Nº d'ordre : 1311

50376

1985

181

50376 1985 181

présentée à

L'UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE FLANDRES ARTOIS

pour obtenir le titre de

DOCTEUR DE 3ème CYCLE

par

Marc SCHORTGEN

ETUDE THEORIQUE ET EXPERIMENTALE DU BRUIT DE FOND GENERE DANS LES TRANSISTORS A EFFET DE CHAMP EN GAMMES CENTIMETRIQUE ET MILLIMETRIQUE

Soutenue le 16 Décembre 1985 devant la Commission d'Examen

Membres du Jury MM. : E.

CONSTANT
CAPPY
SALMER
CROSNIER
BRIERE
GRAFFEUIL
HUGUET

Α.

G. Y.

Ρ.

J.

Ρ.

Président Rapporteur Rapporteur Examinateur Examinateur Examinateur Examinateur

A mes porente A Patricia

le travoir a été effectué au "Center hyperfréquences et semi conducteurs "de l'Université des Sciences et Techniques de LILLE, dirigé par Mousieur le Professeur CONSTANT.

J'exprime toute ma gratitude à Mousieur le Profession CONSTANT qui m'a accueilli dans sou Paboratoire et me fait l'hommur de présider la commission d'examen.

je tiens à remercier Jousieur le Professeur SALMER qui a a source la direction de cette étude.

J'exprime toute ma reconnaimance à A. CAPPY qui m'a permis, grace à sa compétence et à ses nombrems couséils, de mener à bien ce travail.

Je remercie vivement Mousieur le Professeur CROSNIER, qui me fait l'houmeur de juger ce travail.

Res remerciements vont également à Monsieur BRIERE on Thomson CSF, Monsieur GRAFFELIL de l'Université de Toulouse est à Monsieur HUGUET du Laboratoire d'electronique et de physique appliquée pour lur participation à la commission d'examen; je lur en suis vivement recomaissant.

Je suivégelement reconnaissent invers Jessienre D. BENJELLOUN, F. HELLOOORF, J.L. NIERUCHALSKI, F. PERRI, ainsi qu'à l'insemble de mus camanades du CHS pour Pa sympathie qu'ils m'out témoiguée.

Eufin, j'adresse mes plus vife remerciements à :

- Jadame E. DELOS et Jousieur E. PLATEZ pour l'aide efficace qu'ils m'out apportée su le plan éxpérimental
- Jadame D. VANBRETIEERSH, qui a assuré la dactylographie du ce mémoire, pour sa patience
- Monsieur J.P. DEHORTER qui a assuré l'impression de ce manuscrit, ainsi qu'à l'ensemble du prisonnel technique et administratif.

SOMMAIRE

INTRODUCTION

1

CHAPITRE I

LA MODÉLISATION DU TRA	INSISTOR À EFFET DE CHAMP À	
GRILLE SUBMICRONIQUE.		4

I.1.	PRESENTATION SOMMAIRE DU COMPOSANT	4
I.2.	FONCTIONNEMENT QUALITATIF DU MESFET	6
I.3.	LES DIFFERENTES MODELISATIONS DU TRANSISTOR A EFFET DE CHAMP	9
	I.3.1. INTRODUCTION I.3.2. LES MODELES BIDIMENSIONNELS I.3.3. LES MODELES ANALYTIQUES	9 10 10
I.4.	LES EFFETS DE DYNAMIQUE NON STATIONNAIRES	13
I.5.	LE MODELE NUMERIQUE UTILISE	16
	I.5.1. PROBLEMES POSES PAR CE MODELEI.5.2. LA METHODE DE RESOLUTION	16 20

CHAPITRE II

	LE BRUI	IT HAUTE FRÉQUENCE DANS LES TRANSISTORS À	
	EFFET I	DE CHAMPS	29
II.1.	LES MO	DELES DE BRUIT	29
II.2.	LA MOD	ELISATION DU BRUIT	34
	II.2.1.	INTRODUCTION	34
	II.2.2. II.2.3.	LES SOURCES DE BRUIT LOCALES	34
	1112101	SUR LE DRAIN	36
	II.2.4.	CALCUL DE LA TENSION DE BRUIT TOTALE	
	•	DE DRAIN	37
	II.2.5.	ACTION D'UNE SOURCE LOCALE SUR LA GRILLE	38
	II.2.6.	CALCUL DU COURANT DE BRUIT DE GRILLE	
		TOTALE	39
	II.2.7.	CALCUL DE LA CORRELATION DES DEUX	
		SOURCES DE BRUIT TOTALES	39
II.3.	APPLIC	ATION AU MODELE NUMERIQUE	41
	II.3.1.	INTRODUCTION	41
	II.3.2.	CALCUL DES SOURCES DE BRUIT	41
	II.3.3.	CALCUL DU QUADRIPOLE DE BRUIT	42
		II.3.3.1. Mise en forme du schéma équivalent .	42
		II.3.3.2. Le quadripole de bruit	44
•		II.3.3.3. Calcul du facteur de bruit	47

CHAPITRE III

EXPLOITATION DU MODÈLE	
------------------------	--

III.1.	INTRODUCTION : COMPARAISON THEORIE-EXPERIENCE .	50
III.2.	LES SOURCES DE BRUIT INTRINSEQUES	54
	III.2.1. CONTRIBUTION DES SOURCES LOCALES AU	
	BRUIT DE DRAIN ET DE GRILLE	54
	III.2.2. LES SOURCES DE BRUIT TOTALES	56
	III.2.3. LE QUADRIPOLE EQUIVALENT DE	
	BRUIT INTRINSEQUE	57
III.3.	LE FACTEUR DE BRUIT MINIMUM INTRINSEQUE	61
	III.3.1. INFLUENCE DE LA LONGUEUR DE GRILLE	61
	III.3.2. INFLUENCE DES PARAMETRES DE LA COUCHE	
	ACTIVE	62
	III.3.3. CONCLUSION	64
ттт <i>А</i>		
111.4.	LE FACIEUR DE BRUII EXIRINSEQUE	66
	III.4.1. INFLUENCE DES RESISTANCES PARASITES	67
	III.4.2. INFLUENCE DES INDUCTANCES ET DES	
	CAPACITES PARASITES	69
III.5.	FORMULATIONS ANALYTIQUES DES SOURCES DE	
	BRUIT	70
III.6.	CONCLUSION	74

CHAPITRE IV

		LA CARACTÉRISATION.	75
IV.1.	LA CARA	ACTERISATION DU TRANSISTOR A	
	EFFET I	DE CHAMP	75
	IV.1.1. IV.1.2.	INTRODUCTIONDETERMINATION DES PARAMETRES	75
		TECHNOLOGIQUES	76
		IV.1.2.1. Mesure du dopage de l'épaisseur	
		de la couche active	76
		IV.1.2.2. Mesure de la mobilité des porteurs	
		dans la couche active	80
	T17 1 7		
	10.1.3.	DETERMINATION DES ELEMENTS DU SCHEMA	
		EQUIVALENI	82
		IV.1.3.1. Principe de la méthode	82
		IV.1.3.2. Mesures de éléments d'accès	84
	,	IV.1.3.3. Calcul de la capacité Cpg	87
		IV.1.3.4. Les éléments du schéma	
		équivalent	89
	IV.1.4.	LA CARACTERISATION HYPERFREQUENCE	90
IV.2.	LES MES	SURES DE BRUIT	93
	TV 2 1	INTRODUCTION	00
	$TV_2 2$		93
	TV.2.3	DESCREPTION DE BANC DE MESUDE	94
			31

IV.2.4. LES DIFFERENTES METHODES DE MESURE DU FACTEUR DE BRUIT	99
IV.2.4.1. La méthode classique IV.2.4.2. Les mesures par optimisation	99 102
IV.2.5. ETUDE EXPERIMENTALE DU BRUIT	106
IV.2.5.1. Le facteur de bruit	106
quadripole équivalent	109
CONCLUSION GÉNÉRALE	111 .

BIBLIOGRAPHIE	 114

•

. •

•

INTRODUCTION

Les informations véhiculées sous forme de signaux électriques ou électromagnétiques se propageant à travers l'espace ou dans des appareils sont perturbées par un ensemble de phénomènes physiques résultant de fluctuations spontannées (de vitesse, de champ, ...) connus sous le nom de bruit de fond.

Les signaux provenant de longues distances sont captés avec un niveau de puissance faible au dessus du bruit de fond. La réception et le traitement de tels signaux nécessitent de les amplifier en y ajoutant le moins de bruit possible. En effet, le bruit du récepteur, s'il est trop important risque de "masquer" le signal.

Un des facteurs de qualité du comportement en bruit d'un composant ou d'un dispositif est le facteur de bruit qui est défini comme étant le rapport signal sur bruit à son entrée sur le rapport signal sur bruit en sortie. Il caractérise donc la dégradation de ce rapport lorsque le signal traverse le composant.

Dans la gamme 10 - 60GHz, un des composants présentant un bon facteur de bruit est le transistor à effet de champ à jonction métal-semisonducteur (TEC) à l'Arséniure de Gallium (AsGa). Des travaux récents montrent que des performances en bruit de l'ordre de 2.8 - 2.9 dB pour un gain de 3 à 5 dB à 30GHz [1,2] peuvent être obtenues, alors que d'autres font état de la possibilité d'amplification jusqu'à 60GHz et de fonctionnement en oscillation à 110GHz [3,4].

- 1 -

Il nous a donc paru intéressant d'étudier le bruit généré par les TEC dans les gammes centimétriques et millimétriques .

Pour cela, nous avons conçu un modèle de bruit, permettant d'étudier l'influence des différents paramètres de la structure et du matériau, en prenant en compte les phénomènes nouveaux causés par la réduction des dimensions du composant et tout particulièrement de la longueur de grille.

Ces phénomènes sont de deux ordres :

La dynamique non stationnaire des électrons dans
 l'AsGa lorsque la variation du champ électrique est très rapide
 (spatialement et/ou temporellement).

- Les effets de bord qui, lorsque les dimensions de la grille diminuent, deviennent relativement plus importants.

Compte tenu de sa facilité de mise en oeuvre et de ses temps de calcul raisonnables, ce modèle nous a permis d'étudier systèmatiquement l'influence des paramètres technologiques et physiques de la structure.

Ce mémoire comporte deux parties.

La première présente une description du modèle utilisé, ainsi qu'une étude théorique du bruit produit par les transistors à effet de champ.

Dans le premier chapitre, nous rappelons les différents problèmes posés par la modélisation d'un TEC à grille submicronique ainsi que les différents modèles existants et leurs limites.

- 2 -

Nous décrivons ensuite la solution que nous avons adoptée.Ce modèle développé initialement dans notre laboratoire par A.Cappy et B.Carnez [5,6], permet d'étudier l'évolution des différents paramètres petits signaux ainsi que les différents effets physiques dus à la diminution de la longueur de grille. De par sa structure, il convient parfaitement à une étude de bruit.

Dans le second chapitre, après une revue des différents modèles de traitement du bruit et de leurs limites, nous décrivons la méthode que nous avons utilisée pour calculer les valeurs des différentes sources de bruit ainsi que la corrélation existant entre elles.

L'influence des paramètres technologiques et du matériau sur les valeurs des sources de bruit, de gain et de facteur de bruit sera étudiée dans le troisième chapitre. Nous dégageons de cette étude les éléments qui permettent une réduction du bruit sans pour autant dégrader le gain et ceci dans la gamme de fréquence 10 -60GHz.

La seconde partie est associée à la caractérisation du composant.

Dans un premier paragraphe nous décrivons en détail les techniques de mesures employées pour déterminer les paramètres technologiques du composant, les éléments du schéma équivalent petit signal, ainsi que ses performances hyperfréquences.

Le second paragraphe est consacré aux mesures de bruit et aux problèmes rencontrés. Différentes méthodes de mesures sont décrites ainsi que les résultats obtenus pour chacune d'elle . Enfin, à partir des mesures du facteur de bruit minimum et des paramètres [S] du TEC nous nous efforcerons de remonter jusqu'aux éléments du quadripole de bruit équivalent.

- 3 -

BIBLIOGRAPHIE

- [1] E.T.WATKINS, J.M.SCHELLENBERG, H.YAMASAKI.
 " A 30GHz low noise FET. amplifier " IEEE. M.T.T. S. Digest, 1985.
- P.HUGUET, P.BAUDET, C.VENET, M.IOST, M.PERTUS, G.MENNECHEZ.
 " A 0.5 m low noise FET. for application in the KA band " 9th European Specialist Workshop on Active Microwave Semiconductors Devices. Eindhoven, Octobre 1984.
- [3] B.KIM, H.Q.TSERNG, H.D.SHIH.
 "Millimeter-Wave GaAs FET's prepared by MBE " IEEE EDL.6, n°1, Janvier 1985.
- [4] H.Q.TSERNG, B.KIM.
 " 110GHz GaAs FET Oscillator "
 Electronics Letters, vol.21, n°5, Février 1985.
- [5] A.CAPPY. " Thèse 3ème cycle, Lille,1981.
- [6] B.CARNEZ, A.CAPPY, G.SALMER, E.CONSTANT.
 "Modélisation de TEC à grille ultra courte " Acta Electronica, vol.23, 1980.

Fig.I.1. : Coupe Schématique d'un transistor à effet de champ.

CHAPITRE I

LA MODÈLISATION DU TRANSISTOR À EFFET DE CHAMP À GRILLE SUBMICRONIQUE.

I.1. PRESENTATION SOMMAIRE DU MESFET

Le principe de fonctionnement du transistor à effet de champ (TEC) est basé sur le contrôle de la conductance d'un barreau de semiconducteur par variation de sa section. La figure (I.1) représente la coupe longitudinale d'un MESFET classique.

Sur un substrat semi-isolant d'Arséniure de Gallium (AsGa) on fait croître successivement une couche de grande résistivité : la couche tampon ou buffer, une couche qui constitue la zone active du TEC dont le dopage peut varier de 10^{17} à 510^{17} atomes par cm³. Quelquefois, afin de réduire les résistances d'accès, on fait croître sur celles-ci, une couche fortement dopée sur laquelle on dépose les contacts ohmiques de source et de drain. Ces contacts ont la propriété de se comporter comme des résistances pures.

Dans l'espace source-drain, on creuse la couche surdopée ainsi qu'une partie de la couche active (recess) afin d'y déposer le contact de grille. Le recess permet d'ajuster la tension de pincement, de réduire les résistances d'accès et d'éviter qu'une zone de champ élevé soit localisée sur le drain

- 4 -

longueur de grille, ils supposent en outre que la vitesse des porteurs est uniquement fonction du champ électrique et que les effets de bord sont négligeables. Toutes ces restrictions limitent leur validité à des transistors de grilles supérieures à un micron.

Dans les TEC à grilles submicroniques, les temps de transit des porteurs sous la grille sont du même ordre de grandeur que les temps de relaxation. Les lois de l'électrocinètique ne sont plus celles régissant un régime stationnaire. A cause de la diminution du rapport Lg/a, les effets bidimensionnels ont plus d'influence.

Toutes ces considérations ont conduit à l'élaboration par A.CAPPY [5] et B.CARNEZ [6] d'un modèle qui tient compte de ces effets. C'est ce modèle que nous allons décrire après avoir rappelé les méthodes permettant de décrire les effets non stationnaires ainsi que leurs résultats.

- 1 -

La grille est un contact Schottky. En l'absence de toute polarisation extérieure, il existe sous ce contact une zone désertée correspondant à la barrière de potentiel créée par les deux types de matériaux constituant la Schottky.

La couche tampon empêche la dégradation de la mobilité des électrons de la couche active à l'interface couche active-semi-isolant, en augmentant la qualité de l'interface et en empêchant les impuretés du substrat de remonter dans la couche active lors de la croissance de celle-ci.

- 5 -

Fig.I.2. : Zones intervenant dans le fonctionnement d'un transistor à effet de champ.

I.2. FONCTIONNEMENT QUALITATIF DU MESFET.

En l'absence de polarisation extérieure, il existe sous la grille une zone désertée. Suivant l'épaisseur de la couche active et de son dopage, cette zone peut s'étendre jusqu'au buffer, ou laisser un canal conducteur dans la zone active.

Si on applique une tension entre drain et source (Vds), dans le premier cas, le courant sera nul : ce type de TEC est "normally-off". Dans le second cas, il y a circulation d'un courant ; le TEC est dit :"normally-on". Nous allons décrire très qualitativement le fonctionnement de ce dernier, cette description n'étant plus valable pour les grilles courtes.

Le mode de fonctionnement le plus usité pour un "normally-on" est le fonctionnement à jonction de grille polarisée en inverse (Vgs < 0). Sous l'effet d'une tension Vds, un champ électrique s'établit entre source et drain. Les électrons issus de la source vont s'écouler vers le drain, ce faisant, ils traverseront deux régions (fig.I.2).

Dans la première, l'épaisseur de la couche active est constante. Si on suppose le dopage uniforme, le champ électrique et la vitesse des porteurs sont indépendants de x. Cette zone se comporte comme une résistance.

Dans la région 2, du fait de l'existence de la zone désertée, l'épaisseur du canal diminue. Si on suppose qu'il n'y a aucun porteur dans la zone désertée, l'expression du courant en chaque point d'abscisse x du canal sera :

Ids = q.2. n(x). y(x). v(x)

- 6 -

DATE : 29:05:11:29:22 TEC : NEC 720 No1 CARAC. Ids(V9s) DATE:29:05:11:47:06 TEC : NEC 720 No1 CARAC. Ids(Vds)

1

n(x) et v(x) sont la densité et la vitesse moyennes des porteurs en x, y(x) la hauteur du canal conducteur en x.

Pour des tensions Vgs et Vds fixées, le courant Ids est constant. Comme y(x) est inférieur à l'épaisseur de la couche active a, et va en diminuant vers le drain, le produit n(x). v(x) augmente de la source à l'extrêmité du canal.

Plusieurs cas se présentent alors suivant la valeur de la tension Vds.

 A Vds faible, c'est à dire à champ faible, la vitesse des porteurs est proportionnelle au champ électrique, le courant Ids croît alors linéairement avec Vds, le TEC est un fonctionnement ohmique.

2) A Vds élevée, la région deux se divise en deux zones.

La première partant de la source à une abscisse x du canal où le champ électrique est faible, la vitesse des porteurs reste proportionnelle au champ, il y a régime de mobilité.

La seconde zone, se situant généralement en bout de grille, où le champ E(x) est élevé, la vitesse est alors constante, le courant ne varie plus. Le TEC est en régime saturé. Le produit n(x). y(x) est constant. Ceci peut être expliqué par le fait qu'en bout de grille côté drain, à fort Vds, les évolutions du champ électrique sont bidimensionnelles, de plus, d'autres effets apparaîssent alors, tel que l'injection des porteurs dans le buffer.

La figure(I.3) représente l'évolution typique du courant Ids en fonction de Vds pour différentes valeurs de Vgs pour un TEC de un micron de longueur de grille. Les deux zones de fonctionnement sont visibles, au dessus de un volt de tension drain-source, le courant Ids est quasi constant quelle que soit la tension appliquée sur la grille.

- 7 -

De cette analyse sommaire, on peut définir deux paramètres importants. La figure (I.3) nous montre qu'une faible variation de Vgs en modifiant l'épaisseur du canal, fait varier le courant Ids. On caractérise l'influence de Vgs sur Ids lorsque Vds reste constant par la quantité g_m appelée transconductance et définie par :

$$g_m = \left(\frac{\partial Ids}{\partial Vgs}\right) Vds = constante$$

De même, l'influence de Vds sur Ids à Vgs constante est caractérisée par la conductance de sortie :

$$g_d = \left(\frac{\partial Ids}{\partial Vds}\right)_{Vgs = constante}$$

- 8 -

I.3. LES DIFFERENTES MODELISATIONS DU TRANSISTOR A EFFET DE CHAMP.

I.3.1. INTRODUCTION.

D'après l'explication qualitative du fonctionnement, on peut constater que la modèlisation du TEC à grille submicronique passe par la résolution d'un certain nombre de problèmes.

Du point de vue du composant, il faut décrire le comportement de la zone désertée de la Schottky et de l'interface couche active-couche tampon, ainsi que les effets de bord qui ne sont plus négligeables.

Du point de vue matériaux, les phénomènes de dynamique électronique non stationnaire doivent être pris en compte. En effet, pour un TEC à grande longueur de grille, les relations de dynamique électronique liant la vitesse, le champ et les porteurs sont classiques, du type v = f (\vec{E} , $\frac{\partial n}{\partial x}$). Pour les grilles inférieures au micron, où les longueurs sont de l'ordre du libre parcours moyen et où les temps de transit sont de l'ordre des temps de relaxation, l'énergie des porteurs ε ne suit plus les variations du champ électrique, en conséquence, la dynamique électronique sera du type v = f (ε , \vec{E} , $\frac{\partial n}{\partial x}$).

La résolution de ce type d'équation conduit à l'élaboration de modèles que l'on peut classer en deux catégories :

> les modèles bidimensionnels (particulaires ou numériques)

- les modèles analytiques.

I.3.2. LES MODELES BIDIMENSIONNELS.

Pour décrire les phénomènes de dynamique, les modèles particulaires sont les plus rigoureux. Ils simulent le parcours d'un ou plusieurs porteurs dans le canal en prenant en compte les interactions qu'ils peuvent subir. Cette analyse peut être effectuée par la méthode de Monte-Carlo. Malheureusement, leur mise en oeuvre est difficile et le temps de calcul est trop important pour permettre une étude systèmatique sur calculateur.

Les modèles numériques bidimensionnels nécessitent aussi d'importantsmoyens de calcul. Ils sont basés sur la résolution bidimensionnelle des équations de Poisson et de continuité.

Ces modèles ne peuvent servir à une étude systèmatique, néanmoins ils nous permettront de valider certaines des hypothèses faites sur le modèle utilisé.

I.3.3. LES MODELES ANALYTIQUES.

La première analyse du comportement physique d'un TEC à jonction est due à W.Shockley [1] qui a décrit le fonctionnement du TEC au silicium avec les hypothèses simplificatrices suivantes :

> la zone désertée est entièrement vide de porteurs et le substrat est parfaitement isolant.

> > - il n'y a pas d'effet de bord.

- la vitesse est proportionnelle au champ électrique.

- 10 -

Cette analyse appelée du canal graduel n'est valable que lorsque le canal n'est pas complètement pincé. Après ce pincement, on considère que le courant a une valeur constante.

A partir de ce modèle, différentes améliorations ont été apportées, entre autre, le régime de saturation a été traité grâce à une résolution bidimensionnelle simplifiée de l'équation de Poisson par Grebene et Ghandhy [2] .

Cette analyse fut reprise par Pucel [3], Graffeuil[4] qui l'appliquent au TEC AsGa à barrière Schottky et lui adjoignent un modèle de bruit que nous décrirons dans le chapitre suivant. L'idée est de séparer la zone active du TEC en deux régions, l'une où la vitesse est proportionnelle au champ électrique, l'autre où elle est saturée.

La première région est traitée par la méthode du canal graduel par une résolution approximative unidimensionnelle de l'équation de Poisson donnant comme résultat qu'à la frontière entre les deux régions où la vitesse atteint sa valeur de saturation, la hauteur du canal est minimum.

Dans la région 2, la distribution du potentiel est donnée par une résolution bidimensionnelle de Poisson identique à Grebene et Ghandhy et tenant compte de la continuité entre les deux régions. Ainsi, il est montré que la saturation du courant ne provient pas d'un pincement de canal, mais de la saturation de la vitesse des porteurs à partir d'une valeur de champ électrique donnnée.

L'inconvénient de ces différents modèles est qu'ils ne tiennent pas compte des effets survenant lors de la diminution de la

- 11 -

Dans un TEC à grille submicronique, le champ électrique sous la grille varie très rapidement le long du canal. Pour décrire le comportement des porteurs soumis à un tel champ, deux méthodes sont possibles :

- la résolution de l'équation de transport de Boltzmann.

- la résolution d'un système d'équations phénoménologiques issues de Boltzmann.

L'équation de Boltzmann donne l'évolution de la fonction de distribution des porteurs f (\vec{r}, \vec{k}, t) dans l'espace réel et l'espace des phases à un instant t donné :

$$\frac{\partial f}{\partial t} = -q \frac{E}{K} \cdot \nabla_{k} f - \overline{J} \cdot \nabla_{r} f + \left(\frac{\partial f}{\partial L}\right)_{c}$$

Cette évolution est due à trois phénomènes :

- l'action du champ électrique \vec{E} sur les particules (forces de Coulomb)

- la diffusion

- les collisions des porteurs avec le réseau.

La résolution de cette équation peut se faire par la méthode de Monte-Carlo ou par des méthodes itératives. Les résultats obtenus, pour être assez précis, nécessitent des temps de calcul importants. ^{*} l'équation de conservation de l'énergie.

$$\frac{\partial}{\partial t} \left(m \cdot \mathcal{E} \right) + \frac{\partial}{\partial x} \left(n \cdot \mathcal{I}_{z} \cdot \mathcal{E} \right) = q \cdot n \cdot \mathcal{I}_{z} \cdot \mathcal{E}_{z} - \frac{\partial}{\partial x} \left(n \cdot \mathcal{I}_{z} \cdot \mathbf{kT} \right) - n \cdot \frac{\mathcal{E} - \mathcal{E}_{o}}{\mathcal{I}_{z} \cdot (\mathcal{E})}$$

La différentielle totale de l'énergie des porteurs est égale à l'apport d'énergie dû au champ électrique lors de leur déplacement à laquelle se soustraient les énergies perdues sous l'effet des forces de pression électronique $\frac{\partial}{\partial x}(n.v_x.k.T)$ et des interactions $n. \frac{\varepsilon - \varepsilon_0}{\tilde{\tau}_{\varepsilon}(\varepsilon)}$, $\tau_{\varepsilon}(\varepsilon)$ représentant le temps de relaxation de l'énergie.

Afin de valider les équations de conservation, elles ont été confrontées à des résultats obtenus par la méthode de Monte-Carlo dans le cas où les porteurs sont soumis à un champ passant brusquement de O à 70 kV/cm [5]. Les figures (I.4) et (I.5) montrent les évolutions de la vitesse et de l'énergie moyennes des porteurs. Nous constatons la bonne concordance entre les deux simulations. Nous voyons entre autre apparaître le phénomène de survitesse. Les porteurs, dès l'application du champ atteignent des vitesses largement supérieures à leur vitesse en régime stationnaire.

La figure (I.6) montre une comparaison des évolutions spatiales de la vitesse et de l'énergie moyenne en fonction du champ électrique pour un TEC de 0.3 micron de longueur de grille. Comme précédemment, la validité des équations phénoménologiques est confirmée.

Ce système d'équation est à la base du modèle que nous emploierons pour étudier le bruit, et dont nous allons rappeler les hypothèses simplificatrices utilisées dans la modèlisation des différentes parties du canal.

- 15 -

1.5. LE MODELE NUMERIQUE UTILISE.

La figure (I.7) représente une coupe longitudinale du TEC utilisé dans la modèlisation. L'espace source-drain est divisé en sections de longueur Δx dans lesquelles les grandeurs physiques seront calculées.

I.5.1. PROBLEMES POSES PAR CE MODELE.

Le modèle utilisé étant unidimensionnel, un certain nombres d'hypothèses ont été faites. Ainsi, les grandeurs physiques ne dépendent pas de la direction y, ce qui implique une densité de porteurs uniforme dans une section du canal et une seule composante suivant x pour les grandeurs vectorielles.

La figure (I.8) représente l'évolution de la densité de porteurs dans le canal et le buffer calculée par un programme bidimensionnel développé dans notre laboratoire [9], [10], [11]. Il est à noter que dans ce programme, il n'y a pas d'hypothèse quant à la présence de porteur dans la zone désertée. On observe que celle-ci s'étend de part et d'autre de la grille, et que la densité de porteur n'est pas constante dans le canal dans le cas où le dopage de la couche active est uniforme. Néanmoins, on peut définir une épaisseur équivalente de la couche active a et un dopage équivalent Nd de sorte que la loi de Shockley donnant la quantité de charge sous la grille en fonction de la tension Vgs appliquée soit vérifiée par :

$$y_d = a \sqrt{\frac{v_g}{w_{aa}}}$$

- 16 -

Fig.I.8. : Evolution de la densité de porteurs dans le canal et le buffer.

avec $W_{00} = q. \frac{N_d.a^2}{2.\epsilon}$, la tension pour laquelle la couche active est entièrement désertée. y_d étant l'épaisseur de la zone désertée.

Les effets de bord sont modèlisés d'après les travaux de Mc.Kenna [12] en supposant que l'évolution de la zone désertée de part et d'autre de la grille est elliptique.

Sur la figure (I.8) on remarque aussi une pénétration des porteurs dans la couche tampon. Afin de tenir compte de cet effet, on introduit une épaisseur équivalente d'injection \mathbf{y}_{s} dans le buffer dans laquelle le champ électrique se conserve. De cette façon, la densité de charge injectée à une abscisse x sera donnée par :

$$N_{s}(x) = Y_{s} \cdot (n(x) - Nd)$$

où n(x) représente la densité de porteurs libres dans la couche active.

Le canal conducteur.

A courant Ids et à tension Vgs fixés , le fonctionnement peut être décrit par la résolution des équations phénoménologiques décrites précédemment. A une abscisse x donnée dans le canal, Ids s'écrit :

$$Ids = q. \mathcal{Z}. \ \sigma(x). \int_{0}^{y_{1}} n(x, y). dy$$

où y₁ représente la distance entre la grille et le substrat semi-isolant, v(x) la vitesse moyenne des porteurs en x.

Si on fait le bilan des densités de porteurs on obtient : de y(x) à a : n(x) ; et dans le buffer, de a à y₁ : $N_s(x)$,on

- 17 -

- 18 -

peut écrire :

$$\int_{a}^{a} n(x, y) dy = n(x) \cdot (a - y_{d}(x)) + y_{s} \cdot (n(x) - Nd)$$

On définit alors une épaisseur équivalente de canal $y_c(x)$ où la densité moyenne des porteurs est n(x) par :

$$y_{c}(x) = \alpha - y_{d}(x) - y_{s}(1 - \frac{Nd}{n(x)})$$

En chaque point du canal, Ids s'écrit alors :

$$Ids = q. t. n(x) . J(x) . y_{e}(x)$$

Il faut noter que y_s est tout à fait fondamental pour l'obtention de valeurs de conductance de sortie proches des valeurs réelles. Généralement y_s est compris entre $\frac{Lg}{2}$ et $\frac{Lg}{2}$ + 2 a.

Le calcul du champ électrique dans le canal se fait par la résolution de l'équation de Poisson :

$$\frac{d E(n)}{dx} = \frac{q}{\epsilon} (n(x) - Nd)$$

En régime indépendant du temps, les équations de conservation s'écrivent :

$$\frac{d n.J_{x}}{dx} = 0 \quad (A)$$

$$q.n.E_{x}.J_{x} = \frac{d}{dx} \cdot \left[n.J_{x} \cdot \left(\mathcal{E} + kT \right) \right] + n.\frac{\mathcal{E} - \mathcal{E}_{0}}{\mathcal{T}_{\mathcal{E}}(\mathcal{E})} \quad (2)$$

$$q.n.E_{x} = \frac{d}{dx} \cdot \left(n.M^{4}.J_{x}^{2} \right) + \frac{d}{dx} \cdot \left(n.k.T \right) + n. \frac{M^{4}J_{x}}{\mathcal{T}_{m}(\mathcal{E})} \quad (2)$$

Comme dans une section Δx du canal, par hypothèse, la densité de porteurs est uniforme et que les grandeurs n'ont qu'une composante suivant x, en intégrant (1) on obtient :

$$\mathcal{A}_{2}(\mathbf{x})\cdot\mathbf{n}(\mathbf{x}).\mathbf{v}(\mathbf{x}) = \mathbf{cste}$$

c'est l'expression de la conservation du courant de drain dans le canal.

En utilisant les mêmes hypothèses, les expressions (2) et (3) peuvent s'écrire :

$$\frac{d}{dx} (\mathcal{E}_{+} hT) = q \cdot E(x) - \frac{\mathcal{E}_{-} \mathcal{E}_{0}}{v_{x} \cdot \mathcal{T}_{e}(\mathcal{E})}$$

traduisant l'évolution de l'énergie moyenne des porteurs et

$$q.n. E(n) = n. \sqrt{n} \cdot \frac{d(m^{\dagger}, \sqrt{n})}{dn} = n \cdot \frac{d.hT}{dn} + n \cdot \frac{m^{\dagger}}{Z_m(\varepsilon)} = 0$$

celle du moment.

En introduisant la mobilité $\mu(\varepsilon) = \frac{q \tau_m(\varepsilon)}{m^*(\varepsilon)}$ on obtient :

$$\sigma(x) = \mu(\varepsilon) \cdot \varepsilon(x) - \frac{\mu(\varepsilon)}{q \cdot n(x)} \cdot \frac{d}{dt} (n(x) \cdot kT) - \frac{\sigma(x) \cdot \mu(\varepsilon)}{q} \cdot \frac{d}{dt} \frac{m^{+}(\varepsilon) \cdot \sigma(x)}{dt}$$

L'ensemble des caractéristiques d'un TEC sera donc obtenu par la résolution du système d'équation :

-
$$Ids = q.t.y(x).n(x).v(x)$$

- $\frac{dEx}{dx} = \frac{q}{e}(n(x) - Nd)$
- $v(h) = \mu(e).E_x - \frac{\mu(e)}{q.n} \frac{dnkT}{dn} - \frac{s.\mu(e)}{q} \frac{dm^{\dagger}.v}{dn}$

Le calcul des paramètres $\mu(\epsilon)$ et m^{*}(ϵ) nécessite la connaissance de l'énergie moyenne des porteurs à l'abscisse considérée, donnée par :

$$\frac{d}{dn}(\mathcal{E}_{+}bT) = q.E_{2} - \frac{\mathcal{E}_{-}\mathcal{E}_{0}}{r(n).T_{e}(\mathcal{E})}$$

Les valeurs $\tau_{\epsilon}(\epsilon)$ sont déduites par une approximation analytique de résultats donnés par Monte-Carlo.

I.5.2. LA METHODE DE RESOLUTION.

La résolution de ce système d'équation se fait par la méthode du tir. L'espace source-drain est divisé en section de longueur Δx , et on résoud le système pas à pas à partir des valeurs calculées au pas précédent. Pour une tranche j donnée, la discrétisation des équations donne :

- (4) Ids = q.2. mj. Jg. Jj
- (5) _ E_j = E_{j-1} + $\frac{9}{\varepsilon} \left(\frac{N_j + N_{j+1}}{2} N_d \right)$. Δx

(6) _ $J_{j} = \mu(\varepsilon_{j}), \varepsilon_{j} - \mu(\varepsilon_{j}), \frac{M_{j}^{+}(\varepsilon_{j})}{q}, J_{j-1}, \frac{J_{j}-J_{j-1}}{Qx} - \frac{\mu(\varepsilon_{j})}{q}, \frac{kT_{j}}{k}$

avec: $y_{cj} = q - y_{dj} + y_{s} \left(1 - \frac{Nd}{N_{j}}\right)$ pour $n_{j} > Nd$ et $y_{cj} = q - y_{dj}$ pour $n_{j} < Nd$

- 20

l'épaisseur de la zone désertée est calculée par :

(7)
$$\forall d_{j} = \forall d_{j-1} + \frac{E_{j-1}}{\frac{q}{E} \cdot \gamma_{j-1}} \cdot \Delta x$$

Enfin l'expression de l'énergie moyenne des porteurs dans la tranche j devient :

$$\mathcal{E}_{j} = \mathcal{E}_{j-1} + \frac{\Delta \chi}{\lambda + \left(\frac{d h T}{d \mathcal{E}}\right)_{j-1}} \cdot \left(q \cdot \mathcal{E}_{j-1} - \frac{\mathcal{E}_{j-1} - \mathcal{E}_{0}}{\mathcal{T}_{\mathcal{E}}(\mathcal{E}_{j})}\right)$$

Le système d'équation formé par (4,5,6 et 7) peut être mis sous la forme d'une équation quadratique en v_j ou E_j :

$$\alpha_{j-1} \cdot E_{j}^{2} + \beta_{j-1} E_{j} + \gamma_{j-1} = 0$$

où les coefficients α_{j-1} , β_{j-1} et γ_{j-1} sont déterminés à partir des grandeurs calculées au pas précédent et de l'énergie moyenne ε_j .

La résolution donne la valeur du champ E_j , la vitesse moyenne v_j peut alors être définie par (6), la densité de porteurs n_j par (5) et enfin y_{cj}. A partir de ces valeurs, on calcule pas à pas la charge totale stockée :

$$Q = q. \hat{z}. Nd \cdot \sum_{j} \left(\frac{\forall dj. + \forall dj}{2} \right) \Delta x$$

ainsi que la tension Vds par intégration du champ:

$$Vds = \sum_{j} \frac{E_{j-1} + E_{j}}{2} \cdot \Delta x$$

- 21 -

Fig.I.9. : Localisation des éléments du schéma équivalent.

Fig.I.10. : Le schéma équivalent petit signal du TEC.

Nous avons ainsi accès aux évolutions de la charge et du courant en fonction des tensions Vds et Vgs, on peut donc tracer le réseau de caractéristiques statiques : Ids = f (Vds,Vgs).

Les évolutions de la charge stockée sous la grille permettent de déterminer les paramètres du schéma équivalent petit signal du transistor.

Il faut noter que dans (6), le terme de diffusion des porteurs n'est pas pris en compte, la méthode n'étant pas numériquement stable quand on cherche à l'introduire. Cependant, A.CAPPY [5] a montré que ce terme est négligeable.

Les figures (I.9) et (I.10) donnent la localisation des éléments du schéma dans le TEC ainsi que le schéma équivalent.

A part les résistances d'accès R_S , R_D et R_G , notre modèle permet de calculer l'ensemble des éléments du schéma intrinsèque défini par :

$$C_{gd} + C_{gs} = -\frac{\partial Q}{\partial V_{gs}} ; \quad Q_m = \frac{\partial Ids}{\partial V_{gs}} \quad a \ Vds \ constante$$

$$C_{ds} + C_{gd} = \frac{\partial Q}{\partial V_{ds}} ; \quad Q_d = \frac{\partial Ids}{\partial V_{ds}} \quad a \ Vgs \ constante.$$

Le calcul des capacités Cgd et Cgs se fait en négligeant la capacité Cds intrinsèque que l'on suppose essentiellement due aux capacités interplots.

A Vgs constante, on accroît Ids de \triangle Ids, les nouvel-

- 22 -
les valeurs de Q et Vds permettent de définir Gd et Cgd.

En maintenant Ids constant et en accroissant Vgs de Δ Vgs on obtient g_m et Cgs par :

$$g_m = g_d \cdot \frac{\Delta V ds}{\Delta V gs}$$
; $G_{gs} = -\frac{\Delta Q + C_{gd} \cdot \Delta V ds - \Delta V gs}{\Delta V gs}$

Calcul de la résistance du canal et de R_i

Sur la figure (I.9), l'ensemble (R_i ,Cgs) est représenté par une ligne distribuée de cellule (R,C).

La détermination de la résistance du canal Rch entre A et B et de R_i est très importante. R_i représente en grande partie l'impédance d'entrée du TEC intrinsèque et joue donc un grand rôle dans la fréquence de coupure. D'autre part, le caractère distribué du canal occasionne un temps de réponse de la commande de la zone désertée. Le calcul de ces résistances, du fait de leur nature pose donc certains problèmes.

Nous avons développé trois méthodes de calcul, afin de les comparer avec des mesures effectuées dans notre laboratoire.

^{*}La première méthode consiste à calculer R_i comme la partie réelle de l'impédance d'entrée de la ligne RC prise entre la grille et le point A du canal, en supposant que toutes les cellules RC élémentaires sont identiques et que la ligne à forte perte est terminée par un circuit ouvert.

Dans ces conditions, l'impédance d'entrée est donnée par la théorie des lignes comme étant :

$$2GR = 20. Coth(P)$$

avec : $2_0 = \sqrt{r/j}CW$ et $V = \sqrt{j}CW$

$$\frac{2}{GR} \# \frac{r.P}{3} + j C \omega P$$

Le terme $\frac{r}{3}$ représente le tiers de la résistance du canal entre A et B, ainsi R_i est donné par :

$$R_{I} = \frac{R_{ch}}{3} = \frac{V(B) - V(A)}{3. \text{ Ids}}$$

V(A) et V(B) étant les potentiels aux extrêmités du canal.

^{*}Dans la seconde méthode, on déduit R_i du rapport entre le courant et la tension de grille. Pour simplifier les calculs, on considère une vitesse moyenne des porteurs dans le canal : v_{mov}

Si on applique sur la grille une tension :

$$V_g = V_{g_o} + v_g e^{j\omega t}$$
 Figure(I.11)

les courants I_S et I_D s'exprimeront respectivement comme :

$$I_{S} = I_{0} + i e^{j\omega t} ; I_{D} = I_{0} + i e^{j\omega (t-T)}$$

 τ étant le temps de transit sous la grille : $\tau = \frac{L_g}{v_{moy}}$, V_o et I_o les valeurs statiques (moyennes) des grandeurs considérées.

Le courant de grille i_g est obtenu par la différence des courants I_S et I_D :

(1)
$$J_{g} = I_{s} - I_{b} = J_{s} (J_{e} - J_{w}^{wT}) e^{J_{w}}$$

où encore $i_g = q.Z.v_{moy}$. y.(1 - $e^{-j\omega t}$) $e^{j\omega t}$ où y est la variation de

de la hauteur du canal conducteur.

La variation de charge correspondante ${f q}$ peut s'écrire en fonction de vg comme :

$$q = q \cdot L_{g} \cdot 2 \cdot n \cdot y = C(v_{g}) \cdot v_{g}$$

où C(V_g) est la capacité de grille. On sort de cette égalité que :

$$v_g = \frac{q. L_g. 2. n. y}{C(v_g)}$$

en remplaçant dans (1) on obtient :

$$\dot{Ag} = C. v_{g} \cdot \frac{v_{moy}}{L_{g}} \cdot (1 - e^{-j\omega T}) \cdot e^{j\omega t}$$
$$= C. v_{g} \cdot (\frac{1 - e^{-j\omega T}}{T}) \cdot e^{j\omega t}$$

L'impédance d'entrée devient alors :

(2)
$$\frac{z_e}{-ig} = \frac{z_a}{-ig} = \frac{z}{C.(-i-e^{-j\omega z})}$$

En identifiant (2) avec l'expression de l'impédance du dipole (R_i , Cgs) on obtient :

$$\frac{\tau}{C(\mu_{-}e^{-j\omega\tau})} = R_{1} - \frac{1}{4}$$

$$G_{S,\omega}$$

ce qui donne :

$$R_{I} = \frac{T}{C} \cdot \frac{1 - \cos(\omega T)}{(1 - \cos(\omega T))^{2} + (\sin(\omega T))^{2}}$$

$$C_{gs.\omega} = \frac{C}{T} \cdot \frac{(\Lambda - cos(\omega T))^{2} + (sin(\omega T))^{2}}{sin(\omega T)}$$

- 26 -

Aux fréquences de fonctionnement, la période est très inférieure à τ , on peut donc simplifier ces expressions par un développement au premier ordre.

$$R_{I} \# \frac{T}{2.C} \cdot \frac{1}{2.(1-\frac{w^{2}T^{2}}{2})} \# \frac{T}{2.C}$$

Cgs # C.
$$\frac{\omega^2 T^2 + 4}{4}$$
 # C

avec
$$T = \frac{Lg}{Vm \circ y}$$
; $C = \left(\frac{dQ}{dVg}\right)$ à Vds constante

et

L'idée de base de la troisième méthode est de considérer le canal comme une ligne RC non uniforme dont les résistances rj seraient différentielles. Cette méthode nécessite un calcul pas à pas en supposant la ligne fermée sur un circuit ouvert.

A chaque pas, on calcule la résistance rj et la capacité cj présentée par la tranche. Ainsi, pas à pas, on calcule l'impédance équivalente du canal. Chaque tranche ajoutant en cascade une cellule (rj,cj) élémentaire.

Pour chaque section j nous avons :

 $i_{j}^{\prime} = \frac{v_{ge}(j+1) - v_{ge}(j)}{Ids}$; $i_{j}^{\prime} = \frac{2.E. Dx. 2}{[y_{d}(j+1) + y_{d}(j)]}$

En partant du bout de la grille côté drain, on remonte ainsi jusqu'aupoint A.L'impédance équivalente d'entrée étant calculée par:

$$Ze = \sum_{j=B}^{H} \left[\begin{array}{c} r_{j} + \frac{1}{\frac{1}{2}} \\ \frac{1}{2} \\ \frac{1}{$$

Z $_{i+1}$ est la valeur de Z_e en (j+1).

 R_i est la partie réelle de Z_e par analogie avec le dipole (R_i , Cgs). Il est à noter que la valeur de R_i calculée est indépendante de la fréquence.

- 27 -

La figure (I.12) représente les évolutions comparées de R_I calculée par les trois méthodes. On constate que les deux dernières donnent des résultats plus conformes aux valeurs de R_I trouvées dans la littérature. Comparées à une mesure effectuée sur un NEC 720 (Lg = 1 micron), il semble que l'approximation par $\frac{\tau}{2.C}$ soit acceptable. Par conséquent c'est celle que nous emploierons pour le calcul du bruit dans les transistors à effet de champ.

- 28 -

La seconde méthode est basée sur la résolution d'équation issue des principes de conservation de la vitesse, de l'énergie et du courant [5], [7][8]. Ces équations sont déduites de l'équation de Boltzmann dans le cas où les vallées sont supposées paraboliques et la durée des interactions négligeables. On obtient ainsi par une moyenne sur l'ensemble des vallées en un point d'abscisse x :

" l'équation de conservation du nombre de particules.

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x} (n \cdot v_x) = 0$$

où v, est la vitesse moyenne des électrons dans la direction x.

'l'équation de conservation du moment.

$$\frac{\partial}{\partial t} \left(n \cdot m^{\dagger}(\varepsilon), \mathcal{I}_{\chi} \right) + \frac{\partial}{\partial \chi} \left(n \cdot m^{\dagger}(\varepsilon), \mathcal{I}_{\chi}^{2} \right) = q \cdot n \cdot \mathcal{E}_{\chi} - \frac{\partial}{\partial \chi} \left(n \cdot k \cdot T \right) - n \cdot \frac{m^{\dagger}(\varepsilon), \mathcal{I}_{\chi}}{\mathcal{I}_{m}(\varepsilon)}$$

où ε est l'énergie moyenne des électrons sur l'ensemble des vallées, m^{*} (ε) leur masse effective moyenne.

Le premier membre de l'équation est la différentielle totale de la quantité de mouvement des porteurs, le second membre traduit les différentes forces exercées sur ceux-ci.

- la force de Coulomb qnE_x

- la force de diffusion des porteurs et de diffusion thermique $\frac{\partial}{\partial x}$ n.k.T

- enfin, les interactions avec le réseau, $\tau_m(\epsilon)$ étant le temps de relaxation du moment.

Fig.I.4. : Vitesse moyenne des porteurs en réponse à une impulsion temporelle de champ électrique

Approximations analytiques •• Résultats Monte Carlo

Fig.I.6. : Vitesse et énergie moyennes des porteurs dans le canal d'un TEC.

R; (Ω)

ļ

 R_{G} et L_{G} constituent l'impédance d'accès de grille, R_{S} et L_{S} celle de source.

Le bruit généré par la résistance ${\rm R}_{\rm G}$ est représenté par la source de bruit ${\rm e}_{\rm g},$ sa valeur est donnée par la formule de Nyquist :

Seg = 4.k. To. RG

De même le bruit généré par R_S s'écrira :

Ses = 4.k. To. Rs

Le calcul du quadripole se fait en deux étapes :

La première consiste à regrouper les sources de bruit à l'entrée du quadripole:figure (II.6), u et i sont les générateurs de bruit équivalents aux générateurs e_s, e_q, i_q et i_d, ils sont corrélés.

Par une identification entre les figures (II.6) et (II.5), on peut exprimer u et i par :

(1)
$$i = \frac{e_s - v_d}{z_{21}}$$
; (2) $u = e_s \left(1 - \frac{z_{11}}{z_{21}}\right) + e_g - v_g + \frac{z_{11}}{z_{21}} v_d$

où les Z_{ij} sont les paramètres impédances du TEC extrinsèque, v_g et v_d les sources de bruit équivalentes du TEC intrinsèque .

La seconde étape est la décorrélation des deux sources de bruit. Pour cela, on exprime l'une des sources de bruit comme une source indépendante associée à une source entièrement corrélée à l'autre.

Par exemple, on exprime u comme étant: une tension de bruit indépendante de i notée u_n et une source entièrement corrélée au générateur i que l'on peut exprimer par Zcor.i.

u s'exprimera donc comme : $u = u_n - Z_{cor}$.

avec Zcor = Rcor + ^j Xcor l'impédance de corrélation qui caractérise la proportionnalité existant entre u et i. Le schéma peut alors être modifié pour donner la figure (II.7), nous avons ainsi introduit le quadripole équivalent de bruit.

 \boldsymbol{u}_n et i peuvent s'exprimer par le théorème de Nyquist comme :

$$Su_n = 4.k.To.R_n$$
; $S_i = 4.k.To.g_n$

Le calcul de Zcor est simple :

Par définition, la corrélation entre u et i est donnée par :

$$C = \frac{u.i^{*}}{(Su.Si)^{*/2}}$$

En remplaçant u par son expression (3), on trouve :

$$\frac{1}{1}$$
 = $\frac{2}{cor}$. S_{i} d'où l'expression de Zcor :

$$Z_{cor} = \frac{u.i^{+}}{Si}$$

Il reste à exprimer Zcor, Rn et g_n en fonction des éléments du TEC extrinsèques et des sources de bruit intrinsèques.

En remplaçant u et i par leurs expressions (1) et (2), comme e_s et e_q ne sont pas corrélées, on obtient :

$$Z_{cor} = Z_{a_1} - Z_{21}, \frac{Se_s}{Se_s + Sv_d} - Z_{21}, \frac{Vd^+, Vg}{Se_s + Sv_d}$$

En exprimant par rapport aux résistances équivalentes de bruit :

$$\mathcal{Z}_{cor} = \mathcal{Z}_{11} - \frac{\mathcal{Z}_{21}}{R_{s} + r_{nd}} \cdot \left[R_{s} + C' \left(r_{ng} \cdot r_{nd} \right)^{\frac{1}{2}} \right]$$

- 47 -

De même on trouve que :

et

$$g_{n} = \frac{Si}{4kT_{0}} = \frac{1}{4kT_{0}} = \frac{R_{s}+r_{nd}}{1}$$

$$R_{n} = \frac{Su_{n}}{4kT_{0}} = R_{s}+R_{e}+r_{ng} - \frac{1R_{s}+c'.(r_{ng},r_{nd})^{2}}{R_{s}+r_{nd}}$$

Le quadripole de bruit est ainsi entièrement déterminé. On peut maintenant calculer le facteur de bruit du transistor ainsi que les conditions d'obtention du bruit minimum.

II.3.3.3. Calcul du facteur de bruit

Nous avons vu dans l'introduction que le facteur de bruit est défini comme le rapport du rapport signal sur bruit à l'entrée du dispositif sur le rapport signal sur bruit à la sortie.

Appliquée à la figure (II.7), cette définition peut être simplifiée. En effet, nous avons séparé la partie bruyante du transistor, de sorte que le facteur de bruit peut être évalué indépendamment du quadripole non bruyant et donc de son gain. Dans ce cas, le niveau de signal est le même à l'entrée et à la sortie du quadripole de bruit, le facteur de bruit devient alors :

$$F = \frac{\left(\frac{s}{B}\right)_{entrée}}{\left(\frac{s}{B}\right)_{sortie}} ; S_{entrée} = S_{sortie} = F = \frac{B_{sortie}}{B_{entrée}} (4)$$

.

L'entrée du quadripole étant alimentée par un générateur d'impédance interne Zgéné = Rgéné + jXgéné, la partie réelle de cette impédance développe un bruit $Se_{géné}$ = 4kTo Rgéné. Nous avons représenté figure (II.8) le schéma du point de vue bruit du transistor extrinsèque.

Le calcul du facteur de bruit se fait alors en appliquant l'expression (4) où B_{sortie} est la puissance de bruit générée par l'ensemble (générateur + quadripole de bruit) dans l'impédance Z_e , et B_{entrée} : la puissance de bruit générée par le générateur seul dans Z_e .

on a donc:
$$S_{it} = \frac{Seguini + Sun - |Zgeini + Zcor|^2 Si}{|Zgeini + Ze|^2}$$

$$Sit_{o} = \frac{Segini}{|Zgini + Ze|^{2}}$$

$$F = \frac{Segini + Sun + |Zcor + Zgini|^{2} Si}{Segini}$$

En faisant apparaître les résistances et admittances équivalentes de bruit, on obtient :

$$F = 1 + \frac{Rn + |Zgéné + 2cor|^2 g_n}{Rgéné}$$

- 48 -

On peut remarquer que le facteur de bruit dépend de l'impédance interne du générateur, nous pouvons par conséquent rendre ce facteur minimum en agissant en premier lieu sur Zgéné.

F sera minimum pour : X géné
$$= - X \operatorname{cor}$$

et $\operatorname{Rgéné} = \left(\operatorname{Rcor} + \frac{\operatorname{Rn}}{\operatorname{gn}}\right)^{1/2}$

Cette valeur particulière de l'impédance d'entrée est la valeur optimale du point de vue bruit :

$$Z_{opt} = \left(R_{cor}^{2} + \frac{R_{m}}{g_{n}}\right)^{2} - jX_{cor} = R_{opt} + jX_{opt}$$

le facteur de bruit minimum s'écrit alors :

$$F_{min} = 1 + 2 g_n \left(R_{cor} + R_{opt} \right)$$

CHAPITRE III

EXPLOITATION DU MODÈLE.

III.1. INTRODUCTION : COMPARAISON THEORIE-EXPERIENCE.

Dans ce chapitre, nous étudions le comportement en bruit des transistors à effet de champ à l'aide du modèle numérique décrit précédemment. Nous confrontons d'abord l'évolution théorique des paramètres du schéma équivalent et du facteur de bruit minimum avec l'expérience, pour des TEC de longueurs de grilles différentes en fonction des polarisations de grille et de drain.

Les paramètres technologiques du transistor simulé, sont mesurés par les méthodes décrites dans le chapitre IV et introduites dans la procédure numérique.

La figure (III.1) présente les évolutions théoriques et expérimentales de la transconductance de deux transistors à effet de champ à grille submicroniques : NEC 137 (Lg = 0.5 micron) et NEC 710 ($Lg \ 0.3 \ \text{micron}$). On constate que la valeur de la transconductance théorique est proche de la valeur mesurée en continu. La différence entre la transconductance mesurée en continu et celle mesurée en hyperfréquence est essentiellement due à la présence de pièges et aux effets thermiques. Notre modèle ne prenant pas en compte ces effets, un

.

certain désaccord peut exister entre les performances hyperfréquences calculées et mesurées.

Un accord également satisfaisant entre les conductances de sortie théoriques et expérimentales est obtenu en utilisant comme épaisseur équivalente d'injection y_s la valeur $\frac{L_g}{2}$ + a,figure (III.2a+b).

Pour comparer les évolutions théoriques et expérimentales des capacités Cgs et Cgd, se pose le problème des capacités de plots qui ne sont pas prises en compte par le modèle numérique.

Comme nous le verrons chapitre IV, un ordre de grandeur de cette capacité peut être obtenu expérimentalement et soustrait à la capacité totale mesurée en entrée. Un bon accord est ainsi observé (figure III.3a et b). Dans le cas de la capacité Cgd, on observe également un accord satisfaisant entre la théorie et l'expérience figure (III.4a et b).

Notons que l'évolution de ces paramètres en fonction de la tension Vds est conforme à l'expérience. Un exemple est présenté figure (III.5), où la conductance de sortie diminue lorsque Vds augmente pour tendre vers une valeur limite.

En ce qui concerne la fréquence de coupure Fc, on constate que le modèle donne des résultats optimistes pour les courants élevés (figure III.6). Ceci est dû au fait que les erreurs faites sur la transconductance et sur Cgs s'ajoutent. Par contre, nous devons remarquer que pour des courants Ids faibles, correspondant au régime faible bruit, l'accord entre les fréquences théoriques et expérimentales est satisfaisant.

- 51 -

Fig.III.3a : Transistor NEC 137

Fig.III.3b : Transistor NEC 710

Fig.III.4b : Transistor NEC 710

Fig.III.6 : Transistor NEC 137

Les évolutions théoriques de la résistance R_I sont difficilement comparables à l'expérience, à cause de l'incertitude importante sur la mesure de ce paramètre (se reporter au chapitre IV). Cependant, nous avons vu figure (I.10) que l'approximation $R_I = -\frac{\tau}{2C}$ donnait un bon ordre de grandeur de cette résistance (figure III.7).

Nous pouvons donc dire que pour les éléments principaux du schéma équivalent petit signal, notre modèle théorique de transistor à effet de champ donne des valeurs absolues et des évolutions en fonctions des tensions Vgs et Vds en bon accord avec l'expérience.

En ce qui concerne les performances en bruit, nous avons représenté figure (III.8) les évolutions théoriques et expérimentales du facteur de bruit en fonction du courant Ids, pour les deux TEC précédents.

L'accord est satisfaisant compte tenu des incertitudes de mesures sur le facteur de bruit et sur le gain, ainsi qu'aux différences existantes entre les paramètres petits signaux théoriques et expérimentaux. L'écart entre le facteur de bruit calculé et mesuré aux courants élevés, a pour principale origine l'écart précédemment observé sur les fréquences de coupure, et l'augmentation de la température du composant lorsque la puissance dissipée n'est plus négligeable.

Il nous a paru également intéressant de comparer notre modèle de bruit intrinsèque avec le modèle de bruit développé par Pucel [3], dont la validité a été montrée pour les grilles supérieures au micron. Comme le montre la figure (III.9), ces deux modèles sont

- 52 -

Fig.III.7 : Transistor NEC 137

Fig.III.8a : Transistor NEC 137 Vds=3v, F=12GHz

Vds=3v, F=12GHz

Fig.III.9 : Comparaison avec le modèle de bruit de Pucel Lg= 2µm , Nd= 10^{17} cm⁻³, Z= 280µm, Woo=2.9V , µ₀=4500 cm²/V.s F= 4GHz

en bon accord bien que les approximations effectuées soient très différentes.

Notons que pour cette comparaison, nous avons négligé la capacité Cgd dans le calcul de g_{nd} , tout en conservant un coefficient de diffusion dépendant de l'énergie des porteurs dans chaque tranche, contrairement à Pucel dont le coefficient est ajusté à 35 cm²/S pour rendre compte des résultats expérimentaux.

III.2. LES SOURCES DE BRUIT INTRINSEQUES.

Nous venons de montrer que les performances prévues par notre modèle théorique, tant du point de vue de l'évolution des paramètres petits signaux que de celui du facteur de bruit étaient conformes aux résultats expérimentaux au voisinage du facteur de bruit minimum.

Ce modèle peut donc être utilisé pour étudier physiquement la génération du bruit dans le canal.

Dans ce paragraphe, nous étudions les perturbations apportées à la tension de drain et à la charge stockée sous la grille par l'introduction d'un courant supplémentaire ΔI dans une tranche i du canal. Le calcul des densités spectralès de ces fluctuations nous permettra de préciser la zone du canal la plus bruyante, ainsi que l'évolution de la contribution de chaque tranche en fonction de la polarisation et de la longueur de grille. Enfin, à partir des densités spectrales des sources de bruit locales, nous pouvons étudier l'évolution des sources de bruit totales et du facteur de bruit du transistor intrinsèque et des éléments du quadripole de bruit.

III.2.1. CONTRIBUTION DES SOURCES LOCALES AU BRUIT DE DRAIN.

Comme nous l'avons vu précédemment, les densités spectrales de tension de bruit de drain et de courant de bruit de grille dépendent des fluctuations de tension de drain ΔV_i et de charge

- 54 -

ig.III.10a : Contribution de chaque tranche Δx Fig.III.10b : Contribution à la fluctuatic à la fluctuation de tension de drain charge sous la grille

Fig.10c : Evolution spatiale de la vitesse moyenne des porteurs

Lg = 0.25 μ m , Nd = 2 10¹⁷ cm⁻³ , μ_0 =4000, Ids # 15mA

stockée sous la grille ΔQ_i dues au courant de bruit ΔI introduit dans la tranche i. Ces fluctuations sont représentées figure (III.10 a et b). Nous constatons que les fluctuations de la tension drain sont plus importantes pour les tranches situées en début de grille. Cette zone correspond à la zone de mobilité et donc à vitesse élevée comme le montre la figure III.10c où sont représentées les évolutions de la vitesse moyenne dans le canal pour le même point de polarisation.

Dans la seconde moitié de la grille, correspondant à la zone à vitesse saturée, les fluctuations de tension sont moins importantes et décroîssent rapidement en bout de grille.

Une évolution similaire peut être observée sur les fluctuations de charges stockées figure (III.10b).

La contribution de la tranche i aux densités spectrales des fluctuations de tension de drain et de charge stockée sous la grille dépend à la fois de la valeur du champ d'impédance $\frac{\Delta V_i}{\Delta I}$ ou de $\frac{\Delta Q_i}{\Delta I}$ dans la tranche considérée , mais aussi du produit n_i, y_i, D_i dans cette même tranche, et s'écrit :

$$S_{V_{i}} = 4q^{2} \frac{Z}{\Delta x} n_{i} \cdot y_{i} \cdot D_{i} \cdot \left(\frac{\Delta V_{i}}{\Delta I}\right)^{2}$$
$$S_{q_{i}} = 4q^{2} \frac{Z}{\Delta x} n_{i} \cdot y_{i} \cdot D_{i} \cdot \left(\frac{\Delta Q_{i}}{\Delta I}\right)^{2}$$

- 55 -

Contribution des différentes tranches à la densité spectrale de bruit de drain et de gri

La figure (III.11 a et b) représente les contributions des différentes tranches du canal aux densités spectrales de bruit de drain et de grille. Ces contributions sont comparées aux évolutions spatiales du coefficient de diffusion D et du produit n.y.D. (figure III.11c). Dans les différents travaux effectués sur le bruit, les conclusions sur la zone du canal contribuant le plus au bruit total peuvent diverger [3] [4]. Sur ces courbes, on met en évidence la nette supériorité de contribution de la zone ohmique.

La décroissance des valeurs de champ d'impédance $\frac{\Delta V_i}{\Delta I}$ combinée à celle du produit $y_i \cdot n_i \cdot D_i$ sont responsables de la décroissance rapide des contributions S_{V_i} dans la deuxième partie de la zone ohmique (correspondant au maximum de vitesse puis à la décroissance de celle-ci).

Notons enfin que la région à vitesse saturée apporte une contribution négligeable à la source de bruit de drain.

III.2.2. LES SOURCES DE BRUIT TOTALES.

Comme nous l'avons vu précédemment, les densités spectrales des sources de bruit totales de drain Svds et de grille S_{qg} ainsi que la corrélation existant entre elles sont obtenues par sommation quadratique sur l'ensemble du canal, des contributions de chaque tranche.

La figure (III.12) représente l'évolution de ces sources de bruit en fonction du courant Ids pour un transistor de 0.25 micron

- 56 -

Fig.III.12 : Evolution des sources de bruit totales avec le courant Ids.

de longueur de grille. On constate que le bruit de drain diminue lorsque le courant diminue, et passe par un minimum pour ensuite croître très rapidement. Pour expliquer ce phénomène, nous avons représenté figure (III.13a) l'évolution spatiale des contributions des différentes tranches pour différentes valeurs de courant Ids.

La variation de Svds avec Ids résulte, d'une part de la décroissance de la longueur de la zone ohmique quand Ids diminue et d'autre part de l'augmentation de l'amplitude des S_{Vi} en début de grille lorsque Ids décroît. Le premier phénomène est responsable de la décroissance des densités spectrales avec Ids et le second, de la brutale augmentation de Svds à très faible courant, Svds passe donc par un minimum.

La même comparaison peut être faite sur le bruit de grille Sqg. Figure (III.13b), on remarque que la contribution globale augmente avec Ids. Le coefficient de corrélation entre la source de bruit de drain et celle de grille passe de 0.5 à canal ouvert à 0.9 au pincement. Notons que son évolution est pratiquement indépendante des caractéristiques des transistors.

III.2.3. LE QUADRIPOLE EQUIVALENT DE BRUIT INTRINSEQUE

A partir des sources de bruit Svds et Sqg, deux sources de courant de bruit; Sid = $|y_{22}|^2$. Svds et Sig = ω^2 .Sqg sont calculées. Le quadripole équivalent de bruit et le facteur de bruit sont alors obtenus selon la méthode décrite au chapitre II.

Fig.III.14 : Le facteur de bruit intrinsèque.

Fig.III.15 : Evolution fréquentielle du facteur de bruit intrinsèque.

Pour le transistor intrinsèque, les expressions des éléments du quadripole de bruit et du facteur de bruit deviennent :

)

$$F_{min} = 1 + 2g_{n} (R_{opt} + R_{cor})$$

$$R_{n} = r_{ng} (1 - |C'|^{2})$$

$$g_{n} = \frac{r_{nd}}{|z_{21}|^{2}}$$

$$Z_{cor} = z_{11} - z_{21} \cdot C' \sqrt{\frac{r_{ng}}{r_{nd}}}$$

$$R_{opt} = (R_{cor}^{2} + \frac{R_{n}}{g_{n}})^{\frac{1}{2}}$$

où z_{ii} sont les paramètres impédance du TEC intrinsèque

Conformément à l'expérience, le facteur de bruit passe par un minimum (figure III.14), ce qui peut être relié d'une part au passage par un minimum de S_{id} et d'autre part à la diminution de la transconductance et de la fréquence de coupure au voisinage du pincement.

De même, l'évolution fréquentielle du facteur de bruit minimum peut être prévue par l'étude des sources de bruit. Pour un point de polarisation donné (Ids = 15mA, Vds = 3V),la figure(III.15) représente les courants de bruit et le facteur de bruit en fonction de la fréquence.

La prise en compte de la capacité Cgd dans le calcul des sources de bruit explique l'augmentation du courant de bruit de drain avec la fréquence. Par contre, classiquement, le bruit de

grille varie en ω^2 . Ce bruit étant plus faible que le bruit de drain, il n'a d'influence sur le facteur de bruit que lorsque le transistor fonctionne près de sa fréquence de coupure.

La connaissance du quadripole équivalent de bruit est très importante, car ses éléments permettent le calcul du facteur de bruit même lorque l'entrée n'est pas adaptée au minimum de bruit. La figure (III.16a) représente l'évolution fréquentielle des éléments du quadripole de bruit ainsi que la résistance de source R_{opt} donnnant le facteur de bruit minimum.

On constate que la résistance de bruit R_n ne varie pratiquement pas avec la fréquence. Cet effet résulte des évolutions fréquentielles de r_{ng} et de (1 - | C' | ²) qui se compensent (figure III.16b).

D'autre part, la résistance optimale de source R_{opt} décroissant avec la fréquence et la résistance de corrélation restant toujours très faible, nous pouvons remarquer que l'augmentation du facteur de bruit minimum est essentiellement due à la croissance rapide de la conductance équivalente de bruit g_n .

Cette augmentation de g_n résulte de deux effets qui s'ajoutent :

> - la croissance de la résistance équivalente de bruit de drain r_{nd}

- la rapide décroissance de $|z_{21}|^2$ lorsque la fréquence augmente.

De l'évolution des éléments du quadripole de bruit en fonction du courant de polarisation, figure (III.17) on note que:

- 59 -

Fig.III.17 : Influence de la polarisation sur le quadripole de bruit.

 $Lg = 0.25 \mu m$; Nd = 210¹⁷ cm⁻³; $\mu_0 = 4000 \text{ cm}^2/v.s$

- la résistance équivalente de bruit ${\rm R}_{\rm n}$ reste pratiquement constante,

- le facteur de bruit suit l'évolution de la conductance équivalente de bruit g_n.

Ce dernier point peut s'expliquer aisèment par le fait que R_{cor} étant faible et R_n constante, la résistance de source optimale est proportionnelle à $\frac{1}{\sqrt{g_n}}$ et donc, le facteur de bruit varie en 1+2. $\sqrt{g_n}$.

Comme pour l'évolution en fonction de la fréquence, c'est la conductance de bruit g_n qui détermine la forme générale du facteur de bruit.

۲

ω

ဖ

Nd= 2 10¹⁷,

III.3. LE FACTEUR DE BRUIT MINIMUM INTRINSEQUE.

L'utilisation des structures à grille enterrée ou d'implantations dans les espaces source-grille et grille-drain associés à une diminution de la largeur élémentaire des doigts de grille, réduit la valeur des résistances d'accès et donc améliore les performances hyperfréquences du TEC. Le facteur de bruit intrinsèque représente donc la performance limite que l'on pourra obtenir en réduisant l'ensemble des résistances d'accès à zéro.

Dans ce paragraphe, nous allons étudier l'influence des paramètres de la couche active et de la longueur de grille sur le facteur de bruit minimum intrinsèque, afin d'en déduire une structure permettant le fonctionnement en amplification faible bruit à fréquence élevée.

III.3.1. INFLUENCE DE LA LONGUEUR DE GRILLE

Nous avons représenté figure (III.18) l'évolution fréquentielle du facteur de bruit minimum et du gain associé pour différentes longueurs de grille. On remarque que si Lg n'est pas un élément essentiel à des fréquences voisines de 5GHz, elle devient par contre prédominante lorsque la fréquence augmente. Cette croissance rapide du facteur de bruit minimum est due à la diminution de la fréquence de coupure lorsque Lg augmente mais aussi à l'augmentation des sources de bruit intrinsèques (figure III.19).

- 61 -

Fig.III.20 : Influence de la longueur de grille sur la contribution des tranches au bruit de drain . Ids # 10mA

Cette augmentation des sources de bruit totales peut être correlée avec la contribution des différentes tranches du canal à la densité spectrale S_{vds} pour différentes longueurs de grille (figure III.20). Pour un point de polarisation donné, une augmentation de la longueur de grille augmente la longueur de la zone ohmique [5]et donc, le nombre de tranche dont la contribution n'est pas négligeable. De plus, on peut remarquer une augmentation de l'amplitude de ces contributions. Par contre, l'influence des effets de bord est moins importante en valeur relative.

III.3.2. INFLUENCE DES PARAMETRES DE LA COUCHE ACTIVE.

- Influence de la mobilité μ_0

Les paramètres caractéristiques de la couche active sont au nombre de trois : la concentration en impureté Nd, l'épaisseur équivalente de la couche a et la mobilité μ_0 . Cette valeur de la mobilité est un critère de qualité de la couche. En effet, des mesures de mobilité ont montré que la valeur expérimentale de μ_0 peuvent s'écarter notablement de sa valeur théorique. Ce qui nous conduit à étudier l'influence de cette mobilité indépendamment du dopage.

La figure (III.21) représente cette influence sur le facteur de bruit minimum pour des TEC dopés à 210^{17} cm⁻³ et de 0.1 micron d'épaisseur de couche (W_{00} # 1.5volt). On remarque que pour des fonctionnements à fréquence élevée, le facteur de bruit - 62 -

Fig.III.21 : Influence de la mobilité sur le facteur

_____Lg≠_0,25µm N_d = 2 10¹⁷ cm⁻³

Fig.III.22 : Influence du dopage sur le facteur de bruit minimum intrinsèque à épaisseur de couche active constante : a=0.1µm, _____2 10¹⁷ cm⁻³, ---- 1 10¹⁷,....3 10¹⁷ - ____ - 4 10¹⁷.

est très sensible à la qualité de la couche. Une augmentation de mobilité augmentant la fréquence de coupure du transistor. Notons qu'un TEC de 0.25 micron de longueur de grille peut fonctionner en régime très faible bruit jusqu'à 60GHz à condition de réduire les éléments parasites et d'avoir une couche de bonne qualité.

Lors de l'étude de l'influence de Nd et a, nous nous fixons une valeur de mobilité de 4000 cm²/V.S. Cette valeur repré-

- Influence du dopage

La figure (III.22) représente l'évolution fréquentielle du facteur de bruit minimum pour différents dopages, l'épaisseur de la couche active étant maintenue constante et égale à 0.1micron.

On constate que dans la gamme de fréquence considérée, le dopage n'a pas grande influence sur le facteur de bruit intrinsèque.

Ceci peut s'expliquer par le fait qu'une augmentation du dopage entraîne une augmentation de la fréquence de coupure mais aussi de g_d et Cgd. Les deux effets sont antagonistes:

> - la fréquence de coupure, en augmentant, améliore le facteur de bruit,

- g_d et C_{gd} en augmentant font croître la valeur de la source de courant de bruit de drain.

Le second effet est prépondérant jusqu'au milieu de la gamme de fréquence, en suite, f_c étant plus important, le premier effet l'emporte.

- Influence de l'épaisseur de la couche active

L'influence d'une modification de l'épaisseur de la couche active à dopage et mobilité constantes est présentée figure (III.23) pour deux transistors de longueur de grille 0.25 et 0.5 micron . Contrairement au dopage, l'épaisseur de la couche active a une grande influence sur la valeur du facteur de bruit, et l'obtention de faibles facteurs de bruit passe par l'utilisation de couches actives très fines.

Cette diminution du facteur de bruit résulte essentiellement de l'augmentation de la fréquence de coupure lorsque a diminue.

Le fait de garder constant l'un des paramètres (N_d,a) de la couche active alors que l'autre varie, modifie la tension de pincement du TEC donnant ainsi, dans certains cas, des valeurs peu réalistes de celle - ci. La figure (III.24) présente l'influence de l'épaisseur a lorsque le produit $N_d.a^2$ reste constant, ceci afin de garder une tension de pincement constante. Nous retrouvons une évolution du facteur de bruit similaire à celle de la figure (III.23).

III.3.3. CONCLUSION

Dans ce paragraphe, les principaux aspects physiques de la génération du bruit dans le canal d'un TEC "intrinsèque" ont été mis en évidence. La principale conclusion de cette étude concerne la diminution du facteur de bruit qui peut être observée

- 64 -

Fig.III.24 : Influence de l'épaisseur de couche active: Woo = 1,5V

lorsque la longueur de grille et/ou l'épaisseur de la couche active diminuent.

Par contre, la valeur de la densité d'impureté de la couche active a peu d'importance si la mobilité reste élevée.

Les meilleurs résultats de bruit intrinsèques seront donc obtenus pour des TEC à grille très courte, à couche active très fine et fortement dopée de manière à garder une tension de pincement raisonnable.

Cette conclusion importante ne concernant que le facteur de bruit intrinsèque, une étude de l'influence des éléments parasites d'accès sur les éléments du quadripole équivalent de bruit et donc sur le facteur de bruit extrinsèque est nécessaire.

- 65 -

III.4. LE FACTEUR DE BRUIT EXTRINSEQUE.

Les éléments d'accès sont de deux types :

- les éléments bruyants constitués par les résistances d'accès agissant aussi bien sur les éléments du quadripole de bruit équivalent que sur les paramètres du TEC.

- les éléments non bruyants comme les inductances de fils ou les capacités Cpg et Cds n'agissent que sur les paramètres du TEC.

L'étude de l'influence de ces divers paramètres à l'aide de notre modèle est très aisée. En effet, ces éléments n'agissent pas sur les sources de bruit intrinsèques du TEC. Il suffit donc de recalculer le quadripole de bruit selon la méthode du chapitre II, en prenant cette fois les paramètres [Z] extrinsèques du TEC.

On obtient alors :

$$g_n = \frac{R_{3} + \Gamma_{nd}}{1221^2}$$

$$R_n = Rs + Rg + rmg - \frac{1 Rs + C.\sqrt{rmg rmd}}{Rs + rmd}^2$$

$$Z_{cor} = Z_{n} - \frac{2z_{l}}{R_{s+rnd}} \cdot \left[R_{s+c} \sqrt{r_{nd} r_{mg}} \right]$$

- 66 -

BU

facteur de bruit minimum : Lg=0.25µm, Nd=2 10¹⁷cm⁻³, --- R_S=0 , ---- R_g =0

-- 57 --

avec toujours :

$$F_{\min} = 1 + 2g_n [R_{cor} + R_{opt}]$$
$$R_{opt} = (R_{cor}^2 + \frac{R_n}{g_n})^{1/2}$$

III.4.1. INFLUENCE DES RESISTANCES PARASITES

Dans un premier temps, nous allons étudier l'influence séparée de R_S et R_G sur le facteur de bruit, sans tenir compte de la largeur de grille ou du nombre de doigt de grille.

La figure (III.25) montre l'évolution en fonction de R_S et R_G du facteur de bruit pour un point de polarisation donné (Ids #15mA, Vds = 3v). On constate l'effet néfaste de ces éléments sur le facteur de bruit.

La figure (III.26) représente leur influence sur les éléments du quadripole de bruit équivalent pour une fréquence de 40GHz.

On note que la conductance équivalente de bruit g_n est indépendante de la valeur de R_G et pratiquement indépendante de R_S .

Par contre, les autres paramètres augmentent proportionnellement à $R_S + R_G$. La résistance R_G s'ajoute aux valeurs des éléments intrinsèques. La résistance R_S agissant en contre réaction a un peu moins d'effet sur les paramètres de bruit et donc sur le facteur de bruit.

TEC	F (GHz)	10	20	30	40
Lg = 25 µm	(۳m) Z	300	150	100	75
Valeur de	n <u>=</u> 1	12	6	4	3
Rg selon	n = 2	3	1.5	1	.75
le nombre	n = 4	75	.375	.25	.19
de grille (යා)	n = 6	.33 	.17	.11	• 0 8 • • • •
R _{si=} ,38 mm	R _s (A)	1.25	2.5	3.75	5

Quoiqu'il en soit, il est évident qu'une réduction de ces résistances est nécessaire pour permettre un fonctionnement en faible bruit aux fréquences élevées.

La réduction de la valeur de la résistance de grille peut s'effectuer en diminuant la largeur du transistor et/ou en augmentant le nombre de doigt de grille.

En utilisant une valeur de résistance linéique $R_L = 120 \ \Omega/mm$ [31] pour une longueur de grille de 0.25micron, la résistance de grille s'écrit :

 $R_g = \frac{R_L \cdot Z}{3} \cdot \frac{1}{n^2}$ où Z est la largeur totale du

transistor et n le nombre de doigt.

Lorsque la fréquence d'utilisation augmente, la largeur totale des transistors doit diminuer pour faciliter les adaptations.

Cette diminution de Z implique une importance moindre de $R_{G}^{}$ pour les transistors devant fonctionner à fréquence élevée (tableau III.27).

Pour ces transistors, la résistance de source a donc un effet prédominant.

L'utilisation de structure à grille enterrée, de surdopage en surface ou même de zone source-grille, grille-drain implantée, associée à des résistances de contact très faibles (<0.05 Ω .mm) permet d'obtenir des résistances d'accès de source de l'ordre de 0.3 à 0.4 Ω mm.

Tous ces effets sont représentés figure (III.28) où

les facteurs de bruit intrinsèque et extrinsèque sont représentés en fonction de Z pour différentes structure de grille et pour une résistance de source de 0.38Ω mm.

III.4.2. INFLUENCE DES INDUCTANCES ET CAPACITES PARASITES.

Ces divers éléments n'ont aucune influence sur les valeurs des sources de bruit intrinsèques et ne modifient que les paramètres [Z] extrinsèques du TEC.

Parmi les inductances, seule L_S a une influence importante à cause de son effet de contre réaction.

Une augmentation de L_S provoque une augmentation de $|Z_{21}|^2$ et donc une diminution de g_n . On observe donc une diminution du facteur de bruit lorsque L_S augmente. Celle-ci s'accompagnant, il est vrai, d'une dégradation importante du gain associé.

Compte tenu de leur faible valeur, les capacités parasites Cds et Cpg (capacité de plot) ont très peu d'influence sur le facteur de bruit et sur le gain.

- 69 -

III.5. FORMULATIONS ANALYTIQUES.

Le calcul du bruit nécessite la connaissance des valeurs de sources de bruit et de la corrélation existant entre elles.

Notre modèle numérique permet de faire varier facilement tous les éléments (Lg, Nd, a, μ) dans de larges proportions et ainsi d'étudier leur influence sur les sources de bruit.

En partant des valeurs de sources de bruit données par Pucel [3], des expressions analytiques de ces sources ont été obtenues [32]. Celles-ci permettent de calculer facilement le facteur de bruit et le gain en connaissant seulement le schéma équivalent et la géométrie de la grille. Ces expressions s'écrivent :

(1)
$$S_{id} = 4.h.T_{o}$$
. $\frac{g_{d}^{2} + w^{2}.G_{gd}^{2}}{g_{d}^{2}} \cdot \frac{g_{m}}{G_{gs}} \cdot L_{g} \cdot (\alpha, \ell + \beta, Ids)$

(2) Sig = 2.k.To.
$$\frac{G_{3}^{2} \cdot \omega^{2}}{g_{M}}$$

avec $\alpha = 210^5 \text{ pF/cm}^2$ et $\beta = 1.25 \ 10^2 \text{ pF/mA/cm}$.

Les deux coefficients α et β sont indépendants de la géométrie de la couche active (a,Lg) ainsi que de la mobilité μ_0 .

Par conséquent, ces expressions décrivent aussi bien les sources de bruit du TEC que celles du TEGFET (Transistor à effet de champ à hétérojonction).

Le coefficient de corrélation C' est assez difficile à déterminer. Cependant, nous avons pu observer qu'il était principalement dépendant du rapport $\frac{Lg}{a}$. C' est de l'ordre de0.8 pour des rapports $\frac{Lg}{a}$ supérieurs à 5 et décroît jusqu'à 0.7 pour des rapports voisins de 3.

Comme le facteur de bruit décroît lorsque le coefficient de corrélation augmente, les structures à couches très minces, et donc fortement dopées sont avantageuses de ce point de vue. Cet effet est d'ailleurs un des éléments de la supériorité des TEGFET sur les TEC conventionnels.

Le facteur de bruit calculé à partir de ces expressions analytiques est en bon accord avec l'expérience [32]. D'autre part, cette approche quasi analytique nous a permis d'effectuer une comparaison avec l'expression semi empirique du facteur de bruit de Fukui [23]. Cette expression s'écrit :

(3)
$$F = 1 + k_F \cdot \frac{f}{f_c} \cdot \sqrt{\frac{g_m(R_s + R_g)}{g_m(R_s + R_g)}}$$

Le coefficient kF est issu de l'expérience et, est voisin de 2.5 pour un TEC. Ce coefficient peut s'écrire :

(4)
$$k_F = 2 \sqrt{\frac{S_{id}}{4kT_0.g_m}}$$

- 71 -

Soit en remplaçant Sid par son expression (1) :

(5)
$$k_F = 2 \cdot \sqrt{\frac{L_g}{C_{gs}}} \cdot (\chi^2 + \beta I ds)$$

Dans cette expression, la fréquence est considérée suffisamment basse pour que le terme ω^2 .Cgd² soit négligeable.

L'expression (5) montre que k_F est une fonction de $\frac{L_g}{Cgs}$ et donc qu'il est approximativement proportionnel à la racine carrée de l'épaisseur de la couche active. Il n'est donc pas étonnant que le k_F des TEGFET soit en général plus faible que celui des TEC conventionnels.

En introduisant l'expression (5) dans (3) il vient:

$$F = 1 + \sqrt{8\pi} f. \qquad \sqrt{\frac{L_8}{f_c}} \cdot \left(\alpha + \beta \operatorname{Ids}\right) \cdot \left(R_{S}, R_{G}\right)$$

soit, en faisant apparaître la vitesse moyenne des porteurs sous la grille :

$$\overline{v} = \frac{2\pi f_c}{Lg}$$

(6)
$$F = 1 + 4 \pi L_{g} \cdot f \cdot \sqrt{\frac{1}{\pi} \left(\alpha t^{2} + \beta \cdot I ds \right)} \cdot \sqrt{R_{s} + R_{g}}$$

On remarque donc que si k_F dépend fortement de a, il n'en est pas de même pour le facteur de bruit. Par contre, nous

constatons que le facteur de bruit dépend fortement du courant donnant le minimum de bruit et de la vitesse moyenne des porteurs (ou de la fréquence de coupure). Cette expression montre tout l'intérêt d'utiliser des structures à longueur de grille faible et à mobilité importante.

- 73 -

III.6. CONCLUSION

Le modèle de bruit que nous avons décrit nous a permis d'étudier la répartition spatiale du bruit dans le canal ainsi que l'évolution du facteur de bruit en fonction du courant et de la fréquence.

Par la prise en compte des phénomènes de dynamiques non stationnaires, ce modèle peut s'appliquer aux TEC à grilles submicroniques et est en bon accord avec l'expérience.

Sa simplicité de mise en oeuvre nous a permis d'étudier l'influence des principaux paramètres du TEC sur le facteur de bruit. De cette exploitation systèmatique, nous avons déterminé des formulations analytiques des sources de bruit, plus simple d'emploi, et facilitant la conception d'amplificateurs faible bruit. Dans un second article, pour des fréquences plus élevées, le couplage capacitif entre le canal conducteur et la grille dû à la zone désertée est pris en compte. Ce couplage induit sur la grille un courant de bruit $\sqrt{ig^2}$ que l'on peut calculer en exprimant la variation de charge stockée sous la grille qu'entraîne la modulation du canal.

Ces deux bruits ayant une cause identique : la fluctuation de vitesse, on définit un coefficient de corrélation :

$$C = \frac{i \vec{g} \cdot i \vec{d}}{(i \vec{g} \cdot i \vec{d}^2)^{1/2}}$$

L'hypothèse de base sur la nature purement capacitive du couplage fait que ig variant en j ω (ω :pulsation) le coefficient de corrélation est imaginaire pur.

Baechtold [15,16] a repris cette analyse en introduisant la saturation de la vitesse des porteurs pour une valeur Ec du champ électrique ainsi qu'une variation de la température électronique avec le champ. Cette variation est déduite de mesures effectuées sur un transistor sans grille. La température s'exprime alors comme :

$$T = T_0 \left[1 + 6 \left(\frac{E}{E_c} \right)^3 \right] \text{ pour } T_0 = 300^\circ \text{K}$$

Le calcul des sources de bruit s'effectue de la même façon que Van der Ziel mais en employant un modèle de TEC où l'on suppose que la contribution du bruit due à la zone du canal où la vitesse est saturée est très faible.

- 30 -

CHAPITRE II

LE BRUIT HAUTE FRÉQUENCE DANS LES TRANSISTORS À EFFET DE CHAMP.

II.1. LES MODELES DE BRUIT

La première analyse des phénomènes de bruit est due à Van der Ziel [13,14] qui dans un premier article représente le bruit par un générateur de courant $\sqrt{i^2}$ en parallèle sur la sortie du transistor (entre source et drain). Cette analyse est faite à partir du modèle de TEC de Shockley dont nous avons rappelé dans le chapitre précédent les différentes hypothèses simplificatrices.

Le canal conducteur est divisé en section de longueur Δx , entre les abscisses x et x+ Δx , les variations de vitesse des porteurs dues aux interactions qu'ils subissent développent une tension de bruit qui entraîne une modulation de l'épaisseur du canal du point x au drain et donne ainsi une tension de bruit sur l'électrode de drain due à la tranche (x, x+ Δx). En intégrant sur l'ensemble des sections Δx , on obtient une tension de bruit totale en sortie $\sqrt{e^2}$. Par l'utilisation du théorème de Norton, le générateur de courant de bruit s'exprime par :

$$\overline{\lambda^2} = g_d^2 \cdot \overline{e^2}$$

 e^2 et i^2 sont les valeurs quadratiques moyennes des fluctuations de tension et de courant, g_d la transconductance de sortie du TEC.

- 29 -

En sommant toutes les sources de bruit élémentaires de la zone active non saturées, les sources de bruit de grille et de drain sont exprimées en fonction d'un paramètre de saturation :

$$\Theta_{00} = \frac{E_{c} \cdot L_{g}}{W_{00}}$$

Cette analyse est satisfaisante pour des fréquences inférieures à 10GHz et des longueurs de grille supérieures au micron, de plus, comme l'analyse de Van der Ziel, elle est limitée par le modèle employé qui ne tient pas compte de la zone à vitesse saturée ainsi que des effets de dynamique électronique non stationnaire.

Un autre type d'analyse a été effectuée par Klaassen [17] qui assimile le canal à une ligne de transmission active. En utilisant l'équation de propagation du courant le long du canal, et en supposant que le bruit a la même origine que dans l'analyse de Van der Ziel, il détermine les fluctuations du courant de grille et de drain ainsi que leur corrélation.

Afin de tenir compte de la zone à vitesse saturée, Pucel, Statz [3,18] ont basé leur analyse sur le modèle développé par Grebene et Ghandhy [2].

Rappelons que ce modèle divise l'espace source-drain en deux régions, l'une à mobilité constante, l'autre à vitesse saturée. La condition de passage d'une région à l'autre est donnée par la continuité du champ.

Ainsi, dans la première région, l'analyse de Baechtold peut être appliquée, le bruit ayant comme origine les fluctuations de vitesse des porteurs. On obtient ainsi une expression de la tension de bruit de drain et du courant de bruit de grille comportant deux termes:

- 31 -

l'un identique aux expressions de Van der Ziel, le second prend en compte la variation de la température électronique.

Dans la zone à vitesse saturée, ils considèrent que le bruit est dû à une propagation de "dipoles", il est cependant traité par la même méthode qu'un bruit de diffusion.

Le calcul du bruit induit sur la grille par la région saturée se fait de la même façon que dans la première par sommation de l'ensemble des variations de charge sous la grille. Les sources de bruit des différentes régions n'étant pas corrélées entre elles, le courant de bruit de drain total est donné par : $id^2 = (vd_1^2 + vd_2^2) g_d^2$. où vd_1^2 et vd_2^2 sont les valeurs quadratiques moyennes des tensions de bruit de drain développées respectivement par les régions 1 et 2.

par : $ig^2 = ig_1^2 + ig_2^2$

La corrélation entre les deux courants de bruit étant définiecomme dans l'analyse de Van der Ziel par le couplage purement capacitif de la grille et du canal, on a donc toujours :

$$C = \frac{ig^{\dagger} \cdot id}{\left(\overline{ig^{\dagger}} \cdot \overline{id}\right)^{1/2}}$$

Il ressort de l'analyse de Pucel que le bruit développé par la région à vitesse saturée n'est pas négligeable.

Contrairement à cette conclusion, Graffeuil [4] à partir d'un modèle similaire admet, en utilisant une dépendance de la mobilité avec le champ électrique que le bruit généré par cette zone est négligeable

- 32 -
Aucun de ces modèles ne prend en compte les effets de dynamique non stationnaires et les effets de bord, il suppose de plus que le substrat est parfaitement isolant. Le modèle de bruit que nous avons développé à partir du modèle de TEC précédent permet de calculer le facteur de bruit ainsi que les autres paramètres de bruit et d'étudier les influences des divers phénomènes liés aux grilles submicroniques.

- 33

LA MODELISATION DU BRUIT. II.2.

II.2.1. INTRODUCTION

Le calcul du bruit que nous allons développer ici, est basé sur la méthode du champ d'impédance. Si on considère que les fluctuations à l'origine du bruit dans un élément de volume agissent indépendamment des fluctuations existant dans les autres volumes élémentaires, on peut supposer qu'il existe dans chaque volume une source de bruit locale dont les manifestations sur les différentes électrodes sont indépendantes de celles des autres sources locales. L'application de la méthode du champ d'impédance se fait alors en deux étapes.

1) On définit en premier lieu la source de bruit locale et on en calcule sa densité spectrale.

2) On détermine comment chaque source locale se manifeste aux extrémités du transistor et on calcule les perturbations totales résultantes.

II.2.2. LES SOURCES DE BRUIT LOCALES

Une charge se déplaçant à la vitesse v sur le parcours Δx , développe un courant d'expression : i = q.v / Δx d'après le théorème de Ramo-Shockley. Dans une tranche ∆x du canal, la densité de porteurs supposée uniforme est n, la vitesse moyenne est v. Le courant engendré par le déplacement de l'ensemble des porteurs du volume sera :

 $\lambda = \sum_{\text{nbrede}} q \cdot \frac{\sigma}{\Delta x}$ porteurs

- 34 -

Une fluctuation de vitesse Δv entraîne une fluctuation de courant :

$$\Delta i = \sum_{\text{nbre de}} q. \frac{\Delta \sigma}{\Delta z}$$

L'écart quadratique moyen est alors :

$$\overline{\Delta i^2} = \left(\sum q \cdot \frac{\Delta \sigma}{\Delta z} \right)^2$$

Si on considère que les fluctuations de vitesse ne sont pas correlées entre elles :

$$\overline{\Delta i^2} = \frac{q^2}{\Delta x^2} \cdot \Sigma \overline{\Delta \sigma^2}$$

Le bruit étant supposé stationnaire, c'est à dire que ses propriétés moyennes ne dépendent pas du temps, selon le principe d'ergodisme, les moyennes d'ensemble peuvent être remplacées par des moyennes temporelles. Ainsi, le calcul de la valeur quadratique moyenne des fluctuations de vitesse se fait de façon classique par l'application du théorème de Wiener-Kitchine :

$$\overline{\Delta s^{2}} = 4.\int_{0}^{\infty} \overline{\Delta s(t)} \cdot \Delta s(t+T) \cdot \cos(2\pi f \tau) \cdot d\tau = 4.D(f,x)$$

D(f,x) est le coefficient de diffusion de bruit.

L'expression du courant de bruit local devient alors :

$$S_{2} = 4. \frac{q^{2} \cdot n. y. t^{2}}{\Delta x} \cdot D(f_{1}x)$$

Fig.II.1. : Principe du calcul des perturbations engendrées par une fluctuation de courant dans une tranche.

Aux fréquences de fonctionnement considérées, la période est grande devant le temps de libre parcours moyen τ qui est environ de 10⁻¹³ secondes.

 $G_{\rm M}$ Le coefficient de diffusion de bruit est alors pratiquement égal au coefficient de diffusion à fréquence nulle. Il en résulte que dans la section j du canal, l'intensité spectrale de la source de bruit locale s'écrira :

(1)
$$S_{i} = 4.q^{2} \cdot \frac{2}{\Delta x} \cdot y_{j} \cdot n_{j} \cdot D_{j}$$

Dj étant le coefficient de diffusion longitudinal à fréquence nulle dans la tranche j. Le problème qui se pose alors est son calcul en fonctionnement non stationnaire. Pour le résoudre, on suppose que Dj dépend exclusivement de l'énergie moyenne des porteurs ε_j dans la section j et que cette dépendance est la même qu'en régime non stationnaire. On peut alors déduire aisèment l'évolution de D(ε) à partir de résultats Monte Carlo donnant l'évolution de l'énergie et du coefficient de diffusion en fonction du champ électrique en régime stationnaire.

II.2.3. ACTION D'UNE SOURCE DE BRUIT LOCALE SUR LE DRAIN.

Afin de calculer la perturbation sur l'électrode de drain apportée par la source de bruit locale, on définit un champ d'impédance de la façon suivante.

L'espace source drain est divisé en tranche Δx , pour l'étude de la section j située entre ($x - \Delta x$) et x, on introduit en ($x - \Delta x$) un courant ΔI que l'on enlève en x (figure(II.1)) et on

- 36 -

étudie la perturbation ΔV de tension apportée sur la tension en circuit ouvert V_{DS} par ces deux opérations.

Elle se décompose en :

- introduction de ΔI : $\Delta V_1 = \Delta I.Z(L_1)$; L_1 = distance de $(x - \Delta x)$ à L - retrait de ΔI : $\Delta V_2 = -\Delta I.Z(L_2)$; L_2 = distance de x à L on obtient donc : $\Delta V = \Delta V_1 + \Delta V_2 = \Delta I [Z(L_1) - Z(L_2)]$ en généralisant : $\Delta V = \Delta I. \frac{\partial Z(x)}{\partial x} \Delta x$

La densité spectrale peut se calculer aisèment :

(2)
$$S_v = \left| \frac{\partial Z(x)}{\partial x} \right|^2 \cdot S_z \cdot \Delta_x^2$$

En remplaçant S_i par sa valeur (1), on obtient l'expression de la densité spectrale de la tension de bruit sur l'électrode de drain due à la source de bruit locale se trouvant dans la tranche j:

$$S_{v_j} = 4.q^2 \cdot 2.n_j \cdot y_j \cdot \left| \frac{\partial z_j}{\partial x} \right|^2 \cdot \Delta n$$

IF.2.4. CALCUL DE LA TENSION DE BRUIT TOTALE DE DRAIN

En supposant que les générateurs locaux ne sont pas correlés entre eux, la source de bruit totale peut s'exprimer par la somme des fluctuations transmises au drain par les différentes sources

de bruit locales :

 $S_{vds_0} = \sum_{ij} S_{vj}$

Récemment, la généralisation au cas de sources locales spatialement corrélées a été étudiée par Nougier [19,20,21] .

En tenant compte du fait que dans les dispositifs submicroniques, les distances entre deux points de tranches différentes sont de l'ordre du libre parcours moyen, les porteurs sont susceptibles de n'avoir aucun choc sur une distance supérieure à une tranche.

Cette probabilité est prise en compte dans le calcul des sources de bruit et de la corrélation. Cette étude est trop récente pour que nous ayons pu en tenir compte dans notre modèle.

II.2.5. ACTION D'UNE SOURCE LOCALE SUR LA GRILLE

La fluctuation de courant dans une tranche induit également une fluctuation de la hauteur de la zone désertée Δy_d et donc de la quantité de charge sous la grille Δq_q .

De même que pour le calcul de la perturbation en tension apportée au drain par l'introduction d'un courant ΔI dans la tranche j, on peut écrire que l'introduction de ΔI en (x - Δx) provoque une variation de charge $\Delta Q(x - \Delta x)$, son retrait : - $\Delta Q(x)$.

La présence dans la tranche j d'un courant supplémentaire ΔI , provoque une fluctuation totale (Δq_j) proportionnelle à ΔI et Δx que l'on peut écrire : $\Delta q_j = \alpha_j \cdot \Delta I \cdot \Delta x$ Sa densité spectrale peut se calculer par :

$$Sq_j = |\alpha_j|^2 \cdot S_j \cdot \Delta_x^2$$

en remplaçant S_i par sa valeur, on obtient :

$$Sq_{j} = 4.q^{2}.2.n_{j}.y_{j}.D_{j}.|\alpha_{j}|^{2}.\Delta x$$

II.2.6. CALCUL DE COURANT DE BRUIT DE GRILLE TOTAL

Comme précédemment, le courant de bruit total s'obtient en faisant la somme des bruits provenant des différentes tranches du canal.

On a donc : $Sq_g = \sum_j Sq_j$

le courant de grille étant : $\lambda g_0 = j \cdot \omega \cdot \Delta q_3$ et donc $\Delta i_3 = \omega^2 \cdot S$

II.2.7. CALCUL DE LA CORRELATION DES DEUX SOURCES DE BRUIT TOTALES

On exprime cette corrélation entre les fluctuations de tension de drain Δv_j et les fluctuations de charge sous la grille Δq_j pour chaque tranche j dans le canal par :

$$C_j = \Delta v_j^* \Delta q_j = j \omega \Delta v_j^* \Delta i q_j$$

Ce coefficient de corrélation est imaginaire pur si le temps de transit sous la grille est petit devant la période de la pulsation. Le coefficient de corrélation entre les deux sources de bruit totales vds_o et q_g est obtenu en faisant la somme des c_j et en normalisant :

$$C = \frac{\sum C_j}{\left(\sum_{q_g'} S_{v_{dso}} \right)^{\eta_2}}$$

II.3. APPLICATION AU MODELE NUMERIQUE

II.3.1. INTRODUCTION

A partir du modèle de transistor décrit précédemment, il est très aisé de simuler une source de bruit locale en introduisant dans une section Δx une perturbation du courant Ids égale à ΔI , et de calculer les fluctuations résultantes sur la tension Vds ainsi que sur la charge totale stockée Q_q.

En réitérant l'opération pour chaque tranche du canal et en additionnant les fluctuations on obtient facilement les densités spectrales et la corrélation.

II.3.2. CALCUL DES SOURCES DE BRUIT

Les fluctuations de courant dans le canal dues aux sources de bruit locales n'introduisant ni couche d'accumulation, ni zone désertée, nous supposerons dans nos calculs que le courant de déplacement est négligeable par rapport au courant de conduction, ce qui permet de négliger dans le champ d'impédance les termes dépendant de la fréquence.

Il peut alors s'exprimer par :

$$\frac{\Im x}{\Im 5'(\infty)} = \frac{\Im x}{\Im 5'} = \frac{\Im x}{\nabla 1}$$

On obtient ainsi la tension de bruit de drain par :

$$S_{vds_o} = 4.q^2 \cdot \frac{2}{\Delta x} \sum_{j} n_j \cdot y_j \cdot \mathcal{D}(\mathcal{E}_j) \cdot \left(\frac{\Delta v_j}{\Delta I}\right)^2$$

Fig.II.2. : Organigramme de la procédure numérique.

de même, le courant de bruit de grille s'écrit :

$$Sig_{0} = 4.\omega^{2}.q^{2}.Z.\Delta x \cdot \sum_{j} n_{j}.y_{j}.D(\mathcal{E}_{j}).\left(\frac{\Delta q_{j}}{\Delta I.\Delta x}\right)^{2}$$

en remplaçant α_{j} par : $\frac{\Delta q_{j}}{\Delta I.\Delta x}$

Le coefficient de corrélation s'exprime par :

$$C = \frac{4.q^{2}.7.D_{x}}{\left(S_{v_{dso}}, S_{q_{g}}\right)^{\eta_{2}}} \left(\frac{\delta q_{j}}{\delta I.D_{x}}\right) \left(\frac{\delta V_{j}}{\delta I.D_{x}}\right)$$

La figure (II.2) donne l'organigramme de la procédure numérique utilisée pour obtenir les évolutions des différentes grandeurs physiques dans le canal ainsi que les paramètres petits signaux et les sources de bruit pour des tensions Vgs et Vds fixées.

II.3.3. CALCUL DU QUADRIPOLE DE BRUIT

II.3.3.1. Mise en forme du schéma équivalent.

Nous disposons maintenant du schéma équivalent du TEC ainsi que ses différentes sources de bruit. Le transistor intrinsèque est donc entièrement connu. Nous avons représenté figure (II.3) son schéma équivalent. On remarque que les sources de bruit et le schéma sont intimement liés, ce qui peut compliquer l'analyse du circuit, il faut

Fig.II.3. : Schéma équivalent complet du TEC intrinsèque bruyant.

Fig.II.4. : Les générateurs de courant de bruit.

donc séparer les éléments bruyants des éléments du TEC petit signal. Cette séparation se fait pas une méthode proposée par Rothe et Dahlke [22] .

Pour plus de clarté, les sources de bruit issues du modèle seront notées :

$$\sqrt{5_{igo}} = ig_{o}$$
; $\sqrt{5_{vaso}} = vase$

On exprime les deux courants de bruit en court circuit par (figure II.4) :

$$id = y_{22} v_{dso} \quad \text{soit} \quad 5_{id} = |y_{22}|^2 \cdot 5_{vdso}$$
$$ig = ig_0 - j \omega C_g d \cdot v_{dso} \quad 5_{ig} = (ig_0 - j \omega C_g d \cdot v_{dso})^2$$

La corrélation entre les deux courants i_g et i_d devient :

$$Cor = \frac{-ig.id^{*}}{(Sig.Sid)^{1/2}} = \frac{(ig_0 - jw Gd.v_{ds_0}).v_{ds_0}}{(Sig.Sid)^{1/2}} \cdot y_{22}^{*}$$

où y_{ij} sont les paramètres admittances du transistor intrinsèque:

$$\mathcal{J}_{22} = \mathcal{J}_d + j\omega$$
. Gd.

On peut remarquer qu'à cause de Cgd, la corrélation n'est pas imaginaire pur. Ces courants de bruit développent des tensions de bruit équivalentes v_g et v_d dont les expressions seront :

$$v_{g} = 3_{11} \cdot 1_{g} + 3_{12} \cdot 1_{d}$$

 $v_{d} = 3_{21} \cdot 1_{g} + 3_{22} \cdot 1_{d}$

où les $z_{\mbox{ij}}$ sont les éléments de la matrice impédance du TEC intrinsèque .

Leurs densités spectrales s'écriront :

leur corrélation :

$$C' = \frac{\overline{v_g} \cdot v_d^*}{(s_{v_g} \cdot s_{v_d})^{n_2}}$$

II.3.3.2. Le quadripole de bruit

Le schéma de la figure (II.4) est difficilement exploitable, les sources de bruit étant corrélées et situées de part et d'autre du quadripole non bruyant que constitue le TEC intrinsèque. Pour faciliter les calculs de bruit, il est préférable de regrouper l'ensemble des sources de bruit et de les décorreler.

Ces opérations se font par la méthode proposée par, Rothe et Dahlke que nous appliquons au TEC extrinsèque représenté figure (II.5).

Fig.II.5. : Schéma complet du TEC extrinsèque bruyant.

Fig.II.6. : Regroupement des sources de bruit.

CHAPITRE IV

LA CARACTERISATION.

IV.1. LA CARACTERISATION DU TRANSISTOR A EFFET DE CHAMP.

IV.1.1. INTRODUCTION

Pour étudier le comportement des transistors et le comparer au modèle décrit précédemment, il est nécessaire de connaître les caractéristiques de sa couche active (a, N_d , μ) ainsi que les différents éléments du schéma équivalent. Dans ce but, nous avons mis en oeuvre diverses méthodes de caractérisation.

Dans un premier paragraphe, nous déterminons les paramètres physiques du composant telle que la mobilité des porteurs ou le dopage de sa couche active au moyen de mesures classiques de magnétorésistances et de mesures de capacités. Ces différentes valeurs introduites dans le modèle permettrons de simuler le fonctionnement du TEC.

Nous déterminons en second lieu, les différents éléments du schéma équivalent petit signal par la mesure des paramètres |S|dans la gamme 2 - 4GHz. Une configuration particulière du transistor (Vds = 0 et la grille polarisée en direct Igs \neq 0) nous permet d'obtenir des valeurs précises des différentes inductances d'accès L_S , L_D et L_G . De plus l'étude de l'évolution des parties réelles des paramètres |Z|du transistor pour Vds = 0 permet d'avoir un ordre de grandeur de la capacité parasite d'entrée Cpg. Enfin dans un troisième paragraphe, la mesure des paramètres |S| du TEC entre 2 et 18GHz nous donne l'évolution de ses caractéristiques hyperfréquences telle que son coefficient de stabilité ou le gain maximum disponible (MAG).

IV.1.2. DETERMINATION DES PARAMETRES TECHNOLOGIQUES

Les principaux paramètres technologiques à déterminer sont les caractéristiques de sa couche active tels que l'épaisseur, le dopage et la mobilité.

Ces paramètres sont déterminés à partir de trois mesures:

 - la mesure de l'évolution de la capacité de grille en fonction de Vgs à tension Vds nulle : C(V)

- la mesure de la résistance drain-source rds avec et sans application d'un champ magnétique : magnétorésistance

- la mesure des caractéristiques de la Schottky en direct.

IV.1.2.1. Mesure du dopage et de l'épaisseur de la couche active

La détermination du dopage et de l'épaisseur de la couche active se fait par une mesure de la capacité de grille Cg en fonction de Vgs à une fréquence voisine de 100 MHz afin de nous affranchir des effets de pièges intervenant à plus basse fréquence.

Fig.IV.1. : Evolution de la capacité d'entrée du NEC 710 à Vds=0.

Fig.IV.2. : Evolution de la quantité de charge sous la grille déterminée par intégration numérique de la courbe $C(V) - C_1$.

A titre d'exemple, l'évolution de la capacité de grille du NEC 710 obtenue par une mesure au pont réflectométrique pour Vds=0 est représentée(figure IV.1).A partir d'une certaine valeur de tension, Cg devient constante. Cette valeur limite C1 est due aux effets de bords et aux capacités de plots.

L'intégration numérique de cette courbe, nous donne la quantité de charge stockée sous la grille (figure IV.2).

$$Q(vgs) = \int (cg - cp) dvgs$$

L'évolution de cette charge en fonction de(Vb - Vgs)² doit vérifier la loi de Shockley :

$$Q(V_{gs}) = Q_0 \left[1 - \left(\frac{V_b - V_{gs}}{W_{00}} \right)^{\frac{1}{2}} \right]$$

avec $Q_0 = q.Z.$ Lg.a.Nd : la quantité totale de charge sous la grille. et $W_{00} = q \frac{Nd.a^2}{2\varepsilon}$: la tension nécessaire pour déserter entièrement la couche active.

Afin de tracer cette courbe, il est indispensable de connaître Vb, le potentiel de barrière. Pour cela, il convient de caractériser la Schottky par une mesure en continue en polarisant la jonction en direct (figure IV.3).

Le relevé de la courbe Log (Igs) = f(Vgs) permet de déterminer les différents paramètres caractéristiques de la Schottky que sont :

- 77 -

Fig.IV.3. : Principe de la caractérisation du contact Schottky.

Fig.IV.4. : Caractérisation de la Schottky du NEC 710. Evolution de Igs en fonction de Vgs.

Le coefficient d'idéalité η , le courant de saturation $I_{\mbox{So}}$ et le potentiel de barrière Vb.

La relation liant Vgs et Igs est donnée par:

$$\exists gs = A^*. T^2. S. exp - \left(\frac{qVb}{kT}\right) \cdot exp\left(q\frac{Vgs}{kT}\right)$$

où A $\stackrel{\times}{}$ est la constante de Richardson, S la surface de la grille (Lg.Z)

La pente de la courbe Log (Igs) = f(Vgs) permet de déterminer η par :

$$\gamma = \frac{9}{kT} \cdot \frac{\partial V}{\partial (L_{og}(Igs))}$$

Son extrapolation à Vgs=O nous donne la valeur du courant de saturation I_{So} et donc du potentiel de barrière Vb par :

$$I_{S_0} = A^{\dagger} \cdot T^{2} \cdot S \cdot exp\left(-q \frac{Vb}{bT}\right)$$
$$V_{b} = \frac{bT}{q} \log\left(\frac{A^{\dagger} \cdot T^{2} \cdot S}{Tc}\right)$$

et

La figure(IV.4) est l'exemple de la caractérisation de la Schottky du NEC 710.

La figure(IV.5) donne l'évolution de la charge en fonction de (Vb - Vgs)^{1/2} . La partie non linéaire est due aux effets bidimensionnels existant sous la grille à Vgs élevée. Sa partie linéaire verifie la loi de Shockley. Le coefficient d'idéalité η , le courant de satura- tion I_{So} et le potentiel de barrière Vb.

La relation liant Vgs et Igs est donnée par:

$$\exists gs = A^*. T^2. S. exp - \left(\frac{qVb}{kT}\right). exp\left(q\frac{Vgs}{kT}\right)$$

où A [×] est la constante de Richardson, S la surface de la grille (Lg.Z)

La pente de la courbe Log (Igs) = f(Vgs) permet de déterminer n par :

$$\gamma = \frac{9}{kT} \cdot \frac{\partial V}{\partial (L_{og}(Igs))}$$

Son extrapolation à Vgs=0 nous donne la valeur du courant de saturation I_{So} et donc du potentiel de barrière Vb par :

$$I_{S_0} = A^{\dagger} \cdot T^2 \cdot S \cdot \exp\left(-q \frac{Vb}{bT}\right)$$
$$V_b = \frac{bT}{q} \log\left(\frac{A^{\dagger} \cdot T^2 \cdot S}{T_{S_0}}\right)$$

et

La figure(IV.4) est l'exemple de la caractérisation de la Schottky du NEC 710.

La figure(IV.5) donne l'évolution de la charge en fonction de (Vb - Vgs)¹/2 . La partie non linéaire est due aux effets bidimensionnels existant sous la grille à Vgs élevée. Sa partie linéaire verifie la loi de Shockley.

Fig.IV.5. : Evolution de la quantité de charges libres Q(Vgs) sous la grille et détermination du potentiel de pincement Woo et de la quantité totale de charge Q₀.

Fig.IV.6. : Détermination de l'ensemble (Lg,a,Nd) du NEC 710.

- La charge totale stockée sous la grille Q_0 est donc déterminée pour Vb - Vgs = 0.

- L'intersection de la partie linéaire de la caractéristique avec l'axe des abscisses nous donne W_{00} [5]

Nous avons ainsi déterminé :

$$P_0 = q. Z. Nd. a. lg$$

 $W_{00} = q. \frac{Nd. a^2}{2.E}$

on peut alors accèder à la grandeur : $\frac{Lg}{q} = \frac{Q_0}{2.2.\varepsilon, W_{00}}$

Pour déterminer précisèment Nd et a, il nous faut connaître Lg. En effet, si la profondeur Z est donnée par le constructeur, l'évaluation précise de la longueur de grille est assez difficile. Dans le cas des grilles courtes où il n'existe pas d'autres méthodes de détermination de Nd, nous en sommes réduits à déterminer un ensemble (Lg, N_d , a) permettant d'obtenir des résultats cohérents. Par exemple pour le NEC 710 : Lg/a = 5.65 (Z = 280µm). La courbe (IV.6) représente les valeurs Nd et a suivant la valeur de la longueur de grille. On constate que pour obtenir un ordre de grandeur du dopage réaliste (un TEC est généralement dopé 2.10^{17}) il faut prendre une valeur de Lg entre 0.45 et 0.55 micron.

et

Fig.IV.7. : Principe de la mesure par magnétorésistance.

IV.1.2.2. <u>Mesure de la mobilité des porteurs dans la couche</u> active.

La mesure de mobilité se fait par magnétorésistance selon la méthode proposée par SITES [24]. Elle consiste à mesurer la résistance drain-source rds avec et sans champ magnétique (figure IV.7).

En l'absence de champ magnétique, rds s'écrit en fonction de Vgs :

$$F_{ds}(o) = R_{s} + R_{D} + \frac{\pi}{G(o)}$$

$$F(o) = \frac{\pi}{L_{g}^{g}} \int_{V_{p}}^{V_{gs}} \mu_{a}(V_{gs}) \cdot C(V_{gs}) \cdot dV_{gs}$$

avec

où $\mu_d(Vgs)$ est la mobilité différentielle, C(Vgs) : la capacité de grille.

L'application d'un champ magnétique modifie rds de la façon suivante :

$$G(B) = \frac{R_{s}(B) + R_{b}(B) + \frac{1}{G(B)}}{\frac{V_{gs}}{L_{g}^{2}} \cdot \int_{V_{p}}^{V_{gs}} \frac{\mu_{d}(V_{gs})}{1 + \mu_{d}^{2}(V_{gs}) \cdot B^{2}} \cdot C(V_{gs}) \cdot dV_{gs}$$

avec

On peut déduire de ces deux expressions la valeur de mobilité différentielle. En effet, nous avons :

$$d G(o) = \mu_d(v_{gs}). C(v_{gs}). d v_{gs}$$

$$dG(B) = \frac{\mu_d(v_{gs})}{1 + \mu_d^2(v_{gs}) \cdot B^2} \cdot C(v_{gs}) \cdot dV_{gs}$$

et donc :

$$\mu_{d}(v_{gs}) = \frac{\pi}{B} \cdot \sqrt{\frac{dG(0)}{dG(B)}} - 1$$

La mobilité moyenne est définie par :

$$\mu_{o} = \frac{\int \mu_{d} \cdot C \cdot dV_{gs}}{\int C \cdot dV_{gs}}$$

En supposant que la mobilité différentielle est cons-

tante ou varie lentement par rapport aux variations de C(V), la mobilité moyenne peut être calculée par :

$$G(0) = \frac{\mu_0}{L_g^2} \int_{V_p}^{V_{gs}} C(V) \, dV$$

$$G(B) = \frac{\mu_0}{(1 + \mu_0^2 B^2) L_g^2} \cdot \int_{V_p}^{V_{gs}} C(V) \, dV$$

et donc :
$$H_0 = \frac{1}{B} \cdot \sqrt{\frac{G(o)}{G(B)}} = 1$$

- 81 -

Fig.IV.8. : Evolution des mobilités moyenne et différentielle du NEC 710 en fonction de la tension Vgs.

A partir des valeurs mesurées rds(B) et rds(o), le calcul de G(o) et G(B) se fait en supposant que l'évolution de $R_S + R_D$ avec le champ magnétique est de la forme : $(R_S + R_D)_{(S)} = (R_S + R_D)_{(S)} \cdot (1 + \mu_S^S B^S)$

Dans ce cas, $R_S(o)$ et $R_D(o)$ étant connues, en prenant comme mobilité moyenne μ_0 , la valeur sans correction, on calcule G(o) et G(B) comme :

$$G(o) = \frac{\lambda}{r_{ds}(o) - (R_{s} + R_{o})} \quad \text{et } G(B) = \frac{\lambda}{r_{ds}(B) - (R_{s} + R_{o}) \cdot (\lambda + \mu_{o}^{2} B^{2})}$$

La valeur de la mobilité moyenne $\ \mu_{0}$ est alors déterminée.

La figure (IV.8)donne l'évolution de μ_{d} et μ_{0} en fonction de Vgs pour le transistor NEC 710.

IV.1.3. DETERMINATION DES ELEMENTS DU SCHEMA EQUIVALENT

IV.1.3.1. Principe de la méthode

Les paramètres technologiques étant connus, pour comparer notre modèle à l'expérience, il est nécessaire de connaître les éléments du schéma équivalent intrinsèque.

Le schéma global extrinsèque est représenté figure (IV.9). L_S , L_D et L_G représentent les inductances des fils de connexion, Cpg et Cpd sont dues en grande partie aux capacités existant entre

- 82 -

les différents plots ainsi qu'entre source et grille.

En supposant que $\tau \ll \omega$,

Les paramètres admittances du TEC intrinsèque s'écrivent :

$$y_{11} = \frac{R_i \ G_3^2 \ \omega^2}{\Lambda_+ R_i^2 \ G_3^2 \ \omega^2} + j \omega \left(G_3^2 d + \frac{G_3^2}{\Lambda_+ R_i^2 \ G_3^2 \ \omega^2} \right)$$

$$y_{12} = -j \omega \ G_3^2 d$$

$$y_{21} = g_{m_0} \left(\frac{\Lambda - R_i \ G_3 \ T \ \omega^2}{\Lambda_+ R_i^2 \ G_3^2 \ \omega^2} \right) - j \omega \cdot \left(G_3^2 + \frac{g_{m_0} \left(T - R_i \ G_3 \right)}{\Lambda_+ R_i^2 \ G_3^2 \ \omega^2} \right)$$

$$y_{22} = g_d + j \omega \left(G_3^2 d + G_3^2 \right)$$

En supposant d'autre part qu'aux fréquences de mesure, $R_i^2 C_{gs}^2 \omega^2$ et $R_i^{\tau} C_{gs} \omega^2$ sont très petits devant l'unité, les expressions des paramètres [y] peuvent se simplifier pour donner :

$$y_{11} = Ri \cdot G^{z} \omega^{2} + j \omega (Gd + Gs)$$

$$y_{12} = -j \omega Gd$$

$$y_{21} = g_{mo} - j \omega (Gd + g_{mo} (T - Ri Gs))$$

$$y_{22} = g_{d} + j \omega (Gd + Gs)$$

Fig.IV.10. : Organigramme de la méthode utilisée pourla détermination

des éléments du TEC intrinsèque.

On peut alors aisèment en déduire l'ensemble des éléments constituant le TEC intrinsèque.

Les mesures se font dans la gamme 2 - 4 GHz selon la méthode représentée sur l'organigramme de la figure(IV.10).La gamme des fréquences a été choisie de façon à ce que les hypothèses simplificatrices soient valables et que le paramètre S₁₁ soit mesurable.

Pour des grandeurs typiques :

- $R_i = 5\Omega$, $C_{gs} = .3pF$, $\tau = 510^{-12}s$, f=4GHz les quantités: $R_i^2 C_{gs}^2 \omega^2 \ddagger 2.8 \ 10^{-4}$ et $\tau R_i C_{gs} \omega^2 \ddagger 5 \ 10^{-3} sont$ négligeables.

 Pour obtenir les paramètres intrinsèques, on constate qu'il est nécessaire de déterminer les différentes impédances d'accès ainsi que les capacités d'entrée et de sortie C_{pq} et C_{pd}.

IV.1.3.2. Mesures des éléments d'accès

Nous avons développé une méthode basée sur la mesure dans la gamme 2 - 4GHz des paramètres [Z] du transistor à V_{ds} nulle. La grille étant polarisée en direct. La densité de courant maximum directe dans la grille étant limitée à environ 7 10^{-2} mA/µm².

Dans cette configuration et pour des courants de grille supérieur à 1mA de façon à pouvoir négliger la capacité de la Schottky en direct et les capacités C_{pg} et C_{pd}, les paramètres [Z] s'expriment comme : [33]

- 84 -

Fig.IV.12. : Principe de la détermination des résistances d'accès de source et de drain.

$$Z_{11} = R_{S} + R_{G} + \frac{R_{ch}}{3} + \gamma \cdot \frac{kT}{q.Ig} + j \omega (L_{S} + L_{G})$$

$$z_{21} = z_{12} = Rs + \frac{Rch}{2} + jLs \omega$$

$$Z_{22} = Rs + Rch + RD + j(Ls + LD).\omega$$

On constate que les évolutions des parties imaginaires sont en ω et qu'il est donc très aisé de déterminer les inductances d'accès par cette méthode (figure IV.11). Les valeurs des inductances ainsi calculées sont données dans le tableau récapitulatif.

Pour les parties réelles, il manque une donnée pour résoudre le système d'équation. La seule que l'on puisse déterminer par une autre méthode est la somme $R_S + R_D$ et donc les résistances d'accès.

Classiquement, la détermination de R_S et R_D se fait par des mesures en continues. Lors de la caractérisation de la Schottky, l'électrode de drain "flottante" nous permet de mesurer la d.d.p aux bornes de R_S et d'une partie du canal (figure IV.12), nous avons donc: V_{ds} = (R_S + α Rch) I_{gs} où α est un coefficient qui tient compte du caractère distribué de la grille et du canal [$\frac{25}{1}$]. Pour des tensions V_{ds} faibles devant n $\frac{kT}{q}$, α est égal à 0.5.

En effectuant la même mesure avec le drain à la masse, source "flottante", on obtient : $V_{sd} = (R_D + \alpha Rch) I_{qd}$.

Les valeurs ($R_S + \alpha Rch$) et ($R_D + \alpha Rch$) sont obtenues en calculant la pente des deux courbes respectives (figure IV.13)

- 85 -

CALCUL DE Rs + Rd A l'aide de la courbe Rdso de $\Sigma=1/(1-1^n)$ + n= .5 Vas min= 0.060 V ÷Σ2 = 4 Vəs max= 0.421 V 2 $\Rightarrow \Sigma 1 =$ Correlation dans la coui $\sigma^2 = .99829 \, sur,$ 24 2.324 2.099 Rs + Rd= Ω Ro= Ω Avec : Vb = 0.710 V -0.445 Ve = Ų Noo =1.155 V CALCUL DE Rs, Rd, Ri 1.036 Rs = Ω Pd =Ω

1.863

Ω

Fig.IV.14. : Evolution de rds en fonction de 1/ $1 - (\frac{10 - 19}{Woo})$ détermination de R_S + R_D.

 $1 - \left(\frac{V_{b} - V_{gs}}{W_{oo}}\right)^{1} 2$

Ri =

•

ainsi la différence R_s - R_D est déterminée.

Afin de séparer R_S et R_D , Hower et Bechtel [26] proposent une méthode consistant à relever la courbe rds = f(Vgs) pour un courant I_{ds} très faible. Dans ces conditions rds s'écrit :

$$r_{ds} = R_{s} + \frac{R_{o}}{1 - \left(\frac{V_{b} - V_{gs}}{W_{oo}}\right)^{\frac{1}{2}}} + R_{c}$$

où R₀ est la résistance du canal ouvert : R₀ = $\frac{Lg}{q. N_{d.} a. Z. \mu_{o}}$

L'évolution de rds avec :
$$\frac{1}{1 - (\frac{Vb - Vgs}{Woo})^{\frac{1}{2}}}$$
 est linéaire. Ainsi

pour Vb - Vgs = W_{00} on obtient ($R_S + R_D$).

On remarque (figure IV.14) que cette méthode est imprécise car elle suppose que la mobilité μ_0 est constante avec V_{gs}, que le dopage est uniforme et que la loi de Shockley est parfaitement vérifiée, ce qui demande la connaissance de V_b et W_{oo}.

La méthode que nous proposons est basée sur les mesures de mobilité et de C(V) décrites précédemment, et nécessite moins d'hypothèses.

La résistance rds mesurée peut d'écrire :

$$r_{ds} = R_{S} + R_{D} + \frac{Lg^{2}}{\int_{V_{p}}^{V_{gs}} \mu_{d} (v_{gs}) \cdot C(v_{gs}) \cdot dv_{gs}}$$

- 86 -

Fig.IV.16. : Evolution en fonction de Igs des parties réelles de Z_{12} et Z_{22} à Vds = 0.

Fig.IV.17. : Evolution de R_{11} en fonction de $\frac{1}{Igs}$ pour différents TEC.

Ce qui donne si la mobilité différentielle varie lentement :

$$r_{ds}(V_{ds}) = R_{s} + R_{D} + \frac{L_{g}^{z}}{\mu_{o}(V_{ds}) \cdot Q_{o}(V_{ds})}$$

On constate que rds tracée en fonction de $\frac{1}{\mu_0(Vgs) \cdot Q_0(Vgs)}$ est une droite, son intersection avec l'ordonnée donne $R_S + R_D$, sa pente nous permet de déterminer L_g et donc d'affiner les résultats des mesures des paramètres technologiques.

La courbe(IV.15)donne l'évolution de rds pour différents transistors que nous avons caractérisés.

Une fois $R_{\rm S}$ + $R_{\rm D}$ déterminée , on peut calculer les résistances d'accès.

La partie réelle de Z_{11} : R_{11} tracée en fonction de $\frac{1}{I_g}$ nous donne à l'intersection avec l'ordonnée : $R_G + R_S + \frac{Rch}{3}$.

Sur la courbe(IV.16),on constate qu'au dessus de $I_g = 1mA$, les parties réelles des paramètres Z_{12} et Z_{22} ne varient plus, ceci est dû au fait que les capacités non plus d'influence. On peut alors aisèment déterminer R_S , R_D , R_G et Rch.

La courbe(IV.17)montre l'évolution de R₁₁ pour les transistors précédents. Le tableau(IV.18)résume les valeurs des différents éléments d'accès.

IV.1.3.3. Calcul de la capacité Cpg

Pour la même configuration que précédemment (Vds=0)

- 87 -

n°	TEC	R _S + R _D (a) 1/ Q.µ	Rs+R _D (n) Statique	Rs (ع)	R و (م)	R _و رب	L _S 10 ⁻¹⁰ H	L _D 10 ¹⁰ н	ւ _ց 10 ⁻¹⁰ н	C _{pg} (pf
1	NEC 710	2.4	2.32	1.22	1 .1 8	2.64	2.1	6.24	1.92	.07
2	Toshiba JS 8818	6.7	7.1	3.54	3.17	1.8	.35	2.36	1 .6 8	.1
3	NEC 137	3.7	3.4	2.95	.75	1.55	.72	2	2.11	.07
4	LE P C A 22 - N 1	33	4.1	1.95	1.35	2.8	1.2	3.8	5.6	.07
5	NEC 720	2.1	2,9	.95	1.15	1.82	1.2	3.24	4.2	.0

Fig.IV.18. : Tableau récapitulatif des différents éléments d'accès.

BU

mais la Schottky polarisée en inverse (pour un transistor normallyon), les capacités Cgs, Cpg et Cpd ne sont plus négligeables. Elles agissent sur les parties réelles des paramètres [Z],si on fait tendre ω vers zéro :

$$R_{11} # \frac{R_{s} + R_{g} + \frac{R_{c}R_{}}{3}}{\left(1 + \frac{C_{p}g}{C_{g}s}\right)^{\frac{1}{2}}}$$

$$R_{12} = R_{21} # \frac{R_{s} + \frac{R_{c}R_{}}{2}}{\left(1 + \frac{C_{p}g}{C_{g}s}\right)}$$

 $R_{22} \# R_{S} + Rch + R_{D}$

Au premier ordre, la capacité Cpd n'intervient pas. Pour obtenir un ordre de grandeur de Cpg, on procède de la façon suivante.

Si on trace R_{12} en fonction de R_{22} pour différentes valeurs de Vgs, en supposant que Cpg soit négligeable, on obtiendra :

$$R_{12} = \frac{R_{S} - R_{D}}{2} + \frac{R_{22}}{2}$$

L'évolution seraune droite de pente $\frac{1}{2}$ ayant pour ordonnée en R₂₂ = 0 : $\frac{R_S - R_D}{2}$.

Lorsque Cpg n'est pas négligeable, la pente sera modifiée. L'écart entre la pente obtenue et $\frac{1}{2}$ nous permettra de déduire la valeur de Cpg.

- 88 -

Fig.IV.19. : Méthode de détermination de Cpg.

Fig.IV.20. : Vérification de la méthode.

Sur l'exemple du NEC 710 (figure IV.19), la pente obtenue est de 0.39, pour la ramener à 0.5, connaissant la valeur de Cgs en fonction de Vgs donnée par la mesure de c(v), la capacité nécessaire est de 0.073pF.

On peut vérifier cette valeur en traçant de la même façon $R_{T1}^{-}= f(R_{22})$ (figure IV.20).

Les valeurs de Cpg pour les différents transistors caractérisés sont reportées tableau (IV.18).

Nous disposons à présent des valeurs des inductances et des résistances d'accès (L_S, R_S), ($L_G R_G$), (L_D, R_D), ainsi qu'un ordre de grandeur de Cpg. On peut donc par des transformations de matrice aboutir à la matière admittance du schéma équivalent de TEC intrinsèque.

IV.1.3.4. Les éléments du schéma équivalent

A partir de la matrice [y] intrinsèque, le calcul des différents éléments est immédiat. Il se fait par une méthode d'optimisation par les moindres carrés appliquée dans toute la gamme de fréquence.

Dans le cas du NEC 710 étudié, nous avons reporté figure (IV.21),les évolutions des différents éléments en fonction de Vgs pour une tension Vds de 3volts.

On constate que la capacité Cds est indépendante de la polarisation, ce qui conforte l'hypothèse que nous avons faite, qu'il s'agit d'un élément extrinsèque.

La partie réelle du paramètre Y_{11} est très faible, et dans le cas du NEC 710, la forte valeur de l'inductance de source L_S ne permet pas de déterminer la valeur de R_T .

En effet, une partie de R₁₁ est en ($R_{I}+L_{S}$. $\frac{g_{m}}{Cgs}$), lorsque L_S est grand, le terme L_S $\frac{g_{m}}{Cgs}$ peut "masquer" la valeur de R_I.

Quoiqu'il en soit, cette méthode appliquée à d'autres transistors, donne des résultats satisfaisants. L'exemple du NEC 720 (chapitre I, figure(I.10)) est significatif .

IV.1.4. LA CARACTERISATION HYPERFREQUENCE

Les mesures des paramètres |S| du transistor à effet de champ dans la gamme 2 - 18GHz permet de suivre l'évolution de ses différentes caractéristiques hyperfréquences tel que le gain maximum disponible (MAG) ou le coefficient de stabilité.

Ces mesures à fréquences élevées posent le problème des corrections à apporter aux mesures faites dans les plans d'entrée de l'analyseur pour remonter aux plans du composant. En effet, la figure (IV. 22) représente le schéma du dispositif à mesurer, inséré entre les portes de l'analyseur de réseau. Le TEC est monté en boîtier BMH 60 dans une cellule de test.

L'analyseur est calibré dans ces plans d'entrée (en APC 7). Les mesures faites à ce niveau, peuvent être considérées

- 90 **-**-

Fig.IV.22.: Caractérisation hyperfréquence

comme parfaites .

Notre but étant de mesurer les paramètres |S| du transistor seul, il est nécessaire de corriger les mesures pour tenir compte des transitions APC 7 - OSM, OSM ligne microruban et de la ligne microruban du boîtier BMH 60.

Actuellement nous supposons que cet ensemble se comporte comme une ligne à pertes et les éléments de cette ligne sont définis à partir des mesures :

- d'un court circuit de référence

- d'une ligne de transmission.

La principale hypothèse consiste donc à négliger le coefficient de réflexion apporté par les transitions. Cette hypothèse est très bien vérifiée en dessous de 12GHz.

Il est néanmoins possible de lever cette chypothèse en utilisant d'autres méthodes de caractérisation des transitions telle que la méthode du peeling ou la méthode des deux lignes de transmission de longueurs différentes. Ces techniques sont actuellement étudiées au laboratoire dans le but d'effectuer des mesures de paramètres |S| jusqu'à 26GHz.

A partir des paramètres |S| du TEC, il est possible de calculer son gain maximum disponible (MAG) s'il est stable, ou son gain stable maximum (MSG) si son coefficient de stabilité k est inférieur à 1. La figure (IV.23) donne un exemple de l'évolution fréquentielle de ces gains pour le NEC 710 pour une tension Vds de 3 volt et Vgs = - 0.1volt. (Ids # 20mA).

- 91 -

Fig.IV.23 : Evolution fréquentielle du gain maximum pour le transistor NEC 710.

.

En conclusion, nous disposons d'un ensemble de méthodes nous permettant de caractériser complètement un TEC. En particulier, la valeur de R_g et dans certain cas de R_i ,nous permet une comparaison plus précise avec le modèle de bruit théorique comme nous l'avons vu dans le chapitre III.

Les paramètres [S] ainsi que les valeurs des résistances d'accès vont nous permettre dans le prochain paragraphe, de déterminer les différents éléments du quadripole de bruit.

- 92 -

IV.2. LES MESURES DE BRUIT.

IV.2.1. INTRODUCTION

Dans le but de caractériser entièrement le transistor et de corréler nos résultats théoriques avec l'expérience, nous avons entrepris la mesure du facteur de bruit des composants ainsi que de leur gain associé.

Cette caractérisation n'est pas simple en haute fréquence, car le transistor est inséré dans une chaîne d'adaptation et les pertes des éléments se trouvant entre la source de bruit et le composant contribuent au facteur de bruit de l'ensemble. La précision sur la détermination du facteur de bruit du transistor dépend de celle avec laquelle on mesure ces pertes. De plus, les pertes du circuit d'adaptation de sortie ne sont pas toujours négligeable lorsque le transistor mesuré a un gain faible. Enfin, les dérives temporelles (température) des différents appareils peuvent aussi entrer en jeu.

Pour mesurer le facteur de bruit, nous disposons de deux méthodes.

Une méthode classique dans laquelle on adapte le transistor au minimum de bruit et où les pertes des circuits d'adaptation doivent être mesurés après chaque mesure, et une méthode où le minimum de bruit est déterminé à partir d'un certain nombre de mesures pour des impédances d'entrées différentes.

Cette méthode quoique plus souple et permettant le calcul des éléments du quadripole de bruit donne dans certains cas des résultats sans signification physique. Dans un second temps, nous nous sommes efforcés de déterminer les éléments du schéma équivalent de bruit à l'aide de mesures complémentaires et nous avons tenté de remonter jusqu'aux sources de bruit intrinsèques en nous servant des paramètres [S] des transistors mesurés précédemment.

IV.2.2. FONCTIONNEMENT DU MESUREUR DE BRUIT.

L'appareil que nous utilisons est un mesureur de bruit HP 8970A fonctionnant sur le principe de la mesure du facteur de bruit par la méthode des deux températures qui sera décrit dans le paragraphe suivant. Ces deux températures de bruit sont produites par polarisation à + 28v (10000°K) ou non (300°K) d'une source de bruit par diode à avalanche HP 346B calibrée de 10MHz à 18GHz. Cet appareil permet des mesures de facteur de bruit de 0 à 30dB et de gain de - 20 à + 40dB avec une sensibilité de - 100dBm.

Il permet en outre les corrections d'erreurs apportées par le bruit et le gain des étages auxiliaires au dispositif à mesurer, et de corriger la température froide de la source de bruit si celleci n'est pas de 300°K.

Au dessus de 1.5GHz, la fréquence de mesure doit être convertie en une fréquence intermédiaire (f_i) acceptable par l'appareil. Pour ce faire, nous utilisons un mélangeur réjecteur de fréquence image et un oscillateur local délivrant un signal de fréquence f_{oL} piloté par le mesureur.

Fig.IV.22 : Principe de la mesure de bruit.

Fig.IV.23 : Mesure de la puissance de bruit.

Le principe de la mesure

Le mesureur utilise la méthode des deux températures. La figure (IV.22) représente le schéma de principe d'une mesure de bruit. Le dispositif à mesurer de gain Ga est inséré entre la source de bruit et l'appareil de mesure et génére ainsi une puissance de bruit N_a . La source de bruit délivre une puissance de bruit k.T_S.B. La puissance de bruit disponible à la sortie du dispositif a pour expression :

$$N_1 = N_a + k T_s B G_a$$

où B est la bande passante du filtre d'entrée du mesureur, k $T_S B G_a$ étant la puissance de bruit de la source amplifiée par le dispositif. L'évolution de N₁ est linéaire avec la température de bruit. Pour $T_S=0$, nous pouvons déterminer la puissance de bruit ajoutée par le dispositif N_a. L'extrapolation de la droite à partir d'un seul point de mesure peut poser des problèmes de précision, en conséquence, le mesureur polarise la source de bruit à + 28volts de façon à générer une puissance de bruit k.T_c.B supérieure à celle délivrée lorsqu'elle n'est pas polarisée (0 volt) k.T_o.B.

Typiquement le rapport $\frac{T_c - T_o}{T_o}$ est de l'ordre de 15dB. T_o : est appelée température froide (300°K) T_c : température chaude (10000°K)

Le mesureur dispose donc de deux valeurs :

$$N_{1} = k T_{o} B G_{a} + N_{a}$$
(1)
$$N_{2} = k T_{c} B G_{a} + N_{a}$$
(2)

et

- 95 -

L'extrapolation permet d'obtenir N_a (figure IV .23), de plus, le calcul de la pente de la droite nous donne la valeur de G_a .

Le facteur de bruit est alors calculé de la façon suivante :

Par définition :

 $F = \frac{(S/N)_{entrée}}{(S/N)_{sortie}}$ avec $S_{sortie} = G_a$. $S_{entrée}$

on a donc :

$$F = 1 + \frac{N_a}{k.T_o.B.G_a}$$
 (3)

Le rapport $\frac{N_2}{N_1}$ peut s'exprimer comme : $\frac{N_a + k T_c BG_a}{N_a + k T_o BG_a}$ (4),

de (3), l'expression de N_a est : $N_a = (F - 1)$. k. T_o . B. G_a .

En remplaçant dans (4) on obtient :

 $\frac{N_2}{N_1} = 1 + \frac{T_c - T_o}{T_o \cdot F}$ d'où l'expression du facteur de bruit :

$$F = \frac{T_{c} - T_{o}}{T_{o}} \cdot \frac{1}{\frac{N_{2}}{N} - 1}$$

soiten dB: NF = 10 Log $\frac{T_c - T_o}{T_o}$ - 10 Log $(\frac{N_2}{N_1} - 1)$

Le rapport 10 Log $\left(\frac{T_c - T_o}{T_o}\right)$ est appelé ENR (excess noise ratio), il est donné par le constructeur pour différentes fréquences de la gamme d'utilisation de la source de bruit. Il suffit donc

- 35 -

Fig.IV.24 : Principe de la mesure en doubles bandes latérales.

Fig.IV.25 : Schéma de principe de la mesure du facteur de bruit minimum. de connaître le rapport $\frac{N_2}{N_1}$ pour déterminer le facteur de bruit.

Le gain mesuré est le gain d'insertion que l'on peut définir comme étant le rapport de la puissance délivrée à la charge par le dispositif sur la puissance délivrée sans lui. Le gain G_a est donc calculé à partir de la pente de la courbe.

IV.2.3. DESCRIPTION DU BANC DE MESURE

Les mesures que nous effectuerons se situent au dessus de 8GHz, ce qui implique l'utilisation d'un oscillateur local et d'un mélangeur afin de ramener le signal à une fréquence f_i située dans la bande de fonctionnement du mesureur (figure IV. 24).

La source de bruit délivre une puissance de bruit dans toute sa gamme de fréquence. Le mélangeur convertit la puissance d'entrée sur deux bandes de fréquences ($f_{oL} - f_i$) et ($f_{oL} + f_i$).

Si on mesure le bruit sur les deux fréquences, la mesure est dite en double bande latérale. Le facteur de bruit affiché pour la fréquence $f_{oL} = f_{mesure}$ est une moyenne faite sur les deux bandes.

Lors de la mesure du facteur de bruit d'un transistor, le schéma de principe est donné figure (IV.25), le TEC est inséré dans une chaîne comportant les tès de polarisation et des adaptateurs d'entrée et de sortie. La mesure se fait en adaptant l'entrée au minimum de bruit, la sortie au maximum de gain. Si la mesure se fait en double bande latérale sur deux fréquences espacées de 2 f_i , l'impédance de

- 97 -

Fig.IV.26 : Mesure en bande latérale unique.

la source présentée au transistor aux deux fréquences n'est pas la même, du fait de la différence de longueur électrique aux deux fréquences, entre le noyau de l'adaptateur et le plan d'entrée du transistor, typiquement la phase du coefficient de réflexion de la source $\Gamma_{\rm S}$ évolue de 4.6° par MHz et par métre. On constate donc qu'il est impossible de déterminer l'impédance optimale à présenter au transistor, et donc que le facteur de bruit minimal ne pourra pas être trouvé, le même type d'erreur est faite en sortie sur l'adaptation en gain.

Pour nous affranchir de ce problème, nous avons opté pour des mesures en bande latérale unique. Pour ce faire, nous utilisons un filtre réjecteur de fréquence image afin de ne laisser subsister que la fréquence inférieure ($f_{oL} - f_i$). La figure(IV.²⁶) représente le schéma du banc de mesure utilisé.

> - les mesures se font à fréquence intermédiaire fixée: $f_i = 160MHz$. Le mesureur pilote l'oscillateur local. Il décale sa fréquence au dessus de la fréquence de mesure de la valeur f_i et utilise la valeur d'ENR de la source de bruit à la fréquence de mesure.

Le TOS d'entrée du mélangeur peut être élevé, ce qui occasionne des effets de désadaptation et influence donc la précision des mesures. Afin d'améliorer l'adaptation, on est conduit à insérer une ligne unidirectionelle entre le dispositif et le mélangeur, le plan d'étalonnage étant ramené à l'entrée de celle-ci.

Le problème ne se pose pas à l'entrée du dispositif, la source de bruit ayant un TOS très faible de l'ordre de 1.05.

 $G_1.G.G_2$ représente le gain en puissance disponible total G_a . En supposant que le gain mesuré est égal ou voisin du gain disponible G_a on obtient :

$$F = G_1 \cdot \left[F_m - \frac{1 - G_2}{G_m} \right]$$

Le facteur minimum de bruit du transistor peut alors être déterminé après la mesure de G_1 et G_2 à l'analyseur de réseau.

La source de bruit étant adaptée ($\Gamma_{S}~\#~0$) on a :

$$G_{1} = \frac{|S_{21}^{(A)}|^{2}}{|A_{-}|S_{22}^{(A)}|^{2}}$$

 $G_2 = \frac{|S_{21}^{(2)}|^2}{|S_{21}^{(2)}|^2}$

et

, si le transistor est adapté en sortie et le TOS d'entrée du système de mesure faible.

Le facteur de bruit et le gain que nous voulons déterminer sont ceux du transistor au niveau de la puce. Pour cela, il faut effectuer une correction qui tient compte du boîtier. On suppose que celui-ci est en fait constitué de deux " demi-boîtiers" identiques situés de part et d'autre du transistor. Ce demi boîtier comprend une transition (OSM-ligne microruban) et une longueur de ligne correspondant à la longueur de la ligne d'accès à la puce.

Afin d'en tenir compte dans les corrections , on supposera

IV.2.4. LES DIFFERENTES METHODES DE MESURES DU FACTEUR DE BRUIT MINIMUM.

IV.2.4.1. La méthode classique.

Nous avons vu dans la partie théorique que le facteur de bruit d'un transistor ne dépendait que de l'impédance (ou coefficient de réflexion) ramenée à son entrée, et qu'il était minimum pour une valeur particulière Z_{opt} (Γ_{opt}), la sortie du transistor étant adaptée.

Le facteur de bruit F_m mesuré par l'appareil est celui de la cascade des t**roi**s quadripoles constituée par les adaptateurs et le transistor. Il peut s'exprimer par la formule de Friiss :

$$F_m = F_1 + \frac{F - 1}{G_1} + \frac{F_2 - 1}{G_1 \cdot G}$$

où G_1 , G sont les gains en puissance disponibles des différents quadripoles.

L'adaptateur étant un élément passif, son facteur de bruit est égal à l'inverse de son gain disponible et donc :

$$F_1 = \frac{1}{G_1}$$
 et $F_2 = \frac{1}{G_2}$

l'expression du facteur de bruit du transistor sera déterminé par :

$$F = G_1 \cdot \left[F_m - \frac{\lambda - G_2}{G_1 \cdot G_2} \right]$$

qu'il joue le rôle d'un atténuateur. Ainsi, les pertes d'entrée et de sortie peuvent s'écrire :

$$G_{1} = \frac{0.|S_{2}^{(n)}|^{2}}{1-\alpha^{2}|S_{22}^{(n)}|^{2}}$$

et
$$G_2 = \frac{a |S_2^{(2)}|^2}{|a_2^{(2)}|^2}$$

Le facteur minimum de bruit est ainsi déterminé. De la même façon, le gain associé au minimum de bruit est obtenu par :

$$G = \frac{G_m}{G_1 \cdot G_2}$$

Cette méthode quoique assez fastidieuse d'utilisation, car il faut mesurer les adaptateurs à l'analyseur de réseau après chaque mesure, donne des résultats reproductibles.

Afin de rendre plus aisé le calcul du facteur de bruit minimum, une solution serait de relever l'évolution des paramètres [S] des adaptateurs en fonction de la position du chariot pour différents enfoncementsdu plongeur, et de les stocker dans le programme de calcul des pertes et du facteur de bruit. Malheureusement, les adaptateurs Maury que nous utilisons ne présentent pas une bonne reproductibilité de la position de la vis micrométrique commandant le plongeur.

IV.2.4.2. LES MESURES PAR OPTIMISATION

Afin d'essayer de rendre plus systèmatique les mesures de facteur de bruit, nous avons employé une méthode de mesure par optimisation développée par différents auteurs [27][28].

Cette méthode repose sur la résolution de l'équation de décrivant l'évolution du facteur de bruit en fonction de l'impédance de source :

$$F(\Gamma_{s}) = F_{min} + \frac{4.Rn}{|1+\Gamma_{op}+|^{2}} \cdot \frac{|\Gamma_{s}-\Gamma_{op}+|^{2}}{(1-|\Gamma_{s}|^{2})}$$

On constate que quatre valeurs de Γ_S devraient suffire pour déterminer les quatres paramètres de bruit qui sont : F_{min} , R_n , P_{opt} et θ_{opt} .

De même, le gain du transistor a comme expression :

$$\frac{\Lambda}{G(15)} = \frac{\Lambda}{G_{ao}} + \frac{4 \text{ Rg}}{1 \text{ I} + \log 1^2} \cdot \frac{1 \text{ I} 5 - \log 1^2}{(1 - 115)^2}$$

où G_{ao} est le gain en puissance disponible maximum Γ_{og} est le coefficient de réflexion optimal permettant de l'obtenir R_{g} étant le paramètre équivalent à R_{n} pour le gain.

Afin de minimiser les erreurs faites sur les mesures de Γ_S et du facteur de bruit, on effectue des mesures redondantes, la détermination des paramètres de bruit se faisant par une méthode des moin-

- 102 -.

dres carrés.

Pour cela, on linéarise l'expression du facteur de bruit par :

$$F(T_s) = A + \frac{B}{1 - \rho_s^2} + C \cdot \frac{P_s \cdot \cos \theta_s}{1 - \rho_s^2} + D \cdot \frac{P_s \cdot \sin \theta_s}{1 - \rho_s^2}$$

avec :
$$A = F_{min} - \alpha_n$$

 $B = \alpha_n (1 - \rho_{opt}^2)$
 $C = -2\alpha_n \rho_{opt} \cos \theta_{opt}$
 $D = -2\alpha_n \rho_{opt} \sin \theta_{opt}$
 $\alpha_n = 4 \frac{Rn}{|1 + \Gamma_{opt}|}^2$

La méthode des moindres carrés consiste à minimiser l'erreur quadratique ε entre les mesures F_i et la formule théorique F_{ti} :

$$\mathcal{E} = \frac{1}{2} \sum_{i=1}^{n} \left[A_{i} + \frac{B}{1 - \beta_{s}^{2}} + \frac{C_{i} P_{s} \cdot cos \theta_{s}}{1 - \beta_{s}^{2}} + \frac{D_{i} P_{s} \cdot Sin \theta_{s}}{1 - \beta_{s}^{2}} - F(\Gamma_{s}) \right]$$

n étant le nombre de mesure effectuée.

Les conditions d'obtention de l'erreur minimale sont :

$$\frac{\partial \mathcal{E}}{\partial A} = 0 ; \quad \frac{\partial \mathcal{E}}{\partial B} = 0 ; \quad \frac{\partial \mathcal{E}}{\partial C} = 0 \text{ at } \frac{\partial \mathcal{E}}{\partial D} = 0.$$

$$\frac{\partial \mathcal{E}}{\partial A} = \sum_{i=1}^{n} \left(F_{\pm i} - F_{\pm} \right) = 0$$

$$\frac{\partial \mathcal{E}}{\partial B} = \sum_{i=1}^{n} \frac{F_{\pm i} - F_{i}}{A - \rho_{s_{\pm}}^{2}} = 0$$

$$\frac{\partial \mathcal{E}}{\partial C} = \sum_{i=1}^{n} \frac{F_{\pm i} - F_{i}}{A - \rho_{s_{\pm}}^{2}} \rho_{s_{i}}^{2} \cdot \rho_{s_{i}}^{2} \cdot \sigma_{s_{i}} = 0$$

$$\frac{\partial \mathcal{E}}{\partial C} = \sum_{i=1}^{n} \frac{F_{\pm i} - F_{i}}{A - \rho_{s_{\pm}}^{2}} \cdot \rho_{s_{i}}^{2} \cdot \sigma_{s_{i}} = 0$$

$$\frac{\partial \mathcal{E}}{\partial D} = \sum_{i=1}^{n} \frac{F_{i} - F_{i}}{A - \rho_{s_{\pm}}^{2}} \cdot \rho_{s_{i}}^{2} \cdot \sigma_{s_{i}} = 0$$

La résolution de ce système nous donne les paramètres de bruit du transistor. On peut déterminer de la même façon les paramètres de gain.

Malheureusement, dans bien des cas, les résultats obtenus sont erronés. Ces erreurs sont aussi observées par les différents auteurs cités précédemment.

A ceci plusieurs causes :

- LANE [27]attribue ce fait à la grande sensibilité des résultats avec les erreurs de mesures pour les transistors à grandes résistances équivalentes R_n .

- MITAMA et KATOH [29] y ajoutent une différence entre les valeurs de Γ_S mesurées et celles effectivement présentées au transistor.

- Enfin SANINO [$_{30}$] montre que certains choix de Γ_S

Fig.IV.27 : Minimisation de l'erreur $\boldsymbol{\epsilon}$

font que la matrice du système à résoudre devient singulière et de ce fait entraîne une augmentation de la sensibilité aux erreurs.

Pour remédier à cet état, plusieurs solutions ont été avancées.

Pour un enfoncement donné du plongeur, le déplacement du chariot déplace Z_S sur un cercle de TOS quasi constant, ce qui peut engendrer des redondances sur les valeurs de l'impédance de source. Il faut donc en premier lieu choisir les valeurs de Z_S de façon à ce qu'elles soient toutes différentes, de plus, ces valeurs doivent être réparties sur au moins deux cercles de TOS différents.

Notons qu'il est intéressant de connaître un ordre de grandeur du facteur de bruit et de l'impédance optimale à mesurer, afin de présenter des impédances situées au voisinage de l'impédance optimale.

MITAMA et KATOH ont amélioré cette méthode en y introduisant une minimisation de l'erreur existant entre les valeurs Z_S mesurées et celles présentées effectivement au transistor.

La figure (IV.27) représente le facteur de bruit en fonction du coefficient de reflexion Γ_s .

Pour une mesure F_i faite avec un coefficient de reflexion $\Gamma_{Si} = \rho_{Si} e^{j\theta}Si$, l'erreur estimée par la méthode précédente est donnée par la projection ε_i sur la paraboloïde. Ces auteurs minimisent cette erreur en minimisant la distance ε'_i ce qui revient à considérer l'erreur faite sur la mesure de Γ_{Si} . Cette méthode nécessite donc une optimisation par les moindres carrés mais également un programme itératif.

IV.2.5. ETUDE EXPERIMENTALE DU BRUIT

IV.2.5.1. Le facteur de bruit

- Evolution en fonction de la polarisation

Nous avons représenté figure (IV. 28), le facteur de bruit minimum et le gain associé pour des TEC et TEGFET des différentes longueurs de grille. Leurs principales caractéristiques sont données tableau (IV. 29).

Ces mesures ont été effectuées à 12GHz par la méthode classique décrite précédemment. La détermination des différentes pertes est essentielle car elle détermine la précision des mesures. En supposant que l'analyseur de réseau permet d'évaluer les pertes à \pm 0.1dB, le calcul du facteur de bruit se fera à \pm 0.15dB

Une autre difficulté consiste à trouver le minimum de facteur de bruit du transistor. En effet, les adaptateurs ayant des pertes assez importantes, le minimum de facteur de bruit "extrinsèque" (c'est à dire affiché sur le mesureur) ne correspond pas forcèment au facteur de bruit minimum du TEC seul.

Il faut par conséquent effectuer plusieurs mesures autour de ce minimum.

Nous avons aussi représenté quelques mesures faites par la méthode d'optmisation. Ces valeurs proviennent d'un "tri" effectuées sur plusieurs séances de mesures et représentant une valeur réaliste du facteur de bruit. Pour les différentes raisons exposées dans le paragraphe précédent, cette méthode ne nous paraît pas

- 106 -

Fig.IV.28 : Evolution du facteur de bruit et du gain associé.

n°	TEC	L9	Z (µm)	10 m²/v.s	Nd 10 ¹⁷ cm ³	Rs q	Rgjd	Ls 10 ⁻¹⁰ н
1	NEC 710	0.3	280	-31	2.	1.22	2.64	2.08
2	J58818	0.5	300	.36	1.92	3.54	1.8	.35
З	NEC 137	0.5	280	.34	1.42	2.95	1.55	.72
4	CA 22-N1	0.7	200	.345	3.4	1.95	2.81	1.2
5	NEC 720	1	400	.38	1.2	.95	1.82	1.22

Tableau IV.29 Caractéristiques des transistors mesurés.

concluante. De plus, sous certaines conditions d'adaptation, des transistors ont tendance à osciller, ce qui fausse l'ensemble de la mesure, enfin, la même incertitude sur les paramètres [S] de l'adaptation d'entrée entraîne une erreur sur le facteur de bruit de même ordre de grandeur que lors des mesures classiques.

En comparant les évolutions du facteur de bruit à celles des paramètres petits signaux, on constate, que les évolutions des paramètres des TEC 2,3 et 4 sont similaires, ce qui donne des évolutions de facteur de bruit du même ordre, malgré des longueurs et des largeurs de grille différentes.(figure IV.30).

Notons que le passage par le minimum de facteur de bruit correspond à la décroissance plus rapide de la fréquence de coupure et donc du gain et se situe pour les TEC étudiés vers 0.15Idss.

Les mesures réalisées sur les TEGFET donnent de meilleurs résultats de bruit et de gain que les TEC conventionnels pour des longueurs de grilleséquivalentes. Ceci est due à la mobilité supérieure du TEGFET ainsi qu'à leurs meilleurs rapports $\frac{Lg}{a}$. Typiquement, pour un TEGFET $\frac{Lg}{a}$ # 12, pour un TEC : $\frac{Lg}{a}$ # 5.

- Influence de Vds.

Nous avons représenté figure (IV.31) l'influence de la tension drain-source sur le facteur de bruit. Elle montre qu'â partir de lvolt, ou plus précisèment à partir de la saturation, le facteur de bruit reste pratiquement constant pour un TEC. Il n'en est pas de même pour un TEGFET, où on observe une diminution constante de facteur de bruit lorsque Vds augmente. Cette évolution semble caractéristique: des TEGFET puisque nous l'avons observée sur l'ensemble des composants de ce type.

Fig.IV.30 : Comparaison avec l'évolution des éléments du schéma petits signaux.

.

1: NEC 710 2: Toshiba JS 8818 3: NEC 137 4: CA22-N1 (LEP) 5: NEC 720

•: Point de fonctionnement à Fmin.

Vgs V

-1.5

-1.0

0

-0.5

Gm mS

Fig.IV.31 : Influence de la tension drain-source. F = 12 GHz

- Evolution fréquentielle.

La figure (IV. 32) donne l'évolution fréquentielle du facteur de bruit des différents transistors. On peut constater leur linéarité, sauf pour le NEC 720 dont la fréquence de coupure est de l'ordre de 16.5GHz.

Les mesures effectuées aux abords de f_c sont très imprécises, en effet, le gain étant faible, les étages de sortie jouent un grand rôle de plus, d'après l'expression du facteur de bruit mesurée par l'appareil:

$$F = \frac{T_c - T_o}{T_o} \cdot \left(\frac{1}{\frac{N_2}{N_1}}\right) \quad \text{avec} \quad \frac{N_2}{N_1} = \frac{N_a + k.T_c.B.G_a}{N_1 + k.T_o.B.G_a}$$

Lorsque G_a est faible, le rapport $\frac{N_2}{N_1}$ tend vers 1 d'où une grande incertitude sur le facteur de bruit.

La linéarité de l'évolution fréquentielle des TEC étudiés est en accord avec l'équation de Fukui [23] donnant le facteur de bruit minimum en fonction de la fréquence :

$$F_{min} = 10 \log \left[1 + kf \cdot \frac{f}{f_c} \cdot \sqrt{\frac{q}{q_m} (R_{s+}R_{q})} \right]$$

à condition d'être assez éloigné de la fréquence de coupure.

Pour les TEC, nous avons calculé le coefficient de Fukui à partir des mesures effectuées (tableau IV. 33) . On constate

BU							
n°	TEC	g _{m (m S)}	Fc (GHZ)	R _{s+} Rg	F (GHz)	NF	k _f
					7	1.	2.83
1	NFC 710	76	41.5	3.86	12	1.6	2.84
4					17	2.1	2.80
	Toshiba				8	1.2	2.64
2	JS 8818	47	30	4.34	12	1.93	3.10
					17	2.56	3.14
					7	1.42	3.0
3	NEC 137	52	26.2	4.5	12	2.1	2.81
					15	2.46	2.75
4	LEP	46	25	4.76	12	1.9	2.44
	CA 22 N1				17	2.6	2.58
5	NEC 720	59.6	16.5	2.77	11	2.35	2.65
					12	2.5	2.63

Tableau IV.33 : Détermination du coefficient de Fukui

.

IV.2.5.2. Détermination des éléments du quadripole équivalent.

Calcul de R_n , g_n et Z_{cor}

Le calcul des éléments du quadripole de bruit nécessite une seconde mesure de facteur de bruit.

En effet, pour une impédance de source quelconque, nous avons vu que le facteur de bruit pouvait s'écrire :

$$F(\Gamma_{s}) = F_{min} + \frac{4.R_{n}}{|1 + \Gamma_{op} + |^{2}} \cdot \frac{|\Gamma_{s} - \Gamma_{op} + |^{2}}{1 - |\Gamma_{s}|^{2}}$$

En principe, avec cette mesure supplémentaire, on peut déterminer la résistance équivalente de bruit R_n , et donc, la conductance équivalente g_n et l'impédance de corrélation Z_{cor} par :

$$R_{cor} = R_{opt} - \frac{2.R_{n}}{F_{min} - 1}$$

$$g_n = \frac{F_{min} - 1}{2(R_{cor} + R_{opt})}$$

le tableau (IV. 34) donne ces différents éléments pour quelques transistors testés à 12GHz.

ۍ ۲	1.79			1.2	2
rnd	200			21.6	435
Xcor	_26.3	- 2 5	- 29.4	51-	-26.3
Rcor	15	17.3	17.6	53	11.7
g, "	6.7	7.5	6.6	2.4	10.9
R'ہ (ھ)	.88	18.	1.3	3.72	6.
Ropt	19	20.2	22.6	71.6	14.8
Gnax Jb	8.3	8.95	7. 22		6
Gass db	7.54	80	6.4	4.3	8.4
NF db	1.63	1.93	1.86	2.1	1.98
F GHz	12			17	12
	Vds=3V Ids= lomA	Ids= 20mh	Id s= 5 mA	10 mA	10 mA
ΤEC	NÉC 710	NEC 710	NEC 710	NEC 710	CA 22N1
ů	۲				4

Tableau IV.34 : Détermination des éléments du quadripole de bruit.

Du point de vue des incertitudes, une erreur de ⁺ 0.1dB sur les paramètres S_{12} des adaptateurs entraîne une erreur de 5 à 10% sur les valeurs des éléments du schéma équivalent, g_n et R_{cor} étant plus sensiblesque R_n .

Calcul des sources de bruit

Enfin, connaissant les paramètres [S] du TEC, ainsi que ses résistances d'accès, il est possible d'en déduire un ordre de grandeurs des sources équivalentes de bruit Vg et Vp.

En effet, de l'expression $g_n = \frac{R_S + r_{nd}}{|Z_{21}|^2}$ on en déduit la résistance de bruit équivalente :

 $r_{nd} = |Z_{21}|^2 g_n - R_S$ De même la résistance de bruit r_{ng} se déduit des expressions R_n et Z_{cor} par :

$$r_{ng} = R_n - R_s - R_g + \frac{|Z_n - Z_{cor}|^2}{|Z_{2n}|^2} \cdot (R_s + r_{nd})$$

Au vue de ces expressions, on peut noter que les incertitudes seront élevées. En fait nous ne pourrons avoir qu'un ordre de grandeurs de ces sources de bruit. Le tableau (IV.34) donne ces valeurs.

On constate bien que r_{nd} est largement supérieur à R_{ng}, néanmoins il semble, que mis à part R_n, la détermination des autres éléments du quadripole de bruit soit entâchée de beaucoup d'erreurs.

CONCLUSION GÉNÉRALE

A partir du modèle de transistor à effet de champ, prenant en compte les phénomènes de dynamiques non stationnaires et les effets de bord, nous avons développé un modèle de bruit pouvant s'appliquer aux composants à grille submicronique et permettant d'étudier la répartition spatiale du bruit dans le canal ainsi que l'influence des divers paramètres technologiques sur le facteur de bruit intrinsèque.

Les principaux résultats en sont :

- La contribution de la région à mobilité constante au bruit total est prépondérante.

- Le facteur de bruit intrinsèque du transistor dépend essentiellement du bruit de drain.

- La réduction du facteur de bruit intrinsèque est obtenue par une diminution de la longueur de grille et/ou par une diminution de l'épaisseur de la couche active ainsi que par la bonne qualité de celle-ci. Ces deux derniers points avantagent le TEGFET par rapport au TEC conventionnel.

Cette étude du facteur de bruit intrinsèque, nous a permis de déterminer les performances limites que l'on peut atteindre en réduisant les éléments d'accès à zéro et ceci dans une large gamme de fréquence. L'étude du facteur de bruit extrinsèque montre la nécessité de réduire au maximum les résistances d'accès de source et de grille.

Néanmoins, lorsque la largeur de la grille diminue, la valeur de la résistance de grille diminue alors que celle de la résistance de source augmente. Pour les transistors devant fonctionner aux fréquences millimétriques, la résistance de source aura donc un effet prédominant sur le facteur de bruit.

A partir de l'étude systèmatique de l'influence des paramètres technologiques sur les sources de bruit de drain et de grille, nous avons obtenu des expressions analytiques de celles-ci facilitant la conception d'amplificateurs faible bruit.

Du point de vue expérimental , nous avons développé une méthode de détermination des éléments d'accès du TEC, ainsi que des éléments du schéma équivalent intrinsèque dont les principaux avantages sont :

- la mesure de ${\rm R}_{\rm S}$ + ${\rm R}_{\rm D}\,$ ne nécessite aucune hypothèse sur la valeur de la mobilité

- la résistance ${\rm R}_{\rm g}$ peut être déterminée

- un ordre de grandeur de la capacité Cpg est obtenue

- les inductances d'accès sont déterminées précisèment.

Cette méthode nous a permis de déterminer les principaux paramètres du TEC intrinsèque ainsi que, dans certain cas, la valeur de R_I. Nous avons également montré que la capacité Cds , pratiquement indépendante de la polarisation, pouvait être considérée comme un élément extrinsèque.

En ce qui concerne les mesures de facteur de bruit et de gain, différentes méthodes ont été testées. La méthode classique s'est montrée supérieure aux méthodes par optimisation et a permis de valider notre simulation numérique. Compte tenu des incertitudes de mesures, il ne nous a pas été possible de déterminer avec précision les paramètres du quadripole équivalent de bruit.

BIBLIOGRAPHIE

- [1] W.SHOCKLEY " A unipolar field effect transistor " Proc. IRE. vol 40, November 1952.
- [2] A.GREBENE, S.GHANDHI " General theory for pinched operation of the junction-gate FET" Solid State Electronics, vol 12, 1969.
- R.PUCEL, H.HAUS, H.STATZ [3] " Signal and Noise Properties of GaAs Microwave FETs " Advances in electronics and electron physics, vol 38, 1975.

[4] J.GRAFFEUIL

- " Le transistor hyperfréquence à effet de champ à grille métallique sur arséniure de gallium. Propriétés statiques et dynamiques. Petits signaux. Analyse des phénomènes de bruit de fond " Thèse d'Etat. Toulouse, 1977.
- [5] A.CAPPY

" Sur un nouveau modèle de transistor à effet de champ à grille submicronique " Thèse 3^ecycle. Lille, 1981.

- B.CARNEZ, A.CAPPY, G.SALMER, E.CONSTANT [6]
 - " Modélisation de transistor à effet de champ à grille ultra courte "

Acta Electronica, vol 23, 1980.

[7] K.BLOTEKJAER

" Transport equation for electrons in two valley semiconductors " IEEE Transactions on electron Devices

 [8] J.P.NOUGIER, J.C.VAISSIERE, D.GASQUET, J.ZIMMERMANN, E.CONSTANT
 " Determination of transient regime of hot carriers in semiconductors using the relaxation time approximations " Journal Applied Physics, Mars 1980.

[9] S.EL.GHAZALY, M.LEFEBVRE, G.SALMER

" Two dimensional FET simulation in non stationnary conditions " ESSDERC, 1983.

[10] M.SAADOUN

" Two dimensional simulation of microwave GaAs submicronic-gate FET " M.Sc. Thésis, Faculty of Engineering, Cairo, 1983.

[11] S.EL.GHAZALY

" Effect of substrats and gate length on the GaAs MESFET performances performances "

M.Sc. Thésis, Faculty of Engineering, Cairo, 1983.

[12] E.WASSERSTROM, J.Mc.KENNA

" The potential due to a charged metallic strip on a semiconductor surface "

The Bell System Technical Journal, 1970.

[13] A.VAN DER ZIEL

" Thermal noise in Field Effect Transistors " Proc. IRE. Aout, 1962.

[14] A.VAN DER ZIEL

" Gate Noise in Field Effect Transistor at moderately high frequencies "

Proc. IRE. Mars, 1963.

[15] W.BAECHTOLD

"Noise Behaviour of Schottky Barrier Gate Field Effect Transistor at Microwave Frequencies " IEEE TED. Février, 1971. [16] W.BAECHTOLD

" Noise Behaviour of GaAs Field Effect Transistors with Short Gate Length"

IEEE T.E.D.,Mai,1972.

- [17] F.KLAASSEN
 " High-Frequency Noise of the Junction Field Effect Transistor"
 IEEE T.E.D., Juillet 1967.
- [18] H.STATZ, H.HAUS, R.PUCEL " Noise Characteristics of GaAs FETs" IEEE T.E.D., Septembre 1974.
- [19] J.P.NOUGIER
 - " Noise in Submicron Devices "
 - " Noise in Physical Systems and $^{1}/f$ Noise ", 1983.

[20] J.P.NOUGIER, C.GONTRAND

- " Extension de la méthode du champ d'impédance au cas des sources de bruit spatialement correlées "
- IV^{ême} Journées Nationales Microondes , Lannion, Juin 1984.
- [21] J.P.NOUGIER, J.C.VAISSIERE, C.GONTRAND

" Corrélations spatiales microscopiques des sources de bruit de porteurs chauds dans les semiconducteurs non polaires " IV^{ème} Journées Nationales Microondes, Lannion, Juin 1984.

- [22] H.ROTHE, W.DAHLKE
 " Theory of Noisy Four poles "
 Proc. IRE, vol.44, 1956.
- [23] H.FUKUI "Optimal noise figure of microwave GaAs MESFET's" IEEE T.E.D. vol.ED-26, n°7 Juillet 1979
- [24] J.R.SITES, H.H.WIEDER " Magnetoresistance Mobility Profiling of MESFET Channels " IEEE TED. Vol,ED27, N°12, Décembre 1980.

- [25] K.LEE, M.SHUR, K.W.LEE, T.VU, P.ROBERTS, M.HELIX
 " A new interpretation of "End" resistance measurements" IEEE EDL. Vol. EDL.5, n°1, Janvier 1984.
- [26] P.L.HOWER, N.G.BECHTEL " Current saturation ans small-signal characteristics of GaAs field-effect-transistors " IEEE. TED. vol ED.20, n°3, Mars 1973
- [27] R.LANE

" The determination of device noise parameters " Proc. of IEEE, Aout 1969.

[28] G.CARUSO, M.SANNINO

" Computer-oided determination of microwave two-part noise parameters " IEEE. MTT . Vol.MTT.26, n°9, Septembre 1978.

- [29] M.MITANA, H.KATOH
 - An improved computational method for noise parameter measurement "

IEEE. MTT. Vol.MTT.27, N°6, Juin 1979.

[30] M.SANNINO

" On the determination of device noise and gain parameters " Proc. of IEEE. Vol.67, N°9, Septembre 1979.

- [31] U.K.MISHRA, S.C.PALMATEER, P.C.CHAO, P.M.SMITH, J.C.M. HAWANG
 "Microwave performance of 0.25µm Gate length high electron mobility transistors"
 IEEE. EDL.6, n°3. Mars 1985.
- [32] A.CAPPY, A.VANOVERSCHELDE, M.SCHORTGEN, C.VERSNAEYEN, G.SALMER "Noise modeling in submicrometer gate two dimensional electron gas field effect transistor"
- [33] C.VERSNAEYEN
 - " Thèse 3^{ème}cycle, Juillet 1985,Lille.

SECTION DE CIENCES

RESUME

Le but de ce travail est d'étudier les propriétés de bruit des transistors à effet de champ à grille submicronique pour des fréquences de fonctionnement en gamme centimétrique et millimétrique.

Dans un premier chapitre, l'auteur rappelle les divers problèmes posés par la modélisation d'un transistor à effet de champ à grille submicronique et présente le modèle numérique utilisé pour décrire le fonctionnement du composant en petit signal.

Le second chapitre est consacré à la modélisation du bruit hyperfréquence dans les TEC. L'emploi de la méthode du champ d'impédance permet le calcul du facteur de bruit et du quadripole de bruit équivalent du composant intrinsèque et extrinsèque.

L'exploitation de ce modèle est développéedans le troisième chapitre. Une étude des influences des différents paramètres technologiques et des éléments parasites sur le facteur de bruit permet de dégager les critères d'une amélioration des performances hyperfréquences des TEC dans la gamme 20 - 60GHz.

La dernière partie est consacrée à la caractérisation des TEC. Une méthode originale de détermination des éléments parasites d'accès et du schéma équivalent intrinsèque est proposée.Une méthode de mesure de facteur de bruit et de détermination des éléments du quadripole équivalent de bruit est également présentée.

MOTS CLES : MODELE, TRANSISTOR A EFFET DE CHAMP, BRUIT DE FOND, CARACTERISATION COMPOSANTS HYPERFREQUENCES.

