N° d'ordre : 1204 50376 1984 179

50376. 1984 179.

THESE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE I

pour obtenir le titre de

Docteur

en

MECANIQUE DES FLUIDES

par

Ridha ZGOULLI

Contribution à l'étude du couplage écoulement sain-couche limite dans un calcul de grille d'aubes

Soutenue le 4 octobre 1984 devant la commission d'examen Membres du Jury : Président : M. MICHEAU, Professeur, Université de Lille I. Rapporteur : M. BARRAND, Professeur, E.N.S.A.M., Lille. Examinateurs : M. DYMENT, Professeur, Université de Lille I. M. CAIGNAERT, Assistant, E.N.S.A.M., Lille.

M. DESMET, Assistant, E.N.S.A.M., Lille.

M. BOIS, Directeur technique de METRAFLU.

Ce travail a été effectué au Laboratoire de Mécanique de l'Ecole Nationale Supérieure d'Arts et Métiers de Lille, sous la direction de Messieurs les Professeurs BARRAND et CAIGNAERT. Ils ont beaucoup contribué à cette étude et m'ont entouré et conseillé efficacement, je les remercie vivement et je les prie de bien vouloir trouver ici ma profonde gratitude.

Monsieur BOIS a été à l'origine de mon sujet et m'a constamment guidé. Je lui témoigne de mon entière reconnaissance et ma profonde estime.

Je suis extrêmement sensible à l'honneur que me fait Monsieur MICHEAU, de présider mon Jury.

Je remercie particulièrement Monsieur DYMENT, Professeur à l'Université de Lille pour les enseignements qu'il m'a prodigués en mécanique des fluides, et je suis très touché par le fait qu'il accepte de participer au Jury.

Je remercie Monsieur DESMET, Professeur à l'E.N.S.A.M., pour son aide en matière informatique et pour l'intérêt qu'il a porté à mon sujet.

Je remercie vivement Madame MACHU qui a effectué avec soin la frappe de cette thèse.

Je ne terminerai pas cet avant-propos sans exprimer mes remerciements à mes camarades et amis, et l'ensemble du personnel du Laboratoire de Mécanique de l'E.N.S.A.M. pour leur amicale sympathie.

SOMMAIRE

P	age
---	-----

INTRODUCTION	1	
CHAPITRE I :	RAPPEL CONCERNANT L'ANALYSE MATHEMATIQUE DE L'ECOULEMENT DANS UNE ROUE DE TURBOMACHINE	,
	1.1 Equations de base 3	
	1.2 Modélisation de WU 5	,
	1.2.1 Définition des surfaces S_1 et S_2	•
	1.2.2 Hypothèses simplificatrices	
	1.3 Formulation utilisant la fonction de courant	į
	1.3.1 Equation fondamentale	ļ
	1.3.2 Conditions aux limites10)
	1.3.3 Condition de KUTTA-JOUKOWSKI)
CHAPITRE II :	CALCUL DE L'ECOULEMENT SUBSONIQUE D'UN FLUIDE NON VISQUEUX SUR UNE SURFACE "AUBE A AUBE" - METHODE DE KATSANIS 13	5
	2.1 Méthode de KATSANIS 14	ł
	2.1.1 Discrétisation de l'équation fondamentale 14	ŀ
	2.1.2 Discrétisation des conditions aux limites 16	5

	2.1.3 Processus itératif utilisé pour la résolution du système d'équations	17
	2.1.4 Calcul d'un écoulement "aube à aube" par la méthode de KATSANIS conventionnelle	18
	2.2 Prise en compte explicite de la condition de KUTTA- JOUKOWSKI	20
	2.2.1 Méthodes de prédiction de la déviation	22
	2.2.1.1 Egalisation des vitesses relatives à l'extrados et l'intrados au voisinage du bord de fuite	22
	2.2.1.2 Egalisation des coefficients de pression au bord de fuite	24
	2.2.2 Résultats et interprétations	24
CHAPITRE III :	ETUDE DU COUPLAGE ENTRE LE CALCUL DU DEVELOPPEMENT DE LA COUCHE LIMITE SUR LES AUBAGES ET LE CALCUL "AUBE A AUBE" PAR LA METHODE DE KATSANIS	28
	3.1 Principe d'une méthode numérique de calcul de l'écou- lement d'un fluide visqueux autour d'un profil d'aube	28
	3.2 Modèle de développement de la couche limite	29
	3.3 Fermeture du profil "engraissé"	31
	3.4 Principe de calcul - Premier exemple	32
	3.4.1 Principe	32
	3.4.2 Application à un distributeur axial de turbine	32

3.5 Application à une roue de pompe centrifuge	36
3.5.1 Résultats du calcul de l'écoulement autour des profils réels	37
3.5.2 Application de la procédure de couplage	40
3.5.3 Exploitation des résultats	43
CONCLUSION	46
NOTATIONS	48
ANNEXES :	
ANNEXE A : Equations de l'écoulement dans un repère relatif lié à la roue	50
ANNEXE B : Algorithme de convergence de la méthode de sur- relaxations successives "SOR"	54
ANNEXE C : Les corrélations utilisées	56
ANNEXE D : Organigrammes	59
BIBLIOGRAPHIE	62

INTRODUCTION

Le laboratoire de Mécanique de l'E.N.S.A.M. de Lille travaille depuis de nombreuses années dans le domaine des turbomachines, en particulier les ventilateurs et les pompes centrifuges. Les travaux entrepris jusqu'alors ont surtout un caractère expérimental. Le développement des techniques de mesures fines (en particulier l'anémométrie à fils chauds, voir réf. (1)) permet maintenant d'obtenir des informations expérimentales assez précises sur la nature des écoulements internes, en particulier autour de la roue. Ces techniques peuvent donc être utilisées pour valider des codes d'analyse de ces écoulements internes.

L'arrivée du nouvel ordinateur (VAX 11/750) autorise d'autre part le développement de calculs assez lourds, résolvables dans des temps raisonnables.

C'est dans ce cadre que s'inscrit notre travail. Compte-tenu de l'existence au laboratoire d'un programme d'analyse de l'écoulement dans un "plan méridien" par une méthode de courbure des lignes de courant, nous avons été amené à nous préoccuper de l'implantation d'un programme d'analyse dans un "plan aube à aube". La technique proposée par KATSANIS (2) a été adoptée. Cette méthode se limite à l'analyse d'un écoulement de fluide non visqueux pour des conditions à l'"infini aval" données ; Monsieur BOIS nous a demandé de voir les possibilités de couplage offertes par ce type de programme en vue d'une extension éventuelle avec prise en compte des couches limites ou de décollements.

Notre travail s'articule donc de la façon suivante :

La première partie est consacrée aux rappels théoriques nécessaires pour la bonne compréhension de la formulation de KATSANIS, les hypothèses et méthodes de calcul numérique utilisées.

Nous analysons ensuite la mise en place du programme de KATSANIS dans le "plan aube à aube", dans le cas d'un écoulement d'un fluide non visqueux autour de la grille d'aubes réelle. Nous insistons en particulier sur la procédure de bouclage utilisée pour la vérification de la condition de KUTTA-JOUKOWSKI, et nous comparons nos résultats à ceux qui figurent dans la publication de KATSANIS (2). Enfin, nous envisageons une technique d'engraissement du profil réel et les problèmes de couplage qui apparaissent.

Nous nous sommes contentés d'engraisser le profil de l'épaisseur de déplacement obtenue à partir d'un schéma très simpliste de couche limite ne prenant en compte qu'en partie les effets de courbure et les effets de rotation. Nous détaillons la procédure itérative utilisée en insistant sur les problèmes liés à la nécessité de définir un bord de fuite fictif au profil "engraissé", de façon à pouvoir utiliser la procédure de KATSANIS autour de ce nouveau profil. Les résultats sont analysés dans le cas d'un distributeur de turbine à grand nombre d'aubes et ensuite dans le cas d'une roue centrifuge sur laquelle d'autres résultats de calculs et expérimentaux sont disponibles.

CHAPITRE I

RAPPELS CONCERNANT L'ANALYSE MATHEMATIQUE DE L'ECOULEMENT DANS UNE ROUE DE TURBOMACHINE

1.1 EQUATIONS DE BASE

L'écoulement dans une roue de turbomachine est généralement tridimensionnel, instationnaire et thermodynamiquement irréversible.

Il peut théoriquement être décrit à partir des équations fondamentales de conservation développées dans le repère mobile (R) lié aux parties en rotation autour de l'axe de la machine.

Ces équations sont écrites en supposant que ce mouvement d'entraînement s'effectue à vitesse angulaire ω constante (figure 1.1).

3 -

On note V la vitesse d'une particule fluide P mesurée par rapport au repère absolu.

est la vitesse de P mesurée dans le repère (R) (voir Annexe**A**)

(1.1)

avec $|\mathbf{r}|$: distance de l'axe de la machine au point P.

Pour la suite de notre étude, l'écoulement sera supposé stationnaire par rapport au repère relatif (R). Avec les notations indiquées à l'annexe (A) et en désignant les gradients mesurés dans le repère (R) par ($\vec{\nabla}$), nous avons :

- Equation de continuité

$$\vec{\nabla} \cdot (\vec{w}) = 0$$

- Equation de la conservation de la quantité de mouvement

$$\vec{\nabla}\left(\frac{\vec{P}}{\vec{P}} + \frac{\vec{w}^2}{2} - \frac{\vec{w}^2 r^2}{2}\right) = 2 \vec{w} \sqrt{\vec{w}} + \vec{w} \sqrt{\vec{\nabla}} \vec{w} + \vec{v} \sqrt{\vec{\nabla}} \vec{w} + \vec{v} \sqrt{\vec{v}} \sqrt{\vec{v}} + \vec{v} \sqrt{\vec{v}} \sqrt{\vec{v}} + \vec{v} \sqrt{\vec{v}} \sqrt{\vec{v}} \sqrt{\vec{v}} + \vec{v} \sqrt{\vec{v}} \sqrt{\vec{v}}$$

avec **f** : effort dû aux frottements, et en négligeant la force de pesanteur.

Pour l'extension de cette relation aux écoulements compressibles, on fait apparaître les variations de l'enthalpie **k** et de l'entropie **s** avec la pression selon le 2ème principe de la thermodynamique.

 $\frac{\vec{\nabla}P}{\vec{P}} = \vec{\nabla}h - T\vec{\nabla}s$

d'où l'expression :

$$\vec{\nabla} H_{R} = 2 \vec{W} \sqrt{\vec{w}} + \vec{W} \sqrt{(\vec{\nabla} \sqrt{\vec{w}}) + T \vec{\nabla} s + \vec{f}}$$
(1.2')

où $H_R = h + \frac{v^2}{2} - \frac{w^2 r^2}{2}$

est l'enthalpie totale relative mas-

sique ou rothalpie.

- Equation de conservation de l'énergie

L'équation (1.2) montre que la quantité $\frac{1}{2} + \frac{1}{2} - \frac{1}{2}$ se conserve le long d'une trajectoire dans le rotor si l'écoulement est permanent et si le fluide est non visqueux. En effet, on trouve dans ce cas en multipliant (1.2) scalairement par 📈:

$$\vec{W} \cdot \vec{\nabla} \left(\frac{\vec{P}}{e} + \frac{\vec{W}^2}{2} - \frac{\vec{\omega}^2 r^2}{2} \right) = \frac{D_R}{Dt} \left(\frac{\vec{P}}{e} + \frac{\vec{W}^2}{2} - \frac{\vec{\omega}^2 r^2}{2} \right) = 0$$

On a de même

$$\frac{D_{R}H_{R}}{Dt}=0$$

pour l'écoulement isentropique d'un fluide non visqueux.

1.2 MODELISATION DE WU (3)

La résolution numérique du système d'équations précédent est un problème très complexe, même dans l'hypothèse d'un fluide non visqueux, à cause du caractère tridimensionnel de l'écoulement.

Au moyen d'hypothèses simplificatrices, la modélisation proposée par WU consiste à calculer successivement l'écoulement sur deux surfaces couplées, désignées respectivement par S1 et S2.

1.2.1 Définition des surfaces S1 et S2

Considérons pour simplifier la représentation graphique de l'écoulement dans une machine axiale.

Une surface de type S_1 est définie comme la surface de courant décrite dans la roue par l'ensemble des particules fluides se trouvant initialement sur un cercle concentrique à l'axe de la machine.

Une surface de type S2 est, par contre, définie par la surface de courant décrite par l'ensemble des particules fluides se trouvant à l'entrée de la machine sur un rayon de la conduite d'aspiration.

En général les surfaces S_1 ne sont pas axisymétriques et les surfaces S_2 ne se déduisent pas simplement d'une rotation des surfaces d'aubages. Dans ces conditions, un calcul affiné nécessite la prise en compte d'un certain nombre de surfaces différentes des deux types.

1.2.2 Hypothèses simplificatrices

Nous admettons en premier lieu que les conditions d'entrée du mouvement absolu sont axisymétriques et stationnaires afin que l'écoulement dans le repère relatif puisse être considéré comme stationnaire.

Nous admettons ensuite que l'écoulement est isentropique c'est à dire, adiabatique, sans frottement et continu. Cette dernière condition est automatiquement remplie si le fluide est incompressible ou si l'écoule-

- 6 -

ment est subsonique.

On formule enfin l'hypothèse que les surfaces S1 et S2 sont axysymétriques, ce qui revient à supposer que la roue possède un nombre infiniment grand d'aubes infiniment minces..

Dans ces conditions, un calcul complet comprend donc les étapes suivantes :

- Calcul de "l'écoulement méridien" sur une surface 52 entre ceinture et couvercle.

- Calcul de "l'écoulement aube à aube" sur la surface S1.

- Calcul de la "force d'aubage" servant de terme de couplage entre les deux calculs précédents et reprise éventuelle d'une nouvelle itération.

Nous n'envisageons dans cette étude que l'analyse de l'écoulement aube à aube qui doit vérifier l'équation principale :

$$\vec{\nabla} \wedge \vec{W} + 2\vec{w} = \vec{o}$$
(1.3)

En effet, on montre (4) que parmi les écoulements relatifs vérifiant l'équation $\overrightarrow{w} \wedge (\overrightarrow{\nabla} \wedge \overrightarrow{w} + 2 \overrightarrow{w}) = \overrightarrow{o}$ traduisant la conservation de l'énergie sur S1, le long d'un filet de courant vérifiant aussi la conservation de la quantité de mouvement, les seuls qui peuvent avoir des surfaces de courant axisymétriques sont ceux répondant à la relation (1.3).

1.3 FORMULATION UTILISANT LA FONCTION DE COURANT

La position d'un point sur la surface S_1 est décrite par ses coordonnées **m** et Θ (voir figure 1.3).

On a les relations suivantes :

$$\frac{\partial}{\partial m} = \cos \alpha \frac{\partial}{\partial 3} + \sin \alpha \frac{\partial}{\partial r}$$

$$\vec{W} = \vec{i}_1 \ V \theta + \vec{i}_2 \ \vec{V} m$$

$$\frac{V m}{W \theta} = t_9 \ \beta = r \frac{d\theta}{dm}$$

$$\frac{V m}{V r} = \frac{V m}{3} + \frac{1}{r} \frac{V m}{r}^2$$

L'équation de continuité (1.1) s'écrit alors :

$$\frac{1}{r} \cdot \frac{\partial(e^{W_0})}{\partial \theta} + \frac{1}{r} \cdot \frac{\partial(e^{r} | \mathbf{x}_m)}{\partial m} + e^{|\mathbf{x}_m| \mathbf{k}_n} = 0 \quad (1.4)$$

avec k_n : courbure de la ligne méridienne PP', qui se met sous la forme : $k_n = \frac{1}{b} \cdot \frac{\partial b}{\partial m}$ en supposant que la hauteur des aubages b, qui ne dépend

que de m, est petite devant le rayon r.

L'équation (1.4) devient :

$$\frac{\partial(be^{(k/0)})}{\partial 0} + \frac{\partial(be^{(k/m)})}{\partial m} = 0 \qquad (1.5)$$

et on peut alors introduire la fonction de courant Ψ telle que :

$$\begin{cases} \frac{\partial \Psi}{\partial m} = b \rho I X / \rho \\ \frac{\partial \Psi}{\partial \theta} = - b \rho r I X / m \end{cases}$$
(1.6)

1.3.1 Equation fondamentale

La vitesse \widetilde{W} doit vérifier l'équation (1.3). En coordonnées (m, θ, n) avec n normale en P à la surface S1, celle-ci s'écrit de manière générale :

$$\vec{\nabla} \wedge \vec{W} + 2\vec{w} = \vec{i} \left[\frac{\partial W_m}{\partial n} - W_m k_m \right] + \vec{i}_2 \cdot \frac{1}{r} \left[\frac{\partial (rW_0 + wr^2)}{\partial n} \right]$$
$$+ \vec{i}_3 \left[\frac{\partial W_m}{\partial \theta} - \frac{\partial (rW_0 + wr^2)}{\partial m} \right] \cdot \frac{1}{r} = \vec{0}$$
(1.7)

avec $k_m = -\frac{1}{W_m} \frac{\partial W_m}{\partial n}$ courbure de la surface S1 au point P (figure 1.2)

surface de courant de revolution.

figure 1.3

La condition imposée sur $\vec{\xi}$ est automatiquement vérifiée.

On montre (4) que dans le cas d'un nombre d'aubes infiniment grand (donc des aubes infiniment minces), la quantité $rW_0 + \omega r^2$ reste constante le long de toute normale \vec{n} entre deux aubes.

Enfin, la projection sur $\overline{\iota}_3^2$ de la relation (1.7) s'écrit :

$$\frac{1}{r}\left(\frac{\partial \mathcal{W}_{m}}{\partial \Theta} - \frac{\partial (r \mathcal{W}_{\Theta})}{\partial m}\right) = 2\omega \cdot \frac{\partial r}{\partial m} \qquad (1.8)$$

En portant dans (1.8) les expressions (1.6) et comme b et r ne changent pas dans la direction tangentielle Θ , on obtient l'équation suivante :

$$\frac{1}{br} \frac{\partial}{\partial \theta} \left(\frac{1}{\varrho} \frac{\partial \Psi}{\partial \theta} \right) + r \frac{\partial}{\partial m} \left(\frac{1}{\varrho b} \frac{\partial \Psi}{\partial m} \right) + \frac{\partial r}{\partial m} \frac{1}{br} \frac{\partial \Psi}{\partial m}$$
$$= -2 w r \frac{\partial r}{\partial m}$$
(1.9)

Pour la suite de l'étude, on utilisera la fonction de courant adimensionnelle \mathbf{y} définie par :

 $y = -\frac{\psi}{q}$

où q désigne le débit massique traversant la roue entre deux aubes adjacentes et deux surfaces S_1 distantes de $\Delta n = 1$

Selon (1.6) on a :

$$\begin{cases} \frac{\partial y}{\partial m} = -\frac{be}{q} \cdot W_{\Theta} \\ \frac{\partial y}{\partial \Theta} = \frac{ber}{q} \cdot W_{M} \end{cases}$$
(1.10)

et, avec $\frac{\partial r}{\partial m} = \operatorname{sind}$ (voir figure 1.3), l'équation (1.9) devient :

$$\frac{1}{r^2} \frac{\partial^2 y}{\partial \theta^2} + \frac{\partial^2 y}{\partial m^2} - \frac{1}{r^2} \frac{1}{\varrho} \frac{\partial \rho}{\partial \theta} + \frac{\partial y}{\partial \theta} + \frac{1}{r^2} \frac{\partial (b\rho)}{\partial \rho} \frac{\partial y}{\partial m} = \frac{2b\rho w}{\rho} \sin \alpha \qquad (1.11)$$

1.3.2 Conditions aux limites

La fonction de courant adimensionnelle **y**, solution de l'équation différentielle (1.11), doit vérifier les conditions aux limites du domaine d'étude. Soit une surface de courant S1 définie par la rotation autour de l'axe de la machine d'une ligne de courant méridienne : celle-ci se trouve découpée périodiquement par les aubes dans la direction périphérique en domaines élémentaires tels que le montre la figure (1.4).

Compte tenu de la définition de y et si y_{π} et y_{π} sont les valeurs de y_{π} correspondant respectivement aux limites FG et BC du domaine élémentaire, on doit avoir :

$$y_{II} - y_{II} = \frac{debit \text{ masse passant entre BC et FG}}{q} = 1$$

figure 1.4

- On posera $y_1 = 0$ sur BC et $y_1 = 1$ sur FG. Ces conditions sont évidemment complètement équivalentes aux conditions de tangence des vecteurs vitesses à la surface des aubes.

- Loin à l'amont AH et loin à l'aval DE, l'écoulement est supposé uniforme. La connaissance de la vitesse \vec{W} nous permet d'avoir les valeurs de la fonction de courant sur ces frontières.

- Entre AB et HG et entre CD et FE, la condition de périodicité se traduit par :

 $y_{HG} = y_{NB} + 1$ et $y_{FE} = y_{CD} + 1$

1.3.3 Condition de KUTTA-JOUKOWSKI

En plus des conditions aux limites et des conditions de périodicité de l'écoulement, la condition de KUITA-JOUKOWSKI doit être satisfaite. Cette dernière peut s'exprimer de la façon suivante :

Pour un écoulement de fluide parfait autour d'un profil dont l'intrados et l'extrados se terminent suivant une tangente commune, la ligne de courant issue du bord de fuite doit quitter ce dernier suivant cette tangente. Vérifier la condition de KUTTA-JOUKOWSKI sous cette forme, pose un problème dans le cas de profils à bords arrondis ou en forme de dièdre. La position du point d'arrêt n'étant pas connue, une petite erreur commise sur sa détermination peut en effet engendrer une grande altération des résultats des calculs. Il est alors préférable de remplacer cette condition par une symétrie de la répartition des pressions ou des vitesses relatives sur l'intrados et l'extrados du profil, le plus près possible du bord de fuite, comme nous le verrons plus en détail au chapitre suivant.

CHAPITRE II

CALCUL DE L'ECOULEMENT SUBSONIQUE D'UN FLUIDE NON VISQUEUX SUR UNE SURFACE "AUBE A AUBE" - METHODE DE KATSANIS

Les équations telles que la relation (1.11), régissant l'écoulement subsonique permanent d'un fluide non visqueux sont de type elliptique. De nombreuses techniques numériques ont été proposées pour les résoudre. Ces méthodes reposent généralement sur une discrétisation des équations dans l'espace physique et une solution par itérations successives. Parmi les principales, nous citerons :

- <u>les méthodes de singularités</u> (5) qui consistent à introduire sur des lignes ou surfaces du champ d'écoulement des distributions de singularités (tourbillons, puits, sources ou doublets) permettant de traduire les conditions de glissement du fluide sur les parois fixes ou mobiles. Ces méthodes sont généralement très précises mais relativement délicates à manipuler et sensibles à la qualité de leur programmation (problème des lissages).

- les méthodes basées sur la <u>transformation conforme</u> (6) qui permettent de réaliser une résolution assez simple des équations dans un espace fictif transformé de l'espace physique. Peu employées dans l'analyse courante, ces méthodes s'avèrent particulièrement bien adaptées dans certains cas particuliers, tels par exemple que celui d'aubages en tandem.

- les méthodes de discrétisation par <u>éléments finis</u> (7) dont le principal avantage est de permetre une bonne représentation des géométries complexes des canaux d'écoulement mais qui sont relativement assez lourdes en volume et en temps de calcul. La méthode des <u>éléments frontières</u> n'a pas à notre connaissance reçu d'application importante dans le domaine des turbomachines.

- les méthodes basées sur la discrétisation des équations selon la technique des <u>différences finies</u> sont en nombre important. Signalons entre autres, la <u>méthode de courbure des lignes de courant</u> (8) qui consiste à discrétiser les équations selon un maillage constitué par les lignes de courant et des lignes quasi orthogonales et à calculer la vitesse méridienne en chaque point à partir de la courbure des lignes de courant. Délicate à utiliser (problèmes de stabilité numérique) cette méthode est limitée aux seuls écoulements subsoniques dans des géoméries relativement simples.

Les méthodes de "<u>time marching</u>" (9) consistent à introduire des termes pseudo instationnaires dans les équations de façon à donner un caractère hyperbolique aux équations et ainsi de bénéficier des facilités de calcul correspondantes. Assez lourdes en temps de calcul, elles présentent le très grand avantage de permettre le traitement des écoulements en régime quelconque (subsonique, sonique et supersonique).

Les <u>méthodes classiques de discrétisation</u> le long de lignes de maillage de direction arbitraire sont maintenant d'application industrielle courante. Parmi celles-ci, celles qui jouissent de la plus grande faveur actuellement sont les <u>méthodes matricielles</u>, qui permettent le calcul avec le même algorithme de la solution des écoulements bidimensionnels "aube à aube" et méridien. Elles se prêtent bien à la programmation structurée, ce qui rend le temps d'exécution machine plus performant, et présentent une bonne stabilité numérique et une convergence rapide alliées à une bonne précision.

Parmi ces dernières, la technique de calcul proposée par <u>KATSANIS</u> (10) pour le calcul de l'écoulement interaubes consiste à discrétiser l'équation (1.11) selon un maillage de forme rectangulaire puis, à partir d'une distribution arbitraire de la fonction de courant, à recalculer celle-ci à partir des valeurs prises aux points voisins.

A chaque itération, on a ainsi à résoudre un système linéaire de n équations à n inconnues. Le processus est répété jusqu'à convergence de la solution.

2.1 METHODE DE KATSANIS

2.1.1 Discrétisation de l'équation fondamentale

Soit la surface de type S1 axisymétrique représentée ci-dessous (figure 2.1) et rapportée aux axes **m** et **9**.

Nous choisissons un point arbitraire 0 et 1, 2, 3 et 4 les points voisins de 0 dans un maillage rectangulaire, de pas arbitraire, parallèle aux axes m et \mathfrak{P} .

Nous désignons par $h_{\rm i}$ les distances de O aux points 1, 2, 3, 4 soit :

$$h_1 = r(\theta_0 - \theta_1), h_2 = r(\theta_2 - \theta_0), h_3 = m_0 - m_3, h_4 = m_4 - m_6$$

où r représente la distance du point O à l'axe de rotation de la machine. De même, nous notons y: les valeurs prises par la fonction y aux points i. Soit n le nombre total de ces points.

En développant classiquement les fonctions \mathcal{G} , \mathcal{C} et \mathcal{b} en séries de Taylor autour du point 0, et en reportant dans l'équation (1.11), on trouve l'équation linéaire en y_i suivante qui représente l'équation (1.11) au second ordre près :

$$\begin{bmatrix} \frac{2y_{1}}{h_{1}(h_{1}+h_{2})} + \frac{2y_{2}}{h_{2}(h_{1}+h_{2})} - \frac{2y_{0}}{h_{1}h_{2}} \end{bmatrix} + \begin{bmatrix} \frac{2y_{3}}{h_{3}(h_{3}+h_{4})} + \frac{2y_{4}}{h_{4}(h_{3}+h_{4})} - \frac{2y_{0}}{h_{3}h_{4}} \end{bmatrix}$$
$$-\frac{1}{9} \left(\frac{1}{10} \left(\frac{1}{10} - \frac{1}{10} \left(\frac{1}{10} - \frac{1}{10} \left(\frac{1}{10} - \frac{1}{10} \right) \left(\frac{1}{10} - \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10$$

En appliquant cette équation aux n points du maillage, on obtient le système linéaire écrit sous forme matricielle (2.2) :

$$A\vec{y} = \vec{k}$$
 (2.2)

$$\vec{k} = \begin{cases} k_i \\ i=1,..,n \end{cases}$$

$$\vec{k} = -\frac{2\omega}{9} \quad b_i \quad e_i \quad A_i = i \\ \vec{y}^2 = \begin{cases} y_i \\ i=1,..,n \end{cases}$$

$$\vec{k} = (a_{ij})_{i,j=1,..,n}$$

où

 $a_{ij} = 0, 1, -1, a_1, a_2, a_3, on a_4;$

$$\begin{cases} a_{1} = \frac{1}{a_{o}(h_{1}+h_{2})} \cdot \left(\frac{2}{h_{1}}+b_{12}\right) \\ a_{2} = \frac{a_{42}}{a_{0}} - a_{1} \\ a_{3} = \frac{1}{a_{o}(h_{3}+h_{4})} \cdot \left(\frac{2}{h_{3}}+b_{34}\right) \\ a_{4} = \frac{a_{34}}{a_{0}} - a_{3} \\ a_{42} = \frac{2}{h_{4}h_{2}} , \quad a_{34} = \frac{2}{h_{3}h_{4}} , \quad a_{0} = a_{12}+a_{34} \\ b_{12} = \frac{f_{2}-f_{1}}{f_{0}(h_{2}+h_{1})} , \quad b_{34} = \frac{b_{4}f_{4}-b_{3}f_{3}}{b_{0}f_{0}(h_{3}+h_{4})} - \frac{sind_{0}}{r_{0}} \end{cases}$$

2.1.2 Discrétisation des conditions aux limites

La solution de (2.2) doit vérifier les conditions aux limites qui s'écrivent, au même degré d'approximation, de la façon suivante :

$$y_0 = y_4 + h_4 \frac{t_3 B_1}{sr_4}$$
 Le Long de AH (2.3.a)

$$y_0 = y_3 - h_3 \frac{t_0 \beta_2}{\Delta r_2}$$
 le long de DE (2.3.b)

 $y_0 = a_1 y_{1,3} + \sum_{i=2}^{4} a_i y_i - a_1 + k_0$ le long de AB et CD (2.3.c)

Pour les notations de $\begin{array}{c} y \\ y_{1,3} \end{array}$ voir figure (2.1) ; \vec{n} est la normale extérieure au domaine de contrôle.

2.1.3 <u>Processus itératif utilisé pour la résolution du système</u> d'équations

La méthode couramment utilisée est celle des surrelaxations successives, le coefficient de surrelaxation Ω étant calculé au début du programme pour assurer le maximum de rapidité de la convergence vers la solution finale.

Le système linéaire précédant prend alors la forme suivante :

$$y_{i}^{m+1} = y_{i}^{m} + \Omega \cdot \left[-\sum_{j=1}^{i-1} \alpha_{ij} y_{j}^{m+1} - \sum_{j=i+1}^{n} \alpha_{ij} y_{j}^{m} + k_{i} - y_{i}^{m} \right]$$

$$pour \ i = 1, ..., n$$

$$(2.4)$$

$$r = y_{i}^{m} : valeur \ de \ y_{i} \ obtenue \ a \ l'itération \ m$$

avec

A;; : éléments de la matrice A k; : composantes du vecteur k

- 17 -

On montre (10) que cette méthode converge pour des valeurs initiales quelconques \vec{y}° quand $\circ < \mathcal{A} < \mathcal{E}$ et que la rapidité de la convergence atteint son maximum pour $1 < \mathcal{A} < 2$. La convergence est

assurée sous certaines conditions (voir Annexe B).

Dans le cas de l'écoulement d'un fluide compressible, un autre processus itératif doit compléter le calcul précédent.

En effet les coefficients de la matrice A et du vecteur \overline{k} dépendent de la masse volumique du fluide c qui est elle même fonction de la solution de (2.4).

Dans ce cas, on commence par donner à ℓ une valeur uniforme puis on cherche les valeurs η_i solutions de l'équation (2.4).

Ces deux étapes sont répétées jusqu'à obtenir $\frac{\Delta r}{\zeta} < \xi$ (ξ , précision arbitraire choisie).

2.1.4 <u>Calcul d'un écoulement "aube à aube" par la méthode de KATSANIS</u> conventionnelle

L'organigramme du code de calcul correspondant à la méthode de KATSANIS est présenté en annexe D .

Afin de tester la validité du programme que nous avons implanté sur l'ordinateur VAX 11/750 du centre de calcul de l'E.N.S.A.M., nous avons dans un premier temps, traité le cas du distributeur fixe d'une roue axiale de 50 aubes étudié par KATSANIS (2) avec les mêmes données.

La variation de la vitesse du fluide sur l'intrados et l'extrados des aubes correspondant aux résultats publiés par KATSANIS et au présent travail est donnée sur la figure suivante à titre de comparaison.

On peut voir la très bonne concordance entre les résultats, malgré une très légère modification de la position des points de calcul due à un traitement différent du bord de fuite que nous examinerons plus loin.

- 19 .

2.2 PRISE EN COMPTE EXPLICITE DE LA CONDITION DE KUTTA-JOUKOWSKI

Le calcul de l'écoulement par la méthode de KATSANIS suppose connue la déviation du fluide en sortie de roue. On impose en effet une valeur arbitraire β_3 à l'angle de sortie relatif loin à l'aval.

figure 2.2

L'angle 3 au bord de fuite s'en déduit par application des principes de conservation de la masse et de la quantité de mouvement entre la section de sortie CF (indice 2) et la section située à l'infini aval DE (indice 3). On trouve :

$$t_{q} \beta_{2} = \left[\frac{t_{q} \beta_{3}}{b_{3}} \frac{f_{2}}{f_{3}} + \frac{w(r_{3}^{2} - r_{2}^{2})}{q} \left(\frac{r_{3}}{2} \right) \right] b_{2}$$
(2.3)

En fait la prédiction de l'angle de sortie est d'un intérêt primordial pour la définition des performances de la machine et de nombreux auteurs se sont attachés à établir des corrélations théoriques ou expérimentales permettant de le définir. On peut entre autres citer les formules de STODOLA (11), PFLEIDERER, BUSEMANN-WIESNER (12), CARTER (13) ou les corrélations de HOWELL (14), MELLOR (15), etc...

Mais devant l'évolution rapide des méthodes de calcul numérique certains auteurs se sont intéressés à calculer l'angle β_2 par des raisonnements théoriques. L'idée de base est de ramener β_2 par un processus itératif à la valeur pour laquelle la condition de KUTTA-JOUKOWSKI est vérifiée.

WILKINSON (16) a choisi de localiser la position du point d'arrêt par l'intersection de la ligne cambrure avec l'extrémité du bord de fuite. Cette méthode se trouve confrontée à de grandes difficultés d'application dans le cas de bords de fuite arrondis, sachant qu'une petite erreur commise sur la position du point d'arrêt entraîne de grandes variations des résultats, et que plus on se rapproche de ce point plus le calcul de la vitesse devient imprécis.

Aussi la plupart des auteurs conviennent-ils d'égaler soit le coefficient de pression soit la vitesse relative calculée de part et d'autre du profil, le plus près possible du bord de fuite. A ce sujet, MILLER J. (17) compilant les principaux travaux effectués dans le but de prédire théoriquement cette déviation constate que les résultats obtenus sur les mêmes machines par GOSTELOW et col. (18), MILLER (19), et DODGE (20) sont assez proches (à environ 1° près). Cependant un écart de 6 environ est relevé par rapport aux déterminations expérimentales. Cet écart, sur lequel nous reviendrons, peut, comme nous le verrons, s'expliquer en partie par le fait que les calculs ne tiennent pas compte de l'influence de la viscosité du fluide.

Parmi les auteurs cités, DODGE utilise pour ses calculs deux programmes de KATSANIS (21) et (22) lui permettant d'obtenir la distribution des vitesses relatives au voisinage immédiat du bord de fuite sur un maillage affiné pour un angle de sortie arbitraire β_2 . Il procède ensuite de manière itérative à la correction de β_3 jusqu'à obtenir une distribution de vitesse telle que $\sqrt{x/p} = \sqrt{x}/Q'$ sur l'avant-dernière ligne verticale du maillage (figure 2.3).

figure 2.3

On constate que plus l'angle \aleph_1 augmente, plus le point \mathbb{Q} symétrique de \mathbb{P} s'écarte du point \mathbb{Q}' , et la condition de KUTTA-JOUKOWSKI se trouve de moins en moins bien vérifiée.

Pour remédier à cet inconvénient nous avons mis au point un programme d'amplification de la région voisine du bord de fuite qui couplé au programme de KATSANIS donne directement les vitesses relatives en deux points symétriques (par rapport à la médiane très près du bord de fuite (figure 2.4). Enfin nous avons développé un processus itératif de convergence vers la solution de KUTTA-JOUKOWSKI.

2.2.1 Méthodes de prédiction de la déviation

L'ajustement à la condition de KUTTA-JOUKOWSKI a été recherché à l'aide de deux procédures différentes, à savoir, l'égalisation des vitesses relatives au bord de fuite et l'égalisation des coefficients de pression.

2.2.1.1 Egalisation des vitesses relatives à l'extrados et à l'intrados au voisinage du bord de fuite

Considérons le schéma ci-desous représentant le profil au voisinage du bord de fuite.

figure 2.4

La procédure de calcul est la suivante :

- en premier lieu, le point $\mathbf{P1}$ est choisi comme étant le point d'intersection du profil avec la verticale la plus proche du bord de fuite (maillage affiné).

- son symétrique Q1 par rapport à la ligne médiane est calculé à partir de la tangente à cette dernière en O (centre de l'arc de cercle définissant le bord de fuite).

- l'angle β_3 étant choisi arbitrairement de manière à ce que β_2 calculé selon la relation (2.3) soit voisin de l'angle correspondant à la direction de la cambrure au bord de fuite, on calcule l'écoulement par la méthode de KATSANIS. On en déduit la vitesse relative au point P1 et, par interpolation, au point Q1 d'où l'écart $\Delta x/= x/\rho_1 - x/Q_1$.

- si $\Delta \times / < \nabla TOL$ (= erreur maximale tolérée pour la vitesse, par exemple 10 $\cdot \omega r$) alors β_3 choisi est l'angle cherché.

- si $|\Delta \times | > \vee \top \cap L$, on donne à $\int_3^{5} 3$ une nouvelle valeur et on recommence le calcul de l'écoulement. Nous avons interpolé en général sur quatre points en utilisant le sous-programme de calcul des fonctions splines, utilisé par ailleurs, à partir de la loi de variation de $\Delta \times = f(\beta)$ déduite des itérations précédentes.

Une valeur optimale de $\{ \xi \}$ de 1,5 semble pouvoir être déduite des expérimentations numériques qui ont été faites. Il convient en effet de choisir une valeur suffisante pour limiter le nombre d'itérations et en même temps d'éviter des valeurs trop élevées qui entraîneraient de trop grandes variations de l'angle de sortie β_2 . Sachant que $\frac{1}{p_1} / \frac{1}{2} \sqrt{q_1}$ décroit lorsqu'on augmente la fonction de courant à l'infini aval on vérifie que le signe à donner à la correction ξ est le même que celui du produit β_1 . $\Delta X / .$

2.2.1.2 Egalisation des coefficients de pression au bord de fuite

L'évolution de la pression au sein du canal interaubes peut être déduite des vitesses calculées au moyen du théorème de BERNOULLI en mouvement relatif :

$$\frac{\sqrt{x^2 - w^2 r^2}}{2} - \frac{P}{\rho} = C^{\frac{L}{2}}$$

(en négligeant la pesanteur)

Le coefficient de pression en un point M quelconque est défini par

$$C_{Pm} = \frac{P_0 - P_M}{\frac{1}{2} P_1 \overline{x}_{12}^2}$$

où e_1 et $\widetilde{W_1}$ sont respectivement la masse volumique et la vitesse relative à l'infini amont, P_0 la pression génératrice et P_m la pression statique en M.

La même procédure itérative que précédemment est alors utilisée en remplaçant les vitesses en P1 et Q1 par les Cp aux mêmes points.

2.2.2 Résultats et interprétations

Afin de pouvoir tester l'influence de ces modifications sur les résultats obtenus, nous avons appliqué ces procédures au cas déjà étudié du distributeur servant d'exemple à KATSANIS ainsi qu'à celui d'une roue de pompe en cours d'essai au Laboratoire mais que nous détaillerons seulement au chapitre suivant.

Les résultats des calculs sont représentés sur les tableaux (3^1), (3^2) pour le premier exemple et les tableaux (4^1) et (4^2) pour le second. L'indice 1 marque l'utilisation des vitesses \sqrt{x}^2 au bord de fuite, alors que 2 désigne l'emploi des coefficients de pression Cp.

La vérification de la condition de KUTTA-JOUKOWSKI à l'aide des deux corrélations 2.2.1.1 et 2.2.1.2 nous conduit au même angle de sortie β_2 à \circ .1 près.

	Extrados du profil inferieur		Intrados di superieur	u profil
	Vitesse	Angle	Vitesse	Angle
J=15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35	12.118 95.275 103.324 116.359 131.467 144.964 157.170 167.251 177.191 183.564 186.733 185.892 181.798 171.999 163.552 159.595 156.944 171.019 162.101 133.173 121.569	90.00 28.06 23.53 17.97 11.29 3.67 -4.52 -12.95 -21.23 -29.42 -37.48 -44.92 -51.45 -56.13 -59.54 -59.17 -62.54 -71.24 -73.64 -90.00	12.11876.14364.41960.25157.66457.58258.98461:44964.72368.83873.79779.74286.80695.137104.520114.520124.853134.974146.048200.248121.569	$\begin{array}{r} -90.00\\ -26.12\\ -13.31\\ -14.17\\ -17.60\\ -22.14\\ -26.36\\ -30.24\\ -37.70\\ -37.70\\ -40.25\\ -43.21\\ -46.00\\ -48.52\\ -50.69\\ -52.51\\ -56.81\\ -56.81\\ -57.83\\ 90.00\\ \end{array}$

1			
Extrados du inferieur	profil	Intrados du superieur	profil
Vitesse	Angle	Vitesse	Angle
12.118 95.275 103.324 116.360 131.467 144.964 157.131 167.251 177.191 183.564 186.732 185.891 181.797 171.996 163.549 159.590 156.936 171.010 162.090 133.161 121.542	90.00 28.06 23.53 17.97 11.29 3.67 -4.52 -12.95 -21.23 -29.42 -37.48 +44.92 -51.45 -56.13 -59.54 -59.17 -62.54 -71.24 -73.64 -90.00	12.118 76.143 64.419 60.251 57.664 57.582 58.984 61.448 64.723 68.838 73.797 79.742 86.806 95.138 104.520 114.520 114.520 124.853 134.976 146.050 200.254 121.542	$\begin{array}{r} -90000\\ -26.12\\ -13.33\\ -14.17\\ -17.60\\ -22.14\\ -26.36\\ -30.26\\ -33.78\\ -37.10\\ -40.25\\ -43.21\\ -46.00\\ -48.52\\ -50.68\\ -52.58\\ -54.21\\ +56.81\\ -56.81\\ -57.84\\ 90.00\\ \end{array}$

11. 10 - 0.04 .

Tableau(3⁴); distribution de vitesses autour du profil "non engraisse".Extension de Kutta-Joukowski verifiee a l'aide de la correlation 2.2.1.1.

(DISTRIBUTEUR AXIAL)

Aw/ 0,1

Tableau(3); distribution de vitesses autour du profil"non engraisse".Extension de Kutta-Joukwski verifiee a l'aide de la correlation 2.2.1.2.

(DISTRIBUTEDR AXIAL)

			I	
	Extrados inferieur	du profil	Extrados o superieur	lu p rofil
	Vitesse	Angle	VVitesse	Angle
J=10	11.828	90.00	11.828	-90.00
11	13.658	-65.18	13.860	-73.76
12	13.727	-70.41	12.778	-71.42
12	13.110	-72.71	12.885	-72.83
14	12.408	-73.23	13.435	-72.81
15	11;997	-72.02	14.155	-71.18
16	11.016	-71.87	.14.714	-70.53
17	9.710	-71.84	14.871	-70.42
18	8.446	-71.69	15.115	-71.07
19	7.290	-71.39	15.527	-71.33
20	6.183	-70.92	16.209	-69.86
21	5.260	-70.29	16.452	-67.05
22	4.753	-69.70	16.143	-65.59
- 25	4.746	-69.15	15.693	-66.37
24	5.079	-68.43	15.809	-67.38
25	5.745	-67.48	15.893	-67.59
26	6.818	-67.16	15.919	-67.10
27	8.120	-68.75	15.862	-66.33
28	9.188	-71.32	15.911	-65.34
29	10.149	-67.15	15.721	-61.87
30	10.863	-90.00	10.863	90.00

1A	sk/ .	0,08
	- C	· ·

Tableau(4); distribution de vitesses autour du profil "non engraisse".Extension de Kutta-Joukowski verifiee a l'aide de la correlation 2.2.1.2.

(ROUE S.H.F)

Extrados du inferieur	profil	Intrados du superieur	profil
Vitesse	Angle	Vitesse	Angle
11.828 13.658 13.727 13.110 12.408 11.997 11.016 9.710 8.448 7.300 6.220 5.364 4.958 5.046 5.442 6.143 7.248 8.573 9.624 10.558 12.010	$\begin{array}{c} 90.00\\ -65.18\\ -70.41\\ -72.71\\ -73.23\\ -72.02\\ -71.87\\ -71.87\\ -71.84\\ -71.39\\ -70.92\\ -70.92\\ -70.92\\ -70.92\\ -70.92\\ -69.16\\ -68.43\\ -67.45\\ -67.11\\ -68.78\\ -71.45\\ -66.89\\ -90.00\\ \end{array}$	11.828 13.860 12.778 12.886 13.435 14.155 14.714 14.871 15.113 15.526 16.209 16.452 16.143 15.694 15.806 15.887 15.909 15.840 15.846 15.519 12.010	-90.00 -73.76 -71.42 -72.83 -72.81 -71.18 -70.53 -70.42 -71.07 -71.33 -69.86 -67.05 -65.59 -66.37 -67.38 -67.60 -67.11 -66.33 -65.30 -67.00 -77.00 -7

A1X/1=0,3

Tableau(4¹) ; distribution de vitesses autour du profil "non engraisse".Extension de Kutta-Joukowski verifiee à l'aide de la correlation <u>2.2.1.1</u>.

(ROUE S.H.F)

A titre de test, nous déterminons les valeurs de ΔW correspondant aux résultats obtenus à l'aide des deux corrélations et ceci pour le même angle $\beta_{3 \text{ int}}$.(voir figure 2.5).

L'égalité des vitesses relatives aux deux points symétriques $\mathbf{P1}$ et $\mathbf{Q1}$ (figure 2.4) très près du bord de fuite, est obtenue avec plus de précision et ceci dans les deux cas (exemple 1 et exemple 2) avec la première corrélation.

Les valeurs de la pression en P1 et Q1 étant déduites à partir des vitesses relatives en ces points à l'aide du théorème de BERNOULLI relatif, nous remarquons que dans le cas d'une roue mobile, les résultats correspondants aux deux corrélations ne peuvent pas être identiques si les rayons en P1 et en Q1 diffèrent (voir figure 2.4).

Le temps d'exécution du calcul par les deux méthodes étant identique nous choisissons la corrélation **2.2.11** pour la suite.

Nous constatons cependant que, dans cet exemple, l'écart entre l'angle de sortie calculé β_2 et l'angle de sortie géométrique β_2 , qui représente la déviation angulaire χ est très faible en raison du très grand nombre d'aubes. Aussi convient-il de traiter le cas d'une grille à nombre d'aubes réduit.

CHAPITRE III

ETUDE DU COUPLAGE ENTRE LE CALCUL DU DEVELOPPEMENT DE LA COUCHE LIMITE SUR LES AUBAGES ET LE CALCUL AUBE A AUBE PAR LA METHODE DE KATSANIS

Comme nous l'avons indiqué dans l'introduction, l'objet de notre travail concerne uniquement l'étude du couplage entre les deux calculs. Nous ne nous intéressons pas à la structure et au comportement de la couche limite. Le modèle que nous retenons est donc particulièrement simplifié et ne prend en compte que l'épaisseur de déplacement sous la forme d'une modification de la géométrie du profil.

Cette démarche a des limitations évidentes mais nous tenterons d'en dégager l'intérêt pratique pour l'analyse des performances des grilles d'aubes et nous comparerons nos résultats aux corrélations existantes.

3.1 PRINCIPE D'UNE METHODE NUMERIQUE DE CALCUL DE L'ECOULEMENT D'UN FLUIDE VISQUEUX AUTOUR D'UN PROFIL

En 1980, J. CORNIGLION (23) présente une étude bibliographique sur les diverses méthodes de calculs des écoulements dans les turbomachines. On constate que jusqu'à ce jour, il n'existe pas une méthode numérique fiable de résolution directe des équations de NAVIER-STOKES. En particulier, la modélisation de WU (3) demeure nécessaire pour traiter le caractère tridimensionnel de l'écoulement.

De plus l'abondante littérature dans ce domaine traite des problèmes d'écoulements compressibles, ce qui facilite une formulation mathématique avec un schéma de pertes empirique (phénomène irréversible dû à une non adaptation à l'entrée et aux frottements moyennés par un schéma de gradient d'entropie). Dans ce cadre, une méthode "type" de calcul numérique des écoulements dans les compresseurs centrifuges a été développée en 1975 par R. SOVRANO et col. (24), en vue d'une préparation à l'introduction des corrections dues à la couche limite.

Pour l'adaptation de telle formulation mathématique au cas d'un fluide incompressible, certaines précautions doivent être prises.

Parmi les méthodes de couplage classiques, comprenant un seul calcul d'écoulement de fluide parfait et une prédiction de l'influence de la couche limite sur ce dernier, on peut noter les travaux de CEBECI et SMITH (25) fondés sur un schéma empirique reliant l'épaisseur de déplacement à l'épaisseur de quantité de mouvement et appliqués à un profil isolé. Dans le cas des turbomachines, on peut citer les travaux de GOULAS (26) qui a comparé des calculs à des mesures effectuées par anémométrie laser sur des compresseurs centrifuges : ses calculs utilisent des procédures de couplage entre écoulement "méridien" et écoulement "aube à aube" avec prise en compte des effets visqueux et turbulents.

On trouve également des méthodes fondées sur des singularités, telle la méthode dite de "couplage-fort" développée à l'O.N.E.R.A. (27) pour des profils isolés d'ailes d'avion, ou aussi les méthodes fondées sur des corrections alternées pour la résolution de l'équation de transport du tourbillon (5).

Dans l'attente de la généralisation des algorithmes permettant la résolution des équations complètes de NAVIER-STOKES dans l'espace interaubes, nous allons présenter notre méthode approchée qui se décompose de la façon suivante :

- calcul de l'écoulement de fluide parfait autour des profils initials.

- calcul de la couche limite et détermination de son épaisseur de déplacement.

- calcul de l'écoulement de fluide parfait autour des profils engraissés.

Rappelons que la couche limite est ici modélisée suivant une méthode approchée arbitraire et que notre travail porte essentiellement sur l'analyse des problèmes de couplage.

3.2 MODELE DE DEVELOPPEMENT DE LA COUCHE LIMITE

Nous supposons que la couche limite est entièrement turbulente sur toute la surface de l'aubage et qu'elle ne présente pas de décollement. Nous admettons que son épaisseur est négligeable vis à vis du rayon de courbure du profil et que ce dernier est assez grand pour qu'on puisse assimiler localement la surface du profil à une surface plane.

En effet Y. MIYAKE et col. (28) ont montré par un développement asymptotique des équations de NAVIER-STOKES, que l'influence sur la couche limite de la courbure du profil et de la rotation ω (considérée constante) de la roue n'apparaissent qu'à partir du second ordre, et qu'on peut la négliger lorsqu'on a :

où δ représente l'épaisseur de déplacement, $\lambda / \lambda_{\alpha}$ la vitesse locale le long de la surface de l'aube et λ la courbure du profil en α (voir figure 3.1).

figure 3.1

Dans ces conditions, on peut à titre de test, retenir le modèle de BLASIUS de croissance de la couche limite sur une plaque plane :

$$S'(x) = 0,04625 \times Re_{x}^{-15}$$
 (3.3)

où \approx désigne la distance au bord d'attaque et $R_{e_x} = \underbrace{\sqcup_{\nu} \times}{\nu}$ est le nombre de REYNOLDS calculé à l'aide de la vitesse \bigsqcup_{ν} du fluide supposé uniforme loin à l'amont et de la viscosité cinématique ν .

Si le nombre de REYNOLDS $\mathcal{R}_{e} = \underbrace{\bigcup_{e} \ell}_{V}$ calculé avec la longueur ℓ de la plaque est inférieur à 10⁵, le modèle de couche limite laminaire est retenu et l'on prend :

$$S^{*}(x) = 1, 7207 \approx Re_{x}^{-1/2}$$
 (3.4)

L'utilisation de ces modèles simples s'effectue dans notre cas de la façon suivante : (voir figure 3.2).

- chaque élément d'une face du profil, M_{1} , M_{2} est assimilé à une plaque plane.

- l'épaisseur de déplacement au point M_{i} , $S^{(M_i)}$ est calculée à l'aide de l'expression (3.3) ou de l'expression (3.4) en posant :

$$\begin{cases} \Box_{00} = \frac{|X|}{M_{i-1}} \\ er \\ x_{M_i} = 1 \text{ longueur de l'arc } M_{i-1} \\ M_i \end{cases}$$

- le point M'_i du "profil engraissé" est défini en portant $\hat{\xi}(M_i)$ sur la normale $\tilde{n_i}$ en M_i au profil ; on obtient ensuite le point M_i^* à l'intersection de la verticale passant par M_i et du segment $M_{i-1}^*M'_i$.

figure3.2
3.3 FERMETURE DU PROFIL "ENGRAISSE"

Le développement de couches limites se traduit par la présence d'un sillage sur une distance plus ou moins grande à l'aval du profil qui doit être représenté notamment par une épaisseur de déplacement de part et d'autre du bord de fuite.

Or, la méthode de calcul de KATSANIS de l'écoulement de fluide parfait suppose un écoulement uniforme à "l'infini aval". Il est donc nécessaire de refermer le profil "engraissé" en définissant un bord de fuite fictif.

Le programme de couplage a été conçu de façon à pouvoir éventuellement modifier la position de la fermeture du bord de fuite fictif. La figure 3.3 illustre la méthode dans le cas d'une fermeture à deux "mailles" (comptées à partir du bord de fuite réel dans la direction horizontale) :

On prolonge les deux faces du profil fictif des points C' et F' jusqu'aux points C" et F" en utilisant les fonctions de lissage du programme (splines cubiques). Le bord de fuite est ensuite affiné en définissant l'arc de cercle centré sur la ligne moyenne du profil fictif et de rayon \mathcal{RO} défini par (voir figure 3.3) :

$$RO = \frac{f_1}{2} \cos \beta_{2q} \qquad (7.5)$$

où β_{20} est l'angle de sortie géométrique défini par la tangente à la ligne moyenne en O'.

, est l'épaisseur du profil fictif calculée le long de la verticale précédent celle qui passe par 0'.

La condition de KUTTA-JOUKOWSKI pour l'écoulement de fluide parfait autour du profil "engraissé" est définie en écrivant l'égalité des modules des vitesses relatives aux points C' et F' situés dans le plan de sortie de la grille d'aubes initiale (voir figure 3.3), ce qui revient implicitement, comme nous l'avons vu, à admettre une même pression en ces deux points.

3.4 PRINCIPE DE CALCUL-PREMIER EXEMPLE

3.4.1 Principe

La conduite du calcul est donc la suivante :

- <u>Première itération</u>: Calcul de l'écoulement du fluide parfait autour des profils de base, ce qui donne la solution satisfaisant à la condition de KUTTA-JOUKOWSKI telle qu'elle est définie au chapitre 2.

- Deuxième itération et suivantes :

. Calcul des épaisseurs de déplacement qui vont engraisser le profil de base à partir des distributions de vitesses sur l'intrados et l'extrados obtenues à l'étape précédente.

. Nouveau calcul d'écoulement de fluide parfait autour des profils "engraissés", en vérifiant la condition de KUTTA-JOUKOWSKI comme indiqué en 3.3.

. Ces itérations sont poursuivies jusqu'à la solution finale qui correspond à la grille d'aubes de profils "engraissés" dont la géométrie égale celle trouvée à l'itération précédente à une erreur relative près fixée à 10^{-2} dans nos exemples.

3.4.2 Application à un distributeur axial de turbine

La procédure décrite ci-dessus a été d'abord appliquée au cas simple du distributeur axial défini au chapitre 2 par le tableau (1). Nous avons pu juger ainsi de la convergence du processus et tester cinq positions différentes de "fermeture" du profil fictif. Celles-ci , fixées de une à six "mailles" du bord de fuite du profil initial, sont notées respectivement POP1, ..., POP6. Ces essais ont été effectués avec un "infini aval" à distance constante du bord de fuite fictif.

Ce procédé permet de vérifier lors de la première itération (calcul autour des profils réels) que le nombre de mailles comprises entre le bord de fuite et l'"infini aval" n'intervient pas dans la précision des résultats obtenus dans la mesure où il est supérieur ou égal à 10, alors que le nombre de mailles couvrant la corde du profil est uniformément fixé à 20 dans tous les cas. (voir tableau (5)).

	N = 11		K = 1	12	N = 13		N = 14	
	X/m/s	Baigri	\X/ _{m/s}	Bdégri	X/ m/s	Bdigri	\X/ _{m/s}	B dézri
Plum de sortie	139.53	64.114	139.54	64.115	139.115	64.116	139.55	64.117
J = 1 2	127.1	67 . 13 68 . 84	127.1 126.9	67 .1 3 68 . 83	127.1 126.9	67 .1 3 68 . 83	127.1	67.13 68.83
2 3 4 5	135.9 140.5	70.55 70.87 70.70	135.9 140.5	70.82 70.86 70.70	135.9 140.5	70.92 70.86 70.70	135.9 140.6	70.86 70.70
6	144.7	70.03	144.7	70.03	144.7	70.03	144.8	70.03
7	148.2	68.97	148.2	68.97	148.2	68.97	148.2	68.97
8	150.7	67.67	150.7	67.68	150.7	67.68	150.7	67.68
9	152.0	66.29	152.0	66.29	152.1	66.29	152.1	66.29
10	152.3	64.98	152.4	64.98	152.4	64.98	152.4	64.98
11	151.9	63.83	151.9	63.83	151.9	63.83	152.0	63.83
12	151.1	62.85	151.1	62.85	151.1	62.85	151.1	62.85
13	150.0	62.00	150.0	62.00	150.0	62.01	150.0	62.01
14	148.8	61.23	148.8	61.24	148.8	61.24	148.8	61.24
15	147.4	60.49	147.4	60.50	147.4	60.50	147.4	60.50
16	145.8	59.75	145.8	59.75	145.8	59.76	145.8	59.76
17	143.9	58.92	143.9	58.93	143.9	58.93	143.9	58.93
18	141.3	58.10	141.3	58.10	141.3	58.10	141.3	58.11
19	138.3	56.68	138.3	56.68	138.3	56.68	138.3	56.68
20	130.7	56.41	130.7	56.41	130.7	56.41	130.7	56.41
21	127.2	49.50	127.2	49.50	127.2	49.50	127.2	49.50
22	47.73	60.92	47.73	60.92	47.72	60.92	47.73	60.93

Tableau(5) ; "infini aval" à une distance fixe du plan de sortie roue à profils non "engraisses". (DISTRIBUTEUR AXIAL).

٩.,

Par contre en ce qui concerne ce type de profil "engraissé", nous n'avons pas pu assurer la convergence de notre procédure de calcul pour un nombre de "mailles" utilisé pour la "fermeture" supérieur à trois, en raison de la difficulté (voire l'impossibilité) de vérifier l'égalité des modules des vitesses au droit du bord de fuite réel (c'est à dire la condition de KUTTA-JOUKOWSKI).

Les résultats obtenus avec une "fermeture" sur une, deux et trois mailles (POP1, POP2, POP3) sont résumés dans le tableau (6). Parmi ces trois essais, il faut remarquer que POP2 conduit à une convergence plus rapide : le critère de convergence est vérifié au bout de 3 itérations au lieu de 4 pour POP1 et POP3.

Les résultats montrent le peu d'écart obtenu sur l'épaisseur de déplacement au bord de fuite de la grille réelle.

Par contre la position de la fermeture du profil "engraissé" joue un rôle non négligeable sur les performances de la grille (vitesse et angle du fluide à l'infini aval ; distributions des vitesses au bord de fuite réel). Ces résultats montrent donc toute la difficulté d'exploiter avec confiance cette procédure même si les résultats semblent les plus exploitables avec une "fermeture" à deux mailles compte-tenu du meilleur comportement numérique (rapidité de convergence et précision).

1							
	POP	1	POP2		POP3		
	\x/ m/s	Bdégré	W/ m/s	W/m/s Bdigre		Baligri	
Infini aval	165.326	68.38	i=1.206	66.24	139.36	64.08	
Pl:n de sortie	169.539	68.87	155.42	66.77	142.882	65.22	
I= 1	164.6	73.49	156.4	73.34	158.1	72.93	
2	167.6	73.20	159.3	72.76	161.9	72.12	
3	170.4	72.78	162.2	72.09	166.2	71.17	
4	173.1	72.21	165.0	71.31	170.6	70.07	
5	175.4	71.49	167.7	70.38	175.4	68.80	
6	177.3	70.61	170.2	69.31	180.5	67.39	
7	178.7	69.58	172.4	68.07	18º.9	65.89	
8	179.3	68.45	174.2	66.69	191.8	64.45	
9	179.0	67.29	175.6	65.20	198.0	63.34	
10	177.9	66.21	176.5	63.67	203.9	62.91	
11	176.1	65.27	177.4	62.20	208.0	63.99	
12	173.8	54.49	178.8	60.84	205.3	65.45	
13	171.4	63.85	181.8	59.91	200.1	66.56	
14	169.8	63.25	188.9	59.52	193.7	67.27	
15	165.9	62.69	191.7	61.97	187.1	67.65	
16	163.2	61.66	186.4	65.47	180.6	67.79	
17	1*8.6	60.93	178.1	66.72	174.3	67.75	
18	160.6	\$4.38	169.7	67.13	168.1	67.58	
19	186.5	62.99	152.1	66.95	162.0	67.33	
20	161.7	67.84		<u> </u>	<u> </u>		
5 (nd)	0.003	0.003122		0.003117		0.003097	

Tableau(6); "infini aval à une distance fixe du bord de fuite fictif. (DISTRIBUTEUR AXIAL)

3.5 APPLICATION A UNE ROUE DE POMPE CENTRIFUGE

Ces mêmes calculs ont été appliqués à l'analyse de l'écoulement sur une surface "aube à aube" d'une roue de pompe centrifuge. Cette roue, dite roue S.H.F., a déjà fait l'objet de calculs dans le cadre d'un groupe de travail de la Société Hydrotechnique de France et elle a été d'autre part essayée aussi bien à l'I.N.S.A. de Lyon (essais en eau) qu'à l'E.P.F.L. de Lausanne (essais en eau) et à l'E.N.S.A.M. de Lille (essais en air).

En l'absence de résultats d'un calcul méridien, l'étude est limitée à la surface S1 confondue avec la ceinture de la roue. Les données géométriques et les conditions nominales de cette roue figurent dans le tableau (7).

Le domaine d'étude traité par notre programme, ABCDEFGH, est défini sur la figure (3.4).

F6C)	AME	NUZERO					
6,0000000E+00	0.0000000000000000000000000000000000000	0.15066001E-04					
BAN	AR	115	RHOIP	WTFL	OHEGA		
1.5000000	1000.0000000	1000000.0000000	1000.0000000	1.7746000	125.6640015	0.0000000	
CHORD	STER	BETAI	BETAD				
0.1160000	-2.3605001	-76,3000031	-79.0000015				
RI	ALUI	ALLI	RO	ALUG	ALLO		
0.0003500	49.3506099	-83.0000000	0.0003500	-87.0000000	-49,0000000		
NABI MXBO MX NBBI	NUSP NESP NRSP	" NBL NINT	••••				
10 30	40 30	15 16 16	7 3				
TABLEAU	DE NU		•				
0.0000000	0.0013300	0.0036300	0.0084100	0.0115300	0.0229000	0.0346400	0.0465300
0.0592900	0,0729000	0.0876000	0.1025900	0.1116800	0.1150500	0.0000000	
TARLEAU	DE XSPU						
0.0000000	-0.0063000	-0.0406000	-0,1350000	-0.2093000	-0.5275000	-0.6533001	-1.1587000
-1.4466000	~1.7032000	-1.9349999	-2.1468799	-2.276000	~2,3334000	0.000000	
TABLEAU	DE ML						
0.000000	0.0002300	0.0008100	0.0030400	0.0103300	0.0221500	0.0340400	0.0464000
0.0589000	0.0743400	0.0894900	0.1040300	0.1107900	0.1128800	0.1142100	0.0000000
TAPLEAU	DE XSPL						
0.0000000	-0.0187096	-0.0499000	-0.1491000	-0.3718000	-0.7037000	-1.0203000	-1.3161000
-1.5933000	-1.8382000	-2.0594001	-2.2481999	-2.3211999	-2.3404000	-2.3517001	0.0000000
TABLEAU	DE HR						
-0.1000000	-0.0800000	-0.0400000	-0.0200000	0.0000000	0.0050000	0.0130000	0.0250000
0.0040000	0.0700000	0.0850000	0.0950000	0.1050000	0.1160000	0.1400000	0.2000000
TABLEAU	DE RASP						
0.1100000	0.1100000	0,1100000	0.1100000	0.1102000	0.1104000	0.1120000	0.1170000
0.1256000	0.1510000	0.1660000	0.1760000	0.1845000	0.2000000	0.2230000	0.2830000
TARLEAU	DE BESF						
0.0060000	0.0060000	0.0060000	0.0057300	0.0055000	0.0054300	0.0052700	0.0050600
0.0046200	0.0035200	0.0933300	0.0033200	0.0033200	0.0033200	0.0033200	0.0033200
BLDATA NULAKI ERP	RT STRFN SLCRD	ARPRT INTVEL SURVE	L				

tel qu'il est represente par le TEKTRONIX.

3.5.1 Résultats du calcul de l'écoulement autour des profils réels

Nous commençons par effectuer les calculs autour des profils non "engraissés" avec la discrétisation du domaine d'étude utilisé par PHILIBERT (30), présenté sur la figure (3.4), ce qui nous permet d'avoir des éléments de comparaison en plus des corrélations classiques et des résultats expérimentaux.

Le tableau (8) montre la distribution des vitesses relatives autour d'un profil obtenue avec notre programme. Ces résultats concordent bien avec des résultats obtenus par BOIS (29).

Tablemu(8) ; distributions des vitesses autour d'un profil d'aube. (roue S.H.P)

Coordonnee meridienne	Extrados profil i	du nf.	Intrados du profil sup.		
T.	Vitesse	Angle	Vitesse	Angle	
0.0000E+00	0.000	-90.00	0.000	90.00	
0.1160B-01	13.73	70.41	12.78	71.4 2	
0.23208-01	12.41	73.23	13.43	72.81	
0.348CB-C1	11.02	71.87	14.71	70.53	
0.4640E-01	8.456	71.59	15.11	71.07	
0.69608-01	5.793	69.71	16.14	65.59	
0.81202-01	6.981	68.43	15.80	67.38	
0.92808-01	9.233	67.10	15.86	67.11	
0.1044	11.95	71.48	15.57	65.28	
0.1160	0.000	90.00	0-000	-90.00	

Resultats obtenus par notre programme

Resultats obtenus par G.BCIS

Coordonnee meridienne	Extrados profil i	du .nf.	Intrados profil s	du up.
m	Vitesse	Angle	Vitesse	Angle
0.0000	0.000	-90.00	0.000	90.00
0.11808-01	13.98	70.61	13.95	72.32
0.27205-01	13.85	73.05	13.76	72.62
0.3480E-01	12.34	73.14	15.00	73.09
0.46408-01	9.260:	72.46	14.26	78.97
0.5800E-01	6.910	71.27	20.16	-53.59
0.6960E-01	5.903	70.03	16.52	67.96
0.8120E-01	8.245	69.03	15.71	67.80
0.9280E-01	9.434	67.04	15.67	67.23
0.1044	12.59	69.48	15.41	64.95
0.1160	0.000	90.00	0.000	-90.00

Comme pour le distributeur axial, nous avons procédé à des essais avec différentes positions du plan "infini aval" où l'écoulement est supposé uniforme. Le tableau (9) montre les résultats obtenus pour des valeurs de N3 (voir figure 3.4) égales à 40 et 43. Compte-tenu du changement de rayon qui apparaît lorsqu'on augmente N₃, nous avons déterminé la vitesse relative moyenne dans le plan de sortie de la roue à partir des résultats à l'"infini aval" par la relation (2.3) qui exprime la conservation du moment de quantité de mouvement et du débit dans le domaine CDEF. On peut constater que les résultats sont très proches : l'analyse des distributions de vitesses en sortie de roue (voir figure 3.5), montre un écart maximal de l'ordre de 3 % sur le module et la direction de la vitesse relative ; les valeurs moyennes obtenues sont beaucoup plus proches.

	N3	=40	N3=43		
	\X/ m/s	Baigri	\x/ m/s	P aizi	
"infini aval"	21.914	83.89	25.017	85.01	
plan de sortie	12.339	76.04	12.540	76.26	
I= 1	13.33	79.51	13.80	79.65	
2	14.18	75.13	14.66	75.22	
3	13.07	71.16	13.44	71.07	
4	12.57	73.42	12.88	73.42	
5	12.46	74.60	12.76	74.60	
6	12.56	75.51	12.74	75.52	
7	12.49	76.07	12.77	76.07	
8	12.52	76.47	12.78	76.46	
9	12.54	76.80	12.80	76.78	
10	12.56	77.11	12.81	77.07	
11	12.58	77.42	12.82	77.37	
12	12.61	77.41	12.85	77.66	
13	12.65	77.98	12.88	77.94	
14	12.70	78.22	12.93	78.19	
15	12.76	78.42	12.98	78.40	
16	12.82	78.57	13.04	78.57	
17	12.90	78.66	13.11	78.69	
18	12.98	78.69	13.19	78.75	
19	13.06	78.65	13.26	78.75	
20	13.14	78.55	13.34	78.69	
21	13.22	78.37	13.42	78.56	
22	13.31	78.12	13.50	78.36	
23	13.38	77.78	13.57	78.09	
24	13.45	77.36	13.63	77.74	
25	13.50	76.83	13.67	77.29	
26	13.53	76.18	13.69	76.76	
27	13.51	75.35	13.67	76.07	
28	13.41	74.43	13.4	75.46	
29	13.12	72.99	13.24	74.35	
30	12.16	73.16	12.17	73.85	

Tableau(9) ; "infini aval" à 10 mailles et à 15 mailles du plan de sortie. (ROUE S.H.F)

 V_{m} \wedge di gini i (m1/s) ote N3=40 non Engrais

NS=45 55 85 900 (POP2) ils "engraissés"

X

×

5.1

Vil

\$

4 ¢ Q X × X ×

> т 20 τų figure 3.5 relatives le long de CF (juste à la sortie

30

θ

			N3=	+2		
c	OTE SUP.	de l'aube	INF.	COTE INF.	de l'aube	BUPH
	VITESSE	ANGLE		VITESSE	ANGLE	
10	11.828	90.00	11.1	11.828	-90.00	
11	13.558	-65.18	÷.	13.860	-73.76	
12	13.728	-70.41	.*	12.778	-71.42	
13	13.110	-72.71		12.886	-72.83	
14	12,408	-73.23		13.435	-72.81	1.1
15	11.997	-72.02	· · .	14.155	-71.18	
16	11.016	-71.87	1.1	14.714	-70.53	. *
17	9.711	-71.84		14,871	-/0.42	
18	8.449	-71.70		15.115	-71.07	
17	7.306	-/1.39		13.327	-/1.33	
20	8.291	-70.92		14.452	-67.05	
21	3.423	-/0.29		16.143	-65.59	
22	5.0/4			15.694	-66.36	
23	5,218	-40.47		15,805	-47.38	
29	4 379	-47.47		15.884	-67.60	-
23	7.514	-67.07		15.904	-67.12	
20	0.019	-49.80		15.827	-66.33	
20	9,921	-71.54		15.807	-65.26	
20	10.831	-671		15.402	-62.08	
30	12.712	-90.00		12.712	90.00	
	60X6 0//0		<u>N3</u>	- 44		
	COTE SUP.	de l'aube	<u>N3:</u> INF.	COTE INF.	de l'aube	SUP.
•••	COTE SUP. VITESSE	de l'aube ANGLE	N3: INF.	COTE INF. VITESSE	de l'aube ANGLE	SUP.
10	COTE SUP. VITESSE 11.425	de l'aube ANGLE 90.00 -65.12	<u>N3:</u> Inf.	244 COTE INF. VITESSE 11.425	de 1°aube ANGLE -90.00 -72.09	8UP.
10 11	COTE SUP. VITESSE 11.425 13.925	de l'aube ANGLE 90.00 -65.12 -70.02	<u>N3</u> INF.	COTE INF. VITESSE 11.425 13.603	de 1°aube ANGLE -90.00 -72.09 -71.72	SUP.
10 11 12	COTE SUP. VITESSE 11.425 13.925 14.175 13.634	de l'aube ANGLE 90.00 -65.12 -70.02 -72.38	<u>N3</u> INF.	COTE INF. VITESSE 11.425 13.603 12.762 12.825	de 1°aube ANGLE -90.00 -72.09 -71.72 -73.08	SUP.
10 11 12 13	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 13.026	de l'aube ANGLE 90.00 -65.12 -70.02 -72.38 -72.98	N3 INF.	244 VITESSE 11.425 13.603 12.762 12.875 13.592	de 1°aube ANGLE -90.00 -72.09 -71.72 -73.08 -73.02	SUP .
10 11 12 13 14	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 13.026 12.557	de l'aube ANGLE 90.00 -65.12 -70.02 -72.38 -72.98 -71.81	<u>N3:</u> INF.	COTE INF. VITESSE 11.425 13.603 12.762 12.875 13.592 14.477	de 1° sube ANGLE -90.00 -71.72 -73.08 -73.02 -71.28	SUP .
10 11 12 13 14 15	COTE SUF. VITESSE 11.425 13.925 14.175 13.634 13.026 12.557 11.822	de l'aube ANGLE 90.00 -65.12 -70.02 -72.38 -72.98 -71.81 -71.64	<u>N3:</u> INF.	COTE INF. VITESSE 11.425 13.603 12.762 12.875 13.592 14.477 15.098	de 1°aube ANGLE -90.00 -71.72 -73.08 -73.02 -71.28 -70.63	SUP.
10 11 12 13 14 15 16	COTE SUP. VITESSE 11.425 13.925 13.634 13.026 12.557 11.822 10.576	de l'aube ANGLE 90.00 -65.12 -70.02 -72.38 -72.98 -71.81 -71.64 -71.58	<u>N3:</u> INF.	COTE INF. VITESSE 11.425 13.603 12.762 12.875 13.592 14.477 15.098 15.303	de 1°aube ANGLE -90.00 -72.09 -71.72 -73.08 -73.02 -71.28 -70.63 -70.53	SUP .
10 11 12 13 14 15 16 17 18	COTE SUP. VITESSE 11.425 3.4.175 13.634 13.026 12.557 11.822 10.576 7.195	de l'aube ANGLE 90.00 -65.12 -72.38 -72.98 -71.81 -71.64 -71.58 -71.58	<u>N3:</u> INF.	444 COTE INF. VITESSE 13.603 12.762 12.875 13.592 14.477 15.098 15.303 15.409	de 1°3ube ANGLE -90.00 -72.09 -71.72 -73.08 -73.02 -71.28 -70.63 -70.53 -71.23	SUP .
10 11 12 13 14 15 17 18 19	COTE SUP. VITESSE 11.425 13.925 13.634 13.026 12.557 11.822 10.576 2.195 8.274	<pre>de l'aube ANGLE 90.00 -65.12 -72.38 -72.98 -71.81 -71.64 -71.46 -71.46</pre>	N3: INF.	E 44 COTE INF. VITESSE 11.425 13.603 12.875 13.592 14.477 15.098 15.303 15.409 15.992	de 1*aube ANGLE -90.00 -72.09 -71.72 -73.08 -73.02 -70.53 -70.53 -71.23 -71.42	SUP.
10 11 12 13 14 15 16 17 19 20	COTE SUP. VITESSE 11.425 13.925 13.634 13.026 12.557 14.175 10.576 7.195 8.274 7.226	de l'aube ANGLE 90.00 -65.12 -72.38 -72.38 -71.81 -71.64 -71.58 -71.15 -71.19 -70.72	<u>N3:</u> Inf.	44 COTE INF. VITESSE 11.425 13.603 12.762 12.875 13.592 14.477 15.098 15.409 15.992 16.717	de 1*aube ANGLE -90.00 -72.09 -73.02 -73.02 -71.28 -70.63 -71.42 -71.42 -69.59	
1011234 11234 11234 11234 11234 11221	COTE SUP. VITESSE 11.425 13.925 13.634 12.557 11.822 10.576 8.274 7.226 6.314	de l'aube ANGLE 90.00 -65.12 -72.38 -72.98 -71.81 -71.64 -71.58 -71.44 -71.19 -70.72 -70.12	N3: INF.	COTE INF. VITE55 11.425 13.603 12.752 13.572 13.572 13.572 14.477 15.098 15.303 15.409 15.792 16.717 14.808	de 1*aube -90.00 -72.09 -71.72 -73.02 -71.28 -70.63 -70.53 -71.42 -71.42 -71.42 -71.42 -71.42 -71.42 -71.42	
10 11 12 13 15 16 7 19 20 22 22 22	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 12.557 11.822 10.576 195 8.274 7.226 6.333	de 1*aube ANGLE 90.00 -65.12 -72.38 -72.98 -71.81 -71.64 -71.58 -71.46 -71.19 -70.72 -70.12 -69.55	<u>N3:</u> INF.	2 44 COTE INF. VITESSE 11.425 12.762 12.875 14.477 15.098 15.409 15.409 15.4992 16.717 16.808 16.808 16.433	de 1*aube ANGLE -90.00 -72.09 -71.72 -73.08 -70.63 -70.53 -71.23 -71.24 -69.59 -66.68 -65.47	
10 11 12 13 14 56 78 19 21 22 23	COTE SUP. VITESSE 11.425 13.925 13.634 13.634 13.626 12.557 11.822 10.576 	de 1*aube ANGLE 90.00 -65.12 -70.02 -72.38 -72.98 -71.81 -71.44 -71.19 -70.72 -70.12 -69.07	<u>N3</u> INF.	44 COTE INF, VITESSE 11.425 13.603 12.762 12.875 13.592 14.477 15.098 15.303 15.409 15.792 14.477 16.808 16.433 16.061	de 1*aube -90.00 -72.09 -71.72 -73.08 -70.63 -70.63 -71.42 -69.59 -66.68 -55.47 -6.49	
10 11 13 14 15 16 7 19 20 22 24 22 24	COTE SUP. VITESSE 11.425 13.634 13.634 13.026 12.557 11.822 10.576 .19576 6.376 6.333 5.890 6.369	de l'aube ANGLE 90.00 -55.12 -72.38 -71.81 -71.64 -71.58 -71.46 -71.19 -70.72 -69.55 -69.07 -68.54	<u>N3:</u> Inf.	COTE INF. VITESS 11.425 13.603 12.762 12.875 13.592 14.477 15.098 15.303 15.992 16.717 16.808 14.433 16.061 16.145	de 1°aube ANGLE -90.00 -72.09 -71.72 -73.02 -71.28 -70.53 -70.53 -71.42 -71.42 -71.42 -71.42 -71.42 -71.42 -71.42 -63.47 -66.68 -65.47 -64.69	
1011234 1567 19022234 25222 25	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 12.557 11.827 10.576 .1927 8.274 7.226 6.314 5.833 5.890 6.369 7.153	de l'aube ANGLE 90.00 -55.12 -72.38 -72.38 -71.81 -71.44 -71.44 -71.45 -71.46 -71.19 -70.72 -70.12 -69.55 -68.54 -67.78	<u>N3:</u> Inf.	2 44 COTE INF. VI INF. 11.425 13.603 12.762 12.875 13.592 14.477 15.098 15.409 15.409 15.409 16.717 16.808 16.415 16.222	de 1*aube ANGLE -90.00 -72.09 -73.08 -73.02 -71.28 -70.63 -71.23 -71.23 -71.42 -69.59 -65.47 -66.49 -67.60 -67.60	SUP .
1011112345567 11112345567 111222345567 22234567	COTE SUP. VITESSE 11.425 13.925 13.634 12.557 11.822 10.576 1827 7.1256 8.274 7.226 6.314 5.833 5.890 6.349 7.155 8.303 8.303	de l'aube ANGLE 90.00 -65.12 -72.38 -72.98 -71.81 -71.44 -71.48 -71.49 -70.72 -70.12 -69.55 -69.07 -68.54 -67.78 -67.29	<u>N3:</u> Inf.	44 COTE INF. VITESSE 11.425 13.603 12.762 12.875 13.592 13.592 13.592 13.303 15.409 15.797 14.808 16.433 16.061 16.145 16.222 16.209	de 1*aube ANGLE -90.00 -72.09 -71.72 -73.08 -70.63 -70.53 -71.42 -69.59 -66.68 -65.47 -66.49 -67.63 -67.63	
101113345567 11113345567 1111222222222222222222222222222222222	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 13.026 12.557 11.822 10.576 7.195 8.274 7.226 6.313 5.890 6.369 7.153 8.305 8.429 4.25 4.155 8.429 4.155 1.1	de 1*aube ANGLE 90.00 -55.12 -72.38 -72.98 -71.81 -71.64 -71.58 -71.46 -71.19 -70.72 -69.55 -69.07 -68.54 -67.78 -68.30	<u>N3:</u> Inf.	2 44 COTE INF. UITESSE 11.425 12.762 12.875 13.592 14.477 15.098 15.303 15.409 15.992 16.717 16.808 16.145 16.222 16.209 16.085	de 1*aube ANGLE -90.00 -72.09 -71.72 -73.08 -70.63 -70.63 -71.23 -71.23 -71.23 -71.42 -69.59 -66.49 -65.47 -67.63 -7.60 -7.63 -7.60 -7.63	SUP .
1112345678901223456790 222222222222222222222222222222222222	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 13.026 12.557 11.822 10.576 2.185 8.274 7.226 6.314 7.226 6.313 5.890 6.369 7.153 8.303 9.843 11.1488 2.77	de l'aube ANGLE 90.00 -55.12 -72.38 -72.38 -71.81 -71.44 -71.44 -71.45 -71.46 -71.45 -71.46 -71.19 -70.72 -70.12 -69.55 -69.07 -68.54 -67.78 -68.54 -67.78 -68.30 -70.61 -70.61	<u>N3:</u> INF.	2 44 COTE INF. 11.425 11.425 12.603 12.762 14.477 15.008 15.409 15.992 14.717 14.808 16.145 16.145 16.222 14.209 16.086 16.086	de 1*aube ANGLE -90.00 -72.09 -73.02 -73.02 -70.63 -70.53 -71.23 -71.42 -69.59 -66.68 -65.47 -66.49 -67.60 -67.63 -64.28 -64.86 -64.86 -64.86 -64.86	SUP .
11123456789012234567890	COTE SUP. VITESSE 11.425 13.925 14.175 13.634 13.026 12.557 11.822 10.576 6.274 7.226 6.313 5.890 6.333 5.890 6.363 8.303 9.842 11.148 12.335 7.976	de l'aube ANGLE 90.00 -72.38 -72.98 -71.81 -71.64 -71.58 -71.46 -71.19 -70.72 -69.55 -69.07 -68.54 -67.78 -67.78 -7.29 -68.30 -71.70 -70.64 -71.70	<u>N3:</u> INF.	2 44 COTE INF. VITESE 11.425 13.603 12.762 13.592 13.592 13.592 13.303 15.409 15.303 15.409 15.797 16.808 16.433 16.061 16.145 16.222 14.209 16.084 16.084 15.538 15.538 15.538 15.538 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.548 15.538 15.538 15.538 15.538 15.548 15.538 15.538 15.538 15.538 15.538 15.538 15.548 15.538 15.538 15.538 15.538 15.538 15.548 15.538 15.55	de 1*aube ANGLE -90.00 -72.09 -71.72 -73.08 -71.28 -70.63 -70.53 -71.42 -70.53 -71.42 -65.47 -65.47 -65.47 -64.68 -64.28 -64.28 -64.74 -74.74 -74.	

Tableau(10) ; distributions des vitesses autour d'un profil "non engraissé" de la roue S.H.F. pour N3=42 et 44-(les resultats correspondant à N3=40 sont donnés au tableau(41).).

Le tableau (10) fournit les répartitions de vitesses autour d'un profil pour les valeurs de N₃ précédentes.

L'ensemble de ces résultats nous a incité à conserver la valeur N₃ = 40 dans la suite de l'étude, de façon à ne pas augmenter les temps de calculs.

3.5.2 Application de la procédure de couplage

Nous commençons par analyser l'influence de la position du bord de fuite fictif dans ce cas (roue mobile de pompe centrifuge). Pour l'exploitation des résultats, il apparait ici une difficulté supplémentaire : en effet, les performances de la roue ne peuvent plus être obtenues à partir des conditions à l'infini aval puisque le prolongement du profil apporte une contribution au couple indiqué qui est totalement artificielle. Pour juger de l'importance de cet effet, nous avons procédé aux calculs suivants :

- détermination de l'écoulement moyen dans le plan de sortie réel de la roue (CF) à partir des résultats à l'"infini aval" (DE) en utilisant la relation (2.3) compte-tenu de l'épaisseur du profil fictif dans le plan de sortie de la roue. Les résultats obtenus ainsi sont notés et . détermination de l'écoulement moyen dans le plan de sortie réel
 de la roue (CF) en effectuant des moyennes sur les composantes méridiennes
 m et tangentielles

 des vitesses dans ce plan par les expressions
 suivantes :

$$\overline{\mathbb{W}}_{m} = \frac{\mathbb{HB}}{(\Delta - \frac{\pi}{2})} \frac{\mathbb{W}_{m}(\mathbf{I})}{(\Delta - \frac{\pi}{2})}$$
(3.6)

$$\overline{\chi}_{\theta} = \frac{HB \cdot \sum_{I=1}^{n} \chi_{\theta}(I) \cdot \chi_{m}(I)}{(s-\tilde{s}) \cdot \chi_{m}}$$
(3.7)

Dans ces expressions, I = 1 correspond au point du maillage le plus proche de C' et I = K correspond au point le plus proche de F' (voir figure 3.5). Ces valeurs moyennes nous donnent des résultats notés \overline{W} et \overline{B} .

Le tableau (12) donne les résultats obtenus pour quatre positions différentes du bord de fuite fictif, N₃ étant maintenu égal à 40. Le tableau (11) montre le peu d'importance d'une augmentation de N₃. On peut remarquer que les valeurs moyennées dans le plan de sortie de roue $(\sqrt{2})_{2}$ et $\vec{\beta}_{2}$) sont quasiment indépendantes de la fermeture effectuée, en dépit de distributions de vitesses dans ce plan de sortie assez différentes (voir figure (3.5)). Comme on pouvait le prévoir, l'écart entre les valeurs $(\sqrt{2})_{2}$, $\vec{\beta}_{2}$) est d'autant plus important que le bord de fuite fictif est éloigné du plan de sortie réel de la roue. Il est à noter à nouveau qu'une fermeture sur deux mailles conduit à une convergence plus rapide de la solution (3 itérations au lieu de 4).

	Poi	21		POP		P2 POP3			POP4					
	<u>N3=</u>	40	N3	= 40	<u>N3=</u>	41	N3	= 40	N3	42	NB	= 40	NB	<u>- 4</u> 3
	1×1m/s	Bdéfré	1×/mk	Bdégré	X/m/s	Bdégré	1x/	Pdepri	1x/m/4	Briggi	1×/	Briegh	1X/m/s	Beligie
Infini uval	2327	84.25	23.94	84.41	24.90	84.75	24.67	84.58	26.64	85.20	25.38	84.73	28.16	85.57
Flan de sortie	13.93	77.72	14.14	77.47	14.18	77.49	14.26	77.40	14.40	77.50	14.00	7 7. 48	14.08	77.51

Tableau(41) ; vitesses moyennes obtenues avec d'une part, une distance constante entre l'"infini aval" et le bord de fuite réel, et d'autre part la même distance entre l'"infini aval" et le bord de fuite fictif. (ROUE S.H.F.)

									a set
	POI	PI	POP	2	POI	23	PO	<u>P4</u>	
	W m/s	Pregri	W/m/s	Boigri	W m/s	Briegre	W/m/s	Bdégré	
Infini aval	23.27	84.25	23.94	84.41	24.67	84.58	25.38	84.73	
Flan de sortie	13.93	77.72	14.14	77.47	14.26	77.40	14	77.48	
1	14.72	69.98	15.04	69.98	15.45	69.70	15.63	70.54	
2	14.50	71.86	14.92	71.37	15.36	70.98	15.55	71.61	
3	14.37	73.06	14.83	72.48	15.28	72.08	15.47	72.59	
4	14.29	73.97	14.77	73.40	15.23	73.07	15.39	73.51	
r	14.24	74.65	14.73	1 74.17	15.18	73.94	15.31	74.38	
6	14.20	75.18	14.69	74.82	15.14	74.71	15.23	75.19	
7	14.17	75.63	24.66	1 75.39	15.09	75.41	15.15	75.97	-
8	14.14	76.03	14.63	75.91	15.04	76.06	15.04	76.75	-
9	14.11	76.43	14.59	76.40	14.98	76.70	14.93	1 77.55	1.2016
10	14.09	76.81	14.55	76.90	14.90	77.35	14.80	78.39	100
11	14.07	1 77.21	14.51	77.42	14.83	78.03	14.67	79.29	
12	14.06	77.60	14.48	77.94	14.76	1 78.73	14.54	80.23	
1.3	14.06	77.99	14.46	1 78.46	14.69	79.45	14.40	81.20	
14	14.08	78.35	14.44	78.97	14.63	80.18	14.24	82.19	1.10
· 11	15.10	78.68	14.43	79.46	14.54	1 80.90	14.06	83.18	1. 1. 1.
16	14.13	78.96	14.42	79.92	14.45	81.60	13.85	84.14	
17	14.15	1 79.21	14.40	1 80.35	14.34	1.82.29	13.57	85.01	1
18	14.18	79.40	14.37	80.75	14.19	82.94	13.19	85.68	
19	14.21	79.54	14.32	81.12	13.98	83.12	12.70	85.90	
20	14.23	79.64	14.24	181.45	13.67	83.93	12.09	85.12	1
21	14.23	79.68	14.11	81.72	13.22	83.93	11.47	82.52	1
22	14.21	79.68	13.88	81.87	12.61	1 82.90	11.15	1 77.25	12.194
23	14.14	1 79.60	13.50	1 81.67	11.96	79.61	11.47	71.30	
24	13.98	1 79.48	12.02	1 80.56	11.94	72.91	12.29	67.36	
24	13.66	78.93	12.45	176.39	12.90	1 67.59	13.26	65.43	Partie
26	1 12.90	1 78.16	12.55	67.86	13.99	65.96	14.18	64.77	
27	11.32	68.88	14.19	64.59	14.96	65.93	15.02	64.86	
nombre iterations		4		3		4		4	
DS*/S*	7	- gi	1.	. 2%	1.	1.2%		2%	
F (nd.)	0.0	3740	0.0	3676	0.0	3648	0.0	3637	

Tableàu(12) ; quatre positions differentes du bora de fuite fictif avec "infini aval" à une distance fixe du plan de sortie roue proprement dit. (ROUE S.H.F)

3.5.3 Exploitation des résultats

Les résultats obtenus peuvent être comparés à d'autres résultats numériques (réf. (30)), à des résultats de corrélations définissant le coefficient de glissement (voir annexes) avec ou sans prise en compte des couches limites, et également à des résultats de mesures effectuées en air au laboratoire de mécanique de l'E.N.S.A.M.. Le tableau (13) présente les valeurs adimensionnelles $\sqrt[3]{9_2}/U_2$ et $\sqrt[3]{m_2}/U_2$ caractéristiques du triangle des vitesses en sortie de roue (voir figure suivante), de même que l'angle $\sqrt[3]{2}$.

		$\overline{V}_{\theta_2}/U_2$	√.,/U.	B2 digi	$\overline{V}_{\theta_{a}}/V_{\theta_{a+e_{a}}}$
Solution thé (Euler	orique)	0.598	0.119	22. 50	1
Utilisation corrélation \ x/iES	de la de VER	0.544	0.119	14.64	0.910
Utilisation corrélation STODOL	de la de A) 0.470	0.119	12.66	0.786
Utilisation corrélation HOWBLL	de la de	0.502	0.119	13.45	0.839
	calcul 1	0.515	0.119	13.8	0.861
R. PHILIBERT	calcul 3	0.493	0.119	13.2	0.824
	calcul 4	0.493	0.119	13.21	0.825
Calcul autou profils "non	r des engraissés"	0.499	0.119	13.37	0.834
Calcul autou profils "eng	r des raissés"	0.451	0.129	12.53	0.754
Utilisation corrélation TRAUPE	de la de L	0.387	0.122	11.26	0.647
Resultats de (anémométrie chauds)	s mesures à fils	0.487	0.122	13.0	0.814

Tableau(13) ; comparaison de notre resultat de calcul aux autres resultats theoriques et aux mesures experimentales.obtenus sur la roue J.H.F. sous les memes conditions.

Les résultats correspondants aux calculs 1,3et4(R.PHILIBERT) sont tous obtenus par un seul couplage du calcul aube à aube au calcul méridien avec choix de surface de glissement.

Dans les trois cas, le calcul aube à aube est éffectué avec la méthod de KATSANIS, alors que le calcul méridien est éffectué respectivement par la méthode de courbure de lignes de courant(calcul 1), la méthode des differences finies(calcul 3) et la méthode des élements finis (calcul 4). * Dans le cas de profils "non engraissés", les résultats obtenus sont heureusement très proches de ceux obtenus par ceux qui ont utilisé la même technique de KATSANIS sur la même roue et dans les mêmes conditions (30).

* Il n'est guère possible de juger la qualité des résultats obtenus avec la technique d'engraissement utilisée, car on ne dispose pas de résultats de calculs avec prise en compte de pertes, si ce n'est la corrélation de TRAUPEL qui nécessite une estimation de l'épaisseur de la couche limite au voisinage du bord de fuite fictif. De plus les valeurs expérimentales sont issues de mesures globales de puissance effectuées lors des essais à l'air. Il est certain que les mesures prévues avec anémométrie à fils chauds au voisinage de la sortie de la roue apporteront des éléments de comparaison plus intéressants. Rappelons toutefois que le schéma de couche limite utilisé est très élémentaire et que le principal objectif du travail était l'analyse des problèmes de couplage.

Pour juger de l'éventualité d'apparition d'un décollement dans la roue, nous calculons le facteur de diffusion défini par l'expression :

$$D = 1 - \frac{|x/2|}{|x/1|} + \frac{|\Delta |x/0|^2}{2|x/1|} + \frac{|\Delta |x/0|^2}{2|x/1|}$$
(3.8)

avec W_2 la vitesse relative moyenne dans le plan de sortie réel W_2 la variation de la composante tangentielle moyenne entre l'entrée 1' et la sortie 2.

t le pas de la grille

L la corde du profil.

Le tableau (14) donne les valeurs de ce coefficient obtenues avec le profil "non engraissé" et divers résultats avec le profil "engraissé".

	Calcul autour des profils non""engraisses".	Calcul autour des p rofils "engraisses" (FOP2)
D	0,110	0,198
·.		

Tableau (14) ; facteur de diffusion.

Pour ce type de machine à roue mobile, l'expérience montre que les valeurs de ce coefficient doivent être inférieures à 0,33.

Nous remarquons à partir du tableau (13) que l'engraissement effectué semble surestimer l'effet de la viscosité, alors que le tableau (14) indique une faible modification des profils jusqu'au droit du bout de fuite réel, ce qui met en évidence l'importance de l'effet "prolongement".

Ces résultats seront surtout utiles lors d'exploitations à débits partiels de ce programme de façon à prévoir les limites de validité du calcul sans décollement.

CONCLUSION

Notre étude vient apporter une contribution aux nombreux travaux de recherches effectués dans le domaine du calcul des écoulements internes aux turbomachines. Elle se caractérise par sa simplicité et son aspect pratique. Elle permet en effet, à partir d'un outil de calcul très répandu (méthode de KATSANIS) pour l'analyse des écoulements de fluide parfait, de mettre en évidence assez rapidement l'effet d'une perturbation qui se traduit par un "engraissement" artificiel des profils autour desquels a lieu l'écoulement. Pour juger de l'efficacité de cette technique, nous avons donné à cette perturbation l'aspect d'une couche limite, représentée de façon assez simple par son épaisseur de déplacement.

Avant d'aborder le problème de couplage, proprement dit, il nous a fallu implanter sur l'ordinateur VAX 11/750 de l'E.N.S.A.M. de Lille, le programme "aube à aube" de KATSANIS (2). Le bon fonctionnement de ce programme a été vérifié par comparaison aux résultats obtenus par KATSANIS sur un distributeur axial de turbine.

Une extension de ce programme a ensuite été réalisée de façon à obtenir des conditions à l'infini aval compatibles avec la vérification de la condition de KUTTA-JOUKOWSKI. L'architecture correspondant à cette extension est décrite en annexe D.

Nous avons enfin réalisé un programme, utilisant les deux programmes précédents, destiné à la prise en compte d'un "engraissement" des profils. Les profils ont été épaissis d'une quantité égale à l'épaisseur de déplacement de la couche limite calculée à partir d'un schéma élémentaire issu des résultats de plaques planes. Avec ce programme (appelé EMBAL et détaillé en annexe D), nous avons pu tester la stabilité du modèle de couplage et l'influence de la position du bord de fuite fictif qu'il nous a fallu définir pour pouvoir traiter l'écoulement de fluide parfait autour des profils "engraissés". L'application au distributeur axial nous a montré l'importance de la position du bord de fuite fictif sur les performances de la grille et donc sur les précautions d'emploi de cette méthode. Nous avons enfin traité le cas de l'écoulement dans la roue de pompe centrifuge qui fait actuellement l'objet de calculs et d'essais dans divers laboratoires. Les calculs, effectués au débit nominal, montrent une bonne concordance avec des résultats obtenus par des méthodes similaires dans le cas de fluide parfait (travaux de PHILIBERT (30) et BOIS par exemple). Les essais avec "engraissement" montrent à nouveau l'importance du bord de fuite fictif : il faut cependant remarquer que les performances moyennes obtenues par intégration des distributions de vitesses dans le plan de sortie réel de la roue se révèlent quasiment insensibles à la position de ce bord de fuite fictif, en dépit de distributions assez différentes.

La méthode proposée permet donc, avec un temps de calcul raisonnable (inférieur à 260 secondes avec 1121 points mailles pour l'étude de la roue centrifuge SHF), d'envisager la prise en compte de toutes perturbations se traduisant par un "engraissement" des profils. Des précautions doivent malgré tout être prises lorsque cet épaississement nécessite la définition d'un prolongement du bord de fuite réel, car la solution obtenue se révèle fort sensible à la position du bord de fuite fictif.

NOTATIONS

A	: matrice carrée
С	: coefficient de pression
D	: facteur de diffusion
G	: facteur de glissement
н	: enthalpie totale relative
RO	: rayon du bord de fuite du profil
U	: vitesse périphérique
U _{ero}	: vitesse à l'infini amont
v	: vitesse absolue
W	: vitesse relative
а	: coefficients de la matrice A
b	: largeur de l'aube
4	: effort dû aux frottements
h	: enthalpie massique
h1, h2, h3, h4	: distances entre un point maille et les points voisins
٤	: corde
m	: coordonnée méridienne
n	: normale
r	: coordonnée radiale

A	: angle entre deux aubes adjacentes (rad) ; 27 nb. aubes
t	: pas
р	: pression
q	: débit masse entre deux aubes adjacentes
y	: fonction de courant réduite
3	: coordonnée suivant l'axe de rotation
<i>«</i>	: angle que fait la tangente au plan méridien avec l'axe de rotation
Q4	: angle que fait la ligne de cambrure (médiane) au bord de fuite avec la direction m. (= 32 quand le profil en question est non engraissé)
β	: angle que fait la vitesse relative avec la direction m
0	: coordonnée tangentielle
* δ	: épaisseur de déplacement
δ [*]	: valeur de l'épaisseur de déplacement projetée suivant la direction tangentielle
чт. Т	: épaisseur du profil fictif juste au bord de fuite du profil fictif proprement dit
٠ ۲۱	: valeur de projetée suivant la direction tangentielle
L Indices - plans :	: facteur de surrelaxation
1 et 1' 2 et 3 - points :	: loin à l'amont et au voisinage immédiat de l'entrée : voisinage de la sortie et loin à l'aval
0	: point maille central
1. 2. 3. 4	: noints voisios entourant le point A.

ANNEXE A : Equations de l'écoulement dans un repère relatif lié à la roue.

figure A.1

 $\bigcirc_{\mathbf{R}}$: origine du repère relatif R lié au rotor, tournant à une vitesse angulaire constante $\overrightarrow{\omega}$ autour de l'axe de la roue de vecteur unitaire $\overrightarrow{\iota}$.

$$d\vec{r} = d\vec{r}_{R} + \vec{\omega} \wedge \vec{r}_{R} dt$$
$$\vec{\omega} \wedge \vec{r}_{R} = \vec{\omega} \wedge (\vec{r} - \vec{OO}_{R}) = \vec{\omega} \wedge \vec{r}^{2}$$

et on a

- Vitesses

$$\vec{V} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}_{R}}{dt} + \vec{w} \wedge \vec{r}$$
 vitesse absolue
$$\vec{W} = \frac{d\vec{r}_{R}}{dt}$$
 vitesse relative

 $\frac{\Delta ccélérations}{\Delta t} = \frac{\partial e^{\sqrt{x'}}}{\partial t} + \sqrt{x'} \quad \overline{\nabla}_{e} \cdot \overline{W} \quad accélération relative}$

l'accélération absolue s'écrit : (accélération relative augmentée des accélérations de Coriolis et d'entraînement).

$$\frac{D\vec{V}}{Dt} = \frac{D_{R}\vec{W}}{Dt} + 2\vec{w}\sqrt{\vec{W}} + \vec{w}\sqrt{\vec{w}}\sqrt{\vec{r}_{R}}$$
(A.1)

on on:
$$\frac{DR}{Dt} = \frac{\partial RW}{\partial t} + W V_R W$$

où ∇_{R} représente le vecteur gradient exprimé au repère relatif R. On peut aussi exprimer l'accélératon absolue en fonction des gradients absolus $\overrightarrow{\nabla}$, en remplaçant \overrightarrow{V} par $\overrightarrow{w} + \overrightarrow{w} \wedge \overrightarrow{r}$ dans l'équation $\overrightarrow{DV} = \overrightarrow{V} + \overrightarrow{V} \overrightarrow{\nabla} \cdot \overrightarrow{V}$ ce qui donne :

$$\frac{D\vec{V}}{Dt} = \frac{\partial\vec{W}}{\partial t} + \frac{\partial\vec{W}}{\partial t} \wedge \vec{r} + \vec{W} \vec{\nabla} \cdot \vec{W} + \vec{W} \vec{\nabla} \cdot (\vec{W} \wedge \vec{r})
+ (\vec{W} \wedge \vec{r}) \vec{\nabla} \cdot \vec{W} + (\vec{W} \wedge \vec{r}) \vec{\nabla} \cdot (\vec{W} \wedge \vec{r})$$
(A.2)

et on a:
$$\vec{v} \vec{\nabla} \cdot (\vec{w} \wedge \vec{r}) = \vec{w} \wedge \sqrt{\vec{x}}$$
 (A.3)

$$\left(\vec{\omega}\wedge\vec{r}\right)\vec{\nabla}\cdot\vec{w} = \vec{\omega}\wedge\vec{w}$$
 (A.4)

$$(\vec{\omega}\wedge\vec{r})\ \vec{\nabla}\cdot(\vec{\omega}\wedge\vec{r})=\vec{\omega}\cdot\wedge(\vec{\omega}\wedge\vec{r})$$
 (A.5)

L'équation (A.2) devient alors, en tenant compte des relations (A.3), (A.4) et (A.5) :

$$\frac{D\vec{V}}{Dt} = \frac{\partial\vec{w}}{\partial t} + \frac{\partial\vec{w}}{\partial t} \wedge \vec{r} + \vec{w} \vec{\nabla} \cdot \vec{v} + 2\vec{w} \wedge \vec{v} + \vec{w} \wedge (\vec{w} \wedge \vec{r})$$
(A.6)

On remarque entre (A.1) et (A.6), qu'en utilisant les dérivées partielles et les gradients absolus au lieu des dérivées et gradients relatifs, un terme s'ajoute : $\operatorname{print}_{\mathcal{F}}$. Dans le cas d'écoulements stationnaires par rapport aux deux repères (absolu et relatif), on a :

$$\frac{D\vec{V}}{Dt} = \vec{W} \vec{\nabla} \cdot \vec{W} + \vec{\omega} \cdot \vec{W} + \vec{\omega} \cdot \vec{W} \cdot \vec{V}$$
(A.7)

<u>Remarque</u> : Les égalités (A.3) et (A.4) nous prouvent bien que l'accélération de Coriolis est due pour moitié à la variation de la vitesse périphérique $\vec{\omega} \wedge \vec{r}$ suivant la direction de la vitesse relative \vec{w} , et pour moitié à la variation de la vitesse relative sous l'effet de la rotation du repère relatif R. On constate que l'accélération de Coriolis s'annule dans le cas où \vec{w} est // à \vec{w} . - Equation de continuité

Par rapport au repère absolu, l'équation de continuité s'écrit :

$$\frac{\partial e}{\partial t} = \vec{\nabla} \cdot \vec{\nabla} e + e \vec{\nabla} \cdot \vec{\nabla}$$
(A.8)

en substituant \vec{V} par $\vec{X} + \vec{w} \vec{r}$ dans (A.8), on obtient :

$$\frac{\partial \ell}{\partial t} + (\vec{w} \wedge \vec{r}) \cdot \vec{\nabla}_{\ell} + \vec{w} \cdot \vec{\nabla}_{\ell} + (\vec{v} \cdot \vec{w} + (\vec{v} \cdot \vec{v}) = 0 \quad (A.9)$$

$$m a : (\vec{w} \wedge \vec{r}) \cdot \vec{\nabla}_{\ell} = \frac{d_0 \ell}{dt}$$

où de c indique la variation de c dans la direction périphérique exprimée dans le repère absolu. Et de traduit le fait qu'une particule se déplaçant dans la direction périphérique prenant de différentes positions à différents instants par rapport au repère absolu est vue fixe par un observateur lié au repère tournant.

$$\frac{\partial e}{\partial t} = \frac{\partial e}{\partial t} + \frac{\partial e}{\partial t} = \frac{\partial e}{\partial t} + (\vec{\omega} \wedge \vec{r}) \cdot \vec{\nabla} e$$

et comme pour $\vec{w} = C^{\frac{1}{2}}$, on a : $\nabla \cdot (\vec{w} \wedge \vec{r}) = 0$, l'équation (A.9) devient :

$$\frac{\partial R}{\partial t} + \vec{W} \cdot \vec{\nabla}_{e} + e \vec{\nabla} \cdot \vec{W} = 0 \qquad (A.10)$$

L'équation de continuité exprimée dans le repère relatif s'écrit :

$$\frac{\partial e}{\partial t} + \vec{W} \cdot \vec{\nabla}_{R} e + e \vec{\nabla}_{R} \cdot \vec{W} = 0 \qquad (A.11)$$

On remarque que l'expression de l'équation de continuité avec des gradients relatifs $\vec{\nabla}_{\mathbf{R}}$ ou des gradients absolus $\vec{\nabla}$ nous donne la même forme de relations entre \mathcal{C} et $\vec{\nabla}_{\mathbf{V}}$.

- Equation de mouvement

L'équation fondamentale s'écrit dans le repère absolu :

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \cdot \vec{v} = - \frac{\vec{\nabla} \vec{p}}{\vec{q}} + \vec{f} \qquad (A.12)$$

avec \vec{f} : effort dû aux frottements par unité de masse.

P : pression.

L'équation de mouvement appliquée à l'écoulement relatif est obtenue en remplaçant dans (A.12) le terme $\frac{\mathcal{P}\vec{v}}{\mathcal{P}t}$ par (A.7) ou (A.1) et à la place de l'opérateur $\vec{v}_{\mathbf{k}}$ on écrit \vec{v} sans oublier que les variations sont calculées dans le repère relatif ; dans le cas où le repère (\mathbf{k}) tourne avec une vitesse constante \vec{w} , on obtient :

$$\frac{\partial_{e}\vec{w}}{\partial t} + \vec{w}\vec{\nabla}.\vec{w} = -2\vec{w}\vec{w}-\vec{w}\vec{w}-\vec{w}\vec{v}-\vec{v}\vec{v}+\vec{v}^{2} (A.13)$$

$$et on a: \vec{w}\vec{v}(\vec{w}\vec{v}) = \vec{\nabla}(\frac{\omega^{2}R^{2}}{2})$$

$$\vec{\nabla}\vec{P} = -T \vec{\nabla}\vec{s} + \vec{\nabla}\vec{h}$$

L'équation (A.12) s'écrit alors pour un écoulement relatif stationnaire sous la forme :

$$\vec{\nabla} H_{R} = \vec{W} \wedge (\vec{\nabla} \wedge \vec{W} + 2\vec{w}) + \vec{\nabla} \cdot \vec{F} \qquad (A.14)$$

avec $H_{R} = h_{+} \frac{W^{2}}{2} \frac{W^{2}}{2}$ enthalpie relative totale.

- Equation de l'énergie (voir paragraphe 1.1)

ANNEXE B : Algorithme de convergence de la méthode de surrelaxations successives "SOR"

Pour un maximum de rapidité de la convergence vers la solution finale de l'équation (2.4), le facteur de surrelaxation \mathcal{A} est calculé au cours du programme par la relation (8.3).

On montre (10) que le Ω optimal s'exprime sous la forme :

$$\Omega = \frac{2}{1 + \sqrt{1 - p^2(B)}}$$
(B.1)

où f(B) est le rayon spectral de la matrice B = A - I (I matrice identité). On a $f^2(B) = f(L_1)$ (voir référence (10)) avec L_1 la matrice correspon-

dant au système d'équations (2.4) pour $\Omega=1$. Et f(L)est déterminé par :

$$g(L_1) = \lim_{m \to \infty} \min\left(\frac{y_i}{y_i}\right) = \lim_{m \to \infty} \max\left(\frac{y_i}{y_i}\right) (B.2)$$

où y_i^{m+1} est calculée à partir de y_i^m par l'équation (2.4) pour $\vec{k} \cdot \vec{o}$ et \vec{y}^o un vecteur arbitraire de composantes positives.

Enfin le facteur ${\cal A}$ utilisé est calculé par la relation :

$$\Omega_{opt} = \frac{2}{1 + \sqrt{1 - f(L_1)}}$$
(B.3)

On montre (10) que l'application de cette méthode "SOR" au domaine d'étude (figure 2.1) est à convergence plus lente sur le maillage à l'amont et à l'aval de la roue qu'à l'intérieur de celle-ci. Ceci est dû au changement de type des conditions aux limites (passage des conditions aux limites spécifiées de type DIRICHLET aux conditions aux limites exprimées sous forme de dérivées partielles (type NEUMANN) ou des conditions de périodicité).

Les coefficients de la matrice A dépendent des valeurs de la masse volumique ρ . Dans certains cas de fluides compressibles ou aussi pour certaines configurations géométriques, la méthode de résolution dite "SOR" devient lente ou ne converge plus. Pour remédier à cet handicap, une nouvelle extension de la méthode "SOR" a été développée (31) limitant le nombre d'itérations et capable de converger pour des cas où le "SOR" général diverge. L'application de cet algorithme ne nécessite que peu de modifications du programme de la NASA (2) utilisé dans cette étude.

ANNEXE C : Les corrélations utilisées

CORRELATION DE HOWELL

C'est une loi semi-empirique reliant la déviation du fluide X à la géométrie de la roue d'une turbomachine fonctionnant à un régime présentant une certaine marge par rapport aux décollements. Cette loi s'écrit :

$$X = m \left(\beta_{2g} - \beta_{1g}\right) \left(\frac{t}{q}\right)^{2} \qquad (c.1)$$

avec dans le cas de la roue SHF ;

$$m = 0,23 \left(\frac{2\alpha}{\ell}\right)^2 + \frac{\beta_2}{500}$$

où $\beta_2 = x + \beta_{2g}$
 $\frac{\alpha}{\ell} = 0,4$
 $\frac{1}{\ell}$ le pas relatif; $0,5 < \frac{1}{\ell} < 1,25$

La figure suivante montre la définition des angles.

CORRELATION DE TRAUPEL

C'est aussi une loi semi-empirique qui consiste à déterminer la déviation du fluide à la sortie de la roue par la relation suivante :

$$\cos \beta_2 = \frac{\sigma}{s} \tag{(C.2)}$$

où Õ et A sont définis par la figure (3.3).

Nous remarquons que cette corrélation nous donne directement l'influence de la couche limite sur l'angle β_2 .

Dans le cas où l'épaisseur de la couche limite ou notamment l'épaisseur de déplacement est calculée, la relation précédente peut être remplacée par :

$$\cos\beta_2 = \frac{\gamma_1}{\gamma_2}$$
 (C.3)

où 🕇 et 🏅 sont définis par la figure (3.3).

CORRELATION DE STODOLA

Elle consiste à trouver une loi reliant les données géométriques d'un compresseur aux conditions de l'écoulement en fonction du transfert d'énergie entre le fluide et les aubages de la roue. Et ceci en calculant un coefficient adimensionnel appelé "coefficient de glissement" et défini par le rapport :

$$G = \frac{V_{\Theta_2}}{V_{\Theta_2}}$$
(C.4)

 V_{θ_2} et V'_{θ_3} sont tels que le montre le schéma suivant :

Ce coefficient de glissement donné par STODOLA s'exprime par :

$$G = 1 - \frac{(\pi/z) \cos \beta_{2q}}{1 - V_{m_2}/U_2 \cdot t_g \beta_2}$$
(C.5)

avec **Z** : nombre des aubes

 V_{m_2} : vitesse absolue débitante

U.: vitesse périphérique.

CORRELATION DE BUSEMANN-WIESNER

Dnas le cas où les aubes peuvent assimilées à des spirales logarithmiques (l'écoulement incompressible est d'épaisseur constante et le fluide est supposé parfait), les résultats de BUSEMANN-WIESNER peuvent être représentés sensiblement par la formule simple :

$$G = 1 - \frac{\sin \beta_{eq}}{Z^{o,t}} \qquad (C.6)$$

valable pour :

$$\log(\frac{r_2}{r_1}) \gg \frac{8.16 \sin\beta_2}{2}$$

Le programme principal utilisé se présente tel que le montre l'organigramme suivant :

Varibles géometriques (coordonnées d'une ligne de courant meridienne et limites du domaine d'etude.)

BIBLIOGRAPHIE

(1)A. CHAKROUN

Mesures tridimensionnelles de l'écoulement en sortie de roue d'un ventilateur centrifuge par anémométrie à fil chaud.

Thèse de 3ème Cycle - Université de LILLE I - Janvier 1983

(2)T. KATSANIS

Computer program for calculating velocities and streamlines on a blade-to-blade stream surface of a turbomachine. NASA TN D-4525 - 1968

(3) C. WU

A General Theory of Three - Dimensional Flow in Subsonic and Supersonic of Axial, Radial and Mixed-Flow Types. NACA - TN - 2604, 1952.

(4) <u>M.H. VAVRA</u>

Aero-Thermodynamics and Flow in Turbomachines. John WILEY & SONS, 1960.

(5) T.S. LUU et TA PHUOC LOC

Développement d'une méthode numérique pour la détermination de l'écoulement visqueux incompressible autour d'une grille d'aubes. Journal de Mécanique Appliquée Vol. 5, N° 4, 1981.

(6) I.H. ABBOT and A.E. VON DOENHOFF

Theory of wing sections

Dover Publications, INC. NEW YORK, 1958.

(7) A.S. UCER, I. YENG, and T. DURMAZ

A quasi-three-dimensional finite element solution for steady compressible flow through turbomachines.

Journal of Engineering for POWER, July 1983.

(8) <u>T. KATSANIS</u>

Use of arbitrary quasi-orthogonals for calculating flow distribution in the meridional plane of a turbomachine.

NASA TN D-2546, December 1964.

Time marching methods for turbomachinery flow calculation. VKI Lectures Series 1979-7.

(10) T. KATSANIST

A computer program for calculating velocities and streamlines for twodimensional, incompressible flow in axial blade rows.

NASA TN D-3762 - Janvier 1967.

(11) S.L. DIXON

Fluid mechanics, thermodynamics of turbomachinery. Pergamon Press, 1966

(12) M. SEDILLE

Ventilateurs et compresseurs centrifuges et axiaux. Tome I, 1973 MASON et Cie

(13) CARTER

The axial compressor. Gas turbine principles and practice. G. NEWNES Ltd., London, 1955

(14) M. SEDILLE

Turbomachines hydrauliques et thermiques. Tome II, 1967 MASSON et Cie

(15) MELLOR

An analysis of axial compressor cascade aerodynamics. Journal of basic Engineering, Septembre 1959

(16) D.H. WILKINSON

Thermodynamics and Fluid Mechanics.

Volume 2 : Axial and Radial turbomachinery Institution of Mechanical Engineers, Proc. 184, 1970.

(17) <u>M.J. MILLER</u>

Deviation Angle Estimation for Axial-Flow Compressors Using Inviscid Flow solutions.

Journal of Engineering for Power, April 1975.

(18) N.L. SANGER

Two-dimensional analytical and experimental performance comparison for a compressor stator section with D-Factor of 0.47. NASA TN D- 7425, 1973

(19) <u>M.J. MILLER</u>

Some aspects of deviation angle estimation for axial flow compressors. PhD Thesis, Iowa State University, 1973.

(20) P.R. DODGE

The use of a finite difference technique to predict cascade, stator, and rotor deviation angles and optimum angle of attack.

ASME Paper N 73 - GT 10, 1973.

(21) T. KATSANIS and W.D. Mc NALLY

Fortran program for calculating transonic velocities on a blade-to-blade stream surface of a turbomachine.

NASA TN D- 5425, 1969.

(22) T. KATSANIS and W.D. Mc NALLY

Fortran program for calculating velocities in a magnified region on a blade-to-blade stream surface of a turbomachine. NASA IN D- 5091.

(23) J. CORNIGLION

Ecoulement tridimensionnel dans les turbomachines (étude bibliographique).

CETIM, Etude N³ 14 E 180, 21 Mai 1980.

(24) R. SOVRANO - F. BUCHET DE NEUILLY

Calcul numérique des écoulements dans les compresseurs centrifuges. Document O.N.E.R.A. RT5/3086 EH, 23 Mai 1975.

(25) A.M.O. SMITH and T. CEBECI

Remarks on methods for predicting Viscous Drag.

Agard Conference on Aerodynamic Drag

Proceedings n° 124 10 - 13 April 1973

(26) A. GOULAS

Flow in centrifugal compressor impellers. A theoretical and experimental study.

Centrifugal compressors, Flow phenomena, and Performance. AGARD C.P. 282 ; mai 1980.

(27) J.C. LE BALLEUR

Calcul par couplage fort des écoulements visqueux transsoniques incluant sillages et décollements. Profils d'ailes portants.

La Recherche Aérospatiale Nº 1981-3.

(28) Y. MIYAKE & col.

A study on the boundary layer of a centrifugal impeller blade. Bulletin of JSME, Vol. 18, N° 124 October 1975.

(29) BOIS

Résultats de calculs sur la roue S.H.F. Document communiqué, 1984.

(30) R. PHILIBERT

Projet de synthèse sur les résultats de calcul de l'écoulement dans la roue S.H.F.

Document du groupe de travail 1ef de la S.H.F., octobre 1983.

(31) R.B. DESPHANDE

A new algorithm for the solution of turbomachinery flow problems. Journal of fluids Engineering, September 1975.

MORON

TURBOMACHINE CALCUL NUMERIQUE ECOULEMENT AXISYMETRIQUE COUPLAGE COUCHE LIMITE

Le travail présenté aborde le problème de l'adaptation de la méthode de KATSANIS au calcul de l'écoulement bidimensionnel subsonique d'un fluide visqueux dans une grille d'aubes.

La procédure adoptée est celle d'un couplage avec un calcul de couche limite permettant l'évaluation d'une distribution de l'épaisseur de déplacement servant à "engraisser" le profil.

La convergence de la méthode et les précautions numériques à prendre sont étudiées. La principale difficulté rencontrée concerne l'influence du mode de fermeture du profil "engraissé" sur le respect de la condition de KUTTA-JOUKOWSKI.

Malgré la simplicité du modèle, les cas tests étudiés (distributeur axial d'une turbine et roue mobile de pompe centrifuge) mettent bien en évidence l'influence de la viscosité du fluide sur les performances.