

50376 1983 1**29**

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR DE 3ème CYCLE

Mention : Sciences des Matériaux

par

Michel HEDOUX

PARAMETRES D'ORDRE, CHANGEMENTS DE SYMETRIE ET ENERGIES LIBRES DES TRANSITIONS DE PHASES FERROMAGNETIQUES ET ANTIFERROMAGNETIQUES

Soutenue le 10 Juin 1983 devant la Commission d'examen

Président R. FOURET Professeur, Université de Lille 1 Rapporteur Ρ. TOLEDANO Maître-Assistant, Université de Picardie **Examinateurs E**. F. BERTAUT Directeur de recherche C.N.R.S. J. SIVARDIERE C.E.N. de Grenoble G. LEBEGUE Professeur, Université de Picardie

REMERCIEMENTS

Monsieur R.FOURET, Professeur à l'Université de LILLE 1 a bien voulu présider le jury de cette thèse et montrer un intérêt actif à mon travail, je lui en suis profondément reconnaissant.

Je suis très sensible à la présence dans le jury de Monsieur E.F.BERTAUT, Directeur de recherche au Centre National de la Recherche Scientifique et Membre de l'Institut, et de Monsieur J.SIVARDIERE, Directeur de recherche au Centre d'Etudes Nucléaires de Grenoble. Je les remercie respectueusement de l'intérêt qu'ils ont porté à ce travail.

Je remercie vivement Madame G.LEBEGUE, Professeur à l'Université de Picardie qui après m'avoir acceuilli comme membre du groupe de Physique Théorique qu'elle dirige, a permis par la confiance qu'elle m'a accordée, que ce travail soit mené à bien.

C'est Monsieur TOLEDANO qui après m'avoir proposé le sujet de cette thèse,m'a initié à la théorie des groupes et à la physique des transitions de phases. Sans son aide constante et sa disponibilité ce travail n'aurait vu le jour .Qu'il accepte à travers ces lignes, toute la gratitude que je lui dois.

J'ai beaucoup apprécié la collaboration efficace et amicale de Martial CLIN qui a permis de mener à bien les nombreux calculs de cette thèse .Qu'il veuille bien trouver ici l'expression de mon amicale reconnaissance.

Je remercie enfin Madame COIRET,Secrétaire du groupe de Physique Théorique,qui s'est chargée avec compétance de la frappe de ce mémoire.

A mes Parents

SOMMAIRE

		pages
INTRODUCTION	_:	. 1
CHAPITRE 1 :	Théories phénoménologiques des transitions de phases	
	magnétiques	. 5
	I. Caractère quantique des effets magnétiques et origine	
	microscopique des transitions de phases magnétiques	. 5
	II. La théorie de Landau	• 7
	III. Théories phénoménologiques spécifiques	. 11
	1.Le Ferromagnétisme	• 11
	2. Antiferromagnétisme, Ferromagnétisme faible et	
	Ferrimagnétisme	• 11
	3.Hélimagnétisme	• 17
CHAPITRE 2 :	Conditions d'application de la théorie de Landau aux	
	transitions de phases magnétiques	. 21
	I. Introduction	• 21
	II. Les groupes magnétiques et leurs coreprésentations	• 21
	III. Méthodes de construction des coreprésentations des	
	groupes paramagnétiques	• 23
	IV. Sélection des coreprésentations susceptibles d'être	
	associées à une transition de phases du second ordre	• 28
	V. Méthode d'application de la théorie de Landau à partir	
	d'une phase paramagnétique	• 29
CHAPITRE 3 :	Changements de réseaux de Bravais qui accompagnent les	
	transitions para-ferromagnétiques et para-	
	antiferromagnétiques	. 38

CHAPITRE 4	: Energies libres des transitions de phases ferromagnétiques
	et antiferromagnétiques 51
	I. Introduction 51
	II. Commentaires sur les tables 52
	III. Remarques 52
CHAPITRE 5	: Tables de changements de symétrie ferromagnétiques et
	antiferromagnétiques à partir des 230 groupes paramagnétiques.60
	I. Contenu des tables 60
	II. Commentaires sur les tables (5.1) et (5.2) 61
	III. Examen des études similaires 62
CHAPITRE 6	: Comparaison avec les données expérimentales 113
	I. Remarques préliminaires 113
	II. Commentaires sur les tables 114
	III. La Boracite nickel-iode 115
CONCLUSION	
ANNEXE 1 :	Les 36 réseaux de Bravais magnétiques et les 1651 groupes
	de Shubnikov 127
ANNEXE 2:	Communications

INTRODUCTION

1 -

L'objet principal de cette thèse est d'établir des tables qui fournissent l'ensemble des changements de symétrie magnétique et des potentiels thermodynamiques associés aux transitions ferromagnétiques et antiferromagnétiques, dans le cadre de la théorie de Landau. Ces tables doivent être utiles aux expérimentateurs qui déterminent des structures magnétiques apparaissant au-dessous d'une phase paramagnétique. Elles peuvent également servir au développement des théories phénoménologiques et microscopiques des transitions magnétiques dont le point de départ est l'énergie libre de Landau du système ou pour les théories microscopiques, le Hamiltonien du système qui s'en déduit directement.

Cette étude doit également permettre de vérifier, par comparaison systématique de nos résultats théoriques avec les données expérimentales, l'applicabilité de la théorie de Landau aux transitions magnétiques. Une telle vérification n'est que très partiellement entreprise dans notre travail (Chapitre 6).

Dans l'article original où il expose la théorie des transitions de phases [1], Landau donne une première indication essentielle concernant l'application de sa théorie aux transitions magnétiques. Il remarque que la symétrie magnétique d'un système doit être décrite par la densité de spins $M(\vec{r})$ en tout point, dont le groupe d'invariance possède, en plus des transformations de symétrie spatiale, l'inversion du temps R, qui change le signe de $M(\vec{r})$. Cette propriété, qui découle de l'inversion du sens de la densité de courant $\frac{1}{2}$ lorsque l'on inverse la variable temps, permet ainsi de distinguer les structures paramagnétiques (qui contiennent R dans leur groupe d'invariance) des structures ferromagnétiques et antiferromagnétiques (qui ne sont pas invariantes par R). S'appuyant sur ces considérations et sur les travaux de Heesch[2] et Shubnikov [3] consacrés à la symétrie des figures colorées, Zamorzaev [4] construit l'ensemble des groupes qui décrivent une distribution de spins colinéaires, compatibles avec la symétrie (groupe spatial) d'un solide ordonné. La liste exhaustive des groupes spatiaux magnétiques est publiée en 1957 par Belov et al [5]. Elle comprend, outre les 230 groupes paramagnétiques, 1421 groupes ferro ou antiferromagnétiques. La représentation stéréographique de ces groupes sera donnée, quelques années plus tard, par Koptsik [6].

La seule connaissance des groupes de symétrie des structures magnétiques ne suffit cependant pas pour appliquer la théorie de Landau aux transitions magnétiques. Les considérations de symétrie contenues dans cette théorie utilisent en effet, les concepts relatifs à la théorie des représentations des groupes spatiaux, qui sont des groupes unitaires. Ces concepts doivent donc être étendus aux groupes antiunitaires que sont les groupes magnétiques (puisqu'ils contiennent l'opération antiunitaire R). L'extension est faite par Wigner [7] qui définit la notion de coreprésentation d'un groupe antiunitaire. Plusieurs auteurs entreprennent alors de reformuler la théorie de Landau -dont l'énoncé original était adapté aux transitions structurales- en termes de coreprésentations des groupes magnétiques [8-10]. On assiste alors, dans les années soixante au développement de travaux consacrés aux transitions magnétiques, basés sur la théorie de Landau. A titre d'exemples, citons les théories du ferromagnétisme faible et de l'antiferromagnétisme hélicoīdal par Dzyaloshinskii [11,12], la théorie phénoménologique du ferrimagnétisme par Nikitin [13] ou l'étude des transitions magnétostructurales par Smolenskii [14,15] et Kovalev [16,17]. Mentionnons également la détermination systématique des changements de symétrie ponctuelle ferromagnétiques et antiferromagnétiques par Sirotin [18] et Kovalev [19].

Il convient toutefois de souligner que, si l'on excepte le travail de Kovalev [8,20-22], un très petit nombre d'études portant sur les structures magnétiques ont eu recours à la théorie de Landau sous sa forme la plus complète. Les travaux mentionnés ci-dessus, n'utilisent en effet que les considérations thermodynamiques et aspects de symétrie les plus simples contenus dans la théorie. Des raisons objectives et subjectives peuvent être invoquées pour expliquer une telle réticence. Citons pêle-mêle : la difficulté d'interpréter en termes de symétrie les données expérimentales obtenues sur les structures magnétiques (difficulté qui provoqua des polémiques entre théoriciens [23-26]) ; le caractère formel et inadapté des instruments mathématiques -tables de coreprésentations[27] et ouvrages décrivant leur construction [28] - nécessaires pour appliquer la théorie de Landau, la préférence marquée des théoriciens pour exprimer en termes d'interactions microscopiques les effets observés aux transitions magnétiques.

Une autre raison, à nos yeux essentielle, du retard à appliquer complétement la théorie de Landau aux transitions de phases magnétiques, réside dans le fait que ces transitions s'accompagnent souvent d'un réarrangement atomique (qui modifie parfois, comme nous le montrons dans les chapitres 3 et 5, la symétrie spatiale du système). L'étude d'un changement de structure magnétique apparaît donc comme devant être corrélé aux modifications structurales qui lui sont associées. Ceci explique que de nombreux auteurs décrivant des transitions magnétiques le font en termes de groupes spatiaux et de représentations irréductibles. Il est également significatif que le travail que nous présentons dans cette thèse soit, pour de nombreux résultats, déduit d'un travail similaire récent consacré aux

2 -

transitions purement structurales [29-32].

La thèse est subdivisée en six chapitres. Au premier chapitre nous formulons la théorie de Landau des transitions ferro et antiferromagnétiques à partir d'une phase paramagnétique et rappelons brièvement les théories phénoménologiques spécifiques qui ont été proposées pour décrire diverses structures magnétiques. Au chapitre 2 nous détaillons la procédure explicite que nous avons employée pour appliquer la théorie de Landau aux coreprésentations irréductibles des 230 groupes paramagnétiques. Plusieurs exemples sont traités. Nos résultats concernant les changements de réseau magnétique, les énergies libres associées aux transitions, et les changements de groupes magnétiques sont donnés sous forme de tables, dans les chapitres 3 , 4 et 5. Un bilan des résultats théoriques obtenus est présenté. Enfin au chapitre 6 , nous effectuons une comparaison rapide de nos résultats avec les données expérimentales obtenues sur les transitions ferromagnétiques et antiferromagnétiques.

- 3 -

REFERENCES

- 1. L.D.Landau, Collected papers, Ed.D.Ter.Haar, Pergamon. Press (1965)
- 2. H.Heesch, Z.Kristallogr, 73, 325 (1930)
- 3. A.V.Shubnikov et al.Colored symmetry, Ed W.T.Holser, Pergamon. Press (1964)
- 4. A.M.Zamorzaev, Soviet Physics Crystallo, Vol 2, pp 10-15 (1957)
- 5. N.V.Belov, N.N.Neronova et T.S.Smirnova, Soviet Physics Crystallo, Vol 2, N°3, pp 311-322 (1957)
- 6. V.A.Koptsik, Tables des représentations stéréographiques des groupes de Shubnikov, (en Russe) (1966)
- 7. E.P.Wigner, Group theory and its application to the quantum mechanics of atomic spectra, Academic. Press, New-York (1959)
- 8. O.V.Kovalev, Soviet Physics Solid State, 5, 11, pp 2309-2314 (1964)
- 9. C.J.Bradley et B.L.Davies, Rev. Mod. Phys, 40, pp 359-379 (1968)
- 10. J.O.Dimmock et R.G.Wheeler, J.Phys.Chem.Solids, 23, pp 729-741 (1962)
- 11. I.E.Dzyaloshinskii, Soviet Phys.J.E.T.P, 5, 6, pp 1259-1272 (1957)
- 12. I.E.Dzyaloshinskii, Soviet Phys.J.E.T.P, 19, pp 960-971 (1964)
- 13. S.A.Nikitin, Vestn. Mosk. Univ. Fiz. Astron (USSR), N°6, pp 664-670 (en Russe) (1970)
- 14. G.A.Smolenskii, Soviet Physics.Solid State, Vol 4, N°5, pp 807-809 (1962)
- 15. A.I.Mitsek et G.A.Smolenskii, Soviet Physics. Solid State, Vol 4, N°12, pp 2620-2627 (1963)
- 16. O.V.Kovalev, Soviet Physics. Solid State, Vol 14, N°4, pp 826-831 (1972)
- 17. O.V.Kovalev, Soviet Physics. Solid State, Vol 14, N°1, pp 258-260 (1972)
- 18. Yu.I.Sirotin, Soviet Physics.Crystallo, Vol 8, N°2, pp 195-196 (1963)
- 19. O.V.Kovalev, Soviet Physics.Crystallo, Vol 9, N°6, pp 665-671 (1965)
- 20. O.V.Kovalev, Soviet Physics. Solid State, Vol 5, N°11, pp 2315-2321 (1964)
- 21. O.V.Kovalev, Soviet Physics. Solid State, Vol 7, N°1, pp 77-82 (1965)
- 22. O.V.Kovalev, Fiz. Metal. Metalloved, 17, N°4, pp 490-499 (1964)
- 23. E.F.Bertaut, Acta Cryst. A24, pp 217-231 (1968)
- 24. H.Wondratschek et A.Niggli, Z.Kristallogr, 115, 1 (1961)
- 25. V.E.Naish, Izv.AN SSSR, Ser.Fiz, 27, pp 1496-1504 (1963)
- 26. Yu.A; Izyumov et V.E.Naish, Journal of Magnetism and Magnetic Materials, 12, pp 239-248 (1979)
- 27. S.C.Miller et W.F.Love, Tables of irreducible representations of space groups and corepresentations of magnetic space groups, Pruett, Boulder, Col (1967)
- 28. C.J.Bradley et A.P.Cracknell, The mathematical theory of symmetry in solids, Clarendon Press.Oxford (1972)
- 29. P.Tolédano et J.C.Toledano, Phys rev B14,7, pp 3097-3109 (1976)
- P.Tolédano et J.C.Tolédano, Phys rev B16, 1, pp 386-407 (1977)
 J.C.Tolédano et P.Tolédano, Phys rev B21, 3, pp 1139-1172 (1980)
 P.Tolédano et J.C.Tolédano, Phys rev B25, 3, pp 1946-1964 (1982)

4

CHAPITRE 1

THEORIES PHENOMENOLOGIQUES DES TRANSITIONS DE PHASES MAGNETIQUES

Dans ce chapitre, nous passons en revue les théories phénoménologiques qui ont été proposées pour décrire les divers types de structures magnétiques. Au préalable nous rappelons brièvement plusieurs résultats des théories microscopiques qui justifient les arguments utilisés dans les théories macroscopiques.

I. Caractère quantique des effets magnétiques et origine microscopique des transitions de phases magnétiques

Le théorème de Bohr-Van Leeuwen établit qu'à température finie, quelque soit le champ électromagnétique appliqué, l'aimantation d'un système d'électrons classiques en équilibre thermique, s'annule identiquement. Cette propriété générale qui se démontre à l'aide du formalisme de la mécanique statistique classique oblige donc à interpréter les effets magnétiques mettant en jeu une aimantation non nulle dans le cadre de la mécanique quantique. Ainsi Landau montre-t-il que la quantification des orbites électroniques en présence d'un champ appliqué, produit un effet diamagnétique. De même, le paramagnétisme s'explique en considérant qu'un atome dans un état caractérisé par les nombres quantiques J, L, S possède un moment magnétique dipôlaire

$$\vec{\mu} = -g \frac{\mu_B}{\hbar} \vec{J}$$

où g est le facteur de Landé et μ_{R} le magnéton de Bohr.

L'interaction d'un assemblage d'atomes avec un champ appliqué conduit alors à l'expression suivante de la susceptibilité magnétique

$$\chi = \frac{N}{kT} - \frac{J(J+1)}{12 m^2} g^2 e^2$$

qui varie en accord avec la loi expérimentale du Curie $(\chi \sim \frac{C}{T})$.

L'interprétation de la transition entre l'état paramagnétique et l'état ferromagnétique ou antiferromagnétique fait appel à un terme d'échange dans le hamiltonien du système (lié à l'indiscernabilité des électrons sur leur orbite) qui permet d'expliquer le couplage entre dipôles magnétiques et l'alignement de

- 5 -

ceux-ci. Les caractéristiques de l'état ferromagnétique s'établissent alors en considérant une assemblée de spinsS, localisés aux noeuds i d'un réseau triplement périodique. L'interaction d'échange entre deux sites i et j est représentée par un terme - $\dot{J}_{ij}\dot{S}_i.\dot{S}_j.$

L'hamiltonien total responsable des propriétés magnétiques est donc

$$H = - \Sigma \quad J_{ij} \stackrel{\circ}{S}_{i} \cdot \stackrel{\circ}{S}_{j}$$

Le modèle le plus simple (Heisenberg) consiste à retenir l'interaction entre plus proches voisins. Chaque spin étant dans le champ créé par ses voisins, on peut écrire :

où

$$H = -\sum_{i} h_{i} S_{i}$$
$$h_{i} = J \sum_{i \text{ voising de } i} S_{j}$$

 $\langle h_i \rangle = J$ $\sum_{j \text{ voising de i}}^{L'hypothèse du champ moyen (Weiss) qui remplace <math>h_i$ par sa valeur moyenne $\langle S_j \rangle$ permet alors d'exprimer l'aimantation j voisins de i

ferromagnétique sous la forme

$$M = M_0 (T_c - T)^{\beta} \qquad \text{avec} \quad \beta = \frac{1}{2}$$

et la susceptibilité magnétique comme

 $\begin{cases} \chi = \chi_{0} (T - T_{c})^{-\gamma} & \text{où } \gamma = 1 & \text{quand } T > T_{c} \\ \chi = \chi_{0}^{\prime} (T_{c} - T)^{-\gamma} & \text{où } \gamma' = 1 & \text{quand } T < T_{c} \end{cases}$

L'hypothèse supplémentaire d'une distribution au hasard des spins sur les sites du réseau permet à Bragg et Williams de calculer l'entropie du système et d'en déduire l'énergie libre :

$$F = -\frac{1}{2} \text{ NJ } q < S^{2} + \text{ NkT} \left\{ \left(\frac{1 +$$

où q est le nombre de premiers voisins et <S> la valeur moyenne du spin en chaque site.

Dans cette approximation, l'énergie libre est une fonction analytique de la température T et de l'intensité d'aimantation M. Au voisinage de la température de transition T_c , M est petit et il suffit de considérer les premiers termes du développement en puissances de M. Nous obtenons

 $a = \frac{\partial^{3} F}{\partial M^{2} \partial T} \bigg|_{\substack{M = 0 \\ T = T_{c}}} = \frac{4k}{N} \quad \text{et} \quad b = \frac{1}{6} \left| \frac{\partial^{4} F}{\partial M^{4}} \right|_{\substack{M = 0 \\ T = T_{c}}} = \frac{16}{3} \left| \frac{kT_{c}}{N^{3}} \right|_{\substack{M = 0 \\ T = T_{c}}}$

 $F(T,M) = F(T,0) + \frac{1}{2} a (T - T_c)M^2 + \frac{1}{4} b M^4$

Les considérations précédentes et en particulier l'expression (I.1) permettent de justifier les postulats sur lesquels est fondée la théorie phénoménologique de Landau.

II. La Théorie de Landau

Dans l'article original [1] portant sur la théorie des transitions de phases, Landau remarque que la symétrie du cristal magnétique est déterminée non seulement par la distribution de ces atomes mais aussi par la densité de spins $M(\vec{r})$ en tout point. Le vecteur axial $M(\vec{r})$ peut posséder dans son groupe d'invariance, en plus des transformations de symétrie usuelles, l'inversion du temps R qui change le signe de $M(\vec{r})$ en $-M(\vec{r})$ (correspondant au changement de signe de chaque courant interne \vec{j}). Cette propriété se déduit de l'invariance des équations de la mécanique par rapport au changement simultané du signe du temps et du signe du champ magnétique. Si la distribution du spin possède l'élément R dans son groupe d'invariance, alors $M(\vec{r}) = -M(\vec{r}) = 0$ et le cristal est paramagnétique. Une valeur non nulle de $M(\vec{r})$ peut être également invariante par rapport aux combinaisons de R avec des axes de rotations, des plans de symétrie et des translations. La combinaison de l'opération R avec les opérations appartenant aux 230 groupes spatiaux conduit à 1421 groupes spatiaux magnétiques ou groupes de Shubnikov [2] qui décrivent la symétrie de distribution des spins. Comme le montre Wigner [3], ces groupes formés pour moitié d'éléments unitaires et d'éléments antiunitaires ne peuvent être décrits par les représentations habituelles des groupes mais par des coreprésentations [4] (voir chapitre 2).

- 7 -

(I.1)

En tenant compte des considérations précédentes, on peut reformuler la théorie de Landau en suivant une démarche parallèle à celle utilisée par cet auteur pour la description des transitions de phases structurales [1].

Considérons la densité de moments magnétiques $M(\vec{r})$. Celle-ci peut être exprimée comme une combinaison linéaire des fonctions de base $\psi_i(\vec{r})$ des coreprésentations irréductibles du groupe $G_0 xR$ de la phase de haute symétrie [5].

 $M(\vec{r}) = \sum_{\alpha i} \sum_{\alpha} \vec{e}_{\alpha} c_{i\alpha} \psi_{i}(\vec{r})$ (II.1)

où \vec{e}_{α} est un vecteur axial unitaire dans la direction α ($\alpha = x, y, z$) et i regroupe les trois indices (k, μ , n) : k dénote un vecteur de l'étoile de la coreprésentation, n se réfère à la nième coreprésentation irréductible associée au vecteur k et μ représente la μ ième fonction de base d'une coreprésentation irréductible.

Comme nous l'avons indiqué, la densité de moment magnétique $M(\vec{r})$ telle qu'elle est donnée par l'équation (II.1) possède les caractéristiques d'un vecteur axial. Les propriétés de transformation des coefficients $c_{i\alpha}$ sont donc donnés par le produit direct d'une coreprésentation irréductible de G_0 xR et de la représentation vectorielle axiale. Ce produit direct peut être décomposé en coreprésentations irréductibles de G_0 x R et la densité de moment magnétique $M(\vec{r})$ s'exprime alors comme une combinaison linéaire des nouvelles fonctions de base $\chi_i(\vec{r})$ avec de nouveaux coefficients. Nous pouvons donc écrire l'équation (II.1) sous la forme :

$$M(\vec{r}) = \sum_{i} c'_{i} \chi_{i}(\vec{r})$$

où les coefficients c' sont des combinaisons linéaires des $c_{i\alpha}$.(Par la suite, nous omettons la notation primée).

Parmi les $\chi_i(\vec{r})$ figure la coreprésentation identique ; $M(\vec{r})$ s'écrit alors

$$M(\vec{r}) = M_{o}(\vec{r}) + \sum_{i} c_{i}\chi_{i} = M_{o}(\vec{r}) + \delta M(\vec{r})$$

où le symbole Σ' indique que l'on a exclu de la sommation la coreprésentation identique selon laquelle se transforme $M_{\rho}(\vec{r})$.

La fonction $\delta M(\vec{r}) = \sum_{i} c_{i\chi_{i}}(\vec{r})$ (II.2) détermine le groupe de symétrie G de la phase basse symétrie ($\delta M(\vec{r}) \neq 0$ pour T < T_c) qui est un sous-groupe de G_oxR. Sa valeur étant nulle au point de transition ($M(\vec{r}) = M_{o}(\vec{r})$, on peut effectuer un développement limité de l'énergie libre de Landau Φ au voisinage de ce point en fonction des c_i sous la forme :

- 8 -

$$\Phi(\mathbf{p}, \mathbf{T}, \mathbf{c}_{i}) = \Phi_{\mathbf{0}} (\mathbf{p}, \mathbf{T}) + \sum_{n} A^{(n)} f_{1}^{(n)} (\mathbf{c}_{i}) + \sum_{n} \alpha^{(n)} f_{2}^{(n)} (\mathbf{c}_{i}) + \sum_{n} \beta^{(n)} f_{3}^{(n)} (\mathbf{c}_{i}) + \sum_{n} \beta^{(n)} f_{4}^{(n)} (\mathbf{c}_{i}) + \cdots$$
(II.3)

où les $f_j^{(n)}$ sont des fonctions homogènes de degré j des c_i , et où $A^{(n)}$, $\alpha^{(n)}$, $B^{(n)}$ et $\beta^{(n)}$ sont des fonctions des contraintes externes (p), de la température et des fonctions $\chi_i(\vec{r})$.

 Φ est invariante par les éléments du groupe G_oxR. Cette invariance peut s'exprimer en fixant les fonctions $\chi_i(\vec{r})$ et en opérant sur les coefficients c_i dont on montre qu'ils peuvent constituer une base de l'espace vectoriel support des coreprésentations irréductibles de G_oxR. L'invariance de $\Phi(p,T,c_i)$ se traduit donc par celle des fonctions $f_j^{(n)}$. Sous l'effet de R, tous les coefficients c_i changent de signe ; par conséquent, il n'y a pas de fonctions $f_j^{(n)}$ d'ordre impair dans l'énergie libre Φ . Remarquons que ce point distingue la théorie de Landau des transitions de phases magnétiques de celle développée pour les transitions de phases structurales. La non-existence d'invariants du troisième degré qui doit être imposée à l'énergie libre d'une transition structurale continue (critère de Landau) est ici obtenue à priori. L'énergie libre de Landau se réduit ainsi à :

$$\Phi(p,T,c_{i}) = \Phi_{o}(p,T) + \sum_{n} \alpha^{(n)} f_{2}^{(n)}(c_{i}) + \sum_{n} \beta^{(n)} f_{4}^{(n)}(c_{i}) + \dots$$

L'existence d'une transition continue vers une phase de symétrie distincte décrite par un groupe magnétique G (différent de G_oxR) permet en répétant les considérations utilisées par Landau de déduire les résultats suivants :

Les transitions du second ordre correspondent aux variations de coefficients c_i associés à une <u>seule</u> coreprésentation irréductible de $G_0 xR$. Restreint aux coefficients relatifs à cette coreprésentation, Φ s'écrit :

$$\Phi = \Phi_0 + \alpha \eta^2 + \beta \eta^4 f_4(\gamma_i) + ...$$
 (II.4)

où l'on a posé $c_i = n\gamma_i$ avec $\sum_{i} \gamma_i^2 = 1$. L'ensemble des c_i forme le <u>paramètre</u> d'ordre de la transition de phases. Remarquons que les valeurs d'équilibre des c_i sont nulles pour T > T_c et non nulles pour T < T_c. Le coefficient α du terme quadratique est une fonction de la forme $\alpha = \alpha_0$ (T - T_c) au voisinage de la température de transition T_c (α_0 > 0). Le coefficient β du terme quartique est strictement positif et peut être considéré comme constant.

- 9 .

En résumé, les valeurs de n et γ_i qui minimisent (minimum absolu) Φ permettent donc de déterminer la symétrie de la fonction $\delta M(\vec{r}) = n \sum_{i}^{\Sigma} \gamma_i \chi_i(\vec{r})$ (obtenue à partir de (II.2)), c'est-à-dire la symétrie G du cristal magnétique apparaissant lors de la transition de phase. Pour obtenir tous les groupes magnétiques possibles, à partir d'un groupe paramagnétique donné, nous devons ainsi considérer les coreprésentations irréductibles des fonctions présentes dans (II.2).

Il faut toutefois remarquer que le nombre de coreprésentations qui doivent être examinées est sensiblement réduit (à un nombre fini) si l'on impose à la phase décrite par le groupe G de posséder une stricte périodicité de translation. Lifshitz a en effet montré [6] que pour garantir l'homogénéité de la phase basse température, seules devaient être considérées les représentations irréductibles associées aux points de la zone de Brillouin dont le groupe d'invariance possède un point central (i.e. l'inversion ou trois axes concourants). Lifshitz montre ainsi qu'un petit nombre de points de haute symétrie de la surface ainsi que le centre des 14 zones de Brillouin doivent être retenus. Les arguments développés par cet auteur sont également applicables aux transitions magnétiques.

Les coreprésentations susceptibles d'être associées à une transition continue vers une phase avec un arrangement strictement périodique de spins, doivent donc satisfaire à la condition de Lifshitz (voir chapitre 2). Il est à remarquer que Takagi [7] a montré que les invariants qui apparaissent par symétrie lorsque cette condition n'est pas satisfaite (invariants de Lifshitz[6]) ne sont pas laissés invariants par R car leurs fonctions de base se transforment en leurs complexes conjuguées. Toutefois si l'on considère des coreprésentations irréductibles dans l'espace réel, les arguments soulevés par Takagi deviennent caducs. Au chapitre 2, nous réexaminons ce point.

Un critère de sélection supplémentaire des coreprésentations pouvant être associées à la formation des structures magnétiques a été proposé par Kovalev [5] et invoqué par plusieurs auteurs [8, 9]. Il indique que la densité magnétique (II.2) est différente de zéro en un point de l'espace où est localisé un atome A, si elle peut s'exprimer à partir des fonctions de base $\chi_i^{(A)}$ (\vec{r}) des coreprésentations du groupe G(A) x R où G(A) est le groupe ponctuel d'invariance du type d'atomes A. Kovalev établit alors le théorème suivant : les coreprésentations du groupe G₀ x R présentes dans l'équation (II.2) doivent contenir la coreprésentation totalement symétrique du groupe G(A) x R. Remarquons que des règles de sélection équivalentes existent pour les transitions de phases structurales. Elles n'ont d'intérêt que si l'on considère un arrangement particulier d'atomes. Dans le cadre de l'étude générale

- 10 -

que nous nous proposons d'effectuer dans cette thèse, nous n'avons donc pas pris en considération la règle proposée par Kovalev.

III. Théories phénoménologiques spécifiques

1. Le Ferromagnétisme

Dans un matériau ferromagnétique, tous les moments magnétiques des atomes ou ions individuels sont alignés parallèlement à une direction particulière. L'état ferromagnétique est donc caractérisé par l'aimantation M qui peut être prise pour paramètre d'ordre de la transition. L'énergie libre de Landau s'écrit (cas d'une aimantation isotrope) :

$$\Phi(p, T, M) = \Phi_{\alpha}(p,T) + \alpha(T - T_{\alpha}) M^2 + CM^4 + \dots$$

Les valeurs de M qui minimisent l'énergie libre sont solutions de l'équation

M
$$[\alpha (T - T_c) + 2 CM^2] = 0$$

Cette équation a une solution stable M = O (état paramagnétique) et deux solutions stables non nulles M = $\pm \frac{\alpha(T_C - T)}{2C}$ (état ferromagnétique) La susceptibilité isotherme $\chi_T = \frac{\partial M}{\partial H} \Big|_T$ peut être déduite du potentiel thermodynamique G(T, p, M) = F (T, p, M) - MH où H est le champ extérieur appliqué au système. On retrouve bien les expressions données par les modèles microscopiques

 $\chi_{\rm T} = \frac{1}{2 \alpha ({\rm T} - {\rm T_C})}$ dans la phase paramagnétique

 $x_{T} = \frac{1}{4 \alpha (T_{c} - T_{c})}$ dans la phase ferromagnétique

2. Antiferromagnétisme, Ferromagnétisme faible et Ferrimagnétisme

Dans un modèle élémentaire de cristal antiferromagnétique, les moments magnétiques sont arrangés parallèlement dans deux sous-réseaux A et B identiques

• 11 -

d'aimantations opposées M_A et M_B . Ainsi le cristal ne possède pas globalement de moment magnétique. Cependant, il peut y avoir non-compensation rigoureuse des aimantations des deux sous-réseaux. Celle-ci peut provenir soit d'une longueur différente des aimantations M_A et M_B (ferrimagnétisme) soit du fait que l'angle entre M_A et M_B diffère légèrement de π (ferromagnétisme faible). On peut alors mesurer dans ces deux cas une petite aimantation résultante. L'application de la théorie de Landau à la description phénoménologique des états antiferromagnétique et ferromagnétique faible est due à DZIALOSHINSKII [10]. Cet auteur considère le cas particulier de l'oxyde de fer- α (α - Fe₂O₃).

Ce corps possède la symétrie du groupe D_{3d}^6 et les quatre ions \mathbf{Fe}^{3+} sont répartis sur la diagonale de la maille rhomboédrique. Dans l'état antiferromagnétique, la maille magnétique et la maille spatiale coîncident. Les spins des quatre ions ont même grandeur et diffèrent par leur signe $(\vec{s}_1 = -\vec{s}_2 = -\vec{s}_3 = \vec{s}_4)$ de telle sorte que leur somme $\sum_{i=1}^{\infty} \vec{s}_i = 0$ dans chaque maille.

Près du point de transition, \vec{S}_1 , \vec{S}_2 , \vec{S}_3 et \vec{S}_4 sont pe**tit**s et l'énergie libre ϕ peut être développée en puissance de leurs composantes. Dzialoshinskii introduit alors les variables auxiliaires $m = \vec{S}_1 + \vec{S}_2 + \vec{S}_3 + \vec{S}_4$ et $\vec{l} = \vec{S}_1 - \vec{S}_2 - \vec{S}_3 + \vec{S}_4$. Connaissant les coreprésentations irréductibles selon lesquelles les composantes de \vec{m} et \vec{l} se transforment, on peut écrire la forme la plus générale de ϕ permise par la symétrie du cristal (D_{3d}^6) . En se limitant aux termes du second degré, on a :

- 12 -

$$\Phi = \frac{A}{2} 1^2 + \frac{B}{2} m^2 + \frac{\alpha}{2} 1_z^2 + \frac{b}{2} m_z^2 + \beta (1_x m_y - 1_y m_x) + \frac{C}{4} 1^4 \quad (III.2.1)$$

Le minimum de ϕ pour |1| constant est déterminé par les équations

$$\beta m_{x} = \lambda l_{x} , -\beta m_{x} = \lambda l_{y} , \quad \alpha l_{z} = \lambda l_{z}$$

$$B m_{x} = \beta l_{y} , \quad B m_{y} = -\beta l_{x} , \quad (B + b) m_{z} = 0$$

Ce groupe d'équations à deux solutions :

(1) $\vec{m} = \vec{0}$, $1_x = 1_y = 0$ (11) $1_z = m_z = 0$; $m_x = (\beta/B)1_y$; $m_y = -(\beta/B)1_x$

Dans l'état (I), l'aimantation est nulle ; nous sommes en présence d'un état antiferromagnétique.

L'état (II) est un état ferromagnétique faible caractérisé par l'apparition d'un moment magnétique spontané non-nul m = $\frac{|\beta|}{B}$ l en plus de la distribution de spins antiferromagnétique décrite par le vecteur \vec{l} .

La valeur de m reste faible car elle est proportionnelle au rapport d'un terme relativiste β sur un terme d'échange B. L'angle entre les spins $\vec{s}_1, \vec{s}_2, \vec{s}_3$ et \vec{s}_4 qui différencie la structure d'un ferromagnétique faible de celle d'un antiferromagnétique peut être déduit de la minimisation du potentiel thermodynamique $\phi(III.2.1)$ auquel on a ajouté des invariants d'ordre supérieur à 4. Si l'on se place loin du point de transition, la valeur de Î n'est plus petite et le développement de ϕ en série de ses puissances n'est plus valable. Il est possible cependant de développer ϕ en puissance du vecteur $\vec{\gamma}$, vecteur unitaire dans la direction de Î. Ainsi le potentiel thermodynamique s'écrit comme :

$$(III.2.2) \qquad \Phi = \frac{a}{2} \gamma_z^2 + \frac{B}{2} m^2 + q(\gamma_x m_y - \gamma_y m_x) + \frac{b}{2} m_z^2 + \frac{D}{2} (\gamma_x)^2 + \frac{d}{2i} \gamma_z [(\gamma_z + i\gamma_y)^3 - (\gamma_x - i\gamma_y)^3] + \frac{f}{2} m_z [(\gamma_x + i\gamma_y)^3 + (\gamma_x - i\gamma_y)^3] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6] + \frac{e}{2} [(\gamma_x + i\gamma_y)^6 + (\gamma_x - i\gamma_y)^6$$

En utilisant les coordonnées sphériques pour $\vec{\gamma}$, on déduit de (II.2.2):

$$\Phi = \frac{a}{2}\cos^{2}\theta + \frac{B}{2}m^{2} + q\sin\theta(m_{y}\cos\phi - m_{x}\sin\phi) + \frac{b}{2}m_{z}^{2} + \frac{D}{2}[m_{z}\cos\theta + \sin\theta(m_{x}\cos\phi + m_{y}\sin\phi)]^{2} + d\cos\theta\sin^{3}\theta\sin^{3}\phi + e\cos\theta\phi\sin^{6}\theta + fm_{z}\sin^{3}\theta\cos\phi$$

La minimisation de Φ par rapport à \vec{m} , permet de trouver les trois états stables dans lesquels α - Fe₂O₃ peut exister :

(I)
$$\theta = 0$$
, $\vec{m} = 0$
(II) $\theta \approx \frac{\pi}{2} - \frac{d}{a}$, $\phi = \frac{\pi}{2}$, $m_x = \frac{q}{B}$, $m_y = m_z = 0$
(III) $\theta = \frac{\pi}{2}$, $\phi = 0$, $m_y = -\frac{q}{B}$, $m_z = -\frac{f}{B}$, $m_x = 0$

Dans l'état (I), tous les spins sont dirigés le long de l'axe [111] et il n'y a pas de ferromagnétisme. Dans l'état (II), la composante antiferromagnétique des spins est dans l'un des plans de symétrie faisant un petit angle $\phi \sim \frac{d}{a}$ avec le plan (111), le moment magnétique spontané m_o = |q|/B est dirigé le long d'un axe d'ordre 2 perpendiculaire à la composante antiferromagnétique du spin.

Dans l'état (III), la composante antiferromagnétique du spin est dirigée le long d'un des axes d'ordre 2 ; le moment magnétique spontané est de la même grandeur que dans l'état (II) et se trouve dans le plan de symétrie qui est perpendiculaire à l'axe d'ordre 2 de la composante antiferromagnétique, celle-ci faisant un angle petit $\psi \sim \frac{f}{q}$ avec le plan (111).

Les angles ϕ et ψ apparaissant dans les états (II) et (III) traduisent le non-alignement des spins entre eux. Ils sont, tout comme le moment magnétique spontané \vec{m} , une conséquence directe de la présence des termes d'origine relativiste dans le potentiel thermodynamique.

L'application de la théorie de LANDAU à la description phénoménologique de l'état ferrimagnétique est beaucoup plus récente ^[11]. NIKITIN considère le cas le plus simple d'un cristal ferrimagnétique subdivisé en deux sous-réseaux d'aimantation l_1 et l_2 antiparallèles. Le potentiel thermodynamique près du point

de Curie peut alors se développer en puissance de l'aimantation des deux sous-réseaux :

$$\Phi = \frac{a_1}{2} \, l_1^2 + \frac{b_1}{4} \, l_1^4 + \frac{a_2}{2} \, l_2^2 + \frac{b_2}{4} \, l_2^4 + n l_1 l_2 - (l_1 + l_2)H \qquad (III.2.3)$$

où a_1 , a_2 , b_1 et b_2 sont des coefficients dépendant de la température et de la pression et où nl_1l_2 représente l'énergie d'interaction entre les deux sous-réseaux. Les coefficients a_1 , b_1 , a_2 , b_2 et n sont pris positifs en accord avec les modèles expérimentaux de ferrimagnétique.

En minimisant (III.2.3) on obtient :

$$\frac{\partial \Phi}{\partial l_1} = a_1 l_1 + b_1 l_1^3 + n l_2 - H = 0 \qquad (III.2.4)$$

$$\frac{\partial \Phi}{\partial l_2} = a_2 l_2 + b_2 l_2^3 + n l_1 - H = 0 \qquad (III.2.5.)$$

- 14 -

Au voisinage du point de Curie θ , les aimantations l_1 et l_2 étant petites, on peut négliger les termes l_1^3 et l_2^3 et en prenant H = 0, on obtient un système d'équations linéaires homogène qui possède des solutions non-nulles si

$$\Delta = \begin{vmatrix} a_1 & n \\ & \\ n & a_2 \end{vmatrix} = (\sqrt{a_1 a_2} - n)(\sqrt{a_1 a_2} + n) = 0 \quad (III.2.6)$$

Puisque a_1 , a_2 et n sont positifs, on en déduit qu'au voisinage de θ

$$\delta = \sqrt{a_1 a_2} - n = 0$$
 (III.2.7)

De (III.2.4) et (III.2.5), on obtient :

$$l_1 = -\frac{1}{n} (a_2 l_2 + b_2 l_2^3 - H)$$
(III.2.8)

$$l_2 = -\frac{1}{n} (a_1 l_1 + b_1 l_1^3 - H)$$
 (III.2.9)

Quand on reporte (III.2.8) dans (III.2.4) et (III.2.9) dans (III.2.5) en négligeant les termes en puissance supérieure à 3 de l'aimantation et en tenant compte que près de θ , $\sqrt{a_1a_2} \approx n$, on trouve les équations suivantes :

$$2 \xi \frac{\sqrt{a_1 a_2} - n}{1 - \xi} \quad 1_1 + \frac{b_1 + b_2 \xi^4}{1 - \xi} \quad 1_1^3 = H \quad (III.2.10)$$

$$\left(-2\xi \frac{\sqrt{a_1a_2} - n}{1 - \xi} \frac{1_2}{\xi} - \frac{b_1 + b_2\xi^4}{1 - \xi} \frac{1_2^3}{\xi^3} = H \right)$$
 (III.2.11)

où $\xi = \sqrt{\frac{a_{1\theta}}{a_{2\theta}}} > 0$ ($a_{1\theta}$ et $a_{2\theta}$ sont les valeurs respectives de a_1 et a_2 au

voisinage du point de Curie).

On en déduit que lorsqu'on fait varier la température du système et le champ extérieur, <u>les aimantations des deux sous-réseaux sont antiparallèles et</u> <u>différentes en grandeur</u> :

$$1_1 = -\frac{1_2}{\xi}$$
 (III.2.12)

Dans le cas H = 0, les équations (III.2.10) et (III.2.11) ont deux solutions distinctes :

- 15-

- 16 -

1)
$$1_1 = 0$$
 , $1_2 = 0$ (III.2.13)

2)
$$1_{1s}^2 = -\frac{2\xi(\sqrt{a_1a_2} - n)}{b_1 + b_2\xi^4}$$
, $1_{2s}^2 = -\xi^2 \frac{2\xi(\sqrt{a_1a_2} - n)}{b_1 + b_2\xi^4}$ (III.2.14)

Les dérivées secondes $\frac{\partial^2 \Phi}{\partial l_1^2}$, $\frac{\partial^2 \Phi}{\partial l_2^2}$ et $\frac{\partial^2 \Phi}{\partial l_1 \partial l_2}$ étant positives

 $(a_1, a_2, b_1, b_2$ et n positifs), la stabilité des solutions précédentes dépend du signe de

$$\Delta = \begin{pmatrix} \frac{\partial^2 \Phi}{\partial l_1^2} & \frac{\partial^2 \Phi}{\partial l_1 \partial l_2} \\ \frac{\partial^2 \Phi}{\partial l_1 \partial l_2} & \frac{\partial^2 \Phi}{\partial l_2^2} \\ \frac{\partial^2 \Phi}{\partial l_1 \partial l_2} & \frac{\partial^2 \Phi}{\partial l_2^2} \end{pmatrix}$$

Pour la première solution (III.2.13)

 $\Delta = a_1 a_2 - n^2 \simeq 2 n \delta$ et pour la deuxième solution (III.2.14)

$$\Delta = (a_1 + 3 b_1 l_1^2) (a_2 + 3 b_2 l_2^2) - n^2 \approx -4 n\delta$$

On voit que si $\delta < 0$ alors l'état d'équilibre caractérisé par la présence d'une aimantation spontanée est stable ($\Delta > 0$) tandis que l'état où $l_1 = l_2 = 0$ n'est pas stable ($\Delta < 0$). Par contre, si $\delta > 0$, alors l'état paramagnétique est stable. Ainsi δ peut se développer en série de puissance de (T - θ) sous la forme :

δ = A (T - θ) +(III.2.15)

où A > 0.

De (III.2.14) et (III.2.15), on obtient l'aimantation spontanée des deux sous-réseaux et l'aimantation résultante en fonction de la température :

$$1_{1s} = \sqrt{-\frac{2 \xi A(T - \theta)}{b_1 + b_2 \xi^4}}$$
(III.2.16)

$$1_{2s} = -\xi \sqrt{\frac{2 \xi A(T - \theta)}{b_1 + b_2 \xi^4}}$$
(III.2.17)

- 17 -

$$1_{s} = (1 - \xi) \sqrt{-\frac{2 \xi A (T - \theta)}{b_{1} + b_{2} \xi^{4}}}$$
(III.2.18)

En présence d'un champ extérieur, les équations (III.2.4) et (III.2.5) nous donnent

$$a_1 l_1 + n l_2 = H$$
 (III.2.19)
 $n l_1 + a_2 l_2 = H$

d'où

$$l_1 = \frac{a_2 - n}{a_1 a_2 - n^2} H$$
 et $l_2 = \frac{a_1 - n}{a_1 a_2 - n^2} H$ (III.2.20)

En supposant que a₁ et a₂ sont des fonctions linéaires de la température

$$a_1 = a'_1 (T - \theta_1)$$
, $a_2 = a'_2 (T - \theta_2)$ (III.2.21)

On trouve à partir de (III.2.20), la loi de NEEL

$$\frac{1}{\chi} = \frac{T}{C} + \frac{1}{\chi_0} - \frac{\sigma}{T - \theta}$$

pour un cristal ferrimagnétique.

En faisant n = 0, c'est-à-dire en absence d'interaction entre les deux sous-réseaux, on retrouve pour chaque sous-réseau la loi de Curie-Weiss

$$l_1 = \frac{H}{a'_1 (T - \theta_1)}$$
, $l_2 = \frac{H}{a'_2 (T - \theta_2)}$

pour un cristal ferromagnétique.

3. Hélimagnétisme

Dans un cristal hélimagnétique, les spins sont répartis parallèlement à l'intérieur de couches de sorte que l'aimantation de deux couches consécutives forment un angle $_{\phi}$ entre elles.

Dzialoshinskii interprète ce phénomène dans le cas d'un cristal dont le groupe de symétrie est O_h^9 [12]. La structure magnétique du cristal est décrite par deux vecteurs $S^+ = \sigma \cos \frac{\pi}{a} x \cos \frac{\pi}{a} y \cos \frac{\pi}{a} z$ et $S^- = \sigma \sin \frac{\pi}{a} x \sin \frac{\pi}{a} y \sin \frac{\pi}{a} z$ (σ : vecteur axial) qui correspondent respectivement aux spins des sommets et du centre d'une maille cubique centrée. Cette structure magnétique peut être représentée sous la forme de deux sous-réseaux antiferromagnétiques intercalés, le premier formé par les ions des sommets des cubes et le second par les ions des centres. DZIALOSHINSKII établit alors le potentiel thermodynamique Φ le plus général permis par la symétrie du cristal (0_h^9) :

$$\Phi = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4$$
 (III.3.1)

où

$$\Phi_{1} = \frac{1}{2} A \left[(S^{+})^{2} + (S^{-})^{2} \right]_{+}$$
(III.3.2)

$$\Phi_{2} = b \left(S_{x}^{+} \frac{\partial S_{y}}{\partial z} - S_{y}^{-} \frac{\partial S_{x}}{\partial z} + \text{permutations circulaires} \right) (III.3.3)$$

$$\Phi_{3} = \frac{1}{2} B \left[(\frac{\partial S^{+}}{\partial x})^{2} + (\frac{\partial S^{+}}{\partial y})^{2} + (\frac{\partial S^{-}}{\partial z})^{2} + (\frac{\partial S^{-}}{\partial y})^{2} + (\frac{\partial S^{-}}{\partial z})^{2} \right] (III.3.4)$$

$$\Phi_{4} = \frac{1}{4} C \left[(S^{+})^{2} + (S^{-})^{2} \right]^{2} + \frac{1}{2} D \left(S^{+} \right)^{2} (S^{-})^{2} + \frac{1}{2} E \left(S^{+} S^{-} \right)^{2} (III.3.5)$$

La minimisation de Φ se fait par étapes. D'abord il est nécessaire de minimiser l'invariant d'échange (III.3.5) en postulant que $(S^+)^2 + (S^-)^2 = 2 s^2 =$ constante où s est le spin moyen d'un ion à la température considérée. Ceci conduit à définir la structure magnétique de base. Ensuite la somme des termes (III.3.3) et (III.3.4) est minimisée.

Trois types de structures de base correspondent au minimum de (III.3.5)

(I) :
$$S^{+} = \sqrt{2}s$$
 , $S^{-} = 0$ ou $S^{-} = \sqrt{2}s$, $S^{+} = 0$
(II) : $S^{+} = S^{-} = s$, $S^{+} \perp S^{-}$
(III) : $S^{+} = \pm S^{-}$

Seul le cas (II) permet l'existence d'une surstructure car les invariants linéaires (III.3.3) sont non-nuls [12]. Dans ce cas, les spins des sommets sont perpendiculaires aux spins des centres. La dépendance de S⁺ et S⁻ par rapport aux coordonnées de l'espace est déterminée par l'équation différentielle linéaire du second ordre obtenue par la variation de la somme des fonctions (III.3.3) et (III.3.4) en laissant constantes les équations (III.3.2) et (III.3.5). La solution réelle de cette équation dans le cas d'un vecteur d'onde \vec{k} de la surstructure parallèle à l'axe [111] a la forme :

 $\begin{cases} S^{+} = s \left[\mu \cos k(x+y+z) - \nu \sin k(x+y+z)\right] \cos \frac{\pi}{a} x \cos \frac{\pi}{a} y \cos \frac{\pi}{a} z \\ S^{-} = s \left[-\mu \sin k(x+y+z) - \nu \cos k(x+y+z)\right] \sin \frac{\pi}{a} x \sin \frac{\pi}{a} y \sin \frac{\pi}{a} z \end{cases}$ (III.3.6) où k = $\frac{|b|}{B \sqrt{3}}$ et où μ , ν sont des vecteurs perpendiculaires aux vecteurs unitaires du plan (111).

- 18 -

Ces équations décrivent une surstructure du type hélicoidal. L'axe de l'hélice est dirigé le long de l'axe [111] d'ordre 3(direction de \vec{k}).Le vecteur d'onde k de la surstructure qui est proportionnel au rapport d'un terme d'origine relativiste (b) sur un terme d'origine d'échange (B), prend donc une valeur faible. Ceci implique que le pas de l'hélice est très grand (proportionnel à $\frac{1}{k}$). Références :

- 1. Collected Papers of L.D. Landau, Gordon and Breach, New-York (1965)
- N.V. Belov, N.N. Neronova et T.S. Smirnova, Sov. Phys. Crystallography <u>2</u>, 311 (1957)
- 3. E.P. Wigner, Group Theory (Academic Press, New-York, 1959)
- 4. C.J. Bradley and A.P. Cracknell, The Mathematical Theory of symmetry in Solids (Clarendon Press, Oxford, 1972)
- 5. O.V. Kovalev, Sov. Phys. Sol. State 5, 2309 (1964)
- 6. E.M. Lifshitz, Zh. Eksp. Teor. Fiziki 11, 255 (1941)
- 7. Y. Takagi, Phys. Rev. B 17, 2965 (1978)
- 8. H. Luchian, Sol. State Comm. 28, 147 (1978)
- 9. J. Solyom, Journal de Physique, supp. au n° 2-3, 32, 471 (1971)
- 10. I.E. Dzialoshinskii, Sov. Phys. JETP 5, 1259 (1957)
- 11. S.A. Nikitin, Vestn. Mosk. Univ. Fiz. Astron (USSR), <u>N°6</u>, 664 (1970)
- 12. I.E. Dzialoshinskii, Sov. Phys. JETP <u>19</u>, 960 (1964)

20

CHAPITRE 2

CONDITIONS D'APPLICATION DE LA THEORIE DE LANDAU AUX TRANSITIONS DE PHASES MAGNETIQUES

I. Introduction

Dans ce chapitre, nous décrivons la méthode que nous avons utilisée afin d'appliquer la théorie de Landau aux transitions de phases para-ferromagnétiques et para-antiferromagnétiques. Plusieurs auteurs [1-6] ont précisé les modalités d'application de cette théorie. Ainsi, Cracknell et Sedaghat [1] calculent les carrés antisymétrisés et les cubes antisymétrisés des coreprésentations irréductibles des groupes ponctuels magnétiques. Cracknell, Lorenc et Przystawa [2] étudient les différents critères de sélections des coreprésentations irréductibles des groupes ponctuels et appliquent la théorie de Landau aux transitions paraferromagnétiques. Dimmock et Wheeler [3] considèrent le cas particulier du groupe P42/mnm1' pour lequel ils calculent les coreprésentations irréductibles en chaque point de la zone de Brillouin quadratique P. Sirotin [4] et Kovalev [5]donnent tous les changements possibles de symétrie ponctuelle para-ferromagnétiques. Kovalev [6] étudie les transitions magnétiques susceptibles de se produire à partir du groupe paramagnétique P6₂/mmc1'. Les travaux précédents se bornent toutefois à des considérations formelles générales ou se situent dans le cadre d'un modèle particulier. Ainsi dans les références [1, 2, 4, 5] seule la symétrie ponctuelle est prise en compte. De même, dans les références [3, 6], un assemblage particulier d'atomes est considéré.

La méthode utilisée dans cette thèse consiste à appliquer la théorie de Landau dans toute sa généralité aux transitions induites à partir d'une phase paramagnétique. Elle utilise des résultats déjà obtenus pour les transitions de phases structurales [7-10]. Dans les paragraphes suivants nous explicitons cette méthode après avoir brièvement rappelé les concepts de groupe magnétique et de coreprésentation.

II. Les groupes magnétiques et leurs coreprésentations

Les groupes magnétiques sont répartis en quatre classes. Une première classe (type I) est formée par les 230 groupes de Fedorov. Parmi eux, les sousgroupes du groupe infin ∞/m décrivent une structure ferromagnétique. La combinaison des opérations spatiales de ces 230 groupes cristallographiques et de l'opération inversion du temps R permet de définir les trois autres classes. Les groupes du type II sont les 230 groupes gris de la forme

$$M = G + RG$$

où G est l'un des 230 groupes spatiaux. R apparaît directement parmi les éléments de M. Ce type de groupe est adapté à la description d'un cristal paramagnétique considéré comme invariant par l'inversion du temps. Les groupes du type III (au nombre de 674) possèdent pour réseau l'un des 14 réseaux de Bravais cristallins et peuvent s'écrire

$$M = H + R (G - H)$$

où H est un sous-groupe d'ordre moitié de G. Ces groupes sont compatibles avec l'existence d'un vecteur axial (∞ / mm'm') non-nul représentant l'aimantation spontanée locale ($j \neq 0$). Ils décrivent des structures ferromagnétiques ($\int (r \times j) \, dV \neq 0$) ou antiferromagnétiques ($\int (r \times j) \, dV = 0$). Enfin, une quatrième classe (type IV) est formée de groupes (547) associés à l'un des réseaux de Bravais magnétiques (au nombre de 22) [11]. Dans ce dernier cas, seules les translations modifient l'orientation du spin. Les groupes du type IV décrivent exclusivement des structures antiferromagnétiques puisque le moment magnétique élémentaire est nul. Au total, on compte donc 1651 groupes (de Shubnikov) susceptibles de décrire une structure magnétique avec des spins colinéaires. La notion de coreprésentation s'introduit en utilisant le fait que l'opérateur R est antiunitaire,c'est-à-dire tel que :

$$(R \psi, R \phi) = (\psi, \phi)^{n}$$

Les groupes contenant R parmi leurs éléments ne possèdent pas de représentations au sens usuel du mot (i.e. formées d'opérations unitaires) mais des <u>coreprésentation</u> Dans cet être mathématique introduit par Wigner [12], la moitié des éléments est unitaire et l'autre anti-unitaire. L'ensemble des matrices formant une coreprésentation d'un groupe non-unitaire

M = H + AH (A : opérateur antiunitaire quelconque) satisfait aux égalités suivantes :

- 22 -

- 23 -

$$D(R_{j}) D(R_{k}) = D(R_{j}R_{k})$$

$$D(R_{j}) D(A_{k}) = D(R_{j}A_{k})$$

$$D(A_{j}) D(R_{k}) \coloneqq D(A_{j}R_{k})$$

$$D(A_{j}) D(A_{k}) \coloneqq D(A_{j}A_{k})$$
(II.1)

où R_j et R_k sont des éléments du sous-groupe unitaire H et A_j et A_k sont des éléments de l'ensemble AH d'opérateurs antiunitaires de M.

Tout comme les représentations d'un groupe, les coreprésentations peuvent être réductibles ou irréductibles. On peut ainsi définir une transformation unitaire d'une coreprésentation

$$D'(R_j) = S^{-1}D(R_j)S$$
, $D'(A_j) = S^{-1}D(A_j)S^{*}$ (II.2)

Si les matrices $D(R_j)$ et $D(A_j)$ de la coreprésentation se transforment par (II.2) en matrices $D'(R_j)$ et $D'(A_j)$ formées de blocs diagonaux alors la coreprésentation est dite réductible sinon c'est une <u>coreprésentation irréductible</u> (CI).

Si $G_{\vec{k}_1}$ est le groupe d'invariance du vecteur \vec{k}_1 associé à une représentation irréductible (RI) du groupe H, le groupe d'invariance $M_{\vec{k}_1}$ du vecteur d'onde correspondant à une CI du groupe M sera $M_{\vec{k}_1} = G_{\vec{k}_1} + R G_{\vec{k}_1}$. Cette propriété nécessite que $G_{\vec{k}_1}$ contienne une opération g teile que $g(\vec{k}_1) = -\vec{k}_1$. Par la suite, nous nous bornons à considérer exclusivement le cas où \vec{k}_1 est équivalent à $-\vec{k}_1$, cette limitation étant justifiée ci-dessous.

III. Méthodes de construction des coreprésentations des groupes paramagnétiques

Plusieurs auteurs [13,14] ont proposé une méthode pour construire la CI d'un groupe magnétique M = H + AH à partir des RI du groupe H. La procédure pour un groupe paramagnétique est la suivante :

Soit R_j un élément du sous-groupe unitaire H et $A_j = RR_j$ un élément de RH. Si $\Delta^i(R_j)$ est une matrice représentative de R_j dans la RI Γ_i de H, la coreprésentation $D\Gamma_i$ de M construite à partir de $\Delta^i(R_j)$ nécessite en premier lieu d'exprimer les matrices :

$$\overline{\Delta}^{i}(R_{j}) = \Delta^{i}(A^{-1}R_{j}A) \times$$

où A est un élément quelconque de RH (la coreprésentation de M étant indépendante du choix de A, nous prenons A = R dans le cas d'un groupe M paramagnétique)

Si $\Delta^{i}(R_{j})$ et $\overline{\Delta}^{i}(R_{j})$ sont équivalentes, on peut écrire

$$\overline{\Delta}^{i}(R_{j}) = \beta^{-1} \Delta^{i}(R_{j}) \beta \qquad (III.2)$$

Deux possibilités se présentent :

Si $\beta\beta^* = \Delta(A^2) = \Delta(R^2)$, la coreprésentation déduite de $\Delta^i(R_j)$ peut être définie de la manière suivante :

$$\begin{cases} D^{i}(R_{j}) = \Delta^{i}(R_{j}) \\ D^{i}(A_{j}) = D^{i}(RR_{j}) = \pm \Delta^{i} (A_{j}R^{-1})\beta = \pm \Delta^{i} (R_{j})\beta \end{cases}$$
(III.3)

Si $\beta\beta^* = - \Delta(R^2)$, la coreprésentation déduite de $\Delta^i(R_j)$ se définit comme suit :

$$\begin{cases} D^{i}(R_{j}) = \begin{pmatrix} \Delta^{i}(R_{j}) & 0 \\ 0 & \Delta^{i}(R_{j}) \end{pmatrix} \\ D^{i}(A_{j}) = D^{i}(RR_{j}) = \begin{pmatrix} 0 & -\Delta^{i}(R_{j})\beta \\ \Delta^{i}(R_{j})\beta & 0 \end{pmatrix} \end{cases}$$
(III.4)

Si $\Delta^{i}(R_{j})$ et $\overline{\Delta}^{i}(R_{j})$ ne sont pas équivalentes alors la coreprésentation de M déduite de $\Delta^{i}(R_{j})$ est donnée par :

$$D^{i}(R_{j}) = \begin{bmatrix} \Delta^{i}(R_{j}) & 0 \\ 0 & \overline{\Delta}^{i}(R_{j}) \end{bmatrix}$$

$$D^{i}(A_{j}) = \begin{bmatrix} 0 & \Delta^{i}(R_{j}) \\ \overline{\Delta}^{i}(R_{j}) & 0 \end{bmatrix}$$
(III.5)

Appliquons maintenant cette méthode à quelques exemples.

- 24 -

Exemple 1 : Coreprésentations irréductibles du groupe P4/mbm1' associées au point Z de la zone de Brillouin

Le point Z de la zone de Brillouin quadratique P est associé à une étoile kë [15] à une seule branche ($M_{\vec{k}_1} = D_{4h}xR$) de coordonnées (O O $\frac{\pi}{c}$). Les caractères de la représentation irréductible τ_2 de P4/mbm sont données par la table de Zak [16] :

	{E{0}}	(c,'ð)	{c ₂ [ð}	(c ³ (3)	(u_)E	{u_!t}	{U _{×y} [t]	(u _{xy} (t)			
۲2	1	1	1	1	- 1	- 1	- 1	- 1			
	(I J)	(s ₄ đ}(s ³ {0}{	σ _z ∣δ}	{σ _x t}	{ σ _y τ }	(σ _{×y} t)	(σ _{xy} t)	ŧ,	ŧ2	t ₃
۲2	1	1	1	1	-1	-1	- 1	- 1	1	1	- 1

 $\dot{t} = (\frac{a}{2}, \frac{a}{2}, 0)$

Nous verifions que quelque soit l'élément de P4/mbm, on a:

 $\bar{\Delta}(R_{j}) = \Delta^{(R_{j})} = \Delta(R_{j})$

La condition $\overline{\Delta}(R_j) = \beta^{-1} \Delta(R_j)\beta$ est toujours verifiée en prenant $\beta = 1$. Compte tenu que $\beta\beta^{"} = 1$, les caractères de la coreprésentation sont donnés par les équations (III.3):

 $D^{i}(R_{j}) = \Delta^{i}(R_{j})$ et $D^{i}(A_{j}) = D^{i}(RR_{j}) = \pm \Delta^{i}(R_{j})$

	(E 0)(c ₄ ð}{c	2 0) (c 2	ā}{u _x	€}{u _y €){u _{×y} tֿ}	{u _{xy} t}				
τ2	1	1	1	1 -1	-1	-1	-1				
τ_2	1	1	1	1 -1	-1	-1	-1				
	{I 0};	(s ₄ ð}{:	s <mark>3</mark> ₫}{σ	, םֿ} {ס _א	ŧ}{o _y ŧ	}{ס _{×y} [זֿ)	{]]] }	ŧ,	ŧ2	ť3	
τ2	1	1	1	1 -	I -1	-1	- 1	1	1	-1	
τ2	1	1	1	1 -	1 -1	-1	-1	1	1	-1	
	{RE}0	(RC4 \$}	(RC210)	{RC410}	(RU _x t)	(RUy)t}(גט _{×y} (ז)(ו	RU _{xy} ∣t	}		
τ,	1	1	1	1	-1	-1	- 1	-1			
τ_2	- 1	-1	-1	- 1	1	1	1	1			
	{RI[0]}	(RS4 \$}	(RS ³ 40)	{Rg_ \$}	(Rơ, t)	(Rơ _y t){	Rơ _{xy} [t]{	Rơ-y∣€	} Rt1	Rt ₂	Rt ₃
τ,2	1	1	1	1	- 1	-1	-1	-1	1	1	-1
τ ₂	-1	-1	- 1	- 1	1	1	1	. 1	- 1	- 1	1

Exemple 2 : Coreprésentations irréductibles du groupe P6cc1'associées au point A de la zone de Brillouin

- 26 -

Le point A de la zone de Brillouin hexagonale est associé à une étoile $k_1^{"}$ à une seule branche ($M_{k_1} = D_{6h} \times R$) de coordonnées (0 0 $\frac{\pi}{c}$). Les caractères des représentations irréductibles τ_5 et $\tau_5^{"}$ sont [16] :

La représentation complexe τ_5 associée à sa conjuguée τ_5^{*} constitue une représentation réelle réductible du point de vue mathématique mais <u>physiquement</u> <u>irréductible</u>. D'où la RI $\tau_5 + \tau_5^{*}$ de P6cc :

Par le changement de base

$$\eta' = \frac{1}{\sqrt{2}} (\eta + i \xi)$$

$$\xi' = \frac{1}{\sqrt{2}} (\eta - i \xi)$$

nous obtenons les matrices réelles :

$$\begin{array}{c} (t \mid \vec{0}) \quad (c_{3} \mid \vec{0}) \quad (c_{3}^{2} \mid \vec{0}) \quad (\sigma_{1} \mid \vec{1}) \quad (\sigma_{2} \mid \vec{1}) \quad (\sigma_{3} \mid \vec{1}) \quad (c_{2} \mid \vec{0}) \quad (c_{6} \mid \vec{0}) \quad (c_{6}^{5} \mid \vec{0}) \quad (\sigma_{x} \mid \vec{1}) \quad (\sigma_{xy} \mid \vec{1}) \quad \vec{1}_{1} \quad \vec{1}_{2} \quad \vec{1}_{3} \\ \hline \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \\ \vec{1} \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -$$

Quelque soit l'élément ${\tt R}_{j}$ du groupe P6cc , on a :

$$\overline{\Delta}$$
 (R_j) = Δ (R_j)^{*} = Δ (R_j)

et la condition $\overline{\Delta}(R_j) = \beta^{-1} \Delta(R_j) \beta$ est vérifiée en prenant $\beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; compte tenu que $\beta\beta^{*} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, les matrices de la CI sont données par les équations (III.3) :

$$\frac{\left(t \mid \vec{0}\right) \left(C_{3} \mid \vec{0}\right) \left(C_{3}^{2} \mid \vec{0}\right) \left(\sigma_{3}^{2} \mid \vec{1}\right) \left(\sigma_{2} \mid \vec{1}\right) \left(\sigma_{3} \mid \vec{1}\right) \left(c_{2} \mid \vec{0}\right) \left(C_{6}^{2} \mid \vec{0}\right) \left(C_{6}^{2} \mid \vec{0}\right) \left(\sigma_{x} \mid \vec{1}\right) \left(\sigma_{y} \mid \vec{1}\right) \left(\sigma_{xy} \mid \vec{1}\right) \vec{1}_{1}$$

$$\frac{\left(1 - 1\right) \left(1 - 1\right)$$

Remarquons que les matrices des RI sont <u>toutes réelles</u>, ce qui permet d'écrire à chaque fois l'équation (III.1) dans le cas des CI des groupes paramagnétiques sous la forme

$$\overline{\Delta}^{i}(R_{j}) = \Delta^{i}(R_{j})^{\mu} = \Delta^{i}(R_{j})$$

Ainsi les CI sont toujours construites à l'aide des équations (III.3) qui peuvent s'écrire ici :

$$\begin{cases} D^{i}(R_{j}) = \Delta^{i}(R_{j}) \\ D^{i}(A_{j}) = D^{i}(RR_{j}) = \pm \Delta^{i}(R_{j}) \end{cases}$$

- 27 -

Cette méthode est alors identique à celle employée par Kovalev [17]. Cet auteur note que pour chaque représentation τ du groupe H (sous-groupe unitaire de M = H + RH),on obtient deux coreprésentations τ_g et τ_u du groupe M. Pour la coreprésentation τ_g , paire vis-à-vis de l'opérateur R, nous avons la relation τ_g (R_j) = τ_g (RR_j) = τ (R_j) tandis que pour la représentation τ_u , impaire vis-à-vis de R, nous avons la relation τ_u (R_j) = $-\tau_u$ (RR_j) = τ (R_j) (R_j H). <u>Cette méthode consiste donc à multiplier par +1 ou par -1 les matrices des</u> <u>éléments unitaires de M pour trouver les matrices des éléments antiunitaires</u> <u>correspondants</u>. C'est cette dernière règle que nous utilisons, en prenant soin

IV. Sélection des coreprésentations susceptibles d'être associées à une transition de phases du second ordre.

de considérer des représentations physiquement irréductibles dans une base réelle.

paragraphe précédent, nous avons montré que nous obtenons deux CI τ^+ et τ^- , respectivement paire et impaire vis-à-vis de R ,à partir d'une seule RI τ . En outre, nous savons que R inverse le sens de l'aimantation M et qu'une CI traduit le comportement de tous les opérateurs appartenants au groupe d'invariance de M. on en déduit alors que seules les CI τ peuvent induire une transition d'une phase paramagnétique vers une phase magnétique (nous omettrons désormais le signe - dans la notation d'une CI). D'autre part, nous avons vu au chapitre 1 que les coreprésentations susceptibles d'être associées à une transition de phases du second ordre doivent vérifier le critère de Lifshitz imposé pour traduire l'homogénéité du cristal dans la phase de basse symétrie. La vérification de ce critère a été effectué dans les références [7,8] et il limite à un nombre fini les CI que nous avons à considérer ainsi que les points de la zone de Brillouin. D'autre part, la quasitotalité des points de la zone de Brillouin sélectionnés sont tels que $ec{k}_1 \, \circ \, -ec{k}_1$. Pour un petit nombre de points pour lesquels $\vec{k}_1 \neq -\vec{k}_1$, la prise en compte de la coreprésentation complexe conjuguée (c'est-à-dire d'une CI physiquement irréductible) conduit à une étoile \vec{k}_1 contenant à la fois \vec{k}_1 et $-\vec{k}_1$. Ces considérations justifient à postériori que nous nous soyons toujours placés, pour construire une CI, dans le cas exprimé par les équations (III.3), et que l'on ait écrit le groupe d'invariance du vecteur \vec{k}_1 sous la forme $M_{\vec{k}_1} = G_{\vec{k}_1} + RG_{\vec{k}_1}$ On peut remarquer d'autre part que les représentations irréductibles éliminées par le critère de Landau conduisent à des CI qui vérifient ce critère. Nous les avons donc prises en compte dans notre travail puisqu'elles sont susceptibles

- 28 -

d'induire une transition du second ordre. La liste des RI qui ne vérifient pas la condition de Landau a été dressée dans les références [8,18]. Au total, près de 4000 CI doivent être examinées pour déterminer les transitions de phases du second ordre para-ferromagnétiques et para-antiferromagnétiques.

V. Méthode d'application de la théorie de Landau à partir d'une phase paramagnétique

Afin de trouver toutes les transitions de phases induites par une CI d'un groupe paramagnétique $G_0 \propto R$ correspondant à un point de la zone de Brillouin de coordonnées k_1 ,nous devons effectuer les opérations suivantes :

1) Détermination de l'étoile \vec{k}_1^{*}

2) Construction des CI à partir des petites CI des groupes d'invariance $M_{k_1}^{\downarrow} = G_{k_1} + RG_{k_1}$ des vecteurs d'onde de la zone de Brillouin.

3) Détermination de <u>l'image</u> de la CI, qui est l'ensemble des matrices distinctes de la CI considérée.

4) Construction du potentiel thermodynamique associé à cette image.

5) Recherche des minima du potentiel précédent (tronqué jusqu'au degré le plus petit induisant un changement de symétrie) afin de déterminer les diverses solutions stables.

6) Identification des groupes spatiaux magnétiques correspondant aux solutions stables précédentes.

Les résultats des étapes 3, 4 et 5 se trouvent pour la plupart des cas dans les références [7-10]. Seules les CI de dimension 6 ont dû faire l'objet d'une étude particulière (voir chapitre 4).

Illustrons cette méthode en prenant l'exemple de la coreprésentation $\tau_{\tt Z}$ au point N ($\vec{k}_1 = (\frac{\pi}{a}, \frac{\pi}{a}, 0)$) de la zone de Brillouin cubique I correspondant au groupe de Shubnikov Im3'.

1) <u>Détermination de l'étoile $k_1^{"}$ </u> Les tables de Zak et Al [16] nous donnent les éléments du groupe spatial Im3 (T_h^5). Les 24 opérations spatiales sont :

 $E|000, 3U|000, 4C_{3}|000, 4C_{3}^{2}|000, I|000, 3\sigma|000, 4S_{6}|000, 4S_{6}^{5}|000$ On en déduit les 48 opérations spatiales du groupe Im3' :

- 29 -

$$\begin{split} & \texttt{E}[000 \ , \ \texttt{3U}[000 \ , \ \texttt{4C}_3|000 \ , \ \texttt{4C}_3^2|000 \ , \ \texttt{I}|000 \ , \ \texttt{3\sigma}|000 \ , \\ & \texttt{4S}_6|000 \ , \ \texttt{4S}_6^5|000 \ , \ \texttt{RE}|000 \ , \ \texttt{3RU}|000 \ , \ \texttt{4RC}_3|000 \ , \ \texttt{4RC}_3^2|000 \ , \\ & \texttt{RI}|000 \ , \ \texttt{3R\sigma}|000 \ , \ \texttt{4RS}_6|000 \ , \ \texttt{4RS}_6^5|000 \ . \end{split}$$

Les translations primitives associées à ce groupe symorphique sont :

$$\vec{t}_1 = (\frac{a}{2}, \frac{a}{2}, -\frac{a}{2}); \vec{t}_2 = (-\frac{a}{2}, \frac{a}{2}, \frac{a}{2}); \vec{t}_3 = (\frac{a}{2}, -\frac{a}{2}, \frac{a}{2})$$

Les coordonnées du vecteur \vec{k}_1 sont : $\vec{k}_1 = (\frac{\pi}{a}, \frac{\pi}{a}, 0)$ Le groupe d'invariance du vecteur \vec{k}_1 est alors l'intersection de $T_h \times R$ et de $D_{2h}^{(xy)} \times R$, c'est-à-dire $C_{2h}^{(z)} \times R$. On en déduit que le nombre de branches de l'étoile du vecteur \vec{k}_1 est :

n = $\frac{\text{nombre d'éléments du groupe T}_{h x R}}{\text{nombre d'éléments du groupe C}_{2h}^{h x R}} = \frac{48}{8} = 6$

Les coordonnées des 6 branches de l'étoile s'obtiennent en transformant les coordonnées de \vec{k}_1 , respectivement par six opérations ponctuelles de symétrie de T_h qui ,par multiplication des huit éléments de $C_{2h}^{(z)}xR$ conduisent à retrouver les 48 éléments de T_hxR .On peut par exemple choisir les six opérations suivantes :

E U_x C_3^{2xyz} C_3^{xyz} C_3^{xyz} C_3^{xyz} C_3^{xyz} C_3^{2xyz} qui fournissent les six branches de l'étoile \vec{k}_1^x

$$\begin{split} \mathbf{E}(\vec{k}_{1}) &= \vec{k}_{1} = (\frac{\pi}{a}, \frac{\pi}{a}, 0) & \mathbf{C}_{3}^{xyz}(\vec{k}_{1}) &= \vec{k}_{4} = (\frac{\pi}{a}, 0, \frac{\pi}{a}) \\ \mathbf{U}_{x}(\vec{k}_{1}) &= \vec{k}_{2} = (\frac{\pi}{a}, \frac{\pi}{a}, 0) & \mathbf{C}_{3}^{xyz}(\vec{k}_{1}) &= \vec{k}_{5} = (0, \frac{\pi}{a}, \frac{\pi}{a}) \\ \mathbf{C}_{3}^{2xyz}(\vec{k}_{1}) &= \vec{k}_{3} = (\frac{\pi}{a}, 0, \frac{\pi}{a}) & \mathbf{C}_{3}^{2xyz}(\vec{k}_{1}) &= \vec{k}_{6} = (0, \frac{\pi}{a}, \frac{\pi}{a}) \end{split}$$

Les caractères de la petite représentation τ_3 associée au point N sont :

C(z) 2h	{E 000}{U _z 000}{I 000}{σ _z 000}								
τ ₃	1	1	-1	-1					

2) Construction des matrices des coreprésentations irréductibles

Les matrices associées à la CI sont :

- les matrices des trois translations primitives \vec{t}_1, \vec{t}_2 et \vec{t}_3 et des trois antitranslations $R\vec{t}_1, R\vec{t}_2$ et $R\vec{t}_3$.

- 30 -

- les matrices des 48 opérations du groupe Im3'

- les matrices distinctes obtenues à partir de toutes les combinaisons de matrices prises dans les deux groupes précédents,l'ensemble de ces matrices formant l'image de la CI.

i)Matrices associées aux translations primitives .

La forme générale des matrices est :

On obtient ainsi successivement les trois matrices :

et en associant l'opération R :

$$\mathbf{R}_{1}^{\mathbf{t}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix} \mathbf{R}_{2}^{\mathbf{t}} = \begin{bmatrix} -\mathbf{1} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix} \mathbf{R}_{3}^{\mathbf{t}} = \begin{bmatrix} -\mathbf{1} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} \end{bmatrix}$$

- 31 -
ii) <u>Matrices associées aux 48 opérations spatiales du groupe Im3'</u> La petite coreprésentation irréductible τ_3 se déduit de la petite RI τ_3 . On a ici :

(z) 2h	{E 000}	{u _z 000	}{I 000}	(σ _z 000}	{RE 000}	{RU_z 000}	{RI 000}	{Rơ _z 000]
τ ₃	1	1	-1	- 1	-1	-1	1	1

Le principe de construction des CI à partir des petites coreprésentations d'un groupe magnétique est le même que celui de la construction des RI à partir des petites représentations d'un groupe cristallographique [15]. Ainsi nous obtenons la CI τ_3 du groupe de Shubnikov Im3' (Tableau (2.1)). On peut constater que 24 de ces matrices sont distinctes. L'image de la coreprésentation considérée possède 192 éléments que l'on écrit sous la forme synthétique :

Dans la référence [9], cette image est notée L.

3) <u>Construction du potentiel thermodynamique associé à l'image L₈.</u>

Les propriétés de symétrie du paramètre d'ordre à six composantes $(\eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6)$ correspondant à la CI τ_3 et à l'image L₈, fournit les invariants du quatrième degré suivants :

- 32 -

$$\left(\sum_{i=1}^{\Sigma} n_{i}^{4} \right); \left(n_{1}n_{4}n_{2}n_{5} + n_{1}n_{4}n_{3}n_{6} + n_{2}n_{5}n_{3}n_{6} \right); \left(n_{1}^{2}n_{4}^{2} + n_{2}^{2}n_{5}^{2} + n_{3}^{2}n_{6}^{2} \right);$$

$$\left\{ \left(n_{1}^{2}n_{2}^{2} + n_{1}^{2}n_{3}^{2} + n_{1}^{2}n_{5}^{2} + n_{1}^{2}n_{6}^{2} \right) + \left(n_{2}^{2}n_{3}^{2} + n_{2}^{2}n_{4}^{2} + n_{2}^{2}n_{6}^{2} \right) + \left(n_{3}^{2}n_{4}^{2} + n_{3}^{2}n_{5}^{2} \right) + \left(n_{4}^{2}n_{5}^{2} + n_{4}^{2}n_{6}^{2} \right) + n_{5}^{2}n_{6}^{2} \right\}$$

Le potentiel thermodynamique s'écrit sous une forme contractée :

$$\Phi = \Phi_{0} + \frac{\alpha}{2} \sum_{i=1,6} n_{i}^{2} + \frac{1}{4} \beta_{1} \sum_{i=1,6} n_{i}^{4} + \frac{1}{2} \beta_{2} (n_{1}^{2}n_{4}^{2} + n_{2}^{2}n_{5}^{2} + n_{3}^{2}n_{6}^{2}) + \frac{1}{2} \beta_{3} (\sum_{i(IV.1)
Si 1'on pose $n_{i} = \rho_{i}\cos\psi_{i}$ et $n_{i+3} = \rho_{i}\sin\psi_{i}$ (i=1,3) alors (IV.1) s'écrit :
 $\Phi = h_{2} = \Phi_{0} + \frac{\alpha}{2} \sum_{i=1,3} \rho_{i}^{2} + \frac{1}{4} \beta_{1} \sum_{i=1,3} \rho_{i}^{4} + \frac{1}{4} \beta_{2} \sum_{i=1,3} \rho_{i}^{4}\cos4\psi_{i} + \frac{1}{2} \beta_{3} \sum_{i$$$

4) Recherche des minima déterminant les solutions stables.

La discussion du potentiel qui a pour but de déterminer les minima absolus correspondant aux phases stables de basse symétrie s'effectue en annulant les dérivées premières puis en étudiant la positivité des mineurs de la matrice des dérivées secondes. Les six solutions stables ainsi trouvées dans le cas du potentiel h_2 sont [9] :

- Solution I
 : $(n0 \ 00 \ 00)$

 Solution II
 : $(nn \ 00 \ 00)$

 Solution III: $(n0 \ n0 \ n0)$

 Solution IV
 : $(0n \ 0n \ 0n)$

 Solution V
 : $(nn \ nn \ nn)$

 Solution VI
 : $(nn \ nn \ 00)$
- 5) Identification des groupes spatiaux magnétiques correspondant aux solutions p**ré**cédentes

L'identification des groupes magnétiques associés aux solutions précédentes s'effectue en deux étapes :

- détermination du changement de symétrie de translation
- détermination du groupe magnétique

Dans le cas de la Solution I,on vérifie aisément à l'aide des matrices de \vec{t}_1, \vec{t}_2 et \vec{t}_3 que les translations $2\vec{t}_1, \vec{t}_2, \vec{t}_3$ correspondent aux nouvelles translations de la phase basse température,celle-ci contenant également l'antitranslation $R\vec{t}_1$. Le sous-groupe ponctuel G (sous-groupe maximum de matrices laissant invariante la direction de l'espace support de la CI correspondant à la Solution I) est constitué (si l'on considère les propriétés de transformations des matrices (2.1)),

$$E U_z I \sigma_z$$

La maille élémentaire de la phase de basse symétrie correspond aux nouvelles translations primitives :

$$\vec{t}_{1} = \vec{t}_{2} = (\frac{a}{2}, \frac{a}{2}, \frac{a}{2})$$

$$\vec{t}_{2} = \vec{t}_{3} = (\frac{a}{2}, \frac{-a}{2}, \frac{a}{2})$$

$$\vec{t}_{3} = 2\vec{t}_{1} + \vec{t}_{2} + \vec{t}_{3} = (a, a, 0)$$

c'est-à-dire à un réseau Monoclinique B (avec un doublement de la maille paramagnétique).

La translation perdue à la tansition s'écrit

$$\vec{t}_1 = \frac{\vec{t}_3' - \vec{t}_2' - \vec{t}_1'}{2} = (\frac{a}{2}, \frac{a}{2}, \frac{-a}{2})$$

Le réseau de Bravais magnétique obtenu en considérant l'antitranslation Rt_1 est le réseau Monoclinique C_C. Les éléments du groupe spatial obtenus à partir du tableau (2.1) :

 $\{E|000\}$; $\{U_{z}|000\}$; $\{I|000\} \times \vec{t}_{1}$; $\{\sigma_{z}|000\} \times \vec{t}_{1}$

constituent le groupe spatial B2/b auquel correspond le groupe de Shubnikov C_2/c .

De la même façon, nous obtenons les groupes magnétiques de la phase basse symétrie correspondant aux autres solutions stables .on peut résumer ces résultats comme suit:

- 35 -

 $I \rightarrow C_{c}^{2/c} \quad (maille \times 2)$ $II \rightarrow C_{a}mma \quad (maille \times 4)$ $III \rightarrow R_{I}^{3} \quad (maille \times 8)$ $IV \rightarrow R\overline{3}' \quad (maille \times 8)$ $V \rightarrow Im'^{3} \quad (maille \times 8)$ $VI \rightarrow I_{a}^{bam} \quad (maille \times 8)$

Les six solutions stables correspondent à des transitions para-antiferromagnétiques

- 36 -

REFERENCES :

1. A.P.Cracknell et A.K.Sedaghat, J.Phys.C.Solid state Phys., 5,977(1972)

2. A.P.Cracknell, J.Lorenc et J.A.Prystawa, J.Phys.C.Solid State Phys., 9, 1731(1976)

3. J.O.Dimmock et R.G.Wheeler, Phys. Rev., 127, n°2, 391 (1962)

4. Yu.I.Sirotin, Sov.Phys.Crystallo., 8, n°2, 195(1963)

5. O.V.Kovalev, Sov. Phys. Crystallo., 9, 6, 665 (1965)

6. O.V.Kovalev, Sov. Phys. Solid State, 5, n°11, 2315 (1964)

7. P.Tolédano et J.C.Tolédano, Phys. Rev. B14 ,7,3097(1976)

8. P.Tolédano et J.C.Tolédano, Phys. Rev. B16, 1,386(1977)

9. J.C.Tolédano et P.Tolédano, Phys. Rev. B21, 3, 1139(1980)

10. P.Tolédano et J.C.Tolédano, Phys. Rev. <u>B25</u>, 3, 1946(1982)

11. N.V.Belov, N.N.Neronova et T.S.Smirnova, Sov. Phys. Crystallo., 2,311(1957)

12. E.P.Wigner, Group Theory, Academic Press, New-York, 1959

13. C.J.Bradley et A.P.Cracknell, The Mathematical Theory of symmetry in Solids, Clarendon Press, Oxford 1972

14. J.O.Dimmock et R.G.Wheeler, J.Phys.Chem.Solids 23, 729(1962)

15. G.Ya.Lyubarskii, The Application of Group Theory in Physics, Pergamon Press, New-York, 1960

16. J.Zak, A.Casher, H.Glück et Y.Gur, The Irreducible Representations of Space Groups, Benjamin ,New-York, 1969

17. O.V.Kovalev, Sov. Phys. Solid State, 5, 2309, (1964)

18. P.Tolédano et G.Pascoli, Ferroelectrics, 25, 427 (1980)

CHAPITRE 3

CHANGEMENTS DE RESEAUX DE BRAVAIS QUI ACCOMPAGNENT LES TRANSITIONS PARA - FERROMAGNETIQUES ET PARA - ANTIFERROMAGNETIQUES

Plusieurs auteurs ont abordé la question des changements de réseaux de Bravais qui peuvent se produire lors des transitions de phases structurales. Lifshitz[1]puis Naish et Syromyatnikov[2]ont établi des tables comportant pour chaque modification de structure :

- le réseau de Bravais de la phase de basse symétrie

- la multiplication de la maille cristalline

- les translations primitives de la phase de basse symétrie en fonction des translations primitives de la phase prototype.

Cependant ces auteurs se bornent à des considérations de symétrie et n'abordent pas l'aspect thermodynamique du problème. Dans la référence[3]des tables complètes des modifications structurales sont données ; elles tiennent compte de la non - stabilité éventuelle des phases de basse symétrie. Dans cette référence, tous les changements de réseaux compatibles avec les branches considérées de chaque étoile sont indiqués. Tous ces résultats sont rappelés dans les premières colonnes des Tableaux (3.1).

Dans le cas des transitions para - ferromagnétiques et para - antiferromagnétiques, il faut également considérer les combinaisons de l'opérateur R avec les translations perdues qui laissent invariante la densité de moment magnétique M (\vec{r}) si l'on veut également obtenir les antitranslations associées à chaque changement de symétrie. Ces nouvelles antitranslations doivent satisfaire aux équations :

> $i \vec{k} \cdot R \vec{t}_i$ e = 1 (i=1,3)

Les colonnes (g) et (h) du tableau (3.1) indiquent pour tous les points de la zone de Brillouin , les antitranslations correspondantes et les réseaux de Bravais associés.

Le problème de la détermination des changements de réseau de Bravais magnétiques avait été traité en partie par Izyumov et Al [4] . Ces auteurs considèrent les vecteurs \vec{k} sélectionnés par la condition de Lifshitz.Ils obtiennent les translations des réseaux de basse symétrie, les réseaux de Bravais correspondant: ainsi que la multiplication de la maille cristalline élémentaire.

- 38 -

Cependant, le travail effectué par ces auteurs comporte les restrictions suivantes:

1. les changements de réseaux associés à $\vec{k} = 0$ sont absents

2. il n'est pas tenu compte de la non- stabilité des phases de basse symétrie. Certains changements cités par ces auteurs sont associés à des transitions vers une phase de basse symétrie instable au voisinage du point de transition.

3. Pour chaque solution envisagée par ces auteurs ne sont mentionnés que les changements vers le réseau le plus symétrique compatible avec le réseau de la phase prototype. Par exemple, au point H du réseau hexagonal P, nous indiquons que trois changements possibles de réseaux sont prédits par la théorie de Landau (Tableau 3.1.3) :

> Hex P \rightarrow Hex P_c Hex P \rightarrow Mo C_c Hex P \rightarrow Tri P_s

alors qu'Izyumov et Al mentionnent uniquement le changement de réseau :

Hex $P \rightarrow Hex P_c$

4. Plusieurs changements de réseaux donnés par ces auteurs sont érronés. Ainsi une confusion semble être faite entre les réseaux P_{C} et P_{c} pour l'ensemble des systèmes cristallins.

Le tableau (3.1) résume nos résultats. Ce tableau est subdivisé en six sous - tableaux notés de (3.1.1) à (3.1.6) comportant chacun huit colonnes La première colonne (a) mentionne les points de la zone Brillouin (centre et surface) avec les deux notations des tables de Zak [5] et Kovalev [6](dans cet ordre).Dans le cas du réseau triclinique, nous reprenons la convention utilisée dans la référence [3]. Dans la colonne (b), sont indiquées les coordonnées du vecteur \vec{k}_1 correspondant au point de la zone de Brillouin situé sur la même ligne, exprimées en fonction des translations primitives du réseau réciproque. La colonne (c) donne le groupe d'invariance $G_{k_1}^{*}$ du vecteur \vec{k}_1 précédent. Le nombre maximum de branches de l'étoile de \vec{k}_1 figure dans la colonne (d). Dans la colonne (e) sont indiquées les translations primitives de la phase de basse symétrie en fonctions des translations primitives de la phase tique prototype. S'il existe plusieurs groupes de translations de basse symétrie

- 39 -

pour un même point,ils sont tous indiqués. Dans la colonne (f) on trouve la multiplication de la maille cristalline élémentaire pour chacun des changements précédents. Les antitranslations sont notées dans la colonne (g) en fonction des translations primitives de la phase prototype. Enfin dans la colonne (h),nous donnons les réseaux de Bravais des phases de basse symétrie ,classés par symétrie décroissante.

Des tableaux (3.1.1) à (3.1.6) il ressort que quatre types de situations peuvent se produire. Un premier type de transitions magnétiques comprend les transitions accompagnées d'un réarangement de spins mais sans modification de la maille structurale, il n'y a donc pas de translations perdues lors de la transition et il existe toujours au moins une antitranslation Rt_i . Dans ce cas la transition est toujours accompagnée d'une multiplication de la maille élémentaire (associée à un point de la surface de la zone de Brillouin) et la nouvelle maille magnétique possède les mêmes vecteurs de base que la maille structurale induite par la RI associée à la CI considérée. Nous pouvons citer comme exemple de cette classe de transitions, le changement de réseau de Bravais orthorhombique P \rightarrow orthorhombique P_c au point Y ($\vec{k} = (0, \frac{1}{2}, 0)$) où il existe l'antitranslation Rt_2 . Les translations du réseau de basse symétrie sont $t_1' = t_1$, $t_2 = 2t_2$, $t_3 = t_3$; le changement de réseau est alors accompagné d'un doublement de maille. Une deuxième famille de transitions magnétiques comprend les transitions induites par les CI du centre de la zone de Brillouin. Dans ce cas, il n'y a pas de translations perdues mais il y a perte de toutes les antitranslations. L'apparition d'un ordre magnétique crée un abaissement de la symétrie du motif cristallographique sans qu'ilyait réarangement des positions atomiques dans la maille. Citons comme exemple ,le changement Cubique P + Quadratique P en centre de zone (sans modification de la maille élémentaire) . La transition a alors lieu entre deux classes magnétiques différentes. Un troisième type de transitions magnétiques contient les transitions où il y a simultanément perte de translations et d'antitranslations ce qui exprime un déplacement des atomes et un réarangement des spins simultanés. De plus, il apparait de nouvelles antitranslations $R(\vec{t}_i + \vec{t}_i)$ qui impliquent l'existence d'un réseau antiferromagnétique. Ceci est le cas, par exemple au point L du réseau Cubique F où s'effectuent les changements de réseaux de Bravais :

> Cub $F \rightarrow Cub F_s$ Cub $F \rightarrow Qua I_c$ Cub $F \rightarrow Or F_s$

- 40 -

(19/15

•				TABL	EAU 3.1.3			- 43 -
	(a)	(b)	(c)	(d)	(c)	(f)	(,)	(h)
		-		· · · · · · · · · · · · · · · · · · ·			-	-

ORTHORHOMBIC I

			(t_1, t_2, t_3)		OrI
Γ[k_7]	000	١	1	$t_1, -t_2, t_1, t_3$	l.		MoB ^z
				$t_2, -t_3, t_1, t_2$		_	Mo6 [×]
	119	, www.u.,	1	$t_{3}, -t_{1}, t_{2}, t_{3}$)		Mosy
X[k ₁₈]	222)		$\vec{t}_1 \cdot \vec{t}_3, \vec{t}_2 - \vec{t}_3, \vec{t}_1 - \vec{t}_2$	2	Rt ₁ , Rt ₂ , Rt ₃	OrP _I
U[k ₁₄]	$\frac{1}{2}00$	1		$2t_1 t_3 t_2 t_2 t_2 t_3$	4	$R(\vec{t}_1,\vec{t}_2),R(\vec{t}_1,\vec{t}_3)$	٥r٨ _c
• •	2			$[-t_3, t_2, 2t_1 - t_2 + t_3]$	2	Rt ₁	MoCa
T(k ₁₃)	$\frac{1}{2}0 - \frac{1}{2}$	$\frac{2}{2}$			4	$R(\vec{t}_1 + \vec{t}_2), R(\vec{t}_2 + \vec{t}_3)$	0rA _c
_			2	$\begin{bmatrix} \tilde{t}_2, \tilde{t}_1, \tilde{t}_3, \tilde{t}_2, \tilde{t}_1, \tilde{t}_3 \end{bmatrix}$	2	Rt ₁ , Rt ₃	MoCc
S(K ₁₅)	$\frac{1}{2}\frac{1}{2}$ 0			t ₁ ±t ₂ , t ₁ -t ₂ +2t ₃	4	$R(\vec{t}_1 + \vec{t}_3), R(\vec{t}_2 + \vec{t}_3)$	OrC _a
				$[-t_3, t_1, t_3, t_2, t_1, t_2]$	2	Rt ₁ , Rt ₂	MoCe
	31 1			+ + + + + + +	($R(\tilde{t}_1,\tilde{t}_3)$	
H [K 16 J	44 4	2221		$L^{t_1 t_2, t_1 - t_3, 2t_1 t_3 - t_2}$	4	$R(t_1-t_2)$	Orfs
					($R(\dot{t}_3 - \dot{t}_2)$	

BUS

			TABLEAU 3.1.4		
(â) 	(៦)	(c)	(d) (e)	(f) (g)	(h) - 44 -
		••••••			
			TETRAGONA	L P	
I (L)	1.0 <i>1</i> .	-	Г···		(TelP. OFF. OFC
17			¹ 1 ¹ 2 ¹ 3	1 -	YoF.MoP .TriF
			$\int \vec{t}_{1} = \vec{t}_{1} = (\vec{t}_{1} + \vec{t}_{2})$	7 \	
¢(¥20)	222			Rt 1, Rt 2, Rt 3	s s
		1'			° ^{r1} c
			\ `1 ⁻ `3'`1 ⁺ `2	2	(MoC a
M(k_18)	$\frac{11}{22}$ 0		$t_1 = t_2, t_3$	Rt, Rt,	TetP _C ,OrC a
					OrP _C , MoP _a
2(k ₁₉)	00 ¹ 2]	$i_1, i_2, 2i_3$	Rt	TetP ,OrP c
				5	Orc, MoPb
X(k ₁₅)	0 ¹ 20		$\left(\right)^{2t_{1},2t_{2},t_{3}}$	$4 R(t_1 + t_2)$	TetP C
		mmm1.	$2 \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2 Rt 2	OrP, MoPa
R(k ₁₆)	$0\frac{11}{22}$)	$\left\{\begin{array}{c}t_{1} \stackrel{t}{=} t_{2} \stackrel{-t}{=} t_{3} \stackrel{t}{=} t_{1} \stackrel{+t}{=} t_{2} \\ \begin{array}{c}t_{1} \stackrel{-t}{=} t_{2} \stackrel{-t}{=} t_{3} \\ \begin{array}{c}t_{1} \stackrel{-t}{=} t_{3} \\ \begin{array}{c}t_{1} \stackrel{-t}{=} t_{3} \\ \end{array}\right\}$	4 $R(t + t), Rt$ 1 2 3	TetI,MoC,OrF c a s
			$\left(\begin{array}{c} t_{1}, t_{3} \\ t_{2} \end{array} \right)$	2 Rt ₂ , Rt ₃	OrA,MoC,MoP
			TETRAGONA	LI	
			$\int /\tilde{t}_1, \tilde{t}_2, \tilde{t}_3$	A second s	/ Tetl Orl Trip
			t .+t ., t ., t		0.5
r(14)	000		$\left\{ \begin{array}{c} 1 & 3 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \end{array} \right\}$	1 -	, NoP
		4	$\begin{array}{c} 1 3 1 2 \\ \vdots \\ t i t -t -t \\ \end{array}$		F.OB
Z(k.,)	1-1-1	mmm ·		1	\ ^{MOB} xy
בר א(-)	111		$\{ \tilde{t}_1, \tilde{t}_3, \tilde{t}_2, \tilde{t}_3, \tilde{t}_1, \tilde{t}_2 \}$	2 Rt, Rt, Rt, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	TetP ₁ , OrF ₁ , OrC ₄ , MoP _C
A(k)	31-1	J 42m1'		$\begin{bmatrix} R(\hat{t}_{1} + \hat{t}_{3}), R(\hat{t}_{1} - \hat{t}_{2}) \\ R(\hat{t}_{1} - \hat{t}_{2}) \end{bmatrix}$	
12	44 4			$\frac{1}{R(t_3-t_2)}$	Tetl orl orF
			$\vec{t}_1 = \vec{t}_2, 2\vec{t}_3 = \vec{t}_2 + \vec{t}_1$	4 R($\vec{t}_1 + \vec{t}_3$), R($\vec{t}_2 + \vec{t}_3$)	/ TetP
X(k 13	$\frac{11}{22}$ 0	mmm1'	$2\left\{ \vec{t}_{3}, \vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}, $	2]	OrC, OrA
			$-t_3, t_4 - t_5 + t_3, t_4 + t_7$	2 Rt , Rt 2	MoC
			2t , 2t , 2t	$\vec{B} = R(\vec{t}_1 + \vec{t}_2)$	Tetl .Orl .MoC
			-t ₃ ±t ₃ , 2t ₁ -t ₃ +t ₃	$4 R(\vec{t}_1 + \vec{t}_2), R(\vec{t}_1 + \vec{t}_2)$	C C A OrA_,OrC_MoC
N(K_1)	$\frac{1}{2}$ 00	2 	4 21, i, t	2	c' a' a MoC .TriF
			21,1,21	4 Rť	c's TriP
			27,27,7	4 R(t +t)	MoC .Tr1P
			$21 \cdot 21 1 \cdot 1 1 1$	1 2 ∧ R [‡]	mar S Blin
			L 3111 2 3/12	9 ^{r. L} 1	

(Sis Unit

				TABLEAU 3.1.6			- 46 -
(a)	(b)	(c)	(d)	(c)	(f)	(5)	(h)
		 -rout-station 	• • •	CUBIC P			•••••••••••••••••••••••••••••••••••••••
Γ ^{[k} 12 []]	000)		. (t ₁ ,t ₂ ,t ₃	1	-	CubP,TetrP,OrP,R
R(k ₁₃)	$\frac{111}{222}$	m3'm	` {	^t ₁ , ^t ₂ , ^t ₁ , ^t ₃ , ^t ₂ , ^t ₃	2	Rt1, Rt2, Rt3	CubF, TetrI, RI OrF, TriP
		v	(2t ₁ , 2t ₂ , 2t ₃	8	$R(\vec{t}, \vec{t}, \vec{t}, \vec{t}, \vec{t})$	
×(k ₁₀)	0 <mark>1</mark> 20	4' mmm 1 '	3	$2t_1, t_2, 2t_3$	4	R(t,+t)	TetrPC
		-	(t ₁ ,2t ₂ ,t ₃ t +t -t t +t -t	2	Rť ₂	TetrP,OrP,OrC c
M(k ₁₁)	$\frac{11}{22}$ 0	<u>4</u> 1' mmm	з	$t_{1} t_{2}, t_{3}$	2	Rt1, Rt2	TetrPc,OrC,OrPc,MoPc

CUBIC F

Γ(k ₁₁)	000	m 3 ' m	1	t_1, t_2, t_3	1	•	CubF,R,TetrI,OrF
¥(F)	<u>11</u> 0	-4 ^y .	_ (t ₁ ±t ₂ ,t ₃ ,t ₂ ,t ₃ -t ₁	4	-	CubP,R,TetrP, MoC
<u>^``10'</u>	22	mmm	- ($\vec{t}_2 - \vec{t}_1, \vec{t}_3, \vec{t}_1 + \vec{t}_2 - \vec{t}_3$	2	Rt1.Rt2	TetrPI.OrPI.OrCA
				2t ₁ ,2t ₂ ,2t ₃	8	$R(t_{1}, t_{2}, t_{3})$	CubF,Tetri,OrFs
L[Kg]	$\frac{111}{222}$	3. m1	4	^t 3 ^{±t} 1, ^t 1 ^{+t} 2	2	Rt ₁ , Rt ₂ , Rt ₃	R _I .TriP _s
			($2t_3 - t_1 - t_2, t_1 \pm t_2$	4	Rt ₃	OrC, MoC
WEX 3	311	4 2m1'	_Б ($2(t_1 t_2 t_3), -2t_1 t_2 t_2 t_3$	32	$R(\vec{t}_{1} + \vec{t}_{2} + \vec{t}_{3})$	CubPI
8	424	×	- (2t ₁ -t ₂ ,t ₁ +t ₃ ,2t ₃ -t ₂	4	R2t ₁ , Rt ₂ , R2t ₃	Tetric

CUBIC I

		١	1	+ + +			CubI.R
Г[к]]	000			t ₁ , t ₂ , t ₃	٦	•	(TetrI,OrI
	111	} m3'm	1	* * * * * *	-	at at at	CubP _I ,R _I
H(k ₁₂)	222)	١	t1+t3,t1+t2,t2+t3	2	Rt1, Rt2, Rt3	(TetrP _I ,OrP _I
	111	.	. ($2\vec{t}_1 \cdot \vec{t}_2 \cdot \vec{t}_3, \vec{t}_3 - \vec{t}_2, \vec{t}_1 - \vec{t}_3$	1.1	$R(\vec{t}_1 + \vec{t}_2), R(\vec{t}_1 + \vec{t}_3)$	MoCa
P(k ₁₀)	444	43'm	2	$\vec{t}_1 - \vec{t}_2, \vec{t}_1 - \vec{t}_3, 2\vec{t}_1 + \vec{t}_2 + \vec{t}_3$	\$* {	$R(\vec{t}_2 \cdot \vec{t}_3)$	CubF ,Tetrl ,OrF
			ĺ		(-	(^{CubI,R}
				$2\vec{t}_1, 2\vec{t}_2, 2\vec{t}_3$	8	$R(\vec{t}_1 \cdot \vec{t}_2 \cdot \vec{t}_3)$	RI
N (K _g)	$\frac{1}{2}$ 00	^{mmm} ×y	6		($R(\vec{t}_1 \cdot \vec{t}_3)$	(TetrI _c .DrI _c
		-		$\vec{t}_3 \pm \vec{t}_2, 2\vec{t}_1 + \vec{t}_2 + \vec{t}_3$	4	$R(\vec{t}_1 \cdot \vec{t}_2), R(\vec{t}_1 \cdot \vec{t}_3)$	Tetr ^p C,OrCa
			($2t_1 + t_2 + t_3 + t_2 + t_3$	2	Rt1	MoC _c , OrC _A
							(2. N ·

Les translations \vec{t}_1 , \vec{t}_2 et \vec{t}_3 sont perdues ainsi que les anti - translations $R\vec{t}_1$, $R\vec{t}_2$ et $R\vec{t}_3$. Cependant il apparait l'antitranslation R ($\vec{t}_1 + \vec{t}_2 + \vec{t}_3$) qui correspond à l'existence des réseaux antiferromagnétiques Orthorhombique F_s, Quadratique I_c et Cubique F_s.

Enfin une quatrième classe de transitions comprend des changements s'effectuant en des points de la surface de la zone de Brillouin pour lesquels les réseaux de basse symétrie ne comportent aucune antitranslation. La maille magnétique possède les mêmes vecteurs de base que la maille structurale induite par la RI associée à la CI considérée. Il y a aussi perte de translations qui conduit à un abaissement de la symétrie du motif. Citons comme exemple le changement de réseau cubique I \rightarrow Rhomboèdrique R au point N de coordonnées ($\frac{1}{2}$, 0, 0) qui est accompagné d'une multiplication de la maille élémentaire par 8

En résumé, les deux premières familles de changements de réseaux de Bravais sont associées à des transitions <u>purement magnétiques</u> puisque il n'y a pas de translations perdues. Au contraire, les deux dernières sont associées à des transitions <u>simultanément structurales et magnétiques</u> car les transitions sont accompagnées à la fois d'une perte de translations et d'antitranslations.

Ci - dessous, nous établissons quatre tableaux (3.2.A) - (3.2.D) correspondant respectivement aux quatre types de changements de réseaux décrits précédemment. Chaque tableau comporte trois colonnes. La colonne (a) indique le réseau de Bravais de haute symétrie, la colonne (b) le réseau de Bravais de basse symétrie et la colonne (c) les points de la zone de Brillouin associés aux changements de réseaux de Bravais. Remarquons que les changements de réseaux de Bravais indiqués dans les tableaux (3.2.A) et (3.2.C) sont toujours reliés à des transitions para - antiferromagnétiques tandis que les tableaux (3.2.B) et (3.2.D) contiennent des transitions para - ferromagnétiques et para -antiferromagnétiques. On peut remarquer ainsi que les changements de réseaux du premier type décrits ci-dessus sont prédominants.

(a)	(Ь)	(c)	(a)	(ь)	(c)	
TriP	TriP	A.U,Y,Z,E,D,C		, Tetri ,Orf ,Ori ,MoC	^	
	MoP	A,8,Y		TetrP _C , OrC _a , OrP _C , MoP _a	m	
	MoP	Z	Tetrf	YatrP, OrP, OrC, MoP	Z	
MOP (MoC	E		DrP _a ,MoP _a	×	
(MoC _a ,TriP _s	D,C		OrAc, MoPa, MoCa	R	
	Mo ^p c	Ζ,Α		(TetrP ₁ ,OrP ₁ ,OrC _A ,MoP _C	M,Z	
MoB	MoC	B,Y,C	Tetrl	COrCA, OrAC, MoC	X	
(TriP	FF "		MoC, MoC, TriP	N	
	OrPe	Z,Y		(RhR, MoC, TriP	Z	
	OrP	×	RhR	MoC _c ,TriP _s	A	
	OrC	U		(MoP _C , TriP	x	
OrP	OrA MoC , MoP	T		HexP.OrA.MoC.MoP.OrC.T	riP A	
	OrC	S		HexP, MoC, TriP	н	
	OrF, MoC, TriP	R	Hexp	OrP _C , MoP _a , TriP _s	M	
,	, ^{orp} c	Y		HexP _c , DrI _c , MoC _a , TriP _a	L. States	
	OrC, OrA, MoP, MoC	Z		(CubF, Tetri, RhR, OrF, TriP	R S	
0rc	OrI _c ,OrI _a ,MoC _c	T	CubP	TetrP _c ,OrP _a ,OrC _c	x	
(MoP	S		(TetrP _C ,OrC _a ,OrP _C ,MoP _C	M	
1	MoC _a ,TriP _s	R	CubE	(TetrP _I , OrP _I , OrC _A	x	
1	OrC _A	Z		(RhR _I ,TriP _B ,OrC _a ,MoC _a	L	
Orf	0r ^A c	X,Y,T	Cubt	(CubP _I ,RhR _I ,TetrP _I ,OrP _I	H	
(MoC ,TriP	R	001	Orc, Moce	N	
1	OrP _I	x				
UrI }	MoC	U	TABLEAU 3.2.	A:Changements de rése	aux purement mag	nétiques
(MoCc	T,S	sans modific	ation de la maille cr	istalline (surfa	ce de la
			zone de Bril	louin)		

(a)	(q)	(c)	(a)		(P)	(c)	(a)	(9)	(c)
			•						
Tr1 P	1 r 1 P		AoB	MoC		۰ با	RhR	RhR	× .
MoP	MoP.Tr1P			orc,		S	НехР	НехР	۲, ۲
MoB	MoB,Trip		Orc			¥	СирР	Cub I ,RhR,TetrI	£
059	0rP,MoP		0 r F	0.5	, MoC	Я	Cubf	CubP,RhR,TetrP	×
OLC	OrC,OrA,MoB,MoP					u, T	CubI	CubI, RhR	z
0rF	Orf, MoB		0r1	orc		S			
0r I	OrI,MoB	L		OrF		æ	TARI FAIL 7 2	n∶Chanơements	de réseaux
TetrP	TatrP.OrP.OrC.MoB.MoP.Tr1P	-		⊳ { Tetr	л ^р с	×		t structuraux	et magnétiqu
TetrI	Tetri.Orl.Orf.MoB.TrlP			Tatr	ric,MoC,Drfg	R	S I mut callence	le structures le sutitensla	tions.
RhR	RhR,Mo8,Tr1P		·	/ Tetr	rlc, Drlc, Orf	<	sans nouvel	ובס מוורדרומווסדמ	
HexP	HexP,OrC,OrA,MoB,MoP,Tr1P		Tatr	Tetr	r P.C	×			
CubP	CubP,TetrP,OrP,RhR			Tetr	ric, Oric, Mocg, OrAc,	z ~~			
CubF	Cubf,RhR,TetrI,Orf			orc	, Trife	~			
CubI	CubI,RhR,TetrI,OrI		RhR	RhR	1	<			
	-		CubP	CubP	',RhR _I ,TetrP _C	×			
TABLEAU 3.2.B	:Changements de résea	XUI		Cub ^F	°,Tetric,Orfs	ب			
nurement man	étiques sans modifica	ition	2	Cub ^F	P. Tetric	3			
de la maille	cristalline(centre de	e la		Cub	F ₈ ,TetrI _c ,OrF ₈ ,MoC _a	٩			
uc in muiil.			CubI	RhR	,Tetric,TetrPc,OrC	~			
TTTTG an alloz	(TIT NO			0r1	υ	z ~~			
				-		-			
			TABLEAU 3.	2.C:(Changements de	résea	Xnt		-
			simultanên 2vec annar	nent : ritio	structuraux et m de nouvelles	anti1	translations		49
•			avec appai						-

REFERENCES :

- 1. E.M.Lifshitz, Z.Eksp.Teor.Fisiki <u>11</u>,255(1941)
- 2. V.E.Naish et V.N.Syromyatnikov, Sov.Phys.Crystallo., 21, n°6, 627(1976)
- 3. P.Tolédano, Thèse d'état, Université de Picardie (1979)
- 4. Yu.A.Yzyumov, V.E.Naish et V.N.Syromyatnikov, J.Magn. and Magnet.Material, <u>12</u>, 249(1979)
- 5. J.Zak, A.Casher, H.Glück and Y.Gur, The Irreducible Representations of Space Groups Benjamin, New-York, 1969
- 6. O.V.Kovalev,Irreducible Representations of Space Groups,Gordon and Breach, New-York,1965

CHAPITRE 4

ENERGIES LIBRES DES TRANSITIONS DE PHASES FERROMAGNETIQUES ET ANTIFERROMAGNETIQUES

I. Introduction

Dans ce chapitre nous donnons la liste des énergies libres de Landau et des images qui leurs sont associées. Ces données complètent les tableaux de résultats qui figurent au chapitre 5 dans lesquels on peut trouver l'ensemble des changements de symétrie para-ferromagnétiques et para-antiferromagnétiques, ainsi que les images associées aux CI qui induisent les transitions. La construction des potentiels thermodynamiques a été effectuée dans les références [1-4] pour les transitions structurales. Nous avons pu vérifier que ces potentiels étaient globalement identiques pour les transitions magnétiques, à l'éxception de certains potentiels associés à des paramètres d'ordre à six composantes.

L'énergie libre de Landau associée à une transition de phases à partir d'une phase paramagnétique, est composée d'invariants pairs du paramètre d'ordre. Ce développement est tronqué à l'ordre le plus bas déterminant une brisure de la symétrie magnétique. Comme on peut le voir dans la table 4.1, l'énergie libre de Landau n'est pas toujours limitée au quatrième degré du paramètre d'ordre pour les coreprésentations actives multidimensionnelles. Il est en effet nécessaire dans certains cas de prendre en compte des invariants du sixième et du douzième degré. Par exemple, pour l'énergie libre associée au paramètre d'ordre à quatre composantes f_8 , les solutions stables I et II nécessitent la prise en compte de termes du quatrième degré, alors que pour exprimer la stabilité des solutions V et VI on doit prendre en compte des termes de degré 6.

D'autre part,le fait que l'on tronque le potentiel thermodynamique du cristal à un ordre donné,explique pourquoi plusieurs images peuvent être associées à une même énergie libre. En effet chaque image traduit la symétrie d'un potentiel thermodynamique pour un nombre infini de termes.

- 51 -

II. Commentaires des tables

Dans les tables 4.1.1 à 4.1.5, on trouve 36 énergies libres distinctes associées à 53 images. Le développement de l'énergie libre est donné explicitement dans la colonne (b), la colonne (a) indique l'appellation adoptée. Les images associées aux différents potentiels thermodynamiques sont mentionnées dans la colonne (c). Les colonnes (d) et (e) donnent respectivement le nombre de solutions stables, et la direction de stabilité dans l'espace des composantes du paramètre d'ordre. Ainsi nous trouvons une énergie libre unidimensionnelle unique associée à une seule solution stable. Le nombre d'énergies libres bidimensionnelles et tridimensionnelles est respectivement 8 et 1, il leurs correspond généralement une ou deux solutions stables.enfin, il existe respectivement 16 énergies libres de dimension 4, et 5 énergies libres de dimension 6 et 8. Pour ces énergies libres, le nombre de solutions stables varie de 1 à 7.

III. Remarques

Certaines solutions stables ne sont pas déterminées par symétrie. Dans ce cas, la direction (dans l'espace des composantes du paramètre d'ordre) qui correspond à un minimum du potentiel thermodynamique n'est pas obtenue algébriquement.Le changement de symétrie est alors déterminé en considérant une direction de stabilité particulière. Cette situation se rencontre dans les potentiels suivants :

d₁,d₃,d₅,f₆,f₆,f₇,f₈',f₉,f₉,f₁₀,f₁₁,f₁₂,f₁₃,h₄,h₅,k₁,k₂'

Le seul résultat notable de l'introduction de l'opération R dans le groupe d'invariance(paramagnétique) des énergies libres associées aux transitions ferromagnétiques et antiferromagnétiques, est de modifier certaines images et potentiels correspondant à des paramètres d'ordre à trois et six composantes. En effet, outre la disparition déjà mentionnée des invariants impairs (cubiques), la présence de R contribue parfois à réduire le nombre d'invariants anisotropes de degré 4 ou 6. Dans les tables ci-dessous, nous indiquons ces modifications. Elles correspondent à deux situations distinctes. D'une part les images et énergies libres correspondant à des RI

- 52 -

éliminées par le critère de Landau sont ici associées à des énergies libres qui se transforment comme des coreprésentations irréductibles qui satisfont ce critère. D'autre part, certaines images associées à des RI qui vérifient ce critère de Landau sont modifiées par la prise en compte de R.

$T \times R = T_h$	
$T_d \times R = O_h$	
LL1 x R = L_4	
LL2 x R = L_{11}	
LL3 x R = L_{13}	
LL4 x R = L_8	
LL5 x R = L_7	
LL6 x R = L_8	$0 \times R = 0_h$
LL7 x R = L_{12}	$L_5 \times R = L_{11}$
LL8 x R = L_7	$L_6 \times R = L_4$
TABLE 4.2.a	TABLE 4.2.b

(Les images associées aux RI ne vérifiant pas le critère de Landau sont données dans la référence [5] où elles sont notées de LL1 à LL8) En conclusion, notons que par comparaison avec les transitions structurales, l'ensemble des images associées aux transitions magnétiques s'est enrichi de trois nouvelles images qui sont : L_{11}, L_{12} et L_{13} .

	TABLE 4.1.1			- 54	-
	(b)	(c)	(d) (e)
aran	nètre d'ordre à 1 composante				
	$\frac{1}{2}\alpha n^2 + \frac{1}{4}\beta n^4$	C ₁	1	I(1)	
aran	nètre d'ordre à 2 composantes				
	$\frac{1}{2} \alpha (n^2 + \xi^2) + \frac{1}{4} \beta_1 (n^4 + \xi^4) + \frac{1}{2} \beta_2 n^2 \xi^2$	C _{4v}	2	<pre>[I(10) [II(11)</pre>	
	$\frac{1}{2}\alpha(n^2 + \xi^2) + \frac{1}{4}\beta_1(n^4 + \xi^4) + \frac{1}{2}\beta_2 - n^2 \cdot \xi^2 + \beta_3 n\xi(n^2 - \xi^2)$	C4	1	I(11)	
	$\frac{1}{2}\alpha(\eta^2+\xi^2)+\frac{1}{4}\beta(\eta^2+\xi^2)^2+\frac{1}{6}\gamma_1(\eta^2+\xi^2)^3+\frac{1}{6}\gamma_2(\eta^2-\xi^2)^3$	с _б	1	I(n ç)	
:	$\frac{1}{2}\alpha \rho^2 + \frac{1}{4}\beta \rho^4 + \frac{1}{6}\gamma_1 \rho^6 + \frac{1}{6}\gamma_2 \rho^6 \cos 6\psi$	C _{6v}	2	{ I(10) { II(01)	
5	$\frac{1}{2}\alpha \rho^{2} + \frac{1}{4}\beta\rho^{4} + \frac{1}{6}\gamma \rho^{6} + \frac{1}{8}\delta_{1} \rho^{8} + \frac{1}{8}\delta_{2} \rho^{8} \cos 8\psi + \frac{1}{8}\delta_{3} \rho^{8} \sin 8\psi$	с ₈	1	I(nç)	
L	$\frac{1}{2}\alpha \rho^{2} + \frac{1}{4}\beta \rho^{4} + \frac{1}{6}\gamma \rho^{6} + \frac{1}{8}\delta_{1} \rho^{8} + \frac{1}{8}\delta_{2} \rho^{8} \cos 8\psi$	C _{8v}	2	{ I(10) II(cos ₈ , ε	sin <u>R</u>)
	$\frac{1}{2}\alpha \rho^{2} + \frac{1}{4}\beta\rho^{4} + \frac{1}{6}\gamma_{1}\rho^{6} + \frac{1}{8}\delta \rho^{8} + \frac{1}{10}\epsilon\rho^{10} + \frac{1}{12}\nu_{1}\rho^{12} + \frac{1}{12}\nu_{2}\rho^{12}\cos 12\psi + \frac{1}{12}\nu_{2}\cos 12\psi + 1$	C ₁₂	1	I(ηζ)	
	$\frac{1}{2}\alpha \rho^{2} + \frac{1}{4}\beta\rho^{4} + \frac{1}{6}\gamma\rho^{6} + \frac{1}{8}\delta\rho^{8} + \frac{1}{10}\epsilon\rho^{10} + \frac{1}{12}\nu_{1}\rho^{12} + \frac{1}{12}\nu_{2}\rho^{12}\cos 12\psi$	C _{12v}	2	{ I(10) { II(11)	

aramètre d'ordre à 3 composantes

 $\frac{1}{2} \alpha \left(\sum_{j=1,3} n_j^2 \right)^* \frac{1}{4} \beta_1 \sum_{j=1,3} n_j^* + \frac{1}{2} \beta_2 \sum_{j < k=1,3} n_j^2 n_k^2 \qquad T, T_d, T_h, 0, 0_h \qquad 2 \begin{cases} I(100) \\ II(111) \end{cases}$

		- 55 -
. (b)	(c)	(d) (e)
aramètre d'ordre à 4 composantes		
$\frac{1}{2} \alpha (\sum_{j=1,4}^{n_j^2} n_j^2) \cdot \frac{1}{4} \beta_1 \sum_{j=1,4}^{n_j^4} n_j^4 + \frac{1}{2} \beta_2 \left[(n_1^2 n_2^2 + n_3^2 n_4^2) + (n_1^2 n_3^2 + n_2^2 n_4^2) + (n_1^2 n_4^2 + n_2^2 n_3^2) \right]$	115.01,110.1 108.01	z { I (1 0 0 0) II(1 1 1 1)
$\frac{1}{2} \alpha \left(\sum_{i=1,4}^{2} n_{i}^{2} \right) + \frac{1}{4} \beta_{1} \sum_{i=1,4}^{2} n_{1}^{4} + \frac{1}{2} \beta_{2} \left(n_{1}^{2} n_{2}^{2} + n_{3}^{2} n_{4}^{2} \right) \\ + \frac{1}{2} \beta_{3} \left(n_{1}^{2} n_{3}^{2} + n_{2}^{2} n_{4}^{2} + n_{1}^{2} n_{4}^{2} + n_{2}^{2} n_{3}^{2} \right)$	101.01,80.01 59.1	$4 \begin{cases} I (1 0 0 0) \\ II(1 1 0 0) \\ III(1 0 1 0) \\ IV(1 1 1 1) \end{cases}$
$\frac{\frac{1}{2} \alpha \left(\sum_{i=1,4} n_{1}^{2} \right) + \frac{1}{4} \beta_{1} \sum_{i=1,4} n_{1}^{4}}{+ \frac{1}{2} \beta_{2} \left(n_{1}^{2} n_{2}^{2} + n_{3}^{2} n_{4}^{2} + n_{1}^{2} n_{3}^{2} + n_{2}^{2} n_{4}^{2} + n_{1}^{2} n_{4}^{2} + n_{2}^{2} n_{3}^{2} \right) + \beta_{3} n_{1} n_{2} n_{3} n_{4}}$	109.01,95.1	$3 \begin{cases} I (1 \ 0 \ 0 \ 0) \\ II (1 \ 1 \ 1 \ 1) \\ III (1 \ 1 \ 1 \ -1) \\ III (1 \ 1 \ 1 \ -1) \end{cases}$
$\frac{1}{2}\alpha\left(\sum_{i=1,4}^{n} n_{i}^{2}\right) + \frac{1}{4}\beta_{1}\sum_{i=1,4}^{n} n_{i}^{4} + \frac{1}{2}\beta_{2}(n_{1}^{2}n_{2}^{2} + n_{3}^{2}n_{4}^{2}) + \frac{1}{2}\beta_{3}(n_{1}^{2}n_{3}^{2} + n_{2}^{2}n_{4}^{2}) + \frac{1}{2}\beta_{4}(n_{1}^{2}n_{4}^{2} + n_{2}^{2}n_{3}^{2})$	82.01,58.01	5
$\frac{1}{2}\alpha(\sum_{i=1,4}^{n_{1}^{2}}, \frac{1}{4}\beta_{1}\sum_{i=1,4}^{n_{1}^{4}}, \frac{1}{2}\beta_{2}(n_{1}^{2}n_{2}^{2}+n_{3}^{2}n_{4}^{2}) + \frac{1}{2}\beta_{3}(n_{1}^{2}n_{3}^{2}+n_{2}^{2}n_{4}^{2}) + \frac{1}{2}\beta_{4}(n_{1}^{2}n_{4}^{2}+n_{2}^{2}n_{3}^{2}) + \frac{1}{2}\beta_{5}n_{1}n_{2}n_{3}n_{4}$	56,1	$5 \begin{cases} I & (1 & 0 & 0 & 0) \\ II & (1 & 1 & 0 & 0) \\ III & (1 & 0 & 1 & 0) \\ IV & (1 & 0 & 1) \\ V & (1 & 1 & 1 & 1) \\ VI & (1 & 1 & 1-1) \end{cases}$
$\frac{1}{2} \alpha \sum_{i=1,2} \rho_1^2 + \beta (\rho_1^2 + \rho_2^2)^2 + degre 6$	98.1	2 { Ι (η ξΟ Ο) ΙΙ (η ξξη)
$\frac{1}{2} \alpha \sum_{\substack{i=1,2\\j=1,2}}^{p_1^2} \beta (\rho_1^2 + \rho_2^2)^2 + degre 6.$	49.1	1 I (ŋξŋ'ξ'
¹ / ₂ α Σ ρ ² ₁ + β (ρ ⁴ ₁ +ρ ⁴ ₂); ρ ² ₁ ρ ² ₂ + degre 6	85.1	$2 \begin{cases} I (n \xi 0 0) \\ II (n \xi \xi n) \\ (i_{i_{i_{j_{i_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_$

				- 56 -
	(b)	(c)	(d)	(е)
Para	mètre d'ordre à 4 composantes (suite)			
	$\frac{1}{2} \alpha \sum_{i=1,2}^{p} \rho_{1}^{2} + \beta_{1} (\rho_{1}^{4} + \rho_{2}^{4}) + \beta_{2} \rho_{1}^{2} \rho_{2}^{2} + \beta_{3} \rho_{1}^{2} \rho_{2}^{2} \cos 2(\phi_{1} - \phi_{2}) + degre 12.$	74.1	6	I (1 0 0 0) II (1 1 0 0) III (1 0 1 0) IV (0 1 0 1) V (1 1 1-1) VI (1 1-1 1)
	$\frac{1}{2} \alpha \sum_{i=1,2}^{p} \rho_{1}^{2} + \beta_{1} (\rho_{1}^{4} + \rho_{2}^{4}) + \beta_{2} \rho_{1}^{2} \rho_{2}^{2} + \beta_{3} \rho_{1}^{2} \rho_{2}^{2} \cos 2(\phi_{1} - \phi_{2})$ + degre 12	42.1	3	I (η ξ 0 0) II (η ξ η ξ) III (η ξ ξ-η)
•	$f_8 + \beta \rho_1^2 \rho_2^2 \sin 2(\phi_1 - \phi_2) + \text{degre } 12$	44.1	3	I (η ξ 0 0) II (η ξ η-ξ) III (η ξ-η ξ)
	$f_{g} * \beta \rho_{1}^{2} \rho_{2}^{2} \sin 2(\phi_{1} - \phi_{2}) + degre 6$	48.1	2	{ Ι (η ξ Ο Ο) ΙΙ (η ξ ξ η)
O	$\begin{bmatrix} \frac{1}{2} \alpha \left(\sum_{i=1,4}^{n} n_{1}^{2} \right) + \frac{1}{4} \beta_{1} \sum_{i=1,4}^{n} n_{1}^{4} \\ + \frac{1}{2} \beta_{2} \left(n_{1}^{2} n_{2}^{2} + n_{3}^{2} n_{4}^{2} + n_{1}^{2} n_{3}^{2} + n_{2}^{2} n_{4}^{2} + n_{1}^{2} n_{4}^{2} + n_{2}^{2} n_{3}^{2} \right) + \beta_{3} n_{1} n_{2} n_{3} n_{4} \\ + \beta_{2} \left(n_{1} \xi_{1} \left(n_{1} n_{2} + \xi_{1} \xi_{2} + n_{2}^{2} - \xi_{2}^{2} + n_{1} \xi_{2} - n_{2} \xi_{1} \right) \right) \\ - n_{2} \xi_{2} \left(n_{1} n_{2} + \xi_{1} \xi_{2} - n_{1}^{2} + \xi_{1}^{2} - n_{1} \xi_{2} + n_{2} \xi_{1} \right) \right) \\ + \beta_{5} \left\{ n_{1} \xi_{1} \left(n_{1}^{2} - \xi_{1}^{2} \right) + n_{2} \xi_{2} \left(n_{2}^{2} - \xi_{2}^{2} \right) + n_{1} n_{2} \left(n_{1}^{2} - n_{2}^{2} \right) \\ - \xi_{1} \xi_{2} \left(\xi_{1}^{2} - \xi_{2}^{2} \right) + n_{1} \xi_{2} \left(n_{1}^{2} - \xi_{1}^{2} \right) - n_{2} \xi_{1} \left(n_{2}^{2} - \xi_{2}^{2} \right) \right) \end{bmatrix}$	49.2	1	Ι (η ξ ξ ξ)
	$f_{g} + \beta_{1}\rho_{1}\rho_{2}(\rho_{1}^{2}-\rho_{2}^{2})\cos(\phi_{1}-\phi_{2}) + \beta_{2}\rho_{1}\rho_{2}(\rho_{1}^{2}-\rho_{2}^{2})\sin(\phi_{1}-\phi_{2})$ + termes de degre 6	21.1	1	$I (n \xi n'\xi')$ $\widehat{\beta I J S}$
12:	$ \begin{array}{c} f_{8} & * & B_{1} & \sum & p_{1}^{4}\cos 4\phi_{1} & * & B_{2} & \sum & p_{1}^{4}\sin 4\phi_{1} & * B_{3}p_{1}^{2}p_{2}^{2}\cos 2(\phi_{1} * \phi_{2}) \\ & & 1.2 & & \\ & * B_{4}p_{1}^{2}p_{2}^{2}\sin 2(\phi_{1} * \phi_{2}) \end{array} $	26.1	2	

TABLE 4.1.4			- 57 -
(b)	(c)	(८)	(с)
amètre d'ordre à 4 composantes(suite)			
$f_{12} + \beta_{1} \{\rho_{1}^{3}\rho_{2}\cos(3\phi_{1}-\phi_{2})-\rho_{2}^{3}\rho_{1}\cos(3\phi_{2}-\phi_{1})\}$ + $\beta_{2} \{\rho_{1}^{3}\rho_{2}\sin(3\phi_{1}-\phi_{2})-\rho_{2}^{3}\rho_{1}\sin(3\phi_{2}-\phi_{1})\}$ + $\beta_{3}\rho_{1}\rho_{2}(\rho_{1}^{2}-\rho_{2}^{2})\cos(\phi_{1}+\phi_{2})$ + $\beta_{4}\rho_{1}\rho_{2}(\rho_{1}^{2}-\rho_{2}^{2})\sin(\phi_{1}+\phi_{2})$	13.1	1	Ι (η ξ η'ξ'
ramètre d'ordre à 6 composantes			
$\frac{\alpha}{2} \sum_{i=1,3} \rho_{i}^{2} \cdot \frac{1}{4} \rho_{1} \cdot \sum_{i=1,3} \rho_{i}^{*} \cdot \frac{1}{4} \rho_{2} \sum_{i=1,3} \rho_{i}^{*} \cos 4 \psi_{i} \cdot \frac{1}{2} \rho_{3} \sum_{i< j=1,3} \rho_{i}^{2} \rho_{j}^{2}$ • termes de degre 6	L ₁ ,L ₂ ,L ₃ ,L ₅ , L ₁₁ ,L ₁₂	5	I (10 00 00) II(11 00 00) III(10 10 10) IV(01 01 01) V(11 11 11)
$h_{1} + \beta \sum_{i < j} c_{i}^{2} c_{j}^{2} \sin 2\psi_{i} \sin 2\psi_{j}$	L ₄ ,L ₆ ,L ₈	5	I(10 00 00) II(11 00 00) III(10 10 10) IV(01 01 01) IV(11 11 11) VI(11 11 00)
h ₂ + β Σ ρ ² _i ρ ² _{i+1} (sin ² ψ _i - sin ² ψ _{i+1}) i=1,3	L ₇	7	$\begin{array}{c} I & (10 & \infty & \infty) \\ II (11 & \infty & \infty) \\ III (10 & 10 & 10) \\ IV (01 & 01 & 01) \\ V (11 & 11 & 11) \\ VI (11 & 11 & \infty) \\ VII (11 & 11 & \infty) \end{array}$
$h_{2} + \beta_{1} \sum_{i,j} \rho_{i}^{2} \rho_{j}^{2} \cos 2\psi_{i} \cos 2\psi_{j} + \beta_{2} \sum_{i,j} \rho_{i}^{2} \rho_{i+1}^{2} (\cos 2\psi_{i} - \cos 2\psi_{i+1})$	Lg .	6	I (10 ∞ ∞) II(11 ∞ ∞) III(10 10 10) IV(01 01 01) V(11 11 11) VI(ηξ ξ-ξ ∞)
$h_{4} + \beta_{1} \sum_{i} \rho_{i}^{*} \sin 4\psi_{i} + \beta_{2} \sum_{i,j} \rho_{i}^{2} \rho_{j}^{2} \sin 2(\psi_{i} + \psi_{j})$ $+ \beta_{3} \sum_{i} \rho_{i}^{2} \rho_{i+1}^{4} (\sin 2\psi_{i} - \sin 2\psi_{i+1})$	L ₁₀	3	Ι (ηξ ΟΟ ΟΟ) ΙΙ(ηξ ξ-η ΟΟ) ΙΙΙ(ηξ ηξ ηξ)
$\frac{1}{2}\alpha\left(\begin{array}{c}6\\1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	^L 13 n ₅ ²)	5	I(10 00 00) II(11 00 00) III(10 10 10) IV(01 01 01) V(11 11 11) IV(01 01 01) V(11 11 11)

•	TABLE 4.1.5		- 58	-
	(b)	(c)	(d)	(e)

aramètre d'ordre à 8 composantes

 $\frac{\alpha}{2} \sum_{i=1,4} \rho_1^2 + \frac{1}{4} \beta_1 \rho_1^{*+} \frac{1}{2} \ell_2 \sum_{i< j} \rho_i^2 \rho_j^2 + \frac{1}{2} \beta_3 \sum_{i,j} \rho_i^2 \rho_j^2 \cos^2 (\psi_i - \psi_j)$ $+ \frac{1}{2} \epsilon_4 [\epsilon_1^2 \epsilon_2^2 \cos^2 (\psi_1 + \psi_2 - \frac{\pi}{3}) + \epsilon_3^2 \epsilon_4^2 \cos^2 (\psi_3 + \psi_4 - \frac{\pi}{3})$ I (10 00 00 00) $+\rho_1^2 \rho_3^2 \cos^2(\psi_1 + \psi_3 + \frac{\pi}{3}) + \rho_2^2 \rho_4^2 \cos^2(\psi_2 + \psi_4 + \frac{\pi}{3})$ II (01 00 00 00) $+\rho_{1}^{2}\rho_{4}^{2}\cos^{2}(\psi_{1}+\psi_{4})+\rho_{2}^{2}\rho_{3}^{2}\cos^{2}(\psi_{2}+\psi_{3})]$ III(10 00 00 10) IV (10 10 10 10) Ħ₁ 5 $+\frac{1}{2}\beta_{5}[\rho_{1}^{2}\rho_{2}^{2}\cos(\psi_{1}^{+}\psi_{2}^{+}\frac{\pi}{3})\cos(\psi_{1}^{-}\psi_{2})+\rho_{3}^{2}\rho_{4}^{2}\cos(\psi_{3}^{+}\psi_{4}^{+}\frac{\pi}{3})\cos(\psi_{3}^{-}\psi_{4}^{-}\psi$ V (01 01 01 01) $+\rho_{1}^{2}\rho_{3}^{2}\cos(\psi_{1}^{+}\psi_{3}^{-}\frac{\pi}{3})\cos(\psi_{1}^{-}\psi_{3}^{-})+\rho_{2}^{2}\rho_{4}^{2}\cos(\psi_{2}^{+}\psi_{4}^{-}\frac{\pi}{3})\cos(\psi_{2}^{-}\psi_{4}^{-}\psi$ ${}^{*\rho_{1}^{2}\rho_{4}^{2}}\cos(\psi_{1}{}^{+}\psi_{4})\cos(\psi_{1}{}^{-}\psi_{4}){}^{+}\rho_{2}^{2}\rho_{3}^{2}\cos(\psi_{2}{}^{+}\psi_{3})\cos(\psi_{2}{}^{-}\psi_{3})]$ termes de degre 6 I (ηξ 00 00 00) II (ηξ 00 00 ηξ) III(ηξ ηξ ηξ ηξ ηξ)

k, + termes de degre 6

 $k_1 + \rho_1 \rho_2 \rho_3 \rho_4$ ($\Sigma \cos (\psi_1 + \psi_j - \psi_k - \psi_1) + \text{termes de degre 6}$ $j \neq k \neq 1=2,4$)

 k_2 + termes de degre 6

3

6

3

I (10 00 00 00) I1 (01 00 00 00) III(10 00 00 10) IV (10 00 00 01) V (10 10 10 10) VI (01 01 01 01)

Ι (ηξ 00 00 00) ΙΙ (ηξ 00 00 ηξ) ΙΙΙ (ηξ ηξ ηξ ηξ)

мз

^M2

M4

REFERENCES

P. Tolédano et J.C. Tolédano, Phys. Rev. <u>B14</u>,7,3097(1976)
 P. Tolédano et J.C. Tolédano, Phys. Rev. <u>B16</u>,1,386(1977)
 J.C. Tolédano et P. Tolédano, Phys. Rev. <u>B21</u>,3,1139(1980)
 P. Tolédano et J.C. Tolédano, Phys. Rev. <u>B25</u>,3,1946(1982)
 G. Pascoli, Thèse de troisième cycle, LILLE 1(1981)

-CHAPITRE 5

TABLES DE CHANGEMENTS DE SYMETRIE FERROMAGNETIQUES ET ANTIFERROMAGNETIQUES A PARTIR DES 230 GROUPES PARAMAGNETIQUES

Les résultats concernant les changements de symétrie sont donnés dans les tables(5.1)et(5.2). Les tables(5.1)contiennent les transitions ferromagnétiques induites par les CI du centre de la zone de Brillouin, et les tables(5.2)les transitions ferromagnétiques associées à des points de la surface de la zone de Brillouin ainsi que les transitions antiferromagnétiques.

I. Contenu des tables

Les résultats contenus dans les tables(5.1.a)donnent les groupes paramagnétiques (colonne(b)),précédés par leur numéro d'ordre (colonne(a)) tel qu'il est donné par Belov et Al [1]. La colonne (c) indique le (ou les) groupe(s) ferromagnétique(s) stable(s) de basse symétrie,les coreprésentations irréductibles induisant les transitions étant mentionnées entre parenthèses. Nous avons adopté pour les CI une notation identique à celle des RI telles qu'elles figurent dans les tables de Zak et Al [2]. Pour ne pas alourdir la présentation de nos résultats,nous n'y avons pas mentionnés divers renseignements tels que le potentiel thermodynamique associé à la transition ou la dimension du paramètre d'ordre. Ces renseignements figurent dans la table annexe (5.1.b).

Les tables(5.2) contiennent classés par système critallin l'ensemble des transitions étudiées à l'exception des transitions ferromagnétiques induites par des CI du centre de la zone de Brillouin. Pour chacun des 230 groupes paramagnétiques (colonne(b)) dont le numéro d'ordre figure dans la colonne (a),nous indiquons les groupes de basse symétrie susceptibles d'être atteints (colonne(d)) lors d'une transition du second ordre. La colonne(c) précise le point de la zone de Brillouin associé au changement de symétrie. Les colonnes (e),(f),(g et (h) mentionnent respectivement la dimension du paramètre d'ordre, l'image associée à la CI considérée,la solution stable correspondant au groupe de basse symétrie et enfin la multiplication du volume de la maille élémentaire qui accompagne la transition.

Notons que dans les tables(5.1) et (5.2), nous indiquons par

un point,les CI associées à des RI ne vérifiant pas le critère de Landau. De plus,dans le tableau (5.2) un astérisque distingue les groupes ferromagnétiques.

II. Commentaires sur les tables (5.1) et (5.2)

Les résultats précédents appellent les commentaires suivants: Dans le cadre de la théorie de Landau, la majorité des transitions du second ordre prédites à partir des groupes paramagnétiques sont antiferromagnétiques . Les transitions ferromagnétiques sont pour l'essentiel induites par des CI du centre de la zone de Brillouin, <u>mais</u> <u>il en existe un nombre non-négligeable avec multiplication de la</u> <u>maille élémentaire (c'est-à-dire associées à un point de la surface</u> de la zone de Brillouin). <u>Ces transitions ferromagnétiques impropres</u>[3] n'avaient pas été reconnues jusqu'ici, une idée reçue voulant que les transitions ferromagnétiques soient toujours induites par une CI associée au centre de la zone de Brillouin.

Du point de vue de la symétrie du paramètre d'ordre, on constate que les transitions magnétiques suivent un schéma très semblable à celui obtenu pour les transitions structurales [4-7]. En effet, les potentiels thermodynamiques associés aux transitions magnétiques du second ordre sont à une exception près (le potentiel h₆ associé à l'image L₁₃), identiques à ceux correspondant aux transitions structurales du second ordre. Bien évidemment, les potentiels thermodynamiques associés aux transitions magnétiques du second ordre induites par des CI issues de RI ne vérifiant pas le critère de Landau, sont differents de ceux reliés aux transitions structurales du premier ordre correspondantes.

Une analyse plus détaillée conduit à remarquer que les transitions ferromagnétiques induites par les CI du centre de la zone de Brillouin ne peuvent se produire à partir de phases prototypes décrites par les 13 groupes de Shubnikov des classes 23' et 43'2 soient :

P23', F23', I23', P213', I213', P43'2, P423'2, F43'2, F413'2, I43'2, P43'2, P43

De la même façon,il n'existe pas de transition ferromagnétique induite par une CI de la surface de la zone de Brillouin pour les groupes suivants :

- 61 -

P23',F23',Pm3',Pn3',Fm3',Fd3',Pa3',Ia3',P43'2,P4₂3'2,F43'2,F4₁3'2, P4₃3'2,P43'm,F43'm,I43'm,P43'n,F43'c,I43'd,Pm3'm,Pn3'n,Pm3'n,Pn3'm, Fm3'm,Fm3'c,Fd3'm,Fd3'c,Im3'm,Ia3'd .

On peut en déduire qu'<u>aucune transition ferromagnétique</u> ne se réalise à partir des 7 groupes suivants :

P23', F23', P43'2, P4₂3'2, F43'2, F4₁3'2, P4₃3'2

Semblablement, il n'y a pas de transition antiferromagnétique induite par des CI du centre de la zone de Brillouin pour les groupes P11',P21',P2₁1',C21',Pm1',Pc1',Cm1',Cc1',P31',P3₁1',P3₂1',R31'.

III. Examen des études similaires

Comme nous l'avons indiqué précédemment,un petit nombre de travaux avaient établi des changements de symétrie ferromagnétiques et antiferromagnétiques particuliers,dans le cadre de la théorie de Landau .Ainsi Kovalev [8] détermine les transitions magnétiques à partir du groupe P6₃/mmc1'. Nos résultats concordent en grande partie avec ceux obtenus par cet auteur. Les divergences concernent les points suivants :

 Kovalev considère des CI associées au point H de la zone de Brillouin hexagonale,qui d'après les résultats de la référence[5], ne satisfont pas au critère de Lifshitz.

2) Les matrices données dans l'article pour les CI associées au point M de la zone de Brillouin hexagonale sont erronées.

3) Comme nous l'avons déjà mentionné,cet auteur-qui considère la structure hexagonale compacte - élimine des CI qui doivent être prises en compte dans le cadre d'une étude générale.

Le travail effectué par Dimmock et Wheeler [9] présuppose la connaissance du groupe paramagnétique P4₂/mnm1' et des sous-groupes antiferromagnétiques P4'2/mnm' et I $_c$ 42d (que nous trouvons bien dans nos résultats). Ces auteurs se bornent à établir des relations de compatibilité entre les CI de ces groupes. Ce qui leur permet de trouver les points de la zone de Brillouin où de telles modifications de symétrie sont possibles.

- 62 -

Dans les références [10] et [11] Sirotin et Kovalev (respectivement) déterminent les changements de symétrie ponctuelle à partir d'une phase paramagnétique. Dans la référence [10], Sirotin donne les sous-groupes ferromagnétiques. Nous avons constaté un certain nombre d'omissions qui paraissent liées (cet auteur n'indiquant pas la méthode qu'il emploie) au fait que des solutions thermodynamiquement stables sont oubliées. Ces erreurs se retrouvent dans le travail de Kovalev [11] qui détermine également les sous-groupes antiferromagnétiques. Les imprécisions contenues dans ces travaux ont été recencées en détail dans la référence [12].

- 63 -

Il faut souligner que nous nous sommes bornés ici à examiner les travaux qui se situent dans le cadre de la théorie de Landau. Un certain nombre d'études (Le Corre,Bertaut,Naish,Shuvalov) ont abordé la question des changements de symétrie magnétique en s'appuyant sur des considérations déduites du principe de Curie,ou des arguments géométriques. Nous ne les mentionnons pas dans cette discussion. - TABLES 5.1.a -

- 64 -

TRICLINIC					
1 - 2	P11'	P1)	25-58	Pmm21'	Ρm'm2'(τ₂,τ₄),Ρm'm'2(τ₃)
2 - 5	P11.	$P\bar{1}$ (τ_1)	26-67	Pmc2 ₁ 1'	Pm'c'21(τ3),Pmc'21(τ2),Pm'c21(τ3)
		,	27-79	Pcc21'	Ρε'ε2'(τ ₂ ,τ ₄),Ρε'ε'2(τ ₃)
MONOCLINIC			28-88	Pma21'	Pma'2'(τ ₂),Pm'a'2(τ ₃),Pm'a2'(τ _s)
3 - 2	P21!	Ρ2(τ1),Ρ2'(τ2)	29-100	Pca211'	Ρca'2¦(τ ₂),Ρc'a'2 ₁ (τ ₃),Ρc'a2¦(τ ₄)
4 - 8	P211'	Ρ21(τ1), Ρ21(τ2)	30-112	Pnc21'	$Pnc'2'(\tau_1), Pn'c'2(\tau_1), Pn'c2'(\tau_1)$
5-14	C21'	C2(T1),C2'(T2)	31-124	Pmn2 ₁ 1'	Pmn'2¦(τ ₂),Pm'n'2 ₁ (τ ₃),Pm'n2¦(τ ₅)
			32-136	Pba21'	₽ b'a2'(τ₂,τ、), ₽b'a'2(τ ₁)
6 - 1 9	Pm1'	Ρm(τ ₁),Ρm'(τ ₂)	33-145	Pna2i1'	Pna'2¦(τ ₂),Pn'a'2¦(τ ₁),Pn'a2¦(τ ₄)
7-25	Pc1'	$Pc(\tau_{1}), Pc'(\tau_{2})$	34-157	Pnn21*	Ρη'η2'(τ ₂ ,τ ₄),Ρη'η'2(τ ₃)
8-33	Cm1'	Cm(τ ₁),Cm [*] (τ ₂)	35-166	Cmm21'	Cm 'm2'(τ ₂ ,τ ₄),Cm 'm '2(τ ₃)
9-38	Cc1'	Cc(τ ₁),Cc'(τ ₂)	36-173	Cmc2 ₁ 1'	Cmc'2' ₁ (τ ₂),Cm'c'2 ₁ (τ ₃),Cm'c2' ₁ (τ ₄)
10-43	62/m1'	P2/m(r,),P2!/m!(r,)	37-181	Ccc21'	Cc'c2'(T ₂ ,T ₄),Cc'c'2(T ₃)
11-51	P2,/m1'	$P_2, f_m(\tau_1), P_2, f_m(\tau_2)$	38-188	Amm21'	Amm'2'(τ ₂),Am'm'2(τ ₃),Am'm2'(τ ₄)
12-59	C2/m1'	$(2/m(\tau_{1}))$ $(2/m(\tau_{2}))$	39-196	Abm21 '	Abm'2'(τ ₂),Ab'm'2(τ ₃),Ab'm2'(τ ₄)
13-66	P2/c1'	$P_2/c(\tau, t) = P_2^2/c^2(\tau, t)$	40-204	Ama21'	Ama'2'(τ ₂),Am'a'2(τ ₃),Am'a2'(τ ₃)
14-76	P2./c1'	$P_{2}^{2} / c(\tau_{1}) = P_{2}^{2} / c(\tau_{2})$	41-212	Aba21'	Aba'2'(T ₂),Ab'a'2(T ₃),Ab'a2'(T ₅)
15-86	C2/c1'	$C_{2}/c(\tau_{1})$, $C_{2}/c(\tau_{2})$	42-220	Fmm21'	Fm'm2'(τ ₂ ,τ ₄),Fm'm'2(τ ₁)
			43-225	Fdd21'	Fd'd2'(τ ₂ ,τ ₄),Fd'd'2(τ ₃)
ORTHORHOMBIC			44-230	Imm21'	Im'm2'(τ ₂ ,τ ₄), Im'm'2(τ ₃)
16-2	P2221'	Ρ2'2'2(τ ₂ ,τ ₃ ,τ ₄)	45-236	Iba21'	Ι Δ'α2'(τ₂,τ₄),Ι Δ'α'2(τ ₃)
17-8	P22211'	P22'2'(T2,T3),P2'2'21(T4)	46-242	Ima21'	Ima'2'(τ ₂), Im'a'2(τ ₃), Im'a2'(τ ₅)
18-17	P212121'	P21212'(T2.T1), P21212(T4)			
19-26	P2121211'	Ρ212121(τ2,τ3,τ4)			
20-32	C22211'	C22'2'(T2,T3),C2'2'21(T4)			
21-39	C2221'	C22'2'(T ₂ ,T ₃),C2'2'2(T ₄)			
22-46	F2221'	F2'2'2(T2,T3,T4)			
53/23-50	12221'	12'2'2(T2,T3,T)			
24-54	12.2.2.1'	$12^{1}2^{1}2^{1}2^{1}(\tau_{1},\tau_{2},\tau_{3})$			

65

-

	(a)	(b)	(c)	(a)	(ь)	(c)
ORTHORH	IOMBIC			TETRAGONAL		
	47-250	Pmmm1'	Pm'm'm)	75-2	P41'	P4
	48-258	Pnnn1'	$Pn'n'n \int_{1}^{1} \frac{1}{2} 1$	76-8	P411'	P41
	49-266	Pccm1'	Ρc'c'm(τ _k),Ρc'cm'(τ ₂ ,τ ₃)	77-14	P421'	P42
	50-278	Pban1'	Ρ b'an'(τ₂,τ₃), Ρb'a'n(τ ₄)	78-20	P431'	P4)
	51-290	Pmma1'	Pmm'a'(τ ₂),Pm'ma'(τ ₃),Pm'm'a(τ ₄)	79-26	I41'	· I4 ,
	52-306	Pnna1'	Pnn'a'(τ ₂),Pn'na'(τ ₃),Pn'n'a(τ ₄)	80-30	I411'	I41
	53-322	Pmna1'	Pmn'a'(τ ₂),Pm'na'(τ ₃),Pm'n'a(τ ₄)		- •	_ -
	54-338	Pccal'	Pcc'a'(τ ₁),Pc'ca'(τ ₃),Pc'c'a(τ ₄)	81-34	P41'	Ρ4(τ ₁),Ρ2'(τ ₃ +τ _ℕ) -
	55-354	Pbam1'	Ρ b'am'(τ₂,τ₃),Ρ b'a'm(τ ₄)	82-40	141'	Ι4(τ ₁),C2'(τ ₃ +τ _ν)
	56-366	Pccn1'	Ρε'εη'(τ ₂ ,τ ₃),Ρε'ε'η(τ ₄)	B 3 - 4 4	P4/m1'	Ρ4/m(τι),Ρ2'/m'(τι+τ ν)
	57-378	Pbcm1	Ρbc'm'(τ ₂),Ρb'cm'(τ ₃),Ρb'c'm(τ ₄)	84-52	P42/m1'	P42/m(t1),P2'/m'(t1+t)
	58-394	Pnnm1'	Ροο'm'(τ ₂ ,τ ₃),Ρο'ο'm(τ ₄)	85-60	P4/n1'	P4/n(τ ₁),P2'/c'(τ ₃ +τ ₈)
	59-406	Pmmn1'	Pmm'n'(τ ₂ ,τ ₃),Pm'm'n(τ ₄)	86-68	P42/n1'	P41/n(T1),P2'/c'(T3+T.)
	60-418	Pbcn1'	$Pbc'n'(\tau_{2}), Pb'cn'(\tau_{3}), Pb'c'n(\tau_{4})$	87-76	I4/m1'	I4/m(τ ₁),C2'/m'(τ ₃ +τ ₄)
	61-434	Pbca1'	Pb'c'a(τ ₂ ,τ ₃ ,τ ₄)	88-82	I4 ₁ /a1'	I41/a(τ1),C2'/c'(τ3+τ、)
	62-442	Pnma1'	Pnm'a'(τ ₂).Pn'ma'(τ ₃),Pn'm'a(τ _%)	80-88	040044	
	63-458	Cmcm1'	Cmc'm'(τ ₂),Cm'cm'(τ ₃),Cm'c'm(τ ₄)	09-00	P4221	
	64-470	Cmca1'	Cmc'a'(τ ₂),Cm'ca'(τ ₃),Cm'c'a(τ ₄)	90-96	P42121'	P4212*
	65-482	Cmmm1′	Cmm'm'(τ₂,τ₃),Cm'm'm(τς)	91-104	P41221	P412'2'
	66-492	Cccm1'	Ccc'm'(τ ₂ ,τ ₃),Cc'c'm(τ ₄)	92-112	P412121'	P41212'
	67 - 502	Cmma1 *	Cmm'a'(τ ₂ ,τ ₃),Cm'm'a(τ ₄)	93-120		(τ_2)
	68-512	Ccca1'	Ccc'a'(τ ₂ ,τ ₃),Cc'c'a(τ ₆)	94-120	P422121	P42212'
	69-522	Fmmm1'	Fm'm'm(て2,て3,て、)	95-136	P41221	P4 12 '2'
	70-528	Fddd1'	Fd'd'd(τ2,τ3,τμ)	96-144	P4,2,21'	P4,2,2'
	71-534	Immm1 *	Im'm'm(τ ₂ ,τ ₃ ,τ ₄)	97-152	14221'	142'2'
~	72-540	Ibam1'	Iba'm'(τ_2, τ_3), Ib'a'm(τ_4)	98-158	1412211	14,2'2' /
$\begin{pmatrix} \ddots \\ \vdots \\ \vdots \end{pmatrix}$	73-549	Ibca1'	Ib'c'a(τ2,τ3,τ ₄)			
21	74-555	Imma1'	Imm'a'(τ ₁ ,τ ₃),Im'm'a(τ ₄)			

σ 6

(a) (b)	(c)	(a)	(ь)	(c)
TETRAGON	AL				
<u> </u>	164 P4mm1'	Ρ4m'm'(τ ₂), (Pm'm2', Cm'm2')(τ ₂)	123-340	P4/mmm1'	P4/mm'm'(τ ₂), (Pm'm'm,Cmm'm')(τ ₃)
100-	172 P4bm1'	Ρ4b'm'(τ ₂),(Ρb'a2',Cm'm2')(τ ₅)	124-352	P4/mcc1'	Ρ4/mc'c'(τ ₂),(Pc'cm',Ccc'm')(τ ₅)
101.	180 P42cm1'	P42c'm'(τ2),(Pc'c2',Cm'm2')(τ ₅)	125-364	P4/nbm1'	P4/nb'm'(τ ₂),(Pb'an',Cmn'a')(τ ₅)
102.	188 P42nm1'	P42n'm'(τ2),(Pn'n2',Cm'm2')(τ ₅)	126-376	P4/nnc1'	P4/nn'c'(τ ₂),(Pn'n'n,Ccc'a')(τ ₅)
103-	196 P4cc1'	Ρ4c'c'(τ ₂),(Pc'c2',Cc'cb')(τ ₅)	127-388	P4/mbm1'	P4/mb'm'(τ ₂),{Pb'am',Cmm'm'}(τ ₅)
104-	204 P4nc1'	P4n'c'(τ ₂),(Pn'n2',Cc'c2')(τ ₅)	128-400	P4/mnc1'	P4/mn'c'(τ ₂),(Pnn'm',Ccc'm')(τ ₅)
105-	212 P42mc1'	P42m'c'(τ2),(Pm'm2',Cc'c2')(τs)	129-412	P4/nmm1'	P4/nm'm'(τ ₂),(Pmm'n',Cmm'a')(τ ₅)
106-	220 P42bc1'	Ρ42b'c'(τ2),(Ρb'a2',Cc'c2')(τς)	130-424	P4/ncc1'	P4/nc'c'(τ ₂),(Pc'cn',Ccc'a')(τ ₅)
107-	228 I4mm1'	I4m'm'(τ ₂),(Im'm2',Fm'm2')(τ ₅)	131-436	P42/mmc1'	P4₂/mm'c'(τ₂),(Pm'm'm,Ccc'm')(τ ₅)
108-	234 I4cm1'	I4c'm'(τ ₂),(Ib'a2',Fm'm2')(τ ₅)	132-448	P4 ₂ /mcm1'	$P4_2/mc'm'(\tau_2), (Pc'cm', Cmm'm')(\tau_3)$
109-	240 141md1'	I41m'd'(τ2),(Im'm2',Fd'd2')(τ5)	133-460	P4:/nbc1'	$P4_2/nb^+c^+(\tau_2), (Pb^+an^+, Ccc^+a^+)(\tau_3)$
110-	245 I41cd1'	I41c'd'(τ ₂),(Ib'a2',Fd'd2')(τ ₅)	134-472	P41/nnm1'	P42/nn'm'(τ2),(Pn'n'n,Cmm'a')(τ3)
¢.		-	135-484	P41/mbc1'	P4₂/mb'c'(τ₂),(Pb'am',Ccc'm')(τ ₃)
111-	252 P42m1'	P42'm'(τ ₂),(Cm'm2',P2'2'2)(τ _s)	136-496	P42/mnm1'	Ρ4 2/mn'm'(τ ₂),(Pnn'm',Cmm'a')(τ ₅)
112-	260 P42c1'	P42'c'(τ ₂),(Cc'c2',P2'2'2)(τ ₅)	137-508	P42/nmc1'	P42/nm'c'(τ2),(Pmm'n',Ccc'a')(τ ₃)
113-	268 P421m1'	Ρ42im'(τ ₂),(Cm'm2',P2 ₁ 2i2')(τ ₅)	138-520	P42/ncm1'	P42/nc'm'(τ2).(Pc'cn'.Cmm'a')(τε)
114-	276 P421c1'	P42;c'(T2),(Cc'c2',P212;2')(Ts)	139-532	I4/mmm1'	I4/mm'm'(T*).(Im'm'm.Em'm'm)(T*)
115-	284 P4m21'	Pām'2'(T ₂), (Pm'm2',C22'2')(T ₃)	140-542	I4/mcm1'	I4/mc'm'(T ₂), (Iba'm', Fm'm'm)(T ₂)
116-	292 P4c21'	P4c'2'(T2),(Pc'c2',C22'2')(Ts)	141-552	I4ı/amd1'	I4./am'd'(T.).(Imm'a' Ed'd'd)(T.)
117-	300 P4621'	P46'2'(T2),(P6'42',C22'2¦)(Ts)	142-562		$\mathbf{I}_{\mathbf{A}} = \mathbf{I}_{\mathbf{A}} + $
118-	308 Pān21'	Pān'2'(Tz), (Pn'n2', C22'2i)(Ts)			
119-	316 I4m21'	IĀm'2'(T1),(Im'm2',F2'2'2)(T5)			

~1

HILLS

120-322 I4c21'

121-328 I42m1'

122-334 I42d1'

I4c'2'(τ₂), (Ib'a2', F2'2'2)(τ₅)

142'm'(τ₂),(Fm'm2',12'2'2)(τ₅)

142'd'(T2), (Fd'd2', 12;2;2;)(T5)
1 - Roman (1997)	(a)	(b)	(c)	(a) (b)	(c)
вноме	алиеля	2A1		HEXAGONAL	
Rhone	143-2	P31'	Рз \	168-110 P61'	P6] .
	144-5	P3,1'	P31	169-114 P6,1'	P61
	145-8	P3-11		170-118 P6,1'	Ρδ,
	146-11	R31'	R3	171-122 P621'	P62
				172-126 P6,1'	P6.
	147-14	P31'	Ρ3(τ ₁), Ρ1(τ ₂ +τ ₁)	173-130 P6;1'	Ρ6,
	148-18	R31'	$R\bar{3}(\tau_1), P\bar{1}(\tau_2+\tau_3)^{\bullet}$	474-494 8641	$P\overline{P}(\tau,) Pm(\tau, \tau,) Pm(\tau, \tau,)$
	149-22	P31'2	P312'	174-134 601	ro(1),rm((2*1)),rm*(13*16)
	150-26	P321'	P32'1	175-138 P6/m1'	P6/m(t ₁),P2/m(t ₃ +t ₄),P2'/m'(t ₁₁ +t ₁₂)
	151-30	P311'2	P3112'	176-144 P6;/m1'	P6;/m(t1),P2:/m(t;+t,),P2:/m*(t1:+t12)
1	152-34	P3121'	P312'1 (T2)	177-150 P6221'	P62'2' 7
1	153-38	P321'2	P3212'	178-156 P61221'	P612'2'
1	154-42	P3221'	P322'1	179-162 P6s221'	P6s2'2'
1	155-46	R321'	R32'	180-168 P62221'	P622'2'
1	156-50	P3m1'	P3m'1(T2),(Cm,Cm')(T))	181-174 P6,221'	P6.2'2'
1	157-54	P31'm	P31m'(T ₂),(Cm,Cm')(T ₃) [®]	182-180 P6;221'	P6,2'2'
1	58-58	P3c1'	Ρ3c'1(τ ₂),(Cc,Cc')(τ ₃) ^Φ	183-186 P6mm1'	P6m'm'(τ ₂),(Cm'm2',Cm'm2')(τ ₅),Cm'm'2(τ ₆)
1	59-62	P31'c	Ρ31c'(τ ₂),(Cc,Cc')(τ ₃) ^Φ	184-192 P6cc1'	Ρ6c'c'(τ₂),(Cc'c2',Cc'c2')(τ₅),Cc'c'2(τ₅)[®]
1	60-66	R3m1'	R3m'(τ ₂),(Cm,Cm')(τ ₃) [●]	185-198 P6;cm1'	P63c'm'(τ2),(Cm'c21,Cmc'21)(τ5),Cm'c'21(τ6)
1	61-70	R3c1'	R3c'(T ₂),(Cc,Cc')(T ₃) [•]	186-204 P63mc1'	Ρ63m'c'(τ2),(Cmc'2,Cm'c2,)(τ3),Cm'c'2,(τ3)
1	62-74	P31'm	Ρȝኀm'(τ ₂),(C2/m,C2'/m')(τ ₁) [●]	187-210 Pām21'	٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩٩ - ٩٩
۱	63-80	P31'c	ΡΞ1σ'(τ ₂),(C2/c,C2'/c')(τ ₁) [*]	188-216 P6c21'	P6c'2'(T2), Ama'2'(T3), (Am'a'2, Am'a2')(T6)
1	64-86	P3m1'	PĴmʻl(τ₂),(C2/m,C2'/m')(τ₃) [●]	189-222 P62m1'	P62'm'(τ ₂), Amm'2'(τ ₃), (Am'm'2, Am'm2')(τ ₆)
1	65-92	P3c1'	Ρ3c'1(τ ₂),(C2/c,C2'/c')(τ ₁) [●]	190-228 P62c1'	Ρδ2'c'(τ ₂),Ama'2'(τ ₃) ⁰ ,(Am'a'2,Am'a2')(τ ₆)
1	66-98	R3m1'	R∃m′(τ₂),(C2/m,C2′/m′)(τ₃) [●]	191-234 P6/mmm1'	P6/mm'm'(τ ₂), (Cmm'm', Cmm'm')(τ ₃), Cm'm'm(τ ₄)
1	67-104	H3c1'	R3c'(T2),(C2/c,C2'/c')(T3)	192-244 P6/mcc1'	P6/mc'c'(τ₂),(Ccc'm',Ccc'm')(τ₃),Cc'c'm(τ₄)
States /				193-254 P6;/mcm1'	Ρ63/ma'm'(τ ₂),(Cm'am',Cma'm')(τ ₅),Cm'a'm(τ ₅)
-				194-264 P6;/mmc1'	P63/mm'c'(τ ₂),(Cmc'm',Cm'cm')(τ ₅),Cm'c'm(τ ₆)

					(t,)			1							<u>ā</u> m')	3c •)	R3c •)	Rām')	ām')	āc') /'''	Rām')	Rãc')	3m')	R3c') /	
(c)		(Pm'm'R3)	(Pn'n'n,R3)	(Fm'm'm.R3)	(Fd'd'd'R3)	(Im'm'm,R3]	(Pb'c'a,R3)	(Ib'c'a.R3)	(Pẵ2'm',R3m	(I ⁴ m'2',R3m	(I42'm',R3r	. (P42'c',R3c	(I ⁴ c'2',R3c	(I ¹ 2'd',R3c	(P4/mm'm'.R	(P4/nn'c'.R	(P4 2/mm'c',	(P42/nn'm'.	(I4/mm,m'.R	(I4/mc'm',R	[I41/am'd'.	(I41/ac'd',	(I4/mm'm'.R	[141/ac'd'.	
(q)		Pm3'	Pn3'	Fm3'	Fd3'	Im3'	. Cod	Ia3'	P43'm	F43'm	I43.m	P43'n	Fã'c	I43'd	Pm3 ' m	Pn3'n	n'Emg	Pn3'm	Fm3'm	Fm3'c	Fd3'm	Fa3'c	m,EmI	Ia3'd	
(P)	CUBIC	200-15	201-19	202-23	203-27	204-31	205-34	206-38	215-71	216-75	217-79	218-82	219-86	220-90	221-93	222-99	223-105	224-111	225-112	226-123	227-129	228-135	229-141	230-146	

- 69 -

Classes Magnétiques	CI		Dim.	Тпасса	Solutions
·			P.O.	1	stables
111.111	τ ₁				
21',m1',2/m1'	^τ 1 ^{, τ} 2				
2221',mm21',mmm1'	^τ 1 ^{+τ} 3	ļ	1	Ċ,	[1]
41'	τ,			-	
41',4/m1'	ξ ^τ 1]			
	`τ ₃ +τ ₄		2	C ₄	[11]
4221'	^τ 2		1	C _i	[1]
4mm1',42m1',4/mmm1'	{ ^T 2		1	° _i	[1]
	۲ ۲ ₅		2	C _{4 v}	[10][11]
31'	τ ₁	}	1	С,	[1]
31.	{ ^τ 1)		1	
	^{(7} 2 ^{• 7} 3		2	с ₆	[୩၄]
321.	τ2	}	1	С,	[1]
3m1',Ĵm1'	ξ ^τ 2)		1	
	(^т з		2	Cev	[10][01]
61'	τ ₁	}	1	C,	[1]
ō1'	·} [*] 1)		1	
	^{'[†]2^{*†}3^{,[†]5^{+†}6}}	i	2	с ₆	[חג]
6221'	τ2	}	. 1	С,	[1]
6mm1',6/mmm1'	{ ^τ 2)		1	
	^τ 5 ^τ δ		2	C _{6v}	[10][01]
ōm21'	{ ^τ 2		1	C ₁	[1]
	(⁷ 3, ⁷ 6		2	°6v	[10][01]
m3'	۲4		з	т _h	[100][111]
43°m,m3°m	· τ ₅		3	0 _h	[100][111]

TABLE 5.1.b

- TABLES 5.2 -

- 71 -

							- 72
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
TRICLIN	IC						
1 - 2	P11'	ABY ZE DC	P _s 1(τ ₁)	1	¢,	I	2
2 - 5	P11'	Г) Ρī'(τ ₂))	1	C ₁	I	1
MONOCUI		ZE DC		1	C ₁	I	2
HUNDEL							
3-2	P21'	ABY Z	$P_{a^{2}(\tau_{1},\tau_{2})}$ $P_{b^{2}(\tau_{1}),P_{b^{2}(\tau_{2})}}$	1	C _i	I	2
		EDÇ	$[a^{2(\tau_{1},\tau_{2})}]$				
4 - 8	^{P2} 1 ¹	ABY	P _a ² 1 ^{(T} 1, ^T 2)	1	C ₁	I	2
5-14	C21'	AZ BYC	$P_{C^{2}(\tau_{1}),P_{C^{2}(\tau_{2})}}$	1	C _i	I	2
		FF •	(P _s 1,C ₂ 2)(τ ₁)	2	C _{4v}	1,11	2.4
6 - 1 9	Pm1'	Z Aby Edc	P _b m(t ₁ ,t ₂) P _a m(t ₁),P _a c(t ₂) C _a m(t ₁ ,t ₂)	1	C _i	I	2
7 - 2 5	Pc1'	z Y C	^P b ^{c(τ} 1,τ ₂) ^P a ^{c(τ} 1,τ ₂) ^C a ^{c(τ} 1,τ ₂)	1	° ₁	I	2
8-33	Cm1'	ZA Byc	^P c ^{m(τ} 1), ^P A ^{c(τ} 2) ^C c ^{m(τ} 1), ^C c ^{c(τ} 2)	1	c _i	I	2
		FF •	(P _s 1,C _m)(τ ₁)	2	C _{4v}	I,II	2,4
9-38	Cc1'	ZM	PA ^{c(T} 1, ^T 2)	1	C ₁	I	2
		FF .	(P_1,C_c)(T_1)	2	C _{4v}	1,11	2.4

ULLE /

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
10-43	₽2/m1'	Г	P2/m'(T ₃),P2'/m(T ₄)	1	C ₁	I	1
		Z	P _b ^{2/m(T} 1,T ₃),P _b ² 1 ^{/m(T} 2,T ₄))	-		
		ABY	P_2/m(T_1,T_4),P_2/c(T_2,T_3)	{ 1	C _i	I	2
		EDC	C_2/m(T_1→T_4))			
11-51	₽2 <mark>1</mark> /m1'	Г	P2 ₁ /m'(τ ₃).P2'/m(τ ₄)	1	C ₁	I	1
		ABY	Pa ² 1 ^{/m(T} 1,T4),Pa ² 1 ^{/c(T} 2,T3) 1	C _i	I	2
12-59	C2/m1'	Г	C2/m'(T ₃),C2'/m(T ₄)	1	с,	I	1
		47	$P_{c}^{2/m(\tau_{1}),P_{A}^{2}/c(\tau_{2})},$)	-		
		~2	$P_{A}^{2/c(\tau_{3}),P_{C}^{2}}(\pi(\tau_{4}))$	{ 1	C _i	I	2
		BYC	$C_{c}^{2/m(\tau_{1},\tau_{4}),C_{c}^{2/c(\tau_{2},\tau_{3})}}$)			
		FF *	(Psi,Ca2/m)(T1,T2)	2	C _{4v}	I,II	2,4
13-66	P2/c1'	Г	P2/c'(T3).P2'/c(T4)	1	c,	I	1
		z	P _b 2/c(T ₁ ,T ₃),P _b 2 ₁ /c(T ₂ ,T ₄))	•		
		A	$P_{a}^{2/c(\tau_{1}+\tau_{4})}$	- <u>{</u> 1	c,	I	2
		E	$C_{a}^{2/c}(\tau_{1} \rightarrow \tau_{4})$)	-		
14-75	P2 ₁ /c1'	Г	P21/c'(τ3),P21/c(τ	1	с,	I	1
		A	$P_{1}^{2}/c(\tau_{1}+\tau_{4})$	1	c,	I	2
		DC	Ps ¹ (T1+T2,T3+T4)	2	C ₄	I	2
15-86	C2/c1'	Г	C2/c'(T ₃).C2'/c(T ₄)	1	c,	I	1
		AZ	P _A 2/c(T ₁ ,T ₃),P _A 2 ₄ /c(T ₂ ,T ₄)	1	C,	I	2
		FF =	(P_1,C_2/c)(T_1,T_2)	2	۔ د_	I,II	2,4

Blis

- 73 -

	•					- 7	74 -
(a)	(b)	(c)	(d)	(e)	(f)	(5)	(h)
RTHORI	HOMBIC						
16-2	P2221'	г	P222(1)	1	C,	I	1
		Z	Pa ^{222(T1,T4),P} c ²²² 1 ^(T2,T3)	١.	-		
		×	$P_{a}^{222(\tau_{1},\tau_{2}),P_{a}^{222}(\tau_{3},\tau_{4})}$)			
		Y	Pa ²²²⁽¹ 1,13),Pa ²²² 1 ⁽¹ 2,14)	{ 1	C ₁	I	2
		UTS	$C_{a}^{222(\tau_{1} \rightarrow \tau_{4})}$				
		R	F ₅ 222(τ ₁ →τ ₄)	1			
17-8	P222,1'	r	P222 ₁ (₁)	1	C ₁	I	1
		x	$P_{a^{222}1}(\tau_{1},\tau_{2}),P_{a^{2}1}^{2}(\tau_{3},\tau_{4})$)			
		Y	$P_a^{222}_{1}(\tau_1,\tau_3),P_a^{2}_{1}^{2}_{1}(\tau_2,\tau_4)$	{ 1	C ₁	I	2
		S	$C_{a}^{222}(\tau_{1}^{+}\tau_{4})$)			
18-17	P212121'	Г	P21212(T1)	1	C _i	I	1
		Z	$P_{c^{2}1^{2}1^{2}(\tau_{1},\tau_{4})},P_{a^{2}1^{2}1^{2}1^{(\tau_{2},\tau_{3})}}$	1	C ₁	I	2
		R	$C_{a^{2}(\tau_{1}^{*}\tau_{2},\tau_{3}^{*}\tau_{4})}$	\int_{2}	С.	I	2
		S	$P_a^{2(\tau_1^{+\tau_2,\tau_3^{+\tau_4}})}$	5	- 4		-
19-26	P2121211	Г	P21 ² 1 ² 1 ^{(τ} 1)	1	c _i	I	1
		UTS	Pa ² 1 ^{(T} 1*T2·T3*T4)	2	C ₄	I	2
		R	$P_s^{1}(\tau_1)$	4	13.1	I	2
20-32	C22211'	Г	C222 ₁ (_{T1})	1	C ₁	I	1
		Y	P _C ²²² 1 ^{(T} 1 ⁾ , P _A ² 1 ² 1 ² (T ₂ , T ₃ ⁾ , P _C ² 1 ² 1 ² 1 ^{(T} 4 ⁾	1	C _i	I	2
		S	(P _a ² 1,C _a ²²² 1)(T ₁ ,T ₂)	2	C _{4v}	I,II	2,4
21-39	C2221'	Г	C222(T1)	1	c,	I	1
		Y	$P_{C}^{222(\tau_{1})}, P_{A}^{222}(\tau_{2}, \tau_{3}), P_{C}^{2}(\tau_{1}^{2}, \tau_{4})$		-		
		Z	C _c ^{222(T} 1,T ₄),C _c ²²² 1(T ₂ ,T ₃)	1	C _i	I	2
		т	I _c ^{222(τ} 1,τ ₄),I _c ² 1 ² 1 ² 1 ^{(τ} 2,τ ₃))			
		S	$(P_a^{2,C_a^{222}})(\tau_1,\tau_2)$		C	TTT	7 4
		R	(C _a 2,F ₂ 22)(T ₁ ,T ₂)	<u>ر</u>	~4v	-,	2,1
22-46	F2221'	г	F222(1)	1	C,	I	1
		хт	$C_{A}^{222(\tau_{1},\tau_{2})}, C_{A}^{222}(\tau_{3},\tau_{4})$	}	1		
		Y	$C_{A^{222}(\tau_{1},\tau_{3})}, C_{A^{222}(\tau_{2},\tau_{4})}$	\ 1	с,	I	2
		z	CA222(T1,T4),CA2221(T2,T3)	}	•		
		R	(P_1,C_2,C_2,C_2,F_222,F_222)(T_)	4	56.1	I,II,III, IV,V,VI	2.4,4 4,8.8
23-50	12221'	r	1222(T ₁)	1	c,	I	1
		x	P ₁ ^{222(τ} 1),P ₁ ² 1 ² 1 ^{2(τ} 2,τ ₃ ,τ ₄)	1	c,	I	2
		U	(C_2.C_222)(T_1.T_2))	-	н 1917 г. – С	
		TS	(C _c ² , C _a ²²²)(T ₁ , T ₂)	۶²	L4v	1.11	2,2
		R	$F_{s}^{222}(\tau_1 + \tau_4)$	2	C 4	I	4

	•					-	75 -
3) 	(b)	(c)	(rl)	(e)	(f)	(g)	(h)
- 5 4	12,2,2,1'	Г	¹² 1 ² 1 ² 1 ^{(τ} 1)	1	C,	I	1
		x	$P_{1}^{2}_{1}^{2}_{1}^{2}_{1}^{(\tau_{1}),P_{1}^{2}22}_{1}^{(\tau_{2},\tau_{3},\tau_{4})}$	1	с,	I	2
		U	$(C_{a}^{2}, C_{a}^{222})(\tau_{1}, \tau_{2})$)	1		
		TS	$(C_{c}^{2}, C_{a}^{222}) (\tau_{1}, \tau_{2})$) ²	C 4 v	1.11	2,2
-58	Pmm21'	Г	Pmm2(τ ₁)	1	C _i	I	1
		x	Pa ^{mm2(T} 1,T4),Pa ^{ma2(T} 2,T3)	7			
		Y	Pa ^{mm2(T} 1,T2),Pa ^{ma2(T} 3,T4)				
		z	Pc ^{mm2(τ} 1),Pc ^{mc2} 1 ^{(τ} 2,τ4),Pc ^{cc2(τ} 3)				
		R	F _s mm2(τ ₁ +τ ₄)	1	C _i	I	2
		U	Ac ^{mm2(τ} 1,τ4),Ac ^{bm2(τ} 2,τ3)				
		т	Acmm2{τ ₁ ,τ ₂ },Ac ^{bm2} {τ ₃ ,τ ₄ }				
		S	$C_{a}^{mm2}(\tau_1 + \tau_4)$]			
- 6 7	Pmc2 ₁ 1'	Г	Pmc2 ₁ (T ₁)	1	С,	I	1
		x	$P_{a}^{mc2} (\tau_{1}, \tau_{4}), P_{a}^{mn2} (\tau_{2}, \tau_{3})$	}	-		
		Y	$P_{b}^{mc2}(\tau_{1},\tau_{2}),P_{a}^{ca2}(\tau_{3},\tau_{4})$	} 1	с,	I	2
		S	$C_{a}mc_{1}(\tau_{1} \rightarrow \tau_{4})$)	•		
-79	Pcc21'	r	Ρεε2(τ,)	1	С.	I	1
		x	' Ρ_cc2(τ,,τ,),Ρ_nc2(τ,,τ,)	1	-1		
		Y	$A = 1 + D = 2 - 3$ $P_cc2(\tau_1, \tau_2), P_cc2(\tau_2, \tau_3)$	Į,	C	I	2
		s	a 1 2 D 3 4 C _a cc2(τ ₁ +τ ₄)	ſ	-1		
-88	Pma21'	Г	Pma2(τ ₁)	. 1	C,	I	1
		Y	$P_{b}ma2(\tau_{4},\tau_{7}),P_{b}a2(\tau_{3},\tau_{4})$	١	1	·	
		z	$P_{ma2}(\tau_{1}),P_{mn2}(\tau_{2}),P_{mc2}(\tau_{2}),P_{ca2}(\tau_{4})$	$\langle 1 \rangle$	C.	I	2
		т	$A_{c}^{ma2}(\tau_{1},\tau_{2}),A_{c}^{ba2}(\tau_{3},\tau_{4})$	\int	1		
-100	Pca2 ₁ 1'	Г	Ρca2_(τ_)	, 1	C,	I	1
	·	Y	$P_{b}ca2_{1}(\tau_{1},\tau_{2}),P_{b}na2_{1}(\tau_{3},\tau_{4})$	1	° ₁	I	2
-112	Pnc21'	Г	Pnc2(τ ₁)	1	C,	I	1
		x	$P_{a}nc2(\tau_1,\tau_4),P_{a}nn2(\tau_2,\tau_3)$	1	C 1	I	2
-124	Pmn2 1'	Г	Pmn2 ₁ (τ ₁)	1	C,	I	1
1		Y	$P_{b}^{mn2}(\tau_1,\tau_2),P_{a}^{na2}(\tau_3,\tau_4)$	1	c,	I	2
		R	(C_m.C_c)(T_1)		-		
		U	(C_m,P_c)(T_)	\int_{1}^{2}	C _{4v}	1,11	2,2
-136	Pba21'	Г	Pba2(T ₁)	1	C ₁	I	1
		Z	Pcba2(T1),Pcna21(T2,T4),Pcnn2(T3)	1	C ₁	I	2.
-145	Pna2,1'	Г	Ρπα2 ₁ (τ ₁)	1	C 1	I	······································
		Т	(C_c,P_c)(1)	2	C 4 v	1,11	2.2

	•					-	76 -
)	(b)	(c)	(d)	(e)	(f)	(g.)	(h)
57	Pnn21*	r	Pnn2(1)	1	с,	I	
		R	Fsdd2(Ti→Ti)	1		I	2
66	[[mm21 *	г	Cmm2(1)	1	с,	I	1
		Y	$P_{c^{mm2}(\tau_1),P_{c^{ma2}(\tau_2,\tau_4),P_{c^{ba2}(\tau_3)}}$	}	1		
		z	$C_{c^{mm2}(\tau_{1}),C_{c}^{mc2}(\tau_{2},\tau_{4}),C_{c}^{cc2}(\tau_{3})}$	} 1	с,	I	2
		Т	$I_{c}^{mm2}(\tau_1), I_{c}^{ma2}(\tau_2, \tau_4), I_{c}^{ba2}(\tau_3)$		1		
		R	(C_2,F_smm2)(T_1,T_2)	>			
		S	(P2,C_mm2)(T1,T2)	{ ²	C 4 v	1.11	2,4
3	Cmc2 1'	г	Cmc2 ₁ (T ₁)	1	c,	I	1
		Y	Pc ^{mc2} 1 ^{(T} 1 ⁾ , Pc ^{mn2} 1 ^{(T} 2 ⁾ , Pc ^{na2} 1 ^{(T} 3 ⁾ , Pc ^{ca2} 1 ^{(T} 4 ⁾	1	с,	I	2
		S	$(P_a^2_1, C_a^{mc2}_1)(\tau_1, \tau_2)$	2	с _{4 v}	I,II	2,4
1	Ccc21'	Г	Ccc2(T ₁)	1	C,	I	1
		Y	$P_{C}^{cc2(\tau_1),P_{C}^{nc2(\tau_2,\tau_4),P_{C}^{nn2(\tau_3)}}$	1	1 C,	I	2
		R	$(C_2,F_3dd2)(\tau_1,\tau_2)$)	1	-	-
		S	(P_2,C_cc2)(T_1,T_2)	2	C _{4v}	I,II	2,4
8	Amm 2 1 '	Г	Amm2(T ₁)	1	с,	I	1
		Y	^P A ^{mm2(τ} 1), PA ^{mc2} 1 ^{(τ} 2), PA ^{nc2} 1 ^{(τ} 3), PB ^{mn2} 1 ^{(τ} 4)	1	•		
		z	$A_a^{mm2(\tau_1,\tau_4),A_a^{ma2(\tau_2,\tau_3)}$	\ 1	c,	I	2
		T	$I_a^{mm2}(\tau_1, \tau_4), I_a^{ma2}(\tau_2, \tau_3)$		•		
		R	(C_{a}, F_{s}, mm^2) (τ_1, τ_2)	5			
		S	$\left(P_{a}^{m,A}, mm^{2}\right)\left(\tau_{1}\right), \left(P_{a}^{c,A}, bm^{2}\right)\left(\tau_{2}\right)$	2	C _{4v}	I,II	2,4
6	Abm21'	r	Abm2(τ ₁)	1	с,	I	1
		Y	P _B ma2(₁),P _B ca2 ₁ (₇),P _A cc2(₇₃),P _B mc2 ₁ (₇₄))	1		
		z	$A_a bm2(\tau_1, \tau_4), A_a ba2(\tau_2, \tau_3)$	\ 1	с,	I	2
		т	I_{b} ma2(τ_1, τ_4), I_{a} ba2(τ_2, τ_3)		1		
4	Ama21 '	Г	Ama2(T ₁)	1	C,	I	1
		Y	PAma2(T1),PAma21(T2),PAnn2(T3),PAna21(T4)	1	1 C,	I	2
		R	$(C_am,F_sdd2)(\tau_1,\tau_2)$)	1		
		s	(P_m,A_ma2)(T_1),(P_c,A_ba2)(T_2)	2	C _{4v}	I,II	2,4
2	Aba21 '	r	Aba2(T ₁)	1	с ₁	I	1
		Y	PAba2(T;),PBna2;(T2),PBnc2(T3),PAca2;(T4)	1	с ₁	I	2
		Z	$(c_{c}^{2},P_{b}c)(\tau_{1})$).	-		
		T	(C_2,C_c)(T_)	2	C 4 v	1,11	2,2

(3115) UUUI

	•					- 7	7 -
)	(b)	(c)	(d)	(e)	(f)	(5.)	(h)
220	Fmm21'	Г ХТ	$F = \pi - 2 \{\tau_1\}$ A $\pi - \pi - 2 \{\tau_1\}$, A $\pi - 2 \{\tau_1\}$,	1	C _i	I	1
		2	$C_{A^{mm2}(\tau_1), C_{A}^{mm2}(\tau_2, \tau_4), C_{A}^{cc2}(\tau_3)}$	{ 1	C ₁	I	2
		Y R	A _C mm2(τ ₁),A _C bm2(τ ₂),A _C ba2(τ ₃),A _C ma2(τ ₄) (P_1,C_2,C_m,C_m,F_mm2,F_dd2)(τ ₂))	56.1	I,II,III, IV V.VI	2,4,4, 4 8 8
225	Fdd21'	Г	Fdd2(τ_)	1	C,	I	1
		R	(P _s 1,C ₂ 2,C _a c,C _a c,C ₂ 2)(τ ₁)	4	- 58.D1	I,II,III, IV,V	2.4.4. 4.8
230	Imm21'	Г	Im(m2(T ₁)	1	C ₁	I	1
		x	P ₁ ^{mm2} {(₁),P ₁ mn2 ₁ (₁₂ , ₁₄),P ₁ nn2(₁₃)	1	C ₁	1	2
		U	(C_m,A_cmm2)(T_1),(C_ac,A_cbm2)(T_2)				2,4
		S	(C _c 2,C _a mm2)(T ₁ ,T ₂)	2	C _{4v}	1.11	2,4
		т	(Ccm,Acmm2)(T1),(Ccc,Acbm2)(T2)	\			2,4
		R	$\{F_{s}^{mm2}, F_{s}^{dd2}\}$)			4,4
236	Iba21'	г	Iba2(T,)	1	C _i	I	1
		x	$P_{\tau}cc2(\tau_{1}), P_{\tau}ca2_{\tau}(\tau_{2},\tau_{2}), P_{\tau}ba2(\tau_{2})$	1	C,	I	2
		S	(C _c ² , C _a ^{cc²)(T₁, T₂)}	2	C _{4v}	1.11	2,4
242	Ima21'	Г	I= =2(τ ₁)	1	C _i	I	1
		x	$P_{\mathbf{I}^{ma2}(\tau_1)}, P_{\mathbf{I}^{mc2}(\tau_2)}, P_{\mathbf{I}^{nc2}(\tau_3)}, P_{\mathbf{I}^{na2}(\tau_4)}$	1	C ₁	I	2
		т	(Ccm,Acma2)(T1),(Ccc,Acba2)(T2))_	-	T T T	2 4
		s	^{[C} c ² , C _a mc ² , []] ^{[T} 1, ^T 2 []]	۶²	⁴ 4v	1,11	2,7
250	Pmmm1 *	Γ	Prom(1),Pm'm'm'(15),Pm'mm(16,17,18)	1	c,	I	1
		X	$P_{a^{mmm}(\tau_1,\tau_6)}, P_{c^{ccm}(\tau_2,\tau_5)}, P_{a^{mmm}(\tau_3,\tau_4,\tau_7)}$	ر ^ع ي			
		Y	$P_{a^{mmm}}(\tau_{1},\tau_{7}),P_{a^{mma}}(\tau_{2},\tau_{4},\tau_{6},\tau_{8}),P_{c}^{ccm}(\tau_{3},\tau_{6},\tau_{8}),P_{c}^{ccm}(\tau_{3},\tau_{8},\tau_{8},\tau_{8}))$	τ ₅)			
		Z	Parmm[t1,t8],Parma(t2,t3,t6,t7),Pcccm(t4,	^۲ 5 ⁾			
		S	$C_a^{mmm}(\tau_1, \tau_4, \tau_5, \tau_7), C_a^{mma}(\tau_2, \tau_3, \tau_5, \tau_8)$	1	C 1	I	2
		T	Ce ^{mmm(t} 1, ^t 2, ^t 7, ^t 8), ^C e ^{mme(t} 3, ^t 4, ^t 5, ^t 5)				
		U	Carnm(T1,T3,T6,T8),Camma(T2,T4,T5,T7)				
		R	Fs ^{mmm} (τ ₁ + τ ₈)	7			
258	Pnnn1'	Г	Pnnn(1,),Pn'n'n'(1,),Pn'nn(1,,1,1)	1	C,	I	1
		R	Fs ^{ddd(τ} 1 ^{→τ} 8)	1	C ₁	I	2
265	Pccm1'	Г	Pccm(τ ₁),Pc'c'm'(τ ₅),Pc'cm(τ ₆ ,τ ₇),Pccm'(τ	8 ^{] 1}	C _i	I	1
		x	$P_{a}^{ccm(\tau_1,\tau_5),P_{a}ban(\tau_2,\tau_5),P_{a}cca(\tau_3,\tau_8),}$ $P_{c}^{cmna(\tau_4,\tau_7)}$]			
		Y	P_ccm(T_1,T_),P_cca(T_2,T_8),P_ban(T_3,T_5), a a a a a a a a a a a a a a a a a a a	1	C ₁	I	2
		c	$P_{c} = ma(\tau_4, \tau_5)$				
		2	cecentin' 4' 6, '7', cecent 2' 3' 5' 8'	L			-
278	Pban1*	r	Pten(1),Pb'a'n'(15),Pb'en(16,17),Pban'(1	8) 1	C 1	I	1
		2	$P_{c}ban(\tau_{1},\tau_{8}),P_{b}nna(\tau_{2},\tau_{3},\tau_{6},\tau_{7}),P_{a}nnn(\tau_{4},$	τ ₅) 1	C _i	I	2

	•					- 78 -	-
)	(ъ)	(c)	(d)	(e)	(f)	(y)	(h)
0	Prime 1 1	г	Pmma(1),Pm'm'a'(15),Pm'ma(16),Pmm'a(17),Pmma'(18)	1	C,	I	1
		Y	$P_{b}^{mma(\tau_1,\tau_7),P_{a}^{mmn(\tau_2,\tau_8),P_{c}^{mna(\tau_3,\tau_5)}},$ $P_{b}^{cm(\tau_4,\tau_5)}$)			
		Z	$P_{c}^{mma}(\tau_{1},\tau_{8}),P_{b}^{bcm}(\tau_{2},\tau_{7}),P_{a}^{bam}(\tau_{3},\tau_{6}),$ $P_{cca}(\tau_{1},\tau_{2})$	{ 1	C ₁	I	2
		T	с 45 ^С а ^{тст (т} 1, ^т 2, ^т 7, ^т 8 ⁾ , ^С а ^{тса (т} 3, ^т 4, ^т 5, ^т 6 ⁾)			
6	Pnna1'	Г	$Pnna(\tau_1), Pn'n'a'(\tau_5), Pn'na(\tau_5), Pnn'a(\tau_7), Pnna'(\tau_8)$	1	C ₁	I	1
		T	$(P_{a}^{2/c}, C_{a}^{2/c})(\tau_{1}, \tau_{2})$	2	C _{4v}	1,11	2,2
2	Pmn a1'	г	$Pmna(\tau_1), Pm'n'a'(\tau_5), Pm'na(\tau_6), Pmn'a(\tau_7), Pmna'(\tau_8)$	1	C _i	I	1
		Y	$P_{b}^{mna(\tau_1,\tau_7),P_annm(\tau_2,\tau_8),P_anna(\tau_3,\tau_5),}$ $P_{bcn(\tau_4,\tau_6)}$	} 1	C ₁	I	2
		U	$(C_{a}^{2/m}, P_{c}^{2/c})(\tau_{1}, \tau_{2})$	2	C	I.II	2,2
		R	$[C_{a}^{2/m}, C_{a}^{2/c}](\tau_{1}, \tau_{2})$)	40		
8	Pccal'	Г	$Pcca(\tau_1), Pc'c'a'(\tau_5), Pc'ca(\tau_5), Pcc'a(\tau_7), Pcca'(\tau_8)$	1	ci	I	1
		Y	P _b cca(t ₁ , t ₇), P _a ccn(t ₂ , t ₆), P _c nna(t ₃ , t ₅), P _a bcn(t ₄ , t ₆)	{ 1	C _i	I	2
4	Pbam1 *	r	Pbam(T ₁),Pb'a'm'(T ₅),Pb'am(T ₆ ,T ₇),Pbam'(T ₈)	1	C ₁	I	1
		z	$P_{c}^{bam(\tau_{1},\tau_{8}),P_{b}^{nma(\tau_{2},\tau_{3},\tau_{6},\tau_{7}),P_{c}^{nnm(\tau_{4},\tau_{5})}}$	1	C _i	I	2
		S	$P_{a}^{2/m(\tau_{1}+\tau_{5},\tau_{4}+\tau_{8})},P_{a}^{2/c(\tau_{2}+\tau_{5},\tau_{3}+\tau_{7})}$	2	C ₄	I	2
		n	6 ² / ^m ¹ 1 ⁺¹ 5 ^{,1} 2 ⁺¹ 6 ^{,1} 3 ⁺¹ 7 ^{,1} 4 ⁺¹ 8)	·		
6	Pccn1'	Г	Pccn(T ₁),Pc'c'n'(T ₅),Pc'cn(T ₆ ,T ₇),Pccn'(T ₈)	1	C ₁	I	1
		R	C ₂ ^{2/c} (T ₁ +T ₅ ,T ₂ +T ₆ ,T ₃ +T ₇ ,T ₄ +T ₈)	2	C 4	I	2
		S	$(P_2/c, C_2c2)(\tau_1, \tau_2)$	2	C _{4v}	1,11	2,2
8	Pocm1'	г	Pbcm(τ ₁),Pb'c'm'(τ ₅),Pb'cm(τ ₆),Pbc'm(τ ₇),Pbcm'(τ ₈)	1	C _i	I	1
		x	P _a bcm(τ ₁ ,τ ₆),P _b bcn(τ ₂ ,τ ₅),P _a bca(τ ₃ ,τ ₈), P _b nma(τ ₄ ,τ ₇)	} 1	C ₁	I	2
4	Poom1'	r	Pnnm(τ,),Pn'n'm'(τ,),Pn'nm(τ,τ,),Pnnm'(τ,)	1	C ₁	I	1
		τυ	$(P_a^2 / c, C_a^{2/m})(\tau_1, \tau_2)$),	c	* **	.
		R	(F _a dd2,C _a 2/m)(T ₁ ,T ₂)	<u> </u>	^L 4v	1,11	2,2
		S	Pa ^{2/m(t} 1 ^{+t} 5 ^{,t} 4 ^{+t} 8 ⁾ , Pa ^{2/c(t} 2 ^{+t} 6 ^{,t} 3 ^{+t} 7 ⁾	2	C ₄	I	2
6	Pmmn1'	Г	Pmmn(τ ₁),Pm'm'n'(τ ₅),Pm'mn(τ ₆ ,τ ₇),Pmmn'(τ ₈)	٦	C,	I	1
		Z	$P_{c}^{mmn}(\tau_1,\tau_8),P_{a}^{nma}(\tau_2,\tau_3,\tau_6,\tau_7),P_{c}^{ccn}(\tau_4,\tau_5)$	1	C,	I	2
		S	$(P_a^{2/c}, C_a^{mm2})(\tau_1, \tau_2)$)	_	_	
		R	(C ₂ ² /c,F _s mm ²)(T ₁ ,T ₂)	} ²	^C 4v	305 I.II	2,2
8	Picn1'	r	Pbcn(T ₁),Pb'c'n'(T ₅),Pb'cn(T ₅),Pbc'n(T ₇),Pbcn'(T ₈)	1	C ₁	1, 1993, 1997 1	1
		S	$(C_{a^{2/c}}, P_{a^{2}}, f^{c}), f^{t}, f^{t})$	2	C _{4v}	I,II	2,2

	•					- 79	-
в) 	(b)	(c)	(d)	(e)	(f)	(ŋ)	(h)
-434	Pucal'	Г	Pbca(I),Pb'c'a'(I),Pb'ca(I I I)	1	ſ	Ţ	1
		R	$P_{s}^{1}(\tau_{1}^{+},\tau_{2}^{+},\tau_{2}^{-})$	4	51 13.1	I	2
-442	2 nm a 1 '	г	$Pnma(\tau_1), Pn'm'a'(\tau_2), Pn'ma(\tau_2), Pnm'a(\tau_2), Pnma'(\tau_2)$) 1	c,	I	1
		U	$P_{a}^{2}/m(\tau_{1} + \tau_{5}, \tau_{4} + \tau_{8}), P_{2}^{2}/c(\tau_{2} + \tau_{5}, \tau_{3} + \tau_{7})$	2	c,	I	2
		т	$(C_{a}^{mc2}, P_{a}^{2})^{(c)}(\tau_{1}, \tau_{2})$	2	C _{4v}	I,II	2,2
-458	Cmcm1 '	г	Cmcm(τ ₁),Cm'c'm'(τ ₅),Cm'cm(τ ₆),Cmc'm(τ ₇),Cmcm'(τ ₈)) 1	C _i	I	1
		Y	$P_{A}^{mma}(\tau_1), P_{A}^{nnm}(\tau_2), P_{C}^{bcn}(\tau_3), P_{B}^{nma}(\tau_4),$) ₁	С.	I	2
			$P_{B^{nna}}(\tau_{5}), P_{C^{bcm}}(\tau_{6}), P_{A^{nmn}}(\tau_{7}), P_{A^{nma}}(\tau_{6})$)	1		
		S	(P_2_1/m,C_mcm)(T_1,T_4),(P_2_1/c,C_mca)(T_2,T_3)	2	C _{4v}	I,II	2,2
-470	Cmca1'	Г	Cmca(τ ₁),Cm'c'a'(τ ₅),Cm'ca(τ ₆),Cmc'a(τ ₇),Cmca'(τ ₈)) 1	c _i	I	1
		Y	$P_{A}^{bam(\tau_1)}, P_{C}^{mna(\tau_2)}, P_{C}^{bca(\tau_3)}, P_{A}^{ccn(\tau_4)},$	}1	с,	I	2
			$P_A bcn(\tau_5), P_A cca(\tau_6), P_C nma(\tau_7), P_B bcm(\tau_8)$)	+		
		R	$(P_s^{1,C_2/m}(\tau_1^{+\tau_2,\tau_3^{+\tau_4}})$	4	26.4	I,II	2,2
-482	Cmmm1 '	Г	Cmmm(T ₁),Cm'm'm'(T ₅),Cm'mm(T ₆ ,T ₇),Cmmm'(T ₈)	1	c _i	I	1
		Y	$P_{C^{mmm}(\tau_1)}, P_{B^{mna}(\tau_2, \tau_3)}, P_{C^{bam}(\tau_4)},$				
		•	$P_{C}ban(T_{5}), P_{B}mma(T_{6}, T_{7}), P_{C}mmn(T_{8})$	\ 1	с.	I	7
		Z	C _c mmm(T ₁ ,T ₈),C _c mcm(T ₂ ,T ₃ ,T ₆ ,T ₇),C _c ccm(T ₄ ,T ₅)		1		-
		T	$I_{c}^{mmm}(\tau_1, \tau_B), I_{a}^{mma}(\tau_2, \tau_3, \tau_6, \tau_7), I_{c}^{bam}(\tau_4, \tau_5)$	1			
		R	(C_2/m,F_mmm)(T_1,T_3),(C_2/c,F_mmm)(T_2,T_4)	\int_{Z}	С.	1.11	7 4
		S	(P_2/m,C_mmm)(T_1,T_1),(P_2/c,C_mma)(T_2,T_3)	\$	-4v	-,	2 , 7
-492	Cccm1 '	Г	Cccm(T ₁),Cc'c'm'(T ₅),Cc'cm(T ₆ ,T ₇),Cccm'(T ₈)	1	C _i	I	1
		•	$P_{C}^{ccm(\tau_1),P_{A}nna(\tau_2,\tau_3),P_{C}nnm(\tau_4),$) ,	с	T	2
		•	$P_{C^{nnn}(\tau_5)}, P_{A^{mna}(\tau_6,\tau_7)}, P_{C^{ccn}(\tau_8)}$)	-1	-	2
		R	$(C_{a}^{2/m,F_{s}}ddd)(\tau_{1},\tau_{3}),(C_{a}^{2/c,F_{s}}ddd)(\tau_{2},\tau_{4})$) 2	с.	1.11	74
		S	(P_2/m,C_ccm)(T_1,T_4),(P_2/c,C_cca)(T_2,T_3)	5	~4v		2,4
-502	Cmma1'	Г	Cmma(τ ₁),Cm'm'a'(τ ₅),Cm'ma(τ ₆ ,τ ₇),Cmma'(τ ₈)	1	C _i	I	1
		~	$P_{A^{ccm}(\tau_1,\tau_5),P_{c}^{mma}(\tau_2,\tau_7),P_{B^{cca}(\tau_3,\tau_6)},$				
		ľ	PAbcm(T4, T8)	\int_{1}	С.	I	2
		z	Ccmma(1, 1, 1, 1), Ccmca(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		1		-
		Т	$I_a bam(\tau_1, \tau_4, \tau_5, \tau_8), I_c bca(\tau_3, \tau_6), I_c mma(\tau_2, \tau_7)$	J			
-512	Cccal'	Г	Ccca(τ ₁).Cc'c'a'(τ ₅),Cc'ca(τ ₆ ,τ ₇),Ccca'(τ ₈)	1	C ₁	I	1
		¥	$P_{A}^{ban(\tau_1,\tau_5),P_{C}^{nna(\tau_2,\tau_7),P_{C}^{cca(\tau_3,\tau_6)}},$	11	C,	I	2
		•	P _B ben(T ₄ ,T _B)	5	1	(2110)	-
						$\begin{pmatrix} 000\\ 000 \end{pmatrix}$	
						(unite)	

)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
27	Fmmm1 *	r	Fmmm(τ,),Fm'm'm'(τ,),Fm'mm(τ,,τ,,τ,)	1	C.	I	1
		¥Т	$C_{A^{mmm}}(\tau_1), C_{A^{ccm}}(\tau_2), C_{A^{mca}}(\tau_3, \tau_4),$	7	1		
		~ 1	$C_A cca(\tau_5), C_A mma(\tau_6), C_A mcm(\tau_7, \tau_8)$				
		Y	$C_{A^{mmm}}(\tau_1), C_{A^{ccm}}(\tau_3), C_{A^{mca}}(\tau_2, \tau_4),$		c	•	.
			C _A cca(T ₅), C _A mcm(T ₆ , T ₈), C _A mma(T ₇)	1	Ĺi	Ŧ	Z
		z	$C_{A^{mmm}}(\tau_1), C_{A^{mca}}(\tau_2, \tau_3), C_{A^{ccm}}(\tau_4),$				
			C _A cca(T ₅),C _A mcm(T ₆ ,T ₇),C _A mma(T ₆)]			
		R	(Ps1,C2/m,C2/m,C2/m,Fsmmm,Fsddd)(t1),)_	56.1	1,11,111	2,4,
			(Ps ¹ ,C ₂ 2/c,C ₂ 2/c,F _s mmm,F _s ddd)(t ₂)	5	50.,	IV,V,VI	4,8,
28	Fdda 1'	Г	Fddd(τ ₁),Fd'd'd'(τ ₅),Fd'dd(τ ₆ ,τ ₇ ,τ ₈)	1	C ₁	I	1
		R	(Ps ¹ ,C ₂ /c,C ₂ /c,C ₂ /c,F ₅ 222)(T ₁ ,T ₂)	4	82.01	I,II,III IV,V	2,4, 4,8
34	Immm1 *	г	Immm(τ ₁), Im'm'm'(τ ₅), Im'mm(τ ₆ , τ ₇ , τ ₈)	1	c,	I	1
		x	$P_{\mathbf{I}^{mmm}}(\tau_{1}), P_{\mathbf{I}}^{nnm}(\tau_{2}, \tau_{3}, \tau_{4}), P_{\mathbf{I}}^{nnn}(\tau_{5}),$	1.	-	Ŧ	2
			P ₁ mmn(τ ₆ ,τ ₇ ,τ ₈)	∫ 1	^L 1	1	2
		U	(C _a 2/m,C _a mmm)(τ ₁ ,τ ₄),(C _a 2/c,C _a mma)(τ ₂ ,τ ₃))			2,4
		TS	(C _c ^{2/m} ,C _a mmm)(τ ₁ ,τ ₄),(C _c ^{2/c} ,C _a mma)(τ ₂ ,τ ₃)	2	C _{4v}	I,II	2,4
		R	$\{F_s^{mmm}, F_s^{ddd}\}\{\tau_1 \rightarrow \tau_4\}$)			4,4
4 ()	Ibam1'	Г	Ibam(T ₁),Ib'a'm'(T ₅),Ib'am(T ₆ ,T ₇),Ibam'(T ₈)) 1	c,	I	1
		x	$P_{I}^{ccm(\tau_1),P_{I}^{bcn(\tau_2,\tau_3),P_{I}^{bam(\tau_4)}}}$).	~	+	7
			$P_{I}ban(\tau_{5}), P_{I}bcm(\tau_{6}, \tau_{7}), P_{I}ccn(\tau_{8})$	_∫'	۲ <u>۲</u>	*	2
		S	$(C_{c}^{2/m}, C_{a}^{ccm})(\tau_{1}, \tau_{4}), (C_{c}^{2/c}, C_{a}^{cca})(\tau_{2}, \tau_{3})$	2	C _{4v}	I,II	2,4
49	Ibca1'	Г	Ibca(T ₁), Ib'c'a'(T ₅), Ib'ca(T ₆ , T ₇ , T ₈)	1	C ₁	I	1
		x	P ₁ bca(t ₁ , t ₅), P ₁ cca(t ₂ , t ₃ , t ₄ , t ₆ , t ₇ , t ₈)	1	C 1	I	2
55	Imma1'	Γ	Imma(T ₁),İm'm'a'(T ₅),İm'ma(T ₆ ,T ₇),İmma'(T ₈) 1	C ₁	I	1
		¥	$P_{\mathbf{I}^{mma}}(\tau_{1},\tau_{8}),P_{\mathbf{I}^{mma}}(\tau_{2},\tau_{6}),P_{\mathbf{I}^{nma}}(\tau_{3},\tau_{7}),$).	- -	•	-
		^	$P_{inna(\tau_4,\tau_5)}$) ¹	^C i	1	2
		U	(C _a 2/m,C _a mcm)(T ₁ ,T ₄),(C _a 2/c,C _a mca)(T ₂ ,T ₃))_	~		-
		τ	(C_2/m,C_mcm)(T_1,T_4),(C_2/c,C_mca)(T_3,T_3)	$\langle \rangle^2$	^C 4v	1,11	2,4

BUS

- 80 -

						-	81 -
(a)	(ь)	(c)	(d)	(e)	(f)	(g)	(h)
TRAG	DNAL						
'5-2	P41	Г	Ρ4'(τ ₂)	1	¢,	I	1
		z	$P_{c}^{4}(\tau_{1}), P_{c}^{4}(\tau_{2})$)	-		
		m	Pc ^{4(T1,T2)}	{ 1	C ₁	I	2
		۸	¹ c ^{4(T} 1, ^T 2))			
		R	$(C_2^2, I_c^4)(\tau_1, \tau_2)$	$\hat{\mathbf{b}}$	c	T TT	7 4
		x	$(P_{a^{2}}, P_{c^{4}})(\tau_{1}, \tau_{2})$	§ -	~4v	1,11	2,7
6-8	P4,1'	Г	P4;(τ ₂)	1	C,	I	1
	·	м	$P_{\Gamma}^{4}(\tau_{1},\tau_{2})$	1	, ,	I	2
		x	$(P_{a}^{2}, P_{c}^{4})(\tau_{1}, \tau_{2})$	2		I,II	2,4
7-14	P4 11	r		_	-	_	
/ 14	[¹ 2'	1	$\frac{P^{2}(\tau_{2})}{P} = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right$	1	Ci	I	1
		2 M	$r_{c}^{4} 1 (r_{3}) r_{c}^{4} 3 (r_{4})$	l.	-		_
		 A	$(C^{2})^{1}(1)^{1}(2)^{1}$	(^L i	1	2
		R					
		x	$a^{-1}c^{-1}c^{-1}c^{+1}c^{+2}c^{+1}c^{+$	2	C _{4v}	I,II	2,4
			a C 2 1 1 2)			
8-20 F	P4 1'	Г	P43(τ ₂)	1	C 1	I	1
		m	$P_{C_{3}(\tau_{1},\tau_{2})}$	1	C ₁	I	2
		X	$[P_{a^{2}1}, P_{c^{4}3}](\tau_{1}, \tau_{2})$	2	C _{4v}	I,II	2,4
9-26	I41'	r	I4'(τ ₂)	1	C ₁	I	1
		ΜZ	$P_{I}^{4(\tau_{1}),P_{I}^{4}2(\tau_{2})}$	1	C ₁	I	2
		. A	(I _c ⁴ ,I _c ⁴)(₁)	2	C _{4v}	1,11	4,4
		x	(C _c ^{2,P} C ^{4)(τ} 1),(C _c ^{2,P} C ⁴ 2)(τ ₂)	2	C _{4v}	1,11	2,4
		N	(P _s 1,C _a 2,P _s 1,P _s 1,I _c 4)(T ₁)	4	58.01	I,II,III IV,V	2,4,4 4,8
0-30	I4,1'	г	Ι4;(τ_)	1	c.	I	1
		ΜZ	$P_{1}^{4}(\tau_{1}), P_{1}^{4}(\tau_{2})$	1	ı C,	I	2
		x	$(C_2, P_2, 4_1)(\tau_1), (C_2, P_2, 4_3)(\tau_2)$	2		I,II	2,4
		N	$(P_{s}^{1}, P_{s}^{1}, C_{a}^{2}, C_{a}^{2})(\tau_{1})$	4	59.1	I,II,III,IV	2,4,4,8
1-34	P41.	Г	Ρ4̈́'(τ ₂)	1	C,	I	1
		_ (P = 4 (T 1, T 2)	1	c,	I	2
		2 ($P_{b}^{2}(\tau_{3}^{+}\tau_{4})$	2	с ₄	I	2
		" (Pc ⁴ (1,12)	- 1	C ₁	I	2
		· · · • •	P _a 2(τ ₃ •τ ₄)	2	C 4	I	2
		, Š	^Ι c ⁴ (τ ₁ ,τ ₂)	1	c,	I Gu	2
		· · · · ·	$C_a^{2(\tau_3 \cdot \tau_4)}$	2	C ₄	I	2
,		R	$(C_{a}^{2}, I_{c}^{4})(\tau_{1}, \tau_{2})$	2	C _{4v}	I,II	2,4
		x	$(P_{a}^{2}, P_{c}^{\bar{4}})(\tau_{1}, \tau_{2})$	2	C _{4v}	I,II	2,4

	•					- 82	-
)	(b)	(c)	(d)	(e)	(1)	(g)	(h)
	141'	г	I ⁴ '(T ₂)	1	c _i	I	1
		M7 \$	^ρ ι ⁴ (τ ₁ ,τ ₂)	1	C ₁	I	2
)	Pc ² 1 ^{(T} 3 ^{+T} 4)	2	C ₄	I	2
		۸	^I c ⁴ (^T 1, ^T 2, ^T 3 ^{+T} 4)	2	C ₄	I	4
		x	$(c_{c}^{2}, P_{c}^{\bar{4}})(\tau_{1}, \tau_{2})$	2	C _{4v}	1,11	2,4
		N	(P ₅ 1,P ₅ 1,C ₂ 2,P ₅ 1,I _C ⁴)(T ₁)	4	58.01	I,II,III IV,V	2,4,4 4,8
	P4/m1'	r (Ρ4'/m(τ ₂),Ρ4/m'(τ ₅),Ρ4'/m'(τ ₆),	1	C,	I	1
			P2'/m(τ ₇ +τ ₈)	2	C_	I	1
		. ($P_{c}^{4/m}(\tau_{1},\tau_{5}),P_{c}^{4},P_{c}^{4/m}(\tau_{2},\tau_{5}),$	1	с,	I	2
		· · · · · ·	$P_{b}^{2} (m(\tau_{3}^{+}\tau_{4},\tau_{7}^{+}\tau_{8}))$	2	C_	I	2
		, Ś	$P_{c^{4/m}(\tau_{1},\tau_{2}),P_{c^{4/n}(\tau_{5},\tau_{5})},P_{c^{4/n}(\tau_{5},\tau_{5})}$	1	c,	I	2
		~)	$P_{a^{2/c}}(\tau_{3}^{+}\tau_{4}^{-}), P_{a^{2/m}}(\tau_{7}^{+}\tau_{8}^{-})$	2	с_ с_	I	2
		. \$	Ic ^{4/m(T} 1,T2,T5,T6)	1	C,	I	2
		<u> </u>	$C_{a^{2/m}}(\tau_{3}^{*}\tau_{4},\tau_{7}^{*}\tau_{6})$	z	C ₄	I	2
		R	$(C_a^{2/m,I_c^{4/m}}(\tau_1,\tau_2,\tau_3,\tau_4))$	2	C4V	I,II	2,4
		x	$\{P_{a}^{2/m,P}C^{4/m}\}\{\tau_{1},\tau_{4}\},\{P_{a}^{2/c},P_{c}^{4/n}\}\{\tau_{2},\tau_{3}\}$	2	C _{4v}	I,II	2,4
	P4_/m1* 2	- (Ρ4 ² /m(τ ₂),Ρ4 ^{2/m'(τ₅),Ρ4²/m'(τ₆),}	1	c,	I	1
		÷ {	P2'/m(τ ₇ +τ ₈)	2	C ₄	I	1
		z	(Pc ⁴ 1,3,Pb ² 1/m)(T ₂)	2	C 4 v	I,II	2,2
		. (Pc ⁴ 2 ^{/m(τ} 1,τ2 ⁾ ,Pc ⁴ 2 ^{/n(τ} 5,τ ₆),	1	C ₁	I	2
		···)	P _a ^{2/c(τ} 3 ^{+τ} 4),P _a ^{2/m(τ} 7 ^{+τ} 8)	2	C4	I	2
		A	$(I_{c}^{4}, C_{a}^{2/m})(\tau_{2})$	Z	C _{4 v}	1,11	2,2
		R	$(C_2^{2/m,I_c^4})(\tau_1 \tau_4)$	2	C _{4v}	I,II	2,4
		x	$(P_a^{2/m,P_c^4})^{(\tau_1,\tau_4),(P_a^{2/c},P_c^4})^{(\tau_2,\tau_3)}$	2	C _{4v}	I,II	2.4
	P4/n1'	_ (. P4'/n(τ ₂),P4/n'(τ ₅),P4'/n'(τ ₆),	1	c,	I	1
		' (P2'/c(T ₇ +T ₈)	2	C ₄	I	1
		, ($P_{c}^{4/n(\tau_{1},\tau_{5}),P_{c}^{4}2/n(\tau_{2},\tau_{6})}$	1	C ₁	I	2
		')	$P_{b^{2}1}/c(\tau_{3}^{*}\tau_{4},\tau_{7}^{*}\tau_{8})$	2	C ₄	I	2
		M	$\{P_{c}^{4}, P_{a}^{2/c}\}(\tau_{2})$	2	C _{4V}	1,11	2,2
		•	$(I_{c}^{4}, C_{a}^{2/c})(\tau_{z})$	2	C _{4v}	I,II	2,2
	P4 / n1'	. (Ρ4;/n(τ,),Ρ4;/n'(τ,),Ρ4;/n'(τ,),	1	C,	I	1
	-	r	P2'/c(τ ₂ +τ ₈)	2	C_	I	1
		z	$(P_{c}^{4}_{1,3}, P_{b}^{2}_{1}/c)(\tau_{2})$	2	C_	I,II	2,2
		m	$(P_{c}^{4}_{2}, P_{a}^{2/c})(\tau_{2})$	2	C ₄	I.II	2,2
		. ($I_{c}^{4} (\tau_{1}, \tau_{2}, \tau_{5}, \tau_{6})$	1	C,	1 (<u>8U</u>	\$) z
		^ {	C_2/c(T_3+T_4,T_7+T_8)	2	C_	I	z
		`			•		

•					- 83	-
(Ь)	(c)	(b)	(e)	(f)	(g)	(h)
I4/m1'	_ (I4'/m(τ ₂),I4/m'(τ ₂),I4'/m'(τ ₂),	1	c		_
	·)	C2'/m(τ ₇ +τ ₈)	י ז	^C i	I	1
	", ($P_{I}^{4/m(\tau_{1})}, P_{I}^{4}/m(\tau_{2}), P_{I}^{4}/n(\tau_{2}), P_{I}^{4}/n(\tau_{2}),$	4	^C 4	I	1
	···· {	$P_{C^{2}_{1}/c(\tau_{3}^{+}\tau_{4}^{-}),P_{C^{2}_{1}/m(\tau_{2}^{+}\tau_{a}^{-})}$, 2	^C 1	I	2
	A	$(I_c^{4/m}, I_c^{4}, I_a)(\tau_1, \tau_2)$	2	° 4 C	1 	2
	, ($(C_{c}^{2/m}, P_{c}^{4/m})(\tau_{1}), (C_{2/c}, P_{c}^{4}, \tau_{n})(\tau_{n}),$)	⁴ 4 v	1,11	~, ~
) î	$(C_2^{2/c}, P_2^{4/n})(\tau_3), (C_2^{2/m}, P_2^{4/m})(\tau_3)$	2	C _{4 v}	I,II	2,4
	N	$(P_{s}^{1}, P_{s}^{1}, C_{a}^{2/m}, P_{s}^{1}, I_{c}^{4/m})(\tau_{1}, \tau_{2})$) 4	58.01	I,II,III IV,V	2,4,4 4,8
I4 ₁ /a1'	_ ($I4_{1}^{\prime}/a(\tau_{2}^{\prime}), I4_{1}^{\prime}/a^{\prime}(\tau_{5}^{\prime}), I4_{1}^{\prime}/a^{\prime}(\tau_{5}^{\prime}),$	1	r	Ţ	
	· ($C2'/c(\tau_7 + \tau_8)$	2		I	1
	ΜŻ	$(P_{1}^{4}_{1,3}, P_{2}^{2}_{1}/c)(\tau_{2})$	2	-4 C.	-	7.7
	N	$(P_{1}, P_{1}, C_{2}/c, I_{c}, T_{c})$	4	-4v 80.01	I.II.III.IV	7.4.4
P4221'	Г					-, -, -
	Z	P = 422(T + T) P = 4 - 22(T + T)	1	° _i	I	1
	м	$c^{-1} (1, 2, 1) c^{-2} (1, 3, 1, 4)$ $P_{-422}(T, T) P_{-42} (T, T)$)			
	A	$I = 422(\tau_1 + \tau_2)$	1	C ₁	I	2
	R	$C_222, I 422)(T \rightarrow T 1$	Į			
	x	$P_{222}, P_{422}(\tau, \tau)$ (P 222 P 42 2)(τ, τ)	2	C _{4v}	I.II	2,4
		$a = C_{1} + \frac{1}{3} + \frac{3}{6} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + $)			•
P42 21'	Г	$P42_{1}^{2}(\tau_{1}).P4^{2}_{1}^{2}(\tau_{3}).P4^{2}_{1}^{2}(\tau_{4})$	1	C _i	I	1
	z	$P_{c}^{42} (\tau_{1}, \tau_{2}), P_{c}^{4} (\tau_{3}, \tau_{4})$	1	C ₁	I	2
•	M }	$(P_{C}^{4}, P_{C}^{2}, 2_{1}^{2})(\tau_{1})$	2	C _{4v}	I,II	2,2
	($P_{A^{222}1}(\tau_{2},\tau_{3},\tau_{4},\tau_{5})$	2	с ₄	I	2
	A }	$(1_{c}^{4}, 1_{c}^{222})(\tau_{1})$	2	C _{4v}	I,II	2,2
	($r_{c^{2}1^{2}1^{2}1}(\tau_{2}^{*}\tau_{3},\tau_{4}^{*}\tau_{5})$	2	C ₄	I	2
P4 ₁ 221'	r	$P_{1}^{22}(\tau_{1}),P_{1}^{22'}(\tau_{3}),P_{1}^{2'2}(\tau_{4})$	1	с.	т	
	M	$P_{c^{4}1^{22}(\tau_{1},\tau_{3})}, P_{c^{4}1^{2}1^{2}(\tau_{2},\tau_{4})}$	1	-1 C.	-	7
	x	$(P_a^{222}, P_c^{4}, 22)(\tau_1, \tau_3), (P_a^{2}, 2, 2, P_c^{4}, 2, 2)(\tau_2, \tau_3)$	2	C,	-	2 4
P4,2,21'	Г	24 P4.2.2(τ).P4/2.2/(τ). βάλολος		4V		• • 7
1 1	($1^{-1} \cdot 1^{-1} \cdot 1$	1	c _i	I	1
	m }	$P_{2} = 2 \left[2 \left[1 + 1 + 1 + 1 + 1 \right] \right]$	2	C _{4V}	I.II	2,2
	۲ R	$A^{-1}^{-1}^{-1}^{-1}^{-1}^{-1}^{-1}^{-1}$	2	C 4	I	2
		a 1 ' a 1 ' a ' · · a ' · · a ' · · 1 ' T 2 · T 3 ' T 1	4	59.1	I,II,III,IV	2,2,4

BUS

						- 8	4 -
)	(Ъ)	(c)	(d)	(e)	(f)	(g)	(h)
120	P4 ₂ 221'	r z	$P_{2}^{22}(\tau_{1}),P_{2}^{4}22'(\tau_{3}),P_{2}^{4}2'2'2(\tau_{4})$ $P_{c}^{4}1^{22}(\tau_{2},\tau_{5}),P_{c}^{4}3^{22}(\tau_{3},\tau_{4})$ $P_{4}^{4}2^{22}(\tau_{5},\tau_{5}),P_{5}^{4}3^{22}(\tau_{5},\tau_{5})$		° ₁	I	1
		A R X	$ \begin{bmatrix} c^{2} 2^{2} (t_{1}, t_{3}) & c^{2} 2^{2} 1^{2} (t_{2}, t_{4}) \\ I_{c}^{4} 1^{22} (\tau_{2} + \tau_{5}) \\ (C_{a}^{222}, I_{c}^{4} 1^{22}) (\tau_{1} + \tau_{4}) \\ (P_{a}^{222}, P_{c}^{4} 2^{22}) (\tau_{1}, \tau_{3}), (P_{c}^{222} 1, P_{c}^{4} 2^{2} 1^{2}) (\tau_{2}, \tau_{4}) $	2	с ₁ с _{4 v}	I I,II	2
128	P ⁴ 2 ² 1 ²¹ '	г z т { л {	$P_{2}^{2} (\tau_{1}) P_{2}^{2} (\tau_{3}) P_{2}^{2} (\tau_{3}) P_{2}^{2} (\tau_{4})$ $P_{c}^{4} (\tau_{2}) (\tau_{2}, \tau_{5}) P_{c}^{4} (\tau_{3}) (\tau_{3}, \tau_{4})$ $P_{A}^{222} (\tau_{2}, \tau_{3}, \tau_{4}, \tau_{5})$ $(P_{c}^{4} P_{c}^{2} (\tau_{2}, \tau_{3}, \tau_{4}, \tau_{5})$ $(I_{c}^{4} P_{c}^{2} (\tau_{1}) (\tau_{1}) (\tau_{1})$	1 1 2 2 2 2 2	C ₁ C ₁ C ₄ C ₄ C ₄ C ₄	I I I.II I.II I.II	1 2 2 . 2 2 2 . 2 2 . 2
136	P4 ₃ 221'	Г M X	$P_{3}^{22}(\tau_{1}),P_{3}^{22}(\tau_{3}),P_{3}^{4},2,2(\tau_{4})$ $P_{C}^{4},3^{22}(\tau_{1},\tau_{3}),P_{C}^{4},3^{2},2(\tau_{2},\tau_{4})$ $(P_{a}^{222},P_{C}^{4},3^{22})(\tau_{1},\tau_{3}),(P_{a}^{2},1^{2},P_{C}^{4},3^{2},1^{2})(\tau_{2},\tau_{4})$	1 1) 2	с _і с _і с _{4 v}	I I I.II	1 2 2,4
144	P ⁴ 3 ² 1 ²¹	г м { к	$P_{3}^{2} 2_{1}^{2} (\tau_{1}) \cdot P_{3}^{4} 2_{1}^{2} (\tau_{3}) \cdot P_{3}^{4} 2_{1}^{2} (\tau_{4})$ $P_{c}^{2} 2_{2}^{2} (\tau_{2} + \tau_{3}) \cdot P_{c}^{2} 2_{1}^{2} 2_{1}^{2} (\tau_{4} + \tau_{5})$ $(P_{c}^{4} 3 \cdot P_{c}^{2} 2_{1}^{2} 2_{1}^{2} 1_{1}) (\tau_{1})$ $(P_{a}^{2} 1 \cdot P_{a}^{2} 2_{1} \cdot C_{a}^{2} \cdot C_{a}^{2}) (\tau_{1} + \tau_{2} \cdot \tau_{3} + \tau_{4})$	1 2 2 4	C ₁ C ₄ C ₄ v 59.1	I I I.II I.II,III.IV	1 2 2,2 2,2,4,4
152	I4221 ·	Г MZ A X {	$I422(\tau_{1}), I4'22'(\tau_{3}), I4'2'2(\tau_{4})$ $P_{I}^{422}(\tau_{1}), P_{I}^{42}(\tau_{2}), P_{I}^{4}(\tau_{2}^{2}), P_{$	1 1 2 4	C ₁ C ₁ C ₄ v 82.01	I I I.II I.II I.V.V	1 2 4,4 2,4 2,4 2,4 2,4,4 8,8
158:	I4 ₁ 221'	r mz x { N	$P_{I_{1}^{4}22(\tau_{1}),I_{1}^{4}22'(\tau_{3}),I_{1}^{4}2'2(\tau_{4})}$ $P_{I_{1}^{4}22(\tau_{2}),P_{I_{3}^{2}2(\tau_{3}),P_{I_{3}^{4}22(\tau_{4}),P_{I_{1}^{4}1^{2}1^{2}(\tau_{5})}}(C_{A}^{222},P_{C_{1}^{4}2^{2}1^{2}}(\tau_{1}),(C_{A}^{222},P_{C_{3}^{4}2^{2}}(\tau_{2}),(\tau_{2}),(C_{A}^{222},P_{C_{1}^{4}2^{2}1^{2}}(\tau_{4}),(C_{A}^{222},P_{C_{1}^{4}2^{2}1^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}1^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}2^{2}},P_{C_{2}^{4}2^{2}}(\tau_{4}),(C_{C_{2}^{2}}(\tau_{4}),(C_{C_{2}^{2}}(\tau_{4}),(C_{$	1 1 2 4	C ₁ C ₁ C ₄ , 80.01	I I I.II I.II.IV	1 2 2.4 2.4,4,8

	•						85 -
) 	(b)	(c)	(d)	(e)	(f)	(g)	(h)
n E 4	P4nem11	Г	Ρ4π.m(τ,),Ρ4'mm'(τ,),Ρ4'm'm(τ,)		r		
	•	_ ($P_{e}^{4mm}(\tau_{1}), P_{4}cc(\tau_{2}), P_{4}^{4}mc(\tau_{2}), P_{4}^{cm}(\tau_{2})$	ר •	^L 1	1	1
		2	$(P_{e}mc_{2}, C_{e}mc_{2})(\tau_{e})$	7	ני ר	1	
		. \$	$I_{2}^{4mm}(\tau_{1},\tau_{3}), I_{2}^{4cm}(\tau_{2},\tau_{4}),$	1	۲4 v ۲	1,11 T	2,2
		^ `	$(F_{g}mm^2, I_{ma2})(\tau_{c})$	2	с Г	- T T T	2 7
I.		_ ($P_{C}^{4mm}(\tau_1,\tau_3),P_{C}^{4bm}(\tau_2,\tau_4),$	1	~4v C.	I	2,1
1		n ($(C_{a}mm2, P_{c}ma2)(\tau_{c})$	2	- 1 C .	- 1.11	2 2
		R	$(A_{c}^{mm2}, I_{c}^{4mm})(\tau_1, \tau_2), (A_{c}^{bm2}, I_{c}^{4cm})(\tau_2, \tau_3)$)	- 4 v	- ,	-,-
1		×	(Pa ^{mm2,P} C ^{4mm)(1} 1, ^T 2 ⁾ ,(Pa ^{ma2,P} C ^{4bm)(T} 3, ^T 4)	2	C _{4v}	I,II	2,4
-172	P4bm1'	r	P4bm(T ₁),P4'bm'(T ₃),P4'b'm(T ₄)	1	c,	I	1
		z	$P_{c^{4bm(\tau_{1})},P_{c}^{4nc(\tau_{2})},P_{c}^{4}2^{bc(\tau_{3})},P_{c}^{4}2^{nm(\tau_{4})}}$	1	с,	I	2
		l	(Pcna21,Ccmc21)(T5)	2	с _{4 v}	1,11	2,2
		A	(I _c 4,I _c ma2)(T ₁)) .			
		M	(Pc ^{4,P} c ^{ma2)(t} 1)) ²	^C 4v	1,11	2,2
-160	P4_cm1'	Г	P42 ^{cm(T} 1).P42 ^{cm'(T} 3).P42 ^{c'm(T} 4)	1	с,	I	1
		Z	(Pc ⁴ 1,3, ^C c ^{mc2} 1)(T ₁))	1		
		Α	(I _c ⁴ ₁ , I _c ^{ma2})(T ₁)	} ²	C _{4v}	I,II	2,2
		_ (^P c ⁴ 2 ^{mc(T} 1,T3 ⁾ ,Pc ⁴ 2 ^{bc(T} 2,T ₄)	1	с,	I	2
		l	(C _a cc2,P _C ma2)(T ₅)	2		I,II	2,2
		x	$(P_acc^2, P_c^4, cm)(\tau_1, \tau_2), (P_b^{nc^2}, P_c^4, cm)(\tau_3, \tau_4)$	2	C _{4v}	1,11	2,4
-168	P4_nm1'	Г	P4 ₂ nm(τ ₁), P4 ₂ nm'(τ ₃), P4 ₂ n'm(τ ₄)	1	C,	I	1
	·	A	$I_c^{4} I^{md(\tau_1, \tau_3), I_c^{4} I^{cd(\tau_2, \tau_4)}$	1	C,	I	2
		((F _s dd2,I _c mm2)(T ₅)	2		1,11	2.2
		M	(Pc ⁴ 2, Pc ^{ba2})(T ₁))			• -
		Z	(Pc ⁴ 1,3, ^C c ^{mc2} 1)(T1)) ²	C _{4v}	I,II	2.2
196	P4cc1 '	r	P4cc(T ₁),P4'cc'(T ₃),P4'c'c(T ₄)	1	C,	I	1
		m {	$F_{C^{4cc(\tau_{1},\tau_{3})},P_{C}^{4nc(\tau_{2},\tau_{4})}}$	1	°,	I	2
		((C_cc2.P_cnc2)(T_5)	2	с _{4 у}	I,II	2,2
		x	$(P_acc2, P_C^{4cc})(\tau_1, \tau_2), (P_bnc2, P_C^{4nc})(\tau_3, \tau_4)$	2	C _{4v}	1.11	2,4
204	P4nc1'	Г	P4nc(τ ₁),P4'nc'(τ ₃),P4'n'c(τ ₄)	1	C	Ţ	
		۸	(I_4,F_dd2)(T_))	-1	•	1
		m	$(P_{c}^{4}, P_{c}^{nc2})(\tau_{1})$	2	C _{4v}	1,11	2.2
)			

RUS

						- 8	36 -
a.)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
212	F4 ₂ mc1'	Г	P4_mc(1,),P4'mc'(1,),P4'm'c(1)				- ·
	•	($2 = 1 = 2 = 3^{-1} = 2^{-1} = 4^{-1}$ $P_{p} 4_{p} cm(\tau_{1}, \tau_{2}), P_{p} 4_{p} nm(\tau_{1}, \tau_{2})$	1 .	¹ 1	1	1
		m }	$(C_mm2, P_mc2)(\tau_r)$	1	^L 1	1 11	2 2
		A	[I_4,,F_mm2](τ_))	۲4v	1,11	2,2 .
		z	(P_4,,P_mc2_)(T_)	2	C _{4v}	I,II	2,2
		R	(A_mm2,I_4_md)(T_,T_),(A_bm2,I_4_cd)(T_,T_))			
		X	$(P_{a}^{mm2}, P_{C}^{4} 2^{mc})(\tau_{1}, \tau_{2}^{2}), (P_{b}^{ma2}, P_{C}^{4} 2^{bc})(\tau_{3}, \tau_{4}^{2})$	2	C 4 v	I,II	2,4
20	P42661'	Г	P42 ^{bc(T} 1),P42 ^{bc'(T} 3),P42 ^{b'c(T} 4)	1	Ъ,	I	1
		Z	(Pc ⁴ 1,3,Pc ^{na2} 1)(T1)).	_		
		M	^{[P} c ⁴ 2 ^{, P} c ^{nc2}](T ₁)) ²	^C 4v	1,11	2.2
228	I4mm1'	r	I4mm(T ₁),I4'mm'(T ₃),I4'm'm(T ₄)	1	c,	, I	1
i		mz 🜔	$P_{I}^{4mm(\tau_{1}),P_{I}^{4nc(\tau_{2}),P_{I}^{4}2^{mc(\tau_{3}),P_{I}^{4}2^{nm(\tau_{4})}}$	1	C _i	I	2
		l (<pre>[P_Imn21,C_mc21)(T_5)</pre>	2	C _{4v}	I,II	2,2
		×	$(A_{C}^{mm2}, P_{C}^{4mm})(\tau_{1}), (A_{C}^{ma2}, P_{C}^{4}, 2^{cm})(\tau_{2})$ $(A_{C}^{ba2}, P_{A}^{4bm})(\tau_{A}), (A_{C}^{bm2}, P_{A}^{4}, nm)(\tau_{A})$	2	C _{4v}	I,II	2,4
		Ì	$(I_4mm, I_4, md)(\tau_1), (I_4cm, I_4, cd)(\tau_1)$) 2	C .	I.II	4 4
		^ }	[I_ma2,F_dd2](τ_+τ_,τ_+τ_)	4	-4v 26.1	I.II	4.4
1		. (C S 2 2 4 4 - (C_m,C_m,A_mm2,I_4_md,I_4mm)(τ_).)			-,-
		N {	(C _c c,C _a c,A _c bm2,I _c 4 ₁ cd,I _c 4cm)(τ ₂)	{ 4	82.01 }	I,II,III IV,V	2,4,4 8,8
234	I4cm1'	Г	I4cm(τ ₁),I4'cm'(τ ₃),I4'c'm(τ ₄)	1	c,	I	1
		mz (P ₁ ^{4bm(τ} 1),P ₁ ^{4cc(τ} 2),P ₁ ⁴ 2 ^{bc(τ} 3),P ₁ ⁴ 2 ^{cm(τ} 4),	1	с,	I	2
		((P ₁ ^{ca2} 1,C _A ^{mc2} 1)(T ₅)	2	с 4 у	1,11	2,2
		× (<pre>(Acma2,Pc4nc)(1),(Acmm2,Pc42mc)(12),</pre>)	_		
		<i>"</i> ($(A_{C}^{bm2,P}C^{4cc})(\tau_{3}), (A_{C}^{ba2,P}C^{4}2^{bc})(\tau_{4})$) ²	C _{4v}	1.11	2,4
240	I4,md1'	Г	I4 ₁ md(τ ₁),I4'md'(τ ₃),I4'm'd(τ ₄)	1	c,	I	1
		mz	(PI ⁴ 1.3, PI ^{mn2} 1)(T1)	2	C _{4v}	1,11	2,2
		N 🖁	(^C c ^{m,C} ^{c,A} c ^{mm2,I} c ^{mm2)(τ} 1),),	80 04		
		($(C_c, C_a c, A_c bm^2, I_c ba^2)(\tau_2)$	}	αυ.υΊ	1,11,111,1V	2,4,4,8
246	14 ₁ cd1'	r	I4,cd(T,),I4;cd'(T,),I4;c'd(T,)	1	с	т. Т	
		mz	$(P_{I}^{4}_{1,3}, P_{I}^{ca2}_{1})(\tau_{1})$	2	-1 ε.	T. TT	1
				-	~4v	-,	4.2

					-	87 -
) (b)	(c)	(d)	(в)	(f)	(ع)	(h)
52 Pā2m1*	г	Pā2m(1),Pā'2m'(13),Pā'2'm(14)	1	c,	1	
	. ($P_{c}^{\bar{4}2m(\tau_{1},\tau_{4})}, P_{c}^{\bar{4}2c(\tau_{2},\tau_{3})}$	1	¢,	I	2
	- ` {	(C_mc21, P_2221)(T_5)	2	C , ,	1,11	2,2
	. ($P_{C}^{\bar{4}m2(\tau_{1},\tau_{3}),P_{C}^{\bar{4}b2}(\tau_{2},\tau_{4})}$	1	¢,	I	2
	···· {	(Pcma2, C222) (T5)	2		1,11	2,2
	. ($I_{c}^{4m2}(\tau_{1},\tau_{4}), I_{c}^{4c2}(\tau_{2},\tau_{3})$	1	C,	I	2
	<u>^</u> {	(I _c ma2,F _s 222)(τ _s)	2	С _я	I,II	2.2
	R	$(C_{222,I_{c}}^{42m})(\tau_{1} + \tau_{4})$)	40		- , -
	x	$(P_{a}^{222}, P_{c}^{\overline{4}2m})(\tau_{1}, \tau_{3}), (P_{a}^{222}, P_{c}^{\overline{4}2}, m)(\tau_{2}, \tau_{4})$	2	C 4 v	1,11	2,4
60 P42c1'	Г	P42c(T1),P4'2c'(T3),P4'2'c(T4)	1	c,	I	1
	z	Pc ²²² 1 ^(T2*T4·T3*T5)	2	C _	I	2
	($P_{C}^{\bar{4}_{C2}(\tau_{1},\tau_{3})}, P_{C}^{\bar{4}_{n2}(\tau_{2},\tau_{4})}$	1	c,	I	2
	· · · · · · · · · · · · · · · · · · ·	(Pcnc2,Pa222)(T5)	2	1 C	I.II	- 2.2
	•	F _s ^{222(T} 2 ^{+T} 4,T3 ^{+T} 5)	} 2	4V C.	I	2
	R	$[C_{a}^{222}, I_{c}^{\overline{4}2d}](\tau_{1} \rightarrow \tau_{4})$)	4		-
	x	$(P_a^{222}, P_c^{\bar{4}2c})(\tau_1, \tau_3), (P_c^{222}, P_c^{\bar{4}2}, c)(\tau_2, \tau_4)$	2	C _{4v}	I,II	2.4
8 P42 ₁ m1'	Г	Ρ42 ₁ m(τ ₁),Ρ4'2 ₁ m'(τ ₃),Ρ4'2 ₁ m(τ ₄)	1	С,	I	1
	, ($P_{c}^{42} 1^{m(\tau_{1},\tau_{4})}, P_{c}^{42} 1^{c(\tau_{2},\tau_{3})}$	1	1 C.	I	' 2
	· ` ` ` ` ` ` ` ` ` ` `	(C _c mc2 ₁ ,P _a 2 ₁ 2 ₁ 2 ₁)(τ ₅)	2	1 C.	-	
	_ ((P _C ⁴ , P _C ma2)(T ₁)	2	-4v C	T TT	2,2
		$P_{C}ba2(\tau_{2} \cdot \tau_{5}), P_{C}mm2(\tau_{3} \cdot \tau_{4})$	2	~4v C	T	2,2
	. Ì	[I_4, I_ma2](τ,)	2	~4 C	- 7 77	2
	{^{	$I_{c}ba2(\tau_{2}^{*}\tau_{5}), I_{c}^{mm2}(\tau_{3}^{*}\tau_{4})$	2	-4v C.	1,11	2,2
E P421c1'	г	P42,c(T,),P4'2,c'(T,),P4'2;c(T,)		4		2
	z	$P_{2}^{2} \left\{ 2_{4}^{2} \left\{ \tau_{0}^{+} \tau_{4}, \tau_{0}^{+} \tau_{c} \right\} \right\}$	' 2	L ₁	I	1
	(Ε 1 Ι 2 4 3 5 Ε 2 (τ,)	2	4	I	2
	^{	Ι_4(τ_+τ_,τ_+τ_)	4	13.1	I	2
	Ì	$P_{r} = c 2 (\tau_{2} + \tau_{2}), P_{r} = n 2 (\tau_{2} + \tau_{2})$	2	^C 4	I	2
	m }	$(P_{2}\bar{4}, P_{nc2})(\tau_{1})$	2	C ₄	I	2
			2	C _{4v}	I,II	2,2
4 P4m21'	r (P4m2(T1),P4'm'2(T3),P4'm2'(T4)	1	с,	I	1
	z	Pe ^{4m2} (T1,T4),Pe ^{4c2} (T2,T3)	1	۔ د	I	2
	Ç	(Pcmc21, Cc2221) (T5)	2	۔ د م	1,11	2.2
	m {	Pc ^{42m(t} 1,t ₄),Pc ⁴² 1 ^{m(t} 2,t ₃)	1	с, С,	I	2
	ļ	[C_mm2.P_A222])[T_5]	2	с <u>,</u>	1,11	2.2
	<u> </u>	Ic ^{42m(T} 1*T4)	1	ς,	I	2
	((F _s n,m2,I _c 222)(T ₅)	2	۲ ۲	1,11	- 2.7
	R	(Acmm2, Ic4m2)(T1, T2), (Acbm2, I4c2(T3, T4))	4 v		- ,
	x	(P_mm2,P_4m2)(T_1,T_2),(P_ma2,P_4D2)(T_3,T_4)	2	C _{4v} .	1.11	105 2.4

	•					-	88 -
н)) 	(ស)	(c)	(d)	(c)	(千)	(٢)	(1)
2.92	HÃc21'	Г	Pácz(1,),Pá'c'z(1,),Pá'cz'(1,)	1	с,	1	1
		Z	C ₂ ²²² 1 ^{(T} 2 ^{*T} 5 ^{,T} 3 ^{*T} 4)	2		1	2
		_ ($P_{C^{\tilde{4}2c}(\tau_{1},\tau_{4})}, P_{C^{\tilde{4}2}c(\tau_{2},\tau_{3})}$	1	c,	1	2
		· · · · · ·	(C_cc2,P_222)(T_5)	2		1.11	2,2
		A	I c 222 (T 2+T 5, T 3+T 4)	2	C,	I	2
		x	(Pecc2,Pc4c2)(T1,T2),(Pbnc2,Pc4n2)(T3,T4)	2	C4v	1,11	2,4
30.0	P4021'	г	Ρ462(τ ₁),Ρ4'6'2(τ ₃),Ρ4'62'(τ ₄)	1	C,	I	1
		,)	Ρ _c ⁴ b2(τ ₁ ,τ ₄),Ρ _c ⁴ⁿ² (τ ₂ ,τ ₃)	1	с,	I	2
		``	(Pcna21,Cc2221)(T5)	2	с. 4 у	1,11	2.2
		M	Pc ^{222(T} 2 ^{+T} 5 ⁾ ,Pc ² 1 ² 1 ^{2(T} 3 ^{+T} 4 ⁾)	-		2
		۸	$I_{c^{2}1^{2}1^{2}1^{(\tau_{2}^{+\tau_{5},\tau_{3}^{+\tau_{4}})}}$	} ²	^C 4	1	2
9 D E	Pån21	Г	Pān2(1,),Pā'n2'(1,),Pā'n'2(1,)	1	с ₁	I	1
		z	$C_{c}^{222}(\tau_{2}^{*}\tau_{5},\tau_{3}^{*}\tau_{4})$	2	C ₄	I	2
		м	Pc ² 1 ² 1 ² (T ₃ +T ₄),Pc ²²² (T ₂ +T ₅)	2	C ₄	I	2
		. ($I_c^{\overline{4}2d}(\tau_1 \star \tau_4)$	1	C ₁	I	2
		^ {	$(F_{s}dd2, I_{c}^{2}, I_{1}^{2}, I_{1}^{2})(\tau_{5})$	2	C _{Av}	1,11	2,2
B16	14m21'	г	I4m2(τ ₁),I4'm'2(τ ₃),I4'm2'(τ ₄)	1	C,	I	1
			$P_{1}^{\bar{4}m2}(\tau_{1},\tau_{4}),P_{1}^{\bar{4}m2}(\tau_{2},\tau_{3})$	1	с,	I	2
		^{m2} {	(P ₁ mn2 ₁ ,C _A 222 ₁)(T ₅)	2		1,11	2,2
		× `	$(I_{4}^{4}2m, I_{4}^{2}2d)(\tau_{1}, \tau_{2})$	2	C AL	1,11	4,4
		x	(C _A 222,P _C ⁴ 2m)(T ₁ ,T ₂),(C _A 222,P _C ⁴ 2 ₁ m)(T ₃ ,T ₄	J 2	с <u>л.</u>	1,11	2,4
		. ((C_m,C_2,A_mm2,J_4m2,J_4m2)(τ_))			7 4 4
		∾ ([Cc,C2,Acbm2,Ic4c2,Ic4c2](7)	<u>م</u>	82.01	{ IV, V	8.8
372	140211	г	I4c2(1,),I4'c'2(1,),I4'c2'(1,)	1	с,	` I	1
			$P_{1}\bar{4}c^{2}(\tau_{1},\tau_{4}),P_{1}\bar{4}b^{2}(\tau_{2},\tau_{3})$	1	C,	I	2
		ⁿ ²	(P ₁ ca2 ₁ ,C _A 222 ₁)(1 ₅)	2	C ALL	1.11	2,2
		x	(C _A ^{222,P} C ^{42c)} (T ₁ ,T ₂),(C _A ²²² 1,PC ⁴² 1 ^c)(T ₃ ,T ₄) 2		1,11	2,4
328	IĀ2m1'	Г	Ι ξ2m(τ ₁), Iξ'2m'(τ ₃), Iξ'2'm(τ ₄)	1	с,	I	1
1			P ₁ ⁴ 2m(t ₁),P ₁ ⁴ 2 ₁ c(t ₂),P ₁ ⁴ 2c(t ₃),P ₁ ⁴ 2 ₁ m(t ₄)	1	с,	I	2
		ⁿ²	(C _A mc2 ₁ , P ₁ 2 ₁ 2 ₁ 2)(τ ₅)	2		1.11	2,2
		, į	(A_mm2,P_4m2)(T_1),(A_ma2,P_4m2)(T_2))			
		× {	(A _C ba2,P _C ⁴ b2)(T ₃), (A _C bm2,P _C ⁴ c2)(T ₄)	2	C _{4v}	1,11	2,4
		N	(C_2,C_m,C_222,J_42d,J_42m)(T_1,T_2)	4	82.01	\$1.11.111 \$1V.V	2.4.4
			$I_{c}^{\bar{4}m2}(\tau_{1},\tau_{4}), I_{c}^{\bar{4}c2}(\tau_{2},\tau_{3})$	2	C ₄	1	4
334	142011	г	IÃ2d(1,),IÃ'2d'(1,),IÃ'2'd(1,)	1	C.,	· 1	1
		nz	P ₁ 222 ₁ (τ ₂ •τ ₄), P ₇ 2 ₁ 2 ₁ 2 ₁ (τ ₂ •τ ₄)	2	د ۲	I	2
		t.	(C_2,C_227,C_c,J_4)(T_,T_)	4	4 80.01	1.11.116	
							ULLE

						- 89	-
(a)	(в)	(c)	(d)	(e)	(f)	(g)	(ti)
- 340	P4/ππ.m1*	· · · · · · ·			.	· · · · · ·	
		г 👌	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	7 ⁾ {1	C,	1	1
		((Pm 'mm, Cm 'mm) (1 _))	•		
		($P_{c}4/mmm(\tau_{1},\tau_{2}), P_{c}4/mbm(\tau_{1},\tau_{2}), P_{c}4/mbm(\tau_{1},\tau_{2})$	ړ ۱	· ^C 4v	1,11	1.1
		m 👌	$P_{C}^{4/nmm}(\tau_{7},\tau_{8})$	{ 1	C 1	I	2
		((Camma, PBmna)(T5), (Cammm, PBmma)(T10)) 2	С.	1.11	7 7
		{	$I_{c}^{4/mmm(\tau_{1},\tau_{4},\tau_{7},\tau_{6}),I_{c}^{4/mcm(\tau_{7},\tau_{3},\tau_{6},\tau_{6})}$	1	-4v C,	I	2
		~~~ (	(F _s mmm, I _s mma) (T ₅ , T ₁₀ )	2		I,II	2.2
		(	$P_{c}^{4/m,mm(\tau_{1},\tau_{7}),P_{c}^{4/mcc(\tau_{2},\tau_{5}),P_{c}^{4}_{2}/mmc(\tau_{3},\tau_{9})}$	)	40		
		z }	$P_{c_{2}/mcm(\tau_{4},\tau_{8})}$	<b>}</b> ¹	C 1	I	2
		(	(Pamma,Ccmcm)(T5,T10)	2	C _{4v}	1,11	2,2
		R	(Cammm, I 4/mmm) (T 1, T 2, T 7, T B),	),	6		
		(	$\left(C_{a}^{mma,I}c^{4/mcm}\right)\left(\tau_{3},\tau_{4},\tau_{5},\tau_{6}\right)$	<b>}</b> ²	^L 4v	1,11	2,4
		×		2	C _{4v}	1,11	2,4
-352	352 P4/mcc1'	(	P4/mcc(1,),P4'/mcc'(1,),P4'/mc'c(1,),P4/m'cc(1,	)			
		г	P4/m'c'c'(τ ₆ ),P4'/m'c'c(τ _β ),P4'/m'cc'(τ ₆ )	`{ 1	C 1	I	1
		(	(Pc'cm,Cc'cm)(T ₁₀ )	2	C,	1,11	1.1
		m	$P_{C^{4/mcc(\tau_{1},\tau_{4}),P_{C}^{4/mnc(\tau_{2},\tau_{3}),P_{C}^{4/nnc(\tau_{6},\tau_{9})}}$	)	40		
		(	$P_{C}^{4/ncc(\tau_7,\tau_8)}$	<b>}</b> ¹	° ₁	I	2
		•	$(I_c^{422}, I_c^{4/m})(\tau_1, \tau_2)$		_		
		z	(Pc ^{422,Pc^{4/m})(1),(Pc⁴2^{22,Pc⁴2^{/m})(1₂)}}	) ²	C _{4v}	1,11	2,2
		x }	(Paccm,Pc4/mcc)(1,1,7,),(Pacca,Pc4/ncc)(72,78)	Ì.	~		-
		(	$(P_{a}ban, P_{c}4/nnc)(\tau_{3}, \tau_{5}), (P_{c}mna, P_{c}4/mnc)(\tau_{4}, \tau_{5})$	<b>} *</b>	^L 4v	1,11	2,4
36.4	P4/nbm1*	(	P4/nbm(T_),P4'/nbm'(T_),P4'/nb'm(T_),P4/nbm(T_)	,)		•	
		г <b>}</b>	$P4/n'b'm'(\tau_), P4'/n'b'm(\tau_), P4'/n'bm'(\tau_)$	·'{1	° ₁	I	1
		(	- (Pb'an, Cm'ma) (τ _c )	)	r		
		m	(P _r 422,P _a ccm)(τ _a ), (P _a 42,2,P _a bcm)(τ _a )	)	- ⁴ 4 v	1,11	1,1
		٨	[1_422, 1_bam] (τ ₁ , τ ₂ )	2	C _{4v}	I,II	2,2
		(	$P_{c^{4/nbm(\tau_{1},\tau_{7})},P_{c^{4/nnc}(\tau_{2},\tau_{6})},P_{4^{2}/nbc(\tau_{2},\tau_{6})}}$	Ś			
		z }	$P_{e^{4}2/nnm(\tau_{4},\tau_{B})}$	{ 1	C ₁	I	2
		(	$(P_{b}^{nna,C}c^{mca})(\tau_{5},\tau_{10})$	) 2		1.11	2.2
376	P4/nnc1'	1	P4/nnc(T_),P4'/nnc'(T_),P4'/nn'c(T_) P4/ni	,)			
		r 👌	P4/n'n'c'(T_),P4'/n'n'c(T_),P4'/n'nc'(T_)	· {1	C 1	I	1
		(	(Pn'nn,Cc'ca)(T _{an} )	) 2	r		
		A	(I ₂ 422,F _s ddd)(T ₃ ,T ₂ )	)	-4v	1.11	1,1
				12	~		

(BUS)

(b)	(c)

[d]

- 90 (e) (f) (g)

-(h)

				· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	
18 P4 / 1 1 m 1 1		. \			
7000 / 7704.0m f	$\Gamma \left\{ \begin{array}{c} P4/m^{1}b^{1}m^{1}(\tau_{5}), P4'/m^{1}b^{1}m^{1}(\tau_{3}), P4'/m^{1}b^{1}m^{1}(\tau_{5}), P4'/m^{1}b^{1}m^{1}$	) { 1	° ₁	I	1
	(Pb'em,Cm'mm)(τ ₁₀ )	) 2	Γ.	1,11	1.1
	$\left( \frac{P_{c}^{4/m}}{P_{B}^{mma}} \right) \left( \tau_{1} \right), \left( \frac{P_{c}^{4/m}}{P_{B}^{mma}} \right) \left( \tau_{5} \right)$	2	-4v C.	I,II	2,2
	$\mathbb{M}\left\{ P_{c} ban(\tau_{2} \cdot \tau_{5}), P_{c} mmn(\tau_{3} \cdot \tau_{4}), P_{c} bam(\tau_{7} \cdot \tau_{10}), \right.$	)	.4 V		
	$(P_{c^{m,mm}}(\tau_{8},\tau_{9}))$	2	C ₄	I	2
	$\left( \frac{P_{c}^{4/mbm(\tau_{1},\tau_{7}),P_{c}^{4/mnc(\tau_{2},\tau_{6}),P_{c}^{4}/mbc(\tau_{3},\tau_{9})}{} \right)$	1			
	$Z \left\{ P_{c}^{4} \frac{1}{2} \left( mnm(\tau_{4}, \tau_{B}) \right) \right\}$	1	° 1	I	2
	( (P _b nma,C _c mcm)(T ₅ ,T ₁₀ )	) 2	CAN	1,11	2.2
	$\int \left( \frac{1}{c^{4/m}} \right) \frac{1}{a^{mma}} \left( \tau_{1}, \tau_{6} \right)$	2		1.11	2.2
	( I c bam ( T 2 * T 5 * T 7 * T 10 ) , I c mmm ( T 3 * T 4 , T 8 * T 9 )	2		I	2
			•		
00 P4/mnc1'	<pre>( P4/mnc(T₁),P4'/mnc'(T₃),P4'/mn'c(T₄),P4/m'nc(T₂)</pre>	, <b>)</b>			
	$\Gamma$ P4/m'n'c'( $\tau_{6}$ ),P4'/m'n'c( $\tau_{8}$ ),P4'/m'nc'( $\tau_{q}$ )		° _i	I	1
	( (Pn'nm,Cc'cm)(T ₁₀ )	2	C.	I,II	1.1
	$\left( \frac{(P_{C}^{4/m}, P_{A}^{mna})(\tau_{1})}{(P_{C}^{4/n}, P_{A}^{nna})(\tau_{6})} \right)$	2	4v C.	1.11	2.2
	$\mathbb{M} \left\{ P_{C^{nnn}}(\tau_{2}^{+}\tau_{5}^{-}), P_{C^{ccn}}(\tau_{3}^{+}\tau_{4}^{-}), P_{C^{nnm}}(\tau_{7}^{+}\tau_{1n}^{-}), \right\}$	)	4 V		-,-
	$(P_{c^{ccm}}(\tau_{8} \cdot \tau_{9}))$	2	C 4	I	2
	A $(I_c^{4/m}, I_c^{\overline{4}2d})(\tau_1, \tau_2)$	2	C.	1,11	2.2
	$R = \left( \frac{P_2}{1} \right)^{c, C_2/m, C_2/c, F_s} ddd, I_c^{4/m} \left( \tau_1, \tau_2 \right)$	4	4V 58.01	<pre>{ I.II.III } IV.V</pre>	2.2.
12 P4/nmm1*	/ P4/nmm(T_),P4'/nmm'(T_),P4'/nm'm(T_) P4/nim(T_)			(	т <b>,</b> т
	$\Gamma$ P4/n ^m ^m ^{(T} ), P4 ⁽ⁿ⁾ ^m ^{(T} ), P4 ⁽ⁿ⁾ ^{mm(T)}	`{1	C ₁	I	1
	$(Pm^{*}mn, Cm^{*}ma)(\tau)$	)	-		
	$(P_{0}4mm, P_{mma})(T_{1}), (P_{0}4mm, P_{0}cca)(T_{1})$		C _{4v}	1,11	1,1
	$M \left\{ \begin{array}{c} C \\ (P_{ccm}, P_{c}\overline{4}2m)(\tau_{c}), (P_{bcm}, P_{c}\overline{4}2m)(\tau_{c}) \\ (P_{ccm}, P_{c}\overline{4}2m)(\tau_{c}), (P_{bcm}, P_{c}\overline{4}2m)(\tau_{c}) \end{array} \right\}$	2	C _{4v}	1,11	2.2
	( [1, 4mm, 1, mma)[1]), (1, 4cm, 1, bca)[1])	)			
	$A \left\{ \begin{array}{c} c \\ (I_{bam, I_{4}}\overline{2}m)(\tau_{-}, \tau_{-}) \end{array} \right\}$	2	C 4 v	I.II	2,2
	$\begin{pmatrix} P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{1} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_{2} \\ P_$	) }			
	$Z = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} $	{ 1	C ₁	I	2
	$(P_nma, C_mca)(\tau_c, \tau_{cn})$	) 2	C ·	TTT	
74: DAI			-4v	* * * *	2,2
24 P4/ncc1'	$\int_{-\pi} \frac{P4/ncc(\tau_1), P4'/ncc'(\tau_3), P4'/nc'c(\tau_4), P4/n'cc(\tau_7)}{P4/n'cc(\tau_7)}$	) ),	C.	Ţ	
	$\begin{bmatrix} P4/n'c'c'(\tau_{6}), P4'/n'c'c(\tau_{8}), P4'/n'cc'(\tau_{9}) \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ $	5	-1	•	I
	( [Pc'cn,Cc'ce](T ₁₀ )	2	C _{4v}	I,II	1,1
	$M \left\{ \begin{array}{c} (P_{B}^{bcn,P_{C}}^{\bar{4}_{2}} 1^{c}) (T_{1}), (P_{A}^{ban,P_{C}}^{\bar{4}_{2}} c) (T_{2}) \\ (D_{A}^{ban,P_{C}}^{\bar{4}_{2}} c) (T_{2}) \end{array} \right\}$	) 2	с	1.73	<b>-</b> -

(b)	(c)	(d)	( e	) (f)	- 91 (g)	- (h)
35 P4 ₂ /mmc1'	( P4 - /	תוחב(ז,),Ρ4'/חחב'(ז,),Ρ4'/חח'ב(ז,),Ρ4 /m'ı				
2	r } P42/1	m'm'c'(τ _e ),P4 ⁻ /m'm'c(τ _e ),P4 ⁻ /m'mc'(τ _e )	1	C i	I	1
1	( (Pm·)	mm,Cc'cm)(τ ₁₀ )	2	C	1,11	1.1
	( ^P C ⁴ 2	/mcm(1,1,4),PC42/mnm(12,13),PC42/nnm(16,1	r _g ))			
	^m } [₽] c ⁴ z	/ncm[17,18]	<b>)</b> 1	C ₁	I	2
	( (C _a m)	ma,P _A nna)(τ ₅ ),(C _a mmm,P _A mna)(τ ₁ )	2	C 4 v	1.11	2 <b>. 2</b>
	Z (P_4	$1,3^{22},P_{a}^{mma}(\tau_{3},\tau_{4})$	) ₂	C .	1.11	7 7
	A (I _c 4)	$1^{22}, F_{s}^{mmm}(\tau_3, \tau_4)$	Ş	4 V		· , •
		$\operatorname{mm}_{c} \left\{ \frac{1}{4} \right\} \left[ \tau_{1}, \tau_{2}, \tau_{7}, \tau_{8} \right]$				
	( (°a"'' ( (°m	$r^{1} c^{-1} c$	2	C _{4v}	I.II	2,4
		$c^{m,P}c^{4}2^{/nbc}(\tau_{3},\tau_{5}), (P_{a}^{mma,P}c^{4}2^{/mbc}(\tau_{4},\tau_{5}))$	r ⁸ )			
48 P4 ₂ /mcm1'	( ^{P4} 2 ^{/1}	mcm(τ ₁ ),P4 ['] 2 ^{/mcm'} (τ ₃ ),P4 ['] 2 ^{/mc'm(τ₄),P4[']2^{/m'c}}	(τ ₇ )			
	Г { Р ⁴ 2 ^{/1}	m'c'm'(τ ₆ ),P4 <mark>;</mark> /m'c'm(τ ₈ ),P4 <mark>;</mark> /m'cm'(τ ₉ )	<b>S</b>	° ₁	I	1
	( (Pc')	cm,Cm'mm)( ₁₀ )	2	C 4 v	I,II	1.1
		/mmc(1,1,1),Pc42/mbc(12,13),Pc42/mbc(16,1	(g) } ]	<b>C</b> .	T	3
		$/nmc(\tau_7, \tau_8)$	Ş	-1	•	2
		$^{ca,P}B^{mna}(\tau_5), (C_{a}^{ccm,P}B^{mma}(\tau_10)$				
	7 (P 4	$1^{22} \cdot 1_{a^{mma}} \cdot 1_{3} \cdot 1_{4}^{3}$	2	C _{4v}	I,II	2.2
		1,3 ^{22,0} c ^{mcmj} (1 ₃ ¹¹ 4 ⁾ cm.P_4_/mcm)(tt_).(P_cca_P_4_/ocm)(t				
	х (Раба	$an, P_C^{4} 2^{/nnm} \{\tau_3, \tau_5\}, (P_{c^{mna}}, P_{c^{4} 2^{/mnm}}, \tau_4, \tau_5), (P_{c^{mna}}, P_{c^{4} 2^{/mnm}}, \tau_4, \tau_5)$	⁸ { 2	C _{4v}	1,11	2,4
D P42/nbc1	( P4 2/1	nbc(1,),P4;/nbc'(1,),P4;/nb'c(1,),P4_/n'b	c(τ ₁ ))			dan Timb
		n'b'c'(τ ₆ ),P4 ² /n'b'c(τ ₈ ),P4 ² /n'bc'(τ ₉ )	<b>1</b>	C ₁	I	1
	( (PD'e	an,Cc'ca)(T ₁₀ )	2	CAU	1,11	1,1
	^m ( ^p c ⁴ 2	2 ^{22, P} A ^{ban) (τ} 3 ^{), (P} C ⁴ 2 ² 1 ² , P _B bcn) (τ ₄ )	).			
	z (Pc ⁴ 1	1,3 ^{22,P} b ^{nna} )(T ₃ ,T ₄ )	<b>}</b> ²	C _{4v}	1,11	2.2
72 P4 / nnm1'	( P42/r	nnm(τ ₁ ),P4'/nnm'(τ ₃ ),P4'/nn'm(τ ₄ ),P4 ₂ /n'n	m(T ₇ ))			
	Γ { P42/r	n'n'm'(τ ₆ ),P4;/n'n'm(τ ₈ ),P4;/n'nm'(τ ₉ )		C ₁	I	1
	(Pn'r	nn, Cm'ma) (T 10)	2	C4v	1,11	1.1
	M (Pc ⁴ 2	2 ^{22,P} B ^{cca)(T3),(PC⁴2²1^{2,P}C^{nma)(T4})}	)_		• •-	
	Z (Pc ⁴ 1	1,3 ^{22,C} c ^{mca} )(T ₃ ,T ₄ )	<u>ک</u>	⁶ 4v	1,11	2.2
	A } c ⁴ 1	$r^{\text{amd}(\tau_1,\tau_4,\tau_7,\tau_8),I} c^4 r^{\text{acd}(\tau_2,\tau_3,\tau_6,\tau_8)}$	1	C ₁	I	2
	(' ^r s ^{dd}	^{10,1} c ^{0am](T} 5, ^T 10)	2	C 4 v	1,11	2.2

[n]	( ) , )	
01	(0)	

(c)

- 92 -(g) · (h)

484	P4 /mbc1'	( P42/mbc(1,),P4;/mbc'(1,),P4;/mb'c(1,),P4_/m'bc(1				
		$\Gamma \left\{ \frac{P^4}{2^{/m'b'c'}(\tau_6), P^4}{2^{/m'b'c}(\tau_8), P^4} \frac{4}{2^{/m'bc'}(\tau_8)} \right\}$	7 { 1	C ₁	I.	1
		(Pb'am,Cc'cm)(T _{1D} )	) 2	ς.	1.11	1.1
		$\binom{P_{C}^{4} 2^{/m, P_{A}^{mna}}(\tau_{1}), (P_{C}^{4} 2^{/n, P_{A}^{nna}}(\tau_{c})}{(\tau_{c})}$	2	-4v E.	1.11	2.2
		$^{m} \Big\} P_{C}^{ccn}(\tau_{3}^{+}\tau_{4}^{+}), P_{C}^{nnn}(\tau_{2}^{+}\tau_{5}^{-}), P_{C}^{nnm}(\tau_{2}^{+}\tau_{1n}^{+})$	)	4 v		- , -
		$(P_{C}^{ccm}(\tau_{8}+\tau_{9}))$	2	C ₄	I	2
		$\frac{2}{c^4} \left[ \frac{1}{3^2} \frac{1}{2^2} \frac{2}{b} \frac{1}{b^{nma}} \right] \left[ \frac{1}{3}, \frac{1}{4} \right]$	2	C _{4v}	1.11	2,2
96	P4 /mnm1'	( ^{P4} 2 ^{/mnm(τ} 1),P4 [*] /mnm'(τ ₁ ),P4 [*] /mn'm(τ ₂ ),P4 [*] /m'nm(τ				
		$\Gamma \left\{ P_{2}^{/m'n'm'}(\tau_{6}), P_{2}^{/m'n'm'}(\tau_{8}), P_{2}^{/m'nm'}(\tau_{6}) \right\}$	2 { 1	C ₁	I	1
		( (Pn'nm,Cm'ma) (τ ₁₀ )	) 2	C.	Ī. TĪ	1 1
		$\left( \left( \frac{P_{c}^{4} 2^{/m}, P_{B}^{mma}}{T_{c}^{1}} \right), \left( \frac{P_{c}^{4} 2^{/n}, P_{B}^{mna}}{T_{c}^{2}} \right) \right)$	 2	-4v C.	1.11	7 7
		$\mathbb{M} \left\{ \mathbb{P}_{C^{ban}}(\tau_{2}^{*}\tau_{5}), \mathbb{P}_{C^{mmn}}(\tau_{3}^{*}\tau_{4}), \mathbb{P}_{C^{bam}}(\tau_{2}^{*}\tau_{1n}) \right\}$	)	4 v		-,-
		(P _c mmm(T ₈ +T ₉ )	2	C4	I	2
		$\int (I_{2}^{42d}, I_{a}^{mma})(\tau_{1}, \tau_{2}), (I_{2}^{4}, md, I_{c}^{mmm})(\tau_{3})$	)			
		$\left( I_{c}^{4} Cd, I_{c}^{bam} (\tau_{4}) \right)$	<b>\$</b> 2	C	I,II	2.2
		$Z = {P_c^{4}}_{1,3}{P_1^{2}}_{1,2}{C_c^{mcm}}(\tau_3,\tau_4)$	<b>)</b>	70		1
		R [P_2/c,C_2/m,F_mmm,C_2/m,I_4/a][T_1,T_2]	4	58.01	{ I,II,III IV,V	2,2,4 4,4
508	P4_/nmc1'	/ P4_/nmc(T_),P4_/nmc'(T_),P4_/nm'c(T_),P4_/n'mc(T				
	2	$\Gamma \left\{ \frac{2}{P4_{n}/n'm'c'(\tau_{n})}, \frac{2}{P4_{n}/n'm'c'(\tau_{n})}, \frac{2}{P4_{n}/n'mc'(\tau_{n})}, \frac{2}{P4_{n}/n'mc'(\tau_{n})} \right\}$	7 {1	°,	I	٦
		$\left(\begin{array}{cccc} 2 & 0 & 2 & 0 & 2 \\ (Pm'mn,Cc'ca)(\tau_{n}) \end{array}\right)$	)	r	7 77	
		( (P_4, cm, P_cca) (T, ), (P_4, nm, P_nna) (T_)	<u>،</u>	~4v	****	•••
		$ \left\{ \begin{array}{cccc} P_{n} \\ P_{n} b c n, P_{r} \overline{42}_{4} \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} P_{n} b c n, P_{r} \overline{42}_{4} \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} P_{n} b c n, P_{r} \overline{42}_{4} \\ \end{array} \right\} \left\{ \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ \end{array} \right\} \left\{ \begin{array}{c} T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n} \\ T_{n}$				
		$ (I_4/a, I_42m)(\tau_4, \tau_5) $	2	C _{4v}	1,11	2.2
		$Z = (P_c^4 1, 3^2 1^2, P_a^{nma})(T_3, T_4)$	)			
520	P4,/ncm1'	( P4_/ncm(T_).P4:/ncm'(T_).P4:/nc'm(T_).P4 /n'cm(T	, )			
	2	$\Gamma \left\{ \begin{array}{c} 2 & 1 & 2 & 3 & 2 \\ P_{4_{2}}/n'c'm'(\tau_{c}), P_{4_{2}}/n'c'm(\tau_{c}), P_{4_{2}}/n'cm'(\tau_{c}) \\ \end{array} \right\}$	7 { 1	с ₁	1	1
		(Pc'cn,Cm'ma)(T _c )	)	г	1 11	
		$\left( \left( \mathbf{I}_{4}, \mathbf{A}_{1}, \mathbf{I}_{2} \operatorname{ban} \right) \left( \mathbf{T}_{4}, \mathbf{T}_{2} \right) \right)$	- 2	~4v	····	2 2
		$ \begin{array}{c} A \\ I_{p} mma(\tau_{2} + \tau_{4}, \tau_{2} + \tau_{3}), I_{bca}(\tau_{2} + \tau_{2}, \tau_{2} + \tau_{2}) \end{array} $	· • 2	~4v C	7 T	* , <i>*</i> 7
		$\left( \left( P_{\Gamma}^{4} \gamma^{\text{mc}}, P_{\Gamma}^{\text{mma}} \right) \left( \tau_{1} \right), \left( P_{\Gamma}^{4} \gamma^{\text{mc}}, P_{\Gamma}^{\text{mma}} \right) \left( \tau_{2} \right) \right)$	1	~4	-	£
		$ \begin{pmatrix} P_{A}bcm, P_{A}\overline{2}_{1}c \end{pmatrix} (T_{3}), (P_{A}ccm, P_{A}\overline{2}_{2}c) (T_{3}) $	<b>1</b> 2	C	1,11	2 2
		$Z = \{P_{e_1}^{4}, 2_{1}^{2}, C_{mc_{2}}, (\tau_{a_{1}}, \tau_{a_{1}})\}$	(	-4v	-,	~ , <i>L</i>
			1			

BUS

)	(b)	(c)	[ d ]	(e)	(f)	- 93 (g)	- (h)
							• <u>•</u> ••••••••••••••••••
532	14/mmm1'	г {	14/mmm{T ₁ ),14'/mmm'(T ₃ ),14'/mm'm(T ₄ ),14/m'mm(T ₇ ) 14/m'm'm'(T ₂ ),14'/m'm'm(T ₂ ),14'/m'mm'(T ₂ )	<b>}</b> 1	C 1	I	1
1		(	[Im'mm,Fm'mm](τ _{1D} )	) 2	с.	* * *	
		(	P ₁ ^{4/mmm(T₁),P₁⁴/mnc(T₂),P₁⁴2^{/mmc(T₃),P₁⁴2^{/mnm(T₄)}}}	)	-4v		1.1
		mz 👌	$P_{I}^{4/nnc(\tau_{5}),P_{I}^{4/nmm(\tau_{7}),P_{I}^{4}2/nnm(\tau_{8}),P_{I}^{4}2/nmc(\tau_{5})}$	<b>\</b> 1	^C i	I	2
		(	(P ₁ nnm,C _A mca)(T ₅ ), (P ₁ nmm,C _A mcm)(T ₁₀ )	2	C _{4v}	1,11	2,2
		(		)			
		- x }	$\frac{1}{4} \frac{1}{4} \frac{1}$	<b>\</b> 2	C _{4V}	I,II	2.4
		{	$ \begin{bmatrix} C_{A} & C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \end{bmatrix} \begin{bmatrix} C_{A} & T_{B} \end{bmatrix} \begin{bmatrix} C_{A} & T_{$	)			
		A (	$A = C^{2}$ $A^{mcm} C^{7}$	/	r		
I		. (	(C_2/m,C_2/m,C_mmm,I_4/amd,I_4/mmm)(T_,T_)	· -	~4v	1.11	4,4
		N (	$\{C_{c^{2/c}}, C_{a^{2/c}}, C_{a^{mce}}, I_{c^{4/acd}}, I_{c^{4/acm}}, [\tau_{2}, \tau_{3}]\}$	\$ 4	82.01	{ 1.11.111 1V.V	2,4, 8,8
542	I4/mcm1*	(	[ I4/mcm(τ ₁ ),I4'/mcm'(τ ₃ ),I4'/mc'm(τ ₄ ),I4/m'cm(τ ₇ )	)			
		r	I4/m'c'm'(τ ₆ ),I4'/m'c'm(τ ₈ ),I4'/m'cm'(τ ₉ )	<b>1</b>	C ₁	I	1
			(ID'am,Fm'mm)(T ₁₀ )	2	C _{4v}	1.11	1.1
		(	P ₁ ^{4/mcc(τ} ₁ ),P ₁ ^{4/mbm)(τ₂),P₁⁴₂/mcm(τ₃),P₁⁴₂/mbc(τ₄)}	).	<b>c</b> 2	<b>.</b>	_
		mz •	P ₁ ^{4/nbm(t} ₆ ), P ₁ ^{4/ncc(t} ₇ ), P ₁ ⁴ ₂ ^{/nbc(t} ₈ ), P ₁ ⁴ ₂ ^{/ncm(t} ₉ )	<u>۲</u>	<b>~1</b>	▲ .	2
:			(Piben, Camea) (T5), (Pibem, Camem) (T10)	2	C _{4v}	I,II	2,2
		(	$(C_A^{mma}, P_C^{4/mcc})(\tau_1), (C_A^{cca}, P_C^{4}_{2/nbc})(\tau_2)$	)			
:		X	$(C_{A}^{mcm}, P_{C}^{4} 2^{/nmc}) (\tau_{3}), (C_{A}^{mcm}, P_{C}^{4/mnc}) (\tau_{4})$	.)2	C	1,11	2.4

I4,/amd1'

 $\begin{pmatrix} (C_{A}^{ccm}, P_{C}^{4/nnc}) (\tau_{5}), (C_{A}^{mmm}, P_{C}^{4} 2^{/mmc}) (\tau_{5}) \\ (C_{A}^{mce}, P_{C}^{4} 2^{/mbc}) (\tau_{7}), (C_{A}^{mce}, P_{C}^{4/ncc}) (\tau_{8}) \end{pmatrix}$  $\left\{ \begin{array}{c} I4_{1}/amd(\tau_{1}).I4_{1}^{\prime}/amd'(\tau_{3}).I4_{1}^{\prime}/am'd(\tau_{4}).I4_{1}^{\prime}/a'md(\tau_{7}) \\ I4_{1}/a'm'd'(\tau_{6}).I4_{1}^{\prime}/a'm'd(\tau_{8}).I4_{1}^{\prime}/a'md'(\tau_{9}) \end{array} \right\} 1$ C _ I Г ((Im'ma,Fd'dd)(T₁₀) 2 C4v 1,11  $MZ = (P_{I}^{4}_{1,3}^{22,P}_{I}^{nma})(\tau_{3}^{}), (P_{I}^{4}_{1,3}^{22,P}_{I}^{mna})(\tau_{4}^{})$ 2 C4v 1,11  $\left\{ \begin{array}{c} (C_{c}^{2/m}, C_{a}^{2/m}, C_{a}^{mmm}, I_{c}^{4m2})(\tau_{1}, \tau_{4}) \\ (C_{c}^{2/c}, C_{a}^{2/c}, C_{a}^{mca}, I_{c}^{4c2})(\tau_{2}, \tau_{3}) \end{array} \right.$ N **(** 4 101.01 I, II, III, IV 2, 4, 4, E  $\left\{ \begin{array}{c} 14_{1}/\text{acd}(\tau_{1}), 14_{1}^{\prime}/\text{acd}(\tau_{3}), 14_{1}^{\prime}/\text{ac}^{\prime}d(\tau_{4}), 14_{1}^{\prime}/\text{a}^{\prime}cd(\tau_{7}) \\ 14_{1}/\text{a}^{\prime}c^{\prime}d^{\prime}(\tau_{6}), 14_{1}^{\prime}/\text{a}^{\prime}c^{\prime}d(\tau_{8}), 14_{1}^{\prime}/\text{a}^{\prime}cd^{\prime}(\tau_{9}) \end{array} \right\} 1$ 62 I4,/acd1' с₁ I Г ( (Ib'ca,Fd'dd) (T₁₀) C_{4v} 2 1,11 1.1  $MZ = (P_{1}^{4}_{1,3}^{2}_{1}^{2,P}_{1}^{bce}_{1,3}^{(T_{3})}, (P_{1}^{4}_{1,3}^{2}_{1}^{2,P}_{1}^{cce}_{1,3}^{(T_{4})})$ 2 C4. 1,11 2.2

1

1.1

2.2

1

	(b)	(c)	(d)	(e)	(f)	( ₅ )	- 94 - (h)
RHOMB(	DHEDRAL						
143-2	P31'	A	Ρ _c ³ (τ ₁ )	1	C	Ŧ	7
		L	(P _B 1,P ₂ 3)(T ₁ )	3	-1 T	- T. TT	2 B
		m	(P ₈ 1, P ³ ) (τ ₁ ) [•]	3	́ћ Т	I,II	2,0
144-5	P3,1'	A	Р 3_(т)		n		• •
	1	L	$(P_1, P_3)(\tau_1)$	1	C 1	I	2
		m	(P 1, P3 ) (T )	3	т _ћ	I,II	2,8
			s 1 1 1	3	^T h	I,II	2,4
145-8	^{P3} 2 ¹	A	^P c ³ 1 ^{(τ} 1)	1	C,	I	2
		L	$(P_{s}^{1}, P_{c}^{3})(\tau_{1})$	з	T _h	I,II	2,8
		m	(P ₁ , P ₃ )( ₁ ) [•]	3	т _h	I,II	2.4
146-11	R31'	z	R ₁ 3(1,)	4	r.	•	_
		A	[P_1,R_3](τ_]	' 3	ι τ	1	2
		x	(Ρ ₂ 1, R3) (τ ₂ ) [•]	3	'h т	1,11	2,8
147-14	<b>D</b> 3+1	1		5	'n	1,11	2,4
177-19	F31*	r		1	C ₁	I	1
		{ }	$P1'(\tau_5 + \tau_6)$	2	с ₆	I	1
		A }	$\mathcal{C}_{c^{3}[\tau_{1},\tau_{4}]}$	1	C ₁	I	2
		( 	$\begin{bmatrix} 3^{1} \\ 2^{+} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^{-} \\ 3^$	.2	с ₆	I	2
			$(P_1, P_2)(\tau_1), (P_1, P_2)(\tau_2)$	3	т _н	I,II	2,4
		-	" B'' C ³ ( 1, ^T 2)	.3	т _н	I,II	2,8
148-18	R31'	г (	R3'(T4)	1	С,	I	1
		(	Ρī'(τ ₅ +τ ₆ )	2	י כ_	I	1
		z {	R _I ³ (τ ₁ ,τ ₄ )	1	°,	I	2
		(	Psi(T2+T3+T5+T6)	2	с ₆	I	2
		A	(P ₈ ¹ , R ₁ ³ ) (T ₁ , T ₂ )	3	т	1,11	2,8
		x	(Psī, kā) (τ, ), (Psī, kā') (τ ₂ )	3	 т _р	I,II	2,4
			· ·	-	r		
149-22	P31 2	Г	P312(τ ₁ ) [•]	1	C,	I	1
		A	$P_{c}^{312(\tau_{1},\tau_{2})}$	1	с, с,	I	2
		L	(C ₂ ^{2, P} c ³¹²⁾ (T ₁ , T ₂ )	3	D h	1,11	2,8
		M	(P_2,P312)(T_1), (P_2,P312)(T_2)	3	0 _h	1,11	2,4
150-26	P321 ·	r -	Ρ321 (τ,)	4	r	•	
		A	P_321 (T_, T_)	•	ີ 1 ເ	1	1
		m	(P_2,P321)(T_), (P_2,P32)11(+)	י ז	ີ1 ດ	1	2
		L	$(C_2, P_321)(\tau_1, \tau_2)$	2	ัก ก	1,11	2.4 BUS
		н		2	^o h	-	2.6 UILLE
						•	

.

							- 95 -
a)	(b)	(c)	(d)	(c)	(f)	( ŗ, )	(h)
- 30	P3,1'2	г Г	P3,12(T,) [•]	1			
	,	٨	$P_{3}^{-12}(\tau_{2},\tau_{2})$	1	с С	T	2
		M	$C^{2} = 2^{-3}$ $(P_{2}, P_{3}, 12)(\tau_{1}), (P_{2}, P_{3}, 12)(\tau_{1})$	3	-1 0	- I.II	2 4
		L	$(C_2^2, P_2^3, 12)(\tau_1, \tau_2)$	З	n Ol	1,11	2.8
• 3 4	P3.21'	Г	P3 21(T)			-	
	ł	A	$P = 3 - 21(T_{-1}, T_{-1})$	4	<b>ن</b> ا د	I T	1
		m	(P_2,P3,21)(T_1), (P_2,P3,21)(T_1)	3	51 0	т. Т. ТТ	2
		L	$(C_2, P_3, 21)(T_1, T_2)$	3	^т н п	T TT	2,4
		н	$P_{3} = \frac{1}{2} \left( \tau_{1}, \tau_{2} \right)$	2	n. C.	T	2,0 · 6
		ĸ	$P_{3}^{12}(\tau_{1})^{3}, P_{3}^{12}(\tau_{1})$	2	-6 C.	T	3
			1 1 2	_	6	•	5
38	P321.5	Г	P3212(T1)	1	C _i	I	1
		A	$P_{c}^{3} 1^{12}(\tau_{2}, \tau_{3})$	1	° _i	I	2
		n	$(P_{a^{2}}, P_{2^{2}}^{2}) (\tau_{1}), (P_{a^{2}}, P_{2^{2}}^{2}) (\tau_{2^{2}})$	3	° h	1,11	2,4
		L	$(c_{a}^{2}, P_{c}^{3}, 12)(\tau_{1}, \tau_{2})$	3	0 h	I.II	2,6
42	P3,21'	Г	Ρ3-21(τ,)	1	С.	I	• 1
	-	A	Ρ_3,21(τ ₂ ,τ ₃ )	1	-1 C.	I	2
		м	(P_2,P3_21)(τ,),(P_2,P3_2'1)(τ,)	3	-1 D,	I,II	2,4
		L	$(C_2, P_2, 3_1, 21)(\tau_1, \tau_2)$	3	n D	I,II	2,8
		н	$P_{c_{1}}^{3}$	2	n C_	I	6
		ĸ	P3212(T1), P3212'(T2)	2	с ₆	I	3
46	R321 '	г	R32(T ₁ ) [®]	1	C,	I	1
		z	R ₁ 32(T ₁ .T ₂ )	÷ 1	c,	I	2
		x	(P _C ² , R ₃ ² ) (T ₁ ), (P _C ² ₁ , R ₃ ² ) (T ₂ )	3	ο	I,II	2.4
		•	$(C_{c^{2},R_{I}^{32}}(\tau_{1},\tau_{2}))$	3	° _h	I,II	2,8
50	P3m1'	Г	P3m1(τ,)	1	c	T	1
		. (	$P_23m1(\tau_1),P_3c1(\tau_2)$	1	-1 C.	I	2
		^ {	(۲_۳،۲_۲)	2	1 C_	1,11	2.2
		m	(P_m,P3m1)(τ_),(P_c,P3m'1)(τ_)	3	-6v 0.	I,1I	2.4
		L	(C_m,P_3m1)(T_),(C_c,P_3c1)(T_)	3	n O_	I.II	2,8
		н	$(P_c^{31m}, P_c^{31c})(\tau_1, \tau_2, \tau_3)$	2	n C _{cu}	1,11	6,6
		ĸ	(P31m,P31m')(T [•] ₁ ,T ₂ ,T ₃ )	2	с _{бу}	I,II	3,3
54	P31'm	Г	P31m(T ₁ ) [®]	1	٢.	I	1
		. (	$P_c 31m(\tau_1) \cdot P_c 31c(\tau_2)$	1	-1 C.	I	2
		^ {	(C _c m, C _c c) (τ ₃ )	2	-1 C_	- I.1I	- 2.2
		m	(Pgm,P31m)(T1), (Pgc,P31m')(T2)	3	-6v 0.	I.II	2.4
		L	(C_m,P_31m)(T_1),(C_c,P_31c)(T_5)	- 3	Th D	1.11	805 2.8
		н	P_3m1(τ ₁ ), P_3c1(τ ₂ )	- 2	Г Г	т.	MUE
				*	6	4	U .

						- 96 -	
)	(Ъ)	(c)	(d)	(e)	(f)	(g)	(h)
58	P3c1'	г	P3c1(T ₁ ) [•]	1	с,	I	1
		n	$(P_ac,P3c1)(\tau_1), (P_ac,P3c'1)(\tau_2)$	3	0 0	1,11	2,4
		K	(P31c,P31c')(T ₁ )•	2	C _{6v}	I,II	3,3
62	P31'c	г	P31c(τ ₁ ) [®]	1	C,	I	1
		n	(P_c,P31c)(T_1), (P_c,P31c')(T_2)	3	0 _h	I,II	2,4
66	R3m1 *	r	R3m(τ ₁ ) [●]	1	c,	I	1
		. (	$R_{I}^{3m(\tau_1)}, R_{I}^{3c(\tau_2)}$	1	с, ·	I	2
		· · · · · · · · · · · · · · · · · · ·	(C_m,C_c)(T_3)	2	C ev	1,11	2,2
		x	(Pcm,R3m)(T1), (PAc,R3m')(T2)	3	0 _b	1,11	2,4
		•	(C _c m,R ₁ 3m) (T ₁ ),(C _c c,R ₁ 3c)(T ₂ )	3	0 _h	1,11	2,8
70	R3c1'	Г	R3c(T ₁ ) [®]	1	C,	I	1
		x	(PAC,R3c)(T1), (PAC,R3c')(T2)	3	с Р	1,11	2,4
74	P31'm	. (	Ρ31m(τ ₁ ), Ρ3'1m(τ ₄ ), Ρ3'1m'(τ ₅ )	1	c,	I	1
		• {	(C2/m',C2'/m)(T ₆ )	2	C _{6v}	1,11	1,1
	·	. (	P _c 31m(τ ₁ ,τ ₄ ),P _c 31c(τ ₂ ,τ ₅ )	1	C ₁	I	2
		î (	(C_2/m,C_2/c)(T_3),(C_2/c,C_2/m)(T_5)	2	°C _{6v}	1,11	2,2
		n	$(P_{a}^{2/m}, P\bar{3}^{1}m)(\tau_{1}), (P_{a}^{2}_{1}/c, P\bar{3}^{1}m^{2})(\tau_{2})$ $(P_{a}^{2/c}, P\bar{3}^{1}m^{2})(\tau_{1}), (P_{a}^{2}_{1}/m, P\bar{3}^{1}m)(\tau_{1})$	3	0 _h	1,11	2.4
		L (	$(C_{a}^{2/m}, P_{c}^{\bar{3}1m})(\tau_{1}, \tau_{4}), (C_{a}^{2/m}, P_{c}^{\bar{3}1c})(\tau_{2}, \tau_{3})$	) 3	o _h	1,11	2,8
80	P31'c	. (	P31c(T,),P3'1c(T,),P3'1c'(T,)	1	C,	I	1
		· 1	(C2/c',C2'/c)(T ₆ )	2	C _{6v}	1,11	1.1
		_ Ì	(P_2/c,P31c)(T_1),(P_21/c,P31c')(T_2)	).	_		-
		· · · · · · · · · · · · · · · · · · ·	(P_2/c,P3'1c')(T_3),(P_21/c,P3'1c)(T_4)	} 3	0 h	1,11	2,4
86	P3m1'	г <b>{</b>	P3m1(T ₁ ),P3'm1(T ₄ ),P3'm'1(T ₅ )	1	¢,	I	1
		• (	(C2/m',C2'/m)(τ ₆ )	2	Cev	I,II	1.1
			$P_{c}^{3m1}(\tau_{1},\tau_{4}),P_{c}^{3c1}(\tau_{2},\tau_{5})$	1	C _i	I	2
		) "	(C _c 2/m,C _c 2/c)(T ₃ ),(C _c 2/c,C _c 2/m)(T _B )	2	C _{6v}	I,II	2,2
		m {	(P _a 2/m,P3m1)(τ ₁ ),(P _a 2 ₁ /c,P3m [•] 1)(τ ₂ ) (P _a 2/c,P3 ^{·m} 1)(τ ₁ ),(P ₂ 2,/m,P3 ^{·m} 1)(τ ₂ )	3	0 _h	1,11	2,4
		· L	(C_2/m,P_3m1)(T_,T_)(C 2/m,P 3c1)(T_,T_)	) 3 ·	0.	1.11	2.8
		н	(Pc ³ 1m,Pc ³ 1c)(T ₁ ),(Pc ³ 1c,Pc ³ 1m)(T ₂ )	2	n C _{6v}	1,11	5,6
- 92	P3c1'	(	P3c1(T,),P3'c1(T,),P3'c'1(T_)	1	с	Ţ	4
		Г	(C2/c',C2'/c)(τ ₂ )	2	1	-	, , ,
			(P_2/c,P3c1)(T_), (P_2,/c,P3c+1)(T_)	)	6v	~	1,1
		н	(P_2/c,P3'c'1)(T_3),(P_2',/c,P3'c1)(T_4)	3	0 h		2,4

•					-	97 -
a) (b)	(c)	(d)	(e)	(f)	( g. )	(h)
98 R3m1'	г (	R3m(T ₁ ),R3'm(T ₄ ),R3'm'(T ₅ )	1	C _i	I	1
		(C2/m',C2'/m)(τ _β )	Z	C _{6v}	I,II	1,1
•	z	$R_{I}^{3m(\tau_{1},\tau_{4}),R_{I}^{3c(\tau_{2},\tau_{5})}}$	1	C ₁	I	2
	{	$(C_{c}^{2/m}, C_{c}^{2/c})(\tau_{3}), (C_{c}^{2/c}, C_{c}^{2/m})(\tau_{5})$	2	c _{ev}	I,II	2,2
	×	(P _C ^{2/m,R3m)} (t ₁ ),(P _A ² 1/c,R3m')(t ₂ ) (P _A ^{2/c,R3*m')(t₃),(P_C²1/m,R3*m)(t₄)}	3	0 _h	I,II	2.4
	٨	(C _c 2/m,R _I 3m)(t ₁ ,t ₄ ),(C _c 2/c,R _I 3c)(t ₂ ,t ₃ )	́з	0 _h	I,II	2,8
104 R3c1'	r (	R3c(T1),R3'c(T4),R3'c'(T5)	1	¢ _i	I	1
	(	(C2/c'.C2'/c)(T ₆ )	2	C _{6v}	I,II	1., 1
	x	(P _A 2/c,R3c)(T ₁ ),(P _A 2 ₁ /c,R3c)(T ₂ ) (P _A 2/c,R3'c)(T ₃ ),(P _A 2 ₁ /c,R3'c)(T ₄ )	3	0 _h	1,11	2,4
EXAGONAL	,					
110 P61'	Г	P6'(T2)	1	° _i	I	1
		$P_c^{6}(\tau_1), P_c^{6}(\tau_2)$	1	C ₁	I	2
	n	(P_2,P6)(T_1), (P_2,P6')(T_2)	3	т _h	I,II	2,4
	L	$(C_a^2, P_c^6)(\tau_1), (C_a^2, P_c^6)(\tau_2)$	3	T _h	1,11	2,8
	н	$(P_{c}^{6}, P_{c}^{6})(\tau_{1})$	2	C _{6v}	1.11	6,6
	K	(P6, P6')(T1)	2	C _{6v}	1,11	3,3
114 P6111	Г	P61(τ ₂ )	1	C,	I	1
i I I	M i	(P_2, P6, )(T, ), (P_2, P6, )(T_2)	3	1 . T.	1,11	2.4
	ĸ	(P ⁶ 1, P61)(T1) ⁶	2	п С _{бу}	I,II	3,3
118 P6_1'	Г	<b>Ρ6¦(τ_)</b>	٩	r	Ţ,	
2	m	(P_2, P6 [*] ₂ )(τ ₁ ), (P_2, P6 [*] ₂ )(τ ₂ )	a	~1 T	1 11	2.4
	ĸ		2	่ก ก	1,11	2.4
		5 5 1	2	⁶ 5v	1.11	3,3
122 P6 1'	Г	P62(τ ₂ )	1	° ₁	I	1
	Α	$P_{c} 6_{1} (\tau_{1}), P_{c} 6_{4} (\tau_{2})$	1	° _i	I	2
	M	$(P_{a}^{2}, P_{b}^{2})(\tau_{1}), (P_{a}^{2}, P_{b}^{2})(\tau_{2})$	3	т _н	1,11	2,4
	L	$(C_a^2, P_c^{6_4})(\tau_1), (C_a^2, P_c^{6_1})(\tau_2)$	3	т _h	I.II	2,8
	н	$(P_{c}^{6}_{4}, P_{c}^{6}_{1})(\tau_{1})$	2	Cav	1,11	6,6
	ĸ	(P6 [*] ₂ ,P6 [*] ₂ )(τ ₁ ) [•]	2	C _{6v}	1,11	3,3
126 P641'	Г	P64(τ ₂ )	1	C,	1	1
	A	$P_{c}6_{2}(\tau_{1}), P_{c}6_{5}(\tau_{2})$	1	1 C.	I	2
	m	(P_2,P6 ⁴ )(T_1),(P_2,P6 ¹ )(T_1)	3	-1 T	- I.II	° <b>-</b> 7 ▲
		(C ₂ 2, P ₂ 6 ₂ )(τ ₁ ), (C ₂ 2, P ₆ )(τ ₂ )	3	́ћ Т	-, I.11	- • ¬ 7 •
	н		• 7	n C	- , T TT /	
	ĸ	(P6 [*] ₄ ,P6 [*] ₄ )(τ ₁ ) [•]	2	-6v C _{6v}	<b>1.11</b> (0)	US) 3.3
					· · ·	•

.

(b)	(c)	(d)	(e)	(f)	- 9 (g)	ŏ - (h)
30 P6_1'	Г	Ρ6;(τ_)	1	C.	I	1
2	m	σ 2 (P_2, P6, ) (τ, ), (P_2, P6, ) (τ, )	3	1 T.	1.11	2.4
	ĸ	$(P6_{3}^{*}, P6_{3}^{*})(\tau_{1})^{\bullet}$	2	n C _{Gv}	I,II	3,3
34 P61'	Г	Ρ6'(τ,)	1	c,	I	1
	. (	$P_{e^{\overline{6}}(\tau_1,\tau_4)}$	1	C,	I	2
	^ }	$P_{h}m(\tau_{2} + \tau_{3}, \tau_{5} + \tau_{6})$	2	с _е	I	2
	m	(P_m,P6)(T_),(P_c,P6')(T_)	з	т	I,II	2,4
	L	(C_m,P_6)(T_1,T_2)	3	т	I,II	2,8
	н	$P_{c}\tilde{b}(\tau_{1},\tau_{a})$	2	с <u>,</u>	I	6
	ĸ	Ρ6(τ,), Ρ6'(τ,)	2	с ₆	I	3
38 P6/m1'	. (	Ρ6'/m(τ ₂ ),Ρ6/m'(τ ₇ ),Ρ6'/m'(τ ₈ )	1	C,	I	1
	· · · · · · · · · · · · · · · · · · ·	P2'/m(T5+T6),P2/m'(T9+T10)	2	с ₆	I	1
	. (	$P_{c}^{6/m}(\tau_{1},\tau_{7}),P_{c}^{6}_{3}/m(\tau_{2},\tau_{8})$	1	C,	I	2
	^ {	$P_{b}^{2/m(\tau_{3}^{+}\tau_{4}^{},\tau_{9}^{+}\tau_{10}^{}),P_{b}^{2}}(m(\tau_{5}^{+}\tau_{6}^{},\tau_{11}^{+}\tau_{12}^{})$	2	с ₆	I	2
	m Š	(P _a 2/m,P6/m)(τ ₁ ), (P _a 2/c,P6'/m')(τ ₂ )	),	· <del>-</del>		
	· · · · · · · · · · · · · · · · · · ·	(P_2/c,P6/m')(T_3),(P_2/m,P6'/m)(T_4)	۲ [°]	'h	1,11	2,4
	L	(C _a ^{2/m,P} c ^{6/m)} (T ₁ ,T ₃ ),(C _a ^{2/m,P} c ⁶ 3 ^{/m} )(T ₂ ,T ₄ )	3	T _h	I,II	2,8
	н	(Pc ^{6/m,Pc⁶3^{/m})(T1,T4)}	2	C _{6v}	1.11	6,6
	ĸ	(P6/m,P6'/m)(T ₁ ),(P6/m',P6'/m')(T ₄ )	2	C _{6v}	1,11	3,3
44 P6 ₃ /m1	г (	P6;/m(7 ₂ ).P6;/m'(7 ₇ ),P6;/m'(7 ₈ )	1	c,	I	1
	· · · · · · · · · · · · · · · · · · ·	P21/m(T5+T6),P21/m'(T9+T10)	2	с ₆	I	1
·	m 🖇	(Pa ² 1/m,P6 [*] /m)(T1),(Pa ² 1/c,P6 ³ /m')(T2)	3	Т.	I.II	7.4
	(	{P _a ² 1/c,P6 ₃ /m')[t ₃ ],(P _a ² 1/m,P6 ₃ /m)[t ₄ ]	<b>)</b>	'n		<b>~</b> • • 7
	ĸ	(P6 [#] /m,P6'/m)(τ ₁ ),(P63/m',P63/m')(τ ₄ )	2	Cev	I,II	3.3
50 P6221.	г	P622(τ.), P6'22'(τ.).P6'2'2(τ.)	4	r	•	
		$P 622(\tau_{1}, \tau_{2}), P 6_{2}2(\tau_{2}, \tau_{2})$	1	"1 C	T	1 7
	(	c = 1 + 2 + c + 3 + 4 + 3 + 4 + 4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	י. יי	<b>1</b>	1	2
	m }	(P _x 222 ₄ , P6'22')(τ ₃ ), (P _x 2 ₄ 2 ₄ 2, P62'2')(τ ₄ )	3	0 _h	I,II	2,4
	L	(I_222,P_622)(T ₁ ,T ₄ ),(I_2,2,2,2,P_6,22)(T ₂ ,T ₃ )	) 3	٥	I,II	2,8
	н	(P_622,P_6 ₃ 22)(T ₁ ,T ₂ )	2	С _{6.7}	I,II	6,6
	ĸ	(P622,P6'2'2)(T1), (P62'2',P6'22')(T2)	2	C _{6v}	I,II	3,3
56 P6 221'	Г	P6122(τ,),P6122,(τ,),P612,2(τ,)	1	с,	I	1
	. (	(PA212,P612'2)(T), (Pr222,P6122)(T)	)	1		•
	m {	(P _A ² 1 ² 1 ² , P6 ¹ 2 ² )(τ ₃ ), (P _C ² 1 ² 1 ² 1 ² 1, P6 ¹ 2 ² )(τ ₄ )	3	0 _h	1,11	2,4
	ĸ	(P6 22, P6'2'2) (T ). (P6 2'2' P6'22') (T )		r		

•					-	99 -
(ь)	(c)	( d )	(c)	(f)	(g)	(h)
52 P65221.	г	ρ6 ₅ 22(τ ₁ ), ρ6;22'(τ ₃ ), ρ6;2'2(τ ₄ )	1	c ₁	I	1
	m - {	$(P_{C}^{222}, P_{5}^{6})(\tau_{1}), (P_{A}^{2})^{2}(\tau_{2}, P_{5}^{2})(\tau_{2})$	} з	0 _h	1.11	2,4
	к (	$(P_A^2_1^2_1^2, P_5_5^2^2^2)(\tau_3), (P_C^2_1^2_1^2_1, P_5_5^2^2^2)(\tau_4)$ $(P_5_2^2_2, P_5_5^2^2^2)(\tau_3), (P_5_5^2^2^2, P_5_5^2^2)(\tau_5)$	) 2	C	1.11	3,3
P6,221'	Г	Ρ6,22(τ,),Ρ6,22'(τ,),Ρ6,2'2(τ,)	1	с.	I	1
•	•	$P_{2}G_{4}22(\tau_{2},\tau_{3}), P_{2}G_{4}22(\tau_{2},\tau_{2})$	1	Ľ,	I	2
	м	$(P_{C}^{222}, P_{Z}^{6}, 2^{22})(\tau_{1})^{\bullet}, (P_{A}^{222}, P_{Z}^{6}, 2^{22})(\tau_{2})$ (P_222, P_{Z}^{6}, 2^{22})(\tau_{1})^{\bullet}, (P_{A}^{222}, P_{Z}^{6}, 2^{22})(\tau_{2})	3	0 _h	1,11	2,4
	(	(1, 222, 0, 0, 222, 0, 0, 3)	)	0		
	с 1	$c^{+}c^{-+}c^{+}c^{+}c^{+}c^{+}c^{+}c^{+}c^{+}c^{$	, J.	Ч г	1,11	2,8
	п У	$r_{e}^{42}$	2	5v 5	1,11	6,6
	ĸ	(P6222,P6222)(t1),(P62222,P6222)(t2)	2	^C 6v	1,11	3,3
4 P6 ₄ 221'	Г	P6422(T1),P6422'(T3),P642'2(T4)	- 1	C _i	I	1
	A	$P_c 6_{2^{22}(\tau_2,\tau_3)}, P_c 6_{5^{22}(\tau_5,\tau_6)}$	1	C ₁	I	2
		(P _C ^{222,P6} 4 ²² )(T ₁ ), (P _A ²²² 1,P64 ² )(T ₂ )	).	_		
		(P _A ²²² , P6 ⁴ ₄ ² 2')(T ₃ ), (P _C ² ₁ ² , P6 ⁴ ₄ ² '2')(T ₄ )	A 3	^D h	1,11	2,4
	L	$(I_c^{222}, P_c^{6} 2^{22})(\tau_1, \tau_4), (I_c^{2} 1^{2} 1^{2} 1, P_c^{6} 5^{22})(\tau_2, \tau_3)$	ĴЗ.	0	I,II	2,8
	н	$(P_c_{2^{22}}, P_{c_{5^{22}}})(\tau_1, \tau_2)$	2	 С _{бу}	I,II	6,6
	ĸ	(P6422,P642'2)(T1), (P642'2', P6422')(T2)	2	C _{6v}	1,11	3,3
0 P63221 ·	Г	P6322(T1),P6322'(T3),P632'2{T4}	1	с ₁	I	1
	. (	$(P_{C}^{222}, P_{3}^{22})(\tau_{1}), (P_{A}^{2}, 2_{1}^{2}, P_{3}^{2}, 2_{1}^{2})(\tau_{2})$	)			
	<b>{</b>	$(P_A^2_1^2_1^2, P_6_3^2^2_1)(\tau_3), (P_2^2_1^2_1, P_6_3^2_2_2_1)(\tau_4)$	<b>3</b>	0 _h	I,II	2,4
•	ĸ	$(P6_{3}^{22}, P6_{3}^{*2}^{*2})(\tau_{1}), (P6_{3}^{*2}^{*2}, P6_{3}^{*22})(\tau_{2})$	2	C _{6v}	1,11	3,3
6 P6mm1'	,	P6mm(τ ₁ ), P6'mm'(τ ₃ ), P6'm'm(τ ₄ )	1	c,	I	1
	• • • •	Cmm2(1 ₆ )	2	C _{EV}	I	1
	, (	Pc ^{6mm(T1),Pc^{6cc(T2),Pc63mc(T3),Pc63cm(T4)}}	1	C,	I	2
	^ {	(C_mc2, C_mc2, )(T_5), (C_mm2, C_cc2)(T_5)	2	C _{6.0}	I.II	2,2
		(P _C mm2,P6mm)(T ₁ ), (P _C ma2,P6'm'm)(T ₂ )	)	50		
	~ ^	{P _C ba2,P6 ^{m[*]m[*]} )[τ ₃ ],(P _C ma2,P6 [*] m [*] )(τ ₄ )	3	0 _ħ	1,11	2,4
	. (	[I_mm2,P_6mm][τ]),[I_ma2,P_6gcm][tτ])	Ś			
	۲ ۲ ۲	(I_ba2,P_6cc)(T_),(I_ma2,P_6_mc)(T_)	3	0 n	I'II	2,8
	н	(P_6mm,P_6_mc)(T_1),(P_6cc,P_6_cm)(T_3)	2	Ceu	I,II	5,6
	K	(P6mm,P6'mm')(T ₁ ),(P6m [*] 'm',P6'm'm)(T ₂ )	2	C _{6v}	I.II	3,3
2 P6cc1'	(	Ρ6cc(τ,),Ρ6'cc'(τ,),Ρ6'c'c(τ,)	1	C,	I	1
	r }		2	۰ د.	I	1
	Ì	υ (P_cc2,P6cc)(τ,),(P_nc2,P6*c*c)(τ_)	)	σv		-
	m }	[P_nn2,P6c [*] c'](τ_),(P_nc2,P6'cc')(τ_)	٤ ع	0 _h	1.11	2,4
	ĸ	(P6cc.P6'cc')(T). (P6*'c'.P6*c'c)(T)	)	Г	7 77	· ·
	•		÷.	~6v	****	· J .

•						00 -
(b)	(c)	(d)	(e)	(f)	(g)	(ኪ)
98 P6 cm1'	г {	P63cm(τ,),P63cm'(τ,),P63c'm(τ,)	1	C,	I	1
		Cmc2 ₁ (T ₆ )	2	C _{6v}	I	1
	{	(P _C mc2 ₁ ,P6 [*] ₃ cm)(τ ₁ ),(P _C mn2 ₁ ,P6' ₃ c'm)(τ ₂ )	)			
		(P _C ^{na2} 1,P6 ₃ c'm')(T ₃ ),(P _C ca2 ₁ ,P6 ₃ cm')(T ₄ )	3	0 _h	1,11	2,4
	ĸ	(P6_mc,P6'mc')(T1),(P6 [*] m'c',P6'm'c)(T2)	2	C 6v	1.11	3,3
)4 P6 mc1'	. (	P63mc(τ,),P63mc'(τ,),P63m'c(τ,)	1	Ċ,	I	1
	r (	Cmc2 ₁ (τ ₆ )	2	1 C_	I	•
		(P_mc2,,P6_mc)(T,),(P_ca2,,P6;m'c)(T_)	· )	- 6 V	-	•
	m (	(P _C na2 ₁ ,P6 [#] m'c')(T ₃ ),(P _C mn2 ₁ ,P6 ⁺ mc')(T ₄ )	3	0 _h	I,II	2,4
	н	$(P_{2},P_{3},P_{5},P_{5})(\tau_{3})$	) 8	n,	1,11,111	6,6,
	ĸ	(P63cm,P63cm)(1,),(P63c'm',P63c'm)(1,)	2	د د	I.II	3,3
10 P6m21*	- (					
	r }	$\frac{1}{4} = \frac{1}{2} \left[ \frac{1}{4} \right] = \frac{1}{4} = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \right] = \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left[ \frac{1}{4} \left$	1	с ₁	I	1
	{		2	C _{6v}	I	1
	^ }	$c^{om2(1)}, r_{5}, p_{c}^{bc2(1)}, r_{4}$	1	C _i	I	2
	{	$\left( \begin{array}{c} n_{1} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5} \\ n_{5$	2	Cev	I,II	2,2
	m }	$(P_{A}^{mm2}, P_{B}^{m2})(\tau_{1}), (P_{B}^{mn2}, P_{B}^{m2})(\tau_{2})$	3	٥٢	I.II	2,4
	. (	$(r_A^{nc2}, P^{b^{m^2}})(\tau_3), (P_A^{nc2}, P^{b^{m^2}})(\tau_4)$	)	н		
		$(I_a^{mm2}, F_c^{m2})(T_1, T_4), (I_a^{ma2}, P_c^{5c2})(T_2, T_3)$	3	0 _h	I,II	2,8
	п •		2	C _{6v}	I,II	6,6
	<b>N</b>	[P62m,P62'm'](τ ₁ ],(P6'2'm,P6'2m')(τ ₄ )	2	^C 6v	I,II	3,3
6 P6c21'	- (	Pēc2(T,),Pē'c'2(T,),Pē'c2'(T,)	1	C,	I	1
	ľ í	Ama2(1,)	2	۔ دور	I	1
	Ì	(P_ma2,P6c2)(T_),(P_mn2,,P6c'2')(T_)	)	6 <b>v</b>		
	Y	(P_nn2,Pē [·] ·c [·] 2)(T_),(P_na2,Pē [·] ·c ² ·)(T_)	3	0 _h	1.11	2,4
	ĸ	(P62c,P62'c')(T1), (P6'2'c,P6'2c')(T4)	) Z	Cev	I,II	3,3
	(	· · · · · · · · · · · · · · · · · · ·				
22 Pozmi'	r }	$P62m(\tau_1), P6'2m'(\tau_4), P6'2'm(\tau_5)$	1	°,	I	. 1
		Amm2( ₁₃ )	2	C _{6v}	I	1
	~ ^ }	$P_{c} 62m(\tau_{1}, \tau_{5}), P_{c} 62c(\tau_{2}, \tau_{4})$	1	C ₁	I	2
	ļ	$(A_{a}mm2, A_{a}ma2)(\tau_{3}), (A_{a}ma2, A_{a}mm2)(\tau_{6})$	2	C _{ev}	1,11	2.2
	m {	(PAmm2,P62m)(T1), (PBmn21,P6'2'm)(T2)	)3	0.	1,11	2.4
	. (	(PAnc2,P6'2m')(T3),(PAnc21,P62"m')(T4)	)	n		- / 7
	L	(I mm2, P c 52m) (T1, T4), (I ma2, P c 52c) (T2, T3)	3	° _h	1,11	2,8
	H	$P_{c}^{\overline{b}m2}(\tau_{1},\tau_{5}),P_{c}^{\overline{b}c2}(\tau_{2},\tau_{4})$	2	с ₆	I	6
	ĸ	Pēm2(τ ₁ ),Pēm"2'(τ ₂ ),Pē'm'2(τ ₄ ),Pē'm2'(τ ₅ )	2	C 6	. I	3

BUS

) (b) (c)

.

(d)

- 101 -

228 P62c1'	$\Gamma \begin{cases} P\bar{b}^{2}c(\tau_{1}), P\bar{b}^{2}c'(\tau_{4}), P\bar{b}^{2}c'(\tau_{5}) \\ Ama2(\tau_{3})^{\bullet} \end{cases}$	1	C ₁	· I	1
	$M \begin{cases} (P_{A}^{ma2}, P\bar{b}2c)(\tau_{1}), (P_{A}^{mn2}, P\bar{b}2'c')(\tau_{2}) \\ (P_{A}^{ma2}, P\bar{b}2c)(\tau_{1}), (P_{A}^{mn2}, P\bar{b}2'c')(\tau_{2}) \end{cases}$		^C 6v	1	1
	$(P_{A}^{nn2}, P\bar{b}'2c')(\tau_{3}), (P_{A}^{na2}, P\bar{b}'2c)(\tau_{4})$	<b>S</b>	^U h	1,11	2,4
	$(C_{c}, C_{c}^{2})(\tau_{2}, \tau_{3})$	4	85.1	1,11	6,6
	κ Ρ6c2(τ ₁ ), Ρ6c'2'(τ ₂ ), Ρ6'c'2(τ ₄ ), Ρ6'c2'(τ ₅ )	2	с _в	I	3
234 P5/mmm1'	P6/mmm(τ ₁ ), P6'/m'mm'(τ ₃ ), P6'/m'm'm(τ ₁ ), P6/m'mm	(+ )			
	$P6/m'm'm'(\tau_{7}), P6'/mm'm(\tau_{6}), P6'/mmm'(\tau_{7})$		C ₁	I	1
	· (Cm'mm, Cm'mm)(τ ₁₁ ),(Cm'm'm', Cmmm')(τ ₁₂ )	) 2	C,	1.11	• •
	$\left( \text{Lmmm}\left( \tau_{6} \right)^{2} \right)$	2	Ev C	I	1
	$\binom{P_{c}^{6/mmm}(\tau_{1},\tau_{8}),P_{c}^{6/mcc}(\tau_{2},\tau_{7}),P_{c}^{6}}{}^{3/mmc}(\tau_{3},\tau_{40})}{}$	)	6 V		•
	$P_{c_{3}/mcm(\tau_{4},\tau_{9})}$	{ 1	° ₁	I	2
	$(C_{c}^{mcm}, C_{c}^{mcm})(\tau_{5}, \tau_{11}), (C_{c}^{mm}, C_{c}^{ccm})(\tau_{6})$	Ś			
	(C _c ccm,C _c mmm)(T ₁₂ )	2	C _{6v}	1,11	2,2
	( ^{(P} c ^{mmm, P6/mmm)} (T ₁ ), (P _B mna, P6'/m'm'm)(T ₂ )	)			
	$(P_{B}^{mna}, P6'/m'mm')(\tau_3), (P_{C}^{bam}, P6/mm'm')(\tau_4)$				
	(P _C ban, P6/m'm'm')(T ₅ ), (P _B mma, P6'/mmm')(T ₅ )	3	0 _h	I,II	2,4
	(P _B mma,P6'/mm'm)(T ₇ ),(P _C mmn,P6/m'mm)(T ₈ )	)			
	(I_mmm,P_6/mmm)(T1,T8),(I_mma,P_62/mcm)(T2,T2)	Ś			
	$\left( I_{a}^{mma}, P_{c} 6_{3}^{/mmc} \right) (\tau_{3}, \tau_{7}), (I_{bam}, P_{c} 6^{/mcc}) (\tau_{4}, \tau_{c})$	3	0 _h	I,II	2,8
	H $(P_{c}^{6/mmm}, P_{c}^{6}, mcm)(\tau_{1}, \tau_{5}), (P_{c}^{6/mcc}, P_{c}^{6}, mmc)(\tau_{1}, \tau_{5}))$	ן ביד _א י 2	C.	1.11	6,6
	(P6/mmm,P6'/mmm')(T,),(P6/mm'm',P6'/mm'm)(T,)	<b>(</b> )	6v		
	<pre>(P6/m'm'm', P6'/m'm'm)(τ₄), (P6/m'mm, P6'/m'mm')(</pre>	τ ₅ ) { ²	C _{6v}	I,II	3,3
244 P6/mcc1'	<pre>/ P6/mcc(τ,),P6'/m'cc'(τ,),P6'/m'c'c(τ,),P6/m'cc</pre>	(7))			
	P6/m'c'c'(τ ₇ ),P6'/mc'c(τ ₀ ),P6'/mcc'(τ ₁₀ )		C 1	I	1
	Γ (Cc'cm,Cc'cm)(τ ₁₄ ),(Cc'c'm',Cccm')(τ ₁₄ )	)	c	T TT	
	$\left( \text{Cccm}(\tau_6)^{\bullet} \right)$	2	~6v C	T .	
	(P_ccm,P6/mcc)(T_),(P,nna,P6'/m'c'c)(T_)	1	-6v	•	•
	(P_nna,P6'/m'cc')(T_),(P_nnm,P6/mc'cc')(T_)				
	(P _c nnn,P6/m'c'c')(T _z ),(P _s mna,P6'/mcc')(T _z )	<b>6</b>	o _h '	I.II	2,4
	(P _A mna, P6'/mc'c)(T ₇ ), (P _c con, P6/m'cc)(T ₂ )	)			
	(P6/mcc,P6'/mcc')(T_),(P6/mc'c',P6'/mc'c)(T_)	)			
	(P6/m'c'c',P6'/m'c'c)(T_) (P6/m'cc_P6'/m'c')	- , { 2	² 67	1,11	3,3



) (b) (c)

.

(d)

- 102 -

(e) (f) (g) (h)

254 P6 ₃ /mcm1'		ο(τ ₁ ), P63/m'cm'(τ ₃ ), P63/m'c'm(τ ₄ )	١			
	P63/m*c	;'m'(τ ₇ ),P6 ₃ /m'cm(τ ₈ ),P6 ₃ /mc'm(τ ₉ )	<b>\</b> 1	с,	I	1 :
	Г / Рб <mark>;</mark> /тсл	a'(τ ₁₀ )	)	-		
	{Cmc'm,	Cm'cm)(T ₁₁ ),(Cm'c'm',Cmcm')(T ₁₂ )	2	C _{Ev}	I,1I	1,1
		, <b>)</b>	2	C _{6v}	I	1
	( (P _A mma,	P6 ₃ /mcm)(τ ₁ ), (P _A nnm,P6 ₃ /m'c'm)(τ ₂ )	1			
	(Pcben.	P6;/m'cm')(τ ₃ ),(P ₈ nma,P6 ₃ /mc'm')(τ ₄ )	1.			
	// / (P _B nna,	P6 ₃ /m'c'm')(τ ₅ ),(P _C bcm,P6 ₃ /mcm')(τ ₆ )	<b>3</b>	0 _h	I,II	2,4
	(P _A mmn,	P6;/mc'm)(T7),(PAnma,P63/m'cm)(T8)				
	( [P6 ₃ /mm	ic,P6 ³ /mmc')(τ ₁ ),(P6 ³ /mm'c',P6 ³ /mm'c)(τ ₂ )	)	_		
	(P63/m)	'm'c',P6',/m'm'c)(τ ₄ ),(P6 ₃ /m'mc,P6',/m'mc')(	τ ₅ λ) 2	^C 6v	I,II	3,3
-264 P6 ₃ /mmc1'	P63/mn	ıc(τ ₁ ), P6'3/m'cc'(τ ₃ ), P6'3/m'm'c(τ ₄ )				
	P63/m	'm'c'(τ ₇ ),P6 ₃ /m'mc(τ ₈ ),P6 ₃ /mm'c(τ ₉ )	<b>1</b>	° ₁	I	1
	P6;/mn	ac [*] (τ ₁₀ )	)			
	(Cm°cr	n, Cmc'm)(T ₁₁ ), (Cm'c'm', Cmcm')(T ₁₂ )	2	C _{6v}	1,11	1,1
	Cmcm (	τ ₆ ) *	2	C _{6v}	I	1
	κ { ^{(P6} 3 ^{/π}	<pre>icm,P63/mcm')(t1),(P63/mc'm',P63/mc'm)(t2)</pre>		C.	I,II	3,3
	( ^{(P6} 3/n	a'c'm'.P6'3/m'c'm)(τ ₄ ),(P6 ₃ /m'cm,P6'3/m'cm'(	^τ 5 ³ ) ¯	- 6 v		
	(PA ^{mma}	3,P6 ₃ /mmc)(τ ₁ ),(P _C bcn,P6 ³ /m'm'c)(τ ₂ ) ★	)			
	M (PAnn	n,P6;/m'mc')(T ₃ ),(P _B nma,P6 ₃ /mm'c')(T ₄ )	(3	٥.	1,11	2.4
	(P _B nn)	3,P63/m'm'c')(T5),{PAmmn,P63/mmc')[T6]		n		
	.(P_bcr	n,P6,/mm*c)(τ ₇ ),(P _A nma,P6 ₃ /m*mc)(τ _A )	1			

BUS

a) (b)

P23

- 2

<u>- 5</u>

- 8

-10

-13

(c)

Г

(d)

(e) (f)

с₁

- 103 -

(h)

1

(3)

I

с_б I 1  $R \begin{cases} (C_{a}^{222,123})(\tau_{1},\tau_{4}), (C_{a}^{222,12},12_{1}^{3})(\tau_{2},\tau_{3}) \\ F_{a}^{23}(\tau_{1}) \\ F_{a}^{222}(\tau_{2},\tau_{3}) \\ \end{array}$ T_h 3 I.II 2.4 C, I Z 2 C e I 2  $(P_a^{222}, P_1^{23})(\tau_1, \tau_2), (P_c^{222}, P_1^{2}, \tau_3)(\tau_3, \tau_4)$ X 3 ть I,II 2.8  $\begin{cases} F23(\tau_{1})^{\bullet} \\ F222(\tau_{2},\tau_{3})^{\bullet} \\ (C_{A}^{222},P23)(\tau_{1},\tau_{3})^{\bullet}, (C_{A}^{222},P2_{1}^{3})(\tau_{2},\tau_{4})^{\bullet} \\ F222(\tau_{2},\tau_{3})^{\bullet} \\ F222(\tau_{3},\tau_{3})^{\bullet} \\ F$ F23 . Г 1 C, I 1 с_в 2 Ι 1 з T_h 1,11 2,4 L (R₁³,F₅²³,F₅²³)(T₁) 95.1 I,II,III 2,8,8  $\begin{cases} 123(\tau_{1}) \\ 1222(\tau_{2}+\tau_{3}) \\ (C_{c}^{2}, C_{a}^{222}, R_{3}, R_{1}^{3}, I23, I_{c}^{222})(\tau_{1}) \\ (C_{c}^{2}, C_{a}^{222}, R_{3}, R_{1}^{3}, I2_{3}, I_{c}^{222})(\tau_{2}) \\ F_{a}^{23}(\tau_{1}) \\ F_{a}^{222}(\tau_{2}+\tau_{3}) \\ P_{I}^{23}(\tau_{1}) \\ P_{I}^{222}(\tau_{2}+\tau_{3}) \\ P_{2}^{3}(\tau_{1}) \\ P_{2}^{12}(\tau_{2}+\tau_{3}) \\ (P_{c}^{2}, R_{3}, R_{3}, R_{3}, R_{3})(\tau_{1}+\tau_{2}, \tau_{3}+\tau_{4}) \\ \end{cases}$ 123' г 1 C, I 1 2 с_в I 1 N (I,II,III, 2,4,8, ۲a 6 { _{IV.V.VI} 8,8,8 P 2 C 4 I 2 C12 I н C, I 2 2 с^е I 2 P213, r C, 1 I 2 с₆ I Ħ L 12 (1.11.111 2.4.4 ( _{IV,V} 4.4  $\begin{cases} {}^{I2}{}_{1}{}^{3}(\tau_{1})^{\bullet} \\ {}^{I2}{}_{1}{}^{2}{}_{1}{}^{2}{}_{1}(\tau_{2}^{+}\tau_{3})^{\bullet} \end{cases}$ 12,3' r I 1 1 C_i 2 с₆ I (C_c2,C_{222,R3,R1}3,R3)(T₁,T₂) 1,11,111, 2,4,8 Ν L 5 { _{1V.V} 8,8  $H \begin{cases} P_{I^{2}I^{3}(\tau_{1})} \\ P_{I^{2}I^{2}I^{2}I^{2}I^{(\tau_{2}^{+}\tau_{3})}} \end{cases}$ I 2 1 C, 2 1 2 с₆
	•					- 1	04 -
a)	(ь)	(c)	(b)	(e)	(f)	(E)	(h)
-15	Pm3'	_	$Pm3(\tau_1), Pm'3(\tau_5)$	1	C,	I	1
		Г	$P^{\text{mmm}(\tau_2^{+\tau_3}), P^{\text{m'm'm'}(\tau_6^{+\tau_7})}$	2	- - -	I	1
			\ (Pm'mm,R3')(τ ₈ )	3	т, ·	I,II	1.1
			$(F_{a}^{m3}(\tau_{1},\tau_{5}))$	1	c,	I	2
		R	$\begin{cases} F_{s}^{mmm.(\tau_{2}^{+\tau_{3}},\tau_{6}^{+\tau_{7}}) \\ 3 & (1 - 1) \end{cases}$	2	۔ ۲	I	2
			$(F_{B}^{mmm},R_{I}^{3})(\tau_{4},\tau_{8})$	3	T.	I.II	- 2 7
		x	$ \left\{ \begin{array}{c} (P_{a^{m,m},P_{I}^{m,3})(\tau_{1},\tau_{6}), (P_{a^{m,m}a},P_{I}^{a,3})(\tau_{3},\tau_{4},\tau_{7},\tau_{8}), \\ (P_{c}ccm,P_{1}^{n,3})(\tau_{2},\tau_{c}) \end{array} \right. $	3	n Th	I,II	2,8
		n	$\begin{cases} (C_{a}, T_{a}, T_{a}), (C_{a}, T_{a}), (T_{a}, T_{a}), (T_$	Э			-
			(Camma, Im [·] 3)(τ ₅ , τ ₈ ), (Cammm, Ia'3)(τ ₆ , τ ₇ )	5	'h	1,11	2,4
19	Pn3'		(Pn3(T1),Pn'3(T5)	1	r	•	
		г	$Pnnn(\tau_2 + \tau_3), Pn'n'n'(\tau_6 + \tau_7)$	2	-1 C	т Т	1
			(Pn'nn,R3')(T _B )	3	~6 т	1 17	1
			$(F_a^{d3}(\tau_1,\tau_5))$	-	'h r	1,11 -	1,1
		R	$F_{s}^{ddd(\tau_{2}^{+}\tau_{3},\tau_{6}^{+}\tau_{7})}$	• •	ີ <u>1</u>	1	2
		1	$(F_{s}^{ddd,R_{I}\bar{3}})(\tau_{4},\tau_{8})$	3	с _б т _р	1	2 2,2
			•				
: 3	rm3'	(	$Fm3(\tau_1), Fm'3(\tau_5)$	1	c,	I	1
		r	Fmmm(T ₂ +T ₃ ), Fm'm'm'(T ₆ +T ₇ )	2	с ₆	I	1
		(	(Fm'mm,R3')(T8)	3	т	I,II	1.1
		(	(C _A mmm, Pm3)(T ₁ ), (C _A mca, Pa3)(T ₂ , T ₄ ),				
		×	(C _A ccm,Pn3)(T ₃ ),(C _A cca,Pm'3)(T ₅ ),	3	T,	I,II	2.4
		(	<pre>(CAmcm,Pa'3)(T6,T8),(CAmma,Pn'3)(T7)</pre>				-•.
		ຸ )	$(R_1\bar{3},F_sm3,F_sm3)(\tau_1,\tau_4)$	4	95.1	I.II.III	7 8 8
		(	(P_1,C_2/m,F_mmm)(T_2*T_3,T_5*T_6)	8	L	I.II.III	2.4.8
7 .	Fd3'	(	Fd3(T_).Fd'3(T_)		7		-,.,.
		г 🚶		1	° ₁	I	1
		(	$(Fd'dd, R\bar{3}')(\tau)$	2	с ₆	I	1
		· · · (	(R_3,F 23)(T ,T )	3	т h	I,II	1,1
		۲ <u>}</u>	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	4	108.01	1,11	2,8
		(	a a s s s s s s s s s s s s s s s s s s	8	м _. з	I,II,III	2,4,8

	•					- 105	-
(a)	(ь)	(с)	(b)	(e)	(f)	(8)	(h)
			•				
1-31	Im3'	_	$(1m3(\tau_1), Im'3(\tau_5))$	1	C 1	1	1
		г	<pre>/ Immm(12+13), Im'm'm'(16+17)</pre>	2	٥	I	1
			( (Im'mm,R3')(T ₈ )	3	T h	I,II	1,1
			$P_{I}^{m3(\tau_{1}),P_{I}^{n3(\tau_{5})}}$	1	c _i	I .	2
		н	$\begin{cases} P_{I^{mmm}(\tau_{2}^{+\tau_{3}}), P_{I^{nnn}(\tau_{6}^{+\tau_{7}})} \\ - & - & - & - & - & - & - & - & - & -$	2	c ^e	I	2
			$\begin{pmatrix} (P_{I}^{nnm,R_{I}3})(\tau_{4}), (P_{I}^{mmn,R_{I}3})(\tau_{8}) \\ - & \bullet \end{pmatrix}$	3	т _н	1.11	2,2
			$\begin{pmatrix} (C_2/m, C_mmm, R_1^3, R_3, Im3, I_mmm)(\tau_1) \\ C \end{pmatrix}$				
		N	$\left\{ \begin{bmatrix} C_2/c, C_{mma}, R_{I}^{3}, R_{J}^{3}, Ia3, I_{c}^{bca} \end{bmatrix} \begin{bmatrix} \tau_2 \end{bmatrix} \right\}$	6	L	§ 1.11.111.	2,4,8
			(C_2/c,C_mma.R_3,R3',Im'3,I_bam)(T_3)	-	-8	( IV.V.VI	8,8,8
			\ (C _c 2/m,C _a mmm,R _I 3,R3',Ia'3,I _a mma)(T ₄ )				
		P	{ ^F s ^{m3} . ^F s ^{d3} )(τ ₁ )	2	C _{4v}	I,II	4,4
			` {F _s 222,F _s mmm,F _s ddd)(T ₂ +T ₂ ,T ₃ +T ₃ )	4	42.1	I,II,III	4,4,4
5-34	Pa3'		( Pa3(T,),Pa'3(T_)	4	r	T	4
		Г	$\left\{ \begin{array}{c} Pbca(\tau_{2}+\tau_{3}), Pb'c'a'(\tau_{2}+\tau_{3}) \end{array} \right\}$	2	т <u>і</u> с	T	•
			( (Pb'ca,R3·)(τ _a )	-	⁶ б т	- T TT	•
			$\left(P_{z}\overline{1}(\tau_{1},\tau_{1},\tau_{2},\tau_{3},\tau_{4},\tau_{5})\right)$	4	'h 49.1	т	2
		R	$\begin{cases} \mathbf{R}_{\mathbf{T}} \mathbf{\bar{\mathbf{J}}} \left( \mathbf{\bar{\mathbf{T}}}_{\mathbf{T}} + \mathbf{\bar{\mathbf{T}}}_{\mathbf{T}} + \mathbf{\bar{\mathbf{T}}}_{\mathbf{T}} + \mathbf{\bar{\mathbf{T}}}_{\mathbf{T}} + \mathbf{\bar{\mathbf{T}}}_{\mathbf{T}} + \mathbf{\bar{\mathbf{T}}}_{\mathbf{T}} \right) \end{cases}$	4	49.7	T .	2
			• •			•	-
-38	193.	_	$\left( \begin{array}{c} Ia3(\tau_1), Ia'3(\tau_5) \\ \bullet \end{array} \right)$	.1	C _i	I	1
		r	$\begin{cases} 1bca(\tau_2,\tau_3), 1b'c'a'(\tau_6,\tau_7) \\ $	2	с ₆	I	1
			([b'ca,R3')(T ₈ )	3	т _h	I,II	1,1
			$\left(\begin{array}{c} P_{1}a_{3}(\tau_{1},\tau_{5}) \\ \end{array}\right)$	1	C _i . ·	I	2
		н	$\begin{cases} P_{1}bca(\tau_{2}^{+}\tau_{3},\tau_{6}^{+}\tau_{7}) \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ $	2	с ₆	I	2
			$\left(P_{1}^{cca,R_{1}^{3}}(\tau_{4},\tau_{8})\right)$	. 3	т _h	1,11	2,2
7-41	P43'2		$P432(\tau_{1}), P4'32'(\tau_{2})$	1	С.	I	1
		Г	$(P422,P4'22')(\tau_{n})^{2}$	2	1 C_	1,11	1.1
		m	$(P_422, 1432)(\tau_1, \tau_2), (P_42, 2, 14'32')(\tau_2, \tau_2)$	3	0.	I,II	2,4
			L 14 L1 23 (F_432(T_4,T_2)	1	n C.	I	2
		R	$\begin{cases} 1 & 1 & 2 \\ (1 & 422, 1 & 4, 22)(\tau_{n}) \end{cases}$	2	1	1.11	2.2
		x	c $c$ $c$ $1$ $3(P 422, P_432) (T_, T_), (P 4_22, P_4_32) (T_, T_)$	3	-6v 0	I.II	2.8
			•	-	⁻ h		
8-45	P423'2	г	$P_{2^{32}(\tau_{1})},P_{2^{32}(\tau_{2})}$	1	C _i	I	1
		•	(P4222,P4221)(T3)	2	c _{sv}	I,II	1,1
		R	$\{F_{s}^{4}1^{32}(\tau_{1},\tau_{2})\}$	1	C ₁	I	2
		•	$(1_c^{4})^{22} \cdot 1_c^{4} \cdot 1^{22} \cdot (\tau_3)$	2	C _{6v}	I,II	2,2
		x	$(P_{c}^{4})^{22}, P_{I}^{4})^{32}(\tau_{2}, \tau_{3}), (P_{c}^{4})^{32}, P_{I}^{4})^{32}(\tau_{4}, \tau_{5})$	3	o _n	I,II	2,8
		M	(P_4_2,2,14,32)(T_,T_),(P_4_22,14,32')(T_,T_)	з	٥	1,11	2.4

BHS

	•					· _ ·	106 -
	(ь)	(c)	( h )	(e)	(f)	( ๆ )	(h)
	F4312						
•	145 2	Г	$\{ F^{432(\tau_1)}, F^{4'32'(\tau_2)} \}$	1	° ₁	I	1
			$(1422, 14, 22, )(\tau_3)^{-1}$	2	C _{6v}	1,11	1,1
		x	$\left\{\begin{array}{c} (P_{1}^{422}, P_{32})(\tau_{1}), (P_{1}^{42}, 2, P_{2}^{4}, 32^{\prime})(\tau_{2}), \\ (P_{1}^{422}, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2, P_{32}^{4}, 2$	3	۵.	1,11	2.4
			$(P_{I}^{4}2^{2}1^{2},P4^{3}2^{2})(\tau_{3}), (P_{I}^{4}2^{2}2,P4^{3}2)(\tau_{4})$		n		-
		L	$[R_{I}^{32,F_{g}}]^{432,F_{g}}]^{432}[\tau_{1}], (R_{I}^{32,F_{g}}]^{432,F_{g}}]^{32,F_{g}}]^{(\tau_{1})}$	4	109.01	{ ^{1,11,111}	2,8,8
		W	(I 422, I 4122, P 1432, P 14232, P 14332, P 14132)(T 1, T 2)	6	L ₂	¹ ,II,III,	4,4,32,
						10.0.01	32,32,32
	F4 3'2	г	{ ^{F4} 1 ³² (τ ₁ ), ^{F4} 1 ³² '(τ ₂ )	1	C ₁	I	1
		•	$(14_{1}22, 14_{1}22)(\tau_{3})^{\bullet}$	2	C Sv	I,II	1.1
		L	$(R_{1}^{32},F_{8}^{23})(\tau_{1},\tau_{2})$	4	110.1	I,II	2,8
		v	( ^{(P} I ⁴ 1 ²² , P ⁴ 1 ³² )(τ ₂ ), (P _I ⁴ 1 ² 1 ² , P ⁴ 3 ³² )(τ ₃ ),	_	_		_
		^	$\{ (P_{I}^{4} 3^{2} 1^{2}, P_{1}^{4} 3^{2}) (\tau_{4}), (P_{I}^{4} 3^{2}, P_{3}^{4} 3^{2}) (\tau_{5}) \}$	3	0 h	1,11	2.4
	I43'2		, 1432(T.). 14'32'(T.)		_	_	
		Г	$\{1422, 1422\}$	1	^C 1	1	1
			(F 432, F 4 37)(T)	2	6v	1,11	1.1
		Р	$\begin{cases} 1 & 5^{-2} & 5^{-1} & 5^{-1} & 1 \\ (1 & 422 & 1 & 4 & 22) (1 & + \frac{1}{2} & -1 & + \frac{1}{2}) \end{cases}$	2	C4v	1,11	4,4
			P = 432(T + 1) P = 4 - 32(T + 1)	2	^C 12v	I,II	4,4
		н	$\begin{cases} I & I & I & I & I & I & I & I & I & I $	1	° _i	I	2
			$\begin{bmatrix} 1^{42} & 1^{2} & 2^{2} & 1^{3} \end{bmatrix}$	2	C 5v	1,11	2,2
			$\begin{bmatrix} (0, A^{2}, 2), (0, 2^{2}, 1, 1, 2^{2}, 1, 1, 2^{2}, 1, 1, 2^{2}, 1, 1, 2^{2}, 1, 1, 2^{2}, 1, 1, 2^{2}, 1, 1, 2^{2}, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$				
		N.	$\begin{cases} (c_{A}^{222}, c_{1}^{222}, $	6	L	<b>1</b> ,11,111,	2,4.8.
			$(C_{A}^{222}, F_{C}^{4})^{222} R_{I}^{32} R_{J}^{32} R_{J}^{32} R_{J}^{4} R_{J}^{32} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4} R_{J}^{4}$		4	V IV.V.VI	8,8,8
			$\begin{pmatrix} (C_{A^{222}1}, P_{C^{42}1^{2}, R_{I}^{32}, R_{J}^{32}, I_{4}^{4}, 32^{\prime}, I_{4}^{4}, 22^{\prime}, I_{4}^{2} \end{pmatrix}$				
	P4 3'2	-	( ^{P4} 3 ³² (τ ₁ ), ^{P4} 3 ^{32'} (τ ₂ )	1	с,	I	1
		1	(P43212,P43212)(T3)	2	с _{в.,}	I,II	1.1
			( (P _C ²²² , P _C ²²² , R32, R32, R32) (T ₂ , T ₄ , T ₄ )			I.II.III.	2,2,4,
		n	(P _C ²²² 1,P _C ²²² 1,R32',R32',R32')(T ₃ +T ₃ ,T ₅ +T ₅ )	6	^L 13	IV.V	4,4
			•				
	^{P4} 1 ^{3*2}	Г		1	^C i	I	1
			$(P_{1}^{2})^{2}, P_{1}^{2})^{2} (T_{3})$	2	6v	1.11	1,1
		m	(P _C ⁴ ₁ , P _C ⁴ ₁ , R ₃ , R ₃ , R ₃ ) (τ ₄ + τ ₅ , τ ₂ + τ ₃ ) •	6	L ₁₃	<b>}</b>	2,2,4,
						V IV,V	4,4
	14,3'2	_	( 14,32(T,),14,32'(T,)	1	C,	I	1
		· r	(14,22,14,22)(T,)•	2	с _е	1.11	1,1
			( P ₁ 4 ₃ 32(τ ₁ ), P ₁ 4 ₃ 32(τ ₂ )	1	C,	I	2
		Н	{ (P ₁ 4 ₃ 22, P ₁ 4 ₁ 22)(T ₃ )	2	с _е	1.11	2,2
			( (C _A ²²² 1, P _C ⁴ 1 ²² , R ₁ ³² , R ₃₂ , R ₃₂ )(T ₁ )		υv		
		N	(C _A ²²² , P _C ⁴ , 22, R ₁ 32, R32, R32, (T ₂ )	6	٤	}.1,11,111, [,]	2,4,8,
			( (C _A ²²² , P _C ⁴ , 2, 2, R ₁ ³² , R ₃₂ , R ₃₂ )		11	' IV.V	8,8
						(* 8115	•
						Cord	x.

						- 10	7 -
	(ь)	(c)	(d)	(e)	(f)	[ <u>5]</u> ]	(h)
i	P43'm		( Pā3m(T,),Pā'3m'(T ₂ )	1	C,	I	1
		Г	(P42m,P4'2m')(T3)	2	د 2	1.11	1.1
			( (P4'2'm,R3m)(τ ₄ ) [●]	3	БV D.	1.11	1.1
	•		$\left(F_{B}^{\bar{4}3m}(\tau_{1}),F_{B}^{\bar{4}3c}(\tau_{2})\right)$	1	C,	I	2
		R	(I_4m2,I_4c2)(T_3)	2	1 C_	1.11	2 2
			$(I_c^{\bar{4}m2}, R_I^{3m})(\tau_4), (I_c^{\bar{4}c2}, R_I^{3c})(\tau_5)$	з	5v 0	I.11	2.2
			$(P_{c}^{\bar{4}2m}, P_{I}^{\bar{4}3m})(\tau_{1}, \tau_{4}), (P_{c}^{\bar{4}2c}, P_{I}^{\bar{4}3n})(\tau_{2}, \tau_{3})$	з	, n D	1.11	7.8
		x			'n	, I.II.III.	2,0 2,7 B
			$\left( \begin{array}{c} {}^{(P}c^{222}, {}^{C}c^{mc2}, {}^{R}I^{3m,R}I^{3c,P}I^{2}1^{3,P}C^{42}1^{m,P}C^{42}1^{m} \right)(\tau)$	5, 8	۲,		1 А А А
			(Pc4m2,143m)(T,,T,),(Pc4b2,14'3m')(T,T)	3	0.	I.TI	- 0,0,7
		n.	(C_222,P_ma2,I2,3,I2,3,R3m)(T_)	6	L_	·	2.7
		I			-7		2,2,4,
	- <del>.</del>		· • .			10,0	4,4
	F43'm	_	$F43m(\tau_1),F4'3m'(\tau_2)$	1	C _i	I	1
		г	(I4m2,I4'm'2)(T ₃ )	2	°av	1.11	1.1
			$(14'm2',R3m)(\tau_4)$	3	° h	1,11	1.1
		x	$\int (P_{I}^{4m2}, P\bar{4}^{3m})(\tau_{1}, \tau_{4}), (P_{I}^{4n2}, P\bar{4}^{*3m})(\tau_{2}, \tau_{3})$	з,	0 _h	1,11	2,4
		~	(P,mn2,,C,222,,R3m,R3m',P2,3)(T_)	6		\$ ^{1,11,111} .	2,2,4
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	57	₹ IN'N	4.4
	I43'm		( I43m(T, ), I4'3m'(T,)	1	c ·	7	
		Г	<pre>(I42m, I4'2m')(T3)</pre>	2	-1 C	- , T TT	•
			( (I4'2'm,R3m)(T ₄ )	3	~δv Ω	1,11	1.1
		. 1. 1	( P ₁ 43m(T ₁ ), P ₁ 43n(T ₂ )	1	Сh с		1.1
		н	(P ₁ ⁴ 2m,P ₁ ⁴ 2c)(T ₁ )	2	~1 C	1	2
			$(P_{\tau}^{4}2_{1}m,R_{\tau}^{3}m)(\tau_{A}),(P_{\tau}^{4}2_{2}c,R_{\tau}^{3}c)(\tau_{A})$	-	6v	1,11	2,2
			(Acmm2, Pc4m2, R, 3m, R3m, I43m, I 42m) (T, T)	5	'n	1,11	2,2
		N	(A _c ma2,P _c 4c2,R ₁ 3m,R3m',I4'3d',I42d)(T _c )	6		\$ ^I .II.III.	2,4,8,
			(A _c ma2,P _c 4b2,R ₁ 3c,R3m',I4'3m',I42m)(T _c )	J	۲4	1v,v,vī	8,8,8
			[ F_43m(τ_),F_43c(τ_)	2	c	T	
		P	$\{F_{222,I_{4}}, I_{4c2}, (\tau_{2}, \tau_{2})\}$	4	-4.	-	~ ~ ~
	_					1,11,111	۹,4,4
	P43'n		P43n(T1),P4'3n'(T2)	1	с,	I	1
		r -	(P42c,P4'2c')(T3)	2	с _{бу}	1,11	1.1
		ı	(P4·2'c,R3c)(T4)	3	0 _h	1,11	1,1
		1				. 1.11	
		m	^ι ^ν C ^{nc2,C} ^{222,R3c',R3c,I23)(τ₁)[*]}	6	L,		2,2,4,
			(P_4c2, 143d) (T_, T_), (P_4n2, 14'3d') (T_, T_)	3	n	T TT	4,4
			Γ_222(τ ₃ +τ ₃ )	4	_h 21 4	* * * 1 1	2,4 -
		R	F_23(τ ₄ +τ ₅ )	2	c · · · 1	1 7	2
			3 7 3	*	L.	T	2



	•					- 10	8 -
a)	[b]	(c)	(h)	(c)	(f)	(g)	(h)
1-86	F43'c	(	$F\bar{4}3c(\tau_{1}),F\bar{4}'3c'(\tau_{2})$	1	c,	I	1
		г	(14c2,14'c'2)(T3)	2	C _{EV}	I,II	1.1
			(14'd2',R3c)(T4)	з	0 _h	1,11	٩,1
		, (	(P ₁ ca2 ₁ ,C _A 222 ₁ ,R3c,R3c',P2 ₁ 3,Cc')(T ₁ )	6	" L ₇	<b>1.11.111</b> .	2,2,4,
			(P _I ⁴ c2,P ⁴ 3n)(T ₂ ,T ₅ ),(P _I ⁴ b2,P ⁴ '3n')(T ₃ ,T ₄ )	3	o _h	I.II	4,4,4
)-90	143'd		I43d(T,),I4'3d'(T,)	1	C.	I	1
		г	(I42d, I4'2d')(T)	2	-1 C.	1.11	1.1
			(I4'2'd,R3c)(T_)	- 3	~6v п	 T.TT	1.1
			( P ₂ 2,3(τ,+τ,)	2	ัก ก	-, T	7
		н	$P_{-2} = 2 = 2 + \tilde{\tau}$	-	~4 24 4	Ŧ	-
		٩	$(I_{2}^{4}, C_{2}^{2})(\tau_{2}^{+}\tau_{2}^{+}, \tau_{3}^{+}\tau_{3}^{+})$	4	98.1	1,11	4,4
1-93	Pm3'm		/ Pm3m(T,),Pm3m'(T,),Pm'3m'(T ₆ ),Pm'3m(T,)	1	c,	I	1
			[P4/mmm,P4'/mmm'][τ ₂ ], (P4/m'm'm',P4'/m'm'm)(τ ₂ ]	2	ייי כייי	1,11	1.1
		Г	β (P4'/mm'm,R3m)(τ ₄ ),(P4'/m'mm',R3'm')(τ _g ),	3	0 _h	1.11	• 1.1
			· (P4/m'mm,R3'm)(T)		-	-	_
			$(F_{a}^{m3m(\tau_{1},\tau_{7})},F_{s}^{m3c(\tau_{2},\tau_{6})})$	1	° ₁	I	2
		R	$\left\{\begin{array}{c} (I_{c}^{4/mmm}, I_{c}^{4/mcm}) (\tau_{3}, \tau_{B}) \\ \end{array}\right\}$	2	C _{6v}	1,11	2,2
			$( (I_c^{4/mmm,R_1^{3}m})(\tau_4, \tau_9), (I_c^{4/mcm,R_1^{3}c})(\tau_5, \tau_1))$ (P. 4/mmm,P.m3m)( $\tau_1$ ), (P. 4/mcc, P. m3n)( $\tau_1$ ).	3	0 _h	1,11	2,2
			c 1 1 $c$ 1 2 $\int (P 4_{mmc}, P_{m3m})(\tau_{-}), (P 4_{-}/mcm, P_{-m3n})(\tau_{-}),$	1			
			(P, 4/mcc, P, n3n)(T, ), (P, 4/mmm, P, n3m)(T, ), (P, 4/mm, P, 4/mm)(T, N)(T, N)(T, N)(T, N)(T, N)(T, N)(T, N)(T, N)(T, N)(T	3	0 _h	I,II	2,8
	•	x	(P, 4) (mem P, p3p) (7, ) (P, 4) (mem P, p3p) (7, )		-		
	• .						V 7 7 8 8
			$[C_{c}^{mcm,P}]_{a}^{mma,R}$ $[3c,R_{1}^{3m,P}]_{a}^{a3,P}$ $[4/nmm,P_{c}^{4/mbm}]$ $[T_{5}]$	6	L,		• 2,2,0,0
			$\begin{bmatrix} C_{c}^{mcm,P} \\ a^{mma,R} \\ I^{3m,R} \\ I^{3c,P} \\ I^{a3,P} \\ C^{4/mbm,P} \\ C^{4/nmm} \\ I^{10} \\ I^{10} \end{bmatrix}$	)		· v,vi,vii	0,4,4
			$(P_{C}^{4/mmm,Im3m})(\tau_{1},\tau_{4}), (P_{C}^{4/mbm,Im3m})(\tau_{2},\tau_{3}),$ $(P_{C}^{4/nbm,Im'3m'})(\tau_{5},\tau_{5}), (P_{C}^{4/nmm,Im'3m})(\tau_{2},\tau_{5})$	3	° _h	I,II	2.4
						, 1.11.111.1	V 2,2,4,4
		n	(C_mma,P_mna,Ia3,Ia3,R3m',I 4/mmm,I 4/mmm)(T_5)	6	۲,	} v,vī,vīī	4,4,4
						I,II,III,	2,2,4,
			(C _a mmm,P _B mma,Ia'3,Ia'3,R3'm,I 4/mmm)(T ₁₀ )	6	^L 4	IV,V,VI	4,4,4
2-99	Pn3'n		$Pn3n(\tau_1), Pn3n'(\tau_2), Pn'3n'(\tau_6), Pn'3n(\tau_7)$	1	C _i	I	1
			$(P4/nnc_P4'/nnc')(\tau_3), (P4/n'n'c', P4'/n'n'c)(\tau_8),$	2	C _{6v}	1,11	1,1
		1	(P4'/nn'c,R3c)(T ₄ ),(P4'/n'nc',R3'c')(T ₉ ),	_	-		
			(P4/n'nc,R3'c)(T10)	3	⁰ h	1,11	1,1
			( (F_d3,F_432)(T_2)	2	C.4.v	1,11	2,2
		R	{ (F_ddd,I_4223(T_1+T_1,T_1+T_1)	4	48.1	1,11	2,2
			( (P_422, P_ban, I432, I432, R3'c', I 42d) (τ.)			, 1.11.111.	2,2,4,
		M	{P _C ⁴² ₁ ² ,P _B bcn,I4'32',I4'32',R ³ 'c,I ⁴ 2d)(τ ₂ )	6	L ₄	} IV.V.VI	4,4,4
						BUS	

•					- 10	9 -
(6)	(c)	( (1 )	(e)	(f)	( 5, )	(h)
05 Pm3*n	1	Pm3n(τ ₁ ) [•] , Pm3n'(τ ₂ ), Pm'3n'(τ ₆ ), Pm'3n(τ ₇ )	1	C,	I	1
		(P4 ₂ /mmc,P4 ¹ /mmc ¹ )(τ ₃ ),(P4 ₂ /m ¹ m ¹ c ¹ ,P4 ¹ /m ¹ m ¹ c)(τ	a) 2	с _{в.,}	1,11	1.1
	•	(P4 ⁺ ₂ /mm ⁺ c,R3 ⁻ c)(τ ₄ ), (P4 ⁺ ₂ /m ⁺ mc ⁺ ,R3 ⁺ c ⁺ )(τ _g ),	3	0 _h	1,11	1,1
	,	$(F_{m3}, F_{4}, 32)(\tau_{-})$	2	r	<b>T T T</b>	
	R	$\begin{cases} s & 1 & 2 \\ (F mm_{*} I 4 22)(\tau + \tau + \tau + \tau) \end{cases}$	2	4v	1,11	2,2
		B C 1 3 3 4 4	4	40.1		2,2 7 7 4
	x	(Pamma,Pc ⁴ 1,3 ^{22,P} C ⁴² 1 ^{c,P} I ^{a3,P} I ⁴ 1 ^{32,P} I ⁴ 3 ³²⁾ ( ⁷ 3, ⁷	4)6	L ₉		8 8 8
		( (P_4_/ncm.Ia3d)(TT_).(P_4_/ncm,Ia3d')(TT_),			10,0,01	0,0,0
		$(P_{a}^{4})^{mnm}$ , Ia'3d) (T ₂ , T ₂ ), (P _a 4 ₂ /mcm, Ia'3d') (T ₂ , T ₂ )	3	0 _h	I.II	2,4
	n	<pre>/ 10 C 2 / 10 C 2 / C_mmm,P_mna,Im3,Im3,R3c,I4,/amd,I4,/amd)(T_)</pre>	9		I.II.III.IV.	2.2.4.4.
		(C _a mma,P _A nna,Im'3,Im'3,R3'c',I4 ₁ /acd,I4 ₁ /acd)(T	6 6	L,	v.vI.VII	4,4,4
1 Pn3'm		/ Pn3m(τ,),Pn3m'(τ,),Pn'3m'(τ,),Pn3m(τ,)	1	С.	I	1
		' 2 P / [P4_/nnm,P4_/nnm'](τ_),[P4_/n'n'm',P4_/n'n'm](τ	.)2	í Ca	1.11	1.1
	r	$(P4_{2}^{\prime}/n^{+}m,R\bar{3}m)(\tau_{A})$ , $(P4_{2}^{\prime}/n^{+}m^{+},R\bar{3}^{+}m^{+})(\tau_{B})$ ,	0	5v		
	ļ	$(P4_2/n'nm,R3'm)(\tau_{1n})$	з	0 h	1,11	1,1
	_	<b>(</b> ^F _s d3m(τ ₁ ,τ ₆ ),F _s d3c(τ ₂ ,τ ₇ )	1	C,	I	2
	R	{ [[4 ₁ /amd, [_4 ₁ /acd](τ ₃ , τ _β )	2	1 C ₆₁₁	I,II	2,2
	×	(C _c mca,P _c ⁴ 1,3 ^{22,P} C ⁴² 1 ^{m,R} I ³ c,PI ⁴ 1 ³² ,PI ⁴ 3 ² )(T ₃ ,T	4)6	L ₄	{,	2,2,4, 8,8,8
		, (P_4_2,2,P_bcm,I4_32,I4_32,R3'm,I4m2)(T_)			, I.II.III,	2,2,4,
	M	(P _C ⁴ 2 ²² , P _A ccm, I4 ¹ 32', I4 ¹ 32', R ³ 'm', I ⁴ m2)(T ₄ )	6	L.4	} _{IV,V,VI}	4,4,4
17 Fm3'm		<pre>Fm3m(τ₁), Fm3m'(τ₂), Fm'3m'(τ₆), Fm'3m(τ₇)</pre>	1	c,	. 1	1
	_	(I4/mmm,I4'/mmm')(τ ₃ ),(I4/m'm'm',I4'/m'm'm)(τ _β	) 2	- د _ه	1,11	1,1
	r	(I4'/mm'm,R3m)(τ ₄ ), (I4'/m'mm',R3'm')(τ _q ),	_			
		(I4/m'mm, R3'm) (τ ₁₀ )	3	0 _h	1.11	1.1
		$(P_{I}^{4}2^{/mmc}, P_{I}^{3m})(\tau_{2}), (P_{I}^{4/mmm}, P_{I}^{3m})(\tau_{1}),$				
		$(P_{I}^{4}2^{/mnm}, Pm3m')(\tau_{3}), (P_{I}^{4/mmm}, Pn3m)(\tau_{4}),$				
	J	$(P_{I}4/nnc,Pm'3m')(\tau_{6}),(P_{I}4/nmm,Pn'3m')(\tau_{7}),$	3	U h	1,11	2,4
	*	(P ₁ ⁴ 2 ^{/nmc} , Pm'3m)( ₇ ), (P ₁ ⁴ 2 ^{/nnm} , Pn'3m')( ₇ )				
~		(CAmca.PInnm,Pa3,Pa3,R3m',P 4/mnm,P 4/nmm)(TS	3		( I.II.III.IV.	2.2.4.4
		(CAmcm.PImmm.Pa'3,Pa'3,R3'm,P 4/nmm,P 4/mnm)(1	6 م)	۲,	{ v,vi,vii	4,4,4
		$(F_{g}^{m3m,R_{I}}\bar{3}m)(\tau_{1}),(F_{g}^{m3c,R_{I}}\bar{3}c)(\tau_{2}),$	-			
		$(F_{s}d3m,R_{I}\bar{3}m)(\tau_{4}),(F_{s}d3c,R_{I}\bar{3}c)(\tau_{5})$	4	109.	01 I,II	8,2
	L	(C ₂ 2/c,C ₂ 2/m,I _c 4/mcm,I _c 4/mmm,C ₂ mma)(T ₃ )	-		\$ ¹ .11.111,	4,4,8,
		(C ₂ 2/m,C ₂ 2/c,I ₂ 4/mmm,I ₂ 4/mcm,C ₂ mmm)( ₇₆ )	8.	^m 2	<pre>     iv.v </pre>	8.4
		$(P_1^{m3m,P_1^{m3n,I_2^{4/mmm,I_2^4}/amd,P_1^4_3^2})(\tau_1)$				
		(P ₁ n3m,P ₁ n3m,I ₂ 4/mcm,I ₂ 4 ₁ /acd,P ₁ 4 ₁ 32)( ₇₂ )	-		\$ ¹ .11.111,	32,32,4,
		(P ₁ n3n,P ₁ n3m,I _c 4/mcm,I _c 4 ₁ /acd,P ₁ 4 ₃ 32)(T ₃ )	D.	L1	1v.v.	4,32
		(P ₁ n3m,P ₁ m3m,I_4/mmm,I_4,/amd,P ₁ 4,32)( ₁₄ )				

	•					- 110	) –
)	(b)	(c)	( h )	(e)	(1)	( רָ )	( ti )
123	Fm3'c		$Fm3c(\tau_{1}), Fm3c'(\tau_{2}), Fm'3c'(\tau_{5}), Fm'3c(\tau_{7})$	1	c,	I	1
		Г	(I4/mcm,I4'/mcm')(T ₃ ).(I4/m'c'm',I4'/m'c'm)(T _B )	2	c _{sv}	1,11	1,1
			(I4'/mc'm,R3c)(T ₄ ),(I4'/m'cm',R3'c')(T _g ), (I4/m'cm,R3'c)(T ₁₀ )	3	0 _h	1,11	1 1
		x	$(P_{I}^{4/mbm,Pm3p'}(\tau_{1}),(P_{I}^{4/mcc,Pn3n}(\tau_{2}),$ $(P_{I}^{4}_{2}/mcm,Pm3n)(\tau_{3}),(P_{I}^{4}_{2}/mbc,Pn3n')(\tau_{4}),$ $(P_{I}^{4/ncc,Pm'3n}(\tau_{6}),(P_{I}^{4/nbm,Pn'3n'}(\tau_{7}),$ $(P_{I}^{4}_{2}/nbc,Pm'3n')(\tau_{8}),(P_{I}^{4}_{2}/ncm,Pn'3)(\tau_{9})$	3	° _h	1,11	2,4
			(C _A mca,P _I bcn,Pa3,Pa3,R3c,P 4/mnc,P 4 ₂ /nmc)(T ₅ ) (C _A cca,P _I ban,Pm'3,Pa'3,R3'c,P 4 ₂ /nmc,P 4/mnclT ₁₀	ء د	٤,	{	2,2,4,4 4,4,4
129	Fd3'm	(	Fd3m(T ₁ ),Fd3m'(T ₂ ),Fd'3m'(T ₆ ),Fd'3m(T ₇ )	1	c,	I	1
		r	(I4 ₁ /amd,I4 ₁ /amd')(T ₃ ),(I4 ₁ /a'm'd',I4 ₁ /a'm'd)(T (I4 ₁ /am'd,R3m)(T ₄ ),(I4 ₁ /a'md',R3'm')(T ₉ )	8 ⁾² 3	с _{бv}	1,11	1,1
		x	(P ₁ 4 ₃ 22,P ₁ nma,P4 ₃ 32,P4 ₁ 32,R3c',P42 ₁ m)(T ₃ ) (P ₁ 4 ₃ 22,P ₁ nma,P4 ₃ 32,P4 ₁ 32,R3c',P42 ₁ m)(T ₃ )	6	Lą	{	2,2,4. 4,4,4
			$(R_{I}^{3}m,F_{S}^{4}3m)(\tau_{1},\tau_{4}),(R_{I}^{3}c,F_{S}^{4}3c)(\tau_{2},\tau_{5})$	4	115	.01 I.II	2,8
		L	(C _a 2/c,C _a 2/m,C _a mca,I _c ⁴ c2,I _c ⁴ m2)(τ ₃ ) (C _a 2/m,C _a 2/c,C _a mcm,I _c ⁴ m2,I _c ⁴ c2)(τ ₆ )	8	ⁿ 1	I,II,III, IV,V	4,4.4, 8,8
135	Fd3'c		' Fd3c(τ,),Fd3c'(τ,),Fd'3c'(τ,),Fd'3c(τ,)	1	c,	I	1
	. •	г	(14,/acd,14;/acd)(T3),(14,/a'c'd',14;/a'c'd)(T8	) 2	° _{5v}	1,11	1,1
		·	(I4 ¹ /ac'd,R3c)(τ ₄ ),(I4 ¹ /a'cd',R3'c')(τ _g ), (I4 ₁ /a'cd,R3'c)(τ ₁ )	3	0 _h	1,11	1.1
		x	<pre>(P₁⁴3²²,P₁bcm,P43³²,P43³²,R3^c',P4²1^c)(T3) (P₁⁴3²1²,P₁bcm,P4³3²,P4³3²,R3^c,P4²1^c)(T4)</pre>	6	Lą	{ ^{1,11,111} , ₁ ,,,,,,	2,2,4, 4,4,4
:			•				

•					- 111	-
(ь)	(c)	(,,,)	(e)	(f)	(g)	(h)

141	Im 3 1 mi		$\left( \frac{\text{Im}3m(\tau_{1}), \text{Im}3m'(\tau_{2}), \text{Im}'3m'(\tau_{6}), \text{Im}'3m(\tau_{7})}{2} \right)$	1	C,	I	1
		г	) (14/mmm,14'/mmm')(1 ₃ ), (14/m'm'm',14'/m'm'm)(1 ₈ )	2	c _{ev}	1.11	1.1
		•	) (I4'/mm'm,R3m)(T ₄ ),(I4'/m'mm',R3'm')(T ₉ ).				
			( [14/m'mm,R3'm) (τ ₁₀ )	3	o _h	1,11	1,1
		н	<pre> { PI^{m3m(T1),PIm3n(T2),PIn3n(T6),PIn3m(T7) }}</pre>	1	c,	I	2
			( {P ₁ 4/mmm,P ₁ 4 ₂ /mmc)(t ₃ ), {P ₁ 4/nnc,P ₁ 4 ₂ /nnm)(t ₈ )	2	C _{6 v}	1,11	2,2
			$\left(F_{s}^{m3m,F_{s}d3m}(\tau_{1}),(F_{s}^{m3c,F_{s}d3c}(\tau_{2})\right)$	2	C _{4V}	I.II	4,4
1		Р	$\left( I_{c}^{422,I_{c}4_{1}22,I_{c}4/mmm,I_{c}4/mmm,I_{c}4_{1}/amd,I_{c}4_{1}/amd} \right) \left( \tau_{3} + \overline{\tau}_{3} \right)$	4	74.1	1,11,111,	4,4.4,
					i	IV.V.VI	4,4,4
			(CA ^{mmm,P} C ^{4/mmm,R} I ^{3m,R3m,Im3m,I} c ^{4/mmm)} (T ₁ )				
			(C _A ccm,P _C 4/nbm,R _I 3c,R3m',Im3m',I _c 4/mcm)(T ₂ )				
			(C _A mca,P _C 4 ₂ /ncm,R _I ³ m,R ³ m',Ia3d',I _c 4 ₁ /amd )(T ₃ )				
		N	(C _A mca,P _C 4/mbm,R _I 3c,R3m [*] ,Im3m [*] ,I _c 4/mcm)( ₄ )		(	I.II.III,	2.4.8.
			(C _A cca,P _C 4/nbm,R _I 3c,R3'm',Im'3m',I _c 4/mmm)(T ₅ )	6	L4 {	IV.V.VI	8,8,8
			(C _A mma,P _C 4/mmm,R _I 3m,R3'm,Im'3m,I _c 4/mcm)(T ₆ )				
			(C _A mcm,P _C 4/mmm,R _I 3c,R3'm',Im'3m',I _c 4/mcm)(T ₇ )				
			(C _A mcm,P _C 4/nmm,R _I 3m,R3'm,Im'3m,I _c 4/mmm)(t ₈ )				
-146	Ia3'd		$( Ia3d(\tau_{1}), Ia3d'(\tau_{2}), Ia'3d'(\tau_{1}), Ia'3d(\tau_{2})$	1	<b>C</b> .	T	1
			$(14_/acd_14!/acd')(T_1)(14_/a'c'd')(T_4)(T_1)$	, 7	-1 r	- 1.11	1.1
		г	$(14!/ac'd,R\bar{3}c)(T)$ (14!/a'cd' $R\bar{3}c')(T)$	-	~6v		
			[14 /a'cd.Rā'c)(T)	3	0 _h	1.11	1,1
	• •	·	$(P a 3. P_4 32)(\tau)$	2	r	T TT	2.2
1		н		2	⁶ 4v	* * * *	-,- 
			'' I''''' I''', 3 ²²⁾ ''' 3 ^{*1} 3 ^{*1} 3 ^{*1} 4 ^{*1} 4	4	48.1	111	6.6

AUS

#### REFERENCES

- 1. N.V. Belov, N.N. Neronova et T.S. Smirnova, Sov. Phys. Crystallo. 2,311 (1957)
- 2. J.Zak, A.Casher, H.Glück et Y.Gur, The Irreducible Representations of Space Groups, Benjamin, New-York, 1969
- 3.V.Dvorak, Phys.Stat.Sol.<u>45</u> (b), 147(1971)
- 4. P.Tolédano et J.C.Tolédano, Phys. Rev. B14, 7, 3097 (1976)
- 5. P.Tolédano et J.C.Tolédano, Phys. Rev. B16, 1, 386(1977)
- 6. J.C.Tolédano et P.Tolédano, Phys. Rev. B21, 3, 1139(1980)
- 7. P.Tolédano et J.C.Tolédano, Phys. Rev. B25, 3, 1946(1982)
- 8. O.V.Kovalev, Sov.Phys.Solid State, 5, n°.11, 2315(1964)
- 9.J.O.Dimmock_et R.G.Wheeler, Phys.Rev.<u>127</u>, n°2, 391(1962)
- 10. Yu.I.Sirotin, Sov.Phys.Crystallo.8, n°2, 195(1965)
- 11. O.V.Kovalev, Sov. Phys. Crystallo.9, 6, 665 (1965)
- 12. M.Hédoux, Mémoire de D.E.A., Université de Lille 1(1981)

### CHAPITRE 6

#### COMPARAISON AVEC LES DONNEES EXPERIMENTALES

#### I.Remarques préléminaires.

Dans ce chapitre nous comparons nos résultats théoriques avec les données expérimentales disponibles sur les transitions ferromagnétiques et antiferromagnétiques. Ces données proviennent pour l'essentiel de la table d'Oles et al [1] où sont compilés (jusqu'en 1976) l'ensemble des résultats obtenus sur des substances magnétiques, par diffraction de neutrons. Nous avons complété cette compilation par des données obtenues plus récemment. Soulignons toutefois que nous n'avons pas vérifié d'une façon approfondie les données contenues dans la référence [1], et qu'une analyse plus détaillée des données expérimentales reste à faire.

Lorsque les données expérimentales étaient suffisantes pour permettre une comparaison directe avec nos résultats théoriques, nous les avons reportées dans les tables 6.1 à 6.3. Dans un nombre non négligeable de cas, ces données étaient incomplètes (point de la zone de Brillouin non indiqué ou donnée du groupe magnétique d'un seul sous réseau) ou contradictoires (indication d'une multiplication de la maille élémentaire pour une CI associée au centre de la zone de Brillouin, indication d'un réseau antiferromagnétique pour une transition recensée comme ferromagnétique, arrangement non colinéaire de spins pour des transitions antiferromagnétiques, etc...). Dans la mesure où nos résultats théoriques nous permettaient de préciser certaines insuffisances, nous avons reproduit les données expérimentales correspondantes dans les tables 6.4. Notons enfin que dans l'ensemble des tables 6.1 à 6.4, nous nous sommes bornés à examiner les données concernant la symétrie des phases magnétiques, sans rechercher les données concernant l'ordre des transitions, ou des propriétés magnétiques particulières.

#### II. Commentaires sur les tables

Les tables 6.1 contiennent les matériaux qui subissent une transition para-ferromagnétique ou para-ferrimagnétique, induite par une CI du centre de la zone de Brillouin. Ces matériaux sont donc, en général, des matériaux ferromagnétiques ou ferrimagnétiques propres.

Dans les colonnes (b),(c) et (d) sont indiqués respectivement le groupe paramagnétique,la température de Curie,et le groupe ferromagnétique. Les phases recensées comme ferrimagnétiques sont désignées par un point.

Les CI qui induisent les transitions précédentes sont indiquées dans la colonne (e), suivies de la dimension correspondante du paramètre d'ordre, colonne (f), et de l'image associée (colonne (g)) qui permet, à l'aide des tables du chapitre 4, de connaitre l'énergie libre associée à la transition. Ces données découlent de nos résultats théoriques et l'on peut remarquer que l'ensemble des transitions qui figurent dans la table 6.1, subissent un changement de symétrie prédit par la théorie de Landau.

Les tables 6.2 et 6.3 recensent les matériaux qui possèdent une transition antiferromagnétique confirmée. La table 6.2 concerne les antiferromagnétiques associés à une CI du centre de la zone de Brillouin. La table 6.3 donne les antiferromagnétiques impropres associés à une CI correspondant à un point de la surface de la zone de Brillouin. Les colonnes de la table 6.2 ont la même signification que celles de la table 6.1 . Les tables 6.3 précisent en outre la multiplication de la maille élémentaire (colonne(h)) et le point de la zone de Brillouin (colonne(i)).

Ici aussi nos résultats théoriques prédisent bien les modifications de symétrie observées expérimentalement. Comme nous l'avons indiqué ci-dessus les tables 6.4 contiennent des matériaux pour lesquels manquaient certaines données (table 6.4.a),ou pour lesquels les données nous sont apparues contradictoires(table 6.4.b). Pour ces deux tables,un examen plus approfondi des données expérimentales est nécessaire.

### III. La boracite nickel-iode.

Aucun exemple connu de ferromagnétique impropre n'est indiqué comme tel dans la littérature scientifique. Or nos résultats indiquent qu'une fraction des transitions ferromagnétiques sont associées à un point de la surface de la zone de Brillouin. Pour ces transitions qui s'accompagnent d'une multiplication de la maille magnétique élémentaire, le paramètre d'ordre n'est pas l'intensité d'aimantation, mais une grandeur physique distincte qui se couple non linéairement avec l'intensité d'aimantation. D'autre part, nos résultats indiquent que des transitions ferromagnétiques prédites théoriquement correspondent à une modification de symétrie simultanément magnétique et structurale.Ceci nous à conduit à considérer plus en détail le cas de la Boracite nikel-iode qui est un exemple connu de transition où l'ordre magnétique apparait à la même température que le changement structural [2] . La transition à 64°K dans ce matériau est induite par une coreprésentation six-dimensionnelle au point X de la zone de Brillouin cubique F. Le changement de symétrie para-ferromagnétique est F43c1'→ Cc'[2](V x 4). La phase basse température est indiquée comme ferromagnétique faible [3], ce qui indique bien que l'intensité d'aimantation est une grandeur spontanée secondaire qui n'est pas déterminante pour expliquer le mécanisme de la transition. De plus la représentation à six dimensions  $\tau_1$  ne satisfait pas le critère de Landau, alors que la coreprésentation associée satisfait cette condition, ceci est en accord avec le caractère discontinu du déplacement atomique observé à la transition, et le caractère au contraire continu observé pour l'alignement des spins [2,4] .

TABLE 6.1

(a)	(b)	(c)	(d)	(e)	(f)(g)
				··········	
CoFe ₂ Se ₄	C2/m1'	125	C2'/m'	τ ₂	1 <u>C</u>
Fe ₃ Se ₄	C2/m1*	320	C2'/m'	τ ₂	1 C,
Fe ₂ VSe ₄	C2/m1 *	155	C2'/m'	τ ₂	1 0,
Hall	Pbcm1'	26	Pb'cm'	- τ ₃	1 5,
HaNi	Pnma1'	31	Pnm'a'	τ ₂	1 C,
DyŇ1	Pnma1'	62	Pnm'a'	τ,	1 C,
ErNi	Pnma1*	10	Pn'm'e	τ ₄	1 C,
TmN1	Poma1'	7	Pn'm'a	τ ₄	1 C,
MnP	Pnma1'	291,5	Pn'ma'	τ _a	1 C,
TbGa	Cmcm1'	158	Cm'c'm	τ4	1 C,
Co3V208	Cmca1'	10	Cmc'a'	τ,	1 C,
CuCr ₂ 04	I42d1'	133	Fold 2 '	τ ₅	2 C _{4 v}
Mn ₂ Sb	P4/nmm1 *	550	P4/nm'm'	τ ₂	1 C,
MnAl	P4/nmm1'	518	₽4/nm'm'	τ ₂	1 C ₁
UAsS	P4/nmm1'	125	P4/nm'm'	τ ₂	1 C, '
UAsTe	P4/nmm1'	66	₽4/nm'm'	τ ₂	1 C,
UPSe	P4/nmm1 *	110	P4/nm'm'	τ ₂	1 C,
UPTe	P4/nmm1*	85	₽4/nm'm'	τ,	1 C,
N1Mn03	R31'	435	Pī	τ ₂ +τ ₃	2 C _
Cr ₂ Te ₃	P31c1'	302	P31c'	τ ₂	1 C,
Cr ₅ S ₆	P31c1'	305	C2/c1'	τ3	2 C _{6v}
NdCo3	R3m1'	395	R 3m '	τ ₂	1 C,
PrCo ₃	Rām1'	349	R3m '	- T ₂	- 1 C,
PrNi ₃	Rām1*	20	R3m'	τ ₂	1 C,
TmN1 3	R3m1'	43	R3m′	τ,	1 C
1 6 2 C	R3m1 *	266	Cm '	τ _α	2 C _e
ErCo ₃	R3m1'	401	R3m'	τ ₂ .	1 C,
HoCo	R3m1'	418	R3m'	τ2	1 C,
CrBr ₃	R3c1'	. 35	R3c'	τ	1 1 C,
CeCo _c	P6/mmm1'	673	₽6/mm'm'	τ.	1 6
NdCoc	P6/mmm1'	913	P6/mm'm'	2 T.	1 C.
N1 _c Er	P6/mmm1 *	13	P6/mm*m*	2 T	· · ·1 1 C
YCo	P6/mmm1 *	978	P6/mm'm'	ַר ז	' <u>'i</u> 1 C
J ThNi _e	<b>P6/mmm1</b> '	27	Cmm'm'	² 2 τ	' ''1 2 r
HoCo ₂	<b>P6/mmm1</b> '	1000	P6/mm'm'	¯5 τ	- 6v
⊐ TbCo,	P6/mmm1 *	980	P6/mm!m!	`2 T	
5			• • • • • • • • •	<b>`</b> 2	. • <b>•</b> •

- 116 -

BUS

TABLE 6.1 (suite)

(a)	(b)	(c)	(d)	(c)	(f)(g)
Mn ₅ GeO ₃	P6 ₃ /mcm1'	304	P6 ₃ /mc'm'	τ ₂	1 C _i
Fes ^{S1} 3	P63/mcm1'	376	₽6 ₃ /mc'm'	^τ 2	1 C ₁
BiMn	P63/mmc1'	623	P63/mm'c'	۲2	1 C ₁
a-Co	P6 ₃ /mmc1'	1383	P63/mm'c'	τ ₂	1 C ₁
CsN1F ₃	P6 ₃ /mmc1'	80	P6 ₃ /mm'c'	τ ₂	1 C _i
Er ^{Mn} 2	P63/mmc1'	25	P6 ₃ /mm'c'	τ ₂	1 C _i
Gd	P6 ₃ /mmc1'	290	₽6 ₃ /mm'c'	^τ 2	1 C ₁
^U 3 ^P 4	I43d1'	144	R3c'	τ ₅	зо _h
•Ni3 ^{Mn}	Pm3'm	610	P4/mm'm'	τ ₅	з 0 _h
Fe ₄ N	Pm3'm	761	P4/mm'm'	τ ₅	зо _h
Ba2 ^{N1UD} 6	Fm3'm	20	I4/mm'm'	т 5	з 0 _h
NI	Fm3'm	633	I4/mm'm'	τ _s	зо _н
Us	Fm3'm	180	R3m'	τ ₅	30 _h
ErAl ₂	Fd3'm	24	I4 /am'd' 1	τ ₅	зо _h
● ^{HoFe} 2	Fd3'm	610	I4_/am*d* 1	τ ₅	з 0 _h
● finV 2 ^D 4	Fd3'm	52	I4 ₁ /am'd'	т 5	з 0 _h
NdAl2	Fd3'm	76	I4 ₁ /am'd' 1	۲5	зо _h
TEN12	Fd3'm	45	R3m'	τ5	з о _h
• ^{Dy} 3 ^{Fe} 5 ⁰ 12	Ia3'd	551	R3c'	τ ₅	з о _h
• Tm 3 ^{Fe} 5 ⁰ 12	Ie3'd	549	R3c'	τ ₅	з о _h
● ^{Yb} 3 ^{Fe} 5 ⁰ 12	Ia3'd	548	R3c'	τ ₅	з 0 _h
• ^Y 3 ^{Fe} 5 ⁰ 12	Ia3'd	553	R3c'	^τ 5	з 0 _h

- 117 -

TABLE 6.2

(a)	(b)	(c)	(d)	(e)	(f)(g)
	•				
ОуООН	P2 ₁ /m1'	7,2	P21/m'	тз	1 C ₁
ErOOH	P21/m1*	?	P2'/m'	τ4	1 C ₁
LiCuCl ₃ .2H ₂ O	P21/c1'	6,7	P2 /c	T ₄	1 C ₁
CrTiNd05	Pbam1'	13	Pbam'	τ	1 C ₁
CrU0 ₄	Pbcn1'	?	Pbc'n	τ,	1 C ₁
GeMnDa	Pbcal ·	16	Pb'ca	τ ₆ ,τ ₇ ,τ ₈	- 1 C,
HoCoDa	Pnmal'	2,4	Pn'm'a'	τ ₅	1 C,
LaEr0 ₃	Pnma1 *	2,4	Pnma	τ,	1 C ₁
NaCof ₃	Pnma1 *	78	Pnma	τ, τ,	1 C ₁
TEALO	Poma1'	3,8	Pn'm'a'	τ	1 C ₁
ToCoO3	Pnma1'	3,3	Pnma	τ,	1 C ₁
Co25104	Pnma1'	49	Рлта	τ,	1 C ₁
a-Fe00H	Pnma1 *	403	Poma'	τ _A	1 C ₁
Fe ₂ SiO ₄	Pnma1*	65	Pnma	τ,	- 1 C,
KFeC1 ₃	Pnma1'	15	Pnma	τ, τ,	1 C,
LiCoPD ₄	Pnma1*	23	Pnm <b>a'</b>	τ _я	- 1 C,
LIMnPO4	Pnma1*	34,6	Pn'm'a'	τ ₅	1 C ₁
LINIPO4	Pnma1'	23	Pnm'a	τ ₇	1 C ₁
Mn ₂ GeS ₄	Pnma1'	7	Pnma	τ ₁	1 C ₁
B-CoSO ₄	Pnma1*	12	Pnma	τ,	1 C ₁
CoSe0 ₄	Poma1 *	30	Pnma	^τ 1	1 C ₁
CuSO ₄	Poma1*	36,6	Pnma	τ ₁	1 C ₁
DyAl0 ₃	Poma <b>1</b> *	3,5	Pn'm'a'	τ ₅	1 C ₁
DyCoO ₃	Pnma1'	3,6	Pn'm'a'	τ ₅	1 C ₁
ErVO3	Pnma1'	20	Pnma	τ_1	1 C ₁
GdCoO ₃	Poma1'	2,9	Pn'm'a'	, ^T 5	1 C ₁
GdFe0 ₃	Pnma1*	657	Pnma	τ ₁	1 C ₁
NiCr0 ₄	Cmcm1 *	23	Cmcm	τ ₁	1 C ₁
C ₂ (Zn) ₂	Imma1'	7,5	Im'ma	τ ₆ ,τ ₇	1 C ₁
CuFeS ₂	14201	815	I42d	τ,	1 C ₁
UB12	P4/nmm1'	183	P4/n'm'm'	τ _ε	1 C ₁
UCTe	P4/nmm1'	157	P4/n'm'm'	τ ₆	1 C ₁
CoF ₂	P4 ₂ /mnm1'	37	P4'/mnm'	τ	1 C ₁
FeF2	P4 ₂ /mnm1*	78	P4'/mnm'	τ ₃	1 C ₁
FeOF	^{P4} 2 ^{/mnm1*}	315	P4:/mnm*	τ ₃	1 C ₁

BUS

TABLE 6.2 (suite)

(a)	(b)	(c)	(b)	(e)	(f)(g)
FejTeO	P4 ₅ /mnm1'	218	P4 ₂ /m'n'm'	τ_	1 C,
MnF ₂	² ₽4 ₂ /mnm1'	67,3	2 P4;/mnm*	τ	- 1 C,
CoCs ₃ Cl ₅	I4∕mcm1′	0.523	14'/m'cm'	τ	1 C,
DyP04	I4 ₁ /amd1'	3,4	I4¦/a'm'd	τ	- 1 C,
GdVO ₄ (a)	I4 ₁ /amd1'	2,4	I4¦/a'm'd	τ _s	1 C ₁
HoPO ₄ (a)	I4 /amd1'	1,4	I4¦/a'm'd	τ	1 C ₁
TbP0 (a)	I4 ₁ /amd1'	2,2	I4¦/a'm'd	τ _a	1 C ₁
Nb2 ^{Co40} 9	P3c1 '	30	P3'c'1	τ_5	1 C ₁
Nb2 ^{Mn} 4 ^D 2	P3c1'	125	P3'c'1	τ ₅	1 C ₁
CoF ₃	R3c1'	460	RĴc	τ,	1 C ₁
Cr203	R3c1'	306	R3'c'	τ	1 C ₁
FeCO ₃	R3c1'	20	Rāc	τ,	1 C ₁
^{α-Fe} 2 ⁰ 3	R3c1'	956	RĴc	τ,	1 C _i
a-Fe ₂ 0 ₃ A1	R3c1'	956	Rāc	τ ₁	1 C ₁
a-Fe ₂ 0 ₃ Ga	R3c1 '	956	R3c	τ,	1 C ₁
a-Fe ₂ 0 ₃ Ti	R3c1'	956	R3c	τ ₁	1 C ₁
HoMn 3	P63cm1'	76	P63cm	τ ₁	1 C ₁
FeS	P62c1'	599	P6'2'c	τ ₅	1 C ₁
CrNb4 ^S 8	P6 ₃ /mmc1'	?	P6;/m'm'c	τ4	1 C ₁
CrSb	P6 ₃ /mmc1*	720	₽6;/m'm'c	τ4	1 C ₁
NIS	P63/mmc1'	265	P6;/m'm'c	τ4	1 C ₁
Er2 ⁰ 3	Ia3'	4	Ia3	τ ₁	1 C ₁
Mn ₃ GaN	Pm3'm	298	RĴm	τ4	3 0 _h
^{Co} 3 ⁰ 4	Fd3'm	33	14;/a'm'd	τ	2 C _{6v}
		. •			

- 119 -

้ ลมร (แนะ)

TABLE 6.3

(a)	(b)	(c)	(d)	(e)	(f)(g)	(h)	(i)
	·····				(*) (8)	()	(1)
CoC126(H20)	C2/m1'	2,25	C_2/c	^T 2, ^T 3	1 C,	2	Y ( 00 <mark>1</mark> 2)
N1C126(H20)	C2/m1'	5,34	C_2/c	^T 2, ^T 3	1 C ₁	2	Y(001/2)
CoWO ₄	P2/c1'	55	P_2/c	τ ₁ +τ ₄	1 C ₁	2	A (100)
FeNb0 ₄	P2/c1'	?	P_2/c	τ ₁ +τ ₄	1 C ₁	2	A (100)
FeW0	P2/c1'	75,9	P_2/c	τ ₁ +τ ₄	1 C ₁	2	A (100)
NIWO4	P2/c1'	67	P_2/c	$\tau_{1}^{+\tau}$	1 C ₁	2	A (100)
RbFeF4	Pca2 1'	7	P _b na2	^T 3' ^T 4	1 C ₁	2	Y(0 ¹ / ₂ 0)
CuCl ₂ 2(0 ₂ 0)	Pmna1'	?	P_bcn	τ4,τ6	1 C ₁	2	Y(01/20)
CuC1 ₂ 2(H ₂ 0)	Pmna1'	4,35	Pbcn	^τ 4, ^τ 6	1 C ₁	2	Y(0 ¹ / ₂ 0)
CrSb ₂	Pnnm1'	273	Pa ² 1 ^{/c}	^τ 1 ^{, τ} 2	2 C _{4v}	2	$T(0\frac{11}{22}), U(\frac{1}{2}0\frac{1}{2})$
Camn204	Pbcm1'	225	Pbcm	^τ 1, ^τ 6	1 C ₁	2	$x(\frac{1}{2}00)$
NdA1	Pbcm1'	29	Pbca	^т з, ^т 8	1 C ₁	2	x (1/200)
T6A1	Pbcm1'	72	Pabca	τ3.τ8	1 C _i	2	x (1/200)
TmAl	Pbcm1'	11	Pbcn	^T 2 ^{, T} 5	1 C _i	2	x (1/200)
CoUC	Imma <b>1'</b>	12	C_2/m	τ ₁ •τ ₄	2 C _{4v}	. 2	$T(\frac{1}{2}0-\frac{1}{2})$
MnPt	P4/mmm1'	970	Penna	τ ₅	2 C _{4v}	2	M(11/270)
UAS ₂	P4/mmm1*	283	P_4/ncc	τ ₂ , τ ₆	1 C ₁	2	z ( 00 ¹ / ₂ )
UOS	P4/mmm1*	55	P_4/ncc	τ ₂ ,τ ₆	1 C ₁	2	z ( 001/2)
UOSe	P4/mmm1'	7,2	P_4/ncc	^τ 2, ^τ 6	1 C ₁	2	z ( 00 ¹ / ₂ )
UP 2	P4/mmm1'	203	P_4/ncc	^τ 2 ^{, τ} 6	1 C ₁	2	z ( 00 ¹ / ₂ )
USb ₂	P4/mmm1'	206	P_4/ncc	^τ 2 ^{, τ} 6	1 C ₁	2	z ( 001/2)
Cs_MnCl_4	I4/mmm1'	52	CAmca	1			-
K2CoF4	14/mmm1'	107	CAmca				
K2 ^{MnF} 4	14/mmm1*	45	Camca				
K ₂ N1F ₄	14/mmm1'	97,23	Camca	τ ₃ , τ ₄	2 C _{4v}	2	$X(\frac{11}{22}0)$
Rb2MnC14	14/mmm1'	55	CAmca	( ^T 5	2 C _{4v}	2	$H(\frac{111}{222}), Z(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
Rb_MnF4	I4/mmm1'	38,4	C_mca				
Rb ₂ FeF ₄	I4/mmm1'	56,3	C_ccm	۲,	2 C 4.	2	x (11)
CoTiO ₃	R31'	37	Р1	τ_+τ_,τ_+τ_	2 C	2	$Z(\frac{111}{200})$
FeTi0 _a	R31'	68	₅ P_1		. · 2 C _e	2	$222^{1}$ $2(\frac{111}{222})$
0y ₂ 0 ₂ 5e	P3m1'	8,5	» Р_3с1	2 3 3 0 Taite	1 <u>C</u>	2	x ( 00 ¹ / ₂ )
FeBr ₂	P3m1'	11	P_3c1	د ع تي، ت	1 C,	2	A ( 00 ¹ / ₂ )
N1(OH),	P3m1'	28	P_3c1	د ۲ ۲٫۰۲٫	1 C,	2	A(001)
۲۵٫۵٫۶	P3m1'	з	с С_2/m	ב 2 ד_+ד_	2 C_	2	ALOOTA BUS
FeCl	R3m1'	23.5	C R_3c	- 3° 16 	о ^т Бу ап	- A	
2			1	`2´`3	h 5 h	U	2007

- 120 -

TABLE 6.3 (suite)

(a)	(b)	(c)	(d)	(e) (f)(g) (h) (i)
DyGa	P6/mmm1'	15	C_mcm	$T_{-1}T_{-2} = 2 = 2 = A(00^{-1})$
∡ FeSn	P6/mmm1'	365	c C_mcm	5 11 6v 2 $\tau_{c}, \tau_{a} = 2 C_{c} = 2 A(00\frac{1}{2})$
FeGe	P6/mmm1'	412	P_6/mcc	τ ₂ ,τ ₂ 1 C ₂ 2 Λ(00 ¹ / ₂ )
CuMnSb	F43'm	55	R _T 3c	$\tau_{2}$ 4 109.01 2 L $(\frac{111}{222})$
CaMn0 ₃	Pm3'm	123	 I_4∠mcm	$(\tau_3, \tau_8 \ 2 \ C_{5y} \ 2 \ R(\frac{111}{272})$
KCOF 3	Pm3'm	144	I_4/mcm	$\tau_5, \tau_{10} = 3$ 0 $r_5, \tau_{10} = 3$ 0 $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau_{10} = 3$ $r_5, \tau$
ErIn ₃	Pm3'm	6	Pc4/mbm	$\tau_2, \tau_3$ 3 0 2 M( $\frac{11}{220}$ )
KFeF ₃	Pm3'm	112	R _I 3c	$\tau_5, \tau_{10}$ 3 0 2 R( $\frac{11}{22}$ 0)
KN1F 3	Pm3'm	253	I_4/mcm c	$\tau_3, \tau_8 \stackrel{2}{\sim} \stackrel{C}{}_{6v} \stackrel{2}{\sim} R(\frac{11}{22}0)$
β-MnAu	Pm3'm	513	P_mma	$x_{5}^{-10}$ h $x_{6}^{-10}$ 6 L ₂ 2 X(0 $\frac{1}{2}$ 0)
NdIng	Pm3'm	7	₽_ ^{4/mbm}	$\tau_{2}, \tau_{3} = 30$ $\mu$ $2$ $M(\frac{11}{22}0)$
NdSn ₃	Pm3'm	4,7	Panma	$\tau_{5}, \tau_{10} \in L_{7} = 2 \times (0\frac{1}{2}0)$
PbCr03	Pm3'm	240	I_4/mcm	$(\tau_3, \tau_8, 2 C_{5y}, 2 R(\frac{111}{222}))$
RbFeF 3	Pm3'm	102	I_4/mcm	$\begin{cases} 122 \\ \tau_5, \tau_{10} & 3 & 0_h \\ \tau_5, \tau_{10} & 3 & 0_h \\ 1222 \end{cases}$
тьАд	Pm3'm	106	P_4/mbm	$\tau_{2}, \tau_{3}, 3, 0_{h}, 2, M(\frac{11}{22}0)$
TbCu	Pm3'm	117	P_4/mbm	$\tau_2, \tau_3 = 3 0_{\rm h} = 2 {\rm M}(\frac{11}{22}0)$
UPb3	Pm3'm	32	P_4/mcc	$\tau_2, \tau_6 = 30^{10}_{h} = 2 \times (0\frac{1}{2}0)$
NdSe	Fm3'm	14	RŢĴc	τ ₂ ,τ ₅ 4 109.01
NdTe	Fm3'm	13	R _I Ĵc	τ ₂ ,τ ₅ 4 109.01
TDAs	Fm3'm	10,5	- R ₁ 3c	τ ₂ ,τ ₅ 4 109.01
Тьв <b>і</b>	Fm3'm	18	- R _I 3c	$\tau_2, \tau_5$ 4 109.01 2 L( $\frac{111}{222}$ )
тър	Fm3'm	8	- R _I 3c	τ ₂ ,τ ₅ 4 109.01
TBSD	Fm3'm	15	R _I 3c	τ ₂ ,τ ₅ 4 109.01
TbSe	Fm3'm	52	R _I ãc	τ ₂ .τ ₅ 4 109.01

- 121 -

(BUS) (ULLE)

•								- 122
			TABLE	<u>6.4.a</u>				
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
e3 ^{(P0} 4)2 ^{8(H20)}	C2/m1'	8,8	۲_2/с	てっ・てっ	1	с,	2	E(1-11),Y(001),C(11
5, 2	C2/m1'	353	PŢĨ	T1+T2	2	C	2	$F(\frac{1}{2}00), F^{-}(\frac{1}{2}0\frac{1}{2})$
uF ₂	P21/c1'	69	P_2_/c	τ ₁ →τ ₄	1	c,	2	2 2 2 2 A ( <u>1</u> 00)
n(CH ₃ COO) ₂ .4H ₂ O	P2 /c1'	318	P_2_/c	τ_+τ_	1	с,	2	$\frac{1}{100}$
nC12.4H20	P21/c1'	1,62	P2:/c	τ.	. 1	1 C.	-	2°°°
aCoF ₄	Cmc2 ₁ 1'	69,6	P_2	4 T T.	. 2	1 C.	2	s( <u>1</u> 00)
sCoCl ₃ 2H ₂ O	Pcca1'	340	Pccn	1 2	1	-4v	-	$x(n^{\frac{1}{2}n})$
cNb_O_	Pbcn1'	7	a P2/c	2,8	7	~1 C	· .	c (11 n)
e_GeS	Pnma1'	108	Pnma	`1'`2 T	4	~4ν Γ	2	5(220)
eTa_O_	P4_/mom1'	14	T 4 /a	`1 • •	,		1	
2 5 hMn_S1_	2	483		¹ 1 ¹ 2	4	58.01	4	$R\left(0\frac{1}{22}\right)$
2-2 hAu	14/mm1	55		т6	1	° _i	2	$M(\frac{11}{222}), Z(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
2	I 4 /mom4!	375	^C A ^{mca}	тз	Z	C _{4v}	2	x (120)
N A #	P3_41	323		τ ₅	2	C _{4v}	2	x(110)
2"2^*	P3m1*	406	P_3c1 -	⁷ 2' ⁷ 5	1	C ₁	2	A(00 ¹ / ₂ )
2 ^N 2 ^F	P3m1'	?	P3'm'1	. τ ₅	1	° _i	1	Γ(000)
2 ^N 2 ^S	P3m1'	233	P3'm'1	۲s	1	C ₁	1	Γ(000)
2 ^N 2 ^{Se}	P3m1'	245	P_3c1	[†] 2' [†] 5	1	C ₁	2	A ( 00 <mark>1</mark> 2)
a ⁵ e ² (GeO ₄ ) ₃	Ia3'd	?	P14122	^T 3 ⁺ T ³ , ^T 4 ⁺ T ⁴	4	48.1	2	H[ <mark>111</mark> ]
·····	·							
	-							
			TABLE	6.4.b				
oC1 ₂ .2D ₂ 0	C2/m1'	17,5	P _c 2/m	τ,	1	с,	•	1,1,1 ₀ , 7,11 ₀ ,
-0 ₂	C2/m1'	23,9	- P_2/m	τ,	1	с,	2	$(\frac{1}{2}, \frac{1}{2}, $
JF2.2H20	C2/m1'	10-26	P_2_/c	τ_	1	1 C.	2	$A(\frac{1}{2},\frac{1}{2},0), Z(\frac{1}{22},0)$
= - =Fe ₂ 0 ₄	Cmm21'	880	P_ma2	2 T_	1	-1 C	2	$A(\frac{1}{2}-\frac{1}{2}0), Z(\frac{1}{22}0)$
00	Amm21'		C P.nc2	⁻ З т	•	~1 r	2	$Y(\frac{1}{2}-\frac{1}{2}0)$
-CoSO,	Cmcm1 *	12	A P_bcn	`3 T	•	~1 C	2	$Y(\frac{1}{2}-\frac{1}{2}0)$
→ ≥S0,	Cmcm1'	23		<b>'</b> 3	1	τi .	2	$Y(\frac{1}{2}-\frac{1}{2}0)$
4 ISD	Emem1!			τ ¹ 3	т	^L i	2	$Y(\frac{1}{2}-\frac{1}{2}0)$
-4 (SeO	Cmcett	<i></i>		3	1	^c i	2	$Y(\frac{1}{2}-\frac{1}{2}0)$
		27	^r c ² 1 ^y c	[†] 2' [†] 3	2	C _{4v}	2	$s(\frac{1}{2}00)$ $\binom{50}{L11}$
	∡mm <b>ðl'</b>	12	P _i nma	^τ 3 ^{, τ} 7	1	C,	2	$X(\frac{111}{222})$
- E = 00H	• • • • • •		•			•		222
-FeOOH	I4/m1*	237	P ₁ 4/m	τ ₁	1	c _i	2	222 M( <u>111</u> ),Z( <u>1-1-1</u> )

#### **REFERENCES**:

- A.Oles et al, Magnetic structures determined by neutron diffraction, Warszava, Krakow (1976)
- 2. H.Schmid, communication personnelle
- 3. H.Schmid,On a magnetoelectric classification of materials,dans Magnetoelectric Interaction Phenomena in Crystals,Ed. A.J. Freeman et H.Schmid,Gordon and Breach(1973)
- 4. J.P.Rivera et H.Schmid, Ferroelectrics, <u>36</u>, 447 (1981)

Dans cette thèse, la théorie de Landau des transitions de phases du deuxième ordre a été appliquée de façon systématique aux coreprésentations irréductibles actives des 230 groupes paramagnétiques. Pour chacune de ces coreprésentations, la forme de l'énergie libre de Landau et les changements de symétrie conduisant à des phases ferromagnétiques et antiferromagnétiques stables ont été établis. Bien qu'un certain nombre de coreprésentations examinées dans ce travail soient déduites de représentations irréductibles inactives (ne vérifiant pas le critère de Landau), la structure générale des résultats obtenus (dimensions des paramètres d'ordre, nombre d'images et énergies libres distinctes, ordre des sous-groupes,...) différe peu de celle correspondant à un travail similaire consacré aux transitions purement structurales [1] . En particulier, il apparait que les transitions magnétiques ont toujours un paramètre d'ordre de dimension n  $\leq 8$ , les cas les plus fréquents étant n = 1 et 2.

Bien que la Physionomie générale des changements de symétrie magnétiques prédits par la théorie de Landau, corresponde dans l'ensemble à la situation suggérée par les données expérimentalesavec une large prédominance des transitions antiferromagnétiques (en majorité impropres) sur les transitions ferromagnétiquesplusieurs résultats mettent en lumière des situations théoriques qui n'ont pas été encore reconnues expérimentalement.

1) <u>L'existence d'un ferromagnétisme impropre</u>. Une fraction des transitions ferromagnétiques sont induites par des coreprésentations associées à des points de la surface de la zone de Brillouin. Dans ces transitions qui s'accompagnent d'une multiplication de la maille magnétique élémentaire, l'aimantation spontanée est un effet secondaire provenant d'un couplage non linéaire avec le paramètre d'ordre de la transition. A notre connaissance, le seul exemple expérimental confirmé de ferromagnétique impropre est la Boracite Nikkel-Iode [2]. Il est significatif que la transition magnétique dans ce matériau soit classifiée comme ferromagnétique faible. Parmi les exemples recensés de corps ferromagnétiques faibles ou

- 124 -

ferrimagnétiques, on devrait en effet pouvoir trouver plusieurs cas de ferromagnétiques impropres (qui se distingueraient des ferromagnétiques faibles et des ferrimagnétiques par l'absence de sous réseaux équivalents et opposés ainsi que par la forme des anomalies au voisinage du point de transition).

2) La Boracite Nickel-Iode semble réaliser deux autres situations théoriques révélées par notre travail : d'une part,l'apparition simultanée( prédite par symétrie )d'un ordre magnétique et structural à une même température [3], d'autre part le fait que cette transition peut être à la fois du 1^{er} ordre structuralement et du 2^{ème} ordre magnétiquement. Une comparaison détaillée du modèle théorique décrivant la transition ferromagnétique-ferroélastiqueferroélectrique de la Boracite Nickel-Iode, et des données expérimentales nombreuses obtenues pour ce matériau, reste cependant à faire.

La compilation des données expérimentales connues sur les symétries des matériaux ferro et antiferromagnétiques, présentée au chapitre 6, montre qu'une majorité de ces transitions peut être reliée à une coreprésentation irréductible unique et active. Il existe toutefois un nombre non négligeable de transitions magnétiques dont le changement de symétrie peut être relié à une coreprésentation réductible. D'autre part, bien que de nombreuses structures magnétiques hélicoïdales puissent être rattachées à des coreprésentations ne vérifiant pas le critère de Lifshitz, il semble que la grande variété de structures de ce type nécessite, du point de vue de la description de leurs propriétés de symétrie, de recourir à des concepts qui n'ont pas d'équivalent dans l'étude des transitions structurales (tels les groupes de P-symétrie [4] et leurs coreprésentations). Plusieurs problèmes doivent également être étudiés si l'on veut apprécier complètement l'applicabilité de la théorie de Landau aux transitions magnétiques, tels les transitions magnétiques du 1^{er} ordre (qui paraissent bien moins fréquentes que les transitions structurales du 1^{er} ordre), les transitions magnétiques sans relation de groupe à sous-groupe entre les phases(qui sont également rares), les transitions dont la phase la plus symétrique est ferromagnétique ou antiferromagnétique, l'étude des couplages magnétostructuraux, etc... La présente étude, par les clarifications qu'elle apporte, constitue une étape indispensable vers l'examen de ces divers problèmes.

- 125 -

### **REFERENCES**:

- 1. P.Tolédano, Thèse d'état, Université de Picardie (1979)
- 2. H.Schmid,On a magnetoelectric classification of materials,dans Magnetoelectric Interaction Phenomena in Crystals,Ed. A.J. Freeman et H.Schmid,Gordon and Breach(1973)
- 3. H.Schmid, communication personnelle
- 4. A.M.Zamorzaev, Soviet Physics Crystallo., 12, n°5, (1968)

- 127 -

#### ANNEXE 1

# LES 36 RESEAUX DE BRAVAIS MAGNETIQUES

ET

LES 1651 GROUPES DE SHUBNIKOV

BUS

# LES RESEAUX DE BRAVAIS

# MAGNETIQUES



1



BUS

- 130 -

## LISTE DES GROUPES DE SHUBNIKOV

							•
7	Friclinic		10. P.21		35. C _e m		60. C2'/m
S	ystem		11. P _b 2 ₁		36. C,m		61. C2/m
			12. $P_{c}2_{1}$				62. C2'/m'
	$C_1$			(9)	37. Cc		63. C _c 2/m
		(5)	13. C2		38. Cc1'		64. C,2/m
(1)	1. <i>P</i> 1		14. C21'		39. Cr'		
	2. P1'		15. C2'		40. C _e c	(13)	65. P2/c
	3. P ₄ 1		16. C,2		41. C,c		66. P2/c1
			17. C.2				67. <b>ľ2'/c</b>
	C,				C24		68. P2/c*
			C _{IA}				69. P2'/c'
(2)	4. <i>f</i> 'l			(10)	42. <i>P</i> 2/m		70. ľ"2/c
	5. <i>P</i> 11'	· (6)	18. Pm		43. P2/m1		71. P,2/c
	6. PT		19. Pm1'		44. P2'/m		72. ľ"2/c
	7. P,1		20. Pm		45. P2/m		73. P _A 2/c
			21. P_m		46. <b>J</b> 2'/m'		74. P _c 2/c
1	Monoclinic		22. P _b m		47. P_2/m		
1	system‡		23. Р _с т		48. P _• 2/m	(14)	75. P2 ₁ /c
					49. $P_c 2/m$		76. J ² 1/cl [*]
	С,	(7)	24. <i>Pc</i>				77. P2'ı/c
			25. Pc1	(11)	50. P2 ₁ /m		78. P2 ₁ /c*
(3)	1. <i>P</i> 2		26. <i>Pc</i> *		51. P2 ₁ /m1'		79. PZ'1/c'
	2. P21'		27. P _e c		52. P2'1/m		80. P _a 2 ₁ /c
	3. P2'		28. Pec		53. P2 ₁ /m'		81. P _p 2 ₁ /c
	4. P.2		29. P.c		54. P2's/m'		82. P _e 2 ₃ /c
	5. P _b 2		30. P _c c		55. $P_{a}2_{1}/m$		83. P _A 2 ₁ /c
	6. P _C 2		31. P _A c		56. $P_{1}2_{1}/m$		84. F _c 2 ₁ /c
	<b>5</b> Fre				57. P _c 2 ₁ /m		
(4)	<i>I. P</i> 2 ₁	(8)	32. <i>Cm</i>				
	8. P2 ₁ 1'		33. Cm1'	(12)	58. C2/m	(15)	85. <i>C2/c</i>
	9. <i>P</i> 2' ₁		34. Cm ⁴		59. C2/m1'		86. C2/c1'

	67 6911			~~~~				
	87. C2/c	(21)	38.	C222	83.	P_cc2	132.	P _B mn2 ₁
	88. C2/c		39.	C2221'	84.	P _c cc2	133.	Penm2
	89. C2'/c'		40.	C2.5.5	85.	P _A cc2	134.	$P_1 m n 2_1$
	90. C _e 2/c		41.	C22'2'	86.	Picc2		
	91. C.2/c		42.	C.222			(32) 135.	Pba <b>2</b>
			43.	c.222	<i>(28)</i> 87.	Pma <b>2</b>	136	Pba21'
			44	C.222	88.	Pma21'	137	Ph'a?
	Orthorhombic		• ••	0,222	89.	Pm'a2'	138	Ph'a'7
	system	(22)	45.	F222	90	Prio'?'	130	7042 Rha7
	.,		16		91	Pm'a'?	1.17.	D h
	D.		40.	F 2221	97	P ma?	140.	
	•• 2		47.	F222	01	P mal	141.	rcoar
(16)	1. P222		48.	r,222	9J. 04	P ma2	. 142.	r _A bal
	n (10001)	(771	40	1277	94.		143.	P ₁ Da2
	2. 1'2221	(25)	47.	1222	95.	r _A maz	(22) 144	n
•	3. FZZZ		50.	12221	90.		[337 [44.	I'nazı
	4. P.222		51.	12'2'2	97.	Pemaz	145.	Pna2 ₁ 1'
	5. P _c 222		52.	1,222	98.	P ₁ ma2	146.	Pn'a2'1
	6. <i>P</i> ₁ 222		~~		(30) 00		147.	Pna'2'1
	7 0000	(24)	53.	12,2,2,	(29) 99.	Pcal ₁	148.	Pn'a'21
(1)	$7. P_{222_1}$		54.	12,2,2,1'	100.	Pca2,1'	149.	$P_na2_1$
	8. P222,1'		55.	12'12'12'1	101.	Pc'a2'	150.	P_na2
	9. P2'2'2 ₁		56.	1,2,2,2	102.	Pca'2'	- 151.	P_na2
	10. P22'2'				103.	Pc'a'2,	152.	P.na2.
	11. P.222			C,.	104.	P_ca2.	153.	P.na2.
	12. P.222				105.	P.ca2	154.	P.nal.
	13. P.222.	(25)	57.	Pmm2	106.	P.ca2.	155	Pena?
	14. P.222,		58.	Pmm21	107.	P.ca2.		• []
	15. P.222.	-	59	Pn'in?	108	$P_{\alpha}$	(34) 156.	Pnn2
			60	Pm'm'?	109	P-cc?	157	Pre21'
(18)	16. F2,2,2		61	Prum?	110	Prol	157.	1 mm 2 1 D=1-71
	יור בי בי דו		42			, learl	120.	nnn2
	18 87'7'7		47	P_mm2	(30) 111.	Pnc2	159.	PNNZ
	10 02 7'7'		05.	P _c mm2	112	P	160.	r_nn1
	17. 7 21212 10. P 2 2 2		04.	P _A mm2	112.	Priczi Duludi	161.	P_nn2
	20. $F_{e}Z_{1}Z_{1}Z_{1}$		65.	P ₁ mm2	115.		162.	P _A nn2
	$21. F_{e^2} Z_1 Z_1 Z_1$	(76)	"	P 7	114.	rnc 2	163.	P _C nnZ
	$22. P_{A} 2_{1} 2_{1} 2_{1}$	(20)	00.	rmcz ₁	115.	Pric 2	164.	P _I nn2
	23. $P_{C_1 2_1 2_1 2_1}$		67.	Pmc2 ₁ 1 ^e	116.	P_nc2		<i>c</i> .
	$24. P_1 2_1 2_1 2_1 2_1 \cdots$		68.	Pm'c2'	117.	P _b nc2	(33) 165.	Cmm2
(10)	<b>ז</b> ר בי בי ה		69.	Pmc'2'	118.	P_nc2	166.	Cmm21'
(19)	25. 8212121		70.	Pm'c'2 ₁	119.	P _A nc2	167.	Cni'nı2'
	26. P2 ₁ 2 ₁ 2 ₁ 1'		71.	P_mc2	120.	P _B nc2	168.	Cm'm'2
	27. P2'12'121		72.	P.mc2	121.	P _c nc2	169.	C _e mm2
	28. P ₂ 2 ₁ 2 ₁ 2 ₁		73.	P_mc21	122.	P ₁ nc2	170.	C_mm2
	29. Pc212121		74.	P_mc2			171.	C_mm2
	30. P ₁ 2 ₁ 2 ₁ 2 ₁		75.	P_mc2	(31) 123.	Pmn2		
			76.	Peme2,	124.	Pmn2,1'	(36) 172.	Cmc21
(20)	31. C222		77.	P.mc2	125.	Pmin2	173.	Cmc2.1
	32. C222,1'				126.	Pmn'2'.	174	Cmir?
	33. C222.	(27)	78.	Pcc2	127.	Pm'n'2.	175	Cmc'?
	34. C22'2'.		.79	Pcc21	128	P_mn2	175.	Cinter
	35. C.222-		80	Prez	179	P.mn7	170.	Cmcri
	36. C 222.		50. 51	Peter	130	P nin7	170	Curr
	37 C.222		01. 87	ALLA Real	. 171	P	1/8.	$C_m c_1$
	wer waaaca		~ /	+ FF/			<i>i /u</i>	

BUS

- 132 -

(37) 180. Ccc2 181. Ccc21' 182. Cr'c2' 183. Cc'c'2 184. C,cc2 185. C.cc2 186. CArc2 (38) 187. Amm2 188. Amm21' 189. Am'm2' 190. Amm'2' 191. Amm'2 192. A.mm2 193. A.mm2 194. Acmm2 (39) 195. Abm2 196. Abm21' 197. Ab'm2' 198. Abm'2' 199. Ab'm'2 200. A.hm2 201. A.bm2 202. Acbm2 (40) 203. Ama2 204. Ama21' 205. Km'a2' 206. Ama'2' 207. Am'a'2 208. A_ma2 209. A.ma2 210. Acma2 (41) 211. Abe2 212. Aba21' 213. Ab'a2' 214. Aba'2' 215. Ab'a'2 216. A_ba2 217. A.ba2 218. Acba2 (42) 219. Fmm2 220. Fmm21' 221. Fm'm2' 222. Fm'm'2 223. F_mm2 (43) 224. Fdd2 225. Fdd 21' 226. Fd'd2'

227. Fd'd'2 228. F.da2 (44) 229. Imm2 230. Jmm21' 231. Im'm2' 232. In:m'2 233. Imm2 234. 1.mm2 (45) 235. Iba2 236. Iba21' 237. Ib'a2' 238. Ib'a'2 239. Isha2 240. J_ba2 (46) 241. Ima2 242. Jma21' 243. Inia2' 244. Ima'2' 245. Im'a'2 246. J.ma2 247. 1 ma2 248. Inna2  $D_{21}$ (47) 249. Pmmm 250. Pmmm1' 251. Pm'mm 252. Pminim 253. Pnimm 254. P_mmm 255. Pcmmm 256. P.mm (48) 257. Pnnn 258. Pnnn1' 259. Pn'nn 260. Prin'n 261. Prin'n' 262. P_nnn 263. Pcnnn 264. Pinnn (49) 265. Peem 266. Pccm1' 267. Pc'cm 268. Pccm 269. Pccm 270. Pc'cm' 271. Pc'c'm'

	272.	P _e ccm
	273.	Pecem
	274.	PACCM
	275.	Pcccm
	276.	P ₁ ccm
		·
(50)	277	Phan
(00)	270	DI 11
	276.	P Dani
	219.	roan
	200.	1'ban Ditatu
	201.	Poon Phien'
	202.	Phio's'
	203.	Phan
	207.	P han
	205.	Phan
	200.	Phan
	288	Phan
	200.	I juan
1511	280	Painta
(57)	207.	
	290.	Prima
	291.	rm ma
	292.	Fmm d
	293.	rmma Devievie
	274.	rmma Deux's'
	222.	I min a Putrual
	290.	Ininia Prainia
	227.	Prima .
	200	P nima
	300	Pmma
	301	Printa
	307	P mma
	302.	P mma
	304	Prima
	204.	1 Imma
(52)	305.	Prina
	306.	Pnna1'
	307.	Pn'na
	308.	Pnn'a
	309.	Pnna'
	310.	Pn'n'a
	311.	Pnn'a'
	312.	Pn'na'
	313.	Pn'n'a'
	314.	P_nna
	315.	Pynna
	316.	Penna
	317.	PAnna
	318.	P _B nna
	319.	Penna
	520.	rinna

(53) 321. Pinna 322. Pmnal' 323. Pm'na 324. "Pmn'a 325. I'mna' 326. Prinia 327. l'inn'a' 328. Pm'na' 329. Pm'n'a' 330. P.nina 331. P.mna 332. P.mna 333. Panna 334. P_Bmna 335. Pcmna 336. Pimna (54) 337. Pcca 338. Pccal' 339. Pc'ca 340. Pcc'a 341. Pcca 342. Pc'c'a 343. Pcc'a' 344. Pc'ca' 345. Pera 346. P.cca 347. P.cca 348. P.cca 349. P_cca 350. Pacca. 351. Pccca 352. P₁cca (55) 353. Pham 354. Phom1' 355. Pb'am 356. Fbam' 357. Pb'a'm 358. Pb'am' 359. Pb'a'm' 360. P_ham 361. P.ham 362. P_bam 363. Pebain 364. Pybam (56) 365. Pecm 366. Pccn1' 367. Pc'cn 36S. Pccn' 369. Pccn 370. Pc'cn'



371. Pc'c'n' 372. P.ccn 373. P.ccn 374. P_Accn 375. Pcccn 376. Piccn (57) 377. Pbcm 378. Pbcm1 379. Pb'cm 380. Pbc'm 381. Pbcm' 382. Pb'c'm 383. Pbc'm' 384. Pb'cm' 385. Pb'c'm' 386. P.bcm 387. P,bcm 388. P.bcm 389. P_bcm 390. P_Bbcm 391. P_cbcm 392. P₁bcm (58) 393. Prnm 394. Pnnml' 395. Pn'nm 396. Pnnm 397. Prinim 398. Pnn'm' 399. Pr'n'n' 400. P_nnm 401. P.nnm 402. PAnnm 403. Pcnnm 404. P₁nnm (59) 405. Pmmn 406. Pmmnl 407. Pm'mn 408. Pmmn' 409. Pm'm'n 410. Prim'n' 411. Pm'm'n' 412. P_mmn 413. P.mmn 414. Pammn 415. Pemm 416. P_mmn (60) 417. Pbcn 418. Pbcnl' 419. Pb'cn

420. Pbc'n 421. Pbcn' 422. Pb'c'n 423. Pbc'n' 424. Pb'cn' 425. Pb'c'n' 426. P_hen 427. P_bcn 428. P.bcn 429. P_Aben 430. Puben 431. Pchcn 432. P₁bcn (61) 433. Pbca 434. Pbcal' 435. Pb'ca 436. Pb'c'a 437. Pb'c'a' 438. P_bca 439. P_cbca 440. Pibca (62) 441. Pnma 442. Primal' 443. Pn'ma 444. Pnm'a 445. Pnma' 446. Prinia 447. Pnm'a' 448. Pn'ma' 449. Prima 450. P_nma 451. P.nma 452. P_nma 453. P₄nma 454. P_Bnma 455. Penna 456. P₁nma (63) 457. Cmcm 458. Cnicm1' 459. Cm'cm 460. Cnic'm 461. Cnicni 462. Cm'c'm 463. Cmc'm' 464. Cnicm 465. Cnicm 466. C.mcm 467. C_mcm 468. C_Amcm

(64) 469. Cmca 470. Cmcal 471. Cin'ca 472. Cmc'a 473. Cmca' 474. Cm'c'a 475. Cinc'a' 476. Cm'ca' 477. Cm'c'a' 478. C.mca 479. C.mca 480. C_Amca (65) 481. Cmmm 482. Crimm1' 483. Cnimm 484. Cinmm' 485. Cm'm'm 486. Cmm'm' 487. Cn'm'm' 488. Canimm 489. C.mmm 490. C_{*}mmm (66) 491. Cccm 492. Cccml' 493. Cć cm 494. Cccm' 495. Cccm 496. Ccc'm' 497. Cc'c'm' 498. C.ccm 499. C.ccm 500. C_ccm (67) 501. Cinma 502. Crimal 503. Cmima 504. Cmma 505. Cm'm'a 506. Cmm'a 507. Cmimia 508. C_mma 509. C_nina 510. C_smma (68) 511. Ccca 512. Cccal' 513. Cc'ca 514. Ccca' 515. Cc'c'a 516. Ccc'a' 517. Ccca

519. C.cca 520. C_Acca (69) 521. Firmm 522. Frammel 523. Enimm 524. Fm'm'm S25. Fm'm'm' 526. F.mmm (70) 527. Fd.d 528. Fddd1' 529. Fd'dd 530. Fá'á'á 531. Fd'd'd' 532. F_ddd (71) 533. Immm 534. Immm1 535. Inimm 536. Im'm'm 537. Im'm'm' 538. Iznn:m (72) 539. Itam 540. Ibaml' 541. Ib'am 542. Ibani 543. Ib'a'm 544. Iba'm' \$45. Ib'a'm' 546. I,bam 547. I_bam (73) 548. Ibca 549. [bcal' 550. Ib'ca 551. Ib'c'a 552. Ib'c'a' 553. I_bca (74) 554. Imma 555. Immal' 556. Imima 557. Imma 558. Ininia 559. Imm'a' 560. Iminia 561. Imma 562. 1_mma

518. C.cca

BUS

	•				
	Tetragonal	(82)	39. 14	84. 14.10	179 PALT 2
	system		40 121'	85 14'.la'	$127. P_{3212}$ $130 PA_{3232}$
	-		41 12'	86 14.10	130. 742212
	C,		1. 17	00. 7,4374	$131. P_{4_{2}Z_{1}Z_{1}}$
	-		42. 7,4	· •	132. 1.4,2,2
(75)	1. <i>P</i> 4		6	$D_{4}$	$133. P_{4_2 2_1 2_1}$
	2. 141		Czh	(80) 87 8457	134. <i>F</i> ₁ 4 ₂ 2 ₁ 2
	3. P4'	(83)	43 PAim	(0) 07. 7422	(051135 PA 77
	4. P.4	1007	44 04/ 1/	88. 14221	
	5 P.4		44. 1 [.] 4/ml	89. 14.22	136. 14,221
	6. P.4		45. P4 /m	90. 142'2'	137. P4,22'
			40. J'4/m	91. P4'2'2	138. 14,222
(76)	7 PA		41. P4 m	92. P _e 422	139. 74322
(///	7. 7 <b>-</b> 1		48. J' 4/m	93. P _c 422	140. P.4,22
	8. P4 ₃ Y		49. $P_{c}4/m$	94. P ₁ 422	141. P _c 4,22
	9. <i>P</i> 4 ₁		50. P ₁ 4/m		142. P ₁ 4 ₃ 22
•	$10. P_{A_{1}}$	(84)	51 PA 1-	(90) 95. 142,2	(061143 B1 2 2
	11. $P_{c}A_1$	(04)	51. <i>1</i> ~ ₂ / <i>m</i>	96. P42,21'	(90) 143. 1432,2
	12. $P_{f}A_{1}$		52. $f'4_2/ni$	97. J'4'2 ₁ 2'	144. P4,2,21'
			53. P42/m	98. P42',2'	145. P4'32,2'
(77)	13. P4 ₂		54. $P4_2/m'$	99. P4'2'12	146. P4,2,2'
	14. P4,1'		55. P4'2/m'	100. P.42,2	147. P43212
	15. P4'2		56. $P_{e}4_{2}/m$	101. Pc42,2	148. P.4,2,2
	16. P.4.		57. $P_{c}A_{2}/m$	102. P ₁ 42 ₁ 2	149. Pc43212
	17. P.A.		58. $P_{I}A_{2}/m$		150. Pr432,2
	18. P.A.		•	(91) 103. P4 ₁ 22	
	•••	(85)	59. P4/n	104. P4,221'	(97) 151. 7422
(78)	19. 14,		60. F4/n1'	105. P4'122'	152. 14221'
	20 F4.1'		61. P4'/n	106. P4,2'2'	. 153. 14'22'
	21 PA:		62. P4/n [*]	107. P4',2'2	154. 142'2'
•	27. P.4.		63. P4'/n'	108. P,4,22	155. 14'2'2
	23 P.A.		64. P ₄ 4/n	. 109. <i>P</i> _c 4,22	156. <i>1</i> ,422
	24 P.A		65. P _c 4/n	· 110. P ₁ A ₁ 22	
			66. $P_{I}A/n$		(93) 157. 74,22
(20)	26.14	(86)	(7 . 0. /	(92) 111. <i>P</i> 4 ₁ 2 ₁ 2	158. 14,221'
(79)	25. 14	[00]	01. 142/n	112. P4,2,21'	159. 14;22'
	26. 141'-		68. P4 ₂ /n1'	113. P4'1212'	160. 14,2'2'
	27. 14		69. P4'2/n	114. P4,2',2'	161. 14,22
	28. <i>1</i> .4		70. P4 ₂ /n'	115. P4'12'12	162. <i>1</i> ,4,22
			71. P4'2/n'	116. P.4,2,2	
(80)	29. 14,		72. <i>P</i> ₄ 4 ₂ /n	117. PcA1212	C.,
	30. 14.1'		73. P _C A ₂ /n	118. Pr4,2,2	
	31. /4:		74. P ₁ A ₂ /n		(99) 163. P4mm
	32. 14.	(07)	26	(93) 119. P4 ₂ 22	164. P4mm1'
	• • • • • •	(87)	15. 14;m	120. P42221'	165. P4'm'm
			76. J4/m1'	121. <i>P</i> 4',22'	166. P4'mm'
	S4		77. 14'/m	122. P4,2'2'	167. P4m'm'
(81)	33 P]		78. J4/m'	123. P4'22'2	168. P.Anun
(0))	23. 14		79. 14'/m'	124. P.4.22	169. P.Amm
	34. P41'		80. J.4/m	125. Pc4,22	170. P.4mm
	55. P4'	100		126. PA222	
	36. P.4	(88)	81. 14 ₁ /a		(100) 171. P4bm
	37. PA		82. 14,/a1'	(94) 127. <b>J</b> ² ,2	172. P4bm1'
	38. P ₁ 4		83. 14',/a	128. P4,2,21'	173 P4'b'm

(BUS)

104 044 4			
174. P4'bm	221. P4'2b'c	(113) 267. P42 ₄ m	(119) 315, 14m2
175. P4b'm	222. P4'2hc'	268. <i>P</i> 42 ₁ m1'	316. 14m21'
176. P.Ahm	223. PA2b'c'	269. P'4'2' ₁ m	317. 13 m 2
177. P _c Abm	224. $P_{c}4_{2}bc$	270. /' ⁻ 4'2, <i>m</i>	318. /4'm2'
178. P ₁ 4bin	225. $P_{c}4_{1}bc$	271. P42'm	319. 14m'2'
/ 10 1 1 100 D /	226. $P_{i}4_{2}bc$	272. P. 42, m	320. 1,3m2
$(101)$ 179. $P4_2cm$		273. P. 42, m	•
180. P4 ₂ cm1'	(107) 227. 14mm	274. P.42.m	(120) 321. 13c2
181. P4'2c'm	228. [4mm1'	_	322. /4c21'
182. P4'2cm'	229. 14'm'm	(114) 275. P ² 2 ₁ c	323, 14°c'2
183. P4 ₁ c'm'	230. 14 nun'	276. P ³ 2 ₁ c	324. 14'c2'
184. $P_{e}4_{2}cm$	231. <i>14m'm</i> '	277. P4'2',c	325. 146'2'
185. $P_1A_2cm$	237 / 4mm	278. P42,c	326 1402
186. P ₁ 4 ₂ cm	131. i (	279. P42'c'	520
	(108) 233. 14cm	280. P.42.c	(121) 327, 142m
(102) 187. P4 ₂ nm	234. 14cm1'	281. P. 42. c	378 /42ml'
188. P4 ₂ nm1'	235. 14'c'm	282. P.42.c	329 1477 m
189. P4',n'm	236. 14'cm'	- • •	330 /3'2m'
190. P4, nm'	237. 14c'm	(115) 283. P3m2	331 JA7'm'
191. P4, n'm'	238. L4cm	284. P3m21'	332 /72m
192. P.4,nm		285. 83.02	552. I <del>c</del> 2m
193. P.A.nm	(109) 239. 14 ₁ md	286. P4'm2'	(122) 333, 1424
194. P.A.nm	240. 141md1'	287 Pām'?'	334 10241
	. 241. 14'ım'd	288 P 4n:2	334. 14241
(103) 195. P4ce	242. 14' md'	280. P. Am7	335. 14 2 4
196 PAccl'	243. 14 m'd'	200 P 3102	330. 14 20
197. P4'c'c	244. 1,4,md	270. 1 [-1112	337. 142 <i>a</i>
198. P4'cc'		(116) 291. P3c2	338. I ₄ 424
199. P4c'c'	(110) 245. 14 ₁ ca	207 83-211	D
200 <i>P</i> 4cc	246. 14,cd1'	202 83'2'7	D41
201 P.Acc	247. 14'ıc'd	275. 1462	(123) 339 P4/mmm
207 P.4cc	248. 14'scd'	- 274. 74 CZ	340 Bt/
202. 1 / 100	249. I41c'd'	· 275. 8762	
(104) 203. Pinc	250. I _c 4 ₁ cd	270. 8 7 4 2	341. P4, ni nun
204 P4ncl'		291. Facz	342. P4/mmm
205 P4'n'c	D ₂₄	270. Fritz	343. P4 inimin
205. P4'rc'	(111) 751 P37m	(117) 299 8362	344. P4 /m hi hi
200. 14 nc		200 83121	345. P4/mnim
201. 1 4nc	252. P42in1"	300. 14021	346. P4 /m mm
200. 2 cmc	253. 1'4 2 m	301. F4D2	341. P4/ninim
$207. T_{c}$	254. P4 2m	302. 1'4 DZ	348. <b>1</b> '4/mmm
210. 1 14/12	255. 1'42 m ²	303. P.40 Z	$349. P_{CA/nunm}$
(105) 211. P4.mc	256. P.42m	304. P.402	330. P ₁ 4/nimm
712 PA mal'	$257. P_{c}42m$	303. Pc402	(124) 351 Bliman
212. F + 2/2 C = 213. R' 1' m' c	$258. P_{f}A2m$	306. P1402	(124) 551. 14 mile
215. I + 2mc	(117) 759 P370	(118) 307 83-7	352. PA/mccV
214. $F_{4_2}mc$			353. P4 micc
$213. \ r_{4_2}nc$	200. <i>P</i> 42c1	308. P4n21	354. P4', mc'c
210. $r_{e} + 2mc$	201. P4 2c	309. P4'n'2	355. P4', mcc'
211. $r_{1}A_{2}mc$	202. P4 ⁻ 2C	310. <i>P4'n2'</i>	356. P4'/m'c'c
213. P ₁ 42nic	203. P42C	311. P4n'2'	357. P4,'mc'c'
(105) 219 PA Ko	204. Pe42c	312. P.4n2	358. P4'/m'cc'
1 1 VU / 217. 24 100	265. Pc42c	313. PAn2	359. P4/m'c'c'
220. 142001	266. P ₁ 42c	314. P _f An2	360. P.4/mcc



361. P. A.mcc	(129) 411. P4/nmm	(133) 459. 1'4,/nbc	(137) 507. P4,/nmc
362. P.A/mcc	412. P4/mm1'	460. 1'4./mbc1'	508 P4-/umc1
(126) 2(2	413. P4/n'mm	461. P4-/n'bc	509 P4 /n'mc
(125) 303. P4, nbm	414. J'4'/nm'm	462. P4'./nb'c	510. P45/nmic
364. P4, nbm1	415. P4'/nmm'	463. P4;/nbc'	511. P4's/nmc'
365. P4/n [*] hm	416. P4'/n'm'm	464. P4'./"b'c	$512$ , $P4_2/\mu$ mic
366. P4'/nb'm	417. P4/nmm	465. P4./nb/c'	513. P4./nm/c
367. J'4'/ubm'	418. J'4'/n'mm'	466. P4' /n'bc'	514. P4's/n'inc'
368. P4'/n'b'm	419. P4/n'm'm'	467. 1'4./n'b'c'	$515. P4_nmc$
369. P4. r.b'm	420. P.4/nom	468 P 4 Inbr	516 PA/nmc
370. 14';n'bm'	421. P.A/nmm	469. P-4./nbc	$S17, P_{c}4_{s}/nmc$
371. P4 n'b'm'	422. P.4/nmm	470 P.4./nbc	S18. P.A. June
372. P.4, nbm		110. 7 [1]	510. 7 12/11/2
373. PAInbm			(138) 519. P4 ₂ /ncm
374. P ₁ 4;nbm	(130) 423. P4/ncc	(134) 471. P ⁴ ₂ /nnm	520. P42/ncm1
(1261 375 PA nec	424. P4/ncc1'	472. P4 ₂ /mm1'	521. P42/n'cm
276 PA(upp)'	425. P4/n'cc	473. P42/n°nm	522. P4'2/nc'm
370. 14, nncl	426. P4'/nc'c	474. P4'_inn'm	523. P4'2/ncm'
377. 1'4/n//C	427. P4'/ncc'	475. P4'2/nnm'	524. P4'2/n'c'm
378. 14 /66 C	428. P4'/n'c'c	476. P4'2/n'n'm	525. P42/nc'm'
319. 14 pinc	429. P4/nc'c'	477. P4 ₂ /nn'm'	526. P4'2/n'cm'
380. F4 /n n C	430. P4'/n'cs'	478. P4'2/n'nm'	527. P4,/n'c'm'
361. J'4/nh C 383. DAileinei	431. P4/n'c'c'	479. P42/n'n'm'	528. P.4./ncm
382. <b>1</b> 4 /n nc	432. P.4/ncc	480 P.42/nnm	529. PcA2/ncm
363. F4/NRC	433. P _c 4/ncc	481. PcA2/nam	530. PA2/ncm
364. F _e 4 _i nnc	434. P ₁ 4/ncc	482. P ₁ 4 ₂ /nnm	
385. F (4, nnc			(139) 531. 14/mmm
560. T ₁ 4;nnc	(131) 435 PA. mmc	(135) 483. 1'4,/mbc	532. 14/mmm1
(127) 387. P4 mbm		484 PA_imbel'	533. 14/m [*] mm
388. PAimbril	$430. P4_{2}/mmc_{1}$	485 P4 /mbc	534. J4'/mm'm
389. P4 m'bm	431. 1 ⁻⁴ 2/mmc	486 P4 inbic	535. 14 jnimm
390. P4'/mb'm	438. P42/mmc	487 P4:/mbc	536. 14'/m'm'm
391. P4'/mbm'	$435. T^{4}_{2}/mmc$	488 P4 Imbr	537. 14/min'm'
392. P4'/m'b'm	$440. P4_2/mme$	489. P4./mb'c'	538. 14'jm'mm'
393. P4/mb'm'	441. F42/InmC	490. P4:/m/bc	539. J4/m'm'm'
394. P4'/m'bm'	$442. F4_2/mmc$	491. PA-Initic	540. 1.4/numm
395. P4/m'b'm'	443. F4 ₂ /mmc	497. P.A. Imbr	
396. P.4.mbm	$444$ , $F_{4}$ , $mmc$	493 P.4. /pibc	(140) 541. 14/mcm
397. P.4/mbm	$443. F_{42}/mmc$	494. P.4. Imbe	542. 14/mcm1'
398. P.4/mbm	440. <i>F</i> ₁ 4 ₂ / <i>minic</i>	194. 2 [-3]1100	543. 14/m'cm
			544. J4'/mc'm
(128) 399. P4, mnc	(132) 447. P4 ₂ /mcm	(136) 495. P4 ₂ /mnm	545. 14'/mcm'
400. P4/mnc1*	448. P42/mcm1'	496. P42/mm1'	546. 14'/m'c'm
401. P4/minc	449. P4 ₂ /m [*] cm	497. P42/n:'nm	547. 14/mc'm'
402. IA'/mn'c	450. P4'2/mc'm	498. P4'2/mn'm	548. 14'/m'cm'
403. P4'/mnc'	451. P4'2/mcm'	499. P4'2/mm	549. 14/m'c'm'
404. P4'im'n'c	452. ]'4'2/m'c'm	500. P42/minim	550. 1,4/mcm
405. P4jmn'c'	453. P42/mc'm'	501. P42!mn'm'	•••••
406. P4'/minc'	454. P4'2/m'cm'	502. P4'2/m'nm'	(14)) 551. 14 ₁ /amd
407. PA minic	455. P42/m'c'm'	503. P42/minimi	552. J4,/amd1'
408. P.4, mnc	456. P _e 4 ₂ imcm	504. P.42/mnm	553. 14, /a'md
409. P.A.mnc	457. P.A., Incm	505. PA2/innin	554. 14', /am'd
410. P ₁ 4/mnc	458. P142/mcm	506. Pr42/naun	555. 14',/amd

(BRZ

556. 14',/a'm'd		D,	(159) 61. P31e	104. R3c1'
557. I4 ₁ /am'd'			67 P31'c	105. R3'c
558. 14' ₁ /a'md'	(149)	21. P312	63 P312	106. RJ'c'
559. 14 ₁ /a'm'd'		22. P31'2	64 P 31c	107. R3c
560. 1,4, /amd		23. P312'	04. 7,510	108 8-30
		24. P.312	(160) 65 R3m	100. Арс
(142) 561. 14 ₁ /acd			(10)) 05: 11:11 (( R2))	
562. 14. /acd 1'	(150)	25. P321	66. <i>R</i> 3/n1	_
563. 14. la'cd		26 P321"	67. K3m	B. Hexagonal
564. 14. lac'd		20. 1 321 27 P32'1	68. K _I 3m	sub-system
565 14' lacd'		21. 7 32 1 28 P 121	(161) (0	
566 JA' la's'd		20. 1 ₆ 521	(101) 09. K3c	C ₆
567 IA loc'd'	(151)	29 P3.17	70. R3c1'	(168) 109 P6
568 14' / a' a'	(100)	30 03 112	71. <i>R</i> 3c'	110 861
$560 \ 14 \ / 2 \ 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$		$30. P_{31}P_{2}$	72. $R_1 3c$	110. 201
509. 14 ₁ /aca		31. P3,12		111. 26
570. 7 ₆ 4 _{1/} <i>aca</i>		32. P _c 3 ₁ 12	D 34	· · · · · · · · · · · · · · · · · · ·
	(152)	33 P3.21	((()) 77 53.	(169) 113 PG.
Hexagonal	()	34 02 21	(102) 13. P31m	114 06 1
system		34. 73 ₁ 21	74. [ [*] 31'm	
Jacin		33. P3,21	75. P3'1m	
A Rhowbobedeal		$30. P_c S_1 Z_1$	76. P3'1m'	110. P ₆ 01
n. Knomooneura	(157)	17 02 17	77. P31m'	(170) 117 86
sub-system	(155)	51. 1 5212	78. P _e 31m	(1)0)117. F05
C		38. P3 ₂ 1'2	_	118. P6,1
C3		39. P3,12'	(163) 79. P31c	119. <i>P</i> 6's
(143) 1 P3		40. P _e 3 ₂ 12	80. P31'c	120. P.6,
	1160	(1 02 24	81. <i>P</i> 3'1c	(171) 121 00
2. P31	(154)	41. <i>P3</i> ₂ 21	82. P3'1c'	(111) 121. Po ₂
3. P _e 3		42. P3,21'	83. P31c	122. P6 ₂ 1'
		43. P322'1	84. P.31c	123. P6'2
(144) 4. P3 ₁		44. P _e 3 ₂ 21		124. P _e 6 ₂ .
S. P311'	• •	_	(164) 85. P3m1	
6. $P_{e}3_{1}$	(155)	45. R32	86. P3ail'	(172) 125. P6 ₄
		46. R321'	87 P3'm1	126. P6,1'
$(143)$ 1. $P3_2$		47. R32'	88 <i>P</i> 3' <i>m</i> '1	127. P6'
8. P321'		48. R ₁ 32	89 P3m*1	128. P.6.
9. P _e 3 ₂		-	90 P 3ml	• -
		C		(173) 129. P63
(146) 10. R3		C3,	(165) 91, F3c1	130. F6,1'
11. <i>R</i> 31'	(156)	49. P3m1	07 P3-11	131. P6
12. R ₁ 3		50. P3m1'	02 P3'-1	132. P.6.
•		51. P3in'1	94 PS(c)	
C _M		52. P,3m1	05 81-11	C.,
•		•	06 8 5-1	- 34
(147) 13. PJ	(157)	53. P31m	70. r _e sci	(174) 133. PG
14. <i>P</i> 31'		54. P31'm	(166) 97. K.Īm	134. 261
15. P3'		55. P31m'	09 P	135. 06
16. P.3		56. P.31m	00 D1	136 P K
		•	י_יילים היי	
(148) 17. R3	(158)	57. P3c1	100. 1.3 m	C
18. R31'		58. P3c1'	101. 6.500	~ 64
19. R.3		59. P3c'1	102. K ₁ 5m	(175) 137. P6/m
20. R.3		60. P 3c1	(167) 103 83.	178 DC/
			(10// 10J. KJC	120. 20/111

BUS

. 139. PG'/m	183. 16,222	225. J'62'm'	271. PG3/m'm'c'
140. 16/m	184. P.6322	226. P. 62m	272. P.63/mmc
141. P6'/m'			
142. P.6/m	C**	(190) 227. IG2c	Cubic
	and the second	228. P62c1	system
(176) 143. P6 ₃ /m	(183) 185. P6mm	229. PG'2'c	
144. PG3/m1'	186. P6mm1'	230. ľ°č'2r'	Г
145. PG3/m	187. P6'm'm	231. P62'c	
146. P63/m'	188. P6'mm'	232. P.62c	(195) 1. 123
147. P63/m	189. P6m'm'		2. P23'
148. P.6. /m	190. P.6mm	$D_{6k}$	3. P ₁ 23
D ₆	(184) 191. P6cc	(191) 233. P6/mmm	(196) 4. F23.
	192. P6ccl'	234. P6/mmn1'	5. F23'
(177) 149. P622	193. <i>P6'c'c</i>	235. P6/m'min	6. F,23
150. P6221'	194. P6'cc'	236. P6'/mm'm	
151. P6'2'2	195. P6c'c'	237. P6'/mmm'	· (197) 7. 123
152. PG'22'	196. P.6cc	238. PG/mmm	8. J23'
153. P62'2'		239. P6'/m'mm'	
154. P.622	(185) 197. PG ₃ cm	240. P6/n:m'm'	(198) S. P2 ₁ 3
	198. P6 ₃ cm1'	241. P6/m'm'm'	10. P2,3'
(1/8) 155. 16,22	199. P6'3c'm	242. P _e 6/mmm	11. P ₁ 2 ₁ 3
156. P61221'	200. P6'scm'		
157. F6,22	201. P6 ₃ c'm'	(192) 243. P0,mcc	(199) 12. 12,3
158. P6;22	202. P _e 6 ₃ cm	244. P6/mcc1'	13. <i>1</i> 2 ₁ 3'
159. P6,2'2'	(10(1))00	245. P6/m'cc	
160. P _c 6 ₁ 22	(186) 203. Po ₃ me	246. P6'/mc'c	T _b
(170) 1(1) 0( 23	204. P63mc1	247. P6 jmcc	
(179) 161. P6,22	205. P6'3m'c	248. P6/micic	(200) 14. Pm3
162. P6,221'	206. P63mc	249. P6'/m'cc'	15. Pm3'
163. 16,22	207. P6 ₃ m'c'	250. P6/mc c	16. Pm'3
164. P6',22'	208. P _e 6 ₃ mc	251, <i>P6/mcc</i>	17. P ₄ m3
165. P6,2'2'		252. P _c 6/mcc	
166. P ₆ 6 ₅ 22	$D_{3k}$	(103) 253 B6 Iman	(201) 18. I'n3
(180) 167 . P6 77	(187) 209 177-7	(175) 255. 1 Gymem	19. Pn3'
	(107) 205. 1 0/2	$254. Po_{3}(mcm)$	20. Pn'3
168. 76,221	210. Poin21	$255. P_{0_3}/m  cm$	21. P ₁ n3
109. P0222	211. POm 2	$250. 10_3/mcm$	(2021 22 5 2
170. 16,22	212. J'O m2	$251. Po_3/mcm$	(202) 22. Fm3
171. PO ₂ 22	213. Pom 2	258. Po3/mcm	23. Fm3'
172. F.0.22	214. F _e om2	$259. Po_{3}/m cm$	24. Fm'3
(181) 173 P6.77	(188) 215 PGc2	$200. PO_3 (m) m$	25. F ₄ m3
174 86 221	216 27-21'	$201. P_{03}/m cm$	(203) 26 Ed2
174, 704221	210. 2021	$202. F_{c}0_{3}/mcm$	(203) 20. 723
175. 7 042 2 176. P6' 22'	217. FULZ	(194) 263. P6 /mmc	21. 143
170. 7 0422	210. 2012	264 P6 /mmcl'	28. Fd 3
178 26 22	217. 7022	265 P6 /m'nc	29. F ₆ 43
sio, severa .	aro. Fronz	202. 203, 11 11C 266 P6: Immie	(204) 30 1-2
(182) 179. P6,22	(189) 221. PG2m	260. 2 63/min ( 267 - 26. Immet	1 JU. 11113
180 P6.221'	222 PR2m1'	268 P6. inimie	31. Im3
181. P6.22	222. 2 02111 223. PK'2'm	269. 16./mm	<b>32. IM 3</b>
182. P6522	224 PB'2m'	270. P6./mm'e	(205) 33 Pas /

( RILLE)

	34. Pa3'		62. P14,32	(220) 89. 1734	118. Fm'3m
	35. Pa'3			90. (43°d	119. Fm3m'
	36. P ₁ a3	(213)	63. <i>P</i> 4,32	91. 1 <del>4</del> '3d	120. Fm'3in'
			64. P4,3'2		121. F _s m3m
(206)	37. <b>Ia3</b>		65. P4'132'		
	38. <i>Ia</i> 3'		66. P14132	. <b>O</b> ,	(226) 122. Fm3c
	39. Ia'3	· • • · · ·			123. Fm3'c
		(214)	67. <i>1</i> 4 ₁ 32	(221) 92. Pin3m	124. Fm'3c
	0		68. 14:3'2	93. Pin3'in	125. Fm3c'
(207)	10 0.000		69. <i>14</i> ' ₁ 32'	94. Pin'3m	126. Fm'3c'
(207)	40. 1432			95. Pin3in'	127. F _s m3c
	41. P43'2		·	96. Pm'3m'	(227) 120 5/2
	42. P4'32'		T _d	97. P ₄ m3m	(227) 128. Fa3m
	43. P ₁ 432	(215)	70 P77-	(2221 08 8-2-	129. Fd3'm
( 208 )	AA PA 37	(215)		(222) 96. Frish	130. Fd'3m
(200)	44. <i>I</i> 4 ₂ 32		71. P45m	99. Pn3 ⁻ n	131. Fd 3m'
	45. P4252		12. P4 3m	100. Pn ⁻ 3n	132. Fd'3m'
	40. 1'4232'		13. F ₁ 43m	101. Pn3n	133. F ₄ d Sm
	41. P ₁ 4232	(216)	74. F33m	102. <i>Pri</i> 3n	(278) 134 Ed3e
(209)	48. F432	()	75 E73'm	103. <i>P</i> ₁ n3n	12207 134, 2430
	AQ EA3'2		76 F3'3m'	(223) 104. Pm3n	135. FASC 176. Edite
	47. 1472 50 FA'37		70. F 4 3m	105 Pm3'a	150. FU SC
	50. F 4 32	•		105. Pm/3n	137. FUSC
	J. 7,4JL	(217)	78. 133m	107 Pm3a'	130 Ed3e
(210)	52. F4,32		79. 143'm	108 Pm'3"	
	53. F4.3'2		80. 14'3m'	109. <i>P.m</i> 3 <i>a</i>	(229) 140. Im3m
	54. F4'.32'				141 Im3'm
	55. F.4.32	(218)	81. P33n	(224) 110. Pn3m	142. <i>Im</i> '3m
	••		82. P ⁴ 3'n	111. Pn3'm	143. <i>Im</i> 3m'
(211)	56. 1432		83. P4'3n'	112. Pn'3m	144. Im'3m'
	57. 143'2		84. P ₁ 43n	113. Pn3m'	•
	58. 14'32'		• _	114. Pn'3m'	(230) 145. la3d
		· (219)	85. F43c	115. P ₁ n3m	146. <i>Ia3'd</i>
<b>(212)</b>	59. P4,32		86. F ³ 3'c	-	147. Ja'3d
	60. F4;3'2		87. F4'3c'	(225) 116. Fm3in	148. Ia3d'
	61. P4'32'		88. F ₄ 43c	117. Fin3'm	149. <i>la</i> '3 <i>d'</i>

## REFERENCE :

1. N.V. Belov, N.N. Neronova and T.S. Smirnova, Sov.

Phys.Crystallography 2, 311 (1957).
- 140 -

ANNEXE 2

## COMMUNICATIONS

Applicability of the Landau theory of phase transitions to magnetically ordered systems:P.Tolédano,M.Clin et M.Hédoux.Communication présentée au 5^{eme} congrès international de Ferroélectricité (Université de Pensylvanie,Août 1981)

A new type of magnetostructural phase transition:M.Clin,M.Hédoux et P.Tolédano. Communication à présenter au 5^{eme} congrès Européen de Ferroélectricité (Torremolinos Espagne,Septembre 1983)

- 141 -

Fer-belectrics, 1981, Vol. 35, pp. 239-244 0015-0193/81/3501-0239/\$06.50/0 * 1981 Gordon and Breach, Science Publishers, Inc. Printed in the United States of America

APPLICABILITY OF THE LANDAU THEORY OF PHASE TRANSITIONS TO MAGNETICALLY ORDERED SYSTEMS*

PIERRE TOLÉDANO, MARTIAL CLIN and MICHEL HÉDOUX Groupe de Physique Théorique, Faculté des Sciences, 80000-Amiens (France)

The procedure one has to use to apply the Landau theory of phase transitions to magnetic systems is presented. Two cases are considered: (1) transitions from a paramagnetic phase to a ferromagnetic, antiferromagnetic, ferrimagnetic or helicoidal antiferromagnetic phase; (2) transition from a ferromagnetic or antiferromagnetic phase towards the various types of spin arrangements. It is shown that in most cases the knowledge of the space-group irreducible representation of the high-temperature phase is sufficient to infer the orderparameter symmetries, the free-energy expansion and the Shubnikov groups stable or low-temperature.

The thermodynamic part of the theory of second-order phase transitions has been successfully applied by Landau and Lifshitz to the qualitative investigation of ferromagnetic and antiferromagnetic substances. Along the same line Dzialoshinskii² has explained the phenomenological features of weak ferromagnetism, latent antiferromagnetism and helicoidal antiferromagnetism. A Landau thermodynamic theory has also been used to describe the various magnetic phases which have been found more recently.³ On the contrary, very few studies have recoursed fully to the symmetry aspects of the Landau theory. With the exception of the early works of Kovalev,⁴ the theoretical analysis of the symmetry changes occuring at magnetic phase transitions have been restricted either to the recalling of the basic principles for their partial description 5-7 (such as the point-group modification) or to apply these principles to specific structures requiring an incomplete use of the symmetry criteria contained in the theory.8,9 Such a situation relies partly on the fact that the specific procedure one has to use to apply the Landau theory to magnetic structures has not been completely explicited in the same practical manner than for structural transitions.10 In this way, one has to use Shubnikov groups¹¹ and their corepresentations¹² (and likewise, further generalizations of these concepts)13 which have been shown to be the suitable tools for the description of magnetic phase transitions. 14 

In this paper we describe a procedure which allows one to determine the orderparameter symmetries of magnetic transitions taking place from a paramagnetic, ferromagnetic or antiferromagnetic phase. The detailed group-theoretical arguments underlying the various statements and theoretical examples will be given elsewhere.¹⁵

#### I. MAGNETIC TRANSITIONS FROM A PARAMAGNETIC PHASE

Let us first consider the case of transitions which take place from a paramagnetic high-temperature phase. The full invariance group of this phase can be written¹⁹:

G = H + H.R where H is the space-group of the non-magnetic crystal (Fedorov group), and R the time-reversal operator. The standard procedure 6, 10, 18, 19 to determine the stable magnetic phases which can arise at low-temperature below a phase transition of the second kind is: 1) to select the irreducible corepresentations of G complying to the Landau and Lifshitz conditions 2) For each of the preceding "active" corepresentations, to construct the corresponding free-energy expansion F made up of invariants of the oder-parameter components  $n_i$ . 3) To find the set of component values  $\eta_i^0$  for which F is an absolute minimum. 4) For each set of  $\eta_i^0$  to identify the subgroups of G

## PIERRE TOLÉDANO, MARTIAL CLIN and MICHEL HÉDOUX

leaving invariant the magnetic density axial vector  $M(\vec{r})$  expanded as a function of the basic functions of the corepresentation space.

Though each of the preceding operations has been well clarified¹⁴,²⁰ this procedure remains cumbersome because most of the required material related to corepresentations is still unavailable. However it can largely be avoided following a method suggested by Kovalev⁴, which involves exclusively the use of the irreducible representations (IR) of the non-magnetic space group H. The advantage of such a simplification being that the large amount of theoretical results which have been obtained by the application of the Landau theory to structural transitions²¹ can almost directly be transposed for magnetic ones. More precisely one can find in ref.21 for the active IR's of each of the 230 space-groups, the corresponding free-energy expansion and the set of values of the order-parameter components associated to the stable low-temperature states. Thus, using these data, one has only to identify the magnetic group corresponding to a given IR by the method which is detailed hereunder.

Let  $\tau_1$  be an active IR of H.The magnetic groups induced by  $\tau_1$  can be shared in two families. 1) Antiferromagnetic groups  $G_1$  of type IV¹⁹ which possess a magnetic lattice and only space-group operations forming a subgroup of H.As the subgroups of H induced by  $\tau_1$  can be found in ref.21,we only have to determine the magnetic lattice of  $G_1$ .This lattice corresponds to the combinations of the time-reversal operator R with the elementary translations of the crystal lattice of H,leaving invariant the magnetic density M.In Table I are listed paramagnetic-antiferromagnetic transitions of this type taking place in the mmm class.

2) Ferro or antiferromagnetic groups  $G_1^i$  of type III which can be written¹⁹:  $G_1^i = H_1^i + (H - H_1^i) \cdot R$ where  $H_1^i$  is a halving subgroup of H. The lattice of the  $G_1^i$  groups is non-magnetic and can thus be obtained from ref.21. The operations of  $G_1^i$  which are not pure translations coincide with the combinations of the time-reversal operator R and the elements of H of the form  $(g/t_g)$  (with g belonging to the point group of H) leaving invariant the magnetic density M. Table II gives examples of such transitions. It must be pointed out that one has also to take into account as "magnetically active" the IR's of H discarded by the Landau condition¹⁸ as the odd invariants existing in the free-energy of the structural transition vanish for the magnetic one⁶.

In Table III are listed magnetic transitions taking place from the paramagnetic group P6₃/mmcl' .This group has been also considered by Kovalev⁴.Our results differ from those given in his work, because we do not take into account a selection criterion which eliminates IR's involving a non-zero magnetic density at the points of space where atoms are located⁴.Actually this condition is connected to the specific materia-lization of the P6₃/mmc space group considered by this author (the hexagonal closest packing) and can be avoided in the general case.In the same way we do not eliminate, as Kovalev does, the stable states corresponding to a magnetic structure in which the magnetic moment of different atoms are not of equal length, as it should correspond to ferrimagnetism or to the various types of canted ferromagnetism¹.These later structures cannot be described by a single magnetic group but make necessary to recourse to two -or more- Shubnikov groups, each one describing a sublattice arrangement with magnetic moments of equal length.

For transitions towards an helicoidal phase the IR's violating the Lifshitz condition must be considered¹. If the magnetic moment turns discontinuously the helical structure can be described by generalized Shubnikov groups¹³. If on the contrary, the incommensuration is continuous one has to use magnetic groups in spaces of dimension higher than three²².

**II. TRANSITIONS FROM A MAGNETIC PHASE** 

When the high temperature phase is described by an antiferromagnetic group of type IV, the procedure which has to be followed to apply the Landau theory, is similar

240

TABLE I Transitions from a paramagnetic phase towards magnetic groups of type IV. The images (Im) and freeenergies (F.E.) labeling are taken from Ref. 21. The IR and Brillouin zone points notation is the same as in Ref. 23.

רורו גהם

•

TABLE II Transitions from a paramagnetic phase towards magnetic groups of type III. All the IR are at the Brillouin zone center.

Paramagnetic group	B.Z point	Antiferromagnetic groups	Crystal and magnetic translations	0,P Jim	Stable solutions	Im F.E	Paramagnet 1 group	C Ferro or Antiferromagnetic groups
	∫ z	P _a meron (t ₁ , t ₈ ), P _C ccm (t ₁ , t ₁ ) P _a meron (t ₂ , t ₁ , t ₄ , t ₂ )	$\left[ \begin{array}{c} \vec{t}_{1}, \vec{t}_{2}, 2\vec{t}_{1} \\ R\vec{t}_{1} \end{array} \right]$				Pmmm1' Pnnn1'	Panas(Ti), Pa'ama(Te, T2, Te), Pa'a'as(T2, Ti, Te), Pa'as'as(T3). Panas(Ti), Pa'aas(Te, T2, Te), Pa'a'as(T2, Ti, Te), Pa'as'as(T3).
Pmmn 1 *	s	G _a σσακα (τ ₁ ,τ ₂ ,τ ₅ ,τ ₇ ) G _a σσακα (τ ₂ ,τ ₁ ,τ ₅ ,τ ₈ )	$\begin{bmatrix} \vec{t}_1 + \vec{t}_2, \vec{t}_1 - \vec{t}_2, \vec{t}_3 \\ \vec{a} \vec{t}_1, \vec{R} \vec{t}_2 \end{bmatrix}$	i	ł	a Fi	Fccm1 '	$\begin{bmatrix} Pccm(T_1), Pc'cm(T_{4}, T_2), Pccm'(T_{4}), Pc'c'm(T_{4}), \\ Pc'cm'(T_{2}, T_{3}), Pc'c'm'(T_{3}), \\ \end{bmatrix}$
Panat'	R	$F_gddd(\tau_1 - \tau_g)$	Ē1+Ē2,Ē1+Ē3,Ē2+Ē3 RĒ1,RĒ2,RĒ3	ł	i	a F1	Pbanl'	$\begin{bmatrix} Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}a^{T}(\tau_{3}), Pb^{T}a^{T}a^{T}a^{T}a^{T}a^{T}a^{T}a^{T}a$
	۲× ]	$P_accm(\tau_1,\tau_5), P_aban(\tau_2,\tau_5)$ $P_acca(\tau_1,\tau_5), P_amna(\tau_1,\tau_5)$		ı	L	a Es	Pmmal"	<pre>Pm'm'a(t_x), Pm'a'(t_2), Pm'ma'(t_3), Pm'm'a'(t_3), Pnna(t_1), Pn'na(t_4), Pnn'a(t_2), Pnna'(t_4)</pre>
Pccml'	۲	$P_{a}ccm(\tau_{1},\tau_{2}), P_{a}cca(\tau_{2},\tau_{2})$ $P_{a}ban(\tau_{1},\tau_{2}), P_{a}ma(\tau_{2},\tau_{4})$	Ē.,2Ē.,Ē,	ı	ı	4 F1	Panal*	Pn'n'a(T, ), Pnn'a'(T2), Pn'na'(T3), Pn'n'a'(T3). [Pmna(T3), Pm'na(T4), Pmn'a(T3), Pmna'(T4),
Prinal 1	L T	C_mcn(f1,f2,f3,f3)	[ \$1+\$1,\$1-\$1,\$1 187. 87.	, ı	ı	a F1	Pccal'	Pm'n'a(Ts), Pmn'a'(Ts), Pm'na'(Ts), Pm'n'a'(Ts),         Pcca(Ts), Pc'ca(Ts), Pcc'a(Ts), Pcca'(Ts),         m-t-1(ts), ts), Pcc'a(Ts), Pcc'a(Ts),
	[ R	(C ₈ 2/m,C ₈ 2/c)(T ₁ ,T ₂ )		2	(10)(11)	6 F.	Pbaml'	_rc c a(t), pc(a(t), pc(a(t)), pc(c), (t), pc(c), (t), [Pbam(t), pb'am(t, τ), pbam'(t), pb'a'm(t), _pb'am'(t2, τ3), pb'a'm'(t3).
Pmn#1'	L u	(C ₂ 2/m,C ₂ 2/c)(T ₁ ,T ₂ )	[E1+E1,E1-E1,E2 [RE1,RE1	2	(10) (11)	6 F.	Pccn1'	[Pccn(ī),Pc'cn(ī6,ī),Pccn'(ī6),Pc'c'n(īv), _Pc'cn'(ī2,ī3),Pc'c'n'(ī3), 
	<b>[ R</b>	C_2/m(T1+T3,T2+T6,T3+T7,T0+T6)	- [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	2	(11)	c Fş	Pannal'.	Pnna (Ti), Pn'na (Ti, Ti), Pnna'(Ti), Pn'n'a (Ti), Pnn'a '(Ti, Ti), Pa'a 'n'(Ti),
Pccnl'	s	$(C_acc2, P_a2/c)(\tau_1, \tau_2)$	$\begin{bmatrix} \mathbf{c}_1 + \mathbf{c}_2 & \mathbf{c}_1 - \mathbf{c}_2 & \mathbf{c}_1 \\ \mathbf{R} \mathbf{c}_1 & \mathbf{R} \mathbf{c}_2 \end{bmatrix}$	2	(10)(11)	6 F.	Promin 1*	ידשת ה(זו), צם 'מח (זוּן, ז'ז), Pooran' (זוּן), Poora'n (זוּן), Pooran' (זיַז, זין), Pon'as'n' (זיַזָּיָ). Pooca (זון). Pol'c'a (זיַזי, זוּן דאָר אָרָאַיָּר (זיַזָּיָ).
fbcal'	R	₽₅Ĩ(1;+1;,1;+1;)	[ t,+t, t,+t, t,+t, Rt, Rt, Rt,	4	(n£n'{')	134 613	Pocal Pomal'	Pb'ca(T6,T7,T6), Pnma(T1),Pnm'a'(T2),Pn'ma'(T1),Pn'm'a'(T6,T5),
	U	P _B 2;/m(t;+t;,t+t;) P _B 2;/c(t;+t;,t;+t;)	[	2	(11)	c Fi		Pn 'ma(Ti), Pnm 'a(Ti), Pnma '(Ti).
កាត់ដូរ	Į	(C ₄ sc21,P ₂ 21/c)(T1,T2)	[t,,t,+t,,t,-t, Rt,,Rt,	2	(10)(11)	<b>δ F</b> .		

APPLICABILITY OF THE LANDAU THEORY OF PHASE TRANSITIONS

143

ł

24]

### PIERRE TOLEDANO, MARTIAL CLIN and MICHEL HEDOUX

TABLE III Transitions from the  $P6_3/mmcl'$  group. Same conventions as for Table I. The F.E. forms are given explicitly.

B Z point	Low-symmetry magnetic groups	Lattice translations	Stable solutions	O.P. dim	In.	F.E.
$\frac{4\pi}{k-\frac{3\pi}{3a},\frac{2\pi}{3a},0}$	$\frac{P_{C^{mma}}(\tau_1), P_{C^{bcn}}(\tau_2), P_{C^{nnm}}(\tau_3), P_{C^{nma}}(\tau_4)}{P_{C^{nma}}(\tau_5), P_{C^{mmn}}(\tau_6), P_{C^{bcn}}(\tau_7), P_{C^{nma}}(\tau_8)}$	2t1,t2,t3 Rt1	(100)			
	$\frac{P6_{3}/mm(c(\tau_{1}), P6_{3}/m'm'c(\tau_{2}), P6_{3}/m'mc'(\tau_{3})}{P6_{3}/mm'c'(\tau_{4}), P6_{3}/m'm'c'(\tau_{5}), P6_{3}'mmc'(\tau_{6})}$	2t ₁ ,2t ₂ ,t ₃	(111)	3	(0 _H )	F ₁
	$F_{1} = \frac{x}{2} \frac{3}{2} n_{1}^{2} + \frac{g_{1}}{4} \frac{3}{1} n_{1}^{4} + \frac{g_{2}}{2} n_{1}^{2} n_{1}^{2} n_{j}^{2}$		_			
$\frac{K}{k-\frac{4\pi}{3a},0,0}$	(P6 ₃ /mmc,P6 ₃ /mm'c)(τ ₁ ) (P6 ₃ /mm'c,P6 ₃ /mmc')(τ ₂ ) (P6 ₃ /m'm'c',P6 ₃ /m'mc')(τ ₄ ) (P6 ₃ /m'mc,P6 ₃ /m'm'c)(τ ₅ )	$\begin{bmatrix} \vec{t}_1 & \vec{t}_2 \\ \vec{t}_1 & 2\vec{t}_2 \\ \vec{t}_3 \end{bmatrix}$	(10)(01)	2	(c _{6v}	)F ₂
	$F_{2} = \frac{\alpha}{2} \rho^{2} + \frac{\beta}{4} \rho^{4} + \frac{\gamma}{6} \rho^{6} + \frac{\delta}{8} \rho^{8} + \frac{\varepsilon}{10} \rho^{10} + \frac{\xi_{1}}{12} \rho^{12} +$	$\frac{\xi_2}{12} \rho^{12} \cos 12\phi$	η ₁ =ρcosφ η ₂ =ρsinφ	-		
г	$\frac{P6_{3}/mmc(\tau_{1}),P6_{3}/mm'c'(\tau_{2}),P6_{3}/m'mc'(\tau_{3})}{P6_{3}/m'm'c(\tau_{4}),P6_{3}/m'm'c'(\tau_{7}),P6_{3}/m'mc(\tau_{8})}$ $\frac{P6_{3}/mm'c(\tau_{9}),P6_{3}/mmc'(\tau_{10})}{P6_{3}/mm'c'(\tau_{10})}$	$\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}$	1	1	(c _i )	F3
k=0,0,0	$\frac{(\operatorname{Cmc'm'}, \operatorname{Cm'cm'})(\tau_5), (\operatorname{Cmcm}, \operatorname{Cm'c'm})(\tau_6)}{(\operatorname{Cm'cm}, \operatorname{Cmc'm'})(\tau_{11}), (\operatorname{Cm'c'm'}, \operatorname{Cmcm'})(\tau_{12})}$ $\overline{r_3 \cdot \frac{\alpha}{2} \eta^2 + \frac{2}{4} \eta^4}$	ţ,ţ,ţ,t3	(10)(01)	2	(c _{6v}	)F ₂
$\frac{1}{\bar{k}=0,0,\frac{\pi}{c}}$	$\left[\begin{array}{c} (P_{c}^{\overline{3}1m}, P_{c}^{\overline{6}2m})(\tau_{1}) \\ (P_{c}^{\overline{3}1c}, P_{c}^{\overline{6}2c})(\tau_{2}) \\ F_{4} = \frac{\alpha}{2}(n_{1}^{2} + n_{2}^{2}) + \frac{\beta}{4} (n_{1}^{4} + n_{2}^{4}) + \frac{\beta}{2} n_{1}^{2} n_{2}^{2} \end{array}\right]$	τ ₁ ,τ ₂ ,2τ ₃ Rτ ₃	(10)(11)	2	(c _{4v}	)F ₄

to the one used for a paramagnetic phase. The low-temperature magnetic group is necessarily of type IV, with a change in the crystal and magnetic lattices. The determination of the new low-temperature magnetic lattice involves simultaneously an identification of the new crystal cell, given in Ref. 21, and of the new magnetic lattice vectors which can be obtained by combining the time-reversal operator R with the elementary translations of the high-temperature crystal lattice. If, on the contrary, the high temperature phase is described by a magnetic group of type III, then one cannot avoid the explicit recourse to the use of corepresentations and to the standard general procedure which has been described in Section I.

242

APPLICABILITY OF THE LANDAU THEORY OF PHASE TRANSITIONS

In Table IV are listed transitions which illustrate the two preceding cases.

TABLE	IV	Transitions	from a	magnetic	group	of	type	III	or	IV	•
-------	----	-------------	--------	----------	-------	----	------	-----	----	----	---

High sympetry magnetic group	B Z point	Low-symmetry magnetic groups	Crystal and magnetic translations
P2'/m	ī	P2'/m(T1,T6),PI'(T2,T7),P2'(T3,T6),Pm(T4,T5).	t ₁ ,t ₂ ,t ₃
	۲.	Pra'anne(T1), P2'/m(T2, T1, T4), P2'2'2(T5), Pra'm2'(T6, T7), Pmm2(T6).	t ₁ ,t ₂ ,t ₃
Po '	z	Pm ¹ mm(T ₁ ,T ₈ ),Pmm ¹ a(T ₂ ,T ₇ ),Pmma ¹ (T ₃ ,T ₆ ), Pc ¹ cm(T ₄ ,T ₅ ).	$\vec{t}_1, \vec{t}_2, 2\vec{t}_3$ R $\vec{t}_3$
rui n <u>u</u>	s	Ca'mm(T1,T4,T6,T7),Cm'ma(T2,T3,T5,T8).	$\begin{bmatrix} \vec{t}_1 + \vec{t}_2, \vec{t}_1 - \vec{t}_2, \vec{t}_3 \\ R\vec{t}_1, R\vec{t}_2 \end{bmatrix}$
	R	$Fm'mm(\tau_1 + \tau_0)$ .	t ₁ +t ₂ ,t ₁ +t ₃ ,t ₂ +t ₃ Rt ₁ ,Rt ₂ ,Rt ₃
	٦	P2/m(τ ₂ ),Pm [*] m [*] m(τ ₁ ),P2 [*] /m [*] (τ ₃ ,τ ₄ ), Pm [*] m [*] 2(τ ₆ ),P2 [*] 2 [*] 2 [*] 2 [*] (τ ₇ ,τ ₈ ).	t ₁ ,t ₂ ,t ₃
Pm 'm 'm	z	Pm'm'm(τ1,τ2),Pmm'a'(τ2,τ3,τ6,τ7),Pc'c'm(τ4,τ5).	$\begin{bmatrix} \vec{t}_1, \vec{t}_2, 2\vec{t}_3 \\ R\vec{t}_3 \end{bmatrix}$
	s	C='m'm(T1,T4,T6,T7),Cm'm'a(T2,T3,T5,T6).	$\begin{bmatrix} \vec{t}_1 + \vec{t}_2, \vec{t}_1 - \vec{t}_2, \vec{t}_3 \\ R\vec{t}_1, R\vec{t}_2 \end{bmatrix}$
	R	$Fa'a'a(\tau_1 + \tau_0)$ .	t ₁ +t ₂ ,t ₁ +t ₃ ,t ₂ +t ₃ Rt ₁ ,Rt ₂ ,Rt ₃
	[.	P='m'm'(τ ₁ ),P2/m'(τ ₂ ,τ ₃ ,τ ₄ ),P222(τ ₅ ), P='='2(τ ₆ ,τ ₇ ,τ ₆ ).	ī,,ī,ī
Pm'm'm'	z	P <b>m'm'm'(τι,τ₈),Pm'm'a'(τ</b> 2,τ3,τ6,τ7),Pc'c'm'(τ _κ ,τ ₅ )	. [t ₁ ,t ₂ ,2t ₃ [Rt ₃ ]
	s	Cm'm'm'(T1,T4,T6,T7),Cm'm'a'(T2,T3,T5,T8).	$\begin{bmatrix} \vec{t}_1 + \vec{t}_2, \vec{t}_1 - \vec{t}_2, \vec{t}_3 \\ R\vec{t}_1, R\vec{t}_2 \end{bmatrix}$
	R	F='m'm'(τ ₁ +τ ₆ ).	[t ₁ +t ₂ ,t ₁ +t ₃ ,t ₂ +t ₃ Rt ₁ , Rt ₂ , Rt ₃
Pama	Г	$P_{a} = (\tau_{1}), P_{a}^{2}/m(\tau_{2}, \tau_{3}, \tau_{4}), P_{a}^{222}(\tau_{5}),$ $P_{a} = 2(\tau_{6}, \tau_{7}, \tau_{6}).$	t ₁ ,t ₂ ,t ₃
P_42	Z	$P_{b}^{2(\tau_{1}+\tau_{2})}, P_{c}^{4_{1}(\tau_{3})}, P_{c}^{4_{3}(\tau_{*})},$	[t1,t2,2t3 Rt3
P4m'm'	. г	P4m'm'(T1),P4(T2),Pm'm'2(T3 ,T4),Pm'(T5,T10.	t, t, t, t,

#### CONCLUSION

The method which has been given in this paper allows one to analyze, in the framework of the Landau theory, the transitions from a paramagnetic, ferromagnetic and antiferromagnetic phase. For transitions towards an helicoidal or canted magnetic structure a specific complementary procedure should be used.¹⁵

Theoretically and experimentally, magnetic transitions present a variety of situations which are not entirely encountered at structural transitions. Their symmetry and thermodynamic investigation should bring a deeper understanding of

PIERRE TOLEDANO, MARTIAL CLIN and MICHEL HEDOUX

the applicability of the Landau theory together with a more systematic knowledge of magnetic structures.

#### REFERENCES

- 1. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960).
- 2.
- 3.
- I.E. Dzialoshinskii, Sov. Phys. JETP 5, 1259(1957); 6, 1120(1958); 19, 960(1964).
  D. Deutges and G. Heber, Phys. Stat. Sol.(b) 101, 683(1980).
  O.V. Kovalev, Sov. Phys. Sol. State 5, 2309(1964); 5, 2315(1969), 7, 77(1965).
  J.O. Dimmock, Phys. Rev. 130, 1337(1963). 4.
- 5.
- A.P. Cracknell, J. Lorenc and J.A. Przystava, J. Phys. C9, 1731(1976). 5.
- V.E. Naish, Izv. Akad. Nauk, SSSR, Ser. Fiz. 42, 1684(1978). 7.
- 8. Yu.A. Izyumov, V.E. Naish and S.B. Petrov, J.Magn.Magnet.Mat. 13, 267(1979).
- J. Solyom, <u>J.de Physique, Supp. Cl</u> <u>32</u>, 471(1971). 9.

10. G.Ya. Lyubarskii, The Appl. of Group Theory in Physics (Pergamon Press, N.Y. 1960).

- 11. N.V. Belov, N.N. Neronova and T.S. Smirnova, Sov. Phys. Crystallography 2, 311(1957).
- 12. E.P. Wigner, Group Theory (Academic Press, New York, 1959). 13. A.M. Zamorzaev, Sov. Phys. Crystallography 12, 717(1968).
- 14. J.O. Dimmock and R.G. Wheeler, J. Phys. Chem. Solids 23, 729(1962).
- 15. P. Tolédano, M. Clin and M. Hedoux (to be published).

- J.O. Dimmock, J. Math. Phys. 4, 1307(1963).
   O.V. Kovalev, <u>Irred. Rep. of the Space Groups</u> (Gordon and Breach N.Y.1965).
   L.D. Landau and E.M. Lifshitz, <u>Statistical Physics</u>(Pergamon Press, Oxford 1958).
- C.J. Bradley and A.P. Cracknell, The Mathematical Theory of Symmetry in Solids 19. (Clarendon Press, Oxford 1972).
- 20. A.P. Cracknell and A.K. Sedaghat, J. Phys. C5, 977(1972)
- 21. P. Toledano and J.C. Toledano, Phys. Rev. B14, 3097(1976), B16, 386(1977), B21, 1139(1980) and to be published.
- 22. P.M. De Wolff, Acta Crystallographica A30, 777(1974).
- 23. J. Zak, A. Casher, H. Gluck and Y. Gur, The Irreducible Representations of Space Groups (Benjamin, New York, 1969).

*As requested by two referees, the tables of this paper were enlarged and consequently the length increased to six pages in order to ensure better legibility.

## A NEW TYPE OF MAGNETOSTRUCTURAL PHASE TRANSITION

M. Clin, M. Hédoux and <u>P. Toledano</u> Groupe de Physique théorique, Faculté des Sciences d'Amiens 33, rue Saint-Leu, 80000 Amiens - France

We identify theoretically a new type of phase transition, which corresponds to the simultaneous onset of magnetical and structural orders. In this family of magnetostructural transitions, the magnetic cell is generally different from the crystallographic cell, and a breaking of translational symmetry should be observed for both the magnetic and structural lattices. Accordingly the transition is improper either with respect to the magnetization or regarding the non-magnetic spontaneous components (polarization, strain or higher order polar tensors) resulting from the structural modification. In the framework of the Landau theory of phase transitions, it is shown that only multidimensional representations associated to a little number of Brillouin zone boundary points, may induce such transitions. Thus, their essential phenomenological properties are established, namely the order-parameter symmetries, the free-energy forms, the non-linear couplings of the order-parameter with magnetic and non-magnetic macroscopic components, and the temperature variation of the magnetic and dielectric susceptibilities. The theoretical situation of transitions which could be structurally first-order and magnetically secondorder is pointed out. As a possible illustrative example, the 64 K transition in nickel-iodine Boracite is discussed.

# RESUME

Le travail présenté dans cette thèse consiste en l'application de la théorie de Landau des transitions de phases du second ordre aux transitions ferromagnétiques et antiferromagnétiques, se produisant à partir d'une phase paramagnétique. Ce travail conduit à établir des tables qui fournissent les changements de symétrie magnétiques et les énergies libres associées à chacune des coreprésentations irréductibles "actives" des 2.50 groupes "gris" paramagnétiques. Les résultats obtenus permettent, par comparaison avec les données expérimentales, de vérifier ainsi l'applicabilité de la théorie de Landau aux transitions magnétiques.

## MOTS-CLES

THEORIE LANDAU SYMETRIE TRANSITION MAGNETIQUE TRANSITION PHASE FERROMAGNETISME ANTIFERROMAGNETISME