Nº d'ordre : 319

50376

50376 1983 121

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR - INGENIEUR

Spécialité : Electronique

par

Maatallah Djemmal BENADDA

REALISATION D'UN DISPOSITIF DE MESURE SEMI-AUTOMATIQUE D'ADMITTANCES DE 100 kHz à 300 MHz ETUDE DES MELANGES DE DIELECTRIQUES EN DYNAMIQUE APPLICATIONS

Soutenue le 24 mars 1983 devant la Commission d'Examen

Membres du Jury : MM.

A.	LEBRUN	Président
A.	CHAPOTON	Rapporteurs
J. C.	CARRU	
P.	DEVILLERS	Examinateurs
L	RACZY	
R. A.	SCHOONHEYDT	
J. P.	AMOUREUX	
J. M.	WACRENIER	

à ceux qui me sont très chers, à ma mère défunte,

R E M E R C I E M E N T S

Ce travail a été commencé au Laboratoire de Spectrométrie des Solides et achevé au sein de l'équipe "Nouveaux Matériaux" du Centre Hyperfréquences et Semiconducteurs de l'Université de Lille 1.

Je voudrais exprimer toute ma gratitude à Monsieur le Professeur LEBRUN de m'avoir accueilli au Laboratoire de Spectrométrie des Solides. Je tiens particulièrement à le remercier pour l'honneur qu'il me fait de présider le jury de cette thèse.

Monsieur le Professeur CONSTANT m'a intégré au sein du Centre Hyperfréquences et Semiconducteurs. Je l'en remercie vivement.

Monsieur le Professeur CHAPOTON et Monsieur CARRU, Assistant, m'ont confié le sujet de cette étude. Je tiens à leur exprimer toute ma reconnaissance pour leurs précieux conseils, leur aide morale et les nombreuses discussions qui ont permis l'aboutissement de ce travail.

Monsieur DEVILLERS, Directeur de l'Institut de Recherches de l'Industrie Sucrière a accepté de faire partie du jury. Je l'en remercie vivement.

Je suis particulièrement reconnaissant à Monsieur RACZY, Professeur à l'EUDIL d'avoir bien voulu juger ce travail.

Je remercie Monsieur SCHOONHEYDT, Ingénieur-Docteur de l'Université Catholique de Louvain (Heverlee - Belgique) pour l'honneur qu'il me fait de participer au jury.

Monsieur WACRENIER, Maître-Assistant à l'Université de Lille I, a accepté de juger ce travail ; je l'en remercie vivement. Je tiens également à lui exprimer toute ma gratitude pour ses précicux conseils et les nombreuses discussions que nous avons eues.

Monsieur AMOUREUX, Maître-Assistant à l'Université de Lille I, a accepté de participer au jury de cette thèse. Je l'en remercie vivement. Je voudrais également lui exprimer ma reconnaissance pour son aide et ses précieuses remarques.

J'ai trouvé chez Monsieur FONTAINE, Professeur à l'Université de Lille I, disponibilité et remarques pertinentes.

.../...

Mes remerciements vont tout naturellement à toute l'équipe du Laboratoire, plus particulièrement à Monsieur DRUON, Maître-Assistant à l'Université de Lille I, pour son aide et ses précieux conseils.

Je remercie également Messieurs WATTRELOT, Ingénieur, et VERBEKE, Technicien pour leur disponibilité.

Mes remerciements vont également à Monsieur GERS pour son aide spontanée.

Mme CASTEGNIER a eu la tâche difficile de dactylographier cette thèse, Je la remercie vivement pour sa patience et son dévouement.

Je voudrais exprimer ma gratitude à Messieurs JENNEQUIN, ANDRIES, MICHON, PLUQUET et DEHORTER pour leur aide déterminante.

Mes remerciements vont également à l'équipe du service d'imprimerie qui a assuré l'impression de ce mémoire.

Je tiens également à remercier tous ceux qui, de près ou de loin, m'ont apporté leur concours.

SOMMAIRE

N°	Page
----	------

INTRODUCTION	1
1ède darte · Réalisation d'un dispositie de mesure semi-	
LERE PARTIE , REALISATION D ON DISPOSITIT DE RESORT SERVICES	3
AUTOMATIQUE D'ADMITTANCES DE LUU KHZ A SUU MHZ,,	3
CHAPITRE I : ETUDE ET RÉALISATION D'UN DISPOSITIF A CIRCUIT	
DÉSONMANT DE MESURES D'ADMITTANCES SEMI-AUTOMATIQUE ENTRE	
100 WHAT THE TOO MUT	
100 KHZ ET 200 MHZ	4
I - CHOIX DU DISPOSITIF	6
I-1- CAHIER DES CHARGES	6
I_2_ SCHEMA DE DRINCIDE	6
$I = 2 - SCHEPR DE FRINCIPE \dots $	0
1-3- DETERMINATION DES COMPOSANTES DE $Y_X = G_X + J B_X \dots \dots \dots \dots \dots$	0
II - REALISATION DU RESONATEUR	8
II-1- PARTIE MECANIQUE	8
II-1-1- Corps du résonateur	8
II-1-2- Réalisation de la capacité d'excitation	8
II-1-3- Ligne en T pour l'extension de mesures	10
II-2- PARTIE ELECTRONIQUE	11
II-2-1- Détection de l'ancien résonateur	11
II-2-2- Description du nouveau système détecteur	11
	17
11-3- ACQUISTIION AUTOMATIQUE DES DONNEES	17
II-3-1- Le port parallèle	17
II-3-3- Description du processus de mesure	18
THE - FTALONNACES DU RESONATEUR EN CARACITE ET EN CONDUCTANCE	= 20
III - ETALONNAGES DO RESONATEOR EN CATACITE ET EN CONDOCTINGE	20
III-I- REALISATION D'ELEMENTS ETALONS	20
III-1-1- Capacités étalons III-1-2- Conductances étalons	20 22
III-2- ETALONNAGES EN CAPACITE	24
III-2-1- Variation des étalonnages en fonction de V2	24
III-2-2- Evolution dans le temps	25
III-3- ETALONNAGES EN CONDUCTANCE	25
III-3-1- Variation des étalonnages en fonction de V ₂	26
III-3-2- Evolution dans le temps	27

III-4- ETALONNAGES DE C1	27
III-4-1- Permittivité de la silice en fonction de la fréquence (courbe constructeur) III-4-2- Détermination de C1 en fonction de la fréquence III-4-3- Mesure de C1 en fonction de V2	27 28 31
III-5- MISE EN MEMOIRE SUR CALCULATEUR DES ETALONNAGES	31
IV - UTILISATION DU RESONATEUR	31
IV-1- MESURE D'ADMITTANCES	31
IV-2- DETERMINATION DE ε^{*}	32
IV-2-1- Détermination de ε ', IV-2-2- Détermination de ε ", IV-2-2- Détermination de ε "	32 32
IV-3- PRECISION DES MESURES	34
IV-3-1- Précision sur ε'	34 34
IV-4- EXTENSION DES MESURES	35
V - COMPARAISON ENTRE L'ANCIEN ET LE NOUVEAU RESONATEUR,,.	35
V-1- TABLEAU COMPARATIF ENTRE L'ANCIEN ET LE NOUVEAU RESONATEUR	35
V-2- COURBE (Gy/ ω_R) FONCTION DE LA FREQUENCE	39
VI - APPLICATION A LA MESURE D'ADMITTANCES ET A LA DETERMI- NATION DE LA PERMITTIVITE ε [*] D'UN DIELECTRIQUE	40)
VI-1- CAS D'UN DIPOLE RC SERIE	40
VI-2- APPLICATION AUX CRISTAUX LIQUIDES	41
VI-3- APPLICATION AUX SOLIDES	42
VII - CONCLUSION	44
BIBLIOGRAPHIE	45
2ème partie : Etude des mélanges de diélectriques en dyna-	
MIQUE, APPLICATIONS	47
CHAPITRE II · EXTENSION EN RÉGIME DYNAMIQUE DE QUELQUES LOIS	s
DE MÉLANGE DE DIÉLECTRIQUES ÉTABLIES EN RÉGIME STATIQUE	48
I - LOIS DE MELANGE EN STATIQUE	50
I-1- RAPPELS	50
I-2- CAS DES FAIBLES CONCENTRATIONS	51
I-3- CAS DES CONCENTRATIONS MOYENNES	51
1-4- CAS DES FURIES CONCENTRATIONS	51
1-2- LUIS KEIENUES PUUK E EXTENSION EN DINAMIQUE	
II - THEORIE DE MAXWELL-WAGNER,	56
11-1- RAPPEL DU FORMALISME	20
11-2- VALIDITE DE LA LUI DE MAXWELL-WAGNER	50

.../...

TT_2_ EXTENSION EN DYNAMIOUE	58
II-3-1- Corps polaire (domaine de type Debye) dans milieu non	
polaire	58
non polaire	5 9
II-3-3- Corps polaire (présentant une serie de D.E.N.D.) dans milieu non polaire	60
II-3-4- Mélange polaire-polaire ,,	60
III - THEORIE DE LOOYENGA	61
III-1- RAPPEL DU FORMALISME	61
III-2- VALIDITE DE LA LOI DE LOOYENGA	64 64
III-3- EXTENSION EN DYNAMIQUE	64 CF
III-4- SIMULATIONS THEORIQUES	65
III-4-1- Corps polaire (domaine de type Debye) dans milleu non polaire	65
III-4-2- Corps polaire (domaine de type Cole et Cole) dans mi-	69
III-4-3- Corps polaire (présentant une série de D.E.N.D.) dans	
milieu non polaire	/1
laire (domaine de type Debye)	74
IV - THEORIE DE BOTTCHER	78
IV-1- RAPPEL DU FORMALISME	78 ,
IV-1-1- Calcul suivant un axe de l'ellipsoïde	78 79
IV-2- VALIDITE DE LA LOI DE BOTTCHER	80
IV-3- EXTENSION EN DYNAMIQUE	81
IV-4- SIMULATIONS THEORIQUES	81
IV-4-1- Corps polaire (domaine de type Debye) dans milieu non	81
IV-4-2- Corps polaire (domaine de type Cole et Cole) dans milieu	
non polaire	83
milieu non polaire	85
laire (domaine de type Debye)	88
V - CONCLUSION	91
BIBLIOGRAPHIE	92
CHAPITRE III : ETUDE EXPÉRIMENTALE DE DIFFÉRENTS MÉLANGES DE	
DIÉLECTRIQUES, INTERPRÉTATION À PARTIR DES LOIS DE MÉLANGE	
ÉTENDUES EN DYNAMIQUE	95
I - RAPPELS SUR L'ETUDE DES MELANGES EN STATIQUE	97
I-1- CAS DES FAIBLES CONCENTRATIONS	97
I-1-1- Mélange avec ε_A^{t} du même ordre de grandeur que ε_B^{t}	97
I-1-2- Mélange avec $\varepsilon_{B}^{\prime} >> \varepsilon_{A}^{\prime}$	97

.../...

I-2- CAS DES FORTES CONCENTRATIONS	100
II - CHOIX DES ENROBANTS ET ETUDE DE LEURS PROPRIETES DIELEC-	
TRIQUES	101
II-1- ENROBANTS NON POLAIRES DE FAIBLE PERMITTIVITE	101
II-2- ENROBANTS POLAIRES NE PRESENTANT PAS DE PERTES DANS UNE GAMME DE	102
II-3- CAS PARTICULIER DE L'ENROBANT AIR	102
III - CHOIX DES MATERIAUX POLAIRES	103
III-1- MATERIAUX POLAIRES PRESENTANT UN DOMAINE NON DISTRIBUE	104
III-2- MATERIAUX POLAIRES PRESENTANT UN DOMAINE DISTRIBUE	105
IV - ETUDE DES MELANGES BINAIRES DONT LA PHASE POLAIRE PRE-	· ·
SENTE UN DOMAINE FAIBLEMENT DISTRIBUE	105
IV-1- ELABORATION DES ECHANTILLONS	105
IV-1-1- Echantillons pour étudier l'influence de la concentration Θ	106
ϵ_{λ} de l'enrobant	106
IV-2- RESULTATS EXPERIMENTAUX	107
IV-2-1- Etude en fonction de la concentration	107 111
IV-3- COMPARAISON ENTRE LES RESULTATS EXPERIMENTAUX ET THEORIQUES	111
IV-3-1- Courbes $\Delta \epsilon'$ fonction de Θ IV-3-2- Courbes $\Delta \epsilon'_{\star}$ fonction de ϵ'_{A} IV-3-3- Spectres $\epsilon^{*}(\omega)$	111 118 120
V - ETUDE DES MELANGES DONT LA PHASE POLATRE PRESENTE UN DO-	
MAINE DISTRIBUE	125
V-1- ELABORATION DES ECHANTILLONS ,	125
V-2- RESULTATS EXPERIMENTAUX	125
V-3- COMPARAISON ENTRE LES RESULTATS EXPERIMENTAUX ET THEORIQUES	127
V-3-1- Courbe $\Delta \varepsilon'$ fonction de Θ V-3-2- Spectres $\varepsilon^*(\omega)$	127 129
VI - ETUDE D'UN MELANGE DONT LES DEUX PHASES SONT POLAIRES	130
VI-1- ELABORATION DES ECHANTILLONS	130
VI-2- RESULTATS EXPERIMENTAUX	131
VI-3- COMPARAISON ENTRE LES RESULTATS EXPERIMENTAUX ET THEORIQUES	132
VII - APPLICATION DES LOIS DE MELANGE ,	. 133
VII-1- DETERMINATION DES PROPRIETES ELECTRIQUES DU CRISTAL COMPACT	134
VII-1-1- Le corps polaire présente un domaine faiblement distribué. VII-1-2- Le corps polaire présente un domaine fortement distribué. VII-1-3- Justification du choix de l'expression de $\varepsilon^*_{B}(\omega)$	134 135 137

../...

VII-2- DETERMINATION DE LA CONCENTRATION Θ	139
VII-3- AUTRES APPLICATIONS	141
VIII - CONCLUSION	142
BIBLIOGRAPHIE	143
CONCLUSION	
	145
ANNEXE	147

.

i.

I N T R O D U C T I O N

Au laboratoire, l'équipe "Nouveaux Matériaux" s'intéresse aux propriétés électriques à large bande de fréquence (1 Hz - 26 GHz) de différents matériaux : solides (zéolithes, gels de silice, polymères ...) et cristaux liquides dans les phases nématiques et smectiques.

Pour les caractériser, il devenait nécessaire :

-1-

- d'une part, de réduire les dimensions des cellules de mesure. En effet, certains matériaux, de plus en plus élaborés, ne sont disponibles qu'en faible quantité.

d'autre part, d'automatiser les techniques de mesure utilisées au laboratoire.
 Ceci, en raison des récents développements de la microinformatique.

Dans le cadre de l'étude des matériaux pulvérulents, la permittivité complexe relevée n'est pas celle du matériau compact, mais une permittivité apparente. Ceci se pose en particulier pour les zéolithes et l'adamantane et ses dérivés.

Notre travail a consisté à trouver des solutions à ces différents problèmes.

Ce mémoire comprend deux parties. La première est relative à la conception et à la réalisation d'un nouveau dispositif résonnant (résonateur) de mesure d'admittances fonctionnant dans la gamme de fréquence 100 kHz-300 MHz.

Nous présentons tout d'abord le cahier des charges, à savoir les améliorations par rapport à un dispositif existant au laboratoire, des performances suivantes : adaptation directe au standard des cellules utilisées, grand nombre de points de mesure (environ 70) et acquisition automatique des grandeurs de mesure. Nous décrivons ensuite les différentes phases qui ont conduit à la mise au point du nouveau résonateur :

- rappel du principe de la méthode de résonance,
- description des parties mécanique et électronique,
- réalisation des éléments étalons (capacités et conductances),
- étalonnages du résonateur en tension et en capacité,
- applications.

Dans la deuxième partie, nous abordons l'étude théorique (chapitre II) et expérimentale (chapitre III) des mélanges de diélectriques.

Dans le chapitre II, nous rappelons les principales lois de mélange établies en statique et données dans la littérature. Une discussion générale nous permet de retenir trois lois : celles de Maxwell-Wagner, Looyenga et Böttcher.

A l'exception de la loi de Maxwell-Wagner, celles de Looyenga et Böttcher n'ont pas encore été étudiées en régime dynamique. Nous proposons à l'aide de méthodes numériques et d'un microcalculateur, l'extension théorique en dynamique de ces deux formules. Cette étude est faite en vue de décrire la permittivité complexe des mélanges de corps polaires avec des corps polaires ou non, dans la gamme de fréquence des dispositifs de mesure existant au laboratoire. Pour chacune des lois retenues, nous rappelons la théorie permettant leur établissement et présentons l'étude effectuée en régime dynamique.

Dans le chapitre III, pour vérifier la validité de l'extension en dynamique des lois retenues, nous effectuons une étude expérimentale à large gamme de fréquence de différents types de mélanges. Cette étude nécessite au préalable la recherche de matériaux soit non polaires, soit polaires présentant des domaines de relaxation distribués ou non.

Pour les différents mélanges réalisés, nous donnons :

- la technique d'élaboration des échantillons,

- les résultats expérimentaux avec comme paramètres soit la concentration, soit la permittivité de l'enrobant,

 - la comparaison entre ces résultats et ceux calculés à partir des lois retenues, ce qui permet de préciser leur domaine de validité.

Enfin, nous donnons quelques exemples d'applications possibles des mélanges de diélectriques :

- l'obtention du spectre diélectrique du cristal compact à partir de la connaissance des propriêtés électriques d'un mélange de concentration donnée,

- la détermination de la proportion des constituants d'un mélange à partir de la connaissance de ses propriétés électriques ainsi que celles de ses constituants,

- évaluer le taux d'hétérogénéité macroscopique d'un échantillon donné.

-2-

PREMIERE PARTIE

RÉALISATION D'UN DISPOSITIF DE MESURE SEMI-AUTOMATIQUE D'ADMITTANCES DE 100 KHZ À 300 MHZ,

Chapitre I

ETUDE ET RÉALISATION D'UN DISPOSITIF A CIRCUIT RÉSONNANT DE MESURES D'ADMITTANCES SEMI-AUTOMATIQUE ENTRE 100 KHZ ET 300 MHZ.

Nous étudions au Laboratoire les propriétés électriques dans une large gamme de fréquence $(1 \text{ Hz} - 26 \text{ GHz})^{\left[1 \ \tilde{a} \ 4\right]}$ de nombreux matériaux : solides, liquides, cristaux liquides ...

Pour effectuer les mesures, nous utilisons des ponts d'impédance en deçà de 100 kHz, des mesureurs de T.O.S. et des dispositifs de réflectométrie au-delà de 100 MHz. Entre 0.1 et 100 MHz, les dispositifs commerçiaux ne sont pas bien adaptés à la mesure des matériaux étudiés. Ce sont, soit des ponts de grande précision mais à fréquence fixe, soit des ponts ayant une bande de fréquence limitée. De plus, ils nécessitent généralement l'utilisation de cellules spécifiques aux appareils^[5 à 8]. Cependant, des appareils automatiques de grande précision et à large gamme de fréquence sont apparus récemment sur le marché^{[9](*)}. Ceux-ci sont coûteux et ne permettent pas la mesure des pertes faibles (10 μ S \leq |Y| \leq 1000 μ S).

Au Laboratoire, un dispostif de mesure résonnant a été mis au point par A. Lebrun^[1]. Cet appareil présente l'avantage d'être réalisé facilement du point de vue mécanique. Néanmoins, il présente les limitations suivantes : - la gamme de fréquence est restreinte : 100 kHz - 80 MHz - le nombre de points de mesure est faible (11 au total) - la valeur de la capacité d'excitation^{[1][10]} (environ 1.5 pF) ainsi que la détection à diode ne permettent pas de relever des pertes élevées^[11].

Pour pallier ces inconvénients, nous avons réalisé un nouveau dispositif^[12]. C'est un système résonnantqui présente les améliorations suivantes : - élargissement de la gamme de fréquence : 0.1 - 300 MHz

- adaptation directe au standard des cellules utilisées au laboratoire (permettant la suppression des fiches de transition),

-multiplication du nombre de points de mesure,

- possibilité d'étudier des produits tels que 0.02 < ϵ'' < 18 ,

- amélioration de la précision des mesures en particulier au-delà de 50 MHz.

-5-

^(*) Au laboratoire, nous disposons depuis six mois du pont Hewlett-Packard : modèle 4191 A : 1 MHz-1 GHz.

I - CHOIX DU DISPOSITIF

I-1- CAHIER DES CHARGES

Les études diélectriques effectuées au laboratoire portent sur des corps ayant des permittivités complexes $\varepsilon^* = \varepsilon' - j\varepsilon''$ telles que $0.02 \le \varepsilon'' \le 18$ et $\varepsilon' \le 50$. Ces conditions imposent dans la gamme 0.1-300 MHz, de mesurer des admittances équivalentes : 0.01 μ S \le G \le 5000 μ S et C \le 80 pF.

Pour assurer un bon comportement en haute fréquence, il est nécessaire de réaliser un dispositif dans le même standard que celui des cellules les plus couramment utilisées au laboratoire. Celles-ci sont de structure coaxiale et présentent une impédance caractéristique Z_c de 50 Ω ^(*)

Le nombre de points de mesure ne doit pas être limité : ceci est possible en utilisant des capacités additionnelles qui permettent de changer la pulsation de résonance $\omega_{\rm R}$ en $\omega'_{\rm R}$ (cf, § I-3).

L'acquisition automatique des données par microordinateur réduit le nombre d'opérations manuelles et augmente la rapidité des mesures.

I-2- SCHEMA DE PRINCIPE

Parmi les méthodes de mesure d'impédances (comparaison d'admittances, résonance, mesures de T.O.S., réflectométrie ...), nous avons retenu la résonance^{[1][13][14]}. Elle est bien adaptée à la gamme de fréquence considérée contrairement aux méthodes de comparaison d'admittances (limitées à quelques centaines de kHz) et la réflectométrie (valable à partir de 10 MHz).

Le circuitrésonnant réalisé est de type LC parallèle attaqué par un générateur de courant. Celui-ci est réalisé par une source de tension suivie d'une capacité de faible valeur (cf. figure 1). Pour couvrir toute la gamme de fréquence, nous utilisons 11 bobines de self entre 0.1 et 100 $\text{MHz}^{[1]}$ et 4 stubs de longueur fixe au-delà de 100 $\text{MHz}^{[12]}$ (cf. figure 2). Pour chaque bobine de self et stub, l'accord est obtenu par variation de fréquence.

Signalons qu'il existe une autre technique de mesure basée sur le principe de résonance. La fréquence reste fixe et l'accord est obtenu par variation de capacité. Cettte méthode ainsi que les dispositifs ou appareils réalisés à partir de celle-ci ont été décrits par de nombreux auteurs^{[1][7][10][14} à 17]

(*)Standard Général Radio : Diamètres intérieur et extérieur valant respectivement
 6.20 mm et 14.28 mm.

-6-

Figure 1 : Circuit électrique équivalent du résonateur

C₁ : capacité d'excitation (\sim 1 p.F)

 L_2^- : bobine de self ou induction équivalente des stubs

 G_v : pertes à vide du résonateur

 C_v : capacité à vide du résonateur

 $Y_{X} = G_{X} + jB_{X} = G_{X} + j\omega$ $C_{X} = admittance a mesurer.$

Figure 2 : Dessin des bobines de self (a) et des stubs de longueur fixe (b)

- (1) Bagues de téflon
- (2) Fiche de connection

Nous avons :

$$V_{2} = V_{1} \frac{j\omega C_{1}}{(G_{v}+G_{x}) + j \left[\omega(C_{1}+C_{x}+C_{v}) - \frac{1}{L_{2}\omega}\right]}$$
(1)

A la pulsation de résonance $\omega_R = 2 \pi F_R$ a) en présence de Y_X :

$$G_{V} + G_{X} = V_{1} \frac{\omega_{R} C_{1}}{V_{2}}$$
 (2)

b) en l'absence de Y_X et pour la même tension V_2 :

$$G_{v} = V_{10} \frac{\omega_{R} C_{1}}{V_{2}}$$
(3)

avec V_{10} = valeur de la tension V_1 , en l'absence de Y_X . D'où :

$$G_{\rm X} = \omega_{\rm R} \frac{G_1}{V_2} (V_1 - V_{10})$$
 (4)

et

$$B_{X} = \omega_{R} C_{X}$$
(5)

Pour déterminer Y_x à la fréquence de résonance F_R , il suffit de : - relever les tensions V_1 , V_{10} et V_2 , - mesurer la capacité $C_x.$

II - REALISATION DU RESONATEUR

II-1- PARTIE MECANIQUE

II-1-1- Corps du résonateur

Nous avons choisi une structure coaxiale en T dont les diamètres des conducteurs interne et externe valent respectivement 6.20 et 14.28 mm. Le conducteur intérieur est centré par 3 bagues en téflon (cf. figure 3). Dans toute la structure, l'impédance caractéristique est conservée et est égale à 50 Ω . L'ensemble "conducteur interne - conducteur externe" est rigide une fois monté.

II-1-2- Réalisation de la capacité d'excitation

La capacité d'excitation C_1 est la partie la plus délicate dans la réalisation du résonateur^[1]. Nous l'avons réalisée sous la forme d'un condensateur plan localisé dans le conducteur central au niveau de la bague de centrage notée 3 (cf. figure 3).

Le diélectrique utilisé est un disque de silice d'épaisseur de 1 mm, de même diamètre que celui du conducteur central et collé sur celui-ci (cf. figure 3). Cette structure permet d'obtenir une très bonne stabilité : dans le temps, en température, en fréquence ... Cependant, les différentes manipulations sur le résonateur (mise en place des cellules, bobines etc.) risquent de provoquer des contraintes mécaniques au niveau de la lame de silice. Aussi, nous avons réalisé un dispositif mécanique souple qui atténue fortement cet inconvénient tout en assurant une liaison électrique avec le générateur (cf. figure 4).

Figure 4 : Détail du dispositif mécanique souple (3) Bague de téflon

II-1-3- Ligne en T pour l'extension des mesures

Nous avons utilisé le même standard que celui du résonateur. Le conducteur intérieur est centré par 3 bagues en téflon (cf. figure 5). Dans toute la structure de cette ligne, l'impédance caractéristique est conservée et égale à 50 Ω .

Cette ligne est placée sur le résonateur de la même façon que la fiche de connection (préalablement démontée) prévue pour les bobines. Il suffit d'ajouter une capacité additionnelle C_{add} (cf. figure 5) pour obtenir une nouvelle fréquence d'accord F'_R . La pulsation de résonance $\omega'_R = 2 \pi F'_R$ est différente de ω_R car l'équation (1) s'écrit :

$$V_{2} = V_{1} \frac{j \omega C_{1}}{(G_{v}+G_{x})+ j \left[\omega(C_{1}+C_{x}+C_{v}+C_{g_{i}}+C_{add}) - \frac{1}{L_{2} \omega}\right]}$$
(6)

 C_{li} = capacité à vide de la ligne. Ceci permet de multiplier par huit le nombre de points de mesure en plaçant des capacités C_{add} de valeurs différentes.

-10-

Figure 5 : Ligne en T pour l'extension des mesures (1) (2) et (3) : bagues de téflon

II-2- PARTIE ELECTRONIQUE

II-2-1- Détection de l'ancien résonateur

C'est une détection série à diode. Elle présente l'avantage d'être simple. Cependant la loi de détection est non linéaire et nous ne pouvons pas mesurer des tensions V_2 inférieures à 0.3 V à cause du seuil de la diode.

II-2-2- Description du nouveau système détecteur

Pour mesurer la tension V_2 , il n'existe pas à notre connaissance, de voltmètre présentant une impédance d'entrée suffisamment grande dans la bande de fréquence considérée (par exemple, à 100 kHz, il faut une valeur supérieure à 100 M Ω). Nous avons donc étudié et réalisé^{[12][18][19]} un système adapté à la mesure de $V_2^{(*)}$ Le schéma synoptique est donné figure 6.

(*) Nous remercions M. DRUON d'avoir bien voulu nous conseiller dans cette partie du travail.

Figure 6 : Schéma synoptique du système détecteur (T_1, T_2) : Double F.E.T.(Intersil, 2N5911)

La tension V_2 est envoyée en série avec une polarisation négative sur la gate du transistor 1 du double FET (Intersil , 2N5911). Techniquement, la liaison électrique "conducteur central du résonateur-gate" est minimale. La tension détectée correspondante est obtenue aux bornes du circuit RC dans la source de ce transistor (cf. figure 6). Cette méthode évite l'emploi d'une résistance parallèle de polarisation du F.E.T. qui limite l'impédance d'entrée du détecteur^[6]. Dans ces conditions, celle-ci est nettement supérieure à la résistance parallèle de fuite présentée par les différentes bobines de self.

Pour que la mesure de V_2 soit indépendante des caractéristiques du transistor, on emploie un deuxième système détecteur de même principe que le précédent. Il utilise le deuxième transistor du double F.E.T. Ce circuit détecte un signal basse fréquence à fréquence fixe de 10 kHz. Les signaux obtenus en S_1 et S_2 sont envoyés à un système d'asservissement comprenant un soustracteur-intégrateur. Celui-ci commande l'amplitude du signal basse fréquence de façon que sa valeur crête soit égale à celle du signal haute fréquence en G_1 . L'amplitude du signal basse fréquence est mesurée à l'aide d'un voltmètre digital (DATEL, Modèle DM 2115 D2, 3 digits 1/2).

a) Linéarité de la détection (cf. figure 7)

Dans cette étude, nous vérifions que la tension détectée V_d est proportionnelle à l'amplitude du signal haute fréquence d'entrée V_e ou encore que V_d = a V_e avec a = 1. Pour cela, V_e est envoyée sur G_1 et V_d est relevée à l'aide du voltmètre digital,

Figure 7 : Banc de mesure pour l'étude de la linéarité et la réponse en fréquence de la détection

Dans la gamme de fréquence considérée, la détection présente une bonne linéarité pour V_d comprise entre 0 et 1.3 Volt. Nous donnons sur la figure 8 un exemple des résultats obtenus pour une fréquence égale à 30 MHz.

Figure 8 : Courbe de linéarité de la détection : $V_d = f(V_e)$ F = 30 MHz (constante)

b) Réponse en fréquence

Nous avons relevé V_d dans la gamme de fréquence 100 kHz - 300 MHz tout en gardant V_e constante et égale à 0.5 V. Les essais montrent que $V_d = V_e$ jusqu'à 200 MHz avec une précision de 2%. A 250 MHz, la précision passe à 3 %. A 300 MHz, elle n'est plus que de 10 % (cf. figure 9).

II-2-3- Etude de la détection dans le résonateur

a) Linéarité

Pour effectuer cette étude, nous avons réalisé un banc de mesure (cf. figure 10). Le signal V_e est envoyé sur G_1 et la tension V_d est mesurée à l'aide du voltmètre digital.

Nous avons relevé V_d en fonction de V_e pour différentes valeurs de la fréquence. Nous donnons figure 11, un exemple des résultats obtenus pour une fréquence de 30 MHz.

L'ensemble résonateur-détecteur présente une bonne linéarité pour V_d comprise entre 0 et 1.5 Volt car les variations sont inférieures à 1 % jusqu'à 200 MHz et inférieures à 5 % entre 200 et 300 MHz.

-14-

Figure 10 : Banc de mesure pour l'étude de la détection dans le résonateur.

Figure 11 : Linéarité de l'ensemble "résonateur-détecteur" : $V_d = f(V_e)$ F = 30 MHz(constante)

b) Réponse en fréquence

Nous avons relevé V_d dans la gamme de fréquence 100 kHz - 300 MHz tout en gardant V_e constante et égale à 1 V. Les essais montrent que la réponse en fréquence est bonne car les variations sont inférieures à 1.5 % jusqu'à 270 MHz et inférieures à 5 % entre 270 et 300 MHz (cf. figure 12).

-16-

II-3- ACQUISITION AUTOMATIQUE DES DONNEES (*)

Pour chaque point de mesure, la détermination de la permittivité complexe s'effectue à partir d'un calculateur type CBM (32 K). II-3-1- Le port parallèle

Les grandeurs mesurées : V_1 , V_2 et F_R sont transférées au calculateur par l'intermédiaire de son port parallèle. Le port parallèle ou "PET user port" utilise une partie des possibilités offertes par le VIA 6522 (Versatile Interface Adapter). Celui-ci est un circuit d'interface réalisé par Commodore en technologie CMOS. L'utilisateur dispose de huit lignes bidirectionnelles de données (Pa₀ à Pa₇) et de deux lignes de commande : C_{A1} et C_{B2}. II-3-2- <u>Principe de l'acquisition automatique des données</u>

a) Choix des entrées-sorties

Selon le contenu du registre de direction DDR^[20], chaque ligne (Pa₀ à Pa₇) peut être soit une entrée, soit une sortie. En effet, à l'aide d'un software "POKE 59459 A", on peut faire apparaitre dans le registre DDR, L'équivalent binaire du nombre décimal A \leq 255). Par exemple, l'instruction : POKE 59459, 240 donne 4 entrées et 4 sorties (cf. figure 13).

Figure 13 : Choix des entrées-sorties

b) Utilisation de la ligne C_{B_2}

La ligne C_{B2} est utilisée comme sortie. Elle est configurée à des états logiques selon l'appareil, pour commander le début de la mesure. Une fois celle-ci finie, l'appareil envoie un signal vers l'unité de contrôle pour indiquer que la mesure est finie.

(*) Nous remercions MM. C. DRUON, F. WATTRELOT et B. VERBEKE de leur collaboration dans cette partie du travail.

-17-

c) <u>Utilisation de la ligne CA</u>

La ligne C_{A_1} est une ligne d'entrée uniquement. Elle sert pour la validation des données. Un bit indicateur apparait dans le registre IFR, une fois C_{A_1} activée. La détection de ce bit signifie que les données ont été validées. Cette détection se fait à l'aide de l'instruction : "WAIT 59469,2".

II-3-3- Description du processus de mesure

Nous donnons figure 14 le schéma synoptique du banc de mesure. Le processus de mesure se déroule comme suit :

mise en place de la cellule de mesure contenant l'échantillon à analyser,
mise en place de la bobine de self et réalisation de l'accord en fréquence manuellement.

Pour être en mode automatique, il faut supprimer le cadencement interne du convertisseur analogique-numérique DATEL. C'est le rôle du relais électronique R₂.

L'unité de contrôle de mesure fait l'acquisition des données suivantes :

1°) La fréquence F_R . Le fréquencemètre utilisé présente une sortie BCD. Cette donnée est mise en mémoire par le CBM.

2°) Le relais électronique R_1 permet de faire soit la mesure de V_1 , soit la mesure de V_2 . La tension V_1 (ainsi que V_2) est envoyée vers le convertisseur analogique/numérique sortant en code BCD 3 digits 1/2. Elle est ensuite envoyée vers l'unité de contrôle qui en fait l'acquisition. Le CBM mémorise V_1 , puis V_2 .

Enfin, le calculateur gère ces données ainsi que celles envoyées par les différents périphériques. Les résultats ε ' et ε " sont imprimés dans un délai de quelques secondes.

Dans le calcul de ε' et ε'' interviennent les valeurs C_e et V₁₀ (cf.§ IV-2).Celles-ci sont relevées sur les courbes d'étalonnages (cf.§ III-2,III-3). Ces relevés sont facilités par la mise en mémoire sur disques souples d'un grand nombre de points discrets caractérisant toutes ces courbes (environ 800 points). Les valeurs de C_e et V₁₀ sont alors calculées par interpolation.

Les schémas électroniques de l'unité de contrôle sont donnés dans l'annexe .

Figure 14 : Schéma synoptique du Banc de mesure

(1) Bobine de self ou induction équivalente des stubs R_1 , R_2 : Relais Reed

BUS LILLE -20-

III-1- REALISATION D'ELEMENTS ETALONS

III-1-1- Capacités étalons

a) Structure

Ces capacités doivent garder une valeur constante dans la gamme de fréquence considérée. Elles sont constituées par un condensateur plan localisé à l'extrémité d'une transition correspondant au plan d'entrée des cellules de mesure. Cette transition (notée L) est réalisée dans le même standard que celui du résonateur (cf. figure 15).

(E,E') : plan d'entrée des cellules de mesure

Nous avons réalisé huit capacités étalons (notées $Ce_1 \ge Ce_8$). Leurs valeurs sont données dans le tableau I, ligne 2.

Capacités étalons	Ce ₁	Ce2	Ce3	Ce4	Ce5	Ce6	C _{e7}	C _{e8}
Valeur (pF)	79,0	49.6	32.5	20.1	11.6	7.8	4.8	1.6
Limite en fréquence (MHz): $\Delta C_e/C_e \leq 3 \%$	200	200	300	700	1000	>1000	>1000	>1000
Limite d'utilisa- tion (MHz)	95	115	140	170	200	220	240	270

b) Comportement en fréquence

Nous avons vérifié à 100 kHz avec un pont basse fréquence et, en haute fréquence avec un mesureur de T.O.S. que ces capacités gardent une valeur constante dans la bande de fréquence considérée. Nous donnons figure 16 le comportement en fréquence de lacapacité de valeur 20.1 pF.

Figure 16 : Comportement en fréquence de la capacité d'étalonnage. 20.1 pF • : points relevés avec l'ancien résonateur

▲ : points relevés avec un comparateur d'admittance B.F.

▲ : points relevés avec un mesureur de T.O.S.

Pour les autres capacités étalons, nous avons constaté que : - celles dont la valeur est inférieure à 20.1 pF ont un comportement en fréquence meilleur que celui donné figure 16 (cf. tableau I, ligne 3), - celles dont la valeur est supérieure à 20.1 pF se comportent moins bien en fréquence (cf. tableau I, ligne 3). Toutefois, elle gardent une valeur constante dans leur limite d'utilisation (fréquence de résonance obtenue avec les bobines extrêmes) avec chaque bobine ou stub du résonateur (cf. tableau I, ligne 4).

c) Précision sur les valeurs de Ce

Nous donnons dans le tableau II la précision des mesures obtenue sur la détermination de C_e. Les mesures ont été effectuées à l'aide de deux dispositifs, l'un en basse fréquence (pont General Radio 716 C) et l'autre, en haute fréquence (ligne Rhode et Schwartz).

-21-

C _e (pF)	79 ≤ C _e ≤ 32.5	32.5 ≤ C _e ≤ 11.6	11.6 ≤ C _e ≤ 1.6
∆C _e (pF)	$0.7 \leq \Delta C_{e} \leq 0.3$	$0.3 \leq \Delta C_{e} \leq 0.1$	$\Delta C_{e} \leq 0.1$
$\frac{\Delta C_{e}}{C_{e}}$ (%)	< 1	≤ 1	$1 \leq \frac{\Delta C_e}{C_e} \leq 6$

Tableau II

Ces précisions sont satisfaisantes car dans le cadre des mesures effectuées au laboratoire pour la caractérisation des diélectriques, la capacité mesurée est supérieure à 7 pF.

III-1-2- Conductances étalons

a) Structure

Ces conductances doivent garder une valeur constante dans la gamme de fréquence correspondant à chaque bobine de self. Elles sont constituées par un dipôle R_eC_e parallèle localisé à l'extrémité de la transition L. R_e est une résistance à couches de dimensions réduites (Sfernice, RTC). C_e est la somme de la capacité cylindrique C_{e1} et C_{e2} ramenée par le chapeau de blindage (cf. figure 17).

Figure 17 : Dessin des conductances étalons

- (1)(2) : bagues de Téflon
- (3) : résistance R¦
- (E ,E') : plan d'entrée des cellules de mesure $C_{e1} \simeq 1.5 \text{ pF}$

Nous avons réalisé vingt dipôles pour couvrir la gamme 0.01 \leqslant G \leqslant 5000 μS (cf. § I-1).

b) Comportement en fréquence

Dans le plan d'entrée de la cellule, l'admittance du dipôle R $_{\rm e}^{\rm C}C_{\rm e}^{\rm c}$ s'écrit :

$$Y'_{e} = G'_{e} + jB'_{e} = G'_{e} + j\omega C'_{e}$$
 (8)

Les conductances ont été mesurées à l'aide de l'ancien résonateur pour les fréquences inférieures à 50 MHz et à l'aide d'un mesureur de T.O.S. pour les fréquences supérieures à 150 MHz. Nous donnons figure 18 un exemple du comportement en fréquence de deux conductances G'_e de valeur 200 μ S et 2000 μ S. Elles gardent une valeur constante jusqu'à 50 et 300 MHz. Les résultats obtenus (cf. Figure 18) ont été confirmés par les mesures faites sur l'analyseur d'impédances Radiofréquences Hewlett-Packard ^[9] (Modèle 4191 A : 1 MHz-1 GHz).

- ▲ : point relevés avec le comparateur d'admittance B.F. 716 C
- : points relevés avec l'ancien résonateur

▲ : points relevés avec un mesureur de T.O.S.

-23-

c) Précision sur les valeurs de Gé

Dans la gamme de fréquence où ces conductances sont constantes, celles-ci sont déterminées avec une précision < 1 %. Cette précision est en accord avec celle donnée par le constructeur.

III-2- ETALONNAGES EN CAPACITE

Pour chaque bobine de self et pour $V_2=1$ Volt, nous avons relevé la fréquence de résonance F_R en plaçant au niveau du plan d'entrée de la cellule de mesure, successivement les huit capacités étalons. Nous donnons figure 19 un exemple des courbes obtenues pour la bande de fréquence 18-38 MHz (bobine 9 : cf.tableau IV).

Figure 19 : Courbe d'étalonnage en capacité pour la gamme 18-38 MHz III-2-1- <u>Variation des étalonnages en fonction de V</u>2

Il est nécessaire d'étudier les variations de ces courbes en fonction de la tension V₂. Aussi, pour V₂ = 0.1 V et V₂ = 0.5 V, nous avons relevé les fréquences de résonance F_R dans la gamme 0.1-300 MHz à l'aide de la capacité étalon de 32.5 pF. Ces fréquences permettent de relever à partir des courbes d'étalonnages tracées pour V₂ = 1 V, les valeurs de cette capacité pour V₂ = 0.1 V et V₂ = 0.5 V (cf. tableau III).

-24-

F(MHz)	0.1 - 1	1 - 10	10 - 300
V ₂ = 1 V	32.5 ± 0.1 pF	32.5 ± 0.1 pF	32.5 ± 0.1 pF
$V_2 = 0.5$	32.6 ± 0.1 pF	32.6 ± 0.1 pF	32.5 ± 0.1 pF
$V_2 = 0.1$	32.6 ± 0.1 pF	32.6 ± 0.1 pF	32.6 ± 0.1 pF

Tableau III

Compte tenu des résultats obtenus et aux erreurs de mesure et de lecture près, les courbes d'étalonnages en capacité sont indépendantes de la tension V_2 .

III-2-2- Evolution dans le temps

Nous avons vérifié que les courbes $Ce = f(F_R)$ n'évoluent pas au cours du temps. Cette vérification a été effectuée à des intervalles réguliers (six mois environ) à l'aide des capacités étalons utilisées lors des étalonnages initiaux.

III-3- ETALONNAGES EN CONDUCTANCE

Pour déterminer G_x , il est nécessaire de connaître V_{10} (cf. formule 4). Les courbes V_{10} fonction de F_R ont été relevées pour $V_2 = 1$ Volt avec les capacités étalons mentionnées précédemment. Nous donnons figure 20 un exemple de courbe obtenue pour la bande de fréquence 18-38 MHz, (bobine 9 : cf. tableau IV).

III-3-1- Variation des étalonnages en fonction de V2

La tension V₁₀ varie en fonction de V₂. Nous donnons figure ²¹ un exemple de courbe obtenue à l'aide d'une capacité étalon (C_e = 32.5 pF) pour V₂ comprise entre 0 et 1.3 V.

La courbe $V_{10} = f(V_2)$ présente une bonne linéarité car les variations sont inférieures à 1 % jusqu'à 200 MHz et inférieures à 5 % entre 200 et 300 MHz.

III-3-2- Evolution dans le temps

Les courbes $V_{10} = g(F_R)$ évoluent au cours du temps. Cette évolution s'explique par l'humidité, la variation de la résistance de fuite des bobines de self et stubs ...

D'après la relation (3) :

$$V_{10} = \frac{G_{v}}{\omega_{\rm R} \cdot K_{\rm I}} \tag{9}$$

avec

$$K_1 = \frac{C_1}{V_2}$$
 (V₂ = 1 Volt)

D'après la formule (9), la courbe $V_{10} = g(F_R)$ est une hyperbole. En effet, on considère en première approximation que G_v est constant dans la gamme de fréquence de chaque bobine (K_1 étant connu : voir § III-4-3).

Pour suivre l'évolution de V₁₀, il suffit de mesurer un seul point (ie F_R et V₁₀) à l'aide d'une capacité étalon pour déduire par homothetie la nouvelle courbe V₁₀. Nous donnons ci-dessous un exemple d'évolution relevée avec le stub 3.

Pour $F_R = 226.7$ MHz, V_{10} relevée sur abaque vaut 0.59 Volt. Pour la même fréquence, nous avons mesuré six mois après 0.545 V. Le rapport d'homothétie α (rapport de V_{10} mesurée et V_{10} relevée sur la courbe d'étalonnage) vaut 0.92. Il suffit de multiplier les valeurs des points de l'ancienne courbe par α pour obtenir la nouvelle. Ainsi : 1) Pour $F_R = 149.5$ MHz, V_{10} relevée = 1.23 V. La nouvelle valeur de V_{10} vaut : V_{10} relevée x α = 1.14 V. Nous avons mesuré 1.10 V. 2) Pour $F_R = 91.35$ MHz, V_{10} relevée = 4.84 V. La nouvelle valeur de V_{10} vaut : V_{10} relevée x α = 4.44 V. Nous avons mesuré 4.47 V. Dans les deux cas, l'approximation est très bonne.

Nous avons constaté que V₁₀ varie très peu au cours d'une journée et,signalons qu'il faut une demi-heure pour effectuer les mesures au résonateur.

III-4- ETALONNAGES DE C1

III-4-1- Permittivité de la silice en fonction de la fréquence (courbe constructeur)

Rappelons que la capacité d'excitation C₁ est un condensateur plan ayant pour diélectrique une lame de silice compacte de permittivité $\varepsilon_d^* = \varepsilon_d'$.
Le constructeur (Electro-Quartz) donne les variations de ϵ'_d en fonction de la fréquence à température ambiante (cf. figure 22)

Figure 22: Permittivité de la silice $(\epsilon_d^{\,\prime})$ fonction de la fréquence (Courbe constructeur)

Nous observons que ϵ_d' vaut 3.5 et reste constante jusqu'à 1 MHz. Au-delà, elle augmente légèrement et vaut 3.6 à 1 GHz.

III-4-2- Détermination de C₁ en fonction de la fréquence
D'après la relation (4)

$$\frac{C_1}{V_2} = \frac{G_x}{\omega_R (V_1 - V_{10})}$$
(10)

Dans l'expression (10) G_{χ} est inconnue. Pour déterminer C_1/V_2 , nous utilisons les conductances étalons décrites précédemment. Dans le plan d'entrée des cellules de mesure, l'admittance des dipôles étalons s'écrit :

$$Y'_e = G'_e + j B'_e = G'_e + j\omega C'_e$$

A partir de la théorie des lignes, l'admittance Y'_x (valeur de Y'_e dans le plan de détection) s'exprime en fonction de Y'_e par :

$$Y'_{X} = \frac{Y'_{e} + j Y_{c} tg \beta l}{1 + Y'_{e} Z_{c} tg \beta l} = G'_{X} + j B'_{X}$$
(11)

où l = distance séparant les plans d'entrée des cellules et de détection.

$$Z_{c} = \frac{1}{Y_{c}} = 50 \ \Omega$$
$$\beta = \frac{2 \ \pi}{c} F_{R}$$

A partir de (11), nous déduisons :

$$G'_{e} = G'_{x} \frac{(1 + tg \beta l)}{(1 + B'_{x} Z_{c} tg \beta l)^{2} + (G'_{x} Z_{c} tg \beta l)^{2}}$$
(12)

$$B'_{e} = \frac{(B'_{x} - Y_{c} tg \beta l) (1 + B'_{x} Z_{c} tg \beta l) + G'_{x} Z_{c} tg \beta l}{(1 + B'_{x} Z_{c} tg \beta l)^{2} + (G'_{x} Z_{c} tg \beta l)^{2}}$$
(13)

A la fréquence de résonance F_R , $G'_e = \frac{1}{R'_e}$ est connue. C'_e et V_{10} s'obtiennent directement des courbes d'étalonnages. La détermination de G'_X s'effectue de manière numérique par la méthode de Newton^[21] connaissant G'_e et B'_e .

Nous avons mesuré C_1 pour $V_2 = 1$ V dans la gamme de fréquence de chaque bobine et stub. Nous présentons dans le tableau IV les valeurs mesurées de C_1 ainsi que celles obtenues à partir de l'expression (14)

$$C_1 = \varepsilon_0 \varepsilon'_d \pi \frac{d^2}{4e}$$
(14)

où ε'_d = valeur donnée par le constructeur (cf. figure 23) d = 6.20 mm et e = 1.00 mm

Bobine Gamme de fréquence (MHz)	C ₁ (pF) mesurée	C ₁ (pF) calculée	$\frac{\frac{\Delta C_{1mes} - \Delta C_{1cal}}{\Delta C_{1mes}}$	C _l (pF) choisie
Bobine 1 0.1-02	0.943	0.934	1	0.936
Bobine 2 0.23-0.46	0.941	11	0.8	11
Bobine 3 0.49-1	0.934	"	0	11
Bobine 4 1.25-2.55	0.936	18	0.2	11
Bobine 5 2-4.05	0.945	18	1	11
Bobine 6 3.5-7.05	0.937	II	0.3	н
Bobine 7 6.5-13.3	0.93	18	0.4	11
Bobine 8 12.3-25.2	0.934	It	0	11
Bobine 9 18-38	0.94	11	0.6	11
Bobine 10 35.3-75.7	0.944	II	1	11
Bobine 11 56-130	0.939	13	0.5	11
Stub 1 65-155.1	0.937	0.947	1	11
Stub 2 75-195.5	0.949	i)	0.2	0.96
Stub 3 91.7-273	0.963	0.950	1.3	0.96
Stub 4 104-353	0.974	11	2.5	0.96

-30-

De 100 kHz à 150 MHz, les écarts sont inférieurs à 1 %. Au-delà, ils restent inférieurs à 2.5 %. Néanmoins, pour minimiser les écarts, nous prenons $C_1 = 0.936$ pF de 0.1 à 150 MHz et $C_1 = 0.96$ pF au delà.

III-4-3- Mesure de C_1 en fonction de V_2

Les valeurs de C₁ ont été mesurées en fonction de V₂ dans la bande de fréquence considérée. Les résultats obtenus montrent que pour toute valeur de V₂, un seul coefficient K₁ = C₁/V₂ est suffisant. Ceci était attendu car l'ensemble "détecteur-résonateur" présente une bonne linéarité dans la gamme de fréquence 0,1-300 MHz.

Ce résultat est très intéressant car il permet de simplifier les calculs dans la détermination de ε^* (cf. § IV-2).

Signalons que l'ancien résonateur présente un coefficient C_1/V_2 par bobine et ceci, pour une valeur donnée de V₂.

III-5- MISE EN MEMOIRE SUR CALCULATEUR DES ETALONNAGES

Le résonateur étant relié à un calculateur CBM 32 k, nous avons enregistré sur disquette pour les 11 bobines et 4 stubs :

- la valeur de la capacité d'excitation C_1 ,

- les points correspondants aux courbes $C_e = g(F_R)$ et $V_{10} = h(F_R)$.

Le calculateur détermine à toute fréquence C_e et V_{10} par interpolation.

IV - UTILISATION DU RESONATEUR

Le résonateur a été réalisé pour mesurer des admittances inconnues. En particulier, avec une cellule de mesure capacitive adaptée, il permet également de déterminer la permittivité électrique de différents matériaux (solides, liquides, cristaux liquides ...). En effet, nous avons vu au paragraphe I-3 que la détermination de ε^* se ramène toujours à la mesure d'une admittance.

IV-1- MESURE D'ADMITTANCES

Dans le plan d'entrée des cellules de mesure, l'admittance à mesurer Y_e s'écrit :

$$Y_e = G_e + j B_e = G_e + j \omega C_e$$

A partir de la théorie des lignes, l'admittance $Y_X = G_X + jB_X$ (valeur de Y_e dans le plan de détection) s'exprime en fonction de Y_e par des formules analogues aux expressions (11),(12) et (13).

Rappelons que la valeur de G_X s'obtient par la relation (4) :

$$G_{X} = \omega \frac{C_{1}}{V_{2}} (V_{1} - V_{10})$$

A la pulsation de résonance ω_R , C_e et V_{10} sont données par le calculateur (cf. § III-5). La détermination de G_e s'effectue de manière numérique^[21] connaissance G_x et B_e .

IV-2- DETERMINATION DE ε^* IV-2-1- Détermination de ε'

L'admittance dans le plan d'entrée de la cellule remplie d'un dié-lectrique de permittivité ϵ^* est :

 $Y_{e} = j \omega_{R} C_{a} \varepsilon^{*} = \omega_{R} \varepsilon^{"} C_{a} + j \omega_{R} \varepsilon^{'} C_{a}$ (15)

avec C_a = capacité active de la cellule à vide (valeur connue).

En posant :

$$Y_e = G_e + j B_e = G_e + j \omega_R C_e$$
(16)

et en identifiant (15) et (16)

$$\varepsilon' = \frac{C_e}{C_a} \tag{17}$$

A la pulsation ω_R , la détermination de ϵ^* s'obtient directement connaissant $C_{e}.$

IV-2-2- Détermination de ε "

D'après les expressions (15) et (16) :

$$\varepsilon'' = \frac{G_e}{\omega_R C_a}$$
(18)

La valeur de ε " est liée à la détermination de la conductance dans le plan d'entrée E de la cellule situé à une distance connue "l" du plan de mesure X (cf. figure 3). Rappelons que l'admittance Y_e s'exprime en fonction de Y_x = G_x + j B_x par des formules analogues aux expressions (11), (12) et (13).

Comme au § IV-1, la valeur de G_X s'obtient par la relation (4) et, à la pulsation ω_R , la détermination de G_e s'effectue de manière numérique connaissant G_X et $B_e = \omega_R C_e$.

Sachant que
$$G_e = k G_X$$
 (19)

avec

$$k = \frac{1 + tg \ \beta l}{(1 + Z_c \ tg \ \beta l)^2 + (G_x \ Z_c \ tg \ \beta l)^2}$$
(20)

d'après (18)

$$\varepsilon'' = \frac{k G_{x}}{\omega_{R} C_{a}}$$
(21)

or

 $G_x = \omega_R \frac{C_1}{V_2} (V_1 - V_{10})$. Ce qui donne :

a) Cas des faibles pertes : $V_2 = 1$ Volt

$$\varepsilon^{"} = \frac{1}{C_{a}} \frac{C_{1}}{1V} (V_{1} - V_{10}) k$$
 (22)

en posant $\frac{C_1}{1V} = K_1$, nous obtenons

$$\varepsilon'' = \frac{1}{C_a} K_1 (V_1 - V_{10}) k$$
 (23)

Ala fréquence de résonance ${\rm F}_{\rm R},$ il suffit de mesurer ${\rm V}_1$ pour connaître $\epsilon".$

b) Cas des moyennes et fortes pertes : 0.1 V < V $_{2}$ < 1V

Soit par exemple $V_2 = \alpha \times 1V$ avec $0.1 < \alpha < 1$. Compte tenu de la linéarité de la détection, la valeur V_{10} devient αV_{10} . La relation (22) s'écrit :

$$\varepsilon'' = \frac{1}{C_a} \frac{C_1}{\alpha \times 1V} (V_2 - \alpha V_{10})k$$
 (24)

soit :

$$\varepsilon'' = \frac{1}{C_a} K_1 (\frac{V_1}{\alpha} - V_{10}) k$$
 (25)

A la fréquence de résonance F_R , $V_2 = \alpha \times 1V$ est donnée par le voltmètre digital. Il suffit de mesurer V_1 pour connaître ε ".

IV-3- PRECISION DES MESURES

IV-3-1- Précision sur ε'

D'après la relation (17),

$$\varepsilon' = \frac{C_e}{C_a}$$

ce qui donne :

 $\frac{\Delta \varepsilon'}{\varepsilon'} = \frac{\Delta C_e}{C_e} + \frac{\Delta C_a}{C_a} \approx \frac{\Delta C_e}{C_e} \quad car \quad \frac{\Delta C_a}{C_a} \leq 10^{-3} \quad (26)$

Pour la plupart des matériaux étudiés au laboratoire et dans toute la gamme de fréquence 0_1-300 MHz, ε ' est mesuré à mieux que 2 % (cf. § III-1-1).

IV-3-2- Précision sur ε"

D'après la relation (26) et en posant $K_1 = \frac{C_1}{V_2}$ $\varepsilon'' = \frac{1}{C_a} K_1 (\frac{V_1}{\alpha} - V_{10}) k$

ce qui donne :

$$\frac{\Delta \varepsilon''}{\varepsilon''} = \frac{\Delta C_a}{C_a} + \frac{\Delta K_1}{K_1} + \frac{1}{(V_1 - \alpha V_{10})} (\Delta V_1 + V_1 \frac{\Delta \alpha}{\alpha} + \alpha \Delta V_{10}) + \frac{\Delta k}{k}$$
(27)

or :

$$\frac{\Delta C_a}{C_a} \quad \text{et} \ \frac{\Delta k}{k} \leqslant \ 10^{-3}$$

Donc

$$\frac{\Delta \varepsilon''}{\varepsilon'''} \# \frac{\Delta K_1}{K_1} + \frac{1}{V_1 - \alpha V_{10}} (\Delta V_1 + V_1 \frac{\Delta \alpha}{\alpha} + \alpha \Delta V_{10})$$
(28)

Nous présentons dans le tableau V, la précision sur ϵ " dans toute la gamme de fréquence 0.1-300 MHz.

Gamme de fréquenc	e : MHz	0.1-150	150-260	260-300
Faibles pertes $V_2 = 1$ Volt $(\alpha = 1)$	Δε"_ (%)	< 3 %	≤ 5 %	≤ 15 %
Fortes pertes $0.1 \leq V_2 < 1 V$ $\alpha < 1$	ε" ("")	< 4 %	≤ 6 %	≤ 15 %

Tableau V

Dans la plupart des cas, la précision des mesures sur ε " est de l'ordre de 4 % dans la gamme 0.1-260 MHz.

IV-4- EXTENSION DES MESURES

Nous avons vu au paragraphe II -1-3- qu'il est possible d'augmenter le nombre de points expérimentaux. Nous donnons dans ce qui suit un exemple de mesure obtenue à l'aide de la ligne en T et d'une capacité additionnelle de 32.5 pF. Celle-ci est une des huit capacités mentionnées précédemment. Le banc de mesure est donné figure 23.

Le système "résonateur-ligne en T" est étalonné en capacité et en conductance^(*).Ces étalonnages sont donnés figure 24 pour la gamme 1.25-1.45 MHz.

Nous sommes ainsi ramenés aux cas précédents (§ III-2, § III-3). Le calculateur donne ε' et ε'' connaissant V₁ ,F_R et V₂ ainsi que les valeurs V₁₀ et C_p déterminées à partir des étalonnages .

V - COMPARAISON ENTRE L'ANCIEN ET LE NOUVEAU RESONATEUR

V-1- TABLEAU COMPARATIF ENTRE L'ANCIEN ET LE NOUVEAU RESONATEUR

Dans le tableau VI, nous comparons les principales caractéristiques de l'ancien et du nouveau résonateur.

(*) Une autre méthode consisterait à se servir des étalonnages initiaux (cf, § III-2 et § III-3) en tenant compte de la longueur électrique de la ligne en T.

-35-

Figure 23: Banc de mesure pour l'extension des mesures

(is)

Figure 24 : Etalonnage de l'ensemble "résonateur-ligne en T" : Bobine 5 (1) : Courbe d'étalonnage en conductance pour la gamme

1.25-1.45 MHz(2) : Courbe d'étalonnage en capacité pour la gamme 1.25-1.45 MHz

> 65 11

-37-

					المحافظين المحافظ فكشندين الكنان كمينتها والمتقالي ويعتقب وينبع والمحافي
CARACTER	ISTIQUES	Ancien résonateur	Nouveau r	ésonateur	Commentaire
	Standard	Mal défini	Identique des cellu sure (Ger	e à celui les de me- meral Radio)	Avantage
	Réalisation	simple	plus co	mplexe	Inconvénient lors de la réalisation
Méca- nique	Transition (résonateur- cellules)	Une fiche de tran- (sition pour passer au standard G.R)	Inut	ile	Avantage
	Maniabilité	Excellente	Excelle	ente	Identique
	Réalisation	Très simple	Plus co	omplexe	Inconvénient lors de la réalisation
Détec- tion	Réponse en fréquence	0 - 80 MHz	0.1-260) MHz	Identique
	Linéarité	Non linéaire	Liné	eaire	A vantage
Capacité C ₁	d'excitation	Constante	Cons	stante	Identique
Pertes à	vide : $(\frac{G_v}{\omega_R})$	Voir figure 25	Voir 1	figure 25	Inconvénient de 0.1 à 2 MHz
Nombre de mesure po	points de ssibles	11	Env	iron 70	Avantage
Gamme de	fréquence	0.1-80 MHz	0.1 -	300 MHz	Avantage
Automatis	ation	Non		oui	Avantage
Mesure	ε'	< ⁴⁰		< 50	Avantage
de e*		0.00	0,1-2MHz	0.08<ε"<18	Inconvénient
	ε"	υ.υ2 < ε" < /	2-300MHz	0.02 <e"<18< td=""><td>Avantage</td></e"<18<>	Avantage
Précisior	des mesures	2% en ε' et 4% en ε" jusqu'à 60 MHz	Voir tal	oleau V	Identique
ETAL ONS	Capacités étalons	Cylindriques. constantes jusqu'à 100 MHz maximum	Planes. jusqu'à tableau	Constantes 1 GHz∷{voir I)	Avantage
	Conductances étalons	non localisées pour fréquences su périeures à 40 MHz	Localis	ées	Avantage

• ,

V-2- COURBE (G_V/ω_R) FONCTION DE LA FREQUENCE

A partir de l'équation (3), nous avons :

$$\frac{G_{v}}{\omega_{R}} = V_{10} \qquad \frac{C_{1}}{V_{2}}$$

La valeur moyenne des pertes à vide étant (G_V/ω_R) , il est donc impossible de mesurer des produits ayant des pertes plus petites que cette valeur. Par analogie avec le rapport signal/bruit, on choisira comme limite inférieure mesurable : 2 G_V/ω_R .

Nous donnons figure 25 la courbe G_V/ω_R fonction de la fréquence pour l'ancien et le nouveau résonateur.

Figure 25 : Pertes à vide de l'ancien et du nouveau résonateur (1) : pertes à vide de l'ancien résonateur (2) : pertes à vide du nouveau résonateur Les pertes à vide du nouveau résonateur sont environ deux fois plus grandes que celles de l'ancien résonateur jusqu'à 2 MHz. Elles sont du même ordre de grandeur entre 2 et 25 MHz. Au-delà, les pertes du nouveau résonateur sont plus faibles que celles de l'ancien.

VI - APPLICATION A LA MESURE D'ADMITTANCES ET A LA DETERMINATION DE LA PERMITTIVITE ε * D'UN DIELECTRIQUE

Nous donnons dans ce paragraphe, des exemples de mesures qui ont été effectuées avec le nouveau résonateur.

VI-1- CAS D'UN DIPOLE RC SERIE

Nous donnons la courbe $\frac{G_{//}}{\omega} = f(C_{//})$ pour le dipôle RC série schématisé sur la figure 26,

Figure 26 : Dipôle électrique RC série
 (E , E') : plan d'entrée des cellules de mesure
 C₀ = C_e¹ + C_e² (cf. § III-1-2)

Les points obtenus se placent sur un demi-cercle comme le prévoit la théorie avec une précision meilleure que 2 %.(Cf. figure 27).

VI-2- APPLICATION AUX CRISTAUX LIQUIDES

Nous avons relevé les spectres diélectriques de plusieurs cristaux liquides à l'aide d'une cellule dont la capacité active C_a est celle d'un condensateur plan localisé à l'extrémité d'une ligne coaxiale^[3]

En particulier, nous avons choisi d'utiliser le 4 cyano 4' octylbiphényl (O.C.B.) qui présente dans sa phase smectique un domaine de relaxation diélectrique de type Debye^[3].

Nous donnons figure28, sous forme de diagramme de Cole et Cole, le spectre obtenu à l'aide du nouveau résonateur.

Nous remarquons qu'il se présente comme prévu sous forme de demicercle. Signalons que les points relevés sont en bon accord avec ceux obtenus lors de travaux antérieurs^[3].

-41-

Figure 28: Diagramme de Cole et Cole pour l'O.C.B. en phase smectique à T = +27°C. Les fréquences sont données en MHz.

VI-3- APPLICATION AUX SOLIDES

Nous avons aussi relevé les spectres diélectriques de plusieurs solides pulvérulents (zéolithes commerciales, cyanoadamantane ...) à l'aide d'une cellule dont la capacité active C_a est celle d'un condensateur cylindrique localisé à l'extrémité d'une ligne coaxiale (cf. figure 3).

Nous donnons figure 29 le spectre du cyanoadamantane sous la forme ε " = f(fréquence). Les mesures ont été faites à l'aide du résonateur (cercles) et d'un comparateur d'admittances 40 Hz-2 MHz (\blacktriangle).

Nous remarquons que les deux dispositifs donnent des résultats en très bon accord dans la gamme 100 kHz-2 MHz, commune aux deux appareils.

Figure 29 : Spectre $\ensuremath{\,\epsilon}"$ fonction de la fréquence pour le 1-cyanoadamantane à T = +25°C

▲ : points relevés avec un comparateur d'admittance B.F.

• : points relevés avec le nouveau résonateur

VII - CONCLUSION

Nous avons décrit et réalisé un nouveau dispositifrésonmant permettant de mesurer les conductances G_e et les susceptances B_e d'admittances inconnues Y_e . En particulier, avec une cellule de mesure capacitive adaptée, il permet de déterminer la permittivité électrique de différents matériaux (solides, liquides, cristaux liquides ...). Pour l'étude des diélectriques, ce dispositif, original par sa conception, a les caractéristiques suivantes :

- Il fonctionne dans la gamme de fréquence 100 kHz-300 MHz

- Il est semi-automatique : il relève les grandeurs de mesure et donne soit la valeur des composantes G_e et B_e , soit directement les composantes ε' et ε " avec une précision de 2 % et 4 % respectivement.

- Il permet l'étude de matériaux dont la tangente de pertes est supérieure à 0.4×10^{-3} .

N'ayant pas d'équivalent commercial, ce dispositif est actuellement utilisé au laboratoire pour la caractérisation diélectrique de différents matériaux tels les zéolithes et les cristaux liquides. Les nombreux spectres relevés (actuellement près de 300) sont satisfaisants du point de vue reproductibilité et précision des mesures.

Néanmoins, nous envisageons d'améliorer le dispositif : - en diminuant les pertes à vide par l'utilisation de transistors plus performants (type MOS par exemple),

- en complétant l'automatisation par un système de recherche automatique de la fréquence de résonance.

BIBLIOGRAPHIE

- [1] A. LEBRUN. 1964 Contrat Délégation Générale à la Recherche Scientifique et Technique Rapport 62 FR 107, Lille. Rapport interne I.R.E.L. 64-I
- [2] G. RAVALITERA, 1975 Thèse Doctorat 3è cycle, Lille
- [3] C. DRUON et J.M. WACRENIER, 1977 J. Physique, <u>38</u>, 47-50
- [4] J.P. PARNEIX, C. LEGRAND et S. TOUTAIN, 1983 I.E.E. Trans. M.T.T., 30, 2015-2017
- [5] W.M. van BEEK, F. van DER TOUW et M. MANDEL, 1976 J. Phys. E.: Sci. Instrum., 9, 385-391
- [6] C.G. ESSEX, G.C. SOUTH, R.J. SHEPPARD et E. H. GRANT, 1975 J. Phys. E : Sci. Instrum., 8, 385-389
- [7] W. REDDISH, A. BISHOP, K.A. BUCKINGHAM et P.H. HYDE, 1971 Proc. I.E.E., <u>118</u>, 255-265
- [8] U. KAATZE et K. GIESE, 1980 J. Phys. E : Sci. Instrum., <u>13</u>, 133-141
- [9] Document Hewlett-Packard, 1982 Measurement/Computation "Electronic instruments and systems", p. 114
- [10] M. NENIN, 1966 Mémoire ingénieur CNAM, Lille
- [11] M.D. BENADDA, 1979 D.E.A., Lille
- [12] M.D. BENADDA, J.C. CARRU et C. DRUON, 1982 J. Phys. E : Sci. Instrum., <u>15</u>, 132-136
- [13] J.V.L. PARRY, 1951 Proc. I.E.E, 98, 303-311
- [14] L. HARTSHORN ET W.H. WARD, 1936 J. I.E.E, <u>79</u>, 597-609
- [15] Catalogue Rhode et Schwarz "Admittance Meter type VLUK-BN3511" Edition anglaise R8716/1163. (Edition originale allemande 3511. A/863)
- [15] J.L. SCHOUTHEER, 1964 D.E.S., Lille

- [17] A. CORBIZET,1980^(*)
 Rapport de stage, Lille
- [18] C. DRUON, 1979
 Résultats non publiés
- [19] J.L. AVERLANT, 1979 ^(*) Rapport de stage, Lille
- [20] R. ZAKS, 1979
 "Programmation du 6502" Ed. Sybex
- [21] B. DEMIDOVITCH et I. MARON, 1973 "Eléments de calcul numérique", Ed. Mir.

(*) Ces documents sont disponibles au C.H.S., équipe "Nouveaux Matériaux"

DEUXIEME PARTIE

ETUDE DES MÉLANGES DE DIÉLECTRIQUES EN DYNAMIQUE, APPLICATIONS.

CHAPITRE II

EXTENSION EN RÉGIME DYNAMIQUE DE QUELQUES LOIS DE MÉLANGE DE DIÉLECTRIQUES ÉTABLIES EN RÉGIME STATIQUE.

Au laboratoire, nous disposons d'un ensemble de dispositifs de mesure d'admittances qui permettent de couvrir une large gamme de fréquence : 1 Hz - 26 GHz. Nous pouvons ainsi déterminer la permittivité complexe de nombreux matériaux solides, liquides ou cristaux liquides en utilisant des cellules appropriées^[1 à 5].

Toutefois, avec des solides pulvérulents, la permittivité mesurée est apparente. C'est le cas par exemple des zéolithes disponibles sous forme de poudre. Nous les enrobons généralement^{$[6 \ a \ 8]$} d'un liquide non polaire et inerte du point de vue chimique (huile aux silicones ...) pour deux raisons : - diminuer la conductivité en basse fréquence^{[6][9]},

- isoler le matériau fort adsorbant du milieu extérieur^{[7][8]}.

Pour obtenir les propriétés électriques à large bande de fréquence du matériau compact^[10], il faudrait pouvoir utiliser une loi de mélange valable en dynamique. Or, jusqu'à maintenant^[10 à 16], la plupart des lois de mélange ont été établies pour décrire la permittivité statique ou quasi-statique des matériaux.

Seuls quelques rares auteurs,s'intéressant à l'interprétation théorique de la polarisation interfaciale, ont étendu en dynamique les lois de Bruggeman et de Maxwell-Wagner^[17 à 21]. C'est pourquoi, la deuxième partie de notre travail est relative à une étude théorique (chapitre II) et expérimentale (chapitre III) en vue de l'extension en dynamique des lois de mélange connues en statique.

Dans ce chapitre, nous rappelons tout d'abord les principales lois de mélange établis en statique^{[10][11]}. Une discussion générale est faite pour l'application de ces lois aux nombreux diélectriques étudiés au laboratoire. Cette discussion permet de retenir les formules de Maxwell-Wagner^[22], Looyenga^[23] et Böttcher^{[24][25]}. Pour ces trois lois, nous donnons :

- le rappel de la théorie permettant leur établissement,

- une discussion portant sur leur validité,

 l'extension en dynamique i.e l'utilisation de ces lois pour décrire la permittivité complexe des mélanges de corps polaires avec des corps polaires ou non dans la gamme de fréquence 1 Hz - 1 GHz.

Cette extension est appliquée à des milieux qui présentent : - un domaine de relaxation diélectrique moyenne fréquence non distribué de type

Debye,

- un domaine de relaxation diélectrique moyenne fréquence distribué de type Cole et Cole^[26].

- une série de domaines de relaxation diélectrique non distribués de fréquences critiques voisines^{[2][27]}.

I - LOIS DE MELANGE EN STATIQUE

I-1- RAPPELS

×

De nombreuses lois de mélange établies en statique sont données dans la littérature [10][11]. Nous en rappelons les principales que nous classons, suivant la nomenclature de Grosse et Greffe[11]:

- Lois de type phénoménologique : la permittivité ε du mélange est calculée indépendamment de la polarisation de ses constituants. Dans ce cas, on considère que les particules du corps dispersé de permittivité ε_{B} sont entourées par le milieu continu (ou enrobant) de permittivité ε_{A} . Les lois de Maxwell-Wagner^[22], Bruggeman^[28], Rayleigh^[29], Landau-Lifchitz^[30], Higuchi^[31]et Kubo-Nakamura^[32] sont classées dans cette catégorie.

- Lois de type dipolaire : la détermination de la permittivité du mélange se ramène toujours au calcul des moments dipolaires de chaque espèce moléculaire présente dans le mélange. Les lois de Onsager-Böttcher^{[24][25]}, de Loor^[33], Clausius-Mosotti^{[34][35]}et Fricke^[36]font partie de cette catégorie.

- Lois de type mathématique : elles ont été établies soit à partir d'un modèle purement mathématique (Lichtenecker-Rother^[37]), soit à partir d'hypothèses générales (Landau-Lifchitz^[30]et Looyenga^[23]).

-50-

Cependant, par souci de clarté pour l'utilisateur potentiel, nous avons classé ces lois en fonction de la concentration Θ : rapport du volume de la phase dispersée au volume total.

I-2- CAS DES FAIBLES CONCENTRATIONS : $\Theta \leq 0.35$

Les lois de mélange que nous donnons dans le tableau $I^{(*)}$ sont valables uniquement pour les faibles concentrations. A l'exception de celle de Fricke, elles sont non linéaires.

I-3- CAS DES CONCENTRATIONS MOYENNES : 0.35 < Θ < 0.75

Nous donnons dans le tableau II^(*)les lois de mélange valables pour les concentrations moyennes. Ces lois qui découlent généralement de théories établies pour les faibles concentrations^{[24][27][28]} sont non linéaires.

I-4- CAS DES FORTES CONCENTRATIONS : $\Theta > 0.75$

Nous donnons dans le tableauIII, les lois de mélange valables pour les fortes concentrations. Elles sont toutes non linéaires.

Forme des particules	Lois de mélange		Références	Remarques
Sphérique	$\frac{\varepsilon - \varepsilon_{A}}{3\varepsilon} = \Theta \frac{(\varepsilon_{B} - \varepsilon_{A})}{2\varepsilon + \varepsilon_{B}} $ (1)	.4)	-Böttcher ^{[24][25]}	⊜ ≽0.75
Quelconque	$\varepsilon = \left[\varepsilon_{A}^{1/3} + \Theta(\varepsilon_{B}^{1/3} - \varepsilon_{A}^{1/3})\right]^{3} $ (7)	7)	-Looyenga ^[23]	0 ≥ 0.75
	$\varepsilon = \varepsilon_{A} + \Theta(\varepsilon_{B} - \varepsilon_{A}) - \frac{\Theta(1 - \Theta)(\varepsilon_{B} - \varepsilon_{A})^{2}}{3\left[\varepsilon_{A} + \Theta(\varepsilon_{B} - \varepsilon_{A})\right]} $ (5)	5)	-Landau- Lifchitz ^[30]	ε _A ≃ ε _B
Sphérique	$\varepsilon = \varepsilon_{A} + \frac{3\varepsilon'}{2\varepsilon' + \varepsilon_{B}} (\varepsilon_{B} - \varepsilon_{A})\Theta$ (1)	15)	-de Loor ^[33]	
	ε'= permittivité du milieu qui entoure les particules	e č		

Tableau III ($\Theta > 0.75$)

to be going and enter a

Remarquons que la loi de Loor se réduit à celle de Böttcher pour ϵ' = ϵ et à celle de Fricke pour ϵ' = ϵ_A .

(*) cf. pages suivantes

Forme des particules	Lois de mélange	Références	Remarques
Sphérique	$\varepsilon = \varepsilon_{A} \frac{(\varepsilon_{B}^{+} 2\varepsilon_{A}) + 2\Theta(\varepsilon_{B}^{-} \varepsilon_{A})}{(\varepsilon_{B}^{+} 2\varepsilon_{A}) - \Theta(\varepsilon_{B}^{-} \varepsilon_{A})} $ (1)	- Wagner ^[22] - Rayleigh ^[29] - Clausius-Mosotti ^{[34} ,35]	0 < 0,1
Sphérique	$\varepsilon = \varepsilon_{A} \begin{bmatrix} \varepsilon_{B}^{+2} \varepsilon_{A} + 2\Theta(\varepsilon_{B}^{-}\varepsilon_{A}) - \Theta & \frac{10/3}{6} \frac{\pi^{2} (\varepsilon_{B}^{-}\varepsilon_{A})}{6(\varepsilon_{B}^{+} + 4\varepsilon_{A}/3)} \end{bmatrix} (2)$ $\varepsilon = \varepsilon_{A} \begin{bmatrix} \varepsilon_{B}^{+2} \varepsilon_{A} - \Theta(\varepsilon_{B}^{-}\varepsilon_{A}) - \Theta & \frac{10/3}{6(\varepsilon_{B}^{+} + 4\varepsilon_{A}/3)} \end{bmatrix} $	- Rayleigh ^[29]	
Sphérique	$\varepsilon = \frac{\varepsilon_{A}(\varepsilon_{B}^{+2}) + 2 \Theta(\varepsilon_{B}^{-\varepsilon_{A}})}{(\varepsilon_{A}^{+2}) - \Theta(\varepsilon_{B}^{-\varepsilon_{A}})} $ (3)	-Clausius-Mosottf ^{[34} ,35]	0 < 0 . 1
Sphérique	$\varepsilon = \varepsilon_{A} \left[1 + 3\Theta \frac{(\varepsilon_{B} - \varepsilon_{A})}{(2\varepsilon_{A} + \varepsilon_{B})} \right] $ (4)	- Fricke ^[36] - Landau-Lifchîtz ^[30]	0 < 0.05
Sphérique	$\varepsilon = \varepsilon_{A} + \Theta \left(\varepsilon_{B} - \varepsilon_{A}\right) - \Theta \frac{(1 - \Theta) \left(\varepsilon_{B} - \varepsilon_{A}\right)^{2}}{3 \left[\varepsilon_{A} + \Theta \left(\varepsilon_{B} - \varepsilon_{A}\right)\right]} $ (5)	- Landau-Lifchitz ^[30]	⁸ 3 ≈ ⁸ 3
Sphérique	$\frac{\varepsilon - \varepsilon_A}{4\varepsilon - \varepsilon_A} = \Theta \frac{(\varepsilon_B - \varepsilon_A)}{2\varepsilon + \varepsilon_B} $ (6)	- van Beek ^[10]	0 < 0.2
BUS	TABLEAU I (cf. suite page 5		

-52-

des les	Lois de mélange	·	Références	Remarques
	$\frac{1}{\sqrt{3}} + \Theta \left(\varepsilon_{\text{B}} - \varepsilon_{\text{A}} - \varepsilon_{\text{A}} \right) = 3 $ (7)	(/	-Looyenga ^[23] -Landau-Lifchitz ^[30]	Θ < 0.35
γ ε ε	(1-0) ϵ_{B}^{Θ}	<u> </u>	-Lichtenecker-Rother ^[37]	0 < 0.20
а - - - - - - - - - - - - - - - - - - -	$+ \Theta (\varepsilon_{B}^{k} - \varepsilon_{A}^{k}) $ (9)	6	-Lichtenecker-Rother ^[37]	k constante réelle

TABLEAU I ($\theta \leq 0.35$)

-53-

.

TABLEAU I (suite)

Forme des particules	Lois de mélange	Références	Remarques
Sphérique	$\varepsilon = \varepsilon_{A} + \Theta (\varepsilon_{B} - \varepsilon_{A}) - \Theta \frac{(1 - \Theta)(\varepsilon_{B} - \varepsilon_{A})^{2}}{3 \left[\varepsilon_{A} + \Theta (\varepsilon_{B} - \varepsilon_{A})\right]} $ (5)	-Landau-Lifchitz ^[30]	^ε A ≃ ^ε B
Sphérique	$1 - \Theta = \frac{(\varepsilon_{B} - \varepsilon)}{(\varepsilon_{B} - \varepsilon_{A})} \left[\frac{\varepsilon_{A}}{\varepsilon} \right]^{\frac{1}{3}} $ (10)	-Bruggeman ^[28]	
Sphérique	$\varepsilon = \varepsilon_{A} \begin{bmatrix} \varepsilon_{B}^{+} 2\varepsilon_{A}^{+} 2\Theta(\varepsilon_{B}^{-}\varepsilon_{A}) - K & \frac{2}{(\varepsilon_{B}^{-}\varepsilon_{A})} & (1-\Theta) \\ \varepsilon_{B}^{+} 2\varepsilon_{A}^{+} 2\Theta(\varepsilon_{B}^{-}\varepsilon_{A}) - K & \frac{(\varepsilon_{B}^{-}\varepsilon_{A})^{2}(1-\Theta)}{(\varepsilon_{B}^{-}\varepsilon_{A})^{2}(1-\Theta)} \end{bmatrix} $ (11)	-Higuchi ^[31]	K = 0.78
Sphérique	$\frac{(\varepsilon - \varepsilon_A)(2\varepsilon + \varepsilon_B)}{3\varepsilon} = \Theta(\varepsilon_B - \varepsilon_A)$	-Grosse et Greffe ^[11]	
· · ·	$-\frac{2(\varepsilon_{B}-\varepsilon_{A})(\varepsilon-\varepsilon_{A})(\varepsilon_{B}-\varepsilon)}{3\varepsilon(2\varepsilon_{A}+\varepsilon_{B})}$ (12		

TABLEAU II (cf. suite page 5ξ)

BUS

-54-

ite)	
.ns)	
II	
EAU	
TABL	

Forme des particules	Lois de mélange		Références	Remarques
Quelconque	$\varepsilon = \begin{bmatrix} 1/3 & 1/3 \\ \varepsilon_{A} & + \Theta(\varepsilon_{B} & -\varepsilon_{A} \end{bmatrix}^{3}$	(2)	-Landau-Lifchitz ^[30] -Looyenga ^[23]	B ² ≍ A ³
Sphêrique	$\frac{\varepsilon_{B} - \varepsilon}{\varepsilon_{B} - \varepsilon_{A}} \left[\frac{\varepsilon_{A} + 0}{\varepsilon + 0} \right]^{\frac{1}{3}} (1 - \frac{2\Theta}{\varepsilon_{B}}) = (1 - \Theta)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}}$	(13)	-Kubo-Nakamura ^[32]	Q = 0.675
	$Q = \frac{1-C}{1+C}$ et $C = 1 - \frac{4\pi}{9\sqrt{3}}$			

TABLEAU II (0,35 < 0 < 0,75)

BUS'

-55-

I-5- LOIS RETENUES POUR L'EXTENSION EN DYNAMIQUE

Dans ce travail, nous nous intéressons essentiellement aux faibles et aux fortes concentrations, cas des échantillons étudiés au laboratoire. L'étude des mélanges à concentrations moyennes n'est pas abordée dans ce chapitre, en effet, elle a fait l'objet de publications antérieures^{[17][28][31][32][38][39]}

Parmi les nombreuses lois rappelées précédemment, nous avons retenu celles qui :

- en statique, donnent des résultats expérimentaux en bon accord avec les études théoriques,

ont un bon support théorique dans des conditions expérimentales précisées.
 Pour cela, nous étudierons les lois de :

- Maxwell-Wagner pour les très faibles concentrations ($\Theta \leq 0.1$),

- Looyenga pour les faibles concentrations ($\Theta \leq 0.35$),

- Böttcher pour les fortes concentrations ($\Theta > 0.75$). La loi de Looyenga a également été retenue pour comparer les résultats avec ceux obtenus par la loi de Böttcher.

En régime dynamique, les grandeurs notées ϵ , ϵ_A et ϵ_B en régime statique s'écrivent respectivement :

 $\varepsilon^*_{A} = \varepsilon^*_{A}(\omega) = \varepsilon^i_{A}(\omega) - j\varepsilon^u_{A}(\omega)$: permittivité complexe du mélange $\varepsilon^*_{A} = \varepsilon^*_{A}(\omega) = \varepsilon^i_{A}(\omega) - j\varepsilon^u_{A}(\omega)$: permittivité complexe de la phase continue $\varepsilon^*_{B} = \varepsilon^*_{B}(\omega) = \varepsilon^i_{B}(\omega) - j\varepsilon^u_{B}(\omega)$: permittivité complexe de la phase dispersée $\omega = 2 \pi F$, F étant la fréquence.

II - THEORIE DE MAXWELL-WAGNER

II-1- RAPPEL DU FORMALISME^[22]

Soit un diélectrique hétérogène formé de granules sphériques de permittivité ε_{B} noyés dans un milieu continu de permittivité ε_{A} (cf. figure 1a). Ce système peut être considéré comme un diélectrique de permittivité moyenne ε noyé dans le milieu continu de permittivité ε_{A} (cf. figure 1b).

En raison de la symétrie du système (cf. figure 1a), il est préférable de calculer le potentiel électrique V d'un granule centré à l'origine plutôt que celui de tous les granules. Par suite, à l'extérieur de la sphère S_1 de rayon ℓ , V s'écrit^[10]:

$$V = -Er \cos \phi + E \frac{\varepsilon_{B}^{-\varepsilon}A}{\varepsilon_{B}^{+2} \varepsilon_{A}} - \frac{4}{3} \pi N_{D} \ell^{3} \frac{a^{3}}{r^{2}} \cos \phi \qquad (1)$$

tandis que celui de la sphère ${\rm S_2}$ de permittivité ϵ s'écrit $^{[10]}$:

$$V = -Er \cos \phi + E \frac{\varepsilon - \varepsilon_A}{\varepsilon + 2\varepsilon_A} \frac{\ell^3}{r^2} \cos \phi$$
 (2)

La permittivité ε du mélange s'obtient en indentifiant les expressions (1) et (2) :

$$\varepsilon = \varepsilon_{A} \left[\frac{\varepsilon_{B} + 2\varepsilon_{A} + 2\Theta(\varepsilon_{B} - \varepsilon_{A})}{\varepsilon_{B} + 2\varepsilon_{A} - \Theta(\varepsilon_{B} - \varepsilon_{A})} \right]$$
(3)

avec N_D = le nombre total de granules de permittivité ε_B $\Theta = \frac{4}{3} \pi a^3 N_D$, la fraction de volume occupé par le corps B. $\theta = \frac{4}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3}$

*

Mappine Cart

L'expression (3) est connue sous le nom de loi de Maxwell-Wagner.

II-2- VALIDITE DE LA LOI DE MAXWELL-WAGNER

Cette théorie s'applique uniquement au cas des très faibles concentrations ($\Theta \leq 0.1$) car l'auteur a supposé que chaque granule est entouré par le milieu continu (cf. figure 1). Cette hypothèse conduit à sous-estimer les interactions entre particules ^[11]et limite sa validité à Θ = 0.1.

II-3- EXTENSION EN DYNAMIQUE

II-3-1- Corps polaire (domaine de type Debye) dans milieu non polaire

Dans ce cas : $\varepsilon_A^* = \varepsilon_A'$

$$\varepsilon_{B}^{*} = \varepsilon_{B}' - j \varepsilon_{B}'' = \varepsilon_{\infty B}' + \frac{\Delta \varepsilon_{B}'}{1 + j \omega \tau_{B}}$$

avec $\Delta \varepsilon_{B}^{i} = \varepsilon_{SB}^{i} - \varepsilon_{\infty B}^{i}$

$$\begin{split} \varepsilon_{\text{SB}}^{\prime} &= \text{la permittivité réelle pour F} \ll F_{\text{CB}} \\ \varepsilon_{\infty\text{B}}^{\prime} &= \text{la permittivité réelle pour F} \gg F_{\text{CB}} \\ \tau_{\text{B}} &= \frac{1}{2 \pi F_{\text{CB}}} \text{ ; } F_{\text{CB}} \text{ étant la fréquence critique du domaine.} \end{split}$$

L'équation (3) s'écrit :

$$\varepsilon_{A}^{*} = \varepsilon_{A}^{i} \frac{\varepsilon_{\infty B}^{i} + \frac{\Delta \varepsilon_{B}^{i}}{1 + j \omega \tau_{B}} + 2\varepsilon_{A}^{i} + 2\Theta \left(\varepsilon_{\infty B}^{i} + \frac{\Delta \varepsilon_{B}^{i}}{1 + j \omega \tau_{B}} - \varepsilon_{A}^{i}\right)}{\varepsilon_{\infty B}^{i} + \frac{\Delta \varepsilon_{B}^{i}}{1 + j \omega \tau_{B}} + 2\varepsilon_{A}^{i} - \Theta \left(\varepsilon_{\infty B}^{i} + \frac{\Delta \varepsilon_{B}^{i}}{1 + j \omega \tau_{B}} - \varepsilon_{A}^{i}\right)}$$
(4)

ou encore :

$$\varepsilon^{*} = \frac{(\alpha_{1} + \beta_{1}) + j \alpha_{1} \omega \tau_{B}}{(\alpha_{2} + \beta_{2}) + j \alpha_{2} \omega \tau_{B}}$$
(5)
avec $\alpha_{1} = \varepsilon_{A}^{\dagger} \left[\varepsilon_{\omega B}^{\dagger} (1 + 2\Theta) + 2\varepsilon_{A}^{\dagger} (1 - \Theta) \right]$
 $\beta_{1} = \varepsilon_{A}^{\dagger} \Delta \varepsilon_{B}^{\dagger} (1 + 2\Theta)$
 $\alpha_{2} = \varepsilon_{\omega B}^{\dagger} (1 - \Theta) + \varepsilon_{A}^{\dagger} (2 + \Theta)$
 $\beta_{2} = \Delta \varepsilon_{B}^{\dagger} (1 - \Theta)$
 $\tau_{A} = \tau_{A}^{\dagger} \varepsilon_{A}^{\dagger} \varepsilon$

-58-

L'expression de la permittivité complexe ε^* du mélange est donnée par la relation (6) :

$$\varepsilon^{*} = \frac{\alpha_{1}}{\alpha_{2}} + \frac{\frac{\beta_{1}\alpha_{2} - \alpha_{1}\beta_{2}}{\alpha_{2}(\alpha_{2} + \beta_{2})}}{1 + j\omega\tau_{B} \frac{\alpha_{2}}{\alpha_{2} + \beta_{2}}} = \varepsilon_{\omega}' + \frac{\Delta\varepsilon'}{1 + j\omega\tau}$$
(6)

Nous observons que le mélange présente un domaine non distribué de type Debye tel que :

$$\varepsilon_{\infty}' = \frac{\alpha_{1}}{\alpha_{2}}$$
(7)
$$\Delta \varepsilon' = \frac{\beta_{1}\alpha_{2} - \alpha_{1}\beta_{2}}{\alpha_{2}(\alpha_{2} + \beta_{2})}$$
(8)
$$\tau = \tau_{B} \frac{\alpha_{2}}{\alpha_{2} + \beta_{2}}$$
(9)

D'après les relations (7), (8) et (9), on peut montrer que : $\ \not{\times} \ \varepsilon_{\infty}^{\prime} \ > \varepsilon_{\infty}^{\prime} \ pour \ \varepsilon_{A}^{\prime} > \varepsilon_{\infty}^{\prime} \ et \ \varepsilon_{\infty}^{\prime} < \varepsilon_{\infty}^{\prime} \ pour \ \varepsilon_{A}^{\prime} < \varepsilon_{\infty}^{\prime} \$

II-3-2- Corps polaire (domaine de type Cole et Cole^[26]) dans milieu non polaire Dans ce cas : $\varepsilon_A^* = \varepsilon_A'$

$$\varepsilon_{B}^{*} = \varepsilon_{\infty B}' + \frac{\Delta \varepsilon_{B}'}{1 + (j \omega \tau_{B})}$$

avec α_{B} = facteur de distribution^[22]

 $\tau_{B} = \frac{1}{2 \pi F_{CB}}$, F_{CB} étant la fréquence critique du domaine.

Nous développons les calculs comme dans le cas précédent. L'expression de la permittivité complexe ϵ^* du mélange est donnée par une expression analogue à l'équation (6) :

$$\varepsilon^{*} = \frac{\alpha_{1}}{\alpha_{2}} + \frac{\frac{\beta_{1} \alpha_{2}^{-} \alpha_{1} \beta_{2}}{\alpha_{2}(\alpha_{2} + \beta_{2})}}{1 + \left[j\omega \tau_{B} \left(\frac{\alpha_{2}}{\alpha_{2} + \beta_{2}}\right)^{-\frac{1}{1-\alpha_{B}}}\right]^{1-\alpha_{B}}} = \varepsilon_{\omega}^{+} + \frac{\Delta\varepsilon^{+}}{1 + (j\omega \tau)^{1-\alpha}}$$
(10)

Nous observons que le mélange présente un domaine de relaxation diélectrique de type Cole et Cole tel que :

$$\varepsilon_{\infty}' = \frac{\alpha_1}{\alpha_2} \tag{11}$$

$$\Delta \varepsilon' = \frac{\beta_1 \alpha_2 - \alpha_1 \beta_2}{\alpha_2 (\alpha_2 + \beta_2)}$$
(12)

$$\tau = \tau_{B} \left(\frac{\alpha_{2}}{\alpha_{2}^{+}\beta_{2}} \right)^{\frac{1}{1-\alpha_{B}}} = \frac{1}{2\pi F_{c}}$$
(13)

$$\alpha = \alpha_{\rm B} \qquad (14)$$

Les grandeurs α_1 , β_1 , α_2 et β_2 sont données par les mêmes relations que précédemment.

Nous aboutissons à des conclusions identiques à celle du § II-3-1. Signalons que le facteur de distribution α reste inchangé,

II-3-3- Corps polaire (présentant une série de D.E.N.D^(*) dans milieu non polaire

Nous n'étudierons pas ce cas. En effet, nous n'avons pas réalisé des mélanges expérimentaux dont la phase dispersée présente une série de D.E.N.D.

II-3-4- Mélange polaire-polaire

La loi Maxwell-Wagner ne peut pas s'appliquer au cas des mélanges "polaire-polaire". En effet, il n'est pas possible de négliger les interactions importantes entre les deux milieux polaires.

(*) D.E.N.D. : domaines élémentaires non distribués de fréquences critiques voisines

III - THEORIE DE LOOYENGA^[23]

III-1- RAPPEL DU FORMALISME

Cette théorie est basée sur une hypothèse purement mathématique : le mélange de permittivité ε est considéré comme formé par des régions fictives dont les permittivités sont légèrement différentes^[13](cf, figure 2). Les permittivités de ces régions sont $\varepsilon^+ = \varepsilon + \Delta \varepsilon$ et $\varepsilon^- = \varepsilon - \Delta \varepsilon$ avec des concentrations Θ_+ et 1 - Θ_+ données par la relation :

$$\Theta_{+} = \frac{V_{+}}{V_{+} + V_{-}} = \frac{V_{+}}{V_{-}} \qquad \left(\begin{array}{c} \Theta_{-} = -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ & \Psi_{+} + \Psi_{-} \end{array} \right)$$

La grandeur $\Delta \varepsilon$ est très petite par rapport à ε

mélange de permittivité ε

Figure 2 : Schématisation d'un mélange de permittivité ϵ ϵ_{A} , ϵ_{B} : permittivité des corps A et B

Looyenga considère la fonction $\Theta(\varepsilon)$ définie par :

$$\Theta(\varepsilon) = \frac{\text{Volume occupé par le corps B}}{\text{Volume total } (V_T)} = \frac{\theta(\varepsilon)}{V_T} \frac{\theta(\varepsilon)}{V_T} \frac{\theta(\varepsilon)}{V_T} \frac{\theta(\varepsilon)}{V_T}$$

D.= 1-0+

Le développement de $\Theta(\epsilon^+)$ et $\Theta(\epsilon^-)$ au voisinage de ϵ en série de Taylor donne :

Concerting the de de
$$\Theta(\varepsilon^{-}) = \Theta(\varepsilon) - \Delta \varepsilon \cdot \Theta'(\varepsilon) + \frac{1}{2} (\Delta \varepsilon)^{2} \Theta''(\varepsilon) + \dots$$
 (15)
 ε
concerting the ded $\Theta(\varepsilon^{+}) = \Theta(\varepsilon) + \Delta \varepsilon \cdot \Theta'(\varepsilon) + \frac{1}{2} (\Delta \varepsilon)^{2} \Theta''(\varepsilon) + \dots$ (16)
 ε^{+}
 ε^{+}

La concentration $\Theta(\epsilon)$ est donnée par la relation [23] :

$$\Theta(\varepsilon) = \Theta(\varepsilon^{+}) \Theta_{+} + \Theta(\varepsilon^{-}) (1 - \Theta_{+})$$
(17)

d'où

$$\Theta_{+} = \frac{\Theta(\varepsilon) - \Theta(\varepsilon^{-})}{\Theta(\varepsilon^{+}) - \Theta(\varepsilon^{-})} \qquad (18)$$

soit, d'après (15) et (16)

$$\Theta_{+} = \frac{1}{2} - \frac{1}{4} \quad \Delta \varepsilon \; \frac{\Theta''(\varepsilon)}{\Theta'(\varepsilon)} \; of \; \varepsilon \; (19)$$

Looyenga^[23] a considéré l'échantillon comme un mélange à forte concentration : région de permittivité ε^+ noyé dans le milieu enrobant de permittivité ε^- . Pour cela, la loi de Böttcher (cf. formule 14, tableau III) peut être appliquée pour donner la permittivité ε de l'échantillon : Lo 9 2015 de tre

En remplaçant ε par ε - $\Delta \varepsilon$ et ε par ε + $\Delta \varepsilon$, la relation (20) donne au premier ordre en $\Delta \varepsilon$:

 $\Theta_{+} = \frac{1}{2} + \frac{\Delta \varepsilon}{6\varepsilon}$ (21)

Signalons que V_{an} Beek^[10] a considéré l'échantillon comme un mélange à concentration Θ_{\perp} soit moyenne, soit faible.

- Concentrations moyennes

Van Beek utilise la loi de Bruggeman (cf. formule 10, tableau II) pour déterminer la permittivité ε .

$$\Theta_{+} = 1 - \frac{\varepsilon^{+} - \varepsilon}{\varepsilon^{+} - \varepsilon} \left(\frac{\varepsilon}{\varepsilon}\right)^{\frac{1}{3}}$$

soit au premier ordre en $\Delta \epsilon$:

$$\Theta_{+} = \frac{1}{2} + \frac{\Delta \varepsilon}{6\varepsilon}$$
 : c'est l'équation (21)

- Faibles concentrations

Dans ce cas, Van Beek utilise la loi de Maxwell-Wagner (cf. formule 1, tableau I) pour déterminer la permittivité ε :

$$\varepsilon = \varepsilon^{-} \left[\frac{(\varepsilon^{+} + 2\varepsilon^{-}) + 2\Theta_{+}(\varepsilon^{+} - \varepsilon^{-})}{(\varepsilon^{+} + 2\varepsilon^{-}) - \Theta_{+}(\varepsilon^{+} - \varepsilon^{-})} \right]$$

soit au premier ordre en $\Delta \epsilon$:

$$\Theta_{+} = \frac{1}{2} + \frac{\Delta \varepsilon}{6\varepsilon}$$

On retrouve l'équation (21). Grosse et Greffe^[11] ont aussi montré que cette équation peut être obtenue directement à partir de la loi de Landau-Lifchitz (cf. formule 5, tableaux I, II et III). En effet, l'échantillon est un mélange dont les constituants présentent des permittivités très peu différentes $(\varepsilon^+ \simeq \varepsilon^-)$. Sa permittivité ε est quelle que soit Θ_+ :

$$\varepsilon = \varepsilon^{-} + \Theta_{+}(\varepsilon^{+} - \varepsilon^{-}) + \frac{\Theta_{+}(1 - \Theta_{+})(\varepsilon^{+} - \varepsilon^{-})^{2}}{3\left[\varepsilon^{-} + \Theta_{+}(\varepsilon^{+} - \varepsilon^{-})\right]}$$

Soit, au premier ordre en $\Delta \epsilon$:

$$\Theta_{+} = \frac{1}{2} + \frac{\Delta \varepsilon}{6\varepsilon} : \text{ on retrouve l'équation (21)}$$

En combinant (19) et (21), on obtient :
 $3\varepsilon \Theta''(\varepsilon) + 2\Theta'(\varepsilon) = 0$ (22)

On remarque que l'équation différentielle (22) est indépendante de la concentration fictive Θ_{+} . Sa solution générale est du type :

$$\Theta(\varepsilon) = C_1 \varepsilon^{1/3} + C_2$$

Rappelons que (22) a été trouvée indépendamment des grandeurs macroscopiques ε_A et ε_B . Les constantes d'intégration C₁ et C₂ sont déduites des valeurs limites de ε : i.e. ε_A pour Θ = 0 et ε_B pour Θ = 1.
d'où :

$$\varepsilon = \left[\varepsilon_{A} \frac{1}{3} + \Theta \left(\varepsilon_{B} \frac{1}{3} - \varepsilon_{A} \frac{1}{3}\right)\right]^{3}$$
(23)

L'équation (23) est connue sous le nom de Loi de Looyenga.

III-2- VALIDITE DE LA LOI DE LOOYENGA

La loi de Looyenga a été établie quelle que soit la forme des particules. En outre, les constantes d'intégration ε_A et ε_B ont été introduites seulement pour $\Theta = 0$ et 1. Pour cela, elle n'est valable que pour les faibles ou les fortes concentrations sans conditions sur les permittivités ε_A et ε_B .

Cette loi a également été établie par Landau et Lifchitz^[30]. En effet, contrairement à Looyenga, ils ont travaillé sur des grandeurs macroscopiques et ont posé pour toute valeur de Θ , $\varepsilon_A \simeq \varepsilon_B$.

Ces remarques permettent d'aboutir aux deux conclusions suivantes : - pour $\delta \varepsilon = \varepsilon_B - \varepsilon_A \approx 0$, la loi de Looyenga est valable pour toute valeur de Θ , - lorsque $\delta \varepsilon$ croît, la loi n'est valable que pour des valeurs de Θ proches de 0 ou de 1.

Ces conclusions sont confirmées par des résultats expérimentaux mentionnés dans la littérature et rappelés ci-dessous :

- pour $\varepsilon_{\rm B} / \varepsilon_{\rm A} \simeq 1$, la loi de Looyenga est valable quel que soit Θ ^[30] - pour $\varepsilon_{\rm B} / \varepsilon_{\rm A} \leq 10$, elle est valable pour $0 \leq \Theta \leq 0.35$ et 0.7 $\leq \Theta \leq 1$ ^[39] - pour $\varepsilon_{\rm B} / \varepsilon_{\rm A} \geq 20$, elle est valable pour $\Theta < 0.1$ et $\Theta \geq 0.9$ ^[11] ^[38] ^[40]

III-3- EXTENSION EN DYNAMIQUE

Reprenons le raisonnement du § III-1 en dynamique avec : $\Delta \varepsilon^*(\omega) = \Delta \varepsilon'(\omega) - j \Delta \varepsilon''(\omega) = \Delta \varepsilon^*$ Les équations (15), (16), (17) et (21) s'écrivent respectivement :

$$\Theta(\varepsilon^{*-}) = \Theta(\varepsilon^{*}) - \Delta \varepsilon^{*} \Theta'(\varepsilon^{*}) + \frac{1}{2} (\Delta \varepsilon^{*})^{2} \Theta''(\varepsilon^{*})$$

$$\Theta(\varepsilon^{*+}) = \Theta(\varepsilon^{*}) + \Delta \varepsilon^{*} \Theta'(\varepsilon^{*}) + \frac{1}{2} (\Delta \varepsilon^{*})^{2} \Theta''(\varepsilon^{*})$$

$$\Theta(\varepsilon^{*}) = \Theta(\varepsilon^{*+}) \Theta_{+} + \Theta(\varepsilon^{*-})(1-\Theta_{+})$$

$$\Theta_{+} = \frac{1}{2} + \frac{\Delta \varepsilon^{*}}{6\varepsilon^{*}}$$

-64-

Ces différentes relations permettent d'obtenir l'équation différentielle (22) en dynamique :

 $3 \epsilon^{*} \Theta''(\epsilon^{*}) + 2 \Theta''(\epsilon^{*}) = 0$

La solution réelle $\Theta(\varepsilon) = C_1 \varepsilon^{1/3} + C_2$ trouvée pour l'équation (22) peut s'étendre à tout domaine complexe sur lequel la fonction $\Theta(\varepsilon^*)$ est deux fois dérivable : par exemple, le plan complexe privé des réels négatifs ou nuls. Ceci est implicitement respecté dans le cas présent puisque ε^* représente physiquement la permittivité complexe d'un matériau avec $\varepsilon' \ge 1$ et $\varepsilon'' \ge 0$.

La solution de l'équation différentielle complexe, compte tenu du comportement limite de ε^* pour Θ = 0 et Θ = 1 est :

$$\varepsilon^{*} = \left[\varepsilon_{A}^{*\frac{1}{3}} + \Theta\left(\varepsilon_{B}^{*\frac{1}{3}} - \varepsilon_{A}^{*\frac{1}{3}}\right)\right]^{3}$$
(24)

La loi de Looyenga peut être étendue au régime dynamique. Ce résultat était attendu car cette formule a été établie indépendamment du champ extérieur appliqué.

Cette loi est une fonction du troisième degré en Θ . De plus, les permittivités ε_A^* et ε_B^* sont à la puissance 1/3. De ce fait, il n'est pas possible de trouver une expression analytique simple pour ε^* lorsque les corps A et B présentent des domaines de relaxation diélectrique. Pour envisager l'étude des différents types de mélange comme pour la loi de Maxwell-Wagner (cf. § II-3), il est nécessaire d'utiliser une méthode numérique. Pour cela, nous avons utilisé un microordinateur type CBM 32 K.

III-4- SIMULATIONS THEORIQUES

III-4-1- Corps polaire (domaine de type Debye) dans milieu non polaire

Dans ce cas :

$$\varepsilon_{A}^{*} = \varepsilon_{A}^{'}$$

 $\varepsilon_{B}^{*} = \varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + j\omega \tau_{B}}$

Nous avons choisi un domaine théorique dont les caractéristiques, voisines de celui étudié expérimentalement au chapitre III, sont :

$$\varepsilon_{\infty B}' = 2$$

 $\Delta \varepsilon_{B}' = 8$
 $F_{CB} = 500 \text{ kHz}$

L'équation (24) s'écrit :

$$\varepsilon^* = \left[(1-\Theta) \varepsilon_A^{\frac{1}{3}} + \Theta (\varepsilon_{\infty B} + \frac{\Delta \varepsilon_B^{\prime}}{1 + j\omega \tau_B})^{\frac{1}{3}} \right]^3$$

Nous avons fait varier ε_A^i de 1 à 20 et, pour chaque valeur de ε_A^i , Θ varie de 0 à 1. Les courbes théoriques $\Delta \varepsilon' = \varepsilon_S^i - \varepsilon_{\infty}^i$ fonction de Θ pour différentes valeurs de ε_A^i et $\Delta \varepsilon'$ fonction de ε_A^i pour différentes valeurs de Θ sont données figures 3 et 4.

rentes valeurs de Θ

Nous remarquons que :

- la courbe $\Delta\epsilon'$ varie de façon non linéaire avec Θ - $\Delta\epsilon' < \Delta\epsilon'_B$: l'amplitude du domaine du mélange est plus faible que celle de B. Néanmoins, pour ϵ'_A élevée et Θ proche de 1, $\Delta\epsilon' > \Delta\epsilon'_B$, - pour une valeur Θ donnée, $\Delta\epsilon'$ croît avec ϵ'_A , De plus,

 $\label{eq:constraint} \textbf{-} \ \boldsymbol{\epsilon}_{\boldsymbol{\omega}}' \ > \ \boldsymbol{\epsilon}_{\boldsymbol{\omega}B}' \ \ \text{pour} \ \ \boldsymbol{\epsilon}_{\boldsymbol{A}}' \ > \ \boldsymbol{\epsilon}_{\boldsymbol{\omega}B}' \ \ \text{et} \ \ \boldsymbol{\epsilon}_{\boldsymbol{\omega}B}' \ \ \text{pour} \ \ \boldsymbol{\epsilon}_{\boldsymbol{A}}' \ < \ \boldsymbol{\epsilon}_{\boldsymbol{\omega}B}' \ \ \textbf{.}$

L'évolution de la fréquence critique F_c ainsi que la distribution du domaine du mélange ont été aussi étudiées. La loi de Looyenga introduit une légère distribution qui peut être caractérisée par le paramètre α défini par Cole et Cole^[26]. Les courbes $\Delta F_{C_B}/F_{C_B}$ ($\Delta F_{C_B} = F_c - F_{C_B}$) et α fonction de Θ pour différentes valeurs de ε_A^{+} sont données figures 5 et 6.

Nous observons que :

- F_{c} > $F_{c_{B}}$: la fréquence critique du domaine du mélange est supérieure à celle de B.

- le paramètre de distribution α est au maximum égal à 0.05

Pour l'application de la loi de Looyenga aux mélanges expérimentaux, nous négligerons cette distribution compte tenu des erreurs de mesure.

.111

Figure 6 : Courbes théoriques $\alpha =$ f(O) pour différentes valeurs de $\epsilon_A^{\, \prime}$

III-4-2- Corps polaire (domaine de type Cole et Cole) dans un milieu non polaire
Dans ce cas :

$$\varepsilon_{A}^{*} = \varepsilon_{A}^{'}$$
$$\varepsilon_{B}^{*} = \varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + (j\omega \tau_{B})^{1 - \alpha_{B}}}$$

avec

$$\Delta \varepsilon'_{B} = 8$$

F_{CB} = 500 kHz
 $\alpha_{B} = 0,2$

 $\varepsilon'_{\infty B} = 2$

(BUS)

-70-

L'équation (24) s'écrit :

$$\varepsilon^{*} = \left[(1-\Theta) \varepsilon_{A}^{\dagger} \frac{1}{3} + \Theta (\varepsilon_{\infty B}^{\dagger} + \frac{\Delta \varepsilon_{B}^{\dagger}}{1 + (j \omega \tau_{B})^{1-\alpha}})^{\frac{1}{3}} \right]^{3}$$

Nous avons procédé comme dans le cas précédent en faisant varier ε_A^i et Θ . Les courbes obtenues^(*) $\Delta \varepsilon' = f(\Theta)$ avec ε_A^i comme paramètre et $\Delta \varepsilon' = g(\varepsilon_A^i)$ avec Θ comme paramètre ont la même allure que celles données figures 3 et 4.

L'évolution de la fréquence critique F_c ainsi que la distribution du domaine du mélange ont été aussi étudiées. Les courbes $\Delta F_{CB}/F_{CB}$ et α fonction de Θ pour différentes valeurs de ε_A^{\prime} sont données figures 7 et 8.

Figure 7 : Courbes théoriques $\frac{\Delta Fc_B}{Fc_B} = f(\Theta)$ pour Figure 8 : Courbes théoriques $\alpha = \hat{r}(\Theta)$ différentes valeurs de ε_A' pour différentes valeurs de ε_A'

(*) Pour alléger le texte, nous ne donnerons pas ces courbes.

Nous remarquons que :

- $F_c > F_{c_B}$: la fréquence critique du domaine du mélange est supérieure à celle de B,

- la distribution est de type Cole et Cole avec α légèrement supérieure à α_{R} .

Nous avons aussi fait varier α_B : lorsque α_B croit, la fréquence critique F_c augmente et α reste sensiblement égal à α_B .

Pour l'application de la loi de Looyenga aux mélanges expérimentaux, nous admettrons en première approximation que le domaine de relaxation du mélange est de type Cole et Cole avec un paramètre de distribution inchangé ($\alpha \simeq \alpha_B$)

III-4-3- Corps polaire (présentant une série de D.E.N.D.) dans milieu non polaire

Le corps polaire B présente un domaine de relaxation ayant une forte distribution apparente. Celle-ci résulte de la composition de plusieurs domaines élémentaires non distribués de fréquences critiques voisines ^{[2][8]}(D.E.N.D.). Dans ce cas, on peut écrire :

$$\varepsilon_{A}^{*} = \varepsilon_{A}'$$

$$\varepsilon_{B}^{*} = \varepsilon_{\infty B}' + \sum_{p=1}^{n} \frac{\Delta \varepsilon_{Bp}'}{1 + j\omega \tau_{Bp}}$$
(25)

avec :

$$\Delta \varepsilon_{Bp}^{\perp} = \varepsilon_{SBp}^{\perp} - \varepsilon_{\infty Bp}^{\perp}$$

$$F_{CBp} = \frac{1}{2 \pi \tau_{Bp}}$$

Amplitude et fréquence critique du D.E.N.D. "p"

 ε'_{mR} : permittivité réelle pour F >> Fc_{Rn}

n : entier positif représentant le nombre total de D.E.N.D.

Nous avons choisi un corps polaire théorique présentant 5 D.E.N.D. En effet, de nombreux corps polaires étudiés au laboratoire présentent un domaine moyenne fréquence fortement distribué dont la décomposition donne 5 D.E.N.D.^{[9,23,41}]

Les caractéristiques du corps polaire choisi sont données tableau IV.

A partir de la relation (25), nous obtenons le diagramme de Cole et Cole $\varepsilon_B^* = f(\varepsilon_B^*)$ du corps B (cf. figure 9a). Les points sont obtenus avec la précision du microcalculateur CBM, soit 9 chiffres significatifs. La fréquence critique F_{CB} est égale à 360 kHz et l'amplitude $\Delta \varepsilon_B^* = \varepsilon_{SB}^* - \varepsilon_{\infty B}^*$ est égale à 38, ε_{SB}^* étant la permittivité réelle pour F << F_{CB} .

-71-

	l Carl		् २ ⁻²	<u> </u>	585 ·
Caractéristiques	D.E.N.D. I	D.E.N.D.II	D.E.N.D. III	D.E.N.D. IV	D.E.N.D. V
F _{¢Bp} (kHz)	5,8	69	340	2350	29000
Δε <mark>'</mark> Bp	2	6	18	8	4
ε <u>'</u> = 5					

-72-

Tableau IV

Nous appliquons la loi de Looyenga et l'équation (24) peut s'écrire sous la forme suivante :

 $\varepsilon^{*} = \begin{bmatrix} 1 & 1 & 1 \\ (1-\Theta) & \varepsilon_{A}^{\dagger} & +\Theta (\varepsilon_{B}^{\dagger} - j & \varepsilon_{B}^{\dagger})^{3} \end{bmatrix}^{3}$ (24a)

Nous avons fait varier Θ de 0 à 1 et ε_A^{+} de 1 à 5. Comme dans les cas précédents (cf. § III-4-1 et § III-4-2), les courbes obtenues^(*) $\Delta \varepsilon' = f(\Theta)$ avec ε_A^{+} comme paramètre et $\Delta \varepsilon' = g(\varepsilon_A^{+})$ avec Θ comme paramètre, ont la même allure que celles données figures 3 et 4.

Il serait possible d'étudier les caractéristiques du domaine (fréquence critique F_C et distribution apparentes) mais il nous a semblé plus intéressant de suivre les caractéristiques des différents D.E.N.D. Pour cela, nous pouvons décomposer le domaine en D.E.N.D. à l'aide de la méthode numérique mise au point au laboratoire par Ravalitera^[2]. Les résultats de cette décomposition sont obtenus sans ambiguîté. En effet, Ravalitera a montré que pour des valeurs de ε' et ε'' données avec une bonne précision (au moins 3 chiffres significatifs) et pour un nombre suffisant (≥ 20) de triplets (F, ε' , ε''), la décomposition est unique. Les caractéristiques des D.E.N.D. sont connus avec autant de précision que ε' et ε'' i.e. avec 5 chiffres significatifs dans notre cas.

Nous appliquons la loi de Looyenga pour $\Theta = 0.33$, $\varepsilon_A^{\prime} = 3.1$ et ε_B^{*} donnée par la relation (25) avec les valeurs du tableau IV. Le diagramme $\varepsilon^{"}= f(\varepsilon^{\prime})$ obtenu (courbe C de la figure 9b) est analogue à ceux relevés expérimentalement au laboratoire la plupart du temps. La décomposition de ce diagramme a été possible (cf. figure 9b) et les caractéristiques $\Delta \varepsilon_p^{\prime}$ et F_{Cp} des D.E.N.D. sont données tableau V.

Pour alléger le texte, nous ne donnerons pas ces courbes.

(*)

-73-

Figure 9b : Diagramme de Cole et Cole du mélange pour Θ = 0.33 et ϵ_A^{\prime} = 3.1

	·				
Caractéristiques	D.E.N.D. I	D.E.N.D. II	D.E.N.D. III	D.E.N.D. IV	D.E.N.D. V
F _{Cp} (KHz)	5.934	73.93	391.2	2636.6	30094
Δε'p	0.4927	1.0322	2.618	1.3028	0.5251
Δε'/Δε' Βp	0.246	0.172	0.145	0.163	0.131
F _{cp} /F _{cBp}	1.023	1.071	1,151	1.122	1.038
e. = 3.59				<u> </u>	

Nous remarquons que :

- la décomposition donne 5 D.E.N.D, : le nombre de domaines élémentaires n'est pas modifié,

- les fréquences critiques augmentent légèrement dans un rapport compris entre 1 et 1.15 (cf. tableau V) suivant les fréquences critiques des D.E.N.D. adjacents composant le corps B. Cette augmentation de fréquence est en accord avec celle obtenue pour un seul domaine de type Debye (cf. § III-4-1).

- les amplitudes de chaque D.E.N.D. diminuent dans un rapport non constant (cf. tableau V). Ce rapport est fonction de l'amplitude du domaine étudié (i.e. domaine du corps B) et des fréquences critiques et amplitudes des domaines adjacents. Une étude plus approfondie serait nécessaire pour expliquer les résultats obtenus.

III-4-4- Corps polaire (domaine de type Debye) dans milieu polaire (domaine de type Debye)

Dans ce cas :

$$\varepsilon_{A}^{*} = \varepsilon_{\omega A}^{'} + \frac{\Delta \varepsilon_{A}}{1 + j\omega \tau_{A}}$$

$$\varepsilon_{B}^{*} = \varepsilon_{\omega B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + j\omega \tau_{B}}$$

Nous avons choisi : $\varepsilon_{\infty A}^{i} = \varepsilon_{\infty B}^{i} = 2$ $\Delta \varepsilon_{A}^{i} = \Delta \varepsilon_{B}^{i} = 8$

Nous appliquons la loi de Looyenga et l'équation (24) est écrite sous la forme suivante :

$$\varepsilon^{*} = \left[(1-\Theta) \left(\varepsilon_{\infty A}^{'} + \frac{\Delta \varepsilon_{A}^{'}}{1 + j\omega \tau_{A}} \right)^{\frac{1}{3}} + \Theta \left(\varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + j\omega \tau_{B}} \right)^{\frac{1}{3}} \right]^{3}$$

Le comportement de ϵ^* a été étudié en fonction de Θ . Nous présentons notamment les résultats obtenus pour Θ = 0.33 et F_{C_A} = 10 kHz pour les cas suivants :

a) Cas F_{C_B} = 1000 F_{C_A}

Le mélange présente deux domaines II_1 et II_2 de type Debye de fréquences critiques F_{CI} et F_{CII} telles que (cf. figure 10a) :

- $F_{C_A} < F_{C_I} < F_{C_B} < F_{C_{II}}$: les fréquences critiques des domaines II₁ et II₂ sont plus élevées que celles des domaines A et B respectivement. Cependant, cette augmentation n'excède pas 30 % pour les deux domaines.

-74-

Figure 10b : Cas F_{C_B} = 100 F_{C_A}

Figure 10c : Cas $F_{C_B} = 10 F_{C_A}$

Figure 10 : Diagramme de Cole et Cole des différents mélanges avec F_{CA} = 10 kHz et Θ = 0.33

- $\Delta \varepsilon'_{II} < \Delta \varepsilon'_{I} < \Delta \varepsilon'_{A} = \Delta \varepsilon'_{B}$: les amplitudes des domaines II₁ et II₂ sont plus faibles que celles des corps A et B.

b) Cas $F_{C_B} = 100 F_{C_A}$

Nous pouvons faire les mêmes observations que précédemment. Néanmoins, les domaines II_1 et II_2 sont moins bien séparés car leurs fréquences critiques sont plus proches (cf. figure 10b).

c) Cas $F_{CB} = 10 F_{CA}$

Nous obtenons un seul domaine avec un épaulement haute fréquence car les domaines II₁ et II₂ ont des fréquences critiques très voisines (cf. Figure 10c).

d) Remarque

Lorsque $F_{C_B} >> F_{C_A}$, les propriétés électriques du mélange (A,B) peuvent être obtenues en considérant, en première approximation : - aux basses fréquences, le corps polaire A noyé dans le corps B qui présente à ces fréquences, une permittivité réelle constante notée $\varepsilon_{S_B}^{t}$ (cf. figure 11), - aux hautes fréquences, le corps polaire B noyé dans le corps A qui présente à ces fréquences, une permittivité réelle constante notée $\varepsilon_{M_A}^{t}$ (cf. figure 11).

Log F

Figure 11 : Variations des permittivités réelles des corps A et B en fonction de la fréquence. ------ : permittivité réelle $\varepsilon_{\Delta}^{\prime}$

----: permittivité réelle $\varepsilon_{\rm R}^{'}$

-76-

Compte tenu de cette remarque, il est possible de calculer les amplitudes maximales (notées $\varepsilon_{equiv}^{"}$ tableau VI) des domaines II₁ et II₂. Nous les comparons avec celles obtenues sans aucune approximation (parties a, b et c de ce paragraphe).

Ces différentes amplitudes sont déterminées par calculateur avec un pas en fréquence de 5 Hz au voisinage des fréquences critiques, ce qui permet de donner 5 chiffres significatifs.

Rapport	ε'n	lax	ε	" equiv	Précision (%)		
rcB/rcA	II ₁	II ₂	II ₁	II ₂	II ₁	II ₂	
1000	2.9833	0.83007	3.1196	0.8804	-4.6	-6	
100	3.0053	0.8817	3.1196	0.8804	-3,8	0,1	
10	3.2236	indéterminée	3.1196	0.8804	+3.2	-	

Tableau VI

Nous remarquons que l'approximation est bonne pour les rapports 100 et 1000, ce qui était attendu.

IV - THEORIE DE BOTTCHER

IV-1- RAPPEL DU FORMALISME^{[24][25]}

Cette théorie est basée sur le calcul de la polarisation pour des particules ellipsoïdales de permittivité ε_{R} noyées dans un milieu de permittivité ε_{A} .

Soient 2a,2b,2c les axes d'un ellipsoīde. On développe tout d'abord les calculs suivant "a" puis les résultats sont étendus à l'ensemble des 3 axes (cf. Figure 12).

Figure 12 : Ellipsoîde de permittivité $\varepsilon_{\rm B}$ noyé dans un milieu de permittivité $\varepsilon_{\rm A}$

IV-1-1- Calcul suivant un axe de l'ellipsoïde

Soit \vec{E} le champ appliqué selon l'axe "a". Pour déterminer la permittivité ε du mélange, il faut calculer la polarisation moyenne <P> due à l'introduction des ellipsoïdes de permittivité $\varepsilon_{\rm B}$. Dans ce cas^[10]:

$$\langle P \rangle = (\varepsilon - \varepsilon_A) E$$
 (26)

et

$$\langle P \rangle = N_B \alpha_a \langle E \rangle$$
 (27)

avec la polarisabilité
$$\alpha_{a} = \frac{4}{3} \pi \ abc \ (\varepsilon_{B} - \varepsilon_{A}) \frac{\varepsilon_{A}}{\left[\varepsilon_{A} + A_{a}(\varepsilon_{B} - \varepsilon_{A})\right]}$$
 (28)

 N_B : nombre d'ellipsoïdes B par unité de volume, A_a : le facteur de dépolarisation^[10]. <E> : le champ moyen.

A partir des relations (26) et (27), on obtient :

$$(\varepsilon - \varepsilon_A) E = \Theta \alpha_a \langle E \rangle \frac{1}{\frac{4}{3}\pi abc}$$
 (29)

avec $\Theta = \frac{4}{3} \pi$ abc N_B : fraction du volume occupée par le corps B.

Le rapport <E>/E est donnée par la relation suivante^[10]:

$$\frac{\langle E \rangle}{E} = \frac{\overline{\varepsilon}_{A}}{\left[\overline{\varepsilon}_{A} + A_{a}(\varepsilon_{B} - \overline{\varepsilon}_{A})\right]} \cdot \frac{1}{1 - \alpha_{a} \varepsilon_{R}}$$
(30)

avec $\overline{\varepsilon}_A$: permittivité entourant une particule telle que $\varepsilon_A < \overline{\varepsilon}_A < \varepsilon_B$ E_p : le champ de réaction,

L'expression du champ E_R est donnée par^[10]:

$$E_{R} = \frac{A_{a}(1-A_{a}) (\overline{\varepsilon}_{A}-\varepsilon_{A})}{\frac{4}{3}\pi \text{ abc } \varepsilon_{A} [\overline{\varepsilon}_{A}+A_{a}(\overline{\varepsilon}_{A}-\varepsilon_{A})]}$$
(31)

A partir des relations (28), (29), (30) et (31), on obtient :

$$(\varepsilon - \varepsilon_{A}) = \Theta (\varepsilon_{B} - \varepsilon_{A}) \frac{\overline{\varepsilon}_{A}}{\left[\overline{\varepsilon}_{A} + A_{a} (\varepsilon_{B} - \overline{\varepsilon}_{A})\right]}$$
 (32)

La relation (32) donne la permittivité du mélange selon l'axe "a".

N-1-2- Généralisation

On peut généraliser l'équation (32) pour une distribution aléatoire d'orientations i.e. selon les 3 axes a, b, $c^{[10]}$

$$\varepsilon = \varepsilon_{A} + \frac{1}{3} \quad (\varepsilon_{B} - \varepsilon_{A})_{\Theta} \quad \Sigma_{i=a,b,c} \quad \overline{\varepsilon_{A}} + A_{i}(\varepsilon_{B} - \overline{\varepsilon_{A}}) \quad (33)$$

Cette relation a été trouvée par Polder et, van Santen^[42] pour des faibles valeurs de Θ et par Fricke^[43] pour $\overline{\epsilon}_A = \epsilon_A$.

Pour des particules sphériques, $A_i = 1/3$ et l'équation (33) s'écrit :

$$\varepsilon = \varepsilon_{A} + 3\Theta \frac{(\varepsilon_{B} - \varepsilon_{A})}{2\overline{\varepsilon}_{A} + \varepsilon_{B}} \overline{\varepsilon}_{A}$$
 (34)

Böttcher a pris $\overline{\varepsilon}_A = \varepsilon$ quand Θ est élevé. Il a en effet considéré que chaque particule est entourée par le mélange plutôt que par le milieu enrobant. Par suite, la relation (34) s'écrit :

$$\frac{\varepsilon - \varepsilon_{A}}{3 \varepsilon} = \Theta \frac{(\varepsilon_{B} - \varepsilon_{A})}{2\varepsilon + \varepsilon_{B}}$$
(35)

La relation (35) est connue sous le nom de loi de mélange de Böttcher.

IV-2- VALIDITE DE LA LOI DE BOTTCHER (EN REGIME STATIQUE)

L'intérêt de la loi de Böttcher est qu'elle tient compte des interactions entre particules. Néanmoins, elle présente les deux limitations suivantes : - elle a été établie pour des inclusions sphériques alors que celles rencontrées expérimentalement sont généralement de forme quelconque, - elle ne peut décrire que des mélanges à fortes concentrations.

Rappelons que la loi de Böttcher a été établie sans condition sur ε_A et ε_B . Nous donnons ci-dessus quelques résultats mentionnés dans la littérature : - pour $\varepsilon_B/\varepsilon_A > 30$, elle est valable pour $\Theta > 0.7^{[38][40]}$ - pour $\varepsilon_B/\varepsilon_A < 10$, elle est valable pour $\Theta > 0.5^{[10][39]}$ Ces résultats sont donnés à mieux que 5 % pour $\varepsilon_A \leq 5$

Signalons que la loi de Looyenga, établie indépendamment de la forme des particules permet aussi de décrire les mélanges pour des concentrations généralement plus élevées (cf. & III-2). Pour les fortes concentrations, nous comparerons au chapitre III, les résultats obtenus à l'aide de cette loi et celle de Böttcher.

IV-3- EXTENSION EN DYNAMIQUE

La loi de Böttcher a été établie pour le régime statique et, à notre connaissance, elle n'a pas encore été étendue théoriquement au régime dynamique. Dans le cadre de l'extension proposée, la loi s'écrit^{[12][13]} :

$$\frac{\varepsilon^* - \varepsilon_A^*}{3 \varepsilon^*} = \Theta \frac{\varepsilon_B^* - \varepsilon_A^*}{2\varepsilon^* + \varepsilon_B^*}$$
(36)

C'est une fonction du second degré en ε^* qui ne permet pas de trouver une expression analytique simple pour ε^* lorsque les corps A et B présentent des domaines de relaxation diélectrique. Pour étudier les différents types de mélange, (cf. § II-3 et III-4), nous avons utilisé une méthode numérique similaire à celle utilisée au § III-3.

IV-4- <u>SIMULATIONS THEORIQUES</u> IV-4-1- Corps polaire (domaine de type Debye) dans milieu non polaire

Dans ce cas :

$$\epsilon_{A}^{*} = \epsilon_{A}^{i}$$

 $\epsilon_{B}^{*} = \epsilon_{\infty B}^{i} + \frac{\Delta \epsilon_{B}^{i}}{1 + j\omega \tau_{B}}$
avec (cf. § III-4-1) : $\epsilon_{\infty B}^{i} = 2$
 $\Delta \epsilon_{B}^{i} = 8$
 $F_{CB} = 500 \text{ kHz}$

L'équation (36) s'écrit :

$$\frac{\varepsilon^{*} - \varepsilon'_{A}}{3\varepsilon^{*}} = \Theta \frac{\varepsilon'_{\infty B} + \frac{\Delta \varepsilon'_{B}}{1 + j\omega \tau_{B}} - \varepsilon'_{A}}{2\varepsilon^{*} + \varepsilon'_{\infty B} + \frac{\Delta \varepsilon'_{B}}{1 + j\omega \tau_{B}}}$$

Nous avons fait varier ε_A^i de 1 à 20 et, pour chaque valeur de ε_A^i , Θ varie de 0.6 à 1. Les courbes théoriques $\Delta \varepsilon^i$ fonction de Θ pour différentes valeurs de ε_A^i et $\Delta \varepsilon^i$ fonction de ε_A^i pour différentes valeurs de Θ sont données figures 13 et 14.

Figure 13 : Courbes théoriques $\Delta \varepsilon' = f(\Theta)$ pour différentes valeurs de ε_A^{+}

Figure 14 : Courbes théoriques $\Delta \epsilon' = g(\epsilon_A')$ pour différentes valeurs de Θ

Nous remarquons que :

- la courbe $\Delta \varepsilon'$ varie de façon non linéaire avec Θ , - $\Delta \varepsilon' < \Delta \varepsilon'_{B}$: l'amplitude du domaine du mélange est plus faible que celle de B. Néanmoins, pour ε'_{A} élevée et Θ proche de 1, $\Delta \varepsilon' > \Delta \varepsilon'_{B}$, - pour une valeur Θ donnée, $\Delta \varepsilon'$ croît avec ε'_{A} , De plus, $\varepsilon'_{\omega} > \varepsilon'_{\omega B}$ pour $\varepsilon'_{A} > \varepsilon'_{\omega B}$ et $\varepsilon'_{\omega} < \varepsilon'_{\omega B}$ pour $\varepsilon'_{A} < \varepsilon'_{\omega B}$.

L'évolution de la fréquence critique F_c ainsi que la distribution du domaine du mélange ont été aussi étudiées. La loi de Böttcher introduit une légère distribution qui peut être caractérisée par le paramètre α défini par Cole et Cole^[26]. Les courbes $\Delta F_{C_B}/F_{C_B}$ ($\Delta F_{C_B} = F_c - F_{C_B}$) et α fonction de Θ pour différentes valeurs de ε_A^{+} sont données figures 15 et 16.

Nous observons que :

- $F_{C} > F_{CB}$: la fréquence critique du domaine du mélange est légèrement supérieure à celle de B,

- le paramètre de distribution α est au maximum égal à 0.03.

Pour l'application de la loi de Böttcher aux mélanges expérimentaux $(\epsilon_A^{\prime} < 4)$, nous négligerons cette distribution compte tenu des erreurs de mesure.

Figure 15 : Courbes théoriques $\frac{\Delta F_{CB}}{F_{CB}} = f(\Theta)$ Figure 16 : Courbes théoriques $\alpha = f(\Theta)$ pour différentes valeurs de ε_A^{\prime} pour différentes valeurs de ε_A^{\prime}

IV-4-2- Corps polaire (domaine de type Cole et Cole) dans milieu non polaire

Dans ce cas :

$$\varepsilon_{\rm B}^{*} = \varepsilon_{\infty \rm B}^{\prime} + \frac{\Delta \varepsilon_{\rm B}^{\prime}}{1 + (j\omega \tau_{\rm B})^{1 - \alpha_{\rm B}}}$$

 $\varepsilon_{\Delta}^{*} = \varepsilon_{\Delta}'$

avec $\varepsilon'_{\infty B} = 2$ $\Delta \varepsilon'_{B} = 8$ $F_{CB} = 500 \text{ kHz}$ $\alpha_{B} = 0.2.$

L'équation (3.6) s'écrit :

$$\frac{\varepsilon^{*} - \varepsilon_{A}'}{3\varepsilon^{*}} = \Theta \frac{\varepsilon_{\infty B}' + \frac{\Delta \varepsilon_{B}'}{1 + (j_{\omega} \tau_{B})^{1 - \alpha_{B}}} - \varepsilon_{A}'}{2\varepsilon^{*} + \varepsilon_{\infty B}' + \frac{\Delta \varepsilon_{B}'}{1 + (j_{\omega} \tau_{B})^{1 - \alpha_{B}}}}$$

Nous avons procédé comme dans le cas précédent en faisant varier ε_A^i et Θ . Les courbes obtenues^(*) $\Delta \varepsilon^i = f(\Theta)$ avec ε_A^i comme paramètre et $\Delta \varepsilon^i = g(\varepsilon_A^i)$ avec Θ comme paramètre ont la même allure que celles données figures 13 et 14.

L'évolution de la fréquence critique F_c ainsi que la distribution du domaine du mélange ont été aussi étudiées. Les gourbes $\Delta F_{C_B}/F_{C_B}$ et α fonction de Θ pour différentes valeurs de ε_{Δ} sont données figures 17 et 18.

Nous remarquons que :

- $F_{C} > F_{CB}$: la fréquence critique du domaine du mélange est supérieure à celle de B,

- la distribution est de type Cole et Cole avec α légèrement supérieure à $\alpha_{\rm R}$.

Nous avons aussi fait varier α_B : lorsque α_B croît, la fréquence critique F_C augmente et α reste sensiblement égal à α_B .

(*) Pour alléger le texte, nous ne donnerons pas ces courbes.

-84-

Pour l'application de la loi de Böttcher aux mélanges expérimentaux, nous admettrons en première approximation que le domaine de relaxation du mélange est de type Cole et Cole avec un paramètre de distribution inchangé ($\alpha \simeq \alpha_B$).

IV-4-3- Corps polaire (présentant une série de D.E.N.D.) dans milieu non polaire Dans ce cas (cf. § III-4-3) :

$$\varepsilon_{A}^{*} = \varepsilon_{A}^{'}$$

$$\varepsilon_{B}^{*} = \varepsilon_{\infty B}^{'} + \sum_{p=1}^{n} \frac{\Delta \varepsilon_{Bp}^{'}}{1 + j\omega \tau_{Bp}}$$
(25a)

avec

 $\Delta \varepsilon_{Bp}^{\dagger} = \varepsilon_{SBp}^{\dagger} - \varepsilon_{\omega Bp}^{\dagger}$ $F_{c_{Bp}} = \frac{1}{2\pi \tau_{Bp}}$ $\varepsilon_{\omega B}^{\dagger} : \text{ permittivit} \text{ reelle pour } F >> F_{c_{Bn}}$

n : entier positif représentant le nombre total de D.E.N.D.

Comme pour la loi de Looyenga, nous avons choisi un corps polaire théorique présentant 5 D.E.N.D. En outre, il a les mêmes caractéristiques que celles données tableau IV (cf. § III-4-3). Par souci de clarté, nous les redonnons tableau VII.

Caractéristiques			D.F.N.D. III	D.E.N.D. IV	D.E.N.D. V
F _{CBp} (kHz)	5.8	69	340	2350	29000
			10	0	Λ
Δε ^j Bp	2	6	18	8	4
$\varepsilon'_{\rm p} = 5$,		

Tableau VII

Rappelons que (cf. § III-4-3) :

- la relation (25a) permet d'obtenir le diagramme de Cole et Cole $\varepsilon_B^{"} = f(\varepsilon_B^{"})$ du corps B (cf. figure 19a),

- les points sont obtenus avec 9 chiffres significatifs,

- la fréquence critique $F_{C_{\hbox{\scriptsize B}}}$ est égale à 360 kHz et l'amplitude $\Delta \epsilon_{\hbox{\scriptsize B}}^{+}$ est égale à 38.

-85-

Nous appliquons la loi de Böttcher et l'équation (36) peut s'écrire sous la forme suivante :

$$\frac{\varepsilon^{*} - \varepsilon_{A}}{3 \varepsilon^{*}} = \Theta \frac{(\varepsilon_{B}' - j\varepsilon_{B}'' - \varepsilon_{A}')}{2\varepsilon^{*} + \varepsilon_{B}' - j\varepsilon_{B}''}$$

Nous avons fait varier Θ de 0.7 à 1 et ε_A^i de 1 à 5. Comme dans les cas précédents (cf. § IV-4-1 et § IV-4-2), les courbes obtenues^(*) $\Delta \varepsilon^i = f(\Theta)$ avec ε_A^i comme paramètre et $\Delta \varepsilon^i = g(\varepsilon_A^i)$ avec Θ comme paramètre, ont la même allure que celles données figures 13 et 14.

Il serait possible d'étudier les caractéristiques du domaine (fréquence critique F_c et distribution apparentes) mais il est plus intéressant de suivre les caractéristiques des différents D.E.N.D. Pour cela, nous pouvons décomposer le domaine du mélange en D.E.N.D. à l'aide de la méthode numérique mise au point au laboratoire par Ravalitera^[2].

Nous appliquons la loi de Böttcher pour $\Theta = 0.8$, $\varepsilon_A^{\prime} = 3.1$ et ε_B^{*} donnée par la relation (25a) avec les valeurs du tableau VII. Le diagramme $\varepsilon^{"}(\omega) = f [\varepsilon^{\prime}(\omega)]$ obtenue (courbe C de la figure 19b) est analogue à ceux relevés expérimentalement au laboratoire la plupart du temps. La décomposition de ce diagramme a été possible (cf. figure 19b) et les caractéristiques $\Delta \varepsilon_p^{\prime}$ et F_{cp} des D.E.N.D. sont données tableau VIII.

Caractéristiques	D.E.N.D. I	D.E.N.D. II	D.E.N.D. III	D.E.N.D. IV	D.E.N.D. V
F _{cp} (kHz)	5.763	68.844	340	2355	28970
Δε'p	2.8	5.6	12.6	4.25	1.424
Δε¦/Δε¦βp	1.4	0.933	0.7	0.531	0.356
Fc _p /Fc _{Bp}	0.994	0.998	1	1.002	0,999
c ¹ - 3 0360					······································

Tableau VIII

Pour alléger le texte, nous ne donnerons pas ces courbes.

-86-

 $(i.e. \Theta = 1)$

Figure 19b : Diagramme de Cole et Cole recomposé du mélange pour Θ = 0.8 et ε_A^i = 3.1

Nous remarquons que :

- la décomposition donne 5 D.E.N.D. : le nombre de domaines élémentaires n'est pas modifié,

- les fréquences critiques ne varient pas en première approximation,

les amplitudes de chaque D.E.N.D. diminuent dans un rapport non constant (cf. tableau VIII). Ce rapport est fonction de l'amplitude du domaine étudié (i.e. corps B) et des fréquences critiques et amplitudes des domaines adjacents.
On peut remarquer qu'il varie beaucoup plus que dans le cas de la loi de Looyenga.
Une étude plus approfondie serait nécessaire pour expliquer ces résultats.

IV-4-4- Corps polaire (domaine de type Debye) dans milieu polaire (domaine de type Debye)

Dans ce cas :

$$\varepsilon_{A}^{*} = \varepsilon_{\omega A}^{\prime} + \frac{\Delta \varepsilon_{A}^{\prime}}{1 + j\omega \tau_{A}}$$

 $\varepsilon_{B}^{*} = \varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + j\omega \tau_{B}}$

Nous avons choisi : $\varepsilon'_{\infty A} = \varepsilon'_{\infty B} = 2$ $\Delta \varepsilon'_A = \Delta \varepsilon'_B = 8$

Nous appliquons la loi de Böttcher et l'équation (36) est écrite sous la forme suivante :

$$\frac{\varepsilon^{*} - (\varepsilon_{\infty A}^{'} + \frac{\Delta \varepsilon_{A}^{'}}{1 + j\omega \tau_{A}})}{3\varepsilon^{*}} = \Theta \frac{(\varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + j\omega \tau_{B}}) - (\varepsilon_{\infty A}^{'} + \frac{\Delta \varepsilon_{A}^{'}}{1 + j\omega \tau_{A}})}{2\varepsilon^{*} + \varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + j\omega \tau_{B}}}$$

Le comportement de ϵ^* a été étudié en fonction de Θ . Nous présentons notamment les résultats obtenus pour Θ = 0,8 et F_{C_A} = 10 kHz pour les cas suivants :

a) Cas $F_{C_B} = 1000 F_{C_A}$:

Le mélange présente deux domaines II_1 et II_2 de type Debye de fréquences critiques F_{CI} et F_{CII} tellesque(cf. figure 20 a):

- $F_{C_A} < F_{C_I} < F_{C_B} \simeq F_{C_{II}}$: la fréquence critique du domaine II_1 est plus élevée que celle de A ; cette augmentation n'excède pas 30 %. $F_{C_{II}}$ est sensiblement égale à F_{C_B} .

- $\Delta \varepsilon_{I}^{\prime} < \Delta \varepsilon_{II}^{\prime} < \Delta \varepsilon_{A}^{\prime} = \Delta \varepsilon_{B}^{\prime}$: les amplitudes des domaines II₁ et II₂ sont plus faibles que celles des corps A et B.

b) Cas $F_{CB} = 100 F_{CA}$:

Nous pouvons faire les mêmes observations que précédemment. Néanmoins, les domaines II_1 et II_2 sont moins bien séparés car leurs fréquences critiques sont plus proches (cf. figure 20b).

c) Cas $F_{C_B} = 10 F_{C_A}$:

Nous obtenons un seul domaine avec un épaulement basse fréquence car les domaines II_1 et II_2 ont des fréquences critiques très voisines (cf. figure 20c).

Figure 20b : Cas F_{C_B} = 100 F_{C_A}

Figure 20c : Cas F_{CB} = 10 F_{CA}

d) Remarque :

Lorsque $F_{C_B} >> F_{C_A}$, les propriétés électriques du mélange (A,B) peuvent être obtenues en considérant, en première approximation : - aux basses fréquences, le corps polaires A noyé dans le corps B qui présente à ces fréquences, une permittivité constante notée $\varepsilon_{S_B}^{\prime}$ (cf. figure 11), - aux hautes fréquences, le corps polaire B noyé dans le corps A qui présente à ces fréquences, une permittivité constante notée $\varepsilon_{\infty A}^{\prime}$ (cf. figure 11).

Compte tenu de cette remarque, il est possible de calculer les amplitudes maximales (notées $\varepsilon_{\text{equiv}}^{"}$ tableau IX) des domaines II₁ et II₂. Nous les comparons avec celles obtenues sans aucune approximation (cf. parties a, b et c de ce paragraphe). Ces différentes amplitudes sont déterminées par calculateur avec un pas en fréquence de 5 Hz au voisinage des fréquences critiques, ce qui permet de donner 5 chiffres significatifs.

Rapport Fc _B /F _{CA}	ε <mark>"</mark> ma	°max		' equi v	Précision (%)	
	II ₁	¹¹ 2	II ₁	II ₂	II ₁	II ₂
1000	1.0444	2.8879	1.0647	2.9352	-2	-1,6
100	1.1202	2.9123	1.0647	2.9352	+5	+1
10	indéterminée	3.1675	1.0647	2.9352	-	+7,3

Tableau IX

Nous remarquons que l'approximation est bonne pour les rapports 100 et 1000 comme nous l'avions signalé avec la loi de Looyenga. -91-

V - CONCLUSION

Dans ce chapitre, nous nous sommes intéressés essentiellement à l'étude théorique des lois de mélange. Parmi les lois établies en régime statique ou quasi-statique, nous avons retenu celles de Maxwell-Wagner, Looyenga et Böttcher pour les deux raisons suivantes :

- elles ont un support théorique valable,

- elles s'appliquent aux cas des mélanges à faibles et à fortes concentrations.

Notre contribution a été d'étudier ces lois en dynamique, ce qui n'avait pas été fait auparavant, sauf partiellement pour celle de Maxwell-Wagner. Nous avons simulé et caractérisé des mélanges de matériaux "non polaire-polaire" et "polaire-polaire". Cette étude a été faite pour des milieux qui présentent différents types de domaines de relaxation diélectrique (Debye, Cole et Cole, série de D.E.N.D.).

Nous avons montré que ces trois lois étendues en dynamique : - n'introduisent pas de domaines supplémentaires,

- ne modifient pas, en première approximation, la distribution pour des domaines de type Debye et Cole et Cole.

De plus :

- la fréquence critique F_c augmente lorsque la concentration diminue (50 % maximum pour la loi de Looyenga (pour $\varepsilon_{A}^{1} = 4$ et $\Theta = 0.1$) et 10 % maximum (pour $\varepsilon_{A}^{1} = 4$ et $\Theta = 0.7$) pour celle de Böttcher),

- l'amplitude $\Delta \varepsilon$ ' croît de façon non linéaire avec d'une part la valeur de la permittivité de l'enrobant et d'autre part la concentration. Ceci a été mis en évidence, pour différents cas, à partir de nombreuses simulations.

Dans le chapitre suivant, nous montrons que, les résultats expérimentaux sont en accord avec les résultats théoriques, ce qui va justifier à postériori l'extension en dynamique des trois lois retenues.

BIBLIOGRAPHIE

[1] A. LEBRUN, 1964 Contrat Délégation Générale à la Recherche Scientifique et Technique Rapport 62 FR 107, Lille. Rapport interne I.R.E.L. 64-I. [2] G. RAVALITERA, 1975 Thèse Doctorat 3è cycle, Lille C. DRUON et J.M. WACRENIER, 1977 [3] J. Physique, 38, 47-50 J.P. PARNEIX, C. LEGRAND et S. TOUTAIN, 1983 [4] I.E.E. Trans. M.T.T., 30, 2015-2017 M.D. BENADDA, J.C. CARRU et C. DRUON, 1982 [5] J. Phys. E. : Sci. Instrum., 15, 132-136 M.D. BENADDA, J.C. CARRU, A. CHAPOTON, J.P. AMOUREUX et M, CASTELAIN, 1981 [6] VIè Colloque de l'Optique Hertzienne et Diélectrique, Toulouse, Sept.1981 [7] A. CHAPOTON, 1973 Thèse Doctorat ès-Sciences Physiques, Lille [8] J.C. CARRU, 1976 Thèse Doctorat 3ème cycle, Lille F.J. JANSEN et R.A. SCHOONHEYDT, 1973 [9] Trans Faraday Soc. I, 69, 1338-55 [10] · L.K.H. van BEEK, 1967 Prog. Dielectrics, 7, 69-114 [11] C. GROSSE et J.L. GREFFE, 1979 J. Chim. Phys., 76, 305-327 R.L. Mc INTOSH, 1966 [12] "Dielectric behavior of physically adsorbed gases" Marcel. Dekker, Inc., New-York, U.S.A. D.C. DUBE et R. PARSHAD, 1970 [13] J. Phys. D. : Appl. Phys., 3, 677-684 M.D. BENADDA, J.C. CARRU, J.P. AMOUREUX, M. CASTELAIN et A. CHAPOTON, 1982 [14] J. Phys. D. : Appl. Phys., 15, 1477-89 D.C. DUBE, 1970 [15] J. Phys. D. : Appl. Phys., 3, 1648-1653 A. CHAPOTON, G. RAVALITERA, B. VANDORPE, M. CHOQUET et A. LEBRUN, 1972 [16] J. Chim. physique, 69, 1191-1201 [17] T. HANAI, 1960 Kolloid Zeitschrift, 171, 23-31

.../...

[18]	M. DESCARPENTRIES, 1966 Thèse de Docteur-Ingénieur, Lille
[19]	J.M. WACRENIER, 1968 Thèse Doctorat 3è cycle, Lille
[20]	J. FONTAINE, 1971 Thèse Doctorat ès Sciences Physiques, Lille
[21]	J.M. WACRENIER, 1966 D.E.A. , Lille
[22]	K.W. WAGNER, 1914 Archi. Electrotech., <u>2</u> , 371-387
[23]	H. LOOYENGA, 1965 Physica, <u>31</u> , 401-406
[24]	C.J.F. BOTTCHER, 1945 Rec. Trav. Chim., <u>64</u> , 47-51
[25]	C.J.F. BOTTCHER, 1952 "Theory of electric polarisation"-Tome I Elsevier , Amsterdam
[26]	R.H. COLE et R.S. COLE, 1941 J. Chem. Phys. USA, <u>9</u> , 341-351
[27]	G. RAVALITERA, J.C. CARRU et A. CHAPOTON, 1977 J. Chem. Soc. Faraday, Trans. I, <u>73</u> , 843-52
[28]	D.A.G. BRUGGEMAN, 1935 Ann. Der. Phys., <u>24</u> , 636-664
[29]	Lord RAYLEIGH, 1982 Phyl. Magn, <u>34</u> , 481-502
[30]	L. LANDAU et F. LIFCHITZ, 1969 "Electrodynamique des milieux continus" Ed. MIR, Moscou, 68-70
[31]	W.I. HIGUCHI, 1958 J. of Phys. Chem. , <u>62</u> , 649-653
[32]	M. KUBO et S. NAKAMURA, 1953 Bull. Chem. Soc. Jap., <u>26</u> , 318-322
[33]	G.P. de LOOR, 1954 Appl. Sc. Res., <u>3B</u> , 479-481
[34]	O.F. MOSOTTI, 1846 Mem. di. Matem. e. Fisica di Madena, <u>24</u> , 49-74
[35]	R. CLAUSIUS, 1876 "Die Mechanishe Wärmetheorie" Zweite Auflage, Abschnitt III. Druck and Verlag. Braunshweig"
[36]	H. FRICKE, 1953 J. Phys. Chem., <u>57</u> , 934-937
[37]	K. LICHTENECKER et R. ROTHER, 1931 Phys. Zeitschr, <u>32</u> , 255-260

.../...

[38]	Τ.	HANA I	[, N.	KOIZUMI	et	R.	GOTOH,	1959
	Ко	110 1 d	Zeits	schift,	167,	41	L-43	

- [39] D.C. DUBE, R.S. YADAVA et R. PARSHAD, 1971 Ind. Jour. Pure Appl. Phys., <u>9</u>, 453-455
- [40] G.F. DIONNE, J.F. FITZGERALD and R.C. AUCOIN, 1976 J. Appl. Physics, <u>47</u>, 1708, 1709
- [41] P. TABOURIER Thèse Doctorat ès Sciences Physiques, à paraître, Lille
- [42] D. POLDER et J.H. van SANTEN, 1946 Physica, 12, 257-71
- [43] H. FRICKE, 1953 J. Phys. Chem., <u>57</u>, 934-7

Chapitre III

ETUDE EXPÉRIMENTALE DE DIFFÉRENTS MÉLANGES DE DIÉLECTRIQUES. INTERPRÉTATION À PARTIR DES LOIS DE MÉLANGE ÉTENDUES EN DYNAMIQUE. Au chapitre précédent, nous avons rappelé les principales formules de mélange de diélectriques. Une étude critique nous a permis de retenir les lois de Maxwell-Wagner^[1] (pour les très faibles concentrations), Looyenga^[2] (pour les faibles et fortes concentrations) et Böttcher^{[3][4]}(pour les fortes concentrations). Ces lois ont été essentiellement utilisées pour décrire des mélanges en régime statique ou quasi-statique^[5 à 7]. Nous avons montré qu'elles pouvaient être étendues en régime dynamique en utilisant une méthode numérique.

Pour vérifier la validité de l'extension en dynamique des lois retenues, nous effectuons dans ce chapitre, une étude expérimentale des propriétés diélectriques à large gamme de fréquence de différents types de mélanges. Pour les réaliser, nous recherchons au préalable, des matériaux soit non polaires, soit polaires présentant des domaines de relaxation distribués ou non. A l'aide de ces matériaux, nous avons réalisé les mélanges suivants : - non polaire-polaire : la phase dispersée (enrobée) présente un domaine de relaxation non distribué,

- non polaire-polaire : la phase dispersée présente un domaine de relaxation distribué,

 polaire-polaire : les phases continue (enrobante) et dispersée présentent chacune un domaine de relaxation distribué.

Pour chacun de ces mélanges, nous donnons :

- la technique d'élaboration des échantillons.

- les résultats expérimentaux i.e les spectres ϵ' et ϵ'' fonction de la fréquence pour différentes valeurs soit de la concentration Θ , soit de la permittivité ϵ_A' de l'enrobant.

 - la comparaison entre ces résultats et ceux calculés à partir des lois de mélange retenues. Une discussion permet de préciser le domaine de validité de ces lois.

En outre, nous donnons quelques exemples d'applications des mélanges de diélectriques :

- la détermination des propriétés électriques du cristal compact isotrope à partir des mesures effectuées sur la poudre,

 - la détermination du rapport des volumes (i.e ☉) connaissant les propriétés électriques du mélange et de ses constituants,

- l'étude des hétérogénéités macroscopiques.

-96-

I - RAPPELS SUR L'ETUDE DES MELANGES EN STATIQUE

Pour justifier le choix des lois retenues au chapitre précédent, nous rappelons dans ce paragraphe, les principaux résultats expérimentaux concernant les mélanges obtenus en statique. Cette partie ne sera pas développée car elle a fait l'objet de travaux antérieurs : en 1967, van Beek^[5]et, plus récemment Grosse et Greffe^[6], ont publié des articles dans lesquels ils résument l'essentiel de ces travaux.

Dans ce qui suit, la permittivité de l'enrobant est notée ϵ_A' , celle de la phase dispersée ϵ_B' et celle du mélange ϵ' .

I-1- <u>CAS DES FAIBLES CONCENTRATIONS</u> : $\Theta < 0.5$

I-1-1- Mélange avec $\varepsilon'_{\rm A}$ du même ordre de grandeur gue $\varepsilon'_{\rm B}$

a) Mélange de tétrachlorure de carbone ($\varepsilon_{A}^{*}=2.228$) avec des billes de verre $(\varepsilon_{B}^{*}=4.594)^{[5]}$

La courbe expérimentale ε ' fonction de Θ (Θ variant de 0.05 à 0.5) ainsi que les courbes théoriques correspondantes obtenues à partir des lois de Maxwell-Wagner et Looyenga sont données figure 1.

On remarque que

- la courbe expérimentale varie de façon non linéaire

:

- la loi de Looyenga donne de très bons résultats quel que soit 🔅
- la loi de Maxwell-Wagner est valable pour $\Theta \leq 0.1$.

b) <u>Mélange de "tétrachlorure de carbone-benzène" ($\varepsilon_{A}^{\prime} = 2.28$) avec du chlorure</u> <u>d'ammonium ($\varepsilon_{B}^{\prime} = 6.84$)</u>^[5]

La courbe expérimentale ε ' fonction de Θ (Θ variant de 0.05 à 0.5) ainsi que les courbes théoriques correspondantes obtenues à partir des lois de Maxwell-Wagner et Looyenga sont données figure 2.

On peut faire les mêmes remarques que précédemment.

I-1-2- Mélanges avec $\varepsilon_B^{\prime} >> \varepsilon_A^{\prime}$

Des travaux portant sur les mélanges et mentionnés dans la littérature^{[5][8][9]}, montrent que pour $\varepsilon_B^{i} >> \varepsilon_A^{i}$ (i.e $\varepsilon_B^{i} / \varepsilon_A^{i} > 20$) et $\Theta > 0.1$, la loi de Looyenga donne des résultats qui ne sont pas en accord avec ceux obtenus expérimentalement. Grosse^[7], puis Grosse et Greffe^[6]ont également observé ces écarts. Ce résultat est lié à la nature de la formule (cf. chapitre II, § III).

(*) Dans ce chapitre, afin de déterminer les limites de validité des lois étudiées, nous envisageons comme faibles concentrations toute valeur de O inférieure à 0.5 et comme fortes concentrations toute valeur de O supérieure à 0.5.

 (1) : courbe expérimentale
 (2) : courbe théorique déduite à partir de la loi de Looyenga
 (3) : courbe théorique déduite à partir de la loi de Maxwell-Wagner

- (1) : courbe expérimentale
 (2) : courbe théorique déduite à partir de la loi de Looyenga
 (3) : courbe théorique déduite à partir de la loi de Maxwell-Wagner

BUS
I-2- CAS DES FORTES CONCENTRATIONS : $\Theta > 0.5$

Différents auteurs^[5 à 8]ont étudié la validité des lois de Looyenga et Böttcher pour Θ > 0.5. Dube^[10]a montré que, pour $\varepsilon'_{B}/\varepsilon'_{A}$ < 10, l'accord entre les résultats expérimentaux et théoriques est excellent.

D'autres auteurs ont étudié les mélanges pour $\varepsilon_B^{\prime} >> \varepsilon_A^{\prime}$ (i.e $\varepsilon_B^{\prime}/\varepsilon_A^{\prime} > 20$). Nous rappelons dans le tableau I, les résultats obtenus par Hanai^[9]pour $\varepsilon_B^{\prime}/\varepsilon_A^{\prime} = 30$: mélange d'huile ($\varepsilon_A'=2.5$)-avec l'eau- ($\varepsilon_B'=76.8$) à T = +30°C.

Θ	0.5	0.6	0.7	0.8	0.9	1
^e mesuré	29.48	38.06	46.36	55.48	65.42	76.8
εLooyenga	22.04	29.6	38.7	49.5	62.16	76.8
e ['] mesuré ^{-e} Looyenga (%)	25.2	22,2	16.5	10.8	5	0
^e böttcher	23.85	33.81	44.28	55.01	66.11	76.8
$\left \frac{\varepsilon_{\text{mesure}}^{-\varepsilon} \text{Böttcher}}{\varepsilon_{\text{mesure}}^{-\varepsilon}}\right (\%)$	19.1	11.2	4.5	1	1	0

Tableau I

On remarque que^[9]:

- la loi de Böttcher est valable pour $\Theta \ge 0.7$
- la loi de Looyenga est valable pour $\Theta > 0.9$

Pour compléter cette étude, nous avons réalisé le mélange air ($\varepsilon_A^{+=1}$)-téflon ($\varepsilon_B^{+=2}$), l'enrobant étant l'air^(*). Nous présentons dans le tableau II, les valeurs de ϵ ' mesurées et calculées à partir des lois de Looyenga et Böttcher pour ⊖ variant de 0.6 à 1.

Θ	0.6	0.7	0.8	0.89	0.95	1
ະ! mesuré	1.54	1.65	1.76	1.86	1.94	2.00
^ε calculé(Böttcher)	1.55	1.65	1.76	1.86	1.94	2.00
ະ calculé(Looyenga)	1.55	1.65	1.76	1.86	1.94	2.00

Tableau II

Nous remarquons que les valeurs mesurées et calculées sont en bon accord. (*)Pour la préparation des échantillons, voir paragraphe IV-I.

II - CHOIX DES ENROBANTS ET ETUDE DE LEURS PROPRIETES DIELECTRIQUES

Pour étudier les propriétés électriques de certains matériaux pulvérulents, il est nécessaire de les enrober^[11 à 13]. Les enrobants à utiliser doivent présenter les propriétés suivantes :

- être inertes du point de vue chimique : i.e n'ayant pas d'intéractions avec la surface de l'enrobé,

avoir très peu d'absorption dans la gamme de fréquence d'utilisation (IHz -1 GHz),
conserver leurs propriétés dans une large gamme de température.

Il existe peu de matériaux ayant de telles qualités à large gamme de fréquence. En outre, leur constante diélectrique ε_A^{\prime} est en général faible (3.1 pour l'huile aux silicones SI710). Une telle valeur ne permet pas l'étude expérimentale de "l'effet de loupe" (cf. chapitre II, § III-4) lié à la valeur de la permittivité de l'enrobant. Pour cela, nous avons également pris comme enrobants des matériaux polaires ne présentant pas de pertes dans une gamme de fréquence d'utilisation plus restreinte.

II-1- ENROBANTS NON POLAIRES DE FAIBLE PERMITTIVITE (< 3.1)

Parmi les matériaux remplissant les conditions précédemment citées, nous avons choisi^{[12][14]}:

- l'huile de paraffine,

- l'huile aux silicones SI710^(*) (commercialisée par la Société Industrielle aux Silicones),

- le téflon 5N (commercialisé par Du Pont de Nemours),

Les propriétés électriques de ces corps ont été étudiées lors de travaux antérieurs^{[11][12]}. Les huiles servent essentiellement à enrober les corps poreux tels les zéolithes, gels de silice ... Nous rappelons dans le tableau III, les avantages et inconvénients de chacun de ces enrobants.

(*)

Au laboratoire, nous utilisons aussi une autre huile aux silicones (SI200) ayant des propriétés similaires.

-101-

Matériaux	Avantages	Gamme de fréquence	Gamme de température	Inconvénients
Huile de paraffine	- peu de pertes dié- lectriques (ε¦=2.2 ; ε¦ < 0.01)	1 Hz-1 GHz	-50 à +75°C	-pénètre dans les 。 pores de diamètre 10A (zéolithes X, Y)
Huile SI710	- peu de pertes dié- lectriques $(\varepsilon_A^{+}=3.1 ; \varepsilon_A^{+} \leq 0.075)$ - ne pénètre pas dans les pores de diamètre 10 Å	10 Hz-1 GHz	-50 à +75°C	-pertes diélectriques importantes entre 1Hz et 100 Hz
Téflon 5N	- très peu de pertes diélectriques ($\epsilon_A^{+}=2$)	1 Hz -30GHz	-75 à +75°C	-pulvérulent

Tableau III

II-2- ENROBANTS POLAIRES NE PRESENTANT PAS DE PERTES DANS UNE GAMME DE FREQUENCE DONNEE

Il existe de nombreux matériaux polaires liquides (alcools, dérivés du benzène, ...) ayant peu de pertes dans une gamme de fréquence donnée. Nous ne les avons pas retenus car ils ne sont pas inertes du point de vue chimique. C'est pourquoi, nous nous sommes orientés vers les matériaux pulvérulents. Nous avons choisi deux dérivés de l'adamantane $C_{10}H_{16}$ (commercialisé par Janssen Pharmaceutica): - le fluoroadamantane : $C_{10}H_{15}F$

- l'adamantanone : $C_{10}H_{14}O$

Les enrobants pulvérulents sont moins intéressants que les liquides car leur utilisation donne toujours des mélanges ternaires (cf. § IV-1-1). Ces corps sont généralement utilisés pour connaître l'influence de la permittivité ε_A^i de l'enrobant sur les propriétés électriques des mélanges. Nous donnons dans le tableau IV les avantages et les inconvénients de chacun de ces matériaux.

II-3- CAS PARTICULIER DE L'ENROBANT AIR

Tout matériau pulvérulent est un mélange ayant pour enrobant l'air^[14]. Il est possible de réaliser des échantillons homogènes en faisant le remplissage des cellules de mesure, en plusieurs couches (cf. § IV-1). Dans ce cas, la concentration Θ représente le rapport du volume des polycristaux au volume total (i.e volume des polycristaux et volume d'air). Les mesures diélectriques sur les poudres ne sont possibles que pour des produits qui :

- n'ont pas de conductivité,

- ne présentent pas de propriétés adsorbantes.

La deuxième condition n'est pas nécessaire lorsque le remplissage s'effectue sous atmosphère inerte.

Matériaux	Avantages	Gamme de fréquence	Gamme de température	Inconvénients
Fluoroada- mantane	-peu de pertes($\varepsilon_A^{"} < 0.1$) - $\varepsilon_A^{'}=6.48$ à +25°C pour $\Theta = 0.98^{(*)}$	1 Hz – 1 GHz	-25 à +75°C	-sensible à la lumière -doit être utilisé très pur
Adamanta- none	-peu de pertes($\varepsilon_A'' < 0.1$) - $\varepsilon_A'=13.2$ à +25°C pour Θ = 0.95 -très stable	1 Hz - 100MHz	0 à +75°C	-ε¦ varie avec T

Tableau IV

(*) Pour Θ , voir § II-3.

III - CHOIX DES MATERIAUX POLAIRES

Dans le cadre de notre étude, les corps polaires doivent présenter les propriétés suivantes :

- être des solides inertes du point de vue chimique (les corps polaires liquides ayant déjà fait l'objet de travaux antérieurs^[15])

avoir une absorption diélectrique dans la gamme de fréquence 1 Hz - 1 GHz
présenter une structure telle que l'enrobant n'y pénètre pas : les dimensions des pores doivent être petites vis-à-vis de celles des molécules de l'enrobant.

Pour étudier les mélanges, nous avons successivement réalisé les échantillons suivants :

- non polaire-polaire : l'enrobé présente un domaine soit non distribué, soit distribué,

- polaire-polaire : l'enrobant et l'enrobé présentent chacun un domaine distribué.

-103-

III-1- MATERIAUX POLAIRES PRESENTANT UN DOMAINE NON DISTRIBUE

A notre connaissance, seul le 1-cyanoadamantane, solide moléculaire, répond partiellement aux conditions précédemment définies. En particulier : - il présente dans sa phase plastique de 253°K à 433°K, un domaine de relaxation faiblement distribué lié au moment dipolaire important (3.94 D) du groupe cyano $-C \equiv N^{[16]}$,

- il n'a presque pas de conductivité,

- il est non hygroscopique et a une faible tension de vapeur saturante (i.e. il ne sublime pas),

- il a un réseau cubique, donc des propriétés isotropes^[17],

- il est commercialisé à l'état de poudre (par Janssen Pharmaceutica)

Rappels des propriétés du 1-cyanoadamantane :

Le l-cyanoadamantane (également appelé adamantane carbonitryle) a pour formule chimique $1-C_{10}H_{15}CN$. C'est un sustitué du plus simple des hydrocarbures saturés : l'adamantane $C_{10}H_{16}$. Il est obtenu en remplaçant un hydrogène par le groupement cyano $-C\equiv N$ (cf. figure 3). Le squelette ainsi obtenu est très rigide^{[18][19]}.

Les propriétés physiques de ce corps ont été étudiées par d'autres auteurs^[20 à 24].

Figure 3 : Molécule du 1-C₁₀H₁₅CN

III-2- MATERIAUX POLAIRES PRESENTANT UN DOMAINE DISTRIBUE

Nous avons choisi d'utiliser les zéolithes de type X pour les raisons suivantes :

- elles font actuellement l'objet de différents travaux de recherche au laboratoire^{[25][26]},

- elles présentent un domaine de relaxation fortement distribué lié au déplacement des cations dans leur structure^{[11][12]},

- elles ont un réseau cubique,

- elles sont commercialisées à l'état de poudre très fine.

Ces matériaux étant hygroscopiques, il est impossible de réaliser des mélanges avec l'air comme enrobant, compte tenu des conditions expérimentales.

Rappels des principales propriétés des zéolithes de type X

Les zéolithes de type X sont obtenues à partir de la zéolithe commerciale NaX^{[12][27]}. C'est un aluminosilicate présentant un réseau polycristallin. Sa structure est voisine de celle de la zéolithe naturelle faujasite. Sa formule chimique à l'état déshydraté est :

Na₈₆ Al₈₆ Si₁₀₆ O₃₈₄

Cette formule est relative à huit blocs sodalites également appelée "cellule élémentaire". Les cations Na⁺ servant à la neutralité électrique peuvent être échangés partiellement ou totalement^[27] par des cations monovalents, divalents ou trivalents et des protons. On obtient ainsi, des matériaux présentant des domaines distribués de fréquences critiques différentes.

Les propriétés des zéolithes en général ont été étudiées par de très nombreux auteurs. Flanigen^[28]mentionne environ quinze mille publications et dix mille brevets industriels.

IV - ETUDE DES MELANGES BINAIRES DONT LA PHASE POLAIRE PRESENTE UN DOMAINE FAIBLEMENT DISTRIBUE (CAS DU 1-CYANOADAMANTANE)

IV-1- ELABORATION DES ECHANTILLONS

Dans cette étude, le corps polaire est le 1-cyanoadamantane. L'échantillon (de concentration Θ donnée) est placé dans une cellule coaxiale à extrêmité ouverte du point de vue électrique^[29 à 31]. Pour déterminer Θ , nous nous sommes toujours ramenés à une mesure de masses plus rapide et plus précise qu'une mesure de volumes. En effet, Θ est donné par la relation suivante :

$$\Theta = \frac{V_B}{V_A + V_B} = \frac{V_B}{V_T}$$

avec : V_A , V_B volumes occupés respectivement par A et B, B étant l'enrobé $V_{\rm T}$ = Volume total

Lorsque l'enrobant est liquide (cas des huiles), nous avons : $V_A = m_A / \rho_A$ et $V_B = m_B / \rho_B$

avec : ρ_{A} , ρ_{B} masses volumiques connues de A et B

d'où :
$$\Theta = \frac{\rho_B m_B}{\rho_A m_A + \rho_B m_B} = \rho_B \frac{k}{\rho_A + k \rho_B}$$

k étant égal à $m^{}_{\rm B}/m^{}_{\rm A}$. A chaque valeur de Θ , correspond un rapport k.

Lorsque l'enrobant est l'air, $V_{\overline{T}}$ est connu. Il suffit de prendre une masse $m_{\overline{B}}$ correspondant au Θ désiré.

Pour avoir un faible gradient de concentration, la masse d'échantillon doit être répartie de façon homogène dans la cellule par couches successives. Dans ces conditions, les résultats diélectriques sont reproductibles aux erreurs de mesures près, ce qui justifie la méthode de remplissage.

· IV-1-1- Echantillons pour étudier l'influence de la concentration ⊖

a) Cas des fortes concentrations

Dans ce cas, l'air constitue l'enrobant. Nous avons réalisé des échantillons homogènes ayant un faible gradient de concentration pour des valeurs de Θ comprises entre 0.47 et 0.95.

b) Cas des faibles concentrations

Dans ce cas, nous réalisons un mélange ternaire car il n'est pas possible d'avoir un échantillon homogène lorsque ⊖ est inférieure à 0.47.

Un mélange binaire (air, téflon) constitue l'enrobant. Sa permittivité ε_A^{\prime} reste, en première approximation, constante et égale à 1.87. Cette valeur a été mesurée de 1 Hz à 1 GHz et ne varie pas dans cette gamme de fréquence. Nous avons ainsi réalisé des mélanges homogènes pour des valeurs de Θ comprises entre 0.1 et 0.47.

IV-1-2- Echantillons pour étudier l'influence de la permittivité ε_A de l'enrobant

Dans cette étude, la concentration Θ a été choisie égale à 0.47.

a) Cas des enrobants composés : (binaires : solide-air)

Les enrobants solides utilisés sont respectivement le téflon, le fluoroadamantane et l'adamantanone. L'ensemble "solide-air" constitue des mélanges binaires B dont la fraction de volume occupé par le solide reste constante et égale à 0.89 dans ce mélange binaire.

b) Cas des enrobants simples : (une phase fluide)

Les enrobants utilisés sont respectivement l'air, l'huile de paraffine et l'huile aux silicones SI710.

Avec ces deux types d'enrobants : simples et composés, nous avons réalisé des échantillons pour des valeurs de ε_A comprises entre 1 et 12. Le choix de cette variation sera justifié au § IV-3-2.

IV-2- RESULTATS EXPERIMENTAUX

Dans tout ce qui suit, nous avons relevé les parties réelle ε' et imaginaire ε'' de la permittivité complexe ε^* à T = 25 ± 0.1°C dans la bande de fréquence 1 kHz-100 MHz.

IV-2-1- Etude en fonction de la concentration

a) Cas des fortes concentrations : enrobant-air

Avec l'air, nous avons fait varier Θ de 0.47 à 0.95. Les spectres ε " fonction de la fréquence ainsi que les spectres ε ' correspondants sont donnés respectivement figures 4 et 5.

Nous remarquons que [13] [14]:

- la valeur maximale de $\epsilon^{"}$ (notée $\epsilon^{"}_{max})$ du domaine croît avec $\odot,$

- la fréquence correspondant à ε''_{max} (fréquence critique notée F_c) augmente légèrement quand Θ diminue,

- la distribution du domaine reste, en première approximation, la même quel que soit Θ .

b) Cas des faibles concentrations : 0<0.5. Enrobant : mélange air-téflon

Avec le mélange enrobant "air-téflon", nous avons fait varier Θ de 0.1 à 0.47. Les spectres ε " fonction de la fréquence ainsi que les spectres ε ' correspondant sont donnés respectivement figures 6 et 7.

Nous pouvons faire les mêmes remarques que précédemment.

Notons que pour Θ = 0.47, les mesures ont été faites d'une part avec l'air (ε_A^{\prime} = 1) et d'autre part avec le mélange enrobant air-téflon (ε_A^{\prime} = 1.87). On constate que la valeur de $\varepsilon_{max}^{"}$ croît avec la permittivité de l'enrobant : elle passe de 0.7 à 1.1.

Figure 4 : Spectres ε " fonction de la fréquence pour différentes valeurs de Θ ; cas des fortes concentrations. T = +25°C Milieu enrobant : air.

Į

Figure 5 : Spectres ε ' fonction de la fréquence pour différentes valeurs de Θ ; cas des fortes concentrations. T = +25°C Milieu enrobant : air.

۰,

Figure 6 : Spectres ε " fonction de la fréquence pour différentes valeurs de Θ ; cas des faibles concentrations. T=+25°C. Milieu enrobant : Mélange "Air-Téflon".

-110-

Figure 7 : Spectres ε' fonction de la fréquence pour différentes valeurs de Θ ; cas des faibles concentrations. T = +25°C. Milieu enrobant : Mélange "Air-Téflon"

IV-2-2- Etude en fonction de la permittivité ε_A' de l'enrobant

Par souci de clarté, nous donnons uniquement les spectres ε " fonction de la fréquence pour différentes valeurs de la permittivité ε_A de l'enrobant (cf. figure 8).

Nous remarquons que :

- la valeur de $\varepsilon_{\max}^{"}$ croît avec la permittivité $\varepsilon_{A}^{'}$ de l'enrobant,

- la distribution du domaine reste, en première approximation, la même,

- la fréquence critique F_C est inchangée.

IV-3- COMPARAISON ENTRE LES RESULTATS EXPERIMENTAUX ET THEORIQUES

IV-3-1- Courbes $\Delta \epsilon'$ fonction de Θ

a) Cas des fortes concentrations. Enrobant : air

Dans ce cas, nous avons successivement utilisé les lois de Böttcher et Looyenga (cf. chapitre II).

-111-

- Loi de Böttcher :

Elle est donnée par la relation (1) :

$$\frac{\varepsilon^* - \varepsilon_A^*}{3 \varepsilon^*} = \Theta \frac{\varepsilon_B^* - \varepsilon_A^*}{2\varepsilon^* + \varepsilon_B^*}$$
(1)

Le comportement dynamique du système est obtenu en remplaçant dans l'équation (1), ε^* , ε^*_A et ε^*_B respectivement par ε' - $j\varepsilon''$, 1 (enrobant : air) et ε'_B - $j\varepsilon''_B$.

L'équation (1) s'écrit :

$$\frac{\varepsilon'(\omega) - j\varepsilon''(\omega) - 1}{3 [\varepsilon'(\omega) - j\varepsilon''(\omega)]} = \Theta \left[\frac{\varepsilon'_B(\omega) - j\varepsilon''_B}{2[\varepsilon'(\omega) - j\varepsilon''(\omega)] + [\varepsilon'_B(\omega) - j\varepsilon''_B(\omega)]} \right] (2)$$

 $\epsilon_B^{\boldsymbol{\ast}}(\omega)$ présente un domaine d'absorption diélectrique de fréquence critique $F_{C_{\text{B}}}$

avec : $\varepsilon_{SB}^{'}$ la permittivité réelle pour F << F_{CB} : permittivité statique $\varepsilon_{\infty B}^{'}$ la permittivité réelle pour F >> F_{CB} : permittivité infinie $\Delta \varepsilon_{SB}^{'} = \varepsilon_{SB}^{'} - \varepsilon_{\infty B}^{'}$

Pour F << Fc_B , $\varepsilon_B^*(\omega) = \varepsilon_{SB}'$ et $\varepsilon^*(\omega) = \varepsilon'_{S}$, l'équation (2) s'écrit :

$$\frac{\varepsilon_{s}' - 1}{3 \varepsilon_{s}'} = \Theta \frac{\varepsilon_{sB}' - 1}{2\varepsilon_{s}' + \varepsilon_{sB}'}$$
(3)

Pour F >> F_c , $\varepsilon_B^*(\omega) = \varepsilon_{\infty B}'$ et $\varepsilon^*(\omega) = \varepsilon_{\infty}'$, l'équation (2) s'écrit :

$$\frac{\varepsilon_{\infty}' - 1}{3 \varepsilon_{\infty}'} = \Theta \frac{\varepsilon_{\infty B}' - 1}{2\varepsilon_{\infty}' + \varepsilon_{\infty B}'}$$
(4)

Dans les formules (3) et (4), les valeurs $\varepsilon_{SB}^{'}$ et $\varepsilon_{\infty B}^{'}$ ont été déduites à partir des mesures effectuées pour la valeur la plus proche de $\Theta = 1$, i.e $\Theta = 0.95$. Dans ces conditions, il est possible de calculer, à partir des équations (3) et (4) les valeurs $\varepsilon_{S}^{'}$ et $\varepsilon_{\infty}^{'}$ du mélange pour différentes valeurs de Θ . Ceci permet de déduire les points théoriques $\Delta \varepsilon' = \varepsilon_{S}^{'} - \varepsilon_{\infty}^{'}$ en fonction de Θ . Nous les donnons (•) figure 9 ainsi que la courbe expérimentale correspondante (trait continu).

Nous présentons dans le tableau V les écarts entre les valeurs calculées et mesurées.

Θ	0.47	0.57	0.64	0.70	0.76	0.83	0.90	0.95
ε's mesuré	2.98	4.00	4.73	5.44	6.25	6.99	7.93	8.60
^ε s calculé	3.49	4.44	5.16	5.80	6.43	7.24	8.04	8.62
$\varepsilon_{\infty}^{\prime}$ mesuré	1.54	1.75	1.90	2.00	2.13	2.19	2.33	2.46
^ε ∞ calculé	1.63	1.79	1.91	2.02	2.13	2.26	2.40	2.50
^{Δε'} mesuré	1.44	2.25	2.83	3.44	4.12	4.80	5.60	6.14
^{Δε'} calculé	1.86	2.65	3.25	3.78	4.30	4.98	5.64	6.12
$\left \frac{\Delta \varepsilon_{m}^{\dagger} - \Delta \varepsilon_{c}^{\dagger}}{\Delta \varepsilon_{m}^{\dagger}}\right (\%)$	29.2	18	14.18	10	4.4	3.7	0.7	0.3

L'accord est bon pour $\Theta \ge 0.76$ (écart inférieur à 5 %, compte tenu des erreurs de mesure). Par contre, pour $\Theta < 0.76$, l'écart devient important. Ceci est dû au fait que pour ces valeurs de Θ , la loi de Böttcher surestime les interactions entre particules^{[6][7]}.

- Loi de Looyenga

Elle est donnée par la relation (5) :

$$\varepsilon^{*} = \left[\varepsilon_{A}^{*\frac{1}{3}} + \Theta(\varepsilon_{B}^{*\frac{1}{3}} - \varepsilon_{A}^{*\frac{1}{3}})\right]^{3}$$
(5)

Les calculs ont été développés comme précédemment. Les résultats obtenus sont donnés tableau VI.

Θ	0.47	0.57	0.64	0.70	0.76	0.83	0.90	0.95
^ɛ s calculé	3.48	4.29	4.92	5.51	6.15	6.96	7.83	8.50
^ε ∞ calculé	1.63	1.79	1.91	2.01	2.12	2.25	2.39	2.50
^{Δε'} calculé	1.85	2.50	3.01	3.50	4.03	4.71	5.44	6.14
^{Δε'} mesuré	1.44	2.25	2.83	3.44	4.12	4.80	5.60	6.12
$\left \frac{\Delta \varepsilon_{m}^{*} - \Delta \varepsilon_{c}}{\Delta \varepsilon_{m}^{*}}\right (\%)$	28.5	11	6.4	1.7	2.2	1.9	2.8	2

Tableau VI

Les points théoriques (+) $\Delta\epsilon'$ fonction de \odot sont également donnés figure 9.

L'accord est très bon pour $\Theta > 0.64$. Ce résultat était attendu car la loi de Looyenga est valable pour les fortes concentrations. Néanmoins, pour les valeurs élevées de Θ ($\Theta > 0.9$), la loi de Böttcher donne les résultats plus précis (cf. tableau V).

b) Cas des faibles concentrations. Enrobant : Air-Téflon : $\varepsilon_{1}^{\prime} = 1.87$

Dans ce cas, nous avons successivement utilisé les lois de Looyenga et Maxwell-Wagner (cf. chapitre II).

- Loi de Looyenga

Nous développons les calculs pour l'équation (5) comme dans le cas précédent et en déduisons les points théoriques $\Delta \varepsilon'$ fonction de Θ . Nous les donnons figure 10 (•) ainsi que la courbe expérimentale correspondante (trait continu).

Nous présentons dans le tableau VII les écarts entre les valeurs calculées et les valeurs mesurées.

			and the second	and the second se	and the second sec
Θ	0.10	0.20	0.33	0.40	0.47
^ε s mesuré	2.26	2.76	3.54	4.04	4.64
^ɛ ˈscalculé	2.291	2.77	3.49	3.92	4.39
^ε ່∞mesuré	1.90	1.96	2.07	2.14	2.18
^ɛ ∞calculé	1.936	2.00	2.09	2.14	2.19
^{Δε'} mesuré	0.36	0.80	1.47	1.90	2.46
^{∆ɛ'} calculé	0.355	0.77	1.40	1.78	2.20
$\frac{\Delta \varepsilon_{m}^{*} - \Delta \varepsilon_{c}^{*}}{\Delta \varepsilon_{m}} (\%)$	1.4	3.7	4.8	6.3	10.6

Tableau VII

La loi de Looyenga donne des résultats en accord avec les valeurs mesurées jusqu'à Θ = 0.33. Au-delà, les écarts augmentent avec Θ et deviennent importants. Ceci était attendu car la loi de Looyenga s'applique soit pour les faibles concentrations, soit pour les fortes concentrations (cf. chapitre II).

Notons que pour Θ = 0.47, les écarts varient fortement avec la permittivité ε_A^{\prime} de l'enrobant : 28.5 % pour l'air et 10.6 % pour l'ensemble "airtéflon". Ce résultat est confirmé au paragraphe suivant.

- Loi de Mawxell-Wagner

Elle est donnée par la relation (6) :

$$\varepsilon^{*} = \varepsilon_{A}^{*} \quad \frac{\varepsilon_{B}^{*} + 2 \varepsilon_{A}^{*} + 2\Theta (\varepsilon_{B}^{*} - \varepsilon_{A}^{*})}{\varepsilon_{B}^{*} + 2 \varepsilon_{A}^{*} - \Theta (\varepsilon_{B}^{*} - \varepsilon_{A}^{*})}$$
(6)

Les calculs ont été développés comme dans le cas précédent. Les points théoriques $\Delta \epsilon'$ fonction de Θ sont également donnés figure 10 (\blacktriangle).

-116-

-117-

▲ : points théoriques déduits à partir de la loi de Maxwell-Wagner

Nous présentons dans le tableau VIII, les écarts entre les valeurs calculées et les valeurs mesurées.

Θ	0.10	.0.20	0.33	0.40	0.47
^ε 's calculé	2.21	2.59	3.16	3.51	3.91
^ɛ ∞ calculé	1.94	2	2.09	2.14	2.19
^{Δε'} calculé	0.27	0.59	1.07	1.37	1.71
Δε' mesuré	0.36	0.80	1.47	1.90	2.46
$\frac{\left \frac{\Delta \varepsilon_{m}^{\prime} - \Delta \varepsilon_{c}^{\prime}}{\Delta \varepsilon_{m}^{\prime}}\right (\%)$	25	26.3	27.2	27.9	30.5

Nous observons un écart important entre les valeurs calculées et mesurées. En effet, pour ces valeurs de Θ , la loi de Maxwell-Wagner sous-estime les interactions entre particules^{[6][7]}, comme nous l'avions prévu dans l'étude théorique effectuée au chapitre II.

IV-3-2- Courbes $\Delta \varepsilon'$ fonction de ε'_A

Nous avons étudié (§ IV-2-2) l'influence de la permittivité ε_A' de l'enrobant pour Θ = 0.47. Pour cette valeur de Θ , nous utilisons la loi de Looyenga. En effet :

- d'une part, la loi de Looyenga est valable quelle que soit Θ pour ε_A^{\prime} et ε_B^{\prime} du même ordre de grandeur, ce qui est le cas ici en première approximation. - d'autre part, les résultats expérimentaux donnés précédemment tableaux V et VI, montrent que la loi de Looyenga donne des résultats plus satisfaisants que celle de Böttcher '

Les calculs ont été développés à l'aide de la formule de Looyenga comme au § précédent pour des valeurs de ε_A^+ variant de 1 à 12. Ces valeurs sont, d'une part inférieures à $\varepsilon_{\infty B}^+$ et d'autre part supérieures à ε_{SB}^+ , valeurs extrêmes de la partie réelle de la permittivité du domaine du 1-cyanoadamantane ($\Theta = 1$).

Nous présentons dans le tableau IX, les écarts entre les valeurs calculées et mesurées.

La courbe théorique $\Delta \epsilon'$ fonction de ϵ'_A ainsi que la courbe expérimentale correspondante sont données figure 11.

-118-

Enrobants	εÅ	^{e'} s calculé	^e ' mesuré	[€] calculé	€' mesuré	∆ ^{£'} calculé	Δε'mesuré	$\left(\frac{\Delta \varepsilon_{\rm m}^{\rm c} - \Delta \varepsilon_{\rm r}^{\rm c}}{\Delta \varepsilon_{\rm m}^{\rm c}}\right) \%$
Air	1	3.49	2.98	1.63	1.54	1.86	1.44	29
Air-Téflon	1.87	4.39	4.63	2.19	2.18	2.20	2.45	10
Huile de paraffine	2.2	4.69	4.74	2.38	2.34	2.31	2.40	3.8
Huile aux silicones SI710	3.1	5.43	5.69	2.86	3.08	2.58	2.61	1
Air-fluoroadamantane	5.91	7.34	7.45	4.13	4.12	3.21	3.33	2.4
Air-adamantanone	11.46	10.36	10.15	6.24	6,08	4,12	4.07	1.2

Tableau IX

-119-

Pour ϵ_A^\prime supérieur à 1.8, nous remarquons que :

- la courbe théorique a même allure que la courbe expérimentale,

- l'écart entre les valeurs calculées et mesurées est au maximum égal à 10 %.

IV-3-3- Spectres $\varepsilon^*(\omega)$

a) Cas des fortes concentrations

Nous avons le choix d'utiliser soit la formule de Böttcher, soit la formule de Looyenga. Cependant, nous avons montré tableau VI que la loi de Böttcher donne des résultats plus satisfaisants que celle de Looyenga. Pour cela, nous développerons, dans ce paragraphe, les calculs uniquement pour la loi de Böttcher.

Les spectres $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$ sont obtenues par l'inversion de la loi de Böttcher i.e exprimer ε^* en fonction de $\varepsilon^*_A = \varepsilon'_A = 1$ (enrobant air), ε^*_B et Θ .

Pour cela, nous l'écrivons sous la forme :

$$\begin{bmatrix} \varepsilon'(\omega) - j\varepsilon''(\omega) - 1 \end{bmatrix} \begin{bmatrix} 2\varepsilon'(\omega) - 2j\varepsilon''(\omega) + \varepsilon'_{B}(\omega) - j\varepsilon''_{B}(\omega) \end{bmatrix} =$$

$$3 \Theta \begin{bmatrix} \varepsilon'_{B}(\omega) - j\varepsilon''_{B}(\omega) \end{bmatrix} \begin{bmatrix} \varepsilon'_{B}(\omega) - j\varepsilon''_{B}(\omega) - 1 \end{bmatrix}$$
(7)

soit en séparant parties réelle et imaginaire :

$$\varepsilon_{B}^{\dagger}(\omega) \left[\varepsilon^{\dagger}(\omega)(1-3\Theta)-1\right] -\varepsilon_{B}^{"}(\omega) \varepsilon^{"}(\omega)(1-3\Theta) +$$

$$\left[2\varepsilon^{\dagger 2}(\omega) - 2\varepsilon^{"2}(\omega)-2\varepsilon^{\dagger}(\omega)+3\Theta\varepsilon^{\dagger}(\omega)\right] = 0$$

$$\varepsilon_{B}^{\dagger}(\omega) \varepsilon^{"}(\omega)(1-3\Theta) + \varepsilon_{B}^{"}(\omega) \left[\varepsilon^{"}(\omega)(1-3\Theta)-1\right] +\varepsilon^{"}(\omega) \left[4\varepsilon^{\dagger}(\omega)-2+3\Theta\right] = 0$$

$$(9)$$

A partir des équations (8) et (9), une méthode numérique permet de déterminer les spectres $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$ pour différentes valeurs de Θ , connaissant le spectre du monocristal $\varepsilon_{\rm R}^*(\omega)$. Nous l'avons choisi de la forme :

$$\varepsilon_{\rm B}^{*} = \varepsilon_{\infty \rm B}^{'} + \frac{\Delta \varepsilon_{\rm B}^{'}}{1 + (j\omega \tau_{\rm B})^{1-\alpha_{\rm B}}}$$
(10)

ce qui correspond à un domaine ayant une distribution de Cole et Cole avec :

-120-

 $\varepsilon'_{\infty B} = 2.6$ $\Delta \varepsilon'_{B} = 6.6$ $\alpha_{B} = 0.1$ $\tau_{\rm B} = 0.4 \ 10^{-6} {\rm s}.$

Nous justifierons ce choix au § VII-1-3-

Les calculs ont été développés pour trois valeurs de ⊖ (0.90, 0.76 et

0.64).

Nous donnons figure 12 les spectres $\varepsilon^{\mu}(\omega)$ expérimentaux (trait continu) et les points théoriques $\varepsilon''(\omega)$ (•) ainsi que les spectres $\varepsilon'(\omega)$ correspondants figure 13.

: courbes expérimentales . T = +25 °C

: points théoriques déduits à partir de la loi de Böttcher

Figure 13 : Spectres ε' fonction de la fréquence pour différentes valeurs de Θ; cas des fortes concentrations _____: courbes expérimentales . T = +25°C

 : points théoriques déduits à partir de la loi de Böttcher

Pour $\Theta \ge 0.76$, l'écart entre les valeurs calculées et mesurées est de l'ordre de grandeur des erreurs de mesures (4 % en ε "). Il en est de même pour les spectres $\varepsilon'(\omega)$ (2 % en ε ').

Pour Θ < 0.76, cet écart est supérieur aux erreurs de mesure. La loi de Böttcher n'est donc pas utilisable pour ces valeurs. Ceci est lié au fait que pour ces valeurs de Θ , la loi de Böttcher surestime les interactions entre particules^{[6][7]}.

Ainsi, ces résultats confirment la validité de l'extension en dynamique de la loi de Böttcher pour les fortes concentrations proposée au chapitre II.

Dans ces conditions, nous observons pour le domaine tracé à partir des valeurs calculées, que :

- la distribution n'est pas modifiée : la valeur du paramètre α au sens de Cole et Cole^[32], déduite de la pente du domaine vaut 0.12, valeur proche de $\alpha_B = 0.10$, - la fréquence critique F_c augmente légèrement quand Θ diminue.

b) Cas des faibles concentrations

Les spectres $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$ sont obtenus comme dans le cas des fortes concentrations, mais à partir de la loi de Looyenga (cf. formule 5).

Les calculs ont été développés pour quatre valeurs de Θ (0.10, 0.20, 0.33 et 0.47).

Comme précédemment, nous donnons figures 14 et 15, les spectres ε "(ω) expérimentaux (trait continu) et les points théoriques (\bullet) ε "(ω) ainsi que les spectres ε '(ω) correspondants.

-123-

 : points théoriques déduits à partir de la loi de Looyenga

Pour $\Theta < 0.33$, l'écart entre les valeurs calculées et mesurées est de l'ordre de grandeur des erreurs de mesure. Il en est de même pour les spectres en $\varepsilon'(\omega)$.

Pour Θ > 0.33, cet écart est supérieur aux erreurs de mesure. La loi de Looyenga n'est pas utilisable pour ces valeurs.

Ces résultats confirment la validité de l'extension en dynamique de la loi de Looyenga pour les faibles concentrations proposée au chapitre II.

Dans ces conditions, nous observons, pour le domaine tracé à partir des valeurs calculées que :

- la distribution est conservée. La valeur du paramètre α au sens de Cole et Cole^[32], déduite de la pente du domaine vaut 0.11, valeur proche de $\alpha_B = 0.1$, - la fréquence critique F_C est sensiblement la même que celle du domaine expérimental. V - ETUDE DES MELANGES DONT LA PHASE POLAIRE PRESENTE UN DOMAINE DISTRIBUE : CAS DE LA ZEOLITHE NaX

Comme pour le 1-cyanoadamantane, il est souhaitable d'étudier l'influence de la concentration Θ et de la permittivité ε_A^{\prime} de l'enrobant sur les propriétés électriques du mélange. En raison du pouvoir adsorbant des zéolithes, il est plus difficile de faire varier ε_A^{\prime} à l'aide d'enrobants solides (nécessité d'une cellule étanche ou manipulation sous atmosphère inerte). Pour cette raison, nous avons limité notre travail à l'étude en fonction de Θ .

V-1- ELABORATION DES ECHANTILLONS

La technique d'élaboration des échantillons de zéolithe NaX a été décrite par d'autres auteurs^{[11][12]}

La zéolithe NaX étant très hygroscopique, il n'est pas possible de réaliser des mélanges avec comme enrobant l'air, compte tenu des conditions expérimentales. Pour l'isoler du milieu ambiant, nous l'avons enrobé d'huile aux silicones SI710.

Nous avons réalisé des échantillons pour des valeurs de Θ comprises entre 0.2 et 0.4. La détermination de Θ a été décrite au § IV-1. Notons que pour chaque valeur de Θ , un nouvel échantillon est réalisé. Il peut se poser un problème de reproductibilité des échantillons compte tenu du nombre important de paramètres intervenant lors de l'élaboration, en particulier, sur l'eau résiduelle présente après la calcination de l'échantillon.

V-2- RESULTATS EXPERIMENTAUX

Dans ce qui suit, nous avons relevé les parties réelle ε ' et imaginaire ε " de la permittivité complexe ε ^{*} à T = 25 ± 0.1°C dans la gamme de fréquence 100 Hz - 100 MHz.

Les spectres ε " fonction de la fréquence ainsi que les spectres ε ' correspondants sont donnés respectivement figures 16 et 17.

-125-

8U

Milieu enrobant : huile SI710

Nous remarquons que :

- la valeur de $\epsilon_{max}^{\prime\prime}$ croit avec $\Theta,$

- la fréquence critique F_C reste en première approximation constante, compte tenu des conditions expérimentales,

- la distribution apparente du domaine reste en approximation, la même.

Ces observations sont analogues à celles obtenues avec le 1-cyanoadamantane (cf. § IV-2-1). Aussi, on peut s'attendre à ce que l'étude en fonction de la permittivité de l'enrobant $\varepsilon_{\Delta}^{\prime}$ donne des résultats similaires.

V-3- COMPARAISON ENTRE LES RESULTATS EXPERIMENTAUX ET THEORIQUES

V-3-1- Courbe $\Delta \epsilon'$ fonction de Θ

Dans ce cas, nous utilisons la loi de Looyenga car les mesures ont été faites pour les faibles concentrations (0.2 < Θ < 0.4). Nous développons les calculs comme au § IV-3-1 (cas du 1-cyanoadamantane) et en déduisons la courbe théorique $\Delta \varepsilon'$ fonction de Θ . Nous donnons figure 18 la courbe expérimentale $\Delta \varepsilon' = f(\Theta)$ (trait continu) ainsi que les points tnéoriques correspondants(\bullet).

Nous présentons dans le tableau X les écarts entre les valeurs calculées et mesurées.

		and the second sec		
Θ	0.22	0.26	0.33	0.39
ε' s mesuré	9.8	11.6	14.6	20.2
^ε s calculé	9.65	11.44	14.81	18.6
ε¦ ∞ mesuré	4,2	4.4	4.5	4.9
^ε ∞' calculé	4.19	4.42	4.81	5.2
$\Delta \varepsilon'$ mesuré	5.6	7.2	10	15.3
$\Delta \varepsilon'$ calculé	5.46	7.02	10	13.4
$\frac{\Delta \varepsilon_{m}^{\prime} - \Delta \varepsilon_{c}^{\prime}}{\Delta \varepsilon_{m}^{\prime}} (\%)$	2.5	2.6	1	12

L'accord est très bon pour $\Theta < 0.33$ (écart inférieur à 4 %). Il devient important pour $\Theta > 0.35$. Résultats en accord avec ceux obtenus dans le cas des faibles concentrations avec le 1-cyanoadamantane (cf. § IV-3-1).

V-3-2- Spectres $\varepsilon^*(\omega)$

Les spectres $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$ sont obtenus par l'inversion de la loi de Looyenga i.e en exprimant $\varepsilon^{*}(\omega)$ en fonction de $\varepsilon^{*}_{A}(\omega) = \varepsilon^{*}_{A} = 3.1$, $\varepsilon^{*}_{B}(\omega)$ et Θ . Pour cela, nous l'écrivons sous la forme :

$$\varepsilon'(\omega) - j\varepsilon''(\omega) = \left[(1-\Theta)\varepsilon_{A}^{\frac{1}{3}} + \Theta(\varepsilon_{B}'(\omega) - j\varepsilon_{B}''(\omega))^{\frac{1}{3}} \right]^{3}$$
(11)

A partir de l'équation (11), nous avons déterminé numériquement les spectres $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$ pour différentes valeurs de Θ connaissant la permittivité $\varepsilon_B^*(\omega)$ du monocristal. Nous avons choisi $\varepsilon_B^*(\omega)$ de la forme :

$$\varepsilon_{B}^{*} = \varepsilon_{\infty B}^{'} + \frac{\Delta \varepsilon_{B}^{'}}{1 + (j\omega \tau_{B})^{1 - \alpha_{B}}}$$
(12)

ce qui correspond à un domaine ayant une distribution de Cole et Cole avec :

$$\varepsilon'_{\infty B} = 10$$

 $\Delta \varepsilon'_{B} = 76$
 $\alpha_{B} = 0.20$
 $\tau_{B} = 5.3.10^{-7} s$

Nous justifierons ce choix au paragraphe VII-1-3.

Les calculs ont été développés pour deux valeurs de Θ (0.22, 0.39)

Nous donnons figure 19 les spectres expérimentaux sous forme de diagramme de Cole et Cole (trait continu) ainsi que les points théoriques : \blacksquare pour $\Theta = 0.39$, \bullet pour $\Theta = 0.22$.

Nous remarquons que :

- l'accord entre les valeurs calculées et mesurées est très bon en haute fréquence. Aux moyennes fréquences, il est meilleur pour Θ = 0.22 que pour Θ = 0.39. Aux basses fréquences, il y a des écarts importants liés à l'existence d'une polarisation interfaciale pour les spectres expérimentaux. Nous n'en avons pas tenu compte dans le calcul théorique,

les fréquences critiques des deux domaines sont voisines (écart inférieur à 6 %),
les distributions sont identiques en haute fréquence.

En conclusion, la loi de Looyenga peut être utilisée pour décrire des mélanges à faible concentration dont la phase polaire présente un domaine distribué.

VI - ETUDE D'UN MELANGE DONT LES DEUX PHASES SONT POLAIRES

Pour caractériser ce type de mélanges, il serait souhaitable d'envisager l'étude en fonction des paramètres suivants :

- paramètre 1 : le type de distribution des domaines des différentes phases (distribué ou non).

- paramètre 2 : le rapport des fréquences critiques des domaines $(F_{C_{A}}/F_{C_{A}})$ pour une concentration Θ donnée.

- paramètre 3 : la concentration Θ pour un rapport des fréquences donné.

Dans ce travail, nous nous sommes intéressés uniquement aux mélanges de matériaux polaires présentant chacun un domaine distribué. Nous présentons ici l'étude effectuée en fonction du paramètre 2. Celle, en fonction du paramètre 3 fait actuellement l'objet d'autres travaux de recherche au laboratoire^{[25][26]}.

VI-1- Elaboration des échantillons

L'échantillon est obtenu à partir du mélange des deux constituants suivants :

- constituant A : zéolithe RbNaX^(*) enrobée d'huile SI710

- constituant B : zéolithe NaX enrobée d'huile SI710.

Le mélange étudié est à volume égal ($\Theta = 0.5$) avec un rapport des fréquences $F_{C_A} = 100$. L'étude en fonction d'autres rapports fera l'objet de travaux ultérieurs.

(*) La zéolithe RbNaX est obtenue par échange partiel des cations Na par des cations Rb (cf. § III-2).

VI-2- Résultats expérimentaux

Nous avons relevé les parties réelle ε ' et imaginaire ε " de la permittivité ε^* à T = 25 ± 0.1°C dans la gamme de fréquence 10 Hz - 10⁸ Hz.

Les spectres ε "(ω) du mélange et de ses constituants ainsi que les spectres ε '(ω) correspondants sont donnés respectivement figures 20 et 21.

Nous observons pour le mélange deux domaines A' et B' ayant les caractéristiques suivantes :

- ils sont fortement distribués,

- leurs fréquences critiques (notées $F_{C_{A'}}$ et $F_{C_{B'}}$) sont telles que : $F_{C_{A'}}$ > $F_{C_{A}}$ et $F_{C_{B'}}$ \simeq $F_{C_{B}}$,

- l'amplitude $\epsilon_{max}^{"}$ du domaine A' est supérieure à celle du domaine B'.

VI-3- Comparaison entre les résultats expérimentaux et théoriques

Rappelons que les constituants A et B sont des mélanges que nous considérons comme des diélectriques à l'état monocristallin (i.e polycristal compact). Pour établir les spectres théoriques $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$, nous considérons le corps polaire A comme étant l'enrobant et B l'enrobé. Nous utilisons les permittivités complexes ε_A^* et ε_B^* relevées expérimentalement. Les calculs sont faits à partir de la loi de Looyenga dont nous avons montré la validité pour Θ voisin de 0.5 et des permittivités réelles ε_A^i et ε_B^i dont le rapport est inférieur à 3 (cf. § IV-2-2).

En remplaçant
$$\varepsilon^{*}(\omega)$$
, $\varepsilon^{*}_{A}(\omega)$ et $\varepsilon^{*}_{B}(\omega)$ respectivement par $\varepsilon'(\omega)$ -j $\varepsilon''(\omega)$
 $\varepsilon'_{A}(\omega)$ -j $\varepsilon^{"}_{A}(\omega)$ et $\varepsilon^{'}_{B}(\omega)$ -j $\varepsilon^{"}_{B}(\omega)$, la loi de Looyenga s'écrit :
 $\varepsilon'(\omega)$ -j $\varepsilon''(\omega) = \left[(1-\Theta)(\varepsilon^{'}_{A}(\omega))^{\frac{1}{3}} + \Theta(\varepsilon^{'}_{B}(\omega))^{\frac{1}{3}} - \frac{1}{3} \right]^{\frac{1}{3}}$ (13)

Soit, en développant les calculs :

$$\varepsilon'(\omega) - j\varepsilon''(\omega) = \left[\left(\varepsilon_{A}^{2}(\omega) + \varepsilon_{A}^{2}(\omega) \right)^{\frac{1}{6}} (1 - \Theta) \left(\cos \frac{\phi_{A}}{3}(\omega) - j\sin \frac{\phi_{A}}{3}(\omega) \right) \right]^{\frac{1}{6}} \\ \Theta(\varepsilon_{B}^{2}(\omega) + \varepsilon_{B}^{*}(\omega))^{\frac{1}{6}} \left(\cos \frac{\phi_{B}}{3}(\omega) - j\sin \frac{\phi_{B}}{3}(\omega) \right) \right]^{\frac{3}{6}}$$
(14)

avec

et

$$\cos \phi_{A}(\omega) = \frac{\varepsilon_{A}^{\prime}(\omega)}{\sqrt{\varepsilon_{A}^{\prime 2}(\omega) + \varepsilon_{A}^{\prime 2}(\omega)}} \quad \text{et} \quad \sin \phi_{A}(\omega) = \frac{\varepsilon_{A}^{\prime \prime}(\omega)}{\sqrt{\varepsilon_{A}^{\prime 2}(\omega) + \varepsilon_{A}^{\prime 2}(\omega)}}$$

$$\cos \phi_{B}(\omega) = \frac{\varepsilon_{B}^{1}(\omega)}{\sqrt{\varepsilon_{B}^{2}(\omega) + \varepsilon_{B}^{2}(\omega)}} \quad \text{et} \quad \sin \phi_{B}(\omega) = \frac{\varepsilon_{B}^{*}(\omega)}{\sqrt{\varepsilon_{B}^{2}(\omega) + \varepsilon_{B}^{*}(\omega)}}$$

L'équation (14) n'a pas de solution analytique mais peut être résolue à l'aide d'un microcalculateur.

Les points calculés $\varepsilon'(\omega)$ et $\varepsilon''(\omega)$ sont reportés sur les spectres mesurés (cf. figures 20 et 21).

Pour les domaines calculés et mesurés, nous remarquons que :

- leurs fréquences critiques sont, en première approximation, les mêmes,
- leurs distributions sont identiques,
- leurs amplitudes maximales sont en accord à 10 % près.

En conclusion, la loi de Looyenga peut être utilisée pour décrire des mélanges de corps polaires dans le cas des concentrations inférieures à 0.5.

VII - APPLICATIONS DES LOIS DE MELANGE

L'ensemble de ce travail théorique et expérimental peut conduire à de nombreuses applications. Nous en donnons ci-dessous quelques unes : - l'obtention du spectre diélectrique du cristal compact à partir de la connaissance des propriétés électriques d'un mélange de concentration donnée, - la détermination de la proportion des constituants d'un mélange à partir de la connaissance de ses propriétés électriques ainsi que celles de ses constituants, - évaluer le taux d'hétérogénéité macroscopique d'un échantillon donné.

D'autres applications sont envisagées mais elles feront l'objet de travaux ultérieurs.

VII-1- DETERMINATION DES PROPRIETES ELECTRIQUES DU CRISTAL COMPACT

Cette application est donnée pour deux matériaux ayant des propriétés isotropes présentant un domaine faiblement distribué (1-cyanoadamantane) et fortement distribué (zéolithe NaX).

VII-1-1- Le corps polaire présente un domaine faiblement distribué : 1-cyanoadamantane

Le spectre du cristal compact peut être déduit à partir des mesures effectuées soit à fortes concentrations, soit à faibles concentrations.

a) Cas des fortes concentrations

Les spectres $\varepsilon'_B(\omega)$ et $\varepsilon''_B(\omega)$ du cristal compact sont obtenus par l'inversion de la loi de Böttcher en utilisant les équations (7), (8) et (9) (cf. § IV-3-3). Cette inversion est faite à l'aide d'une méthode numérique pour la valeur de Θ la plus proche de 1, i.e. Θ = 0.95.

Nous donnons figure 22, le diagramme de Cole et Cole du cristal compact du 1-cyanoadamantane.

b) Cas des faibles concentrations

Les spectres $\varepsilon'_B(\omega)$ et $\varepsilon''_B(\omega)$ sont obtenus comme précédemment par l'inversion de la loi de Looyenga pour Θ = 0.20

Le spectre calculé est donné sous forme de Cole et Cole figure 22.

c) Discussion

Dans les deux cas, nous obtenons :

- la même fréquence critique $F_{\mathsf{C}_{\mathsf{R}}}$, voisine de 400 kHz,

- la même distribution avec un paramètre $\alpha_{\rm B} \simeq 0.1$,

- l'amplitude $\Delta \varepsilon_{B}^{\prime} = 6.6$ avec une précision meilleure que 2 %. Toutefois, la précision est meilleure sur $\varepsilon_{SR}^{\prime}$ (2 %) que sur $\varepsilon_{\infty R}^{\prime}$ (5 %).

A partir de ces résultats, nous pouvons décrire pour la première fois, à notre connaissance, les propriétés du cristal compact en mettant $\varepsilon_B^*(\omega)$ sous la forme :

$$\varepsilon_{B}^{*}(\omega) = \varepsilon_{\infty B}' + \frac{\Delta \varepsilon_{B}}{1 + (j\omega \tau_{B})^{1-\alpha}B}$$

avec les paramètres suivants : $\varepsilon'_{\infty B}$ = 2.6

 $\Delta \varepsilon_{\rm B}^{\rm c} = 6.6$ $\tau_{\rm B} = 0.4 \ 10^{-6} \ {\rm s}$ $\alpha_{\rm B} = 0.1$

igure 22 : Spectres $\varepsilon_B^{\mu} = f(\varepsilon_B^{\mu})$ du cristal compact du 1 cyanoadamantane obtenu par inversion de la loi de: -Böttcher à partir de Θ = 0.95 (•) -Looyenga à partir de Θ = 0.20 (+)

VII-1-2- Le corps polaire présente un domaine fortement distribué : zéolithe NaX a) Propriétés électriques du cristal compact

Nous donnons figure 23 sous forme de Cole et Cole, le spectre du cristal compact de la zéolithe NaX. Il est obtenu à l'aide du spectre expérimental (Θ = 0.33) par inversion point à point de la loi de Looyenga.

Nous pouvons assimiler, en première approximation, la distribution du domaine à une distribution de Cole et Cole. Dans ce cas, la permittivité complexe $\epsilon_B^*(\omega)$ du cristal compact s'écrit :

$$\varepsilon_{B}^{*}(\omega) = \varepsilon_{\infty B}' + \frac{\Delta \varepsilon_{B}'}{1 + (j\omega \tau_{B})^{1-\alpha_{B}}}$$

avec les paramètres suivants :

$$\varepsilon_{\infty B}^{\prime} = 10$$

$$\Delta \varepsilon_{B}^{\prime} = 76$$

$$\tau_{B} = 0.53 \ 10^{-7} \ s$$

$$\alpha_{B} = 0.2$$
Ces résultats, originaux sont confirmés par les rares mesures effectuées sur des monocristaux de zéolithes naturelles, en particulier la valeur élevée de $\Delta \varepsilon_{B}^{\cdot}$. Ducros^[33]trouve des valeurs de l'ordre de 60 pour la chabasite D'autres auteurs^{[29][34]} ont aussi trouvé des valeurs importantes sur des échantillons de zéolithes synthétiques pour des fortes valeurs de Θ .

b) Décomposition en D.E.N.D. (*)

Au laboratoire, il a été montré qu'il est possible de décomposer un domaine distribué en un nombre fini de D.E.N.D.^[29] en vue d'interpréter finement les propriétés électriques des zéolithes.

Il serait intéressant de comparer les résultats des décompositions obtenues à partir :

- d'une part, du domaine expérimental du mélange ($\Theta = 0.33$)

- d'autre part, du domaine du cristal compact (Θ = 1) donné figure 23.

(*)(*) Ces résultats sont donnés tableau XI.

(*) D.E.N.D. : Domaines élémentaires non distribués de fréquences critiques voisines.

(*)(*) En collaboration avec P. TABOURIER^[25]

	DEND I	DEND II	DEND III	DEND IV	DEND V
F _C (mélange en kHz)	5.81	68.8	341	2348.5	29324.
∆ε' (mélange)	0.92	1.93	4.61	1.66	0.58
F _{CB} (cristal compact en kHz)	4.23	49.9	262.9	1683.3	19477
Δε¦ (cristal compact)	8.61	16.08	39.78	9.07	3
Fc _B Fc	0.73	0.73	0.77	0.72	0.66
$\frac{\Delta \varepsilon_{B}}{\Delta \varepsilon}$	9.36	8.33	8.63	5,46	5.17

Tableau XI

Nous remarquons que :

- les deux décompositions conduisent à 5 D.E.N.D.,

les fréquences critiques des D.E.N.D. du cristal compact sont inférieures à celles des D.E.N.D. du mélange : rapport variant de 0.66 à 0.77,
les amplitudes des D.E.N.D. du cristal compact sont supérieures à celles du mélange : rapport variant de 5.2 à 9.4.

Ces différences, importantes sur les amplitudes montrent la nécessité de connaître le spectre du cristal compact pour interpréter finement les propriétés électriques des zéolithes. Sinon, les interprétations proposées peuvent être erronées dans la partie haute fréquence du domaine (rapport $\Delta \varepsilon_{\rm B}^{\prime}/\Delta \varepsilon^{\prime}$ voisin de 5.35 par rapport à 8.6 en basse fréquence, d'où l'intérêt de notre travail.

VII-1-3- Justification du choix de l'expression de $\varepsilon_{B}^{*}(\omega)$

Pour justifier le choix de $\varepsilon_B^*(\omega)$ du 1-cyanoadamantane, nous allons nous aider de la figure 24. Pour ce produit : - les inversions faites à partir des lois de Looyenga et Böttcher sur des échantillons distincts (Θ = 0.20 et 0.95) conduisent au même diagramme de Cole et Cole pour le cristal compact d'où l'on déduit les grandeurs caractéristiques $\varepsilon_{\infty B}^{'}$, $\Delta \varepsilon_{B}^{'}$, τ_{B} et α_{B} (cf. figure 24-A).

Figure 24 : Schéma synoptique permettant la justification du choix de l'expression théorique de $\varepsilon_B^*(\omega)$ pour le 1-cyanoadamantane.

- les résultats théoriques obtenus pour les faibles et les fortes concentrations à partir de la même expression de $\epsilon_{\mathsf{R}}^{\bigstar}(\omega)$ (cf. figure 24-B) sont en bon accord avec les résultats expérimentaux.

La cohérence de l'ensemble de ces résultats justifie le choix de l'expression théorique de $\varepsilon_{\mathsf{R}}^{*}(\omega)$ utilisée au paragraphe IV-3-3.

Nous pouvons justifier de la même façon le choix de l'expression théorique de $\epsilon_{B}^{*}(\omega)$ pour la zéolithe NaX (cf. § IV-3-2).

VII-2- DETERMINATION DE LA CONCENTRATION Θ

Précédemment (cf. § VII-1), nous avons déterminé le spectre du cristal compact connaissant la permittivité complexe du mélange $\varepsilon^{*}(\omega)$ et de l'enrobant $\varepsilon^*_{\Lambda}(\omega)$ ainsi que Θ .

Inversement, connaissant la permittivité complexe du mélange $\varepsilon^*(\omega)$ ainsi que celle de ses constituants $\varepsilon_A^*(\omega)$ et $\varepsilon_B^*(\omega)$, il est possible de déterminer Θ.

Nous avons choisi le cas le plus général i.e polaire-polaire ; les autres (polaire-non polaire et non polaire-non polaire) étant plus simples. Dans ce cas, nous écrivons la loi de Looyenga sous la forme suivante :

$$\varepsilon^{*} \frac{1}{3}(\omega) = \varepsilon_{A}^{*3}(\omega) + \Theta \left[\varepsilon_{B}^{*3}(\omega) - \varepsilon_{A}^{*3}(\omega) \right]$$
(15)

d'où

$$\Theta = \frac{\varepsilon^{\frac{1}{3}}(\omega) - \varepsilon_{A}^{\frac{1}{3}}(\omega)}{\frac{1}{\varepsilon_{B}^{\frac{1}{3}}}(\omega) - \varepsilon_{A}^{\frac{1}{3}}(\omega)}$$
(16)

Soit en développant les calculs :

1

 $\overline{\Theta} = \frac{A(\omega)}{B(\omega)}$

avec

$$A(\omega) = \left[\varepsilon^{2}(\omega) + \varepsilon^{2}(\omega) \right]^{1/6} \left[\cos \frac{\phi(\omega)}{3} - j \sin \frac{\phi(\omega)}{3} \right]$$
$$- \left[\varepsilon^{2}_{A}(\omega) + \varepsilon^{2}_{A}(\omega) \right]^{1/6} \left[\cos \frac{\phi_{A}(\omega)}{3} - j \sin \frac{\phi_{A}(\omega)}{3} \right]$$
$$B(\omega) = \left[\varepsilon^{2}_{B}(\omega) + \varepsilon^{2}_{B}(\omega) \right]^{1/6} \left[\cos \frac{\phi_{B}(\omega)}{3} - j \sin \frac{\phi_{B}(\omega)}{3} \right]$$
$$- \left[\varepsilon^{2}_{A}(\omega) + \varepsilon^{2}_{A}(\omega) \right]^{1/6} \left[\cos \frac{\phi_{A}(\omega)}{3} - j \sin \frac{\phi_{A}(\omega)}{3} \right]$$
(17)

$$\cos \phi(\omega) = \frac{\varepsilon'(\omega)}{\sqrt{\varepsilon'^{2}(\omega) + \varepsilon''^{2}(\omega)}} \quad \text{et} \quad \sin \phi(\omega) = \frac{\varepsilon''(\omega)}{\sqrt{\varepsilon'^{2}(\omega) + \varepsilon''^{2}(\omega)}}$$

$$\cos \phi_{A}(\omega) = \frac{\varepsilon_{A}^{*}(\omega)}{\sqrt{\varepsilon_{A}^{*2}(\omega) + \varepsilon_{A}^{*2}(\omega)}} \quad \text{et} \quad \sin \phi_{A}(\omega) = \frac{\varepsilon_{A}^{*}(\omega)}{\sqrt{\varepsilon_{A}^{*2}(\omega) + \varepsilon_{A}^{*2}(\omega)}}$$

$$\cos \phi_{B}(\omega) = \frac{\varepsilon_{B}^{*}(\omega)}{\sqrt{\varepsilon_{B}^{*}^{2}(\omega) + \varepsilon_{B}^{*}^{2}(\omega)}} \quad \text{et} \quad \sin \phi_{B}(\omega) = \frac{\varepsilon_{B}^{*}(\omega)}{\sqrt{\varepsilon_{B}^{*}^{2}(\omega) + \varepsilon_{B}^{*}^{2}(\omega)}}$$

Bien que Θ apparaisse comme étant une fonction de ω dans l'équation (17), rappelons que c'est une grandeur donnée, indépendante de la fréquence.

Nous avons choisi de déterminer la concentration Θ du mélange RbNaX-NaX (cf. § VI). Nous avons calculé Θ pour quatre valeurs de la fréquence couvrant la gamme 10 Hz - 10⁸ Hz.

Les résultats obtenus sont donnés dans le tableau XII.

Fréquence (Hz) ⊖	10	2.10 ³	2.10 ⁵	2.10 ⁷
⊖ expérimental ^(*)	0.50	0.50	0.50	0.50
⊖ calculé	0.497	0.50	0.51	0.505

Tableau XII

Cette valeur est connue (cf. § VI). Dans cette étude , nous l'avons supposée inconnue.

Nous remarquons que l'écart entre la valeur expérimentale et les valeurs calculées est au maximum égal à 2 %. Il est lié au fait que les permittivités sont connues avec une certaine erreur (2 % en ε ' et 4 % en ε ").

En conclusion, les lois de mélange permettent de déterminer la concentration d'un mélange connaissant sa permittivité complexe ainsi que celle de ses constituants.

VII-3- AUTRES APPLICATIONS

L'étude des lois de mélange conduit à bien d'autres applications qui feront l'objet de travaux expérimentaux ultérieurs. Nous mentionnons ci-dessous l'une de ces applications dans le cas des zéolithes.

Evaluation de l'hétérogénéité d'un échantillon de zéolithe

Dans les échantillons de zéolithe, l'existence d'impuretés (ions par exemple) peut se manifester sur le spectre ε " = f(F) par l'apparition d'un

petit domaine supplémentaire A' dans le flanc ascendant du domaine principal B' (figure25, courbe a). La séparation des domaines montre qu'il n'existe pas d'interactions notables entre les impuretés et les relaxateurs responsables du mécanisme B'.

Figure 25 a : zéolithe renfermant des impuretés Figure 25 b zéolithe sans impuretés

En première approximation, nous pouvons considérer cet échantillon comme le mélange de deux matériaux : l'un A de volume V_A renfermant les impuretés à l'origine du domaine A', l'autre B de volume V_B sans impuretés avec des relaxateurs responsables du domaine B'. L'hétérogénéité en volume de l'échantillon peut s'exprimer par le facteur $n = 1-\Theta, où \Theta$ est le rapport du volume V_A sur le volume total $V_T = V_A + V_B$.

Si nous supposons :

- les propriétés électriques du matériau B connues (figure 25, courbe b),

- les permittivités réelles $\varepsilon_{\infty}^{\prime}$ des matériaux A, B et du mélange identiques pour des fréquences grandes vis-à-vis des fréquences critiques des domaines A', B' et B,

nous pouvons calculer Θ en appliquant la loi de mélange de Böttcher aux matériaux A et B. Le calcul est analogue à celui développé au paragraphe précédent en considérant le matériau B comme l'enrobé et le matériau A comme l'enrobant de permittivité ε_{∞}' .

$$\Theta = f(\varepsilon_{\infty}^{i}, \varepsilon^{*}(\omega), \varepsilon_{B}^{*}(\omega))$$

avec

Cette expression est applicable dans la gamme de fréquence $[F_1, F_2]$ où la permittivité de l'enrobant est réelle.

VIII- CONCLUSION

Dans ce chapitre, nous avons montré pour la première fois, à notre connaissance, la validité de l'extension en dynamique des lois de Looyenga et Böttcher. Pour cela, nous avons fait une étude expérimentale systématique des propriétés électriques de différents échantillons en fonction de :

- la concentration Θ ,

- la permittivité réelle de l'enrobant.

En comparant les spectres expérimentaux et théoriques, nous avons montré que :

- la loi de Looyenga est valable pour $\Theta \leq 0.35$ et $\Theta > 0.75$, quelles que soient les permittivités des constituants du mélange (ε_A^* , ε_B^*). Elle est également applicable quel que soit Θ lorsque les parties réelles de ces permittivités sont du même ordre de grandeur,

- la loi de Böttcher est valable pour $\Theta > 0.75$ quelles que soient les permittivités des constituants du mélange. Cependant, nos résultats expérimentaux ont permis de montrer que la loi de Böttcher est plus satisfaisante que celle de Looyenga.

L'ensemble de ces résultats conduisent à un certain nombre d'applications originales, à savoir :

- la détermination des propriétés électriques d'un cristal compact à partir des mesures effectuées sur le matériau pulvérulent,

- la détermination de la proportion des constituants d'un mélange connaissant sa permittivité ainsi que celle de ses constituants,

- l'évaluation de l'hétérogénéité macroscopique d'un échantillon.

Ces applications ont été limitées jusqu'à maintenant au cas du 1cyanoadamantane et des zéolithes X. Elles peuvent être étendues à d'autres types de matériaux (polymères pulvérulents, mélanges de phases mésomorphes).

Bien d'autres utilisations des lois de mélange sont possibles. Elles feront l'objet de travaux ultérieurs.

-142-

BIBLIOGRAPHIE

[1] K.W. WAGNER, 1914 Arch. Elektrotech, 2, 371-387 H. LOOYENGA, 1965 [2] Physica, 31, 401-406 C.J.F. BOTTCHER, 1945 [3] Rec. Trav. Chim. Pays-Bas, 64, 47-51 [4] C.J. BOTTCHER, 1952 Theory of Electric Polarisation", 1° volume, Elsevier, Amsterdam L.K.H. van BEEK, 1967 [5] Prog. Dielectrics, 7, 69-114 C. GROSSE et J.L. GREFFE, 1979 J. Chim. Phys., <u>76</u>, 305-327 [6] C. GROSSE, 1979 [7] Thèse Doctorat 3è cycle, Nancy T. HANAI, 1960 [8] Kolloid. Z., 171, 23-31 [9] T. HANAI, N. KOIZUMI et H. GOTOH, 1959 Kolloïd. Z., 167, 41-43 D.C. DUBE, R.S. YADAVA et R. PARSCHAD, 1971 [10] Ind.J. Pure. Appl. Phys., 9, 435-455 [11]A. CHAPOTON, 1973 Thèse Doctorat ès-sciences Physiques, Lille J.C. CARRU, 1976 [12] Thèse Doctorat 3è cycle, Lille M.D. BENADDA, J.C. CARRU, A. CHAPOTON, J.P. AMOUREUX et M.CASTELAIN, 1981 [13] VIème Colloque Optique Hertzienne Diélectrique, 14-16 septembre 1981, Toulouse M.D. BENADDA, J.C. CARRU, J.P. AMOUREUX, M. CASTELAIN et A. CHAPOTON, 1982 [14] J. Phys. D : Appl. Physics, 15, 1477-1489 P. SIXOU, 1965 [15] Thèse Doctorat d'Etat, Paris [16] J.P. AMOUREUX et M. BEE, 1979 Acta. Crysta., B35, 2957-2962 C.J.F. BOTTCHER et P. BORDEWIJK, 1978 [17] "Theory of electric polarisation" Volume 2, 2è édition (Amsterdam : Elsevier), 387-422

.../ ...

[18] G.E. MACIEL, H.C. DORN, R.L. GREENE, W.A. KLESCHICK, M.R. PETERSON et G.H. WAHL, 1974 Organic Magnetic Resonance, 6, 178-180 [19] D. CHADWICK, A.C. LEGON et MILLEN, 1972 J.C.S. Faraday 2, 68, 2064-2069 [20] J.P. AMOUREUX, 1980 Thèse Doctorat ès-sciences physiques, Lille [21] J.P. AMOUREUX, M. BEE et J.C. DAMIEN, 1980 Acta. Crysta., B36, 2633-2636 J.P. AMOUREUX, M. CASTELAIN, M. BEE, B. ARNAUD et M.L. SHOUTEENTEN, 1981 [22] Molec. Phys., 42, 119-127 [23] J.P. AMOUREUX, J.L. SAUVAJOL et M. BEE, 1981 Acta. Crysta, A37, 97-104 J.P. AMOUREUX, M. CASTELAIN, M.D. BENADDA, M. BEE et J.L. SAUVAJOL, 1983 J. Physique, (publication acceptée, à paraître avril 1983, pp. 67 – 74) [24] [25] P. TABOURIER Thèse Doctorat ès-sciences physiques, Lille (à paraître) [26] J.C. CARRU Thèse Doctorat ès-sciences physiques, Lille (à paraître) [27] J.C. CARRU, L. GENGEMBRE, A. CHAPOTON et B. VANDORPE, 1979 Vème Colloque Optique Hertzienne Diélectrique, 26-29 juin 1979, Lille [28] E.M. FLANIGEN, 1980 Proceedings of the Fifth International Conference on zeolites, Naples, Italie : 2-6 juin 1980, 760-780 (édité par L.V. Rees. Heyden) [29] G. RAVALITERA, 1975 Thèse Doctorat 3è cycle, Lille [30] C. DRUON et J.M. WACRENIER, 1977 J. Physique, 38, 47-50 [31] M.D. BENADDA, J.C. CARRU et C. DRUON, 1982 J. Phys. E. : Sci. Instrum., 15, 132-136 R. H. COLE et R.S. COLE, 1941 [32] J. Chem. Phys., U.S.A., 9, 341-351 [33] P. DUCROS, 1960 Thèse Docteur ès Sciences Physiques, Paris [34] R.A. SCHOONHEYDT, 1975 Aggregaatsthesis, K.U. Leuven (Belgique)

-144-

C O N C L U S I O N

Dans le cadre des recherches effectuées au laboratoire, notre travail a présenté deux aspects :

- le premier, plus technique avec la conception et la réalisation d'un dispositif de mesure,

- le second, plus fondamental avec l'étude théorique et numérique de quelques lois de mélanges diélectriques complétée par une étude expérimentale.

Dans la première partie de ce mémoire, nous avons présenté le nouveau dispositif (résonateur) de mesure d'admittances que nous avons conçu. C'est un système résonnant qui présente les caractéristiques suivantes : - fonctionnement dans une large bande de fréquence : 100 kHz - 300 MHz,

- possibilité de relever une cinquantaine de points de mesure dans cette bande, - gamme de mesure permettant le relevé des permittivités complexes telles que $\varepsilon' < 50$ et 0.02 < ε'' < 18 avec les cellules de mesure utilisées,

- réalisation dans le standard General Radio (diamètres intérieur et extérieur valant respectivement 6.20 mm et 14.28 mm),

- automatisation partielle, à l'aide d'un microcalculateur, pour le relevé des grandeurs mesurées (tensions et fréquence) et leur dépouillement en vue de déterminer ε' et ε'' .

Ce dispositif qui n'a pas son équivalent dans les appareils commerciaux actuels, a donné entière satisfacation aux utilisateurs. Il a déjà permis le relevé de plusieurs centaines de spectres.

Dans la deuxième partie de ce travail, notre étude théorique a montré qu'il était possible d'étendre en dynamique les lois de mélange de Looyenga et de Böttcher obtenues en statique. Des simulations numériques effectuées pour différents cas théoriques de constituants (polaires avec domaines distribués ou non, non polaires) ont permis d'aboutir aux conclusions suivantes, à savoir que ces lois de mélange :

- n'introduisent pas de domaines supplémentaires,

- ne modifient pas, en première approximation, la distribution des domaines,

- translatent légèrement les fréquences critiques vers les hautes fréquences.

.../...

L'étude expérimentale, effectuée avec différents échantillons (zéolithes, adamantane et dérivés) a montré la validité des lois en dynamique. Ainsi,

- la loi de Looyenga est valable pour Θ < 0.35 et Θ > 0.75 quelles que soient $\epsilon_A^* et \epsilon_B^*$ et quel que soit Θ lorsque $\epsilon_A^* \simeq \frac{*}{B}$,

- la loi de Böttcher est valable pour $\Theta > 0.75$ quelles que soient ε_A^* et ε_B^* . Cependant, pour $\Theta > 0.75$, la loi de Böttcher est plus satisfaisante que celle de Looyenga.

Ces résultats nouveaux ont conduit à trois applications originales : - l'obtention du spectre diélectrique du cristal compact à partir de la connaissance des propriétés électriques d'un mélange de concentration donnée, - la détermination de la proportion des constituants d'un mélange à partir de la connaissance de ses propriétés électriques ainsi que celles de ses constituants, - l'évaluation du taux d'hétérogénéité macroscopique d'un échantillon donné.

Nous envisageons de compléter ultérieurement ce travail d'une part en réalisant un système de recherche automatique de la fréquence d'accord pour le résonateur, d'autre part en mettant en évidence de nouvelles applications des lois de mélange de diélectriques.

.../...

-147-

Figure 1 : lère partie du schéma de l'unité de contrôle Transfert des données vers CBM BIIS

Figure 2a : 2ème partie du schéma de l'unité de contrôle Sélection des voies

-148-

Figure ^{2b} : Suite de la 2ème partie du schéma de l'unité de contrôle Sélection des voies N.C. : non câblée

Figure 3 : 3ème partie du schéma de l'unité de contrôle Circuit de commande et de contrôle

Figure 4a

: 4ème partie du schéma de l'unité de contrôle Sélection de mesure des tensions analogiques

Figure 4b : Suite de la 4ème partie du schéma de l'unité de contrôle Acquisition des calibres du voltmètre V₁ (Férisol) N.C. : non câblée

۰.

MOTS CLES : RESONATEUR - MESURE D'ADMITTANCES ELECTRIQUES - PERMITTIVITE COMPLEXE - MELANGES BINAIRES, TERNAIRES - LOIS DE MELANGES EN STATIQUE, IN DYNAMIQUE - ZEOLITHES - SOLIDES MOLECULAIRES.

RESUME

Ce mémoire comporte deux parties distinctes.

La première partie est relative à l'étude, la conception et la réalisation d'un dispositif résonnant de mesure d'admittances. Ce dispositif, original par rapport aux appareils existant actuellement sur le marché, est caractérisé par une large gamme de fréquences (100 kHz - 000 MHz), la possitilité de donner un grand nombre de points de mesure (70 points), l'acquisition automatique des grandeurs mesurées et l'obtention en temps réel des résultats. Ainsi, avec des cellules adaptées et l'es logiciels appropriés, ce dispositif permet de déterminer des permittivités complexes ($\varepsilon^* = \varepsilon' - j\varepsilon''$) pour ε' inférieur à 50 et tg $\delta = \varepsilon'' \varepsilon'$, compris entre 4.10⁻⁴ et 18.

La deuxième partie concerne l'étude des lois décrivant la permittivité complexe des mélanges de diélectriques. Pour la première fois, des lois établies en statique jusqu'alors, sont étendues en régime dynamique. Différents types de mélanges sont simulés à l'aide d'une méthode numérique (utilisation d'un microcalculateur). Pour vérifier la validité de l'extension en dynamique, les spectres électriques de différents mélanges de matériaux solides (zéolithes, adamantane et dérivés...) sont relevés. Les résultats expérimentaux et théoriques sont discutés. Plusieurs applications intéressantes et originales sont proposées, en particulier pour la détermination des propriétés électriques du "cristal compact" à partir du relevé de la permittivité complexe du matériau pulvérulent.