3) \qquad \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{\sigma}_{15}^{(n)}}{\partial \overline{z}_{3}} + \overline{z} \frac{\partial \overline{\sigma}_{15}^{(n-1)}}{\partial \overline{z}_{5}} + \frac{\partial \overline{\sigma}_{22}^{(n-1)}}{\partial \overline{y}} + \frac{\partial \overline{\sigma}_{22}^{(n-1)}}{\partial \overline{y}} + \overline{\sigma}_{13}^{(n-1)} + \frac{\partial \overline{\sigma}_{24}^{(n-1)}}{\partial \overline{z}_{35}} \right. \\ + \frac{z}{2} \frac{\partial \overline{\sigma}_{33}^{(n-2)}}{\partial \overline{x}} \right\} + \mathcal{E}(\Lambda + \mathcal{E}_{\overline{z}}) \overline{F}_{3} = 0$$

III.2.2. RELATIONS CONTRAINTES-DEFORMATIONS

Avec la même démarche que précédemment, et en posant $\overline{u}_{i}^{(P)}(\theta, \overline{x}, \overline{z})=0$ pour $\rho < \sigma$, les relations III.1-5 donnent :

$$\begin{split} \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{u}_{4}^{(n)}}{\partial \overline{z}} - \overline{\nabla}_{11}^{(n-1)} + \nu \overline{\nabla}_{22}^{(n-1)} + \nu \overline{\nabla}_{33}^{(n-1)} \right\} &= 0 \\ \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{u}_{2}^{(n)}}{\partial \overline{z}} + \overline{z} \frac{\partial \overline{u}_{2}^{(n-1)}}{\partial \overline{z}} + \frac{\partial \overline{u}_{4}^{(n-1)}}{\partial \overline{v}} - \overline{u}_{2}^{(n-1)} - 2(1+\nu) \left(\overline{\nabla}_{12}^{(n-1)} + \overline{z} \overline{\nabla}_{12}^{(n-2)}\right) \right\} = 0 \\ \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{u}_{3}^{(n)}}{\partial \overline{z}} + \frac{\partial \mathcal{R}}{\partial \overline{z}} - 2(1+\nu) \overline{\nabla}_{15}^{(n-1)} \right\} = 0 \\ 0 &= \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{u}_{2}^{(n)}}{\partial \overline{v}} + \overline{u}_{4}^{(n)} - \overline{\nabla}_{22}^{(n)} + \nu \left(\overline{\nabla}_{11}^{(n)} + \overline{\nabla}_{35}^{(n)}\right) + \overline{z} \left[-\overline{\nabla}_{22}^{(n-1)} + \nu \left(\overline{\nabla}_{11}^{(n-1)} + \overline{\nabla}_{35}^{(n)}\right) \right] \right\} \\ \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{u}_{3}^{(n)}}{\partial \overline{x}} - \overline{\nabla}_{33}^{(n)} + \nu \overline{\nabla}_{22}^{(n)} + \nu \overline{\nabla}_{41}^{(n)} \right\} = 0 \\ \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial \overline{u}_{3}^{(n)}}{\partial \overline{y}} + \frac{\partial \overline{u}_{2}^{(n)}}{\partial \overline{x}} - 2(1+\nu) \overline{\nabla}_{23}^{(n)} + \overline{z} \right\} + \overline{z} \left[-\overline{\nabla}_{22}^{(n-1)} + \nu \left(\overline{\nabla}_{11}^{(n-1)} + \overline{\nabla}_{35}^{(n)}\right) \right] \\ \left(\overline{\beta} U_{5}^{(1)} - 2(1+\nu) \overline{z} \right) \overline{\nabla}_{23}^{(n-1)} = 0 \end{split}$$

III.2.3. EQUATIONS DE COMPATIBILITE

En remplaçant dans les régions III.1-7 à III.1-12 les $\overline{\nabla}_{ij}$ par leur développement en $\boldsymbol{\xi}$ on obtient :

$$\frac{\sum_{n \in \Pi V} \mathcal{E}^{n} \left\{ \frac{\partial^{2} \overline{\sigma}_{u}^{(n)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{4}{A+\upsilon} \frac{\partial^{2} \overline{\sigma}_{u}^{(n)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{2}{\overline{\mathfrak{z}}} \frac{\partial^{2} \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}} \right\}}{\sqrt{2}}{\overline{\mathfrak{z}}^{2}} + \frac{2}{\overline{\mathfrak{z}}} \frac{\partial^{2} \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-2)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\sigma}_{u}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\sigma}_{u}^{($$

(III.2-6)

$$\frac{\sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial^{2} \overline{\mathcal{G}}_{22}^{(n)}}{\partial \overline{\mathfrak{z}}^{2}} + 2\overline{\mathfrak{z}} \frac{\partial^{2} \overline{\mathcal{G}}_{22}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\mathcal{G}}_{22}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\mathcal{G}}_{22}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\mathcal{G}}_{22}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\mathcal{G}}_{22}^{(n-1)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\mathcal{G}}_{22}^{(n-2)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial \overline{\mathcal{G}}_{22}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac$$

$$\begin{split} \sum_{n \in \mathbb{N}} \mathcal{E}^{n} \left\{ \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{3}}^{2}} + 2\overline{\overline{3}} \quad \frac{\partial^{2} \overline{\mathcal{G}}_{34}}{\partial \overline{\overline{3}}^{2}} + \frac{\partial}{\partial \overline{\mathcal{G}}_{34}} - \frac{\partial}{\partial \overline{\overline{3}}^{2}} + \overline{\overline{3}}^{2} \quad \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{3}}^{2}} + \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{3}}} + \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{3}}^{2}} + \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{3}}^{2}} + \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{3}}} + \frac{\partial^{2} \overline{\overline{\mathcal{G}}_{33}}}{\partial \overline{\overline{\overline{3}}}} + \frac{\partial^{2} \overline{\overline{\overline$$

(III.2-8)

$$\begin{split} \sum_{n \in \mathbb{N}^{\vee}} \mathcal{E}^{n} \left\{ \frac{\partial^{2} \overline{\sigma}_{12}^{(n)}}{\partial \overline{3}^{2}} + 2 \overline{3} \frac{\partial^{2} \overline{\sigma}_{12}^{(n-1)}}{\partial \overline{3}^{2}} + \frac{\partial \overline{\sigma}_{12}^{(n-1)}}{\partial \overline{3}} + \frac{\lambda}{\lambda + \nu} \frac{\partial^{2} \overline{\sigma}_{1(n-1)}}{\partial \overline{3} \gamma \varphi} \right. \\ &+ \overline{3}^{2} \frac{\partial^{2} \overline{\sigma}_{12}^{(n-2)}}{\partial \overline{3}^{2}} + \overline{3} \frac{\partial \overline{\sigma}_{12}^{(n-2)}}{\partial \overline{3}^{2}} + \frac{\partial^{2} \overline{\sigma}_{12}^{(n-2)}}{\partial \overline{p}^{2}} + \frac{k^{2}}{2} \frac{\partial^{2} \overline{\sigma}_{12}^{(n-2)}}{\partial \overline{x}^{2}} \\ &+ \frac{\overline{3}}{\lambda + \nu} \frac{\partial^{2} \overline{\sigma}_{(n-2)}}{\partial \overline{3} \gamma \varphi} + 2 \frac{\partial \overline{\sigma}_{11}^{(n-2)}}{\gamma \varphi} - 2 \frac{\partial \overline{\sigma}_{22}^{(n-2)}}{\partial \overline{\sigma}} - 4 \overline{\sigma}_{12}^{(n-2)} \\ &- \frac{1}{\lambda + \nu} \frac{\partial \overline{\sigma}_{(n-2)}}{\gamma \varphi} + 2 \overline{3} \frac{\lambda^{2}}{\kappa} \frac{\partial^{2} \overline{\sigma}_{12}^{(n-2)}}{\gamma \overline{x}^{2}} + \overline{3}^{2} \frac{\lambda^{2}}{\kappa} \frac{\partial^{2} \overline{\sigma}_{12}^{(n-4)}}{\gamma \overline{x}^{2}} \right\} \\ &= - \mathcal{E} \left(1 - \mathcal{E} \overline{3}\right) \left[\mathcal{E} \left(\frac{\gamma \overline{F_{1}}}{\gamma \varphi} - \overline{F_{2}}\right) + \left(1 + \mathcal{E} \overline{3}\right) \frac{\partial \overline{F_{2}}}{\partial \overline{3}} \right] \end{split}$$

่ 805 มนะ (III.2-9)

$$\begin{split} \sum_{N \in \mathbb{N}^{\vee}} \mathcal{E}^{N} \left\{ \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n)}}{\partial \overline{\mathfrak{z}}^{2}} + 2\overline{\mathfrak{z}} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial}{2} \frac{\overline{\mathcal{G}_{13}}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{k}{2} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{k}{2} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{k}{2} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{k}{2} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} \\ + \frac{2\overline{\mathfrak{z}}}{\lambda + \nu} \frac{k}{2} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-2)}}{\partial \overline{\mathfrak{z}}} + \frac{2}{2} \frac{\partial}{\mathcal{G}_{23}}^{(n-2)}}{\partial \overline{\mathfrak{p}}} - \overline{\mathcal{G}_{13}}^{(n-2)} + \frac{\overline{\mathfrak{z}}^{2} k}{\lambda + \nu} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-2)}}{\partial \overline{\mathfrak{z}} \partial \overline{\mathfrak{z}}} \\ + 2\overline{\mathfrak{z}} \frac{k^{2}}{\lambda + \nu} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\overline{\mathfrak{z}}^{2}}{\mathfrak{z}^{2}} \frac{k^{2}}{\gamma \overline{\mathfrak{p}}} - \overline{\mathcal{G}_{13}}^{(n-2)} + \frac{\overline{\mathfrak{z}}^{2} k}{\lambda + \nu} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-3)}}{\partial \overline{\mathfrak{z}} \partial \overline{\mathfrak{z}}} \\ + 2\overline{\mathfrak{z}} \frac{k^{2}}{\kappa} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-3)}}{\partial \overline{\mathfrak{x}}^{2}} + \overline{\mathfrak{z}}^{2} k^{2} \frac{\partial^{2} \overline{\mathcal{G}_{13}}^{(n-4)}}{\partial \overline{\mathfrak{x}} \partial \overline{\mathfrak{z}}} \\ + 2\overline{\mathfrak{z}} \left\{ (1 + \varepsilon_{\overline{\mathfrak{z}})^{2} \left[\frac{\partial \overline{\mathfrak{F}_{3}}}{\partial \overline{\mathfrak{z}}} + \varepsilon_{\overline{\mathfrak{z}}} k \frac{\partial \overline{\mathfrak{F}_{1}}}{\partial \overline{\mathfrak{x}}} \right] \end{split}$$

(III.2-10)

$$\begin{split} \sum_{\mathbf{h}\in\mathbf{I}\mathbf{V}} \mathcal{E}^{\mathbf{h}} \left\{ \begin{array}{c} \frac{\partial^{2} \overline{\mathcal{G}}_{23}^{(\mathbf{h})}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{2}{\overline{\mathfrak{z}}} \frac{\partial^{2} \overline{\mathcal{G}}_{23}^{(\mathbf{h}-1)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{\partial \overline{\mathcal{G}}_{23}^{(\mathbf{h}-1)}}{\partial \overline{\mathfrak{z}}} + \frac{1}{\overline{\mathfrak{z}}} \frac{\partial \overline{\mathcal{G}}_{23}^{(\mathbf{h}-1)}}{\partial \overline{\mathfrak{z}}} + \frac{1}{\overline{\mathfrak{z}}} \frac{\partial^{2} \overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}}^{2}} \\ + \frac{1}{\overline{\mathfrak{z}}} \frac{\partial \overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}}} + \frac{\partial^{2} \overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}}^{2}} + \frac{1}{\overline{\mathfrak{z}}} \frac{2}{\overline{\mathfrak{Z}}} \frac{\overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}}} + \frac{1}{\overline{\mathfrak{z}}} \frac{\partial \overline{\mathcal{G}}_{12}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}}} - \overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)} \\ + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{\partial^{2} \overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}} \sqrt{\mathfrak{p}}} + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{2}{\overline{\mathfrak{Z}}} \frac{\overline{\mathcal{G}}_{23}^{(\mathbf{h}-2)}}{\partial \overline{\mathfrak{z}}} + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{2}{\overline{\mathfrak{z}}} \frac{\overline{\mathfrak{Z}}}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \\ + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \\ + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak{z}}} \\ + \frac{1}{\overline{\mathfrak{z}}} \\ + \frac{1}{\overline{\mathfrak{z}}} \frac{1}{\overline{\mathfrak$$

Remarque 1.

Dans les équations d'équilibre et les relations contraintes-déformation, n doit être au moins égal à deux pour garder tous les termes significatifs.

Dans les équations de compatibilité, n doit être au moins égal à 4 pour garder tous les termes significatifs.

Remarque 2.

A l'ordre zéro, les forces de volumes n'interviennent pas dans le calcul.

Par la suite, on fait l'hypothèse que les forces de volume sont négligeables devant les autres sollicitations.

CHAPITRE IV

RESOLUTION DU PROBLEME LINEARISE

En annulant les coefficients des diverses puissances de $\boldsymbol{\mathcal{E}}$ on obtient successivement :

IV.1.1.1.LA RESOLUTION A L'ORDRE ZERO EN .

Les équations III.2-1 à III.2-3 et III.2-3.1 donnent :

$$\frac{\partial \overline{\sigma}_{11}^{(0)}}{\partial \overline{s}} = 0$$

$$\frac{\partial \overline{\sigma}_{12}^{(0)}}{\partial \overline{s}} = 0$$

$$\frac{\partial \overline{\sigma}_{12}^{(0)}}{\partial \overline{s}} = 0$$

 $\frac{\sqrt{-13}}{\sqrt{3}} = 0$ ce qui implique que $\overline{\nabla_{13}}(\theta, \bar{x}, \bar{3}) = \overline{43}(\theta, x)$. Par la suite (page), on est amené à les prendre nulles, dans le cas général).

De même on obtient par les relations contraintes-déformation :

$$\frac{\partial \overline{U}_{1}^{(0)}(\theta_{1}\overline{x}_{1}\overline{\xi})}{\partial \overline{\xi}} = 0 \quad ; \quad \frac{\partial \overline{U}_{2}^{(0)}(\theta_{1}\overline{x}_{1}\overline{\xi})}{\partial \overline{\xi}} = 0 \quad \text{st} \quad \frac{\partial \overline{U}_{3}^{(0)}(\theta_{1}\overline{x}_{1}\overline{\xi})}{\partial \overline{\xi}} = 0$$

soit

$$\overline{u}_{i}^{(0)}(\overline{\vartheta},\overline{x},\overline{z}) \stackrel{\text{def}}{=} \overline{a}_{i}^{(0)}(\overline{\vartheta},\overline{x}). \quad \text{pour } i = 1,2,3.$$

et

$$(IV. 1-1) \begin{bmatrix} \overline{\nabla}_{33}^{(0)} (\theta_1 \overline{x}_1 \overline{5}) \stackrel{dul}{=} & \overline{1}_{330}^{(0)} (\theta_1 \overline{x}) = \frac{1}{1-\nu^2} \begin{bmatrix} \frac{1}{2} \frac{\partial \overline{u}_3^{(0)}}{\partial \overline{x}} + \nu \frac{\partial \overline{u}_2^{(0)}}{\partial \overline{x}} + \nu \overline{u}_1^{(0)} \end{bmatrix}$$
$$(IV. 1-1) \begin{bmatrix} \overline{\nabla}_{22}^{(0)} (\theta_1 \overline{x}_1 \overline{5}) \stackrel{dul}{=} & \overline{1}_{220}^{(0)} (\theta_1 \overline{x}) = \frac{1}{1-\nu^2} \begin{bmatrix} \frac{\partial \overline{u}_2^{(0)}}{\partial \overline{x}} + \overline{u}_1^{(0)} + \nu \overline{k} \frac{\partial \overline{u}_3^{(0)}}{\partial \overline{x}} \end{bmatrix}$$
$$(IV. 1-1) \begin{bmatrix} \overline{\nabla}_{23}^{(0)} (\theta_1 \overline{x}_1 \overline{5}) \stackrel{dul}{=} & \overline{1}_{230}^{(0)} (\theta_1 \overline{x}) = \frac{1}{2(1+\nu)} \begin{bmatrix} \frac{\partial \overline{u}_3^{(0)}}{\partial \overline{x}} + \frac{1}{\sqrt{2}} \frac{\partial \overline{u}_2^{(0)}}{\partial \overline{x}} \end{bmatrix}$$

Les équations de compatibilité, à l'ordre zéro sont toutes automatiquement vérifiées. La vérification est ici assez simple mais aux ordres suivants elle s'avère de plus en plus compliquée à établir. On peut néanmoins remarquer que l'utilisation des équations d'équilibre et des relations contrainte-déformations dispensent de vérifier les équations de compatibilité.

IV.1.2. RESOLUTION A L'ORDRE UN EN E .

En identifiant les termes en \mathcal{E} , dans le système d'équations III.2-1 à III.2-3, et en tenant compte de la solution précédente on obtient :

$$\frac{\partial \overline{\sigma}_{11}^{(1)}}{\partial \overline{\zeta}} = \overline{\sigma}_{22}^{(0)} (\overline{\theta}_{1} \overline{x}) \stackrel{\text{def}}{=} \overline{f}_{111}^{(1)} (\overline{\theta}_{1} \overline{x})$$

$$\frac{\overline{\partial \overline{G}_{12}}}{\overline{\partial \overline{g}}} = - \frac{\overline{\partial \overline{G}_{22}}(\overline{\partial}(\overline{x}))}{\overline{\partial \Phi}} - k \frac{\overline{\partial \overline{G}_{23}}(\overline{\partial}(\overline{x}))}{\overline{\partial \overline{x}}} \stackrel{dd}{=} \overline{f_{121}}(\overline{\partial}(\overline{x}))$$

$$\frac{\partial \overline{\sigma}_{13}^{(1)}}{\partial \overline{\varsigma}} = - \frac{\partial \overline{\sigma}_{23}^{(0)}(\theta, \overline{s})}{\partial \theta} - \frac{\partial \overline{\sigma}_{33}^{(0)}(\theta, \overline{s})}{\partial \overline{s}} \stackrel{\text{duf}}{=} \frac{\overline{f}_{131}^{(1)}(\theta, \overline{s})}{\overline{f}_{131}^{(1)}(\theta, \overline{s})}.$$

ce qui permet d'écrire les
$$\overline{\nabla}_{1\hat{j}}^{(1)}(\vartheta, \overline{x}, \overline{z})$$
 sous la forme
 $\overline{\nabla}_{1\hat{j}}^{(1)}(\vartheta, \overline{x}, \overline{z}) \xrightarrow{\text{def}} \overline{z} \cdot \overline{\overline{J}}_{1\hat{j}1}^{(1)}(\vartheta, \overline{x}) + \overline{\overline{J}}_{1\hat{j}0}^{(1)}(\vartheta, \overline{x})$

De même, le système d'équations III.2-3.1, en tenant de la solution à l'ordre zéro donne :

$$\frac{\partial \overline{u}_{A}^{(1)}}{\partial \overline{z}} = -\nu \left(\overline{\nabla}_{2z}^{(0)}(\theta_{1}\overline{x})} + \overline{\nabla}_{3z}^{(0)}(\theta_{1}\overline{x})}\right) \stackrel{def}{=} \overline{a}_{A_{1}}^{(1)}(\theta_{1}\overline{x})$$

$$\frac{\partial \overline{u}_{z}^{(1)}}{\partial \overline{z}} = \overline{u}_{z}^{(0)}(\theta_{1}\overline{x}) - \frac{\partial \overline{u}_{A}^{(0)}(\theta_{1}\overline{x})}{\partial \theta} \stackrel{def}{=} \overline{a}_{z_{A}}^{(1)}(\theta_{1}\overline{x})$$

$$\frac{\partial \overline{u}_{z}^{(1)}}{\partial \overline{z}} = -k \frac{\partial \overline{u}_{A}^{(0)}(\theta_{1}\overline{x})}{\partial \overline{x}} = \overline{a}_{3A}^{(1)}(\theta_{1}\overline{x}).$$

système dont la solution s'écrit :

$$\overline{u}_{i}^{(i)}(\vartheta_{i}\overline{x},\overline{z}) = \overline{z} \quad \overline{a}_{i}^{(i)}(\vartheta_{i}\overline{x}) + \quad \overline{a}_{i}^{(i)}(\vartheta_{i}\overline{x})$$

Les trois autres relations contraintes-déformation à l'ordre un donne :

$$\overline{\nabla}_{23}^{(1)}(\theta_{1}\overline{x},\overline{\xi}) \stackrel{def}{=} \overline{\zeta} \quad \overline{\frac{1}{2}}_{231}^{(1)}(\theta_{1}\overline{x}) + \overline{\frac{1}{4}}_{230}^{(1)}(\theta_{1}\overline{x}) \\
\overline{\nabla}_{2e}^{(1)}(\theta_{1}\overline{x},\overline{\xi}) \stackrel{def}{=} \overline{\zeta} \quad \overline{\frac{1}{2}}_{224}^{(1)}(\theta_{1}\overline{x}) + \overline{\frac{1}{4}}_{220}^{(1)}(\theta_{1}\overline{x}) \\
\overline{\nabla}_{33}^{(1)}(\theta_{1}\overline{x},\overline{\xi}) \stackrel{def}{=} \overline{\zeta} \quad \overline{\frac{1}{3}}_{334}^{(1)}(\theta_{1}\overline{x}) + \overline{\frac{1}{4}}_{330}^{(1)}(\theta_{1}\overline{x}).$$

avec

$$\begin{split} \vec{f}_{234}^{(1)}(\theta,\bar{x}) &= \frac{k}{\lambda+\nu} \left[\frac{\Im \bar{u}_{2}^{(0)}(\theta,\bar{x})}{\Im \bar{x}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}} \right] - \vec{f}_{230}^{(0)}(\theta,\bar{x}) \\ \vec{f}_{234}^{(1)}(\theta,\bar{x}) &= \frac{k}{2(1+\nu)} \left[\frac{\Im \bar{u}_{35}^{(1)}(\theta,\bar{x})}{\Im \bar{y}} + \frac{k}{2(1+\nu)} \frac{\Im \bar{u}_{35}^{(1)}(\theta,\bar{x})}{\Im \bar{y}} \right] \\ \vec{f}_{235}^{(1)}(\theta,\bar{x}) &= \frac{k}{2(1+\nu)} \left[\frac{\Im \bar{u}_{35}^{(1)}(\theta,\bar{x})}{\Im \bar{y}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{y}} - \frac{k^{2}}{\Im \bar{x}} \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}^{2}} \right] \\ \vec{f}_{225}^{(1)}(\theta,\bar{x}) &= \frac{k}{4-\nu^{2}} \left[\frac{\Im \bar{u}_{35}^{(0)}(\theta,\bar{x})}{\Im \bar{y}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}^{2}} - \frac{k^{2}}{2} \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}^{2}} \right] - \vec{f}_{255}^{(0)} \vec{f}_{10}^{(1)}(\theta,\bar{x}) \\ \vec{f}_{334}^{(1)}(\theta,\bar{x}) &= \frac{k}{4-\nu^{2}} \left[\frac{\Im \bar{u}_{35}^{(0)}(\theta,\bar{x})}{\Im \bar{y}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}^{2}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{y}^{2}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}^{2}} \right] \\ \vec{f}_{334}^{(1)}(\theta,\bar{x}) &= \frac{\nu}{4-\nu^{2}} \left[\frac{\Im \bar{u}_{35}^{(0)}(\theta,\bar{x})}{\Im \bar{y}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{y}^{2}} - \frac{\Im^{2} \bar{u}_{1}^{(0)}(\theta,\bar{x})}{\Im \bar{x}^{2}} \right] \\ \vec{f}_{336}^{(1)}(\theta,\bar{x}) &= \frac{\nu}{4-\nu^{2}} \left[\frac{\Im \bar{u}_{20}^{(0)}(\theta,\bar{x})}{\Im \bar{y}} + \tilde{u}_{40}^{(1)}(\theta,\bar{x})} + \frac{\Im \bar{u}_{350}^{(1)}(\theta,\bar{x})}{\Im \bar{x}^{2}} + (1+\nu) \tilde{f}_{100}^{(1)}(\theta,\bar{x})} \right] \end{aligned}$$

Les équations de compatibilité sont toutes automatiquement vérifiées. Donc à l'ordre un, la solution se met sous la forme :

$$(IV. 1-2) \qquad \overline{\overline{\mathcal{T}}_{ij}^{(1)}(\theta_{i}\bar{x}_{1}\bar{z})} = \overline{\overline{\mathcal{J}}} \quad \overline{\overline{\mathcal{T}}_{ij1}^{(1)}(\theta_{1}\bar{x})} + \overline{\overline{\mathcal{T}}_{ij0}^{(1)}(\theta_{i}\bar{x})} \\ (\overline{\mathcal{I}}_{i,j} = 1,2,3) \\ \overline{\mathcal{I}}_{i}^{(1)}(\theta_{i}\bar{x}_{1}\bar{z}) = \overline{\overline{\mathcal{J}}} \quad \overline{\overline{\mathcal{A}}}_{i,j}^{(1)}(\theta_{i}\bar{x}) + \overline{\overline{\mathcal{A}}}_{i,j}^{(1)}(\theta_{i}\bar{x}) \\ + \overline{\overline{$$

IV.1.3. RESOLUTION A L'ORDRE DEUX EN

En identifiant les termes en $\mathcal{E}^{\boldsymbol{\ell}}$, dans les équations d'équilibre et les lois de comportement, et en tenant compte de la solution aux ordres précédents, on aboutit à une solution en $\boldsymbol{\bar{\zeta}}$ qui se met sous la forme :

 $\overline{\overline{U}}_{ij}^{(2)}(\theta_{i}\bar{x}_{i}\bar{z}) = \frac{\overline{3}^{2}}{2} \quad \overline{\overline{4}}_{ij2}^{(2)}(\theta_{i}\bar{x}) + \overline{\overline{3}} \quad \overline{\overline{4}}_{ij4}^{(2)}(\theta_{i}\bar{x}) + \overline{\overline{4}}_{ij0}^{(2)}(\theta_{i}\bar{x})$ $\overline{\overline{U}}_{i}^{(2)}(\theta_{i}\bar{x}_{i}\bar{z}) = \frac{\overline{3}^{2}}{2} \quad \overline{\overline{a}}_{i2}^{(2)}(\theta_{i}\bar{x}) + \overline{\overline{3}} \quad \overline{\overline{a}}_{i4}^{(2)}(\theta_{i}\bar{x}) + \overline{\overline{a}}_{i0}^{(2)}(\theta_{i}\bar{x})$

(nous ne détaillerons pas les calculs qui ont peu d'intérêt, et on se contentera de donner les résultats. La démarche reste la même que pour les ordres précédents).

Avec :

$$\begin{split} & \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(4)} (\theta_{i} \overline{x}) = - \left[\mathcal{L} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{4} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{4} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) - \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[\frac{2}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) - \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[\frac{2}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{5} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) - \frac{1}{55} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[2 \frac{1}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{4} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{55} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[2 \frac{1}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{5} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{5} \frac{1}{530} (\theta_{i} \overline{x}) + \frac{2}{55} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[2 \frac{1}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) - \frac{2}{5} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{7} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[2 \frac{1}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) + \frac{2}{5} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) } \frac{2}{55} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) \right] \\ & \frac{1}{7} \prod_{i \in \mathbb{Z}}^{(2)} (\theta_{i} \overline{x}) = - \left[2 \frac{1}{4} \frac{1}{1} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) - \frac{2}{5} \frac{1}{4} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) } \frac{2}{55} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) } \frac{2}{5} \prod_{i \in \mathbb{Z}}^{(1)} (\theta_{i} \overline{x}) }\frac{2}{5} \prod_{i \in \mathbb$$

$$\begin{split} & -\frac{k}{(1+v)} \left[\frac{\Im \overline{U}_{2}^{(v)}(\vartheta,\overline{x})}{\Im \overline{x}} - \frac{\Im^{2} \overline{U}_{1}^{(v)}(\vartheta,\overline{x})}{\Im \overline{x}} \right] \\ & \overline{f}_{23_{4}}^{(2)}(\vartheta,\overline{x}) = \frac{4}{2(1+v)} \left[\frac{\Im \overline{d}_{34}^{(z)}(\vartheta,\overline{x})}{\Im \overline{y}} + \frac{k}{k} \frac{\Im \overline{d}_{21}^{(z)}(\vartheta,\overline{x})}{\Im \overline{x}} + \frac{k}{k} \frac{\Im \overline{d}_{22}^{(1)}(\vartheta,\overline{x})}{\Im \overline{x}} \right] - \overline{f}_{23_{6}}^{(1)}(\vartheta,\overline{x}) \\ & \overline{f}_{23_{7}}^{(2)}(\vartheta,\overline{x}) = \frac{4}{2(1+v)} \left[\frac{\Im \overline{d}_{34}^{(z)}(\vartheta,\overline{x})}{\Im \overline{y}} + \frac{k}{k} \frac{\Im \overline{d}_{32}^{(z)}(\vartheta,\overline{x})}{\Im \overline{x}} \right] \\ & \overline{f}_{22z_{2}}^{(2)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{112}^{(2)}(\vartheta,\overline{x}) + 4v \left(\overline{f}_{111}^{(1)}(\vartheta,\overline{x}) + \overline{f}_{33_{6}}^{(1)}(\vartheta,\overline{x}) \right) - 2 \overline{f}_{22i}^{(1)}(\vartheta,\overline{x}) \\ & + \frac{\Im \overline{d}_{22}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} + \frac{k}{k} \sqrt{\frac{\Im \overline{d}_{32}^{(2)}(\vartheta,\overline{x})}{\Im \overline{x}} - \overline{G}_{12}^{(2)}(\vartheta,\overline{x}) \right] \\ & \overline{f}_{22z_{4}}^{(2)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{111}^{(2)}(\vartheta,\overline{x}) - \overline{f}_{32}^{(1)}(\vartheta,\overline{x}) + v \overline{f}_{110}^{(1)}(\vartheta,\overline{x}) + v \overline{f}_{33_{6}}^{(1)}(\vartheta,\overline{x}) \right] \\ & + \frac{\Im \overline{d}_{22}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} + \frac{i}{6} \frac{v^{(2)}}{(\vartheta,\overline{x})} + \frac{\Im \overline{d}_{32}^{(2)}(\vartheta,\overline{x})}{\Im \overline{x}} \right] \\ & \overline{f}_{22z_{4}}^{(2)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{111}^{(2)}(\vartheta,\overline{x}) - \frac{\sqrt{2}\overline{d}_{33}^{(2)}(\vartheta,\overline{x})}{\Im \overline{x}} \right] \\ & + \frac{\Im \overline{d}_{22}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} + \overline{d}_{11}^{(2)}(\vartheta,\overline{x}) + \frac{\Im \overline{d}_{32}^{(2)}(\vartheta,\overline{x})}{\Im \overline{x}} \right] \\ & \overline{f}_{32z}^{(2)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{112}^{(2)}(\vartheta,\overline{x}) + \frac{\Im \overline{d}_{32}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} \right] \\ & \overline{f}_{32z}^{(2)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{112}^{(2)}(\vartheta,\overline{x}) + \frac{\Im \overline{d}_{32}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} \right] \\ & \overline{f}_{32z}^{(2)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{112}^{(2)}(\vartheta,\overline{x}) + 2 \sqrt{2} \overline{d}_{32z}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} \right] \\ & \overline{f}_{32z}^{(1)}(\vartheta,\overline{x}) = \frac{4}{4-v^{2}} \left[v(1+v) \overline{f}_{112}^{(2)}(\vartheta,\overline{x}) + \frac{2}{\sqrt{2}} \overline{d}_{32z}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} \right] \\ \\ & \overline{f}_{32z}^{(1)}(\vartheta,\overline{x}) = \frac{\sqrt{2}}{\sqrt{2}} \left[v(1+v) \overline{f}_{112}^{(2)}(\vartheta,\overline{x}) + \frac{2}{\sqrt{2}} \overline{d}_{32z}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} \right] \\ & \overline{f}_{33z}^{(1)}(\vartheta,\overline{x}) = \frac{\sqrt{2}}{\sqrt{2}} \left[v(1+v) \overline{f}_{112}^{(1)}(\vartheta,\overline{x}) + \frac{\sqrt{2}}{\sqrt{2}} \overline{d}_{32}^{(2)}(\vartheta,\overline{x})}{\Im \overline{y}} \right]$$

JUL

Les équations de compatibilité sont toutes automatiquement vérifiées.

:

:

IV.1.4. RESOLUTION A L'ORDRE N QUELCONQUE 72.

Aux ordres 0, 1 et 2, on trouve que la solution en $\overline{\mathbf{3}}$ se met sous la forme :

$$\overline{\nabla}_{ij}^{(n)}(\theta_1 \overline{x}_1 \overline{z}) = \frac{\sum_{m=0}^{n} \frac{\overline{z}^m}{m!} \overline{4}_{ijm}^{(n)}(\theta_1 \overline{x})$$

$$\overline{u}_{i}^{(n)}(\theta_1 \overline{x}_1 \overline{z}) = \sum_{m=0}^{n} \frac{\overline{z}^m}{m!} \overline{a}_{im}^{(n)}(\theta_1 \overline{x})$$

<u>avec</u> l'indice n dans $\int_{ijm}^{(n)} (\theta, \bar{x})$ et $\bar{a}_{im}^{(n)} (\theta, \bar{x})$ correspond à l'ordre de $\overline{\nabla}_{ij}$ et l'indice m à l'exposant de \bar{J} dans le développement polynomial en \bar{J} .

Supposons que la solution en $\overline{\varsigma}$ se met sous la forme (A) jusqu'à l'ordre n, et vérifions dans quelles conditions ceci serait encore vrai à l'ordre n + 1.

On détaillera le calcul pour la première équation d'équilibre, pour les 2 autres et les relations contraintes déformations la démarche reste la même, on se contentera de donner les résultats.

En partant de la première équation d'équilibre, et en supposant vérifié le résultat (A) à l'ordre n, et en négligeant les termes en $\mathbf{E}^{n+\mathbf{c}}$ on obtient :

$$\frac{\partial \overline{\sigma_{11}}^{(n+1)}}{\partial \overline{s}} = -\left[\overline{3} \frac{\partial \overline{\sigma_{11}}^{(n)}}{\partial \overline{s}} + \frac{\partial \overline{\sigma_{12}}^{(n)}}{\partial \overline{s}} + k \frac{\partial \overline{\sigma_{13}}^{(n)}}{\partial \overline{s}} + \overline{\sigma_{11}}^{(n)} \overline{\sigma_{22}}^{(n)} + k \overline{s} \frac{\partial \overline{\sigma_{13}}^{(n-1)}}{\partial \overline{s}}\right]$$

qui, d'après (A), entraîne :

(A)

$$\frac{\partial \overline{\sigma}_{11}^{(n+1)}}{\partial \overline{3}} = -\frac{2}{m_{\pm}} \frac{\overline{3}^{m}}{m_{\pm}} \left[\left(m + 1 \right) \overline{f}_{11} \frac{(n)}{m} \left(\theta_{1} \overline{x} \right) + \frac{\partial \overline{f}_{12m}}{\partial \theta_{1}} \frac{(\theta_{1} \overline{x})}{\partial \theta_{2}} + \frac{\partial \overline{f}_{13m}}{\partial \overline{x}} \right] \\ - \overline{f}_{22m}^{(n)} \left(\theta_{1} \overline{x} \right) + m_{\pm}^{n} \frac{\partial \overline{f}_{13(m-1)}}{\partial \overline{x}} \right]$$

$$\frac{\overline{p}_{(n+i)}}{\overline{p}_{(1}(m+i))} = -\left[(m+i) + \overline{1}_{(1,m)} \left(\overline{\theta}_{1}\overline{x} \right) + \frac{\partial + \overline{1}_{(2,m)} \left(\overline{\theta}_{1}\overline{x} \right)}{\sqrt{p}} + \frac{\partial + \overline{1}_{(3,m)} \left(\overline{\theta}_{1}\overline{x}$$

$$\frac{\partial \overline{\sigma_{11}}^{(n+1)}}{\partial \overline{s}} = \overline{f_{111}}^{(n+1)} (\overline{\sigma_{1x}}) + \overline{3} \overline{f_{112}}^{(n+1)} - - - + \frac{\overline{3}^{n}}{n!} \overline{f_{11}}^{(n+1)} (\overline{\sigma_{1x}})$$

ce qui donne :

$$\overline{\nabla}_{11}^{(n+1)}(\overline{P}_{1}\overline{x}_{1}\overline{3}) = \overline{4}_{110}^{(n+1)}(\overline{P}_{1}\overline{x}) + \overline{3}\overline{4}_{111}^{(n+1)}(\overline{P}_{1}\overline{x}) + --- \frac{\overline{3}_{111}^{(n+1)}(\overline{P}_{1}\overline{x})}{(n+1)!}\overline{4}_{11(n+1)}^{(n+1)}$$

$$= \frac{\sum_{m=0}^{n+1}}{2m!} \frac{\overline{3}_{m}^{m}}{4!m!} \overline{4}_{11m!}^{(n+1)}(\overline{P}_{1}\overline{x})$$

La même démarche, avec les autres équations du problème montre que les $\overline{\Box}_{ij}^{(n+1)}(\vartheta_i \overline{x}_i \overline{\beta})$ et les $\overline{u}_i^{(n+1)}(\vartheta_i \overline{x}_i \overline{\beta})$ se mettent sous la forme (A) avec les relations suivantes sur les $\overline{I}_{ijm}^{(n)}(\vartheta_i \overline{x})$ et les $\overline{a}_{im}^{(n)}(\vartheta_i \overline{x})$:

(IV. 1-5) $\overline{f}_{1(m+1)}^{(n+1)} = -\left[(1+m) \overline{f}_{1(m)}^{(n)}(\theta_{1}\overline{x}) + \frac{\partial \overline{f}_{12m}^{(n)}(\theta_{1}\overline{x})}{\partial \theta} - \overline{f}_{22m}^{(n)}(\theta_{1}\overline{x}) + k \frac{\partial \overline{f}_{13m}^{(n)}(\theta_{1}\overline{x})}{\partial \overline{x}} + m k \frac{\partial \overline{f}_{13(m-1)}^{(n-1)}(\theta_{1}\overline{x})}{\partial \overline{x}}\right]$

(IV.1-6)

(IV.1-7)

(IV.1-8)

$$\overline{f}_{13}^{(n+1)}(\theta,\overline{x}) = -\left[(m+1) \overline{f}_{13m}^{(n)}(\theta,\overline{x}) + \frac{\partial \overline{f}_{23m}^{(n)}(\theta,\overline{x})}{\partial \theta} + k \frac{\partial \overline{f}_{33m}^{(n)}(\theta,\overline{x})}{\partial \overline{x}} + m k \frac{\partial \overline{f}_{33m}^{(n-1)}(\theta,\overline{x})}{\partial \overline{x}} \right]$$

 $\overline{a}_{1(m+1)}^{(n+1)}\left[\theta_{1}\overline{x}\right] = \overline{f}_{11m}^{(n)}\left[\theta_{1}\overline{x}\right] - \nu \overline{f}_{22m}^{(n)}\left[\theta_{1}\overline{x}\right] - \nu \overline{f}_{33m}^{(n)}$

BUS

(IV.1-9)

$$\bar{a}_{2(m+1)}^{(n+1)}(\theta_{1}\bar{x}) = (1-m) \bar{a}_{2m}^{(n)}(\theta_{1}\bar{x}) - \frac{\partial \bar{a}_{1m}^{(n)}(\theta_{1}\bar{x})}{\partial \theta_{1}} + 2(1+\nu) \left(\overline{f}_{12m}^{(n)}(\theta_{1}\bar{x}) - m \overline{f}_{12(m-1)}^{(n-1)} \right)$$

(IV.1-10)

$$\overline{a}_{3(m+i)}^{(n+i)} = 2(1+v) \overline{f}_{13m}^{(n)}(\overline{\theta}_{i}\overline{x}) - k \frac{\partial \overline{a}_{1m}^{(n)}(\overline{\theta}_{i}\overline{x})}{\partial \overline{x}}$$

(IV.1-11)

$$\overline{f}_{23m}^{(n+1)}(\overline{\theta}_{1}\overline{x}) = \frac{1}{2(1+\nu)} \left[\frac{\partial \overline{a}_{3m}^{(n+1)}(\overline{\theta}_{1}\overline{x})}{\partial \overline{\theta}} + \frac{\partial \overline{a}_{2m}^{(n+1)}(\overline{\theta}_{1}\overline{x})}{\partial \overline{x}} + \frac{\partial \overline{a}_{2(m-1)}^{(n+1)}(\overline{\theta}_{1}\overline{x})}{\partial \overline{x}} \right]$$
$$- \overline{f}_{23(m-1)}^{(n)}(\overline{\theta}_{1}\overline{x})$$

(IV.1-12)

$$\frac{1}{422m} \begin{pmatrix} \theta_{1}\bar{x} \end{pmatrix} = \frac{1}{1-v^{2}} \left[v(1+v) \frac{1}{41m} \begin{pmatrix} \theta_{1}\bar{y} \end{pmatrix} + \frac{3}{2} \frac{\overline{a}_{2m}^{(n+1)}(\theta_{1}\bar{x})}{\gamma \theta} + v \frac{3}{4} \frac{3}{3m} \frac{(n+i)}{\gamma \overline{x}} + \overline{a}_{1m}^{(n+i)}(\theta_{1}\bar{x}) \right]$$

$$+ m \left[v \frac{1}{4m} \begin{pmatrix} \theta_{1}\bar{x} \end{pmatrix} + v \frac{1}{4} \begin{pmatrix} \theta_{1}\bar{x} \end{pmatrix} - \frac{1}{422(m-1)} \right]$$

(IV.1-13)

$$\begin{bmatrix}
\overline{1}_{(n+1)}^{(n+1)}(\theta_{1}\overline{x}) = \frac{\nu}{1-\nu^{2}} \begin{bmatrix} (\mu+\nu) \ \overline{1}_{11m}^{(n+1)}(\theta_{1}\overline{x}) + \frac{\partial \overline{a}_{2m}^{(n+1)}(\theta_{1}\overline{x})}{\partial \theta_{2m}} + \overline{a}_{1m}^{(n+1)}(\theta_{1}\overline{x}) + \frac{\partial \overline{a}_{3m}^{(n+1)}(\theta_{1}\overline{x})}{\partial \overline{x}} \\
- m \ \overline{1}_{22(m-1)}^{(n)}(\theta_{1}\overline{x}) \perp m \nu \begin{bmatrix} \overline{1}_{11m}^{(n)}(\theta_{1}\overline{x}) + \overline{1}_{33(m-1)}^{(n)} \end{bmatrix}$$
Conclusion:

Avec les relations (IV.1-9) à (IV.1-16), la solution à l'ordre N > 2 peut se mettre sous la forme (IV.1-8), ceci où les $\int_{1}^{(n+1)} (\theta, \bar{x})$ et $\bar{\alpha}_{i0}^{(n+1)}(\theta, \bar{x})$ sont des "constantes d'intégrations en $\bar{3}$ " que l'on déterminera à l'aide des conditions aux limites. Reste à vérifier les conditions de compatibilité à l'ordre n qui s'écrivent, sous la forme suivante^(*) :

On pose :
$$\overline{f}_{ik}^{(P)} = \overline{f}_{1k}^{(P)} + \overline{f}_{2zk}^{(P)} + \overline{f}_{3sk}^{(P)} + \overline{f$$

(IV.1-14)

$$\frac{\sum_{m=0}^{n-4}}{m!} \frac{\frac{1}{2}}{\left(\frac{1}{4+v}\right)} \left(\frac{2+v}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} \right)$$

$$+ \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{1} \frac{1}{\left(\frac{1}{9},\frac{v}{1}\right)} + \frac{1}{1} \frac{1}{1}$$

(IV.1-15)

$$\frac{\sum_{m=0}^{h-2} \frac{\overline{3}^{m}}{m!} \left\{ \frac{\overline{1}_{22}^{(n)}(\theta, \overline{x})}{\frac{1}{22}(m+2)} + \frac{(2m+1)(\lambda+\nu)+1}{\lambda+\nu} \frac{\overline{1}_{22}^{(n-1)}(\theta, \overline{x})}{\frac{1}{22}(m+1)} + \frac{1}{\lambda+\nu} \left(\frac{\overline{1}_{0}^{(n-1)}(\theta, \overline{x})}{\frac{1}{12}(m+1)} + \frac{1}{33(m+1)} \right) \right. \\ \left. + \frac{4}{4} \frac{\partial \overline{1}_{12}^{(n-2)}(\theta, \overline{x})}{\partial \Phi} + \frac{2}{4} \frac{\overline{1}_{0}^{(n-2)}(\theta, \overline{x})}{\frac{1}{10}(\theta, \overline{x})} + \left(\frac{m^{2}-2}{2} \right) \frac{\overline{1}_{22}^{(n-2)}(\theta, \overline{x})}{\frac{1}{22}(\theta, \overline{x})} + \frac{\partial \overline{2}_{22}^{\frac{1}{22}(\theta, \overline{x})}}{\partial \Phi^{2}} \right] \\ \left. + \frac{4}{4} \frac{\partial \overline{1}_{22m}^{(n-2)}(\theta, \overline{x})}{\partial \overline{x}^{2}} + \frac{4}{\lambda+\nu} \frac{\partial^{2} \overline{1}_{0}^{\frac{1}{(n-2)}}(\theta, \overline{x})}{\frac{1}{10}(\theta, \overline{x})} + \left(\frac{m^{2}-2}{2} \right) \frac{\overline{1}_{22m}^{(n-2)}(\theta, \overline{x})}{\frac{1}{22}(\theta, \overline{x})} \right] \\ \left. + \frac{4}{4} \frac{\partial \overline{1}_{22m}^{(n-2)}(\theta, \overline{x})}{\partial \overline{x}^{2}} + \frac{4}{\lambda+\nu} \frac{\partial^{2} \overline{1}_{12m}^{(n-2)}(\theta, \overline{x})}{\frac{1}{10}(\theta, \overline{x})} + \frac{2}{4} \frac{\partial \overline{1}_{22m}^{\frac{1}{(n-3)}}(\theta, \overline{x})}{\frac{1}{22(m-1)}} + \frac{4}{\lambda+\nu} \frac{\partial^{2} \overline{1}_{12m}^{\frac{1}{(n-3)}}(\theta, \overline{x})}{\frac{1}{22(m-1)}} \right\} \\ \left. + \frac{2}{4} m \frac{1}{4} \frac{\partial^{2} \overline{1}_{22m}^{\frac{1}{(n-3)}}(\theta, \overline{x})}{\frac{1}{\sqrt{x^{2}}}} + \frac{4}{m(m-1)} \frac{\partial^{2} \overline{1}_{22m}^{\frac{1}{(n-4)}}(\theta, \overline{y})}{\frac{1}{\sqrt{x^{2}}}} \right\} = 0$$

(*) Comme on l'a vu, cette vérification est théoriquement superflue : c'est un moyen de vérifier les calculs antérieurs. (IV.1-16)

٢

$$\frac{\sum_{m=0}^{n-2} \frac{\overline{3}^{m}}{m!} \left\{ \frac{\overline{4}_{23(m+2)}^{(n)} (\theta_{1}\overline{x}) + (\vartheta_{m+1}) \overline{4}_{23(m+1)}^{(n-1)} + (m^{2}-1) \overline{4}_{23m}^{(n-2)} \overline{4}_{23m}^{(n-2)} \right\} \\ + \frac{2}{23m} \frac{2}{\sqrt{2}} \frac{\overline{4}_{23m}^{(n-2)} (\theta_{1}\overline{x})}{\sqrt{2}} + \frac{4}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{\overline{4}_{23m}^{(n-2)} (\theta_{1}\overline{x})}{\sqrt{2}} + \frac{2}{\sqrt{2}} \frac{2}{\sqrt{10}} \frac{\overline{4}_{13m}^{(n-2)} (\theta_{1}\overline{x})}{\sqrt{2}} \\ + \frac{2}{\sqrt{2}} \frac{4}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{\overline{4}_{23(m-1)}^{(n-3)} (\theta_{1}\overline{x})}{\sqrt{2}} + \frac{m}{\sqrt{2}} \frac{2}{\sqrt{10}} \frac{\overline{4}_{13m}^{(n-2)} (\theta_{1}\overline{x})}{\sqrt{2}} \\ + \frac{2}{\sqrt{2}} \frac{4}{\sqrt{2}} \frac{2}{\sqrt{10}} \frac{\overline{4}_{13m}^{(n-3)} (\theta_{1}\overline{x})}{\sqrt{2}} + \frac{m}{\sqrt{10}} \frac{4}{\sqrt{10}} \frac{2}{\sqrt{2}} \frac{\overline{4}_{12m}^{(n-2)} (\theta_{1}\overline{x})}{\sqrt{2}} \\ + \frac{2}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{2}{\sqrt{10}} \frac{1}{\sqrt{10}} \frac{1}{\sqrt$$

(IV.1-17)

$$\sum_{m=0}^{n-2} \frac{\overline{3}^{m}}{m!} \left\{ \frac{1}{12(m+2)}^{(n)} + (2m+1) \frac{1}{12(m+1)}^{(n-1)} + \frac{1}{4+y} \frac{3}{y} \frac{1}{y}^{(n-1)} + \frac{1}{y} \frac{3}{y} \frac{1}{y} \frac{1}$$

(IV.1-18)

$$\sum_{m=\sigma}^{N-2} \frac{3^{m}}{m!} \left\{ \frac{1}{4} \prod_{12}^{(n)} (\theta_{1}\bar{x}) + (2m+1) \frac{1}{4} \prod_{13}^{(n-1)} (\theta_{1}\bar{x}) + \frac{1}{4} \frac{1}{4$$

(IV.1-19)

$$\frac{\sum_{m=0}^{n-2} \frac{\overline{3}^{m}}{m!} \left\{ \frac{1}{1} \begin{pmatrix} (n) \\ (\overline{\theta}_{1}\overline{x}) \\ 2\overline{3}(m+2) \end{pmatrix} + \begin{pmatrix} (\overline{2}m+1) \\ \overline{1} \begin{pmatrix} (\overline{\theta}_{1}\overline{x}) \\ (\overline{\theta}_{1}\overline{x}) \\ 2\overline{3}(m+1) \end{pmatrix} + \begin{pmatrix} (\overline{2}m+1) \\ \overline{1} \begin{pmatrix} (\overline{\theta}_{1}\overline{x}) \\ 2\overline{3}(m+1) \end{pmatrix} + \begin{pmatrix} (\overline{n}-2) \\ 2\overline{3}m \\ \overline{1} \begin{pmatrix} (\overline{n}-2) \\ 2\overline{3}m \end{pmatrix} + \begin{pmatrix} (\overline{n}-2) \\ \overline{1} \begin{pmatrix} (\overline{n}-2) \\ \overline{1} \begin{pmatrix} (\overline{n}-2) \\ \overline{1} \end{pmatrix} \\ \overline{7}\overline{x} \end{pmatrix} + \begin{pmatrix} (\overline{n}-2) \\ \overline{7}\overline{x} \end{pmatrix} + \begin{pmatrix} (\overline{n}-3) \\ \overline{7}\overline{x} \end{pmatrix} + \begin{pmatrix} (\overline{n}-4) \\ \overline{7}\overline{x} \end{pmatrix} +$$

IV.1.5. CONDITIONS AUX LIMITES SUR LES FACES
$$3 = \frac{1}{2} \frac{1}{2}$$
.

Dans cette partie, on étudiera les conditions aux limites sur les faces intérieures et extérieures.

respectivement pour i = 1, 2 ou 3.

D'après les relations (II.1-7) et (II.1-8) on a :

et en variables sans dimensions :

$$\overline{\mathcal{T}}_{L}(\theta_{1}\overline{x},\overline{3}=+1) = \frac{P_{u}^{+}}{\sigma}$$

$$\overline{\nabla}_{A_{i}} \left(\vartheta_{i} \overline{x}_{1} \overline{g} = -4 \right) = -\frac{P_{r}^{-} \left(\vartheta_{i} \overline{x}_{1} \right)}{\overline{\nabla}}$$
on pose
$$\overline{P}_{\left(r_{i} \vartheta_{i} \overline{x}_{1}\right)}^{\pm} \left(\vartheta_{i} \overline{x} \right) = \frac{P_{r}^{\pm} \left(\vartheta_{i} \overline{x} \right)}{\overline{\nabla}}$$

Ainsi avec la solution on obtient :

$$\overline{P}_{(n_1,\theta_1 \times)}^{+} \stackrel{(\theta_1,\overline{x})}{=} = \sum_{n=0}^{\infty} \varepsilon^n \left\{ \sum_{m=0}^{n} \frac{1}{m!} \frac{\overline{p}_{(n_1)}^{(n_1)}}{\frac{1}{4cm}} \left\{ \overline{\theta_1 \overline{x}} \right\} \right\}$$

$$\overline{P}_{(n_1,\theta_1 \times)}^{-} \stackrel{(\theta_1,\overline{x})}{=} - \sum_{n \in \mathbb{N}} \varepsilon^n \left\{ \sum_{m=0}^{n} \frac{(-1)^m}{m!} \frac{\overline{p}_{(n_1)}^{(n_1)}}{\frac{1}{m!}} \left\{ \overline{\theta_1 \overline{x}} \right\} \right\}$$

(IV.1-20)

relations qu'on met symboliquement sous la forme :

$$\overline{P}_{(r_1 p_1 x)}^{+} (\theta_1 \overline{x}) = \sum_{n \le \eta N} \varepsilon^n \overline{P}_{(r_1 \theta_1 x)}^{(n) +} (\theta_1 \overline{x})$$

$$\overline{P}_{(\pi_{i},\overline{\nu}_{i},\overline{x})}^{-}(\theta_{i}\overline{x}) = \sum_{n \neq m} \varepsilon^{n} \overline{P}_{(\pi_{i},\theta_{i}x)}^{(n)-}(\theta_{i}\overline{x})$$

avec

$$\overline{P}_{(n,\theta,x)}^{(n)+}(\theta,\overline{x}) = \sum_{m=0}^{n} \frac{1}{m!} \overline{F}_{(1,m)}^{(n)}(\theta,\overline{x})$$

$$\overline{P}_{(n_i\theta_{ix})}^{(n)-}(\theta_i\overline{x}) = -\sum_{m=0}^{n} \frac{(-1)^m}{m!} \overline{f}_{iAm}^{(n)}(\theta_i\overline{x})$$
Par la suite, on développera $\overline{P}_{n}^{(n)\pm}$ (i.e. $i = 1$); (pour $i = 2$
ou 3 la démarche reste la même)

pour
$$i = 1$$
 et $n = 0$

$$\overline{P}_{n}^{(o)+}(\overline{\theta}_{1}\overline{x}) = \overline{f}_{110}^{(o)}(\overline{\theta}_{1}\overline{x})$$

$$\overline{P}_{n}^{(o)-}(\overline{\theta}_{1}\overline{x}) = -\overline{f}_{110}^{(o)}(\overline{\theta}_{1}\overline{x})$$

 $\frac{\text{donc à l'ordre zéro on doit avoir}}{\text{cas physiquement presque inexistant}} \quad \overline{P}_{n}^{(0)+}(\overline{\theta}_{1}\overline{x}) = - \overline{P}_{n}^{(0)-}(\overline{\theta}_{1}\overline{x})$ $\frac{\text{on prendra donc}}{\text{on prendra donc}} \quad P_{n}^{(0)+}(\overline{\theta}_{1}\overline{x}) = \overline{P}_{n}^{(0)-}(\overline{\theta}_{1}\overline{x}) = \Theta \implies \overline{f}_{110}^{(0)}(\overline{\theta}_{1}\overline{x}) = 0$

Le même raisonnement avec i = 2 et i = 3 donne : $\overline{f}_{1,\overline{X}}^{(0)}(\overline{v}_1\overline{X}) = \overline{f}_{1,\overline{X}}^{(0)}(\overline{v}_1\overline{X}) = 0$

On prendra par la suite $\nabla_{4j}^{(o)}(\vartheta,\bar{x}) = 0$ (j=1,2,3), hypothèse classique de la théorie des membranes.

(IV. 1-22)
$$\overline{J}_{1,0}^{(0)}(\theta, \bar{x}) = 0$$
 pour $\bar{J} = 1, 2, 3$

Par la suite, pour les ordres supérieurs à 0, on déterminera les constantes d'intégration sur les $\overline{\sigma}_{c_1}$ à l'aide des pressions intérieure et extérieure, en utilisant les relations (IV.1-20).

IV.2.1. RESULTATS EN VARIABLES REELLES DIMENSIONNELLES

Pour revenir en variables X, θ , β , β , on pose : $a_{im}^{(n)}(\theta, x) = U$, $\bar{a}_{im}^{(n)}(\theta, \frac{x}{L})$ $f_{ijm}^{(n)}(\theta, X) = \frac{EU}{R} f_{ijm}^{(n)}(\theta, \frac{x}{L})$ et

Ainsi les composantes du tenseur des contraintes / du vecteur déplacement se mettent sous la forme :

$$\sigma_{1j}(\theta, x, z) = \frac{\sum_{h=1}^{\infty} \sum_{m=0}^{h} \frac{h^{(n-m)}}{R^{n}} \frac{3^{m}}{m!} + \frac{1}{1} \frac{1}{m} (\theta, x)$$

$$U_{i}(\theta_{i}x_{1}z) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{h^{(n-m)}}{R^{n}} \frac{3^{m}}{m!} \quad Q_{i}^{(m)}(\theta_{i}x)$$
Pow $i \neq 1$

$$\overline{U_{i}}(\theta_{i}x_{1}z) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{h^{n-m}}{R^{n}} \frac{3^{m}}{m!} \quad f_{ijm}^{(m)}(\theta_{i}x)$$

expressions qu'on peut transformer, de façon à faire apparaître les puissances de **3**, de la manière suivante :

(IV.1-23)

$$\nabla_{ij} (\theta_{1}x_{1}z_{j}) = \sum_{n=1}^{\infty} \left(\frac{h}{R}\right)^{n} \cdot \frac{1}{4} \frac{1}{4j0}^{(n)} (\theta_{1}x_{j}) + \frac{3}{R} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \cdot \frac{1}{4jk}^{(n+1)} (\theta_{1}x_{j}) \\
+ \dots + \frac{3^{h}}{h! R^{h}} - \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \cdot \frac{1}{4jk}^{(n+k)} (\theta_{1}x) + \dots - \dots \\
U_{i} (\theta_{1}x_{1}z_{j}) = \sum_{n=0}^{\infty} \left(\frac{h}{R}\right)^{n} \cdot \Omega_{i0}^{(n)} (\theta_{i}x_{j}) + \frac{3}{R} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \cdot \Omega_{ij}^{(n+1)} (\theta_{1}x_{j}) \\
+ \dots + \frac{3^{h}}{k! R^{h}} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \cdot \Omega_{ik}^{(n)} (\theta_{i}x_{j}) + \dots - \dots \\
= \frac{3^{h}}{1 + 1} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \cdot \frac{1}{4} \frac{1}{1 + 1} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \cdot \frac{1}{4} \frac{1}{1 + 1} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \frac{1}{4} \frac{1}{1 + 1} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \frac{1}{4} \frac{1}{1 + 1} \sum_{n \in \mathbb{N}} \left(\frac{h}{R}\right)^{n} \frac{1}{4} \frac{1}{1 + 1} \sum_{n \in \mathbb{N}} \frac{1}{4} \sum_{n \in \mathbb{N}$$

CHAPITRE V

V.1.1. COMPARAISON DES RESULTATS OBTENUS JUSQU'ICI AVEC LES AUTRES THEORIES

La plupart des auteurs travaillent en forces et moments par unité de longueur.

Afin de pouvoir comparer nos résultats, on suit la même démarche pour déterminer ces forces et moments par unité de longueur, pour ceci, on considère un élément de coque délimité pour quatre faces respectivement perpendiculaires à \vec{e}_x et \vec{e}_y , et deux faces coupant la surface intérieure et extérieure de la coque.

Sur la face de normale extérieure $\vec{e}_{x} = (0, 0, 1)$, le vecteur contrainte est égal à $\vec{T}(M, \vec{e}_{x}) = \nabla_{13} \vec{e}_{14} + \nabla_{23} \vec{e}_{9} + \nabla_{33} \vec{e}_{x}$

Et les résultantes, en force sur cette face est égale à :

$$\int_{R-h}^{R+h} \overline{T}(n, \vec{n}) n \, d\sigma \, dr$$

qu'on posera égale à \mathcal{R} d \mathcal{O} $\left[\mathcal{Q}_{x} \quad \vec{e}_{\pi} \quad + \ N_{x\theta} \quad \vec{e}_{\theta} \quad + \ N_{x} \quad \vec{e}_{x} \right]$ d'où on tire que

$$\begin{cases} Q_{\chi} = \int_{-h}^{h} \nabla_{13} \left(1 + \frac{3}{R}\right) d3 & * \\ & -h & \\ N_{\chi \theta} = \int_{-h}^{h} \nabla_{23} \left(1 + \frac{3}{R}\right) d3 & \\ & N_{\chi} = \int_{-h}^{h} \nabla_{33} \left(1 + \frac{3}{R}\right) d3 & \end{cases}$$

* avec $(Q_{\chi}, N_{\chi \delta}, N_{\chi}, des forces)$ par unité de longueur de la circonférence moyenne (voir figure IV.1-**Q**)

De même sur la surface élémentaire, de normale extérieure $\vec{e_{\theta}} = (\theta_1 1_0)$, le vecteur contrainte se met sous la forme : $\vec{T}(n_1 \vec{e_{\theta}}) = \sigma_{12} \cdot \vec{e_{\pi}} + \sigma_{22} \vec{e_{\theta}} + \sigma_{23} \vec{e_{\pi}}$

d'où on tire que :

$$\begin{cases} U_{\theta} = \int_{-H_{0}}^{H_{0}} \nabla_{12}(x_{1}\theta_{1}y_{1}) dy \\ V_{\theta} = \int_{-H_{0}}^{H_{0}} \nabla_{22}(x_{1}\theta_{1}y_{1}) dy \end{cases}$$
 voir fig. IV. 1-b.
* avec U_{θ} , N_{θ} et $N_{\theta X}$ sont des
forces par unité de longueur de
la génératrice moyenne.
 $N_{\theta X} = \int_{-H_{0}}^{H_{0}} \nabla_{23}(x_{1}\theta_{1}y_{1}) dy$

De même le moment résultant du vecteur contrainte sur la face de normale \vec{e}_{\times} et par rapport à l'arc de circonférence moyenne à pour valeur :

$$\mathcal{M}_{(c.m)}^{t} \left[\vec{T}(n, \vec{e}_{x}) \right] = \int_{R-q}^{R+h} \left[\vec{OM} \ n \ \vec{T}(n, \vec{e}_{x}) \right] . n \, d\theta \, dn$$

$$= \left(\int_{R-q}^{R+h} -(n-R) \, \sigma_{33} . n \, dr \, d\theta \right) \vec{e}_{\theta} + \left(\int_{R-q}^{R+h} (n-R) \, \sigma_{25} . n \, dn \, d\theta \right) \vec{e}_{x}$$

qu'on pose égal à :

 M_{χ} . R. $d\theta$. $\vec{e_{\theta}}$ + $M_{\chi_{\theta}}$. R $d\theta$ $\vec{e_{\chi}}$ *) avec M_{χ} , et $M_{\chi\theta}$ des moments par unité de longueur de la c.m.

d'où on tire :
$$M_{x} = -\int_{-R}^{R} \sigma_{33} \left(3 + \frac{3^{2}}{R}\right) d3 =$$

ħ

moment de flexion par unité de longueur de la circonférence moyenne et par rapport à cette circonférence.

$$M_{x\theta} = \int_{-k}^{k} \sigma_{23} \left(2 + \frac{3^{2}}{R} \right) dz =$$

moment de torsion (sur la face de normale \vec{e}_{x}) par unité de longueur de circonférence moyenne et sur cette circonférence.

voir fig. IV-1-b.

De même le moment résultant des forces élastiques par rapport à la génératrice moyenne, de la surface élémentaire de normale extérieure $\mathcal{E}_{\mathfrak{F}}$ est égal à :

qu'on posera égal à : $dx \cdot M_{\theta x} \cdot \vec{e}_{\theta} + dx \cdot M_{\theta} \vec{e}_{x}$.

avec

$$\begin{cases} M_{\varphi} = \int_{-R}^{h} 3 \ \sigma_{22}(\theta_1 x_1 s) ds \\ M_{\theta x} = -\int_{-R}^{h} 3 \ \sigma_{23}(\theta_1 x_1 s) ds \\ \text{voir fig. IV-1-c} \end{cases}$$

 M_{Θ} = moment de flexion par unité de longueur de la génératrice moyenne et par rapport à cette génératrice.

 $M_{\theta \times}$ = moment de torsion par unité de longueur de la génératrice moyenne et par rapport à cette génératrice.

64

(BUS)

En remplaçant les ∇_{ij} par leurs expressions obtenues par linéarisations et en intégrant sur l'épaisseur on obtient le système suivant pour les éléments de réduction.

(V.I-2)

Ν

$$-N_{\theta} = \sum_{n}^{n} \sum_{m=0}^{n} (\lambda + (-1)^{m}) \frac{h^{n+1}}{(m+1)!} \frac{f^{(n)}}{R^{n}}$$

(V.I-3)

$$N_{0x} = \frac{5}{n \epsilon_{1} N} \sum_{m=0}^{n} (1 + (-1)^{m}) \frac{q_{1}^{n+1}}{(m+1)!} \frac{q_{23m}^{(n)}(\theta_{1x})}{\mathbb{R}^{n}}$$

(V.I-4)

$$M_{\theta} = \sum_{n \in IV} \sum_{m=0}^{n} (1 - (-1)^{m}) \frac{h^{n+2}}{R^{n}} \frac{(m+1)}{(m+2)!} f_{22m}^{(n)} (\theta_{1}x)$$

(V.I-5)

$$M_{\theta x} = -\sum_{n}^{n} \sum_{m=0}^{n} \left(1 - (-1)^{m} \right) \frac{t_{1}^{n+2}}{R^{n}} \cdot \frac{(m+1)}{(m+2)!} f^{(n)}_{23m}(\theta_{1}x)$$

Pour le tenseur résultant des forces par unité de longueur, sur la face de normale $\vec{e_x}$, on fait les convections suivantes :

$$Q_{x} = Q_{x_{1}} + Q_{x_{2}}$$
 et $N_{\theta x} = N_{\theta x_{1}} + N_{\theta x_{2}}$ avec

(V.1-6)

$$Q_{xg} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{3}{R} \sigma_{13} dg = \sum_{n}^{\infty} \sum_{m=0}^{n} (1 - (-1)^{m}) \frac{q_{n+2}^{n+2}}{R^{n+1}} \frac{m+1}{(m+2)!} f_{13m}^{(n)}(\theta_{1}\kappa)$$

$$Q_{x_{1}} = \int_{-l_{1}}^{l_{1}} \sigma_{13} ds = \sum_{n}^{n} \sum_{m=0}^{n} (1+(-1)^{m}) \frac{h^{n+1}}{(m+1)!} \frac{\frac{1}{2} (m)}{R^{n}} \frac{1}{R^{n}}$$

(V.1-8)

$$N_{X01} = \int_{-h}^{h} \sigma_{23} d_{3} = \sum_{n \in \mathbb{N}}^{n} \sum_{m=0}^{n} (1 + (-1)^{m}) \frac{h^{n+1}}{(m+1)!} \frac{f^{(n)}_{23m}(B_{i}x)}{\mathbb{R}^{n}}$$

(V.1-9)

$$N_{XB_{e}} = \int_{-h}^{h} \frac{3}{R} J_{23} dg = \sum_{n \in IV} \sum_{m=0}^{n} (1 - (-1)^{m}) \frac{h^{n+2}}{R^{n+1}} \frac{(m+1)}{(m+2)!} \frac{f^{(n)}}{f^{(23m)}}$$

 N_X se met aussi sous la forme $N_X = N_{X_1} + N_{X_2}$ avec

$$(v. 1-10) \qquad N_{x_1} = \int_{-h}^{h} \sigma_{33} dz = \sum_{n \in \mathbb{N}} \sum_{m=0}^{n} (\lambda + (-1)^m) \frac{h^{n+1}}{(m+1)!} \frac{\frac{1}{433m}}{R^n}$$

$$\mathcal{N}_{x_{2}} = \int_{h}^{h} \frac{3}{R} \, \sigma_{33} d_{3} = \sum_{n \in \mathrm{TN}}^{n} \sum_{n'=0}^{n} \left(1 - (-1)^{n}\right) \frac{p_{n+2}}{R^{n+1}} \frac{(m+1)}{(m+2)!} + \frac{1}{33m} (p_{1}x)$$

(V.1-12)

(V.1-11)

$$M_{X_{1}} = -\int_{-h}^{h} 2 \sigma_{35} ds = -\sum_{n \in \mathbb{N}}^{n} \sum_{m=0}^{h} \frac{4^{h+2}}{R^{n}} \frac{(m+1)}{(m+2)!} f_{35m}^{(h)} (\vartheta_{1} \times) \cdot (1 - (-1)^{m})$$

(V.1-13)

$$M_{\chi_{2}} = -\int_{-h}^{h} \frac{8^{2}}{R} \, \sigma_{33} \, dx = -\sum_{n \in N} \sum_{m=n}^{n} \frac{h^{n+3}}{R^{n+1}} \frac{(1+(-1)^{m})}{(m+3)m!} \, \frac{1}{433m}^{(n)} (\theta_{1}x)$$

et enfin on pose $M_{\chi_{0}} = M_{\chi_{0}} + M_{\chi_{0}}^{\chi_{0}} avec$

(V.1-14)

$$M_{x_{\theta_{4}}} = \int_{-R}^{h} 3 \, \sigma_{z_{3}} \, d_{z} = \sum_{n}^{n} \sum_{m=0}^{n} \frac{h^{n+2}}{R^{n}} \, \frac{(m+i)(1-(-i)^{m})}{(m+e)!} \, f_{z_{3m}}^{(n)}$$

$$(v.1-15) \qquad M_{xBe} = \int_{-L}^{L} \frac{g}{R} \frac{\nabla_{r,s}}{ds} ds = \sum_{n} \sum_{m=s}^{n} \frac{f_{n}^{n+s}}{R^{n+1}} \frac{(1+(-1)^{m})}{(m+3)m!} f_{23m}^{(n)}(B_{1}x).$$

V.2.1. NOUVELLE FORMULATION DES EQUATIONS D'EQUILIBRE

En multipliant les équations d'équilibre par **ndn** et en intégrant suivant l'épaisseur de la coque, avec les résultats précédents et les conditions aux limites, c'est-à-dire que :

$$\sigma_{ij}(\theta_{i}x_{i}z) = \sum_{n \in \mathbb{N}} \sum_{m=0}^{n} \frac{h^{n-m}}{R^{n}} \cdot \frac{3^{m}}{m!} f_{ijm}^{(n)}(\theta,x)$$

$$\nabla_{i_1} \left(\vartheta_{j_1 x_{j_1}} R + R \right) = P_r^+ \left(\vartheta_{j_1 x_j} \right)$$

$$\nabla_{i_2} \left(\vartheta_{j_1 x_{j_1}} R + R \right) = P_{\vartheta}^+ \left(\vartheta_{j_1 x_j} \right)$$

$$\nabla_{i_3} \left(\vartheta_{j_1 x_{j_1}} R + R \right) = P_x^+ \left(\vartheta_{j_1 x_j} \right)$$

et

$$\begin{cases} \nabla_{i1} (\theta_1 \times_1 R - h) = - P_r^{-} (\theta_1 \times) \\ \nabla_{i2} (\theta_1 \times_1 R - h) = - P_{\theta}^{-} (\theta_1 \times) \\ \nabla_{i3} (\theta_1 \times_1 R - h) = - P_{x}^{-} (\theta_1 \times) \end{cases}$$

La première équation d'équilibre devient alors :

$$\int_{R-R}^{R+h} \frac{\partial}{\partial n} (n \sigma_{i}) dn + \int_{R-h}^{R+h} \frac{\partial \sigma_{i2}}{\partial r} dn + \int_{R-h}^{R+h} \frac{\partial \sigma_{i3}}{\partial x} dn - \int_{R-h}^{R+h} \sigma_{22} dn = 0$$

En identifiant les termes sous signe intégral avec les forces par unités de longueur, puis en remplaçant les ∇_{ij} par leur expression on obtient deux formulations équivalentes de la première équation d'équilibre c'est-à-dire :

$$(V.2-1) \qquad \boxed{\frac{\partial Q_{9}}{\partial t} + R \frac{\partial Q_{x}}{\partial x} - N_{9}} + R \left(p_{n}^{+} + p_{n}^{-}\right) + h \left(p_{n}^{+} - P_{n}^{-}\right)}_{N + h} = 0$$

$$(V.2-1) \qquad \boxed{\sum_{n \in \mathbb{N}} \sum_{m=0}^{n} \left\{ \frac{(1 + (-1)^{m})}{(m+1)!} \frac{h^{n+1}}{R^{n}} \left[\frac{\partial f_{12m}^{(n)}}{\partial t} + R \frac{\partial f_{13m}^{(n)}}{\partial t} - \int_{22m}^{(n)} \frac{(h)}{(h_{1}x)} + \frac{h^{n}}{22m} \right]}_{N + 1}$$

$$+ \frac{(1 - (-1)^{m})}{m! (m+2)} \frac{h^{n+2}}{R^{n}} \frac{\frac{1}{2} + \frac{1}{3m}}{\frac{3}{2} + \frac{1}{3m}} + R(p_{r}^{+} + p_{\pi}^{-}) + h(p_{r}^{+} - p_{r}^{-}) = 0$$

•

De mîme à partir de la deuxième équation d'équilibre, en

suivant la même démarche, on obtient :

$$(V.2-2) \qquad \frac{\partial N_{\theta}}{\partial t} + R \frac{\partial N_{X\theta}}{\partial x} + Q_{\theta} + R(p_{\theta}^{+} + p_{\theta}^{-}) + h(p_{\theta}^{+} - p_{\theta}^{-}) = 0$$

$$(V.2-2) \qquad \sum_{n \in \mathbb{N}} \sum_{m=0}^{n} \left\{ \frac{(A + (-1)^{m})}{(m+1)!} \frac{h^{n+1}}{R^{n}} \left[\frac{\partial \frac{1}{422m}}{\partial t} + R \frac{\partial \frac{1}{423m}}{\partial t} + \frac{\partial \frac{1}{423m}}{\partial x} + \frac{\partial \frac{1}{423m}}{\partial t} \right] + \frac{(1 - (-1)^{m})}{m!(m+2)} \frac{h^{n+2}}{R^{n}} \frac{\partial \frac{1}{423m}}{\partial x} \right\} + R(p_{\theta}^{+} + p_{\theta}^{-}) + h(p_{\theta}^{+} - p_{\theta}^{-}) = 0$$

A partir de la 3,9 équation d'équilibre, on obtient de

 $R(P_{x}^{+}+P_{x}^{-}) + h(P_{x}^{+}-P_{x}^{-})$

:

= 0

$$(V.2-3) \qquad \frac{\partial N_{0x}}{\gamma \sigma} + R \frac{\partial N_{x}}{\partial x} +$$

$$(V.2-3bis) \begin{bmatrix} \sum_{n \in \mathbb{N}}^{n} \int \frac{(1+(-1)^{m})}{(m+1)!} \frac{p_{n}^{n+1}}{R^{n}} \begin{bmatrix} \frac{\partial \int_{23m}^{(n)}(\theta_{1}x)}{\partial p} + R & \frac{\partial \int_{-\theta_{2}m}^{(n)}(\theta_{1}x)}{\partial x} \end{bmatrix} \\ + \frac{(1-(-1)^{m})}{m! (m+2)} \frac{p_{n}^{n+2}}{R^{n}} & \frac{\partial \int_{-33m}^{(n)}(\theta_{1}x)}{\partial x} \end{bmatrix} + R(p_{x}^{+}+p_{x}^{-}) + h(p_{x}^{+}-p_{x}^{-}) = 0 \end{bmatrix}$$

La même démarche que précédemment, mais en multipliant les équations d'équilibre par $\pi^2 d\pi$ et en les intégrant suivant l'épaisseur : De la première équation d'équilibre on tire :

$$(R+h)^{2} p_{\pi}^{+}(\theta_{1}x) + (R-h)^{2} p_{\pi}^{-}(\theta_{1}x) + \frac{\partial}{\partial \theta} (\int_{R-h}^{R+h} n \, \overline{\sigma_{12}} \, dn) + \frac{\partial}{\partial x} (\int_{R-h}^{R+h} (n^{2} \, \overline{\sigma_{13}} \, dn) \\ - \int_{R-h}^{R+h} n \, (\overline{\sigma_{11}} - \overline{\sigma_{22}}) \, dn = 0$$

$$(R+h)^{2} p_{\Pi}^{+}(\theta_{1}x) + (R-h)^{2} p_{\Gamma}^{-}(\theta_{1}x) + R \left[\frac{\partial \mathcal{U}_{\theta}}{\partial \theta} + R \frac{\partial \mathcal{U}_{x}}{\partial x} - N_{\theta} \right] + \frac{\partial}{\partial \theta} \left(\int_{-h}^{h} \sigma_{12} d_{3} \right)$$

$$+ \frac{\partial}{\partial x} \left(\int_{-h}^{h} 3(R+3) \sigma_{13} d_{3} \right) - \int_{-h}^{h} (R+3) \sigma_{11} d_{3} - M_{\theta} = 0$$

En tenant compte de l'équation V.2-1bis on obtient alors :

$$h^{2}(p_{r}^{+}+p_{r}^{-}) + hR(p_{r}^{+}-p_{r}^{-}) + \frac{\partial}{\partial x}(\int_{-h}^{h}(R+3)3\sigma_{i3}dz)$$

-
$$\int_{-h}^{h}(R+3)\sigma_{i1}dz + \frac{\partial}{\partial \theta}(\int_{-h}^{+h}3\sigma_{i2}dz) - M_{\theta} = 0$$

$$(V.2-4)$$

 $(V.2-4bis) \begin{cases} \sum_{n=0}^{N} \left\{ \frac{A - (-1)^{m}}{m! (m+2)} - \frac{A^{n+2}}{R^{n}} \left[R - \frac{\partial + \frac{(n)}{13m}}{\partial x} - \frac{A^{(n)}}{41m} \left(\theta_{1} x \right) + \frac{\partial + \frac{(n)}{12m}}{22m} - \frac{\partial + \frac{(n)}{12m}}{12m} \right] + \frac{(A + (-1)^{m})}{m!} - \frac{A^{n+1}}{R^{n}} \left[\frac{A^{2}}{m+3} - \frac{\partial + \frac{(n)}{13m}}{7x} + \frac{R}{m+2} + \frac{A^{(n)}}{41m} \left(\theta_{1} x \right) \right] \right\} + \frac{A^{2}}{n} \left(p_{r}^{+} + p_{r}^{-} \right) + R^{2} \left(p_{r}^{+} - p_{r}^{-} \right) = 0 \end{cases}$

70

$$(V.2-5bis) \frac{\sum_{h \in \mathbb{R}^{N}} \sum_{m=0}^{h} \left\{ \frac{(1-(-1)^{m})}{m! (m+2)} \frac{h^{n+2}}{R^{n}} \left[\frac{\partial \frac{1}{23m}}{\nabla x} + \frac{1}{R} \frac{\partial \frac{1}{22m}}{\frac{1}{22m}} \right] + \frac{(1+(-1)^{m})}{m!} \frac{h^{n+1}}{R^{n}} \left[\frac{h^{2}}{(m+3)R} \frac{\partial \frac{1}{23m}}{\partial x} - \frac{\frac{1}{12m}}{m+1} \right] \right\} + \frac{h^{2}}{R} \left(p_{0}^{+} + p_{0}^{-} \right) + h \left(p_{0}^{+} - p_{0}^{-} \right) = 0$$

(V.2-5)

$$\frac{1}{R^2} \frac{\partial M_{\theta x}}{\partial x} + \frac{1}{R} \frac{\partial M_x}{\partial x} + \frac{Q_x}{R} = \frac{h^2}{R^2} \left(p_x^+ + p_x^- \right) + \frac{h}{R} \left(p_x^+ - p_x^- \right)$$

$$(V.2-6bis) \begin{bmatrix} \sum_{n \in IIV}^{n} \sum_{m \ge 0}^{n} \left\{ \frac{(1-(-1)^{m})}{m! (m+2)} + \frac{h}{R^{n}} \left[\frac{1}{R^{2}} \frac{p}{13m}^{(n)} \left(\theta_{1}x\right) - \frac{1}{R} + \frac{2 + \frac{1}{33m}^{(0)}}{3x} \right] \\ - \frac{1}{R^{2}} \frac{2 + \frac{1}{23m}^{(0)} \left(\theta_{1}x\right)}{\pi^{2}} + \frac{(1+(-1)^{m})}{m!} + \frac{h}{R^{m+1}} \left[- \frac{\frac{1}{13m}^{(0)} \left(\theta_{1}x\right)}{(m+1)} - \frac{\frac{1}{R^{2}}}{(m+3)R} + \frac{2 + \frac{1}{33m}^{(0)} \left(\theta_{1}x\right)}{\pi^{2}} \right] \\ - \frac{1}{R^{2}} \frac{2 + \frac{1}{33m}^{(n)} \left(\theta_{1}x\right)}{\pi^{2}} \right] = \frac{h^{2}}{R^{2}} \left(P_{x}^{+} + P_{x}^{-}\right) + \frac{h}{R} \left(P_{x}^{+} - P_{x}^{-}\right)$$

Equation supplémentaire : d'après la définition de M_{GM} on tire

$$M_{\theta x} = R \left[N_{\theta x} - N_{x \theta} \right]$$

La même démarche, avec les 2e et 3e équations d'équilibre donnent :

 $\frac{1}{R} \frac{\partial M_{XP}}{\partial x} + \frac{1}{R^2} \frac{\partial M_P}{\partial P} - \frac{Q_P}{R} + \frac{h^2}{R^2} \left(p_P^+ + p_P^- \right) + \frac{h}{R} \left(p_P^+ - p_P^- \right) = 0$

CHAPITRE VI

Dans ce chapitre on étudie les coques cylindriques minces. Pour cela on fait l'hypothèse suivante : H 1 : On négligera tous les termes en $\mathcal{E}_1 = \left(\frac{h}{R}\right)^{d} \cdot \left(\frac{3}{R}\right)^{d}$ tels que $d + \beta \ge 2$.

Ainsi les composantes des contraintes et déplacements se mettent sous la forme :

(VI.1.1)

D'après les résultats de la linéarisation, on a les expressions suivantes entre les $\begin{cases} {n \atop j} \\ {n \atop j} \\ {m \atop m} \end{cases}$ et les $Q_{i \atop m} {n \atop m} (\theta_i \times)$.

$$\begin{split} \hat{\Psi}_{1j0}^{(0)}(\theta_{1}x) &= \nabla \qquad \text{prus} \quad \hat{\xi} = 1, 2, 3 \\ \hat{\Psi}_{220}^{(0)}(\theta_{1}x) &= \frac{E}{A-y^{2}} \left[\frac{A}{R} \frac{\partial V}{\partial v} + \frac{U}{R} + v \frac{\partial W}{\partial x} \right] &= \hat{\Psi}_{111}^{(1)}(\theta_{1}x) \\ \hat{\Psi}_{33y}^{(0)}(\theta_{1}x) &= \frac{E}{A-y^{2}} \left[\frac{\partial W}{\partial x} + \frac{V}{R} \cdot \frac{\partial V}{\partial \theta} + v \frac{U}{R} \right] \\ \hat{\Psi}_{33y}^{(0)}(\theta_{1}x) &= \frac{E}{A-y^{2}} \left[\frac{A}{R} \frac{\partial W}{\partial x} + \frac{\partial V}{\partial \theta} + \frac{\partial V}{\partial x} \right] \\ \hat{\Psi}_{124}^{(0)}(\theta_{1}x) &= -\frac{E}{A-y^{2}} \left[\frac{A}{R} \frac{\partial W}{\partial \theta} + \frac{\partial V}{\partial x} \right] \\ \hat{\Psi}_{124}^{(1)}(\theta_{1}x) &= -\frac{E}{A-y^{2}} \left[\frac{A}{R} \left(\frac{\partial^{2}V}{\partial \theta^{2}} + \frac{\partial U}{\partial \theta} \right) + \frac{R(1-v)}{2} \frac{\partial^{2}V}{\partial x^{2}} + \frac{A+v}{2} \frac{\partial^{2}W}{\partial x \theta} \right] \\ \hat{\Psi}_{134}^{(0)}(\theta_{1}x) &= -\frac{E}{A-y^{2}} \left[\nu \frac{\partial U}{\partial x} + R \frac{\partial^{2}W}{\partial x^{2}} + \frac{A+v}{2} \frac{\partial^{2}V}{\partial x \theta} + \frac{(A-v)}{2R} \frac{\partial^{2}W}{\partial \theta} \right] \end{split}$$

$$\begin{cases} \binom{(1)}{2\varrho_1}(\theta_1 x) = -\frac{E}{A-v^2} \left[\frac{u}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^2 u}{\partial x^2} + \frac{1}{R} \frac{\partial^2 u}{\partial p^2} \right] \\ \frac{1}{334} \binom{(1)}{334}(\theta_1 x) = \frac{E}{A-v^2} \left[\frac{v}{R} \frac{\partial V}{\partial p} - \frac{v}{R} \frac{\partial^2 u}{\partial p^2} - R \frac{\partial^2 u}{\partial x^2} \right] \\ \frac{1}{2} \binom{(1)}{2} \binom{(1)}{2} \frac{1}{2} \frac{E}{A-v^2} \left[\frac{1-v}{2} \cdot \frac{\partial V}{\partial x} - (1-v) \frac{\partial^2 u}{\partial x y p} - \frac{1-v}{2R} \frac{\partial W}{\partial p} \right] \end{cases}$$

Ee ci avec les notations : $u(\Theta_1 x) = a_{10}^{(0)}(\Theta_1 x)$; $v(\Theta_1 x) = q_{20}^{\circ}(\Theta_1 x)$ et $1x/(\Theta_1 x) = G_{30}^{\circ}(\Theta_1 x)$ (sont les de pla cements de membronne) De même on a les relations suivantes entre les composantes des déplacements :

(VI.1.3)

$$\begin{aligned} & a_{11}^{(1)}(\theta_{1}x) = -\frac{\vartheta}{\Lambda - \varrho} \left[\frac{\Im V}{\Im} + u + R \frac{\Im W}{\Im x} \right] \\ & a_{g_{A}}^{(1)}(\theta_{1}x) = V - \frac{\Im U}{\Im \varphi} \\ & a_{g_{A}}^{(1)}(\theta_{1}x) = -R \frac{\Im U}{\Im x} \\ & \frac{E}{(\Lambda - \varrho^{2})R} \left[\frac{\Im a_{g_{O}}^{(1)}}{\Im \varphi} + \vartheta R \frac{\Im a_{3\sigma}^{(1)}}{\Im x} + a_{1\sigma}^{(1)} \right] = \frac{\int_{22\sigma}^{(1)} (\theta_{1}x) - \frac{\vartheta}{\Lambda - \varrho} \left\{ \frac{U}{U_{O}}^{(1)}x \right\} \\ & \frac{E}{(\Lambda - \varrho^{2})R} \left[\frac{\Im a_{g_{O}}^{(1)}}{\Im \varphi} + \frac{R}{\Im} \frac{\Im a_{3\sigma}^{(1)}}{\Im x} + a_{\Lambda \sigma}^{(1)} \right] = \frac{1}{33\sigma} - \frac{\vartheta}{\Lambda - \varrho} \frac{1}{4u_{O}} \\ & \frac{E}{2(1+\varrho)R} \left[\frac{\Im a_{3\sigma}^{(1)}}{\Im \varphi} + R \frac{\Im a_{3\sigma}^{(1)}}{\Im \chi} + a_{\Lambda \sigma}^{(1)} \right] = \frac{1}{4} \frac{1}{33\sigma} - \frac{\vartheta}{\Lambda - \varrho} \frac{1}{4u_{O}} \end{aligned}$$

;

VI.1.2. Equations d'équilibre dans l'hypothèse H 1

D'après VI.1.1, les composantes des contraintes se mettent sous la forme :

En reportant dans les équations d'équilibre, on obtient pour chaque équation, une expression de la forme :

$$A|\theta_{1x}$$
 + 3 $B(\theta_{1x}) + o(e_1)$ et ceci $\forall z \in]-h, +h[$

d'où on tire deux équations, par équation d'équilibre :

$$A(\theta,x) = 0$$
 et $B(\theta,x) = 0$

Nous ne détaillerons le calcul que pour la première équation d'équilibre, pour les deux autres la démarche reste la même.

Ainsi, en partant de l'équation :

 $(R+z) \frac{\partial \overline{\sigma_{i_1}}}{\partial z_2} + \frac{\partial \overline{\sigma_{i_2}}}{\partial \theta} + (R+z) \frac{\partial \overline{\sigma_{i_3}}}{\partial x} + \overline{\sigma_{i_1}} - \overline{\sigma_{i_2}} = 0 \text{ et en remplaçant}$ $les \quad \overline{\sigma_{i_3}} (\theta_1 x_1 z_3) \text{ par leur expression tirée de VI.1.1 on obtient :}$

$$\frac{I_{111}^{(1)}(\theta_{1}x) - \frac{I_{220}^{(0)}(\theta_{1}x)}{220} + \frac{H}{R} \left[\frac{\partial \frac{I_{120}^{(1)}(\theta_{1}x)}{70} + R \frac{\partial \frac{I_{120}^{(1)}(\theta_{1}x)}{7x} + \frac{I_{110}^{(1)}(\theta_{1}x)}{7x} \right]$$

$$- \frac{I_{220}^{(1)}(\theta_{1}x)}{220} + \frac{3}{R} \left[\frac{2}{2} \frac{I_{111}^{(1)}(\theta_{1}x) + \frac{\partial \frac{I_{121}^{(1)}(\theta_{1}x)}{7x}}{7x} + R \frac{\partial \frac{I_{121}^{(1)}(\theta_{1}x)}{7x}}{7x} \right]$$

$$- \frac{I_{221}^{(1)}(\theta_{1}x)}{R} \left[\frac{2}{R} \cdot \frac{H}{R} \left[R \cdot \frac{\partial \frac{I_{120}^{(1)}(\theta_{1}x)}{7x}}{7x} \right] + \frac{3^{2}}{R^{2}} \left[R \cdot \frac{\partial \frac{I_{121}^{(1)}(\theta_{1}x)}{7x}}{7x} \right]$$

 $+ o(\varepsilon_1) = 0$

Avec l'hypothèse H₁, appliquée aux équations d'équilibre, les termes $\frac{3}{R} \cdot \frac{1}{R} \begin{bmatrix} R & \frac{3}{130} \frac{f_{130}^{(1)}(\Theta_1 x)}{N} \end{bmatrix}$ et $\frac{3^2}{R^2} \begin{bmatrix} R & \frac{3}{130} \frac{f_{131}^{(1)}(\Theta_1 x)}{N} \end{bmatrix}$ se mettent dans $O(\epsilon_1)$. Et d'après les relations VI.1.2, on voit que $f_{111}^{(1)}(\Theta_1 x) = f_{220}^{(0)}(\Theta_1 x)$ et la première équation d'équilibre se met sous la forme :

$$\frac{4}{R} \left[\begin{array}{c} + \frac{1}{10} \left(\theta_{1} x \right) - \frac{1}{220} \left(\theta_{1} x \right) + \frac{2 + \frac{1}{120} \left(\theta_{1} x \right)}{70} + R \frac{2 + \frac{1}{120} \left(\theta_{1} x \right)}{70} \right] \\ + \frac{3}{R} \left[\begin{array}{c} 2 + \frac{1}{10} \left(\theta_{1} x \right) - \frac{1}{220} \left(\theta_{1} x \right) + \frac{2 + \frac{1}{120} \left(\theta_{1} x \right)}{70} + R \frac{2 + \frac{1}{121} \left(\theta_{1} x \right)}{70} \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) - \frac{1}{220} \left(\theta_{1} x \right) + \frac{2 + \frac{1}{121} \left(\theta_{1} x \right)}{70} + R \frac{2 + \frac{1}{121} \left(\theta_{1} x \right)}{70} \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) - \frac{1}{120} \left(\theta_{1} x \right) + \frac{2 + \frac{1}{121} \left(\theta_{1} x \right)}{70} \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) - \frac{1}{120} \left(\theta_{1} x \right) + \frac{2 + \frac{1}{121} \left(\theta_{1} x \right)}{70} \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) - \frac{1}{120} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2 + \frac{1}{10} \left(\theta_{1} x \right) \right] + 2 \left[2$$

et ceci quelque soit $z \in J-h$, th[, d'où on tire les deux équations :

$$-1- \frac{1}{4} \int_{110}^{(1)} (\theta_{1}x) - \frac{1}{4} \int_{220}^{(1)} (\theta_{1}x) + \frac{2 + \int_{120}^{(1)} (\theta_{1}x)}{3\theta} + R \frac{2 + \int_{130}^{(1)} (\theta_{1}x)}{3\theta} = 0$$

$$-2- \frac{2 + \int_{111}^{(1)} (\theta_{1}x) - \frac{1}{4} \int_{220}^{(1)} (\theta_{1}x) + \frac{2 + \int_{121}^{(1)} (\theta_{1}x)}{3\theta} + R \frac{2 + \int_{131}^{(1)} (\theta_{1}x)}{3\theta} = 0$$

La même démarche appliquée aux deux autres équations d'équilibre

$$-3-\frac{\partial f_{220}^{(i)}(\theta_{1}x)}{\gamma \theta} + R \frac{\partial f_{230}^{(i)}(\theta_{1}x)}{\gamma x} + 2 f_{120}^{(i)}(\theta_{1}x) = 0$$

$$-4-\frac{3}{121}\frac{f_{121}^{(1)}(\theta_{1}x)}{3\theta_{121}}+\frac{3}{3\theta_{1221}}\frac{f_{221}^{(1)}(\theta_{1}x)}{3\theta_{1221}}+\frac{3}{3\theta_{1221}}\frac{f_{221}^{(1)}(\theta_{1}x)}{\delta x}+\frac{3}{3\theta_{1221}}\frac{f_{221}^{(0)}(\theta_{1}x)}{\delta x}=0$$

$$-5-\frac{\partial f_{230}^{(1)}(\theta,x)}{\partial \theta} + R \frac{\partial f_{330}^{(1)}(\theta,x)}{\partial x} + f_{130}^{(1)}(\theta,x) = 0$$

$$-6-2 + \frac{(1)}{(\theta_{1}x)} + \frac{\partial_{1}}{\partial_{1}} + \frac{\partial_{1}}{\partial_{2}} + \frac{\partial_{1}}{\partial_{1}} + \frac{\partial_{1}}{\partial_{2}} + \frac{\partial_{1}}{\partial_{2}} + \frac{\partial_{1}}{\partial_{2}} + \frac{\partial_{1}}{\partial_{2}} = 0$$

VI.1.3. CONDITIONS AUX LIMITES SUR LES FACES

D'après les relations II.1.7 et II.1.8, les conditions sur les forces $\zeta = \pm \frac{1}{2}$ s'écrivent :

$$-7 - \begin{cases} \sigma_{i_1}(\theta_{i_1}x_{i_2}h_{i_1}) = P_{n_1}^+(\theta_{i_1}x_{i_2}) \\ \sigma_{i_2}(\theta_{i_1}x_{i_2}R_{i_1}h_{i_2}) = P_{\theta}^+(\theta_{i_1}x_{i_2}) \end{cases}$$
(8)
$$\begin{cases} \sigma_{i_1}(\theta_{i_1}x_{i_2}R_{i_2}h_{i_2}) = -P_{\theta}^-(\theta_{i_1}x_{i_2}) \\ \sigma_{i_2}(\theta_{i_2}x_{i_2}R_{i_2}h_{i_2}) = -P_{\theta}^-(\theta_{i_2}x_{i_2}) \\ \sigma_{i_3}(\theta_{i_1}x_{i_2}R_{i_2}h_{i_2}) = -P_{\theta}^-(\theta_{i_1}x_{i_2}) \end{cases}$$
(8)

où les $\mathcal{P}_i^{\dagger}(\vartheta, \kappa)$ sont les composantes des vecteurs "sollicitations" extérieures dans le repère \mathcal{E}_n , \mathcal{E}_{ϑ} , \mathcal{E}_{\varkappa} ; ce sont donc des données du problème. Etant donné leur 2II périodicité en ϑ , on les développera en séries de Fourier de la façon suivante :

On pose :

$$P_{n}^{+}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[A_{n}^{+}(x) \quad w = n \theta + A_{n}^{2}(x) \quad s = 1$$

$$P_{n}^{-}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[B_{n}^{+}(x) \quad u = n \theta + B_{n}^{2}(x) \quad s = 1$$

$$P_{0}^{+}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[C_{n}^{+}(x) \quad w = n \theta + C_{n}^{2}(x) \quad s = 1$$

$$P_{0}^{-}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[D_{n}^{+}(x) \quad w = n \theta + D_{n}^{2}(x) \quad s = 1$$

$$P_{n}^{+}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[D_{n}^{+}(x) \quad w = n \theta + D_{n}^{2}(x) \quad s = 1$$

$$P_{n}^{+}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[E_{n}^{+}(x) \quad w = n \theta + E_{n}^{2}(x) \quad s = 1$$

$$P_{n}^{+}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left[E_{n}^{+}(x) \quad w = n \theta + F_{n}^{2}(x) \quad s = 1$$

où les $A_n^d(x) - F_n^d(x)$ sont les coefficients de Fourier des sollicitations extérieures.

(VI.1.5)

$$\begin{split} A_{0}^{A}(\mathbf{x}) &= \frac{1}{2\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \, d\theta \quad j \quad B_{0}^{A}(\mathbf{x}) = \frac{1}{2\pi} \int_{0}^{2\pi} P_{r}^{-}(\mathbf{v}, \mathbf{x}) \, d\theta \\ C_{0}^{A}(\mathbf{x}) &= \frac{1}{2\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \, d\theta \quad j \quad B_{0}^{A}(\mathbf{x}) = \frac{1}{2\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \, d\theta \\ E_{0}^{A}(\mathbf{x}) &= \frac{1}{2\pi} \int_{0}^{2\pi} P_{x}^{+}(\mathbf{v}, \mathbf{x}) \, d\theta \quad j \quad E_{0}^{A}(\mathbf{x}) = \frac{1}{2\pi} \int_{0}^{2\pi} P_{r}^{-}(\mathbf{v}, \mathbf{x}) \, d\theta \\ P_{0}w_{2} \quad n \gg \Lambda. \end{split}$$

$$\begin{aligned} A_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{r}^{+}(\mathbf{v}, \mathbf{x}) \quad \cos nn \theta \, d\theta \quad j \quad A_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{r}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ B_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{r}^{-}(\mathbf{v}, \mathbf{x}) \quad \cos nn \theta \, d\theta \quad j \quad B_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{r}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ C_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{r}^{-}(\mathbf{v}, \mathbf{x}) \quad \cos n\theta \, d\theta \quad j \quad B_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{r}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ C_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \cos n\theta \, d\theta \quad j \quad C_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ E_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \cos n\theta \, d\theta \quad j \quad D_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ F_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \cos n\theta \, d\theta \quad j \quad D_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{-}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ E_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \cos n\theta \, d\theta \quad j \quad D_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{0}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ E_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \cos n\theta \, d\theta \quad j \quad E_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ F_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \quad j \quad E_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ F_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \quad j \quad E_{n}^{Z}(\mathbf{x}) = \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \\ F_{n}^{A}(\mathbf{x}) &= \frac{1}{\pi} \int_{0}^{2\pi} P_{n}^{+}(\mathbf{v}, \mathbf{x}) \quad \sin n\theta \, d\theta \quad j \quad E_{n}^{$$

D'après les relations (7); (8); VI.1.5 et l'hypothèse H1 on voit

que :

VI.1.4. REVOLUTION DU SYSTEME (1), (3), (5).

A partir de l'équation -1- et du système VI.1.6 on tire :

$$-9- \begin{bmatrix} f_{n}^{(1)} \\ f_{220}^{(0)} \\ -n \\ D_{n}^{2}(n) \\ -n \\ D_{n}^{2}(n) \\ -n \\ R \\ F_{n}^{(1)} \end{bmatrix} = \frac{R}{2h} \sum_{n} \left[\left(A_{n}^{1}(x) + n C_{n}^{2}(x) + R \\ F_{n}^{1}(x) + n \\ C_{n}^{1}(x) + R \\ F_{n}^{1}(x) - R \\ -n \\ R \\ F_{n}^{2}(n) \\ -R \\ F_{n}^{2}(n) \end{bmatrix} + R \\ -R \\ F_{n}^{2}(n) \\ S_{1}^{1} \\ n \\ R \\ F_{n}^{2}(n) \end{bmatrix}$$
Avec la notation $\frac{1}{N} = \frac{2N}{2}$, qu'on utilisera dans toute

X

la suite.

78

$$R \frac{\partial f_{230}^{(1)}(\theta_{j}x)}{\partial x} = \frac{R}{2\Psi_{1}} \left\{ \sum_{n} W_{2}n\theta \left[(n^{2}-2) \left(C_{n}^{1}(x) - D_{n}^{1}(n) \right) + n \left(B_{n}^{2}(x) - A_{n}^{2}(x) + R F_{n}^{2}(x) - R F_{n}^{2}(x) \right] + Sin n\theta \left[(n^{2}-2) \left(C_{n}^{2}(x) - D_{n}^{2}(x) \right) - D_{n}^{2}(x) \right] - n \left(B_{n}^{1}(x) - A_{n}^{1}(x) + R F_{n}^{1}(x) - R F_{n}^{1}(x) - R F_{n}^{1}(x) \right] \right\}$$

on notera :

$$F_{230n}^{(1)} (x) \text{ la primitive de } \left(n^2 - 2\right) \left(C_n^{1}(n) - D_n^{1}(n)\right) + n \left(B_n^2(n) - A_n^2(n) + RF_{n(n)}^{2} - RF_{n(n)}^{2}\right)$$

et

$$F_{230}^{(2)}(\lambda) \quad \text{la primitive de } \left(n^2 - \varepsilon\right) \left(\binom{2}{n} (\lambda) - D_n^2(\lambda) \right) + n \left(A_n^{(1)} - B_n^{(1)} + R E_n^{(1)} - R E_n^{(1)} \right)$$

d'où

$$-10-\begin{bmatrix} I_{1}^{(1)} \\ I_{230}^{(0)} x \end{pmatrix} = \frac{1}{24} \sum_{n} \left[\left(F_{230n}^{(1)} x \right) + \overline{F}_{230}^{(1)} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + \overline{F}_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2(n)} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2} + F_{230n}^{2} \right) \text{ word } + \left(F_{230n}^{2} + F_{23$$

$$\frac{\partial \left\{\frac{\partial \left(\frac{1}{330}(\theta_{1}x)\right)}{\partial x} = \frac{R}{2\mu} \left[\sum_{n \in iN} \left\{ w_{n} n \theta \left(F_{n}^{A}(x) - E_{n}^{A}(x) - \frac{n}{R}\left(F_{230n}^{2}(x) + \overline{F}_{230}^{A}\right)\right) + Si'n n \theta \left(F_{n}^{2}(x) - E_{n}^{2}(x)\right) + \frac{n}{R}\left(F_{230n}^{A}(x) + \overline{F}_{230}^{A}\right)\right) \right]$$

en posant que :

$$F_{330n}^{1}(n) \quad \text{est la primitive de } F_{n}^{1}(n) - E_{n}^{1}(n) - \frac{n}{R} \left[F_{230n}^{2}(n) + \overline{F}_{230}^{2} \right]$$

$$F_{330}^{2}(n) \quad \text{est la primitive de } F_{n}^{2}(n) - E_{n}^{2}(n) + \frac{n}{R} \left[F_{230n}^{1}(n) + F_{230}^{1} \right]$$

on a ainsi :

$$-11 - \frac{\int_{330}^{(1)} (\theta_{1}x)}{f_{330}} = \frac{1}{2\eta} \sum_{n} \left[\left(F_{330n}^{(1)}(x) + \overline{F}_{33n}^{(1)} \right) \cos n\theta + \left(F_{330n}^{(2)}(x) + \overline{F}_{35n}^{(2)} \right) \sin n\theta \right]$$

 $\left(\begin{array}{ccc} \operatorname{où} & \overline{F}_{330}^{1} & \operatorname{et} & \overline{F}_{330}^{2} & \operatorname{sont} \operatorname{des} \operatorname{constantes} \operatorname{d'intégration.} \right)$

Résolution du système (2), (4), (6).

Les équations 2-4-6, en remplaçant les $\begin{cases} n \\ i \\ n \end{cases}$ par leurs expressions tirées de 1-2, donnent un système différentiel entre \mathcal{U} , \mathcal{V} , \mathcal{W} .

$$\frac{3u}{R} + \frac{2}{R} \frac{3v}{\gamma \theta} - \frac{1}{R} \frac{\partial^{3} v}{\gamma \theta^{3}} - \frac{R}{\partial \frac{\partial^{3} v}{\partial x^{2} \gamma \theta}} + \frac{3v}{\gamma \frac{\partial w}{\partial x}} - \frac{\partial^{3} w}{\partial x \gamma \theta^{2}} - \frac{R^{2}}{\partial \frac{\partial^{3} w}{\partial x^{3}}} = 0$$

$$\frac{4}{R} \frac{\partial u}{\partial \theta} + \frac{R}{\partial \frac{\partial^{3} u}{\partial x^{2} \gamma \theta}} + \frac{1}{R} \frac{\partial^{3} u}{\partial \theta^{3}} + \frac{3}{R} \frac{\partial^{2} v}{\partial \theta^{2}} + \frac{1-\partial}{2} \frac{R}{\partial x^{2}} + \frac{3+4v}{2} \frac{\partial^{2} v v}{\partial x^{2}} = 0$$

$$-12 - \frac{1}{2} \frac{\partial u}{\partial x} + \frac{\partial^{3} u}{\partial x \partial \theta^{2}} + \frac{R^{2}}{\partial x \partial \theta^{3}} + \frac{1-\partial}{2} \frac{\partial^{2} v}{\partial x^{3}} + \frac{R}{\partial x^{2}} \frac{\partial^{2} w}{\partial x^{2}} + \frac{3(1-v)}{2R} \frac{\partial^{2} w}{\partial \theta^{2}} = 0$$

où $U(\Theta, \chi)$, $V(\Theta, \chi)$ et $W(\Theta, \chi)$ sont les composantes du déplacement de membrane, vu leur 2 -périodicité en on les cherche sous la forme :

(A)

$$U(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left(U_{n}^{4}(n) \quad \omega_{2} n \theta + U_{n}^{2}(n) \quad \sin n \theta \right)$$

$$V(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left(V_{n}^{4}(n) \quad \omega_{2} n \theta + V_{n}^{2}(n) \quad \sin n \theta \right)$$

$$W(\theta_{1}x) = \sum_{n \in \mathbb{N}} \left(W_{n}^{4}(n) \quad \omega_{2} n \theta + W_{n}^{2}(n) \quad \sin n \theta \right)$$

En remplaçant dans 12 on obtient :

$$-13-\frac{3u_{n}^{(1)}(x)}{R} + \frac{n}{R}(2+n^{2})V_{n}^{2}(x) - RnV_{n}^{(2)}(x) + (3p+n^{2})V_{n}^{(1)}(x) - R^{2}V_{n}^{(1)}(x) = 0$$

$$-14-\frac{3u_{n}^{2}(x)}{R} - \frac{n}{R}(2+n^{2})V_{n}^{(1)}(x) + RnV_{n}^{(1)}(x) + (3p+n^{2})V_{n}^{2}(x) - R^{2}V_{n}^{(2)}(x) = 0$$

$$-15-\frac{n}{R}(4-n^{2})U_{n}^{2}(x) + RnU_{n}^{1}(x) - \frac{3n^{2}}{R}V_{n}^{1}(x) + \frac{(4-p)}{2}RV_{n}^{1}(x) + \frac{(4+p)}{2}nV_{n}^{1}(x) = 0$$

$$-16-\frac{n}{R}(4-n^{2})U_{n}^{1}(x) - RnU_{n}^{1}(x) - \frac{3n^{2}}{R}V_{n}^{2}(x) + \frac{(1-p)}{2}RV_{n}^{1}(x) - \frac{3+4p}{2}nV_{n}^{1}(x) = 0$$

$$-17-\frac{(p-n^{2})U_{n}^{1}(x) - RnU_{n}^{1}(x) - \frac{3n^{2}}{2}nV_{n}^{2}(x) + RV_{n}^{1}(x) - \frac{3(1-p)n^{2}}{2R}V_{n}^{1}(x) = 0$$

$$-18-\frac{(p-n^{2})U_{n}^{1}(x) + R^{2}U_{n}^{1}(x) - \frac{A-p}{2}nV_{n}^{1}(x) + RV_{n}^{1}(x) - \frac{3(1-p)n^{2}}{2R}V_{n}^{2}(x) = 0$$
Système dont on cherche la solution sous la forme : $U_{n}^{1}(x) = A_{n}^{1}e^{TX}$,

$$V_n^{\alpha}(n) = B_n^{\alpha} \cdot e^{\pi n}$$
, $W_n^{\alpha}(n) = C_n^{\alpha} \cdot e^{\pi n}$ avec $\alpha = 1, 2$

Le déterminant caractéristique se met sous la forme d'un polynome en r^8 au carré, ceci avec la remarque que les équations 13-16-17 sont en $U_n^4(x)$, $V_n^2(x)$ et $W_n^4(x)$ alors que les équations 14-15-18 sont en $U_n^2(x)$, $V_n^4(x)$ et $W_n^{\prime 2}(n)$, ce qui permet de découpler le système précédent, en deux systèmes (avec le premier composé des équations 13-16-17 et le deuxième composé des équations 14-15-18).

Ainsi on obtient les deux systèmes suivants :

$$-B = \left(\frac{3}{R} - \frac{h(2+n^{2}) - Rn\pi^{2}}{R} - \frac{(3\nu_{+}n^{2})\pi - R^{2}\pi^{3}}{R} - \frac{A^{-1}}{2}R\pi^{2} - \frac{3n^{2}}{R} - \frac{3+4\nu}{2}n\pi}{R} - \frac{R^{2}\pi^{3}}{R} - \frac{R^{2}\pi^{3}}{2}R\pi^{2} - \frac{3+4\nu}{2}n\pi}{R} - \frac{R^{2}\pi^{3}}{R} - \frac{R^{2}\pi^{3}}{2}R\pi^{2} - \frac{3(1-\nu)}{2}R^{2} - \frac{R^{2}\pi^{3}}{2}R^{2} - \frac{R^{2}\pi^{3}}{2} -$$

- C -

$$\begin{pmatrix} \frac{3}{R} & -\frac{n}{R} (2+n^2) + Rn\pi^2 & (3\nu+n^2)\pi - R^2\pi^3 \\ \frac{(4-n^2)n}{R} + Rn\pi^2 & \frac{A-\nu}{2}R\pi^2 - \frac{3n^2}{R} & \frac{3+4\nu}{2}n\pi \\ \frac{(\nu-n^2)\pi}{R} + R^2\pi^3 & -\frac{A-\nu}{2}n\pi & R\pi^2 - \frac{3(1-\nu)}{2R}n^2 \\ \end{pmatrix} \begin{pmatrix} R\pi^2 - \frac{3(1-\nu)}{2R}n^2 & C_n^2 \end{pmatrix} \begin{pmatrix} C_n^2 & 0 \\ 0 \end{pmatrix}$$

Pour simplifier l'écriture on posera pour la suite :

(D)
$$\begin{cases} a = \frac{3}{R} \quad ; \quad b = -R n\pi^{2} + \frac{n(2+n^{2})}{R} \\ c = (3\nu + n^{2})\pi - R^{2}\pi^{3} \quad ; \quad d = \frac{-n(4-n^{2})}{R} - Rn\pi^{2} \\ e = \frac{4-\nu}{2}R\pi^{2} - \frac{3n^{2}}{R} \quad ; \quad f = -\frac{(3+4\nu)}{2}n\pi \\ g = R^{2}\pi^{3} + (\nu + n^{2})\pi \quad ; \quad h = \frac{(4-\nu)n\pi}{2} \\ k = R\pi^{2} - \frac{3(4-\nu)}{2R}n^{2} \end{cases}$$

<u>Remarque</u> : pour passer du système (B) au système (C) il suffit de remplacer n par -n dans la matrice.

A partir du système (B) on a :

$$\frac{A_n^4}{ek-fh} = \frac{B_n^2}{ff-dk} = \frac{C_n^4}{dh-eg} = \lambda_n.$$

de même à partir du système C on tire :

$$\frac{An^2}{ek-kh} = -\frac{Bn^1}{kg-dk} = \frac{Cn^1}{dh-eg} = Nn$$

où r annule le déterminant caractéristique, c'est-à-dire que :

$$\Delta(n) = \alpha(ek - fh) + b(fg - dk) + c(dh - eg) = 0$$

d'où on tire :

83

$$-19- U(\theta_{1}x) = \sum_{n \in \mathbb{N}} (ek - \frac{1}{h}) [\lambda_{n} \cos n\theta + \mu_{n} \sin n\theta] e^{\pi x}$$

$$V(\theta_{1}x) = \sum_{n \in \mathbb{N}} (g - \frac{1}{h}) [-\mu_{n} \cos n\theta + \lambda_{n} \sin n\theta] e^{\pi x}$$

$$W(\theta_{1}x) = \sum_{n \in \mathbb{N}} (d - \frac{1}{h}) [\lambda_{n} \cos n\theta + \mu_{n} \sin n\theta] e^{\pi x}$$

VI.1.5. <u>Résultats pour **n**=</u>**o**

Pour h=0, dans le déterminant caractéristique, on a : $a = \frac{3}{R}$, b = d = f = h = 0 $c = 3vn - R^2n^3$; $e = \frac{1-v}{2}Rn^2$; $g = R^2n^3 + vn$; $k = R.n^2$

Le déterminant caractéristique se met sous la forme :

$$R^{5}r^{8} - 20R^{3}n^{6} + 3R(1-0^{2})n^{4} = 0$$

d'où les racines :

$$-20-$$

$$\pi_{A} = \frac{4}{R} \left[\sqrt{\frac{\nu + \sqrt{3}(1-\nu^{2})}{2}} + i \sqrt{\frac{3(1-\nu^{2})-\nu}{2}} \right]$$

$$\pi_{2} = -\pi_{A}$$

$$\pi_{3} = \frac{4}{R} \left[\sqrt{\frac{\nu + \sqrt{3}(1-\nu^{2})}{2}} - i \sqrt{\frac{\sqrt{3}(1-\nu^{2})-\nu}{2}} \right]$$

$$\pi_{4} = -\pi_{3}$$

pour la suite on pose
$$\alpha = \left[\frac{\nu + \sqrt{3(1-\nu^2)}}{2}\right]^{\frac{1}{2}}$$
; $\beta = \left[\frac{\sqrt{3(1-\nu^2)}}{2}\right]^{\frac{1}{2}}$

En remplaçant n par ses valeurs dans les expressions de k , V , W du système 19, on trouve tout calcul fait :

1

Avec

-22-

$$A = (\alpha^{4} - 6\alpha^{2}\beta^{2} + \beta^{4})\lambda_{o} , \quad B = 4\alpha\beta\lambda_{o}(\alpha^{2} - \beta^{2})$$

$$C = [\alpha^{3}(\alpha^{2} + \nu - 10\beta^{2}) + \alpha\beta^{2}(5\beta^{2} - 3\nu)]\lambda_{o}$$

$$D = [\beta^{3}(\beta^{2} - \lambda\alpha\alpha^{2} - \nu) + \alpha^{2}\beta(5\alpha^{2} + 3\nu)]\lambda_{o}$$

 λ_o , A_1 , A_2 , B_1 et B_2 étant des constantes

arbitraires.

VI.1.6 - Résolution pour $N \ge 1$.

On cherche les valeurs de n qui annulent le déterminant caractéristique; pour cela on posera $\gamma = Rn$.

Le polynôme caractéristique se met alors sous la forme :

$$-23 - \frac{(1-3)}{2} - \frac{(6-50)n^2 + 20(1-3)}{2} - \frac{y^4}{2} + \left[(12-100)n^4 + (5v^2 + 2v-6)n^2 + 3(1-0)(1-0^2) \right] \frac{y^4}{2} + \left[2(3v-10)n^6 + 2(12-7v^2-6v)n^4 + (23v^2-15v-4)n^2 \right] \frac{y^2}{4} + \frac{3(1-v)(n^2-1)^2 n^4}{2} = 0$$

Polynôme du 4e degré en $X = y^2$, qu'on met sous la forme :

$$-24 X^{4} + A X^{3} + B X^{2} + C X + D = 0$$

avec pour
$$N \ge 1$$
, et $0 < v \le 0, 5$.
-25-
 $A = -\frac{(6-5v)n^2 + 2v(1-v)}{1-v} < 0$
 $B = \frac{(12-10v)n^4 + (5v^2 + 2v - 6)n^2 + 3(1-v)(1-v^2)}{1-v} > 0$
 $C = \frac{2(9v-10)n^6 + 2(12-7v^2 - 6v)n^4 + (23v^2 - 15v - 4)n^2}{2(1-v)} < 0$

 $D = 3(n^{2} - 1)^{2} n^{4} \ge 0.$

86

Le polynôme caractéristique admet 4 racines complexes en qui se mettent sous la forme :

$$X_{1} = R^{2} \pi_{1}^{2} = -d_{1} + i\beta_{1} \quad ; \quad X_{2} = R^{2} \pi_{2}^{2} = -d_{1} - i\beta_{1}$$
$$X_{3} = R^{2} \pi_{3}^{2} = d_{2} + i\beta_{2} \quad ; \quad X_{4} = R^{2} \pi_{4}^{2} = d_{2} - i\beta_{2}.$$

•

avec :

$$\begin{aligned} & \rho_{2}^{-26-} \left[\rho_{2}^{-26-} - \frac{(\Lambda + \upsilon)}{\Lambda \ell (1 - \upsilon^{2})^{2} (w^{2} - 1)^{2} - 4w^{4}} \left\{ (3 \upsilon v^{3} - 36 \upsilon^{2} - 12 \upsilon + 16) w^{6} + (-43 + 60 \upsilon + 46 \upsilon^{2} \\ & - 7 \ell v^{5} + 12 \upsilon^{4}) w^{4} + (32 - 81 \upsilon + 23 \upsilon^{2} + 66 \upsilon^{3} - 36 \upsilon^{4}) w^{2} + 12 \upsilon (4 - \upsilon)^{2} (4 + \upsilon) \right\} \right\} \\ & \beta_{2} = \left[3(1 - \upsilon^{2}) (w^{2} - 1)^{2} - 4 v^{2} \right]^{1/2} \\ & \beta_{4} = - \frac{(6 - 5 \upsilon) w^{2}}{2(1 - \upsilon)} + \frac{4}{\Lambda 2 (4 - \upsilon^{2})^{2} (w^{2} - 1)^{2} - 4w^{4}} \left\{ (4 + \upsilon) (4 - \upsilon^{2} - 12 \upsilon + 12) w^{4} + (4 + \upsilon^{2} - 12 \upsilon + 12) w^{4} + (4 + \upsilon) (-43 + 60 \upsilon + 46 \upsilon^{2} - 7 \ell \upsilon^{3} + 12 \upsilon^{4}) + 4 \upsilon - 12 (1 - \upsilon^{2})^{2} \right] w^{4} \\ & + \left[(A + \upsilon) (-43 + 60 \upsilon + 46 \upsilon^{2} - 7 \ell \upsilon^{3} + 12 \upsilon^{4}) + 4 \upsilon - 12 (1 - \upsilon^{2})^{2} \right] w^{4} \\ & + \left[(A + \upsilon) (-36 \upsilon^{4} + 66 \upsilon^{3} + 23 \upsilon^{2} - 84 \upsilon + 32) + 24 \upsilon (A - \upsilon^{2})^{2} \right] w^{2} \right\} \\ & \beta_{4} = \left[\frac{w^{4}}{A - \upsilon^{2}} - \alpha_{4}^{2} \right]^{4/2} \end{aligned}$$

$$\pi_{4} = \frac{4}{R} \left\{ \left[\frac{\sqrt{a_{1}^{x} + \beta_{1}^{z}} - a_{1}}{2} \right]^{\frac{y_{2}}{2}} + i \left[\frac{\frac{u_{1} + \sqrt{a_{1}^{z} + \beta_{1}^{z}}}{2} \right]^{\frac{y_{2}}{2}} \right]^{\frac{y_{2}}{2}} \right\}$$

$$\pi_{8} = -\pi_{4}$$

$$\pi_{8} = -\pi_{4}$$

$$\pi_{8} = -\frac{4}{R} \left\{ \left[\frac{\sqrt{a_{1}^{x} + \beta_{1}^{z}} - a_{1}}{2} \right]^{\frac{y_{2}}{2}} + i \left[\frac{u_{1} + \sqrt{a_{1}^{z} + \beta_{1}^{z}}}{2} \right]^{\frac{y_{2}}{2}} \right]$$

$$\pi_{4} = -\pi_{5}$$

$$\pi_{5} = \frac{4}{R} \left\{ \left[\frac{a_{2} + \sqrt{a_{2}^{z} + \beta_{2}^{z}}}{2} \right]^{\frac{y_{2}}{2}} + i \left[\frac{\sqrt{a_{1}^{z} + \beta_{2}^{z}} - a_{2}}{2} \right]^{\frac{y_{2}}{2}} \right\} = -\pi_{6}$$

$$\pi_{1} = \frac{4}{R} \left\{ \left[\frac{k_{2} + \sqrt{a_{2}^{z} + \beta_{2}^{z}}}{2} \right]^{\frac{y_{2}}{2}} - i \sqrt{\frac{\sqrt{a_{1}^{z} + \beta_{2}^{z}} - a_{2}}{2}} \right] = -\pi_{8}$$

Pour la suite on posera :

-28-

$$\begin{aligned}
\gamma_{1} &= \left[\frac{\sqrt{d_{1}^{2} + \beta_{1}^{2}} - d_{1}}{2} \right]^{\frac{1}{2}}; \quad \delta_{1} &= \left[\frac{\alpha_{1} + \sqrt{d_{1}^{2} + \beta_{1}^{2}}}{2} \right]^{\frac{1}{2}} \\
\gamma_{2} &= \left[\frac{\sqrt{d_{2}^{2} + \beta_{2}^{2}} + d_{2}}{2} \right]^{\frac{1}{2}}; \quad \delta_{2} &= \left[\frac{-\alpha_{2} + \sqrt{d_{2}^{2} + \beta_{2}^{2}}}{2} \right]^{\frac{1}{2}}
\end{aligned}$$

Т

VI.1.7. Détermination des déplacements "de membrane".

D'après les relations 19, (D) et les valeurs des racines du polynôme caractéristique, on calcule les coefficients des déplacements de membrane.

On détaillera le calcul pour $U(\theta, x)$, pour les deux autres composantes on se contentera de donner les résultats, la démarche restant la même.

On a: $U(\theta_x) = \sum_n (u_n^1(x) u_n \theta + u_n^2(x) sin n\theta)$

avec
$$U_{n}^{1}(n) = \sum_{i=1}^{8} (ek - \frac{1}{4})(\pi_{i}, n) A_{n} e^{\pi_{i}' x}$$

 $U_{n}^{2}(n) = \sum_{i=1}^{8} (ek - \frac{1}{4})(\pi_{i}, n) Y_{n} e^{\pi_{i}' x}$
 $(ek - \frac{1}{4})(\pi_{i}, n) = \frac{1}{4R^{2}} \left[2(1-\nu) R^{4} \pi_{i}^{4} + (\frac{1}{4} \nu (1-\nu) - 1e) n^{2} R^{2} \pi_{i}^{2} + 18(1-\nu) n^{4} \right]$
Pour $R^{2} \pi^{2} = -d_{1} + \frac{1}{4} \beta_{1}$ on a:

$$(ek - \frac{1}{4}h)(\pi_{0,1}h) = \frac{1}{4R^{2}} \left[2(1-\nu) \left[\alpha_{1}^{2} - \beta_{1}^{2} \right] - (\frac{1}{4}\nu(1-\nu) - 12) h^{2} \alpha_{1} + \frac{18(1-\nu) h^{4}}{4R^{2}} \right] + \frac{i\beta_{1}}{4R^{2}} \left[-4(1-\nu) \alpha_{1} + (\frac{1}{4}\nu(1-\nu) - 12) h^{2} \right]$$

on pose :

$$-29 - A = \frac{\lambda}{2R^{2}} \left[2(1-\nu) \left(d_{1}^{2} - \beta_{1}^{2} \right) - \left[\frac{1}{2} \nu (1-\nu) - 12 \right] n^{2} d_{1} + 18(1-\nu) n^{4} \right]$$

$$B = \frac{\beta_{1}}{2R^{2}} \left[-4(1-\nu) d_{1} + \left(\frac{1}{2} \nu (1-\nu) - 12 \right) n^{2} \right]$$

* Pour
$$R^2 \pi^2 = -d_1 - i\beta_1$$
 on a:
 $(ek - fh)(\pi_i n) = \frac{A}{2} - i\frac{B}{2}$
* Pour $R^2 \pi^2 = d_2 + i\beta_2$ on a:

$$(e k - \frac{1}{2}k)(n; n) = \frac{e}{2} + i \frac{D}{2}$$

avec :

-30-

$$C = \frac{1}{2R^{2}} \left[2(1-\nu) \left(\alpha_{2}^{2} - \beta_{2}^{2} \right) + \left(\frac{1}{2} \nu (1-\nu) - 12 \right) n^{2} \alpha_{2} + 18(1-\nu) n^{4} \right]$$
$$D = \frac{\beta_{2}}{2R^{2}} \left[4(1-\nu) \alpha_{2} + \left(\frac{1}{2} \nu (1-\nu) - 12 \right) n^{2} \right]$$

* Pour

$$\mathbf{r} \quad \mathbf{R}^2 \, \mathbf{r}^2 = \alpha_2 - \mathbf{i} \, \beta_2$$

$$(e k - \frac{1}{h})(\pi_{i}, n) = \frac{c}{2} - i \frac{D}{2}$$

Et en remplaçant $(ek - fh)(\pi; n)$ et π ; par l'expression de $W'_{\mu}(x)$ on tire que :

$$\frac{u_{n}^{1}(x)}{\lambda_{n}} = \frac{u_{n}^{T}(x)}{N_{n}} = \left(\frac{A}{2} + i\frac{B}{2}\right) \left(e^{T_{1}\frac{Z}{R}} e^{i\frac{S_{1}x}{R}} + e^{-i\frac{S_{1}x}{R}} + e^{-i\frac{S_{1}x}{R}} e^{-i\frac{S_{1}x}{R}}\right)$$

$$+ \left(\frac{A}{2} - i\frac{B}{2}\right) \left(e^{T_{1}\frac{Z}{R}} e^{-i\frac{S_{1}x}{R}} + e^{-T_{1}\frac{Z}{R}} e^{i\frac{S_{1}x}{R}}\right)$$

$$+ \left(\frac{C}{2} + i\frac{D}{2}\right) \left(e^{T_{2}\frac{X}{R}} e^{i\frac{S_{2}x}{R}} + e^{-T_{2}\frac{S_{2}x}{R}} e^{-i\frac{S_{2}x}{R}}\right)$$

$$+ \left(\frac{C}{2} + i\frac{D}{2}\right) \left(e^{T_{2}\frac{X}{R}} e^{i\frac{S_{2}x}{R}} + e^{-T_{2}\frac{S_{2}x}{R}} e^{i\frac{S_{2}x}{R}}\right)$$

d'où :

$$-31-$$

$$u(\theta_{1}x) = \sum_{n \in IV} \left\{ a_{1} e^{\overline{v}_{1} \frac{x}{R}} \left(A \cos \frac{S_{1}x}{R} - B \sin \frac{S_{1}x}{R} \right) \right\}$$

$$+ b_{1} e^{-\overline{v}_{1} \frac{x}{R}} \left(A \cos \frac{S_{1}x}{R} + B \sin \frac{S_{1}x}{R} \right) + c_{1} e^{\overline{v}_{2} \frac{x}{R}} \left(C \cos \frac{S_{2}x}{R} - D \sin \frac{S_{2}x}{R} \right)$$

$$+ d_{1} e^{-\overline{v}_{2} \frac{x}{R}} \left(C \cos \frac{S_{2}x}{R} + D \sin \frac{S_{2}x}{R} \right) \left\{ A_{n} \cos n\theta + Y_{n} \sin n\theta \right\}$$

où A, B, C et D sont données par 29 et 30 et a₁, b₁, c₁, d₁ sont des constantes arbitraires.

La même démarche, donne :

-32-

$$V(x_{10}) = \sum_{h \in IN} \left\{ a_{2} e^{\delta_{1} \frac{x}{R}} \left(E \cos \frac{S_{1}x}{R} - F \sin \frac{S_{1}x}{R} \right) + b_{2} e^{\delta_{1} \frac{x}{R}} \left(E \cos \frac{S_{1}x}{R} + F \sin \frac{S_{1}x}{R} \right) + C_{2} \left(e^{\delta_{2} \frac{x}{R}} \left(G \cos \frac{S_{2}x}{R} - T \sin \frac{S_{2}x}{R} \right) + d_{2} e^{-\delta_{2} \frac{x}{R}} \left(G \cos \frac{S_{2}x}{R} + T \sin \frac{S_{2}x}{R} \right) \right\} \left[-\gamma_{h} \cos n\theta + d_{h} \sin n\theta \right]$$

Avec :

$$\frac{-33-}{E} = \frac{A}{R^2} \left[-n(4\nu+1)(d_1^2 - \beta_1^2) - n\left[\ell(4-n^2) + \nu^2(3n^2-4) - 3\nu\right] d_1 - 3(\lambda-\nu)(4-n^2) n^3 \right]$$

$$F = \frac{\beta_4}{R^2} \left[-2n(4\nu+1) d_1 + n\left[2(4-n^2) + \nu^2(3n^2-4) - 3\nu\right] \right]$$

$$\int = \frac{A}{R^2} \left[-n(4\nu+1)(d_2^2 - \beta_2^2) + n\left[\ell(4-n^2) + \nu^2(3n^2-4) - 3\nu\right] d_2 - 3(1-\nu)(4-n^2) n^3 \right]$$

$$T = \frac{\beta_2}{R^2} \left[-\ell n\left(4\nu + 1 \right) d_2 + n\left[\ell(4-n^2) + \nu^2(3n^2-4) - 3\nu\right] d_2 - 3(1-\nu)(4-n^2) n^3 \right]$$

De même on a :

-34-

$$\begin{aligned} &\mathcal{W}(\theta_{1}\mathbf{x}) = \sum_{\mathbf{n}\in\mathbf{N}} \left\{ \begin{array}{l} q_{3} e^{\mathcal{X}_{1}\frac{\mathbf{x}}{R}} \left(M \operatorname{sin} \frac{S_{1}\mathbf{x}}{R} + K \cos \frac{S_{1}\mathbf{x}}{R} \right) \\ &+ b_{3} e^{\mathcal{X}_{1}\frac{\mathbf{x}}{R}} \left(K \cos \frac{S_{1}\mathbf{x}}{R} - M \operatorname{sin} \frac{S_{1}\mathbf{x}}{R} \right) + c_{3} e^{\mathcal{Z}_{2}\frac{\mathbf{x}}{R}} \left(-4 \cos \frac{S_{2}\mathbf{x}}{R} - \frac{S' \sin \frac{S_{2}\mathbf{x}}{R}}{R} \right) \\ &+ d_{3} e^{\mathcal{Z}_{2}\frac{\mathbf{x}}{R}} \left(4 \cos \frac{S_{2}\mathbf{x}}{R} - \frac{S' \sin \frac{S_{2}\mathbf{x}}{R}}{R} \right) \left\{ \mathbf{x} \left\{ A_{n} \cos n\theta + V_{n} \sin n\theta \right\} \end{aligned}$$

Avec :

-35-

$$K = \frac{1}{R^2} \left\{ (1-\nu) \left(\alpha_1^2 - \beta_1^2 \right) \vartheta_1 - (\nu - \nu^2 - 6\nu^2) \alpha_1 \vartheta_1 + n^2 \left[(5+\nu) n^2 - 2(2+5\nu) \right] \vartheta_1 \right\}$$

$$\begin{split} M &= \frac{S_{1}}{R^{2}} \left\{ \begin{array}{l} (A - v) \left(d_{1}^{2} - \beta_{1}^{2} \right) - d_{1} \left(v - v^{2} - 6u^{2} \right) + u^{2} \mathbf{k} \left[(5 + v) u^{2} - 2 \left(2 - 5v \right) \right] \right\} \\ &+ \frac{v_{1} \beta_{1}}{R^{2}} \left[v \left(1 - v \right) - 2 d_{1} - 6u^{2} \right] \\ (\hat{v} &= \frac{1}{R^{2}} \left\{ (\mu - v) \left(d_{2}^{2} - \beta_{2}^{2} \right) v_{2} - (v - v^{2} - 6u^{2}) d_{2} v_{2} + u^{2} \left[(5 + v) u^{2} - 2 \left(2 - 5v \right) \right] v_{2} \right\} \\ &+ \frac{S_{2} \beta_{2}}{R^{2}} \left[- 6u^{2} - \beta_{2}^{2} - v \left(1 - v \right) \right] \\ (\hat{v} &= \frac{S_{2}}{R^{2}} \left\{ (\mu - v) \left(d_{2}^{2} - \beta_{2}^{2} \right) + d_{2} \left(v - v^{2} - 6u^{2} \right) + u^{2} \left[(5 + v) u^{2} - 2 \left(2 - 5v \right) \right] v_{2} \right\} \\ &+ \frac{S_{2} \beta_{2}}{R^{2}} \left[- 6u^{2} - d_{2} - v \left(1 - v \right) \right] \\ (\hat{v} &= \frac{S_{2}}{R^{2}} \left\{ (\lambda - v) \left(d_{2}^{2} - \beta_{2}^{2} \right) + d_{2} \left(v - v^{2} - 6u^{2} \right) + u^{2} \left[(5 + v) u^{2} - 2 \left(2 - 5v \right) \right] \right\} \\ &+ \frac{v_{2} \beta_{2}}{R^{2}} \left[2 d_{2} + v \left(1 - v \right) - 6u^{2} \right] . \end{split}$$

$$\frac{u_{n}^{1}(\mathbf{x})}{R} + \frac{n}{R} V_{n}^{2}(n) + \nu W_{n}^{1}(n) = \frac{(1-\nu^{2})R}{2\epsilon R} \left(A_{n}^{1}(n) + B_{n}^{1}(n) \right)$$

$$\frac{n (u_{n}^{1}(n))}{R} + \frac{n^{2}}{R} V_{n}^{2}(n) - \frac{R(1-\nu)}{2} V_{n}^{2}(n) + \frac{n((1+\nu))}{2} W_{n}^{1}(n) = \frac{(1-\nu^{2})R}{2\epsilon h} \left[c_{n}^{2}(n) + D_{n}^{2}(n) \right]$$

$$\frac{\nu (u_{n}^{1}(n))}{R} + \frac{n (1+\nu)}{2R} V_{n}^{2}(n) - \frac{n^{2}(1-\nu)}{2R^{2}} W_{n}^{1}(n) + V_{n}^{1}(n) = \frac{-(1-\nu^{2})}{2\epsilon h} \left[\epsilon_{n}^{1}(n) + F_{n}^{1}(n) \right]$$

$$\frac{u_{n}^{2}(n)}{R} - \frac{n}{R} V_{n}^{4}(n) + \nu W_{n}^{2}(n) = \frac{(1-\nu^{2})R}{2\epsilon h} \left[A_{n}^{2}(n) + B_{n}^{2}(n) \right]$$

$$\frac{u_{n}^{2}(n)}{R} - \frac{n^{2}}{R} V_{n}^{4}(n) + \frac{R(1-\nu)}{2} V_{n}^{1}(n) + \frac{n((1+\nu))}{2} V_{n}^{2}(n) = -\frac{R(1-\nu^{2})}{2\epsilon h} \left[c_{n}^{1}(n) + B_{n}^{1}(n) \right]$$

$$\frac{u_{n}^{2}(n)}{R} - \frac{n^{2}}{R} V_{n}^{4}(n) + \frac{R(1-\nu)}{2} V_{n}^{1}(n) + \frac{n((1+\nu))}{2} V_{n}^{2}(n) = -\frac{R(1-\nu^{2})R}{2\epsilon h} \left[c_{n}^{1}(n) + B_{n}^{2}(n) \right]$$

$$\frac{\nu (u_{n}^{2}(n))}{R} - \frac{n^{2}}{R} V_{n}^{4}(n) + \frac{R(1-\nu)}{2} V_{n}^{1}(n) - \frac{n^{2}(1-\nu)}{2} W_{n}^{2}(n) = -\frac{R(1-\nu^{2})R}{2\epsilon h} \left[c_{n}^{1}(n) + b_{n}^{1}(n) \right]$$

(Blis)

<u>Remarque</u> : Gill [1, P. 36 à 40] dans l'étude des effets de bords sur les solutions dans le cas des coques cylindriques, recherche, suivant HOFF [1], les solutions sous la forme que nous avons établie (31, 32, 34) avec $M_n \equiv 0$.

Donc ce type de solution n'est pas un effet du hasard, mais le fruit d'une procédure logique dans la recherche des solutions d'un système différentiel.

De plus Gill suppose \vec{p}^+ et \vec{p}^- nuls, ce qui d'après nos calculs n'est pas une hypothèse indispensable.

VI.1.8. Calcul des contraintes.

Les composantes $\sigma_{ij}(\theta_i \times, \beta)$ pour j = 1, 2, 3, se déduisent facilement des relations 1.1 et 1.6, on obtient alors que : -36-

$$\begin{split} \overline{\nabla_{l_{1}}(\theta_{1}x_{1}z_{1})} &= \sum_{n \in \mathbb{N}} \left\{ (05 n\theta) \left[\frac{E 3}{(\mu - 5^{2})R} \left(\frac{U_{n}^{1}(h)}{R} + \frac{n}{R} V_{n}^{2}(h) + 5 \tilde{W}_{n}^{1}(h) \right) \right. \\ &+ \frac{A_{n}^{1}(h) - B_{n}^{1}(h)}{2} \right] + Sinnd \left[\frac{E 3}{(\mu - 5^{2})R} \left(\frac{U_{n}^{2}(h)}{R} - \frac{n}{R} V_{n}^{4}(h) + 5 \tilde{W}_{n}^{2}(h) \right) \right. \\ &+ \frac{A_{n}^{2}(h) - B_{n}^{2}(h)}{2} \right] \right\} \\ \overline{\nabla_{l_{2}}(\theta_{1}x_{1}z_{1})} &= \sum_{n \in \mathbb{N}} \left\{ (05 n\theta) \left[\frac{-E 3}{(\mu - 5^{2})R} \left(n \frac{U_{n}^{2}(h)}{R} - \frac{n^{2}}{R} V_{n}^{4}(h) + \frac{R(1 - 5)}{2} \frac{U_{n}^{4}(h)}{2} \right) \right. \\ &+ \frac{n(1 + 5)}{2} \frac{U_{n}^{2}(h)}{2} + \frac{C_{n}^{4}(h) - D_{n}^{4}(h)}{2} \right] + Sin h \theta \left[\frac{E 3}{(\mu - 5^{2})R} \left(n \frac{U_{n}^{1}(h)}{R} + \frac{n^{2}}{R} V_{n}^{4}(h) - \frac{R(1 - 5)}{2} \frac{U_{n}^{2}(h)}{2} \right) \right. \\ &+ \frac{n(1 + 5)}{2} \frac{U_{n}^{2}(h)}{2} + \frac{C_{n}^{4}(h) - D_{n}^{4}(h)}{2} \right] + Sin h \theta \left[\frac{E 3}{(\mu - 5^{2})R} \left(n \frac{U_{n}^{1}(h)}{R} + \frac{n^{2}}{R} V_{n}^{2}(h) - \frac{R(1 - 5)}{2} \frac{V_{n}^{2}}{2} \right) \right. \\ &+ \frac{n(1 + 5)}{2} \frac{U_{n}^{2}(h)}{2} + \frac{C_{n}^{2}(h) - D_{n}^{2}(h)}{2} \right] \right\} \\ \overline{\nabla_{l_{3}}(\theta_{1}x_{1}z_{2})} &= \sum_{n} \left\{ (25 n \theta) \left[\frac{-E 3}{(\mu - 5^{2})R} \left(\nu U_{n}^{1}(h) + \frac{A + 5}{2} n \frac{V_{n}^{1}(h)}{2} - \frac{n^{2}(1 - 5)}{2R} \frac{U_{n}^{2}(h)}{2} + \frac{R^{2}(h)}{2} \frac{U_{n}^{2}(h)}{2R} + \frac{R^{2}(h)}{2R} \frac{U_{n}^{2}(h)}{2R} \right] \right\} \\ \\ \overline{\nabla_{l_{3}}(\theta_{1}x_{1}z_{2})} &= \sum_{n} \left\{ (25 n \theta) \left[\frac{-E 3}{(\mu - 5^{2})R} \left(\nu U_{n}^{1}(h) + \frac{A + 5}{2} n \frac{V_{n}^{1}(h)}{2R} - \frac{n^{2}(1 - 5)}{2R} \frac{U_{n}^{2}(h)}{2R} \frac{U_{n}^{2}(h)}{2R} \right] \right\} \\ \\ \overline{\nabla_{l_{3}}(\theta_{1}x_{1}z_{2})} = \frac{E 3}{2} \left\{ (25 n \theta) \left[\frac{-E 3}{(\mu - 5^{2})R} \left(\nu U_{n}^{2}(h) - \frac{n^{2}(\mu - 5)}{2} \frac{U_{n}^{2}(h)}{2R} - \frac{n^{2}(\mu - 5)}{2R} \frac{U_{n}^{2}(h)}{2R} \right] \right\} \\ \\ \overline{\nabla_{l_{3}}(\theta_{1}x_{2})} = \frac{E 3}{2} \left\{ \frac{U_{n}}(h) - \frac{E 3}{2} \left\{ (1 - 5^{2})R \left(\nu U_{n}^{2}(h) - \frac{1}{2} \frac{U_{n}}(h) - \frac{n^{2}(\mu - 5)}{2R} \frac{U_{n}^{2}(h)}{2R} \right\} \right\}$$

où $A'_{n}(n)$, $B'_{n}(n) = F'_{n}(n)$ sont les coefficients de Fourier des chargements sur les faces $3 = \pm h$, qui sont donnés par les formules 1.5.1.

A partir des relations 1.1; 1.2; 1.6; 9 on détermine $\sigma_{22}(\theta, x, z)$ en fonction de $u(\theta, x)$, $V(\theta, x)$ et $W(\theta, x)$.

$$\begin{aligned} \overline{\mathcal{O}}_{Q_{R}}\left(\theta_{j}x_{1}^{2}\right) &= \sum_{h\in n_{V}} \left\{ \frac{E}{A-\rho^{2}} \left[\frac{n}{R} V_{n}^{2}(x) + \frac{U_{n}^{1}(x)}{R} \left(A - \frac{(A+N^{2})^{2}}{R} \right) + \nu V_{n}^{1}(x) \left(1 - \frac{3}{R} \right) - \nu g U_{n}^{1}(x) \right] + \left[A_{n}^{1}(x) - B_{n}^{1}(x) + n \left(C_{n}^{2}(x) - D_{n}^{2}(x) \right) \right] + \left[R \left(\frac{E}{n}^{1}(x) - \frac{1}{n} + \frac{1}{n}^{1}(x) \right) \right] \right\} \cos n\theta + \left\{ \frac{E}{A-\rho^{2}} \left[-\frac{n}{R} \cdot V_{n}^{4}(x) + \frac{U_{n}^{2}(x)}{R} \left(A - \frac{(A+N^{2})}{R} + \frac{3}{R} \right) + \nu \left(A - \frac{3}{R} \right) V_{n}^{2}(x) - \nu g U_{n}^{2}(x) \right] + \left[\left(A_{n}^{2}(x) - B_{n}^{2}(x) \right) + n \left(D_{n}^{4}(x) - C_{n}^{4}(x) \right) + R \left(\frac{E}{n}^{2}(x) - \frac{1}{n} + \frac{$$

96

$$\begin{split} \nabla_{23} \left(\theta_{1} x_{1} z_{3} \right) &= \sum_{N \in \Pi V} \left\{ \frac{E}{2(1+y)} \left[\frac{n}{R} W_{n}^{2}(x) \left(\Lambda - \frac{3}{R} \right) \right. \\ &+ \left(\Lambda + \frac{3}{R} \right) \frac{V_{n}^{4}(x)}{V_{n}^{4}(x)} + \frac{2n z_{3}}{R} \frac{U_{n}^{2}(x)}{R} \right] + \left[\frac{F_{23on}^{4}(x)}{2R} + \frac{F_{23o}^{4}}{2R} \right] \right\} \cos n\theta \\ &+ \left\{ \frac{E}{2(\Lambda + y)} \left[-\frac{n}{R} \left(1 - \frac{3}{R} \right) W_{n}^{4}(x) + \left(1 + \frac{3}{R} \right) \frac{V_{n}^{2}(x)}{N} \right. \\ &+ \left. \frac{2n z_{3}}{R} \left[U_{n}^{4}(x) \right] + \left[\frac{F_{23on}^{2}(x) + F_{23o}^{2}}{2R} \right] \right\} \text{ Sin } n\theta \end{split}$$

VI.1.9. Calcul des déplacements.

D'après les relations VI.1.1, on a :

-39-

$$\begin{split} U_{1}(\theta_{1}x_{1}x_{2}) &= \left(1 - \frac{\nu 3}{(t-\nu)R}\right) U(\theta_{1}x) - \frac{\nu 3}{(t-\nu)R} \left(\frac{3\nu}{\gamma \theta} + R\frac{3\nu}{\beta x}\right) + \frac{1}{R} Q_{10}^{(1)}(\theta_{1}x) \\ U_{2}(\theta_{1}x_{1}x_{2}) &= \left(1 + \frac{3}{R}\right) V(\theta_{1}x) - \frac{3}{R} \frac{3u(\theta_{1}x)}{\gamma \theta} + \frac{1}{R} Q_{20}^{(1)}(\theta_{1}x) \\ U_{3}(\theta_{1}x_{1}x_{2}) &= W(\theta_{1}x) - \frac{3}{2} \frac{3u(\theta_{1}x)}{\gamma x} + \frac{1}{R} Q_{30}^{(1)}(\theta_{1}x) \\ où U(\theta_{1}x), V(\theta_{1}x) &= W(\theta_{1}x) - \frac{3}{2} \frac{3u(\theta_{1}x)}{\gamma x} + \frac{1}{R} Q_{30}^{(1)}(\theta_{1}x) \\ ext{ or } U(\theta_{1}x) + \frac{1}{N} Q_{30}^{(1)}(\theta_{1}x) \\ ext{ or } U(\theta_{1}x) \\ ext{ or } U(\theta_{1}x) + \frac{1}{N} Q_{30}^{(1)}(\theta_{1}x) \\ ext{ or } U(\theta_{1}x) \\ ext{ or } U(\theta_{1}x) \\ ext{ or } U(\theta_{1}x) + \frac{1}{N} Q_{30}^{(1)}($$

$$\frac{\partial A_{30}^{(1)}(\Theta_{1}\mathbf{x})}{\partial \Phi} + R \frac{\partial A_{20}^{(1)}(\Theta_{1}\mathbf{x})}{\partial \mathbf{x}} = \frac{2R(1+2)}{E} \frac{\int_{230}^{(1)}(\Theta_{1}\mathbf{x})}{\int_{230}^{(0)}(\Theta_{1}\mathbf{x})}$$
$$\frac{\partial A_{30}^{(1)}(\Theta_{1}\mathbf{x})}{\partial \mathbf{x}} = \frac{1}{E} \left[\frac{1}{4} \int_{330}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \left(\frac{1}{4} \int_{220}^{(1)}(\Theta_{1}\mathbf{x}) + \frac{1}{4} \int_{110}^{(1)}(\Theta_{1}\mathbf{x}) \right) \right]$$
$$\frac{\partial A_{20}^{(1)}(\Theta_{1}\mathbf{x})}{\partial \Phi} + A_{40}^{(1)}(\Theta_{1}\mathbf{x}) = \frac{R}{E} \left[\frac{1}{4} \int_{220}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \int_{110}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \int_{330}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \int_{330}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \int_{330}^{(1)}(\Theta_{1}\mathbf{x}) \right]$$

En remplaçant les $\int_{11}^{(1)}(\Theta_{1}\mathbf{x}) = \frac{1}{E} \left[\frac{1}{4} \int_{220}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \int_{110}^{(1)}(\Theta_{1}\mathbf{x}) - \nu \int_{330}^{(1)}(\Theta_{1}\mathbf{x}) \right]$

VI.1.6; 9; 10; 11 et en intégrant le système 40 : on obtient :

-41-

$$a_{30}^{(1)}(\theta_{1}x) = \frac{1}{2Eh} \sum_{h \in IV} \left(A_{30n}^{1}(h) + \bar{A}_{30}^{1} \right) \log n\theta + \left(A_{30n}^{2}(h) + \bar{A}_{30}^{2} \right) \sin n\theta$$

avec

$$A_{3o_{n}}^{4}(x) \text{ primitive de } F_{33o_{n}}^{(1)}(x) + \overline{F}_{33o}^{4} + 2\nu R(B_{n}^{1}(x) - A_{n}^{4}(x)) + \nu nR(B_{n}^{2}(x) - C_{n}^{2}(x)) + \nu R^{2}(F_{n}^{4}(x)) - E_{n}^{1}(x))$$

et

$$A_{30n}^{2}(n) \text{ primitive de } F_{330n}^{2}(n) + F_{330}^{2} + 2vR(B_{n}^{2}(n) - A_{n}^{2}(n)) + vR^{2}(F_{n}^{2}(n) - E_{n}^{2}(n)) - vnR(D_{n}^{1}(n) - C_{n}^{1}(n)).$$

$$a_{20}^{(1)}(\theta_{1}x) = \sum_{n \in \mathbb{N}} \frac{(A_{20n}^{(1)} + \bar{A}_{20}^{(1)})}{2Eh} \quad \text{wind} + \left[\frac{A_{20n}^{2}(1) + A_{20}^{2}}{2Eh}\right] \text{ Sinno}$$

avec

$$A_{20n}^{1}(n) \text{ primitive de } \mathcal{L}(1+\nu) \left(F_{230n}^{1}(n) + \overline{F}_{230}^{1}\right) - \frac{n\left(A_{30n}^{2}(n) + A_{30}^{2}\right)}{R}$$

$$A_{20n}^{2}(n) \quad \text{if } \mathcal{L}(1+\nu) \left(F_{230n}^{2}(n) + \overline{F}_{230}^{2}\right) + \frac{n\left(A_{30n}^{1}(n) + A_{50}^{1}\right)}{R}$$

$$\begin{aligned} Q_{A_{0}}^{(1)} \left(\theta_{1} \mathbf{x} \right) &= \frac{R}{2ER} \sum_{n} \left\{ \sum_{n} \left\{ \sum_{n} \left(\nabla n \theta \right) \left[R(1-\nu) \left(A_{n}^{4}(n) - B_{n}^{4}(n) \right) \right] \right. \\ &+ n \left[\left(C_{n}^{2}(n) - D_{n}^{2}(n) \right) + R^{2} \left(E_{n}^{4}(n) - E_{n}^{1}(n) \right) - \nu \left(F_{33}^{4}(n) + F_{330}^{4} \right) \right] \\ &- \frac{n \left(A_{30n}^{2}(n) + A_{30}^{2} \right)}{R} + \overline{A}_{10}^{4} \right] + Sin n\theta \left[R(1-\nu) \left(A_{n}^{2}(n) - B_{n}^{2}(n) \right) \right] \\ &+ n \left[\left(D_{n}^{4}(n) - C_{n}^{4}(n) \right) + R^{2} \left(E_{n}^{2}(n) - F_{n}^{2}(n) \right) - \nu \left(F_{330n}^{2}(n) + F_{330}^{2} \right) \right] \\ &+ \frac{n \left(A_{30n}^{4}(n) + \overline{A}_{30}^{4} \right)}{R} + A_{10}^{2} \right] \end{aligned}$$

VI.2.1 - Conditions aux limites sur les bords

Pour déterminer les constantes d'intégrations du problème, on doit prendre les conditions sur les deux bords x = 0 et x = L.

Les conditions peuvent être données soit en déplacements, soit en contraintes, soit les deux à la fois.

a) <u>On traitera en premier, le cas où sur une partie</u> des bords on connaît les déplacements, sur l'autre partie on connait les contraintes, pour cela on posera :

$$D_1 = \{(0, 3, n) \in]d_1, d_2[*[-h, +h]* \{0\} avec - \pi < d_1, d_2 < \pi \}$$

 D_2 le complémentaire de D_1 par rapport à $[-\pi, +\pi]*[-h, +h]*[o]$

et

$$D_{3} = \left\{ (\theta_{1}, \beta_{1}, \chi) \in \left[\lambda_{3}^{\prime}, \alpha_{4} \right] \times \left[- h_{1} + h \right] \times \left\{ L \right\} \text{ ave } -\Pi < \alpha_{3}, \alpha_{4} < \Pi \right\}$$

$$D_{4} \text{ le complémentaire de } D_{3} \text{ par import à } \left[-\Pi, \Pi \right] \times \left[- h_{1} + h \right] \times \left\{ L \right\}$$

Soient $\vec{u}_{1} = U_{1}(\theta_{1}, z) \vec{e}_{n} + U_{2}(\theta_{1}, z) \vec{e}_{0} + U_{3}(\theta_{1}, z) \vec{e}_{1}^{1e}$ Verteur déplacement donné dans D_{1} , avec :

$$\begin{pmatrix} u_{n_{d}}(\theta_{1}z_{d}) = \sum_{n \in \mathbb{N}} \left[u_{n_{d}}^{1}(z_{d}) \cos n\theta + u_{n_{d}}^{2}(z_{d}) \sin n\theta \right]$$

$$u_{2d}(\theta_{1}z_{d}) = \sum_{n \in \mathbb{N}} \left[\mathbf{W}_{n_{d}}^{1}(z_{d}) \cos n\theta + \mathbf{V}_{n_{d}}^{2}(z_{d}) \sin n\theta \right]$$

$$u_{3d}(\theta_{1}z_{d}) = \sum_{n \in \mathbb{N}} \left[\mathbf{W}_{n_{d}}^{1}(z_{d}) \cos n\theta + \mathbf{W}_{n_{d}}^{2}(z_{d}) \sin n\theta \right]$$

$$d_{1} < \theta < d_{2}$$

Expressions qui doivent être égales à $U_1(0, 3, x=0)$, $U_2(0, 3, x=0)$ et $U_3(0, 3, x=0)$ données par les relations 39 et ceci pour tout angle 9 compris entre X_1 et d_2 .

Ce qui donne les six équations suivantes :

$$\begin{split} & U_{h_{d}}^{A}(z_{d}) = \lambda_{n} \left\{ \left(A - \frac{\sqrt{3}}{(A-\nu)R} \right) \left[\left(a_{A} + b_{A} \right) A + \left(c_{1} + d_{1} \right) C \right] \right. \\ & + \frac{-\sqrt{3}}{(A-\nu)R} \left[n \left(a_{2} + b_{2} \right) E + n \left(c_{2} + d_{2} \right) G + a_{3} \left(M S_{1} - K S_{1} \right) \right. \right] \\ & - b_{3} \left(K Y_{1} + M S_{1} \right) - C_{3} \left(Q Y_{2} + S' S_{2} \right) - d_{3} \left(Y_{2} Q + S' S_{2} \right) \right] \\ & + \frac{A}{2E} \left[R(1-\nu) \left(A_{n}^{4}(\nu) - B_{n}^{4}(\nu) \right) + n R \left(C_{n}^{2}(\nu) - D_{n}^{2}(\nu) \right) + A_{A\nu}^{1} \right] \\ & + R^{2} \left(E_{n}^{A}(\nu) - E_{n}^{A}(\nu) \right) - \frac{n}{R} \left(A_{3\nu}^{2}(\nu) + \overline{A}_{3\nu}^{2}(\overline{\nu}) \right) - \nu \left(F_{3\nu}^{A}(\nu) + \overline{F}_{3\nu}^{1} \right) \right] \end{split}$$

VI-2-4

$$\begin{split} & \Pi_{n_{d}}^{2}(z_{d}) = \Psi_{n} \left\{ \left(a_{1} + b_{1} \right) A + \left(c_{1} + d_{1} \right) C - \frac{\sqrt{2}}{(A-J)R} \left[(a_{1} + b_{1}) A \right. \right. \\ & + \left(c_{1} + d_{1} \right) C + n \left(a_{2} + b_{2} \right) E + n \left(c_{2} + d_{2} \right) G + a_{3} \left(Ms_{1} - Ky_{1} \right) \right. \\ & - b_{3} \left(Ky_{1} + \pi S_{1} \right) - c_{3} \left(Qy_{2} + Sy_{2} \right) - d_{3} \left(y_{2} Q + Sy_{2} \right) \right] \right\} \\ & + \frac{1}{2E} \left[R \left(1 - J \right) \left(A_{n}^{Z}(o) - B_{n}^{Z}(o) \right) + n R \left(D_{n}^{A}(o) - C_{n}^{A}(o) \right) + \right. \\ & + \frac{R^{2} \left(E_{n}^{Z}(o) - E_{n}^{L}(o) \right) - \left. \nabla \left(E_{33\sigma_{n}}^{Z}(o) + E_{33\sigma_{n}}^{Z} \right) \right. \\ & + \frac{n \left(A_{3\sigma_{n}}^{A}(o) + A_{3\sigma_{n}}^{A} \right)}{R} + \left. A_{1\sigma}^{Z} \right] \end{split}$$

с Г. с égalités. VI-2-5 VI-2-6 VI-2-7 VI-2-8 $V_{n_{d}}^{1}(z) = \gamma_{n} \left\{ - \left(1 + \frac{3}{\pi} \right) \left(E(a_{2} + b_{2}) + G(c_{2} + d_{2}) \right) \right\}$ $W_{n_{4}}^{c}(z) = V_{n} \left\{ (b_{3} - a_{3}) K + (d_{3} - c_{3}) Q + \frac{3}{R} (b_{1} - c_{1}) (z_{1} A) \right\}$ $V_{n_{d}}^{2}(s) = \lambda_{n} \left\{ \left(1 + \frac{3}{R}\right) \left[E(q_{2} + b_{2}) + G(c_{2} + d_{2}) \right] + \frac{n^{2}}{R} \left[A(q_{1} + b_{3}) \right] \right\}$ $W_{n_{d}}(z_{1}) = \lambda_{n} \left\{ (b_{3} - a_{3}) K + (d_{3} - c_{3}) Q + \frac{1}{R} (b_{1} - c_{1}) (z_{1} R - s_{1} B) \right\}$ + $D(c_1+d_1)$ + $\frac{A_{2on}^2(o) + \overline{A_{2o}^2}}{2}$ De même l'égalité アマ + Enfin, l'égalité $\frac{3}{R}\left(d_{1}-c_{1}\right)\left(\chi_{2}C-\mathfrak{D}\mathfrak{S}_{2}\right)\right\}+\frac{1}{2ER}\left[\mathsf{A}_{\mathfrak{S}_{0}\mathfrak{n}}^{(1)}(0)+\mathsf{A}_{\mathfrak{S}_{0}}^{1}\right]$ ł $\left[(a_1 + b_1) A + D(c_1 + d_1) \right] \left\{ + \frac{A_{2on}^{(0)} + A_{2on}^{(0)}}{2} \right]$ $\frac{3}{R} \left(d_{1} - c_{1} \right) \left(\mathcal{V}_{2} c - D S_{2} \right) \left\{ + \frac{1}{2ER} \left[A_{30}^{2} (0) + A_{30}^{1} \right] \right\}$ $U_2(\theta_1, \chi_1, \kappa_{=}) = U_2(\theta_1, \chi)$ donne deux $u_3(\theta_1, \theta_2, x=0) = U_{3d}$ donne : - 51 8)

La même démarche vaut en $\chi = L$ et fournit les 12 équations manquantes c'est-à-dire que, avec les 12 précédentes, donnent un système linéaire de 24 équations à 24 inconnues : en général, on en déduira les valeurs des constantes.

La même démarche vaut en $\chi = L$ soit en se donnant les déplacements sur D_3 et les contraintes (σ_{22} , σ_{23} et σ_{33}) sur D_4 ou inversement - donne 12 autres équations entre les constantes d'intégration.

Pour tout n, on a 24 constantes d'intégration qui sont $a_i(n)$, $b_i(n)$ $d_i(n)$, $C_i(n)$, $d_i(n)$, $A_{io}^d(n)$, $\overline{F}_{330}^d(n)$, $\overline{F}_{230}^d(n)$ avec i = 1, 2, 3 et d = 1, 2.

Donc pour tout n, on a un système linéaire de 24 équations à 24 inconnues : en général on en déduira les valeurs des constantes.

b) où les conditions aux bords sont données seulement en déplacements.

Dans ce cas, la même démarche que précédemment fournit seulement 12 équations à 24 inconnues, en général on doit avoir non seulement des conditions sur les déplacements, mais aussi sur les rotations des bords, c'est-à-dire sur les dérivées premières déplacement, ce qui fournit les 12 autres équations manquantes.

De même, les données des contraintes seules en x = 0 et x = Lne suffit pas à déterminer toutes les constantes d'intégrations, en général, on doit écrire la continuité des contraintes et des moments des contraintes en x = 0 et x = L pour pouvoir déterminer toutes les constantes d'intégration.

VII.1.1. APPLICATION AUX COQUES "MOYENNEMENT EPAISSES"

Dans ce chapitre, on s'intéressera aux coques cylindriques pour lesquelles on prend l'hypothèse suivante :

H2: Soil $\mathcal{E}_1 = \left(\frac{\beta}{R}\right)^n \cdot \left(\frac{3}{R}\right)^n$, on négligera tous les termes en \mathcal{E}_1 tels que $\alpha + \beta \ge 3$.

Dans ce cas, et d'après les relations, les contraintes et déplacements se mettent sous la forme suivante :

VII-1-1-

$$\begin{aligned}
\nabla_{i_{j}} \left(\theta_{1} \chi_{1} \chi_{2}\right) &= \left[\left\{ \begin{array}{c} \psi_{i_{j}}^{(0)} \left(\theta_{1} \chi\right) + \frac{1}{R} + \frac{1}{C_{j}} \left(\theta_{1} \chi\right) + \frac{1}{R^{2}} + \frac{1}{C_{j}} \left(\theta_{1} \chi\right) \right] \\
&+ \frac{3}{R} \left[\left\{ \begin{array}{c} \psi_{i_{j}}^{(A)} \left(\theta_{1} \chi\right) + \frac{1}{R} + \frac{1}{C_{j}} \left(\theta_{1} \chi\right) \right\} + \frac{1}{R^{2}} + \frac{1}{C_{j}} \left(\theta_{1} \chi\right) \\
&+ \frac{3}{R} \left[\left\{ \begin{array}{c} \psi_{i_{j}}^{(A)} \left(\theta_{1} \chi\right) + \frac{1}{R} + \frac{1}{C_{j}} \left(\theta_{1} \chi\right) \right\} + \frac{1}{R^{2}} + \frac{1}{C_{j}} \left(\theta_{1} \chi\right) \\
&+ \frac{3}{R} \left[\left(\theta_{1} \chi_{1} \chi_{2}\right) + \frac{1}{R} + \frac{1}{R} \left(\theta_{i_{j}}^{(A)} \left(\theta_{1} \chi\right) + \frac{1}{R^{2}} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(A)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R^{2}} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(A)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R^{2}} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{1} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) \right) \right] \\
&+ \frac{3}{R} \left[\left(\theta_{i_{j}}^{(C)} \left(\theta_{i_{j}} \chi\right) + \frac{1}{R} \left(\theta_{i_{j}}^$$

<u>Remarque</u>: Dans toutes les théories sur les coques cylindriques rencontrées, on néglige les termes tels que $\begin{cases} (1) \\ i \\ j \\ 0 \end{cases}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (1) \\ i \\ j \\ 0 \end{pmatrix}$, $\begin{pmatrix} (2) \\ i \\ 0 \end{pmatrix}$, $\begin{pmatrix} (2) \\ i$

 $Q_{i_0}^{(i)}(\vartheta_{i_0}x)$ et $Q_{i_1}^{(l)}(\vartheta_{i_0}x)$ dans les expressions des composantes des déplacements. Ceci présente une certaine anomalie, puisque on garde souvent les termes en $\frac{3!}{R_2}$ ou en $\frac{4n^2}{R_2}$, alors qu'on négligeait avant des termes en $\frac{4}{R}$.

D'autre part, c'est en gardant justement les termes ci-dessus, qu'on pourra par la suite introduire les conditions aux limites sur les bords $\chi_{:0}$ et $\chi_{:L}$.

en posant $Q_{i_0}^{(0)}(\vartheta_1 x) = U(\vartheta_1 x)$, $Q_{y_0}^{(0)}(\vartheta_1 x) = V(\vartheta_1 x)$ et $Q_{3_0}^{(0)}(\vartheta_1 x) = W(\vartheta_1 x)$ (ce sont les déplacements de membrane usuels). VII-1-2

$$f_{110}^{(0)}(0,x) = f_{130}^{(0)}(0,x) = f_{120}^{(0)}(0,x) = 0$$

$$f_{250}^{(0)}(0,x) = \frac{E}{2(1+v)} \left[\frac{1}{R} \frac{\partial W}{\partial v} + \frac{\partial V}{\partial x} \right]$$

$$\frac{1}{4} \begin{pmatrix} (0) \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{E}{A - v^2} \left[\frac{\lambda}{R} \left(\frac{3v}{30} + u \right) + v \frac{3w}{3r} \right]$$

 $f_{330}^{(0)}(\theta_1 x) = \frac{E}{1-v^2} \left[\frac{3v}{v} + \frac{v}{R} \frac{3v}{v} + \frac{v}{R} \frac{1}{v} \right]$

$$\begin{aligned}
& \int_{|1|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{A}{R} \left(\frac{\pi v}{\pi b} + u \right) + v \frac{\partial w}{\partial x} \right] \\
& \int_{|1|}^{(1)} \left(\theta_{1} x\right) = -\frac{\varepsilon}{A - v^{2}} \left[v \frac{\pi u}{\partial x} + R \frac{\partial^{2} v}{\partial x^{2}} + \frac{A + v}{2} \frac{\partial^{2} v}{\partial x^{2} \theta} + \frac{A - v}{2R} \frac{\partial^{2} v w}{\partial y^{2}} \right] \\
& \int_{|1|}^{(1)} \left(\theta_{1} x\right) = -\frac{\varepsilon}{A - v^{2}} \left[\frac{A}{R} \left(\frac{\partial^{2} v}{\partial y^{2}} + \frac{\pi u}{\partial y} \right) + \frac{R(1 - v)}{2} \frac{\partial^{2} v}{\partial x^{2}} + \frac{A + v}{2} \frac{\partial^{2} v w}{\partial x^{2} \theta} \right] \\
& \int_{|1|}^{(1)} \left(\theta_{1} x\right) = -\frac{\varepsilon}{A - v^{2}} \left[\frac{u}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^{2} u}{\partial x} + \frac{A}{R} \frac{\partial^{2} u}{\partial \theta^{2}} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = -\frac{\varepsilon}{A - v^{2}} \left[\frac{w}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^{2} u}{\partial x} + \frac{A}{R} \frac{\partial^{2} u}{\partial \theta^{2}} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^{2} u}{\partial x} + \frac{A}{R} \frac{\partial^{2} u}{\partial \theta^{2}} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^{2} w}{\partial x} + \frac{\partial^{2} w}{\partial x^{2}} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^{2} w}{\partial x} + \frac{\partial^{2} w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} + v \frac{\partial w}{\partial x} + vR \frac{\partial^{2} w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right) + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right) + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right) + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right) + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right) + v \frac{\partial w}{\partial x} \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right] \\
& \int_{|2|}^{(1)} \left(\theta_{1} x\right) = \frac{\varepsilon}{A - v^{2}} \left[\frac{\pi v}{R} \left(\frac{\partial v}{\partial y} + u \right] + v \frac{\partial w}{\partial y} \right] \\
& \int_{|2|$$

$$\begin{aligned} f_{1|2}^{(2)}(\theta_{1}x) &= \frac{\mathcal{E}}{A-\mathcal{P}^{2}} \left[-\frac{3u}{R} - \frac{2}{R} \frac{3v}{30} - 3v \frac{3v}{7x} + \frac{1}{R} \frac{\partial^{3}v}{\partial \theta^{5}} + \frac{\partial^{5}(x)}{\partial x^{3\theta^{2}}} + \frac{\partial^{5}v}{\partial x^{2}y^{2}} \right] \\ &+ R^{2} \frac{\partial^{5}w}{\partial x^{5}} \right] \\ f_{122}^{(2)}(\theta_{1}x) &= \frac{\mathcal{E}}{A-\mathcal{P}^{2}} \left[\frac{u}{R} \frac{\partial u}{\partial \theta} + \frac{3}{R} \frac{\partial^{2}v}{\partial \theta^{2}} + \frac{A-\mathcal{P}}{2} R \frac{\partial^{2}v}{\partial x^{2}} + \frac{A}{R} \frac{\partial^{3}u}{\partial x^{2}y^{2}} + \frac{5v+3}{2} \frac{\partial^{2}w}{\partial x^{3}y^{2}} \right] \\ f_{132}^{(2)}(\theta_{1}x) &= \frac{\mathcal{E}}{A-\mathcal{P}^{2}} \left[v \frac{\partial u_{1}}{\partial x} + R \frac{\partial^{2}w}{\partial x^{2}} + \frac{4-v}{2} \frac{\partial^{2}v}{\partial x^{2}} + \frac{3(1-2)}{2R} \frac{\partial^{2}w}{\partial \theta^{2}} + \frac{\partial^{3}u}{\partial x^{2}y^{2}} + \frac{R^{2}}{2N} \frac{\partial^{3}u}{\partial x^{2}} \right] \\ f_{132}^{(2)}(\theta_{1}x) &= \frac{\mathcal{E}}{A-\mathcal{P}^{2}} \left[v \frac{\partial u_{1}}{\partial x} + R \frac{\partial^{2}w}{\partial x^{2}} + \frac{3-v}{2} \frac{\partial^{2}v}{\partial x^{2}y^{2}} + \frac{3(1-2)}{2R} \frac{\partial^{2}w}{\partial \theta^{2}} + \frac{\partial^{3}u}{\partial x^{2}} + \frac{R^{2}}{2N} \frac{\partial^{3}u}{\partial x^{2}} \right] \\ f_{1322}^{(2)}(\theta_{1}x) &= \frac{\mathcal{E}}{A-\mathcal{P}^{2}} \left[v \frac{\partial u_{1}}{\partial x} + R \frac{\partial^{2}v}{\partial x^{2}} + \frac{3-v}{2} \frac{\partial^{2}w}{\partial x^{2}} + \frac{3(1-2)}{2R} \frac{\partial^{2}w}{\partial \theta^{2}} - v \frac{\partial^{2}v}{\partial x^{2}} \frac{\partial^{3}w}{\partial x^{2}} \right] \\ f_{222}^{(2)}(\theta_{1}x) &= \frac{\mathcal{E}}{A-\mathcal{P}^{2}} \left[\frac{3u}{R} + \frac{A}{R} \frac{\partial v}{\partial \theta} + 3v \frac{\partial w}{\partial x} + v R \frac{\partial^{2}u}{\partial x^{2}} - \frac{\varepsilon}{R} \frac{\partial^{4}v}{\partial \theta^{5}} - v \frac{R^{2}}{2} \frac{\partial^{5}w}{\partial x^{3}} \right] \\ - (1+v) \frac{\partial^{3}}{\partial x} \frac{\partial w}{\partial \theta^{2}} - R \frac{\partial^{3}}{\partial x^{2}} \right] \end{aligned}$$

$$\frac{\binom{(2)}{332}\binom{(0)}{\gamma} = \frac{-E}{A-y^2} \left[\frac{1}{R} \frac{\partial V}{\partial v} + R \frac{\partial^2 u}{\partial x^2} + \frac{1}{R} \frac{\partial^5 V}{\partial v} + \frac{4}{v} \frac{\partial^5 (w)}{\partial x \partial v} + \frac{4+v}{v} R \frac{\partial^5 V}{\partial x^2 \partial v} + \frac{e}{v} R^2 \frac{\partial^3 w}{\partial v^3} \right]$$

$$\frac{\binom{(2)}{332}\binom{(0)}{\gamma} = \frac{E}{2(1+v)} \left[\frac{e}{R} \frac{\partial W}{\partial v} - \frac{e}{A-v} \frac{\partial^2 u}{\partial x \partial v} - R^2 \frac{\partial^5 V}{\partial x^3} + \frac{v-3}{4-v} R \frac{\partial^3 W}{\partial x^2 \partial v} + \frac{v-3}{4-v} \frac{\partial^3 W}{\partial v \partial v^2} - \frac{4}{R} \frac{\partial^5 w}{\partial v^3} \right]$$

VII-1-5

$$\begin{aligned} & \mathcal{Q}_{11}^{(1)}(\theta_{1}\mathbf{x}) = \frac{-\nu}{4-\nu} \left[\frac{\pi\nu}{2\Psi} + \mu + \mathcal{R} \frac{\partial W}{\partial \pi} \right] \quad ; \quad \mathcal{Q}_{21}^{(1)}(\theta_{1}\mathbf{x}) = \nu - \frac{\partial \mu}{2\Psi} \quad ; \quad \mathcal{Q}_{31}^{(1)}(\theta_{1}\mathbf{x}) = -\mathcal{R} \quad \frac{\partial \mu}{\partial x} \\ & \mathcal{Q}_{12}^{(2)}(\theta_{1}\mathbf{x}) = \frac{4}{A-\nu} \left[(\mu + (1-\nu)\frac{\partial \Psi}{2\Psi} + \mathcal{R}\nu\frac{\partial W}{2\pi} + \mathcal{R}^{2}\nu\frac{\partial^{2}\mu}{\partial x^{2}} + \nu\frac{\partial^{2}\mu}{2\Psi^{2}} \right] \\ & \mathcal{Q}_{22}^{(2)}(\theta_{1}\mathbf{x}) = \frac{4}{A-\nu} \left[(\nu-2)\left(\frac{\partial\mu}{2\Psi} + \frac{\partial^{2}\nu}{2\Psi}\right) - \mathcal{R} \quad \frac{\partial^{2}(W}{2\pi\nu} - (1-\nu)\mathcal{R}^{2}\frac{\partial^{2}W}{2\nu} \right] \\ & \mathcal{Q}_{32}^{(2)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left[(\nu\mathcal{R} \quad \frac{\partial\mu}{2\nu} + (2-\nu)\mathcal{R}^{2}\frac{\partial^{2}W}{2\pi\nu} + \mathcal{R}\frac{\partial^{2}}{2\nu} + \mathcal{R}\frac{\partial^{2}}{2\nu} + (1-\nu)\frac{\partial^{2}W}{2\mu} \right] \\ & \mathcal{Q}_{32}^{(2)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left[\nu\mathcal{R} \quad \frac{\partial\mu}{2\nu} + (2-\nu)\mathcal{R}^{2}\frac{\partial^{2}W}{2\pi\nu} + \mathcal{R}\frac{\partial^{2}}{2\nu} + \mathcal{R}\frac{\partial^{2}}{2\nu} + (1-\nu)\frac{\partial^{2}W}{2\mu} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left[\nu\mathcal{R} \quad \frac{\partial\mu}{2\nu} + (2-\nu)\mathcal{R}^{2}\frac{\partial^{2}W}{2\mu\nu} + \mathcal{R}\frac{\partial^{2}}{2\nu} + \mathcal{R}\frac{\partial^{2}}{\partial^{2}\nu} + (1-\nu)\frac{\partial^{2}}{2\nu} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left[\nu\mathcal{R} \quad \frac{\partial\mu}{2\nu} + (2-\nu)\mathcal{R}^{2}\mathcal{R} \left[\frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \mathcal{R}\frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left[\nu\mathcal{R} \quad \frac{\partial\mu}{2\nu} + (2-\nu)\mathcal{R} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) + \nu\mathcal{R} \quad \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left\{ \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} + \frac{\partial\mu}{2\nu} \right] \\ & \mathcal{Q}_{32}^{(1)}(\theta_{1}\mathbf{x}) = \frac{-4}{A-\nu} \left\{ \frac{\partial\mu}{2\nu} + \frac{\partial\mu$$

$$\begin{aligned} & \left\{ \frac{(2)}{23_{1}}(\theta, x) = \frac{E}{2(1+\nu)R} \left[\frac{\Im Q_{31}^{(2)}(\theta, v)}{N} + R \frac{\Im Q_{21}^{(1)}(\theta, x)}{N} - R \frac{\Im Q_{20}^{(1)}(\theta, v)}{N} \right] - \int_{123_{0}}^{(1)}(\theta, x) \\ & \left\{ \frac{1}{22_{1}}^{(2)}(\theta, x) = \frac{\Im}{A-\nu} \int_{11_{11}}^{12}(\theta, x) + \frac{E}{(A-\nu^{2})R} \left[\frac{\Im Q_{21}^{(2)}(\theta, v)}{N} + \nu R \frac{\Im Q_{11}^{(2)}(\theta, v)}{N} + Q_{11}^{(1)}(\theta, v) \right] \right] \\ & \cdot + \frac{A}{A-\nu^{2}} \left[\nabla \left(\frac{1}{11_{10}}^{(1)}(\theta, x) + \frac{1}{13_{10}}^{(1)}(\theta, x) \right) - \frac{1}{222_{0}}^{(2)}(\theta, v)} \right] \\ & \left\{ \frac{1}{35_{14}}^{(2)}(\theta, x) = \frac{\Im}{A-\nu^{2}} \left[\frac{(1+\nu)}{1} \frac{\Re}{11_{10}}^{(2)}(\theta, x) - \frac{1}{4} \frac{(1)}{222_{0}}^{(2)}(\theta, x) + \nu \left(\frac{1}{10_{10}}^{(1)}(\theta, x) + \frac{1}{33_{0}}^{(1)}(\theta, v) \right) \right] \\ & \cdot + \frac{E}{(A-\nu^{2})R} \left[\frac{\Im Q_{21}^{(2)}(\theta, x)}{N} + Q_{11}^{(2)}(\theta, x) + \frac{R}{222_{0}} \frac{\Im Q_{31}^{(2)}(\theta, x)}{N} \right] \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)^{2}}(\theta, x) - \frac{\Im Q_{10}^{(2)}(\theta, x)}{N} + \frac{Q_{11}^{(2)}(\theta, x)}{N} + \frac{R}{2} \frac{\Im Q_{31}^{(2)}(\theta, x)}{N} \right] \right] \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)^{2}}(\theta, x) - \frac{\Im Q_{10}^{(2)}(\theta, x)}{N} + \frac{Q_{11}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)^{2}}(\theta, x) - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)^{2}}(\theta, x) - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)} - \frac{2}{2} \frac{(1+\nu)}{N} \frac{R}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)} - \frac{2}{N} \frac{(1+\nu)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)} - \frac{2}{N} \frac{(1+\nu)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)} - \frac{2}{N} \frac{(1+\nu)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} - \frac{\Im Q_{10}^{(1)}(\theta, x)}{N} \right\} \\ & \left\{ \frac{1}{3} \frac{(2)}{(1+\nu)} - \frac{2}{N} \frac{(2)}{N} - \frac{2}{N} \frac{(2)}{N} \right\}$$

VII-1-2. EQUATIONS D'EQUILIBRE

D'après les relations IV-1-1 on peut mettre les contraintes sous la forme suivante :

$$\nabla_{i_{j}}(\theta_{i_{x_{l_{s}}}}) = \sigma_{i_{j}}^{(0)}(\theta_{i_{x}}) + 3 \sigma_{i_{j}}^{(0)}(\theta_{i_{x}}) + 3^{2} \sigma_{i_{j}}^{(0)}(\theta_{i_{x}}) + o(\varepsilon_{i_{s}})$$

En reportant dans les équations d'équilibre, on obtient un système qui se met sous la forme :

$$A(\theta_{1}x) + 3B(\theta_{1}x) + 3^{2}C(\theta_{1}x) + o(\varepsilon_{1}) = 9 \quad \forall 3 \in]-\theta_{1}+\theta_{1}$$

d'où on tire trois équations (en θ et \mathbf{x}) par équation d'équilibre c'est-à-dire que l'on aura un système de 9 équations différentielles de la forme $A(\theta,x) = B(\theta,x) = C(\theta,x) = 0$.

Ainsi à partir de la première équation d'équilibre, et en tenant compte des relations VII-1-1 à 1-6, on tire les trois équations suivantes :

$$-1 - 3 + \frac{(2)}{112}(\theta_{1}x) - \frac{(2)}{1222}(\theta_{1}x) + \frac{3 + \frac{(2)}{122}(\theta_{1}x)}{2\theta} + R \frac{3 + \frac{(2)}{132}(\theta_{1}x)}{\delta x} + 2R \frac{3 + \frac{(1)}{131}(\theta_{1}x)}{\delta x} = 0$$

$$-2 - \frac{3 + \frac{(2)}{120}(\theta_{1x})}{30} + R \frac{3 + \frac{(2)}{130}(\theta_{1x})}{3x} + \frac{1}{(10)}(\theta_{1x}) - \frac{1}{122}(\theta_{1x}) = 0$$

$$-3 - 2 + \frac{(2)}{(0,x)} - \frac{1}{221} + \frac{2}{221} + \frac{2}{121} + \frac{2$$

De même on tire de la deuxième et troisième équation d'équilibre les équations suivantes :

$$-4 - \frac{4}{4} + \frac{\binom{(2)}{122}}{\binom{(2)}{122}} + \frac{3}{72} + \frac{2}{72} + \frac{3}{72} + \frac{3}{72}$$

$$-8 - \frac{10}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3$$

VII.1.3. CONDITIONS AUX LIMITES POUR $2 = \pm h$

D'après les conditions sur les faces intérieure et extérieure, on a les relations suivantes entre les $\mathcal{P}_i^{\dagger}(\theta, \chi)$ et les $\int_{1}^{\binom{n}{2}} (\theta, \chi)$.

$$\begin{bmatrix} P_{r}^{+} - P_{r}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{110}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{R} \frac{1}{4}_{110}^{(2)}(\theta_{1}x) \end{bmatrix} + \frac{\frac{1}{R}^{2}}{R^{2}} \frac{1}{4}_{112}^{(2)}(\theta_{1}x) \\ \begin{bmatrix} P_{r}^{+} + P_{r}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{111}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{R} \frac{1}{120}^{(2)}(\theta_{1}x) \end{bmatrix} \\ \begin{bmatrix} P_{\theta}^{+} - P_{\theta}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{120}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{R} \frac{1}{120}^{(2)}(\theta_{1}x) \end{bmatrix} \\ \begin{bmatrix} P_{\theta}^{+} + P_{\theta}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{121}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{R} \frac{1}{120}^{(2)}(\theta_{1}x) \end{bmatrix} \\ \begin{bmatrix} P_{\theta}^{+} + P_{\theta}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{121}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{4}_{120}^{(2)}(\theta_{1}x) \end{bmatrix} \\ \begin{bmatrix} P_{x}^{+} - P_{x}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{120}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{4}_{120}^{(2)}(\theta_{1}x) \end{bmatrix} \\ \begin{bmatrix} P_{x}^{+} + P_{x}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{120}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{4}_{120}^{(2)}(\theta_{1}x) \end{bmatrix} \\ \begin{bmatrix} P_{x}^{+} + P_{x}^{-} \end{bmatrix} = \frac{2 \frac{1}{R}}{R} \begin{bmatrix} \frac{1}{4}_{120}^{(1)}(\theta_{1}x) + \frac{1}{R} \frac{1}{4}_{120}^{(2)}(\theta_{1}x) \end{bmatrix} \end{bmatrix}$$

Vu la 2**I** - périodicité en θ , des $P_i^{\sharp}(x, \theta)$, on les développera en série de Fourier (on garde les mêmes notations qu'au chapitre précédent). Ainsi, d'après III-1-5 et III-1-6 on a :

S VII.1.4 - REVOLUTION DES EQUATIONS D'EQUILIBRE

A partir des équations -1; 4, 7 et en remplaçant les $\begin{cases} m \\ i \\ m \end{cases}$ ($m \\ i \\ m \end{cases}$) par leurs expressions en U, V et W, on obtient un système homogène, de trois équations différentielles en U, V et W :

$$1-9 - 12 \frac{u}{R} - 2v R \frac{\partial^{2} u}{\partial x^{2}} + \frac{u}{R} \frac{\partial^{2} u}{\partial y^{2}} + \frac{1}{R} \frac{\partial^{4} u}{\partial y^{4}} + 2R \frac{\partial^{4} u}{\partial x^{2} y^{2}} + \frac{1}{R^{3}} \frac{\partial^{4} u}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{4} u}{\partial x^{2} y^{2}} + \frac{1}{2} \frac{\partial^{2} u}{\partial x^{2} y^{2}} + \frac{1}{2} \frac{\partial^{2} u}{\partial x^{2} y^{2}} + \frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} + \frac{1}{2} \frac{\partial^{$$

Vu la 2 $extsf{T}$ périodicité en $extsf{\theta}$ de $extsf{u}$, $extsf{V}$, $extsf{W}$ on les prendra sous

la forme :

$$U(\theta_{1}x) = \sum_{n \in N} \left[U_{n}^{1}(n) \cos n\theta + U_{n}^{2}(n) \operatorname{gin} n\theta \right]$$

$$V(\theta_{1}x) = \sum_{n} \left[V_{n}^{1}(n) \cos n\theta + V_{n}^{2}(n) \operatorname{gin} n\theta \right]$$

$$W(\theta_{1}x) = \sum_{n} \left[V_{n}^{1}(n) \cos n\theta + V_{n}^{2}(n) \operatorname{gin} n\theta \right]$$

113

Avec les mêmes notations qu'au chapitre précédent, on obtient à la place des équations 1-9, 1-10, 1-11 le système de 6 équations suivant :

$$-\left(\frac{4\pi}{R} + \frac{4\pi^{2}}{R} - \frac{\pi}{R}\right) u_{n}^{4}(x) = 2R (\nu + n^{2}) \overset{\mu}{u}_{n}^{1}(x) + R^{3} \overset{(\mu)}{u}_{n}^{1}(x) - \frac{\pi}{R} (+ t^{2} t^{2}) V_{n}^{1}(y) + 2(2 - \nu) R^{2} \overset{(\mu)}{V}_{n}^{1}(x) = 3 [4 \nu + (2 + \nu) n^{2}] \overset{\mu}{W}_{n}^{1}(x) + (2 + \nu) R^{2} \overset{(\mu)}{W}_{n}^{1}(x) = 3$$

$$= \frac{12 + 4\pi^{2} - n^{\nu}}{R} U_{n}^{2}(x) = 2R (\nu + n^{2}) \overset{(\mu)}{U}_{n}^{2}(x) + R^{3} U_{n}^{1}(x) + \frac{\pi}{R} (+ t^{2} t^{2}) V_{n}^{2}(x) = 3$$

$$= 2(2 - \nu) R n \overset{\mu}{V}_{n}^{2}(x) = 3(4 \nu + (2 + \nu) n^{2}) \overset{\mu}{V}_{n}^{2}(x) + (2 + \nu) R^{2} \overset{\mu}{W}_{n}^{1}(x) = 6$$

$$= 2(2 - \nu) R n \overset{\mu}{V}_{n}^{2}(x) = 3(4 \nu + (2 + \nu) n^{2}) \overset{\mu}{V}_{n}^{2}(x) + (2 + \nu) R^{2} \overset{\mu}{W}_{n}^{1}(x) = 6$$

$$= \frac{n (43 - 4\pi^{2})}{R} u_{n}^{2}(x) + 2(1 + \nu) R n \overset{\mu}{U}_{n}^{2}(x) = \frac{n^{2}(13 + 2\pi^{2})}{R} V_{n}^{1}(x) + R[3(1 - \nu) - \frac{\nu - 5}{2} n^{2}] x$$

$$= \frac{n (43 - 4\pi^{2})}{R} u_{n}^{2}(x) + 2(1 + \nu) R n \overset{\mu}{U}_{n}^{4}(x) = \frac{n^{2}(13 + 2\pi^{2})}{R} V_{n}^{1}(x) + R[3(1 - \nu) - \frac{\nu - 5}{2} n^{2}] x$$

$$= \frac{n (43 - 4\pi^{2})}{R} u_{n}^{2}(x) = 2(1 + \nu) n R \overset{\mu}{U}_{n}^{4}(x) = \frac{n^{2}(13 + 2\pi^{2})}{R} V_{n}^{1}(x) + R[3(1 - \nu) - \frac{\nu - 5}{2} n^{2}] \overset{\mu}{V}_{n}^{4}(x) = 6$$

$$= \frac{n (43 - 4\pi^{2})}{R} u_{n}^{1}(x) = 2(1 + \nu) n R \overset{\mu}{U}_{n}^{4}(x) = \frac{n^{2}(13 + 2\pi^{2})}{R} V_{n}^{1}(x) + R[3(1 - \nu) - \frac{\nu - 5}{2} n^{2}] \overset{\mu}{V}_{n}^{4}(x) = 6$$

$$= \frac{n (43 - 4\pi^{2})}{R} u_{n}^{1}(x) = 2(1 + \nu) n R \overset{\mu}{U}_{n}^{4}(x) = \frac{n^{2}(13 + 2\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) + \frac{n^{2}(2 - \nu)}{2} R^{2} \overset{\mu}{V}_{n}^{2}(x) = 6$$

$$= \frac{n (43 - 4\pi^{2})}{R} u_{n}^{1}(x) = 2(1 + \nu) n R \overset{\mu}{U}_{n}^{4}(x) = \frac{n^{2}(13 + 2\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) = \frac{n^{2}}{2} R^{2} \overset{\mu}{V}_{n}^{2}(x) = 0$$

$$= \frac{n (43 - 4\pi^{2})}{R} \overset{\mu}{V}_{n}^{1}(x) = 2(1 + \nu) n R \overset{\mu}{U}_{n}^{4}(x) + \frac{(3 - 2)^{2}}{R} \overset{\mu}{V}_{n}^{2}(x) + \frac{(3 - 2)^{2}}{R} \overset{\mu}{V}_{n}^{2}(x) = 0$$

$$= \frac{n (43 - 4\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) = \frac{n (4 + 2\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) = \frac{n (4 + 2\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) = 0$$

$$= \frac{n (43 - 4\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) = \frac{n (4 - 2\pi^{2})}{R} \overset{\mu}{V}_{n}^{2}(x) = \frac{n (4 - 2\pi^{2})}{R} \overset{\mu}{V}_$$

Le système d'équation 1-2, ...6, se décompose en deux, l'un
en
$$U'_{n}(n)$$
, $V''_{n}(x)$, $W''_{n}(x)$ et l'autre en $U''_{n}(x)$; $V''_{n}(x)$, $W''_{n}(x)$.

On cherchera la solution sous la forme :

$$U_n^{d'}(x) = A_n^{d'} e^{\pi x}$$
; $V_n^{d'}(x) = B_n^{d'} e^{\pi x}$; $(x)_n^{d'}(x) = C_n^{d'} \cdot e^{\pi x}$

avec

$$d = 1, 2$$

D'où on tire

•

$$\begin{pmatrix} a & b & c \\ \\ d & e & f \\ \\ a & h & k \end{pmatrix} \begin{pmatrix} A''_n \\ B''_n \\ C''_n \end{pmatrix} = \begin{pmatrix} o \\ o \\ o \\ o \end{pmatrix}$$

avec les notations :

1-

7
$$Q = \frac{n^{4} - 4n^{2} - 12}{R} - 2R(\nu + n^{2})\pi^{2} + R^{3}\pi^{4}$$

$$b = -\frac{n(1 + 45n^{2})}{R} + 2(2 - \nu)Rn\pi^{2} \quad ; \quad C = -3[u\nu + (2 + \nu)n^{2}]\pi + (2 + \nu)R^{2}\pi^{3}$$

$$d = -\frac{n(1 - 4n^{2})}{R} - 2(1 + \nu)nR\pi^{2} \quad ; \quad C = -\frac{n^{2}(1 + 2n^{2})}{R} + [3(1 - \nu) + \frac{5 - \nu}{2}n^{2}]R\pi^{2}$$

$$-\frac{4 - \nu}{2}R^{3}\pi^{4}$$

$$\frac{1}{2} = -n\pi\left[6 + 13\nu + (3 + \nu)n^{2}\right] + \frac{\nu + 3}{2}R^{2}n\pi^{3}$$

$$q = 3\left[\nu - (1 - \nu)n^{2}\right]\pi + (1 - \nu)R^{2}\pi^{3}$$

$$h = \frac{3 - v}{2} N\pi - \frac{v + 3}{2} N R^2 \pi^3 + \frac{v + 3}{2} N^3 \pi$$

$$h = -\frac{N^2 (1 - v) (10 + N^2)}{2R} + \frac{R}{2} \left[6 - (v - 5) N^2 \right] \pi^2 - 2R^3 \pi^4$$

De même les équations 2; 3; 6 se mettent sous la forme :

$$\begin{pmatrix} a & -b & c \\ -d & e & -4 \\ g & -h & k \end{pmatrix} \begin{pmatrix} A_n^2 \\ B_n^1 \\ C_n^1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Les problèmes (A) et (B) ont le même déterminant caractéristique qui se met sous la forme :

$$\Delta(n) = \alpha (ek - fR) + b (gf - dR) + c (dR - eg)$$

On cherchera les valeurs de r qui annulent le déterminant caractéristique Δ r).

A partir du système A on voit que :

$$\frac{A_n'}{ek-fh} = \frac{B_n^2}{fq-dk} = \frac{c_n'}{dk-eq} = \lambda_n$$

de même à partir de B on a :

$$\frac{A_n^2}{e_k-\frac{1}{h}} = \frac{-B_n^1}{\frac{1}{h}} = \frac{C_n^2}{\frac{1}{h}-e_g} = \gamma n$$

Donc la solution se met sous la forme :

$$U(\theta_{1}x) = \sum_{N \in \mathbb{N}} \left[(h_{N} \omega_{N} \theta + \psi_{N} Sin n\theta) x \left(ek - \frac{1}{4}h \right) e^{\pi i n} \right]$$

$$V(\theta_{1}x) = \sum_{N \in \mathbb{N}} \left[(-V_{N} \omega_{N} \theta + d_{N} Sin n\theta) \left(g - \frac{1}{4}h \right) e^{\pi i n} \right]$$

$$W(\theta_{1}x) = \sum_{N \in \mathbb{N}} \left[(d_{N} \omega_{N} \theta + \psi_{N} Sin n\theta) (dh - eg) e^{\pi i x} \right]$$

ou p = nombre des racines ici qui annulent le déterminant caractéristique (si toutes ces racines sont simples; le cas des racines multiples se traitant comme d'habitude).

a) Racines du déterminant caractéristique :

i=1 a P.

Dans l'expression Δ (,), en remplaçant a, b k , par leurs valeurs données par 7, on obtient :

$$\Delta(r) = 0 = A_{12} \gamma^{12} + A_{10} \gamma^{10} + A_{8} \gamma^{8} + A_{6} \gamma^{6} + A_{4} \gamma^{4} + A_{2} \gamma^{2} + A_{6}$$

Ceci avec Y = Rn. On posera $X = R^2 n^2 = Y^2$, le déterminant caractéristique se met donc sous la forme d'un polynôme de degré 6 en X, dont les coefficients sont les suivants :

$$A_{12} = (1-v)$$

$$A_{10} = \frac{1}{4} \left[(v-5)^2 n^4 + (v^2 + 8v + 31) n^2 + (1-v) (57 - 15v) \right]$$

$$A_{T} = \frac{65 - 629 - 3y^{2}}{4} u^{4} + \frac{113 - 135 + 27y^{2} - 4y^{3}}{4} \frac{u^{2}}{z}$$

$$+ \frac{(4 - v)}{2} \left(24y^{2} + 39y - 17 \right)$$

$$A_{6} = \frac{-35 + 115y + 15y^{2}}{42} u^{6} + \frac{-122 + 51y - 5y^{2} + 5y^{3}}{2} u^{4}$$

$$- \frac{43 + 116y + 9y^{2} - 27y^{3}}{42} u^{7} + \left(45y^{5} - 89y^{2} - 90y + 9y \right)$$

$$A_{4} = \frac{3 - 26y - 9y^{2}}{4} u^{7} + \frac{395 - 242y + 177}{4} \frac{x - 76y^{3}}{4} u^{6}$$

$$+ \frac{515 + 17y - 468y^{2} + 225y^{3}}{2} u^{7} + \frac{497 - 558y + 555y^{2} + 167y^{5}}{4} u^{2}$$

$$- 107(4 - y) (4 - y^{2})$$

$$A_{2} = -(1 - y) u^{2} + (14 - 7y) u^{10} + \frac{4155 - 250y + 133y^{2}}{4} u^{8} - (24 + 233y + 27y^{5}) u^{6}$$

$$- \frac{46777 + 44(5y)^{2} + 2571y^{4}}{2} u^{4} + \left[-1155 + 540y + 131yy^{5} \right] u^{2}$$

$$A_{0} = \frac{u^{5}(1 - y) (10 - u^{1})}{2} \left(2u^{6} - 27u^{4} + 4x^{5}u^{5} - 23 \right)$$

$$\frac{Pour n = 0}{V}, 1' = \frac{1}{2} \left[x'' + \frac{5! - 15 y}{y} x^{5} + \frac{2! y^{2} + 30 y - 18}{2} x^{2} + (-3 y^{2} - 63 y + 12) x - 108(1-3) \right] = 0$$
Si l'on pose
$$\frac{1}{2} (x) = x'' + \frac{5! - 15 y}{4} x^{5} + \frac{2! y^{2} + 30 y - 18}{2} x^{2} + (-3 y^{2} - 63 y + 12) x - 108(1-y^{2})$$

$$\frac{1}{2} (x) = 4 x^{5} + \frac{3}{4} \left(5 + -15 y \right) x^{2} + (2! y^{2} + 30 y - 18) x + (-3 y^{2} - 63 y + 12)$$

$$\frac{1}{2} (x) = 4 x^{5} + \frac{3}{4} \left(5 + -15 y \right) x^{2} + (2! y^{2} + 30 y - 18) x + (-3 y^{2} - 63 y + 12)$$

$$\frac{1}{2} (x) = 4 x \left[\left(x + \frac{53}{4} - \frac{150}{16} \right)^{2} + \frac{(3 y^{2} + 10 y - 18) x + (-3 y^{2} - 63 y + 12)}{16} \right] + \pi u_{10} x y x > 0$$

 $f'(\mathbf{x})$ ne s'annule que pour un seul X réel > et f admet 2 racines réelles de signe contraire donc 2 autres imaginaires compliquées ce qui donne pour **n**

 $\pi^2 = k^2$, $\pi^2 = -k^2$, $\pi^2 = d \pm i\beta$.

 $n = \pm k$, $n = \pm ih$, $n = \pm \sqrt{\alpha \pm i\beta}$.

Dans le cas général $A_{12} > o$ et $A_{0} < o$ d'où l'on déduit qu'il y a toujours deux racines réelles en de signe contraire (au moins).

VII.1.5. RESOLUTION DES AUTRES EQUATIONS D'EQUILIBRE

A ce niveau, on suppose que $u(\theta, z)$, $v(\theta, z)$ et $w(\theta, z)$ données par [C] sont connus, par les relations VII.I.2, VII.1.3 et VII.1.4 on détermine les $f_{ijp}(\theta, z)$ et $\alpha_{ijp}(\theta, z)$ en fonction des $u_i(\theta, z)$. Pour simplifier la résolution, on pose symboliquement \mathbf{m}

$$P_{I_{\infty}}(\theta, \infty) = \frac{h}{R} P_{I_{\infty}}(\theta, \infty) + \frac{h}{R^2} P_{I_{\infty}}(\theta, \infty) \cdot$$

En reportant dans les relations VII.1.7 on obtient :

 $f_{410}^{(4)}(\theta, x) = \frac{P_r^{+(1)} - P_r^{-(1)}}{2}$ $f_{120}^{(4)}(\theta, x) = \frac{P_p^{+(1)} - P_p^{-(1)}}{2}$ $f_{420}^{(4)}(\theta, x) = \frac{P_r^{+(1)} - P_r^{-(1)}}{2}$ $f_{420}^{(4)}(\theta, x) = \frac{P_r^{+(1)} + P_r^{-(1)}}{2}$ $f_{421}^{(4)}(\theta, x) = \frac{P_r^{+(1)} + P_r^{-(1)}}{2}$ $f_{421}^{(4)}(\theta, x) = \frac{P_r^{+(1)} + P_r^{-(1)}}{2}$ $f_{421}^{(4)}(\theta, x) = \frac{P_r^{+(1)} + P_r^{-(1)}}{2}$ $f_{421}^{(2)}(\theta, x) = \frac{P_r^{+(1)} + P_r^{-(1)}}{2}$ $f_{421}^{(2)}(\theta, x) = \frac{P_r^{+(1)} - P_r^{-(1)}}{2}$ $f_{422}^{(2)} = \frac{P_r^{+(2)} - P_r^{-(2)}}{2}$ $f_{420}^{(2)} + \frac{1}{2} \int_{122}^{(2)} = \frac{P_r^{+(2)} - P_r^{-(2)}}{2}$

$$f_{130}^{(2)} + \frac{1}{2} f_{132}^{(2)} = \frac{P_x^{+(2)} - P_x^{-(2)}}{2}$$

$$f_{144}^{(2)} = \frac{P_r^{+(2)} + P_r^{-(2)}}{2}$$

$$f_{124}^{(2)} = \frac{P_r^{+(2)} + P_r^{-(2)}}{2}$$

$$f_{134}^{(2)} = \frac{P_r^{+(2)} + P_r^{-(2)}}{2}$$

L

D'où, pour intégration des équations d'équilibre 2, 3, 5, 6, 9, on tire les composantes des contraintes manquantes, la démarche étant la même que pour les coques minces.

Les résultats ainsi obtenus, plus les relations VII.1.5 et VII.1.6 permettent de déterminer les composantes des déplacements.

En conclusion : la méthode de résolution du problème des coques cylindriques ainsi proposée, permet de déterminer toutes les contraintes et déplacements, pour tout ordre n en $\mathbf{e} = \frac{h}{R}$. Tout en introduisant les conditions aux limites sur les faces $\mathbf{g} = \mathbf{th}$ et les bords extrêmes de la coque. La seule difficulté, pour des coques très épaisses réside dans la détermination des racines, du polynôme caractéristique en \mathbf{x} , problème qui souvent ne peut être résolu que numériquement pour chaque cas de figure qui se présente.

Donc pour avoir une solution rigoureuse, on doit traiter chaque cas particulier à part, en jouant par exemple sur les symétries en ∞ qui peuvent se présenter, ou des comportements spécifiques en ∞ des cas rencontrés.

VIII - REMARQUES SUR LA RECHERCHE DES SOLUTIONS EN DOUBLE SERIE DE FOURIER.

Dans la monographie de Gill est exposée la méthode de P.P.**B**JELARD (1955), qui recherche les composantes des déplacements de membrane sous forme de double série de Fourier de la forme :

$$U(\theta, x) = \sum_{n,m} U_{mn} \quad \text{sinn} \quad \theta \quad \text{sin} \quad \frac{m\pi x}{L}$$

$$V(\theta, x) = \sum_{n,m} V_{mn} \quad \cos n\theta \quad \sin \frac{m\pi x}{L}$$

$$W(\theta, x) = \sum_{m,u} W_{mn} \quad \cos n\theta \quad \cos \frac{m\pi x}{L}$$

Cela reviendrait, suivant les notations utilisées dans les chapitres **M** et VII à rechercher les $u_{\pi}^{*}(x)$, $v_{\pi}^{*}(x)$ et $v_{\pi}^{*}(x)$ (4:4,2) sous la forme :

(Compte tenu des propriétés de continuité sur [0, L] des $u_n^4(z)$, $v_n^4(z)$ et $v_n^4(z)$, on sait qu'il est toujours possible de les mettre sous cette forme en remarquant que, en z=0 et z=L, ces séries convergents vers la demi-somme des valeurs de $u_i^4(z)$ en z=0 et z=L. Autrement dit ces développements sont valables sauf aux extrêmités de la coque, excepté dans les cas où les conditions en z=0 et z=L sont identiques).

Les coefficients des doubles séries de Fourier diffèrent pour chaque cas de coque, c'est-à-dire pour chaque ordre en a = (a) (b)

VIII-1-1 : APPLICATION AUX COQUES MINCES

Dans ce cas on posera
(II)
$$\begin{pmatrix} A_{n}^{4}(z) + B_{n}^{4}(z) = \frac{-Eh}{(4-y^{2})R^{2}} \sum_{m=0}^{\infty} \left[\Phi_{mn}^{44} \sin \frac{m\pi z}{L} + \Phi_{mn}^{42} \cos \frac{m\pi z}{L} \right] \\ C_{n}^{4}(z) + D_{n}^{4}(z) = \frac{2Eh}{3(4-y^{2})R^{2}} \sum_{m=0}^{\infty} \left[\beta_{mn}^{44} \sin \frac{m\pi z}{L} + \beta_{mn}^{42} \cos \frac{m\pi z}{L} \right] \\ E_{n}^{4}(z) + F_{n}^{4}(z) = \frac{-2Eh}{(4-y^{2})R^{2}} \sum_{m=0}^{\infty} \left[\gamma_{mn}^{44} \sin \frac{m\pi z}{L} + \gamma_{mn}^{42} \cos \frac{m\pi z}{L} \right] \\ (q'=1, 2)$$

co les $A'_n(x), \ldots, F'_n(x)$ sont les coéfficients de Fourier (en Θ) des sollicitations sur les faces $x=\pm h$.

La substitution des développements (I) et (II) dans les équations (13) à (18) , en tenant compte des relations 36, du chapitre VI, aboutit à :

$$VIII-3 = \frac{m^{2}\pi^{2}R^{2}}{L^{2}} U_{mn}^{21} - \frac{(4-\nu)m^{2}\pi^{2}R^{2}}{L^{2}} V_{mn}^{41} - \frac{m\pi\pi R\nu}{2L} W_{mn}^{22} = \beta_{mn}^{21}$$

$$V_{mn}^{22} + \left[n^{2} + \frac{m^{2}\pi^{2}R^{2}}{L^{3}}\right] V_{mn}^{42} + \frac{m\pi R}{L} \left[(\nu+n^{2}) - \frac{m^{3}\pi^{2}R^{2}}{L^{2}}\right] W_{mn}^{22} = \Phi_{mn}^{23}$$

$$- \frac{m\pi}{L} \left[n^{2} + \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] U_{mn}^{22} + \frac{(4-\nu)n^{3}}{R} W_{mn}^{22} = \gamma_{mn}^{24}$$

$$n \left[(4-n^{2}) - \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] U_{mn}^{22} - \frac{(4-\nu)m^{2}\pi^{2}R^{2}}{L^{2}} V_{mn}^{42} + \frac{m\pi\pi R\nu}{2L} W_{mn}^{22} = \beta_{mn}^{22}$$

$$VIII-2 \qquad U_{mn}^{24} + \left[\pi^{2} + \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] V_{mn}^{44} = \frac{m\pi\pi}{L} \left[(\nu + n^{2}) + \frac{m^{2}\pi^{2}R^{2}}{L^{2}} \right] W_{mn}^{24} = \Phi_{mn}^{24} \\ \frac{m\pi}{L} \left[n^{2} + \frac{m^{2}\pi^{2}R^{2}}{L^{2}} \right] U_{mn}^{24} + \frac{(4-\nu)n^{2}}{R} W_{mn}^{24} = V_{mn}^{22} \\ n \left[(4-n^{2}) - \frac{m^{2}\pi^{2}R^{2}}{L^{2}} \right] U_{mn}^{24} - \frac{(4-\nu)m^{2}\pi^{2}R^{2}}{L^{2}} V_{mn}^{44} - \frac{m\pi\pi R\nu}{2L} W_{mn}^{24} = \beta_{mn}^{24} \end{cases}$$

$$VIII_{-1} \quad U_{mn}^{44} + \left[n^{2} + \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] V_{mn}^{24} - \frac{m\pi R}{L} \left[(\nu + n^{2}) - \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] W_{mn}^{14} = \Phi_{mn}^{44}$$

$$\frac{\pi m}{L} \left[n^{2} + \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] U_{mn}^{44} + \frac{(4 - \nu)n^{2}}{R} W_{mn}^{44} = \delta_{mn}^{42}$$

$$n \left[(\pi^{2} - 1) + \frac{m^{2}\pi^{2}R^{2}}{L^{2}}\right] U_{mn}^{44} - \frac{R^{2}(4 - \nu)m^{2}\pi^{2}}{L^{2}} V_{mn}^{24} = \beta_{mn}^{44}$$

$$\begin{aligned} \nabla_{\Pi\Pi-4}^{III-4} \\ F_{mn}^{I2} &= \bigcup_{mn}^{AR} + \left[n^{2} + \frac{m^{2} \Pi^{2} R^{2}}{L^{2}} \right] V_{mn}^{RR} + \frac{m \Pi}{L} \left[(\nu + n^{2}) R - \frac{R^{3} m^{2} \Pi^{2}}{L^{2}} \right] W_{mn}^{A2} \\ \nabla_{mn}^{A1} &= -\frac{m \Pi}{L} \left[n^{2} + \frac{m^{2} \Pi^{2} R^{2}}{L^{2}} \right] \bigcup_{mn}^{A2} + \frac{(4 - \nu) h^{2}}{R} W_{mn}^{A2} \\ \beta_{mn}^{A2} &= n \left[(n^{2} - 1) + \frac{m^{2} \Pi^{2} R^{2}}{L^{2}} \right] \bigcup_{mn}^{A2} - \frac{R^{2} (A - \nu) m^{2} \Pi^{2}}{L^{2}} V_{mn}^{22} - \frac{m n \Pi R \nu}{2 L} W_{mn}^{A2} \end{aligned}$$

On pose :

$$d = n^2 + \frac{m^2 \pi^2 R^2}{L^2} ; \Lambda = \frac{m \pi}{L}$$

$$\mathcal{N}_{1} = \frac{d\Lambda}{2} \left[\Lambda n\nu R + 4\Lambda \nu (d+\nu)(d-1) \right] + \frac{(1-\nu)(d-1)n^{3}d}{R} + (1-\nu)(d-n^{2}) \left[\Lambda^{2}d \cdot (\nu+d) + \frac{(1-\nu)n^{2}}{R} \right]$$

VIII-5

$$W_{mn}^{A4} = \frac{4}{S_{\perp}} \left[\Lambda \propto \left(\beta_{mn}^{1A} - \epsilon_n \left(d - 4 \right) \Phi_{mn}^{A4} \right) + \left(\Lambda - 2 \right) \left(d - n^2 \right) \delta_{mn}^{A2} - \Lambda \propto \left(\Lambda - 2 \right) \left(d - n^2 \right) \Phi_{mn}^{A4} + n \left(d - 4 \right) \propto \delta_{mn}^{A2} \right] \right]$$

$$V_{mn}^{24} = \frac{4}{\kappa^2 \Lambda} \left\{ \left[\delta_{mn}^{42} - \Lambda \propto \Phi_{mn}^{A4} \right] - \left[\Lambda^2 \propto \left(\nu + \alpha \right) + \frac{4 - \nu}{R} n^2 \right] W_{mn}^{41} \right\}$$

$$U_{mn}^{44} = 2 \Phi_{mn}^{44} + \frac{4}{\alpha \Lambda} \left\{ -\delta_{mn}^{42} + \left[2\alpha \Lambda^2 \left(\alpha + \nu \right) + \frac{\left(a - \nu \right) n^2}{R} \right] W_{mn}^{44} \right\}$$

$$V_{mn}^{42} = \frac{4}{\Omega_{\perp}} \left[\alpha \wedge \left[e_n (\alpha - 1) \bigoplus_{mn}^{42} - \beta_{mn}^{42} \right] + (1 - \nu) (\alpha - n^2) (\gamma_{mn}^{41} + \alpha \wedge \bigoplus_{mn}^{42}) \right] + n (\alpha - 1) \alpha \gamma_{mn}^{41} + n (\alpha - 1) \alpha \gamma_{mn}^{41} + n (\alpha - 1) \alpha \gamma_{mn}^{41} \right]$$

$$V_{mn}^{22} = \frac{4}{\alpha^2 \wedge} \left\{ \left[\wedge^2 \alpha (\nu + \alpha) + \frac{(1 - \nu) n^2}{R} \right] W_{mn}^{42} - \left[\alpha \wedge \bigoplus_{mn}^{42} + \gamma_{mn}^{41} \right] \right\}$$

$$U_{mn}^{42} = 2 \bigoplus_{mn}^{42} + \frac{4}{\alpha \wedge} \left[\gamma_{mn}^{41} - 2\alpha \wedge^2 (\nu + \alpha) - \frac{(1 - \nu)}{R} n^2 \right] W_{mn}^{42}$$

VIII-7

$$W_{mn}^{21} = \frac{1}{\Omega_{2}} \left[\Lambda 0 \left(\beta_{mn}^{21} - 2n \left(d - 1 \right) \frac{F_{mn}^{21}}{g_{mn}} \right) + (1 - v) (d - n^{2}) \left(\gamma_{mn}^{22} - d \Lambda \frac{F_{mn}^{21}}{g_{mn}} \right) \right] + n \left(d - 1 \right) d \left(\gamma_{mn}^{22} \right) \right]$$

$$U_{mn}^{21} = \frac{1}{q' \Lambda} \left\{ -\gamma_{mn}^{22} + \left[2q \Lambda^{2} \left(v + d \right) + \frac{1 - 3}{R} n^{2} \right] W_{mn}^{21} \right\} + 2 \frac{F_{mn}^{21}}{g_{mn}} \right\}$$

$$V_{mn}^{41} = \frac{1}{\alpha^2 \Lambda} \left\{ \left[\mathcal{Y}_{mn}^{22} - \alpha \Lambda \oint_{mn}^{21} \right] - \left[\alpha \Lambda^2 (d+\nu) + \frac{1-\nu}{R} n^2 \right] W_{mn}^{21} \right\}$$

$$VIII-8$$

$$W_{mn}^{22} = \frac{\lambda}{5L_{2}} \left[\left(2n \left(\alpha - 1 \right) \stackrel{2}{\Psi}_{mn}^{22} - \beta_{mn}^{22} \right) \wedge \alpha + (1 - 3) \left(\alpha - n^{2} \right) \mathcal{Y}_{mn}^{21} \right]$$

$$+ \alpha \wedge (4 - 3) \left(\alpha - n^{2} \right) \stackrel{2}{\Psi}_{mn}^{22} + n \left(\alpha - 1 \right) \alpha \mathcal{Y}_{mn}^{21} \right]$$

$$V_{mn}^{42} = \frac{4}{\alpha^{2} \wedge} \left[\left(\alpha \wedge^{2} \left(\nu + \alpha \right) + \frac{4 - 3}{R} n^{2} \right) W_{mn}^{22} - \alpha \wedge \left[\stackrel{2}{\Psi}_{mn}^{22} + \mathcal{Y}_{mn}^{21} \right] \right]$$

$$U_{mn}^{22} = 8 \stackrel{2}{\Psi}_{mn}^{22} + \frac{\lambda}{\alpha \wedge} \left[\mathcal{Y}_{mn}^{21} - 2\alpha \wedge^{2} \left(\nu + \alpha \right) - \frac{4 - 3}{R} n^{2} \right] \left[\mathcal{Y}_{mn}^{22} \right]$$

ceci avec la notation :

$$\begin{aligned} \Sigma_{\mathcal{L}} &= \frac{\mathcal{U} \wedge \left[4 \nu \wedge (d + \nu) (d - 1) - n \wedge \nu R \right] - \frac{(\lambda - \nu)(d - 1) \nu^{3} d}{R} \\ &+ (1 - \nu)(d - n^{2}) \left[\Lambda^{2} d \left(\nu + d \right) + \frac{(\lambda - \nu) \nu^{2}}{R} \right] \end{aligned}$$

On obtient ainsi, d'une autre façon les déplacements et les contraintes, leurs expressions restant les mêmes qu'au Chapitre VI, en substituant aux $U_n^d(n)$, $\bigvee_n^d(n)$, $W_n^d(n)$, $\bigvee_n^d(n)$, $i \in [d = 1, 2]$ leur développement donné par (I).

Cette méthode présente l'avantage d'être plus facile à traiter numériquement que les expressions trouvées au Chapitre VI.

Une démarche analogue, permet d'obtenir des coefficients des doubles séries de Fourier dans le cas des coques moyennement épaisses.

CONCLUSION

De façon générale, la théorie des coques est basée sur les hypothèses de KIRCHOFF-LOVE (1850 pour Kirchoff, 1892 pour LOVE) qui, en quelque sorte, considère que les déplacements et contraintes peuvent se mettre sous la forme :

$$(I) \begin{bmatrix} u_{i} (\theta_{j} x_{j} z_{j}) = u_{i}^{(0)} (\theta_{j} x) + z_{i} u_{i}^{(1)} (\theta_{j} x) \\ \sigma_{ij} (\theta_{j} x_{j} z_{j}) = \sigma_{ij}^{(0)} (\theta_{j} x) + z_{j} \sigma_{ij}^{(1)} (\theta_{j} x) \end{bmatrix}$$

et que, dans les calculs ultérieurs, on peut négliger tous les termes d'ordre au moins 2 en z .

Des modifications de (I) ont été proposées qui sont de deux types

(II)
$$u_{i}(x,\theta,z) = \sum_{n=0}^{\infty} 3^{n} u_{i}^{(n)}(\theta,x)$$
$$\sigma_{ij}(x,\theta,z) = \sum_{n=0}^{\infty} 3^{n} \sigma_{ij}^{(n)}(\theta,x)$$

 et

$$u_{i}(x,\theta,z) = \sum_{m=0}^{\infty} h^{m} u_{i}^{(n)}(\theta,x,z)$$

(III)

$$\sigma_{ij}(z,\theta,\xi) = \sum_{n=0}^{\infty} h^n \sigma_{ij}^{(n)}(\theta,z,\xi)$$

(I) est valable pour des coques très minces, (II) et (III) pouvant s'appliquer
à des coques d'épaisseur quelconque. (II) présente (ainsi que (III) à un

moindre degré) à nos yeux, un certain nombre d'inconvénients à la fois sur les plans mécanique et mathématique, plus précisément :

(1) (II) identifie le comportement de la surface moyenne (z = 0) à celui de la membrane (h = 0) ce qui revient à dire que, quelle que soit l'épaisseur de la coque, pour un même état de charges données, la surface moyenne se déforme toujours de la même façon ce qui paraît physiquement assez étonnant; (ce défaut n'est pas a priori présenté par III).

(2) (II) et (III) entraînent que l'on peut déterminer les u_i et σ_i (dépendant de Θ, \times dans II) pour tout n en fonction des u_i et σ_i ce qui, dans le cas II, montre que la solution de l'équilibre d'une coque pourrait se déterminer indépendemment de son épaisseur. Dans le cas (III) les calculs montrent que les u_i et σ_i sont des polynômes en z à coefficients fonctions de Θ et de x.

3) Dans les cas (II) et (III) les auteurs qui les ont utilisés ont presque toujours ignoré les conditions sur les bords extrêmes se référant à des problèmes de raccord (dits de couche limite).

Dans le mémoire qui vient d'être présenté, la comparaison des "petits paramètres" introduits par la minceur de la coque $(\epsilon = \sqrt[7]{R})$ cylindrique d'une part et par l'hypothèse de linéarisation qui est à la base de l'Elasticité linéaire isotrope montre qu'en grandeurs adimensionnelles, les développements :

$$\overline{u}_{i}(\theta,\overline{x},\overline{s},\varepsilon) = \sum_{n=0}^{\infty} \varepsilon^{n} \overline{u}_{i}^{(n)}(\theta,\overline{x},\overline{s})$$

$$\overline{\overline{u}_{i}}(\theta,\overline{x},\overline{s},\varepsilon) = \sum_{n=0}^{\infty} \varepsilon^{n} \overline{\overline{u}_{i}}^{(n)}(\theta,\overline{x},\overline{s})$$

substitués dans les équations d'équilibre, de comportement et de compatibilité, sont en fait de la forme (après retour aux variables dimensionnées) :

$$u_{i}(\theta, x, \overline{s}) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left(\frac{h}{R}\right)^{n-m} \left(\frac{\overline{s}}{R}\right)^{\frac{1}{m!}} a_{in}^{(m)}(\theta, x)$$

(IV)

$$\sigma_{ij}(\theta_{j}z_{j}z_{j}z_{j}) = \sum_{m=0}^{\infty} \sum_{m=0}^{n} \frac{1}{m!} \left(\frac{h}{R}\right)^{m-m} \left(\frac{a}{R}\right)^{m} f_{ijm}^{(n)}(\theta_{j}z_{j})$$

soit 🖝

$$u_{i}(\theta,x,\tau) = \sum_{n=0}^{d} \left(\frac{h}{R}\right)^{n} \frac{(n)}{a_{i0}}(\theta,x) + \frac{3}{R} \sum_{n=0}^{D} \left(\frac{h}{R}\right)^{n} \frac{(n+i)}{a_{i1}}(\theta,x) + \dots + \frac{1}{k!} \left(\frac{3}{R}\right)^{k} \sum_{n=0}^{\infty} \left(\frac{h}{R}\right)^{n} \frac{(n+i)}{a_{ik}}(\theta,x) + \dots + \frac{1}{k!} \left(\frac{3}{R}\right)^{k} \sum_{n=0}^{\infty} \left(\frac{h}{R}\right)^{n} \frac{(n+i)}{a_{ik}}(\theta,x) + \dots + \frac{1}{k!} \left(\frac{n}{R}\right)^{n} \frac{f_{ij0}(n)}{a_{ij0}}(\theta,x) + \frac{3}{R} \sum_{n=0}^{\infty} \left(\frac{h}{R}\right)^{n} \frac{f_{ij1}(n+i)}{a_{ij1}}(\theta,x) + \dots + \frac{1}{k!} \left(\frac{3}{R}\right)^{k} \sum_{n=0}^{\infty} \left(\frac{h}{R}\right)^{n} \frac{f_{ij1}(n+i)}{a_{ijk}}(\theta,x) + \dots + \frac{1}{k!} \left(\frac{3}{R}\right)^{k} \sum_{n=0}^{\infty} \left(\frac{h}{R}\right)^{n} \frac{f_{ij1}(n+i)}{a_{ijk}}(\theta,x) + \dots$$

Suivant les valeurs de $\frac{1}{12}$ on a montré que si dans (IV) on ne conservait que les termes de degré (en $\frac{1}{12}$ et $\frac{3}{12}$) au plus égal à un entier positif p donné, on pourrait déterminer tous les $\frac{1}{12} \frac{1}{12} \frac{1}{12$

On a étudié en détail les cas des coques "minces" (**p=4**) et "moyennement épaisses" (**p=3**).

Ce qui nous a paru assez remarquable est la possibilité de déterminer la solution du problème de l'équilibre d'une coque élastique (cylindrique) sous forme d'un polynôme de degré arbitrairement donné en $\frac{1}{R}$ et $\frac{3}{R}$ sans faire intervenir de conditions du type "couche limite". D'autre part, le degré imposé étant lié dans notre esprit à l'épaisseur de la coque, il est manifeste au vu de (IV) que le déplacement de la surface moyenne (3=0) est nettement différent du déplacement de membrane (3=0 <u>et</u> h=0) et apparaît comme un polynôme en $\frac{h}{R}$.

On se propose d'étendre ce type de solutions à des coques un peu plus générales que les coques cylindriques (sphérique, elliptique, de révolution, ...) en mettant en oeuvre des techniques variationnelles comme l'a fait P. DESTUYNDER dans sa thèse.

Par ailleurs, on peut se poser aussi la question du comportement de la solution quand h varie au cours du temps pour des raisons d'ordre chimique par exemple (réservoir rempli d'un gaz ou liquide corrosif).

Dans l'immédiat avenir (ou le plus proche possible) on se propose d'adapter ces résultats à une étude systématique des appareils à pression.

REFERENCES

BIJLAARD P.P. (cf. GILL)

- DESTUYNDER Ph. 1 "Sur une justification des modèles de plaques et coques par les méthodes asymptotiques". Thèse d'Etat 1980. Paris VI.
- DHUYQUE-MEYER J.P. "Modélisation de l'influence des supports d'un réservoir horizontal à virole cylindrique".

DONNELL H. "Beams, plates and shells. Mac Graw Hill, New-York 1976.

DUVAUT-LIONS J.L. "Les inéquations en Mécanique et Physiques. Dunod Paris 1973.

FRIEDRICHS K.O., DRESSLER R.G. "A boundary layer theory far elastic plates. Communications in Pure Applied Mathematics. XIV, 1961, 1-33.

GERMAIN P. "Cours de Mécanique des Milieux Continus". Masson Editeur.

- GILL S.S. "The stress analysis of pressure vessels". International series of Monographs in Mechanical Engineering (avec la bibliographie abondante). Pergamon Press 1970.
- GOL'DENVEIZER, A.L., "Derivation of an approximate theory of bending of a plate by a method of asymptotic integration of the equations in the theory of elasticity". J. Applied Math. <u>19</u> (1963) 1000-1025.

GONTIER G. "Mécanique des Milieux déformables". Dunod (1969)

GREEN A.E. et ZERNA W. "Theoretical Elasticity". Oxford Press 1975.

- JOHN F. (1) "Estimates far the derivatives of the stresses in a thin shell and interior shell equation". C.P.A.M. (18) 235-267.
- HAGE-CHEHADE H. "Une théorie générale des coques cylindriques". Thèse 1979. Lille I.
- KOITER "Foundations and basic equations of shell theory a survey of recent progress dans Theory of thin shells (Niorson edit.) 1969, p. 93-105.
- LADEVEZE P. "Justification de la théorie linéaire des coques élastiques". Journal de Mécanique. Vol. 15, nº 5 (1976) 813-850.
- LOVE A.E.H. "A treatise on the mathematical theory of elasticity N.Y. Dover Publications 1926 (499-553).
- NAGHDÌ P.M. [1] "Foundations of elastic shell theory Progress in Solid Mechanics vol. 4, p. 3-90. Hill-Sneddon Editeurs. North Holland (1963).
 - [2] "Theory of plates and shells". Handbuch der Physik.Vol. VIa 2 Springer Verlag. Berlin 1972 (p. 425-640).
NO VOZHILOV V.V.

"Thin shell theory". Walters Nordoff Pub".

RAILLOY Y. "Sur la théorie des coques cylindriques élastiques" Thèse 3e cycle. Lille I (1981).

TIMOSHENKO S., WOINOWSKI - KRIEGER S. "Théorie des plaques et coques. Dunod 1961.

VALID R.

"La Mécanique des Milieux Continus et le Calcul des Structures". Eyrolles Edit. 1977. Paris.

ZICK L.P. "Stresses in large horizontal cylindrical vessels on two saddle supports". Welding Journal. Research supplement. Septembre 1951.

