Nº d'ordre : 1026

1

50376

211-21

50376 1983 211-2

UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

présentée pour l'obtention du titre de

DOCTEUR EN 3ème CYCLE EN

BIOLOGIE ET PHYSIOLOGIE ANIMALE

par

Marc MEREAU

UTILISATION DE TETRAHYMENA PYRIFORMIS SYNCHRONE EN ECOTOXICOLOGIE : CONTRIBUTION A L'ETUDE DES EFFETS DU THIRAME (FONGICIDE DITHIOCARBAMATE) SUR L'ULTRASTRUCTURE CELLULAIRE

Soutenue le 28 janvier 1983 devant la Commission d'Examen

Jury :	Président :	M.	E.	VIVIER
	Rapporteur :	M.	D.	DIVE
	Examinateurs :	M.	A.	DHAINAUT
		M.	Н.	LECLERC
		M.	Ρ.	DE PUYTORAC

Fig. 3 : RASSEMBLEMENT DES CILIES Mode opératoire

FIG. 4 a et 4 b

Système de rassemblement des Ciliés.
F : filtre ; p : pipette ; pp : pompe
péristaltique ; pe : culot ; Pp : pipette Pasteur ; V : pompe à vide.

FIG. 4 c

Coupe semi-fine. Remarquer la densité cellulaire du culot obtenu grâce au système décrit à la FIG. 4 a et b.

FIG. 5

Effets du thirame sur la division synchrone de <u>Tetrahymena pyriformis</u> GL :

	Témoin
	0,25 µg/ml de T.M.T.D.
000	1,25 µg/ml de T.M.T.D.
\rightarrow	moment d'addition de toxique

FIG.6:	ultrastructure de <u>Tetrahymena</u> au temps T10
	en absence de toxique.
<u>6a</u> :	cb:cavité buccale;
	cy:cytoplasme;
	mi:mitochondrie;
	n:noyau;
	vad:vacuole digestive;
<u>6b</u> :	c:chromatine;
	en:enveloppe nucléaire;
	nu:nucléoles
	Noter l'aspect granulaire du cytoplasme (

Sur les clichés, la barre noire indique l'échelle. En l'absence d'indication chiffrée, elle correspond à **un micron**.

FIG.7.Ultrastructure de <u>Tetrahymena</u> en absence de toxique.

<u>7a</u> :observation à T40.

c:chromatine;

cy:cytoplasme;

er:reticulum endoplasmique granulaire;

mi:mitochondrie;

n:noyau;

nu:nucléole;

vad:vacuole digestive;

.

<u>7b</u> :observation à T 80.

c:chromatine;

n:noyau;

nu:nucléole;

<u>7c</u> :observation à T 80.

en:enveloppe nucléaire;

Noter la double couronne nucléolaire (

FIG.8.Ultrastructure de <u>Tetrahymena</u> en absence de toxique. Observation à T 90.

- 8a: Sub : subnucleus;
- 8b: mi : mitochondrie;
 - n : noyau;

Noter la zone de constriction médiane annonçant la cytodiérèse (>>).

8c: nu : nucléole;

Noter la présence de nucléoles fusionnés () et de nucléoles intranucléoplasmiques ().

8d: en :enveloppe nucléaire.

Noter la présence de microtubules intranucléoplasmiques (>>) et l'aspect des ilôts de glycogène dans le cytoplasme:

- <u>FIG.9</u>.Ultrastructure de <u>Tetrahymena</u> en absence de toxique. Observation à T 100.
 - 9a: Cellule fille
 - N : noyau.
 - 9b: c : chromatine;
 - mi : mitochondrie;
 - N : noyau;
 - nu : nucléoles qui reconstituent une couronne régu-
 - lière (►);
 - Noter l'association étroite entre les mitochondries
 - et le reticulum endoplasmique rugueux (🛛 🖚).
 - <u>9c</u>: en : enveloppe nucléaire;
 - m : matrice mitochondriale;
 - me : membrane mitochondriale externe;
 - mi : membrane mitochondriale interne;
 - MI : mitochondrie;
 - Nu : nucléole;

Noter la continuité entre le reticulum granulaire et l'enveloppe nucléaire ().

FIG.10.Ultrastructure de <u>Tetrahymena</u> en absence de toxique. Observation à T 140.

<u>10a:</u> c : chromatine;

- n : noyau;
- nu : nucléole;

on : organisateur nucléolaire.

- c : cil;
 - er : reticulum endoplasmique granulaire;

ly : lysosome;

mp : membrane plasmique;

) : particules de glycogène;

: vésicule Golgiènne;

Noter l'association du reticulum granulaire avec les mitochondries (>),avec les vacuoles (>), avec la membrane plasmique (),ou libre dans le cytoplasme ().

Le reticulum lisse est quelquefois associé aux mitochondries ().

FIG.11.Ultrastructure de Tetrahymena en absence de toxique. Observation à 1 170.

11a: c : chromatine;

en : enveloppe nucléaire;

N : noyau;

nu ; nucléole;

11b: er : reticulum granulaire;

mi : mitochondrie;

ilôt de glycogène;

Noter la nature granulaire du nucléoplasme (>>)

FIG.12.Mise en évidence du glycogène selon la méthode de THIERRY. 12a:ultrastructure de <u>Tetrahymena</u> en absence de toxique.

mi : mitochondrie;

mp : membrane plasmique;

 :répartition du glycogène en particules isolées.
 <u>12b</u>:ultrastructure de <u>Tetrahymena</u> en présence de 1,25µg/ml de T.M.T.D. additionné à TO.

vad : vacuole digestive.

Noter la formation d'ilôts importants de glycogène: que ceinturemquelquefois des mitochondries

FIG.13.Mise en évidence de la phosphatase acide.

- <u>13a</u>:uultrastructure de <u>Tetrahymena</u> en absence de toxique. ly : lysosome (); vad : vacuole digestive.
- <u>13 b et c</u> : cellules intoxiquées par 1,25 μ g/ml de T.M.T.D. additionné à TO.
- 13c: la phosphatase acide est absente au niveau des zones de prolifération du reticulum () et d'accumulation de matériel granulaire () mais est présente dans la vacuole que ceinture le reticulum () et dans les lysosomes () et

FIG.14.Coupe traitée à la pronase.

14a :mitochondrie d'une cellule intoxiquée par 1,25µg/ml

de T.M.T.D. additionné à TO.

er : reticulum endoplasmique granulaire;

me : membrane mitochondriale externe;

mi : membrane mitochondriale interne;

il : ilôt cytoplasmique;

mp : membrane plasmique;

mu : mucocyste;

Noter l'invagination la ellaire émise par la mem-

brane interne (🔶).

14b :mitochondrie d'une cellule non intoxiquée:les corps denses ne sonr pas digérés par la pronase ().

FIG.15.Aspect des cellules en microscopie optique.

- 15a :témoins aux temps 10, 80, 140 mn après la fin du dernier choc thermique.
- <u>15b</u> :cellules traitées au temps TO par 1,25 μ g/ml de T.M.T.D.

Observations aux temps 10, 80, 140 mn.

Ternoin 10'

15 A

10 pm . Te 140'

Te

Fig

1,25µg/ml de Thirame à TO T 10' T 8 T 80' LIQM

Fig 15 B

FIG.15c : cellules traitées au temps TO par 1,25µg/ml de T.M.T.D.

Observations auxtemps 180, 280 et 300 mn.

T 280' T 180' 985 11118

1,25 μg/ml de Thirame à TO

FIG.15 d : cellules traitées au temps T90 AFT par 1,25µg/ml de T.M.T.D..

Observations aux temps 90, 130 et 170 mn.

T 170'

T 170'

Fig 15D

FIG.16.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25µg/ml de T.M.T.D.

16a :observation à T 10.

ext : extrusion nucléaize ()contenant des agrégats nucléolaires (>>>>);

n : noyau

16b :observation au temps T 40.

en : enveloppe nucléaire,

mi :::mitochondrie en cupule où s'observe un ilôt cytoplasmique (====>);

mp : membrane plasmique;

an : agrégat nucléolaire;

on : organisateur nucléolaire;

Noter la fragmentation du cortex granulaire des nucléoles (>>)

FIG.17.Coupes sériées de mitochondries d'une cellule into-

xiquée à TO par 1,25yg/ml de T.M.T.D.

:mi : mitochondrie;

mp : membrane plasmique;

Selon le plan de coupe, la même mitochondrie présentera une configuration annulaire (17a) puis en cupule (17 h et C).

: apex de la cupule;

---- : ouverture de la cupule;

; ilôt cytoplasmique;

-> : extrusion membranaire.

L'interprétation de ces images est donnée par le schéma de la FIG.18.

FIG.18.Représentation schématique des déformations mitochondriales.Essai d'interprétation.

cyt : cytoplasme;

ME : membrane mitochondriale externe;

MI : membrane mitochondriale interne;

Les configurations 1,2,3 et A,B,C que l'on observe dans le cytoplasme des cellules intoxiquées,correspondraient,d'après les coupes sériées (Fig.17),à des sections respectivement axiales et longitudinailes de mitochondries déformées en cupule.

2

3

A

B

С

Fig. 18: REPRESENTATION SCHEMATIQUE DES DEFORMATIONS MITOCHONDRIALES (alls)

Essai d'interprétation des coupes sériées
FIG.19.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 yg/ml de T.M.T.D.

Observation à T 80.

<u>19a</u> :ext : extrusion nucléaire évoluant en vacuole autophagique ()

g :globule granulaire intranucléoplasmique; mi : mitochondrie;

:mitochondrie en cupule; :mitochondrie à matrice éclaicie.

<u>19b</u> :en :enveloppe nucléaire;

er : reticulum endoplasmique granulaire;

mi : mitochondrie;

c : chromatine;

mitochondrie en cupule étirée; Le cortex granulaire des nucléoles se dispose en structure cupuliforme sous l'enveloppe nucléaire (

FIG.20.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par

1;25µg/ml de T.M.T.D.

Observation à T 80.

20a :er : reticulum granulaire;

v : vacuole.

20b : détail d'une zone de prolifération du reticulum.

er : reticulum endoplasmique granulaire;

mi : mitochondrie;

Noter qu'au niveau des zones d'accumulation de

→).

matériel granulaire, le reticulum se fragmente (🛏

20c :présence d'invagination contenant des membranes enroulées sur elles-mêmes () dans des vacuoles situées à proximité des zones de prolifération du reticulum.

- FIG.21.Ultrastructure de Tetrahymena intoxiqué à TO par
 - 1,25 µg/ml de T.M.T.D.
 - Observation à T 140.
 - 21a: les agrégats nucléolaires (ag) sont trés volumineux.Le cortex granulaire s'en détache en fragments cupuliformes disposés sous l'enveloppe nucléaire (cg); plusieurs organisateurs nucléolaires peuvent s'observer dans chaque agrégat (->>>).
 - c : chromatine;
 - n : noyau.

21b: coupe traitée à l'E.D.T.A.

- cf : structure fibrillaire des agrégats nucléolaires;
- ag : agrégat nucléolaire;
- cg : cortex granulaire;
- on : organisateur núcléolaire;
- n : noyau;
- mi : mitochondrie;
- mit : mitoribosome;

21c: coupe traitée à l'E.D.T.A.

Les structures cupuliformes ont une nature essentiellement granulaire (cg) alors que les agrégats sont de nature plutôt fibrillaire (cf);

mi : mitochondrie;

mit : mitoribosome.

- <u>FIG.22</u>.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 μ g/ml de T.M.T.D. Observation à T 160.
 - 22a: prolifération de vacuoles autophagiques (vau);
 - 22b: détail d'une vacuole autophagique (vau):noter l'accumulation de mambranes résiduelles (). Il s'agit d'une coupe traitée à la propase.
 - 22c: détail de cytoplasme.

vau : vacuole autophagique contenant des mitochon-

dries ();

:ilôt de glycogène.

<u>FIG.23</u>.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par $1,25 \mu$ g/ml de T.M.T.D.

Observation à T 160.

- <u>23 a et b</u> :démail d'une vacuole autophagique en formation (vau).
- 23a :le reticulum () associe plusieurs vacuoles entre elles dont certaines ne contiennent que des ribosomes ().
- 23b :détail de la vacuole autophagique montrée à la FIG.23a quive présence de matériel nucléolaire (nu).

FIG.24.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 µg/ml de T.M.T.D.

Observation à T 180.

Détail de cytoplasme où prolifère le reticulum endoplasmique granulaire associé à des accumulations de matériel de nature granulaire.

24a: en :enveloppe nucléaire;

er : reticulum endoplasmique granulaire;

mi : mitochondrie;

n : noyau;

mg : matériek granulaire;

Noter la présence de mitochondries non altérées (💻

24b et c:

vau: vacuole autophagique;

1 : goutelette lipidique;

FIG.25.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 µg/ml de T.M.T.D.

Observation à T 180.

- 25 b et c:coupe traitée à 1'E.D.T.A.

On observe nettement les ribosomes bien contrastés () et des grains bien définis mais moins contrastés(). mi : mitochondrie;

mit : mitoribosome (-).

FIG.26, Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 µg/ml deT.M.T.D.

26a: coupe traitée à la pronase.

Les zones de prolifération du reticulum granulaire (er) sont présentes à proximité d'accumulation de ribosomes ().L'interpénétration de reticulum y est bien visible ().

26 b et c:

<u>26d</u>: détail d'une goutelette lipidique (1) ceinturée par du reticulum endoplasmique granulaire (------).

208

FIG.27.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 µg/ml de T.M.T.D.

Observation à T 220.

- <u>27a</u> : ag :agrégat nucléolaire; vau : vacuole autophagique.
- <u>27b</u> : er :reticulum endoplasmique granulaire;
 - mi : mitochondrie;
 - mg : matériel granulaire;
 - vau : vacuole autophagique;
 - vad : vacuole digestive;
 - Noter les communications directes entre le reticu-
 - lum granulaire et les vacuoles (💳 🗩).

FIG.28.Ultrastructure de <u>Tetrahymena</u> intoxiqué à TO par 1,25 µg/ml de T.M.T.D.

28 a :Observation à T 220.

mi : mitochondrie;

1 : goutelette lipidique.

28b: Détail du noyau à T 280.

Des nucléoles typiques de l'espèce réapparaissent dans le noyau des cellules intoxiquées (nu).Les mitochondries montrent une morphologie normale (mi);

1 : goutelette lipidique;

en : enveloppe nucléaire;

on : organisateur nucléolaire.

FIG.29. Ultrastructure de Tetrahymena intoxiqué à TO par

1,25 µg/ml de T.M.T.D.

Observation à T 300.

29a: 1 : goutelette lipidique;

n : noyau;

nucléole: 🗩

29b: cellule en cours de division.

Noter la zone de constriction médiane (🕨).

n : noyau;

vad : vacuole digestive.

29c: détail du noyau et du cytoplasme.

n : noyau;

nu : nucléole;

en : enveloppe nucléaire;

er : reticulum endoplasmique granulaire;

mi : mitochondrie;

ly: lysosome;

c : chromatine.

(24) A

FIG.30.Ultrastructure de Tetrahymena intoxiqué à T90 par

1,25 µg/ml de T.M.T.D.

Observation à T 110.

<u>30a</u>:Le noyau est fortement déformé (n);les agrégats nucléolaires sont dispersés ().

er : prolifération de reticulum endoplasmique granulaire mi : mitochondrie.

<u>30b</u>:détail d'une zone de prolifération de reticulum endoplasmique granulaire.

er : reticulum granulaire;

mi : mitochondrie;

Noter l'interpénétration du reticulum (🛶) et

la zone d'accumulation de matériel granulaire.où de nombreux ribosomes s'observent (>>>),

- FIG.31.Mitochondries de cellules intoxiquées à T 90 par 1,25 µg/ml de T.M.T.D. Observation à T 110.
 - 31a: des mitochondries à matrice sombre et en cupule ou à matrice éclaicie s'observent conjointement (mi). er : reticulum endoplasmique granulaire; ext : extrusion nucléaire.
 - <u>31b</u>: ultrastructure des mitochondries à matrice éclaicie. mi : mitochondrie;
 - les tubules sont fragmentés (->), la matrice s'éclaicie (->); des vésicules se forment à partir des membranes (>>).

FIG.32.Ultrastructure de <u>Tetrahymena</u> intoxiqué à T90 par 1,25 μ g/ml de T.M.T.D.

32a et b :Observation à T 140.

Les mitochondries ont toutes une configuration éclaircie (mi).Les nucléoles se raréfient (nu);

n : noyau;

c : chromatine agrégée;

g : glycogène.

32c: Observation à T 170.

Le noyau ne contient plus de nucléoles et se déforme de telle sorte que des ilôts de cytoplasme y apparaît (icy).Le cytoplasme se raréfie (cy).

mi :mitochondrie.

FIG.33.Ultrastructure de Tetrahymens intoxiqué à TO par

0,25 µg/ml de T.M.T.D.

Observation à T 80.

33a: aspect général.

Les altérations sont peu prononcées:quelques agrégats nucléolaires (ag) et des mitochondries en cupule (mi) s'observent.

vad:: vacuole digestive.

33b: n : noyau;

nu : nucléole;

er : reticulum granulaire;

33c: zone de prolifération du reticulum granulaire (er) en association avec mes mitochondries (mi); des invaginations intravacuolaires s'observent à ce niveau ().

33d: quelques mitochondries se déforment en cupule (mi).

FIG.34.Ultrastructure de Tetrahymena intoxiqué à T90 par

0,25 yg/ml de T.M.T.D.

Observation à T 110.

n : noyau;

nu : nucléole;

en : enveloppe nucléaire;

p**n** : pores nucléaires.

FIG.35.Ultrastructure de <u>Tetrahymena pyriformis Gl</u> en culture exponentielle.

35a; cellule non intoxiquée.

mi : mitochondrie;

er : reticulum endoplasmique granulaire;

en : enveloppe nucléaire;

c : chromatine;

nu : nucléole;

on : organisateur nucléolaire.

<u>35 b et c</u> : cellule intoxiquée à TO (densité cellulaire de

la culture:30.000 cellules/ml) par 1,25 µg/ml de T.M.T.D.

Observation à T80.

35b: ag : agrégat nucléolaire;

c : chromatine;

en : enveloppe nucléaire.

35c: 1 : goutelette lipidique;

des vésicules contenant des membranes résiduelles

mi : mitochondrie.

FIG.36.Ultrastructure de <u>Tetrahymena</u> en culture exponentielle intoxiqué à TO par 1,25 μ g/ml de T.M.T.D. Observation à T 80.

36 a et b : de nombreuses cellules montrent des mitochondries à matrice éclaicie (>>) et à tubules fragmentés (t) ou au contraire à matrice très sombre déformées en cupule 36 c:des zones d'accumulation du reticulum granulaire (>>) apparaît dans la cellule;

mi : mitochondrie.

