

503**76** 1983 1**53**

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le grade de

DOCTEUR 3ème CYCLE

(Spectrochimie et Méthodes d'Analyse)

par

Larbi MARHABI

Licencié es Sciences Université de Rabat

ETUDE THERMODYNAMIQUE DES SOLUTIONS SOLIDES SPINELLES DANS LE SYSTEME FER - VANADIUM - OXYGENE

Soutenue le 30 Juin 1983 devant la Commission d'Examen

Jury :	Ρ.	PERROT	Président et Rapporteur
	M. C.	TRINEL	Examinateur
	J.	FOCT	Examinateur
	D.	THOMAS	Examinateur
	О.	EVRARD	Examinateur
	A.	HENDRY	Examinateur

IVERSITE DES SCIENCES TECHNIQUES DE LILLE

DOYENS HONORAIRES DE L'ANCIENNE FACULTE DES SCIENCES

MM. R. DEFRETIN, H. LEFEBVRE, M. PARREAU.

PROFESSEURS HONORAIRES DES ANCIENNES FACULTES DE DROIT ET SCIENCES ECONOMIQUES, DES SCIENCES ET DES LETTRES

MM. ARNOULT, Mme BEAUJEU, BONTE, BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P. GEFMAIN, GLACET, GONTIER, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LASSERRE, LELCNG, Mme LELONG, LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARD, SCHILTZ, WATERLOT, WIEMAN, ZAMANSKI.

PROFESSEUR EMERITE

M. A. LEBRUN.

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU, J. LOMBARD, M. MIGEON.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. J. CORTOIS.

PROFESSEURS - CLASSE EXCEPTIONNELLE

М.	DURCHON Maurice
М.	GABILLARD Robert
Μ.	HEUBEL Joseph
Μ.	MONTREUIL Jean
М.	PARREAU Michel
Μ.	TRIDOT Gabriel*
м.	VIVIER Emile
М.	WERTHEIMER Raymond

Biologie expérimentale Electronique Chimie minérale Biochimie Analyse Chimie appliquée Biologie cellulaire Physique atomique et moléculaire

.../...

PROFESSEURS - 1ère CLASSE

М.	BACCHUS Pierre	Astronomie
М.	BEAUFILS Jean Pierre	Chimie physique
М.	BIAYS Pierre	Géographie
М.	BILLARD Jean	Physique du solide
Μ.	BOILLY Bénoni	Biologie
Μ.	BONNOT Ernest	Biologie végétale

Μ. BOUGHON Pierre M. BOURIQUET Robert Μ. CELET Paul CHAMLEY Hervé М. COEURE Gérard Μ. М. CONSTANT Eugène CORDONNIER Vincent м. DEBOURSE Jean Pierre Μ. M. DELATTRE Charles Μ. ESCAIG Bertrand FAURE Robert Μ. FOCT Jacques Μ. М. FOURET René Μ. GRANELLE Jean Jacques GRUSON Laurent Μ. GUILLAUME Jean Μ. M. HECTOR Joseph LABLACHE COMBIER Alain Μ. М. LACOSTE Louis LAVEINE Jean Pierre Μ. LEHMANN Daniel Μ. Mme LENOBLE Jacqueline M. LHOMME Jean Μ. LOMBARD Jacques LOUCHEUX Claude М. LUCQUIN Michel Μ. MAILLET Pierre Μ. Μ. PAQUET Jacques POUZET Pierre Μ. PROUVOST Jean М. SALMER Georges Μ. Μ. SEGUIER Guy M. STANKIEWICZ François М. TILLIEU Jacques VIDAL Pierre М. ZEYTOUNIAN Radyadour Μ.

Algèbre Biologie végétale Géologie générale Géotechnique Analyse Electronique Informatique Gestion des entreprises Géologie générale Physique du solide Mécanique Métallurgie Physique du solide Sciences économiques Algèbre Microbiologie Géométrie Chimie organique Biologie végétale Paléontologie Géométrie Physique atomique et moléculaire Chimie organique biologique Sociologie Chimie physique Chimie physique Sciences économiques Géologie générale Analyse numérique Minéralogie Electronique Electrotechnique Sciences économiques Physique théorique Automatique Mécanique

.../...

PROFESSEURS - 2ème CLASSE

М.	AL FAKIR Sabah	Algèbre
М.	ALLAMANDO Etienne	Electronique et électrotechnique
Μ.	ANCIAN Bernard	Spectrochimie
М.	ANTOINE Philippe	Analyse
М.	BART André	Biologie animale
Mme	BATTIAU Yvonne	Géographie
М.	BEGUIN Paul	Mécanique
М.	BELLET Jean	Physique atomique et moléculaire
М.	BERZIN Robert	Analyse
М.	BKOUCHE Rudolphe	Algèbre
М.	BODARD Marcel	Biologie végétale
М.	BOIVIN Jean Claude	Chimie minérale
М.	BONNELLE Jean Pierre	Catalyse
М.	BOSCQ Denis	Probabilités
М.	BOUQUELET Stéphane	Biochimie structurale
М.	BRASSELET Jean Paul	Géométrie et topologie
М.	BREZINSKI Claude	Analyse numérique
М.	BRIDOUX Michel	Chimie physique

BRUYELLE Pierre Μ. CAPURON Alfred Μ. Μ. CARREZ Christian CHAPOTON Alain Μ. COQUERY Jean Marie Μ. Mme CORSIN Paule CORTOIS Jean Μ. COUTURIER Daniel Μ. Μ. CRAMPON Norbert CROSNIER Yves Μ. MILE DACHARRY Monique M. DAUCHET Max DEBRABANT Pierre Μ. DEGAUQUE Pierre М. Μ. DELORME Pierre Μ. DEMUNTER Paul **DENEL** Jacques Μ. DE PARIS Jean Claude Μ. Μ. DEPREZ Gilbert DERIEUX Jean Claude Μ. MILE DESSAUX Odile M. DEVRAINNE Pierre M. ' DHAINAUT André Mme DHAINAUT Nicole М. DORMARD Serge DOUKHAN Jean Claude Μ. DUBOIS Henri Μ. DUBRULLE Alain Μ. Μ. DUBUS Jean Paul DYMENT Arthur Μ. Mme EVRARD Micheline FONTAINE Hubert Μ. FONTAINE Jacques Μ. Μ. FOURNET Bernard FRONTIER Serge Μ. Μ. GAMBLIN André GERVAIS Michel Μ. Μ. GLORIEUX Pierre GOBLOT Rémi Μ. GOSSELIN Gabriel Μ. GOUDMAND Pierre Μ. GREMY Jean Paul Μ. Μ. GREVET Patrick GUILBAULT Pierre Μ. HENRY Jean Pierre Μ. HERMAN Maurice Μ. HOUDART René М. М. JACOB Gérard JACOB Pierre Μ. JACQUILLAT Bertrand Μ. JOURNEL Gérard Μ. KREMBEL Jean Μ. LAURENT François Μ. Mme LECLERCO Ginette LEFEVRE Christian м. MILE LEGRAND Denise MILE LEGRAND Solange

Géographie Biologie animale Informatique Electronique Psychophysiologie Paléontologie Physique nucléaire et corpusculaire Chimie organique Hydrogéologie et environnement Electronique Géographie Informatique Géologie appliquée Electronique Physiologie animale Sociologie Informatique Analyse Physique du solide et cristallographie Microbiologie Spectroscopie de la réactivité chimique Chimie minérale Biologie animale Biologie animale Sciences économiques Physique du solide Spectroscopie hertzienne Spectroscopie hertzienne Spectrométrie des solides Mécanique Chimie appliquée Dynamique des cristaux Electronique, électrotechnique, automatique Biochimie structurale Ecologie numérique Géographie urbaine, industrielle et démographie Gestion Physique moléculaire et rayonnements atmosphériques Algèbre Sociologie Chimie Physique Sociologie Sciences économiques Physiologie animale Génie mécanique Physique spatiale Physique atomique et moléculaire Informatique Probabilités et statistiques Gestion Spectroscopie hertzienne Biochimie Automatique Catalyse Pétrologie Algèbre Algèbre

. . . / . . .

Mme LEHMANN Josiane LEMAIRE Jean Μ. Μ. LENTACKER Firmin М. LEROY Jean Marie LEROY Yves Μ. Μ. LESENNE Jacques LEVASSEUR Michel Μ. LHENAFF René Μ. М. LOCQUENEUX Robert LOSFELD Joseph Μ. LOUAGE Francis Μ. MACKE Bruno Μ. Μ. MAHIEU Jean Marie MAIZIERES Christian Μ. MILE MARQUET Simone MESMACQUE Gérard М. MESSELYN Jean Μ. MESSERLIN Patrick М. М. MIGNOT Fulbert MONTEL Marc Μ. MONTUELLE Bernard Μ. Mme N'GUYEN VAN CHI Régine NICOLE Jacques Μ. Μ. NOTELET Francis М. PARSY Fernand MILE PAUPARDIN Colette PECOUE Marcel м. PERROT Pierre Μ. PERTUZON Emile Μ. PETIT Francis Μ. PONSOLLE Louis Μ. Μ. PORCHET Maurice POVY Lucien Μ. RACZY Ladislas М. M. RAOULT Jean François RICHARD Alain Μ. RIETSCH Francois Μ. ROGALSKI Marc М. ROUSSEAU Jean Paul м. ROY Jean Claude Μ. Mme SCHWARZBACH Yvette Μ. SCHAMPS Joël SIMON Michel Μ. Μ. SLIWA Henri SOMME Jean Μ. MILE SPIK Geneviève Μ. STERBOUL François Μ. TAILLIEZ Roger Μ. THERY Pierre М. TOULOTTE Jean Marc TURREL Georges Μ. VANDORPE Bernard Μ. VAST Pierre Μ. VERBERT André Μ. м. VERNET Philippe Μ. VILETTE Michel WALLART Francis Μ. Μ. WARTEL Michel

Analyse Spectroscopie hertzienne Géographie Chimie appliquée Electronique, électrotechnique, automatique Electrotechnique Sciences économiques Géographie Physique théorique Informatique Electronique Physique moléculaire et rayonnements atmosphé-Physique atomique et moléculaire. riques Automatique Probabilités Génie mécanique Physique atomique et moléculaire Sciences économiques Analyse numérique Physique du solide Biologie et biochimie appliquées . Géographie Chimie analytique Electronique, électrotechnique, automatique Mécanique Biologie physiologie végétales Chimie organique Chimie appliquée Physiologie animale Chimie organique, minérale et analytique Chimie physique Biologie animale Automatique Electronique Géologie structurale Biologie animale Physique des polymères Analyse Physiologie animale Psychophysiologie Géométrie Spectroscopie moléculaire Sociologie Chimie organique Géographie Blochimie Informatique Génie alimentaire Electronique, électrotechnique, automatique Automatique Spectrochimie Infrarouge et Raman Chimie minérale Chimie inorganique Biochimie Génétique Résistance des matériaux Spectrochimie Infrarouge et Raman Chimie inorganique

.../...

M. WATERLOT Michel M. WERNER Georges M. WOSNIAK Michel Mme ZINN JUSTIN Nicole

•

Géologie générale Informatique fondamentale appliquée Hydrométallurgie Algèbre A mon grand frère Abdelkrim

A ma mère

A Mes frères et soeurs

A tous ceux qui me sont chers

Témoignage de ma profonde affection

A la mémoire de mon père

A Monsieur Pierre PERROT Professeur à l'Université des Sciences et Techniques de Lille

> A Madame Marie-Chantal TRINEL Maître-Assistant à l'E.N.S.C.L.

> > Témoignage de reconnaissance

Ce présent travail a été réalisé au Laboratoire de Métallurgie Physique de l'U.E.R. de Chimie de l'Université des Sciences et Techniques de Lille sous la direction de Monsieur le Professeur P. PERROT.

Je prie Monsieur le Professeur P. PERROT d'accepter l'expression de ma très grande reconnaissance pour m'avoir accueilli dans son laboratoire et pour l'honneur qu'il me fait en présidant mon jury de thèse. Qu'il soit également assuré de ma profonde et sincère gratitude.

Je remercie également très sincèrement Madame Marie-Chantal TRINEL, Maître-Assistant à l'E.N.S.C.L. pour les conseils et l'aide qu'elle m'a prodigués et la constante assistance qu'elle m'a apportée tout au long de mon travail. L'intérêt et la persévérance qu'elle a manifestés ont contribué grandement à l'élaboration et à la réalisation de cette thèse.

Je remercie sincèrement Monsieur le Professeur J. FOCT d'avoir bien voulu participer au jury et je lui exprime ma gratitude pour l'intérêt qu'il a porté à ce travail.

Je suis reconnaissant à Monsieur le Professeur D. THOMAS de l'amabilité avec laquelle il a accepté d'examiner ce mémoire et de faire partie du jury de cette thèse.

Je tiens aussi à remercier Monsieur O. EVRARD, Professeur à l'Université de NANCY qui m'a fait l'honneur de s'intéresser à mon travail et de participer au Jury.

Ma reconnaissance va également à Monsieur le Professeur A. HENDRY de l'Université de NEWCASTLE pour l'amabilité avec laquelle il a accepté de faire partie du jury.

Il m'est agréable d'évoquer ici tous ceux qui, avec leur gentillesse coutumière, ont contribué à la réalisation de ce mémoire. J'associe dans mes remerciements Monsieur Pierre CONFLANT qui m'a aidé pour l'étude radiocristallographique, Mademoiselle Annie OLIVIER qui a assuré la dactylographie, Madame Anne-Marie CAZE qui a réalisé les figures et les graphes et Madame SAINLEGER qui a effectué le tirage.

INTRODUCTION

Ce travail se situe dans le cadre général des recherches entreprises au laboratoire sur les systèmes Fe-Me-O dans lesquels Me représente un métal divalent ou trivalent susceptible de donner avec le fer un oxyde mixte de structure spinelle entièrement soluble dans la magnétite. Le but poursuivi est d'arriver à une description aussi complète que possible de ces systèmes en déterminant, en fonction de la température, la nature des phases à l'équilibre et surtout le potentiel oxygène correspondant.

La connaissance de ce potentiel oxygène permet d'accéder aux relations activité-composition dans les solutions solides, puis de relier les activités ainsi obtenues aux autres propriétés physiques du système et plus particulièrement à sa structure. Le cas des solutions solides spinelles est particulièrement intéressant, car elles sont en général bien étudiées et leur comportement n'est jamais simple. Les activités thermodynamiques ont souvent fait l'objet de modèles qui n'ont malheureusement jamais pu être confrontés à l'expérience en raison du faible nombre et de la précision souvent médiocre des données disponibles.

Le présent travail, relatif au système Fe-V-O se limite à la partie du diagramme ternaire accessible au moyen d'atmosphères oxydo-réductrices $CO-CO_2$ ou H_2-H_2O , c'est-à-dire au triangle Fe-Fe $_2O_3-V_2O_3$. Compte tenu des pressions d'oxygène mises en jeu et de l'intervalle de températures considéré (1123 -1373 K) le vanadium est toujours trivalent. Cette partie du diagramme se caractérise par l'existence de deux solutions solides : une solution solide spinelle qui a fait l'objet d'un nombre considérable de travaux et une solution solide corindon signalée par tous les auteurs; nous verrons cependant, sur la base de considérations thermodynamiques simples appuyées sur des données fiables relatives aux termes extrêmes, que son existence ne saurait être totale dans tout le domaine de composition et nous vérifierons expérimentalement cette prévision.

L'essentiel de ce travail sera consacré à l'étude des isothermes de réduction des solutions solides spinelles, au

- 3 -

calcul des activités thermodynamiques de la magnétite et du vanadite, calcul qui ne saurait être précis que suite à la détermination exacte de la nature des phases à l'équilibre, de leur composition et des pressions d'oxygène. Ce n'est qu'à la suite de ces résultats qu'une tentative de modélisation de la solution solide pourra être faite.

Le plan proposé est donc le suivant :

- CHAPITRE I : Etablissement théorique du diagramme Fer - Vanadium - Oxygène
- CHAPITRE II : Techniques expérimentales et méthodes analytiques
- CHAPITRE III : Etude sous atmosphères contrôlées CO-CO2
- CHAPITRE IV : Etude sous atmosphères contrôlées H2-H20
- CHAPITRE V : Etude radiocristallographique des solutions solides spinelle et corindon.

- 4 -

CHAPITRE I

ETABLISSEMENT THEORIQUE DU DIAGRAMME FER - VANADIUM - OXYGENE

A - TRAVAUX ANTERIEURS

Comme nous venons de le signaler, le triangle Fe-Fe₂O₃-V₂O₃ auquel nous limiterons notre étude se caractérise par l'existence de deux solutions solides, de structure spinelle et corindon; JAEGER et al. |1| signalent toutefois une solubilité de 40 % de la wüstite FeO dans le vanadite FeV₂O₄, mais ce fait n'a pas été confirmé depuis |2|.

La solution solide spinelle présente un intérêt particulier du fait que $\operatorname{Fe}_3^{0}_4$ est inverse tandis que $\operatorname{FeV}_2^{0}_4$ devrait être direct en raison de la très grande énergie de préférence du vanadium pour les sites octaédriques : - 53 600 J.mol⁻¹ pour V³⁺ d'après les calculs de la théorie du champ cristallin |3|. Encore convient-il de remarquer que DU PLESSIS |4| considère $\operatorname{FeV}_2^{0}_4$ comme un mélange des deux structures tandis que GUPTA et MATHIEU |5| lui attribuent un degré d'inversion de 10 %.

Le caractère direct de FeV₂O₄, composé par ailleurs ferrimagnétique, ne saurait être total surtout à température élevée en raison d'un effet d'entropie. C'est ainsi que JACOB et ALCOCK calculent, à 1200 K, un degré d'inversion de 19 % [6].

La distribution des cations dans le spinelle a été déterminée par spectroscopie Mössbauer |7|. Les spectres observés à l'ambiante peuvent être interprétés par un changement de structure pour $\operatorname{Fe}_{1+x}V_{2-x}O_4$ de $\operatorname{Fe}^{++}\left[\operatorname{Fe}_x^{+++}V_{2-x}^{+++}\right]O_4$ pour x < 0,35 à $\operatorname{Fe}^{+++}\left[\operatorname{Fe}_x^{++}\operatorname{Fe}_{x-1}^{+++}V_{2-x}^{+++}\right]O_4$ pour 1 < x < 2.

Pour WAKIHARA et al. |8|, les mesures de magnétisation à saturation conduisent à proposer une distribution $\operatorname{Fe}^{3+}[\operatorname{Fe}^{2+}\operatorname{Fe}_{\mu}^{3+}\operatorname{V}_{1-\mu}^{3+}]\circ_4$ dans le domaine $\operatorname{Fe}_3\circ_4-\operatorname{Fe}_2\operatorname{VO}_4$ et une distribution $(\operatorname{Fe}_{\lambda}^{3+}\operatorname{Fe}_{1-\lambda}^{2+})[\operatorname{Fe}_{\lambda}^{2+}\operatorname{V}_{2-\lambda}^{3+}]\circ_4$ dans le domaine $\operatorname{Fe}_2\operatorname{VO}_4-\operatorname{FeV}_2\circ_4$.

- 7 -

Ces résultats pourraient être intéressants comparés aux variations d'autres propriétés physiques comme les paramètres cristallins ou les activités thermodynamiques.

Malheureusement, s'il semble certain que les solutions solides spinelles ne suivent pas la loi de Végard, les mesures précises manquent et l'accord est loin d'être unanime sur le seul paramètre du vanadite FeV_2O_4 . La valeur la plus vraisemblable semble être 0,845 nm, mais les fiches ASTM donnent 0,829 nm ce qui est visiblement trop faible. Il semble bien que les conditions de préparation (température, potentiel oxygène) doivent être soigneusement précisées puisque le degré d'inversion du spinelle en dépend. Cette remarque s'applique à plus forte raison aux solutions solides. Il suffit en effet de considérer que pour VAISKOI et al. |9|, la courbe donnant la variation du paramètre en fonction de la composition est formée de 6 portions linéaires! Pour CROS |10|, la loi de Végard est à peu près suivie exception faite d'un comportement aberrant au voisinage de la composition $Fe_{2.2}V_{0.8}O_4$.

En ce qui concerne les propriétés thermodynamiques dans le système Fe-V-O, elles font généralement apparaître un écart négatif à l'idéalité dans les solutions solides spinelles. SCHMAHL et DILLENBURG [11] comparent à 1173 K le comportement des systèmes Fe-Me-O (Me = Al, Cr, V) et montrent que l'écart négatif à l'idéalité augmente dans le sens Al, Cr, V. Ces mêmes systèmes ont été repris à 1673 K tout récemment par PETRIC et JACOB [12, 13] qui ont utilisé une technique originale consistant à mesurer l'activité du fer dans des nacelles en platine en équilibre avec le spinelle.

Signalons enfin que VOROBEV et al. |14| ont également étudié la réduction des solutions solides spinelles. JACOB et ALCOCK |6|ainsi que ZABEITOVA et al. |15| mesurent, à l'aide d'une pile à électrolyte solide, la pression d'oxygène à l'équilibre dans le triangle Fe-V₂O₃-FeV₂O₄.

B - TRACE DU DIAGRAMME D'ELLINGHAM

B.1. - LE SYSTEME Fe-O

Les mesures faites sur ce système sont extrêmement nombreuses. Depuis l'analyse complète faite par DARKEN et GURRY |16 | il y a près de 40 ans, près d'une centaine de mesures thermodynamiques se sont succédées principalement dans le domaine de la wüstite.

SPENCER et KUBASCHEWSKI |17 | ont effectué en 1978 une synthèse de toutes ces études et proposent les relations suivantes :

 $\Delta G_{f}^{O} (Fe_{0,953}O) = (-261\ 182\ +\ 62,93\ T)\ J.mol^{-1}$ $\Delta G_{f}^{O} (Fe_{3}O_{4}) = (-1076\ 625\ +\ 289,95\ T)\ J.mol^{-1}$ $\Delta G_{f}^{O} (Fe_{2}O_{3}) = (-\ 800\ 872\ +\ 240,16\ T)\ J.mol^{-1}$

Ces résultats sont compatibles avec les pressions d'oxygène à l'équilibre calculées d'après les données de BARIN et KNACKE |18| :

> (1) 2 Fe + $O_2 \longrightarrow 2$ FeO $\Delta G_1^O = (-535\ 970\ +\ 135,56\ T)\ J$ (2) 6 FeO + $O_2 \longrightarrow 2$ Fe₃O₄ $\Delta G_2^O = (-638\ 311\ +\ 257,73\ T)\ J$ (3) 4 Fe₃O₄ + O₂ $\longleftrightarrow 6$ Fe₂O₃ $\Delta G_3^O = (-498\ 733\ +\ 281,16\ T)\ J$

- 9 -

B.2. - LE SYSTEME V-O

Il existe 11 oxydes de vanadium |19| : - V_2O_5 qui fond à 686°C - V_3O_7 a une fusion non congruente à 680°C - V_6O_{13} a une fusion non congruente à 708°C - V_2O_4 qui fond vers 1540°C - V_7O_{13} - V_6O_{11} phases de Magnéli, de formule générale - V_5O_9 phases de Magnéli, de formule générale - V_4O_7 - V_4O_7 - V_2O_3 qui a un grand domaine d'existence et fond au-dessus de 2000°C - VO_v non stoechiométrique

Les données thermodynamiques ne sont connues que pour les oxydes les plus stables : VO, V_2O_3 , V_2O_4 , V_2O_5 . Elles permettent donc de ne tracer qu'une partie du diagramme d'Ellingham relatif au système V-O.

Les pressions d'oxygène ont été calculées point par point d'après les données de BARIN et KNACKE [18] puis linéarisées de façon à en obtenir des expressions faciles à manipuler, utilisables entre 800 et 1300 K :

(4)
$$2 V + O_2 \longrightarrow 2 VO$$

 $\Delta G_4^O = (-847 938 + 161,59 T) J$

(5)
$$4 \text{ VO} + \text{O}_2 = 2 \text{ V}_2 \text{O}_3$$

 $\Delta \text{G}_5^{\text{O}} = (-723 593 + 156,94 \text{ T}) \text{ J}$

(6)
$$2 V_2 O_3 + O_2 - 2 V_2 O_4$$

 $\Delta G_6^0 = (-396\ 484 + 137,70\ T) J$

- 10 -

(7a)
$$2 V_2 O_4 + O_2 \rightleftharpoons 2 \langle V_2 O_5 \rangle$$
 si T<943 K
 $\Delta G_{7a}^O = (-260 \ 144 + 194,72 \ T) J$

(7b)
$$2 V_2 O_4 + O_2 \rightleftharpoons 2 (V_2 O_5)$$
 si T>943 K
 $\Delta G_{7b}^{O} = (-123\ 775 + 50,25\ T) J$

Les pressions d'oxygène relatives aux équilibres (1) à (7) sont représentées sur la figure 1. Ce diagramme fait ressortir la grande étendue du domaine d'existence de V_2O_3 qui est en pratique le seul oxyde stable sous atmosphères oxydo-réductrices H_2-H_2O ou CO-CO₂.

Il convient également de remarquer que ce diagramme n'est qu'une représentation schématique de la réalité, surtout du côté des fortes pressions d'oxygène, puisque la ligne (6) d'équilibre $V_2O_3-V_2O_4$ devrait être remplacée par 5 lignes faisant apparaître les domaines d'existence des différentes phases de Magnéli.

De même, la ligne (7) d'équilibre $V_2O_4-V_2O_5$ représente en réalité 3 lignes très rapprochées devant mettre en évidence les domaines d'existence des phases V_6O_{13} et V_3O_7 . Il est possible d'avoir une idée relativement précise de la position de ces lignes. Les considérations classiques d'entropie montrent qu'elles doivent être parallèles à la ligne (7a). La connaissance des points de fusion incongruents permet de conclure que la droite V_2O_4/V_6O_{13} doit rencontrer la droite (7b) à 708°C tandis que la droite V_6O_{13}/V_3O_7 doit rencontrer cette même droite à 680°C.

Il est naturellement plus difficile de faire apparaître les domaines d'existence des phases de Magnéli au voisinage de la courbe (6). Les travaux de ANDERSON et KAHN [20] semblent indiquer un domaine de stabilité relativement étendu pour V_6O_{11} et excessivement restreint pour V_5O_9 ; la phase V_4O_7 serait plus stable au-dessus de 1100 K et V_3O_5 au-dessous de 1300 K, résultats que l'on ne retrouve pas sur le diagramme de KOSUGE (19].

- 11 -

Diagramme d'ELLINGHAM relatif aux systèmes Fe-O et V-O

- 12 -

Quoiqu'il en soit, l'existence de ces phases a pour effet de placer la limite du domaine de stabilité de V_2O_3 vers les hautes pressions d'oxygène, au-dessous de la ligne (6) sur le diagramme de la figure l. Il est donc possible à la seule vue de ce diagramme, de remarquer que les oxydes Fe_2O_3 et V_2O_3 n'ont aucun domaine commun aux températures élevées. Ils ne sauraient donc donner une solution solide en toutes proportions.

B.3. - LE SYSTEME Fe-V-O

Des considérations basées sur le diagramme d'Ellingham permettent de prévoir l'équilibre des phases à l'état solide représenté sur la figure 2.

FIGURE 2 Etablissement théorique de l'équilibre des phases dans le système Fe-V-O à l'état solide

- 13 -

2.215.10 - 2-14

La principale caractéristique de ce diagramme est l'enrichissement en vanadium des phases oxyde lorsque le potentiel oxygène diminue. Nous avons aussi fait apparaître sur ce diagramme théorique la dismutation du mélange Fe_2O_3 - V_2O_3 en V_3O_5 et une phase spinelle. Cette dismutation que l'on peut envisager d'après le diagramme d'Ellingham n'a toutefois jamais été signalée dans la littérature. Il s'avère donc nécessaire de vérifier expérimentalement cette éventualité.

Si nous considérons l'équilibre (2)

(2) $6 \text{ FeO} + 0_2 \rightleftharpoons 2 \text{ Fe}_3 0_4$

nous voyons que le passage en solution solide de FeV_2O_4 dans la magnétite se traduit par le remplacement de Fe^{3+} par V^{3+} , plus difficilement réductible, et par conséquent diminue la pression d'oxygène à l'équilibre. Lorsque la pression d'oxygène atteint celle de l'équilibre Fe-FeO (point A sur la figure 2), la réduction ne se fait plus avec formation de FeO, mais avec formation directe de fer métal.

L'équilibre à considérer est alors :

 $\frac{3}{2}$ Fe + O_2 \leftarrow $\frac{1}{2}$ Fe₃ O_4

A la limite, le vanadite de fer se réduit directement suivant l'équilibre (8) :

(8) $2 \operatorname{Fe} + 2 \operatorname{V}_2 \operatorname{O}_3 + \operatorname{O}_2 \rightleftharpoons 2 \operatorname{FeV}_2 \operatorname{O}_4$

sous une pression d'oxygène située dans le domaine d'existence du fer et de V_2O_3 .

La pression d'oxygène à l'équilibre a été mesurée par JACOB et ALCOCK [6], ZABEITOVA, LYKASOV et MIKHAILOV [15] au moyen de la pile :

Pt, Fe-FeO / ZrO_2 -CaO / Fe-FeV $_2O_4$ -V $_2O_3$, Pt

Les résultats respectifs sont :

$$\Delta G_8^{O} = (-577\ 500\ +\ 124,7\ T)J \qquad |6|$$

$$\Delta G_8^{O} = (-620\ 200\ +\ 156,4\ T)J \qquad |15|$$

Les deux expressions donnent des résultats comparables au voisinage de 1350 K et sont qualitativement en accord avec la faible réductibilité du vanadite FeV₂O₄. Mais il convient de remarquer que l'utilisation d'électrodes de platine est critiquable : la facilité avec laquelle le fer diffuse dans le platine ne permet pas d'affirmer qu'au cours des mesures, l'activité du fer soit restée égale à l.

CHAPITRE II

TECHNIQUES EXPERIMENTALES ET METHODES ANALYTIQUES

A - TECHNIQUES EXPERIMENTALES

Pour explorer l'intérieur du diagramme ternaire Fer-Vanadium-Oxygène nous avons utilisé essentiellement les deux méthodes suivantes :

- les réductions ménagées sous atmosphères contrôlées soit H_2/H_2O , soit CO/CO_2 . A chaque composition du mélange gazeux correspond une pression d'oxygène bien définie.

- les réactions entre produits, réalisées en tubes de silice scellés sous vide permettent de déterminer la nature des phases à l'équilibre en un point du diagramme, mais ne donnent aucun renseignement sur les pressions d'oxygène.

A.1. - REDUCTION SOUS ATMOSPHERES H2-H2O

A.l.l. Principe

L'échantillon à réduire est placé à l'intérieur d'un four dans lequel circule une atmosphère H_2-H_2O de composition constante. Le mélange gazeux est obtenu en saturant d'eau un courant d'hydrogène suivant la technique décrite par ZAITSEV et BULGAKOVA (21).

Soit p_{H_2O} , la pression de vapeur saturante de l'eau à la température du saturateur, et P la pression atmosphérique; la composition du mélange gazeux est défini par :

$$\frac{{}^{p}{}_{H_{2}O}}{{}^{p}{}_{H_{2}}} = \frac{{}^{p}{}_{H_{2}O}}{{}^{p}{}_{-}{}^{p}{}_{H_{2}O}}$$

A chaque mélange H_2/H_2O correspond une pression d'oxygène bien déterminée, calculée à partir de l'équilibre :

$$H_2 + \frac{1}{2} O_2 - H_2 O$$
 (1)

- 19 -

$$\ln p_{0_{2}} = 2 \ln \frac{H_{2}0}{H_{2}} - 2 \ln K_{1}(T)$$

Les valeurs de la constante de formation de l'eau K_1 (T) sont calculées d'après les données du National Bureau of Standards [22].

- 20 -

т,к	973	1073	1173	1273	1373	1473	1573
ln K ₁ (T)	24,057	21,136	18,727	16,732	15,027	13,507	12,142

D'où l'expression linéarisée de ln ${\rm K}_{\underline{l}}\left({\rm T}\right)$ en fonction de la température :

$$\ln K_{1}(T) = \frac{30\ 273}{T} - 7,062$$

Si l'on fixe la température du saturateur au voisinage de 100°C, on obtient des mélanges très riches en vapeur d'eau d'où très oxydants, mais alors, une faible variation de la pression atmosphérique se traduit par une forte variation du rapport $p_{\rm H_2O}/p_{\rm H_2}$.

A.1.2. Description de l'appareil H_2-H_2O

Le montage utilisé est représenté sur la figure 3. L'hydrogène désoxygéné traverse un ballon rempli d'eau bouillante jouant le rôle de saturateur. L'excès de vapeur d'eau est ensuite éliminé dans un condenseur constitué d'une colonne maintenue à la température désirée par circulation d'eau chaude. Le mélange hydrogène - vapeur d'eau circule ensuite dans un four ADAMEL contenant l'échantillon à étudier. Des cordons chauffants entourent les parties du tube en silice situées à l'extérieur du four. Ceci évite toute condensation de vapeur d'eau qui entraînerait une modification de l'atmosphère oxydoréductrice du four. A la fin de la manipulation, l'échantillon est trempé par un jet d'air liquide envoyé sur la partie extérieure du tube. Un contre-courant d'azote empêche toute oxydation parasite.

FIGURE 3 Dispositif de ZAITSEV et BULGAKOVA

a : Ballon rempli d'eau à l'ébullition (ou saturateur)
b : Condenseur
c : Circulation d'eau chaude
d : Four A.D.A.M.E.L.

A.2. - REDUCTION SOUS ATMOSPHERES CO-CO

Nous avons monté un appareil identique à celui décrit précédemment par M.C. TRINEL |23|,(figure 4). Cette méthode de réduction présente l'inconvénient d'utili-

ser un gaz toxique, en l'occurence l'oxyde de carbone, mais

ille Jurr elle a le grand avantage de donner des atmosphères oxydoréductrices beaucoup plus précises et plus stables que celles obtenues au moyen de l'appareil H_2/H_2O .

A chaque mélange CO/CO_2 correspond une pression d'oxygène, calculée à partir de l'équilibre :

$$2 \operatorname{co} + \operatorname{o}_2 \xrightarrow{} 2 \operatorname{co}_2$$
 (2)

soit

$$\ln p_{0_2} = 2 \ln \frac{CO_2}{CO} - 2 \ln K_2 (T)$$

Connaissant les enthalpies libres de formation des oxydes de carbone |24| on établit :

$$\ln K_2(T) = \frac{33\,971}{T} - 10,44$$

La régulation des débits est assurée par des soupapes à phtalate de butyle, des pertes de charge variables et des ballons de grande capacité amortissant les perturbations. La mesure des débits de CO et CO_2 se fait au moyen de rotamètres préalablement étalonnés; la précision sur la pression d'oxygène est de l'ordre de 4 %.

Les gaz passent ensuite dans un mélangeur puis circulent dans un four ADAMEL horizontal qui contient l'échantillon.

La trempe est effectuée en amenant la nacelle par l'intermédiaire d'un fil de platine dans la partie du tube en silice située à l'extérieur du four. Cette partie de l'appareillage est refroidie simultanément par circulation d'eau froide.

, .

B - METHODES ANALYTIQUES

L'analyse des mélanges soumis à des réductions ménagées consiste à déterminer la perte en oxygène. Celle-ci est mise en évidence par une mesure systématique de la perte de masse de l'échantillon et confirmée parfois par analyse chimique.

L'analyse radiocristallographique permet l'identification des différentes phases solides en présence.

B.1. - ANALYSE RADIOCRISTALLOGRAPHIQUE

Nous avons utilisé une chambre à focalisation "NONIUS" montée sur un générateur Kristalloflex SIEMENS avec anticathode de cuivre. Un monochromateur isole la raie Ka ($\lambda = 1,54178$ Å). Les diagrammes de poudre réalisés, en présence de chlorure de potassium comme étalon interne, permettent de mesurer les paramètres cristallins avec une bonne précision.

B.2. - ANALYSE CHIMIQUE

L'analyse chimique d'un échantillon donné comprend :

- le dosage du fer (II) et du fer (III)
- le dosage du vanadium
- la mise en évidence du fer métal dans les échantillons réduits.

B.2.1. Dosage du fer II et du fer III

L'échantillon est dissous à chaud dans l'acide chlorhydrique 6 N sous atmosphère inerte.

Le fer (II) est dosé directement en milieu phosphosulfurique par le bichromate de potassium. Le fer total est titré après réduction du fer (III) en fer (II) par le chlorure stanneux dont l'excès est éliminé par le chlorure mercurique.

- 25 -

Le nombre d'atomes d'oxygène liés à un atome de fer est défini par :

$$\frac{O}{Fe} = \frac{Fe(II) + 1,5 Fe(III)}{Fe \text{ total}}$$

B.2.2. Détection du fer métal

La présence de fer métal dans un échantillon réduit est décelée au moyen d'une solution alcoolique de chlorure mercurique et de salicylate de sodium. La présence du fer se manifeste par une coloration rouge de la solution alcoolique.

B.2.3. Dosage du vanadium

80

30

32 05 Le vanadium peut être dosé par manganimétrie, coulométrie, ou iodométrie. Cependant, aucune de ces méthodes de dosage n'a été mise en oeuvre car le dosage du vanadium dans les échantillons réduits n'est pas nécessaire. En effet, la représentation du diagramme d'ELLINGHAM (figure 1) confirme que, dans le domaine de pressions d'oxygène étudié, seul peut exister l'oxyde de vanadium trivalent V_2O_3 .

B.3. - ELABORATION DES PRODUITS DE DEPART

B.3.1. Oxyde de fer : Fe_2O_3

Nous avons utilisé l'oxyde de fer MERCK, de qualité "pour analyse" titrant au minimum 99 % et dont l'analyse donne une teneur maximale de 0,05 % Ca et 0,03 % Mg.

B.3.2. Oxyde de vanadium : V_2O_3

Le sesquioxyde de vanadium V_2O_3 résulte de la réduction sous hydrogène de l'anhydride vanadique V_2O_5 obtenu par calcination ménagée à l'air du métavanadate d'ammonium NH_4VO_3 préalablement purifié.

Le matériau de départ est le métavanadate d'ammonium commercial qui est recristallisé, lavé à l'eau distillée, séché à l'étuve vers 40°C et finement broyé avant d'être calciné pendant 24 heures à T = 550°C dans un four ADAMEL. La température du four est contrôlée avec précision car à partir de 600°C apparaît un phénomène de rochage dû à la dissociation thermique des vanadates acides. Le produit final qui se présente sous la forme d'une poudre jaune orangé est l'hémipentoxyde de vanadium V_2O_5 pur à 98,9 %. Sa pureté est déterminée par analyse chimique. La meilleure méthode de dosage consiste à réduire, en milieu acide, les ions V^{5^+} par le sel de Mohr, selon la réaction :

 $VO_2^+ + 2 H^+ + Fe^{2+} \longrightarrow VO^{2+} + H_2O + Fe^{3+}$

L'indicateur utilisé est la diphénylamine sulfonate de baryum.

L'anhydride vanadique V_2O_5 ainsi synthétisé est ensuite placé sous courant d'hydrogène à 550°C pendant 24 heures puis vers 900°C pendant 48 heures. Le produit résultant de la réduction est V_2O_3 dont la pureté est contrôlée par analyse radiocristallographique.

B.3.3. Solutions solides spinelles

Les spinelles étudiés de composition y FeV_2O_4 , $(1-y)\text{Fe}_3O_4$ sont préparés dans un appareil H_2-H_2O , par réduction des mélanges $\frac{2y}{3}$ V_2O_3 , $(1 - \frac{2y}{3})$ Fe_2O_3 à 850°C pendant 24 heures. La pression d'oxygène imposée par l'intermédiaire du mélange H_2-H_2O varie avec la composition de la solution solide spinelle que l'on désire obtenir. Les spinelles riches en magnétite sont synthétisés sous atmosphères oxydantes (domaine de Fe_3O_4). Les solutions solides riches en vanadium sont préparées sous des atmosphères plus réductrices (domaine d'existence de FeO et même du fer).
CHAPITRE III

ETUDE SOUS ATMOSPHERES CONTROLEES CO - CO2

- 31 -

Les atmosphères contrôlées $CO-CO_2$ ont été utilisées dans le but de déterminer les équilibres entre le protoxyde de fer $Fe_{1-x}O$ et la solution solide spinelle $Fe_3O_4 - FeV_2O_4$.

Les spinelles étudiés de composition y $\text{FeV}_2^{O_4}$, $(1-y)\text{Fe}_3^{O_4}$ ont été préparés dans un appareil $\text{H}_2-\text{H}_2^{O}$; ils sont obtenus à partir des mélanges $\frac{2y}{3}$ $\text{V}_2^{O_3}$, $(1 - \frac{2y}{3})\text{Fe}_2^{O_3}$ placés pendant 24 heures à 850°C sous 10 % H_2 . La pureté des produits finals est contrôlée par analyses radiocristallographique et chimique.

Plusieurs solutions solides spimelles sont ensuite soumises à des réductions ménagées sous atmosphères oxydoréductrices $CO-CO_2$ à 850°C, 1000°C et 1100°C. Nous avons travaillé sur des échantillons de masse approximative 1000 mg en procédant de la manière suivante : le produit réparti uniformément dans une nacelle en réfractaire est placé dans un premier temps sous 3 % CO donc dans le domaine de stabilité du spinelle Fe_3O_4 - FeV_2O_4 . Les pertes de masse sont toujours calculées par rapport à la masse initiale de la solution solide spinelle ayant subi ce traitement préalable. L'échantillon est ensuite soumis à une pression d'oxygène connue puisque déterminée à partir du rapport $\frac{CO}{CO_2}$ du mélange gazeux. L'épaisseur de la couche de produit étant très faible, la réduction est totale dans un délai de 8 à 10 heures.

Chaque spinelle ainsi étudié est réduit progressivement sous des atmosphères de plus en plus riches en oxyde de carbone. La perte de masse qui correspond exclusivement à un départ d'oxygène fournit pour chaque pression d'oxygène imposée un nouveau rapport $\frac{O}{V+Fe}$.

Si des solutions solides de différentes compositions sont soumises à la même atmosphère, les rapports $\frac{O}{V+Fe}$ obtenus permettent de tracer sur le diagramme Fer-Vanadium-Oxygène une ligne iso-pression d'oxygène qui représente une ligne de conjugaison entre un protoxyde de fer Fe_{1-x}O et une solution solide y FeV₂O₄, (1-y)Fe₃O₄.

B - RESULTATS EXPERIMENTAUX

B.1. - ETUDE A 850°C

B.1.1. Isothermes de réduction

Nous considérerons, en accord avec DARKEN |16| et VALLET |25| que le domaine de composition du protoxyde de fer pur à 850°C s'étend de FeO_{1,119} à FeO_{1,049}. La wüstite est stable sous des atmosphères CO-CO₂ caractérisées par des teneurs en oxyde de carbone comprises entre 25 et 68 %.

A 850°C, nous avons réalisé la réduction progressive de la magnétite pure Fe_3O_4 et de quatre solutions solides spinelles y FeV_2O_4 , $(1-y)Fe_3O_4$ avec y = 0,075 - 0,15 -0,225 et 0,30.

Les isothermes de réduction relatives à ces échantillons sont tracées sur la figure 5. Sur ces courbes les parties rectilignes 25 % CO et 68 % CO correspondent aux équilibres Fe₃O₄ - FeO et FeO - Fe.

A partir des points expérimentaux ont été définies 19 droites de conjugaison correspondant à 19 équilibres spinelle – protoxyde de fer. La figure 6 met en évidence la disposition relative de plusieurs de ces lignes de conjugaison à l'intérieur du diagramme Fe-V-O pour T = 850°C. Chaque droite ainsi tracée passe par 3 à 5 points alignés. De nombreux points expérimentaux ont été vérifiés lors d'une seconde série d'expériences et la marge d'erreur sur le rapport $\frac{O}{V+Fe}$ est toujours inférieure à 1 %.

De plus, certains échantillons ont été dosés et les résultats de l'analyse chimique sont en accord avec ceux obtenus par une évaluation précise de la perte de masse.

- 33 -

FIGURE 5

Isothermes de réduction (850°C) des spinelles y FeV_2O_4 , (1-y) Fe_3O_4

B.1.2. <u>Calcul des pressions d'oxygène et des équations des</u> droites d'équilibre

Le calcul des pressions d'oxygène se fait au moyen de l'équilibre :

 $CO + \frac{1}{2}O_2 \longrightarrow CO_2$ $\Delta G^O = (86,85 \text{ T} - 282 500) \text{ J} |24|$

A $850^{\circ}C$ ln K(T) = 19,807

D'où
$$\ln p_{0_2} = 2 \ln \frac{CO_2}{CO} - 39,61.$$

Le tableau I donne la pression d'oxygène et l'équation des 19 lignes de conjugaison. Ces droites sont calculées par régression linéaire (méthode des moindres carrés).

y = V/(V+Fe) est exprimé en fonction de x = O/(V+Fe); la pente a₁ est positive et l'ordonnée à l'origine a₀ négative. Le coefficient de corrélation r^2 qui mesure le degré de perfection de l'ajustement de la droite est toujours supérieur à 0,985.

Le tracé des lignes de conjugaison à l'intérieur du diagramme Fe-V-O fournit quelques indications supplémentaires :

- les solutions solides spinelles y FeV₂O₄, (1-y)Fe₃O₄ caractérisées par y<0,43 sont en équilibre avec un protoxyde de fer dont la composition est comprise entre FeO_{1,119} et FeO_{1,049}
- le spinelle 0,43 FeV_2O_4 0,57 Fe_3O_4 est en équilibre avec deux phases différentes sous une pression d'oxygène (68 % CO) qui est celle du mélange $\text{FeO}_{1,049}$ -Fe
- les spinelles dont la teneur en FeV₂0₄ est supérieure
 à 43 % sont en équilibre avec le fer pur.

% CO	ln p _O	$y = a_1 x + a_0$
25	2	Fauilibro Fo O /FoO
25	$-3/,41 \pm 0,06$	Equilibre re ₃ 0 ₄ /reo
32	$-38,12 \pm 0,08$	0,470 x - 0,521
34	$-38,27 \pm 0,09$	0,484 x - 0,532
36	- 38,45 ± 0,11	0,511 x - 0,560
38	- 38,61 ± 0,12	0,534 x - 0,583
40	- 38,81 ± 0,07	0,606 x - 0,657
42	- 38,96 ± 0,08	0,649 x - 0,702
44	- 39,12 ± 0,06	0,644 x - 0,694
46	- 39,28 ± 0,05	0,628 x - 0,668
48	- 39,44 ± 0,04	0,679 x - 0,725
50	- 39,61 ± 0,05	0,735 x - 0,783
52	- 39,76 ± 0,06	0,789 x - 0,845
54	- 39,92 ± 0,05	0,801 x - 0,853
56	- 40,09 ± 0,05	0,854 x - 0,909
58	- 40,25 ± 0,06	0,878 x - 0,930
60	- 40,42 ± 0,09	$0,912 \times - 0,964$
62	$-40,61 \pm 0,09$	0,913 x - 0,960
64	- 40,75 ± 0,05	0,973 x - 1,024
66	- 40,91 ± 0,06	0,981 x - 1,027
68	- 41,11 ± 0,07	0,980 x - 1,018
		Equilibre FeO/Fe

TABLEAU I

Equations des lignes de conjugaison spinelle - protoxyde de fer à 850°C

- 37 -

B.2. - ETUDE A 1000°C

B.2.1. Isothermes de réduction

A 1000°C, le protoxyde de fer est stable sous des atmosphères $CO-CO_2$ dont la teneur en oxyde de carbone est comprise entre 17 et 72 %. Sa composition varie entre $FeO_{1.140}$ et $FeO_{1.048}$ |16, 25|.

A cette température, nous avons effectué la réduction ménagée de Fe_3O_4 et de six solutions solides spinelles y FeV_2O_4 , $(1-y)\text{Fe}_3O_4$ caractérisées par y = 0,075 - 0,15 -0,225 - 0,30 - 0,375 et 0,45. Les isothermes de réduction obtenues sont représentées sur la figure 7. A partir des points expérimentaux 20 droites de conjugaison spinelle protoxyde de fer ont été établies.

B.2.2. <u>Calcul des pressions d'oxygène et des équations des</u> droites d'équilibre

A 1000°C :

$$\ln p_{0_2} = 2 \ln \frac{CO_2}{CO} - 32,48$$

Le tableau II donne la pression d'oxygène ainsi que l'équation des 20 lignes de conjugaison. Le coefficient de corrélation est toujours compris entre 0,995 et l.

A 1000°C, la solution solide spinelle dont la pression d'oxygène à l'équilibre est celle relative au mélange $\text{FeO}_{1,048}$ - Fe a comme composition 0,53 FeV_2O_4 - 0,47 Fe_3O_4 .

B.3. - ETUDE A 1100°C

B.3.1. Isothermes de réduction

A 1100°C, le domaine de composition du protoxyde de fer a pour limites $FeO_{1,153}$ (sous 15 % CO) et $FeO_{1,048}$ (sous 74 % CO).

FIGURE 7 Isothermes de réduction (1000°C) des spinelles $y \ FeV_2O_4$, (1-y)Fe₃O₄

์ RUS ปเปย

% CO	ln p ₀₂	$y = a_1 x + a_0$
17	- 29,29 ± 0,05	Equilibre Fe ₃ 0 ₄ /FeO
30	- 30,78 ± 0,05	0,623 x - 0,691
32	- 30,98 ± 0,06	$0,641 \times - 0,701$
36	- 31,32 ± 0,04	0,709 x - 0,772
40	- 31,68 ± 0,06	0,787 x - 0,851
42	- 31,83 ± 0,07	0,835 x - 0,900
44	- 31,98 ± 0,08	0,899 x - 0,972
46	- 32,16 ± 0,04	0,917 x - 0,987
48	- 32,32 ± 0,05	0,931 x - 0,998
50	- 32,48 ± 0,06	0,969 x - 1,039
52	- 32,64 ± 0,05	1,000 x - 1,067
54	- 32,80 ± 0,04	1,018 x - 1,085
56	- 32,97 ± 0,05	1,031 x - 1,091
58	- 33,13 ± 0,05	1,079 x - 1,142
60	- 33,32 ± 0,07	1,095 x - 1,157
62	- 33,46 ± 0,04	1,117 x - 1,178
64	- 33,62 ± 0,06	1,140 x - 1,201
66	- 33,80 ± 0,05	1,154 x - 1,212
68	- 34,01 ± 0,06	1,190 x - 1,251
70	- 34,17 ± 0,04	1,212 x - 1,268
72	- 34,37 ± 0,04	1,231 x - 1,286
	•	Equilibre FeO/Fe

TABLEAU II

BUS

Equations des lignes de conjugaison spinelle - protoxyde de fer à 1000°C

- 40 -

FIGURE 8 Isothermes de réduction (1100°C) des spinelles y FeV₂0₄, (1-y)Fe₃0₄

% CO	ln p _{O2}	$y = a_1 x + a_0$
15	- 25,13 ± 0,04	Equilibre Fe ₃ 0 ₄ /FeO
23	- 26,17 ± 0,05	0,492 x - 0,553
26	- 26,52 ± 0,07	0,619 x - 0,690
28	- 26,71 ± 0,05	0,692 x - 0,770
30	- 26,89 ± 0,05	0,694 x - 0,760
32	- 27,09 ± 0,07	0,724 x - 0,787
34	- 27,29 ± 0,06	0,794 x - 0,864
36	- 27,45 ± 0,09	0,843 x - 0,918
38	- 27,61 ± 0,04	0,859 x - 0,933
40	- 27,78 ± 0,04	0,888 x - 0,959
42	- 27,95 ± 0,04	0,954 x - 1,032
44	- 28,11 ± 0,05	0,995 x - 1,073
46	- 28,26 ± 0,04	x - 1,071
48	- 28,43 ± 0,04	1,024 x - 1,096
50	- 28,59 ± 0,06	1,061 x - 1,131
52	- 28,74 ± 0,06	1,075 x - 1,144
54	- 28,90 ± 0,04	1,115 x - 1,187
56	- 29,06 ± 0,04	1,132 x - 1,204
58	- 29,24 ± 0,05	1,162 x - 1,231
60	- 29,40 ± 0,06	1,175 x - 1,240
62	- 29,59 ± 0,06	1,200 x - 1,264
64	- 29,75 ± 0,09	1,211 x - 1,271
66	- 29,92 ± 0,05	1,251 x - 1,311
68	- 30,09 ± 0,04	1,249 x - 1,304
70	- 30,29 ± 0,04	1,269 x - 1,322
72	- 30,48 ± 0,04	1,309 x - 1,362
74	- 30,69 ± 0,04	1,331 x - 1,383 Equilibre FeO/Fe

BUS

TABLEAU III Equation des lignes de conjugaison spinelle-protoxyde de fer à 1100°C

42 -

Nous avons suivi la réduction progressive de la magnétite et de sept solutions solides spinelles y FeV_2O_4 , $(1-y)Fe_3O_4$ caractérisées par y = 0,075 - 0,15 - 0,225 - 0,30 - 0,375 - 0,45 - 0,525. A partir des isothermes de réduction tracées sur la figure 8, 26 lignes de conjugaison spinelle - protoxyde de fer ont été déterminées.

B.3.2. <u>Calcul des pressions d'oxygène et des équations des</u> droites d'équilibre

A 1100°C :

$$\ln p_{0_{2}} = 2 \ln \frac{CO_{2}}{CO} - 28,59$$

Les équations relatives aux 26 lignes de conjugaison et les pressions d'oxygène correspondantes sont rassemblées dans le tableau III.

A 1100°C, la solution solide spinelle dont la pression d'oxygène à l'équilibre est celle du mélange $\text{FeO}_{1,048}$ - Fe a comme composition 0,59 FeV_2O_4 - 0,41 Fe_3O_4 .

ţ

C - TRAITEMENT THERMODYNAMIQUE DES RESULTATS

- 45 -

C.1. - ETUDE A 1000°C

L'utilisation des atmosphères contrôlées $CO-CO_2$ a permis de connaître pour T = 1000°C, 20 lignes de conjugaison qui traduisent un équilibre entre une solution solide spinelle (Fe₃O₄)_{s.s.} et un protoxyde de fer (FeO)_{s.s.} selon l'équation :

$$2(\text{Fe}_{3}O_{4})$$
 s.s. (6 FeO) s.s. + O_{2}

$$K = \frac{a^{6}(FeO)}{a^{2}(Fe_{3}O_{4})} \cdot p_{O_{2}}$$

La détermination des relations activité - composition dans la phase spinelle nécessite le calcul préalable de l'activité du protoxyde de fer Fe_{1-x}^{0} relatif à chaque ligne de conjugaison.

C.1.1. Activité du protoxyde de fer

Fe 0 ou Fe0 peut être considéré comme une solution solide de Fe0 stoechiométrique et d'oxygène :

 $FeO_z \longrightarrow FeO + (z-1)O$

l'état standard ($a_{FeO} = 1$) est le protoxyde en équilibre avec le fer.

L'équation de GIBBS-DUHEM appliquée à cette solution solide :

$$d \ln a_{FeO} + (z-1)d \ln a = 0$$

permet d'écrire :

$$a_0 = Cte \cdot p_{0_2}^{1/2}$$

 $\ln a_{FeO} = - \int_{(p_{O_2})_{O}}^{p_{O_2}} \frac{z - 1}{2} d \ln p_{O_2}$

avec $z = \frac{[0]}{[Fe]}$

C.1.1.1. Relations entre O/Fe et ln po2

a - Protoxyde de fer pur (FeO)

A partir de l'isotherme de réduction relative à la magnétite pure (figure 7, y = 0) il est facile de déduire les variations de z = 0/Fe en fonction de ln p_{02} . Ces valeurs, reportées sur la figure 9, sont en excellent accord avec les mesures effectuées par VALLET |25|. La courbe ainsi obtenue est une droite d'équation :

 $\left(\frac{0}{\text{Fe}}\right)_{0} = 0,0208 \ln p_{0} + 1,752$ (r² = 0,9938) (courbe A - figure 9)

b - Protoxyde de fer (FeO) en équilibre avec une solution solide spinelle

Il est possible d'établir les variations de z = O/Fe pour le protoxyde de fer en équilibre avec le spinelle y FeV_2O_4 , $(1-y)Fe_3O_4$.

En effet, à chaque teneur en CO correspond une ligne de conjugaison connue et par suite un protoxyde de fer FeO_Z bien déterminé. Les points expérimentaux reportés sur la figure 9 ont permis de calculer :

Composition du protoxyde de fer en fonction du potentiel oxygène (1000°C)

$$\left(\frac{O}{Fe}\right)_{s.s.} = 0,0157 \ln p_{0} + 1,580$$
 (r² = 0,9806)

(courbe B - figure 9)

Cette équation diffère sensiblement de la précédente (courbe A) ce qui est l'indice d'une solubilité du vanadium dans le protoxyde de fer.

C.1.1.2. Activité du protoxyde de fer pur : a (FeO)

Pour le protoxyde de fer pur, il a été établi expérimentalement :

$$\left(\frac{O}{Fe}\right)_{O} = 0,0208 \ln p_{O_2} + 1,752$$

L'intégration de l'expression donnant ln a_{FeO} en fonction de z = 0/Fe conduit à :

 $\ln a_{(FeO)_{O}} = -0,0052 (\ln p_{O_{2}} - \ln p_{O_{2}}^{o}) - 0,376(\ln p_{O_{2}} - \ln p_{O_{2}}^{o}))$

p^o est la pression d'oxygène à l'équilibre Fe - FeO_{1,048}, soit 2 à 1000°C :

$$p_{0_2}^0 = 1, 2.10^{-15}$$
 atm.

Les valeurs de l'activité du protoxyde de fer pur a (FeO) en fonction du rapport O/Fe sont rassemblées dans le tableau IV.

a - Principe du calcul

Considérons à l'intérieur du diagramme fer-vanadiumoxygène une ligne de conjugaison protoxyde de fer - solution solide spinelle.

Les points A, B, C, et D obtenus expérimentalement correspondent au même rapport CO/CO_2 ; ils sont situés sur une ligne iso-pression d'oxygène. Dans le domaine biphasé ces points doivent être alignés puisque les droites de conjugaison sont des lignes iso-potentiel oxygène. Si la solubilité du vanadium dans FeO_2 était nulle, les quatre points A, B, C, D seraient alignés. La droite passant par les points A, B, C coupe systématiquement l'axe V/V+Fe = O à gauche du point D, c'est-à-dire pour des rapports O/Fe inférieurs. Ce fait toujours constaté est la preuve d'une solubilité faible mais réelle du vanadium dans FeO_2 . Il faut évaluer cette solubilité par le calcul puisque l'expérience ne permet pas de mettre en évidence une cassure de la courbe iso-pression d'oxygène au moment où la droite ABC rencontre le domaine monophasé.

Une courbe iso-activité d'un composé i subit une rupture de pente mais ne présente pas de discontinuité lorsque l'on passe d'un domaine biphasé à un domaine monophasé. Intéressonsnous plus particulièrement à l'activité de FeO.

Dans le domaine biphasé, les courbes iso a_{FeO} sont connues expérimentalement : ce sont les droites ABC.

- 49 -

Dans le domaine monophasé, ces courbes ne sont pas déterminées : on ne connaît a_{FeO} que sur l'axe Fe-O.

Par suite de la faible solubilité du vanadium dans FeO, on peut supposer que FeO suit la loi de RAQULT c'est-à-dire écrire :

$$a_{FeO} = \frac{Fe}{(V + Fe)} \cdot a_{(FeO)}$$

soit en appliquant cette relation au point D' :

$$(a_{FeO})_{D'} = (\frac{Fe}{V + Fe})_{D'} \cdot (a_{FeO})_{D}$$

La ligne DD'CBA ne constitue naturellement pas une ligne iso-activité de FeO puisque $(a_{FeO}) \neq (a_{FeO})_{D}$

Montrons que cette ligne peut être considérée comme une ligne iso-potentiel oxygène avec une bonne approximation. Pour cela, considérons l'équilibre :

$$Fe + \frac{1}{2} O_2 \longrightarrow FeO$$

$$K = \frac{a_{FeO}}{a_{Fe}} \cdot p_{O_2}^{-1/2}$$

Cette équation peut être appliquée à n'importe quel point du domaine monophasé (FeO)_{s.s.}.

Or, nous avons montré qu'en D' :

$$(a_{FeO})_{D'} = (\frac{Fe}{V + Fe})_{D'} \cdot (a_{FeO})_{D}$$

De la même manière, on peut établir :

$$(a_{Fe})_{D'} = (\frac{Fe}{V + Fe})_{D'} \cdot (a_{Fe})_{D}$$

Par suite :

$$\left(\frac{a_{\text{FeO}}}{a_{\text{Fe}}}\right)_{\text{D'}} = \left(\frac{a_{\text{FeO}}}{a_{\text{Fe}}}\right)_{\text{Te}}$$

K étant une constante à une température donnée :

 $(p_{O_2}) = (p_{O_2})$

La ligne DD'CBA est donc une ligne iso-potentiel oxygène. Ceci n'est vrai que si la loi de RAOULT s'applique au fer aussi bien qu'au FeO. En pratique, l'approximation est moins bonne pour le fer mais elle peut être acceptée compte tenu des faibles solubilités.

b - Solubilité du vanadium dans le protoxyde de fer et calcul de a (FeO)

A chaque teneur en oxyde de carbone correspondent d'une part une ligne biphasée solution solide spinelle protoxyde de fer saturé en vanadium et d'autre part une courbe iso-potentiel d'oxygène que l'on peut assimiler à une perpendiculaire à l'axe Fe-O. Le point de rencontre de ces deux lignes donne la limite du domaine monophasé (figure 10).

Le tableau IV met en évidence la solubilité du vanadium dans FeO_z ainsi que les variations de a_(FeO)s.s. en fonction de la composition du protoxyde de fer pur.

52 ----_

			and the second secon	والماد المحادي والمحادي المتناوي والمترجع ومعاري والمترجع والمحاد والمحادي والمحادي	
% CO	ln p ₀₂	(0/Fe) ₀	^a (FeO) _O	solubilité du V dans FeO	^a (FeO) _{s.s.}
17	- 29,29	1,140	0,797	Equilibre Fe	3 ⁰ 4/Fe0
30	- 30,78	1,112	0,875	0,7 %	0,869
32	- 30,98	1,108	0,885	0,9 %	0,877
36	- 31,32	1,101	0,901	0,9 %	0,893
40	- 31,68	1,093	0,917	1 %	0,908
42	- 31,83	1,090	0,923	1 %	0,914
44	- 31,98	1,087	0,929	1 %	0,920
46	- 32,16	1,083	0,936	1 %	0,927
48	- 32,32	1,080	0,942	0,9 %	0,934
50	- 32,48	1,076	0,949	0,85 %	0,941
52	- 32,64	1,073	0,954	0,8 %	0,946
54	- 32,80	1,070	0,959	0,75 %	0,952
56	- 32,97	1,066	0,965	0,6 %	0,959
58	- 33,13	1,063	0,970	0,4 %	0,966
60	- 33,32	1,059	0,976	0,3 %	0,973
62	- 33,46	1,056	0,980	0,15 %	0,979
64	- 33,62	1,053	0,984	΄Ο	0,984
6.6	- 33,80	1,049	0,988	0	0,988
68	- 34,01	1,048	0,993	0	0,993
70	- 34,17	1,048	0,997	0	0,997
72	- 34,37	1,048	1	Equilibre	e Fe/FeO

TABLEAU IV

(BUS)

Activités du protoxyde de fer pur a_(FeO) et du protoxyde en

équilibre avec un spinelle a(FeO) à 1000°C

C.1.2. Relations activité-composition dans la phase spinelle

C.1.2.1. <u>Calcul de a (Fe₃O₄) pour les spinelles dont la</u> teneur en magnétite est comprise entre 47 et 79 %

Connaissant parfaitement a (FeO)s.s. relatif à chaque ligne biphasée spinelle - protoxyde de fer, il est possible à présent de déterminer l'activité de la magnétite dans la solution solide y FeV_2O_4 , $(1-y)Fe_3O_4$.

Considérons pour cela l'équilibre entre le protoxyde de fer pur et la magnétite pure :

$$2(\text{Fe}_3\text{O}_4)_{\text{O}} \xrightarrow{6(\text{FeO})_{\text{O}}} + \text{O}_2$$

A 1000°C :

 $p_{O_2}^{O} = 1,9.10^{-13} \text{ atm}$ $a(\text{FeO})_{O} = 0,797$ $a(\text{Fe}_{3}O_{4})_{O} = 1$

par suite :

 $\ln K = -30,65$

Considérons à présent l'équilibre $(Fe_3O_4)_{s.s.}/(FeO)_{s.s}$ caractérisé par la même constante. On établit :

 $\ln a_{(Fe_{3}O_{4})_{S.S.}} = 3 \ln a_{(FeO)_{S.S.}} - \frac{1}{2} \ln K + \frac{1}{2} \ln p_{O_{2}}$

A chaque ligne biphasée correspondent une pression d'oxygène ainsi qu'une activité de FeO en solution solide (tableau IV). L'activité de Fe_3O_4 n'est accessible de cette manière que pour les droites de conjugaison correspondant à des teneurs en oxyde de carbone comprises entre 30 et 72 %, c'est-à-dire dans le domaine de composition 0,468 < $x_{\text{Fe}_2O_4}$ < 0,79.

% CO	× _{Fe3} 04	^x Fe ₃ O ₄ ^a (Fe ₃ O ₄)s.s.		a (Fe ₃ 0 ₄) s.s. % CO ^x Fe ₃ 0 ₄		× _{Fe304}	^a (Fe ₃ ⁰ 4 ⁾ s.s.	
30	0,790	0,615	54	0,592	0,294			
32	0,769	0,572	56	0,574	0,276			
36	0,741	0,509	58	0,555	0,261			
40	0,703	0,447	60	0,545	0,242			
42	0,681	0,423	62	0,534	0,230			
44	0,660	0,400	64	0,522	0,216			
46	0,646	0,374	66	0,510	0,200			
48	0,636	0,354	68	0,496	0,182			
50	0,621	0,332	70	0,478	0,170			
52	0,601	0,313	72	0,468	0,158			

Les valeurs ainsi calculées sont rassemblées dans le tableau V.

TABLEAU V

Activité de la magnétite dans les spinelles définis par

0,47 < x_{Fe301} < 0,79 pour T = 1000°C

C.1.2.2. <u>Calcul de a (Fe</u>₃O₄) <u>pour les spinelles dont la teneur</u> en magnétite est inférieure à 47 %

L'activité de la magnétite dans les spinelles riches en Fe_3O_4 ou en FeV_2O_4 n'est pas accessible directement mais il est possible de la déterminer avec une bonne précision par le calcul si la solution solide y FeV_2O_4 , $(1-y)\operatorname{Fe}_3O_4$ se révèle être régulière. Une solution solide régulière au sens de HILDEBRAND est une solution solide dans laquelle l'entropie d'excès est nulle. L'entropie de mélange est donnée par l'expression :

 $\Delta S = - R(x_1 \ln x_1 + x_2 \ln x_2)$

De plus, l'enthalpie de mélange est telle que :

$$\Delta H = \alpha x_1 x_2$$

Les coefficients d'activité sont reliés aux concentrations par la relation :

$$\ln \gamma_{i} = \frac{\alpha (1 - x_{i})^{2}}{RT}$$

d'où :

$$a_{i} = x_{i} \exp \left| \beta (1 - x_{i})^{2} \right|$$

avec :

$$3 = \frac{\alpha}{RT}$$
, $i = 1, 2$

Nous avons représenté sur la figure ll la courbe des variations de ln $\gamma_{Fe_3O_4}$ en fonction de $(1 - x_{Fe_3O_4})^2$.

Si la solution solide est effectivement régulière les points doivent se situer sur une droite passant par l'origine. Expérimentalement on obtient (figure 11) :

$$\ln \gamma_{\text{Fe}_{3}O_{4}} = -3,341 (1 - x_{\text{Fe}_{3}O_{4}})^{2} - 0,129$$
$$r_{2} = 0,9950$$

Les points sont donc alignés mais la droite ne passe pas par l'origine. Cette constatation nous oblige à utiliser deux techniques différentes d'extrapolation suivant que nous sommes situés à l'une ou l'autre extrêmité de la solution solide spinelle. Du côté riche en ferrite de vanadium il n'est pas déraisonnable d'extrapoler la droite précédemment obtenue ln $\gamma_{\text{Fe}_3O_4}$ en fonction de $(1 - x_{\text{Fe}_3O_4})^2$; par contre du côté riche en magnétite il n'est pas possible de procéder de la même manière puisque la courbe ne passe pas par l'origine. Nous avons donc été amenés à extrapoler la courbe expérimentale donnant ln p_{O2} en fonction de $x_{\text{Fe}_3O_4}$.

FIGURE 11

Courbe des variations de ln $\gamma_{Fe_3O_4}$ en fonction de $(1-x_{Fe_3O_4})^2$ à 1000°C

Considérons, en premier lieu, les spinelles riches en ferrite de vanadium ($x_{Fe_3}O_4 < 0,47$). L'activité de la magnétite est déterminée directement à partir de l'équation précédemment établie :

$$\ln \gamma_{\text{Fe}_{3}O_{4}} = -3,341(1-x_{\text{Fe}_{3}O_{4}})^{2} - 0,129$$

et les résultats sont rassemblés dans le tableau VI :

× _{Fe3} 04	^a Fe ₃ 0 ₄	×Fe304	a _{Fe3} 04
0	(Y _O = 0,0311)	0,30	0,051
0,05	0,002	0,35	0,075
0,10	0,006	0,40	0,106
0,15	0,012	0,45	0,144
0,20	0,021	0,468	0,159
0,25	0,034		
	·		

TABLEAU VI

Activité de la magnétite dans les spinelles définis par

 $x_{Fe_{3}0_{4}} < 0,47$ pour T = 1000°C

C.1.2.3. <u>Calcul_de</u> a (Fe₃O₄) <u>pour les spinelles dont la</u> <u>teneur en magnétite est supérieure à 79 %</u>

Pour les spinelles riches en magnétite ($x_{Fe_3O_4}^{>0,79}$), nous avons extrapolé la courbe donnant ln p_{O_2} en fonction de $x_{Fe_3O_4}$. Cette courbe de variations établie expérimentalement pour 0,47 < $x_{Fe_3O_4}^{<}$ < 0,79, ainsi que pour $x_{Fe_3O_4}^{= 1}$ = 1 (tableau II) est représentée sur la figure 12.

Par extrapolation il est possible de connaître la pression d'oxygène relative à l'équilibre $(Fe_3O_4)_{s.s.}/(FeO)_{s.s.}$ pour toute solution solide spinelle dont la teneur en magnétite est comprise entre 79 et 100 %. A chaque valeur de ln p_{O_2} correspondent donc une composition de la phase spinelle $x_{Fe_3O_4}$, mais aussi une composition du protoxyde de fer pur $(O/Fe)_O$ et une activité du protoxyde de fer pur $a_{(FeO)_O}$ obtenues au moyen des deux relations précédemment citées :

$$\left(\frac{O}{Fe}\right)_{O} = 0,0208 \ln p_{O_{2}} + 1,752$$

$$\ln a_{(FeO)_{O}} = -0,0052(\ln^{2}p_{O_{2}} - \ln^{2}p_{O_{2}}^{\circ}) = 0,376(\ln p_{O_{2}} - \ln p_{O_{2}}^{\circ})$$

$$\ln pO_{2}$$

$$- 30$$

$$- 32$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

$$- 34$$

FIGURE 12

Courbe des variations de ln p_{O2} en fonction de la composition de la solution solide spinelle à 1000°C

- 59 -

La solubilité du vanadium dans chaque protoxyde de fer considéré, déterminée à partir de la figure 10, permet de déduire l'activité du protoxyde de fer a (FeO)s.s. équilibre avec un spinelle. L'activité de la magnétite dans la solution solide spinelle correspondante est accessible par la relation :

$$\ln a_{(Fe_{3}O_{4})_{s.s.}} = 3 \ln a_{(FeO)_{s.s.}} + \frac{1}{2} \ln p_{O_{2}} + 15,325$$

L'ensemble des calculs effectués sont reportés dans le tableau VII et donnent $a_{Fe_3O_4}$ en fonction de $x_{Fe_3O_4}$ pour les spinelles riches en magnétite.

ln p _{O2}	× _{Fe304}	(0 Fe)o	^a (FeO) _o	solubilité du V dans FeO	^a (FeO) s.s.	^a Fe ₃ 0 ₄
-29,40	0,984	1,140	0,802	0	0,802	0,964
-29,50	0,970	1,138	0,808	0	0,808	0,937
-29,60	0,954	1,136	0,814	0	0,814	0,912
-29,70	0,940	1,134	0,819	0	0,819	0,883
-29,80	0,924	1,132	0,825	0	0,825	0,859
-29,90	0,910	1,130	0,830	0	0,830	0,832
-30	0,896	1,128	0,835	0,1 %	0,834	0,803
-30,10	0,882	1,126	0,841	0,2 %	0,839	0,778
-30,20	0,868	1,124	0,846	0,3 %	0,843	0,750
-30,30	0,854	1,122	0,851	0,4 %	0,848	0,726
-30,40	0,842	1,120	0,856	0,5 %	0,852	0,701
-30,50	0,828	1 ,118	0,861	0,5 %	0 , 857	0,678
-30,60	0,814	1,116	0,866	0,5 %	0,862	0,657
-30,70	0,802	1,113	0,871	0,6 %	0,866	0,633

TABLEAU VII

Activité de la magnétite dans les spinelles définis par $x_{Fe_30_4}^{>0,79}$ pour T = 1000°C

- 60 -

C.1.2.4. Activité du vanadite de fer : FeV204

La figure 13 donne une représentation de la courbe activité-composition relative à la magnétite dans la solution solide spinelle.

FIGURE 13

Relations activité-composition des constituants de la solution solide spinelle (T = 1000°C)

¥ points expérimentaux

• points obtenus par extrapolation ou intégration.

L'activité du vanadite $\text{FeV}_2^{O_4}$ est obtenue par intégration de l'équation de GIBBS-DUHEM :

$$\ln {\gamma_{FeV_2O_4}} = - \int_{x_{Fe_3O_4}=0}^{x_{Fe_3O_4}} \frac{x_{Fe_3O_4}}{x_{FeV_2O_4}} d \ln {\gamma_{Fe_3O_4}}$$

Les résultats du calcul rassemblés dans le tableau VIII conduisent à la courbe activité-composition du ferrite de vanadium représentée sur la figure 13.

× _{FeV2} 04	^a FeV ₂ 04	× _{FeV2} 04	^a FeV204	× _{FeV2} 04	a _{FeV2} 04
0,05	0,001	0,35	0,088	0,65	0,434
0,10	0,005	0,40	0,121	0,70	0,528
0,15	0,011	0,45	0,162	0,75	0,604
0,20	0,022	0,50	0,213	0,80	0,701
0,25	0,037	0,55	0,279	0,85	0,789
0,30	0,059	0,60	0,354	0,90	0,871

TABLEAU VIII

Activité du vanadite de fer dans la solution

solide spinelle pour T = 1000°C

C.2. - ETUDE A 1100°C

а

Plusieurs solutions solides spinelles Fe_3O_4 - FeV_2O_4 ont été soumises à des réductions ménagées sous atmosphères contrôlées $CO-CO_2$ à la température de 1100°C. Les résultats expérimentaux, précédemment exposés (§ B.3.), ont donné lieu à un développement thermodynamique identique à celui réalisé pour T = 1000°C. C'est pourquoi, pour T = 1100°C, nous ne justifierons plus les différentes phases du calcul et nous présenterons l'ensemble des résultats sous forme de tableaux et de figures.

C.2.1. Activité du protoxyde de fer

C.2.1.1. Relations entre O/Fe et ln poo

La variation de la composition du protoxyde de fer en fonction du potentiel oxygène est mise en évidence sur la figure 14. Les points expérimentaux sont situés sur des droites dont les équations sont calculées par régression linéaire. On établit pour :

) le protoxyde de fer pur
$$(FeO_z)_o$$

 $(\frac{O}{Fe})_o = 0,0192 \ln p_{O_2} + 1,628$ $(r^2 = 0,9938)$
(courbe A, figure 14)

b) le protoxyde de fer (FeO_z)_{s.s.} en équilibre avec un spinelle
$$\left(\frac{O}{Fe}\right)_{s.s.} = 0,0163 \ln p_{O_2} + 1,535 (r^2 = 0,9847)$$

(courbe B, figure 14)

C.2.1.2. Activité du protoxyde de fer pur : a (FeO)

L'activité du protoxyde de fer pur est donnée par l'expression : ln a_(FeO) = - 0,0048 ($\ln^2 p_{O_2} - \ln^2 p_{O_2}^{O}$) - 0,314($\ln p_{O_2} - \ln p_{O_2}^{O}$) dans laquelle p_{O2} est la pression d'oxygène à l'équilibre

- 63 -

- 64 -
Fe - FeO_{1,048}, soit à 1100°C :

$$p_{0_2}^{0} = 4,7.10^{-14}$$
 atm.

Le tableau IX rassemble les valeurs de a $_{\rm (FeO)}$ en fonction de la composition du protoxyde de fer.

C.2.1.3. <u>Activité du protoxyde de fer</u> a_(FeO) <u>le long de</u> <u>la ligne biphasée protoxyde-spinelle</u>

La solubilité du vanadium dans le protoxyde de fer est mise en évidence sur la figure 15. On en déduit les variations de a (FeO) en fonction du rapport O/Fe du protos.s. xyde de fer. L'ensemble des résultats obtenus fait l'objet du tableau IX.

C.2.2. Relations activité-composition dans la phase spinelle

C.2.2.1. <u>Calcul de</u> a (Fe₃O₄) <u>pour les spinelles dont la</u> teneur en magnétite est comprise entre 41 et 84,5 %

A 1100°C, l'équilibre entre le protoxyde de fer pur (FeO) et la magnétite pure $(Fe_3O_4)_0$:

$$2 (Fe_3O_4)_0 = 6 (FeO)_0 + O_2$$

est caractérisé par :

$$p_{O_2}^{O} = 1,22.10^{-11}$$
 atm
 $a_{(FeO)_{O}} = 0,744$
 $a_{(Fe_3O_4)_{O}} = 1$

d'où :

$$\ln K = -26,67$$

% CO	ln p ₀₂	$\left(\frac{O}{Fe}\right)_{O}$	^a (FeO) o	solubilité du V dans FeO	a (FeO) s.s.
15	-25,13	1,145	0,774	Equilibre H	Fe ₃ 0 ₄ /Fe0
23	-26,17	1,126	0,831	0,6 %	0,826
26	-26,52	1,119	0,849	0,7 %	0,843
28	-26,71	1,115	0,858	0,9 %	0,850
30	-26,89	1,112	0,867	1,1 %	0,857
32	-27,09	1,108	0,876	1,1 %	0,866
34	-27,29	1,104	0,886	1,2 %	0,875
36	-27,45	1,101	0,893	1,2 %	0,882
38	-27 , 61	1,098	0,900	1,2 %	0,889
40	-27,78	1,095	0,908	1,2 %	0,897
42	-27,95	1,091	0,915	1,2 %	0,904
44	-28,11	1,088	0,921	1,2 %	0,910
46	-28,26	1,085	0,927	1,2 %	0,916
48	-28,43	1,082	0,934	1,1 %	0,924
50	-28,59	1,079	0,940	1,1 %	0,930
52	-28,74	1,076	0,946	1,1 %	0,936
54	-28,90	1,073	0,951	1 %	0,941
56	-29,06	1,070	0,957	1 %	0,947
58	-29,24	1,067	0,963	1 %	0,953
60	-29,40	1,064	0,968	0,9 %	0,959
62	-29,59	1,060	0,973	0,9 %	0,964
64	-29,75	1,057	0,978	0,8 %	0,970
66	-29,92	1,054	0,982	0,8 %	0,974
68	-30,09	1,050	0,987	0,7 %	0,980
70	-30,29	1,046	0,992	0,6 %	0,986
72	-30,48	1,043	0,996	0,3 %	0,993
74	-30,69	1,039	1	Equilib	re FeO/Fe
			1		· · · ·

TABLEAU IX

Activités du protoxyde de fer pur a_(FeO) et du protoxyde

en équilibre avec un spinelle a(FeO) à 1100°C s.s.

- 67 -

Considérons à présent l'équilibre (Fe₃0₄)_{s.s.}/(FeO)_{s.s.} caractérisé par la même constante. On établit :

$$\ln a_{(Fe_{3}O_{4})} = 3 \ln a_{(FeO)} - \frac{1}{2} \ln K + \frac{1}{2} \ln p_{O_{2}}$$

L'activité de la magnétite dans la solution solide spinelle est calculée au moyen de cette relation pour les droites de conjugaison correspondant à des teneurs en oxyde de carbone comprises entre 23 et 74 % soit dans le domaine de composition 0,412 < $x_{Fe_3O_4}$ < 0,845 (tableau X).

% CO	× _{Fe3} 04	^a (Fe ₃ ⁰ 4 ⁾ s.s.	% CO	× _{Fe3} 04	^a (Fe ₃ ⁰ 4 ⁾ s.s.
23	0,845	0,724	50	0,574	0,308
26	0,797	0,646	52	0,566	0,291
28	0,771	0,602	54	0,550	0,273
30	0,752	0,564	56	0,542	0,257
32	0,732	0,526	58	0,522	0,239
34	0,708	0,491	60	0,510	0,225
36	0,691	0,465	62	0,496	0,208
38	0,681	0,439	64	0,484	0,196
40	0,662	0,414	66	0,464	0,182
42	0,640	0,390	68	0,458	0,170
44	0,619	0,367	70	0,445	0,157
46	0,606	0,347	72	0,425	0,146
48	0,596	0,327	74	0,412	0,134

TABLEAU X

Activité de la magnétite dans les spinelles définis par 0,41 < $x_{Fe_30_4}$ < 0,845 pour T = 1100°C La courbe expérimentale des variations de ln $\gamma_{Fe_3O_4}$ en fonction de (1 - $x_{Fe_3O_4}$)² est représentée sur la figure 16. Si la solution solide spinelle est régulière les points doivent se situer sur une droite passant par l'origine. En réalité, on obtient (figure 16) :

$$\ln \gamma_{\text{Fe}_{3}O_{4}} = -2,972 (1 - x_{\text{Fe}_{3}O_{4}})^{2} - 0,105$$
$$(r^{2} = 0,9971)$$

Les points sont donc alignés mais la droite ne passe pas par l'origine. La solution solide spinelle n'est pas régulière au sens de HILDEBRAND.

Pour les spinelles riches en ferrite de vanadium (x_{Fe3}O₄ < 0,412), l'activité de la magnétite a été calculée à partir de l'équation précédemment établie :

$$\ln \gamma_{\text{Fe}_{3}O_{4}} = -2,972 (1 - x_{\text{Fe}_{3}O_{4}})^{2} - 0,105$$

Les résultats sont rassemblés dans le tableau XI.

× _{Fe3} 04	^a Fe304	× _{Fe3} 04	^a Fe ₃ 0 ₄
0	(γ ₀ = 0,0461)	0,25	0,042
0,05	0,003	0,30	0,063
0,10	0,008	0,35	0,090
0,15	0,016	0,40	0,123
0,20	0,027	0,412	0,133

TABLEAU XI

Activité de la magnétite dans les spinelles définis par x_{Fe304} < 0,41 pour T = 1100°C

FIGURE 16

C.2.2.3. Calcul de a (Fe₃O₄) pour les spinelles dont la

teneur en magnétite est supérieure à 84,5 %

Pour les spinelles riches en magnétite ($x_{Fe_3O_4}^{>0,845}$) nous avons extrapolé la courbe des variations du potentiel oxygène en fonction de $x_{Fe_3O_4}$. Cette courbe est connue expérimentalement dans le domaine 0,412 < $x_{Fe_3O_4}^{<0,845}$, ainsi que pour $x_{Fe_3O_4}^{=1}$ (figure 17).

FIGURE 17

Courbe des variations de ln p₀ en fonction de la composition de la solution solidé spinelle à 1100°C

Par extrapolation, il est possible de connaître la pression d'oxygène relative à l'équilibre $(Fe_3O_4)_{s.s.}/(FeO)_{s.s.}$ pour toute solution solide spinelle dont la teneur en magnétite est supérieure à 84,5 % (Tableau XII). A chaque pression d'oxygène sont reliées une composition et une activité du protoxyde de fer pur. La solubilité du vanadium dans FeO_2 déterminée à partir de la figure 15 permet d'accéder à a (FeO) et par suite à l'activité de la magnétite dans la solution solide spinelle correspondante au moyen de la relation :

$$\ln a(Fe_3O_4)$$
 s.s. = 3 $\ln a(FeO)_{s.s.}$ + $\frac{1}{2} \ln p_{O_2}$ + 13,335

Les résultats des calculs successifs sont reportés dans le tableau XII.

ln p ₀₂	× _{Fe3} 04	$\left(\frac{0}{\text{Fe}}\right)_{0}$	a _(FeO) o	solubilité du V dans FeO	^a (FeO) _{s.s.}	a _{Fe3} 04
-25,20	0,985	1,144	0,778	0	0,778	0,982
-25,30	0,970	1,142	0,784	0	0,784	0,954
-25,40	0,955	1,140	0,789	0	0,789	0,927
-25,50	0,940	1,138	0,795	0	0,795	0,901
-25,60	0,925	1,136	0,800	0,1 %	0,799	0,875
-25,70	0,910	1,135	0,806	0,2 %	0,804	0,849
-25,80	0,895	1,133	0,811	0,3 %	0,809	0,824
-25,90	0,880	1,131	0,816	0,4 %	0,813	0,800
-26,00	0,865	1,129	0,822	0,5 %	0,818	0,776
-26,10	0,855	1,127	0,827	0,55 %	0,822	0,752

TABLEAU XII

Activité de la magnétite dans les spinelles définis par $x_{Fe_{3}O_{4}} > 0,845$ pour T = 1100°C

C.2.2.4. Activité du vanadite de fer : FeV₂O₄

La courbe activité-composition relative à la magnétite dans la solution solide spinelle est représentée sur la figure 18.

FIGURE 18

Relations activité-composition des constituants de la solution solide spinelle (T = 1100°C)

★ points expérimentaux

• points obtenus par extrapolation ou intégration

L'activité de FeV₂O₄ est calculée par intégration de l'équation de GIBBS-DUHEM (Tableau XIII) et la courbe activité-composition du ferrite de vanadium est tracée sur la figure 18.

^x FeV ₂ 0 ₄	a _{FeV2} 04	× _{FeV2} 04	a _{FeV2} 04	× _{FeV2} 04	a _{FeV2} 04
0,05	0,002	0,35	0,101	0,65	0,454
0,10	0,007	0,40	0,136	0,70	0,539
0,15	0,015	0,45	0,181	0,75	0,627
0,20	0,029	0,50	0,238	0,80	0,715
0,25	0,046	0,55	0,302	0,85	0,801
0,30	0,069	0,60	0,375	0,90	0,880

TABLEAU XIII

Activité du ferrite de vanadium dans la solution solide spinelle pour T = 1100°C

C.3. - ETUDE A 850°C

A 850°C, nous avons réalisé la réduction progressive de plusieurs solutions solides spinelles sous atmosphères CO-CO₂, ce qui nous a permis de déterminer les relations activitécomposition de la magnétite et du vanadite de fer dans la phase spinelle.

C.3.1. Activité du protoxyde de fer

C.3.1.1. <u>Relations entre O/Fe et ln</u> p_{O2}

La figure 19 représente la variation de la composition du protoxyde de fer en fonction du potentiel oxygène. Les points expérimentaux sont situés sur des droites dont les équations sont calculées par régression linéaire.

Composition du protoxyde de fer en fonction du potentiel oxygène (850°C)

a - pour le protoxyde de fer pur (FeO,)

$$\left(\frac{O}{Fe}\right)_{O} = 0,0200 \ln p_{O_{2}} + 1,870$$
 (r² = 0,9962)
(courbe A, figure 19)

b - pour le protoxyde de fer (FeO) en équilibre avec un spinelle

$$\left(\frac{O}{Fe}\right)_{s.s.} = 0,0189 \ln p_{O_2} + 1,818 \quad (r^2 = 0,9768)$$

(courbe B, figure 19)

C.3.1.2. Activité du protoxyde de fer pur : a (FeO)

L'activité du protoxyde de fer pur est calculée au moyen de la relation :

 $\ln a_{(FeO)_{O}} = -0,0050 (\ln^2 p_{O_2} - \ln^2 p_{O_2}^{O}) - 0,435 (\ln p_{O_2} - \ln p_{O_2}^{O})$

 $p_{O_2}^{o}$ représente la pression d'oxygène à l'équilibre Fe-FeO1,049 soit à 850°C :

 $p_{O_2}^{O} = 1,4.10^{-18}$ atm

Le tableau XIV rassemble les valeurs de a $_{\rm (FeO)}$ en fonction de la composition du protoxyde de fer.

C.3.1.3. Activité du protoxyde de fer a (FeO) le long de

<u>la_ligne_biphasée_protoxyde - spinelle</u>

La courbe donnant la solubilité du vanadium dans le protoxyde de fer est tracée sur la figure 20. Elle permet de calculer a (FeO) en fonction du rapport O/Fe du protoxyde s.s. de fer (tableau XIV).

€ CO	ln p ₀₂	(0 Fe)o	^a (FeO) o	solubilité du V dans FeO	a _(FeO) s.s.
25	- 37,41	1,122	0,855	Equilibre	Fe ₃ 0 ₄ /Fe0
32	- 38,12	1,108	0,890	0	0,890
34	- 38,27	1,105	0,897	0,2 %	0,895
36	- 38,45	1,101	0,906	0,3 %	0,903
38	- 38,61	1,098	0,913	0,4 %	0,909
40	- 38,81	1,094	0,922	0,5 %	0,917
42	- 38,96	1,091	0,928	0,6 %	0,922
44	- 39,12	1,088	0,935	0,6 %	0,929
46	- 39,28	1,084	0,941	0,6 %	0,935
48	- 39,44	1,081	0,947	0,5 %	0,942
50	- 39,61	1,078	0,954	0,5 %	0,949
52	- 39,76	1,075	0,959	0,5 %	0,954
54	- 39,92	1,072	0,965	0,5 %	0,960
56	- 40,09	1,068	0,971	0,5 %	0,966
58	- 40,25	1,065	0,976	0,4 %	0,972
60	- 40,42	1,062	0,981	0,4 %	0,977
62	- 40,61	1,058	0,987	0,2 %	0,985
64	- 40,75	1,055	0,991	0,1 %	0,990
66	- 40,91	1,052	0,995	0	0,995
68	- 41,11	1,048	1	Equili	bre FeO/Fe
-					

TABLEAU XIV

Activités du protoxyde de fer pur a_(FeO) et du protoxyde en équilibre avec un spinelle a_(FeO) à 850°C s.s.

FIGURE 20

C.3.2. Relations activité-composition dans la phase spinelle

C.3.2.1. <u>Calcul de</u> a (Fe₃O₄) <u>pour les spinelles dont la</u> teneur en magnétite est comprise entre 57 et 75 %

A 850°C l'équilibre entre le protoxy de de fer pur (FeO) et la magnétite pure (Fe $_3O_4)_{\rm O}$:

$$2(\text{Fe}_{3}O_{4})_{O} \xrightarrow{} 6(\text{FeO})_{O} + O_{2}$$

est caractérisé par :

$$p_{O_2}^{O} = 5,7.10^{-17} \text{ atm}$$

 $a_{(FeO)_{O}} = 0,855$
 $a_{(Fe_3O_4)_{O}} = 1$
 $\ln K = -38,35$

Considérons à présent l'équilibre (Fe₃0₄)_{s.s.}/(FeO)_{s.s.} On établit :

$$\ln a_{(Fe_{3}O_{4})_{S.S.}} = 3 \ln a_{(FeO)_{S.S.}} - \frac{1}{2} \ln K + \frac{1}{2} \ln p_{O_{2}}$$

L'activité de $\text{Fe}_{3}O_{4}$ dans la phase spinelle est calculée à partir de cette relation pour les droites de conjugaison correspondant à des teneurs en oxyde de carbone comprises entre 46 et 68 % c'est-à-dire dans le domaine de composition $0.567 < x_{\text{Fe}_{3}O_{4}} < 0.746$ (Tableau XV).

Nous n'avons pas exploité les résultats expérimentaux relatifs aux lignes de conjugaison correspondant à des teneurs en CO comprises entre 32 et 44 % (0,84 < $x_{Fe_3O_4}$ < 0,75). En effet les équations de ces droites n'ont été calculées qu'à partir de 3 points expérimentaux (figure 6), ce qui se traduit par une précision moins grande. En particulier, l'erreur commise sur $x_{Fe_3O_4}$ peut atteindre 3 à 4 %. Il nous a donc semblé préférable d'accéder aux relations activité-composition de ces solutions solides par la méthode utilisée pour les spinelles riches en magnétite (§ C.3.2.3.).

% CO	× _{Fe3} 04	^a fe304	% CO	× _{Fe3} 04	a _{Fe304}
46	0,746	0,513	58	0,639	0,355
48	0,730	0,485	60	0,622	0,331
50	0,705	0,455	62	0,614	0,309
52	0,690	0,429	64	0,590	0,292
54	0,678	0,404	66	0,579	0,274
56	0,656	0,378	68	0,567	0,252

TABLEAU XV

Activité de la magnétite dans les spinelles définis

par $0,57 < x_{Fe_20_4} < 0,75$ pour T = 850°C

La courbe des variations de ln $\gamma_{Fe_3O_4}$ en fonction de $(1 - x_{Fe_3O_4})^2$ est représentée sur la figure 21. Son équation est : ln $\gamma_{Fe_3O_4} = -3,411(1 - x_{Fe_3O_4})^2 - 0,152$ (r² = 0,9902) Les points expérimentaux sont alignés mais la droite ne passe

Les points experimentaux sont alignes mais la droite ne passe pas par l'origine. La solution solide spinelle n'est pas régulière au sens de HILDEBRAND.

FIGURE 21

Courbe des variations de ln $Y_{Fe_3O_4}$ en fonction de $(1-x_{Fe_3O_4})^2$ à 850°C

C.3.2.2. <u>Calcul de</u> a (Fe₃O₄) <u>pour les spinelles dont la</u> <u>teneur en magnétite est inférieure à 57 %</u>

Pour les spinelles riches en ferrite de vanadium ($x_{Fe_3O_4} < 0,567$) l'activité de la magnétite est déterminée à partir de la relation, précédemment établie, donnant ln $\gamma_{Fe_3O_4}$ en fonction de (1 - $x_{Fe_3O_4}$)². Les résultats sont reportés dans le tableau XVI.

× _{Fe304}	^a Fe ₃ 0 ₄	× _{Fe3} 04	a _{Fe304}
0	(γ _O = 0,0283)	0,35	0,071
0,05	0,002	0,40	0,101
0,10	0,005	0,45	0,138
0,15	0,011	0,50	0,183
0,20	0,019	0,55	0,237
0,25	0,032	0,567	0,257
0,30	0,048		

TABLEAU XVI

Activité de la magnétite dans les spinelles définis par $x_{Fe_3O_4} < 0,57$ pour T = 850°C

C.3.2.3. <u>Calcul de</u> a_{(Fe₃0₄)_{s.s.} <u>pour les spinelles dont la</u> teneur en magnétite est supérieure à 75 %}

Pour les spinelles riches en magnétite ($x_{Fe_3O_4}^{>0,746}$) nous avons extrapolé la courbe des variations du potentiel oxygène en fonction de $x_{Fe_3O_4}$. Cette courbe, tracée sur la figure 22, est connue expérimentalement dans le domaine $0,567 < x_{Fe_3O_4} < 0,746$, ainsi que pour $x_{Fe_3O_4} = 1$.

Par extrapolation, on détermine la pression d'oxygène relative à l'équilibre $(Fe_3O_4)_{s.s.}/(FeO)_{s.s.}$ pour les solutions solides spinelles caractérisées par $x_{Fe_3O_4} > 0,746$. A chaque pression d'oxygène correspondent une composition et une activité du protoxyde de fer pur. Connaissant la solubilité du vanadium dans FeO_2 (figure 20), il est possible de calculer a (FeO) ainsi que a $(Fe_3O_4)_{s.s.}$ au moyen de la relation :

$$\ln a_{(Fe_{3}O_{4})_{S.S.}} = 3 \ln a_{(FeO)_{S.S.}} + \frac{1}{2} \ln p_{O_{2}} + 19,175$$

L'ensemble des calculs ainsi effectués fait l'objet du tableau XVII.

FIGURE 22

Courbe des variations de ln p_{O2} en fonction de la composition de la solution solide spinelle

 $(T = 850C^{\circ})$

ln p _{O2}	× _{Fe304}	(<u>0</u> Fe)o	a(FeO)	solubilité du V dans FeO	^a (FeO) _{s.s.}	^a Fe ₃ 0 ₄
-37,50	0,980	1,120	0,859	0	0,859	0,970
-37,60	0,965	1,118	0,864	0	0,864	0,938
-37,70	0,950	1,116	0,870	0	0,870	0,911
-37,80	0,935	1,114	0,875	0	0,875	0,882
-37,90	0,920	1,112	0,879	0	0,879	0,851
-38,00	0,910	1,110	0,884	0	0,884	0,823
-38,10	0,895	1,108	0,889	0	0,889	0,796
-38,20	0,880	1,106	0,894	0,2 %	0,892	0,765
-38,30	0,870	1,104	0,899	0,3 %	0,896	0,738
-38,40	0,855	1,102	0,903	0,3 %	0,900	0,711
-38,50	0,840	1,100	0,908	0,4 %	0,904	0,686
-38,60	0,830	1,098	0,912	0,4 %	0,908	0,661
-38,70	0,815	1,096	0,917	0,5 %	0,912	0,637
-38,80	0,800	1,094	0,921	0,5 %	0,916	0,614
-38,90	0,790	1,092	0,925	0,5 %	0,920	0,591
-39,00	0,775	1,090	0,930	0,6 %	0,924	0,570
-39,10	0,765	1,088	0,934	0,6 %	0,928	0,549
-39,20	0,755	1,086	0,938	0,6 %	0,932	0,529

TABLEAU XVII

Activité de la magnétite dans les spinelles définis par $x_{Fe_30_4} > 0,746$ pour T = 850°C

C.3.2.4. Activité du vanadite de fer : FeV204

La courbe activité-composition relative à la magnétite est représentée sur la figure 23.

FIGURE 23

- ★ points expérimentaux
- points obtenus par extrapolation ou intégration

- 85 -

L'activité du ferrite de vanadium est obtenue par intégration de l'équation de GIBBS-DUHEM (Tableau XVIII) et la courbe activité-composition est tracée sur la figure 23.

^x FeV ₂ 0 ₄	a _{FeV2} 04	^x FeV ₂ 04	^a FeV2 ⁰ 4	× _{FeV2} 04	a _{FeV2} 04
0,05	0,001	0,35	0,081	0,65	0,427
0,10	0,004	0,40	0,116	0,70	0,515
0,15	0,011	0,45	0,160	0,75	0,606
0,20	0,022	0,50	0,212	0,80	0,698
0,25	0,036	0,55	0,275	0,85	0,787
0,30	0,055	0,60	0,347	0,90	0,870

TABLEAU XVIII

Activité du ferrite de vanadium dans la solution solide spinelle pour T = 850°C

C.4. - CONCLUSION

Les relations activité-composition ont été mesurées pour 19, 20 et 26 solutions solides $\operatorname{Fe}_3O_4 - \operatorname{FeV}_2O_4$ aux températures respectives de 850, 1000 et 1100°C à partir d'équilibres de réduction sous atmosphères CO - CO₂ (Tableau XIX). Elles font apparaître un écart négatif à l'idéalité important mais cet écart diminue lorsque la température augmente, ce qui traduit une légère augmentation du désordre dans la solution solide.

- 3 4					<u><u><u>rev</u>204</u></u>	
	850°C	1000°C	1100°C	850°C	1000°C	1100°C
0,05	0,001(8)	0,002(1)	0,003(1)	0,935	0,940	0,945
0,10	0,005(4)	0,005(9)	0,008(1)	0,870	0,871	0,880
0,15	0,011	0,012	0,016	0,787	0,789	0,801
0,20	0,019	0,021	0,027	0,698	0,701	0,715
0,25	0,032	0,034	0,042	0,606	0,604	0,627
0,30	0,048	0,051	0,063	0,515	0,528	0,539
0,35	0,071	0,075	0,090	0,427	0,434	0,454
0,40	0,101	0,106	0,123	0,347	0,354	0,375
0,45	0,138	0,144	0,165	0,275	0,279	0,302
0,50	0,183	0,195	0,215	0,212	0,213	0,238
0,55	0,237	0,250	0,275	0,160	0,162	0,181
0,60	0,300	0,310	0,340	0,116	0,121	0,136
0,65	0,370	0,375	0,405	0,081	0,088	0,101
0,70	0,445	0,455	0,485	0,055	0,059	0,069
0,75	0,525	0,540	0,565	0,036	0,037	0,046
0,80	0,605	0,630	0,645	0,022	0,022	0,029
0,85	0,700	0,720	0,740	0,011	0,011	0,015
0,90	0,800	0,815	0,830	0,004(1)	0,004(7)	0,006(6)
0,95	0,910	0,915	0,920	0,000(7)	0,001(0)	0,001(7)
						6

TABLEAU XIX

Variations de l'activité de la magnétite et du ferrite de vanadium dans la solution solide spinelle en fonction de la température

ANNEXE

Lorsque nous avons calculé a_{FeO} dans Fe_{1-x}^{0} pur, nous avons utilisé, quelle que soit la température, des expressions linéaires avec un coefficient de corrélation toujours supérieur à 0,99. Un examen attentif de nos résultats expérimentaux à 850°C, montre que ln p_{O_2} ne varie pas linéairement en fonction du rapport O/Fe, résultat en accord avec les observations de RACCAH et VALLET [25].

Nous avons imaginé de rechercher une équation parabolique par une méthode d'interpolation des fonctions discrètes (ou méthode des fonctions splines). Il est naturellement possible d'obtenir une parabole à partir des points expérimentaux, mais nous nous apercevons facilement que la corrélation est beaucoup plus grande si l'on représente la relation ln $p_{02} = f(O/Fe)$ par trois branches de parabole, (figure 24).

si y =
$$\frac{O}{Fe}$$
 x = ln p_{O_2}

$$y_1 = 9,134 \ 10^{-3} x^2 + 762,829 \ 10^{-3} x + 16968,8 \ 10^{-3}$$

 $1,047 \le y \le 1,07$

$$y_2 = 7,732 \ 10^{-3}x^2 + 630,903 \ 10^{-3}x + 13934,92 \ 10^{-3}$$

 $1,07 \le y \le 1,09$

 $y_3 = -11,717 \ 10^{-3}x^2 - 888,327 \ 10^{-3}x - 15733,64$

 $1,09 \le y \le 1,102$

Ces résultats confirment les travaux de CAREL 26 sur les trois variétés de wüstite. L'existence de ces trois variétés de wüstite a souvent été mise en doute; le passage de l'une à l'autre est en effet très peu sensible puisque les transitions sont du second ordre.

CHAPITRE IV

ETUDE SOUS ATMOSPHERES CONTROLEES $H_2 - H_2O$

L'utilisation des atmosphères contrôlées $CO-CO_2$ nous a permis de définir avec une excellente précision les équilibres entre le protoxyde de fer FeO₂ et les solutions solides spinelles y FeV_2O_4 , $(1-y)Fe_3O_4$ riches en magnétite. Cette étude fait apparaître que les spinelles riches en vanadite de fer (y > 0,43 pour T = 850°C) ne sont pas en équilibre avec la wüstite mais avec le fer métal. Or le fer métal n'est stable que sous des pressions d'oxygène correspondant à des teneurs en oxyde de carbone relativement élevées (supérieures à 68 % à 850°C). Dans ces conditions, le rapport CO/CO_2 , donc la pression d'oxygène que l'on veut imposer, ne sont pas atteints en raison de la concurrence non négligeable de l'équilibre de BOUDOUARD :

 $2 \text{ co} \xrightarrow{\text{co}_2} + \text{c}_{\overline{y}}$

Le dépôt de noir de carbone sur les échantillons interdit toute mesure correcte de la perte de masse. En conséquence, nous avons eu recours aux atmosphères H₂-H₂O pour étudier les équilibres spinelle - fer métal. La précision sur la pression d'oxygène imposée au moyen du mélange hydrogène - vapeur d'eau est de l'ordre de 8 %.

L'étude de la réduction, sous $H_2-H_2^{0}$, des spinelles riches en FeV₂0₄ n'a été réalisée que pour T = 850°C. En effet, l'activité de la magnétite dans ces solutions solides est très faible et ne varie pratiquement pas avec la température (tableau XIX).

A - RESULTATS EXPERIMENTAUX

A.1. - ISOTHERMES DE REDUCTION

Nous avons réalisé la réduction progressive de quatre solutions solides spinelles y FeV_2O_4 , $(1-y)\text{Fe}_3O_4$ définies par y = 0,45 - 0,495 - 0,60 - 0,675. Les isothermes de réductions relatives à ces échantillons sont représentées sur la figure 25.

A partir de ces points expérimentaux, 13 lignes de conjugaison solution solide spinelle - fer métal ont été établies. La pression d'oxygène relative à chaque équilibre est calculée à partir de la relation :

 $\ln p_{O_2} = 2 \ln \frac{H_2O}{H_2} - 39,79$

Le tableau XX rassemble les pressions d'oxygène et les équations des 13 lignes de conjugaison. Ces droites ont été calculées par régression linéaire (méthode des moindres carrés). y = V/V+Fe est exprimé en fonction de x = O/V+Fe; la pente a₁ est positive et l'ordonnée à l'origine a₀ doit théoriquement être nulle puisque les lignes de conjugaison convergent toutes au fer métal. En pratique a₀ n'est jamais nul mais sa valeur très faible, donc tout à fait acceptable, confirme la précision des résultats, précision déjà mise en évidence par le coefficient de corrélation r² toujours supérieur à 0,990.

A.2. - REDUCTIBILITE DE LA SOLUTION SOLIDE SPINELLE

Ainsi que nous l'avons exposé précédemment, la réduction ménagée des spinelles y FeV_2O_4 , $(1-y)Fe_3O_4$ a été réalisée, pour T = 850°C, à la fois sous atmosphères CO/CO₂ et

^{% Η} 2	ln p _{O2}	$y = a_1 x + a_0$
72	- 41,68 ± 0,08	0,354 x - 0,019
76	- 42,10 ± 0,08	0,362 x - 0,011
78	- 42,32 ± 0,08	0,363 x + 0,003
79,3	- 42,48 ± 0,08	0,374 x + 0,001
80,6	- 42,64 ± 0,08	0,375 x + 0,005
86,1	$-43,44 \pm 0,08$	$0,400 \times + 0,003$
87,7	- 43,72 ± 0,08	$0,405 \times + 0,006$
89,2	- 44,01 ± 0,09	$0,408 \times + 0,014$
90,6	- 44,32 ± 0,08	0,421 x + 0,009
91,4	- 44,52 ± 0,08	0,430 x + 0,008
93,7	- 45,19 ± 0,08	$0,448 \times + 0,002$
96	- 46,15 ± 0,08	$0,470 \times + 0,003$
96,7	- 46,55 ± 0,08	0,488 x - 0,006

TABLEAU XX

Equations des lignes de conjugaison spinelle - fer métal à 850°C

sous atmosphères H₂-H₂O. L'ensemble des résultats obtenus nous apporte des renseignements concrets sur la réductibilité de la solution solide magnétite - vanadite de fer :

- les spinelles y $\text{FeV}_2^{O_4}$, $(1-y)\text{Fe}_3^{O_4}$ définis par y < 0,43 sont en équilibre avec un protoxyde de fer dont la composition est comprise entre $\text{FeO}_{1,119} \stackrel{\text{et FeO}}{=} 1,049$.

- les spinelles définis par y > 0,43 sont en équilibre avec le fer métal sous des pressions d'oxygène comprises entre 1,4.10⁻¹⁷ atm. (y = 0,43) et 6,1.10⁻²¹ atm. (y = 0,97). La courbe représentée sur la figure 26 indique la pression d'oxygène au-dessous de laquelle on observe la réduction du spinelle en fer métal.

FIGURE 26

Pression d'oxygène au-dessous de laquelle on observe la réduction du spinelle y FeV_2O_4 , $(1-y)Fe_3O_4$

A.3. - OXYDATION DE LA SOLUTION SOLIDE SPINELLE

Une solution solide spinelle existe dans un domaine restreint de pressions d'oxygène. Il existe donc une pression d'oxygène au-dessus de laquelle apparaît une phase de structure corindon (solution solide $Fe_2O_3 - V_2O_3$).

- 99 -

Compte tenu de l'allure générale des lignes de conjugaison spinelle - corindon dans le diagramme Fe-V-O qui ont toutes une pente positive et compte tenu aussi du fait que V_2O_3 a un domaine de stabilité qui s'étend vers les très faibles pressions d'oxygène, contrairement à l'hématite, il est évident que la pression d'oxygène au-dessus de laquelle on observe l'oxydation du spinelle augmente avec la teneur en magnétite du spinelle.

L'expérience montre qu'au voisinage de FeV₂O₄ cette pression d'oxygène se situe dans le domaine d'existence du fer. A la limite, le vanadite FeV_2O_4 n'est stable que sous une seule pression d'oxygène qui est celle de l'équilibre $Fe-V_2O_3-FeV_2O_4$. Au-dessous de cette pression d'oxygène il se réduit en Fe et V_2O_3 . Au-dessus de cette pression, il s'oxyde pour donner un mélange de deux solutions solides spinelle et corindon.

UL

A 850°C, nous observons la réduction de FeV_2O_4 en fer métal et V_2O_3 sous un mélange H_2-H_2O contenant 97,0±0,3 % H_2 ce qui correspond à une pression d'oxygène de 5.10⁻²¹ atm. Ce résultat est en bon accord avec les pressions d'oxygène à l'équilibre :

 $2 \text{ FeV}_2^{O_4} \xrightarrow{} 2 \text{ Fe} + 2 \text{ V}_2^{O_3} + \text{O}_2$

obtenues par mesures de forces électromotrices. En effet, à 850°C :

$$p_{O_2} = 4,5.10^{-21}$$
 atm. selon |6|
 $p_{O_2} = 2,1.10^{-21}$ atm. selon |15|
B - TRAITEMENT THERMODYNAMIQUE DES RESULTATS

L'utilisation des atmosphères oxydo-réductrices H_2-H_2O a permis de tracer, pour T = 850°C, 13 lignes de conjugaison qui traduisent un équilibre entre une solution solide spinelle (Fe₃O₄)_{s.s.} et le fer pur (Fe)₀ (l'expérience a montré que la solubilité du vanadium dans le fer est tout à fait négligeable) :

 $\frac{1}{2}$ (Fe₃O₄)_{s.s.} $\xrightarrow{}$ $\frac{3}{2}$ (Fe)_o + O₂

Connaissant la pression d'oxygène relative à chaque ligne de conjugaison, nous avons déterminé facilement l'activité de la magnétite dans chacune des solutions solides spinelles en équilibre avec le fer métal.

B.1. - ACTIVITE DE LA MAGNETITE DANS LA SOLUTION SOLIDE SPINELLE

L'équilibre entre le fer métal et la magnétite est caractérisé par la variation d'enthalpie libre :

$$\Delta G^{O} = (-166, 16 T + 561760) J \qquad |18|$$

et par la constante d'équilibre :

$$K = p_{0_2}^{0} = (p_{0_2})_{s.s.} - \frac{a_{Fe}^{3/2}}{1/2}_{a (Fe_3^{0_4})_{s.s}}$$

avec :

$$a_{Fe} = 1$$

 $p_{O_2}^{O} = 3,55.10^{-18} \text{ atm}$ (T = 850°C)

L'activité de la magnétite est calculée, au moyen de cette relation pour chacune des 13 lignes de conjugaison. Les résultats rassemblés dans le tableau XXI donnent a $(Fe_3O_4)_{s.s.}$ pour les spinelles dont la concentration en magnétite est inférieure à 0,32.

8 H ₂	× Fe ₃ 04	a _{Fe3} 04	ln ^Y Fe ₃ 0 ₄
72	0,320	0,0496	- 1,86
76	0,292	0,0215	- 2,61
78	0,270	0,0140	- 2,96
79,3	0,251	0,0103	- 3,19
80,6	0,242	0,007(1)	- 3,53
86,1	0,196	0,001(6)	- 4,81
87,7	0,181	8,4.10 ⁻⁴	- 5,37
89,2	0,163	4,7.10 ⁻⁴	- 5,85
90,6	0,145	2,5.10-4	- 6,36
91,4	0,128	1,7.10 ⁻⁴	- 6,62
93,7	0,101	5.10 ⁻⁵	- 7,61
96	0,056	7.10 ⁻⁶	- 8,99
96,7	0,033	3.10 ⁻⁶	- 9,31

TABLEAU XXI

Activité de la magnétite dans les spinelles en équilibre avec le fer métal (T = 850°C)

- 102 -

B.2. - REGULARITE DE LA SOLUTION SOLIDE SPINELLE

Les résultats expérimentaux provenant de l'étude réalisée à la fois sous $CO-CO_2$ et sous H_2-H_2O peuvent être comparés si l'on trace, sur la figure 27, la courbe des variations de ln $\gamma_{Fe_3O_4}$ en fonction de $(1 - x_{Fe_3O_4})^2$

<u>Sous $CO-CO_2$ </u>, les points obtenus correspondent au domaine de composition :

$$0,57 < x_{Fe_3O_4} < 0,75$$

Ces points sont situés sur une droite (A) (figure 27) d'équation :

$$\ln \gamma_{\text{Fe}_{3}O_{4}} = -3,411 (1 - x_{\text{Fe}_{3}O_{4}})^{2} - 0,152$$

<u>Sous H_2-H_2O </u>, les points expérimentaux correspondent au domaine de composition :

L'examen de la figure 27 montre que dans les solutions solides riches en FeV_2O_4 , l'activité de la magnétite est très inférieure à celle que l'on peut obtenir par extrapolation de la droite (A). Seul le point y correspondant à $x_{\text{Fe}_3O_4} = 0,32$ se situe dans le prolongement de cette droite.

La solution solide $Fe_3O_4 - FeV_2O_4$ présente donc un comportement qui s'éloigne sensiblement de la régularité. Un résultat analogue a déjà été mis en évidence sur les solutions solides $Fe_3O_4 - NiFe_2O_4$ et $Fe_3O_4 - MgFe_2O_4$ |23| qui ont un comportement beaucoup plus complexe que les solutions solides d'oxydes FeO - NiO ou FeO - MgO.

B.3. - RELATIONS ACTIVITE - COMPOSITION DANS LA PHASE SPINELLE

FIGURE 28

Relations activité-composition des constituants de la solution solide spinelle (T=850°C) déterminées à partir des résultats obtenus sous CO-CO₂ et H₂-H₂O

- 105 -

× _{FeV2} 04	a _{FeV2} 04	× _{FeV2} 04	a _{FeV2} 04	× _{FeV2} 04	^a FeV ₂ 0 ₄
0,05	0,0002	0,35	0,021	0,65	0,116
0,10	0,0011	0,40	0,030	0,70	0,169
0,15	0,0028	0,45	0,041	0,75	0,265
0,20	0,0056	0,50	0,055	0,80	0,425
0,25	0,009	0,55	0,071	0,85	0,615
0,30	0,014	0,60	0,090	0,90	0,802

L'activité du vanadite de fer a été calculée par intégration de la relation de GIBBS-DUHEM (tableau XXII).

TABLEAU XXII

Activité de FeV_2O_4 calculée à partir des résultats obtenus sous CO-CO₂ et H_2-H_2O (T = 850°C)

En comparant les figures 23 et 28 on remarque une légère variation de a $_{\rm Fe_3O_4}$ du côté riche en ferrite de vanadium, mais cette variation a une incidence considérable sur l'activité calculée de FeV $_2O_4$.

Il est clair que dans de telles conditions, l'activité de la magnétite obtenue sous $CO-CO_2$, pour T = 1000 et 1100°C, est connue avec une bonne précision; par contre, l'activité du vanadite de fer calculée par intégration de la relation de GIBBS-DUHEM est entachée d'une erreur importante car il n'a pas été possible d'étudier à ces températures, les équilibres spinelle-métal sous H_2-H_2O et par conséquent d'accéder à une valeur précise de l'activité de la magnétite dans les spinelles riches en FeV_2O_4 .

B.4. - CONCLUSION

L'étude sous atmosphères $H_2^{-H_2^{0}}$ a permis de mettre en évidence, lorsque $x_{Fe_3^{0}_4} \rightarrow 0$, une activité de la magnétite beaucoup plus faible que celle que l'on obtient par extrapolation des activités mesurées aux plus fortes teneurs.

Ce comportement peut être expliqué par le fait que la solution solide spinelle, inverse du côté Fe_3O_4 devienne directe du côté FeV_2O_4 . Or l'activité de la magnétite est toujours calculée en prenant comme référence Fe_3O_4 inverse. Si le spinelle restait inverse dans tout le domaine de composition, il n'est pas déraisonnable de supposer que la solution solide spinelle ait un comportement plus régulier, et que, sur la figure 27, la droite (A) puisse être extrapolée jusqu'à $\operatorname{x}_{\operatorname{Fe}_3O_4} = 0$.

- 107 -

CHAPITRE V

ETUDE RADIOCRISTALLOGRAPHIQUE DES SOLUTIONS SOLIDES

SPINELLE ET CORINDON

L'étude thermodynamique du système fer-vanadiumoxygène s'est limitée à la partie du diagramme ternaire accessible au moyen des atmosphères contrôlées $CO-CO_2$ ou H_2 - H_2O , c'est-à-dire au triangle Fe-Fe $_2O_3-V_2O_3$. Ce domaine se caractérise par l'existence de deux solutions solides :

- une solution solide en toutes proportions Fe_3O_4 -FeV $_2O_4$, de structure spinelle et de groupe d'espace Fd3m

- une solution solide, partielle ou totale, $Fe_2O_3-V_2O_3$, de type corindon et de groupe d'espace R3c.

Pour compléter notre travail, nous nous sommes intéressés à ces deux solutions solides et nous avons tracé les courbes d'évolution des paramètres cristallins en fonction de la composition.

A - SOLUTION SOLIDE SPINELLE

La magnétite Fe_3O_4 est préparée par réduction du sesquioxyde de fer sous atmosphères H_2-H_2O (10 % H_2), à 850°C. La pureté du produit final est confirmée par analyse chimique et le paramètre cristallin mesuré en présence de chlorure de potassium est : 8,402 ± 0,002 Å.

Le ferrite de vanadium FeV_2O_4 n'étant stable que sous une seule pression d'oxygène correspondant à l'équilibre $\text{Fe-V}_2O_3-\text{FeV}_2O_4$, il est très difficile de l'obtenir radiocristallographiquement pur. Nous l'avons synthétisé par réduction du mélange ($\text{Fe}_2O_3 + 2 V_2O_3$), placé sous hydrogène pur, à 850°C. La cinétique de réduction s'est révélée très lente et le vanadite de fer n'est obtenu à l'état pur qu'au bout de plusieurs jours de ce traitement. Le paramètre cristallin du produit préparé dans ces conditions est : 8,460 ± 0,002 Å. Ce résultat, comparable à ceux annoncés par CROS |10| et JAEGER |1| est toutefois bien éloigné de celui donné par les fiches A.S.T.M. (a = 8,297 Å). L'écart entre les différentes valeurs de la littérature montre que les conditions de préparation (température, pression d'oxygène imposée) doivent être clairement explicitées puisque le degré d'inversion du ferrite risque d'en dépendre. Cette constatation est tout aussi valable pour les solutions solides y FeV_2O_4 , $(1-y)Fe_3O_4$.

Nous avons préparé ces solutions solides par réduction à 850°C, des mélanges $\frac{2y}{3}$ V₂O₃, (1 - $\frac{2y}{3}$)Fe₂O₃, sous différentes atmosphères H₂-H₂O :

- les spinelles définis par y \leq 0,75 ont été synthétisés sous 10 % H₂, c'est-à-dire dans les conditions de préparation de la magnétite.

- le spinelle 0,825 FeV_2O_4 - 0,175 Fe_3O_4 est obtenu radiocristallographiquement pur sous 45 % H_2 , dans le domaine d'existence de la wüstite.

- la solution solide 0,9 FeV $_2O_4$ - 0,1 Fe $_3O_4$ est préparée dans le domaine de stabilité du fer sous 75 % H $_2$.

Les résultats de l'étude paramétrique relative à la solution solide spinelle font l'objet du tableau XXIII et de la figure 29.

Le paramètre cristallin des spinelles ne suit pas la loi de VEGARD. De plus, la courbe présente une cassure très nette (E) pour la composition 0,53 $\text{Fe}_3O_4 - 0,47 \text{ FeV}_2O_4$, composition très voisine de celle du composé Fe_2VO_4 , signalé et étudié par de nombreux auteurs.

Cette discontinuité est peut-être la conséquence d'un changement d'occupation des sites tétraédriques et octaédriques |8| dû au fait que la magnétite est un spinelle inverse tandis que le vanadite de fer est presque entièrement direct.

Parallèlement il apparaît que les spinelles dont la teneur en magnétite est supérieure à 50 % sont très attirables à l'aimant, contrairement aux spinelles riches en FeV₂O₄.

- 113 -

La cassure (E) mise en évidence sur la courbe résultant de l'étude paramétrique n'est pas exceptionnelle chez les spinelles. Un phénomène analogue a déjà été mis en évidence dans les solutions solides de magnétite avec $ZnFe_2O_4$ |27|, $FeCr_2O_4$ |28|, $NiFe_2O_4$ et $MgFe_2O_4$ |23|.

composition de la solution solide	paramètre (Å)	magnétisme
Fe ₃ 0 ₄	8,4017 ± 0,0019	fort
$0,925 \text{ Fe}_{3}O_{4} - 0,075 \text{ FeV}_{2}O_{4}$	8,4037 ± 0,0019	fort
0,850 Fe ₃ 0 ₄ - 0,150 FeV ₂ 0 ₄	8,4062 ± 0,0020	fort
0,775 Fe ₃ 0 ₄ - 0,225 FeV ₂ 0 ₄	8,4082 ± 0,0013	fort
$0,700 \text{ Fe}_{3}O_{4} - 0,300 \text{ FeV}_{2}O_{4}$	8,4111 ± 0,0013	fort
$0,625 \text{ Fe}_{3}0_{4} - 0,375 \text{ FeV}_{2}0_{4}$	8,4137 ± 0,0016	fort
$0,550 \text{ Fe}_{3}0_{4} - 0,450 \text{ FeV}_{2}0_{4}$	8,4170 ± 0,0020	fort
0,500 Fe ₃ 0 ₄ - 0,500 FeV ₂ 0 ₄	8,4223 ± 0,0021	fort
$0,475 \text{ Fe}_{3}0_{4} - 0,525 \text{ FeV}_{2}0_{4}$	8,4268 ± 0,0012	moyen
0,400 Fe ₃ 0 ₄ - 0,600 FeV ₂ 0 ₄	8,4358 ± 0,0017	moyen
0,325 Fe ₃ 0 ₄ - 0,675 FeV ₂ 0 ₄	8,4424 ± 0,0013	faible
$0,250 \text{ Fe}_{3}O_{4} - 0,750 \text{ FeV}_{2}O_{4}$	8,4488 ± 0,0025	faible
0,175 Fe ₃ 0 ₄ - 0,825 FeV ₂ 0 ₄	8,4558 ± 0,0011	très faible
0,100 Fe ₃ 0 ₄ - 0,900 FeV ₂ 0 ₄	8,4582 ± 0,0013	très faible
FeV ₂ 0 ₄	8,4599 ± 0,0018	nul

TABLEAU XXIII

Paramètre cristallin des solutions solides spinelles Fe_30_4 -FeV $_20_4$ (T = 850°C)

B - SOLUTION SOLIDE V203-Fe203

L'hématite Fe_2O_3 et le sesquioxyde de vanadium V_2O_3 cristallisent tous deux dans le système trigonal de groupe d'espace R3c et les paramètres des mailles hexagonales sont très voisins. Les considérations structurales ne s'opposent donc pas à l'existence d'une solution solide en toutes proportions, déjà signalée par de nombreux auteurs. Par contre, du point de vue thermodynamique, les oxydes Fe_2O_3 et V_2O_3 ne peuvent coexister car leurs domaines de stabilité dans le diagramme $\mu_{O_2} = RT \ln p_{O_2}$ (figure 1) ne présentent aucun point commun.

Afin de proposer une explication à ces deux phénomènes contradictoires, nous avons entrepris l'étude de la solution solide $Fe_2O_3-V_2O_3$.

Les mélanges choisis x Fe_2O_3 , $(1-x)V_2O_3$ sont protégés par des nacelles en or puis placés dans des tubes en silice scellés sous vide et portés à 1000°C pendant 4 jours.

Les clichés de diffraction X confirment l'existence d'une solution solide totale entre Fe_2O_3 et V_2O_3 , ce qui est en désaccord avec les prévisions thermodynamiques. En effet, ces deux oxydes ne sont pas stables dans le même domaine de pressions d'oxygène. S'il est vrai que le passage en solution solide d'un oxyde a pour effet d'augmenter son domaine d'existence, l'écart entre les pressions d'oxygène à l'équilibre V_2O_3/V_2O_4 et Fe_3O_4/Fe_2O_3 , trop important, ne devrait autoriser qu'une très faible solubilité réciproque.

Puisque la solution solide se révèle être totale, une explication possible est l'imprécision de certaines grandeurs thermodynamiques. Si les données relatives à Fe_2O_3 sont concordantes et dignes de confiance, il n'en est sans doute pas de même pour les données relatives à V_2O_3 . Il semblerait que cet oxyde puisse exister sous des pressions d'oxygène assez élevées c'est-à-dire au-dessus de la ligne d'équilibre V_2O_3/V_2O_4 (équilibre 6, figure 1).

- 115 -

Les résultats de l'étude paramétrique sont rassemblés dans le tableau XXIV. La figure 30 représente l'évolution des deux paramètres cristallins de la maille hexagonale; ils ne suivent pas la loi de VEGARD.

Nos mesures se révèlent être en excellent accord avec les résultats obtenus par CROS |10|.

	composition de la solution solide	a (Å)	с (Å)
	Fe ₂ 0 ₃	5,0331± 0,0009	13,769 ± 0,003
	0,90 Fe ₂ O ₃ - 0,10 V ₂ O ₃	5,039 ± 0,002	13,76 ± 0,01
	0,80 Fe ₂ O ₃ - 0,20 V ₂ O ₃	5,038 ± 0,002	13,77 ± 0,01
	0,70 Fe ₂ 0 ₃ - 0,30 V ₂ 0 ₃	5,039 ± 0,002	13,77 ± 0,01
	0,65 Fe ₂ 0 ₃ - 0,35 V ₂ 0 ₃	5,038 ± 0,002	13,78 ± 0,02
	0,60 Fe ₂ 0 ₃ - 0,40 V ₂ 0 ₃	5,037 ± 0,001	13,78 ± 0,01
	0,55 Fe ₂ 0 ₃ - 0,45 V ₂ 0 ₃	5,032 ± 0,002	13,79 ± 0,01
	0,50 Fe ₂ 0 ₃ - 0,50 V ₂ 0 ₃	5,030 ± 0,002	13,80 ± 0,01
	0,45 Fe ₂ 0 ₃ - 0,55 V ₂ 0 ₃	5,030 ± 0,001	13,81 ± 0,01
	0,40 Fe ₂ 0 ₃ - 0,60 V ₂ 0 ₃	5,021 ± 0,002	13,84 ± 0,01
	0,35 Fe ₂ 0 ₃ - 0,65 V ₂ 0 ₃	5,018 ± 0,001	13,851 ± 0,005
	0,30 Fe ₂ 0 ₃ - 0,70 V ₂ 0 ₃	5,015 ± 0,001	13,857 ± 0,004
	0,25 Fe ₂ 0 ₃ - 0,75 V ₂ 0 ₃	5,0092± 0,0006	13,883 ± 0,002
	0,20 Fe ₂ 0 ₃ - 0,80 V ₂ 0 ₃	5,003 ± 0,001	13,885 ± 0,004
	0,15 Fe ₂ 0 ₃ - 0,85 V ₂ 0 ₃	4,979 ± 0,001	13,939 ± 0,004
	0,10 Fe ₂ 0 ₃ - 0,90 V ₂ 0 ₃	4,972 ± 0,001	13,946 ± 0,005
0111	v ₂ 0 ₃	4,9489± 0,0007	14,022 ± 0,003

TABLEAU XXIV

Paramètres des solutions solides $Fe_2O_3 - V_2O_3$ (T = 1000°C)

Evolution des paramètres a et c de la solution solide V_2O_3 -Fe $_2O_3$ (T=1000°,C)

an Taga an

CONCLUSION

Tout au long de ce travail, nous avons exploré minutieusement l'équilibre des phases dans le diagramme Fer-Vanadium-Oxygène, en nous attachant plus particulièrement à déterminer, en fonction de la composition, les pressions d'oxygène à la limite inférieure de stabilité des solutions solides spinelles $Fe_3O_4 - FeV_2O_4$, aux températures de 850, 1000 et 1100°C.

Le potentiel oxygène étant fixé au moyen d'atmosphères oxydo-réductrices H_2-H_2O ou $CO-CO_2$, les compositions correspondantes sont obtenues avec une bonne précision par l'intersection de la ligne iso-potentiel oxygène déterminée expérimentalement avec la ligne $Fe_3O_4-FeV_2O_4$. A partir des relations pression d'oxygène-composition observées, nous avons déduit l'activité de la magnétite ainsi que celle du vanadite de fer', par intégration de la relation de GIBBS-DUHEM.

Le résultat le plus remarquable réside dans le comportement irrégulier de la solution solide spinelle qui, d'inverse du côté de la magnétite devient directe du côté du vanadite. L'irrégularité de ce comportement se traduit aussi sur les variations du paramètre cristallin en fonction de la composition.

Nous nous sommes également intéressés, au cours de ce travail, à la solution solide corindon $Fe_2O_3-V_2O_3$. L'existence de cette solution solide en toutes proportions a bien été confirmée. Ce résultat, bien qu'en accord avec les observations d'autres auteurs, est néanmoins étonnant car il contredit les données thermodynamiques relatives aux oxydes Fe_2O_3 et V_2O_3 . Ces deux oxydes ne présentant pas de domaine commun dans le diagramme d'Ellingham, ne devraient pas donner des solutions solides en toutes proportions, même si l'on tient compte de l'agrandissement du domaine de stabilité avec le passage en solution. Les données relatives à Fe_2O_3 sont trop nombreuses et trop concordantes pour être suspectées; par contre il est vraisemblable que les données relatives à V_2O_3 soient moins fiables, d'autant plus que l'oxydation accidentelle de cet oxyde est très facile, même à température ambiante.

Enfin, nous avons mis en évidence l'étroitesse du domaine d'existence du vanadite de fer FeV₂O₄ qui se réduit à une ligne sur le diagramme d'Ellingham. Il n'est donc pas possible d'obtenir cet oxyde pur sous atmosphère contrôlée.

- 123 -

BIBLIOGRAPHIE

- √ 1 | W. JAEGER, A. RAHMEL, R. KORN, Arch. Eisenhüttenw., <u>34</u>, 1963, p.291.
- |2| Yu. P. VOROBEV, G.I. CHUFAROV, Izv. Ak. Nauk, SSSR, Neorg. Mat., <u>6</u>, (2), 1970, p. 319.
- |3| J.D. DUNITZ, L.E. ORGEL, J. Phys. Chem. Solids, <u>3</u>, 1957, p. 318.
- [4] P. de V. DU PLESSIS, J. Phys. C, 4, (17), 1971, p. 2919.
- [5] M.P. GUPTA, H.B. MATHIEU, J. Phys. C, <u>8</u>, (3), 1975, p. 370.
- 6 6 K.T. JACOB, C.B. ALCOCK, Met. Trans. B, 6, 1975, p. 215.
 - M. ABE, M. KAWACHI, S. NOMURA, J. Solid. St. Chem., <u>10</u>,
 (4), 1974, p. 351.
 - [8] M. WAKIHARA, Y. SHIMIZU, T. KATSURA, J. Solid. St. Chem.,
 3, (4), 197¹1, p. 478.
- X |9| B.N. VAISKOI, A.N. ILINA, N.V. GOGAREVA, Zh. Fiz. Khim., 40, (4), 1966, p. 831.
- x | 10 | B. CROS, Bull. Soc. Ch. Fr., 1976, p. 1381.
- |11| N.G. SCHMAHL, H. DILLENBURG, Z. Phys. Chem., (Frankfurt) 65, 1969, p. 119.
- X | 12 | A. PETRIC, K.T. JACOB, C.B. ALCOCK, J. Am. Ceram. Soc., 64, (11), 1981, p. 632.
- 13 A. PETRIC, K.T. JACOB, J. Am. Ceram. Soc., <u>65</u>, (2), 1982, p. 117.
 - |14| Yu. P. VOROBEV, V.N. BOGOSLOVSKII, G.I. CHUFAROV, Dokl. Ak. Nauk, SSSR, 168, (4), 1966, p. 848.
 - [15] N.S. ZABEITOVA, A.A. LYKASOV, G.G. MIKHAILOV, Izv. Ak. Nauk, SSSR, 14, (2), 1978, p. 374.
 - [16] L.S. DARKEN, R.W. GURRY, J. Am. Chem. Soc., <u>67</u>, 1945, p. 1398 et <u>68</u>, 1946, p. 798.

- [18] I. BARIN, O. KNACKE, Thermochemical Properties of Inorganic Substances, Springer Verlag, Dusseldorf, 1973.
- [19] K. KOSUGE, J. Phys. Chem. Solids, 28, (8), 1967, p. 1617.
- 20 J.S. ANDERSON, A.S. KAHN, J. Less Common Metals, <u>22</u>, (2), 1970, p. 214.
- [21] O.S. ZAITSEV, J.J. BULGAKOVA, Zh. Fiz. Khim., <u>39</u>, 1965, p. 245.
- |22| D.D. WAGMAN et coll., Selected Values of Chemical Thermodynamic Properties, N.B.S. Technical Note, <u>270</u>, 1968.
- 23 M.C. TRINEL, Thèse Lille, 1977.
- [24] O. KUBASCHEWSKI, C.B. ALCOCK, Metallurgical thermochemistry, Pergamon press, 1979.
- [25] P. VALLET, P. RACCAH, Mem. Sci. Rev. Met., <u>62</u>, 1965, p. 1.

26 C. CAREL, Thèse Rennes, 1966.

- 27 M. CATHELAIN, Thèse 3e cycle, Lille, 1969.
- [28] H.J. YEARIAN, J.M. KORTRIGHT, R.H. LANGENHEIM, J. Chem. Phys., <u>22</u>, (7), 1954, p. 1196.

PLAN

			Pages
INTRODUCTION	1		1
CHAPITRE I	:	ETABLISSEMENT THEORIQUE DU DIAGRAMME	
· · · · · · · · · · · · · · · · · · ·	-	FER - VANADIUM - OXYGENE	5
		A - Travaux antérieurs	7
		B - Tracé du diagramme d'Ellingham	9
		B.1. Le système Fe-O	9
		B.2. Le système V-O	10
		B.3. Le système Fe-V-O	13
CHAPTTRE IT	•	TECHNIQUES EXPERIMENTALES ET METHODES	
	•	ANALYTIQUES	17
1		A - Techniques expérimentales	19
		A.1. Réduction sous atmosphères	
		H ₂ -H ₂ O	19
		A.2. Réduction sous atmosphères	
•		co-co ₂	21
		B - Méthodes analytiques	25
		B.1. Analyse radiocristallographique	25
		B.2. Analyse chimique	25
		B.3. Elaboration des produits de	
		départ	26
CHAPITRE II	I:	ETUDE SOUS ATMOSPHERES CONTROLEES CO-CO2	29
		A - Principe	31
		B - Résultats expérimentaux	33
		B.1. Etude à 850°C	33
		B.2. Etude à 1000°C	38
		B.3. Etude à 1100°C	38

C - Traitement thermodynamique des résultats
C.1. Etude à 1000°C
C.2. Etude à 1100°C
C.3. Etude à 850°C
C.4. Conclusion

CHAPITRE IV : E	TUDE SOUS ATMOSPHERES CONTROLEES H2-H2O	91
А	. Résultats expérimentaux	95
	A.1. Isothermes de réduction	95
	A.2. Réductibilité de la solution solide spinelle	95
	A.3. Oxydation de la solution solide	
	spinelle	99
В	. Traitement thermodynamique des résultats	101
	B.1. Activité de la magnétite dans la	
	solution solide spinelle	101
	B.2. Régularité de la solution solide	
	spinelle	103
	B.3. Relations activité-composition dans	
	la phase spinelle	105
	B.4. Conclusion	107

CHAPITRE V	: ETUDE RADIOCRISTALLOGRAPHIQUE DES SOLUTIONS	
	SOLIDES SPINELLE ET CORINDON	109
	A - Solution solide spinelle	111
	$B - Solution solide V_2O_3 - Fe_2O_3$	115

CONCLUSION

119

L'étude du système Fe - V - O a été conduite aux températures de 850, 1000 et 1100°C, par réduction ménagée sous atmosphères contrôlées de solutions solides spinelles Fe_3O_4 - FeV_2O_4 . Une trentaine de lignes de conjugaison ont été établies pour chacune de ces températures et les points caractéristiques du diagramme précisés.

Une faible solubilité du vanadium dans la wüstite a été mise en évidence et les relations activité - composition dans la solution solide spinelle ont été déterminées.

Une corrélation a pu être établie entre les accidents observés sur la fonction de DARKEN ln γ_i vs $(1-x_i)^2$ et sur la courbe donnant le paramètre cristallin de la solution solide en fonction de la composition et une interprétation des résultats obtenus est proposée. Enfin, l'existence de la solution solide corindon en toutes proportions est confirmée.

MOTS CLES : Système Fe - V - O

Solutions solides Fe₃0₄ - FeV₂0₄ Relations activité-composition