Nº d'ordre : 609

50376. 4984. 42.

THÈSE

PRESENTEE A

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE POUR OBTENIR LE GRADE DE

DOCTEUR ès SCIENCES PHYSIQUES

Abdellatif Boughriet

50376

1984

121

PAR

Les oxydes d'azote en milieu aprotonique.

Equilibres et transferts electroniques

SOUTENUE LE 2 MAI 1984 DEVANT LA COMMISSION D'EXAMEN

SUCHON SUCHURS

M. B. TREMILLON

PRÉSIDENT

RAPPORTEURS

- MME D. BALLIVET-TKATCHENKO
- M. C.P.ANDRIEUX
- M. M.WARTEL
- M. J.HEUBEL
- M. M. DELHAYE
- M. J.LHOMME
- M. C.BREMARD

EXAMINATEURS

0408

DOYENS HONORAIRES DE L'ANCIENNE FACULTE DES SCIENCES

MM. R. DEFRETIN, H. LEFEBVRE, M. PARREAU.

PROFESSEURS HONORAIRES DES ANCIENNES FACULTES DE DROIT ET SCIENCES ECONOMIQUES, DES SCIENCES ET DES LETTRES

MM. ARNOULT, Mme BEAUJEU, BONTE, BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P. GERMAIN, GLACET, GONTIER, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARD, SCHILTZ, WATERLOT, WIEMAN, ZAMANSKI.

PROFESSEUR EMERITE

M. A. LEBRUN.

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU, J. LOMBARD, M. MIGEON.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. J. CORTOIS.

PROFESSEURS - CLASSE EXCEPTIONNELLE

м.	CONSTANT Eugène	
м.	FOURET René	
м.	GABILLARD Robert	
М.	MONTREUIL Jean	
М.	PARREAU Michel	
м.	TRIDOT Gabriel	
М.	VIVIER Emile	
м.	WERTHEIMER Raymond	

Electronique Physique du Solide Electronique Biochimie Analyse Chimie appliquée Biologie cellulaire Physique atomique et moléculaire

PROFESSEURS - 1ère CLASSE

M. BACCHUS Pierre Astronomie	
M. BEAUFILS Jean Pierre Chimie phys	sique
M. BIAYS Pierre Géographie	
M. BILLARD Jean Physique de	u solide
M. BOILLY Bénoni Biologie	

.../...

BOUGHON Pierre Μ. M. BOURIQUET Robert BREZINSKI Claude М. CELET Paul М. CHAMLEY Hervé м. Μ. COEURE Gérard CORDONNIER Vincent Μ. м. DEBOURSE Jean-Pierre M. DYMENT Arthur M. ESCAIG Bertrand M. FAURE Robert M. FOCT Jacques M. GRANELLE Jean-Jacques Μ. GRUSON Laurent GUILLAUME Jean м. M. HECTOR Joseph M. LABLACHE COMBIER Alain M. LACOSTE Louis M. LAVEINE Jean-Pierre LEHMANN Daniel м. Mme LENOBLE Jacqueline M. LHOMME Jean M. LOMBARD Jacques LOUCHEUX Claude M. M. LUCQUIN Michel MAILLET Pierre м. PAQUET Jacques POUZET Pierre Μ. Μ. PROUVOST Jean М. M. ROUSSEAU Jean-Paul М. SALMER Georges M. SEGUIER Guy M. STANKIEWICZ François м. TILLIEU Jacques M. VIDAL Pierre ZEYTOUNIAN Radyadour М.

Algèbre Biologie végétale Analyse numérique Géologie générale Géotechnique Analyse Informatique Gestion des entreprises Mécanique Physique du solide Mécanique Métallurgie Sciences économiques Algèbre Microbiologie Géométrie Chimie organique Biologie végétale Paléontologie Géométrie Physique atomique et moléculaire Chimie organique biologique Sociologie Chimie physique Chimie physique Sciences économiques Géologie générale Analyse numérique Minéralogie Physiologie animale Electronique Electrotechnique Sciences économiques Physique théorique Automatique Mécanique

PROFESSEURS - 2ème classe

AL FAKIR Sabah м. M. ALLAMANDO Etienne M. ANCIAN Bernard M. ANTOINE Philippe Μ. BART André Mme BATTIAU Yvonne M. BEGUIN Paul M. BELLET Jean M. BERZIN Robert M. BKOUCHE Rudolphe M. BODARD Marcel M. BOIVIN Jean-Claude M. BONNELLE Jean-Pierre M. BOSCQ Denis M. BOUQUELET Stéphane M. BRASSELET Jean-Paul

Algèbre Electronique et électrotechnique Spectrochimie Analyse Biologie animale Géographie Mécanique Physique atomique et moléculaire Analyse Algèbre Biologie végétale Chimie minérale Catalyse Probabilités Biochimie structurale · Géométrie et topologie

. . . / . . .

Μ. BRIDOUX Michel BRUYELLE Pierre М. M. CAPURON Alfred М. CARREZ Christian м. CHAPOTON Alain Μ. COQUERY Jean-Marie Mme CORSIN Paule M. CORTOIS Jean M. COUTURIER Daniel CRAMPON Norbert м. м. CROSNIER Yves MILE DACHARRY Monique M. DAUCHET Max DEBRABANT Pierre м. DEGAUQUE Pierre Μ. Μ. DELORME Pierre DE MASSON D'AUTUME Antoine М. DEMUNTER Paul Μ. DENEL JACQUES М. DE PARIS Jean-Claude Μ. DEPREZ Gilbert Μ. DERIEUX Jean-Claude Μ. MILE DESSAUX Odile M. DEVRAINNE Pierre DHAINAUT André Ma Mme DHAINAUT Nicole DORMARD Serge Μ. DOUKHAN Jean-Claude Μ. DUBOIS Henri Μ. Μ. DUBRULLE Alain Μ. DUBUS Jean-Paul DUPONT Christophe Μ. Mme EVRARD Micheline M. FONTAINE Hubert FOUQUART Yves Μ. FOURNET Bernard Μ. FRONTIER Serge Μ. Μ. GAMBLIN André GLORIEUX Pierre Μ. м. GOBLOT Rémi Μ. GOSSELIN Gabriel M. GOUDMAND Pierre M. GREMY Jean-Paul GREVET Patrick М. Μ. GUILBAULT Pierre HENRY Jean-Pierre м. Μ. HERMAN Maurice HOUDART René Μ. M. JACOB Gérard M. JACOB Pierre JACQUILLAT Bertrand М. Μ. JEAN Raymond JOFFRE Patrick Μ. Μ. JOURNEL Gérard M. KREMBEL Jean M. LANGRAND Claude

Chimie physique Géographie Biologie animale Informatique Electronique Psychophysiologie Paléontologie Physique nucléaire et corpusculaire Chimie organique Hydrogéologie et environnement Electronique Géographie Informatique Géologie appliquée Electronique Physiologie animale Sciences économiques Sociologie Informatique Analyse Physique du solide et cristallographie Microbiologie Spectroscopie de la réactivité chimique Chimie minérale Biologie animale Biologie animale Sciences économiques Physique du solide Spectroscopie hertzienne Spectroscopie hertzienne Spectrométrie des solides Vie de la firme (I.P.A.) Chimie appliquée Dynamique des cristaux Optique atmosphérique Biochimie structurale Ecologie numérique Géographie urbaine, industrielle et démographie Physique moléculaire et rayonnements atmosphériques Algèbre Sociologie Chimie Physique Sociologie Sciences économiques Physiologie animale Génie mécanique Physique spatiale Physique atomique et moléculaire Informatique Probabilités et statistiques Gestion Biologie des populations végétales Vie de la firme (I.P.A.) Spectroscopie hertzienne Biochimie Probabilités et statistiques

.../...

Mme LECLERCQ Ginette LEFEVRE Christian Μ. Mile LEGRAND Denise Mile LEGRAND Solange Mme LEHMANN Josiane M. LEMAIRE Jean Μ. LE MAROIS Henri Μ. LEROY Jean Marie Μ. LEROY Yves LESENNE Jacques Μ. Μ. LHENAFF René Μ. LOCQUENEUX Robert Μ. LOSFELD Joseph M. LOUAGE Francis M. MACKE Bruno M. MAHIEU Jean-Marie M. MAIZIERES Christian M. MESMACQUE Gérard M. MESSELYN Jean M. MESSERLIN Patrick M. MIGNOT Fulbert м. MONTEL Marc Μ. MONTUELLE Bernard Mme MOUNIER Yvonne Mme N'GUYEN VAN CHI Régine NICOLE Jacques M. . Μ. NOTELET Francis PARSY Fernand Μ. м. PASZKOWSKI Stéphan MILE PAUPARDIN Colette M. PECQUE Marcel м. PERROT Pierre M. PERTUZON Emile M. PETIT Francis PONSOLLE Louis м. Μ. PORCHET Maurice Μ. POVY Lucien RACZY Ladislas Μ. м. RAOULT Jean-François RICHARD Alain м. м. RIETSCH François Μ. ROGALSKI Marc Μ. ROY Jean-Claude SCHAMPS Joël м. Mme SCHWARZBACH Yvette M. SIMON Michel SLIWA Henri Μ. SOMME Jean Μ. MIIe SPIK Geneviève M. STERBOUL François Μ. TAILLIEZ Roger Μ. THERY Pierre Μ: TOULOTTE Jean-Marc М. TURREL Georges VANDORPE Bernard м. VAST Pierre м. VERBERT André м. Μ. VERNET Philippe Μ. VILETTE Michel

Catalyse Pétrologie Algèbre Algèbre Analyse Spectroscopie hertzienne Vie de la firme (I.P.A.) Chimie appliquée Electronique, électrotechnique, automatique Electrotechnique Géographie Physique théorique Informatique Electronique Physique moléculaire et rayonnements atmosphé-Physique atomique et moléculaire riques Automatique Génie mécanique Physique atomique et moléculaire Sciences économiques Analyse numérique Physique du solide Biologie et biochimie appliquées Physiologie des structures contractiles Géographie Chimie analytique Electronique, électrotechnique, automatique Mécanique Analyse numérique Biologie physiologie végétales Chimie organique Chimie appliquée Physiologie animale Chimie organique, minérale et analytique Chimie physique Biologie animale Automatique Electronique Géologie structurale Biologie animale Physique des polymères Analyse Psychophysiologie Spectroscopie moléculaire Géométrie Sociologie Chimie organique Géographie Biochimie Informatique Génie alimentaire Electronique, électrotechnique, automatique Automatique Spectrochimie infrarouge et Raman Chimie minérale Chimie inorganique Biochimie Génétique Résistance des matériaux

./...

M. WALLART Francis M. WARTEL Michel M. WATERLOT Michel M. WERNER Georges M. WOSNIAK Michel Mme ZINN Justin Nicole Spectrochimie infrarouge et Raman Chimie inorganique Géologie générale Informatique fondamentale appliquée Hydrométallurgie Algèbre

A mes Parents

A mes Frères et Sœurs

A mes Ami(e)s

Ce travail a été réalisé au Laboratoire de Chimie Analytique et Marine de l'Université des Sciences et Techniques de Lille, sous la direction de Monsieur le Professeur WARTEL. Par ses directives fécondes et attentives, il a toujours su orienter mes recherches. Je suis heureux de pouvoir lui témoigner ici ma profonde gratitude, car je lui dois l'essentiel de ma formation scientifique.

Je tiens à remercier Monsieur Claude BREMARD, Chargé de Recherches CNRS au Laboratoire de Spectrochimie Infrarouge et Raman, qui a dirigé une partie de ce travail. Sa très haute compétence, sa rigueur scientifique et ses précieux conseils ont contribué à me faire partager son goût profond pour la recherche.

Monsieur B.TREMILLON, Professeur à l'Ecole Nationale Supérieure de Chimie de Paris, m'a fait l'honneur de présider le Jury de cette thèse. Je l'en remercie vivement et lui exprime ma reconnaissance.

J'adresse mes remerciements à Madame D.BALLIVET-TKATCHENKO, Maître de Recherches au CNRS à l'Institut de Recherche sur la catalyse, à Monsieur C.P.ANDRIEUX, Maître de Recherches CNRS à l'Université de Paris VII, pour m'avoir fait l'honneur d'examiner ce travail.

Je tiens à exprimer ma gratitude à Monsieur J.HEUBEL, Professeur à l'Université de Lille I, à Monsieur M. DELHAYE, Directeur d'Institut CNRS du Laboratoire de Spectrochimie Infrarouge et Raman de Lille – Thiais, à Monsieur J.LHOMME, Professeur à l'Université de Lille I.

Je suis très reconnaissant à Monsieur J.C.FISCHER, Docteur es Sciences, pour les discussions scientifiques et les précieux conseils qu'il m'a souvent prodigués.

Madame LEMAN, Ingénieur CNRS, par sa compétence technique, a très largement contribué à ce travail. Je lui exprime toute ma gratitude.

Que Madame COQUEMAN, Messieurs COUMARE, DELFOSSE, DESCAMPS,

DEVRAINNE, MOUCHEL, PAPILLON, SAWERYSYN, trouvent ici toute ma reconnaissance pour l'aide qu'ils m'ont apportée.

Je tiens à remercier pour leur aide précieuse les personnels des laboratoires de:

- Monsieur le Professeur COUTURIER, Laboratoire de synthèse organique,
- Monsieur le Professeur LUCQUIN, Laboratoire de cinétique de la combustion
- Monsieur le Directeur d'Institut CNRS M. DELHAYE, Laboratoire de Spectrochimie Infrarouge et Raman.

L'amicale sympathie de mes camarades chercheurs du laboratoire m'a rendu ce travail encore plus agréable.

SOMMAIRE

INTRODUCTION	1
PARTIE 1: Comportement électrochimique des oxydes de l'azote	
N(III) (NO ⁺ , N ₂ O ₃ , NO ₂ ⁻ , HNO ₂)	
I. Comportement des solutions de sels de nitrosyle	
dans le sulfolane	5
1. Introduction	5
2. Système NO ⁺ /NO	6
2.a. Influence de l'eau	10
2.b. Influence de l'oxygène	10
II. Comportement des solutions de trioxyde de diazote	
dans le sulfolane	13
1. Etude de la réduction de NO ⁺ en présence de N $_2$ O $_4$	13
2. Détermination par voltammétrie cyclique de la	
constante thermodynamique de l'équilibre	
$2N_2O_3 \neq 2NO + N_2O_4$	24
3. Détermination des constantes cinétiques	26
4. Détermination de la constante de dissociation	
ionique de N ₂ O ₃	30
III. Comportement des solutions de nitrite et d'acide	
nitreux dans le sulfolane	31
1. Introduction	31
2. Etude électrochimique de l'oxydation du	
nitrite dans le sulfolane	33
2.a. Première étape de l'oxydation du nitrite.	34
α. Etude qualitative de la première	
étape de l'oxydation du nitrite	34
β . Etude quantitative de la première	
étape de l'oxydation du nitrite	38
2.b. Deuxième étape de l'oxydation du nitrite.	41
3. Etude de la réaction nitrite + acide nitrique	47
IV. Expérimentation	50
1. Solvant	50
2. Réactifs	51

PARTIE 2: Propriétés physico-chimiques du tétraoxyde de
diazote N(IV)
I. Introduction
II. Détermination de la constante de dissociation
homolytique de l'équilibre $N_2O_4 \neq 2NO_2$ (1)
l. Détermination de la constante de l'équilibre
(1) par R.M.N
2. Détermination de la constante de l'équilibre
(1) par R.P.E 59
III. Détermination de la constante de dissociation hétéro-
lytique de l'équilibre: $N_2O_4 \neq NO^+ + NO_3^-$
1. Détermination de la constante d'équilibre 64
2. Application
2.a. Influence de l'acidité de la solution
sur la dissociation de N_2O_4
2.b. Titrage de N ₂ O ₄ dans les mélanges
$N_2O_4 - HNO_3 \dots 74$
IV. Pouvoir oxydo-réducteur des solutions de N204 et
détermination de la constante de dissociation hétéro-
lytique de l'équilibre $N_2O_4 \neq NO_2^+ + NO_2^- \dots 77$
1. Oxydation des solutions de N ₂ O ₄
l.a. Etude de l'oxydation de solutions de
N ₂ O ₄ de teneur en eau très faible 79
α. Etude par voltammétrie cyclique 81
β. Etude par voltammétrie linéaire 89
l.b. Evaluation de la constante d'équilibre
$N_2O_4 \neq NO_2^+ + NO_2^- \dots \dots \dots \dots 91$
l.c. Etude de la réduction de NO ₂ ⁺
Etudes voltampérométriques
l.d. Influence de l'eau dans les solutions
de N_2O_4 103
2. Réduction des solutions de N ₂ O ₄ 105
2.a. Etude de la réduction des solutions
de N ₂ O ₄ de teneur en eau très faible 105
α. Etude de la première vague 105
eta. Etude de la deuxième vague 108

2.b. Influence de l'eau dans le processus de	
réduction de N ₂ 0 ₄	110
V. Théorie	115
1. Monomérisation suivie d'un transfert de charge,	
étude en voltammétrie cyclique	115
l.a. Courant de diffusion pure i _d	116
l.b. Courant cinétique pur i ^k	117
2. Monomérisation suivie d'un transfert de charge,	
étude en voltammétrie linéaire	118
VI. Expérimentation	130
a. Solvants	130
b. Réactifs	130
PARTIE 3: Processus catalytique de la nitration de substrats	
aromatiques par N ₂ O ₄	
I. Introduction	133
II. Etude expérimentale. Pouvoir catalytique de NO ⁺ dans	
la réaction de nitration du naphtalène par N_2O_4	134
1. Influence de l'ion NO ⁺	136
2. Influence de l'ion H ⁺	139
3. Influence de H ₂ O	141
4. Influence de mélanges N_2O_4 - H_2O préalablement	
électrolysés	143
5. Influence de l'électrooxydation de N_2O_4	145
6. Influence de nitrates inorganiques	146
6.a. Réactions entre N ₂ O ₄ et les nitrates	
de zinc, de cuivre et d'uranyle	147
6.b. Nitration du naphtalène catalysée par	
les nitrates de zinc, cuivre et uranyle	156
III. Discussion sur le mécanisme de nitration de N_2O_4	159
IV. Annexe. Détermination des constantes de formation des	
chlorozincates (II)	165
V. Expérimentation	169
PARTIE 4: Réduction électrochimique de complexes dimitrosvies du	
molvbdène à 18 électrons et étude des complexes	
radicalaires à 19 électrons	
I. Introduction	173

II. Synthèse des complexes molybdène dinitrosyles à 18	
électrons	175
III. Réduction électrochimique de complexes dicationiques	
Mo(NO) ₂ L ₂ L' ₂ ²⁺	177
IV. Réduction électrochimique de complexes monocationiques	
Mo(NO) ₂ L ₂ L'C1 ⁺	186
V. Réduction électrochimique des complexes neutres	
V. Réduction électrochimique des complexes neutres Mo(NO) ₂ L ₂ Cl ₂	190
V. Réduction électrochimique des complexes neutres Mo(NO) ₂ L ₂ Cl ₂ VI. Conclusion	190 203
V. Réduction électrochimique des complexes neutres Mo(NO) ₂ L ₂ Cl ₂ VI. Conclusion VII. Expérimentation	190 203 206
V. Réduction électrochimique des complexes neutres Mo(NO) ₂ L ₂ Cl ₂ VI. Conclusion VII. Expérimentation 1. Synthèse	190 203 206 206

A influence de signales inorganiques :
bra, Mesocione entre NgOq et les estrates
des sine, de cuivre ci d'aranvie :
b. 5. Micrepton de suphichèrie curatyres par les micresces de sitestion de Apôq
1. Misquestes est altration de Apôq

of the second seco

ANTIE 4: Goucceon éleptroculaique de completes dintirongles d melybéres à 18 Glateronn au étude des completes redresistres à 19 électrons

Introduction

INTRODUCTION

L'importance industrielle des oxydes d'azote n'est plus à démontrer. Ils sont utilisés depuis longtemps dans la grande industrie chimique minérale et organique, soit directement comme agent de synthèse, soit après oxygénation et hydrolyse sous forme d'acide nitrique. La production mondiale de produits azotés: engrais, insecticides, explosifs, matières plastiques, colorants, produits pharmaceutiques etc..., est considérable et s'effectue principalement avec l'acide nitrique.

Les réactions d'hydrolyse des oxydes d'azote sont lentes et coûteuses en énergie, aussi la nitration directe par les oxydes d'azote est-elle souhaitable afin d'éliminer l'étape de formation d'acide nitrique. Les réactions de nitration s'opèrent selon trois processus: nucléophile, électrophile et radicalaire. La nitration de composés aromatiques par des processus nucléophiles et radicalaires a été peu étudiée, contrairement à celle des composés aliphatiques qui s'effectue souvent en phase gaz selon un processus radicalaire. La nitration électrophile des composés aromatiques en phase liquide par les oxydes d'azote a été plus étudiée en raison d'une meilleure sélectivité. Elle est tributaire cependant, des espèces chimiques qui apparaissent lors de la mise en solution.

En dépit des travaux déjà publiés concernant le nombre des espèces et des équilibres mis en jeu, de nombreux problèmes restent en suspens. L'approche expérimentale des phénomènes se heurte, en effet, à la multiplicité des espèces, la rapidité de leur interconversion et leur sensibilité aux agents atmosphériques (eau et oxygène). Il est apparu nécessaire, tout d'abord, de caractériser et étudier les équilibres entre les différentes espèces constituant les oxydes d'azote en solution anhydre et désoxygénée pour s'affranchir des réactions parasites, puis, dans une seconde étape, d'évaluer l'effet de l'eau et de l'oxygène. L'utilisation de solvants à grand domaine d'électroactivité a été nécessaire en raison des propriétés oxydoréductrices variées de ces composés. Notre choix s'est porté principalement sur le sulfolane en raison de son grand domaine d'électroactivité, de son inertie chimique, et dans certains cas, sur des solvants de propriétés voisines: l'acétonitrile, le nitrométhane et le carbonate de propylène.

La première partie de ce mémoire est consacrée à l'étude voltampérométrique des propriétés électrochimiques des oxydes d'azote de degré d'oxydation III (NO⁺, N₂O₃, NO₂⁻, HNO₂) en absence ou en présence d'eau et d'oxygène. La détermination des constantes thermodynamiques et cinétiques régissant les équilibres de dissociation de N₂O₃ a été effectuée.

Dans la deuxième partie, nous nous intéressons, à l'aide des techniques électrochimiques et spectroscopiques RMN et RPE, aux équilibres (homolytique et hétérolytiques) dans la dissociation de N_2O_4 , c'est à dire:

> $N_2O_4 \neq 2NO_2$ $N_2O_4 \neq NO_2^+ + NO_2^ N_2O_4 \neq NO^+ + NO_3^-$

De ces résultats, nous déduisons une méthode potentiométrique d'analyse de N_2O_4 dans les mélanges N_2O_4 + HNO₃, dosage qui, étendu aux mélanges N_2O_4 + HNO₃ + H₂O, serait d'un grand intérêt dans la synthèse de l'acide nitrique.

Dans la troisième partie, les résultats acquis précédemment se sont avérés intéressants pour l'étude de la nitration de composés aromatiques par N_2O_4 en milieu aprotonique. Divers précurseurs catalytiques chimiques et électrochimiques sont proposés pour la nitration du naphtalène: sels de nitrosyle et nitryle, acides de Brönsted, nitrates métalliques et espèces formées par transfert électronique. Un mécanisme général de nitration est proposé.

Enfin, dans la quatrième partie, un aspect différent des propriétés redox du monoxyde d'azote est présenté. La coordination de NO sur un métal modifie profondément ses propriétés oxydoréductrices. La réduction électrochimique de complexes dinitrosyles du molybdène à 18 électrons a été entreprise. De plus, une étude spectroscopique des espèces réduites a été mise en œuvre chaque fois que les complexes radicalaires présentaient une certaine stabilité. L'instabilité chimique des complexes radicalaires a été l'objet de notre attention dans le but de son utilisation en catalyse homogène d'oligomérisation d'alcènes.

Partie 1

COMPORTEMENT ELECTROCHIMIQUE DES OXYDES

DE L'AZOTE N [III] (NO⁺, N₂O₃, NO₂⁻, HNO₂).

Nous avons rassemblé dans cette partie les résultats voltampérométriques sur électrode de platine des dérivés oxygènés de l'azote |III| dans le solvant sulfolane. L'étude a d'abord porté sur l'ion nitrosonium NO⁺, puis sur le trioxyde de diazote N₂O₃, et enfin l'ion nitrite et son acide correspondant: l'acide nitreux.

I. COMPORTEMENT DES SOLUTIONS DE SELS DE NITROSYLE DANS LE SULFOLANE

1. Introduction

La réduction de NO⁺ a fait l'objet de plusieurs travaux dans divers solvants ¹ à ¹². Dans l'eau en milieu acide ¹ à ⁵, par exemple, l'acide nitreux se déshydrate en NO⁺ selon:

 $HNO_2 + H^+ \neq NO^+ + H_2O$

et la réduction de cette solution conduit à l'oxyde nitrique NO par la réaction:

 $NO^+ + e^- \neq NO$

La réduction de NO⁺ sous forme de sel de nitrosyle a aussi été effectuée dans divers solvants non aqueux, en particulier l'acétonitrile ¹² et le nitrométhane ^{11a, b}. Elle conduit à la formation de NO. Néanmoins, les enregistrements de voltammétrie cyclique de ces solutions dans ces deux solvants montrent que le courant d'oxydation i_p^a est légèrement inférieur au courant de réduction i_p^c . SERVE ^{11b} imagine qu'une partie de NO formé est absorbé à l'électrode, ou bien se dimérise sous forme de (NO)₂. Des hypothèses identiques ont déjà été formulées en milieu aqueux par MASEK ¹³, et en milieu non aqueux par PIAZZA et Coll. ¹⁴ et DI GIACOMO et Coll. ¹⁵. Enfin dans l'acide sulfurique ¹⁰, les auteurs ont montré que la réduction de NO⁺ était rendue plus complexe par la formation de l'entité $N_2O_2^+$ ⁹ responsable de la coloration bleue. La réaction s'écrit alors:

 $2NO^+ + e^- \neq N_2O_2^+$

Afin de clarifier ces phénomènes, nous avons étudié pour notre part la réduction des solutions de NOClO₄ dans le sulfolane, en raison de la solubilité plus importante des sels de nitrosyle que dans la plupart des autres solvants organiques (Tableau I) de propriétés physiques voisines.

Solvant	Constante diélectrique	$NO^+BF_4^-$ en mole. L^{-1}	$NO^+C10_4^-$ en mole. t^{-1}
	ε		
Nitrométhane	35,8	0,02	0,03
Acétonitrile	38,0	0,07	0,07
Sulfolane	42,0	0,43	1,24
Carbonate de propylène	69,0	0,17	0,17

TABLEAU I

2. Système NO⁺/NO

L'étude du perchlorate de nitrosyle a été réalisée en milieu perchlorate de tétraéthylammonium 0,1 M et sous atmosphère d'argon par voltammétrie à balayage linéaire (électrode de platine polie). Le voltampérogramme ne présente qu'une seule vague (Fig. 1). Cette vague cathodique est proportionnelle à la concentration de NO⁺ et à la racine carrée de la vitesse de l'électrode: le courant limite est donc controlé par la diffusion.

Fig. 1: Voltampérométrie à une électrode tournante de platine dans le sulfolane à 30°C de solutions dégazées de NO⁺ClO₄⁻ (TEAP 0,1 molet⁻¹) (1) |NO⁺| = 0,12.10⁻²; (2) 0,33.10⁻²; (3) 0,54.10⁻²; (4) 0,75.10⁻² molet⁻¹

Le potentiel de demi-vague $(E_{1_2} = 0,715 \text{ V.})$ est indépendant de la concentration. Une électrolyse à potentiel imposé $(E_1 = 0,51\text{ V.})$ effectuée sur une solution de NOClO₄ montre qu'un faraday est consommé par mole de NO⁺.

L'enregistrement de voltammétrie cyclique (Fig. 2) indique que le système électrochimique est quasi rapide:

- la différence entre les potentiels de pic anodique et cathodique $(E_p^a - E_p^c)$ est égale à 0,068 V.
- le rapport entre les courants de pic i_{n}^{a}/i_{n}^{c} est égal à l

le courant de pic cathodique i_p^c est proportionnel à la racine carrée de la vitesse de balayage (Fig. 3).

le potentiel de pic E^C_p et la différence de potentiel (E^C_p
 E^A_p) varient peu en fonction de la vitesse de balayege v (Tableau II).

Fig.2: Voltammétrie cyclique d'une solution dégazée de NOClO₄ 0,44.10⁻² moles⁻¹ dans le sulfolane à $30^{\circ}C$ Vitesse de balayage: 10 mV/s

Fig. 3: Courant de pic cathodique i_p^c en fonction de la racine carrée de la vitesse de balayage de potentiel d'une solution dégazée de $NOClO_4$ 0,44.10⁻² moles⁻¹

0	Vo.	(mV/s)2
---	-----	-------	----

v en mV/s	v en V/mn	E ^C en Volts P	(E ^C - E ^a) en Volts p p
5	0,3	0,695	0,068
10	0,6	0,695	0,070
20	1,2	0,693	0,072
50	3,0	0,689	0,074

TABLEAU II Voltammétrie cyclique réalisée pour une concentration de NO⁺: c = 0,44.10⁻² mole t^{-1}

- 8 -

De plus, par la méthode du disque et de l'anneau, en plaçant le disque à un potentiel où l'espèce NO⁺ ($E_d = 0,49$ V) est réduite, nous détectons sur l'anneau ($E_a = 0,85$ V) une espèce réductrice. Le facteur d'écran a pour valeur: S = 0,618 ± 0,003 (le facteur d'écran S est défini dans l'annexe). Cette valeur, très proche de celle calculée à partir des caractéristiques géométriques de l'électrode ($S_0 = 0,610$ ± 0,070) confirme l'absence de toute association chimique entre l'espèce formée NO et NO⁺ au cours du trajet disque + anneau.

L'équilibre électrochimique retenu pour interpréter la réduction de NO⁺ est:

$$NO^+ + e^- \neq NO$$

La réversibilité du système NO⁺/NO est également confirmée par l'étude mathématique des courbes intensité-potentiel: la transformée logarithmique de la vague cathodique, $E = F\left[log(\frac{i - iNO^+}{i})\right]$, est une droite de pente 0,069 V par unité de logarithme (Fig. 4). Les associations NO + NO⁺ \rightarrow N₂O₂⁺ et NO + NO \rightarrow (NO)₂ n'existent donc pas dans le sulfolane, et il est alors possible de déterminer le potentiel normal du couple NO⁺/NO, soit E[°](NO⁺/NO) = +0,715 V

L'addition de petites quantités d'eau $(<10^{-2} \text{ mole. } l^{-1})$ à une solution de NOClO₄, ne modifie pas l'allure et la hauteur de la vague cathodique. Ceci suggère que la réaction chimique observée dans l'eau:

$$NO^+$$
 + H_2O + HNO_2 + H^+

n'a pas lieu dans le sulfolane.

2.b. Influence de l'oxygène

L'addition d'oxygène à la solution de NOClO₄ ne modifie pas la hauteur de la vague de réduction de NO⁺ des courbes voltampérométriques à balayage linéaire. On constate cependant une légère augmentation du potentiel de demi-vague (Tableau III).

Le processus électrochimique tend vers un système irréversible ¹⁶ (Fig. 5) si l'on augmente la teneur en oxygène:

> - la différence de potentiel $(E_p^a - E_p^c)$ croît (Tableau IV) - le rapport $i_p^{a/i} c_p^c$ diminue en fonction de la concentration

Durée du barbotage de l'oxygène en minutes	E _ž en Volts
0 (Solution dégazée)	0,715
0,5	0,720
1	0,720
(Solution avant dégazage)	0,725
5	0,735
10 (Solution saturée en oxygène)	0,740

TABLEAU III

Débit de l'oxygène: 13,5 cm³/mn $|N0^+| = 0,44.10^{-2}$ mole. t^{-1}

ven maV/s	v en V/mn	(B ^a - E ^C) en Volts p p
5	0,3	0,080
10	0,6	0,080
20	1,2	0,085
50	3,0	0,085

TABLEAU IV

Enregistrements de voltammétrie cyclique réalisés pour une solution de NO⁺ non dégazée $|NO^+| = 0,44.10^{-2} molel^{-1}$

v		Potentiel de pic cathodique E ^C en Volts P			
mV/s	V/un	En absence d'Oxygène	Solution non dégazée	Solution saturée en O ₂	
E	0.2	0 605	-	0.740	
2	0,3	0,095	0,725	0,740	
10	0,6	0,695	0,697	0,725	
20	1,2	0,693	0,695	0,700	
50	3,0	0,690 -	0,675	0,670	

TABLEAU V

 $|NO^+| = 0,44.10^{-2} molet^{-1}$

de l'oxygène dans le milieu (Fig. 6). Le pic anodique devient moins bien défini et diminue par addition d'oxygène. Il disparaît pour de fortes concentrations.

- pour de fortes concentrations en oxygène, le rapport i_n^C/v_2^L reste cependant constant en fonction de la vitesse de balayage v. Le système est donc toujours contrôlé par la diffusion.
- le potentiel de pic cathodique E_p^c varie d'une façon plus importante qu'en absence d'oxygène en fonction de la vitesse de balayage v (Tableau V). En effet, si pour une solution exempte d'oxygène la variation de potentiel E_n^c est voisine de 5 mV pour une augmentation de la vitesse de balayage v d'un facteur 10 (entre 0,3 et 3 $V.mn^{-1}$), elle devient égale à 50 mV pour une solution non dégazée, et à 70 mV pour une solution saturée en oxygène.

Fig. 6: Influence de l'oxygène sur le rapport des courants de pic i_p^a/i_p^c d'une solution de NOClO₄ $0,44.10^{-2}$ $molel^{-1}$ (TEAP 0,1 $molel^{-1}$) (1) solution dégazée et saturée à l'argon (2) barbotage oxygène durant 30 s; (3) 1mm; (4) 2 mm. Débit d'oxygène: 13,5 cm^3/mn (à 1 atm. et 20°C).

v.V/mn

résultats suggèrent donc l'existence d'une réaction Ces chimique qui suit immédiatement la réduction de NO⁺ selon un processus E.C.. Dans le cas où la solution est saturée en oxygène (système irréversible), nous proposons le mécanisme réactionnel suivant:

$$2NO^+ + 2e^- \neq 2NO$$
 (E)

 $2NO + O_2 \neq 2NO_2 \implies N_2O_4$ (C) Soit globalement

$$2NO^{+} + O_{2} + 2e^{-} + 2NO_{2}$$
 (E.C.) (E.C.)

(le dioxyde d'azote étant fortement dimérisé dans le sulfolane - consulter la partie II).

Afin d'étudier la réaction de NO avec l'oxygène, nous avons représenter sur la figure 6 le rapport $i_p^{a/i}_p^c$ en fonction de la vitesse de balayage de potentiel pour des solutions contenant différentes teneurs en O₂. On constate que pour des grandes vitesses de balayage, l'oxygène ne réagit que très faiblement avec NO ($i_p^{a/i}_p^c + 1$). La réaction d'oxydation de NO en NO₂ par l'oxygène est donc un équilibre. Remarquons qu'en milieu gazeux, on observe le même phénomène ¹⁷.

Si l'addition d'oxygène n'est pas suffisante, le pic anodique est mal défini, il faut donc admettre la présence d'une autre réaction entre N_2O_4 et NO selon:

 $N_{2}O_{4} + 2NO \neq 2N_{2}O_{3}$

L'oxydation de l'espèce N_2O_3 est responsable de la déformation du pic anodique. Nous avons donc entrepris l'étude de cette espèce dans le paragraphe suivant.

II. COMPORTEMENT DES SOLUTIONS DE TRIOXYDE DE DIAZOTE DANS LE SULFOLANE

1. Etude de la réduction de $N0^+$ en présence de N_2O_4

Dans le paragraphe précédent, nous avons vu que l'oxyde nitrique peut être oxydé par l'oxygène en N_2O_4 . Dans le cas où NO est en excès, N_2O_4 est réduit en N_2O_3 selon:

(1)

$$N_2O_4 + 2NO \neq 2N_2O_3$$

- 13 -

Ce dernier équilibre montre que N_2O_3 est donneur d'oxyde nitrique NO. Il était intéressant d'étudier cet équilibre et d'en déterminer sa constante. Cependant les vagues de réduction de N_2O_4 et N_2O_3 sont confondues comme nous le verrons dans la partie II. De plus, NO étant très peu soluble dans les solvants étudiés, le N_2O_3 se décompose partiellement par élimination de NO dans la phase gaz. Cette décomposition est favorisée par l'agitation de la solution. La vague d'oxydation de N_2O_3 diminue de 40% en une heure sous agitation.

Nous avons donc préféré étudier cet équilibre (1) par formation de N_2O_3 in situ sur l'électrode: c'est à dire par réduction de NO^+ en présence de N_2O_4 . Cette réduction s'effectue à des potentiels différents de celle de N_2O_4 , et la présence de ce dernier ne gène donc pas.

En ajoutant des concentrations croissantes de N_2O_4 à une solution de NOClO₄, on observe par voltammétrie à balayage linéaire que la vague de réduction de NO⁺ s'étale tout en conservant la même hauteur (Fig. 7.). Quand la concentration de N_2O_4 devient supérieure ou égale à la moitié de celle de NO⁺, la vague est mieux définie. Elle est cependant déplacée vers des potentiels plus positifs que dans le cas de NO⁺ seul (Fig. 8).

Fig. 7: Etude en voltammétrie linéaire de la réaction $NO^+ + N_2O_4$ dans le sulfolane à 30°C (TEAP 0,1 molel⁻¹) (1) $|NO^+| = 8,0.10^{-3} molel^{-1} |N_2O_4| = 0$ (2) $0,8.10^{-3}$; (3) $2,4.10^{-3}$; (4) $4,2.10^{-3} molel^{-1}$

Fig. 8: Voltammétrie à une électrode tournante de platine dans le sulfolane à $30^{\circ}C(1)$ d'une solution de $NOClO_4$ 0,90.10⁻²mole¹

(2) d'un mélange $NOClO_4$ 0,90.10⁻² mole 2^{-1} et N_2O_4 0,46.10⁻² mole 2^{-1} (TEAP 0,1 mole 2^{-1})

Un enregistrement de voltammétrie cyclique d'un mélange $|NO^+|/|N_2O_4| = 2$ se superpose avec celui obtenu avec une solution de N_2O_3 (Fig. 9), et avec un mélange stoechiométrique $NO^+ClO_4 = NO_2^-Et_4N^+$ (Fig. 10): le nitrite est oxydé par NO^+ selon: $NO_2^- + NO^+ \rightarrow N_2O_3$.

Fig. 9: Voltammétrie cyclique dans le sulfolane à $30^{\circ}C$ (TEAP 0,1 mole l^{-1}) d'une solution de: (1) $|NO^+|$ 0,42.10⁻²mole l^{-1} et $|N_2O_4|$ = 0,21.10⁻² mole l^{-1} (2) $|N_2O_3|$ = 0,5.10⁻² mole l^{-1} Vitesse de balayage: 10 mV/s

Fig. 10a: Voltammétrie cyclique dans le sulfolane (TEAP 0,1 mole L⁻¹) d'une solution de:

- (1) $|N_2O_3| = 0,70.10^{-2} mole l^{-1}$
- (2) $|NO+| = 0,71.10^{-2}moles^{-1}$ et $|NO_2^-| = 0,71.10^{-2}moles^{-1}$

Vitesse de balayage: 20 mV/s

Fig. 10b: Voltammétrie cyclique dans le sulfolane à $30^{\circ}C$ (TEAP 0,1 mole ℓ^{-1}) d'une solution de N₂O₃ 5,9.10⁻³ mole ℓ^{-1} Vitesses de balayage: 10; 20; 50; 100 mV.s⁻¹

Ces observations justifient que la réaction de réduction de NO⁺ en présence de N₂O₄ conduit à N₂O₃. Les potentiels normaux des deux couples:

$$NO^+ + 1/2N_2O_4 + e^- \neq N_2O_3$$
 (2)

sont très proches, et la dissociation de N_2O_3 suivant (3) n'est pas négligeable. Ceci est en accord avec la figure ll qui représente la variation des potentiels de demi-vague en fonction de N_2O_4 ajouté, l'écart maximal entre les potentiels de demi-vague étant égal à \sim 65mV.

 $|N0^+| = 0,42.10^{-2} moles^{-1}$

L'espèce N_2O_3 formé à l'électrode au cours de la réaction (2) donne lieu à une nouvelle vague cathodique à E 0,00V. L'équilibre (1) montre que la réduction de N_2O_3 peut s'écrire selon:

$$2N_2O_3 \neq 2NO + N_2O_4$$
 (3)

 $N_2O_4 + e^- \neq NO + NO_3^$ soit globalement:

$$2N_2O_3 + e^- \neq 3NO + NO_3^-$$
 (4)

Dans le cas d'un mélange $|N_2O_4|/|NO^+| = 0,5$, la hauteur de

cette vague est égale à la moitié de la vague de réduction de NO⁺ seul (Fig. 12).

Fig. 12: Voltammétrie à une électrode tournante de platine dans le sulfolane (TEAP 0,1 molel⁻¹) d'une solution de: (1) $|NO^+| = 8, 0.10^{-3} \text{ molel}^{-1} |N_2O_4| = 0$ (2) 0,42.10⁻² molel⁻¹

Afin de déterminer la constante thermodynamique de l'équilibre (3), nous avons entrepris l'étude mathématique de la courbe de réduction d'une solution de NO⁺ et N₂O₄ avec les concentrations respectives 9,0. 10^{-3} et 4,5. 10^{-3} mole. ℓ^{-1} dans le sulfolane.

L'équation de Nernst appliquée au système (2) est donnée par la formule:

$$E = E^{\circ}(NO^{+} + 1/2N_{2}O_{4}/N_{2}O_{3}) + p\log \frac{k_{N_{2}O_{3}}}{k_{NO^{+}} \cdot k_{N_{2}O_{4}}^{1/2}} + p\log \frac{(i - i_{NO^{+}})(i - i_{N_{2}O_{4}})^{1/2}}{(i_{N_{2}O_{3}} - i)}$$

 $i_{N_2O_3} = 0$: l'espèce N_2O_3 ayant une concentration négligeable.

Nous avons supposé que les constantes de diffusion des espèces NO^+ et N_2O_3 sont voisines. Dans cette hypothèse, la constante de diffusion de N_2O_4 est reliée à celle de NO^+ ou N_2O_3 par la relation:

$$k_{N_2O_4} \approx 2k_{NO} + \approx 2k_{N_2O_3} = 2k$$

Comme le rapport de concentration $|N_2O_4|/|NO^+|$ est égal à 0,5, on peut aussi écrire: $i_{NO^+} = i_{N_2O_4}$.

Après simplification, l'expression du potentiel devient:

$$E = E^{\circ}(NO^{+} + 1/2N_{2}O_{4}/N_{2}O_{3}) + p\log\frac{1}{k^{\frac{1}{2}}} + p\log\left[\frac{(i - i_{NO}^{+})^{3/2}}{(-i)\sqrt{2}}\right]$$

La transformée logarithmique

$$E = F\left[\log \frac{(i - i_{NO}^{+})^{3/2}}{(-i)\sqrt{2}}\right]$$

est une droite de pente 63 mV par unité de logarithme(Fig. 13). Le système peut donc être considéré comme réversible. A 25°C et 20°C, la transformée logarithmique de la courbe est également une droite de pente respectivement égale à 58 et 56 mV/unité de log.

L'expression du potentiel de demi-vague s'écrit:

$$E_{\frac{1}{2}} = E^{\circ}(NO^{+} + 1/2N_{2}O_{4}/N_{2}O_{3}) + p\log\left[\frac{(NO)^{+}}{4}\right]^{1/2}$$
$$= E^{\circ}(NO^{+} + 1/2N_{2}O_{4}/N_{2}O_{3}) + p/2 \log\left[\frac{(N_{2}O_{4})}{2}\right]$$

La valeur $E_{1/2}$ est déterminée à partir de la courbe i = f(E), ceci pour une concentration connue de N_2O_4 égale à la moitié de celle de NO⁺.On peut ainsi évaluer le potentiel normal:

$$E^{\circ}$$
 (NO⁺ + 1/2N₂O₄/N₂O₃) = $E_{\frac{1}{2}} - p/2 \log \left[\frac{(N_2O_4)}{2}\right]$

Nous avons déterminé le potentiel de demi-vague de solutions de différentes concentrations de N₂O₄ et NO⁺ dans un rapport $|N_2O_4|/|NO^+|$ = 1/2, et avons déduit d'après l'équation précédente le potentiel normal du couple (NO⁺ + 1/2N₂O₄/N₂O₃), soit E[°](NO⁺ + 1/2N₂O₄/N₂O₃) = 0,850 ± 0,010 V. Le potentiel normal du couple NO^+/NO étant connu: E°(NO^+/NO) = 0,715 V, il est possible de calculer la constante de dissociation moléculaire $K_{N_2O_3}^m$ selon l'équilibre (3), à partir des potentiels normaux des deux couples (NO^+/NO) et ($NO^+ + 1/2N_2O_4/N_2O_3$) liés par la relation:

$$E^{\circ}(NO^{+}/NO) = E^{\circ}(NO^{+} + 1/2N_{2}O_{4}/N_{2}O_{3}) + p/2 \log K_{N_{2}O_{3}}^{m}$$

On peut donc écrire:

$$\log \kappa_{N_2O_3}^{m} = \frac{2}{p} \left[E^{\circ} (NO^{+}/NO) - E^{\circ} (NO^{+} + 1/2N_2O_4/N_2O_3) \right]$$

La constante de dissociation moléculaire de N₂O₃ est égale à: $3,2.10^{-5}$ molel⁻¹ ± 1,0.10⁻⁵ mole.l⁻¹

Afin de confirmer ces résultats, nous avons entrepris la même étude par voltammétrie cyclique c'est à dire celle d'un mélange de N_2O_4 et NOClO₄.

Par addition de N_2O_4 à une solution de $NOClO_4$ on observe un déplacement des pics anodiques et cathodiques vers les potentiels anodiques (Fig. 14). Le courant de pic cathodique est proportionnel

Fig. 13: Transformée logarithmique de la courbe (2), figure 8 correspondante à un mélange $NOClO_4$ 0,90.10⁻² molet⁻¹ et N_2O_4 0,46.10⁻² molet⁻¹.

Fig. 14: Voltammétrie cyclique dans le sulfolane à $30^{\circ}C$ (TEAP 0,1 moles⁻¹) d'une solution de:

(1) $|NO^+| = 0, 42.10^{-2} \text{ moles}^{-1} |N_2O_4| = 0$ (2) $0, 21.10^{-2} \text{ moles}^{-1}$

Vitesse de balayage: 10 mV/s

Fig. 15a: Evolution du potentiel de pic E_p^c de la réduction de NO⁺ au cours de l'addition de N₂O₄. $|NO^+| = 4, 2.10^{-3} \text{ mole } 2^{-1}$. Contrôle par la diffusion. Vitesse de balayage: 5 mV/s

Fig. 15b: Evolution du potentiel de pic E_p^c de la réduction de NO⁺ au cours de l'addition de N₂O₄. $|NO^+| = 4, 2.10^{-3}$ mole¹ Contrôle par la diffusion. Vitesse de balayage: 10 mV/s

Fig. 16: Evolution du potentiel de pic E_p^c de la réduction de NO⁺ au cours de l'addition de N₂O₄. $|NO^+| = 4,2.10^{-3}$ mole¹. Contrôle par la cinétique de la réaction chimique NO + N₂O₄. Vitesse de balayage: (a) 20; (b) 50; (c) 100 mV/s
à la racine carrée de la vitesse de balayage pour des mélanges dont le rapport des concentrations $|N_2O_4|/|NO^+|$ est égal à 1/2. Le rapport des courants de pic anodique et cathodique est égal à 1 si la vitesse de balayage est inférieure à 10 mV/s. De plus la différence de potentiel entre les pics, voisine de 90 mV pour des faibles vitesses de balayage, augmente avec la vitesse. Nous avons tracé sur les figures 15 et 16 la variation du potentiel de pic cathodique E_p^c en fonction du rapport $|N_2O_4|/|NO^+|$ pour différentes vitesses de balayage v. Pour des faibles vitesses (v < 20 mV/s), on atteint un palier pour un rapport $|N_2O_4|/|NO^+|$ = 0,5, ce qui correspond à la stoechiométrie de la réaction (2): le contrôle de la réaction se fait donc par la diffusion des espèces. Pour de plus grandes vitesses (v > 50 mV/s), le contrôle de la réduction est affecté par la cinétique de la réaction: NO + $1/2N_2O_4$. L'étude de ces derniers voltampérogrammes devrait permettre d'obtenir les constantes cinétiques k₃ et k₄ de la dissociation de N₂O₃:

$$N_2O_3 \stackrel{K_4}{\underset{k_3}{\overset{k_4}{\overset{k_5}}{\overset{k_5}{\overset{k_5}}{\overset{k_5}{\overset{k_5}{\overset{k_5}{\overset{k_5}{\overset{k_5}{\overset{k_5}}{\overset{k_5}}{\overset{k_5}{\overset{k_5}{\overset{k_5}}{\overset{k_5}{\overset{k}{s}}{\overset{k}{k}}{\overset{k}}{\overset{k}}{\overset{k}}{\overset{k}}{\overset{k}}{\overset{k}}}{\overset{k}}}}}}}$$

La détermination de ces constantes nécessite la connaissance de la constante thermodynamique. Si cette dernière a déjà été calculée par la voltammétrie à balayage linéaire, il était intéressant de confirmer cette valeur à l'aide des courbes où le contrôle de la réaction est régi par la diffusion.

A notre connaissance, aucun système du type:

 $0x + ne^- \neq Red + 1/2B \neq Z$

n'a été étudié. Pour se ramener au modèle mathématique étudié par NICHOLSON et SHAIN ¹⁸ concernant le système:

nous avons été conduit à effectuer une dégénérescence d'ordre de la réaction chimique sur l'espèce B afin de se ramener à ce dernier système. L'étude sera donc effectuée sur des solutions contenant un excès de N_2O_4 par rapport à NO⁺.

2. Détermination par voltammétrie cyclique de la constante thermodynamique de l'équilibre: $2N_2O_3 \neq 2NO + N_2O_4$ (3)

L'étude voltampérométrique est effectuée avec une solution contenant un excès de N₂O₄ ($|NO_2|/|NO^+| \sim 7$). Afin de ramener au modèle de NICHOLSON et SHAIN ¹⁸, nous avons défini une nouvelle constante K dépendant de la constante thermodynamique K^m_{N2O3} de l'équilibre (3):

$$K = \frac{|N_2O_3|}{|NO|} = \sqrt{\frac{|N_2O_4|}{\kappa_{N_2O_3}^m}}$$

Il est connu que dans le cas d'un contrôle par diffusion d'une réaction électrochimique: $0x + ne^- \neq Red$, le potentiel de pic cathodique s'exprime par la relation ¹⁸:

$$E_{p}^{c} = E_{2} - 1,109 \frac{RT}{nF}$$

Si ce transfert électronique est suivi d'une réaction réversible et que l'ensemble du phénomène est régi par la diffusion, NICHOLSON et SHAIN ¹⁸ ont montré que le potentiel du pic cathodique est donné par l'équation:

$$E_p^c = E_1 - 1,109\frac{RT}{nF} + \frac{RT}{nF} Ln(1 + K)$$

La différence entre les valeurs de potentiels des deux pics cathodiques dépend de la constante thermodynamique K selon:

$$\Delta E_{p}^{c} = \frac{RT}{nF} Ln (1 + K)$$

ou bien

$$K = 10 \frac{2, 3nF(\Delta E_p^c)}{RT} - 1$$

Dans le tableau VI, nous avons reporté K et $K_{N_2O_3}^m$ calculés à partir de la variation de potentiel pour trois vitesses de balayage où le contrôle de la réaction est régi par la diffusion.

Nous avons déterminé une valeur moyenne de la constante thermodynamique $K_{N_2O_3}^m$: 4,4.10⁻⁵ mole ℓ^{-1} . Cette valeur est en bon accord avec celle trouvée par voltammétrie linéaire ($K_{N_2O_3}^m$ = 3,2.10⁻⁵ mole ℓ^{-1}). Pour une concentration $|N_2O_3|$ = 10⁻²mole ℓ^{-1} , la dissociation

v en mV/s	ΔE ^C en mV p	K	к ^т _{N2} 03
5	76	17,48	0,48.10-4
10	75	16,78	0,52.10-4
20	81	21,40	0,32.10 ⁻⁴

TABLEAU VI

 $|NO^+| = 0,42.10^{-2}molet^{-1}$ $|N_2O_4| = 1,46.10^{-2}molet^{-1}$

de l'espèce N203 est environ de 15%, et ne peut donc être négligée.

De la même manière, nous avons effectué cette étude à d'autres températures (Tableau VII). De ces constantes, nous avons calculé une valeur moyenne de l'enthalpie de dissociation de N_2O_3 dans le sulfolane: $\Delta H_{moyen} = 13,5 \pm 2,0$ kcal.

	Constante de dissociation moléculain	te de $N_2O_3 K_{N_2O_3}^m$ en mole t^{-1}
T en °C	Voltammétrie linéaire	Voltammétrie cyclique
20	0,15.10-4	$0, 19.10^{-4}$ $0.31.10^{-4}$
30	0,32.10 ⁻⁴	0,44.10-4

TABLEAU VII

Remarquons qu'en phase gaz à 30°C, l'enthalpie de cette réaction est égale à 5,74 kcal. et la constante thermodynamique $K_{N_2O_3}^m \sim 1$ (résultats calculés à partir des valeurs de K_p et ΔH données par HISATSUNE ¹⁹ pour les équilibres $N_2O_3 \neq NO + NO_2$ et $N_2O_4 \neq 2NO_2$). Si l'on imagine que l'enthalpie de solvatation de NO est négligeable (NO très peu soluble), et que les espèces N_2O_3 et N_2O_4 sont solvatées identiquement, on peut déduire l'énergie de solvatation $\Delta H_{N_2O_3}^{\circ}$ des espèces N_2O_3 et N_2O_4 dans le sulfolane, soit:

$$\Delta H_{N_2O_3} = (\Delta H_{g \rightarrow sulf.})_{N_2O_3} \simeq (\Delta H_{g \rightarrow sulf.})_{N_2O_4}$$

= 5,7 - 13,5 = -7,8 kcal·mole⁻¹

Cette valeur est très proche de l'enthalpie de solvatation de SO_2 dans le même solvant, soit -7,3 kcal;mole⁻¹ ²⁰. L'enthalpie de solvatation déterminée par SHAW et VOSPER ^{21b} par spectrophotométrie dans l'acétonitrile (solvant de propriétés physico-chimiques très proches du sulfolane),est également très voisine de celle obtenue dans le sulfolane) $\Delta H_{N_2O_3}^{\circ} = -7,6$ kcal.mole⁻¹. Sur le tableau VIII on remarque l'effet du solvant (basicité, pouvoir donneur, solubilité de NO) sur la constante de dissociation de N₂O₃.

Examinons maintenant le cas où la vitesse de balayage de potentiel est suffisamment élevée pour que le processus électrochimique soit contrôlé par la cinétique de la réaction chimique. Cette étude va nous permettre d'atteindre les constantes cinétiques.

3. Détermination des constantes cinétiques

Nous avons fait l'approximation, comme précédemment, d'une dégénérescence sur l'espèce N₂O₄. Les constantes cinétiques de cet équilibre sont alors reliées entre elles par la relation:

$$K = \frac{|N_2O_3|}{|NO|} = \sqrt{\frac{|N_2O_4|}{K_{N_2O_3}^m}} = \frac{k_4^2}{k_3}$$

La constante k4 dépend de la concentration de N_2O_4 , et est reliée à la constante cinétique k4 de l'équilibre:

			CONSTANTES THERHODYNAN LQUES DE L'EQUILIBRE: 2N203 - 2NO + N204							
	e à 25°C	D.N. ^b	К ^В _{N2O3} à 25°С АН N _{2O3} АS N _{2O3} en molet ⁻¹ КЈ Kcal J.K ⁻¹ ca		N ₂ 03 cal.K ⁻¹	- ΔH [*] N ₂ O ₃ KJ.mole ⁻¹ Kcal.mole ⁻¹		Réf.		
Tétroxyde de diazote			1,21.10-2	57	13,6	154,4	36,9			21
n-hexane	1,894		2,53.10-2	63,2	15,1	181,4	43,3	33,5	8,0	21
Tétrachlorure de carbone	2,24		9,8.10-3	60,8	14,5	165,6	39,6	31,5	7,5	21
Ether éthylique	4,3	19,2	7,5.10-3	61,0	14,6	163,2	39,0	35,0	8,4	21
m-xylène			9,0.10 ⁻⁴	70,0	16,7	176,2	42,1	37,7	9,0	21
Toluène	2,4		6,5.10 ⁻⁴	73,8	17,6	186,4	44,5	39,4	9,4	21
Acétate d'éthyle	6,0	17,1	5,6.10-4	55,6	13,3	123,8	29,6	32,4	7,7	21
Eeu	81,0	18,0	3,6.10-4							22
Acétonitrile	38,0	14,1	2,2.10-4	57,0	13,6	121,3	29,0	31,9	7,6	21
Sulfolan e	42,0	14,8	0,3.10 ⁻⁴	56,5	13,5	105,4	25,2	32,6	7,8	*

*: nos valeurs

^a: constante diélectrique ε à 20°C

,-,-

^b: nombre donneur (D.N.) du solvant selon l'échelle de basicité de GUTMANN²³

TABLEAU VIII

$$N_2O_3 \xrightarrow{k_4}_{k_3} 1/2N_2O_4 + NO$$
.

par l'équation: $k'_4 = k_4 |N_2O_4|^{\frac{1}{2}}$

NICHOLSON et SHAIN ¹⁸ ont montré par une étude théorique que l'influence cinétique de la réaction chimique <u>C</u> sur le transfert de charge <u>E</u> suivant:

<u>C</u>

 $0x + ne^- \neq Red E$

avec

$$K = \frac{|Z|}{|Red|} = \frac{k_f}{k_b}$$

Red $\underset{k_{f}}{\overset{k_{b}}{\xleftarrow}} Z$

peut être analysée à partir de l'allure de la courbe représentant le potentiel de pic E_p^c en fonction du paramètre $\psi = K |nFv/RT(k_b+k_f)|^{\frac{1}{2}}$. Après une étude mathématique du potentiel de pic en fonction des paramètres v, k_b, k_f et K, ils ont pu montrer que l'évolution du potentiel E_p^c variait avec le logarithme de ψ selon la figure représentée ci-dessous.

Fig. 17: Evolution du potentiel de pic E_p^c de la réduction d'une solution NO+ 0,42.10⁻² mole¹ contenant un excès de N₂O₄ 1,46.10⁻² mole¹ en fonction du logarithme de la vitesse de balayage.

Dans ces conditions, le potentiel de pic cinétique E^{ck} peut P s'écrire:

 $E_p^{ck} = E_{\frac{1}{2}} - 0,78 \frac{RT}{nF} - \frac{RT}{nf} Ln\psi + \frac{RT}{nF} Ln(1 + K)$

ou bien:

$$E_{p}^{ck} = E_{\frac{1}{2}} - 0,78\frac{RT}{nF} + \frac{RT}{2nF} Ln \left(\frac{RT}{nF}\right) + \frac{RT}{2nF} Ln(k_{b} + k_{f})$$
$$+ \frac{RT}{nF} Ln \frac{1+K}{K} - \frac{RT}{2nF} Ln v$$

Comme dans l'expression du paramètre ψ , seule la vitesse de balayage v peut varier lorsque la température est maintenue constante, nous avons alors étudié la variation du potentiel de pic E_p^c en fonction de log v (Fig. 17). L'allure de cette courbe est semblable à celle décrite par NICHOLSON et SHAIN (courbe $E_p^c = f(\log \psi)$).

Nous constatons pour les faibles valeurs de v (v < 20 mV/s) que le potentiel de pic E_p^c varie peu, c'est à dire que le processus électrochimique est contrôlé par la diffusion. Au contraire, si la vitesse de balayage devient supérieure ou égale à 50 mV/s, nous remarquons que le potentiel E_p^c devient proportionnel à log(v): le système est donc contrôlé par la cinétique de la réaction chimique: NO + $1/2N_2O_4$ \neq N₂O₃. On trouve une pente égale à 29 mV/unité de log: valeur voisine de la pente théorique $\frac{RT}{2F}$ Ln(10). L'approximation faite sur l'hypothèse d'une cinétique d'ordre l par excès de N₂O₄ semble donc être justifiée. En appliquant l'équation de NICHOLSON et SHAIN ¹⁸ à notre système, on peut écrire:

$$E_{p}^{ck} = E_{\frac{1}{2}} - \frac{RT}{F}(0,78) + \frac{P}{2}\log(\frac{RT}{F}) + p\log(\frac{1+K}{K}) + \frac{P}{2}\log(k_{3} + k_{4}') - \frac{P}{2}\log(k_{3} + k_$$

Dans le tableau IX, nous avons reporté k₃, k₄ et k₄ calculées à partir de la variation du potentiel E_p^{ck} pour les 3 vitesses de balayage où le processus électrochimique est régi par la cinétique de formation de N₂O₃.

On remarque que les constantes de vitesse et en particulier celle concernant la dissociation de N_2O_3 , sont faibles, ce qui justifie la relative stabilité des solutions de N_2O_3 dans le sulfolane, malgré la très faible solubilité de NO. Cette cinétique lente qui complique le processus de réduction de N_2O_3 , est responsable de l'intervention de plusieurs étapes lors de cette réduction.

v en meV/s	en nav	(k ₃ + K' ₄) en s ⁻¹	k3 en s ⁻¹	k'4 en s ⁻¹	k4 en s ^{-l} (∦mole) ¹ 2
1					
50	752	158,5	8,2	150,3	1245
100	744	171,1	8,9	162,2	1342
200	736	184,8	9,6	175,2	1450

TABLEAU LX

4. Détermination de la constante de dissociation ionique de N₂O₃

Dans la bibliiographie, certains auteurs 1^2 signalent que N₂O₃ peut aussi se dissocier selon l'équilibre ionique:

$$N_2O_3 \neq NO^+ + NO_2^-$$
 (5)

Dans notre solvant cependant, les sels de nitrosyle sont très oxydants, et l'ion nitrite, comme nous le verrons dans le paragraphe suivant, est très réducteur. La réaction s'écrit:

NO⁺ + e⁻ ≠ NO
$$E^{\circ}(NO^{+}/NO) = 0,715 V$$

NO₂⁻ ≠ 1/2N₂O₄ + e⁻ $E^{\circ}(1/2N_2O_4/NO_2^{-}) = 0,175$
(voir paragraphe III)

v

$$NO_2^- + NO^+ + 1/2N_2O_4 + NO \neq N_2O_3$$

La dissociation ionique de N₂O₃ ne peut donc être que très faible. La constante de l'équilibre (5) peut se calculer à partir de ces deux potentiels normaux et de la constante de dissociation moléculaire de N₂O₃ (soit $K_{N_2O_3}^m = 3, 2.10^{-5}$ molel⁻¹) selon:

$$\log \kappa_{N_2O_3} = \frac{E^{\circ}(1/2N_2O_4/NO_2^{-}) - E^{\circ}(NO^+/NO)}{P} + 1/2\log \kappa_{N_2O_3}^{m}$$
$$= -11,2$$

soit

 $K_{N_2O_3} = 10^{-11,2} \text{ mole.} \ell^{-1}$

Cette valeur plus faible que la dissociation ionique de N₂O₄ selon N₂O₄ \neq NO⁺ + NO₃⁻ (K_{N₂O₄ = 7,1.10⁻⁸ mole \mathcal{L}^1 à 30°C) est en accord avec les propriétés basiques plus marquées du nitrite comparées à celles du nitrate.}

L'absence de nitrite lors de la réduction de N_2O_3 semblerait montrer, à première vue, que cet équilibre n'intervient pas. Cependant, le nitrite étant oxydé par le trioxyde de diazote, il est possible que cet équilibre (5) entre en jeu dans une première étape suivie par l'oxydation immédiate du nitrite formé.

III. COMPORTEMENT DES SOLUTIONS DE NITRITE ET D'ACIDE NITREUX

DANS LE SULFOLANE.

Nous avons vu précédemment que l'ion nitrite pouvait intervenir dans la dissociation de N_2O_3 . Nous avons donc étudié le caractère réducteur de cet ion.

1. Introduction

En milieu aqueux, l'ion nitrite s'oxyde sur l'électrode de platine poli selon une réaction biélectronique ²⁴ à ²⁷:

$$NO_2^- + H_2O \rightarrow NO_3^- + 2H^+ + 2e^-$$
 (1)

L'oxydation de NO2⁻ en milieu aqueux fait donc intervenir le solvant.

En milieu nitrates fondus $28 \ge 32$, l'ion nitrite s'oxyde en dioxyde d'azote suivant un processus électrochimique réversible:

 $NO_2^- \neq NO_2^- + e^-$ (2)

Plus récemment, une étude de l'oxydation du nitrite dans les nitrates alcalins (Na, K) fondus présentant des traces d'eau 33,34 , a montré que l'espèce NO₂ formée, s'hydrolysait pour donner de l'acide nitrique. Globalement, la réaction est identique à celle obtenue dans l'eau (réaction (1).

Enfin quelques travaux concernant l'oxydation de l'espèce NO_2^- ont été réalisés en milieux organiques:

- dans le diméthylsulfoxyde 35 , l'auteur signale la formation de N₂O₄ au cours du transfert de charge. Cette espèce ne semble pas réagir avec le nitrite, sans doute en raison de la forte complexation avec le solvant, qui donne lieu à un composé d'addition moléculaire "D.M.S.O.N₂O₄" très stable.
- dans le nitrométhane ³⁶ et l'acétonitrile ^{37,38,39} les courbes i = f(E) présentent 4 vagues anodiques; dans le nitrométhane, les auteurs suggèrent la formation de N₂O₃ et NO₃⁻ dans la première étape selon un mécanisme E.C.:

 $2NO_2^{-} \pm N_2O_4 + 2e^{-}$

$$NO_2^- + N_2O_4 \rightarrow N_2O_3 + NO_3^-$$
 (C)

(E)

Par contre dans l'acétonitrile, N_2O_3 se comportant comme un mélange de NO et N_2O_4 , BONTEMPELLI ³⁸ propose alors pour la première vague le processus électrochimique global:

 $2NO_2^-$ + NO + NO_3^- + e^-

L'interprétation des autres vagues est rendue difficile par la présence de l'eau résiduelle, en particulier par la formation de HNO_2 qui peut se dismuter.

Peu de travaux concernant les propriétés chimiques de l'acide nitreux dans un solvant organique ont été réalisés. Notons cependant que dans le nitrométhane, solvant peu dissociant, SERVE 40 signale la relative instabilité de cet acide et sa dismutation en NO, H₂O et HNO₃.

Dans tous les cas, l'eau présente dans un solvant organique complique considérablement le mécanisme d'oxydation du nitrite. Il

nous a donc paru intéressant d'aborder l'étude électrochimique des espèces NO_2^- et HNO_2 dans le sulfolane (solvant de propriétés physicochimiques très voisines de celles du nitrométhane et l'acétonitrile), en prenant soin de travailler avec des teneurs en eau très faibles (< 20 ppm).

2. Etude électrochimique de l'oxydation du nitrite dans le sulfolane

Les courbes intensité potentiel obtenues pour des solutions de nitrite de tétraéthylammonium désoxygénées par un courant d'argon (électrode de platine poli), sont reportées sur la figure 18. Pour des faibles concentrations en nitrite, on observe plusieurs vagues anodiques dont seule la première est bien définie (courbe 1 de la figure 18). Si l'on augmente la concentration en nitrite, seules deux vagues, dont le rapport des hauteurs tend vers l'unité, subsistent. Il est à noter cependant que la seconde vague est, dans certains essais, suivie d'une troisième vague de faible amplitude. La hauteur de cette dernière dépend en partie des teneurs en eau et oxygène du solvant.

Fig. 18: Voltammétrie à une électrode tournante de platine dans le sulfolane à 30°C d'une solution de NO₂Et₄N (TEAP 0,1 molet⁻¹) (1) |NO₂⁻| = 0,3.10⁻²; (2) 0,59.10⁻²; (3) 0,88.10⁻²; (4) 1,19.10⁻² molet⁻¹

2.a. Première étape de l'oxydation du nitrite

a. Etude qualitative de la première étape de l'oxydation du nitrite.

En voltammétrie à balayage linéaire, le courant limite il relatif à la première vague est proportionnel à la concentration de nitrite, ainsi qu'à la racine carrée de la vitesse de rotation de l'électrode (Fig. 19 et 20). D'autre part, cette vague présente un coefficient de température voisin de 1% par degré: le système mis

Fig; 19: Courant limite il de la première vague de l'oxydation du nitrite en fonction de la concentration de NO_2^-

en jeu lors de la première étape de l'oxydation du nitrite est donc contrôlé par la diffusion pure. Une étude réalisée en voltammétrie cyclique montre que ce système apparaît comme irréversible (Fig. 21).

Fig. 21: Voltammétrie cyclique sur la première vague de l'oxydation du nitrite $|NO_2^-| = 1, 2.10^{-2}$ mole t^{-1} Vitesse de balayage: 10 mV/s

Remarquons qu'en utilisant de grandes vitesses de balayage (5 et 10V/s), on observe un faible pic cathodique, nettement inférieur cependant au pic anodique (Fig. 22). Cette observation serait en accord avec une transformation par une réaction chimique de l'oxydant formé pour

Fig. 22: Voltammétrie cyclique sur la première vague de l'oxydation du nitrite $|NO_2^-| = 1, 0.10^{-2}mole e^{-1}$ Vitesse de balayage: (a):5 V/s (b):10 V/s donner des espèces non électroactives. Le courant de pic i^a est proportionnel à la racine carrée de la vitesse de balayage v (Fig. 23).

En effectuant sur cette vague une électrolyse à potentiel contrôlé à +0,36 V, nous avons obtenu un bilan coulométrique voisin de 0,5 Faraday par mole d'ions NO_2^- (0,48 F par mole NO_2^-). Après électrolyse, la solution est placée sous pression réduite (15 mm de Hg) durant une demi-heure. La courbe intensité-potentiel de cette solution n'est constituée que d'une seule vague correspondant au nitrate ($E_{r_2} = 1,57V$). Le spectre Infrarouge de la phase extraite de la solution, piégée dans l'azote liquide, confirme la formation de NO ($_V$ (NO) \sim 1860 cm⁻¹). Les seuls produits finaux présents à la fin de la première étape sont donc NO et NO₃⁻.

Tous ces résultats nous ont amenés à penser que la première étape de l'oxydation du nitrite a lieu suivant le schéma:

 $NO_2^- \neq "NO_2" + e^-$

(1)

 NO_2 formé ou son dimère N_2O_4 , peut oxyder le nitrite selon:

$$NO_2^- + NO_2 + 2NO_3^-$$
 (2)

La réaction globale est donc:

$$2NO_2^- \rightarrow NO_+ NO_3^- + e^-$$
(3)

Le potentiel de demi-vague est égal à: $E_{1_3} = +0,07$ V

L'oxydation du nitrite par N_2O_4 est confirmée par les courbes intensité-potentiel représentées sur la figure 24. En effet, au cours de l'addition de N_2O_4 à une solution de nitrite, nous constatons que la première vague diminue au profit de la seconde vague, la hauteur

Fig. 24: Etude dans le sulfolane de la réaction $NO_2^- + N_2O_4$ en voltammétrie linéaire. (1): $|NO_2^-| = 0,43.10^{-2} \text{ moles}^{-1}, |N_2O_4| = 0;$ (2): $0,1.10^{-2};$ (3): $0,20.10^{-2}$ (équivalence); (4): $0,32.10^{-2}$ moles⁻¹

globale restant constante. La première vague disparaît pour un rapport $|N_2O_4|/|NO_2^-|$ égal à 0,46, au lieu de la valeur attendue, 0,5, ceci probablement en raison de la présence résiduelle d'oxygène dans le milieu. Ceci nous amène à penser que la réaction d'oxydo-réduction entre NO_2^- et NO_2 (ou N_2O_4) formé intermédiairement, doit être rapide comme le laissait présager l'étude en voltammétrie cyclique (Fig. 21 et 22). L'existence de cette réaction sera confirmée par la suite, à partir de la détermination des constantes d'équilibres des réactions $NO_2^- + NO_2$ et $NO_2^- + N_2O_4$.

En introduisant de l'oxygène dans une solution de nitrite, on remarque sur les courbes intensité-potentiel une faible diminution de la première vague. Ce phénomène peut être interprété selon:

$$2NO_2^{-} \rightarrow NO + NO_3^{-} + e^{-}$$

 $yNO + y/2O_2 + yNO_2$

$$yNO_2 + yNO_2^- \rightarrow yNO + yNO_3^-$$

soit globalement

 $(2+y)NO_2^- + \frac{y}{2}O_2 + NO + (1+y)NO_3^- + e^-$ (4)

β. Etude quantitative de la première étape de l'oxydation du nitrite.

Les courbes intensité-potentiel réalisées pour différentes concentrations montrent que le potentiel de demi-vague est indépendant de la concentration, et est égal à +0,07 Volt. Nous avons vu précédemment que l'oxydation du nitrite est totalement contrôlée par la diffusion (le courant limite i₁ est proportionnel à la racine carrée de la vitesse de rotation de l'électrode, le courant de pic i_p^a est proportionnel à la racine carrée de la vitesse de balayage). La cinétique de la réaction NO₂⁻ + N₂O₄ est donc très rapide. Il était donc intéressant d'étudier la transformée logarithmique de la courbe intensité-potentiel correspondant au système: $2NO_2^- + NO + NO_3^- + e^-$, c'est à dire:

$$E = f \left[\log \frac{i^2}{(i_1 - i)^2} \right]$$

avec i1: courant limite d'oxydation du nitrite (Fig. 25)

La transformée logarithmique de cette courbe est une droite de pente 68 \pm 2 mV par unité de logarithme, et le potentiel de demivague est égal à:

$$E_{1_2} = E^{\circ}(NO+NO_3^{-}/2NO_2^{-}) + p \log \frac{k^2 NO_2^{-}}{k_{NO} \cdot k_{NO_2}^{-}} = +0,070 V$$

En admettant que les constantes de diffusion des espèces NO, NO₃⁻et NO₂⁻ sont voisines, ce potentiel peut être assimilé au potentiel normal du système (3): $E_{l_2} \simeq E^{\circ}(NO+NO_3^{-}/2NO_2^{-}) \simeq +0,070$ V.

Il était intéressant de calculer le potentiel normal du système:

 $2NO_2^- \neq N_2O_4 + 2e^-$ (5)

Ce potentiel dépend des potentiels normaux des systèmes électrochimiques:

$$2NO_2 \neq NO + NO_3 + e^-$$
 (3)

et

$$N_2O_4 + e^- \neq NO + NO_3^-$$
 (6)

Si le potentiel du premier couple a été déterminé précédemment $E^{\circ}(NO+NO_3^{-1}/2NO_2^{-1}) = 0,070$ V), le second peut être déterminé à partir du système: NO⁺ + e⁻ \neq NO , et de la constante de dissociation ionique de N₂O₄ selon:

$$N_2O_4 \neq NO^+ + NO_3^-$$
 (7)

Cette constante est calculée dans la partie II: elle est égale à 7,1.10⁻⁸ mole ℓ^{-1} . Le potentiel normal du couple (6) est égal à:

$$E^{(N_{2}O_{4}/NO+NO_{3})} = E^{(NO^{+}/NO)} + p \log K_{N_{2}O_{4}} = +0,280 V$$

Le potentiel normal du système (5) est donc égal à:

$$E^{\circ}(N_{2}O_{4}/2NO_{2}^{-}) = \frac{E^{\circ}(NO+NO_{3}^{-}/2NO_{2}^{-}) + E^{\circ}(N_{2}O_{4}/NO+NO_{3}^{-})}{2}$$
$$= \frac{0,070 + 0,280}{2} = +0,175 \text{ Volt}$$

La constante d'équilibre de la réaction:

$$N_2O_4 + 2NO_2^{-1} = 2NO + 2NO_3^{-1}$$
 (8)

peut être alors calculée:

$$\log K_{(8)} = \frac{|N0|^2 |N03|^2}{|N204| |N02|^2} = \frac{E^{\circ}(N_204/(N0+N03^{\circ})-E^{\circ}(N0+N03^{\circ}/2N02^{\circ}))}{P}$$
$$= \frac{0,280 - 0,070}{0,060} = +3,5$$

Ne pouvant savoir si le nitrite est oxydé par N_2O_4 ou son monomère NO₂, nous avons calculé le potentiel normal du système:

 $NO_2^{-} \neq NO_2^{-} + e^{-}$ (9)

à partir de la constante de dissociation homolytique $K_{\rm H}$: $N_2O_4 \neq 2NO_2$. Cette constante déterminée dans la partie II, est égale à 1,43.10⁻⁵ molel⁻¹ à 30°C. Le potentiel normal du couple (9) est égal à:

$$E^{\circ}(NO_2/NO_2^{-}) = \frac{E^{\circ}(NO^{+}/NO) + E^{\circ}(NO+NO_3^{-}/2NO_2^{-})}{2} + \frac{P}{2}\log\frac{K_{N_2O_4}}{K_H}$$

= +0,320 Volt La constante d'équilibre de la réaction:

$$NO_2^- + NO_2 \implies NO + NO_3^-$$
 (10)

peut être alors calculée:

$$\log K_{(10)} = \frac{E^{\circ}(NO_2/NO_2^{-}) - E^{\circ}(NO+NO_3^{-}/2NO_2^{-})}{2p} \approx +2,1$$

N'ayant pu utiliser la voltammétrie cyclique à très grande vitesse de balayage pour isoler les réactions intermédiaires, il ne nous a pas été possible de montrer que l'espèce N₂O₄ pouvait être formée transitoirement. Comme nous le verrons plus loin, la dimérisation est rapide ($k_2 \approx 2,4.10^6 \ell$.mole⁻¹.S⁻¹), et les deux mécanismes (8) et (10) peuvent avoir lieu simultanément.

2.b. Deuxième étape de l'oxydation du nitrite

Dans le cas où la teneur en eau dans le milieu est de l'ordre du ppm, la courbe anodique ne présente que deux vagues égales (Fig. 26). Nous avons attribué la seconde étape de l'oxydation du nitrite à la réaction:

$$NO + NO_3^{-} \neq N_2O_4 + e^{-}$$
 (11)

Cette réaction est contrôlée par la diffusion. La transformée logarithmique de cette courbe:

$$E = F\left[\log \frac{i}{(i_1 - i)^2}\right]$$

est une droite de pente 80 \pm 2 mV par unité de log (Fig. 27). Le système est donc quasi-réversible.

Une coulométrie réalisée sur cette vague montre que l'électrolyse totale d'une solution de nitrite nécessite un Faraday par mole de NO₂⁻, ce qui est en accord avec le mécanisme proposé pour les deux étapes. Cependant, dans de nombreux essais, la teneur en eau est voisine

de 20 ppm et il apparaît alors, pour des vitesses de rotation inférieures ou égales à 600 tours/mn, une troisième vague en voltammétrie linéaire (Fig. 18). En voltammétrie cyclique, on observe, pour des vitesses de balayage inférieures à 100 mV/s, trois pics anodiques A, B, C et deux pics cathodiques D et G (Fig. 28). Si la hauteur de la troisième vague est fonction de la teneur en eau contenue dans le milieu, elle dépend aussi de la température et de la vitesse de rotation de l'électrode (voltammétrie linéaire). Il en est de même des pics C et D si l'on augmente la vitesse de balayage de potentiel (voltammétrie cyclique). En effet, pour des vitesses de rotation supérieures à 600 tours/minute ou des vitesses de balayage supérieures à 100 mV/s, cette troisième vague et les pics C et D disparaissent (Fig. 29). Au contraire, si l'on augmente la température, cette troisième vague et les pics C et

Fig. 28: Voltammétrie cyclique dans le sulfolane à $30^{\circ}C$ d'une solution de nitrite $|NO_2^{-}| = 8, 2.10^{-3}$ mole l^{-1} Vitesse de balayage: 20 mV/s

Fig. 29: Voltammétrie cyclique dans le sulfolane à 30° C d'une solution de nitrite $|NO_2^-| = 10^{-2}mole l^{-1}$ Vitesse de balayage: (a) 100 mV/s; (b) 500 mV/s

D réapparaissent. Le coefficient de température de cette troisième vague est nettement plus élevé que celui des deux autres (Tableau X).

Ces phénomènes ne peuvent s'expliquer que par une réaction d'hydrolyse de N₂O₄ suivant:

$$N_2O_4 + H_2O \neq HNO_2 + HNO_3$$
 (12)

relativement lente. Cette réaction est également lente dans le solvant eau ⁴¹. Aux grandes vitesses de rotation de l'électrode ou de balayage de potentiel, la réaction d'hydrolyse n'a pas lieu et la deuxième vague correspond uniquement à l'oxydation de NO en présence de nitrate. Si l'on augmente la température, la réaction d'hydrolyse est accélérée, t les phénomènes dus à l'hydrolyse réapparaissent.

	COEFFICIEN	C DE TEMPERATURE EN Z	PAR DEGRE
	en absence d'eau	en présenc	e d'eau
	$i_{11} = i_{12}$ $i_{13} = 0$	$i_{11} \sim i_{12}$ $i_{13} = 0$	$i_{12} < i_{11}$ $i_{13} = 0$
l ^e vague	1,0	1,2	1,0
2 ^e vague 3 ^e vague	· 1,0	1,8 ∿ 6,0	5,0

N.B. Le courant limite des vagues 1, 2, 3 est representé respectivement par ill, il2 et il3

TABLEAU X

On peut donc admettre que dans cette deuxième étape (vague 2, pic B), une partie de N_2O_4 formée par l'oxydation de NO en présence de nitrate, s'hydrolyse en HNO₃ et HNO₂. Comme nous le montrerons dans le paragraphe suivant, l'acide nitreux peut s'oxyder en présence de nitrate à des potentiels voisins de l'oxydation de NO en présence de nitrate. Le mécanisme est donc:

$$(1 - x)NO + (1 - x)NO_3^{-} \neq (1 - x)N_2O_4 + (1 - x)e^{-}$$
 (13)

$$xN_2O_4 + xH_2O \not\equiv xHNO_2 + xHNO_3$$
(14)

$$xHNO_2 + xNO_3^* \neq xHNO_3^* + \frac{x}{2}N_2O_4 + xe^*$$
 (15)

Globalement, la deuxième vague de potentiel de demi-vague $E_{\frac{1}{2}} \sim +0,70V$ peut être attribuée à la réaction suivante:

$$(1 - x)NO + NO_3 + xH_2O \neq (1 - \frac{3x}{2})N_2O_4 + 2xHNO_3 + e^-$$
 (16)

Le pic anodique B comporte un épaulement B', ce qui est en accord avec l'hypothèse des deux réactions (13) et (15) de potentiel de demi-vague voisin. Nous verrons dans le paragraphe suivant que la réaction électrochimique (15) présente un caractère cinétique pour des grandes vitesses de rotation de l'électrode ou de balayage de potentiel. Le pic anodique C est identique à l'oxydation de N₂O₃ en NO⁺ et N₂O₄. Le pic cathodique D est attribué à la réduction de NO⁺. En effet, le voltampérogramme d'une solution de N₂O₃ se superpose avec les pics C et D (Fig. 30).

Fig. 30: Voltammétrie cyclique dans le sulfolane à $30^{\circ}C$ d'une solution de: (a) $|NO_2^{-}| = 1, 2.10^{-2} \text{ moles}^{-1}$; (b) $|N_2O_3| = 1, 2.10^{-2} \text{ moles}^{-1}$

L'excès de NO par rapport au nitrate (réaction (16)) réagit donc avec N_2O_4 pour donner N_2O_3 suivant:

 $xNO + \frac{x}{2}N_2O_4 \neq xN_2O_3$ (17)

La troisième vague observée en courbes intensité-potentiel (ou le pic C en voltammétrie cyclique), correspond donc à la réaction:

$$xN_2O_3 \neq xNO + \frac{x}{2}N_2O_4 + xe^-$$
 (18)

L'addition de nitrate ou d'oxygène à la solution de nitrite fait disparaître cette troisième vague (en courbes i = f(E)) ou les pics C et D (en voltammétrie cyclique): l'excès de NO étant oxydé soit par l'oxygène, soit suivant la réaction (ll) avec un excès de nitrate (Fig. 31 et 32).

Fig. 31: Etude en voltammétrie cyclique de l'influence de l'oxygène sur le processus d'oxydation du nitrite. (1) $|NO_2^-| = 1,08.10^{-2}$ molel-1, solution dégazée et satu-rée d (2) solution saturée d'oxygène (3) après un barbotage de la solution avec un courant d'argon

Fig. 32: Etude en voltammétrie cyclique de l'influence du nitrate sur le processus d'oxydation du nitrite

- (1) $|NO_2^-| = 8, 3.10^{-3} mole e^{-1}$ $|NO_3^-| = 0;$
- (2) $|NO_3^-| = 1, 5.10^{-3} \text{ moles}^{-1}$

Le pic G correspond à la réduction de N_2O_4 .

Par addition d'eau à la solution de nitrite $(|NO_2^-|/|H_2O| \approx 2)$, on relève une légère augmentation de la hauteur de la première vague et une augmentation assez importante de la deuxième vague. Deux autres vagues apparaissent à des potentiels plus anodiques. On retrouve ainsi les quatre vagues signalées dans la bibliographie ^{38,40}. L'augmentation de la première vague laisse penser qu'intervient une compétition entre les réactions de N_2O_4 formé avec le nitrite initial et la réaction d'hydrolyse de N_2O_4 . Nous n'avons pas pu, pour l'instant, donner une interprétation satisfaisante pour l'ensemble des différentes vagues.

3. Etude de la réaction nitrite + acide nitrique

L'addition d'acide nitrique à une solution de nitrite conduit à la formation d'acide nitreux selon:

$$NO_2$$
 + HNO_3 + HNO_2 + NO_3 (19)

(l'acide nitreux étant un acide plus faible que l'acide nitrique).

Nous avons donc tracé les courbes intensité-potentiel au cours de cette réaction (Fig. 33).

Fig. 33: Etude en courbes i = f(E)de la réaction $NO_2^- + HNO_3$ (1) $|NO_2^-| = 1, 2.10^{-2} \text{ moleg}^{-1}$ $|HNO_3| = 0;$ (2) $0, 32.10^{-2};$ (3) $0, 66.10^{-2};$ (4) $0, 96.10^{-2};$ (5) $1, 34.10^{-2};$ (6) $1, 81.10^{-2}$ moleg $^{-1}$

Le voltampérogramme est constitué:

- d'une vague cathodique (à $E_{2} \simeq -1,45$ V) attribuable à la réduction de l'acide nitreux, que l'on peut écrire, par analogie avec celle de l'acide nitrique:

$$HNO_2 + e^- \neq NO_2^- + 1/2 H_2$$

 de deux vagues anodiques: l'une correspondant au nitrite restant, et diminuant au cours de l'addition d'acide nitrique, l'autre augmentant au cours de l'addition de HNO₃ et pouvant être attribuée à l'oxydation simultanée de NO et de l'acide nitreux en présence de nitrate suivant:

$$NO + NO_3 + N_2O_4 + e^-$$

$$HNO_2 + NO_3^- \neq 1/2N_2O_4 + HNO_3 + e^-$$

La première vague d'oxydation du nitrite disparaît pour un rapport $|HNO_3|/|NO_2^-| < 1$. La vague anodique restante ne correspond plus qu'à l'oxydation de HNO_2 en présence de nitrate. L'étude de cette vague d'oxydation en voltammétrie linéaire et cyclique, montre que la cinétique contrôle cette réaction électrochimique (Fig. 34 et 35).

Fig. 35: Courant de pic i_p^a de l'oxydation de HNO₂ en présence de nitrate en fonction de la racine carrée de la vitesse de balayage de potentiel. $|NO_2^-| =$ $10^{-2}mole_2^{-1}$ et $|HNO_3| = 0,8.10^{-2}$ mole_2^-1 Ce fait explique qu'avant l'équivalence, la somme des hauteurs des deux vagues anodiques diminue au cours de l'addition de HNO_3 . Si l'on continue à ajouter de l'acide nitrique, après disparition du nitrite, il apparaît deux vagues cathodiques supplémentaires: l'une correspondant à N_2O_4 ou N_2O_3 , l'autre à l'acide nitrique, et on constate une diminution des vagues d'oxydation et de réduction de l'acide nitreux. Ce dernier est donc consommé partiellement par une réaction avec l'acide nitrique selon l'équilibre:

$$HNO_2 + HNO_3 \neq N_2O_4 + H_2O$$
 (20)

Un deuxième équilibre doit intervenir:

$$HNO_2 + N_2O_4 \neq N_2O_3 + HNO_3$$
 (21)

Cet équilibre expliquerait la coloration bleue correspondant à N_2O_3 lorsqu'on ajoute de l'eau à une solution de N_2O_4 dans le sulfolane. La connaissance du pK de l'acide nitreux permettrait de calculer la constante thermodynamique de cet équilibre (21) et d'évaluer son intervention. En utilisant la différence des pK des acides nitreux et nitrique sur une échelle générale ramenée à l'eau 42,43, soit 4,6 unités, la constante de cet équilibre peut être estimée:

$$K_{(21)} = \frac{|HNO_3| |N_2O_3|}{|HNO_2| |N_2O_4|} = \frac{K_{HNO_2}^{H'} \cdot K_{N_2O_4}}{K_{HNO_3}^{H'} \cdot K_{N_2O_3}} = 0,25$$

Ce calcul montre que l'équilibre (21) intervient, et justifie la relative stabilité de l'acide nitreux dans notre solvant. Toutefois, cet équilibre évolue dans le temps par perte de NO (provenant de la décomposition de N_2O_3) peu soluble, ce qui entraine une disparition lente de l'acide nitreux, et l'apparition de deux vagues anodiques supplémentaires correspondant à:

- l'oxydation du nitrate en présence d'eau
$$(E_{\frac{1}{2}} \approx +1,15 \text{ V})$$
 selon:

$$2NO_3$$
 + $H_2O \neq 2HNO_3$ + $1/2O_2$ + $2e^-$ (22)

- l'oxydation du nitrate seul ($E_{1_{5}} \simeq +1,57$) suivant:

$$2NO_3^{-} \neq N_2O_5 + 1/2O_2 + 2e^{-}$$
 (23)

Ce mécanisme montre que dans le sulfolane, la décomposition de l'acide nitreux est dû à l'insolubilité de NO dans ce solvant. L'équilibre (20) peut expliquer enfin l'écart à la stoechiométrie observé dans l'évolution du faisceau de courbes i = f(E) précédent. Cet écart à la stoechiométrie, variable suivant les manipulations, dépend de l'agitation qui peut entrainer des hétérogénéités locales lors de l'addition de l'acide nitrique:

 $(1 - 2x)NO_2^{-} + (1 - 2x)HNO_3$ $(1 - 2x)HNO_2^{-} + (1 - 2x)NO_3^{-}$

 $xHNO_3 + xHNO_2 \neq xN_2O_4 + xH_2O$

 $xN_2O_4 + 2xNO_2^{-} \neq 2xNO + 2xNO_3^{-}$

soit globalement:

 NO_2^- + (1-x)HNO_3 + (1-3x)HNO_2 + NO_3^- + 2xNO + xH₂O

Il est dommage que la constante de la réaction (20) n'ait pu être déterminée, en raison de l'intervention de l'équillibre (21) donnant lieu à la formation de N₂O₃, puis de NO peu soluble.

L'acide nitreux n'est donc pas stable en présence de HNO_3 et N_2O_4 , et il semble donc difficile d'obtenir une solution pure de cet acide. Par ailleurs, nous n'observons pas dans ce solvant la déshydratation de l'acide nitreux en présence d'un acide fort, comme cela a été montré dans l'eau: $HNO_2 + H^+ \neq NO^+ + H_2O$. En effet, l'addition de $HCIO_4$ en excès à une solution de nitrite, ne révèle pas la présence de NO^+ .

IV. EXPERIMENTATION

1. Solvant

Le sulfolane (Prolabo) est purifié selon la méthode déjà

décrite ⁴⁴. Les dernières traces d'eau contenues dans ce solvant sont éliminées juste avant son utilisation en le faisant passer sur une colonne d'alumine déshydratée (alumine neutre d'activité 1 Prolabo Afnor 18-23, préalablement séchée à 350°C sous vide dynamique pendant une semaine). Cette opération est conduite en boîte à gants. Les teneurs en eau obtenues (mesurées par la méthode Karl Fischer) sont inférieures à 5 ppm.

2. Réactifs

Les produits solides purs ont été séchés sous pression réduite $(10^{-1} \text{ mm Hg}) \text{ sur P}_{2}\text{O}_{5}$:

- Et₄NC10₄ (Carlo Erba), 8 jours à 60°C

- AgClO₄ (Fluka), 8 jours à 60°C

- Et₄NNO₃ (Eastman-Kodak), 8 jours à 30°C

- NOBF4 (Merck) a été utilisé directement sans purification.

Perchlorate de nitrosyle NOClO4

Nous avons fait bouillir l'acide perchlorique à 70% (Merck) jusqu'à obtention de fumées blanches. Le produit restant est constitué d'hydrate d'acide perchlorique: $HClO_4$, H_2O . Ce dernier est ensuite mis en solution dans le nitrométhane avec un excès de N_2O_3 pour donner du perchlorate de nitrosyle:

N_2O_3 + $HClO_4$ \neq $NOClO_4$ + HNO_3

Le solide recueilli après filtration est lavé par le tétrachlorure de carbone.

Le trioxyde de diazote est préparé par oxydation partielle de NO par l'oxygène.

Nitrite de tétraéthylammonium

A la température de 50°C et dans un mélange méthanol-eau (à 3% d'eau), le nitrite de tétraéthylammonium est obtenu par déplacement de l'équilibre:

 KNO_2 + Et₄NC1O₄ \neq KC1O₄ + Et₄NNO₂

dû à la précipitation du perchlorate de potassium peu soluble dans

est ensuite séché à 50°C sous pression réduite pendant une semaine.

BIBLIOGRAPHIE

1. D.L. EHMAN et D.T. SAWYER
J. Electroanal. Chem., 16, 541 (1968)
2. J. MASEK et H. PRZEWLOCKA
Coll. Czech. Chem. Comm., 28, 670 (1963)
3. L. MULLER
J. Electroanal. Chem., 16, 531 (1968)
4. G.SCHMID et M.A. LOBECK
Ber. Bunsenges, 73, 189 (1969)
5. G. SCHMID, M.A. LOBECK et H. KEISER
Ber. Bunsenges, 74, 1035 (1970)
6. L.E. TOPOL, R.A. OSTERYOUNG et J.H. CHRISTIE
J. Electrochem. Soc., 112, 861 (1965)
7. C. TAMAYO GARCIA, A.J. CALANDRA et A.J. ARVIA
Electrochim. Acta, 17, 2181 (1972)
8. A.J. CALANDRA, C. TAMAYO, J. HERRERA et A.J. ARVIA
Electrochim. Acta, 17, 2035 (1972)
9. F. SEEL, B. FICKE, L. RIEHL et E. VOLKL
Z. Naturforsch, 8b, 607 (1953); F. SEEL, Special Publication
of the Chemical Society, 10, 7 (1957)
10. A.G. MADDOCK et A.G. SHARPE
Recent Aspects of the Inorganic Chemistry of Nitrogen,
Special Publication N° 10, London (1957)
ll.a. G. CAUQUIS et D. SERVE
C.R. Acad. Sci. Paris, Ser. C.,266, 1591 (1968)
b. D. SERVE
Thèse, Grenoble (1972)
12. G. BONTEMPELLI, G.A. MAZZOCHIN, F. MAGNO
J. Electroanal. Chem., 55, 91 (1974)
13. J. MASEK
Zeit. Analyt. Chem., 224, 99 (1967)
14. G. PIAZZA, A. FOFFANI et G. PALIANI
Zeit. Physik. Chem., N.F., 60, 167 (1968)

15. F. DI GIACOMO et F. RALLO

Gazz. Chim. Ital., 101, 581 (1971)

16. A. WEISSBERGER et B.W. ROSSITER

Physical Methods of Chemistry, Vol.1, Part IIA: Electrochemical Methods, Wiley-Interscience, 423-589 (1971)

17. P. PASCAL,

"Nouveau traité de chimie minérale", Masson et Cie Editeurs, Tome X, p. 321 (1956)

18. R.S. NICHOLSON et I.SHAIN

Anal. Chem., 36, 706 (1964)

19. I.C. HISATSUNE

J. Phys. Chem., 65, 2249 (1961)

20. J.J. LAGOWSKI

"The Chemistry of Nonaqueous Solvents", Vol. VA: "Principles and Basic Solvents", Academic Press New York, p. 81 (1978)

21.a. A.J. VOSPER

J. Chem. Soc. (A), 1589 (1971)

b. W. SHAW and A.J. VOSPER

J. Chem. Soc. (A), 1592 (1971)

22. M. GRÄTZEL, S. TANIGUCHI and A. HENGLEIN

Ber. Bunsengesellschaft Phys. Chem., 74, 488 (1970)

23. U. MAYER, V. GUTMANN

Structure and Bonding, 12, p.113 (1973)

24. M. TANAKA et K. KATO

Bull. Chem. Soc. Jap., 29, 837 (1956)

25. G. RASPI et F. PERGOLA

Chimica Industria, 45, 1398 (1963)

26. K.J. VETTER

Electrochemical Kinetics, Academic Press, New York, p. 490-493 (1967)

27. R. GUIDELLI, F. PERGOLA et G. RASPI

Anal. Chem., 44, 745 (1972)

28. H.S. SWOFFORD, Jr et P.G. Mc CORMICK

Anal. Chem., 37, 970 (1965)

29. P.G. Mc CORMICK et H.S. SWOFFORD

Anal. Chem., 41, 146 (1969)

30. A.J. CALANDRA et A.J. ARVIA

Electrochim. Acta, 11, 1173 (1966)

31. G.G. BOMBI, R. FREDDI et M. FIORANI Ann. Chim. (Rome), 56, 759 (1966) 32. D.A. TKALENKO, S.A. KUDRYA Elektrokhimiya, 14 (1), 142 (4) (Russ) (1978) Chemical Abstracts, Vol. 88, p.552 (1978) 33. E. DESIMONI, F. PALMISANO, P.G. ZAMBONIN J. Electroanal. Chem., 84, 315-22 (1977) 34. F. PALMISANO, L. SABBATINI, E. DESIMONI et P.G. ZAMBONIN J. Electroanal. Chem., 89, 311-20 (1978) 35. J.A. WARGON et A.J. ARVIA Electrochim. Acta, 17, 649 (1972) 36. G. CAUQUIS et D. SERVE C.R. Acad. Sci. Paris, 270, 1773 (1970) 37.a. C.E. CASTELLANO, J.A. WARGON, A.J. ARVIA An. Asoc. Quim. Argent., 61, 187-95 (1973) chemical Abstracts. Vol. 80, p. 472 (1974) b. C.E. CASTELLANO, J.A. WARGON, A.J. ARVIA J. Electroanal. Chem., 47, 371-2 (1973) c. C.E. CASTELLANO, A.J. CALANDRA, A.J. ARVIA Electrochim. Acta, 19, 701 (1974) 38. G. BONTEMPELLI, G.A. MAZZOCHIN et F. MAGNO J. Electroanal. Chem., 55, 101 (1974) 39. H.W. SALZBERG J. Electrochem. Soc., 121(11), 1451 (1974) 40. D. SERVE Thèse Grenoble (1972) 41. P. PASCAL "Nouveau traité de chimie minérale", Masson et Cie, Paris Vol. 10, 416 (1956) 42. Bulletin de la Société Chimique de France, n° 12, 5099 (1968) 43. G. CHARLOT "Les méthodes de la chimie analytique - Analyse quantitative minérale", Masson et Cie, Paris, 8 (1961) 44. P. PIERENS, Y. AUGER, J.C. FISCHER et M. WARTEL Can. J. Chem., 53, 2989 (1975)

Partie 2

PROPRIETES PHYSICO-CHIMIQUES

DU TETRAOXYDE DE DIAZOTE N(IV)

Après l'étude de l'ion NO^+ et des espèces de même degré d'oxydation N_2O_3 , NO_2^- et HNO_2 , nous nous sommes intéressés à N_2O_4 qui, pour certaines de ses propriétés, peut être considéré comme un complexe de NO^+ ou de NO_2^- .

I. INTRODUCTION

Si en phase gaz 1, N₂O₄ se dissocie selon:

$$N_2O_4 \rightarrow 2NO_2$$
 (1)

en solution dans un solvant organique, d'autres équilibres hétérolytiques interviennent:

$$N_2O_4 \neq NO^+ + NO_3^-$$
 (2)

 $N_2O_4 \neq NO_2^+ + NO_2^-$ (3)

L'équilibre (1) a été étudié par REDMOND et WAYLAND ² par la technique RMN. Cette dissociation est faible: $K_{\rm H}$ = 0,30.10⁻⁴ mole ϱ^{-1} à 25°C.

L'équilibre (2) a été étudié par CAUQUIS et SERVE ³ dans le nitrométhane et par BONTEMPELLI ⁴ dans l'acétonitrile (étude de la réduction des solutions de N₂O₄ sur électrode de platine). Ces auteurs remarquent la complexité des phénomènes dus à l'eau résiduelle, et n'ont pas pu atteindre les constantes d'équilibre correspondantes. Nous avons repris cette. étude dans le sulfolane, solvant dans lequel l'impureté "eau" est plus facilement éliminée. Nous nous sommes d'abord intéressés à la dissociation homolytique de N_2O_4 (équilibre (1)), cet équilibre pouvant interférer avec les deux autres. Les techniques utilisées sont la RMN et la RPE.

Ayant montré au laboratoire que l'électrode d'argent recouverte de chlorure d'argent est inerte et indicatrice du rapport $|NOC1|/|NO^+|$, nous avons utilisé cette propriété à la détermination de la constante de l'équilibre (2). Nous avons pu en déduire un dosage des mélanges N_2O_4 - HNO₃.

La dissociation de N_2O_4 suivant l'équilibre (3) ne peut être que très faible, en raison du fort pouvoir oxydant de NO_2^+ et du caractère réducteur marqué du nitrite, comme nous l'avons montré précédemment. Afin d'atteindre cet équilibre (3), nous avons été amenés à étudier l'oxydation des solutions de N_2O_4 et la réduction des solutions de NO_2^+ . Ce travail a ensuite été étendu à la détermination du caractère oxydant des solutions de N_2O_4 .

II. DETERMINATION DE LA CONSTANTE DE DISSOCIATION HOMOLYTIQUE DE L'EQUILIBRE $N_2O_4 \neq 2NO_2$ (1)

REDMOND et WAYLAND 2 ont déjà étudié cette dissociation dans l'acétonitrile, le tétrachlorure de carbone et le cyclohexane par la résonance magnétique nucléaire (N₂O₄ étant un composé diamagnétique alors que son monomère NO₂ est paramagnétique). Ces auteurs constatent que cette constante varie avec le caractère basique du solvant, et font l'hypothèse que N₂O₄ est un acide plus fort que son monomère NO₂.

Nous avons, dans un premier temps, repris leur technique dans les solvants: sulfolane, carbonate de propylène. Cette technique s'est avérée peu précise, et nous avons, dans un deuxième temps, utilisé une autre technique: la résonance paramagnétique électronique.

1. Détermination de la constante de l'équilibre (1) par RMN

La technique et la théorie sont résumées dans la partie annexe. La détermination de la susceptibilité magnétique du milieu (solution de N_2O_4 dans le solvant + traces de cyclohexane) a été calculée à l'aide de l'équation:
$$\chi = \frac{\Delta\delta}{\alpha} + \chi_i$$

qui peut encore s'écrire:

$$\Delta \chi = \frac{\Delta \delta}{\alpha}$$

avec:

- -x: susceptibilité magnétique volumique du milieu étudié
- -X_i: susceptibilité magnétique volumique du solvant i
- $-\Delta\delta$: variation du déplacement chimique causée par la présence du soluté paramagnétique

 $-\alpha = \alpha_1 - \alpha_2 = \frac{2\pi}{3}$ (α_1 et α_2 représentent "les facteurs de formes").

$$-\Delta \chi = \chi - \chi_i$$

Le cyclohexane ajouté à la solution de N_2O_4 est utilisé comme référence interne. Nous avons choisi le cyclohexane (cyclane) comme référence interne en raison de ses propriétés inertes vis à vis de nos solvants. D'autre part, le cyclohexane présente l'avantage de n'avoir dans son spectre RMN qu'un seul pic relatif aux 12 protons présents dans la molécule. L'absorption magnétique nucléaire relative à ces protons est donc élevée, ce qui permet de diluer la référence à de très faibles teneurs (2 à 3% en poids).

Pour pouvoir atteindre facilement la différence de déplacement chimique $\Delta\delta$, la méthode consiste à introduire dans le tube de RMN contenant déjà la solution de susceptibilité inconnue (le mélange solvant pur + N₂O₄ + 2-3% cyclohexane), un capillaire contenant le solvant pur avec 2-3% cyclohexane.

Si l'on appelle:

 $\chi(E)$: susceptibilité volumique spécifique de l'espèce E $\chi_g(E)$: susceptibilité massique spécifique de l'espèce E $\chi_M(E)$: susceptibilité moléculaire spécifique de l'espèce E χ_i^* : susceptibilité volumique du solvant pur dans la solution

dia Xg (E): susceptibilité diamagnétique massique spécifique de l'espèce E χ_g^{para} (E): susceptibilité paramagnétique massique spécifique de l'espèce E

V: volume total de la solution étudiée

V^{*}: représente la contribution volumique du solvant pur dans le volume total V.

Si $\Delta \chi$ est égale à la différence de susceptibilité magnétique entre la solution contenue dans le tube externe, et celle contenue dans le capillaire, on peut écrire:

$$\Delta \chi = \left[\chi (N_2 O_4 + N O_2) + \chi_i^* \right] - \chi_i$$
 (5)

 χ_i^* peut être exprimé en fonction de χ_i suivant:

$$\chi_i^* = (\frac{V^*}{V}) \chi_i$$

De sorte que l'équation (5) devient:

$$\chi(N_2O_4 + NO_2) = \frac{\Delta\delta}{\alpha} - \chi_i \left(\frac{V^*}{V} - 1\right)$$

En désignant par m la masse de $(N_2O_4 + NO_2)$ globale contenue dans l cm³ de solution, et en appliquant la relation (1), il vient:

$$\chi_g(N_2O_4 + NO_2) = \frac{\Delta\delta}{2} - \frac{\chi_i}{m} \cdot (\frac{V^*}{V} - 1)$$
 (6)

Si p est la proportion en poids de NO_2 vis à vis de N_2O_4 , la susceptibilité massique (N_2O_4 + NO_2) peut s'écrire:

$$\chi_{g}(N_{2}O_{4} + NO_{2}) = (1 - p) \cdot \chi_{g}(N_{2}O_{4}) + p \cdot \chi_{g}(NO_{2})$$
$$= (1 - p) \cdot \chi_{g}^{dia}(N_{2}O_{4}) + p \left[\chi_{g}^{dia}(NO_{2}) + \chi_{g}^{para}(NO_{2})\right]$$
(7)

Sachant qu'en première approximation, la susceptibillité moléculaire est égale à la somme des susceptibilités atomiques (d'après le principe d'additivité du diamagnétique), on peut supposer:

$$\chi_{M}^{dia}(N_{2}O_{4}) \simeq 2\chi_{M}^{dia}(NO_{2})$$

or

et

 $\chi_{M}^{dia}(N_{2}O_{4}) = M_{N_{2}O_{4}} \cdot \chi_{g}^{dia}(N_{2}O_{4})$ $x_{M}^{dia}(NO_{2}) = M_{NO_{2}} \cdot x_{\alpha}^{dia}(NO_{2})$

 $M_{
m N_2O_4}$ et $M_{
m NO_2}$ représentent respectivement les masses molaires de N_2O_4 et NO2. On en déduit que:

$$\chi_g^{\text{dia}}(NO_2) \approx \chi_g^{\text{dia}}(N_2O_4)$$

De sorte que l'équation (7) devient:

 $\chi_g(N_2O_4 + NO_2) \simeq \chi_g^{dia}(N_2O_4) + p \cdot \chi_g^{para}(NO_2)$

En remplaçant cette égalité dans l'équation (6), on obtient:

$$p \cdot \chi_g^{\text{para}}(NO_2) = \frac{\Delta \delta}{\alpha} - \frac{\chi_i}{m} \cdot (\frac{V^*}{V} - 1) - \chi_g^{\text{dia}}(N_2O_4)$$

Par conséquent, pour atteindre la valeur de p (la fraction molaire de NO₂), il faut connaître:

- déplacement chimique $\Delta\delta$ déterminé par spectroscopie - le RMN
- la susceptibilité volumique du solvant i. Pour l'acétonitrile nous avons pris la valeur donnée dans la bibliographie. Pour les autres solvants, nous ne les avons pas trouvées dans la littérature. Nous avons alors été amenés à les déterminer selon la méthode "Curie-Chéneveau" (méthode décrite dans la partie annexe).
- la susceptibillité diamagnétique de N₂O₄. Plusieurs valeurs différentes sont proposées dans la bibliographie: $\chi_g^{dia}(N_2O_4)$ = -0,326.10⁻⁶ cm³/g⁵; $\chi_g^{dia}(N_2O_4)$ = -0,276.10⁻⁶ cm³/g cm^3/g 6. Nous avons redéterminé cette valeur par la méthode "Curie Cheneveau" à partir d'une solution gelée de N_2O_4 (T \approx -11°C). La valeur trouvée: $\chi_g^{dia}(N_2O_4) = -0,280.10^{-6} \text{ cm}^3/\text{g} \pm 0,005.10^{-6}$ cm³/g, est très proche de celle trouvée par SONE ^{6a}.

- la susceptibillité paramagnétique moléculaire de NO₂ qui s'exprime suivant la formule:

$$\chi_{M}^{\text{para}}(NO_{2}) = \frac{1}{3kT} g^{2} \cdot \beta^{2} \cdot N \cdot S(S + 1)$$

si S = 1/2 spin de la molécule NO₂

N étant le nombre d'Avogadro

 g = 2,003 ± 4 facteur de Landé que nous avons déterminé par spectroscopie RPE dans nos trois solvants
 Cette formule peut encore s'écrire:

$$\chi_g^{\text{para}}(NO_2) \simeq \frac{\beta^2 N}{kTM_{NO_2}}$$

à T = 293° K on obtient:

 $x_{M}^{\text{para}}(NO_{2}) = 1270.10^{-6} \text{ cm}^{3}/\text{mole}$ et $x_{g}^{\text{para}}(NO_{2}) = 30,24.10^{-6} \text{ cm}^{3}/\text{g}$

Les déplacements chimiques $\Delta\delta$ enregistrés sont compris entre 0,010 ppm $\leq \Delta\delta \leq$ 0,025 ppm pour des solutions de N₂O₄ molaire et des écarts de température allant de 25 à 45°C. D'autre part, des erreurs importantes interviennent dans le calcul des volumes spécifiques de N₂O₄ et du solvant dans la solution étudiée.Néanmoins, dans le cas du sulfolane et du carbonate de propylène, nous avons évalué, après itération, la valeur de la constante de dissociation K_H: nous avons trouvé une valeur voisine de K_H $\simeq 10^{-5}$ moleg⁻¹ à T = 25°C, alors que REDMOND et WAYLAND ² trouve pour la même température une valeur de 3,0.10⁻⁵ moleg⁻¹ dans l'acétonitrile, 1,78.10⁻⁴ moleg⁻¹ dans CCl₄ et 1,77.10⁻⁴ moleg⁻¹ dans le cyclohexane.

Cette méthode est peu précise, et l'addition d'un étalon peut perturber la mesure. Ainsi les résultats obtenus par REDMOND et WAYLAND ² montrent que la dissociation de N_2O_4 est supérieure dans le cyclohexane utilisé comme étalon. Pour affiner ces résultats, nous nous sommes intéressés à une autre technique nous paraissant plus adaptée: la spectroscopie RPE Nous avons résumé dans l'annexe les bases théoriques de la technique RPE.Nous avons démontré en particulier que le signal d'absorption est directement proportionnel à la quantité d'espèces paramagnétiques dans le milieu analysé:

$$P_{\text{totale}} = \left[\frac{2\pi^2 v_0 (g\beta)^2 H_{\text{max}}^2}{4kT} \right] \cdot N_x$$

avec

- . P_{totale}: puissance totale absorbée par le composé paramagnétique.
- . N_x: Concentration de composé paramagnétique
- H_{max}: amplitude maximale du champ magnétique oscillant H^a
- . ν₀: fréquence de résonance
- . k: constante de Boltzmann
- . T: température absolue (en °K)
- . g: facteur de Landé
- . β: magnéton de Bohr

Cependant, l'absorption (Fig. la) ne peut être évaluée directement, et seul est mesurable un signal (S) proportionnel à la dérivée

Fig. 1a: Courbe d'absorption paramagnétique

de l'absorption $\frac{dA}{dH}$ par rapport au champ magnétique H (Fig. lb et 2). Pour atteindre l'aire de la courbe d'absorption en fonction du champ magnétique, nous avons utilisé la méthode de "Double Intégration numérique de la dérivée première de la courbe d'absorption"⁷.

Fig. 2: Spectre RPE de NO2 dans le nitrométhane $|N_2O_4| = 1,0$ mole. l^{-1}

Il suffit, afin de tenir compte des caractéristiques de l'appareil, d'étalonner au moyen d'une solution de concentration connue en électrons non appariés ou célibataires, les différents paramètres physiques étant maintenus constants (tubes à quartz identiques, température constante, même volume de liquide, réglages de l'appareil identiques). Nous obtenons donc une relation linéaire entre la surface du signal d'absorption détecté et la concentration en espèces paramagnétiques contenues dans le milieu:

$$\frac{A_{x}}{A_{ref}} = \frac{N_{x}}{N_{ref}}$$

(8)

avec

A_x: surface du signal d'absorption du composé paramagnétique
X
A_{ref}: surface du signal d'absorption de la référence ref

N_{ref}: Concentration en espèces paramagnétiques ref

Nous avons utilisé la N,N diphényl N'picryl hydrazine D.P.P.H.

	⊺en ℃	N _X = [NO ₂] _X N _{ref} TOPPHI	NO ₂ _x .10 ³ (en mole/£)	iN2 ⁰ 4∣eq (en mole/12)	K _H ^T (en mole/1)
Nitrométhane	24	4,210	12,80	1,169	1,40.10-4
(1199 mg/g)	40	7,970	24,23	1,163	5,05.10-4
(a T = 298°K)	50	12,171	37,00	1,158	11,80.10-4
Acétonitrile	21	3,082	7,55	2,197	0,26.10-4
(966 mg/z)	25	3,727	9,13	2,195	0,38.10-4
(à 298°K)	43	8,102	19,85	2,190	1,80.10-4
	52	13,988	34,27	2,183	5,38.10-4
Sulfolane	30	2,000	4,82	1,623	0,14(3).10-4
(950 mg/z)	44	3,502	8,44	1,621	0,44.10-4
(à 298°K)	53	4,896	11,80	1,620	0,86.10-4
Carbonate de propylène	25	3,200	6,24	2,093	0,18(6).10-4
(769 mg/t)	30	3,995	. 7,79	2,092	0,29.10-4
(à 298°K)	41	6,223	12,14	2,089	0,71.10-4
	51	9,533	18,59	2,086	1,65.10-4

TABLEAU I

(substance paramagnétique de spin S = 1/2): composé généralement utilisé comme référence en RPE ⁷.

Nous avons reporté dans le tableau I le rapport des aires des signaux d'absorption des solutions N_2O_4 - NO_2 et de l'étalon D.P.P.H. et la concentration de la solution de D.P.P.H., et la concentration totale: $|N_2O_4|_T = |N_2O_4|_{eq} + \frac{|NO_2|_X}{2}$. Nous en avons déduit les concentrations de NO_2 et N_2O_4 , et par suite, la constante de dissociation K_H. Ces mesures ont été effectuées dans les solvants: nitrométhane, acétonitrile, sulfolane, carbonate de propylène.

Dans le tableau II, nous avons reporté les valeurs calculées

Constantes thermodynamiques de l'équilibre: N2O4 ≄ 2NO2 à 298°K								
			∆G =- RTLnKH		۵H		۵\$	
•	D.N.8	logK _H	KJ.mole ⁻¹	Kcal.mole=1	KJ.mole ⁻¹	Kcal.mole ⁻¹	J.mole ⁻¹ K ⁻¹	cal.mole ⁻¹ K ⁻¹
Nitrométhane	2,7	-3,82±0,07	21,8	5,2	62,8±4,2	15:1	138±8	33±2
Acétonitrile	14,1	-4,42±0,13 -4,52 ²	25,5 25,5 ²	6,1 6,1 ²	68,2±4,2 67,0 ²	16,3=1 16 ²	142±8 138 ²	34 <i>±2</i> 33 ²
Carbonate de propylène	15,1	-4,73±0,05	27,2	6,5	67,8±4,2	16,2:1	136±8	32,5±2
Sulfolane	14,8	-5,03±0,11	28,9	6,9	64,9±4,2	15,5±1	121±8	29±2

TABLEAU II

de l'énergie libre, de l'enthalpie et l'entropie de cet équilibre à 298°K, à partir des équations classiques:

. $G = -RTLnK_H$. $\frac{dLnK_H}{dT} = \frac{\Delta H}{RT^2}$ en supposant ΔH invariable dans l'écart de température étudié. . $\Delta S = \frac{\Delta H}{T} - \frac{\Delta G}{T}$

Nous avons ajouté dans ce tableau, les valeurs des nombres donneurs de Gutmann ⁸ (D.N.) pour chaque solvant. On remarque que la

forme monomère est plus stable dans le nitrométhane, ce qui est en accord avec l'hypothèse de REDMOND et WAYLAND ², selon laquelle N_2O_4 est un acide de Lewis plus fort que son monomère NO_2 . Les solutions de N_2O_4 sont d'ailleurs plus colorées dans le nitrométhane.

Dans la partie l, nous avons fait l'hypothèse que la solvatation dans le sulfolane des espèces N_2O_4 et N_2O_3 était identique. Cette énergie de solvatation était égale à -7,8 kcal.mole⁻¹. Il est alors possible de calculer celle de NO_2 , connaissant l'enthalpie de la réaction: $N_2O_4 \neq 2NO_2$ en phase gaz à $30^{\circ}C$:

 $\Delta H = 13,64 \text{ kcal.mole}^{-1}$

à:

Nous trouvons une valeur de ΔH de solvatation de NO₂ égale $\Delta H^{\circ}_{NO_2} = -3 \text{ kcal.mole}^{-1}$

Cette énergie est nettement inférieure, en valeur absolue, à celle de N_2O_4 , et montre donc que NO_2 est moins solvaté que N_2O_4 , ce qui est en accord avec les hypothèses de REDMOND et WAYLAND ² selon lesquelles N_2O_4 est plus acide que NO_2 .

Enfin, la détermination de la constante de dissociation homolytique de N₂O₄ permet d'atteindre dans le cas du sulfolane la constante de dissociation de N₂O₃, $K_{N_2O_3}^{m'}$, selon N₂O₃ \neq NO + NO₂. En effet, cette constante peut être reliée à la constante $K_{N_2O_3}^{m}$ de la dissociation 2N₂O₃ \neq NO + N₂O₄ par la relation:

 $K_{N_2O_3}^{m'} = (K_H \cdot K_{N_2O_3}^{m})^{\frac{1}{2}}$

Nous avons comparé dans le tableau III, la valeur obtenue dans le sulfolane avec celles relevées dans la bibliographie (valeurs déterminées par spectrophotométrie). Comme nous avons vu dans la partie précédente, la dissociation de N_2O_3 dans le sulfolane est plus faible que dans l'acétonitrile. Néanmoins, cet écart faible n'est pas significatif, les techniques utilisées pour la détermination de ces constantes étant différentes.

			Constantes t	hermodynamique N2O3 ≠ NO	+ NO ₂ à 29	e de dissociat 18°K	ion moléculaire	de N203:
	E	D.N.ª	K ^{**} _{N203}		.03		2 ⁰ 3	D <i>6</i> €
	4 230 K		en moter -	NJ.mote -	KCall ADIE -	J.K - MOIE *	Call.K *mole *	Ker.
Tétraoxyde de diazote	-	-	1,4.10-3	61,7	14,7	153	36,6	10
Tétrachlorure ce carbone	2,24b	-	1,3.10-3	61,0	14,6	149	35,6	10
Eau	81,0	18,0	7,3.10-5	-	-	-	-	11
∴cétonitrile	38,0	14,1	8,2.10-5	62,0	14,8	130	31,1	10
Sulfolane	42,0	14,8	1,7.10 ⁻⁵ 2,5.10 ^{-5°}	60,7	14,5	112	26,8	*

* nos valeurs

^a pouvoir donneur du solvant selon l'échelle de Gutmann ⁸

b constante diélectrique calculée à 20°C

^c constante d'équilibre déterminée à 30°C

TABLEAU III

III. DETERMINATION DE LA CONSTANTE DE DISSOCIATION HETEROLYTIQUE DE L'EQUILIBRE: $N_2O_4 \neq NO^+ + NO_3^-$

1. Détermination de la constante d'équilibre

Afin de déterminer la constante de l'équilibre: $N_2O_4 \neq NO^+$ + NO_3^- , très faiblement dissocié, nous avons cherché à intégrer cet équilibre dans un couple électrochimique. Le chlorure de nitrosyle étant moins réactif que N_2O_4 , on pouvait penser que ce complexe de NO^+ était moins dissocié. Ceci nous a conduit à déterminer sa constante de dissociation à l'aide de l'électrode d'argent recouverte de AgCl, lors de la neutralisation d'une solution de NOClO₄ par Et₄NCl (Fig. 3) ou de NOCl par une solution de perchlorate d'argent (Fig. 4) suivie par potentiométrie à courant nul.

Le système étudié étant:

Ag + NOC1 \Rightarrow AgC1 + NO⁺ + e⁻

la transformée logarithmique de ces courbes montre que le système est réversible dans les solvants nitrométhane, sulfolane, carbonate de propylène. Nous avons reporté dans le tableau IV les potentiels normaux des systèmes (Ag⁺/Ag), (AgCl + NO⁺/Ag + NOCl), les produits de solubilité P_{AgCl}, ainsi que les constantes de dissociation de NOCl dans les différents solvants, ramenées à force ionique nulle.

	Nitrométhane	Sulfolane	Carbonate de propylène
E°(Ag ⁺ /Ag)(en mV)	+611 13	+373 14	+509 12
- logP _{AgCl}	21,2 13	18,4 14	20,4 12
E_1° (en mV)	+137 12	-22	+42 12
logK _{NOC1}	-13,2±0,2 ¹²	-11,8±0,2	-12,5±0,2 ¹²

TABLEAU IV

L'électrode d'argent recouverte de AgCl étant indicatrice du rapport $|NO^+|/|NOC1|$, il est donc possible de suivre avec une telle électrode le dosage, par une solution de chlorure, de complexes de NO^+ plus dissociés que NOC1: N_2O_4 . Nous avons étudié les réactions suivantes:

Fig. 3: Dosage potentiométrique à $30^{\circ}C$ dans le sulfolane, d'une solution de NOClO₄ 2,0.10⁻² mole. t^{-1} par une solution de Et₄NCl en milieu Et₄NClO₄ 0,1 mole. t^{-1}

Fig. 4:Dosage potentiométrique d'une solution de NOCl 2,0.10⁻² mole. l^{-1} par une solution de AgClO₄ en milieu Et₄NClO₄ 0,1 mole. l^{-1} dans le solvant: (1) nitrométhane; (2) carbonate de propylène; (3) sulfolane - d'une part, la neutralisation d'une solution de N_2O_4 par une solution de chlorure de tétraéthylammonium:

$$N_2O_4 + Et_4NC1 \rightarrow NOC1 + Et_4NNO_3$$
 (9)

- et d'autre part, la neutralisation d'une solution de NOCl en présence de nitrate par une solution de perchlorate d'argent:

$$NOC1 + Et_4 NNO_3 + AgC10_4 + AgC1_1 + N_2O_4 + Et_4 NC10_4$$
 (10)

Toutes ces réactions ont été effectuées en présence d'électrolyte indifférent Et₄NClO₄ 0,1 mole l⁻¹. Les courbes de dosage obtenues dans les différents solvants sont reportées sur les figures 5 et 6.

En posant la concentration de N_2O_4 totale égale à C_0 , les équations de neutralité électrique et de la conservation des espèces, permettent d'écrire dans le ças de la réaction (9):

$$|C104^{-}|_{élect} + |N03^{-}| + |C1^{-}| = |N0^{+}| + |(C_{2}H_{5})_{4}N^{+}|$$

$$2C_0 = 2|N_20_4| + |N0_2| + |N0_3^-|$$
(11)

avec |ClO4|élect.: concentration d'ion perchlorate apporté par l'électrolyte.

En appelant x la fraction en ion Cl^- ajoutée (ou de NO_3^- formé), nous pouvons écrire:

$$|(C_{2H_5})_{4N^+}| = |(C_{2H_5})_{4N^+}|_{élect.} + xC_0$$

avec $|(C_{2H_5})_{4N_{1}}|$ élect.: concentration d'ion tétraéthylammonium apporté par l'électrolyte.

L'équation de neutralité électrique devient:

$$|NO_3^-| = |NO^+| + xC_0$$
(12)

D'autre part, les concentrations $|N_2O_4|$ et $|NO_2|$ sont reliées entre elles par la constante thermodynamique $K_H = \frac{|NO_2|^2}{|N_2O_4|}$ (13)

- 68 -

L'équation de Nernst appliquée au couple électrochimique:

$$Ag_{\downarrow} + NOC1 + NO_3^{-} \neq AgC1_{\downarrow} + N_2O_4 + e^{-1}$$

s'écrit:

$$E = E_{2}^{\circ} + p \log \frac{|N_{2}O_{4}|}{|NOC1||NO_{3}^{-}|} - p \log f_{-}^{+}$$

(en tenant compte du coefficient d'activité).

En supposant que $|NOC1| = xC_0$ et que le chlorure libre est négligeable, l'équation précédente devient:

$$E = E_2^{\circ} + p \log \frac{|NO^+|}{xC_0 K_{N_2O_4}} - p \log f_+^+$$

A partir des équations (11), (12) et (13), la concentration de NO⁺ peut être exprimée en fonction de x, C_0 , $K_{N_2O_4}$ et K_H .

Afin d'atteindre la constante de dissociation de N₂O₄, nous avons dû avoir recours à l'informatique. Le traitement mathématique des courbes obtenues a été effectué par affinement selon la méthode des moindres carrés. Les paramètres affinés sont simultanément le coefficient de la loi de Nernst p, le potentiel normal E_2° et la constante $K_{N_2O_4}$. Les résultats sont reportés dans le tableau V. On remarque que la valeur des pentes est très proche de la valeur théorique: 2,303 $\frac{RT}{nF}$.

	Nitrométhane	Sulfolane	Carbonate de propylène
Potentiel normal E° (en mV)	-394	-454,5	-411
Pente p (en mV/unité de log.)	58	58	58
logK _{N2O4} (err mole/l)	-9,2±0,1	-7,15±0,1	-7,3±0,1

TABLEAU V

 N_2O_4 est donc un donneur plus fort de NO⁺ que NOC1. Il serait donc possible de doser des solutions de N_2O_4 par une solution de chlorure en suivant cette réaction par potentiométrie à l'électrode d'argent recouverte de AgC1. L'application de ce dosage aux mélanges HNO₃ - N_2O_4 (problème très important dans l'industrie de l'acide nitrique) sera décrite par la suite.

Enfin N_2O_4 apparaît moins dissocié dans le nitrométhane que dans les autres solvants, les ions NO^+ et NO_3^- sont donc moins solvatés dans ce solvant. Dans le cas du carbonate de propylène et du sulfolane, les constantes sont très proches, ce qui confirme les propriétés voisines de ces deux solvants.

2. Application

2a. Influence de l'acidité de la solution sur la dissociation de N₂O₄

 NO_3 étant une base dans ce solvant, une variation d'acidité de la solution favorisera la dissociation de N_2O_4 :

 $N_2O_4 + H^+ - HNO_3 + NO^+$

Afin d'étudier le déplacement d'équilibre, il était nécessaire de déterminer la constante d'acidité de HNO₃. Expérimentalement, il a été montré que l'électrode de verre était indicatrice des ions H⁺ dans de nombreux solvants tels que: le nitrométhane ¹⁵, l'acétonitrile ¹⁶, le sulfolane ¹⁷, et donc utilisable dans notre cas. L'électrode de verre que nous avons utilisée est à remplissage de mercure. Elle atteint très rapidement son potentiel d'équilibre. Sa dérive est très faible et la pente suit la loi de Nernst en milieu acide faible. Remarquons qu'en milieu acide fort tel que HSbCl₆, COETZEE et BERTOZZI ¹⁸ signalent que sa réponse n'est plus exploitable. Ne pouvant utiliser cette électrode en milieu acide fort, nous avons été conduit à employer comme origine de pK, une solution de HCl d'acidité connue ($pK_{HC1}^{H^+} = 14,5$ déterminé par COETZEE et BERTOZZI ¹⁹).

Le potentiel pris par cette électrode en milieu acide faible peut s'écrire:

$$E = Cte + 2,303 \frac{RT}{nF} \log |H^+| = Cte - 2,303 \frac{RT}{nF} (pH)$$
 (14)

Il suffit donc de comparer l'acidité de deux solutions de HCl et HNO3 de concentrations équivalentes.

Nous avons utilisé comme milieu réactionnel le sulfolane en présence de perchlorate de tétraéthylammonium 0,1 molaire. La base titrante est la pipéridine: base forte dans le sulfolane 17, à la concentration 0,2 mole l^{-1} . Les concentrations en acide sont comprises entre 2.10^{-2} et 4.10^{-2} mole l^{-1} . Nous avons suivi séparément le dosage des acides: HNO₃ et HCl, par cette base. Les courbes sont regroupées sur la figure 7. Chacune des courbes de titrage présente deux sauts de

potentiel distincts pour des rapports |base|/|acide| égaux à 0,5 et 1. Cette constatation est en faveur d'une association du type $HA_2^$ déjà signalée par ALDER et WHITING ²⁰ dans le cas de HC1.

Nous pouvons dans ce cas, envisager les réactions:

- 71 -

$$2AH + C_{5}H_{11}N - HA_{2} + C_{5}H_{11}NH^{+}$$
(15)

$$HA_2^- + C_5H_{11}N - 2A^- + C_5H_{11}NH^+$$
 (16)

avec A = C1, NO_3

La courbe de neutralisation de l'acide nitrique se situe légèrement en dessous de celle obtenue avec l'acide chlorhydrique. Ceci laisse prévoir que HNO3 est un acide plus faible dans le sulfolane que HCl. L'équation de Nernst (14) appliquée aux réactions (15) et (16) devient:

$$E = E^{\circ}(2AH) + p \log \frac{|HA|^2}{|HA_2^-|} = Cte + p \log \frac{|H^+}{2AH} + p \log \frac{|AH|^2}{|HA_2^-|}$$

$$E = E^{\circ}(HA_{2}^{-}) + p \log \frac{|HA_{2}^{-}|}{|A^{-}|^{2}} = Cte + p \log K_{HA_{2}^{-}}^{H^{+}} + p \log \frac{|HA_{2}^{-}|}{|A^{-}|^{2}}$$

avec

$$K_{2AH}^{H^+} = \frac{|H^+||HA_2^-|}{|AH|^2}$$
 et $K_{HA_2^-}^{H^+} = \frac{|H^+||A^-|^2}{|HA_2^-|}$

Les transformées logarithmiques de ces deux parties de courbe, c'est à dire:

$$E = f \left[log \left[\frac{x}{(1 - 2x)^2} \right] \right] pour x < 1/2 x étant la fraction d'acide neutralisée$$

$$E = f\left[log\left[\frac{1-x}{(2x-1)^2}\right]\right] \quad pour \ 1/2 < x < 1$$

sont des droites. Cependant les pentes (\sim 50 mV) sont légèrement plus faibles que la valeur théorique (60 mV). A partir de l'écart de potentiel:

$$\Delta E_1 = E^{\circ}(2AH) - E^{\circ}(HA_2^{-}) = p \log \frac{K_{2AH}^{H^+}}{K_{HA_2}^{H^+}} = -2p \log K_{AH}^{h.c.}$$

Nous pouvons tirer pour les deux acides la constante d'homoconjugaison $\kappa^{\rm h.c.}_{\rm AH}$ relative à l'équilibre:

ĩ

$$HA_2^- \neq AH + A^-$$

72 -

Par ailleurs, connaissant le pK_A de l'acide chlorhydrique, nous avons déterminé celui de l'acide nitrique à partir des égalités suivantes:

$$E_2 = E^{\circ}(H(NO_3)_2) - E^{\circ}(HC1_2)$$

$$= p \log \frac{\kappa_{H(NO_3)\bar{2}}^{H^+}}{\kappa_{HC1_2}^{H^+}} = p \log \frac{\kappa_{HNO_3}^{H^+} \cdot \kappa_{HNO_3}^{h.c.}}{\kappa_{HC1}^{H^+} \cdot \kappa_{HC1}^{h.c.}}$$

Les résultats obtenus sont reportés dans le tableau VI

	pK ^{H⁺} HA en mole ²⁻¹	pK ^{h.c} en mole2 ⁻¹ HA
	$HA \neq H^+ + A^-$	HA2 ⁻ ≠ HA + A ⁻
A = C1	14,5 19	3,0 ± 0,4
$A = NO_3$	16 ± 0,6	2,65 ± 0,4 3,1 ± 0,3 ²¹

TABLEAU VI

A partir du pK d'acidité de HNO3, nous avons calculé la constante d'équilibre de la réaction:

$$N_2O_4 + H^+ \implies HNO_3 + NO^+$$
 (17)

soit

$$K_{(17)} = \frac{|N0^+||HN0_3|}{|N_20_4||H^+|} = \frac{K_{N_204}}{K_{HN03}^{H^+}} = 10^{+8,8}$$

La plupart des acides protoniques tels que: $HClO_4$ (pK = 4 ²²); $H_2S_2O_7$ (pK = 5,2¹⁴); HSO_3F (pK = 3,3²³), déplacent donc totalement cet équilibre, et N_2O_4 n'existe donc pas en milieu acide fort.

2b. Titrage de N204 dans les mélanges N204 - HN03

Les études précédentes ont montré qu'il était possible de doser des solutions de N₂O₄ par une solution de Cl⁻ (courbe 1 de la figure 8).

Nous avons voulu étendre ce dosage au cas des mélanges HNO_3 - N_2O_4 . Il existe, en effet, peu de méthodes permettant la détermination de faibles quantités de N_2O_4 dans l'acide nitrique. La courbe 2 de la figure 8 représente le dosage de N_2O_4 en présence de HNO_3 par une solution de Cl⁻. On peut remarquer que les potentiels sont plus élevés que lors du dosage de N_2O_4 seul, en raison du faible pouvoir solvatant du sulfolane envers les anions. Il faut donc tenir compte de l'équilibre d'homoconjugaison entre NO3⁻ et HNO3.

Le système électrochimique mis en jeu avant l'équivalence devient donc:

$$Ag_1 + NOC1 + HNO_3, NO_3 \neq AgC1_1 + N_2O_4 + HNO_3 + e^-$$

L'équation de Nernst appliquée à ce couple électrochimique donne:

$$E = E^{\circ} + 0,06 \log \frac{|N_2O_4||HNO_3|}{|NOC1||HNO_3,NO_3|} - 0,06 \log f +$$

Il serait facile de montrer que pour une solution de N_2O_4 10^{-2} M, la concentration de NO_2 (en équilibre avec son dimère N_2O_4) correspond à 3,8.10⁻⁴ mole/ ℓ à T = 30°C. Cette faible valeur nous a conduit à négliger la contribution de l'espèce NO_2 dans les calculs qui suivent:

> En posant $C_0 = |N_2O_4|$ initial $C'_0 = |HNO_3|$ initial x = fraction ajoutée de chlorure de tétraéthylammonium

les équations de neutralité électrique et des bilans de matière s'écrivent respectivement:

> $|C104^{-}| + |C1^{-}| + |N03^{-}| + |HN03, N03^{-}| = |(C2H5)4N^{+}|$ $C_{0} = |HN03| + |HN03, N03^{-}|$

 $C_0 + C_0' = |HNO_3| + |HNO_3, NO_3'| + |NO_3'| + |N_2O_4| + |NOC1|$

En supposant le complexe HNO3,NO3 suffisamment peu dissocié dans le sulfolane, on néglige la quantité de nitrate contenue dans le milieu par rapport aux autres espèces, l'acide nitrique étant en très grande quantité par rapport au nitrate formé.

De même, on néglige |C1⁻| sachant que NOC1 est peu dissocié dans le sulfolane.

On obtient alors:

- 75 -

$$|HNO_3, NO_3^-| = xC_0$$

 $|HNO_3| = C_0^{\prime} - xC_0$
 $|N_2O_4| = (1 - x)C_0$

L'équation générale de Nernst appliquée au dosage d'une solution de N_2O_4 contenant de l'acide nitrique par une solution de chlorure devient:

$$E = E^{\circ} + 0,06 \log \frac{C_0(1 - x)(C_0' - xC_0)}{(xC_0)^2} - 0,06 \log f + \frac{1}{2}$$

L'étude mathématique de la courbe montre que ce système est rapide. Sachant que:

$$E^{\circ}(Ag^{+}/Ag) = E^{\circ} + 0,06 \log \frac{K_{NOC1} \cdot K_{HNO3}^{h.c.}}{K_{N_2}O_4 \cdot P_{AgC1}} - 0,06 \log f_{\pm}$$

($K_{HNO_3}^{h.c.}$ représentant la constante d'homoconjugaison relative HNO_3 à l'équilibre: $HNO_3, NO_3^- \neq NO_3^- + HNO_3$)

nous déduisons:

$$K_{HNO_3}^{h.c.} = \frac{|NO_3^-||HNO_3|}{|HNO_3, NO_3^-|} = 10^{-3,1 \pm 0,3} \text{ mole/l}$$

La valeur élevée de cette constante montre bien qu'il est nécessaire de tenir compte de cet équilibre. Notons également que cette valeur de constante est voisine de celle trouvée auparavant (Tableau VI), au cours du dosage de HNO3 par la pipéridine (dosage effectué à l'aide de l'électrode à remplissage de mercure).

Si l'on augmente la concentration d'acide nitrique, l'amplitude du saut de potentiel diminue. Après l'équivalence, le système électrochimique intervenant est:

 $Ag_{\downarrow} + HC1 + HNO_3, NO_3^{-} \neq AgC1_{\downarrow} + 2HNO_3 + e^{-}$

La présence de l'acide chlorhydrique, acide plus fort que l'acide nitrique, est due au gros excès de HNO3 par rapport au chlorure introduit après l'équivalence. L'équation de Nernst appliquée à ce couple donne:

$$E = E^{\circ} + 0,06 \log \frac{|HNO_3|^{\$}}{|HC1||HNO_3,NO_3^-|}$$

Cette expression mathématique confirme la diminution du saut de potentiel si la concentration en acide nitrique croît. Le dosage de N₂O₄ en présence d'acide nitrique est possible tant que le rapport de concentration $|HNO_3|/|N_2O_4|$ est inférieur à 10. La valeur de ce rapport peut être augmentée en utilisant le nitrate de tétraéthylammonium comme électrolyte indifférent (courbe 3 de la figure 8). En effet, ce dernier diminue, par complexation, l'influence de l'acide nitrique. Le dosage est ainsi possible pour des concentrations en HNO₃ allant jusqu'à 90% en poids.

IV. POUVOIR OXYDO-REDUCTEUR DES SOLUTIONS DE N₂O₄ ET DETERMINATION DE LA CONSTANTE DE DISSOCIATION HETEROLYTIQUE DE L'EQUILIBRE N₂O₄ \neq NO₂⁺ + NO₂⁻ (1)

Afin d'atteindre la constante de cet équilibre (l), nous avons été amenés à étudier l'oxydation et la réduction des solutions de N₂O₄.

L'étude électrochimique du dioxyde d'azote NO_2 a été effectuée pour diverses électrodes dans les nitrates fondus ²⁴ à ²⁷. L'interprétation des courbes voltampérométriques est facilitée par l'absence du dimère N_2O_4 et d'eau aux températures utilisées ²⁵ à ²⁷. En effet, une seule vague cathodique est observée, attribuée au processus réversible:

Dans les solvants organiques, comme nous l'avons vu précédemment, l'espèce prépondérante est le dimère N_2O_4 au voisinage de la température ambiante ². Les études antérieures effectuées sur des solutions de N_2O_4 dans l'acétonitrile ⁴ et le nitrométhane ²⁸, ont montré la présence d'une vague de réduction mal définie, attribuée à l'équilibre:

$$N_2O_4 + e^- \neq NO + NO_3^-$$

D'autre part, SERVE ²⁸ observe dans le nitrométhane une vague anodique ($E_{\frac{1}{2}} = +1,64$ V par rapport à l'électrode de référence AgCl/Ag) dont la hauteur dépend à la fois de la teneur en eau résiduelle et de la température du milieu. Il attribue cette vague à l'oxydation de NO₂ selon:

(NO₂ étant en équilibre thermodynamique avec son dimère)

Dans l'acétonitrile, BONTEMPELLI et Coll. ⁴ interprètent le processus anodique comme une oxydation de l'espèce N_2O_4 (E_{l_2} = +0,96 V par rapport à l'électrode de référence Ag⁺/Ag 0,1 M):

$$N_2O_4 \neq 2NO_2^+ + 2e^-$$
 (2)

Au cours de travaux plus récents sur des solutions de N_2O_4 dans l'acétonitrile, PERRIN ²⁹ signale que l'oxydation de N_2O_4 suivant l'équilibre (2) a lieu à des potentiels beaucoup plus élevés: $E_{1_2} =$ 1,82 V par rapport à l'électrode de référence Ag⁺/Ag, avec $|Ag^+| =$ 0,01 M.

Cette contradiction dans l'acétonitrile nous a amené à reprendre cette étude dans un premier temps dans le sulfolane (les sels de nitryles y étant beaucoup plus solubles), puis à généraliser aux autres solvants. Nous étudierons, dans un premier temps, l'oxydation des solutions de N_2O_4 , ou la réduction des sels de nitryle, et dans un second temps, la réduction des solutions de N_2O_4 .

1. Oxydation des solutions de N_2O_4

L'étude a tout d'abord été effectuée dans le sulfolane, en présence d'électrolyte indifférent: Et_4NC10_4 0,1 mole l^{-1} . En absence d'eau (< 10 ppm), le voltampérogramme ne présente qu'une vague. En présence d'eau (> 15 ppm), une vague supplémentaire apparaît à des potentiels plus faibles.

1a. Etude de l'oxydation de solutions de N_2O_4 de teneurs en eau très faibles

Toutes ces solutions comportent des teneurs en eau inférieures à 10 ppm (analysées par la méthode Karl-Fischer avant introduction de N_2O_4).

Le polarogramme présente une vague mal définie de faible amplitude à des potentiels anodiques très élevés $E_{l_2} \approx +1,56$ V par rapport à l'électrode de référence Fc⁺/Fc, pour une concentration $|N_2O_4| =$ $1,1.10^{-2}$ mole l⁻¹ et à T = 30°C (courbe 2 de la figure 9). Cette résolution est améliorée par une augmentation de la température (Fig. 9). Son coefficient de température est égal à environ 6,5% par degré. Cette vague possède donc un caractère cinétique marqué.

Fig. 9: Influence de la température sur la vague d'oxydation de N_2O_4 dans le sulfolane. $|N_2O_4| = 1, 1.10^{-2}$ mole. l^{-1} (1) T = 25; (2) 30; (3) 36; (4) 40; (5) 45; (6) 51°C.

D'autre part, nous constatons que le courant limite est indépendant de la vitesse de rotation de l'électrode entre 200 et 800 tr/mn, pour des températures comprises entre 25 et 35° C: le phénomène n'est donc pas contrôlé par la diffusion. Cette vague peut correspondre à l'oxydation de N₂O₄ ou NO₂⁺ selon:

$$N_2O_4 \neq 2NO_2^+ + 2e^-$$

Les enregistrements obtenus par voltammétrie cyclique des solutions de N_2O_4 se superposent avec ceux obtenus avec une solution de NO_2CIO_4 . (Fig. 10). Néanmoins, le pic anodique est inférieur au

pic cathodique. Cette observation nous a conduit à penser que la cinétique de la réaction de dimérisation est responsable des phénomènes observés, et en particulier que la constante cinétique de monomérisation est faible.

La réaction d'oxydation de N_2O_4 , qui peut s'écrire:

$$N_2O_4 \stackrel{k_2}{\underset{k_1}{\longleftarrow}} 2NO_2 \neq 2NO_2^+ + 2e^-$$

serait donc une réaction chimique lente suivie d'un transfert de charge.

- 80 -

KOUTECKY et LEVICH ³⁰ puis SAVEANT et VIANELLO ³¹ ont étudié d'une façon théorique un tel type de réaction, le premier par voltammétrie •linéaire, le second par voltammétrie cyclique.

a. Etude par voltammétrie cyclique

Un bref rappel de l'étude théorique (réalisée par SAVEANT et VIANELLO ³¹) des réactions chimiques lentes suivies par un transfert de charge, est donnée en fin de cette partie (paragraphe V). L'application de leurs équations à notre système montre que pour des vitesses de balayage rapides, le courant anodique observé i^a ne dépend plus de la vitesse, et peut s'exprimer par la relation:

$$i_{p}^{ak} = (\frac{4}{3})^{1/2} nFAD_{NO_{2}}^{1/2} K_{H}^{3/4} k_{2}^{1/2} C_{N_{2}O_{4}}^{*3/4}$$

où:

A: surface de l'électrode de platine D_{NO_2} : coefficient de diffusion de l'espèce NO_2 $C_{N_2O_4}^*$: concentration de N_2O_4 au sein de la solution

La figure ll montre que i_p^a tend vers une valeur limite (alors que dans le cas d'un système oxydo-réducteur réversible, i_p est proportionnel à la racine carrée de la vitesse de balayage de potentiel), en accord avec les conclusions précédentes. De plus, pour une vitesse

de balayage où la réaction est totalement limitée par la cinétique de la réaction: c'est à dire v = 12 V/mn, nous avons effectué différents voltampérogrammes en faisant varier la concentration de N₂O₄. La courbe 12 montre que i_p^{ak} est proportionnel à la concentration de N₂O₄ élevée à la puissance 3/4. Enfin, remarquons que pour les grandes vitesses

Fig. 12: Courant de pic cinétique i_p^{ak} en fonction de $|N_2O_4|^{3/4}$ (étude dans le sulfolane à 30°C) Vitesse de balayage; 200 mV:s

de balayage, les enregistrements de voltammétrie cyclique ont l'allure, comme l'ont signalée SAVEANT et VIANELLO ³¹, de vagues polarographiques (Fig. 13).

Afin d'atteindre la constante cinétique k_2 , nous avons été amenés à calculer les coefficients de diffusion D de N_2O_4 , à partir de l'équation de STOKES et EINSTEIN (pour plus de détails, voir fin de mémoire, annexe théorique). Nous supposerons que le coefficient de diffusion de N_2O_4 est égal à celui de NO_2 ($D_{N_2O_4} \approx D_{NO_2}$). La connaissance de la surface A de l'électrode et de la constante thermodynamique $K_{\rm H}$ permet alors la détermination des constantes cinétiques k_1 et k_2 .

Les mêmes études ont été effectuées sur N_2O_4 en utilisant comme solvant le carbonate de propylène (Fig. 14 à 16) et le nitrométhane (Fig. 17 et 18). Tout d'abord, nous avons déterminé expérimentalement la viscosité dynamique n de chacun de ces solvants en présence

		VISCOSITE DYNAMIQUE n					
		C.G.S.(Po)	à T = 25°C S.I.(P1)	à T = 30°C C.G.S.(Po) S.I.(P1)			
	Sulfolane			102,95.10-3	102,95.10-4		
Solvants purs ³²	Nitrométhane	6,27.10 ⁻³	6,27.10-4	5,95.10-3	5,95.10-4		
	Carbonate de prop <u>y</u> lène	25,3.10 ⁻³	25,3.10-4				
	Sulfolane	123,48.10-3	123.48.10-4	108,19.10-3	108,19.10-4		
Solvant + Et ₄ NClO ₄ O,1 moleg ⁻¹	Nitrométhane	6,52.10 ⁻³	6,52.10-4				
	Carbonate de propylène	26,3.10-3	26,3.10-4	24,2.10-3	24,2.10-4		

TABLEAU VII

	Coefficient de diffusion de N ₂ 0 ₄						
Solvant + 0,1mole1 ⁻¹ Et4NC104	à T = C.G.S.(cm ² /s)	25°C S.I.(m ² /s)	à T = 30 C.G.S.(cm ² /s)	°C S.I.(m ² /s)			
Sulfolane	6,0.10-7	6,0.10-11	6,9.10 ⁻⁷	6,9.10-11			
Nitrométhane	113,4.10-7	113,4.10 ⁻¹¹					
Carbonate de propylène	28,1.10 ⁻⁷	28,1.10-11	31,0.10 ⁻⁷	31,0.10-11			

.

Fig. 13: Voltammétrie cyclique dans le sulfolane à 30°C d'une solution de N_2O_4 8,22.10⁻³ mole¹: cas d'une limitation par la constante cinétique k_1 de la monomérisation de N_2O_4 . Vitesse de balayage: 200 mV/s

de l'électrolyte. Les résultats sont énumérés dans le tableau VII.

A partir de l'équation de STOKES -EINSTEIN:

$$D = \frac{RT}{6\pi N(\frac{3}{4\pi N})} \frac{1}{3} \left[\frac{d_{N_2}O_4}{M_{N_2}O_4} \right]^{1/3} \eta^{-1}$$

nous avons calculé le coefficient de diffusion de l'espèce électroactive N_2O_4 dans les trois solvants: sulfolane, nitrométhane et carbonate de propylène, contenant chacun 0,1 molel⁻¹ de perchlorate de tétraéthylammonium (TEAP), et à deux températures: $T_1 = 25^{\circ}C$ et $T_2 = 30^{\circ}C$ (Tableau VIII). Pour effectuer ce calcul, nous avons relevé dans la littérature 3° , les valeurs de densité de N_2O_4 ($d_{N_2O_4}$) à 25 et $30^{\circ}C$, soit respectivement 1,4342 et 1,4227. Les valeurs de k₁ et k₂ déterminées à $25^{\circ}C$

Fig. 14: Faisceau de courbes i = f(E) relatives à l'oxydation de N₂O₄ dans le carbonate de propylène à 25°C (TEAP 0,1 mole l^{-1}) (0) domaine du solvant (1) 2,01.10⁻³; (2) 5,57.10⁻³; (3) 8,91.10⁻³ mole l^{-1}

Fig. 15: Courant de pic i_p^a de l'oxydation de N₂O₄ en fonction de la racine carrée de la vitesse de balayage. $|N_2O_4| = 8,91.10^{-3}$ mole¹ dans le carbonate de propylène à 25°C. (1) T = 25; (2) 31; (3) 41°C.

Fig. 16: Courant de pic cinétique i_p^{ak} en fonction de $|N_2O_4|^{3/4}$ (étude dans le carbonate de propylène à 25°C) Vitesse de balayage: 200 mV/s

Fig. 17: Faisceau de courbes i = f(E) relatives à l'oxydation de N_2O_4 dans le nitrométhane à 25°C (TEAP 0,1 molel⁻¹) (0) domaine du solvant; (1) $|N_2O_4| = 1,76.10^{-3}$; (2) 4,45.10⁻³; (3) 7,70.10⁻³; (4) 9,95.10⁻³ molel⁻¹

Fig. 18a: Voltammétrie cyclique d'une solution de N_2O_4 8,91.10⁻³ mole⁻¹ dans le carbonate de propylène à 30°C (TEAP 0,1 mole⁻¹). Courant de pic i_p^a limité par la constante cinétique de monomérisation de N_2O_4 . Vitesse de balayage: 100 mV/s

Fig. 18b: Voltammétrie cyclique d'une solution de N_2O_4 8,91.10⁻³ molel⁻¹ dans le carbonate de propylène à 30°C (TEAP 0,1 molel⁻¹). Courant de pic i_p^a contrôlé par la diffusion. Vitesse de balayage: (1) 20 mV; (2) 50 mV/s

ŗ

		Constantes cinétiques k_1 et k_2 de l'équilibre $N_2O_4 \xrightarrow{k_1} 2NO_2$					
		Volta	Voltammétrie cyclique Voltammétrie 3				
		k ₁ (s ⁻¹)	k ₂ (2mole ⁻¹ s ⁻¹)	k ₁ (s ⁻¹)	k ₂ (2mole ⁻¹ s ⁻¹)		
Sulfolane	25°C	23	255.10+4	19,3	215.10+4		
	30°C	38	264.10 ⁺⁴	32	222.10 ⁺⁴		
Carbonate de	25°C	13	70.10 ⁺⁴	13,4	72.10+4		
Propylène	30°C	20	70.10 ⁺⁴	16,5	57.10 ⁺⁴		
Nitrométhane	litrométhane 25°C		2,2.10+4	3,3	2,2.10+4		
	30°C						

TABLEAU IX

	Couple électrochimique N ₂ O ₄ \neq 2NO ₂ \neq 2NO ₂ ⁺ + 2e ⁻						
	nitrométhane	carbonate de propylène	sulfolane	acétonitrile			
E ₂ en volt (à T = 25°C)	+2,07	+1,60	+1,56 ^a	+1,82 ²⁹ (Ag ⁺ /Ag 0,01M) +1,78 (Ag ⁺ /Ag 0,1M) +1,74 (Fc ⁺ /Fc)			

^a: potentiel de demi-vague relevé à 30°C

TABLEAU X

.

et 30°C et les potentiels de demi-vague El₂ dans les différents solvants sont reportés dans les tableaux IX et X.

Remarquons que dans l'acétonitrile, la vague d'oxydation de N₂O₄ ($E_{l_2} \approx 1,74$ V pour une concentration $|N_2O_4| \approx 10^{-2} \text{ mole} \ell^{-1}$) est partiellement confondue avec l'oxydation du solvant, et aucune étude théorique dans ce solvant n'a pu être réalisée. Cette vague correspond donc à celle observée par PERRIN ²⁹. La vague observée par BONTEMPELLI ⁴ est due à la présence d'eau, comme nous le montrerons plus loin.

β. Etude par voltammétrie linéaire

L'étude théorique de ce modèle réactionnel a déjà été effectuée par KOUTECKY et LEVICH ³⁰. Comme en voltammétrie cyclique, on constate que le courant limite i_1 ne dépend pas de la vitesse de rotation de l'électrode, et que le courant cinétique est proportionnel à la concentration de N₂O₄ élevée à la puissance 3/4 (Fig. 19). Néanmoins, l'application des formules données par KOUTECKY et LEVICH conduit à des valeurs

Fig. 19: Courant limite i_l de la vague d'oxydation de N_2O_4 en fonction de $|N_2O_4|^{3/4}$ (Etude dans le sulfolane à 30°C)

de constantes cinétiques totalement différentes de celles obtenues par l'autre technique. Ceci nous a conduit à reprendre le développement mathématique effectué par ces auteurs.

- 89 -

Le modèle mathématique représentatif du phénomène physique étudié peut s'écrire:

$$s_{x} \frac{\partial c_{NO_{2}}}{\partial x} = D \frac{\partial^{2} c_{NO_{2}}}{\partial x^{2}} + k_{1} c_{N_{2}O_{4}} - k_{2} c_{N_{2}O_{4}}^{2}$$

(les espèces étant menées à l'électrode suivant un axe x perpendiculaire à la surface de l'électrode)

où:

. S_x : représente la composante x de la vitesse de convection S de l'espèce NO_2

. D: coefficient de diffusion (on supposera que $D_{NO_2} \simeq D_{N_2O_4}$)

. C_{NO_2} et $C_{N_2O_4}$: représentent respectivement la concentration de réducteur NO₂ et de dimère N₂O₄ à la

distance x de la surface de l'électrode. Le terme convectif: $S_x \xrightarrow{\partial C_{NO_2}}$ est négligeable vis à vis des autres termes, puisque l'espèce NO_2 n'est formé pour ainsi dire que dans la couche de réaction. Afin de ne pas alourdir ce texte, l'étude complète est donnée en fin de partie II (paragraphe V).

Nous avons montré que le courant cinétique pouvait s'exprimer pour des vitesses de rotation élevée de l'électrode selon:

 $i^{k} = (\frac{4}{3})^{1/2} n F A D^{1/2} K_{H} k_{2}^{\frac{1}{2}} C_{N_{2}O_{4}}^{\star 3/4}$

expression identique à celle obtenue par SAVEANT et VIANELLO ³¹ en voltammétrie cyclique. De la même manière que précédemment, nous avons calculé les constantes cinétiques à 25 et 30°C. Ces valeurs, en bon accord avec celles trouvées par voltammétrie cyclique sont reportées dans le tableau IX.

Les mêmes expériences ont été réalisées avec les solvants: nitrométhane, carbonate de propylène. Les constantes cinétiques k₁ sont très voisines pour les trois solvants. Néanmoins, les valeurs obtenues dans le sulfolane sont légèrement supérieures à celles trouvées pour le carbonate de propylène et le nitrométhane, et montrent que le sulfolane est le solvant le mieux adapté comme milieu réactionnel.

Dans la partie 3, nous appliquerons cette propriété, en utilisant le sulfolane comme milieu réactionnel lors de la nitration d'espèces organiques par N₂O₄.
On peut remarquer que ces constantes cinétiques sont supérieures à celles correspondant à la dissociation de N₂O₃.

1b. Evaluation de la constante d'équilibre: $N_2O_4 \neq NO_2^+ + NO_2^-$

La dissociation de N_2O_4 en NO_2^+ et NO_2^- est certainement très faible en raison du fort pouvoir oxydant de NO_2^+ et du caractère réducteur marqué du nitrite dans le sulfolane: les potentiels de demivague relatifs à la réduction de l'ion nitryle et à l'oxydation de NO_2^- sont séparés d'environ l Volt.

Pour atteindre cette constante, il nous fallait déterminer le potentiel normal du couple NO_2^+/NO_2 . Malgré la quasi réversibilité du processus d'oxydation de N_2O_4 en NO_2^+ , nous avons néanmoins utilisé les équations de SAVEANT et VIANELLO ³¹dans le cas d'un système rapide (voir paragraphe V).

En voltammétrie cyclique, le potentiel E(t) peut être exprimé en fonction d'une variable sans dimension ξ (dépendant du temps t) par la relation:

$$E = E^{\circ}(NO_2^+/NO_2) + \frac{RT}{nF}\xi^* - \frac{RT}{2nF}LnK_H + \frac{RT}{2nF}LnC_{N_2O_4}^*$$

dans le cas où le système est contrôlé par la diffusion. Le potentiel de demi-pic est atteint lorsque ξ^* est égal à -0,40.

 $E = E^{\circ}(NO_{2}^{+}/NO_{2}) + \frac{RT}{nF}\xi^{+} + \frac{RT}{2nF}Ln \frac{4}{3}\frac{RT}{nF} + \frac{RT}{4nF}Ln K_{H}$

+ $\frac{RT}{4nF}$ Ln $C_{N_2O_4}^{\star}$ + $\frac{RT}{2nF}$ Ln k_2 - $\frac{RT}{2nF}$ Ln v

dans le cas où le processus électrochimique est contrôlé par la cinétique de la réaction chimique: $N_2O_4 \neq 2NO_2$. Le potentiel de demi-pic $E_{p/2}^{ak}$ est atteint lorsque ξ^+ est égal à 0,13.

Connaissant la concentration de N₂O₄ dans la solution $(C_{N_2O_4}^{\star})$, la constante de dissociation homolytique de N₂O₄ en NO₂ (K_H), et les valeurs $E_{p/2}^{a}$ ou $E_{p/2}^{ak}$ relevées sur les courbes expérimentales, nous pouvons alors calculer le potentiel normal du couple NO_2^+/NO_2 (Tableau XII). Nous avons évalué une valeur moyenne du potentiel normal:

 $E^{\circ}(NO_2^+/NO_2) \text{ moyen } \approx 1,35 \text{ V}$

		Contrôle de la réaction par la diffusion v = 10mV/s		Contrôle de la réaction par la cinétique v = 200mV/s	
N ₂ O4 en moleg ⁻¹	logN ₂ 04	^{Ea} p/2 en volt	E [°] (NO ₂ ⁺ /NO ₂) en volt	E ^{ak} p/2 en volt	e [°] (NO ₂ ⁺ /NO ₂) en volt
5,3.10 ⁻³	-2,27	1,41	1,34	1,41	1,35
6,8.10 ⁻³	-2,17	1,42	1,35	1,43	1,36
8,2.10-3	-2,09	1,42	1,35	1,43	1,36

tableau XII

A partir de ce résultat, nous pouvons alors calculé le potentiel normal du couple:

$$NO_2^+ + e^- \neq 1/2N_2O_4$$

par la relation:

$$E^{\circ}(NO_2^+/1/2N_2O_4) = E^{\circ}(NO_2^+/NO_2) - \frac{P}{2}\log K_H \approx 1,50 V$$

Sachant que la réaction d'oxydo-réduction entre NO_2^- et NO_2^+ s'écrit:

 $1/2N_2O_4 \neq NO_2^+ + e^- E^\circ (NO_2^+/1/2N_2O_4) = 1,500 V$ $1/2N_2O_4 + e \neq NO_2^- E^\circ (1/2N_2O_4/NO_2^-) = 0,175 V$ soit globalement

$$N_2O_4 \neq NO_2^+ + NO_2^-$$
 (1)

Nous pouvons en déduire la constante $K'_{N_2O_4}$ de l'équilibre (l) ci-dessus à partir de l'équation:

$$\log K'_{N_2O_4} = \frac{E^{\circ}(1/2N_2O_4/NO_2^{-}) - E^{\circ}(NO_2^{+}/1/2N_2O_4)}{P}$$
$$= \frac{0,175 - 1,500}{0,060} = -22$$

soit

$$K'_{N_2O_4} = 10^{-22} \text{ mole.} \ell^{-1}$$

Cette faible valeur de constante justifie que nous pouvons négliger cet équilibre vis à vis de la dissociation hétérolytique de N_2O_4 en NO^+ et NO_3^- , et surtout de la dissociation homolytique de N_2O_4 en NO_2 .

Nous avons vu précédemment que la constante cinétique k_2 de la dimérisation de NO₂ déterminée dans nos solvants, est élevée. La réduction de NO₂⁺ en N₂O₄ ne devrait donc pas être limitée par la formation de l'intermédiaire NO₂.

1c. Etude de la réduction de NO_2^+

L'étude électrochimique de l'ion NO₂⁺ a été envisagée dans divers milieux réactionnels:

- l'acide sulfurique concentré 34,35,36
- l'acide nitrique 37
- l'acétonitrile 4
- le nitrométhane 3,28

Compte tenu de la grande réactivité des ions NO₂⁺ vis à vis de l'eau ^{38,39} l'utilisation d'un solvant non aqueux soigneusement séché, est impérative pour s'affranchir de l'eau résiduelle.

Le sulfolane présente plusieurs avantages par rapport aux autres solvants:

- les sels de nitryle ont une solubilité trop faible dans le nitrométhane (la solubilité de NO₂ClO₄ ⁴⁰ est inférieure à 0,08 M), en revanche dans le sulfolane ces sels sont bien solubles (Tableau XIII)
- l'acétonitrile n'est pas suffisamment inerte 40 vis à vis de NO₂⁺
- le sulfolane, enfin, a été très utilisé pour l'étude du mécanisme de la nitration 40 à partir des sels de nitryle

SOLVANT	Nombre Donneur D.N.	Constante diélectrique ε	NO2 ⁺ BF4 ⁻ en mole2 ⁻¹	NO2 ⁺ ClO4 ⁻ en mole2 ⁻¹
Nitrométhane	2,7	35,9	0,07 Litté.0,03 ⁴⁰	0,08 ⁴¹
Acétonitrile	14,1	38,0	• 0,39	
Sulfolane	14,8	42,0	0,70 Litté. 0,7140 0,80 ⁴²	>0,6
Carbonate de propylène	15,1	69,0	0,32	

TABLEAU XIII

Etudes voltampérométriques

L'étude dans le sulfolane des courbes intensité-potentiel sur électrode de platine poli, a été réalisée à 30°C en milieu perchlorate de tétraéthylammonium 0,1M.

La figure 20 représente le faisceau de courbes i = f(E) obtenu lors de la réduction de l'ion NO_2^+ . Le sel utilisé en premier lieu a été le perchlorate de nitryle. Toutes les courbes ont été enregistrées dans le sers de balayage de potentiel cathodique - anodique. Les courbes obtenues dans ces conditions sont reproductibles et bien définies.

Fig. 20: Faisceau de courbes i = f(E) relatives à la réduction de NO_2ClO_4 dans le sulfolane à 30°C: (a) 6,1.10⁻⁴; (b) 2,12.10⁻³; (c) 3,80.10⁻³ (d) 5,58.10⁻³; (e) 7,17.10⁻³; (f) 8,75.10⁻³ molel⁻¹

L'eau résiduelle, dont la présence est inévitable, joue un rôle important, surtout dans le cas où les espèces actives sont peu concentrées.Afin de minimiser l'effet parasite de l'eau, nous avons été amenés à n'utiliser que des échantillons de solvant contenant moins de l0 ppm . Néanmoins, la présence de l'eau résiduelle reste en partie responsable de l'évolution des courbes obtenues, lorsque l'on fait varier la concentration en sel de nitryle. En effet, le perchlorate de nitryle étant très facilement hydrolysable, comme l'a d'ailleurs signalé OLAH lors de ses études sur les réactions de nitration ⁴⁰, seuls les produits hydrolysés, les acides perchlorique et nitrique, apparaissent sur la courbe a (Fig. 20). Les vagues cathodiques obtenues lors de cet essai correspondent respectivement à la réduction des protons des acides perchlorique et nitrique. Lorsque la concentration en NO_2^+ augmente (courbe b) et devient supérieure à celle de l'eau, l'allure de la courbe est notablement modifiée. Nous observons alors cinq vagues cathodiques dont les potentiels de demi-vague ont respectivement pour valeur: 1,18; 0,74; 0,05; 0,80 et -1,23 V par rapport au potentiel de demi-vague du système ferrocène - ferricinium.

La première vague a été attribuée à la réduction:

 $2NO_2^+$ + HClO₄ + 2e⁻ \neq NO⁺ + ClO₄⁻ + HNO₃ (3)

(Le transfert de charge étant suivi de la réaction chimique entre l'acide perchlorique et le produit de réduction de NO_2^+).

et simultanément:

$$2NO_2^+ + 2e^- \neq 2NO_2 \rightarrow N_2O_4$$
 (4)

Si la deuxième vague peut être attribuée sans ambiguité à la réduction de NO⁺ provenant de la réaction (3) mais également de l'impureté NOClO₄ contenue dans l'échantillon de perchlorate de nitryle, l'interprétation des autres vagues est plus délicate. La troisième vague peut correspondre à la réduction de NO₂ formé à l'électrode en présence d'acide nitrique, que l'on peut écrire:

$$NO_2 + HNO_3 + e^- \neq HNO_2 + NO_3^-$$
 (5)

Les deux dernières vagues correspondent alors à la réduction des protons de l'acide nitrique en excès et de l'acide nitreux formé:

 $HNO_3 + e^- \neq 1/2H_2 + NO_3^-$ (6)

et

 $HNO_2 + e^- \neq 1/2H_2 + NO_2^-$ (7)

Pour des concentrations plus élevées en sel de nitryle, la réaction (3) devient négligeable, l'acide perchlorique étant très faible par rapport à NO_2^+ . Seule la réduction correspondant à la réaction (4) est alors responsable de l'accroissement du palier de diffusion

relatif à la première vague cathodique. L'augmentation de la concentration de NO_2 , ainsi produit à l'électrode, a pour conséquence d'augmenter les hauteurs de vagues correspondant aux réactions (5) et (7) et de diminuer celle correspondant à la réaction (6) par consommation de l'acide nitrique. Cette interprétation est confirmée par l'allure:

- de la courbe d où la vague attribuée à la réduction de l'acide nitrique a disparu, HNO_3 ayant été totalement consommé lors de la réduction de NO_2 selon (5). La réduction de NO_2 donne lieu alors à la formation de NO et nitrate. La présence de NO provenant de la réduction de NO^+ a pour effet de décaler cette réaction vers des potentiels plus négatifs
- des courbes e et f où la vague de réduction de l'acide nitreux n'augmente plus, la concentration de NO_2 étant supérieure à celle de l'acide nitrique.

La vague due à la réduction de NO^+ relativement importante aux faibles concentrations en NO_2^+ , (formation de NO^+ essentiellement due à la réaction (3)) n'augmente que très faiblement par la suite, en raison de la présence de perchlorate de nitrosyle dans le perchlorate de nitryle.

Le but de ce travail étant l'étude des propriétés oxydantes des sels de nitryle, nous nous sommes plus particulièrement intéressés à la première vague cathodique. La hauteur du palier de diffusion est proportionnelle à la racine carrée de la vitesse de rotation de l'électrode, ce qui montre que le phénomène est contrôlé par la diffusion. Si l'on porte le courant limite de diffusion en fonction de la concentration en sel de nitryle ajouté (Fig. 21), l'intersection de la droite obtenue avec l'axe des abcisses permet de retrouver la teneur en eau initiale du solvant, c'est à dire la concentration en acides perchlorique et nitrique formés. La teneur en eau trouvée (8.10⁻⁴ mole. g^{-1}) montre bien que la réaction (4) ne peut être observée seule, la réaction (3) intervenant quasi-simultanément. Cette hypothèse est confirmée par l'étude de l'évolution du potentiel de demi-vague en fonction de la concentration (Fig. 22). En effet, l'allure de la courbe

ne peut s'expliquer que par l'intervention des deux couples oxydoréducteurs (3) et (4), ce dernier correspondant à la réaction

Fig. 22: Evolution du potentiel de demi-vague de réduction de NO_2^+ en fonction du logarithme de la concentration.

électrochimique de potentiel de demi-vague plus faible, ne devenant prépondérant qu'aux fortes concentrations en NO_2^+ . Le potentiel de demi-vague varie alors quasi-linéairement avec la concentration, en accord avec une dimérisation rapide de NO_2 (ce qui est en accord avec le calcul des constantes cinétiques). La formation de N_2O_4 lors de la réduction des sels de nitryle nous a été également suggérés par:

- la coulométrie à potentiel contrôlé

- l'étude de la transformée logarithmique

- la voltammétrie cyclique

En effet, la coulométrie à potentiel contrôlé (+0,925 V) où le nombre d'électrons échangés par mole de NO_2^+ est voisin de l'unité (en tenant compte de l'hydrolyse), donne une solution incolore, donc de concentration en NO_2 négligeable. De plus, si l'on étudie la transformée logarithmique:

 $E = f \left[log \frac{(i_{NO_2} + -i)^2}{-i} \right]$

de la première vague cathodique de la courbe f de la figure 20, on obtient une droite, alors qu'aucune relation linéaire n'est obtenue si l'on suppose une cinétique de dimérisation très lente 43. Remarquons toutefois que la pente de la droite (voisine de 100 mV/unité de log) obtenue dans le premier cas est très supérieure à la valeur théorique (30 mV/unité de log), c'est à dire que le transfert électronique est quasi-réversible. Ce résultat est corroboré par étude une par voltammétrie cyclique (Fig. 10). Ainsi un balayage de potentiel effectué entre 0,94 et 1,94 V fait apparaître un pic anodique et un pic cathodique comparables à ceux que l'on obtient lors de l'étude dans les mêmes conditions d'une solution de N204. Cependant, le pic cathodique observé lors de l'étude des sels de nitryle est plus important en raison de la réaction (3) irréversible. Le pic anodique n'apparaît que lorsque la concentration en NO_2^+ est supérieure à trois fois au moins la teneur en eau initiale du solvant, ce que notre schéma proposé laissait prévoir.

Les courbes voltammétriques tracées à partir de solutions de tétrafluoroborate de nitryle sont similaires, le sel commercial utilisé contient également une quantité non négligeable de tétrafluoroborate de nitrosyle, ce dernier ayant été caractérisé par spectrométrie Raman. Si l'on fait abstraction des vagues apportées soit par l'eau résiduelle, soit par NO^+ , la réduction des sels de nitryle s'effectue selon le schéma simple:

$$2NO_2^+ + 2e^- \neq 2NO_2 \rightarrow N_2O_4$$

Nous avons également étudié la réduction des sels de nitryle dans d'autres solvants que le sulfolane: carbonate de propylène ¹² (Fig. 23 et 24), nitrométhane (Fig. 25 et 26). Le carbonate de propylène s'est révélé être un solvant peu adapté à l'étude de la réduction des sels de nitryle en raison de la faible séparation entre les vagues cathodiques relatives à NO⁺ et NO₂⁺, cette différence étant d'autant moins nette que la concentration en sel de nitryle est plus élevée. En revanche, le caractère oxydant de NO₂⁺ vis à vis de NO⁺ est plus marqué dans le nitrométhane que dans le sulfolane.

Le nitrométhane apparaît donc comme un solvant de choix pour étudier et utiliser au mieux les propriétés oxydantes des espèces NO⁺ et NO₂⁺. Malheureusement, les sels de nitryle et nitrosyle sont très peu solubles dans ce solvant (Tableau XIII et Tableau I de la partie 1). Nous avons reporté dans le tableau XIV les valeurs correspondantes aux potentiels de demi-vague des espèces NO⁺ et NO₂⁺. Nous avons choisi arbitrairement la valeur E_{l_2} obtenue pour une concentration égale à 10^{-2} mole . l^{-1} (les sels de nitryle étant très hydrolysables, les valeurs de E_{l_2} données sont moins précises que dans le cas de NO⁺).

	Nitrométhane	Carbonate de propylène	sulfolane
$2NO_2^+ + 2e^- \neq 2NO_2 \neq N_2O_4$ $E_{\frac{1}{2}}$ (en volt)	1,40	1,10	1,10
$NO^+ + e^- \neq NO$ E _{1/2} (en volt)	0,92	0,80	0,73

TABLEAU XIV

Fig. 23: Faisceau de courbes i = f(E) relatives à la réduction de NO_2Clo_4 dans le carbonate de propylène à 25°C: (a) 5,19.10⁻³; (b) 7,28.10⁻³; (c) 9,20.10⁻³; (d) 10,38.10⁻³; (e) 12,26.10⁻³ molel⁻¹

Fig. 24: Voltammétrie cyclique de la vague d'oxydation de N_2O_4 dans le carbonate de propylène à T = $30^{\circ}C$. $|N_2O_4| = 1, 0.10^{-2}$ molel⁻¹. Vitesse de balayage: (1) 10; (2) 20; (3) 50 mV/s

- 102 -

1d. Influence de l'eau dans les solutions de N204

Dans le cas où les solutions de N₂O₄ contiennent des traces d'eau, on observe sur les courbes i = f(E) une vague anodiques supplémentaire située à des potentiels moins anodique que l'oxydation de N₂O₄: $E_{1_2} \simeq +0.81$ Volt. (Fig. 27). D'autre part, on constate que cette vague

Fig. 27: Etude en courbes i = f(E) de l'influence de l'eau sur le processus d'oxydation de N₂O₄ (TEAP 0,1 mole ⁻¹) (1) N₂O₄ = 1,2.10⁻² molel⁻¹ $|H_2O| = 0$; (2) 0,11.10⁻²; (3) 0,21.10⁻²; (4) 0,44.10⁻² molel⁻¹

n'est pas contrôlée par la diffusion, sa hauteur augmente cependant avec la concentration d'eau dans le milieu, mais non linéairement et diminue avec le temps.

Un enregistrement de voltammétrie cyclique effectué sur cette vague, est identique à celui obtenu pour une solution de N_2O_3 (Fig. 28). Cette formation de N_2O_3 est confirmée par l'apparition d'une coloration bleue lors de l'addition d'eau en quantité voisine de celle de la solution de N_2O_4 .

L'apparition de l'espèce N_2O_3 dans le milieu peut s'interpréter selon le schéma déjà signalé dans la partie précédente:

$$N_2O_4 + H_2O \neq HNO_2 + HNO_3$$
 (8)
HNO_2 + N_2O_4 \neq N_2O_3 + HNO_3 (9)

Fig. 28: Voltammétrie cyclique de la vague anodique résultant de l'hydrolyse de N_2O_4 : (1) $|N_2O_4| = 1, 4.10^{-2}$ molel⁻¹ et $|H_2O| = 0, 4.10^{-2}$ molel⁻¹ (2) $|N_2O_3| \approx 0, 6.10^{-2}$ molel⁻¹ Vitesse de balayage: 50 mV/s

Un barbotage d'azote décolore cette solution, ce qui confirme la faible stabilité de N_2O_3 et l'élimination de NO de la solution. Cette élimination de NO est responsable de la diminution de la vague d'oxydation au cours du temps (Fig. 29)

- 104 -

Remarquons que cette vague n'apparaît pas même après une faible addition d'eau à la solution si on a préalablement ajouté de l'oxygène, le N₂O₃ formé étant alors aussitôt oxydé en N₂O₄.

La formation de N₂O₃ est tributaire des constantes d'équilibres des réactions (8) et (9). Nous n'avons pas pu déterminer celle correspondante à l'hydrolyse de N₂O₄ en raison du déplacement de l'équilibre au cours du temps, favorisé par l'élimination de NO. Néanmoins, cette constante est modérément déplacée, puique par addition d'eau, on observe une légère diminution de la vague de réduction de N₂O₄ et apparition simultanée de la vague de réduction de HNO₃.

La constante d'équilibre de la réaction (9) a été évaluée dans la partie l: K(9) = 0,25.

2. Réduction des solutions de N₂O₄

L'étude de la réduction de N_2O_4 sur électrode de platine poli a été effectuée dans le sulfolane, en présence de perchlorate de tétraéthylammonium 0,1 mole. ℓ^{-1} à T = 30°C.

En absence d'eau, les courbes i = f(E) présentent deux vagues très rapprochées: l'une de faible amplitude et l'autre mal définie. Si les solutions de N₂O₄ contiennent des traces d'eau, on observe alors sur le voltampérogramme deux vagues supplémentaires à des potentiels plus cathodiques.

2a. Etude de la réduction des solutions de N_2O_4 de teneur en eau très faible

a. Etude de la première vague

Le polarogramme présente une première vague de faible amplitude à $E_{1_2} = +0,58$ V ne dépendant pas linéairement de la concentration (Fig. 30). Son courant limite n'est pas contrôlé par la diffusion. Une étude en fonction de la température a montré que cette vague présente un caractère cinétique: son coefficient de température est supérieur à 3% par degré (Fig. 31). Cette vague ayant une hauteur égale au tiers de celle de l'oxydation de N₂O₄, il faut admettre qu'elle met en jeu l mole d'électron pour une mole et demie de N₂O₄, puisque dans le cas de l'oxydation, comme nous avons vu précédemment, il fallait 2 moles

Fig. 30: Faisceau de courbes i = f(E) relatives à la réduction de N_2O_4 en absence d'eau dans le sulfolane à 30°C (TEAP 0,1 molel⁻¹) (1) $|N_2O_4| = 0,26.10^{-2}$; (2) 0,54.10⁻² molel⁻¹

Fig. 31: Influence de la température sur les vagues de réduction de N_2O_4 $|N_2O_4| = 1,05.10^{-2} molel^{-1}$ (1) 26; (2) 33; (3) 40; (4) 45; (6) 49°C d'électrons pour une mole de N_2O_4 . Par ailleurs, une voltammétrie cyclique sur cette vague montre que l'oxydation des produits formés lors de ce processus de réduction, correspond à celle de N_2O_3 en présence de nitrate.

Cette vague correspond donc à:

$$N_2O_4 \stackrel{k_2}{\underset{k_1}{\leftarrow}} 2NO_2$$

 $2NO_2 + e^- \neq 2NO_2^-$
 $2NO_2^- + N_2O_4 \neq 2NO + 2NO_3^-$

L'oxyde nitrique réagit avec N_2O_4 en excès pour donner le trioxyde de diazote. Comme N_2O_4 est en excès, on peut admettre que la réaction est pratiquement totale. Rappelons que la constante de dissociation moléculaire de N_2O_3 est égale à $K_{N_2O_3}^m$ = 4.10^{-5} mole ℓ^{-1} , et la constante cinétique de formation de N_2O_3 est grande (partie 1):

$$2NO + N_2O_4 \neq 2N_2O_3$$

it globalement

so

 $NO_2 + N_2O_4 + e^- \neq N_2O_3 + NO_3^-$ Couple électrochimique (A)

Cette réaction est en accord avec l'invariance du potentiel de demivague avec la concentration, et le rapport 1/3 par rapport à la vague d'oxydation de N₂O₄.

Comme dans le cas d'oxydation de N_2O_4 , cette réaction est limitée par la réaction de monomérisation de N_2O_4 . Nous avons voulu comparer le potentiel théorique de demi-vague avec sa valeur expérimentale obtenue précédemment.

L'équation de Nernst appliquée au couple (A) s'écrit:

$$E = E^{\circ}(A) + p \log \frac{|NO_2||N_2O_4|}{|N_2O_3||NO_3|}$$

On peut démontrer facilement que le potentiel normal $E^{\circ}(A)$ s'exprime par la relation:

$$E^{\circ}(A) = 1/2 \left[E^{\circ}(NO + NO_{3}^{-}/2NO_{2}^{-}) + E^{\circ}(NO^{+}/NO) \right] + p(pK_{N_{2}O_{3}} + \frac{1}{2}pK_{H} - \frac{3}{2}pK_{N_{2}O_{4}})$$

ou bien

$$E^{\circ}(A) = E^{\circ}(NO^{+}/NO) + \frac{P}{2}(pK_{H} + pK_{N_{2}O_{3}}^{m} - 2pK_{N_{2}O_{4}})$$

Le calcul du potentiel normal du couple (A) donne:

$$E'(A) = +0,56 V$$

Dans l'hypothèse où les coefficients de diffusion des espèces mises en jeu dans le système (A) sont voisins, on peut assimiler le potentiel de demi-vague au potentiel normal. Nous constatons alors que la valeur expérimentale $E_{\frac{1}{2}}$ (0,58 V) est en bon accord avec le potentiel normal E°(A) calculé (0,56 V).

8. Etude de la deuxième vague

Cette vague mal définie et située à E_{1_2} moyen $\approx +0,008$ V pour une concentration $|N_2O_4| = 0,54.10^{-2}$ mole/& (Fig. 30), laisse présager que plusieurs processus électrochimiques interviennent simultanément. De plus, une électrolyse à potentiel imposé (à $E_1 = -0,47V$) montre la présence intermédiaire de N_2O_3 (la solution se colore en bleu), puis la formation de NO gazeux et simultanément la disparition de N_2O_3 . Le nitrate a aussi été caractérisé par la courbe électrochimique réalisée avec cette solution après électrolyse et élimination de NO. Globalement, l'ensemble des deux vagues correspond à 1 faraday par mole de N_2O_4 . On peut admettre que la réduction de N_2O_4 dans cette étape fait intervenir la dissociation ionique de N_2O_4 en NO⁺ et NO_3^- , suivie de la réduction de NO⁺. L'oxyde nitrique NO formé peut ensuite réagir avec N_2O_4 pour conduire à N_2O_3 au moins partiellement. En effet, la réaction de dissociation de N_2O_4 est suivie du transfert de charge:

$NO^+ + e^- \ge NO$

et de la réaction chimique entre N_2O_4 et NO.

La réduction de N₂O₄ peut s'écrire:

 $2N_2O_4 \neq 2NO^+ + 2NO_3^-$

 $2NO^+ + 2e^- \neq 2NO$

$N_2O_4 + 2NO \neq 2N_2O_3$

Soit globalement:

 $3N_2O_4 + 2e^- \neq 2N_2O_3 + 2NO_3^-$ Couple électrochimique (B)

 N_2O_3 étant aussi électroactif, sa réduction peut intervenir dans cette zone de potentiel. Dans la partie l, nous avons montré que N_2O_3 peut être considéré comme un complexe de N_2O_4 ET NO, sa réduction peut alors s'écrire:

 $2N_2O_3 \neq N_2O_4 + 2NO$

 $N_2O_4 + e^- \neq NO + NO_3^-$ Couple électrochimique (C)

Soit globalement:

 $2N_2O_3 + e^- \neq 3NO + NO_3^-$ Couple électrochimique (D)

Cette réduction en plusieurs étapes très proches et mal différentiables expliquerait l'allure de la courbe observée. Afin de confirmer nos hypothèses, nous avons, à l'aide des constantes d'équilibre déterminées dans les paragraphes précédents, calculé les potentiels normaux des couples électrochimiques mis en jeu.

Calcul théorique des potentiels normaux des couples (B), (C) et (D)

- Couple électrochimique (B): $3N_2O_4 + 2e^- \neq 2N_2O_3 + 2NO_3^-$ L'équation de Nernst s'écrit:

 $E = E^{\circ}(B) + p \log \frac{|N_2O_4|^3}{|N_2O_3|^2|NO_3^-|^2}$

On peut facilement exprimer le potentiel normal $E^{\circ}(B)$ en fonction de la constante de dissociation ionique de N₂O₄, la constante de dissociation moléculaire de N₂O₃, et du potentiel normal du couple NO⁺/NO selon:

$$E^{\circ}(B) = E^{\circ}(NO^{+}/NO) + p \left(\frac{1}{2} pK_{N_{2}O_{3}}^{m} - pK_{N_{2}O_{4}}\right)$$

Le potentiel normal du couple (B) est donc égal à +0,42 V.

 Couple électrochimique (C):N₂O₄ + e⁻ ≠ NO + NO₃⁻(déjà signalé dans la partie 1)

L'équation de Nernst appliquée à cet équilibre s'écrit:

$$E = E^{\circ}(C) + p \log \frac{|N_204|}{|N0||N03^{-1}|}$$

Le potentiel normal de la réduction de N_2O_4 est donc égal à:

$$E^{\circ}(C) = E^{\circ}(NO^{+}/NO) - p.pK_{N_{2}O_{4}} = +0,28 V$$

- Couple électrochimique (D): $2N_2O_3 + e^- \neq 3NO + NO_3^-$ En appliquant l'équation de Nernst au système (D) on trouve:

$$E = E^{\circ}(D) + p \log \frac{|N_2O_3|^2}{|NO|^3|NO_3^-|}$$

On démontre que:

$$E^{\circ}(D) = E^{\circ}(NO^{+}/NO) + p(K_{N_{2}O_{4}} - pK_{N_{2}O_{3}}^{m}) = +0,01 V$$

L'allure de la deuxième vague de réduction de N_2O_4 montre qu'à coté des couples (B) et (D), il faut aussi tenir compte du couple (C). En effet, si seuls (B) et (D) interviennent, cette vague devrait être divisée en deux vagues distinctes: E° = 410 mV. Au contraire, si le couple (C) est envisagé, les différences entre les potentiels normaux sont voisines de 250 mV, et les réactions ne sont plus séparables et donnent donc lieu à une vague globale mal définie. Cette intervention du couple (C) proviendrait de ce que la réaction entre N₂O₄ et NO n'est pas totale. Un enregistrement de voltammétrie cyclique réalisée avec une solution de N₂O₄, est en accord avec l'existence de plusieurs systèmes électrochimiques au cours de la réduction de N₂O₄ (Fig. 32).

2b. Influence de l'eau dans le processus de réduction de N₂O₄.

La figure 33 représente un faisceau de courbes intensitépotentiel obtenues pour différentes concentrations de N_2O_4 . La teneur en eau du milieu (déterminée par la méthode Karl-Fischer) est évaluée à 2.10⁻³ molel⁻¹.

Fig. 32: Voltammétrie cyclique dans le sulfolane à $30^{\circ}C$ (TEAP 0,1 molel⁻¹) d'une solution de N_2O_4 1,19.10⁻² molel⁻¹

Vitesse de balayage: 100 mV/s

Fig. 33:Faisceau de courbes i = f(E) relatives à la réduction de N_2O_4 en présence d'eau dans le sulfolane à 30°C (TEAP 0,1 molel⁻¹).

(1) $|H_20| = 1,5.10^{-3} \text{ moles}^{-1} |N_20_4| 2,66.10^{-3}$ 2) 5,32.10⁻³; (3) 7,89.10⁻³ moles⁻¹

Dès l'addition de N_2O_4 (courbe l de la figure 33), on constate l'apparition de deux vagues supplémentaires à des potentiels plus négatifs que nous avons attribuées à la réduction des deux acides HNO_3 et HNO_2 (respectivement à $E_{1_2} = +0,77$ V et $E_{1_2} = +1,15$ V pour $|N_2O_4|$ = 2,66.10⁻³ molel⁻¹): ces derniers étant formés en solution par hydrolyse de N_2O_4 :

 $N_2O_4 + H_2O \Rightarrow HNO_3 + HNO_2$

Une partie de l'acide nitreux formé réagit avec N204 selon:

 $N_2O_4 + HNO_2 \approx N_2O_3 + HNO_3$

Une électrolyse effectuée sur la deuxième vague $(E_{1_2} \approx +0,05V)$ montre qu'en présence d'eau cette réduction met en jeu plus d'une mole d'électron par mole de N₂O₄ (environ 1,1 - 1,5 e⁻/molecule de N₂O₄ selon la teneur en eau du milieu), alors que sans eau, nous avons vu que le bilan coulométrique était voisin de l. D'autre part, la vague attribuée à la réduction de HNO₃ diminue avec une augmentation de la concentration de N₂O₄, au profit de la vague de réduction de HNO₂ (courbe l, 2, 3 de la figure 33). Tous ces résultats laissent présager l'intervention dans la deuxième vague d'un autre couple électrochimique (déjà signalé par SERVE ²⁸) en plus des systèmes (B) et (C):

 $1/2N_2O_4 + HNO_3, NO_3 + e^2 \neq HNO_2 + 2NO_3 (F)$

(le nitrate produit lors des réactions (A) et (B) vient complexer l'acide nitrique).

Afin de confirmer notre hypothèse, nous avons calculé le potentiel normal de ce couple. L'équation de Nernst appliquée au système (F) s'écrit:

$$E = E^{\circ}(F) + p \log \frac{|N_2O_4|^{1/2}|HNO_3, NO_3^{-1}|}{|HNO_2||NO_3^{-1}|^2}$$

On peut calculer le potentiel $E^{\circ}(F)$ par la relation:

$$E^{\circ}(F) = \frac{1}{2} \left[E^{\circ}(NO^{+}/NO) + E^{\circ}(NO + NO_{3}^{-}/2NO_{2}^{-}) \right] + p(pK_{HNO_{2}}^{H^{+}} - pK_{HNO_{3}}^{H^{+}} - pK_{HNO_{3}}^{h.c.} - \frac{1}{2} pK_{N_{2}O_{4}})$$

- 112 -

Le potentiel $E^{\circ}(F)$ est égal à +0,27 V. Cette valeur est donc voisine de celle trouvée pour le couple (C): +0,28 V.

L'excès de complexe HNO3,NO3⁻ n'ayant pas réagi dans la deuxième vague est responsable de la troisième vague:

$$HNO_3, NO_3^- + e^- \neq 1/2H_2 + 2NO_3^-$$

La quatrième vague est attribuée à la réduction protonique de HNO_2 provenant à la fois de l'hydrolyse de N_2O_4 et de la réaction électrochimique (F):

$$HNO_2 + e^- \neq 1/2H_2 + NO_2^-$$

(en faisant l'hypothèse que l'acide nitreux n'est pas complexé par les bases nitrate ou nitrite).

Pour des concentrations plus élevées en N_2O_4 (courbe 3 de la figure 33), la vague de réduction du complexe HNO_3, NO_3^- disparaît: l'acide nitrique étant totalement consommé par la réaction (F). Celle correspondant à la réduction de HNO_2 n'augmente plus, étant limitée par la concentration d'eau et par la réaction électrochimique (F).

Ainsi, l'addition d'eau à la solution de N_2O_4 ne modifie pas l'allure de la courbe de réduction puisque le nouveau couple (F) intervient à un potentiel normal voisin de ceux des couples relatifs à la réduction de N_2O_4 seul. Seule la hauteur de la vague est affectée.

Signalons que ces résultats restent valables dans les autres solvants. Nous avons représenté sur les figures 34 et 35 les vagues de réduction de N_2O_4 dans les solvants: acétonitrile, nitrométhane, carbonate de propylène.

Nous avons montré dans cette partie que l'oxydation et la réduction des solutions de N_2O_4 étaient trsè complexes. De plus, la présence de traces d'eau donne lieu à de nouveaux couples électrochimiques. On comprend pourquoi peu d'auteurs sont parvenus à donner une interprétation de toutes les vagues correspondantes à ces réactions. La détermination des constantes thermodynamiques de dissociation de N_2O_4 grâce à l'utilisation de plusieurs techniques (RPE, RMN, électrochimie à différentes électrodes), nous a apporté de précieux rensei-

gnements. Nous avons pu, de plus, en déduire une méthode d'analyse originale de N₂O₄ dans les mélanges N₂O₄ - HNO₃. Enfin, ces valeurs vont nous permettre, dans la partie suivante, d'apporter de précieux renseignements sur l'activation de N₂O₄ par certaines espèces (H⁺, sels métalliques, H₂O) au cours de la nitration de noyaux aromatiques.

V. THEORIE

 Monomérisation suivie d'un transfert de charge, étude en voltammétrie cyclique.

SAVEANT et VIANELLO ³¹ ont étudié en voltammétrie cyclique le processus électrochimique suivant:

A
$$\frac{k_2}{k_1}$$
 20x monomérisation
0x + ne⁻ \neq Red réduction

avec

k1: constante cinétique de monomérisation

k₂: constante cinétique de dimérisation

Nous avons repris leur modèle mathématique pour l'adapter à notre cas où la monomérisation est suivie d'une oxydation, soit:

A $\frac{k_2}{k_1}$ 2Red

Red \neq 0x + ne⁻

Pour cela nous avons repris les mêmes variables:

- E = E_i + vt avec v: vitesse de balayage de potentiel E_i : potentiel initial - ξ = $+\frac{nF}{RT}$ (E - E°) avec E°: potentiel normal du couple 0x/Red - χ = $\frac{K_H}{C^*}$ avec K_H : constante de dissociation homolytique ,C*: concentration du dimère A en solution

 $(x \rightarrow \infty)$

$$-\lambda = \frac{RT}{nF} \frac{k_2 C^*}{v}$$

Si la constante de dissociation K_H est faible $(k_1 \ll k_2)$, deux cas limites peuvent être envisagés suivant la vitesse de balayage v imposée

1a. Courant de diffusion pure id

Dans les cas où la vitesse de balayage v est suffisamment lente pour que les conditions d'équilibre soient atteintes à chaque instant t, et en tout point x de la solution, le courant est alors contrôlé par la diffusion de l'espèce A.

Ceci revient à étudier l'équilibre:

A ≠ 2Red + 2ne⁻ (en supposant le dimère A oxydable). Dans ces conditions, la "fonction courantψ" peut s'écrire:

$$\Psi = \frac{i_d}{nFAC^* D_A^{1/2} (\frac{nF}{RT} v)^{1/2}}$$
(1)

En effectuant le changement de variable:

$$\xi^* = \xi + \frac{1}{2} \operatorname{Ln} \chi \frac{D_{\text{ox}}}{D_{\text{A}}}$$
(2)
(ξ^* variable sans unité)

L'évolution du courant i_d en fonction du potentiel E est donnée par la fonction $\psi = F(\xi^*)$ (Figure ci-dessous).

L'équation (2) permet de relier le potentiel E en fonction de la variable ξ^* :

$$E = E^{\circ} + \frac{RT}{nF} \xi^{\star} - \frac{RT}{nF} Ln K_{H} + \frac{RT}{2nF} Ln C^{\star}$$

Les potentiels de pic E_p et de demi-pic $E_{p/2}$ sont déterminés en prenant pour valeurs de ξ^* respectivement: $\xi_p^* = 1,27$ et $\xi_{p/2}^* = 0,40$. Par ailleurs, le courant de pic est atteint si $\frac{\partial \psi}{\partial t} = 0$, soit $\psi_p = 1,087$. Nous pouvons alors déduire, à partir de l'équation (1), l'expression du courant de pic:

$$i_p = 1,087 \text{ nF A } D_A^{1/2} C^* \left(\frac{nFv}{RT}\right)^{1/2}$$

1b. Courant cinétique pur i^k

Lorsque la vitesse de balayage est importante, le processus électrochimique est limité par la cinétique de la réaction de monomérisation. Dans ces conditions, la "fonction courant" s'écrit:

$$\Phi = \frac{i^{k}}{\left(\frac{4}{3}\right)^{1/2} nFAD_{Red}^{1/2} k_{2}^{1/2} K_{H}^{3/4} c^{*3/4}}$$
(3)

En effectuant le changement de variable:

$$\xi^{+} = \xi - \frac{1}{2} \ln \frac{4}{3} \chi^{1/2} \left(\frac{D_{ox}}{D_{red}} \right)^{1/2}$$
(4)

(ξ^+ variable sans dimension)

L'évolution du courant i^k en fonction de t est représentée par la fonction: $\phi = F(\xi^+)$ (Fig. ci-dessous)

L'équation (4) permet de relier E en fonction de ξ^+ :

$$E = E^{\circ} + \frac{RT}{nF}\xi^{+} + \frac{RT}{2nF}Ln(\frac{4}{3}\frac{RT}{nF}) + \frac{RT}{4nF}LnK_{H} + \frac{RT}{4nF}Ln C^{*}$$
$$+ \frac{RT}{2nF}Ln k_{2} - \frac{RT}{2nF}Ln v \quad (en \text{ supposant } D_{Ox} \simeq D_{Red})$$

Le potentiel de demi-pic $E_{p/2}$ est atteint lorsque $\xi^+ = 0,13$. Le courant cinétique de pic i_p^k est calculé à partir de l'expression de la "fonction courant" (3) en prenant $\phi = 1$, soit:

$$i_p^k = (\frac{4}{3})^{1/2} nFAD_{red}^{1/2} k_2^{1/2} K_H^{3/4} C^{*3/4}$$

2. Monomérisation suivie d'un transfert de charge, étude en voltammétrie linéaire

Soit le repère à trois dimensions (X, Y, Z). Le plan décrit par les axes (Y, Z) est un plan parallèle à la surface de l'électrode tournante.

Considérons une espèce diffusante s dans la direction perpendiculaire à la surface de l'électrode. Dans ces conditions, les composantes ϕ_s^y et ϕ_s^z du flux de diffusion sont nulles:

$$\phi_{s}^{y} = \phi_{s}^{z} = -D_{s} \frac{\partial C_{s}}{\partial y} = -D_{s} \frac{\partial C_{s}}{\partial z} = 0$$

On obtient alors:

$$\phi_{s}^{\text{diff}} = -D_{s} \left[\frac{\partial C_{s}}{\partial x} + \frac{\partial C_{s}}{\partial y} + \frac{\partial C_{s}}{\partial z} \right] = -D_{s} \left(\frac{\partial C_{s}}{\partial x} \right) = \phi_{s}^{x}$$

 $(D_s représente le coefficient de diffusion de l'espèce s)$ Par ailleurs, le flux de convection est proportionnel à la concentration C_s :

$$\phi_{s}^{conv} = S C_{s} = \begin{bmatrix} S_{x} \\ S_{y} \\ S_{z} \end{bmatrix} C_{s} = S_{x} C_{s}$$

avec S = $\begin{bmatrix} S_x \\ S_y \end{bmatrix}$ $\begin{bmatrix} C_z \\ S_z \end{bmatrix}$ S_x , S_y et S_z représentant les composantes de la vitesse de convection S

Les composantes S_y et S_z sont nulles

Le flux total du composé s est alors égal à:

$$\phi_{s}^{\text{total}} = \phi_{s}^{\text{diff}} + \phi_{s}^{\text{conv}} = -D \left(\frac{\partial C_{s}}{\partial x}\right) + S_{x}C_{s}$$

Comme:

$$\frac{\partial C_{s}}{\partial t} = -\frac{\partial \phi_{s}}{\partial x} = -\frac{\partial}{\partial x} \left[-D \frac{\partial C_{s}}{\partial x} + S_{x} C_{s} \right]$$

il vient:

$$\frac{\partial C_s}{\partial t} = D \frac{\partial^2 C_s}{\partial x^2} - S_x \left(\frac{\partial C_s}{\partial x} \right)$$
(1)

Nous nous proposons d'étudier le système C.E. suivant:

$$A \xrightarrow{k_1} 2 \text{ red} \qquad \underbrace{C}$$

$$Red \neq 0x + ne^{-} \qquad \underbrace{E}$$
(2)

Si l'on considère d'abord un processus électrochimique simple E, la solution est suffisamment agitée en voltammétrie linéaire pour que l'état stationnaire soit établi dès le commencement de l'électrolyse. En supposant que la diminution de la concentration de l'espèce soit faible au cours de l'électrolyse, on a: $\frac{\partial C}{\partial t} = 0$

$$\frac{\partial C}{\partial t} = \frac{D\partial^2 C}{\partial x^2} - S_x \frac{\partial C}{\partial x} = 0 \implies S_x \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$

Par contre, pour un système <u>C.E.</u>, la dérivée $\frac{\partial C}{\partial t}$ n'est pas nulle.

En absence de processus électrochimique, la vitesse cinétique de la réaction de dimérisation:

a
$$\frac{k_1}{k_2}$$
 2 Red

est donnée par la relation:

$$v_{cin} = + \frac{1}{2} \frac{\partial C_{red}}{\partial t} = - \frac{\partial C_A}{\partial t} = k_1 C_A - k_2 C_{red}^2$$

En se plaçant dans les conditions d'une diffusion linéaire suivant un axe X perpendiculaire à la surface de l'électrode, on applique l'équation (1) à notre processus d'oxydation (2):

$$\begin{pmatrix} \frac{\partial C_{red}}{\partial t} = D_{red} \frac{\partial^2 C_{red}}{\partial x^2} - S_x \frac{\partial C_{red}}{\partial x} \\ \frac{\partial C_A}{\partial t} = D_A \frac{\partial^2 C_A}{\partial x^2} - S_x \frac{\partial C_A}{\partial x} \end{pmatrix}$$

Comme le réducteur est consommé à l'électrode, on a:

$$\frac{\partial C_{\text{red}}}{\partial t} = -2 \frac{\partial C_A}{\partial t} = -2 \left[k_1 C_A - k_2 C_{\text{red}}^2 \right] = -2 v_{\text{cin}}$$

En se ramenant à une mole de l'espèce red, et en supposant égaux les coefficients de diffusion D_{red} et D_A , on obtient:

$$S_{x} \frac{\partial C_{red}}{\partial x} = D \frac{\partial^{2} C_{red}}{\partial x^{2}} + k_{1}C_{A} - k_{2}C_{red}^{2}$$
(3)
$$S_{x} \frac{\partial C_{A}}{\partial x} = D \frac{\partial^{2} C_{A}}{\partial x^{2}} - \frac{1}{2} k_{1}C_{A} + \frac{1}{2} k_{2}C_{red}^{2}$$

En faisant le changement de variable:

$$\psi = C_{red} + 2C_A \tag{4}$$

d'une part on peut écrire:

$$S_x \frac{\partial C_{red}}{\partial x} + 2S_x \frac{\partial C_A}{\partial x} = S_x \frac{\partial}{\partial x} \left[C_{red} + 2C_A \right] = S_x \frac{\partial \psi}{\partial x}$$

et d'autre part:

$$\left(\frac{D\partial^2 C_{red}}{\partial x^2} + k_1 C_A - k_2 C_{red}^2\right) + 2\left(D \frac{\partial^2 C_A}{\partial x^2} - \frac{1}{2} k_1 C_A + \frac{1}{2} k_2 C_{red}^2\right)$$
$$= D \frac{\partial^2}{\partial x^2} (C_{red} + 2C_A) + (k_1 C_A - k_1 C_A) + (k_2 C_{red}^2 - k_2 C_{red}^2)$$
$$= D \frac{\partial^2}{\partial x^2} (\psi)$$

Soit

$$S_{x} \frac{\partial \psi}{\partial x} = D \frac{\partial^{2}}{\partial x^{2}} (\psi)$$
 (5)

En appelant

$$\Delta = \frac{\partial \psi}{\partial x}$$

l'équation (5) devient:

$$S_{X} \Delta = D \frac{\partial \Delta}{\partial x}$$

ou bien

$$\frac{\partial \Delta}{\partial x} - \frac{S_x}{D} \Delta = 0$$
 (6)

La solution générale de cette équation différentielle est de la forme:

$$\Delta = Be^{f(x)} \qquad (B \text{ étant une constante})$$

En remplaçant l'expression de Δ dans l'équation (6), on obtient:

$$\frac{\partial}{\partial x} \left[Be^{f(x)} \right] - \frac{S_x}{D} Be^{f(x)} = 0$$

$$\frac{\partial f(x)}{\partial x} e^{f(x)} - \frac{S_x}{D} Be^{f(x)} = 0$$

soit

$$\frac{\partial f(x)}{\partial x} = \frac{S_x}{D} \Longrightarrow f(x) = \frac{1}{D} \int_0^x S_x(v) dv$$

∆est alors égal à:

B

$$\Delta = B \exp \frac{1}{D} \int_0^X S_X(v) dv$$

Sachant que: $\Delta = \frac{\partial \psi}{\partial x}$ on trouve:

$$\psi = \int_0^x \Delta dv = B \int_0^x \left[\exp\left(\frac{1}{D} \int_0^v S_x(Z) dZ\right) \right] dv + G$$

(G représente une constante)

Les constantes B et G sont déterminées à partir des conditions limites. La valeur C_A^0 représente la concentration de A si ce dernier n'était pas du tout monomérisé. Nous allons examiner le cas d'une réaction chimique fortement déplacée dans le sens de la formation du dimère (comme le cas de l'équilibre $N_2O_4 \neq 2NO_2$ dans nos solvants).

Condition limite x = 0

$$\psi(x=0) = 2C_A^0 - a \delta = B \int_0^0 \left[exp(\frac{1}{D} \int_0^V S_x(z) dz) \right] dv + G$$

Condition limite $x \rightarrow \infty$

G

2C

aδ

$$\psi(\mathbf{x} \rightarrow \infty) = B \int_{0}^{\infty} \left[\exp\left(\frac{1}{D} \int_{0}^{\mathbf{v}} S_{\mathbf{x}}(Z) \ dZ \right) \right] d\mathbf{v} + 2C_{A}^{0} - a\delta \quad (7)$$

$$= 2C_{A}^{0}$$
Calcul de l'intégrale: $H = \int_{0}^{\infty} \left[\exp\left(\frac{1}{D} \int_{0}^{v} S_{\mathbf{x}}(Z) \ dZ \right) \right] dv$

Au voisinage de la surface de l'électrode, la fonction S_X a pour expression:

$$S_x(Z) \simeq -\frac{\omega^{3/2} Z^2}{2\nu^{1/2}}$$
 avec ω : vitesse de rotation de l'élec-
trode tournante
 ν : viscosité cinématique du
milieu

Considérons d'abord l'intégrale:

$$\frac{1}{D} \int_{0}^{v} S_{x}(Z) dZ = -\left[\frac{\omega^{3/2} v^{3}}{6v^{1/2} D}\right]_{0}^{v} = -\frac{\omega^{3/2} v^{3}}{6v^{1/2} D}$$

l'intégrale H devient:

$$H = \int_0^\infty \exp\left[-\frac{\omega^{3/2} v^3}{6 v^{1/2} D}\right] dv$$

En appelant:

$$U^{3} = \frac{\omega^{3/2} v^{3}}{6v^{1/2} D}$$
 soit $U = \frac{\omega^{1/2} v}{\sqrt[3]{6v^{1/2} D}}$

alors

$$\frac{\mathrm{d}U}{\mathrm{d}v} = \frac{\omega^{1/2}}{\sqrt[3]{6\nu^{1/2} \mathrm{D}}} \Longrightarrow \mathrm{d}U = \frac{\omega^{1/2}}{\sqrt[3]{6\nu^{1/2} \mathrm{D}}} \mathrm{d}v$$

Il vient

$$H = \frac{\sqrt[3]{6v^{1/2} D}}{\omega^{1/2}} \int_0^\infty \exp(-U^3) \, dU$$

En opérant un deuxième changement de variable:

 $T = U^3 \implies dT = 3U^2 dU = 3T^{2/3} dU et dU = \frac{dT}{3T^{2/3}}$

L'intégrale H prend ainsi la forme d'une fonction gamma:

$$H = \frac{\sqrt[3]{6v^{1/2} \text{ D}}}{3\omega^{1/2}} \int_{0}^{\infty} \frac{e^{-T} dT}{T^{2/3}} = \frac{\sqrt[3]{6v^{1/2} \text{ D}}}{3\omega^{1/2}} \Gamma(\frac{1}{3})$$
$$= \frac{\sqrt[3]{6v^{1/2} \text{ D}}}{\sqrt[\omega^{1/2} \text{ D}]} \Gamma(1 + \frac{1}{3})$$

Sachant que $\Gamma(1 + \frac{1}{3}) = 0,89$, on obtient alors:

$$H = \frac{0.89 \sqrt[3]{6v^{1/2} D}}{\sqrt[3]{1/2}} = 1.62 D^{1/3} v^{1/6} \omega^{-1/2}$$

D'autre part, on démontre que:

$$H = \int_{0}^{\delta} \left[\exp \frac{1}{D} \int_{0}^{v} S_{x}(Z) dZ \right] dv + \int_{\delta}^{\infty} \left[\exp \left| \frac{1}{D} \int_{0}^{v} S_{x}(Z) dZ \right| \right] dv$$
$$\simeq \int_{0}^{\delta} \left[\exp \frac{1}{D} \int_{0}^{v} S_{x}(Z) dZ \right] dv$$

En remplaçant H dans l'équation (7), on obtient

$$\psi(x \rightarrow \infty) = BH + (2C_A^0 - a\delta) = 2C_A^0$$

de plus, on a:

$$\psi(\mathbf{x} = \delta) \simeq BH + 2C_A^0 - a\delta = 2C_A^0$$

ce qui revient à écrire:

BH =
$$a\delta$$
, avec B = a et H = δ

La fonction $\psi(x)$ a pour expression finale:

$$\psi(\mathbf{x}) = a \int_0^{\mathbf{x}} \left[\exp\left(\frac{1}{D} \int_0^{\mathbf{v}} S_{\mathbf{x}}(Z) \, dz \right) \right] \, d\mathbf{v} + 2C_A^0 - a\delta \qquad (8)$$

Comme la concentration de l'espèce A ne varie pas ou peu à la surface de l'électrode:

 $\frac{\partial C_A}{\partial x} = 0 \quad \text{si } x = 0$ Ceci implique les égalités suivantes:

$$\left[\frac{\partial \psi}{\partial \mathbf{x}}\right]_{\mathbf{x}=\mathbf{0}} = \left[\frac{\partial \mathbf{C}_{\mathrm{red}}}{\partial \mathbf{x}}\right]_{\mathbf{x}=\mathbf{0}}$$
(9)

Le courant limite peut alors s'écrire:

$$i_{1} = nFAD \left[\frac{\partial C_{red}}{\partial x}\right]_{x=0} = nFAD \left[\frac{\partial \psi}{\partial x}\right]_{x=0}$$
(10)

A partir de la relation (8), nous pouvons calculer la dérivée de la fonction ψ par rapport à x, soit:

$$\frac{\partial \psi}{\partial \mathbf{x}} = a \exp\left[\frac{1}{D}\int_0^{\mathbf{x}} S_{\mathbf{x}}(\mathbf{v}) d\mathbf{v}\right]^2$$

A la surface de l'électrode, le gradient de Ψ est égal à:

$$\left[\frac{\partial \psi}{\partial \mathbf{x}}\right]_{\mathbf{x}=\mathbf{0}} = a \exp\left[\frac{1}{D} \int_{0}^{0} S_{\mathbf{x}}(\mathbf{v}) \, d\mathbf{v}\right] = a \exp(\mathbf{0}) = a$$

Sachant que: $\psi(x=0) = 2C_A^0 - a_\delta$ nous pouvons tirer:

$$a = \left[\frac{\partial \psi}{\partial x}\right]_{x=0} = \frac{2c_A^0 - \psi(x=0)}{\delta}$$
(11)

Compte tenu de cette dernière égalité, le courant limite s'écrit alors:

$$i_1 = nFAD\left[\frac{2C_A^0 - \psi(x=0)}{\delta}\right]$$

Résolution de l'équation différentielle (3)

A partir de la relation (4), nous pouvons exprimer C_A en fonction de ψ et C_{red} . La valeur de C_A est ensuite remplacée dans l'équation (3)

$$S_x \frac{\partial C_{red}}{\partial x} = D \frac{\partial^2 C_{red}}{\partial x^2} + \frac{k_1(\psi - C_{red})}{2} - k_2 C_{red}^2$$

La concentration C_{red} varie dans une épaisseur $\delta_K << \delta$ appelée "couche de réaction". L'espèce red est donc essentiellement formée au voisinage immédiat de l'électrode. Nous pouvons alors supposer que le terme convectif S_x est négligeable (S_x \sim 0).

Dans ces conditions l'équation précédente peut s'écrire:

$$D \frac{\partial^2 C_{red}}{\partial x^2} + k_1 \left[\frac{\psi - C_{red}}{2} \right] - k_2 C_{red}^2 = 0$$

En multipliant cette expression par dC_{red} et en l'intégrant dans le domaine de variation de l'espèce red, nous obtenons pour chacun des monômes:

$$\int \frac{\partial^2 C_{red}}{\partial x^2} \, dC_{red} = D \int \frac{\partial^2 C_{red}}{\partial x^2} \left[\frac{\partial C_{red}}{\partial x} \right] \, dx = D \int \frac{\partial}{\partial x} \left[\frac{1}{2} \left(\frac{\partial C_{red}}{\partial x} \right)^2 \right] \, dx = D \int \frac{\partial}{\partial x} \left[\frac{1}{2} \left(\frac{\partial C_{red}}{\partial x} \right)^2 \right] \, dx = D \int \frac{\partial}{\partial x} \left(\frac{\partial C_{red}}{\partial x} \right)^2 + Cte$$

$$\int k_1 \left[\frac{\psi - C_{red}}{2} \right] \, dC_{red} = \frac{k_1 \psi C_{red}}{2} - \frac{k_1 C_{red}^2}{4} + Cte$$

$$\int k_2 C_{red}^2 \, dC_{red} = \frac{k_2 C_{red}^3}{3} + Cte$$

Soit globalement:

$$\frac{D}{2}\left(\frac{\partial C_{red}}{\partial x}\right)^2 + \frac{k_1\psi C_{red}}{2} - \frac{k_1C_{red}^2}{4} + \frac{k_2C_{red}^3}{3} = Cte$$

ou bien:

$$D\left(\frac{\partial C_{red}}{\partial x}\right)^{2} + k_{1}\psi C_{red} - \frac{k_{1}C_{red}^{2}}{2} - \frac{2k_{2}C_{red}^{3}}{3} = \Xi \quad (12)$$

E représente la constante d'intégration globale.

A la surface de l'électrode (lorsque x = 0) la concentration en réducteur red est nulle, soit $C_{red} = 0$. Nous pouvons ainsi calculer le gradient de concentration au voisinage de l'électrode à partir de l'équation établie ci-dessus (12):

$$D\left[\frac{\partial C_{red}}{\partial x}\right]_{x=0}^{2} = \Xi \iff \left[\frac{\partial C_{red}}{\partial x}\right]_{x=0} = \left[\frac{\partial \psi}{\partial x}\right]_{x=0} = \sqrt{\frac{\Xi}{D}}$$

(compte tenu de l'égalité (9))

Pour pouvoir atteindre l'expression du courant limite cinétique i_1^k , il est nécessaire de déterminer la constante d'intégration Ξ

Expression de la constante d'intégration E

Examinons ce que devient l'équation différentielle (12) lorsque nous nous plaçons à l'extrémité ou à l'extérieur de la couche de réaction δ_K , c'est à dire dans le cas où x $\geq \delta_K$.

Dans ces conditions, le gradient de concentration de l'espèce red est nul:

$$\left[\frac{\partial C_{red}}{\partial x}\right]_{x \ge \delta_K} = 0$$

L'égalité (12) se simplifie alors:

$$k_1 \psi C_{red}^* - \frac{k_1 C_{red}^*}{2} + \frac{2k_2 C_{red}^{*3}}{3} = \Xi$$
 (13)

 C_{red}^{*} étant la concentration en solution du réducteur red en équilibre avec son dimère A (ceci lorsque $x \rightarrow \infty$). La constante thermodynamique K s'écrit alors

$$K = \frac{k_1}{k_2} = \frac{C_{red}^{*2}}{C_A^{*}}$$

Comme nous avons supposé la constante de monomérisation très faible,
nous pouvons alors faire les approximations suivantes (valables si $x \ge \delta_K$):

$$\psi = 2C_A + C_{red} \simeq 2C_A^*$$
$$C_{red} = C_{red}^*$$

Ceci entraine les égalités suivantes:

$$C_{red} \simeq \sqrt{\frac{k_1 C_A^*}{k_2}} \sqrt{\frac{k_1 \psi}{2k_2}} \sqrt{\frac{k_1 \psi}{2k_2}}$$

L'équation (13) peut alors s'écrire:

$$k_2 \ K\psi \sqrt{\frac{K\psi}{2}} - \frac{k_2 K}{2} \left(\sqrt{\frac{K\psi}{2}} \right)^2 - \frac{2}{3} \ k_2 \left(\sqrt{\frac{K\psi}{2}} \right)^3 = \Xi$$

c'est à dire:

$$\frac{2^{1/2} k_2 K^{3/2} \psi^{3/2}}{3} - \frac{k_2 K^2 \psi}{4} = \Xi$$

En examinant le rapport des deux monômes constituant le premier membre de cette égalité:

$$\left[\frac{k_2 K^2 \psi}{4}\right] \left/ \left[\frac{2^{1/2} k_2 K^{3/2} \psi^{3/2}}{3}\right] = \frac{3}{8} \left[\frac{c_{red}}{c_A^*}\right]$$

et sachant que C $\overset{*}{\operatorname{red}}$ $\overset{<}{\overset{}}$ nous pouvons négliger le deuxième terme de cette équation, ce qui fait

$$\Xi = \frac{2^{1/2}}{3} k_2 K^{3/2} \psi^{3/2}(x \gg \delta_K)$$

Dans l'hypothèse où la fonction ψ ne varie pour ainsi dire pas dans la couche de réaction δ_K , nous pouvons supposer:

$$\psi(\mathbf{x}=\delta_{\mathbf{K}}) \simeq \psi(\mathbf{x}=0)$$

Le gradient de la fonction ψ au voisinage de l'électrode (x = 0) s'écrit alors:

$$\left[\frac{\partial \psi}{\partial x}\right]_{x=0} = \sqrt{\frac{\Xi}{D}} = Q \psi^{3/4}(x=0)$$
(14)

avec

$$Q = \frac{2^{1/4}}{3^{1/2}} k_2^{1/2} K^{3/4}$$
(15)

A partir de cette relation et celle établie précédemment (11), nous pouvons aboutir à une équation dont la résolution va permettre d'accéder à la valeur de $\psi(x=0)$:

$$\left[\frac{\partial \psi}{\partial x}\right]_{x=0} = a = \frac{2C_A^\circ - \psi(x=0)}{\delta} = Q \psi^{3/4}(x=0)$$

soit

$$\psi^{3/4}(x=0) + \frac{\psi(x=0)}{\delta Q} - \frac{2C_{A}^{\circ}}{\delta Q} = 0$$
(16)

Expression du courant limite cinétique i_1^{n}

A partir de la relation (14), le courant limite cinétique s'écrit:

$$i_{1}^{k} = nFAD \left[\frac{\partial \psi}{\partial x}\right]_{x=0} = nFADQ \psi^{3/4}(x=0)$$

En remplaçant Q par son expression (15), il vient:

$$i_{1}^{k} = \frac{2^{1/4}}{3^{1/2}} nFAk_{2}^{1/2} K^{3/4} \psi^{3/4}(x=0)$$
(17)

Le courant limite i_1^k est donc fonction de la constante cinétique de dimérisation k_2 , de la constante thermodynamique K et de $\psi(x=0)$, $\psi(x=0)$ pouvant être calculé à partir de l'équation (16).

Si les constantes K et k_l sont très faibles, l'espèce réductrice red sera faiblement libérée par son dimère A lors du processus d'électrolyse. On détectera alors un "courant cinétique pur" très faible. Dans ces conditions, l'approximation:

$$\psi(x=0) = 2C_A(x=0) + C_{red}(x=0) = 2C_A(x=0) \sim 2C_A^{(x=0)}$$

reste encore valable à la surface de l'électrode.

L'équation (17) devient alors:

$$i_{1}^{k} = \left[\frac{4}{3}\right]^{1/2} {}_{nFAD}^{1/2} {}_{k_{2}}^{1/2} {}_{K}^{3/4} {}_{A}^{*3/4}$$

En reprenant la même hypothèse (K et k_1 très faible, examinons ce que devient l'équation (16). Pour cela, nous allons appeler $\varepsilon = 2C_A^* - \psi(x=0)$ $\varepsilon \sim 0$ représentera la concentration de réducteur <u>red</u> mise en jeu au cours du processus d'électrolyse.

Nous pouvons tirer:

$$\psi(x=0) = 2C_A^\circ - \epsilon$$

En remplaçant $\Psi(x=0)$ par son expression ci-dessus dans l'équation (16), il vient:

$$(2C_{A}^{\circ} - \varepsilon)^{3/4} + \frac{(2C_{A}^{\circ} - \varepsilon)}{Q\delta} - \frac{2C_{A}^{\circ}}{Q\delta} = 0$$

soit

$$(2C_{A}^{\circ} - \varepsilon)^{3/4} - \frac{\varepsilon}{Q\delta} = 0$$

ce qui fait:

$$\varepsilon = Q\delta \left(2C_{A}^{\circ} - \varepsilon\right)^{3/4} = Q\delta \left(2C_{A}^{\circ}\right)^{3/4} \left[1 - \frac{\varepsilon}{2C_{A}^{\circ}}\right]^{3/4}$$

Nous pouvons effectuer un développement en série entière de la fonction $\left[1 - \frac{\varepsilon}{2C_A^{\circ}}\right]^{3/4}$ en utilisant la formule de Mac-Laurin:

$$\varepsilon = Q \,\delta(2C_A^\circ)^{3/4} \left[1 - \frac{3\varepsilon}{8C_A^\circ} - \frac{3\varepsilon^2}{128C_A^{\circ 2}} \dots \right]$$

Sachant que: $\epsilon << c_A^{\circ}$, il vient:

$$\varepsilon = Q\delta(2C_A^\circ)^{3/4}$$

Le courant limite cinétique s'écrit alors:

$$i_{1}^{k} = nFAD\left[\frac{\varepsilon}{\delta}\right] = nFAD\left[\frac{Q\delta(2C_{A}^{\circ})^{3/4}}{\delta}\right] \simeq nFADQ(2C_{A}^{*})^{3/4}$$

En conséquence le courant limite cinétique ne dépend pas de la couche de diffusion δ et donc de la vitesse de rotation ω de l'électrode tournante, si la constante thermodynamique K et la constante cinétique k_1 sont très faibles.

VI. EXPERIMENTATION

a. Solvants

Le sulfolane (Prolabo) est purifié selon la méthode déjà décrite ⁴⁴. Le carbonate de propylène (Merck) est purifié selon la méthode de J.COURTOT-COUPEZ ⁴⁵.

En ce qui concerne le nitrométhane (Fluka) et l'acétonitrile (Prolabo), nous avons utilisé une méthode dérivée de celle décrite par FISCHER ¹³: lente distillation sous pression atmosphérique du solvant, sur une colonne (lm de hauteur, 2,5 cm de diamètre) garnie de spirales de verre.

Les dernières traces d'eau contenues dans ces solvants sont éliminées juste avant leur utilisation en les faisant passer sur une colonne d'alumine déshydratée (alumine neutre d'activité l Prolabo Afnor 18-23, préalablement séchée à 350°C sous vide dynamique pendant une semaine). Cette opération est conduite en boîte à gants. Les teneurs en eau obtenues (mesurées par la méthode Karl Fischer) sont inférieures à 10 ppm.

b. Réactifs

Les produits solides purs ont été séchés sous pression réduite $(10^{-1} \text{ mm de Hg})$ sur P₂O₅:

- AgClO₄ (Fluka) 8 jours à 60°C
- NO₂BF₄ (Merck) a été utilisé directement sans purification

Perchlorate de nitryle

Nous avons fait bouillir de l'acide perchlorique à 70% (Merck) jusqu'à obtention de fumées blanches. Le produit restant est constitué d'hydrate d'acide perchlorique: $HClO_4, H_2O$. Ce dernier est ensuite mis en solution dans le nitrométhane avec un excès de N_2O_5 pour donner du perchlorate de nitryle:

N_2O_5 + $HC1O_4$ + NO_2C1O_4 + HNO_3

Le solide recueilli après filtration est lavé par le tétrachlorure de carbone. Le perchlorate de nitryle contient selon les échantillons 5 à 8% de NOClO₄. Le pentaoxyde de diazote est préparé par déshydratation de l'acide nitrique en phase vapeur au moyen de l'anhydride phosphorique ⁴⁶. Le produit obtenu est sublimé sous un courant d'oxygène ozonisé.

Tétraoxyde de diazote

N₂O₄ est préparé par oxydation de NO par l'oxygène. L'oxyde azotique est préparé par addition d'une solution aqueuse saturée de nitrite de sodium à une solution sulfurique de sulfate ferrique. Le produit obtenu est redistillé sous courant d'oxygène. L'oxygène dissous est ensuite éliminé sous pression réduite à la température de l'azote liquide.

Acide nitrique

L'acide nitrique à 95% pour analyses (Prolabo) est purifié selon la méthode décrite dans le "Brauer" 47.

Acide perchlorique

Nous avons fait réagir dans le sulfolane, mole à mole, $AgClO_4$ anhydre dans une solution de HCl de titre connu:

$$AgC10_4 + HC1 \rightarrow AgC1_1 + HC10_4$$

Le précipité de AgCl est filtré. Le filtrat recueilli ne contient plus que HClO4 en solution dans le sulfolane. Cette méthode présente l'intérêt d'obtenir des solutions de HClO4 exemptes d'eau.

L'acide chlorhydrique est préparé par déplacement thermique de l'équilibre:

 H_3PO_4 + NaC1 \rightarrow HC1⁺ + NaH₂PO₄

Nous faisons ensuite barboter dans du sulfolane le courant gazeux HCl préalablement séché sur P_2O_5

Chlorosulfate de tétraéthylammonium

Le dépôt de AgCl sur l'électrode indicatrice d'argent est

obtenu par oxydation de l'argent dans un "bain chlorurant" de chlorosulfate de tétraéthylammonium (l'électrolyse s'effectuant dans le sulfolane). Et₄NSO₃Cl a été préparé suivant la méthode utilisée au laboratoire ⁴⁴

 $Et_4NC1 + HSO_3C1 \rightarrow Et_4NSO_3C1 + HC1$

L'électrode d'argent est soumise à une oxydation électrochimique à intensité constante: 5 mA pendant environ 300 s.

BIBLIOGRAPHIE

```
1. P. PASCAL
          "Nouveau traité de chimie minérale", Masson et Cie, Paris,
          Vol. 10, p.366 (1956)
2. T.F. REDMOND et B.B. WAYLAND
         J. Phys. Chem., 72, 1626, (1968)
3. G. CAUQUIS et D. SERVE
          C.R. Acad. Sci. Paris, Ser.C, 267, 460 (1968)
4. G. BONTEMPELLI, G.A. MAZZOCHIM et F. MAGNO
         J. Electroanal. Chem., 55, 91 (1974)
5. G.G. HAVENS
         Physical Review, Vol. 41, 337 (1932)
6.a. T. SONE
          Science Repts. Tôhoku Imp. Univ., 11, 139 (1922)
  b. C.N. TURTON, T.I. TURTON
          "The Oxide Handbook" Ed. G.V. SAMSONOV, IFI/PLENUM, New York,
          p.291 (1973)
7. P.B. AYSCOUGH
          "Electron Spin Resonance in Chemistry" Methuen & Co LTD,
          London (1967)
8.a. V. GUTMANN
         Chem. Tech., 255 (1977)
  b. U. MAYER et V. GUTMANN
          "Structure and Bonding", 12, 113 (1973)
9. I.C. HISATSUNE
          J. Phys. Chem., 65, 2249 (1961)
10. A.W. SHAW et A.J. VOSPER
          J. Chem. Soc. (A), 1592 (1971)
11. M. GRÄTZEL, S. TANIGUCHI et A. HENGLEIN
          Ber. Bunsengesellschaft Phys. Chem., 74, 488 (1970)
12. A. COUMARE
          Thèse Doctorat Ingénieur, Lille (1982)
13. J.C. FISCHER
          Thèse, Lille (1976)
```

14. P. PIERENS Thèse 3ème cycle, Lille (1975) 15. C.A. STREULI Anal. Chem. 31, 1652 (1959) 16. J. DESBARRES Bull. Soc. Chim. (11-12), 2103 (1962) 17. R.L. BENOIT, P. PICHET Electro. Anal. Chem. and Interfacial electrochem., 43, 59-69 (1973)18. J.F. COETZEE, R.J. BERTOZZI Anal. Chem., 43, 961 (1971) 19. J.F. COETZEE et R.J. BERTOZZI Anal. Chem., 45, 1064 (1973) 20. R.W. ALDER, G.R. CHALKLEY et M.C. WHITING Chem. Commun., 13, 405-7 (1966) 21. M. WARTEL, A. BOUGHRIET et J.C. FISCHER Anal. Chem., 110, 211 (1979) 22. Y. AUGER Thèse, Lille, (1978) 23. R.L. BENOIT, C. BUISSON et G. CHOUX Can. J. Chem., Vol. 48, 2353 (1970) 24. L.E. TOPOL, R.A. OSTERYOUNG et J.H. CHRISTIE J. Phys. Chem., 70, 2857 (1966) 25. G. BOMBI, R. FREDDI et M. FIORANI Ann. Chim. (Roma), 56, 759 (1966) 26. Y.K. DELIMARSKI et G.V. SHILINA Soviet Electrochem., 2, 1056 (1966) 27. P.G. CORMICK et H.S. SWOFFORD Anal. Chem., 41, 146 (1969) 28. D. SERVE Thèse, Grenoble A07174 (1972) 29. C.L. PERRIN J. Am. Chem. Soc., 99, 5516 (1976) 30. J. KOUTECKY et V. LEVICH Zhurn. Fiz. Khim., 32, 1565 (1958) 31. J.M. SAVEANT et E. VIANELLO Electrochim. Acta, 12, 1545 (1967)

32.a. J.J. LAGOWSKI

"The Chemistry of Non aqueous Solvents", Vol. IV: "Solution Phenomena and Aprotic Solvents", Academic Press INC, New York, p. 252 (1976)

b. G.L. JANZ et R.P.T. TOMKINS

"Nonaqueous Electrolytes Handbook", Vol. I, Academic Press INC, New York (1972)

33. P. PASCAL

"Nouveau traité de chimie minérale", Tome X: Azote-Phosphore, Masson et Cie, p. 372 (1956)

34. L.E. TOPOL, R.A. OSTERYOUG et J.H. CHRISTIE

J. Electrochem. Soc., 112, 861 (1965)

35.a. G. BIANCHI, T. MUSSINI et C. TRAINI

Chimica Industria, 45, 1333 (1963)

b. T. MUSSINI et CASARINI

Ibid, 47, 600 (1965)

36. J. MASEK et H. PRZEWLOCKA

Coll. Czech. Chem. Comm., 30, 3233 (1965)

37. W.H. LEE et D.J. MILLEN

J. Chem. Soc., 2248 (1958)

38. G.A. OLAH et S.J. KUHN

J. Am. Chem. Soc., 84, 3684 (1962)

39. G.A. OLAH et N.A. OVERCHUCK

Canad. J. Chem., 43, 3279 (1965)

40. G.A. OLAH et S.J. KUHN

"Friedel-Crafts and Related Reactions", Vol. III, Part 2, Interscience, New York (1964)

41. J.C. BARDIN

Thèse, Paris VI (1972)

42. W.S. TOLGYESI

Can. J. Chem., 43, 343 (1964)

43. R. BONNATERRE et G. CAUQUIS

J. Electroanal. Chem., 32, 199 (1971)

44. P. PIERENS, Y. AUGER, J.C. FISCHER et M. WARTEL

Can. J. Chem., 53, 2989 (1975)

45. J. COURTOT-COUPEZ, M. L'HER

Bull. Soc. Chim. France, 2, 675 (1969)

46. J. HEUBEL

Compt. Rend., 252C, 3268 (1961)

47. BRAUER

"Handbook of Preparative Inorganic Chemistry", Vol. I 2nd ed., Academic Press, 491 (1963)

a the second of the second of

Partie 3

PROCESSUS CATALYTIQUES DE LA NITRATION

DE SUBSTRATS AROMATIQUES PAR N204

I. INTRODUCTION.

La production industrielle de composés nitrés aromatiques est très importante. En effet, les dérivés nitrés aromatiques sont des intermédiaires dans la synthèse d'explosifs, d'insecticides, de produits pharmaceutiques, de matières plastiques, de colorants, etc... Les procédés industriels de nitration sont tributaires généralement de conditions expérimentales très dures: milieu acide très fort et température élevée ^{1,2,3}. La mise au point de processus de nitration de substrats organiques dans des conditions acceptables pour des produits fragiles est particulièrement souhaitable.

Les composés aliphatiques et aromatiques peuvent être nitrés par différents processus électrophile, nucléophile et radicalaire. Les nitrations nucléophiles et radicalaires de composés aromatiques présentent actuellement peu d'intérêt. En phase gaz cependant, la nitration de composés aliphatiques par processus radicalaire a été beaucoup étudiée. Si les principes de base de la nitration électrophile, qui est notre propos, ont été établis depuis quelques décennies 1,2,3,7,8,9, il n'en reste pas moins que beaucoup d'aspects des réactions électrophiles de nitration restent à découvrir. En 1983, l'intérêt et l'activité dans ce domaine est encore intense, c'est le cas en particulier pour des voies de synthèses originales et la connaissance des intermédiaires réactionnels 10 à 19.

L'introduction d'un groupement nitro dans un composé aromatique s'effectue généralement par une substitution électrophile utilisant l'acide nitrique 1,3,20, les oxydes d'azote 1, les nitrates d'alkyle 1,21,22 (catalysée par l'acide sulfurique) et les nitrates d'acyle 12,23. La catalyse par acide de Lewis BF3 1,12,21,22,24,25, SnCl5 12,26a été également utilisée avec les divers agents nitrants.

L'utilisation récente de catalyseurs superacides solides 10,27à30 permet de s'affranchir en principe des gros excès en acide nécessaires pour obtenir des vitesses de réaction suffisamment rapides. En effet, l'eau produite dans la réaction de nitration par le mélange HNO_3 H_2SO_4 diminue la vitesse de réaction en diluant le mélange acide. On remédie à cet inconvénient en travaillant avec de gros excès en acide dont l'élimination pose des problèmes d'ordre écologique. Les polymères supports peuvent être sensibles à l'acide nitrique et nécessitent l'emploi d'agents nitrants comme les nitrates d'alkyle 27.

L'agent nitrant dont il sera uniquement question dans le travail exposé dans ce chapitre est N_2O_4 . N_2O_4 est un produit primaire industriel qui possède un pouvoir nitrant très médiocre. La catalyse par acide de Brönsted et Lewis est le seul type d'activation utilisé actuellement 1,26. Le présent chapitre expose la recherche de nouveaux processus catalytiques pour la nitration de substrats aromatiques par N_2O_4 . Quoique le mécanisme de la nitration par N_2O_4 ait été fort étudié 26,31,32, les conclusions des différents travaux n'apportent pas une réponse définitive sur le mécanisme.

Nous avons effectué l'étude de la nftration du naphtalène par N₂O₄ dans le sulfolane, et nous nous sommes particulièrement attachés à déterminer l'espèce active responsable de la nitration. Afin de simplifier l'étude, nous nous sommes efforcés de nous affranchir d'une activation oxydo-réductrice du substrat. A la vue des valeurs de potentiels normaux des espèces présentes, l'oxydation du naphtalène ne peut être invoquée que dans le cas de l'espèce NO_2^+ 7,8,33. Les activations par catalyse acide ont été effectuées et le mécanisme analysé. Deux modes d'activation originaux, électrochimique et par coordination sur un métal, ont été étudiés.

II. ETUDE EXPERIMENTALE - POUVOIR CATALYTIQUE DE NO⁺DANS LA REACTION DE NITRATION DU NAPHTALENE PAR N_2O_4

Parmi les composés mis en évidence dans le chapitre précédent, un grand nombre de ceux-ci sont des agents nitrants pour les substrats aromatiques: NO_2^+ , HNO_3 , N_2O_3 et N_2O_4 . Le substrat aromatique choisi pour tester le pouvoir nitrant de HNO_3 , N_2O_3 et N_2O_4 dans le sulfolane est le naphtalène. En effet, la nitration du naphtalène a été nettement moins étudiée que la nitration du benzène, du toluène et des alkylbenzènes. Excepté NO_2^+ aucune espèce NO_3^- , HNO_3 , N_2O_3 , N_2O_4 , NO^+ ... n'est susceptible d'oxyder le naphtalène et de compliquer l'étude du mécanisme.

La nitration du naphtalène a été effectuée par divers systèmes nitrants: CH_3ONO_2/CH_3OSO_2F , $AgNO_3/CH_3COC1$, $AgNO_3/BF_3$ et N_2O_4 dans l'acétonitrile 7,8,10,13, NO_2BF_4 dans le sulfolane ¹³, HNO_3 dans l'acide acétique ou sulfurique, l'anhydride acétique ou le nitrométhane ³⁴ ...(tableau I).

Pour notre part, nous avons effectué la nitration du naphtalène par N₂O₄, N₂O₃ et HNO₃ dans le sulfolane. Les résultats sont représentés sur la figure l et montrent un pouvoir nitrant qui augmente de N₂O₃ à HNO₃ et N₂O₄ mais très en-deçà de celui de NO₂⁺. Une nitrosation efficace de substrats aromatiques par N₂O₄ ne peut être envisagée qu'avec des processus d'activation 1,2,3.

Fig.	1: Nitration	du naphtalène	dans le	sulfolane à 25°C par:
	(=) N ₂ O ₃	Naph. = 0,32	moles-1	$ N_2O_3 = 0,32 \text{ moles}^{-1}$
	(•) HNO3	Naph. = 0,30	molel ⁻¹	$ HNO_3 = 0,30 \text{ moles}^{-1}$
	(•) N ₂ 04	Naph. = 0,30	molel ⁻¹	$ N_2O_4 = 0,30 \text{ moles}^{-1}$

Deux modes d'activation sont envisageables pour le réactif nitrant: radicalaire et électrophile. En effet, une dissociation homolytique de $N_2O_4 \neq 2NO_2$ dans le sulfolane a été mis en évidence dans la partie II. Cette dissociation devient importante sous l'effet de la température ou d'un rayonnement, mais si l'activation thermique et photochimique est utilisable dans la nitration d'hydrocarbures,

- 135 -

elle n'est efficace qu'en phase gaz et à haute température 21,35. Nous avons préféré une activation hétérolytique de $N_2O_4 \neq NO^+ + NO_3^-$ dont la constante de dissociation dans le sulfolane a été déterminée dans la partie II.

Plusieurs auteurs ont proposé que $\underline{N0^+}$ était effectivement <u>l'espèce active</u> dans la nitration de substrats aromatiques comme le paradiméthoxybenzène ^{26,31} le pentaméthylbenzène ³², le 1,2,3-triméthoxy-5-nitrobenzène ³⁶ par N₂O₄ et HNO₃. Néanmoins, les avis divergent sur le mode d'activation de NO⁺; NO⁺ est-il un catalyseur redox ou bien un agent nitrosant associé à une oxydation par N₂O₄ du composé nitroso intermédiaire? Il était intéressant d'étudier l'influence de l'ion NO⁺ sur la vitesse de nitration du naphtalène par N₂O₄.

1. Influence de l'ion NO⁺

La figure 2 montre le rendement en mononitronaphtalène α et β obtenus dans la réaction entre le naphtalène et N₂O₄ en solution dans le sulfolane à 25°C en fonction du temps. Les différents essais effectués démontrent un accroissement très important de la vitesse de nitration par addition croissante de NOClO₄.

Fig. 2: Nitration du naphtalène par N_2O_4 catalysée par $NO^+ClO_4^-$ à 25°C $|Naph.| = 0,30 \text{ moleg}^{-1}$ et $|N_2O_4| = 0,30 \text{ moleg}^{-1}$ (1): $|NO^+|/|N_2O_4| = 0$. (2): 1/100; (3): 1/50; (4): 1/30; (5): 1/20; (6): 1/10; (7): 1/5

La proportion entre les isomères α et β du mononitronaphtalène correspond au rapport v 20, et est sensiblement constante au cours des divers essaís.

Si la réaction est suivie par voltampérométrie à une électrode tournante de platine, nous constatons que la hauteur de vague de réduction de NO⁺ reste constante en fonction du temps. Par contre, les vagues attribuées à la réduction de N₂O₄ ($E_{1_2} = + 0,05V$) et à l'oxydation du naphtalène ($E_{1_2} = 1,26$) diminuent au cours de la réaction, alors qu'apparaissent deux nouvelles vagues: l'une située à un potentiel $E_{1_2} = +1,67V$ correspondant à l'oxydation du nitronaphtalène, l'autre se trouvant au potentiel $E_{1_2} = -0,90V$ est due à la réduction de l'acide nitrique (Figure 3).

Fig. 3:Nitration du naphtalène par N_2O_4 catalysée par $NOCIO_4$ suivie par courbes i = f(E). $|N_2O_4| = 0,88.10^{-2}$ $|Naph| = 0,85.10^{-2}$ $|NOCIO_4| = 0,28.10^{-2}$ molel⁻¹. (1) au départ de la réaction, (2) après 3h, (3) 6h, (4) 1 jour

Toutes ces constatations mettent en évidence le rôle catalytique de NO⁺ dans la nitration du naphtalène par N₂O₄. Il est à noter

- 137 -

toutefois que la formation de nitrosonaphtalène, facilement identifiable grâce à son intense coloration rouge, est immédiate lors de l'addition de $|NO||ClO_4|$ à du naphtalène alors qu'aucune trace de nitrosonaphtalène n'est détectée ni par spectrophotométrie ni par électrochimie lors de la réaction N₂O₄ - naphtalène en présence de $|NO||ClO_4|$. Au cours de cette réaction de nitration, N₂O₃ est détecté en quantité importante en fin de réaction, même de façon visuelle par sa <u>coloration bleue</u>. La réaction globale peut donc s'écrire:

 $ArH + 2N_2O_4 \neq ArNO_2 + HNO_3 + N_2O_3$ (1)

Le schéma réactionnel proposé est le suivant:

$$ArH + NO^{+}C10_{4}^{-} \neq "ArNO" + HC10_{4}$$
(2)

"ArNO" composé nitroso intermédiaire qui est oxydé rapidement par N₂O₄ selon:

$$"ArNO" + N_2O_4 \neq N_2O_3 + ArNO_2$$
 (3)

parallèlement il y a régénération de l'ion nitrosonium

$$HC10_{4} + N_{2}0_{4} \neq N0^{+} + C10_{4}^{-} + HNO_{3}$$
 (4)

Comme nous le démontrerons au paragraphe 2, l'équilibre est fortement déplacé vers la droite: $K = 6,3.10^{+4}$ mole/ ℓ , le cycle catalytique est donc bouclé.

On a montré que la vitesse de nitration est du premier ordre en naphtalène et en $|N_2O_4|$ dans les premiers % de la réaction:

$$d|ArNO_2|/dt = k|ArH||N_2O_4|$$
(5)

la vitesse initiale est proportionnelle à la concentration en NO⁺:

 $k = k_0 + k_1 |NO^+|$

La réaction qui impose sa cinétique est la "nitrosation" (2).

- 138 -

L'oxydation (3) est une réaction très rapide ainsi que la réaction entre $HClO_4$ et N_2O_4 (4).

L'éventualité d'un processus par oxydation du naphtalène par NO⁺ doit être a priori écarté car le système NO⁺/NO ($E^{0}(NO^{+}/NO)$ = +0,715 V) ne possède pas un potentiel susceptible d'oxyder le naphtalène (E^{0} = + 1,26V).

2. Influence de l'ion H⁺

La figure 4 compare le rendement en mononitronaphtalène α et β obtenus dans la réaction entre le naphtalène et N₂O₄ en solution dans le sulfolane à 25°C en fonction du temps, sans ou avec des quantités croissantes de HClO₄.

Fig. 4: Nitration du naphtalène par N_2O_4 et en présence d'acide perchlorique à 25°C. $|Naph.| = 0,21 \text{ mmoles}^{-1}$ et $|N_2O_4| = 0,21 \text{ moles}^{-1}$ $(1): |HClO_4|/|N_2O_4| = 0; (2) = 1/39; (3) = 1/19; (4) = 1/10$

Les différents essais effectués montrent un accroissement très important de la vitesse de nitration avec des ajouts croissants de HClO₄. La proportion entre les isomères α et β du nitronaphtalène, comme dans le cas de l'addition de NO⁺, correspond au rapport 20, et est sensiblement constante au cours des divers essais. Si la réaction est suivie par voltampérométrie à une électrode tournante de platine, nous observons une vague de réduction à $E_{r_2} = +0,76V$ attribuée à l'espèce NO⁺ (Figure 5). La hauteur de vague reste constante au fur et à mesure de l'avancement de la réaction. La formation d'ion nitrosonium est

- 139 -

- 140 -

Fig. 5: Voltampérométrie à une électrode tournante de platine de la réaction entre N_2O_4 et HClO₄ à 30°C dans le sulfolane. $|N_2O_4| = 2,85.10^{-3} \text{ molel}^{-1} (1)$: $|\text{HClO}_4| = 0$; (2): $|\text{HClO}_4| = 1,80.10^{-3} \text{ molel}^{-1}$

également mise en évidence par spectroscopie Raman sur un mélange équimoléculaire de N₂O₄ et HClO₄ dans le sulfolane. En effet, une bande intense à 2285 cm⁻¹ est observée, elle correspond à la vibration d'élongation vNO dans NO⁺ (Figure 6).

2400

2200

 $v(cm^{-1})$

Fig. 6: Spectre Raman d'un mélange N_2O_4 + HClO₄ dans le sulfolane $|N_2O_4|$ = $|HClO_4|$ = 0,2 mole2⁻¹ v_0 = 488,0 nm PW = 150 mW L'acide fort HClO₄ réagit sur la base nitrate, libérée par la dissociation de N_2O_4 :

$$N_2O_4 \neq NO_3^- + NO^+$$
 (6)

$$H^+C10_4 - + NO_3^- \neq HNO_3 + C10_4^-$$
 (7)

soit globalement:

$$N_2O_4 + HC1O_4 \neq NO^+ + C1O_4^- + HNO_3$$

Dans le sulfolane, l'acide HNO₃: pK^{H^+} = 16 (partie I), est un acide beaucoup plus faible que HClO₄ 37. HNO₃ de la réaction entre N₂O₄ et HClO₄ est HClO₄

 $K = \frac{|N0^{+}||HNO_{3}||C1O_{4}^{-}|}{|HC1O_{4}||N_{2}O_{4}|} = \frac{K_{N_{2}O_{4}} \cdot K_{HC1O_{4}}^{H^{+}}}{K_{HO_{3}}^{H^{+}}} = 6, 3.10^{+4} \text{mole} \text{cl}$

constante qui est bien en rapport avec les observations expérimentales.

Un processus identique à celui observé dans la paragraphe précédent s'établit donc pour donner les l et 2 mononitronaphtalènes. En ramenant le rapport $|HClO_4|/|N_2O_4|$ (avec $|N_2O_4| = |N_2O_4|_0 - |HClO_4|$) au rapport correspondant $|NO^+|/|N_2O_4|$, les valeurs des rendements sont tout à fait comparables pour des temps de réactions équivalents.

3. Influence de H_2O

Comme il a été montré dans la partie II, l'addition de petites quantités d'eau à une solution de N_2O_4 dans le sulfolane conduit à la formation de nouvelles espèces: HNO_3 , N_2O_3 , NO, HNO_2 intermédiairement:

 $N_2O_4 + H_2O \Rightarrow HNO_2 + HNO_3$

 $HNO_2 + N_2O_4 \neq N_2O_3 + HNO_3$

soit globalement:

$$2N_2O_4 + H_2O \neq 2HNO_3 + N_2O_3$$
 (8)

La nitration du naphtalène obtenue par des mélanges N_2O_4 -H₂O conduit aux résultats présentés à la figure 7. La cinétique de la réaction naphtalène - N_2O_4 est ralentie par l'addition d'eau qui transforme N_2O_4 en un mélange où les espèces HNO₃ et N_2O_3 possèdent un pouvoir nitrant plus faible que celui de N_2O_4 (Figure 7).

Fig. 7: Nitration du naphtalène dans le sulfolane à 25°C par: (*) N_2O_3 : $|Naph.| = |N_2O_3| = 0,32 \text{ mole} l^{-1}$. (•) HNO_3 : $|Naph| = |HNO_3|$ $= 0,30 \text{ mole} l^{-1}$; (•) N_2O_4 : $|Naph| = |N_2O_4| = 0,33 \text{ mole} l^{-1}$; (•) N_2O_4 en présence d'eau: $|Naph| = |N_2O_4| = 0,35 \text{ mole} l^{-1}$ et $|H_2O| = 0,07 \text{ mole} l^{-1}$; (*): N_2O_4 en présence d'eau: $|Naph| = |N_2O_4|$ $= 0,37 \text{ mole} l^{-1}$ et $|H_2O| = 0,12 \text{ mole} l^{-1}$

Les produits obtenus, les nitronaphtalènes et sont en proportions analogues aux cas précédents ($\alpha/\beta \sim 19 - 20$).

Le faible caractère nitrant de N_2O_3 provient probablement de la présence de N_2O_4 produit par l'équilibre:

$$2N_2O_3 \neq 2NO + N_2O_4$$
 (9)

La valeur de la constante d'équilibre dans le sulfolane a été déterminée dans la partie I:

$$K_{N_2O_3} = \frac{|NO|^2 |N_2O_4|}{|N_2O_3|^2} = (3 \pm 1).10^{-5} mole.l^{-1}$$

- 142 -

4. Influence de mélanges N₂O₄ - H₂O préalablement électrolysés.

Lors de l'étude de l'oxydation de N_2O_4 dans le sulfolane (partie II), il a été remarqué que la présence d'eau induisait une vague d'oxydation supplémentaire attribuée à N_2O_3 . Une étude détaillée sur l'oxydation de N_2O_3 a montré que son oxydation a lieu suivant:

$$2N_2O_3 \neq 2NO^+ + N_2O_4 + 2e^-$$
 (10)

A partir de ce résultat, la nitration du naphtalène a été effectuée par un mélange N_2O_4 - H_2O préalablement électrolysé à potentiel constant E = 1 Volt de façon exhaustive dans le sulfolane en présence de $Et_4N^+C1O_4O$, 1 M, avant l'addition de naphtalène. La quantité d'électricité mise en jeu lors de cette oxydation croît en fonction des quantités d'eau introduites (N_2O_3 étant formé par hydrolyse selon (8), puis oxydé en NO^+ suivant la réaction (10)), et il en est de même de la vitesse de nitration. A partir du bilan coulométrique, la concentration en ion NO^+ peut être atteinte, et il est facile alors de comparer les rendements en mononitronaphtalène avec ceux obtenus dans les paragraphes 1, 2 et 3 (Figures 2, 4, 8) aux faibles valeurs en eau ajoutée.

Fig. 8: Nitration du naphtalène par un mélange $N_2O_4 + H_2O$ électrolysé à 1 V. $|Naph| = |N_2O_4| = 0,23 \text{ mole } \ell^{-1};$ (•) $|NO^+|/|N_2O_4| = 0;$ (•) = 1/120; (•) = 1/50; (*) = 1/16

On constate que la cinétique de nitration évolue de façon identique pour un même rapport $|NO^+|/|N_2O_4|$.

Afin de justifier l'intermédiaire N_2O_3 , nous avons effectué la même étude à partir d'une solution de N_2O_3 électrolysée à E = 1 Volt, avant son mélange avec le naphtalène. On observe alors une activation de la nitration (Figure 9). Dans ce cas, le rapport α/β est égal à \sim 17

Fig. 9: Nitration du naphtalène par N_2O_3 électrolysé à 1 V. $|Naph| = |N_2O_3| = 0,32 \text{ moles}^{-1}; (=) |NO^+|_{élect.}/|N_2O_3| = 0;$ $(\circ) = 1/58; (=) = 1/39; (•) = 1/23.$

La nitration du naphtalène par N_2O_3 s'effectue donc selon un processus identique à celui produit par N_2O_4 .

L'aspect catalytique de ces réactions par NO^+ est confirmé par l[†]addition de NOClO₄ (Figure 10), qui produit une activation identique à l'activation électrochimique (oxydation de N_2O_3 ajouté ou formé par hydrolyse).

Fig. 10: Nitration du naphtalène dans le sulfolane

Plusieurs travaux ont montré qu'il était possible d'obtenir par voie électrochimique la nitration d'hydrocarbures aromatiques^{7,8,33,38}. Le substrat organique est oxydé dans une solution qui contient des nitrites ou N204. Deux mécanismes distincts ont été suggérés pour rendre compte de l'obtention de produits nitrés. Le premier mécanisme implique la réaction entre le radical cation de l'hydrocarbure aromatique et le radical NO $_2$ 8 , le second implique la catalyse de la nitration par H^+ produit à l'anode ^{7,38}. L'oxydation du naphtalène dans l'acétonitrile contenant N₂04 à un potentiel inférieur au potentiel d'oxydation de N_2O_4 , produit du mononitronaphtalène 33,39 avec un bon rendement, alors que si l'oxydation est menée à un potentiel où N_2O_4 est également oxydé, on a en plus formation de dinitronaphtalène ³³.

La démarche utilisée dans notre travail est une oxydation partielle de N_2O_4 au potentiel de 1,70 Volt. La solution électrolysée est ensuite mélangée avec le naphtalène et la réaction de nitration est ensuite suivie par les techniques employées précédemment. Nous constatons sur la figure ll une efficace activation de la nitration du naphtalène par l'électrolyse de N_2O_4 même très partielle:

Fig. 11: Nitration du naphtalène par N_2O_4 électrolysé à 1,7 V. $|Naph| = |N_2O_4| = 0,22 \text{ moles}^{-1}$ (1): $|NO_2^+|_{\text{élect.}}/|N_2O_4| = 0;$ (2) = 1/14; (3) = 1/7; (4) = 2/7.

(11)

Le fort pouvoir nitrant de l'ion nitryle NO_2^+ ne peut expliquer totalement l'accroissement de la vitesse de nitration du naphtalène. On peut admettre que dans une première étape, NO_2^+ réagit avec le naphtalène selon:

$$ArH + NO_2^+ \neq ArNO_2 + H^+$$
(12)

(Il est à noter que le mécanisme de cette réaction a été très étudié⁷,8,4⁷) Le proton formé réagit dans un second temps sur N_2O_4 selon:

$$H^+ + N_2 O_4 \neq HNO_3 + NO^+$$
 (13)

A ce stade l'activation de la nitration du naphtalène est une activation par NO⁺ suivant le processus déjà exposé précédemment. Le rapport $|NO_2^+|/|N_2O_4|$ est calculé à partir du temps et de l'intensité de l'électrolyse. Pour des rapports équivalents $|NO_2^+|/|N_2O_4| \sim |NO^+|/|N_2O_4|$, des rendements en α et β nitronaphtalène analogues sont obtenus (α/β \sim 20).Si la réaction est suivie par voltampérométrie à une électrode tournante de platine, une vague à +0,77 V correspondant au système NO⁺ + $1/2N_2O_4$ / N_2O_3 est obtenue, par contre, aucune vague correspondant au système NO_2^+/NO_2 n'est détectée. Ces résultats expérimentaux valident le schéma réactionnel proposé.

6. Influence de nitrates inorganiques

L'addition de nitrates inorganiques et en particulier de nitrates métalliques a été proposée pour des systèmes nitrants 18,24pour améliorer les rendements en composés nitrés. Le nitrate de cérium Ce(NO₃)₄ a été utilisé comme oxydant dans la nitration du naphtalène par N₂O₄ ⁴⁰. Le nitrate d'argent a été proposé comme agent nitrant de substrats organiques en association avec des acides de Lewis 24,25.

Le catalyseur acide solide Nafion - H imprégné par $Hg(NO_3)_2$ ²⁸ induit des variations importantes dans la régiosélectivité de la nitration par rapport aux catalyses acides conventionnelles. La démarche expérimentale proposée dans ce paragraphe est basée sur l'interaction de nitrates métalliques $Zn(NO_3)_2$, $Cu(NO_3)_2$ et $UO_2(NO_3)_2$ avec N_2O_4 , en espérant une dissociation hétérolytique de $N_2O_4 = NO^+ + NO_3^-$ par complexation des acides durs Zn^{2+} , Cu^{2+} et UO_2^{2+} avec la base dure NO_3^- . A cet effet, l'étude des réactions entre N_2O_4 et $Zn(NO_3)_2$, $Cu(NO_3)_2$, $UO_2(NO_3)_2$ dans le sulfolane a été effectuée.

6.a. Réactions entre N_2O_4 et les nitrates de zinc, de cuivre et d'uranyle.

L'étude voltampérométrique, à une électrode de platine tournante de la réaction entre N_2O_4 et $Zn(NO_3)_2$ est représentée à la figure 12.

Afin d'éviter tout phénomène de passivation due à la formation éventuelle d'un dépôt de zinc sur l'électrode de platine, nous nous sommes limités à un potentiel cathodique de -0,55 Volt. Au fur et à mesure de l'addition de $Zn(NO_3)_2$ à une solution de N_2O_4 dans le sulfolane apparait une nouvelle vague cathodique dont la hauteur croît avec l'addition de $Zn(NO_3)_2$. Son potentiel de demi-vague $E_{l_2} = +0,695$ V est indépendant de la concentration en zinc, et est analogue à celui du système $NO^+ + 1/2N_2O_4 / N_2O_3$. Le spectre Raman obtenu à partir d'une solution équimoléculaire N_2O_4 - $Zn(NO_3)_2$ présente une bande intense à 2285 cm⁻¹ caractéristique de la vibration vNO de NO⁺ (Figure 13).

Fig. 13: Spêctre Raman d'un mélange $N_2O_4 + Zn(NO_3)_2$ dans le sulfolane $|N_2O_4| = |Zn(NO_3)_2 = 0,2 \text{ moleg}^{-1}, v_0 = 488,0 \text{ nm}; pW = 150 \text{ mW}$

ADDISON ⁵⁴ signale que seul le complexe $1 - 1 N_2O_4$, $Zn(NO_3)_2$ existe à température ambiante. Par analogie avec les complexes chlorures du zinc (voir paragraphe IV), on peut admettre que la constante K_4^*Zn de formation de $Zn(NO_3)_4^{2-}$ est inférieure à la constante de formation de N_2O_4 , et donc que le complexe $Zn(NO_3)_4^{2-}$ ne peut se former. La réaction entre N_2O_4 et $Zn(NO_3)_2$ peut donc s'écrire:

$$Zn(NO_3)_2 + N_2O_4 \neq Zn(NO_3)_3^- + NO^+$$
 (14)

Nous ne pouvons présenter, par spectroscopie Raman, de preuves directes de la formation du trinitratozincate (II) de nitrosyle, les bandes caractéristiques des vibrations de NO3⁻ sont masquées par les bandes du solvant.

L'étude électrochimique des solutions précédentes montrent que:

- par voltammétrie cyclique, l'intensité du courant de pic ip^c croît comme la racine carrée de la vitesse de balayage (Figure 14).
- par voltammétrie linéaire, le courant limite il est proportionnel à la racine carrée de la vitesse de rotation de l'électrode (Figure 15). Ce système est quasi-réversible

Fig. 14: Courant de pic i_p^c en fonction de la racine carrée de la vitesse de balayage d'un mélange $N_2O_4 + Zn(NO_3)_2$ $|N_2O_4| = 7,0.10^{-3}$ mole $^{-1}$ et $|Zn(NO_3)_2| = 7,2.10^{-3}$ mole 2^{-1}

Fig. 15: Courant limite i_l en fonction de la racine carrée de la vitesse de rotation de l'électrode, d'un mélange $N_2O_4 + 2n(NO_3)_2$ $|N_2O_4| = 7,0.10^{-3} molel^{-1}$ et $2n(NO_3)_2 = 7,2.10^{-3} molel^{-1}$

(Figure 16), et le processus électrochimique n'est pas contrôlé par la cinétique de la réaction (14).

Le courant limite de diffusion étant proportionnel à la concentration de NO⁺, il était possible, connaissant la constante de diffusion de la réduction de NO⁺ (obtenue lors de l'étude d'une solution de NOClO₄), d'atteindre la constante de l'équilibre (14), c'est à dire:

$$K_{Zn}^{*} = \frac{|NO^{+}||Zn(NO_{3})_{3}^{-}|}{|N_{2}O_{4}||Zn(NO_{3})_{2}|} = 1.8 \pm 0.3$$

Les constantes de dissociation de $Zn(NO_3)_2$ en $Zn(NO_3)^+$, Zn^{2+} et $NO_3^$ sont estimées très faibles dans le sulfolane par comparaison avec les valeurs respectives des complexes $ZnCl_2$ et $ZnCl^+$ (voir paragraphe IV). La valeur de la constante K^*_3Zn de formation de $Zn(NO_3)_3^-$ peut être déduite de K^*_{Zn} et $K^*_{N_2O_4}$ (constante de formation de N_2O_4 : NO^+ + $NO_3^ N_2O_4$) par la relation:

$$K_{3}^{*}Zn = \frac{|Zn(NO_{3})_{3}^{-}|}{|Zn(NO_{3})_{2}||NO_{3}^{-}|} = K_{2n}^{*}K_{N_{2}O_{4}}^{*} = 2,9.10^{+7} \text{ }\ell.mole^{-1}$$

Les réactions entre $Cu(NO_3)_2$, $UO_2(NO_3)_2$ et N_2O_4 sont en tous points comparables à celle obtenue entre N_2O_4 et $Zn(NO_3)_2$. Les résultats voltampérométriques à une électrode tournante de platine (Figures 17 et 18) font apparaître une vague cathodique à $E_{l_2}^{Cu} = +0,70$ Volt et $E_{l_2}^{UO_2} = 0,74$ Volt caractéristique du système $NO^+ + 1/2N_2O_4 / N_2O_3$. Dans chacun des cas, cuivre et uranium, le couple électrochimique mis en jeu est quasi-réversible (Figures 19 et 20), et le processus n'est pas contrôlé par la cinétique des réactions (15) et (16) (en voltampérométrie à une électrode tournante de platine, la hauteur du palier de diffusion croît proportionnellement avec la racine carrée de la vitesse de rotation $\omega^{1/2}$: Figures 21, 22, et en voltammétrie cyclique i_D^c croît comme v^{1/2}: Figures 23, 24).

Les réactions peuvent s'écrire:

$$N_2O_4 + UO_2(NO_3)_2 \neq UO_2(NO_3)_3^- + NO^+$$
 (15)

÷

Fig. 20: Voltammétrie cyclique d'un mélange $N_2O_4 + UO_2(NO_3)_2$ $|N_2O_4| = 7,9.10^{-3}molel^{-1}$ et $|UO_2(NO_3)_2| = 6,9.10^{-3}molel^{-1}$ Vitesse de balayage: 10 mV/s

Fig. 21: Courant limite i_l en fonction de la racine carrée de la vitesse de rotation de l'électrode d'un mélange $N_2O_4 + Cu(NO_3)_2$ $|N_2O_4| = 7,3.10^{-3} mole 2^{-1} et Cu(NO_3)_2| = 6,3.10^{-3} mole 2^{-1}$

10

Fig. 22: Courant limite il en fonction de la racine carrée de la vitesse de rotation de l'électrode d'un mélange N_2O_4 + $UO_2(NO_3)_2$ $|N_2O_4| = 7,9.10^{-3} \text{ moles}^{-1} \text{ et } |UO_2(NO_3)_2| = 6,9.10^{-3} \text{ moles}^{-1}$

Fig. 23: Courant de pic i^c en fonction de la racine carrée de la vitesse de balayage d'un mélange $N_2O_4 + Cu(NO_3)_2$ $|N_2O_4| = 7,3.10^{-3} \text{ moles}^{-1} \text{ et } |Cu(NO_3)_2| = 6,3.10^{-3} \text{ moles}^{-1}$

Fig. 24:Courant de pic i_p^c en fonction de la racine carrée de la vitesse de balayage d'un mélange $N_2O_4 + UO_2(NO_3)_2$ $|N_2O_4| = 7,9.10^{-3} moler^{-1} et |UO_2(NO_3)_2| = 6,9.10^{-3} moler^{-1}$

Fig. 25: Spectre Raman d'un mélange $N_2O_4 + Cu(NO_3)_2$ dans le sulfolane $|N_2O_4| = |Cu(NO_3)_2| = 0,2 \text{ mole } 2^{-1}; v_0 = 488,0 \text{ nm}; PW = 150 \text{ mW}$

Fig. 26: Spectre Raman d'un mélange $N_2O_4 + UO_2(NO_3)_2$ dans le sulfolane $|N_2O_4| = |UO_2(NO_3)_2| = 0,2 \text{ moles}^{-1}; v_0 = \cdot488,0 \text{ nm}; PW = 150 \text{ mW}$

$$N_2O_4 + Cu(NO_3)_2 \neq Cu(NO_3)_3^- + NO^+$$
 (16)

Les spectres Raman obtenus à partir de solutions équimoléculaires N₂O₄ - Cu(NO₃)₂ et N₂O₄ - UO₂(NO₃)₂ présentent une bande intense à 2285 cm⁻¹ (Figures 25 et 26), caractéristique de la vibration \vee NO de NO⁺. Des composés correspondants à la composition Cu(NO₃)₂,N₂O₄ et UO₂(NO₃)₂,N₂O₄ ont été signalés et caractérisés à l'état solide comme sels de nitrosyle du type NO|UO₂(NO₃)₃| ^{14,42,43}. En solution la valeur des constantes de formation des complexes Cu(NO₃)₄²⁻ et UO₂(NO₃)₄²⁻ est vraisemblablement très faible au regard de la valeur de la constante de CuCl₄²⁻ dans l'acétonitrile ⁴⁴.

Comme précédemment, les constantes des réactions (16) et (15) ont été évaluées par ampérométrie à +0,55 V (connaissant la constante de diffusion de la réduction de NO⁺) respectivement:

$$a K^{*}_{Cu} = \frac{|Cu(NO_3)_3^-||NO^+|}{|Cu(NO_3)_2||N_2O_4|} = 2,5 \pm 0,4$$

et
$$K^*_{UO_2} = \frac{|UO_2(NO_3)_3| |NO^+|}{|UO_2(NO_3)_2| |N_2O_4|} = 1,7 \pm 0,2$$

et à partir de la valeur de $K^*_{N_2O_4}$, on obtient les valeurs des constantes de formation des complexes trinitrato:

$$K_{3}^{*}Cu = \frac{|Cu(NO_{3})_{3}^{-}|}{|Cu(NO_{3})_{2}||NO_{3}^{-}|} = 4,0.10^{+7} \ l.mole^{-1}$$

$$K_{3}^{*}UO_{2} = \frac{|UO_{2}(NO_{3})_{3}^{-}|}{|UO_{2}(NO_{3})_{2}||NO_{3}^{-}|} = 2,7.10^{+7} g.mole^{-1}$$

6.b. Nitration du naphtalène catalysée par les nitrates de zinc, cuivre et uranyle.

Les figures 27, 28 et 29 montrent le rendement en mononitronaphtalène (α et β) obtenu dans la réaction entre le naphtalène et N₂O₄ dans le sulfolane en présence de nitrates métalliques. Les différents essais effectués démontrent un accroissement très important de la vitesse de nitration avec des ajouts croissants de nitrates

50

Fig. 27: Nitration du naphtalène par N_2O_4 catalysé par $Zn(NO_3)_2$ $|N_2O_4| = |Naph.| = 0,35 mole 2^{-1}$ (1) $|Zn(NO_3)_2| / |N_2O_4| = 0$: (2) = 1/10 (3) = 1/5

Fig. 28: Nitration du naphtalène par N_2O_4 catalysé par $Cu(NO_3)_2$ $|N_2O_4| = |Naph| = 0,35 \text{ moleg}^{-1}$ $(1)|Cu(NO_3)_2|/|N_2O_4| = 0;$ (2) = 1/12; (3) = 1/5

– t, mn

Fig. 29: Nitration du naphtalène par N_2O_4 catalysé par $UO_2(NO_3)_2$ $|N_2O_4| = |Naph| = 0,35 mole2^{-1}$ (1) $|UO_2(NO_3)_2|/|N_2O_4| = 0;$ (2) = 1/11; (3) = 1/5.

métalliques. La proportion entre les isomères α et β mononitronaphtalène correspond au rapport \sim 19, et est sensiblement constante au cours des divers essais. Si la réaction est suivie par voltampérométrie à une électrode tournante de platine, nous constatons que la hauteur de la vague de réduction de NO⁺ reste constante en fonction du temps. Par contre les vagues attribuées à la réduction de N₂O₄ et à l'oxydation du naphtalène diminuent au cours de la réaction alors qu'apparaît une

t, mn

- 157 -

t, mn
nouvelle vague attribuée au nitronaphtalène ($E_{L_2} = +1,67$). Le rôle catalytique peut donc être attribué à NO⁺. En comparant les résultats obtenus avec chaque nitrate $Zn(NO_3)_2$, $Cu(NO_3)_2$, $UO_2(NO_3)_2$, la meilleure activation est obtenue par $UO_2(NO_3)_2$. Cependant, $Cu(NO_3)_2$ et $Zn(NO_3)_2$ présentent l'avantage d'être beaucoup plus soluble que $UO_2(NO_3)_2$ dans le sulfolane (0,98 mole. ℓ^{-1} pour $Zn(NO_3)_2$; 0,89 mole. ℓ^{-1} pour le $Cu(NO_3)_2$; 0,15 mole. ℓ^{-1} pour $UO_2(NO_3)_2$ à température ambiante).

Le schéma réactionnel suivant est proposé:

. tout d'abord dissociation hétérolytique de N_2O_4 assistée par complexation sur un centre métallique M = Cu²⁺, Zn²⁺, UO_2^{2+}

$$N_{2}O_{4} + M(NO_{3})_{2} \neq NO^{+} + M(NO_{3})_{3}^{-}$$
 (17)

. puis nitrosation - oxydation du naphtalène

$$ArH + NO^+ \neq ArNO + H^+$$
 (18)

$$ArNO + N_2O_4 \approx ArNO_2 + N_2O_3$$

. puis régénération de NO⁺ par:

$$M(NO_3)_3 + H^+ \neq HNO_3 + M(NO_3)_2$$
(19)

suivie de la réaction (17). L'ensemble de ces deux réactions (17) et (19) correspond à:

 $N_2O_4 + H^+ \neq HNO_3 + NO^+ K = 6,3.10^{+8}$

La réaction (19) est fortement déplacée vers la droite au regard de la valeur de la constante d'équilibre:

$$K_{rég} = \frac{|HNO_3||M(NO_3)_2|}{|M(NO_3)_3||H^+|} = \frac{1}{K_{HNO_3}^{H^+} \cdot K_3^{*M}}$$

$$K_{rég} = 3,7.10^{+8}$$
 M = UO₂; $K_{rég} = 2,5.10^{+8}$ M = Cu;
 $K_{rég} = 3,4.10^{+8}$ M = Zn.

La réoxydation de N₂O₃ en N₂O₄ peut être obtenue par l'oxygène moléculaire: N₂O₃ + $1/2O_2 \rightarrow N_2O_4$.

Le passage d'un courant d'oxygène dans le milieu réactionnel permet d'augmenter encore le rendement en mononitronaphtalène (Figure 30). En effet, N_2O_4 ainsi régénéré a un meilleur pouvoir nitrant que N_2O_3 qui se forme au fur et à mesure de la réaction de nitration. Le cycle catalytique est donc bouclé. La réaction globale s'écrit:

 M_2O_2 + ArH + N₂O₄ \rightarrow ArNO₂ + HNO₃

| Rend. % $(\alpha + \beta)$ nitronaph.

Fig. 30: Nitration du naphtalène par une solution de N_2O_4 (contenant du $UO_2(NO_3)_2$)dans laquelle on fait barboter de l'oxygène $|N_2O_4| = |Naph| = 0,35 \text{ moles}^{-1}$ (1) $|UO_2(NO_3)_2 = 0$; (2) = 0,032 (3) = 0,032 moles^{-1} avec barbotage d'oxygène

III. DISCUSSION SUR LE MECANISME DE NITRATION PAR N204

La nitration est une des réactions organiques les plus étudiées. Le mécanisme généralement admis pour la nitration électrophile de substrats aromatiques, est basé sur les travaux de INGOLD et HUGHES 45 $H^{+} + HNO_{3} \neq H_{2}ONO_{2} +$ $H_{2}ONO_{2} + \underbrace{lent}_{NO_{2}} + H_{2}O$ $NO_{2} + ArH \rightarrow HArNO_{2} +$ $HArNO_{2} + rapide ArNO_{2} + H^{+}$

Au cours de travaux sur la nitration de substrats aromatiques par des sels de nitryle, G. OLAH et Collaborateurs ⁴⁶ concluent que la sélectivité et la régiosélectivité doivent être déterminées dans deux étapes distinctes. Pour rendre compte de la faible sélectivité, il a été suggéré que le premier intermédiaire est un complexe π , tandis que la seconde étape consiste en la formation de complexe σ correspondant à la formation régiosélective d'isomères. De même MOODIE et SCHOEFIELD³ ont montré qu'il était nécessaire d'introduire dans le classique schéma réactionnel de INGOLD, une étape supplémentaire précédent la formation de complexe σ . D'autre part, PERRIN ⁸ suggère que dans le cas de substrats aromatiques plus réactifs que le toluène, l'interaction initiale est un transfert monoélectronique qui donne une paire de radicaux:

$$ArH + NO_2^+ \rightarrow ArH + \cdot NO_2$$

qui réagissent entre eux pour donner en une deuxième étape un ion nitroarénium:

$$ArH \cdot + NO_2 \cdot \rightarrow Ar \stackrel{+}{\longleftarrow} NO_2$$

Quoique les avis divergent sur la nature du premier intermédiaire, tous les mécanismes concordent sur l'existence de deux étapes séparées, déterminant indépendamment la régiosélectivité et la sélectivité. Le mécanisme original de INGOLD doit être modifié:

> NO₂⁺ + ArH [≠] "premier intermédiaire" "premier intermédiaire" _₹ HArNO₂⁺ HArNO₂⁺ rapide ArNO₂ + H⁺

La nitration du naphtalène a été effectuée par divers agents nitrants dans différents solvants. Les principaux résultats sont rassemblés dans le tableau I.

La nitration du naphtalène effectuée par N_2O_4 dans le sulfolane, donne des rendements en mononitronaphtalène comparables à ceux obtenus par NO_2BF_4 si la réaction est catalysée par les différents processus chimiques et électrochimiques mis au point, à savoir:

- addition de NOClO₄, HClO₄, Zn(NO₃)₂, Cu(NO₃)₂, UO₂(NO₃)₂.
- électrooxydation du mélange N₂O₄ H₂O
- électrocatalyse par oxydation partielle de $NO_2 \neq NO_2^+ + e^-$

Tous les résultats expérimentaux, rendements en nitronaphtalène, études électrochimiques et spectroscopiques des réactions de nitration par N204, concordent pour affirmer que dans tous les systèmes catalytiques utilisés, l'activation de la réaction est attribuable à la présence de l'ion NO⁺ qui provient de la dissociation hétérolytique de $N_2O_4 \neq NO^+ + NO_3^-$. L'action de l'ion NO⁺ a déjà été invoquée dans la catalyse de la nitration du phénol par un mélange acide nitrique - acide nitreux ⁴⁹, ainsi que dans la 50 N,N-diméthylanilinium nitration d'ions du 36 1,2,3-triméthoxy-5-nitrobenzène par l'acide nitrique et du p.diméthoxybenzène par N₂O₄ ²⁶.

Le rôle joué par l'ion NO^+ dans l'activation n'est pas bien élucidé. La nitrosation de substrats aromatiques par NO^+ est très aisée, et tout naturellement une C-nitrosation a été invoquée comme processus initial de la nitration, la deuxième étape étant une oxydation. Or aucune preuve expérimentale de l'existence d'un tel composé nitrosé n'a encore pu être décelée. C'est pourquoi GIFFNEY et RIDD ont proposé un mécanisme par transfert électronique où NO^+ intervient comme catalyseur d'oxydation ⁵⁰:

ArH + NO⁺
$$\Rightarrow$$
 ArH·⁺ + NO·
NO· + NO₂⁺ \Rightarrow NO⁺ + NO₂·
NO₂· + ArH·⁺ \Rightarrow produits nitrés

Deux conditions sont nécessaires pour confirmer ce mécanisme: un potentiel redox du substrat aromatique compatible avec celui de NO⁺, et

- 161 -

Réactif	Solvant	Rapport a /ß	T°C	Réf.	
NO2BF4	dichlorométhane	12	20	47	
NO2BF4	Sulfolane	10	25	13	
NO2BF4	Nitrométhane	12	25	13	
HI;O3	Nitrométhane	29	25	34	
HNO3	Acide acétique	21	25	34	
HNO3	Acide sulfurique	21	70	34	
HNO3	Anhydride acétique	9	25	34	
CH30N02/CH30S02F	Acétonitrile	13	25	13	
AgNO3/CH3COC1	Acétonitrile	12	25	13	
AgNO3/C6H5COC1	Acétonitrile	12	25	13	
AgNO3/BF3	Acétonitrile	19	25	13	
C(NO2)4	Phase gaz	1	300	13	
N204	Dichlorométhane	24	25	48	
N204	Acétonitrile	24	25	13	
N204/Ce(NQ3)4-2NH4NO3	Acétonitrile	16	65	13	
Oxydation electrochimique+N ₂ O ₄	Acétonitrile	9	-	8	
Oxydation électrochimique+N ₂ O ₄	Dichlorométhane	65	-45	47	
N2O4 catalysé par CF3SO3H	Acétonitrile	23-24	25	7	
N ₂ O ₄ catalysé par CF ₃ CO ₂ H	Dichlorométhane	-	- 20	47	
N ₂ O4 catalysé par CH ₃ SO ₃ H	Dichlorométhane	-	-45 <t<-15< td=""><td>47</td></t<-15<>	47	
N204	Sulfolane	20	25	*	
N204-NOC104	Sulfolane	20	25	*	
N204.HC104	Sulfolane	20	25	*	
N ₂ O ₄ .H ₂ O Oxydation <i>electrochimique</i>	Sulfolane	19-20	25	*	
Electrocatalyse N ₂ O ₄	Sulfolane	20	25	*	
N204/Zn(NO3)2	Sulfolane	19	25	+	
N ₂ 04/Cu(NO ₃) ₂	Sulfolane	19	25	+	
N204/U02(N03)2	Sulfolane	19	25	+	
N203	Sulfolane	17	25	*	
HNO ₃	Sulfolane	-	25	*	

TABLEAU I. Nitration du naphtalène avec différents agents nitrants

*: Nos résultats

la présence notable d'ions NO_2^+ . Ces conditions ne sont pas remplies dans les divers essais de nitration du naphtalène par N_2O_4 . En effet, le potentiel redox du système $NO^+ + 1/2N_2O_4 / N_2O_3$ (E₀ = +0,77 V.), ne peut permettre à NO^+ d'oxyder le naphtalène: E₀ = +1,26 V., $NO_2^$ est en concentration très faible: 3.10^{-4} mole.l⁻¹ ainsi que NO_2^+ : 3.10^{-12} mole.l⁻¹ à 25°C (pour une concentration en N_2O_4 de 10^{-2} mole. l⁻¹).PERRIN ⁸ a remarqué que l'activation électrochimique par oxydation du naphtalène à un potentiel insuffisant pour oxyder N_2O_4 , conduit au mononitronaphtalène. Le rendement en α et β mononitronaphtalène est indépendant de la quantité d'électricité consommée. Dans ce cas, une catalyse acide est actuellement invoquée pour rendre compte des résultats expérimentaux ⁷. L'oxydation simultanée du substrat et de N_2O_4 conduit au 1,5 dinitronaphtalène ³³. L'agent responsable de la production de dinitronaphtalène est NO_2^+ généré à l'électrode selon: $NO_2 \rightarrow NO_2^+ + e^-$.

Compte tenu de nos propres résultats expérimentaux et de la nombreuse littérature publiée sur la nitration de substrats aromatiques, nous proposons pour la nitration électrophile du naphtalène le mécanisme schématisé ci-dessous, qui semble commun à tous les essais catalytiques entrepris dans ce travail:

NO+

Rapport $\alpha/\beta = 19 - 20$

Tout d'abord une nitrosation qui limite cinétiquement la réaction de nitration. La nature de l'intermédiaire "nitroso" ne peut être précisée. Cet intermédiaire pourrait être un composé du type π qui serait oxydé rapidement par N₂O₄ en un composé nitro, la régiosélectivité étant déterminée par le passage au composé σ .

Un mécanisme nitrosation - oxydation vient d'être proposé récemment par OLAH et Coll. ^{10,25} dans la nitration d'alkylbenzène catalysée par Hg(NO₃)₂ imprégné dans une résine Nafion H. Le mécanisme de nitration par nitrosation et oxydation a été très contreversé ces derniers temps, mais c'est celui qui rend mieux compte de nos résultats expérimentaux. La nitration électrophile de substrats aromatiques est une réaction typique de substitution, et on ne peut considérer qu'un seul type de mécanisme, rendant compte de toute les nitrations. Le mécanisme radicalaire (transfert à un électron) démontré dans les nitrations de certains composés aromatiques très réactifs, ne peut se substituer toujours au mécanisme électrophile bien connu (transfert à deux électrons). Un mécanisme purement radicalaire par activation thermique ou photochimique est à exclure car dans ce cas, une répartition statistique des isomères α et β mononitronaphtalène serait attendue.

En conclusion, la catalyse par l'ion NO⁺ a été démontrée dans la réaction entre N₂O₄ et le naphtalène dans le sulfolane. La recherche de nouveaux modes d'activation de la nitration par N₂O₄ nous a amené à utiliser la dissociation hétérolytique de N₂O₄ \neq NO⁺ + NO₃⁻ facilitée par l'addition d'acides au sens large du terme qui, en s'associant avec la base NO₃⁻, libère l'ion NO⁺. Les nitrates métalliques jouent le rôle d'acide tout comme H⁺. L'efficacité des systèmes catalytiques a été éprouvée sur la nitration du naphtalène. D'autre part, des activations électrochimiques par oxydation à potentiel contrôlé de N₂O₄ et du mélange N₂O₄ - H₂O, ont été interprétées par génération d'ion NO₂⁺ ou NO⁺.

IV. ANNEXE: DETERMINATION DES CONSTANTES DE FORMATION DES CHLOROZIN-CATES(II).

Compte tenu que les constantes des complexes de nitrate sont généralement proches de celles du chlorure:

- les constantes d'acidité de HNO3 et HCl sont égales respectivement à 16 et 14,5
- les constantes d'homoconjugaison de HNO₃ et HC1 (AH + A⁻

 *A*₂H⁻) sont toutes deux égales à 3,1

il nous a paru intéressant de calculer les valeurs des constantes de formation des complexes chloro dans le cas du Zinc: ZnCl_i²⁻ⁱ, en espérant obtenir une indication sur les valeurs des constantes de formation des complexes nitrato dans le sulfolane.

Il est à noter que les constantes des complexes ZnCli²⁻ⁱ ont déjà été déterminées dans des solvants comme l'eau ⁵¹, le méthanol ⁵², le diméthylsulfoxyde ⁵³:

$$K_{i}^{*} = \frac{|ZnCl_{i}^{2-i}|}{|ZnCl_{i-1}^{3-i}||Cl^{-i}|}$$

Le titrage d'une solution de ZnCl₄²⁻ par AgClO₄ suivi par une électrode indicatrice d'ion Cl⁻ (électrode d'argent recouverte de AgCl) fait apparaître trois points d'inflexion pour les rapports |Ag⁺|/|Cl⁻| 0,25, 0,5, 1 (Figure 31). Ces points sont caractéristiques respectivement des réactions suivantes:

 $2nCl_4^{2-} + Ag^+ \rightarrow AgCl_1 + 2nCl_3^{-}$ (1)

$$2nCl_3^- + Ag^+ + AgCl_1 + 2nCl_2$$
 (2)

et simultanément:

 $ZnCl_2 + Ag^+ \rightarrow AgCl_+ + ZnCl^+$ (3)

$$ZnCl^+ + Ag^+ \rightarrow AgCl_{\downarrow} + Zn^{++}$$
 (4)

soit globalement:

- 166 -

$$ZnC1_2 + 2Ag^+ \rightarrow 2AgC1 + Zn^{++}$$

L'équation de Nernst appliquée à ces systèmes électrochimiques ((1) à (4)):

 $ZnCl_{i}^{2-i} + Ag_{\downarrow} \neq AgCl + ZnCl_{i-1}^{3-i} + e^{-}$ (5) avec i = 1,2,3,4 donne:

$$E = E_0^{i} + 2,303 \frac{RT}{nF} \log \frac{|ZnCl_{i-1}^{3-i}|}{|ZnCl_{i-1}^{2-i}|}$$

L'analyse de la courbe de titrage montre que les couples électrochimiques (1) et (2) sont rapides. Le coefficient de la loi de Nernst est très proche de la valeur théorique 2,303 RT/nF respectivement égal à 59 mV et 61 mV). Les potentiels normaux E_0^2 et E_0^3 ont été déterminés et ont pour valeurs respectives -420 mV et -124 mV(\pm 3mV). Ces valeurs, jointes aux valeurs du potentiel normal du système Ag⁺/Ag et du produit de solubilité de AgC1 dans le sulfolane, respectivement +373 mV et 3,7.10⁻¹⁹ mole². ℓ^{-2} , permettent d'accéder au moyen de la relation:

$$E_0(Ag^+/Ag) = E_0^i - 0,06 \log K_i^* P_{AgC1}$$

aux valeurs des constantes $\log K_4^*$ et $\log K_3^*$, respectivement égales à +5,2 ± 0,2 et +10,1 ± 0,2.

En ce qui concerne le dernier saut de potentiel relatif aux deux couples électrochimiques simultanés (3) et (4), nous avons effectué un traitement informatique des données par affinement selon la méthode des moindres carrés. Les paramètres affinés sont: le coefficient de la loi de Nernst P et les constantes de complexation K_1^* et K_2^* . Les résultats obtenus sont:

> P = 60 ± 0,5 mV. log K₁^{*} = +12,1 ± 0,2 log K₂^{*} = +13,4 ± 0,2

Les potentiels normaux peuvent être déduits:

 $E_0^1 = +71 \pm 3 \text{ mV}.$ $E_0^2 = -7 \pm 2 \text{ mV}.$ Nous constatons que la constante K_2^* est supérieure à K_1^* comme le laissait présager la courbe potentiométrique où les neutralisations

Fig. 32: Simulation de la neutralisation d'une solution de $2nCl_2$ par $AgClO_4$ Evolution de la |C| des espèces $2nCl_2$, $2nCl^+$ et $2n^{2+}$ au cours du dosage

A l'aide de ces valeurs de constantes K_1^* et K_2^* , nous avons effectué une simulation (Figure 32). Nous avons en même temps reporté sur cette figure l'évolution de la concentration des différentes espèces au cours du dosage. Les deux couples (3) et (4) ne donnent ainsi qu'une seule vague comme nous l'avons constaté expérimentalement.

 $ZnCl_2$ est très peu dissocié dans le sulfolane, et il en est vraisemblablement de même pour $Zn(NO_3)_2$. Ceci est d'ailleurs confirmé par l'absence de la vague d'oxydation du nitrate libre ($E_{\frac{1}{2}} = +1,5$ V.) sur les enregistrements voltampérométriques des solutions de nitrate de zinc. La vague d'oxydation du nitrate n'est pas observée dans le cas de solutions de $Cu(NO_3)_2$ et $UO_2(NO_3)_2$, ce qui laisse présager que ces complexes sont eux aussi peu dissociés.

La formation des complexes trinitrato et tétranitrato entre N_2O_4 et $2n(NO_3)_2$, $Cu(NO_3)_2$, $UO_2(NO_3)_2$ ne peut être effective que si la valeur de la constante K_3^* et K_4^* est supérieure à celle de formation de N_2O_4 ($NO^+ + NO_3^- \neq N_2O_4$) c'est à dire: $K_{N_2O_4}^* = 1, 6.10^{+7}$ mole⁻¹

V. EXPERIMENTATION

Toutes les manipulations sont effectuées sous atmosphère d'azote sec à l'aide d'une boîte à gants.

1. Nitration du naphtalène par N204 en présence de NOC104

A une solution de naphtalène $(0,30.10^{-2} \text{ mole dans 5 cm}^3)$ dans le sulfolane, sont additionnés rapidement 5 cm³ d'une solution dans le sulfolane contenant N₂O₄ $(0,30.10^{-2} \text{ mole})$ et NOClO₄ (x mole), x variant de 0 à 0,60.10⁻³ mole. Des prélèvements successifs sont effectués sur le mélange réactionnel porté à 25°C. La réaction est stoppée par addition d'eau glacée et les produits organiques sont extraits du mélange par CCl₄ puis séchés sur sulfate de sodium anhydre et enfin analysés par chromatographie en phase gazeuse sur colonne.

2. Nitration du naphtalène par N204 en présence de HC104

A une solution de naphtalène portée à 25° C $(0,21.10^{-2}$ mole dans 5 cm³) dans le sulfolane sont additionnés rapidement 5 cm³ d'une solution de sulfolane contenant N₂O₄ $(0,21.10^{-2}$ mole) et HClO₄ (x mole) x variant de 0 à 0,21.10⁻³ mole. Des prélèvements sont effectués au cours du temps. Le prélèvement est additionné d'eau glacée et les produits organiques sont extraits par CCl₄ puis séchés sur sulfate de sodium anhydre et enfin analysés par chromatographie en phase gazeuse sur colonne.

> 3. Nitration du naphtalène par le mélange N_2O_4 - H_2O préalablement électrolysé

> A une solution de naphtalène $(0,23.10^{-2} \text{ mole dans 5 cm}^3)$

- 169 -

dans le sulfolane porté à 25°C sont additionnés rapidement 5 cm³ d'une solution de sulfolane contenant N₂O₄ (0,23.10⁻² mole) et H₂O (x mole) x variant de 0 à 0,14.10⁻³ mole, préalablement électrolysée de façon exhaustive au potentiel +1,00 V.Des prélèvements sont effectués au cours du temps. Le prélèvement est additionné d'eau glacée. L'analyse des produits de réaction est effectuée comme précédemment par chromatographie en phase vapeur.

4. Nitration du naphtalène par N204 préalablement électrolysé

A une solution de naphtalène $(0,22.10^{-2} \text{ mole dans 5 cm}^3)$ dans le sulfolane portée à 25°C sont additionnés 5 cm³ d'une solution de N₂O₄ (0,22.10⁻² mole) dans le sulfolane préalablement électrolysée de façon partielle (de 3,5 à 14%) à +1,70 Volt. L'évolution de la réaction est analysée comme précédemment par chromatographie en phase gaz.

5. Réaction entre les nitrates de métaux Zn, Cu, U et N₂O₄

 $UO_2(NO_3)_2$ anhydre est obtenu par déshydratation à $100^{\circ}C$ sous vide de $UO_2(NO_3)_2, 6H_2O$ (Merck). Une telle technique n'est pas applicable aux nitrates de zinc et de cuivre qui se décomposent dans les conditions de la déshydratation. Les nitrates $Zn(NO_3)_2$ et $Cu(NO_3)_2$ rigoureusement exempts d'eau ont donc été préparés "in situ" par réaction dans le sulfolane entre les métaux en poudre et N_2O_4 . A une solution concentrée en N_2O_4 (2 moles) on additionne de la poudre de zinc (0,5 mole). Une réaction violente se produit, il est alors nécessaire de refroidir la solution. Quand la réaction est terminée, le mélange réactionnel est placé sous pression réduite ce qui permet l'élimination des oxydes d'azote en excès. La solution incolore résiduelle est analysée: $N/Zn \approx 2$. Elle correspond à la composition du nitrate $Zn(NO_3)_2$. Une méthode similaire a permis d'obtenir $Cu(NO_3)_2$, il est à noter que la réaction entre Cu et N_2O_4 n'est activée qu'à partir de $40^{\circ}C$.

L'étude de la réaction $M(NO_3)_2 + N_2O_4 \neq M(NO_3)_3^- + NO^+$ est réalisée par voltammétrie sur électrode tournante de platine et par spectroscopie Raman.

Les études électrochimiques sont effectuées sur des solutions 10^{-2} M dans le sulfolane avec une concentration 0,1 M en perchlorate de tétraéthylammonium sur une électrode en platine avec le montage

classique à trois électrodes.

Les spectres Raman ont été obtenus sur des tubes scellés de solutions 0,2 M en nitrate métallique et 0,2 M en N_2O_4 dans le sulfolane. La radiation excitatrice est la raie à 488,0 nm d'un Laser à argon ionisé, avec une puissance de 150 mW.

6. Nitration du naphtalène par N_2O_4 en présence de $Zn(NO_3)_2$, Cu(NO₃)₂, UO₂(NO₃)₂

A une solution de naphtalène $(0,35.10^{-2}$ mole dans 5 cm³) dans le sulfolane portée à 25°C, sont additionnés 5 cm³ d'une solution de N₂O₄ (0,35.10⁻² mole) et de nitrate métallique (x mole) x variant de O à 0,70.10⁻³ mole. L'évolution de la réaction est analysée comme précédemment par chromatographie en phase gaz.

- 171 -

BIBLIOGRAPHIE

1. G.A. OLAH et S.J. KUHN
Friedel and Related Reactions. Acylation and Related Reactions
Vol.3, PartII, Interscience, New York, p.1393, (1964)
2. L.F. ALBRICHT, C. HANSON
Industrial and Laboratory Nitrations - Am. Chem. Soc.
Symposium series 22, Washington D.C., 17-46 (1976)
3. J.G. HOGGETT, R.B. MOODIE, J.R. PENTON, K. SCHOFIELD
Nitration and Aromatic Reactivity - University Press Cambridge
50-74 (1971)
4. W. KAZUO, I. HIROSHI, A. WATARU
Bull. Chem. Soc. Jap., 51 (4), 1253-4 (1978)
5a. A.F. SMETANA, R.C. CASTORINA
U.S. Gov. Res. Develop. Rep. 70 (10), 64-5 (1970)
b. MONSANTO
U.S. 4.107.220 (Pr.4 - 11 - 77)
c. A.I. SITKIN, G.M. ROTOVA, A.D. NIKOLAEVA
Sb. Nauch. Tr, Kuzbas Politekh. Inst., n°36, 62-5 (1971)
A.I. SITKIN, L.A. DEMINA, A.D. NIKOLAEVA
n°36, 66-72 (1971)
A.I. SITKIN, G.M. ROTOVA, L.G. KONSTANTINOVA, A.D. NIKOLEAVA
n°36, 59-61 (1971)
d. J.C. DORE, C. VIEL
Acad. Sci. Ser. C., 276 (23), 1675 (1973)
e. A.I.SITKIN, R.F. CHERNYAEVA, G.I. SIMONOVA
Sb. Nauch. Tr, Kuzbas Politekh Inst., n°52, 135-8 (1972)
f. O.Z. SAFIULINA, A.I. SITKIN, A.L. FRIDMAN, A.D. NIKOLAEVA
Tezisy Vses. Soveshch Khim. Nitrosoédimenu, 5th, 44-5 (1974)
g. A.I. SITKIN, O.S. SAFIULINA, A.L. FRIDMAN
Sb. Nauch. tr, Kuzbas Politekh. Inst., 81, 142-7 (1976)
h. ELI LILLY
U.S. 3.784.613 (Pr. 28 - 6 - 71)
i. E.V.P. TAO, C.F. CHRISTIE
Org. Prep. Proced. Int., 4 (6), 300-1 (-1972)

6a. W.A. PRYOR, J.W. LIGHTSEY and D.F. CHURCH J. Am. Chem. Soc., 104, 6685-6692 (1982) b. D.B. MENZEL, "Free Radical in Biology", Ed. W.A. PRIOR Academic Press, New York, Vol. II, p.181-182 (1976) c. P. SCHMITZ, M. GROS, R.I. BEN AIM Bull. Soc. Chim. Fr., 9-10 Pt1, 1977-82 (1975) d. W.A. PRIOR, J.W. LIGHTSEY Science (Washington, D.C.), 214, 435-437 (1981) 7. L. EBERSON, L. JONSSON et F. RADNER Acta Chem. Scand., B 32, 749-753 (1978) 8. C.L. PERRIN J. Am. Chem. Soc., 99, 5516-5518 (1977) 9. E.B. PEDERSEN, T.E. PETERSEN, K. TORSSELL and S.O. LAWESSON Tetrahedron, 29, 579 (1973) 10. G.A. OLAH, S.C. NARANG, J.A. OLAH and K. LAMMERTSMA Proc. Natl. Acad. Sci. USA, 79, 4487-4494 (1982) 11. G.A. OLAH Acc. Chem., 13, 330-336 (1980) 12. G.A. OLAH, H.C. LIN, J.A. OLAH and S.C. NARANG Proc. Natl. Acad. Sci. USA, 75, 1045-1049 (1978) 13. G.A. OLAH, S.C.NARANG and J.A. OLAH Proc. Natl. Acad. Sci. USA, 78, 3298-3300 (1981) 14. B. MILLIGAN J. Org. Chem., 48, 1495-1500 (1983) 15. D.S. ROSS, K.F. KUHLMANN and R. MALHOTRA J. Am. Chem. Soc., 105, 4299-4302 (1983) 16. D.S. ROSS, R. MALHOTRA, W.C. OGIER J. Chem. Soc., Chem. Commun., 1353 (1982) 17. P. DESHONG, S. RAMESH, J.J. PEREZ J. Org. Chem., 48, 2118-2120 (1983) 18a. C.D. GARNER, J.A. JOULE Report 1982, AFRPL-TR-82-073; Order N° AD-121040, Avail. NTIS. From Gor. Rep. Announce Index (U.S.), 83 (5), 772 (1983) b. Ube Industries, Ltd. Jpn. Kokai Tokkyo Koho JP 57,142,947 |82, 142, 947| - Chemical Abstrats, Vol. 98, p.388 (1983) 19. B. MASCI J. Chem. Soc., Chem. Commun., (21), 1262-3 (1982)

20. R.G. COOMBES, J.G. GOLDIND and P. HADJIGEORGIOU J. Chem. Soc. Perkin Trans. 2, 1451 (1979) 21. G.A. OLAH and H.C. LIN Synthesis, 488-490 (1973) 22. G.A. OLAH and H.C. LIN J. Am. Chem. Soc., 96, 2892-2898 (1974) 23. J.G. HOGETT, R.B. PENTON, J.R. PENTON and K. SCHOFIELD "Nitration and Aromatic Reactivity", Cambridge University Press, New York (1971) 24. A.V. TOPCHIEV "Nitration of Hydrocarbons and Other Organic Compound", Pergamon Press, New York (1959) 25. G.A. OLAH, A.P. FUNG, S.C. NARANG and J.A. OLAH J. Org. Chem., 46, 3533-3537 (1981) 26. T.G. BONNER, R.A. HANCOCK, G. YOUSIF and F.R. ROLLE J. Chem. Soc. (B), 1237 (1969) 27. G.A. OLAH, R. MALHOTRA and S.C. NARANG J. Org. Chem., Vol. 43, n°24, 4628 (1978) 28. G.A. OLAH, V.V. KRISHNAMURTHY and S.C. NARANG J. Org. Chem., 47, 596-598 (1982) 29. T. KAMEO, S. NISHIMURA and O. MANABE Nippon Kagaku Kaishi, 122-126 (1974) 30. T. KAMEO, T. HIRASHIMA, O. MANABE Nippon Kagaku Kaishi, (3), 414-19 (1983) 31. T.G. BONNER and R.A. HANCOCK Chem. Comm., 780 (1967) 32. E. HUNZIKER, P.C. MYHRE, J.R. PENTON and H. ZOLLINGER Helvetica Chimica Acta, VoL 58, Fasc. 1, Nr 29-30, 230 (1975) 33. J.M. ACHORD and C.L. HUSSEY J. Electrochem. Soc.: Electrochemical Science and Technology 2556 (1981) 34. P.G.E. ALCORN and P.R. WELLS Aust. J. Chem., 18, 1377 (1965) 35a. A.I. TITOV J. Gen. Chem. USSR, 16, 1896-1906 (1946) b. A.I. TITOV Zh. Obshch. Khim, 18, 190 (1948) 36. L. MAIN, R.B. MOODIE et K. SCHOFIELD J. Chem. Soc., Chem. Commun., 48 (1982)

37. Y. AUGER

Thèse, Lille (1978)

38. L. EBERSON and RADNER

Acta Chem. Scand. B, 34, 739-745 (1980)

39. L. EBERSON, in "Organic Electrochemistry" Ed. M.M. BAIZER, M. DEKKER, New York, 447-468 (1973)

40. M.R. DRAPER and J.H. RIDD

J. Chem. Soc., Chem. Commun., 445 (1978)

41. YU.A. AFANAS'EV, V.G. TSUBANOV, A.I. RYABININ (URSS)

Radiokhimiya, 13 (2), 311-12 (Russ) (1971) - Chemical Abstracts, Vol. 75, p.653 (1971)

42. L.V. KOBETS, G.N. KLAVSUT, D.S. UMREIKO

Zh. Neorg. Khim. 26 (1), 173-8 (Russ) (1981) - Chemical Abstracts, Vol. 94, p.681 (1981)

43. L.V. KOBETS, G.N. KLAVSUT, V.M. DOLGOV, D.S. UMREIKO (URSS)

Radiokhimiya, 25(1), 48-51 (Russ) (1983) - Chemical Abstracts,

Vol. 98, p.483 (1983)

44. S.E. MANAHAN et R.T. IWAMOTO

Inorg. Chem., 4, 1409 (1965)

45. E.D. HUGHES, C.K. INGOLD and R.I. REED

J. Chem. Soc., 2400-1440 (1950)

46. S.J. KUHN and G.A. OLAH

J. Am. Chem. Soc., 83, 4564-4571 (1961)

47. L. EBERSON and F. RADNER

Acta Chem. Scand., B 34, 739 (1980)

48. F. RADNER

Acta Chem. Scand., B 37, 65-67 (1983)

49. D. ROSS, G.P. HUM et W.G. BLUCHER

J. Chem. Soc., Chem. Commun., 532 (1980)

50a. J.C. GIFFNEY and J.H. RIDD

J. Chem. Soc., Perkin Trans. 2, 618 (1979)

b. F. AL-OMRAN, K. FUJIWARA, J.C. GIFFNEY, J.H. RIDD and S.R. ROBINSON

J. Chem. Soc., Perkin Trans. 2, 518 (1981)

51. P. GERDING

Acta Chem. Scand., 23, 1695 (1968)

52. H. HOFFMANN, G. PLATZ et M. FRANKE

Proc. Int. Conf. Coord. Chem., 16th, Paper 3.35 (1974)

53. S. AHRLAND et N.O. BJÖRK

Acta Chem. Scand., Ser. A 30, 270 (1976)

54. C.C. ADDISON, W. KARCHER et H. HECHT

Chemie in Flüssigem distickstoffetroxid und schwefeldioxid, tome 3, Pergamon Press, 19-40 (1967)

Partie 4

REDUCTION ELECTROCHIMIQUE DE COMPLEXES

DINITROSYLES DU MOLYBDENE A 18 ELECTRONS ET ETUDE DES COMPLEXES RADICALAIRES A 19 ELECTRONS

I. INTRODUCTION

Le chapitre précédent a montré que des complexes métalliques à degré d'oxydation suffisamment élevé: Zn^{2+} , Cu^{2+} et U^{6+} réagissaient avec des oxydes d'azote comme N_2O_4 pour donner des complexes nitrato et libérer l'ion NO⁺. Les complexes métalliques à bas degré d'oxydation interagissent quant à eux, avec des composés azotés NO ¹, NO⁺ ², NOC1 ³, NOBr ³ pour donner des complexes nitrosyles où le monoxyde est coordonné à un centre métallique par l'atome d'azote.

L'étude de ces complexes n'est pas sans intérêt pratique. Les complexes nitrosyles du type $Ir(NO)_2(CO)_2$ 4 sont des catalyseurs de la réaction: 2NO + CO + CO₂ + N₂O. Ils peuvent donc être utilisés dans l'élimination des oxydes d'azote industriel et des gaz d'échappement des automobiles. De plus, l'activation par coordination sur un centre métallique est une voie d'accès à certains composés nitrosés à partir du monoxyde d'azote ^{5,6,7}. D'autre part, ces complexes nítrosyles sont des catalyseurs de diverses réactions organiques: oxydation 8 , oligomérisation 9 , métathèse des alcènes 10 .Les ligands nitrosyles sont des ligands à 1 ou 3 électrons ¹¹ et leurs fortes interactions électroniques avec le métal influent également sur toute la sphère de coordination. L'ensemble Métal - NO joue donc un rôle de puits électronique pour les autres ligands et en particulier pour les alcènes dans le cycle catalytique. L'action de NO sur MoCl5 conduit au complexe $|Mo(NO)_2Cl_2|_n$ ¹² qui est le précurseur d'une série de complexes hexacoordonnés à 18 électrons $Mo(NO)_2Cl_2L_2$ ¹³ avec L ligand à 2 électrons: L = pyridine, nitriles, phosphine...

Les réactions de substitution du ligand chloro de complexes chloro et leur remplacement par des ligands à 2 électrons: phosphines, nitriles, alcènes, alcynes, ont été très utilisées ces dernières années 14 . En effet, les complexes cationiques possédant des ligands alcènes ont été étudiés en raison de leur application en synthèse organique catalytique 15 . Les mécanismes conventionnels associatif et dissociatif d'échange de ligands impliquent la présence d'intermédiaire à 16 et 18 électrons. Néanmoins des récents travaux ont mis en évidence des mécanismes radicalaires dans des réactions d'échanges de ligands dans des complexes carbonyles 17 . En outre une élimination du ligand chloro de la sphère de coordination de $|Fe(NO)_2CI|_2$ par réduction chimique et électrochimique a été proposée ces dernières années et les espèces réduites se sont avérées être des catalyseurs très efficaces de réactions d'oligomérisation d'alcènes par rapport aux complexes cationiques du même type 9 ; ces derniers complexes sont obtenus par simple substitution du ligand chloro de $|Fe(NO)_2CI|_2$ assistée par un sel d'argent AgPF₆,AgClO₄.

Une série de complexes octaédriques à 18 électrons du type $Mo(NO)_2L_2Cl_2$ a été synthétisée et étudiée récemment ¹³ avec L = MeCN, CH_2 CHCN, PhCN, pyridine Py, et $L_2 = 2,2$ bipyridine bipy. Les complexes monocationiques et dicationiques ont été obtenus par substitution du ligand Cl par des ligands à 2 électrons nitriles et pyridine, cette C1substitution n'est effective qu'après élimination du par précipitation sous forme de chlorure d'argent. Les complexes cationiques ont été isolés ¹⁹ avec l'anion ClO₄⁻ dans des composés répondant aux $|Mo(NO)_{2}L_{2}C1(MeCN)||ClO_{4}|$ formules suivantes: et $|Mo(NO)_{2}L_{2}(MeCN)_{2}||C10_{4}|_{2}.$

La réduction électrochimique des complexes di et monochloro a été entreprise dans l'espoir d'obtenir une élimination réductrice du ligand Cl de la sphère de coordination du métal. La réduction des complexes cationiques a été effectuée pour conforter le mécanisme électrochimique de l'élimination du ligand Cl. Les espèces réduites à durée de vie appréciable ont pu être caractérisées dans certains cas. Peu de complexes dinitrosyles à 19 électrons soit du molybdène soit du tungstène ont été isolés jusqu'à présent, hormis trois complexes stabilisés par des ligands dithiocarbamate 20 et 2,2'bipyridine 21 et cyclopentadienyl $n^{\frac{5}{2}}$ C5H5 22.

II. SYNTHESES DES COMPLEXES MOLYBDENE DINITROSYLES A 18 ELECTRONS

La réaction à la température ordinaire entre $MoCl_5$ et NOdans le chlorobenzène conduit à un solide vert sombre ¹². Le composé est insoluble et précipite durant la réaction. Le spectre infrarouge obtenu en suspension dans le nujol montre deux bandes intenses à 1815 et 1708 cm⁻¹. Ce résultat est en accord avec ceux obtenus soit par cette méthode, soit par réaction entre $Mo(CO)_6$ et NOCl ³. L'examen du mélange réactionnel en fin de réaction dans C_6H_5Cl révèle la présence de NOCl; ceci suggère la réaction de formation suivante:

 $MoCl_5 + 5NO \rightarrow Mo(NO)_2Cl_2 + 3NOCl$

Au composé $|Mo(NO)_2Cl_2|_n$ est attribuée une structure polymérisée par pont μ chloro.

L'obtention de complexes neutres hexacoordonnés est réalisée ¹³ par coupure des ponts μ chloro dans $|Mo(NO)_2Cl_2|_n$ assistée par des ligands à deux électrons: P Ph₃, Py, MeCN, CH₂—CHCN, PhCN, bipy. D'autres ligands ont été également utilisés: alcools, cétones ou amines, cependant aucune réaction n'est observée avec des oléfines et des dioléfines chélatantes comme les norborna -2,5- dione ou le <u>cis</u>. <u>cis</u>-cycloocta-1,5-diènes. D'autres voies de synthèses des complexes hexacoordonnés dinitrosyles du molybdène ont été proposées, à savoir:

- a) l'action de NO sur $Mo(CO)_{3}L_{2}Cl_{2}^{2}$,
- b) l'action de NOBr sur $Mo(CO)_4(PPh_3)_2^3$

c) la réaction de NO avec des complexes à liaison $Mo \equiv Mo^{23}$.

Des études structurales 13,24 ont permis de classer les complexes dinitrosyles hexacoordonnés du molybdène en deux familles selon leur stéréochimie <u>cis</u> - dinitrosyl - <u>trans</u> - dichloro <u>cis</u> L₂ pour L = py et L₂ = bipy, et <u>cis</u> - dinitrosyl - <u>cis</u> - dichloro - <u>trans</u> L₂ pour L = PPh₃ ou RCN.

- 176 -

Structure moléculaire de Mo(NO)₂(PPh₃)₂Cl₂ d'après réf. 24

Structure moléculaire de $Mo(NO)_2(bipy)Cl_2$ d'après réf. 13

L'oligomérisation de diènes et d'oléfines activées se produit en présence de complexes cationiques nitrosyles provenant de $|M(NO)_2CI|_2$ avec M = Co ou Fe. L'arrachement d'un ligand Cl de la sphère de coordination est nécessaire avant d'observer toute activité catalytique ⁹. L'activité est attribuée à une espèce solvatée du type $|M(NO)_2|^+$ qui échange rapidement la molécule de solvant coordonnée avec le substrat et qui, de par sa charge, active le substrat. La synthèse et la caractérisation de nouveaux complexes cationiques du type: $|Mo(NO)_2L_2CIL'|^+$ et $|Mo(NO)_2L_2L'_2|^{2+}$ ont été publiées récemment ¹⁹. Certaines de ces espèces sont actives dans la polymérisation du norbornadiene.

A partir des complexes neutres $|Mo(NO)_2L_2Cl_2|$, les complexes monocationiques $|Mo(NO)_2L_2ClS|^+$ et dicationiques $|Mo(NO)_2L_2S_2|^{2+}$ (S représente une molécule de solvant), sont obtenus par échange métathétique de Cl⁻ avec un anion non complexant comme ClO₄⁻, BF₄⁻ et PF₆⁻ Ces complexes sont stables en solution sous une forme solvatée, mais peuvent être stabilisés et isolés par addition d'un ou deux équivalents de ligands à deux électrons L': L' = R—CN, L'₂ = bipy, qui se substituent aux molécules de solvant S. Les études stéréochimiques montrent que la substitution des ligands chloro s'effectue sans réarrangement de la sphère de coordination du molybdène ¹⁹.

Les réactions de substitution des ligands et en particulier de ligands chloro, sont lentes pour les complexes à 18 électrons du type: $Mo(NO)_2L_2Cl_2$. En effet, la substitution de deux ligands Cl par deux ligands MeCN s'effectue à reflux dans l'acétonitrile après quelques heures et seulement en présence de sel d'argent pour donner le complexe dicationique $|Mo(NO)_2(MeCN)_4|^{2+}$. Des travaux récents sur des réactions de substitution dans les complexes carbonyles montrent que les réactions sont beaucoup plus rapides pour les complexes à nombre impair d'électrons, 17 en l'occurence ¹⁷. Il nous a paru intéressant d'évaluer ²⁵ l'influence d'un transfert électronique sur les vitesses de réaction substitution des complexes de nitrosyles: $|Mo(NO)_2L_2Cl_2|,$ $|Mo(NO)_2L_2C1 L'|^+$, $|Mo(NO)_2L_2L'_2|^{2+}$. En outre, chaque fois qu'il sera possible de stabiliser un complexe radicalaire, sa caractérisation spectroscopique sera effectuée.

III. REDUCTION ELECTROCHIMIQUE DE COMPLEXES DICATIONIQUES $|M_0(NO)_{2L_2L'_2}|^{2+}$

Les diagrammes de voltammétrie cyclique du complexe dicationique: $|Mo(NO)_2(bipy)_2|^{2+} \underline{1}$ obtenus soit dans l'acétonitrile soit dans le nitrométhane, présentent un pic cathodique et le pic anodique associé (Figure 1). Le rapport de l'intensité des pics i_p^C / i_p^a est égal à 1, et la différence de potentiel $\Delta E = E_p^C - E_p^a = 0,060$ V entre les deux pics montrent que le transfert est monoélectronique et est réversible à toutes les vitesses de balayage employées et à toutes les températures expérimentales. Le complexe à 19 électrons $|Mo(NO)_2(bipy)_2|^+$ est donc stable, tout au moins à l'échelle de temps de la voltammétrie cyclique. Une coulométrie effectuée à -0,4 V prouve que le transfert est monoélectronique (réaction (1)). Si le balayage cathodique est poursuivi à des potentiels plus réducteurs dans l'acétonitrile, un pic supplémentaire cathodique est observé (Figure 1).

- 177 -

Fig. 1: Voltammétrie cyclique d'une solution de $|Mo(NO)_2(bipy)_2|^{2+}$ $10^{-3} molel^{-1}$ dans l'acétonitrile à 20°C (TEAP 0,1 molel^{-1}) Vitesse de balayage 0,1 V.s⁻¹

 $|Mo(NO)_2(bipy)_2|^{2+} + e^{-} \neq |Mo(NO)_2(bipy)_2|^{+}$ (1)

 $|Mo(NO)_2(bipy)_2|^+ + e^- \rightarrow |Mo(NO)_2(bipy)_2|$ (2)

Ce transfert électronique n'est pas réversible (réaction (2)). Toutefois le complexe à 20 électrons apparaît stable à l'électrode puisqu'un pic anodique net, $19 \rightarrow 18$ électrons, est réobtenu lors du balayage retour.

Dans le cas des complexes dicationiques comportant des ligands nitriles: $2 |Mo(NO)_2(MeCN)_4|^{2+}$, $3 |Mo(NO)_2(CH_2 - CH - CN)_4|^{2+}$, $4 |Mo(NO)_2(PhCN)_4|^{2+}$, un balayage cathodique de voltammétrie à variation linéaire de tension, fait apparaître sur les voltampérogrammes effectués dans le nitrométhane un pic cathodique, mais aucun courant anodique n'est détecté au cours du balayage en retour (Tableau I). Tous les potentiels sont donnés par rapport à l'électrode au calomel. L'absence de transfert électronique observable sur le voltampérogramme au cours du balayage retour provient de la décomposition rapide des complexes réduits à la température ambiante. Cependant si les expériences sont répétées à basse température et à des vitesses de balayage rapides, un pic anodique bien défini est observé.

Dans l'acétonitrile, les voltampérogrammes des complexes dicationiques: 2, 5 $|Mo(NO)_2(Py)_2(MeCN)_2|^{2+}$, 6 $|Mo(NO)_2(bipy)(MeCN)_2|^{2+}$ montrent toutes les caractéristiques d'un transfert réversible monoélectronique dès la température ambiante (Figure 2 et 3):

 $i_{p}^{c}/i_{p}^{a} = 1$ et $E_{p}^{c} - E_{p}^{a} = 0,060$ V.

 $|Mo(NO)_2(MeCN)_4|^2 + e^- \neq |Mo(NO)_2(MeCN)_4|^+$ (3)

Les potentiels normaux des systèmes réversibles peuvent être évaluer par la relation: $E^{0} = E_{p}^{c} + E_{p}^{a}/2$, ils sont répertoriés au tableau I. La valeur des potentiels normaux dépend de la nature des ligands L. Les complexes dicationiques sont d'autant plus facilement réduits que le pouvoir o donneur des ligands L est plus faible: acétonitrile < pyridine < 2,2'bipyridine < phosphine. La valeur des potentiels normaux va dans le même sens que la valeur des fréquences des vibrations vNO des complexes correspondants (Tableau I). Il est à noter que les diagrammes de voltammétrie cyclique du complexe |Mo(NO)₂(PPh₃)₂(MeCN)₂|²⁺ 7, ne montrent qu'un transfert électronique irréversible dans l'acétonitrile quelles que soient les vitesse de balayage et les températures expérimentales.Il est possible que dans l'état réduit, les ligands PPh3 soient expulsés de la sphère de coordination et donnent des réactions secondaires avec le complexe à 18 électrons de la solution. Il n'en reste pas moins que dans la plupart des cas le solvant acétonitrile renforce la stabilité des solvates acétonitrile à 19 électrons par rapport à des solvants comme le nitrométhane.

Les spectres de RMN du proton des complexes acétonitrile à 18 électrons ¹⁹ montrent que l'échange entre l'acétonitrile coordonné CH₃CN et le solvant CD₃CN n'est total qu'après deux heures à température

TABLEAU I. Caractéristiques électrochimiques et spectroscopiques infrarouge

des complexes dinitrosyles du molybdène

Complexes	E _p red a _{en volt}	$(E_p^{red}+E_p^{OX})/2 en volt$	i ^c /i ^a	v _s (NO) cm ⁻¹	v _{as} (NO) cm ⁻¹
1. $ M_0(NO)_2(bipy)_2 ^{2+}$	-0,17	-0.14	1.0	1830	17 30
2. $ Mo(NO)_2(MeCN)_A ^{2+}$	-0.03	0.00	1.0	1860	1750
3. $ M_0(NO)_2(CH_2=CHCN)_A ^{2+b}$	-0,17		irrC	1850	17 30
4. $ M_0(NO)_2(PhCN)_4 ^{2+} b$	-0,18		irr	1850	1750
5. $ Mo(NO)_{2}Py_{2}(MeCN)_{2} ^{2+}$	-0,08	-0,05	1,0	1830	1720
6. Mo(NO)2(bipy)(MeCN)2 ²⁺	-0,12	-0,09	1,0	1830	17 30
7. Mo(NO) ₂ (PPh ₃) ₂ (MeCN) ₂ ²⁺	-0,60		irr	1805	1690
8. Mo(NO) ₂ (MeCN) ₃ C1 ⁺ 9. Mo(NO) ₂ (CH ₂ =CHCN) ₃ C1 ⁺ ^b	-0,31 -0,41	-0,27	1.6 irr ^c	1830 1830	1720 1720
10. Mo(NO) ₂ (PhCN) ₃ C1 + b	-0,45		irr ^c	1830	1720
11. Mo(NO) ₂ (Py) ₂ C1(MeCN) ⁺	-0,35	-0,32	1,5	1810	1690
12. Mo(NO) ₂ (bipy)C1(MeCN) ⁺	-0,38	-0,35	1,0	1810	1690
13. Mo(NO)2(MeCN)2C12	-0,65	-0,62	2.0	1805	1685
14. Mo(NO) ₂ (CH ₂ =CHCN) ₂ C1 ₂ ^b	-0,64	-0,60	4,0	1800	1680
15. Mo(NO)2(PhCN)2C12	-0,64	-0,60	3,0	1800	1690
16. Mo(NO)2(PPh3)2C12	-0,90	-	irr ^c	1785	1690
17. Mo(NO)2Py2C12	-0,62	-0,57	4,0	1780	1680
18. $Mo(NO)_2(bipy)Cl_2$	-0,62	-0,57	1,0	1780	1650

Les expériences ont été réalisées dans l'acétonitrile, avec environ 10^{-3} mole ϵ^{-1} en complexe et 0,1 mole ϵ^{-1} en TEAP (perchlorate de tétraéthylammonium). Vitesse de balayage: 0,1 V.s⁻¹ et T: 25°C

a: le potentiel de référence est celui de l'électrode au calomel

b: expérience réalisée dans le nitrométhane

c: processus irréversible

Fig. 2: Voltammétrie cyclique d'une solution de $|Mo(NO)_2(MeCN)_4|^{2+}$ 5.10⁻³ molel⁻¹ dans l'acétonitrile à 20°C (TEAP 0,1 molel⁻¹) Vitesse de balayage 0,1 V.s⁻¹

Fig. 3: Voltammétrie cyclique dans l'acétonitrile (TEAP 0,1 molel⁻¹) à
20°C de: a) |Mo(NO)₂Py₂(MeCN)₂|²⁺ 10⁻³ molel⁻¹
b) |Mo(NO)₂(bipy)(MeCN)₂|²⁺ 6.10⁻³ molel⁻¹
Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹

ambiante, par contre les résultats de voltampérométrie cyclique montrent que l'échange ligand - solvant est beaucoup plus rapide dans les complexes à 19 électrons puisque le système rédox n'est réversible qu'à basse température.

A des potentiels très réducteurs, le complexe dicationique 2 subit un autre transfert électronique, le pic observé en voltammétrie cyclique est toujours mal défini (Figure 2) et aucun pic anodique n'est observé au cours du balayage en retour, même à basse température et des vitesses de balayage supérieures à $2V.s^{-1}$. L'absence de pic anodique correspond vraisemblablement à une décomposition rapide du complexe à 20 électrons et cela même en solvant acétonitrile:

 $|Mo(NO)_2(MeCN)_4|^+ + e^- \neq |Mo(NO)_2(MeCN)_4|$ (4)

|Mo(NO)2(MeCN)4| rapide produits

Une électrolyse à potentiel contrôlé de $|Mo(NO)_2(bipy)_2|^{2+}$ conduite jusqu'à son terme, $E_i = -0,4$ V, consomme une mole d'électrons par mole de complexe introduit, ce qui confirme la nature monoélectronique du premier transfert électronique. Toutefois si cette électrolyse n'est pas effectuée à 0°C, la hauteur de la vague observée sur le voltampérogramme obtenu à une électrode de platine tournante, diminue au cours du temps ce qui indique une certaine décomposition du complexe radicalaire $|Mo(NO)_2(bipy)_2|^+$. Malheureusement la solubilité du complexe est très faible aux basses températures et ne permet pas d'obtenir une concentration suffisante pour une bonne caractérisation spectroscopique du complexe réduit.

Une électrolyse au potentiel -0,030 V du complexe $|Mo(NO)_2(MeCN)_4|^{2+}$ dans l'acétonitrile requiert le passage d'un faraday par mole de complexe pour être totale. Cependant, une réoxydation à +0,030 V de la solution réduite ne redonne la solution de départ que si la température expérimentale est maintenue vers $-20^{\circ}C$ (Figure 4).

Des électrolyses préparatives des complexes à 19 électrons dérivés des complexes acétonitriles présentant des systèmes réversibles en voltammétrie cyclique peuvent être conduites jusqu'à leur terme dans l'acétonitrile si les températures d'électrolyse sont maintenues suffisamment basses pour minimiser toute décomposition des radicaux.

Une telle labilité des complexes radicalaires n'est pas incompatible avec un système rédox parfaitement réversible aux regards des résultats de voltammétrie cyclique. En effet, une durée de demi-vie de l'ordre de quelques secondes de l'espèce radicalaire est suffisante pour donner un rapport i_{p}^{c}/i_{p}^{a} voisin de l'unité.

Pour mieux comprendre la nature des radicaux cations, plusieurs types de spectroscopie ont été réalisés sur $|Mo(NO)_2(MeCN)_4|^+$.

Les spectres U.V. Visible des complexes dinitrosyles à 18 électrons présentent plusieurs bandes d'absorption. La plus caractéristique se situe vers 420 nm pour les complexes dicationiques ¹⁹. Au

Fig. 5: Evolution du spectre U.V. Visible d'une solution de $|Mo(NO)_2(MeCN)_4|^{2+} 10^{-2} molel^{-1} dans l'acétonitrile à -30°C durant son électrolyse à un potentiel E_i =-0,3 V$

- 184 -

cours de l'électrolyse de $|Mo(NO)_2(MeCN)_4|^{2+}$ effectuée à -30°C, la forte absorption U.V. à 420 nm diminue et est remplacée par un épaulement à 350 nm. Il est hazardeux de faire une attribution précise (Figure 5) des transitions électroniques responsables de ces absorptions compte tenu des informations très limitées disponibles sur les spectres électroniques des complexes dinitrosyles ¹³,26. Néanmoins l'absorption à 420nm est attribuée à une transition d $\Pi \rightarrow \Pi^*NO$. Une réduction électrochimique à un électron place cet électron dans le niveau 2a₁ (LUMO). Les nombres d'onde des vibrations d'élongation v(NO) du complexe à 19 électrons $|Mo(NO)_2(MeCN)_4|^+$ sont plus bas ($v_S NO = 1690$, $aS^v NO = 1590$ cm⁻¹) que celles du complexe à 18 électrons ($v_S NO = 1860$, $v_{aS} NO = 1750$ cm⁻¹).

Le spectre de RPE en "solution gelée" de $|Mo(NO)_2(MeCN)_4|^+$ avec le sel de fond montre un signal intense et sans structure centré sur g = 2,007 (Figure 6a).

Fig. 6: Spectre R.P.E. dans l'acétonitrile (TEAP 0,1 mole1⁻¹) a) d'une solution gelée de |MO(NO)2(MeCN)4|+ à -160°C b) d'une solution de |MO(NO)2(MeCN)4|+ à 20°C Par contre, à -30°C, un spectre à cinq bandes peu résolues est obtenu (Figure 6b), g = 2,005, $a_N = 7G$, a_N : constante de couplage. Ce spectre résulte du couplage de l'électron célibataire avec deux noyaux ¹⁴N (I = 1) équivalents. Il est à noter qu'aucune interaction de l'électron célibataire avec les noyaux métalliques ⁹⁵Mo (I = 5/2, abondance 15,72%) et ⁹⁷Mo (I = 5/2, abondance 9,46%) n'est observée. Les spectres RPE du complexe à 19 électrons ainsi que les quelques complexes dinitrosyles à 19 électrons déjà signalés ²⁰ à ²² ne présentent jamais d'interaction hyperfine entre l'électron célibataire et le noyau métallique.

Tous les résultats spectroscopiques U.V., Infra rouge et RPE indiquent que l'électron célibataire est essentiellement localisé sur les ligands nitrosyles dans une orbitale à fort caractère π^*NO .

IV. REDUCTION ELECTROCHIMIQUE DE COMPLEXES MONOCATIONIQUES |Mo(NO)₂L₂L'C1|⁺

Dans des solvants peu coordonnants comme le nitrométhane, un balayage cathodique de potentiel fait apparaître sur les voltampérogrammes des complexes monocationiques <u>8</u> $|Mo(NO)_2(MeCN)_3C1|^+$, <u>9</u> $|Mo(NO)_2(CH_2=CHCN)_3C1|^+$, <u>10</u> $|Mo(NO)_2(PhCN)_3C1|^+$ (Tableau I), des pics cathodiques mais aucun courant bien défini n'est décelable lors du balayage en retour et ceci même à des vitesses de balayage élevées et à basse température. L'absence de pic anodique provient vraisemblablement de la rapide évolution des espèces réduites.

Les voltampérogrammes des complexes acétonitriles monocationiques: <u>8</u>, <u>11</u> $|Mo(NO)_2Py_2C1(MeCN)|^+$, <u>12</u> $|Mo(NO)_2bipy)C1(MeCN)|^+$, obtenus dans l'acétonitrile à basse température sont caractérisés par des rapports intensité du pic cathodique, intensité du pic anodique proche de l'unité, alors que les potentiels sont séparés d'environ 60 mV. Ces résultats sont caractéristiques d'un transfert réversible monoélectronique (Figure 7):

 $|Mo(NO)_2(MeCN)_3C1|^+ + e^- \neq |Mo(NO)_2(MeCN)_3C1|^{(5)}$

Ioutefois dès la température ambiante, le rapport des pics $i_p^{C/i}$ devient supérieur à l'unité. De plus, un nouveau pic cathodique apparaît à

Fig. 7: Voltammétrie cyclique d'une solution de $|Mo(NO)_2(MeCN)_3Cl|^+$ $5.10^{-3} \text{ moles}^{-1}$ dans l'acétonitrile à 0°C, 20°C et 40°C (TEAP 0,1 moles⁻¹) Vitesses de balayage: a) 0,02; b) 0,05; c) 0,1; d) 0,2 V.s⁻¹ un potentiel plus réducteur, et parallèlement un faible courant anodique est observé à un potentiel correspondant à l'oxydation du radical cation $|Mo(NO)_2(MeCN)_4|^+$. Le radical cation est formé au cours de la solvolyse du complexe à 19 électrons selon:

$$|Mo(NO)_2(MeCN)_3C1| + MeCN \implies |Mo(NO)_2(MeCN)_4|^+ + C1^-$$
 (6)

L'ion chlorure libéré diffuse de l'électrode vers la solution. Il réagit avec $|Mo(NO)_2(MeCN)_3Cl|^+$, qui migre vers l'électrode selon la réaction d'anation:

 $|Mo(NO)_2(MeCN)_3C1|^+ + C1^- \neq |Mo(NO)_2(MeCN)_2C1_2| + MeCN$ (7)

Le complexe neutre dichloro est réductible à un potentiel plus négatif que le complexe monochloro, le processus de réduction sera étudié au prochain paragraphe.

Formé selon la réaction (6), le radical cation $|Mo(NO)_2(MeCN)_4|^+$ est stable pour des potentiels inférieurs à 0.00 V. Au cours du balayage retour, quand le potentiel devient supérieur à 0,00 V:

 $|Mo(NO)_2(MeCN)_4|^+ \neq |Mo(NO)_2(MeCN)_4|^{2+} + e^-$ (3)

l'oxydation (3) se produit et est couplé avec une réaction rapide d'anation:

 $|Mo(NO)_2(MeCN)_4|^{2+} + Cl^{-} \xrightarrow{\text{rapide}} |Mo(NO)_2(MeCN)_3Cl|^{+} + MeCN$ (8)

Un processus analogue est obtenu avec le complexe $|Mo(NO)_2Py_2Cl(MeCN)|^+$ (Figure 8a). Dans le cas du complexe <u>12</u> $|Mo(NO)_2(bipy)Cl(MeCN)|^+$, le système rédox est réversible à la température ambiante ce qui implique une bonne stabilité cinétique pour le complexe à 19 électrons (Figure 8b).

Une électrolyse à potentiel contrôlé effectuée sur le complexe <u>12</u> au potentiel -0,05 V dans l'acétonitrile à -20°C, requiert le passage d'un faraday par mole de complexe, ce qui permet de vérifier que la réduction s'effectue selon un transfert monoélectronique.

Les potentiels standard rédox $E^0 = (E_p^c + E_p^a)/2$ sont répertoriés

Fig. 8a: Voltammétrie cyclique d'une solution de $|MO(NO)_2Py_2Cl(MeCN)|$ + 10^{-3} molel⁻¹ dans l'acétonitrile à 20°C (TEAP 0,1 molel⁻¹). Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹

Fig. 8b: Voltammétrie cyclique d'une solution de $|Mo(NO)_2(bipy)Cl(MeCN)^+$ $8.10^{-3}molel^{-1}$ à 20°C (TEAP 0,1molel^{-1}) Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹ dans le tableau I. La valeur du potentiel standard dépend de la nature du ligand L comme dans le cas des complexes dicationiques, mais les différences sont moins significatives.

V. REDUCTION ELECTROCHIMIQUE DES COMPLEXES NEUTRES Mo(NO)₂L₂Cl₂

Des volampérogrammes caractéristiques des complexes neutres $Mo(NO)_{2}L_{2}Cl_{2}$: <u>13</u> $Mo(NO)_{2}(MeCN)_{2}Cl_{2}$, <u>14</u> $Mo(NO)_{2}(CH_{2}$ —CHCN)_{2}Cl_{2}, <u>15</u> $Mo(NO)_{2}(PhCN)_{2}Cl_{2}$, <u>16</u> $Mo(NO)_{2}(PPh)_{3}Cl_{2}$, <u>17</u> $Mo(NO)_{2}(Py)_{2}Cl_{2}$, <u>18</u> $Mo(NO)_{2}bipyCl_{2}$, obtenus dans le nitrométhane, sont présentés aux figures 9, 10 et 11. Au-dessous de 0°C, les voltampérogrammes à balayage cyclique sont tous caractérisés par un pic cathodique et un pic anodique séparés par environ 60 mV, et dont le rapport d'intensité est voisin de 1, excepté dans le cas de $Mo(NO)_{2}(PPh_{3})_{2}Cl_{2}$ <u>16</u> pour des vitesses de balayage de l'ordre de 0,1 V.s⁻¹. Dès que la température s'élève, les rapports i^C/_P p augmentent, la dépendance de ces rapports est liée très fortement à la nature du ligand L. Ainsi, un ligand chélatant L₂ comme la 2,2'bipyridine, stabilise le complexe à 19 électrons issu du transfert électronique même à température ambiante:

$$|Mo(NO)_2(bipy)Cl_2| + e^- \neq |Mo(NO)_2bipy)Cl_2|^-$$
 (9)

La nature monoélectronique du transfert est confirmée par coulométrie (Un faraday est consommé par mole).

Par contre, avec la pyridine, le rapport i^C/i^a est supérieur p p à l dès la température de O°C, ce qui indique déjà une certaine décomposition du radical anion ainsi formé électrochimiquement:

$$|Mo(NO)_2Py_2Cl_2| + e^- \neq |Mo(NO)_2Py_2Cl_2|^-$$
(10)

Dans le cas de $Mo(NO)_2(PPh_3)_2Cl_2$, aucun courant anodique bien défini n'est détecté sur les voltampérogrammes même aux grandes vitesses de balayage et à basse température. L'absence de vague anodique provient de la décomposition rapide du radical $|Mo(NO)_2(PPh_3)_2Cl_2|^-$. . L'allure des voltampérogrammes (Figure 15) est très semblable à ceux

Fig. 9: Voltammétrie cyclique d'une solution de $|Mo(NO)_2(bipy)Cl_2|$ $10^{-3} molel^{-1}$ dans le nitrométhane à: a) 0°C; b) 20°C; c) 40°C; TEAP 0,1 molel⁻¹. Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹

Fig. 10: Voltammétrie cyclique dans le nitrométhane d'une solution contenant 2.10⁻³ mole¹de Mo(NO)₂(MeCN)₂Cl₂ et 4.10⁻⁴ mole¹ de NEt₄Cl à: a) 0°C; b) 20°C; c) 40°C (TEAP 0,1 mole¹) Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹ - 193 -

-1

Fig. 12: Voltammétrie cyclique d'une solution de $Mo(NO)_2(MeCN)_2Cl_2 2.10^{-3}$ mole l^{-1} dans l'acétonitrile à: a) 0°C; b) 20°C; c) 40°C (TEAP 0,1 mole l^{-1}) Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹

Ι

20[°]c

 Ξ/V

de $Mo(NO)_2(MeCN)_2Cl_2$ (Figure 12) et de $Mo(NO)_2Py_2Cl_2$ (Figure 14) obtenus à 40°C. Cette similitude semble indiquer que le processus chimique initié par le transfert électronique, est commun à tous ces complexes, mais la labilité du radical anion $|Mo(NO)_2(PPh_3)_2Cl_2|^-$ est particulièrement élevée. Les principaux résultats de voltammétrie cyclique sont répertoriés dans le tableau I.

La réduction électrochimique des complexes dichloro à 18 électrons: <u>13</u>, <u>16</u>, <u>17</u>, <u>18</u> a été étudiée également dans l'acétonitrile. Les résultats de voltammétrie cyclique de $Mo(NO)_2(MeCN)_2Cl_2$ sont illustrés aux figures 12 et 13.

Fig. 13: Voltammétrie cyclique en multi-balayage d'une solution de $Mo(NO)_2(MeCN)_2Cl_2 2.10^{-3} mole l^{-1} dans l'acétonitrile à 25°C$ (TEAP 0,1 mole l⁻¹). Vitesse de balayage 0,1 V.s⁻¹

- 195 -

Fig. 14: Voltammétrie cyclique d'une solution de $Mo(NO)_2Py_2Cl_2$ $10^{-3}mole_2^{-1}$ dans l'acétonitrile à: a) 0°C; b) 20°C; c) 40°C (TEAP 0,1 mole_2^{-1}). Vitesses de balayage: 0,02; 0,05; 0,1; 0,2 V.s⁻¹

b

Fig. 15: Voltammétrie cyclique d'une solution de Mo(NO)₂(PPh)₃Cl₂ 10⁻³ mole¹ dans l'acétonitrile à: a) 0°C; b) 20°C; c) 40°C (TEAP 0,1 mole¹) Vitesses de balayage: 0,05; 0,1; 0,2 V.s⁻¹

С

La réversibilité du transfert monoélectronique est obtenue à basse température pour toutes les vitesses de balayage utilisées, et à température ambiante pour des vitesses de balayage supérieures à Q_2 V.s⁻¹ Néanmoins, même à basse température, une faible prévague est observée dans les régions de potentiel correspondant à la réduction des complexes monocationiques. Cette prévague est observée aussi bien en voltammétrie cyclique qu'en voltampérométrie à une électrode tournante de platine ou de carbone vitreux. D'autre part, cette prévague dépend de la concentration totale en complexe et est supprimée par addition d'une faible proportion de $|NEt_4|C1$, elle est tout naturellement attribuée à une réaction de solvatation:

 $Mo(NO)_{2}L_{2}Cl_{2} + MeCN \xrightarrow{K_{ec}} |Mo(NO)_{2}L_{2}(MeCN)Cl|^{+} + Cl^{-}$ (11)

Pour tous les complexes $Mo(NO)_2(MeCN)_2Cl_2$, $Mo(NO)_2Py_2Cl_2$, $Mo(NO)_2(PPh_3)_2Cl_2$, $Mo(NO)_2(bipy)Cl_2$, le rapport entre les hauteurs des pics correspondants à la prévague et au pic principal, est pratiquement indépendant de la vitesse de balayage pour des températures inférieures à la température ambiante. Cette observation permet d'éliminer le caractère cinétique de la prévague, tout au moins aux températures inférieures à 25°C. Les valeurs des constantes de dissociation peuvent être estimées par conductimétrie sur des solutions de complexes dichloro dans l'acétonitrile contenant 0,1 M en NEt₄ClO₄.

$$K_{eq} = \frac{|Mo(NO)_{2}L_{2}C1(MeCN)^{+}||C1^{-}|}{|Mo(NO)_{2}L_{2}C1_{2}|}$$

Les valeurs des constantes sont respectivement 2.10^{-3} , 6.10^{-3} et 2.10^{-4} molel⁻¹, pour les complexes <u>13</u>, <u>17</u> et <u>18</u>.

Pour des températures supérieures à 30°C, le rapport des hauteurs de la prévague et de la vague dépend de la vitesse de balayage en voltammétrie cyclique, ceci indique un accroissement de la constante de la vitesse de la réaction de solvolyse (ll) et un caractère cinétique pour la vague de réduction des monochloro.

Si la zone de balayage de potentiel est étendue au-delà du premier transfert électronique, une autre vague est observée, la hauteur

du pic augmente avec la température et décroit avec un accroissement de la vitesse de balayage par rapport à la hauteur du premier pic. En voltampérométrie à une électrode tournante de platine, les voltampérogrammes (Figure 16) présentent trois vagues de réduction: une prévague d'intensité relativement faible au potentiel correspondant à la faible proportion de complexe monocationique provenant de la dissociation de $Mo(NO)_2L_2Cl_2$, et deux vagues de hauteurs égales, ce qui est en accord avec les résultats de voltammétrie cyclique à faible vitesse de balayage (Figures 12 et 14). Sur le cycle retour de la voltammétrie cyclique, des pics anodiques supplémentaires apparaissent par rapport à ceux attendus (Figures 12 et 14).

La réduction monoélectronique des complexes neutres produit un radical anion:

$$Mo(NO)_{2}L_{2}Cl_{2} + e^{-} \neq |Mo(NO)_{2}L_{2}Cl_{2}|^{-}$$
 (12)

Ce radical, en présence de ligand nitrile, subit deux réactions de substitution successives:

$$|Mo(NO)_{2}L_{2}Cl_{2}|^{-} + MeCN \neq |Mo(NO)_{2}L_{2}(MeCN)Cl| + Cl^{-}$$
 (13)

 $|Mo(NO)_{2}L_{2}(MeCN)C1| + MeCN \neq |Mo(NO)_{2}L_{2}(MeCN)_{2}|^{+} + C1^{-}$ (14)

L'anion Cl⁻ diffuse vers la solution réagissant avec $Mo(NO)_2(MeCN)_2Cl_2$ qui diffuse vers l'électrode selon la réaction d'anation:

 $|Mo(NO)_{2}L_{2}Cl_{2}| + Cl^{-} \rightarrow |Mo(NO)_{2}L(MeCN)Cl_{3}|^{-} + L$ (15)

Le complexe trichloro est réductible à des potentiels plus cathodiques que le complexe dichloro (Figures 12 et 14 et Tableau I). Il est à noter que pour le complexe $Mo(NO)_2Py_2Cl_2$, un ligand Py est déplacé par un anion Cl⁻; cette substitution est bien plus difficile dans le cas d'un chélate comme la 2,2'bipyridine (Figure 9). En voltammétrie cyclique au cours du balayage retour, les pics anodiques sont observés avec des intensités moindres que les pics cathodiques. Ce fait indique une labilisation des liaisons métal - Cl dans l'état réduit. Cette labilisation engendre des espèces solvatées à 19 électrons qui sont

$$|Mo(NO)_{2}L_{2}(MeCN)_{2}|^{2+} + C1^{-} + |Mo(NO)_{2}L_{2}(MeCN)C1|^{+} + MeCN$$
 (16)

Au cours du cycle suivant, le pic de réduction de $Mo(NO)_2L_2(MeCN)_2^{2+}$ est absent, ce qui est en bon accord avec une réaction rapide d'anation (16).

Le mécanisme de la réduction électrochimique des chlorodinitrosylmolybdène est vérifié en traitant des complexes dicationiques $Mo(NO)_2(MeCN)_4|^{2+}$ et $Mo(NO)_2(bipy)(MeCN)_2|^{2+}$ avec $|NEt_4|C1$. Les réactions entre 2 et |NEt₄|Cl d'une part et 6 et |NEt₄|Cl d'autre part, sont suivies par spectrophotométrie et par les techniques électrochimiques à température ambiante (Figure 17). La réaction (16) entre $|Mo(NO)_2(MeCN)_4|^{2+}$ et Cl⁻ est instantanée, le système réversible: $|Mo(NO)_2(MeCN)_4|^{2+}/|Mo(NO)_2(MeCN)_4|^+$ à $E_{1_3} = 0,0$ V, est converti quantitativement système en un quasiréversible: $|Mo(NO)_2(MeCN)_3C1|^+/|Mo(NO)_2(MeCN)_3C1|$ à $E_{1_3} = -0,27$ V. La réaction équilibrée et donne naissance d'anation (13) est au système $|Mo(NO)_2(MeCN)_2Cl_2| / |Mo(NO)_2(MeCN)_2Cl_2| = -0,65$ V. L'addition d'un excès d'ion Cl⁻ augmente les courants anodiques et cathodiques correspondant au système $|Mo(NO)_2(MeCN)Cl_3|^2/|Mo(NO)_2(MeCN)Cl_3|^2$, $E_{1_3} = -0.91V$. Enfin, après addition d'un large excès d'ions Cl⁻, on obtient le système redox bien connu: $|Mo(NO)_2Cl_4|^{2-}/|Mo(NO)_2Cl_4|^{3-}$ E₁₅ = -1,10 V.

La coı̈ncidence entre les potentiels des pics obtenus dans cette étude avec ceux résultant de la réduction de $|Mo(NO)_2(MeCN)_3C1|^+$ et $|Mo(NO)_2(MeCN)_2Cl_2|$, valide l'interprétation des processus électrochimiques intervenant dans la réduction des chloronitrosylmolybdène.

Toutefois, au cours de la réduction exhaustive des complexes $|Mo(NO)_{2}L_{2}CI_{2}|$, $|Mo(NO)_{2}L_{2}(MeCN)CI|^{+}$ et $|Mo(NO)_{2}L_{2}(MeCN)_{2}|^{2+}$ avec L = PPh₃, Py, dans l'acétonitrile, la substitution des ligands autres que Cl⁻ survient dans les complexes radicalaires à 19 électrons, ces réactions compliquent singulièrement le mécanisme de réduction.

Vitesse de balayage: 0,1 V.s⁻¹

résultats électrochimiques et spectroscopiques de la Les réduction des complexes dinitrosyles du molybdène, démontre l'existence d'un niveau énergétique accessible à un électron. Cette orbitale moléculaire est délocalisée sur les deux groupements nitrosyles, et possède un faible caractère métallique. Il est à noter que dans le cas de complexes mononitrosyles du molybdène, l'électron célibataire est centré sur le métal ²¹. Quoique les structures des complexes dinitrosyles du molybdène à 19 électrons ne soient pas connues, il est possible d'obtenir une information structurale sur l'entité |Mo(NO)₂|⁷ par comparaison avec une structure radiocristallographique d'un complexe du tungstène à 19 électrons $(v^5 - C_5H_5)W(NO)_2(P(OPh)_3)$ ²² par rapport à un complexe à 18 électrons comme $(v^5 - C_5H_5)W(NO)_2C1 = 27$. Il y a peu de différence dans la valeur des angles W-N-O dont la valeur est proche de 180°C. La différence majeure entre ces structures est l'angle N-W-N qui est plus ouvert dans le cas du complexe à 19 électrons. Cette différence a été interprétée en termes d'orbitales moléculaires par HALL et Coll. ²⁸. Le 19ème électron occupe une orbitale ayant un caractère $2\pi(NO)$ à 90%. Cependant dans le cas de Mo $(NO)_2L_2Cl_2$, les autres ligands comme Cl doivent participer à l'orbitale moléculaire inoccupée de plus basse énergie (LUMO).

Deux structures radiocristallographiques de complexes dinitrosyles du molybdène sont connus à l'heure actuelle:

- Pour $Mo(NO)_2(PPh_3)_2Cl_2$ ²⁴, les deux ligands NO sont en position <u>cis</u> ainsi que les ligands Cl, tandis que les ligands PPh₃ sont en position <u>trans</u>.

- Pour $Mo(NO)_2(bipy)Cl_2$ ¹³, la structure est <u>cis</u> NO <u>trans</u> Cl.

Tous les complexes dinitrosyles du molybdène utilisés dans ce travail, relèvent de l'une ou l'autre de ces structures de symétrie moléculaire proche de C2v.

Le diagramme d'orbitales moléculaires proposé par ENEMARK et FELTHAM ¹¹ pour un complexe dinitrosyle plan carré $Mo(NO)_2L_2$ (C2v) peut être utilisé pour interpréter les résultats obtenus dans ce chapitre. L'addition de deux ligands en position <u>trans</u> donnant un

 $1G_1 (\pi^*(NO))$

and the state of the

0

Fig. 18: Diagramme d'orbitales moléculaires pour une complexe cis-dinitrosyle plan carré ¹¹

complexe hexacoordonné, rend le niveau $2a_1$ fortement antiliant ¹¹. Dans la série de complexes <u>cis</u> dinitrosyl, les niveaux d'énergie de l'entité $|Mo(NO)_2|^6$ sont remplis totalement jusqu'au niveau lb₂, et les électrons supplémentaires introduits par la réduction électrochimique se placent dans le niveau $2a_1$ qui possède une forte contribution $\pi^*(NO)$. Nos résultats spectroscopiques RPE, U.V. Visible et Infrarouge sur $|Mo(NO)_2(MeCN)_4|^+$ ainsi que les résultats RPE publiés sur $|Mo(NO)_2(bipy)Cl_2|^{-21}$ et $|Mo(NO)_2bis(N,N-dialkyldithiocarbamato)|^{-20}$, indiquent que la contribution $\pi^*(NO)$ à l'orbitale frontière dans laquelle se loge l'électron, doit être forte puisque aucune interaction n'est constatée entre l'électron célibataire et le noyau molybdène. L'électron célibataire est donc localisé sur les ligands NO.

Les valeurs des potentiels standards E^0 des couples rédox donnent une estimation des différences d'énergie entre les "LUMO" des différents complexes. Les énergies des niveaux $2a_1$ suivent l'ordre suivant: dicationique, monocationique, neutre, monoanionique, dianionique et parmi ces différentes classes, le niveau $2a_1$ est d'autant plus stabilisé que le pouvoir σ donneur du ligand L est fort, et que le pouvoir π accepteur est faible, c'est à dire dans l'ordre: acétonitrile \leq pyridine \sim bipyridine \leq phosphine \leq Cl⁻.

Une stabilisation du niveau $2a_1$ va de paire avec un abaissement de la fréquence des vibrations $_{v}$ (NO). Une corrélation linéaire est obtenue en traçant la valeur du potentiel standard en fonction de la valeur de v(NO) (Tableau I) pour des complexes homologues.Cette corrélation n'est plus valable pour des complexes avec des ligands L disparates. La stabilité cinétique des complexes à 19 électrons peut être estimée par voltammétrie cyclique par le rapport $i_p^{C/ia}$. A température ambiante, pour une vitesse de balayage de 0,1 Vs⁻¹, le rapport $i_p^{C/ia}$ croît de l pour $|Mo(NO)_2(MeCN)_4|^2$ + à 1,5 pour $|Mo(NO)_2(MeCN)_3C1|^+$ à 2 pour $|Mo(NO)_2(MeCN)_2C1_2|$. Les complexes monochloro et les dichloro. Dans chaque classe de composés dichloro, monochloro et exempt de ligand chloro, les complexes riches en électrons 19 et 20 sont stabilisés par des ligands π accepteurs chélatants comme la 2,2'-bipyridine.

La comparaison entre les propriétés rédox de complexes dinitrosyles dichloro du molybdène et de leur activité catalytique ²¹ dans la réaction de métathèse du <u>cis</u> - 2 - pentène, montre qu'il n'y a aucune relation entre ces deux caractéristiques. Par contre, l'activité catalytique est fortement liée à la labilité des complexes réduits. Un transfert électronique permet donc à certains complexes dinitrosyles de libérer des sites de coordination et d'avoir une bonne activité catalytique dans la réaction de métathèse des oléfines. Le présent travail a permis de mettre en évidence une labilisation de complexes dinitrosyles du molybdène par un transfert monoélectronique, et donc d'envisager une activité potentielle en catalyse homogène, cette activité n'ayant pas été testée jusqu'à maintenant.

VII. EXPERIMENTATION

Toutes les expérimentations ont été effectuées sous atmosphère d'argon et à l'abri de la lumière en utilisant la technique des tubes de schlenk. Les solvants ont été distillés sous argon, avec les agents desséchants appropriés, et stockés sous argon. L'acétonitrile (Merck) est purifié par distillation sur hydrure de calcium, puis distillé sur P_4O_{10} . L'acétone et le nitrométhane (des produits Merck) sont purifiés par distillation sur tamis moléculaires Merck $4A^\circ$. L'éther éthylique est distillé sur l'hydrure double AlLiH₄. Le chlorure de méthylène (Merck) est laissé sur Na₂CO₃ sec pendant 24 h., et le mélange est filtré puis distillé, CH₂Cl₂ est ensuite redistillé sur P₄O₁₀ à l'abri de la lumière, et stocké à l'obscurité et sur Na₂CO₃ sec. Le diméthoxyéthane (DME) est distillé sur sodium, et stocké sur sodium. L'hexane est distillé sur P₄O₁₀.

Avant utilisation pour des expériences analytiques: U.V. Visible, RPE, RMN ¹H ³¹P, et électrochimiques, les solvants sont filtrés à travers une colonne d'alumine sèche sous argon. La teneur en H_2O est estimée par la méthode de Karl Fischer à moins de 10 ppm.

MoCl₅ est un produit Flucka et est utilisé tel quel. La 2,2' bipyridine $C_{10}H_8N_2$ (Merck), la triphénylphosphine (PPh₃) (Prolabo), le perchlorate d'argent AgClO₄, le perchlorate de tétraéthylammonium |NEt₄|ClO₄, le chlorure de tétraéthylammonium |NEt₄|Cl, sont séchés sous vide en présence de P₄O₁₀ à 35°C puis stockés sous argon. Le benzonitrile C₆H₅CN (Merck) et l'acrylonitrile CH₂—CHCN (Merck) sont purifiés par distillation, sous vide pour le benzonitrile, et à température ambiante pour l'acrylonitrile, puis mis sur tamis moléculaires 4A° et stockés sous argon à l'obscurité.

1. Synthèse

 $|Mo(NO)_2Cl_2|_n$ ¹²: Une suspension de 0,54 g (2,0 mmole) de

MoCl₅ et 40 cm³ de C₆H₅Cl est agitée à température ambiante sous un faible courant de NO (bulle à bulle) pendant 6h. Le monoxyde d'azote est obtenu par action de NaNO₂ sur une suspension acide de Fe₂(SO₄)₃, et après passage dans un "piège" carboglace - acétone et sur une colonne de potasse en pastilles. Le précipité est filtré et lavé abondamment au chlorobenzène puis au chlorure de méthylène puis à l'éther. Un solide verdâtre est recueilli puis stocké sous argon et au congélateur à -30°C.

<u>Analyse</u> Calculée: Cl 31,3; N 12,4 Trouvée Cl 31,9; N 11,8

 $Mo(NO)_2(RCN)_2Cl_2$ (R = Me <u>13</u>, CH₂—CH <u>14</u>, Ph <u>15</u>). Ces trois complexes sont obtenus selon un même procédé. La solution verte qui se forme après dissolution de $|Mo(NO)_2Cl_2|_n$ (0,5 g, 2,2 mmole) dans CH₂Cl₂ (20 cm³) et du nitrile (5 cm³), est agitée pendant 12 h. Le solide jaune qui précipite est filtré et lavé avec CH₂Cl₂ puis Et₂O.

- Mo(NO)₂(MeCN)₂Cl₂ I3 Rendement 80%

Analyse calculée: C 15,55; H 1,95; Cl 23,0; N 18,1 trouvée: C 15,5; H 1,9; Cl 22,4; N 17,8.

- Mo(NO)₂(CH₂_CHCN)₂Cl₂ 14 Rendement 70%

Analyse calculée: C 21,6; H 1,8; C1 21,3; N 16,8 trouvée: C 21,0; H 1,85;C1 21,3; N 16,9.

- Mo(NO)₂(PhCN)₂Cl₂ <u>15</u> Rendement 80%

Analyse calculée: C 38,8; H 2,3; Cl 16,4; N 12,9 trouvée: C 38,9; H 2,3; Cl 15,8; N 13,0.

 $Mo(NO)_2(PPh_3)_2Cl_2$ <u>16</u>: Si on mélange 0,36 g de $|Mo(NO)_2Cl_2|_n$ (1,6 mmole) dans 30 cm³ de CH_2Cl_2 avec 1,14 g de PPh₃ (4,4 mmole), on obtient un solide vert, que l'on recristallise dans un mélange CH_2Cl_2 - MeOH. Rendement 60%

> Analyse calculée: C 57,5; H 4,0; N 3,7 trouvée: C 57,0; H 4,1; N 3,8.

 $Mo(NO)_2Py_2Cl_2$ <u>17</u>: Une suspension de 0,36 g de $|Mo(NO)_2Cl_2|_n$ (1,6 mmole) dans CH_2Cl_2 (30 cm³) est mélangée à une solution de pyridine (6,4 mmole) dans le même solvant. Ce mélange est ensuite concentré sous vide. Des cristaux verts apparaissent progressivement, ils sont lavés rapidement avec CH_2Cl_2 puis Et_2O . Rendement 80%

Analyse calculée: C 31,2; H 2,6; N 14,6

trouvée: C 31,3; H 2,5; N 14,3.

 $Mo(NO)_2(bipy)Cl_2$ <u>18</u>: Une masse de 0,5 g de $|Mo(NO)_2Cl_2|_n$ (2,2 mmoles) est mise en suspension dans CH_2Cl_2 (20 cm³), puis traitée par 0,4 g de 2,2'-bipyridine (2,56 mmole). Le mélange est agité à température ambiante pendant 12 h. L'addition d'hexane provoque l'apparition d'un solide jaune vert. Le précipité est filtré, lavé avec Et_2O . Rendement: 90%.

> Analyse calculée: C 31,3; H 2,0; C1 18,5; N 14,6 trouvée: C 32,1; H 2,2; C1 17,9; N 14,2.

Procédé général de préparation des composés monocationiques $|MO(NO)_{2L_{2}L}Cl|ClO_{4}$ ¹⁹

La préparation type implique l'utilisation des solvates $|Mo(NO)_{2}L_{2}Cl(DME)|^{+}$ (DME diméthoxy-1,2 éthane) comme intermédiaires. 2 mmoles de composé $Mo(NO)_{2}L_{2}Cl_{2}$ sont introduites dans 10 cm³ de DME fraichement distillés. Une masse de 415 mg de AgClO₄ (2 mmoles) est alors introduite lentement dans la suspension tout en agitant à température ordinaire. Une coloration verte intense se développe instantanément, ainsi qu'un précipité blanc. Le mélange est agité pendant 6 h, puis le solide blanc est séparé par filtration, et lavé avec du DME. Le précipité d'AgCl est séché et pesé: 0,289 g. Son poids correspond à la précipitation d'une mole de chlorure d'argent par mole de complexe de départ.

 $|Mo(NO)_2(RCN)_3CI||CIO_4|$ 8, 9, 10: Un volume de 5 cm³ du composé nitrile (RCN) est ajouté à la solution du solvate dans le DME. Le mélange est agité à température ambiante pendant une heure. Les solvants sont ensuite éliminés sous pression réduite. Le solide résiduel est repris dans un volume minimum du composé nitrile RCN. L'addition d'éther éthylique provoque l'apparition d'une huile qui ne cristallise qu'à froid et dans des mélanges nitrométhane - éther éthylique (1/2 en volume). Pour $|Mo(NO)_2(MeCN)_3||CIO_4|$, Rendement: 60%.

Analyse calculée: Mo 23,2 trouvée: Mo 22,4

|Mo(NO)₂(bipy)(MeCN)Cl||ClO₄| <u>12</u>: Un procédé identique à celui décrit précédemment est suivi. Rendement: 80%.

Analyse calculée: C 29,5; H 2,25; N 14,35;

trouvée: C 29,3; H 2,4; N 14,0.

- 208 -

|Mo(NO)₂Py₂(MeCN)C1||C10₄| <u>11</u> Rendement 60%

Procédé général de préparation des composés dicationiques $|MO(NO)_{2}L_{2}L'_{2}||ClO_{4}|_{2}$ ¹⁹

La préparation type implique l'utilisation des solvates $|Mo(NO)_{2}L_{2}(DME)_{2}|^{2+}$ comme intermédiaire. 2 mmoles du composé $Mo(NO)_{2}L_{2}Cl_{2}$ sont introduites dans 10 cm³ de DME. Une masse de 830 mg de AgClO₄ (4 mmoles) est alors introduite lentement dans la suspension tout en agitant à 40°C. Une coloration verte intense se développe instantanément, ainsi qu'un précipité blanc. Le mélange est agité pendant 12 h environ, puis le solide blanc est séparé par filtration. Le filtrat est abandonné pendant 12 h puis agité avant filtration (Si nécessaire une troisième filtration est effectuée). Les précipités de chlorure d'argent sont rassemblés, puis séchés et pesés. Le poids 0,552 g correspond à la précipitation de 2 moles d'AgCl par mole de complexe de départ.

 $|Mo(NO)_2(RCN)_4||ClO_4|_2$: Un volume de 5 cm³ du composé nitrile RCN est ajouté à la solution du solvate $|Mo(NO)_2(RCN)_2(DME)_2|^{2+}$. Le mélange est agité pendant l heure environ. Les solvants sont ensuite éliminés sous pression réduite. Le solide résiduel est repris par 2 cm³ du composé nitrile. L'addition d'éther éthylique provoque la démixion d'une huile verte qui ne cristallise qu'après beaucoup d'essais dans des mélanges nitrométhane - éther éthylique. Pour $|Mo(NO)_2(MeCN)_4|$ $|ClO_4|_2$ <u>2</u> Rendement 50%.

Analyse calculée: Mo 18,5

trouvée: Mo 17,7

 $|Mo(NO)_2(CH_2_CHCN)_4||ClO_4|_2 \underline{3} \text{ Rendement } 60\%$ $|MO(NO)_2(PhCN)_4||ClO_4|_2 \underline{4} \text{ Rendement } 70\%$ Analyse calculée: C 43,8; H 2,6

trouvée: C 40,5; H 2,5

des procédés identiques à celui décrit ci-dessus conduisent à l'obtention des composés suivants: $|Mo(NO)_2(Py)_2(MeCN)_2||ClO_4|_2 5$, $|Mo(NO)_2(PPh_3)_2(MeCN)_2||ClO_4|_2 7$.

Pour |Mo(NO)₂(bipy)(MeCN)₂||ClO₄|₂ <u>6</u>, Rendement 50% Analyse calculée: C 28,35; H 2,35; N 14,15 trouvée: C 28,25; H 2,7; N 14,0

|Mo(NO)2(bipy)2||ClO4|2 1: A une solution dans l'acétonitrile

de $|Mo(NO)_2(MeCN)_4||ClO_4|_2$ (1040 mg, 2 mmoles), on ajoute 655 mg de 2,2'bipyridine (4,2 mmoles). La solution est agitée et portée vers 40°C. Après 24 h, la solution est abandonnée. Des cristaux vert bouteille apparaissent dans le milieu. Rendement 60%.

Les microanalyses ont été effectuées par le centre de Microanalyse du C.N.R.S. à Vernaison.

2. Mesures électrochimiques.

Toutes les expérimentations sont effectuées sous atmosphère d'argon, à l'obscurité et dans une cellule thermostatée entre -30°C et +40°C. La cellule utilisée est une cellule classique à trois compartiments. Dans le compartiment de l'électrode de travail, une électrode à grande surface est placée pour les mesures coulométriques. Les voltampérogrammes sont obtenus à partir d'un disque de platine ou de carbone vitreux tournant ou fixe. L'électrode auxiliaire est un fil torsadé de platine de grande surface. L'électrode de référence est constituée d'un fil d'argent plongeant dans une solution de Ag^+ (0,01 M) dans le solvant désiré, additionné de perchlorate de tétraéthylammonium (0,1 M). Tous les potentiels sont donnés par rapport au potentiel de l'électrode au calomel saturée. Tous les essais analytiques sont effectués sur des solutions 0,01 M en complexe. Avant chaque expérience, un "blanc" est testé pour vérifier le domaine d'électroactivité. L'eau résiduelle est trouvée à une concentration inférieure à 0,001 M dans la cellule électrochimique par la méthode de Karl Fischer.

Les complexes radicalaires sont produits par coulométrie à -30°C, et ensuite les solutions sont introduites soit dans des tubes cylindriques de quartz pour les mesures RPE, soit dans des cellules à fenêtre en chlorure d'argent pour les mesures infrarouge, soit encore dans des cellules en quartz pour les mesures U.V. Visible.

BIBLIOGRAPHIE

1.a. K.G. CAULTON Coord. Chem. Rev., 14, 317 (1975) b. M.W. ANKER, R. COLTON, I.B. TOMKINS Aust. J. Chem., 21, 1149 (1968) 2.a. B.F.G. JOHNSON, S. BHADURI, N.G. CONNELLY J. Organomet. Chem., 40, 6 (1972) b. M. GREEN et S.H. TAYLOR J. Chem. Soc., Dalton Trans., 2629 (1972) c. G. DOLCETTI, N.W. HOFFMAN, J.P. COLLMAN Inorg. Chim. Acta, 6, 531 (1972) 3.a. B.F.G. JOHNSON J. Chem. Soc. A, 475 (1967) b. F.A. COTTON, B.F.G. JOHNSON Inorg. Chem., 3, 1609 (1964) 4.a. B.F.G. JOHNSON, S. BHADURI J. Chem. Soc., Chem. Commun., 650 (1973) b. EISENBERG et C.D. MEYER Acc. Chem. Res., 8, 26 (1975) 5. J.L. WALSH, R.M. BULLOCK, T.J. MEYER Inorg. Chem., 19, 865 (1980) 6. C. BREMARD, G. NOWOGROCKI, S. SUEUR Inorg. Chem., 18, 1549 (1979) 7. W.P. WEINER, R.G. BERGMAN J. Am. Chem. Soc., 105, 3922 (1983) 8. D.T. DOUGHTY, R.P. STEWART, G. GORDON J. Am. Chem. Soc., 103, 3388 (1981) 9.a. D. BALLIVET, I. TKATCHENKO J. Mol. Catal., 1, 319 (1975) b. D. BALLIVET, C. BILLARD, I. TKATCHENKO J. Organomet. Chem., 124, C9 (1977) 10.a. W.B. HUGHES J. Am. Chem. Soc., 92, 532 (1970) b. W.B. HUGHES Adv. Chem. Ser., n°132, 192 (1974)

```
c. R.H. GRUBBS, C.R. HOPPIN
          J. Chem. Soc., Chem. Commun., 634, (1977)
11. J.H. ENEMARK, R.D. FELTHAM
         Coord. Chem. Rev., 13, 339 (1974)
12.a. W.B. HUGHES, E.A. ZUECH
         Inorg. Chem., 12, 471 (1973)
  b. L. BENZE
          J. Organomet. Chem., 56, 303 (1973)
13. D. BALLIVET-TKATCHENKO, C. BREMARD, F. ABRAHAM, G. NOWOGROCKI
          J. Chem. Soc., Dalton Trans., 1137 (1983)
         y compris les références citées dans cet article
14.a. F. of REGINA, A. WOJCICKI
          Inorg. Chem., 19, 3803 (1980)
  b. P. LEGZDINS, C.R. NURSE
         Inorg. Chem., 21, 3110 (1982)
   c. D. BALLIVET, I. TKATCHENKO
         Inorg. Chem., 16, 945 (1977)
  d. B.M. MATTSON, W.A.G. GRAHAM
          Inorg. Chem., 20, 3186 (1981)
15. P. LENNON, A.M. ROSEN, M. ROSENBLUM
          J. Am. Chem. Soc., 99, 8476 (1977)
         y compris les références citées dans cet article
16.a. F. BASOLO, R.G. PEARSON
          "Mecanisms of Inorganic Reactions" 2ème ed., WILEY - Interscience
         New York, p.533 (1967)
   b. A. DEEMING
          J. Inorg. React. Mech., 7, 275 (1981)
17. J.W. HERSHBERGER, R.J. KLINGLER, J.K. KOCHI
          J. Am. Chem. Soc., 105, 61 (1983)
         y compris les références citées dans cet article
18. D. BALLIVET-TKATCHENKO, M. RIVECCIE, N. EL MURR
          J. Am. Chem. Soc., 101, 2763 (1979)
19. D. BALLIVET-TKATCHENKO, C. BREMARD
          J. Chem. Soc., Dalton Trans., 1143 (1983)
20. J.R. BUDGE, J.A. BROOMHEAD, P.D.W. BOYD
          Inorg. Chem., 21, 1031 (1982)
21. J. MASEK, J. FIEDLER, J. KLIMA, K. SEYFERTH, R. TAUBE
          Coll. Cze. Chem. Commun., 47, 1721 (1982)
```

22. Y.S. YU, R.A. JACOBSON, R.J. ANGELICI Inorg. Chem., 21, 3106 (1982) 23. T. NIMRY, M.A. URBANIC, R.A. WALTON Inorg. Chem., 18, 691 (1979) 24. M.O. VISSCHER, K.G. CAULTON J. Am. Chem. Soc., 94, 5923 (1972) 25. D. BALLIVET-TKATCHENKO, A. BOUGHRIET, C. BREMARD Atelier d'électrochimie S.C.F., Lyon (1983) 26.a. H. TOM DIECK, I.W. RENK Chem. Ber., 104, 110 (1971) Ibid, 105, 1403 (1972) b. R.W. BALK, D.S. STUFKENS, A. OSKAM Inorg. Chim. Acta, 28, 133 (1978) 27. T.J. GREENHOUGH, B.W.S. KOLTHAMMER, P. LEGZDENS, J. TROTTER Acta Crystallogr., Sect. B, B36, 795 (1980) 28. B.J. MORRIS-SHERWOOD, B.W.S. KOLTHAMMER, M.B. HALL

Inorg. Chem., 20, 2771 (1981)

Conclusion

RESUME ET CONCLUSIONS

Dans les solvants aprotoniques à grand domaine d'électroactivité: sulfolane, nitrométhane, acétonitrile et carbonate de propylène, les dérivés oxygénés de l'azote (III) et (IV) ont fait l'objet d'études de transferts électroniques à une électrode de platine poli. Ces transferts électroniques mettent en jeu des réactions chimiques entre les espèces réduites et les diverses espèces présentes en solution. Ces processus sont rendus plus complexes par la présence résiduelle d'eau et d'oxygène.

Nous avons montré dans la première partie que NO^+ est réduit en NO selon un transfert électronique que l'on peut considérer comme rapide. Si l'eau résiduelle est sans action sur cette réduction, il n'en est pas de même de l'oxygène et N₂O₄. Ces deux composés facilitent la réduction de NO⁺ par réaction avec NO formé. L'étude approfondie de la réduction de NO⁺ en présence de N₂O₄ nous a permis d'atteindre les constantes thermodynamiques et cinétiques de l'équilibre de dissociation moléculaire de N₂O₃ selon:

 $2N_2O_3 \neq 2NO + N_2O_4$

Afin de déterminer la constante de dissociation ionique de N_2O_3 selon:

$$N_2O_3 \neq NO^+ + NO_2^-$$

l'étude électrochimique des solutions de nitrite a été abordée. Le

mécanisme de l'oxydation du nitrite qui a lieu en deux étages, peut se schématiser selon:

 $2NO_2^- \neq N_2O_4 + 2e^$ lère étape $2NO_2^- + N_2O_4 \neq 2NO + 2NO_3^ NO + NO_3^- \neq N_2O_4 + e^-$ 2ème étape

L'étude mathématique des courbes intensité-potentiel est en accord avec un tel mécanisme, et a permis d'atteindre la constante de dissociation ionique de N_2O_3 dans le sulfolane. La présence d'eau dans le milieu réactionnel rend plus complexe le mécanisme d'oxydation du nitrite par formation de HNO₂. Une interprétation a été proposée quant à l'instabilité de l'acide nitreux dans les différents solvants.

La deuxième partie est consacrée aux solutions de N_20_4 dans les différents solvants. Globalement deux équilibres hétérolytiques et un équilibre homolytique rendent compte du comportement de ces solutions:

> $N_2O_4 \neq 2NO_2$ $N_2O_4 \neq NO^+ + NO_3^ N_2O_4 \neq NO_2^- + NO_2^+$

la constante de dissociation homolytique a été déterminée par RMN et RPE. La seconde technique s'est avérée mieux adaptée au problème. La constante de dissociation hétérolytique où N_2O_4 peut être considéré comme un sel de nitrosyle a été déterminée grâce à l'utilisation judicieuse de l'électrode d'argent recouverte de chlorure d'argent. La mise au point d'un dosage original de N_2O_4 seul ou en présence d'acide nitrique a été une des retombées de cette étude.

Enfin l'interprétation du mécanisme de l'oxydation de N_2O_4 a permis d'atteindre la constante du troisième équilibre, et d'évaluer les constantes cinétiques de la monomérisation de N_2O_4 . L'ensemble des résultats obtenus a permis de proposer un mécanisme rendant compte des différentes étapes de la réduction de N_2O_4 .

Dans la troisième partie, nous nous sommes intéressés au pouvoir nitrant des espèces N_2O_4 et N_2O_3 vis à vis du naphtalène dans le sulfolane. L'effet catalytique de NO^+ a été mis en évidence grâce au suivi de la réaction par le tracé des courbes intensité-potentiel. L'ion nitrosyle peut être présent initialement ou formé in situ par addition d'acide protonique plus fort que HNO₃, ou par addition de certains nitrates métalliques, ou par oxydation électrochimique des mélanges N_2O_4 - H_2O . Cette catalyse par NO^+ intervient encore lors de la nitration du naphtalène par NO_2^+ provenant de l'oxydation de N_2O_4 . En effet, le proton libéré lors de la nitration réagit avec N_2O_4 pour donner NO^+ .

Enfin, dans la dernière partie, un comportement particulier de NO a été étudié. En effet, les propriétés redox du monoxyde d'azote sont profondément modifiées par coordination avec un métal de transition. La réduction électrochimique de complexes dinitrosyles du molybdène à 18 électrons du type $Mo(NO)_2L_2Cl_2$ engendre des complexes à 19 et 20 électrons. Les complexes à 20 électrons sont toujours très instables. Des complexes à 19 électrons ont été stabilisés et étudiés par spectroscopie. L'électron célibataire est localisé sur les ligands nitrosyles dans une orbitale π_{NO}^{\star} . L'introduction d'un électron dans la sphère de coordination provoque la labilisation des liaisons Mo - Cl. Cette propriété pourrait être utilisable dans la catalyse de réaction d'oligomérisation d'alcènes.

Couples électrochimiques déterminés à l'aide de l'électrode d'argent à 298°K	E°/(Fc⁺/Fc) E [°] en mV
$Ag^+ + e^- \neq Ag_+$	
dans le nitrométhane	+ 611 partie 2 réf 13
sulfolane	+ 373ª partie 2 réf 14
carbonate de propylène	+ 509 partie 2 réf 12
AgC1, + e ⁻ ≠ Ag, + C1 ⁻	
dans le nitrométhane	- 661 partie 2 réf 13
sulfolane	- 737ª partie 2 réf 14
carbonate de propylène	- 715 partie 2 réf 12
AgC1 + NO ⁺ + e ⁻ ≠ Ag + NOC1	
dans le nitrométhane	+ 137 partie 2 réf 12
sulfolane	- 22ª
carbonate de propylène	+ 42 partie 2 réf 12
AgC1 + N ₂ O4 + $e^- \neq Ag$ + NOC1 + NO ₃ ⁻	
dans le nitrométhane	- 394
sulfolane	-454,5ª
carbonate de propylène	- 411
Couples électrochimiques déterminés à l'aide de l'électrode de platine	
dans le sulfolane à 303°K	E en volt
$N02^{+} + e^{-} \neq 1/2N20a$	+ 1,50
$N02^{+} + e^{-} + N02$	+ 1,35
$N0^+ + 1/2N_204 + e^- \neq N_203$	+ 0,850
N0 ⁺ + e ⁻ ≠ N0	+ 0,715
$NO_2 + N_2O_4 + e^- + N_2O_3 + NO_3^-$	+ 0,56
$3N_2O_4 + 2e^- \neq 2N_2O_3 + 2NO_3^-$	+ 0,42
NO ₂ + e ⁻ ≠ NO ₂ ⁻	+ 0,32
$N_204 + e^- \neq N0 + N03^-$	+ 0,28
1/2N2O4 +HNO3,NO3 ⁻ + e ⁻ ≠ HNO2 + 2NO3 ⁻	+ 0,27
$N_204 + 2e^- \neq 2N02^-$	+ 0,175
NO + NO ₃ ⁻ + e ⁻ ≠ 2NO ₂ ⁻	+ 0,07
2N ₂ O ₃ + e ⁻ ≠ 3NO + NO ₃ ⁻	+ 0,01

Couples électrochimiques utilisés et étudiés dans ce mémoire

a valeur déterminée à 30°C

- 214 -

log K à 303°K Equilibres de dissociation moléculaire $2N_2O_3 \neq 2NO + N_2O_4$ dans le sulfolane - 4,4 N2O3 ≠ NO + NO2 dans l'eau - 4,14^b partie 2 réf 11 dans l'acétonitrile - 4,08^b partie 2 réf 10 dans le sulfolane - 4,79^b; - 4,60 $N_204 \neq 2N0_2$ dans le nitrométhane - 3,82b - 4,42^b dans l'acétonitrile - 5,03^b; - 4,84 dans le sulfolane dans le carbonate de propylène - 4,73b Equilibres de dissociation ionique $N_{2}O_{3} \neq NO^{+} + NO_{2}^{-}$ dans le sulfolane - 11.2 N204 2 NO+ + NO-- 9,2b dans le nitrométhane dans le sulfolane - 7,15 - 7,3b dans le carbonate de propylène $N_{2}O_{4} \neq NO_{2}^{+} + NO_{2}^{-}$ dans le sulfolane - 22 Réactions d'oxydo-réduction N204 + 2N02⁻ ≠ 2N0 + 2N03⁻ sulfolane + 3,5 $NO_2 + NO_2^- \neq NO + NO_3^$ sulfolane + 2,1 Réactions acido-basique $N_{2}O_{4} + H^{+} \neq HNO_{3} + NO^{+}$ sulfolane + 8,8 N_2O_4 + HC1O_4 \neq NO⁺ + C1O₄⁻ + HNO₃ sulfolane + 4,8 $HNO_2 + N_2O_4 \neq HNO_3 + N_2O_3$ sulfolane - 0,6 Réactions de complexation $N_{2}O_4 + M(NO_3)_2 \neq NO^+ + M(NO_3)_3^$ sulfolane M = Zn0,25 M = Cu 0,40 $M = U0_2$ 0,23 $M(NO_3)_2 + NO_3^- \neq M(NO_3)_3^$ sulfolane M = Zn 7,46 M = Cu7,60 11 " 002 1,43

^b valeur déterminée à 25°C

- 215 -

Valeur des constantes établies et utilisées dans ce mémoire

Acide AH pK ^{H^T} (dan		ans le sulfo	ns le sulfolane)		
HSO3F		3,3	partie 2	réf 23	
HC104		4	partie 2	réf 22	
H2\$207		5,2	partie 2	réf 14	
HC1		14.5	partie 2	réf 19	
HNO ₃		16			
HNOZ		∿20,6			
Produit de sol	ubilité de AgCl	tog PAg	C1		
dans le nitro	méthane	- 21,2	partie 2	réf 13	
sulfo	lane	- 18,4	partie 2	réf 14	
carbo	nate de propylène	- 20,4	partie 2	réf 12	
Acide AH	Constante d'homoconjugaison pK ^{h.C.}				
	HAZ	≠ AH + A	-		
HC 1	3,0	*		· · · · · · · · · · · · · · · · · · ·	
	3,1	partie 2	réf 14		
FN03	2,65				
	3,1	partie 2	réf 21		
	Constantes cinétiqu de l'équilibre: N ₂ O4 <u>k2</u> 2NO2 à 25	ues k _l et k 98°K	2 Constant de l'équ N203 14	es cinétiques kg e ilibre: = 1/2N ₂ 04 + NO	
Sulfolane	k1 = 21 s-1 k2 = 2,3.106 zmole-1s-1		k3 = 9 k4 = 13	s ⁻¹ 50 s ⁻¹ (e/-(1e) ^{1/2}	
Carbonate de propylène	k1 = 13 s ⁻¹ k2 = 0.7.10 ⁶ imole ⁻¹	l ₅ -1	dans le	sulfolane à 30°C	
Nitrométhané	k ₁ = 3.3 s ⁻¹ k ₂ = 2.2.10 ⁴ tmole ⁻¹	ls-1			

- ale de la companya d Este de la companya d

Annexe

SOMMAIRE

ANNEXE	EXPERIMENTALE. TECHNIQUES UTILISEES I
	I. Méthodes voltampérométriques d'analyses I
	II. Méthodes spectroscopiquesIV
	III. Chromatographie en phase vapeur (C.P.V.)IV
ANNEXE	THEORIQUEV
	. Mesure de susceptibilités magnétiques par
	résonance magnétique nucléaireV
	. Mesures de susceptibilités magnétiques de composés
ana na sa	liquides selon la méthode Curie-CheneveauVIII
	. Absorption magnétique électronique XI
	. Coefficient de diffusion d'une particule non
	chargée en solution diluée. Equation de
	Stokes-Einstein XVII

ANNEXE EXPERIMENTALE

TECHNIQUES UTILISEES

I. METHODES VOLTAMPEROMETRIQUES D'ANALYSES

Voltampérométrie linéaire et cyclique

- Electrode tournante de platine ($\phi = 0, 8$ mm)
- Electrodes utilisées lors des études en voltammétrie cyclique $(\emptyset = 0,8 \text{ mm et } \emptyset \approx 2 \text{ mm})$
- Potentiostat P.R.T. 20-2X (Tacussel)
- Unité polarographique UAP4 (Tacussel)
- Millivoltmètre ISIS 4000 (Tacussel)
- Table traçante TGM 164 (Sefram)

Afin de s'assurer de l'étancheité de la cellule de mesure (pour éviter l'humidité ambiante), nous avons utilisé une électrode tournante mise au point au laboratoire ¹ et permettant le tracé des courbes voltampérométriques sous atmosphère contrôlée.

Coulométrie

- Titrimètre à électrodes polarisées Titrisol (Tacussel)
- Chronoampérostat CEAMD-6 (Tacussel)
- Intégrateur IG5-N (Tacussel)
- Potentiostat PRT 100 1X (Tacussel)

Potentiométrie à courant nul

- Millivoltmètre type ISIS 20.000 (Tacussel)
- Microseringues Gilmont de 0,2 et 2 cm^3

Electrode tournante à disque et anneau (E.T.D.A.)

- Electrode type EAD 10K Pt/Pt (Tacussel)
- Amplificateur d'asservissement de vitesse type Asservitex 10.000 (Tacussel)

- Pilote SERVOVIT 2A (Tacussel)
- Table traçante type TGM (Sefram)
- Millivoltmètre ISIS 4000 (Tacussel)

La théorie relative à l'E.T.D.A. est décrite ². Il s'agit d'une électrode centrale à disque de platine (de rayon r_1) entouré par un anneau concentrique en téflon (r_2), puis par un anneau de platine (r_3).

Diffusion du fluide vers la surface de l'électrode tourmante

Courbe de déplacement du fluide à proximité de la surface de l'électrode tournante

L'E.T.D.A. utilisée possède les caractéristiques géométriques suivantes:

> $r_1 = 2,00 \pm 0,01 \text{ mm}$ $r_2 = 2,20 \pm 0,01 \text{ mm}$ $r_3 = 2,40 \pm 0,01 \text{ mm}$

· L'effet d'écran S est une caractéristique importante de l'électrode tournante à disque et anneau. Si le disque et l'anneau sont à un même potentiel tel que la réaction:

$$A \pm ne^- \rightarrow B$$

ait lieu aux deux électrodes, un courant I_{Λ}° traversera l'anneau quand
le circuit du disque sera ouvert $(I_{D} = 0)$; Lorsqu'on ferme le circuit du disque, un courant I_{A} inférieur à I_{A}° passe à l'anneau, car le transport de A arrivant à l'anneau est diminué d'une certaine quantité de A consommé au disque. On définit alors le facteur d'écran S par le rapport:

$$S = \frac{I_A}{I_A^\circ}$$

On démontre que ce facteur d'écran S ne dépend que des caractéristiques géométriques de l'électrode lorsque les espèces A et B sont stables. Dans ce cas seulement, le facteur d'écran s'exprime par la relation:

$$S_0 = 1 - N_0 \beta^{-2/3} \qquad \text{avec } \beta = (r_3/r_1)^3 - (r_2/r_1)^3$$
$$N_0 : \text{facteur géométrique}$$

N₀ est une grandeur ne dépendant que des caractéristiques géométriques de l'électrode.

Remarquons que la valeur du facteur d'écran permet également d'obtenir des renseignements concernant une éventuelle interaction ou instabilité des espèces A et B.

Electrodes de référence

L'électrode de référence Ag^+/Ag est constituée par un fil d'argent plongeant dans une solution de AgClO₄ (0,1 M pour le sulfolane et 0,01 M pour le carbonate de propylène), relié à la cellule de mesure par un pont rempli d'une solution de perchlorate de tétraéthylammonium 0,1 M.

L'électrode de référence Fc^+/Fc dans le nitrométhane ³ est constituée par un fil de platine plongeant dans une solution 0,1 M de Et₄NC10₄ et saturée en ferrocène. On procède ensuite à une oxydation électrochimique de cette solution à intensité constante: 0,1 mA pendant environ 600 secondes.

L'électrode au calomel saturé est utilisée pour relever les potentiels dans l'acétonitrile. Nous avons relié cette électrode à la cellule de mesure par un pont contenant 0,1 M de perchlorate de tétraéthylammonium.

Ces électrodes de référence ont des potentiels assez stables.

Cependant, après chaque manipulation, nous effectuons un étalonnage de ces électrodes par rapport au couple Fc^+/Fc .

Le système ferrocène - ferricinium (Fc⁺/Fc) étant rapide dans les solvants utilisés $^{3-4}$, nous avons pris le potentiel de demivague de ce couple Fc⁺/Fc comme origine de l'échelle de potentiel.

Correction de la force ionique

Les potentiels normaux déterminés directement à partir des courbes potentiométriques de dosage doivent être corrigés de l'influence de la force ionique. A partir de la formule de Debye-Hückel relative aux électrolytes totalement dissociés ⁵, nous avons calculé le coefficient d'activité moyen f_{\pm}^+ de l'électrolyte. Pour ce qui concerne les espèces moléculaires, nous avons supposé l'activité égale à la concentration.

II. METHODES SPECTROSCOPIQUES

Résonance magnétique nucléaire (R.M.N.)
Spectromètre Bruker W.P. 80
Résonance paramagnétique électronique
Spectromètre R.P.E. VARIAN E 109
Spectrophotométrie (ultra-violet)
Spectromètre DUOSPAC 203 Jobin et Yvon
Spectroscopie Infra rouge et Raman
- Spectromètre Infra rouge 457 Perkin Elmer

- Spectromètre Raman Dilor R.T. 30

III. CHROMATOGRAPHIE EN PHASE VAPEUR (C.P.V.)

Les produits ont été analysés en C.P.V. sur un appareil GILDEL 30 ou 3000, à l'aide d'une colonne en pyrex de 2m remplie de chromosorb W HP D.M.C.S. imprégné à 5% de silicone OV 17

ANNEXE THEORIQUE

MESURE DES SUSCEPTIBILITES MAGNETIQUES PAR RESONANCE MAGNETIQUE NUCLEAIRE 6

On pose:

- H: Champ magnétique nécessaire à la résonance d'un proton isolé (à une fréquence donnée v_0), en absence d'interaction intramoléculaire.
- H: Champ magnétique appliqué nécessaire à la résonance du proton i
- H.: Champ magnétique effectif que subit la molécule
- S.: Facteur d'écran dû au diamagnétisme intramoléculaire
 - x: Susceptibilité volumique du milieu

 α_1 et α_2 sont appelés "facteurs de formes" respectivement de l'échantillon et de la cavité hypothétique dans laquelle la molécule est supposée se trouver. Si on damet que cette cavité est sphérique, le facteur α_2 prend la valeur $\frac{4\pi}{3}$. D'autre part si l'échantillon a la forme d'un cylindre orienté transversalement par rapport au champ magnétique, le facteur α_1 encore appelé "facteur de démagnétisation" est égal à 2π .

En négligeant les interactions spin-spin, le champ magnétique H s'écrit:

 $H = SH' \quad \text{avec} \quad H' = H^{\circ} \left[1 - (\alpha_1 - \alpha_2) \right]$ $H = SH^{\circ} \left[1 - (\alpha_1 - \alpha_2) \right] = SH^{\circ} (1 - \alpha_X)$ $\alpha = \alpha_1 - \alpha_2 = 2\pi - \frac{4\pi}{3} = \frac{2\pi}{3}$

avec

soit

Examinons maintenant le cas où deux solvants i et j ne présentant pas d'interaction intermoléculaire, sont mélangés à différentes proportions.

Le champ magnétique H'_i de l'un des protons choisis du solvant i, est défini par la relation:

$$H = S_i H'_i = S_i H'_i (1 - \alpha \chi_i)$$

de même pour l'un des protons du solvant j, on a:

 $S_{jj} = S_{j}H_{j}^{\circ}(1 - \alpha \chi_{j})$ avec χ_{i} et χ_{j} les susceptibilités Н diamagnétiques des solvants i et j respectivement.

> raison du changement En de susceptibilité, les protons i et j subissent une variation de leur déplacement chimique respectif. On constate que distance séparant les 1a pics relatifs aux protons i et j, reste identique:

$$\delta_{i}^{x} - \delta_{i}^{x} = \delta_{j}^{\circ} - \delta_{i}^{\circ}$$
$$= \delta_{j}^{100} - \delta_{i}^{100}$$

= Cte

Autrement dit lorsque la x varie de valeur de 0 à 100%, les protons i et j subissent la même variation

de déplacement chimique:

$$\Delta \delta_i = \Delta \delta_i = \Delta \delta$$

La différence $\Delta\delta$ correspond à une variation de champ ΔH_{i} définie par l'égalité:

$$H_{j}^{\circ}(1 - \alpha \chi) - H_{j}^{\circ}(1 - \alpha \chi) = \Delta H_{j}^{\circ} = H_{i}^{\circ} - H_{j}^{\circ}$$

soit

$$H_{j}^{\circ}\alpha(\chi_{i}-\chi_{j}) = H_{i}^{\circ} - H_{j}^{\circ}$$

ce qui nous permet d'écrire:

$$\alpha(\chi_{i} - \chi_{j}) = \frac{H_{i}^{\circ} - H_{j}^{\circ}}{H_{j}^{\circ}} = \Delta \delta.10^{-6}$$

D'autre part, si les molécules i et j ne sont soumises à aucun diamagnétisme environnant ($\chi = 0$), le champ magnétique H vérifie les égalités:

$$H = S_{i}H_{i}^{\circ} = S_{j}H_{j}^{\circ} \Leftrightarrow \frac{S_{i}}{S_{j}} = \frac{H_{j}^{\circ}}{H_{i}^{\circ}}$$

En tenant compte de cette équation, $\Delta\delta$ peut encore s'écrire:

$$\Delta \delta = 10^6 \left[\frac{S_j - S_i}{S_i} \right] = Cte$$

∆ô est indépendant de la susceptibilité magnétique du milieu.

Par conséquent, si un solvant inerte j est infiniment dilué dans un autre i, les protons j peuvent constituer une référence interne pour mesurer la susceptibilité magnétique d'un milieu considéré.

Examinons par exemple le cas où un composé paramagnétique est dissous dans le solvant i. La susceptibillité du milieu varie alors de χ_i à χ . Le déplacement chimique subi par les protons de la référence interne dans le milieu considéré s'exprime par la relation:

 $\alpha(\chi - \chi_{ref}) = \Delta \delta_{solution}$

En se repérant par rapport au déplacement chimique $\Delta \delta_j$ subi par les protons de la référence dans le solvant i exempt de composé paramagnétique:

$$\Delta \delta_{j} = \alpha (\chi_{i} - \chi_{ref})$$

la différence de déplacement chimique:

$$\Delta \delta = \Delta \delta_{\text{solution}} - \Delta \delta_{j} = \alpha (\chi - \chi_{i})$$

résulte d'un changement de susceptibilité du milieu causé par la présence du soluté paramagnétique. Il est alors possible, connaissant la valeur de $\Delta\delta$, de calculer la susceptibilité X du milieu à partir de la relation:

 $= \frac{\Delta \delta}{\alpha}$

MESURES DE SUSCEPTIBILITES MAGNETIQUES DE COMPOSES LIQUIDES SELON LA METHODE CURIE - CHENEVEAU ⁷

Quand une substance est placée dans un champ magnétique d'intensité uniforme $\stackrel{\rightarrow}{H}$, il y a apparition d'un moment magnétique induit M égal à:

 $M = \chi \cdot H$

représente la susceptibililté magnétique du composé par unité de volume et par unité de champ. C'est une grandeur sans dimension.

Dans ces conditions, le composé acquiert une certaine aimantation mais n'est soumis à aucune force. Cette aimantation est liée aux propriétés magnétiques de la matière: le diamagnétisme est dû au mouvement de précessions des électrons dans les atomes; le paramagnétisme résulte du moment magnétique ($\mu = n(n + 2) \mu_B$ avec μ_B : magnéton de Bohr et n le nombre d'électrons non appariés) associé au spin de l'électron non apparié, spin qui présente deux états possibles (m $s = \pm \frac{1}{2}$). Considérons maintenant le cas où le champ magnétique H est non uniforme, l'échantillon est alors soumis à une force proportionnelle au gradient de champ $\frac{\partial H}{\partial x}$ selon:

 $|\vec{F}| = m.\chi g. \vec{H} \frac{\vec{\partial H}}{\partial x}$ avec m: masse de l'échantillon

Si le composé est diamagnétique, la force \vec{F} tend à attirer l'échantillon vers les champs les plus faibles. Par contre, si le composé est paramagnétique, l'échantillon se déplace vers les champs les plus élevés.

La balance magnétique de torsion modèle "Curie-Cheneveau" est l'une des mieux adaptée à la mesure des susceptibilités magnétiques

magnétiques pour des composés liquides.

Sous l'effet de l'aimant permanent le déplacement de l'échantillon est repéré à l'aide d'un miroir. La force F passe par deux maxima pour deux positions de l'aimant; la torsion du fil est alors maximum et la déviation correspondante également:

$$\begin{cases} F_1 = a\Delta_1 \\ F_2 = a\Delta_2 \end{cases}$$

où

a: coefficient dépendant du fil de torsion $\Delta 1 \text{ et } \Delta 2 \text{ : déviations lues}$ La déviation totale Δ_T s'écrit alors:

$$\Delta_{\rm T} = \Delta_1 + \Delta_2$$

soit

$$F_1 + F_2 = 2F = a\Delta_T = 2\chi g.m.H.\frac{\partial H}{\partial x}$$

On en déduit ainsi la valeur de Δ_T :

 $\Delta_{\rm T}$ = $\chi g.m.A$ avec A = $\frac{2H}{a} \frac{\partial H}{\partial x}$ = Cte de l'appareil

Notons que le verre est légèrement diamagnétique, il faut donc tenir compte de la déviation du tube vide dans les résultats.

L'étalonnage de l'appareil qui permet d'accéder à la valeur de la constante de l'appareil A, est effectué à l'aide de solutions de sel de Mohr $(NH_4)_2Fe(SO_4)_2, 6H_2O$ (composé de susceptibilité connue).

L'eau utilisée pour préparer les solutions est préalablement bouillie et mise sous atmosphère inerte (azote) pour éviter l'oxydation du fer II en fer III par l'oxygène dissous. La susceptibilité de la solution en fonction de la fraction en poids p de sel de Mohr, est donnée par la relation:

$$Xg(solution) = \left[\frac{9500}{T+1} p - 0,720(1-p)\right] \cdot 10^{-6} cm^{3}g^{-1}$$

avec T: la température absolue à laquelle s'effectue la mesure. $\chi g(H_{2O}) = -0,720.10^{-6} \text{cm}^3 \text{g}^{-1}$ susceptibilité massique de l'eau

Nous avons trouvé:

$$\chi_{g}^{dia} = -0,280.10^{-6} \text{cm}^{3}\text{g}^{-1} (N_{2}0_{4} \text{ solide})$$

$$\chi_{g}^{dia} (C.P.) = -0,570.10^{-6} \text{cm}^{3}\text{g}^{-1}$$

$$\chi_{g}^{dia}(T.M.S.) = -0,560.10^{-6} \text{cm}^{3}\text{g}^{-1}$$

avec

 $\Delta \chi = 0,05.10^{-6} \text{ cm}^3 \text{g}^{-1}$

ABSORPTION MAGNETIQUE ELECTRONIQUE

EXPRESSION DE LA PUISSANCE TOTALE ABSORBEE PAR L'ECHANTILLON PARAMA-GNETIQUE.

La résonance magnétique électronique (R.P.E.) constitue un moyen puissant des corps paramagnétiques. Une des applications de la technique R.P.E. consiste à déterminer la concentration d'espèces paramagnétiques contenues dans une solution.

Nous allons examiner la relation existant entre le signal d'absorption de résonance magnétique électronique et la susceptibilité paramagnétique χx de l'échantillon x considéré. Notons qu'il est souvent nécessaire de prendre un solvant peu polaire, pour éviter d'éventuelles altérations du spectre R.P.E. causées par les "effets du solvant" sur le composé paramagnétique.

Calculons l'expression de la puissance d'absorption totale P_{totale} captée par la solution paramagnétique en fonction de χx . Nous nous limiterons au cas simple où le composé paramagnétique possède un nombre quantique magnétique m_j = m_s = $\pm \frac{1}{2}$

Dans ces conditions, seuls deux niveaux d'énergie sont possibles:

$$E_{\frac{1}{2}} = +\frac{1}{2}g\beta H^{\circ} \qquad \text{et } E_{-\frac{1}{2}} = -\frac{1}{2}g\beta H^{\circ}$$

L'échantillon est soumis à l'action d'un champ magnétique statique H° modulé par un champ magnétique oscillant H° . Si le système se trouve dans les conditions de résonance, l'énergie ainsi fournie par le champ oscillant H° , est captée par l'échantillon et correspond au passage entre les deux états d'énergie définis ci-dessus, soit:

$$\Delta E = g\beta H^{\circ}$$

Le vecteur champ $\overrightarrow{H}^{\circ}$ est situé dans l'axe Oz.

Le vecteur champ H[&] appartient au plan composé par les axes Ox et Oy: P représente le plan de polarisation perpendiculaire au champ statique H°.

le champ magnétique oscillant total est donné par la relation:

$$\vec{H}_{total} = \vec{H}_{1} + \vec{H}_{2}$$
 avec $\vec{H}_{1} = \begin{vmatrix} Hx \\ Hy \end{vmatrix}$ et $\vec{H}_{2} = \begin{vmatrix} Hx \\ Hy \end{vmatrix}$

Seule la composante de $\stackrel{\uparrow}{H}_{total}^{\bullet}$ suivant l'axe des x: axe perpendiculaire aux vecteurs $\stackrel{\rightarrow}{H}^{\circ}$ et $\stackrel{\downarrow}{\mu}^{\circ}$ ($\stackrel{\downarrow}{\mu}^{\circ}$: moment magnétique élémentaire de chaque molécule paramagnétique), peut donner lieu à une perturbation et par conséquent à une absorption d'énergie par l'espèce paramagnétique.

Le champ oscillant $H^{A_{\mu}}$ a donc pour expression:

 $H^{4} = 2H^{4} = 2H^{4} cos \omega t$

Sous l'action du champ magnétique à haute fréquence v_0 , la susceptibilité paramagnétique de l'échantillon a pour expression:

$$\chi = \chi_r - i\chi_i$$

avec

 χ_r : partie réelle de χ χ_i : partie imaginaire de χ

Le champ oscillant H[∿] engendre un moment magnétique induit M selon:

$$M = 2\chi_r H_{max} \cos \omega t + 2\chi_i H_{max} \sin \omega t$$

L'énergie absorbée par le système au cours de l'intervalle de temps dt, est alors donnée par la relation:

dW = Pu dt = H dM Pu étant la puissance absorbée

Cette équation différentielle peut encore s'écrire:

$$Pu = H \left[\frac{dM}{dt}\right]$$

En intégrant cette équation de 0 à T = $\frac{2\pi}{\omega}$ (période du champ oscillant), on détermine la puissance moyenne d'absorption:

$$Pm = \frac{1}{T} \int_0^T Pu dt = \frac{1}{T} \int_0^T H\left[\frac{dM}{T}\right]$$

Sachant que:

$$\frac{dM}{dt} = 2H_{max}\omega (-\chi_r \sin\omega t + \chi_i \cos\omega t)$$

On en déduit:

$$P_{m} = \frac{4\omega^{2}H^{2}}{2\pi} \int_{0}^{2\pi} \left[-\chi_{r}\sin\omega t \,\cos\omega t + \chi_{i}\cos^{2}\omega t \right] dt$$
$$= \frac{2\omega^{2}H^{2}}{\pi} \left\{ \left[+\chi_{r} \,\frac{\cos 2\omega t}{4} \right]_{0}^{2\pi} + \left[\frac{\chi_{i}t}{2} \right]_{0}^{2\pi} + \left[\frac{\chi_{i}\sin 2\omega t}{4\omega} \right]_{0}^{2\pi} \right\}$$
$$\frac{2\omega^{2}H^{2}}{\pi} \left[0 + \frac{\chi_{i}\pi}{\omega} + 0 \right] = 2\omega\chi_{i}H^{2}_{max}$$

Comme ω = $2\pi\nu$, avec ω : pulsation en rd/s et ν : fréquence en cycles/s . il vient:

$$Pm = 4\pi v \chi_i H_{max}^2$$
 (2)

La puissance moyenne Pm est donc proportionnelle à la partie imaginaire de la susceptibilité magnétique χ et à l'amplitude H_{max} du champ magnétique oscillant H⁶.

- XIII -

- XIV -

D'autre part, en considérant le champ H^e comme étant très faible par rapport au champ statique H[°] ($H_{max} \ll H^{°}$), la puissance Pm peut être déterminée par la mécanique quantique en utilisant la théorie des perturbations.

Soit l'opérateur Hamiltonien:

$$\mathcal{K}^{\gamma} = (g^{\beta})H^{\gamma}$$

La probabilité $P_{m,m'}$ de passage d'un état quantique m à un état m' est donnée par la relation:

$$P_{m,m'} = \frac{\pi^2}{h^2} (g_{\beta})^2 H_{max}^2 |(m'| \mathcal{J}_x|m)| F(v - v_0)$$

où F($v - v_0$) représente une fonction normalisée définie par l'intégrale:

 $\int_0^\infty F(v - v_0) = 1$ (1)

Pour que la probabilité de transition de m à m' soit maximum, il faut que $v = v_0$: cette égalité représente la "condition de résonance".

Notons également que la fonction F représente, à une constante près, la <u>courbe d'absorption magnétique électronique</u> obtenue lors d'un tracé de spectre R.P.E.

Si $m = -\frac{1}{2}$ et $m' = +\frac{1}{2}$, il vient:

$$P_{-\frac{1}{2}+\frac{1}{2}} = \frac{\pi^2}{h^2} (g\beta)^2 H_{\max}^2 F(v - v_0)$$

La fonction F peut aussi être exprimée en fonction du champ statique:

$$F(v - v_0) = \frac{g\beta}{h} F(H - H^\circ)$$

En appliquant la loi de distribution de Boltzmann à notre système supposé en équilibre thermique, le rapport de population dans les deux états $\pm \frac{1}{2}$ est donné par la relation:

$$\frac{n(+\frac{1}{2})}{n(-\frac{1}{2})} = \exp(-g\beta H^{\circ}/kT) \text{ avec } k: \text{ constante de Boltzmann}$$

T: température en °K

Sachant que: $g\beta H^{\circ} >> kT$, nous pouvons faire l'approximation:

$$\frac{n(+1/2)}{n(-1/2)} \simeq \frac{1 - g\beta N^{\circ}}{kT}$$

En appelant Nx le nombre d'électrons non appariés par gramme de solution, la différence de population entre les deux états d'énergie est pour ainsi dire égale à:

$$\Delta n_{\mathbf{x}} = \frac{1}{2} \operatorname{Nx} \frac{\mathbf{g} \mathbf{\beta} \mathbf{H}}{\mathbf{k} \mathbf{T}} = \frac{1}{2} \operatorname{Nx} \frac{\mathbf{h} \mathbf{v} \mathbf{0}}{\mathbf{k} \mathbf{T}}$$

D'autre part, chaque transition de m à m' correspond à une absorption d'énergie:

 $\Delta E = hv$ soit pour Δn_x électrons une énergie d'absorption égale à: $\Delta W = \Delta n_x \Delta E = hv \Delta n_x$

La puissance moyenne absorbée Pm peut alors s'écrire:

$$Pm = \Delta W P_{-\frac{1}{2}, +\frac{1}{2}}$$

$$= hv \left(\frac{1}{2} N_{x} \frac{hv_{0}}{kT}\right) \left[\frac{\pi^{2}(g_{\beta})^{2}H^{2}_{max}}{h^{2}}\right] F(v - v_{0})$$

$$= \frac{\pi^{2}}{2kT} (g\beta)^{2} N_{x} (v \cdot v_{0}) H_{max}^{2} F(v - v_{0})$$

L'échantillon soumis uniquement au champ statique H[°], présente un moment magnétique total par gramme de solution:

$$M_{x} = (\frac{1}{2} g^{\beta}) \Delta n_{x}$$

On détermine alors la susceptibillité paramagnétique totale de la solution par gramme:

$$\chi_{\rm X} = \frac{M_{\rm X}}{H^{\circ}} = \frac{1}{4kT} (g\beta)^2 N_{\rm X}$$
 (3)

De sorte que nous pouvons exprimer la puissance Pm en fonction de la "susceptibilité statique" χ_x selon:

- XV - -

$$Pm = 2\pi^2 (v \cdot v_0) H^2_{max} \chi_x F(v - v_0)$$
(4)

Par comparaison avec l'équation (2), nous pouvons établir l'expression de la susceptibilité χ_i :

$$X_{i} = \frac{1}{2} \pi v_{0} X_{x} F(v - v_{0})$$

L'équation (4) nous donne l'espression de la puissance absorbée par l'échantillon en fonction de la fréquence v. Il nous suffit alors d'intégrer la fonction Pm(v) dans tout le domaine de fréquence (v variant de 0 à ∞), pour calculer la puissance totale absorbée par l'échantillon, soit:

$$P_{totale} = \int_0^\infty P_m(v)$$

On admet que la fréquence v reste très voisine de v_0 , ce qui implique que $v_0v \simeq v_0^2$. Compte tenu de l'égalité (1), on obtient:

$$P_{totale} = 2\pi^2 v_0^2 \chi_x H^2_{max} \int_0^\infty F(v - v_0)$$
$$= 2\pi^2 v_0^2 \chi_x H^2_{max}$$

ou bien en remplaçant $\chi_{\rm X}$ par son expression (3), il vient:

$$P_{\text{totale}} = \left[\frac{2\pi^2 v_0^2 (g\beta)^2 H_{\text{max}}^2}{4kT}\right] N_{\text{x}}$$

Cette égalité mmontre donc que le signal d'absorption magnétique électronique A détecté par spectroscopie R.P.E. est proportionnel à la concentration d'espèces paramagnétiques contenues dans l'échantillon.

COEFFICIENT DE DIFFUSION D'UNE PARTICULE NON CHARGEE EN SOLUTION DILUEE

EQUATION DE STOKES - EINSTEIN 9

Le potentiel chimique μ_s d'un composé s en solution diluée peut s'écrire:

 $\mu_{s} = \mu_{s}^{\circ} + kT \log_{e} c \quad (1)$

avec

k: constante de Boltzmann

and the second state of the second state of the

 μ_s° : potentiel chimique standart du soluté s

Les molécules en solution sont l'objet de mouvements appelés "mouvement Browniens". Si l'on désigne par r la distance parcourue par la particule s dans le milieu considéré, en dérivant par r la relation (1), nous obtenons:

$$\frac{\partial \mu s}{\partial r} = kT \frac{\partial \log_e c}{\partial r} = kT \frac{\partial \log_e n}{\partial r}$$
(2)

n étant le nombre de particules s dans l litre de solution

A partir de cette égalité (2), nous pouvons établir l'expression de la force cinétique f_c agissant sur une molécule s:

$$f_{c} = -\frac{\partial u s}{\partial r} = -kT \frac{\partial \log_{e} n}{\partial r}$$

D'autre part, la force de résistance f_r est proportionnelle à la vitesse de diffusion v de la particule s, soit:

 $f_r = -Cv$ C représente la constante de résistance

En faisant le bilan des forces:

 $\vec{\Sigma f} = \vec{f_c} + \vec{f_r} = \vec{0}$

nous en déduisons:

 $- kT \left[\frac{\partial \log n}{\partial r} \right] - Cv = 0$ $\mathbf{v} = -\frac{\mathbf{k}\mathbf{T}}{\mathbf{C}} \left[\frac{\partial \log n}{\partial \mathbf{r}} \right]$

En multipliant par n chacun des membres de cette égalité, il vient:

$$nv = -\frac{kT}{C} \left[n \quad \frac{\partial \log_e n}{\partial r} \right] = -\frac{kT}{C} \left[\frac{\partial n}{\partial r} \right]$$
(3)

nv étant le nombre de molécules s passant par seconde à travers une surface égale à l'unité.

Connaissant la définition générale du coefficient de diffusion

D:

soit

et compte tenu de la relation (3), nous pouvons écrire:

$$D = \frac{kT}{C} = \frac{RT}{NC}$$

 $D = -nv\left[\frac{\partial n}{\partial r}\right]^{-1}$

R: constante des gaz parfaits N: nombre d'avogadro

Si la particule s est assimilée à une sphère de rayon a, la constante de résistance C s'écrit:

$$C = 6 \pi \eta a$$
 η : représente la viscosité dynamique
du milieu

L'expression du coefficient de diffusion devient alors:

$$D = \frac{RT}{6 \pi N \eta a}$$
 (4) Equation de Stokes-Einstein

En appelant V_s le volume d'une molécule s, nous pouvons exprimer le rayon a en fonction de la masse molaire M_s et de la densité d_s à la température T selon:

$$V_{s} = \frac{M_{s}}{d_{s}N} = \frac{4}{3} \pi a^{3} \iff a = \left[\frac{3M_{s}}{4\pi N d_{s}}\right]^{1/3}$$
$$= \left[\frac{3}{4\pi N}\right]^{1/3} \left[\frac{M_{s}}{d_{s}}\right]^{1/3}$$

$$kT = R$$

La relation (4) devient alors:

$$D = \frac{RT}{6\pi N \left[\frac{3}{4\pi N}\right]^{1/3}} \left[\frac{d_s}{M_s}\right]^{1/3} n^{-1}$$
(5)

Cette équation est valable tant que la concentration du composé s reste faible.

Dans la littérature, l'expression de D (5) se présente sous différentes formes suivant qu'elle est utilisée dans le système C.G.S. ou le système S.I.:

Dans le systèmeC.G.S.

D = 2,97.10⁻⁷ $\left[\frac{d_s}{M_s}\right]^{1/3}$ η^{-1} en cm²/s (à T = 298°K)

en exprimant

R en ergs T⁻¹ mole⁻¹

T en degrés Kelvin

 η en poises ou dyn.s.cm⁻² ou bien g.cm⁻¹s⁻¹

Dans le système S.I.

D = 2,97.10⁻¹⁴ $\left[\frac{d}{M}\right]^{1/3}$ n⁻¹ en m²/s (à T = 298°K) en exprimant

R en J.K⁻¹mole⁻¹ T en degrés Kelvin η en poiseuilles ou kg m⁻¹s⁻¹

BIBLIOGRAPHIE

1. J.C. FISCHER, B. BRASME Analusis, V 5, n°6, 284-285 (1977) 2. W.J. ALBERY et M.L. HITCHMAN "Ring-disc Electrodes" Clarendon Press, Oxford (1971) 3. J.C. FISCHER Thèse, Lille (1976) 4. P. PIERENS Thèse 3ème cycle, Lille (1975) 5. R.A. ROBINSON, R.H. STOKES "Electrolyte solutions", Seconde édition révisée, Publications Butterworths, Londres (1965) 6.a. W.C. DICKINSON Phys. Rev., 81, 717 (1951) b. A. BOTHNER et R.E. GLICK J. Chem. Phys., 26, 1647 et 1651 (1957) c. W.D. PHILLIPS, C.E. LOONEY, C.K. IKEDA J. Chem. Phys., 27, 1435 (1957) d. D.F. EVANS J. Chem. Soc., 2003 (1959) 7. P.W. SELWOOD "Magnetochemistry" Interscience Publishers, Inc. New York (1964) 8. PETER B. AYSCOUGH "Electron Spin Resonance in Chemistry", Methuen & Co LTD. . London (1967) 9.a. E.A. MOELWYN HUGHES "The Chemical Statics and Kinetics of Solutions" Academic Press INC, London et New York (1971) b. R.A. ROBINSON, R.H. STOKES "Electrolyte Solutions" Second Edition, London Butterworths (1959)INTER

Les oxydes d'azote sont utilisés depuis longtemps dans la grande industrie chimique, principalement dans la production de l'acide nitrique, produit de base dans la synthèse de nombreux composés azotés. L'utilisation directe des oxydes d'azote comme agent de synthèse permettrait de s'affranchir de cette étape coûteuse en énergie. Les constantes thermodynamiques et cinétiques qui régissent les équilibres chimiques des oxydes de l'azote III (NO⁺, N₂O₃, NO₂⁻, HNO₂), ont été déterminées en milieu aprotonique par les techniques électrochimiques. De plus, l'étude des dissociations homolytique et hétérolytiques de N₂O₄ dans le sulfolane par les techniques électrochimiques RNN, RPE a permis de mettre au point une méthode de dosage de N₂O₄ dans les mélanges N₂O₄-HNO₃.

Les pouvoirs nitrants de N₂O₄, N₂O₃ et HNO₃ vis-à-vis du naphtalène sont comparés dans le sulfolane. Les sels de nitryle, nitrosyle, les acides de Brönsted, les nitrates métalliques ainsi qu'un transfert monoélectronique activent la nitration des hydrocarbures aromatiques par N₂O₄. Un processus catalysé par NO⁺ commun à tous les précurseurs est proposé et démontré par la spectroscopie Raman et les techniques électrochimiques.

La coordination du monoxyde d'azote sur un complexe métallique modifie ses propriétés oxydoréductrices. La réduction électrochimique de complexes dinitrosyles du molybdène à 18 électrons permet d'accéder aux complexes à 19 et 20 électrons. Les applications en catalyse homogène des réactions d'oligomérisation d'alcènes sont discutées.

MOTS CLES :

ELECTROCHIMIE, OXYDES D'AZOTE, SOLVANTS APROTONIQUES, TRANSFERTS ELECTRONIQUES, CONSTANTES D'EQUILIBRE, NITRATION, COMPLEXES NITROSYLES.