N° d'ordre 1249 50376 1985 11

1

THÈSE

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

pour obtenir le titre de

DOCTEUR DE 3'eme CYCLE

Spécialité Science des Matériaux

par

BACHIR BOUACHERIA

RELAXATION DES CONTRAINTES D'UN ALLIAGE LAMINÉ

ZINC - CUIVRE - TITANE

SOUTENUE LE 24 JANVIER 1985 DEVANT LA COMMISSION D'EXAMEN

MM. J.	FOCT	PRÉSIDENT
Μ.	DI PERSIO	EXAMINATEUR
J.P.	HENRY	EXAMINATEUR
Α,	IOST	EXAMINATEUR
Μ.	VACHER	EXAMINATEUR
J.	WEGRIA	EXAMINATEUR

UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE Septembre 1983,

DOYENS HONORAIRES DE L'ANGIENNE FÀCULTE DES SCIENCES

MM. R. DEFRETIN, H. LEFEBVRE, M. PARREAU.

PROFESSEURS HONORAIRES DES ANCIENNES FACULTES DE DROIT ET SCIENCES ECONOMIQUES, DES SCIENCES ET DES LETTRES

MM. ARNOULT, Mme BEAUJEU, BONTE, BROCHARD, CHAPPELON, CHAUDRON, CORDONNIER, CORSIN, DECUYPER, DEHEUVELS, DEHORS, DION, FAUVEL, FLEURY, P. GERMAIN, GLACET, GONTIER, HEIM DE BALSAC, HOCQUETTE, KAMPE DE FERIET, KOURGANOFF, LAMOTTE, LASSERRE, LELONG, Mme LELONG, LHOMME, LIEBAERT, MARTINOT-LAGARDE, MAZET, MICHEL, PEREZ, ROIG, ROSEAU, ROUELLE, SAVARD, SCHILTZ, WATERLOT, WIEMAN, ZAMANSKI.

PROFESSEUR EMERITE

M. A. LEBRUN.

ANCIENS PRESIDENTS DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

MM. R. DEFRETIN, M. PARREAU, J. LOMBARD, M. MIGEON.

PRESIDENT DE L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE

M. J. CORTOIS.

PROFESSEURS - CLASSE EXCEPTIONNELLE

м.	CONSTANT Eugène	Electronique
м.	FOURET René	Physique du Solide
м.	GABILLARD Robert	Electronique
м.	MONTREUIL Jean	Biochimie
м.	PARREAU Michel	Analyse
М.	TRIDOT Gabriei	Chimie appliquée
Μ.	VIVIER Emile	Biologie cellulaire
М.	WERTHEIMER Raymond	Physique atomique et moléculaire

PROFESSEURS - 1ère CLASSE

М.	BACCHUS Pierre	As
м.	BEAUFILS Jean Pierre	Ch
м.	BIAYS Pierre	Géo
м.	BILLARD Jean	Phy
Μ.	BOILLY Bénoni	Bid

Astronomie Chimie physlque Géographie Physlque du sollde Biologie

. . . / . . .

BOUGHON Pierre М. м. BOURIQUET Robert Μ. BREZINSKI Claude M. CELET Paul CHAMLEY Hervé м. м. COEURE Gérard CORDONNIER Vincent М. М. DEBOURSE Jean-Pierre DYMENT Arthur Μ. M. ESCAIG Bertrand М. FAURE Robert Μ. FOCT Jacques М. GRANELLE Jean-Jacques Μ. **GRUSON** Laurent GUILLAUME Jean Μ. М. HECTOR Joseph Μ. LABLACHE COMBIER Alain Μ. LACOSTE Louis Μ. LAVEINE Jean-Pierre LEHMANN Daniel М. Mme LENOBLE Jacqueline м. LHOMME Jean М. LOMBARD Jacques М. LOUCHEUX Claude Μ. LUCQUIN MIchel MAILLET Pierre Μ. Μ. **PAQUET** Jacques Μ. POUZET Plerre М. PROUVOST Jean ROUSSEAU Jean-Paul М. М. SALMER Georges Μ. SEGUIER Guy Μ. STANKIEWICZ François

- M. TILLIEU Jacques
- M. VIDAL Pierre
- M. ZEYTOUNIAN Radyadour

Algèbre Biologie végétale Analyse numérique Géologie générale Géotechnique Analyse Informatique Gestion des entreprises Mécanique Physique du solide Mécanique Métallurgie Sciences économiques Algèbre Microbiologle Géométrie Chimie organique Biologie végétale Paléontologie Géométrie Physique atomique et moléculaire Chimie organique blologique Sociologie Chimie physique Chimie physique Sciences économiques Géologie générale Analyse numérique Minéralogie Physiologie animale Electronique Electrotechnique Sciences économiques Physique théorique -Automatique. Mécanique

PROFESSEURS - 2ème classe

М. AL FAKIR Sabah ALLAMANDO Etienne М. М. ANCIAN Bernard Μ. ANTOINE Philippe Μ. BART André Mme BATTIAU Yvonne Μ. **BEGUIN Paul** М. **BELLET** Jean Μ. BERZIN Robert М. BKOUCHE Rudolphe BODARD Marcel Μ. Μ. BOIVIN Jean-Claude BONNELLE Jean-Pierre Μ. М. BOSCQ Denis м. BOUQUELET Stéphane BRASSELET Jean-Paul м.

Algèbre Electronique et électrotechnique Spectrochimie Analyse Biologie animale Géographie Mécanique Physique atomique et moléculaire Analyse Algàbre Biologie végétale Chimie minérale Catalyse Probabilités BlochImle structurale Géométrie et topologie

. . . / . .

1

BRIDOUX Michel ' М. М. BRUYELLE Pierre M. CAPURON Alfred CARREZ Christian Μ. Μ. CHAPOTON Alain COQUERY Jean-Marie М. Mme CORSIN Paule M. CORTOIS Jean Μ. COUTURIER Daniel м. CRAMPON Norbert Μ. **CROSNIER Yves** Mile DACHARRY Monique Μ. DAUCHET Max . Μ. DEBRABANT Pierre М. DEGAUQUE Pierre Μ. DELORME Pierre DE MASSON D'AUTUME Antoine Μ. м. DEMUNTER Paul Μ. DENEL JACQUES DE PARIS Jean-Claude м. DEPREZ Gilbert Μ. DERIEUX Jean-Claude Μ. MILE DESSAUX Odile DEVRAINNE Pierre Μ. DHAINAUT André Μ. Mme DHAINAUT Nicole М. DORMARD Serge М. DOUKHAN Jean-Claude Μ. DUBOIS Henri DUBRULLE Alain м. м. DUBUS Jean-Paul Μ. DUPONT Christophe Mme EVRARD Micheline Μ. FONTAINE Hubert Μ. FOUQUART Yves Μ. FOURNET Bernard М. FRONTIER Serge Μ. GAMBLIN André Μ. GLORIEUX Pierre GOBLOT Rémi м. GOSSELIN Gabriel Μ. Μ. GOUDMAND Pierre Μ. GREMY Jean-Paul М. **GREVET Patrick** м. GUILBAULT Pierre Μ. HENRY Jean-Pierre М. HERMAN Maurice HOUDART René м. JACOB Gérard Μ. Μ. JACOB Pierre М. JACOUILLAT Bertrand Μ. JEAN Raymond JOFFRE Patrick Μ. Μ. JOURNEL Gérard Μ. **KREMBEL** Jean LANGRAND Claude Μ.

Chimie physique Géographie Biologie animale Informatique Electronique Psychophysiologie Paléontologie Physique nucléaire et corpusculaire Chimie organique Hydrogéologie et environnement Electronique Géographie Informatique Géologie appliquée Electronique Physiologie animale Sclences économiques Sociologie Informatique Analyse Physique du solide et cristallographie Microblologie Spectroscopie de la réactivité chimique Chimie minérale Biologie animale Biologie animale Sciences économiques Physique du sollde Spectroscopie hertzlenne Spectroscople hertzienne Spectrométrie des solides Vie de la firme (1.P.A.) Chimie appliquée Dynamique des cristaux Optique atmosphérique Biochimie structurale Ecologie numérique Géographie urbaine, industrielle et démographie Physique moléculaire et rayonnements atmosphé-Algèbre riques Sociologie Chimie Physique Sociologie Sciences économiques Physiologie animale Génie mécanique Physique spatiale Physique atomique et moléculaire Informatique Probabilités et statistiques Gestion Biologie des populations végétales Vie de la firme (I.P.A.) Spectroscople hertzienne Biochimie Probabilités et statistiques

. . . / . . .

Mme LECLERCQ Ginette M. LEFEVRE Christian MILE LEGRAND Denise Mile LEGRAND Solange Mme LEHMANN Joslane M. LEMAIRE Jean Μ. LE MAROIS Henri LEROY Jean Marie М. LEROY Yves м. **LESENNE** Jacques Μ. Μ. LHENAFF René LOCQUENEUX Robert М. LOSFELD Joseph Μ. LOUAGE Francis Μ. M. MACKE Bruno MAHIEU Jean-Marie Μ. MAIZIERES Christian Μ. MESMACOUE Gérard Μ. MESSELYN Jean Μ. Μ. MESSERLIN Patrick Μ. MIGNOT Fulbert Μ. MONTEL Marc М. MONTUELLE Bernard Mme MOUNIER Yvonne Mme N'GUYEN VAN CHI Régine M. NICOLE Jacques M. NOTELET Francis PARSY Fernand Μ. PASZKOWSKI Stéphan м. MILE PAUPARDIN Colette M. PECQUE Marcel PERROT Pierre м. M. PERTUZON Emile M. PETIT Francis M. PONSOLLE Louis М. PORCHET Maurice M. POVY Lucien RACZY Ladislas Μ. M. RAOULT Jean-Francois м. RICHARD Alain RIETSCH François м. ROGALSKI Marc Μ. M. ROY Jean-Claude SCHAMPS Joël Μ. Mme SCHWARZBACH Yvette SIMON Michel м. М. SLIWA Henri SOMME Jean Μ. MILE SPIK Geneviève М. STERBOUL François TAILLIEZ Roger Μ. THERY Pierre М. м. TOULOTTE Jean-Marc м. TURREL Georges Μ. VANDORPE Bernard VAST Pierre Μ. М. VERBERT André VERNET Philippe М. М. VILETTE Michel

ŧ

Catalyse Pétrologie Algèbre Algèbre Analyse Spectroscople hertzlenne Vie de la firme (I.P.A.) Chimie appliquée Electronique, électrotechnique, automatique Electrotechnique Géographie Physique théorique Informatique Electronlque Physique moléculaire et rayonnements atmosphé-Physique atomique et moléculaire riques Automatique Génie mécanique Physique atomique et moléculaire Sciences économiques Analyse numérique Physique du solide Biologie et blochimie appliquées Physiologie des structures contractiles Géographie Chimie analytique Electronique, électrotechnique, automatique Mécanique Analyse numérique Biologie physiologie végétales Chimie organique Chimie appliquée Physiologie animale Chimle organique, minérale et analytique Chimie physique Biologie animale Automatique Electronique Géologie structurale Biologie animale Physique des polymères Analyse Psychophysiologie Spectroscopie moléculaire Géométrie Sociologie Chimie organique Géographie Biochimle Informatique Génie alimentaire Electronlque, électrotechnique, automatique Automatique Spectrochimie infrarouge et Raman Chimle minérale Chimle Inorganique Biochimie Génétique Résistance des matériaux .../...

M. WALLART Francis

M. WARTEL Michel

M. WATERLOT Michel

M. WERNER Georges

M. WOSNIAK Michel

١

Mme ZINN Justin Nicole

Spectrochimie infrarouge et Raman Chimie inorganique Géologie générale Informatique fondamentale appliquée Hydrométallurgie Algèbre

A MES PARENTS

A MES ENSEIGNANTS

A MA FAMILLE

REMERCIEMENTS

Les recherches qui ont abouti à la rédaction de cette thèse ont été effectuées au Laboratoire de Métallurgie Physique de l'Université des Sciences et Techniques de Lille sous la direction de Monsieur J. FOCT à qui je tiens à exprimer ma plus profonde gratitude pour ses réflexions, ses conseils et l'intérêt continuel qu'il a portés à nos expériences.

J'adresse mes plus vifs remerciements à Monsieur A. IOST, Maître-Assistant USTL et ENSAM Lille. A. IOST m'a guidé tout au long de ce travail en particulier dans la compréhension des résultats et dans la rédaction du mémoire. Ses conseils, ses critiques amicales, sa rigueur de jugement ont été autant d'encouragements à l'avancement de ce travail. Qu'il trouve ici l'expression de ma gratitude et mon amitié sincère.

J'adresse mes sincères remerciements à Messieurs J.P. HENRY, Professeur USTL et M. DI PERSIO, Maître-Assistant USTL qui m'ont fait l'honneur de juger ce travail.

Que Messieurs M. VACHER et J. WEGRIA soient assurés de ma sincère reconnaissance pour l'honneur qu'ils me font de participer à ce jury.

Je remercie également l'ensemble des personnes du Laboratoire de Métallurgie de Lille, qui, en créant une cordiale atmosphère de travail et en participant de près ou de loin à ce travail m'ont aidé tout au long de cette étude. A tous je leur adresse un amical souvenir.

Mademoiselle OLIVIER a, avec sa gentillesse et son efficacité habituelles, réalisé la mise en page et la dactylographie de mon mémoire, je lui dis ici toute ma reconnaissance.

Merci à Madame SAINLEGER pour sa promptitude à la duplication de cette thèse.

SOMMAIRE

1

INTRODUCTION

II - Déformation plastique 4 A - Condition de déformation 4 1 - Equation d'Orowan 4 2 - Contrainte interne 4 B - Traitement thermodynamique 7 1 - Equation de la déformation 7 2 - Paramètres d'activation 8 3 - Diagrammes d'énergie libre et 1 courbes force-distance 11 4 - Exemple de représentation d'une barrière 1 d'activation thermique 11 5 - Signification physique de la surface 17 Bibliographie 18	
 A - Condition de déformation 1 - Equation d'Orowan 2 - Contrainte interne B - Traitement thermodynamique 1 - Equation de la déformation 2 - Paramètres d'activation 3 - Diagrammes d'énergie libre et courbes force-distance 4 - Exemple de représentation d'une barrière d'activation thermique 5 - Signification physique de la surface d'activation 17 Bibliographie 10 	
1 - Equation d'Orowan 4 2 - Contrainte interne 4 B - Traitement thermodynamique 7 1 - Equation de la déformation 7 2 - Paramètres d'activation 8 3 - Diagrammes d'énergie libre et 8 courbes force-distance 11 4 - Exemple de représentation d'une barrière 11 5 - Signification physique de la surface 11 5 - Signification physique de la surface 12 Bibliographie 18	
2 - Contrainte interne4B - Traitement thermodynamique71 - Equation de la déformation72 - Paramètres d'activation83 - Diagrammes d'énergie libre et courbes force-distance114 - Exemple de représentation d'une barrière d'activation thermique115 - Signification physique de la surface d'activation17Bibliographie18	
B - Traitement thermodynamique 7 1 - Equation de la déformation 7 2 - Paramètres d'activation 8 3 - Diagrammes d'énergie libre et 8 courbes force-distance 11 4 - Exemple de représentation d'une barrière 11 5 - Signification thermique 11 5 - Signification physique de la surface 17 Bibliographie 18	
1 - Equation de la déformation 7 2 - Paramètres d'activation 8 3 - Diagrammes d'énergie libre et courbes force-distance 11 4 - Exemple de représentation d'une barrière d'activation thermique 11 5 - Signification physique de la surface d'activation 17 Bibliographie 18	
 2 - Paramètres d'activation 3 - Diagrammes d'énergie libre et courbes force-distance 4 - Exemple de représentation d'une barrière d'activation thermique 5 - Signification physique de la surface d'activation Bibliographie 	
 3 - Diagrammes d'énergie libre et courbes force-distance 4 - Exemple de représentation d'une barrière d'activation thermique 5 - Signification physique de la surface d'activation Bibliographie 	
courbes force-distance 11 4 - Exemple de représentation d'une barrière d'activation thermique 11 5 - Signification physique de la surface d'activation 17 Bibliographie 18	
 4 - Exemple de représentation d'une barrière d'activation thermique 5 - Signification physique de la surface d'activation Bibliographie 	
d'activation thermique 11 5 - Signification physique de la surface d'activation 17 Bibliographie 18	
 5 - Signification physique de la surface d'activation Bibliographie 	
d'activation 17 Bibliographie 18	
Bibliographie 18	,
CHARTER I LA DELAVATION ECCATO INTERDETATION 10	
CHARTER I LA DELAVATION ECCATO INTERDETATION 10	-
CHADIEDE I LA DELAVAELON ECCATO INTERDEDETATION 10	
CHAPTIRE I - LA RELAXATION - ESSAIS - INTERPRETATION 19	
I - Essai de relaxation 21	
A - Processus expérimental 21	
B = Loi de relaxation logarithmique 23	•
C - Loi de relaxation puissance	
D - Choix entre loi logarithmique et loi puissance 25	
E - Comparaison entre les lois logarithmique	
et puissance 26	
F - Interprétation de la loi logarithmique 27	
G - Interprétation de la loi puissance 28	
II - Fluage 31	
III - Mesure de la contrainte interne 31	
IV - Mesure de la surface d'activation 42	
V - Mesure de l'enthalpie d'activation 45	
VI - Mesure de l'énergie libre de Gibbs 53	

VII - Variation des paramètres d'activation avec la	
température	55
VIII - Influence de la variation de densité de dislocations	57
IX - Influence de la dureté de la machine	61
Bibliographie	63
CHAPITRE II - MATERIAUX ET METHODES EXPERIMENTALES	
I - Matériau	71
A - Mode d'élaboration	71
B - Composition chimique	71
C - Examen micrographique	72
D - Observation en microsonde	72
II - Relaxation	74
III - Traitement informatique	75
IV - Fluage	79
Bibliographie	86

CHAPITRE III - RESULTATS

I - Influence de la température sur la courbe de traction	89
II - Influence de la vitesse de déformation sur la courbe	
de traction	89
III - Relaxation	89
A - Influence de la densité de dislocations	91
B - Essai de relaxation	95
C - Influence de la contrainte initiale	103
D - Influence de la température	105
E - Influence de la vitesse de déformation	105
F - Choix entre loi puissance et loi logarithmique	107
IV - Fluage	113
Bibliographie	116

CHAPITRE IV - DISCUSSION

I	-	Contrainte interne			119
II	-	Surface d'activation			126
		A - Mesures			126
		B - Variation de la surface d'activation	avec 1	а	
		contrainte appliquée			127
		C - Variation de la surface d'activation	avec 1	a	
		vitesse de déformation			131
		D - Variation de la surface d'activation	avec 1	a	
		température			131
		E - Mesure de l'énergie d'activation			135
		F - Fluage			136
Bił	51 i	iographie			140
100	1CI	LUSION			141

145

ANNEXE

INTRODUCTION

I - PRESENTATION DU SUJET

Les alliages Zinc - Cuivre - Titane sont principalement utilisés dans le bâtiment sous forme de tôles laminées. Les problèmes rencontrés lors de la réalisation de toitures sont dus :

- à une fissuration possible lors du pliage par choc des tôles qui intervient au-dessous d'une température critique

- à une fissuration par fatigue thermique lors des dilatations et contractions des tôles sous l'action des fluctuations de température.

Par ailleurs le zinc est un matériau qui n'a peut-être pas suscité une très grande quantité de travaux fondamentaux. Sa structure hexagonale, son rapport c/a élevé, les différents modes de déformation possibles font que si le comportement du monocristal est maintenant bien connu, celui du polycristal, et principalement l'action des éléments d'alliages sur le comportement du polycristal, peut être approfondi malgré des synthèses récentes sur ce sujet, en particulier |1|.

Dans ce travail nous étudions la déformation plastique du zinc principalement en relaxation. Les deux paramètres que nous avons choisi de faire varier, outre la contrainte, sont la vitesse de déformation et la température puisqu'ils interviennent dans les conditions d'utilisation du matériau.

Nous avons également jugé utile de faire précéder notre étude expérimentale par une présentation théorique de la relaxation |2| afin de définir les paramètres qui interviennent lors de cet essai.

- 3 -

II - DEFORMATION PLASTIQUE

- 4 -

A - CONDITION DE DEFORMATION

1 - Equation d'Orowan

La déformation plastique d'un monocristal est liée à la vitesse de déplacement des dislocations par la formule d'Orowan

$\hat{\varepsilon} = \alpha \rho b \bar{v}$

La vitesse de déplacement augmente avec la contrainte appliquée. Elle varie de 10^{-7} à 10^5 cm/s pour LiF et tend vers une limite supérieure qui est celle de déplacement des ondes dans le matériau (fig.1).

Dans un polycristal les grains ne sont pas tous orientés de la même façon. Suivant que l'on considère que les grains se déforment indépendamment les uns des autres (SACHS - 1928) ou qu'il y a continuité des déformations entre les grains (TAYLOR -1938) le facteur de conversion M entre τ et σ ($\sigma = M\tau$) est de 2,24 ou de 3,06. Des modèles de SACHS et de TAYLOR modifiés donnent des valeurs intermédiaires (3).

Souvent pour les polycristaux on considère $\sigma = 2\tau$ et $\gamma = 2\varepsilon$.

Notons également que M dépend des contraintes internes et de la texture du matériau.

2 - Contrainte interne

La variation de la limite d'écoulement (ou de la limite d'élasticité) en fonction de la température peut être schématisée pour un métal par la figure 2 d'après (4).

|1|

Figure l Variation de la vitesse de déplacement des dislocations dans LiF en fonction de la contrainte appliquée (d'après W.G. JOHNSTON, J.J. GILMAN J. appl. Phys. 30 (1959) p. 129)

Figure 2 Variation de la limite d'élasticité en fonction de la température (d'après 4)

Nous distinguons deux régions (I et III) pour lesquelles limite d'écoulement varie avec la température séparées lapar une région (II) dite athermique. La contrainte totale nécessaire à une déformation plastique est la somme d'une contrainte dite thermique τ^* appelée aussi contrainte efficace et d'une contrainte dite athermique ou interne τ_i . Cette contrainte interne est généralement supposée ne varier avec la température que suivant le module de cisaillement : 121

 $d\tau_i/dT = (\tau_i/\mu) \cdot (d\mu/dT)$

Dans la région III les contraintes internes sont dues à un champ de contrainte à longue distance. TAYLOR (1934) a montré que deux dislocations distantes de r exerçaient des forces d'interactions en r^{-1} et que la contrainte à une distance r d'une dislocation est de la forme $\tau = \mu b/2\pi r$ (5). Une dislocation se déplaçant dans un cristal est soumise au champ de contrainte périodique dû aux autres dislocations. Si la densité des dislocations est ρ , la distance moyenne entre dislocation est de la forme r = $\rho^{-1/2}$, et la dislocation ne peut se déplacer que si elle est aidée par une contrainte extérieure :

 $\tau = \mu b_0 1/2/2\pi$.

L'ensemble des contraintes t dues aux autres dislocations constitue un champ de contrainte interne τ_i , périodique de longueur d'onde très grande par rapport à la distance entre atomes (λ est de l'ordre de la taille du réseau de Frank). λ étant grand, l'agitation thermique ne peut jouer aucun rôle pour vaincre les barrières énergétiques correspondantes (6).

Aux températures pour les quelles $\tau^* = 0$ ($\tau = \tau_i$) les fluctuations de température peuvent fournir la totalité de l'énergie nécessaire à surmonter les obstacles à courte distance.

B - TRAITEMENT THERMODYNAMIQUE

1 - Equation de la déformation

A basses températures par exemple la déformation est généralement due au mouvement des dislocations dans leur plan de glissement. Des obstacles sont franchis à l'aide de la contrainte appliquée ou de l'agitation thermique qui agissent seules ou simultanément.

- 7 -

Dans le cas où des obstacles, ayant tous la même résistance, sont surmontés par un mécanisme thermiquement activé, la vitesse moyenne des dislocations est \bar{v} (6) :

$$\bar{\mathbf{v}} = \bar{\Gamma} \left(\mathbf{A}/1 \right)$$

où :

A est la surface moyenne parcourue par le segment de dislocation pendant le stade d'activation thermique l est la longueur moyenne du segment de dislocation entre les obstacles

 $\overline{\Gamma}$ est la différence entre la probabilité de saut direct Γ et la probabilité de saut en retour Γ'

Quand Γ' peut être négligée devant Γ (en particulier lorsque la contrainte appliquée est suffisamment grande) :

$$\Gamma = v_1 \exp(\frac{-\Delta G}{kT})$$

où v_1 est la fréquence de vibration du segment de dislocation

∆G est l'énergie libre de Gibbs associée au phénomène. D'où l'expression de la vitesse de déformation :

$$f_{i}^{\alpha} = \alpha b v_{i} \exp\left(\frac{-\Delta G}{kT}\right) = \gamma_{o}^{\alpha} \exp\left(\frac{-\Delta G}{kT}\right)$$

$$|4|$$

l'énergie libre dépend de la température et de la contrainte efficace :

$$\Delta G *, T = \Delta H(\tau^*) - T \Delta S(T)$$

151

où ΔH et ΔS sont respectivement l'enthalpie et l'entropie d'activation. ΔS est généralement soit suffisamment faible pour que exp($\Delta S/k$) puisse être considéré comme peu différent de l, soit constant (7).

2 - Paramètres d'activation

La vitesse de déplacement des dislocations dépend de 'la contrainte effective τ^* , de la température T et de la pression P (ou de la composante hydrostatique de la contrainte). On peut doncécrire à structure constante (8) :

$$d\ln\bar{v} = \left(\frac{\partial\ln\bar{v}}{\partial\tau^{*}}\right)_{T,P}d\tau^{*} + \left(\frac{\partial\ln v}{\partial T}\right)_{T,P}dT + \left(\frac{\partial\ln v}{\partial P}\right)_{T,T}dP \qquad |6|$$

La première dérivée partielle est souvent improprement appelée volume d'activation, terme qui devrait être réservé à la troisième différentielle partielle (9). Il est proportionnel à A.b produit de la surface d'activation pour le vecteur de Burgers.

A.b =
$$kT(\frac{\partial ln\bar{v}}{\partial\tau^*})_{T,P} = -(\frac{\partial \Delta G}{\partial\tau^*})_{T,P}$$
 [7]

En supposant que le terme préexponentiel est constant :

$$A = \frac{kT}{b} \left(\frac{\partial \ln \hat{\gamma}}{\partial \tau} \right)_{T, P}$$
[8]

La deuxième dérivée partielle est reliée à l'enthalpie d'activation, et à structure constante :

$$\Delta H = kT^2 \left(\frac{\partial \ln \hat{\gamma}}{\partial T}\right)_{\tau} *, P \qquad |9|$$

La connaissance de la surface d'activation et de l'enthalpie d'activation, ainsi que leur variation en fonction de la température et de la contrainte est fondamentale pour expliquer les différents mécanismes de déformation. Ces paramètres sont liés par l'expression :

$$\Delta G = \Delta G_0 - b \int_0^{\tau^*} A d\tau \qquad (10)$$

où ΔG_0 est l'énergie libre pour une contrainte nulle

$$|1| \rightarrow \hat{\gamma} = \hat{\gamma}_{0} \exp(\frac{\Delta G_{0}}{kT}) \exp(\frac{b}{kT}) \int_{0}^{t^{*}} Ad\tau$$

si A est constant :

$$\hat{\gamma} = \hat{\gamma}_{O} \exp \frac{-\Delta G_{O}}{kT} \exp \frac{-Ab}{kT} \tau^{*}$$
 [11]

La surface d'activation dépend généralement de la contrainte : elle décroît rapidement lorsque la contrainte augmente et tend vers une limite de façon asymptotique (fig.3).

Lorsque la contrainte appliquée tend vers la contrainte interne la surface d'activation devient infinie. La contrainte interne est définie comme celle pour laquelle la mobilité des dislocations (c'est-à-dire la déformation plastique) est nulle.

Quand $\tau \rightarrow \tau_i$ ou quand Abt n'est plus grand devant kT la probabilité de saut inverse n'est plus négligeable et il faut tenir compte de sa fréquence :

$$v \exp(\frac{-\Delta Go - Ab\tau}{kT})$$

la vitesse de déformation plastique devient :

$$\dot{\gamma} = \dot{\gamma}_{of} \exp(\frac{A_{f}b}{kT} \tau^{*}) - \dot{\gamma}_{ob} \exp(\frac{A_{b}b}{kT} \tau^{*}) \qquad |12|$$

où $A_f A_b \overset{\circ}{\gamma}_{of} et \overset{\circ}{\gamma}_{ob}$ représentent respectivement les surfaces d'activation et les facteurs préexponentiels pour les sauts en avant et en retour.

- 9 -

Figure 3

Variation schématique de la dépense de la vitesse de déformation plastique et de la surface d'activation associées

- (a) à une barrière énergétique unique quand le déplacement en avant et en arrière est considéré
- (b) un système constitué de deux barrières énergétiques.
 - V_1 V_2 V_3 sont associés respectivement aux sauts en avant (V_1 , V_2) et en arrière (V_3). Sur la courbe b la courbe en pointillé peut correspondre aux résultats expérimentaux et masquer le plateau

Si
$$A_f = A_b$$
 et $\hat{\gamma}_{vf} = \hat{\gamma}_{ob}$ alors
 $\hat{\gamma} = 2\hat{\gamma}_o \text{ sh } \frac{Ab\tau^*}{kT}$

En fait la surface d'activation ne tend pas vers l'infini quand $\tau \rightarrow \tau_i$, mais est fonction de la période des obstacles à courte distance et de ceux à longue distance correspondant aux contraintes internes (10) (fig. 4).

3 - Diagrammes d'énergie libre et courbes force-distance

L'énergie libre de Gibbs est due à la somme des contributions des obstacles à courte distance et de ceux à longue distance (figures 5,6,7).

D'après la figure 6 la déformation plastique intervient à 0 K pour une contrainte appliquée τ_0 . Pour une température supérieure, l'agitation thermique peut venir en aide à la contrainte appliquée et la déformation plastique peut intervenir pour $\tau < \tau_0$. τ diminue avec la température jusqu'à une valeur limite τ_i (figure 7). A la température T l'agitation thermique est suffisante pour surmonter les obstacles à courte distance. Notons également sur cette figure que T_0 est fonction de la vitesse de déformation ($\hat{\gamma}_2 > \hat{\gamma}_1$) et que pour certains matériaux T_0 peut être supérieure à la température de fusion. Dans ce cas il n'existe pas de palier athermique. Ce dernier peut également exister pour une température intermédiaire (voir figure 2). Un même mécanisme peut être activé thermiquement dans un domaine de température et athermique dans un autre domaine (4) (11).

4 - <u>Exemple de représentation d'une barrière d'activation</u> <u>thermique</u>

La barrière d'activation thermique représentée sur la figure 8 peut correspondre à un mécanisme d'intersection de dislocations ou au mouvement non conservatif des crans.

|13|

Figure 4a Effet de la périodicité de la barrière énergétique à longue distance sur la déformation plastique (d'après 10)

Figure 4b Volume d'activation expérimental associé à la figure 4a (d'après 10)

Figure 5 Représentation schématique d'obstacles à courte distance (a) et à longue distance (b) et de l'énergie résultante s'opposant au mouvement des dislocations

Figure 6 Champ de contrainte interne s'opposant au mouvement d'une dislocation à travers un cristal

Figure 7 Variation de la contrainte avec la température et la vitesse de déformation montrant les comportements thermiques et athermiques

Figure 8 Exemple de représentation de barrière énergétique

Si $\tau > \tau_i$ est la contrainte appliquée, la force exercée sur la dislocation est F = τ^*bl^* . L'énergie que doit fournir l'agitation thermique pour franchir l'obstacle correspond à la surface hachurée. Pendant ce stade d'activation thermique, la force appliquée fournit le travail $\tau^*bl^*d^* = W$. Si H_o est l'aire comprise entre la courbe force-distance et l'axe des x $(x \in [0, \lambda'|)$:

$$H = H_0 - \left| \int_0^{x_0} F(x) dx + \tau^* b 1^* d^* + \int_{x_0^*}^{\lambda'} F(x) dx \right| \qquad |14|$$

ou

$$H = H_0 - v \tau^*$$
 [15]

 $v = \frac{\int_{0}^{x_{0}} F(x) dx + \tau^{*} b l^{*} d^{*} + \int_{x}^{\lambda'} F(x) dx}{\tau^{*}}$ [16]

v est appelé volume d'activation total (en fait A.b).

H peut être également déterminé par la surface située sous la courbe force-distance entre x_0 et x_0^* (H^{*}) à laquelle on retranche le travail W de la force F :

$$H = \int_{x_0}^{x_0} |F(x) - \tau b |^* |dx$$
 |17|

$$H = H^* - v^* \tau \qquad |18|$$

avec :

$$H^* = \int_{X_0}^{X} F(x) dx$$
 et $v^* = b \, l^* d^* = \frac{-dH}{d\tau^*}$ [19]

v^{*} est le volume d'activation (en fait A^{*}.b). Cette analyse est fondée seulement lorsque l^{*} est indépendant de la contrainte. Dans le cas contraire v^{*} n'est plus égal à bl^{*}d^{*} mais correspond toujours à $\frac{-dH}{d\tau^*}$

5 - Signification physique de la surface d'activation

Le produit A.b représente le nombre d'atomes qu'il faut activer pour que le processus de déformation plastique se produise. Une surface d'activation faible (peu d'atomes concernés) correspond à une déformation facile.

Soient A, B, C... les obstacles, x_0 la position d'équilibre de la dislocation sous l'action d'une contrainte extérieure et x_0^* la position instable lorsque la dislocation a franchi l'obstacle (Fig.9) (12).

La surface d'activation est représentée par la zone hachurée. La distance parcourue par la dislocation pendant une activation réussie est $d = x_0^* - x_0$.

A varie généralement de 0,5 à 8.10^{13} cm⁻² (13).

BIBLIOGRAPHIE

- (1) J. WEGRIA "Etude de la plasticité des alliages Zinc
 Cuivre Titane, application à l'amélioration de leur aptitude au pliage" - thèse d'Etat Lille 1984.
- (2) A. IOST "La relaxation, essais interprétation" rapport interne décembre 1983.
- (3) T. LEFFERS "Microstructure and mechanics of polycristal deformation at low temperature" - dans "2nd RIS Ø Int. Symp. on Met. and Mat. Science - ed. by N. HANSEN, A. HORSEWELL, T. LEFFERS, H. LILHOLT.
- (4) D.H. SASTRY, M.J. LUTON, J.J. JONAS "Stacking fault energy and its influence on hight temperature plastic flow in Zn - Sn alloys" - Phil. Mag. 30 (1974), 115-127.
- (5) F.N. NABARRO, Z.S. BASINSKY, D.B. HOLT "The plasticity of pure single crystals" - Advances in Physics 13 (1964) n°50, 193-323.
- (6) G.B. GIBBS "Thermodynamic analysis of dislocation glide controlled by dispersed local obstacles" - Mat. Sci. Eng. 4 (1969), 313-328.
- (7) R.J. ARSONNEAU Met. Trans. 2 (1971), 1472.
- J.C.M. LI "Kinetics and dynamics in dislocation plasticity" - p.87-110 in Dislocation dynamics, ed. A.R. ROSENFIELD, G.T. HAHN, BEMENT, JAFFE, Mc Graw Hill 1968.
- (9) J.C.M. LI "Dislocation dynamics in deformation and recovery" - Can. J. Physics 45 (1967), 493-509.
- (10) A.S. KRAUZ, B. FAUCHER "On the stress dependance of the experimental activation volume" - Scripta Met. 14 (1980), 53-57.
- (11) H. CONRAD "Thermally activated deformation of metals"
 J. Metals 16 (1964), 582-588.
- (12) M. CAGNON "Théorie de l'activation thermique" Dislocations et déformation plastique, école d'état YRAVALS (1979) -ed. par P. GROH, J.P. KUBIN, J.L. MARTIN - les éditions de physique, p. 53-66.
- (13) N. BALASUBRAMANIAN, J.C.M. LI "The activation areas for creep deformation" - J. Mat. Sci. 5 (1970), 433-444.

CHAPITRE I

LA RELAXATION - ESSAIS - INTERPRETATION

LA RELAXATION - ESSAIS - INTERPRETATION

I - ESSAI DE RELAXATION

A - PROCESSUS EXPERIMENTAL

Une expérience de relaxation consiste à appliquer une déformation ε_0 à une éprouvette et à maintenir celle-ci constante avec le temps (Figure 1). Cet essai peut être effectué à l'aide d'une machine de traction à vis dont on arrête le déplacement de la traverse mobile lorsque la valeur désirée est atteinte. Dans ce cas il faut tenir compte de corrections dues à la relaxation de la machine et du système de fixation de l'éprouvette. Il est donc préférable de pouvoir asservir la machine à l'aide d'un extensomètre afin de maintenir la déformation de l'éprouvette constante, ce qui correspond à une machine infiniment rigide.

Dans un essai de traction la déformation totale ε_t est la somme d'une déformation élastique ε_e et d'une déformation plastique ε_p .

 $\varepsilon_t = \varepsilon_e + \varepsilon_p \quad |1|$

Si nous arrêtons la déformation pour un essai de relaxation ε_t est constant et l'équation |1| donne après dérivation :

$$\hat{\varepsilon}_t = \hat{\varepsilon}_e + \hat{\varepsilon}_p = 0$$

La déformation élastique est reliée à la contrainte par $\varepsilon_e = \sigma/E$ où E représente le module d'élasticité de l'ensemble machine - éprouvette - fixation, ou de l'éprouvette seule si la machine est infiniment rigide. En dérivant et reportant dans |1| :

$$\hat{\varepsilon}_{p} = -\frac{\hat{\sigma}}{E}$$
 [2]

formule indiquant que la vitesse de déformation plastique est proportionnelle à la vitesse de décroissance de la contrainte en fonction du temps.

- 21 -

Figure 2 Interprétation des courbes de relaxation suivant une loi logarithmique

Interprétation des courbes de relaxation suivant une loi de puissance

- 22 -

B - LOI DE RELAXATION LOGARITHMIQUE

La décroissance de la contrainte avec le temps (fig. 1) a l'allure d'une courbe logarithmique. Aussi TROUTON et RANKINE (1) proposèrent-ils dès 1904 une loi de la forme :

$$\sigma_{(t)} = \sigma_0 - C_1 \log(t+C_2)$$
 |3| (fig. 2)

où σ_0 représente la contrainte appliquée à l'instant t = 0. Plus récemment Feltham (2) exprime la variation de la contrainte relaxée par :

$$-\Delta\sigma(t) = \sigma_0 - \sigma(t) = s \log (1+vt)$$
 [4]

ou

$$-\Delta \sigma = s \log \left| \sqrt{\frac{1}{v}} + t \right| = s \log(t+a) + b \quad |5|$$

avec $a = 1/v$ et $b = s \log v$

Si vt>>l, ce qui se produit généralement à partir de quelques minutes de relaxation cette dernière équation devient équivalente à :

 $-\Delta\sigma = s \log t + b |6|$

Quand la loi logarithmique est vérifiée on commence par tracer $\Delta \sigma$ en fonction de log t. Pour les premiers instants la représentation n'est pas linéaire, et on cherche la valeur de la constante a ou ν à ajouter au temps afin qu'elle le devienne. Pour une durée importante la contrainte tend vers une limite et la loi logarithmique n'est plus vérifiée. (fig. 2).

C - LOI DE RELAXATION PUISSANCE

LI (3) a proposé pour rendre compte des courbes de relaxation (fig. 1) une variation de la contrainte avec le temps suivant une loi puissance :

$$\sigma_{t} - \sigma_{i} = K'(t+C)^{-\frac{1}{m-1}}$$
 |7|

où σ_i est la contrainte interne définie précédement (4), K', C et m sont des constantes pour des conditions expérimentales données. La valeur de m est obtenue en traçant $\ln(\sigma_t - \sigma_i)$ en fonction de $\ln(t+C)$, où C est une constante à ajouter au temps de façon à ce que la représentation graphique soit linéaire dans les premiers instants de l'expérience (fig.3).

Courbe	3 (MPa)	к'	с	
1	-21,17	327,52	36,69	18,10
2	-308,10	603,31	31,32	40,10
3	-3094,04	3382,94	26,14	253,13
4	3040,07	-2753,63	26,69	-216.18
5	1232,56	-948,29	25,48	-77,83
6	318,75	-56,26	121,2	-2,78

Figure 4a. Relaxation du titane à 100°C suivant l'équation de LI pour différentes valeurs de m (d'après 5)

Courbe	M(s)	J(MPa)	κ'	с	a*
1	84	318,28	378,93	144.62	3,04
2	300	100,71	308,99	104,46	23,15
3	720	13,24	404.80	126,92	27,78
4	2400	-117,27	537.46	137,72	36,73
5	3600	-256,25	675,85	144.60	46,70
6	6000	-278,37	702,72	155,65	46,70
7	54000	-302.08	729,78	155,65	46.70

Figure 4b. Relaxation du titane à température ambiante suivant l'équation de LI pour différentes valeurs de t (d'après 5)

Figure 5. Choix entre la loi puissance et le loi logarithmique

Souvent, quand il y a ambiguïté, cette loi est préférée à la loi logarithmique car elle est mieux vérifiée que cette dernière. Cela est dû principalement au fait qu'elle utilise quatre constantes au lieu de deux. Ces quatre constantes ne sont d'ailleurs pas indépendantes puisque pour t = 0 :

 $C = \left| \frac{\sigma_0 - \sigma_i}{K} \right|^{1-m} |8|$

de MIRANDA, LE MAY et MONTEIRO (5) montrent qu'il est alors possible de trouver plusieurs ensembles de constantes rendant compte des mêmes résultats de relaxation (6) lorsque la durée des essais est trop courte (deux minutes). Certaines interprétations peuvent dans ce cas ne pas avoir de signification physique (figure 4).

D - CHOIX ENTRE LOI LOGARITHMIQUE ET LOI PUISSANCE

En dérivant les équations |5| et |7| puis en prenant leur logarithme on obtient :

 $-\Delta \sigma = \sigma_0 - \sigma_t = s \log(t+a) + b$ $- \hat{\sigma}_t = s(t+a)^{-1}$

 $\ln(-\hat{\sigma}) = \ln s - \ln(t+a)$ |9| pour la loi logarithmique, et pour la loi puissance :

$$\sigma_{t} - \sigma_{i} = K'(t+C)^{-\frac{1}{m-1}}$$

$$\delta_{t} = \frac{-K'}{m-1} (t+C)^{-\frac{m}{m-1}}$$

$$\ln(-\sigma) = \ln(\frac{K'}{m-1}) - \frac{m}{m-1} \ln(t+C) |10|$$

En comparant |9| et |10| on constate qu'il suffit de tracer la variation de $\ln(-\sigma)$ en fonction de $\ln(t+\alpha)$ ($\alpha =$ a ou C) (figure 5). Si la pente P est égale à - 1, la loi logarithmique est vérifiée et si elle est inférieure à - 1 la loi de relaxation est du type puissance avec un exposant m = P/P+1. Pour une valeur de P supérieure à - 1 la valeur correspondante de m est négative ce qui correspondrait à une augmentation de σ avec le temps.
En pratique on assimile la courbe $\sigma(t)$ à sa sécante et on trace $\ln(\frac{\sigma t_i - \sigma t_{i+1}}{t_{i+1} - t_i})$ en fonction de $t_{i+1} + \alpha$.

Si la pente est voisine de -1, l'interprétation des résultats par une loi puissance est délicate car une faible variation de p entraîne des différences très importantes de m:

> $p = -1,01 \rightarrow m = +101$ $p = -0,99 \rightarrow m = -99$

E - COMPARAISON ENTRE LES LOIS LOGARITHMIQUE ET PUISSANCE

En prenant le logarithme de la loi puissance [7]

$$\sigma_{t} - \sigma_{i} = K'(t+C)^{-\frac{1}{m-1}} \rightarrow \ln(\sigma - \sigma_{i}) = -\frac{1}{1-m} \ln(K'^{1-m}t + K'^{1-m}C)$$

$$\ln(\sigma - \sigma_{i}) = -\frac{1}{m-1} \ln|K'^{1-m}C(1+\frac{t}{C})|$$

$$a = 0, \sigma = \sigma_{0} \rightarrow \ln \sigma_{0} - \sigma_{i} = \frac{1}{m-1} \ln(K'^{1-m}C)$$

$$\ln(\sigma - \sigma_{i}) = \ln(\sigma_{0} - \sigma_{i}) - \frac{1}{m-1} \ln(1+\frac{t}{C})$$

$$\ln(\frac{\sigma - \sigma_{i}}{\sigma_{0} - \sigma_{i}}) = -\frac{1}{m-1} \ln(1+\frac{t}{C})$$

$$\ln|\frac{\sigma_{0} - \sigma_{i}}{\sigma_{0} - \sigma_{i}} + \frac{\sigma - \sigma_{i}}{\sigma_{0} - \sigma_{i}}| = -\frac{1}{m-1} \ln(1+\frac{t}{C})$$

$$\ln(1 + \frac{\Delta\sigma}{\sigma_{0} - \sigma_{i}}) = -\frac{1}{m-1} \ln(1+\frac{t}{C})$$

en prenant un développement limité au premier ordre si est suffisamment petit :

$$\frac{\Delta\sigma}{\sigma_0 - \sigma_i} = -\frac{1}{m-1} \ln \left(1 + \frac{t}{C}\right)$$

en identifiant avec |4|

$$-\Delta \sigma = \frac{\sigma_0 - \sigma_i}{m - 1} \ln (1 + \frac{t}{C}) = s \log(1 + vt)$$

$$\frac{2,3(\sigma_0 - \sigma_i)}{m - 1} = s \text{ ou } m = \frac{2,3(\sigma_0 - \sigma_i)}{s} + 1 |11| (7)$$

avec $v = \frac{1}{C}$ et a = C dans |4| et |5|

Cette relation |11| n'est valable que dans le cas où la relaxation est faible devant σ_0 .

F - INTERPRETATION DE LA LOI LOGARITHMIQUE

Dans l'hypothèse d'un mécanisme thermiquement activé de déplacement des dislocations, la vitesse de déformation plastique est liée à la contrainte par la loi d'Orowan (8) (9).

 $\overset{O}{\gamma} = \overset{O}{\gamma_{O}} \exp(-\frac{\Delta G_{O}}{kT}) \exp \frac{Ab \tau^{\star}}{kT} |13|$ ou $\overset{O}{\epsilon} = -\frac{\overset{O}{\sigma}}{E} = \overset{O}{\epsilon}_{O} \exp(-\frac{\Delta G_{O}}{kT}) \exp \frac{Ab}{MkT} (\sigma - \sigma_{i}) |13|$ avec $M = \frac{\sigma}{\tau} |14| (10)$

Les différents symboles sont expliqués dans (4). En supposant que la densité de dislocations, l'énergie libre, la surface d'activation, la contrainte interne et le facteur de Taylors-Sachs, M, sont constants pendant l'essai de relaxation, on peut intégrer la relation |13| (11) (12).

$$|13| \rightarrow -\alpha \exp\left(-\frac{Ab\sigma}{MkT}\right) d\sigma = dt$$
avec
$$\frac{1}{\alpha} = E \stackrel{\circ}{\epsilon_{0}} \exp\left(-\frac{\Delta G_{0}}{R'I'}\right) \exp\left(-\frac{Ab\sigma_{1}}{MkT}\right)$$

$$-\alpha \frac{MkT}{Ab} \exp\left(-\frac{Ab\sigma}{MkT}\right) = t + C$$

$$a t = 0 \quad \sigma = \sigma_{0} \rightarrow -\alpha \frac{MkT}{Ab} \exp\left(-\frac{Ab\sigma_{0}}{MkT}\right) = C$$

$$-\alpha \frac{MkT}{Ab} \exp\left(-\frac{Ab\sigma}{MkT}\right) \left(1 + \frac{t}{C}\right)$$

soit en prenant le logarithme des expressions précédentes

$$-\frac{Ab\sigma}{MkT} = -\frac{Ab\sigma_0}{MkT} \ln(1 + \frac{t}{C})$$

ou
$$-\Delta\sigma = \sigma_0 - \sigma = \frac{2.3 \text{ MkT}}{\text{Ab}} \log(1 + \frac{t}{C})$$
 |14|

Cette équation est équivalente à |4| avec :

$$s = \frac{2,3 \text{ MkT}}{\text{Ab}} \qquad |15|$$

$$v = \frac{1}{C} = \frac{\text{Ab}}{\text{MkT}} \quad \stackrel{\circ}{\epsilon_{0}} \exp(-\frac{\Delta G_{0}}{\text{kT}}) \quad \exp[\frac{\text{Ab}(\sigma_{0} - \sigma_{i})}{\text{MkT}}],$$

Les formules |14| et |15| premettent de constater que la surface d'activation A est inversement proportionnelle à la pente des droites de relaxation logarithmique, et que a dans |5| est une constante d'intégration.

G - INTERPRETATION DE LA LOI PUISSANCE

En 1953 JOHNSTON et GILMAN, '(13) en étudiant la déformation plastique du fluorure de lithium par la méthode des figures d'attaque, ont proposé une relation empirique reliant la vitesse de déplacements des dislocations et la contrainte

$$v = B_1^{T \times M} | 16 |$$

ce qui correspond à une vitesse de déformation plastique

$$\hat{\varepsilon}_{p} = - \frac{\hat{\sigma}}{E} = B_{2}(\sigma - \sigma_{i})^{m}$$

cette équation peut être intégrée en

$$\sigma - \sigma_i = K'(t+a)^{1/1-m}$$

qui est la loi de relaxation puissance [7].

Le coefficient m que nous pouvions évaluer à l'aide des figures 3 et 5 peut être également mesuré par la pente des droites

 $\begin{aligned} \ln - \overset{\circ}{\sigma} &= f \ln(\sigma - \sigma_i) \quad (\text{figure 6}) \\ \text{m est aussi appelé coefficient de sensibilité à la contrainte} \\ \text{m} &= \left(\frac{\partial \ln \dot{\gamma}}{\partial \tau}\right)_{\text{T,P}} \quad |17| \\ \text{et peut être mesuré lors d'un essai de traction lorsqu'on} \end{aligned}$

et peut être mesuré lors d'un essai de traction lorsqu'on fait varier brusquement la vitesse de déformation.

Figure 6 Détermination de m par la méthode de LI

Figure 7 Schématisation d'un essai de fluage

II - FLUAGE

L'expérience de fluage consiste à imposer à une éprouvette une contrainte constante avec le temps tandis que l'on mesure sa déformation en fonction du temps (figure 7). On distingue généralement trois stades de fluage :

stade I : fluage primaire (dans certains cas fluage logarithmique) pendant lequel la vitesse de déformation est croissante

stade II : fluage secondaire à vitesse constante

stade III : fluage tertiaire où la vitesse de déformation croît jusqu'à la rupture

De nombreuses études ont été faites sur le fluage et les mécanismes s'y rapportant. On pourra lire en particulier les références (14) et (15) (16).

III - MESURE DE LA CONTRAINTE INTERNE

Pendant un essai de relaxation la contrainte diminue avec le temps et tend vers une limite qui est la contrainte interne. Cette limite n'est généralement atteinte qu'après une durée très longue. La contrainte oscille alors pendant quelque temps autour de cette valeur (fig. 8). Ce comportement est également observé lorsque les conditions expérimentales sont changées ce qui laisse supposer qu'il est dû uniquement au matériau (17). Il est possible d'atteindre σ_i plus rapidement en effectuant une décroissance de la contrainte après une période de relaxation. Si à cette nouvelle contrainte σ_F on effectue alors une relaxation on observe une augmentation de la contrainte si $\sigma_i < \sigma_F$ ou plus de relaxation si $\sigma_F = \sigma_i$ (figure 9). Cependant M.A. MEYERS et coll. (18) en utilisant une machine hydraulique commandée en déformation n'ont jamais observé ce dernier phénomène et l'attribuent à la rigidité de la machine et non au matériau lui-même.

Figure 8 Courbe typique de relaxation d'après Gibbs (17)

Figure 9 Mesure de la contrainte interne d'après Gibbs (17)

Mac EVEN et coll (19) proposent d'effectuer des séries de relaxation successives séparées par des diminutions de la contrainte afin de diminuer le temps au bout duquel la contrainte interne est atteinte (figure 10).

Simultanément d'autres méthodes sont développées (20) (21) en même temps qu'on insiste sur l'importance d'effectuer des variations rapides de la contrainte (22) (dip-test) (figure 11).

Pour le "stress transcient dip test" fig ll.a l'éprouvette est soumise à un essai de fluage. La contrainte appliquée est ensuite brusquement réduite de et la longueur de l'éprouvette maintenue constante. Pour une faible valeur de $\Delta \sigma$ la relaxation consécutive est normale, alors que pour un $\Delta \sigma$ important, $\frac{d\sigma}{dt}$ pendant l'essai de relaxation est positif. Une variation de contrainte nulle ($\frac{d\sigma}{dt} = 0$) correspond à une contrainte appliquée égale à la contrainte interne du matériau.

La figure ll.b représente le "Strain transcient dip test". De même que pour le test précédent l'éprouvette est déformée à contrainte constante. Si une relation entre la vitesse de déplacement des dislocations et la contrainte de la forme $v = v_0(\sigma - \sigma_i)$ est vérifiée, une diminution de σ doit entraîner un ralentissement de la vitesse de déplacement des dislocations donc de la déformation. Pour une forte décroissance de σ , $\sigma - \sigma_i$ devient négatif et le sens de déplacement des dislocations est inversé. Une déformation plastique nulle correspond à une contrainte appliquée égale à la contrainte interne.

Dans le cas d'une loi de relaxation logarithmique la pente s est fonction de la contrainte initiale σ_0 appliquée au matériau. FELTHAM (23) (24) propose d'extrapoler la courbe $s(\sigma_0)$ figure l2 jusqu'à s = 0. Cette valeur nulle de la pente des droites de relaxation correspond à une contrainte appliquée au matériau n'entraînant pas de déformation donc à la contrainte interne σ_i .

- 33 -

đ

Figure 10 Mesure de la contrainte interne par décroissances successives de la contrainte puis relaxation. D'après Mc Ewen et coll. (19)

Figure 11

Méthode du "dip-test" pour déterminer la contrainte interne d'après 22

Mesure de σ_i d'après Feltham (23)

L'interprétation des courbes de relaxation suivant la loi puissance a également permis de déterminer une contrainte interne suivant GUPTA et LI (25) (26).

Dans l'équation $|7| \sigma - \sigma_i = K'(t+C)^{-1} m$ et C peuvent être calculés sans connaître σ_i à partir de la courbe $\ln(-\sigma) = f(\ln t)$. En supposant que cette équation est vérifiée il est alors possible de considérer deux temps consécutifs t₁ et t₂ et si σ_1 et σ_2 sont les contraintes correspondantes

$$\frac{\sigma_1 - \sigma_i}{\sigma_2 - \sigma_i} = \left(\frac{t_1 + C}{t_2 + C}\right)^{-\frac{1}{m-1}}$$

soit
$$\sigma_{i} = \frac{\sigma_{2}(\frac{t_{1}+C}{t_{2}+C})^{-1/m-1} - \sigma_{1}}{(\frac{t_{1}+C}{t_{2}+C})^{-1/m-1} - 1}$$
 [18]

Toujours pour une loi puissance, en prenant le logarithme de |7| et en dérivant

$$|7|$$
 $\ln(\sigma - \sigma_i) = \ln K' - \frac{1}{m-1} \ln (t+C)$

$$\frac{d\sigma}{\sigma - \sigma_i} = -\frac{1}{m-1} d \ln(t+C) \qquad \text{ou} \quad \frac{d}{d \log(t+C)} = \frac{-2,3}{m-1} (\sigma - \sigma_i)$$

La courbe $\frac{d\sigma}{d \log t}$ en fonction de σ doit tendre, pour les faibles contraintes, vers une droite qui coupe l'axe des contraintes pour $\sigma = \sigma_i$ (3) (fig.13).

Reprenons l'équation de la déformation plastique $\mathring{\gamma} = \mathring{\gamma}_0 \exp(\frac{-\Delta G}{kT}) \rightarrow \ln \mathring{\gamma} = \ln \mathring{\gamma}_0 - \frac{\Delta G}{kT}$, [19].La surface d'activation dont nous verrons des méthodes de calcul au paragraphe suivant vaut : $A = -\frac{1}{b}(\frac{\partial \Delta G}{\partial \tau^*})_T$ [20] et le coefficient de sensibilité à la vitesse de déformation $\lambda = (\frac{\partial \tau^*}{\partial \ln \gamma})_T$ [21] que nous allons exprimer en fonction de A.

$$A = -\frac{1}{b} \left(\frac{\partial \Delta G}{\partial \tau^{*}} \right)_{T} = \frac{kT}{b} \left(\frac{\partial \ln \gamma}{\Delta \tau^{*}} \right)_{T} = \frac{kT}{b\lambda} \rightarrow \lambda = \frac{kT}{bA} |22|$$

Figure 13 Mesure de la contrainte interne à partir d'une loi puissance

1

14 A.S. 14

$$|20| \qquad \Delta G = \Delta G_{O} - \int bA \, d\tau^{*} = \Delta G_{O} - \int \frac{Bb}{\tau^{*}} \, d\tau^{*}$$

avec : $\Delta G_0 = \Delta G$ pour $\tau^* = 0$

$$\Delta G = \Delta G_0 - Bb \ln \frac{\tau^*}{\tau_r}$$

où τ_r est une constante utilisée pour lever la singularité à $\tau^* = 0$

$$|19| \rightarrow \tilde{\gamma} = \tilde{\gamma}_{o} \exp\left(-\frac{\Delta G_{o}}{kT}\right) \left(\frac{\tau^{*}}{\tau_{r}}\right)^{m}$$
 |23|

Il exíste une relation entre m et λ , pour cela différencions |23| après en avoir pris le logarithme :

$$\ln \overset{\circ}{\gamma} = \ln \overset{\circ}{\gamma}_{O} - \frac{\Delta G_{O}}{kT} + m \ln \tau \overset{*}{\tau} - m \ln \tau_{T}$$

$$d \ln \overset{\circ}{\gamma} m \frac{d\tau^{*}}{\tau^{*}} \quad ou \quad \left(-\frac{\partial \tau^{*}}{\partial \ln \gamma}\right) = \frac{\tau^{*}}{m} = \lambda \qquad |24|$$

où : $m\lambda = \tau^* = \tau - \tau_i$

En traçant la variation de λ avec τ , on doit trouver une droite de pente l/m (figure l4) coupant l'axe des contraintes en τ_i (27). Comme λ est proportionnel à l'inverse de la surface d'activation |22| cette méthode revient à tracer s, pente des droites de relaxation logarithmique |4| en fonction de la contrainte, ce qui correspond à la méthode de FELTHAM décrite auparavant. Si la surface d'activation n'est pas inversement proportionnelle à la contrainte efficace mais est de la forme A = B $\tau^{*-\alpha}$ avec $0 < \alpha < 1$ la représentation de $\lambda(\tau^*)$ n'est plus linéaire (27).

Figure 14 Mesure de la contrainte interne à partir d'essais de traction avec sauts de vitesse

MICHALAK (28) propose de déterminer σ_i à l'aide d'un essai de traction. Cet essai permet d'obtenir m en effectuant une brusque variation de la vitesse de déformation $\hat{\gamma}$. Si le changement de vitesse n'est pas trop important, on peut supposer que la structure des dislocations ainsi que la densité de dislocations mobiles restent constants :

$$m = \frac{\Delta \ln \dot{\gamma}}{\Delta \ln \tau^*}$$
$$\ln \frac{\dot{\gamma}_2}{\dot{\gamma}_1} = m \ln \frac{\tau_1^* + \Delta \tau^*}{\tau_1^*}$$

si $\Delta \tau^*$ est la variation de contrainte efficace enregistrée pendant le changement de vitesse de déformation. $\Delta \tau^*$ sera considéré comme étant égal à $\Delta \tau$ c'est-à-dire que nous supposons que la variation de contrainte interne est nulle.

Cette équation permet de calculer τ_1^*

$$\frac{\tau_{1}^{*} + \Delta \tau}{\tau_{1}^{*}} = \left(\frac{\mathring{\gamma}_{2}}{\mathring{\gamma}_{1}}\right)^{1/m} \rightarrow \tau_{1}^{*} = \frac{\Delta \tau}{\left(\frac{\mathring{\gamma}_{2}}{\mathring{\gamma}_{1}}\right)^{1/m-1}}$$

Si la charge appliquée est T

$$\tau_{i} = \tau - \tau^{*} = \tau - \frac{\Delta \tau}{(\frac{\tilde{\gamma}_{2}}{\tilde{\gamma}_{1}})^{1/m}} |25|$$

Cette formulation de τ_i est correcte si la relation entre la vitesse de déplacement des dislocations et la contrainte (loi de JOHNSTON-GILMAN) reste inchangée dans tout l'intervalle de contrainte, et si m est également constant dans ce même domaine. En pratique on écrit m = $\Delta \ln \hat{\gamma} / \Delta \ln \tau^*$ sous la forme

$$m = \frac{\ln \tilde{\gamma}_2/\tilde{\gamma}_1}{\Delta \tau/\tau^* + \frac{\Delta \tau}{2}} \quad ou \quad \frac{m\Delta \tau}{\ln \tilde{\gamma}_2/\tilde{\gamma}_1} = \tau^* + \Delta \tau/2$$

où τ^* + $\Delta \tau/2$ représente τ^* moyen entre les vitesses $\mathring{\gamma}_2$ et $\mathring{\gamma}_1$

Si pour différents sauts de vitesse de déformation c'est-à-dire différentes valeurs de $\mathring{\gamma}_2$, dans un domaine de déformation où τ^* est constant on trace $\Delta \tau/2$ en fonction de $\Delta \tau/\ln(\mathring{\gamma}_2/\mathring{\gamma}_1)$, on obtient une droite de pente m. En extrapolant cette courbe jusqu'à $\Delta \tau = 0$ on obtient :

$$\tau^* = \frac{m \Delta \tau}{\ln(\mathring{\gamma}_2/\mathring{\gamma}_1)}$$

d'où la valeur de τ_i (figure 15). Le fait que la représentation soit linéaire justifie a posteriori que le coefficient m est constant.

IV - MESURE DE LA SURFACE D'ACTIVATION

La surface d'activation, A, est peut-être le paramètre qui permet le mieux d'expliquer les mécanismes de déformation.

Pour une interprétation de la relaxation suivant une loi logarithmique, la surface est obtenue par la mesure de la pente des droites Ao(log t) (29), (2).

$$|15| \qquad A = \frac{2,3 \text{ MkT}}{\text{bs}}$$

ce résultat est généralement donné en unités b²

$$A = \frac{2,3 \text{ MkT}}{b^3 s} (b^2).$$

Si la représentation de la loi logarithmique est linéaire on peut supposer que la surface d'activation reste constante pendant tout l'essai de relaxation.

Pour une loi puissance :

$$A = \frac{kT}{b} \left(\frac{\partial \ln v}{\partial \tau^{*}} \right)_{T,P} |26| \text{ avec } \bar{v} = B \tau^{*m} |16|$$

$$\left(\frac{\partial \ln \bar{v}}{\partial \tau^{\star}}\right)_{T,P} = \frac{m}{\tau^{\star}} \qquad A = \frac{mkT}{b\tau^{\star}} \qquad |27|$$

ou

Il est donc possible de déterminer A connaissant m et $\sigma_i(\sigma^*)$.

La comparaison de |27| et de |15| permet d'établir une relation entre m et $\sigma^{\!\!\!\times}$:

$$m = \frac{2, 3 \sigma}{s} + |28|$$

 $A = \frac{mMkT}{b\sigma^*}$

formule différant d'une unité de celle trouvée précédemment

$$\left(\frac{\partial \ln \bar{\mathbf{v}}}{\partial \tau^{\star}}\right)_{\mathrm{T},\mathrm{P}} = \left(\frac{\partial \ln \gamma}{\partial \tau^{\star}}\right)_{\mathrm{T},\mathrm{P}} \sim \left(\frac{\Delta \ln \gamma}{\partial \tau^{\star}}\right)_{\mathrm{T},\mathrm{P}}$$

si la densité de dislocations mobiles reste constante. Cette formule suggère qu'il est possible de mesurer A par un essai de traction en effectuant un saut de vitesse de déformation (fig. 16).

$$A = \frac{kT}{b} \quad \frac{\ln \tilde{\gamma}_{2} - \ln \tilde{\gamma}_{1}}{\tau_{2} - \tau_{1}} = \frac{MkT}{b} \frac{\ln \tilde{\gamma}_{2} - \ln \tilde{\gamma}_{1}}{\tau_{2} - \tau_{1}} |29|$$

En utilisant cette formule |29| il est également possible d'effectuer des sauts de contrainte pendant un essai de fluage et de mesurer la variation de vitesse de déformation correspondante (figure 17) d'après (30).

Mesure de la surface d'activation à partir d'un essai de traction (d'après 30)

Figure 17 · Mesure de la surface d'activation à partir d'un essai de fluage (d'après 30)

44 -

V - MESURE DE L'ENTHALPIE D'ACTIVATION

En écrivant la vitesse de déplacement des dislocations sous forme de différentielles partielles, LI a établi une relation entre l'enthalpie d'activation et \bar{v} :

$$d \ln \bar{v} = \left(\frac{\partial \ln \bar{v}}{\partial \tau^{*}}\right)_{T,P} d\tau^{*} + \left(\frac{\partial \ln \bar{v}}{\partial T}\right)_{\tau^{*},P} dT + \left(\frac{\partial \ln \bar{v}}{\partial P}\right)_{\tau^{*},T} dP \qquad |30|$$

$$\Delta H = kT^2 \left(\frac{\partial \ln \bar{v}}{\partial T}\right)_{\tau^*, P} = kT^2 \left(\frac{\partial \ln \hat{\gamma}}{\partial T}\right)_{\tau^*}, P, structure \qquad |31|$$

En utilisant la règle de différentiation :

$$\frac{\left(\frac{\partial Y}{\partial T}\right)}{\tau^{*}, P} = \left(\frac{\partial Y}{\partial \tau^{*}}\right)_{T, P} \left(\frac{\partial \tau^{*}}{\partial T}\right)_{P, Y}$$

$$\Delta H = kT^{2} \left(\frac{\partial \ln \gamma}{\partial \tau^{*}}\right)_{T, P} \left(\frac{\partial \tau^{*}}{\partial T}\right)_{P, \gamma}$$

avec :

$$\left(\frac{\partial \ln \dot{\gamma}}{\partial \tau^{\star}}\right) = \frac{Ab}{kT} |29| \rightarrow \Delta H = -bTA_T, P\left(\frac{\partial \tau}{\partial T}\right)_P, \dot{\gamma} |32|$$

A l'aide de la formule |32| et connaissant A, il est possible de mesurer ΔH par un essai de traction effectué à vitesse de déformation constante. On mesure (figure 18) la variation de contrainte $\Delta \sigma$ consécutive à une augmentation ΔT de la température.

$$\Delta H = \frac{-bTA}{M} \left(\frac{\Delta\sigma}{\Delta T}\right)_{P,\epsilon}^{\circ}$$

$$|32|'$$

Le terme $\frac{d\sigma}{dT}$ peut également être obtenu en traçant la variation de la limite d'élasticité (ou de la composante thermique) avec la température et en dérivant cette courbe (31).

Figure 18 Mesure de l'énergie d'activation par sauts de température

A partir d'essais de fluages effectués à températures différentes et à même contrainte (Fig.19) ou de sauts de température lors d'un même essai (fig.20) il est possible de calculer ΔH à partir de |31|.

Si
$$T_2 = T_1 + \Delta T$$
, $T_{moy} = T_1 + \frac{\Delta T}{2}$
 $\Delta H = k(T_1 + \frac{\Delta T}{2})^2 \ln (\mathring{\gamma}_2/\mathring{\gamma}_1)_{T*P}$

 $\Delta H = kT_1^2 (1 + \frac{\Delta T}{T_1}) \ln |\hat{\gamma}(T_1 + T)/\hat{\gamma}(T_1)|_{\tau} *, P$

Dans le cas où la densité de dislocations n'est pas constante pendant l'expérience :

$$\Delta H = kT^{2} \left(\frac{\partial \ln \mathring{\gamma}}{\partial T} \right)_{\tau} *, P - kT^{2} \left(\frac{\ln \mathring{\gamma} \circ}{\partial T} \right)_{\tau} *, P$$

$$\Delta H = \Delta H_{exp} - kT^2 \left(\frac{\partial \ln \gamma}{\partial T}\right)_{\tau} *, P$$

Comme la variation de la vitesse de déformation est rapide en fonction de la température il est nécessaire d'effectuer des variations ΔT de quelques degrés seulement.

En fluage la vitesse de déformation plastique est généralement exprimée sous la forme :

$$\hat{\varepsilon} = \hat{\varepsilon}_{0} \exp(\frac{-U}{kT})$$
 [33]

et pour de nombreux matériaux polycristallins la loi de fluage est de type logarithmique :

$$\hat{\varepsilon} = \frac{C}{t}$$

Quand ces deux lois sont vérifiées :

$$\hat{\varepsilon} = \hat{\varepsilon}_{0} \exp(-\frac{U}{kT}) = \frac{C}{t} \longrightarrow \frac{-U}{kT} = \ln \frac{C}{\hat{\varepsilon}_{0}t}$$

où U = kT ln vt (32)

Détermination de l'énergie d'activation par essais de fluage

effectués à différentes températures

Figure 20 Détermination de l'énergie d'activation en fluage avec sauts de température

FETHAM en comparant les essais de relaxation et de fluage (29) montre que dans le cas de la relaxation (23) :

$$U = kT \ln(1 + vt)$$

$$U(t) = U_0 - Ab\tau^* = U_0 \frac{Ab\sigma^*}{M}$$

où le terme U_O correspond à l'énergie d'activation pour une contrainte nulle.

Le terme $U_{(t)}$ est négligeable devant U_0 quand la relaxation est faible (de l'ordre de quelques pourcents de la contrainte initiale) alors :

$$U_{o} = \frac{Ab\sigma_{t}^{*}}{M} \quad avec \quad \sigma_{t}^{*} \sim \sigma(o)$$

En traçant la variation de la pente des droites de relaxation avec la contrainte appliquée (Fig. 21), (23), (24) :

$$\frac{\sigma_{t}^{\pi}}{s} = \frac{\sigma_{0}}{s} = \frac{\sigma_{0} - \sigma_{i}}{s} = \frac{d\sigma_{0}}{ds}$$

$$U_{0} = \frac{Ab}{M} \quad s. \quad \frac{d\sigma_{0}}{ds} \quad avec \quad A = \frac{2.3 \text{ MkT}}{s}$$

$$U_{0} = 2.3 \text{ MkT} \quad \frac{d\sigma_{0}}{ds} \quad (34)$$

La pente de la droite représentant la variation de s avec la contrainte initiale σ_0 permet d'évaluer U₀. FELTHAM a ainsi obtenu des valeurs de l'énergie d'activation voisines de celles trouvées par d'autres méthodes pour le magnésium (23), le cobalt (24), le cuivre et le bronze (33).

Dans le cas où la loi de COTTRELL-STOKES (34) est vérifiée FELTHAM et coll. proposent une autre application de cette méthode (35).

L'énergie U peut se mettre sous la forme :

$$U = U_0 \left(1 - \frac{\sigma^*}{\sigma_{oo}^*}\right)$$
 [35]

où σ_{00}^{*} est la contrainte efficace à OK.

Si $\sigma^*/\sigma_{00}^* = \sigma/\sigma_{00}$ [36], en remplaçant U en fonction de [35] et [36] dans l'équation de la vitesse de déformation [33] on obtient pour un essai de relaxation :

avec :

$$A = \hat{\varepsilon}_{O} E \exp(\frac{-U_{O}}{kT})$$

 $-\overset{\circ}{\sigma} = E\overset{\circ}{\epsilon} = A \exp(\frac{U_0\sigma}{kT\sigma_{00}})$

En intégrant puis dérivant logarithmiquement cette expression on obtient :

$$- d\sigma \exp\left(\frac{U_{o}kT}{kT\sigma_{oo}}\right) = A.dt$$
$$\exp\left(\frac{-U_{o}\sigma_{o}}{kT\sigma_{oo}}\right) = \frac{A U_{o}}{kT\sigma_{oo}}(t+t_{o})$$

$$\frac{-U_0\sigma}{kT\sigma_{00}} = \ln(t+t_0) + B$$

$$\frac{-d\sigma}{d \log(t+t_0)} = \frac{2,3 \text{ kt } \sigma_{00}}{U_0}$$

 $\sigma_{\textbf{OO}}$ peut être évalué à partir de $\sigma_{\textbf{O}}$ si la loi de COTTRELL-STOKES est vérifiée :

$$R(T) = \frac{\sigma_0}{\sigma_{00}}$$
 où R est indépendant de la déformation

En remplaçant dans l'équation précédente :

$$\frac{-d\sigma}{d \log (t+t_0)} = \frac{2.3 \text{ kT } \sigma_0}{U_0 R}$$

Le premier terme de cette équation correspond au signe près à la pente des droites de relaxation

 $\sigma_0 - \sigma_t = s \log(t+t_0) + b$ [5] et il est possible d'obtenir U₀.

$$U_{o} = \frac{2,3kT}{Rs} \quad ou \quad U_{o} = \frac{2,3kT}{R} \left(\frac{d\sigma_{o}}{ds}\right) \quad |37|$$

formule ne différent que du facteur R de |34|.

<u>Remarque</u> : la formule |36| peut être justifiée de la façon suivante :

Si on pose m = $\ln \frac{\tilde{\epsilon}_0}{\hat{\epsilon}}$ |33||35| mkT = U = $U_0(1-\sigma^*/\sigma_{00}^*)$. m est généralement considéré comme constant (36) (37), de l'ordre de 25, avec la déformation et la contrainte. Le rapport σ^*/σ_{00}^* est donc dans ce cas indépendant de la contrainte et si $\sigma^* = K^{\sigma}$ cela implique $\sigma_{00}^* = K_{\sigma00}$ et $\sigma^*/\sigma_{00}^* = \sigma/\sigma_{00}$.

Cette méthode peut être appliquée également au fluage à quelques modifications près et on obtient une relation entre la pente, s, des courbes de fluage logarithmique et l'énergie d'activation de la forme (37).

$$s = 2,3 \text{ KT} / (U_0 - \text{mkT})\chi$$

où χ est le coefficient d'écrouissage.

38

VI - MESURE DE L'ENERGIE LIBRE DE GIBBS

La variation d'énergie libre de Gibbs, ΔG , pendant le franchissement d'un obstacle est $\Delta G = \Delta H - T\Delta S$. Sa valeur est donc différente de celle de ΔH lorsque le terme entropique est différent de zéro.

En supposant que la contrainte interne est proportionnelle au module de cisaillement, μ , et dans l'hypothèse d'obstacles élastiques SCHOECK (38) a établi une relation permettant de calculer Δ G :

$$\Delta G = \frac{\Delta H + bA_{\tau}^{*}(T/\mu)(d\mu/dt)}{1 - (T/\mu)(d\mu/dT)}$$
[39]

Suivant les obstacles rencontrés la variation de AS, AH et AG a été étudiée par SASTRY, LUTON et JONAS (39).

∆G étant lié à la surface d'activation par |20|

A = $-\frac{1}{b}(\frac{\Delta G}{\partial \tau^*})_T$ il est tentant d'intégrer cette relation

en :

$$\Delta G = \Delta G_{O} - b \int A d \tau^{*}$$

 $\int Ad\tau^*$ peut être obtenu par intégration graphique de la courbe représentant la variation de la surface d'activation en fonction de la contrainte efficace (31).

Cependant CAGNON a montré que cette intégration n'était pas correcte car la dérivée de AG par rapport à la contrainte est une dérivée partielle et qu'ainsi on ne tient pas compte de l'influence de la température (40) (41). En introduisant :

$$\tau' = \frac{\mu_{O}}{\mu} \tau$$
$$\tau'_{i} = \frac{\mu_{O}}{\mu} \tau_{i}$$
$$\Delta \Gamma = \frac{\mu_{O}}{\mu} \Delta G$$

où μ_0 représente le module de cisaillement à OK τ_i et $\Delta\Gamma$ ne sont plus des fonctions explicités de la température et

$$\left(\frac{1}{T}\right)_{\tau} = 0$$

comme $\left(\frac{\partial \Gamma}{\partial \tau}\right)_{\mathrm{T}} = -\mathrm{Ab}$ $\frac{\mathrm{d}\Gamma}{\mathrm{d}\tau} = -\mathrm{Ab}$

C'est cette dernière équation que l'on peut intégrer

$$\Delta \Gamma = \Delta \Gamma_{O} - \int_{\tau_{i}}^{\tau_{M}} V d\tau = b \int_{\tau_{i}}^{\tau_{M}} A d\tau$$
$$d'o\dot{u} : \Delta G = \frac{\mu b}{\mu_{O}} \int_{\tau}^{\tau_{M}} A d\tau$$

|40|

VII - VARIATION DES PARAMETRES D'ACTIVATION AVEC LA TEMPERATURE

ΔH, ΔG et ΔS sont des fonctions croissantes de la température (fig.22) (39) et les variations de ΔG ou de ΔH peuvent être linéaires suivant le type d'obstacles rencontrés.

Dans le cas où plusieurs processus thermiquement activés peuvent interagir :

 $\epsilon_{\rm p} = \Sigma_{\rm i} \epsilon_{\rm i} \exp(-\frac{\Delta G_{\rm i}}{kT})$ [41] (15) (42-44)

En traçant log ε en fonction de l'antitempérature (fig.23) il est possible de dissocier ces différents mécanismes.

La surface d'activation est souvent une fonction croissante de la température (11) (fig. 24).

ΔG

Figure 22 Différentes variations de AH, AG, AS pour des obstacles élastiques (d'après 39)

Δн

۵G

۵S

40

Figure 24 Variation de la surface d'activation avec la température (d'après Baur 11)

......

.

VIII - INFLUENCE DE LA VARIATION DE DENSITE DE DISLOCATIONS

Dans l'équation de la vitesse de déformation d'un mécanisme thermiquement activé |33| le coefficient préexponentiel $\hat{\varepsilon}_0$ qui est proportionnel à la densité de dislocations mobiles ρ_m a été pris comme étant constant.

De nombreux auteurs ont constaté en fait que cette densité évoluait avec le temps (6) (45) (46).

M.A. MEYERS et coll. (18) proposent la méthode suivante pour étudier la variation de ρ avec le temps pendant un essai de relaxation. L'éprouvette est tractionnée jusqu'à la contrainte σ_r (fig. 25) puis relaxée pendant un temps t_l jusqu'à une contrainte σ_F . L'éprouvette est alors rechargée puis relaxée dans les mêmes conditions plusieurs fois consécutives. Si dans l'équation d'Orowan on suppose que ρ n'est pas constant :

 $\varepsilon = \alpha b \rho_m (t) \bar{1}$

où α est un facteur géométrique

b le vecteur de Bürgers des dislocations mobiles de densité $\boldsymbol{\rho}_{\rm m}$

l est la distance moyenne entre les obstacles que rencontrent les dislocations.

$$\tilde{\varepsilon} = \alpha b \rho_m(t) \bar{v} + \alpha b \rho_m(t) \bar{1}$$
 [43]

La vitesse de déformation est donc due à un terme correspondant à la vitesse moyenne de déplacement des dislocations et à un terme représentant la variation de la densité de dislocations mobiles; ce deuxième terme est généralement faible devant le premier.

42

- 58 -

Pendant un essai de relaxation $\mathring{\varepsilon}$ est proportionnel à $\mathring{\sigma}$:

$$\frac{\overset{\circ}{\sigma}_{R}(t_{i})}{\sigma_{R}(o)} = \frac{\rho_{m}(t_{i})}{\rho_{m}(t_{o})}$$

$$(44)$$

où $\overset{\circ}{\sigma}_{R}$ et $(\overset{\circ}{\sigma}_{ti})$ sont les tangentes aux courbes de relaxation au même niveau de contrainte σ_{R} et pour le premier cycle (t₀) ou le ième cycle (t_i) de relaxation correspondant à la figure 25. Cette formule suppose que la contrainte interne reste constante. Pour un fer Armco (18) ρ_{m} diminue de 50 % après 10 minutes de relaxation. Dans ce cas la variation de dislocations mobiles est due à l'épinglage de celles-ci par les atomes interstitiels comme le montre la variation de $\rho_{m}(t_{i})/\rho_{m}(t_{0}$ proportionnelle à $t_{i}^{2/3}$. Cette observation avait déjà été faite par SHAW et SARGENT (45) pour le niobium et le molybdène dans la zone de déformation précédant le crochet de traction. Dans ce cas, la décroissance de ρ_{m} s'accompagne d'un crochet à la courbe de traction lors du rechargement.

OKAZAKI, BONO et KAGAWA (6) proposent une loi de variation de ρ_{m} de la forme :

$$\frac{\rho_{\rm m}}{\rho_{\rm o}} = \left| \frac{-\frac{\sigma^{\circ}}{\sigma}}{(\sigma^{\star})^{\rm m}} \right| \left| \frac{-\frac{\sigma^{\circ}}{\sigma}}{(\sigma_{\rm o})^{\rm m}} \right|$$

$$(45)$$

où $\rho_{\rm m}$ est la densité de dislocations mobiles à la contrainte efficace $\sigma_{\rm m}^{\star}$ et à la vitesse de variation de la contrainte $\overset{\circ}{\sigma}$ et $\rho_{\rm O}$ est la densité initiale de dislocations à $\sigma_{\rm O}^{\star}$ et $\sigma_{\rm O}^{\star}$. Ces auteurs étudient la variation de $\rho_{\rm m}$ et son influence sur m, A et $\sigma_{\rm i}$ et montrent qu'elle est négligeable pour m et $\sigma_{\rm i}$.

SMITH et THORPE (47) en réanalysant ces résultats constatent qu'au contraire l'effet sur m peut être très important. La méthode utilisée étant basée sur la loi empirique de Johnston et Gilman $\bar{v} = B(\sigma^*)^m$ elle est également empirique. WIELKE (48) en effectuant des essais de traction avec variation brutale de la vitesse de déformation constate que même dans ce cas la densité de dislocations mobiles ne reste pas constante.

$$\frac{\rho_{m_2}}{\rho_{m_1}} = \left(\frac{\varepsilon_2}{\varepsilon_1}\right)^{n(T)}$$
[46]

où l'exposant $n_{(T)}$ varie de 0,3 à 0,6 tout en étant une fonction croissante de la température (49) (50!.

D'autres formules indiquant la variation de ρ_m sont disponibles dans la littérature, notons :

$$\rho_{\rm m} = \rho_0 (1 - e^{-(\tau - \tau_i)^2}) \qquad |47| \qquad (11)$$

$$\rho_{\rm m} = \rho_{\rm o} \, e^{-\Theta \epsilon} \Pr \qquad |48| \qquad (51)$$

où Θ est un paramètre d'ancrage et ε_{pr} le taux de déformation plastique en relaxation.

$$\rho_{\rm m} = \rho_{\rm O} \, \exp[\Delta H_{\rm (P)}(\tau)/kT]$$
 [49] (52)

IX - INFLUENCE DE LA DURETE DE LA MACHINE

Pendant un essai de relaxation, la déformation totale imposée est la somme des déformations de l'éprouvette et de la machine. Cette dernière est souvent assimilée à un barreau élastique de longueur Z soumis à une charge P. La rigidité est définie comme le rapport R = dP/dZ (53).

En tenant compte de la déformation machine l'équation de déformation s'écrit :

 $\mathring{y} = \mathring{1}_{e} + \mathring{1}_{p} + \mathring{z}$

où dy représente le déplacement de la traverse dl_e et dl_D sont les allongements élastique et plastique.

Dans un essai de relaxation $\overset{\circ}{y} = 0$ donc : $\hat{l}_e + \hat{l}_p = - \overset{\circ}{Z}$

Si dans un petit intervalle de charge, la rigidité de la machine est considérée constante :

$$\hat{\mathbf{R}} = \mathbf{0} \rightarrow \begin{cases} \mathbf{P} = \mathbf{RZ} \\ \mathbf{\sigma} = \mathbf{P}/\mathbf{S} \end{cases}$$

où S est la section de l'éprouvette supposée constante.

$$\ddot{\sigma} = R\ddot{Z}/S = -R(\ddot{l}_e + \ddot{l}_p)/S$$

En divisant par l_0 pour obtenir des déformations et en remplaçant σ_e par - σ/E :

 $- \overset{\circ}{\sigma}(1+Rl_0/SE) = Rl_0 \overset{\circ}{\epsilon}_p/S$
où $\mathring{\epsilon}_{p} = - M \mathring{\sigma}$

avec M =
$$\frac{S}{Tl_0} + \frac{1}{E}$$

M représente l'élasticité de l'ensemble machine éprouvette.

|42|

(54)

Pour une consolidation athermique l'accroissement de la contrainte totale est due à la seule augmentation de la contrainte interne :

 $d\sigma$ = $d\sigma_i$ =0(dl_e+dl_p) où θ est le taux de consolidation (θ = d σ /de). Il est alors possible de calculer une surface d'activation corrigée :

$$A_{cor.} = A_{mes.} (1 + \frac{\Theta S}{R I_0}) - 1$$
 [43] (12)

Dans cette correction il faut faire attention au choix de 0 qui dépend de la contrainte (48,49,50).

Si la correction est faible (inférieure à 5 %) pour une machine dure R = 400 kg.mm⁻¹, elle peut être importante (jusqu'à 40 %) pour une machine molle R = 82 kg.mm⁻¹ (11).

Dans le cas de la mesure de la surface d'activation parsaut de vitesse, WIELKE (48) (55) propose comme terme correctif :

$$A_{exp} = A \frac{1}{1 + \frac{\Theta}{\lambda c}}$$

avec $\lambda = 1_0 F_s$ F_s : facteur de Schmidt

ou $\frac{\lambda}{C} = \frac{S_0}{F_s} \left(\frac{1}{R(p)} + \frac{L_0}{S_0E}\right)$ (48) $\frac{\lambda}{C} = \frac{L_0}{F_s} \left(\frac{S_0}{R(p)L_0} + \frac{1}{E}\right) = \frac{L_0}{F_s} M$

terme représentant la rigidité de l'ensemble machine-éprouvette.

BIBLIOGRAPHIE

- (1) P. TROUTON, A.O. ORANKINE Phil. Mag. (1904), 538.
- (2) P. FELTHAM "Stress relaxation of copper and brass at low temperature" J. Inst. Met. 89 (1961), 210-214.
- (3) J.C.M. LI "Dislocations dynamics in deformation and recovery" - Can. J. Physics - 45 (1967), 493-509.
- (4) Voir introduction
- (5) P.E.V. de MIRANDA, I. LE MAY, S.N. MONTEIRO "On the use of LI's equation in stress relaxation studies". -Scripta Met. 24 (1976), 1201-1205.
- (6) K. OKAZAKI, Y. AONO, M. KAGAWA "Mobile dislocations during stress relaxation in an Fe - 0,056 at % Ti alloys"
 - Acta. Met. 24 (1976), 1121-1130.
- (7) F.N. NOBLE, D. HULL "Stress dependance of dislocation velocity from stress relaxation experiments" Acta Met.
 12 (1964), 1089-1092.
- (8) G. OROWAN "Problems of plastic gliding" Proc. Phys. Soc. (London) 52 (1940), 8-22.
- (9) J.C.M. LI "Plastic deformation of amorphous and semi crystalline materials". ed. par B. ESCAIG et C. G'SELL
 Les éditions physiques, Les Ullis, (1982), 29-43.
- (10) T. LEFFERS "Microstructure and mechanics of polycrystal deformation at low temperature" - 2nd RIS Int. Symp. on Met. and Mat. Science - ed. by N. HANSEN, A. HORSEWELL, T. LEFFERS, H. LILHOLT 1981.
- (11) G. BAUR "Etude du phénomène de relaxation de la contrainte d'écoulement dans le cas du titane" thèse de Doctorat 3ème cycle, Paris II, février 1972.
- (12) G. BAUR, P. LEHR "Analyse des lois de relaxation de la contrainte d'écoulement dans les métaux" - Mem. Sci. Rev. Met. (1975) 551-556.

- (13) W.G. JOHNSTON, J.J. GILMAN "Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals" - J. Appl. Phys. 30 (1959), 129-144.
- (14) P. GROH, L.P. KUBIN, J.L. MARTIN "Dislocation et déformation plastique - Ecole d'été d'YRAVALS (1979)" - Les éditions de Physique - Colomiers 1982.
- (15) J.P. POIRIER "Plasticité à haute température des solides cristallins" Eyrolles - Paris 1976.
- (16) C.W. RICHARDS "La science des matériaux de l'ingénieur"
 Dunod, Paris 1965.
- (17) G.B. GIBBS "Creep and stress relaxation studies with polycrystalline magnesium" Phil. Mag. 13 (1966), 317-329.
- (18) M.A. MEYERS, J.R.C. GUIMARAES, R.R. AVILLEZ "On stressrelaxation experiments on their significance under strainaging conditions" - Met. trans., 10A, (1979), 33-40.
- (19) S.R. Mac EWEN, O.A. KUPCIS, B. RAMASWAMI "An investigation of an incremental unloading technique for estimating internal stresses" - Scripta Met. 3 (1969), 441-448.
- (20) C.N. AHLQUIST, W.D. NIX "A technique for measuring mean internal stress during high temperature creep" -Scripta Met. 3 (1969), 679-681.
- (21) A.A. SOLOMON "New techniques and Apparatus for examining the elevated temperature deformation of metals" -Rev. Scient. Instrum. 40 (1969), 1025-1028.
- (22) C.N. ALQUIST, W.D. NIX "The measurements of internal stresses during creep of A1 and A1-Mg alloys" - Acta Met. 19 (1971), 373-385.
- (23) P. FELTHAM "Stress relaxation in magnesium at low temperature" - Phys. Stat. Sol. 3 (1963), 1340-1346.
- (24) P. FELTHAM "Stress relaxation and dynamic recovery in cobalt at low temperature" - Phil. Mag. 8 (1963), 989-996.
- (25) J. GUPTA, J.C.M. LI "Stress relaxation, internal stress and work hardening in some BCC metals and alloys" Met. trans. 1 (1970), 2323-2330.

- (26) J. GUPTA, J.C.M. LI "Stress relaxation and work hardening in LiF and NaCl crystals" - Mat. Sci. Eng. 6 (1970), 20-26.
- (27) M. ANGLADA, F. GUIU "Critical assessment of a method for measuring internal stresses" - Scripta Met. 13 (1979), 103-106.
- (28) J.T. MICHALAK "The influence of temperature on the development of long range internal stress during the plastic deformation of high purity iron" - Acta Met. 13 (1965), 213-222.
- (29) P. FELTHAM "Creep and stress relaxation in alpha brass at low temperature" - Phil. Mag. 6 (1961), 259-270.
- (30) D.H. SASTRY, Y.V.R.K. PRASAD, K.I. VASU "On the low temperature deformation mechanism in polycrystalline magnesium" - Acta Met. 17 (1969), 1453-1457.
- (31) D.H. SASTRY, K. TANGRI "Dislocation mechanism for plastic flow of nickel in the temperature range 4,2 - 1200 K" - Phil. Mag. 32 (1975), 513-525.
- (32) P.R. THORNTON, P.B. HIRSCH "The effect of stacking fault energy at low temperature creep in pure metals"
 Phil. Mag. 3 (1958), 738-761.
- (33) P. FELTHAM, C.J. SPEARS "Stress relaxation in single crystals of copper and brass" - Met. Sc. J. 2 (1968), 183-186.
- (34) A.H. COTTRELL, R.J. STOKES "Effects of temperature on the plastic properties of aluminium crystals" - Proc. R. Soc. 233 A (1965), 17-34.
- (35) P. FELTHAM, G. LEHMANN, R. MOISEL "Stress relaxation in nickel at 20-300 K" Acta Met. 17 (1969), 1305-1309.
- (36) V.A. BUCKLE, P. FELTHAM "Logarithmic creep of copper and aluminium" - Met. Sc. 9 (1975), 541-546.
- (37) P. FELTHAM "A Stochastic model of crystal plasticity"J. Physics D (London) 6 (1973), 2048-2056.
- (38) G. SCHOECK "Activation energy of dislocation movement"Phys. Stat. Sol. 8 (1965), 499-507.

- (39) D.H. SASTRY, M.J. LUTON, J.J. JONAS "Thermally activated flow of HCP metals at low temperature "Phys. Stat. Sol. (a) 33 (1976), 173.
- (40) M. CAGNON "Thermodynamique de la déformation et essais mécaniques" réf. 14.
- (41) M. CAGNON "The role of entropy in thermally activated deformation : application to the study of irradiation hardening in LiF" - Phil. Mag. 24 (1971), 1465-1476.
- (42) S. WEERTMAN J. App. Phys. 28 (1957), 1185 cité par (24).
- (43) W.J.McG. TEGART "Activation energies for high temperature creep of polycristalline zinc" - Phil. Mag. 3 (1958), 1287-1296.
- (44) W.J. McG. TEGART "Activation energies for high temperature creep of polycristalline magnesium" - Acta Met. 9 (1961), 614-616.
- (45) B.J. SHAW, G.A. SARGENT "Stress relaxation prior to the yield point in niobium and molybdenum" -Acta Met. 12 (1964), 1225-1230.
- (46) G.A. SARGENT "Stress relaxation and thermal activation in niobium" - Acta Met. 13 (1965), 663-671.
- (47) J.O. SMITH, W.R. THORPE "Comment on mobile dislocations during stress relaxation in an Fe 0.046 at % Ti alloy" Scripta Met. 12 (1978), 403-405.
- (48) B. WIELKE "Dislocation dynamics during rate changes"Acta Met. 26 (1978), 103-112.
- (49) P.J. JACKSON "Comments on dynamics during rate changes" Scripta Met. 12 (1978), 653-654.
- (50) B. WIELKE, G. SCHOECK "Reply to comments on dislocation dynamics during rate changes" - Scripta Met. 12 (1978), 655-656.
- (51) R.W. RHODE, T.V. NORDSTROM "On stress relaxation experiments" - Scripta Met. 7 (1973), 317-322.
- (52) E.Y. GUTHANAS "Thermal activation analysis of plastic deformation using stress and temperature jumps - "Scripta Met. 14 (1980), 269-274.

- (53) M. GRUMBACH "L'essai de traction" (197) collection IRSID-OTUA.
- (54) F. GUIU, P.L. PRATT "Stress relaxation and the deformation of solids" - Phys. Stat. vol. 6 (1964), 111-120.
- (55) B. WIELKE "Activation volume and machine stiffness"
 Scripta Met. 11 (1977), 87-89.

CHAPITRE II

MATERIAU ET METHODES EXPERIMENTALES

Figure l Forme des éprouvettes étudiées

I - MATERIAU

A - MODE D'ELABORATION

Les alliages de zinc étudiés sont utilisés dans la construction. Ils doivent avoir une bonne résistance à la corrosion, une bonne aptitude à la mise en forme (en particulier ne pas se fissurer lors d'un pliage réalisé à vitesse importante à l'aide d'un maillet) et avoir des propriétés mécaniques suffisantes notamment en traction et en fluage. L'addition de cuivre et de titane permet généralement d'obtenir ces caractéristiques (1).

Le zinc est d'abord coulé en barres de 16 à 20 mm d'épaisseur puis laminées de la façon suivante :

dégrossissage sur un laminoir duo en deux passes à une température de 250°C pour passer d'une épaisseur de 16mm à 8mm puis 4mm.

Après refroidissement à l'air la finition a lieu à l'aide d'un laminoir quarto réversible; l'épaisseur devient 4 mm puis 2,35; l,30 et 0,65 mm. La température s'élève pendant le laminage jusqu'à 180°C environ.

Le refroidissement de la bobine s'effectue à l'air et demande environ 48 h.

B - COMPOSITION CHIMIQUE

Le matériau que nous avons utilisé pour nos essais est un alliage de zinc faiblement allié dont la composition chimique est donnée dans le tableau l. Les deux éléments principaux d'additions sont le cuivre et le titane.

Les essais de relaxation et de fluage sont effectués sur des éprouvettes polycristallines de section rectangulaire d'épaisseur 0,65 mm et de largeur 12 mm, ces tôles sont utilisées industriellement en cette épaisseur; la longueur utile est $L_0 = 100$ mm (fig.1). Elles sont découpées à l'emporte pièce dans la tôle; l'axe de l'éprouvette est parallèle au sens de laminage de la tôle.

C - EXAMEN MICROGRAPHIQUE

Les éprouvettes sont polies chimiquement à l'aide du réactif mis au point par VINAVER et DREULLE (1) dont la composition est la suivante :

Acide chromique	200	g
Sulfate de sodium	15	g
Acide nitrique	50	cm3
Eau distillée	1000	cm3

L'état de surface des éprouvettes provenant de tôles laminées est suffisamment bon pour permettre directement ce polissage chimique. Il se fait en trempant l'échantillon dans le bain en agitant puis en le rinçant à l'eau distillée plusieurs fois de suite. Le temps nécessaire pour enlever la couche superficielle et obtenir un bon polissage est compris entre 5 et 10 minutes. Ce polissage s'accompagne d'une attaque chimique qui révèle les joints intergranulaires.

L'observation au microscope métallographique de la structure obtenue (photo l) pour une zone située en surface de la tôle permet de constater les points suivants :

- Il existe de grands précipités filiformes de TiZn₁₅ allongés dans la direction du laminage
- Ces précipités semblent limiter la taille des grains
- Le diamètre des grains est très hétérogène.

D - OBSERVATION EN MICROSONDE

Nous avons observé nos échantillons en microsonde afin de déterminer la présence éventuelle d'inclusions ou des variations de concentrations en éléments d'addition à l'intérieur de la structure. La seule variation notable que nous ayons obtenue est celle de la concentration en titane correspondant aux précipités TiZn15 (photos 2-3).

Photo 1 Structure métallographique des échantillons étudiés G = 1650

Photo 2 Profil de la concentration en titane (le segment témoin = $10 \mu m$)

Photo 3 Image X de la répartition du titane (segment témoin = 10 µm)

II - RELAXATION

L'essai de relaxation est très simple dans son principe, : l'éprouvette est tractionnée jusqu'à un certain taux de déformation (ou à la force désirée) puis la traction est arrêtée. L'échantillon est alors maintenu à longueur constante et la décroissance de la contrainte est enregistrée en fonction du temps.

Les essais de relaxations sont réalisés à l'aide d'une machine de traction hydraulique servo-contrôlée MTS, munie d'une cellule de capacité maximale de 2,5 tonnes; cette machine permet un asservissement en charge, en déplacement du vérin, ou en déformation par l'intermédiaire d'un extensomètre fixé sur l'éprouvette. Dans ce dernier cas on ne tient pas compte de corrections dues à la rigidité de la machine.Les essais à des températures de 20 à 200°C sont effectués à l'aide d'un four à circulation d'air chaud. La température est maintenue constante à un degré près sauf à la température ambiante où les écarts peuvent être de 2°C.

Une première série d'essais a consisté à contrôler la validité de l'hypothèse d'une densité de dislocations constante avec le taux de déformation lors d'essais de relaxation successifs à même contrainte initiale.

Ensuite, une deuxième série d'essais a été réalisée sur différentes éprouvettes, à contraintes initiales croissantes, à différentes températures et valeurs de vitesse de mise en charge $\hat{\varepsilon}$.

De plus nous avons effectué des essais de traction avec "sauts de vitesse de déformation" pour rechercher les volumes d'activation aux mêmes températures.

Les valeurs obtenues à partir des courbes de relaxation correspondent à la variation de la force en fonction du temps. Elles sont mesurées pour des temps 2ⁿ secondes où n varie de 0 à N, de manière à obtenir des points régulièrement espacés en échelle logarithmique (N correspond généralement à des durées comprises entre quelques minutes et plusieurs jours).

III - TRAITEMENT INFORMATIQUE

Les valeurs expérimentales sont traitées numériquement micro-ordinateur (APPLE II). L'organigramme est sur indiqué en fin de ce chapitre et conduit à une présentation des résultats sous forme de tableau du type de celui représenté en 2. Dans ce tableau sont précisées les relations et les notations utilisées. A titre d'exemple, les résultats d'un essai sont donnés tableau 3.

Quatre courbes peuvent être tracées à partir de ces valeurs.

La première est la courbe :

 $-\Delta\sigma = f(t+C)$

en faisant l'hypothèse qu'une loi logarithmique représente bien dans ce cas le phénomène de relaxation. La constante de correction C est calculée de façon à avoir la meilleure linéarité possible de la courbe - $\Delta \sigma$ = f(t+C) aux temps faibles. Signalons que le calcul se fait par itérations successives en optimisant le cœfficient de corrélation R. Les caractéristiques de chaque droite sont précisées sur chaque figure (pente, ordonnée à l'origine, facteur de corrélation) (figure 2).

La deuxième représentation est :

avec :

σ

$$Log(-\sigma) = f(Log(t+C))$$

$$\overset{\circ}{\sigma} = \frac{d\sigma}{dt} = \frac{\sigma t_2 - \sigma t_1}{t_2 - t_1}$$

on obtient une relation linéaire, la pente des droites est voisine de -1. Dans ce cas la loi est dite logarithmique

$$\sigma_0 - \sigma = s \log(t+C) + b$$

		- 76 -	
	essai de i	RELAXAT	ION
Reference essai		EF' =	
Temperature =		Mode =	
Sigma O =	Contrainte initiale	Sigma I =	
Load =		Range =	
Strain =		Range =	Réglage de la
Stroke =		Range =	machine
Calibrate =		Span 1 =	
		Break Point=	
Rate 1 =	Vitesse de déformation	Rate 2 =	
Gain =		Stabilite =	
	TABLEAU	DE VALE	
* 1 * F	**************************************	**************************************	-S' * Ln -S' * Ln S
* (5EC) *	(N) * (N/A^2)* ******************************	*************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* * * * 0	****** *******************************	* *	* *
ф * ч	aqu * * *	* 0 *	₩ ₩ ₩
	a ch * *	* ^ L *	
daN p	+ε) tion * * * te % rair	* C *	× ₩ × ₩
en 1 * * *	sec * * * * * * * * * * * * * * * * * * *	rai:**	× × ×
onde * * * r s u	Lan · · · · · · · · · · · · · · · · · · ·		
seco seco men ver	a a * a * c * c * c * c * c * c * c * c	* L a *	
en * scte con	vr vr vr orte	* s d *	* * [*] I ©
nps * * * dire	* * * * * * * * * * * * * * * * * * *	* I; * *	ດັ້ * ດັ້ * ດັ້*
Ter ¢¢ ¢	rtr * rtr * sr *	* * rit¦ aque	* * * [*] <
str str	Strates Strates Spran	* cha * cha	* t do * * 0
		₩ [₩]	* a *
en]	vec b DS iale	* N *	× × ×
м н н н н н н н н н н н н н н н н н н н			ı ŏ "
Delt	ations at notations uti	Cableau 2 lisées dans l	'essai de relaxation

ESSAI DE RELAXATION

eference ess	ai		J.m.	EP: 43	and a second and a second a	×
emperature	===		* ==	Mode		STRAIN
igma O		1472.	. 	Sigma I	::::	0
oad				Range	1	4
train		0.52	20	Range		: 1 .
troke	==			Range		denotes an abbasen
alibrate		1 <u> </u>	NCR yf. Staffesia	Span 1	****	100 %
				Break Poi	nt=	9861
ate 1		800	sec	Rate 2		Sec
ain		riax I	• · · · · · · · · · · · · · · · · · · ·	Stabilite		10

TABLEAU DE VALEURS

****	**	****	₩ -₩-	****	*****	***	****	**	****	****	****
- T	**	F	×	s *		¥	Ln S	₩	-==; ' ;	+ Ln -\$'	* Ln \$-0*
F (SEC)	-¥∻ ⊮⊮	(N) 	- }. 	(MN/M^2) *	an an an an an an an an an		M. M. M. M. M. M. M.	* *	ا دددددددددد.	e ar ar ar ar ar ar ar ar ar	************
	*	* * * * * * * * * *	**	*********	70, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		****	** *	4) 4) אראר אריאריאריאריאריאריאריאריאריאריא	• * * * * * * * * * * * * •	* *
0	¥.	1100.0	*	142.49 *	0,00	*	4.959	.¥.	0.00E+00+	• 0.000	* 4.95 *
1	*	1040.0	-¥.	134.72 *	7.77		4.903	*	7.77E+00	e 2.050	* 4.90 *
2	*	1000.0	*	129.53 *	12.95	*	4.863	*	5.18E+00*	€ 1.645	* 4.86 *
e 4	*	960.0	 *	124.35 *	18.13	*	4.823	*	2.59E+00	• 0.951	* 4.82 *
F 8	*	920.0	*	119.17 *	23.31	*	4.780		1.29E+00	• 0.258	* 4.78 *
1.6		870.0	*	112,69 *	29.79	*	4.724		8.09E-01	. −0.211	* 4.72 *
F 32	*	820.0	¥	106.22 *	36.27	*	4.665	*	~4,04E-01	€ -0 . 904	* 4.66 *
- 64	- X	765.0	*	99.09 *	43,39	*	4.596	*	2.22E-01	• -1 . 502	* 4.59 *
128	*	705.0	*	91.32 *	51.16	*	4.514	*	1.21E-01	• -2.108	* 4.51 *
256	*	660.0	*	85.49 *	56.99	*	4.448	*	4.55E-02	• -3.089	* 4,44 *
512	*	610.0	.¥	79.01 *	63.47	*	4.369	*	2.53E-02	←3.676	* 4.36 *
1024	*	560.0	*	72.54 *	69.95		4.284	*	1.26E-02	← 4,370	* 4.28 *
2048	*	525.0	*	68.00 *	74.48	**	4.219	*	4.42E-03	+ -5.419	* 4.21 *
4096	*	500.0	*		77.72	* *	4.170	*	1.58E-034	← -6.449	* 4.17 *
8192	*	450.0	·*·	58.29 *	84.20	*	4.065	*	1.58E-03	←6,449	* 4.06 *
16384	*	430.0	*	55.70 *	86.79	** **	4.020	*	3.16E-04	• -8.058	* 4.02 *
32768		420.0		54.40 *	88.08	*	3.996	*	7.90E-05	+ -9.445	* 3.99 *

Tableau 3 Exemple de résultats

Courbe - $\Delta \sigma = f(Ln(t+C))$

••••

mais nous n'excluons pas cependant l'interprétation des résultats suivant une loi puissance :

$$\sigma - \sigma_i = K'(t+c)^{-1/m-1}$$

La constante C est déterminée de façon à obtenir la meilleure linéarité possible (fig. 3).

La troisième représentation est :

$$Log(\sigma - \sigma_i) = f(Log(t+C))$$

avec σ_i = contrainte interne

La constante C, de la même manière, est déterminée de façon à obtenir la meilleure linéarité possible, tout en modifiant la valeur de σ_i , et en observant son influence sur les caractéristiques de la courbe (fig.4).

La quatrième représentation :

 $Log(-\sigma) = f(log(\sigma - \sigma_i))$

on regarde, dans ce cas, l'influence de la variation de la valeur de σ_i sur les caractéristiques de la courbe (fig.5). Cette méthode n'est malheureusement pas suffisamment précise pour déterminer avec précision σ_i .

IV - FLUAGE

L'essai de fluage (symétrique de la relaxation) est réalisé avec la même machine avec un asservissement en charge. Cela consiste à imposer à l'échantillon une contrainte constante tandis que l'on mesure sa déformation en fonction du temps.

Figure 3 Courbe $Ln(-\sigma) = f (Ln(t+C))$

Figure 5 Courbe $Ln(-\sigma) = f(Ln(\sigma-\sigma_i))$

Organigramme du programme de saisie **de données et** tracé du tableau

Organigramme du programme du tracé de courbe "relax 3"

- 84 -

- 85 -

BIBLIOGRAPHIE

- (1) J. WEGRIA "Etude de la plasticité des alliages zinc
 cuivre titane. Application à l'amélioration de leur aptitude au pliage" - Thèse d'Etat Lille 1984.
- (2) W. VINAVER, P. DREULLE "Le phénomène de migration de l'eutectique Zn - Pb dans le zinc coulé" - Rev. Met. 52 (1955), 612-620.

C H A P I T R E I I I

ţ

RESULTATS

Des essais de traction effectués à vitesse de déformation constante $(2,5.10^{-4} \text{ s}^{-1})$ et à des températures comprises entre 20 et 200°C montrent que la limite d'élasticité et la résistance uniaxiale dépendent fortement de la température de l'essai (fig.1).

La limite d'élasticité diminue avec la température suivant l'allure représentée sur la figure 2.

II - INFLUENCE DE LA VITESSE DE DEFORMATION SUR LA COURBE DE TRACTION

Parallèlement à l'influence de la température le zinc est sensible à l'effet de la vitesse de déformation (fig.3).

La limite d'élasticité du matériau augmente notablement avec la vitesse (fig.4).

III - RELAXATION

Les essais de relaxation sont effectués à des températures comprises entre 20 et 200°C, et à des vitesses de déformation variant de 2,5.10⁻⁶ s⁻¹ à 2,5.10⁻³ s⁻¹.

Figure 3 Influence de la vitesse de déformation sur la courbe de traction

Figure 4 Variation de la limite d'élasticité du matériau en fonction de la vitesse de déformation

A - INFLUENCE DE LA DENSITE DE DISLOCATIONS

M.A. MEYERS et coll. (1) ont proposé une méthode pour étudier la variation de la densité de dislocations avec le temps. Cette méthode est exposée dans le chapitre I (I,VIII). Si ρ_{t_i} (ρ_{t_j}) est la densité de dislocations après un temps $t_i(t_i)$ et $\Delta\sigma_t$ la contrainte relaxée après un temps t :

$$\frac{\binom{\Delta\sigma}{t}_{i}}{\binom{\Delta\sigma}{t}_{j}_{j}} = \frac{t_{i}}{t_{j}}$$

Le tableau l représente les valeurs de $\Delta \sigma_t$ en fonction du temps pour différentes essais de relaxation consécutifs i = l à 8. On constate que ces valeurs sont sensiblement constantes comme l'indique également la figure 5.

On peut donc faire l'hypothèse de la constance de la densité de dislocations lors d'essais de relaxation successifs.

La figure 6 montre l'aspect d'une courbe contrainte - déformation du zinc, lorsqu'un essai de relaxation est effectué à un certain taux de déformation, pendant un temps donné, au-delà duquel la déformation par traction est poursuivie. La courbe de déformation n'est pas affectée par l'essai de relaxation : elle se poursuit comme si l'augmentation de la déformation plastique introduite par la relaxation avait été obtenue par déformation en traction.

Ainsi il convient de noter qu'un essai de relaxation n'est pas affecté par un essai de relaxation antérieur, en particulier on n'observe pas de crochet de traction. Ces observations sont à rapprocher du fait qu'une seule loi de décroissance est suivie pendant la période de relaxation et cela depuis l'instant initial t = 0, qui est également l'instant final de la période de déformation par traction, indiquant qu'un seul mécanisme de déformation est opérant en relaxation pour une contrainte donnée et qu'il peut être identifié au mécanisme de déformation par traction se poursuivant à une vitesse continûment décroissante.

N° $\Delta \sigma$ t = 128 s $\Delta \sigma$ (MPa) t = 512 s $\Delta \sigma$ (MPa t = 2048 $\Delta \sigma$ Log (1167,9880,3987,6927266,9383,0894,6227367,785104,6228466,5487,31102,6928568,8488,07104,2328667,3183,8597,3127765,3983,4798,0829867,384,99105,3827					
167,9880,3987,6927266,9383,0894,6227367,785104,6228466,5487,31102,6928568,8488,07104,2328667,3183,8597,3127765,3983,4798,0829867,384,99105,3827	N°	t = 128 s	$\Delta \sigma (MPa)$ t = 512 s	Δσ (MPa t = 2048	$\frac{\Delta\sigma}{\log(t+c)}$
266,9383,0894,6227367,785104,6228466,5487,31102,6928568,8488,07104,2328667,3183,8597,3127765,3983,4798,0829867,384,99105,3827	1	67,98	80,39	87,69	27,34
367,785104,6228466,5487,31102,6928568,8488,07104,2328667,3183,8597,3127765,3983,4798,0829867,384,99105,3827	2	66,93	83,08	94,62	27,68
466,5487,31102,6928568,8488,07104,2328667,3183,8597,3127765,3983,4798,0829867,384,99105,3827	3	67,7	85	104,62	28,93
568,8488,07104,2328667,3183,8597,3127765,3983,4798,0829867,384,99105,3827	4	66,54	87,31	102,69	28,79
667,3183,8597,3127765,3983,4798,0829867,384,99105,3827	5	68,84	88,07	104,23	28,93
765,3983,4798,0829867,384,99105,3827	6	67,31	83,85	97,31	27,82
8 67,3 84,99 105,38 27	7	65,39	83,47	98,08	29,48
	8	67,3	84,99	105,38	27,68

Tableau l Variation de la contrainte relaxée en fonction du temps

Figure 5 Essais de relaxation des contraintes successifs

Figure 6 Influence d'un essai de relaxation sur la courbe de déformation plastique du zinc

1

- 93 -

Figure 7

Variation de la contrainte relaxée en fonction du temps

B - ESSAI DE RELAXATION

A une température donnée, et à l'aide d'une vitesse de déformation initiale choisie et constante pendant la mise en charge, l'éprouvette est déformée jusqu'à ce que la contrainte initiale σ_0 soit atteinte. Nous mesurons ensuite la variation de la contrainte $\Delta \sigma$ avec le temps. La figure 7 est un exemple de courbe de relaxation obtenue.

Nous observons une partie linéaire comprise entre deux portions de courbe - la première, correspondant aux temps faibles, peut être corrigée en ajoutant au temps t une constante C qui permet de linéariser la courbe - la valeur de cette constante dépend de la température et de la vitesse de déformation. Pour tous nos essais elle est comprise entre 0 et 32 secondes. Elle augmente quand la température augmente et diminue lorsque la vitesse de déformation est plus importante.

La courbure observée pour les temps longs a lieu pour des contraintes importantes, elle peut être causée par deux phénomènes :

- la loi logarithmique n'est plus vérifiée

- la contrainte $\sigma(t)$ appliquée à l'échantillon devient très faible, de l'ordre de la contrainte interne et à ce moment $\sigma(t)$ tend vers une limite. Pour notre matériau la relaxation est très grande. La courbe sur la figure 8, représentée avec une échelle linéaire au temps, permet de constater qu'après 30 minutes la contrainte ne varie pratiquement plus.

Pour des contraintes initiales plus faibles la partie linéaire de la figure 7 est grande et satisfait l'équation :

$$\Delta \sigma = \sigma_0 - \sigma_t = s \log(t+C)$$

où :

 σ_0 = contrainte à l'instant t = 0 σ_t = contrainte à l'instant t s = pente de la droite C = terme correctif ajouté au temps.

- 95 -

Une courbe de relaxation peut être représentée également par le tracé de log - $\overset{\circ}{\sigma}$ en fonction du temps (fig. 9).

Ici aussi il convient d'effectuer une correction en ajoutant C au temps afin que la représentation soit linéaire. Nous mesurons la pente p de cette droite. Si p = -1, la loi logarithmique est vérifiée, si elle est inférieure à - l c'est la loi puissance qui est vérifiée.

Pour cette loi puissance nous rappelons la représentation mathématique due à LI (2)

$$\sigma - \sigma_i = K'(t+t_0)^{-1/m-1}$$

où :

σ_i est la contrainte interne

m est un coefficient qui représente la sensibilité du matériau à la vitesse de déformation :

$$m = \left(\frac{\partial Ln}{\partial \sigma} \star^{V}\right)_{T,P}$$

K' et t_0 sont deux constantes

Cette loi peut être vérifiée soit en traçant Ln- σ en fonction de Ln(σ - σ_i) (figure 10) soit Ln(σ - σ_i) en fonction de Ln(t+c) (figure 11). La première de ces deux courbes permet de mesurer m qui est la pente de la droite. Le programme de dépouillement permet de chercher σ_i de façon à ce que la représentation soit linéaire. Pour la deuxième nous devons optimiser le tracé à la fois en tenant compte de la correction en σ_i et de celle en c.

Les résulats concernant les trois représentations possibles pour une loi puissance sont concordants et sont représentés simultanément dans la figure 12.

Notons cependant que lorsque la pente p et voisine de -l il est possible d'interpréter les résultats soit par une loi logarithmique soit par une loi puissance. Nous verrons ultérieurement que les interprétations sont concordantes (en particulier il y a un bon accord sur les volumes d'activations trouvées pour chacune de ces méthodes).

Figure 9 Variation de $\mathring{\sigma}$ en fonction du temps

.

Figure 12 Différentes représentations des courbes de relaxation

1

Figure 13

Variation de la contrainte relaxée en fonction du temps

t

Par ailleurs nous avons constaté dans la bibliographie que la démarche utilisée pour trouver les cœfficients de la loi de LI était souvent :

1 - trouver m à partir de Ln $-\sigma = Ln(t+c)$

2 - calculer c et σ_i

Quand p est voisin de -l la mesure de m par la formule $m = \frac{p}{p-1}$ conduit à une incertitude très grande. Dans ce cas il convient de rechercher σ_i par d'autres méthodes que l'étude directe des courbes de relaxation.

Une autre erreur assez fréquente consiste à effectuer des essais de très courte durée. Dans ce cas on n'obtient pas la partie linéaire d $\ln(\sigma - \sigma_i)$ en fonction de Ln t. La linéarisation se fait simultanément par une recherche de σ_i et de t_o. Les 4 cœfficients de la loi de LI n'étant pas indépendants entre eux, on peut aussi obtenir des solutions multiples dont certaines n'ont à l'évidence aucun sens physique (3).

C - INFLUENCE DE LA CONTRAINTE INITIALE

Pour une vitesse de déformation $\hat{\varepsilon}_0 = 2,5.10^{-4} \text{ s}^{-1}$ et une température de 20°C nous avons effectué des essais de relaxation des contraintes pour différentes valeurs de la contrainte initiale (fig.13). Nous constatons que la pente s de la droite de relaxation augmente avec la contrainte initiale. Nous avons donc étudié la variation de s avec σ_0 (fig.14).

Sur cette courbe nous avons séparé les résultats obtenus avec des éprouvettes différentes pour lesquelles un seul essai de relaxation a été effectué, (ces résultats sont représentés par "o"). Nous avons également représenté les essais effectués à l'aide d'une seule éprouvette soumise à des relaxations succesives (signes pleins); les essais effectués 10 fois succes-

1

- 104 -

sivement à la même contrainte (I) et les essais pour lesquels les éprouvettes avaient été préalablement soumises à 200 cycles de fatigue à la contrainte de relaxation (A.F). Tous ces points expérimentaux se trouvent alignés sur la même courbe. Notons que cette dernière correspond à 50 essais de relaxation. Nous constatons l'existence d'une rupture de pente intervenant par une contrainte de 130 MN m⁻² (4).

D - INFLUENCE DE LA TEMPERATURE

Les essais de relaxation du paragraphe III.C ont été effectués à des températures de 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 177 et 200°C. Pour chacune de ces températures nous avons opéré comme précédemment; c'est-à-dire que nous avons étudié l'influence de la contrainte initiale sur la pente s des droites de relaxations. Nous en avons déduit la figure 15 représentant la variation de s avec la contrainte initiale pour chacune de ces température. Toutes les courbes n'apparaissant pas sur cette figure par souci de clarté.

Ici aussi nous constatons sur la représentation graphique l'existence d'une rupture de pente pour les températures les plus faibles. Cette rupture de pente intervient plutôt (pour des contraintes plus faibles) lorsque la température augmente et disparaît pour les températures les plus grandes (5).

E - INFLUENCE DE LA VITESSE DE DEFORMATION

1

Pour une température de 20°C et une même contrainte initiale σ_0 nous avons effectué des essais de relaxation avec des vitesses de déformation initiales différentes et comprises entre 2,5.10⁻³s⁻¹ et 2,5.10⁻⁶s⁻¹.

Variation de la pente des droites de relaxation avec la contrainte initiale pour différentes températures

1

Pour une valeur $\sigma_0 = 70,5$ MN m⁻² les courbes de relaxations sont représentées sur la figure 16. Nous constatons que :

- une vitesse de déformation élevée augmente la variation de contrainte initiale
- la constante C augmente quand la vitesse de déformation initiale diminue
- La pente s des droites de relaxation ne varie pas en fonction de la vitesse de déformation lors de la mise en charge de l'éprouvette

Par contre pour une valeur de la contrainte initiale de 129 MN m⁻² la représentation des courbes de relaxation est sur la figure 17. Contrairement à ce que nous avons observé précédemment la pente des courbes de relaxation, s, dépend de la vitesse de déformation.

Nous sommes donc en présence de deux domaines. Le premier, à faibles contraintes est insensible à la vitesse de déformation, et le deuxième, à contrainte élevée dépend lui de la vitesse de déformation. Ce phénomène peut être mis en évidence sur les courbes 18 et 19.

Sur cette dernière courbe nous constatons à nouveau l'existence d'une rupture de pente. Cette rupture est favorisée par une diminution de la vitesse de déformation initiale.

F - CHOIX ENTRE LOI PUISSANCE ET LOI LOGARITHMIQUE

La mesure de la pente p des courbes Ln $-\sigma$ en fonction de Ln t permet de voir si c'est la loi logarithmique ou la loi puissance qui est vérifiée. Nous avons tracé figure 20 la variation de p avec la contrainte initiale σ_0 pour différentes températures.

Courbe de relaxations enregistrées à θ = 20°C σ_0 = 70,5 MN m⁻² pour différentes vitesses de déformations initiales

۱

Figure 17

Variation de la contrainte relaxée en fonction du temps pour différentes vitesses de déformation initiales

1

- 109 -

Variation de la pente des droites de relaxation avec la contrainte initiale pour différentes valeurs de la vitesse de déformation

Figure 19

Variation de la pente des droites de relaxation avec la vítesse de déformation pour différentes valeurs de la contrainte initiale

Figure 20 Variation de p avec la contrainte initiale pour pour différentes températures

Nous constatons que p augmente avec la contrainte appliquée pour une température donnée et pour une même contrainte initiale p augmente avec la température. A contrainte élevée et à température élevée la loi puissance semble mieux être vérifiée; alors qu'à faible température et à faible contrainte c'est la loi logarithmique qui est vérifiée.

Nous

avons également tracé la variation du cœfficient m avec la contrainte initiale (fig.21). Nous constatons sur cette figure que m décroît rapidement lorsque la contrainte appliquée augmente et tend vers une limite. De fortes valeurs de m correspondent à des valeurs des pentes p voisines de -l c'est-à-dire au cas où la loi logarithmique semble vérifiée (5).

IV - FLUAGE

Des essais de fluage ont été effectués à des températures de 20° à 100°C et des contraintes de 60 à 134 MN m⁻². La vitesse de mise en charge est la même pour tous les essais (2,5.10⁻³ s⁻¹). Les courbes obtenues sont présentées sur le figures 22 et 23.

Figure 21

Variation du coefficient m avec la contrainte initiale pour des essais de relaxation effectués à différentes températures

Courbes de fluage obtenues sous une même contrainte initiale à différentes températures

BIBLIOGRAPHIE

- (1) M.A. MEYERS, J.R.T. GUIMARAES, R.R. AVILLEZ "On stress relaxation experiments on their significance under strain-aging conditions" - Met. Trans., 10 A (1979), 33-40.
- (2) J.C.M. LI "Dislocations Dynamics in deformation and recovery" - Can. J. Physics 45 (1967), 493-509.
- (3) P.E.V. de MIRANDA, I. LE MAY, S.N. MONTEIRO 30n the use of LI's equation in stress relaxation studies" -Scripta Met. 24 (1976), 1201-1205.
- (4) A. IOST, J. LESAGE, J. FOCT Communication au Groupe plasticité - Marseille 26-27 mai 1983.
- (5) A. IOST, B. BOUACHERIA, J. FOCT Communication au Groupe plasticité, Lyon 7-8 juin 1984.

CHAPITRE IV

DISCUSSION

Figure l Variation de la contrainte interne avec la température

I - CONTRAINTE INTERNE

D'après l'hypothèse de FELTHAM (1) il est possible de déterminer une contrainte interne par extrapolation des courbes $s(\sigma_0)$. Lorsque s devient nul cela signifie qu'il n'y a pas de relaxation, donc la contrainte appliquée correspondante est la contrainte interne du matériau. La figure 1 représente la variation de la contrainte interne obtenue par cette méthode en fonction de la température T. La contrainte interne diminue de façon continue avec T jusqu'à devenir nulle à 100°C.

avons également mesuré la contrainte interne Nous par la méthode de décroissance successive des contraintes de Mc EWEN et coll. (2). Cette méthode conduit aux mêmes résultats que ceux trouvés par la méthode de FELTHAM. Nous avons utilisé les valeurs de of trouvées dans l'interprétation des courbes de relaxation suivant une loi puissance. Elles conduisent à une bonne linéarité des droites Ln $-\sigma$ en fonction de Ln σ - σ_i et Ln σ - σ_i en fonction de Ln(t+c) (fig. 2 et 3). Remarquons également lorsque nous effectuons des essais de relaxation à vitesse variable, les droites de relaxation semblent converger vers un même point (fig.17,Ch.III). Pour une contrainte initiale de 129 MN m⁻² les courbes convergent vers 96 MN m⁻² soit une contrainte résiduelle correspondantes de 33 MN m-2, valeur qui est très voisine de la contrainte interne à la température correspondante à celle de l'essai, c'est-à-dire 293 K.

En fait nous ne pouvons pas affirmer que la contrainte interne est constante quelle que soit la contrainte appliquée σ_0 . Pour les faibles contraintes nous constatons un infléchissement des courbes $s(\sigma_0)$ (fig. 4).

Cela signifie que la contrainte interne, aux faibles contraintes appliquées, est inférieure à la valeur que nous obtenons par extrapolation et la variation de σ_i avec σ_o doit être de la forme représentée sur la figure 5.

Influence de σ_i sur le tracé de Ln(- ϑ) en fonction de Ln(ϑ - σ_i)

Influence de σ_i sur le tracé de Ln($\sigma - \sigma_i$) en fonction de Ln(t+c)

Figure 5

Variation schématique de la contrainte interne avec la contrainte appliquée

La contrainte interne que nous venons d'étudier est celle qui correspond à la première partie des droites $s(\sigma_0)$.

La deuxième partie des droites $s(\sigma_0)$ correspond à une augmentation de la vitesse de relaxation. Ce phénomène peut correspondre à une diminution de la contrainte interne c'est-à-dire à une augmentation de la contrainte efficace.

Comme pour cette deuxième partie, correspondant à une contrainte élevée nous avons une pente, p, des droites Ln $-\sigma$ en fonction de Ln(t+c) sensiblement inférieure à -l nous pouvons appliquer le formalisme de LI, et dans ce cas nous constatons que les courbes de relaxations sont de la forme :

 $\sigma - \sigma_i = K'(t+t_0)^{-1/m-1}$

avec $\sigma_i = 0$

Sur les figures 6 et 7 nous voyons un exemple de courbes $(\log -\sigma, \log(\sigma - \sigma_i))$. Les valeurs de m obtenues par les deux tracés différents sont très voisines (ici 5,99 et 6,02).

Nous pouvons résumer ainsi les résultats concernant la contrainte interne :

- Les courbes de relaxation peuvent être interprétées par une loi logarithmique pour les faibles contraintes et les faibles températures et également par une loi puissance pour les contraintes et les températures plus élevées.

- Dans la représentation de s avec σ_0 on constate généralement une rupture de pente, cette rupture de pente correspond à un changement de mécanisme dans le processus de relaxation

- Pour la première partie de cette courbe on peut déterminer une contrainte interne qui diminue lorsque la température augmente. Cette contrainte interne devient nulle pour la température critique de 373 K

Pour la deuxième partie de cette courbe nous avons une contrainte interne qui est nulle.

- Entre les deux parties il y a une transition assez rapide se traduisant par une courbure de la représentation graphique $s(\sigma_0)$.

Variation de Ln $(-\hat{\sigma})$ avec Ln $(\sigma-0)$ pour une valeur de s se trouvant après la rupture de pente

Variation de Ln(σ - σ_i)avec Ln(t+c) pour une valeur de s se trouvant après la rupture de pente

II - SURFACE D'ACTIVATION

A - MESURES

Les surfaces d'activation sont calculées à partir de l'hypothèse d'une loi de relaxation logarithmique et pour une loi de relaxation puissance.

Dans le premier cas :

$$A = \frac{2,3 \text{ MkT}}{\text{s}}$$

et dans le deuxième :

$$A = \frac{M.m.kT}{\sigma^*}$$

La pente p des droites de relaxation étant toujours voisine de -l nous avons effectué les calculs de A suivant les deux formules précédentes et les résultats obtenus sont concordants.

Notons cependant que la deuxième formule est associée à une loi de relaxation puissance et, si la dépendance de A en fonction de l'inverse de la contrainte efficace est effective on suppose généralement que le formalisme de LI est justifié. A. IOST (3) montre que la même dépendance existe même dans le cas d'une loi de relaxation de type logarithmique. En effet :

Considérons une variation de la pente des droites de relaxation en fonction de la contrainte initiale telle qu'elle est représentée sur la figure 8.

On peut écrire :

$$\sigma = \sigma_i + a(T)s$$

ou

S

$$= \frac{\sigma - \sigma_i}{a(T)} = \frac{\sigma^*}{a(T)}$$

La surface d'activation dans le cas d'une loi logarithmique est :

$$A = \frac{MkT}{s} = \frac{MkT a(T)}{\sigma^*}$$

Cette relation est équivalente à celle qui donne la surface d'activation dans le cas d'une loi puissance et $a_{(T)}$ peut être assimilé au cœfficient m de cette loi.

Donc dans le cas d'une loi de relaxation logarithmique, si σ_i est constant c'est-à-dire ne dépend pas de la contrainte appliquée nous devons avoir une dépendance de la surface d'activation en σ^{*-1} .

Nous avons également mesuré la surface d'activation en effectuant des sauts de vitesse de déformation (fig.9).

A est donné par la formule :

$$A = \frac{MkT}{b} \frac{Ln \tilde{\varepsilon}_1 - Ln \tilde{\varepsilon}_2}{\sigma_1 - \sigma_2}$$

Les résultats obtenus par cette méthode sont comparables à ceux trouvés à partir des courbes de relaxation. Cependant cette méthode ne permet pas de mesurer facilement les surfaces d'activation pour les faibles déformations, elle est donc moins pratique que la précédente.

B - VARIATION DE LA SURFACE D'ACTIVATION AVEC LA CONTRAINTE APPLIQUEE

Nous avons choisi une température de 293 K pour représenter la variation de la surface d'activation avec la contrainte initiale (fig.10). Si nous tenons compte de la contrainte efficace σ^* , A doit être inversement proportionnelle à celle-ci. Pour vérifier cette relation nous avons tracé Ln A en fonction de Ln σ^* pour la première partie de la courbe (fig.11). Nous constatons que la représentation est linéaire et que la pente de la droite est égale à -l donc A est propor-

Mesure de la surface d'activation par sauts de vitesse de déformation

Variation de la surface d'activation avec la contrainte efficace

Variation de la surface d'activation avec la vitesse de déformation pour différentes contraintes tionnelle à σ^{*-1} . Pour la deuxième partie des courbes de relaxation cette relation n'est pas vérifiée mais A varie comme σ^{-2} (ou comme σ^{*-2} puisque $\sigma_i = 0$).

La transition entre les deux stades de déformation s'accompagne de formation de macles (photo l.)

C - VARIATION DE LA SURFACE D'ACTIVATION AVEC LA VITESSE DE DEFORMATION

Nous avons constaté fig.III.18 que pour les faibles contraintes la pente s des droites de relaxation était indépendante de la vitesse de déformation; alors que pour de fortes contraintes s diminue avec $\hat{\epsilon}_0$. Ces considérations peuvent être exprimées par la variation de la surface d'activation avec la contrainte efficace (fig. 12).

D - VARIATION DE LA SURFACE D'ACTIVATION AVEC LA TEMPERATURE

Pour différentes valeurs de la contrainte initiale $\sigma_0 = 50$, 75 et 100 MN m⁻² nous avons tracé la variation de A avec la température (fig. 13).

Nous constatons que pour une même contrainte efficace, et non pour une même contrainte initiale. A diminue lorsque la température augmente et ce jusqu'à ce que la température critique de 373 K soit atteinte. Pour les températures supérieures, A ne varie plus avec la température. Cette représentation a pour mérite de mettre en évidence une rupture de pente de la courbe A(T). En fait pour étudier l'influence de la température il convient de comparer les valeurs de la surface d'activation obtenues pour une même contrainte initiale puisque, pour nos échantillons, σ_i varie avec la température.

Photo 1

Observation par microscopie optique de macles dans les échantillons déformés (G = 4500)

Figure 13

Variation de la surface d'activation avec la température

Variation de la surface d'activation avec la contrainte efficace pour différentes températures
Dans ces conditions nous constatons figure 14 que la surface d'activation est pratiquement indépendante de la température.

Le fait que la surface d'activation ne dépende pas de la température est cohérent avec l'hypothèse d'un mécanisme thermiquement activé.

Nous pouvons résumer ainsi les conclusions relatives aux mesures de la surface d'activation :

- La mesure de la surface d'activation dans l'hypothèse d'une loi de relaxation logarithmique et dans l'hypothèse d'une loi puissance conduit aux mêmes valeurs de A. De même les résultats obtenus par sauts de vitesse de déformation sont cohérents avec les précédentes.

- La surface d'activation varie avec la contrainte efficace suivant σ^{*-1} dans la première partie puis comme σ^{-2} lorsque la contrainte devient supérieure à une valeur critique. Dans ce cas $\sigma_{i} = 0$ et la contrainte critique diminue lorsque la température augmente

- La surface d'activation ne varie pas avec la température pour une même valeur de la contrainte efficace

- Dans la première partie (pour les contraintes faibles) la surface d'activation est indépendante de la vitesse de déformation. Dans la deuxième partie des courbes $s(\sigma_0)$, c'est-à -dire pour de fortes déformations la surface d'activation augmente avec la vitesse de déformation.

E - MESURE DE L'ENERGIE D'ACTIVATION

 ΔG peut être déduit des courbes de relaxation en mesurant la variation de la surface d'activation avec la contrainte :

$$\Delta G = \frac{\mu}{\mu_0} \int_{\tau}^{\tau_0} A(\tau) d\tau$$

Cette valeur correspond à la surface comprise entre la courbe $A(\tau)$ et les axes de coordonnées (fig.15).

Le calcul conduit à une valeur de AG de 40 Kcal/mole. Cette valeur est voisine de celles trouvées par d'autres auteurs en particulier MURTHY et SASTRY (5) qui obtiennent 39 kcal/mole en fluage sur du zinc pur polycristallin.

F - FLUAGE

L'analyse des courbes de fluage montre qu'à 20°C on observe les trois stades classiques du fluage primaire, secondaire et tertiaire. Pour des températures supérieures, le fluage secondaire s'établit presque instantanément. Nous avons déterminé la vitesse de fluage du stade II en traçant la vitesse de fluage de Ln - $\hat{\epsilon}$ avec ϵ (fig.16).

En traçant la variation de $\hat{\epsilon}$ avec la contrainte efficace (fig.17) nous constatons que :

 $\hat{\varepsilon} = A(\sigma - \sigma_i) \delta, 4$

Le nombre d'essais limité que nous avons effectués en fluage ne nous permet pas de mesurer une énergie d'activation.

Figure 15 Variation de la surface d'activation en fonction de la contrainte efficace

Figure 16 Détermination de la vitesse de fluage secondaire

Variation de $\hat{\epsilon}$ avec la contrainte efficace

- 139 -

BIBLIOGRAPHIE

- P. FELTHAM "Stress relaxation and dynamic recovery in cobalt at low temperature" - Phil. Mag. 8 (1963), 989-996.
- (2) S.R. Mac.EWEN, O.A. KUPCIS, B. RAMASWAMI Scripta Met. 3 (1969), 441.
- (3) A. IOST Note du laboratoire de métallurgie physique, communication privée.
- (4) A. IOST, J. LESAGE, J. FOCT "Etude en relaxation des contraintes d'un alliage de zinc industriel à température ambiante" - Mem. Sc. Rev. Met. (1983), 503.
- (5) G.H. MURTHY, D.H. SASTRY "Impression Creep of Zinc and the rate controling mechanism of Plastic flow at hight temperature" - Phys. Status Solidus (1981), 63-71.

CONCLUSION

.

La relaxation d'un alliage de zinc - cuivre - titane à différentes valeurs de la contrainte initiale de la température et de la vitesse de déformation permet d'effectuer les observations suivantes.

Pour les faibles contraintes et les faibles températures (stade I), le mécanisme de relaxation correspond à une loi logarithmique puis pour des contraintes et des températures plus importantes la loi puissance est vérifiée (stade II).

La surface d'activation varie suivant les conditions expérimentales de 35 à 500 en unités b². Deux mécanismes thermiquement activés concourent à la déformation.

Pour le stade I. La contrainte interne varie avec la température et devient nulle pour T = 373 K. La surface d'activation varie en fonction de la contrainte appliquée suivant σ^{*-1} mais est indépendante de la vitesse de déformation.

Pour le stade II, la contrainte interne est nulle quelle que soit la température comprise entre 273 et 473 K. La surface d'activation varie en fonction de la contrainte appliquée suivant σ^{-2} et elle augmente avec la vitesse de déformation.

Pour la première partie les résultats sont compatibles avec un mécanisme d'intersection de dislocations, se déplaçant dans le plan de base, avec la forêt. Pour des contraintes plus élevées un maclage intervient qui peut provoquer une réorientation des grains favorable à un glissement pyramidal de seconde espèce. C'est ce mécanisme qui deviendrait ensuite prépondérant. Un changement de la texture du matériau pendant la déformation peut également expliquer le fait que le glissement pyramidal est favorisé lorsque la contrainte augmente.

Ces hypothèses demandent cependant à être vérifiées en particulier par deux types d'expériences qui consistent à :

- Etudier en microscopie électronique à transmission la variation de la structure de dislocation en fonction de la contrainte

- Etudier la variation de la texture du matériau en fonction de la déformation.

La mesure de l'énergie d'activation des deux mécanismes également doit être affinée.

ANNEXE

PROGRAMME DE DEPOUILLEMENT ET D'ANALYSE

DES COURBES DE RELAXATION

IST

βO.

82 34

86

98

ÞÒ

92

 \mathbb{Z}^{O}

30

40 50

60

:70 180

:90

220 505 N = N1

HOME

PRINT

GOTO 1160

SOČ

31 O

300 301

304

305

307

309

REM DIMENSIONNEMENT

- 刀門区 ****************

ON Q GOSUB 2000,800 ON 0 GOTO 300,1160

REM ENTREE DE DONNEES

门门区 米米米米米米米米米米米米米米米米米米

DIM SI(100,7) DIM X(19), Y(19)

DIM P\$(20,8)

HOME : VTAB 5

DIM P(20,8)

PRINT

A.1 DIM R(500),A1(500),A0(500) 95 D\$ = CHR\$ (4): REM CTRL-D PRINT "ECRIRE LE NUMERO DE L'EPROUVETTE SUIVI ": PRINT : PRINT " PAR LE NUMERO DE L'ESSAI": PRINT INPUT " EX: (15!-VIII,16//-XIV...) : ";P* PRINT "YOULEZ-YOUS : ": PRINT : PRINT" TAB(05)"- RETIRER DES DO NNEES."; TAB(35);"'1'": PRINT : PRINT TAB(05) "- INTRODUIRE DES DONNEES. " TAB(35); "'2'": PRINT INPUT " VOTRE CHOIX ? : ":Q: PRINT IF P# < > PF# THEN VTAB (23): PRINT "REFERENCE DE L'ECHANTILLO N NON TROUVEE": FOR PAUSE = 0 TO 2000: NEXT : VTAB (23): PRINT : GOTO TAB(13); P\$: PRINT : PRINT : PRINT PRINT TAB(02) "TEMPS (S)"; TAB(25); "FORCE (N) ": PRINT : PRINT VTAB (21): PRINT "TAPER 'RETURN' QUAND VOUS NE VOULEZ ": PRINT : PRINT TAB(10) "RIEN INTRODUIRE"

POKE 34,7: POKE 35,17 810

VTAB (08) 812 830 P*(1,1) = "O"

PRINT TAB(05)P\$(1,1); TAB(10)"---->"; TAB(25);: INPUT 840 ": ";P\$(1,2): PRINT

850 FOR I = 0 TO 19

 $855 P \le (I + 2, 1) = STR \le (2 \land I)$

PRINT TAB(05)P\$(I + 2,1); TAB(10)"---->"; TAB(25);: INPUT 860 ": "; P*(I + 2,2): PRINT

IF P\$(I + 2,2) = "" THEN GOTO 880 865

NEXT 870

880 I = I + 2

PRINT "QUELLE EST LA VALEUR SUIVANTE DU TEMPS": PRINT : INPUT " 885 ? : "; P\$(I,1): PRINT

IF P = "" THEN N = I - 1: GOTO 905 890

PRINT TAB(05)P\$(I,1); TAB(10)"---->"; TAB(25);: INPUT 895 ": ";P\$(1,2): PRINT

900 N = I

905 POKE 34,4: POKE 35,18: HOME

INPUT "QUELLE EST LA TEMPERATURE DE L'ESSAI: ";T\$ 920

930 PRINT " L'ESSAI A ETE EFFECTUE EN QUEL MODE": PRINT INPUT " : ";M\$: PRINT 931

940 INPUT "QUELLE EST LA VALEUR DU LOAD: ";VI\$: PRINT

INPUT "SON RANGE : ";R1*: PRINT 945

INPUT "QUELLE EST LA VALEUR DU STRAIN: "; V2#: PRINT 950

952 INPUT "SON RANGE : ";R2#: PRINT

```
960
     INPUT "QUELLE EST LA VALEUR STROKE: ";V3#: PRINT
962
     INPUT "SON RANGE : ";R3$: PRINT
     INPUT "QUELLE EST LA VALEUR DU SPAN1 EN % :";R4#: PRINT
970
     PRINT " QUELLE EST LA VALEUR DU CALIBRATE EN %": PRINT
980
     INPUT " : ";R5#: PRINT
982-
990
     PRINT "QUELLE EST LA VALEUR DU BREAK POINT EN %": PRINT
     INPUT " : ";R6#: PRINT
992
      INPUT "QUELLE EST LA VALEUR DU RATE 1:--"; R7$: PRINT
1000
      INPUT " RATE 2 : "; R8$: PRINT
1002
      INPUT "QUELLE EST LA VALEUR DU GAIN: ";R9#: PRINT
1010
      INPUT " STABILITE: "; RA$: PRINT
1012
1021
      TEXT : HOME
      GOSUB 3000
1025
1030 RETURN
1160 REM CALCUL DES ELEMENTS DE P$(I,J)
1161
      1165 V2 = VAL (V2$):R2 = VAL (R2$)
1170
     IF R2 = 1 THEN VV = V2 * 2
1171
      IF R2 = 2 THEN VV = V2
1172
     IF R2 = 3 THEN VV = V2 * 0.4
     IF R2 = 4 THEN VV = V2 * 0.2
1173
1180
     FOR I = 1 TO N
1190 FOR J = 1 TO 8
1200 P(I,J) = VAL (P*(I,J))
1205 NEXT : NEXT
1210 I = 1
1220 P(1,6) = 0
1240 P(1,7) = 0
1260 P(I,3) = P(I,2) * (1 + VV / 100) / 7.8
1280 P(I,4) = P(1,3) - P(I,3)
1300 P(I,5) = LOG (P(I,3))
1320 P(I,8) = LOG (P(I,3) - S)
1340 FOR I = 2 TO N
1360 P(I,3) = P(I,2) * (1 + VV / 100) / 7.8
1380 P(I,4) = P(1,3) - P(I,3)
1400 P(I,5) =
              LOG (P(I,3))
1420 P(I,6) = (P(I - 1,3) - P(I,3)) / (P(I,1) - P(I - 1,1))
1440 P(I,7) = LOG (P(I,6))
1460 P(I,8) = LOG (P(I,3) - S)
1470
     NEXT
1480
     REM MENU 1
1481
     REM *****
1488 HOME : VTAB 5
     PRINT " VOULEZ-VOUS AVDIR :": PRINT
1490
1492
     PRINT "
                  -LE TABLEAU DE VALEUR (1)"
     PRINT "
1494
                   -TRACER UNE COURBE
                                         (2)''
1496
      PRINT "
                  -FIN
                                         (3)": PRINT
1500
      INPUT "QUEL EST VOTRE CHOIX 1,2,3 : ";X: PRINT
1505
    ON X GOTO 1600,1650,1800
1600
            CHR$ (4); "BLOADCHAIN, A520"
      PRINT
1605
      CALL 520"RELAX2"
1650
      PRINT CHR# (4); "BLOADCHAIN, A520"
1655
      CALL 520"RELAX3"
1800
      END
2000
      REM
2001
      REM LECTURE DANS FS
2002
     REM **********
2020
      PRINT D#; "OPENRELAXF"
      PRINT D$; "READRELAXF"
2030
2040
      INPUT NF$
2050 NF = VAL (NF$) - 1000
2060
     FOR I = 1 TO NF
2070
    INPUT FF$
     INPUT N$
2075
2078 \text{ N1} = \text{VAL} (N \pm)
2080
     IF PF# = P# THEN BOTO 2170
```

```
2085 \ ZF = 2 * N1 + 1
                                                                       A.3
2090
     PRINT D$; "POSITIONRELAXF, R"; ZF
      PRINT D*; "READRELAXF"
2100
2110
     NEXT
2115
     PRINT D#; "CLOSERELAXF"
2120
     RETURN
2170
     FOR I = 1 TO N1: INPUT P$(I,1): NEXT
2180
      FOR I = 1 TO N1: INPUT P \leq (I,2): NEXT
2190
     INPUT T#,M#,V1#,R1#,V2#,R2#,V3#,R3#,R4#,R5#,R6#,R7#,R8#,R9#,RA#
2200
     PRINT D$; "CLOSERELAXF"
2210
     RETURN
3000
     REM
3001
     REM INSCRIPTIONS DANS FS
3002
      刀田区 米米米米米米米米米米米米米米米米米米米
3010 VTAB 5: PRINT TAB( 05) "VOULEZ-VOUS LES INTRODUIRE": PRINT : PRINT
     TAB( 10) "DANS LE FICHIER": PRINT
3020
     INPUT "
              ( O / N ) ? :";O$: PRINT
                               > "N" THEN GOTO 3020
              > "O" AND O$ < .
3025
      IF O$ <
3030
     IF D$ = "N" THEN RETURN
3040 GOSUB 2000
3050 IF P$ = PF$ THEN N = N1: VTAB (23): PRINT "REFERENCE DE L'ECHAN
    TILLON DEJA INSCRITE": FOR PAUSE = 0 TO 2000: NEXT : VTAB (23): PRINT
    : RETURN
3054 0$ = " "
3055 T$ = T$ + O$:M$ = M$ + O$:V1$ = V1$ + O$:R1$ = R1$ + O$:V2$ = V2
    * + O*:R2* = R2* + O*:V3* = V3* + O*:R3* = R3* + O*:R4* = R4* + O
    $:R5$ = R5$ + 0$:R6$ = R6$ + 0$:R7$ = R7$ + 0$:R8$ = R8$ + 0$:R9$
     = R9* + 0*; RA* = RA* + 0*
3065
     PRINT D$; "UNLOCKRELAXF"
     PRINT D$; "OPENRELAXF"
3070
3075
     PRINT D$; "WRITERELAXF"
3078 NF$ = STR$ ( VAL (NF$) + 1)
3080
     PRINT NF$
     PRINT D$; "APPENDRELAXF"
3090
3100 PRINT D$: "WRITERELAXF"
3105 N = STR (N)
3110
     PRINT P$
3115
     PRINT N$
3120
     FOR I = 1 TO N: PRINT P$(I,1): NEXT
     FOR I = 1 TO N: PRINT P$(1,2): NEXT
3125
3130 X$ = ".
            11
3140
     PRINT T$;X$;M$;X$;V1$;X$;R1$;X$;V2$;X$;R2$;X$;V3$;X5;R3$;X$;R4$
    ; X$; R5$; X$; R6$; X$; R7$; X$; R8$; X$; R9$; X$; R4$
3150
     PRINT D$;"CLOSERELAXF"
      PRINT D$; "LOCKRELAXF"
3160
3170
      RETURN
```

SPR#0

SLIST 3498 REM PRINT ARRAY 3499 REM ********* 3500 PR# 1 3505 PRINT SPC(20) CHR# (14);"ESSAI DE RELAXATION"; CHR# (31) PRINT : PRINT 3506 PRINT "R"; CHR# (23); "EFERENCE ESSAI"; CHR# (23); TAB(30); "="; 3510 TAB(40); CHR\$ (14); "EP:"; P\$; CHR\$ (31) PRINT : PRINT 3511 3515 PRINT "T"; CHR\$ (23); "EMPERATURE"; CHR\$ (23); TAB(15); "="; TAB(20); CHR\$ (14);T\$;" 'C"; TAB(30); CHR\$ (31);"M"; CHR\$ (23);"DDE" ; CHR# (23); TAB(40);"="; TAB(05); CHR# (14);M#; CHR# (31) 3516 PRINT 3520 PRINT "S"; CHR# (23);"IGMA"; CHR# (23);" O"; TAB(15);"="; TAB(20); CHR\$ (14); INT ((P(1,3) + 0.005) * 100) / 100; TAB(30); CHR\$ (31); "S"; CHR\$ (23); "IGMA"; CHR\$ (23); " I"; TAB(40); "="; TAB(05); CHR\$ (14);S; CHR\$ (31) PRINT 3521 3525 PRINT "L"; CHR* (23); "DAD"; CHR* (23); TAB(15); "="; TAB(20); CHR* (14); V1\$; TAB(30); CHR\$ (31); "R"; CHR\$ (23); "ANGE"; CHR\$ (23); TAB(40); "="; TAB(05); CHR\$ (14); R1\$; CHR\$ (31) 3526 PRINT 3530 PRINT "S"; CHR* (23); "TRAIN"; CHR* (23); TAB(15); "="; TAB(20) ; CHR\$ (14); V2*; TAB(30); CHR\$ (31); "R"; CHR\$ (23); "ANGE"; CHR\$ (23); TAB(40);"="; TAB(05); CHR\$ (14);R2\$; CHR\$ (31) 3531 - FRINT 3535 PRINT "S"; CHR# (23); "TROKE"; CHR# (23); TAB(15); "="; TAB(20) : CHR\$ (14);V3\$; TAB(30); CHR\$ (31);"R"; CHR\$ (23);"ANGE"; CHR\$ (23); TAB(40); "="; TAB(05); CHR\$ (14); R3\$; CHR\$ (31) 3536 PRINT 3540 PRINT "C"; CHR\$ (23); "ALIBRATE"; CHR\$ (23); TAB(15); "="; TAB(20); CHR\$ (14);R5\$;" %"; TAB(30); CHR\$ (31);"S"; CHR\$ (23);"PAN 1"; CHR\$ (23); TAB(40); "="; TAB(05); CHR\$ (14); R4\$; "%"; CHR\$ (31) 3541 PRINT TAB(40)"B"; CHR# (23);"REAK "; CHR# (23);"P"; CHR# (23) 3545 PRINT ;"OINT"; CHR# (23); TAB(10);"="; TAB(15); CHR# (14);R6#;" %"; CHR# (31)3546 PRINT 3550 PRINT "R"; CHR# (23); "ATE 1"; CHR# (23); TAB(15); "="; TAB(20) ; CHR# (14);R7#; CHR# (31); CHR# (23);" SEC"; CHR# (23); CHR# (14); TAB(32); CHR* (31); PRINT "R"; CHR#((23);"ATE 2"; CHR# (23); TAB(40);" ="; TAB(0 7); CHR* (14);RB*; CHR* (31); CHR* (23);" SEC"; CHR* (23) 3552 PRINT PRINT "G"; CHR# (23); "AIN"; CHR# (23); TAB(15); "="; TAB(20); CHR# 3555 (14);R9\$; TAB(30); CHR\$ (31);"S"; CHR\$ (23);"TABILITE"; CHR\$ (23); TAB(40);"="; TAB(05); CHR\$ (14);RA\$; CHR\$ (31) 3556 PRINT 3560 TAB(23); CHR\$ (14); "TABLEAU DE VALEURS"; CHR\$ (31) PRINT 3561 PRINT 3565

1 TOT

```
3570 PRINT "*"; TAB( 04); CHR* (14); "T"; CHR* (31); TAB( 07); "*"; TAB(
   13); CHR# (14); "F"; CHR# (31); TAB( 18); "*"; TAB( 22); CHR# (14);
    "5"; CHR$ (31); TAB( 27); "*"; TAB( 30); "-"; CHR$ (14); "DS"; CHR$
    (31): TAB( 35):"*":
    PRINT "";"L"; CHR$ (23);"N "; CHR$ (23); CHR$ (14);"S"; CHR$
3571
    (31);" * -"; CHR$ (14);"S"; CHR$ (31);"'";" * ";"L"; CHR$ (23
   );"N -"; CHR* (23); CHR* (14);"S"; CHR* (31);"'"; *";
3572 PRINT " L"; CHR$ (23); "N "; CHR$ (23); CHR$ (14); "S"; CHR$ (31)
    <sup>ан</sup> н ⊆ <sup>н</sup>а Sa <sup>н</sup> ж<sup>н</sup>
3573 PRINT "*"; SPC( 04); CHR$ (15);"(SEC)"; CHR$ (18);" *
                                                                ": CHR$
    (15);"(N) "; CHR$ (18);" *"; SPC( 04); CHR$ (15);"(MN/M^2)"; CHR$
    (18); "*"; SPC( 09); "*"; SPC( 9); "*"; SPC( 9); "*"; SPC( 9); "*"; SPC(
   9);"*"
     3580
    ****
3581
     PRINT "*
      4.
4010 \text{ WRITE} = 52480
     PR# 1: PRINT
4020
                   CHR$ (0);
4040
     FOR I = 1 TO N
     CALL WRITE: "*":
4050
4051
     CALL WRITE: P(I,1); I5,"
                              ****
4060
     CALL WRITE: P(I,2); F5.1, " *":
                                *"*
     CALL WRITE: P(1,3); F5.2,"
4070
                                * ":
     CALL WRITE: P(1,4); F5.2,"
4080
     CALL WRITE: P(1,5); F4.3,"
                                * " *
4020
     CALL WRITE: P(1,6); E3, "*":
4100
     CALL WRITE: P(I,7); F5.3, " *":
4110
     CALL WRITE: P(1,8); F4.2,"
                               *", CHR$ (13):
4120
     PRINT "*----*-----*------
4130
   4140
     NEXT
4150
     POKE 53247,255
4192
     PR# 0
4200
     REM
          MENU 1
4201
     REM *****
     HOME : VTAB 5
4210
     PRINT " VOULEZ-VOUS AVOIR :": PRINT
4220
     PRINT "
                  -LE TABLEAU DE VALEUR (1)"
4225
     PRINT "
                   -TRACER UNE COURBE
                                         (2)^{n}
4230
     PRINT "
                                         (3)": PRINT
4235
                  -FIN
4240
      INPUT "QUEL EST VOTRE CHOIX 1,2,3 : ";X: PRINT
4245
      ON X GOTO 3498,4250,4300
4250
            CHR# (4): "BLOADCHAIN, A520"
      PRINT
4251
      CALL 520"RELAX3"
4300
      PRINT CHR# (4);"LOADRELAX1"
```

SPR#0

GOSUB STR\$ TAB N M M 61 TEP 01 ... PRINT 9800 THEN = STR* STR \$ ហ Ŧ PRINT GOSUB TAB(07)"... : VTAB (10): -0-1 = 2 9800 = INFUT II + Ŧ NEXT ÷ EXT : VTAB 2210 7 2): 9800 : Ξ 0286 GOSUB ÷ . 100) PRINT ЦO Ξ Ξ MAXI" B (30): + + m1)): L06 (T+C) 2055 ħ . . EB GOSUB (\$ (D1 GOSUB ł -K2) \sim CHERCHEZ-VOUS": 2000: NEXT 1 ξŅ 22 893 + 1 2 VTAB (10): PRINT VALEUR N 3): HTAB CHERCHE ~ 3+ 60109 STR# }~4 101 0++ + * * ** M STR# Y #9 0_ Ц Ц = ~ M4) M4) ll (08) ł LL. * -+ + "N" THEN 85 37)" " 27)"SIGMA.I. ^{*} I Â "P L0G (E'I)d) 1 ~~+ "STEP = = = = 0 = 0 + 0 = = **P** L) li +FRINT 9800 Э Щ Г 5 TAB(10)"LOG(S-SI) E 35,22 VTAB Ξ Σ 1 н 0 9800 Ŧ 100 ЧO ÷ . (M2) 11 - in INTERVALLE 10)". (100 11. INPUT "#H*: (N 2180 9800 9800: X9\$ = TO M3 (1): GOSUB (INT (100 - 100) \sim " I M I .. LOG FOR PAUSE 11 1 STEP THEN 150): 605UB 9800 = "P LOG(S-SI)": 605UB = "M" + STR\$ (D2 - 10(\$9800 **×**9≸ I (M2) L0G 11 \$800: X9\$ GOSUB 7800 q \mathbf{v} 60109 TAB (TAB (TAB (----INT GOSUB **a** 11 AND H# 9800 VTAB (10): HTAB (16): Ξ ь С 100 II. 4 DR 82 エマン > □ TO N:Y(I) X2:X Ξ. +-----PRINT "VALEUR MINI (F(I,1)) 3) - M4 QUEL 9800 "M140,300": "S2": GDSUB J = INT (M4 "S3": 60SUB PRINT I GOSUB STR\$ STR\$ 9800 51尺条 = PRINT ~ "N" THEN (20 20 20 TUPUT GOSUB сч З 11 POKE = 0 = 110): 5uuu - - "IO,30": (TEST 2 TO N INT (ST) < 300) 300) :\$: (IM) ----DANS -----16) "SIGMA.I.": PRINT ЧO MA ې + VTAB GOSUB : FRIN 34,2: 34,2: \sim ". NV" (08) (20): (15): (I, B) + ÷ ÷ GOSUB 9400 9600 (20): 7300 ":88 "88 " ି N 4500 007 "W" LOG E Q. нМн INCORRECTE 1 (\] TAB(07)" 11 8 9 9 Ξ 11 (D1 Ш ll \sim 19 12 11 100 11 PRINT GOSUB ## T #† T ũ. FRINT PRINT FOR W 20): GOSUB D GOSUB VTAB VTAB VTAB 11 6010 HOME 11 NEXT II 11 11 NEXT H 11 ਼ HOME POKE 1 VTAB ----П FOR 1 FOR FOR i 1 来 6× ¥0¥ \$6X **≵6X** *6× 느 \$6X Ľ. <u>Ц</u> 11 **≉6X** #6× 1 ₩6× Ë 9000 10 寺 () × × ш = 1 2165 2170 SL 191 2060 2060 2060 2060 2060 20090 21000 21000 21000 2110 2120 2130 2135 2135 2140 2145 2150 2155 2150 2207 2210 2212 2209 1984 2000 2005 2020 2035 2045 2055 2002 2030 2040

A.7 2260 SI(W,1) = W + W1:SI(W,2) = (U - 1) / 5:SI(W,3) = R(U - 1):SI(W,4)= E1:SI(W,5) = A1(U - 1):SI(W,6) = AO(U - 1):SI(W,7) = (-1 + -)SI(W,5)) / SI(W,5)FOR U = 0 TO 500:R(U) = 0: NEXT 2265NEXT W 2268 2270 C\$ = "LOG(S-SI)=F(LOG(T+C))" 2272 GOSUB 2280 2275GOT0 2420 2280REM CLASSEMENT DE SI(I,J) 2281 REM 米米米米米米米米米米米米米米米米米米米米 HOME : VTAB 5 2282 PRINT "CLASSEMENT PAR RAPPORT : ": PRINT : PRINT " - AU FACTEUR 2283 DE CORRELATION..."; TAB(36);"'1'": PRINT " - AU COEFFICIENT E1. "; TAB(36);"'2'"; PRINT 2284 INPUT " VOTRE CHOIX ? : ";H: PRINT 2286 IF H < > 1 AND H <> 2 THEN GOTO 2281 IF H = 1 THEN D = 32287 2288 IF H = 2 THEN D = 4FOR K = 0 TO W2 - W1 - ST STEP ST 2290 2295 FOR L = K + ST TO W2 - W1 STEP ST 2300 IF ABS (SI(K,D)) > ABS (SI(L,D)) THEN GOTO 2340 FOR Z = 1 TO 7 23102320 IN = SI(K,Z):SI(K,Z) = SI(L,Z):SI(L,Z) = IN 2330 NEXT 2340NEXT : NEXT 2345FR# 1 2347 ON H GOSUB 2410,2415 TAB(20); CHR\$ (14); "EP:"; P\$; CHR\$ (31); SPC(05); C\$ 2350 PRINT 2353 黄泽采米东东东东东东东东东东东东东东东东东东东 PRINT "*SIGMA.I.* 2355 \square R M ¥. •¥• E1 .¥-* ·X· 11 A * B 2356 ***** 2360 FOR K = 0 TO W2 - W1 STEP ST PRINT "* 2365 * $*^{\mu}$ ÷. 2370 WRITE = 52480PRINT CHR# (0); 2375 2377 CALL WRITE: "*": 2380 CALL WRITE:SI(K.1);15," *": CALL WRITE:SI(K,2);F3.1;" *": 2382 2385 CALL WRITE:SI(K,7);F5.2;" *": 2387 CALL WRITE:SI(K,3);F10.9;" *": 2388 CALL WRITE:SI(K,4);F10.8;"*": CALL WRITE:SI(K,5);F10.7;"*": 2389 2390 CALL WRITE:SI(K,6);F10.7;" *", CHR\$ (13): 2395 NEXT 2396 PRINT "* 34, 31 2397 PRINT "*----* 2398 **PRINT** : PRINT 2400 POKE 53247,255 PR# 0: HOME : VTAB 5 2401PRINT " VOULEZ-VOUS UN AUTRE CLASSEMENT (0 / N)": PRINT : INPUT 2402 ? : ";0\$: PRINT IF 0\$ < > "O" AND 0\$ < > "N" THEN GOTO 2402 2403 IF D# = "O" THEN GOTO 2280 2404 2405RETURN 2410PRINT TAB(15) "CLASSEMENT PAR RAPPORT AU MEILLEUR "R'": PRINT : RETURN 2415 PRINT TAB(15) "CLASSEMENT PAR RAPPORT AU MAUVAIS 'E1'": PRINT : RETURN

```
2420 HOME : VTAB 8: PRINT "VOULEZ-VOUS FAIRE UNE AUTRE RECHERCHE ": PRINT
       : PRINT TAB( 13)"DE SIGMA.I."
2425 PRINT : HTAB (10): INPUT "OUI OU NON (O / N) : ";O$: PRINT : PRINT
2427 IF D$ < > "N" AND O$ < > "O" THEN GOTO 2425
2430 IF D$ = "0" THEN GOTO 2204
2433 PRINT " QUEL EST VOTRE CHOIX POUR SIGMA.I.": PRINT : PRINT "
         (DONNER LE NUMERO DE LA LIGNE CHOISIE)": PRINT : INPUT "
       ":W: PRINT
2435 W = (W - 1) * ST
2436 FOR I = 2 TO N:Y(I) = LOG (P(I,3) - SI(W,1)):X(I) = LOG (P(I,
      1) + SI(W,2)): NEXT
2440 PRINT "VOULEZ-VOUS TRACER LES POINTS ( O / N )": PRINT -
         INPUT " : ": O$: PRINT
2445
                         > "O" AND O$ < > "N" THEN GOTO 2440
2450
           IF 0$ <
2455 IF O* = "N" THEN GOTO 2495
2460 X9$ = "SQ": GDSUB 9800
2465 FOR I = 2 TO N
2470 IF I = F(1) OR I = F(2) OR I = F(3) OR I = F(4) OR I = F(5) OR
       I = F(6) OR I = F(7) OR I = F(8) THEN GOTO 2490
2475 L3 = X(I) - LOG (M2):L4 = Y(I) - M4
2480 X = 100 + L4 * K2:Y = D1 - 100 - L3 * K1: GOSUB 9830
2485 X9$ = "N4": GOSUB 9800
2490 NEXT : GDSUB 9800
2495 HOME : VTAB 8
2500 INPUT "VOULEZ-VOUS TRACER LA DROITE (O / N) : ";O#: PRINT
          IF 0$ < > "0" AND D$ < > "N" THEN GOTO 2500
2505
         IF 0$ = "N" THEN GOTO 2600
2510
2515 X = 100 + ((SI(W,5) * X(2) + SI(W,6)) - M4) * K2:Y = D1 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1
       (X(2) - LOG (M2)) * K1
2520 GOSUB 9830
2525 X = 100 + ((SI(W,5) * X(N) + SI(W,6)) - M4) * K2:Y = D1 - 100 - 
       (X(N) - LOG (M2)) * K1
2530 GOSUB 9820
2535 X9$ = "RO," + STR$ ( INT (X(N) - 20)): GOSUB 9800
2540 X9 = "S1": GOSUB 9800
2545 E = E + 1:X9$ = "P" + STR$ (E): GOSUB 9800
2550 X9$ = "M" + STR$ (D2 - (E * 50 + 150)) + "," + STR$ (D1 - 200)
       : GOSUB 9800
2555 X9$ = "S2": GOSUB 9800
2557 X9# = "Q3": GOSUB 9800
2570 X9# = "P" + STR# (E) + " : LOG(S-" + STR# (SI(W,1)) + ") = " +
         LEFT# ( STR# (SI(W,5)),6) + " *LOG(T+" + STR# (SI(W,2)) + ")
           " + LEFT# ( STR# (SI(W,6)),6)
2572
         GOSUB 9800
2580 X9$ = "P
                               ": GOSUB 9800
2585 X9* = "PR = " + LEFT* ( STR* (SI(W,3)),7): GDSUB 9800
2590 X9$ = "P ": GOSUB 9800
2595 X9$ = "PM = " + LEFT$ ( STR$ (SI(W,7)),5): GOSUB 9800
2600 X9$ = "M" + STR$ (D2) + ",0": GOSUB 9800
         HOME : VTAB 5
2615
 2620 PRINT TAB( 10) "VOULEZ-VOUS :": PRINT : PRINT "-TRACER UNE AUTR
       E DROITE"; TAB( 36);"'1'"
2625 PRINT : PRINT "-FAIRE UNE AUTRE CORRECTION"; TAB( 36);"'2'": PRINT
           PRINT "-ARRETER"; TAB( 36);"'3'": PRINT
2630 -
           INPUT " 1 , 2 OU 3 ? : ";B: PRINT
2635
2640
          ON B GOTO 2433,2200,2660
2660
          GOSUB 9860: TEXT
2670
           RETURN
3000
           STOP
```

```
4500
     REM TRACE DE COURBES
4501
      - 园田区:米米米米米米米米米米米米米米米米米
4503
     HOME : VTAB 4
      PRINT "QUELLE COURBE VOULEZ-AVOIR ?: ": PRINT : PRINT
4505
      PRINT "
                       D_{S} = F (LOG(T+C))
                                                :1": PRINT
4508
4510
      PRINT "
               .....
                   LOG(-S') = F ( LOG(T+C) )
                                                :2": PRINT
4512
      PRINT "
                  LOG(S-SI) = F (LOG(T+C))
                                                :3": PRINT
               ....
      PRINT "
                   LOG(-S') = F ( LOG(S-SI) ) :4": PRINT
4514
               .....
      PRINT " (TAPER -'0'- POUR ARRETER)": PRINT
4520
      INPUT " VOTRE CHOIX : ";A
4525
4530
      IF A <
              > 1 AND A <
                            > 2 AND A < > 3 AND A < > 4 THEN
                                                                  GOTO 4
    560
4535
      ON A GOSUB 5000,6000,2000,6500
4550
      GOTO 4500
4560
      REM
          MENU 1
4561
           *****
      REM
      HOME : VTAB 5
4565
      PRINT " VOULEZ-VOUS AVOIR :": PRINT
4570
      FRINT "
                   -LE TABLEAU DE VALEUR (1)"
4575
                                          (2)"
      FRINT "
4580
                   -TRACER UNE COURBE
      PRINT "
                                           (3)": PRINT
4585
                   -FIN
      INPUT "QUEL EST VOTRE CHOIX 1,2,3 : ";X: PRINT
4590
      ON X GOTO 4610,4500,4650
4595
4610
      PRINT
             CHR# (4);"BLOADCHAIN,A520"
4611
      CALL 520"RELAX2"
4650
      PRINT CHR* (4); "LOADRELAX1"
4700
      STOP
      REM TRACE DE: D.S=F( LOG(T+C) )
5000
5005
     (2)[[]] 米尔米米米米米米米米米米米米米米米米米米米米米米米
     HOME : PRINT TAB( 10) "-D.5 = F ( LOG(T+C) )"
5006
5008
     POKE 34,2: POKE 35,22
5010
      GOSUB 7000
     GOSUB 7300
5040
5180 Z1 = LOG (M1) - LOG (M2)
5190 Z2 = M3 - M4
5200 \text{ K1} = (\text{D1} - 300) / \text{Z1}
5205 \text{ K2} = (D2 - 300) / Z2
      INPUT " TEST (O / N) : ";H*: PRINT
5207
      IF H = "N" THEN GOTO 5435
5208
              > "O" AND H$ < > "N" THEN
5209
      IF H# <
                                             GOTO 5207
5210 FOR I = 2 TO N
5220 L1 = LOG (P(I,1)) - LOG (M2)
5230 L2 = P(I,4) - M4
5240 X = 100 + L2 * K2:Y = D1 - 100 - L1 * K1: GOSUB 9830
5250 X9$ = "N3": GOSUB 9800
5260 IF I = 2 OR I = 4 OR I = 7 OR I = 10 OR I = 13 OR I = 16 THEN
                                                                         GOSUB
    9000
5270
     NEXT
5330
      PR# 2
      PRINT "M";140;",";300
5340
      PRINT "S2": PRINT "P LOG ( T+C )"
5360
     FOR J = M4 TO M3 STEP 20
5370
      PRINT ."M"; INT (100 + (J * K2));",";D1 - 20
5380
     PRINT "P"; J: PRINT "M"; INT (100 + (J * K2)); ", "; D1 - 110: PRINT
5385
    "IO,30"
5390
      NEXT
5400
      PRINT "S3": PRINT "M";D2 - 100; ", ";D1 - 150
     -PRINT "P- D.S": PRINT "M";D2 - 100;",";D1 / 2
5410
      PRINT "S8": PRINT "PEP:";P$: PRINT "S3"
5420
5430
     PRINT "M";D2;",";D1: PR# 0
5435 = 0
5440
      FOR I = 2 TO N:Y(I) = P(I,4): NEXT
5450
      GOSUB 9400
```

```
FOR U = 0 TO 500:R(U) = 0: NEXT
5455
    GOSUB 9600
5460
     HOME : VTAB 8
5550
     PRINT "Y =": A1(U - 1);" X + ": A0(U - 1): PRINT : PRINT
5560
    PRINT " R = "; R(U - 1);" C = "; (U - 1) / 5: PRINT : PRINT :
5562
    PRINT
     PRINT "VOULEZ-VOUS TRACER LES POINTS ( O / N )": PRINT
5570
     INPUT " : ":0*: PRINT
5580
     IF 0$ < > "0" AND 0$ < > "N" GOTO 5570
5590
     IF O# = "N" THEN GOTO 5610
5595
     GOSUB 5700
5600
     HOME : VTAB (08)
5610
     PRINT "VOULEZ-VOUS FAIRE UNE AUTRE CORRECTION": PRINT
5611
     INPUT " OUI OU NON ( O /N ) : ";O$: PRINT
IF O$ < > "O" AND O$ < > "N" THEN GOTO 5610
5615
5620
     IF D# = "N" THEN GOSUB 9860: TEXT : RETURN
5625
5630 GOTO 5450
5700 REM TRACE DES POINTS CORRIGES "C"
5702 REM *********************
5710 X9 = "S2": GOSUB 9800
5715 FOR I = 2 TO N:X(I) = LOG (P(I,1) + (U - 1) / 5)
     IF I = F(1) OR I = F(2) OR I = F(3) OR I = F(4) OR I = F(5) OR
5720
    I = F(6) OR I = F(7) OR I = F(8) THEN GOTO 5740
5725 L3 = X(I) - LOG (M2):L4 = Y(I) - M4
5730 X = 100 + L4 * K2:Y = D1 - 100 - L3 * K1: GOSUB 9830
5735 X9# = "N4": GOSUB 9800
5740
     NEXT
5741
     GOSUB 9830
5745 HOME : VTAB 8
     INPUT "YOULEZ-YOUS TRACER LA DROITE (O / N) : ";O#: PRINT
5750
      IF O$ < > "O" AND O$ < > "N" THEN GOTO 5750
5755
     IF 0$ = "N" THEN GOTO 5830
5760
5765 X = 100 + ((A1(U - 1) * X(2) + A0(U - 1)) - M4) * K2:Y = D1 - 10
   0 - (X(2) - LOG (M2)) * K1
5770 GOSUB 9830
5775 X = 100 + ((A1(U - 1) * X(N) + A0(U - 1)) - M4) * K2:Y = D1 - 10
    0 - (X(N) - LOG(M2)) * K1
5780 GOSUB 9820
5785 X9$ = "RO," + STR$ ( INT (X(N) - 20)): GOSUB 9800
5789 X9# = "S1": GOSUB 9800
5790 E = E + 1:X9$ = "P" + STR$ (E): GDSUB 9800
5795 X9$ = "M" + STR$ (D2 - (E * 50 + 150)) + "," + STR$ (D1 - 200)
   : GOSUB 9800
5800 X9$ = "S2": GOSUB 9800
5805 ON A GOSUB 5860,5890
5810 X9 = "P
              ": GOSUB 9800
5815 X9# = "PR = " + LEFT# ( STR# (R(U - 1)),7): GOSUB 9800
5820 X9$ = "P ": GOSUB 9800
5825 X9$ = "PC = " + STR$ ((U - 1) / 5): GOSUB 9800
5830 X9$ = "M" + STR$ (D2) + ",0": GOSUB 9800
5840
     RETURN
5860 REM ECRITURE DE L'EQUATION 1
     5861
5870 X9# = "P" + STR# (E) + " : -D.S = " + LEFT# ( STR# (A1(U - 1)
    ),6) + " * LOG(T+" + STR$ ((U - 1) / 5) + ")" + " + LEFT$
    ( STR# (AO(U - 1)),6): GOSUB 9800
     RETURN
5880
5890
     REM ECRITURE DE L'EQUATION 2
5891
     REM -----
5900 X9$ = "P" + STR$ (E) + " : LOG(-S') = " + LEFT$ ( STR$ (A1(U -
    1)),6) + " * LOG(T+" + STR* ((U - 1) / 5) + ")" + " + " +
                                                                 LEFT$
    ( STR$ (A0(U - 1)),6): GOSUB 9800
5910 RETURN
```

TRACE DE: LOG(-S')=F(LOG(T+C)) 6000 REM 6010 6012 HOME : PRINT TAB(10) "LOG(-S') = F (LOG(T+C))" 6015 POKE 34,2: POKE 35,22 GOSUB 7000 <u>6020</u> 6030 . GDSUB 7300 6040 Z1 = LOG (M1) - LOG (M2) $6050 \ Z2 = M3 - M4$ 6060 K1 = (D1 - 300) / Z16070 K2 = (D2 - 300) / Z2INPUT " TEST (0 / N)";H#: PRINT IF H# < > "0" AND H# < > "N" THEN GOTO 6075 6075 6080 IF H# = "N" THEN GOTO 6190 6085 6090 FOR I = 2 TO N 6095 L1 = LOG (P(I,1)) - LOG (M2)6100 L2 = P(1,7) - M46105 X = 100 + L2 * K2:Y = D1 - 100 - L1 * K1: GOSUB 9830 6110 X9# = "N3": GOSUB 9800 6115 IF I = 2 OR I = 4 OR I = 7 OR I = 10 OR I = 13 OR I = 16 THEN GOSUB 9000 NEXT 6120 6125 X9\$ = "M140,300": GDSUB 9800 6130 X9\$ = "52": GOSUB 9800:X9\$ = "P LOG (T+C)": GOSUB 9800 6135 FOR J = INT (M4 + 1) TO M3 6140 X9\$ = "M" + STR* (INT (100 + (J - M4) * K2)) + "," + STR# (D1 - 20): GOSUB 9800 6145 X9\$ = "P" + STR\$ (J): GOSUB 9800 6150 X9\$ = "M" + STR\$ (INT (100 + (J - M4) * K2)) + "," + STR# (D1 - 110): GOSUB 9800 6155 X9\$ = "I0.30": GOSUB 9800 6160 NEXT 6170 X9\$ = "S3": GOSUB 9800:X9\$ = "M" + STR\$ (D2 - 100) + "," + STR: (D1 - 150): GOSUB 9800 6175 X9\$ = "P LOG(-S')": GOSUB 9800 6180 X9\$ = "M" + STR\$ (D2 - 100) + "," + STR\$ (D1 / 2): GOSUB 9800: X9\$ = "S8": GOSUB 9800:X9\$ = "FEF:" + P\$: GOSUB 9800: 6190 = 06200 FOR I = 2 TO N:Y(I) = P(I,7): NEXT 6210 GOSUB 9400 6215 FOR U = 0 TO 500:R(U) = 0: NEXT GOSUB 9600 6220 6230 HOME : VTAB 8 6240 PRINT "Y =";A1(U - 1);" X + ";AO(U - 1): PRINT : PRINT 6250 PRINT " R = ";R(U - 1);" C = "; (U - 1) / 5; PRINT : PRINT: PRINT PRINT "YOULEZ-YOUS TRACER LES POINTS (O / N)": PRINT 6260 INPUT " : ";O\$: PRINT 6270 IF 0\$ < > "O" AND O\$ < > "N" GOTO 6260 6280 IF $O^{\pm} = "N"$ THEN GOTO 6310 6290 6300 GOSUB 5700 6310 HOME : VTAB (08) 6320 PRINT "YOULEZ-YOUS FAIRE UNE AUTRE CORRECTION": PRINT INPUT " OUI OU NON (O/N) : ";O\$: PRINT 6325 IF O\$ < > "O" AND O\$ < > "N" THEN GOTO 6310 6330 6340 IF O\$ = "N" THEN GOSUB 9860: TEXT : RETURN 6350 GOTO 6210 REM TRACE DE: LOG(-S') = F(LOG(S-SI))6500 6502 пем жккжжжжжжжжжжжжжжжжжжжжжжжж HOME : PRINT TAB(10) "LOG(-S') = F (LOG(S-SI)) 6505 6507 POKE 34,2: POKE 35,22 6520 GOSUB 7000 6525 GOSUB 7300

```
6530 Z1 = M1 - M2; Z2 = M3 - M4
6535 \text{ K1} = (D1 - 300) / Z1 \text{ K2} = (D2 - 300) / Z2
     INPUT "
              TEST ( 0 / N ) : ":H$; PRINT
6540
     IF H# < > "O" AND H# < > "N" THEN GOTO 6540
6545
     IF H# = "N" THEN GOTO 6690
6550
    FOR I = 2 TO N
6555
6560 L1 = P(I,8) - M2:L2 = P(I,7) - M4
6570 X = 100 + L2 * K2:Y = D1 - 100 - L1 * K1: GOSUB 9830
6575 X9$ = "N3": GOSUB 9800
6580
    NEXT
6582 X9$ = "Q3": GOSUB 9800
6585 X9* = "M140,300": GOSUB 9800
6590 X9$ = "S2": GOSUB 9800:X9$ = "PLOG (S-SI)": GOSUB 9800
6595 FOR J = INT (M2 + 1) TO M1
6600 X9# = "M20," + STR# ( INT (D1 - 100 - (J - M2) * K1)): GOSUB 98
   00
6605 X9$ = "P" + STR$ (J): GOSUB 9800
6610 X9$ = "M80," + STR$ ( INT (D1 - 100 - (J - M2) * K1)): GOSUB 98
   00
6615 X9$ = "I30,0": GOSUB 9800
6620 NEXT
6630 FOR J = INT (M4 + 1) TO M3
6635 X9$ = "M" + STR$ ( INT (100 + (J - M4) * K2)) + "," +
                                                            STR# (D1
    - 20): GOSUB 9800
6640 X9$ = "P" + STR$ (J): GOSUB 9800
6645 X9$ = "M" + STR$ ( INT (100 + (J - M4) * K2)) + "," + -
                                                            STR# (D1
    - 110): GOSUB 9800
6650 X9$ = "I0,30": GOSUB 9800
6655 NEXT
6660 X9$ = "S3": GOSUB 9800:X9$ = "M" + STR$ (D2 - 100) + "," +
                                                                 STR#
   (D1 - 150): GOSUB 9800
6665 X9$ = "P LOG(-S')": GDSUB 9800
6670 X9$ = "M" + STR$ (D2 - 100) + "," + STR$ (D1 / 2): GDSUB 9800:
   X9$ = "S8": GOSUB 9800:X9$ = "PEP:" + P$: GOSUB 9800
6675 X9$ = "M" + STR$ (D2) + "," + STR$ (D1): GOSUB 9800
6690 = 0
6700 GOSUB 9400
6705 HOME : VTAB (03)
6707 FOR I = 0 TO N:Y(I) = P(I,7): NEXT
6710 PRINT " DANS QUEL INTERVALLE CHERCHEZ-VOUS": PRINT : PRINT TAB(
   16) "SIGMA.I.": PRINT
6715 PRINT "VALEUR MINI :----> VALEUR MAXI"
     - YTAB (08): INPUT ": ";W1: YTAB (08): HTAB (30): INPUT ": ";W2
6720
   : PRINT
6723 VTAB (10): HTAB (16): INPUT "STEP : ":ST
6725
     IF
         INT (ST) < > ST THEN VTAB (10): PRINT TAB( 07)"....STEP
    INCORRECTE !!!..": FOR PAUSE = 0 TO 2000: NEXT : VTAB (10): PRINT
     TAB( 07)"
                                        ": GOTO 6723
     VTAB (15): PRINT _ TAB( 10)"...JE
                                       CHERCHE ..."
6728
    FOR W = 0 TO W2 - W1 STEP ST
6730
6733
    GOSUB 8200
6735 NEXT
6737 C = "LOG(-S') = F ( LOG(S-SI) )"
6738
    GOSUB 2280
     HOME : VTAB 8: PRINT "VOULEZ-VOUS FAIRE UNE AUTRE RECHERCHE ": PRINT
6740
   : PRINT TAB( 13)"DE SIGMA.I."
6743 PRINT : HTAB (10): INPUT "OUI OU NON (O / N) : ";O*: PRINT : PRINT
      IF 0$ < > "N" AND 0$ < > "O" THEN GOTO 6743
6745
6748
     IF O# = "O" THEN GOTO 6705
```

6750 QUEL EST VOTRE CHOIX POUR SIGMA.I.": PRINT : PRINT " PRINT " (DONNER LE NUMERO DE LA LIGNE CHOISIE)": PRINT : INPUT " ";W: PRINT 6753 W = (W - 1) * ST 6755 FOR I = 2 TO N:X(I) = · LOG (P(I,3) - SI(W,1)): NEXT PRINT "VOULEZ-VOUS TRACER LES POINTS (D / N)": PRINT 6790 6795 INPUT " : ";O\$: PRINT IF 0\$ < > "0" AND 0\$ < > "N" THEN GDTO 6790 6800 IF O# = "N" THEN GOTO 6850 6805 6810 X9\$ = "S2": 605UB 9800 6815 FOR I = 2 TO N 6820 IF I = F(1) OR I = F(2) OR I = F(3) OR I = F(4) OR I = F(5) OR I = F(6) OR I = F(7) OR I = F(8) THEN GOTO 68406825 L3 = X(I) - M2:L4 = Y(I) - M46830 X = 100 + L4 * K2;Y = D1 - 100 - L3 * K1; GDSUB 9830 6835 X9# = "N4": GOSUB 9800 6940 NEXT : 605UB 9800 HOME : VTAB 8 6850 INPUT "VOULEZ-VOUS TRACER LA DROITE (O / N) : ";O\$: PRINT 6860 6865 IF 0\$ < > "0" AND 0\$ < > "N" THEN GOTD 6860 6870 IF O = "N" THEN GOTO 6945 6380 X = 100 + ((SI(W,5) * X(2) + SI(W,6)) - M4) * K2:Y = D1 - 100 -(X(2) - M2) * K1 6885 GOSUB 9830 6990 X = 100 + ((SI(W,5) * X(N) + SI(W,6)) - M4) * K2:Y = D1 - 100 -(X(N) - M2) * K1 6895 GOSUB 9820 6900 X9\$ = "RO," + STR\$ (INT (X(N) - 20)): GOSUB 9800 6905 X9\$ = "S1": GDSUB 9800 6910 E = E + 1:X9* = "P" + STR* (E): GOSUB 9800 6915 X9\$ = "M" + STR\$ (D2 - (E * 50 + 150)) + "," + STR\$ (D1 - 200) : GOSUB 9800 6920 X9\$ = "S2": GOSUB 9800 6925 X9\$ = "F" + STR\$ (E) + " : LOG(-S') = " + LEFT\$ (STR\$ (SI(W, 5)),6) + " *LOG(S-" + STR\$ (SI(W,1)) + ") + " + LEFT\$ (STR\$ (SI(W, 6)), 6)6927 GOSUB 9800 6929 X9\$ = "P ": GOSUB 9800 6930 X9\$ = "PR = " + LEFT\$ (STR\$ (SI(W,3)),7): GOSUB 9800 6932 X9\$ = "P ": GOSUB 9800 ۲., 6933 X9\$ = "PM = " + LEFT\$ (STR\$ (SI(W,7)),6): GDSUB 9800 6935 X9\$ = "M" + STR\$ (D2) + ",0": GOSUB 9800 6940 HOME : VTAB 5 6945 PRINT TAB(10) "VOULEZ-VOUS :": PRINT : PRINT "-TRACER UNE AUTR E DROITE"; TAB(36);"'1'" 6950 PRINT : PRINT "-FAIRE UNE AUTRE CORRECTION"; TAB(36);"'2'": PRINT 6955 PRINT "-ARRETER"; TAB(36); "'3'": PRINT 6960 INPUT " 1 , 2 OU 3 ? : "; B: PRINT 6965 ON B GOTO 6750,6700,6970 6970 GOSUB 9860: TEXT : RETURN 6980 STOP 7000 REM TRACE DU CADRE 7002 **REM *********** HOME : VTAB 5 7003 7020 PRINT "QUELLES DIMENSIONS VOULEZ-VOUS POUR LE": PRINT : PRINT " CADRE": PRINT 7030 INPUT "SUIVANT -X- (EN CM) :";D1: PRINT IF D1 < O OR D1 > 26 THEN PRINT "VALEUR HORS DE L'INTERVALLE (7040 0-26)": PRINT : GOTO 7030 INPUT "SUIVANT -Y- (EN CM) :";D2: PRINT 7050 7060 IF D2 < 0 OR D2 > 29 THEN PRINT "VALEUR HORS DE L'INTERVALLE (0-29)": PRINT : GDTO 7050

```
A.14
```

```
AVEZ-VOUS POSITIONNE LE PAPIER ? ": PRINT
7070
     PRINT "
     PRINT " REPONDRE PAR OUI -O- QUAND C'EST PRET": PRINT : INPUT "
70.75
         : ";D$: PRINT
     IF D$ < > "O" THEN
                         PRINT : 6010 7070
7090
7090 PRINT "VOULEZ-VOUS TRACER LE CADRE EN LIGNE": PRINT : PRINT "
                         (1)": PRINT : PRINT " -INTEROMPUE
     -CONTINUE
     (2)": PRINT : PRINT "
                             -NE PAS LE TRACER
                                                  (3)": PRINT
     INPUT " : ";L$: PRINT
7095
     IF L$ = "1" THEN X9$ = "LO": GOSUB 9800
7100
7105 IF L* = "2" THEN X9* = "L1": GOSUB 9800
7110 X9 = "B20": GOSUB 9800
7115 D1 = D1 * 100:D2 = D2 * 100
7120 IF L* = "3" THEN PRINT : PRINT : GOTO 7170
7130 BOSUB 9860
7140 X = D2:Y = 0: GOSUB 9820
7145 X = D2; Y = D1; GOSUB 9820
7150 X = 0; Y = D1; GOSUB 9820
7155 X = 0:Y = 0: GOSUB 9820
7160 X = 0:Y = D1: GOSUB 9830
7165 X9$ = "LO": GOSUB 9800
7168 HOME : VTAB 5
7170 PRINT "VOULEZ-VOUS TRACER LES AXES (OUI OU NON)": PRINT
7175 INPUT " ( O / N ) : ";L*: PRINT
7180 IF L* = "N" THEN RETURN
7189 X = 0:Y = D1: 60808 9830
7190 X = X + 100: Y = Y - 100: GOSUB 9830
7195 X = 100:Y = 100: GOSUB 9820
7200 X = 80; Y = 150; GOSUB 9820
7205 X = 100 Y = 100 = GOSUB 9830
7210 X = 120:Y = 150: GOSUB 9820
7215 X = D2 - 100 = D1 - 100 = GDSUB 9830
7220 X = X - 50 Y = Y - 20 GOSUB 9830
7225 X = 50:Y = 20: GOSUB 9870
7227 X = D2 - 100 : Y = D1 - 100 : GOSUB 9830
7230 X = X - 50:Y = Y + 20: GOSUB 9820
7232 X = D2 - 100; Y = D1 - 100; GOSUB 9830
7235 X = 100: Y = D1 - 100: GOSUB 9820: GOSUB 9830
7250 RETURN
7300 REM CHOIX DE L'ECHELLE 1
7301 REM *********************
7302 HOME : VTAB 5
7303 PRINT "QUELLE ECHELLE VOULEZ-VOUS ? :": PRINT
7305 PRINT "SUIVANT L'AXE -X- :": PRINT : PRINT
     INPUT "QUELLE EST LA VALEUR MAXI ? : ";M1: PRINT
7310
7320 INPUT "QUELLE EST LA VALEUR MINI ? :"; M2: PRINT : PRINT
7330 PRINT "SUIVANT L'AXE -Y- :": PRINT : PRINT
7340 INPUT "QUELLE EST LA VALEUR MAXI ? :"; M3: PRINT
7350 INPUT "QUELLE EST LA VALEUR MINI ? :";M4: PRINT : PRINT
7360 RETURN
8200 REM ORDRE REGRESSION POUR 4
8202
     【门门】 本宗家来家家家家家家家家家家家家家家家
8210 VTAB (20): PRINT TAB( 37)"
     VTAB (20): PRINT TAB( 27)"SIGMA.I. = ";W + W1
8220
8230
     -FOR I = 2 TO N:X(I) = LOG (P(I,3) - (W + W1)): NEXT
8235
     GOSUB 9200
8240 \text{ SI}(W,1) = W + W1:SI(W,2) = 0:SI(W,3) = R4:SI(W,4) = E1:SI(W,5) =
    A1:SI(W, 6) = A0:SI(W, 7) = SI(W, 5)
8250 RETURN
```

9000 REM GRADUATION DE L'AXE DE LOG(T) 9001 12日19 米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米 9010 PR# 2 PRINT "M";110;","; INT (Y) PRINT "D";80;","; INT (Y) PRINT "M";30;","; INT (Y) + 50 9020 9030 9040 PRINT "S2": PRINT "Q3": PRINT "PLOG ";P(I,1): PRINT "S3": PR# O 9050 9060 GOSUB 9830 9070 RETURN 9200 REM REGRESSION 9202 REM ******* 9220 S1 = 0:S2 = 0:S3 = 0:S4 = 0:S5 = 0:P = 0FOR I = 2 TO N 9230 9240 IF I = F(1) OR I = F(2) OR I = F(3) OR I = F(4) OR I = F(5) ORI = F(6) OR I = F(7) OR I = F(8) THEN GOTO 9275 9245 P = P + 1 $9250 \ \text{S1} = \text{S1} + \text{X(I)}$ 9255 S2 = S2 + Y(I)9260 S3 = S3 + X(I) * Y(I) $9265 \ \text{S4} = \ \text{S4} + \ \text{X(I)} \ \ \ 2$ $9270 \ \text{S5} = \text{S5} + \text{Y(I)} \uparrow 2$ 9275 NEXT I 9280 A0 = (S2 * S4 - S1 * S3) / (P * S4 - S1 * S1) 9290 A1 = (P * S3 - S1 * S2) / (P * S4 - S1 * S1) 9300 R1 = (P * S3 - S1 * S2):R2 = (P * S4 - S1 * S1):R3 = (P * S5 - S 2 * \$2) 9310 R4 = R1 /- SQR (R2 * R3) 9315 ON A GOTO 9320,9320,9330,9330 9320 RETURN 9330 E1 = 09335 FOR I = 1 TO N IF I = F(1) OR I = F(2) OR I = F(3) OR I = F(4) OR I = F(5) OR9340 I = F(6) OR I = F(7) OR I = F(8) THEN GOTO 9360 9350 E1 = E1 + ABS (Y(I) - (AO + A1 * X(I))) 9360 NEXT 9370 RETURN REM ELIMINATION DES POINTS 9400 四百三十年末末末末末末未未未未未未未未未未未未未非 9402 9410 HOME : VTAB 5 PRINT "VOULEZ-VOUS ELIMINER DES POINTS": PRINT 9420 INPUT " OUI OU NON (O / N) : ";O*: PRINT 9430 IF O = "N" THEN FOR T = 1 TO G:F(T) = O: NEXT : RETURN 9440 INPUT " NOMBRE DE POINTS A ELIMINER : ";G: PRINT 9450 9459 HOME : VTAB 5 9460 PRINT "COMPTER LES POINTS A PARTIR DE LA GAUCHE": PRINT : PRINT " ET METTRE LE NUMERO DU POINT A ELIMINER": PRINT 9470 FOR T = 1 TO G 9480 PRINT " POINT A ELIMINER "; T;: INPUT " NUMERO : "; F(T): F(T) = F (T) + 1: PRINT9490 NEXT FOR T = G + 1 TO 8:F(T) = 0: NEXT 9500 9510 RETURN 9600 REM CALCUL DU C 9602 9610 FOR U = 0 TO 500 STEP 50:C = U / 59615 ON A GOSUB 9750,9750,9750 9618 IF U = 0 THEN GOTO 9623IF ABS (R(U)) < ABS (R(U - 50)) THEN GOTO 9630 9620 9623 MEXT IF U > 500 THEN VTAB (23): PRINT TAB(03)"...JE N'AIS PAS TROU 9626 VE !. C > 100": VTAB (24)

A.16

IF U > 500 THEN PRINT "TAPER 'RETURN' FOUR CONTINUER";: INPUT 9627 ":0*: VTAB (23) IF O\$ < > "" THEN VTAB (23) 9628 IF 0# = "" THEN U = U - 49: PRINT : VTAB (24): PRINT : VTAB (20 9629): RETURN 9630 IF U - 50 = 0 THEN GOTO 9640 9635 GOTO 9660 9640 FOR U = 0 TO 50 STEP 10:C = U / 5 9645 ON A GOSUB 9750,9750,9750 9648 IF U = 0 THEN GOTO 9655 9650 IF ABS (R(U)) < ABS (R(U - 10)) THEN GOTO 9680 NEXT 9655 9660 FOR U = U - 100 TO U + 100 STEP 10:C = U / 5 9665 ON A GOSUB 9750,9750,9750 9668 IF U = 0 THEN GOTO 9675 9670 IF ABS (R(U)) < ABS (R(U - 10)) THEN GOTO 9680 9675 NEXT IF U - 10 = 0 THEN _ GOTO 9690 9680 9685 GOTO 9710 9690 FOR U = 0 TO 10:C = U / 5 9695 ON A GOSUB 9750,9750,9750 9698 IF U = 0 THEN GOTO 9705 9700 IF ABS (R(U)) < ABS (R(U - 1)) THEN RETHRN 9705 NEXT 9710 FOR U = U - 20 TO U + 20:C = U / 5 9715 ON A GOSUB 9750,9750,9750 9718 IF U = 0 THEN GOTO 9730 9720 1F ABS (R(U)) (ABS (R(U - 1)) THEN RETURN 9730 MEXT 9740 PRINT "C NON TROUVE": STOP 9750 REM ORDRE REGRESSION POUR 1,2,3? 9751REM ******************************** 9760 FOR I = 2 TO N:X(I) = LOG (P(I,1) + C): NEXT 9762 VTAB 20: PRINT TAB(11)" VTAB (20): PRINT TAB(05)"C = ";C 9764 9765 GOSUB 9200 9780 R(U) = R4:A1(U) = A1:A0(U) = A09785 RETURN 9798 REM BOUCLES DIGI-PLOT 9799 REM ********** 7800 PR# 2: PRINT X9\$: GOTO 9890 9810 PR# 2: PRINT "X"; INT (P);","; INT (Q);","; INT (R): GOTO 9890 9820 PR# 2: PRINT "D"; INT (X);","; INT (Y): GOTO 9890 9830 PR# 2: PRINT "M"; INT (X);","; INT (Y): GOTO 9890 9840 PR# 2: PRINT "R"; INT (X);","; INT (Y): GOTO 9890 9850 PR# 2: PRINT "R"; INT (X);","; INT (Y): GOTO 9890 9850 PR# 2: PRINT "P";X\$: GOTO 9890 9850 PR# 2: PRINT "P";X\$: GOTO 9890 PR# 2: PRINT "H": GOTO 9890 9860 9870 PR# 2: PRINT "I"; INT (X);","; INT (Y): GOTO 9890 9890 PR# O: RETURN 9900 END

SPR#0

L'alliage Zinc - Cuivre - Titame est fourni par la Compagnie Royale Asturienne des Mines sous forme de tôle laminée de 0.65 mm d'épaisseur. La relaxation de ce matériau est étudiée pour différents niveaux de contrainte, à des températures comprises entre 293 et 473 K et des vitesses de déformation de 2,5.10 -6 à 2,5.10⁻³ s⁻¹.

Il ressort de cette étude que deux mécanismes interviennent dans la déformation plastique. Pour une température et une vitesse de déformation données un premier mécanisme correspond au glissement des dislocations dans le plan de base et à leur intersection par la forêt de dislocations. La contrainte interne diminue lorsque la température augmente. Le deuxième mécanisme, qui intervient à contrainte élevée correspond à une contrainte interne nulle, et s'accompagne de la formation de quelques macles dans les grains de plus grand diamètre. Il peut correspondre au glissement pyramidal de deuxième espace.

Mots-clés : ZINC, RELAXATION, FLUAGE, CONTRAINTE INTERNE